Fundamental Graph Algorithms
Part One

Announcements

Problem Set One out, due Wednesday, July 3.

* Play around with O, Q, and ® notations!
» Get your feet wet designing and analyzing algorithms.
« Explore today's material on graphs.

Can be completed using just material from the first two
lectures.

We suggest reading through the handout on how to
approach the problem sets. There's a lot of useful
information there!

Office hours schedule will be announced tomorrow.

Announcements

 We will not be writing any code in
CS1061; we'll focus more on the design
and analysis techniques.

« Each week, we will have an optional
programming section where you can
practice coding up these algorithms.

 Run by TA Andy Nguyen, who coaches
Stanford's ACM programming team.

« Meets Thursdays, 4:15PM - 5:05PM in
Gates B08.

Graphs

A Social Network

Chemical Bonds

3 o8
u!u

THE EISENHOWER INTERSTATE SYSTEM .,u-““

(simplified)
CHRIS YATES 2007

PANFLUTE FLoCHART

r

tp://www.prospectmagazine. dg uk

o-conflnt/uphds®8Q/09/163 tayl

A graph is a mathematical structure
for representing relationships.

A graph is a mathematical structure
for representing relationships.

A graph is a mathematical structure
for representing relationships.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

=
==

P
® ©

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A=
v

A graph consists of a set of nodes
connected by edges.

Some graphs are directed.

Some graphs are undirected.

CAN AN RAN

MAT

SAT
CAT ~ SAT RAT

Some graphs are undirected.

CAN- -MAN- -RAN
@
CAT- -SAT- -RAT

You can think of them as directed
graphs with edges both ways.

Formalisms

A graph is an ordered pair G = (V, E) where

 Vis a set of the vertices (nodes) of the graph.

« E is a set of the edges (arcs) of the graph.

E can be a set of ordered pairs or unordered pairs.

« If E consists of ordered pairs, G is directed
« If E consists of unordered pairs, G is undirected.

In an undirected graph, the degree of node v (denoted
deg(v)) is the number of edges incident to v.

In a directed graph, the indegree of a node v (denoted
deg (v)) is the number of edges entering v and the
outdegree of a node v (denoted (deg*(v)) is the
number of edges leaving v.

An Application: Six Degrees of Separation

A Social Network

X

A Social Network

X

A Social Network

Ei ./
=
=

A Social Network

2—2) (2

Ei ./
=
=

A Social Network

2—2) (2

3

A Social Network

3—2—2) (2
4) 3
1)—(1 4

3

A Social Network

3—2—2) (2
4) 3

3

A Social Network

3—2—2) (2
4) 3

3

A Social Network

5

5

A Social Network

—2—2 (2
W 3
5 (11 4

(1)—0)—1

3

4

A Social Network

3—2—2) (2
4) 3

3

A Social Network

A Social Network

Shortest Paths

 The length of a path P (denoted |P|) in a
graph is the number of edges it contains.

* A shortest path between u and vis a
path P where |P| = |P'| for any path P’
from u to v.

 For any nodes u and v, define d(u, v) to
be the length of the shortest path from u
to v, or « if no such path exists.

« What is d(v, v) for any v € V?

The Shortest Path Problem

 Input:

« A graph G = (V, E), which may be directed or
undirected.

e A start node s € V.
 Output:

« A table dist[v], where dist[v] = d(s, v) for any
vV eV,

An Inefficient Algorithm

P

An Inefficient Algorithm

P

An Inefficient Algorithm

P

An Inefficient Algorithm

P

An Inefficient Algorithm

P

An Inefficient Algorithm

P

An Inefficient Algorithm

P

An Inefficient Algorithm

P

An Inefficient Algorithm

e

An Inefficient Algorithm

P

An Inefficient Algorithm

P

An Inefficient Algorithm

X

An Inefficient Algorithm

&l

An Inefficient Algorithm

P

An Inefficient Algorithm

Ei N
=
(

An Inefficient Algorithm

Ei NI
=
@

An Inefficient Algorithm

Ei N
=
=
(U

An Inefficient Algorithm

Ei NI
=
=
@

An Inefficient Algorithm

Ei NI
=
=
_

An Inefficient Algorithm

Ei NI
=
=
@

An Inefficient Algorithm

Ei NI
=
=
@

An Inefficient Algorithm

Ei NI
=
=
@

An Inefficient Algorithm

Ei NI
=
=
@

An Inefficient Algorithm

Ei NI
=
=
@

An Inefficient Algorithm

Ei NI
=
=
@

An Inefficient Algorithm

Ei NI
=
=
@

An Inefficient Algorithm

Ei NI
=
=
@

An Inefficient Algorithm

Ei NI
=
=
@

An Inefficient Algorithm

29— (O

Ei NI
=
=
@

An Inefficient Algorithm

29— (O

Ei NI
=
=
@

An Inefficient Algorithm

2—2) (O

Ei NI
=
=
@

An Inefficient Algorithm

2—2) (O

Ei NI
=
=
@

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
@

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
@

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
@

An Inefficient Algorithm

2—2) (2

Ei N
=
=
@

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
@

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
@

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
@

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
@

An Inefficient Algorithm

2—2) (2

Ei N
=
=
(U

An Inefficient Algorithm

2—2) (2

Ei N
=
=
(U

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
@

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
_

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
O

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
™

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
™

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
™

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
™

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
™

An Inefficient Algorithm

2—2) (2

Ei NI
=
=
™

An Inefficient Algorithm

2—2) (2

An Inefficient Algorithm

2—2) (2

An Inefficient Algorithm

2—2) (2

An Inefficient Algorithm

2—2) (2

An Inefficient Algorithm

2—2) (2

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

An Inefficient Algorithm

2—2) (23

A Better Approach

Radiating Outward

X

Radiating Outward

X

Radiating Outward

Ei N
=
=

Radiating Outward

Ei ./
=
=

Radiating Outward

Ei ./
=
=

Radiating Outward

2—2) (2

Ei ./
=
=

Radiating Outward

2—2) (2

Ei ./
=
=

Radiating Outward

2—2) (2

Ei ./
=
=

Radiating Outward

2—2) (2

3

Radiating Outward

2—2) (2

3

Radiating Outward

2—2) (2

3

Radiating Outward

3—2—2) (2
4) 3
1)—(1 4

3

Radiating Outward

3—2—2) (2
4) 3
1)—(1 4

3

Radiating Outward

3—2—2) (2
4) 3
1)—(1 4

3

Radiating Outward

3—2—2) (2
4) 3

3

Radiating Outward

3—2—2) (2
4) 3

3

A Secondary Idea

* Proceed outward from the source node s
in “layers.”
« The first layer is all nodes of distance 0.
 The second layer is all nodes of distance 1.
« The third layer is all nodes of distance 2.
e etc.

» This gives rise to breadth-first search.

Breadth-First Search

O——0) f—

N

Breadth-First Search

A B C D E
G H 1
K L M N 0

Breadth-First Search

@ B C D E

Breadth-First Search

B C D E

Breadth-First Search

Breadth-First Search

Breadth-First Search

G o H «
P « QOO R o«

Breadth-First Search

G o H «
P « QOO R o«

Breadth-First Search

Breadth-First Search

A O C o D »

Breadth-First Search

A O @ C o D »

Breadth-First Search

F o

Breadth-First Search

F o

Breadth-First Search

C o D »

H o

K « L = M N o
Po—(Qa R«

F o

Breadth-First Search

A O B 1 0 D

F o

Breadth-First Search

A O B 1 D E «
F o @ H « I »

Breadth-First Search

A O B 1 D

F o

Breadth-First Search

A O B 1 D

F o

Breadth-First Search

D o«

F o

Breadth-First Search

A O B 1 D

9 T
TR TIT SR

F o

Breadth-First Search

A O B 1 D

3 @
TETIT SN

F o

Breadth-First Search

@ TR

060606

Breadth-First Search

@ TR

006 S

Breadth-First Search

TR THCETINT

06060

S o

Breadth-First Search

TRTITETINT

06060

Breadth-First Search

TRTITETINT

Y YYS

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

’
’
’
’
’
’
’
’
7 o
’
’
’
’
’
’
’
’
q
@ N e 0«
P o

@3 R« s
PO e e

Breadth-First Search

’
’
’
’
’
’
’
’
7 o
’
’
’
’
’
’
’
’
q
@ N e 0«
P o

@3 R« s
[Fr O E @

Breadth-First Search

4
4
4
q
4
4
4
4
7 0
4
/4
4
4
4
4
/4
4
4
@ N e 0
P o S o

@3 R
R

Breadth-First Search

4
4
4
q
4
4
4
4
)
4
/4
4
4
4
4
/4
4
4
@ N e
P o

@3 R
R

Breadth-First Search

4
4
4
q
4
4
4
4
)
4
/4
4
4
4
4
/4
4
4
@ N e
P »

@3 R
[OO e

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

|@®@@®®@

Breadth-First Search

|®®®@®®<°>

Breadth-First Search

|®®@@®@

Breadth-First Search

|®®@@®@

Breadth-First Search

|®®@@®@

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

TR ST
@@ e oew

Breadth-First Search

TR ST
[@0 ew®

Breadth-First Search

@

o 5
& oew

Breadth-First Search

0 s
& oew

Breadth-First Search

0 s
& oew

Breadth-First Search

GO -
oo ae

Breadth-First Search

GO -
v oo e

Breadth-First Search

o 5
@ 0o we

Breadth-First Search

03
0y G

o 5
@ 0o we

Breadth-First Search

03
09 G4

o 5
@ 0o we

Breadth-First Search

T TR
@0 w®es

Breadth-First Search

T TR
o e @ es

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

These edges form a

breadth-first search tree: the

path from any v to node A gives a
shortest path from v to A.

procedure breadthFirstSearch(s, G):
let g be a new queue.
for each node v in G:
dist[v] = =

dist[s] = 0
enqueue(s, q)

while g is not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

Question 1: How do we prove this always
finds the right distances?

Question 2: How efficiently does this find
the right distances?

Question 1: How do we prove this always
finds the right distances?

Breadth-First Search

A B C D E
G H 1
K L M N 0

Breadth-First Search

@ B C D E

Breadth-First Search

B C D E

Breadth-First Search

Breadth-First Search

Breadth-First Search

G o H «
P « QOO R o«

Breadth-First Search

F « G o H «
J o K o L o M » N o
P o QOO R =

All nodes in the
queue are at
distance 0 from A.

Breadth-First Search

F « G o H «
J o K o L o M » N o
P o QOO R =

All nodes at
distance 0 from A
are in the queue.

Breadth-First Search

F « G o H «
J o K o L o M » N o
P o QOO R =

All nodes at distance
< 0 from A have the
right distance set.

Breadth-First Search

F « G o H «
J o K o L o M » N o
P o QOO R =

All nodes at distance
> 0 from A have
distance set to o«

Breadth-First Search

G o H «
P « QOO R o«

Breadth-First Search

Breadth-First Search

A O C o D »

Breadth-First Search

A O @ C o D »

Breadth-First Search

F o

Breadth-First Search

C = D »

F o H o
J o K o L o M o N o
Pw— Qe R =

All nodes in the
queue are at
distance 1 from A.

Breadth-First Search

C = D »

H o

L o M N o
Pw— Qe R =

All nodes at distance
1 from A are in the
queue.

Breadth-First Search

C = D »

F o H o
J o K o L o M o N o
Pw— Qe R =

All nodes at distance
< 1 from A have the
right distance set.

Breadth-First Search

C = D »

H o

L o M N o
Pw— Qe R =

All nodes at distance
> 1 from A have
distance set to o«

Breadth-First Search

F o

Breadth-First Search

C o D »

H o

K « L = M N o
Po—(Qa R«

F o

Breadth-First Search

A O B 1 0 D

F o

Breadth-First Search

A O B 1 D E «
F o @ H « I »

Breadth-First Search

A O B 1 D

F o

Breadth-First Search

A O B 1 D

F o

Breadth-First Search

D o«

F o

Breadth-First Search

A O B 1 D

9 T
TR TIT SR

F o

Breadth-First Search

A O B 1 D

3 @
TETIT SN

F o

Breadth-First Search

@ TR

060606

Breadth-First Search

TN
e TRE
G 6 @ ne e o
All nodes in the
queue are at
distance 2 from A.
P o Q 0

Breadth-First Search

THNE

e TR

6 @) ne a-

All nodes at distance

2 from A are in the
queue.

P o Qoo

Breadth-First Search

TR

T TRE

6 @) ne ae e

All nodes at distance

< 2 from A have the
right distance set.

P o Q 0

Breadth-First Search

TR

T TEE

6 @) ne ae e

All nodes at distance
> 2 from A have
distance set to «

P o Q 0

Breadth-First Search

@ TR

006 S

Breadth-First Search

TR THCETINT

06060

S o

Breadth-First Search

TRTITETINT

06060

Breadth-First Search

TRTITETINT

Y YYS

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

’
’
’
’
’
’
’
’
7 o
’
’
’
’
’
’
’
’
q
@ N e 0«
P o

@3 R« s
PO e e

Breadth-First Search

’
’
’
’
’
’
’
’
7 o
’
’
’
’
’
’
’
’
q
@ N e 0«
P o

@3 R« s
[Fr O E @

Breadth-First Search

4
4
4
q
4
4
4
4
7 0
4
/4
4
4
4
4
/4
4
4
@ N e 0
P o S o

@3 R
R

Breadth-First Search

4
4
4
q
4
4
4
4
)
4
/4
4
4
4
4
/4
4
4
@ N e
P o

@3 R
R

Breadth-First Search

4
4
4
q
4
4
4
4
)
4
/4
4
4
4
4
/4
4
4
@ N e
P »

@3 R
[OO e

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

|@®@@®®@

Breadth-First Search

|®®®@®®<°>

Breadth-First Search

|®®@@®@

Breadth-First Search

|®®@@®@

Breadth-First Search

|®®@@®@

Breadth-First Search

Breadth-First Search

All nodes in the
queue are at
distance 3 from A.

Breadth-First Search

All nodes at distance
3 from A are in the
queue.

Breadth-First Search

All nodes at distance
< 3 from A have the
right distance set.

Breadth-First Search

All nodes at distance
> 3 from A have
distance set to «

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisfy dist[v] = n.

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s.

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:

- Any node v where d(s, v) is finite satisfies d(s, v) = k, and any
node v where d(s, v) > k satisfies d(s, v) = «. This follows from
the fact that we picked the maximum possible finite k.

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:

- Any node v where d(s, v) is finite satisfies d(s, v) = k, and any
node v where d(s, v) > k satisfies d(s, v) = «. This follows from
the fact that we picked the maximum possible finite k.

- There must be nodes at distances O, 1, 2, ..., Kk from s. A simple
inductive argument using property (1) shows that there will be
exactly k + 1 rounds, corresponding to distances O, 1, ..., k.

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:

- Any node v where d(s, v) is finite satisfies d(s, v) = k, and any
node v where d(s, v) > k satisfies d(s, v) = «. This follows from
the fact that we picked the maximum possible finite k.

- There must be nodes at distances O, 1, 2, ..., Kk from s. A simple
inductive argument using property (1) shows that there will be
exactly k + 1 rounds, corresponding to distances O, 1, ..., k.

So consider dist[v] for any node v after the algorithm terminates
(that is, after k+1 rounds).

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:

- Any node v where d(s, v) is finite satisfies d(s, v) = k, and any
node v where d(s, v) > k satisfies d(s, v) = «. This follows from
the fact that we picked the maximum possible finite k.

- There must be nodes at distances O, 1, 2, ..., Kk from s. A simple
inductive argument using property (1) shows that there will be
exactly k + 1 rounds, corresponding to distances O, 1, ..., k.

So consider dist[v] for any node v after the algorithm terminates
(that is, after k+1 rounds). If d(s, v) is finite, then d(s, v) = k < k+1,
and so by (1) we have dist[v] = d(s, v).

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:

- Any node v where d(s, v) is finite satisfies d(s, v) = k, and any
node v where d(s, v) > k satisfies d(s, v) = «. This follows from
the fact that we picked the maximum possible finite k.

- There must be nodes at distances O, 1, 2, ..., Kk from s. A simple
inductive argument using property (1) shows that there will be
exactly k + 1 rounds, corresponding to distances O, 1, ..., k.

So consider dist[v] for any node v after the algorithm terminates
(that is, after k+1 rounds). If d(s, v) is finite, then d(s, v) = k = k+1,
and so by (1) we have dist[v] = d(s, v). If d(s, v) = «, then

d(s, v) > k + 1, so by (2) we have dist[v] = .

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:

- Any node v where d(s, v) is finite satisfies d(s, v) = k, and any
node v where d(s, v) > k satisfies d(s, v) = «. This follows from
the fact that we picked the maximum possible finite k.

- There must be nodes at distances O, 1, 2, ..., Kk from s. A simple
inductive argument using property (1) shows that there will be
exactly k + 1 rounds, corresponding to distances O, 1, ..., k.

So consider dist[v] for any node v after the algorithm terminates
(that is, after k+1 rounds). If d(s, v) is finite, then d(s, v) = k = k+1,
and so by (1) we have dist[v] = d(s, v). If d(s, v) = «, then

d(s, v) > k + 1, so by (2) we have dist[v] = «. Thus d(s, v) = dist[V]
for all v € V, as required.

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:

- Any node v where d(s, v) is finite satisfies d(s, v) = k, and any
node v where d(s, v) > k satisfies d(s, v) = «. This follows from
the fact that we picked the maximum possible finite k.

- There must be nodes at distances O, 1, 2, ..., Kk from s. A simple
inductive argument using property (1) shows that there will be
exactly k + 1 rounds, corresponding to distances O, 1, ..., k.

So consider dist[v] for any node v after the algorithm terminates
(that is, after k+1 rounds). If d(s, v) is finite, then d(s, v) = k = k+1,
and so by (1) we have dist[v] = d(s, v). If d(s, v) = «, then

d(s, v) > k + 1, so by (2) we have dist[v] = «. Thus d(s, v) = dist[V]
for all v e V, as required. R

Lemma: After n rounds, the following hold:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) < n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = «

Proof: By induction n. After O rounds, dist[s] = 0, dist[v] = « for any v # s, and the
queue holds only s. Since s is the only node at distance 0, (1) - (3) hold.

For the inductive step, assume for some n that (1) - (3) hold after n rounds. We will
prove (1) - (3) hold after n + 1 rounds. We need to show the following:

(a) For any node v, d(s, v) = n + 1 iff v is in the queue.
(b) All nodes v where d(s, v) = n + 1 have dist[v] = d(s, v).
(c) All nodes v where d(s, v) > n + 1 have dist[v] = «

To prove (a), note that at the end of round n, all nodes of distance n will have been
dequeued, so we need to show all nodes v where d(s, v) = n + 1 are enqueued and
nothing else is. Note that if a node u is enqueued in round n + 1, then at the start of
round n + 1 dist[u] = « (so by (2) and (3), its distance is at least n + 1) and u must
have been adjacent to a node v in the queue (by (1), d(s, v) = n). Thus there is a
path of length n + 1 to u (take the path of length n to v, then follow the edge to u),
and there is no shorter path, so this is the shortest path to u. Thus, d(s, u) =n + 1.
Also note that if a node u satisfies d(s, u) = n + 1, then by (3) at the start of round
n + 1 it must have dist[u] = «. Also, it must be adjacent to some node at distance
n, which by (1) must be in the queue at the start of the round. Thus at the end of
round n + 1, u will be enqueued and dist[u] setton + 1.

By our above argument, we know that (a) must hold. Since we didn't change any
dist values for nodes at distance n or less, and we set dist values for all enqueued
nodes to n + 1, (b) holds. Finally, since we only changed labels for nodes at
distance n + 1, (c) holds as well. This completes the induction. B

Question 1: How do we prove this always
finds the right distances?

Question 2: How efficiently does this find
the right distances?

Question 2: How efficiently does this find
the right distances?

Graph Terminology

« When analyzing algorithms on a graph,
there are (usually) two parameters we
care about:

 The number of nodes, denoted n. (n = |V|)
 The number of edges, denoted m. (m = |E|)

 Note that m = O(n?). (Why?)

A graph is called dense ift m = ©(n?). A
graph is called sparse if it is not dense.

procedure breadthFirstSearch(s, G):
let g be a new queue.
for each node v in G:
dist[v] = =

dist[s] = 0
enqueue(s, q)

while g is not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

procedure breadthFirstSearch(s, G):
let g be a new queue.
for each node v in G:
dist[v] =

dist[s] = 0
enqueue(s, q)

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

procedure breadthFirstSearch(s, G):

0o(1) let g be a new queue.
for each node v in G:
dist[v] =
dist[s] = 0

enqueue(s, q)

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

procedure breadthFirstSearch(s, G):

o(1) let g be a new queue.
for each node v in G:
dist[v] = =
dist[s] = 0

enqueue(s, q)

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

procedure breadthFirstSearch(s, G):

o(1) let g be a new queue.
O(m) for each node v in G:
" dist[v] = o
dist[s] = 0

enqueue(s, q)

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

procedure breadthFirstSearch(s, G):

o(1) let g be a new queue.
O(n) for each node v in G:
n dist[v] = =
dist[s] = 0

enqueue(s, q)

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

procedure breadthFirstSearch(s, G):

o(1) let g be a new queue.

O(n) for each node v in G:
n dist[v] = =

o) dist[s] = 0

enqueue(s, q)

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

procedure breadthFirstSearch(s, G):

o(1) let g be a new queue.

O(n) for each node v in G:
" dist[v] = =

o(1) dist[s] = 0

enqueue(s, q)

while g is not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

procedure breadthFirstSearch(s, G):

o(1) let g be a new queue.

O(n) for each node v in G:
" dist[v] = =

o(1) dist[s] = 0

enqueue(s, q)

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

o(1)
O(n)

o(1)

for each neighbor u of v:
1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

How are our graphs represented?

Adjacency Matrices

 An adjacency matrix is a representation of a graph as an
n X n matrix M of Os and 1s, where

« M =1if (u,v) €E.

. M, =0 orwise
v
e

©O 0O 0 06
R OO R
©O 00 R
O Rr O R

Adjacency Matrices

 An adjacency matrix is a representation of a graph as an
n X n matrix M of Os and 1s, where

« M =1if (u,v) €E.

e M =0 otherwise.

1 -2 0111
’v © 00 0

© 00 1
@ @ © 100

« Memory usage:

Adjacency Matrices

 An adjacency matrix is a representation of a graph as an
n X n matrix M of Os and 1s, where

« M =1if (u,v) €E.

e M =0 otherwise.

1 -2 0111
’v © 00 0

© 00 1
@ @ © 100

« Memory usage: @(n?).

Adjacency Matrices

 An adjacency matrix is a representation of a graph as an
n X n matrix M of Os and 1s, where

« M =1if (u,v) €E.

e M =0 otherwise.

1 -2 0111
’v © 00 0

© 00 1
@ @ © 100

« Memory usage: @(n?).

« Time to check if an edge exists:

Adjacency Matrices

 An adjacency matrix is a representation of a graph as an
n X n matrix M of Os and 1s, where

« M =1if (u,v) €E.

e M =0 otherwise.

1 -2 o 1 1 1
’v © 00 0

© 00 1
& 3 © 100

« Memory usage: @(n?).
« Time to check if an edge exists: O(1)

Adjacency Matrices

An adjacency matrix is a representation of a graph as an
n X n matrix M of Os and 1s, where

« M =1if (u,v) €E.

e M =0 otherwise.

1 -2 0111
’v © 00 0

© 00 1
@ @ © 100

Memory usage: @(n?).
Time to check if an edge exists: O(1)

Time to find all outgoing edges for a node:

Adjacency Matrices

An adjacency matrix is a representation of a graph as an
n X n matrix M of Os and 1s, where

« M =1if (u,v) €E.

e M =0 otherwise.

1 -2 o 1 1 1
’v © 00 0

© 00 1
& 3 © 100

Memory usage: @(n?).
Time to check if an edge exists: O(1)

Time to find all outgoing edges for a node: ®(n)

o(1)
O(n)

o(1)

for each neighbor u of v:
1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

o(1)
O(n)

o(1)

O(n) -

~for each neighbor u of v:
1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

o(1)
O(n)

o(1)

while g is not empty:

O(n) -

let v = dequeue(q)

~for each neighbor u of v:
1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

o(1)
O(n)

o(1)

O(n?)

while g is not empty:

O(n) -

let v = dequeue(q)

~for each neighbor u of v:
1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

procedure breadthFirstSearch(s, G):

o(1) let g be a new queue.

O(m) for each node v in G:
n dist[v] = =

o(1) dist[s] = 0

enqueue(s, q)

+0(n?) while g is not empty:

' let v = dequeue(q)

for each neighbor u of v:
i1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

O(n)

procedure breadthFirstSearch(s, G):

o(1) let g be a new queue.

O(m) for each node v in G:
n dist[v] = =

o(1) dist[s] = 0

enqueue(s, q)

+0(n?) while g is not empty:

"0 let v = dequeue(q)

for each neighbor u of v:
i1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

O(n)

o(1)
O(n)

o(1)

+0(n?)

T 0wn?)

procedure breadthFirstSearch(s, G):
let g be a new queue.
for each node v in G:
dist[v] = =

dist[s] = 0

enqueue(s’ q) \/\”’ll{I isn'T The

runtime @(n3)?

while g is not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

O(n)

Linear Time on Graphs

« With an adjacency matrix, BFS runs in time O(n?). Is
that efficient?

* In a graph with n nodes and m edges, we say that an
algorithm runs in linear time iff the algorithm runs in
time O(m + n).

« This is linear in the number of “pieces” of the graph, which is
the number of nodes plus the number of edges.

 On a dense graph, this implementation of BFS runs in
linear time:

On?) =0n*+n)=0(m+n

* On sparser graphs (say, m = O(n)), though, this is not
linear time:

O(n?) # O(n) = O(m + n)

The Issue

* Our algorithm is slow because this step
always takes ®(n) time:

for each neighbor u of v:

 Can we refine our data structure for
storing the graph so that we can easily
find all edges incident to a node?

1 -2 o111
’v © 00 0

© 0 0 1
&3 © 100

Adjacency Lists

 An adjacency list is a representation of a graph as an array
A of n lists. The list A[u] holds all nodes v where (u, v) is an
edge.

1 -2 3 4

>

Adjacency Lists

 An adjacency list is a representation of a graph as an array
A of n lists. The list A[u] holds all nodes v where (u, v) is an
edge.

1 -2 3 4
22|
a 9 3 »4

« Memory usage:

Adjacency Lists

 An adjacency list is a representation of a graph as an array
A of n lists. The list A[u] holds all nodes v where (u, v) is an
edge.

1 -2 3 4
22|
a 9 3 »4

« Memory usage: @(n + m).

Adjacency Lists

 An adjacency list is a representation of a graph as an array
A of n lists. The list A[u] holds all nodes v where (u, v) is an
edge.

1 -2 3 4
22|
a 9 3 "4

4 » 2

« Memory usage: @(n + m).

 Time to check if edge (u, v) exists:

Adjacency Lists

 An adjacency list is a representation of a graph as an array
A of n lists. The list A[u] holds all nodes v where (u, v) is an
edge.

1 -2 3 4
22|
a 9 3 »4

4 » 2

« Memory usage: @(n + m).
 Time to check if edge (u, v) exists: O(deg*(u))

Adjacency Lists

 An adjacency list is a representation of a graph as an array
A of n lists. The list A[u] holds all nodes v where (u, v) is an
edge.

1 -2 3 4
22|
a 9 3 »4

4 » 2

« Memory usage: @(n + m).
 Time to check if edge (u, v) exists: O(deg*(u))

« Time to find all outgoing edges for a node u:

Adjacency Lists

 An adjacency list is a representation of a graph as an array
A of n lists. The list A[u] holds all nodes v where (u, v) is an
edge.

1 -2 3 4
22 |
@ ® =

4 » 2

« Memory usage: @(n + m).
 Time to check if edge (u, v) exists: O(deg*(u))
« Time to find all outgoing edges for a node u: @(deg*(u))

o(1)
O(n)

o(1)

for each neighbor u of v:
1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

o(1)
O(n)

o(1)

O(n) -

~for each neighbor u of v:
1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

o(1)
O(n)

o(1)

while g is not empty:

O(n) -

let v = dequeue(q)

~for each neighbor u of v:
1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

o(1)
O(n)

o(1)

O(n?)

while g is not empty:

O(n) -

let v = dequeue(q)

~for each neighbor u of v:
1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

procedure breadthFirstSearch(s, G):

o(1) let g be a new queue.

O(m) for each node v in G:
n dist[v] = =

o(1) dist[s] = 0

enqueue(s, q)

+0(n?) while g is not empty:

' let v = dequeue(q)

for each neighbor u of v:
i1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

O(n)

procedure breadthFirstSearch(s, G):

o(1) let g be a new queue.

O(m) for each node v in G:
n dist[v] = =

o(1) dist[s] = 0

enqueue(s, q)

+0(n?) while g is not empty:

"0 let v = dequeue(q)

for each neighbor u of v:
i1f dist[u] = o:

dist[u] = dist[v] + 1

enqueue(u, q)

O(n)

A Better Analysis

o(1)
O(n)

o(1)

while g is not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

o(1)
O(n)

o(1)

while g is not empty:
let v = dequeue(q)
for each neighbor u of v:
1f dist[u] = :
dist[u] = dist[v] + 1
enqueue(u, q)

o(1)
O(n)

o(1)

O(n)

while g is not empty:
let v = dequeue(q)
for each neighbor u of v:
1f dist[u] = :
dist[u] = dist[v] + 1
enqueue(u, q)

o(1)
O(n)

o(1)

O(n)

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

o(1)
O(n)

o(1)

O(n)

12
%
s

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

o(1)
O(n)

o(1)

O(n)

12
v
6’9

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

o(1)
O(n)

o(1)

O(n)

12
v
6’9

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

o(1)
O(n)

o(1)

O(n)

12
v
6’9

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

o(1)
O(n)

o(1)

O(n)

12
v
6’9

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

o(1)
O(n)

o(1)

O(n)

12
v
0’9

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

o(1)
O(n)

o(1)

O(n)

12
v
9’9

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

o(1)
O(n)

o(1)

O(n)

O(m + n)

12
v
9’9

while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)

procedure breadthFirstSearch(s, G):

o(1) let g be a new queue.

O(m) for each node v in G:
n dist[v] = =

o(1) dist[s] = 0

enqueue(s, q)

O(n) while g is not empty:

let v = dequeue(q)

for each neighbor u of v:
1f dist[u] = «:

dist[u] = dist[v] + 1

enqueue(u, q)

O(m + n)

A Better Analysis

« Using adjacency lists, BFS runs in time O(m + n).
e This is linear time!

 Key Idea: Do a more precise accounting of the
work done by an algorithm.

e Determine how much work is done across all
iterations to determine total work.

 Don't just find worst-case runtime and multiply by
number of iterations.

* Going forward, we will use adjacency lists rather
than adjacency matrices as our graph
representation unless stated otherwise.

Next Time

» Dijkstra's Algorithm
 Depth-First Search
» Directed Acyclic Graphs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339

