Fundamental Graph Algorithms
Part One



Announcements

Problem Set One out, due Wednesday, July 3.

* Play around with O, Q, and ® notations!
» Get your feet wet designing and analyzing algorithms.
« Explore today's material on graphs.

Can be completed using just material from the first two
lectures.

We suggest reading through the handout on how to
approach the problem sets. There's a lot of useful
information there!

Office hours schedule will be announced tomorrow.



Announcements

 We will not be writing any code in
CS1061; we'll focus more on the design
and analysis techniques.

« Each week, we will have an optional
programming section where you can
practice coding up these algorithms.

 Run by TA Andy Nguyen, who coaches
Stanford's ACM programming team.

« Meets Thursdays, 4:15PM - 5:05PM in
Gates B08.
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A graph is a mathematical structure
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Some graphs are undirected.
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You can think of them as directed
graphs with edges both ways.




Formalisms

A graph is an ordered pair G = (V, E) where

 Vis a set of the vertices (nodes) of the graph.

« E is a set of the edges (arcs) of the graph.

E can be a set of ordered pairs or unordered pairs.

« If E consists of ordered pairs, G is directed
« If E consists of unordered pairs, G is undirected.

In an undirected graph, the degree of node v (denoted
deg(v)) is the number of edges incident to v.

In a directed graph, the indegree of a node v (denoted
deg (v)) is the number of edges entering v and the
outdegree of a node v (denoted (deg*(v)) is the
number of edges leaving v.



An Application: Six Degrees of Separation
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Shortest Paths

 The length of a path P (denoted |P|) in a
graph is the number of edges it contains.

* A shortest path between u and vis a
path P where |P| = |P'| for any path P’
from u to v.

 For any nodes u and v, define d(u, v) to
be the length of the shortest path from u
to v, or « if no such path exists.

« What is d(v, v) for any v € V?



The Shortest Path Problem

 Input:

« A graph G = (V, E), which may be directed or
undirected.

e A start node s € V.
 Output:

« A table dist[v], where dist[v] = d(s, v) for any
vV eV,
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A Secondary Idea

* Proceed outward from the source node s
in “layers.”
« The first layer is all nodes of distance 0.
 The second layer is all nodes of distance 1.
« The third layer is all nodes of distance 2.
e etc.

» This gives rise to breadth-first search.
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Breadth-First Search

These edges form a

breadth-first search tree: the

path from any v to node A gives a
shortest path from v to A.




procedure breadthFirstSearch(s, G):
let g be a new queue.
for each node v in G:
dist[v] = =

dist[s] = 0
enqueue(s, q)

while g is not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)




Question 1: How do we prove this always
finds the right distances?

Question 2: How efficiently does this find
the right distances?



Question 1: How do we prove this always
finds the right distances?



Breadth-First Search

A B C D E
G H 1
K L M N 0



Breadth-First Search

@ B C D E



Breadth-First Search

B C D E



Breadth-First Search



Breadth-First Search



Breadth-First Search

G o H «
P « QOO R o«



Breadth-First Search

F « G o H «
J o K o L o M » N o
P o QOO R =

All nodes in the
queue are at
distance 0 from A.




Breadth-First Search

F « G o H «
J o K o L o M » N o
P o QOO R =

All nodes at
distance 0 from A
are in the queue.




Breadth-First Search

F « G o H «
J o K o L o M » N o
P o QOO R =

All nodes at distance
< 0 from A have the
right distance set.




Breadth-First Search

F « G o H «
J o K o L o M » N o
P o QOO R =

All nodes at distance
> 0 from A have
distance set to o«




Breadth-First Search

G o H «
P « QOO R o«



Breadth-First Search



Breadth-First Search

A O C o D »




Breadth-First Search

A O @ C o D »




Breadth-First Search

F o



Breadth-First Search

C = D »

F o H o
J o K o L o M o N o
Pw— Qe R =

All nodes in the
queue are at
distance 1 from A.




Breadth-First Search

C = D »

H o

L o M N o
Pw— Qe R =

All nodes at distance
1 from A are in the
queue.




Breadth-First Search

C = D »

F o H o
J o K o L o M o N o
Pw— Qe R =

All nodes at distance
< 1 from A have the
right distance set.




Breadth-First Search

C = D »

H o

L o M N o
Pw— Qe R =

All nodes at distance
> 1 from A have
distance set to o«




Breadth-First Search

F o



Breadth-First Search

C o D »

H o

K « L = M N o
Po—(Qa R«

F o



Breadth-First Search

A O B 1 0 D

F o



Breadth-First Search

A O B 1 D E «
F o @ H « I »




Breadth-First Search

A O B 1 D

F o



Breadth-First Search

A O B 1 D

F o



Breadth-First Search

D o«

F o



Breadth-First Search

A O B 1 D

9 T
TR TIT SR

F o



Breadth-First Search

A O B 1 D

3 @
TETIT SN

F o



Breadth-First Search

@ TR

060606




Breadth-First Search

TN
e TRE
G 6 @ ne e o
All nodes in the
queue are at
distance 2 from A.
P o Q 0




Breadth-First Search

THNE

e TR

6 @) ne a-

All nodes at distance

2 from A are in the
queue.

P o Qoo




Breadth-First Search

TR

T TRE

6 @) ne ae e

All nodes at distance

< 2 from A have the
right distance set.

P o Q 0




Breadth-First Search

TR

T TEE

6 @) ne ae e

All nodes at distance
> 2 from A have
distance set to «

P o Q 0




Breadth-First Search

@ TR

006 S




Breadth-First Search

TR THCETINT

06060

S o



Breadth-First Search

TRTITETINT

06060



Breadth-First Search

TRTITETINT

Y YYS



Breadth-First Search




Breadth-First Search




Breadth-First Search




Breadth-First Search

’
’
’
’
’
’
’
’
7 o
’
’
’
’
’
’
’
’
q
@ N e 0«
P o

@3 R« s
PO e e




Breadth-First Search

’
’
’
’
’
’
’
’
7 o
’
’
’
’
’
’
’
’
q
@ N e 0«
P o

@3 R« s
[ Fr O E @




Breadth-First Search

4
4
4
q
4
4
4
4
7 0
4
/4
4
4
4
4
/4
4
4
@ N e 0
P o S o

@3 R
R




Breadth-First Search

4
4
4
q
4
4
4
4
)
4
/4
4
4
4
4
/4
4
4
@ N e
P o

@3 R
R




Breadth-First Search

4
4
4
q
4
4
4
4
)
4
/4
4
4
4
4
/4
4
4
@ N e
P »

@3 R
[ OO e




Breadth-First Search




Breadth-First Search




Breadth-First Search




Breadth-First Search

|@®@@®®@



Breadth-First Search

|®®®@®®<°>



Breadth-First Search

|®®@@®@



Breadth-First Search

|®®@@®@



Breadth-First Search

|®®@@®@



Breadth-First Search




Breadth-First Search

All nodes in the
queue are at
distance 3 from A.




Breadth-First Search

All nodes at distance
3 from A are in the
queue.




Breadth-First Search

All nodes at distance
< 3 from A have the
right distance set.




Breadth-First Search

All nodes at distance
> 3 from A have
distance set to «




Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.



Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisfy dist[v] = n.



Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =



Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s.



Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:



Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:

- Any node v where d(s, v) is finite satisfies d(s, v) = k, and any
node v where d(s, v) > k satisfies d(s, v) = «. This follows from
the fact that we picked the maximum possible finite k.



Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:

- Any node v where d(s, v) is finite satisfies d(s, v) = k, and any
node v where d(s, v) > k satisfies d(s, v) = «. This follows from
the fact that we picked the maximum possible finite k.

- There must be nodes at distances O, 1, 2, ..., Kk from s. A simple
inductive argument using property (1) shows that there will be
exactly k + 1 rounds, corresponding to distances O, 1, ..., k.



Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:

- Any node v where d(s, v) is finite satisfies d(s, v) = k, and any
node v where d(s, v) > k satisfies d(s, v) = «. This follows from
the fact that we picked the maximum possible finite k.

- There must be nodes at distances O, 1, 2, ..., Kk from s. A simple
inductive argument using property (1) shows that there will be
exactly k + 1 rounds, corresponding to distances O, 1, ..., k.

So consider dist[v] for any node v after the algorithm terminates
(that is, after k+1 rounds).



Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
forallveV.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisty dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) = n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = =

Let k be the maximum finite distance of any node from node s. Note
the following:

- Any node v where d(s, v) is finite satisfies d(s, v) = k, and any
node v where d(s, v) > k satisfies d(s, v) = «. This follows from
the fact that we picked the maximum possible finite k.

- There must be nodes at distances O, 1, 2, ..., Kk from s. A simple
inductive argument using property (1) shows that there will be
exactly k + 1 rounds, corresponding to distances O, 1, ..., k.

So consider dist[v] for any node v after the algorithm terminates
(that is, after k+1 rounds). If d(s, v) is finite, then d(s, v) = k < k+1,
and so by (1) we have dist[v] = d(s, v).
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node v where d(s, v) > k satisfies d(s, v) = «. This follows from
the fact that we picked the maximum possible finite k.

- There must be nodes at distances O, 1, 2, ..., Kk from s. A simple
inductive argument using property (1) shows that there will be
exactly k + 1 rounds, corresponding to distances O, 1, ..., k.
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the fact that we picked the maximum possible finite k.
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So consider dist[v] for any node v after the algorithm terminates
(that is, after k+1 rounds). If d(s, v) is finite, then d(s, v) = k = k+1,
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for all v e V, as required. R



Lemma: After n rounds, the following hold:

(1) For any node v, d(s, v) = n iff v is in the queue.
(2) All nodes v where d(s, v) < n have dist[v] = d(s, v).
(3) All nodes v where d(s, v) > n have dist[v] = «

Proof: By induction n. After O rounds, dist[s] = 0, dist[v] = « for any v # s, and the
queue holds only s. Since s is the only node at distance 0, (1) - (3) hold.

For the inductive step, assume for some n that (1) - (3) hold after n rounds. We will
prove (1) - (3) hold after n + 1 rounds. We need to show the following:

(a) For any node v, d(s, v) = n + 1 iff v is in the queue.
(b) All nodes v where d(s, v) = n + 1 have dist[v] = d(s, v).
(c) All nodes v where d(s, v) > n + 1 have dist[v] = «

To prove (a), note that at the end of round n, all nodes of distance n will have been
dequeued, so we need to show all nodes v where d(s, v) = n + 1 are enqueued and
nothing else is. Note that if a node u is enqueued in round n + 1, then at the start of
round n + 1 dist[u] = « (so by (2) and (3), its distance is at least n + 1) and u must
have been adjacent to a node v in the queue (by (1), d(s, v) = n). Thus there is a
path of length n + 1 to u (take the path of length n to v, then follow the edge to u),
and there is no shorter path, so this is the shortest path to u. Thus, d(s, u) =n + 1.
Also note that if a node u satisfies d(s, u) = n + 1, then by (3) at the start of round
n + 1 it must have dist[u] = «. Also, it must be adjacent to some node at distance
n, which by (1) must be in the queue at the start of the round. Thus at the end of
round n + 1, u will be enqueued and dist[u] setton + 1.

By our above argument, we know that (a) must hold. Since we didn't change any
dist values for nodes at distance n or less, and we set dist values for all enqueued
nodes to n + 1, (b) holds. Finally, since we only changed labels for nodes at
distance n + 1, (c) holds as well. This completes the induction. B



Question 1: How do we prove this always
finds the right distances?

Question 2: How efficiently does this find
the right distances?



Question 2: How efficiently does this find
the right distances?



Graph Terminology

« When analyzing algorithms on a graph,
there are (usually) two parameters we
care about:

 The number of nodes, denoted n. (n = |V|)
 The number of edges, denoted m. (m = |E|)

 Note that m = O(n?). (Why?)

A graph is called dense ift m = ©(n?). A
graph is called sparse if it is not dense.



procedure breadthFirstSearch(s, G):
let g be a new queue.
for each node v in G:
dist[v] = =

dist[s] = 0
enqueue(s, q)

while g is not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)
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How are our graphs represented?



Adjacency Matrices

 An adjacency matrix is a representation of a graph as an
n X n matrix M of Os and 1s, where

« M =1if (u,v) €E.
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v
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procedure breadthFirstSearch(s, G):
let g be a new queue.
for each node v in G:
dist[v] = =

dist[s] = 0

enqueue(s’ q) \/\”’ll{I isn'T The

runtime @(n3)?

while g is not empty:
let v = dequeue(q)
for each neighbor u of v:
i1f dist[u] = o:
dist[u] = dist[v] + 1
enqueue(u, q)
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Linear Time on Graphs

« With an adjacency matrix, BFS runs in time O(n?). Is
that efficient?

* In a graph with n nodes and m edges, we say that an
algorithm runs in linear time iff the algorithm runs in
time O(m + n).

« This is linear in the number of “pieces” of the graph, which is
the number of nodes plus the number of edges.

 On a dense graph, this implementation of BFS runs in
linear time:

On?) =0n*+n)=0(m+n

* On sparser graphs (say, m = O(n)), though, this is not
linear time:

O(n?) # O(n) = O(m + n)



The Issue

* Our algorithm is slow because this step
always takes ®(n) time:

for each neighbor u of v:

 Can we refine our data structure for
storing the graph so that we can easily
find all edges incident to a node?

1 -2 o111
’v © 00 0

© 0 0 1
&3 © 100
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 An adjacency list is a representation of a graph as an array
A of n lists. The list A[u] holds all nodes v where (u, v) is an
edge.
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A Better Analysis
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while g i1s not empty:
let v = dequeue(q)
for each neighbor u of v:
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procedure breadthFirstSearch(s, G):

o(1) let g be a new queue.

O(m) for each node v in G:
n dist[v] = =

o(1) dist[s] = 0

enqueue(s, q)

O(n) while g is not empty:

let v = dequeue(q)

for each neighbor u of v:
1f dist[u] = «:

dist[u] = dist[v] + 1

enqueue(u, q)

O(m + n)




A Better Analysis

« Using adjacency lists, BFS runs in time O(m + n).
e This is linear time!

 Key Idea: Do a more precise accounting of the
work done by an algorithm.

e Determine how much work is done across all
iterations to determine total work.

 Don't just find worst-case runtime and multiply by
number of iterations.

* Going forward, we will use adjacency lists rather
than adjacency matrices as our graph
representation unless stated otherwise.



Next Time

» Dijkstra's Algorithm
 Depth-First Search
» Directed Acyclic Graphs
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