

Introduction to Network Simulator NS2

Teerawat Issariyakul • Ekram Hossain

Introduction to Network
Simulator NS2

Second Edition

123

Teerawat Issariyakul
TOT Public Company Limited
89/2 Moo 3
Chaengwattana Rd.
Thungsonghong, Laksi
Bangkok 10210 Thailand
iteerawat@hotmail.com
ns2ultimate.com

Ekram Hossain
Department of Electrical
and Computer Engineering
University of Manitoba
75A Chancellor’s Circle 15
Winnipeg, MB R3T 5V6
Canada
ekram@ee.umanitoba.ca

ISBN 978-1-4614-1405-6 e-ISBN 978-1-4614-1406-3
DOI 10.1007/978-1-4614-1406-3
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011940220

© Springer Science+Business Media, LLC 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To our families

Preface

Motivation for Writing This Book

First of all, we would like to thank you for your interest in this book. This book was
motivated by our frustration when we were graduate students. We were pushed to
work with NS2, when we did not know what to do. We looked over the Internet, but,
at the time, there were very little material on the Internet. We posted our question
on every mailing list, every online forums we can think of. We did not find most of
what we were looking for. We spent days and nights on many operating systems just
to make NS2 run on one of the systems we have. We spent an endless amount of
time, trying to understand the way NS2 moves a packet from one node to another.
We did not succeed. So we were running out of time we pushed out and submitted
our project/thesis as it was. Our program was as good as it was necessary to close
the project. We were not satisfied with our knowledge about NS2.

After the graduation, we revisited NS2 and tried to understand it more. Bits
by bits, we began to understand how NS2 does a certain thing, but perhaps more
importantly why NS2 does so. From our experience, it takes months, if not years, to
truly understand NS2.

We would not be surprised if our story above sounds particularly familiar to you.
In fact, we expected you to experience a part, if not all, of our unpleasant experience.
We wrote this book to ease your pain caused by NS2. We hope that this book can
reduce your NS2 learning curve from years to months, or from months to weeks.

About NS2

NS2 is an open-source event-driven simulator designed specifically for research
in computer communication networks. Since its inception in 1989, NS2 has
continuously gained tremendous interest from industry, academia, and government.
Having been under constant investigation and enhancement for years, NS2 now
contains modules for numerous network components such as routing, transport
layer protocol, and application. To investigate network performance, researchers can

vii

viii Preface

simply use an easy-to-use scripting language to configure a network, and observe
results generated by NS2. Undoubtedly, NS2 has become the most widely used open
source network simulator, and one of the most widely used network simulators.

Unfortunately, most research needs simulation modules which are beyond the
scope of the built-in NS2 modules. Incorporating these modules into NS2 requires
profound understanding of NS2 architecture. Currently, most NS2 beginners rely
on online tutorials. Most of the available information mainly explains how to
configure a network and collect results, but does not include sufficient information
for building additional modules in NS2. Despite its details about NS2 modules, the
formal documentation of NS2 is mainly written as a reference book, and does not
provide much information for beginners. The lack of guidelines for extending NS2
is perhaps the greatest obstacle, which discourages numerous researchers from using
NS2. At the time of this writing, there is no official guide book which can help the
beginners understand the architecture of NS2 in depth.

About This Book

This book is designed to be an NS2 primer. It provides information required to
install NS2, run simple examples, modify the existing NS2 modules, and create as
well as incorporate new modules into NS2. To this end, the details of several built-in
NS2 modules are explained in a comprehensive manner.

NS2 by itself contains numerous modules. As time elapses, researchers keep
developing new NS2 modules. This book does not include the details of all NS2
modules, but does so for selected modules necessary to understand the basics of
NS2. We believe that once the basics of NS2 are grasped, the readers can go
through other documentations, and readily understand the details of other NS2
components. The details of Network AniMator (NAM) and Xgraph are also omitted
here. We understand that these two tools are nice to have and could greatly facilitate
simulation and analysis of computer networks. However, we believe that they are
not essential to the understanding of the NS2 concept, and their information are
widely available through most of the online tutorials.

This textbook can be used by researchers who need to use NS2 for communica-
tion network performance evaluation based on simulation. Also, it can be used as
a reference textbook for laboratory works for a senior undergraduate level course
or a graduate level course on telecommunication networks offered in Electrical
and Computer Engineering and Computer Science Programs. Potential courses
include “Network Simulation and Modeling,” “Computer Networks,” “Data Com-
munications,” “Wireless Communications and Networking,” and “Special Topics on
Telecommunications.”

Preface ix

Book Summary

This book starts off with an introduction to network simulation in Chap. 1. We
briefly discuss about computer networks and the layering concept. Then we
give board statements on system analysis approaches. As one of the two main
approaches, simulation can be carried out in time-driven and event-driven modes.
The latter is the one NS2 was developed.

Chapter 2 provides an overview of Network Simulator 2 (NS2). Shown in this
chapter are the two-language NS2 architecture, NS2 directory, and the conventions
used in this book, and NS2 installation guidelines for UNIX and Windows systems.
We also present a three-step simulation formulation as well as a simple example of
NS2 simulation. Finally, we demonstrate how to use the make utility to incorporate
new modules into NS2.

Chapter 3 explains the details of the NS2 two language structure, which
consists of the following six main CCC classes: Tcl, Instvar, TclObject,
TclClass, TclCommand, and EmbeddedTcl. Chapters 4 and 5 present the
very main simulation concept of NS2. While Chap. 4 explains implementation of
event-driven simulation in NS2, Chap. 5 focuses on network objects as well as
packet forwarding mechanism.

Chapters 6–11 present the following six most widely used NS2 modules. First,
nodes (Chap. 6) act as routers and computer hosts. Second, links, particularly
SimpleLink objects (Chap. 7), deliver packets from one network object to
another. They model packet transmission time as well as packet buffering. Third,
packets (Chap. 8) contain necessary information in its header. Fourth, agents
(Chaps. 9–10) are responsible for generating packets. NS2 has two main transport-
layer agents: TCP and UDP agents. Finally, applications (Chap. 11) model the user
demand for data transmission.

Up to Chap. 11, the book focuses mainly on wired networks. Chapter 12
demonstrates how NS2 implements Wireless Mobile Ad Hoc Networks. Discussion
of packet forwarding via wireless links and node mobility is given in this chapter.

After discussing all the NS components, Chap. 13 demonstrates how a new
module is developed and integrated into NS2 through two following examples:
Automatic Repeat reQuest (ARQ) and packet schedulers.

Chapter 14 summarizes the postsimulation process, which consists of three main
parts: debugging, variable and packet tracing, and result compilation.

Chapter 15 presents three helper modules: Timers, random number generators,
and error models. It also discusses the concepts of two bit-wise operations – namely,
bit masking and bit shifting, which are used throughout NS2.

Finally, Appendices A and B provide programming details which could be useful
for the beginners. These details include an introduction to Tcl, OTcl, and AWK
programming languages as well as a review of the polymorphism OOP concept.
Last but not the least, Appendix C explains the BSD link list as well as bit level
functions used throughout this book.

x Preface

How to Read This Book

To Everyone

If you have not done so, we highly recommend you to visit the following online
websites and learn what you can do with NS2.1

• Marc Greis’ Tutorial: http://www.isi.edu/nsnam/ns/tutorial
• NS2 by Example: http://perform.wpi.edu/NS

To Beginners

Start simple. Learning how NS2 pass a packet from one end of a communication
link to another is more challenging than what you might have imagined. In fact, if
there is only one goal you should set, it is to understand this seemingly simple NS2
mechanism. Once you grasp this concept, you can quickly and effortlessly learn
other NS2 mechanism.

In particular, the following steps are suggested for beginners:

Step 1 (The Basic): Learn how NS2 pass packets from one object to another
from within a SimpleLink. Visit Chap. 7 for SimpleLink implementation.
You may need to visit Chaps. 4–5 for details of scheduler and Network
component implementation.

Step 2 (CBR and UDP): These are two high-layer components which is easy to
learn. Look for the contents about UDP and CBR in Chaps. 9 and 11,
respectively.

Step 3 (New Module): Next, visit Chap. 13 to learn how to build new modules into
NS2. There are two examples in this chapter. Note that you may need to
learn how to use make utility in Chap. 2.

To Instructors

This book contains 15 chapters. Different chapters may consume different amount
of lecturing time. Generally, it requires more than 15 classes to cover the entire
book. We suggest instructors to emphasize/omit the contents of this book at their
discretion. In order to manage time efficiently, the instructors may follow the
following guidelines:

• Chapters 8, 14, and 10 can be skipped without greatly impairing the content of
the course.

• The instructor may pack two chapters into one lecture: Chaps. 1–2 and 4–5.

1Some of these contents is available in Chap. 2.

Preface xi

We also provide exercises at the end of each chapter. The instructors may
use these exercises to set up assignments, laboratory exercises, or examination
questions.

What’s New in This Second Edition

In this Second edition of this book, we correct the grammatical and typological
errors. We add more materials on general computer network simulation into Chap. 1.
We clean up the terminologies, include more examples, and rewrite Chaps. 6 and 15.
At the end of each chapter, we provide exercises which can be used as assignments,
laboratory exercises, and examination questions.

In Appendix A, we include most of the information that NS2 beginners need to
know about Tcl, OTcl, and AWK. During the NS2 learning process, readers may
encounter BSD-linked lists and bit level CCC functions. Readers may find the
information about these two basic CCC components in Appendix C.

As of this writing, the latest NS2 version is 2.35. This version is not fully
backward-compatible with version 2.29 used as a reference in the first edition of
this book. Therefore, we address the compatibility issues on the link error modules
in Chap. 15 and ARQ modules in Chap. 13.

We have received numerous requests to deal with wireless networking. In this
regard, we develop a new chapter, namely, Wireless Mobile Ad Hoc Networks
(Chap. 12). In this chapter, we explain both packet forwarding over wireless links
and node mobility mechanism. The information about wireless trace formats is
given in Chap. 14.

We have also developed companion online resources for this book. They contain
useful NS2 information such as updates, discussion boards, detailed explanation on
various topics, presentation slides, questions and answers, book corrections, and so
on. The readers are highly encouraged to visit and join our online community at

• Website: http://ns2ultimate.com
• Facebook Fan Page:

http://www.facebook.com/pages/Teerawat-Issariyakul/358240861417
• Twitter feed: http://twitter.com/T Bear
• Lecture notes: http://www.ece.ubc.ca/�teerawat/NS2.htm

TOT Public Company Limited Teerawat Issariyakul
University of Manitoba Ekram Hossain

Acknowledgment

In this second edition, we would like to express our sincere gratitude toward
our colleagues at TOT Public Company Limited, and the graduate students of
the “Wireless Communications, Networks, and Services Research Group” at the
University of Manitoba. We are deeply obliged to audience and followers at the
NS2 website, the Facebook page, and the Twitter feed, as well as those who read
the previous edition of this book and took time contacting us. Your comments
and questions help us improve the content of the book in a big way. We are
especially thankful to Nestor Michael C. Tiglao who went so far to help us locate
the typographical errors.

We would like to thank Springer, the publisher of the book, for giving us an
opportunity to share our knowledge and skill with our technical community. Special
thanks go to Brett Kurzman, Springer’s agent, who has keenly worked with us from
the beginning to the end.

Last, but by no means the least, we would like to thank our families and friends
for their understanding and continual moral support. We are forever indebted to all
the members of Issariyakul and Hossain families. Thank you for giving us love,
support, encouragement, and most of all for never stopping to believe in us. Thank
you for not abandoning us and always being there for us, even if we have not given
you time you deserved, and even have disappeared in a pile of NS2 codes.

xiii

Contents

1 Simulation of Computer Networks . 1
1.1 Computer Networks and the Layering Concept . 1

1.1.1 Layering Concept . 2
1.1.2 OSI and TCP/IP Reference Models . 4

1.2 System Modeling .. 5
1.2.1 Analytical Approach . 6
1.2.2 Simulation Approach.. 6

1.3 Basics of Computer Network Simulation . 6
1.3.1 Simulation Components . 7
1.3.2 Simulation Performance . 9
1.3.3 Confidence Interval . 9
1.3.4 Choices for Network Simulation Tools 9

1.4 Time-Dependent Simulation .. 11
1.4.1 Time-Driven Simulation . 12
1.4.2 Event-Driven Simulation . 13

1.5 A Simulation Example: A Single-Channel Queuing System 14
1.5.1 Entities . 14
1.5.2 State Global Variables. 15
1.5.3 Resource . 15
1.5.4 Events . 15
1.5.5 Simulation Performance Measures

and Statistics Gatherers . 16
1.5.6 Simulation Program .. 16

1.6 Chapter Summary . 19
1.7 Exercises . 20

2 Introduction to Network Simulator 2 (NS2) . 21
2.1 Introduction .. 21
2.2 Basic Architecture . 22

xv

xvi Contents

2.3 Installation .. 23
2.3.1 Installing an All-In-One NS2 Suite

on Unix-Based Systems . 24
2.3.2 Installing an All-In-One NS2 Suite

on Windows-Based Systems . 24
2.4 Directories and Convention .. 25

2.4.1 Directories . 25
2.4.2 Convention . 25

2.5 Running NS2 Simulation . 27
2.5.1 NS2 Program Invocation .. 27
2.5.2 Main NS2 Simulation Steps . 28

2.6 A Simulation Example .. 29
2.7 Including C++ Modules into NS2 and the make Utility 35

2.7.1 An Invocation of a make Utility . 35
2.7.2 A make Descriptor File. 35
2.7.3 NS2 Descriptor File . 38

2.8 Chapter Summary . 38
2.9 Exercises . 39

3 Linkage Between OTcl and CCC in NS2 . 41
3.1 The Two-Language Concept in NS2 . 42

3.1.1 The Natures of OTcl and CCC
Programming Languages . 42

3.1.2 CCC Programming Styles and Its Application
in NS2 . 43

3.2 Class Binding .. 46
3.2.1 Class Binding Process . 46
3.2.2 Defining Your Own Class Binding . 47
3.2.3 Naming Convention for Class TclClass 48

3.3 Variable Binding.. 48
3.3.1 Variable Binding Methodology .. 48
3.3.2 Setting the Default Values . 49
3.3.3 NS2 Data Types . 50
3.3.4 Class Instvar . 53

3.4 Execution of CCC Statements from the OTcl Domain 53
3.4.1 OTcl Commands in a Nutshell. 53
3.4.2 The Internal Mechanism of OTcl Commands 55
3.4.3 An Alternative for OTcl Command Invocation 59
3.4.4 Non-OOP Tcl Command . 59
3.4.5 Invoking a TclCommand.. 59

3.5 Shadow Object Construction Process . 62
3.5.1 A Handle of a TclObject . 62
3.5.2 TclObjects Construction Process . 63
3.5.3 TclObjects Destruction Process . 67

Contents xvii

3.6 Access the OTcl Domain from the CCC Domain 67
3.6.1 Obtain a Reference to the Tcl Interpreter 68
3.6.2 Execution of Tcl Statements . 68
3.6.3 Pass or Receive Results to/from the Interpreter 69
3.6.4 TclObject Reference Retrieval. 71

3.7 Translation of Tcl Code . 72
3.8 Chapter Summary . 73
3.9 Exercises . 73

4 Implementation of Discrete-Event Simulation in NS2 77
4.1 NS2 Simulation Concept . 77
4.2 Events and Handlers . 78

4.2.1 An Overview of Events and Handlers . 78
4.2.2 Class NsObject: A Child Class of Class

Handler . 79
4.2.3 Classes Packet and AtEvent: Child

Classes of Class Event . 80
4.3 The Scheduler . 82

4.3.1 Main Components of the Scheduler . 82
4.3.2 Data Encapsulation and Polymorphism Concepts 82
4.3.3 Main Functions of the Scheduler . 83
4.3.4 Two Auxiliary Functions.. 85
4.3.5 Dynamics of the Unique ID of an Event 86
4.3.6 Scheduling–Dispatching Mechanism . 86
4.3.7 Null Event and Dummy Event Scheduling.. 88

4.4 The Simulator . 89
4.4.1 Main Components of a Simulation . 89
4.4.2 Retrieving the Instance of the Simulator 90
4.4.3 Simulator Initialization . 91
4.4.4 Running Simulation . 92
4.4.5 Instprocs of OTcl Class Simulator. 93

4.5 Chapter Summary . 93
4.6 Exercises . 94

5 Network Objects: Creation, Configuration,
and Packet Forwarding . 97
5.1 Overview of NS2 Components . 98

5.1.1 Functionality-Based Classification of NS2 Modules 98
5.1.2 CCC Class Hierarchy . 98

5.2 NsObjects: A Network Object Template . 100
5.2.1 Class NsObject . 100
5.2.2 Packet Forwarding Mechanism of NsObjects. 101

5.3 Connectors . 101
5.3.1 Class Declaration .. 102
5.3.2 OTcl Configuration Commands . 103
5.3.3 Packet Forwarding Mechanism of Connectors 106

xviii Contents

5.4 Chapter Summary . 108
5.5 Exercises . 109

6 Nodes as Routers or Computer Hosts . 111
6.1 An Overview of Nodes in NS2 . 111

6.1.1 Routing Concept and Terminology .. 111
6.1.2 Architecture of a Node . 112
6.1.3 Default Nodes and Node Configuration Interface 113

6.2 Classifiers: Multi-Target Packet Forwarders . 114
6.2.1 Class Classifier and Its Main Components. 114
6.2.2 Port Classifiers . 118
6.2.3 Hash Classifiers . 119
6.2.4 Creating Your Own Classifiers . 125

6.3 Routing Modules . 125
6.3.1 An Overview of Routing Modules . 125
6.3.2 CCC Class RoutingModule . 126
6.3.3 OTcl Class RtModule . 129
6.3.4 Built-in Routing Modules . 131

6.4 Route Logic. 132
6.4.1 CCC Implementation.. 132
6.4.2 OTcl Implementation . 133

6.5 Node Construction and Configuration.. 134
6.5.1 Key Variables of the OTcl Class Node

and Their Relationship . 135
6.5.2 Installing Classifiers in a Node . 137
6.5.3 Bridging a Node to a Transport Layer Protocol 138
6.5.4 Adding/Deleting a Routing Rule . 140
6.5.5 Node Construction and Configuration.. 140

6.6 Chapter Summary . 147
6.7 Exercises . 148

7 Link and Buffer Management . 151
7.1 Introduction to SimpleLink Objects . 151

7.1.1 Main Components of a SimpleLink . 151
7.1.2 Instprocs for Configuring a SimpleLink Object 153
7.1.3 The Constructor of Class SimpleLink 154

7.2 Modeling Packet Departure . 155
7.2.1 Packet Departure Mechanism.. 155
7.2.2 CCC Class LinkDelay . 156

7.3 Buffer Management . 158
7.3.1 Class PacketQueue: A Model for Packet Buffering.. 159
7.3.2 Queue Handler . 160
7.3.3 Queue Blocking and Callback Mechanism 161
7.3.4 Class DropTail: A Child Class of Class Queue 163

Contents xix

7.4 A Sample Two-Node Network.. 165
7.4.1 Network Construction.. 165
7.4.2 Packet Flow Mechanism . 165

7.5 Chapter Summary . 166
7.6 Exercises . 167

8 Packets, Packet Headers, and Header Format . 169
8.1 An Overview of Packet Modeling Principle . 169

8.1.1 Packet Architecture . 169
8.1.2 A Packet as an Event: A Delayed Packet

Reception Event . 172
8.1.3 A Link List of Packets . 173
8.1.4 Free Packet List . 174

8.2 Packet Allocation and Deallocation . 175
8.2.1 Packet Allocation. 175
8.2.2 Packet Deallocation . 178

8.3 Packet Header . 180
8.3.1 An Overview of First Level Packet

Composition: Offseting Protocol-Specific
Header on the Packet Header . 181

8.3.2 Common Packet Header . 182
8.3.3 IP Packet Header . 183
8.3.4 Payload Type . 184
8.3.5 Protocol-Specific Headers . 186
8.3.6 Packet Header Access Mechanism . 190
8.3.7 Packet Header Manager . 193
8.3.8 Protocol-Specific Header Composition

and Packet Header Construction. 194
8.4 Data Payload.. 200
8.5 Customizing Packets . 202

8.5.1 Creating Your Own Packet. 202
8.5.2 Activate/Deactivate a Protocol-Specific Header 205

8.6 Chapter Summary . 206
8.7 Exercises . 207

9 Transport Control Protocols Part 1:
An Overview and User Datagram Protocol Implementation 209
9.1 UDP and TCP Basics . 209

9.1.1 UDP Basics . 209
9.1.2 TCP Basics . 210

9.2 Basic Agents . 214
9.2.1 Applications, Agents, and a Low-Level Network 215
9.2.2 Agent Configuration . 217
9.2.3 Internal Mechanism for Agents. 218
9.2.4 Guidelines to Define a New Transport Layer Agent 222

xx Contents

9.3 UDP and Null Agents . 222
9.3.1 Null (Receiving) Agents . 222
9.3.2 UDP (Sending) Agent . 223
9.3.3 Setting Up a UDP Connection .. 227

9.4 Chapter Summary . 227
9.5 Exercises . 228

10 Transport Control Protocols Part 2:
Transmission Control Protocol . 229
10.1 An Overview of TCP Agents in NS2 . 229

10.1.1 Setting Up a TCP Connection . 229
10.1.2 Packet Transmission and Acknowledgment

Mechanism . 230
10.1.3 TCP Header. 231
10.1.4 Defining TCP Sender and Receiver . 231

10.2 TCP Receiver . 235
10.2.1 Class Acker . 237
10.2.2 Class TcpSink . 240

10.3 TCP Sender . 242
10.4 TCP Packet Transmission Functions . 242

10.4.1 Function sendmsg(nbytes) . 243
10.4.2 Function send much(force,reason,

maxburst) . 244
10.4.3 Function output(seqno,reason) 246
10.4.4 Function send one() . 248

10.5 ACK Processing Functions . 249
10.5.1 Function recv(p,h) . 250
10.5.2 Function recv newack helper(pkt) 251
10.5.3 Function newack(pkt) . 253
10.5.4 Function dupack action() . 253

10.6 Timer-Related Functions .. 254
10.6.1 RTT Sample Collection . 254
10.6.2 RTT Estimation. 256
10.6.3 Overview of State Variables . 257
10.6.4 Retransmission Timer . 258
10.6.5 Function Overview .. 259
10.6.6 Function rtt update(tao) . 260
10.6.7 Function rtt timeout() . 262
10.6.8 Function rtt backoff() . 263
10.6.9 Function set rtx timer()and Function

reset rtx timer(mild,backoff) 264
10.6.10 Function newtimer(pkt) . 264
10.6.11 Function timeout(tno) . 265

10.7 Window Adjustment Functions .. 267
10.7.1 Function opencwnd() . 268
10.7.2 Function slowdown(how) . 269

Contents xxi

10.8 Chapter Summary . 271
10.9 Exercises . 271

11 Application: User Demand Indicator . 273
11.1 Relationship Between an Application and a Transport

Layer Agent . 273
11.2 Applications . 276

11.2.1 Functions of Classes Application and Agent 277
11.2.2 Public Functions of Class Application 278
11.2.3 Related Public Functions of Class Agent 280
11.2.4 OTcl Commands of Class Application 280

11.3 Traffic Generators . 280
11.3.1 An Overview of Class TrafficGenerator 281
11.3.2 Main Mechanism of a Traffic Generator 283
11.3.3 Built-in Traffic Generators in NS2 . 284
11.3.4 Class CBR Traffic: An Example Traffic

Generator . 287
11.4 Simulated Applications . 289

11.4.1 File Transfer Protocol . 290
11.4.2 Telnet . 290

11.5 Chapter Summary . 291
11.6 Exercises . 292

12 Wireless Mobile Ad Hoc Networks . 293
12.1 An Overview of Wireless Networking . 294

12.1.1 Mobile Node. 294
12.1.2 Architecture of Mobile Node . 294
12.1.3 General Packet Flow in a Wireless Network

Implementation .. 297
12.1.4 Mobile Node Configuration Process . 298

12.2 Network Layer: Routing Agents and Routing Protocols 305
12.2.1 Preliminaries for the AODV Routing Protocol 305
12.2.2 The Principles of AODV . 306
12.2.3 An Overview of AODV Implementation in NS2 308
12.2.4 AODV Routing Agent Construction Process 311
12.2.5 General Packet Flow Mechanism

in a Wireless Network. 312
12.2.6 Packet Reception and Processing Function of AODV .. . 312
12.2.7 AODV Time-Driven Actions . 313

12.3 Data Link Layer: Link Layer Models, Address
Resolution Protocols, and Interface Queues . 315
12.3.1 Link Layer Objects . 315
12.3.2 Address Resolution Protocol . 315
12.3.3 Interface Queues . 317

12.4 Medium Access Control Layer: IEEE 802.11 . 317
12.4.1 Description of IEEE 802.11 MAC Protocol 318
12.4.2 NS2 Classes Mac and Mac802 11 . 319

xxii Contents

12.4.3 Basic Functions of NS2 Classes Mac
and Mac802 11 . 321

12.4.4 Timer Concepts for Implementation of IEEE 802.11 . . . 323
12.4.5 Packet Reception Mechanism of IEEE 802.11 323
12.4.6 Implementation of Packet Retransmission in NS2 326
12.4.7 Implementation of Carrier-Sensing, Backoff,

and NAV . 329
12.5 Physical Layer: Physical Network Interfaces and Channel 331

12.5.1 Physical Network Interface . 331
12.5.2 Wireless Channels . 333
12.5.3 Sender Operations at the Physical Layer 333
12.5.4 Receiver Operations at the Physical Layer 334

12.6 An Introduction to Node Mobility . 337
12.6.1 Basic Mobility Configuration .. 337
12.6.2 General Operation Director . 338
12.6.3 Random Mobility . 339
12.6.4 Mobility and Traffic Generators: Standalone

Helper Utility . 340
12.7 Chapter Summary . 343
12.8 Exercises . 344

13 Developing New Modules for NS2 . 345
13.1 Automatic Repeat reQuest . 345

13.1.1 The Design . 346
13.1.2 CCC Implementation.. 348
13.1.3 OTcl Implementation . 354
13.1.4 ARQ Under a Delayed (Error-Free)

Feedback Channel . 357
13.2 Packet Scheduling for Multi-Flow Data Transmission 359

13.2.1 The Design . 359
13.2.2 CCC Implementation.. 360
13.2.3 OTcl Implementation . 363

13.3 Chapter Summary . 367
13.4 Exercises . 368

14 Postsimulation Processing: Debugging, Tracing,
and Result Compilation . 369
14.1 Debugging: A Process to Remove Programming Errors 369

14.1.1 Types of Programming Errors . 369
14.1.2 Debugging Guidelines . 371

14.2 Variable Tracing .. 374
14.2.1 Activation Process for Variable Tracing.. 374
14.2.2 Traceable Variable. 375
14.2.3 Components and Architecture for Variable Tracing 376
14.2.4 Tracing in Action: An Example of Class TcpAgent . . . 381
14.2.5 Setting Up Variable Tracing . 381

Contents xxiii

14.3 Packet Tracing .. 384
14.3.1 OTcl Configuration Interfaces . 385
14.3.2 CCC Main Packet Tracing Class Trace 389
14.3.3 CCC Helper Class BaseTrace . 392
14.3.4 Various Types of Packet Tracing Objects 394
14.3.5 Format of Trace Strings for Packet Tracing 397

14.4 Compilation of Simulation Results . 402
14.5 Chapter Summary . 406
14.6 Exercises . 407

15 Related Helper Classes . 409
15.1 Timers. 409

15.1.1 Implementation Concept of Timer in NS2 409
15.1.2 OTcl Implementation . 411
15.1.3 CCC Class Implementation .. 413
15.1.4 Guidelines for Implementing Timers in NS2 423

15.2 Implementation of Random Numbers in NS2 . 424
15.2.1 Random Number Generation . 424
15.2.2 Seeding a Random Number Generator 425
15.2.3 OTcl and CCC Implementation.. 427
15.2.4 Randomness in Simulation Scenarios . 429
15.2.5 Random Variables . 431
15.2.6 Guidelines for Random Number Generation

in NS2 . 434
15.3 Built-in Error Models . 435

15.3.1 OTcl Implementation: Error Model Configuration 436
15.3.2 CCC Implementation: Error Model Simulation 440
15.3.3 Guidelines for Implementing a New Error

Model in NS2. 448
15.4 Bit Operations in NS2 . 449

15.4.1 Bit Masking . 449
15.4.2 Bit Shifting and Decimal Multiplication 451

15.5 Chapter Summary . 452
15.6 Exercises . 452

A Programming Essentials . 455
A.1 Tcl Programming .. 455

A.1.1 Program Invocation . 455
A.1.2 Syntax. 456
A.1.3 Variables and Basic Operations.. 457
A.1.4 Logical and Mathematical Operations 460
A.1.5 Control Structure . 461
A.1.6 Modularization . 463
A.1.7 Advanced Input/Output: Files and Channels. 465
A.1.8 Data Types . 467

xxiv Contents

A.2 Objected-Oriented Tcl Programming . 469
A.2.1 OTcl Language Structure . 470
A.2.2 Classes and Inheritance . 470
A.2.3 Objects and Object Construction Process 471
A.2.4 Member Variables and Functions. 472
A.2.5 A List of Useful Instance Procedures . 474

A.3 AWK Programming . 476
A.3.1 Program Invocation . 477
A.3.2 An AWK Script. 478
A.3.3 AWK Programming Structure . 478
A.3.4 Pattern Matching . 479
A.3.5 Basic Actions . 479
A.3.6 Redirection and Output to Files . 481
A.3.7 Control Structure . 482

A.4 Exercises . 482

B A Review of the Polymorphism Concept in OOP . 485
B.1 Fundamentals of Polymorphism .. 485
B.2 Type Casting and Function Ambiguity .. 488
B.3 Virtual Functions . 489
B.4 Abstract Classes and Pure Virtual Functions. 490
B.5 Class Composition: An Application of Type Casting

Polymorphism . 491
B.6 Programming Polymorphism with No Type Casting:

An Example . 492
B.7 A Scalability Problem Caused by Non-Type Casting

Polymorphism . 493
B.8 The Class Composition Programming Concept . 494

C BSD Link List and Bit Level Functions . 499
C.1 BSD Link List . 499
C.2 Bit Level Functions . 499

References . 501

General Index . 503

Code Index . 507

Chapter 1
Simulation of Computer Networks

People communicate. One way or another, they exchange some information among
themselves all the times. In the past several decades, many electronic technologies
have been invented to aid this process of exchanging information in an efficient
and creative way. Among these are the creation of fixed telephone networks, the
broadcasting of television and radio, the advent of computers, the rise of the Internet,
and the emergence of wireless sensation. Originally, these technologies existed and
operated independently, serving their very own purposes. Not until recently that
these technological wonders have started to converge, and it is a well-known fact
that a computer communication network is a result of this convergence.

This chapter presents an overview of computer communication networks and
the basics of simulation of such a network. Section 1.1 introduces a computer
network along with the reference model which is used for describing the architecture
of a computer communication network. A brief discussion on designing and
modeling a complex system such as a computer network is then given in Sect. 1.2.
In Sect. 1.3, the basics of computer network simulation are discussed. Section 1.4
presents one of the most common type of network simulation, namely, the time-
dependent simulation. An example simulation is given in Sect. 1.5. Finally, Sect. 1.6
summarizes the chapter.

1.1 Computer Networks and the Layering Concept

A computer network is usually defined as a collection of computers intercon-
nected for gathering, processing, and distributing information. Computer is used
as a broad term here to include devices such as workstations, servers, routers,
modems, base stations, and wireless extension points. These computers are con-
nected by communication links such as copper cables, fiber optic cables, and
microwave/satellite/radio links. A computer network can be built as a nesting and/or
interconnection of several networks. The Internet is a good example of computer

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 1, © Springer Science+Business Media, LLC 2012

1

2 1 Simulation of Computer Networks

networks. In fact, it is a network of networks, within which tens of thousands of
networks interconnect millions of computers worldwide.

1.1.1 Layering Concept

A computer network is a complex system. To facilitate design and flexible imple-
mentation of such a system, the concept of layering is introduced. Using a layered
structure, the functionalities of a computer network can be organized as a stack of
layers.

Logically, each layer communicates to its peer (a logical entity on the same layer)
on the other communication node. However, the actual data transmission occurs
through the lowest layer, namely, the physical layer. Therefore, data at the source
node always move down the layers until reaching the physical layer. Then, it is
transmitted via a physical link to a neighboring node or the destination node. At the
destination node, the data are passed to the layers until reaching the corresponding
peer.

Representing a well-defined and specific part of the system, each layer provides
certain services to the above layer. When performing a task (e.g., transmit a packet),
an upper layer asks its lower layer to do more specific job. Accessible (by the upper
layers) through so-called interfaces, these services usually define what should be
done in terms of network operations or primitives, but do not specifically define
how such things are implemented. The details of how a service is implemented are
defined in a so-called protocol.

A protocol is a set of rules that multiple peers comply with when communicating
to each other.1 As long as the peers abide to a protocol, the communication
performance would be consistent and predictable. As an example, consider an error
detection protocol. When a transmitter sends out a data packet, it may wait for
an acknowledgment from the receiver. The receiver, on the other hand, may be
responsible for acknowledging to the transmitter that the transmitted packets are
received successfully.

The beauty of this layering concept is the layer independency. That is, a change
in a protocol of a certain layer does not affect the rest of the system as long as the
interfaces remain unchanged. Here, we highlight the words services, protocol, and
interface to emphasize that it is the interaction among these components that makes
up the layering concept.

Figure 1.1 graphically shows an overall view of the layering concept used
for communication between two computer hosts: a source host and a destination
host. In this figure, the functionality of each computer host is divided into four

1Unlike a protocol, an algorithm is a set of steps to get things done (either with or without
communications).

1.1 Computer Networks and the Layering Concept 3

H1 H3 M1H2

H3 M1H2

H3 M1

M

H1 H3 M2H2

H3 M2H2

H3 M2

H1 H3 M1H2

H3 M1H2

H3 M1

M

H1 H3 M2H2

H3 M2H2

H3 M2

DestinationSource

Physical Medium

Layer 4 Protocol

Layer 3 Protocol

Layer 2 Protocol

Layer 1
Protocol

Fig. 1.1 Data flow in a layered network architecture

layers.2 When logically linked with the same layer on another host, these layers are
called peers.3 Although not directly connected to each other, these peers logically
communicate with one another using a protocol represented by an arrow. As
mentioned earlier, the actual communication needs to propagate down the stack and
use the above layering concept.

Suppose an application process running on Layer 4 of the source generates data
or messages destined for the destination. The communication starts by passing a
generated message M down to Layer 3, where the data are segmented into two
chunks (M1 and M2), and control information called header (H3) specific to Layer
3 is appended to M1 and M2. The control information are, for example, sequence
numbers, packet sizes, and error checking information. These information are
understandable and used only by the peering layer on the destination to recover
the data (M). The resulting data (e.g., H3+M1) are called a “protocol data unit
(PDU)” and are handed to the next lower layer, where some protocol-specific control
information is again added to the message. This process continues until the message
reaches the lowest layer, where transmission of information is actually performed
over a physical medium. Note that, along the line of these processes, it might be
necessary to further segment the data from upper layers into smaller segments for
various purposes. When the message reaches the destination, the reverse process
takes place. That is, as the message is moving up the stack, its headers are ripped off
layer by layer. If necessary, several messages are put together before being passed
to the upper layer. The process continues until the original message (M) is recovered
at Layer 4.

2For the sake of illustration only four layers are shown. In the real-world systems, the number of
layers may vary, depending on the functionality and objectives of the networks.
3A peering host of a source and a destination are the destination and the source, respectively.

4 1 Simulation of Computer Networks

1.1.2 OSI and TCP/IP Reference Models

The Open Systems Interconnection (OSI) model was the first reference model
developed by International Standards Organization (ISO) to provide a standard
framework to describe the protocol stacks in a computer network. Its consists of
seven layers, where each layer is intended to perform a well-defined function [1].
These are physical layer, data link layer, network layer, transport layer, session layer,
presentation layer, and application layer. The OSI model only specifies what each
layer should do; it does not specify the exact services and protocols to be used in
each layer.

The Transmission Control Protocol (TCP)/Internet Protocol (IP) reference model
[1], which is based on the two primary protocols, namely, TCP and IP, is used in
the current Internet. These protocols have proven very powerful, and as a result
have experienced widespread use and implementation in the existing computer
networks. It was developed for ARPANET, a research network sponsored by the
US Department of Defense, which is considered as the grandparent of all computer
networks. In the TCP/IP model, the protocol stack consists of five layers – physical,
data link, network, transport, and application – each of which is responsible for
certain services as will be discussed shortly. Note that the application layer in the
TCP/IP model can be considered as the combination of session, presentation, and
application layers of the OSI model.

1.1.2.1 Application Layer

The application layer sits on top of the stack and uses services from the transport
layer (discussed below). This layer supports several higher-level protocols such as
Hypertext Transfer Protocol (HTTP) for World Wide Web applications, Simple Mail
Transfer Protocol (SMTP) for electronic mail, TELNET for remote virtual terminal,
Domain Name Service (DNS) for mapping comprehensible host names to their
network addresses, and File Transfer Protocol (FTP) for file transfer.

1.1.2.2 Transport Layer

The objective of a transport layer is to perform flow control and error control for
message transportation. Flow control ensures that the end-to-end transmission speed
is neither too fast to make the network congested nor too slow to underutilize the net-
work. Error control ensures that the packets are delivered to the destination properly.

Generally, when a transport protocol receives a message from the higher layer,
it breaks down the message into smaller pieces. Then it generates a PDU – called a
segment – by attaching necessary error and flow control information, and passes the
segment to the lower layer.

Two well-known transport protocols, namely, TCP and User Datagram Protocol
(UDP), are defined in this layer. While TCP is responsible for a reliable and
connection-oriented communication between two hosts, UDP supports an unreliable

1.2 System Modeling 5

connectionless transport. TCP is ideal for applications that prefer accuracy over
prompt delivery and the reverse is true for UDP.

1.1.2.3 Network Layer

This layer determines the route through which a packet is delivered from a source
node to a destination node. A PDU for the network layer is called a packet.

1.1.2.4 Link Layer

A link layer protocol has three main responsibilities. First, flow control regulates
the transmission speed in a communication link. Second, error control ensures the
integrity of data transmission. Third, flow multiplexing/demultiplexing combines
multiple data flows into and extracts data flows from a communication link. Choices
of link layer protocols may vary from host to host and network to network.
Examples of widely used link layer protocols/technologies include Ethernet, Point-
to-Point Protocol (PPP), IEEE 802.11 (i.e., Wi-Fi), and Asynchronous Transfer
Mode (ATM).

Link layer protocols are different from transport layer protocol as follows. The
former deals with a single communication link. On the other hand, the latter does
the same job for an end-to-end flow which may traverse multiple links.

1.1.2.5 Physical Layer

The physical layer deals with the transmission of data bits across a communication
link. Its primary goal is to ensure that the transmission parameters (e.g., transmission
power) are set appropriately to achieve the required transmission performance (e.g.,
to achieve the target bit error rate performance).

Finally, we point out that the five layers discussed above are common to the
OSI layer. As has been mentioned already, the OSI model contains two other layers
sitting on top of the transport layer, namely, session and presentation layers. The
session layer simply allows users on different computers to create communication
sessions among themselves. The presentation layer basically takes care of different
data presentations existing across the network. For example, a unified network
management system gathers data with different format from different computers
and converts their format into a uniform format.

1.2 System Modeling

System modeling is an act of formulating a simple representation for an actual
system. It allows investigators to look closely into the system without having to
actually implement it. During the investigation, various parameters can be applied

6 1 Simulation of Computer Networks

to study system behavior. After the system is well understood, investigators can
decide whether the actual system should be implemented.

System modeling often requires simplification assumptions. These assumptions
exclude irrelevant details of the actual system, hence making the model cleaner
and easier to implement. However, excessive assumptions may lead to inaccurate
representation of the system. Design engineers need to use their discretion to achieve
the best modeling trade-off.

Traditionally, there are two modeling approaches: Analytical approach and
simulation approach.

1.2.1 Analytical Approach

The general concept of analytical modeling approach is to come up with a way to
describe the system mathematically, and apply numerical methods to gain insight
from the developed mathematical model. Examples of widely used mathematical
tools are queuing and probability theories. Since analytical results derive mainly
from mathematical proofs, they are true as long as the underlying conditions hold.
If properly used, analytical modeling can be a cost-effective way to provide a
general view of the system.

1.2.2 Simulation Approach

Simulation recreates real-world scenarios using computer programs. It is used in
various applications ranging from operations research, business analysis, manufac-
turing planning, and biological experimentation, just to name a few. Compared to
analytical modeling, simulation usually requires fewer simplification assumptions,
since almost every possible detail of system specifications can be incorporated in a
simulation model. When the system is rather large and complex, a straightforward
mathematical formulation may not be feasible. In this case, the simulation approach
is usually preferred to the analytical approach. The essence of simulation is to
perform extensive experiment and make convincing argument for generalization.
Due to the generalization, simulation results are usually considered not as strong as
the analytical results.

1.3 Basics of Computer Network Simulation

A simulation is, more or less, a combination of art and science. That is, while the
expertise in computer programming and the applied mathematics accounts for the
science part, the very skills in analysis and conceptual model formulation usually
represent the art portion. A long list of steps in executing a simulation process, as
given in [2], seems to reflect this popular claim.

1.3 Basics of Computer Network Simulation 7

A simulation of general computer networks consists of three main parts:

• Part 1 – Planning: This part includes defining the problem, designing the
corresponding model, and devising a set of experiments for the formulated
simulation model. It is recommended that 40% of time and effort be spent on
planning.

• Part 2 – Implementing: Implementation of simulation programs consists of three
steps:

– Step 1 – Initialization: This step establishes initial conditions (e.g., resetting
simulation clocks and variables) so that the simulation always starts from a
known state.

– Step 2 – Result generation: The simulation creates and executes events, and
collects necessary data generated by the created events.

– Step 3 – Postsimulation processing: The raw data collected from simulation
are processed and translated into performance measures of interest.

It is recommended that 20% of time should be used for implementation.
• Part 3 – Testing: This part includes verifying/validating the simulation model,

experimenting on the scenarios defined in Part 1 and possibly fine-tuning the
experiments themselves, and analyzing the results. The remaining 40% of time
should be used in this part.

This formula is in no way a strict one. Any actual simulation may require more
or less time and effort, depending on the context of interest, and definitely on the
modeler himself/herself.

1.3.1 Simulation Components

A computer network simulation can be thought of as a flow of interaction among
network entities (e.g., nodes, packets). These entities move through the system,
interact with other entities, join activities, trigger events, cause some changes to state
of the system, and terminate themselves. From time to time, they contend or wait for
some type of resources. This implies that there must be a logical execution sequence
to cause all these actions to happen in a comprehensible and manageable way.

According to Ingalls [4], the key components of a simulation include the
following:

1.3.1.1 Entities

Entities are objects that interact with one another in a simulation program. They
cause some changes to the states of the system. In the context of a computer network,
entities may include computer nodes, packets, flows of packets, or nonphysical
objects such as simulation clocks.

8 1 Simulation of Computer Networks

1.3.1.2 Resources

Resources are limited virtual assets shared by entities such as bandwidth or power
budget.

1.3.1.3 Activities and Events

From time to time, entities engage in some activities. The engagement creates events
and triggers changes in the system state. Common examples of events are packet
reception and route update events.

1.3.1.4 Scheduler

A scheduler maintains a list of events and their execution time. During a simulation,
it moves along a simulation clock and executes events in the list chronologically.

1.3.1.5 State and Global Variables

State variables keep track of the system state. They can be classified as local
variables and global variables based on their scope of operation. Local variables
are valid under a limited range, while global variables are understandable globally
by all program entities.

In general, global state variables hold general information shared by several
entities such as the total number of nodes, the geographical area information, the
reference to the scheduler, and so on.

1.3.1.6 Random Number Generator

A Random Number Generator (RNG) introduces randomness in a simulation model.
It generates random numbers by sequentially picking numbers from a deterministic
sequence of pseudo-random numbers [5], yet the numbers picked from this sequence
appear to be random.

Without randomness, the results for every run would be exactly the same. To
generate a set of different results, we may initialize the RNG for different runs with
different seeds. A seed identifies the first location where the RNG starts picking
random numbers. Two simulations whose RNG picks different initial positions
would generate different simulation results.

In a computer network simulation, for example, a packet arrival process and a
service process are usually modeled as random processes. These random processes
are usually implemented with the aid of an RNG. The readers are referred to [6, 7]
for a comprehensive treatment on random process implementation.

1.3 Basics of Computer Network Simulation 9

1.3.1.7 Statistics Gatherer

Statistics gatherers use variables to collect relevant data (e.g., packet arrival and
departure time). These data can later be used to compute the performance measures
such as average and standard deviation of the queuing delay for data packets
traversing a network.

1.3.2 Simulation Performance

Performance of a simulation is measured by the following metrics [3]:

• Execution speed: How fast a simulation can be completed
• Cost: Expense paid to procure software/hardware, develop simulation programs,

and obtain simulation results. Generally, commercial tools have more features
and easier to work with at the expense of increasing cost.

• Fidelity: How reliable the simulation results are. Fidelity can be increased by
incorporating more details (i.e., making less assumptions) into the simulation.

• Repeatability: An assurance that if the experiment was to be repeated, the results
would be the same. Repeatability can be quantified using confidence interval (see
the details in Sect. 1.3.3).

• Scalability: The impact of the size of the problem (e.g., the number of node, the
input traffic) on other simulation performance measures.

1.3.3 Confidence Interval

Confidence interval [6] is a useful mathematical tool which helps quantify the level
of repeatability. A confidence interval is a range between which one has confidence
in finding data points. It is characterized by the width and the confidence coefficient
(i.e., probability) to find data points. Figure 1.2 shows an example of confidence
interval of [�1,1] with the confidence coefficient is 80%. The interpretation of this
example is that the probability of finding a data point within an interval [�1,1] is 0.8.

It is fairly impossible/impractical to have perfectly repeatable results. Confidence
interval measures such imperfection. As long as the imperfection is well defined
(e.g., by confidence interval) and reasonable, the simulation results are usually
deemed sufficiently reliable.

1.3.4 Choices for Network Simulation Tools

There is a wide variety of network simulation tools in the market. Each has its own
strengths and weaknesses. To choose the most appropriate one, the following factors
might be considered [3]:

10 1 Simulation of Computer Networks

Fig. 1.2 A confidence
interval of [�1,1] with
confidence coefficient of 80%

-1 1

80%

Probability density function (f(x))

X

1.3.4.1 Simulation Platform

The simulation platform can be software, hardware, or hybrid. Software simulation
platforms can be very flexible and economical. In most cases, it can be installed
in personal computers or servers. Therefore, it can be upgraded very easily. The
hardware simulation platform (e.g., those using very high-level design language
(VHDL)) can be very fast to run and is more suitable for computationally intensive
simulation. It is also essential when input parameters need to be collected from
surrounding environment. The major drawback of hardware simulation platform
is that they can be prohibitively expensive to be implemented and modified.
Hybrid simulation platforms combine the benefits of both the software and the
hardware platforms. An example of hybrid simulation platforms is Hardware In the
Loop (HIL) simulation, which is usually used to test complex real-time embedded
systems [3].

1.3.4.2 Types of Simulation Tools

Simulation tools can also be classified based on how they are developed:

• Open-source or closed-source: By revealing its source code, open-source soft-
ware opens itself for investigation. Users/programmers can find and report
problems, modify the source codes, incorporate new features, and redistribute the
software. The drawback of the open-source software is the lack of accountability.
A lot of open-source software projects is run by volunteers. Since they can
be modified by anyone at any time, they might behave differently from users’
expectation. Closed-source software, on the other hand, can be modified only by
the software developers. Therefore, these developers are fully accountable for the
software quality.

• Free or commercial: Although free of charge, free software may lack the support
and accountability. Commercial software, on the other hand, is usually well
documented and has better technical support.

• Publicly available or in-house: Publicly available software can be open-source
or close-source, and can be free or commercial. It can help save substantial effort

1.4 Time-Dependent Simulation 11

required to develop simulation software. When appropriately chosen, it can be
fairly trustworthy, since well-developed software would have been extensively
examined by the public. Developed internally, in-house software has greater
flexibility. When the software needs to be changed or updated, the developers
know what, where, and how to make the changes rapidly.

1.3.4.3 User Interface

The user interfaces of a simulation program can be Command Line Interface (CLI)
or Graphic User Interface (GUI). Aiming at obtaining statistical results, a large
number of academic works use CLI-based simulation tools, since these tools use
most computational power for simulations. GUI-based simulation tools, on the
other hand, allocate a part of computational power to improve user interface. They
usually provide user-friendly network configuration interfaces, and have graphical
and animation-based simulation result presentation.

1.3.4.4 Examples of Simulation Tools

The following are some of the widely used network simulation tools:

• NS2: An open-source software written in CCC and OTcl programming lan-
guages

• GloMoSim: An open-source software developed at University of California,
Los Angeles (UCLA)

• QualNet: A commercialized version of GloMoSim. It supports a wider variety
of protocols, has better documentation, and provides customizable simulation
modules.

• Opnet: A commercial network simulation tool which offers several features
– including HIL, parallel computing, detailed documentation, and technical
support.

• MATLAB: A commercial multi-purpose software that can be used for network
simulation and complex numerical evaluation.

1.4 Time-Dependent Simulation

As its name suggested, time-dependent simulation proceeds chronologically.
It maintains a simulation clock to keep track of simulation time. Based on how
events are handled, time-dependent simulation can be classified into two categories:
time-driven simulation and event-driven simulation.

12 1 Simulation of Computer Networks

2

3

4

5

6a

b c
time

0

Fig. 1.3 Clock advancement in a time-driven simulation

1.4.1 Time-Driven Simulation

Time-driven simulation induces and executes events for every fixed time interval of
� time units. In particular, it looks for events that may have occurred during this
fixed interval. If found, such events would be executed as if they occurred at the end
of this interval. After the execution, it advances the simulation clock by � time units
and repeats the process. The simulation proceeds until the simulation time reaches
a predefined termination time.

Figure 1.3 shows the basic idea behind time advancement in a time-driven
simulation. The curved arrows represent such advances, and a, b, and c mark
the occurrences of events. During the first interval, no event occurs. The second
interval contains event a, which is not handled until the end of the interval.

Time interval (�) is an important parameter of time-driven simulation. While a
large interval can lead to loss of information, a small interval can cause unnecessary
waste of computational effort. Suppose, in Fig. 1.3, events b and c in the fifth
interval are packet arrival and departure events, respectively. Since these two events
are considered to occur exactly at the end of the interval (i.e., at 5�), the system
state would be as if there is no packet arrival or departure events during Œ4�; 5��.
This is considered a loss of information. An example of waste of computational
effort occurs between 2� and 4�. Although no event occurs in this interval, the
simulation wastes the computational resource to stop and process events at 3� and
4�. In time-driven simulation, programmers need to use their discretion to optimize
the time interval value �.

Example 1.1. Program 1.1 shows the pseudo codes for a time-driven simulation.
Lines 1 and 2 initialize the system state variables and the simulation clock, respec-
tively. Line 3 specifies the stopping criterion. Lines 4–6 are run as long as the sim-
ulation clock (i.e., sim_clock) is less than the predefined threshold stopTime.
These lines execute events, collect statistics, and advance the simulation. �

Program 1.1 Skeleton of a time-driven simulation
1 initialize {system states}
2 sim_clock := startTime;
3 while {sim_clock < stopTime}
4 collect statistics from current state;
5 execute all events that occurred during

[sim_clock, sim_clock + step];
6 sim_clock := sim_clock + step;
7 end while

1.4 Time-Dependent Simulation 13

a
time

0 b

To the next event

c

Fig. 1.4 Clock advancement in an event-driven simulation

Program 1.2 Skeleton of an event-driven simulation
1 initialize {system states}
2 initialize {event list}
3 while {Event list != NULL}
4 retrieve and remove an event

whose timestamp is smallest from the event list
5 execute the retrieved event
6 set sim_clock := time corresponding to the retrieved

event
7 end while

1.4.2 Event-Driven Simulation

An event-driven simulation does not proceed according to fixed time interval.
Rather, it induces and executes events at any arbitrary time. Event-driven simulation
has four important characteristics:

• Every event is stamped with its occurrence time and is stored in a so-called event
list.

• Simulation proceeds by retrieving and removing an event with the smallest
timestamp from the event list, executing it, and advancing the simulation clock
to the timestamp associated with the retrieved event.

• At the execution, an event may induce one or more events. The induced events
are stamped with the time when the event occurs and again are stored in the
event list. The timestamp of the induced events must not be less than the
simulation clock. This is to ensure that the simulation would never go backward
in time.

• An event-driven simulation starts with a set of initial events in the event list.
It runs until the list is empty or another stopping criterion is satisfied.

Figure 1.4 shows a graphical representation of event-driven simulation. Here,
events a, b, and c are executed in order. The time gap between any pair of
events is not fixed. The simulation advances from one event to another, as opposed
to one interval to another in time-driven simulation. In event-driven simulation,
programmers do not have to worry about optimizing time interval.

Example 1.2. Program 1.2 shows the skeleton of a typical event-driven simulation
program. Lines 1 and 2 initialize the system state variables and the event list,
respectively. Line 3 specifies a stopping criterion. Lines 4–6 are executed as along

14 1 Simulation of Computer Networks

as Line 3 returns true. Within this loop, the event whose timestamp is smallest is
retrieved, executed, and removed from the list. Then, the simulation clock is set to
the time associated with the retrieved event. �

1.5 A Simulation Example: A Single-Channel Queuing System

As an example, this section demonstrates a simulation of a single-channel queuing
system shown in Fig. 1.5. Here, we have one communication link connecting Node
A to Node B. Applications at Node A create packets according to underlying
distributions for inter-arrival time and service time. After the creation, the packets
are placed into a transmission buffer. When the communication link is free, the
head of the line packet is transmitted to Node B, and the head of the line server
fetch another packet from the buffer in a First-In-First-Out (FIFO) manner.

We now define the components of the event-driven simulation based on the
framework discussed in Sect. 1.3.

1.5.1 Entities

The primary entities in this simulation include the following:

• Applications which generate traffic whose inter-arrival time and service time
follow certain distributions,

• A server which stores the packet being transmitted (its state can be either idle
or busy),

APP

APP APP

Buffer

FIFO

NODE BNODE A

Channel

Fig. 1.5 Illustration of a single-channel queuing system

1.5 A Simulation Example: A Single-Channel Queuing System 15

Fig. 1.6 Packet arrival event

yes

Packet Arrival Event

Channel
Idle?

Transmit
Packet

Enqueue
Packet

no

• A queue which stores packets waiting to be transmitted (its state consists of the
size and the current occupancy), and

• Communication link which carries packets from Node A to Node B.

1.5.2 State Global Variables

For simplicity, we make all variables global so that they can be accessed from
anywhere in the simulation program:

• num_pkts: The number of packets in the systems – one in the head-of-the-line
server plus all packets in the buffer.

• link_status: The current status of the communication link (its state can be
either idle or busy).

1.5.3 Resource

Obviously, the only resource in this example is the transmission time in the channel.

1.5.4 Events

Main events in this simulation include the following:

1. pkt_arrival corresponds to a packet arrival event. This event occurs when
an application generate a packet. As shown in Fig. 1.6, the packet may either
be immediately transmitted or stored in the queue, depending on whether the
channel is busy or idle.

2. srv_complete corresponds to a successful packet transmission event. This
event indicates that a packet has been received successfully by node B. At the
completion, node A begins to transmit (serve) another packet waiting in the
queue. If there is no more packet to be sent, the channel becomes idle. The flow
diagram of the process is shown in Fig. 1.7.

16 1 Simulation of Computer Networks

yes

Successful Packet
Transmission

Queue
Empty?

Begin Channel
Idle Time

Dequeue and
transmit a packet
from the buffer

no

Fig. 1.7 Successful packet transmission (service completion) event

1.5.5 Simulation Performance Measures and Statistics Gatherers

Here, we consider the two following performance measures:

• Average packet transmission latency is the average time that a packet spends
(from its arrival to its departure) in the system.

• Average server utilization is the percentage time where the server is busy.

It is important to note that all the above measures are the average values taken over
time. The simulation time should be sufficiently long to ensure statistical accuracy
of the simulation result.

In order to compute the above two performance measures, arrival time and
service times of all the packets must be gathered. The computation of other
performance measures from these two data will be shown later in this section.

1.5.6 Simulation Program

Program 1.3 shows the skeleton of a program which simulates the single-channel
queuing system described above. It proceeds according to the three-step simulation
implementation defined in Sect. 1.3:

Step 1 – Initialization (Lines 1–4): Lines 1 and 2 initialize the status of the
communication link (link_status) to idle and number of packets in the
systems (num_pkts) to zero. Line 3 sets the simulation clock to start at zero. Line 4
creates an event list (event_list) by invoking the procedurecreate_list().
The event list contains all events in the simulation. Again, the scheduler moves
along this list and executes the events chronologically. From within the procedure
create_list(), the initial packet arrival events created by applications are
placed on the event list.

Step 2 – Result generation (Lines 5–10): This is the main part of the program where
the loop runs as long as the two following conditions satisfied: (1) the event list
is nonempty and (2) the simulation clock has not reached a predefined threshold.

1.5 A Simulation Example: A Single-Channel Queuing System 17

Program 1.3 Simulation skeleton of a single-channel queuing system
% Initialize system states
1 link_status = idle; %The initial link status is idle
2 num_pkts = 0; %Number of packets in system
3 sim_clock = 0; %Current time of simulation

%Generate packets and schedule their arrivals
4 event_list = create_list();

% Main loop
5 while {event_list != empty} & {sim_clock < stop_time}
6 if the application creates events, insert them to the list
7 expunge the previous event from event list;
8 set sim_clock = time of current event;
9 execute the current event;
10 end while

%Define events
11 pkt_arrival(){
12 if(link_status)
13 link_status = busy;
14 num_pkts = num_pkts + 1;

% Update "event_list": Put "successful packet tx event"
% into "event_list," T is random service time.

15 schedule event "srv_complete" at sim_clock + T;
16 else
17 num_queue = num_queue + 1; %Place packet in queue
18 num_pkts = num_queue + 1;
19 }

20 srv_complete(){
21 num_pkts = num_pkts - 1;
22 if(num_pkts > 0)
23 schedule event "srv_complete" at sim_clock + T;
24 else
25 link_status = idle;
26 num_pkts = 0;
27 }

Within the loop, Line 6 takes arrival/departure events (if any) created by applications
and placed them in the event list. Lines 7–10 execute the next event on the event
list by invoking either the procedure pkt_arrival() in Lines 11–19 or the
procedure srv_complete() in Lines 20–27.

The procedure pkt_arrival() (Lines 11–19) checks whether the commu-
nication link is idle when a packet arrives. If so, the link is set to busy, and a
service completion event is inserted into the event_list for future execution.
The timestamp associated with the event is equal to the current clock time
(sim_clock) plus the packet’s randomly generated service time (T). If the link is

18 1 Simulation of Computer Networks

Table 1.1 Probability mass
functions of inter-arrival time
and service time

Inter-arrival Service
Time unit (probability mass) (probability mass)

1 0.2 0.5
2 0.2 0.3
3 0.2 0.1
4 0.2 0.05
5 0.1 0.05
6 0.05
7 0.05

Table 1.2 Simulation result of a single-channel queuing system

Interarr. Service Arrival Service Packet waiting Packet transmission
Packet time time time starts time latency

1 – 5 0 0 0 5
2 2 4 2 5 3 7
3 4 1 6 9 3 4
4 1 1 7 10 3 4
5 6 3 13 13 0 3
6 7 1 20 20 0 1
7 2 1 22 22 0 1
8 1 4 23 23 0 4
9 3 3 26 27 1 4
10 5 2 31 31 0 2

1.0 3.5

busy, on the other hand, the packet will be enqueued into the buffer, and the packet
counter (num_pkts) is incremented by one unit.

The procedure srv_complete() (Lines 20–27) first updates the number of
packets in the system (num_pkts). Then, it checks whether the system contains
any packet. If so, the head-of-the-line packet will be served. This is done by inserting
another service completion event at time sim_clock + T. However, if the queue
is empty, the channel is set to idle and the number of packets in the system is set
to zero.

Step 3 – Postsimulation processing: This step collects and computes the perfor-
mance measures based on the simulation results. Suppose that the inter-arrival
time and the service time comply with the probability mass functions specified in
Table 1.1. Table 1.2 shows the simulation results for ten packets.

In Table 1.2, the second and third columns represent the inter-arrival time
and service time, respectively, of each packet. These two columns contain raw
information. Data shown in other columns derive from these two columns.

The fourth and fifth columns specify the time where the packets arrive and start
to be served in the head-of-the-line server, respectively. The sixth column represents
the packet waiting time – the time that a packet spends in the queue. It is computed
as the time difference between when the service starts and when the packet arrives.
Finally, the seventh column represents the packet transmission latency – the time

1.6 Chapter Summary 19

Table 1.3 Evolution of
number of packets in the
system over time

Event Packet no. Simulation clock

Arrival 1 0

Arrival 2 2

Completion 1 5

Arrival 3 6

Arrival 4 7

Completion 2 9

Completion 3 10

Completion 4 11

Arrival 5 13

Completion 5 16

1
2
3

Simulation
time

Number of
Packets in the
System

161412108642

Fig. 1.8 Number of packets in the system at various instances

that a packet spends in both the queue and the channel. It is computed as the
summation of the waiting time and the service time.

Based on the results in Table 1.2, we compute the average waiting time and the
average packet transmission latency by averaging the sixth and seventh columns
(i.e., adding all the values and dividing the result by 10). The results are therefore
1.0 and 3.5 time units, respectively.

Based on the information in Table 1.2, we also show a series of events and the
dynamics of buffer occupancy with respect to the Simulation Clock (sim_clock)
in Table 1.3 and Fig. 1.8, respectively. Based on Fig 1.8, the mean server utilization
can be computed from the ratio of the time when the server is in use to the simulation
time, which is 14/16 D 0.875 in this case.

1.6 Chapter Summary

A computer network is a complex system. Design analysis, and optimization of a
computer network can be a comprehensive task. Simulation, regarded as one of the
most powerful performance analysis tools, is usually used in carrying out this task
to complement the analytical tools.

20 1 Simulation of Computer Networks

This chapter focuses mainly on time-dependent simulation, which advances in a
time domain. The time-dependent simulation can be classified into two categories.
Time-driven simulation advances the simulation by fixed time intervals, while event-
driven simulation proceeds from one event to another. NS2 is an event-driven
simulation tool. Designing event-driven simulation models using NS2 is the theme
of the rest of the book.

1.7 Exercises

1. What are the differences between OSI model and TCP/IP model. Draw a diagram
to emphasize the differences.

2. What are the key steps in simulating a computer communication network?
3. Draw a probability density function with confidence interval [�7; C7] and

confidence coefficient is 95%.
4. You are given a text file. Each line of this text file contains a number representing

a data point. Write a program which computes the average value and the standard
deviation for the data points along with the confidence level when a confidence
interval is given as an input parameter.

5. What are the two types of time-dependent simulations? Write down their main
features, strengths, and weaknesses.

6. Write a sub-routine which prints out the current time slot. In a time-slotted
system, write a program which executed the sub-routine at time slot 1, 7, 13,
24, and 47 by

a. Using time-driven simulation
b. Using event-driven simulation

Chapter 2
Introduction to Network Simulator 2 (NS2)

2.1 Introduction

Network Simulator (Version 2), widely known as NS2, is simply an event-driven
simulation tool that has proved useful in studying the dynamic nature of commu-
nication networks. Simulation of wired as well as wireless network functions and
protocols (e.g., routing algorithms, TCP, UDP) can be done using NS2. In general,
NS2 provides users with a way of specifying such network protocols and simulating
their corresponding behaviors.

Due to its flexibility and modular nature, NS2 has gained constant popularity
in the networking research community since its birth in 1989. Ever since, several
revolutions and revisions have marked the growing maturity of the tool, thanks
to substantial contributions from the players in the field. Among these are the
University of California and Cornell University who developed the REAL network
simulator,1 the foundation on which NS is invented. Since 1995 the Defense
Advanced Research Projects Agency (DARPA) supported the development of NS
through the Virtual InterNetwork Testbed (VINT) project [10].2 Currently the
National Science Foundation (NSF) has joined the ride in development. Last but not
the least, the group of researchers and developers in the community are constantly
working to keep NS2 strong and versatile.

Again, the main objective of this book is to provide the readers with insights
into the NS2 architecture. This chapter gives a brief introduction to NS2. NS2
Beginners are recommended to go thorough the detailed introductory online
resources. For example, NS2 official website [12] provides NS2 source code as
well as detailed installation instruction. The web pages in [13] and [14] are among
highly recommended ones which provide tutorial and examples for setting up basic

1REAL was originally implemented as a tool for studying the dynamic behavior of flow and
congestion control schemes in packet-switched data networks.
2Funded by DARPA, the VINT project aimed at creating a network simulator that will initiate the
study of different protocols for communication networking.

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 2, © Springer Science+Business Media, LLC 2012

21

22 2 Introduction to Network Simulator 2

NS2 simulation. A comprehensive list of NS2 codes contributed by researchers
can be found in [15]. These introductory online resources would be helpful in
understanding the material presented in this book.

In this chapter an introduction to NS2 is provided. In particular, Sect. 2.2 presents
the basic architecture of NS2. The information on NS2 installation is given in
Sect. 2.3. Section 2.4 shows NS2 directories and conventions. Section 2.5 shows the
main steps in NS2 simulation. A simple simulation example is given in Sect. 2.6.
Section 2.7 describes how to include CCC modules in NS2. Finally, Sect. 2.8
concludes the chapter.

2.2 Basic Architecture

Figure 2.1 shows the basic architecture of NS2. NS2 provides users with an
executable command “ns” which takes one input argument, the name of a Tcl
simulation scripting file. In most cases, a simulation trace file is created and is used
to plot graph and/or to create animation.

NS2 consists of two key languages: CCC and Object-oriented Tool Command
Language (OTcl). While the CCC defines the internal mechanism (i.e., a backend)
of the simulation, the OTcl sets up simulation by assembling and configuring the
objects as well as scheduling discrete events (i.e., a frontend). The CCC and the
OTcl are linked together using TclCL. Mapped to a CCC object, variables in
the OTcl domains are sometimes referred to as handles. Conceptually, a handle
is just a string (e.g., “_o10”) in the OTcl domain and does not contain any
functionality. Instead, the functionality (e.g., receiving a packet) is defined in the
mapped CCC object (e.g., of class Connector). In the OTcl domain, a handle
acts as a frontend which interacts with users and other OTcl objects. It may
define its own procedures and variables to facilitate the interaction. Note that the
member procedures and variables in the OTcl domain are called instance procedures
(instprocs) and instance variables (instvars), respectively. Before proceeding further,

Simulation
Objects

Simulation
Objects

TclCL

C++ OTcl

NS2 Shell Executable Command (ns)

Tcl
Simulation

Script

Simulation
Trace
File

NAM
(Animation)

Xgraph
(Plotting)

Fig. 2.1 Basic architecture of NS

2.3 Installation 23

the readers are encouraged to learn CCC and OTcl languages. We refer the readers
to [16] for the detail of CCC, while a brief tutorial of Tcl and OTcl tutorial are
given in Appendices A.1 and A.2, respectively.

NS2 provides a large number of built-in CCC classes. It is advisable to use these
CCC classes to set up a simulation via a Tcl simulation script. However, advance
users may find these objects insufficient. They need to develop their own CCC
classes and use a OTcl configuration interface to put together objects instantiated
from these class.

After simulation, NS2 outputs either text-based simulation results. To interpret
these results graphically and interactively, tools such as NAM (Network AniMator)
and XGraph are used. To analyze a particular behavior of the network, users can
extract a relevant subset of text-based data and transform it to a more conceivable
presentation.

2.3 Installation

NS2 is a free simulation tool, which can be obtained from [10]. It runs on various
platforms including UNIX (or Linux), Windows, and Mac systems. Being developed
in the Unix environment, with no surprise, NS2 has the smoothest ride there, and
so does its installation. However, due to the popularity of windows systems, the
discussion in this book is based on a Cygwin (UNIX emulator) activated Windows
system.

NS2 source codes are distributed in two forms: the all-in-one suite and the
component-wise. With the all-in-one package, users get all the required compo-
nents along with some optional components. This is basically a recommended
choice for the beginners. This package provides an “install” script which
configures the NS2 environment and creates NS2 executable file using the “make”
utility.

The current all-in-one suite consists of the following main components:

• NS release 2.35,
• Tcl/Tk release 8.5.8,
• OTcl release 1.14, and
• TclCL release 1.20.

and the following are the optional components:

• NAM release 1.15: NAM is an animation tool for viewing network simulation
traces and packet traces.

• Zlib version 1.2.3: This is the required library for NAM.
• Xgraph version 12.2: This is a data plotter with interactive buttons for panning,

zooming, printing, and selecting display options.

24 2 Introduction to Network Simulator 2

Table 2.1 Additional Cygwin packages required to run NS2

Category Packages

Mandatory gcc4, gcc-g++, gawk, gzip, tar, make, patch, perl,
w32api

Optinal (graphic-related) xorg-xserver, xinit, libX11-devel, libXmu-devel

The idea of the component-wise approach is to obtain the above pieces and install
them individually. This option save considerable amount of downloading time and
memory space. However, it could be troublesome for the beginners and is therefore
recommended only for experienced users.

2.3.1 Installing an All-In-One NS2 Suite on Unix-Based Systems

The all-in-one suite can be installed in the Unix-based machines by simply running
the “install” script and following the instructions therein. The only requirement
is a computer with a CCC compiler installed. The following two commands show
how the all-in-one NS2 suite can be installed and validated, respectively:

>>./install
>>./validate

Validating NS2 involves simply running a number of working scripts that verify the
essential functionalities of the installed components.

2.3.2 Installing an All-In-One NS2 Suite on Windows-Based
Systems

To run NS2 on Windows-based operating systems, a bit of tweaking is required.
Basically, the idea is to make Windows-based machines emulate the functionality
of the Unix-like environment. A popular program that performs this job is Cygwin.3

After getting Cygwin to work, the same procedure as that of Unix-based installation
can be followed. For ease of installation, it is recommended that the all-in-one
package be used. The detailed description of Windows-based installation can be
found online at NS2’s Wiki site [10], where the information on post-installation
troubles can also be found.

Note that by default Cygwin does not install all packages necessary to run NS2.
A user needs to manually install the addition packages shown in Table 2.1.4

3Cygwin is available online and comes free. Information such as how to obtain and install Cygwin
is available online at the Cygwin website www.cygwin.com.
4Different versions may install different default packages. Users may need to install more or less
packages depending on the version of Cygwin.

2.4 Directories and Convention 25

2.4 Directories and Convention

2.4.1 Directories

Suppose that NS2 is installed in Directory nsallinone-2.35. Figure 2.2 shows
the directory structure under directory nsallinone-2.35. Here, the directory
nsallinone-2.35 is on the Level 1. On the Level 2, the directorytclcl-1.20
contains classes in TclCL (e.g., Tcl, TclObject, TclClass). All NS2
simulation modules are in the directory ns-2.35 on the Level 2. Hereafter, we
will refer to directoriesns-2.35 andtclcl-1.20 as ˜ns/ and ˜tclcl/, respectively.

On Level 3, the modules in the interpreted hierarchy are under the directory
tcl. Among these modules, the frequently used ones (e.g., ns-lib.tcl,
ns-node.tcl, ns-link.tcl) are stored under the directory lib on Level 4.
Simulation modules in the compiled hierarchy are classified in directories on
Level 3. For example, directory tools contain various helper classes such as
random variable generators. Directory common contains basic modules related to
packet forwarding such as the simulator, the scheduler, connector, packet. Direc-
tories queue, tcp, and trace contain modules for queue, TCP (Transmission
Control Protocol), and tracing, respectively.

2.4.2 Convention

The terminologies and formats that are used in NS2 and in this book hereafter are
shown below:

2.4.2.1 Terminology

• An NS2 simulation script (e.g., myfirst_ns.tcl) is referred to as a Tcl
simulation script.

nsallinone-2.35

ns-2.35 tclcl-1.20

common tcl

lib rtglib

tools tcp queue trace

...

...

...

All NS2
simulation

modules

TclCL
classes

Modules in
the
interpreted
hierarchy

Commonly-used
modules in the

interpreted hierarchy

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

tcl8.5.8

Fig. 2.2 Directory structure of NS2 [14]

26 2 Introduction to Network Simulator 2

• CCC and OTcl class hierarchies, which have one-to-one correspondence, are
referred to as the compiled hierarchy and the interpreted hierarchy, respectively.
Class (or member) variables and class (or member) functions are the variables
and functions which belong to a class. In the compiled hierarchy, they are referred
to simply as variables and functions, respectively. Those in the interpreted
hierarchy are referred to as instance variables (instvars) and instance procedures
(instprocs), respectively. As we will see in Sect. 3.4, OTcl command, is a special
instance procedure, whose implementation is in the compiled hierarchy (i.e.,
written in CCC). An OTcl object is, therefore, associated with instance variables,
instance procedures, and OTcl commands, while a CCC object is associated with
variables and functions.

• A “MyClass” object is a shorthand for an object of class MyClass.
A “MyClass” pointer is a shorthand for a pointer which points to an object
of class MyClass. For example, based on the statements “Queue q” and
“Packet* p,” “q” and “p” are said to be a “Queue” object and a “Packet
pointer,” respectively. Also, suppose further that class DerivedClass and
AnotherClass derive from class MyClass. Then, the term a MyClass
object refers to any object which is instantiated from class MyClass or its
derived classes (i.e., DerivedClass or AnotherClass).

• Objects and instances are instantiated from a CCC class and an OTcl class,
respectively. However, the book uses these two terms interchangeably.

• NS2 consists of two languages. Suppose that objects “A” and “B” are written in
each language and correspond to one another. Then, “A” is said to be the shadow
object of “B.” Similarly “B” is said to be the shadow object of “A.”

• Consider two consecutive nodes in Fig. 3.2. In this configuration, an object (i.e.,
node) on the left always sends packets to the object on the right. The object on the
right is referred to as a downstream object or a target, while the object on the left
is referred to as an upstream object. In a general case, an object can have more
than one target. A packet must be forwarded to one of those targets. From the
perspective of an upstream object, a downstream object that receives the packet
is also referred to as a forwarding object.

2.4.2.2 Notations

• As in CCC, we use “::” to indicate the scope of functions and instprocs (e.g.,
TcpAgent::send(...)).

• Most of the texts in this book are written in regular letters. NS2 codes are written
in “this font type.” The quotation marks are omitted if it is clear from the
context. For example, the Simulator is a general term for the simulating module
in NS2, while a Simulator object is an object of class Simulator.

• A value contained in a variable is embraced with <>. For example, if a variable
var stores an integer 7, <var> will be 7.

• A command prompt or an NS2 prompt is denoted by “>>” at the beginning of a
line.

2.5 Running NS2 Simulation 27

Table 2.2 Examples of NS2 naming convention

The interpreted hierarchy The compiled hierarchy

Base class Agent Agent
Derived class Agent/TCP TcpAgent
Derived class (2nd level) Agent/Tcp/Reno RenoTcpAgent
Class functions installNext install_next
Class variables windowOption_ wnd_option_

• In this book, codes shown in figures are partially excerpted from NS2 file.
The file name from which the codes is excerpted is shown in the first line
of the figure. For example, the codes in Program 2.1 are excerpted from file
“myfirst_ns.tcl.”

• A class name may consist of several words. All the words in a class name are
capitalized. In the interpreted hierarchy, a derived class is named by having the
name of its parent class following by a slash character (“/”) as a prefix, while
that compiled classes are named by having the name of its base class as a suffix.
Examples of NS2 naming convention are given in Table 2.2.

• In the interpreted hierarchy, an instproc name is written in lower case. If the
instproc name consists of more than one word, each word except for the first one
will be capitalized. In the compiled hierarchy, all the words are written in lower
case and separated by an underscore “_” (see Table 2.2).

• The naming convention for variables is similar to that for functions and instprocs.
However, the last character of the names of class variables in both the hierarchies
is always an underscore (“_”; see Table 2.2). Note that this convention is only a
guideline that a programmer should (but does not have to) follow.

2.5 Running NS2 Simulation

2.5.1 NS2 Program Invocation

After the installation and/or recompilation (see Sect. 2.7), an executable file “ns” is
created in the NS2 home directory. NS2 can be invoked by executing the following
statement from the shell environment:

>>ns [<file>] [<args>]

where <file> and <args> are optional input argument. If no argument is given,
the command will bring up an NS2 environment, where NS2 waits to interpret
commands from the standard input (i.e., keyboard) line-by-line. If the first input
argument <file> is given, NS2 will interpret the input scripting <file> (i.e., a
so-called Tcl simulation script) according to the Tcl syntax. The detail for writing a
Tcl scripting file is given in Appendix A.1. Finally, the input arguments <args>,

28 2 Introduction to Network Simulator 2

General Simulation Steps NS2 Simulation Steps

1. Planning

2. Implementation:

3. Testing and Debuging

Initialization

Result generation

Performance
measure

computation

1. Simulation Design

2. Configuring and Running
Simulation:

Network configuration
phase

Simulation phase

3. Post Simulation Processing

Fig. 2.3 A comparison of general simulation steps and NS2 simulation steps

each separated by a white space, are fed to the Tcl file <file>. From within the
file <file>, the input argument is stored in the built-in variable “argv” (see
Appendix A.1.1).

2.5.2 Main NS2 Simulation Steps

Section 1.3 presents the key steps for general simulation. As shown in Fig. 2.3, the
general simulation steps can be tailored to fit with the NS2 framework. The key NS2
simulation steps include the following:

Step 1: Simulation Design

The first step in simulating a network is to design the simulation. In this step, the
users should determine the simulation purposes, network configuration, assump-
tions, the performance measures, and the type of expected results.

2.6 A Simulation Example 29

Step 2: Configuring and Running Simulation

This step implements the design in the first step. It consists of two phases:

• Network configuration phase: In this phase, network components (e.g., node,
TCP and UDP) are created and configured according to the simulation design.
Also, the events such as data transfer are scheduled to start at a certain
time.

• Simulation Phase: This phase starts the simulation which was configured in the
Network Configuration Phase. It maintains the simulation clock and executes
events chronologically. This phase usually runs until the simulation clock reaches
a threshold value specified in the Network Configuration Phase.

In most cases, it is convenient to define a simulation scenario in a Tcl scripting
file (e.g., <file>) and feed the file as an input argument of an NS2 invocation
(e.g., executing “ns <file>”).

Step 3: Postsimulation Processing

The main tasks in this steps include verifying the integrity of the program and
evaluating the performance of the simulated network. While the first task is referred
to as debugging, the second one is achieved by properly collecting and compiling
simulation results (see Chap. 14).

2.6 A Simulation Example

We demonstrate a network simulation through a simple example. Again, a simula-
tion process consists of three steps.

Step 1: Simulation Design

Figure 2.4 shows the configuration of a network under consideration. The network
consists of five nodes “n0” to “n4.” In this scenario, node “n0” sends constant-bit-
rate (CBR) traffic to node “n3,” and node “n1” transfers data to node “n4” using a
file transfer protocol (FTP). These two carried traffic sources are carried by transport
layer protocols User Datagram Protocol (UDP) and Transmission Control Protocol
(TCP), respectively. In NS2, the transmitting object of these two protocols are a
UDP agent and a TCP agent, while the receivers are a Null agent and a TCP sink
agent, respectively.

30 2 Introduction to Network Simulator 2

n0

n1
n3

n4

100 Mbps
5 ms Delay

54 Mbps
10 ms Delay

10 Mbps
15 ms Delay

54 Mbps
10 ms Delay

100 Mbps
5 ms Delay

CBR

FTP

TCP Agent

TCPSinkUDP Agent

NullAgent

node

Transport agent

Application

UDP Flow

n2

TCP Flow

Fig. 2.4 A sample network topology

Step 2: Configuring and Running Simulation

Programs 2.1 and 2.2 show two portions of a Tcl simulation script which implements
the scenario in Fig. 2.4.

Consider Program 2.1. This program creates a simulator instance in Line 1. It
creates a trace file and a NAM trace file in Lines 2–3 and 4–5, respectively. It defines
procedurefinishfg in Lines 6–13. Finally, it creates nodes and links them together
in Lines 14–18 and 19–24, respectively.

The Simulator is created in Line 1 by executing “new Simulator.” The
returned Simulator handle is stored in a variable “ns.” Lines 2 and 4 open files
“out.tr” and “out.nam,” respectively, for writing. The variables “myTrace”
and “myNAM” are the file handles for these two files, respectively. Lines 3 and 5
inform NS2 to collect all trace information for a regular trace and a NAM trace,
respectively.

The procedure finishfg will be invoked immediately before the simulation
terminates. The keyword global informs the Tcl interpreter that the variables
“ns,” “myTrace,” “myNAM” are those defined in the global scope (i.e., defined
outside the procedure). Line 8 flushes the buffer of the packet tracing variables.
Lines 9 and 10 close the files associated with handles “myTrace” and “myNAM.”
Line 11 executes the statement “nam out.nam &” from the shell environment,
where “nam” is an executable file which invoke the Network AniMator. Finally,
Line 12 tells NS2 to exit with code 0.

Lines 14–18 create Nodes using the instproc nodef...g of the Simulator whose
handle is “ns.” Lines 19–23 connect each pair of nodes with a bi-directional
link using an instproc duplex-link fsrc dst bw delay qtypeg of class
Simulator, where “src” is a beginning node, “dst” is a terminating node, “bw”
is the link bandwidth, “delay” is the link propagation delay, and “qtype” is
the type of the queues between the node “src” and the node “dst.” Similar to

2.6 A Simulation Example 31

Program 2.1 First NS2 Program
myfirst_ns.tcl
Create a Simulator
1 set ns [new Simulator]

Create a trace file
2 set mytrace [open out.tr w]
3 $ns trace-all $mytrace

Create a NAM trace file
4 set myNAM [open out.nam w]
5 $ns namtrace-all $myNAM

Define a procedure finish
6 proc finish { } {
7 global ns mytrace myNAM
8 $ns flush-trace
9 close $mytrace
10 close $myNAM
11 exec nam out.nam &
12 exit 0
13 }

Create Nodes
14 set n0 [$ns node]
15 set n1 [$ns node]
16 set n2 [$ns node]
17 set n3 [$ns node]
18 set n4 [$ns node]

Connect Nodes with Links
19 $ns duplex-link $n0 $n2 100Mb 5ms DropTail
20 $ns duplex-link $n1 $n2 100Mb 5ms DropTail
21 $ns duplex-link $n2 $n4 54Mb 10ms DropTail
22 $ns duplex-link $n2 $n3 54Mb 10ms DropTail
23 $ns simplex-link $n3 $n4 10Mb 15ms DropTail
24 $ns queue-limit $n2 $n3 40

the instproc duplex-linkf...g, Line 23 create a uni-directional link using an
instproc simplex-linkf...g of class Simulator. Finally, Line 24 sets size
of the queue between node “n2” and node “n3” to be 40 packets.

Next, consider the second portion of the Tcl simulation script in Program 2.2.
A UDP connection, a CBR traffic source, a TCP connection, and an FTP session
are created and configured in Lines 25–30, 31–34, 35–40, and 41–42, respectively.
Lines 43–47 schedule discrete events. Finally, the simulator is started in Line 48
using the instproc runfg associated with the simulator handle “ns.”

To create a UDP connection, a sender “udp” and a receiver “null” are created
in Lines 25 and 27, respectively. Taking a node and an agent as input argument, an
instproc attach-agentf...g of class Simulator in Line 26 attaches a UDP

32 2 Introduction to Network Simulator 2

Program 2.2 First NS2 Program (Continued)

Create a UDP agent
25 set udp [new Agent/UDP]
26 $ns attach-agent $n0 $udp
27 set null [new Agent/Null]
28 $ns attach-agent $n3 $null
29 $ns connect $udp $null
30 $udp set fid_ 1

Create a CBR traffic source
31 set cbr [new Application/Traffic/CBR]
32 $cbr attach-agent $udp
33 $cbr set packetSize_ 1000
34 $cbr set rate_ 2Mb

Create a TCP agent
35 set tcp [new Agent/TCP]
36 $ns attach-agent $n1 $tcp
37 set sink [new Agent/TCPSink]
38 $ns attach-agent $n4 $sink
39 $ns connect $tcp $sink
40 $tcp set fid_ 2

Create an FTP session
41 set ftp [new Application/FTP]
42 $ftp attach-agent $tcp

Schedule events
43 $ns at 0.05 "$ftp start"
44 $ns at 0.1 "$cbr start"
45 $ns at 60.0 "$ftp stop"
46 $ns at 60.5 "$cbr stop"
47 $ns at 61 "finish"

Start the simulation
48 $ns run

agent “udp” and a node “n0” together. Similarly, Line 28 attaches a Null agent
“null” to a node “n3.” The instproc connectf<from_agt> <to_agt>g in
Line 29 informs an agent <from_agt> to send the generated traffic to an agent
<to_agt>. Finally, Line 30 sets the UDP flow ID to be 1. The construction of
a TCP connection in Lines 35–40 is similar to that of a UDP connection in Lines
25–30.

A CBR traffic source is created in Line 31. It is attached to a UDP agent “udp”
in Line 32. The packet size and generation rate of the CBR connection are set to
1,000 bytes and 2 Mbps, respectively. Similarly, an FTP session handle is created in
Line 41 and is attached to a TCP agent “tcp” in Line 42.

In NS2, discrete events can be scheduled using an instproc atf...g of
class Simulator, which takes two input arguments: <time> and <str>.

2.6 A Simulation Example 33

This instproc schedules an execution of <str> when the simulation time is
<time>. Lines 43 and 44 start the FTP and CBR traffic at 0.05th second and 1st
second, respectively. Lines 45 and 46 stop the FTP and CBR traffic at 60.0th second
and 60.5th second, respectively. Line 47 terminates the simulation by invoking the
procedure finishfg at 61st second. Note that the FTP and CBR traffic source can
be started and stopped by invoking their OTcl commands startfg and stopfg,
respectively.

We run the above simulation script by executing

>>ns myfirst_ns.tcl

from the shell environment. At the end of simulation, the trace files should be
created and NAM should be running (since it is invoked from within the procedure
finishfg).

Step 3: Post simulation Processing: Packet Tracing

Packet tracing records the detail of packet flow during a simulation. It can be
classified into a text-based packet tracing and a NAM packet tracing.

Text-Based Packet Tracing

Text-based packet tracing records the detail of packets passing through network
checkpoints (e.g., nodes and queues). A part of the text-based trace obtained by
running the above simulation (myfirst_ns.tcl) is shown below.

...
+ 0.110419 1 2 tcp 1040 ------- 2 1.0 4.0 5 12
+ 0.110419 1 2 tcp 1040 ------- 2 1.0 4.0 6 13
- 0.110431 1 2 tcp 1040 ------- 2 1.0 4.0 5 12
- 0.110514 1 2 tcp 1040 ------- 2 1.0 4.0 6 13
r 0.11308 0 2 cbr 1000 ------- 1 0.0 3.0 2 8
+ 0.11308 2 3 cbr 1000 ------- 1 0.0 3.0 2 8
- 0.11308 2 3 cbr 1000 ------- 1 0.0 3.0 2 8
r 0.11316 0 2 cbr 1000 ------- 1 0.0 3.0 3 9
+ 0.11316 2 3 cbr 1000 ------- 1 0.0 3.0 3 9
- 0.113228 2 3 cbr 1000 ------- 1 0.0 3.0 3 9
r 0.115228 2 3 cbr 1000 ------- 1 0.0 3.0 0 6
r 0.115348 1 2 tcp 1040 ------- 2 1.0 4.0 3 10
+ 0.115348 2 4 tcp 1040 ------- 2 1.0 4.0 3 10
- 0.115348 2 4 tcp 1040 ------- 2 1.0 4.0 3 10
r 0.115376 2 3 cbr 1000 ------- 1 0.0 3.0 1 7
r 0.115431 1 2 tcp 1040 ------- 2 1.0 4.0 4 11
...

34 2 Introduction to Network Simulator 2

Fig. 2.5 Format of each line in a normal trace file

Figure 2.5 an example of a trace file. Each line in the trace file consists of 12
columns.

The general format of each trace line is shown in Fig. 2.5, where 12 columns
make up a complete trace line. The type identifier field corresponds to four possible
event types that a packet has experienced: “r” (received), “C” (enqueued), “�”
(dequeued), and “d” (dropped). The time field denotes the time at which such event
occurs. Fields 3 and 4 are the starting and the terminating nodes, respectively, of the
link at which a certain event takes place. Fields 5 and 6 are packet type and packet
size, respectively. The next field is a series of flags, indicating any abnormal behav-
ior. Note the output "-------" denotes no flag. Following the flags is a packet
flow ID. Fields 9 and 10 mark the source and the destination addresses, respectively,
in the form of “node.port.” For correct packet assembly at the destination node,
NS also specifies a packet sequence number in the second last field. Finally, to keep
track of all packets, a packet unique ID is recorded in the last field.

Now, having this trace at hand would not be useful unless meaningful analysis
is performed on the data. In post simulation analysis, one usually extracts a subset
of the data of interest and further analyzes it. For example, the average throughput
associated with a specific link can be computed by extracting only the columns
and fields associated with that link from the trace file. Two of the most popular
languages that facilitate this process are AWK and Perl. The basic structures and
usage of AWK is described in Appendix A.3.

Text-based packet tracing is activated by executing “$ns trace-all $file,”
where “ns” stores the Simulator handle and “file” stores a handle associated with
the file which records the tracing strings. This statement simply informs NS2 of the
need to trace packets. When an object is created, a tracing object is also created to
collect the detail of traversing packets. Hence, the “trace-all” statement must
be executed before object creation. We shall discuss the detail of text-based packet
tracing later in Chap. 14.

Network AniMation (NAM) Trace

NAM trace records simulation detail in a text file and uses the text file to play back
the simulation using animation. NAM trace is activated by the command “$ns
namtrace-all $file,” where “ns” is the Simulator handle and “file” is
a handle associated with the file (e.g., “out.nam” in the above example) which
stores the NAM trace information. After obtaining a NAM trace file, the animation
can be initiated directly at the command prompt through the following command
(See Line 11 in Program 2.1):

>>nam filename.nam

2.7 Including C++ Modules into NS2 and the make Utility 35

Many visualization features are available in NAM. These features are for ex-
ample animating colored packet flows, dragging and dropping nodes (positioning),
labeling nodes at a specified instant, shaping the nodes, coloring a specific link, and
monitoring a queue.

2.7 Including CCC Modules into NS2 and the make Utility

In developing an NS2 simulation, very often it is necessary to create customized
CCC modules to complement the existing libraries. As such, the developer is faced
with the task of keeping track of all the created files as a part of NS2. When a change
is made to one file, usually it requires recompilation of some other files that depend
on it. Manual recompilation of each of such files may not be practical. In Unix, a
utility tool called make is available to overcome such difficulties. In this section
we introduce this tool and discuss how to use it in the context of NS2 simulation
development.

As a Unix utility tool make is very useful for managing the development
of software written in any compilable programming language including CCC.
Generally, the make program automatically keeps track of all the files created
throughout the development process. By keeping track, we mean recompiling or
relinking wherever interdependencies exist among these files, which may have been
modified as a part of the development process.

2.7.1 An Invocation of a make Utility

A “make” utility can be invoked form a UNIX shell with the following command:

>>make [-f mydescriptor]

where “make” is mandatory, while the text inside the bracket is optional. By default
(i.e., without optional input arguments), the “make” utility recompiles and relinks
the source codes according to the default descriptor file “Makefile.” If the
descriptor file “mydescriptor” is specified, the utility uses this file in place of
the default file “Makefile.”

2.7.2 A make Descriptor File

A descriptor file contains instructions of how the source codes should be recompiled
and relinked. Again, the default descriptor file is the file named “Makefile.” A de-
scriptor file contains the names of the source code files that make up the executable,

36 2 Introduction to Network Simulator 2

their interdependencies, and how each file should be rebuilt or recompiled. Such
descriptions are specified through a series of so-called dependency rules. Each rule
takes three components, i.e., targets, dependencies, and commands. The following
is the format of the dependency rule:

<target1> [<target2> ...] : <dep1> [<dep2> ...]
<command1> [<command2> ...]

where everything inside the brackets are optional. A target is usually the name of
the file which needs to be remade if any modification is done to dependency files
specified after the mandatory colon (:). If any change is noticed, the second and
subsequent lines will be executed to regenerate the target file.

Example 2.1 (Example of a Descriptor File). Assume that we have a main exe-
cutable file channel consisting of three separate source files named main.c,
fade.c, and model.c. Also assume that model.c depends on model.h. The
Makefile corresponding to this example is shown below.

makefile of channel
channel : main.o fade.o model.o

cc -o channel main.o fade.o model.o

main.o : main.c
cc -c main.c

fade.o : fade.c
cc -c fade.c

model.o : model.c model.h
cc -c model.c

clean :
rm main.o fade.o model.o

The first line is a comment beginning with a pound (“#”) sign. When make
is invoked, it starts checking the targets one by one. The target channel is
examined first, and make finds that channel depends on the object files main.o,
fade.o, and model.o. The make utility next checks to see if any of these
object files is designated as a target file. If this is the case, make further checks
the main.o object file’s dependency and finds that it depends on main.c.
Again, make proceeds to check whether main.c is listed as a target. If not,
the command under the main.o target is executed if any change is made to
main.c. In the command line “cc -c main.c,”5 main.c is simply compiled

5The UNIX command “cc -c file.c” compiles the file “file.c” and creates an object file
“file.o,” while the command “cc -o file.o” links the object file “file.o” and create an
executable file “file.”

2.7 Including C++ Modules into NS2 and the make Utility 37

to obtain the main.o object. Next, make proceeds in a similar manner with
the fade.o and model.o targets. Once any of these object files is updated,
make returns to the channel target and executes its command, which merely
compiles all of its dependent objects. Finally, we note a special target known
as a phony target which is not really the name of any file in the dependency
hierarchy. This target is “clean” and usually performs a housekeeping function
such as cleaning up all the object files no longer needed after the compilation and
linking. �

In Example 2.1, we notice several occurrences of certain sequences such as
main.o fade.o model.o. To avoid a repetitive typing, which may introduce
typos or omissions, a macro can be defined to represent such a long sequence. For
example, we may define a macro to represent main.o fade.o model.o as
follows:

OBJS = main.o fade.o model.o

After defining the macro, we refer to “main.o fade.o model.o” by either
parentheses or curly brackets and precede that with a dollar sign (e.g., $(OBJS)
or $OBJS). With this macro, Example 2.1 becomes a bit more handy as shown in
Example 2.2.

Example 2.2 (Example of Makefile with Macros.). The Example 2.1 can be modi-
fied by defining macros as follows:

makefile of channel
OBJS = main.o fade.o model.o
COM = cc
channel : ${OBJS}

${COM} -o channel ${OBJS}

main.o : main.c
${COM} -c main.c

fade.o : fade.c
${COM} -c fade.c

model.o : model.c model.h
${COM} -c model.c

clean :
rm ${OBJS}

where $fCOMg and $fOBJSg are used in the place of “cc” and “main.o fade.o
model.o,” respectively. �

38 2 Introduction to Network Simulator 2

2.7.3 NS2 Descriptor File

The NS2 descriptor file is defined in the file “Makefile” located in the home
directory of NS2. It contains details needed to recompile and relink NS2. The key
relevant details are those beginning with the following keywords.

• INCLUDES = : The items behind this keyword are the directory which should
be included into the NS2 environment.

• OBJ_CC = and OBJ_STL = : The items behind these two keywords constitute
the entire NS2 object files. When a new CCC module is developed, its
corresponding object file name with “.o” extension should be added here.

• NS_TCL_LIB = : The items that bind these keywords are the Tcl file of NS2.
Again, when a new OTcl module is developed, its corresponding Tcl file name
should be added here.

Suppose a module consisting of CCC files “myc.cc” and “myc.h” and a
Tcl file “mytcl.tcl.” Suppose further that these files are created in a directory
myfiles under the NS2 home directory. Then this module can be incorporated
into NS2 using the following steps:

1. Include a string “-I./myfiles” into the Line beginning with INCLUDES =
in the “Makefile.”

2. Include a string “myfile/myc.o” into the Line beginning with OBJ_CC =
or OBJ_STL = in the “Makefile.”

3. Include a string “myfile/mytcl.tcl” into the Line beginning with
NS_TCL_LIB = in the “Makefile.”

4. Run “make” from the shell.

After running “make,” an executable file “ns” is created. We can now use this
file “ns” to run simulation.

2.8 Chapter Summary

This chapter introduces Network Simulator (Version 2), NS2. In particular, infor-
mation on the installation of NS2 in both Unix and Windows-based systems is
provided. The basic architecture of NS2 is described. These materials are essential
for understanding NS2 as a whole and would help to get one started working with
NS2.

NS2 consists of OTcl and CCC. The CCC objects are mapped to OTcl handles
using TclCl. To run a simulation, a user needs to define a network scenario in a
Tcl Simulation script and feeds this script as an input to an executable file “ns.”
During the simulation, the packet flow information can be collected through text-
based tracing or NAM tracing. After the simulation, an AWK program or a perl
program can be used to analyze a text-based trace file. The NAM program, on the
other hand, uses a NAM trace file to replay the network simulation using animation.

2.9 Exercises 39

Simulation using NS2 consists of three main steps. First, the simulation design is
probably the most important step. Here, we need to clearly specify the objectives
and assumptions of the simulation. Second, configuring and running simulation
implement the concept designed in the first step. This step also includes configuring
the simulation scenario and running simulation. The final step in a simulation is to
collect the simulation result and trace the simulation if necessary.

Written mainly in CCC, NS2 uses a “make” utility to compile the source
code, to link the created object files, and create an executable file “ns.” It follows
the instruction specified in the default descriptor file “Makefile.” The “make”
utility provides a simple way to incorporate a newly developed modules into NS2.
After developing a CCC source code, we simply add an object file name into the
dependency and rerun “make.”

2.9 Exercises

1. Download and install NS2. Hint: When using Windows, install Cygwin first.
2. What are upstream objects, downstream objects, and targets? Draw a diagram to

support your explanation.
3. Write a Tcl simulation script which prints the input arguments on screen. Format

the output such that each line contains only one input argument. Run NS2 to test
your program. Hint: See Tcl Tutorial in Appendix A.

4. What are the key steps in NS2 simulation? Compare your answer with general
simulation steps discussed in Chap. 1.

5. Write a Tcl simulation script for the following network diagram in Fig. 2.6. Run
NS2 to test your program.

N0

Addr.Port = 3.1

Addr.Port = 3.0

N1

N2 N3

TCP0

TCP1

Sink0

Sink1

FTP0

FTP1

1.5 Mbps

0.5 Mbps

5 Mbps

Addr.Port = 1.0

Addr.Port = 0.0

Fig. 2.6 Example network diagram

40 2 Introduction to Network Simulator 2

6. Design CCC and OTcl classes (e.g., Class MyTCP). Derive this class from the
TCP Reno classes shown in Table 2.2. Use the convention defined above to name
your class names, variables/instvars, and functions/instprocs in both the domains.

7. Write a program “hello,” which prints “Hello NS2 Users!” on the
screen

a. Using C language,
b. Using CCC. Define at least one class,
c. Using a make utility to create an executable file. Make changes in your CCC

and/or header files. Run the make utility. Does the utility re-compile and
recreate an executable file for your program?

8. Suppose you have developed a new NS2 module. Your module include CCC
files, header files, and Tcl files. Where would you store these file? How would
you include this new NS2 module into NS2? Demonstrate your answer with an
example.

Chapter 3
Linkage Between OTcl and CCC in NS2

NS2 is an object-oriented simulator written in OTcl and CCC languages.1 While
OTcl acts as the frontend (i.e., user interface), CCC acts as the backend running the
actual simulation (Fig. 2.1). From Fig. 3.1 class hierarchies of both languages can
be either standalone or linked together using an OTcl/CCC interface called TclCL
[17]. The OTcl and CCC classes which are linked together are referred to as the
interpreted hierarchy and the compiled hierarchy, respectively.

Object construction in NS2 proceeds as follows. A programmer creates an object
from an OTcl class in the interpreted hierarchy. Then, NS2 (or more precisely
TclCL) automatically creates a so-called shadow object from a CCC class in the
compiled hierarchy. It is important to note that no shadow object would be created
when a programmer creates an object from a class in both compiled and standalone
OTcl hierarchies.

Written in CCC, TclCL consists of the following six main classes. First, class
TclClass maps class names in the compiled hierarchy to class names in the
interpreted hierarchy. Second, class InstVar binds member variables in both
the hierarchies together. Third, class TclCommand allows the Tcl interpreter to
execute non-OOP C++ statements. Fourth, class TclObject is the base class for
all CCC simulation objects in the compiled hierarchy. Fifth, class Tcl provides
methods to access the interpreted hierarchy from the compiled hierarchy. Finally,
class EmbeddedTcl translates OTcl scripts into CCC codes. The details of the
above classes are located in files ˜tclcl/tclcl.h, ˜tclcl/Tcl.cc, and ˜tclcl/tclAppInit.cc.

This chapter focuses on using TclCL in the following meaningful ways:

• Section 3.1 presents the motivation of having two languages in NS2.
• Section 3.2 explains class binding which maps CCC class names to OTcl class

names.

1Refer to [16] for the C++ programming language.

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 3, © Springer Science+Business Media, LLC 2012

41

42 3 Linkage Between OTcl and CCC in NS2

Fig. 3.1 Two language structure of NS2 [14]. Class hierarchies in both the languages may be
standalone or linked together. OTcl and CCC class hierarchies which are linked together are
called the interpreted hierarchy and the compiled hierarchy, respectively

• Section 3.3 discusses how NS2 binds a pair of member variables of two bound
classes so that a change in one variable will be automatically reflected in the
other.

• Section 3.4 shows a method to execute CCC statements from the OTcl domain.
• Section 3.5 walks through the shadow object construction process.
• Section 3.6 discusses various functionalities to access the Tcl interpreter from the

CCC domain: Tcl statement execution, result passing between both the domains,
and the TclObject reference retrieval.

• Section 3.7 briefly outlines how the OTcl codes are translated into the CCC
code.

3.1 The Two-Language Concept in NS2

3.1.1 The Natures of OTcl and CCC Programming Languages

Why two languages? Loosely speaking, NS2 uses OTcl to create and configure a
network (i.e., user frontend), and CCC to run simulation (i.e., internal mechanism).
All CCC codes need to be compiled and linked to create an executable file.
Since the body of NS2 is fairly large, the compilation time is not negligible.
A typical Macbook Pro computer requires few seconds (long enough to annoy most
programmers) to compile and link the codes with a small change such as including
a CCC statement “int i=0;” into the program. OTcl, on the other hand, is an
interpreted programming language, not a compiled one. Any change in a OTcl file
can be executed without compilation. Since OTcl does not convert the codes into
machine language, each line needs more execution time.2

2Although OTcl is an interpreted programming language, NS2 translates most of its OTcl codes
into CCC using class EmbeddedTcl (see Sect. 3.7) to speed up the simulation. As a result, most
change in OTcl also requires compilation.

3.1 The Two-Language Concept in NS2 43

...
Overall packet delivery delay

packet
Link delay

Fig. 3.2 A chain topology for network simulation

In summary, CCC is fast to run but slow to change. It is suitable for running
a large simulation. OTcl, on the other hand, is slow to run but fast to change.
It is suitable as a parameter configurator. NS2 is constructed by combining the
advantages of these two languages.

3.1.2 CCC Programming Styles and Its Application in NS2

The motivation can be better understood by considering three following CCC
programming styles.

3.1.2.1 Basic CCC Programming

This is the simplest form and involves basic CCC instructions only. This style has
a flexibility problem, since any change in system parameters requires a compilation
(which takes non-negligible time) of the entire program.

Example 3.1. Consider the network topology in Fig. 3.2. Define overall packet
delivery delay as the time needed to carry a packet from the leftmost node to the
rightmost node, where delay in link “i” is “d_i” and total number of nodes is
“num_nodes.” We would like to measure the overall packet delivery delay and
show the result on the screen.

Suppose that every link has the same delay of 1 s (i.e., “d_i = 1” second for all
“i”), and the number of nodes is 11 (num_nodes = 11). Program 3.1 shows a
CCC program written in this style (the filename is “sim.cc”). Since the link delay
is fixed, we simply increase “delay” for num_nodes-1 times (Lines 4 and 5).
After compiling and linking the file sim.cc, we obtain an executable file “sim.”
By executing “./sim” at the command prompt, we will see the following result on
the screen:

>>./sim
Overall Packet Delay is 10.0 seconds.

Despite its simplicity, this programming style has a flexibility problem. Suppose
link delay and the number of nodes are changed to 2 s and 5 nodes, respectively.

44 3 Linkage Between OTcl and CCC in NS2

Program 3.1 A basic CCC program that simulates Example 3.1, where the delay
for each of the links is 1 unit and the number of nodes is 11

//sim.cc
1 main(){
2 float delay = 0, d_i = 1;
3 int i, num_nodes = 11;
4 for(i = 1; i < num_nodes; i++)
5 delay += d_i;
6 printf("Overall Packet Delay is %2.1f seconds.\n",

delay);
7 }

Then, we need to modify, compile, and link the file sim.cc to create a new
executable file “sim.” After that, we can run “./sim” to generate another result
(for d_i = 2 and num_nodes = 5). �

3.1.2.2 CCC Programming with Input Arguments

Addressing the flexibility problem, this programming style takes the system param-
eters (i.e., argv,argc) as input arguments [16]. As the system parameters change,
we can simply change the input arguments, and do not need to recompile the entire
program.

Example 3.2. Consider Example 3.1. We can avoid the above need for recompila-
tion and relinking by feeding system parameters as input arguments of the program.
Program 3.2 shows a program that feeds link delay and the number of nodes as the
first and the second arguments, respectively. Line 1 specifies that the program takes
input arguments. The variable argc is the number of input arguments. The variable
argv is an argument vector that contains all input arguments provided by the caller
(See the details on CCC programming with input arguments in [16]).

With this style, we only need to compile and link the program once. After
obtaining an executable file “sim,” we can change the simulation parameters as
desired. For example,

>> ./sim 1 11
Overall Packet Delay is 10.0 seconds.
>> ./sim 2 5
Overall Packet Delay is 8.0 seconds.

Although this programming style solves the flexibility problem, it becomes
increasingly inconvenient when the number of input arguments increases. For
example, if delays in all the links in Example 3.1 are different, we will have to
type in all the values of link delay every time we run the program. �

3.1 The Two-Language Concept in NS2 45

Program 3.2 A CCC program with input arguments: A CCC program which
simulate Example 3.2. The first and second arguments are link delay and the number
of nodes, respectively

//sim.cc
1 int main(int argc, char* argv[]) {
2 float delay = 0, d_i = atof(argv[0]);
3 int i, num_nodes = atoi(argv[1]);
4 for(i = 1; i < num_nodes; i++)
5 delay += d_i;
6 printf("Overall Packet Delay is %2.1f seconds\n",

delay);
7 }

3.1.2.3 CCC Programming with Configuration Files

This last programming style puts all system parameters in a configuration file,
and the CCC program reads the system parameters from the configuration files.
This style does not have the flexibility problem, and it facilitates program invo-
cation. To change system parameters, we can simply change the content of the
configuration file. In fact, this is the style from which NS2 develops.

Example 3.3. Program 3.3 applies the last C++ programming style (i.e., with con-
figuration files). The program takes only one input argument: The configuration file
name (See CCC file input/output in [16]). Function readArgFromFile(fp,d)
reads the configuration file associated with a file pointer “fp,” and sets variables
“num_node” and “d” accordingly (the details are not shown here). In this case,
the configuration file (config.txt) is shown in Lines 10 and 11. When invoking
“./sim config.txt,” the screen will show the following result:

>>./sim config.txt
Overall Packet Delay is 55.0 seconds.

To change the system parameters, we can simply modify the file “config.txt”
and run “./sim.” Clearly, this programming style removes the necessity for
compiling the entire program and the lengthy invocation process. �

Recall from Sect. 2.5 that we write and feed a Tcl simulation script as an input ar-
gument to NS2 when running a simulation (e.g., executing “ns
myfirst_ns.tcl”). Here, “ns” is a CCC executable file obtained from the
compilation, while “myfirst_ns.tcl” is an input configuration file specifying
system parameters and configuration such as nodes, link, and how they are
connected. Analogous to reading a configuration file through CCC, NS2 reads the
system configuration from the Tcl simulation script. When we would like to change
the parameters in the simulation, all we have to do is to modify the Tcl simulation
script and rerun the simulation.

46 3 Linkage Between OTcl and CCC in NS2

Program 3.3 CCC programming style with configuration files: A CCC program in
file sim.cc (Lines 1–9) and a configuration file config.txt (Lines 10 and 11)

//sim.cc
1 int main(int argc, char* argv[]) {
2 float delay = 0, d[10];
3 FILE* fp = fopen(argv[1],"w");
4 int i, num_nodes = readArgFromFile(fp,d);
5 for(i = 1; i < num_nodes; i++)
6 delay += d[i-1];
7 printf("Overall Packet Delay is %2.1f seconds\n",

delay);
8 fclose(fp);
9 }

//config.txt
10 Number of node = 11
11 Link delay = 1 2 3 4 5 6 7 8 9 10

3.2 Class Binding

Class binding maps CCC classes to OTcl classes. When a programmer creates
an object from the interpreted hierarchy, NS2 determines the compiled class from
which a shadow object should be instantiated by looking up the class binding
map. As an example, an OTcl class Agent/Tcp is bound to the CCC class
TcpAgent. A programmer can create an Agent/TCP object using the following
OTcl statement

new Agent/TCP

In response, NS2 automatically creates a compiled shadow TcpAgent object.

3.2.1 Class Binding Process

A class binding process involves four following components:

• A CCC class (e.g., class TcpAgent)
• An OTcl class (e.g., class Agent/TCP)
• A mapping class (e.g., class TcpClass): A CCC class which maps a CCC

class to an OTcl class
• A mapping variable (e.g., class_tcp): A static variable instantiated from the

above mapping class to perform class binding functionalities.

Class binding is carried out by defining the mapping class as a part of the CCC
file. Program 3.4 shows a mapping class TcpClass that binds the OTcl class
Agent/TCP to the CCC class TcpAgent.

3.2 Class Binding 47

Program 3.4 Class TcpClass which binds the OTcl Agent/TCP to the CCC
class TcpAgent

//˜ns/tcp/tcp.cc
1 static class TcpClass : public TclClass {
2 public:
3 TcpClass() : TclClass("Agent/TCP") {}
4 TclObject* create(int , const char*const*) {
5 return (new TcpAgent());
6 }
7 } class_tcp;

Every mapping class derives from the CCC class TclClass where all the
binding functionalities are defined. Each mapping class contains only two functions:
The constructor and function create(...). In Line 3, the constructor feeds
the OTcl class name Agent/TCP as an input argument to the constructor of its
base class (i.e., TclClass).3 In Lines 4–6, the function create(...) creates a
shadow compiled object whose class is TcpAgent. This function is automatically
executed when a programmer creates an Agent/TCP object from the interpreted
hierarchy. We shall discuss the details of the shadow object construction process
later in Sect. 3.5.

Note that a CCC class by itself cannot perform any operation. To bind classes,
we need to instantiate a mapping object from the mapping class. In Line 7, such an
object is the variable class_tcp. Since every class binding is unique, the mapping
variable class_tcp is declared as static to avoid class binding duplication.

3.2.2 Defining Your Own Class Binding

The following steps bind an OTcl class to a CCC class:

1. Specify an OTcl class (e.g., Agent/TCP) and a CCC class (e.g., TcpAgent)
which shall be bound together.

2. Derive a mapping class (e.g., TcpClass) from class TclClass.
3. Define the constructor of the mapping class (e.g., Line 3 in Program 3.4). Feed

the OTcl class name (e.g., Agent/TCP) as an input argument to the constructor
of the class TclClass (i.e., the base class).

4. Define function create(...) to construct a shadow compiled object. Invoke
“new” to create a shadow compiled object and return the created object to the
caller (e.g., return (new TcpAgent()) in Line 5 of Program 3.4).

5. Declare a static mapping variable (e.g., class_tcp).

3A CCC operator “:” indicates what to be done before the execution of what is enclosed within
the following curly braces [16].

48 3 Linkage Between OTcl and CCC in NS2

Table 3.1 Examples of naming convention for mapping classes and variables

CCC class OTcl class Mapping class Mapping variable

TcpAgent Agent/TCP TcpClass class_tcp
RenoTcpAgent Agent/TCP/Reno RenoTcpClass class_reno
DropTail Queue/DropTail DropTailClass class_drop_tail

3.2.3 Naming Convention for Class TclClass

The convention to name mapping classes and mapping variables are as follows.
First, every class derives directly from class TclClass, irrespective of its class
hierarchy. For example, class RenoTcpAgent derives from class TcpAgent.
However, their mapping classes RenoTcpClass and TcpClass derive from
class TclClass.

Second, the naming convention is very similar to the CCC variable naming
convention. In most cases, we simply name the mapping class by attaching the
word “Class” to the CCC class name. Mapping variables are named with the
prefix “class_” attached to the front. Table 3.1 shows few examples of the naming
convention.

3.3 Variable Binding

Class binding, discussed in the previous section, creates connections between OTcl
and CCC class names. By default, the bound classes have their own variables which
are not related in any way. Variable binding is a tool that allows programmers to bind
one variable in the CCC class to another variable in the bound OTcl class such that
a change in one variable will be automatically reflected in the other.

3.3.1 Variable Binding Methodology

An OTcl variable, iname, can be bound to a CCC variable, cname, by including
one of the following statements in the CCC class constructor:

• bind("iname",&cname) binds integer and real variables.4

• bind_bw("iname",&cname) binds a bandwidth variable.
• bind_time("iname",&cname) bind a time variable.
• bind_bool("iname",&cname) bind a boolean variable.

4In Sect. 3.3.3, we shall discuss the five following data types in NS2: Integer, real, bandwidth, time,
and boolean.

3.3 Variable Binding 49

Example 3.4. Let a CCC class MyObject be bound to an OTcl class MyOTcl
Object. Let icount_, idelay_, ispeed_, idown_time_, iis_active_
be OTcl class variables whose types are integer, real, bandwidth, time, and boolean,
respectively. The following CCC program binds the above variables:

class MyObject {
public:
int count_;
double delay_,down_time_,speed_;
bool is_active_;
MyObject() {

bind("icount_",&count_);
bind("idelay_",&delay_);
bind_bw("ispeed_",&speed_);
bind_time("idown_time_",&down_time_);
bind_bool("iis_active_",&is_active_);

};
};

�

3.3.2 Setting the Default Values

NS2 sets the default values of bound OTcl class variables in the file ˜ns/tcl/lib/ns-
default.tcl. The syntax for setting a default value is similar to the value assignment
syntax. That is,

<className> set <instvar> <def_value>

which sets the default value of the instvar <instvar> of class <className> to
be <def_value>. As an example, a part of file ˜ns/tcl/lib/ns-default.tcl is shown
in Program 3.5.

In regards to default values, there are two important notes here. First, if no default
value is provided for a bound variable, the instproc warn-instvar f...g of
class SplitObject will show the following a warning message on the screen:

warning: no class variable <C++ class name>::<OTcl
variable name> see tcl-object.tcl in tclcl for
info about this warning.

The second note is that the default value setting in the OTcl domain takes
precedence over that in the CCC domain. In CCC, the default values are usually
set in the constructor. But the values would be overwritten by those specified in the
file ˜ns/tcl/lib/ns-default.tcl.

50 3 Linkage Between OTcl and CCC in NS2

Program 3.5 Examples for default value assignment
//˜ns/tcl/lib/ns-default.tcl

1 ErrorModel set enable_ 1
2 ErrorModel set markecn_ false
3 ErrorModel set delay_pkt_ false
4 ErrorModel set delay_ 0
5 ErrorModel set rate_ 0
6 ErrorModel set bandwidth_ 2Mb
7 ErrorModel set debug_ false

...
8 Classifier set offset_ 0
9 Classifier set shift_ 0
10 Classifier set mask_ 0xffffffff
11 Classifier set debug_ false

3.3.3 NS2 Data Types

NS2 defines the following five data types in the OTcl domain: real, integer,
bandwidth, time, and boolean.

3.3.3.1 Real and Integer Variables

These two NS2 data types are specified as double-valued and int-valued,
respectively, in the C++ domain. In the OTcl domain, we can use “e<x>” as
“�10<x>”, where <x> denotes the value stored in the variable x.

Example 3.5. Let realvar and intvar be a real instvar and an integer instvar,
respectively, of an OTcl object “obj”. The following shows various ways to set5

realvar and intvar to be 1200:

$obj set realvar 1.2e3
$obj set realvar 1200
$obj set intvar 1200

�

3.3.3.2 Bandwidth

Bandwidth is specified as double-valued in the C++ domain. By default, the unit
of bandwidth is bits per second (bps). In the OTcl domain we can add the following
suffixes to facilitate bandwidth setting.

5See the OTcl value assignment in Appendix A.2.4.

3.3 Variable Binding 51

• “k” or “K” means kilo or �103,
• “m” or “M” means mega or �106, and
• “B” changes the unit from bits to bytes.

NS2 only considers leading character of valid suffixes. Therefore, the suffixes
“M” and “Mbps” are the same to NS2.

Example 3.6. Let bwvar be a bandwidth instvar of an OTcl object “obj.” The
different ways to set bwvar to be 8 Mbps (megabits per second) are as follows:

$obj set bwvar 8000000
$obj set bwvar 8m
$obj set bwvar 8Mbps
$obj set bwvar 8000k
$obj set bwvar 1MB �

3.3.3.3 Time

Time is specified as double-valued in the C++ domain. By default, the unit of time
is second. Optionally, we can add the following suffixes to change the unit.

• “m” means milli or �10�3,
• “n” means nano or �10�9, and
• “p” means pico or �10�12.

NS2 only reads the leading character of valid suffixes. Therefore, the suffixes “p”
and “ps” are the same to NS2.

Example 3.7. Let timevar also be a time instvar of an OTcl object “obj.” The
different ways to set timevar to 2 ms are as follows:

$obj set timevar 2m
$obj set timevar 2e-3
$obj set timevar 2e6n
$obj set timevar 2e9ps �

3.3.3.4 Boolean

Boolean is specified as either true (or a positive number) or false (or a zero) in
the C++ domain. A boolean variable will be true if the first letter of the value is
greater than 0, or “t,” or “T.” Otherwise, the variable will be false.

Example 3.8. Let boolvar be a boolean instvar of an OTcl object “obj.” The
different ways to set boolvar to be true and false are as follows:

set boolvar to be TRUE
$obj set boolvar 1

52 3 Linkage Between OTcl and CCC in NS2

$obj set boolvar T
$obj set boolvar true
$obj set boolvar tasty
$obj set boolvar 20
$obj set boolvar 3.37
$obj set boolvar 4xxx

set boolvar to be FALSE
$obj set boolvar 0
$obj set boolvar f
$obj set boolvar false
$obj set boolvar something
$obj set boolvar 0.9
$obj set boolvar -5.29 �

Again, NS2 ignores all letters except for the first one. As can be seen from
Example 3.8, there are several strange ways for setting a boolean variable (e.g.,
tasty, something, -5.29).

Example 3.9. The following program segment shows how NS2 performs value
assignment to instvars debug_ and rate_ of class ErrorModel.

Create a Simulator instance
set ns [new Simulator]

Create an error model object
set err [new ErrorModel]

Set values for class variables
$err set debug_ something
$err set rate_ 12e3

Show the results
puts "debug_(bool) is [$err set debug_]"
puts "rate_(double) is [$err set rate_]"

The results of execution of the above program are as follows:

>>debug_(bool) is 0
>>rate_(double) is 12000

�
During the conversion, the parameter suffixes are converted (e.g., “M” is con-

verted by multiplying 106 to the value). For boolean data type, NS2 retrieves the
first character in the string and throws away all other characters. If the retrieved
character is a positive integer, “t,” or “T,” NS2 will assign a true value to the
bound C++ variable. Otherwise, the variable will be set to false.

3.4 Execution of CCC Statements from the OTcl Domain 53

Table 3.2 NS2 data types,
CCC mapping classes, and
the corresponding CCC
data types

NS2 data type CCC mapping class CCC data type

Integer InstVarInt int
Real InstVarReal double
Bandwidth InstVarBandwidth double
Time InstVarTime double
Boolean InstVarBool bool

3.3.4 Class Instvar

Class Instvar is a CCC class which binds member variables of OTcl and CCC
classes together. It has five derived classes, each for one of the NS2 data types
defined in Sect. 3.3.3. These five classes and their mapping class are shown in
Table 3.2.

3.4 Execution of CCC Statements from the OTcl Domain

This section focuses on “method binding,” which makes an OTcl commands
available in the CCC domain. There are two types of method binding: OOP binding
and non-OOP binding. The OOP binding, binds the method using the CCC function
command(...) associated with a CCC class. In this case, the command string
is called an “OTcl command.” For non-OOP binding, the string – called “Tcl
command” – is not bound to any class, and can be executed globally. It is not
advisable to extensively use Tcl commands, since they violate the OOP principle.

3.4.1 OTcl Commands in a Nutshell

3.4.1.1 OTcl Command Invocation

The invocation of an OTcl command is similar to that of an instproc:

$obj <cmd_name> [<args>]

where $obj is a TclObject, <cmd_name> is the OTcl command string associated
with $obj, and <args> is an optional list of input arguments.

54 3 Linkage Between OTcl and CCC in NS2

Program 3.6 Function command of class TcpAgent
//˜ns/tcp/tcp.cc

1 int TcpAgent::command(int argc, const char*const* argv)
2 {
3 ...
4 if (argc == 3) {
5 if (strcmp(argv[1], "eventtrace") == 0) {
6 et_ = (EventTrace *)TclObject::lookup(argv[2]);
7 return (TCL_OK);
8 }
9 ...
10 }
11 ...
12 return (Agent::command(argc, argv));
13 }

3.4.1.2 CCC Definition of OTcl Commands

OTcl commands are defined in the function command(argc,argv) of CCC
classes in the compiled hierarchy. This function takes two input parameters: “argc”
and “argv,” which are the number of input parameters and an array containing the
input parameters, respectively.

Example 3.10. Consider an OTcl command eventtracefetg associated with an
OTcl class Agent/TCP, where “et” is an event tracing object. Program 3.6 shows
the details of this OTcl command. Suppose $tcp and $obj are an Agent/TCP
object and an event tracing object, respectively. The execution of OTcl command
eventtrace is as follows:

$tcp eventtrace $obj

The OTcl command eventtrace and the event tracing object $obj are stored
in argv[1] and argv[2], respectively.6 Line 5 returns true, and Line 6 stores
the input parameter argv[2] in the class variable et_. �

3.4.1.3 Creating Your Own OTcl Commands

Here are the main steps in defining an OTcl command:

1. Pick a name, the number of input arguments, and the OTcl class for an OTcl
command.

6As we shall see, argv[0] always contains the string “cmd.”

3.4 Execution of CCC Statements from the OTcl Domain 55

2. Define a CCC function command(argc,argv) for the shadow CCC class
in the compiled hierarchy.

3. Within the function command(...), create two conditions which compare the
number of input of arguments with argc and the name of the OTcl command
with argv[1]. Specify the desired CCC statements, if both the conditions
match. Return TCL_OK after the CCC statement execution.

4. Specify the default return statement in the case that no criterion matches with the
input OTcl command. For example, Line 12 in Program 3.6 executes the function
command(...) attributed to the base class Agent, and returns the execution
result to the caller.

3.4.2 The Internal Mechanism of OTcl Commands

3.4.2.1 OTcl Command Invocation Mechanism

As discussed in Sect. 3.4.1, the syntax for the OTcl command invocation is similar to
that of instproc invocation. Therefore, the internal process is similar to the instproc
invocation mechanism discussed in Appendix A.2.4.

The process begins by executing the following OTcl statement:

$obj <cmd_name> [<args>]

If the class corresponding to $obj contains, either the instproc <cmd_name> or
the instproc “unknown”, it will execute the instproc. Otherwise, the process would
move to the base class and repeat itself. In case of OTcl commands, the top-level
class is class SplitObject. The function unknown of class SplitObject
is specified in Program 3.7. The key statement in this instproc is “$self cmd
$args” in Line 2, which according to the above OTcl command syntax can be
written as follows:

$obj cmd <cmd_name> <args>

Program 3.7 Instproc unknown of class SplitObject
//˜tcl/tcl-object.tcl

1 SplitObject instproc unknown args {
2 if [catch "$self cmd $args" ret] {
3 set cls [$self info class]
4 global errorInfo
5 set savedInfo $errorInfo
6 error "error when calling class $cls: $args" $

savedInfo
7 }
8 return $ret
9 }

56 3 Linkage Between OTcl and CCC in NS2

Table 3.3 Description of
elements of array “argv” of
function command

Index (i) Element (argv[i])

0 cmd
1 The command name (<cmd_name>)
2 The first input argument in <args>
3 The second input argument in <args>
:
:
:

:
:
:

The string “cmd” is the gateway to the CCC domain. Here, the string “cmd
$args” (i.e., “cmd <cmd_name> [<args>]”) is passed as an input argument
vector (argv) to the function “command(argc,argv)” of the shadow class
(eg., TcpAgent) as specified in Table 3.3.7

Next, the function command(argc,argv) compares the number of argu-
ments and the OTcl command name with argc and argv[1], respectively. If both
match, it takes the desired actions and returns TCL_OK (e.g., see Program 3.6).

3.4.2.2 OTcl Default Returning Structure

Owing to its OOP nature, NS2 allows OTcl commands to propagate up the hierarchy.
That is, an OTcl command of a certain OTcl class can be specified in the function
command(...) of the shadow class or in the function command() of any of its
parent classes. If the input OTcl command (i.e., argv[1]) does not match with the
string specified in the shadow class, function command(...) will skip to execute
the default returning statement in the last line (e.g., Line 12 in Program 3.6).

The default returning statement first passes the same set of input arguments (i.e.,
(argc,argv)) to the function command(...) of the base class. Therefore,
the same process of comparing the OTcl command and C++ statement execution
will repeat in the base class. If the OTcl command does not match, the default
returning process will be carried out recursively, until the top-level compiled class
(i.e., class TclObject) is reached. Here, the function command(...) of class
TclObject will report an error (e.g., no such method, requires additional args)
and return TCL_ERROR (see file ˜tclcl/Tcl.cc).

3.4.2.3 Interpretation of the Returned Values

In file nsallinone-2.35/tcl8.5.8/generic/tcl.h, NS2 defines five
following return values (as 0–5 in Program 3.8), which inform the interpreter of
the OTcl command invocation result.

7Here, the argc is the number of nonempty element in argv.

3.4 Execution of CCC Statements from the OTcl Domain 57

Program 3.8 Return values in NS2
//nsallinone-2.35/tcl8.5.8/generic/tcl.h

1 #define TCL_OK 0
2 #define TCL_ERROR 1
3 #define TCL_RETURN 2
4 #define TCL_BREAK 3
5 #define TCL_CONTINUE 4

• TCL_OK: The command completes successfully.
• TCL_ERROR: The command does not complete successfully. The interpreter will

explain the reason for the error.
• TCL_RETURN: After returning from CCC, the interpreter will exit (or return

from) the current instproc without performing the rest of instproc.
• TCL_BREAK: After returning from CCC, the interpreter will break the current

loop. This is similar to executing the CCC keyword break, but the results
prevail to the OTcl domain.

• TCL_CONTINUE: After returning from CCC, the interpreter will immediately
restart the loop. This is similar to executing the CCC keyword continue, but
the results prevail to the OTcl domain.

Among these five types, TCL_OK and TCL_ERROR are the most common ones.
If CCC returns TCL_OK, the interpreter may read the value passed from the CCC
domain (see Sect. 3.6.3).

If an OTcl command returns TCL_ERROR, on the other hand, the interpreter will
invoke procedure tkerror (defined in file ˜tclcl/tcl-object.tcl), which
shows an error on the screen, and exits the program.

Example 3.11. Consider invocation of an OTcl command associated with an
Agent/TCP object, $tcp. The process proceeds as follows (see also Fig. 3.3):

1. Execute an OTcl statement “$tcp <cmd_name> <args>” (position (1)
in Fig. 3.3).

2. Look for an instproc <cmd_name> in the OTcl class Agent/TCP. If found,
execute the instproc and complete the process. Otherwise, proceed to the next
step.

3. Look for an instproc unknownf...g in the OTcl class Agent/TCP. If found,
execute the instproc unknownf...g and complete the process. Otherwise,
proceed to the next step.

4. Repeat steps (2) and (3) up the hierarchy until reaching the top level class in the
interpreted hierarchy (i.e., SplitObject).

5. The main statement of the instproc unknownf...g of class SpiltObject
in Program 3.7 is “$self cmd $args” in Line 2, which interpolates to

$tcp cmd <cmd_name> [<cmd_args>]

58 3 Linkage Between OTcl and CCC in NS2

Fig. 3.3 The internal process of OTcl command invocation

6. Execute the function command(argc,argv) of class TcpAgent, where
argv[0] and argv[1] are cmd and <cmd_name>, respectively.

7. Look for the matching number of arguments and OTcl command name.
If found, execute the desired actions (e.g., Lines 6 and 7 in Program 3.6) and
return TCL_OK.

3.4 Execution of CCC Statements from the OTcl Domain 59

8. If no criterion matches with (argc, argv), skip to the default returning
statement (e.g., Line 12 in Program 3.6), moving up the hierarchy and executing
the function command(...).

9. Repeat steps (6)–(8) up the compiled hierarchy until the criterion is matched.
Regardless of (argc,argv), the top-level class TclObject in the compiled
hierarchy set the return value to be Tcl-Error, indicating that no criteria
along the entire hierarchical tree matches with (argc,argv).

10. Return down the compiled hierarchy. When reaching CCC class TcpAgent,
return to the OTcl domain with a return value (e.g., TCL_OK or TCL_ERROR).
Move down the interpreted hierarchy and carry the returned value to the
caller. �

3.4.3 An Alternative for OTcl Command Invocation

In general, we invoke an OTcl command by executing

$obj <cmd_name> <args>

which starts from position (1) in Fig. 3.3. Alternatively, we can also invoke a the
command using the following syntax:

$obj cmd <cmd_name> <args>

which starts from position (2) in Fig. 3.3. This method explicitly tells NS2 that
<cmd_name> is an OTcl command, not an instproc. This helps avoid the ambiguity
when OTcl defines an instproc whose name is the same as an OTcl command name.

3.4.4 Non-OOP Tcl Command

Non-OOP Tcl commands are very similar to OOP Tcl command (i.e.) OTcl
commands, discussed in the previous section. However, non-OOP Tcl command,
also known as Tcl commands, are not bound to any class.

3.4.5 Invoking a TclCommand

A TclCommand can be invoked as if it is a global Tcl procedure. Consider
the TclCommands ns-version and ns-random, specified in file ˜ns/common/
misc.cc.

• TclCommand ns-version takes no argument and returns the NS2 version.
• TclCommand ns-random returns a random number uniformly distributed in

Œ0; 231 � 1� when no argument is specified. If an input argument is given, it will
be used to set the seed of the random number generator.

60 3 Linkage Between OTcl and CCC in NS2

Program 3.9 Declaration and function command(...) of class
Random-Command

//˜ns/common/misc.cc
1 class RandomCommand : public TclCommand {
2 public:
3 RandomCommand() : TclCommand("ns-random") { }
4 virtual int command(int argc, const char*const* argv);
5 };

6 int RandomCommand::command(int argc, const char*const* argv)
7 {
8 Tcl& tcl = Tcl::instance();
9 if (argc == 1) {
10 sprintf(tcl.buffer(), "%u", Random::random());
11 tcl.result(tcl.buffer());
12 } else if (argc == 2) {
13 int seed = atoi(argv[1]);
14 if (seed == 0)
15 seed = Random::seed_heuristically();
16 else
17 Random::seed(seed);
18 tcl.resultf("%d", seed);
19 }
20 return (TCL_OK);
21 }

These two TclCommands can be invoked globally. For example,

>>ns-version
2.34
>>ns-random
729236
>>ns-random
1193744747

By executing ns-version, the version (2.34) of NS2 is shown on the screen.
TclCommand ns-random with no argument returns a random number.

3.4.5.1 Creating a TclCommand

A TclCommand creation process consists of declaration and implementation. The
declaration is similar to that of a TclClass. A TclCommand is declared as a derived
class of class TclCommand. The name of a TclCommand is provided as an input
argument of class TclCommand (see Line 3 in Program 3.9).

Similar to that of OTcl commands, the implementation of Tcl commands is de-
fined in function command(argc,argv) as shown in Lines 6–21 of Program 3.9.
Here, we only need to compare the number of input arguments (e.g., Line 9), since
the name of the Tcl command was declared earlier.

3.4 Execution of CCC Statements from the OTcl Domain 61

Program 3.10 Function misc init, which instantiates of TclCommands
//˜ns/common/misc.cc

1 void init_misc(void)
2 {
3 (void)new VersionCommand;
4 (void)new RandomCommand;
5 ...
6 }

In addition to the above declaration and implementation, we need to specify ac-
tive TclCommands in the functioninit_misc() as shown in Program 3.10. Here,
each active TclCommands is instantiated by the CCC statement “(void) new
<TclCommand>.” At the startup time, NS2 invokes the function init_misc
(...) from within the file ˜tclcl/tclAppInit.cc to instantiate all active
TclCommands.

3.4.5.2 Defining Your Own TclCommand

To create a TclCommand, you need to

1. Pick a name, the number of input arguments, and the class name for your
TclCommand.

2. Derive a TclCommand class directly from class TclCommand,
3. Feed the Tcl command name to the constructor of class TclCommand,
4. Provide implementation (i.e., desired actions) in the function command
(...), and

5. Add an object instantiation statement in the function init_misc(...).

Example 3.12. Let the TclCommand print-all-args show all input argu-
ments on the screen. We can implement this TclCommand by including the
following codes to the file ˜ns/common/misc.cc:

class PrintAllArgsCommand : public TclCommand {
public:
PrintAllArgsCommand():TclCommand("print-all-args")
{};
int command(int argc, const char*const* argv);

}

int PrintAllArgsCommand::command(int argc,
const char*const* argv) {

cout << "Input arguments: "
for (int i = 1; i < argc; i++) {

count << argv[i];
}

62 3 Linkage Between OTcl and CCC in NS2

return (TCL_OK);
}

void init_misc(void)
{ ...

(void)new PrintAllArgsCommand;
...

}
�

3.5 Shadow Object Construction Process

NS2 automatically constructs a shadow compiled object when an OTcl object is
created from the interpreted hierarchy. This section demonstrates the shadow object
construction process. The process is defined in the top level classes in both the hier-
archies – namely classes TclObject and SplitObject. However, throughout
this book, we shall refer to the objects instantiated from these two hierarchies as
TclObjects. The term SplitObject shall be used when a clear differentiation for both
the hierarchies is needed.

3.5.1 A Handle of a TclObject

A handle is a reference to an object. As a compiler, CCC directly accesses the
memory space allocated for a certain object (e.g., 0xd6f9c0). A handler in CCC
is a pointer or a reference variable to the object. OTcl, on the other hand, uses a
string (e.g., _o10) as a reference to the object. By convention, the name string of
a SplitObject is of format _<NNN>, where <NNN> is a number uniquely generated
for each SplitObject.

Example 3.13. Let variables c_obj and otcl_obj contains CCC and OTcl
objects, respectively. Table 3.4 shows examples of the reference value of CCC and
OTcl objects.

Table 3.4 Examples of
reference to (or handle of)
TclObjects

Domain Variable name Handle

CCC c_object 0xd6f9c0
OTcl otcl_object _o10

3.5 Shadow Object Construction Process 63

We can see the value of an OTcl object stored in an OTcl variable by running the
following codes:

//test.tcl
set ns [new Simulator]
set tcp [new Agent/TCP]
puts "The value of tcp is $tcp"

which show the following line on the screen:

>>ns test.tcl
The value of tcp is _o10

�

3.5.2 TclObjects Construction Process

In general, an OTcl object can be created and stored in a variable $var using the
following syntax:

<classname> create $var [<args>]

where <classname> (mandatory) and <args> (optional) are the class name and
the list of input arguments for the class constructor, respectively.

This general OTcl object construction approach is not widely used in NS2, since
it does not create shadow objects. NS2 uses the following statement to create an
object from an interpreted hierarchy:

new <classname> <args>

This section focuses on how the global procedure “new” automatically creates
a shadow object. We shall use the OTcl class Agent/TCP, bound to the CCC
class TcpAgent in the CCC compiled hierarchy, as an example to facilitate the
explanation.

The TclObject construction process consists of two main parts:

Part I [OTcl Domain]: SplitObject Construction

The main steps in this part are to execute the following OTcl statements and
instprocs in sequence (see also Fig. 3.4):

I.1. The OTcl statement new <classname> [<args>]
I.2. The OTcl statement $classname create $o $args
I.3. The instproc alloc of the OTcl class <classname>
I.4. The instproc init of the OTcl class <classname>
I.5. The instproc init of the OTcl class SplitObject
I.6. The OTcl statement $self create-shadow $args

64 3 Linkage Between OTcl and CCC in NS2

Fig. 3.4 An example of the shadow object construction process: Main steps in the constructor of
class Agent/TCP

After these steps are complete, the constructed TclObject are returned to the caller.
In most cases, the returned object is stored in a local variable (e.g., $var).

The details of the above six main steps are as follows. Consider Program 3.11 for
the global procedure “newfclassName argsg” (Step I.1). Line 2 retrieves the
reference string for a SplitObject using the instproc getidfg of class
SplitObject. The string is then stored in the variable “$o.” Line 3 creates an
object whose OTcl class is $className and associates the created object with the
string stored in “$o” (Step I.2). Finally, if the object is successfully created, Line 11
returns the reference string “$o” to the caller.8 Otherwise, an error message (Line
9) will be shown on the screen.

As discussed in Sect. A.2.4, the instproc create in Line 3 invokes the inst-
proc allocf...g (Step I.3) to allocate a memory space for an object of class
className, and the instproc initf...g (Step I.4) to initialize the object.

The final two steps are explained through class Agent/TCP. Program 3.12
shows the details of constructors of OTcl classes Agent/TCP and SplitObject.
The instproc nextf...g in Line 2 invokes the instproc with the same name (i.e.,
init in this case) of the parent class. The invocation of instproc init therefore
keeps moving up the hierarchy until it reaches the top-level class SplitObject

8Note that Line 11 returns a reference string stored in $o, not the variable $o.

3.5 Shadow Object Construction Process 65

Program 3.11 Global instance procedures new and delete
//˜tclcl/tcl-object.tcl

1 proc new { className args } {
2 set o [SplitObject getid]
3 if [catch "$className create $o $args" msg] {
4 if [string match "__FAILED_SHADOW_OBJECT_" $msg] {
5 delete $o
6 return ""
7 }
8 global errorInfo
9 error "class $className: constructor failed:

$msg" $errorInfo
10 }
11 return $o
12 }

13 proc delete o {
14 $o delete_tkvar
15 $o destroy
16 }

(see Lines 6–11 in Program 3.12). Here, the instproc create-shadow in Line 8
marks the beginning of the CCC shadow object construction process, which will be
discussed in Part II. After constructing the shadow object, the process returns down
the hierarchy tree, performs the rest of the initialization in instprocs init (e.g., of
class Agent/TCP), and returns the constructed object to the caller.

Program 3.12 The constructor of OTcl classes Agent/TCP and SplitObject
//˜ns/tcl/lib/ns-agent.tcl

1 Agent/TCP instproc init {} {
2 eval $self next
3 set ns [Simulator instance]
4 $ns create-eventtrace Event $self
5 }

//˜tclcl/tcl-object.tcl
6 SplitObject instproc init args {
7 $self next
8 if [catch "$self create-shadow $args"] {
9 error "__FAILED_SHADOW_OBJECT_" ""
10 }
11 }

66 3 Linkage Between OTcl and CCC in NS2

Fig. 3.5 The shadow object creation process: Moving from the OTcl domain to the CCC domain
through the OTcl command create-shadow of class Agent/TCP

Part II [CCC Domain]: Shadow Object Construction

Continuing from Step 6 in Part I, the main steps in this part are to execute the
following CCC statements and functions in sequence (see also Fig. 3.4):

II.1. Step 6 in Part I
II.2. The CCC function create-shadow(...) of class TclClass
II.3. The CCC function create(...) of class TcpClass
II.4. The CCC statement new TcpAgent()
II.5. All related CCC constructors of the class TcpAgent

After all the above steps, the constructed shadow object is returned to the caller in
the OTcl domain.

The details of Part II are as follows. The first step in Part II is to execute
the following OTcl statement from within the instproc init of the OTcl class
SplitObject:

$self create-shadow $args

where $self is an OTcl object whose class is Agent/TCP.
It is here where NS2 moves from the OTcl domain to the CCC domain. From

Fig. 3.5, the OTcl command create-shadow (Step II.1) of class Agent/TCP is
bound to the CCC function create_shadow() of class TclClass

3.6 Access the OTcl Domain from the CCC Domain 67

(Step II.2). From within the function create_shadow(), the statement
“p->create(...)” is executed, where “p” is a pointer to a TcpClass
object (Step II.3). From Lines 4–6 of Program 3.4, the function create(...)
executes the CCC statement new TcpAgent() to create a shadow TcpAgent
object (Step II.4). Here, all the constructors along the class hierarchy are invoked
(Step II.5). Finally, the created object is returned down the hierarchy back to the
caller.

3.5.3 TclObjects Destruction Process

TclObject destruction is the reverse of the TclObject construction. It destroys objects
in both the CCC and OTcl domains, and returns the memory allocated to the objects
to the system, using a global procedure deletef...g. From Program 3.11, Lines
14 and 15 destroy the objects in the OTcl and CCC domains, respectively.

In most cases, we do not need to explicitly destroy objects, since they are
automatically destroyed when the simulation terminates. However, object destruc-
tion is a good practice to prevent memory leak. We destroy object when it is no
longer in need. For example, the instproc use-scheduler of the OTcl class
Simulator executes “delete $schduler_ before creating a new one (see
file ˜ns/tcl/lib/ns-lib.tcl).

3.6 Access the OTcl Domain from the CCC Domain

This section discusses the following main operations for accessing the OTcl domain
from the CCC domain9:

1. Obtain the reference to the Tcl interpreter (using the CCC function
instance()),

2. Execute the OTcl statements from within the CCC domain (using the CCC
functions eval(...), evalc(...), and evalf(...)),

3. Pass or receive results to/from the OTcl domain (using the CCC functions
result(...) and resultf(...)), and

4. Retrieve the reference to TclObjects (using the CCC functions enter(...),
delete (...), and lookup(...)).

9See the details in the file ˜tclcl/Tcl.cc.

68 3 Linkage Between OTcl and CCC in NS2

3.6.1 Obtain a Reference to the Tcl Interpreter

In OOP, a programmer would ask an object to take actions. Without an object, no
action shall be taken. In this section, we shall demonstrate how NS2 asks the Tcl
interpreter (i.e., object) to take actions.

NS2 obtains a CCC object which represents the Tcl interpreter using the
following CCC statement:

Tcl& tcl = Tcl::instance();

where the function instance() of class Tcl returns the variable instance_
of class Tcl which is a reference to the Tcl interpreter. After executing the above
statement, we perform the above operations through the obtained reference (e.g.,
tcl.eval(...), tcl.result(...)).

3.6.2 Execution of Tcl Statements

Class Tcl provides the following four functions to execute Tcl statements:

• Tcl::eval(char* str): Executes the string stored in a variable “str” in
the OTcl domain.

• Tcl::evalc(const char* str): Executes the string “str” in the OTcl
domain.

• Tcl::eval(): Executes the string which has already been stored in the
internal variable bp_.

• Instproc Tcl::evalf(const char* fmt,...): Uses the format “fmt”
of printf(...) in CCC to formulate a string, and executes the formulated
string.

Example 3.14. The followings show various ways in CCC, which tell the Tcl
interpreter to print out “Overall Packet Delay is 10.0 seconds” on
the screen.

Tcl& tcl = Tcl::instance();

// Using eval(...)
tcl.eval("puts [Overall Packet Delay is 10.0
seconds]");

// Using evalc(...)
char s[128];
strcpy(s,"puts [Overall Packet Delay is 10.0
seconds]");
tcl.evalc(s);
// Using eval()

3.6 Access the OTcl Domain from the CCC Domain 69

char s[128];
sprintf(tcl.buffer(),"puts [Overall

Packet Delay is 10.0 seconds]");
tcl.eval();

// Using evalf(...)
float delay = 10.0;
tcl.evalf("puts [Overall

Packet Delay is %2.1f seconds]",
delay);

Note that tcl::buffer() returns the internal variable bp_. �

3.6.3 Pass or Receive Results to/from the Interpreter

3.6.3.1 Passing Results to the OTcl Domain

Class Tcl provides two functions to pass results to the OTcl domain:

• Tcl::result(const char* str): Passes the string <str> as the result
to the interpreter.

• Tcl::resultf(const char* fmt,...): Uses the format “fmt”of
printf (...) in CCC to formulate a string, and passes the formulated string
to the interpreter.

Example 3.15. Let an OTcl command return10 of class MyObject returns the
value “10” to the interpreter. The implementation of the OTcl commandreturn10
is given below:

int MyObject::command(int argc, const char*const*
argv)
{

Tcl& tcl = Tcl::instance();
if (argc == 2) {

if (strcmp(argv[1], "return10") == 0) {
Tcl& tcl=Tcl::instance();
tcl.result("10");
return TCL_OK;

}
}
return (NsObject::command(argc, argv));

}

70 3 Linkage Between OTcl and CCC in NS2

From OTcl, the following statement stores the value returned from the OTcl
command “return10 of the CCC object whose class is MyObject in the OTcl
variable “val”.

set obj [new MyObject]
set val [$obj return10]

�

Example 3.16. Let an OTcl command returnVal of class MyObject return the
value stored in the CCC variable “value” to the interpreter. The implementation
of the OTcl command returnVal is given below:

int MyObject::command(int argc, const char*const*
argv)
{

Tcl& tcl = Tcl::instance();
if (argc == 2) {

if (strcmp(argv[1], "returnVal") == 0) {
tcl.resultf("%1.1f",value);
Tcl& tcl=Tcl::instance();
return TCL_OK;

}
}
return (NsObject::command(argc, argv));

}

The OTcl command returnVal can be invoked as follows:

set obj [new MyObject]
set val [$obj returnVal]

�

3.6.3.2 Retrieving Results from the OTcl Domain

Class Tcl provides one function to receive results from the OTcl domain:

• Tcl::result(void): Retrieves the result from the interpreter as a string.

Example 3.17. The following statements stores the value of the OTcl variable
“val” in the CCC variable “value”:

Tcl& tcl=Tcl::instance();
tcl.evalc("set val");
char* value = tcl.result();

�

Class Tcl uses a private member variable “tcl_->result” to pass results
between the two hierarchies, where “tcl_” is a pointer to a Tcl_Interp object.
When passing a result value to the OTcl domain, the functionresult(...) stores

3.6 Access the OTcl Domain from the CCC Domain 71

the result in this variable. The Tcl interpreter is responsible for reading the result
value from the variable “tcl_->result.” On the other hand, when passing a
result value to the CCC domain, the interpreter stores the value in the same CCC
variable, and the function result() reads the value stored in this variable.

3.6.4 TclObject Reference Retrieval

Recall that an object in the interpreted hierarchy always has a shadow compiled
object. NS2 records an association of a pair of objects as an entry in its hash table.10

Class Tcl provides the following three functions to deal with the hash table:

• Function enter(TclObject* o): Inserts a TclObject “*o” into the hash
table, and associates “*o” with the OTcl name string stored in the vari-
able “name_” of the TclObject “*o.” This function is invoked by function
TclClass:create_shadow(...) when a TclObject is created.

• Function delete(TclObject* o): Deletes the entry associated with the
TclObject “*o” from the hash table. This function is invoked by function
TclClass:delete_shadow(...)when a TclObject is destroyed.

• Function lookup(char* str): Returns a pointer to the TclObject whose
name is “str.”

Example 3.18. Consider the OTcl command targetf...g of the CCC class
Connector in Program 3.13. This OTcl command sets the input argument as the
forwarding NsObject (see the details in Sect. 5.3).

Program 3.13 Function command(...) of the C++ class Connector
//˜ns/common/connector.cc

1 int Connector::command(int argc, const char*const* argv)
2 {
3 Tcl& tcl = Tcl::instance();
4 ...
5 if (argc == 3) {
6 if (strcmp(argv[1], "target") == 0) {
7 ...
8 target_ = (NsObject*)TclObject::lookup(argv[2]);
9 ...
10 }
11 ...
12 }
13 return (NsObject::command(argc, argv));
14 }

10The definition of a hash table is given in Sect. 6.2.3.

72 3 Linkage Between OTcl and CCC in NS2

Here, “argv[2]” is the forwarding object passed from the OTcl domain. Line
8 executes TclObject::lookup(argv[2]) to retrieve the shadow compiled
object pointer corresponding to the OTcl object “argv[2].” The retrieved pointer
is converted to a pointer to an object whose type is NsObject and stored in the
variable “target_.” �

3.7 Translation of Tcl Code

In general, Tcl is an interpreted programming language. It does not require
compilation before execution. However, during the compilation, NS2 translates all
built-in Tcl modules (e.g., all the script files in directory ˜ns/tcl/lib) into the CCC
language using class EmbeddedTcl, to speed up the simulation.

The compilation process is carried out according to the file descriptor, Make
file (see Sect. 2.7). The statement related to Tcl translation is

$(TCLSH) bin/tcl-expand.tcl tcl/lib/ns-lib.tcl $(NS_
TCL_LIB_STL) \

| $(TCL2C) et_ns_lib > gen/ns_tcl.cc

where $(TCLSH) is the executable file which invokes the Tcl interperter, $(TCL
2C) is a Tcl script which translates Tcl codes to CCC codes, and $(NS_TCL_LIB
_STL) are the list of Tcl files which will be translated to CCC programs.

The above statement has two parts, each divided by a pipeline “|” operator.11

First Part: Expansion

The first part is shown below:

$(TCLSH) bin/tcl-expand.tcl tcl/lib/ns-lib.tcl
$(NS_TCL_LIB_STL)

This part asks the Tcl to interpret (i.e., run) the Tcl script file bin/tcl-
expand.tcl, with two input arguments: ˜ns/tcl/lib/ns-lib.tcl and $(NS_TCL_
LIB_STL). It expands the content of all the files specified in the input arguments.

A part of the expansion is to source the Tcl files specified in the input files. By
sourcing a Tcl file, we mean to replace a source statement with the following syntax

source <filename>

11The pipeline operator captures the screen output (i.e., stdout) resulting from the execution of
what ahead of it. The captured string is then fed as a keyboard input (i.e., stdin) for the execution
of what following it.

3.9 Exercises 73

with the content in the file <filename>. Example source statements are in the file
˜ns/tcl/lib/ns-lib.tcl:

source ns-autoconf.tcl
source ns-address.tcl
source ns-node.tcl
source ns-rtmodule.tcl
...

which tell NS2 to incorporate these files into the translation process.

Second Part: Translation

The second part is located behind the pipe operator (“|”), i.e.,

$(TCL2C) et_ns_lib > gen/ns_tcl.cc

The statement “$(TCL2C) et_ns_lib” translates the OTcl scripts from the
former part into CCC programs using an EmbeddedTcl object “et_ns_lib.”
The output of the second part is the CCC programs, which are redirected using a
redirection operator (i.e., “>”), to the CCC file gen/ns_tcl.cc.

3.8 Chapter Summary

NS2 is a network simulator tool consisting of OTcl and CCC programming
languages. The main operations of NS2 (e.g., packet passing) are carried out using
the C++ language, while the network configuration process (e.g., creating and
connecting nodes) is carried out using the OTcl language. In most cases, program-
mers create object from the OTcl domain, and NS2 automatically creates shadow
object in the CCC domain. The connection between the interpreted and compiled
hierarchies is established through TclCL. In this chapter, we have discussed the
main functionalities of TclCL – including class binding, variable binding, method
binding, shadow object construction process, Tcl access mechanism, and Tcl code
translation.

3.9 Exercises

1. Rewrite the program in Sect. 1.5 using three CCC programming styles dis-
cussed in Sect. 3.1.

2. The class binding process consists of four major components.

74 3 Linkage Between OTcl and CCC in NS2

a. What are those components? What are their definitions?
b. Look into the NS2 codes. What are the components corresponding to the

following classes: RenoTcpAgent, Agent, Connector.
c. Bind a CCC class MyObject to an OTcl class MyOTclClass. What are

the main class binding components? Compile and run the codes. Verify the
binding by printing out a string from the constructor of the CCC class.
Discuss the results.

3. Consider Exercise 2.

a. Create an OTcl command named “print-count” which print out the
value of count_ on the screen. Write a Tcl simulation script to test the
OTcl command.

b. Create an instproc “print-count” for the class MyOTclObject. If
you execute “print-count,” which body of “print-count” will NS2
execute (i.e., the OTcl command or the instproc)? Design an experiment to
test your answer. Can you make NS2 to execute the other body? If so, how?

4. Consider Exercise 2.

a. Declare a variable my_c_var_ and an instvar my_otcl_var_ in classes
MyObject and MyOTclObject. Bind them together.

b. Design an experiment to show that a change in one variable automatically
updates the value of the other variable.

c. How would you define the default value of a variable in CCC and OTcl
domain? If the default values are different, which one would be taken during
run time? Design an experiment to prove your answer.

5. What are the major differences among classes TclObject, TclClass, and
InstVar? Explain their roles during an object creation process.

6. What are the differences among a CCC function, an OTcl instproc, and an
OTcl command?

7. What are the differences between functions eval(...) and evalc(...)?
8. Show a CCC statement to retrieve a Tcl interpreter.
9. The C++ class TcpAgent is bound to the OTcl class Agent/TCP. The CCC

variable “cwnd_” bound to the OTcl “cwnd_” instvar are used to store the
congestion window value.

a. Demonstrate how to set the default congestion window of TCP in the CCC
domain to be 20 and in the OTcl domain to be 30. If you set the default value
in both the CCC and OTcl domains, what would be the actual default value
at run time?

b. Show different ways in the OTcl domain to change the congestion window
value of an Agent/Tcp object $tcp to 40.

10. Can you perform the following actions? If not, what are the conditions under
which you can perform such actions.

3.9 Exercises 75

a. Bind ANY CCC variable to ANY OTcl variable.
b. Call ANY CCC statement from the OTcl domain.
c. Call ANY OTcl statement from the CCC domain.

11. What are the top-level classes in the CCC domain and in the OTcl domain?

Chapter 4
Implementation of Discrete-Event Simulation
in NS2

NS2 is a event-driven simulator, where actions are associated with events rather than
time. An event in a event-driven simulator consists of execution time, associated
actions, and a reference to the next event (Fig. 4.1). These events connect to each
other and form a chain of events on the simulation timeline (e.g., that in Fig. 4.1).
Unlike a time-driven simulator, in an event-driven simulator, time between a pair of
events does not need to be constant. When the simulation starts, events in the chain
are executed from left to right (i.e., chronologically).1 In the next section, we will
discuss the simulation concept of NS2. In Sects. 4.2–4.4, we will explain the details
of classes Event and Handler, class Scheduler, and class Simulator,
respectively. Finally, we summarize this chapter in Sect. 4.5.

4.1 NS2 Simulation Concept

NS2 simulation consists of two major phases.

Phase I: Network Configuration Phase

In this phase, NS2 constructs a network and sets up an initial chain of events.
The initial chain of events consists of events that are scheduled to occur at certain
times (e.g., start FTP (File Transfer Protocol) traffic at 1 s). These events are called
at-events (see Sect. 4.2). This phase corresponds to every line in a Tcl simulation
script before executing instproc runfg of the Simulator object.

1By execution, we mean taking actions associated with an event.

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 4, © Springer Science+Business Media, LLC 2012

77

78 4 Implementation of Discrete-Event Simulation in NS2

Event1
time = 0.9
Action1

1 765432

Time
(second)

Event2
time = 2.2
Action2

Event3
time = 5
Action3

Event4
time = 6.8
Action4

Event5
time = 3.7
Action5

insert
eventcreate

event

Fig. 4.1 A sample chain of events in a event-driven simulation. Each event contains execution
time and a reference to the next event. In this figure, Event 1 creates and inserts Event 5 after
Event 2 (the execution time of Event 5 is at 3.7 s)

Phase II: Simulation Phase

This part corresponds to a single line, which invokes the instproc runfg of class
Simulator. Ironically, this single line contributes to most (e.g., 99%) of the
simulation.

In this part, NS2 moves along the chain of events and executes events chronolog-
ically. Here, the instproc runfg starts the simulation by dispatching the first event
in the chain of events. In NS2, “dispatching an event” or “firing an event” means
“taking actions corresponding to that event.” An action is, for example, starting FTP
traffic or creating another event and inserting the created event into the chain of
events. In Fig. 4.1, at 0.9 s, Event1 creates Event5 which will be dispatched at 3.7 s,
and inserts Event5 after Event2. After dispatching an event, NS2 moves down the
chain and dispatches the next event. This process repeats until the last event in the
chain is dispatched, signifying the end of simulation.

4.2 Events and Handlers

4.2.1 An Overview of Events and Handlers

As shown in Fig. 4.1, an event is associated with an action to be taken at a
certain time. In NS2, an event contains a handler that specifies the action, and the
firing time or dispatching time. Program 4.1 shows declaration of classes Event
and Handler. Class Event declares variables “handler_” (whose class is
Handler; Line 5) and “time_” (Line 6) as its associated handler and firing time,
respectively. To maintain the chain of events, each Event object contains pointers
“next_” (Line 3) and “prev_” (Line 4) to the next and previous Event objects,
respectively. The Variable “uid_” (Line 7) is an ID unique to every event.

4.2 Events and Handlers 79

Program 4.1 Declaration of classes Event and Handler
//˜/ns/common/scheduler.h

1 class Event {
2 public:
3 Event* next_; /* event list */
4 Event* prev_;
5 Handler* handler_; /* handler to call when event ready */
6 double time_; /* time at which event is ready */
7 scheduler_uid_t uid_; /* unique ID */
8 Event() : time_(0), uid_(0) {}
9 };

10 class Handler {
11 public:
12 virtual ˜Handler () {}
13 virtual void handle(Event* e) = 0;
14 };

Program 4.2 Function handle of class NsObject
//˜/ns/common/object.cc

1 void NsObject::handle(Event* e)
2 {
3 recv((Packet*)e);
4 }

Lines 10–14 in Program 4.1 show the declaration of an abstract class Handler.
Class Handler specifies the default action to be taken when an associated
event is dispatched in its pure virtual function handle(e) (Line 13).2 This
declaration forces all its instantiable derived classes to provide the action in function
handle(e). In the followings, we will discuss few classes which derive from
classes Event and Handler. These classes are NsObject, Packet, AtEvent,
and AtHandler.

4.2.2 Class NsObject: A Child Class of Class Handler

Derived from class Handler, class NsObject is one of the main classes in NS2.
It is a base class for most of network components. We will discuss the details
of this class in Chap. 5. Here, we only show the implementation of the function
handle(e) of class NsObject in Program 4.2. The function handle(e)
casts an Event object associated with the input pointer (e) to a Packet object.

2We call actions specified in the function handle(e) default actions, since they are taken by
default when the associated event is dispatched.

80 4 Implementation of Discrete-Event Simulation in NS2

Program 4.3 Declaration of classes AtEvent and AtHandler, and function
handle of class AtHandler

//˜/ns/common/scheduler.cc
1 class AtEvent : public Event {
2 public:
3 AtEvent() : proc_(0) {
4 }
5 ˜AtEvent() {
6 if (proc_) delete [] proc_;
7 }
8 char* proc_;
9 };

10 class AtHandler : public Handler {
11 public:
12 void handle(Event* event);
13 } at_handler;

14 void AtHandler::handle(Event* e)
15 {
16 AtEvent* at = (AtEvent*)e;
17 Tcl::instance().eval(at->proc_);
18 delete at;
19 }

Then it feeds the casted object to the function recv(p) (Line 3). Usually, function
recv(p), where “p” is a pointer to a packet, indicates that the NsObject has
received a packet “p” (see Chap. 5). Unless overridden, by derived classes, the
function handle(e) of an NsObject simply indicates packet reception.

4.2.3 Classes Packet and AtEvent: Child Classes of Class
Event

Classes Packet and AtEvent are among key NS2 classes which derive from
class Event. These two classes can be placed on the chain of events so that their
associated handler will take actions at the firing time. While the details of class
AtEvent are discussed in this section, that of class Packet will be discussed
later in Chap. 8.

Declared in Program 4.3, class AtEvent represents events whose action is
the execution of an OTcl statement. It contains one string variable “proc_”
(Line 8) which holds an OTcl statement string. At the firing time, the associated
handler, whose class is AtHandler, will retrieve and execute the OTcl string from
this variable.

4.2 Events and Handlers 81

Program 4.4 Instance procedure at of class Simulator and command at of
class Scheduler

//˜/ns/tcl/lib/ns-lib.tcl
1 Simulator instproc at args {
2 $self instvar scheduler_
3 return [eval $scheduler_ at $args]
4 }

//˜/ns/common/scheduler.cc
5 if (strcmp(argv[1], "at") == 0) {
6 /* t < 0 means relative time: delay = -t */
7 double delay, t = atof(argv[2]);
8 const char* proc = argv[3];
9 AtEvent* e = new AtEvent;
10 int n = strlen(proc);
11 e->proc_ = new char[n + 1];
12 strcpy(e->proc_, proc);
13 delay = (t < 0) ? -t : t - clock();
14 if (delay < 0) {
15 tcl.result("can’t schedule command in past");
16 return (TCL_ERROR);
17 }
18 schedule(&at_handler, e, delay);
19 sprintf(tcl.buffer(), UID_PRINTF_FORMAT, e->uid_);
20 tcl.result(tcl.buffer());
21 return (TCL_OK);
22 }

Derived from class Handler, class AtHandler specifies the actions to be
taken at firing time in its function handle(e) (Lines 14–19). Here, Line 16 casts
the input event into an AtEvent object. Then Line 17 extracts and executes the
OTcl statement from variable “proc_” of the cast event.

In the OTcl domain, an AtEvent object is placed in a chain of events at a certain
firing time by instproc “at” of class Simulator. Whose syntax is:

$ns at <time> <statement>

where “$ns” is the Simulator object (see Sect. 4.4), <time> is the firing time,
and <statement> is an OTcl statement string which will be executed when the
simulation time is <time> second.

From Lines 1–4 of Program 4.4, the instproc atf...g of an OTcl class
Simulator invokes an OTcl command “at” of the Scheduler object (Lines
5–22). The OTcl command atf...g of class Scheduler stores the firing time in
a variable “t” (Line 7). Line 9 creates an AtEvent object. Lines 8 and 10–12 store
the input OTcl command in the variable “proc_” of the created AtEvent object.

82 4 Implementation of Discrete-Event Simulation in NS2

Line 13 converts the firing time to the “delay” time from the current time. Finally,
Line 18 schedules the created event *e at “delay” seconds in future, feeding
address of the variable “at_handler” (see Program 4.3) as an input argument to
function schedule(...).

4.3 The Scheduler

The scheduler maintains the chain of events and simulation (virtual) time.
At runtime, it moves along the chain and dispatches one event after another. Since
there is only one chain of events in a simulation, there is exactly one Scheduler
object in a simulation. Hereafter, we will refer to the Scheduler object simply
as the Scheduler. Also, NS2 supports the four following types of schedulers: List
Scheduler, Heap Scheduler, Calendar Scheduler (default), and Real-time Scheduler.
For brevity, we do not discuss the differences among all these schedulers here. The
details of these schedulers can be found in [17].

4.3.1 Main Components of the Scheduler

Declared in Program 4.5, class Scheduler consists of a few main variables and
functions. Variable “clock_” (Line 19) contains the current simulation time, and
function clock() (Line 11) returns the value of the variable “clock_”. Variable
“halted_” (Line 22) is initialized to 0, and is set to 1 when the simulation is
stopped or paused. Variable “instance_” (Line 20) is the reference to the Sched-
uler, and function instance() (Line 3) returns the variable “instance_”.
Variable uid_ (Line 21) is the event unique ID. In NS2, the Scheduler acts as a
single point of unique ID management. When an event is inserted into the simulation
timeline, the Scheduler creates a new unique ID and assigns the ID to the event.
Both the variables “instance_” and “uid_” are static, since there is only one
Scheduler and unique ID in a simulation.

4.3.2 Data Encapsulation and Polymorphism Concepts

Program 4.5 implements the concepts of data encapsulation and polymorphism (see
Appendix B). It hides the chain of events from the outside world and declares
pure virtual functions cancel(e), insert(e), lookup(uid), deque(),
and head() in Lines 6–10 to manage the chain. Classes derived from class
Scheduler provide implementation of all of the above functions. The beauty of
this mechanism is the ease of modifying the scheduler type at runtime.

4.3 The Scheduler 83

Program 4.5 Declaration of class e.g., Scheduler
//˜ns/common/scheduler.h

1 class Scheduler : public TclObject {
2 public:
3 static Scheduler& instance() { return (*instance_); }
4 void schedule(Handler*, Event*, double delay);
5 virtual void run();
6 virtual void cancel(Event*) = 0;
7 virtual void insert(Event*) = 0;
8 virtual Event* lookup(scheduler_uid_t uid) = 0;
9 virtual Event* deque() = 0;
10 virtual const Event* head() = 0;
11 double clock() const { return clock_j}
12 virtual void reset();
13 protected:
14 void dispatch(Event*);
15 void dispatch(Event*, double);
16 Scheduler();
17 virtual ˜Scheduler();
18 int command(int argc, const char*const* argv);
19 double clock_;
20 static Scheduler* instance_;
21 static scheduler_uid_t uid_;
22 int halted_;
22 };

NS2 implements most of the codes in relation to class Scheduler, not its derived
classes (e.g., CalendarScheduler). At runtime (e.g., in a Tcl simulation script),
we can select a scheduler to be of any derived class (e.g., CalendarScheduler)
of class Scheduler without having to modify the codes for the base class (e.g.,
Scheduler).

4.3.3 Main Functions of the Scheduler

Three main functions of class Scheduler are run() (Program 4.6), schedule
(h,e,delay) (Program 4.7) and dispatch(p,t) (Program 4.8). In
Program 4.6, function run() first sets variable “instance_” to the address of
the scheduler (this) in Line 3. Then, it keeps dispatching events (Line 6) in the
chain until “halted_”¤ 0 or until all the events are executed (Line 5).

Function schedule(h,e,delay) in Program 4.7 takes three input argu-
ments: A Handler pointer(h), an Event pointer(e), and the delay(delay),
respectively. It inserts the input Event object(*e) into the chain of events. Lines
3–12 check for possible errors. Line 13 increments the unique ID of the Scheduler
and assigns it to the input Event object. Line 14 associates the input Handler

84 4 Implementation of Discrete-Event Simulation in NS2

Program 4.6 Function run of class Scheduler
//˜ns/common/scheduler.cc

1 void scheduler::run()
2 {
3 instance_ = this;
4 Event *p;
5 while (!halted_ && (p = deque())) {
6 dispatch(p, p->time_);
7 }
8 }

Program 4.7 Function schedule of class Scheduler
//˜ns/common/scheduler.cc

1 void Scheduler::schedule(Handler* h, Event* e, double delay)
2 {
3 if (!h) { /* error: Do not feed in NULL handler */ };
4 if (e->uid_ > 0) {
5 printf("Scheduler: Event UID not valid!\n\n");
6 abort();
7 }
8 if (delay < 0) { /* error: negative delay */ };
9 if (uid_ < 0) {
10 fprintf(stderr, "Scheduler: UID space exhausted!
11 \n"); abort();
12 }
13 e->uid_ = uid_++;
14 e->handler_ = h;
15 double t = clock_ + delay;
16 e->time_ = t;
17 insert(e);
18 }

Program 4.8 Function dispatch of class Scheduler
//˜ns/common/scheduler.cc

1 void Scheduler::dispatch(Event* p, double t)
2 {
3 if (t < clock_) { /* error */ };
4 clock_ = t;
5 p->uid_ = -p->uid_; // being dispatched
6 p->handler_->handle(p); // dispatch
7 }

4.3 The Scheduler 85

object (*h) with the input Event object (*e). Line 15 converts input delay time
(delay) to the firing time (time_) of the Event object “e.” Line 17 inserts the
configuredEvent object*e in the chain of events via functioninsert(e). Since
the scheduler increments its unique ID when invoking function schedule(...),
every scheduled event will have different unique ID.

Finally, the errors in Lines 3–12 include

1. Null handler (Line 3)
2. Positive Event unique ID (Lines 4–7; See Sect. 4.3.5)
3. Negative delay (Line 8)
4. Negative Scheduler unique ID3 (Lines 19-12)

Function dispatch(p,t) in Program 4.8 is invoked by function run() at
the firing time (Line 6 of Program 4.6). It takes a dispatching event (*p) and firing
time (t) as input arguments. Since the scheduler moves forward in simulation time,
the firing time (t) cannot be less than the current simulation time (clock_). From
Program 4.8, Line 3 will show an error, if t < clock_. Line 4 sets the current
simulation virtual time to be the firing time of the event. Line 5 inverts the sign of the
“uid_” of the event, indicating that the event is being dispatched. Line 6 invokes
function handle(p) of the associated handler “handler_,” feeding the event
(p) as an input argument.

4.3.4 Two Auxiliary Functions

Apart from the above three main function, class Scheduler provides two very
useful functions: instance() (Line 3 in Program 4.5) and clock (Line 11 in
Program 4.5).

• Function instance() returns *instance_ which is the address of the
Scheduler.

• Function clock() returns the current simulation virtual time.

We shall see the use of these two functions throughout NS2 programming.

Example 4.1. In order to obtain the current virtual simulation time in CCC, we can
resort to the following statements

Scheduler& s = Scheduler::instance();
cout << "The current time is " << s.clock() << endl;

Here the upper line retrieves the reference to the Scheduler, while the lower
line invokes the function clock() of the current simulation time. �

3The unique ID of the Scheduler is always positive. Its negative value indicates possible
abnormality such as memory overflow or inadvertent memory access violation.

86 4 Implementation of Discrete-Event Simulation in NS2

Fig. 4.2 Dynamics of Event unique ID (uid) : Take a positive value from Scheduler
::uid when being scheduled, and invert the sign when being dispatched. Increment upon
schedule and inversion of sign upon dispatch

4.3.5 Dynamics of the Unique ID of an Event

The dynamics of the event’s unique ID (uid_) is fairly subtle. In general, the Sched-
uler maintains the unique ID and assigns the unique ID to the event being scheduled.
To make “uid_” unique, the Scheduler increments its “uid_” and assigns the
incremented “uid_” to the scheduling event in its function schedule(...)
(Line 13 in Program 4.7). When dispatching an event, the scheduler inverts the
sign of “uid_” of the dispatching event (Line 5 in Program 4.8). Figure 4.2
shows the dynamics of the unique ID caused by the above schedule(...)
and dispatch(...) functions. Unless the associated event is being dispatched,
“uid_” of an event is always increasing and non-negative. The sign toggling
mechanism of unique ID ensures that events will be scheduled and dispatched
properly. If a scheduled event is not dispatched, or is dispatched twice, its unique
ID will be positive, and an attempt to schedule this undispatched event will cause
an error (Lines 5 and 6 in Program 4.7).

4.3.6 Scheduling–Dispatching Mechanism

We conclude this section through an example explaining the scheduling–dispatching
mechanism. Consider the following script

set ns [new Simulator]
$ns at 10 [puts "An event is dispatched"]
$ns run

which prints out the message “An event is dispatched” at 10 s after the
simulation has started. Figure 4.3 shows the functions (shown in rectangles)
and objects (shown in rounded rectangles) related to the scheduling–dispatching
mechanism, whose names are shown in boldface font. Again, an AtEvent
object is scheduled by the OTcl command “at” (in the upper-left rectangle), of
class Scheduler. The Scheduler creates an AtEvent object “e” and stores

4.3 The Scheduler 87

Fig. 4.3 Scheduling and dispatching mechanism of an AtEvent

input command (the fourth input argument “str = puts "An event is
dispatched")” in e->proc_. Then, it schedules the event “e” with delay
converted from time = 10 (the third input argument), feeding the address of
AtHandler object (at_handler in the lower right round rectangle) as the
corresponding handler.

The lower-left rectangle in Fig. 4.3 shows details of the function schedule
(h,e,delay) of class Scheduler. Before inserting event “e” into the chain
of events, function schedule(...) configures event “e” as follows: Update
“uid_” to be the same as that of Scheduler, store “at_handler” in the
handler of event “e,” and set firing time to be “clock_” (current time) C “delay.”

At the firing time, the scheduled AtEvent object is dispatched through the
function dispatch(p,t) (the upper-right rectangle in Fig. 4.3). When the
scheduled Event object “e”4 is dispatched, function dispatch(...) inverts
the sign of its variable “uid_,” and invokes function handle(e) of the

4In Program 4.8, the first argument of function dispatch(...) is “p.” Here, we use “e” as the
first argument for the sake of explanation.

88 4 Implementation of Discrete-Event Simulation in NS2

corresponding handler feeding Event object “e” as an input argument. Since
the handler is “at_handler” (see the upper-left rectangle), the OTcl command
“puts "An event is dispatched"” stored in “e” is executed.

4.3.7 Null Event and Dummy Event Scheduling

When being dispatched, an event “p” is fed to function handle(p) of the associ-
ated handler for a certain purpose. For example, the function handle(p) of class
NsObject executes “recv(p)”, where “p” is a packet reception event. Here, the
event *p must have been created and fed to the function schedule(...) before
the ongoing dispatching process.

In some cases, an event only indicates the time where the default action is taken
but takes no part in such the action. For example, a queue unblocking event informs
the associated Queue object of the completion of the ongoing transmission (see
Sect. 7.3). The function handle(p) of the associated handler in this case simply
invokes function resume() which take no input argument (i.e., action taking).
Clearly the queue unblocking event takes no role in the dispatching process. In this
case, we do not need to explicitly create an event. Instead, we can use a null event
or a dummy event as an input argument to the function schedule(...).

4.3.7.1 Scheduling of a Null Event

Function schedule(h,e,delay) takes a pointer to an event as its second
input argument. A null event refers to a null pointer which is fed as the second
input argument to the function schedule(...) (e.g., schedule(handler,
0,delay)).

Although simple to use, a null event could lead to runtime error which is difficult
to be located. A null event is not an actual event. Its unique ID does not follow
semantic in Fig. 4.2. The Scheduler ignores the unique ID when scheduling and
dispatching a null event, and allows an undispatched event to be rescheduled. This
breaks the scheduling–dispatching protection mechanism. Using null events, the
users are responsible for ensuring the proper sequence of scheduling–dispatching
by themselves.

4.3.7.2 Scheduling of a Dummy Event

This is another approach to schedule and dispatch events which do not take part in
default actions. A dummy event is usually declared as a member variable of a CCC
class, and is used repeatedly in a scheduling–dispatching process.

Consider a packet departure event which is modeled by class LinkDelay (see
Sect. 7.2) for example. During simulation, an NsObject informs a LinkDelay

4.4 The Simulator 89

object to schedule packet departure events. At the firing time, the packet completely
departs the NsObject, and the NsObject is allowed to fetch another packet for
transmission. The packet departure event takes no part in the default action, since a
new packet is fetched or created by another object.

As we shall see, a packet departure event is represented by a dummy event
variable “intr_” of class LinkDelay, and the packet departure is scheduled
through the variable “intr_” only. Since the variable “intr_” is a dummy
Event, its unique ID follows the semantic in Fig. 4.2. An attempt to schedule an
undispatched event would immediately cause runtime error. Note that “intr_” is
a member variable of class LinkDelay. It is used over and over again to indicate
packet departure from a LinkDelay object.

As a final note, under a simple configuration, it is recommended to use the null
event scheduling approach. For a complicated configuration, on the other hand,
the dummy event scheduling is preferable, since it provides a protection against
scheduling of undispatched events.

4.4 The Simulator

OTcl and CCC classes Simulator are the main classes which supervise the
entire simulation. Like the Scheduler object, there can be only one Simulator
object throughout a simulation. This object will be referred to as the Simulator
hereafter. The Simulator contains two types of key components: simulation objects
and information-storing objects. While simulation objects (e.g., the Scheduler) are
the key components which drive the simulation. On the other hand, Information-
storing objects (e.g., the reference to created nodes) contain information which is
shared among several objects. These information-storing objects are created via
various instprocs (e.g., Simulator::nodefg) during the Network Configuration
Phase. Most objects access these information-storing objects via its instvar “ns_”
(set by executing “set ns_ [Simulator instance]”), which is a reference
to a Simulator.

4.4.1 Main Components of a Simulation

4.4.1.1 Interperted Hierarchy

Created by various instprocs, the main OTcl simulation components are as follows:

• The Scheduler (scheduler_ created by the instproc Simulator::init)
maintains the chain of events and executes the events chronologically.

90 4 Implementation of Discrete-Event Simulation in NS2

• The null agent (nullAgent_ created by the instproc Simulator::init)
provides the common packet dropping point.5

• Node reference (Node_ created by the instproc Simulator::node) is an
associative array whose elements are the created nodes and indices are node IDs.

• Link reference (link_ created by the instprocs simplex-linkf...g or
duplex- linkf...g) is an associative array. Associated with an index with
format “sid:did,” each element of “link_” is the created unidirectional link
which carries packet from node “sid” to node “did.”

• Reference to routing table (routingTable_ created by the instproc
Simulator::get-routelogicfg,) contains the global routing table.

4.4.1.2 Compiled Hierarchy

In the compiled hierarchy, class Simulator also contains variables and functions
as shown in Program 4.9. Variable “instance_” (Line 18) is a pointer to the
Simulator. It is a static variable, which means that there is only one variable
“instance_” of class Simulator for the entire simulation. Variable “node
list_” (Line 14) is the link list containing all created nodes. The link list can
contain up to “size_” elements (Line 17), while the total number of nodes is
“nn_” (Line 16). Variable rtobject_ (Line 15) is a pointer to a RouteLogic
object, which is responsible for the routing mechanism (see Chap. 6).

Function populate_flat_classifiers(...) (Line 7) pulls out the
routing information stored in the variable *rtobject_ and installs the routing
table in the created nodes and links (see Sect. 6.5). Function add_node(...)
(Line 8) puts the input argument node into the link list of nodes (nodelist_).
Function get_link_head(...) returns the link head object (see Chap. 7) of
the link with ID “nh” which connects to a ParentNode object *node. Function
node_id_by_addr(addr) (Line 10) converts node address “addr” to node
ID. Function alloc(n) (Line 11) allocates spaces in nodelist_ which can
accommodate up to “n” nodes, and clears all components of nodelist_ to NULL.
Function check(n) immediately returns if “n” is less than size_. Otherwise, it
will create more space in nodelist_, which can accommodate up to “n” nodes.
Static function instance() in Line 3 returns the variable “instance_” which
is the pointer to the Simulator.

4.4.2 Retrieving the Instance of the Simulator

From the interpreted hierarchy, we can also retrieve the simulator instance by
invoking the instproc instancefg of class Simulator (see program 4.10).

5By “dropping a packet,” we mean “removing a packet” from the simulation. We will discuss the
dropping mechanism in Chap. 5. For the moment, it is sufficient to know that “nullAgent ”
drops or removes all received packets from the simulation.

4.4 The Simulator 91

Program 4.9 Declaration of class Simulator
//˜ns/common/simulator.h

1 class Simulator : public TclObject {
2 public:
3 static Simulator& instance() { return (*instance_); }
4 Simulator() : nodelist_(NULL),

rtobject_(NULL), nn_(0), size_(0) {}
5 ˜Simulator() { delete []nodelist_;}
6 int command(int argc, const char*const* argv);
7 void populate_flat_classifiers();
8 void add_node(ParentNode *node, int id);
9 NsObject* get_link_head(ParentNode *node, int nh);
10 int node_id_by_addr(int address);
11 void alloc(int n);
12 void check(int n);
13 private:
14 ParentNode **nodelist_;
15 RouteLogic *rtobject_;
16 int nn_;
17 int size_;
18 static Simulator* instance_;
19 };

Program 4.10 Retrieving the instance of the Simulator using instproc instance
of class Simulator

//˜ns/tcl/lib/ns-lib.tcl
1 Simulator proc instance {} {
2 set ns [Simulator info instances]
3 if { $ns != "" } {
4 return $ns
5 }
6 ...
7 }

This instproc executes the OTcl built-in command “info” with an option
“instances.” This execution returns all the instances of a certain class. Since
there is only one Simulator instance, the statement “Simulator info
instances” returns the Simulator object as required.

4.4.3 Simulator Initialization

Simulator initialization refers to the process in the Network Configuration Phase,
which creates the Simulator as well as its components. The Simulator is created
by executing “new Simulator”. This statement invokes the constructor (i.e., the
instproc initf...g of class Simulator) shown in Program 4.11.

92 4 Implementation of Discrete-Event Simulation in NS2

Program 4.11 Instprocs init and use-scheduler of class Simulator
//˜ns/tcl/lib/ns-lib.tcl

1 Simulator instproc init args {
2 $self create_packetformat
3 $self use-scheduler Calendar
4 $self set nullAgent_ [new Agent/Null]
5 $self set-address-format def
6 eval $self next $args
7 }

8 Simulator instproc use-scheduler type {
9 $self instvar scheduler_
10 if [info exists scheduler_] {
11 if { [$scheduler_ info class] == "Scheduler/$

type" } {
12 return
13 } else {
14 delete $scheduler_
15 }
16 }
17 set scheduler_ [new Scheduler/$type]
18 }

The constructor first initializes the packet format in Line 2, and executes the
OTcl statement “use-schedulerftypeg” in Line 3 to specify type of the
Scheduler. By default, type of the Scheduler is Calendar. Line 4 creates a null
agent (nullAgent). Line 5 sets the address format to the default format. The
instproc use-schedulerftypeg (Lines 8–18) deletes the existing Scheduler if
it is different from that specified in the input argument “type.” Then it will create a
scheduler with type = type, and store the created Scheduler object in the instvar
“scheduler_.”

4.4.4 Running Simulation

The Simulation Phase starts at the invocation of the instproc runfg of class
Simulator. As shown in Program 4.12, this instproc first invokes the instproc
configurefg of class RouteLogic (Line 2), which in turn computes the optimal
routes and creates the routing table (see Chap. 6). Lines 5–10 reset nodes and
queues. Finally, Line 11 starts the Scheduler by invoking the OTcl command
runfg of class Scheduler, which in turn invokes the C++ function run() of
class Scheduler shown in Program 4.6. Again, this function executes events in
the chain of events one after another until the Simulator is halted (i.e., variable
“halted_” of class Scheduler is 1), or until all the events are executed.

4.5 Chapter Summary 93

Program 4.12 Instproc::run of class simulator
//˜/ns/tcl/lib/ns-lib.tcl

1 Simulator instproc run {
2 [$self get-routelogic] configure
3 $self instvar scheduler_ Node_ link_ started_
4 set started_ 1
5 foreach nn [array names Node_] {
6 $Node_($nn) reset
7 foreach qn [array names link_] {
8 set q [$link_($qn) queue]
9 $q reset
10 }
11 return [$scheduler_ run]
12 }

4.4.5 Instprocs of OTcl Class Simulator

The list of useful instprocs of class Simulator is shown below.

nowfg Retrieve the current simulation time.
nullagentfg Retrieve the shared null agent.

use-schedulerftypeg Set the scheduler to be <type>.
atftime stmg Execute the statement <stm> at <time>

second.
runfg Start the simulation.

haltfg Terminate the simulation.
cancelfeg Cancel the scheduled event <e>.

4.5 Chapter Summary

This chapter explains the details of event-driven simulation in NS2. The simulation
is carried out by running a Tcl simulation script, which consists of two parts.
First, the Network Configuration Phase establishes a network and configures all
simulation components. This phase also creates a chain of events by connecting
the created events chronologically. Second, the Simulation Phase chronologically
executes (or dispatches) the created events until the Simulator is halted, or until all
the events are executed.

There are four main classes involved in an NS2 simulation:

• Class Simulator supervises the simulation. It contains simulation components
such as the Scheduler, the null agent. It also contains information storing objects
which are shared by other (simulation) components.

• Class Schedulermaintains the chain of events and chronologically dispatches
the events.

94 4 Implementation of Discrete-Event Simulation in NS2

• Class Event consists of the firing time and the associated handler. Events are
put together to form a chain of events, which are dispatched one by one by the
Scheduler. Classes Packet and AtEvent are among the classes derived from
class Event, which can be placed on the simulation timeline (i.e., in the chain
of event). They are associated with different handlers and take different actions
at the firing time.

• Class Handler: Associated with an event, a handler specifies default actions
to be taken when the associated event is dispatched. Classes NsObject and
AtHandler are among classes derived from class Handler. They are always
associated with Packet and AtEvent events, respectively. Their actions are
to receive a Packet object and to execute an OTcl statement specified in the
AtEvent object, respectively.

4.6 Exercises

1. What are the definitions, similarities/differences, and relationship among the
following NS2 components:

a. Simulation timeline
b. Scheduler
c. Event
d. Event handler
e. Simulator
f. Firing time or dispatching time

Show an example to support your answer.

2. What are the similarities/differences/relationship between a TclObject and an
NSObject?

3. What is a chain of events? Explain how NS2 creates a chain of events, and how
NS2 locates a particular event on the chain.

4. What is event unique ID? Where does NS2 store this value? What is its data
type? What is the implication when its value is positive, negative, or zero?

5. What are the two simulation phases? Explain the key objectives of each of the
phases.

6. NS2 has two types of built-in events: Packet reception events and AT events.
Design another type of events. Explain their purposes, show how these events
can be integrated into NS2, and write an NS2 program to support your answer.

7. Explain the sequence of actions that occurs at the firing time. Use an OTcl
statement execution event as an example.

8. How does NS2 start a simulation in the OTcl domain? What happens in the
CCC domain after the simulation has started? When and under what condition
will the simulation terminate?

4.6 Exercises 95

9. What are four common errors associated with event scheduling in NS2? Explain
the reasons and suggest general solutions.

10. What are Null events and dummy events? What are their purposes? Explain
their similarities and differences. Show example usage of both types of events.

11. Write statements for the following purposes. Run NS2 to test your answer.

a. Show the current virtual time on the screen in both CCC and OTcl domain.
b. At 10 s, print out “Hello NS2 Users!!” on the screen. In the C++ domain, use
printf(...) or cout. In the OTcl domain, use putsf...g).

c. Store a Simulator object in a local variable csim in the CCC domain,
and osim in the OTcl domain.

d. Send a packet *p to an NsObject *obj at 15 s in future (CCC only).

Chapter 5
Network Objects: Creation, Configuration,
and Packet Forwarding

NS2 is a simulation tool designed specifically for communication networks.
The main functionalities of NS2 are to set up a network of connecting nodes and
to pass packets from one node (which is a network object) to another.

A network object is one of the main NS2 components, which is responsible
for packet forwarding. NS2 implements network objects using the polymorphism
concept in object-oriented programming (OOP). Polymorphism allows network
objects to take different actions ways under different contexts. For example, a
Connector object immediately passes the received packet to the next network
object, while a Queue1 object enqueues the received packets and forwards only the
head of the line packet.

This chapter first introduces the NS2 components by showing four major classes
of NS2 components, namely, network objects, packet-related objects, simulation-
related objects, and helper objects in Sect. 5.1. A part of the CCC class hierarchy,
which is related to network objects, is also shown here. Section 5.2 presents class
NsObjectwhich acts as a template for all network objects. An example of network
objects as well as packet forwarding mechanism are illustrated through class
Connector in Sect. 5.3. Finally, the chapter summary is given in Sect. 5.4. Note
that the readers who are not familiar with OOP are recommended to go through a
review of the OOP polymorphism concept in Appendix B before proceeding further.

1Class Queue is a child class of class Connector.

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 5, © Springer Science+Business Media, LLC 2012

97

98 5 Network Objects: Creation, Configuration, and Packet Forwarding

5.1 Overview of NS2 Components

5.1.1 Functionality-Based Classification of NS2 Modules

Based on the functionality, NS2 modules (or objects) can be classified into four
following types:

• Network objects are responsible for sending, receiving, creating, and destroy-
ing packet-related objects. Since these objects are those derived from class
NsObject, they will be referred to hereafter as NsObjects.

• Packet-related objects are various types of packets which are passed around a
network.

• Simulation-related objects control simulation timing and supervise the entire
simulation. As discussed in Chap. 4, examples of simulation-related objects are
events, handlers, the Scheduler, and the Simulator.

• Helper objects do not explicitly participate in packet forwarding. However,
they implicitly help to complete the simulation. For example, a routing module
calculates routes from a source to a destination, while network address identifies
each of the network objects.

In this chapter, we focus only on network objects. Note that, the simulation-
related objects were discussed in Chap. 4. The packet-related objects will be
discussed in Chap. 8. The main helper objects will be discussed in Chap. 15.

5.1.2 CCC Class Hierarchy

This section gives an overview of CCC class hierarchies. The entire hierarchy
consists of over 100 CCC classes and struct data types. Here, we only show
a part of the hierarchy (in Fig. 5.1). The readers are referred to [18] for the complete
class hierarchy.

As discussed in Chap. 3, all classes deriving from class TclObject form the
compiled hierarchy. Classes in this hierarchy can be accessed from the OTcl domain.
For example, they can be created by the global OTcl procedure “newf...g.”
Classes derived directly from class TclObject include network classes (e.g.,
NsObject), packet-related classes (e.g., PacketQueue), simulation- related
classes (e.g., Scheduler), and helper classes (e.g., Routing- Module). Again,
classes that do not need OTcl counterparts (e.g., classes derived from class
Handler) form their own standalone hierarchies. These hierarchies are not a part
of the compiled hierarchy nor the interpreted hierarchy.

As discussed in Chap. 4, class Handler specifies an action associated with
an event. Again, class Handler contains a pure virtual function handle(e)
(see Program 4.1). Therefore, its derived classes are responsible for providing

5.1 Overview of NS2 Components 99

TclObject

OTcl Interface

Handler

NsObject

Connector

AtHandler QueueHandlerPacketQueueSimulator

RoutingModule

Classifier LanRouter

Agent ErrorModel LinkDelayQueue Trace

Default Action

Network Component

Uni-directional Point-to-
point Object Connector

Fig. 5.1 A part of NS2 CCC class hierarchy (this chapter emphasizes on classes in boxes with
thick solid lines)

implementation of the function handle(e). For example, the function
handle(e) of class NsObject tells the NsObject to receive an incoming packet
(Program 4.2), while that of class QueueHandler invokes function resume()
of the associated Queue object (Lines 1–4 in Program 5.1; also see Sect. 7.3.2).

Program 5.1 Function handle(e) of class QueueHandler
//˜/ns/queue/queue.cc

1 void QueueHandler::handle(Event*)
2 {
3 queue_.resume();
4 }

There are three main classes deriving from class NsObject: Connector,
Classifier, and LanRouter. Connecting two NsObjects, a Connector ob-
ject immediately forwards a received packet to the connecting NsObject
(see Sect. 5.3). Connecting an NsObject to several NsObjects, a Classifier
object classifies packets based on packet header (e.g., destination address, flow
ID) and forwards the packets with the same classification to the same connecting
NsObject (see Sect. 6.2). Class LanRouter also has multiple connecting NsOb-
jects. However, it forwards every received packet to all connecting NsObjects.

100 5 Network Objects: Creation, Configuration, and Packet Forwarding

5.2 NsObjects: A Network Object Template

5.2.1 Class NsObject

Representing NsObjects, class NsObject is the base class for all network objects
in NS2 (see the declaration in Program 5.2). Again, the main responsibility of an
NsObject is to forward packets. Therefore, class NsObject defines a pure virtual
function recv(p,h) (see Line 5 in Program 5.2) as a uniform packet reception
interface to force all its derived classes to implement this function.

Program 5.2 Declaration of class NsObject
//˜/ns/common/object.h

1 class NsObject : public TclObject, public Handler {
2 public:
3 NsObject();
4 virtual ˜NsObject();
5 virtual void recv(Packet*, Handler* callback = 0) = 0;
6 virtual int command(int argc, const char*const* argv);
7 protected:
8 virtual void reset();
9 void handle(Event*);
10 int debug_;
11 };

Derived directly from class TclObject and Handler (see Program 5.2),
class NsObject is the template class for all NS2 network objects. It inherits
OTcl interfaces from class TclObject and the default action (i.e., function
handle(e)) from class Handler. In addition, it defines a packet reception tem-
plate and forces all its derived classes to provide packet reception implementation.

Function recv(p,h) is the very essence of packet forwarding mechanism
in NS2. In NS2, an upstream object maintains a reference to the connecting
downstream object. It passes a packet to the downstream object by invoking
the function recv(p,h) of the downstream object and feeding the packet and
optionally a handler as an input argument. Since NS2 focuses mainly on forwarding
packets in a downstream direction, NsObjects do not need to have a reference to
its upstream objects. In most cases, NsObject configuration involves downstream
(not upstream) objects only.

Function recv(p,h) takes two input arguments: a packet “*p” to be received
and a handler “*h.” Most invocation of function recv(p,h) involves only packet
“*p,” not the handler.2 For example, a Queue object (see Sect. 7.3.3) puts the
received packet in the buffer and transmits the packet at the head of the buffer.

2We will discuss the callback mechanism which involves a handler in Sect. 7.3.3.

5.3 Connectors 101

An ErrorModel object (see Sect. 15.3) imposes error probability on the received
packet and forwards the packet to the connecting object if the transmission is not in
error.

5.2.2 Packet Forwarding Mechanism of NsObjects

An NsObject forwards packets in two following ways:

• Immediate packet forwarding: To forward a packet to a downstream object, an
upstream object needs to obtain a reference (e.g., a pointer) to the downstream
object and invokes function recv(p,h) of the downstream object through
the obtained reference. For example, a Connector (see Sect. 5.3) has a pointer
“target_” to its downstream object. Therefore, it forwards a packet to its
downstream object by executing target_->recv(p,h).

• Delayed packet forwarding: To delay packet forwarding, a Packet object is
cast to be an Event object, associated with a packet receiving NsObject, and
placed on the simulation timeline at a given simulation time. At the firing time,
the function handle(e) of the NsObject will be invoked, and the packet will
be received through function recv(p,h) (see an example of delayed packet
forwarding in Sect. 5.3).

5.3 Connectors

As shown in Fig. 5.2, a Connector is an NsObject which connects three NsObjects
in a unidirectional manner. It receives a packet from an upstream NsObject. By
default, a Connector immediately forwards the received packet to its downstream
NsObject. Alternatively, it can drop the packet by forwarding the packet to a packet
dropping object.3

From Fig. 5.2, a Connector is interested in specifying its downstream NsObject
and packet dropping NsObject only. The connection from an upstream object to
a Connector, on the other hand, is configured by the upstream object, not by the
connector.

3A packet dropping network object (e.g., a null agent) is responsible for destroying packets.

102 5 Network Objects: Creation, Configuration, and Packet Forwarding

Upstream
NsObject

Connector

target_

drop_

NsObject

Packet forwarding path

Packet
dropping

path

Downstream
NsObject

NsObject

Packet Dropping
NsObject

NsObject

Fig. 5.2 Diagram of a connector: The solid arrows represent pointers, while the dotted arrows
show packet forwarding and dropping paths

Program 5.3 Declaration and function recv(p,h) of class Connector
//˜/ns/common/connector.h

1 class Connector : public NsObject {
2 public:
3 Connector();
4 inline NsObject* target() { return target_; }
5 void target (NsObject *target) { target_ = target; }
6 virtual void drop(Packet* p);
7 void setDropTarget(NsObject *dt) {drop_ = dt; }
8 protected:
9 virtual void drop(Packet* p, const char *s);
10 int command(int argc, const char*const* argv);
11 void recv(Packet*, Handler* callback = 0);
12 inline void send(Packet* p, Handler* h){target_->recv

(p, h);}
13
14 NsObject* target_;
15 NsObject* drop_; // drop target for this connector
16 };

//˜/ns/common/connector.cc
17 void Connector::recv(Packet* p, Handler* h){send(p, h);}

5.3.1 Class Declaration

Program 5.3 shows the declaration of class Connector. Class Connector con-
tains two pointers (Lines 14 and 15 in Program 5.3) to NsObjects4: “target_”

4Since class Connector contains two pointers to abstract object (i.e., class NsObject), it can
be regarded as an abstract user class for class composition discussed in Sect. B.8. We will discuss
the details of how the class composition concept applies to a Connector in the next section.

5.3 Connectors 103

and “drop_.” From Fig. 5.2, “target_” is the pointer to the connecting down-
stream NsObject, while “drop_” is the pointer to the packet dropping object.

Class Connector derives from the abstract class NsObject. It overrides
the pure virtual function recv(p,h), by simply invoking function send(p,h)
(see Line 12 in program 5.3). Function send(p,h) simply forwards the received
packet to its downstream object by invoking function recv(p,h) of the down-
stream object (i.e., target_->recv(p,h) in Line 12).

Program 5.4 Function drop of class connector
//˜/ns/common/connector.cc

1 void Connector::drop(Packet* p)
2 {
3 if (drop_ != 0)
4 drop_->recv(p);
5 else
6 Packet::free(p);
7 }

Program 5.4 shows the implementation of function drop(p), which drops
or destroys a packet. Function drop(p) takes one input argument, which is
a packet to be dropped. If the dropping NsObject exists (i.e., “drop_”¤ 0),
this function will forward the packet to the dropping NsObject by invoking
drop_->recv(p,h). Otherwise, it will destroy the packet by executing
“Packet::free(p)” (see Chap. 8). Note that function drop(p) is declared as
virtual (Line 9). Hence, classes derived from class Connector may override this
function without any function ambiguity.5

5.3.2 OTcl Configuration Commands

As discussed in Sect. 4.1, NS2 simulation consists of two phases: Network Con-
figuration Phase and Simulation Phase. In the Network Configuration Phase, a
Connector is set up as shown in Fig. 5.2. Again, a Connector configures its
downstream and packet dropping NsObjects only.

Suppose OTcl has instantiated three following objects: a Connector ob-
ject (conn_obj), a downstream object (down_obj), and a dropping object
(drop_obj). Then, the Connector is configured using the following two OTcl
commands (see Program 5.5):

5Function ambiguity is discussed in Appendix B.2.

104 5 Network Objects: Creation, Configuration, and Packet Forwarding

Program 5.5 OTcl commands target and drop-target of class Connector
//˜/ns/common/connector.cc

1 int Connector::command(int argc, const char*const* argv)
2 {
3 Tcl& tcl = Tcl::instance();
4 if (argc == 2) {
5 if (strcmp(argv[1], "target") == 0) {
6 if (target_ != 0)
7 tcl.result(target_->name());
8 return (TCL_OK);
9 }
10 if (strcmp(argv[1], "drop-target") == 0) {
11 if (drop_ != 0)
12 tcl.resultf("%s", drop_->name());
13 return (TCL_OK);
14 }
15 }
16 else if (argc == 3) {
17 if (strcmp(argv[1], "target") == 0) {
18 if (*argv[2] == ’0’) {
19 target_ = 0;
20 return (TCL_OK);
21 }
22 target_ = (NsObject*)TclObject::lookup(argv[2]);
23 if (target_ == 0) {
24 tcl.resultf("no such object %s", argv[2]);
25 return (TCL_ERROR);
26 }
27 return (TCL_OK);
28 }
29 if (strcmp(argv[1], "drop-target") == 0) {
30 drop_ = (NsObject*)TclObject::lookup(argv[2]);
31 if (drop_ == 0) {
32 tcl.resultf("no object %s", argv[2]);
33 return (TCL_ERROR);
34 }
35 return (TCL_OK);
36 }
37 }
38 return (NsObject::command(argc, argv));
39 }

• OTcl command target with one input argument conforms to the following
syntax:

$conn_obj target $down_obj

This command casts the input argument down_obj to be of type NsObject*
and stores it in the variable “target_” (Line 22).

5.3 Connectors 105

recv(p,h)=0;Upstream
network

component recv(p,h) { … };

Connector

target_

NsObject NsObject

ca
st

in
g

 recv(p,h){...};

TcpAgent

By declaration

Implementation
by

polymorphism

Fig. 5.3 A polymorphism implementation of a connector: A connector declares target as an
NsObject pointer. In the network configuration phase, the OTcl command target is invoked to
setup a downstream object of the Connector, and the NsObject *target is cast to a TcpAgent
object

• OTcl command target with no input argument (e.g., $conn_obj target)
returns OTcl instance corresponding to the CCC variable “target_”
(Line 5–9). Note that function name() of class TclObject returns the OTcl
reference string associated with the input argument.

• OTcl command drop-target with one input argument is very similar to that
of the OTcl command target but the input argument is cast and stored in the
variable “drop_” instead of the variable “target_.”

• OTcl command drop-target with no input argument is very similar to that
of the OTcl command target but it returns the OTcl instance corresponding to
the variable “drop_” instead of the variable “target_.”

Example 5.1. Consider the connector configuration in Figs. 5.2–5.3. Let the down-
stream object be of class TcpAgent, which corresponds to class Agent/Tcp in
the OTcl domain. Also, let a Agent/Null object be a packet dropping NsObject.
The following program shows how the network is set up from the OTcl domain:

set conn_obj [new Connector]
set tcp [new Agent/TCP]
set null [new Agent/Null]

$conn_obj target $tcp
$conn_obj drop-target $null

The first three lines create a Connector (conn), a TCP object (tcp), and a
packet dropping object (null). The last two lines use the OTcl commandstarget
and drop-target to set “tcp” and “null” as the downstream object and the
dropping object of the Connector, respectively. �

Connector configuration complies with the class composition programming
concept discussed in Appendix B.8. Table 5.1 shows the components in Example 5.1

106 5 Network Objects: Creation, Configuration, and Packet Forwarding

Table 5.1 Class composition
of network components in
Example 5.1

Abstract class NsObject

Derived class Agent/Tcp and Agent/Null
Abstract user class Connector
User class A Tcl simulation script

and the corresponding class composition. Classes Agent/TCP and Agent/Null
are OTcl classes whose corresponding CCC classes derive from class NsObject.
Class Connector stores pointers (i.e., “target_” and “drop_”) to NsObjects,
and is therefore considered to be an abstract user class. Finally, as a user class,
the Tcl Simulation Script instantiates NsObjects tcp, and null from classes
Agent/Tcp, and Agent/Null, respectively, and binds tcp and null to
variables target_ and drop_, respectively.

When invoking target and drop-target, tcp and null are first type-
cast to NsObject pointers. Then they are assigned to pointers target_ and to
drop_, respectively. Functions recv(p,h) of both tcp and null are associated
with class Agent/TCP and Agent/Null, respectively, since they both are virtual
functions.

5.3.3 Packet Forwarding Mechanism of Connectors

From Sect. 5.2.2, an NsObject forwards a packet in two ways: immediate and
delayed packet forwarding. This section demonstrates both the packet forwarding
mechanisms through a Connector.

5.3.3.1 Immediate Packet Forwarding

Immediate packet forwarding is carried out by invoking function recv(p,h) of a
downstream object. In Example 5.1, the Connector forwards a packet to the TCP ob-
ject by invoking function recv(p,h) of the TCP object (i.e., target_->recv
(p,h), where target_ is configured to point to a TCP object). CCC polymor-
phism is responsible for associating the functionrecv(p,h) to class Agent/TCP
(i.e., the construction type), not class NsObject (i.e., the declaration type).

5.3.3.2 Delayed Packet Forwarding

Delayed packet forwarding is implemented with the aid of the Scheduler. Here,
a packet is cast to an event, associated with a receiving NsObject, and placed on
the simulation timeline. For example, to delay packet forwarding in Example 5.1
by “d” seconds, we may invoke the following statement instead of target_->
recv(p,h).

5.3 Connectors 107

Fig. 5.4 Delayed packet forwarding mechanism

Scheduler& s = Scheduler::instance();
s.schedule(target_, p, d);

Consider Fig. 5.4 and Program 5.6 altogether. Figure 5.4 shows the diagram
of delayed packet forwarding, while Program 5.6 shows the details of functions
schedule(h,e,delay) as well as dispatch(p,t) of class Scheduler.
The statement “schedule(target_, p, d)” casts packet *p and the NsOb-
ject *target_ into Event and Handler objects, respectively (Line 1 of
Program 5.6). Line 5 of Program 5.6 associates the packet *p with the NsObject
*target_. Lines 6 and 7 insert the packet *p into the simulation timeline at the
appropriate time. At the firing time, the event (*p) is dispatched (Lines 9–14). The
Scheduler invokes functionhandle(p) of the handler associated with event *p. In
this case, the associated handler is the NsObject *target_. Therefore, in Line 13,
the default action handle(p) of “target_”, invokes function recv(p,h) to
receive the scheduled packet (see Program 4.2).

108 5 Network Objects: Creation, Configuration, and Packet Forwarding

Program 5.6 Functions schedule and dispatch of class Scheduler
//˜/ns/common/scheduler.cc

1 void Scheduler::schedule(Handler* h, Event* e, double delay)
2 {
3 ...
4 e->uid_ = uid_++;
5 e->handler_ = h;
6 e->time_ = clock_ + delay;
7 insert(e);
8 }

9 void Scheduler::dispatch(Event* p, double t)
10 ...
11 clock_ = t;
12 p->uid_ = -p->uid_; // being dispatched
13 p->handler_->handle(p); // dispatch
14 }

5.4 Chapter Summary

Referred to as an NsObject, a network object is responsible for sending, receiving,
creating, and destroying packets. As an object of class NsObject, it derives
OTcl interfaces from class TclObject and the default action (i.e., function
handle(e)) from class Handler. It defines a pure virtual function recv(p,h)
as a uniform packet reception interface for the derived classes. Based on the
polymorphism concept, the derived classes must provide their own implementation
of how to receive a packet.

In NS2, an NsObject needs to create a connection to its downstream object
only. Normally, an NsObject forwards a packet to a downstream object by invoking
function recv(p,h) of its downstream object. In addition, an NsObject can defer
packet forwarding by associating a packet to the downstream object and inserting
the packet on the simulation timeline. At the firing time, the scheduler dispatches
the packet, and the default action of the downstream object is invoked to receive the
packet.

As an example, we show the details of class Connector, one of the main
NsObject classes in NS2. Class Connector contains two pointers to NsObjects:
“target_” pointing to a downstream object and “drop_” pointing to a packet
dropping object. To configure a Connector, an object whose class derives from
class NsObject can be set as downstream and dropping objects via OTcl
commandtargetf...g and drop-targetf...g, respectively. These two OTcl
commands cast the downstream and dropping objects to NsObjects, and assign them
to CCC variables *target_ and *drop_, respectively.

5.5 Exercises 109

5.5 Exercises

1. What are the four types of NS2 objects? Explain their roles and differences
among them.

2. Class NsObject contains a pure virtual function. What is the name of the
function? Give a general description of the function. Why does it have to be
declared as pure virtual?

3. What is the function which is central to packet reception mechanism?

4. What are the two packet reception methods? Explain their purposes and how they
are implemented in NS2. Formulate an example from class Connector to show
the process in time sequence.

5. Demonstrate how a packet is dropped in the CCC domain. Can you drop a packet
from within any CCC class? Explain your answer via an example CCC class.

Chapter 6
Nodes as Routers or Computer Hosts

This chapter focuses on a basic network component, Node. In NS2, a Node acts as
a computer host (e.g., a source or a destination) and a router (e.g., an intermediate
node). It receives packets from an attached application or an upstream object, and
forwards them to the attached links specified in the routing table (as a router) or
delivers them from/to transport layer agents (as a host).

In the following, we first give an overview of routing mechanism and Nodes
in Sect. 6.1. Sections 6.2–6.4 discuss three main routing components: classifiers,
routing modules, and route logic, respectively. In Sect. 6.5, we show how the
aforementioned Node components are assembled to compose a Node. Finally, the
chapter summary is provided in Sect. 6.6.

6.1 An Overview of Nodes in NS2

6.1.1 Routing Concept and Terminology

In NS2, routing has a broader definition than that usually used in practice. Routing
usually refers to a network layer operation which determines the route along which
a packet should be forwarded to its destination. In NS2, routing is an act of
forwarding a packet from one NsObject to another. It can occur within a Node (i.e.,
no communication), from a Node to a link (i.e., network layer), between a Node and
an agent (i.e., transport layer), and so on. In order to avoid confusion, let us define
the following terminologies:

• Routing mechanism: An act of determining and passing packets according to
predefined routing rules

• Routing rule or route entry: A rule which determines where a packet should be
forwarded to; it is usually expressed in the form of (dst,target) – meaning
that packets destined for “dst” should be forwarded to “target.”

• Routing table: A collection of routing rules

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 6, © Springer Science+Business Media, LLC 2012

111

112 6 Nodes as Routers or Computer Hosts

Fig. 6.1 Node architecture

• Routing algorithm: An algorithm which computes routing rules (e.g., Dijkstra
algorithm [19])

• Routing protocol: A communication protocol designed to update the routing rules
according to dynamic environment (e.g., Ad hoc On-demand Distance Vector
(AODV) [24])

• Routing agent: An entity which gathers parameters (e.g., network topology)
necessary to compute routing rules.

• Route logic: An NS2 component which runs the routing algorithm (i.e., comput-
ing routing rules)

• Router: An entity which run routing mechanism; in NS2, this entity is an address
classifier.

• Routing module: A single point of management, which manages a group of
classifiers

This chapter focuses on static routing, which involves the following main NS2
components: Nodes, classifiers, routing modules, route logic.

6.1.2 Architecture of a Node

A Node is an OTcl composite object whose architecture is shown in Fig. 6.1.
Nodes are defined in an OTcl class Node, which is bound to CCC class with
the same name. A Node consists of two main components: an address classi-
fier (instvar classifier_) and a port classifier (instvar dmux_). These two
components have one entry point and multiple forwarding targets. An address
classifier acts as a router which receives a packet from an upstream object and
forwards the packet to one of its connecting links based on the address embedded
in packet header. A port classifier acts as a transport layer bridge – taking a
packet from the address classifier (in case that the packet is destined to this
particular node), and forwarding the packet to one of the attached transport layer
agents.

6.1 An Overview of Nodes in NS2 113

6.1.3 Default Nodes and Node Configuration Interface

A default NS2 Node is based on flat-addressing and static routing. With flat-
addressing, an address of every new node is incremented by one from that of the
previously created node. Static routing assumes no change in topology. The routing
table is computed once at the beginning of the Simulation phase and does not
change thereafter. By default, NS2 uses the Dijkstra’s shortest path algorithm [19]
to compute optimal routes for all pairs of Nodes. Again, this chapter focuses on
Nodes with flat-addressing and static routing only. The details about other routing
protocols as well as hierarchical addressing can be found in the NS manual [17].

To provide a default Node with more functionalities such as link layer or Medium
Access Control (MAC) protocol functionalities, we may use the instproc node-
config of class Simulator whose syntax is as follows:

$ns node-config -<option> [<value>]

where $ns is the Simulator object.
An example use of the instproc node-configfargsg for the default setting is

shown below:

$ns_ node-config -addressType flat
-adhocRouting
-llType
-macType
-propType
-ifqType
-ifqLen
-phyType
-antType
-channel
-channelType
-topologyInstance

By default, almost every option is specified as NULL with the exception of
addressType, which is set to be flat addressing. The instproc node-config
has an option reset, i.e.,

$ns node-config -reset

which is used to restore default parameter setting. The details of instproc node-
config (e.g., other options) can be found in the file ˜ns/tcl/lib/ns-lib.tcl and [17].

Note that this instproc does not immediately configure the Nodes as specified
in the <option>. Instead, it stores <value> in the instvars of the Simulator
corresponding to <option>. This stored configuration will be used during a Node
construction process. As a result, the instproc node-config must be executed
before Node construction.

114 6 Nodes as Routers or Computer Hosts

6.2 Classifiers: Multi-Target Packet Forwarders

A classifier is a packet forwarding object with multiple connecting targets. It
classifies incoming packets according to a predefined criterion (e.g., destination
address or transport layer port). Packets with the same category are forwarded to
the same NsObject.

NS2 implements classifiers using the concept of slots. A slot is a placeholder for
a pointer to an NsObject. It is associated with a packet category. When a packet
arrives, a classifier determines the packet category and forwards the packet to the
NsObject whose pointer was installed in the associated slot.

In the following, we shall discuss the details of two main processes of classifiers:
configuration and internal mechanism. Configuration defines what the users ask a
classifier to perform. It includes the following main steps:

1. Define the categories
2. Identify a corresponding slot as well as a forwarding NsObject for each category
3. Install the NsObject pointer in the selected slot

Internal mechanism is what a classifier does to carry out the requirement
provided by users. It usually begins with the CCC function recv(p,h).

For example, suppose we would like to attach a node to a transport layer agent at
the port number 50. In the configuration, we install the agent in slot number 50. The
internal mechanism is to tell the classifier the following: send all the packets whose
port number is 50 to the NsObject whose pointer is in the slot number 50.

6.2.1 Class Classifier and Its Main Components

NS2 implements classifiers in a CCC class Classifier (see the declaration
in Program 6.1), which is bound to an OTcl class with the same name. The main
components of a classifier include the following.

6.2.1.1 CCC Variables

The CCC class Classifier has two key variables: slot_ and default_
target_ (Lines 13 and 14 in Program 6.1). The variable slot_ is a link list
whose entries are pointers to downstream NsObjects. Each of these NsObjects
corresponds to a predefined criterion. Packets matching with a certain criterion
are forwarded to the corresponding NsObject. The variable default_target_
points to a downstream NsObject for packets which do not match with any
predefined criterion.

6.2 Classifiers: Multi-Target Packet Forwarders 115

Program 6.1 Declaration of class Classifier
//˜/ns/classifier/classifier.h

1 class Classifier : public NsObject {
2 public:
3 Classifier();
4 virtual ˜Classifier();
5 virtual void recv(Packet* p, Handler* h);
6 virtual NsObject* find(Packet*);
7 virtual int classify(Packet *);
8 virtual void clear(int slot);
9 virtual void install(int slot, NsObject*);
10 inline int mshift(int val) {return((val >> shift_) &

mask_);}
11 protected:
12 virtual int command(int argc, const char*const* argv);
13 NsObject** slot_;
14 NsObject *default_target_;
15 int shift_;
16 int mask_;
17 };

The class Classifier also have two supplementary variables: shift_
(Line 15) and mask_ (Line 16). These two variables are used in function mshift
(val) (Line 10) to reformat the address (see also Sect. 15.4).

6.2.1.2 CCC Functions

The main CCC functions of class Classifier are shown below:

Configuration Functions

install(slot,p) Store the input NsObject pointer “p” in the slot
number “slot’.

install_next(node) Install the NsObject pointer “node” in the next
available slot.

do_install Similar to installfslot,pg but the input
parameter dst is a string instead of an integer.(dst,target)

clear(slot) Remove the NsObject pointer installed in the slot
number “slot.”

mshift(val) Shift val to the left by “shift_” bits. Masks the
shifted value using a logical AND (&) operation with
“mask_.”

116 6 Nodes as Routers or Computer Hosts

Packet Forwarding (i.e., Internal) Functions

recv(p,h) Receive a packet *p and handler *h.
find(p) Return a forwarding NsObject pointer for an incoming

packet *p.
classify(p) Return a slot number whose associated criterion matches with

the header of an incoming packet *p.

6.2.1.3 Main Configuring Interface

CCC Functions

Program 6.2 shows the details of key CCC configuration functions. Function
install(slot,p) stores the input NsObject pointer “p” in the slot number
“slot” of the variable “slot_” (Line 5). Function install_next(node)
installs the input NsObject pointer “node” in the next available slot (Lines
10 and 11). Function do_install(dst,target) converts “dst” to be an
integer variable (Line 21), and installs the NsObject pointer “target” in the slot
corresponding to “dst” (Line 22). Finally, function clear(slot) removes the
installed NsObject pointer from the slot number “slot” of the variable “slot_”
(Line 16).

OTcl Commands

Class Classifier also defines the following key OTcl commands in a
CCC function command(...) of class Classifier (in the file ˜ns/classifier/
classifier.cc).

slotfindexg Return the NsObject stored in the slot
number index

clearfslotg Clear the NsObject pointer installed in the
slot number slot.

installfindex objectg Install object in the slot numberindex.
installNextfobjectg Install object in the next available slot.

defaulttargetfobjectg Store object in the CCC variable
default_target_.

6.2.1.4 Main Internal Mechanism

As an NsObject, a classifier receives a packet by having its upstream object invoke
its function recv(p,h), passing a packet pointer “p” and a handler pointer “h” as

6.2 Classifiers: Multi-Target Packet Forwarders 117

Program 6.2 Functions install, install next, clear, and do install
of class Classifier

//˜ns/classifier/classifier.cc
1 void Classifier::install(int slot, NsObject* p)
2 {
3 if (slot >= nslot_)
4 alloc(slot);
5 slot_[slot] = p;
6 if (slot >= maxslot_)
7 maxslot_ = slot;
8 }

9 int Classifier::install_next(NsObject *node) {
10 int slot = maxslot_ + 1;
11 install(slot, node);
12 return (slot);
13 }

14 void Classifier::clear(int slot)
15 {
16 slot_[slot] = 0;
17 if (slot == maxslot_)
18 while (--maxslot_ >= 0 && slot_[maxslot_] == 0);
19 }

//˜ns/classifier/classifier.h
20 virtual void do_install(char* dst, NsObject *target) {
21 int slot = atoi(dst);
22 install(slot, target);
23 }

input arguments. In Program 6.3, Line 3 determines a forwarding NsObject “node”
for an incoming packet *p, by invoking function find(*p). Then, Line 8 passes
the packet pointer “p” and the handler pointer “h” to its forwarding NsObject
*node by executing node->recv(p,h).

Function find(p) (Lines 10–18 in Program 6.3) examines the incoming packet
*p and retrieves the matched NsObject pointer installed in the variable slot_.
Line 13 invokes function classify(p) to retrieve the slot number (i.e., the
variable cl) corresponding to the packet *p. Then, Lines 14 and 17 return the
NsObject pointer (i.e., node) stored in the slot numbercl of the variableslot_.

Function classify(p) is perhaps the most important function of a clas-
sifier. This is the place where the classification criterion is defined. Function
classify(p) returns the slot number which matches with the input packet
*p under the predefined criterion. Since the classification criteria could be
different for different types of classifiers, function classify(p) is usually

118 6 Nodes as Routers or Computer Hosts

Program 6.3 Functions recv and find of class Classifier
//˜/ns/classifier/classifier.cc

1 void Classifier::recv(Packet* p, Handler* h)
2 {
3 NsObject* node = find(p);
4 if (node == NULL) {
5 Packet::free(p);
6 return;
7 }
8 node->recv(p,h);
9 }

10 NsObject* Classifier::find(Packet* p)
11 {
12 NsObject* node = NULL;
13 int cl = classify(p);
14 if (cl < 0 || cl >= nslot_ || (node = slot_[cl]) == 0) {
15 /*There is no potential target in the slot;*/
16 }
17 return (node);
18 }

Program 6.4 Function classify of class PortClassifier
//˜ns/classifier/classifier-port.cc

1 int PortClassifier::classify(Packet *p)
2 {
3 hdr_ip* iph = hdr_ip::access(p);
4 return iph->dport();
5 }

overridden in the derived classes of class Classifier. In Sects. 6.2.2 and 6.2.3,
we show two example implementations of function classify(p) in classes
PortClassifier and DestHashClassifier, respectively.

6.2.2 Port Classifiers

Derived from class Classifier, class PortClassifier classifies packets
based on the destination port. From Lines 3 and 4 in Program 6.4, function
classify(p) returns the destination port number of the IP header of the
incoming packet *p.

A port classifier is used as a demultiplexer which bridges a node to receiving
transport layer agents. It determines the transport layer port number stored in
the header of the received packet *p. Suppose the port number is cl. Then the

6.2 Classifiers: Multi-Target Packet Forwarders 119

Fig. 6.2 Hash terminology and relevant functions of class HashClassifier

packet is forwarded to the NsObject associated with slot_[cl]. By installing a
pointer to a receiving transport layer agent in slot_[cl], the classifier forwards
packets whose destination port is “cl” to the associated agent. The details of how
a port classifier bridges a Node to a transport layer agent will be discussed later in
Sect. 6.5.3.

6.2.3 Hash Classifiers

From Fig. 6.1, another important classifier in a Node is address classifier. In NS2,
address classifiers are implemented in so-called hash classifiers.

6.2.3.1 An Overview of Hash Classifiers

Hash table is a data structure which facilitates a key-value lookup process.1 The
lookup process is facilitated by hashing the key into a readily manageable form.
The results are stored in a so-called hash-table. The lookup is carried out over the
hash table instead of the original table to expedite the lookup process.

Before proceeding further, let us introduce the following hashing terminologies.
In this respect, consider, as an example, a hash classifier which classifies packets
based on three input parameters: flow ID, source address, and destination address
in Fig. 6.2.

1Suppose we have a table which associates keys and values. Given a key, the lookup process
searches in the table for the matched key, and returns the corresponding value.

120 6 Nodes as Routers or Computer Hosts

• A key: Keywords we would like to find (e.g., flow ID, source address, and
destination address)

• A value: An entry paired with a key (e.g., a pointer to an NsObject)
• A hash function: A function which hashes (i.e., transforms) a key into a hash key
• A hash key: A transformed key; a lookup process will search over hash keys,

rather than the original keys.
• A hash value: An entry paired with a hash key (e.g., index of the variable slot_)
• A lookup table: A table consists of (key,value) pairs.
• A hash table: A table consists of (hash-key, hash-value) pairs.
• A record (or an entry): A pair of (key,value)
• A hash record (or a hash entry): A pair of (hash-value, hash-value)2

Address classifiers classify packets based on the destination address. In this
respect, an address and an NsObject are viewed as a key and a value, respectively.
A hash classifier hashes an address into a hash key (internal to NS2), which is
associated with a hash value (i.e., the slot number in which the NsObject is installed)
by the underlying hash table. When receiving a packet, an address classifier looks
up the slot number from the hash table, rather than the original lookup table. This
eliminates the need to compare records one by one and greatly expedites the lookup
process.

6.2.3.2 CCC Implementation of Class HashClassifier

The hash classifiers classify packets based on one or more of the following
criteria: flow ID, source address, and destination address. NS2 defines a CCC class
HashClassifier as a template. All the helper functions are defined here, but the
key function classify(p), which defines packet classification criteria, is defined
by its derived classes.

Program 6.5 shows the details of a CCC class HashClassifier which is
mapped to an OTcl class Classifier/Hash. Class HashClassifier has
three main variables. First, variable default_ (Line 15) contains the default slot
for a packet which does not match with any entry in the table. Second, variable ht_
(Line 16) is the hash table. Finally, variable keylen_ (Line 17) is the number of
components in a key. By default, a key consists of flow ID, source address, and
destination address, and the value of keylen_ is 3.

The key functions of class HashClassifier are shown below (see also
Fig. 6.2):

2Since a record and a hash record have one-to-one relationship, we shall use these two terms
interchangeably.

6.2 Classifiers: Multi-Target Packet Forwarders 121

Program 6.5 Declaration of class HashClassifier
//˜ns/classifier/classifier-hash.h

1 class HashClassifier : public Classifier {
2 public:
3 HashClassifier(int keylen): default_(-1),

keylen_(keylen);
4 ˜HashClassifier();
5 virtual int classify(Packet *p);
6 virtual long lookup(Packet* p) ;
7 void set_default(int slot) { default_ = slot; }
8 protected:
9 long lookup(nsaddr_t src, nsaddr_t dst, int fid);
10 void reset();
11 int set_hash(nsaddr_t src, nsaddr_t dst, int fid, long

slot);
12 long get_hash(nsaddr_t src, nsaddr_t dst, int fid);
13 virtual int command(int argc, const char*const* argv);
14 virtual const char* hashkey(nsaddr_t, nsaddr_t, int)=0;
15 int default_;
16 Tcl_HashTable ht_;
17 int keylen_;
18 };

lookup(p) Return the slot number which matches with the in-
coming packet p.

lookup(src,... Return the slot number whose corresponding
source address, destination address, and flow ID
are src, dst, and fid, respectively.

dst,fid)

set_hash(src,... Hash the key (src,dst,fid) into a hash key, and
dst,fid,slot) associates the hash key with the slot number slot.

get_hash(src,... Return the slot number which matches with the
key (src,dst,fid).dst,fid)

hashkey(src,...) Return a hash key for the input key (src,dst,fid).
dst,fid) This function is pure virtual and should be overridden

by child classes of class HashClassifier.

Program 6.6 shows the details of functionslookup(p) and get_hash(src,
dst,fid) of class HashClassifier. Function lookup(p) retrieves a key
associated with the packet *p. It then asks the function get_hash(...) for the
corresponding hash value (i.e., slot number).

In Line 6, function get_hash(...) invokes function hashkey(...) to
determine the hash key corresponding to the input key (src,dst,fid). Then,
function Tcl_FindHashEntry .: : :/ locates the hash record in the hash table
which matches with the hash key. If the record was found, function Tcl_GetHash
Value(ep) will retrieve and return the corresponding hash value (i.e., slot

122 6 Nodes as Routers or Computer Hosts

Program 6.6 Functions lookup and get hash of class HashClassifier
//˜ns/classifier/classifier-hash.cc

1 long HashClassifier::lookup(Packet* p) {
2 hdr_ip* h = hdr_ip::access(p);
3 return get_hash(mshift(h->saddr()),mshift(h->daddr()),

h->flowid());
4 }

5 long HashClassifier::get_hash(nsaddr_t src,
nsaddr_t dst, int fid) {

6 Tcl_HashEntry *ep= Tcl_FindHashEntry(&ht_,
hashkey(src, dst, fid));

7 if (ep)
8 return (long)Tcl_GetHashValue(ep);
9 return -1;
10 }

number) to the caller. Note that the function hashkey(...) is declared as pure
virtual in class HashClassifier and must be overridden by the child classes of
class HashClassifier.

6.2.3.3 Child Classes of Class HashClassifier

Class HashClassifier has four major child classes (class names on the left and
right are compiled and interpreted classes, respectively):

• DestHashClassifier , Classifier/Hash/Dest: classifies packets
based on the destination address.

• SrcDestHashClassifier, Classifier/Hash/SrcDest: classifies
packets based on source and destination addresses.

• FidHashClassifier , Classifier/Hash/Fid: classifies packets
based on a flow ID.

• SrcDestFidHashClassifier , Classifier/Hash/SrcDestFid:
classifies packets based on source address, destination address, and flow ID.

6.2.3.4 CCC Class DestHashClassifier

As an example, consider class DestHashClassifier (Program 6.7), a child
class of class HashClassifier, which classifies incoming packets by the
destination address only. Class DestHashClassifier overrides functions
classify(p),do_install(dst,target), andhashkey(...), and uses
other functions (e.g., lookup(p)) of class HashClassifier (i.e., its parent
class).

6.2 Classifiers: Multi-Target Packet Forwarders 123

Program 6.7 Declaration of class DestHashClassifier
//˜ns/classifier/classifier-hash.h

1 class DestHashClassifier : public HashClassifier {
2 public:
3 DestHashClassifier() : HashClassifier(TCL_ONE_WORD_KEYS)

{}
4 virtual int command(int argc, const char*const* argv);
5 int classify(Packet *p);
6 virtual void do_install(char *dst, NsObject *target);
7 protected:
8 const char* hashkey(nsaddr_t, nsaddr_t dst, int) {
9 long key = mshift(dst);
10 return (const char*) key;
11 }
12 };

Program 6.8 Functions classify and do install of class DestHash
Classifier

//˜ns/classifier/classifier-hash.cc
1 int DestHashClassifier::classify(Packet * p) {
2 int slot = lookup(p);
3 if (slot >= 0 && slot <=maxslot_)
4 return (slot);
5 else if (default_ >= 0)
6 return (default_);
7 else return (-1);
8 }

9 void DestHashClassifier::do_install(char* dst, NsObject

*target) {
10 nsaddr_t d = atoi(dst);
11 int slot = getnxt(target);
12 install(slot, target);
13 if (set_hash(0, d, 0, slot) < 0)
14 /* show error */
15 }

Program 6.8 shows the implementation of function classify(p) of class
DestHashClassifier. This function obtains a matching slot number “slot”
by invoking lookup(p) (Line 2; See also Fig. 6.3), and returns “slot” if it is
valid (Line 4). Otherwise, Line 6 will return the variable “default_.”3 If neither
slot nor default_ is valid, Line 7 will return –1, indicating no matching entry
in the hash table.

3The variable “default ” contains the default slot number. It is defined on Line 15 of
Program 6.5.

124 6 Nodes as Routers or Computer Hosts

Fig. 6.3 Flowchart of
function lookup(p)
invoked from class
DestHashClassifier

lookup(p)

Retrieving source address (src),
destination address (dst), and flow ID (fid)

from the header of packet p

get_hash(src, dst, fid)

(const char*) mshift(dst)

ep=Tcl_FindHashEntry(&ht_,)

(long)Tcl_GetHashValue(ep)

ep

src dst fid

Return
slot number

p

dst

HashClassifier

HashClassifier

hashkey(src, dst, fid) DestHashClassifier

Function do_install(dst,target) installs (Line 12) an NsObject
pointer target in the next available slot, and registers this installation in the
hash table (Line 13). Defined in class Classifier, function getnxt(target)
returns the available slot where target will be installed (see file ˜ns/classifier/
classifier.cc). Again, the statement set_hash(0,d,0,slot) hashes the key
with source address “0,” destination address “d,” and flow ID “0,” and associates
the result with the slot number “slot.” Finally function hashkey(...) in
Lines 8–11 of Program 6.7 returns the destination address, reformatted by function
mshift(...).

Figure 6.3 shows a process when a DestHashClassifier object invokes
function lookup(p). In this figure, the function name is indicated at the top
of each box, while the corresponding class is shown in the right of a block
arrow. The process follows what we have discussed earlier. The important point
here is that the only function defined in class DestHashClassifier is the
functionhashkey(...). Functionslookup(p) and get_hash(...) belong
to class HashClassifier. This is a beauty of OOP, since we only need to
override one function for a derived class (e.g., class DestHashClassifier),
and are able to reuse the rest of the code from the parent class (e.g., class
HashClassifier).

Later in Sect. 6.5.4, we shall discuss how a destination hash classifier is used to
perform routing functionality.

6.3 Routing Modules 125

6.2.4 Creating Your Own Classifiers

Here are the key steps for defining your own classifiers.

1. Design: Define criteria with tuples (criterion,slot,NsObject). If a
packet matches with the criterion, send the packet to the NsObject
installed in slot_[slot].

2. Class construction: Derive your CCC classifier class, for example, class
YourClassifier from class Classifier. Create a shadow OTcl class.

3. Internal mechanism: Override function classify(p) according to the design
in Step 1.

4. Configuration: In the OTcl domain, install the NsObject in the slot number
slot of the YourClassifier object. For example, let $clsfr be a
YourClassifier object and and $obj be an NsObject in the OTcl domain.
You can install $obj in the slot number 10 of $clsfr by executing the
following statement: $clsfr install 10 $obj.

6.3 Routing Modules

6.3.1 An Overview of Routing Modules

The main functionality of routing modules is to facilitate classifier management.
For example, consider Fig. 6.4, where ten address classifiers are connected to each
other. It would be rather inconvenient to configure all these ten classifiers using ten
OTcl statements.

The configuration process can be facilitated by maintaining a linear topology.
Even if the topology of classifiers is as complicated as a full mesh, the topology
of routing modules is always linear. We can feed a configuration command to the
first routing module in line, and let the routing modules propagate the configuration
command toward the end of the line. Since every classifier is connected to one
of these routing modules, the configuration command will eventually reach all the
classifiers.

Based on the above idea, NS2 uses the following route configuration principles:

1. Assign a routing module for a classifier and connect all related routing modules
in a linear topology.

2. Configure classifiers through the head routing module only.
3. Disallow direct classifier configuration.

These principles are implemented in various NS2 components such as routing
agents, the route logic, and Nodes. As we shall see later on, class Node makes no

126 6 Nodes as Routers or Computer Hosts

Agent

Link Link

Agent

next_rtm_

classifier_

RM1

next_rtm_

classifier_

RM2

0

next_rtm_

classifier_

RM11

Flow classifer
(classifier_)

Address classifier 1

Address classifier 10

PortClassifier

slot 10

R
outing M

odules
slot 1

...

...

Fig. 6.4 The relationship among routing modules and classifiers in a node

attempt to directly modify its classifiers (e.g., instvars classifier_ and dmux_
in Fig. 6.1). Instead, it provides instprocs add-routef...g and attachf...g,
which ask the related routing modules to propagate the configuration commands on
its behalf.

6.3.2 CCC Class RoutingModule

Program 6.9 shows the declaration of class RoutingModule, which has three
main variables. Variable classifier_ in Line 15 is a pointer to a Classifier
object. This variable is bound to an OTcl instvar with the same name (Line 26).

A linear topology of routing modules is created using of a pointer next_rtm_
(Line 12), which points to another RoutingModule object. Finally, variable “n_”
in Line 14 is a pointer to the associated Node object. These three variables are
initialized to NULL in the constructor (Line 15).

The key functions of class RoutingModule include the followings (see
Program 6.10):

6.3 Routing Modules 127

Program 6.9 Declaration and the constructor of a CCC class RoutingModule
which is bound to an OTcl class RtModule

//˜ns/routing/rtmodule.h
1 class RoutingModule : public TclObject {
2 public:
3 RoutingModule();
4 inline Node* node() { return n_; }
5 virtual int attach(Node *n) { n_ = n; return TCL_OK; }
6 virtual int command(int argc, const char*const* argv);
7 virtual const char* module_name() const { return NULL; }
8 void route_notify(RoutingModule *rtm);
9 void unreg_route_notify(RoutingModule *rtm);
10 virtual void add_route(char *dst, NsObject *target);
11 virtual void delete_route(char *dst, NsObject *nullagent);
12 RoutingModule *next_rtm_;
13 protected:
14 Node *n_;
15 Classifier *classifier_;
16 };

17 static class RoutingModuleClass : public TclClass {
18 public:
19 RoutingModuleClass() : TclClass("RtModule") {}
20 TclObject* create(int, const char*const*) {
21 return (new RoutingModule);
22 }
23 } class_routing_module;

24 RoutingModule::RoutingModule() :
25 next_rtm_(NULL), n_(NULL), classifier_(NULL) {
26 bind("classifier_", (TclObject**)&classifier_);
27 }

node() Return the attached Node object n_.
attach(n) Store an input Node object “n” in the

variable n_.
module_name() Return the name of the routing module.

route_notify(rtm) Add an input RoutingModule *rtm to
the end of the link list.

unreg_route_notify(rtm) Remove an input RoutingModule
pointer *rtm from the link list.

add_route(dst,target) Inform every classifier associated with
the link list to add a routing rule
(dst,target).

delete_route(... Inform every classifier in the link list to
delete a routing rule with destination dst.dst,nullagent)

128 6 Nodes as Routers or Computer Hosts

Program 6.10 Functions route notify, unreg route notify, add
route, and delete route of class RoutingModule

//˜ns/routing/rtmodule.cc
1 void RoutingModule::route_notify(RoutingModule *rtm) {
2 if (next_rtm_ != NULL)
3 next_rtm_->route_notify(rtm);
4 else
5 next_rtm_ = rtm;
6 }

7 void RoutingModule::unreg_route_notify(RoutingModule *rtm) {
8 if (next_rtm_) {
9 if (next_rtm_ == rtm) {
10 next_rtm_ = next_rtm_->next_rtm_;
11 }
12 else {
13 next_rtm_->unreg_route_notify(rtm);
14 }
15 }
16 }

17 void RoutingModule::add_route(char *dst, NsObject *target)
18 {
19 if (classifier_)
20 classifier_->do_install(dst,target);
21 if (next_rtm_ != NULL)
22 next_rtm_->add_route(dst,target);
23 }

24 void RoutingModule::delete_route(char *dst, NsObject

*nullagent)
25 {
26 if (classifier_)
27 classifier_->do_install(dst,nullagent);
28 if (next_rtm_)
29 next_rtm_->add_route(dst,nullagent);
30 }

Consider Program 6.10. Lines 1–16 show the details of functions route_
notify(rtm) andunreg_route_notify(rtm). Functionroute_notify
(rtm) recursively invokes itself (Line 3) until it reaches the last routing mod-
ule in the link list, where next_rtm_ is NULL. Then, it attaches the input
routing module *rtm as the last component of the link list (Line 5). Function
unreg_route_notify(rtm) recursively searches down the link list (Line 13)
until it finds and removes the input routing module pointer “rtm” (Lines 9 and 10).

Lines 17–30 show the details of functions add_route(dst, target) and
delete_route(dst,nullagent). Function add_route(dst,target)
takes a destination node “dst” and a forwarding NsObject pointer “target” as
input arguments. It installs the pointer “target” in all the associated classifiers

6.3 Routing Modules 129

(Line 20). Again, this routing rule is propagated down the link list (Line 22),
until reaching the last element of the link list. Function delete_route(dst,
nullagent) does the opposite. It recursively installs a null agent “nullagent”
(i.e., a packet dropping point) as the target for packets destined for a destination
node “dst” in all the classifiers, essentially removing the routing rule with the
destination “dst” from all the classifiers.

6.3.3 OTcl Class RtModule

In the OTcl domain, the routing module is defined in class RtModule bound
to the CCC class RoutingModule. Class RtModule has two instvars:
classifier_ and next_rtm_. The instvar classifier_ is bound to the
class variable in the CCC domain with the same name, while the instvar next_
rtm_ is not.4

The OTcl class RtModule also defines the following instprocs and OTcl
commands. For brevity, we show the details of some instprocs in Program 6.11.
The details of other instprocs and OTcl command can be found in file ˜ns/tcl/lib/ns-
rtmodule.tcl and ˜ns/routing/rtmodule.cc, respectively.

6.3.3.1 Initialization Instprocs

registerfnodeg Create two-way connection to the in-
put node (Lines 1–13).

unregisterfg Remove itself from the associated
node and the chain of routing modules
(see the file).

attach-nodefnodeg Set the CCC variable n_ to point to
the input node (OTcl command; see
the file).

route-notifyfmoduleg Store the incoming module as the
last element in the OTcl chain of rout-
ing modules (Lines 14–21).

unreg-route-notifyfmoduleg Remove the incoming module from
the OTcl chain of routing modules
(see the file).

4Caution: When creating a chain of routing modules, use instproc route notifyf...g. If
you directly configure the instvar next rtm , the CCC variable next rtm will not be
automatically configured.

130 6 Nodes as Routers or Computer Hosts

Program 6.11 Related Instprocs of OTcl classes RtModule and RtModule/
Base

//˜/ns/tcl/lib/ns-rtmodule.tcl
1 RtModule instproc register { node } {
2 $self attach-node $node
3 $node route-notify $self
4 $node port-notify $self
5 }

6 RtModule/Base instproc register { node } {
7 $self next $node
8 $self instvar classifier_
9 set classifier_ [new Classifier/Hash/Dest 32]
10 $classifier_ set mask_ [AddrParams NodeMask 1]
11 $classifier_ set shift_ [AddrParams NodeShift 1]
12 $node install-entry $self $classifier_
13 }

14 RtModule instproc route-notify { module } {
15 $self instvar next_rtm_
16 if {$next_rtm_ == ""} {
17 set next_rtm_ $module
18 } else {
19 $next_rtm_ route-notify $module
20 }
21 }

22 RtModule instproc add-route { dst target } {
23 $self instvar next_rtm_
24 [$self set classifier_] install $dst $target
25 if {$next_rtm_ != ""} {
26 $next_rtm_ add-route $dst $target
27 }
28 }

29 RtModule instproc attach { agent port } {
30 $agent target [[$self node] entry]
31 [[$self node] demux] install $port $agent
32 }

6.3.3.2 Instprocs for Configuring Classifiers

add-routefdst targetg Propagate a routing rule (dst,
target) to all the attached classi-
fiers (Lines 22–28).

delete-routefdst nullagentg Remove a routing rule whose desti-
nation is “dst” (see the file).

6.3 Routing Modules 131

attachfagent portg Install the “agent” in the slot number “port”
of the demultiplexer “dmux_” of the associated
Node (Lines 29–32). We shall discuss the details
of transport layer agent attachment in Sect. 6.5.3.

6.3.4 Built-in Routing Modules

6.3.4.1 The List of Built-in Routing Modules

The CCC class RoutingModule and the OTcl class RtModule are not actually
in use. They are just the base classes from which the following routing module
classes derive.

Routing module CCC class OTcl class

Routing module RoutingModule RtModule
Base routing module (default) BaseRoutingModule RtModule/Base
Multicast routing module McastRoutingModule RtModule/Mcast
Hierarchical routing module HierRoutingModule RtModule/Hier
Manual routing module ManualRoutingModule RtModule/Manual
Source routing module SourceRoutingModule RtModule/Source
Quick start for TCP/IP routing module

(determine initial congestion window)
QSRoutingModule RtModule/QS

Virtual classifier routing module VCRoutingModule RtModule/VC
Pragmatic general multicast routing

module (reliable multicast)
PgmRoutingModule RtModule/PGM

Light-weight multicast services routing
module (reliable multicast)

LmsRoutingModule RtModule/LMS

Among these classes, the base routing module are the most widely used. As an
example, we shall discuss the details of the base routing module.

6.3.4.2 CCC Class BaseRoutingModule and OTcl Class
RtModule/Base

Base routing modules are the default routing modules used for static routing. Again,
they are represented in the CCC class BaseRoutingModule bound to the
OTcl class RtModule/Base. From Program 6.12, class BaseRoutingModule
derives from class RoutingModule. It overrides function module_name(),
by setting its name to be “Base” (Line 4). A base routing module classifies
packets based on its destination address only. Therefore, the type of the variable
classifier_ is defined as a DestHashClassifier pointer (Line 7).

132 6 Nodes as Routers or Computer Hosts

Program 6.12 Declaration of class BaseRoutingModule which is bound to the
OTcl class RtModule/Base

//˜ns/routing/rtmodule.h
1 class BaseRoutingModule : public RoutingModule {
2 public:
3 BaseRoutingModule() : RoutingModule() {}
4 virtual const char* module_name() const { return "Base";

}
5 virtual int command(int argc, const char*const* argv);
6 protected:
7 DestHashClassifier *classifier_;
8 };

//˜ns/routing/rtmodule.cc
9 static class BaseRoutingModuleClass : public TclClass {
10 public:
11 BaseRoutingModuleClass() : TclClass("RtModule/Base") {}
12 TclObject* create(int, const char*const*) {
13 return (new BaseRoutingModule);
14 }
15 } class_base_routing_module;

In the OTcl domain, class RtModule/Base also overrides instproc
registerfnodeg of class RtModule (Lines 6–13 in Program 6.11). In addition
to creating a two-way connection to the input Node object node (performed by
its base class), the base routing module creates (Line 9) and installs (Line 12)
a destination hash classifier inside the node. We shall discuss the details of the
instproc install-entryf...g later in Sect. 6.5.2.

6.4 Route Logic

The main responsibility of a route logic object is to compute the routing table. Route
logic is implemented in a CCC class RouteLogic which is bound to the OTcl
class with the same name (see Program 6.13).

6.4.1 CCC Implementation

The CCC Class RouteLogic has two key variables: “adj_” (Line 14), which is
the adjacency matrix used to compute the routing table, and “route_” (Line 15),
which is the routing table. It has the following three main functions:

6.4 Route Logic 133

Program 6.13 Declaration of class RouteLogic and the corresponding OTcl
mapping class

//˜/ns/routing/route.h
1 class RouteLogic : public TclObject {
2 public:
3 RouteLogic();
4 ˜RouteLogic();
5 int command(int argc, const char*const* argv);
7 virtual int lookup_flat(int sid, int did);
8 protected:
9 void reset(int src, int dst);
10 void reset_all();
11 void compute_routes();
12 void insert(int src, int dst, double cost);
13 void insert(int src, int dst, double cost, void* entry);
14 adj_entry *adj_;
15 route_entry *route_;
16 };

//˜/ns/routing/route.cc
17 class RouteLogicClass : public TclClass {
18 public:
19 RouteLogicClass() : TclClass("RouteLogic") {}
20 TclObject* create(int, const char*const*) {
21 return (new RouteLogic());
22 }
23 } routelogic_class;

insert(src,... Inform the route logic of the cost to go from the
Node src to the Node dstdst,cost)

compute_routes() Compute the optimal routes for all source-
destination pairs and store the computed routes in
the variable route_.

lookup_flat(... Search within the variable route for an entry
with matching source ID (sid) and destination ID
(did), and returns the index of the forwarding
object (e.g., connecting link).

sid,did)

6.4.2 OTcl Implementation

In the interpreted hierarchy, the OTcl class RouteLogic has one key instvar
rtprotos_. The instvar rtprotos_ is an associative array whose index is the
name of the routing protocol and value is the routing agent object. Again, we are
dealing with static routing. Therefore, the instvar rtprotos_ does not exist.

134 6 Nodes as Routers or Computer Hosts

Program 6.14 Instprocs configure and lookup of class RouteLogic
//˜/ns/tcl/lib/ns-route.tcl

1 RouteLogic instproc configure {} {
2 $self instvar rtprotos_
3 if [info exists rtprotos_] {
4 foreach proto [array names rtprotos_] {
5 eval Agent/rtProto/$proto init-all $rtprotos_

($proto)
6 }
7 } else {
8 Agent/rtProto/Static init-all
9 }
10 }

11 RouteLogic instproc lookup { nodeid destid } {
12 if { $nodeid == $destid } {
13 return $nodeid
14 }
15 set ns [Simulator instance]
16 set node [$ns get-node-by-id $nodeid]
17 $self cmd lookup $nodeid $destid
18 }

The OTcl class RouteLogic also has two major instprocs as shown in
Program 6.14).

configurefg Initialize all the routing protocols (Lines 1–10).
lookupfsid,didg Return the forwarding object for packets going from

Node sid to Node did (Lines 11–18).

6.5 Node Construction and Configuration

So far in this chapter, we have discussed major components of a Node – classifiers,
routing modules, and route logic. We now present how NS2 creates and puts together
these main components.

In the following, we first show the key instvars of the OTcl class Node and
their relationships in Sect. 6.5.1. Then, we show an approach to put classifiers into
a Node object in Sect. 6.5.2. Sections 6.5.3 and 6.5.4 show how a Node is bridged
to the transport (i.e., upper) layer and to the routing (i.e., lower) layer, respec-
tively. Finally, Sect. 6.5.5 discusses the key steps to create and configure a Node
object.

6.5 Node Construction and Configuration 135

6.5.1 Key Variables of the OTcl Class Node
and Their Relationship

The list of major instvars of the OTcl class Node is given below.

id_ Node ID
agents_ List of attached transport layer agents

nn_ Total number of Nodes
neighbor_ List of neighboring nodes
nodetype_ Node type (e.g., regular node or mobile node)

ns_ The Simulator
classifier_ Address classifier, which is the default node entry

dmux_ The demultiplexer or port classifier
module_list_ List of enabled routing modules
reg_module_ List of registered routing modules

rtnotif_ The head of the chain of routing modules which will be
notified of route updates

ptnotif_ List of routing modules which will be notified of port
attachment/detachment

hook_assoc_ Sequence of the chain of classifiers
mod_assoc_ Association of classifiers and routing modules

6.5.1.1 Routing-Related Instvars

The following five instvars of an OTcl Node plays a major role in packet routing:
module_list_, reg_module_, rtnotif_, ptnotif_, and mod_assoc_.
The instvar module_list_ is a list of strings, each of which represents the
name of enabled routing module. The instvar reg_module_ is an associative array
whose index and value are the name of the routing module and the routing module
instance.

The instvars rtnotif_ and ptnotif_ contain the objects which should be
notified of a route change and an agent attachment/detachment, respectively. While
rtnotif_ is the head of the link list of the routing modules, ptnotif_ is
simply an OTcl list whose elements are the routing modules. Finally, instvar
mod_assoc_ is an associative array whose indexes and values are classifiers and
the associated routing modules, respectively.

Figure 6.5 shows an example of routing-related variable setting both in CCC
and OTcl domain. Here, we assume that there are two classifiers. The first,
switch_, classifies the geometry (i.e., circle/triangle/square). The second classi-
fies, classifier_, color (i.e., black/white).

The above two classifiers are controlled by routing modulesRtModule/Mcast
and RtModule/Base, respectively. Since there are two routing modules, the
instvar reg_modules_ has two entries.

136 6 Nodes as Routers or Computer Hosts

classifier_ next_rtm_ classifier_next_rtm_
RtModule/Mcast RtModule/Base

MCast Base

...

ptnotif_ rtnotif_

cl
as

si
fi

er
_

sw
it

ch
_

reg_module_

Node

0

classifier_

next_rtm_

McastRoutingModule

n_

classifier_

next_rtm_

BaseRoutingModule

n_

a b

Point a to b Bind a to b Store a in b

a b a b

Arrow legend

Fig. 6.5 An example of node configuration with two classifiers

Suppose further that both the classifiers need to be informed of routing change
and agent attachment/detachment. We need to put both the associated routing
modules in the list instvar ptnotif_. On the other hand, we only set one routing
module (i.e., RtModule/Base associated with classifier_ in this case) as
the instvar rtnotif_. The route configuration command can be propagated to
RtModule/Mcast via the variable next_rtm_ of the head (i.e., Base) routing
module.

6.5.1.2 Classifier-Related Instvars

Class Node has three instvars related to classifiers: classifier_, hook_
assoc_, and mod_assoc_. Instvar classifier_ is the default Node entry as
well as the head of the chain of classifiers. Instvar hook_assoc_ is an associative

6.5 Node Construction and Configuration 137

Fig. 6.6 An example of values stored in variables hook assoc and mod assoc

array whose index is a classifier and value is the downstream classifier in the chain.
The index and value of the associative array mod_assoc_ are classifiers and the
associated routing modules, respectively.

Consider Fig. 6.6 for example. Here, we install classifiers _o1, _o2, _o3, and
_o4 into a Node, and associate them with routing modules _o5, _o6, _o7, and
o8, respectively. Then, the instvar classifier would be _o1. The indexes
and values of hook_assoc_ and mod_assoc_ would be as shown in the figure.

6.5.2 Installing Classifiers in a Node

Class Node provides three instprocs to configure classifiers. First, as shown
in Program 6.15, the instproc insert-entryfmodule clsfr hookg takes
three input arguments: a routing module “module”, a classifier “clsfr”, and
an optional argument “hook.” It installs the current head classifier in the slot
number “hook” of the input classifier clsfr (Line 8), and replaces the head
classifier with the input classifier clsfr (Line 12). The instvars hook_assoc_
and mod_assoc_ are updated in Lines 4 and 11, respectively.

The input argument “hook” can have one of the three following values:

• A number: The input “clsfr” will be configured as explained above.
• A string “target”: The existing head classifier will be configured as a target

of the input NsObject clsfr.5

• Null: The input “clsfr” will not be configured. We might have to configure it
later.

5Note that the input clsfr needs not be a classifier.

138 6 Nodes as Routers or Computer Hosts

Program 6.15 Instprocs insert-entry and install-demux of class Node
//˜ns/tcl/lib/ns-node.tcl

1 Node instproc insert-entry { module clsfr {hook ""} } {
2 $self instvar classifier_ mod_assoc_ hook_assoc_
3 if { $hook != "" } {
4 set hook_assoc_($clsfr) $classifier_
5 if { $hook == "target" } {
6 $clsfr target $classifier_
7 } elseif { $hook != "" } {
8 $clsfr install $hook $classifier_
9 }
10 }
11 set mod_assoc_($clsfr) $module
12 set classifier_ $clsfr
13 }

14 Node instproc install-demux {demux {port ""} } {
15 $self instvar dmux_ address_
16 if { $dmux_ != "" } {
17 $self delete-route $dmux_
18 if { $port != "" } {
19 $demux install $port $dmux_
20 }
21 }
22 set dmux_ $demux
23 $self add-route $address_ $dmux_
24 }

The second classifier configuration is the instproc install-entryfmodule
clsfr hookg, which is very similar to instproc insert-entryf...g. The only
difference is that it also destroys the existing head classifier, if any. The details of the
instproc install-entryf...g can be found in the file ˜ns/tcl/lib/ns-node.tcl.

The last classifier configuration is the instproc install-demuxfdemux
portg, whose details are shown in Lines 14–24 of Program 6.15. This instproc
takes two input arguments:demux (mandatory) and port (optional). It replaces the
existing demultiplexer6 “dmux_” with the input demultiplexer demux (Line 22).
If “port” exists, the current demultiplexer “dmux_” will be installed in the slot
number “port” of the input demultiplexer “demux” (Lines 18–20).

6.5.3 Bridging a Node to a Transport Layer Protocol

To attach an agent to a Node, we use instproc attach-agentfnode agentg of
class Simulator, where “node” and “agent” are Node and Agent objects,

6A demultiplexer classifies packets based on the port number specified in the packet header (see
Sect. 6.2.2 for more details).

6.5 Node Construction and Configuration 139

Program 6.16 Agent attachment instprocs
//˜ns/tcl/lib/ns-lib.tcl

1 Simulator instproc attach-agent { node agent } {
2 $node attach $agent
3 }

//˜ns/tcl/lib/ns-node.tcl
4 Node instproc attach { agent { port "" } } {
5 $self instvar agents_ address_ dmux_
6 lappend agents_ $agent
7 $agent set node_ $self
8 $agent set agent_addr_ [AddrParams addr2id $address_]
9 if { $dmux_ == "" } {
10 set dmux_ [new Classifier/Port]
11 $self add-route $address_ $dmux_
12 }
13 if { $port == "" } {
14 set port [$dmux_ alloc-port [[Simulator

instance] nullagent]]
15 }
16 $agent set agent_port_ $port
17 $self add-target $agent $port
18 }

19 Node instproc add-target { agent port } {
20 $self instvar ptnotif_
21 foreach m [$self set ptnotif_] {
22 $m attach $agent $port
23 }
24 }

respectively. Program 6.16 shows the instprocs related to an agent attachment
process. The process proceeds as follows:

1. Simulator::attach-agentfnode agentg: Invoke “$node attach
$agent” (Line 2).

2. Node::attachfagent portg: Update instvar “agent” (Lines 6–8 and
Line 16), create “dmux_” if necessary (Lines 9–15), and invoke “$self add-
target $agent $port” (Line 17).

3. Node::add-targetfagent portg: From Sect. 6.5.1, routing modules re-
lated to port attachment are stored in the list instvar ptnotif_. Therefore, Lines
22 and 23 execute instproc attachfagent portg of all the routing modules
stored in the instvars ptnotif_.7

4. RtModule::attachfagent portg: Consider Lines 29–32 in Program
6.11. As a sending agent, the input “agent” is set as an upstream object of
the node entry (Line 30). As a receiving agent, it is installed in the slot number
“port” of demultiplexer “dmux_” (Line 31).

7Again, Nodes do not directly configure port classifiers. It asks routing modules stored in
ptnotif to do so on its behalf.

140 6 Nodes as Routers or Computer Hosts

Program 6.17 Instprocs add-route of class Node
//˜ns/tcl/lib/ns-node.tcl

1 Node instproc add-route { dst target } {
2 $self instvar rtnotif_
3 if {$rtnotif_ != ""} {
4 $rtnotif_ add-route $dst $target
5 }
6 $self incr-rtgtable-size
7 }

Note that although an agent can be either a sending agent or a receiving agent,
this instproc assigns both roles to every agent. This does not cause any problem
at runtime due to the following reasons. A sending agent is attached to a source
node, and always transmits packets destined to a destination node. It takes no action
when receiving a packet from a demultiplexer. A receiving agent, on the other
hand, does not generate a packet. Therefore, it can never send a packet to the node
entry.

6.5.4 Adding/Deleting a Routing Rule

Class Node provides an instproc add-routefdst targetg to add a routing
rule (dst,target) to the routing table. In Program 6.17, instproc add-route
fdst targetg of class Node invokes the instproc add-routef...g of the
routing module rtnotif_ which is of class RtModule8 (Line 4). From
Lines 22–29 of Program 6.11, the instproc add-routef...g of class RtModule
installs the routing rule (dst,target) in the classifier_ of all the related
routing module.

The mechanism for deleting a routing rule is similar to that for adding a routing
rule, and is omitted for brevity. The readers may find the details of route entry
deletion in the instproc delete-routefdst nullagentg of classes Node and
RtModule (see file ˜ns/tcl/lib/ns-node.tcl and file ˜ns/tcl/lib/ns-rtmodule.tcl).

6.5.5 Node Construction and Configuration

There are two key steps to put together a Node (e.g., as shown in Figs. 6.1 and 6.5).
We now discuss the details of node construction and configuration in sequence.

8Again, class Node makes no attempt to directly modify the classifiers. It asks the routing modules
in the chain, whose head is rtnotif , to do so on its behalf.

6.5 Node Construction and Configuration 141

Program 6.18 Default value of instvar node factory and instproc node of
class Simulator

//˜ns/tcl/lib/ns-default.tcl
1 Simulator set node_factory_ Node

//˜ns/tcl/lib/ns-lib.tcl
2 Simulator instproc node args {
3 $self instvar Node_ routingAgent_
4 set node [eval new [Simulator set node_factory_] $args]
5 set Node_([$node id]) $node
6 $self add-node $node [$node id]
7 $node nodeid [$node id]
8 $node set ns_ $self
9 return $node
10 }

6.5.5.1 Node Construction

A Node object is created using an OTcl statement “$ns node,” where $ns is the
Simulator instance. The Instproc “node” of class Simulator uses instproc
“newf...g” to create a Node object (Line 4 where node_factory_ is set to
Node in Line 1 of Program 6.18). It also updates instvars of the Simulator so that
they can later be used by other simulation objects throughout the simulation.

The construction of an OTcl Node object (using newf...g) consists of seven
main steps (see also Program 6.19).

Step 1: Constructor of the OTcl Class Node

Instproc initf...g sets up instvars of class Node, and invokes instproc mk-
default-classifierfg of the Node object (Line 22 in Program 6.19).

Step 2: Instproc mk-default-classifierfg
The instproc mk-default-classifierfg creates (using newf...g) and regis-
ters (using register-modulefmodg) routing modules whose names are stored
in the instvar module_list_ (Lines 27–29 in Program 6.19). By default, only
“Base” routing module is stored in the instvar module_list_ (Line 1 in
Program 6.19).

To enable/disable other routing modules, the following two instprocs of class
RtModule must be invoked before the execution of “$ns node”:

enable-module{<name>}
disable-module{<name>}

where <name> is the name of the routing module, which is to be enabled/
disabled.

142 6 Nodes as Routers or Computer Hosts

Program 6.19 Instprocs related to the Node Construction Process
//˜/ns/tcl/lib/ns-node.tcl

1 Node set module_list_ { Base }

2 Node instproc init args {
3 eval $self next $args
4 $self instvar id_ agents_ dmux_ neighbor_ rtsize_
5 address_ \ nodetype_ multiPath_ ns_ rtnotif_ ptnotif_
6 set ns_ [Simulator instance]
7 set id_ [Node getid]
8 $self nodeid $id_ ;# Propagate id_ into c++ space
9 if {[llength $args] != 0} {
10 set address_ [lindex $args 0]
11 } else {
12 set address_ $id_
13 }
14 $self cmd addr $address_; # Propagate address_ into

C++ space
15 set neighbor_ ""
16 set agents_ ""
17 set dmux_ ""
18 set rtsize_ 0
19 set ptnotif_ {}
20 set rtnotif_ {}
21 set nodetype_ [$ns_ get-nodetype]
22 $self mk-default-classifier
23 set multiPath_ [$class set multiPath_]
24 }

25 Node instproc mk-default-classifier {} {
26 Node instvar module_list_
27 foreach modname [Node set module_list_] {
28 $self register-module [new RtModule/$modname]
29 }
30 }

31 Node instproc register-module { mod } {
32 $self instvar reg_module_
33 $mod register $self
34 set reg_module_([$mod module-name]) $mod
35 }

Step 3: Instproc register-modulefmodg of Class Node

This instproc invokes the instproc registerfnodeg of the input routing module
“mod” and updates the instvar “reg_module_” (see Lines 31–35).

6.5 Node Construction and Configuration 143

Step 4: Instproc registerfnodeg of Class RtModule/Base

This instproc first invokes instproc registerfnodeg of its parent class (by the
statement $self next $node in Line 7 of Program 6.11). Then, Lines 9–12
create (using newf...g) and configure (using install-entryf...g) the head
classifier (i.e., classifier_) of the Node.

Step 5: Instproc registerfnodeg of Class RtModule

From Program 6.11, this instproc attaches input Node object “node”to the routing
module (Line 2). It also invokes instproc route-notifyfmoduleg (Line 3)
and port-notifyfmoduleg (Line 4) of the associated Node to include the
routing module into the route notification list rtnotif_ and port notification list
ptnotif_ of the associated Node.

Step 6: Instproc route-notifyfmoduleg of Class Node

As shown in Program 6.20, the instproc route-notifyfmoduleg (Lines 1–9)
stores the input routing module “module” as the last element of the link list of
routing modules. It also invokes the OTcl command route-notify of the input
routing module (Line 8). The OTcl command route-notify invokes the CCC
functionroute_notify(rtm) associated with the attached Node (see Lines 10–
16) to store the routing module as the last routing module in the link list (see Lines
17–22).

Step 7: Instproc port-notifyfmodulegof Class Node

As shown in Lines 23–26 of Program 6.20, the instproc port-notifyfmoduleg
appends the input argument “module” to the end of the list instvar ptnotif_.

6.5.5.2 Agent and Route Configuration

We have discussed how NS2 creates and puts main components within a Node
object. The final step is to instruct these components what to do when receiving a
packet.

From Fig. 6.1, a Node object contains two key components: an address classifier
classifier_, and a port classifier/demultiplexer, dmux_. Class Simulator
provides two instprocs to configure these two classifiers.9

9Since the Simulator object is accessible to the Tcl simulation script, users generally use these
two instprocs to configure Nodes.

144 6 Nodes as Routers or Computer Hosts

Program 6.20 Instprocs and functions which are related to instprocs route-
notify and port-notify of the OTcl class Node

//˜/ns/tcl/lib/ns-node.tcl
1 Node instproc route-notify { module } {
2 $self instvar rtnotif_
3 if {$rtnotif_ == ""} {
4 set rtnotif_ $module
5 } else {
6 $rtnotif_ route-notify $module
7 }
8 $module cmd route-notify $self
9 }

//˜ns/routing/rtmodule.cc
10 int BaseRoutingModule::command(int argc, const char*const*

argv) {
11 Tcl& tcl = Tcl::instance();
12 if (argc == 3) {
13 if (strcmp(argv[1] , "route-notify") == 0) {
14 n_->route_notify(this);
15 }
16 }

//˜ns/common/node.cc
17 void Node::route_notify(RoutingModule *rtm) {
18 if (rtnotif_ == NULL)
19 rtnotif_ = rtm;
20 else
21 rtnotif_->route_notify(rtm);
22 }

//˜/ns/tcl/lib/ns-node.tcl
23 Node instproc port-notify { module } {
24 $self instvar ptnotif_
25 lappend ptnotif_ $module
26 }

• Instproc attach-agentf...g: Connect a Node to a transport layer agent (see
the details in Sect. 6.5.3).

• Instproc runfg: Create, compute, and install routing tables in classifiers of all
the Nodes. Again, by default, NS2 uses the Dijkstra’s algorithm to compute
routing tables for all pairs of Nodes. The key steps in the instproc runfg are
shown below:

Step 1: Instproc runfg of Class Simulator

Shown in Line 2 of Program 4.12, instproc runfg of class Simulator executes
the instproc configurefg of the RouteLogic object.

6.5 Node Construction and Configuration 145

Program 6.21 Instprocs related to the route configuration process
//˜ns/tcl/rtglib/route-proto.tcl

1 Agent/rtProto/Static proc init-all args {
2 [Simulator instance] compute-routes
3 }

//˜ns/tcl/lib/ns-route.tcl
4 Simulator instproc compute-routes {} {
5 $self compute-flat-routes
6 }

7 Simulator instproc compute-flat-routes {} {
8 $self instvar Node_ link_
9 set r [$self get-routelogic]
10 $self cmd get-routelogic $r
11 foreach ln [array names link_] {
12 set L [split $ln :]
13 set srcID [lindex $L 0]
14 set dstID [lindex $L 1]
15 if { [$link_($ln) up?] == "up" } {
16 $r insert $srcID $dstID [$link_($ln) cost?]
17 } else {
18 $r reset $srcID $dstID
19 }
20 }
21 $r compute
22 set n [Node set nn_]
23 $self populate-flat-classifiers $n
24 }

Step 2: Instproc configurefg of Class RouteLogic

Defined in Lines 1–10 of Program 6.14, the instproc configurefg of class
Route Logic configures the routing table for all the Nodes by invoking instproc
init-allfg of class Agent/rtProto/Static.

Step 3: Instproc init-allfg of Class Agent/rtProto/Static

Defined in Lines 1–3 of Program 6.21, the instproc init-allfg of class Agent
/rtProto/Static invokes the instproc compute-routesfg of the Simulator.

Step 4: Instproc compute-routesfg of Class Simulator

By default, this instproc invokes the instproc compute-flat-routesfg to
compute and setup the routing table (see Lines 4–6 in Program 6.21).

146 6 Nodes as Routers or Computer Hosts

Program 6.22 An OTcl command populate-flat-classifiers, a func-
tion populate flat classifiers of class Simulator, and a function
add route of class Node

//˜ns/common/simulator.cc
1 int Simulator::command(int argc, const char*const* argv) {
2 ...
3 if (strcmp(argv[1], "populate-flat-classifiers") == 0) {
4 nn_ = atoi(argv[2]);
5 populate_flat_classifiers();
6 return TCL_OK;
7 }
8 ...
9 }

10 void Simulator::populate_flat_classifiers() {
11 ...
12 for (int i=0; i<nn_; i++) {
13 for (int j=0; j<nn_; j++) {
14 if (i != j) {
15 int nh = -1;
16 nh = rtobject_->lookup_flat(i, j);
17 if (nh >= 0) {
18 NsObject *l_head=get_link_head(nodelist_[i],

nh);
19 sprintf(tmp, "%d", j);
20 nodelist_[i]->add_route(tmp, l_head);
21 }
22 }
23 }
23 }
25 }

//˜ns/common/node.cc
26 void Node::add_route(char *dst, NsObject *target) {
27 if (rtnotif_)
28 rtnotif_->add_route(dst, target);
29 }

Step 5: Instproc compute-flat-routesfg of Class Simulator

Defined in Lines 7–24 of Program 6.21, this instproc computes and installs the
routing table in all related address classifiers.

• Retrieve and store the route logic in a local variable $r (Lines 9–10)
• Collect and insert topology information into the retrieved route logic $r (Lines

11–20)
• Compute the optimal route (Line 21)
• Add routing rules into all related classifiers (Lines 22 and 23)

6.6 Chapter Summary 147

Program 6.22 shows the details of how the computed routing rules are propagated
to all the nodes. Lines 1–9 show the details of OTcl command populate-flat-
classifiersfng. This OTcl command stores the input number of nodes
“n” in the variable nn_ (Line 4), and invokes the function populate_flat_
classifiers() (Line 5) to install the computed routing rules in all the
classifiers.

Function populate_flat_classifiers() adds the routing rules for all
pairs (i,j) of nn_ nodes (Lines 10–25). For each pair, Line 16 retrieves the
next hop (i.e., forwarding) referencing point “nh” of a forwarding object for a
packet traveling from Node “i” to Node “j.” Line 18 retrieves the link entry
point “l_head” corresponding to the variable “nh.” Lines 19 and 20 add a new
routing rule for the node i (i.e., nodelist_[i]). The rule specifies the link entry
“l_head” as a forwarding target for packet destined for a destination node j. The
rule is added to the Node “i” via its function add_route(dst,target).

Function add_route(dst,target) simply invokes function add_route
(dst,target) of the associated RoutingModule object rtnotif_ (Lines
26–29). Defined in Program 6.10, function add_route(dst,target) of class
RoutingModule recursively installs the input routing rule (dst,target)
down the link list of routing modules.

6.6 Chapter Summary

A Node is a basic component which acts as a router and a computer host. Its
main responsibilities are to forward packets according to a routing table and to
bridge the high-layer protocols to a low-level network. A Node consists of three
key components: classifiers, routing modules, and the route logic. A classifier is a
multi-target packet forwarder. It forwards packets in the same category to the same
forwarding NsObject. In a Node, an address classifier and a port classifier act as a
router and a bridge to the transport layer, respectively.

Routing modules are responsible for managing classifiers. By convention, all the
configuration commands must go though routing modules only. Finally, the route
logic collects network topology, computes the optimal routing rules, and install the
resulting rules in all the Nodes.

During the Network Configuration Phase, a Node is created by executing
$ns node where $ns is the Simulator object. Here, address classifiers and
routing modules are installed in the Node. The instruction of what to do when
receiving a packet is provided later when the following two OTcl statements
are executed. First, the transport layer connections are created using the instproc
attach-agentf...g of class Simulator. Second, the instproc runfg of class
Simulator computes the optimal routes for all pairs of nodes and installs the
computed routing tables in relevant classifiers.

148 6 Nodes as Routers or Computer Hosts

6.7 Exercises

1. What is a Classifier? What are the similarities/differences between a Connector
and a Classifier?

2. Explain and give example for the following terminologies:

a. Routing mechanism, b. Routing rules, c. Routing table,
d. Routing algorithm, e. Routing protocol, f. Routing agent,
g. Route logic, h. Routers, i. Routing module.

3. What are routing modules? Explain their roles and necessities.
4. Explain how classifiers work.

a. What are slots? What does “installing an NsObject in a slot” mean?
b. How does a packet enter a classifier? Explain the packet flow mechanism

since a packet enters a classifier until it leaves the classifier. Give an example
and draw a diagram to support your answer.

5. What is a hash function? Explain your answer and show few applications which
use hash functions.

6. What are the components in NS2 which

a. Find the optimal route,
b. Propagate topology and routing information,
c. Forward packet based on the routing information.

7. Consider a packet size classifier which classifies packet into small (smaller than
40 bytes), medium (not smaller than 40 bytes but smaller than 1,000 bytes), and
large (not smaller than 1,000 bytes) packets.

a. Create a packet size classifier.
b. Configure the classifier such that small, medium, and large packets are sent

to the NsObject whose addresses are stored in variables “sm,” “md,” and
“lg,” respectively.

c. Explain the packet flow mechanism and run an NS2 program to test your
answer.

Hint: Packet size can be obtained by CCC statements “hdr_cmn* ch =
hdr_cmn::access(p); ch->size_”; see Chap. 8.

8. Draw a Node diagram. What OTcl commands do you use to create a Node like
in the diagram. Explain, step-by-step, how NS2 creates the Node.

9. What is the default routing algorithm in NS2? How does NS2 setup the routing
in a Node?

10. What is a node entry? Show an OTcl statement to retrieve a reference to the
node entry.

6.7 Exercises 149

11. How does NS2 inform a Node of

a. New route,
b. New agent which shall be attached to a certain port?

Show the step-by-step processes in NS2 via examples.

Chapter 7
Link and Buffer Management

A Link is an OTcl object that connects two nodes and carries packets from the
beginning node to the terminating node. This chapter focuses on a class of most
widely used Link objects, namely, SimpleLink objects. Conveying packets from
one node to another, a SimpleLink object models packet transmission time, link
propagation delay, and packet buffering. Here, packet transmission time refers to
the time required by a transmitter to send out a packet. It is determined by the link
bandwidth and packet size. Link propagation delay is the time needed to convey a
data bit from the beginning to the end of a link. In the presence of bursty traffic, a
transmitter may receive packets while transmitting a packet. The packets entering a
busy transmitter could be placed in a buffer for future transmission. SimpleLink
also models this packet buffering mechanism.

In the followings, we first give an introduction to classes Link and SimpleLink
in Sect. 7.1. Then, we show how NS2 models packet transmission time and propa-
gation delay in Sect. 7.2. Next, the packet buffering, queue blocking, and callback
mechanisms are discussed in Sect. 7.3. Section 7.4 shows a network construction
and packet flow example. Finally, the chapter summary is provided in Sect. 7.5.

7.1 Introduction to SimpleLink Objects

NS2 models a link using classes derived from OTcl class Link object, among which
OTcl class SimpleLink is the simplest one which can be used to connect two
Nodes.

7.1.1 Main Components of a SimpleLink

Figure 7.1 shows the composition of class SimpleLink, which consists of the
following basic objects and tracing objects in the interpreted hierarchy:

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 7, © Springer Science+Business Media, LLC 2012

151

152 7 Link and Buffer Management

Fig. 7.1 Architecture of a SimpleLink object

7.1.1.1 Basic Objects

head_ The entry point of a SimpleLink object.
queue_ A Queue object which models packet buffering of a real router

(see Sect. 7.3).
link_ A DelayLink object which models packet transmission time

and link propagation delay (see Sect. 7.2).
ttl_ A time to live checker object whose class is TTLChecker.

It decrements the time to live field of an incoming packet.
After the decrement, if the time to live field is still positive,
the packet will be forwarded to the next element in the link.
Otherwise, it will be removed the packet from the simulation
(see file ˜ns/common/ttl.h,cc).

drophead_ The common packet dropping point for the link. The dropped
packets are forwarded to this object. It is usually connected to
a null agent so that all SimpleLink objects share the same
dropping point.

7.1.1.2 Tracing Objects

These objects will be inserted only if instvar $traceAllFile_ of the
Simulator object is defined. We will describe the details of tracing objects in
detail in Chap. 13. These objects are

enqT_ Trace packets entering queue_.
deqT_ Trace packets leaving queue_.
drpT_ Trace packets dropped from queue_.
rcvT_ Trace packets leaving the SimpleLink or equivalently received

by the next node.

7.1 Introduction to SimpleLink Objects 153

Program 7.1 Instproc simplex-link of class Simulator
//˜ns/tcl/lib/ns-lib.tcl

1 Simulator instproc simplex-link { n1 n2 bw delay qtype
args } {

2 $self instvar link_ queueMap_ nullAgent_ useasim_
3 switch -exact $qtype {
4 ...
5 default {
6 set q [new Queue/$qtype $args]
7 }
8 }
9 switch -exact $qtypeOrig {
10 ...
11 default {
12 set link_($sid:$did) [new SimpleLink \

$n1 $n2 $bw $delay $q]
13 }
14 }
15 }

7.1.2 Instprocs for Configuring a SimpleLink Object

In the OTcl domain, a SimpleLink object is created using the instprocs
simplex-linkf..g and duplex-linkf...g of class Simulator whose
syntax is as follows:

$ns simplex-link $n1 $n2 <bandwidth> <delay> <qtype>
$ns duplex-link $n1 $n2 <bandwidth> <delay> <qtype>

where $ns is the Simulator object, and $n1 and $n2 are Node objects.
Instproc simplex-linkf...g above creates a unidirectional SimpleLink

object connecting Node $n1 to Node $n2 (Program 7.1). The speed and the
propagation delay of the link are given as <bandwidth> (in bps) and <delay>
(in seconds), respectively. As opposed to a “real” router, NS2 incorporates a queue
in a SimpleLink object, not in a Node object. The type of the queue in the link
is specified by <qtype>.

Program 7.1 shows details of instproc Simulator::simplex-linkf...g.
Line 6 creates an object of class Queue/$qtype. Line 12 constructs a
SimpleLink object, connecting node $n1 to $n2. It specifies delay, bandwidth,
and Queue object of the link to be $bw, $delay, and $q, respectively. The
Simulator stores the created SimpleLink object in its instance associative array
“link_” ($sid:$did), where $sid is the source node ID, and $did is the
destination node ID, respectively, (see Chap. 4).

154 7 Link and Buffer Management

Program 7.2 The constructor of the OTcl class SimpleLink
//˜ns/tcl/lib/ns-link.tcl

1 SimpleLink instproc init { src dst bw delay q {
lltype "DelayLink"} } {

2 set ns [Simulator instance]
3 set drophead_ [new Connector]
4 $drophead_ target [$ns set nullAgent_]
5 set head_ [new Connector]
6 if { [[$q info class] info heritage ErrModule] ==

"ErrorModule" } {
7 $head_ target [$q classifier]
8 } else {
9 $head_ target $q
10 }
11 set queue_ $q
12 set link_ [new $lltype]
13 $link_ set bandwidth_ $bw
14 $link_ set delay_ $delay
15 $queue_ target $link_
16 $link_ target [$dst entry]
17 $queue_ drop-target $drophead_
18 set ttl_ [new TTLChecker]
19 $ttl_ target [$link_ target]
20 $self ttl-drop-trace
21 $link_ target $ttl_
22 }

Instproc duplex-linkf...g creates two SimpleLink objects: one
connecting Node$n1 to Node $n2 and another connecting Node $n2 to Node$n1.
The readers are encouraged to find details of the instproc duplex-linkf...g in
file ˜ns/tcl/lib/ns-lib.tcl.

7.1.3 The Constructor of Class SimpleLink

Program 7.2 shows details of the instproc initf...g (i.e., the constructor) of
class SimpleLink, which constructs and connects objects according to Fig. 7.1.
Lines 3, 5, 11, 12, and 18 create instvars “drophead_,” “head_,” “queue_,”
“link_,” and “ttl_,” whose OTcl classes are Connector, Connector,
Queue, DelayLink, and TTLChecker, respectively. Bandwidth and delay of
the instvar “link_” are configured in Lines 13 and 14.

Apart from creating the above objects, the constructor also connects the created
objects as in Fig. 7.1. Derived from class Connector, each of the created objects
uses commands targetf...g and drop-targetf...g to specify the next
downstream object and the dropping point, respectively (see Chap. 5). Line 9 sets
the target of “head_” to be “q.” Line 15 sets the target of “queue_” (which is set

7.2 Modeling Packet Departure 155

to “q” in Line 11) to be “link_.” Line 16 sets the target of “link_” to be the entry
of the next node. Lines 19 and 21 insert “ttl_” between “link_” and the entry of
the next node. Line 17 sets the dropping point of “queue_” to be “drophead_.”
Finally, Line 4 sets the target of “drophead_” to be the null agent of the Simulator.

7.2 Modeling Packet Departure

7.2.1 Packet Departure Mechanism

NS2 models packet departure using a CCC class Linkdelay (see Program 7.3),
which is bound to an OTcl class DelayLink. Again, the OTcl class DelayLink
is used to instantiate the instvar SimpleLink::link_ which models the packet
departure process.

Program 7.3 Declaration of class LinkDelay
//˜ns/link/delay.h

1 class LinkDelay : public Connector {
2 public:
3 LinkDelay(): dynamic_(0), latest_time_(0), itq_(0){
4 bind_bw("bandwidth_", &bandwidth_);
5 bind_time("delay_", &delay_);
6 }
7 void recv(Packet* p, Handler*);
8 void send(Packet* p, Handler*);
9 void handle(Event* e);
10 inline double txtime(Packet* p) {Packet TXT Time
11 return (8. * hdr_cmn::access(p)->size() /

bandwidth_);
12 }
13 protected:
14 int command(int argc, const char*const* argv);
15 double bandwidth_;
16 double delay_;
17 PacketQueue* itq_;
18 Event intr_; /* In transit */
19 };

//˜ns/link/delay.cc
20 static class LinkDelayClass : public TclClass {
21 public:
22 LinkDelayClass() : TclClass("DelayLink") {}
23 TclObject* create(int argc , const char*const* argv) {
24 return (new LinkDelay);
25 }
26 } class_delay_link;

156 7 Link and Buffer Management

A packet departure process consists of packet transmission time and link
propagation delay. While the former defines the time a packet stays in an upstream
node, the summation of the former and the latter determines the time needed to
deliver the entire packet to the connecting downstream node. Conceptually, when a
LinkDelay object receives a packet, it places these two events on the simulation
timeline:

1. Packet departure from an upstream object: Define packet transmission time D
packet size
bandwidth as time needed to transmit a packet over a link. After a period of packet
transmission time, the packet completely leaves (or departs) the transmitter, and
the transmitter is allowed to transmit another packet. Upon a packet reception, a
LinkDelay object waits for a period of packet transmission time, and informs
its upstream object that it is ready to receive another packet.

2. Packet arrival at a downstream node: Define propagation delay as the time
needed to deliver a data bit from the beginning to the end of the link. Again, an
entire packet needs a period of “packet transmission time C propagation delay”
to reach the destination. A LinkDelay object, therefore, schedules a packet
reception event at the downstream node after this period.

7.2.2 CCC Class LinkDelay

Program 7.3 shows the declaration of CCC class LinkDelay, which is mapped
to the OTcl class DelayLink. Class LinkDelay has the following four main
variables. Variables “bandwidth_” (Line 15) and “delay_” (Line 16) store the
link bandwidth and propagation delay, respectively. In Lines 4 and 5, these two
variables are bound to OTcl instvars with the same name. In a link with large
bandwidth-delay product, a transmitter can send a new packet before the previous
packet reaches the destination. Class LinkDelay stores all packets in-transit in
its buffer “itq_” (Line 17), which is a pointer to a PacketQueue object (see
Sect. 7.3.1). Finally, variable “intr_” (Line 18) is a dummy Event object, which
represents a packet departure (from the transmitting node) event. As discussed in
Sect. 4.3.7, the packet departure is scheduled using variable “intr_” which does
not take part in event dispatching.1

The main functions of class LinkDelay are recv(p,h), send(p,h),
handle (e), and txttime(p). Function txttime(p) calculates the packet
transmission time of packet*p (Lines 10–12 in Program 7.3). Functionsend(p,h)
sends packet *p to the connecting downstream object (see Line 12 in Program 5.3).
Function handle(e) is invoked when the Scheduler dispatches an event
corresponding to the LinkDelay object (see Chap. 4). Function recv(p,h)

1As a dummy Event object, variable “intr ” ensures that an error message will be shown on
the screen, if an undispatched event is rescheduled.

7.2 Modeling Packet Departure 157

Program 7.4 Function recv(p,h) of class LinkDelay
//˜ns/link/delay.cc

1 void LinkDelay::recv(Packet* p, Handler* h)
2 {
3 double txt = txtime(p);
4 Scheduler& s = Scheduler::instance();
5 if (dynamic_) { ... }
6 else if (avoidReordering_) { ... }
7 else {
8 s.schedule(target_, p, txt + delay_);
9 }
10 s.schedule(h, &intr_, txt);
11 }

(Program 7.4) takes a packet *p and a handler *h as input arguments, and schedules
packet departure and packet arrival events.

1. Packet departure event: Since a packet spends “packet transmission time” (txt
in Line 3) at the upstream object, function recv(p,h) schedules a packet
departure event at “txt” seconds after the LinkDelay object receives the
packet. To do so, Line 10 invokes function schedule(h,&intr,txt) of
class Scheduler, where the first, second, and third input arguments are a
handler pointer, a dummy event pointer, and delay, respectively (see Chap. 4).
After “txt” seconds, the Scheduler dispatches this event by invoking function
handle(e) associated with the handler intr to inform the upstream object of
a packet departure. In most cases, the upstream object responds by transmitting
another packet, if available (see Sect. 7.3.3 for the callback mechanism).

2. Packet arrival: Class LinkDelay also passes the packet to its downstream
object (*target_). Line 8 schedules an event cast from the input packet *p
with delay txt+delay_ seconds, where “txt” is the packet transmission time
and “delay_” is the link propagation delay. Here, *target_ is passed to
the function schedule(...) as a handler pointer. After “txt+delay_”
seconds, h.handle(p)will invoke function recv(p) (see Program 4.2), and
packet *p will be passed to *target_ after txt+delay_ seconds.

The major difference between scheduling packet departure and arrival events is as
follows. While a node can hold only one (head of the line) packet, a link can contain
more than one packet. Correspondingly, at an instance, a link can schedule only one
packet departure event (using “intr_”), and more than one packet arrival event
(using *p which represents a packet). Every time a LinkDelay object receives a
packet, it schedules the packet departure event using the same variable “intr_.” If
variable “intr_” has not been dispatched, such a scheduling will cause runtime
error, because it attempts to place a packet in the head of the buffer which is
currently occupied by another packet. A packet arrival event, at the connecting node
on the other hand, is tied to incoming packet. A LinkDelay object schedules a

158 7 Link and Buffer Management

new packet arrival event for every received packet (see Line 8 in Program 7.4).
Therefore, a link can schedule another packet arrival event, even if the previous
arrival event has not been dispatched. This is essentially the case for a link (with
large bandwidth-delay product) which can contain several packets.

7.3 Buffer Management

Another major component of a SimpleLink object is a Queue object. Imple-
mented with, class Queue, it models the buffering mechanism in a network router.
It stores the received packets in the buffer and forwards them to its downstream
object when the ongoing transmission is complete.

As shown in Program 7.5, class Queue derives from class Connector
and can be used to connect two NsObjects. It uses a PacketQueue object
(see Sect. 7.3.1), *pq_ in Line 20, for packet buffering. The buffer size is
specified in variable “qlim_” (Line 16). The variables “blocked_” (Line 17),
“unblock_on_resume_” (Line 18), and “qh_” (Line 19) are related to the so-
called callback mechanism and shall be discussed later in Sect. 7.3.3.

Program 7.5 Declaration of class Queue
//˜ns/queue/queue.h

1 class Queue : public Connector {
2 public:
3 virtual void enque(Packet*) = 0;
4 virtual Packet* deque() = 0;
5 virtual void recv(Packet*, Handler*);
6 void resume();
7 int blocked() const { return (blocked_ == 1); }
8 void unblock() { blocked_ = 0; }
9 void block() { blocked_ = 1; }
10 int limit() { return qlim_; }
11 int length() { return pq_->length(); }
12 virtual ˜Queue();
13 protected:
14 Queue();
15 void reset();
16 int qlim_;
17 int blocked_;
18 int unblock_on_resume_;
19 QueueHandler qh_;
20 PacketQueue *pq_;
21 };

7.3 Buffer Management 159

Program 7.6 Declaration of class PacketQueue
//˜ns/queue/queue.h

1 class PacketQueue : public TclObject {
2 public:
3 PacketQueue() : head_(0), tail_(0), len_(0),

bytes_(0) {}
4 virtual int length() const { return (len_); }
5 virtual Packet* enque(Packet* p);
6 virtual Packet* deque();
7 virtual void remove(Packet*);
8 Packet* head() { return head_; }
9 Packet* tail() { return tail_; }
10 protected:
11 Packet* head_;
12 Packet* tail_;
13 int len_;
14 };

There are a number of important functions of class Queue. Function enque(p)
and deque() (Lines 3 and 4) place and take, respectively, a packet from the
PacketQueue object *pq_. They are declared as pure virtual and must be
implemented by instantiable derived classes of class Queue. Inherited from class
NsObject, the function recv(p,h) (Line 5) is the main packet reception
function. Function blocked() in Line 7 indicates whether the Queue object
is in a blocked state. Functions resume() (Line 6), unblock() (Line 8), and
block() (Line 9) are used in the callback mechanism which will be discussed in
Sect. 7.3.3. Finally, functions limit() and length() return the buffer size and
current buffer occupancy, respectively.

7.3.1 Class PacketQueue: A Model for Packet Buffering

Declared in Program 7.6, class PacketQueue models low-level operations of
the buffer including storing, enqueuing, and dequeuing packet. It contains several
variables and functions which implement a link list of Packets. Variable “head_”
in Line 11 is the pointer to the beginning of the link list. Variable “tail_” in Line
12 is the pointer to the end of the link list. The variable “len_” in Line 13 is
the number of packets in the buffer. Function enque(p) in Line 5 puts the input
packet *p to the end of the buffer. Function deque() in Line 6 returns the head
of the line Packet pointer or returns NULL when the buffer is nonempty or empty,
respectively. Function remove(p) in Line 7 searches for a matching packet *p
and removes it from the buffer (if found). Note that packet admitting/dropping is
the functionality of class Queue, not of class PacketQueue. We will show an
example of packet admitting/dropping of class DropTail in Sect. 7.3.4.

160 7 Link and Buffer Management

Program 7.7 Declaration and function handle of class QueueHandler, and the
constructor of class Queue

//˜ns/queue/queue.h
1 class QueueHandler : public Handler {
2 public:
3 inline QueueHandler(Queue& q) : queue_(q) {}
4 void handle(Event*);
5 private:
6 Queue& queue_;
7 };

//˜ns/queue/queue.cc
8 void QueueHandler::handle(Event*)
9 {
10 queue_.resume();
11 }

12 Queue::Queue() : Connector(), blocked_(0),
unblock_on_resume_(1), qh_(*this),pq_(0)

13 { ... }

7.3.2 Queue Handler

Derived from class Handler (see Line 1 in Program 7.7), class QueueHandler
is closely related to the (event) Scheduler. Again, a QueueHandler object defines
its default actions in its function handle(e). These default actions will be taken
when an associated event is dispatched. As shown in Lines 8–11 of Program 7.7,
the default action of a QueueHandler object is to execute function resume()
of the associated Queue object “queue_.” We will discuss the details of function
resume() in Sect. 7.3.3. In the rest of this section, we will demonstrate how a
connection between QueueHandler and Queue objects is created.

To associate a Queue object with a QueueHandler object, classes Queue and
QueueHandler declare their member variables “qh_” (Line 19 in Program 7.5)
and “queue_” (Line 6 in Program 7.7), as a QueueHandler pointer and a
Queue reference, respectively. These two variables are initialized when a Queue
object is instantiated (Line 12 in Program 7.7). The constructor of class Queue
invokes the constructor of class QueueHandler, feeding itself as an input
argument (i.e., qh_(*this)). The constructor of “qh_” then sets its member
variable “queue_” to share the same address as the input Queue object (i.e.,
queue_(q) in Line 3 of Program 7.7). These two constructors create a two-way
connection between the Queue and QueueHandler objects. After this point, the
Queue and the QueueHandler objects refer to each other by the variables qh_
and queue_, respectively.

7.3 Buffer Management 161

Fig. 7.2 State diagram of the
queue blocking mechanism

7.3.3 Queue Blocking and Callback Mechanism

7.3.3.1 Queue Blocking

NS2 uses the concept of queue blocking2 to indicate whether a queue is currently
transmitting a packet. By default, a queue can transmit one packet at a time. It is
not allowed (i.e., blocked) to transmit another packet until the ongoing transmission
is complete. A queue is said to be blocked or unblocked (i.e., blocked_ = 1 or
blocked_ = 0), when it is transmitting a packet or is not transmitting a packet,
respectively.

Figure 7.2 shows the state diagram of the queue blocking mechanism. When
in the “Not Blocked” state, a queue is allowed to transmit a packet by executing
“target_->recv(p,&qh_),” after which it enters the “Blocked” state. Here,
a queue waits until the ongoing transmission is complete where the function
resume() is invoked. After this point, the queue enters the “Not Blocked” state
and the process repeats.

7.3.3.2 Callback Mechanism

As discussed in Chap. 5, a node in NS2 passes packets to a downstream node
by executing function recv(p,h), where *p denotes a packet and *h denotes
a handler. A callback mechanism refers to a process where a downstream object
invokes an upstream object along the downstream path for a certain purpose. In a
queue blocking process, a callback mechanism occurs when a downstream object
Queue object by invoking function resume() of the unblocks an upstream
Queue object.

We now explain the callback mechanism process for queue unblocking via
an example network in Fig. 7.3. Here, we assume that the following objects are
sequentially connected: an upstream NsObject, a Queue object, a LinkDelay
object, and a downstream NsObject. Again, an NsObject passes a packet *p by
invoking function recv(p,h) of its downstream object, where *h is a handler.
In most cases, the input handler *h is passed along with the packet *p as input
argument of function recv(p,h). However, this mechanism is different for
Queue objects.

2Queue blocking has no relation to packet blocking when the buffer is full.

162 7 Link and Buffer Management

Fig. 7.3 Diagram of callback mechanism for a queue unblocking process

Program 7.8 Function recv of class Queue
//˜ns/queue/queue.cc

1 void Queue::recv(Packet* p, Handler*)
2 {
3 enque(p);
4 if (!blocked_) {
5 p = deque();
6 if (p != 0) {
7 blocked_ = 1;
8 target_->recv(p, &qh_);
9 }
10 }
11 }

Consider function recv(p,h) of class Queue in Program 7.8. Instead of
immediately passing the incoming packet *p to its downstream object, Line 3 places
the packet in the buffer. Again, a Queue object is allowed to transmit a packet
only when it is not blocked (Line 4). In this case, Line 5 retrieves a packet from
the buffer. If the packet exists (Line 6), Line 7 will set the state of the Queue
object to be “blocked,” and Line 8 will forward the packet to its downstream
object (i.e., *target_). The Queue object passes its QueueHandler pointer
“qh_” (instead of the incoming handler pointer) to its downstream object. This
QueueHandler pointer acts as a reference point for a queue blocking callback
mechanism.

From Fig. 7.3, the downstream object of the Queue object is a LinkDelay
object. Upon receiving a packet, it schedules two events: packet departure and

7.3 Buffer Management 163

Program 7.9 Function resume of class Queue
//˜ns/queue/queue.cc

1 void Queue::resume()
2 {
3 Packet* p = deque();
4 if (p != 0)
5 target_->recv(p, &qh_);
6 else
7 if (unblock_on_resume_)
8 blocked_ = 0;
9 else
10 blocked_ = 1;
11 }

arrival events (see Lines 10 and 8 in Program 7.4). A packet arrival event is
associated with the downstream object (i.e., *target_). At the firing time, the
function handle(p) of the downstream object will invoke function recv(p) to
receive packet *p (see Program 4.2).

Function recv(p) of class LinkDelay also schedules a packet departure
event. The departure event is associated with the QueueHandler object “qh_.”
At the firing time, the Scheduler invokes function handle(p) of the associated
QueueHandler object qh_. In Program 7.7, this function in turn invokes function
resume() to unblock the associated Queue object. Essentially, the LinkDelay
object schedules an event which calls back to unblock the upstream Queue object.

Program 7.9 shows the details of function resume() invoked when the ongoing
transmission is complete. Function resume() first retrieves the head of the line
packet from the buffer (Line 3). If the buffer is nonempty (Line 4), Line 5 will send
the packet to the downstream object of the queue. If the queue is idle (i.e., the buffer
is empty), variable “blocked_” will be set to zero and one in case that the flag
“unblock_on_resume_” is one and zero, respectively.

7.3.4 Class DropTail: A Child Class of Class Queue

Consider class DropTail, a child class of class Queue, which is bound to
the OTcl class Queue/DropTail in Program 7.10. The constructor of class
DropTail creates a pointer “q_” (Line 13) to a PacketQueue object and sets
“pq_” derived from class Queue to be the same as “q_” (Line 5). Throughout the
implementation, class DropTail refers to its buffer by “q_” instead of “pq_.”
Class DropTail overrides function enque(p) (Line 11 and Program 7.11) and
deque() (Line 12) of class Queue. It also allows packet dropping at the front
of the buffer, if the flag “drop_front_” (Line 14) is set to 1. Class DropTail
does not override function recv(p,h). Therefore, it receives a packet through the
function recv(p,h) of class Queue.

164 7 Link and Buffer Management

Program 7.10 Declaration of class DropTail
//˜ns/queue/drop-tail.h

1 class DropTail : public Queue {
2 public:
3 DropTail() {
4 q_ = new PacketQueue;
5 pq_ = q_;
6 bind_bool("drop_front_", &drop_front_);
7 };
8 ˜DropTail() { delete q_; };
9 protected:
10 int command(int argc, const char*const* argv);
11 void enque(Packet*);
12 Packet* deque();
13 PacketQueue *q_;
14 int drop_front_;
15 };

//˜ns/queue/drop-tail.cc
16 static class DropTailClass : public TclClass {
17 public:
18 DropTailClass() : TclClass("Queue/DropTail") {}
19 TclObject* create(int, const char*const*) {
20 return (new DropTail);
21 }
22 } class_drop_tail;

Program 7.11 Function enque of class DropTail
//˜ns/queue/drop-tail.cc

1 void DropTail::enque(Packet* p)
2 {
3 if ((q_->length() + 1) >= qlim_)
4 if (drop_front_) {
5 q_->enque(p);
6 Packet *pp = q_->deque();
7 drop(pp);
8 } else
9 drop(p);
10 else
11 q_->enque(p);
12 }

In Program 7.11, the function enque(p) first checks whether the incoming
packet will cause buffer overflow (Line 3). If so, it will drop the packet either from
the front (Lines 5–7) or from the tail (Line 9), where function drop(p) (Lines 7
and 9) belongs to class Connector (see Program 5.4). If the buffer has enough
space, Line 11 will enqueue packet (p) to its buffer (q_).

7.4 A Sample Two-Node Network 165

7.4 A Sample Two-Node Network

We have introduced two basic NS2 components: nodes and links. Based on these
two components, we now create a two-node network with a unidirectional link and
show the packet flow mechanism within this network in Fig. 7.4.

udp n1 n2SimpleLink
attach-agent attach-agentsimplex-linkrun

null

Fig. 7.4 A two-node network with a unidirectional link and the instprocs of class Simulator

7.4.1 Network Construction

The network in Fig. 7.4 consists of a beginning node (n1), a termination node (n2),
a SimpleLink connecting n1 and n2, a source transport layer agent (udp), and a
sink transport layer agent (null). This network can be created using the following
Tcl simulation script:

set ns [new Simulator]
set n1 [$ns node]
set n2 [$ns node]
$ns simplex-link $n1 $n2 <bw> <delay> DropTail
set udp [new Agent/UDP]
set null [new Agent/Null]
$ns attach-agent $n1 $udp
$ns attach-agent $n2 $null

Here, a command “$ns node” creates a Node object. The internal mechanism
of the node construction process was described in Sect. 6.5. The statement “$ns
simplex-link $n1 $n2 <bw> <delay> DropTail” creates a unidirec-
tional SimpleLink object, which connects node $n1 to node $n2. The link
bandwidth and delay are <bw> bps and <delay> seconds, respectively. The
buffer in the link is of class DropTail. From Sect. 6.5.3, the commands “$ns
attach-agent $n1 $udp” and “$ns attach-agent $n2 $null” set
the target of the agent “udp” to be the entry of Node $n1 and installs agent $null
in the demultiplexer of Node $n2.

7.4.2 Packet Flow Mechanism

To deliver a packet “*p” from agent $udp to $null,

166 7 Link and Buffer Management

1. Agent $udp sends the packet *p to the entry of Node $n1.3

2. Packet *p is sent to the head classifier “classifier_” (which is of class
DestHashClassifier) of Node $n1.

3. The DestHashClassifier object “classifier_” examines the header
of the packet *p. In this case, the packet is destined to the Node $n2. Therefore,
it forwards the packet to the link head of the connecting SimpleLink object.

4. The link head forwards the packet to the connecting Queue object.
5. The Queue object enqueues the packet. If not blocked, it will forward the head

of the line packet to the connecting LinkDelay object and set its status to
blocked.

6. Upon receiving a packet, the LinkDelay object schedules the two following
events:

a. Packet departure event, which indicates that packet transmission is com-
plete. This event unblocks the associated Queue object.

b. Packet arrival event, which indicates the packet arrival at the connecting
TTLChecker object.

7. The TTLChecker object receives the packet and decrements the TTL field of
the packet header. If the TTL field of the packet is nonpositive, the TTLChecker
object will drop the packet. Otherwise, it will forward the packet to the entry of
Node $n2 (see file ˜ns/common/ttl.cc).

8. Node $n2 forwards the packet to the head classifier (classifier_). Since the
packet is destined to itself, the packet is forwarded to the demultiplexer (dmux_).

9. The demultiplexer forwards the packet to the agent $null installed in the
demultiplexer.

7.5 Chapter Summary

This chapter focuses on class SimpleLink, a basic link class that can be used to
connect two nodes. The connection between two nodes $n1 and $n2 can be created
by the following instprocs:

$ns simplex-link $n1 $n2 <bw> <delay> <queue_type>
$ns duplex-link $n1 $n2 <bw> <delay> <queue_type>

where the bandwidth and delay of the SimpleLink object are <bw> bps and
<delay> seconds, respectively. Also the type of queue implemented in the
SimpleLink object is <queue_type>.

A SimpleLink object models packet transmission time, link propagation
delay, and packet buffering. Here, packet transmission time is the time required

3Note that, each object sends a packet *p to its downstream object by invoking target ->
recv(p,h), where target is a pointer to the downstream object.

7.6 Exercises 167

to transmit a packet and is computed by packet size
bandwidth , while the link propagation time

is the time required to deliver a data bit from the beginning to the end of the
SimpleLink object. These two attributes are implemented in the CCC class
LinkDelay. Packet buffering is implemented in the abstract class Queue. Finally,
classes LinkDelay and Queue, together, help model packet arrival and departure
event.

7.6 Exercises

1. What are features of a simple link? Draw a diagram and explain each of its object
components. What are the purposes, and the OTcl and CCC classes of those
components?

2. Define packet transmission time and propagation delay. What are their differ-
ences? Explain your answer using one example.

3. What are the OTcl and CCC classes responsible to model packet transmission
time and propagation delay? Draw a diagram and explain how NS2 implements
packet latency during packet forwarding.

4. What are the purposes of the variable “intr_” in class LinkDelay?

5. Lines 8 and 10 of Program 7.4 invoke the function schedule(...) of the
Scheduler object. What do these lines do?

6. What are the differences/similarities between CCC classes PacketQueue and
Queue?

7. Explain the relationship among class QueueHandler, Queue, LinkDelay,
Packet, and Scheduler. Draw a diagram and explain the callback mecha-
nism.

8. Explain how a DropTail queue receives and drops packets from its tail when
its buffer is full.

9. Write an NS2 statement which creates a SimpleLink object whose bandwidth
is 2 Mbps, propagation delay is 10 ms, and the queue type is DropTail.

Chapter 8
Packets, Packet Headers, and Header Format

Generally, a packet consists of packet header and data payload. Packet header stores
packet attributes (e.g., source and destination IP addresses) necessary for packet
delivery, while data payload contains user information. Although this concept is
typical in practice, NS2 models packets differently.

In most cases, NS2 extracts information from data payload and stores the
information into packet header. This idea removes the need to process data payload
at runtime. For example, instead of counting the number of bits in a packet, NS2
stores packet size in the variable hdr_cmn::size_ (see Sect. 8.3.5), and accesses
this variable at runtime.1

This chapter discusses how NS2 models packets. Section 8.1 gives an overview
on NS2 packet modeling. Section 8.2 discusses the packet allocation and deallo-
cation processes. Sections 8.3 and 8.4 show the details of packet header and data
payload, respectively. We give a guideline of how to customize packets (i.e., to
define a new payload type and activate/deactivate new and existing protocols) in
Sect. 8.5. Finally, the chapter summary is given in Sect. 8.6.

8.1 An Overview of Packet Modeling Principle

8.1.1 Packet Architecture

Figure 8.1 shows the architecture of an NS2 packet model. From Fig. 8.1, a packet
model consists of four main parts: actual packet, class Packet, protocol-specific
headers, and packet header manager.

• Actual Packet: An actual packet refers to the portion of memory which
stores packet header and data payload. NS2 does not directly access either the

1For example, class LinkDelay determines packet size from a variable hdr cmn::
size when computing packet transmission time (see Line 11 of Program 7.3).

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 8, © Springer Science+Business Media, LLC 2012

169

170 8 Packets, Packet Headers, and Header Format

PROTOCOL SPECIFIC HEADERS

PacketHeaderManager

COMMON HEADER

classname_

hdrlen_

offset_

hdr_cmn
(C++ Class)

offset_

PacketHeader/Common
(OTcl Class)

sizeof()

CommonHeaderClass
(mapping class)

class_cmnhdr

hdrlen_

bits_ data_

Packet

Packet Header

hdrlen_

IP HEADER

hdr_ip
(C++ Class)

PacketHeader/IP
(OTcl Class)

IPHeaderClass
(mapping class)

class_iphdr

Data Payload

...

hdrlen_

...

Actual Packet AppData

type_

“a” points to “b”
a b

Bind “a” to “b” Store “a” in “b”
a ba b

Arrow legend

C++
OTcl

Fig. 8.1 Packet modeling in NS2

packet header or the data payload. Rather, it uses member variables “bits_”
and “data_” of class Packet to access packet header and data payload,
respectively. The details of packet header and data payload will be given in
Sects. 8.3 and 8.4, respectively.

• Class Packet: Declared in Program 8.1, class Packet is the CCC main class
which represents packets. It contains the following variables and functions:

– CCC Variables of Class Packet

bits_ A string which contains packet header
data_ A pointer to an AppData object which contains data

payload
fflag_ Set to true if the packet is currently referred to by other

objects and false otherwise
free_ A pointer to the head of the packet free list

ref_count_ The number of objects which currently refer to the packet
next_ A pointer to the next packet in the link list of packets

hdr_len_ Length of packet header

8.1 An Overview of Packet Modeling Principle 171

Program 8.1 Declaration of class Packet
//˜/ns/common/packet.h

1 class Packet : public Event {
2 private:
3 unsigned char* bits_;
4 AppData* data_;
5 static void init(Packet*) {bzero(p->bits_, hdrlen_);}
6 bool fflag_;
7 protected:
8 static Packet* free_;
9 int ref_count_;
10 public:
11 Packet* next_;
12 static int hdrlen_;

//Packet Allocation and Deallocation
13 Packet() : bits_(0), data_(0), ref_count_(0), next_(0) { }
14 inline unsigned char* const bits() { return (bits_); }
15 inline Packet* copy() const;
16 inline Packet* refcopy() { ++ref_count_; return this; }
17 inline int& ref_count() { return (ref_count_); }
18 static inline Packet* alloc();
19 static inline Packet* alloc(int);
20 inline void allocdata(int);
21 static inline void free(Packet*);

//Packet Access
22 inline unsigned char* access(int off){return &bits_[off]);};
23 }

– CCC Functions of Class Packet

init(p) Clear the packet header *bits_ of the input
packet *p.

copy() Return a pointer to a duplicated packet.
refcopy() Increase the number of objects, which refer to the

packet, by one.
alloc() Create a new packet and return the pointer to the

created packet.
alloc(n) Create a new packet with “n” bytes of data payload

and return a pointer to the created packet.
allocdata(n) Allocate “n” bytes of data payload to the variable

data_.
free(p) Deallocate the packet “p.”

access(off) Retrieve a reference to a certain point (specified by the
offset “off”) of the variable “bits_” (i.e., packet
header).

172 8 Packets, Packet Headers, and Header Format

• Protocol Specific Header: From Fig. 8.1, packet header consists of several
protocol-specific headers. Each protocol-specific header uses a contiguous
portion of packet header to store its packet attributes. In common with most
TclObjects, there are three classes related to each protocol-specific header:

– A CCC class (e.g., hdr_cmn or hdr_ip) provides a structure to store
packet attributes.

– An OTcl class (e.g., PacketHeader/Common or PacketHeader/IP)
acts as an interface to the OTcl domain. NS2 uses this class to configure packet
header from the OTcl domain.

– A mapping class (e.g., CommonHeaderClass or IPHeaderClass) binds
a CCC class to an OTcl class.

We will discuss the details of protocol-specific header later in Sect. 8.3.5.
• Packet Header Manager: A packet header manager maintains a list of active

protocols and configures all active protocol-specific headers to setup packet
header. It has an instvar “hdrlen_” which indicates the length of packet header
consisting of protocol-specific headers. The instvar “hdrlen_” is bound to a
variable “hdrlen_” of class Packet. Any change in one of these two variables
will result in an automatic change in another.

• Data Payload: From Line 4 in Program 8.1, the pointer “data_” points to data
payload, which is of class AppData. We will discuss the details of data payload
in Sect. 8.4.

8.1.2 A Packet as an Event: A Delayed Packet Reception Event

Derived from class Event (Line 1 in Program 8.1), class Packet can be placed
on the simulation time line (see the details in Chap. 4). In Sect. 4.2, we mentioned
two main classes derived from class Event: class AtEvent and class Packet.
We also mentioned that an AtEvent object is an event created by a user from a
Tcl simulation script. This section discusses details of another derived class of class
Event: class Packet.

As discussed in Sect. 5.2.2, NS2 implements delayed packet forwarding by
placing a packet reception event on the simulation timeline at a certain delayed
time. Derived from class Event, class Packet can be placed on the simulation
timeline to signify a delayed packet reception. For example, the following statement
(see Line 8 in Program 7.4) schedules a packet reception event, where the NsObject
*target_ receives a packet *p at txt+delay_ seconds in future:

s.schedule(target_, p, txt + delay_)

Note that a Packet pointer is cast to be an Event pointer before being fed as the
second input argument of the function schedule(...).

8.1 An Overview of Packet Modeling Principle 173

Fig. 8.2 A link list of packets and a free packet list

At the firing time, the Scheduler dispatches the scheduled event (i.e., *p)
and invokestarget->handle(p), which executes “target_->recv(p)” to
forward packet *p to the NsObject pointer *target_.

8.1.3 A Link List of Packets

Apart from the above four main packet components, a Packet object contains
a pointer “next_” (Line 11 in Program 8.1), which helps formulating a link
list of Packet objects (e.g., Packet List in Fig. 8.2). Program 8.2 shows the
implementation of functions enque(p) and deque() of class PacketQueue.
Function enque(p) (Lines 3–13) puts a Packet object *p to the end of the
queue. If the PacketQueue is empty, NS2 sets “hdrlen_,” “tail_,” and “p”
to point to the same place2 (Line 5). Otherwise, Lines 7 and 8 set *p as the last
packet in the PacketQueue, and shift variable “tail_” to the last packet pointer
“p.” Since the pointer “tail_” is the last pointer of PacketQueue, Line 10 sets
the pointer tail_->next_ to 0 (i.e, points to NULL).

Function deque() (Lines 14–21) retrieves a pointer to the packet at the head
of the buffer. If there is no packet in the buffer, the function deque() will return
a NULL pointer (Line 15). If the buffer is not empty, Line 17 will shift the pointer
“head_” to the next packet, Line 19 will decrease the length of PacketQueue
object by one, and Line 20 will return the packet pointer “p” which was set to the
pointer “head_” in Line 16.

2Note that, head and tail are pointers to the first and the last Packet objects, respectively,
in a PacketQueue object.

174 8 Packets, Packet Headers, and Header Format

Program 8.2 Functions enque and deque of class PacketQueue
//˜/ns/common/queue.h

1 class PacketQueue : public TclObject {
2 ...
3 virtual Packet* enque(Packet* p) {
4 Packet* pt = tail_;
5 if (!tail_) head_= tail_= p;
6 else {
7 tail_->next_= p;
8 tail_= p;
9 }
10 tail_->next_= 0;
11 ++len_;
12 return pt;
13 }

14 virtual Packet* deque() {
15 if (!head_) return 0;
16 Packet* p = head_;
17 head_= p->next_; // 0 if p == tail_
18 if (p == tail_) head_= tail_= 0;
19 --len_;
20 return p;
21 }
22 ...
23 };

8.1.4 Free Packet List

Unlike most NS2 objects, a Packet object, once created, will not be destroyed
until the simulation terminates. NS2 keeps Packet objects which are no longer in
use in a free packet list (see Fig. 8.2). When NS2 needs a new packet, it first checks
whether the free packet list is empty. If not, it will take a Packet object from the
list. Otherwise, it will create another Packet object. We will discuss the details of
how to allocate and deallocate a Packet object later in Sect. 8.2.

There are two variables which are closely related to the packet allocation/
deallocation process: “fflag_” and “free_.” Each Packet object uses a vari-
able “fflag_” (Line 6 in Program 8.1) to indicate whether it is in use. The variable
“fflag_” is set to true, when the Packet object is in use, and set to false
otherwise. Shared by all the Packet objects, a static pointer “free_” (Line 8 in
Program 8.1) is a pointer to the first packet on the free packet list. Each packet on
the free packet list uses its variable “next_” to form a link list of free Packet
objects. This link list of free packets is referred to as a free packet list. Although
NS2 does not return memory allocated to a Packet object to the system, it does
return the memory used by packet header (i.e., “bits_”) and data payload (i.e.,
“data_”) to the system (see Sect. 8.2.2), when the packet is deallocated. Since most

8.2 Packet Allocation and Deallocation 175

memory required to store a Packet object is consumed by packet header and
data payload, maintaining a free packet list does not result in a significant waste of
memory.

8.2 Packet Allocation and Deallocation

Unlike most of the NS2 objects,3 a Packet object is allocated and deallocated
using static functions alloc() and free(p) of class Packet, respectively.
If possible, function alloc() takes a Packet object from the free packet list.
Only when the free packet list is empty, does the function alloc() creates a new
Packet object using “new”. Function free(p) deallocates a Packet object, by
returning the memory allocated for packet header and data payload to the system
and storing the not-in-use Packet pointer “p” in the free packet list for future
reuse. The details of packet allocation and deallocation will be discussed below.

8.2.1 Packet Allocation

Program 8.3 shows details of the function alloc() of class Packet, the packet
allocation function. The function alloc() returns a pointer to an allocated
Packet object to the caller. This function consists of two parts: packet allocation
in Lines 3–15 and packet initialization in Lines 16–22.

Consider the packet allocation in Lines 3–15. Line 3 declares “p” as a pointer to a
Packet object and sets the pointer “p” to point to the first packet on the free packet
list.4 If the free packet list is empty (i.e., p = 0), NS2 will create a new Packet
object (in Line 11) and allocate memory space with size “hdrlen_” bytes for the
packet header in Line 12. The variable “hdrlen_” is not configured during the
construction of a Packet object. Rather, it is set up in the Network Configuration
Phase (see Sect. 8.3.8) and is used by the functionalloc() to create packet header.

Function alloc() does not allocate memory space for data payload. When
necessary, NS2 creates data payload using the function allocdata(n) (see Lines
8–14 in Program 8.4), which will be discussed in detail later in this section.

If the free packet list is nonempty, the function alloc()will execute Lines 5–9
in Program 8.3 (see also the diagram in Fig. 8.3). In this case, the functionalloc()
first makes sure that nobody is using the Packet object “*p,” by asserting that

3Generally, NS2 creates and destroys most objects using procedures newf...g and
deletef...g, respectively.
4Again, “free ” is the pointer to the first packet on the free packet list.

176 8 Packets, Packet Headers, and Header Format

Program 8.3 Function alloc of class Packet
//˜/ns/common/packet.h

1 inline Packet* Packet::alloc()
2 {

//Packet Allocation
3 Packet* p = free_;
4 if (p != 0) {
5 assert(p->fflag_ == FALSE);
6 free_ = p->next_;
7 assert(p->data_ == 0);
8 p->uid_ = 0;
9 p->time_ = 0;
10 } else {
11 p = new Packet;
12 p->bits_ = new unsigned char[hdrlen_];
13 if (p == 0 || p->bits_ == 0)
14 abort();
15 }

//Packet Initialization
16 init(p); // Initialize bits_[]
17 (HDR_CMN(p))->next_hop_ = -2; // -1 reserved for

IP_BROADCAST
18 (HDR_CMN(p))->last_hop_ = -2; // -1 reserved for

IP_BROADCAST
19 p->fflag_ = TRUE;
20 (HDR_CMN(p))->direction() = hdr_cmn::DOWN;
21 p->next_ = 0;
22 return (p);
23 }

Packet

next_

Packet

next_free_

p

…

NULL

Fig. 8.3 Diagram of packet allocation when the free packet list is nonempty. The dotted lines show
the actions caused by the function alloc of class Packet

8.2 Packet Allocation and Deallocation 177

Program 8.4 Functions alloc, allocdata, and copy of class Packet
//˜/ns/common/packet.h

1 inline Packet* Packet::alloc(int n)
2 {
3 Packet* p = alloc();
4 if (n > 0)
5 p->allocdata(n);
6 return (p);
7 }

8 inline void Packet::allocdata(int n)
9 {
10 assert(data_ == 0);
11 data_ = new PacketData(n);
12 if (data_ == 0)
13 abort();
14 }

15 inline Packet* Packet::copy() const
16 {
17 Packet* p = alloc();
18 memcpy(p->bits(), bits_, hdrlen_);
19 if (data_)
20 p->data_ = data_->copy();
21 return (p);
22 }

“fflag_” is false (Line 5).5 Then, Line 6 shifts the pointer “free_” by one
position. Lines 8–9 initialize two variables (“uid_” and “time_”) of class Event
(i.e., the mother class of class Packet) to be zero. Line 21 removes the packet from
the free list by setting p->next_ to zero.

After the packet allocation process is complete, Lines 16–22 initialize the
allocated Packet object. Line 16 invokes function init(p), which initializes
the header of packet *p. From Line 5 in Program 8.1, invocation of function
init(p) executes “bzero(p-> bits_,hdrlen_),” which clears “bits_”
to zero.6 Line 19 sets fflag_ to be true, indicating that the packet *p is now
in use. Line 21 sets the pointer p->next_ to be zero. Lines 17, 18, and 20
initialize the common header. We will discuss packet header in greater detail in
Sect. 8.3.2.

5The CCC function assert(cond) can be used for an integrity check. It does nothing if the
input argument “cond” is true. Otherwise, it will initiate an error handling process (e.g., showing
an error on the screen).
6Function bzero(...) takes two arguments – the first is a pointer to the buffer and the second
is the size of the buffer – and sets all values in a buffer to zero.

178 8 Packets, Packet Headers, and Header Format

Apart from the function alloc(), other relevant functions include alloc(n),
allocdata(n), and copy() (see Program 8.4). The function allocdata(n)
data allocates a packet (Line 3), and invokes allocdata(n) (Line 5). The
function allocdata(n) creates data payload with size “n” bytes (by invoking
new Packet Data(n) in Line 11). We will discuss the details of data payload
later in Sect. 8.4.

Function copy() returns a replica of the current Packet object. The only
difference between the current and the replicated Packet objects is the unique ID
(uid_) field. This function is quite useful, since we often need to create a packet
which is the same as or slightly different from an original packet. This function first
allocates a packet in Line 17. Then, it copies packet header and data payload to the
created packet *p in Lines 18 and 20, respectively.

Despite its name, function refcopy() (Line 16 in Program 8.1) does not create
a copy of a Packet object. Rather, it returns the pointer to the current Packet
object and increment the variable ref_count_ bg 1. The variable ref_count_
keeps track of the number of objects which share the same Packet object. It is
initialized to 0 in the constructor of class Packet (Line 13 in Program 8.1), and
is incremented by one when the function ref_copy() (Line 16 in Program 8.1)
is invoked, indicating that a new object starts using the current Packet object.
Similarly, it is decremented by one when the function free(p) (see Sect. 8.2.2)
is invoked, indicating that an object has stopped using the current Packet
object.

8.2.2 Packet Deallocation

When a packet *p is no longer in use, NS2 deallocates the packet using a function
free(p). By deallocation, NS2 returns the memory used to store packet header
and data payload to the system, sets the pointer “data_” to zero, and stores the
Packet object in the free packet list. Note that although the value of “bits_” is
not set to zero, the memory location stored in “bits_” is no longer accessible. It is
very important not to use “bits_” after packet deallocation. Otherwise, NS2 will
encounter a (memory share violation) runtime error.

Details of the function free(Packet*) are shown in Program 8.5. Before
returning a Packet object to the free packet list, we need to make sure that

1. The packet is in use (i.e., p->fflag_ = 1 in Line 3), since there is no point in
deallocating a packet which has already been deallocated.

2. No object is using the packet. In other words, the variable ref_count_ is zero
(Line 4), where ref_count_ stores the number of objects which are currently
using this packet.

3. The packet is no longer on the simulation time line (i.e., p->uid_<=0 in
Line 5). Deallocating a packet while it is still on the simulation timeline will

8.2 Packet Allocation and Deallocation 179

Program 8.5 Function free of class Packet
//˜/ns/common/packet.h

1 inline void Packet::free(Packet* p)
2 {
3 if (p->fflag_) {
4 if (p->ref_count_ == 0) {
5 assert(p->uid_ <= 0);
6 if (p->data_ != 0) {
7 delete p->data_;
8 p->data_ = 0;
9 }
10 init(p);
11 p->next_ = free_;
12 free_ = p;
13 p->fflag_ = FALSE;
14 } else {
15 --p->ref_count_;
16 }
17 }
18 }

cause event mis-sequencing and runtime error. Line 5 asserts that the event
unique ID corresponding to the Packet object “p” (i.e., p->uid_) is non-
positive, and therefore is no longer on the simulation timeline.7

NS2 allows more than one simulation object to share the same Packet object.
To deallocate a packet, NS2 must ensure that the packet is no longer used by any
simulation object. Again, NS2 keeps the number of objects sharing a packet in the
variable ref_count_. If ref_count_>0, meaning an object is invoking the
function free(p) while other objects are still using the packet *p, the function
free(p) will simply reduce ref_count_ by one, indicating that one object
stops using the packet (Line 15).8 On the other hand, if ref_count_ is zero,
meaning that no other object is using the packet, Lines 5–13 will then clear packet
header and data payload and store the Packet object in the free packet list.

If all the above three conditions are satisfied, function free(p) will execute
Lines 6–13 in Program 8.5. The schematic diagram for this part is shown in Fig. 8.4.
Line 7 returns the memory used by data payload to the system. Line 8 sets the pointer
“data_” to zero. Line 10 returns the memory used by header of the packet *p to
the system by invoking the function init(p) (see Line 5 of Program 8.1). Lines
11 and 12 place the packet as the first packet on the free packet list. Finally, Line 13
sets “fflag_” to false, indicating that the packet is no longer in use.

7From Fig. 4.2, an event with positive unique ID (e.g, “uid ” is 2 or 6) was scheduled but has not
been dispatched.
8If the Packet object is deallocated when ref count > 0, simulation objects may later try to
access the deallocated Packet object and cause a runtime error.

180 8 Packets, Packet Headers, and Header Format

Fig. 8.4 The process of returning a packet to the packet free list. The dotted lines show the action
caused by the function free of class Packet

8.3 Packet Header

As a part of a packet, packet header contains packet attributes such as packet unique
ID and IP address. Again, packet header is stored in the variable “bits_” of class
Packet (see Line 3 of Program 8.1). The variable “bits_” is declared as a string
(i.e., a Bag of Bits (BOB)) and has no structure to store packet attributes. However,
NS2 imposes a two-level structure on variable “bits_,” as shown in Fig. 8.5.

The first level divides the entire packet header into protocol-specific headers. The
location allocated to each protocol specific header on “bits_” is identified by its
variable offset_. The second level imposes a packet attribute-storing structure on
each protocol-specific header. On this level, packet attributes are stored as members
of a CCC struct data type.

In practice, a packet contains only relevant protocol-specific headers. An NS2
packet, on the other hand, includes all protocol-specific headers into a packet header,
regardless of packet type. Every packet uses the same amount of memory to store the
packet header. The amount of memory is stored in the variable “hdrlen_” of class
Packet in Line 12 of Program 8.1, and is declared as a static variable. The variable
“hdrlen_” has no relationship to simulation packet size. For example, TCP and
UPD packets may have different sizes. The values stored in the corresponding
variable hdr_cmn::size_ may be different; however, the values stored in the
variable Packet::hdrlen_ for both TCP and UDP packets are the same.

In the following, we first discuss the first level packet header composition in
Sect. 8.3.1. Sections 8.3.2 and 8.3.3 show examples of protocol-specific head-
ers: common packet header and IP packet header. Section 8.3.4 discusses one
of the main packet attributes: payload type. Section 8.3.5 explains the details
of protocol-specific header (i.e., the second level packet header composition).
Section 8.3.6 demonstrates how packet attributes stored in packet header are

8.3 Packet Header 181

Fig. 8.5 Architecture of packet header: During the construction of the Simulator, the packet
header size is determined and stored in the instvar PacketHeaderManager::hdrlen which
is bound to the variable PacketHeaderManager::hdrlen . See the details in Step 2 in
Sect. 8.3.8

accessed. Section 8.3.7 discusses one of the main packet header component, a packet
header manager, which maintains the active protocol list and sets up the offset
value for each protocol. Finally, Sect. 8.3.8 presents the packet header construction
process.

8.3.1 An Overview of First Level Packet Composition: Offseting
Protocol-Specific Header on the Packet Header

On the first level, NS2 puts together all relevant protocol-specific headers (e.g., com-
mon header, IP header, TCP header) and composes a packet header (see Fig. 8.5).
Conceptually, NS2 allocates a contiguous part on the packet header for a protocol-
specific header. Each protocol-specific header is offset from the beginning of packet
header. The distance between the beginning of packet header and that of a protocol-
specific header is stored in the member variable offset_ of the protocol-specific
header. For example, hdr_cmn, hdr_ip, and hdr_tcp – which represent
common header, IP header, and TCP header – store their offset values in vari-
ables hdr_cmn::offset_,hdr_ip::offset_, and hdr_tcp::offset_,
respectively.

182 8 Packets, Packet Headers, and Header Format

Program 8.6 Declaration of C++ hdr cmn struct data type
//˜/ns/common/packet.h

1 struct hdr_cmn {
2 enum dir_t { DOWN= -1, NONE= 0, UP= 1 };
3 packet_t ptype_; // payload type
4 int size_; // simulated packet size
5 int uid_; // unique id
6 dir_t direction_; // direction: 0=none, 1=up, -1=down
7 static int offset_; // offset for this header

8 inline static hdr_cmn* access(const Packet* p) {
9 return (hdr_cmn*) p->access(offset_);
10 }
11 inline static int& offset() { return offset_; }
12 inline packet_t& ptype() { return (ptype_); }
13 inline int& size() { return (size_); }
14 inline int& uid() { return (uid_); }
15 inline dir_t& direction() { return (direction_); }
16 };

8.3.2 Common Packet Header

Common packet header contains packet attributes which are common to all packets.
It uses CCC struct data type hdr_cmn to indicate how the packet attributes
are stored. Program 8.6 shows a part of hdr_cmn declaration. The main member
variables of hdr_cmn are as follows:

ptype_ The payload type (see Sect. 8.3.4).
size_ The packet size in bytes. Unlike actual packet transmission, the

number of bits requires to hold a packet has no relationship to
simulation packet size. During simulation, NS2 uses the variable
hdr_cmn::size_ as the packet size.

uid_ The ID which is unique to every packet.
dir_t The direction to which the packet is moving. It is used mainly in

wireless networks: A packet can move “UP” (i.e., dir_t = 1) to-
ward higher layers or move “DOWN” toward lower layer components
(i.e., dir_t = -1). It can also set to 0, when not in use, by default,
“dir_t” is set to “DOWN” (see Line 20 in Program 8.3).

offset_ The memory location relative to the beginning of packet header from
which the common header is stored (see Sect. 8.3.1 and Fig. 8.5).

From Fig. 8.6, most functions of class hdr_cmn act as an interface to access its
variables. Perhaps, the most important function of class hdr_cmn is the function
access(p) in Lines 8–10. This function returns a pointer to the common protocol-
specific header of the input Packet object *p. We will discuss the packet header
access mechanism in greater detail in Sect. 8.3.6.

8.3 Packet Header 183

Program 8.7 Declaration of C++ hdr ip struct data type
//˜/ns/common/ip.h

1 struct hdr_ip {
2 ns_addr_t src_;
3 ns_addr_t dst_;
4 int ttl_;
5 int fid_;
6 int prio_;
7 static int offset_;
8 inline static int& offset() { return offset_; }
9 inline static hdr_ip* access(const Packet* p) {
10 return (hdr_ip*) p->access(offset_);
11 }
12 ns_addr_t& src() { return (src_); }
13 nsaddr_t& saddr() { return (src_.addr_); }
14 int32_t& sport() { return src_.port_;}
15 ns_addr_t& dst() { return (dst_); }
16 nsaddr_t& daddr() { return (dst_.addr_); }
17 int32_t& dport() { return dst_.port_;}
18 int& ttl() { return (ttl_); }
19 int& flowid() { return (fid_); }
20 int& prio() { return (prio_); }
21 };

8.3.3 IP Packet Header

Represented by a CCC struct data type hdr_ip, IP packet header contains
information about source and destination of a packet. Program 8.7 shows a part
of hdr_ip declaration. IP packet header contains the following five main variables
which contain IP-related packet information (see Lines 2–6 in Program 8.7):

src_ Source node’s address indicated in the packet
dst_ Destination node’s address indicated in the packet
ttl_ Time to live for the packet
fid_ Flow ID of the packet
prio_ Priority level of the packet

NS2 uses data type ns_addr_t defined in the file ˜ns/config.h to store node
address. From Program 8.8, ns_addr_t is a struct data type, which contains
two members: addr_ and port_. Both members are of type int32_t, which is
simply an alias for int data type (see Line 5 and file ˜ns/autoconf-win32.h). While
addr_ specifies the node address, port_ identifies the attached port (if any).

The variables src_ and dst_ of IP header are of class ns_addr_t. Hence,
“src_.addr_” and “src_.port_” store the node address and the port of the
sending agent, respectively. Similarly, the packet will be sent to a receiving agent
attached to port “dst_.port_” of a node with address “dst_.addr_.”

184 8 Packets, Packet Headers, and Header Format

Program 8.8 Declaration of CCC ns addr t struct data type, and int32 t
//˜/ns/config.h

1 struct ns_addr_t {
2 int32_t addr_;
3 int32_t port_;
4 };

//˜/ns/autoconf-win32.h
5 typedef int int32_t;

Lines 7–11 in Program 8.7 declare the variable offset_, function offset
(off) and function access(p), which are essential to access IP header of a
packet. Lines 12–20 in Program 8.7 are functions that return the values of the
variables.

8.3.4 Payload Type

Although stored in common header, payload type is attributed to the entire packet,
not to a protocol-specific header. Each packet corresponds to only one payload type
but may contain several protocol-specific headers. For example, a packet can be
encapsulated by both TCP and IP protocols. However, its type can be either audio
or TCP packet, but not both.

NS2 stores a payload type in a member variable ptype_ of a common
packet header. The type of the variable ptype_ is enum packet_t defined
in Program 8.9. Again, members of enum are integers which are mapped to
strings. From Program 8.9, PT_TCP (Line 2) and PT_UDP (Line 3) are mapped
to 0 and 1, respectively. Since packet_t declares PT_NTYPE (representing
undefined payload type) as the last member, the value of PT_NTYPE is Np � 1,
where Np is the number of packet_tmembers. NS2 provides 60 built-in payload
types, meaning the default value of PT_NTYPE is 59.

From Lines 11–30 in Program 8.9, class p_info maps each member of
packet_t to a description string. It has a static associative array variable, name_
(Line 28). The index and value of name_ are the payload type and the correspond-
ing description string, respectively. Class p_info also has one important function
name(p) (Lines 23–26), which translates a packet_t variable to a description
string.

At the declaration, NS2 declares a global variable packet_info (using
extern), which is of class p_info (Line 30). Accessible at the global scope,
the variable packet_info provides an access to the function name(p) of class
p_info. To obtain a description string of a packet_t object “p,” one may invoke

packet_info.name(ptype)

8.3 Packet Header 185

Program 8.9 Declaration of enum packet t type and class p info
//˜/ns/common/packet.h

1 enum packet_t {
2 PT_TCP,
3 PT_UDP,
4 PT_CBR,
5 PT_AUDIO,
6 PT_VIDEO,
7 PT_ACK,
8 ...
9 PT_NTYPE // This MUST be the LAST one
10 }

11 class p_info {
12 public:
13 p_info() {
14 name_[PT_TCP]= "tcp";
15 name_[PT_UDP]= "udp";
16 name_[PT_CBR]= "cbr";
17 name_[PT_AUDIO]= "audio";
18 name_[PT_VIDEO]= "video";
19 name_[PT_ACK]= "ack";
20 ...
21 name_[PT_NTYPE]= "undefined";
22 }
23 const char* name(packet_t p) const {
24 if (p <= PT_NTYPE) return name_[p];
25 return 0;
26 }
27 private:
28 static char* name_[PT_NTYPE+1];
29 };
30 extern p_info packet_info; /* map PT_* to string name */

Example 8.1. Class Agent is responsible for creating and destroying network layer
packets (see Chap. 9). It is the base class of TCP and UDP transport layer protocol
modules. Class Agent provides a function allocpkt(), which is responsible for
allocating (i.e., creating) a packet.

To print out the type of every allocated packet on the screen, we modify function
allocpkt() of class Agent in file ˜ns/common/agent.cc as follows:

//˜/ns/common/agent.h
1 Packet* Agent::allocpkt() const
2 {
3 Packet* p = Packet::alloc();
4 initpkt(p);
5 /*----- Begin Additional Codes -----*/
6 hdr_cmn* ch = hdr_cmn::access(p);
7 packet_t pt = ch->ptype();

186 8 Packets, Packet Headers, and Header Format

8 printf("Example Test: Class Agent allocates a
packet with type %s\n", packet_

info.name(pt));
9 getchar();
10 /*----- End Additional Codes -----*/
11 return (p);
12 }

where Lines 5–10 are added to the original codes. Line 6 retrieves the reference
“ch” to the common packet header (see Sect. 8.3.6). Line 7 obtains the payload type
stored in the common header using the function ptype(), and assigns the payload
type to variable “pt.” Note that, the variable packet_info is a global variable of
class p_info. When the variable “pt” is fed as an input argument, the statement
packet_info.name(pt) returns the description string corresponding to the
packet_t object “pt” (Line 8).

After recompiling the code, the simulation should show the type of every
allocated packet on the screen. For example, when running the Tcl simulation script
in Programs 2.1–2.2, the following result should appear on the screen:

>> ns myfirst_ns.tcl
Example Test: Class Agent allocates a packet with type cbr
Example Test: Class Agent allocates a packet with type cbr
Example Test: Class Agent allocates a packet with type cbr
...

8.3.5 Protocol-Specific Headers

A protocol-specific header stores packet attributes relevant to the underlying proto-
col only. For example, common packet header holds basic packet attributes such as
packet unique ID, packet size, payload type, and so on. IP packet header contains
IP packet attributes such as source and destination IP addresses and port numbers.
There are 48 classifications of packet headers. The complete list of protocol-specific
headers with their descriptions is given in [17].

Each protocol-specific header involves three classes: A CCC class, and OTcl
class, and a mapping class.

8.3.5.1 Protocol-Specific Header CCC Classes

In CCC, NS2 uses a struct data type to represent a protocol-specific header.
It stores packet attributes and its offset value in members of the struct data
type. It also provides a function access(p) which returns the reference to the
protocol-specific header of a packet *p. Representing a protocol specific header,

8.3 Packet Header 187

each struct data type is named using the format hdr_<XXX>, where <XXX> is
an arbitrary string representing the type of a protocol-specific header. For example,
the CCC class name for common packet header is hdr_cmn.

In the CCC domain, protocol specific headers are declared but not instantiated.
Therefore, NS2 uses a struct data type (rather than a class) to represent protocol-
specific headers. No constructor is required for a protocol-specific header. Hereafter,
we will refer to struct and class interchangeably.

8.3.5.2 A Protocol-Specific Header OTcl Class

NS2 defines a shadow OTcl class for each CCC protocol specific header class.
An OTcl class acts as an interface to the OTcl domain. It is named with the
format PacketHeader/<XXX>, where <XXX> is an arbitrary string representing
a protocol-specific header. For example, the OTcl class name for common packet
header is PacketHeader/Common.

8.3.5.3 A Protocol-Specific Header Mapping Class

A mapping class is responsible for binding OTcl and CCC class names together.
All the packet header mapping classes derive from class PacketHeaderClass
which is a child class of class TclClass. A mapping class is named with
format <XXX>HeaderClass, where <XXX> is an arbitrary string representing a
protocol-specific header. For example, the mapping class name for common packet
header is CommonHeaderClass.

Program 8.10 shows the declaration of class PacketHeaderClass, which
has two key variables: hrdlen_ in Line 8 and offset_ in Line 9. The variable
“hdrlen_” represents the length of the protocol-specific header.9 It is the system
memory needed to store a protocol-specific header CCC class. The variable
offset_ indicates the location on packet header where the protocol-specific
header is used.

The constructor of class PacketHeaderClass in Lines 3 and 4 takes
two input arguments. The first input argument classname is the name of the
corresponding OTcl class name (e.g., PacketHeader/Common). The second
one, hdrlen, is the length of the protocol-specific header CCC class. In Lines 3
and 4, the constructor feeds classname to the constructor of class TclClass,
stores hdrlen in the member variable hdrlen_, and resets offset_ to zero.

Function method(argc,argv) in Line 5 is an approach to take a CCC
action from the OTcl domain. Functions bind_offset(off) in Line 6 and
offset(off) in Line 7 are used to configure and retrieve, respectively, value

9While the variable hdrlen in class PacketHeaderClass represents the length of a protocol
specific header, the variable hdrlen in class Packet represents total length of packet header.

188 8 Packets, Packet Headers, and Header Format

Program 8.10 Declaration of class PacketHeaderClass
//˜/ns/common/packet.h

1 class PacketHeaderClass : public TclClass {
2 protected:
3 PacketHeaderClass(const char* classname, int hdrlen) :
4 TclClass(classname), hdrlen_(hdrlen),

offset_(0);{};
5 virtual int method(int argc, const char*const* argv);
6 inline void bind_offset(int* off) { offset_ = off; };
7 inline void offset(int* off) {offset_= off;};
8 int hdrlen_; // # of bytes for this header
9 int* offset_; // offset for this header
10 public:
11 TclObject* create(int argc,const char*const* argv)

{return 0;};
12 virtual void bind(){
13 TclClass::bind();
14 Tcl& tcl = Tcl::instance();
15 tcl.evalf("%s set hdrlen_ %d", classname_, hdrlen_);
16 add_method("offset");
17 };
18 };

of the variable “offset_”. Function create(argc,argv) in Line 11 does
nothing, since no protocol-specific header CCC object is created. It will be over-
ridden by the derived classes of class PacketHeaderClass. Function bind()
in Lines 12–17 glues the CCC class to the OTcl class. Line 13 first invokes the
function bind() of class TclClass, which performs the basic binding actions.
Line 15 exports variable “hdrlen_” to the OTcl domain. Line 16 registers the OTcl
method offset using function add_method(“offset”).

Apart from the OTcl commands discussed in Sect. 3.4, an OTcl method is another
way to invoke CCC functions from the OTcl domain. It is implemented in CCC
via the following two steps. The first step is to define a function method(ac,av).
As can be seen from Program 8.11, the structure of function method is very
similar to that of the function command. A method “offset” stores the input
argument in the variable *offset_ (Line 7 in Program 8.11). The second step
in method implementation is to register the name of the method using a function
“add_method(str),” which takes the method name as an input argument.
For class PacketHeaderClass, the method offset is registered from within
function bind(...) (Line 16 of Program 8.10).

A protocol-specific header is implemented using a struct data type, and hence
does not derive function command(...) from class TclObject.10 It resorts to
OTcl methods defined in the mapping class to take CCC actions from the OTcl

10Since NS2 does not instantiate a protocol specific header object, it models a protocol specific
header using struct data type.

8.3 Packet Header 189

Program 8.11 Function method of class PacketHeaderClass
//˜/ns/common/packet.cc

1 int PacketHeaderClass::method(int ac, const char*const* av)
2 {
3 Tcl& tcl = Tcl::instance();
4 ...
5 if (strcmp(argv[1], "offset") == 0) {
6 if (offset_) {
7 *offset_ = atoi(argv[2]);
8 return TCL_OK;
9 }
10 tcl.resultf("Warning: cannot set

offset_ for %s",classname_);
11 return TCL_OK;
12 }
13 ...
14 return TclClass::method(ac, av);
15 }

Table 8.1 Classes and
objects related to common
packet header

Class/object Name

C++ class hdr_cmn
OTcl class PacketHeader/Common
Mapping class CommonHeaderClass
Mapping variable class_cmnhdr

domain. We will show an example use of the method offset later in Sect. 8.3.8,
when we discuss packet construction mechanism.

Consider, for example, a common packet header. Its CCC, OTcl, and mapping
classes arehdr_cmn, PacketHeader/Common, and CommonPacketHeader
Class, respectively (see Table 8.1). Program 8.12 shows the declaration of
class CommonPacketHeaderClass. As a child class of TclClass, a class
mapping variable class_cmnhdr is instantiated at the declaration. Line 3 of the
constructor invokes the constructor of its parent class PacketHeaderClass,
which takes the OTcl class name (i.e., PacketHeader/Common) and the amount
of memory needed to hold the CCC class (i.e., hdr_cmn) as input arguments.
Here, “sizeof (hdr_cmn)” computes the required amount of memory, for
hdr_cmn. The result of this statement is fed as the second input argument. In Line
6 of Program 8.10, the statement bind_offset(&hdr_cmn::offset_) sets
the variable offset_ to share the address with the input argument. Therefore, a
change in hdr_cmn::offset_will result in an automatic change in the variable
*offset_ of class CommonHeaderClass, and vice versa.

190 8 Packets, Packet Headers, and Header Format

Program 8.12 Declaration of class CommonHeaderClass
//˜/ns/common/packet.cc

1 class CommonHeaderClass : public PacketHeaderClass {
2 public:
3 CommonHeaderClass() : PacketHeaderClass("PacketHeader/

Common", sizeof(hdr_cmn)) {
4 bind_offset(&hdr_cmn::offset_);
5 }
6 } class_cmnhdr;

8.3.6 Packet Header Access Mechanism

This section demonstrates how packet attributes stored in packet header can be
retrieved and modified. NS2 uses a two-level packet header structure to store packet
attributes. On the first level, protocol-specific headers are stored within a packet
header. On the second level, each protocol-specific header uses a CCC struct
data type to store packet attributes.

Before proceeding further, let us have a look at how packet header can be
modified.

Example 8.2. Given a pointer to a Packet object *p, the following statements set
the packet size to be 1000 bytes.

hdr_cmn* ch = hdr_cmn::access(p);
ch->size_ = 1000;

The upper line retrieves the reference to the common header and stores the reference
in the pointer “ch,” while the lower line modifies the packet size through the field
size_ of the common packet header (through *ch). �

The header access mechanism consists of two major steps: (1) Retrieve a
reference to a protocol-specific header, and (2) Follow the structure of the protocol-
specific header to retrieve or modify packet attributes. In this section, we will explain
the access mechanism through common packet header (see the corresponding class
names in Table 8.1).

8.3.6.1 Retrieving a Reference to Protocol-Specific Header

NS2 obtains a reference to a protocol-specific header of a packet *p using a function
access(p) of the CCC class hdr_cmn.

Example 8.3. Consider function allocpkt() of class Agent shown in
Program 8.13, which shows the details of functions allocpkt() and

8.3 Packet Header 191

Program 8.13 Functions allocpkt and initpkt of class Agent
//˜/ns/common/agent.cc

1 Packet* Agent::allocpkt() const
2 {
3 Packet* p = Packet::alloc();
4 initpkt(p);
5 return (p);
6 }

7 Packet* Agent::initpkt(Packet* p) const
8 {
9 hdr_cmn* ch = hdr_cmn::access(p);
10 ch->uid() = uidcnt_++;
11 ch->ptype() = type_;
12 ch->size() = size_;
13 ...
14 hdr_ip* iph = hdr_ip::access(p);
15 iph->saddr() = here_.addr_;
16 iph->sport() = here_.port_;
17 iph->daddr() = dst_.addr_;
18 iph->dport() = dst_.port_;
19 ...
20 }

initpkt(p). Function allocpkt() in Lines 1–6 creates a Packet object
and returns a pointer to the created object. It first invokes function alloc() of
class Packet in Line 3 (see the details in Sect. 8.2.1). Then, Line 4 initializes the
allocated packet by invoking the function initpkt(p). Finally, Line 5 returns the
pointer “p” which points to the initialized Packet object.

Function initpkt(p) follows the structure defined in the protocol-specific
header CCC classes to set packet attributes to the default values. Lines 9 and 14 in
Program 8.13 execute the first step in the access mechanism: retrieve references to
common packet header “ch” and IP header “iph,” respectively.

After obtaining the pointers “ch” and “iph,” Lines 10–12 and Lines 15–18 carry
out the second step in the access mechanism: access packet attributes through the
structure defined in the protocol-specific headers. In this step, the relevant packet
attributes such as unique packet ID, payload type, packet size, source IP address
and port, and destination IP address and port, are configured through the pointers
“ch” and “iph.” Note that uidcnt (i.e., uid count) is a static member variable
of class Agent which represents the total number of generated packets. We will
discuss the details of class Agent later in Chap. 9. �

Figure 8.6 shows an internal mechanism of the function hdr_cmn::
access(p) where “p” is a Packet pointer. When hdr_cmn::access(p)
is executed Line 9 in Program 8.6 executes p->access(offset_), where
offset_ is the member variable of class hdr_cmn, specifying the location on

192 8 Packets, Packet Headers, and Header Format

Fig. 8.6 The internal mechanism of the function access(p) of the hdr cmn struct data
type, where “p” is a pointer to a Packet object

the packet header allocated to the common header (see also Fig. 8.5). On the right-
hand side of Fig. 8.6, the function access(off) simply returns &bits_[off],
where “bits_” is the member variable of class Packet storing the entire packet
header. Since the input argument offset_ belongs to hdr_cmn, the state-
mentaccess(offset_) essentially returns&bits_[hdr_cmn::offset_],
which is the reference to the common header stored in the Packet object *p. This
reference is returned as an unsigned char* variable. Then, class hdr_cmn
casts the returned reference to hdr_cmn* data type and returns it to the caller.

Note that NS2 simplifies the retrival of protocal specific header reference, by
defining pre-processing statements:

//˜ns/common/packet.h
#define HDR_CMN(p) chdr_cmn::access(p))
#define HDR_ARP(p) chdr_arp::access(p))
...

8.3.6.2 Accessing Packet Attributes in a Protocol-Specific Header

After obtaining a reference to a protocol-specific header, the second step is to access
the packet attributes according to the structure specified in the protocol-specific

8.3 Packet Header 193

Program 8.14 Declarations of C++ class PacketHeaderManager and mapping
class PacketHeaderManagerClass

//˜/ns/common/packet.cc
1 class PacketHeaderManager : public TclObject {
2 public:
3 PacketHeaderManager() {bind("hdrlen_",

&Packet::hdrlen_);}
4 };

5 static class PacketHeaderManagerClass : public TclClass {
6 public:
7 PacketHeaderManagerClass() :

TclClass("PacketHeaderManager") {}
8 TclObject* create(int, const char*const*) {
9 return (new PacketHeaderManager);
10 }
11 } class_packethdr_mgr;

header CCC class. Since NS2 declares a protocol-specific header as a struct
data type, it is fairly straightforward to access packet attributes once the reference
to the protocol-specific header is obtained (see Example 8.3).

8.3.7 Packet Header Manager

A packet header manager is responsible for keeping the list of active protocols
and setting the offset values of all the active protocols. It is implemented using
a CCC class PacketHeaderManager which is bound to an OTcl class with
the same name. Program 8.14 and Fig. 8.7 show the declaration of the CCC class
PacketHeaderManager as well as the corresponding binding class, and the
diagram of the OTcl class PacketHeaderManager, respectively.

The CCC class PacketHeaderManager has one constructor (Line 3) and
has neither variables nor functions. The constructor binds the instvar
“hdrlen_” of the OTcl class PacketHeaderManager to the variable
“hdrlen_” of class Packet (see also Fig. 8.1). The OTcl class PacketHeader
Manager has two main instvars: “hdrlen_” and “tab_.” The instvar
“hdrlen_” stores the length of packet header. It is initialized to zero in Line 1
of Program 8.15, and is incremented as protocol-specific headers are added to the
packet header. Representing the active protocol list, the instvar “tab_” (Line 2 in
Program 8.16) is an associative array whose indexes are protocol-specific header
OTcl class names and values are 1 if the protocol-specific header is active (see Line
12 in Program 8.5). If the protocol-specific header is inactive, the corresponding
value of “tab_” will not be available (i.e., NS2 unsets all entries corresponding
to inactive protocol-specific headers; see Line 7 in Program 8.20).

194 8 Packets, Packet Headers, and Header Format

TCP
Header

IP
Header

Common
Header

......

Packet Header Manager

tab_
O

ffs
et

 a
ss

ig
nm

en
t

hdrlen_

Packet

hdrlen_
bind

Fig. 8.7 Architecture of an OTcl PacketHeaderManager object

Program 8.15 Initialization of a PacketHeaderManager object
//˜/ns/tcl/lib/ns-packet.tcl

1 PacketHeaderManager set hdrlen_ 0

2 foreach prot {
3 Common
4 Flags
5 IP
6 ...
7 } {
8 add-packet-header $prot
9 }

10 proc add-packet-header args {
11 foreach cl $args {
12 PacketHeaderManager set tab_(PacketHeader/$cl) 1
13 }
14 }

8.3.8 Protocol-Specific Header Composition and Packet Header
Construction

Packet header is constructed through the following three-step process:

8.3 Packet Header 195

Program 8.16 Function create packetformat of class Simulator and
function allochdr of class PacketHeaderManager

//˜/ns/tcl/lib/ns-packet.tcl
1 Simulator instproc create_packetformat { } {
2 PacketHeaderManager instvar tab_
3 set pm [new PacketHeaderManager]
4 foreach cl [PacketHeader info subclass] {
5 if [info exists tab_($cl)] {
6 set off [$pm allochdr $cl]
7 $cl offset $off
8 }
9 }
10 $self set packetManager_ $pm
11 }

12 PacketHeaderManager instproc allochdr cl {
13 set size [$cl set hdrlen_]
14 $self instvar hdrlen_
15 set NS_ALIGN 8
16 set incr [expr ($size + ($NS_ALIGN-1)) & ˜($NS_ALIGN-1)]
17 set base $hdrlen_
18 incr hdrlen_ $incr
19 return $base
20 }

Step 1: At the Compilation Time

During the compilation, NS2 translates all CCC codes into an executable file. It
sets up all necessary variables (including the length of all protocol-specific headers)
for all built-in protocol-specific headers, and includes all built-in protocol-specific
headers into the active protocol list. There are three main tasks in this step.

Task 1: Construct All Mapping Variables, Configure the Variable hdrlen ,
Register the OTcl Class Name, and Binds the Offset Value

Since all mapping variables are instantiated at the declaration, they are constructed
during the compilation using their constructors. As an example, consider the
common packet header11 whose construction process shown in Program 8.10,
Program 8.12, and Fig. 8.8 proceeds as follows:

1. Store the corresponding OTcl class name (e.g., PacketHeader/Common) in
the variable classname_ of class TclClass.

2. Determine the size (using function sizeof (...)) of the protocol-specific
header, and store it in the variable “hdrlen_” of class PacketHeaderClass.

3. Bind the variable offset_ of the PacketHeader to that of class hdr_cmn.

11NS2 repeats the following process for all protocol specific headers. For brevity, we show the
construction process through common packet header only.

196 8 Packets, Packet Headers, and Header Format

CommonHeaderClass class_cmnhdr;

CommonHeaderClass
 ::CommonHeaderClass()

PacketHeaderClass(

 “PacketHeader/Common”,

 sizeof(hdr_cmn))

bind_offset(&hdr_cmn::offset_)

PacketHeaderClass
 ::PacketHeaderClass
 (classname,hdrlen)

TclClass(classname)

hdrlen_(hdrlen)

offset_(0)

PacketHeaderClass::bind_offset(off)

offset_ = off;

return

PacketHeader/Common (OTcl Class)

hdr_cmn (C++ Class)

offset_

Fig. 8.8 Construction of the static mapping variable class cmnhdr

Task 2: Invocation of Function bind() of Class TclClass Which Exports the
Variable hdrlen

The main NS2 function (i.e., main(argc,argv)) invokes the function
init(...) of class Tcl, which in turn invokes the function bind() of class
TclClass of all mapping variables. The function bind() registers and binds
an OTcl class name to the CCC domain (see file ˜tclcl/Tcl.cc). This function is
overridden by class PacketHeaderClass.

As shown in Lines 12–17 of Program 8.10, class PacketHeaderClass
overrides function bind() of class TclClass. Line 13 first invokes the function
bind() of class TclClass. Line 15 exports the variable “hdrlen_” to the OTcl
domain. Finally, Line 16 registers the OTcl method offset.

In case of class CommonHeaderClass, classname_ is PacketHeader/
Common and “hdrlen_” is 104 bytes. Therefore, Line 15 of Program 8.10
executes the following OTcl statement:

PacketHeader/Common set hdrlen_ 104

which sets instvar “hdrlen_” of class PacketHeader/Common to be 104. Note
that this instvar “hdrlen_” is not bound to the CCC domain.

After Task 1 and Task 2 are completed, the related protocol-specific classes,
namely hdr_cmn, PacketHeader/Common, and CommonHeaderClass,
would be as shown in Fig. 8.9. The mapping object class_cmnhdr is of class
CommonHeaderClass, which derives from classes PacketHeaderClass
and TclClass, respectively. It inherits variables classname_, hdrlen_, and
offset_ from its parent class. After object construction is complete, vari-
able classname_ will store the name of the OTcl common packet header

8.3 Packet Header 197

Fig. 8.9 A schematic diagram of a static mapping object class cmnhdr, class hdr cmn, class
PacketHeader/Common, and class Packet

class (i.e., PacketHeader/Common), hdr_len_ will store the amount of
memory in bytes needed to store common header, and offset_ will point to
hdr_cmn:: offset_. However, at this moment, the offset value is set to zero.
The dashed arrow in Fig. 8.9 indicates that the value of variable hdr_cmn::
offset_ will be later set to store an offset from the beginning of a packet header
to the point where the common packet header is stored. Also, after the function
Tcl::init() invokes the function bind() of class PacketHeaderClass,
the instvar “hdrlen_” of class PacketHeader/Commonwill store the value of
the variable “hdrlen_” of class CommonHeaderClass. Note that tasks 1 and
2 only set up CCC OTcl class, and mapping class. However, the packet header
manager is not configured at this phase.

Task 3: Sourcing the File ˜ns/tcl/lib/ns-packet.tcl to Setup an Active Protocol List

As discussed in Sect. 3.7, NS2 sources all scripting Tcl files during the com-
pilation process. In regards to packet header, Program 8.15 shows a part of
the file ˜ns/tcl/lib/ns-packet. Here, Line 8 invokes procedure add-packet-

198 8 Packets, Packet Headers, and Header Format

headerfprotg for all built-in protocol-specific headers indicated in Lines 3–6.
Line 12 sets the value of the associative array “tab_” whose index is the input
protocol-specific header name to be 1.

Step 2: During the Network Configuration Phase

In regards to packet header construction, the main task in the Network Configuration
Phase is to setup variables offset_ of all active protocol-specific headers and
formulate a packet header format. Subsequent packet creation will follow the packet
format created in this step.

The offset configuration process takes place during the simulator construction.
From Line 2 of Program 4.11, the constructor of the Simulator invokes the instproc
create_packetformatfg of class Simulator.

As shown in Program 8.16, the instproc create_packetformatfg creates a
PacketHeaderManager object “pm” (Line 3). Here, the constructor of CCC
class PacketHeaderManager is invoked. From Program 8.14, the constructor
binds its OTcl instvar “hdrlen_” to the variable “hdrlen_” of the CCC class
Packet.

After creating a PacketHeaderManager object “pm,” the instproc create_
packetformatfg computes the offset value of all active protocol-specific head-
ers using the instproc allochdrfclg (Line 6), and configures the offset val-
ues of all protocol specific headers (Line 7). The foreach loop in Line 4
runs for all built-in protocol-specific headers which are child classes of class
PacketHeader. Line 5 filters out those which are not in the active protocol
list (see Sect. 8.3.7). Lines 6 and 7 are executed for all active protocol-specific
headers specified in the variable “tab_” (which was configured in Step 1 – Task
3) of the PacketHeaderManager object “pm.” Line 7 configures offset values
using the OTcl method offset (see Program 8.11) of protocol specific header
mapping classes. The OTcl method offset stores the input argument in the
variable *offset_ of the protocol-specific header mapping class (e.g., Common
HeaderClass).

Lines 12–19 in Program 8.16 and Fig. 8.10 show the OTcl source codes
and the diagram, respectively, of the instproc allochdrfclg of an OTcl class
PacketHeaderManager. The instproc allochdrfclg takes one input argu-
ment “cl” (in Line 12) which is the name of a protocol-specific header, computes
the memory requirement, and returns the offset value corresponding to the input
argument “cl.” Line 13 stores header length of a protocol-specific header “cl”
(e.g., the variable “hdrlen_” of class PacketHeader/Common) in a local
variable “size.”12 Based on “size,” Lines 15 and 16 compute the amount of

12The variable hdrlen of a protocol specific header OTcl class was configured in Step 1 – Task 2.

8.3 Packet Header 199

Fig. 8.10 A diagram representing the instproc allochdr of class PacketHeaderManager.
Line numbers shown on the left correspond to the lines in Program 8.16. The action corresponding
to each line is shown on the right

memory (incr) needed to store the header.13 Line 17 stores the current packet
header length (excluding the input protocol-specific header) in a local variable
“base.” Since “base” is an offset distance from the beginning of packet header
to the input protocol-specific header, it is returned to the caller as the offset value in
Line 19. After Line 18 increases the header length (i.e., the instvar “hdrlen_” of
class PacketHeaderManager) by “incr.”

During the Simulator construction, the packet header manager also up-
dates its variable “hdrlen_” (Line 19 in Program 8.16). Note that the instvar
“hdrlen_” of class PacketHeaderManagerwas set to zero at the compilation
(Line 1 in Program 8.15). As Lines 6 and 7 in Program 8.16 repeat for every
protocol-specific header, the offset value is added to the instvar “hdrlen_” of an
OTcl class PacketHeaderManager. At the end, the instvar “hdrlen_” will
represent the total header length, which embraces all protocol-specific headers.

Step 3: During the Simulation Phase

During the Simulation Phase, NS2 creates packets based on the format defined
in the former two steps. For example, an Agent object creates and initializes a
packet using its functionallocpkt(). Here, a packet is created using the function

13The variable “incr” could be greater than “size,” depending on the underlying hardware.

200 8 Packets, Packet Headers, and Header Format

alloc() of class Packet and initialized using the function initpkt(p) of
class Agent. Again, the function alloc() takes a packet from the free packet list,
if it is nonempty. Otherwise, it will create a new packet using “new”. After retriev-
ing a packet, it clears the values stored in the packet header and data payload. The
function initpkt(p) assigns default values to packet attributes such as packet
unique ID, payload type, and packet size (see Program 8.13). The initialization is
performed by retrieving a reference (e.g., “ch”) to the relevant protocol-specific
header and accessing packet attributes using the predefined structure.

8.4 Data Payload

Implementation of data payload in NS2 differs from actual data payload. In practice,
user information is transformed into bits and are stored in data payload. Such the
transformation is not necessary in simulation, since NS2 stores the user information
in the packet header. NS2 rarely needs to maintain data payload. In Line 11 of
Program 7.3, packet transmission time, i.e., the time required to send out a packet,
is computed as packet size

bandwidth . Class LinkDelay determines the size of a packet by
hdr_cmn::size_ (not by counting the number of bits stored in packet header
and data payload) to compute packet transmission time. In most cases, users do not
need to explicity deal with data payload.

NS2 also provides a support to hold data payload. In Line 4 of Program 8.1,
class Packet provides a pointer “data_” to an AppData object.14 Program 8.17
shows the declaration of an abstract class AppData. Class AppData has only
one member variable type_ in Line 11. Among its functions, and one is a pure
virtual function copy() shown in Line 18. Indicating the type of application,
the variable type_ is of type enum AppDataType defined in Lines 1–8. The
function copy() duplicates an AppData object to a new AppData object. It is a
pure virtual function, and must be overridden by child instantiable classes of class
AppData. Function size() in Line 17 returns the amount of memory required to
store an AppData object.

Class AppData provides two constructors. One is in Line 13, where the caller
feeds an AppData type as an input argument. Another is in Line 14, where a
reference to a AppData object is fed as an input argument. In both the cases,
the constructor simply sets the variable type_ to a value as specified in the input
argument.

Program 8.18 shows the declaration of class PacketData, a child class of class
AppData. This class has two new member variables: “data_” (a string variable
which stores data payload) in Line 3 and datalen_ (the length of “data_”) in
Line 4. Line 25 defines a function data() which simply returns “data_.” Lines
26 and 27 override the virtual functions size() and copy(), respectively, of

14However, no memory is allocated to the AppData object unless it is needed.

8.4 Data Payload 201

Program 8.17 Declaration of enum AppDataType and class AppData
//˜/ns/common/ns-process.h

1 enum AppDataType {
2 ...
3 PACKET_DATA,
4 HTTP_DATA,
5 ...
6 ADU_LAST
7
8 };

9 class AppData {
10 private:
11 AppDataType type_; // ADU type
12 public:
13 AppData(AppDataType type) { type_ = type; }
14 AppData(AppData& d) { type_ = d.type_; }
15 virtual ˜AppData() {}
16 AppDataType type() const { return type_; }
17 virtual int size() const { return sizeof(AppData); }
18 virtual AppData* copy() = 0;
19 };

class AppData. Function size() simply returns datalen_. Function copy()
creates a new PacketData object which has the same content as the current
PacketData object, and returns the pointer to the created object to the caller.

Class PacketData has two constructors. One is to construct a new object
with size “sz,” using the constructor in Lines 6–12. This constructor simply
sets the default application data type to be PACKET_DATA (Line 6), stores
“sz” in “datalen_” (Line 7), and allocates memory of size “datalen_”
to “data_” (Line 9). Another construction method15 is to create a copy of an
input PacketData object (Lines 13–20). In this case, the constructor feeds an
input PacketData object “d” to the parent class (Line 13), copies the variable
datalen_ (Line 14), and duplicates its data payload (Line 17).16

NS2 creates a PacketData object through two functions of class Packet:
alloc(n) and allocdata(n). In Program 8.4, the function alloc(n) allo-
cates a packet in Line 3 and creates data payload using the functionallocdata(n)
in Line 5. The function allocdata(n) creates a PacketData object of size
“n,” by executing “new PacketData(n)” in Line 11.

Program 8.19 shows four functions which can be used to manipulate data
payload. Functions accessdata() (Lines 4–9) and userdata() (Line 10)
are both data payload access functions. The difference is that the function

15Function copy() in Line 27 uses this constructor to create a copy of a PacketData object.
16Function memcpy(dst,src,num) copies “num” data bytes from the location pointed by
“src” to the memory block pointed by “dst.”

202 8 Packets, Packet Headers, and Header Format

Program 8.18 Declaration of class PacketData
//˜/ns/common/packet.h

1 class PacketData : public AppData {
2 private:
3 unsigned char* data_;
4 int datalen_;
5 public:
6 PacketData(int sz) : AppData(PACKET_DATA) {
7 datalen_ = sz;
8 if (datalen_ > 0)
9 data_ = new unsigned char[datalen_];
10 else
11 data_ = NULL;
12 }
13 PacketData(PacketData& d) : AppData(d) {
14 datalen_ = d.datalen_;
15 if (datalen_ > 0) {
16 data_ = new unsigned char[datalen_];
17 memcpy(data_, d.data_, datalen_);
18 } else
19 data_ = NULL;
20 }
21 virtual ˜PacketData() {
22 if (data_ != NULL)
23 delete []data_;
24 }
25 unsigned char* data() { return data_; }
26 virtual int size() const { return datalen_; }
27 virtual AppData* copy() { return new PacketData(*this);}
28 };

accessdata() returns a direct pointer to a string “data_” which contains data
payload while the function userdata() returns a pointer to an AppData object
which contains data payload. Functionsetdata(d) (Lines 11–15) sets the pointer
“data_” to point to the input argument “d.” Finally, function datalen() in Line
16 returns the size of data payload.

8.5 Customizing Packets

8.5.1 Creating Your Own Packet

When designing a new protocol, programmers may need to change the packet
format. This section gives a guideline of how packet header, data payload, or both
can be modified. Note that, it is recommended not to use data payload in simulation.
If possible, include information related to the new protocol in a protocol-specific
header.

8.5 Customizing Packets 203

Program 8.19 Functions accessdata, userdata, setdata and datalen of
class Packet

//˜/ns/common/packet.h
1 class Packet : public Event {
2 ...
3 public:
4 inline unsigned char* accessdata() const {
5 if (data_ == 0)
6 return 0;
7 assert(data_->type() == PACKET_DATA);
8 return (((PacketData*)data_)->data());
9 }
10 inline AppData* userdata() const {return data_;}
11 inline void setdata(AppData* d) {
12 if (data_ != NULL)
13 delete data_;
14 data_ = d;
15 }
16 inline int datalen() const { return data_ ? data_

->size() : 0; }
17 ...
18 };

8.5.1.1 Defining a New Packet Header

Suppose we would like to include a new protocol-specific header, namely “My
Header,” into the packet header. We need to define a CCC class (e.g., hdr_myhdr),
an OTcl class (e.g., PacketHeader/MyHeader), and a mapping class (e.g.,
MyHeaderClass), and include the OTcl class into the active protocol list. In
particular, we need to perform the following four steps:

• Step 1: Define a CCC protocol-specific header structure (e.g., see Program 8.6).

– Pick a name for the CCC struct data type, say struct hdr_myhdr.
– Declare a variable offset_ to identify where the protocol-specific header

reside in the entire header.
– Define a function access(p) which returns the reference to the protocol-

specific header (see Lines 8–10 in Program 8.6).
– Include all member variables required to hold new packet attributes.
– ŒOptional� Include a new payload type into enum packet_t and class
p_info (e.g., see Program 8.9). Again, a new payload type does not need
to be added for every new protocol-specific header.

• Step 2: Pick an OTcl name for the protocol specific header, e.g., Packet
Header/MyHeader.

204 8 Packets, Packet Headers, and Header Format

• Step 3: Bind the OTcl name with the CCC protocol-specific header structure.
Derive a mapping class MyHeaderClass from class PacketHeaderClass
(e.g., see class CommonHeaderClass in Program 8.12).

– At the construction, feed the OTcl name (i.e., PacketHeader/MyHeader)
and the size needed to hold the protocol-specific header (i.e., sizeof(hdr_
myhdr)) to the constructor of class PacketHeaderClass (e.g., see
Line 3 in Program 8.12).

– From within the constructor of the mapping class, invoke function bind_
offset(...) feeding the address of the variable offset_ of the CCC
struct data type as an input argument (i.e., invoke bind_offset
(&hdr_myhdr::offset_)).

– Instantiate a mapping variable class_myhdr at the declaration.

• Step 4: Activate the protocol-specific header from the OTcl domain. Add the
OTcl name to the list defined within the packet header manage. In particular,
modify Lines 2–9 of Program 8.15 as follows:

foreach prot {
Common
Flags
...
MyHeader

} {
add-packet-header $prot

}

where only the suffix of the new protocol-specific header (i.e., MyHeader) is
added to the foreach loop.

8.5.1.2 Defining a New Data Payload

Data payload can be created in four levels:

1. None: NS2 rarely uses data payload in simulation. To avoid any complication it
is suggested not to use data payload in simulation.

2. Use class PacketData: The simplest form of storing data payload is to use
class PacketData (see Program 8.18). Class Packet has a variable “data_”
whose class is PacketData, and provides functions (in Program 8.19) to
manipulate the variable “data_.”

3. Derive a class (e.g., class MyPacketData) from class PacketData: This
option is suitable when new functionalities (i.e., functions and variables) in
addition to those provided by class PacketData are needed. After deriving
a new PacketData class, programmers may also derive a new class (e.g., class
MyPacket) from class Packet, and override the variable “data_” of class
Packet to be a pointer to a MyPacketData object.

8.5 Customizing Packets 205

4. Define a new data payload class: A user can also define a new payload type
if needed. This option should be used when the new payload has nothing in
common with class PacketData. The following are the main tasks needed
to define and use a new payload type MY_DATA.

• Include the new payload type (e.g., MY_DATA) into enum AppDataType
data type (see Program 8.17).

• Derive a new payload class MyData from class AppData.

– Feed the payload type MY_DATA to the constructor of class AppData.
– Include any other necessary functions and variables.
– Override functions size() and copy().

• Derive a new class MyPacket from class Packet

– Declare a variable of class MyData to store data payload.
– Include functions to manipulate the above MyData variable.

8.5.2 Activate/Deactivate a Protocol-Specific Header

By default, NS2 includes all built-in protocol-specific headers into packet header
(see Program 8.15). This inclusion can lead to unnecessary wastage of memory
especially in a packet-intensive simulation, where numerous packets are created. For
example, common, IP, and TCP headers together use only 0.1 kB, while the default
packet header consumes as much as 1.9 kB [17]. Again, NS2 does not return the
memory allocated to a Packet object until the simulation terminates. Selectively
including protocol-specific header can lead to huge memory saving.

The packet format is defined when the Simulator is created. Therefore, a
protocol-specific headers must be activated/deactivated before the creation of the
Simulator. NS2 provides the following OTcl procedures to activate/ deactivate
protocol-specific headers:

• To add a protocol-specific header PacketHeader/MH1, execute

add-packet-header MH1

In Lines 10–14 of Program 8.15, the above statement includes PacketHe-
ader/MH1 to the variable “tab_” of class PacketHeaderManager.

• To remove a protocol-specific header PacketHeader/MH1 from the active
list, execute

remove-packet-header MH1

The details of procedure remove-packet-headerfargsg are shown in
Lines 1–9 of Program 8.20. Line 7 removes the entries with the index Packet
Header/MH1 from the variable “tab_” of class PacketHeaderManager.

206 8 Packets, Packet Headers, and Header Format

Program 8.20 Procedures remove-packet-header, and remove-all-
packet-header

//˜ns/tcl/ns-packet.tcl
1 proc remove-packet-header args {
2 foreach cl $args {
3 if { $cl == "Common" } {
4 warn "Cannot exclude common packet header."
5 continue
6 }
7 PacketHeaderManager unset tab_(PacketHeader/$cl)
8 }
9 }

10 proc remove-all-packet-headers {} {
11 PacketHeaderManager instvar tab_
12 foreach cl [PacketHeader info subclass] {
13 if { $cl != "PacketHeader/Common" } {
14 if [info exists tab_($cl)] {
15 PacketHeaderManager unset tab_($cl)
16 }
17 }
18 }
19 }

• To remove all protocol-specific headers, execute

remove-all-packet-header

In Lines 10–19 of Program 8.20, the procedure remove-all-packet-
headerfg uses foreach to remove all protocol-specific headers (except for
common header) from the active protocol list.

8.6 Chapter Summary

Consisting of packet header and data payload, a packet is represented by a CCC
class Packet. Class Packet consists of pointers “bits_” to its packet header
and “data_” to its data payload. It uses a pointer “next_” to form a link list of
packets. It also has a pointer “free_” which points to the first Packet object
on the free packet list. When a Packet object is no longer in use, NS2 stores the
Packet object in the free packet list for future reuse. Again, Packet objects are
not destroyed until the simulation terminates. When allocating a packet, NS2 first
tries to take a Packet object from the free packet list. Only when the free packet
list is empty, will NS2 create a new Packet object.

During simulation, NS2 usually stores relevant user information (e.g., packet
size) in packet header, and rarely uses data payload. It is recommended not to
use data payload if possible, since storing all information in packet header greatly
simplifies the simulation yet yields the same simulation results.

8.7 Exercises 207

Packet header consists of several protocol-specific headers. Each protocol-
specific header occupies a contiguous part in packet header and identifies the
occupied location using its variable offset_. NS2 uses a packet header manager
(represented by an OTcl class PacketHeaderManager) to maintain a list of
active protocols, and define packet header format using the list when the Simulator
is created. The packet header construction process proceeds in the three following
steps:

1. At the Compilation: NS2 defines the following three classes for each of protocol-
specific headers:

• A CCC class: NS2 uses CCC struct data type to define how packet
attributes are stored in a protocol specific header. One of the important
member variables is offset_, which indicates the location of the protocol-
specific header on the packet header.

• An OTcl class: During the Network Configuration Phase, the packet header
manager configures packet header from the OTcl domain.

• A mapping class: A mapping class binds the OTcl and CCC class together.
It declares a method offset, which is invoked by a packet header manager
from the OTcl domain to configure the value of the variable offset_ of the
CCC class PacketHeaderClass.

2. At the Network Configuration Phase: A user may add/remove protocol specific
headers to/from the active protocol list. When the Simulator is created, the packet
header manager computes and assigns appropriate offset values to all protocol-
specific headers specified in the active list.

3. At the Simulation Phase: NS2 follows the above packet header definitions when
allocating a packet.

8.7 Exercises

1. What are actual packets, class Packet, data payload, packet header, protocol-
specific header? Explain their similarities/differences/relationships. Draw a
diagram to support your answer.

2. Consider standard IP packet header as specified in [21]. How does NS2 store
this packet header information?

3. What is the free packet list? How does it relate to the variable “free_” of class
Packet? Draw a diagram to support your answer.

4. What is the purpose of the variable “fflag_” of class Packet? When is it
used? How is it used?

5. Explain the packet destruction process. Draw a diagram to support your answer.

208 8 Packets, Packet Headers, and Header Format

6. What is the purpose of the variable “offset_” defined for each protocol-
specific header? Explain your answer via few examples of protocol specific
header.

7. Where and how does NS2 define active protocol list? Write few statements to
activate/deactivate protocol-specific headers.

8. Design a new packet header which can record a collection of time values.
Pass the packet with new header through a network. When the packet enters
a LinkDelay object, add the current simulation time into the time value
collection and print out all the values in the collection.

9. Design a new data payload type. For simplicity, set every bit in the payload to
“1”. Run a program to test your answer.

10. Write CCC statements to perform the following tasks:

a. Show the following information for a packet *p on the screen: Size, source
and destination IP addresses and ports, payload type, and flow ID.

b. Create a new packet.
c. Destroy the packet *p.

Chapter 9
Transport Control Protocols Part 1:
An Overview and User Datagram Protocol
Implementation

A typical communication system consists of applications, transport layer agents,
and a low-level network. An application models user demand to transmit data.
Taking user demand as an input, a sending transport layer agent creates packets and
forwards them to the associated receiving transport layer agent through a low-level
network services. Having discussed the details of low-level network functionalities
in Chaps. 5–7, the details of transport layer agents are presented here in Chaps. 9
and 10. Also, the details of applications will be presented in Chap. 11.

This chapter provides an overview of transport layer agents and shows NS2
implementation of User Datagram Protocol (UDP) agents. In particular, Sect. 9.1
introduces two most widely used transport control protocols: Transmission Control
Protocol (TCP) and UDP. Section 9.2 explains NS2 implementation of basic agents.
Section 9.3 shows the implementation of UDP agents and Null agents. Finally, the
chapter summary is given in Sect. 9.4.

9.1 UDP and TCP Basics

9.1.1 UDP Basics

Defined in [22], UDP is a connectionless transport-layer protocol, where no
connection setup is needed before data transfer. UDP offers minimal transport
layer functionalities – non-guaranteed data delivery – and gives applications a
direct access to the network layer. Aside from the multiplexing/demultiplexing
functions and some light error checking, it adds nothing to IP packets. In fact, if the
application developer uses UDP as a transport layer protocol, then the application is
communicating almost directly with the network layer.

UDP takes messages from an application process, attaches source and destination
ports for the multiplexing/demultiplexing service, adds two other fields of error

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 9, © Springer Science+Business Media, LLC 2012

209

210 9 Transport Control Protocols Part 1: An Overview : : :

Fig. 9.1 Main phases of TCP
operation: Connection setup,
data transfer, and connection
termination

…

SYN

SYN-ACK

ACK

FIN

ACK

ACK

FIN

DATA TRANSFER
PHASE

CONNECTION
SETUP
PHASE

CONNECTION
TERMINATION

PHASE

checking and length information, and passes the resulting packet to the network
layer [22]. The network layer encapsulates the UDP packet into a network layer
packet and then delivers the encapsulated packet at the receiving host. When a
UDP packet arrives at the receiving host, it is delivered to the receiving UDP agent
identified by the destination port field in the packet header.

9.1.2 TCP Basics

As shown in Fig. 9.1, TCP [20–22] is a connection-oriented reliable transport
protocol consisting of three phases of operations: connection setup, data transfer,
and connection termination. In the connection setup phase, a TCP sender initiates
a three-way handshake (i.e., sending SYN, SYN-ACK, and ACK messages). After a
connection is established, TCP enters the data transfer phase where a TCP sender
transfers data to a TCP receiver. Finally, after the data transfer is complete, TCP
tears down the connection in the connection termination phase using a four-way
handshake (i.e., sending two pairs of FIN-ACK messages.)

The main operation of TCP lies in the data transfer phase, which implements
the following two mechanisms: (1) error control using basic acknowledgment and
timeout, and (2) congestion control using a window-based mechanism.

9.1 UDP and TCP Basics 211

1

A1

3TCP Sender

TCP Receiver

2 3 4 5 6

A2 A2 A2A2

RTO

Fig. 9.2 An example of TCP error control using acknowledgment: A TCP sender realizes the loss
of TCP packet number 3 after transmitting the packet number 3 for a period of RTO (i.e., timeout)

9.1.2.1 Error Control Using Basic Acknowledgment and Timeout

As a reliable transport layer protocol, TCP provides connection reliability by means
of acknowledgment (ACK). For every received packet, a TCP receiver returns an
ACK packet to the sender. If an ACK packet is not received within a given timeout
value, the TCP sender will assume that the packet is lost, and will retransmit
the lost packet. Note that in the literature, a timeout period is also referred to
as Retransmission TimeOut (RTO). Hereafter, we will refer to these two terms
interchangeably.

TCP uses a cumulative acknowledgment mechanism. With this mechanism, a
TCP receiver always acknowledges to the sender with the highest sequence number
up to which all packets have been successfully received. For example, in Fig. 9.2,
packet 3 is lost. Therefore, the TCP receiver returns ACK for packet 2 (A2) even
when packets 4, 5, and 6 have been received. These ACK packets (e.g., A2), which
acknowledge the same TCP packet (e.g., packet 2), are referred to as the duplicated
acknowledgment packets. From Fig. 9.2, the TCP sender does not receive an ACK
packet which acknowledges packet 3. After a period of RTO, the sender will assume
that packet 3 is lost and will retransmit packet 3.

The RTO value is optimized according to the following tradeoff: a small RTO
value leads to unnecessary packet retransmission, while a large RTO value results in
high latency of packet loss detection. In general, an RTO value should be a function
of network Round-Trip Time (RTT), which is the time required for a data bit to travel
from a source node to a destination node and travel back to the source node. Due
to network dynamics, RTT of one packet could be different from that of another. In
TCP, smoothed (i.e., average) RTT (t) and RTT variation (�t) are computed based
on the collected RTT samples, and are used to compute the RTO value.

According to [23], instantaneous smoothed RTT, RTT variation, and instanta-
neous RTO are computed as follows. Let t.k/ be the kth RTT sample collected
upon ACK reception. Also, let t .k/, �t .k/, and RTO.k/ be the values of t , �t , and
RTO, respectively, when the kth RTT sample is determined. Then,

t.k C 1/ D ˛ � t.k/ C .1 � ˛/ � t.k C 1/; (9.1)

�t .k C 1/ D ˇ � �t .k/ C .1 � ˇ/ � jt.k C 1/ � t .k/j; (9.2)

RTO.k C 1/ D minfub; maxflb; � � Œt.k C 1/ C 4 � �t .k C 1/�gg; (9.3)

212 9 Transport Control Protocols Part 1: An Overview : : :

where ub and lb are fixed upper and lower bounds on the RTO value.1 The constants
˛ 2 .0; 1/ and ˇ 2 .0; 1/ are usually set to 7/8 and 3/4, respectively. The variable
� is a binary exponential backoff (BEB) factor. It is initialized to 1 and doubled for
every timeout event, and is reset to 1 when a new ACK packet arrives.

9.1.2.2 Window-Based Congestion Control

A transport layer protocol is also responsible for network congestion. It limits the
transmission rate of a data flow to help control network congestion. As a window-
based congestion control protocol, TCP limits the transmission rate by adjusting
the congestion window (i.e., transmission window) which basically refers to the
amount of data that a sender can transmit without waiting for acknowledgment. For
example, the congestion window size of the TCP connection in Fig. 9.2 is initialized
to 4. Therefore, the TCP sender pauses after sending packets 1–4. After receiving
ACK corresponding to packet 1 (i.e., A1), the number of unacknowledged packets
becomes 3 and TCP is able to send out packet 5.

Congestion window of transmission window refers to a range of sequence
numbers of TCP packets which can be transmitted at a moment. For example, the
congestion window at the beginning of Fig. 9.2 is f1; 2; 3; 4g and the congestion
window size is 4. When A1 is received, the congestion window becomes f2; 3; 4; 5g.
In this case, we say that the congestion window slides to the right. Suppose that
the congestion window changes to f2; 3; 4; 5; 6g (the size is 5). In this case, we
say that the congestion window is opened by one unit. On the contrary, if the
window becomes f2; 3; 4g, we say the congestion window is closed by one unit.
Again, a larger window size allows the sender to transmit more data in a given
interval implying a higher transmission rate at the transport layer. TCP increases
and decreases its transmission rate by opening and closing its congestion window.

Window Increasing Mechanism

One of the key features of TCP is network-based rate adaptability. TCP slowly
opens its congestion window to fill up the underlying network, when the network is
underutilized. When the network is overutilized, TCP rapidly closes the congestion
window to help relieve the congestion. TCP window opening mechanism consists
of two phases, each of which is identified by the current congestion window size (w)
and a slow-start threshold (wth):

1. Slow-start phase: If w < wth, TCP increases w by one for every received ACK
packet.

2. Congestion avoidance phase: If w � wth, TCP increases w by 1
w.t/

for every
received ACK packet.

1RFC 2988 recommends ub to be at least 60 s, and lb to be 1 s [23].

9.1 UDP and TCP Basics 213

Note that, TCP receiver may advertise its maximum window size (wmax) which
does not fill its buffer too rapidly. This wmax acts as an upper-bound for the above
window increasing mechanism. In NS2, congestion window (w) evolves according
to the above two phases, regardless of wmax. However, TCP uses the minimum of !

and wmax to determine the amount of data it can transmit.

Packet Loss Detection Mechanism

In the literature, various TCP variants use different combinations of the following
packet loss detection mechanisms:

• Timeout: As discussed earlier, TCP starts its retransmission timer for every
transmitted packet, and assumes a packet loss upon timer expiration.

• Fast Retransmit: By default, an RTO has granularity of 0.5 s, which could lead
to large latency in packet loss detection. Fast retransmit expedites the packet loss
detection by means of duplicated acknowledgment detection. Upon detection of
the kth (which is equal to 3 by default) duplicated acknowledgment (excluding
the first one which is a new acknowledgment), the TCP sender stops waiting
for the timeout, assumes a packet loss, and retransmits the lost packet. From
Fig. 9.2, if the fast retransmit mechanism is used, the TCP sender will assume
that packet 3 is lost and it retransmits packet 3 upon receiving the 4th A2
packet (i.e., the third duplicated acknowledgment). Note that based on the
cumulative acknowledgment principle, upon receiving the retransmitted packet
3, TCP receiver sends A6 back to the sender, since packets 4, 5, and 6 have been
successfully received earlier.

Window Decreasing Mechanism

Originally conceived to combat congestion in a wired network, TCP assumes that
all packet losses occur due to congestion (i.e., buffer overflow at the routers in the
network). It reacts to every packet loss by reducing its transmission rate (or window
size) to lessen the congestion. The following approaches are among the most popular
window decreasing mechanisms for a TCP variant used in the literature.

• Reset to 1: Conventionally, TCP reacts to packet loss by resetting the window
size to 1, and setting the slow-start threshold to half of the current congestion
window size. However, this option is usually deemed too radical and could lead
to TCP throughput degradation in the presence of random packet loss.

• Fast Recovery: Upon detection of a packet loss, the fast recovery mechanism
sets both current window size and slow-start threshold to half of the current
congestion window size. Then, it increases the window size by one for each
duplicated acknowledgment received during the fast retransmit phase. At this
moment, the sender may transmit a new packet if the congestion window allows.

214 9 Transport Control Protocols Part 1: An Overview : : :

Table 9.1 Differences
among basic TCP variants:
different window closing
mechanisms upon detection
of a packet loss

TCP variant Loss detection

Timeout Fast retransmit

Old-Tahoe Reset w to 1 N/A
Tahoe Reset w to 1 Reset w to 1
Reno Reset w to 1 Fast recovery (single packet)
New Reno Reset w to 1 Fast recovery (all packets)

Upon receiving a new acknowledgment, the sender exits Fast Recovery and sets
the window size to the slow-start threshold value, after which TCP operates
normally in a congestion avoidance phase.

9.1.2.3 TCP Variants

There are numerous TCP variants in the literature. This section discusses only de
facto TCP variants namely Old Tahoe, Tahoe, Reno, and new Reno. These TCP
variants use the same window increasing mechanism (i.e., slow start and congestion
avoidance). However, they differ in how they detect a packet loss and decrease
the window size. Table 9.1 shows the differences in window size adjustment
mechanism, when packet loss is detected through timeout and Fast Retransmit (i.e.,
duplicated ACKs).

The very first TCP variant, Old-Tahoe, detects packet loss through timeout
only. When packet loss is detected, it always resets congestion window size to 1.
Developed from Old-Tahoe, TCP Tahoe uses the Fast Retransmit mechanism to
expedite packet loss detection rather than waiting for the timeout. It always sets the
window size to 1 upon detection of a packet loss. Both TCP Reno and New-Reno
reset the window size to 1, when a packet loss is detected through timeout. However,
they will use Fast Recovery if packet loss is detected through Fast Retransmit.
The difference between TCP Reno and TCP New-Reno is that TCP Reno exits the
fast recovery process as soon as the lost packet which triggered Fast Retransmit is
acknowledged. If there are multiple packet losses within a congestion window, Fast
Recovery could be invoked for several times, and the window size will decrease
significantly. To avoid the multiple window closures, TCP NewReno stays in the
Fast Recovery phase until all packets in the loss window are acknowledged or until
timeout occurs.

9.2 Basic Agents

An agent is an NsObject which is responsible for creating and destroying packets.
There are two main types of NS2 agents: routing agents and transport-layer
agents. A routing agent creates, transmits, and receives routing control packets, and
commands routing protocols to act accordingly. Connecting an application to a low-

9.2 Basic Agents 215

Program 9.1 Class AgentClass which binds OTcl and CCC class Agent
//˜/ns/common/agent.cc

1 static class AgentClass : public TclClass {
2 public:
3 AgentClass() : TclClass("Agent") {}
4 TclObject* create(int, const char*const*) {
5 return (new Agent(PT_NTYPE));
6 }
7 } class_agent;

level network, a transport-layer agent controls the congestion and reliability of a
data flow based on an underlying transport layer protocol (e.g., UDP or TCP). This
book focuses on transport layer agents only.

NS2 implements agents in a CCC class Agent, which is bound to an OTcl
class with the same name (see Program 9.1). In the following, we first discuss
the relationship among a transport-layer agent, an application, and a low-level
network in Sect. 9.2.1. Agent configuration and internal mechanisms are discussed
in Sects. 9.2.2 and 9.2.3, respectively. Finally, Sect. 9.2.4 provides guidelines to
define a new transport-layer agent.

9.2.1 Applications, Agents, and a Low-Level Network

An agent acts as a bridge which connects an application and a low-level network.
Based on the user demand provided by an application, a sending agent constructs
packets and transmits them to a receiving agent through a low-level network.
Figure 9.3 shows an example of such a connection.

Consider Fig. 9.3. On the top level, a constant bit rate CBR application, which
models a user demand to periodically transmit data, is used as an application. The
demand is passed to a UDP sending agent, which in turn creates UDP packets. Here,
the UDP agent stores source and destination IP addresses and transport layer ports
in the packet header, and forwards the packet to the attached node (e.g., Node 1
in Fig. 9.3). Using the precalculated routing table, the low-level network delivers
the packet to the destination node (e.g., Node 3 in Fig. 9.3) specified in the packet
header. The destination node uses its demultiplexer to forward the packet to the
agent attached to the port specified in the packet header. Finally, a Null receiving
agent simply destroys the received packet.

From the above discussion, an agent can be used as a sending agent (e.g.,
a UDP agent) or a receiving agent (e.g., a Null agent). A sending agent has
connections to both an application and a low-level network, while a receiving
agent may not have a connection to an application (because it does not need
any). An application (e.g., CBR) uses its variable “agent_” as a reference to an
agent (e.g., UDP and Null agents), while an agent uses its variable “app_” as a
reference to an application. It is mandatory to configure the variables “agent_” and

216 9 Transport Control Protocols Part 1: An Overview : : :

Node 1

dmux_

classifier_

CBR

attach-agentattach-agent

connect

attach-agent

Low-Level
Network

Node 2

Link 1

Link 2

Link 3

Agents:
Packet construction

and
destruction

Application:
User demand indication

Low-Level Network:
Packet forwarding

A
 N

et
w

or
k

of
 N

sO
bj

ec
ts

agent_

UDP Agent
(Sending)

app_

target_

Null Agent
(Receiving)

0 app_

target_

Node 3

dmux_

classifier_

Fig. 9.3 A CBR application over UDP configuration

“app_” (i.e., create the connection) for a sending agent, while it is optional for a
receiving agent. This is mainly because the application needs to inform the agent of
user demand (i.e., by invoking function sendmsg(...)), and the sending agent
needs to inform the application of the completion of data transmission (i.e., by
invoking functionresume()). Since a receiving agent simply destroys the received
packet, it does not need a connection to an application.

Both sending and receiving agents connect to a low-level network in the same
manner. They use a pointer “target_,” to point to the attached node. The
Node, on the other hand, installs the agent in the slot number “port” of its
demultiplexer “dmux_” (which is of class PortClassifier), where “port”
is the corresponding port number of the agent (see Sect. 6.5.3).

Table 9.2 shows the key differences between a sending agent and a receiving
agent. The upstream object of a sending agent is an application, which informs
a sending agent of incoming user demand through function sendmsg(...)
of the sending agent. The upstream object of a receiving agent, on the other
hand, is a Node object, which forwards packets to the receiving agent via
function recv(p,h). The downstream object of a sending agent is a Node
object. The sending agent passes a packet *p to a Node object by executing
target_->recv(p,h). A receiving agent usually has no downstream object,
since it simply destroys the received packets.

9.2 Basic Agents 217

Table 9.2 Key differences
between a sending and a
receiving agent

Sending agent Receiving agent

Upstream
– Object Application Node
– Packet forwarding function sendmsg recv

Downstream object
– Object Node N/A
– Packet forwarding function recv N/A

9.2.2 Agent Configuration

From Fig. 9.3 and Program 9.2, agent configuration consists of four main steps:

1. Create a sending agent, a receiving agent, and an application using “newf...g”
(Lines 8–10).

2. Attach agents to the application using OTcl Command attach-agent-
fagentg of class Application (Line 11).

3. Attach agents to the a low-level network using instproc attach-agent-
fnode agentg of class Simulator (Lines 12 and 13).

4. Associate the sending agent with the receiving agent using instproc connect
fsrc dstg of class Simulator (Line 14).

The details of these four steps will be discussed in greater detail in Sect. 11.1.

Example 9.1 (A Network Construction Example). The example network in
Fig. 9.3 uses CBR, a UDP agent, and a Null agent as an application, a sending agent,
and a receiving agent, respectively. To setup the example network, we may use the
Tcl simulation script in Program 9.2.

Program 9.2 A simulation script which creates the network in Fig. 9.3
1 set ns [new Simulator]
2 set n1 [$ns node]
3 set n2 [$ns node]
4 set n3 [$ns node]
5 $ns duplex-link $n1 $n2 5Mb 2ms DropTail
6 $ns duplex-link $n2 $n3 5Mb 2ms DropTail
7 $ns duplex-link $n1 $n3 5Mb 2ms DropTail

#=== UDP-Null peering starts here ===
8 set udp [new Agent/UDP]
9 set null [new Agent/Null]
10 set cbr [new Application/Traffic/CBR]
11 $cbr attach-agent $udp
12 $ns attach-agent $n1 $udp
13 $ns attach-agent $n3 $null
14 $ns connect $udp $null

218 9 Transport Control Protocols Part 1: An Overview : : :

While Lines 1–7 create a low-level network (see the details in Chaps. 6 and 7),
Lines 8–14 set up a CBR application, a UDP agent, and a Null agent on top of the
low-level network. �

9.2.3 Internal Mechanism for Agents

The internal mechanisms for agents are defined in the CCC domain as follows:

• A sending agent: Receive user demand by having the associated application
invoke its function sendmsg(...). From within sendmsg(...), create
packets using function allocpkt() and forward the created packets to the
low-level network by executing target_->recv(p,h).

• A receiving agent: Receive packets by having a low-level network demultiplexer
invoke its function recv(p,h). Destroy received packets by invoking function
free(p) of class Packet.

In this section, we will discuss the detail of variables and functions required to
perform the above mechanisms.

9.2.3.1 Related CCC and OTcl Variables

The main variables of CCC class Agent and their bound OTcl instvars are
shown in Table 9.3. Of type ns_addr_t (see Sect. 8.3.3), variables “here_” and
“dst_” contain addresses and ports of the Node attached to the sending agent and
the receiving agent, respectively. An IPv6 priority level is stored in the variable
“prio_.” Variable “app_” acts as a reference to an Application object. Since
class Agent is responsible for packet generation, it must assign a unique ID to
every packet. Therefore, it maintains a static variable “uidcnt_,” which counts
the total number of generated packets. When a packet is created, an Agent object
sets the unique ID of the packet to be “uidcnt_,” and increases “uidcnt_” by
one (see function initpkt(p) in Line 10 of Program 9.3).

9.2.3.2 Key CCC Functions

A list of key CCC functions with their descriptions is given below (see the
declaration of class Agent in file ˜ns/common/agent.cc,h). Since class Agent is
a template for transport layer agents, it provides no implementation for some of its

9.2 Basic Agents 219

Table 9.3 The list of CCC and OTcl variables of class Agent

CCC type CCC variable OTcl instvar Description

ns_addr_t here_
here_.addr_ agent_addr_ Address of the attached node
here_.port_ agent_port_ Port where the sending agent

is attached

ns_addr_t dst_
dst_.addr_ dst_addr_ Address of the attached node

attaching to a peering
agent

dst_.port_ dst_port_ Port where the receiving
agent is attached

int fid_ fid_ Flow ID

int prio_ prio_ IPv6 priority field(e.g., 0 D
unspecified, 1 D back-
ground traffic)

int flags_ flags_ Flags

int defttl_ ttl_ Default time to live value

int size_ N/A Packet size

packet_t type_ N/A Payload type

int seqno_ N/A Current sequence number

Application* app_ N/A A pointer to an application

int uidcnt_ N/A Total number of packets gen-
erated by all agents

functions. The child classes of class Agent are responsible for implementing these
functions.

recv(p,h) Receive a packet *p
send(p,h) Send a packet *p

send(nbytes) Send a message with nbytes bytes
sendmsg(nbytes) Send a message with nbytes bytes

timeout(tno) Action to be performed at timeout
connect(dst) Connect to a dynamic destination dst

close() Close a connection-oriented session
listen() Wait for a connection-oriented session

attachApp(app) Store app in the variable app_
allocpkt() Create a packet
initpkt(p) Initialize the input packet *p

recvBytes(bytes) Send data of bytes bytes to the attached application
idle() Tell the application that the agent has nothing to

transmit

220 9 Transport Control Protocols Part 1: An Overview : : :

Program 9.3 Constructor, function allocpkt, and function initpkt of class
Agent

//˜/ns/common/agent.cc
1 Agent::Agent(packet_t pkttype):size_(0),type_(pkttype),

app_(0){}

2 Packet* Agent::allocpkt() const
3 {
4 Packet* p = Packet::alloc();
5 initpkt(p);
6 return (p);

}

7 void Agent::initpkt(Packet* p)
{

8 hdr_cmn* ch = hdr_cmn::access(p);
9 ch->uid() = uidcnt_++;
10 ch->ptype() = type_;
11 ...
12 hdr_ip* iph = hdr_ip::access(p);
13 iph->saddr() = here_.addr_;
14 iph->sport() = here_.port_;
15 iph->daddr() = dst_.addr_;
16 iph->dport() = dst_.port_;
17 ...
18 }

The Constructor

Class Agent has no default constructor. Its only constructor takes a packet_t
(see Sect. 8.3.4 and Program 8.9) object as an input argument (see Line 1 of
Program 9.3). The constructor sets the variable “type_” to be as specified in the
input argument and resets other variables to zero. This payload type setting implies
that one agent is able to transmit packets of one type only. We need several agents
to transmit packets of several types.

Functions allocpkt() and initpkt(p)

Shown in Program 9.3, function allocpkt() is the main packet construction
function. It creates a packet by invoking function alloc() of class Packet in
Line 4, and initializes the packet by invoking function initpkt(p) in Line 5.
After initialization, function allocpkt() returns a pointer to the constructed
packet “p” to the caller.

The details of function initpkt(p) are shown in Lines 8–18 of Program 9.3.
Function initpkt(p) sets the initial values in the packet header of the input
packet “*p” to the default values. The uniqueness of the unique ID field “uid_” in
the common header is assured by setting “uid_” to be the total number of packets

9.2 Basic Agents 221

Program 9.4 Functions attachApp and recv of class Agent
//˜/ns/common/agent.cc

1 void Agent::attachApp(Application *app)
2 {
3 app_ = app;
4 }

5 void Agent::recv(Packet* p, Handler*)
6 {
7 if (app_)
8 app_->recv(hdr_cmn::access(p)->size());
9 Packet::free(p);
10 }

allocated so far. Class Agent stores the total number of allocated packets in its
static variable “uidcnt_.” Since the variable “uidcnt_” is distinct and unique to
all agents, assigning this variable to the field “uid_” of the common header (Line 9)
assures the uniqueness of packet unique ID.

Other initialization includes setting up the payload type in the common header
to be as specified in the variable “type_” (Line 10). Also, Lines 12–16 configure
source and destination IP addresses and port numbers in the variables “here_” and
“dst_.”

Function attachApp(app)

Lines 1–4 in Program 9.4 show the details of function attachApp(app). To bind
an application to an agent, function attachApp(app) stores the input pointer
“app” in its pointer to a Application object, “app_.” After this point, the
agent may invoke public functions of the attached application through the pointer
“app_.”

Functions recv(p,h), send(p,h), and sendmsg(nbytes)

These functions are used by sending and receiving agents in the packet forwarding
process. On the sender side, an application informs a sending agent of user demand
by invoking functions send(nbytes), and sendmsg(...) of class Agent. As
an NsObject, the sending agent forwards an incoming packet *p to a downstream
NsObject by executing target_->recv(p,h). Functions send(nbytes)
and sendmsg(...) have no implementation in the scope of class Agent, and
must be implemented by the child classes of class Agent.

On the receiver side, an NsObject forwards packets to a receiving agent by
invoking its function recv(p,h). Shown in Lines 5–10 of Program 9.4, function
recv(p,h) deallocates the received packet (Line 9) and may inform the attached

222 9 Transport Control Protocols Part 1: An Overview : : :

application (if it exists) of packet reception by invoking function recv(size)
of the attached Application object (Lines 7 and 8), where size is the size of
packet *p.

9.2.4 Guidelines to Define a New Transport Layer Agent

Class Agent provides the basic functionalities necessary for most agents. A
new agent can be created based on these functionalities, following the guidelines
below:

1. Define an inheritance structure: Select a base class and derive a new agent class
from the selected base class. Bind the CCC and OTcl agent class names together.

2. Define necessary CCC variables and OTcl instvars.
3. Implement the constructors of both CCC and OTcl classes. Bind the variables

and the instvars if necessary. Feed payload type (i.e., packet_t) as an input
argument of the CCC constructor.

4. Implement the necessary functions including functions send(nbyte),
sendmsg(...), recv(p,h), and timeout(tno). Also define OTcl inst-
procs if necessary.

5. Define necessary OTcl commands as interfaces to the CCC domain from the
OTcl domain.

6. [Optional] Define a timer (see Sect. 15.1).

9.3 UDP and Null Agents

UDP is a connectionless transport layer protocol, which provides neither congestion
control nor error control. In NS2, a UDP agent is used as a sending agent. It
is usually peered with a Null (receiving) agent, which is responsible for packet
destruction. Figure 9.3 shows a network configuration example where a Constant
Bit Rate (CBR) traffic source uses a UDP agent and a Null agent as its transport
later agents. Here, the CBR asks the UDP agent to transmit a burst of packets for
every fixed interval. The UDP agent creates and forwards packets to the low-level
network, irrespective of the network condition. On the receiving end, the Null agent
simply destroys the packets received from the low-level network. In the following,
we will discuss the details of UDP and Null agents.

9.3.1 Null (Receiving) Agents

A Null agent is the simplest but one of the most widely used receiving agents.
The main responsibility of a Null agent is to deallocate packets through function

9.3 UDP and Null Agents 223

Program 9.5 Mapping class UdpAgentClass which binds a CCC class
UdpAgent to an OTcl class Agent/UDP

//˜/ns/apps/udp.cc
1 static class UdpAgentClass : public TclClass {
2 public:
3 UdpAgentClass() : TclClass("Agent/UDP") {}
4 TclObject* create(int, const char*const*) {
5 return (new UdpAgent());
6 }
7 } class_udp_agent;

free(p) of class Packet (see Line 9 in Program 9.4). A Null agent is represented
by an OTcl class Agent/Null which is derived directly from an OTcl class
Agent (see file ˜ns/tcl/lib/ns-agent.tcl). Due to its simplicity, Null agents have no
implementation in the CCC domain.

9.3.2 UDP (Sending) Agent

A UDP agent is perhaps the simplest form of sending agents. It receives user
demand to transmit data by having the attached application invoke its function (e.g.,
sendmsg(...)), creates packets based on the demand, and forwards the created
packet to a low-level network. An application may use the three following ways to
tell a UDP agent to send out packets: via a CCC function sendmsg(...) of class
UdpAgent, via an OTcl command sendf...g of OTcl class Agent/UDP, or via
an OTcl command sendmsgf...g of OTcl class Agent/UDP.

Again, NS2 defines a UDP sending agent based on the guideline in Sect. 9.2.4.
Since a UDP agent implements no acknowledgment mechanism and needs no timer,
we can skip the last step in the guideline.

Step 1: Define Inheritance Structure

A UDP agent is represented by a CCC class UdpAgent and an OTcl class
Agent/UDP. These two classes derive from class Agent in their domains, and
are bound using a mapping class UdpAgentClass (see Program 9.5).

Step 2: Define CCC Variables and OTcl Instvars

The key variable of class UdpAgent is “seqno_” (Line 12 in Program 9.6), which
counts the number of packets generated by a UdpAgent object. Note that every

224 9 Transport Control Protocols Part 1: An Overview : : :

Program 9.6 Declaration and the constructors of class UdpAgent as well as the
default value of the instvar packetSize of class Agent/UDP

//˜/ns/apps/udp.h
1 class UdpAgent : public Agent {
2 public:
3 UdpAgent();
4 UdpAgent(packet_t);
5 virtual void sendmsg(int nbytes, const char *flags = 0){
6 sendmsg(nbytes, NULL, flags);
7 }
8 virtual void sendmsg(int nbytes, AppData* data, ...

const char *flags = 0);
9 virtual void recv(Packet* pkt, Handler*);
10 virtual int command(int argc, const char*const* argv);
11 protected:
12 int seqno_;
13 };

//˜/ns/apps/udp.cc
14 UdpAgent::UdpAgent() : Agent(PT_UDP), seqno_(-1){
15 bind("packetSize_", &size_);
16 }

17 UdpAgent::UdpAgent(packet_t type) : Agent(type){
18 bind("packetSize_", &size_);
19 }

//˜/ns/tcl/lib/ns-default.tcl
20 Agent/UDP set packetSize_ 1000

packet has a unique ID “uid_.” Also, every packet generated by the same agent has
a unique sequence number “seqno_.” However, two packets generated by different
agents may have the same sequence number “seqno_” but they must have different
unique ID “uid_.”

Step 3: Implement the Constructors in the CCC and OTcl Domains

NS2 implements constructor for UDP agents in the CCC domain only. From
Program 9.6, the default constructor in Lines 14–16 feeds UDP payload type (i.e.,
PT_UDP) to the constructor of class Agent, essentially storing PT_UDP in the
variable type . It also sets the sequence number (i.e., seqno) to be �1. By speci-
fying the payload type, the constructor in Lines 17–19 sets the payload type to be as
specified in the input argument. The constructor in this case does not set the value
of “seqno_” since the packets of specified type may not have sequence number.
For both constructors, the CCC variable “size_,” which specifies the packet size,

9.3 UDP and Null Agents 225

Program 9.7 Function sendmsg of class UdpAgent and function idle of class
Agent

//˜/ns/apps/udp.cc
1 void UdpAgent::sendmsg(int nbytes,AppData* data,const char*

flags)
2 {
3 Packet *p;
4 int n = nbytes / size_;
5 while (n-- > 0) {
6 p = allocpkt();
7 /* packet header configuration */
8 hdr_cmn::access(p)->size() = size_;
9 ...
10 /* --------------------------- */
11 target_->recv(p);
12 }

13 n = nbytes % size_;
14 if (n > 0) {
15 p = allocpkt();
16 /* packet header configuration */
17 hdr_cmn::access(p)->size() = n;
18 ...
19 /* --------------------------- */
20 target_->recv(p);
21 }
22 idle();
23 }

//˜/ns/common/agent.cc
24 void Agent::idle() { if (app_) app_->resume(); }
25 }

is bound to instvar packetSize_ in the OTcl domain (Lines 15 and 19). By
default, the packet size is set to 1,000 bytes in the file ˜ns/tcl/lib/ns-default.tcl
(Line 20).

Step 4: Define the Necessary CCC Functions

As a sending agent, a UDP agent needs to define a function sendmsg(...)
to receive a user demand from the application. Program 9.7 shows the details
of function sendmsg(nbytes,data,flags), which takes three input argu-
ments: “nbytes,” “data,” and “flags.” Function sendmsg(...) divides data
payload with size “nbytes” bytes into “n” (see Line 4) or “n+1” parts (depending
on “nbytes”), stores each part into a UDP packet (which contains a payload of
“size_” bytes), and transmits all (“n” or “n+1”) packets to the attached low-level
network.

226 9 Transport Control Protocols Part 1: An Overview : : :

Program 9.8 OTcl Commands send and sendmsg of class Agent/UDP
//˜/ns/apps/udp.cc

1 int UdpAgent::command(int argc, const char*const* argv)
2 {
3 if (argc == 4) {
4 if (strcmp(argv[1], "send") == 0) {
5 PacketData* data = new PacketData(1 + strlen

(argv[3]));
6 strcpy((char*)data->data(), argv[3]);
7 sendmsg(atoi(argv[2]), data);
8 return (TCL_OK);
9 }
10 } else if (argc == 5) {
11 if (strcmp(argv[1], "sendmsg") == 0) {
12 PacketData* data = new PacketData(1 + strlen

(argv[3]));
13 strcpy((char*)data->data(), argv[3]);
14 sendmsg(atoi(argv[2]), data, argv[4]);
15 return (TCL_OK);
16 }
17 }
18 return (Agent::command(argc, argv));
19 }

Since NS2 rarely sends actual payload along with a packet, Line 8 sets the
size of packet to be “size_.” Line 11 sends out the created packet, by executing
target_->recv(p).2 Lines 6–11 are repeated “n” times to transmit all “n”
packets.

After transmitting the first “n” packets, the entire application payload is left with
nbytes % size_, where % is the modulus operator. If the remainder is nonzero,
Lines 15–20 will transmit the remaining application payload in another packet.
Finally, Line 22 invokes function idle() to inform the attached application that
the UDP agent has finished data transmission. From Line 24, function idle() does
so by invoking function resume() of the attached application (if any).

There are two important notes for UDP agents. First, since a UDP agent is a
sending agent its function recv(p,h) is generally not to be used. Second, in
Program 9.7, function sendmsg(...) transmits packets, irrespective of network
condition.

Step 5: Define OTcl Commands and Instprocs

Class Agent/UDP defines the two following OTcl commands defined in
Program 9.8:

2Variable target is configured to point to a node entry during the network configuration phase
(see Sect. 9.2.1).

9.4 Chapter Summary 227

• sendfnbytes strg: Send a payload of size “nbytes” containing a message
“str.”

• sendmsgfnbytes str flagsg: Similar to the OTcl command send but
also passes the input flag “flags” when sending a packet.

Lines 5–8 in Program 9.8 show the details of the OTcl command sendf...g.
Line 5 creates a PacketData object. Line 6 stores the input message “str”
in the created PacketData object. Line 7 sends out the application payload by
invoking function sendmsg(...). Note that the size of application payload does
not depend on the size of the message in the PacketData object (i.e., argv[3]
or “str”). Rather, the size is specified in the first input argument (i.e., argv[2] or
“nbytes”). The implementation of the OTcl commandsendmsg(...) is similar
to that of the OTcl command sendf...g. However, it also feeds a flag “flags”
as an input argument of function sendmsg(...) (see Line 14).

9.3.3 Setting Up a UDP Connection

A UDP connection can be created by the network configuration method provided in
Sect. 9.2.2. An example connection where a UDP agent, a Null agent, and a CBR
traffic source are used as a sending agent, a receiving agent, and an application is
shown in Example 9.1.

9.4 Chapter Summary

An agent is a connector which bridges an application to a low-level network. Its
main responsibilities are to create packets based on user demand received from
an application, to forward packets to a low-level network, and to destroy packets
received from a low-level network. From this point of view, an agent can be used
to model transport layer protocols and routing protocols. This chapter focuses on
transport layer (protocol) agents only.

Class Agent is a base class, which represents both sending and receiving agents.
It connects to an application and a low-level network using pointers “app_” and
“target_,” respectively. An application also has a pointer “agent_” to the
agent, while a low-level network uses a pointer “target_” as a reference to the
agent. Class Agent provides basic functionalities for creating, forwarding, and
destroying packets. Its functions send(...) and sendmsg(...) are invoked
by an attached application to pass on user demand. An agent creates packets based
on the demand, and forwards the created packet to a low-level network by executing
target_->recv(p,h). A low level network sends a packet to a receiving agent
by invoking function recv(p,h) of the receiving agent.

UDP and TCP are among the most widely used transport layer protocols. UDP
is a simple transport layer protocol and it can be flexibly used by other network

228 9 Transport Control Protocols Part 1: An Overview : : :

protocols. In NS2, UDP is implemented in the CCC class UdpAgent which is
bound to an OTcl class Agent/UDP. A UDP agent is usually peered with a Null
agent, which simply destroys received packets.

TCP is a reliable transport control protocol. Its main features are end-to-end error
control and network congestion control. It implements timeout and acknowledgment
to provide end-to-end error control and adopts a window-based rate adjustment to
control network congestion. We will discuss the details of TCP implementation in
NS2 in the Chap. 10.

9.5 Exercises

1. What is the default TCP version used in NS2? How does it react to duplicate
acknowledgments and timeout?

2. Suppose a series of packets measures the following set of round trip time (RTT):
9.7, 10.1, 11.2, 15.7, 8.8, 7.2, 12.2, and 15.8 s. Suppose further that a new packet
with round-trip time 13.1 s has arrived. Use [35] to compute smoothed RTT, RTT
variation, and instantaneous retransmission timeout (RTO).

3. What is the characteristic unique to an Agent?

4. What are the NS2 objects which are responsible for putting IP addresses and
ports in packets? Explain how these objects write the addresses and the port into
the packet header.

5. What are CCC and OTcl classes which model senders and receivers for TCP
and UDP packets?

6. Design a connection-oriented transport layer protocol in NS2. This protocol sets
up the connection in the same way as TCP does, but transmit data packets in the
same way as UDP does. Incorporate the protocol into NS2 and write a program
to test the developed module.

7. Where does NS2 store the following information: the packet sequence number,
the maximum window size, the current congestion windows, and flow ID? Give
you answer for both TCP and UDP packets, wherever applicable.

8. How does NS2 ensure the uniqueness of packet unique ID?

Chapter 10
Transport Control Protocols
Part 2: Transmission Control Protocol

As a transport control protocol, Transmission Control Protocol (TCP) bridges an
application to a low-level network, controls network congestion, and provides relia-
bility to an end-to-end connection. This chapter discusses the details of TCP agents.
Section 10.1 gives an overview of TCP agents. Here, we show a TCP network
configuration method, a brief overview of TCP internal mechanism, TCP header
format, and the main steps in defining TCP senders and TCP receivers. Sections 10.2
and 10.3 discuss the implementation of TCP receivers and senders, respectively.
Sections 10.4–10.7 present the implementation of four main functionalities of a TCP
sender. Finally, the chapter summary is provided in Sect. 10.8.

10.1 An Overview of TCP Agents in NS2

Based on user demand from an application, a TCP sender creates and forwards
packets to a low-level network. It controls the congestion by limiting the rate
(i.e., by adjusting the congestion window) at which packets are fed to the low-
level network. It enforces an acknowledgment mechanism to provide connection
reliability. A TCP receiver must acknowledge every received TCP packet. Based
on the acknowledgment pattern, a TCP sender determines whether the transmitted
packet was lost or not. If so, it will retransmit the packet. A TCP sender is
responsible for sending packets as well as controlling the transmission rate, while
the role of a TCP receiver is only to return acknowledgments to the associated TCP
sender.

10.1.1 Setting Up a TCP Connection

As a transport layer agent, TCP can be incorporated into a network using the method
discussed in Sect. 9.2.2.

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 10, © Springer Science+Business Media, LLC 2012

229

230 10 Transport Control Protocols Part 2: Transmission Control Protocol

Example 10.1. Consider Fig. 9.3. Replace the CBR application with File Transfer
Protocol (FTP), the UDP agent with a TCP sender, and the Null agent with a TCP
receiver. The modified network can be created using the following Tcl simulation
script.

1 set ns [new Simulator]
2 set n1 [$ns node]
3 set n2 [$ns node]
4 set n3 [$ns node]
5 $ns duplex-link $n1 $n2 5Mb 2ms DropTail
6 $ns duplex-link $n2 $n3 5Mb 2ms DropTail
7 $ns duplex-link $n1 $n3 5Mb 2ms DropTail

#=== TCP connection setup starts here ===
8 set tcp [new Agent/TCP]
9 set sink [new Agent/TCPSink]
10 set ftp [new Application/FTP]
11 $ns attach-agent $n1 $tcp
12 $ns attach-agent $n3 $sink
13 $ftp attach-agent $tcp
14 $ns connect $tcp $sink
15 $ns at 0.0 "$ftp start"

Similar to those in Example 9.1, Lines 8–14 above create a TCP connection on top
of a low-level network. �

10.1.2 Packet Transmission and Acknowledgment Mechanism

TCP provides connection reliability by means of acknowledgment and packet
retransmission. Figure 10.1 shows a diagram for TCP packet transmission and
acknowledgment mechanisms. The process starts when an application (e.g., FTP)
informs a TCP sender (e.g., TcpAgent) of user demand by invoking function
sendmsg(nbytes) of the TcpAgent object through its variable “agent_.”
The TCP sender creates TCP packets, and forwards them to its downstream
object by executing target_->recv(p,h). The low-level network delivers the
packets to the destination node attached to the TCP receiver (i.e., TcpSink). The
destination node forwards the packet to the TCP receiver (i.e., a TcpSink object)
by invoking function recv(p,h) of the TCP receiver installed in its demultiplexer
(e.g., “dmux_”). Upon receiving a TCP packet, the TCP receiver creates an ACK
packet and returns it to the TCP sender by executing target_->recv(p,h),
where in this case p is a pointer to the created ACK packet. The low-level network
delivers the ACK packet to the sending node, which forwards the ACK packet to the
TCP sender via its demultiplexer.

10.1 An Overview of TCP Agents in NS2 231

Fig. 10.1 TCP packet transmission and acknowledgment mechanisms

If a TCP packet or an ACK packet is lost (or delayed for a long period of time),
the TCP sender will assume that the packet is lost. In this case, the TCP sender
will retransmit the lost TCP packet based on the retransmission process explained
in Sect. 9.1.2.

10.1.3 TCP Header

TCP packet header is defined in the “hdr_tcp” struct data type shown in
Program 10.1. The key variables of hdr_tcp include

seqno_ TCP sequence number
ts_ Timestamp: The time when the packet was generated

ts_echo_ Timestamp echo: The time when the peering TCP received the
packet

reason_ Reason for packet transmission (e.g., 0 D normal transmission)

In common with other packet header, hdr_tcp contains function
access(p) (Lines 8–10), which can be used to obtain the reference to a TCP
header stored in the input packet *p. This reference can then be used to access the
attributes of a TCP packet header.

10.1.4 Defining TCP Sender and Receiver

We follow the guidelines provided in Sect. 9.2.4 to define a TCP sender and a TCP
receiver.

232 10 Transport Control Protocols Part 2: Transmission Control Protocol

Program 10.1 Declaration of hdr tcp struct data type
//˜/ns/tcp/tcp.h

1 struct hdr_tcp {
2 double ts_; //time packet generated (at source)
3 double ts_echo_; //the echoed timestamp
4 int seqno_; //sequence number
5 int reason_; //reason for a retransmit
6 static int offset_; // offset for this header
7 inline static int& offset() { return offset_; }
8 inline static hdr_tcp* access(Packet* p) {
9 return (hdr_tcp*) p->access(offset_);
10 }
11 int& seqno() { return (seqno_); }
12 ...
13 };

Step 1: Define the Inheritance Structure

NS2 defines TCP sender in a CCC class TcpAgent which is bound to an OTcl
class Agent/TCP through a mapping class TcpClass, as shown in Lines 1–7
of Program 10.2. Similarly, TCP receiver is defined in a CCC class TcpSink
which is bound to an OTcl class Agent/TCPSink through a mapping class
TcpSinkClass, as shown in Lines 8–14 of Program 10.2.

Step 2: Define the Necessary CCC and OTcl Variables

While class TcpSink has only one CCC key variable “acker_” which is of
class Acker,1 class TcpAgent has several variables. We classify the key CCC
variables of class TcpAgent into four categories. First, CCC variables, whose
values change dynamically during a simulation, are shown in Table 10.1. Second,
CCC variables, which are usually configured once, are listed in Table 10.2. Third,
Table 10.3 shows the variables that are related to TCP timer mechanism. Finally,
Table 10.4 shows the Miscellaneous variables of class TcpAgent.

10.1.4.1 Step 3: Implement the Constructor

The constructors of both TCP senders and TCP receivers set their variables to
the default values, and bind CCC variables to OTcl instvars as specified in
Tables 10.1–10.3. In addition, the constructor of the TCP sender invokes the

1We will be discuss the details of class Acker later in Sect. 10.2.1.

10.1 An Overview of TCP Agents in NS2 233

Program 10.2 Class TcpClass which binds a CCC class TcpAgent and an
OTcl class Agent/TCP together, class TcpSinkClass, which binds a CCC
class TcpSink and an OTcl class Agent/TCPSink together, and the constructor
of class TcpSink

//˜/ns/tcp/tcp.cc
1 static class TcpClass : public TclClass {
2 public:
3 TcpClass() : TclClass("Agent/TCP") {}
4 TclObject* create(int , const char*const*) {
5 return (new TcpAgent());
6 }
7 } class_tcp;

//˜/ns/tcp/tcp-sink.cc
8 static class TcpSinkClass : public TclClass {
9 public:
10 TcpSinkClass() : TclClass("Agent/TCPSink") {}
11 TclObject* create(int, const char*const*) {
12 return (new TcpSink(new Acker));
13 }
14 } class_tcpsink;

15 TcpSink::TcpSink(Acker* acker) : Agent(PT_ACK),
acker_(acker) {...}

Program 10.3 Components of TcpAgent related to TCP retransmission timer
//˜/ns/tcp/tcp.h

1 class TcpAgent : public Agent {
2 ...
3 protected:
4 RtxTimer rtx_timer_;
5 ...
6 }

//˜/ns/tcp/tcp.cc
7 TcpAgent::TcpAgent() : ... Agent (PT_TCP), rtx_timer_(this),

...
8 { ... }

constructor of its parent class (i.e., Agent) with an input argumentPT_TCP, setting
the instantiated TcpAgent object to transmit TCP packet only. It also initializes
the retransmission timer “rtx_timer_” with the pointer “this” to itself. The
details of TcpAgent construction and timers are given in file ˜ns/tcp/tcp.cc and
Sect. 15.1.

A TCP receiver is somewhat different from a TCP sender, since it does not
have a default constructor. From Line 15 of Program 10.2, the constructor takes
a pointer to an Acker object as an input argument (see Sect. 10.2.1), and initializes

234 10 Transport Control Protocols Part 2: Transmission Control Protocol

Table 10.1 Key operating variables of class TcpAgent

CCC variable OTcl variable
Default
value Description

t_seqno_ t_seqno_ 0 Current TCP sequence number
curseq_ seqno_ 0 Total number of packets need to be transmitted

specified by the application. A TCP sender
transmits packets as long as its sequence
number is less than curseq_.

highest_ack_ ack_ 0 Highest ACK number (not frozen during fast
recovery)

lastack_ N/A 0 Highest ACK number (frozen during fast
recovery)

cwnd_ cwnd_ 0 Congestion window size in packets
ssthresh_ ssthresh_ 0 Slow-start threshold
dupacks_ dupacks_ 0 Duplicated ACK counter
maxseq_ maxseq_ 0 Highest transmitted sequence number
t_rtt_ rtt_ 0 RTT sample
t_srtt_ srtt_ 0 Smoothed RTT
t_rttvar_ rttvar_ 0 RTT deviation
t_backoff_ backoff_ 0 Current RTO backoff multiplicative factor
rtt_active_ N/A 0 Status of the RTT collection process
rtt_ts_ N/A –1 Time at which the packet is transmitted
rtt_seq_ N/A 0 Sequence number of the tagged packet
t_rtxcur_ N/A 0 Current value of unbounded retransmission

timeout
ts_peer_ N/A 0 Latest timestamp provided by the peering TCP

receiver
rtx_timer_ N/A N/A Retransmission timer object

its variable “acker_” with this input pointer. It also initializes its parent constructor
with PT_ACK, an ACK packet type. Finally, it binds few CCC variables to
OTcl instvars (see the detailed construction of class TcpSink in file ˜ns/tcp/tcp-
sink.cc).

Steps 3, 4, and 5: Implement the Necessary Functions, OTcl Commands, and
Instprocs, and Define Timers if Necessary

The detailed implementation of CCC functions of TCP receivers are shown in
the next section, while those of TCP senders are given in Sects. 10.3–10.7. For
brevity, we will not discuss the details of implementation of OTcl command
and instproc. The readers are encouraged to study the details of TCP senders
and TCP receivers in files ˜ns/tcp/tcp.cc,h, ˜ns/tcp/tcp-sink.cc,h, and ˜ns/tcl/lib/ns-
agent.tcl.

10.2 TCP Receiver 235

Table 10.2 Key variables of class TcpAgent

CCC variable OTcl variable
Default
value Description

wnd_ window_ 20 Upper bound on window size
numdupacks_ numdupacks_ 3 Number of duplicated ACKs

which triggers fast
retransmit

wnd_init_ windowInit_ 2 Initial value of window size
size_ packetSize_ 1,000 TCP packet size in bytes
tcpip_base_ tcpip_base_hdr_size_ 40 TCP basic header size in bytes
useHeaders_ useHeaders_ true If true, TCP and IP header

size will be added to
packet size

maxburst_ maxburst_ 0 Maximum number of bytes
that a TCP sender can
transmit in one
transmission

maxcwnd_ maxcwnd_ 0 Upper bound on cwnd_
control_ control_increase_ 0 If set to 1, do not open the

congestion window when
the network is limited (See
Sect. 10.5).

increase_

Table 10.3 Timer-related variables of class TcpAgent

CCC variable OTcl variable
Default
value Description

srtt_init_ srtt_init_ 0 Initial value of t_srtt_
rttvar_init_ rttvar_init_ 12 Initial value of t_rttvar_
rtxcur_init_ rtxcur_init_ 3.0 Initial value of t_rtxcur_
T_SRTT_BITS T_SRTT_BITS 3 Multiplicative factor for smoothed

RTT
T_RTTVAR_BITS T_RTTVAR_BITS 2 Multiplicative factor for RTT

deviation
rttvar_exp_ rttvar_exp_ 2 Multiplicative factor for RTO

computation
decrease_num_ decrease_num_ 0.5 Window decreasing factor
increase_num_ increase_num_ 1.0 Window increasing factor
tcp_tick_ tcp_tick_ 0.01 Timer granularity in seconds
maxrto_ maxrto_ 100,000 Upper bound on RTO in seconds
minrto_ minrto_ 0.2 Lower bound on RTO in seconds

10.2 TCP Receiver

A TCP receiver is responsible for deallocating received TCP packets and returning
cumulative ACK packets to the TCP sender. As discussed in Sect. 9.1.2, a cumula-
tive ACK packet acknowledges a TCP packet with the highest contiguous sequence

236 10 Transport Control Protocols Part 2: Transmission Control Protocol

Table 10.4 Miscellaneous variables of class TcpAgent

CCC variable
Default
value Description

cong_action_ 0 true when the congestion has occurred.
singledup_ 1 If set to 1, the TCP sender will transmit new packets

upon receiving first few duplicated ACK
packets.

prev_highest_ack_ N/A Sequence number of an ACK packet received before
the current ACK packet.

last_cwnd_action_ N/A The latest action on congestion window
recover_ N/A The highest transmitted sequence number during the

previous packet loss event

Fig. 10.2 Information necessary to generate a cumulative acknowledgement

number. Upon receiving a cumulative ACK packet, the TCP sender assumes that all
packets whose sequence numbers are lower than or equal to that of the ACK packet
have been successfully received. A cumulative ACK packet has the capability of
acknowledging multiple packets. For example, suppose Packet 3 in Fig. 9.2 is not
lost but is delayed and that it arrives at the receiver right after Packet 6 is received.
Upon receiving Packet 3, the receiver acknowledges with A6, since it has received
Packets 4–6 earlier.

In NS2, CCC implementation of TCP receivers involves two main classes:
Acker and TcpSink. Class Acker is a helper class responsible for generating
ACK packets. Class TcpSink contains an Acker object and acts as interfaces to
a peering TCP sender.

10.2 TCP Receiver 237

Program 10.4 Declaration of class Acker
//˜/ns/tcp/tcp-sink.h

1 class Acker {
2 public:
3 Acker();
4 virtual ˜Acker() { delete[] seen_; }
5 inline int Seqno() const { return (next_ - 1); }
6 inline int Maxseen() const { return (maxseen_); }
7 int update(int seqno, int numBytes);
8 protected:
9 int next_;
10 int maxseen_;
11 int wndmask_;
12 int *seen_;
13 int is_dup_;
14 };

10.2.1 Class Acker

Program 10.4 shows the declaration of a CCC class Acker.2 Class Acker
stores necessary information required to generate cumulative ACK packets in the
following variables:

seen_ An array whose index and value are the sequence number
and the corresponding packet size, respectively

next_ Expected sequence number
maxseen_ Highest sequence number ever received
wndmask_ Modulus mask, initialized to maximum window size-1

(set to 63 by default; see Sect. 15.4.1)
is_dup_ True if the latest received TCP packet was received earlier

Figure 10.2 shows an example of information stored in an Acker object. In
this case, Packets 1, 2, 3, 5, and 7 are received, but Packets 4 and 6 are missing.
Therefore, “next_” and “maxseen_” are set to 4 and 7, respectively. Also,
variable “seen_” stores the size in bytes of Packets 1–7 in its respective entries.
To determine whether packet n is missing, class Acker checks the value of
seen_[n]. The packet is missing if and only if seen_[n] is zero. Suppose a
TCP receiver receives a TCP packet number 4 when the status of the Acker object
is as in Fig. 10.2. The Acker object will generate an ACK packet with sequence
number 5. However, if the sequence number of the received packet is not 4 (e.g., 7,
8, 9), the Acker object will create an ACK packet with sequence number 3.

2Class Acker is not implemented in the OTcl domain.

238 10 Transport Control Protocols Part 2: Transmission Control Protocol

Program 10.5 The constructor of class Acker
//˜/ns/tcp/tcp-sink.cc

1 Acker::Acker() : next_(0), maxseen_(0), wndmask_(MWM)
2 {
3 seen_ = new int[MWS];
4 memset(seen_, 0, (sizeof(int) * (MWS)));
5 }

//˜/ns/tcp/tcp-sink.cc
6 #define MWS 64
7 #define MWM (MWS-1)

As discussed in Sect. 9.1.2, a TCP sender can transmit at most w unacknowledged
packets in a network, where w is the current congestion window size. Let MWS be
the Maximum Window Size in a simulation (see Line 6 in Program 10.5). Then, w 2
f0; � � � ;MWS-1g and there can be at most MWS unacknowledged packets during the
entire simulation. An Acker object needs only MWS entries in the array “seen_”
to store information about unacknowledged packets.

Program 10.5 shows the constructor of the CCC class Acker. The constructor
resets “next_” and “maxseen_” to zero in Line 1. Line 3 allocates memory space
for array variable “seen_” with MWS entries. Line 4 clears the allocated memory
to zero. Also, “wndmask_” is set to MWM (Maximum Window Mask which is set to
63 in Line 7).

The above MWS (set by default to 64 in Line 6 of Program 10.5) entries of
“seen_” are reused to store the packet size corresponding to all incoming TCP se-
quence numbers. Class Acker uses a modulus operation to map a sequence number
to an array index. Upon receiving a TCP packet with sequence number “seqno,”
an Acker object stores the packet size in the entry seqno % MWS (which is
the remainder of seqno/MWS), of the array “seen_,” where “%” is a modulus
operator. When “seqno” exceeds MWS, seqno % MWS will be restarted from the
first entry (i.e, the index number “o”) to reuse the memory allocated to “seen_.”

As discussed in Sect. 15.4.1, a modulus operation can also be implemented
by bit masking. In particular, seqno % MWS is in fact equivalent to seqno &
wndmask_, where “wndmask_” is set initially to MWM in the constructor (Line 1
in Program 10.5), and MWM (Maximum Window Mask) is defined as 63 (Lines 6 and
7 in Program 10.5).3 To facilitate the understanding, readers may consider the case
where seqno is less than 64, where seqno & wndmask_ is simply seqno.

Class Acker has two key functions: Seqno() and update(seq,
numBytes). Function Seqno() (Line 5 in Program 10.4) returns the highest
sequence number of a burst of contiguously received packets. As shown in
Program 10.6, function update(seq,numBytes) updates its internal variables
according to the input arguments.

3While the possible value of seqno is in f0,: : : , 65535g, the possible value of seqno % 64
(which is equal to seqno & 63 is in f0,: : : ,63g.

10.2 TCP Receiver 239

Program 10.6 Function update of class Acker
//˜/ns/tcp/tcp-sink.cc

1 int Acker::update(int seq, int numBytes)
2 {
3 bool just_marked_as_seen = FALSE;
4 is_dup_ = FALSE;
5 int numToDeliver = 0;
6 if (seq > maxseen_) {
7 int i;
8 for (i = maxseen_ + 1; i < seq; ++i)
9 seen_[i & wndmask_] = 0;
10 maxseen_ = seq;
11 seen_[maxseen_ & wndmask_] = numBytes;
12 seen_[(maxseen_ + 1) & wndmask_] = 0;
13 just_marked_as_seen = TRUE;
14 }
15 int next = next_;
16 if (seq < next)
17 is_dup_ = TRUE;
18 if (seq >= next && seq <= maxseen_) {
19 if (seen_[seq & wndmask_] && !just_marked_as_seen)
20 is_dup_ = TRUE;
21 seen_[seq & wndmask_] = numBytes;
22 while (seen_[next & wndmask_]) {
23 numToDeliver += seen_[next & wndmask_];
24 ++next;
25 }
26 next_ = next;
27 }
28 return numToDeliver;
29 }

Function update(seq,numBytes) takes two input arguments: “seq” and
“numBytes” which are the sequence number and the size of an incoming TCP
packet, respectively. It updates variables “next_,” “maxseen_,” “seen_,” and
“is_dup_”, and returns the number of in-sequence bytes which is ready to be
delivered to the application. From Fig. 10.2, “seq” can be (I) less than “next_,”
(II) between “next_” and “maxseen_,” and (III) greater than “maxseen_.”
Function update(seq,numBytes) reacts to these three cases as follows:

(i) If “seq” < “next_,” function update(seq,numBytes) will set
“is_dup_” to be true (Line 17). This case implies that this packet was
received earlier, and therefore, this packet is a duplicate packet.

(ii) If “seq” lies in between “next_” and “maxseen_,” function
update(seq, numBytes) will execute Lines 19–26. Line 19 determines
whether “seq” was received earlier. This happens to be true under the two
following conditions: (1) the corresponding entry of “seen_” is nonzero and
(2) just_marked_as_seen is false. The latter condition is added since
if seq is a new sequence number, Line 11 would also have store the packet
size is seen_. However, the variable Just_marked_as_seenwould have
been set as true by Line 13. For Case (ii), “is_dup_” is set to true.

240 10 Transport Control Protocols Part 2: Transmission Control Protocol

Line 21 stores the packet size in seen_[seq & wndmask_].4 Lines
22–26 update “next_” by advancing “next_” until seen_[next_ &
wndmask_] is empty. Also, Line 23 keeps adding the packet size to
numToDeliver, which are returned in Line 28. Essentially, the returned
value is the number of bytes which corresponds to “next_” advancement.

(iii) If seq > maxseen_, implying a new TCP packet, function update(...)
will execute Lines 7–13. Lines 8–9 and 12 clear the seen_[maxseen_+1]
through seen_[seq-1]. It updates “maxseen_” in Line 10 and stores the
packet size in seen_[seq & wndmask_] in Line 11. Since Line 10 stores
“seq” in “maxseen_,” the condition in Line 18 is satisfied and Lines 19–26
are to be executed. If Case (iii) is executed, Case (ii) will also be executed.
Therefore, Line 13 sets “just_marked_as_seen” to be true, which
simply indicates that the current packet is not a duplicated packet, and Line
20 will be skipped.

10.2.2 Class TcpSink

Representing TCP receivers, class TcpSink reacts to received TCP packets as
follows:

1. Extract the sequence number (seq) from the received TCP packet,
2. Inform the Acker object of the sequence number (seq) and the size of the TCP

packet (numBytes) through function update(seq,numBytes) of class
Acker,

3. Create and send an ACK packet to the TCP sender by invoking function
ack(p) of class TcpSink. The sequence number in the ACK packet is
obtained from function Seqno() of the Acker object (invoked from within
function ack(p)).

Program 10.7 shows the declaration of a CCC class Tcpsink, which is bound
to an OTcl class Agent/TCPSink. The only key variable of class TcpSink is
a pointer to an Acker object, “acker_” in Line 8. Two main functions of class
TcpSink include recv(p,h) and ack(p).

Shown in Program 10.8, function recv(p,h) is invoked by an upstream
object to hand a TCP packet over to a TcpSink object. Lines 4–6 inform the
Acker object, “acker_,” of an incoming TCP packet “pkt.” Here, the sequence
number (i.e., th->seqno()) and packet size (i.e., numBytes) are passed to
“acker_” through this function. Again, function update(seq,numBytes)
returns the number of in-order bytes which can be delivered to the application.
If this number is nonzero, it will be delivered to the application through function
recvBytes(bytes) in Line 8. Line 9 invokes function ack(pkt) to generate
an ACK packet and send it to the TCP sender. Finally, Line 10 deallocates the
received TCP packet.

4Bit masking with “wndmask ” has the same impact as a modulus with “wndmask +1” does.

10.2 TCP Receiver 241

Program 10.7 Declaration of class TcpSink
//˜/ns/tcp/tcp-sink.h

1 class TcpSink : public Agent {
2 public:
3 TcpSink(Acker*);
4 void recv(Packet* pkt, Handler*);
5 int command(int argc, const char*const* argv);
6 protected:
7 void ack(Packet*);
8 Acker* acker_;
9 };

Program 10.8 Function recv of class TcpSink
//˜/ns/tcp/tcp-sink.cc

1 void TcpSink::recv(Packet* pkt, Handler*)
2 {
3 int numToDeliver;
4 int numBytes = hdr_cmn::access(pkt)->size();
5 hdr_tcp *th = hdr_tcp::access(pkt);
6 numToDeliver = acker_->update(th->seqno(), numBytes);
7 if (numToDeliver)
8 recvBytes(numToDeliver);
9 ack(pkt);
10 Packet::free(pkt);
11 }

Program 10.9 Function ack of class TcpSink
//˜/ns/tcp/tcp-sink.cc

1 void TcpSink::ack(Packet* opkt)
2 {
3 Packet* npkt = allocpkt();
4 hdr_tcp *otcp = hdr_tcp::access(opkt);
5 hdr_tcp *ntcp = hdr_tcp::access(npkt);
6 ntcp->seqno() = acker_->Seqno();
7 double now = Scheduler::instance().clock();
8 ntcp->ts() = now;
9 hdr_ip* oip = hdr_ip::access(opkt);
10 hdr_ip* nip = hdr_ip::access(npkt);
11 nip->flowid() = oip->flowid();
12 send(npkt, 0);
13 }

Program 10.9 shows the details of function ack(p). In this function, variables
whose name begins with “o” and “n” are used for an old packet and a new
packet, respectively. Line 6 puts an ACK number in the ACK packet. Lines 7–8
and 9–11 configure timestamp and flow ID of the ACK packet, respectively.

242 10 Transport Control Protocols Part 2: Transmission Control Protocol

Finally, the configured packet is sent out using function send(npkt,0) of class
Agent in Line 12, where a new packet “npkt” is transmitted along with a Null
handler.

10.3 TCP Sender

A TCP sender has the following four main responsibilities:

• Packet transmission: Based on user demand from an application, a TCP sender
creates and forwards TCP packets to a TCP receiver.

• ACK processing: A TCP sender observes a received ACK pattern and determines
whether transmitted packets were lost. If so, it will retransmit the lost packets.
From the ACK pattern, it can also estimate the network condition (e.g., end-to-
end bandwidth) and adjust the congestion window accordingly.

• Timer-related mechanism: A retransmission timer is used to provide connection
reliability. Unless reset by an ACK packet arrival, the retransmission timer
informs the TCP sender of packet loss after the packet has been transmitted for a
period of Retransmission TimeOut (RTO).

• Window adjustment: Based on the ACK pattern and timeout event, a TCP sender
adjusts its congestion window to fully use the network resource and prevent
network congestion.

The details of these four responsibilities will be discussed in the next four
sections.

10.4 TCP Packet Transmission Functions

Class TcpAgent provides the following four main packet transmission functions:

• sendmsg(nbytes): Send “nbytes” of application payload. When
nbytes=-1, the payload is assumed to be infinite.

• sendmuch(force,reason,maxburst): Send out a packet whose se-
quence number is “t_seqno_.” Keep sending out packets as long as the
congestion window allows and the total number of transmitted packets during
a function invocation does not exceed “maxburst.”

• output(seqno,reason): Create and send a packet with a sequence number
and a transmission reason as specified by “seqno” and “reason,”
respectively.

• send_one(): Send a TCP packet with a sequence number “t_seqno_.”

Among the above functions, function sendmsg(nbytes) is the only public
function derived from class Agent, while the other three functions are internal to

10.4 TCP Packet Transmission Functions 243

class TcpAgent. Again, function sendmsg(nbytes) is invoked by an applica-
tion to inform a TcpAgent object of user demand. Function sendmsg(nbytes)
does not directly send out packets. Rather, it computes the number of TCP packets
required to hold “nbytes” of data payload, and increases variable “curseq_” by
the computed value. In NS2, a TcpAgent object keeps transmitting TCP packets as
long as the sequence number does not exceed “curseq_.” Increasing “curseq_”
is therefore equivalent to feeding data payload to a TcpAgent object.

Another important variable is “t_seqno_,” which contains the default TCP
sequence number. Unless otherwise specified, a TCP sender always transmits a
TCP packet with the sequence number stored in “t_seqno_.” Both the func-
tions sendmuch(force,reason,maxburst) and send_one() use func-
tion output(t_seqno_,reason) to send out a TCP packet whose sequence
number is “t_seqno_.”

Function send_much(...) acts as a foundation for TCP packet transmission.
In most cases, TCP agent first stores the sequence number of the packet to be
transmitted in “t_seqno_.” Then, it invokes the function send_much(...)
to send TCP packets-starting with that with the sequence number “t_seqno_”
as long as the transmission window permits. As we shall see in Program 10.11,
each packet transmission is carried out using function output(t_seqno_,
reason).

10.4.1 Function sendmsg(nbytes)

Function send_msg(nbytes) is the main data transmission interface function
derived from class Agent. A user (e.g., application) informs a TCP sender of
transmission demand through this function. Function sendmsg(nbytes) usually
takes one input argument, “nbytes,” which is the amount of application payload
in bytes that a user needs to send. When the user has infinite demand, “nbytes” is
specified as �1.

Program 10.10 shows the details of function sendmsg(nbytes). Lines
4–7 transform the input user demand to the number of TCP packets to be
transmitted (i.e., “curseq_”). Line 8 starts data transmission by invoking func-
tion send_much(0,0,maxburst_). Note that Line 1 specifies the limit (i.e.,
TCP_MAXSEQ) on the number of TCP sequence numbers which can be created
by a certain TCP sender. Again, if nbytes = -1, the TCP sender will be
backlogged until “TCP_MAXSEQ” TCP packets are transmitted. If “nbytes”
is greater than �1, Line 7 will compute the number of TCP packets (each
with size “size_” bytes) which can accommodate “nbytes” of application
payload.

244 10 Transport Control Protocols Part 2: Transmission Control Protocol

Program 10.10 Function sendmsg of class TcpAgent
//˜/ns/tcp/tcp.h

1 #define TCP_MAXSEQ 1073741824

//˜/ns/tcp/tcp.cc
2 void TcpAgent::sendmsg(int nbytes, const char* /*flags*/)
3 {
4 if (nbytes == -1 && curseq_ <= TCP_MAXSEQ)
5 curseq_ = TCP_MAXSEQ;
6 else
7 curseq_ += (nbytes/size_ + (nbytes%size_ ? 1 : 0));
8 send_much(0, 0, maxburst_);
9 }

10.4.2 Function send much(force,reason,maxburst)

There are three important points in regards to function send_much(force,
reason,maxburst). First, it creates and sends out as many packets as the cur-
rent transmission window allows, but not greater than “maxburst” packets. Sec-
ond, every packet is transmitted by executing output(t_seqno_,reason).
Finally, function send_much(...) always sends out a TCP packets with
sequence number “t_seqno_.”

Function send_much(force,reason,maxburst) takes three following
input arguments, where a typical invocation of this function is send_much(0,0,
maxburst_):

• “force”: This value is usually set to zero. When “force” = 1, TCP sender
will try to transmit data packets even if some conditions are not met.5

• “reason”: This value specifies the reason for data transmission. For a normal
transmission, “reason” is set to 0. Other possible values of “reason” are
shown in Lines 1–4 in Program 10.11. This input argument is later placed in the
field “reason_” of TCP packet header (i.e., hdr_tcp::reason_) and will
be used for various purposes in simulation.

• “maxburst”: The maximum number of packets that can be transmitted for each
invocation of function send_much(force,reason,maxburst).

Program 10.11 shows the details of function send_much(force, reason,
maxburst). Function send_much(force,reason,maxburst) first stores

5For example, a variable “overhead ” adds a certain delay time specified by a DelSndTimer
object before data transmission. By default, TCP sender does not transmit when “overhead ”
is nonzero. However, it can transmit packets immediately when force = 1. Note that we do
not discuss the details of class DelSndTimer here. The readers may find the details of class
DelSndTimer in files ˜ns/tcp/tcp.cc,h.

10.4 TCP Packet Transmission Functions 245

Program 10.11 Functions send much and window() of class TcpAgent
//˜/ns/tcp/tcp.h

1 #define TCP_REASON_TIMEOUT 0x01 //Timeout
2 #define TCP_REASON_DUPACK 0x02 //Duplicated ACK
3 #define TCP_REASON_RBP 0x03 //Rate Based Pacing
4 #define TCP_REASON_PARTIALACK 0x04 //Partial ACK

//˜/ns/tcp/tcp.cc
5 void TcpAgent::send_much(int force, int reason, int

maxburst)
6 {
7 int win = window(), npackets = 0;
8 while (t_seqno_ <= highest_ack_ + win && t_seqno_ <

curseq_) {
9 if (overhead_ == 0 || force) {
10 output(t_seqno_, reason);
11 npackets++;
12 t_seqno_++;
13 }
14 win = window();
15 if (maxburst && npackets == maxburst)
16 break;
17 }
18 }

19 int TcpAgent::window()
20 {
21 return (cwnd_ < wnd_ ? (int)cwnd_ : (int)wnd_);
22 }

the current congestion window6 in a variable “win” and sets the variable
“npackets” to zero in Line 7. Then, Line 8 checks whether the TCP sender is
allowed to send a TCP packet with sequence number “t_seqno_.” If so, Line 10
will invoke function output(t_seqno_,reason) to send out a TCP packet.
Again, a TCP sender is allowed to transmit a packet if the following two conditions
are satisfied:

1. Congestion window allows packet transmission: Function window() in Line 7
returns the minimum of the current congestion window and the maximum win-
dow size. This minimum value is stored in the variable “win” in Line 7. Since the
latest received ACK number is “highest_ack_,” the TCP sender can trans-
mit TCP packets with sequence numbers “t_seqno_” through “highest_
ack_+win”.

6From Lines 19–22 of Program 10.11, function window() returns the minimum of “window ”
(the maximum window size) and “cwnd ” (the current congestion window size) as the current
bounded congestion window.

246 10 Transport Control Protocols Part 2: Transmission Control Protocol

2. TCP sender still has data to transmit: The sender will send TCP packets
unit the sequence number reaches “curseq_.” Specified in the user demand,
“curseq_” is the highest TCP sequence number that the sender needs to
transmit.

After a packet transmission, the default sequence number “t_seqno_”
(Line 12) and the congestion window size “win” (Line 14) are updated. Lines 15–
17 stop the transmission, if TCP sender has sent out “maxburst” packets. The
above process repeats until the condition in Line 8 becomes false.

10.4.3 Function output(seqno,reason)

Taking two input arguments, functionoutput(seqno,reason) creates a packet,
sets the sequence number and the reason field of TCP header to the input arguments
“seqno” and “reason,” respectively, and forwards the packet to the low-level
network using function send(p,h) of class Agent.

Programs 10.12 and 10.13 show the details of function output(seqno,
reason), which consists of five main parts. First, Line 5 creates a packet “p” using
function allocpkt() of class Agent. Second, Lines 6–26 configure common,
TCP, and flag headers of the created packets. For the common packet header, func-
tion output(...) configures packet size in Lines 18–26. If “useHeaders_”
is true, “tcpip_base_hdr_size_” (40 bytes by default) will be added to
the packet size. Since an SYN packet (with seqno =0 and syn =1) contains
no pay-load, its size is set to be “tcpip_base_hdr_size_” bytes (Line 22).
The following TCP header fields are configured in Lines 6–12: sequence number,
timestamp, timestamp echo, transmitting reason, and latest observed round trip time
(RTT). Finally, function output(...) configures the congestion flag7 in the flag
header (Lines 13–16). This congestion flag is set to be true when TCP is trying
to transmit a new packet under congestion, i.e., both of the following conditions in
Line 13 are true:

1. Congestion has occurred: During network congestion, TCP sender closes the
congestion window by invoking function slowdown(how), within which the
variable “cong_action_” is set to true.

2. TCP sender is transmitting a new packet (is_retx = false): This flag
set to true, when a new packet (not a retransmitted packets) is experiencing
congestion.

7For example, a router in the network may drop packets marked with a congestion action flag
to help relieve network congestion. However, dropping a retransmitted packet may lead to TCP
connection reset. Therefore, a TCP sender does not mark retransmitted packets with a congestion
action flag.

10.4 TCP Packet Transmission Functions 247

Program 10.12 Function output of class TcpAgent
//˜/ns/tcp/tcp.cc

1 void TcpAgent::output(int seqno, int reason)
2 {
3 int force_set_rtx_timer = 0;
4 int is_retransmit = (seqno < maxseq_);
5 Packet* p = allocpkt();
6 hdr_tcp *tcph = hdr_tcp::access(p);
7 tcph->seqno() = seqno;
8 tcph->ts() = Scheduler::instance().clock();
9 tcph->ts_echo() = ts_peer_;
10 tcph->reason() = reason;
11 tcph->last_rtt() = int(int(t_rtt_)*tcp_tick_*1000);
12 int databytes = hdr_cmn::access(p)->size();
13 if (cong_action_ && !is_retransmit) {
14 hdr_flags* hf = hdr_flags::access(p);
15 hf->cong_action() = TRUE;
16 cong_action_ = FALSE;
17 }
18 if (seqno == 0) {
19 if (syn_) {
20 databytes = 0;
21 curseq_ += 1;
22 hdr_cmn::access(p)->size() = tcpip_base_hdr_

size_;
23 }
24 } else if (useHeaders_ == true) {
25 hdr_cmn::access(p)->size() += headersize();
26 }

The third part of function output(seqno,reason) is used to send out
the configured packet using function send(p,h) of class Agent in Line 27.
The fourth part updates the relevant variables of the TcpAgent object in Lines
28–48. If the condition in Line 30 is true, TCP sender will no longer have data
to transmit. In this case, Line 31 informs the application so by invoking function
idle() of class Agent. Relevant variables to be updated are ndatapack_,
ndatabytes_, nrexmitpack_, nremitbytes_, in Lines 28, 29, 42, and
43, respectively. The former two variables denote the data transmitted by the
TcpAgent object in packets and bytes, while the latter two are those corresponding
to the retransmitted packets only. Lines 33–39 update the related variables when
“seqno” > “maxseq_.” These variables include “maxseq_” and other RTT
estimation variables. We will discuss about the RTT estimation later in Sect. 10.6.

The final part is to start the retransmission timer by invoking functionset_rtx_
timer() in Line 48. Note that each TCP sender has only one retransmission timer.
Under a normal situation, the timer is started only when it is idle (i.e., its status is
not TIMER_PENDING). However, it is also started when highest_ack_ ==
maxseq_, regardless of the timer’s status (see Line S45–48).

248 10 Transport Control Protocols Part 2: Transmission Control Protocol

Program 10.13 Function output of class TcpAgent (cont.)
27 send(p, 0);
28 ++ndatapack_;
29 ndatabytes_ += databytes;
30 if (seqno == curseq_ && seqno > maxseq_)
31 idle();
32 if (seqno > maxseq_) {
33 maxseq_ = seqno;
34 if (!rtt_active_) {
35 rtt_active_ = 1;
36 if (seqno > rtt_seq_) {
37 rtt_seq_ = seqno;
38 rtt_ts_ = Scheduler::instance().clock();
39 }
40 }
41 } else {
42 ++nrexmitpack_;
43 nrexmitbytes_ += databytes;
44 }
45 if (highest_ack_ == maxseq_)
46 force_set_rtx_timer = 1;
47 if (!(rtx_timer_.status() == TIMER_PENDING)

|| force_set_rtx_timer)
48 set_rtx_timer();
49 }

Program 10.14 Function send one of class TcpAgent
//˜/ns/tcp/tcp.cc

1 void TcpAgent::send_one()
2 {
3 if (t_seqno_ <= highest_ack_ + wnd_ && t_seqno_ < curseq_

&& t_seqno_ <= highest_ack_ + cwnd_ +
dupacks_) {

4 output(t_seqno_, 0);
5 t_seqno_ ++ ;
6 }
7 }

10.4.4 Function send one()

Figure 10.4 shows the details of function send_one(). Function send_one() is
very similar to function send_much(...). It prepares sequence numbers starting
at “t_seqno_” and passes them to function output(t_seqno_, 0) for
packet creation and transmission. The main difference is that while function
send_much(...) may send out several packets, function send_one(...)
sends out only one packet. Function send_one(...) is designed to send a new
packet during a fast retransmit phase for every received duplicated ACK packet

10.5 ACK Processing Functions 249

++nackpack_;
seqno = Seq no. of pkt;

seqno

recv_newack_helper(pkt)

free(pkt)

No. of
Duplicated

ACKs

send_one(pkt)

== last_ack_last_ack_>

(duplicated ACK)(new ACK)

dupack_action()

sendmuch(0,0,maxburst_)

seqno > last_ack_
no

yes

< duplicated ACK
threshold

== duplicated ACK
threshold

retrun

recv(pkt)

newack(pkt)

A
C

K
 P

re-P
rocessing

Case I

Case IIICase II

Fig. 10.3 Function recv(p,h) of class TcpAgent

(see Sect. 10.5). In this case, Line 3 inflates the congestion windows by the number
of duplicated ACK (dupacks_). As will be discussed in Sect. 10.5, this function
is invoked if the option “singledup_” is set to 1 during the reception of the first
duplicated ACK packets.

10.5 ACK Processing Functions

The second responsibility of a TCP sender is to process ACK packets. An ACK
packet could be a new ACK packet or a duplicated ACK packet. A new ACK
packet slides the congestion window to the right and opens the congestion window
to allow the TCP sender to transmit more packets. A duplicated ACK packet, on
the other hand, indicates out-of-order packet delivery or packet loss (see Fig. 9.2,
for example). Again, TCP Tahoe assumes that packet loss upon detecting the
“numdupacks_”th (3rd by default) duplicated ACK packet. It sets the slow-start
threshold to half of the current congestion window, sets the congestion window
size to “wnd_init_” (which is usually set to 1), and retransmits the lost packet.
During a Fast Retransmit phase, the TCP sender transmits a new packet for every

250 10 Transport Control Protocols Part 2: Transmission Control Protocol

received duplicated ACK packet (due to inflated congestion window). When a new
ACK packet is received, the TCP sender sets its congestion window to the same as
slow-start threshold, and returns to its normal operation.

Class TcpAgent provides the four following key ACK Processing functions:

• recv(p,h): This is the main ACK reception function. It determines whether
the received packet (*p) is a new ACK packet or a duplicated ACK packet, and
acts accordingly.

• recv_newack_helper(p): This function is invoked from within func-
tion recv(p,h) when a new ACK packet is received. It invokes function
newack(p) to update relevant variables, and opens the congestion window if
necessary.

• newack(p): Invoked from within function recv_newack_helper(p),
this function updates variables related to sequence number, ACK number, and
RTT estimation process, and restarts the retransmission timer.

• dupack_action(): This function is invoked from within function
recv(p,h) when a duplicated ACK packet is received and Fast Retransmit
process is launched. It cuts down the congestion window, prepares the sequence
number of the lost packet for retransmission, and resets the retransmission timer.

10.5.1 Function recv(p,h)

Figure 10.3 and Program 10.15 show the diagram and implementation, respec-
tively, for function recv(p,h). Function recv(p,h) pre-processes the received
ACK packets in Lines 6–14, where “t_seqno_” and “cwnd_” are adjusted.
Depending of the received ACK type (i.e., new or duplicated), Lines 6–14 (ACK
pre-processing) process an ACK packet according to the following three cases:

• Case I (New ACK): If a new ACK packet is received (i.e., Line 6 returns true),
Line 7 will invoke function recv_newack_helper(p) to adjust congestion
window (cwnd_) and prepare a new sequence number (t_seqno_) for packet
transmission.

• Case II (Duplicated ACK): In this case, a duplicated ACK packet is received
(i.e., Line 6 returns false) but the number of duplicated ACK packets received
so far has not reached “numdupacks_” (i.e., Line 9 returns false). Line
12 will invoke function send_one() to transmit new TCP packets under
the congestion window inflated by the number of received duplicated ACK
packets (see the definition of Fast Recovery in sect. 9.1.2.2). Note that variable
“singledup_” is an NS2 option for congestion window inflation. The above
actions are executed when “singledup_” is true only. If “singledup_”
is false, the TCP sender will not send a new packet for every received ACK
packet.

10.5 ACK Processing Functions 251

Program 10.15 Function recv of class TcpAgent
//˜/ns/tcp/tcp.cc

1 void TcpAgent::recv(Packet *pkt, Handler*)
2 {
3 hdr_tcp *tcph = hdr_tcp::access(pkt);
4 int valid_ack = 0;
5 ++nackpack_;
6 if (tcph->seqno() > last_ack_) {
7 recv_newack_helper(pkt);
8 } else if (tcph->seqno() == last_ack_) {
9 if (++dupacks_ == numdupacks_ && !noFastRetrans_) {
10 dupack_action();
11 } else if (dupacks_ < numdupacks_ && singledup_) {
12 send_one();
13 }
14 }
15 if (tcph->seqno() >= last_ack_)
16 valid_ack = 1;
17 Packet::free(pkt);
18 if (valid_ack)
19 send_much(0, 0, maxburst_);
20 }

• Case III (Fast retransmit): If the received ACK is the last (i.e.,
“numdupacks_”th) duplicated ACK packet, the TCP sender will enter the
Fast Retransmit phase, by invoking function dupack_action() (Line 10).
Note that an option Flag “noFastRetrans_” is an NS option for a Fast
Retransmit phase. The TCP sender will not enter a Fast Retransmit phase, if
“noFastRetrans_” is true.

After executing one of the above three cases, Line 17 deallocates the ACK
packet *pkt by executing free(pkt). If the received ACK is valid (i.e.,
valid_ack_=1), Line 19 will create and transmit TCP packets using function
send_much(0,0,maxburst_). Here a received ACK packet is said to be valid
if it is a new ACK packet (i.e., tcph->seqno() > last_ack_) or a duplicated
ACK (i.e., tcph->seqno() = last_ack_). If an ACK packet is invalid, a
TCP sender will only destroy the ACK packet, but will not create and forward new
packets.

10.5.2 Function recv newack helper(pkt)

Function recv_newack_helper(pkt) is a helper function invoked when a
new ACK packet is received. As shown in Program 10.16, the function recv_
newack_helper(pkt) first invokes function newack(pkt) in Line 2 to
update relevant variables and to process the retransmission timer. When Explicit
Congestion Notification (ECN) is not enabled (i.e., by default ECT (ECN Capable

252 10 Transport Control Protocols Part 2: Transmission Control Protocol

Program 10.16 Function recv newack helper of class TcpAgent
//˜/ns/tcp/tcp.cc

1 void TcpAgent::recv_newack_helper(Packet *pkt) {
2 newack(pkt);
3 if (!ect_) {
4 if (!control_increase_ ||

(control_increase_ && (network_limited() == 1)))
5 opencwnd();
6 }
7 if ((highest_ack_ >= curseq_-1) && !closed_) {
8 closed_ = 1;
9 finish();
10 }
11 }

Program 10.17 Function network limited of class TcpAgent
//˜/ns/tcp/tcp.cc

1 int TcpAgent::network_limited() {
2 int win = window () ;
3 if (t_seqno_ > (prev_highest_ack_ + win))
4 return 1;
5 else
6 return 0;
7 }

Transport System) is set to zero), Line 5 will open the congestion window (by
invoking function opencwnd()) when at least one of the following conditions
is true (Line 4):

• “control_increase_” D 0: Variable “control_increase_,” when set
to 1, suppresses the congestion window opening. When “control_
increase_” is zero, a TCP sender can freely increase the congestion window.

• “control_increase_” ¤ 0 but the network is limited: When “control_
increase_” is 1, the TCP sender is allowed to open the congestion window
only when the previous congestion window is not sufficient to transmit the
current packet (i.e., the network is limited). In NS2, a network is said to
be limited when “t_seqno_” is less than prev_highest_ack_ + win,
where “prev_highest_ack_” is the ACK number before the reception of
the current ACK packet and “win” is the current congestion window (see
Program 10.17). In this case, it is necessary to open the congestion window, in
order to transmit a new packet. Note that if the TCP sender stops transmission
due to any reason other than the reason that the network is limited, function
recv_newack_helper(pkt)will not open the congestion window.

Finally, if the TCP sender no longer has data to transmit, Line 8 in Program 10.16
will close the connection by setting “closed_” to 1, and Line 9 will invoke
function finish().

10.5 ACK Processing Functions 253

Program 10.18 Function newack of class TcpAgent
//˜/ns/tcp/tcp.cc

1 void TcpAgent::newack(Packet* pkt)
2 {
3 double now = Scheduler::instance().clock();
4 hdr_tcp *tcph = hdr_tcp::access(pkt);
5 dupacks_ = 0;
6 last_ack_ = tcph->seqno();
7 prev_highest_ack_ = highest_ack_ ;
8 highest_ack_ = last_ack_;
9 if (t_seqno_ < last_ack_ + 1)
10 t_seqno_ = last_ack_ + 1;
11 hdr_flags *fh = hdr_flags::access(pkt);
12 if (rtt_active_ && tcph->seqno() >= rtt_seq_) {
13 if (!ect_) {
14 t_backoff_ = 1;
15 ecn_backoff_ = 0;
16 }
17 rtt_active_ = 0;
18 rtt_update(now - rtt_ts_);
19 }
20 newtimer(pkt);
21 }

10.5.3 Function newack(pkt)

Program 10.18 shows the details of function newack(pkt). Lines 5–10 up-
date variables dupack_, last_ack_, prev_highest_ack_, highest_
ack_, and t_seqno_. Lines 12–19 update RTT estimation variables and timeout
backoff value. Finally, Line 20 starts a retransmission timer for the transmitting
packet. We will discuss the details of RTT estimation and retransmission timer later
in Sect. 10.6.

10.5.4 Function dupack action()

The main responsibilities of function dupack_action() are to: (1) decrease
congestion window size, (2) set “t_seqno_” to the sequence number of the lost
TCP packet, and (3) restart retransmission timer. Program 10.19 shows the details
of function dupack_action(). Line 5 registers fast retransmission event (i.e.,
FAST_RETX) for tracing. Line 6 records CWND_ACTION_DUPACK as the latest
window adjustment action (i.e., “last_cwnd_action_”). Line 7 closes the
congestion window by invoking function slowdown(CLOSE_SSTHRESH_HALF
| CLOSE_CWND_ONE), feeding how the slow-start threshold and congestion
window are to be configured as an input argument. Finally, Line 8 invokes func-
tion reset_rtx_timer(0,0) to set “t_seqno_” to highest_ack_+1,

254 10 Transport Control Protocols Part 2: Transmission Control Protocol

Program 10.19 Function dupack action of class TcpAgent
//˜/ns/tcp/tcp.cc

1 void TcpAgent::dupack_action()
2 {
3 if (highest_ack_ > recover_) {
4 recover_ = maxseq_;
5 trace_event("FAST_RETX");
6 last_cwnd_action_ = CWND_ACTION_DUPACK;
7 slowdown(CLOSE_SSTHRESH_HALF|CLOSE_CWND_ONE);
8 reset_rtx_timer(0,0);
9 return;
10 }

and restarts the retransmission timer. The details of functions reset_rtx_
timer(...) and slowdown(...) will be discussed in Sects. 10.6 and 10.7,
respectively.

TCP Tahoe reacts to a duplicated ACK packet differently. Lines 4–9 in
Program 10.19 are executed only when all the packets transmitted during this packet
loss have been acknowledged. Here, variable “recover_” records the highest TCP
sequence number (i.e., “maxseq_”) transmitted during this packet loss event. Line
4 sets “recover_” to be “maxseq_” so that it can be used in the next packet
loss event. The condition in Line 3, highest_ack_ > recover_, implies that
the TCP packet with highest sequence number transmitted during this previous loss
must be acknowledged. If this condition is not satisfied, the TCP sender will wait
for timeout and retransmit the lost packet.

10.6 Timer-Related Functions

Another responsibility of a TCP sender is to use a retransmission timer to provide
connection reliability. The main components of this part include estimation of
smoothed RTT (round trip time) and RTT variation, computation of RTO (retrans-
mission timeout), implementation of BEB (binary exponential backoff), utilization
of a retransmission timer, and defining actions to be performed at timeout.

10.6.1 RTT Sample Collection

A TCP sender needs to collect RTT samples to estimate smoothed RTT and RTT
variation, and to compute retransmission timeout (RTO) value. An RTT sample is
measured as the time difference between the point where a packet is transmitted and
the point where the associated ACK packet arrives at the sender.

10.6 Timer-Related Functions 255

Fig. 10.4 The RTT sampling
process

ACTIVE INACTIVE

RTT Sample =
now – rtt_ts_

output(seqno,reason)

dupack_action()

reset_rtx_timer(mild, backoff)

newack(pkt) &
seqno = rtt_seq _

In NS2, each TCP sender has only one set of variables including variables
rtt_active_, rtt_ts_, and rtt_seq_ (see Table 10.1) to track RTT sam-
ples. It can collect only one RTT sample at a time – meaning not all the packets are
used to collect RTT samples.

Figure 10.4 shows the diagram of the RTT collection process. The process starts
in the inactive state where rtt_active_=0. The collection is activated (i.e.,
the process enters the active state) when a TCP sender sends out a new packet
using function output(seqno,reason). From Program 10.13, Line 35 sets
“rtt_active_” to be 1.8 Lines 37 and 38 record the TCP sequence number and
the current time in the variables “rtt_seq_” and rtt_ts_, respectively.

An RTT sample is collected when the associated ACK packet returns (see Lines
12–19 of function newack(pkt) in Program 10.18). Given that the collection
process is active (i.e., rtt_active_=1), Line 12 determines whether the incom-
ing ACK packet belongs to the same collecting sample. It is so if the sequence
number in the received ACK packet is the same as that stored in “rtt_seq_” (set
at the beginning of the collecting process). Note that the logical relation here is
“>=” rather than “==,” since some TCP variants may not generate an ACK packet
for every received TCP packet. At the end of the collection process, Line 17 sets
“rtt_active_” to zero indicating that the collecting process has completed (i.e.,
the process moves back to inactive state), and Line 18 takes an RTT sample by
invoking rtt_update(now-rtt_ts_) (defined in Program 10.22).

The above RTT collection process operates fairly well under normal situations.
However, a packet loss may inflate an RTT sample and affect the accuracy of RTO
collection process. In this case, the measured RTT would be the RTT value plus the
time used to retransmit the lost packets. To keep it simple, NS2 simply cancels
the RTT collection process when a packet loss occurs. In particular, functions
dupack_action() (Line 8 in Program 10.19) and timeout(tno) (Lines 14
and 16 in Program 10.26) invoke function reset_rtx_timer(...) to set
“rtt_active_” to zero, essentially cancelling the RTT collection process.

8If the “rtt active ” is nonzero, TCP sender will skip the collection process.

256 10 Transport Control Protocols Part 2: Transmission Control Protocol

10.6.2 RTT Estimation

After collecting an RTT sample, a TCP sender feeds the sample “tao” to function
rtt_update(tao) to estimate smoothed RTT (t_srtt_), RTT variation
(t_rttvar_), and unbounded RTO (t_rtxcur_)9 based on (9.1)–(9.3), where
˛ D 7=8, ˇ D 3=4, and � D 1. Instead of directly computing these three
variables, NS2 manipulates (9.1)–(9.3) such that each term in these equations is
multiplied with 2n, where n is an integer. As discussed in Sect. 15.4.2, multiplication
and division by 2n can be implemented in CCC by shifting a binary value to
the left and right, respectively, by n bits. This bit shifting technique is used
in function rtt_update(tao) to compute “t_srtt_,” “t_rttvar_,” and
“t_rtxcur_.”

At time k, let t.k/ be the RTT sample, t.k/ be the smoothed RTT value, �t .k/

be the RTT variation, and � refer to t.k C 1/ � t.k/. From (9.1) to (9.3),

t.k C 1/ D 1

8

�
7t.k/ C t.k C 1/

�

D 1

8

�
7t.k/ C t.k/ C t.k C 1/ � t .k/

�

D 1

8

�
8t.k/ C �

�
(10.1)

�t .k C 1/ D 1

4
.3�t .k/ C j�j/

D 1

4
.3�t .k/ � 4�t .k/ C 4�t.k/ C j�j/

D 1

4
.��t .k/ C 4�t.k/ C j�j/ (10.2)

RTOu.k C 1/ D � � Œt.k C 1/ C 4�t .k C 1/� (10.3)

where RTOu.k C 1/ is an unbounded RTO. Equations (10.1)–(10.3) are now
rearranged so that all the multiplicative fact are 2n; n D f0; 2; 3g (i.e., the multiple of
1, 4, and 8). NS2 uses bit shifting operation in place of multiplication to implement
(10.1)–(10.3).

9An actual value of RTO must be bounded by a minimum value and a maximum value.

10.6 Timer-Related Functions 257

Program 10.20 Function rtt init() of class TcpAgent, and default values for
the timer-related variables

//˜/ns/tcp/tcp.cc
1 void TcpAgent::rtt_init()
2 {
3 t_rtt_ = 0;
4 t_srtt_ = int(srtt_init_ / tcp_tick_) << T_SRTT_BITS;
5 t_rttvar_ = int(rttvar_init_ / tcp_tick_) << T_RTTVAR_

BITS;
6 t_rtxcur_ = rtxcur_init_;
7 t_backoff_ = 1;
8 }

//˜/ns/tcl/lib/ns-default.tcl
9 Agent/TCP set T_SRTT_BITS 3 #in bits
10 Agent/TCP set T_RTTVAR_BITS 2 #in bits
11 Agent/TCP set srtt_init_ 0 #in seconds
12 Agent/TCP set rttvar_init_ 12 #in seconds
13 Agent/TCP set rtxcur_init_ 3.0 #in seconds
14 Agent/TCP set T_SRTT_BITS 3 #in bits
15 Agent/TCP set T_RTTVAR_BITS 2 #in bits
16 Agent/TCP set rttvar_exp_ 2 #in bits
17 Agent/TCP set tcp_tick_ 0.1 #in seconds
18 Agent/TCP set maxrto_ 100000 #in seconds
19 Agent/TCP set minrto_ 0.2 #in seconds

10.6.3 Overview of State Variables

State of variables contain the current status of a TCP agent. Related timer state
variables are shown in Tables 10.1 and 10.3. Most of the variables are well explained
by their descriptions. We now discuss a few points related to these variables.

First, CCC timer variables are initialized in function rtt_init() (Lines 1–8
in Program 10.20). OTcl timer instvars, on the other hand, are initialized in file
˜ns/tcl/lib/ns-default.tcl shown in Lines 9–19 of Program 10.20.

Second, “tcp_tick_” is a simulation time unit (i.e., granularity) in seconds.
Hereafter, we will refer to a simulation time unit as a “tick.” The default value of
“tcp_tick_” is 100 ms. In other words, one “tick” is set by default to 0.1 (see
Line 17 in Program 10.20).

Third, “t_backoff_” is used as a binary exponential backoff factor (i.e., � in
(10.3)). A TCP sender doubles its retransmission timer for every timeout event.
In NS2, a TCP sender doubles “t_backoff_” for every timeout event and
computes the unbounded RTO as “t_rtxcur_ * t_backoff_” (see Line 7 in
Program 10.23).

Finally, there are two main points related to variables “t_srtt_” and
“t_rttvar_.” One is that these variables are stored in “ticks,” rather than seconds.
However, their initial values are in seconds. Lines 4 and 5 in Program 10.20 divide

258 10 Transport Control Protocols Part 2: Transmission Control Protocol

Program 10.21 Class RtxTimer and related components
//˜/ns/tcp/tcp.h

1 class RtxTimer : public TimerHandler {
2 public:
3 RtxTimer(TcpAgent *a) : TimerHandler() { a_ = a; }
4 protected:
5 virtual void expire(Event *e);
6 TcpAgent *a_;
7 };

//˜/ns/tcp/tcp.cc
8 void RtxTimer::expire(Event*)
9 {
10 a_->timeout(TCP_TIMER_RTX);
11 }

12 void TcpAgent::set_rtx_timer()
13 {
14 rtx_timer_.resched(rtt_timeout());
15 }

the initial values of smoothed RTT and RTT variation by “tcp_tick_” to obtain
the time in “ticks” (rather than in seconds). Another point is about the division
operation (by 8 and 4, respectively). To avoid round-off error during a division, these
two variables are multiplied by 8 and 4, respectively, at the initialization. Again,
Lines 4 and 5 in Program 10.20 shift “t_srtt_” and “t_rttvar_” to the left
by T_SRTT_BITS=3 bits and T_RTTVAR_BITS = 2 bits, respectively. This bit
shifting is equivalent to multiplying 8 and 4 to “t_srtt_” and “t_rttvar_,”
respectively.

10.6.4 Retransmission Timer

A TCP sender uses a retransmission timer to provide end-to-end reliability. When
transmitting a packet, it starts a retransmission timer. Upon the timer expiration, the
timer informs the TCP sender of a packet timeout. Here the TCP sender assumes
that the packet is lost and retransmits the lost packet. If an ACK packet is received
before the timeout, the timer will be stopped (i.e., cancelled). The details of NS2
timer implementation is given in Sect. 15.1.

NS2 models retransmission timers using a CCC class RtxTimer shown in
Program 10.21. Derived from class TimerHandler, class RtxTimer has one
variable “a_” which is a pointer to a TcpAgent object. It derives three main
functions: sched(delay), resched(delay), and cancel(). It overrides
one function expire(e) of class TimerHandler. Function sched(delay)
starts the timer and sets the timer to expire at “delay” seconds in future. Function

10.6 Timer-Related Functions 259

cancel() stops the pending timer. Function resched(delay) restarts the
timer and again sets the timer to expire at “delay” seconds in future. Finally,
function expire(e) defines a set of actions which are taken at the timer
expiration.

NS2 creates a two-way connection between TcpAgent and RtxTimer objects
using the following mechanism. First, class TcpAgent declares an RtxTimer
object (rtx_timer_ in Line 4 in Program 10.3) as its member variable. Every
TcpAgent object therefore has a direct access to an RtxTimer object. Second,
on the reverse direction, class RtxTimer declares a pointer “a_” to a TcpAgent
object in Line 6 of Program 10.21 as its member variable. Finally, a TcpAgent ob-
ject is specified as a target of the pointer “a_” in the constructor of the RtxTimer
object. From Line 7 in Program 10.3, the constructor of class TcpAgent creates a
“rtx_timer_” by feeding “this” (i.e., a pointer to itself) as an input argument.
From Line 3 in Program 10.21, the constructor of “rtx_timer_” stores “this”
in its variable “a_,” creating a connection from the “rtx_timer_” back to the
TcpAgent object.

Note that in Line 4 in Program 10.3, a TCP sender has only one retransmission
timer. Therefore, the TCP timeout mechanism applies to only one packet at a time.
The retransmission timer is started when a new packet is transmitted (by function
output(...); see Line 48 in Program 10.13). Here, the timer is not allowed to
start if it is in use (i.e., its status is TIMER_PENDING). This is in contrast to the
actual TCP implementation where retransmission timers are set for all transmitted
packets.

10.6.5 Function Overview

Class TcpAgent provides the following seven key timer-related functions:

• rtt_update(tao): Takes an RTT sample “tao” as an input argument, up-
dates smoothed RTT (t_srtt_), RTT variation (t_rttvar_), and unbounded
RTO (t_rtxcur_) according to (10.1), (10.2), and (10.3), respectively.

• rtt_timeout(): Computes the bounded RTO value based on t_rtxcur_,
minrto_, and maxrto_, as well as TCP binary exponential backoff (BEB)
mechanism which make use of the current value of t_backoff_.

• rtt_backoff(): Double the binary exponential backoff multiplicative factor
t_backoff_.

• set_rtx_timer(): Restart the retransmission timer.
• reset_rtx_timer(mild,backoff): Restart the retransmission timer and

cancel the RTT sample collecting process. If “mild” is zero, set t_seqno_ to
highest_ack_+1. Also, invoke function rtt_backoff() if “backoff”
is nonzero.

260 10 Transport Control Protocols Part 2: Transmission Control Protocol

• newtimer(pkt): Take an ACK packet “pkt” as an input argument. Start the
retransmission timer if TCP connection is active.10 Cancel the timer, otherwise.

• timeout(tno): If the connection is active, close the congestion window,
adjust “t_backoff_,” retransmit the lost packet, and restart the retransmission
timer. Otherwise, restart the retransmission timer (but does not perform other
action).11

10.6.6 Function rtt update(tao)

Function rtt_update(tao) updates three main timer variables: smoothed
RTT (t_srtt_), RTT variation (t_rttvar_), and Retransmission TimeOut
(RTO; t_rtxcur_). Shown in Program 10.22, function rtt_update(tao)
takes an RTT sample as an input argument. It is invoked from within function
newack(pkt), when a new ACK packet is received and a new RTT sample is
now - rtt_ts_ (see Line 18 in Program 10.18).

Function rtt_update(tao) aligns the input argument “tao” with “tcp_
tick_” and stores the aligned valued in variable “t_rtt_” as the latest RTT sam-
ple (Lines 4–6). Before proceeding further, let us define the following
variables

t D t srtt

8
D t srtt >>T SRTT BITS (10.4)

�t D t rttvar

4
D t rttvar >>T RTTVAR BITS (10.5)

� D t rtt � t D t rtt � .t srtt >>T SRTT BITS/ (10.6)

where T_SRTT_BITS and T_RTTVAR_BITS, are defined in Program 10.20 as 3
and 2, respectively. Again, variables “t_srtt_” and “t_rttvar_” are stored
in multiples of 8 and 4 (see Lines 4 and 5 in Program 10.20). Therefore, their
relationship to actual smoothed RTT (t) and RTT variation (�t) is given by (10.4)
and (10.5), respectively.

Based on the above variables, Lines 8–15 compute the smoothed RTT value.
In (10.1) and (10.2), we rearrange the variables “t_srtt_” and “t_rttvar_” as
follows:

10A TCP connection is said to be active and idle when it has data to transmit and does not have
data to transmit, respectively.
11As we will see, a retransmission timer does not stop when a TCP connection becomes idle. At
the expiration, a TCP sender does nothing but restarts the timer. By keeping the timer running, the
timer will be available as soon as the TCP sender becomes active.

10.6 Timer-Related Functions 261

Program 10.22 Function rtt update of class TcpAgent
//˜/ns/tcp/tcp.cc

1 void TcpAgent::rtt_update(double tao)
2 {
3 double now = Scheduler::instance().clock();
4 double tickoff = fmod(now-tao+boot_time_, tcp_tick_);
5 if ((t_rtt_ = int((tao + tickoff) / tcp_tick_)<1);
6 t_rtt_ = 1;
7 if (t_srtt_ != 0) {
8 register short delta = t_rtt_ - (t_srtt_ >>

T_SRTT_BITS);
9 if ((t_srtt_ += delta) <= 0)
10 t_srtt_ = 1;
11 if (delta < 0)
12 delta = -delta;
13 delta -= (t_rttvar_ >> T_RTTVAR_BITS);
14 if ((t_rttvar_ += delta) <= 0)
15 t_rttvar_ = 1;
16 } else {
17 t_srtt_ = t_rtt_ << T_SRTT_BITS;
18 t_rttvar_ = t_rtt_ << (T_RTTVAR_BITS-1);
19 }
20 t_rtxcur_ = (((t_rttvar_ << (rttvar_exp_ + (T_SRTT_

BITS - T_RTTVAR_BITS))) + t_srtt_) >> T_SRTT_BITS)

* tcp_tick_;
21 return;
22 }

t srtt .k C 1/ D 8t.k C 1/ D 8t.k/ C �.k/ D t srtt .k/ C �.k/

(10.7)

t rttvar .k C 1/ D 4�t .k C 1/ D j�j � �t .k/ C 4�t .k/

D j�j � Œt rttvar (k)>>T SRTT BITS�

C t rttvar .k/: (10.8)

In Program 10.22, Line 8 computes “delta” (i.e., �) as indicated in (10.6). Line
9 updates “t_srtt_” according to (10.7) and Lines 11 and 12 compute j�j. Lines
13 and 14 update “t_rttvar_” according to (10.8). From Lines 9–10 and 14–15,
both “t_srtt_” and “t_rttvar_” will be set to 1, if their updated values are less
than zero. Also, Lines 8–15 are invoked when “t_srtt_” is nonzero only. When
“t_srtt_” is zero, “t_srtt_” and “t_rttvar_” are simply set to 8 times
(Line 17) and twice of (Line 18) the RTT sample (i.e., “t_rtt_”), respectively.

NS2 computes (using (10.3)) and stores the unbounded value of RTO in variable
“t_rtxcur_” (Line 20). It is computed as t C 4�t shown in (9.3). The upper-
bound and the lower-bound in (9.3) will be implemented when an unbounded RTO

262 10 Transport Control Protocols Part 2: Transmission Control Protocol

is assigned to the retransmission timer (e.g., in function rtt_timeout()). The
computation of “t_rtxcur_” in Line 20 consists of four steps:

(i) Scale “t_rttvar_”: Variables “t_srtt_” and “t_rttvar_” are stored
as multiples of 2T SRTT BITS D 8 and 2T RTTVAR BITS D 4, respectively. Line 20
converts the scale of “t_rtt_var_” into the same scale of “t_srtt_” as
follows:

t rttvar ! t rttvar � 8

4

D t rttvar >>T RTTVAR BITS<<T SRTT BITS

D t rttvar <<.T SRTT BITS� T RTTVAR BITS/

(ii) Multiply 2rttvar exp D 22 D 4 to the value obtained from Step (i). Denote
the result from Step (i) as “t_rtt_var_”.1/. See the default value of
rttvar_exp_ in Line 16 of program 10.20.

t rttvar .1/ ! 4 � t rttvar .1/

D t rttvar .1/<<rttvar exp

(iii) Denote the value computed in Step (ii) be t_rtt_var_.2/. Add
t_srtt_ to t_rtt_var_.2/.

t rttvar .2/ ! t rttvar .2/ C t srtt

(iv) Convert the computed value to seconds: Let t_rtt_var_.3/ be the value
computed in Step (iii). This value is stored in ticks and is in the scale of
t_srtt_ (i.e., multiple of 8). To change the unit of t_rtt_var_.3/ to
seconds,

t rttvar .3/ ! t rttvar .3/>>T SRTT BITS*tcp tick

which is equivalent to Line 20 in Program 10.22.

10.6.7 Function rtt timeout()

Shown in Program 10.23, function rtt_timeout() computes the bounded RTO,
based on unbounded RTO (t_rtxcur_), RTO lower bound (minrto_), RTO
upper bound (maxrto_), and TCP binary exponential backoff (BEB) mechanism.
NS2 implements the BEB mechanism using a multiplicative factor “t_backoff_.”
The timeout value, which is used by the retransmission timer, is a product of
“t_rtxcur_” and “t_backoff_” (see Line 7). The lower bound and the upper-
bound are implemented in Lines 4–5 and Lines 8–9, respectively. Note that while

10.6 Timer-Related Functions 263

Program 10.23 Functionsrtt timeout and rtt backoff of class TcpAgent
//˜/ns/tcp/tcp.cc

1 double TcpAgent::rtt_timeout()
2 {
3 double timeout;
4 if (t_rtxcur_ < minrto_)
5 timeout = minrto_ * t_backoff_;
6 else
7 timeout = t_rtxcur_ * t_backoff_;
8 if (timeout > maxrto_)
9 timeout = maxrto_;
10 if (timeout < 2.0 * tcp_tick_)
11 timeout = 2.0 * tcp_tick_;
12 return (timeout);
13 }

14 void TcpAgent::rtt_backoff()
15 {
16 if (t_backoff_ < 64)
17 t_backoff_ <<= 1;
18 if (t_backoff_ > 8) {
19 t_rttvar_ += (t_srtt_ >> T_SRTT_BITS);
20 t_srtt_ = 0;
21 }
22 }

the lower-bound applies to t_rtxcur_ before applying the BEB mechanism, the
upper bound does so after the BEB. Hence, Lines 10–11 place another lower-bound
constraint (i.e., 2.0*tcp_tick_) for the value after the BEB.

10.6.8 Function rtt backoff()

Function rtt_backoff() applies TCP binary exponential backoff (BEB) mech-
anism to a multiplicative factor “t_backoff_.” As discussed in Sect. 9.1.2,
“t_backoff_” is doubled for every timeout and is reset to its initial value when a
new ACK packet is received. As we will see, function rtt_backoff() is invoked
by functionreset_rtx_timer(mild,backoff) to double “t_backoff_.”

Program 10.23 shows the details of function rtt_backoff(). If the current
“t_backoff_” is less than 64 (Line 16), it will be doubled (i.e., shifted to the left
by one bit in Line 17). Also, a large value of “t_backoff_” (e.g., > 8 in Line 18)
implies a long interval between two RTT samples. In this case, smoothed RTT and
RTT variation may not well represent the actual network RTT. In this case, RTT
should be a function of the most recent RTT sample only. Therefore, Line 20 sets
“t_srtt_” to zero. After this point, function rtt_update(tao) will invoke
Lines 17 and 18 (rather than Lines 8–15) in Program 10.22 to estimate network RTT.

264 10 Transport Control Protocols Part 2: Transmission Control Protocol

Program 10.24 Function reset rtx timer of class TcpAgent
//˜/ns/tcp/tcp.cc

1 void TcpAgent::reset_rtx_timer(int mild, int backoff)
2 {
3 if (backoff)
4 rtt_backoff();
5 set_rtx_timer();
6 if (!mild)
7 t_seqno_ = highest_ack_ + 1;
8 rtt_active_ = 0;
9 }

10.6.9 Function set rtx timer() and Function
reset rtx timer(mild,backoff)

Programs 10.21 and 10.24 show the details of functions set_rtx_timer()
and reset_rtx_timer(mild,backoff), respectively. From Line 14 in
Program 10.21, function set_rtx_timer() simply sets the timer to expire
at t seconds in future, where t is the timeout value returned from function
rtt_timeout() (see also Program 10.23).

From Program 10.24, function reset_rtx_timer(mild,backoff) has
four main tasks:

1. Restart the retransmission timer (Line 5)
2. Update the backoff multiplicative factor “t_backoff_,” if the input argument

“backoff” is nonzero (Lines 3 and 4)
3. Update the next transmitting sequence number. Store highest_ack_+1 in

“t_seqno_,” if the input argument “mild” is zero (Lines 6 and 7)
4. Cancel the pending RTT sample collection process by setting “rtt_active_”

to zero (Line 8).

10.6.10 Function newtimer(pkt)

Function newtimer(pkt) is invoked from within function newack(pkt)
when a new ACK packet is received and the TCP sender is about to send out
another packet. As shown in Program 10.25, it takes a pointer pkt to an ACK
packet as an input argument. If the TCP sender still has data to transmit (i.e.,
Line 4 returns true), Line 5 will restart the retransmission timer by invok-
ing set_rtx_timer(). Otherwise, Line 7 will cancel the timer by invoking
cancel_rtx_timer().

10.6 Timer-Related Functions 265

Program 10.25 Function newtimer of class TcpAgent
//˜/ns/tcp/tcp.cc

1 void TcpAgent::newtimer(Packet* pkt)
2 {
3 hdr_tcp *tcph = hdr_tcp::access(pkt);
4 if (t_seqno_ > tcph->seqno() || tcph->seqno() < maxseq_)
5 set_rtx_timer();
6 else
7 cancel_rtx_timer();
8 }

10.6.11 Function timeout(tno)

Function timeout(tno) is invoked when a retransmission timer expires. It
adjusts congestion window as well as slow-start threshold, and retransmits the lost
packet. Again, function expire(e) is invoked when the timer expires. From Line
10 in Program 10.21, function expire(e) of class RtxTimer simply invokes
function timeout(TCP_TIMER_RTX) of the associated TcpAgent object. As
shown in Lines 1–19 of Program 10.26, function timeout(tno) takes a timer
option (tno) as an input argument, where the possible values of “tno” are defined
in Lines 20–25 of Program 10.26. In this section, we are interested in TCP Tahoe.
Therefore, we will discuss the case where only timeout(TCP_TIMER_RTX) is
invoked.

The basic operation of function timeout(tno) is to close the conges-
tion window (Line 10), restart the retransmission timer (Lines 14 and 16), and
retransmit the lost packet (Line 18). We will discuss the details of function
slowdown(...) which closes the congestion window in Sect. 10.7. The re-
transmission timer is restarted using the function reset_rtx_timer(mild,
backoff) (see Program 10.24). For zero value of “mild,” this function sets
“t_seqno_” to “highest_ack_+1”. The non zero and zero values of the sec-
ond input argument “backoff” inform function reset_rtx_timer(mild,
backoff) to and not to (respectively) update the binary exponential backoff
multiplicative factor (t_backoff_). Again, the TCP sender assumes that all
packets with sequence number lower than “highest_ack_” are successfully
transmitted. At a timeout event, it assumes that the first lost packet (i.e., the packet
to be retransmitted) is the packet with sequence number highest_ack_+1.
After preparing “t_seqno_” (i.e., set to highest_ack_+1) for retransmission,
Line 18 executes send_much(0, TCP_REASON_TIMEOUT, maxburst_) to
transmit the lost packet.

After a TCP sender transmits all the packets provided by an attached ap-
plication, its variable “t_seqno_” is equal to variable “curseq_,” and vari-
able “maxseq_” stops increasing. After the last packet (with sequence number
“maxseq_”) is acknowledged, variable “highest_ack_” is equal to
“maxseq_.” At this point, the TCP sender enters an idle state. Its retransmission

266 10 Transport Control Protocols Part 2: Transmission Control Protocol

Program 10.26 Function timeout of class TcpAgent and the possible values of
its input argument “tno”

//˜/ns/tcp/tcp.cc
1 void TcpAgent::timeout(int tno)
2 {

...
3 if (cwnd_ < 1) cwnd_ = 1;
4 if (highest_ack_ == maxseq_ && !slow_start_restart_) {
5 } else {
6 recover_ = maxseq_;
7 if (highest_ack_ < maxseq_) {
8 ++nrexmit_;
9 last_cwnd_action_ = CWND_ACTION_TIMEOUT;
10 slowdown(CLOSE_SSTHRESH_HALF|CLOSE_CWND_RESTART);
11 }
12 }
13 if (highest_ack_ == maxseq_)
14 reset_rtx_timer(0,0);
15 else
16 reset_rtx_timer(0,1);
17 last_cwnd_action_ = CWND_ACTION_TIMEOUT;
18 send_much(0, TCP_REASON_TIMEOUT, maxburst_);
19 }

//˜/ns/tcp/tcp.h
20 #define TCP_TIMER_RTX 0
21 #define TCP_TIMER_DELSND 1
22 #define TCP_TIMER_BURSTSND 2
23 #define TCP_TIMER_DELACK 3
24 #define TCP_TIMER_Q 4
25 #define TCP_TIMER_RESET 5

timer, however, does not stop at this moment. It keeps expiring for every period
of RTO. From Line 14 of Program 10.26, function timeout(tno) will invoke
reset_rtx_timer(0,0), which stores the value of highest_ack_+1 in
variable “t_seqno_” but does not change the multiplicative factor
“t_backoff_.” Also, function send_much(0, TCP_REASON_TIMEOUT,
maxburst_) will not send out any packet since “t_seqno_” is not less than
“curseq_” (see Program 10.11).

When the application sends more user demand (i.e., data payload) by invoking
sendmsg(nbytes), variable “curseq_” is incremented and the TCP connec-
tion becomes active. In this case, function send_much(0,0,maxburst_)will
send out packets, starting with the packet with sequence number t_seqno_=
max_seq_+1 = highest_ack_ + 1.

There are two important details in function timeout(tno). One is that regard-
less of whether connection is busy or idle, Line 17 sets the variable “last_cwnd_
action_” which records the latest action imposed on the congestion window to
be CWND_ACTION_TIMEOUT. Another is related to variable “recover_.” Recall

10.7 Window Adjustment Functions 267

that “recover_” contains the highest sequence number among all the transmitted
TCP packets at the latest loss event (i.e., either timeout or Fast Retransmit). Line 6
hence records the highest TCP sequence number transmitted so far in the variable
“recover_.”

10.7 Window Adjustment Functions

From Sect. 9.1.2, a TCP sender dynamically adjusts congestion window to fully
use the network resource. When the network is underutilized, a TCP sender
increases transport-level transmission rate by opening the congestion window.
In the slow-start phase, where the congestion window (cwnd_) is less than
the slow-start threshold (ssthresh_), a TCP sender increases the congestion
window by one for every received ACK packet. If “cwnd_” is not less than
“ssthresh_,” on the other hand, a TCP sender will be in the congestion
avoidance phase, and the congestion window is increased by 1/cwnd_ for every
received ACK packet.

When the network is congested, a TCP sender closes the congestion window to
help relieve network congestion. As discussed in Sect. 9.1.2, TCP may decrease the
window by half or may reset the congestion window size to one, depending on the
situation.

Class TcpAgent provides two main functions, which can be used to adjust the
congestion window:

• opencwnd(): Increases the size of the congestion window. The increasing
method depends on “cwnd_” and “ssthresh_.”

• slowdown(how): Decreases the size of the congestion window by the method
specified in “how.”

The possible values of “how” are defined in Program 10.27. All possible values
of “how” contain 32 bits, and conform to the following format: 1 of “one” bit
and 31 of “zero” bits. The difference among the values defined in Program 10.27
lies in the position of the “one” bit. This format acts as a simple identification
of the input method “how” through an “AND” operator. For example, suppose
the input argument “how” is set to CLOSE_CWND_ONE (D2). Let “x” be a
variable which can be any value in Program 10.27. Then, how & x would be
nonzero if and only if x=CLOSE_CWND_ONE. This assignment is also able to
contain several “slowdown” methods in one variable using an “OR” opera-
tor. For example, let “how” be CLOSE_CWND_ONE|CLOSE_SSTHRESH_HALF.
Then, how & x would be nonzero if and only if x=CLOSE_CWND_ONE or
x=CLOSE_SSTHRESH_ HALF.

268 10 Transport Control Protocols Part 2: Transmission Control Protocol

Program 10.27 Possible values of “how” – the input argument of function
“slowdown”

//˜/ns/tcp/tcp.h
1 #define CLOSE_SSTHRESH_HALF 0x00000001
2 #define CLOSE_CWND_HALF 0x00000002
3 #define CLOSE_CWND_RESTART 0x00000004
4 #define CLOSE_CWND_INIT 0x00000008
5 #define CLOSE_CWND_ONE 0x00000010
6 #define CLOSE_SSTHRESH_HALVE 0x00000020
7 #define CLOSE_CWND_HALVE 0x00000040
8 #define THREE_QUARTER_SSTHRESH 0x00000080
9 #define CLOSE_CWND_HALF_WAY 0x00000100
10 #define CWND_HALF_WITH_MIN 0x00000200
11 #define TCP_IDLE 0x00000400
12 #define NO_OUTSTANDING_DATA 0x00000800

Program 10.28 Function opencwnd of class TcpAgent
//˜/ns/tcp/tcp.cc

1 void TcpAgent::opencwnd()
2 {
3 if (cwnd_ < ssthresh_) {
4 cwnd_ += 1;
5 } else {
6 double increment = increase_num_ / cwnd_;
7 cwnd_ += increment;
8 }
9 if (maxcwnd_ && (int(cwnd_) > maxcwnd_))
10 cwnd_ = maxcwnd_;
11 }

10.7.1 Function opencwnd()

Function opencwnd() is invoked when a new ACK packet is received (see
function recv_newack_helper() in Line 5 of Program 10.16). It opens
the congestion window and allows the TCP sender to transmit more packets
without waiting for acknowledgement. Program 10.28 shows the details of function
opencwnd(). From Line 3, if “cwnd_” is less than “ssthresh_,” the TCP
sender will be in the slow-start phase and “cwnd_” will be increased by 1.
Otherwise, the TCP sender must be in a congestion avoidance phase, and “cwnd_”
will be increased by 1/cwnd_ (Lines 6 and 7), where “increase_num_” is
usually set to 1. In both cases, Lines 9 and 10 bound “cwnd_” within “maxcwnd_,”
the predefined maximum congestion window size.

10.7 Window Adjustment Functions 269

Program 10.29 Function “slowdown” of class TcpAgent
//˜/ns/tcp/tcp.cc

1 void TcpAgent::slowdown(int how)
2 {
3 double win, halfwin, decreasewin;
4 int slowstart = 0;
5 if (cwnd_ < ssthresh_)
6 slowstart = 1;
7 halfwin = windowd() / 2; win = windowd();
8 decreasewin = decrease_num_ * windowd();

9 if (how & CLOSE_SSTHRESH_HALF)
10 if (first_decrease_ == 1||slowstart ||

last_cwnd_action_ == CWND_ACTION_TIMEOUT)
11 ssthresh_ = (int) halfwin;
12 else
13 ssthresh_ = (int) decreasewin;
14 else if (how & THREE_QUARTER_SSTHRESH)
15 if (ssthresh_ < 3*cwnd_/4) ssthresh_ = (int)

(3*cwnd_/4);

16 if (how & CLOSE_CWND_HALF)
17 if (first_decrease_==1||slowstart||decrease_num_

==0.5){
18 cwnd_ = halfwin;
19 } else
20 cwnd_ = decreasewin;
21 else if (how & CWND_HALF_WITH_MIN) {
22 cwnd_ = decreasewin;
23 if (cwnd_ < 1) cwnd_ = 1;
24 } else if (how & CLOSE_CWND_RESTART) cwnd_=int(wnd_

restart_);
25 else if (how & CLOSE_CWND_INIT) cwnd_ = int(wnd_init_);
26 else if (how & CLOSE_CWND_ONE) cwnd_ = 1;

27 if (ssthresh_ < 2) ssthresh_ = 2;
28 if (how & (CLOSE_CWND_HALF|CLOSE_CWND_RESTART|

CLOSE_CWND_INIT|CLOSE_CWND_ONE))
29 cong_action_ = TRUE;
30 if (first_decrease_ == 1) first_decrease_ = 0;
31 }

10.7.2 Function slowdown(how)

Function slowdown(how) closes the congestion window based on the method
specified in the input argument “how.” It is invoked from within function dupack_
action() and timeout(tno) to decrease transport layer transmission rate.
Function dupack_action() invokes function slowdown(how) feeding how
= CLOSE_SSTHRESH_HALF | CLOSE_CWND_ONE (Line 7 in Program 10.19) as
an input argument. From Program 10.29, this invocation halves the current slow-
start threshold (Lines 9–13) and resets the congestion window to 1 (Line 26).

270 10 Transport Control Protocols Part 2: Transmission Control Protocol

Function timeout(tno), on the other hand, invokes function slowdown(how)
with an input argument “how” = CLOSE_SSTHRESH_HALF | CLOSE_CWND_
RESTART as an input argument (Line 10 in Program 10.26). From Program 10.29,
this invocation halves the current slow-start threshold (Lines 9–13) and resets the
congestion window to a predifined window-restart value (Line 24). In both cases,
NS2 uses an “OR” operator to combine how to adjust the slow-start threshold and
how to adjust the congestion window, and feed it as an input argument to function
slowdown(how).

The details of function slowdown(how) are shown in Program 10.29. In
this function, Lines 4–6 first set a variable “slowstart” to one and zero
when TCP is in the slow-start phase (i.e., cwnd_< ssthresh_) and in the
congestion avoidance phase (i.e., cwnd_>= ssthresh_), respectively. Line
7 stores half of the window size in a variable “halfwin” and the window
size in a variable “win.” Variable “decrease_num_” in Line 8 is set to
0.5 by default. Therefore, the local variable “decreasewin” is half of the
current congestion window. The variable “decrease_num_” provides an op-
tion for window decrement, where different TCP variants may set the value of
decrease_num_ differently (e.g., 0.3, 0.7). Lines 9–26 show different window
closing method, which will be invoked according to the input argument “how.”
Line 27 ensures that the minimum slow-start threshold is 2. Line 29 sets the variable
“cong_action_” to be true if the window adjustment method, “how,” is either
of CLOSE_CWND_HALF, CLOSE_CWND_RESTART, CLOSE_CWND_INIT, or
CLOSE_CWND_ONE. Again, the variable “cong_action_” is used in function
output(seqno,reason) to set the congestion flag of the transmitted packet.
Finally, Line 32 sets “first_decrease_” to zero, indicating TCP has decreased
the congestion window at least once.

Lines 9–15 adjust the slow-start threshold (ssthresh_) based on the value
of “how”:

• CLOSE_SSTHRESH_HALF (Lines 11 and 13): Sets the slow-start threshold
“ssthresh_” to the half (halfwin or decreasewin) of the current congestion
window size “cwnd_.”

• THREE_QUARTER_SSTHRESH (Line 15): Sets the slow-start threshold
“ssthresh_” to at least 3/4 of its current value.

Similarly, Lines 16–29 adjust the congestion window (cwnd_) based on the
value of “how”:

• CLOSE_CWND_HALF (Lines 17–20): Decreases the current congestion window
size (i.e., “cwnd_”) by half (“halfwin” “decreasewin”).

• CWND_HALF_WITH_MIN (Lines 22 and 23): Sets the current congestion
window size to “decreasewin” but not less than 1.

• CLOSE_CWND_RESTART (Line 24): Sets the current congestion window size to
the predifined window-restart value wnd_restart_.

• CLOSE_CWND_INIT (Line 25): Sets the current congestion window size to
“wnd_init_” (i.e., initial value of congestion window size).

• CLOSE_CWND_ONE (Line 26): Sets the current congestion window size to 1.

10.9 Exercises 271

10.8 Chapter Summary

TCP is a reliable connection-oriented transport layer protocol. It provides a con-
nection with end-to-end error control and congestion control. NS2 implements TCP
senders and TCP receivers using CCC classes TcpAgent and TcpSink, which
are bound to OTcl classes Agent/TCP and Agent/TCPSink, respectively.
A TCP sender has four main responsibilities. First, based on user demand, it
creates and forwards packets to a TCP receiver. Second, it provides an end-to-end
connection with reliability by means of packet retransmission. Third, it implements
timer-related components to estimate round trip time (RTT) and retransmission
timeout (RTO), used to determine whether a packet is lost. Finally, it dynamically
adjusts transport-level transmission rate to fully use the network resource without
causing network congestion. A TCP receiver is responsible for creating (cumulative)
ACK packets and forwards them back to the TCP sender.

10.9 Exercises

1. Which NS2 class is responsible for processing and creating TCP acknowledg-
ment packets?

a. What are the names and types of variables which store information about
received packets?

b. Upon receiving a TCP packet, what is the number this class puts in the
acknowledgment packet? Explain the process. Draw a diagram if necessary.

c. At a certain moment, what is the maximum number of TCP packets that this
class needs to retain. How does NS2 engineer a data structure to keep this
information about these packets?

2. How does an application tell TCP to start sending packets? When does TCP stop
sending packets?

3. What are the functions of class TcpAgent related to packet transmission? What
are their differences?

4. From within which function does class TcpAgent create a packet?
5. Which method does TCP use to transmit packets – immediate or delayed packet

transmission? From within which function does it transmit packets? Explain the
transmission process.

6. TCP usually transmits several packets without acknowledgment. Each packet can
be used to collect round-trip time samples. What is the maximum number of
round-trip time samples that a TCP agent can collect at a certain time? What are
the variables that the TCP agent uses to collect these samples?

272 10 Transport Control Protocols Part 2: Transmission Control Protocol

7. What is the purpose of the variable “tcp_tick” of class TcpAgent?
8. Explain how NS2 computes the smoothed round-trip time, round-trip time

variation, and instantaneous retransmission timeout. Discuss the similarities/
differences with that recommended by [35].

Chapter 11
Application: User Demand Indicator

Operating on top of a transport layer agent, an application models user demand for
data transmission. A user is assumed to create bursts of data payload or application
packets. These payload bursts are transformed into transport layer packets which are
then forwarded to a transport layer receiving agent. Applications can be classified
into traffic generator and simulated application. A traffic generator creates user
demand based on a predefined schedule. A simulated application, on the other hand,
creates the demand as if the application is running.

In the following, we first discuss the relationship between an application and a
transport layer agent in Sect. 11.1. Class Application is introduced in Sect. 11.2.
Sections 11.3 and 11.4 discuss the detailed implementation of traffic generators
and simulated applications, respectively. Finally, the chapter summary is given in
Sect. 11.5.

11.1 Relationship Between an Application and a Transport
Layer Agent

From time to time, an application needs to exchange user demand information with
a transport layer agent. An application declares a pointer “agent_” to an attached
agent. Similarly, an agent defines a pointer “app_” to an attached application. The
user demand information is exchanged between an application and an agent through
these two pointers. Section 9.2.2 gives a four-step agent configuration method,
which binds an application and a transport layer agent together. The details of these
four steps are given below:

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 11, © Springer Science+Business Media, LLC 2012

273

274 11 Application: User Demand Indicator

Step 1: Create a Sending Agent, a Receiving Agent, and an Application

An agent and an application can be created using instproc newf..g as follows:

set agent [new Agent/<agent_type>]
set app [new Application/<app_type>]

where <agent_type> and <app_type> denote the type of an agent (e.g., TCP
or UDP) and an application (e.g., Traffic/CBR or FTP), respectively.

Step 2: Connect an Agent to an Application

A two way connection between an application and an agent can be created using an
OTcl command of class Application whose syntax is shown below:

$app attach-agent $agent

where $app and $agent are Application and Agent objects. The details
of instproc attach-appfs_typeg are shown in Program 11.1. Line 7 stores
an input Agent object in the variable “agent_.” Line 12 invokes function
attachApp(this) of class Agent, while Lines 19–22 create a connection
from the Agent object to the Application object. From Line 21, function
attachApp(app) stores an input Application object “app” in the variable
“app_” of the Agent object. Since Line 12 feeds the pointer “this” to function
attachApp(...) of the Application object, it simply sets the pointer
agent_->app_ to point to the Application object.

Step 3: Attaching an Agent to a Low-Level Network

Here, we consider the case where an agent is connected to a node in a low-level
network. As discussed in Sect. 6.5.3, an agent can be attached to a node using the
instproc attach-agentfnode agentg of class Simulator, where “node”
and “agent” are the Node, and Agent objects, respectively. This instproc creates
a two-way connection between a Node object “node” and an Agent object
“agent.” It sets variable agent::target_ to point to “node” and installs
“agent” in the demultiplexer (i.e., instvar dmux_) of “node.”

The process of attaching an agent to a node involves three OTcl classes:
Simulator, Node, and RtModule. Figure 11.1 shows the main operation when
“$ns attach-agent $node $agent” is executed:

1. Instproc attach-agentfnode agentg of class Simulator invokes
$node attach $agent.

11.1 Relationship Between an Application and a Transport Layer Agent 275

Program 11.1 An OTcl command attach-agent of class Application and
function attachApp of class Agent

//˜/ns/apps/app.cc
1 int Application::command(int argc, const char*const* argv)
2 {
3 Tcl& tcl = Tcl::instance();
4 ...
5 if (argc == 3) {
6 if (strcmp(argv[1], "attach-agent") == 0) {
7 agent_ = (Agent*) TclObject::lookup(argv[2]);
8 if (agent_ == 0) {
9 tcl.resultf("no such agent %s", argv[2]);
10 return(TCL_ERROR);
11 }
12 agent_->attachApp(this);
13 return(TCL_OK);
14 }
15 ...
16 }
17 return (Process::command(argc, argv));
18 }

//˜/ns/common/agent.cc
19 void Agent::attachApp(Application *app)
20 {
21 app_ = app;
22 }

Fig. 11.1 Internal
mechanism of instproc
attach-agentfnode
agentg of class
Simulator

Class RtModule

Class Node

Class Simulator

$ns attach-agent $node $agent

Instproc attach-agent {node agent}
$node attach $agent

Instproc add-target{agent port}
foreach m [$self set ptnotif_] {

$m attach $port $agent
}

Instproc attach {agent port}
- $agent target [[$self node] entry]
- [[$self node] dmux] install $port $agent

Instproc attach {agent port}
- set port [$dmux_ alloc-port [[Simulator instance] nullagent]]
- $agent set agent_addr_ [AddrParams addr2id $address_]
- $agent set agent_port_ $port
- $self add-target $agent $port

(i)

(ii)

(iii)

(iv)

276 11 Application: User Demand Indicator

2. Instproc attachfagentg of class Node allocates a port for an input agent
$agent, configures the instvars “agent_addr_” and “agent_port_” of
the input agent $agent, and invokes the instproc add-targetfagent
portg to ask every routing module stored in the instvar ptnotif_ to attach
“agent” to the Node.

3. Instproc add-targetfagent portg of class Node invokes instproc
attachf agent portg of each routing module (of class RtModule) stored
in the instvar ptnotif_.

4. Instproc attachfagent portg of class RtModule creates a connection
between a node and an agent. Here, $agent sets its $target_ to point to
the entry of $node, while $node installs $agent in the slot “port” of
its demultiplexer “dmux_.” This connection is created for both sending and
receiving agents.

Step 4: Associating a Sending Agent with a Receiving Agent

To associate a sending agent with a receiving agent, NS2 uses an instproc connect
of class Simulator, whose syntax is shown below:

$ns connect $s_agent $r_agent

where $ns, $s_agent, and $r_agent are Simulator, sending Agent, and
receiving Agent objects, respectively.

Program 11.2 shows the details of instproc connectfsrc dstg. Lines 3 and
4 invoke instproc simplex-connectfsrc dstg, which set up a connection
from “src” to “dst,”1 and simplex-connectfdst srcg which creates a
connection from “dst” back to “src.”

Instvars “dst_addr_” and “dst_port_” are configured in Lines 9 and 10.
When an agent creates a packet, it stores values in variables “dst_.addr_” and
“dst_.port_” in the packet header. During a packet forwarding process, a low-
level network delivers packets to the agent corresponding to whose address and port
are specified in the packet header.

11.2 Applications

An application is defined in a CCC class Application as shown in
Program 11.3. Class Application has only one key variable “agent_” which
is a pointer to class Agent. Other two variables, “enableRecv_” and

1From Table 9.3, instvars “dst addr ” and “dst port ” are bound to the CCC variables
“addr ” and “port ” of the object “dst ,” respectively, in the CCC domain.

11.2 Applications 277

Program 11.2 Instprocsconnect and simplex-connect of class Simulator
//˜/ns/tcl/lib/ns-lib.tcl

1 Simulator instproc connect {src dst} {
2 ...
3 $self simplex-connect $src $dst
4 $self simplex-connect $dst $src
5 ...
6 }

7 Simulator instproc simplex-connect { src dst } {
8 ...
9 $src set dst_addr_ [$dst set agent_addr_]
10 $src set dst_port_ [$dst set agent_port_]
11 ...
12 }

Program 11.3 Declaration of class Application
//˜/ns/apps/app.h

1 class Application : public Process {
2 public:
3 Application();
4 virtual void send(int nbytes);
5 virtual void recv(int nbytes);
6 virtual void resume();
7 protected:
8 virtual int command(int argc, const char*const* argv);
9 virtual void start();
10 virtual void stop();
11 Agent *agent_;
12 int enableRecv_;
13 int enableResume_;
14 };

“enableResume_,” are flag variables, which indicate whether an Application
object should react to functions recv(nbytes) and resume(), respectively.
These two flag variables are set to zero by default.

11.2.1 Functions of Classes Application and Agent

After their connection is created, an application and an agent may invoke public
functions of each other through the pointers “agent_” and “app_,” respec-
tively. The key public functions of class Application include functions
send(nbytes), recv(nbytes), and resume(), while those of class Agent
are functions send(nbytes), sendmsg(nbytes), close(), listen(),
and set_pkttype(pkttype).

278 11 Application: User Demand Indicator

Program 11.4 Implementation of functions send, recv, and resume of class
Application

//˜/ns/apps/app.cc
1 void Application::send(int nbytes)
2 {
3 agent_->sendmsg(nbytes);
4 }

5 void Application::recv(int nbytes)
6 {
7 if (! enableRecv_)
8 return;
9 Tcl& tcl = Tcl::instance();
10 tcl.evalf("%s recv %d", name_, nbytes);
11 }

12 void Application::resume()
13 {
14 if (! enableResume_)
15 return;
16 Tcl& tcl = Tcl::instance();
17 tcl.evalf("%s resume", name_);
18 }

Apart from these public functions, class Application also provides
protected functionsstart() and stop() to start and stop an Application
object, respectively. Finally, there are five key OTcl commands for class
Application which can be invoked from the OTcl domain: startfg, stopfg,
agentfg, sendfnbytesg, and attach-agentfagentg.

11.2.2 Public Functions of Class Application

Program 11.4 shows the details of the three following public functions of class
Application:

• send(nbytes): Inform the attached transport layer agent that a user needs to
send “nbytes” of data payload. Line 3 sends the demand to the attached agent
by executing “agent_->sendmsg(nbytes).”

• recv(nbytes): Receive “nbytes” bytes from a receiving transport layer
agent. A UDP agent specifies “nbytes” as the number of bytes in a received
packet. In case of UDP, “nbytes” is equal to packet size; on the other hand,
TCP specifies “nbytes” as the number of in-sequence received bytes. Due to
possibility of out-of-order packet delivery, “nbytes” can be greater than the
size of one packet in case of TCP.

11.2 Applications 279

Program 11.5 Declaration of class TrafficGenerator
//˜/ns/tools/trafgen.h

1 class TrafficGenerator : public Application {
2 public:
3 TrafficGenerator();
4 virtual double next_interval(int &) = 0;
5 virtual void init() {}
6 virtual double interval() { return 0; }
7 virtual int on() { return 0; }
8 virtual void timeout();
9 virtual void recv() {}
10 virtual void resume() {}
11 protected:
12 virtual void start();
13 virtual void stop();
14 double nextPkttime_;
15 int size_;
16 int running_;
17 TrafficTimer timer_;
18 };

• resume(): Invoked by a sending agent, this function indicates that the agent
has sent out all data corresponding to the user demand. For a TCP sender, this
function is invoked when it sends out all the packets regardless of whether the
transmitted packets have been acknowledged.

Note that both functions recv(nbytes) and resume() will do nothing
if “enableRecv_” = 0 and “enableResume_” = 0, respectively. Otherwise,
Lines 10 and 17 in Program 11.5 will invoke OTcl commands or instprocs
recvfnbytesg and resumefg in the OTcl domain, respectively. By default,
both “enableRecv_” and “enableResume_” are set to zero, and functions
recv(nbytes) and resume() simply do nothing.

A user may specify actions to be done upon invocation of functions
recv(nbytes) and resume() by

1. Setting “enableRecv_” and/or “enableResume_” to one.
2. Specifying the actions in

a. Functions recv(nbytes) and/or resume(),
b. Instprocs recvfnbytesg and/or resumefg in the OTcl domain, or
c. OTcl commands recvfnbytesg and/or resumefg in the function
command().

It is important to perform both the steps above. Failing to perform the second
step will result in a run-time error, since the OTcl commands or the instprocs
recvfnbytesg and resumefg are undefined in class Application.

280 11 Application: User Demand Indicator

11.2.3 Related Public Functions of Class Agent

Class Application may invoke the following functions of class Agent through
variable “agent_”:

• send(nbytes): Send “nbytes” of application payload (i.e., user demand) to
a receiving agent. If nbytes=-1, the user demand would be infinite.

• sendmsg(nbytes,flags): Similar to function send(nbytes), remove
this space, but also feed “flags” as an input variable.

• close(): Ask an agent to close the connection (applicable only to TCP)
• listen(): Ask an agent to listen to (i.e., wait for) a new connection (applicable

only to Full TCP)
• set_pkttype(pkttype): Set the variable “type_” of the attach agent to

be “pkttype.”

11.2.4 OTcl Commands of Class Application

Defined in the function command, OTcl commands associated with class
Application are as follows:

• startfg: Invoke function start() to start the application.
• stopfg: Invoke function stop() to stop the application.
• agentfg: Return the name of the attached agent.
• sendfnbytesg: Send “nbytes” bytes of user payload to the attached agent

by invoking function send(nbytes).
• attach-agentfagentg: Create a two-way connection between itself and the

input Agent object (agent).

The details of the above OTcl command can be found in file ˜ns/apps/app.cc.

11.3 Traffic Generators

A traffic generator models user behavior which follows a predefined schedule.
In particular, it sends a demand to transmit one burst of user payload to an attached
agent at a time specified in the schedule, regardless of the state of the agent. In NS2,
there are four main traffic generators:

• Constant Bit Rate (CBR): Send a fixed size payload to the attached agent.
By default, the interval between two payloads (i.e., the sending rate) is fixed,
but it can be optionally randomized.

11.3 Traffic Generators 281

• Exponential On/Off: Act the same as CBR during an ON period. Stop generating
traffic during an OFF period. ON and OFF periods are exponentially distributed,
and are alternated when one period terminates.

• Pareto On/Off: Similar to the Exponential On/Off traffic generator. However, the
durations of ON and OFF periods follow a Pareto distribution.

• Traffic Trace: Generate traffic according to a given trace file, which contains a
series of inter-burst transmission intervals and payload burst sizes.

11.3.1 An Overview of Class TrafficGenerator

NS2 implements traffic generators using class TrafficGenerator.
Program 11.5 shows the declaration of the abstract class TrafficGenerator,
where functionnext_interval(size) in Line 4 is pure virtual. Class Traffic
Generator consists of the following variables:

timer_ A TrafficTimer object, which determines when a new
burst of payload is created.

nextPkttime_ Simulation time that the next payload will be passed to the
attached transport layer agent

size_ Application payload size
running_ true if the TrafficGenerator object is running

Class TrafficGenerator derives and overrides the following four key
functions of class Application. It derives functions recv(nbytes) and
resume() (i.e., share the implementation) from class Application, and
overrides functions start() and stop() of class Application. Functions
start() and stop() inform the TrafficGenerator object to start and
stop, respectively, generating user payload. In Program 11.6, function start()
initializes the TrafficGenerator object by invoking function init()2 in
Line 3, and sets “running_” to 1 in Line 4. It computes and stores the time until
the next payload burst is generated in the variable “nextPkttime_” in Line 5.
Finally, it sets the “timer_” to expire at “nextPkttime_” seconds in future
(Line 6). From Lines 8 to 13 in Program 11.6, function stop() does the opposite
of function start(). It cancels the pending timer (if any) in Line 11, and sets
“running_” to 0 in Line 12.

2In Line 5 of Program 11.5, function init() simply does nothing.

282 11 Application: User Demand Indicator

Program 11.6 Functions start, stop, and timeout of class
TrafficGenerator

//˜/ns/tools/trafgen.cc
1 void TrafficGenerator::start()
2 {
3 init();
4 running_ = 1;
5 nextPkttime_ = next_interval(size_);
6 timer_.resched(nextPkttime_);
7 }

8 void TrafficGenerator::stop()
9 {
10 if (running_)
11 timer_.cancel();
12 running_ = 0;
13 }

14 void TrafficGenerator::timeout()
15 {
16 if (! running_)
17 return;
18 send(size_);
19 nextPkttime_ = next_interval(size_);
20 if (nextPkttime_ > 0)
21 timer_.resched(nextPkttime_);
22 else
23 running_ = 0;
24 }

Class TrafficGenerator also defines the following three new functions:

next_interval(size) Takes payload size “size” as an input argu-
ment, and returns the delay time after which
a new payload is generated (Line 4). This
function is pure virtual and must be imple-
mented by the instantiable derived classes of class
TrafficGenerator.

init() Initializes the traffic generator.
timeout() Sends a user payload to the attached application

and restart “timer_.” This function is invoked
when “timer_” expires.

The details of function timeout() are shown in Lines 14–24 of Program 11.6.
Function timeout() does nothing if the TrafficGenerator object is not
running (Lines 16–17). Otherwise, it will send “size_” bytes of user payload to the
attached agent using function send(nbytes) (defined in Program 11.4). Then,

11.3 Traffic Generators 283

Fig. 11.2 Main mechanism of a traffic generator

Line 19 will compute “nextPkttime_.” If “nextPkttime_” > 0, Line 21 will
inform “timer_” to expire after a period of “nextPkttime_.” Otherwise, Line
23 will stop the TrafficGenerator by setting “running_” to zero.

11.3.2 Main Mechanism of a Traffic Generator

Figure 11.2 illustrates the main mechanism of a traffic generator, which relies
heavily on the variable “timer_” whose class is TrafficTimer derived from
class TimerHandler. As discussed in Sect. 15.1, class TimeHandler consists
of three states: TIMER_IDLE, TIMER_PENDING, and TIMER_HANDLING. Each
of these states corresponds to one of two TrafficGenerator states: Idle
(i.e., running_=0) and Active (i.e., running_=1). While state TIMER_IDLE
corresponds to the idle state of a TrafficGenerator object, the other two timer
states are within the active state of a TrafficGenerator object.

Starting in an idle state, a traffic generator moves to active state when function
start() is invoked. Here the “timer_” state is set to TIMER_PENDING.
At the expiration, “timer_” moves to state TIMER_HANDLING and invokes
function timeout() of class TrafficGenerator. After executing func-
tion timeout(), it changes the state to TIMER_PENDING, reschedules itself,
and repeats the above process. When “timer_” state is TIMER_PENDING or
TIMER_HANDLING, the traffic generator can be stopped by invoking function
stop().

284 11 Application: User Demand Indicator

Program 11.7 Declaration of class TrafficTimer, function expire of class
TrafficTimer, and the constructor of class TrafficGenerator

//˜/ns/tools/trafgen.h
1 class TrafficTimer : public TimerHandler {
2 public:
3 TrafficTimer(TrafficGenerator* tg) : tgen_(tg) {}
4 protected:
5 void expire(Event*);
6 TrafficGenerator* tgen_;
7 };

//˜/ns/tools/trafgen.cc
8 void TrafficTimer::expire(Event *)
9 {
10 tgen_->timeout();
11 }

12 TrafficGenerator::TrafficGenerator() :
nextPkttime_(-1), running_(0), timer_(this) {}

Program 11.7 shows the declaration of class TrafficTimer, which derives
from class TimerHandler (see Sect. 15.1). Class TrafficTimer has a key
variable “tgen_,” a pointer to a TrafficGenerator object (Line 6). At the
expiration, NS2 invokes function expire(e) of “timer_” (Lines 8–11), which
in turn invokes function timeout() of the associated TrafficGenerator
object (i.e., *tgen_).

A two-way connection between TrafficGenerator and TrafficTimer
objects is created as follows. Class TrafficGenerator declares “timer_” as
its pointer to a TrafficTimer object (Line 17 in Program 11.5). A Traffic-
Generator object instantiates “timer_” by feeding a pointer to itself (i.e.,
“this”) as an input argument (Line 12 in Program 11.7). The construction of
variable “timer_” in turn assigns the input pointer (i.e., “this”) to its pointer
to a TrafficGenerator object, “tgen_” (Line 3 in Program 11.7), creating a
connection back to the TrafficTimer object.

11.3.3 Built-in Traffic Generators in NS2

11.3.3.1 Constant Bit Rate (CBR) Traffic

A CBR traffic generator creates a fixed size payload burst for every fixed interval.
As shown in Program 11.8, NS2 implements CBR traffic generators using a

11.3 Traffic Generators 285

Program 11.8 Class CBRTrafficClasswhich binds CCC class CBR Traffic
and OTcl class Application/Traffic/CBR together

//˜/ns/tools/cbr_traffic.cc
1 static class CBRTrafficClass : public TclClass {
2 public:
3 CBRTrafficClass() : TclClass("Application/Traffic/CBR") {}
4 TclObject* create(int, const char*const*) {
5 return (new CBR_Traffic());
6 }
7 } class_cbr_traffic;

Table 11.1 Instvars of a CBR traffic generator

Instvar Default value Description

packetSize_ 210 Application payload size in bytes
rate_ 488 � 103 Sending rate in bps
random_ 0 (false) If true, introduce a random time to the

inter-burst transmission interval.
maxpkts_ 167 Maximum number of application payload packets

that CBR can send

CCC class CBR_Traffic which is bound to an OTcl class Application/
Traffic/CBR, whose key instvars with their default values are shown in
Table 11.1.

Note that, by default the inter-burst transmission interval, which is the interval
between the beginning of two successive payload bursts, can be computed by
dividing the payload burst size by the sending rate. By default, the inter-burst
transmission interval is 210 � 8=488:000 � 3:44 ms. The detailed mechanism for
class CBR_Traffic will be discussed in Sect. 11.3.4.

11.3.3.2 Exponential On/Off Traffic

An exponential on/off traffic generator acts as a CBR traffic generator during an ON
interval and does not generate any payload during an OFF interval. ON and OFF
periods are both exponentially distributed. As shown in Program 11.9, NS2 imple-
ments Exponential On/Off traffic generators using a CCC class EXPOO_Traffic
which is bound to an OTcl class Application/Traffic/Exponential,
whose key instvars with their default values are shown in Table 11.2.

11.3.3.3 Pareto On/Off Traffic

A Pareto On/Off traffic generator does the same as an Exponential On/Off generator
but the ON and OFF periods conform to a Pareto distribution. As shown in
Program 11.10, NS2 implements Pareto On/Off traffic generators using a CCC

286 11 Application: User Demand Indicator

Program 11.9 Class EXPTrafficClass which binds CCC class EXPOO
Traffic and OTcl class Application/Traffic/Exponential together

//˜/ns/tools/expoo.cc
1 static class EXPTrafficClass : public TclClass {
2 public:
3 EXPTrafficClass() : TclClass("Application/

Traffic/Exponential") {}
4 TclObject* create(int, const char*const*) {
5 return (new EXPOO_Traffic());
6 }
7 } class_expoo_traffic;

Table 11.2 Instvars of an exponential on/off traffic generator

Instvar Default value Description

packetSize_ 210 Application payload size in bytes
rate_ 64 � 103 Sending rate in bps during an ON period
burst_time_ 0.5 Average ON period in seconds
idle_time_ 0.5 Average OFF period in seconds

Program 11.10 Class POOTrafficClass which binds CCC class POO
Traffic and OTcl class Application/Traffic/Pareto together

//˜/ns/tools/pareto.cc
1 static class POOTrafficClass : public TclClass {
2 public:
3 POOTrafficClass() : TclClass("Application/Traffic/

Pareto") {}
4 TclObject* create(int, const char*const*) {
5 return (new POO_Traffic());
6 }
7 } class_poo_traffic;

class POO_Trafficwhich is bound to an OTcl class Application/Traffic/
Pareto, whose key instvars with their default values are shown in Table 11.3.

11.3.3.4 Traffic Trace

A traffic trace generates payload bursts according to a given trace file. As shown in
Program 11.11, NS2 implements traffic trace using the CCC class TrafficTrace
which is bound to an OTcl class Application/Traffic/Trace. Unlike
other traffic generators described before, we need to specify a traffic trace file
in the OTcl domain using the OTcl command attach-tracefile of class
Application/ Traffic/Trace (see Example 11.1).

11.3 Traffic Generators 287

Table 11.3 Instvars of a Pareto/off traffic generator

Instvar Default value Description

packetSize_ 210 Application payload in bytes
rate_ 64 � 103 Sending rate in bps during an ON period
burst_time_ 0.5 Average ON period in seconds
idle_time_ 0.5 Average OFF period in seconds
shape_ 1.5 A “Shape” parameter of a Pareto distribution

Program 11.11 Class TrafficTraceClasswhich binds CCC class Traffic
Trace and OTcl class Application/Traffic/Trace together

//˜/ns/trace/traffictrace.cc
1 static class TrafficTraceClass : public TclClass {
2 public:
3 TrafficTraceClass() : TclClass("Application/Traffic/

Trace") {}
4 TclObject* create(int, const char*const*) {
5 return(new TrafficTrace());
6 }
7 } class_traffictrace;

Example 11.1. A CBR traffic generator in Example 9.1 can be replaced with a traffic
trace by substituting Lines 10–12 in Program 9.2 with the following lines:

set tfile [new Tracefile]
$tfile filename example-trace
set tt [new Applicaiton/Traffic/Trace]
$tt attach-tracefile $tfile
$tt attach-agent $udp �

A traffic trace file is a pure binary file. A codeword in the binary file consists
of two 32-bit fields. The first field indicates inter-burst transmission interval in mi-
croseconds, while the second is the payload size in bytes (see file ˜ns/tcl/ex/example-
trace as an example traffic trace file).

11.3.4 Class CBR Traffic: An Example Traffic Generator

This section presents a CCC implementation of class CBR_Traffic whose
declaration is shown in Program 11.12. Class CBR_Traffic derives from class
TrafficGenerator and has the following main variables:

rate_ CBR sending rate in bps
interval_ Packet inter-arrival time in seconds

288 11 Application: User Demand Indicator

Program 11.12 Declaration, function start, and function init of class
CBR Traffic

//˜/ns/tools/cbr_traffic.cc
1 class CBR_Traffic : public TrafficGenerator {
2 public:
3 CBR_Traffic();
4 virtual double next_interval(int&);
5 inline double interval() { return (interval_); }
6 protected:
7 virtual void start();
8 void init();
9 double rate_;
10 double interval_;
11 double random_;
12 int seqno_;
13 int maxpkts_;
14 };

15 void CBR_Traffic::start()
16 {
17 init();
18 running_ = 1;
19 timeout();
20 }

21 void CBR_Traffic::init()
22 {
23 interval_ = (double)(size_ << 3)/(double)rate_;
24 if (agent_)
25 if (agent_->get_pkttype() != PT_TCP &&

agent_->get_pkttype() != PT_TFRC)
26 agent_->set_pkttype(PT_CBR);
27 }

random_ If true, the inter-arrival time will be random
seqno_ CBR sequence number

maxpkts_ Upper bound on the sequence number

Based on the main mechanism discussed in Sect. 11.3.2, NS2 activates a traffic
generator by invoking function start(). When activated, a traffic generator
invokes its function timeout(), which generates an application payload, periodi-
cally. An interval between two consecutive timeout() invocations is determined
by the function next_interval(size). The timeout() invocations occur
repeatedly until the traffic generator is deactivated (by an invocation of function
close()).

As shown in Program 11.12, function start() invokes functioninit() (Line
17) to initialize the traffic generator, sets “running_” to 1 (Line 18), and invokes
function timeout() (Line 19). The details of function init() are shown in

11.4 Simulated Applications 289

Program 11.13 Function next interval of class CBR Traffic
//˜/ns/tools/cbr_traffic.cc

1 double CBR_Traffic::next_interval(int& size)
2 {
3 interval_ = (double)(size_ << 3)/(double)rate_;
4 double t = interval_;
5 if (random_)
6 t += interval_ * Random::uniform(-0.5, 0.5);
7 size = size_;
8 if (++seqno_ < maxpkts_)
9 return(t);
10 else
11 return(-1);
12 }

Lines 21–28 of Program 11.12. Line 23 computes the inter-burst transmission
interval as transmission rate (rate_) divided by payload burst size “size_<<3”
(in bits).3 Function init() would also set the packet type of the attached agent
to PT_CBR, unless the packet type has already been set to PT_TCP or PT_TFRC
(Lines 25–26).

From Program 11.6, function timeout(), sends out “size_” bytes of appli-
cation payload (Line 18), recomputes “nextPkttime_” as a value returned from
the next_interval(size_) (Line 19), and schedules the timer “timer_”
to expire at “nextPkttime_” seconds in future (Line 21). Again, the func-
tion next_interval(size_) is pure virtual and must be implemented by
instantiable child classes of class TrafficGenerator. Class CBR_Traffic
implements this function (Program 11.13), by returning the packet inter-arrival time
converted from payload size “size_” and CBR transmission rate “rate_” (Lines
3 and 9). Optionally, Line 6 may add or subtract a random value to the computed
interval if “random_” is set to true. Also, if the application payload is greater
than “maxpkts_,” Line 11 will return �1 rather than the computed interval.

11.4 Simulated Applications

Unlike traffic generators, a simulated application does not have a predefined
schedule for payload generation. Rather, it acts as if an actual application is running.
NS2 provides two built-in simulated applications: FTP and Telnet.

3Since the units of the variables “size ” and “rate ” are “bytes” and “bits per second,”
respectively, Line 9 multiplies “size ” with 8 by shifting “size ” to the left by 3 bits (see
Sect. 15.4.2).

290 11 Application: User Demand Indicator

11.4.1 File Transfer Protocol

File Transfer Protocol (FTP) is a protocol which divides a given file into small
pieces and transfers them to a destination host. Unlike a general FTP in practice,
an NS2 FTP module does not need an input file. It simply informs an attached
sending transport layer agent of file size in bytes. Upon receiving user demand (e.g.,
file size), the agent creates packets which can accommodate the file and forwards
them to a connected receiving transport layer agent through a low-level network
services. Also, an NS2 FTP module is not responsible for specifying a destination
host. Destination host identification is the responsibility of a transport layer agent
instead, the simulator employs the instproc connectfsrc dstg (Sect. 11.1) in
order to associate a source with a destination.

Due to its simplicity, an FTP module is implemented in the OTcl domain only.
Defined in class Application/FTP, which derives class Application, its
main OTcl commands and instprocs include

attach-agentfagentg Register the input agent as an attached agent.
startfg Inform the attached agent of a demand to

transmit a file with infinite size by executing
“send -1.”

stopfg Stop the pending file transfer session.
sendfnbytesg Send a file with size nbytes bytes by in-

voking function sendmsg(nbytes) of the
attached agent.

producefnbytesg Inform the attached agent to transmit until its
sequence number has reached the minimum of
nbytes and maxseq_.

producemore fnbytesg Inform the attached agent to transmit nbytes
more packets.

11.4.2 Telnet

Telnet is an interactive client-server text-based application. A Telnet client logs
on to a server, and sends text messages to the server. The server in turn executes
the received message and returns the result to the client. Clearly, Telnet is not
implemented based on a predefined schedule, since its data traffic is created in
response to user demand. However, NS2 models a Telnet application in the same
way as it does for traffic generators: sending a fixed size packet for every randomized
interval.

NS2 defines a Telnet application in CCC class TelnetApp and OTcl class
Application/Telnet, which derives from class Application. It uses the

11.5 Chapter Summary 291

value stored in variable “size_” of the attached agent as the size of each Telnet
packet, and computes the inter-burst transmission interval as follows:

• Case I: If “interval_” is nonzero, the inter-burst transmission interval is
chosen from an exponential distribution with mean “interval_.”

• Case II: If “interval_” is zero, the inter-burst transmission interval is
chosen from an empirically generated distribution “tcplib” defined in file
˜ns/tcp/tcplib-telnet.cc.

Telnet has only one configurable variable “interval_.” In common with other
Application objects, it can be started and stopped using command startfg
and stopfg, respectively.

11.5 Chapter Summary

Sitting on top of a transport layer agent, an application informs the attached agent of
user demand. Applications can be classified into traffic generators and simulated ap-
plications. A traffic generator creates user demand based on a predefined schedule,
while a simulated application does so as if the application is running.

Built-in traffic generators in NS2 include CBR (constant bit rate), exponential
on/off, Pareto on/off, and Traffic Trace. A CBR traffic generator creates fixed
size payloads for every fixed interval. Exponential on/off and Pareto on/off traffic
generators create fixed size payloads during an ON period and create no payload
during an OFF period. The ON and OFF durations are chosen from an exponential
distribution and a Pareto distribution, respectively. Finally, payload size and inter-
burst transmission interval for a traffic trace traffic generator are obtained from an
input trace file.

NS2 has two built-in simulation application: FTP (File Transfer Protocol) and
Telnet. FTP informs the attached agent of the file size (in bytes) to be transferred.
The attached agent is responsible for creating packets which can accommodate
a file, and choosing the destination of the FTP session. In practice, Telnet is a
client–server application, whose traffic depends on the interaction between client
and server. However, NS2 implements a Telnet as a traffic generator. In particular,
it creates a fixed size payload for every random interval, whose distribution is either
exponential or “tcplib” defined in ˜ns/tcp/tcplib-telnet.cc.

Class Application is the base class for all the above applications.
It provides few key OTcl commands and instprocs to configure Application
objects. An instproc attach-agentfagentg registers the input “agent” as
an attached agent. Instprocs startfg and stopfg inform an application to
start and stop generating data payload. Derived classes of class Application
reuse these functionalities and define their own functionalities for their own
purposes.

292 11 Application: User Demand Indicator

11.6 Exercises

1. Let $n1 and $n2 be two nodes and let $ns be the Simulator.

a. Create an FTP agent to transfer a file with size 10 MBytes from Node $n1 to
Node $n2. Explain step-by-step how data are generated, traverse the network,
arrive Node $n2, and are destroyed.

b. Create a CBR traffic from Node $n1 to Node $n2. Set the packet size to 100
bytes and bit rate to 4 kbps. Explain packet flow mechanism including timing
mechanism (i.e., when and how much the application sends out data).

2. What are the differences of application and transport layers in the TCP/IP
protocol stack and in the NS2 implementation?

3. How does an application send/receive user demand to/from an agent? Specify
OTcl and/or CCC statements to do so.

4. Develop an application which has two stages. At the heavy-traffic stage, the
application continuously provide data to the agent. At the light-traffic stage, it
generates packets in the same way that CBR does. Design an experiment, and
run simulation to test your developed application.

5. Modify class Application by forcing it to print out a message when its
functions recv(nbyte) and resume() are invoked.

Chapter 12
Wireless Mobile Ad Hoc Networks

NS2 classifies communication networks into three main categories. First, wired
networks are characterized by wired communication links. Chapter 7 shows a simple
form of the wired links called SimpleLinks which can be used to connect regular
Node discussed in Chap. 6.

The second category is pure wireless networks, which contain no wired links.
All communications are carried out via “wireless” communication channels only.
One category of wireless networks in which there is no central node or coordinator
such as a base-station (BS) or an access-point (AP) is known as wireless mobile
ad hoc networks. In this type of networks, there is no infrastructure and the
mobile nodes generally communicate on a peer-to-peer basis. This is in contrast
to an infrastructure-based network where mobile nodes communicate via the
controller node (e.g., BS or AP), which is generally connected to a wired network
infrastructure. Due to the absence of any physical wired communication links, all
nodes in a wireless ad hoc network are able to move freely during simulation. NS2
incorporates both wireless communication and node mobility into regular nodes,
and defines a new type of nodes called Mobile Nodes.

Finally, hybrid networks contain both wired and wireless communication links.
In NS2 terminology, this type of networks is called wired-cum-wireless networks.
Unfortunately, NS2 implementation is not as simple as including Regular Nodes
and Mobile Nodes in a Tcl Simulation Script. The issues arise when nodes
need to have both wired and wireless interfaces. NS2 designs a new node type
called Base Station Nodes which act as gateways between wired and wireless
domains.

This chapter focuses on the second type of wireless communication networks –
wireless mobile ad hoc networks.1 In particular, the emphasis is on Mobile Nodes
associated with wireless mobile ad hoc networks. An overview of Mobile Nodes
is given in Sect. 12.1. Sections 12.2–12.5 explain NS2 implementation for network

1The implementation of wired-cum-wired networks is out of the scope of this book. Interested
readers are recommended to refer to [17].

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 12, © Springer Science+Business Media, LLC 2012

293

294 12 Wireless Mobile Ad Hoc Networks

layer, data link layer, MAC layer, and physical layer, respectively. Implementation
of node mobility is discussed in Sect. 12.6. Finally, the chapter summary is given in
Sect. 12.7.

12.1 An Overview of Wireless Networking

In NS2, the central implementation of wireless networking lies in Mobile Nodes.
Complying to the OOP concept, Mobile Nodes inherit all attributes and behaviors
from its predecessor, Regular Node discussed in Chap. 6.

12.1.1 Mobile Node

In Fig. 12.1, Mobile Nodes are represented by a CCC class MobileNodewhich is
bound to an OTcl class Node/MobileNode. The class hierarchy is defined in the
CCC domain only, where the CCC class derives MobileNode from class Node,
but the OTcl class Node/MobileNode is a top-level class.

Program 12.1 shows declaration of the CCC class MobileNode. In addition to
attributes inherited from its parent class, the class MobileNode defines attributes
(e.g., coordinate (X_,Y_,Z_) and speed_) to support node mobility.

12.1.2 Architecture of Mobile Node

Another fundamental characteristic of Mobile Nodes is the ability to communi-
cate without physically wired channel. In NS2, this characteristic is contributed
by several CCC components, put together in an OTcl object called a Node/
MobileNode object.

Figure 12.2 shows the architecture of a Mobile Node, which consists of two main
parts: regular node part and mobile extension part.

Fig. 12.1 Class hierarchy of
mobile nodes

Node

MobileNode

C++ OTcl

Node

de
riv

e

Node/MobileNode

12.1 An Overview of Wireless Networking 295

Program 12.1 A CCC class MobileNode which is bound to an OTcl class
Node/Mobile

//˜ns/common/mobile-node.h
1 class MobileNode : public Node
2 {
3 protected:
4 double X_,Y_,Z_; //The current location
5 double speed_; //In meters per second
6 double dX_,dY_,dZ_; //Units
7 double destX_,destY_;//The destination
8 Event pos_intr_;
9 double position_update_time_; //Last updated

position
10 double position_update_interval_; //Update interval
11 PositionHandler pos_handle_; //For random-motion

only
12 private:
13 int random_motion_; //Are we running random

motion?
14 Topography *T_; //Define an area for

moving
15 LIST_ENTRY(MobileNode) link_; //A global list of mobile

nodes
16 };

//˜ns/common/mobile-node.cc
17 static class MobileNodeClass : public TclClass {
18 public:
19 MobileNodeClass() : TclClass("Node/MobileNode") {}
20 TclObject* create(int, const char*const*) {
21 return (new MobileNode);
22 }
23 } class_mobilenode;

12.1.2.1 Regular Node Part

This part is similar to that of regular nodes. The differences lie in classifier config-
uration and packet forwarding mechanism. The forwarding mechanism depends on
types of Mobile Nodes as follows:

• Source Node: Packets are created by an application. They enter the node entry2

and are passed to the address classifier. In this case, the destination address would
be different from the address of this Node. The address classifier, therefore,
forwards the packet to the routing agent via “default_target_.”

2The node entry does not actually exist. It is an instproc of class Node which returns the first
packet reception object. In Fig. 12.2, the node entry is the address classifier.

296 12 Wireless Mobile Ad Hoc Networks

A
ddress

C
lassifier

Source/
Sink

Link Layer (LL)

P
ort C

lassifier

Routing
Agent

entry_

Node's
IP Address

defaulttarget_

255

Interface Queue (IFq)

Medium Access Control (MAC)

Network Interface (NetIF)
Radio

Propagation
Model

Channel

target_

Address
Resolution
Protocol
(ARP)

arptable_

downtarget_

downtarget_

downtarget_

channel_

uptarget_

uptarget_

propagation_

mac_

uptarget_

uptarget_

Regular node part

Mobile extension part

Fig. 12.2 The architecture of mobile nodes

• Destination Node: Packets enter a mobile node through node entry from the
link layer. They are passed through an address classifier. In this case, the
destination address is the same as the node address. The packets are therefore
passed to the port classifier which then forwards the packets to the attached sink
application.

• Forwarding Node: Packets are passed from the link layer to the node entry
and the address classifier. In this case, the packet is forwarded to the routing
agent, since the address in the packet header does not match with the node’s
address.

12.1.2.2 Mobile Extension Part

This part is an extension from the regular node part. It includes all the components
in the lower part of Fig. 12.2. Each of these components is specified by the options

12.1 An Overview of Wireless Networking 297

Table 12.1 Details of mobile node configuration: Options and corresponding instvars of the
Simulator object, and their descriptions

Option Instvar Description

-adhocRouting routingAgent_ Routing protocol (e.g., AODV).
-llType lltype_ Link layer type (e.g., LL).
-macType macType_ Medium access control type (e.g., Mac/

802_11).
-ifqType ifqType_ Type of the underlying buffer management disci-

pline (e.g., Queue/DropTail/PriQueue)
-ifqLen ifqlen_ Size of the buffer in packets (e.g., five packets)
-antType antType_ Antenna type (e.g., Antenna/OmniAntenna)
-propType propType_ Type of the underlying radio propagation models

(e.g., Propagation/TwoRayGround)
-phyType phyType_ Network interface type (e.g., Phy/Wireles-

sPhy)
-channelType channelType_ Channel type (e.g., Channel/WirelessCha-

nnel)
-topoInstance topoInstance_ An OTcl instance which identify topography

(e.g., new Topology)
-agentTrace agentTrace_ Turning agent trace ON or OFF
-routerTrace routerTrace_ Turning routing trace ON or OFF
-macTrace macTrace_ Turning MAC trace ON or OFF
-movementTrace movementTrace_ Turning movement trace ON or OFF

of instproc node-configfargsg. The values and description for most frequently
used options are shown in Table 12.1. The complete list of options can be found in
the file ˜ns/tcl/lib/ns-lib.tcl.

12.1.3 General Packet Flow in a Wireless Network
Implementation

In Fig. 12.2, objects in a Mobile Node are vertically connected. These objects
refer to upper and lower objects using their CCC pointers “uptarget_” and
“downtarget_” which can be configured using OTcl commands down-
targetf...g and up-targetf...g, respectively (e.g., see example usage in
Lines 22 and 29 of Program 12.6).

Due to the vertical architecture, packets generally move upward and downward.
They move upward when they need to be processed locally. On the other hand, they
move downward when they need to be transmitted over the air. NS2 determines the
direction to which a packet is moving using a field “direction_” of the common
packet header (see Program 8.6). Packets moving upward and downward have this
field marked with “UP” and “DOWN,” respectively.

298 12 Wireless Mobile Ad Hoc Networks

12.1.4 Mobile Node Configuration Process

A process of creating Mobile Nodes consists of two key steps:

• Step 1 – Mobile Node Configuration: Store configuration information in
instvars of the Simulator using the following instproc:

$ns node-config -<option> <value>

where $ns is the Simulator object. The available <option> and their
<value> are given in Table 12.1. Among all options, -adhocRouting is
mandatory. If configured, Step 2 will create Mobile Nodes, rather than Regular
Nodes.

• Step 2 – Mobile Node Construction: Create a mobile node as in Fig. 12.2 using
the OTcl statement

$ns node

Example 12.1. The following is an excerpt from a built-in example (see the file
˜ns/tcl/ex/simple-wireless.tcl).

$ns node-config -adhocRouting AODV \
-llType LL \
-macType Mac/802_11 \
-ifqType Queue/DropTail/PriQueue \
-ifqLen 50 \
-antType Antenna/OmniAntenna \
-propType Propagation/TwoRayGround \
-phyType Phy/WirelessPhy \
-channelType Channel/WirelessChannel \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace OFF \
-movementTrace OFF

This OTcl statement configures all Mobile Nodes as follows. The routing protocol
is AODV [37], the link layer type is LL, and the MAC protocol is IEEE 802.11 [39].
Each Mobile Node has a buffer which can hold upto 50 packets. The service
discipline is based on prioritized queue which gives priority to routing packets. The
type of antanna is omni-directional. The propagation model is two-ray propagation
model [38]. The physical network transmission and the type of the shared channel
are both wireless. Finally, the statement turns agent and router traces on, and turns
MAC and movement traces off. �

12.1 An Overview of Wireless Networking 299

Program 12.2 Instproc node-config and other variable setting instprocs of class
Simulator

//˜ns/tcl/lib/ns-lib.tcl
1 Simulator instproc node-config args {
2 set args [eval $self init-vars $args]
3 $self instvar addressType_ routingAgent_ propType_

macTrace_ \
4 ...
5 if [info exists phyTrace_] {
6 Simulator set PhyTrace_ $phyTrace_
7 }
8 if {[info exists propType_]} {
9 set propInstance_ [new $propType_]
10 Simulator set propInstCreated_ 1
11 }
12 ...
13 }

14 Simulator instproc adhocRouting {val} {
15 $self set routingAgent_ $val
16 }
17 Simulator instproc llType {val} { $self set llType_ $val }
18 Simulator instproc macType {val} { $self set macType_ $val}

Object

12.1.4.1 Step 1: Mobile Node configuration

Discussed earlier in Sect. 6.1.3, the instproc node-configfargsg creates and
configures instvars of the Simulator object. The list of instvars of class
Simulator corresponding to each option is shown in Table 12.1. The values in
these instvars will later be used in Step 2 to create Mobile Nodes.

Program 12.2 shows the details of the instproc node-configfargsg (Lines
1–13), and instprocs used to set node configuration instvars (Lines 14–18). The
instproc node-configfargsg takes as input arguments a list variable “args”
which contains options and values for node configuration (see Example 12.1). The
only main statement of this instproc is to invoke the instproc init-varfargsg of
class Object (Line 2) to initialize the instvars of class Simulator. The rest of
this instproc (Lines 5–11) is just to set up variables and objects as configured by the
instproc init-varf...g.

Program 12.3 shows the details of the instproc init-varfargsg. This instproc
takes node configuration options and values as its input arguments. Line 2 invokes
the instproc init-default-varsfclassesg to initialize default variables of
the input class (i.e., Simulator in this case). Lines 4–14 are the main loop for
this instproc. They iterate for every node option. Lines 5 and 6 store the first (i.e.,
the option) and the second (i.e., the value) entries of the input argument “args”

300 12 Wireless Mobile Ad Hoc Networks

Program 12.3 Variable initialization instprocs
//˜tclcl/tcl-object.tcl

1 Object instproc init-vars {args} {
2 $self init-default-vars [$self info class]
3 set shadow_args ""
4 for {} {$args != ""} {set args [lrange $args 2 end]} {
5 set key [lindex $args 0]
6 set val [lindex $args 1]
7 if {$val != "" && [string match {-[A-z]*} $key]} {
8 set cmd [string range $key 1 end]
9 if ![catch "$self $cmd $val"] {
10 continue
11 }
12 }
13 lappend shadow_args $key $val
14 }
15 return $shadow_args
16 }

17 instproc init-default-vars {classes} {
18 foreach cl $classes {
19 if {$cl == "Object"} continue
20 $self init-default-vars "[$cl info superclass]"
21 foreach var [$cl info vars] {
22 if [catch "$self set $var"] {
23 $self set $var [$cl set $var]
24 }
25 }
26 }
27 }

in local variables “key” and “val”, respectively. Line 7 removes the prefixing
hyphen “-” from the node configuration option string stored in the variable “key.”
Line 8 stores the result in a local variable “cmd.” Then Line 9, invokes the instproc
$cmd supplying $val as an input argument.3 Examples of these instprocs $cmd
are shown in Lines 14–18 of Program 12.2. Each of these instprocs stores a node
configuration value in a corresponding instvar of class Simulator. Again, this
information shall be later used in Step 2.

From within the instproc init-varfargsg, Line 2 invokes the instproc
init-default-varsfclassesg whose details are shown in Lines 17–27.
This instproc initializes default variables for all classes whose name is stored in
the input arguments. Based on the OOP concept, the initialization must occur at
the base class first. Line 20 recursively moves the process toward the top-level

3Note that, the command “catch” returns the execution result of the following Tcl statement. For
example, the execution result is zero for successful execution. The set of possible execution results
is shown in Program 3.8.

12.1 An Overview of Wireless Networking 301

Program 12.4 Instproc Node of class Simulator: The wireless-related excerpt
//˜ns/tcl/lib/ns-lib.tcl

1 Simulator instproc node args {
2 $self instvar Node_ routingAgent_ wiredRouting_

satNodeType_
3 if { [info exists routingAgent_] && ($routingAgent_

!= "") } {
4 set node [eval $self create-wireless-node $args]
5 ...
6 }
7 return $node
8 }
9 ...
10 return $node
11 }

class. Then, the variable initialization actions proceed downward from there. The
variable initialization actions are defined in Lines 21–25. The statement “$self
set $var” (Line 22) specifies $var as an instvar of this object. The statement
repeats for every default instvar of class $cl. The list of instvars is given by the
statement “$cl info vars” (Line 21). Also, the initialization actions repeats
for every class in the input list “classes” (Line 21).

After the above process completes, the instvars in Table 12.1 would contain
proper values. We are now ready to create mobile nodes.

12.1.4.2 Step 2: Mobile Node Construction

Similar to Regular Nodes, Mobile Nodes are created using the instproc node
fargsg of the Simulator object. This instproc reads the configuration stored
in the instvars of the Simulator object, and creates a Mobile Node accord-
ingly. Unless otherwise specified, the following explanation would be based on
Example 12.1.

The Main Process

Program 12.4 shows the details of the instproc “node” of class Simulator.
The aim of this instproc is to create a Mobile Node. Line 3 checks whether the
instvar “routingAgent_” configured during Step 1 exists and is nonempty. If
so, Line 4 creates a Mobile Node by invoking an instproc create-wireless-
nodefargsg. The details of the instproc create-wireless-nodefargsg are
shown in Program 12.5, where the main statements are Lines 3, 6, 18, 19, and 20,
as shown in Fig. 12.3.

302 12 Wireless Mobile Ad Hoc Networks

Program 12.5 Instprocs create-wireless-node and create-node-
instance of class Simulator

//˜ns/tcl/lib/ns-lib.tcl
1 Simulator instproc create-wireless-node args {
2 ...
3 set node [eval $self create-node-instance $args]
4 switch -exact $routingAgent_ {
5 AODV {
6 set ragent [$self create-aodv-agent $node]
7 }
8 DSR {
9 $self at 0.0 ‘‘$node start-dsr"
10 }
11 ...
12 default {
13 eval $node addr $args
14 puts "Wrong node routing agent!"
15 exit
16 }
17 }
18 $node add-interface $chan $propInstance_ $llType_

$macType_ $ifqType_ $ifqlen_ $phyType_ $antType_
$topoInstance_

19 $node attach $ragent [Node set rtagent_port_]
20 $node topography $topoInstance_
21 return $node
22 }

23 Simulator instproc create-node-instance args {
24 set nodeclass Node/MobileNode
25 return [eval new $nodeclass $args]
26 }

Simulator

Class instproc

create-node-instance

create-aodv-agent

input of the
instproc Node

Node/
MobileNode add-interface

attach

topography

A Node object

instvars set
in Step 1

A routing agent

A topography
object

I:

II:

III:

IV:

V:

Line 3

Line 6

Line 18

Line 19

Line 20

Created Node
object (to II)

Created Agent
object (to IV)

NONENode

MobileNode

Fig. 12.3 Key OTcl statements invoked during an execution of the instproc create-
wireless-node of class Simulator as shown in Program 12.5

I. The instproc create-node-instance of class Simulator (Line 3)
creates a Mobile Node instance from an OTcl class “Node/Mobile” (see
Lines 23–26 for the details).

12.1 An Overview of Wireless Networking 303

Table 12.2 Classes, OTcl commands, and variables which connect the mobile node components
together

CCC class OTcl command Name of variable Type of the variable

LL,BiConnector up-target “uptarget_” NsObject*
LL,BiConnector down-target “downtarget_” NsObject*
LL arptable arptable_ ARPTable*
LL mac mac_ Mac*
Mac netif netif_ Phy*
Phy channel channel,downtarget_ Channel*,NsObject*
Phy channel channel,downtarget_ Channel*,NsObject*
Phy “node” node_ Node*
WirelessPhy propagation propagation_ Propagation*
WirelessPhy antenna ant_ Antenna*
Topography channel channel_ WirelessChannel*

II. The instproc create-aodv-agent of class Simulator (Line 6) creates
an AODV routing agent (see Program 12.8).

III. The instproc add-interface of class Node/MobileNode (Line 18)
creates and configures Mobile Node components as shown in Fig. 12.2 (see
Program 12.6).

IV. The instproc attach of class Node (Line 19) attaches the input routing agent
to the underlying Node object (see the details in Program 6.16).

V. The OTcl command topography of CCC class MobileNode (Line 20)
specifies the input as a topography object for the Mobile Node.

Patching Components of Mobile Nodes

The mobile extension part in Fig. 12.2 consists of several components. These
components are patched together by the instproc add-interfacef...g of class
Node/MobileNode.

Program 12.6 shows the details of the instproc add-interfacefargsg of
class Node/MobileNode. Lines 6–10 create physical network interface, MAC,
interface queue, link layer, and antenna objects, as specified by the input parameters.
The created objects are stored in local variables in Lines 13–16. Line 17 creates and
stores an ARP object in a local variable “arptable_.” The rest of this instproc
configures Mobile Node components as shown in Fig. 12.2. These statements use
the following OTcl commands in Table 12.2, to store the input arguments in CCC
variables.

Lines 18–19 and 26–27 create and configure a tracing object “drpT_,” which
traces packet drops according to wireless trace format (see Sect. 14.3.5). Line 25

304 12 Wireless Mobile Ad Hoc Networks

Program 12.6 Instproc add-interfaces of class Node/MobileNode, which
configures Mobile Node components as shown in Fig. 12.2

//˜ns/tcl/lib/ns-mobilenode.tcl
1 Node/MobileNode instproc add-interface { channel pmodel

lltype mactype qtype qlen iftype anttype topo } {
2 $self instvar arptable_ nifs_ netif_ mac_ ifq_ ll_ ...
3 set ns [Simulator instance]
4 set t $nifs_
5 incr nifs_
6 set netif_($t) [new $iftype] # interface
7 set mac_($t) [new $mactype] # mac layer
8 set ifq_($t) [new $qtype] # interface queue
9 set ll_($t) [new $lltype] # link layer
10 set ant_($t) [new $anttype] # antanna
11 $ns mac-type $mactype
12 set nullAgent_ [$ns set nullAgent_]
13 set netif $netif_($t)
14 set mac $mac_($t)
15 set ifq $ifq_($t)
16 set ll $ll_($t)
17 set arptable_ [new ARPTable $self $mac]
18 set drpT [cmu-trace Drop "IFQ" $self]
19 $arptable_ drop-target $drpT
20 $ll arptable $arptable_
21 $ll mac $mac
22 $ll down-target $ifq
23 $ll up-target [$self entry]
24 $ifq target $mac
25 $ifq set limit_ $qlen
26 set drpT [cmu-trace Drop "IFQ" $self]
27 $ifq drop-target $drpT
28 $mac netif $netif
29 $mac up-target $ll
30 $mac down-target $netif
31 set god_ [God instance]
32 if {$mactype == "Mac/802_11"} {
33 $mac nodes [$god_ num_nodes]
34 }
35 $netif channel $channel
36 $netif up-target $mac
37 $netif propagation $pmodel # Propagation Model
38 $netif node $self # Bind node <---> interface
39 $netif antenna $ant_($t)
40 $channel addif $netif
41 $channel add-node $self
42 $topo channel $channel
43 $self addif $netif
44 }

12.2 Network Layer: Routing Agents and Routing Protocols 305

sets the buffer size of the interface queue. Line 31 creates a GOD object (see
Sect. 12.6.2). Finally, Lines 35–43 configure the physical layer of the Mobile Node
(see Sect. 12.5).

12.2 Network Layer: Routing Agents and Routing Protocols

As discussed in Sect. 6.1.1, a routing protocol specifies how routing information is
propagated to all related nodes. This section discusses wireless routing protocols
via an example: Ad-hoc On-Demand Distance Vector Routing (AODV) routing
protocol.

12.2.1 Preliminaries for the AODV Routing Protocol

12.2.1.1 Terminology

Before proceeding further, let us define the following terminology.

• Active/inactive: An active route entry of a Node is a route entry which is in use by
the node or any of its neighbors. An active path consists of active routing entries
from a source to a destination. Finally, active neighbors are nodes which have
created or forwarded one or more packets to a given destination within the most
recent active timeout period.

• Fresh/stale: This terminology is used to compare a pair of sequence numbers
and/or route entries. A sequence number in greater value is said to be fresh.
A route entry with fresh sequence number is said to be fresh. It is also said to be
fresh, if it has equal sequence number and lower (better) number of hops to reach
the destination. A node should always accept fresh route entries and discard stale
routing information.

• Route entries and routing table: A route entry contains information of how to
reach a destination. A node usually puts together all routing entries in a table-
formatted database called a routing table.

In AODV, each route entry contains the following fields:

– Destination address, the next hop node, and the metric (i.e., the number of
hops to the destination)

– Sequence number corresponding to the destination which helps prevent a so-
called routing loop problem

– Active neighbors on this route entry
– Expiry time which indicates the duration where this route entry is considered

fresh.

306 12 Wireless Mobile Ad Hoc Networks

12.2.1.2 Packet Types

AODV defines three main types of packets:

• Route REQuest (RREQ): RREQ is originated and broadcasted to every neighbor
of a source node during a route discovery process. RREQ contains the following
information:

– Source address (src) – Source sequence number (SNs)
– Destination address (dst) – Destination sequence number (SNd)
– Broadcast ID (bID) – No. of hops to destination (hop cnt)

• Route REPly (RREP): RREP is a packet replied by a node. It contains routing
information for the destination specified in an RREQ. RREP contains the
following information:

– Source address (src) – No. of hops to destination (hop cnt)
– Destination address (dst) – Destination sequence number (SNd)
– Time where this entry is considered valid (texp)

• HELLO: HELLO is a special unsolicited RREP packet. It probes neighbors
within locality. HELLO contains only two pieces of information: address and
sequence number of the sender.

12.2.2 The Principles of AODV

AODV is a proactive routing protocol which discovers a route to the destination as
needed. It is designed to solve the network loop problem, where routing packets
circulate indefinitely (see Fig. 12.4). AODV solves this problem by discarding
packets with stale sequence number. In particular, every Mobile Node maintains
three sequence number counters for three types of packets: a destination counter
for RREP, a broadcast counter for RREQ, and a neighbor-probing counter for
HELLO. Although used for different packet types, these counters work under the
same principle.

Before creating a packet, a Mobile Node increases its counter value by one.
Then it stamps the packet with the incremented sequence number and sends out
the packet. Another Mobile Node receiving the packet determines the freshness
of routing packets by comparing the sequence number. Again, a routing packet
is said to be fresh.4 In AODV, different sequence numbers are drawn from three
different counters, depending on whether the packet type is RREQ, RREP, or
HELLO.

4See the definition of “fresh” in Sect. 12.2.1.1.

12.2 Network Layer: Routing Agents and Routing Protocols 307

New route
update

(1) (1) C

DA

B

(2)
C

DA

B

New route
update

(1) (1)

C

A

B

(2)

(2)
C

A

B

(3) (3)

C

A

B

a b

Fig. 12.4 A distance vector flooding protocol: (a) Tree topology – a route update process finishes
in two steps, (b) Loop topology – a route update process continues indefinitely

Reverse path setup

S

D

S

D

Sending RREQ Setting up
a route entry

Sending RREP

Forward path setup

Route entry to
the destination

Transmission
range

a b

Fig. 12.5 AODV route discovery: Reverse path setup and forward path setup

12.2.2.1 Route Discovery: Identifying a Route to the Destination

Route discovery consists of two main steps (see Fig. 12.5). The first step is to
locate the node which contains the required routing information. It starts when a
Mobile Node needs routing information. In this case, the Mobile Node (e.g., Node
“S” in Fig. 12.5) broadcasts an RREQ packet to all its neighboring nodes. Upon
the detection, each of the neighboring nodes discards the packet if it is stale, and
processes the packet if it is fresh.

308 12 Wireless Mobile Ad Hoc Networks

Table 12.3 Various timers, their actions, and the triggering events

Timer Timeout action Start/reset by

RREQ timer Remove the route entry Insertion of a reverse path route entry
RREP timer Remove the route entry Insertion of a forward path route entry
HELLO timer Send a HELLO packet Broadcast HELLO
Transmission timer Recognize a broken link Transmission of a new packet

Suppose the packet is fresh. The node determines if it has the required routing
information. If not, it will run the so-called reverse path setup process which
records how to return to the source node in its routing table. Then, the node will
increment the metric (i.e., the number of hops) in the RREQ packet by one, and will
rebroadcast the RREQ packet. This process repeats until a node with the required
routing information receives the RREQ packet, where the first Step completes.

The second step is to piggyback the required routing information back to the
source node (e.g., Node “S” in Fig. 12.5). It begins by creating an RREP (i.e., route
reply) packet. This RREP packet is carried back to the source node using the route
identified during the reverse path setup. In the literature, the second Step is referred
to as forward path setup.

12.2.2.2 Route and Neighbor Maintenance

Mobile Nodes in an ad hoc network are highly dynamic. As they move, the list
of neighbors may change and the links may become broken. To keep up with the
dynamic, AODV uses timers to regularly probe the network topology and status.
These timers are shown in Table 12.3.

12.2.3 An Overview of AODV Implementation in NS2

NS2 implements a routing protocol using routing agents which create, transmit,
receive, process, and destroy routing packets. In case of AODV, NS2 declare a CCC
class AODV as shown in Program 12.7. Class AODV derives from class Agent and
inherits three important attributes and behaviors: (1) a pointer “target_” which
points to a link layer object (see Fig. 12.2), (2) a function allocpkt() which can
be used to create packets, and (3) a packet reception function recv(p,h). Among
these attributes and behaviors, only the packet reception function is overridden by
class AODV.5

5The details of packet reception function will be discussed in Sect. 12.2.6.

12.2 Network Layer: Routing Agents and Routing Protocols 309

Program 12.7 Declaration of class AODV
//˜ns/aodv/aodv.h

1 class AODV: public Agent {
2 nsaddr_t index; //IP Address of this node
3 u_int32_t seqno; //Sequence Number
4 int bid; //Broadcast ID
5 aodv_rtable rtable; //Routing table
6 aodv_ncache nbhead; //A list of active neighbors
7 aodv_bcache bihead; //A list of seen Broadcast IDs
8 BroadcastTimer btimer; //Broadcast ID timer
9 HelloTimer htimer; //Hello timer
10 NeighborTimer ntimer; //Neighbor timer
11 RouteCacheTimer rtimer; //Route expiration timer
12 LocalRepairTimer lrtimer; //Delay before route failure

declaration
13 aodv_rqueue rqueue; //Store data packet during

route discovery
14 PriQueue *ifqueue; //A pointer to the interface

queue
15 PortClassifier *dmux_; //A pointer to the

demultiplexer
16 }

12.2.3.1 File and Class Structure

Main CCC Files for AODV Stored in the Directory ˜ns/aodv/

aodv.cc,h Main definition of AODV routing agents
aodv_packet.h Packet header of AODV routing agents

aodv_rtable.cc,h AODV route entry and routing table
aodv_rqueue.cc,h Buffer which stores data packets during a route

discovery process

AODV-Related CCC Classes

• Agent is responsible for creating, sending, receiving, processing, and destroying
routing packets. AODV uses class AODV for these purposes.

• Timer takes care of time-driven actions. These classes are BroadcastTimer,
HelloTimer,NeighborTimer,RouteCacheTimer, and LocalRepair
Timer.

• Routing information is stored in route entries (classes aodv_rt_entry and
aodv_rtable) and packet header format (classes hdr_aodv, hdr_aodv
_error, hdr_aodv_request, and hdr_aodv_reply).

310 12 Wireless Mobile Ad Hoc Networks

Table 12.4 AODV collections and their CCC implementation
Class name Variable name A member of Data structure Type of entry

aodv_bcache bihead AODV bsd link list BroadcastID

aodv_ncache nbhead AODV bsd link list AODV_Neighbor

rt_nblist aodv_rt_entry

aodv_precursors rt_pclist aodv_rt_entry bsd link list AODV_Precursor

aodv_rthead rthead aodv_rtable bsd link list aodv_rt_entry

aodv_rqueue rqueue AODV Link list Packet

nsaddr_t unreachable_dst[] hdr_aodv_error Array N/A

• Collections contain items of the same type. These collections include seen
broadcast IDs, active neighbors, precursors,6 route entries, packets buffered
during a route discovery process, and ID of unreachable destination nodes. The
CCC implementation of these collections are shown in Table 12.4, where the
details of bsd link list are given in Appendix C.1.

12.2.3.2 Route Entries and Packet Header

NS2 stores routing information in the following elements: Route entries (aodv_rt
_entry) in routing tables (aodv_rtable), RREQ header (hdr_aodv
_request), and RREP header (hdr_aodv_reply), and route error reporting
header (hdr_aodv_error). These elements contain the information fields shown
below:

• General fields in route entries (aodv_rt_entry):
– rt_dst Destination – rt_nexthop Next hop node

address
– rt_hops Metric – rt_seqno Seq. No.
– rt_pclist Precursors – rt_nblist Active neighbors
– rt_req_timeout When I can send another request
– rt_req_cnt Number of broadcasted RREQs

• RREQ-related fields in the packet header hdr_aodv_request:
– rq_src The node which creates this RREQ
– rq_dst The node which this RREQ is destined for
– rq_hop_count Number of hops this RREQ has traveled
– rq_bcast_id Broadcast ID

6Precursors are nodes associated with a route entry. They are the opposite of next hop nodes.
Precursors of a node “n” associated with a destination “dst” are the nodes which have asked the
node “n” to forward at least one packet to the destination “dst.” Essentially, the route entry for
the destination “dst” of the precursors indicates the next hop as the node “n.”

12.2 Network Layer: Routing Agents and Routing Protocols 311

Program 12.8 Instproc create-aodv-agent of class Simulator and OTcl
command “start” of class AODV

//˜ns/tcl/lib/ns-lib.tcl
1 Simulator instproc create-aodv-agent { node } {
2 set ragent [new Agent/AODV [$node node-addr]]
3 $self at 0.0 "$ragent start"
4 $node set ragent_ $ragent
5 return $ragent
6 }

//˜ns/aodv/aodv.cc
7 int AODV::command(int argc, const char*const* argv) {
8 if(strncasecmp(argv[1], "start", 2) == 0) {
9 btimer.handle((Event*) 0);
10 htimer.handle((Event*) 0);
11 ntimer.handle((Event*) 0);
12 rtimer.handle((Event*) 0);
13 return TCL_OK;
14 }
15 ...
16 return Agent::command(argc, argv);
17 }

• RREP-related fields in the packet header hdr_aodv_reply:
– rp_src The node which creates this RREP
– rp_dst The node which this RREP is destined for
– rp_hop_count Number of hops this RREP has traveled
– rp_lifetime Duration between RREP creation and expiration

• Error fields in the packet header hdr_aodv_error:
– DestCount Number of unreachable destinations
– unreachable_dst[] Addresses of unreachable destinations
– unreachable_dst_seqno[] Seq. No. of unreachable destinations

Note that fields belonging to routing table, RREQ header, and RREP header are
prefixed with “rt,” “rq,” and “rp,” respectively.

12.2.4 AODV Routing Agent Construction Process

An AODV routing agent is created by an OTcl statement “create-aodv
-agentfnodeg,” where $node is a Mobile Node which contains the routing agent
(e.g., see Line 6 of Program 12.5).

Program 12.8 shows the details of instproc create-aodv-agentfnodeg.
Line 2 creates an object from an OTcl class Agent/AODV which is bound to
a CCC class AODV. As indicated in the file ˜ns/aodv/aodv.cc, the constructor of

312 12 Wireless Mobile Ad Hoc Networks

class AODV takes node address as an input argument. Line 3 initializes the AODV
routing agent by executing its OTcl command “start.” In Lines 9–12, the OTcl
command “start” initializes four key AODV timers by forcing expiration at the
current time. The details of the AODV timers will be discussed later in Sect. 12.2.7.
Finally, Lines 4 and 5 store the created routing agent in the instvar “ragent_” of
the input Node object and returns the created routing agent to the caller.

12.2.5 General Packet Flow Mechanism in a Wireless Network

Packets can generally be classified into data packets and routing packets. While the
former is created by transport layer agents, the latter is created by routing agents.
Section 12.1.2 explains the data packet flow mechanism, assuming that the routing
agent contains a route entry for the destination under interest. If the routing agent
does not have the route entry, it will buffer the packet temporarily, initiate a route
discovery process, and wait for the routing information. Once the information is
available, it will transmit the data packets buffered earlier.

Routing packet flow mechanism begins from within a routing agent during
a route discovery process. After the inception, a routing packet is configured
according to the AODV protocol described in Sect. 12.2.2. Then, it is passed to
the lower-layer objects for transmission over the air. In case of AODV, routing
packets are marked with payload type PT_AODV. In addition, their header types can
be AODVTYPE_RREQ for RREQ packets, AODVTYPE_RREP for RREP packets,
AODVTYPE_RREQ for route error reporting packets, and AODVTYPE_HELLO for
HELLO packets.

12.2.6 Packet Reception and Processing Function of AODV

Function recv(p,h) is central to AODV packet flow mechanism. It is executed
to receive both data and routing packets in both upward and downward directions.
Program 12.9 shows the details of this function. Line 4 determines whether the
incoming packet (*p) is a routing packet (i.e., PT_AODV). If so, Line 6 processes
the AODV packet by invoking the function recvAODV(p). Otherwise, the packet
*p must be a data packet. In this case, Lines 9–21 pre-process the data packet and
Lines 22–25 send off the packet.

The pre-processing Lines 9–21 include addition of an IP header7 (Line 11),
setting the TTL value (Line 13), and dropping packet if it circulates in a network
loop (Lines 15–16) or if its TTL reaches zero (Line 19). To send a packet, Line 22

7TCP and its ACK also include IP header into the packet. We do not need to add IP header here.
Otherwise, we would have added the IP header twice (See Line 10).

12.2 Network Layer: Routing Agents and Routing Protocols 313

Program 12.9 Function recv(p,h) class AODV
//˜ns/aodv/aodv.cc

1 void AODV::recv(Packet *p, Handler*) {
2 struct hdr_cmn *ch = HDR_CMN(p);
3 struct hdr_ip *ih = HDR_IP(p);
4 if(ch->ptype() == PT_AODV) {
5 ih->ttl_ -= 1;
6 recvAODV(p);
7 return;
8 }
9 if((ih->saddr() == index) && (ch->num_forwards() == 0)) {
10 if (ch->ptype() != PT_TCP && ch->ptype() != PT_ACK)
11 ch->size() += IP_HDR_LEN;
12 if ((u_int32_t)ih->daddr() != IP_BROADCAST)
13 ih->ttl_ = NETWORK_DIAMETER;
14 } else if(ih->saddr() == index) {
15 drop(p, DROP_RTR_ROUTE_LOOP);
16 return;
17 } else {
18 if(--ih->ttl_ == 0) {
19 drop(p, DROP_RTR_TTL); return;
20 }
21 }
22 if ((u_int32_t)ih->daddr() != IP_BROADCAST)
23 rt_resolve(p);
24 else
25 forward((aodv_rt_entry*) 0, p, NO_DELAY);
26 }

determines the packet type. If the packet is a broadcast packet, Line 25 will call the
function forward(rt,p,delay) to send the packet. Otherwise, Line 23 will
call the function rt_resolve(p) which invokes a route discovery process and
send out the packet once the routing information is available.

When an incoming packet is an AODV routing packet, Line 6 of Program 12.9
invokes function recvAODV(p) the details of which are shown in Program 12.10.
Line 3 inspects AODV header type of the incoming packet, and invokes one of the
following functions:recvRequest(p), recvReply(p), recvError(p), or
recvHello(p). These functions perform AODV operation as discussed earlier in
Sect. 12.2.2. The readers are encouraged to see the details of these functions in the
file ˜ns/aodv/aodv.cc.

12.2.7 AODV Time-Driven Actions

Another important part of the AODV protocol is to take time-based actions. These
actions are to remove outdated information (e.g., broadcast IDs, route entries, active

314 12 Wireless Mobile Ad Hoc Networks

Program 12.10 Function recvAODV(p) of class AODV
//˜ns/aodv/aodv.cc

1 void AODV::recvAODV(Packet *p) {
2 struct hdr_aodv *ah = HDR_AODV(p);
3 switch(ah->ah_type) {
4 case AODVTYPE_RREQ:
5 recvRequest(p);
6 break;
7 case AODVTYPE_RREP:
8 recvReply(p);
9 break;
10 case AODVTYPE_RERR:
11 recvError(p);
12 break;
13 case AODVTYPE_HELLO:
14 recvHello(p);
15 break;
16 default:
17 fprintf(stderr, "Invalid AODV type (%x)\n", ah->ah_type);
18 exit(1);
19 }
20 }

Table 12.5 Timers, their class variables, and their expiration actions

Class name Variable name Agent actions

BroadcastTimer btimer Call agent->id_purge(), i.e.,
purge all expired broadcast ID from the list.

HelloTimer htimer Call agent->sendHello(), i.e.,
send out a HELLO message.

NeighborTimer ntimer Call agent->nb_purge(), i.e.,
purge inactive neighbors from the list.

RouteCacheTimer rtimer Call agent->rt_purge(), i.e.,
purge stale route entries from the routing table.

LocalRepairTimer lrtimer – If the route is down, call agent->rt_down(rt),
where rt is a route entry whose destination is
specified in the header of the incoming packet *p

– Destroy the incoming packet *p.

neighbors), and are implemented using five CCC timers in Table 12.5, where
“agent” is a pointer to the AODV agent containing the timer (see the timer
implementation in Sect. 15.1).

All timers except for LocalRepairTimer are forced to expire at the node
construction (see Lines 9–12 in Program 12.8). At the expiration, these timers
take expiration actions as shown in Table 12.5 and restart themselves. The Local
RepairTimer object, on the other hand, is started when the routing agent sends
out an RREQ packet. If the corresponding RREP packet is received before the timer
expires, the timer will be stopped and nothing will happen. If, on the other hand, the

12.3 Data Link Layer: Link Layer Models, Address Resolution Protocols... 315

route entry is still down by the time the timer expires, the corresponding destination
will be declared as unreachable by executing “agent->rt_down(rt).”

12.3 Data Link Layer: Link Layer Models, Address Resolution
Protocols, and Interface Queues

This section focuses on the three NS2 modules located at the Data Link Layer: Link
layer, Address Resolution Protocols (ARP), and Interface Queues (see Fig. 12.2).

12.3.1 Link Layer Objects

Link layer objects model several characteristics at the link layer such as link band-
width, propagation delay, and packet framing (e.g., sequence number, acknowledge
number). It bridges the routing layer (i.e., routing agent) to the MAC layer.

In NS2, link layer objects are implemented using a CCC class LL which is
bound to the OTcl class with the same name. Program 12.11 shows its CCC
class declaration and the details of its function recv(p,h). The CCC class LL
derives from class LinkDelay (see also Sect. 7.2). It inherits bandwidth and delay
attributes from the class LinkDelay. It is also responsible for link-layer packet
framing (e.g., embedding sequence number in Line 3 and acknowledge number
in Line 4 into packet headers). It contains two important pointers – “mac_” in
Line 7 pointing to a Medium Access Control (MAC) object and “arptable_”
in Line 8 pointing to an Address Resolution Protocol (ARP) object. As discussed
in Sect. 12.1.3, class LL has two pointers- “downtarget_” and “uptarget_”
which connect to the lower and upper layer objects, respectively.

Lines 12–24 show the details of the function recv(p,h) of class LL. The
process is quite straightforward for downward transmission using the function
sendDown(p) (Lines 22 and 23). For upward transmission, class LL classifies
packets into APR packets and non-ARP packets. Line 19 sends non-ARP packets
up the hierarchy using sendUp(p). If the incoming packet is an ARP packet,
Line 17 will ask the ARP object to handle the packet by calling its function
arpinput(p,this).

12.3.2 Address Resolution Protocol

In practice, a Node needs to translate an IP address to a hardware address from time
to time. To do so, it looks up the so-called ARP table for the address translation. If
the required translation entry does not exist in the table, it may ask for the entry from

316 12 Wireless Mobile Ad Hoc Networks

Program 12.11 Declaration and details of the function recv(p,h) of class LL
//˜ns/queue/priqueue.h

1 class LL : public LinkDelay {
2 protected:
3 int seqno_; // link-layer sequence number
4 int ackno_; // ACK received so far
5 int macDA_; // destination MAC address
6 Queue* ifq_; // interface queue
7 Mac* mac_; // MAC object
8 ARPTable* arptable_; // ARP table object
9 NsObject* downtarget_; // for outgoing packet
10 NsObject* uptarget_; // for incoming packet
11 }

//˜ns/queue/priqueue.cc
12 void LL::recv(Packet* p, Handler*)
13 {
14 hdr_cmn *ch = HDR_CMN(p);
15 if(ch->direction() == hdr_cmn::UP) {
16 if(ch->ptype_ == PT_ARP)
17 arptable_->arpinput(p, this);
18 else
19 uptarget_ ? sendUp(p) : drop(p);
20 return;
21 }
22 ch->direction() = hdr_cmn::DOWN;
23 sendDown(p);
24 }

the other nodes. The protocol which asks for translation from an IP address to an
hardware address is called an Address Resolution Protocol (ARP), while the reversal
protocol for translating hardware addresses to IP addresses is called Reverse ARP
(RARP) [21].

NS2 implements ARPs using two CCC classes. Class ARPEntry models
address translation record, while class ARPTable contains a link list of ARPEntry
and takes all ARP-related actions (see the files ˜ns/mac/arp.h,cc). The address
translation process proceeds as follows.

Suppose Node A would like to determine a hardware address of a given IP
address. Node A calls function arpresolve(dst,p,ll) to put the hardware
address corresponding to an IP Address “dst” in the packet *p. If Node A does
not contain mapping information for the address “dst,” it sends an ARP request
packet using the function arprequest(src,dst,ll). The packet is sent to
the air via the down-target of the LL object, “ll.”8

8The process bypasses the LL object to avoid any alteration (e.g., sequence number) at the link-
layer object.

12.4 Medium Access Control Layer: IEEE 802.11 317

Suppose an ARP request packet arrives at Node B. The packet is delivered
upward until it reaches the LL object. In this case, the packet direction would
be “UP” and the payload type of the packet would be “PT_ARP.” In this case,
the statement “arp_->arpinput(p,this)” shall be executed (Line 17 in
Program 12.11). If the packet *p is an ARP request packet and the hardware address
to be translated is stored in the field “arp_tpa,” the ARPTable object will create
and transmit a ARP reply packet. If, on the other hand, the incoming packet *p
is an ARP reply packet, the ARPTable object will look for the address mapping
information in the ARP reply packet, embed the hardware address in the packet
header, and transmit the constructed packet. The details of the above ARP operation
can be found in ˜ns/mac/arp.h,cc.

Note that class ARPTable defines a pointer “hold_” to hold a packet while
waiting for an ARP reply packet. If another packet enters the ARPTable before
the ARP reply packet returns, the earlier buffered packet would be dropped (i.e.,
“hold_” will point to the new packet).

12.3.3 Interface Queues

Section 7.3 discusses the principles of queue and buffer management. In wired
networks, a queue is installed in each of SimpleLink objects. In a wireless
network, a queue is installed in each of the wireless physical interface. This is the
reason NS2 calls a queue in a wireless network an interface queue.

The most widely used queue type in wireless networks is prioritized queues.
NS2 implements a prioritized queue in the CCC class PriQueue. This class
derives from class DropTail and is bounded to the OTcl class whose name
is Queue/DropTail/PriQueue. Prioritized queues operate fairly similar to
drop-tail queues discussed in Sect. 7.3. But they enqueues high-priority and low-
priority packets at the head and at the end of the queue, respectively. By default,
high-priority packets include routing packets whose payload types are PT_DSR,
PT_TORA, PT_AODV, PT_AOMDV, and PT_MDART. Packets with other payload
types are treated as low-priority packets. The readers are encouraged to go through
the details of class PriQueue in the files ˜ns/queue/priqueue.h,cc.

12.4 Medium Access Control Layer: IEEE 802.11

A Medium Access Control (MAC) protocol defines communications rules to which
Mobile Nodes comply with to access a shared medium. Generally, MAC protocol
can be classified into random MAC protocols and deterministic MAC protocols.
NS2 implements TDMA (Time Division Multiple Access) MAC protocols and
IEEE 802.11 MAC protocols for deterministic and random MAC protocols, respec-
tively (see the directory ˜ns/mac).

318 12 Wireless Mobile Ad Hoc Networks

Backoff Medium
Busy

Medium
Busy

DIFS

DIFS

PIFS

SIFS Backoff
Packet

Transmission

012345

Backoff mechanism

DIFS

Sender

Receiver

Others

SIFS

CTS

SIFS

SIFS

ACK

SIFS

DATA

NAV

NAV

NAV

Hearing RTS

Hearing CTS

Hearing Data

DATARTS

Collision avoidance and network allocation vector (NAV) allocation

a

b

Fig. 12.6 Distributed coordination function in IEEE 802.11

This section explains MAC protocol implementation via an example, the standard
IEEE 802.11-based MAC [39], which is used widely in wireless local area networks.
The details for the TDMA MAC protocol can be found in the files ˜ns/mac/mac-
tdma.h,cc.

12.4.1 Description of IEEE 802.11 MAC Protocol

IEEE 802.11 DCF consists of three main mechanisms: contention window adjust-
ment, back-off mechanisms, and collision avoidance (CA). Once a Mobile Node is
turned on, it initializes a state variable called contention window to its minimum
value (CWmin). The contention window is doubled for every transmission failure
until it reaches the maximum value (CWmax). If the transmission is successful or if
the packet is dropped due to the retry limit, the contention window will be reset to
CWmin.

Figure 12.6a illustrates the back-off mechanism in the IEEE 802.11 DCF MAC.
After window adjustment, the DCF MAC protocol picks a random back-off value
uniformly distributed between 0 and CW, where CW is the value of the current
contention window. This back-off value is the number of idle time slots where a
Mobile Node has to wait before commencing a transmission.

Another mechanism of IEEE 802.11 DCF is Collision Avoidance (CA),
which uses two mechanisms: four-way handshake and InterFrame Space (IFS). In
Fig. 12.6b, the four-way handshake method transmits RTS, CTS, DATA, and ACK

12.4 Medium Access Control Layer: IEEE 802.11 319

packets in sequence. Here, a sender intending to transmit data first transmits a Ready
To Send (RTS) packet. Upon receiving an RTS packet, the receiver transmits a Clear
To Send (CTS) packet back to the sender. Then, the sender can start sending a
DATA packet. Finally, the receiver informs the sender of successful DATA packet
reception by sending back an ACKnowledgment (ACK) packet. Despite its ability to
handle hidden node/exposed node problem [40], this handshake mechanism incurs
non-negligible overhead. IEEE 802.11 activates this mechanism for large packets
only.

InterFrame Space (IFS) is an inactivity period at which a Mobile Node must
sense before starting/resuming its backoff mechanism. The length of IFS de-
pends on packet types. If the four-way handshake is activated, it will be DIFS
(Distributed IFS) for RTS packets, and SIFS (Short IFS) for other packets. Oth-
erwise, it will be DIFS and SIFS for DATA and ACK packets, respectively.
Since SIFS is shorter than DIFS, the collision occurs when sending RTS packets
only.

In IEEE 802.11, every packet contains a Network Allocation Vector (NAV) field.
An NAV field contains the duration during which the Mobile Node is expected to
take over the channel. Upon overhearing any of these packets, all Mobile Nodes,
except the intended receiver, refrain from transmitting any packet until the end of
period specified in the NAV.

12.4.2 NS2 Classes Mac and Mac802 11

In NS2, the IEEE 802.11 MAC is implemented using a CCC class Mac802_11
which derives from an abstract class Mac. Program 12.12 shows the declarations of
both the classes Mac and Mac802_11.

In class Mac, variables “netif_,” “ll_,” and “channel_” are three variables
which connect to other objects in the Mobile Node architecture (see Fig. 12.2). The
variable “intr_” is a dummy variable used with various timer objects. Pointers
“pktRx_” and “pktTx_” point to packets which shall be received and transmitted
later (see also Sect. 12.4.5).

In the derived class (Mac802_11), two other pointers – “pktRTS_” and
“pktCTRL_” – are also used to store an RTS packet and an CTS packet or an ACK
packet, respectively, before packet transmission (see Lines 38 and 39). The variables
“state_” (Line 13), “rx_state_” (Line 32), and “tx_state_” (Line 33)
indicate the current state of the Mac object, and the transmission and reception states
of the Mac802_11 object, respectively. The list of possible states is shown below:

MAC_IDLE MAC_POLLING MAC_RECV MAC_SEND MAC_RTS
MAC_BCN MAC_CTS MAC_ACK MAC_COLL MAC_MGMT

where MAC_COLL and MAC_MGMT stand for collision and management.

320 12 Wireless Mobile Ad Hoc Networks

Program 12.12 Declaration of classes Mac and Mac802 11
//˜ns/mac/mac.h

1 class Mac : public BiConnector {
2 public:
3 Mac();
4 inline int addr() { return index_; }
5 protected:
6 int index_; // MAC address
7 double bandwidth_; // Channel bitrate in bps
8 double delay_; // MAC overhead
9 Phy *netif_; // Network interface object
10 LL *ll_; // Link layer object
11 Channel *channel_; // Channel object
12 Event intr_; // A dummy event
13 MacState state_; // Current state
14 Packet *pktRx_; // Cached incoming packet
15 Packet *pktTx_; // Cached data packet to be TX
16 };

//˜ns/mac/mac-802_11.h
17 class Mac802_11 : public Mac {
18 public:
19 Mac802_11();
20 protected:
21 PHY_MIB phymib_; //Physical layer MIB
22 MAC_MIB macmib_; //MAC layer MIB
23 private:
24 RxTimer mhRecv_; // It’s time to receive
25 TxTimer mhSend_; // ReTX timeout, if applicable
26 IFTimer mhIF_; // TX complete timer
27 BackoffTimer mhBackoff_; // Backoff timer
28 DeferTimer mhDefer_; // Defer TX by IFS periods
29 NavTimer mhNav_; // Network Allocation Vector
30 double dataRate_; // Data rate
31 double nav_; // Time when NAV expires
32 MacState rx_state_; // Incoming state
33 MacState tx_state_; // Outgoing state
34 int tx_active_; // Is the transmitter ACTIVE?
35 u_int32_t cw_; // Current contention Window
36 u_int32_t ssrc_; // Retry Count for a short

packet
37 u_int32_t slrc_; // Retry Count for a long

packet
38 Packet *pktRTS_; // Cached outgoing RTS packet
39 Packet *pktCTRL_; // Cached outgoing non-RTS

packet
40 };

12.4 Medium Access Control Layer: IEEE 802.11 321

Lines 21 and 22 declare two Management Information Base (MIB) variables
which contain the basic information about the IEEE 802.11 module:

• Class PHY_MIB defines physical layer MIB, with the following key variables:
(CWMin,CWMax) The smallest and the largest contention window size
SlotTime The length of a time slot
SIFSTime The length of an SIFS interval

• Class MAC_MIB defines MAC layer MIB, with the following key variables:
RTSThreshold Packets whose length is greater than

RTSThreshold bytes are considered as long packets.
ShortRetryLimit Max. re-transmissions for a short packet
LongRetryLimit Max. re-transmissions for a long packet

Lines 24–29 define the following six timers which help carry out six time-based
actions: Packet reception timer (mhRecv_), Retransmission timer (mhSend_),
Transmission complete timer (mhIF_), Backoff timer (mhBackoff_), Medium
sensing timer (mhDefer_), and NAV timer (mhNav_).

The variables “dataRate_” and “nav_” (Lines 30 and 31) define physical data
rate in bps, and the duration in seconds during which the node needs to refrain from
transmitting and/or receiving. The variable “tx_active_” (Line 34) indicates
whether the node is currently engaged in packet transmission. A wireless node
cannot receive any packet while transmitting due to its self interference. Finally,
the variables “cw_,” “ssrc_,” and “slrc_” store the current contention window
size, and the retransmission counters for short and long packets, respectively (Lines
35–37).

12.4.3 Basic Functions of NS2 Classes Mac and Mac802 11

Classified into five categories, these functions are shown below:

Main functions:
recv(p,h):

Receive a packet *p with a handler *h.
send(p,h):

Send a packet *p with a handler *h in a downward direction.
transmit(p,timeout):

Send a packet *p to the “downtarget_.” Start the retransmission
timer with a “timeout” period.

collision(p):
Called when the packet *p collides with the packet being received
“pktRx_,” this function takes actions according to Sect. 12.4.1.

322 12 Wireless Mobile Ad Hoc Networks

Packet preparation functions:
Functions sendRTS(dst), sendCTS(dst,dur), sendDATA(p),
and sendACK(dst) prepare and store the RTS, CTS, DATA, and
ACK packets in variables *pktRTS_, *pktCTRL_, *pktTx_, and
*pktCTRL_, respectively.

Packet transmission functions:
Functions check_pktCTRL(), check_pktRTS(), and check
_pktTx() inspect the relevant cached CTS/ACK/RTS/DATA packet,
and invokes transmit(p,timeout) to transmit the packet if the
medium is free. Otherwise, it starts the IEEE 802.11 backoff process.

Packet retransmission functions:
Functions RetransmitRTS() and RetransmitDATA() incre-
ment and check whether the retransmission counter (i.e., “ssrc_” or
“slrc_”) exceeds the limit. If so, they will drop the packet, and reset
the counter and contention window size. Otherwise, it will increment the
contention window size, and start the backoff timer.

Packet reception functions:
Helper functions recvRTS(), recvCTS(), recvDATA(), and
recvACK() are invoked to take necessary actions when one of the
RTS/CTS/DATA/ACK packets is received.

Resume functions:
tx resume(): Resume pending transmission;

• Case 1 (new transmission): This function is invoked after the channel
is sensed idle for a DIFS period of time. It initiates a backoff process
using the backoff timer.

• Case 2 (continuing transmission): This function from within one of
the above packet reception functions. It starts the medium sensing
timer with a parameter SIFS.

rx resume(): (Pending reception)
This function is invoked when the packet arrives. It sets the state to
MAC_IDLE, i.e., the Mobile Node is ready to receive another packet.

Idleness functions:
Function is_idle() will return 1 (idle), if both “rx_state_”
and “tx_state_” are MAC_IDLE, and the NAV value stored in the
variable “nav_” is less than the current time (i.e., medium is idle).
Otherwise, it will return 0 (busy). In NS2 implementation, idleness
refers not only to the medium but also to the entire Mac802_11 object
including the transmitting as well as the receiving states.

12.4 Medium Access Control Layer: IEEE 802.11 323

12.4.4 Timer Concepts for Implementation of IEEE 802.11

IEEE 802.11 implementation relies heavily on timers. To perform an action (e.g.,
send or receive a packet), a Mac802_11 records what to do in its variables and
starts relevant timers. The action will later be performed when the timer expires.
As discussed in Sect. 12.4.2, class Mac802_11 uses six timers. Table 12.6 shows
the implementation details of these timers. Here, the first column shows the class
names as well as the names of the Mac802_11 class variables for each timer. The
second column shows the functions of class Mac802_11which starts each timer as
well as the corresponding timeout. The final column shows the implication of timer
expiration as well as the main expiration actions. At the expiration, all the timers
reset their variables and invoke a function associated with the attached Mac802_11
object. Names of the functions as well as the key actions for each timer are shown
in this column.

12.4.5 Packet Reception Mechanism of IEEE 802.11

The mechanism of the function recv(p,h) of class Mac802_11 in Pro-
gram 12.13 proceeds based on the following three cases:

Case 1: Transmitting Packet to Lower Layer Objects Using send(p,h)

In this case, the Mobile Node intends to transmit a packet. The packet arrives the
Mac802_11 object from the higher layer. The packet direction would be DOWN
(Line 4 of Program 12.13), and Line 5 invokes the function send(p,h) to send
out the packet.

In Program 12.14, the function send(p,h) contains instructions for sending
a packet *p received from the upper layers. This implies that the packet (*p) is a
new data packet. During packet preparation process, Line 5 reconfigures the packet
*p and stores it in the variable *pktTx_, and Line 6 creates and stores an RTS
packet in the variable *pktRTS_. Finally, Lines 7–13 start the backoff timers. The
transmission of the prepared packet will be carried out once the timer expires.

In Table 12.6, at the expiration, a backoff timer executes the function
backoffHandler() of the associated Mac802_11 object (see Lines 15–20
in Program 12.14). Again, at the expiration of a backoff timer, the Mac802_11
object is allowed to transmit exactly one packet. If either CTS or ACK is waiting
to be transmitted in *pktCTRL_, this function would do nothing, since their
transmission can commence after a period of SIFS, without backing off.9 In this

9If this is the case, the packet would have been transmitted before the timer expiration.

324 12 Wireless Mobile Ad Hoc Networks

Table 12.6 IEEE 802.11 timers and their starter functions, timeout, and expiration implication
and actions

Timer Starter function and timeout Expiration implication

Packet reception timer:
– Class D
RxTimer

– Variable D
mhRecv

Case 1. collision(p)
Timeout D the max. of

transmission time of two
colliding packets.

Case 2. recv(p)
Timeout D Transmission

time of packet *p:

Implication:
The last bit of the packet

has arrived.
Actions:
– recvHandler()

! recv timer()
– Call the relevant packet

reception function.

Retransmission timer:
– Class D
Txtimer

– Variable D
mhSend

transmit(p,timeout)
Timeout D timeout

Implication:
The packet is lost.
Actions:
– sendHandler()

!send timer():
– If CTS or ACK was

transmitted, free the packet.
Otherwise, retransmit the
RTS or DATA packet using
a retransmission function.

Transmission
completion timer:
– Class D
IFtimer

– Variable D
mhIF

transmit(p,timeout)
Timeout D Transmission time

of packet *p

Implication:
The last bit of the packet is

transmitted.
Actions:
– txHandler()

! Set tx active to 0

Medium sensing timer:
– Class D
DeferTimer

– Variable D
mhDefer

tx resume()
Timeout D SIFS

Implication:
The medium has been idle

for a period of SIFS.
Actions:
– deferHandler()
– Try to transmit a packet

using one of the packet
transmission functions.

Backoff timer:
– Class D
BackoffTimer

– Variable D
mhBackoff

Case 1. send(p,h)
Case 2. check pktRTS(),
Case 3. check pktTx ()
Case 4. tx resume()
Case 5. recvACK(p)
Timeout D Backoff value

Implication:
Backoff reaches its zero value.

Actions:
– backoffHandler()
– Try to transmit a packet

using one of the packet
transmission functions.

NAV timer:
– Class D
NavTimer

– Variable D
mhNav

recv timer()
Timeout D
Case 1: EIFS (transmission

error or packet collision)
Case 2: NAV (normal packet

reception)

Implication:
The medium is idle.
Actions:
– navHandler()
– Resume the backoff timer.

12.4 Medium Access Control Layer: IEEE 802.11 325

Program 12.13 Function recv(p,h) of class Mac802 11
//˜ns/mac/mac-802_11.cc

1 void Mac802_11::recv(Packet *p, Handler *h)
2 {
3 struct hdr_cmn *hdr = HDR_CMN(p);
4 if(hdr->direction() == hdr_cmn::DOWN) {
5 send(p,h); return;
6 }
7 if(tx_active_ && hdr->error() == 0)
8 hdr->error() = 1;
9 if(rx_state_ == MAC_IDLE) {
10 setRxState(MAC_RECV);
11 pktRx_ = p;
12 mhRecv_.start(txtime(p));
13 } else
14 collision(p);
15 }

Program 12.14 Functions send(p,h) and backoffHandler() of class
Mac802 11

//˜ns/mac/mac-802_11.cc
1 void Mac802_11::send(Packet *p, Handler *h)
2 {
3 double rTime;
4 struct hdr_mac802_11* dh = HDR_MAC802_11(p);
5 sendDATA(p);
6 sendRTS(ETHER_ADDR(dh->dh_ra));
7 if(mhBackoff_.busy() == 0)
8 if(is_idle())
9 if (mhDefer_.busy() == 0)
10 mhBackoff_.start(cw_, is_idle(),
11 phymib_.getDIFS());
12 else
13 mhBackoff_.start(cw_, is_idle());
14 }

15 void Mac802_11::backoffHandler()
16 {
17 if(pktCTRL_) return;
18 if(check_pktRTS() == 0) return;
19 if(check_pktTx() == 0) return;
20 }

case, Line 17 would return here. On the other hand, if the Mac802_11 object
contains neither CTS nor ACK packets, Lines 18 and 19 will, in sequence, check
and try to transmit either an RTS packet or a DATA packet, respectively.

326 12 Wireless Mobile Ad Hoc Networks

Case 2: Receiving a Packet from a Lower Layer Object

In this case, a packet reaches the idle Mobile Node from the air interface. The packet
direction would be up. From Program 12.13, after checking for idleness in Line 9,
Line 10 sets the receiving states to MAC_RECV, Line 11 stores the incoming packet
in the variable *pktRx_, and starts the packet reception timer “mhRecv_” with
the timeout being packet transmission time (i.e., txttime(p) in Line 12).

From Table 12.6, the expiration action is to execute function recv_timer()
whose details are shown in Program 12.15. Lines 23–38 determine the packet type
and invoke relevant packet reception functions. These functions clean up the current
transmission variables and prepare the next packet for transmission, if any. Finally,
Line 40 clears the variable “pktRx_” and calls the function rx_resume()which
sets receiving state to MAC_IDLE (Line 44).

Case 3: Self-Interference and/or Collision

This case is complementary to Case 2. Packets arrive from the air interface but are
unsuccessfully received. There are two causes of error: Self-interference and packet
collision. Consider Program 12.13. Lines 7 and 8 mark the packet to be in error due
to self-interference,10 if the transmitter of the Mac802_11 object is active, while
receiving a packet.

Packet collision occurs since the Mac802_11 is busy while receiving a packet.
Here, a packet *p collides with the packet under reception *pktRx_. Under a
noncapturing model, both the packets would be lost. But the loss would not be
realized immediately. It would be realized once the Mac802_11 object receives
the entire packet and is unable to understand the contaminated packet.

Program 12.16 shows the details of function collision(p). In Lines 7–15,
this function drops the shorter packet, keeps the longer packet in *pktRx_, and sets
“rx_state_” to MAC_COLL. Again, once the packet reception timer expires, the
function recv_timer() would be executed, and Lines 11–15 of Program 12.15
will drop the packet *pktRx_ since the receiving state was set to MAC_COLL.

12.4.6 Implementation of Packet Retransmission in NS2

Class Mac802_11 uses a retransmission timer, (i.e., mhSend_ in Table 12.6)
stored in a class variable “mhSend_” to control packet retransmission. This
timer starts every time a packet is transmitted using the function transmit
(p,timeout). It is stopped upon the reception of expected packets using func-
tions recvCTS(p), recvDATA(p), and recvACK(p). If the retransmission

10Self-interference is a wireless property, where the transmitting signal interferes with the receiving
signal.

12.4 Medium Access Control Layer: IEEE 802.11 327

Program 12.15 Functions recv timer() and rx resume() of class
Mac802 11

//˜ns/mac/mac-802_11.cc
1 void Mac802_11::recv_timer()
2 {
3 hdr_cmn *ch = HDR_CMN(pktRx_);
4 hdr_mac802_11 *mh = HDR_MAC802_11(pktRx_);
5 u_int32_t dst = ETHER_ADDR(mh->dh_ra);
6 u_int8_t type = mh->dh_fc.fc_type;
7 u_int8_t subtype = mh->dh_fc.fc_subtype;
8 if(tx_active_) {
9 Packet::free(pktRx_); goto done;
10 }
11 if(rx_state_ == MAC_COLL) {
12 discard(pktRx_, DROP_MAC_COLLISION);
13 set_nav(usec(phymib_.getEIFS()));
14 goto done;
15 }
16 if(ch->error()) {
17 Packet::free(pktRx_);
18 set_nav(usec(phymib_.getEIFS()));
19 goto done;
20 }
21 if(dst != (u_int32_t)index_)
22 set_nav(mh->dh_duration);
23 switch(type) {
24 case MAC_Type_Control:
25 switch(subtype) {
26 case MAC_Subtype_RTS:
27 recvRTS(pktRx_);break;
28 case MAC_Subtype_CTS:
29 recvCTS(pktRx_);break;
30 case MAC_Subtype_ACK:
31 recvACK(pktRx_);break;
32 }; break;
33 case MAC_Type_Data:
34 switch(subtype) {
35 case MAC_Subtype_Data:
36 recvDATA(pktRx_);break;
37 }; break;
38 }
39 done:
40 pktRx_ = 0;
41 rx_resume();
42 }

43 void Mac802_11::rx_resume()
44 setRxState(MAC_IDLE);
45 }

328 12 Wireless Mobile Ad Hoc Networks

Program 12.16 Function collision() of class Mac802 11
//˜ns/mac/mac-802_11.cc

1 void Mac802_11::collision(Packet *p)
2 {
3 switch(rx_state_) {
4 case MAC_RECV:
5 setRxState(MAC_COLL);
6 case MAC_COLL:
7 if(txtime(p) > mhRecv_.expire()) {
8 mhRecv_.stop();
9 discard(pktRx_, DROP_MAC_COLLISION);
10 pktRx_ = p;
11 mhRecv_.start(txtime(pktRx_));
12 }
13 else {
14 discard(p, DROP_MAC_COLLISION);
15 }
16 }
17 }

Program 12.17 Function send timer() of class Mac802 11
//˜ns/mac/mac-802_11.cc

1 void Mac802_11::send_timer(){
2 switch(tx_state_) {
3 case MAC_RTS:
4 RetransmitRTS(); break;
5 case MAC_CTS:
6 Packet::free(pktCTRL_);
7 pktCTRL_ = 0; break;
8 case MAC_SEND:
9 RetransmitDATA(); break;
10 case MAC_ACK:
11 Packet::free(pktCTRL_);
12 pktCTRL_ = 0; break;
13 case MAC_IDLE:
14 break;
15 }
16 tx_resume();
17 }

is not stopped before its expiration, function send_timer() will be invoked to
retransmit the packet.

Program 12.17 shows details of the function send_timer(). Lines 2–15
prepares a packet to transmit, and Line 16 calls the function tx_resume() to
resume the pending backoff process. The details of the function tx_resume()
are shown in Program 12.18.

For the packet preparation process, Line 2 determines the value stored in
the variable “tx_state_.” If the value of tx_state_ is either MAC_RTS

12.4 Medium Access Control Layer: IEEE 802.11 329

Program 12.18 Function tx resume() of class Mac802 11
//˜ns/mac/mac-802_11.cc

1 void Mac802_11::tx_resume()
2 {
3 double rTime;
4 if(pktCTRL_)
5 mhDefer_.start(phymib_.getSIFS());
6 else if(pktRTS_)
7 if (mhBackoff_.busy() == 0)
8 mhBackoff_.start(cw_, is_idle(),

phymib_.getDIFS());
9 else if(pktTx_)
10 if (mhBackoff_.busy() == 0) {
11 hdr_cmn *ch = HDR_CMN(pktTx_);
12 struct hdr_mac802_11 *mh = HDR_MAC802_11(pktTx_);
13 if ((u_int32_t) ch->size() <

macmib_.getRTSThreshold()
||(u_int32_t) ETHER_ADDR(mh->dh_ra) ==
MAC_BROADCAST)

14 mhBackoff_.start(cw_, is_idle(),
phymib_.getDIFS());

15 else
16 mhDefer_.start(phymib_.getSIFS());
17 };
18 setTxState(MAC_IDLE);
19 }

or MAC_SEND – meaning either RTS or DATA packets were transmitted and
not acknowledged – Lines 4 and 9 will invoke the relevant functions for packet
retransmission. These two functions first increment the retransmission counter (i.e.,
either “ssrc_” or “slrc_”) by one, check its value against the retry limit, and
retransmit/drop the packet. Note that CTS and ACK packets require no acknowl-
edgment. Therefore, Lines 6–7 and 11–12 simply destroy the packet stored in
*pktCTRL_.

12.4.7 Implementation of Carrier-Sensing, Backoff, and NAV

12.4.7.1 Basic Carrier Sensing

NS2 implements medium sensing and backoff mechanism using timers stored in
variables “mhDefer_” and “mhBackoff_,” respectively. From Table 12.6, these
two timers can be started from within one of five functions of class Mac802_11.
The details about five timer-starter functions are shown in Table 12.7.

Carrier sensing in NS2 takes one of the following three values. First, for a new
transmission, the duration is the addition of DIFS and the current content window

330 12 Wireless Mobile Ad Hoc Networks

Table 12.7 Initiation details for backoff and medium sensing timers

Timer duration when
the MAC layer is

Functions where the
timer is started Timer type IDLE BUSY

Functions invoked before
the timer is started

send(p,h) mhBackoff_ cw_+DIFS cw_ None
check_pktTx()

mhBackoff 0 cw inc cw()
check_pktRTS()

recvAck() mhBackoff_ cw_ cw_ rst_cw()

tx_resume()
– CTS/ACK mhDefer_ SIFS SIFS None
– RTS mhBackoff_ cw_+DIFS cw_+DIFS None
– DATA (short) mhBackoff_ cw_+DIFS cw_+DIFS None
– DATA (long) mhDefer_ SIFS SIFS None

(cw_). This is the case for a transmission of RTS or short DATA packet where
the RTS/CTS handshake is not required before packet transmission. Second,
after the first packet transmission, the Mac802_11 takes over the medium by
reducing the medium sensing time from DIFS to SIFS. This is the case for
CTS packets, ACK packets, and long DATA packets. Finally, after a successful
packet transmission, an ACK packet is received. Here, the Mac802_11 resets
the contention window using the function rst_cw(), and starts backing off for
a period of “cw_” before being able to commence another packet transmission.

The expiration of the above two timers signifies the end of the medium sensing
and backoff periods. At the expiration, the Mac802_11 object is allowed to
transmit one packet. From Table 12.6, at the expiration, backoff and medium sensing
timers execute the functions backoffHandler() and deferHandler(),
respectively of class Mac802_11.

12.4.7.2 Pausing and Resuming Backoff Timer

IEEE 802.11 decreases the backoff counter for every idle time slot. Therefore, the
CCC class BackoffTimer implements the concept of pausing and resuming as
follows:

• Before backoff: The second input argument of function start(cw,idle,
dur) of class BackoffTimer indicates whether the associated Mac802_11
is idle. If so, the backoff process would proceed as normal. Otherwise, the
BackoffTimer would just pause the timer, but would not place a timer
expiration event on the simulation time line.

• Periodic backoff status check: Class Mac802_11 defines a function check
BackoffTimer() which pauses and resumes the backoff timer
“mhBackoff_,” if the Mac802_11 object is busy and idle, respectively. This

12.5 Physical Layer: Physical Network Interfaces and Channel 331

function is called for every time the receiving (i.e., setRxState(s)) and
sending (i.e., setTxState(s)) states of the Mac802_11 change.11

12.4.7.3 Network Allocation Vector

Network Allocation Vector is the duration during which the medium is expected to
be busy. This duration takes one of the two following values:

• An advertised NAV value: Upon overhearing a packet intended to other nodes,
the Mac802_11 object can extract and use a value in the field “dh_duration”
as its NAV value (see Lines 21 and 22 in Program 12.15).

• EIFS: If the received packet is in error or the collision has occurred, the
Mac802_11 cannot extract an NAV value from the packet. In this case, it uses
EIFS as a default NAV value (see Line 13 and 18 in Program 12.15).

Class Mac802_11 defines a function set_nav(nav) to set its NAV value and
to start the NavTimer object. Once expired, the NavTimer object checks whether
the Mac802_11 is idle, and resume the BackoffTimer, if so.

12.5 Physical Layer: Physical Network Interfaces and Channel

Located at the bottom of Fig. 12.2, these two Mobile Node components represent
the physical layer. Physical network interfaces are the hardware (e.g., radio modem,
antenna) which creates and sends out data bits, while channels model the medium
shared by all Mobile Nodes.

12.5.1 Physical Network Interface

Program 12.19 shows declaration of an abstract class Phy and its derived class,
namely, WirelessPhy. These two classes model transmitting and receiving
hardware. The class Phy transmits/receives data from a *node_ object in Line 8 to
the *channel_ object in Line 10, using the bit rate specified by “bandwidth_”
in Line 9. Deriving from class BiConnector, class Phy contains two pointers
“uptarget_” and “downtarget_.” While the “uptarget_” points to the
upper Mobile node component, “downtarget_” is not in use. Class Phy instead
uses its pointer “channel” to refer to the attached channel.

11The state changes from within the functions recv(p,h), collision(p), rx resume(),
tx resume(), and all packet transmission functions.

332 12 Wireless Mobile Ad Hoc Networks

Program 12.19 Declaration of classes Phy and WirelessPhy
//˜ns/mac/phy.h

1 class Phy : public BiConnector {
2 public:
3 Phy();
4 void recv(Packet* p, Handler* h);
5 virtual void sendDown(Packet *p)=0;
6 virtual int sendUp(Packet *p)=0;
7 protected:
8 Node* node_; // The owner of this netif
9 double bandwidth_; // Bit rate in bps
10 Channel *channel_; // The channel for output
11 };

//˜ns/mac/wireless-phy.h
12 class WirelessPhy : public Phy {
13 public:
14 void sendDown(Packet *p);
15 int sendUp(Packet *p);
16 protected:
17 double Pt_; // TX signal power (W)
18 double freq_; // Signal frequency
19 double lambda_; // Signal wavelength (m)
20 double L_; // System loss factor
21 double CSThresh_; // Carrier sense threshold (W)
22 double RXThresh_; // Receive power threshold (W)
23 Antenna *ant_; // Antenna
24 Propagation *propagation_; // Propagation Model
25 Modulation *modulation_; // Modulation module
26 };

The packet reception function recv(p,h) (Line 4) is invoked to receive
packets coming from both upper and lower layers. The class Phy contains two pure
virtual functions – sendDown(p) and sendUp(p) – which shall be overridden
by its derived class WirelessPhy (Lines 5 and 6).

Class WirelessPhy derives from class Phy. It overrides the functions send
Down(p) and sendUp(p), which send the packets downward and upward
(Lines 14 and 15), respectively. It also defines several wireless properties such as
transmission power (Pt_) or transmitting signal frequency (freq_) as shown in
Lines 17 and 18, respectively.

Class WirelessPhy defines two important thresholds: a carrier-sensing thresh-
old (CSThresh_ in Line 21) and a packet reception threshold (RXThresh_
in Line 22). If the received signal is below “CSThresh_,” it is considered
undetectable. If, on the other hand, the signal is greater than “CSThresh_” but
still below “RXThresh_,” it is detectable but the received packet is considered to
be in error. Only when the signal is greater than “RXThresh_” will the packet be
considered successfully received.

12.5 Physical Layer: Physical Network Interfaces and Channel 333

Program 12.20 Declaration of classes Channel and WirelessChannel
//˜ns/mac/channel.h

1 class Channel : public TclObject {
2 public:
3 Channel(void);
4 struct if_head ifhead_; // Listening phy. netif.
5 virtual void recv(Packet* p, Handler*);
6 };

7 class WirelessChannel : public Channel{
8 public:
9 WirelessChannel(void);
10 private:
11 MobileNode *xListHead_; //Listening nodes
12 int numNodes_; //Number of listening nodes
13 void sendUp(Packet* p, Phy *txif);
14 MobileNode **getAffectedNodes(MobileNode *mn,

double radius, int *numAffectedNodes);
15 void addNodeToList(MobileNode *mn);
16 void removeNodeFromList(MobileNode *mn);
17 };

12.5.2 Wireless Channels

CCC class Channel and its derived class WirelessChannel model share
physical medium. As shown in Program 12.20, class Channel has one important
variable “if_head” (Line 4) which is the head of a link list containing all physical
network interface listening on this channel. It has one important function recv(p).

Class WirelessChannel receives packets via the function recv(p,h).
Upon receiving a packet, it configures and returns the packet to all listening
nodes using function sendUp(p,txif), where *txif is a wireless transmitting
physical interface object (Lines 13).

Class WirelessChannel stores all listening nodes in a link list whose head is
stored in its variable “xListHead_” (Line 11). The total number of listening nodes
is denoted by the variable “numNodes_” (Line 12). Class WirelessChannel
also provides a public function getAffectedNodes(mn,radius,num_an)
returns a pointer to a list of Mobile Node affected by transmission of a Mobile Node
*mn whose transmission range is “radius.” The resulting number of affected
nodes are stored in *numAffectedNodes.

12.5.3 Sender Operations at the Physical Layer

On the sender side, a higher-layer Mobile Node component (a Mac object in most
cases) sends a packet to the physical network interface. The network interface sets
up physical layer parameters and forwards the packet to the channel. This operation
begins with the execution of function recv(p,h) of the Class Phy.

334 12 Wireless Mobile Ad Hoc Networks

Program 12.21 Function recv(p) of class Phy, functionsendDown(p) of class
WirelessPhy, and function recv(p,h) of class Channel

//˜ns/mac/phy.cc
1 void Phy::recv(Packet* p, Handler*)
2 {
3 struct hdr_cmn *hdr = HDR_CMN(p);
4 switch(hdr->direction()) {
5 case hdr_cmn::DOWN :
6 sendDown(p); return;
7 case hdr_cmn::UP :
8 if (sendUp(p) == 0) {
9 Packet::free(p);
10 return;
11 } else
12 uptarget_->recv(p, (Handler*) 0);
13 }
14 }

//˜ns/mac/wireless-phy.cc
15 void WirelessPhy::sendDown(Packet *p)
16 {
17 p->txinfo_.stamp((MobileNode*)node(), ant_->copy(),

Pt_, lambda_);
18 channel_->recv(p, this);
19 }

//˜ns/mac/channel.cc
20 void Channel::recv(Packet* p, Handler* h)
21 {
22 sendUp(p, (Phy*)h);
23 }

Program 12.21 shows the details of the function recv(p,h). Lines 3 and 4
determine the packet direction. For downward packet transmission, Line 6 ex-
ecutes “sendDown(p)” and returns. As shown in Lines 15–19, the function
sendDown(p) embeds various information – including the sending node, antenna,
transmission power, and signal wavelength – in the packet header (Line 17), and
sends the packet to the attached “channel_” (Line 18). Upon receiving a packet,
the “channel_” starts executing receiver operations.

12.5.4 Receiver Operations at the Physical Layer

On the receiving side, the process starts when the channel receives a packet via its
function recv(p). From Lines 20–23 of Program 12.21, the function recv(p)
simply calls function sendUp(p,h) of class WirelessChannel to send the
packet upward.

12.5 Physical Layer: Physical Network Interfaces and Channel 335

Program 12.22 Function sendUp(p,tifp) of class WirelessChannel
//˜ns/mac/channel.cc

1 void WirelessChannel::sendUp(Packet* p, Phy *tifp)
2 {
3 Scheduler &s = Scheduler::instance();
4 Phy *rifp = ifhead_.lh_first;
5 Node *tnode = tifp->node();
6 Node *rnode = 0;
7 Packet *newp;
8 double propdelay = 0.0;
9 struct hdr_cmn *hdr = HDR_CMN(p);
10 MobileNode *mtnode = (MobileNode *) tnode;
11 MobileNode **affectedNodes;// **aN;
12 int numAffectedNodes = -1, i;
13 hdr->direction() = hdr_cmn::UP;
14 affectedNodes = getAffectedNodes(mtnode, distCST_ +

5, &numAffectedNodes);
15 for (i=0; i < numAffectedNodes; i++) {
16 rnode = affectedNodes[i];
17 if(rnode == tnode)
18 continue;
19 newp = p->copy();
20 propdelay = get_pdelay(tnode, rnode);
21 rifp = (rnode->ifhead()).lh_first;
22 for(; rifp; rifp = rifp->nextnode())
23 s.schedule(rifp, newp, propdelay);
24 }
25 delete [] affectedNodes;
26 Packet::free(p);
27 }

Shown in Program 12.22, the function sendUp(p,tifp) sends the packet *p
to the all affected nodes. Line 13 changes the packet direction to upward. Line
14 retrieves the list of affected nodes and stores the head pointer in a variable
“affectedNodes.” Lines 15–24 configure and copy the incoming packets to all
applicable network interfaces. Finally, after sending copies of the incoming packet
to all the affected nodes, Line 26 destroys the incoming packet.

The packet copying and forwarding process in Lines 15–24 are executed for
each of the affected nodes. Lines 16–18 skip the loop if the current affected node
(rnode) is the node which sent this packet (tnode). Line 19 creates a copy of
the incoming packet. Line 20 computes propagation delay from the sending node
to the affected node. Lines 21–23 send the copied packet to all physical network
interface of the affected node with propagation delay “propdelay” seconds.

Line 23 does not immediately send out the packet. Rather, it schedules a packet
reception event at the WirelessPhysical object at “propdelay” seconds in
future. When the packet reception event is dispatched, the copied packet is delivered
to the physical network interface via the functionrecv(p) defined in the class Phy
(see Program 12.21).

336 12 Wireless Mobile Ad Hoc Networks

Program 12.23 Function sendUp(p) of class WirelessPhy
//˜ns/mac/wireless-phy.cc

1 int WirelessPhy::sendUp(Packet *p)
2 {
3 PacketStamp s;
4 double Pr; int pkt_recvd = 0;
5 Pr = p->txinfo_.getTxPr();
6 if(propagation_) {
7 s.stamp((MobileNode*)node(), ant_, 0, lambda_);
8 Pr = propagation_->Pr(&p->txinfo_, &s, this);
9 if (Pr < CSThresh_) {
10 pkt_recvd = 0;
11 goto DONE;
12 }
13 if (Pr < RXThresh_) {
14 hdr_cmn *hdr = HDR_CMN(p);
15 hdr->error() = 1;
16 }
17 }
18 if(modulation_) {
19 hdr_cmn *hdr = HDR_CMN(p);
20 hdr->error() = modulation_->BitError(Pr);
21 }
22 pkt_recvd = 1;
23 DONE:
24 return pkt_recvd;
25 }

On the receiver side, the direction of incoming packet is upward. From Program
12.21, Line 8 executes functionsendUp(p) to prepare the packet *p for reception.
The function sendUp(p) returns the number of received packets whose signal is
sufficiently strong. If the number is greater than zero, Line 12 will deliver the packet
to the upper layer objects (e.g., a Mac object). Otherwise, Lines 9 and 10 will destroy
the packet and return.

Program 12.23 shows the details of function sendUp(p) of class Wireless
Phy. Line 5 first retrieves the transmission power from the packet header and stores
the retrieved power in a local variable “Pr.” If the propagation model exists, Line 8
computes the received power and stores the result in a local variable “Pr.” Lines 9
and 13 check whether the received signal power exceeds the predefined thresholds.
If below the carrier sense threshold (i.e., CSThresh_), the signal is considered
undetectable. In this case, Line 10 would set the number of received packets to be
zero. If, on the other hand, the signal is detectable but still less than a receiving
threshold (i.e., RXThresh_), the packet will be marked as in error (Line 15). Next,
if the modulation scheme exists, Line 20 will again check whether the assumed
modulation scheme can tolerate the signal weakness, and update the error flag on
the packet header. If detectable, regardless of whether they are in error, the packet
will be delivered to and handled later by upper layer objects. In this case, the variable
“pkt_recvd” is set to 1.

12.6 An Introduction to Node Mobility 337

Program 12.24 Mobility configuration of mobile nodes
//˜ns/tcl/ex/simple-wireless.tcl

1 set topo [new Topography]
2 $topo load_flatgrid 500 500
3 create-god $val(nn)
4 for {set i 0} {$i < $val(nn) } {incr i} {
5 set node_($i) [$ns_ node]
6 $node_($i) random-motion 0;# disable random

motion
7 }
8 $node_(0) set X_ 5.0
9 $node_(0) set Y_ 2.0
10 $node_(0) set Z_ 0.0
11 $node_(1) set X_ 390.0
12 $node_(1) set Y_ 385.0
13 $node_(1) set Z_ 0.0
14 $ns_ at 50.0 "$node_(1) setdest 25.0 20.0 15.0"
15 $ns_ at 10.0 "$node_(0) setdest 20.0 18.0 1.0"
16 $ns_ at 100.0 "$node_(1) setdest 490.0 480.0 15.0"

12.6 An Introduction to Node Mobility

Introduced earlier in Sect. 12.1.1, class MobileNode defines several attributes
to support mobility. In Program 12.1, the variables “X_,” “Y_,” and “Z_” (Lines
4) represent the current node coordinate. The variable “speed_” (Line 5) is
the node speed in meters per second. These four variables are bound to the
instvars in the OTcl domain with the same name. By default, a Mobile Node
updates its position for every interval of “position_update_interval_”
seconds (Line 10). Line 14 defines a pointer “T_” to a Topography object
which defines the area where the node is moving. Finally, Line 15 stores the
head pointer “link_” of a global link list which contains pointers to all ac-
tive Mobile Nodes. Note that although defined, the “Z” dimension is not used
in NS2.

12.6.1 Basic Mobility Configuration

As shown in Program 12.24, the basic mobility configuration consists of four main
steps:

• Step 1 – Topology creation: Line 1 creates a Topology object and Line 2
identifies the area where the Mobile Node will move during the simulation.

338 12 Wireless Mobile Ad Hoc Networks

• Step 2 – GOD configuration: Line 3 creates a GOD object, and informs the GOD
object that the simulation contains $val(nn) nodes.12

• Step 3 – Location initialization: Lines 8–13 specify node location in all three
dimensions.

• Step 4 – Mobility pattern specification: Line 6 indicates that the mobility model in
this simulation will be deterministic. Lines 14–16 specify how the Mobile Nodes
move using the instprocsetdestf...g of the OTcl class MobileNodewhose
syntax is as follows:

$node setdest <dest_x> <dest_y> <speed>

This OTcl command tells the Mobile Node $node to move toward the des-
tination (<dest_x>,<dest_y>) with speed “<speed>” meters per second,
by setting the variables “destX_,” “destY_,” and “speed_” of the CCC
MobileNode object, respectively.

12.6.2 General Operation Director

GOD stands for General Operation Director (GOD) is an omniscient entity which
knows all the environmental information, especially that which should not made
available to simulation objects. GOD helps simplify system analysis in some case
where we assume perfect information (e.g., perfect channel state information (CSI)).

In mobile networking, GOD precomputes the movement of all the nodes and the
distance (in hops) between two nodes before simulation. At run-time, simulation
objects request the distance between a pair of nodes, only when necessary. This
reduces the need to simulate node movement in real-time, thereby greatly decreasing
the usage of simulation resource (e.g., CPU time and memory). Despite its
usefulness, programmers should be cautious, not to make information available
to simulation objects. For example, Mobile Nodes should not retrieve the network
topology map from GOD. Rather, they should use the underlying routing protocol
for this purpose.

Again, GOD is configured using the following global procedure:

create-god <num_nodes>

where<num_nodes> is the number of mobile nodes in a simulation (see the details
in Lines 1–8 Program 12.25).

Lines 9–19 in Program 12.25 show a part of class God declaration. From Line
16, the variable “instance_” is declared as static to guarantee the uniqueness
of the one and only one GOD object in a simulation. The variable “num_nodes”

12See GOD description in Sect. 12.6.2.

12.6 An Introduction to Node Mobility 339

Program 12.25 The global procedure create-god and the declaration of a CCC
class God

//˜ns/tcl/mobility/com.tcl
1 proc create-god { nodes } {
2 set god [God info instances]
3 if { $god == "" } {
4 set god [new God]
5 }
6 $god num_nodes $nodes
7 return $god
8 }

//˜ns/mobile/god.h
9 class God : public BiConnector {
10 public:
11 int hops(int i, int j){
12 return min_hops[i * num_nodes + j];
13 };
14 int nodes() { return num_nodes; }
15 private:
16 static God* instance_;
17 int num_nodes;
18 int* min_hops; //for i*num_nodes+j
19 };

(Line 17) stores the number of Mobile Nodes in a simulation. The number of hops
between nodes “i” and “j” is stored in the .i�num_nodes/Cjth element of the
array “min_hop” (Line 17).

Class God contains two important public functions. One is function nodes()
which returns the number of Mobile Nodes in the simulation (Line 14). Another
is function hop(i,j) which returns the distance (in hops) between node “i”
and node “j” (Lines 11–13). At run-time, NS2 may invoke these two functions
as needed.

It is important to know, that despite not in use, GOD is a mandatory object
for simulation of a mobile network. During the Network Configuration Phase, an
MAC object reads the number of nodes from the GOD object (see Line 33 in
Program 12.6). If the GOD object is not initialized, a run-time error message will
appear on the screen.

12.6.3 Random Mobility

NS2 supports deterministic and random mobility. Section 12.6.1 shows how deter-
ministic mobility can be set up using an OTcl command setdestf...g of class
MobileNode. This section focuses on the other approach: Random mobility.

340 12 Wireless Mobile Ad Hoc Networks

Program 12.26 Enabling random motion: Function start() of class
MobileNode and function handle(e) of class PositionHandler

//˜ns/common/mobile-node.cc
1 void MobileNode::start()
2 {
3 Scheduler& s = Scheduler::instance();
4 random_position();
5 random_destination();
6 s.schedule(&pos_handle_,&pos_intr_,

position_update_interval_);
7 }

8 void PositionHandler::handle(Event*)
9 {
10 Scheduler& s = Scheduler::instance();
11 node->update_position();
12 node->random_destination();
13 s.schedule(&node->pos_handle_, &node->pos_intr_,

node->position_update_interval_);
14 }

Random mobility can be deactivated/activated using the following two OTcl
commands of class MobileNode:

$node random-motion <flag>
$node start

The upper OTcl command stores <flag> in the variable “random_motion_” of
class MobileNode. The lower invokes the function start() of the
MobileNode object, whose details are shown in Program 12.26.

From within the function start(), Lines 4 and 5 invoke functions
random_position() and random_destination(), respectively. These
two functions randomize the current location and the destination, respectively, of the
Mobile Node. Line 6 sets the position handler “pos_handle_” (see also Line 11
in Program 12.1) to expire after a period of “position_update_interval_.”
At the expiration, the process repeats by updating node position, computing a
randomized destination, and setting the position handler to expire after the same
interval (Lines 8–14).

12.6.4 Mobility and Traffic Generators: Standalone Helper Utility

The benefits of deterministic mobility is that programmers have full control over
where and how the Mobile Nodes move during simulation. But as the number of
Mobile Nodes increases, it becomes increasingly tedious to specify destinations for
all the nodes. Although random mobility could solve this problem, it does not allow
programmers to review or control how the Mobile Nodes move.

12.6 An Introduction to Node Mobility 341

12.6.4.1 Mobility Generation Utility “setdest”

NS2 provides a “setdest” shell utility13 which creates deterministic mobility
statements, which can be inserted into a Tcl simulation script.

Written in CCC, the executable “setdest” is located in the directory ˜ns/indep-
utils/cmu-sen-gen/setdest. NS2 provides two versions of the utility:

• Version 1 (developed by Carnegie Mellon University):

>>./setdest -v <version> -n <num_nodes> -t <sim_time>
-M <max_speed> -p <pause_time>
-x <max_x> -y <max_y>

• Version 2 (developed by University of Michigan)

>>./setdest -v <version> -n <num_nodes> -t <sim_time>
-s <speed_type> -m <min_speed> -M <max_speed>
-P <pause_type> -p <pause_time>
-x <max_x> -y <max_y>

– Speed: Here <speed_type> can be either “uniform” or “normal,”
for uniform or normal distributions, respectively. In case of “normal,” the
randomized speed values are taken from a truncated normal distribution with
mean s and standard deviation �s , where

s D max speedCmax speed
2

; �s D max speed�max speed
4

– Pause time: Here <pause_type> can be “constant” or “uniform.”
These two cases set the pause time to be a constant value of pause_time
and the value uniformly distributed within Œ0;pause_time�, respectively.

Example 12.2. Consider the following shell statement:

>>./setdest -n 2 -p 10 -M 10 -t 1000 -x 500 -y 500
nodes: 2, pause: 10.00, max speed: 10.00,

max x: 500.00, max y: 500.00
#
$node_(0) set X_ 278.612941841477
$node_(0) set Y_ 236.713393413552
$node_(0) set Z_ 0.000000000000
$node_(1) set X_ 279.050029009209
$node_(1) set Y_ 458.932826402138
$node_(1) set Z_ 0.000000000000
$god_ set-dist 0 1 1
$ns_ at 10.00 "$node_(0) setdest 173.450 234.76 5.03"
$ns_ at 10.00 "$node_(1) setdest 13.85 99.32 9.88"

13This utility has the same name as the OTcl command setdestf...g of class
Node/MobileNode.

342 12 Wireless Mobile Ad Hoc Networks

$ns_ at 30.87 "$node_(0) setdest 173.45 234.76 0.00"
...
$ns_ at 992.49 "$node_(0) setdest 160.96 161.81 0.00"

where the first line is provided by the user, and the subsequent lines are the mobility-
related NS2 statements created by the utility “setdest.”

This statement creates mobility statements for two Mobile Nodes with pause time
of 10 s (constant). The maximum speed is 10 m per second, and the simulation time
is 1,000 s. The topology ranges from 0 to 500 (in meter) on both the X -axis and the
Y -axis. �

12.6.4.2 Traffic Generation Utility “cbrgen.tcl”

NS2 also provides another independent utility “cbrgen.tcl,” written in Tcl, to
create traffic-related OTcl statements:

>>ns cbrgen.tcl -type <cbr|tcp> -nn <num_nodes>
-seed <seed> -mc <max_conn> -r <rate>

Unlike the mobility generation utility, this utility “cbrgen.tcl” is an NS
script and needs to be invoked through the interpreter, which, in this case, is the
executable “ns.” Despite its name, this utility can create both TCP and CBR traffic
by specifying either “cbr” or “tcp” after the option -type. Other options include
the number of Mobile Nodes in the simulation (<num_nodes>), seed (<seed>),
the maximum of connections that will be generated (<max_conn>), and the data
rate in bps for CBR traffic (<rate>). An example use of this utility is shown below.

Example 12.3. Consider the following shell statement:

>>ns cbrgen.tcl -type cbr -nn 10 -seed 1.0 -mc 45
-rate 4.0

nodes: 10, max conn: 45, send rate: 0.25, seed: 1.0
1 connecting to 2 at time 2.5568388786897245
set udp_(0) [new Agent/UDP]
$ns_ attach-agent $node_(1) $udp_(0)
set null_(0) [new Agent/Null]
$ns_ attach-agent $node_(2) $null_(0)
set cbr_(0) [new Application/Traffic/CBR]
$cbr_(0) set packetSize_ 512
$cbr_(0) set interval_ 0.25
$cbr_(0) set random_ 1
$cbr_(0) set maxpkts_ 10000
$cbr_(0) attach-agent $udp_(0)
$ns_ connect $udp_(0) $null_(0)
$ns_ at 2.5568388786897245 "$cbr_(0) start"
#
4 connecting to 5 at time 56.333118917575632

12.7 Chapter Summary 343

set udp_(1) [new Agent/UDP]
...
$ns_ connect $udp_(8) $null_(8)
$ns_ at 31.464945688594575 "$cbr_(8) start"
#
#Total sources/connections: 6/9

where, again, the first and the subsequent lines are supplied by the users and the
resulting traffic-related NS2 statements are created by the utility “cbrgen.tcl.”

The first statement specifies CBR traffic for ten Mobile Nodes. The seed is set to
1.0. The maximum number of connections is 45. The CBR rate is 4.0 bps. �

12.6.4.3 Working with Scenario Files

While the above two standalone utilities are useful, it is quite hard to use them
because the results are displayed on the screen. It is more convenient to redirect
the output to a scenario file using “>” or “>>” instructions (see Sect. A.3.5). For
example, the following two shell statements can be executed from the directory
˜ns/indep-utils/cmu-sen-gen/setdest.

>>./setdest -n 2 -p 10 -M 10 -t 1000 -x 500 -y 500 >
myfile

>>ns cbrgen.tcl -type cbr -nn 2 -seed 1.0 -mc 4
-rate 4.0 > myfile

These two statements create and store NS2 mobility and traffic statements in
scenario files whose name is “myfile.” Examples of built-in scenario files can
be found in the directory ˜ns/tcl/mobility/scene.

We conclude this section with the summary of how to configure mobility/traffic
using scenario files.

Step 1: Run the stand-alone utilities to creates scenario files (e.g., myfile).
Step 2: Configure a Tcl Simulation Script as usual.
Step 3: Source the created scenario files into the Tcl Simulation Script using the

procedure “source” (e.g., “source myfile,” see also Sect. 3.7).14

12.7 Chapter Summary

This chapter covers another network simulation domain: wireless networking.
Central to this domain are Mobile Nodes characterized by packet forwarding
mechanism using wireless channels and node mobility. In the OTcl domain,

14Caution: It is important to validate the path to the scenario files. Failing to do will result in a
“file not found” error.

344 12 Wireless Mobile Ad Hoc Networks

a Mobile Node (class Node/MobileNode) is a composite object – consisting
of the following key objects: routing (e.g., AODV), link layer, interface queue
(e.g., prioritize queues), Medium Access Control (MAC) protocol (e.g., IEEE
802.11), physical network interface, and shared channel objects. NS2 supports
both deterministic and random mobility. NS2 also provides two standalone utility
– namely setdest and cbrgen.tcl – to facilitate the network configuration
process.

12.8 Exercises

1. Consider Regular Nodes and Mobile Nodes. What are their differences? Where
do Mobile Nodes implement wireless links and mobility? Draw network
diagrams to support your answer.

2. Explain the packet flow in a wireless network.

a. When and who is responsible for packet creation/destruction?
b. Explain the sequence of objects which receive and forward the packets.
c. What happens when the packet reaches a wireless channel?
d. What do the source node, the destination node, and the intermediate nodes

do?

3. What are the two key steps to create a Mobile Node? What are the purposes of
these two key steps?

4. What is a routing loop problem? Why is it a problem? Suggest a way to solve
this problem.

5. Explain forward path setup and backward path setup in AODV.
6. How does NS2 determine transmission power, received power, and whether the

received packets are in error? Show the related OTcl/CCC statements.
7. What are the roles of timers in the NS2 IEEE 802.11 module?
8. What are the purposes of the variables “pktRx_” and “pktTx_” of class Mac

and the variables “pktRTS_” and “pktCTRL_” of class Mac802_11.
9. How does NS2 implement self-interference in the IEEE 802.11 MAC protocol?

10. Show few examples of OTcl statements which set up deterministic/random
mobility for a given Mobile Node $n1. Explain the OTcl statements you
provide.

11. Use the NS2 independent utilities to create the following OTcl statements:

a. Five Mobile Nodes, each with speed uniformly distributed between 10 and
20 m s�1, and constant pause time of 20 s. The geographical area is set to be
700 on both X -axis and Y -axis.

b. For the above settings, create at most four TCP connections.

Test your OTcl statements by running simulation.

Chapter 13
Developing New Modules for NS2

So far, we have explained the details of the basic components of NS2 including their
functionalities, internal mechanisms, and configuration methods. In this chapter,
we demonstrate how new NS2 modules are created, configured, and incorporated
through two following examples. One is an Automatic Repeat reQuest (ARQ)
protocol, which is a mechanism to improve transmission reliability of a communi-
cation link by means of packet retransmission. Another is a packet scheduler which
arranges the transmission sequence of packets from multiple incoming data flows.

13.1 Automatic Repeat reQuest

ARQ is a method of handling communication errors by packet retransmission. An
ARQ transmitter (i.e., a transmitting node which implements an ARQ protocol) is
responsible for transmitting data packets and retransmitting the lost packets. An
ARQ receiver (i.e., a receiving node which implements an ARQ protocol), on the
other hand, is responsible for receiving packets and (implicitly or explicitly) inform-
ing the transmitter of the transmission result. It returns an ACK (acknowledgment)
message and/or a NACK (negative acknowledgment) message to the transmitter
if a packet is successfully or unsuccessfully (respectively) received. Based on the
received ACK/NACK pattern, the ARQ transmitter decides whether to retransmit
the lost packet or to transmit a new packet.

This section focuses on a limited-persistence stop-and-wait ARQ protocol.
This type of ARQ protocols is characterized by the two following properties.
With limited-persistence, an ARQ transmitter gives up the retransmission if the
transmission fails consecutively for a certain number of times. Another property
is “stop-and-wait.” Here, an ARQ transmitter transmits a packet and waits for an
acknowledgment from the corresponding ARQ receiver before commencing another
(lost or new) packet transmission.

In the following, we first design the NS2 modules for a limited-persistence stop-
and-wait ARQ protocol with an error-free and delay-free (i.e., immediate) feedback

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 13, © Springer Science+Business Media, LLC 2012

345

346 13 Developing New Modules for NS2

Program 13.1 Binding codes for ARQ transmitters, ARQ ACK transmitter, and
ARQ NACK transmitter

// arq.cc
1 #include "arq.h"
2 static class ARQTxClass: public TclClass {
3 public:
4 ARQTxClass() : TclClass("ARQTx") {}
5 TclObject* create(int, const char*const*) {
6 return (new ARQTx);
7 }
8 } class_arq_tx;
9 static class ARQAckerClass: public TclClass {
10 public:
11 ARQAckerClass() : TclClass("ARQAcker") {}
12 TclObject* create(int, const char*const*) {
13 return (new ARQAcker);
14 }
15 } class_arq_acker;
16 static class ARQNackerClass: public TclClass {
17 public:
18 ARQNackerClass() : TclClass("ARQNacker") {}
19 TclObject* create(int, const char*const*) {
20 return (new ARQNacker);
21 }
22 } class_arq_nacker;

channel in Sect. 13.1.1. Sections 13.1.2 and 13.1.3 demonstrate the CCC and OTcl
implementations, respectively. Finally, in Sect. 13.1.4, we extend the ARQ modules
for an error-free feedback channel with nonzero processing and propagation delay.
Implementation of an ARQ protocol with an error prone feedback channel is left as
an exercise for the readers.

13.1.1 The Design

13.1.1.1 Architecture

ARQ aims at improving transmission reliability on a lossy link. In this section,
we shall build ARQ modules on top of a lossy link defined in Sect. 15.3 (see also
Fig. 15.7). In particular, we shall incorporate three following ARQ modules (see
class binding codes in Program 13.1) into a SimpleLink object as shown in
Fig. 13.1.

• ARQ Transmitter (tARQ_): Keeps track of transmission result (by waiting for
messages from ARQ ACK/NACK transmitter) and retransmit the lost packet if
necessary. ARQ transmitters are defined in CCC class ARQTx bound to the OTcl
class with the same name.

13.1 Automatic Repeat reQuest 347

Fig. 13.1 Architecture of a SimpleLink object with ARQ-related modules

• ARQ ACK transmitter (acker_): Sends an ACK message to the ARQ
transmitter if the packet is successfully transmitted. ARQ ACK transmitters are
defined in CCC class ARQAcker bound to the OTcl class with the same name.

• ARQ NACK transmitter (nacker_): Sends a NACK message to the ARQ
transmitter if the packet is not successfully transmitted. ARQ NACK transmitters
are defined in CCC class ARQNacker bound to the OTcl class with the same
name.

13.1.1.2 Packet Forwarding Mechanism

Consider Fig. 13.1. When “tARQ_” receives a packet from “queue_,” it passes
the packet to its downstream objects. When “link_errmodule_” receives the
packet, it simulates packet error. If the packet is in error, it will be forwarded to
“nacker_.” Otherwise, it will be forwarded to “acker_.”

Upon receiving a packet, “acker_” sends an ACK message to the ARQ
transmitter, and forwards the packet to its downstream object, “ttl_.” On the other
hand, “nacker_,” upon receiving a packet, sends an NACK message to the ARQ
transmitter. To simplify implementation, we let the “nacker_” send the packet
(which was simulated to be in error) back to the ARQ transmitter.

When the ARQ transmitter receives an ACK message or an NACK message, it
prepares a new packet for (re)transmission. If an ACK message is received, it will
fetch another packet from “queue_.” On the other hand, if an NACK message is
received, it will decide whether to retransmit or drop the packet. In the latter case, a
new packet will be fetched from the “queue_.” After the preparation is complete,
the packet forwarding mechanism proceeds as discussed above.

13.1.1.3 Callback Mechanism

In Sect. 7.3.3, we discuss the callback mechanism of a SimpleLink object. The
LinkDelay object “link_” asks the Scheduler to transmit a callback message to
“queue_” when the packet departure process is complete.

348 13 Developing New Modules for NS2

Program 13.2 Declaration of classes ARQTx and ARQHandler
// arq.h
23 #include "connector.h"
24 Class ARQTx;
25 enum ARQStatus {IDLE,SENT,ACKED,RTX,DROP};
26 class ARQHandler : public Handler {
27 public:
28 ARQHandler(ARQTx& arq) : arq_tx_(arq) {};
29 void handle(Event*);
30 private:
31 ARQTx& arq_tx_;
32 };
33 class ARQTx : public Connector {
34 public:
35 ARQTx();
36 void recv(Packet*, Handler*);
37 void nack(Packet*);
38 void ack();
39 void resume();
40 protected:
41 ARQHandler arqh_;
42 Handler* handler_;
43 Packet* pkt_;
44 ARQStatus status_;
45 int blocked_;
46 int retry_limit_;
47 int num_rtxs_;
48 };

With the introduction of ARQ modules, we will have “link_” call back
to “tARQ_” rather than “queue_.” In this case, a callback signal resumes the
pending retransmission process, rather than the packet departure process. When the
retransmission completes, “tARQ_” fetches another packet from “queue_,” and
continues the regular packet transmission process.

13.1.2 CCC Implementation

We implement the ARQ mechanism using five CCC classes. Apart from three
main classes – ARQTx, ARQAcker, and ARQNacker – introduced in the previous
section, two helper classes include

• Class ARQHandler: A handle for callback mechanism.
• Class ARQRx: The base class for classes ARQAcker and ARQNacker.

The declaration of all five classes are shown in Programs 13.2 and 13.3.

13.1 Automatic Repeat reQuest 349

Program 13.3 Declaration of classes ARQRx, ARQAcker, and ARQNacker
// arq.h
49 class ARQRx : public Connector {
50 public:
51 ARQRx() {arq_tx_=0; };
52 int command(int argc, const char*const* argv);
53 protected:
54 ARQTx* arq_tx_;
55 };
56 class ARQAcker : public ARQRx {
57 public:
58 ARQAcker() {};
59 virtual void recv(Packet*, Handler*);
60 };
61 class ARQNacker : public ARQRx {
62 public:
63 ARQNacker() {};
64 virtual void recv(Packet*, Handler*);
65 };

13.1.2.1 Class ARQTxs

Class ARQTx represents ARQ transmitters. Derived from class Connector, it can
be used to connect two NsObjects.1 The main CCC variables of class ARQTx are
shown below:

num_rtxs_ Current number of packet retransmissions; It is increased
by one for every transmission failure, and is reset to zero
when a new packet arrives (e.g., due to a packet drop or a
transmission success).

retry_limit_ The retry limit; The ARQ protocol will retransmit the lost
packet as long as num_rtxs_<=retry_limit_.

blocked_ Indicates whether the ARQTx object is blocked. If
blocked, the ARQTx object will not transmit any packet.

arqh_ A handler which is passed to the downstream object
handler_ A handler of an upstream object (which is a

QueueHandler object in our case)
status_ Current status of the ARQTx object defined in Line 25 of

Program 13.2
pkt_ A pointer to the packet which is being transmitted.

Class ARQTx defines the four following functions:

1In Fig. 13.1, we use an ARQTx object “tARQ ” to connect a Queue object “queue ” with a
LinkDelay object “link .”

350 13 Developing New Modules for NS2

recv(p,h) Receive packet *p from an upstream object.
ack() Process an ACK message; This function invoked by an

ARQAcker object.
nack(p) Process a NACK message; This function invoked by an

ARQNacker object.
resume() Resume the operation from the “blocked” state; This

function is called by the downstream LinkDelay object
when the pending packet transmission is complete.

13.1.2.2 Class ARQHandler

This helper class facilitates the callback mechanism. From Line 31 in Program 13.2,
it has only one variable “arq_tx_” which is the reference to the ARQTx object.
During the callback process, an ARQHandler object uses this reference to tell the
ARQTx object to resume the pending retransmission process.

13.1.2.3 Classes ARQRx, ARQAcker, and ARQNacker

Another part of ARQ implementation is an ARQ receiver, which is responsible for
reacting to the ARQ transmitter. Represented by a CCC class ARQRx, an ARQ
receiver contains a pointer “arq_tx_” (see Line 54 in Program 13.3) to an ARQ
transmitter (i.e., an ARQTx object). This pointer is initialized to zero at the object
construction (Line 51), and is associated with an ARQ transmitter by the OTcl
command attach-ARQTx (Program 13.6).

There are two classes derived from class ARQRx: classes ARQAcker and
ARQNacker. These two classes are responsible for sending ACK and NACK
messages, respectively, to the associated ARQ transmitter.

13.1.2.4 Callback Mechanism

Consider the program related to a callback process in Program 13.4. The process
begins when a Queue object sends a packet to an ARQTx object via function
recv(p,h) (Lines 72–76). The ARQTx object stores the handler “h” in the class
variable “handler_.” This handler will be used to fetch another packet from the
Queue object when the retransmission process completes.

Next, the ARQTx object sends the packet as well as its own handler “arqh_”
to its downstream LinkDelay object. Again, the LinkDelay object will put
this handler “arqh_” on the simulation timeline at the time when the packet
transmission completes. At the firing time, the Scheduler calls the default action
(i.e., the function handle(e)) of the handler “arqh_.” From Lines 102–105, the
ARQHandler object invokes function resume() of the associated ARQTx object

13.1 Automatic Repeat reQuest 351

Program 13.4 Functions of classes ARQTx and ARQHandler
// arq.cc

66 ARQTx::ARQTx() : arqh_(*this)
67 {
68 num_rtxs_ = 0; retry_limit_ = 0; handler_ = 0;
69 pkt_ = 0; status_ = IDLE; blocked_ = 0;
70 bind("retry_limit_", &retry_limit_);
71 }
72 void ARQTx::recv(Packet* p, Handler* h)
73 {
74 handler_ = h; status_ = SENT; blocked_ = 1;
75 send(p,&arqh_);
76 }
77 void ARQTx::ack()
78 {
79 num_rtxs_ = 0; status_ = ACKED;
80 }
81 void ARQTx::nack(Packet* p)
82 {
83 num_rtxs_++; pkt_=p;
84 if(num_rtxs_ <= retry_limit_)
85 status_ = RTX;
86 else
87 status_ = DROP;
88 }
89 void ARQTx::resume()
90 {
91 blocked_ = 0;
92 if (status_ == ACKED) {
93 status_ = IDLE; handler_->handle(0);
94 } else if (status_ == RTX) {
95 status_ = SENT; blocked_ = 1;
96 send(pkt_,&arqh_);
97 } else if (status_ == DROP) {
98 status_ = IDLE; drop(pkt_);
99 handler_->handle(0);
100 }
101 }
102 void ARQHandler::handle(Event* e)
103 {
104 arq_tx_.resume();
105 }

(i.e., ARQ transmitter) “arq_tx_.” When the function resume() is invoked, the
ARQTx object checks the retransmission status. If the ACK message is received
(i.e., ACKED in Line 92) or the limit on the number of allowable retransmissions
is exceeded (i.e., DROP in Line 97), the ARQTx object will fetch another packet

352 13 Developing New Modules for NS2

Program 13.5 Functions of classes ARQRx, ARQAcker, and ARQNacker
// arq.cc
106 void ARQAcker::recv(Packet* p, Handler* h)
107 {
108 arq_tx_->ack();
109 send(p,h);
110 }
111 void ARQNacker::recv(Packet* p, Handler* h)
112 {
113 arq_tx_->nack(p);
114 }

by executing handler_->handle(0) (Lines 93 and 99).2 Otherwise, it will
retransmit the packet by executing send(pkt_,&arqh_) (Line 96).

13.1.2.5 Packet Forwarding Mechanism

Consider Fig. 13.1. The main packet forwarding mechanism is to pass the packet
from “queue_,” to “tARQ_,” to “link_,” and to “link_errmodule_,” re-
spectively. Then, if the packet is simulated to be and not to be in error, it will
be forwarded to nacker_ and acker_ whose classes are ARQNacker and
ARQAcker, respectively.

Consider Program 13.5. That an ARQAcker object receives a packet im-
plies successful packet transmission. In this case, the ARQAcker object sends
an ACK message to the associated ARQTx object “arq_tx_” (by executing
arq_tx_->ack() in Line 108). Then, it forwards the packet to its downstream
object (by executing send(p,h) in Line 109).

On the other hand, that an ARQNacker object receives a packet implies a packet
loss. In this case, the Nacker object sends a NACK message to the associated
ARQTx object “arq_tx_” (by executing arq_tx_->nack(p) in Line 113),
passing the packet in error “p” as an input argument. In the next section, we shall see
what an ARQTx would do when receiving an ACK message or a NACK message.

13.1.2.6 Processing ACK and NACK Messages

Figure 13.2 and Program 13.4 show details of how an ARQ transmitter processes
ACK/NACK messages. Upon receiving an ACK message (via function ack() in
Lines 77–80), the ARQTx object resets the retransmission limit “num_rtxs_” to
zero and sets the status to ACK. If an NACK message is received (via function

2The variable “handle ” stores the QueueHandler object associated with the upstream Queue
object.

13.1 Automatic Repeat reQuest 353

Program 13.6 Defintion of the OTcl command attach-ARQTx
115 int ARQRx::command(int argc, const char*const* argv)
116 {
117 Tcl& tcl = Tcl::instance();
118 if (argc == 3) {
118 if (strcmp(argv[1], "attach-ARQTx") == 0) {
119 if (*argv[2] == ’0’) {
120 tcl.resultf("Cannot attach NULL ARQTx\n");
121 return(TCL_ERROR);
122 }
123 arq_tx_ = (ARQTx*)TclObject::lookup(argv[2]);
124 return(TCL_OK);
125 }
126
127 } return Connector::command(argc, argv);
128 }

Fig. 13.2 Flowcharts of functions (a) ack() and (b) nack(p) of class ARQTx

nack(p) in Lines 81–88), the ARQTx object increments the number of retrans-
missions (i.e., “num_rtxs_”) attempted so far. If the number of retransmissions
is within the limit, it will set its status to RTX. Otherwise, the status will be set to
DROP. In both the cases, a pointer to the packet “p” simulated to be in error is stored
in the class variable “pkt_” for future use.

354 13 Developing New Modules for NS2

Fig. 13.3 Flowchart of the
function resume() of class
ARQTx

resume()

blocked_=0;

status_

status_ = SENT;
blocked_ = 1;

send(pkt_,&arqh_);

return

ACKED RTXDROP

drop(pkt_);

status_ = IDLE;
handler_->handle(0);

13.1.2.7 Actions and Status of ARQ Transmitters

Upon receiving ACK/NACK messages, the ARQTx object does not immediately
transmit, retransmit, or drop the packet, since there might be packets in transit. At
the moment, it records the transmission result in the class variable “status_,”
and waits for a callback signal from the LinkDelay object before taking further
actions.

Figure 13.3 shows three possibilities taken from within the function resume(),
when a callback signal is received (see Lines 89–101 in Program 13.4).

If the “status_” was set to RTX, the lost packet is retransmitted here.3 If
the “status_” was set to DROP, the packet “pkt_” is destroyed here. If the
“status_” was set to either ACK or DROP, the ARQTx will fetch another packet
from the Queue object by executing handler_->handle(0).4

13.1.3 OTcl Implementation

In the OTcl domain, we need to create ARQTx, ARQAcker, and ARQNack
objects–“tARQ_”, “acker_,” and “nacker_,” respectively, and insert them into a
SimpleLink object as shown in Fig. 13.1. Program 13.7 shows two OTcl instprocs
developed for this purpose.

3The packet in error was earlier stored in the class variable “pkt ” (see Line 83 in Program 13.4).
4Again, the variable “handle ” stores a pointer to the QueueHandler object associated with
the upstream Queue object.

13.1 Automatic Repeat reQuest 355

Program 13.7 OTcl Instprocs for an ARQ Module
//˜ns/tcl/lib/ns-link.tcl

1 SimpleLink instproc link-arq { limit } {
2 $self instvar link_ link_errmodule_ queue_ drophead_
3 $self instvar tARQ_ acker_ nacker_
4 set tARQ_ [new ARQTx]
5 set acker_ [new ARQAcker]
6 set nacker_ [new ARQNacker]
7 $tARQ_ set retry_limit_ $limit
8 $acker_ attach-ARQTx $tARQ_
9 $nacker_ attach-ARQTx $tARQ_
10 $queue_ target $tARQ_
11 $tARQ_ target $link_errmodule_
12 $link_errmodule_ target $acker_
13 $acker_ target $link_
14 $tARQ_ drop-target $drophead_
15 $link_errmodule_ drop-target $nacker_
16 }

//˜ns/tcl/lib/ns-lib.tcl
17 Simulator instproc link-arq {limit from to} {
18 set link [$self link $from $to]
19 $link link-arq $limit
20 }

13.1.3.1 Instproc SimpleLink::link-arqflimitg

This instproc creates the ARQ-related objects and configures the SimpleLink
object as shown in Fig. 13.1. Lines 4–6 create instvars “tARQ_,” “acker_,”
and “nacker_.” Line 7 stores the input argument “limit” in the instvar
“retry_limit_” of “tARQ_.” From Line 70 in Program 13.4, the instvar
“retry_limit_” is bound to the CCC class variable with the same name. This
variable indicates the maximum number of retransmissions for an erroneous packet.

Lines 8 and 9 associate “acker_” and “nacker_,” respectively, with “tARQ_,”
using the OTcl command attach-ARQTx. Defined in CCC class ARQRx, this
OTcl command stores the input argument (i.e., “tARQ_” in our case) in the CCC
class variable “arq_tx_” (see Program 13.6). Finally, Lines 10–15 configure the
rest of the components as shown in Fig. 13.1.

13.1.3.2 Instproc Simulator::link-arqflimit from tog

From the Tcl simulation script, the Simulator object is readily accessible, while
SimpleLink objects are not. Acting as a programming interface from the Tcl
simulation script, this instproc (Lines 17–20) invokes the instproclink-arqf...g

356 13 Developing New Modules for NS2

of the SimpleLink object. In particular, it creates and configures ARQ modules
of the link connecting Node “from” to Node “to.” The input argument “limit”
here is used as the retry limit of the ARQ module.

Example 13.1. We now setup an experiment to show the impact of a limited-
persistence stop-and-wait ARQ protocol on TCP throughput. Our experiment is
based on Sect. 10.1. We insert an error module with 0.3 error probability in the
link connecting Node n1 to Node n3, implement a limited-persistence ARQ over
this lossy link, vary the retry limit from 0 to 3, and plot TCP throughput versus the
retry limit.

Tcl Simulation Script

We insert the following codes in the Tcl simulation script file “tcp.tcl” in
Sect. 10.1:

//tcp.tcl
1 set em [new ErrorModel]
2 $em set rate_ 0.3
3 $em unit pkt
4 $em ranvar [new RandomVariable/Uniform]
5 $em drop-target [new Agent/Null]
6 $ns link-lossmodel $em $n1 $n3

7 $ns link-arq 3 $n1 $n3

8 proc show_tcp_seqno {} {
9 global tcp
10 puts "The final tcp sequence number is

[$tcp set t_seqno_]"
11 }

12 $ns at 0.0 "$ftp start"
13 $ns at 100.0 "show_tcp_seqno"
14 $ns at 100.1 "$ns halt"
15 $ns run

Here, Lines 1–6 create an error module with packet error probability 0.3, and
insert the created error module immediately after the instvar “link_” of the
SimpleLink object connecting Node n1 and Node n3. Line 7 creates and
configures ARQ-related components with retry limit of 3. We run the simulation
for 100.1 s and collect the results when the simulation time is 100.0 s. After running
the script file “tcp.tcl” above, the following result appears on the screen:

>> ns tcp.tcl
>> The final tcp sequence number is 37587

13.1 Automatic Repeat reQuest 357

Fig. 13.4 Impact of the retry
limit of a limited persistent
ARQ protocol on TCP
throughput

0 1 2 3
0

50

100

150

200

250

300

350

400

Retry limit

T
C

P
 th

ro
ug

hp
ut

 (
pa

ck
et

s
se

co
nd

s)

TCP throughput in packets per second is computed as the final TCP sequence
number divided by the simulation time. We vary the retry limit (in Line 7 above)
to f0; 1; 2; 3g, and plot TCP throughput in Fig. 13.4. Clearly, increasing retry limit
increases link reliability and therefore increases TCP throughput. �

13.1.4 ARQ Under a Delayed (Error-Free) Feedback Channel

We have developed an NS2 module for an ARQ protocol with an immediate and
error-free feedback. This section extends the modules developed earlier for a non-
immediate error-free feedback channel. The extension for a non-immediate and
error-prone feedback channel is left for the reader as an exercise.

We modify the ARQ modules in Sects. 13.1.2–13.1.3 using the Scheduler. The
idea is to delay the transmission of ACK/NACK messages for a certain amount of
time. The modification is shown in Program 13.8.

13.1.4.1 Function recv(p,h) of ARQ Receivers

We move the function recv(p,h) from classes ARQAcker and ARQNacker to
their base class ARQRx. The new function recv(p,h) is defined in Lines 1–8.

The delay is implemented by scheduling packet reception events on the sim-
ulation timeline after “delay_” seconds (see Sect. 4.3 for details about the
function schedule(...)). At the firing time, the Scheduler will invoke function
handle(e) associated with the first input argument of the function
schedule(...), i.e., the pointer “this” (see Line 5). Here, the pointer “this”
points to either an ARQAcker object or an ARQNacker object, whose details are

358 13 Developing New Modules for NS2

Program 13.8 Modification in file arq.cc for ARQ with error-free delay feedback
channels

//arq.cc
1 void ARQRx::recv(Packet* p, Handler* h)
2 {
3 pkt_ = p; handler_ = h;
4 if (delay_ > 0)
5 Scheduler::instance().schedule(this, &event_,

delay_);
6 else
7 handle(&event_);
8 }
9 void ARQAcker::handle(Event* e)
10 {
11 arq_tx_->ack();
12 send(pkt_,handler_);
13 }
14 void ARQNacker::handle(Event* e)
15 {
16 arq_tx_->nack(pkt_);
17 }
18 ARQRx::ARQRx()
19 {
20 pkt_ = 0; handler_ = 0; delay_ = 0;
21 bind("delay_", &delay_);
22 }

shown in Lines 9–13 and 14–17, respectively. These two functions perform the same
actions as those in the function recv(p,h) in Sect. 13.1.2.

13.1.4.2 Binding Variable delay

In the constructor, we bind the variable “delay_” to the OTcl instvar with the same
name (see Lines 18–22).

13.1.4.3 Configuration in the OTcl Domain

In the OTcl domain, we also need to include the two following lines into the instproc
link-arqflimitg of class SimpleLink (e.g., after Line 6 in Program 13.7):

$acker_ set delay_ [$self delay]
$nacker_ set delay_ [$self delay]

Here, the link delay in the forward direction (returned from $self delay)
is used as the ARQ feedback delay for both ACK and NACK generators (i.e.,
“acker_” and “nacker_,” respectively).

Example 13.2. Compare the TCP throughputs for the cases with an immediate
feedback channel and a delayed feedback channel in the link layer ARQ protocols.

13.2 Packet Scheduling for Multi-Flow Data Transmission 359

Here, we use the results in Example 13.1 as a benchmark. When rerunning the Tcl
simulation script in Example 13.1 under the ARQ protocol with a delayed feedback
channel, the following result should appear on the screen:

>> ns tcp.tcl
>> The final tcp sequence number is 20596

which is less than 37587 in Example 13.1. The readers are encouraged to experiment
with different input parameters (e.g., feedback delay or retry limit) to gain more
insights into the impact of link layer ARQ protocols on TCP performance. �

13.2 Packet Scheduling for Multi-Flow Data Transmission

Packet scheduling is a mechanism to arrange transmission sequence of incoming
packets. For example, a round-robin (RR) packet scheduler transmits packets from
different flows in sequence. This section shows the implementation of a round-robin
packet scheduler in NS2.

13.2.1 The Design

We modify the packet scheduler by adding few components into a SimpleLink
object as shown in Fig. 13.5.

13.2.1.1 Architecture of a SimpleLink with a Packet Scheduler

The key modifications are as follows:

• Source traffic: We assume that each traffic source tags packets with its unique
flow ID.

• Flow classifiers: Packets from different sources are mixed as they enter a
SimpleLink object. These unclassified packets get classified by a flow clas-
sifier. Packets with the same flow ID are transmitted to the same place.

• A queue array: A dedicated queue is provided for packets whose flow IDs are the
same (i.e., generated from the same source).

• The packet scheduler: The packet scheduler fetches and transmits packets from
the queue array. It selects the queue to fetch a packet based on the underlying
scheduling policy.

360 13 Developing New Modules for NS2

head_

SimpleLink

link_

drophead_

ttl_
target_

target_ target_ target_
flow_clsfr_

queues_[0]

queues_[1]

queues_
[num_queues_]

sch_slot 1

slot 0

slot $num_queues_

drop_

drop_

...

target_

flow_clsfr_ forwards
packets with flow ID i

to queue_[i]

queues_

Traffic
source 0

Traffic
source 1

fid_ = 1

fid_ = 0

packet

packet

Fig. 13.5 Architecture of a LinkSch object

13.2.1.2 Packet Forwarding and Callback Mechanism

The process begins when unclassified packets enters the SimpleLink object and
proceeds as follows:

1. The flow classifier forwards packets with the same flow ID to the same queue.
2. When not blocked, a queue sends a packet to its downstream packet scheduler.
3. The packet scheduler selects a flow, transmits a packet from the selected flow,

and fetches another packet from the queue corresponding to the selected flow.
4. After a transmission, the packet scheduler blocks itself until it receives a callback

message, indicating that the pending packet transmission is complete.
5. When receiving a packet, a LinkDelay schedules a transmission of a callback

message to the upstream packet scheduler when the packet transmission process
is complete.

6. At the firing time, the process goes back to step (3).

13.2.2 CCC Implementation

We develop three following CCC classes: FlowClassifier, PktScheduler,
and RRScheduler

13.2.2.1 Class FlowClassifier

Class FlowClassifier represents flow classifiers discussed earlier. The CCC
code for this class is shown in Program 13.9. From Lines 10–16, this class is bound
to the OTcl class Classifier/Flow. Again, flow classifiers are responsible for
classifying packets based on flow ID, as implemented in Lines 17–21.

13.2 Packet Scheduling for Multi-Flow Data Transmission 361

Program 13.9 CCC Implementation of class FlowClassifier
// classifier-flow.h
1 #include "packet.h"
2 #include "ip.h"
3 #include "classifier.h"
4 class FlowClassifier : public Classifier {
5 protected:
6 int classify(Packet *p);
7 };

// classifier-flow.cc
8 #include "classifier-flow.h"
9 #include "ip.h"
10 static class FlowClassifierClass : public TclClass {
11 public:
12 FlowClassifierClass() : TclClass("Classifier/Flow") {}
13 TclObject* create(int, const char*const*) {
14 return (new FlowClassifier());
15 }
16 } class_flow_classifier;
17 int FlowClassifier::classify(Packet *p)
18 {
19 int flow = hdr_ip::access(p)->flowid();
20 return flow;
21 }

13.2.2.2 Class PktScheduler

The main responsibility of a packet scheduler is to determine transmission sequence
of the attached upstream Queue objects. In this section, we assume that each
Queue object holds packets of the same flow ID and the packet scheduler
determines the transmission sequence based on the flow ID only.

Programs 13.10 and 13.11 show the declaration and implementation,
respectively, of CCC class PktScheduler. From Program 13.10, class
PktScheduler has one constant and three key variables:

MAX_FLOW The maximum number of queues which can be
attached to the packet scheduler.

blocked_ Set to “1” if the packet scheduler is transmitting a
packet, and set to “0” otherwise.

pkt_[i] The packet from flow “i” waiting to be transmit-
ted

handler_[i] The QueueHandler object of the queue corre-
sponding to flow “i”

Program 13.11 shows function implementation of class PktScheduler. In
Lines 38–44, the function recv(p,h) determines and stores the flow ID of the
incoming packet in a local variable “pid.” Line 41 stores the packet as well as the
input handler in its class variablespkt_[pid] and qh_[pid], respectively. If not

362 13 Developing New Modules for NS2

Program 13.10 Declaration of CCC class PktScheduler
// pkt-sched.h
1 #include "connector.h"
2 #include "ip.h"
3 #define MAX_FLOWS 10
4 class PktScheduler : public Connector {
5 public:
6 PktScheduler();
7 virtual void handle(Event*);
8 virtual void recv(Packet*, Handler*);
9 protected:
10 void sendNextPkt();
11 int getPktID(Packet* p) { return hdr_ip::access(p)->

flowid(); }
12 virtual int nextID()=0;
13 Handler* qh_[MAX_FLOWS];
14 Packet* pkt_[MAX_FLOWS];
15 int blocked_;
16 };

Program 13.11 Functions of CCC class PktScheduler
// pkt-sched.cc
17 #include "pkt-sched.h"
18 PktScheduler::PktScheduler()
19 {
20 for (int i=0;i<MAX_FLOWS;i++){
21 pkt_[i] = 0; qh_[i]=0;
22 }
23 blocked_ = 0;
24 }
25 void PktScheduler::handle(Event*)
26 {
27 blocked_ = 0; sendNextPkt();
28 }
29 void PktScheduler::sendNextPkt()
30 {
31 int nid = nextID();
32 if (nid >=0) {
33 send(pkt_[nid],this);
34 blocked_ = 1; pkt_[nid] = 0;
35 qh_[nid]->handle(0);
36 }
37 }
38 void PktScheduler::recv(Packet* p, Handler* h)
39 {
40 int pid = getPktID(p);
41 pkt_[pid] = p; qh_[pid] = h;
42 if (!blocked_)
43 sendNextPkt();
44 }

13.2 Packet Scheduling for Multi-Flow Data Transmission 363

blocked (i.e., no pending packet transmission), the packet transmitter will select and
send out one packet to its downstream object, using function sendNextPkt().

In Lines 29–37, the function sendNextPkt() first determines the next
flow which will be allowed to transmit a packet using function nextID().
Being pure virtual, the function nextID() forces the derived classes of class
PktScheduler to provide how the next flow is selected based on underlying
scheduling policy. This function returns the flow ID of the next flow, or “-1” if all
the flows do not have packets to transmit.

Suppose there is at least one flow which has packets to transmit. The packet
scheduler sends out the packet (Line 33), blocks itself (Line 34), resets the variable
pkt_[nid] (Line 34), and fetches a new packet from the upstream Queue object
(Line 35).

This example shows another type of callback mechanism which does not use a
handler dedicated to the packet scheduler. From Line 33, the packet scheduler sends
the pointer to itself (i.e., “this”) along with the packet to its downstream object.
When this pointer reaches a LinkDelay object, it is placed on the simulation
timeline. At the firing time, the function handle(e) of the packet scheduler is
executed at the firing time.

13.2.2.3 Class RRScheduler

Program 13.12 shows the details of class RRScheduler. We derive a CCC class
RRScheduler from class PktScheduler, and bind this class to an OTcl class
PktScheduler/RR (Lines 52–58). Class RRScheduler contains only one
variable “current_id_” which stores the ID of the flow whose head of the line
packet is being transmitted.

Class RRScheduler overrides the pure virtual function nextID() defined in
its base class. This function returns the next ID which has a packet to transmit, and
returns �1 if all flows have no packet to transmit (Lines 63–75).

13.2.3 OTcl Implementation

In the OTcl domain, we insert three following components into class SimpleLink,
as shown in Fig. 13.5:

sch_ A round-robin scheduler whose class is
PktScheduler/RR

flow_clsfr_ A flow classifier
queues_ A queue array which stores packets from

different flows classified by the flow clas-
sifier

From Program 13.13, we develop two instprocs to configure packet schedulers
in the OTcl domain:

364 13 Developing New Modules for NS2

Program 13.12 CCC implementation of CCC Class RRScheduler
// pkt-sched.h
45 class RRScheduler : public PktScheduler {
46 public:
47 RRScheduler() ;
48 private:
49 virtual int nextID();
50 int current_id_;
51 };

// pkt-sched.cc
52 static class RRSchedulerClass: public TclClass {
53 public:
54 RRSchedulerClass() : TclClass("PktScheduler/RR") {}
55 TclObject* create(int, const char*const*) {
56 return (new RRScheduler());
57 }
58 } class_rr_scheduler;
59 RRScheduler::RRScheduler()
60 {
61 current_id_ = -1;
62 }
63 int RRScheduler::nextID()
64 {
65 int count = 0;
66 current_id_ = (current_id_ + 1) % MAX_FLOWS;
67 while((pkt_[current_id_] == 0) && (count<MAX_FLOWS)) {
68 current_id_ = (current_id_ + 1) % MAX_FLOWS;
69 count++;
70 }
71 if (count == MAX_FLOWS)
72 return -1;
73 else
74 return current_id_;
75 }

13.2.3.1 Instproc insert-sched fnum queuesg of class SimpleLink

This instproc inserts packet-scheduler-related components into a SimpleLink
object. Lines 4 and 5 create a flow classifier “flow_clsfr_” and a packet sched-
uler “sch_,” respectively. Lines 6–12 create a queue array with “num_queues”
components to store packets from different flows. The ith queue is created and
installed in the ith slot of the flow classifier (Lines 7 and 8). The target and drop-
target of every queue are directed to the packet scheduler and the dropping point
(i.e., “drophead_”), respectively (Lines 9 and 10). The queue is then initialized
by its instproc reset. Finally, Lines 13–15 insert the above components between
“head_” and “link_.”

13.2 Packet Scheduling for Multi-Flow Data Transmission 365

Program 13.13 OTcl implementation of a link with a round-robin packet scheduler
//˜pkt-sched.tcl
1 SimpleLink instproc insert-sched {num_queues} {
2 $self instvar link_ queues_ head_ drophead_
3 $self instvar sch_ flow_clsfr_

4 set flow_clsfr_ [new Classifier/Flow]
5 set sch_ [new PktScheduler/RR]
6 for {set i 0} {$i < $num_queues} {incr i} {
7 set queues_($i) [new Queue/DropTail]
8 $flow_clsfr_ install $i $queues_($i)
9 $queues_($i) target $sch_
10 $queues_($i) drop-target $drophead_
11 $queues_($i) reset
12 }
13 $head_ target $flow_clsfr_
14 $sch_ target $link_
15 $sch_ drop-target $drophead_
16 }

17 Simulator instproc insert-sched-to-SL {from to num_queues} {
18 set link [$self link $from $to]
19 $link insert-sched $num_queues
20 }

13.2.3.2 Instproc insert-sched-to-SLffrom to num queuesg
of class Simulator

Readily accessible to the Tcl simulation script, this instproc configures the link
connecting Node “from” and Node “to,” as shown in Fig. 13.5. In Example 13.3,
we shall use this instproc to insert packet-scheduler-related components into a
SimpleLink object.

Example 13.3. Consider Sect. 10.1 and Fig. 9.3. Replace the TCP flow with
“num_queues” TCP flows whose flow ID are 0, 1, 2, and so on. Apply a round-
robin packet scheduling discipline to the link connecting the Node n1 and the
Node n3.

Tcl Simulation Script

//pkt-sched.tcl
21 set num_queues [lindex $argv 0]
22 set ns [new Simulator]
23 set n1 [$ns node]
24 set n2 [$ns node]
25 set n3 [$ns node]
26 $ns duplex-link $n1 $n2 5Mb 2ms DropTail

366 13 Developing New Modules for NS2

27 $ns duplex-link $n2 $n3 5Mb 2ms DropTail
28 $ns duplex-link $n1 $n3 5Mb 2ms DropTail
29 $ns insert-sched-to-SL $n1 $n3 $num_queues
30 for {set i 0} {$i < $num_queues} {incr i} {
31 set tcp($i) [new Agent/TCP]
32 set sink($i) [new Agent/TCPSink]
33 set ftp($i) [new Application/FTP]
34 $tcp($i) set fid_ $i
35 $ns attach-agent $n1 $tcp($i)
36 $ns attach-agent $n3 $sink($i)
37 $ftp($i) attach-agent $tcp($i)
38 $ns connect $tcp($i) $sink($i)
39 $ns at 0.0 "$ftp($i) start"
40 }
41 $ns at 100.1 "$ns halt"
42 $ns run

The above Tcl simulation script “pkt-sched.tcl” takes the number of TCP
flows as an input argument, and simulates the transmission of these TCP flows under
a round-robin packet scheduler.

Line 21 takes an input argument from the shell and stores it in a local
variable “num_queues” (see the syntax for inputting parameters in Tcl in a local
Sect. A.1.1). Line 29 inserts components related to a packet scheduler into the
SimpleLink object connecting Node $n1 and Node $n3. The “for” loop in
Lines 30–40 creates and configures TCP flows, where packets created by the “ith”
element of “tcp” are tagged with flow ID “i” (by Line 34).

By running the simulation for 1 TCP flow and 3 TCP flows, the following results
are shown on the screen.

>> ns pkt-sched.tcl 1
The final tcp(0) sequence number is 60110

>> ns pkt-sched.tcl 3
The final tcp(0) sequence number is 20052
The final tcp(1) sequence number is 20051
The final tcp(2) sequence number is 20051

The TCP throughput is computed by the final sequence number divided by the
simulation time. Since the simulation time here is 100 s (see Line 28), the throughput
of TCP flow “0” is 610.1 packets/s and 200.52 packets/s when the number of TCP
flows is 1 and 3, respectively.

With a round-robin scheduler, each element of the array “queue_” has equal
chance to transmit packets. In principle, every TCP flow should have the same
throughput performance (as shown above). Also, the per-flow throughput in case
of n TCP flows should be approximately n times less than that in the case of single
TCP flow.

13.3 Chapter Summary 367

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

Number of TCP flows

P
er

−
flo

w
 a

ve
ra

ge
 T

C
P

 th
ro

ug
hp

ut
(p

ac
ke

ts
 p

er
 s

ec
on

d)

Fair share
Average throughput

Fig. 13.6 Impact of number of TCP flows on per-flow throughput under round-robin packet
scheduling

From the results shown above, the per-flow TCP throughput of all the flows varies
very little from each other. Also, the throughput is approximately one-third of TCP
throughput in case of single TCP flow (i.e., (60110/100)/3 = 601.10/3 = 200.37).

Next, we run the above Tcl simulation script for 1–10 TCP flows. We compare
the average TCP throughput and the fair share TCP throughput in Fig. 13.6. Here,
we define the fair share TCP throughput for n TCP flows as �=n, where � is the
TCP throughput in the case of single TCP flow. We observe that both average
and fair share throughput are almost inline with each other. We also observe that
TCP throughput for each flow is very similar to each other. These two observations
validate the round-robin operation, which treats every TCP flow equally. �

13.3 Chapter Summary

This chapter demonstrates how new modules are created, configured, and incor-
porated into NS2. Two examples are provided here on Automatic Repeat reQuest
(ARQ)-based error recovery modules and packet scheduling modules. In most of
the cases, we need to develop NS2 program in both CCC and OTcl domains. In the
CCC domain, the main task is to define the internal mechanisms of the new NS2
components. The main tasks in the OTcl domain, on the other hand, are to integrate
the developed NS2 components into the existing NS2 modules, and to instantiate
and configure the newly developed modules from a Tcl simulation script.

368 13 Developing New Modules for NS2

13.4 Exercises

1. The implementation of a delayed feedback channel makes use of the function
schedule(...) of class Scheduler. Can we use class TimerHandler
for the implementation instead? Discuss the pros and cons.

2. Consider the CCC classes ARQTx and PktScheduler in Sects. 13.1.2 and
13.2.2. Do we need the class variable “blocked_”? Why or why not?

3. In Sect. 13.1.4, we show how the file arq.cc can be modified to incorporate
feedback delay.

a. Modify the file arq.h and regenerate the results.
b. Do we need variables “pkt_,” “handler_,” “event_,” “delay_”? Why

or why not?

4. Consider the ARQ modules developed in this chapter.

a. Can you remove class ARQHandler? Why and why not?
b. Regenerate the result of Example 13.2 with the retry limit being 0, 1, 2, and

3. Plot the result on Fig. 13.6. Discuss the impact of the delay on the feedback
channel.

c. Develop a module for an ARQ protocol with an error prone delayed feedback
channel.

d. Modify the ARQ to be timer-based retransmission mechanism: A packet is
assumed to be lost unless an ACK message is received within a timeout period.

e. The developed ARQ modules are associated with a SimpleLink object.
Redesign the modules such that it appear as a component in a Node. Test your
module in both wired and wireless networks.

f. This chapter implements ARQ at the link level. Redesign the modules to
operate at connection level (i.e., end-to-end). Incorporate your modules with
UDP to test your modules.

5. Design a link with a round-robin packet scheduler and an ARQ-based error
control mechanism.

6. Redesign the packet schedulers developed in this chapter. Implement the packet
scheduler as a component in a node. Test your implementation with wired and
wireless networks.

7. A Weighted Fair Queue (WFQ) packet scheduler gives fair access to every data
flow. Under a WFQ packet scheduler, each data flow gains channel access in
proportion to its weight. The algorithm for WFQ-based packet scheduling can
be found in [28]. Develop a module for a WFQ packet scheduler. Validate the
module by plotting the results in a graph.

Chapter 14
Postsimulation Processing: Debugging, Tracing,
and Result Compilation

A typical NS2 simulation consists of three main steps: (1) simulation design, (2)
configuring and running simulation, and (3) postsimulation processing (see Fig. 2.3
in Sect. 2.5.2). The former two aspects were discussed extensively in the previous
chapters, while the last aspect will be discussed in this chapter.

Postsimulation processing encompasses debugging, tracing, and compilation
of simulation results. Debugging is a process of removing programming errors.
Variable tracing tracks changes in variables under consideration. Packet tracing
records the details of packets passing through network checkpoints. Simulation
result compilation collects information and computes relevant performance mea-
sures from the simulation. This chapter discusses the details of debugging, variable
tracing, packet tracing, and result compilation in Sects. 14.1, 14.2, 14.3, and 14.4,
respectively. Finally, the chapter summary is given in Sect. 14.5.

14.1 Debugging: A Process to Remove Programming Errors

A programming error is usually referred to as a bug. The process of locating and
fixing the error is usually called debugging. This section discusses two types of
programming errors (i.e., bugs) and provides guidelines for debugging in NS2.

14.1.1 Types of Programming Errors

Based on the NS2 architecture, programming errors can be classified into compila-
tion errors and runtime errors.

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 14, © Springer Science+Business Media, LLC 2012

369

370 14 Processing an NS2 Simulation

14.1.1.1 Compilation Errors (CCC Only)

This type of errors occurs during a compilation process, which consists of two
phases. The first phase converts CCC files (with extension “.cc,h”) into object
files (with extension “.o”). In this phase, errors may occur if the compiler does not
understand the CCC codes. In this case, the compiler will show error messages on
the screen, indicating the location and the reason of the errors. Examples of CCC
compilation errors include:

• Incorrect CCC syntax
• Using undefined variables and/or functions.

In the second phase, the compiler links the created object files and creates an
executable “ns” file. An error in this phase is caused by improper linkage of CCC
files. Examples of CCC linking errors include:

• Instantiate an object from an abstract class: During a linking process, an error
will occur if an object is instantiated from an abstract class, which leaves at least
one pure virtual function unimplemented.

A proper solution to this error is to provide implementation for the pure
virtual function. However, for simplicity (but not for appropriateness), a user
may provide empty implementation for the pure virtual function to remove the
error.

• Modifying a base class without creating the object files of the child classes:
This error usually occurs when the dependency in the “Makefile” is not
properly defined. When a certain class is modified, the compiler does not recreate
object files of the child classes. The solution is to define the dependency in the
“Makefile” properly, or to remove all related object files before compiling
the codes.

Note that OTcl is a scripting language. There is no need to compile OTcl program
before the execution. Therefore, compilation errors do not occur in the OTcl domain.

14.1.1.2 Runtime Errors

This type of errors occurs during NS2 simulation. It is caused by improper OTcl
and/or CCC programming. Since the OTcl domain implements error message trap-
ping mechanism, an OTcl error message contains detailed and useful information.
Each error message indicates where and why the error occurred. The CCC domain,
on the other hand, does not implement error trapping. Generally the error messages
in this case (e.g., segmentation fault) are fairly short and do not contain much
information. Examples of OTcl runtime errors include

• Incorrect OTcl syntax
• Referring to instvars, instprocs, or commands which do not exist.

14.1 Debugging: A Process to Remove Programming Errors 371

Examples of CCC runtime errors include

• Segmentation fault: This is usually caused by an invalid access to a memory
content. For example, trying to access “a[6]” would cause a segmentation fault
if “a” was declared as “int a[3];.”

• Not implementing a mandatory (non-pure virtual) function: Apart from using
a pure virtual function, NS2 provides another way to force a child class to
implement a mandatory function. Here, NS2 may implement error-like actions
(e.g., print out an error message) in the base class. If a child class does not
implement this mandatory function, the function of the base class will be invoked
and the error-like actions will be taken. Examples of this type of errors are
the implementation of functions sendmsg(...) and sendto(...) of class
Agent in the file ˜ns/common/agent.cc.

14.1.2 Debugging Guidelines

After identifying types of programming errors (i.e., bugs), the next steps are to locate
the programming codes which cause the errors and to fix the errors. This section
provides guidelines which facilitate the debugging process.

In general, two useful debugging tools are breakpoints and variable viewers.
A breakpoint is a place where a program is intentionally stopped during an
execution. By strategically placing breakpoints in a program, programmers can
easily find out the statement(s) responsible for an error. A variable viewer, on the
other hand, allows the programmers to determine the values of variables and analyze
the cause of an error.

There are two debugging methods in NS2. The first method is to use debugging
tools. For Tcl, NS2 supports Don Libs’ debugger [26], while the standard GNU
debugger [27] can be used to debug the CCC codes. The second method is to
manually debug the program. Table 14.1 shows a list of OTcl and CCC commands
which can be used for manual debugging.

Example 14.1. To debug NS2 codes, it is usually useful to identify ob-
jects and/or the types of objects. Consider two OTcl commands – namely
show-target-class and show-target-address in Program 14.1. These
two OTcl commands show the class and address, respectively, of the target of a
TcpAgent object.

In Example 10.1 which implements the network in Fig. 9.3, insert the following
lines immediately before Line 15:

1 puts "The reference string for $tcp is $tcp"
2 puts "Press RETURN to start the simulation!!"
3 gets stdin
4 $ns at 3.1 "$tcp show-target-class"
5 $ns at 5.1 "$tcp show-target-address"
6 $ns at 10.1 "$ns halt"
7 $ns run

372 14 Processing an NS2 Simulation

Table 14.1 Debugging commands in OTcl and CCC domains

Tools OTcl CCC
Breakpoints “gets stdin” “getchar(),”“cin”
Variable viewer “puts” “printf(...),”“cout”
Simulation time “Simulator::now” “Scheduler::clock()”
Cross-domain function

invocation
Tcl/OTcl Commands “Tcl::evalf(...)”

Cross-domain variable
retrieval

Bound variables Bound variables

Simulator object retrieval “Simulator:: “Simulator::instance()”
instance”

Scheduler object retrieval N/A “Scheduler::instance()”
Passing an OTcl value to

the CCC domain
N/A “TclObject::result(...)”

CCC to OTcl variable
conversion

N/A “TclObject::name()”

OTcl to CCC variable
conversion

N/A “TclObject::lookup(...)”

>>ns tcp-dbg.tcl
The reference string for $tcp is _o55
Press RETURN to start the simulation!!
<RETURN>
3.1 OTcl class of TcpAgent::target is Classifier/

Hash/Dest
Press RETURN to continue!!
<RETURN>
5.1 [$tcp target] returns OTcl reference string _o12

and C++
address 0xd655c0

5.1 Variable TcpAgent::target_ corresponds to OTcl
reference string _o12 and C++ address 0xd655c0

Press RETURN to continue!!
<RETURN>

Here, the lines with <RETURN> are actually blank lines, where the program is
paused and waits for a <RETURN> keystroke.

Lines 5–11 in Program 14.1 show the details of OTcl commandsshow-target
-classfg. Line 6 retrieves the Simulator object and stores it in a variable
“sim.” In Line 7, the function evalf(...) of class Tcl evaluates the Tcl
statement in the same manner as printf(...) (see also Fig. 14.1). It puts the
values stored in target_->name() and sim->name() as the first and second

14.1 Debugging: A Process to Remove Programming Errors 373

Program 14.1 The OTcl commands show-target-class and show-
target-address of C++ class TcpAgent

//˜/ns/tcp/tcp.cc
1 int TcpAgent::command(int argc, const char*const* argv)
2 {
3 ...
4 Tcl& tcl = Tcl::instance();
5 if (strcmp(argv[1], "show-target-class") == 0) {
6 Simulator& sim = Simulator::instance();
7 tcl.evalf("puts [format \"%1.1f OTcl class of

TcpAgent::target is [%s info class]\" [%s now]]",
target_->name(),sim.name());

8 cout<<"Press RETURN to continue!!\n\n";
9 getchar();
10 return (TCL_OK);
11 }
12 if (strcmp(argv[1], "show-target-address") == 0) {
13 Scheduler& sch = Scheduler::instance();
14 tcl.evalf("%s target",this->name());
15 Connector *conn=(Connector*)TclObject::lookup

(tcl.result());
16 cout<<sch.clock()<<" [$tcp target] returns OTcl

reference string "<<tcl.result()<<" and C++ address
"<<conn <<"\n";

17 cout<<sch.clock()<<" Variable TcpAgent::target_
corresponds to OTcl reference string "<<target_->

name() <<" and C++ address "<<target_<<"\n";
18 cout<<"Press RETURN to continue!!\n\n";
19 getchar();
20 return (TCL_OK);
21 }
22 ...
23 }

evalf(“puts [format \"%%1.1f OTcl class of TcpAgent::target is [%s info class]\" [%s now]]”)

puts [format “%1.1f OTcl class of TcpAgent::target is [_o12 info class]" [_o3 now]]

target_->name()
sim.name()

C++

OTcl

Fig. 14.1 Details of Line 7 in Program 14.1

374 14 Processing an NS2 Simulation

arguments, respectively, and passes the entire statement to the Tcl interpreter. Here,
the function name() defined in class TclObject is used to translate the CCC
variables “target_” and “sim” to the OTcl reference strings.

Lines 12–21 in Program 3.1 show the details of the OTcl command
show-target-addressfg. Line 13 first retrieves the Scheduler object and
stores it in a variable “sch.” Line 14 asks the Tcl to interpret “_o55 target,”
where _o55 is the OTcl reference string corresponding to the current TCP object.
Line 15 uses function result() to obtain an OTcl reference string of the target of
the TcpAgent object. It retrieves a pointer to the CCC object corresponding to a
given string using the function lookup(...). The retrieved pointer to the CCC
object is then cast to a pointer to a Connector object and stored in a local variable
“conn.” Finally, Lines 16 and 17 display the target information on the screen. �

14.2 Variable Tracing

Variable tracing records changes in instvars of TclObjects under consideration.

14.2.1 Activation Process for Variable Tracing

Variable tracing can be activated in the OTcl domain using the following three steps:

• Step 1: Create a trace file whose name is <filename> and attach the file to a
Tcl file channel variable whose name is <fch>, using the following syntax (see
the detail for Tcl file channels in Sect. A.1.7):

set <fch> [open "<filename>" w]

• Step 2: Specify the instvar to be traced using the following syntax:

<obj> trace <var_name> [<tracer>]

where <obj> and <var_name> refer to an OTcl object and the name of
its instvar which needs to be traced. Optionally, programmers can provide
a dedicated tracer object, as indicated by <tracer>, which keeps track of
changes in the instvar $<var_name>. If a tracer is not given, NS2 will use
<obj> as a tracer object.

• Step 3: Attach the created Tcl file channel to the tracer using the following syntax.

<obj> attach $<fch>, or
<tracer> attach $<fch>

where the upper line is used when no tracer is specified, and the lower line is
used when a dedicated tracer is explicitly specified.

14.2 Variable Tracing 375

Time
Instvar's
Name

Value
Destination
IP Address

1 2 3 4 6 75

Destination
Port

Source
IP Address

Source
Port

Fig. 14.2 Trace format defined in class TcpAgent

Example 14.2. Suppose we would like to trace the variable “t_seqno_” of a
TcpAgent object $tcp in Example 10.1, and store the trace strings in a file
“trace.txt.” We may include the following statements into the Tcl simulation
script:

1 $tcp trace t_seqno_
2 set trace_ch [open "trace.txt" w]
3 $tcp attach $trace_ch

Here, Line 1 tells the Agent/TCP object $tcp to trace its instvar
“t_seqno_.” Line 2 creates a trace file “trace.txt.” Line 3 tells the tracer
(i.e., $tcp) to send all its tracing information to the Tcl file channel $trace_ch
attached to the created traced file. These three lines inform NS2 to record
all the changes in the instvar “t_seqno_” associated with $tcp in the file
“trace.txt.” After simulation, the following trace file whose format complies
with Fig. 14.2 is created:

...
4.06820 0 0 2 0 t_seqno_ 14
4.06986 0 0 2 0 t_seqno_ 15
4.07153 0 0 2 0 t_seqno_ 9
4.07153 0 0 2 0 t_seqno_ 10
4.08468 0 0 2 0 t_seqno_ 14
... �

14.2.2 Traceable Variable

Variable tracing is applicable to traceable variables only. Traceable variables are the
members of classes derived from class TracedVar – namely classes TracedInt
and TracedDouble.

Traceable variables can be used as if they are regular int or double variables.
However, if tracing is activated, all their changes will be recorded in a given trace
file. The mechanism to track changes will be discussed later in the next section.

Program 14.2 shows examples of traceable and non-traceable variables of class
TcpAgent. The variables “t_seqno_” (Line 3) and “cwnd_” (Line 4) are
member of class TracedInt and TracedDouble, respectively. Therefore, they
are traceable. The variable “last_ack” (Line 5), on the other hand, is of type
double, and therefore not traceable.

376 14 Processing an NS2 Simulation

Program 14.2 Example of traceable variables: t seqno and cwnd
//˜/ns/tcp/tcp.h

1 class TcpAgent : public Agent {
2 protected:
3 TracedInt t_seqno_;
4 TracedDouble cwnd_;
5 int last_ack_;
6 }

TclObject

0

name_

InstVar

tracedvar_

next_

name_

InstVar
0

tracedvar_

next_...(and Tracer)

next_val_
TracedVar

name_

InstVar

tracedvar_

next_

Trace File channel_

Tracer Tracer

channel_

tracer_

next_val_
TracedVar

0

tracer_

tracedvar_

instvar_

Fig. 14.3 An architecture of components involving in variable tracing

14.2.3 Components and Architecture for Variable Tracing

Variable tracing consists of five main components, where their relationship is shown
in Fig. 14.3:

1. A TclObject: An object that contains traceable variables.
2. A traceable variable: A variable that needs to be traced. Its tracing capability

is defined in a CCC class TracedVar, while its OTcl linkage is defined in a
CCC class InstVar.

3. A tracer: An object that records changes in the traceable variable.
4. A Tcl channel: An object that attaches to a tracer to a trace file.
5. A trace file: A file that records trace strings.

14.2.3.1 TclObjects

Program 14.3 shows the declaration of class TclObject. In general, a TclObject
may consist of several variables which are bound to instvars in the OTcl domain.

14.2 Variable Tracing 377

Program 14.3 Declaration of classes TclObject and IntsVar
//˜/tclcl/tclcl.h

1 class TclObject {
2 public:
3
4 virtual void trace (TracedVar*);
5 protected:
6 int traceVar(const char* varName, TclObject* tracer);
7 InstVar* instvar_;
8 TracedVar* tracedvar_
9 }

//˜/tclcl/Tcl.cc
10 class InstVar {
11 protected:
12 InstVar(const char* name);
13 const char* name_;
14 TracedVar* tracedvar_;
15 public:
16 InstVar* next_;
17 inline const char* name() { return name_; }
18 inline TracedVar* tracedvar() { return tracedvar_; }
19 inline void tracedvar(TracedVar* v) { tracedvar_ = v; }
20 };

These variables are modeled by class InstVar. They together form a link list, and let
the TclObject maintains only the pointer “instvar_” (Line 7) to the head of the
link ed-list.

CCC class TracedVar provides a traceable variable with tracing capability.
From Fig. 14.3, each traceable variable is associated with a TracedVar object.
These TracedVar objects form a link list, whose head (tracedvar_ in Line 8)
is maintained by the associated TclObject. In summary, a TclObject maintains two
pointers to two heads of link lists which model OTcl linkage (instvar_) and
traceablility (tracedvar_).

14.2.3.2 Traceable Variables: OTcl Linkage

Shown in Lines 10–20 of Program 14.3, class InstVar binds a CCC class
variable to an OTcl instvar. Class InstVar has three main variables: “next_,”
“name_,” and “tracedvar_.” The pointer “next_” provides a support to
create a link list. The variable “name_” contains the OTcl instvar name. The
pointer “tracedvar_” points to a TracedVar object, responsible for tracking
changes. Class InstVar has three main functions: name(), tracedvar(), and
tracedvar(v). These functions are used to configure the class variables “name”
and “tracedvar_” (Lines 17–19).

378 14 Processing an NS2 Simulation

We note here that not all OTcl instvars need to be traceable. As a result, not
all InstVar object has it pointer “tracedvar_” configured. From Fig. 14.3,
the second InstVar object in the link list does not have its pointer point to a
TracedVar object, and therefore not traceable.

14.2.3.3 Traceable Variables: Tracing Capability

Class TracedVar provides tracing capability to traceable variables. It overloads
basic operators – including “+,” “-,” “*,” and “/.” When a TracedVar object ex-
ecutes one of these operators, its overloading operator executes the basic operation
and reports the change in value to a tracer.

NS2 implements TracedVar objects through an abstract class TracedVar.
In Program 14.4, class TracedVar has four main variables:

next_ A pointer to the next TracedVar object (Line 12)
name_ OTcl name of the instvar associated with this

TracedVar object (Line 15)
owner_ A pointer to a TclObject which contains this

TracedVar object (Line 16)
tracer_ A pointer to the TclObject responsible for keeping track

of the value changes (Line 17)

Class TracedVar has one pure virtual function and six regular functions. The
pure virtual function value(...) returns the value of the TracedVar object1

(Line 5). The other six functions act as interface functions to set and retrieve
variables of class TracedVar (Lines 6–11).

Class TracedInt declares an int variable “val_” (Line 28) to store its
current value. It also defines a value assignment function, assign(newval),
in Lines 30–37. This function stores the input argument “newval” in the class
variable “val_” (Line 34), and asks the associated tracer to track the value change
(Line 36). By forcing all value assignment – including all overloading operators – to
use this function, class TracedInt ensures that all the changes would be reported
to the tracer.

14.2.3.4 Tracers

A tracer is a TclObject responsible for recording changes in value of traceable
variables. Program 14.5 shows the details of function trace(v). The implemen-
tation of this function at the base class aims at error reporting. From Lines 1–4,
the error messages would be shown on the screen, if the function trace(v) is

1Since the base class TracedVar does not define a variable to store the value, the function
value(...) must be declared as pure virtual.

14.2 Variable Tracing 379

Program 14.4 Declaration of classes TracedVar and TracedInt, and the
function assign of class TracedInt

//˜/tclcl/tracedvar.h
1 class TracedVar {
2 public:
3 TracedVar();
4 virtual ˜TracedVar() {}
5 virtual char* value(char* buf, int buflen) = 0;
6 inline const char* name() { return (name_); }
7 inline void name(const char* name) { name_ = name; }
8 inline TclObject* owner() { return owner_; }
9 inline void owner(TclObject* o) { owner_ = o; }
10 inline TclObject* tracer() { return tracer_; }
11 inline void tracer(TclObject* o) { tracer_ = o; }
12 TracedVar* next_;
13 protected:
14 TracedVar(const char* name);
15 const char* name_;
16 TclObject* owner_;
17 TclObject* tracer_;
18 };

19 class TracedInt : public TracedVar {
20 public:
21 TracedInt() : TracedVar() {}
22 TracedInt(int v) : TracedVar(), val_(v) {}
23 virtual ˜TracedInt() {}
24 inline int operator++() { assign(val_ + 1); return

val_; }
25 inline int operator=(int v) { assign(v); return val_; }
26 protected:
27 virtual void assign(const int newval);
28 int val_;
29 };

//˜/tclcl/tracedvar.cc
30 void TracedInt::assign(int newval)
31 {
32 if (val_ == newval)
33 return;
34 val_ = newval;
35 if (tracer_)
36 tracer_->trace(this);
37 }

380 14 Processing an NS2 Simulation

invoked. This implementation forces all the derived classes to override the function
trace(v). Otherwise, an error message will be shown on the screen at runtime
when the function trace(v) of class TclObject is executed.2

Program 14.5 The Functions trace of classes TclObject and TcpAgent, and
the function traceVar of class TcpAgent

//˜/tclcl/Tcl.cc
1 void TclObject::trace(TracedVar*)
2 {
3 fprintf(stderr, "SplitObject::trace called in

the base class of %s\n",name_);
4 }

//˜/ns/tcp/tcp.cc
5 void TcpAgent::trace(TracedVar* v)
6 {
7 traceVar(v);
8 }
9 void TcpAgent::traceVar(TracedVar* v)
10 {
11 Scheduler& s = Scheduler::instance();
12 char wrk[TCP_WRK_SIZE];
13 double curtime = &s ? s.clock() : 0;
14 if (v == &cwnd_)
15 ...
16 else if (v == &t_rtt_)
17 ...
18 else
19 snprintf(wrk, TCP_WRK_SIZE,

"%-8.5f %-2d %-2d %-2d %-2d %s %d\n",
curtime, addr(), port(), daddr(), dport(),
v->name(), int(*((TracedInt*) v)));

20 (void)Tcl_Write(channel_, wrk, -1);
21 }

Consider class TcpAgent in Lines 5–21 of Program 14.5, as an exam-
ple. Class TcpAgent overrides the function trace(v) by invoking its own
function traceVar(v) in Line 7. The function traceVar(v) creates and
stores a trace string in a local variable “wrk” (Line 19), and invokes function
Tcl_Write(...) to write the string “wrk” to the trace channel “channel_”
whose class is Tcl_Channel (Line 20).

2This is one of the common errors mentioned in Sect. 14.1.1.

14.2 Variable Tracing 381

14.2.3.5 Trace Channels

A trace channel is a Tcl channel3 used specifically to transport trace strings to a
trace file. In most case, it is attached to a trace file and sends all received trace stings
to the attached trace file. For example, Line 20 in Program 14.5 simply prints the
trace string to the attached trace file via the statement “Tcl_Write(channel_,
wrk,-1).”

14.2.3.6 Trace Files and Trace Format

A trace file is a text file which collects all trace strings throughout the simulation.
The format of trace strings is usually defined by the tracer under the function
trace(v) For example, Fig. 14.2 shows the format defined by a tracer whose
class is TcpAgent. The trace format of class TcpAgent is defined in its function
trace(v), which in turn invokes function TraceVar(v) to print out a trace
string as shown in Line 19 of Program 14.5.

14.2.4 Tracing in Action: An Example of Class TcpAgent

This section demonstrates via an example how variable tracing actually takes place
at runtime. Consider a CCC statement “t_seqno_++” invoked from within the
class TcpAgent. The key procedures are shown in Fig. 14.4.

First, the operator “++” of a TracedVar object is overloaded by a
function operator++() defined in Line 24 of Program 14.4. The function
operator++() executes “assign(val_+1)” to increment the value
stored in the variable “val_” by 1 and record the change. From within
the function assign(newval), a TracedInt “t_seqno_” executes
“tracer_->trace(this)”, where “tracer_” and “this” are the associated
tracer and the address of the TracedVar object, respectively (Line 36 in
Program 14.4). Since, in this case, the variable “tracer_” is a TcpAgent
object, the function trace(v) in Lines 5–8 of Program 14.5 is invoked, and a
trace string is printed to the trace file according to the format specified in Line 19
of Program 14.5.

14.2.5 Setting Up Variable Tracing

As we have seen, in Sect. 14.2.1, that an activation of variable tracing has three
major steps: (1) creating a trace file, (2) specifying traceable variables, and (3)
attaching the trace file to a tracer. Since Step 1 is discussed in Sect. A.1.7, this
section focuses on the latter two steps.

3See the details of Tcl channel in Sect. A.1.7.

382 14 Processing an NS2 Simulation

Invoke “t_seqno_++”

tracer_

val_

TracedVar TclObject

trace(TracedVar*) {
show error

}

operator++() {
assign(val_+1);
return val_;

}

assign(newval) {
val_=newval;
tracer->trace(this);

}

t_seqno_

D
er

iv
e

TcpAgent

trace(TracedVar*) {
record the change in
the TracedVar

}

Fig. 14.4 The mechanism of function operator++() of class TcpAgent

14.2.5.1 Specifying Traceable Variables

Again, NS2 specifies an active traceable variable whose name is <var_name> via
the following OTcl statement:

$obj trace <var_name> [$tracer]

where $obj is a TclObject, and the optional $tracer is a tracer. If the argument
$tracer is not present, the TclObject $obj will be used as a tracer.

As shown in Program 14.6, the OTcl command tracef...g informs a TclOb-
ject (i.e., $obj) to trace its instvar <var_name>. Line 7 stores the third input
argument (i.e., argv[3]), if any, in a local variable “tracer.” Then, Line 8 feeds
the second input argument (e.g., <var_name>) as well as the variable “tracer”
to the function traceVar(...). If the caller did not provide the third input
argument, the pointer “this” would instead be used (Line 5).

The details of function traceVar(varName,tracer) are shown in Lines
13–24 of Program 14.6.4 This function creates a connection from a TracedVar
object whose OTcl instvar name is “varName” to a pointer which points to a
tracer object “tracer.” Lines 15 and 16 locate an entry of the InstVar link
list whose variable “name_” matches with the string “varName.” When the

4This function is different from the function TraceVar(v) of class TcpAgent in Program 14.5,
since the number and types of input arguments are different.

14.2 Variable Tracing 383

Program 14.6 OTcl command trace and the function TraceVar of class
TclObject

//˜/tclcl/Tcl.cc
1 int TclObject::command(int argc, const char*const* argv)
2 {
3 if (argc > 2) {
4 if (strcmp(argv[1], "trace") == 0) {
5 TclObject* tracer = this;
6 if (argc > 3)
7 tracer = TclObject::lookup(argv[3]);
8 return traceVar(argv[2], tracer);
9 }
10 }
11 return (TCL_ERROR);
12 }

13 int TclObject::traceVar(const char* varName, TclObject*
tracer)

14 {
15 for (InstVar* p = instvar_; p != 0; p = p->next_) {
16 if (strcmp(p->name(), varName) == 0) {
17 if (p->tracedvar()) {
18 p->tracedvar()->tracer(tracer);
19 tracer->trace(p->tracedvar());
20 return TCL_OK;
21 }
22 }
23 }
24 }

entry is found, Line 17 ensures that the matching instvar contains a reference
to a TracedVar object. Then, Line 18 informs the matching instvar to use the
input tracer object *tracer as its tracer (see Line 11 in Program 14.4). Line 19
informs the “tracer” (i.e., the input argument) to create a trace string for the
matched instvar and write the string in the attached traced file via the trace channel,
“channel_” (see Lines 5–20 in Program 14.5).

14.2.5.2 Attaching a Trace File to a Tracer

NS2 attaches a trace file whose associated Tcl file channel is $fch to a tracer
$tracer through the following OTcl statement:

$tracer attach $fch

The tracing channel variable “channel_” whose class is Tcl_Channel is
defined in class Agent (Line 4 in Program 14.7). Furthermore, the OTcl command
attach is defined in the class TcpAgentwhose details are shown in Lines 10–19

384 14 Processing an NS2 Simulation

Program 14.7 Declaration of class Agent and its OTcl command attach
//˜/ns/common/agent.h

1 class Agent : public Connector {
2 ...
3 protected:
4 Tcl_Channel channel_;
5 ...
6 }

//˜/ns/tcp/tcp.cc
7 int TcpAgent::command(int argc, const char*const* argv)
8 {
9 ...
10 if (strcmp(argv[1], "attach") == 0) {
11 int mode;
12 const char* id = argv[2];
13 channel_ = Tcl_GetChannel(tcl.interp(), (char*)id,

&mode);
14 if (channel_ == 0) {
15 tcl.resultf("trace: can’t attach %s for

writing", id);
16 return (TCL_ERROR);
17 }
18 return (TCL_OK);
19 }
20 ...
21 }

in Program 14.7. Here, Line 12 converts the input file name to a string “id”. Line
13 retrieves a Tcl file channel corresponding to “id”, and stores it in the variable
“channel_”. After this point, a connection to a trace file is created from within a
tracer, and the tracer is able to write trace strings to the attached trace file through
its variable “channel_”.

14.3 Packet Tracing

Packet tracing records the details when packets pass through network checkpoints,
where Trace objects are installed. Packet tracing can be activated using the following
OTcl statement:

$ns trace-all $file

where $ns and $file are the Simulator object and a Tcl file channel,
respectively.

14.3 Packet Tracing 385

Example 14.3. Consider Example 9.1. Insert the following OTcl statements after
Line 2 in Example 9.1:

set f [open out.tr w]
$ns trace-all $f

where the upper line creates a Tcl file channel attached to a file “out.tr” and
stores it in a variable “f.” The lower line informs NS2 to activate the packet tracing
mechanism and to record trace strings to the trace file “out.tr” via the Tcl file
channel $f.

After adding the following statements at the end of the Tcl scripting file and
running the simulation:

$ns at 0.0 "$cbr start"
$ns at 10.0 "$ns halt"
$ns run

the trace result will be stored in the file “out.tr.” The following lines are a part
of the file “out.tr”:

//out.tr
+ 0 0 2 cbr 210 ------- 0 0.0 2.0 0 0
- 0 0 2 cbr 210 ------- 0 0.0 2.0 0 0
r 0.002336 0 2 cbr 210 ------- 0 0.0 2.0 0 0
+ 0.00375 0 2 cbr 210 ------- 0 0.0 2.0 1 1
- 0.00375 0 2 cbr 210 ------- 0 0.0 2.0 1 1
... �

In the following, Sects. 14.3.1 and 14.3.2 discuss the OTcl configuration method
and CCC internal mechanism implementation, respectively, of packet tracing.
Sections 14.3.3 discusses the details of the packet tracing helper class BaseTrace.
Various types of packet tracing objects are presented in Sect. 14.3.4. Finally, the
packet trace formats are shown in Sect. 14.3.5.

14.3.1 OTcl Configuration Interfaces

This section demonstrates how NS2 sets up packet tracing using the instproc
trace-allfg. For brevity, the following discussion will be based mainly on a
simplex-link with a droptail queue only. The readers are encouraged to look through
the NS2 program and find out more about packet tracing. As shown in Fig. 14.5,
packet tracing can be set up in two main steps:

386 14 Processing an NS2 Simulation

Fig. 14.5 The packet tracing
configuration process of a
SimpleLink object

Class SimpleLink

Class Simulator

Class Simulator

$ns trace-all $file

$ns trace-all {$file}
set traceaAllFile_ $file

$ns simplex-link $n1 $n2 $traceAllFile_

Instproc simplex-link {n1 n2 bw delay qtype}
$self trace-queue $n1 $n2 $traceAllFile_

Instproc trace-queue {n1 n2 file}
$link_([$n1 id]:[$n2 id]) trace $self $file

Instproc trace {ns f}
set enqT_ [$ns create-trace Enque $file $fromNode_ $toNode_]
...
<packet tracing object configuration>

STEP 1: Packet Tracing Activation

STEP 2: TclObject Creation

Invoked
only when

traceAllFile_
is non-empty

Program 14.8 The instproc trace-all of class Simulator
//˜/ns/tcl/lib/ns-lib.tcl

1 Simulator instproc trace-all file {
2 $self instvar traceAllFile_
3 set traceAllFile_ $file
4 }

Step 1: Packet Tracing Activation The
Instproc trace-allffileg of Class Simulator

Again, packet tracing can be activated using the instproc trace-allffileg
of class Simulator whose details are shown in Program 14.8. This instproc
stores the Tcl file channel “file” in a flag instvar “traceAllFile_”
(Line 2), which indicates that packet tracing is enabled. When a TclObject is
created, packet tracing objects are inserted if the instvar “traceAllFile_” is
nonempty.

14.3 Packet Tracing 387

Program 14.9 The instprocs simplex-link and trace-queue of class
Simulator

//˜/ns/tcl/lib/ns-lib.tcl
1 Simulator instproc simplex-link { n1 n2 bw delay qtype args }

{
2 $self instvar link_
3 set sid [$n1 id]
4 set did [$n2 id]
5 ...
6 set q [new Queue/$qtype]
7 set link_($sid:$did) [new SimpleLink $n1 $n2 $bw

$delay $q]
8 ...
9 set trace [$self get-ns-traceall]
10 if {$trace != ""} {
11 $self trace-queue $n1 $n2 $trace
12 }
13 }

14 Simulator instproc trace-queue { n1 n2 {file ""} } {
15 $self instvar link_ traceAllFile_
16 $link_([$n1 id]:[$n2 id]) trace $self $file
17 }

Step 2: TclObject Creation
Step 2.1: The instproc simplex- linkf...g of Class Simulator

The instproc simplex-linkf...g of class Simulator creates a link between
two nodes. Program 14.9 shows a part of the instproc simplex-linkf...g
related to packet tracing. Lines 6 and 7 create a SimpleLink object connecting
node n1 to node n2. Line 9 stores the instvar traceAllFile_ in a local variable
trace, and Lines 10–12 execute “$self trace-queuefn1 n2 traceg”, if
packet tracing was activated earlier.

Step 2.2: The instproc trace-queuefn1 n2 fileg of Class Simulator

Lines 14–17 in Program 14.9 show the details of function trace-queuefn1
n2 fileg. Again, class Simulator has an instvar “link_”– an associative
array that contains the instances of all links in a simulation. The index of the
instvar “link_” is of format “sid:did,” where “sid” and “did” are IDs of
the beginning and ending nodes of the instance “$link_[sid:did].”

The instproc trace-queuefn1 n2 fileg invokes the instproc tracefns
fileg associated with the SimpleLink object link_([$n1 id]:[$n2
id]) (see Line 16), to create and configure packet tracing components of the
SimpleLink object.

388 14 Processing an NS2 Simulation

Program 14.10 The instproc trace of class SimpleLink and the instproc
create-trace of class Simulator

//˜/ns/tcl/lib/ns-link.tcl
1 SimpleLink instproc trace { ns f {op ""} } {
2 $self instvar enqT_ deqT_ drpT_ queue_ link_ fromNode_

toNode_
3 $self instvar rcvT_ ttl_ trace_
4 $self instvar drophead_
5 set trace_ $f
6 set enqT_ [$ns create-trace Enque $f $fromNode_

$toNode_ $op]
7 set deqT_ [$ns create-trace Deque $f $fromNode_

$toNode_ $op]
8 set drpT_ [$ns create-trace Drop $f $fromNode_

$toNode_ $op]
9 set rcvT_ [$ns create-trace Recv $f $fromNode_

$toNode_ $op]
10 $self instvar drpT_ drophead_
11 set nxt [$drophead_ target]
12 $drophead_ target $drpT_
13 $drpT_ target $nxt
14 $queue_ drop-target $drophead_
15 $deqT_ target [$queue_ target]
16 $queue_ target $deqT_
17 $self add-to-head $enqT_
18 $rcvT_ target [$ttl_ target]
19 $ttl_ target $rcvT_
20 }

//˜/ns/tcl/lib/ns-lib.tcl
21 Simulator instproc create-trace { type file src dst

{op ""} } {
22 $self instvar alltrace_
23 set p [new Trace/$type]
24 $p set src_ [$src id]
25 $p set dst_ [$dst id]
26 lappend alltrace_ $p
27 if {$file != ""} {
28 $p attach $file
29 }
30 return $p
31 }

Step 2.3: The instproc tracefns fg of Class SimpleLink

As shown in Program 14.10, the instproc tracefns fg of class SimpleLink
takes two input arguments: the Simulator “ns” and a Tcl file channel “f.” Line 5
stores the input Tcl file channel$f in the instvar “trace_.” Lines 6–9 create packet
tracing objects “enqT_,” “deqT_,” “drpT_,” and “rcvT_,” using the instproc
create-tracef...g associated with the input Simulator object “ns.” Lines
11–19 configure the created packet tracing objects as indicated in Fig. 7.1.

14.3 Packet Tracing 389

Step 2.4: The instproc create-traceftype file src dstg of Class
Simulator

From Lines 21–31 in Program 14.10, the instproc create-traceftype file
src dstg creates and configures a packet tracing object whose type is “type.”
Line 23 first creates a packet tracing object with type specified in “type.” Lines
24 and 25 configure the member variables “src_” and “dst_,” respectively, of the
created packet tracing object “p.” Line 26 stores the created packet tracing object
in an instvar “alltrace_” of the Simulator. Lines 27–29 attach a Tcl file channel
“file” to the created packet tracing object. Finally, Line 30 returns the created
packet tracing object to the caller.

14.3.2 CCC Main Packet Tracing Class Trace

In CCC, packet tracing objects are implemented using class Trace declared in
Program 14.11, which is bound to an OTcl class with the same name
(see Lines 15–23). From Line 1, class Trace derives from class Connector
and can be inserted between two NsObjects to record the details of traversing
packets. As a connector, a packet tracing object receives a packet “*p” by having
its upstream object invoke its function recv(p,h). Upon receiving a packet,
it records the details of the packet in a trace file and forwards the packet to its
downstream object.

14.3.2.1 Main CCC Variable of Class Trace

Class Trace consists of four main variables: “src_,” “dst_,” “type_,” and
“pt_.” The variables “src_” (Line 3) and “dst_” (Line 4) store addresses of the
upstream and downstream nodes, respectively, of this Trace object. The variable
“type_” in Line 10 indicates the type of the Trace object. Despite its int type,
the true meaning of this variable is char equivalent. For example, the types of
objects which trace packet enquing and dequing are “+” and “-,” which correspond
to decimal values of 43 and 45, respectively. Finally, the pointer “pt_” in Line 9
is a reference to a BaseTrace object, which provides the basic functionalities
for packet tracing. We shall discuss the details of class BaseTrace later in
Sect. 14.3.3.

14.3.2.2 Main CCC Functions of Class Trace

Class Trace has three following main functions: the constructor, function
recv(p,h), and function format(tt,s,d,p).

390 14 Processing an NS2 Simulation

Program 14.11 Declaration of class Trace and their constructors
//˜/ns/trace/trace.h

1 class Trace : public Connector {
2 protected:
3 nsaddr_t src_;
4 nsaddr_t dst_;
5 virtual void format(int tt, int s, int d, Packet* p);
6 public:
7 Trace(int type);
8 ˜Trace();
9 BaseTrace *pt_;
10 int type_;
11 int command(int argc, const char*const* argv);
12 static int get_seqno(Packet* p);
13 void recv(Packet* p, Handler*);
14 };

//˜/ns/trace/trace.cc
15 class TraceClass : public TclClass {
16 public:
17 TraceClass() : TclClass("Trace") { }
18 TclObject* create(int argc, const char*const* argv) {
19 if (argc >= 5)
20 return (new Trace(*argv[4]));
21 return 0;
22 }
23 } trace_class;

24 Trace::Trace(int type) : Connector(), pt_(0), type_(type)
25 {
26 bind("src_", (int*)&src_);
27 bind("dst_", (int*)&dst_);
28 pt_ = new BaseTrace;
29 }

//˜/ns/tcl/lib/ns-trace.tcl
30 Trace instproc init type {
31 $self next $type
32 $self instvar type_
33 set type_ $type
34 }

The Constructors

Lines 24–29 and 30–34 show the constructors of a CCC class Trace and the
bound OTcl class Trace, respectively. The OTcl constructor simply stores the input
argument in its instvar “type_” (Line 33). Similarly, the CCC constructor stores
the input argument in variable “type_” (Line 24). It also binds variables “src_”
and “dst_” to the instvars with the same name (Lines 26 and 27) and creates a new
BaseTrace object “*pt_” (Line 28).

14.3 Packet Tracing 391

Program 14.12 Function recv of class Trace
//˜/ns/trace/trace.cc

1 void Trace::recv(Packet* p, Handler* h)
2 {
3 format(type_, src_, dst_, p);
4 pt_->dump();
5 if (target_ == 0)
6 Packet::free(p);
7 else
8 send(p, h);
9 }

Function recv(p,h)

Function recv(p,h) is the main packet reception function whose details are
shown in Program 14.12. Line 3 invokes function format(type_,src_,
dst_,p) to store the details of the packet “*p” in the internal variable “wrk_”
of the associated BaseTrace object “*pt_.” Line 4 executes “pt_->dump()”
which tells the attached BaseTrace object to print packet details to its attached
trace file. If the Trace object contains a valid downstream object, “target_,”
Line 8 will forward the packet “*p” to the downstream object. Otherwise, Line 6
will destroy the packet “*p.”

Function Format(tt,s,d,p)

Shown in Programs 14.13 and 14.14, function format(tt,s,d,p) stores the
packet details in the internal variable “wrk_” of the associated BaseTrace object
“*pt_” (Lines 26–45). This function takes, as input arguments, the packet tracing
type “tt,” a source node ID “s,” a destination node ID “d,” and a pointer to an
incoming packet “*p.” Line 7 stores the packet type in a local variable “name.”
Lines 9–21 create a flag string and store it in a local variable “flag.” Lines 22–25
retrieve addresses and ports of the source and the destination nodes. Finally, Lines
26–45 print out a packet trace string to variable “pt_->wrk_.”5 The packet trace
format will be discussed in greater detail in Sect. 14.3.5.

14.3.2.3 Main OTcl Commands of a Packet Tracing Object

There are three OTcl main commands associated with the OTcl class Trace:
flushfg, detachfg, and attachffileg. In Program 14.15, the OTcl command

5As we shall see in Sect. 14.3.3, the function buffer() of class BaseTrace simply returns the
variable “wrk .”

392 14 Processing an NS2 Simulation

Program 14.13 Function format of class Trace
//˜/ns/trace/trace.cc

1 void Trace::format(int tt, int s, int d, Packet* p)
2 {
3 hdr_cmn *th = hdr_cmn::access(p);
4 hdr_ip *iph = hdr_ip::access(p);
5 hdr_tcp *tcph = hdr_tcp::access(p);
6 packet_t t = th->ptype();
7 const * name = packet_info.name(t);
8 int seqno = get_seqno(p);
9 char flags[NUMFLAGS+1];
10 for (int i = 0; i < NUMFLAGS; i++)
11 flags[i] = ’-’;
12 flags[NUMFLAGS] = 0;
13 hdr_flags* hf = hdr_flags::access(p);
14 flags[0] = hf->ecn_ ? ’C’ : ’-’;
15 flags[1] = hf->pri_ ? ’P’ : ’-’;
16 flags[2] = ’-’;
17 flags[3] = hf->cong_action_ ? ’A’ : ’-’;
18 flags[4] = hf->ecn_to_echo_ ? ’E’ : ’-’;
19 flags[5] = hf->fs_ ? ’F’ : ’-’;
20 flags[6] = hf->ecn_capable_ ? ’N’ : ’-’;
21 flags[7] = 0;
22 char *src_nodeaddr = Address::instance().

print_nodeaddr(iph->saddr());
23 char *src_portaddr = Address::instance().

print_portaddr(iph->sport());
24 char *dst_nodeaddr = Address::instance().

print_nodeaddr(iph->daddr());
25 char *dst_portaddr = Address::instance().

print_portaddr(iph->dport());
...

flushfg (Lines 5–10) clears the buffer of the attached Tcl channel by invoking
pt_->flush(ch), where “ch” is the attached Tcl channel. The OTcl command
detachfg does not clear the channel buffer, but simply sets the pointer which
points to the attached Tcl channel to Null (see Line 12). Finally, the OTcl command
attachffileg sets the input “file” as the Tcl file channel (Lines 19 and 20).

14.3.3 CCC Helper Class BaseTrace

One of the main variables of class Trace, “pt_,” is a pointer to a BaseTrace
object. Class BaseTrace acts as an interface from a packet tracing object to a
Tcl channel. Shown in Program 14.16, class BaseTrace is bound to an OTcl class
with the same name. It has two main variables: “channel_” (Line 14) and “wrk_”
(Line 15). While “channel_” models a Tcl channel, “wrk_” is a buffer which

14.3 Packet Tracing 393

Program 14.14 Function format of class Trace (cont.)
//˜/ns/trace/trace.cc

...
26 sprintf(pt_->buffer(),
27 "%c "TIME_FORMAT" %d %d %s %d %s %d %s.%s %s.%s
28 tt,
29 pt_->round(Scheduler::instance().clock()),
30 s,
31 d,
32 name,
33 th->size(),
34 flags,
35 iph->flowid(),
36 src_nodeaddr,
37 src_portaddr,
38 dst_nodeaddr,
39 dst_portaddr,
40 seqno,
41 th->uid(),
42 tcph->ackno(),
43 tcph->flags(),
44 tcph->hlen(),
45 tcph->sa_length());
46 delete [] src_nodeaddr;
47 delete [] src_portaddr;
48 delete [] dst_nodeaddr;
49 delete [] dst_portaddr;
50 }

stores a trace string. At the construction, the Tcl channel “channel_” is set to
Null (Line 24), and the trace string “wrk_” is allocated with memory space which
can hold upto 1026 characters (Line 26).

The key functions of class BaseTrace include channel(...), buffer(),
flush(channel), and dump(). The operations of the first three functions are
fairly straightforward and are omitted for brevity. The function dump() (Lines 28–
37 of Program 14.16) is responsible for dumping a trace string stored in the variable
“wrk_” to the Tcl channel. Here, Line 30 retrieves and stores the length of the string
“wrk_” in a local variable “n.” Line 32 attaches an end-of-line character to “wrk_.”
Line 33 attaches zero to “wrk_” indicating the end of the string. Line 34 writes
“wrk_” to the Tcl channel “channel_” using a function Tcl_Write(...).

In common with class Trace, class BaseTrace has three main OTcl
commands: flushfg, detachfg, and attachffileg. These three commands
perform the same action as those in class Trace. We will omit the details of these
three OTcl commands for brevity.

394 14 Processing an NS2 Simulation

Program 14.15 Function command of class Trace
//˜/ns/trace/trace.cc

1 int Trace::command(int argc, const char*const* argv)
2 {
3 Tcl& tcl = Tcl::instance();
4 if (argc == 2) {
5 if (strcmp(argv[1], "flush") == 0) {
6 Tcl_Channel ch = pt_->channel();
7 if (ch != 0)
8 pt_->flush(ch);
9 return (TCL_OK);
10 }
11 if (strcmp(argv[1], "detach") == 0) {
12 pt_->channel(0) ;
13 return (TCL_OK);
14 }
15 } else if (argc == 3) {
16 if (strcmp(argv[1], "attach") == 0) {
17 int mode;
18 const char* id = argv[2];
19 Tcl_Channel ch = Tcl_GetChannel(tcl.interp(),

(char*)id,&mode);
20 pt_->channel(ch);
21 if (pt_->channel() == 0) {
22 tcl.resultf("trace: can’t attach %s

for writing", id);
23 return (TCL_ERROR);
24 }
25 return (TCL_OK);
26 }
27 }
28 return (Connector::command(argc, argv));
29 }

14.3.4 Various Types of Packet Tracing Objects

NS2 uses different types of packet tracing objects to trace packets at different
places. For example, a Trace/Enque object is placed immediately before a queue
to trace packets which enter the queue. The type (i.e., variable “type_”) of a
Trace/Enque object is “+,” which is equivalent to 43 in decimal. When a packet
passes through a Trace/Enque object, a line beginning with “+” is written onto
the Tcl Channel.

Among all built-in OTcl packet tracing classes, the most common ones in-
clude:

• Trace/Enque (“+”): Trace packet arrival (usually at a queue)
• Trace/Deque (“-”): Trace packet departure (usually at a queue)

14.3 Packet Tracing 395

Program 14.16 Declaration, an OTcl binding class, the constructor of class
BaseTrace, and the function dump() of class BaseTrace

//˜/ns/trace/basetrace.h
1 class BaseTrace : public TclObject {
2 public:
3 BaseTrace();
4 ˜BaseTrace();
5 virtual int command(int argc, const char*const* argv);
6 virtual void dump();
7 inline Tcl_Channel channel() { return channel_; }
8 inline void channel(Tcl_Channel ch) {channel_ = ch; }
9 inline char* buffer() { return wrk_ ; }
10 void flush(Tcl_Channel channel) { Tcl_Flush(channel); }
11 #define PRECISION 1.0E+6
12 #define TIME_FORMAT "%.15g"
13 protected:
14 Tcl_Channel channel_;
15 char *wrk_;
16 };

//˜/ns/trace/basetrace.cc
17 class BaseTraceClass : public TclClass {
18 public:
19 BaseTraceClass() : TclClass("BaseTrace") { }
20 TclObject* create(int argc, const char*const* argv) {
21 return (new BaseTrace());
22 }
23 } basetrace_class;

24 BaseTrace::BaseTrace() : channel_(0),
25 {
26 wrk_ = new char[1026];
27 }

28 void BaseTrace::dump()
29 {
30 int n = strlen(wrk_);
31 if ((n > 0) && (channel_ != 0)) {
32 wrk_[n] = ’\n’;
33 wrk_[n + 1] = 0;
34 (void)Tcl_Write(channel_, wrk_, n + 1);
35 wrk_[n] = 0;
36 }
37 }

• Trace/Drop (“d”): Trace packet drop (delivered to a drop-target)
• Trace/Recv (“r”): Trace packet reception at a certain node

where the characters in the parentheses are attributed to the variable “type_”
defined in the CCC class Trace.

396 14 Processing an NS2 Simulation

Program 14.17 Constructors of classes Trace/Enque and Trace/Deque, and
the CCC binding class for the OTcl class Trace/Deque

//˜/ns/tcl/lib/ns-trace.tcl
1 Class Trace/Enque -superclass Trace
2 Trace/Enque instproc init {} {
3 $self next "+"
4 }
5 Trace/Deque instproc init {} {
6 $self next "-"
7 }

//˜/ns/trace/trace.h
8 static class DequeTraceClass : public TclClass {
9 public:
10 DequeTraceClass() : TclClass("Trace/Deque") { }
11 TclObject* create(int args, const char*const* argv) {
12 if (args >= 5)
13 return (new DequeTrace(*argv[4]));
14 return NULL;
15 }
16 } dequetrace_class;

Among these four classes, only class Trace/Deque has an implementation
in the CCC domain. The main difference among the above four packet tracing
objects lies in their constructors. As shown in Program 14.17, the OTcl class
Trace/Enque derives from an OTcl class Trace (Line 1), while the OTcl class
Trace/Deque is mapped to the CCC class DequeTrace (Lines 8–16). Lines
3 and 6 show that the classes Trace/Enque and Trace/Deque are constructed
with characters “+” and “-,” respectively. From Line 24 of Program 14.11, these
characters are stored in its CCC variable “type_” defined at the base class
Trace.

As an example, consider the process of creating a Trace/Enque object in
Fig. 14.6. The process starts when a statement “new Trace/Enque” is executed
(e.g., Line 23 in Program 14.10). From within the OTcl constructor, the type “+”
is repeatedly fed to the constructor up the hierarchy by the statement “$self
next "+".” When class SplitObject is reached, the interpreter executes
“create-shadow "+",” which in turn invokes the function create() of
class TraceClass in the CCC domain. From Line 24 in Program 14.11, the
constructor of class Trace is invoked, and the type “+” is fed as an input argument.
Since the constructor takes an integer as an input argument, the ASCII code “+”
is converted into a decimal value “43.” Finally, the constructor stores the input
argument (i.e., “43” in this case) in its variable “type_.”

14.3 Packet Tracing 397

Fig. 14.6 Construction
of a Trace/Enque object

14.3.5 Format of Trace Strings for Packet Tracing

The final product of packet tracing is usually a trace file. Each line in a trace
file – usually called a trace record – follows a predefined packet trace format.
This section discusses three main types of packet trace format. First, normal
packet trace format is associated with regular wired network simulation. Second,
wireless packet trace format is the default format when running a wireless network
simulation. This format is sometimes referred to as old wireless trace format or
CMU wireless trace format. Finally, the new wireless trace format is the most
comprehensive built-in packet tracing in NS2. Among these formats, the former two
follow predefined structures. The interpretation of these traced formats is mainly
based on the positions of strings on a trace record. The last type, on the other hand,
is structureless. The interpretation is based on the label located before a trace string.

14.3.5.1 Normal Packet Trace Format

Packet trace format is defined in the function format(...) of class Trace
(Programs 14.13 and 14.14). In a normal case, each trace record (i.e., each line in
a trace file) follows the format shown in Fig. 14.7, where each box and the space
between two boxes represent a trace string and a space, respectively, in a trace
record. A trace record for the normal trace format contains 12 fields, each of which
is indicated by the column number below each box.

398 14 Processing an NS2 Simulation

Event
Type

Time Sending
Node

Receiving
Node

Payload
Type

Packet
Size

Flags Flow
ID

Source
Address

Destination
Address

Sequence
Number

Packet
Unique ID

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 14.7 Packet trace format

• Event Type: The type (i.e., variable “type_”) of the Trace object which
generates the trace string. Most widely used event types are shown below. The
complete list of event types is given in file ˜ns/tcl/lib/ns-trace.tcl.

– “+” which represents a packet enque event,
– “-” which represents a packet deque event,
– “r” which represents a packet reception event,
– “d” which represents a packet drop (e.g., sent to “dropHead_”) event, and
– “c” which represents a packet collision event at the MAC level.

• Time: When the packet trace record is created.
• Sending Node and Receiving Node: IDs of the nodes located before and after,

respectively, the tracing object which creates this trace record.
• Payload Type: Name of the payload type, as specified in Program 8.9.
• Packet Size: Size of the packet in bytes.
• Flags: A 7-digit flag string is defined in Lines 9–21 of Program 14.13. Each flag

digit is set to “-,” when disabled. Otherwise, it will be set as follows:

– 1st: Set to “E” if an ECN (Explicit Congestion Notification) echo is enabled.
– 2nd: Set to “P” if the priority in the IP header is enabled.
– 3rd: Not in use.
– 4th: Set to “A” if the corresponding TCP takes an action on a congestion (e.g.,

closes the congestion window).
– 5th: Set to “E” if the congestion has occurred.
– 6th: Set to “F” if the TCP fast start is used.
– 7th: Set to “N,” when the transport layer protocol is capable of using Explicit

Congestion Notification (ECN).

• Flow ID: The field “fid_” of the IP packet header.
• Source Address and Destination Address: The source and destination addresses

of a packet specified in an IP packet header. For a flat addressing scheme, the
format of these two fields is “a.b,” where “a” is the address and “b” is the port.

• Sequence Number: The sequence number corresponding to the protocol specified
in the packet payload type.

• Packet Unique ID: A unique ID stored in the common packet header.

Example 14.4. Consider the following trace record from a trace file:

- 1.257849 0 2 tcp 1040 ------- 2 0.1 3.2 4 118

The interpretation for this trace line is as follows. At “1.257849” second, a packet
with unique packet ID is “118” exits the queue (“-”) of the link connecting node

14.3 Packet Tracing 399

IP Trace

Time to
Live

"-------"
Destination
IP Address

Destination
Port No.

":"
Source

IP Address
Source
Port No.

":"
Next Hop

IP Address

Basic Trace String

Event
Type

T Reason
Ethernet
Packet
Type

Packet
Size

Basic Trace
String

Time
Node

ID
Trace
Level

Reason
Packet

Unique ID
Payload

Type

Time to
Send
Data

Destination
MAC

Address

Source
MAC

Address

Additional Trace String

RREQ
Type

Hop
Count

"0X"
Broadcast

ID
"Request"

AODV trace: RREQ Packet

1 2 3 4 6 75 8 9 10 11 12

Source
Seq. No.

Source
IP

Address

Destination
Seq. No.

Destination
IP

Address

Fig. 14.8 Wireless trace format

“0” to node “2”. The packet is a “tcp” packet whose size is “1040” bytes.
This packet belongs to the TCP flow number “2” and is tagged with sequence
number “4”. The source and destination sockets of the packet are “0.1” and “3.2”,
respectively, where the address and port are separated by a dot symbol (“.”). �

14.3.5.2 Wireless Packet Trace Format

Wireless packet trace format is activated automatically when running a wireless
network (see Chap. 12 for wireless networking in NS2). As shown in Fig. 14.8,
wireless packet trace format consists of two main parts. The former – Basic trace
string – is mandatory. It appears on every wireless trace record. The latter –
Additional trace string – is protocol-specific. Its format depends on the entity
being traced. While NS2 supports several traceable entity (e.g., TCP, CBR, TORA),
Fig. 14.8 shows only two examples of additional trace string format – namely IP
trace and AODV-RREQ trace.6 A more comprehensive list of trace format can be
found in the files ˜ns/trace/cmu-trace.h,cc, in [17], and in [11].

The following notations are also adopted in addition to those used in Fig. 14.7.
Strings in quotation marks are those that appear in a trace record as they are. Also,
a trace record contains both square brackets and parentheses. Their locations in a
trace record are shown in Fig. 14.8. The column numbers are given for the basic
tracing only, since the field location for additional trace string is protocol-specific.

Fields in a wireless trace record are shown below:

6See the details of AODV in Sect. 12.2.

400 14 Processing an NS2 Simulation

• Trace level: The common levels are AGT for agent trace, RTR for routing trace,
MAC for MAC trace. See the list of possible values in the file ˜ns/trace/cmu-
trace.cc.

• Reason: The reason for this trace (e.g., “NRTE” for No RouTe Entry).
• Time to Send Data: Expected duration required to transmitted this packet over

the wireless channel as indicated by the underlying MAC protocol.
• Ethernet Packet Type: Currently, there are only two Ethernet packet types:

– A general IP packet: The value is “ETHERTYPE_IP” defined as “0x0800.”
– An ARP packet: The value is “ETHERTYPE_ARP” defined as “0x0860.”

• RREQ Type: Type as indicated in the field “rq_type” of the hdr_aodv_
request struct data type. By default, the value is “AODVTYPE_RREQ”
defined as “0x02.”

Example 14.5. Consider the following wireless trace record:

s 21.500275000 _0_ MAC --- 0 AODV 106 [0 ffffffff 0
800] ------ [0:255 -1:255 30 0] [0x2 1 4 [1 0]
[0 10]](REQUEST)

The interpretation for the basic trace format is as follows. The node “_0_” sends
(i.e., “s”) at time “21.500275” second. The trace level is at the “MAC” layer.
The packet has the unique ID of “0,” contains an “AODV” payload type, and is
“106” bytes in size. The MAC protocol assumes that the delay over the underlying
wireless channel is zero “0.” Its source and destination MAC addresses are “0”
and “ffffffff,” respectively. Finally, this packet is an IP packet running over an
Ethernet network (i.e., “800”).

For the IP trace format, this packet is tagged with source and destination
addresses of “0” and “1,” respectively. The ports for both source and destination
are “255.” The time to live and the address of the next hop node are “30” hops and
“0,” respectively.

Finally, for AODV trace format, this packet is an RREQ packet (i.e., “0x2.”) The
number of hop counts is “1” and the broadcast ID is “4.” The destination IP address
and sequence number are 1 and 0, respectively. The source IP address and sequence
number are 0 and 10, respectively. Finally, the string “(REQUEST)” confirms that
this is an RREQ packet. �

14.3.5.3 New Wireless Trace Format

New wireless trace format is the most comprehensive trace format in NS2. It can be
activated in a simulation of wireless networks by the following OTcl statement:

$ns_ use-newtrace

where $ns_ is the Simulator object. The above OTcl statement must be placed
before the statement “$ns_ trace-all <ch>.” Otherwise the new wireless
trace will not be activated.

14.3 Packet Tracing 401

Again, new wireless trace format is structureless. Like the former two trace
format, the new wireless trace begins with an event type – which can be “send
(s),” “receive (r),” “drop (d),” or “forward (f).” However, subsequent trace strings
follow the following syntax:

-<tag> <tg_value> [-<subtab> <stg_value>]

where <tag> is a one-letter or two-letter option tag, indicating the meaning of the
following <tg_value>. In addition, some tags require an optional <subtag>
whose value is specified in <stg_value>. The list of option tags and sub-tags as
well as their meaning is given below:

General information:
-t Time

Node information (-N‹):
-Ni Node ID -Nx, -Ny, -Nz Node coordinate
-Nl Trace level: AGT/RTR/MAC -Nw Reason
-Ne Energy level (default = -1, i.e., not tracing energy level)

IP Information (-I‹):
-Is Source (addr.port) -Id Destination (addr.port)
-It Packet type -Il Packet size
-If Flow ID -Ii Unique ID
-Iv Time to live

Next hop (-H‹):
-Hs ID of this node -Hs ID of the next hop node

MAC level information (-M‹):
-Ms Source Ethernet address -Md Destination Ethernet address
-Mt Ethernet type -Ma Packet transmission time

Application information–ARP (-P arp -P‹):
-Ps Source IP address -Pd Destination IP address
-Pm Source MAC address -Pa Destination MAC address
-Po Either “REQUEST” or “REPLY”

Application information–CBR (-P cbr -P‹):
-Pi Sequence number
-Pf The number of time this packet has been forwarded
-Po Min. number of hops to reach the destination as indicated

by GOD. The default value when GOD is not in use is -1.

402 14 Processing an NS2 Simulation

Application information–TCP (-P tcp -P‹):
-Ps Sequence number -Pa Acknowledgement number
-Pf Same as that of CBR -Po Same as that of CBR

where the character “‹” represents a letter. Again, the complete list of tracing tags
and subtags can be found in the files ˜ns/trace/cmu-trace.h,cc, in [17], and [11].

Example 14.6. Consider the following new wireless trace record:

s -t 31.000000000 -Hs 0 -Hd -2
-Ni 0 -Nx 19.36 -Ny 17.32 -Nz 0.00 -Ne -1.000000
-Nl AGT -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0
-Is 0.0 -Id 1.0 -It tcp -Il 40 -If 2 -Ii 3 -Iv 32
-Pn tcp -Ps 0 -Pa 0 -Pf 0 -Po 0

The interpretation is as follows. At 31 s, this record traces Node 0 at the agent AGT
level. The Node is located at the coordinate (19.36,17.32,0). The reasons
string (i.e., -Nw) is empty. The record does not trace the node energy level (-Ne
-1). The packet is sent from the address 0 port 0 to the node with the address 1
port 0. The packet type is “tcp.” Its size is 40 bytes. The flow ID is 2. The packet
unique ID is 3. The time to live is 32. This packet has never been forwarded before.
The optimal number forwards is zero (i.e., GOD is not active). �

14.4 Compilation of Simulation Results

Compilation of simulation results refers to a process of collecting information from
simulation and compute performance measures under consideration. There are three
main approaches to collect simulation data for result compilation: through CCC
through, variable tracing, and through packet tracing.

• Through CCC program: This refers to an approach which inserts CCC state-
ments into the original NS2 program. As mentioned earlier in this book, the
modification of CCC program results in a quick simulation. This approach
also provides great flexibility in which most information would be accessible.
However, programmers require a fair amount of knowledge about the CCC
architecture to collect results from the simulation.

• Through variable tracing: This method is perhaps the most convenient way to
collect the results. The programmers do not need to know the details of the CCC
architecture. They only need to know the traceability and/or binding structure of
OTcl instvars under consideration. However, the range of collectable information
is limited to traceable variables only.

• Through packet tracing: Packet tracing is easy to set up, and it provides a
great deal of detailed packet movements. The downside of packet tracing is
that it significantly drains computational power (e.g., memory, CPU time), and

14.4 Compilation of Simulation Results 403

dramatically slows down simulation. The great amount of collected information
can also overwhelm researchers who need to compute performance measure such
as throughput. Ironically, this great amount of information does not necessarily
contain the required information such as the number of error correction bits in
packet headers. In most cases, packet tracing proceeds in two steps. The first
step is to write all information at the network checkpoints into a trace file using
an OTcl statement “$ns trace-all $fch.” The second step is to filter out
unnecessary information and compute performance measures of interest. In this
step, a scripting language such as AWK can be used (see Appendix A).

Example 14.7. Consider Example 10.1 which creates the network in Fig. 9.3. Insert
an error model with error probability 0.5% into the link connecting Node 1 and
Node 3. Suppose the maximum TCP transmission window size is set to 20. Run
simulation for 10 seconds, and perform the following task.

• Through CCC codes: Find out the number of times TCP transmission window
is reduced.

• Through variable tracing: Plot the dynamic variation of TCP transmission
window.

• Through packet tracing: Compute the average interval between two TCP packets
entering the link layer buffer.

Constructing a Network

An error model can be inserted into the network by inserting the following OTcl
codes immediately after Line 7 of Example 10.1:

set em [new ErrorModel]
$em set rate_ 0.005
$em unit pkt
$em ranvar [new RandomVariable/Uniform]
$em drop-target [new Agent/Null]
$ns lossmodel $em $n1 $n3

The maximum TCP transmission window is set to 20 by the following statement
after Line 10 in Example 10.1: “ $tcp set window_ 20.”

Result Compilation Through CCC Codes

TCP shrinks its transmission window when the function slowdown(how)
of class TcpAgent is invoked. Therefore, we may declare a variable
“num_slowdowns_” of class TcpAgent in file ˜ns/tcp/tcp.h, initialize it
to zero in the constructor, and add the two following lines in the function
slowdown(how):

404 14 Processing an NS2 Simulation

num_slowdowns_++;
printf("Total number of TCP window shrinking events

is %d \n", num_slowdowns_);

After recompiling NS2, we run the script “tcp.tcl” and obtain the following
results:

>> ns tcp.tcl
Total number of TCP window shrinking events is 1
Total number of TCP window shrinking events is 2
Total number of TCP window shrinking events is 3
...
Total number of TCP window shrinking events is 36

In this simulation, TCP shrinks its transmission window 36 times.

Result Compilation Through Variable Tracing

Variable tracing refers to the methods for tracking changes in OTcl instvars.
Section 14.2 discussed a built-in mechanism to do so. Alternatively, programmers
may use manual variable tracing shown below.

Transmission window size of a TCP connection is the minimum of instvars
“cwnd_” and “window_” of a Agent/TCP object. Since these two variables
are available in the OTcl domain, we may collect samples of TCP window size
by inserting the following Tcl script after Line 14 in Example 10.1.

1 set f_cwnd [open cwnd.tr w]
2 proc plot_tcp { } {
3 global f_cwnd tcp ns
4 if { [$tcp set cwnd_] < [$tcp set window_] } {
5 puts $f_cwnd "[$ns now] [$tcp set cwnd_]"
6 } else {
7 puts $f_cwnd "[$ns now] [$tcp set window_]"
8 }
9 $ns at [expr [$ns now] + 0.2] plot_tcp
10 }
11 $ns at 0.01 "plot_tcp"

The above statements put time and TCP transmission window size in the file
“cwnd.tr” every 0.2 s. Line 1 above creates a Tcl channel “f_cwnd” which
is attached to the file “cwnd.tr.” Lines 2–10 define a procedure plot_tcpfg.
Lines 11 invokes the procedure plot_tcpfg at 0.01 s. Within the procedure
plot_tcpfg, Lines 5 and 7 print instvars “cwnd_” and “window_,” whichever is
less, on the Tcl channel “f_cwnd.” Line 9 schedules an invocation of the procedure
plot_tcpfg at 0.2 s in future. This invocation continuously prints out simulation
time and TCP transmission window size to the Tcl channel until the simulation
terminates.

14.4 Compilation of Simulation Results 405

Fig. 14.9 Dynamics of TCP
transmission window for
Example 14.7

0 2 4 6 8 10
0

5

10

15

20

25

Time

Tr
an

sm
is

si
on

 w
in

do
w

 s
iz

e

After running the above Tcl simulation script, the file “cwnd.tr” is created.
The first and the second columns of the file “cwnd.tr” are the time and the
corresponding TCP transmission window, respectively. Figure 14.9 plots simulation
time (1st column) against transmission window size (2nd column). Since we set the
instvar “window_” to be 20, TCP transmission window can never exceed 20. We
can also observe frequent decreases in TCP transmission window size due to packet
losses.

Result Compilation Through Packet Tracing

The first step in this approach is to enable tracing in the Tcl simulation script. Again,
this step can be carried out by inserting the following statements after Line 4 in
Example 10.1.

set f_trace [open trace.tr w]
$ns trace-all $f_trace

The second step is to process the trace file. In this case, there is only one TCP
flow in the simulation and we can measure the interval between two TCP packets
entering a queue, which connect Node 1 (with ID 0) to Node 3 (with ID 1), using
the AWK script file “avg.awk” in Program 14.18. By executing the AWK script,
we will see the following result on the screen:

>> awk -f avg.awk trace.tr
Average TCP packet inter-arrival time is 0.001703

Line 1 in Program 14.18 initializes variable “started” to zero. Lines 2–14
collect samples of the inter-arrival time of TCP packets. Line 2 filter out the trace
records which do not begin with “+.” From Line 5, the samples are collected only

406 14 Processing an NS2 Simulation

Program 14.18 An AWK script which computes the average interval between two
TCP packets entering a link layer buffer of Node 1

//avg.awk
1 BEGIN{ started = 0 }
2 /ˆ+/ {
3 time = $2;
4 if (started == 1) {
5 if ($3==0 && $4==2 && $5 == "tcp") {
6 interval = time-old_time;
7 old_time = time;
8 cum_interval += interval;
9 total_samples ++;
10 }
11 } else {
12 started = 1; old_time = time;
13 }
14 }
15 END {
16 avg_interval = cum_interval/total_samples;
16 printf("Average TCP packet inter-arrival time

is %f\n", avg_interval);
17 }

for the source node 0, the destination node 2, and protocol “tcp” (see Fig. 14.7).
Finally, Lines 15–17 compute and print the average TCP packet inter-arrival time
on the screen. �

14.5 Chapter Summary

This chapter focuses on debugging, tracing, and compilation of simulation results.
Debugging refers to a process of removing compilation and run-time errors in both
CCC and OTcl domains. This chapter provides guidelines and necessary commands
for debugging. Although originally designed to facilitate the understanding of
network dynamics, NS2 tracing could also be useful in the debugging process. NS2
supports two types of tracing. Variable tracing records the changes in value of a
variable (in most cases in a file), while packet tracing stores the details of packets
passing through network checkpoints (again in most cases in a file).

There are three major result compilation approaches. The first approach is
through CCC program. It is quick at runtime and gives programmers an access to
most of the NS2 components. On the other hand, the programmers may require a fair
amount of knowledge on the CCC architecture. Also, since this method involves the
modification of CCC code, it could mess up the original NS2 source codes.

The second approach is through variable tracing. This approach allows pro-
grammers to collect the results from the OTcl domain in a simple way. Using this

14.6 Exercises 407

approach, programmers do not need to understand the entire architecture of NS2,
but the range of collectable information is fairly limited.

The last approach is through packet tracing, which consists of two steps: (1)
recording trace strings in a trace file and (2) processing the trace file. Although sim-
ple and informative, this method drains computation resource and can overwhelm
programmers with the deluge of information. Programmers would need to learn
a scripting language such as AWK to extract required information from the trace
file. The above three approaches for compilation of results have their own strengths
and weaknesses. Programmers need to choose the right one based on their main
simulation objectives.

14.6 Exercises

1. Explain the difference between variable tracing and packet tracing.

2. What are the possible causes of segmentation fault error?

3. What are the differences between compilation error and runtime error? In which
domain (CCC or OTcl) do these errors occur?

4. Write down the statements which retrieve the current simulation time from both
CCC and OTcl domains?

5. Write down a CCC statement which converts a CCC object “c_obj” to
an OTcl referencing string and a CCC statement which converts a OTcl
referencing string “str” to a CCC object.

6. What are attributes of a traceable variable?

7. Explain the following components and their relationship for variable tracing:
TclObjects, traceable variables, tracers, Tcl channels, and trace files. Draw a
diagram and give examples to support your answer.

8. Set up the packet tracing network diagram in Fig. 2.6. What are the OTcl
statements which set up packet tracing? What type of packet tracing format
appear in the trace file?

9. From Exercise 8, write AWK scripts to do the following:

a. Compute the throughput in bps of the link connecting nodes N0 and N2.
b. Compute the throughput in bps corresponding to TCP0.
c. Compute average packet delivery delay for the link connecting nodes N2

and N3.

10. In Fig. 2.6, trace changes in packet sequence number of TCP0 over time. Plot
your results in a graph. Explain in time sequence how NS2 sets up the trace and
how it traces the variable in realtime.

408 14 Processing an NS2 Simulation

11. Set up a simulation for a wireless network with ten Nodes which runs AODV
as the routing protocol.

• Using wireless (i.e., CMU) tracing, compute end-to-end throughput aver-
aged over all the nodes.

• Using new wireless tracing, plot the energy level of node 1.

Chapter 15
Related Helper Classes

Helper classes generally not a part of a network, but are used in NS2 as an
internal mechanism and/or are network components in a special case. This chapter
discusses the details of three main NS2 helper classes. In Sect. 15.1, we first
discuss class Timer, which is widely used by other NS2 modules such as TCP to
implement conditional time-based actions. In Sect. 15.2, we demonstrate a random
number generation process in NS2. In Sect. 15.3, we explain the details of class
ErrorModel, which can be used to simulate packet error. Section 15.4 discusses
bit masking and bit shifting operations used in various places in NS2. Finally, the
chapter summary is given in Sect. 15.5.

15.1 Timers

Timer is a component that can be used to delay actions. Unless cancelled or
restarted, a timer takes actions after it has been started for a given period of time
(i.e., at the expiration). For example, a sender starts a retransmission timer as soon as
it transmits a packet. Unless cancelled by a reception of an acknowledgment packet,
the timer assumes packet loss and asks the sender to retransmit the lost packet at the
timer expiration.

15.1.1 Implementation Concept of Timer in NS2

As shown in Fig. 15.1, a timer consists of four following states: IDLE, SET
WAITING TIME, WAITING, and EXPIRED. A transition from one state to another
occurs immediately when the operation in the current state is complete (i.e., by
default), or when the timer receives a start message, a restart message, or a cancel
message.

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 15, © Springer Science+Business Media, LLC 2012

409

410 15 Related Helper Classes

IDLE
SET WAITING

TIME
(=delay)

WAITING

EXPIRED
(Take Expiration Actions)

start(delay)

restart(delay)

default

default default

cancel

default

ACTIVE

Fig. 15.1 Timer life cycle

When a timer is created, it sets the state to be IDLE. Upon receiving a start
message, the timer moves to the state SET WAITING TIME, where it sets its
waiting time to be “delay” seconds and moves to the state WAITING. The timer
stays in the state WAITING for “delay” seconds and moves to the state EXPIRED.
At this point, the timer takes predefined expiration actions and moves back to the
state IDLE. Hereafter, we will say that the timer expires as soon as it enters the state
EXPIRED. Also, we shall refer to the actions taken in state EXPIRED as expiration
actions.

The above timer life cycle occurs by default when the message “start” is received.
When a “cancel” messages is received, the timer will stop waiting and move back
to the state IDLE. If a restart message is received, the timer will restart the waiting
process in the state SET WAITING TIME.

Implementation of timer in NS2 is a very good example of the inheritance
concept in OOP. Each timer needs to implement the three following mechanisms:
(1) waiting mechanism, (2) interface functions to start, restart, and cancel the wait-
ing process, and (3) expiration actions. The first two mechanisms are common to all
timers; however, the last mechanism (i.e., expiration actions) is what differentiates
one timer from another. From an OOP point of view, the timer base class must
define the waiting mechanism and message receiving interfaces, and leave the
implementation of the expiration actions to the derived classes.

In NS2, timers are implemented in both CCC and OTcl. However, both CCC
and OTcl timer classes are standalone (i.e., not bound together by TclClass).
Relevant functions and variables in both domains are shown in Table 15.1. In both
domains, NS2 implements the waiting process by utilizing the Scheduler. Upon
entering the state SET WAITING TIME, NS2 places a timer expiration event on
the simulation timeline. When the Scheduler fires the expiration event, the timer
enters the state EXPIRED and executes the expiration actions.

15.1 Timers 411

Table 15.1 Timer implementation in CCC and OTcl domains

Components of a timer CCC components OTcl components

State IDLE status_=TIMER_IDLE “id_” unset
State SET WAITING TIME status_=TIMER_PENDING “id_” set
State WAITING status_=TIMER_PENDING “id_” set
State EXPIRATION status_=TIMER_HANDLING “id_” set
Message start Function sched Instprocs sched and

resched
Message restart Function resched Instprocs sched and

resched
Message cancel Function cancel Instprocs cancel and

destroy
Action at the expiration Function expire Instproc timeout

15.1.2 OTcl Implementation

In the OTcl domain, NS2 implements timers using an OTcl class Timer. The
implementation of class timer consists of three parts. First, the waiting mechanism
is implemented by placing a timer expiration event on the simulation timeline using
the instproc atf...g of class Simulator (See Lines 9 and 15 in Program 15.1).
Second, the interface of class Timer is defined in the instprocs schedfdelayg,
reschedfdelayg, cancelfg, and destroyfg. Finally, the expiration actions
are specified in the instproc timeoutfg, which is implemented in child classes
of class Timer (see class ConnTimer in file ˜ns/tcl/webcache/webtraf.tcl, for
example).

Program 15.1 shows details of various instprocs of OTcl class Timer. Class
Timer has two key instvars: “ns_” in Line 6 and “id_” in Line 7. The instvar
“ns_” is a reference to the Simulator. It is configured at the construction of a Timer
object (see Lines 2–4). The constructor of class Timer takes the Simulator as its
input argument and stores the input instance in its instvar “ns_.” The instvar “id_”
(Line 7) indicates the state of the timer. If the timer is idle, “id_” will not exist
(since it is unset). If the timer is active, “id_” will contain the unique ID of the
timer expiration event on the simulation timeline.

The instprocs schedfdelayg (Lines 5–10) and reschedfdelayg (Lines 11–
13) are NS2 implementation for receiving a start message and a restart message,
respectively. They take one input argument “delay” and set the timer to expire
after “delay” seconds. Regardless of the timer state, the instproc schedfdelayg
cancels the timer using the instproc cancelfg in Line 8. In Line 9, it tells the timer
to expire at “delay” seconds in future by invoking the instproc afterfival
argsg of class Simulator. Shown in Lines 14–16, the instproc afterf...g
uses an OTcl command at of class Simulator to place another OTcl command
in future.1 From Line 9, the instproc schedfdelayg schedules an invocation of

1As discussed in Sect. 4.2.3, the OTcl command “atf...g” places an AtEvent object on the
simulation timeline, and returns the unique ID of the scheduled event to the caller.

412 15 Related Helper Classes

Program 15.1 Timer related OTcl instprocs
//˜/ns/tcl/mcast/timer.tcl

1 Class Timer
2 Timer instproc init { ns } {
3 $self set ns_ $ns
4 }
5 Timer instproc sched delay {
6 $self instvar ns_
7 $self instvar id_
8 $self cancel
9 set id_ [$ns_ after $delay "$self timeout"]
10 }
11 Timer instproc resched delay {
12 $self sched $delay
13 }

//˜/ns/tcl/lib/ns-lib.tcl
14 Simulator instproc after {ival args} {
15 eval $self at [expr [$self now] + $ival] $args
16 }

//˜/ns/tcl/mcast/timer.tcl
17 Timer instproc cancel {} {
18 $self instvar ns_
19 $self instvar id_
20 if [info exists id_] {
21 $ns_ cancel $id_
22 unset id_
23 }
24 }
25 Timer instproc destroy {} {
26 $self cancel
27 }

the instproc “timeoutfg” at “delay” seconds in future and stores the unique ID
corresponding to the timer expiration event in the instvar “id_.”

Lines 17–27 in Program 15.1 show details of the instprocs cancelfg and
destroyfg of class Timer. Both the instprocs act as an interface to receive a
cancel message. Note that “id_” exists only when a timer expiration event is
on the simulation timeline. Timer is cancelled only when “id_” exists (i.e., the
condition in Line 20 is true). In this case, Line 21 feeds “id_” to the instproc
cancelfid_g (see Program 15.2) of the Simulator instance to remove the timer
expiration event from the timeline. Finally, Line 22 unsets the instvar “id_” to
indicate that the expiration event is no longer on the simulation timeline.

Program 15.2 shows details of the instproc cancelf...g of class Simulator
and the OTcl command cancelfuidg of class Scheduler. The instproc
cancelf...g takes one input argument “uid,” which is the unique ID of an

15.1 Timers 413

Program 15.2 Instproc cancel of class Simulator and an OTcl command
cancel of class Scheduler

//˜/ns/tcl/lib/ns-lib.tcl
1 Simulator instproc cancel args {
2 $self instvar scheduler_
3 return [eval $scheduler_ cancel $args]
4 }

//˜/ns/common/scheduler.cc
5 int Scheduler::command(int argc, const char*const* argv)
6 {
7 ...
8 if (strcmp(argv[1], "cancel") == 0) {
9 Event* p = lookup(STRTOUID(argv[2]));
10 if (p != 0) {
11 cancel(p);
12 AtEvent* ae = (AtEvent*)p;
13 delete ae;
14 }
15 }
16 ...
17 }

event to be cancelled. Line 3 invokes the OTcl command cancelfuidg of the
Scheduler (stored in an instvar “scheduler_” of the Simulator), which removes
the timer expiration event whose unique ID is “uid” (see Lines 9–13).

15.1.3 CCC Class Implementation

This section explains the CCC implementation of a timer. We first show the life
cycle of a CCC timer based on CCC functions (in Table 15.1). Second, we briefly
discuss the declaration of CCC abstract class TimerHandler, which represents
timers in the CCC domain. Third, we describe the details of three main components
of a timer: (1) internal waiting mechanism, (2) interface functions, and (3) expiration
actions. Fourth, we demonstrate how a timer is cross-referenced with another object.
Finally, we conclude this section by providing guidelines for implementing timers
in NS2.

15.1.3.1 Timer Life Cycle

Based on Fig. 15.1 and Table 15.1, we redraw the life cycle of a TimerHandler
object (i.e., a CCC timer object) in Fig. 15.2. The default state of a timer is
TIMER_IDLE. Upon invoking functionssched(delay) or resched(delay),

414 15 Related Helper Classes

sched(delay) or
 resched(delay)

TIMER_PENDING:

Wait for a period of
delay (seconds)

TIMER_HANDLING:

Expiration actions
(invoke function expire(e))

handle(e)

resched(delay)

default
TIMER_IDLE

cancel

Fig. 15.2 Life cycle of a TimerHandler object

the timer moves from the state TIMER_IDLE to another state TIMER_PENDING,
where the timer starts a waiting period of “delay” seconds. When the timer
expires, it moves to the state TIMER_HANDLING and takes expiration actions by
invoking the functionexpire(e). After taking expiration actions, the timer moves
to the state TIMER_IDLE, and the cycle starts over again. Regardless of the state,
function resched(delay) cancels the pending timer and restarts the timer.
In the state TIMER_PENDING, we may cancel the timer by invoking function
cancel(), which stops the active timer and changes the state of the timer to
TIMER_IDLE.

15.1.3.2 Brief Overview of Class TimerHandler

Program 15.3 shows the declaration of a CCC abstract class TimerHandler,
which represents timers. Line 7 defines three states of a TimerHandler ob-
ject as members of TimerStatus enum data type: TIMER_IDLE, TIMER_
PENDING, and TIMER_HANDLING. Class TimerHandler contains only two
member variables: “status_” in Line 12 and “event_” in Line 13. The variable
“status_” stores the current timer state (or status). It takes a value in f0; 1; 2g,
which corresponds to the values of the TimerStatus enum type shown in Line
7. The default state of a timer is TIMER_IDLE. Therefore, variable “status_”
is set to TIMER_IDLE at the timer construction (see Line 3). Another variable
“event_” (of class Event) represents a timer expiration event. It acts as a glue
between a TimerHandler object and the Scheduler. The details of variable
“event_” will be discussed in the next section.

The key functions of class TimerHandler along with their descriptions are
given below.

15.1 Timers 415

Program 15.3 Declaration of class TimerHandler
//˜/ns/common/timer-handler.h

1 class TimerHandler : public Handler {
2 public:
3 TimerHandler() : status_(TIMER_IDLE) { }
4 void sched(double delay); // cannot be pending
5 void resched(double delay); // may or may not be pending
6 void cancel(); // must be pending
7 enum TimerStatus { TIMER_IDLE, TIMER_PENDING,

TIMER_HANDLING};
8 int status() { return status_; };
9 protected:
10 virtual void expire(Event *) = 0;
11 virtual void handle(Event *);
12 int status_;
13 Event event_;
14 private:
15 inline void _sched(double delay) {
16 (void)Scheduler::instance().schedule(this, &event_,
17 delay); }
18 inline void _cancel() {
19 (void)Scheduler::instance().cancel(&event_);
20 }
21 };

sched(delay) Start the timer and set the timer to expire at
“delay” seconds in future.

_sched(delay) Place a timer expiration event on the simulation
time line at “delay” seconds in future.

resched(delay) Restart the timer and set the timer to expire at
“delay” seconds in future.

cancel() Cancel the pending timer.
_cancel() Remove a timer expiration event from the simula-

tion time line.
status() Return the variable “status_,” the current state

of the timer.
handle(e) Invokes the function expire(e). It is used by

the Scheduler to dispatch a timer expiration event
(see Chap. 4).

expire(e) Take expiration actions. It is a pure virtual func-
tion, and must be implemented by child instan-
tiable classes of class TimerHandler.

416 15 Related Helper Classes

Fig. 15.3 A diagram which represents the timer waiting process (i.e., function sched(delay))

15.1.3.3 Internal Waiting Mechanism

Class TimerHandler implements waiting mechanism through functions
_sched (delay) and _cancel(delay). Basically, these two functions place
and remove “event_” on the simulation timeline. In Line 16 of Program 15.3, the
function _sched(delay) executes “schedule(this,&event_,delay),”
where “this” is the timer address, “event_” is an expiration dummy event
(see Sect. 4.3.7), and “delay” is the duration until the timer expires. The
function schedule(...) stores the address of the timer “this” in the
variable “handler_” of the Event pointer “event_,” essentially setting
event_->handler_ to point to the TimerHandler object. Then, it places
the object “* event_” on the simulation timeline at “delay” seconds in
future. At the firing time, the Scheduler invokes the function dispatch(e),
which in turn executes event_->handler_->handle(...). Since the
variable “handle_” of the dispatched “event_” points to the TimerHandler
object (see Fig. 15.3), NS2 invokes the function handle(e) associated with
the TimerHandler object at the firing time. The function handle(e) of
class TimerHandler in turn invokes the function expire(e) (Line 6 of
Program 15.4) which takes expiration actions specified by the derived classes
of class TimerHandler.

Function _cancel() does the opposite of what function _sched(delay)
does. It removes the timer expiration event from the simulation timeline. From Line
19 in Program 15.3, it invokes functioncancel(&event_) of class Scheduler
to remove the event “event” from the simulation timeline.

15.1 Timers 417

15.1.3.4 Expiration Actions

At the firing time, the Scheduler dispatches a timer expiration event by invok-
ing function handle(e) of the associated timer (see also Fig. 15.3). Details
of the function handle(e) are shown in Program 15.4. Line 3 first checks
whether the current “status_” is TIMER_PENDING. If so, Line 5 will change
the variable “status_” to TIMER_HANDLING, and Line 6 will invoke func-
tion expire(e) to take expiration actions. After returning from the function
expire(e), the variable “status_” is set by default to TIME_IDLE (Line 8).
However, if “status_” has already changed (e.g., when the timer is rescheduled;
“status_”¤TIMER_HANDLING in Line 7), function handle(e) will not
change variable “status_.”

Program 15.4 Function handle of class TimerHandler
//˜/ns/common/timer-handler.cc

1 void TimerHandler::handle(Event *e)
2 {
3 if (status_ != TIMER_PENDING)
4 abort();
5 status_ = TIMER_HANDLING;
6 expire(e);
7 if (status_ == TIMER_HANDLING)
8 status_ = TIMER_IDLE;
9 }

In Line 10 of Program 15.3, the function expire(e) is pure virtual. Therefore,
derived instantiable classes of class TimerHandler are responsible for providing
expiration actions by overriding this function. For example, class MyTimer below
derives from class TimerHandler and overrides function expire(e):

void MyTimer::expire(Event *e)
{

printf("MyTimer has just expired!!\n");
}

which prints the statement “MyTimer has just expired!!” on the screen
upon timer expiration.

15.1.3.5 Interface Functions to Start, Restart, and Cancel a Timer

The details of function sched(delay) of class TimerHandler is shown in
Program 15.5. Function sched(delay) takes one input argument “delay,” and
sets the timer to expire at “delay” seconds in the future by feeding “delay” into

418 15 Related Helper Classes

Program 15.5 Function sched of class TimerHandler
//˜/ns/common/timer-handler.cc

1 void TimerHandler::sched(double delay)
2 {
3 if (status_ != TIMER_IDLE) {
4 fprintf(stderr,"Couldn’t schedule timer");
5 abort();
6 }
7 _sched(delay);
8 status_ = TIMER_PENDING;
9 }

function_sched(delay) (Line 7). Note that the functionsched(delay)must
be invoked when the “status_” of the timer is TIMER_IDLE. Otherwise, Lines
4 and 5 will show an error message and exit the program.

Program 15.6 shows the details of functions resched(delay) and
cancel() of class TimerHandler. Function resched(delay) is very
similar to function sched(delay). In fact, when invoked with “status_”
¤ TIMER_PENDING, it does the same as function sched(delay) does (i.e.,
starts the timer). However, when status_=TIMER_PENDING (Line 3) – meaning
“event_” was placed on the simulation timeline before the invocation – it removes
the timer expiration event from the simulation time line, by invoking function
_cancel(), and (re)starts the timer (Lines 4 and 5, respectively).

Program 15.6 Functions resched and cancel of class TimerHandler
//˜/ns/common/timer-handler.cc

1 void TimerHandler::resched(double delay)
2 {
3 if (status_ == TIMER_PENDING)
4 _cancel();
5 _sched(delay);
6 status_ = TIMER_PENDING;
7 }

8 void TimerHandler::cancel()
9 {
10 if (status_ != TIMER_PENDING) {
11 ...
12 abort();
13 }
14 _cancel();
15 status_ = TIMER_IDLE;
16 }

15.1 Timers 419

Lines 8–16 of Program 15.6 show the details of function cancel() of class
TimerHandler. Function cancel() invokes function _cancel() in Line
14 to remove the pending timer expiration event from the simulation timeline.
Function cancel() must not be invoked, when “event_” is not on the simu-
lation timeline (i.e., “status_” is either TIMER_IDLE or TIMER_HANDLING).
Otherwise, NS2 will show an error message on the screen and exit the program
(Lines 11 and 12).

15.1.3.6 Cross-Referencing a Timer with Another Object

In most cases, the usefulness of a timer stands out when it is cross-referenced with
another object. In this case, the object uses a timer as a waiting tool, which starts,
restarts, and cancels the waiting process as necessary. The timer, on the other hand,
informs the object of timer expiration, upon which the object may take expiration
actions.

A typical cross-reference between a timer and an object can be created as
follows:

1. Declare the timer as a variable of the object class.
2. Declare a pointer to the object as a member of the timer class.
3. Define a non-default constructor for the timer class. Store the input argument of

the constructor in its member pointer variable (which points to the associated
object).

4. Instantiate a timer object from within the constructor of the associated object.
Use the non-default constructor of the timer class defined above. Feed the pointer
“this” (i.e., the pointer to the object) as an input argument to the constructor of
the timer.

We now conclude this section with a simple timer example.

Example 15.1. Consider a process of counting the number of customers who enter
a store during a day. Let class Store represent a convenience store (i.e., an object
class), and let class StoreHour represent the number of opening hours of a day
(i.e., a timer class). The opening hours is specified when the store is opened. The
objective here is to count the number of visiting customers during a day, and print
out the result when the store is closed.

Classes Store and StoreHour

From Program 15.7, class Store also has three variables. First, “hours_” (Line
17) contains opening hours of the store and is set to zero at the construction.
Second, “count_” (Line 18) records the number of customers who have entered
the store so far and is set to zero at the construction. Finally, variable “timer_”
is a StoreHour object. Function close() (Lines 12 and 13) of class Store
is invoked when the store is being closed. It prints out the opening hours and

420 15 Related Helper Classes

Program 15.7 Declaration of classes Store and StoreHour
//store.h

1 class Store;
2 class StoreHour : public TimerHandler {
3 public:
4 StoreHour(Store *s) { store_ = s; };
5 virtual void expire(Event *e);
6 protected:
7 Store *store_;
8 };

9 class Store : public TclObject {
10 public:
11 Store() : timer_(this) { hours_ = -1; count_ = 0; };
12 void close(){
13 printf("The number of customers during

%2.2f hours is %d\n", hours_,count_);
14 };
15 int command(int argc, const char*const* argv);
16 protected:
17 double hours_;
18 int count_;
19 StoreHour timer_;
20 }

number of visiting customers for today on the screen. Declared in Lines 1–8, class
StoreHour has only one variable “store_” (Line 7) which is a pointer to a
Store object.

Cross-Referencing Store and StoreHour Objects

The process of cross-referencing a Store object and a StoreHour object
is shown in Fig. 15.4. The constructor of class Store constructs its variable
“timer_” with the pointer “this” to the Store object (see Line 11). The
constructor of class StoreHour stores the input pointer in its variable “store_.”
Since the input argument is the pointer to the Store object, the constructor of the
StoreHour object essentially sets the variable “store_” to point back to the
Store object.

Due to the cross-referencing, the compiler needs to recognize one of these two
classes when declaring another. Line 1 helps the compiler recognize class Store
when compiling Line 7. After compiling Line 2, the compiler recognizes class
StoreHour and can compile Line 19 without error.

It is also important to note that when compiling Lines 2–8, the compiler recog-
nizes only Store class name. Any attempt to invoke functions (e.g., close())
of class Store will result in a compilation error. This is the reason why we need

15.1 Timers 421

Fig. 15.4 A diagram which
represents the process of
cross-referencing a Store
object and a StoreHour
object

Program 15.8 Function expire of class StoreHour as well as OTcl Commands
open and new-customer of class Store

//store.cc
1 void StoreHour::expire(Event*) {
2 store_->close();
3 };

4 int Store::command(int argc, const char*const* argv)
5 {
6 if (argc == 3) {
7 if (strcmp(argv[1], "open") == 0) {
8 hours_ = atoi(argv[2]);
9 count_ = 0;
10 timer_.sched(hours_);
11 return (TCL_OK);
12 }
13 } else if (argc == 2) {
14 if (strcmp(argv[1], "new-customer") == 0) {
15 count_++;
16 return (TCL_OK);
17 }
18 }
19 return TclObject::command(argc,argv);
20 }

to separate CCC programs into header and CCC files. Again, since a header file
is included at the top of a CCC file, the compiler first goes through the header file
and recognizes all the variables and functions specified in the header file. With this
knowledge, the compiler can compile the CCC file without error.

Defining Expiration Actions

Derived from class TimerHandler, class StoreHour overrides function
expire(e) as shown in Lines 1–3 of Program 15.8. At the expiration, the timer
(i.e., StoreHour object) simply invokes function close() of the associated
Store object.

422 15 Related Helper Classes

Creating OTcl Interface

We bind the CCC class Store to an OTcl class with the same name using a
mapping class StoreClass shown in Program 15.9. Lines 4–20 in Program 15.8
also show OTcl interface commands openfhoursg and new-customerfg. With
opening hours “hours” as an input argument, the OTcl command openfhoursg
(Lines 8–11) is invoked when the store is opened. Line 8 stores the opening hours
in variable “hours_,” Line 9 resets the number of visiting customers to zero,
and Line 10 tells “timer_” to expire at “hours_” hours in future. The OTcl
command new-customerfg is invoked as a customer enters the store. In Line 15,
this command simply increases “count_” by one. Again, at the timer expiration,
the timer invokes function close() through the pointer “store_” and prints out
the opening hours (i.e., “hours_”) as well as the number of visiting customers (i.e.,
“count_”) for today (see function expire(e) in Line 2 of Program 15.8).

Program 15.9 A mapping class StoreClasswhich binds CCC and OTcl classes
Store

//store.cc
1 static class StoreClass : public TclClass {
2 public:
3 StoreClass() : TclClass("Store") {}
4 TclObject* create(int, const char*const*) {
5 return (new Store);
6 }
7 } class_store;

Testing the Codes

After defining files store.cc and store.h, we include store.o to the
MakeFile and run “make” at NS2 root directory to include classes Store and
StoreHour into NS2 (see Sect. 2.7).

Define a test Tcl simulation script in a file store.tcl.

//store.tcl
1 set ns [new Simulator]
2 set my_store [new Store]
3 $my_store open 10.0
4 $ns at 1 "$my_store new-customer"
5 $ns at 5 "$my_store new-customer"
6 $ns at 6 "$my_store new-customer"
7 $ns at 8 "$my_store new-customer"
8 $ns at 11 "$my_store new-customer"
9 $ns run

15.1 Timers 423

We run the script store.tcl and obtain the following results:

>>ns store.tcl
The number of customers during 10.0 hours is 4

From the above script, when Line 2 creates a Store object, NS2 automati-
cally creates a shadow CCC Store Object. Line 3 invokes an OTcl command
open with input argument 10.0, essentially opening the store for 10.0 h. From
Program 15.8, the OTcl command openf10.0g and tells the associated timer to
expire at 10.0 h in future, and clears the variable “count_.” Lines 4–8 invoke
command new-customerfg at 1st, 5th, 6th, 8th, and 11th hours. Each of these
lines increases the number of visiting customers (i.e., “count_”) by one. By the
end of 11th hour in future, variable “count_” should be 5. However, the program
shows that the number of visiting customers is 4. This is because the timer expires
and invokes the function close() at the 10th hour. �

15.1.4 Guidelines for Implementing Timers in NS2

We now summarize the process of defining a new timer. Suppose that we would
like to define a new timer class StoreHour. Suppose further that a Store object
is responsible for starting, restarting, and canceling the StoreHour object, and
for taking expiration actions. Then, the implementation of the above timer classes
proceeds as follows:

From Class StoreHour

• Step 1: Design class structure:

– Derive class StoreHour from class TimerHandler.
– Declare a pointer (e.g., “store_”) to class Store. The public function of

class Store is accessible through the above pointer (e.g., “store_”)

• Step 2: Bind the reference to class Store in the constructor.
• Step 3: Define expiration actions in the function expire(e).

From Class Store

• Step 1: Design class structure:

– Derive class Store from class TclObject only if an interface to OTcl is
necessary.

– Declare a StoreHour variable (e.g., “timer_”) as a member variable.

424 15 Related Helper Classes

• Step 2: From within the constructor instantiate the above StoreHour variable
(e.g., “timer_”) with the pointer “this.”

At runtime, we only need to instantiate a Store object. The internal mechanism of
class Store will automatically create and configure a StoreHour object. Also,
we do not need any global (or OTcl) reference to the StoreHour object, since it
is usually manipulated by class Store.

15.2 Implementation of Random Numbers in NS2

This section demonstrates implementation of random number generators in NS2.
In principle, NS2 uses so-called Random Number Generator (RNG) to generate
random numbers. An RNG sequentially picks numbers from a stream of pseudo-
random numbers. A set of generated random numbers is characterized by the point
where the RNG starts picking the numbers – called “seed.” By default, NS2 sets the
seed to 1. Therefore, the results obtained from every run are essentially the same.

Random numbers can also be transformed to conform to a given distribu-
tion. Such a transformation is carried out through instprocs in the OTcl do-
main, and through classes derived from class RandomVariable in the CCC
domain. We will discuss the details of RNGs and the seeding mechanism in
Sects. 15.2.1 and 15.2.2, respectively. Section 15.2.3 shows the implementation
of RNGs in NS2. Section 15.2.4 discusses different simulation scenarios, where
RNGs are set differently. Section 15.2.5 explains the implementation of a CCC
class RandomVariable which transforms random numbers according to a given
distribution. Finally, Sect. 15.2.6 gives a guideline to define a new RNG and a new
random variable in NS2.

15.2.1 Random Number Generation

NS2 generates random numbers by sequentially picking numbers from a stream of
pseudo-random number (as discussed in Sect. 1.3.1). It uses the combined multiple
recursive generator (MRG32k3a) proposed by L’Ecuyer (1999) as a pseudo-random
number generator. Generally speaking, an MRG32k3a generator contains streams
of pseudo-random numbers from which the numbers picked sequentially seem to
be random. In Fig. 15.5, an MRG32k3a generator provides 1:8 � 1019 independent
streams, each of which consists of 2:3 � 1015 substreams. Each substream contains
7:6 � 1022 random numbers (i.e., the period of each substream is 7:6 � 1022). In
summary, an MRG32k3a generator can create 3:1 � 1057 numbers which appear to
be random.

15.2 Implementation of Random Numbers in NS2 425

Fig. 15.5 Streams and
substreams of an MRG32k3a
generator

15.2.2 Seeding a Random Number Generator

As mentioned in Sect. 1.3.1, “seed” is one of the main ingredients of Random
Number Generator (RNG). Loosely speaking, a seed specifies the location on a
stream of pseudo-random numbers, where an RNG starts picking random numbers
sequentially. When seeded differently, two RNGs start picking pseudo-random
numbers from different locations, and therefore generate two distinct sets of random
numbers. On the other hand, if seeded with the same number, two RNGs will start
picking random numbers from the same location, and therefore generate the same
set of random numbers.

By default, NS2 always uses only one OTcl variable defaultRNG as a default
RNG, and always seeds the defaultRNGwith 1. Therefore, the simulation results
for every run are essentially the same. To collect independent simulation results, we
must seed different runs differently.

Example 15.2. In the following, we run NS2 for three times to show NS2 seeding
mechanism.

1 >>ns
2 >>$defaultRNG seed
3 1
4 >>$defaultRNG next-random
5 729236
6 >>$defaultRNG next-random
7 1193744747
8 >>exit

426 15 Related Helper Classes

RESTART NS2
9 >> ns
10 >>$defaultRNG seed
11 1
12 >>$defaultRNG next-random
13 729236
14 >>$defaultRNG next-random
15 1193744747
16 >>exit

RESTART NS2
17 >>ns
18 >>$defaultRNG seed 101
19 >>$defaultRNG next-random
20 72520690
21 >>$defaultRNG next-random
22 308637100
23 >>exit

In the first run (Lines 1–8), the variable defaultRNG (i.e., the default RNG)
is used to generate two random numbers. In Line 2, the instproc seed returns
the current seed which is set (by default) to 1. Lines 4 and 6 use the instproc
next-randomfg to generate two random numbers, 729236 and 1193744747,
respectively. Finally, Line 8 exits the NS2 environment.

Lines 9–16 repeat the process in Lines 1–8. In Lines 10 and 11, we can observe
that the seed is still 1. As expected, the first and the second random numbers
generated are 729236 and 1193744747, respectively. These two numbers are the
same as those in the first run. Essentially, the first run and the second run generate
the same results. To generate different results, we need to seed the simulation
differently.

Lines 17–22 show the last run, where the seed is set differently (to 101). The first
and the second random number generated in this case are 72520690 and 308637100,
respectively. These two numbers are different from those in the first two runs, since
Line 15 sets the seed of the defaultRNG to 101. �

The key points about seeding the mechanism in NS2 are as follows:

• A seed specifies the starting location on a stream of pseudo-random numbers,
and hence characterizes an RNG.

• To generate two independent simulation results, each simulation must be seeded
differently.

• At initialization, NS2 creates a variable defaultRNG as the default RNG, and
seeds the defaultRNG with 1. By default, NS2 generates the same simulation
result for every run.

15.2 Implementation of Random Numbers in NS2 427

• When seeded with zero, an RNG replaces the seed with current time of the day
and counter. Despite their tendency to be independent, two runs may pick the
same seed and generate the same result. To ensure independent runs, we must
seed the RNG manually.

• NS2 seeds a new RNG object to the beginning of the next random stream.
Therefore, every RNG object is independent of each other.

15.2.3 OTcl and CCC Implementation

NS2 uses a CCC class RNG (which is bound to an OTcl class with the same
name) to generate random numbers (see Program 15.10). In most cases, it is not
necessary to understand the details of the MRG32k3a generator. This section shows
only the key configuration and implementation in the OTcl and CCC domains.
The readers may find the detailed implementation of an MRG32k3a generator in
files ˜ns/tools/rng.cc,h.

Program 15.10 A mapping class RNGClass which binds OTcl and CCC classes
RNG

//˜/ns/tools/rng.cc
1 static class RNGClass : public TclClass {
2 public:
3 RNGClass() : TclClass("RNG") {}
4 TclObject* create(int, const char*const*) {
5 return(new RNG());
6 }
7 } class_rng;

15.2.3.1 OTcl Commands and Instprocs

In the OTcl domain, class RNG defines the following OTcl commands:

seedfg Return the seed of RNG.
seedfng Set the the seed of RNG to be “n.”

next-randomfg Return a random number.
next-substreamfg Advance to the beginning of the next

substream.
reset-start-substreamfg Return to the beginning of the current

substream.

428 15 Related Helper Classes

normalfavg stdg Return a random number normally dis-
tributed with average “avg” and stan-
dard deviation “std.”

lognormalfavg stdg Return a random number log-normally
distributed with average “avg” and
standard deviation “std.”

Defined in file ˜ns/tcl/lib/ns-random.tcl, the following instprocs generate random
numbers:

exponentialfmug Return a random number exponentially distributed
with mean “mu.”

uniformfmin maxg Return a random number uniformly distributed in
[min,max].

integerfkg Return a random integer uniformly distributed in
f0,1, ..., k-1g.

15.2.3.2 CCC Functions

In the CCC domain, the key functions of class RNG include (see the details in files
˜ns/tools/rng.cc,h):

set_seed(n) If n = 0, set the the seed of the
RNG to be current time and counter.
Otherwise, set the seed to be “n.”

seed() Return the seed of the RNG.
next() Return a random int number in

f0,1,..., MAX_INTg.
next_double() Return a random double number

in [0,1].
reset_start_substream() Move to the beginning of the cur-

rent substream.
reset_next_substream() Move to the beginning of the next

substream.
uniform(k) Return a random int number uni-

formly distributed in f0,1, ...,
k-1g.

uniform(r) Return a random double number
uniformly distributed in [0,r].

uniform(a,b) Return a random double number
uniformly distributed in [a,b].

15.2 Implementation of Random Numbers in NS2 429

exponential(k) Return a random number exponentially
distributed with mean “k.”

normal(avg,std) Return a random number normally dis-
tributed with average “avg” and standard
deviation “std.”

lognormal(avg,std) Return a random number log-normally dis-
tributed with average “avg” and standard
deviation “std.”

15.2.4 Randomness in Simulation Scenarios

In most cases, a simulation falls into one of the following three scenarios.

15.2.4.1 Deterministic Setting

This type of simulation is usually used for debugging. Its purpose is to locate
programming errors in the simulation codes or to understand complex behavior
of a certain network. In both cases, it is convenient to run the program under a
deterministic setting and generate the same result repeatedly. By default, NS2 seeds
the simulation with 1. The deterministic setting is therefore the default setting for
NS2 simulation.

15.2.4.2 Single-Stream Random Setting

The simplest form of statistical analysis is to run a simulation for several times and
compute statistical measures such as average and/or standard deviation. By default,
NS2 always uses defaultRNG with seed “1” to generate random numbers. To
statistically analyze a system, we need to generate several distinct sets of results.
Therefore, we need to seed different runs differently. In a single-stream random
setting, we need only one RNG. Hence, we may simply introduce the diversity to
each run by seeding different runs with different values <n> (e.g., in Example 15.2,
Line 18 seeds the default RNG with 101).

$defaultRNG seed <n>

which seeds the default RNG with a number <n>.

15.2.4.3 Multiple-Stream Random Setting

In some cases, we may need more than one independent random variable for
a simulation. For example, we may need to generate random values of packet

430 15 Related Helper Classes

inter-arrival time as well as packet size. These two variables should be independent
and should not share the same random stream. We can create two independent RNG
using “new RNG.” Since NS2 seeds each RNG with different random stream (see
Sect. 15.2.2), the random processes with different RNGs are independent of each
other.

Example 15.3. Suppose that the inter-arrival time and packet size are exponentially
distributed with mean 5 and uniformly distributed within Œ100; 5000�, respectively.
Print out the first five random values of inter-arrival time and packet size.

Tcl Simulation Script

1 $defaultRNG seed 101
2 set arrivalRNG [new RNG]
3 set sizeRNG [new RNG]

4 set arrival_ [new RandomVariable/Exponential]
5 $arrival_ set avg_ 5
6 $arrival_ use-rng $arrivalRNG

7 set size_ [new RandomVariable/Uniform]
8 $size_ set min_ 100
9 $size_ set max_ 5000
10 $size_ use-rng $sizeRNG

11 puts "Inter-arrival time Packet size"
12 for {set j 0} {$j < 5} {incr j} {
13 puts [format "%-8.3f %-4d" [$arrival_ value] \

[expr round([$size_ value])]]
14 }

Results on the Screen

Inter-arrival time Packet size
1.048 1880
7.919 116
8.061 3635
4.675 2110
7.201 1590

The details of the above Tcl simulation script are as follows. Lines 4 and 7
create an exponentially random variable2 “arrival_” and a uniformly distributed

2We will discuss the details of random variables in the next section.

15.2 Implementation of Random Numbers in NS2 431

Fig. 15.6 A schematic diagram of class RandomVariable

random variable “size_” whose parameters are defined in Lines 5 and 6 and
Lines 8–10, respectively. Lines 11–14 print out five random numbers generated by
“arrival_” and “size_.” In Sect. 15.2.5, we will see that the OTcl command
“value” of class RandomVariable returns a random number, and the OTcl
command “use-rng” is used to specify an RNG for a random variable.

By default, defaultRNG3 is used to generate random numbers for both
“arrival_” and “size_.” In this case, Lines 2 and 3 create two independent
RNGs: “arrivalRNG” and “sizeRNG.” NS2 specifies these two variables as
RNGs for “arrival_” and “size_” using an OTcl command use-rng in Lines
6 and 10, respectively. Since the created RNG objects are independent, random
variable “arrival_” and “size_” are independent of each other. �

15.2.5 Random Variables

In NS2, a random variable is a module which generates random values whose statis-
tics follow a certain distribution. It uses an RNG to generate random numbers and
transforms the generated numbers to values which conform to a given distribution.
This implementation is carried out in CCC abstract class RandomVariable
whose diagram and declaration are shown in Fig. 15.6 and Program 15.11, respec-
tively.

Consider the declaration of class RandomVariable in Program 15.11. Class
RandomVariable contains a pointer “rng_” (Line 9) to an RNG object (used to
generate random numbers), and two pure virtual interface functions: value() in
Line 3 and avg() in Line 4. Function value() generates random numbers, trans-
forms the generated numbers to values conforming to the underlying distribution,
and returns the transformed values to the caller. Function avg() returns the average
value of the underlying distribution. Since these two functions are pure virtual, they
must be overridden by all derived instantiable classes of class RandomVariable.
The list of key built-in instantiable CCC classes as well as their bound OTcl classes
is given in Table 15.2.

3Line 1 sets the seed of defaultRNG to be 101. But we do not use defaultRNG in this example.

432 15 Related Helper Classes

Program 15.11 Declaration of class RandomVariable
//˜/ns/tools/ranvar.h

1 class RandomVariable : public TclObject {
2 public:
3 virtual double value() = 0;
4 virtual double avg() = 0;
5 int command(int argc, const char*const* argv);
6 RandomVariable();
7 int seed(char *);
8 protected:
9 RNG* rng_;
10 };

Table 15.2 Built-in CCC and OTcl random variable classes

CCC class OTcl class

UniformRandomVariable RandomVariable/Uniform
ExponentialRandomVariable RandomVariable/Exponential
ParetoRandomVariable RandomVariable/Pareto
ParetoIIRandomVariable RandomVariable/ParetoII
NormalRandomVariable RandomVariable/Normal
LogNormalRandomVariable RandomVariable/LogNormal
ConstantRandomVariable RandomVariable/Constant
HyperExponentialRandomVariable RandomVariable/HyperExponential
WeibullRandomVariable RandomVariable/Weibull
EmpiricalRandomVariable RandomVariable/Empirical

15.2.5.1 Random Number Generator

A RandomVariable object uses its variable “rng_” to generate random num-
bers. By default, every random variable uses the defaultRNG as its RNG. As
shown in Program 15.12, the constructor (Lines 1–4) of class RandomVariable
stores the default RNG returned from the statement RNG::defaultrng() in the
variable “rng_.”

To create multiple independent random variables, the variable “rng_” of each
random variable must be independent of each other. From Example 15.3, this can
be achieved by creating and binding a dedicated RNG to each random variable.
As will be discussed in the next section, the process of binding an RNG to a
random variable is carried out using the OTcl command use-rng associated with
a RandomVariable object.

15.2.5.2 OTcl Commands

Shown in Program 15.12, class RandomVariable defines the following two OTcl
commands, which can be invoked from the OTcl domain:

• valuefg: Returns a random number by invoking the function value()
(Lines 9–12).

15.2 Implementation of Random Numbers in NS2 433

Program 15.12 The constructor, OTcl command value, and OTcl command
use-rng of class RandomVariable

//˜/ns/tools/ranvar.cc
1 RandomVariable::RandomVariable()
2 {
3 rng_ = RNG::defaultrng();
4 }

//˜/ns/tools/ranvar.cc
5 int RandomVariable::command(int argc, const char*const* argv)
6 {
7 ...
8 if (argc == 2) {
9 if (strcmp(argv[1], "value") == 0) {
10 tcl.resultf("%6e", value());
11 return(TCL_OK);
12 }
13 }
14 if (argc == 3) {
15 if (strcmp(argv[1], "use-rng") == 0) {
16 rng_ = (RNG*)TclObject::lookup(argv[2]);
17 ...
18 return(TCL_OK);
19 }
20 }
21 ...
22 }

• use-rngfrngg: Casts the input argument “rng” to type RNG*, and stores the
cast object in the variable “rng_” (Lines 15–19).

Note that an example use of the OTcl command use-rngfrngg is shown in
Lines 6 and 10 in Example 15.3.

Since class RandomVariable is abstract, it is not bound to the OTcl domain.
However, all its derived classes are bound to the OTcl domain. Table 15.2 lists ten
built-in CCC and OTcl random variable classes.

15.2.5.3 Exponential Random Variable

As an example, consider implementation of an exponentially distributed random
variable in Program 15.13. From Table 15.2, NS2 implements an exponentially dis-
tributed random variable using the CCC class ExponentialRandomVariable
and the OTcl class RandomVariable/Exponential.

Since an exponential random variable is completely characterized by an average
value, class ExponentialRandomVariable has only one member variable
“avg_” (Line 9), which stores the average value. At the construction (see Lines
18–20), class ExponentialRandomVariable binds its variable “avg_” to an

434 15 Related Helper Classes

Program 15.13 An implementation of class ExponentialRandomVariable
//˜/ns/tools/ranvar.h

1 class ExponentialRandomVariable : public RandomVariable {
2 public:
3 virtual double value();
4 ExponentialRandomVariable();
5 double* avgp() { return &avg_; };
6 virtual inline double avg() { return avg_; };
7 void setavg(double d) { avg_ = d; };
8 private:
9 double avg_;
10 };

//˜/ns/tools/ranvar.cc
11 static class ExponentialRandomVariableClass : public

TclClass {
12 public:
13 ExponentialRandomVariableClass() : TclClass(

"RandomVariable/Exponential") {}
14 TclObject* create(int, const char*const*) {
15 return(new ExponentialRandomVariable());
16 }
17 } class_exponentialranvar;

18 ExponentialRandomVariable::ExponentialRandomVariable(){
19 bind("avg_", &avg_);
20 }

21 double ExponentialRandomVariable::value(){
22 return(rng_->exponential(avg_));
23 }

instvar “avg_” in the OTcl domain. Functions avg() in Line 6 and avgp()
in Line 5 return the value stored in “avg_” and the address of “avg_,” re-
spectively. Function setavg(d) in Line 7 stores the value in “d” into variable
“avg_.” Function value() in Lines 21–23 returns a random number exponen-
tially distributed with mean “avg_.” It invokes function exponential(avg_)
of variable “rng_,” feeding variable “avg_” as an input argument to obtain an
exponentially distributed random number.

15.2.6 Guidelines for Random Number Generation in NS2

We conclude this section by providing the following guidelines for implementing
randomness numbers in NS2:

15.3 Built-in Error Models 435

1. Determine the type of simulation: deterministic setting, single-stream random
setting, or multi-stream random setting.

2. Create RNG(s) according to the simulation type.
3. If needed, create a random variable

– Define the inheritance structure: CCC, OTcl, and mapping classes.
– Define function avg() which returns the average value of the distribution to

the caller.
– Define function value() which returns a random number conforming to the

specified distribution.

4. Specify an RNG for each random variable using an OTcl command use-rng
of class RandomVariable.

15.3 Built-in Error Models

An error model is an NS2 module which imposes error on packet transmission.
Derived from class Connector, it can be inserted between two NsObjects. An
error model simulates packet error upon receiving a packet. If the packet is simulated
to be in error, the error model will either drop the packet or mark the packet with an
error flag. If the packet is simulated not to be in error, on the other hand, the error
model will forward the packet to its downstream object. An error model can be used
for both wired and wireless networks. However, this section discusses the details of
an error model through a wired class SimpleLink only.

Program 15.14 Class ErrorModelClass which binds CCC and OTcl classes
ErrorModel

//˜/ns/queue/errmodel.cc
1 static class ErrorModelClass : public TclClass {
2 public:
3 ErrorModelClass() : TclClass("ErrorModel") {}
4 TclObject* create(int, const char*const*) {
5 return (new ErrorModel);
6 }
7 } class_errormodel;

NS2 implements error models using a CCC class ErrorModelwhich is bound
to an OTcl class with the same name (see Program 15.14). Class ErrorModel
simulates Bernoulli error, where transmission is simulated to be either in error or
not in error. NS2 also provides ErrorModel classes with more functionalities
such as two-state error model. Tables 15.3 and 15.4 show NS2 built-in error models
whose implementation is in the CCC and OTcl domain, respectively.

436 15 Related Helper Classes

Table 15.3 Built-in error models which contain CCC and OTcl implementation

CCC class OTcl class Description

TwoStateErrorModel ErrorModel/TwoState Error-free and error-prone
states

ComplexTwoState ErrorModel/Complex Contain two objects of class
MarkovModel TwoStateMarkov TwoStateErrorModel

MultiStateErrorModel ErrorModel/MultiState Error model with more than
two states

TraceErrorModel ErrorModel/Trace Impose error based on a trace
file

PeriodicErrorModel ErrorModel/Periodic Drop packets once every n

packets
ListErrorModel ErrorModel/List Specify the a list of packets

to be dropped
SelectErrorModel SelectErrorModel Selective packet drop
SRMErrorModel SRMErrorModel Error model for SRM
MrouteErrorModel ErrorModel/Trace/ Error model for multicast

Mroute routing
ErrorModule ErrorModule Send packets to

classifier rather than
“target_”

PGMErrorModel PGMErrorModel Error model for PGM
LMSErrorModel LMSErrorModel Error model for LMS

Table 15.4 Built-in OTcl error models defined in file ˜ns/tcl/lib/ns-errmodel.tcl

OTcl class Base class Description

ErrorModel/Uniform ErrorModel Uniform error model
ErrorModel/Expo ErrorModel/TwoState Two state error model;

Each state is
represented by an
exponential
random variable.

ErrorModel/Empirical ErrorModel/TwoState Two state error model;
Each state is
represented by an
empirical random
variable.

ErrorModel/TwoStateMarkov ErrorModel/Expo ErrorModel/Expo
model where the
state residence
time is exponential

15.3.1 OTcl Implementation: Error Model Configuration

In common with those of most objects, configuration interfaces of an error model are
defined in the OTcl domain. Such a configuration includes parameter configuration
and network configuration.

15.3 Built-in Error Models 437

15.3.1.1 Parameter Configuration

There are two ways to configure an error model object: through bound variables and
through OTcl commands. Class ErrorModel binds the following CCC variables
to OTcl instvars with the same name:

enabled_ Set to 1 if this error model is active, and set to 0 otherwise.
rate_ Error probability

delay_pkt_ If set to true, the error model will delay (rather than
drop) the transmission of corrupted packets.

delay_ Delay time in case that delay_pkt_ is set to true.
bandwidth_ Used to compute packet transmission time

markecn_ If set to true, the error model will mark error flag (rather
than drop) in flag header of the corrupted packet.

The second configuration method is through the following OTcl commands
whose input arguments are stored in args:

unitfargg Store arg in CCC variable “unit_.”
ranvarfargg Store arg in CCC variable “ranvar_.”

FECstrengthfargg Store arg in CCC variable
FECstrength_.

datapktsizefargg Store arg in CCC variable
“datapktsize_.”

cntrlpktsizefargg Store arg in CCC variable
“cntrlpktsize_.”

eventtracefargg Store arg in CCC variable “et_.”

Among the above OTcl commands,unitfg,ranvarfg, andFEC strengthfg,
when taking no input argument, return values stored in “unit_,” “ranvar_,” and
“FECstrength_,” respectively.

15.3.1.2 Network Configuration

As a Connector object, an error model can be inserted into a network to simulate
packet errors. OTcl defines two pairs of instprocs to insert an error model into
a SimpleLink object (see Sect. 7.1). Each pair consists of one instproc from
class SimpleLink and one instproc from class Simulator as shown below
(see Fig. 15.7):

• SimpleLink::errormodulefemg: Inserts an error model “em” right after
the head of a SimpleLink object.

438 15 Related Helper Classes

Fig. 15.7 Instprocs errormodule and insert-linkloss of class SimpleLink

• Simulator::lossmodelflossobj from tog: Executes “error-
module”from within the SimpleLink object which connects node “from”
to node “to.”

• SimpleLink::insert-linklossfemg: Inserts an error model “em” right
after instvar “link_” of the SimpleLink object.

• Simulator::link-lossmodelflossobj from tog: Executes the in-
stproc “insert-linklossf...g” from within the SimpleLink object
which connects node “from” to node “to.”

Program 15.15 shows the details of instproc errormodulefemg of class
SimpleLink, which inserts the input error model (e.g., “em”) immediately after
the link’s head. Lines 6 and 7 store the input error model (i.e., “em”) in instvar
“errmodule_.” Line 8 inserts the input error model next to the link’s head by
invoking instproc add-to-headfemg, and Line 9 sets the drop target of the input
error model “em” to “drophead_.”

Program 15.15 Instproc errormodule of class SimpleLink, and instproc
add-to-head of class Link

//˜/ns/tcl/lib/ns-link.tcl
1 SimpleLink instproc errormodule args {
2 $self instvar errmodule_ queue_ drophead_
3 if { $args == "" } {
4 return $errmodule_
5 }
6 set em [lindex $args 0]
7 set errmodule_ $em
8 $self add-to-head $em
9 $em drop-target $drophead_
10 }

11 Link instproc add-to-head { connector } {
12 $self instvar head_
13 $connector target [$head_ target]
14 $head_ target $connector
15 }

15.3 Built-in Error Models 439

In Lines 11–15 of Program 15.15, instproc add-to-headfconnectorg
inserts the input argument “connector” between link’s head (i.e., the instvar
“head_”) and target of the link’s head (see Lines 13 and 14).

Program 15.16 shows the details of instproc insert-linklossfemg,
which inserts the input error model after the instvar “link_.” Line 6 stores
the input error model in a local variable “em.” Lines 7–9 delete the instvar
“link_errmodule_” if it exists. Then Line 10 stores the variable “em” in
the instvar “link_errmodule_.” Lines 11 and 12 insert the variable “em”
immediately after the instvar “link_.” Finally, Line 13 sets the drop target of the
variable “em” to be the instvar “drophead_.”

Program 15.16 An instproc insert-linkloss of class SimpleLink
//˜/ns/tcl/lib/ns-link.tcl

1 SimpleLink instproc insert-linkloss args {
2 $self instvar link_errmodule_ queue_ drophead_ link_
3 if { $args == "" } {
4 return $link_errmodule_
5 }
6 set em [lindex $args 0]
7 if [info exists link_errmodule_] {
8 delete link_errmodule_
9 }
10 set link_errmodule_ $em
11 $em target [$link_ target]
12 $link_ target $em
13 $em drop-target $drophead_
14 }

In most cases, a SimpleLink object is inaccessible from a Tcl sim-
ulation script. Therefore, class Simulator provides interface instprocs
lossmodelf...g and link-lossmodelf...g to invoke instprocs error-
modulefemg and insert- linklossfemg, respectively, of class Simple-
Link.4

The details of both the instproc lossmodelflossobj from tog and the
instproc link-lossmodelflossobj from tog of class Simulator are
shown in Program 15.17, where they insert an error model “lossobj” into the
link which connect a node “from” to a node “to.” Lines 2 and 6 invoke instproc
linkffrom tog of class Simulator. In Line 18, this instproc returns the Link
object which connects a node “from” to a node “to.” Lines 3 and 7 then insert an
error model into the returned Link object, by executing errormodulefemg and
insert-linklossfemg, respectively.

4Caution: The details of instproc insert-linkloss has been changed slightly since NS
version 2.35. The configuration (as in Fig. 15.7) might look different under different versions of
NS2.

440 15 Related Helper Classes

Program 15.17 Instprocs lossmodel, link-lossmodel, and link of class
Simulator

//˜/ns/tcl/lib/ns-lib.tcl
1 Simulator instproc lossmodel {lossobj from to} {
2 set link [$self link $from $to]
3 $link errormodule $lossobj
4 }

5 Simulator instproc link-lossmodel {lossobj from to} {
6 set link [$self link $from $to]
7 $link insert-linkloss $lossobj
8 }

9 Simulator instproc link { n1 n2 } {
10 $self instvar Node_ link_
11 if { ![catch "$n1 info class Node"] } {
12 set n1 [$n1 id]
13 }
14 if { ![catch "$n2 info class Node"] } {
15 set n2 [$n2 id]
16 }
17 if [info exists link_($n1:$n2)] {
18 return $link_($n1:$n2)
19 }
20 return ""
21 }

15.3.2 CCC Implementation: Error Model Simulation

The internal mechanism of an error model is specified in the CCC domain.
As shown in Program 15.18, CCC class ErrorModel derives from class
Connector. It uses packet forwarding/dropping capabilities (e.g., a variable
“target_” and a function recv(p,h)) inherited from class Connector, and
define error simulation mechanism.

15.3.2.1 Variables

The key variables of class ErrorModel are given below:
enable_ Set to 1 if this error model is active, and set to 0 otherwise

rate_ Error probability
delay_ Time used to delay (rather than dropping) a corrupted

packet
bandwidth_ Transmission bandwidth used to compute packet trans-

mission time

15.3 Built-in Error Models 441

Program 15.18 Declaration of class ErrorModel
//˜/ns/queue/errmodel.h

1 enum ErrorUnit { EU_TIME=0, EU_BYTE, EU_PKT, EU_BIT };

2 class ErrorModel : public Connector {
3 public:
4 ErrorModel();
5 virtual void recv(Packet*, Handler*);
6 virtual void reset();
7 virtual int corrupt(Packet*);
8 inline double rate() { return rate_; }
9 inline ErrorUnit unit() { return unit_; }
10 protected:
11 int enable_;
12 ErrorUnit unit_;
13 double rate_;
14 double delay_;
15 double bandwidth_;
16 RandomVariable *ranvar_;
17 int FECstrength_;
18 int datapktsize_;
19 int cntrlpktsize_;
20 double *cntrlprb_;
21 double *dataprb_;
22 Event intr_;
23 virtual int command(int argc, const char*const* argv);
24 int CorruptPkt(Packet*);
25 int CorruptByte(Packet*);
26 int CorruptBit(Packet*);
27 double PktLength(Packet*);
28 double* ComputeBitErrProb(int);
29 };

//˜/ns/queue/errmodel.cc
30 ErrorModel::ErrorModel() : firstTime_(1), unit_(EU_PKT),

ranvar_(0), FECstrength_(1)
31 {
32 bind("enable_", &enable_);
33 bind("rate_", &rate_);
34 bind("delay_", &delay_);
35 }

unit_ Error unit (EU_TIME, EU_BYTE(default), EU_PKT, or
EU_BIT)

ranvar_ Random variable which simulates error
FECstrength_ Number of bits in a packet which can be corrected
datapktsize_ Number of bytes in a data packet
cntrlpktsize_ Number of bytes in a control packet

442 15 Related Helper Classes

dataprb_ An array whose ith entry is the probability of having at
most i corrupted data bits

cntrlprb_ An array whose ith entry is the probability of having at
most most i corrupted control bits

firstTime_ Indicate whether an error has occurred.
intr_ A queue callback object (see Sect. 7.3.3).

The variable “rate_” specifies the error probability, while the variable
“unit_” indicates the unit of “rate_.” If “unit_” is packets (i.e., EU_PKT),
“rate_” will represent packet error probability. If “unit_” is bytes (i.e.,
EU_BYTE) or bits (i.e., EU_BIT), “rate_” will represent byte error probability
or bit error probability, respectively.

15.3.2.2 Functions

The key functions of class ErrorModel are given below:

rate() Return the error probability stored in vari-
able “rate_.”

unit() Return the error unit stored in variable
“unit_.”

PktLength(p) Return the length (in error units) of the
packet “p.”

reset() Set the variable “firstTime_” to 1.
recv(p,h) Receive a packet “p” and a handler “h.”

corrupt(p) Return 1/0 if the transmission is in er-
ror/not in error.

CorruptPkt(p) Return 1/0 if the transmission is in er-
ror/not in error.

CorruptByte(p) Return 1/0 if the transmission is in er-
ror/not in error.

CorruptBit(p) Return the number of corrupted bits.
ComputeBitErrProb(size) Computes the cumulative distribution of

having i= f0; � � � ; FECstrength_g cor-
rupted bits.

15.3 Built-in Error Models 443

Program 15.19 Function recv(p,h) of class ErrorModel
//˜/ns/queue/errmodel.cc

1 void ErrorModel::recv(Packet* p, Handler* h)
2 {
3 hdr_cmn* ch = hdr_cmn::access(p);
4 int error = corrupt(p);
5 if (h && ((error && drop_) || !target_)) {
6 double delay = Random::uniform(8.0*ch->size()/

bandwidth_);
7 if (intr_.uid_ < 0)
8 Scheduler::instance().schedule(h, &intr_,

delay);
9 }
10 if (error) {
11 ch->error() |= error;
12 if (drop_) {
13 drop_->recv(p);
14 return;
15 }
16 }
17 if (target_) {
18 target_->recv(p, h);
19 }
20 }

15.3.2.3 Main Mechanism

The main mechanism of an ErrorModel object lies within the packet reception
function recv(p,h) shown in Program 15.19. When receiving a packet, an
ErrorModel object simulates packet error (by invoking function corrupt(p)
in Line 4 of Program 15.19), and reacts to the error based on the underlying
configuration. If an error occurs, Line 11 will mark an error flag in the common
packet header. Then if “drop_” exists, Lines 13 and 14 will drop the packet and
terminate the function. If the packet is not in error, on the other hand, function
recv(p,h) will skip Lines 11–15 and will forward the packet to “target_”
if it exists. A cautionary note: since a corrupted packet will also be forwarded
to “target_” if “drop_” does not exist, NS2 will not show any error but the
simulation results might not be correct!

Lines 6–8 in Program 15.19 are related to NS2 callback mechanism discussed
in Sect. 7.3.3. Callback mechanism is an NS2 technique to have a downstream
object invoke an upstream object along a downstream path. For example, after
transmitting a packet, a queue needs to wait until the packet leaves the queue
(i.e., wait for a callback signal to release the queue from the blocked state), before
commencing another packet transmission. From Sect. 7.2, a LinkDelay object
uses the Scheduler to inform the queue of packet departure (i.e., send a release
signal) at the packet departure time.

444 15 Related Helper Classes

A callback process is implemented by passing the handler (h) of an upstream
object (e.g., the queue) along with packet (p) to a downstream object through
function recv(p,h). Upon receiving the handler, an NsObject reacts by either
(1) passing the handler to its downstream object and hoping that the handler will be
dealt with somewhere along the downstream path, or (2) immediately scheduling a
callback event at a certain time.

Condition (1) occurs when an upstream object passes down the handler “h,”
and is waiting for a callback signal. Condition (2) indicates the case where the
ErrorModel object is responsible for sending a callback signal.5 Condition (2)
consists of the two following subconditions. One is the case where the packet
will be dropped. Another is when “target_” does not exist. In these cases, the
ErrorModel will be the last object in a downstream path which can deal with the
packet, and is therefore responsible for the callback mechanism.

According to Line 5 in Program 15.19, the ErrorModel object chooses to call
back when both of the following conditions are satisfied:

1. Handler “h” exists (i.e., nonzero), and
2. Either

(a) Packet is in error and the variable “drop_” exists, and/or
(b) The variable “target_” does not exist.

When choosing to callback, Line 8 schedules a callback event after a delay time
of “delay” seconds. NS2 assumes that an error can occur in any place in a packet
with equal probability. Correspondingly, the time at which an error is materialized is
uniformly distributed in Œ0; txt�, where txt is the packet transmission time (Line 6).

15.3.2.4 Simulating Transmission Errors

In the previous section, we discussed how class ErrorModel forwards or drops
(or marks with an error flag) packets based on the simulated error. This discusses
the details of function corrupt(p) which simulates transmission error. Taking a
packet pointer “p” as an input argument, the function corrupt(p) returns zero
and one if the transmission is simulated not to be and to be in error, respectively.

Program 15.20 shows the details of function corrupt(p). The function
corrupt(p) always returns zero if the ErrorModel object is disabled (i.e.,
enable_=0; see Lines 4 and 5). Given that the ErrorModel object is enabled,
the function corrupt(p) returns a logic value (i.e., true or false) depend-
ing on whether the value returned from the functions CorruptPkt(p) in
Line 16, CorruptByte(p) in Line 10, CorruptBit(p) in Lines 13 and
14, and CorruptTime(p) in Line 8 is zero, when “unit_” is equal to

5If not, the ErrorModel object will assign the responsibility to its downstream object.
In this case, the handler “h” should be passed to the downstream object, by invoking
target ->recv(p,h).

15.3 Built-in Error Models 445

Program 15.20 Functions corrupt CorruptPkt, CorruptByte, and
PktLength of class ErrorModel

//˜/ns/queue/errmodel.cc
1 int ErrorModel::corrupt(Packet* p)
2 {
3 hdr_cmn* ch = HDR_CMN(p);
4 if (enable_ == 0)
5 return 0;
6 switch (unit_) {
7 case EU_TIME:
8 return (CorruptTime(p) != 0);
9 case EU_BYTE:
10 return (CorruptByte(p) != 0);
11 case EU_BIT:
12 ch = hdr_cmn::access(p);
13 ch->errbitcnt() = CorruptBit(p);
14 return (ch->errbitcnt() != 0);
15 default:
16 return (CorruptPkt(p) != 0);
17 }
18 return 0;
19 }

20 int ErrorModel::CorruptPkt(Packet*)
21 {
22 double u = ranvar_ ? ranvar_->value() : Random::

uniform();
23 return (u < rate_);
24 }

25 int ErrorModel::CorruptByte(Packet* p)
26 {
27 double per = 1 - pow(1.0 - rate_, PktLength(p));
28 double u = ranvar_ ? ranvar_->value() : Random::

uniform();
29 return (u < per);
30 }

31 double ErrorModel::PktLength(Packet* p)
32 {
33 if (unit_ == EU_PKT)
34 return 1;
35 int byte = hdr_cmn::access(p)->size();
36 if (unit_ == EU_BYTE)
37 return byte;
38 if (unit_ == EU_BIT)
39 return 8.0 * byte;
40 return 8.0 * byte / bandwidth_;
41 }

446 15 Related Helper Classes

Fig. 15.8 Transforming
uniform distribution to
Bernoulli distribution

EU_PKT, EU_BYTE, EU_BIT, and EU_TIME, respectively. Similar to the function
corrupt(p), these functions return a zero and a nonzero value if the packet is not
in error and is in error, respectively.

In some cases, the packet error process in a communication link can be
modeled as having Bernoulli distribution. Suppose that “ranvar_” (Line 16 in
Program 15.18) is a random variable which generates uniformly distributed random
numbers “u” in the range [0,1]. From Fig. 15.8, “u” could be any point “�” in [0,1]
with equal probability. Given a threshold “rate_,” “u” will be in [0,rate_) with
probability “rate_.” In other words, to have probability of “rate_” for an event
(e.g., packet error), we need to generate a uniformly distributed random number “u,”
and assume the occurrence of the event if and only if u < rate_.

Lines 20–41 of Program 15.20 show the details of functions CorruptPkt(p),
CorruptByte(p), and pktLength(p). Function CorruptPkt(p) in Lines
20–24 uses the above method (see Fig. 15.8) to simulate packet error. In other words,
it generates uniformly distributed random numbers “u” and assumes that a packet is
in error if and only if u < rate_.

For function CorruptByte(p), the variable “rate_” represents byte
error probability. Line 27 translates byte error probability to packet error
probability (per)6 and simulates packet error in the same way as the function
CorruptPkt(p) does.

Function PktLength(p) in Lines 31–40 of Program 15.20 computes the
length of a packet in the corresponding “unit_.” In particular, if “unit_” is

• EU_PKT, function PktLength(p) will return 1 (see Line 34).
• EU_BYTE, function PktLength(p) will return the number of bytes in the

packet stored in field “size_” of the common packet header (see Lines 35–37).
• EU_BITS, function PktLength(p) will return the number of bits in the

packet (see Line 39).
• EU_TIME (if none of the above matches), function PktLength(p)will return

the transmission time of the packet (see Line 40).

Program 15.21 shows the details of function CorruptBit(p) of class Error
Model. When this function is called for the first time (i.e., “firstTime_” is 1),

6Packet error probability is 1 � .1�rate /n, where “rate ” is byte error probability and n =
PktLength(p) is number of bytes in a packet.

15.3 Built-in Error Models 447

Lines 5 and 6 precompute error probabilities for a control packet and a data packet
and store the probabilities in “cntrlprb_” and “dataprb_,” respectively.
The computation is achieved via function ComputeBitErrProb(size)which
takes the size of a control packet (i.e., size=cntrlpktsize_) or a data
packet (i.e., size=datapktsize_) as its input argument. The values stored in
cntrlprb_[i] and dataprb_[i] denote the probability that at most i bits are
in error. Line 7 then sets “firstTime_” to zero so that function CorruptBit
will skip Lines 5–7 when it is invoked again.

Function CorruptBit(p) computes packet error probability based on either
“dataprb_” or “cntrlprb_.” Any packet whose size is at least as large as
“datapktsize_” is considered a data packet. In this case, Line 10 stores
“dataprb_” in “dpfr”, later used to compute bit error probability. If, on the
other hand, the packet size is smaller than “datapktsize_,” it will be considered
a control packet, and “cntrlpb_” will be stored in “dptr” as bit error probability.

Program 15.21 Functions CorruptBit and ComputeBitErrProb of class
ErrorModel

//˜/ns/queue/errmodel.cc
1 int ErrorModel::CorruptBit(Packet* p)
2 {
3 double u, *dptr; int i;
4 if (firstTime_ && FECstrength_) {
5 cntrlprb_ = ComputeBitErrProb(cntrlpktsize_);
6 dataprb_ = ComputeBitErrProb(datapktsize_);
7 firstTime_ = 0;
8 }
9 u = ranvar_ ? ranvar_->value() : Random::uniform();
10 dptr = (hdr_cmn::access(p)->size() >= datapktsize_)

? dataprb_ : cntrlprb_;
11 for (i = 0; i < (FECstrength_ + 2); i++)
12 if (dptr[i] > u) break;
13 return(i);
14 }

15 double* ErrorModel::ComputeBitErrProb(int size)
16 {
17 double *dptr; int i;
18 dptr = (double *)calloc((FECstrength_ + 2), sizeof

(double));
19 for (i = 0; i < (FECstrength_ + 1) ; i++)
20 dptr[i] = comb(size, i) * pow(rate_,

(double)i) * pow(1.0 - rate_, (double)
(size - i));

21 for (i = 0; i < FECstrength_ ; i++)
22 dptr[i + 1] += dptr[i];
23 dptr[FECstrength_ + 1] = 1.0;
24 return dptr;
25 }

448 15 Related Helper Classes

Since the value stored in dptr[i] is the probability that at most “i” bits are in
error, Lines 11 and 12 increment “i” until the probability exceeds “u” and returns
“i” to the caller. In this case, the variable “i” is the number of corrupted bits.

The details of function ComputeBitErrProb(size) are shown in
Program 15.21. This function takes the packet size as an input argument and returns
an array “dptr” of double whose ith entry contains the probability of having
at most i corrupted bits. Given a packet size “size,” the probability of having

exactly i corrupted bits is
�
size
i

�
.rate /i.1 � rate /size-i, as shown

in Line 20, where “rate_” is the bit error probability. Lines 21–23 compute the
cumulative summation of “dprt.” Note that Line 23 sets dptr[FECstrength_
+ 1] to 1.0 since a packet is considered to be in error if the number of corrupted
bits is greater than FECstrength_.

15.3.3 Guidelines for Implementing a New Error Model in NS2

In order to implement a new error model in NS2, we need to follow the three steps
below:

1. Design and create an error model class in OTcl, CCC, or both domains.
2. Configure the parameters of the error model object such as error probability

(rate_), error unit (unit_), and random variable (ranvar_).
3. Insert an error model into the network (e.g., using instproc lossmodel

flossobj from tog or instproc link-lossmodelflossobj from
tog of class Simulator).

Example 15.4. Consider the simulation script in Program 9.1, which creates a
network as shown in Fig. 9.3. Include an error model with packet error probability
0.1 for the link connecting nodes n1 and n3.

Tcl Simulation Script

1 set ns [new Simulator]
2 set n1 [$ns node]
3 set n2 [$ns node]
4 set n3 [$ns node]
5 $ns duplex-link $n1 $n2 5Mb 2ms DropTail
6 $ns duplex-link $n2 $n3 5Mb 2ms DropTail
7 $ns duplex-link $n1 $n2 5Mb 2ms DropTail

8 set em [new ErrorModel]
9 $em set rate_ 0.1
10 $em unit pkt

15.4 Bit Operations in NS2 449

Fig. 15.9 Bit masking

11 $em ranvar [new RandomVariable/Uniform]
12 $em drop-target [new Agent/Null]
13 $ns link-lossmodel $em $n1 $n3

14 set udp [new Agent/UDP]
15 set null [new Agent/Null]
16 set cbr [new Application/Traffic/CBR]
17 $ns attach-agent $n1 $udp
18 $ns attach-agent $n3 $null
19 $cbr attach-agent $udp
20 $ns connect $udp $null
21 $ns at 1.0 "$cbr start"
22 $ns at 100.0 "$cbr stop"
23 $ns run

where Lines 8–13 are included (into the simulation script in Program 9.1) to impose
error on packet transmission. Note that the OTcl command unitfug sets variable
“unit_” to the value corresponding to the input argument “u.” The possible values
of “u” include “time,” “byte,” “pkt,” and “bit.” �

15.4 Bit Operations in NS2

15.4.1 Bit Masking

Bit masking is a bit transformation technique, which can be used for various
purposes. Given a mask, a bit masking process transforms an original value to a
masked value (see Fig. 15.9). In this section, we will show two examples of bit
masking: subnet masking and modulo masking.

15.4.1.1 Subnet Masking

A 4-byte IP address can be divided into host address and network address. While a
host address identifies a host (e.g., a computer), a network address characterizes a

450 15 Related Helper Classes

group of hosts. A host is given a host IP address as its identification and a 4-byte
subnet mask which identifies its network. A subnet mask consists of all-one upper
bits and all-zero lower bits (i.e., of format “1 � � � 10 � � �0”). For a given host IP
address and a subnet mask, the network IP address can be determined as follows:

Network IP Address D Host IP Address & Subnet Mask (15.1)

where & is a bitwise “AND” operator.

Example 15.5. A class-C (i.e., subnet mask D 255.255.255.0) host IP address
10.1.2.3 has the network IP address of

.10:1:2:3/&.255:255:255:0/ D .10&255/:.1&255/:.2&255/:.3&0/ D 10:1:2:0

(15.2)

In fact, all class-C IP addresses whose first three bytes are 10.1.2 have the same
network address. Correspondingly, a class-C network address corresponds to 256 IP
addresses. �

From the above example, the original value (i.e., host IP address) 10.1.2.3 is
masked (using bitwise “and”) with a mask 255.255.255.0 (i.e., class C subnet mask)
such that the masked value (i.e., network IP address) is 10.1.2.0.

15.4.1.2 Modulo Masking

Modulo is a remainder computation process. Suppose a D b � c C d . Then a%c D
d , where % is a modulo operator. Bit masking can also be used as a modulo operator
with c D 2n where n is a positive integer.

To implement a modulo masking, the upper and lower bits of a modulo mask
are set to contiguous zeros and contiguous ones, respectively (i.e., of format
“0 � � �01 � � �1”), and the masking operation is a bitwise “AND” operation. Suppose,
an original value is of format xx::xx, where x can be zero or one. The modulo
masking applies bitwise “AND” to an original value and the modulo mask, and
obtains the masked value as follows:

original value D x � � � xx � � � x
upper-bound mask D 0 � � �01 � � �1
masked value D 0 � � �0x � � � x.

Suppose the number of one-bits of a modulo mask is n. The bits whose positions
are greater than n are removed during a masking process, and the masked value is
bounded by 2n �1. On the other hand, the bits whose positions are not greater than n

are kept unchanged. These lower order bits in fact represent the remainder when the
original value is divided by 2n. Modulo masking is therefore equivalent to a modulo
operation.

15.4 Bit Operations in NS2 451

Table 15.5 Components of subnet masking and modulo masking

Masking components Subnet masking Modulo masking

The mask 1 � � � 10 � � � 0 0 � � � 01 � � � 1

The mask operation Bitwise “AND” Bitwise “AND”
Masked value Network IP address Remainder

We summarize the masking components of subnet masking and modulo masking
in Table 15.5. Note that both subnet masking and modulo masking use a bitwise
“AND” as their mask operation. Since their masks are different, the implications for
their masked value are different.

15.4.2 Bit Shifting and Decimal Multiplication

Another important bit operation is bit shifting which is equivalent to decimal
multiplication. If a binary value is shifted to the left by n bits, the corresponding
decimal value will increase by 2n times. Similarly, a binary number right shifted by
n bits returns the quotient of the decimal value divided by 2n.

To prove the above statement, consider an arbitrary value y D PM
mD0 xm2m,

where xm 2 f0; 1g; m D f0; � � � ; M g. Let y << n denote the value of y after being
shifted to the left by n bits. Then

y << n D
�PM

mD0 xm2m
�

<< n D .xx � � � x„ ƒ‚ …
M bits

/ << n

D
�PM

mD0 xm2mCn
�

D .xx � � � x„ ƒ‚ …
M bits

00 � � �0„ƒ‚…
n bits

/:
(15.3)

Suppose y D PM
mD0 xm2m. We have

y � 2n D

MX

mD0

xm2m

!

� 2n D

MX

mD0

xm2mCn

!

(15.4)

which is the same as (15.3). This proves the first part (i.e., left shifting) of the
above statement. The second part of (i.e., right shifting) the statement can be proven
similarly and is omitted for brevity.

The relationship between bit shifting and decimal multiplication can be summa-
rized as follows:

• An n-bit left shift results in multiplication of the decimal value by 2n.
• An n-bit right shift returns the quotient when the decimal value is divided by 2n.

452 15 Related Helper Classes

15.5 Chapter Summary

This chapter presents three major helper classes: timers, random number generators,
and error models. The first helper class is Timer. Unless restarted or cancelled,
class Timer waits for a certain time and takes expiration actions. Class Timer
provides three main interface functions to start, restart, and cancel the waiting
process. Class Timer is usually cross-referenced to another object, which contains
an instruction on how to perform expiration actions. At the expiration (i.e., when
expire(e) is invoked), the timer informs the object to execute the expiration
actions. The object, on the other hand, may start, restart, or cancel the timer through
its reference to the timer.

The second part of this chapter demonstrates how NS2 implements Random
Number Generator (RNG) to generate random numbers. By default, NS2 always
seeds the simulation with 1 – meaning NS2 is deterministic by default. To introduce
randomness into simulation, we need to seed defaultRNG differently.

The last helper class is class ErrorModel which is a packet error simulation
class. Derived from class Connector, it can be inserted into a network using
OTcl instprocs (e.g., lossmodelf...g and insert-lossmodelf...g). Class
ErrorModel simulates packet error upon a packet reception. If the packet is
simulated to be in error, it will either drop or mark the corrupted packet with an
error flag. Otherwise, it will forward the packet to its downstream object.

This chapter also presents two main bit operations: bit masking and bit shifting.
Bit masking is a bit transformation process which can be used for various purposes.
This chapter gives two examples of bit basking. One is subnet masking, which is
a process to determine a network for an IP address. Another is a modulo masking,
which can be used as a modulo operation. As another bit operation, bit shifting can
be used for decimal multiplication or division. Shifting an original value to the left
and right by n bits is equivalent to multiplying and dividing the original value by
2n, respectively.

15.6 Exercises

1. In Example 15.3,

a. Change the seed to “999.” Rerun the script for a couple of times. Observe and
explain the output.

b. Change the seed to “0.” Rerun the script for a couple of times. Observe and
explain the output.

c. Print out the values of “arrival_” and “size_” for (a) and (b), and show
that they are exponentially and uniformly distributed. (Hint: Set the seed
properly.)

d. Change the mean of “arrival_” to 10 and the interval of “size_” to
Œ400; 2000�, and repeat (c).

15.6 Exercises 453

e. Remove Line 6 and repeat (c). Observe and explain the output.
f. Remove Lines 6 and 10 and repeat (c). Observe and explain the output.

2. Write a simulation script which generates random numbers exponentially dis-
tributed with mean 1.0. To verify the script, plot the probability density function.

3. Write a simulation script which generates a random number normally distributed
with mean 1.0 and standard deviation 0.05. To verify the script, plot the
probability density function.

4. Develop a new class for a discrete random variable whose probability mass
function is .0:1; 0:3; 0:3; 0:2; 0:1/. Test the code by generating random numbers
and verify the probability mass function.

5. In Example 15.4, collect statistics for packets which are in error and not in
error. Verify that the packet error probability is 0.1. Adjust the simulation time if
necessary. How long must your simulation be to ensure the convergence of 0.1
error probability ?

a. Initially set link bandwidth to 5 Mbps.
b. Change the bandwidth to 500 kbps. What happens to the measured conver-

gence time ? Explain why.

6. Consider a two state error model, which consists of good and bad states. Packet
transmission in a good state is always error free, while packet transmitted in a
bad state is always corrupted. The time that an error model stays in good and bad
states is exponentially distributed with means tgood and tbad, respectively. Write
a simulation script for the above two state error model with tgood D 10 sand
tbad D 1 s. Verify the results and show the convergence time.

7. Let a modulo mask be 64. Show that the modulo masking and modulo operation
are equivalent for the following original values: 63, 64, 65, 127, 128, and 129.

8. Consider a ball color-number matching experiment, where balls are fed one-by-
one to an observer. Each ball is masked with a color and a number. The color can
be either black or white, while the unique number is increased one-by-one as the
balls are fed to the observer. From time to time, the observer is given a number
and is asked to identify the color of one of the 64 most recently observed balls.
Design a memory-friendly approach for the observation.

9. What are the values of 2, 3, 31, 45, and 56, when shifted to the left and right by
1, 2, and 3 bits?

A
Programming Essentials

This appendix covers the programming languages, which are essential for developing
NS2 simulation programs. These include Tcl/OTcl which is the basic building block
of NS2 and AWK which can be used for postsimulation analysis.

A.1 Tcl Programming

Tcl is an interpreted language, whose strength is its simplicity. Most Tcl statements
can be contained in one line [36]. At runtime, Tcl translates and executes Tcl
statements line by line without the need for program compilation. This section
digests [36] down to only what necessary to understand NS2. Readers may refer
to [36] for more details on Tcl.

A.1.1 Program Invocation

There are three approaches for executing a Tcl program:

1. Interpret one Tcl statement: At the command prompt, execute

>>tclsh <Tcl Statement>
>>ns <Tcl Statement>

where “tclsh” is an executable file which invokes the Tcl interperter.1 Since
NS2 understands Tcl, an alternative to enter into the Tcl environment is to enter
NS2 environment by executing “ns” (i.e., the lower line) instead of “tclsh”
(i.e., the upper line).

1For NS2 version 2.35, the file tclsh.exe is located in the directory ns-allinone-2.35/
tcl8.5.8/unix.

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 16, © Springer Science+Business Media, LLC 2012

455

456 A Programming Essentials

2. Enter into the Tcl environment and interpret Tcl statement line by line: The first
step for this approach is to enter a Tcl environment by executing “tclsh” or
“ns” at the command prompt. Then, write down the Tcl statements line by
line. Finally, exit the Tcl environment by the command “exit” or a control key
“Ctrl + C.”

3. Interpret a Tcl Scripting File: This approach is similar to the first one. At the
command prompt, execute

>> tclsh <filename> [<arg0> <arg1> ...]
>> ns <filename> [<arg0> <arg1> ...]

Here, Tcl interprets the statements in the file <filename> line by line.
Note that “<arg0> <arg1> ...” are the optional input arguments, which

can be used within a Tcl program via the following two special variables:

argv A list variable containing all input arguments provided at the
program invocation

argc The number of elements in “argv”

A.1.2 Syntax

Unlike keyword-based languages such as CCC or Java, Tcl is a position-based lan-
guage. There is no reserved word (e.g., printf in CCC) in Tcl. Tcl differentiates
user-defined words from command words by looking at the position of the word.
More specifically,

• The first word in a statement is always a command name.
• Each word in a statement is separated by a white space.2

• A statement is terminated with a semicolon (i.e., “;”) or an end of the line.
• The following symbols can be used to compose complex Tcl statements:

Substitution
$ Followed by a variable name; a dollar sign (i.e., $) tells Tcl to replace

the entire word with the value stored in the variable.

[] Group words as a Tcl statement (i.e., the first within “[]” is treated
as a command word). Tcl statements enclosed within “[]” shall be
executed before those lying outside “[].”

2A white space is one or more space and/or tab characters.

A.1 Tcl Programming 457

Grouping
"" Group words as a string. Substitute variables with their values.

fg Group words as a string. Treat all special characters as a normal
character. Do not perform value substitution.

Others
() Indicate an array index or input arguments of mathematical

functions.

n Treat the following special character as a string.

Mark the beginning of a comment.

; Mark the end of a Tcl statement.

EndOfLine Mark the end of a Tcl statement.

A.1.3 Variables and Basic Operations

By default, everything in Tcl is string, which can be manipulated using the following
five basic operations:
Assignment: set <name> <value> (e.g., set x 0)

Store <value> in the variable whose name is <name>.

Deassignment: unset <name> (e.g., unset x)
Remove the variable <name> from the list of known variables.

Input: gets <channel> [<varname>] (e.g., gets stdin x)
Retrieve a line from what attached to a Tcl <channel>. The retrieved
value is stored in the variable <varname>. The details of Tcl channels
will be discussed later in Sect. A.1.7. In case of the standard input,
the <channel> is “stdin.” During program debugging, a statement
“gets stdin” asks the program to wait for an end-of-line character
from the user.

The command “gets” returns the number of characters it reads
from the channel. However, if it cannot read from <channel> (e.g.,
reaching the end of the file), it will return “�1.”

458 A Programming Essentials

Output: puts [-nonewline] [<channel>] <str> (e.g., puts $x)
Output <str> to <channel>. By default, <channel> is the stan-
dard output (i.e., screen), and a new line character would be attached
to <str>. However, the new line character can be suppressed by the
option -nonewline. Also, the output can be sent to some other place
by specifying <channel>.

Error reporting: error <str> (e.g., error "Fatal Error!!")
Report the error and send <str> to the associated application (e.g.,
monitor) and returning “TCL_ERROR”.

Example A.1. The following Tcl script, “convert.tcl,” converts temperatures
from Fahrenheit to Celsius. The conversion starts at 0ı (Fahrenheit), proceeds with a
step of 50ı (Fahrenheit), and stops when the temperature exceeds 140ı (Fahrenheit).
The program prints out the converted temperature in Fahrenheit as long as it does
not exceed 140ı.

convert.tcl
Fahrenheit to Celsius Conversion
1 set lower 0
2 set upper 140
3 set step 50
4 set fahr $lower
5 while {$fahr < $upper} {
6 set celsius [expr 5*($fahr - 32)/9]
7 puts -nonewline "Fahrenheit / Celsius :

$fahr / $celsius"
8 set fahr [expr $fahr + $step]
9 puts "\t Enter \"y\" to continue ..."
10 flush stdout
11 set cont 0
12 while { $cont != y } {
13 gets stdin cont
14 }
15 }

When executing the Tcl scripting file “convert.tcl,” the following results
should be shown on the screen:

>>tclsh convert.tcl
Fahrenheit / Celsius : 0 / -18 Enter "y"

to continue ...y
Fahrenheit / Celsius : 50 / 10 Enter "y"

to continue ...y
Fahrenheit / Celsius : 100 / 37.778 Enter "y"

to continue ...y

A.1 Tcl Programming 459

Alternatively, since NS2 is written in Tcl, the following invocation would lead to
the same result.

>>ns convert.tcl

For now, it is not important to understand every line of the above program. We
shall repeatedly visit this example, as we explain the syntax of Tcl part by part.

Lines 1–3 show examples of value assignment using “set,” where $lower,
$upper, $step are set to 0, 140, and 50, respectively. Line 4 shows an example
use of the substitution character “$,” where the value stored in the variable $lower
is stored in the variable $fahr.

Line 7 shows an example use of the output command “puts” which prints a
string on the screen. Here, $fahr is enclosed within the quotation marks (i.e., "").
Since the quotation marks allow value substitution, the output shows the value stored
in $fahr. Note that the option “-nonewline” is used to suppress a new line.
The “puts” statement on Line 9 concatenates another string to that generated by
line 7. Line 9 also shows two example uses of the symbol “n.” The first one “nt”
represents a tab character. The second one, “n"” is treated as a regular character “"”
string, rather than a special character.

Finally Line 13 shows example use of the input command “gets.” Here, Tcl
stops and waits for an input from the standard input (i.e., keyboard). The value
supplied by the user will be stored in the variable “cont.” �

Example A.2. Insert the following two lines into the end of the program in
Example A.1.

16 unset lower
17 puts $lower

After executing the Tcl script “convert.tcl,” the following result should appear
on the screen:

>>tclsh convert.tcl
Fahrenheit / Celsius : 0 / -18 Enter "y"

to continue ...y
Fahrenheit / Celsius : 50 / 10 Enter "y"

to continue ...y
Fahrenheit / Celsius : 100 / 37.778 Enter "y"

to continue ...y
can’t read "lower": no such variable
while executing

"puts lower"
(file "convert.tcl" line 17)

After being “unset,” the variable $lower becomes unknown to Tcl. Printing this
variable would result in a runtime error. �

460 A Programming Essentials

A.1.4 Logical and Mathematical Operations

The main logical and mathematical operations include

Logical statement: A <ops> B
Return true or false value of the statement, where the list of logical
operators <ops> is given below.

< (less than) = (equal)
<= (less than or equal) != (Not Equal)
> (greater than) || (OR)
>= (greater than or equal) && (AND)
! (negation)

Increment: incr <varName> [<incrVal>]
Increment the variable <varName> by <incrVal>, where
<incrVal> can be zero, positive, or negative. The default value of
<incrVal> is 1.

Arithmetic operation: expr A <ops> B
Interpret “A <ops> B” as an arithmetic expression, where the list of
basic arithmetic operators <ops> are given below:

+ (addition) - (subtraction)

* (multiplication) / (division)
% (modulo)

The advanced arithmetic operators <ops> are shown below:

& (Bitwise AND) | (Bitwise OR)
<< (Left shift) >> (Right shift)
x?y:z (If x is nonzero, then y. Otherwise, z)

Mathematical function: expr <fn>([<args>])
Interpret <fn>(<args>) as a mathematical function, where the
mathematical functions <fn> are defined below:

abs(x) cosh(x) log(x) sqrt(x)
acos(x) double(x) log10(x) srand(x)
asin(x) exp(x) pow(x,y) tan(x)
atan(x) floor(x) rand(x) tanh(x)
atan2(x) fmod(x) round(x) wide(x)
ceil(x) hypot(x,y) sin(x)
cos(x) int(x) sinh(x)

A.1 Tcl Programming 461

Example A.3. Insert the following lines at the end of the program in Example A.1.

16 puts "1+2 = [expr 1+2]"
17 puts "Log(10) = [expr log10(10)]"
18 puts "Absolute value of -10 = [expr abs(-10)]"
19 puts -nonewline {{}: }
20 puts {expr $lower}
21 puts -nonewline {"": }
22 puts "expr $lower"
23 puts -nonewline {[]: }
24 puts [expr $lower]

After executing the Tcl script “convert.tcl,” the following result should appear
on the screen:

>>tclsh convert.tcl
Fahrenheit / Celsius : 0 / -18 Enter "y"

to continue ...y
Fahrenheit / Celsius : 50 / 10 Enter "y"

to continue ...y
Fahrenheit / Celsius : 100 / 37.778 Enter "y"

to continue ...y
Log(10) = 1.0
Absolute value of -10 = 10
1+2 = 3
{}: expr $fahr + $step
"": expr 150 + 50
[]: 200

Lines 16–18 show example use of arithmetic operations and mathematical functions.
Lines 19–24 show example uses of various brackets in Tcl. Curly braces group
words as a string. Quotation marks group words, and substitute variables with their
values. Finally, square brackets group words as a Tcl statement. �

A.1.5 Control Structure

Tcl control structure defines how the program proceeds, using the commands if/
else/elseif, switch, for, while, foreach, and break/continue.

Selection Structure

Selection provides a program with choices, and let the programs decide conditions
under which certain choices are taken. Tcl provides two key selection control
structures.

462 A Programming Essentials

While an if/else/elseif structure provides a program with a selective
choice, the switch structure is a convenient replacement a long series of a
if/else/elseif structure. Their syntaxes are shown below:

if {<condition1>} { <actionSet1> }
elseif {<condition2>} { <actionSet2> }

...
else { <actionSetN> }

switch <variable> {
<pattern_1> { <actionSet1> }
<pattern_2> { <actionSet2> }
...
default { <actionSetN> }

}

A.1.5.1 Repetition Structure

The commands “while,” “for,” and “foreach” are used when actions need to
be repeated for several times.

while {<condition>} { <actions> }
for {<init>} {<condition>} {<mod>} { <actions> }
foreach {<var>} {<list>} { <actions> }

The “while” structure repeats the <actions> as long as the <condition>
is true.3 The “for” structure begins with an initialization statement <init>.
After taking <actions>, it executes the Tcl statement <mod> and checks whether
the <condition> is true. It will repeat the <actions> if so, and terminate
otherwise. The structure “foreach” repeats <actions> for every item in the list
variable <list>. In each repetition, the item is stored in the variable <var> and
can be used inside the loop.

A.1.5.2 Jumping Structure

The structure “break” and “continue” are used to stop the iterative flow of the
above “while,” “for,” and “foreach” repetitive structures. Their key difference
is that while the structure “break” immediately exits the loop, the structure
“continue” restarts the loop.

3See examples of the usage of “while” on Lines 5 and 12 in Example A.1.

A.1 Tcl Programming 463

A.1.6 Modularization

Modularization breaks down a large program into small manageable pieces. Each
small portion of a program can be stored in a file or a procedure.

A.1.6.1 Storing a Program Portion into a File and File Sourcing

File Sourcing is an act of loading a Tcl file whose name is <filename> into an
active Tcl program. The syntax of sourcing is shown below:

source <filename>

A.1.6.2 Storing a Program Portion into a Procedure

Procedure Declaration

proc <name> {<argList>} {
<actions>
[return <returned_value>]

}

The declaration of a procedure begins with a command word “proc,” following
by the name (e.g., <name>), the list of input arguments (e.g., <argList>), and
the body, respectively. Within the body, the procedure may optionally return a value
(e.g., <returned_value>) using a “return” statement.

The list of input arguments (i.e., <argList>) may consist of several input
arguments. Each input argument is separated by a white space. Also, Tcl allows
programmers to specify a default value for each input argument. The syntax for
declaring input arguments is as follows:

{ {<n1> <d1>} {<n2> <d2>} ...}

where <n1> and <n2> are names of the first and second input arguments whose
default values are <d1> and <d2>, respectively.

Procedure Invocation

After declaration, a procedure <name> can be invoked using the following syntax:

<name> <valList>

where <valList> is the list of the input argument values. If <valList> is
missing, the default value will be used as input values.

464 A Programming Essentials

Example A.4. The program in Example A.1 can be modified into a procedure (Lines
1–14) as follows:

convert_proc.tcl
1 proc convert_proc {{lower 0} {upper 140}

{step 50}} {
2 set fahr $lower
3 while {$fahr < $upper} {
4 set celsius [expr 5*($fahr - 32)/9]
5 puts -nonewline "Fahrenheit / Celsius :

$fahr / $celsius"
6 set fahr [expr $fahr + $step]
7 puts "\t Enter \"y\" to continue ..."
8 flush stdout
9 set cont 0
10 while { $cont != y } {
11 gets stdin cont
12 }
13 }
14 }

Here, the keyword “proc” marks the beginning of the procedure. It is followed
by the procedure name (i.e., convert_proc) and three input arguments (i.e.,
$lower, $upper, and $step) accompanied by their default values (i.e., 0, 140,
and 50).

The file “convert_run.tcl” (Lines 15 and 16) contains the main program.

convert_run.tcl
15 source convert_proc.tcl
16 convert_proc 0 140 70

At the command prompt, we can execute the program as follows:

>> tclsh convert_run.tcl
Fahrenheit / Celsius : 0 / -18 Enter "y"

to continue ...y
Fahrenheit / Celsius : 70 / 21 Enter "y"

to continue ...y

Line 15 sources the Tcl file “convert_proc.tcl,” which contains the proce-
dure “convert_proc,” into the active program. Line 16 executes the procedure
“convert_proc” feeding 0, 140, and 70 as the input arguments. These three
values are stored in the variables $lower, $upper, and $step, respectively. �

A.1 Tcl Programming 465

A.1.6.3 Global and Local Variables

Like in other programming languages, variables in Tcl are local by default. That
is, they are understood within a certain boundary. For example, the procedure in
Example A.4 understands variables $lower, $upper, $step, and $fahr, but it
does not understand the variables defined outside the procedure. The syntax to make
a variable $varname global is as follows:

global <varname>

Example A.5. Modify Example A.4 as shown below:

convert_proc.tcl
proc convert_proc { { lower 0 } { upper 140 }

{ step 50 } } {
global ext_var
...
puts "The variable ext_var is $ext_var"

}

Here, we add two lines to the procedure “convert_proc.” The first one is to
tell procedure that the variable $ext_var is defined in the global scope (i.e., in the
main program). The second one shows the value of the variable $ext_var on the
screen.

convert_run.tcl
source convert_proc.tcl
set ext_var 999
convert_proc 0 140 70

In the main program, the variable $ext_var is set to 999 before the invocation
of the procedure. Therefore, the result on the screen would be as shown below:

>> tclsh convert_run.tcl
Fahrenheit / Celsius : 0 / -18 Enter "y"

to continue ...y
Fahrenheit / Celsius : 70 / 21 Enter "y"

to continue ...y
The variable ext_var is 999

where the last line is shown in addition to the result from Example A.4. �

A.1.7 Advanced Input/Output: Files and Channels

Tcl uses a so-called Tcl channel to receive an input using a command “gets” and
to send an output using a command “puts.”

466 A Programming Essentials

A.1.7.1 Tcl Channels

A Tcl channel refers to an interface which interacts with the outside world. Two
main types of Tcl channels are standard reading/writing channels and file channels.
The former are classified into “stdin” for reading, “stdout” for writing, and
“stderr” for error reporting, while the latter needs to be attached to a file before
it is usable.

There are three commands related to Tcl channels:

Open the channel: open <fileName> [<opt>]
(e.g., open "in.txt" "r")

Create and connect a channel to a file whose name is <fileName>,
where the option <opt> can be "r" (reading), "w" (writing), or "a"
(appending). This command returns a handle (i.e., a reference) to the
created channel.

Close the channel: close $<filech> (e.g., close $ch)
Close the channel $<ch>.

Flush the buffer: flush $<filech> (e.g., flush $ch)
Flush the internal buffer associated with the channel $<filech>.

The Tcl output process is rather subtle. Tcl does not immediately writes to the
channel. Instead, it holds the output received from the command “puts” in its
buffer, and releases the output under one of the three following conditions: the buffer
is full, the channel is closed, or an explicit flushing command is executed.

Flushing buffer forces Tcl to release content in its buffer without closing
the channel. Example use of the command “flush” is shown in Line 10 of
Example A.1, where we force the buffer to releases its string before the statement
“gets stdin cont.”

Example A.6. Consider the following Tcl program, which copies the input file
“input.txt” to the output file “output.txt” line by line. In addition, the line
number is prefixed at the beginning of each line.

file.tcl
puts "Press any key to begin prefixing file..."
gets stdin
set ch_in [open "input.txt" "r"]
set ch_out [open "output.txt" "a"]
set line_no 0
while {[gets $ch_in line] >= 0} {

puts $ch_out "[incr line_no] $line"
}
close $ch_in
close $ch_out

A.1 Tcl Programming 467

From Sects. A.1.3 and A.1.5, the statement “while f[gets $ch_in line]
>= 0g” reads a line from the file until reaching the end of the file where “�1” is
returned. Readers are encouraged to provide their own input file, run the program,
and observe the result. �

A.1.8 Data Types

Tcl allows variable usage without declaration. Therefore, its data type is limited to
string, list, and associative array.

A.1.8.1 String

By default, everything in Tcl is string. The basic string manipulation was shown
in Sect. A.1.3. Additionally, Tcl provides three following string manipulation
commands:
string <cmd> [<args>]

Main manipulation command, where <cmd> is a sub-command, and
<args> are the input arguments of the sub-command.

• string length <str>: Return the length of the string <str>.
• string first <txt> <str>: Return the first location within

the string <str> which contains <txt>, or “-1” if the string does
not contain <txt>.

• string last <txt> <str>: Similar to the “string
first” command, but look for the last occurrence.

• string match [-nocase] <pattern> <str>:
Determine whether the string <str> contains <patterm>.
Return 1 if so and 0 otherwise. See the details of pattern matching in
Sect. A.3.4.

• string range <str> <fst> <lst>: Return the <fst>th
character to the <lst>th character of the string <str>.

format <fmt> [<d1> <d2> ...] (e.g., format %5.3f [expr
2.0/3])

Create a string using the CCC printf format. The format is defined
in <fmt>, and the values are defined in <d1>, <d2>, and so on.

scan <str> <fmt> [<v1> <v2> ...] (e.g., scan "My NS2" f%s
%sg v1 v2)

This command is the reverse of the command “format.” It scans the
input string <str> according to the given format <fmt>, and extracts
and stores the matched values in the corresponding variables <v1>,
<v2>, and so on.

468 A Programming Essentials

A.1.8.2 List

A list contains a series of strings or lists. It has the following properties.

• Items are group into a list using curly braces (i.e., f...g).
• Each item is separated by a white space.
• Each item is indexed with 0, 1, 2, and so on. The last index can be referred to by

a keyword “end.”
• An item can be a list.
• A list can be manipulated using the following commands:

Creation (method 1): f<i1> [<i2> ...]g
Creation (method 2): flist <i1> [<i2> ...]g

(e.g., set mylist f1 2 3g, set mylist [list 1 2 3])
Construct a list whose items are <i1>, <i2>, and so on.

Appending: flappend <l> <i1> [<i2> ...]g
(e.g., lappend mylist 4 5)

Append the items <i1>, <i2>, and so on to the end of the list <l>.

String to list: fsplit <str> <char>g (e.g., set mylist [split
"1&2&3" &])

Separate a string <str> using a delimiting character <char>. Then,
return a list whose items store the extracted phrases.

List to string: fjoin <l> <char>g (e.g., join $mylist &)
Convert a list <l> to a string, placing a character <char> between each
pair of items.

Length: fllength <l> g (e.g., llength $mylist)
Return the number of items in the list <l>.

Get an item: flindex <l> <index> g (e.g., lindex $mylist 2)
Return the <index>th item of the list.

Get a sublist: flrange <l> <fi> g
(e.g., lrange $mylist 0 end)

Return a list containing all items between the <fi>th item and the
th item of the list.

A.1.8.3 Associative Array

An associative array is a two-dimensional data structure. The first dimension is the
index, while the second dimension is the associated value. In Tcl, the first dimension

A.2 Objected-Oriented Tcl Programming 469

is a string, while the second one can be a string, a list, or an array. An array can be
manipulated as follows:

Set the value: set $<aName>(<index>) <value>
(e.g., set $myarray(Apple) 2)

Create an entry for an array whose name is <aName>. The index and
value for this entry are <index> and <value>, respectively.

List to array: array set <aName> $<listname>
(e.g., array set myarray fApple 2 Banana 1g)

Convert a list variable $<listname> to an array whose name is
<aName>. The items in the list are used alternately as indexes and
values, respectively, of the array.

Array to list: array get <aName> (e.g., array get myarray)
Return a list variable containing concatenated pairs of indexes and values
of the array whose name is <aName>.

Get index list: array name <aName> * (e.g., array name myarray *)
Return a list variable whose items contain the indexes of the array.

Note that when creating an array, a list can be replaced with all its items embraced
within curly braces.

There are two key differences between lists and associative arrays. First, a list is
a collection of ordered items. The indexes of a list are 0, 1, and so on. Entries in an
associated array have no order. There is no such thing as the next entry in an array.4

Each entry can be accessed directly.
Another difference is that an array cannot be directly outputted using “puts.” It

must first be converted into a list, which can be outputted using “puts.”

A.2 Objected-Oriented Tcl Programming

OTcl is an object-oriented version of Tcl, just like CCC is an object-oriented
version of C [31]. All the basic architecture and syntax of Tcl are carried over to
OTcl. By incorporating the Object Oriented Programming (OOP) concept, OTcl
has additional benefits such as scalability, modularization, and protection from
unintentional access.

4The above example does not imply that the entry $myarray(Banana) is the entry next to
$myarray(Apple).

470 A Programming Essentials

A.2.1 OTcl Language Structure

In OOP, all variables and methods must be associated with classes. They cannot be
invoked as standalone variables or procedures. OTcl statements always follow one
of the following three patterns:

1. Class declaration: Class <className> [<options>]
2. Class-associated method invocation:

<className> <instproc> [<options>]
3. Object-associated method invocation:

$<objName> <instproc> [<options>]

Like CCC, OTcl does not allow direction access to class variables. OTcl class
variables must be accessed via the instproc “set.”

The first statement is the class declaration statement. The latter two are the ones
which invoke class methods <instproc>, which can be associated with either
class <className> or object $<obj_name>.

Like in Tcl, OTcl is a positional language. The first position can be either
a keyword “Class,” a class name <className>, or a variable which hold
the object $<obj_name>. The second position is either a class name (i.e.,
<className>) or the name of class method (i.e., <instproc>). Finally, the
last position is the optional input arguments.

A.2.2 Classes and Inheritance

A class is a representation of a group of objects which share similar properties
including behavior(s) or attribute(s). These properties can be passed down to child
classes.5 In this respect, the donor and the receiver of the properties are called a
superclass (base or parent class) and a subclass (derived or child class), respectively.
Apart from inheriting properties from a superclass, a class defines its own properties
to make itself more specific.

In OTcl the syntaxes for class declaration are shown below:

Class declaration: Class <className> [-superclass <superCN>]
(e.g., class Mobile -superclass Node)

Declare a class whose name is <className>, and optionally specify
the class <superCN> as the superclass of the class <className>.

5In OTcl, the top-level class is class Object, which provides basic variables and functions, from
which every user-defined class inherits.

A.2 Objected-Oriented Tcl Programming 471

Specifying the superclass: <className> superclass <superCN>
(e.g., Mobile superclass Node)

Specify the class <superCN> as the superclass of class
<className>.

A.2.3 Objects and Object Construction Process

The key distinction between classes and objects is as follows. A class is a passive
definition of similar objects defined before the runtime. An object, on the other hand,
is an active entity created from a template defined in a class at runtime. Its values
change as the program runs.

A.2.3.1 Object Construction Methods

An OTcl object can be created using the following two methods:

Object construction (Method 1) <className> <name> [<args>]
Object construction (Method 2) <className> create $<name>

[<args>]
(e.g., Node n1, Node create $n1)

Construct (i.e., instantiate) an object from class <className> and
store the object in the variable whose name is <name>, optionally
feeding <args> as input arguments to the constructor.

The first method is the standard object instantiation method.6 However, the second
method 2 is preferable since it allocates space and invokes the constructor of all the
classes along the inheritance tree.

A.2.3.2 Object Construction Process

When constructing an object using Method 2, the instproc “create” invokes the
following two instprocs:

1. Instproc “alloc” allocates memory space to store the object.
2. Instproc “init” initializes the object (e.g., its class variable).

6When using Method 2, the variable $<name> must exist in the list of known variable before the
construction.

472 A Programming Essentials

In most cases, the instproc “alloc” is internal to OTcl, while the instproc
“init” is provided by the programmer. Throughout this book, we shall refer to
the instproc “init” as the OTcl constructor.

In general, OOP languages construct an object by invoking all the constructors
along the entire inheritance tree. The invocation is not automatically carried out in
OTcl. A programmer needs to explicitly invoke a constructor of all classes along the
inheritance tree via the instproc “next.”

Defined in the OTcl top-level class “Object,” the instproc “next” executes the
same instproc defined in the superclass. It is usually seen in the form

$<object> next [<args>]

Suppose the above statement is located in an instproc <instprocName> of
class <className>. At the execution, this statement would invoke the instproc
<instprocName> of the superclass of class <className>.

By inserting the following statement into the constructor (i.e., the instproc
“init”)

$self next [<args>]

the constructor of the superclass will be executed.

A.2.4 Member Variables and Functions

A class contains two main types of members: variables and methods. A variable
defines an attribute and/or holds the current status. A method, on the other hand,
defines the actions that an object can do. By convention, OTcl calls a member
variable an “instance variable” or an “instvar,” and it calls a member method an
“instance procedure” or an “instproc.”

A.2.4.1 Instance Variables

Instance variables can be manipulated as follows:

Declaration (tied to class): <className> instvar <n1> [<n2> ...]
Declaration (tied to object): $self instvar <n1> [<n2> ...]

(e.g., Node instvar state, $self instvar state)
Declare variables whose names are <n1>, <n2>, and so on, instvars of
the class <className> or of the object $self – a special variable
which holds the object itself (i.e., $self corresponds to the pointer
“this” in CCC).

A.2 Objected-Oriented Tcl Programming 473

Access (tied to class): <className> set <instvarName> [<value>]
Access (tied to object): $<varName> set <instvarName> [<value>]

(e.g., Node set state 1, $n set state 1)
If <value> exists, it will be stored in the instvar $<instvarName>
of class <className> or of the object $<varName>. Otherwise,
the above statements will return the value stored in the instvar
$<instvarName>.

As an interpreted language, Tcl requires no formal declaration of member
variables. The only requirements are that the variables must be declared before its
use, and that the declaration statement must be within an instance procedure.

If an instvar is tied to a class, all objects instantiated from this class will
automatically contain the instvar. On the other hand, if the instvar is tied to an object,
it will be a member of that object only. Other objects from the same class will not
contain this member variable. Therefore, from within every instance procedure, it is
advisable to declare all necessary instvars as the first OTcl statement.

A.2.4.2 Instance Procedures

OTcl declares and invokes instance procedures as follows:

Declaration: <className> instproc <instprocName> f[<args>]g
f<body>g

(e.g., MyNode instproc recv fpktg f...g)
Declare <instprocName> as an instproc of class <className>.
The optional input arguments and the body of the instproc are specified
in <args> and in <body> respectively.

Invocation: $<objName> <instprocName> [<values>]
(e.g., $n recv p)

Execute the instproc <instprocName> which is associated with the
class of the object $<objName>, where <values> are optionally fed
as input arguments.

At the invocation, OTcl proceeds as follows:

1. Look for the instproc <instprocName> in the class corresponding to $<obj
Name>. Execute and terminate if found. Otherwise, go the next step.

2. Look for the instproc “unknown” in the same class. Execute and terminate if
found. Otherwise, go the next step.

3. Move to the superclass and go back to step 1. If the current class does not have
any superclass, report the error.

474 A Programming Essentials

A.2.4.3 Non-Inheritable Members

Both instvars and instprocs are inheritable. Once defined for a class, these members
would be available for all objects instantiated from that class and its subclasses.

OTcl also has another type of members specific to an object only. Once defined
for a certain object, these members would not appear in other objects instantiated
from the same class or its subclasses. These members are just plain (i.e., local)
variables and procedures.

A variable is declared using the above method to access variable, i.e., using
“set.” From the above example, the OTcl statement “$n set state 1” de-
clares a variable “state” to be a member variable of the object $n. Other variables
instantiated from the same class as $n would not contain the variable “state.”

A procedure is declared using the following syntax:

<objName> proc <procName> {[<args>]} {<body>}

which is similar to the instproc declaration. Once declared, procedures can be
invoked as if they are instprocs.

A.2.5 A List of Useful Instance Procedures

Here is a list of useful instprocs defined in the top-level class Object. Again, these
instprocs are available to all classes derived from class Object.

create $<name> [<args>]:
Create and store an object in the variable $<name>.

destroy $<name>:
Destroy the object stored in the variable $<name>.

superclass <name>:
Specify class <name> as its superclass.

instvar $<name>:
Declare $<name> as its instvar.

instproc <name> [<args>]:
Declare <name> as its instproc.

alloc $<name>:
Allocate memory for an object $<name>.

init [<args>] (i.e., the constructor):
Initialize the created object.

next [<args>]:
Invoke the instproc with the same name, defined in the superclass.

info <option>:
Return related information as specified in <option>. Note that the
options tied to a class are different from those tied to an object (see
Tables A.1 and A.2).

A.2 Objected-Oriented Tcl Programming 475

Table A.1 Options of the instproc “info” associated with classes

Options Functions

superclass Return the superclass of the current class.
subclass Return the list of all the subclasses.
heritage Return the list of the inheritance tree.
instances Return the list of instances of the class.
instprocs Return the list of instprocs defined on the class.
instcommands Return the list of instprocs and OTcl commands defined on the

class.
instargs <proc> Return the list of arguments of the instproc <proc> defined on

the class.
instbody <proc> Return the body of the instproc <proc> defined on the class.
instdefault <proc> Return 1 if the default value of the argument <arg> of the
<arg> <var> instproc <proc> is <var>, and return 0 otherwise.

Table A.2 Options of the “info” instproc associated with objects

Options Functions

class Return the class of the object.
procs Return the list of all associated procedures.
commands Return the list of associated procedures and OTcl commands.
vars Return the list of variables defined on the object.
args <proc> Return the list of arguments of the procedure <proc> defined on

the object.
body <proc> Return the body of the procedure <proc> defined on the object.
default <proc> Return 1 if the default value of the argument <arg> of the

procedure <proc> is <var>, and returns 0 otherwise.<arg> <var>

Example A.7. Consider a general network node. When equipped with mobility, this
node becomes a mobile node. Declarations of a class “Node” and its subclass
“Mobile” are shown in Lines 1 and 2 below. This declaration allows class
“Mobile” to inherit capabilities of class “Node” (e.g., receiving packets) and to
have more capabilities (e.g., moving) of its own.

node.tcl
1 Class Node
2 Class Mobile -superclass Node
3 Node instproc recv {pkt} {
4 $self instvar state
5 set state 1
6 $self process-pkt $pkt
7 }
8 Mobile instproc move {x y} {
9 $self instvar location
10 set location[0] $x
11 set location[1] $y

476 A Programming Essentials

12 }

13 Node instproc init {} {
14 $self instvar state
15 set state 0
16 }
17 Mobile instproc init {} {
18 $self next
19 $self instvar location
20 set location[0] 0
21 set location[1] 0
22 }

23 set n _1
24 Node create $n
25 puts "The instance of class Node is

[Node info instances]"
26 puts "The class of $n is [$n info class]"

By executing the file “node.tcl,” the following result should appear on the
screen.

>>ns node.tcl
The instance of class Node is _1
The class of _1 is Node

The key points of this example are the constructor and the use of the instproc
“info.” Lines 13–22 show examples of constructor. At the construction, class
“Node” sets its instvar “state” to 0 (i.e., inactive). Class “Mobile” first invokes
the constructor of class “Node” in Line 18 using the instproc “next.” Then, Lines
20 and 21 set the location of the mobile node to (0,0).

Line 23 shows an example which instantiates an object from class “Node”
and stores the object in the variable $n. Lines 24 and 25 show two example uses
of the instproc “info” which is tied to the class “Node” and the object $n,
respectively. �

A.3 AWK Programming

AWK is a programming language designed to process text files [32]. AWK refers
to each line in a file as a record. Each record consists of fields, each of which is
separated by a field separator.7 Generally, AWK reads data from a file consisting
of fields of records, processes those fields, and outputs the results to a file as a
formatted report.

7The default field separator is a white space.

A.3 AWK Programming 477

To process an input file, AWK follows an instruction specified in an AWK script.
An AWK script can be specified at the command prompt or in a file. While the
strength of the former is the simplicity (in invocation), that of the latter is the
functionality. In the latter, the programming functionalities such as variables, loop,
and conditions can be included into an AWK script to perform the desired actions.
In what follows we give a brief introduction to the AWK language. The details of
AWK programming can be found in [33].

A.3.1 Program Invocation

AWK can be invoked from a command prompt in two ways based on the following
syntax:

>>awk [-F<ch>] {<pgm>} [<vars>] [<data_file>]
>>awk [-F<ch>] { -f <pgm_file> } [<vars>]

[<data_file>]

where <ch> is a field separator, <pgm> is an AWK script, <pgm_file> is a file
containing an AWK script (i.e., an AWK file), <vars> is a list of variables used in
an AWK script, and <data_file> is an input text file.

By default, AWK uses a white space (i.e., one or more spaces or tabs) as a field
separator. However, if the option “-F” is present, AWK will use <ch> as a field
separator.8 The upper invocation takes an AWK script <pgm> as an input argument,
while the lower one takes an AWK file <pgm_file> as an input argument. In
both cases, variables <vars> and input text file <data_file> can be optionally
provided. If an input text file is not provided, AWK will wait for input arguments
from the standard input (e.g., keyboard) line by line.

Example A.8. Let an input text file “infile.txt” be defined below. We shall use
this input file repeatedly in this section.

#infile.txt
Rcv 0.162 FromNode 2 ToNode 3 cbr PktSize= 500 UID= 3
EnQ 0.164 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 8
DeQ 0.164 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 8
Rcv 0.170 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 7
EnQ 0.170 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 7
DeQ 0.170 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 7
Rcv 0.171 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 4
EnQ 0.172 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 9
DeQ 0.172 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 9
Rcv 0.178 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 8

8For example, “awk -F:” uses a colon “:” as a field separator.

478 A Programming Essentials

EnQ 0.178 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 8
DeQ 0.178 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 8

Note that in AWK, “#” marks the beginning of a comment line.
At the command prompt, we may run an AWK script to show the lines which

contain “EnQ” as follows:

>>awk /EnQ/ infile.txt
EnQ 0.164 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 8
EnQ 0.170 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 7
EnQ 0.172 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 9
EnQ 0.178 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 8

Here, the <pgm> is specified as /EnQ/ and the <data_file> is specifies as
infile.txt. An AWK script /EnQ/ looks for lines which contain a string
“EnQ” and display the lines on the screen. �

A.3.2 An AWK Script

An AWK script contains an instruction for what AWK will perform. It asks AWK
to look for a pattern in a record, and performs actions on a matched pattern. The
syntax of an AWK script is as follows:

<pattern> {<actions>}

A <pattern> could be a logical expression or a regular expression.9 The
<actions> specifies actions for the matched pattern. Each action in the curly
braces is separated by a semi-colon (“;”).

A.3.3 AWK Programming Structure

The general form of an AWK program is shown below:

BEGIN {<initialization>}
<pattern1> {<actionSet1>}
<pattern2> {<actionSet2>}
.
.
.
END {<final finalActionSet>}

9While a logical expression is usually implemented by an if statement, a regular expression
returns true when finding a matched pattern. The formal definition of a regular expression can
be found in [34].

A.3 AWK Programming 479

Table A.3 Special characters used in regular expressions

Character Description

/.../ Contain a regular expression (e.g., /text/, // matches every line.)
ˆ Match the beginning of a record only (e.g., /ˆtext/)
$ Match the end of a record only (e.g., /text$/)
[] Match any character inside (e.g., [text])
[ˆ<str>] Match any character except <str> (e.g., [ˆtˆeˆxˆt])
[<a>-] Match any character between <a> and
. Match any character (e.g., /tex./)

* Match zero or more character in front of it (e.g., /tex*/)
.* Match any string of characters
? Match zero or one regular expression in front of it (e.g., /[a-z]?/)
+ Match one or more regular expression in front of it (e.g., /[a-z]+/)
nw A word character (i.e., an alphanumeric or a “ ”) which is equivalent to

[A-Za-z0-9]
ns,nS,nt,nn A white space, a non-white-space, a tab character, and a newline character

which consists of three main steps:

1. Before file processing, run <initialization>.
2. For each line of the input file, run the action sets which match with the associated

patterns.
3. After all the lines are processed, run <finalActionSet>.

A.3.4 Pattern Matching

The first part of an AWK script is a pattern as specified in <pattern>. The
pattern can be a logical or a regular expression. If this part evaluates to “true,”
the corresponding <actions> will be taken.

The syntax for logical expression is the same as that used in Tcl (see Sect. A.1.4
for logical operators). Although slightly more complicated, regular expression pro-
vides a more concise and flexible means to represent a text of interest. Syntactically,
a regular expression is enclosed within a pair of forward slashes (“/,” e.g., /EnQ/).
Table A.3 shows frequently used regular expression symbols.

A.3.5 Basic Actions

The second part of an AWK script is to take <actions> for a matching
<pattern>. This section explains the basic actions in AWK.

480 A Programming Essentials

Table A.4 Built-in variables

Variables Descriptions

$0 The current record
$1,$2,... The 1st, 2nd,... field of the record
FILENAME Name of the input text file
FS (Input) field separator (a white space by default)
RS (Input) record separator (a newline by default)
NF Number of fields in a current record
NR Total number of records
OFMT Format for numeric output (%6g be default)
OFS Output field separator (a space by default)
ORS Output record separator (a newline by default)

A.3.5.1 Arithmetic Operation

Basic arithmetic operations include addition, subtraction, multiplication, division,
and modulus. The arithmetic operators are the same as basic Tcl operators (See
Sect. A.1.4).

A.3.5.2 Variables

As an interpreter, AWK does not need to declare data type for variables. It can
simply assign a value to a variable using an assignment operator (“=”). To avoid
ambiguity, AWK differentiates a variable from a string by quotation marks (“""”).
For example, “var” is a variable while “"var"” is a string (see Example A.9).10

AWK also supports one-dimensional arrays. Identified by a square bracket
([]), indexes of an array can be both numeric (i.e., a regular array) or string
(i.e., an associative array). Example of arrays are node[1], node[2], and
link["1:2"].

Apart from the above user-defined variables, AWK also provides several useful
built-in variables as shown in Table A.4.

A.3.5.3 Outputs

AWK outputs a variable or a string to a screen using either “print” or “printf,”
whose syntax are as follows:

print <item1> <item2> ...
printf(<format>,<item1>,<item2>,...)

10Unlike Tcl, AWK retrieves the value stored in a variable without a prefix (not like “$” in Tcl).

A.3 AWK Programming 481

where <item1>, <item2>, and so on can be either variables or strings, and
<format> is the format of the output. Using “print,” a string needs to be
enclosed within a quotation mark (""), while a variable could be indicated as it is.

Example A.9. Define an AWK file “myscript.awk” as shown below.

myscript.awk
BEGIN{}
/EnQ/ {var = 10; print "No Quotation: " var;}
/DeQ/ {var = 10; print "In Quotation: " "var";}
END{}

Run this script for the input text file “infile.txt” defined in Example A.8.
The following result should appear on the screen.

>>awk -f myscript.awk infile.txt
No Quotation: 10
In Quotation: var
No Quotation: 10
In Quotation: var
No Quotation: 10
In Quotation: var
No Quotation: 10
In Quotation: var

The above AWK script prints out two versions of the variable “var.” The upper
line prints out the value (i.e., 10) stored in the variable “var.” In the lower line, the
variable “var” is enclosed within a quotation mark. Therefore, the string “var”
will be printed instead. �

The command “printf” provides more printing functionality. It is very similar
to function “printf” in CCC. In particular, it specifies the printing format as the
first input argument. The subsequent arguments simply provide the values for the
place-holders in the first input argument. The readers are encouraged to find the
details of the printing format in any CCC book (e.g., [16]) or in [33].

A.3.6 Redirection and Output to Files

AWK does not have a direct command to export the results to files. To do so, the
following UNIX redirection11 commands can be used:

11Examples of Unix output redirection are “awk /EnQ/ infile.txt > output.txt,”
“ls > output.txt,” and “pwd | ls.”

482 A Programming Essentials

> Redirect the standard output
>> Append the standard output
| Redirect the standard output to a command

Note that while “>” redirects the output to a new file, “>>” appends the output
to an existing file. If the file exists, “>” will delete and recreate the file. The
command “>,” on the other hand, appends the output to the file without destroying
the existing file.

A.3.7 Control Structure

AWK supports three major types of selection and repetition control structures:
“if/else,” “while,” and “for.” The syntaxes of these control structures are
as follows:

if(<condition>) <actionSet1> [else <actionSet2>]
while(<condition>) <actions>
for(<initialization>;<condition>;<end-of-loop

-actions>) <actions>

Again, when the actions contain more than one statement, each statement must be
terminated by a semi-colon (i.e., “;”), and all of the statements must be embraced
within curly braces.

AWK also contains four jumping control structures:

break (Exit the loop)
continue (Restart the loop)
next (Process the next record)
exit (Exit the program)

A.4 Exercises

1. Repeat Example A.1 but write all the output to file “convert.out” using the
Tcl file channel.

2. From Example A.5, do the following items one by one. Then run the program,
and observe and discuss the results.

a. Remove the variable ext_var,
b. Make the variable ext_var a local variable of the procedure “convert_
proc,”

c. Make the variable ext_var a local variable of the main program, and
d. Remove the statement flush stdout.

A.4 Exercises 483

3. Modify Example A.6 to take input arguments as input and output files. If no
input arguments are given, use “input.txt” and “output.txt” as input
and output files, respectively.

4. From Example A.7, declare $bufferSize as

a. An instvar of class “Node”
b. A variable of the object $n

For each case, write an OTcl program to verify that $bufferSize is declared
properly. Hint: Use the instproc “info.”

5. Write OTcl codes which make use of the above options for instproc info in
Tables A.1 and A.2. Create your own examples.

6. Write an input string which matches with each of the following regular expres-
sions. The input string should not match with other regular expressions.

/ˆNode /Node$ /[Nn]ode
/Node. /Node* /Nod[Ee]? /Nod[Ee]+

7. Based on the input file in Example A.8, develop an AWK script to show

a. Total number of “EnQ” events,
b. The number of packets that Node 3 receives, and
c. Total number of bytes that Node 3 receives.

8. Repeat Example A.9, but print the result in a file “outfile .txt.” Show the
difference when using “>” and “>>.”

B
A Review of the Polymorphism Concept in OOP

B.1 Fundamentals of Polymorphism

As one of the main OOP concepts, polymorphism refers to the ability to invoke the
same function with different implementation under different context. This concept
should be simple to understand, since it occurs in our daily life.

Example B.1. Consider receptionists and how they greet customers. Friendly,
moody, and rude receptionists greet customers by saying “Good morning. How
can I help you today?”, “What do you want?”, and “What do you want? I’m
busy. Come back later!!”, respectively. We design a class hierarchy for receptionists
as shown in Fig. B.1. The base class of the hierarchy is class Receptionist.
Based on the personality, we derive classes FriendlyReceptionist and
MoodyReceptionist directly from class Receptionist. Also, we derive
another class RudeReceptionist from class Moody Receptionist. The
CCC code which represents these four classes is given below:

//receptionist.cc
1 #include "iostream.h"
2 class Receptionist {
3 public:
4 void greet() {cout<<"Say:\n";};
5 };

6 class FriendlyReceptionist : public Receptionist {
7 public:
8 void greet(){
9 cout<<"Say: Good morning. How can I help

you today?\n"
10 }
11 };

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 17, © Springer Science+Business Media, LLC 2012

485

486 B A Review of the Polymorphism Concept in OOP

Fig. B.1 A polymorphism
example: Receptionist class
hierarchy

Receptionist

FriendlyReceptionist MoodyReceptionist

RudeReceptionist

12 class MoodyReceptionist : public Receptionist {
13 public:
14 void greet() { cout<<"Say: What do you

want?\n"; };
15 };

16 class RudeReceptionist : public MoodyReceptionist {
17 public:
18 void greet(){
19 MoodyReceptionist::greet();
20 cout<<"Say: I’m busy. Come back later.\n";
21 };
22 };

23 main() {
24 FriendlyReceptionist f_obj;
25 MoodyReceptionist m_obj;
26 RudeReceptionist r_obj;
27 cout<<"\n------------ Friendly Receptionist

---\n";
28 f_obj.greet();
29 cout<<"\n------------ Moody Receptionist

-------\n";
30 m_obj.greet();
31 cout<<"\n------------ Rude Receptionist

-------\n";
32 r_obj.greet();
33 cout<<"------------------------------------

----\n";
34 }

Function main() instantiates three receptionist objects. Objects f_obj,
m_obj, and r_obj are of classes FriendlyReceptionist, Moody
Receptionist, and RudeReceptionist, respectively (Lines 24–26). They
greet a customer in Lines 28, 30, and 32 by invoking function greet() in

B.1 Fundamentals of Polymorphism 487

Lines 8–10, 14, and 18–21, respectively.1 By running receptionist, the
following results should appear on the screen.

>>./receptionist
------------ Friendly Receptionist ---------
Say: Good morning. How can I help you today?

------------ Moody Receptionist ---------
Say: What do you want?

------------ Rude Receptionist ---------
Say: What do you want?
Say: I’m busy. Come back later!!
--

Example B.2. Remove Line 14 in Example B.1 and run “./receptionist”
again. The following result should appear on the screen:

>>./receptionist
------------ Friendly Receptionist ---------
Say: Good morning. How can I help you today?

------------ Moody Receptionist ---------
Say:

------------ Rude Receptionist ---------
Say:
Say: I’m busy. Come back later!!
--

Since class MoodyReceptionist does not define function greet (Line 14
is removed), it uses the function greet() inherited from class Receptionist
(i.e., printing “Say:” on the screen).

Examples B.1 and B.2 demonstrate the concepts of polymorphism through
receptionists and how they greet customers. When invoking the same function
(e.g., greet()), three objects of different classes act differently (e.g., by saying
differently). Example B.1 shows a basic polymorphism mechanism, where each
class has its own implementation. Example B.2 shows that it is also possible not
to override function greet().2

1Note that in Line 19 function greet() of class MoodyReceptionist is invoked in the scope
of class RudeReceptionist using “::.”
2For example, class MoodyReceptionist inherits function greet() from class
Receptionist.

488 B A Review of the Polymorphism Concept in OOP

B.2 Type Casting and Function Ambiguity

In most cases, polymorphism is fairly straightforward. A derived class may inherit or
override functions from the base class. When polymorphism involves type casting,
the mechanism in Examples B.1 and B.2 may lead to different results. To see how,
consider the following examples.

Example B.3. Replace function “main” in Example B.1 with the following:

1 main() {
2 FriendlyReceptionist *f_pt;
3 MoodyReceptionist *m_pt;
4 RudeReceptionist *r_pt;
5 f_pt = new FriendlyReceptionist();
6 m_pt = new MoodyReceptionist();
7 r_pt = new RudeReceptionist();

8 cout<<"\n------------ Friendly Receptionist ----\n";
9 f_pt->greet();
10 cout<<"\n------------ Moody Receptionist ----\n";
11 m_pt->greet();
12 cout<<"\n------------ Rude Receptionist ----\n";
13 r_pt->greet();
14 cout<<"------------------------------------

-----\n";
15 }

With the above code, the result for running ./receptionist would be
the same as that in Example B.1. The major difference in the above main()
function is the use of pointers (Lines 2–4), instead of regular objects (in
Example B.1). �

Example B.4. In Example B.3, replace Lines 3 and 4 with the following:

MoodyReceptionist *m_pt,*r_pt;

This is an example of ambiguity caused by type casting. The pointer r_pt is de-
clared as a pointer to a MoodyReceptionist object; however, the
statement “new RudeReceptionist()”’ creates an object of type Rude
Receptionist. When invoking a function (e.g., greet()), the key question is
which class should functiongreet() be associated with:MoodyReceptionist
(i.e., the declaration class) or RudeReceptionist (i.e., the construction class)?
To answer this question, we can simply run “./receptionist,” and obtain the
following results:

>>./receptionist
------------ Friendly Receptionist ---------

B.3 Virtual Functions 489

Say: Good morning. How can I help you today?

------------ Moody Receptionist ---------
Say: What do you want?

------------ Rude Receptionist -------------
Say: What do you want?
--

From the above result, the answer is the former one: MoodyReceptionist.

Consider the statement “r_pt = new RudeReceptionist.” The latter
part, “new RudeReceptionist,” allocates memory space to an object of class
RudeReceptionist, and returns a pointer to the created object. The former
part “r_pt = ” assigns the returned pointer to r_pt. Since r_pt is a pointer
to a MoodyReceptionist object, this statement implicitly casts the created
RudeReceptionist object to a MoodyReceptionist, before the pointer
assignment process. It is now clear that the type of r_pt before and after the casting
is MoodyReceptionist*. Therefore, function r_pt->greet() is associated
with class MoodyReceptionist.

Unlike a regular object, a pointer needs two memory spaces: one for itself and
another for the object that it points to. The former space is created at the pointer
declaration, while the latter is created using “new.” Function ambiguity occurs when
the pointer is declared to point to an object of one type, but the pointed object is
created to store an object of another type. By default, the pointer and the object will
be associated with the declaration type, not the construction type.

B.3 Virtual Functions

The result in Example B.3 is different from that in Example B.1. When creating
a pointer by executing “new RudeReceptionist,” we expect the rude recep-
tionist to say “What do you want? I’m busy. Come back later!!”, not just “What do
you want?” as in Example B.4. To do so, a RudeReceptionist object needs to
be associated with the construction type not the declaration type. In CCC, such an
association is carried out through virtual functions.

Unlike regular functions, virtual functions always belong to the construction
type, regardless of type casting. CCC declares a virtual function by putting a
keyword “virtual” in front of the function declaration. Note that, the virtuality
property is inheritable. We only need to declare the virtual function once in the base
class. The same function in the derived class automatically inherits the virtuality
property.

Example B.5. In Example B.4, replace Line 4 from Example B.1 with the following
line:

virtual void greet() {cout<<"Say:\n";};

490 B A Review of the Polymorphism Concept in OOP

which declares the function greet() of class Receptionist as virtual.
Since r_pt is created using “new RudeReceptionist,” virtual function

r_pt->greet() belongs to class RudeReceptionist. At the declaration
“MoodyReceptionist *r_pt,” the pointer r_pt is created by its default
constructor. However, the space where r_pt points to (i.e., *r_pt) is created by
the statement “new RudeReceptionist.” Since a virtual function sticks to the
construction type, the statement r_pt->greet() invokes function greet () of
class RudeReceptionist. After running ./receptionist, we will obtain
the same result as that in Examples B.1 and B.3.

B.4 Abstract Classes and Pure Virtual Functions

An abstract class provides a general concept from which more specific classes
derive. Conforming to the polymorphism concept, it specifies “what to do” in special
functions called pure virtual functions, and forces its derived classes to define their
own “how to do” by overriding the pure virtual functions. Containing at least one
pure virtual function, an abstract class is said to be incomplete since it does not
have a “how to do” part. Consequently, no object can be initiated from an abstract
class. By not implementing all virtual functions, the derived class would still be an
abstract class (i.e., incomplete), and cannot initiate any object.

CCC declares a pure virtual function by putting “virtual” and “=0” at the
beginning and the end of function declaration, respectively.

Example B.6. Consider again the example on receptionists and how they greet
customers. We keep the class hierarchy in Fig. B.1 unchanged. To make class
Receptionist an abstract class, we modify Example B.5 by removing Lines
4 in Example B.1 replacing the declaration of class Receptionist in Example
B.1 with the following codes:

1 class Receptionist {
2 public:
3 virtual void greet()=0;
4 };

After running “./receptionist,” we should obtain the same results as in
Example B.1. In this example, three main components are related to the use of an
abstract class.

• A pure virtual function: Function greet() is declared in class Recepti
onist as a pure virtual function (Line 3 in Example B.6).

• An abstract class: Containing a pure virtual function greet(), class
Receptionist is an abstract class. No object can be instantiated from
class Receptionist. Class Receptionist therefore acts as a template
class for classes FriendlyReceptionist, MoodyReceptionist, and
Rude Receptionist.

B.5 Class Composition: An Application of Type Casting Polymorphism 491

Table B.1 Declaration with
no implementation,
declaration with no action,
and invalid declaration

Declaration Example

Pure virtual declaration virtual void greet()=0;
Declaration with no action virtual void greet() fg;
Invalid declaration virtual void greet();

• An instantiable class: Classes FriendlyReceptionist, MoodyRecep-
tionist, and RudeReceptionist must provide implementation for func-
tion greet() (see Example B.1). Unlike Example B.2, removing the im-
plementation (e.g., Line 16 in Example B.1) leaves the derived classes (e.g.,
MoodyReceptionist) an abstract class, and the instantiation (e.g., m_pt =
new MoodyReceptionist) would cause a compilation error. �

There are three related declarations for a virtual function (see Table B.1). First,
a pure virtual function is declared as explained above (e.g., virtual void
greet() = 0;). Secondly, a (non-pure) virtual function of a derived instan-
tiable class must contain implementation but may have no action. For example,
“virtual void greet() fg;” contains no action inside its curly braces. This
function overrides the pure virtual function of its parent class, making the class non-
abstract and instantiable. Finally, consider a class whose parent class is an abstract
class. By opting out “fg” (i.e, “virtual void greet();”), the pure virtual
function is left unimplemented and the class would still be an abstract class. Again,
any object instantiation would lead to a compilation error.3 An important note for
NS2 users: You cannot opt out both “=0” and “fg.” If you do not want to provide
an implementation, leave the curly braces with no action after the declaration.
Otherwise, NS2 will show an error at the compilation.

B.5 Class Composition: An Application of Type Casting
Polymorphism

Upto this point, the readers may raise few questions. That is, why do we need
to cast an object to a different type and use the keyword virtual? Wouldn’t
it be easier to declare and construct an object with the same type? For example,
can’t we use Example B.3 instead of Example B.4? Doesn’t it remove function
ambiguity? The answer is “yes”; nevertheless, type casting makes the programming
more scalable, elegant, and interesting. For this reason, programming with type
casting is a common practice in NS2.

3Here, we assume that declaration and implementation are in one file. When declaration and
implementation are separated in two files, you can opt out “fg” in a “.h” file and provide the
implementation in another “.cc” file.

492 B A Review of the Polymorphism Concept in OOP

B.6 Programming Polymorphism with No Type Casting:
An Example

Example B.7 below shows a scenario, which needs no virtual function. However, we
will see later that Example B.7 leads to programming inconvenience as the program
becomes larger.

Example B.7. Consider a company and how it serves a customer. The main
functionality of the company is to serve customers. As a courtesy, the company
greets every customer before serving. Assume that the company has one receptionist
to greet the customer. The receptionist can be friendly, moody, or rude as specified
in Example B.1. The following CCC code represents the company with the above
description:

//company.cc
1 class Company {
2 public:
3 void serve() {
4 greet();
5 cout<<"\nServing the customer ... \n";
6 };
7 void greet () {};
8 };

9 class MoodyCompany : public Company {
10 public:
11 MoodyCompany(){employee_ = new Moody

Receptionist;};
12 void greet(){employee_->greet();};
13 private:
14 MoodyReceptionist* employee_;
15 };

16 int main() {
17 MoodyCompany my_company;
18 my_company.serve();
19 return 0;
20 }

where class MoodyReceptionist is defined in Example B.1.
Class Company (Lines 1–8) has two functions. Function serve() in Lines

3–6 greets the customers by invoking function greet(). Then, it serves the
customer by showing the message “Serving the customer ...” on the
screen. The function greet() in Line 7 has no action in class Company, and
is implemented by child classes of class Company.

B.7 A Scalability Problem Caused by Non-Type Casting Polymorphism 493

Class MoodyCompany (Lines 9–15) derives from class Company. It has
one moody receptionist stored in the variable employee_ (Line 14). Class
MoodyCompany implements function greet() by having employee_->
greet() in Line 12.

In the function main(), an object my_company of class MoodyCompany
is instantiated in Line 17. Line 18 invokes function serve() associated with
the object my_company. By running the executable file company, the following
result will appear on the screen:

>>./company
Say: What do you want?
Serving the customer ...

which is quite expected from the code. Clearly, we do not need virtual functions in
this example.

B.7 A Scalability Problem Caused by Non-Type Casting
Polymorphism

The main problem of polymorphism with non-type casting is the scalability. As
the inheritance tree becomes more complicated, we may need to develop a large
number of classes. For example, suppose we would like to change the receptionist
in the company to be a friendly receptionist. We will have to define another class as
follows:

class FriendlyCompany : public Company {
public:

FriendlyCompany() { employee_ =
new FriendlyReceptionist}

void greet() {employee_->greet();};
private:

FriendlyReceptionist* employee_;
};

Also, replace Line 17 in Example B.7 with

FriendlyCompany my_company;

By running “./company,” the following result should appear on the screen:

>>./company
Say: Good morning. How can I help you today?
Serving the customer ...

The problem is that a new Company class (e.g., FriendlyCompany) is re-
quired for every new Receptionist class (e.g., FriendlyReceptionist).

494 B A Review of the Polymorphism Concept in OOP

Furthermore, the company may have other types of employee such as technicians,
managers, etc. If there are ten classes for receptionists and ten classes for techni-
cians, we need to define 100 classes to cover all combination of employee types. In
the next section, we will show how this scalability problem can be avoided using
class composition.

B.8 The Class Composition Programming Concept

Type casting acts as a tool which helps avoid the scalability problem. Instead of
deriving all class combination (e.g., 100 classes of combinations of ten recep-
tionists and ten technicians), we may declare an abstract user class object (e.g.,
Receptionist), and cast the abstract user class object to a more specific object
(e.g., FriendlyReceptionist).

Example B.8. Consider a company and how it serves a customer in Example B.7.
By allowing type casting, the code representing the company is given below:

//company.cc
1 class Company {
2 public:
3 void hire(Receptionist* r) {
4 employee_ = (Receptionist*)r;
5 };
6 void serve() {
7 employee_->greet();
8 cout<<"\nServing the customer ... \n";
9 };
10 private:
11 Receptionist* employee_;
12 };

13 int main() {
14 MoodyReceptionist *m_pt= new MoodyReceptionist

();
15 Company my_company;
16 my_company.hire(m_pt);
17 my_company.greet();
18 return 0;
19 }

Also, to bind function greet() to the construction type, we need to declare
function greet of class Receptionist as virtual. Here, we replace Line
4 in Example B.1 with “virtual void greet();” or “virtual void
greet() = 0;.”

B.8 The Class Composition Programming Concept 495

Abstract Class
(Receptionist)

Abstract User Class
(Company)

declare

use

instantiate
inherit

Derived Class
(MoodyReceptionist)

User Class
(main)

polym
orphism

employee_

employee_->greet()

my_company

m_pt

Bind
(my_company->hire(m_pt)

type
casting

instantiate

instantiate

Fig. B.2 A diagram of the class composition concept with type casting polymorphism

Class Company declares a variable employee_ as a Receptionist pointer
in Line 11. The company hires an employee by invoking function hire(r)
in Lines 3–5. Taking a Receptionist* object, r, as an input argument,
function hire(r) assigns an input Recectionist pointer to its private variable
employee_. In Lines 6–9, the company serves the customers as it does in
Example B.7.

In function “main(),” an object of class Company, my_company, is created
in Line 15. In Line 16, my_company hires an employee m_ptwhich is a pointer to
a MoodyReceptionist object. From Lines 3–5, function hire(m_pt) casts
the pointer m_pt to a Receptionist pointer. Since the function greet() of
class MoodyReceptionist is virtual, employee_->greet() is associated
with the construction type in Line 14 (i.e., class MoodyReceptionist). By
running “./company,” we will obtain the following result:

>>./company
Say: What do you want?
Serving the customer ...

which is the same as that in Example B.7. �

As shown in Fig. B.2, the class composition programming concept with type-
casting polymorphism consists of four main class types.

• An abstract class (e.g., Receptionist) is a template class.
• A derived class (e.g., classes MoodyReceptionist) derives from the above

abstract class.
• An abstract user class (e.g., class Company) declares objects of the abstract

class (e.g., Receptionist). It uses the functions of the abstract class without
the need to know the detailed implementation of the abstract class. In Exam-
ple B.8, class Company does not need to know what type of Receptionist
the employee_ is, nor how the employee_ greets the customers.

496 B A Review of the Polymorphism Concept in OOP

• A user class (e.g., main) declares objects of the derived class (e.g., Moody
Receptionist). It makes the abstract class more specific by binding (e.g.,
using function hire(r)) the abstract variable (e.g., *employee_) belonging
to the abstract user object (e.g., my_company) to the derived object (e.g.,
m_pt).

The concept of class composition is to have an abstract user class (e.g.,
Company) declare its variable from an abstract class (e.g., Receptionist) and
later cast the declared object (e.g., employee_) to a more specific type (e.g.,
MoodyReceptionist). In particular, the mechanism consists of four following
steps:

1. Declare an abstract class (e.g., Receptionist).
2. From within an abstract user class (e.g., Company), declare (e.g., Receptionist*
employee_) and use (e.g., employee_->greet()) objects of the above
abstract class.4

3. In a user class (e.g., main()),

a. Instantiate an object (e.g., my_company) of the abstract user class (e.g.,
Company).

b. Instantiate an object (e.g., *m_pt) of the derived class (e.g., Moody
Receptionist).

4. Bind (e.g., using hire(r)) the abstract class object (e.g.,*employee_) in the
abstract user class (e.g., Company) to the object initiated from within the user
class (e.g., *m_pt). Since the latter object class derives from the former one, the
type casting is fairly straightforward.

To change the company’s receptionist to be a friendly receptionist, we only need
to change function main as follows, without having to modify other parts of the
codes:

int main() {
FriendlyReceptionist *f_pt;
f_pt = new FriendlyReceptionist();

Company my_company();
my_company.hire (f_pt);
my_company.serve();
return 0;

}

4Again, declaration of a too specific (e.g., MoodyReceptionist as opposed to
Receptionist) class in non-type-casting polymorphism leads to the scalability problem. As
the program becomes larger, we need to redefine classes for every new class, hence substantially
increasing the total number of classes. To avoid the scalability problem, we need to declare classes
to be as general as possible. This general class can later be cast as a more specific class.

B.8 The Class Composition Programming Concept 497

To see how type casting helps avoid scalability, consider the above example
where a company may have one of ten possible receptionist classes and one of ten
possible technician classes. Without type casting, we need to define 100 classes
to cover all the combination of receptionists and technicians in addition to one
base class Company. By allowing type casting, we can declare two variables (of
abstract classes Receptionist and Technician) in a company. In the main
program, we can instantiate a receptionist and a technician from any of these
Receptionist and Technician classes. After instantiating receptionist and
technician objects from the derived class, we can cast the instantiated objects back
to classes Receptionist and Technician and assign them to the company.
Under the same scenario, the class composition concept requires only 20 classes
for receptionists and technicians, and therefore, greatly alleviates the scalability
problem.

C
BSD Link List and Bit Level Functions

C.1 BSD Link List

Similar to an array, a link list is a data structure which can contain a collection of
data items [16]. Link lists are implemented using pointers. Therefore, programmers
do not need to specify memory requirement for a link list. The memory is allocated
to the link list at runtime.

NS2 defines macros for link lists in the file ˜ns/lib/bsd-list.h as follows:

LIST HEAD(<name>,<type>):
Declare a struct data type which models a head pointer to the link
list. The name of the data type is <name>, and the data type of each
item in the link list is <type>.

LIST ENTRY(<type>):
Declare a struct data type which models an entry in a link list. The
data type of each item in the link list is <type>.

LIST INSERT AFTER(head,elm,field):
Insert *<elm> as the first element of the link list whose head pointer
is <head>, where <field> is a struct variable containing pointers
which make up the link list.

C.2 Bit Level Functions

NS2 employs several CCC bit level operation functions.

bcopy(p1,p2,n)
Copy n bytes from *p1 to *p2.

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3 18, © Springer Science+Business Media, LLC 2012

499

500 C BSD Link List and Bit Level Functions

bzero(p,n)
Set first n bytes of *p to be zero.

bsearch(keypt,arrpt,num,bytes,cmp fn)
Look for *keypt within arrpt which contains num elements, each
with size bytes. It returns a pointer to the matching element, and zero
if no matching key is found. For each element in the array arrpt, this
function feeds *keypt and the array element as the input arguments
of the function cmp_fn. The function cmp_fn must return negative,
zero, and positive values if *keypt is less than, equal to, and greater
than array element, respectively.

References

1. A. S. Tanenbaum, Computer Networks, 3rd ed. Prentice Hall, 1996.
2. R. E. Shannon, “Introduction to the art and science of simulation,” in Proc. of the 30th

conference on Winter simulation (WSC’98), 1989.
3. W. T. Kasch, J. R. Ward, and J. Andrusenko “Wireless network modeling and simulation tools

for designers and developers,” IEEE Communication Magazine, pp. 120–127, March, 2009.
Proc. of the 30th conference on Winter simulation (WSC’98), 1989.

4. R. G. Ingalls, “Introduction to simulation: Introduction to simulation,” in WSC ’02:
Proceedings of the 34th conference on Winter simulation. Winter Simulation Conference, 2002,
pp. 7–16.

5. W. H. Tranter, et al., Principles of Communication Systems Simulation. Prentice Hall, 2004.
6. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 2nd ed.

McGrawHill, 2002.
7. W. H. Press, et al., Numerical Recipes in C, 2nd ed. Cambridge University Press, 1997.
8. R. M. Goldberg, Parallel and Distributed Simulation Systems. John Wiley & Sons, Inc., 2000.
9. J. Banks andI. J. S. Carson, Discrete-Event Systems Simulation. Prentice-Hall, Inc., 1984.

10. The Network Simulator Wiki. [Online]. Available: http://nsnam.isi.edu/nsnam/index.php/
11. The Network Simulator Wiki–NS-2Trace Formats. [Online]. Available: http://nsnam.isi.edu/

nsnam//index.php/NS-2 Trace Formats#Old Wireless Trace Formats
12. The Network Simulator – ns-2. [Online]. Available: http://www.isi.edu/nsnam/ns/
13. M. Greis. Tutorial for the Network Simulator NS2. [Online]. Available: http://www.isi.edu/

nsnam/ns/tutorial/
14. J. Chung and M. Claypool. Ns by example. [Online]. Available: http://nile.wpi.edu/NS/
15. The Network Simulator Wiki–Contributed Code. [Online]. Available: http://nsnam.isi.edu/

nsnam/index.php/Contributed Code
16. P. Deitel and H. Deitel, CCC How to Program, 7th Edition, Pearson, 2010. 4th ed. McGraw-

Hill/Osborne Media, 2002.
17. K. Fall and K. Varadhan. (2007, Aug.) The ns manual (formerly known as ns notes and

documentation). [Online]. Available: http://www.isi.edu/nsnam/ns/ns-documentation.html
18. Réseaux et Performances. NS 2.26 source original: Hierarchical index. [Online]. Available:

http://www-rp.lip6.fr/ns-doc/ns226-doc/html/hierarchy.htm
19. T. H. Cormen, et al., Introduction to Algorithms, 2nd ed. MIT Press and McGraw-Hill, 2001.
20. M. Mathis, et al., TCP selective acknowledgement options, RFC 768 Std., 1996.
21. J. Kurose. The TCP/IP course website. [Online]. Available: http://www.networksorcery.com/

enp/protocol/udp.htm
22. J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach. Pearson Addison-

Wesley, 2008.

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3, © Springer Science+Business Media, LLC 2012

501

502 References

23. V. Paxson and M. Allman, Computing TCP’s Retransmission Timer, RFC 2988 Std., November
2000.

24. C. E. Perkins, Ad Hoc Networking, Addison-Wesley, 2001.
25. P. L’Ecuyer, “Good parameters and implementations for combined multiple recursive random

number generators,” Operations Research, vol. 47, no. 1, pp. 159–164, 1999.
26. D. Libes, “A debugger for Tcl applications,” in Tcl/Tk Workshop, June 1993. [Online].

Available: http://expect.nist.gov/tcl-debug/tcl-debug.ps.Z
27. The GDB Developers. GDB: The GNU project debugger. [Online]. Available: http://www.

gnu.org/software/gdb/
28. T. Nandagopal, S. Lu, and V. Bhargharvan “A unified architecture for the design and

evaluation of wireless fair queuing algorithms,” MOBICOM99, pp. 132–142, 1999.
29. S. Sanfilippo. An introduction to the Tcl programming language. [Online]. Available: http://

www.invece.org/tclwise
30. How can I do math in Tcl, Welcome to the Tclers Wiki!, http://wiki.tcl.tk/528
31. Berkeley Continuous Media Toolkit. OTcl tutorial. [Online]. Available: http://bmrc.berkeley.

edu/research/cmt/cmtdoc/otcl/
32. A. Robbins and D. Gilly, Unix in a Nutshell: System V Edition. O’Reilly & Associates, Inc.,

1999.
33. An AWK primer. [Online]. Available: http://www.vectorsite.net/tsawk.html
34. Wikipedia. Regular expression. [Online]. Available: http://en.wikipedia.org/wiki/Regular

expression
35. V. Paxson and M. Allman, RFC 2988: Computing TCP’s Retransmission Timer,. [Online].

Available: http://www.ietf.org/rfc/rfc2988.txt
36. C. Flynt, Tcl/Tk: A Developer’s Guide, Second Edition, Morgan Kaufmann, 2003.
37. C. E. Perkins and E. M. Royer “Ad-hoc On-Demand Distance Vector Routing,” IEEE

Workshop on Mobile Computing Systems and Applications, 1999, LA.
38. M. Schwartz, Mobile Wireless Communications, Cambridge University Press, 2005.
39. IEEE Standard for Wireless LAN Medium Access Control and Physical Layer Specification,

P802.11, IEEE, 1999.
40. T. Issariyakul, E. Hossain, and D. I. Kim, “Medium access control protocols for wireless

mobile ad hoc networks: Issues and approaches,” Wiley Interscience Wireless Communications
and Mobile Computing, vol.3, no. 8, Dec., 2003.

General Index

A
Abstract class, 490
Acknowledgment, 211

cumulative, 211
duplicated, 211

Activities, 8
Agent

defining new, 222
Null, 222
UDP, 223

Antannae, 331
AODV, 305, 312

construction process, 311
packet flow, 312
packet types, 306
timers, 313

Application, 209, 273
Application layer, 4
ARP, 316
ARQ, 345
Automatic Repeat reQuest, 345
AWK, 34

B
Bag of bits, 180
Binary exponential backoff, 257
Bit masking, 449

diagram, 449
mask, 449
masked value, 449
masking process, 449

Bit shifting, 451
Breakpoints, 371

C
Callback mechanism, 161
Chain of events, 77

Classifier, 114
Command, 26
Compiled hierarchy, 26, 41
Confidence interval, 9
Congestion avoidance, 212
Congestion control, 212
Congestion window, 212

close, 212
open, 212

Constant bit rate, 284
Constant-bit-rate (CBR) traffic, 29
Convention, 25

D
Data payload, 172, 200
Debugging, 369

commands, 372
Default values, 49
Dependency rules, 36
Descriptor file, 35
Discrete-event simulator, 77
Dispatch, 78
Dispatching time, 78
Downstream, 26

E
Entities, 7
Error

compilation, 370
runtime, 370

Error model, 435
diagram, 438
main mechanism, 443

Event-driven simulation, 13
Events, 77

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3, © Springer Science+Business Media, LLC 2012

503

504 General Index

Expiration actions, 409
Exponential On/Off, 285

F
Fast retransmit, 213
Firing time, 78
Forwarding object, 26
Free packet list, 174

architecture, 173
FTP, 29

G
Global variables, 8
GOD, 338

H
Handle, 22, 62
Handler, 78
Hash classifier, 119
Hash entry, 119
Hash key, 119
Hash table, 119
Hash value, 119
Header, 3
Helper object/class, 98

I
IEEE 802.11, 318

carrier sensing, 329
collision, 326
collision avoidance (CA), 318
DCF, 318
Four-way handshake, 318
IFS, 319
NAV, 319, 331
receiving, 326
retransmission, 326
sending, 323
timers, 323

Instance procedure, 26
Instance variable, 26
Instproc, 22, 26
Instvar, 22, 26
Inter-burst transmission interval, 285
Interface, 2
Interpreted hierarchy, 26, 41

L
Layering, 2
Link layer, 5, 315
Low level network, 209

M
MAC

NS2 states, 319
make, 35
makefile, 35
Medium access control, 317
Method binding, 53
MIB, 321
Mobile node

architecture, 296
construction process, 298
hierarchy, 294
packet flow, 297

Mobility
cbrgen utility, 342
deterministic, 337
random, 339
scenario files, 343
setdest utility, 341

Modulo masking, 450

N
Network configuration phase, 77
Network limited, 252
Network object/class, 98
Node, 111

architecture, 112
construction process, 141

NS2 data type, 50
NsObject, 98

O
Offset, 180

computation, 195
OSI reference model, 4
OTcl command, 53

invocation, 55, 59
returning structure, 56
syntax, 55

OTcl method, 187
Overloading operator, 378

P
Packet

actual packet, 169
allocation, 175, 178
architecture, 170
as an event, 172
customization, 202

Packet buffering, 151

General Index 505

Packet header, 180
access mechanism, 190
active protocol, 172, 194
common, 182
construction process, 194
IP, 183
TCP, 231

Packet header manager, 172, 193
architecture, 194
initialization, 194

Packet scheduler
Weighted Fair Queuing (WFQ), 368

Packet tracing
type, 394

Packet transmission time, 151, 156
Packet-related object/class, 98
Packetheader

architecture, 180
Pareto On/Off, 285
Payload type, 184
Peers, 2
Physical layer, 5
Port classifier, 118
Primitive, 2
Propagation delay, 151
Protocol, 2
Protocol specific header, 171, 186

activate, deactivate, 205
Psuedo-random number generator, 424
Pure virtual function, 490

Q
Queue

prioritized, 317
Queue blocking, 161

R
Random number generator, 8, 424
Random scenario, 429
Random variable

diagram, 431
Repeatability, 9
Resource, 7
Retransmission timeout (RTO), 211
RNG, 424
Round trip time (RTT), 211
Route logic, 111, 132
Router, 111
Routing

configuration process, 143
terminology, 111

Routing agent, 111

Routing algorithm, 111
Routing loop, 306
Routing mechanism, 111
Routing module, 111, 125

name, 131
Routing protocol, 111
Routing rule, 111
Routing table, 111
RTO, 211

bounded, 259
computation, 211
unbounded, 256

RTT, 211
samples, 211
smoothed, 211
variation, 211

S
Scheduler, 82

dynamics of unique ID, 86
Scheduler and Simulation Clock, 8
Seed, 425
Segment, 4
Service, 2
Shadow object, 26
SimpleLink

architecture, 152
OTcl constructor, 154

Simulation clock, 11
Simulation phase, 78, 92
Simulation timeline, 77
Simulation-related object/class, 98
Simulator, 89
Slot, 114
Slow start, 212
Slow start threshold, 212
State variables, 8
Statistics gatherer, 8

T
Target, 26
Tcl simulation script, 25, 30, 45
TclClass

defining your own, 47, 61
example, 46
naming convention, 48

TclCommand, 60
TclObject

creating, 63
referencing, 62

TCP, 210
receiver, 235

506 General Index

TCP (cont.)
tick, 257
variants, 214

TCP/IP reference model, 4
Threshold

carrier sensing, 332
packet reception, 332

Time-dependent simulation, 11
Time-driven simulation, 12
Timeout, 211
Timer, 409

life cycle, 410, 413
Timer expiration, 409
Trace channel, 380
Trace format, 398

new wireless, 401
packet tracing, 396
TCP, 375
wireless, 399

Traceable variable, 375, 377
Tracer, 378
Tracing

variable
activation, 374
components, 376

format, 381
Traffic generator, 280
Traffic trace, 286
Transmission Control Protocol, 210
Transport layer, 4
Transport layer agent, 209

receiving agent, 209
sending agent, 209

U
UDP, 209
Upstream, 26
User Datagram Protocol, 209

V
Variable binding, 48
Variable viewer, 371
Virtual function, 489

W
Wired-cum-wireless, 293
Wireless channel, 333

Code Index

A
Acker

declaration, 237
functions, 238
variables, 237

Agent, 218
attach-app, 274
channel , 384
functions, 218
variables, instvars, 218

Agent/Null, 222
Agent/TCP

instvars, 257
Agent/UDP, 223
AODV

classes, 309
declaration, 309
files, 309
recv, 313
timers, 314

AppData
declaration, 201
functions, 200
variables, 200

AppDataType
declaration, 201

Application
declaration, 277
functions, 278
OTcl commands, 280
variables, 276

Application/Traffic/CBR
instvars, 285

Application/Traffic/Exponential
instvars, 286

Application/Traffic/Pareto
instvars, 287

argc, 44
argv, 44
AtEvent, 80
AtHandler, 80

B
BaseRoutingModule, 131

declaration, 132
functions, 131
variables, 131

BaseTrace
declaration, 395
functions, 393
OTcl commands, 393
variables, 392

C
CBR Traffic

declaration, 288
functions, 288
variables, 287

cbrgen.tcl, 342
Channel

declaration, 333
recv, 334

Classifier
declaration, 115
functions, 115
OTcl commands, 116
variables, 114

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
DOI 10.1007/978-1-4614-1406-3, © Springer Science+Business Media, LLC 2012

507

508 Code Index

CommonHeaderClass, 190
bind offset, 190

create, 63

D
defaultRNG, 425
delete, 67
DestHashClassifier

declaration, 123
functions, 122

DropTail, 163
duplex-link, 153

E
EmbeddedTcl, 41
ErrorModel

declaration, 441
functions, 442
instvars, 437
unit, 449
variables, 440

Event, 78

G
GOD, 339

H
Handler, 78
HashClassifier

declaration, 121
functions, 121
variables, 120

hdr cmn, 182
access, 182, 192
declaration, 182
functions, 182
ptype , 184
variables, 182

hdr ip
declaration, 183
variables, 183

hdr tcp
declaration, 232
variables, 231

I
install, 24
InstVar, 41

declaration, 377
int32 t, 183

L
LinkDelay, 156

functions, 156
variables, 156

LL, 315
declaration, 316
recv, 316

M
Mac

declaration, 319
functions, 321
variables, 319

Mac802 11
timers, 324

Mac802 11
backoffHandler, 325
collision, 328
declaration, 319
functions, 321
recv, 325
recv timer, 327
rx resume, 327
send, 325
send timer, 328
timers, 330
tx resume, 329
variables, 319

MAC MIB, 321
MobileNode

declaration, 294
start, 340

MWM (Maximum Window Mask), 238
MWS (Maximum Window Size), 237

N
new, 63
Node

add-route, 140
attach-agent, 138
delete-route, 140
instvars, 135

Node/MobileNode
add-interface, 303
composition, 303

ns addr t, 183
addr , 183
port , 183

NsObject, 100
NsObject::handle, 80

Code Index 509

P
p info, 184

name, 184
Packet, 170

accessdata, userdata, setdata, datalen, 203
declaration, 171
functions, 171
variables, 170

packet info, 184
packet t, 184
PacketData

declaration, 202
functions, 200
variables, 200

PacketHeaderClass, 187
declaration, 188
variables, 187

PacketHeaderManager
declaration, 193

PacketQueue, 159, 160
functions, 159
variables, 159

Phy
declaration, 332
recv, 334

PHY MIB, 321

Q
Queue, 158

functions, 159
recv, 161
resume, 163
variables, 158, 160

R
RandomVariable

declaration, 432
functions, 431
variables, 431

RNG, 427
instprocs, 428

RouteLogic
declaration, 133
functions, 133
instprocs, 134
variables, 132

Routing module
variables, 126

RtModule, 129
instprocs, 129
instvars, 129

RtModule/Base, 131

S
Scheduler

at, 81
clock, 85
dispatch, 84
instance, 85
schedule, 84

Segmentation fault, 371
setdest, 341
SimpleLink

errormodule, 437
insert-linkloss, 438
instvars, 152
trace, 388

simplex-link, 153
Simulation

attach-agent, 139
Simulator, 91

at, 81
connect, 276
create-aodv-agent, 311
create-trace, 388
create-wireless-node, 301
instvars, 89, 90
link-lossmodel, 438
lossmodel, 437
node, 141
node-config, 113

options, 297
wireless, 299

run, 93
trace-all, 386
trace-queue, 387

SplitObject, 62

T
Tcl, 41

functions, 68, 69, 71
TCL ERROR, 57
TCL OK, 57
TclCL, 22, 25, 41
TclClass, 41
TclCommand, 41
TclObject, 41, 377

functions, 48
trace, 380, 382
traceVar, 382

TcpAgent
attach, 384
constants, 268
functions, 242, 250, 259, 267
trace, 380

510 Code Index

TcpAgent (cont.)
traceVar, 380
variables, 232

TcpSink
ack, 240
declaration, 241
recv, 240

Timer
cross referencing, 419
instprocs, 411
instvars, 411

TimerHandler
declaration, 415
functions, 415
variables, 414

TimerStatus, 414
Trace

declaration, 390
functions, 389
OTcl commands, 391
variables, 389

TracedInt
declaration, 379
functions, 378
variables, 378

TraceDouble
example, 375

TracedVar
declaration, 379
variables, 378

TraceInt
example, 375

TrafficGenerator
functions, 281
variables, 281

TrafficTimer
declaration, 284
expire, 284

U
UdpAgent, 223

declaration, 224
OTcl commands, 226
sendmsg,idle, 225

W
WirelessChannel

declaration, 333
sendUp, 335

WirelessPhy
declaration, 332
sendDown, 334
sendUp, 336

	Cover
	Introduction to Network Simulator NS2, 2nd Edition
	ISBN 9781461414056
	Preface
	Acknowledgment
	Contents
	Chapter
1 Simulation of Computer Networks
	1.1 Computer Networks and the Layering Concept
	1.1.1 Layering Concept
	1.1.2 OSI and TCP/IP Reference Models
	1.1.2.1 Application Layer
	1.1.2.2 Transport Layer
	1.1.2.3 Network Layer
	1.1.2.4 Link Layer
	1.1.2.5 Physical Layer

	1.2 System Modeling
	1.2.1 Analytical Approach
	1.2.2 Simulation Approach

	1.3 Basics of Computer Network Simulation
	1.3.1 Simulation Components
	1.3.1.1 Entities
	1.3.1.2 Resources
	1.3.1.3 Activities and Events
	1.3.1.4 Scheduler
	1.3.1.5 State and Global Variables
	1.3.1.6 Random Number Generator
	1.3.1.7 Statistics Gatherer

	1.3.2 Simulation Performance
	1.3.3 Confidence Interval
	1.3.4 Choices for Network Simulation Tools
	1.3.4.1 Simulation Platform
	1.3.4.2 Types of Simulation Tools
	1.3.4.3 User Interface
	1.3.4.4 Examples of Simulation Tools

	1.4 Time-Dependent Simulation
	1.4.1 Time-Driven Simulation
	1.4.2 Event-Driven Simulation

	1.5 A Simulation Example: A Single-Channel Queuing System
	1.5.1 Entities
	1.5.2 State Global Variables
	1.5.3 Resource
	1.5.4 Events
	1.5.5 Simulation Performance Measures and Statistics Gatherers
	1.5.6 Simulation Program

	1.6 Chapter Summary
	1.7 Exercises

	Chapter
2 Introduction to Network Simulator 2 (NS2)
	2.1 Introduction
	2.2 Basic Architecture
	2.3 Installation
	2.3.1 Installing an All-In-One NS2 Suiteon Unix-Based Systems
	2.3.2 Installing an All-In-One NS2 Suiteon Windows-Based Systems

	2.4 Directories and Convention
	2.4.1 Directories
	2.4.2 Convention
	2.4.2.1 Terminology
	2.4.2.2 Notations

	2.5 Running NS2 Simulation
	2.5.1 NS2 Program Invocation
	2.5.2 Main NS2 Simulation Steps

	2.6 A Simulation Example
	2.7 Including C++ Modules into NS2 and the make Utility
	2.7.1 An Invocation of a make Utility
	2.7.2 A make Descriptor File
	2.7.3 NS2 Descriptor File

	2.8 Chapter Summary
	2.9 Exercises

	Chapter
3 Linkage Between OTcl and C++ in NS2
	3.1 The Two-Language Concept in NS2
	3.1.1 The Natures of OTcl and C++ Programming Languages
	3.1.2 C++ Programming Styles and Its Applicationin NS2
	3.1.2.1 Basic C++ Programming
	3.1.2.2 C++ Programming with Input Arguments
	3.1.2.3 C++ Programming with Configuration Files

	3.2 Class Binding
	3.2.1 Class Binding Process
	3.2.2 Defining Your Own Class Binding
	3.2.3 Naming Convention for Class TclClass

	3.3 Variable Binding
	3.3.1 Variable Binding Methodology
	3.3.2 Setting the Default Values
	3.3.3 NS2 Data Types
	3.3.3.1 Real and Integer Variables
	3.3.3.2 Bandwidth
	3.3.3.3 Time
	3.3.3.4 Boolean

	3.3.4 Class Instvar

	3.4 Execution of C++ Statements from the OTcl Domain
	3.4.1 OTcl Commands in a Nutshell
	3.4.1.1 OTcl Command Invocation
	3.4.1.2 C++ Definition of OTcl Commands
	3.4.1.3 Creating Your Own OTcl Commands

	3.4.2 The Internal Mechanism of OTcl Commands
	3.4.2.1 OTcl Command Invocation Mechanism
	3.4.2.2 OTcl Default Returning Structure
	3.4.2.3 Interpretation of the Returned Values

	3.4.3 An Alternative for OTcl Command Invocation
	3.4.4 Non-OOP Tcl Command
	3.4.5 Invoking a TclCommand
	3.4.5.1 Creating a TclCommand
	3.4.5.2 Defining Your Own TclCommand

	3.5 Shadow Object Construction Process
	3.5.1 A Handle of a TclObject
	3.5.2 TclObjects Construction Process
	3.5.3 TclObjects Destruction Process

	3.6 Access the OTcl Domain from the C++ Domain
	3.6.1 Obtain a Reference to the Tcl Interpreter
	3.6.2 Execution of Tcl Statements
	3.6.3 Pass or Receive Results to/from the Interpreter
	3.6.3.1 Passing Results to the OTcl Domain
	3.6.3.2 Retrieving Results from the OTcl Domain

	3.6.4 TclObject Reference Retrieval

	3.7 Translation of Tcl Code
	3.8 Chapter Summary
	3.9 Exercises

	Chapter
4 Implementation of Discrete-Event Simulation in NS2
	4.1 NS2 Simulation Concept
	4.2 Events and Handlers
	4.2.1 An Overview of Events and Handlers
	4.2.2 Class NsObject: A Child Class of ClassHandler

	4.2.3 Classes Packet and AtEvent: Child Classes of Class Event

	4.3 The Scheduler
	4.3.1 Main Components of the Scheduler
	4.3.2 Data Encapsulation and Polymorphism Concepts
	4.3.3 Main Functions of the Scheduler
	4.3.4 Two Auxiliary Functions
	4.3.5 Dynamics of the Unique ID of an Event
	4.3.6 Scheduling–Dispatching Mechanism
	4.3.7 Null Event and Dummy Event Scheduling
	4.3.7.1 Scheduling of a Null Event
	4.3.7.2 Scheduling of a Dummy Event

	4.4 The Simulator
	4.4.1 Main Components of a Simulation
	4.4.1.1 Interperted Hierarchy
	4.4.1.2 Compiled Hierarchy

	4.4.2 Retrieving the Instance of the Simulator
	4.4.3 Simulator Initialization
	4.4.4 Running Simulation
	4.4.5 Instprocs of OTcl Class Simulator

	4.5 Chapter Summary
	4.6 Exercises

	Chapter
5 Network Objects: Creation, Configuration,and Packet Forwarding
	5.1 Overview of NS2 Components
	5.1.1 Functionality-Based Classification of NS2 Modules
	5.1.2 C++ Class Hierarchy

	5.2 NsObjects: A Network Object Template
	5.2.1 Class NsObject

	5.2.2 Packet Forwarding Mechanism of NsObjects

	5.3 Connectors
	5.3.1 Class Declaration
	5.3.2 OTcl Configuration Commands
	5.3.3 Packet Forwarding Mechanism of Connectors
	5.3.3.1 Immediate Packet Forwarding
	5.3.3.2 Delayed Packet Forwarding

	5.4 Chapter Summary
	5.5 Exercises

	Chapter
6 Nodes as Routers or Computer Hosts
	6.1 An Overview of Nodes in NS2
	6.1.1 Routing Concept and Terminology
	6.1.2 Architecture of a Node
	6.1.3 Default Nodes and Node Configuration Interface

	6.2 Classifiers: Multi-Target Packet Forwarders
	6.2.1 Class Classifier and Its Main Components

	6.2.1.1 C++ Variables
	6.2.1.2 C++ Functions
	6.2.1.3 Main Configuring Interface
	6.2.1.4 Main Internal Mechanism

	6.2.2 Port Classifiers
	6.2.3 Hash Classifiers
	6.2.3.1 An Overview of Hash Classifiers
	6.2.3.2 C++ Implementation of Class HashClassifier

	6.2.3.3 Child Classes of Class HashClassifier

	6.2.3.4 C++ Class DestHashClassifier

	6.2.4 Creating Your Own Classifiers

	6.3 Routing Modules
	6.3.1 An Overview of Routing Modules
	6.3.2 C++ Class RoutingModule

	6.3.3 OTcl Class RtModule

	6.3.3.1 Initialization Instprocs
	6.3.3.2 Instprocs for Configuring Classifiers

	6.3.4 Built-in Routing Modules
	6.3.4.1 The List of Built-in Routing Modules
	6.3.4.2 C++ Class BaseRoutingModule and OTcl Class RtModule/Base

	6.4 Route Logic
	6.4.1 C++ Implementation
	6.4.2 OTcl Implementation

	6.5 Node Construction and Configuration
	6.5.1 Key Variables of the OTcl Class Nodeand Their Relationship

	6.5.1.1 Routing-Related Instvars
	6.5.1.2 Classifier-Related Instvars

	6.5.2 Installing Classifiers in a Node
	6.5.3 Bridging a Node to a Transport Layer Protocol
	6.5.4 Adding/Deleting a Routing Rule
	6.5.5 Node Construction and Configuration
	6.5.5.1 Node Construction
	6.5.5.2 Agent and Route Configuration

	6.6 Chapter Summary
	6.7 Exercises

	Chapter
7 Link and Buffer Management
	7.1 Introduction to SimpleLink Objects
	7.1.1 Main Components of a SimpleLink
	7.1.1.1 Basic Objects
	7.1.1.2 Tracing Objects

	7.1.2 Instprocs for Configuring a SimpleLink Object

	7.1.3 The Constructor of Class SimpleLink

	7.2 Modeling Packet Departure
	7.2.1 Packet Departure Mechanism
	7.2.2 C++ Class LinkDelay

	7.3 Buffer Management
	7.3.1 Class PacketQueue: A Model for Packet Buffering

	7.3.2 Queue Handler
	7.3.3 Queue Blocking and Callback Mechanism
	7.3.3.1 Queue Blocking
	7.3.3.2 Callback Mechanism

	7.3.4 Class DropTail: A Child Class of Class Queue

	7.4 A Sample Two-Node Network
	7.4.1 Network Construction
	7.4.2 Packet Flow Mechanism

	7.5 Chapter Summary
	7.6 Exercises

	Chapter
8 Packets, Packet Headers, and Header Format
	8.1 An Overview of Packet Modeling Principle
	8.1.1 Packet Architecture
	8.1.2 A Packet as an Event: A Delayed Packet Reception Event
	8.1.3 A Link List of Packets
	8.1.4 Free Packet List

	8.2 Packet Allocation and Deallocation
	8.2.1 Packet Allocation
	8.2.2 Packet Deallocation

	8.3 Packet Header
	8.3.1 An Overview of First Level Packet Composition: Offseting Protocol-Specific Header on the Packet Header
	8.3.2 Common Packet Header
	8.3.3 IP Packet Header
	8.3.4 Payload Type
	8.3.5 Protocol-Specific Headers
	8.3.5.1 Protocol-Specific Header C++ Classes
	8.3.5.2 A Protocol-Specific Header OTcl Class
	8.3.5.3 A Protocol-Specific Header Mapping Class

	8.3.6 Packet Header Access Mechanism
	8.3.6.1 Retrieving a Reference to Protocol-Specific Header
	8.3.6.2 Accessing Packet Attributes in a Protocol-Specific Header

	8.3.7 Packet Header Manager
	8.3.8 Protocol-Specific Header Compositionand Packet Header Construction

	8.4 Data Payload
	8.5 Customizing Packets
	8.5.1 Creating Your Own Packet
	8.5.1.1 Defining a New Packet Header
	8.5.1.2 Defining a New Data Payload

	8.5.2 Activate/Deactivate a Protocol-Specific Header

	8.6 Chapter Summary
	8.7 Exercises

	Chapter
9 Transport Control Protocols Part 1: An Overview and User Datagram Protocol Implementation
	9.1 UDP and TCP Basics
	9.1.1 UDP Basics
	9.1.2 TCP Basics
	9.1.2.1 Error Control Using Basic Acknowledgment and Timeout
	9.1.2.2 Window-Based Congestion Control
	9.1.2.3 TCP Variants

	9.2 Basic Agents
	9.2.1 Applications, Agents, and a Low-Level Network
	9.2.2 Agent Configuration
	9.2.3 Internal Mechanism for Agents
	9.2.3.1 Related C++ and OTcl Variables
	9.2.3.2 Key C++ Functions

	9.2.4 Guidelines to Define a New Transport Layer Agent

	9.3 UDP and Null Agents
	9.3.1 Null (Receiving) Agents
	9.3.2 UDP (Sending) Agent
	9.3.3 Setting Up a UDP Connection

	9.4 Chapter Summary
	9.5 Exercises

	Chapter
10 Transport Control Protocols Part 2:Transmission Control Protocol
	10.1 An Overview of TCP Agents in NS2
	10.1.1 Setting Up a TCP Connection
	10.1.2 Packet Transmission and AcknowledgmentMechanism
	10.1.3 TCP Header
	10.1.4 Defining TCP Sender and Receiver
	10.1.4.1 Step 3: Implement the Constructor

	10.2 TCP Receiver
	10.2.1 Class Acker

	10.2.2 Class TcpSink

	10.3 TCP Sender
	10.4 TCP Packet Transmission Functions
	10.4.1 Function sendmsg(nbytes)

	10.4.2 Function send_much(force,reason,maxburst)

	10.4.3 Function output(seqno,reason)

	10.4.4 Function send_one(
)

	10.5 ACK Processing Functions
	10.5.1 Function recv(p,h)

	10.5.2 Function recv_newack_helper(pkt)

	10.5.3 Function newack(pkt)

	10.5.4 Function dupack_action(
)

	10.6 Timer-Related Functions
	10.6.1 RTT Sample Collection
	10.6.2 RTT Estimation
	10.6.3 Overview of State Variables
	10.6.4 Retransmission Timer
	10.6.5 Function Overview
	10.6.6 Function rtt_update(tao)

	10.6.7 Function rtt_timeout(
)
	10.6.8 Function rtt_backoff(
)
	10.6.9 Function set_rtx_timer(
) and Function reset_rtx_timer(mild,backoff)
	10.6.10 Function newtimer(pkt)

	10.6.11 Function timeout(tno)

	10.7 Window Adjustment Functions
	10.7.1 Function opencwnd(
)
	10.7.2 Function slowdown(how)

	10.8 Chapter Summary
	10.9 Exercises

	Chapter
11 Application: User Demand Indicator
	11.1 Relationship Between an Application and a Transport Layer Agent
	11.2 Applications
	11.2.1 Functions of Classes Application and Agent

	11.2.2 Public Functions of Class Application

	11.2.3 Related Public Functions of Class Agent

	11.2.4 OTcl Commands of Class Application

	11.3 Traffic Generators
	11.3.1 An Overview of Class TrafficGenerator

	11.3.2 Main Mechanism of a Traffic Generator
	11.3.3 Built-in Traffic Generators in NS2
	11.3.3.1 Constant Bit Rate (CBR) Traffic
	11.3.3.2 Exponential On/Off Traffic
	11.3.3.3 Pareto On/Off Traffic
	11.3.3.4 Traffic Trace

	11.3.4 Class CBR_Traffic: An Example TrafficGenerator

	11.4 Simulated Applications
	11.4.1 File Transfer Protocol
	11.4.2 Telnet

	11.5 Chapter Summary
	11.6 Exercises

	Chapter
12 Wireless Mobile Ad Hoc Networks
	12.1 An Overview of Wireless Networking
	12.1.1 Mobile Node
	12.1.2 Architecture of Mobile Node
	12.1.2.1 Regular Node Part
	12.1.2.2 Mobile Extension Part

	12.1.3 General Packet Flow in a Wireless Network Implementation
	12.1.4 Mobile Node Configuration Process
	12.1.4.1 Step 1: Mobile Node configuration
	12.1.4.2 Step 2: Mobile Node Construction

	12.2 Network Layer: Routing Agents and Routing Protocols
	12.2.1 Preliminaries for the AODV Routing Protocol
	12.2.1.1 Terminology
	12.2.1.2 Packet Types

	12.2.2 The Principles of AODV
	12.2.2.1 Route Discovery: Identifying a Route to the Destination
	12.2.2.2 Route and Neighbor Maintenance

	12.2.3 An Overview of AODV Implementation in NS2
	12.2.3.1 File and Class Structure
	12.2.3.2 Route Entries and Packet Header

	12.2.4 AODV Routing Agent Construction Process
	12.2.5 General Packet Flow Mechanismin a Wireless Network
	12.2.6 Packet Reception and Processing Function of AODV
	12.2.7 AODV Time-Driven Actions

	12.3 Data Link Layer: Link Layer Models, Address Resolution Protocols, and Interface Queues
	12.3.1 Link Layer Objects
	12.3.2 Address Resolution Protocol
	12.3.3 Interface Queues

	12.4 Medium Access Control Layer: IEEE 802.11
	12.4.1 Description of IEEE 802.11 MAC Protocol
	12.4.2 NS2 Classes Mac and Mac802_11

	12.4.3 Basic Functions of NS2 Classes Macand Mac802_11

	12.4.4 Timer Concepts for Implementation of IEEE 802.11
	12.4.5 Packet Reception Mechanism of IEEE 802.11
	12.4.6 Implementation of Packet Retransmission in NS2
	12.4.7 Implementation of Carrier-Sensing, Backoff, and NAV
	12.4.7.1 Basic Carrier Sensing
	12.4.7.2 Pausing and Resuming Backoff Timer
	12.4.7.3 Network Allocation Vector

	12.5 Physical Layer: Physical Network Interfaces and Channel
	12.5.1 Physical Network Interface
	12.5.2 Wireless Channels
	12.5.3 Sender Operations at the Physical Layer
	12.5.4 Receiver Operations at the Physical Layer

	12.6 An Introduction to Node Mobility
	12.6.1 Basic Mobility Configuration
	12.6.2 General Operation Director
	12.6.3 Random Mobility
	12.6.4 Mobility and Traffic Generators: Standalone Helper Utility
	12.6.4.1 Mobility Generation Utility ``setdest''

	12.6.4.2 Traffic Generation Utility ``cbrgen.tcl''

	12.6.4.3 Working with Scenario Files

	12.7 Chapter Summary
	12.8 Exercises

	Chapter
13 Developing New Modules for NS2
	13.1 Automatic Repeat reQuest
	13.1.1 The Design
	13.1.1.1 Architecture
	13.1.1.2 Packet Forwarding Mechanism
	13.1.1.3 Callback Mechanism

	13.1.2 C++ Implementation
	13.1.2.1 Class ARQTxs

	13.1.2.2 Class ARQHandler

	13.1.2.3 Classes ARQRx, ARQAcker, and ARQNacker

	13.1.2.4 Callback Mechanism
	13.1.2.5 Packet Forwarding Mechanism
	13.1.2.6 Processing ACK and NACK Messages
	13.1.2.7 Actions and Status of ARQ Transmitters

	13.1.3 OTcl Implementation
	13.1.3.1 Instproc SimpleLink::link-arq{limit}

	13.1.3.2 Instproc Simulator::link-
arq{limit from to}

	13.1.4 ARQ Under a Delayed (Error-Free) Feedback Channel
	13.1.4.1 Function recv(p,h) of ARQ Receivers

	13.1.4.2 Binding Variable delay_

	13.1.4.3 Configuration in the OTcl Domain

	13.2 Packet Scheduling for Multi-Flow Data Transmission
	13.2.1 The Design
	13.2.1.1 Architecture of a SimpleLink with a Packet Scheduler

	13.2.1.2 Packet Forwarding and Callback Mechanism

	13.2.2 C++ Implementation
	13.2.2.1 Class FlowClassifier

	13.2.2.2 Class PktScheduler

	13.2.2.3 Class RRScheduler

	13.2.3 OTcl Implementation
	13.2.3.1 Instproc insert-sched {num_queues} of class SimpleLink

	13.2.3.2 Instproc insert-sched-to-SL{from to num_queues} of class Simulator

	13.3 Chapter Summary
	13.4 Exercises

	Chapter
14 Postsimulation Processing: Debugging, Tracing, and Result Compilation
	14.1 Debugging: A Process to Remove Programming Errors
	14.1.1 Types of Programming Errors
	14.1.1.1 Compilation Errors (C++ Only)
	14.1.1.2 Runtime Errors

	14.1.2 Debugging Guidelines

	14.2 Variable Tracing
	14.2.1 Activation Process for Variable Tracing
	14.2.2 Traceable Variable
	14.2.3 Components and Architecture for Variable Tracing
	14.2.3.1 TclObjects
	14.2.3.2 Traceable Variables: OTcl Linkage
	14.2.3.3 Traceable Variables: Tracing Capability
	14.2.3.4 Tracers
	14.2.3.5 Trace Channels
	14.2.3.6 Trace Files and Trace Format

	14.2.4 Tracing in Action: An Example of Class TcpAgent

	14.2.5 Setting Up Variable Tracing
	14.2.5.1 Specifying Traceable Variables
	14.2.5.2 Attaching a Trace File to a Tracer

	14.3 Packet Tracing
	14.3.1 OTcl Configuration Interfaces
	14.3.2 C++ Main Packet Tracing Class Trace
	14.3.2.1 Main C++ Variable of Class Trace

	14.3.2.2 Main C++ Functions of Class Trace

	14.3.2.3 Main OTcl Commands of a Packet Tracing Object

	14.3.3 C++ Helper Class BaseTrace
	14.3.4 Various Types of Packet Tracing Objects
	14.3.5 Format of Trace Strings for Packet Tracing
	14.3.5.1 Normal Packet Trace Format
	14.3.5.2 Wireless Packet Trace Format
	14.3.5.3 New Wireless Trace Format

	14.4 Compilation of Simulation Results
	14.5 Chapter Summary
	14.6 Exercises

	Chapter
15 Related Helper Classes
	15.1 Timers
	15.1.1 Implementation Concept of Timer in NS2
	15.1.2 OTcl Implementation
	15.1.3 C++ Class Implementation
	15.1.3.1 Timer Life Cycle
	15.1.3.2 Brief Overview of Class TimerHandler

	15.1.3.3 Internal Waiting Mechanism
	15.1.3.4 Expiration Actions
	15.1.3.5 Interface Functions to Start, Restart, and Cancel a Timer
	15.1.3.6 Cross-Referencing a Timer with Another Object

	15.1.4 Guidelines for Implementing Timers in NS2

	15.2 Implementation of Random Numbers in NS2
	15.2.1 Random Number Generation
	15.2.2 Seeding a Random Number Generator
	15.2.3 OTcl and C++ Implementation
	15.2.3.1 OTcl Commands and Instprocs
	15.2.3.2 C++ Functions

	15.2.4 Randomness in Simulation Scenarios
	15.2.4.1 Deterministic Setting
	15.2.4.2 Single-Stream Random Setting
	15.2.4.3 Multiple-Stream Random Setting

	15.2.5 Random Variables
	15.2.5.1 Random Number Generator
	15.2.5.2 OTcl Commands
	15.2.5.3 Exponential Random Variable

	15.2.6 Guidelines for Random Number Generation in NS2

	15.3 Built-in Error Models
	15.3.1 OTcl Implementation: Error Model Configuration
	15.3.1.1 Parameter Configuration
	15.3.1.2 Network Configuration

	15.3.2 C++ Implementation: Error Model Simulation
	15.3.2.1 Variables
	15.3.2.2 Functions
	15.3.2.3 Main Mechanism
	15.3.2.4 Simulating Transmission Errors

	15.3.3 Guidelines for Implementing a New Error Model in NS2

	15.4 Bit Operations in NS2
	15.4.1 Bit Masking
	15.4.1.1 Subnet Masking
	15.4.1.2 Modulo Masking

	15.4.2 Bit Shifting and Decimal Multiplication

	15.5 Chapter Summary
	15.6 Exercises

	A Programming Essentials
	A.1 Tcl Programming
	A.1.1 Program Invocation
	A.1.2 Syntax
	A.1.3 Variables and Basic Operations
	A.1.4 Logical and Mathematical Operations
	A.1.5 Control Structure
	A.1.5.1 Repetition Structure
	A.1.5.2 Jumping Structure

	A.1.6 Modularization
	A.1.6.1 Storing a Program Portion into a File and File Sourcing
	A.1.6.2 Storing a Program Portion into a Procedure
	A.1.6.3 Global and Local Variables

	A.1.7 Advanced Input/Output: Files and Channels
	A.1.7.1 Tcl Channels

	A.1.8 Data Types
	A.1.8.1 String
	A.1.8.2 List
	A.1.8.3 Associative Array

	A.2 Objected-Oriented Tcl Programming
	A.2.1 OTcl Language Structure
	A.2.2 Classes and Inheritance
	A.2.3 Objects and Object Construction Process
	A.2.3.1 Object Construction Methods
	A.2.3.2 Object Construction Process

	A.2.4 Member Variables and Functions
	A.2.4.1 Instance Variables
	A.2.4.2 Instance Procedures
	A.2.4.3 Non-Inheritable Members

	A.2.5 A List of Useful Instance Procedures

	A.3 AWK Programming
	A.3.1 Program Invocation
	A.3.2 An AWK Script
	A.3.3 AWK Programming Structure
	A.3.4 Pattern Matching
	A.3.5 Basic Actions
	A.3.5.1 Arithmetic Operation
	A.3.5.2 Variables
	A.3.5.3 Outputs

	A.3.6 Redirection and Output to Files
	A.3.7 Control Structure

	A.4 Exercises

	B A Review of the Polymorphism Concept in OOP
	B.1 Fundamentals of Polymorphism
	B.2 Type Casting and Function Ambiguity
	B.3 Virtual Functions
	B.4 Abstract Classes and Pure Virtual Functions
	B.5 Class Composition: An Application of Type Casting Polymorphism
	B.6 Programming Polymorphism with No Type Casting:An Example
	B.7 A Scalability Problem Caused by Non-Type Casting Polymorphism
	B.8 The Class Composition Programming Concept

	C BSD Link List and Bit Level Functions
	C.1 BSD Link List
	C.2 Bit Level Functions

	References
	General Index
	Code Index

