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SAL

Tosca

Basic Overview

Knowledge and experiences are 

represented using

images, maps, objects, events, 

state, attributes, relationships, 

situations, episodes, frames

Chunks and productions, Visual 3D boundary and surface 

representations; auditory streams; spatial, 

object, and verbal working memories; list 

chunks; drive representations for 

reinforcement learning; orienting system; 

expectation filter; spectral timing networks

Perceptual experiences are represented features and combinations 

of features. Knowledge about the world is represented as 

transitions between experiences.

The representational 

framework of Soar plus 

diagrams – the 

diagrammatic part can 

also be combined with 

any symbolic general 

architecture, such as ACT-

R

Single percepts, complex 

percepts, and mission 

percepts. Single and 

complex behaviors.

chunks and productions chunks, rules, and NNs CogPrime is a multi-representational system.  The core 

representation consists of a hypergraphs with uncertain 

logical relationships and associative relations operating 

together.  Procedures are stored as functional programs; 

episodes are stored in part as “movies” in a simulation 

engine; and there are other specialized methods too.

Beliefs-Desires-Intentions (BDI) 

architecture with events, 

plans/intentions (procedural), 

beliefsets (declarative) and 

activation levels

Production Rules, Working 

memory entries

 Descriptives  are  shared knowledge resources  computed 

on demand and refreshed only when necessary  Advisors 

are domain-dependent decision rationales  for actions. 

Measurements are  synopses of problem solving 

experiences.  

SNePS, simultaneously a logic-based, 

assertional frame-based, and propositional 

graph based representation

schemas, mental states Sparse distributed representations. 

Memory and representations are 

distributed across a hierarchy of nodes. 

Within each node representations are large 

sparse binary vectors.

patterns of neural firing rates and patterns of synaptic strengths. Sensory events 

drive patterns of neural activation, and such activation-based representations may 

drive further processing and the production of actions.  Knowledge that is retained 

for long periods is encoded in patterns of synaptic connections, with synaptic 

strengths determining the activation patterns that arise when knowledge or 

previous experiences are to be employed.

Perceptual knowledge - nodes and links in a 

Slipnet-like net with sensory data of various 

types attached to nodes;                          

Episodic knowledge - boolean vectors 

(Sparce Distributed Memory;            

Procedural knowledge - schemes a la 

Schema Mechanism

beliefs, tasks, and concepts Facts, Rules, frames (learned/ 

declared),  symbolic representation 

of raw sensory inputs, expectation 

generation and matching

rules, operators Relational constraints, 

constraint graphs, first-order 

literals, taxonomies, weight 

matrixes.

A large set of heuristically defined similarity 

circumstances, each of which is a group of 

information conditions that are similar and have 

tended to occur at the same time in past 

experience. One similarity circumstance does not 

correlate unambiguously with any one cognitive 

category, but each similarity circumstance is 

associated with a range of recommendation 

weights in favour of different behaviours (such 

Tasks, methods, assertions, traces Procedural knowledge: Rules. 

Semantic knowledge: relational 

graph structure, Episodic memory: 

episodes of relational graph 

structures

Distributed modules with traditional Frames 4CAPS

AIS

Apex

Atlantis

CogNet

Copycat

DUAL

Emotion Machine

Main components Behavior Generation, World 

Modeling, Value Judgment, 

Sensory Processing, Knowledge 

Database.  These are organized in a 

hierarchical real-time control 

system (RCS) architecture

Chunk-based declarative 

memory; buffers; procedural 

knowledge encoded as 

productions

Many model brain regions, notably laminar 

cortical and thalamic circuits

BECCA is a solution to the general reinforcement learning problem. 

It consists of two parts, an unsupervised feature creator and a 

model-based incremental learner. Both are incremental and on-line, 

designed for a physically embodied agent operating in an 

unstructured environment.

DRS, for diagram 

representation; perceptual 

and action routines to get 

information from and 

create/modify diagrams.

Physical layer global 

workspace, Mission-

specific layer global 

workspace, core layer 

contextualization, 

attention, sensory 

prediction, status 

assessment, goal 

management.

Attention, sensory memory, short-term 

memory, long-term memory

procedural knowledge 

and declarative 

knowledge (each in both 

implicit and explicit 

forms --- rules and NNs)

The primary knowledge store is the AtomSpace, a neural-

symbolic “weighted labeled hypergraph” with multiple 

cognitive processes acting on it (in a manner carefully 

designed to manifest cross-process “cognitive 

synergy”), and other specialized knowledge stores 

indexed by it.  The cognitive processes are numerous but 

include: an uncertain inference engine (PLN, 

Probabilistic Logic Networks), a probabilistic 

evolutionary program learning engine (MOSES, 

developed initially by  Moshe Looks), an attention 

allocation algorithm (ECAN, Economic Attention 

Networks, which is somewhat neural net like), concept 

formation and blending heuristics, etc.   Work is under 

way to incorporate a variant of Itamar Arel’s DeSTIN 

system as a perception and action layer.  Motivation and 

emotion are handled via a variant of Joscha Bach’s 

MicroPsi framework called CogPsi.

Beliefsets for long term memory, 

plans, intentions, events, goals

Cognitive processor (including 

production rule interpreter and 

working memory), long term 

memory, production memory, 

detailed perceptual-motor 

interfaces (auditory processor, 

visual processor, ocular motor 

processor, vocal motor 

processor, manual motor 

processor, tactile processor)

Advisors are organized into three tiers. Tier-1 Advisors are 

fast and correct, recommend individual actions, and are 

consulted in a pre-specified order. Tier-2 Advisors trigger 

in the presence of a recognized situation, recommend 

(possible partially ordered) sets of actions, and are 

consulted in a pre-specified order. Tier-3 Advisors are 

heuristics, recommend individual actions, and are 

consulted together. Tier-3 Advisors' opinions express 

preference strengths that are combines with weights 

during voting to select an action. A FORR-based system 

learns those weights from traces of its problem-solving 

behavior.

1) Knowledge Layer containing Semantic 

Memory, Episodic Memory, Quantified & 

conditional beliefs, Plans for non-primitive 

acts, Plans to achieve goals, Beliefs about 

preconditions & effects of acts, Policies 

(Conditions for performing acts), Self-

knowledge, Meta-knowledge; 2) Perceptuo-

Motor Layer containing implementations 

of primitive actions, perceptual structures 

that ground KL symbols, deictic and 

modality registers; 3) Sensori-Actuator 

Layer containing sensor and effector 

controllers.

memory systems: working, 

semantic, episodic, procedural, 

iconic (I/O); plus: cognitive map, 

reward system, the engine

HTM is a biologically constrained model of 

neocortex and thalamus. HTM models  

cortex related to sensory perception,  

learning to infer and predict from high 

dimensional sensory data. The model 

starts with a hierarchy of memory nodes. 

Each node learns to pool spatial pattern 

using temporal contiguity (uising variable 

order sequences if appropriate) as the 

teacher. HTMs are inherently modality 

independent. Biologically the model maps 

to cortical regions, layers of cells, columns 

of cell across the layers, inhibitory cells, 

and non-linear dendrite properties. All 

representations are large sparse 

distributions of cell activities.

At the level of gross functional anatomy, most Leabra models employ a tripartite 

view of brain organization.  The brain is coarsely divided into prefrontal cortex, the 

hippocampus and associated medial-temporal areas, and the rest of cortex -- 

"posterior" areas.  Prefrontal cortex provides mechanisms for the flexible retention 

and manipulation of activation-based representations, playing an important role in 

working memory and cognitive control.  The hippocampus supports the rapid 

weight-based learning of sparse conjunctive representations, providing central 

mechanisms for episodic memory.  The posterior cortex mostly utilizes slow 

statistical learning to shape more automatized cognitive processes, including 

sensory-motor coordination, semantic memory, and the bulk of language 

processing. At a finer level of detail, other "components" regularly appear in Leabra-

based models.  Activation-based processing depends on attractor dynamics 

utilizing bidirectional excitation between brain regions. Fast pooled lateral 

inhibition plays a critical role in shaping neural representations.  Learning arises 

from an associational "Hebbian" component, a biologically plausible error-driven 

learning component, and a reinforcement learning mechanism dependent on the 

brain's dopamine system.

Cognitive cycle (action-perception cycle) 

acting as a cognitive atom. Higher level 

processes implemented as behavior streams. 

Cognitive cycle includes sensory memory, 

perceptual associative memory, workspace, 

transient episodic memory, declarative 

memory, global workspace, procedural 

memory, action selection, sensory motor 

memory

an inference engine and an 

integrated memory and

control mechanism

Learning, Reasoning, Imagining, 

Attention Focus, Time awareness, 

Expectation generation and 

matching

procedural knowledge 

encoded as reactive rules;

episodic and spatial memory 

encoded within a set of graph-

based structures

Modules using data structres 

and algorithms specialized 

for specific concepts.  A 

focus of attention for 

exchaning information 

among these modules.  A 

focus manager for guiding 

the flow of attention and 

thus inference. Specialized 

modules for representing and 

making inferences about 

specific concepts.

Condition definition and detection (cortex); 

Selection of similarity circumstances to be 

changed in each experience (hippocampus); 

Selection of sensory and other information to be 

used for current similarity circumstance 

detection (thalamus); Assignment and 

comparison of recommendation weights to 

determine current behaviour (basal ganglia); 

Reward management to change recommendation 

weights (nucleus accumbens etc.); Management 

of relative priority of different types of behaviour 

(amygdala and hypothalamus); Recording and 

implementation of frequently required behaviour 

sequences (cerebellum)

Task-Method-Knowledge (TMK) models 

provide functional models of what agents 

know and how they operate.  They 

describe components of a reasoning 

process in terms of intended effects, 

incidental effects, and decomposition into 

lower-level components.  Tasks include the 

requirements and intended effects of 

some computation.  Methods implement a 

task and include a state-transition machine 

in which transitions are accomplished by 

subtasks.

Working memory encoded as a 

graph structure; Knowledge 

represented as rules organized as 

operators; semantic memory; 

episodic memory; menal imagery; 

reinforcement learning

Distributed heterogeneous module-based network, interacting 

via blackboards, realtime performance
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Lisp, Java Java The OpenCogPrime system implements CogPrime within 

the open-source OpenCog AI framework, see 

http://opencog.org.   The implementation is mostly C++ 

for Linux, some components in Java; also a Scheme shell 

is used for interacting with the system.

overlay to JACK® Disciple was initially implemented in Lisp and is 

currently implemented in Java

Original version: Common Lisp; 

EPIC-X: C++

Common Lisp, Java Common Lisp Matlab, Python NuPIC development environment available 

for PC and Mac. It is available under a free 

research license and a paid commercial 

license.

"Emergent" open source software written largely in C++ (runs on many

platforms)

Extensible framework in Java. Open source, in Java and Prolog In Progress (C++, Java, Perl, 

Prolog)

Java, Python; features ACT-R 

binding and Emergent 

binding

Java Smalltalk Common Lisp, using Loom as the 

underlying knowledge-engine; Java version 

in development

C with interfaces to almost any 

language; Java

CommonLisp, C, C++, 8 networked computers, sensing 

hardware

Funding program, project and 

environment in which the architecture 

was applied

(added by Jim Albus)

Please see the long list:

http://members.cox.net/bica2009/

cogarch/4DRCS.pdf

Sandia National Labs, internal R&D funding Office of Naval Research National Science Foundation DARPA IPTO BICA, virtual 

indoor/outdoor environments

Numenta licesnses its software to various 

commercial partners.

NSF Science of Design program; Self 

Adaptive Agents project; Turn-based 

strategy games

Support for Common Components 

Working memory? yes Not explicitly defined Yes. Recurrent shunting on-center off-

surround network that obeys LTM Invariance 

Principle and Inhibition of Return rehearsal 

law

Yes. Current percepts are folded together with a decayed version of 

recent percepts. This creates a short history of salient percepts that 

functions as working memory.

Diagrammatic working 

memory added

yes Yes, although we call it short-term memory. 

Auditory short-term memory and visuo-

spatial short-term memory are implemented.

separate structure yes The active beliefs and intentions Yes Yes yes: includes mental states of 

the Self

Many Leabra working memory models have been published, mostly focusing on the 

role of the prefrontal cortex in working memory.

Explicitly included as a workspace with 

significant internal structure including a 

current situational model with both real and 

virtual windows, ans a conscious contents 

queue, 

the active part of the memory Yes declarative Each specialist implement its 

own.

Yes. Frequency modulation placed on neuron 

spike outputs, with different modulation phase 

for different objects in working memory.

No commitment to a specific theory of 

working memory

Relational graph structure Functional Sketchboard, Content Blackboard, Motor Feedback 

Blackboard, Frames

Semantic memory? yes Encoded as chuncks Yes, limited: Associations between chunks Yes.  Semantic information for a feature is obtained from the 

history of the agent's experience.  

no (to be implemented) Yes. Implemented by the network of chunks 

in long-term memory.

yes. in both implicit and 

explicit forms 

(chunks/rules and NNs)

yes encocoded as (weighted) beliefs 

in beliefsets, uses ACT-R's 

declarative memory equations

Not explicitly In many descriptives Yes, in SNePS yes: includes schemas semantic meaning can be encoded in 

sparse distributed representations

Many Leabra models of the learning and use of semantic knowledge, abstracted 

from the statistical regularities over many experiences, have been published.  These 

include some language models.

Implemented automatically as part of 

declarative memory via sparse distributed 

memory

the whole memory is semantic frames none Each specialist implement its 

own.

Yes. Similarity circumstances (= cortical column 

receptive fields) that are often detected at the 

same time acquire ability to indirectly activate 

each other.

Uses Powerloom as underlying knowledge 

engine; OWL based ontological 

representation

Relational graph structures Frames

Episodic memory? yes Not explicitly defined Yes, limited: Builds on hippocampal spatial 

and temporal representations

Yes. Individual transitions from experience to experience are an 

episode.

no (to be implemented) No, although “episodic” links are used in 

some simulations.

yes. in both implicit and 

explicit forms (chunks 

and NNs)

yes Not explicetly defined, but would 

be encocoded as beliefs in 

beliefsets.

No Yes, in task history and summary measurements Yes, temporally-related beliefs in SNePS yes: includes frozen mental state 

assemblies

Many Leabra models of episodic memory have been published, mostly focusing on 

the role of the hippocampus in episodic memory.

Both declarative memory and transient 

episodic memory encoded via sparse 

distributed memory

the part of memory that contains 

temporal information

Yes (Implicit) declarative or a spreading 

activation network

Each specialist implement its 

own.

Yes. Similarity circumstances (= cortical column 

receptive fields) that change at the same time 

acquire ability to indirectly activate each other. 

An episodic memory is indirect activation of a 

group of columns that all changed at the same 

time at some point in the past. Because the 

hippocampal  system manages the selection of 

cortical columns that will change in response to 

each sensory experience, information used for 

this management is applicable to construction of 

episodic memories 

Yes: Defined as traces through the 

procedural memory, below

Encoded as graph structures 

(snapshots of working memory)

Functional Sketchboard, Content Blackboard, Motor Feedback 

Blackboard

Procedural memory? yes Explicitly defined Yes. Multiple explicitly defined neural 

systems for learning, planning ,and control 

of action

Yes. Common sequences of transitions are reinforced and are more 

likely to be executed in the future.

Extends Soar's procedural 

memory to diagrammatic 

components

yes. Some processors 

generate single or 

complex behaviors.

Yes. Implemented by productions. yes. in both implicit and 

explicit forms 

(chunks/rules and NNs)

yes Plans and intentions with 

activation levels

Yes: production rules Yes, Advisors can be weighted by problem progress, and 

repeated sequences of actions can be learned and stored

Yes, in PML implemented in Lisp, could be 

compiled from KL 

yes: includes primitives A fair number of Leabra models of automatized sequential action have been 

produced, with a smaller number specifically addressing issues of motor control.  

Most of these models explore the shaping of distributed patterns of synaptic 

strengths in posterior brain areas in order to produce appropriate action sequences 

in novel situations.  Some work on motor skill automaticity has been done.  A few 

models, integrating prefrontal and posterior areas, have focused on the application 

of explicitly provided rules.

Schemas a la Drescher the part of memory that is directly 

related to

executable operations

Yes (Implicit) rules Each specialist implement its 

own.

Yes. Recommendation weights associated in the 

basal ganglia with cortical column receptive field 

detections instantiate procedural memory

Yes: Defined as tasks, which are functional 

elements, and methods, which are 

behavioral elements

Rules Frames, Action Modules, (limited implementation)

cognitive map? yes Yes. Networks that learn entorhinal  grid cell 

and hippocampal place field representations 

on line

No explicit. The set of all transitions form a world model. This 

serves as an implicit cognitive map.

Cognitive map emerges yes. Mission-specific 

processors build 2D 

maps.

No. yes yes Leabra contains the mechanisms necessary to self-organize topographic 

representations.  These have been used to model map-like encodings in the visual 

system.  At this time, it is not clear that these mechanisms have been successfully 

applied to spatial representation schemes in the hippocampus.

as part of the memory graph based and Bayesian There is a spatial secialist that 

has this functionality.

No. Requirement to conserve resources by using 

any one similarity circumstance (= receptive field) 

to support multiple behaviours precludes the 

existence of unambigous cognitive maps

No commitment to a specific theory of 

cognitive maps

Limited body-centric spatial layout of selected objects

reward system? Yes, Value Judgment processes 

compute cost, benefit, risk

Yes. Model how amygdala, hypothalamus, 

and basal ganglia interact with sensory and 

prefrontal cortex to learn to direct attention 

and actions towards valued goals. Used to 

help explain data about classical and 

instrumental conditioning, mental disorders 

(autism, schizophrenia), and decision making 

under risk.

Yes. Reward is specified in the definition of the task. It can be an 

arbitrary function of observed and unobserved states.

yes. Status assessment 

mechanism in core layer.

yes. in the form of a 

motivational subsystem 

and a meta-cognitive 

subsystem (MCS 

determines rewards 

based on the MS)

Yes, Value Judgment processes compute cost, benefit, 

risk

Uses ACT-R memory equations, 

so memories and plans get 

strengthened.

No Yes; Advisor weights are acquired during self-supervised 

learning.

yes Leabra embraces a few alternative models of the reward-based learning systems 

dependent on the mesolimbic dopamine systems, including a neural 

implementation of temporal difference (TD) learning, and, more recently, the PVLV 

algorithm.  Models have been published involving these mechanisms, as well as 

interactions between dopamine, the amygdala, and both lateral and orbital areas of 

prefrontal cortex.

Feeling & emotion nodes in perceptual 

associative memory

experience-based and context-

sensitive evaluation

Yes. Some receptive field detections are 

associated with recommendations to increase or 

decrease recently used behavioural 

recommendation weights

Functional descriptions of tasks allow 

agents to determine success or failure of 

those tasks by observing the state of the 

world.  Success or failure can then be used 

to reinforce decisions made during 

execution.

appraisal-based reward as well as 

user-defined internal/external 

reward

No

Iconic memory (including Interface and 

Imagery)?

Yes, image and map 

representations

Propositional (Based on 

chunks)

Emerges from role of top-down attentive 

interactions in laminar models of how the 

visual cortex sees

No explicit. An implicit iconic memory emerges from the transision 

history between vision-based features. 

no (to be implemented) Yes. Intended to emerge implicitly via combination of 

sensory, declarative and simulative memory.  Not 

implemented/tested yet.

not particularly, would be 

application and IO system 

specific.

Part of visual perceptual 

processor

Yes, in some descriptives yes (imagery was not 

implemented)

In Leabra, iconic memory can result from activation-based attractor dynamics or 

from small, sometimes transient, changes in synaptic strength, including 

mechanisms of synaptic depression. Imagery naturally arises from patterns of 

bidirectional excitation, allowing for top-down influences on sensory areas.  Little 

work has been done, however, in evaluating Leabra models of these phenomena 

against biological data.

Defined using various processed pixel 

matrices

Not directly implemented. 

Extension possible.

not sure There is a spatial secialist that 

has some of this 

functionality.

Yes. Maintained on the basis of indirect 

activation of cortical columns recently active at 

the same time

Spatial relationships are encoded using 

the underlying knowledge engine.

Explicitly defined No

Perceptual memory (if understood 

separately from iconic and working 

memory)?

Yes, pixels are segmented and 

grouped into entities and events

Yes. Model development of laminar visual 

cortex and explain how both fast perceptual 

learning with attention and awareness, and 

slow perceptual learning without attention or 

awareness, can occur.

Yes. All different sensory modalities and combinations of 

modalities are treated the same within BECCA.

Yes. Diagrammatic 

elements of perceptual 

memnory

Yes, but only as 

preprocessing buffers in 

CERA sensor services.

Yes. Yes,but currently only for vision.  Further modalities will 

be implemented later.

gets input from the world as 

events.  these events are 

processed by plans.

Yes yes: input-output buffer (in 

psychology, very short-term 

perceptual memory and iconic 

memory are synonyms)

Different aspects of perceptual memory can be supported by activation-based 

learning, small changes in synaptic strengths, frontally-mediated working memory 

processes, and rapid sparse coding in the hippocampus.

Semantic net with activation passing. Nodes 

may have sensory data of various sorts 

attached.

There is a spatial secialist that 

has some  of this 

functionality.

Yes. Based on indirect activation of cortical 

columns on the basis of recent simultaneous 

activity

Perceptual representations at multiple levels (complexity) and 

timescales (see “visual input” and “auditory input” below). 

Attention and consciousness Yes,  can focus attention on 

regions of interest.  Is aware of self 

in relation to the environment and 

other agents.

Yes. Clarifies how boundary, surface, and 

prototype attention differ and work together 

to coordinate object and scene learning. 

Adaptive Resonance Theory predicts a link 

between processes of Consciousness, 

Learning, Expectation, Attention, Resonance, 

and Synchrony (CLEARS) and that All 

Conscious States Are Resonant States.

Yes. The most salient feature at each time step is attended. Uses Soar's attention 

framework

Yes, attention is 

implemented as a bias 

signal induced from the 

core layer to the lower 

levels global workspaces. 

Other aspects of 

consciousness are also 

considered. No explicit 

representation of the self 

implemented so far.

Attention plays an important role in the 

architecture, as it for example determines the 

next eye fixation and what will be learnt.

Yes,  can focus attention on regions and topics of 

interest.  Is aware of self in relation to the environment 

and other agents.

Represented by transient events, 

goal structure, and 

intentions/beliefs whose 

activation level is above the 

threshold

Emergent Phenomenon of 

working memory

Yes, some Advisors attend to specific problem features Distribution of attention is 

described by a special attribute 

in instances of schemas. 

Consciousness can be identified 

with the content of the mental 

state "I-Now".

We have modeled covert attentional 

mechanisms within HTMs although this is 

not in currently released product.

In Leabra, attention largely follows a "biased competition" approach, with top-down 

activity modulating a process that involves lateral inhibition.  Lateral inhibition is a 

core mechanism in Leabra, as is the bidirectional excitation needed for top-down 

modulation.  Models of spatial attention have been published, including models 

that use both covert shifts in attention and eye movements in order to improve 

object recognition and localization.  Published models of the role of prefrontal 

cortex in cognitive control generally involve an attention-like mechanism that allows 

frontally maintained rules to modulate posterior processing.  Virtually no work has 

been done on "consciousness" in the Leabra framework, though there is some work 

currently being done on porting the Mathis and Mozer account of visual awareness 

into Leabra.

Implemented a la Global workspace theory 

with global broadcasts recruiting possible 

actions in reponse to the current contents 

and, also, modulating the various forms of 

learning.

Atttntion via expectation 

generation and matching.

Attention. Yes. Cortical columns have receptive fields 

defined by groups of similar conditions that 

often occurred at the same time in past sensory 

experiences, and are activated if the receptive 

field occurs in current sensory inputs. Attention 

is selection of a subset of currently detected 

columns to be allowed to communicate their 

detections to other cortical areas. The selection is 

on the basis of recommendation strengths of 

active cortical columns, interpreted through the 

thalamus, and is implemented by placing a 

frequency modulation on the action potential 

sequences generated by the selected columns. 

Implicit in the fact that methods constrain 

how and when subtasks may be executed 

(via a state-machine); each method can be 

in only one state at a time, corresponding 

to the attended-to portion of a reasoning 

task (and directly linked to the attended-to 

knowledge via the tasks requirements and 

effects).

Within-utterance attention span. Situated spatial model of 

embodied self (but no semantic representation of self that 

could be reasoned over). 

Visual input? Yes, color, stereo Propositional (based on 

chunks)

Natural static and dynamic scenes, 

psychophysical displays. Used to develop 

emerging architecture of visual system from 

retina to prefrontal cortex, including how 3D 

boundaries and surface representations 

form, and how view-dependent and view-

invariant object categories are learned under 

coordinated guidance of spatial and object 

attention.

Yes Yes. Diagrams are the 

visual input.

Yes, both real cam and 

synthetic images from the 

simulator.

Visual input is currently coded as list 

structures or arrays.

Currently handled via interfacing with external vision 

processing tools.  Tighter interlinkage with a hierarchical 

NN vision system is a topic of current research.

currently depends on the 

particular model

Interaction of visual motor and 

visual perceptual processors

Possible but not implemented perceptual structures in PML symbolic HTMs are inherently modality independent 

although we have applied them to vision 

tasks. We offer a Vision Framework for 

programmers and a Vision Toolkit 

requiring no programming skills.

An advanced Leabra model of visual object recognition has been produced which 

receives photographic images as input.

possible but not implemented Yes. Both raw video and symbolic 

representations of raw visual 

inputs.

both symbolic and 

subsymbolic (tailored for the 

purposes

ov virtual worlds)

Currently implemented by emulation of action 

potential outputs of populations of simulated 

sensory neurons

Not implemented, but would be handled 

by the underlying knowledge engine

Propositional or relational Yes. Temporally and spatially accurate vector model of upper 

human body, including hands, fingers, one eye. Via body-

tracking suit, gloves and eyetracker.

Auditory input? No, not yet Propositional (based on 

chunks)

Natural sound streams. Used to develop 

emerging architecture of visual system for 

auditory streaming and speaker-invariant 

speech recognition

Yes No no (to be implemented) Auditory input is currently coded as text 

input (segmented either as words, phonemes, 

or syllables).

Currently the only auditory input we handle is speech, via 

an external speech-to-text engine.  The architecture 

supports it in principle.

Auditory and speech objects, 

spatialized auditory information

Yes.  FORRSooth is an extended version that conducts  

human-computer dialogues in real time

Has been done using off-the-shelf speech 

recognition

textual commands We have worked with customers applying 

HTMs to auditory tasks.

While a few exploratory Leabra models have taken low-level acoustic features as 

input, this modality has not yet been extensively explored.

possible but not implemented No. none Currently implemented by emulation of action 

potential outputs of populations of simulated 

sensory neurons

Not implemented, but would be handled 

by the underlying knowledge engine

Support for text-based 

communication

Yes. Speech recognition (BBN Hark), custom real-time prosody 

tracker with H* and L* detection.

Special modalities? Yes, LADAR, GPS, odometry, 

inertial

Yes. SAR, LADAR, multispectral IR, night 

vision, etc.

BECCA is modality agnostic. It can handle inputs originating from 

any sensory modality.

SONAR, Laser Range 

Finder.

Reads text from the Internet ;-) Accepts data from external databases agents have used speech and navigation HTMs have been applied to vision, 

audition, network sensors, power systems, 

and other tasks.

All senses are special, are they not? no built-in modalities, but allow 

plug-in sensors

and actuators

Possible to extend. No Multimodal integration and realtime multimodal communicative 

act interpretation

Support for Common Learning 

Algorithms

Reinforcemenent learning Yes.  Learns parameters for 

actuator backlash, braking, 

steering, and acceleration.

Yes, for productions (linear 

discount version)

Yes: CogEM and TELOS models of how 

amygdala and basal ganglia interact with 

orbitofrontal cortex etc

BECCA is an RL algorithm and represents a novel approach to RL. Extends Soar's chunking 

for diagrammatic 

components

no (could be implemented 

in specific processors)

No. yes Yes.  Strengthening/weakening of 

plans

No Yes yes (a version of it) Leabra embraces a few alternative models of the reward-based learning systems 

dependent on the mesolimbic dopamine systems, including a neural 

implementation of temporal difference (TD) learning, and, more recently, the PVLV 

algorithm.  Models have been published involving these mechanisms, as well as 

interactions between dopamine, the amygdala, and both lateral and orbital areas of 

prefrontal cortex.

Yes, for perception, episodic and procedural 

memories via base-level activation

Not decided. Yes. Increases in recommendation weights 

associated in the basal ganglia with cortical 

column receptive field detections, on the basis of 

rewards.

Yes.  Learns criteria for selecting 

alternative methods for accomplising 

tasks, and also alternative transitions 

within a methods state-transition machine.

Yes, for operators (SARSA/Q-

learning) 

Yes, in a recent implementation (RadioShowHost)

Bayesian Update Not implemented, but could be. Yes, for memory retrieval No, sort of: Includes some Bayes effects as 

emergent properties

No no (could be implemented 

in specific processors)

No. Yes Retrieval of beliefs and access to 

current intentions

No Yes no HTM hierarchies can be understood in a 

belief propagation/Bayesian framework.

While Leabra does not include a mechanism for updating knowledge in a Bayes-

optimal fashion based on singular experiences, it's error-driven learning mechanism 

does approximate maximum a posteriori outputs given sufficient iterated learning.

No Yes. No Not implemented, but could be. No No

Hebbian Learning Not implemented, but could be No Yes, sort of: Hebbian learning law is 

insufficient. Both Hebbian and anti-Hebbian 

properties are needed.

Not formally, although the principle of associating co-occurring 

signals is used extensively.

no (could be implemented 

in specific processors)

No. yes Yes No Yes, with respect to groupings of Tier-3 Advisors. yes Yes An associational learning rule, similar to traditional Hebbian learning, is one of the 

core learning mechanisms in Leabra.

No No. the episodic memory features 

hebbian learning

Yes, but with an overlay management that 

determines whether Hebbian learning will occur 

at any point in time

Not implemented, but could be No No

Gradient Descent Methods (e.g., 

Backpropagation)

Not implemented, but could be No Yes, but not Backpropagation No. BECCA does not use artificial neural networks. no (could be implemented 

in specific processors)

No. yes We don't use this sort of algorithm explicitly, no No No no A biologically plausible error-correction learning mechanism, similar in performance 

to the generalized delta rule but dependent upon bidirectional excitation to 

communicate error information, is one of the core learning mechanisms in Leabra.

No No Not implemented, but could be No No

Learning of new representations Yes.  Learns maps and trajectories 

in new environments

Production compilation 

(forms new productions)

Yes. Multiple kinds of self-organization Yes no (to be implemented) Yes. Chunks and templates (schemata) are 

automatically and autonomously created as a 

function of the interaction of the input and 

the previous state of knowledge.

new chunks, new rules, 

new NN representations

Yes, although this has been tested only in simple cases. No Yes, can learn new Advisors yes Yes All "active" representations in Leabra are, at their core, patterns of neural firing 

rates.  These vectors of activity may be interpreted -- encoded and decoded -- in 

different ways, however.  By analogy, all digital computer representations are strings 

of bits, but they may be interpreted as structures and pointers and the like.  The way 

in which vectors of activity at "hidden" layers of neural units are interpreted is 

almost always a matter of learning in Leabra models.  In this way, internal 

representations are always learned from experience.

New representations (instrutionalist lerning)  

for perception, episodic and procedural 

memories

Capable of representing newly 

learned knowledge.

Yes. A new representation is a new subset of 

receptive field detections, with some slight 

changes to some receptive fields

Yes.  Learns refinements of methods for 

existing tasks and can respond to a 

specification of some new task by 

adapting the methods for some similar 

task.

Chunking (forms new rules); also 

mechanisms to create new 

episodes, new semantic memories

No

Common General Paradigms 

Modeled

Main general paradigms Visual and auditory information processing Goal-directed behavior Global Workspace Theory. 

Multimodal sensory 

binding. 

Learning (e.g. implicit learning, verbal 

learning); acquisition of first language 

(syntax, vocabulary); expertise; memory; some 

problem solving; concept formation

Control of virtual-world agents.  Natural language 

processing.  We are now starting to work with humanoid 

robots but that's early-stage.

BDI Disciple agents have been developed for a wide 

variety of domains, including manufacturing [74], 

education [75], course of action critiquing [76], 

center of gravity determination [77,78], and 

intelligence analysis [79]. The most recent Disciple 

agents incorporate a significant amount of generic 

knowledge from the Science of Evidence, allowing 

them to teach and help their users in discovering 

and evaluating evidence and hypotheses, through 

the development of Wigmorean probabilistic 

inference networks that link evidence to hypotheses 

in argumentation structures that establish the 

relevance, believability and inferential force of 

evidence [80]. Disciple agents are used in courses 

at various institutions, including US Army War 

College, Joint Forces Staff College, Air War College, 

and George Mason University [numbers refer to the 

above citations].

Human performance, multi-

tasking, PRP Procedure, air traffic 

control

Constraint solving; game playing; robot navigation; 

spoken dialogue

reasoning, belief change voluntary perception, cognition 

and action

Learning, learning, learning. Take biological constraints seriously. Build more 

controlled processes on a foundation of more automatic processes.

Global Workspace Theory reasoning with insufficient 

knowledge and resources

Expectation generation and 

matching via learing and reasoning 

on stored knowledge and sensory 

inputs.

3D virtual worlds Reasoning All cognitive processes are implemented through 

sequences of receptive field activations, 

including both direct detections and indirect 

activations. At each point in the sequence the 

behaviour with the predominant 

recommendation weight across the currently 

activated receptive field population is performed. 

This behaviour may be to focus attention on a 

particular subset of current sensory inputs or to 

implement a particular type of indirect activation 

(prolong current activity, or indirectly activate on 

the basis of recent simultaneous activity, past 

frequent simultaneous activity, or past 

simultaneous receptive field change). 

Recommendation weights are acquired through 

rewards that result in effective sequences for 

cognitive processing. Frequently used sequences 

are recorded in the cerebellum for rapid and 

accurate implementation.

Reflection.  Adaptation in response to new 

functional requirements.

Integrated behavior-based and classical AI; blackboards; 

distributed implementation

other general paradigms Perception, abstraction Verbal working memory, visual 

working memory

reasoning without a goal self-regulated learning (at the 

stage of design)

Tripartite brain organization. Modle finding Planning, Reinforcement learning Modular architecture ("schema-style") allows easy expansion of 

common and custom features and principles. Solves to some 

extent the scaling problem. 

Problem Solving Uses rules and/or search methods 

for solving problems

Yes Yes, depending on what is meant Yes Yes, problem solving is 

the main application.

yes, implicit. Yes. At moment, CHREST solves problems 

mostly by pattern recognition.

yes Yes Yes No Yes yes In the traditional AI meaning of "problem solving", involving the generation of a 

sequential plan to meet a novel goal, little work has been done in Leabra.  Some 

Leabra models of sequential action can generalize when performing in a novel 

situation, but none of these models have addressed the traditional AI planning 

problem.

Yes Yes A simple example is fitting together two objects. 

First step is activating receptive fields often 

active in the past shortly after fields directly 

activated by one object were active. Because 

objects have often been seen in the past in 

several different orientations, this indirect 

activation is effectively a "mental rotation". 

Receptive fields combining information from the 

indirect activation derived from one object and 

the direct activation from the other object 

recommend movements to fit the objects 

together. A bias is placed upon acceptance of 

such behaviours by taking on the task. 

Yes Yes No

Decision Making Makes decision based on Value 

Judgment calculations

Yes  Yes Yes yes Yes. yes Yes Yes No Yes yes Much work has been done on Leabra modeling of human decision making in cases 

of varying reward and probabilistic effects of actions, focusing on the roles of the 

dopamine system, the norepinepherine system, the amygdala, and orbito-frontal 

cortex.

Yes Uses Inference (both statistical 

and logical).

There can be extensive indirect activation steps, 

with (slight) changes to receptive fields at each 

step. Eventually, one behaviour has a 

predominant recommendation strength in the 

basal ganglia, and this behaviour is the decision.

Yes, specifically in selecting methods to 

perform a task and selecting transitions 

within a method

Yes Yes, using hierarchical decision modules as well as traditional 

planning methods

Analogy Not implemented Yes in rule discovery applications Yes not implemented No. Yes No Yes, via pattern matching yes Some preliminary work has been done on using dense distributed representations 

in Leabra to perform analogical mapping.

No Somewhat Yes, using the functional specification 

(requirements and effects) of tasks.

Limited No

Language Processing Not implemented Yes  Yes not implemented Only acquisition of language. Comprehension and generation fully implemented.  

Dialogue is something we're actively working on.

Limited Yes Yes Many Leabra language models have been produced, focusing on both word level 

and sentence level effects.

Beginning stage Yes. Yes Yes Not implemented Yes Yes.

Working Memory Tasks ? Yes Yes No. yes Unclear exactly what this means.  The system does many 

tasks involving working memory.

Yes Visual and Verbal WM Tasks Unclear exactly what this means Leabra models of the prefrontal cortex have explored a variety of working memory 

phenomena.

Yes Yes Yes Yes.

perceptual illusions No. No yes: modeled perceived flipping 

of the Necker cube

No Yes No.

implicit memory tasks Yes. yes No In principle Yes. Depend on indirect receptive field 

activations on the basis of recent simultaneous 

activitymetacognitive tasks No. yes No Yes yes: modeled perceived flipping 

of the Necker cube

NO Yes No.

social psychology tasks No. yes No No

personality psychology tasks No. yes No Personality and emotion can be modeled through 

Advisors

yes: modeled perceived flipping 

of the Necker cube

No No.

motivational dynamics No. yes No No

Common Specific Paradigms Modeled

Stroop ? Yes (multiple models)  Yes no No. We aren't doing modeling of human cognition and so 

we haven't tried the system on standard “cognitive 

modeling test problems.  So no.

no Yes. Not yet No ? No.

Task Switching Yes Yes (multiple models) Yes Yes not yet No. yes See above Yes yes Yes. Not yet Yes (necessary feature for nexting) Yes Not implemented ? Yes.

Tower of Hanoi/London Yes Yes No No. yes See above Yes no I think there might have been some preliminary work on Tower of London, but I'm 

not sure.

Not yet Yes Yes No.

PRP ? Yes No. See above yes Not that I know of. Not yet No ?

Dual Task Yes Yes No. yes See above yes Not that I know of. Not yet No. Yes Not implemented Yes No.

N-Back ? Yes Yes No. See above yes Yes, but there is still work to be done, here. Not yet No ?

Not yet

visual perception with comprehension Yes Yes not yet Yes. We have done this in the virtual world.  Currently 

research aims at doing it for humanoid robots also

yes yes Yes A powerful object recognition model has been constructed. Not yet Yes. Yes Not implemented Yes (see “special modalities” above)

spatial exploration, learning and 

navigation

Yes Yes Yes Yes yes To some extent. yes See above no Yes yes Preliminary work only. Not yet Yes Yes implemented but not compared to 

human behavior

No.

object/feature search in an environment Yes.  Search for targets in regions 

of interest.

Yes Yes not imeplemented Yes. See above no yes Object localization naturally arises in the object recognition model. Not yet yes. Yes.  Yes.

learning from instructions Yes.  Learn from subject matter 

experts.

No, unless you mean supervised learning Not imeplemented No. yes Yes, in the virtual world context no Yes Yes quasi-implemented Some preliminary work on instruction following, particularly in the domain of 

classification instructions, has been done in Leabra.

Not yet yes. Yes.  Yes, from new task specifications implemented but not compared to 

human behavior

No.

pretend-play No Yes: Outline of architecture for teacher-child 

imitation

no No. See above no quali-implemented Not that I know of. Not yet some No.

Meta-Theoretical Questions (added 

by Stephen Grossberg)

Uses only local computations? No.  Uses information from 

battlefield information network, 

apriori maps, etc.

Yes. All operations defined by local 

operations in neural networks.

No Yes. No.  Mix of local and global Yes yes Yes, HTM is a biological model. Yes, throughout the architecture Yes, in the existing implementation ?

Unsupervised learning? Yes.  Updates control system 

parameters in real-time

Yes. Can categorize objects and events or 

alter spatial maps and sensory-motor gains 

without supervision.

Yes yes Yes. Yes.  no Yes yes Yes, uses time as primary learning method. Perceptual, episodic and procedural, each in 

both instructionalist and selectionist modes

yes Yes.  Adapts in response to failures 

through situated action + reinforcement 

learning, or through generative planning + 

abstraction.

No.

Supervised learning? Yes.  Learns from subject matter 

experts.

Yes. Can learn from predictive mismatches 

with environmental constraints, or explicit 

teaching signals, when they are available. 

No not implemented Yes. Yes. no Yes yes Yes, networks can be supervised at top 

node.

No yes Yes, from new task specifications No.

Arbitrary mixtures of unsupervised and 

supervised learning?

Yes Yes. E.g., the ARTMAP family of models. No not implemented Yes. Yes no Yes yes No yes Yes.  Can develop a new method from a 

task specification and then later adapt that 

method based on experience.

No. 

Can it learn in real time? Yes Yes. Both ART (match learning) and Vector 

Associative Map (VAM; mismatch learning) 

models use real-time local learning laws.

Yes yes Yes. Yes no Yes yes HTMs can learn on-line, meaning learning 

while inferring. Real time depends on size 

of network and nature of problem.

Yes Sometimes. Yes No. 

Can it do fast stable learning; i.e., 

adaptive weights converge on each trial 

without forcing catastrophic forgetting?

Yes.  Uses CMAC algorithm that 

learns fast from error correction.  

When no errors, learning stops.

Yes, theorems prove that ART can categorize 

events in a single learning trial without 

experiencing catastrophic forgetting in 

dense non-stationary environments. 

Mismatch learning cannot do this, but this is 

adaptive in learning spatial and motor data 

about changing bodies.

Yes Yes. Yes no Yes in short, yes. Learning in GMU-

BICA consists in storage of 

mental states and in creation of 

new schemas, without 

forgetting. Learning "weights" 

applies to the neuromorphic 

cognitive map. In most cases, 

learning occurs in one shot.

Yes Yes No. 

Can it function autonomously? Yes.  Operates machines and drives 

vehicles autonomously.

Yes. ART models can continue to learn stably 

about non-stationary environments while 

performing in them.

Yes yes Yes. Yes.  Yes. Key motivation for selecting 

BDI

yes Yes yes. Yes Yes Yes Yes; however, no actual implementations have yet pushed the 

architecture on this issue. 

Is it general-purpose in its modality; i.e., 

is it brittle?

It is general purpose and robust in 

real world environments.

ART can classify complex non-stationary 

data streams. The FACADE 3D vision model 

clarifies how multiple types of visual data 

(e.g., edge, texture, shading, stereo) are 

processed by laminar cortical circuits.

BECCA is designed to be general purpose and robust to large and 

small changes in tasks.

yes It is general-purpose and not brittle. It is general purpose and robust in real world 

environments.

no General purpose general-purpose. Yes General purpose General purpose The architecture to some extent addresses the brittleness 

problem, but not to full autonomy. 

Can it learn from artbitrarily large 

databases; i.e., not toy problems?

Yes.  All applications are real-world 

and real-time.

Yes. Theorems about ART algorithms show 

that they can do fast learning and self-

stabilizing memory in arbitrarily large non-

stationary data bases. ART is therefore used 

in many large-scale applications 

http://techlab.bu.edu/

Planned not tested Yes. Simulations on the acquisition of 

language have used corpora larger than 350k 

utterances. Simulations with chess have used 

databases with more than 10k positions

Discrimination networks with up to 300k 

chunks have been created.

Yes.  no Yes in principle, yes. Yes ??? Yes, up to the limitations of the underlying 

knowledge engine

No. 

Can it learn about non-stationary 

databases; i.e., environmental rules 

change upredictably?

Yes.  Battlefield environments 

change unpredictably.

Yes. See above. Yes Yes. Yes.  no Untested but we believe so in principle, yes. It can be implemented for on-line learning. ??? Yes No. 

Can it pay attention to valued goals? Yes. ART derives its memory stability from 

matching bottom-up data with learned top-

down expectations that pay attention to 

expected data. ART-CogEM models use 

cognitive-emotional resonances to focus 

attention on valued goals.

Yes yes Yes, through attention mechanisms. Yes yes Yes yes. Yes Yes.  Goals are encoded as the intended 

effects of tasks.

Yes. 

Can it flexibly switch attention between 

unexpected challenges and valued 

goals?

Yes.  Makes decisions about what 

is most important based on rules 

of engagement and situational 

awareness.

Yes. Top-down attentive mismatches drive 

attention reset, shifts, and memory search. 

Cognitive-emotional and attentional shroud 

mechanisms modulate attention shifts.

Yes yes Yes. Yes.  Yes. yes Yes yes: by switching roles of mental 

states.

Yes Not implemented Yes. 

Can reinforcement learning and 

motivation modulate perceptual and 

cognitive decision-making?

Yes. Cognitive-emotional and perceptual-

cognitive resonances interact together for 

this purpose.

Yes yes No. Yes Yes, cognitive no Yes yes. Yes Yes Yes. 

Can it adaptively fuse information from 

multiple types of sensors and 

modalities?

ART categorization discovers multi-modal 

feature and hierarchical rule combinations 

that lead to predictive success.

Yes yes Yes. Yes, in principle, but this has not been tested except on 

vision and language and speech input...

no Yes yes: by using / creating 

appropriate schemas.

Yes In principle, but not implemented In principle, but not implemented Yes, although it depends on the particular use of the 

architectural features. 

Etc.

Statement by the contributor

Most statements included here were 

written as summaries of the BICA-2009 

CogArch panel presentations. Their 

short versions will be included in the AI 

Magazine symposium report.

Biologically-relevant cognitive architectures 

should clarify how individuals adapt 

autonomously in real time to a changing 

world filled with unexpected events; should 

explain and predict how several different 

types of learning (recognition, 

reinforcement, adaptive timing, spatial, 

motor) interact to this end; should use a 

small number of equations in a larger 

number of modules, or microassemblies, to 

form modal architectures (vision, audition, 

cognition, ...) that control the different 

modalities of intelligence; should reflect the 

global organization of the brain into parallel 

processing streams that compute 

computationally complementary properties 

within and between these modal 

architectures; and should exploit the fact 

that all parts of the neocortex, which 

supports the highest levels of intelligence in 

all modalities, are variations of a shared 

laminar circuit design and thus can 

communicate with one another in a 

computationally self-consistent way.

BECCA was designed to solve the problem of natural-world 

interaction.   The research goal is to place BECCA into a system with 

unknown inputs and outputs and have it learn to successfully 

achieve its goals in an arbitrary environment.  The current state-of-

the-art in solving this problem is the human brain.  As a result, 

BECCA's design and development is based heavily on insights 

drawn from neuroscience and experimental psychology.  The 

development strategy emphasizes physical embodiment in robots.

Chandrasekaran called 

attention to the lack of 

support in the current 

family of cognitive 

architectures for 

perceptual imagination, 

and cited his group's DRS 

system that has been 

used to help Soar and Act-

R  engage in diagrammatic 

imagination for problem 

solving.

at the panel, I pointed 

out that the list of tasks 

needs to be greatly 

expanded, to include, for 

example, implicit learning 

tasks, meta-cognitive 

tasks, social psychology 

tasks, personality 

psychology tasks, 

motivational dynamics,  

and so on, all of which 

have been simulated 

using the CLARION 

cognitive architecture.

The architecture described in this column was pioneered 

in the proprietary Novamente Cognition Engine, and is 

now being pursued in the open-source OpenCogPrime 

system, build with in the OpenCog framework...  In my 

presentation in the BICA-2009 CogArch panel, I 

discussed the AGI Roadmap Initiative (see http://agi-

roadmap.org) and also the need for a glossary of AGI 

terms to help us compare cognitive architectures.

FORR (FOr the Right Reasons) is highly modular. It 

includes a declarative memory for facts and a procedural 

memory represented as a hierarchy of decision-making 

rationales that propose and rate alternative actions. FORR 

matches perceptions and facts to heuristics, and 

processes action preferences through its hierarchical 

structure, along with its heuristics’ real-valued weights. 

Execution affects the environment or changes declarative 

memory. Learning in FORR creates new facts and new 

heuristics, adjusts the weights, and restructures the 

hierarchy based on facts and on metaheuristics for 

accuracy, utility, risk, and speed. 

Hierarchical Temporal Memory (HTM) is a 

model of neocortex and thalamus. It is 

highly constrained and guided by anatomy 

and physiology at the levels of cortical 

regions, cellular layers, cellular 

connectivity, local inhibitory neurons, and 

non-linear integration of synapses along 

dendrites. HTMs build hierarchical models 

of the spatial and temporal statistics in 

sensory data. The models can be used for 

inference and prediction. HTMs have been 

commercially applied to numerous 

commercial problems. Numenta aims to be 

a catalys t for commercial applications of 

neocortical models of compution and 

inference. It publishes its algorithms and 

code for research and commercial 

deployment.

Though NARS can be considered 

as a "cognitive architecture" in a 

broad sense, it is very different 

from the other systems. 

Theoretically, NARS is a normative 

theory and model of intelligence 

and cognition as "adaptation with 

insufficient knowledge and 

resources", rather than a direct 

simulation of human cognitive 

behaviors, capabilities, or 

functions; technically, NARS uses 

a unified reasoning mechanism on 

a unified memory for learning, 

problem-solving, etc., rather than 

integrates different techniques in 

an architecture. Therefore, 

accurately speaking it is not after 

the same goal as many other 

cognitive architectures, though 

still related to them in various 

aspects.

Nick Cassimatis argued that 

repositories should focus on 

standardizing task 

environments and problems 

within them rather than 

details about cognitive 

architectures themselves.

Theoretical arguments indicate that any system 

which must learn to perfom a large number of 

different behaviors will be constrained into this 

recommendation architecture form by a 

combination of practical requirements including 

the need to limit information handling resources, 

the need to learn without interference with past 

learning, the need to recover from component 

failures and damage, and the need to construct 

the system efficiently. 

The actual systems built in the Ymir architecture, notably 

Gandalf, the Cognitive Map for Asimo, and the SuperRadioHost 

systems, have shown the Ymir framework to be quite flexible 

and extensible. Ymir was not initially built to solve general-

purpose intelligence, and it is become clear that none of the 

Constructionist methodologies (i.e. most efforts to date relying 

on “first order” manually-constructed software) will be able to 

handle the multitude of topics related to general intelligence, 

such as global attention, global learning, flexible task learning 

and integration, etc. For this we are working on new 

methodologies relying on Constructivist approaches, which 

emply self-organization and automatic architectural growth (see 

my keynote paper From Constructionist to Constructivist A.I. 

(2009), in AAAI Fall Symposium Series - Biologically Inspired 

Cognitive Architectures, Washington D.C., Nov. 5-7,175-183. 

AAAI Tech Report FS-09-01, AAAI press, Menlo Park, CA.). 

Disciple shell includes general modules for user-

agent interaction, ontology representation, 

problem solving, learning, and tutoring, as well as 

domain-independent knowledge (e.g., knowledge 

for evidence-based reasoning). The problem 

solving engine of a Disciple cognitive assistant (see 

the top part of Figure 6) employs a general divide-

and-conquer strategy, where complex problems are 

successively reduced to simpler problems, and the 

solutions of the simpler problems are successively 

combined into the solutions of the corresponding 

complex problems. To exhibit this type of behavior, 

the knowledge base of the agent contains a 

hierarchy of ontologies, as well as problem 

reduction rules and solution synthesis rules which 

are expressed with the concepts from the 

ontologies.

The most representative early paper on Disciple is 

[74]. Other key references include [75-78]. Most 

recent representative publications include [79,80]. 

[74] Tecuci G., Disciple: A Theory, Methodology 

and System for Learning Expert Knowledge, Thèse 

de Docteur en Science, University of Paris-South, 

1988.

[75] Tecuci G., Building Intelligent Agents: An 

Apprenticeship Multistrategy Learning Theory, 

Methodology, Tool and Case Studies, San Diego: 

Academic Press, 1998.

[76] Tecuci G., Boicu M., Bowman M., Marcu D., with 

a commentary by Burke M., An Innovative 

Application from the DARPA Knowledge Bases 

Programs: Rapid Development of a Course of 

Action Critiquer, AI Magazine, 22, 2, pp. 43-61, 

2001.

[77] Tecuci G., Boicu M., Boicu C., Marcu D., 

Stanescu B., Barbulescu M., The Disciple-RKF 

Learning and Reasoning Agent, Computational 

Intelligence, 21, 4, pp. 462-479, 2005.

[78] Tecuci G., Boicu M., and Comello J., Agent-

Assisted Center of Gravity Analysis, CD with 

Disciple-COG and Lecture Notes used in courses at 

the US Army War College and Air War College, GMU 

Press,, 2008.

[79] Tecuci G., Boicu M., Marcu D., Boicu C., 

Barbulescu M., Disciple-LTA: Learning, Tutoring 

and Analytic Assistance, Journal of Intelligence 

Community Research and Development, 2008.

[80] Tecuci G., Schum D.A., Boicu M., Marcu D., 

Hamilton B., Intelligence Analysis as Agent-

Assisted Discovery of Evidence, Hypotheses and 

Arguments. In: Phillips-Wren, G., Jain, L.C., 

Nakamatsu, K., Howlett, R.J. (eds.) Advances in 

Intelligent Decision Technologies, SIST 4, pp. 1-10. 

Springer-Verlag, Berlin Heidelberg, 2010.

The framework of Disciple supports features and 

components that are common for many cognitive 

architectures, including working memory 

(reasoning trees), semantic memory (ontologies), 

episodic memory (reasoning examples), and 

procedural memory (rules). Communication is 

based on natural language patterns learned from 

the user.

An expert interacts directly with a Disciple cognitive 

assistant, to teach it to solve problems in a way that 

is similar to how the expert would teach a less 

experienced collaborator. This process is based on 

mixed-initiative problem solving (where the expert 

solves the more creative parts of a problem and the 

agent solves the more routine ones), integrated 

learning and teaching (where the expert helps the 

agent to learn by providing examples, hints and 

explanations, and the agent helps the expert to 

teach it by asking relevant questions), and 

multistrategy learning (where the agent integrates 

complementary learning strategies, such as learning 

from examples, learning from explanations, and 

learning by analogy, to learn general concepts and 

rules).
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