- 1) A coaxial cable transmission line filled with air and of length 3cm is short circuited at one end and terminated with a capacitor C at the other end. Determine
 - (a) The capacitor value to have lowest order resonance at 6 GHz.
 - (b) If a 10K Ω resistor (loss) is placed in parallel with capacitor, obtain Q.
- 2) For a coaxial cable operating in TEM mode write down the expressions for the E and H fields.

If the cable is of length $\lambda/2$ and short circuited at one end, obtain the new E and H fields.

Show that the time average stored energy in the E and H fields are equal.

- 3) For a rectangular waveguide cavity of dimension $a \times b \times d$ (xyz) obtain:
 - Expression for the field component by considering TE_z and TM_z
 - Expression for the field component by considering TE_y and TM_y
 - Expression for the field component by considering TE_x and TM_x

Compare the results and give a conclusion.

- 4) For a rectangular cavity with lossy walls and filled with air, obtain an expression or the Q of the TM₁₁₁ mode.
- 5) An air filled rectangular cavity has its first resonant modes at 5.2 GHz, 6.5 GHz and 7.2 GHz. Fine the dimensions of the cavity.
- 6) For a circular cavity operating in TM_{nm0} with both conductor and dielectric losses, obtain an expression for the Q of the cavity.

Note: $\int_{0}^{\pi} J_{\alpha}^{2}(kx) x dx = \frac{x^{2}}{2} \left[J_{\alpha}^{2}(kx) + \left(1 - \frac{n^{2}}{k^{2}x^{2}} \right) J_{\alpha}^{2}(kx) \right]$

7) A rectangular cavity operating in TE101 mode, has a slab material of thickness t and permeability μ_t placed at one end of the cavity along xy plane at z=0. Use perturbation theory to obtain an expression for the change in resonant frequency.