ارششد هوافضا

(xy $\left.{ }^{\boldsymbol{\gamma}}-\mathrm{e}^{\frac{1}{x^{\boldsymbol{r}}}}\right) d x=x^{\boldsymbol{\gamma}} y d y$ جدام استع

$$
\begin{aligned}
& -\frac{y^{r}}{x^{\tau}}+r e^{\frac{1}{x^{\top}}}=c() \\
& \frac{y^{r}}{x^{r}}+r e^{\frac{1}{x^{r}}}=c(r \\
& -r \frac{y^{r}}{x^{r}}+r e^{\frac{1}{x^{\top}}}=c(r \\
& r \frac{y^{\top}}{x^{\tau}}+r e^{\frac{1}{x^{r}}}=c(\gamma
\end{aligned}
$$

(جواب عموعى معادلد ديغرائسبل

$$
\begin{aligned}
& y=x-\ln (c+x) \\
& y=x+\ln (c-x) \\
& y=x+\ln (c+x) \\
& y=x-\ln (c-x)
\end{aligned}
$$

$$
\begin{aligned}
& P \text { كدام است } y=e^{c x} \quad \text { er } \\
& x^{r}+y^{\top}(1-r \ln y)=c(1 \\
& x^{\top}-y^{\top}(1-r \ln y)=c(r \\
& r x^{\top}+y^{\top}(1-r \ln y)=c(r \\
& r x^{\top}-y^{\top}(1-r \ln y)=c(\uparrow
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{\lambda} e^{x}(\cos r x+\sin r x) \pi \\
& \frac{1}{\lambda} e^{x}(\cos r x-\sin r x) \pi \\
& -\frac{1}{1 F} e^{x}(\cos r x+\sin r x) \pi \\
& \frac{1}{1 q} e^{x}(\cos r x-\sin r x)
\end{aligned}
$$

 كدام است؟

$$
\begin{aligned}
y^{\prime}-y & =\circ(l \\
y^{\prime}-y & =\circ(r \\
y^{\prime \prime}-y^{\prime} & =\circ(r
\end{aligned}
$$

$$
(x+r) \ln (x+r)
$$

$$
(x+\Delta) \ln (x+r)(r
$$

$$
\ln ^{\top}(x+r) \pi
$$

$$
(x+r)^{r}(f
$$

$$
\begin{aligned}
& -1,-\frac{1}{r}(1 \\
& -1, \frac{1}{r} a \\
& 1,-\frac{1}{r}<r \\
& 1, \frac{1}{r}<r
\end{aligned}
$$

A

居 $x=r, x=0 ~(r$
نتقلة تكين منظمه, $x=0 ~(~ X=r$

Scanned by CamScanner

انرشد هوافظا

$$
\begin{aligned}
& \text { TA } \\
& \frac{1}{r} \ln \frac{s^{\top}}{s^{r}+r}(1 \\
& \frac{1}{s} \ln \frac{s^{\top}}{S^{\top}+F}(\gamma \\
& \frac{1}{r} \ln \frac{s^{r}+F}{s^{r}}(r \\
& \frac{1}{s} \ln \frac{s^{\gamma}+F}{s^{\top}}\left({ }^{\top}\right.
\end{aligned}
$$

$y^{\prime \prime}+F y=\left\{\begin{array}{lr}1 & 0 \leq t<\pi \\ 0 & t>\pi\end{array} \quad y(0)=y^{\prime}(0)=0\right.$

$$
\begin{aligned}
& \frac{1+\mathrm{e}^{-\pi s}}{\mathrm{~s}^{\top}+F}(1 \\
& \frac{1-\mathrm{e}^{-\pi s}}{s^{\top}+F}(r \\
& \frac{1+\mathrm{e}^{-\pi s}}{\mathrm{~s}^{\top}+\mathrm{fs}}(T \\
& \frac{1-e^{-\pi s}}{s^{\top}+\tau s} \pi
\end{aligned}
$$

31) $\left(x y^{2}-e^{\frac{1}{x^{3}}}\right) d x=x^{2} y d y \rightarrow \underbrace{\left(x y^{2}-e^{\frac{1}{x^{3}}}\right)}_{M} d x-\underbrace{x^{2} y}_{N} d y=0$

$$
\rightarrow d x=e^{\int-\frac{4}{x} d x}=e^{-4 \ln x}=e^{\ln x^{-4}}=x^{-4}
$$

$$
\frac{\partial M}{\partial y}=2 x^{-3} y
$$

$$
\frac{\partial N}{\partial n}=2 x^{-3} y \quad-r \cdot \mu^{\prime} d s
$$,

$$
C=\int{ }^{*} M d x+\int N d y
$$

$I=\int x^{-4} e^{x^{-3}} d x\left\{\begin{array}{l}x^{-3}=t \\ -3 x^{-4} d x=d t\end{array} \quad\right.$ J, $=-\frac{1}{3} \int e^{t} d t=-\frac{1}{3} e^{t}=-\frac{1}{3} e^{x^{-3}}$

math-teacher, bolog. ir ~
"Sñ uls"
 O! را
" "

（

$$
\begin{aligned}
& \text { 32) } e^{x} y^{\prime}=e^{x}+e^{y} \rightarrow e^{x} y^{\prime}-e^{x}=e^{y} \div e^{y} \\
& \rightarrow \frac{e^{x}}{e^{y}} y^{\prime}-\frac{e^{x}}{e^{y}}=1 \quad\left\{\begin{array}{l}
e^{-y}=t \\
-e^{-y} \cdot y^{\prime}=t^{\prime}
\end{array} \rightarrow-e^{x} \cdot t^{\prime}-e^{x} t=1\right.
\end{aligned}
$$

$\therefore-e^{x}$

$\xrightarrow{\int} e^{x} \cdot t=-x+c \xrightarrow{t=e^{-y}} \frac{e^{x}}{e^{y}}=-x+c$
＂SNubo＂
math－teacher－blog．ir

33）$y=e^{c x}$ 豙 $y^{\prime}=c e^{c x} \ldots y^{\prime}=c y$

0

$$
\begin{aligned}
& \int u d v=u v-\int v d u \\
& \frac{y^{2}}{2} \ln y-\int \frac{y^{2}}{2} \cdot \frac{1}{y} d y=\frac{y^{2}}{2} \ln y-\frac{y^{2}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{L_{n}}{L_{n}} \operatorname{Ln} y=c_{x} \rightarrow c=\frac{1}{x} \operatorname{Ln}^{\prime} y \quad \text { 酸 } y^{\prime}=\frac{y}{x} \operatorname{Ln} y
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{x^{2}}{2}=\frac{y^{2}}{2} \operatorname{Ln} y-\frac{y^{2}}{4}+C \xrightarrow{x-4} 2 x^{2}+2 y^{2} \operatorname{Ln} y-y^{2}=-4 C \\
& \text { math-teacher.blog.ir } \rightarrow 2 x^{2}-y^{2}(1-2 \operatorname{Ln} y)=c \text { (1, } 1
\end{aligned}
$$

34) $y^{\prime \prime}-4 y^{\prime}+3 y=e^{x} \operatorname{cs} 2 x$
$\xrightarrow{2}$

$$
y^{\prime \prime}-4 y^{\prime}+3 y=0
$$

$$
\xrightarrow{\xrightarrow[N]{N} t^{2}-4 t+3=\left\{\begin{array}{l}
t=1 \\
t=3
\end{array}\right.}
$$

$\left.\left.\xrightarrow{\stackrel{L}{4}\left(\frac{1}{4}\right.} \right\rvert\, y=c\left(e^{x}\right)+c_{2} e^{3 x}\right)$

$$
\text { 10-x } 5+2 \pi
$$

$$
\left\{\begin{array}{l}
y_{1}=e^{x} \\
y_{2}=e^{3 x} \rightarrow \omega(x)=\left|\begin{array}{ll}
e^{x} & e^{3 x} \\
e^{x} & 3 e^{3 x}
\end{array}\right|=3 e^{4 x}-e^{4 x}=2 e^{4 x}
\end{array}\right.
$$

$$
\frac{ر_{p, p}: c_{1}}{}=-\int \frac{y_{2} \cdot g(x)}{\omega(x)} d x \rightarrow c_{1}=-\int \frac{e^{3 x} \cdot e^{x} \cos 2 x}{2 e^{4 x}} d x=-\frac{1}{4} \sin 2 x
$$

doge:

$$
\begin{aligned}
& : C_{2}=\int \frac{y_{1} \cdot y(x)}{\omega(x)} d x \cdots c_{2}=\int \frac{e^{x} \cdot e^{x} \cos 2 x}{2 e^{4 x}} d x=\frac{1}{2} \int \frac{\int e^{-2 x} \cos 2 x d x}{I} \\
& =\frac{1}{8} e^{-2 x}(\sin 2 x-\cos 2 x) \\
& \frac{y=c_{1} e^{x}+c_{2} e^{3 x}}{\dot{j} \nu_{0}, u} y=-\frac{1}{4} \sin 2 x \cdot e^{x}+\frac{1}{8} e^{-2 x}(\sin 2 x-\cos 2 x) \cdot e^{3 x} \\
& \xrightarrow[\rightarrow]{\text { (), }} y=-\frac{1}{4} \sin 2 x \cdot e^{x}+\frac{1}{8} e^{x} \sin 2 x-\frac{1}{8} e^{x} \cos 2 x \\
& y=-\frac{1}{8} e^{x} \cdot \sin 2 x-\frac{1}{8} e^{x} \cos 2 x \\
& \text { (} \left.1 \text { ivj })^{\prime}\right) y=-\frac{1}{8} e^{x}(\sin 2 x+\cos 2 x)
\end{aligned}
$$

35) $e^{x}, \sinh x, \cosh x$
math-teacher. blog.ir

$$
\begin{gathered}
y=c_{1} e^{x}+c_{2}\left(\frac{e^{x}-e^{-x}}{2}\right)+c_{3}\left(\frac{e^{x}+e^{-x}}{2}\right) \\
y=\left(c_{1}+\frac{c_{2}}{2}+\frac{c_{3}}{2}\right) e^{x}+\left(-\frac{c_{2}}{2}+\frac{c_{3}}{2}\right) e^{-x} \\
y=A e^{x}+B e^{-x} \rightarrow t= \pm 1 \rightarrow t^{2}-1=0 \rightarrow y^{\prime \prime}-y=0 \\
\quad \text { Y گز ينه }
\end{gathered}
$$

|math-teacher.blog.ir
36) $(x+3)^{2} y^{\prime \prime}-(x+3) y^{\prime}+y=0 \quad$ 而

$$
\begin{aligned}
& \underset{x+3=1}{x-2} a^{2} y^{\prime \prime}-a y^{\prime}+y=0,0 \\
& \begin{aligned}
m^{2}-2 m+1=0 \rightarrow(m-1)^{2}=0 & \rightarrow m=1,1 \\
& \text { icke. }
\end{aligned} \\
& \rightarrow y=c_{1} u+c_{2} \cdot u \cdot \ln u
\end{aligned}
$$

$$
\begin{aligned}
& y=(x+3) \cdot \ln (x+3) \quad(1 \underset{\sim}{\omega}) \quad \text { ore } \\
& \text { math - teacher. blog.ir }
\end{aligned}
$$

37) $2 x^{2} y^{\prime \prime}+\left(3 x-2 x^{2}\right) y^{\prime}-(x+1) y=0$
((

$$
\text { sis }\left\{\begin{array}{l}
P_{0}=\lim _{x \rightarrow x}(x-x-) P(x) \\
q_{0}=\lim _{x \rightarrow x .}\left(x-x_{0}\right)^{2} q_{(x)} \rightarrow\left\{\begin{array}{l}
P_{0}=\lim _{x \rightarrow 0} x\left(\frac{3 x-2 x^{2}}{2 x^{2}}\right)=\frac{3}{2} \\
q_{0}=\lim _{x \rightarrow 0} x^{2}\left(-\frac{(x+1)}{2 x^{2}}\right)=-\frac{1}{2}
\end{array} \rightarrow p^{\text {eir }}\right.
\end{array}\right.
$$

$\left.\xrightarrow{\text { riser }} m(m-1)+P_{0} m+q_{0}=0(\nu ;)^{\prime}\right)$

38) $x(x-2)^{2} y^{\prime \prime}+3 x y^{\prime}+(x-2) y=0$
\bar{y} wov sex

39）$\frac{1-\cos 2 t}{t}$
屎：$l\left(\frac{f(t)}{t}\right)=\int_{S}^{\infty} F(s) d s$
－

$$
l(1-\cos 2 t)=l(1)-l(\cos 2 t)=\frac{1}{s}-\frac{s}{s^{2}+4}
$$

$$
l\left(\frac{1-\cos 2 t}{t}\right)=\int_{s}^{\infty}\left(\frac{1}{s}-\frac{s}{s^{2}+4}\right) d s=\left.\left(\ln s-\frac{1}{2} \ln s^{2}+4\right)\right|_{s} ^{\infty}
$$

$$
=\left.L_{n} \frac{s}{\sqrt{s^{2}+4}}\right|_{s} ^{\infty}=L_{n} T-L_{n} \frac{s}{\sqrt{s^{2}+4}}=\overline{-L_{n} \frac{s}{\sqrt{s^{2}+4}}}
$$

$$
=\operatorname{Ln} \frac{\sqrt{s^{2}+4}}{S}=\ln \sqrt{\frac{s^{2}+4}{s^{2}}}=\frac{1}{2} \ln \frac{S^{2}+4}{s^{2}}-\left({ }^{\left.(\mu \nu j)^{2}\right)}\right.
$$

40）$y^{\prime \prime}+4 y=\left\{\begin{array}{ll}1 & \text { 紋人 } \\ 0 & t \geqslant \pi\end{array} \quad y(0)=y^{\prime}(0)=0\right.$

$$
\rightarrow y^{\prime \prime}+4 y=1+(0-1) \frac{y(t)}{n}
$$

$\rightarrow y^{\prime \prime}+4 y=1-u_{\pi}^{\prime}(t) \xrightarrow{\prime l} l\left(y^{\prime \prime}\right)+4(l y)=l(1)-l\left(u_{\pi}(t)\right)$
$\rightarrow S^{2} F(s)-s f^{\prime}(\cdot)-f^{\prime}(\cdot)+4 F(s)=\frac{1}{s}-\frac{e^{-\pi s}}{s}$
$\begin{aligned} \rightarrow & F\left(s^{\prime}\right)\left(s^{2}+4\right)=\frac{1-e^{-\pi s}}{s} \rightarrow \\ & \text { math－teacher．blog．ir }\end{aligned}$
$\dot{\omega}$

