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PREFACE

In order to make our extensive series of lecture notes more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.



PREFACE

The purpose of these notes is to give the theory and use of
some common conformal map projections. The approach used is straight-
forward. It begins with the basics of differential geometry and
conformal mapping. Then, given the conditions for a particular map
projection, the particular conformal mapping equations are derived.

-This is a self-contained analytical approach. .

The author is aware of attempts by at least one mathematician
[Wray, 1973] to unify all classes of map projections such that the same
set of mapping equations can be used to obtain all or many of the well-
known projections, simply by assigning appropriate values to certain
parameters in some generalized equations. This is somewhat of a
simplified explanation of what actually happens, but it at least
illustrates the generality of this contemporary approach. As of the
date of writing fhese notes, the details (necessary for instruction at
the undergraduate le#el) were not yet worked out and thus no use was
made of it.

There is yet another attempt to obtain a generalized set of
equations for conformal map projections alone. As explained in Section
9, this approach consists of one set of mapping equations which is
capable of producing the well-known conformal projections ~ Mercator,
Transverse Mercator, Lambert Conformal Conic, Stereographic and even
other unnamed projections. This is achieved simply by assigning specific
values for certain constants in a generalized set of equations. This

approach is not readily usable since the expressions have not been



developed to a sufficient degree of accuracy, and thus are not safis—
factory for the practising surveyor. Only a brief description of this
approach is given in these notes.

More on the approach used herein. Complex arithmetic is
exploited at every opportunity. OSeries expansions are avoided at
occasions when the closed form exists. The reason being that computer
centres nowadays have routines to evaluate natural logs, exponentiation,
etc. Derivations are given to show the origin and importagt steps in
the development of the main equations. Lengthy and detailed derivations
are omitted from the text and reference made to an appropriate source or
an appendix added.

These notes have been written under the assumption that the
reader has knowledge of differential and integral calculus, camplex
arithmetic, ellipsoid geometry, and some knowledge of computer programm-
ing.

These notes have evolved from the author's lecture notes over
the past few years. Two main sources are acknowledged at the outset as
being the starting point for these notes - Thomas'"Conformal Projections
in Geodesy and Cartography", U.S. Geodetic Survey Special Publication
No. 251, and Dr. Richard H. Rapp's lecture notes on "Advanced Map Pro-
jections", Department of Geodetic Science, The Ohio State University,
Columbus. Other sources used for important details are referenced within
the text.

The author wishes to acknowledge the contribution made by the

Surveying Engineering undergraduate class of 197L-75 to improving the



notes by finding typographical errors. Messrs. Donald B. Thomson and
M. Nassar, graduate students, are acknowledged for their constructive
eriticism of the notes. Mr. Thomson is particularly acknowledged for

the preparation of the appendices.

E. Krakiwsky
December 9, 19Tk

-

The author wishes to acknowledge Kresho Frankich for his
detailed critique of the December, 19ThW version of this work. His
involvement has lead to the improvement of section 2.4 and Chapters
7, 8 and 10. Dr. Donald B. Thomson helped to clarify aspects of the
stereographic projection. Robin Steeves extended various formulae to
meet a higher degree of accuracy. Ms. Wendlynn Wells is thanked for

her editorial assistance in preparing this version.

E. Krakiwsky
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GENERAL

Conformal map projections are the class of projections in

which angles on the surface to be mapped are preserved, that is, corr-
esponding angles on the map plane and the surface are equal. We will
restrict the surface to be mapped to be the eliigsoid as defined in
geodesy. The map plane is regarded as a flat - two dimensional surface.
The two corresponding sets of coordinates for any point are the geodetic

latitude ¢ and longitude A, and the mapping coordinates x and y.

There are two main problem areas in conformal map projections.
The first area is concerned with the transformation (mapping) of the
geodetic latitude (¢) and longitude (A) into a pair of mapping coor-
dinates x and y, and vice vefsa, that is the mapping of x and y into
¢ and A. The second problem area involves the computations of geodetic
positions on the conformal mapping plane from observed quantities that
have been appropriately projected onto the map plane. Because of the
clear identification of these two tasks, the notes have been structured

into two sections. Section I is called Conformal Mapping, while

Section II is called Computations on a Mapping Plane.
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CONFORMAL MAPPING



1. INTRODUCTION TO CONFORMAL MAPPING

It was stated in the general introduction that the problem at
hand is the determination of the conformal transformation equations for
mapping ¢, A into x, y, and x, y into ¢, A. Employing complex arith-
metic notation, the problem is symbolized as

(x + iy) = fl()\ + i¢) , | 1-1
and

(A + i¢) = fa(x+ iy) , 1-2

where fl and f2 are the analytic functions to be determined, and i = v -1.

The first equation describes the direct problem and the second the

inverse problem.

The solution ofbthese problems requires the use of some
elementary complex algebra which is reviewed in Section 2. Also, some
differential geometry is needed to characterize differential elements on
the ellipsoid and plane surfaces - this material is reviewed in Section 3.
The principles of conformal mapping theory needed for our problensare

briefly given in Section 4. Sections 5 through 8 respectively treat the
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Mercator, Transverse Mercator, Lambert Conformal Conic and Stereographic
conformal projections. A brief description of the implementation of some
of these projections in practise as official coordinate systems is
given. The generalized set of mapping equations mentioned in the

preface is briefly described in Section 9.
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2. REVIEW OF COMPLEX VARIABLES

Complex algebra is used liberally in the development of the
various conformal mapping equations. The purpose of this section is to
briefly review, thus summarize, those parts of complex algebra needed
herein. The formal and complete treatment can be found in many math-
ematical texts.

Reviewed in this section are: rules of complex arithmetic;
the complex plane; the complex function; differentiation of a complex
function and the derivation of the Cauchy-Riemann equations; special

complex mapping functions.

2.1 Rules of Complex Arithmetic

For a complex number

z = a + ib; i =V (-1) 2-1

>

where a is the real part and b the imaginary part, the following rules

and definitions apply:



1. The sum of two complex numbers is a complex number, that is,

2, *+ 2, = (al + 1bl) + (a2 + ibz)
= + + i + = . -
(al ae) 1(bl b2) 2 2-2
2. Addition is associative (grouping is immaterial), that is,
+ = + . -
2, + (22 23) -(Zl z2) +zg 2-3
3. Every complex number has a unique negative, that is
z = a + ib .
and -z = -a - ib . 2-h
L. Addition is commutative (order is immaterial), that is
z1 + z2 = z2 + zq 2-5
5. Multiplication is defined as
2,2, = (al + 1bl)(a2 + 1b2)
= aja, - ble + 1(alb2 + agbl) =75 - 2-6
6. Multiplication is associative, that is
2+ (2 v ag) = (2« 2y) 2y =2) « 2, « 23 a1

7. Every non-zero complex number z has a unique inverse, that is

;1oL _ 1 (a-ib) _ a-ib
z  {(a+ib) (a-ib) a2+b2
) a b
= - i . 2-8
a2+b2 a2+b2

8. The complex conjugate of z is

7z = a - ib. 2-9



2.2 Complex Plane

The rectangular form of a complex number is

z = Xy + iyl . 2-10

The geometric interpretation is a vector in two dimensional space, with
the real part (x) as the abscissa and the imaginary part (y) as the

ordinate (Figure 2-1),

Y A

)'l e v . > — — —" D end

K e e - -

VA |

Figure Z-1. Rectangular Form

The polar form of a complex number is (Figure 2-2)

zl = rlcosel + i r151n 81 2-11

ince
si X

1]

r. cosf

1 b}

! - 1 2-12
yl = rl 51n91 .

J

Figure 2-2 Polar Form



The argument of z is denoted as el, and defined by

: 1 Y
8, = tan S . 2-13
1 X
1
The modulus of zy is denoted as s and defined by
1/2
. _ .2 2
r, = |zl| = le + 1y1| = (xl + yl) ; 2-1h

The x-y plane is called the complex plane.

2.3 Complex Function

w is said to be a function of z, that is
w= f(z) , 2-15
if' there exists one or two values of the complex variable w for every
value of the complex variable z. In this arrangement, z is the independent
variable and w the dependent variable.

An example of a single valued function is

w=z° 2-16

and of a many valued (twcin this example) function ig

1/2
W T 7 . 2-17

In mapping the ellipsoid onto a plane, we are interested only in single
valued functions.

In general

il

fx+iy) = ulx, y) + ivix, y). 2-18
The corresponding conjugate is

w=1(z) = ulx, y) - iv(x, y) . 2-19



2.4 Differentiation of a Complex Function

This section first defines the derivative of a complex function, that
is £f'(z), and then the very useful and important Cauchy-Riemann equations.

Consider a set of complex numbers {zo, Ty eees Zn}’ where z

l’

and z are partiéular values. It is said that f(z) is differentiable

at z if
o
Limit F(7y) - £z)
2-20
z >z 7z -z
n o n 0 -
or
limit f(z + Az) - f(z ) .
o) o) exists. o.01

Az -+ O Az
The basic equation for defining the derivative £'(z) follows
from above after recognizing that from
z = x + 1y

Az

i

Ax + 1Ay 2-22
and

flz + Az) = ulx + Ax, y + Ay) + iv(x + Ax, y + Ay) . 2-23
The basic equation ‘is

f(z + Az)- £(z)

£'(z) = limit -
Az + O Az

_ limit u(x + Ax, y + &y) - ulx, ¥)
Az > O Ax + iAy

v(x + Ax, y + Ay) - v(x, y)}

% + by 2-24

+ i

and is independent of the apﬁrbabh teken. But, for the”approach

y = constant, that is, Ay = 0, and Az = Ax, .the result is
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ulx + Ax, y) - ulx, y)
Ax

£'(z) = it
0

lim
Ax -

vix + Ax, v) - vi(x, v)

+  limit i , 2-25
Ax + O Ax
ou oV
1 - P -
f'(z) x t iy 2-26

For the approach Az - 0 along x = constant, that is Ax = O,

Az = 1Ay, The result isw

limit 1 u(x, y + Ay) - u(x, y)

' =
e = 07 3 Ay

+

limit v(x, v + Ay) - vix, y)
Ay » O Ay

E) 2‘27

%-QE-+ v, . 2-28

dy 9y

The Cauchy-Riemann equations are obtained by equating the two

definitions of the derivative, equations 2-28 and 2-26, namely

l10u, dv _odu_ . dv
i oy Tay Tex Tt ax 2-29
.2,\1 du .2y v _du . 3V
(-1 )i oy * (-1 dy ~ 9x T
. du , dv _ du . OV
-1 Sy + 3y - ox +io- 2-30

Equating real and imaginary parts yields the Cauchy-Riemann equations

du _ ov

- >
= 2-31
d ou
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A function of complex number z which is single valued and
differentiable at every point of its domsin, is said to be regular. The
necessary condition for the function f(z) to be differentiable at the
point z is that the four partial derivatives ux, uy, Vo vy must exist
and satisfy the Cauchy-Riemann equations.

Since the partial derivatives of u and v are connected by the

Cauchy-Riemann equations (2-31) and assuming that these derivatives exist

and satisfy the relationu =u , v. =v , it follows by partial
Xy yx©T Xy yx
differentiation that .
82 _ 32u _ 32u Beu _ 82v _ 32v
xoy . L2 "2 M 5yt T2T T2 - e-32
y 3 oy xey X oy

Thus both u and v satisfy Laplace's equation

<
o
1]
+
il
o

b
3x2 3y2
2-33
2 82v 32v
Vv = St 5 = 0
ax 9y

By separating any regular function of z, i.e. a function with
existing derivatives, into its real and imaginary parts, we obtain immed-
iately two solutions of Laplace's equation.

From the equations (2-31) we can also have the following
relationship

Ju 9V , du 9V
e e o —= -
9x X oy oy 2-3k

whose geometrical interpretation is that the families of curves in the
X, ¥y plane, corresponding to constant values of u and v, intersect at
right angles at all their points.

Let us now take an analytic function f which maps the domain

D of the independent complex variable w = u + i v into the domain of D'
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of the dependent complex variable z = x + 1 y. If two arbitrary curves
in the domain D intersect at the point P(uo, vo) at an angle 6, then the
mapping is called isogonal if the corresponding curves intersect in the
domain D' also at the angle 0. If the sense of the rotation as well as
the magnitude of the angle is preserved, the mapping is said to be
conformal .

To prove this statement let us take in the w plane an
arbitrary point P(wo) and two continuous curves passing through the
point and let tangents to these curves at the point P make angles 0. and

1

o, with the real axis of the coordinate system. Suppose we select on

each curve additional points close to P and at the distance r from P.

Then

2-35

and as r approaches zero, 8, and 0, become the angles a, and o_.
<

1 2

1

w-plane

The point P(wo) is transformed from the domain D by the
analytic function into P'(zO) of the domain D'. The projected curves are

' - [ '
denoted by cq and Coe
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— Y
z-plane
Then
_ i¢y
z1 Zo pl e ,
. 2-36
2, -z =op_ e®
2 o 2
By the definition of derivatives we have
. -z . -7
lim 71 o _ £1(z ) and lim 2 e ), or
W W W, — W o) WOW W, - W o)
1 o 2 o
0 i1 _ P o102 .
lim 42— =% « %  and  lim 22— =k » &% | 2-37
167 i0p
r e r e
It is obvious from the above relations that
lim (¢l - 61) = o and lim (¢2 - 62) =0 2-38

or the angles between the corresponding curves in the conformal mapping
remain unchanged.

At the same time it is important to notice that

Py Po
lim === lim == =k = |f'(v )| , 2-39
r r o

is the scale factor and has the same value in all directions through the
same point but it varies from point to point. This is an extremely

important property of conformal mapping.



Other expressions related to the derivative of a complex

function are needed. The first of these is

(du + idv)(du - idv)

du2 + dv2

dw * dw

£'(x + iy) £'(x - iy)(dx + idy)(ax - idy)

= £1(2) (@) + &F) 2-ko
and realizing that
- Ly du_ v _ v, .3
£f'(z) = f'(x - iy) = %~ Lok -y + i oy
and that
- au 2 v 2 ]
1 = (== — -
£'(z) £'(z) () * (ax) o-l1
2 N
_ v, (u
2 2
=2 L AN 0 b gy
aw + s = [(5) + (5D Nax® + &)
. 2-43
2 2
C A 3 1 s a2
= 150+ G N v et |

2.5 Special Complex Functions

The following identities are useful in simplifying conformal

mapping equations. The first identity is a result of De Moivre's Theorem

which gives a relationship between multiples and powers of trigonometric
functions. The theorem is briefly stated. For
z = x + iy

r (cos 8 + i sin 0) ,

it

the product of two complex numbers is

2, * 2z, = rl(cosel + 1 51n91) r2(cose2 + i 51n82)
- s . . . + i
rlr2[0056l c0362 51n91 51n62 + 1(cos9l Sln92 51n6l cosez)]
- 1 . + + 4 N ’ _l
1lr2[cos(el 62) i 51n(01 + 82)] s 2-Lb



and an extrapolation to n complex numbers for the case r1 = re - .. = rn,
and @1 = 62 = ,,. = Gn, yields
2% = r™[cos n® + i sin n®] = [r(cosd + i sind)]"

and finally

cos nO + i sin n® = [cosd + i sine]n . 2-h5

The second useful formulae is Euler's which relates exponential
and trigonometric functions. It is employed in the derivation of the

Lambert conformal conic mapping equations. Begin by considering

2 3 n
6 _ 0 8 0
e —-1+6+~2-T+§T+...+5T N 2-h6
and substituting i6 for 6, the above becomes
2 n
i . (i¢ (ie)
e’ =1+ i6 + 2!) +...+T , 2-h7
and after grouping real and imaginary parts
. i
16-—(1 §i+6 e6+ Y + i(9 £+9.5_ _6.7_+ )
S - T - A Y T T
which is of course
etf = cos B + i sin 6 |. 2-48

The above is known as Fuler's formula. Substituting -6 for 6 in the above

yields

e—le =cos 6 -1 sin 0 |. 2-h9

Together the above two formulae yield two more useful formulae, namely

cosf = -Jé-(ele + e—lg) , 2-50
.1, i8  -ip
sind = 51 (e”” - e ) . 2-51

The last set of formulae are the sin and cos of complex numbers.

Substituting z for 6 in 2-50 and 2-51, yields

cos z = %-(e1Z +e %) 2-52
1, iz -iz
sin z = 57 (e ) . 2-53
Further 7 P} x 1
e? = &N 2 X Y
2-54

1

X . .
e (cos y + i siny) .|
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3. REVIEW OF DIFFERENTIAL GEOMETRY

The purpose of this section is to review and write in our
notation some well-known results of differential geometry. No attempt
has been made to be exhaustive, in fact, only those aspects needed
herein are givep. We treat: parametric equations for a surface; the

Gaussian fundamental quantities; angles between parametric curves.

3.1 Parametric Eaquations

Let us now discuss how to mathematically describe the surface

to be mapped.

The general equation describing any surface¥ is

F(X, Y, Z) =0, 3-1
where
X =Xx(¢, 2) ,
Y = Y($, A) , 3-2

7z = 2(¢, 1),

are known as the parametric equations. X, Y and Z are understood to be

¥ X, Y, Z used as coordinates on surface to be mapped; x, y used as

PNy

as coordinates on map plane.
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Cartesian coordinates while ¢ and A are regarded as curvilinear coordin-~
ates on the particular surface in question.
For example, the equation of a spherical surface is
F(X, Y, Z) * X2 + Y2 +7° - ®® = 0o . 3-3

The corresponding parametric equations are

X = X(¢, A) = R cosp cosh ,
Y = Y(¢, A) =R cos¢ sinr , 3-3a
Z =2(¢) =R sinp , . .

where R is the radius, and ¢ and A the spherical latitude and longitude,
respectively.
The equation of an ellipsoid surface is

2 2 2 2

F=X"+Y +2°"~-N =0. 3-4
The parametric equations are
X = N cos¢ cosr ,
Y = N cos¢ sinr , 3-ka
2 .
Z = N(1-e“) sin¢ ,

where ¢ and A are the geodetic latitude and longitude respectively, and

2
a a

N = = ~-U4b
1/2 1/2 3
(a2 cos2¢ + b2 sin2¢) (l-e2 sin2¢)

is the radius of curvature of the ellipsoid in the prime vertical plane,
a and b are the semi-major and semi-minor axes, respectively, and
e2 _ (a2—b2)/a2,

Parametric equations allow us to describe, in a mathematical
way, certain curves on a surface. For example when ¢ is equal to some

constant c then the parametric equaticns become

1’ <.
X =X(ey, A)

Y{ecy, A) , . 3-5

Z(c,, A)

Y

N
]
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which can be imagined to describe some sort of parallel of latitude.
Analogously a meridian arc is described by
X=X (¢, c2) ,

Y

Y (¢s C2) 1 3"‘6

Z

1

Z (4), Cg) .
The equation of an arbitrary curve is denoted by s(¢, A), which is in

essence an expression of some functional relationship between ¢ and A.

>

3.2 Gaussian Fundamental Quantities

The Gaussian fundamental quantities are a means of describing
the geometrical properties of the surface to be mapped. The derivation
is as follows.

Consider an arbitrary curve on any surface (Figure 3-1) with

P(X, Y, 2)
any surface

QX+0X, Y+2Y, 2+42)

curve 5 = S(¢, A)

Figure 3-1. surface Eiliement

a point P(X, Y, Z) on it and a second point Q(X+AX, Y+AY, Z+AZ) located

infinitesimally close to P. Let AL be the chord length between P and Q
and AS the corresponding length on the surface. We can then write that
a2 = ax® 4 aY® + az° 3-7

and
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AL\2 _ AX\2 AY\2 . AZ\°

As the point Q approaches P, AL approaches AS and we get

2
_,dx dy\2 ., ,d4z,°
1=(3g *+ (@G +&E&H - 3-9

which can be interpreted as the direction cosines of a line on the
surface.
From the above we can get an expression for the change in arc

length as a function of changes in the Cartesian coordinates, namely

A = axX + af + 47 . 3-10
Recall that
Xx= Xx(¢, 1),
Y= ¥¢, r), 3-11
z=2(¢, 2) ,

and thus the differentials in 3-10 are

_ 93X X
dx——-M de + oy arx ,
v oX ayY -
dY—a¢d¢>+8)\ ar , 3-12
_ 3% + 82
az = 3% d¢ * == dr .

Squaring 3-~12 and substituting into 3-10 yields an expression for the
changes in arc length on a surface as a function of changes in curvi-

linear coordinates, the result is

d82 = Ed¢2 + 2Fd¢d A + Gd)\2 ’ 3-13
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where
X 2 Y 2 37
E (575) (5-&;) ('5; , 3-1k
_ 93X 39X , 3Y 3Y 37 972
F =30 3% T3¢ 9x T3¢ o1 °
o=@ L@@
BERFY Y oA :

E, F, and G are known as the Gaussian fundamental quantities for a

>

surface. Their specific use is in Sections 4.2 and L.3, which respect-
ively deal with the definition of the scale factor and condition for

conformality.

For the ellipsoid (from 3-Lka and 4-1k)

E = M2
F=0 3-15
G = N20032¢
where
y - —a(1-e%)
(1-e° sin2¢)3/2
is the radius of curvature of the meridian of the ellipsoid. The differ-
ential arc length squared is
as® = (Md(b)2 + (N coscbd)\)e s 3-16
and a useful form is
0 2 2 M5 2 2. .2
ds” = N~ cos” ¢ [—E secd do~ + dAx"] . 3-17
N




N
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3.3 Angle Between Parametric Curves

In this section we treat the description of' the angle between
curves in terms of the Gaussian fundamental:quantifiéaia;iﬁapgﬁﬁicﬁlar
the angle between meridiens and .parallels is described.

To do this we need the evaluation of the Cartesian total

differentials (equation 3-12) for ¢ = C, and A = C,(Figure 3-2).

Figure 3-2. Angle Between & Meridian and a Parallel

The result is tabulated in Table 3-1.
Also needed is the evaluation of the total differentiasl of the

length of a curve S (equation 3-13) For ¢ = C, and d¢ = 0,

as YGyax 3-1313

¢

and for A = C ax = 0 ,

2’

as A8) d¢ . 3-13b
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¢ =0y A =C,
X X

ax ax A G

| Y 2 Y

ay = ax 55 4

| 57 57

az = a 5 40

Table 3-1. Evaluation of Cartesian Total Differentials

" The angle 6 between the meridian and parallel is the angle

between the two tangent vectors Tl and T2 (Figure 3-2), and is computed

from

cos 6 =Jd,J_. + K. K. + LlL

195 155 3-18-

2 2
where J, K, and L are direction cosines of the two vectors. The direction

cosines are (using 3-l3aéani'3313ﬁﬁ

¢
=& _9y . 1 -
Kl“ds¢“ ax /G 3-18a



= X

Jy = dasx
. ay

T

' a7 .

Ly =37 °

After substitution of 3-18a and

X 3X

cos 8 = [ax 5

23

X 1

3 - VE

Y 1 ~18b
oY) 75 3-18
YA

% VE

3-18b into 3-18, we get

3Y 9Y 97 9%, 1

% 56 T 9% 3¢ = 3-19

and noting that the term in brackets is the Gaussian fundamental .quantity

F, the final result is achieved, that is

F
cos 0 =/E_G—

3-20

The above equation is valid for any surface (e.g. sphere,

ellipsoid, plane).

parallel.

It defines the angle between a meridian and a

It can be used to determine the value of an angle or to help

enforce a certain value for 6 in the way of a condition.

Applying it to the ellipsoid simply tells us that 6 = 90°,

since F = 0, E # 0, and G # 0 (equation 3-15).



ol

L. CONFORMAL PROJECTIONS IN GENERAL

This section describes the general problem of conformal mapping
of the ellipsoid‘surfacé onto the plane. Thé expressions developed are
applicable to all conformal map projections alike. Discussed immediately
below are the isometric plane,.scale factor definition, condition for
conformality, scale factor evaluation, geometry of projectéd curvés,

and meridian convergence.

4.1 Isometric Plane

We are concerned with three surfaces in the subject of conformal
map projections - the ellipsoid surface which is to be mapped, the map
plane surface which is the surface where the mapping takes place, and
the isometric plane surface which is the intermediate plane surface
through which ai;zthe conformal map projections are derived.

The isometric plane is mathematically described by first
considering the expression (equation 3-17) for the total differential
of the length of a curve on the ellipsoid surface.

Recall

2
as® = N20032¢ [9-4-2— se02¢ d¢2 + dA2] . h-3
N .

By defining the total differential of a new quantity q as

dq = % sec ¢ do¢ 42

4-1 can be written as



as® = §° c032¢ [dq2 +.d12] . 4-3

By inspection one can see that the term in brackets in U-3 resembles a
distance element squared on some sort of plane surface. This plane

surface is called the isdmetric plane. The two coordinate values on

this plane are the geodetic longitude A and isometric latitude q.

An expression for the isometric latitude q, in terms of the

geodetic latitude ¢, is obtained by integrating 4-2, that is

s

a ¢ M
J dq =S § sec ¢ do , LY
o o
where
2
a(l-e”)
M = , b-5
(l-e2s1n2¢)3/2
a
N = . Lh-6
(1—82 sin2¢)l/2

Continuing the integration we get

4 _ 0 (l—e2) d¢ - . ¢ (1—62)(COSE¢+Sin2¢)
[ dq = f 5 . =1 > > > 590y 7
o o (1-e“ sin"¢) cos¢};\g.(lfe”sin ¢.)cosé(cos“¢+sin"¢)
_ ¢ ds 2 .¢cos ¢ d¢ o
=/ cos ¢ © 4 2 . 2.\ . 4-8
o 12e"sin“¢) :
The first integral yields
¢ ! T, 9%
P [tanQE + 2)] R L-9

cos
o ¢

where 2n denotes the natural logarithm.
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To evaluate the second integral let

sin ¢ = p, cos ¢ d¢ = dp , L-10

then

2. dp _ e 1l + ep
S —5 g =y nlT ]

- . e/
1n [w] . )4_11

1l - e sin ¢

Combining the results of the first two integrals gives

. e/2
g = 1n [tan(f + 2)]- 1n [$5200
1 . e/?2
q = In [tan(f + &) (=22 0y "y h-12

L 2 1l + e sin ¢

where e;'J = (azwbz)/ag.

Thus we see that there is a value of g for each value of ¢. Listed in
Table L-1 are pairs of values for the isometric and geodetic latitudes
from ¢ equals 0° to 89°. Note that the value of g is less than ¢ up to
about ¢ = 11°, and is greater beyond about ¢ = 12°; At ¢ = 80°, q is
several times greater.

The geometric interpretation of the situation on ths isometric
plane is that meridians are parallel with constant spacing, while the
spacings of the parallels vary. In fact, we witness for example, large
spacings between the northern or southern parallels (Figure h—l}

There is the task of computing the geodetic latitude ¢ from
the isometric latitude q. Since 4-12 cannot be inverted, that is, ¢
expressed explicitly as a function of g, some other method is needed.

We give below an iterative method of conversion of the isometric latitude
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Geodetic Latitude (¢) Isometric Latitude (q)

1 0.9934132219

10 9.9851128986

11 10.9956288708

12 | 12.0096232035

20 20.2888725073

30 31.2726570656 -

Lo 43.4668126053

50 57.6161578380

60 75.1262119163

70 99.073877321k

5 115.8041916752

80 139.2112650896

85 179.0306399306

86 191.82839890L49

87 208.32114518Lk

88 231.5595670367

89 271.278163857kh

Table 1. Isometric and Geodetic Latitudes (units-degrees)

Everest Ellipsoidg;lff'=f30038017
a = 63TTF2T6.3L5
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¢ = 80°
¢ = 60°
¢ = Lo°
6 = 20°
¢ = 0° .

A= 0° 20° L4o° 60°  80°

Figure L-1.

Plot of Meridians and Parallels on the Isometric
Plane.

into geodetic latitude. The iteration method employed is that of
Newton-Raphson [ Conte and Boor 1972; Wells 1971].

A summary of the method follows. Given the non-linear
equation f(x) = 0, the steps for the solution are:

(1) Select an approximate solution P,

(2) Evaluate the iterative improved solutions p from
p,=glp, _y)sn=1,2, ..., 4-13

where

£lx) 4-1k

E(X) =X - f'(X) 5

(3) Stop the iteration when lpn - P < €, where € is a

n—lI

predetermined accuracy limit (say 10_6 for single precision on the

IBM 360, or 1071? for double precision);
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(4) The solution to f(x) = 0 is then x = P> and is accurate

to within + €.

The application of the above to the isometric latitude g

(equation L-12) follows. Recall

) e/2
_ T, 9yl - e sin ¢
g = 1In [tan‘(h * 2)(1 + e sin ¢) ] h-15

and
q = %-[ln (1+sin ¢) - 1n(l-sin ¢) + e 1n(1 - e sin ¢) -
- eln (1 + e sin ¢)] . Lh-16
Our function f(x) that equals zero is
f(¢)=0 D
(o) = %‘[ln(l+sin ¢) - In(l-sin ¢)+e 1ln(l-e sin ¢)-e 1n(l+e sin ¢)]-
- ag=0, ' L-17
and
/ 2
£(s) = d§i¢) - e ‘ i
(1-e"sin“¢)cos ¢

(1) For an initial approximation (¢O), assume a spherical case

in 4-15, that is e = 0. Then

¢

q = 1n [tan(% +-§9 )], » 4-19

and inverting the equation;

L-20

B

o, = 2 tan‘l [exp (q)] -

(2) Evaluate the iterative improved solutions ¢, from

tn=e (6 1)>n=1,2, ... h-21.
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where in general

g(¢) = ¢ - 200) h-22

£ (¢) ’
namely
o - £(o, 1)
n= o1 7 F ()
o, = ¢4 - (88) b-23

(3) Stop iteration when[(A¢ﬂn_l <e. (For e = 10712 radians,

convergence is achieved within about three iterations for 0° < ¢ < 89°).

i,? Scale Factor Definition

The scale factor describes, at each point on the map projection,
the amount of distortion in length. This distortion is of course due
to maintaining conformality and fulfilling other conditions prescribed
for the projection. It should not be confused with the "line scale"
(discussed in Section II), which is concerned with the scale distortion
over a finite length of line.

We now focus our attention on two surfaces -~ the ellipsoid
and the map plane surfaces. It was proved in Section 3.3 that the
meridians and parallels on the ellipsoid surface are perpendicular.
Since the projection is conformal, these two curves are also perpendicular
on the map plane. In mathematical language, the Gaussian fundamental
quantity F equals zero. It follows then from 3-13 that the square of
the differential change in the length of a curve on the ellipsoid

suit'ace is
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as? = Map” + Wocos"y ar® b2k
and on the map surface¥the corresponding equation is

dsg = dx2 + dy2 . L-25

The scale factor k is defined through the ratio

dx2 + dy2

. L-26
M2d¢2 + N2c052¢ da

2

[ AVE IACINIV]

We now define the scale factor for the isometric and ellipsoid

surfaces with the aid of the following two parametric equations:

1]

X fl(q, )\) s

and 27

y = f,(q, 2) .
Note the replaecement of ¢ by q in the parav=tric equations which

formerly related the map coordinates x and y with the ellipsoid

coordinates ¢ and A.

The linear distance element squared on the map plane in terms

of q and X is (see equation 3-13)

dsg = e dq2 + 2f dgq dx + qug , 4-28
where
ox,? | 8y)°
e = (55) + (aq) 4-29
- (8xy (3% 3yy (3x -
f = (aq) (ax) + (Bq) (ax) s L-30
2 2
- (9% Y -
g "(ax) + (ax) . 431

¥ Note the use of lower case x,.y for the coordinates on the map
plane.



If angles on the ellipsoid are to be preserved on the map plane, then

f = 0, and

dsg = gdqg + g'dx2 . L-32

The scale factor is now defined through the ratio

ds2

2

3.2 2

H]
N20082¢(dq2 + dkz)

= —2 o
=—==
ds]

-

where the denominator is the square of the differential change in the
length cof a curve on the ellipsoid surface in terms of the isometric
latitude (see equation L-3). Note the usage of the isometric latitude -
first on the mapping surface (numerator 4-33) and secondly on the

ellipsoid surface (denominator 4-33).

4.3 Condition for Conformality

In this section we derive the equation from which the
definiticn of conformality is obtained. This condition is then rep-
resented by the Cauchy-Riemann equations, in terms of the map coor-

dinates x and y, and the isometric latitude g and geodetic longitude A.

From Figure L-2,

- N cos ¢ B .
tan a ) ax , h-34

where the newly introduced quantity o is the geodetic azimuth of the

diagonal of the differentially small figure. Recall the definition of



¢+dt

A ——= equator

A+d

-

Figure 4-2, Diflerent.al Area on the Eilipsoid Surface

dq (equation 4-2)

= Mde
dq N cos¢ ° h-35

Substituting 4-35 into 4-3L yields

tan o = aa , L-36

or
dA = tana dq . 4-37

Now substituting 4-37 into the definition of the scale factor (equation L-33),

we get an expression for the scale factor as a function of the direction,

namely

2 _ e‘cosga + g singa 4-38

N2cosg¢

We know, however that for conformal projections the scale factor

cannot be a function of the direction if angles are to be preserved.



Therefore, to force 4-38 to satisfy this condition, we choose e equal

to gin h-38. Thus

2 e

£

N2c052¢

N2cos2¢

L4-38a

Now we can describe conformal projections in terms of Gaussian fundamental

quantities, namely

and

4-39

4-ko

Recall, that the first was a result of requiring the meridians and

parallels to intersect at 90° on the map plane (see Section 3.3).

The Cauchy-Riemann equations can be derived by application of

L-30 and L-ho along with equations 4-29, 4-30, and L-31, which respectively

definee, [ andg

and.

@21
)

2condly

in terms of x, ¥, g and A.

f =0,

3q

_ 9x 3x

3y dg 9)
9 3y
3q

e = g

i

2 2
&y 4 (X
aq da dA

ox 9x , 3y 9y _
9 T dg 9

(Bx 2

(~I)

Firstly

h-h1

L-L2

L3



Substituting L-42 in L-L3, yields
2 2
) . e
)2 4 3Y)° - (& ' : -l
q dq X (2,2
aq

2x)°
@22 4 @2 L ex2, B 4
3q 3q "(gl) 3q 3q’ " ” -3

aq

These are only two possible c

fied, namely

x)°
aq
and
3%, °
(BA)
From L4-LT, we get
8%
A

Taking the positive root and

X

q

The above equation, along wit

the Cauchy-Riemann equations,

ases for which the above equajfion is satis-

Ay 2
(aq) =0 L-L6
2
= (¥ '
= (Bq) L=kt
=+ 418

substituting into 4-L41 (f = 0), results in

9y
X

b-b9

h the positive root of L-48, are known as

which we label as set number one:

3x _ 3y
d3x  9q
L-50
o _ _ %y
3g ~  ax
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By choosing the negative root of L-L8, we arrive at the alter-

native set of Cauchy-Riemann equations, namely

8x _ _ dy
9~ T 3q °
Lh-51
X _ 9y
dg 3 )

>

As stated earlier these equations represent the conformality

condition and are used to .either help derive the mapping function fl or fo in

x + iy = £ (A + iq) . L-52
and
Ao+ ig = f, (x + iy) , L-53

or corroborate whether these functions, as determined by other means,

result in a conformal transformation.

Y.L Scale Factor Evaluation

We now can evaluate the general expression for the scale

factor (equation 4-26). Recall

2

ds 2 2

- dx + dy . b5k
N2c052 ¢(dq2 + dx2)

2
K =

ds

= on

Also, recall from complex algebra (equation 2-40) that the distance
squared is given by

2 2

dw - dw = du” + dav- = ©'(z) £'(z) (dx2 + dyg)

9 2""55

(general-notation). In map projection-notation and for the map plane,

the distance element squared is
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ds® = ax° + dy° = £' (A+iq) £'(A-iq)(ar"+dq

2
o )

. L-56

The scale factor expression, in terms of derivatives of complex

functions,is

2 £'(0+iq) £'(A-ig) (dg° + ar?)
k== 2 2 2 > h-57
N° cos™¢ (dq” + dr%)

£'(A+iq) £'(A-iq) _

158
N2cos2¢

The above expression is simplified by recalling that (equation 2-33)

2
A, @n? o @n?, @y?

' 1(7) = (&= -
£1(z) £1(3) = (42 ) =GP G, b-59
(general-notation). In map projection-notation
z = X+ iq
therefore
2 2
£ (+ig) £1(a-1q) = () + EL)° 4-60
A oA
2
- (352, 3y
= () gD . 4-61

Substituting 4-60 and 4-61 into 4-58, yields the final result for the

scale factor:

9x.\2 oy, 2
VOIS

k= N cos ¢ > 4-62

9q
k = . 4-63
N cos ¢

(222 4 (2x)®
oq
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Note the two forms. For example, the first is used to evaluate the
scale factor for the Transverse Mercator (since x = x(A)j, while the second

is used for the Lambert Conformal Conic (since x = x(q)).

4.5 Geometry of Projected Curves

At this stage in the notes, it is necessary to describe the
geometry of projected curves. Specifically, we show the configuration of
meridians, parallels, and geodesics on the map plane, and their relation-
ships to the map grid system. Also,numerous terms are defined for later
use.

Consider a map plane, as depicted in Figure 4-3, upon which two
points have been mapped (transformed) from the ellipsoid surface. The
parallel and meridian passing through point 1, along with the geodesic
from points 1 to 2, have also been mapped. Shown on the map are
tangents to the latter two curves.

Three coordinate systems are shown: +the map coordinate system
(grid system) denoted by x and y; the translated map system denoted by
x' and y'; and the geodesic system denoted by & and n. The latter
system is orientated with the abscissa axis tangent to the projected geodesic.
The ordinate axis of the grid system makes an angle of y with the tangent

to the projected meridian. This angle is called the meridian convergence.

The geodetic azimuth a of the projected geodesic is the clock-

wise angle from the tangent to the meridian, to the tangent to the projected

geodesic. The grid azimuth T of the projected geodesic is the clockwise

angle from the ordinate axis to the tangent to the projected geodesic.



projected meridian

/{—tangent to projected meridian

projected

geodesic

tangent to
precjected
geodesic

x, v - map plane coordinates (grid coordinates)

a - geodetic azimuth of projected geodesic

T - grid azimuth of projected geodesic

t - grid azimuth of chord

Yy - meridian convergence

S - length of projected geodesic on the map plane
d -~ chord length

Figure U-3. Geometry of Projected Curves.
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The grid azimuth t is the clockwise angle from the crdinate axis to the

straight line (chord) connecting the two points. The chord length 4 is

the straight line distance between points 1 and 2. The projected length

5 is the length of the geodesic on the map plane.

4.6 Meridian Convergence

In this section we derive a general expression for the meridian
convergence in terms of general functions of the isometric latitude o}
and geodetic longitude A.

From Figure 4-3, we define the angle B between the x' and £

abscissae axes (Figure 4-L). We can write

LY {parallel to y)

P

projected geodesic

*™x (parallel to x)

4

Figure U-L. Angle of Geodesic

e ————— ..+ - 5.

tan B = %ﬁ-. L6k

The equation for the projected geodesic in terms of g and A is

f(q, 2) =0, ‘ L-65



and the parametric equations are

The total differentials are

and

dy

x = x(q, 1),
vy = y(g, A).
axX 90X

= 39 dg + i} dA

ay 3y
3q dq + 3\ di

Substituting the above in L-6L, yields

tan B =

3y 3y
Sq,dq + o dAa
9X oX
3q dg + %\ dA

and changing its form gives

Recall from 4-36, that

Substituting 4-T1 into

drx _
dq = tan o

4-70, yields

tan B

3y , 3y

8q,+ 3 tan a
9x . 3x
aq 9A

~tan a

and

tan o

Sy _ 3x
5q 3q tan B

3y _ 3x
%) %Y tan B

L-66

467

L-68

4-69

L-70

b-T1

h72

L-73
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The above two equations are rather basic and need further development
before an expression for the meridian convergence can be obtained.

Consider the case (Figure L-5)

y=8 b-Th
and o
a = 90°. . 4-75
y
)
projected |
parallel
prd
mg
» X

Figure 4-5. Meridian Comvergence

Rewriting 4-72 to handle tan 90° = ©, we get

1 9y .38
tan B = tan o 0q A L-T76
1 ox , ox

tan o 9q A

Substituting 4-T4 and L-T5 in 4-76, yields

ay
tan = LS h=TT
VT
oA
The Cauchy-Riemann equations

dy . 2%

dq  ax ’

Yy L &

3 3q °

allow us to write



4-78

Both of the above expressions are used to obtain the value of the

meridian convergence for specific map projections. For example, the

latter is used for the Lambert Conformal Conic, while the former is used

in the Transverse Mercator.



5. MERCATOR PROJECTION

In about 1550, Mercator created this projection imperically as
a result of attempting to have the loxodrome on the globe appear as a
straight line on the map. About 40 years later, Wright gave the math-
ematical description of the projection.

The requirements for the Mercator projection are:
(1) The scale is true along the equator;
(2) The origin for the ordinate y is at the equator.

In this section we treat the direct problem, the scale factor,
the meridian convergence, the appearance of the Mercator projection, |

the loxodrome, and the inverse problem.

Direct Problem

N
=

The direct problem is the determination of the map coordinates
x and y from the geodetic coordinateé ® and A. In other words, we ére
to determine the mapping function f in
x + iv = £(} + iq) . 5-1
Notice ¢ is replaced by g, as will be the case for all projections , since
the isometric plane is employed as an intermediate mapping plane.
The first requirement implies that
X = a\x , 5-2
where a is the semi-major axis of the ellipsoid. The equator portion of
the ellipsoid surface is mapped at its true size.
The second requirement impties .a-particular correspondence

between three quantities at the equator, namely
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Under these conditions our complex mapping function becomes

x + iy = a(x + iq) . 5-4

The above mapping function is conformal since the Cauchy-Riemann
equations are satisfied, namely

x _ 3y _
A aq ?

and

x _ Wy

9q OA
This complex function can be programmed using complex arith-
metic routines, or explicitly separated into real and imaginary parts to

cive

X = ak ,

Lole that the units of x and y are those of a, since the units of A and

q are radians.

5.2 Seale Factor

P4

Recall one of the general equations (equation L-62) for

ing the scale factor:

//SX\Q ik

(=) + (=)

A kD)

ko= ~ . 5-6
N Ccogs

it partial derivatives are evaluated by rescriing to the parametric

Y a

cquations of the Mercator projection leguation 5-5). The result i
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x _ . %y _
YRy W >=T
The scale factor becomes
k-_:.__g'...___... 5-8
N cos ¢

The scale distortion is zero on the equator and increases with latitude.
At ¢ = 90° the distortion is infinite which simply means the pole is

represented as a line like a parallel.

5.3 Meridian Convergence

Recall the general expression (equation L-77) for evaluating

the meridian convergence:

3y
_ 3.A
tan y = E£~ 5-9
d.A
For the Mercator projection
0
tan y = €-= o,
and
y =0 .

That is, the grid ordinate axis coincides with the tangent to the

projected meridian.

5.4 Appearance of the Mercator Projection

The appearance of the Mercator projection is deduced from the

several factors listed below (see Figure 5-1).



Appearance:

40°

b7

m
q = &n {tan(ﬂ

@ ¢= 90

+ Qﬂfl_e sin ¢

2" '1+e s8in ¢

q:oo

£
p}

scale

maintained

alon

g Equator

-0

Figure 5-1. Appearance of the Mercator Projection
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(1) vy = 0;

(2) x = 1 along equator;
(3) meridians and parallels intersect at 90°;
(L) meridians are equally spaced;

(5) the spacings of parallels increase as one goes away from

the equator.

5.5 The Loxodrome

Let us now show that a loxodrome or rumbeline is a straight line

on the Mercator projector. Recall that a loxodrome is a curve on the
surface of the earth (more strictly on the ellipsoid surface) that meets

the meridians at the same angle that is constant azimuth (Figure 5-2).

pole

loxodrome

¢+d¢

N cos¢ dA

A+dA

Figure 5-2. Loxodrome




From the figure

= N cos ¢ dxr _
tan o M 33 5-10
and
M
dAr = tan o E-sec ¢ d¢ . 5-11

~

Integrating the above, yields

A=A
o]

tan o q

or
A

g tan o + Ao s . 5-1D2
which is the basic equation for the loxodrome on the surface of ellipsoid

in terms of q. Given the mapping equations

= L
a=%,
5-13
A=
a

and substituting these into 5-12, yields the equation of the loxodrome

on the map surface, namely

X =7y tan a + ako . 5-14

This is nothing else but the equation of a straight line, where tan a is

the slope and alo is the x-intercept.

5.6Inverse Problem

The inverse problem is to compute ¢ and A given x and y. The
steps for achieving this are:

(1) Compute the longitude X from

X
A= 5-15
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(2) Compute the isometric latitude q from

= L
a

q 5 5-16

(3) Compute the value of the geodetic latitude ¢ corresponding

to q by the iterative method described in fection 4.1 .
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6. TRANSVERSE MERCATOR PROJECTION

This very widely used conformal map projection was invented by
Jchann Heinrich Lambert in 1772. His develbpment was baéed on elementary
considerations (probably a geometric approach). Some 50 years later,
Gauss gave an analytical derivation for the projection, showing that it
was a special case of the conformal mapping of one surface onto another.
Then L. Kruger, in 1912, completed the development of the Transverse
Mercator projection by developing the formulae further igiorder that they
would be suitable for numerical calculations (similar to those of 6~25
and 6-26). What a beautiful example of creating - formalizing -
implementing, all three processes taking over a century.

The requirements for the Transverse Mercator projection are:
(1) The scale is true along the central meridian;

(2) The origin of the ordinate y is at the equator;
(3) The origin of the abscissa x is at central meridian.

Treated in this section are: the direct probleﬁ; the scale
factor in terms of geodetic coordinates; the meridian convergence in
terms of geodetic coordinates; the appearance of the Transverse Mercator
projection; the inverse problem; the scale factor in terms of map
coordinates; the meridian convergence in terms of map coordinates; the

Universal Transverse Mercator Projection; and the Transverse Mercator

in three degree zones.

6.1 Direct Problem

Given the general complex mapping function
x + iy = £(x + iq) , (6-1)
the problem is to determine the specific mapping function f which fulfills

the requirements stated above.
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The third requirement implies that for the central meridian
X = A=0 , 6-2

thus for the central meridian (from equation 6-1)

il

f(iq) ,

f(q) . 6f3

iy

]

y

On the other hand, the first requirement implies that the ordinate value
¥y on the projection be equivalent to the length of the meridian S¢ on the

ellipsoid (Figure 6-1).

meridian

ellipsoid surface

ds¢

equator

Figure 6-1. Lengll of Meridian on Ellipsoid

The length of the meridian, from the equator to the point in question, is

given by the integral

¢
= [ Md¢ . 6~k

e}

y = S¢

Appendix I contains the solution of this integral.
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Further,
) .
y =/ Ncos ¢ dq , 6-5
0
y = flq) ,

since, through the definition of the isometric latitude,

Md¢ = N cos ¢ dq . ) 6-6
We thus have been able to determine the function f in 6-1,, but only for
points on the meridian.

The next step is to generalize the approach for points away
from the central meridian, but still close -~ say within 3° or so. For
these points, the abscissa  value will be non-zero and the ordiﬂ;te will
not be equal to the length of the meridian from the equator to the point.

To help solve this problem, we approximate the mapping function

x + iy = £(x + iq)
by a Taylor series, choosing some arbitrary point with coordinates Ao

and q_ as the point of expansion (Figure 6-2). First,

Central
meridian ?//1///point in question
|
14a
point of |
expansion e————
(Ag» a))
equator

Figure 6-2. Arbitrary Point of Expansion
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£f(}x + iq) ,

X + iy

fIAOfAA + 1(qo+Aq)] .

fRAO+iqo) + (M+iAg)] ,

f(zo+Az) = f(z) . 6-7

Then, approximating the complex function f(z) with a Taylor series
Xz ) (82)® 7Nz ) (82)>
+

21! 3!

+o PSR Y

£(z) = £(z_) + fI(zO)Az + o

or
iy = £(A +iq ) + £5(A +iq )(AA+iAg) + £N(A 44 )(,A}‘+1A9)2 6-9
XY= o o o 9 184 AT, 21

The above equations are made practical by choosing a different point of
expansion. This time the point is chosen to have coordinates q of the

point in question and to be on the central meridian (Figure 6-3). This

implies

Central
meridian

(O’ Q) ()\, Q)
[e e

J i i
t of
w__point of expansion point in question

» equator

Figure 6-3. Transverse Mercator Point of Expansion




55

A =0,
°© 6-10
Ag = 0 ,
and
q=q, *8a=4q, > €11
A=A+ A=A
ALt ,

Substituting 6-11 into 6- 9, yields

flign?  £III(ig)h°

x+iy = £(ig) + fI(iq)A T + T i 6fl2

s

To evaluate the function and its derivatives, we-rebitrn’ $o the fact

that the length of the meridian is (6-5)

¢
/ N cos ¢ dq . 6~13
)

Sy = £(q)

The function itself is
¢

£(iq) = if(q) = i / N cos$¢ dq . 6-1k
(o]

The first derivative is

Fiq) = f(z) = 8882) _a8(z)  da _dafle) . dg 1
dz dq dz = dg  az -15
Since
z = 1iq 6-16
1
a=<z,

and



Dd=z=-1, 6-17

: _ . afla) ., .y _ af(
£X1q) = 1 —-7ﬁ§l (-1) = —aaﬂl 6-18
#X(1q) = £(a) 6-19

The second derivative is

.y _ aff (ig) _ 4 .af(q)
E%IQ)—'*EggL”-ﬁz{jif“}

]

4 (4f(g), dq
dq " dq @ dz

t1iq) = £1¥q) (-1) . 6-20

The higher derivatives, are derived in an analogous manner,

that is
IIT
e (ig) = - £ (0)
£V (iq) = i1 (q) , 6-21
v
' (iq) = £’ () ,
Substituting the evaluation of the derivatives into 6-12,
yields

x+iy = f£(A+iq)

f(iq) + £'(g)r +

el 2 o HIIT 3
+ (—l)f ‘(Q_)A —- f __3..'.19____))‘ +
et ' 6-22
ifIV ( )lh

+ ..

¥
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All that we have achieved up to this stage is to replace the complex

derivatives with real ones (compare 6-22 with 6-12).

After separating into real and imaginary parts

IT 3 \'/ 5 VII T
i ER Mg M
6-22a
IT 2 Iv N VI 6
f A f A f
y = £f(q) - 2§Q) + h§Q) - é?)l + oieee

x and y can be solved for in the above after specifying the values of A
(longitude positive east of point relative té the centralﬁﬁbridiaﬁ: i.é}
A= Ay = Apoint) and q (computed from ¢). The only problem left to be
solved is the evaluation of ‘f(ig), fI(iq), etc.

We have to evaluate the real derivatives still further to get

an expression that is suitable for computations.

The first derivative is (from 6-5)

ds f(q) }
fI(q) = —5% = é;q =N cos ¢ .

The second derivative is

ff?q>=[§—{}cos¢-1vsin¢]§%.

where, from the definition of the isometric latitude,

a6 _ N
dq M cos ¢ ,
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dnN

i (N-M) tan ¢ 6-23
SO
™(q) = :g-sin 24 . 6-2k

The higher derivatives are computed in Thomas [1952]. Substituting these

into 6-22a yields

3 3
= Acos ¢ + A——%9§~i (1 - t2 + n2)

= b

5 5
+ l——%%%J@ (5 - 1862 + t* + 142 - 586242 + 130"

-

# und _ eun*t? - 2untt?)

T T
#2050 (6 7042 4 179" - £6) 6-25
50L0
v Sp  a° A 3 2 2 4
F= ﬁi + 5 sin ¢ cos ¢ + S~ sin ¢ cosT¢ (5 -t +9n” + Un")
x6 5 2 L 2 22
+ 756'sin ¢ cos”¢(61 - 58t° + t + 270n° - 330t7n
+ hMth + 32hn6 - 680nht2 + 88n8 - 6oon6t2 - 192n8t2)
28 7 2 N6
* 15330 sin ¢ cos ¢(1385 - 311t" + 5L3t - t7) 6--26

where the longitude A is expressed in radians, and

¢
S¢ = g Md¢ , (from Appendix I)
t = tan ¢ , 6-27
ne = (e1)? cosg¢ , 6-28
2 2
(ec)e.—..a_.._'é'_l)___ N 6__29
b

The above mapping equations yield x and y values accurate to 0.001 metres

for A = + 3°., This completes the direct problem.
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6.2 Meridian Convergence in Terms of Geodetic Coordinates

Recall the general equation (equation 4-T7) defining the

meridian convergence

oy
EY)
tan y‘— % 6-30
a3
If we differentiate equations 6-25 and 6-26 with respect to A, and
substitute into 6-30, we get [Thomas 1952, p. 97] .
2
tan y = XA sin ¢ [1 + %-cos o(1L + £2 + 3n2 + 2nh) +
thoshg 2 i 2 L
+ G (2 + Wt + 2t + 150 + 35n -
- Lo tgnh + 33n6 - 60t2n6 + 18n8 -
3
- 2k t2n8) + 5%%—(1 + t2) A§ cos6 ol . 6-31

This expression is developed by a series expansion of the arc tan, that is

y o= tan—l {R.H.S.} in the above. The result is [U.T.M., 1958]

2 2 . Loy
Y = A sin ¢[1 + l§%§%7g (1+ 307 + 2n") + 2 C?S )h(2 - t9)1,] 6-32
15 p"

where y and A are in radians; p" = cosec 1". The above expression has
been truncated and can be applied out to 3° from the central meridian
with an expected accuracy of 0Y0l in y. We note that the meridian

convergence 1increases as we go away from the central meridian.
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6.3 Scale Factor in Terms of Geodetic Coordinates

Recall the general expression for evaluating the scale factor

on a conformal projection (equation L-62)

9X\2 . 3y 2
. /<-5;i) + (35

N cos ¢ : 6-33

We first change the form of the above to be a function of tan y by

squaring 6-30, namely

(&
banly = —0A
TR
oA
and
27 @% 1 222 (1 4 pardy) 6-3u
o 3 T Vo ny/. -
Substituting 6-34 into 6-33, yields
%%- 1+ tanzy
k= N cos ¢ ) 6-35

. 2. . . .
Since tan vy is small, we can expand the square root term into a series,

and after evaluating the partial derivative, the result is

2 L 4
k=1 + 35- cosZ¢(1+n°) + 5—§§§—$ (5 = Lt2+ 1hn° +
b 22 6 2k 6

+ 13n - 28t“n° 4+ Un - LBt n - 2ht2n ) + 6-36

6 6
3—%%%—$-(61 _ 10862 & 168 .

+

A somewhat truncated expression is
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2 L
kK = 1 + 3—2— coss (1+n2) + )——c—gﬁ—i (5-4t2) 6-37

where the eighth significant digit may be in error by one or two units.
Note the scale factor increasés as one's longitude relstive to the
central meridian increases; for a constant latitude. Along the same
meridian an increase in latitude causes a decrease in the scale factor.

6. 4 Appearance of the Transverse Mercator Projection

The following facts govern the appearance of the Transverse

Mercator projection (Figure f-L):.

Central
meridian

Pole

«
>

equator

pole

Figure 6-L. Appearance of the Transverse Mercator
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(1) x = 1 along the central meridian, thus the two poles
are plotted at ordinate values equivalent.to the length of the meridian
between the pole and the equator;

(2) for points off the central meridian the ordinate value y'
is greater than the ordinate value y, a point on the same parallel of
latitude but on the central meridian;

(3) v increases with longitude away from central meridian;

-

(4) meridians and parallels intersect at 90°.

6.5 Inverse Problem

The direct problem was stated in equation form as
x + iy = £f(A + iq) . 6-38
We write the inverse problem analogously as
X+ iq = F(x + iy) , 6-39
where ¥ is the ampping function to be determined and is different from
f ofthe direct problen.
We begin by approximating F(x + iy) in 6-39 by a Taylor series.

T'he point of expansion will, at first, be chosen to be some arbitrary

point on the map plane with coordinates x _ and y_ (Figure 6~5).
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¥y

Transverse Mercator
Point of expansion

parallel of latitude

oint in question
(o, y)p————————————— P d

————— -

(xo, yo)
'——_ ——————

/

arbitrary point of expansion -

\ J
™

Figure 6-5. Arbitrary and Transverse Mercator Points of

Expansion (Inverse Problem)

Thus
X+ iq = (Ao+iqo) + (AA+iAq)
= F(xo+iyo) +FI(xo+iyo)(Ax+iAy) +
I .
F {x +iy )
+ -———f%r-il— (Ax+idy)2 + ... 6-40
I’ ITII(ZO)(AZ)2 FIII(ZO)(AZ)3

= F(zo) +F (zo)(Az) + 51 + Tt e

6-U41

Now we choose a more practical point of expansion for our Teylor series -

this time one with coordinates (o, y) (Figure 6-5).

X

o = 0 implies x = x_ + Ax = Ax and (A = 8)); 6-L2

Y, = ¥ implies 4y = 0 and (Aq = 0) . 6-43

Taking into account the above implications in 6-40, we get
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N2 a3
Aiq = F(iy) + Fl(iy)x + Fnéfl)x y Eiy)x” | cee . 6-Ll

31

Note that on the central meridian

x =0

F(iy) . 6-L45

iq

The geométrical situation associatéd with thé above equation

is depicted in Figure 6-6. Shown are two paralléls of latitude - the
parallel through the point in question with latitude ¢ , gnd the parallel

through the ordinate value y on the central meridian. The latitude of

the latter parallel is ¢154nd;is;c§1%eg‘tge,footpoiﬁtilﬂﬁitddezinna;ﬁe

T ey e e

Thomas [1952]. Corresponding to ¢ is the footpoint isometfic latitude
9 -+ Accordingly, 6-45 is written as
iq, = F(iy) . 6-46
As a first step in making the mapping equations (6-4Lk4) practical

for numerical computations, we evaluate F(iy) and its derivatives, leav-

ing off the subscript 1 for the time being.

Footpoint

central

meridian parallel through y of point in
A (//'question

y

Parallel of point in question

lat itude¥

¢l
latitude
¢

\_

Yy

Y

X b'd

Figure 6-6. Footpoint Latitude.
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The first derivative is

F(iy) = Ely) _ dlig) _ ; dg | dSq

d(iy) ~ a(iy) _* d8q a(iy) °’

where in general
iy = iSs
and in particular
iy = iS¢l = iSql-
T hen the last derivative in the above becomés

ds
—a _41
i

.

If we define

then the result is

The second derivative is

o d
adL adyy

II,. ds ds I 1
F o (iy) = 4 = ! 4 = -
a(iy) q a(is )
q
I1T1,. .
Fo(iy) = - 1qII .

The higher derivatives can be derived in an analogous fashion,

they are:
(i) = - &0
PV (iy) = iq™
Foo(iy) =4,

(sequence repeats)

6-47

6-L8

6-L9

6-50

6~51

6-52

6-53

6-54

6-55
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Replacing the subscripts for the footpoint latitude in the
function and its derivatives, 6-44 becomes
L IT1. 2 II1 3 . IV L
ig); x qQ, X iq) x

. . I 1 1 1
Atiq = 1ql+xq1 - 5 - 35 + I + oeee 6-56

and separating into real and imaginary parts the above becomes

3 5
I x> III L x° V _
A= xq - T 5T Y +oeee 6-57
2 4 i
_ X IT | x v .
Q=9 - 379 +T! a + ceee 6-58

Note the last equation in the above gives thé différence, Aq = Q-9 »
between the two isometric latitudes. This is used below in deriving the
final expression for the geodetic latitude.

Derivatives of complex functions in 6-44 have been replaced by
real derivatives as shown above. Now we evaluate the real derivatives.

Recall

¢
S =J N cos¢ dg . 6-59
1 5

The first derivative is

I dq _ _ 1 . _
a = dSq N cos¢ 6-60

The second derivative is

2
II d t
R 6-61
ds N cos¢
q
The third derivative is
I1I d3 1

q = % = (l+2t2+n2) . 6"'62
q

N~ cosé
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The higher derivatives have been worked out in Thomas
(1952, p. 101].
Substituting the derivatives in 6-57 and 6~58 along with the

above expressions results in the following expression for the longitude

A

A = [5-—-;(3—)3(1 + 2t2 + n2)
= sec ¢ N T 6N, 17 M

2 L 22 N

+ o 120 (N ) (5 + 6n + 28tl - 3n, + Btlnl + thl

6 2l 2 6 !
- unl + htlnl + 2ht )
(——J (61 + 662t + 1320th + T20t, )] , 6-63

- soho 1

l

where the subscript 1 denotes that the functions be evaluated using the
footpoint latitude ¢, (Appendix II), and 't , n, are given by 6-27 and 6-29.
The accuracy of the above formula is plus or minus 0.00001 arcsecond for
A less than 3° from the central meridian.

The derivation of the corresponding expression for the latitude
¢ is more involved. It is necessary to obtain an expression for A¢ = ¢—¢1
as a function of the difference Aq = a-q, (6-58). Then the solution for

the latitude is
o= ¢ +Ahp=¢ g(ha) , 6-64

where ¢l is the footpoint latitude corresponding to a meridian of length
y¥. The determination of ¢l given y is documented in Appendix II,

We now expand A¢ by a Taylor series in Aq,

d¢l Aqi d2¢l Aq3 d3¢l
A = ¢ - ¢, = g(Aq) = Aq G== 4 5yE —pm - —g= ... 6-65
% aq) day

Noting that, from the definition of the isometric latitude,
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d¢ N.cos¢
1 1 1 2
= = (1 + nJ) cos ¢, . 6-66
dql M1 1 1
The second derivative is
2
a“¢ N N
1 1 2 1
—— =1 cos ¢, (2 -3=) ,
dqi Mi 1 1 Ml
2 2 2
=~ (1 + ﬂl)(l + 3nl) tijcosTg, . 6-6T

The higher derivatives are given in Thomas [1952, p. 102]. Substituting
the derivatives of q (6-60, 6-61, 6-62) into 6-58, and the result for Aq
into 6-65 along with the derivatives of ¢l (6-66, 6-6T7) into 6-65, the

final equation for determining the latitude is obtained:

L
X tX
_ 1 1 2 2 i 2.2
¢ =4 - PN, * 13 (5 +3t) +ny - ln, - 9n7t))
- M Ny
6
t X
-2 (61 - 9Ot2 + h6n2 + hsth - 252t2n2 - 5n
72OM1Ni 1 1 1 11 1
6 .2k b2 8 b
+ 1oonl - 6btlnl - 90tln1 + 88nl + 225tlnl
26 2 8
+ 8htlnl - 192tlnl)
8
tlx 2 I 6
L (1385 + 3633tl + ho95tl + 1575tl) R 6-68
)40320M1N1
where
tl = tan ¢1 )
ni = (e')2 c052¢l ,
2

2 2 2
=(a” -b7)/b
The accuracy of the formulae is + 0V00001 within 3° of the central

meridian.
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6.6 Meridian Convergence in Terms of Map Coordinates

In the inverse problem the map coordinates x and y are given.
The aim of this section is to express the meridian convergence as a
function of x only.

From equations 4-77 and L-78,

3y ax
=92 _w®¥q _ 4y
R & T &
D 3q ”

for q = constant. Knowing that in general

q=q (x,y)

and that the total differential for the case when q is constant is

_ 9g 39 4o = -
dgq Xt 3y dy = 0 , 6-70
and
dy _ _ 29y g .
dx ox Ay
Thus
g 3q
=&y _ _3x _ _ 3x _
tan y = 75 g YN 6»71
oy 9x

since from the Cauchy-Rieman equations (equation 4-50)

39 _ 3A _
5y = ox 6-T72

The derivatives of 6-Tl are obtained by differentiating 6-57

(A = A(x)) and 6-58 (q = q(x)). The result is
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5 I Ei v, 52_ VI
29 9 "% H "ol T
tan y = = ox 2 4 ‘ 6-73
99X I x III+’x \
ax T2 Y TSR 4 cee

Substituting the expressions for the partial derivatives, from 6-60

through 6-62, into the above, yields [Thomes, 1950, p. 10L]

t t
1 1 ,x \3 2 N
tan y = == x - == ()" (1 - nS = 2n;) +
N, 3N, 1 1
+ El-(-’5—-)5 (2 + 202 + on* + 66202 + 2000 + ° 6-Th
15 N, Nyt ony 1M Ny =1
17t T
24 26 8 28 1 ,x
+ 3ty = 27tIn; + 1ln, - 2htlnl) - 3T (Nl) .

y may be computed knowing x and the footpoint latitude ¢1 corresponding

to y.

6.7 Scale Factor in Terms of Map Coordinates

It is often convenient to compute the scale factor as a
function of the map coordinates. You will witness this is Section II
when we deal with computations on a conformal map plane.

From equation 6-35, the reciprocal of the scale factor is

1/2
= N cos ¢ % / (1+tan27) . 6-75

==

After computing the partial derivative from 6-57 (A = A(x)), expressing
the square root term in a series, and expanding N cos ¢ in a Taylor
series with the point of expansion being the footpoint latitude ¢l, the

equation for the reciprocal of the scale factor becomes [Thomas 1952, p. 105]
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2 L 6 2k 22
1, 1402 (5,02+ 5+ 6n] - 3n, - hnl + zhtlnl + zhtlnl (E_qhm 61 (£~)6
k z Nl 2k Nl 720 Nl
’ 6-76
The reciprocal of both sides yields the expression for the scale factor,
namely
1+n 5 1+ 6n2 + 9nh + hn6 - Ehtenu - 2ht2n6 L 6
2 Nl 2 Nl 720 Nl
6-T7

6.8 Universal Transverse Mercator (UTM)

The Universal Transverse Mercator projection is based completely
on the transverse mercator projection. In this section we give the
specifications for the UIM, and the equations for the direct and inverse
problems.

Its specifications are as follows [UTM 1958]:

(1) transverse mercator in zones 6° wide;

(2) reference ellipsoid ~ Clark 1866 in North America, with other
ellipsoids used elsewhere;

(3) longitude origin - the central meridian;

(4) latitude origin - the equator;

(5) unit - metre;

(6) false northing (y): O metres for northern hemisphere; 10,000,000
metres for southern hemisphere;

(7) false easting (x): 500,000 metres;

(8) scale factor at the central meridian: 0.9996;

(9) zone numbering: beginning with 1 for zone between 180°W and 17L4° W

meridians and increasing to 60 for the zone bounded by meridians

174°E and 180° E (Figure 6-7).




Zone |Zone Zone
1 2 60
A A
\%4 A4 equator
180°W 168°W 0° 180°E

Figure 6-7. UTM Zones

(Ssee Figure 6-8 for the zones for North America).

(10) The latitude limits for the system are 80°N and 80°S due to the many
sones' that would be involved when wurking within an area of any

appreciable extent.

Scale Factor on the UTM

By choosing a scale factor of 0.9996 on the central meridian

we expect from equation 6-37
2

k =1+ %”-cos2¢ ool 6-78

that the scale factor increases as we go away from the central meridian,

reaches a value of 1, and then increases beyond a value of 1 (Figure 6-9).



N

UTM

Yigure A-8.

North America

AHones for




Th

Central meridian

‘ AN = 6°

s\, = 0:9996

220 km

Isoscale curve

Figure 6-9. Scale Factor on the UTM

At what distance away from the central meridian, say along
the equator, is the scale factor equal to 1% To answer this question

we first write 6-78 as
2 cos2Q ' K
k=k[1+2" 51, - 619

where ko is the scale factor on the central meridian (for the UTM
ko = 0.9996). If Ak is the scale difference between that at the

central meridian ko end k, then




5

we get

1/2
o) o /5—_ [ Ak ]

AT = o] 6—'80

cos ¢ k-c»
For our case, Ak = 1 - 0.9996 = 1/2500 = 4 x lO—h. Therefore at

¢ =0°, A=2°

) Lo°, A 3° .
Along the equator, at a distance of about 220,000 metres, the

scale factor is equal to unity.

Mapping Equations for the UIM

Let us trace through the equations of the transverse mercator
and see how they are affected by the stipulation of ko = 0.9996 on the

central meridian. First,the meridian distance is

¢ ¢
y = kos¢ = k_ gm .« d¢ = koiN cos¢ dq = kof(q).6-8l

We see that the function f(q) is modified by ko, and thus all derivatives

will be also modified, namely

K a” £(q)
(e} n
dq

. 6-82
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Then the mapping equations for the direct problem for the UTM in terms

of the Transverse Kercator equation is

X X

O T S B 6-83
Y urM™ Yo

The meridian convergence for the UTM is the same as the TM since in

=%y ,3x -
tan vy = 3% /35 s 6-84
the ko cancels. Therefore
Ygrm = Yrm o 6-85

The scale factor for the UTM becomes

o = % oy 686

For the inverse problem we wish to use the TM expressions but with

X
o : . _ _UIM
UM coordinates. This means Xy = ko

, 80 in the expression for A we

write

3 p)

C*urw 1 *ymv o1 *umv v
= ql- 3ql - 5 ql+... . 6-87

o 3!k 5!k

o) o

Thus we see that the derivatives need appropriate division when UTM
coordinates are used in the expression. The same holds for the equation
for the latitude.

Tables have been prepared for the computation of the direct

and inverse problems. The interested reader is referred to [urTM 1957].
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6.9 Transverse Mercator in Three Degree Zones

We have seen that the U.T.M. is the traﬁsverse mercator
projection in 6° zones. In Canada the transverse mercator in 3° zones
is also being used. For example, in Ontario [Dept. of Highway 1968]
Canadian numbered-zdnes 8 throﬁgh 17 are used as a basis for the Ontario
Coordinate System (Figure 6-10). 1In fact, the boundaries of these 3°
zones are slightly modified (see Figure 6-11). -

Since the zone width is chosen to be only 3°, and a scale
factor of ko = 0.9999 assigned to the central meridian, we can expect
a smaller scale error throughout the zone. In fact, the error is
1/10,000 on the centralvmeridian as compared to 1/2,500 for the UTM.

We can compute the distance away from the central meridian where the
scale factor is 1. This can be done by simply employing equation 6-80,

where, in this case, Ak = 1-0.9999 = 1/10,000. Therefore at

[

$ = 0°, A 0°.81,

[t}
L}

o 50°, A 10.26.

429712, k = 1.000085. (see figure 6-12).

At A = 1°30', and ¢

The transverse mercator equations can be employed here as well

by simply using the scale factor ko = 0.9999.
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7. LAMBERT CONFORMAL CONIC PROJECTION

Lambert developed his conformal conic preojection in 1772 -
the same year in which he created the Transverse Mercator projection.
The Conformal Conic is used worldwide.

The requirements of this projection are:

(1) parallels are to be parts of concentric circles;
(2) meridians are to be radii of concentric circles.

Treated in this section are: the direct problem; the scale

factor; the meridian convergence; the one and two standard parallel

cases; and the inverse problem.

7.1 Direct Problem

As before we state the direct problem as
x + iy = £(A + iq) ,
where the complex mapping function f is to be determined. f is
determined by first separating into two’functions fl and f2. These two
functions are determined by the help of the Cauchy-Rieman equations.

The following equation of a circle is a mathematical char-

acterization of the first requirement for circular parallels:
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< + y2 = K?fl(q) T-1
where K is the constant for the radius and is to be solved for,'fl(q) is
a function of the isometric latitude q and is to be determined, and x and
y are the map coordinatescorresponding to the coordinate system shown

in Figure T.1.

v T meridians are straight lines

- ars o ——— oo -

parallels are clrcles

<

e R R ——

_ s central
Pole ’ X meridian

Figure T-1l. Parallels and Meridians on the LCC

The second requirement for straight line meridians is given by
vy = fg(l)x + 0. T2
where fg(}) is the second function to be determined.

Substituting 7-2 into T-1 yields
<2+ f22 (x) x° = K° £, (@)

From the above, the following parametric equations can be written:

x = x(x,a)

Kl (@)

x = 2 1/2 7-3
L2000

[1 +f
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and

(>
i

y()‘sq) S

1/2
K 2,0 [1(2)] "

[1+ 5,2 ()12

We now employ the Cauckhy-Rieman equations to help us solve for the rl(q)
and f2(x).

Recall from equation L4-50

ax _ 3y dx _ 3y | 75
9  9x 3 3q

The above partial derivatives of 7-3 and T-L4 are (note variable is left

off function from this point forward):

I
ax _ K fl ‘ up
dq 1/2 2,1/2 -
To2(s) / (1+£,7) /
1/2 I
ax _ -K(£f,) .1, ‘
A (1 +f 2)3/2
2
I
ay _ 1 K f2fl . -
. ’
Bq 2 (f )1/2(l+f 2)1/2
1 2
S s : -9
Y (147 2)3/2
2
From the first set of Cauchy-Rieman equations we get
flI 2f2I
-7 T, = 2%, T-10
1 1+ f2

where £ is a new constant to be determined. So from T7-10, we can write

two equations:
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I
fl
ranie -2% T-11
1
I
5
- > = 4, T-12
147

We shall see later that the constant % is associated with the longitude

and is a function of the latitude ¢.
From the second set of Cauchy-Rieman equations we get

£ I p I
2 1 "1 .

- =5 T ek 7-13
(1+f2 ) 1

where £ is the same constant as for the first set. The two equations

arising from the above are:

flI

= -2, T-1k
1

f2I

——, = 1. T7-15
l+(f2)

Up to this point we have determined two equations from which we shall

be able to compute expressions for fl(q) and fg(l) in terms of the constant

K and ¢.
To begin with, let us determinafl(q) from T-1i4 by integration,
namely
af
—= = -22dq T-16
f
1
dfl
J— = -2¢fdq, T-17
fl

In £ +C, = -20q + C, 7-18
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:tn - + -
fl 2%q C3 ’ T-19
where C3 is the combined constant of integration. 03 is evaluated by
considering that
Jan fl = 0, T-20
when q =0, T-21
thus C3 =0, T-22
We have then
In £, = -28q, T-23
£ = e~ T-24
1
The second function fz(x) is determined from 7-15 by integration,
namely
1
/ 7 df2 = [Rdr T-25
1+ (fe)
-1
tan f2 = A, T-26
f, = tan (ar). T-27
Introducing the expressions for fi and f2 into the parametric
equations given by ' F3 and T-4, yields
x = - T-28
- 1
[1 + tan?(20)]2
_Qq
x=Ke cosfA | T-29
y = K = %9 Tsinn . 7-30

From the above mapping equations, we can compute the radius of

any parallel from:
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2]
L1}

X2 + yg,

r2 = K2 eﬂgzq (c0522A + sin2 2A),

r =K e_zq,. T-31
The mapping equations can be now rewritten as
X =r cosfx T-32
y = r sinfh > T-33

where r and 2\ are shown in Figure T-2.

y (east

4

meridian

central
™ meridian
X

Pole

Figure T-2. Polar Coordinates for LCC

Figure 7-2. Polar Coordinates for LCC

The complex mapping function f is finally determined by com~

bining 7-29 and 7-30. Ve get

i

x + iy = £(x + iq)
-2q .
= Ke (cosfA + 1 sin 1) T34

and by using Euler's equation (2-40),

x + iy = Ke—gq elgx
x + iy = Kez(_q+lx)
x + iy = K.ell()\+1q). =35
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Note the above complex mapping equation is in closed form. This expression
can be programmed using complex arithmetic once the constants K andf are

defined. K and % are defined below for the one and two standard parallel

cases.

T.2 Scale Factor

The general expression for the scale factor is(from equation 4-63).

>

_ [(9X\2 9y 2q1/2
k = [(aq) + (aq)A] / N cos ¢ . T-36
For the LCC
%§-= - Kg. eﬁlq cos fA T-37
CNA. K 2 e—gq sin ¢ A 7-38
aq
and
L o ke
N cos ¢ 7-39

The scale factor can be computed for any point on the projection

with known geodetic coordinates, again, once the constants K and £ defined.

T.3 Meridian Convergence

One of the gereral expressions for the meridian convergence

derived earlier (equation 4-77) was
_ 3y, 3x -
tan y N / T 7-40

F'or the LCC
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3y . g r sin g A, T-h1
A
9X = 4T cos %A, T-42
A

thus

Y = %A T7-43

7.4 Two Standard Parallel LCC

In this section we develop the mapping equations for the two

standard parallel LCC.

If we stipulate the scale factor to be equal to one along two

parallels, then we can write (using T-39)

K 1M gy oMy

Y cosi. ~ Neem. . = * T-bb
1 1 5%
~-fq N, cosé

e 1 - k1 7-L45
-1q
e 2 N2 cos¢2

where the subscript quantities pertain to the two parallels.
Taking natural log of each side of the above equation yields

~£q1 +%.9, = In N; + 1n cos¢; - In N, - 1n cosé, , T-k6

which definesg the constant §£:

) In N, - In N, + 1n cos¢, - ln cos¢, T-UT

L = .
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From T-Lk, the following expression defines the constent K:

N. cosé. N, cos¢
Kzl l=2 2 ) 7'-’48

fem29y Le2d,

The above two expressions for the constants K and 24 complete
the description of the direct problem - recall the complex mapping equation

(7-35)

x + iy = K ei&(l+iq) . ‘ T-49

T.5 One Standard Parallel LCC

The one standard paralled LCC has as its basis the stipulation

that the scale factor be equal to one along only one parallel of latitude

¢O . We can then write
...JQ/q
v K
k - l = .—..&...@____9_ . "(__50
No cos¢O
N cos¢ =2 Ke_zqo T-51
fo) o ' '

But from T7-31, the radius of any parallel is given by

r=Ke . 7-52
so we can write an expression for the radius of the parallel with latitude
¢o’ namely

K e % . 7-53

T-51 then becomes
No cosd:O = Qro. T-54
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This special radius also has a geometric interpretation as illustrated in

Figure T7-3.

Figure T-3: Geometric Interpretation of Radius of Standard Parallel

Another expression for standard radius is

r = NO cot g - T-55

The constant 1 can be determined by substituting 7-55 into 7-54,

NO cosdao = 9 NO cot¢o

=
]

sin¢o . T7-56

The expression for the constant K becomes (from 7-31)

sin
eo ¢o

. T-57

K = NO cot¢o

The above two expressions along with the complex mapping funtion

Q (X"'iQ) > 7_58

x + iy =K e

constitute the equations for the direct problem for the LCC one standard

parallel projection.
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7.6 Modification to Coordinate System

The coordinate system exhibited in Figure T-2 is not convenient
in practise. We make two modifications: interchange the x and y, and
change the location of the origin to decrease the magnitude of one of the
coordinate values.

We had from T-32 and T-33

x=1cos & A, : T-59

r sin £ X ,

Yy

Now we interchange the coordinates which results in

i

x =1 sin & ) ,

y=1rcos & A . T-60
The equations which reflect a change in the origin are

(Figure 7-4)

r sin ¥ x ,

it

X
T-61
y=r_ - rcos oA,

where r is usually selected such that it is slightly larger than the

coond term Lo prevent uegu.niy wna large values of y.

Yy

A

pole

origin parallel - close to area

X

Figure T-4: Modification to Original LCC Coordinate Sy#tem
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Two ways in which to select r, is to select some(po below the area

in question and compute

H
i}

K e~xqo (qo from ¢O), T7-62

or

7-63

2]

i}
=

[¢]

0
t
©-

e]

T.7 Inverse Problem

In the inverse problem the map coordinates x and y are given along
with the constants ro,z., and K. Required are the geodetic coordinsates

¢ and A.

Figure 7-5. Inverse Problem

From Figure T7-5, we can get the :xpression for the longitude by writing

tang = . T-64

and
B = LA T~65

-8 -
A= . T-66
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The latitude is obtained in the following steps. First

compute r from

r -y
O T — T-67
cos ©
We know that
r =K e~ta T-68
1o
Inr =1n K -2.q T7-69
and thus
_InK-1lnr T-T0
1= L

Once the isometric latitude is determined,¢ may be determined by using

the Newton - Raphson approach described earlier.
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8. STEREOGRAPHIC PROJECTION

In this section we first derive the expressions for polar
stereographic projection and its implimented system - the Uni#ersal
Stereographic Projection. Secondly, we give references pertaining to
the stereographic projection as implemented in New Brunswick.

>

8.1 Polar Stereographic Projection

The polar stereographic projection is a limiting case of the
LCC. Meridians are straight lines and parallelé are concentric circles.
In this section we deduce expressions for the direct problem, scale
factor, meridian convergence, and inverse problem from the exprgssions
already derived for the LCC.

The constant % for the one standard parallel is (7-56)

2

sin ¢_ - 8-1

For the pole, ¢O = 90, and L =1 . The expression for the scale

factor then becomes (T7-39)

. ket 8o
N cos ¢ i
and
- q
K =k N cos ¢ e . 8-3

We have seen that q increases without limit as ¢ approaches
%-, 50 the above expression breaks down at the pole. We transform the

expression as follows:
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K=kNcos ¢ e(l = k N cos ¢ tan (%‘+ %ﬂ (l_:_s_§i£_$) e/2

1+ in
e sin ¢ 8-l
We make the trigonometric substitution
T, ¢y _ _cos ¢
“tan(ﬁ-+ 2) 1 - sin ¢ 8-5
2 R
X N cos” ¢ (l - e sin ¢ )e/2 8-6
1-sin¢ ‘1 + e sin ¢ -
- a1 +2s:Ln g) i3 (L-esin ¢ye/2 4 .
(1 - e° sin® ¢) 1+ e sin ¢
At. the pole ¢ = 90° and k = 1, so
1~ 2
= 8-8
Vi-e%)
2a2 l-e,e/2
k=5 (5 6-9
The expression for the scale factor is
2
_ 2a l-e\e/2 -q
k= T cos ¢ (1+e) € 8-10
The meridian convergence is
y = 81 = A 8-11
The compleX mapping equation for the direct problem is
x + iy = K elx(l+lq) N 8-12

where £ and K are definelabove. The inverse problem is solved as for the
LCC.

The Polar stereographic system is applied in practice as the
universal stereographic projection (U.P.S.). It has the following char-
acteristics [yPsS 19 58 ]:

1) units - metres

2) ellipsoid - international;
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3) pole coordinates: x = 2,000,000; y = 2,000,000;
L) kpole = 0.994
The UPS was designed to be used in conjunction with the UTM to

cover the entire globe: UTM to 80° latitude and USP from 80° to 90°.

8.2 The Stereographic Projection System in New Brunswick

The above is not a complete treatment of stereographic pro-
jection.b For a more detailed coverage, see the following‘two Department
of Surveying Engineering, University of New Brunswick Technical Reports:
(1) Frankich, K. (1977). A Study in Conformal Mapping. Department of

Surveying Engineering, Technical Report No. 45, University of

New Brunswick, Fredericton.

(2) Thomson, D.B., M.P. Mepham, R.R. Steeves (1977). The Stereographic

Double Projection. Department of Surveying Engineering,

Technical Report No. 46, University of New Brunswick, Fredericton.
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9. A GENERALIZED SET OF CONFORMAL MAPPING EQUATIONS

9.1 Introduction

In the previous sections, we indicated which conformal map
projection is best suited for areas of a particular shape such that the
scale error would be a minimum. For example:

(a) North-south extent, Transverse Mercator,.

(b) East-west extent, Lambert Conformal Conic.

A legitimate question to pose is: What map projection is to
be employed when an area is located obliguely to the north-south or
east-west directions. An oblique projection? This is one possible
answer, but how about areas which are arc-shaped, e.g. circular,
hyperbolic? A possible answer to the above questions is given below in
connection with the analysis of a generalized set of formulae for the

conformal mapping of the ellipsoid onto the plane.
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9.2 Generalized Formulae for Conformal Projections

The generalized set of formulae were formulated after a careful
analysis of the equations belonging to the various particular conformal
map projections.[Krgkiwgky.1967], Given below is the generalized set of
formulas in our notation where C¥ is a constant, R is the radius of curva-

ture of the ellipsoid at the central parallel, S¢ the length of the

meridian, and- the length of a parallel given by Sp = AN cps ¢. 9-1

38 2 2
. *

x=(1+—-~§2—)s + (& __6--J°_2)s2 *o... 9-2
c*R P 6c*R° 6R ?
g3~ ., 38 )

y:S¢+_.Q._:.é. +(.é_1.\l_____...%..2_)s + .. 9~3
c* R c* R P

The corresponding general scale factor equation is

6S¢2+ (c* - 6) s°
k=1+ 7 s . 9-L
2 C¥ R

The main result is the above equation for the scale factor.
The above set of formulas are good for maps at a scale of 1:50,000. 1In
order to insure an accuracy of 1 to 4 meters in x and v, the area is
limited to 450 km in latitude and longitude. More accurzcy in x and y

can possibly be achieved simply by including more terms in the expansion.

9.3 Application of the General Scale.Formula

Specific map projecticns along with their varying shaped isoscale
curves are derived by simply stipulating particular values for the constant

C¥ in 9-L. An interesting analogy exists in physics where the path of
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motion of a particle in a central force field is determined to be an
ellipse, hyperbola, etc. by simply stipulating a certain value of a
constant in the solution of the differential equation of motion.

A wise selection of the constant C¥ makes it possible to obtain
projections whose isoscale curves have the shape approaching that of the
area to be mapped.

It should be noted that 9-L4 is to be used only to investigate
possible conformal projections; the actual computation of the scale should
be performed with extended formulas giving more accuracy.

Imediately below, seven possible conformal projections are...

discussed as special cases of the general, among which will appear the
four basic (Mercator, T.M., L.C.C., Polar Stereographic) conformal
projections describéd earlier in these notes.

Case C* = » (Transverse Mercator):

The scale factor equation becomes

6 s¢2 c¥* sp2 6 sp2
kK =1+ + -
— —D
2 C*¥ R 2 2 C¥ ﬁQ 2 C¥ R~
s 2
:l-l——R-?
2 R™
2
=1 + A_ cos - 9-5
2

which is identical to the truncated form for the Transverse Mercator

derived earlier. Similarly, expressions for x and y are obtained by

substituting C¥ = « in 9-2 and 9-3:
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.2 s 3
X=S——':—§S+__._ + .. s 9-6
P ¢6r“ P 6R
y =5 + - T T . 9-7

For the remaining cases, the x-y equations will not be given.
The main point of interest lies in the shape of the isoscale
curves. From 9-5, the longitude from the central meridian of all points

having a scale of 1 + Ak is

o o7 P
AT = — . -
P cos ¢ (k 9-8
(o
Basically, the curve has the shape 1 curve which changes slowly
cos ¢
near the equator and rapidly near the poles (Figure 9-1).
Pole
1
isoscale curves
- \/\
egusator
isoscale curves
Pole
Figure 9-1: Isoscale Curves for Transverse Mercator C¥ = «
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Conclusion. The above figure illustrates that an area great in
north-south extent but not too close to the poles may enjoy constant scale
error throughout its length and further the scale error may be made
minimal if east-west zones are devised like in the U.T.M. It has already
been mentioned that zones near the poles may be made as wide as 30° simply
because of the shape of the iéoscale curves in this area (e.g., at ¢ = 85°
and k_ = 0.9996, k = 1 at A = 18°).

Case 12 < C¥ < =, C* = 18:

The equation for the scale error becomes

s24+08?°
k=1 + -ﬁL~‘1:7§;E— R 9-9
6 R
or g 2 3 2
b+ B =k-1. 9-10
6 R 3R

According to quadratic surfaces in solid analytical geometry,

2
=1 - 55 9-11
C

|.‘><
ol o
dﬁr<w

+

®

is the trace of an ellipsoid in the x-y plane with semi-major and minor
axes of a and b, respectively. In our problem the elliptical trace

has parameters

—

a=Vv6R, 9-12
b=/3R. 9-13
Thus the isoscale curves are ellipses elongated approximately two times

more aliong the meridians than along the parallels (Figuré 9-2).
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A

central
meridian

isoscale curves

>

Figure 9-2: 1Isoscale Curves for 12 < C¥ < o«

Conclusion. According to 9-9, k = 1 at one point only and from
that general point the scale error increases in a specified manner. In
order to have a nearly constant and minimal scale error in an elliptically

shaped area,a value less than unity could be chosen for the central point.

Such a selection could be based on a least sqﬁare adjustment.

Case C* = 12 (stereographic):

The scale error equation becomes

5.2 5 2

k=1+t T2, 9-1k
R R
3 3

and clearly the traces on the mapping plane are circles cantered at a

central point within the area to be mapped (Figure 9-3).
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——2_central point
of area

Figure 9-3: Stereographic Projection, C¥ = 12

The Polar Stereographic Projection is obtained by choosingv
the central point as the pole. Further, the U.SP. is obtained by choosing
ko =0.99L4 at the pole.

Conclusion. The stereographic projection or U.S.P. seems well
suited for small circular areas, which is undoubtedly the reason for using

it in the polar areas.

Case 6 < C*¥ < 12, C¥ = 9,

The scale error equation becomes

s¢2 g 2
k=1+—=  +E— 9-15
3R 6 R

This case is simply Case C* = 19, rotated 90°.
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Conclusion. This case of conformal map projection should be
used for small areas elliptically elongated in the longitudinal direction.

Case C* = 6 (Lambert Conformal Conic)

The scale error equation becomes

k=1+-2—

2R °

. 9-16

The isoscale curves are functions solely of the meridian distance from
the standard parallel and coincide with the parallels of Yatitude. This
is obviously the case in the Lambert Conformal Conic Projection.

Conclusion. Since the scale can be kept constant along a
given parallel, the use is obvious in any area of great longitudinal extent.
In order to increase the latitudinal coverage, two standard parallels are
introduced with scale factors différent from unity.

Case C*¥= 6, C*¥ = 3

The scale error equation is

s? g°
K=l+_—__—-—-—£_—:—2. 9-1T7
R 2R

The unequal denominators and the minus sign in the above equation signify

that the traces of the isoscale curves on the map plane are hyperbolic

curves whose vertical axis coincides with the central meridian (Figure 9-k4).
The Transverse Mercator case which is similar to this one can

be obtained from Equation 9-1T7 by omitting the second term and changing

the sign of the third, however without mathematical Jjustification.
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central
meridian -

isoscale.curves
arced-
shaped area
central ' pagallel
\ 5 /
e.g. k_l/

Figure 9-4: Isoscale Curves Case C¥ = 3

S

Conclusion. The above figure depicts the odd shape of the isoscale
curves. A stipulation of unity for the scale factor at the central point
in this case would be a bad choice since there is a rapid change of the
scale factor from this point. A better choice would be some value less
than unity such that a curve away from the céntral point and which passes
through the centre of an arced-shaped area would have a value of k = 1

(Figure 9-k4).

K=1+ 22— _ ¢ 9-18
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The isoscale curves in this case are hyperbolic with the main axis coin-
ciding with the central parallel.

This case slightly resembles the Mercator. Equation 9;18 could
be revamped to fit the Mercator Projec£ion by omitting the 2nd last term

(making the scale factor dependent on latitude 6nly), thus

S 2 =2 2
k=1+-0- 1+ B0 - 5442 9-19
=2 2
R R
as compared to ;
- a - a - N cos ¢ . 3 41 - cos ¢ . _
k N cos ¢ 1+ N cos ¢ =13 cos ¢ 9-20

These two equations are not completely equivalent.
Conclusion. This projection culd be used for areas which are
arced-shaped and extend slightly obliquely to the E-W direction, i.e., East-

East-North (EEN).

9.4 Summary

By studying the gerneral equation for the scale factor, it was
demonstrated how projections with quite distinctly different shaped isoscale
curves could be derived. It was also stated which case or shape of isoscale
curve may be best suited for am area of particular shape. Table 9-1 serves
as a summary of the foregoing.

In general, it may be stated that when mapping small areas, pro-
Jjections with ciosely knit isoscale curves should be used, thus achieving
minimal scale error within the area with a minimum number of zones.

Medium and large sized areas of varying shape may be mapped with projections
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possessing more sweeping isoscale curves like hyperbolas. When the
entire earth is to be mapped, the projection with the most sweeping
isoscale curves used in conjJunction with zones is the most satisfactory,

namely the Transverse Mercator.



Table 9-1: Suggested Conformal Projection

Area Description Case Projection Name Shape of Isoscale Curves
o N-3S5 C* = = Transverse Mercator Oblong along central meridian
o
)
5 E-W C* = 6 Lambert Conformal Conic| Corresponding to parallels
5 C* =-37 Mercator Straight lines (infinitely large
o hyperbolas)
2 NNE and other C*¥ = 3 7 Hyperbolas with central meridian
o Oblique/ quadrants as main axis
+ or
o Arced )EEN and other C¥ = -3 ? Hyperbolas with central parallel
5 quadrants as main axis
[l
= Circular (e.g. polar areas) C*¥ = 12 Stereographic Concentric circles
)
2
e Elliptical N - S Cc*¥ = 18 7 Ellipses extended along meridian
~ .
g Elliptical E - W C*¥ =9 ? Ellipses extended along parallel

Note: Based on the assumption that minimal error is desired within area.

80T
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SECTION IT

COMPUTATIONS ON A CONFORMAL MAP

PROJECTION PLANE
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10. INTRODUCTION TO COMPUTATIONS ON A CONFORMAL MAP PROJECTION PLANE

In Section I we treated the problem of transformation of
geodetic coordinates (¢, A) on the ellipsoid to map cogrdinates (x, y)

on the conformal map plane, and vice versa. The first objective of

this section is to show how geodetic position computations, such as

the direct and inverse problem, can be made in terms cf map coordinates.
‘The advantage of this approach is that the mathematical models can be
characterized by plane geometry. The disadvantage is that observations,
such as distances, directions, astronomic or gyro-theodolite azimuths,
must be reduced to the conformal map projection plane. The development

of the formulae for the reductions is the second objective of Section II.

It is worthwhile to place the map projection method of geodetic
position computation in context by outlining at least two other methods
of computation. First, recall that computations in three-dimensions
required that observations remain in space, as observed, with correction
made only for the effects of the gravity field and the atmosphere. No
surface such as an ellibsoid, sphere, or plane was explicitly employed,
thus no reductions of the observations was necessary. Mathematical models
were characterized by three-dimensional geometry. Coordinates of points

were expressed in terms of three dimensional coordinates (x, y, z, or ¢,
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A, h). Also, recall that computations on the surface of the ellipsoid
required that observations be reduced to the surface of the ellipsoid by
first taking into account the effects of the gravity field and the atmos-
phere, and then the effect of the height of target and geodesic-normal
section separation. Mathematical models were characterized in terms of
ellipsoid surface geometry. Coordinates for points were given in terms
of horizontal geodetic coordinétes (6, A).

Why compute geodetic positions on a conformal projection plgne
instead of, for example, on an equiareal or an equidistant map projection
plane? The answer to this question is straightforward. Conformal pro-
jections preserve angles and therefore measured angles can be directly
used for computational purposes. However, sometimes these angles need to
be corrected in order to transform them into the corresponding plane angles
required for plane computations (see equation 11-1). The scale factor at
a point in conformal mapping is a function of the position of the point
only.

k =k(¢, A) . 10-1
In other words, all distances in a relatively small area must be multiplied
by one and the same scale factor. However, for longer lines some average
scale factor should be used.

In equiareal and equidistant projections, the scale factor is
also a function of the azimuth at a point, i.e.

k = k(¢, A, a) 10-2
which implies that the angles are not preserved.

The third important advantage of conformal projections is the
fact that with a priori defined relative accuracy of linear scale factor

conformal maps will cover the largest domain compared to all other
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conceivable map projections. That means with conformal maps we shall
have a minimum number of zones or projection systems.

In the chapters to follow, we discuss: the problem of reduction
of observations onto the map projection plane (section 11); the various
mathematical models for computation on a map projection plane (section
12); the general formulae for reductions (section 13); the reduction

formulae for specific projections (section 1k).
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11. REDUCTION OF OBSERVATIONS

In this section we treat the problem of the reduction of
distance, direction, and azimuth observations onto the conformal map
plane. First we describe why these reductions are needed.

During the conformal mapping process, lengths of ellipsoid
geodesics are altered. The directional characteristics 6f these
geodesics on the map plane is dictated by the'confq:mql#tjﬁq@nﬂ?ﬁidn;*that
is to say, geodesics are projected onto the map plans in a manner that

preserves the angle which a given pair of geodesics define.

11.1 Reduction of Angles

Let us examine two specific angles on the map plane. The
first is the angle between two projected geodesics at a point to two
other points, and the second is the angle between the two chords at a

point to two other points.
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Figure 11-1. Angles.

Because of conformality the ellipsoid angle is equivalent to

the angle between the two projected geodesics (a§l3). The grid azimuth

of the projected geodesic is denoted by T12’ while the grid azimuth of

the chord is denoted by t The difference between these two azimuths

12°
is known as the "T minus t" correction. A similar situation exists
between points 1 and 3. The angle between the two gcodesics is related

to the grid angle by the equation

= g¥ - - R -
813 = @3t (T-t)yp + (T-t)) H-1
a is the angle needed in the computation of positions of unknown

213
points. In general (T—t)12 does not equal (T—t)l3, and further the

formulae for computing the (T-t) correction is different for each

conformal map projection.
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11.2 Reduction of Azimuths

There are three different azimuths to conténd with. Two have
already been defined (T and t). The third is the angle hetweén the
tangent to the projected meridian and the tangent to the projected
geodesic and is denoted as a12 (Figure 11-2). The following relation-

ship is valid

le = s =Y s - 11-2
where y is the meridian convergence. Further
1o = Typ = (T-t)y5s
ti, = 0 ,m y—(T—t)12 . 11-3
y
A
tlQ 2
T12
2 _projected geodesic
projected .
meridian
%12

\j

Figure 11~-2. Azimuths

The above expression gives the value of the grid azimuth on the plane in

terms of the "observed" ellipsoid azimuth. t,, is needed in computations
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on the plane. Expressions for y have already been derived., What remains
to be done is the derivation of expressions for (T-t) for the various

projections.

11.3 Reduction of Distances

Three types of distances are involved: the "observed" geodesic
distance S*; the length of the projected geodesic distance 8; the chord

length d (Figure 11-3). The chord distance is

d.,. = 8% - (s*-s)12 - (s8-4d) 11-4

12 12 12 °?

where (S¥-S).,_ is the correction due to the length distortion of the

12
geodesic, while (S-d)ois due to the difference in length between the
projected geodesic and the chord. These two corrections are usually

combined into one as we will see later when it is derived for the various

map projections.

12

12

Figure 11-3. Distance
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12. MATHEMATICAL MODELS FOR COMPUTATION OF POSITIONS

Let us turn away from the conformal mapping problem pursue to
the problem of computing on the mapping plane. The reasoP for doing
this is purely stategical. We use this application-oriented section as
motivation, which will undoubtedly help us endure the rather tedious but
interesting, development of the reduction formulae.

The mathematical models are not new to a student at this level.
The intent is to recapituate the models and show where and when the
various reductions are necessary. For an exhaustive treatment of
models for the computations on a plane, see for example, Faig [1972].

We treat the problems of: intersection, traverse with astro-
nomic azimuth orientation; traverse with grid azimuth orientation;
adjustment of a network on a plane; and calibration of a gyro-theodolite

using conformal map projection coordinates.

12.1 Intersection

The intersection problem is depicted in Figure 12-1 along with

the projected geodesics. The knowns are the map coordinates of the two
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points 1 and 2; the unknowns are the map coordinates of the third point

3; the observed quantities are the two angles at 1 and 2.

A
1

Figure 12-1. Intersection and Projected Geodesics

The solution for the two unknown coordinates x3,and y3is made

from the two equations:

tan t = E— .
13 y3 -1

il

tan t —
23 ¥z -7,

where

B3 = byp * (T-t) 5 + a4 (T-t),5
and

tog = toy - (T~t)21 - a, + (Tnt)23 .
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Note t12 and t21 are computed from known coordinates; a; and &, observed

(ellipsoid values); while the (T~t) correction needs to be computed
(expressions to be derived in Section 13).

l2.2 Traverse with Astronomic Azimuth Orientation

The traverse problem along with the projected meridians and
geodesics is depicted in Figure 12-2. The knowns are the ‘map coordinates
of a starting point 1. The observed quantities are the astronamic
azimuth of the geodesic (1-2), the angles and the distances. The unknowns

are the coordinates of points 2 to n.

Figure 12-2. Traverse

The coordinates of point 2 (e.g. x2) can be computed from

sin t,, = —/——— ,

where

and



= 3% . ¥ - -
d12 12 (s 8)12 (s a)

12
Again we see that (T-t) correction is necessary along with the

meridian convergence. Distances also need reduction.

12.3 Traverse with Grid Azimuth Orientation

The solution to this problem is similar to the previous case,

>

with one change, that is

t = + + (T=t
tl al ( )

1o - (T-t)12 .

1
Note an observed angle at 1 is necessary. This requires a computation of
a (T-t) correction for the backsight. All other corrections are
ldentical to that explained immediately before.

sy

1200 Adjustment of a Network on a Conformal Map Plane

The unknowns in the adjustment of a network on a conformal
map plane are the usual unknown coordinates (possibly some nuisance
pzrameters such as an orientation unknown at each station). The
knowns are the map coordinates of the stations to be fixed. The
observed quantities are directions, distances and azimuths. These
need to be reduced to the map plane as expressed by 11-1, 11-3, 11-k,

The adjustment then proceeds as usual.
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12.5 Gyro-Theodolite Calibration Using Map Coordinates

The basic idea is to compare the azimuth observed by the gyro
with the azimuth computed from map coordinates. They are, of course,
two different kinds of azimuths, thus one must be "reduced" to the
other. What reductions are neéessary? All necessary concepts needed
to answer this question have already been dealt with - thus this

problem is left as an exercise.

Assume that a gyro-azimuth is equivalent to an astro-~azimuth.



13. GENERAL FORMULAE FOR REDUCTION TO THE MAP PROJECTION PLANE

The general formulae for reduction of distances and directions
to the conformal‘map projection plane are discussed in this section.
These general formulae are valid for most conformal projections. The
purpose of this discussion is to give the reader an appreciation for the
fundamentals underlying the computational versions of these formulae given
in Section 14 for some specific projections. By understanding the fun-
damentals, the users of the computational formulae can better understand
their application and limitations.

Discussed immediately below are:
(1) the radius of curvature of a projected geodesic;
(2) +the parametric equations of the projected geodesic;
(3) the difference in length between the projected geodesic and the chord;
(4) the difference in length between the geodesic and the projected

geodesic ;

(5) the angle between the projected geodesic and the chord.
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Just the main steps of the derivations are given. More details

can be found in Thomas [1952].

13.1 Curvature of the Projected Geodesic

By studying the curvature of the projected geodesic we gain
insight into the geometry of these curves on the map plane. From calculus

we know that the curvature is defined as

1 nyII _ nyII

g === 13-1
R I.2 I.2 2°

(12 + 21
where R is the radius of curvature, and
x = x(s)
13-2

y = y(s)

are functions of the wvariable s, which is the length of the projected

geodesic. From Figure hL-kL,

I—-‘g——x—: I=§-_¥_= i
X = 1 cos B , y s sin B s
o > 13-3
IT _ d%x ag I _d7y _ a8 .
x =—5 =-sin B 3 > ¥ = > = cos B is
ds as
Substituting 13-3 into 13-1 yields
2, 48 , . 2. 4B
. - 1 cos B as + sin B s
"R 2 . 2.33/2
(cos” B + sin“B) 13-4
= 48
T ds

Thomas derives an expression for the curvature as a function of

the scale factor k and coordinate n (figure U-L). Namely



dB 1 . ok
o= 2B o £ (2& _ 9K
Fyaialin (3 sin B 5y cos B ),
13-5
_____1_._(?_1’_{._2_}_(_ + -aﬁ .al) _g'_ﬂ{.
k "9x 9n dy  on k 9n

Note in the above all quantities are evaluated at the point where ¢ is

desired.

13.2 Parametric Equations of the Projected Geodesic

The projected geodesic is described by two parametric equations

of the form

I

n = n(s),

13-6
£ = £(s).

Approximating the above equations with a Maclaurin series, with point 1 as

the point of expansion, we get (Figure 13-1)

projected
geodesic

<Y

Figure 13-1: Coordinate Systems for

Parametric Equations




2 .2 ( 2 3.3
g_s————-)-dg(o —Z—i-d O+-§—-'4d §+ « o 9
ds ds 'oas
13-5
) = sdnle) 2 o) i),
ds 2! 2 3! 3 e
ds ds

From 13-1

ag a°n _ an o
g = ds ds ds ds . 13-6

(€2 + (232

-

By first evaluating the derivatives in 13-5 and then replacing them with

curvatures (13-6), we get

3 L
_ s 2 S I s 1I I,2 4
£=s=-> o -g-o0. " - 50 ( 00, * 3(0O Yo =0 ) = vl
13-7
= EE,O + 53 o I + Sh (o II . 3) 55 (o IIT _ 6o 20 I) +
n 2 o 6% 2L Y% o 120 ‘o o o Tt
where
2
0I _do IT _d7o
= R ==
ds ds
are evaluated from
2 3
I II s III s
= - =4 ... -
g o, + o.s + o, 5 + o 3 13-8

and where the subscript "o'" means evaluated at the point of expansion.

13.3 Difference in Length Between Projected Geodesic and Chord

Since we compute with chords, we need to determine the difference
in length between the projected geodesic and chord. From Figure 13-1, we
can write and expression for the chord length d in terms of the coordinates

£ and n, (13-7), namely
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02 =n 4 . | 13-9
2 s"0 O
2 L o _ oo
=8 -5 o 12
6 II
in
- %5 (90,0 + 8(OOI)2 —o) - 13-10
a= (52 40?2
2
2 1/2
s . 2 s I1 .2k
=s {1~ 17 {Go +0, 0,75 * 56-(90 o, + 8(00 ) -0, ) +..]0%.
13-11

Since the second term in brackets is small the expression to the 1/2 power

may be expanded. The result gives the difference

I
2 oo} 5
3% L “o'o s IT
s-d=s gt s o Yz (72°o°q *
+ 6&(001)2 - 3oou) + i 13-12

If we expand about the mid-point of s instead of at one end, then

3 2
s 02 SS
s-d = ot 5720 (..... ), 13-13
where o, 1s the radius of curvature at the midpoint of the projected

2

geodesic. The value of this difference is usually small.

13.4 Difference in Length Between the Projected Geodesic and the Geodesic

Combined with the difference s-d, the difference in length
between the projected geodesic and the geodesic (s), that is S - s allows
one to reduce geodesic lengths on the ellipsoid to chord lengths on the
projection.

The basic relationship used in this context follows from the
definition of the scale factor, namely

ds = k 48 . 13-1h



The distance on the map projection (projected geodesic) is then

s =/ k ds 13-15
Thomas derives an expression for the above which involves a series develop-
ment of the scale factor with point of expansion being one end of the line.

The result is

1 I 2 1 2 1 I 3
= o v + + . i
s=k S+5kk”s +7(k "k +k k™)s 5 13-16
I ak . i
where k = 35 The second and higher terms account for the change of scale
away from the point of expression. The equation for the difference is
2
_ (1 1.1 s
S - s = (E—- 1) s + (k)0 =+
o)
3
1,11 s
= = + ..., -
+ (k)o 4 13-17

where 1/k is the reciprocal for the scale factor.
Analogous expressions to 3-16 and 3-17 for a midpoint-point of

expansion are

3
1 1 \IIs
S = g+ (Z=) T+ L. R 13-18
1 kM ol S
and
‘ 3
, 1 1l .Is 1 2 3
Seg=(—=1) s+ () == z—0g" s+ .... 13-19
kM kM 2L 8kM M

13.5 The Angle Between the Projected Geodesic and the Chord

In conformal projections, the azimuths of the geodesic and
projected geodesics are identical, but not so for distances as we have just
seen. For this reason we need concern ourselves only with the one angle ~

that between the chord and projécted geodesic.
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The angle we seek is defined by (Figure 13-1) 6 =T - t.

In terms of the coordinates £ and n

n
tanf = E . 13-20

Expanding the tan_g. in a series, we get

2 3 I
_ s s I s II s ITIT 2 I
b =3 o, *E %, *oF 9, * 730 (1600 0,0, * -« 13-




14. SPECIFIC FORMULAE FOR REDUCTION TO VARIOUS MAP PROJECTION

PLANES

In Section 13 we derived the general formulae for the reduction
of ellipsoidal distances and directions to the map projectign plane.
These formulae are expressed in terms of the curvature of the projected
geodesic and the scale factor. In this section we derive reduction
formulae for the Transverse Mercator projection by evaluating the curva-
ture and scale factor. We also state the reduction formulae of the
Stereographic Projection in New Brunswick.

Reduction formulae are not given for the Mercator or Universal
Stereographic Projections as geodetic computations of positions are not
usually performed on these projections. The reasons being is that the

USP is used in the polar regions while the Mercator is used mainly for

navigation.

14k.1 Reduction Formulae for the Transverse Mercator

Evaluated immediately below is the curvature of the projected
geodesic. Then the reduction formulae for directions and distances are

derived.
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14.1.1 Curvature

Recall the expression for the curvature (13-5)

1l ,9k . ok
o =3 <3x sin B - 5y COS B) . 1h-1
For the TMX has the form
k=1+clx2+chh+0x6+.’.., 14-2
where, for example 5
l+nl ,
O = m——— * v lh—3
1 2
2Nl

We recognize that k depends mainly on x and only slightly on y because

vy is only implicitly: involved in nlvand-Ni through ¢l the foot poiht latitude

Equation 1ll-1 can then be approximated by

|2

g = %‘ sin B. 1h-L

Q

b'd
For further use we need the following expressions which are

derived in Thomas [1952]

I _ 3k _
k™ = 35 Cos B8 s 14-5
2
Rl = &K c0828 - ko R : 1L4-6
3 2
X
1
a(=)
1, I Tk
()" =g cos B , 147
1,11 4° 1 2 a 1
(Eﬁ = 5 (Eﬁ cos B - a;-(EQO sin B . 14-8

14.1.2 Arc to Chord Evaluation

Recall the general formulae giving the angle between the arc of

the projected geodesic and the chord (13-21)
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seI
+ g— o] + . . . 14-8

g
(o] (o}

njm

We first evaluate o, for the TM. For 1/k in 1U-4 we get from (1k-2 and

6-77 ).
1. 1l x
% 1-5 =5 1k-9
Ny
and
. 1 x2
kzl+= — 1k-10
2 g2
1
Also
dk _x 14-11
ax N
1
Substituting 14-9 and 1k-11 into 1u-l yields
1 x X .
g = (1 -=—==) =— sgin B * 14-12
. 2y N 2
1 1

as

14-13

Figure 1hk-1 Chord and Arc
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We now wish to approximate x in 14-12 with (Figure 1k4-1)

x%x, +scos B , 1h-1k

where s = d at any point between 1 and 2. Substituting 1bk-1l4 in 1L-12

yields
1 (xl + s cos 6)2 x, + s cos R
o=[1~-= ] (=——— ) sin B
2 N 2 N 2
1 1
(xl + s cos B) sin B 1 (xl + s cos 8)3 sin B cos B
= N2 Y B o
1 1 1h-15

The other quantity reading evaluation is the change of the

curvature oOI in 1Lk-18. From 1L-15

2 . 2
+
I do _ cos Bsin B 3 <Xl s cos B)” sin B cos"8
= 29 _ -2 14-16
ds 2 2 I
N N
1 | 1

o

Thus OOI at point 1 is obtained from above by replacing 8 by Bl (Figure

1h-1).
The expression for T - t is obtained by substitution of 1L-16
(with g = Bl) and 14-13 into 14-8.
The result is 3
X, sin B X,
_ _ s 1 1 &_ 1 .
9 =T ot = 5 . 5 -3 . T sin Bl +
1 1
2 sin B, cos B sinB cos2B
+ = (— 1 1_3 % 2 1 1+ ... 1h4-17
6 N 2 2 1 N L
1 1
e xl sinBl 2 sin B, cos Bl
...'é— 5 +-—6- 5 + . . . . lh—lS
N N

1 1
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Eliminating Bl from the above by (Figure 1h-1)

LY,y
sin Bl,= 2 1 )
s 14-19
X, - X
cos Bl_& 2 1 )
s
we get
Yo = ¥
p =T -t = ~g-~—;-(x +2x. )+ . .. 14-20
/ 6 2 2 1
Nl

where Nl can be approximated by the Gaussian mean radius af'point 1.
The above equation is of sufficient accuracy for most work. It

can be compared to the following formulae of Bomford [1962]

2
(v, - v,) (x, + 2x,) (2x, + x,) ,
L L 5 2 1 (1 - “-l——§—g—m] 1h-21
6Rm 2TRm
where
R =V MN,
m

M and N evaluated at (¢l + ¢2)/A2. The accuracy of this formulae is
claimed to be 0".02 for a line 100 km in length but within 3° of the
central meridian.

The correet application of the correction is made by realizing
that projected geodesics are concave towards the central meridian (see

6-4).

Figure

14.1.3 Line Scale

The line scale is the average scale over the line. It allows
us to get the difference between the lengths of the geodesic (s) and the

projected geodesic (s). Recall the general expression (13-1T)
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2 3
_ o1 1,.Is 1,II s _
S-s5=(—-1) s + (k)o 5+ (k)o Tt 14-22

where the derivatives are defined by 14-7 and 14-8. We now evaluate

1 1 ,71,2
i{-—'nl-—g(N) s 1k-23
o} 1
X
a 1y ___1_ -
= (k)o = - . 1h-24
1
2 .
d - (%ﬁo = - L_E , 14-25
ax N
1
*
o, = E—é sin 8, 14-26
1
y.o-y
sin B. = 2—=t 1h-27
1
a
X, - X ‘
cos B, = = 1 14-28
1
a
Substitution of 1k-2L4 to 14-28 in 14-7 and 14-8 yields
1,0 TF fom X
(k)o ) a ? 1h-29
N
1
101 (% - "1)2
(F)" 7T = - ——— o+ ... 14-30
ko 2.2
N, “d

Substitution of 1k-29, 14-30, 14-23, in 14-22, along with the approximation

that d = s, we get
2

1% xp o (xy = %)
S=d[ 12— o—= —f— = _
2 N 2 N 2 2
1 1
(x2 - xl)2
- —*-—‘-"'ém + .. . ] 1h-31
6N
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S - 1.2 2 -
3= [1 - o2 (x1 * XX, + xg)] , 14-32

1

where Nl can be approximated by R = v M N. The formula is of sufficient
accuracy for most work.

The following more accurate formula for the line scale (k) is

given in Bomford [1962]:

2 2
_ b'd b'd
k=1+ —35 (1 + —H;EJ R 14-33
6R 36R
m
where
X =X +x x_ +Xx
1t 2 2 14-3k
R =vMN |,
m

M and N evaluated at (¢l + ¢2)/2. The accuracy of the above formula is
about 0.1/106 for lines of about 150 km in length and within 3° of the

central meridian. Thus d = kS, without computing s (see 14-31).

14.2 Reduction Formulae for the New Brunswick Stereographic Projection

The reduction formulae for the New Brunswick stereographic
projection are given here without derivation. The full derivation is

given in Thomson et al. [197T7].

14.2.1 Arc to chord (T-t) reduction

The arc to chord correction is given by [Thomson et al., 1977];

_ Xy, - X.¥
(1), = tan 1 i AT ]

3

2
xixj + yiyj + (kOR)

k is

where, x,. .9 X E
] l, yl, J, fo)

are the map coordinates of points Pi and P

3773

the scale factor at the origin and



136

R=YMN ,

evaluated at ¢o’ the latitude of the origin.

1k.2.2 Geodesic to Chord Length Reduction

The line scale factor mij used to obtain the plane length d

from the geodesic length S between two points Pi and P, is given by

J
[Thomson et al., 19771,

)

5,:—

1
m,

ajo

1,1
== (= + +
i3 6 ‘my " omy 3

BIH

>

where, m, mo and m, are the point scale factors at Pi’ the mid-point of

J

the line (Pm), and P, respectively. The point scale factor at Pi’ for

J
example, is given by[Thomson et al., 1977],

£ 4]
k, =k +———p"

4k R
)
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APPENDIX I: EVALUATION OF MERIDIAN ARC LENGTH =

N = constant

),

Meridian Arc

The length of a differential part of a meridian arc S is

given by
ds = Md¢ , (1)
where
2
M = a(l-e”)
(l—e2 sin2¢)3/2

is the corresponding radius of curvature. For the total arc, S, we can

write

¢ .
s = f2 Md ¢ . (2)
oy

In the case of the TM projection, we are interested in the
length of the meridian arc from the equator (¢l = 0) to our point of

interest (¢2 = ¢). Then we write

a(l-e”) ae . (2a)

¢ ¢
s =% Map = s
°© °© (l—e2 sin:gq))3/2
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The expression for M can be expanded in a series and written

as

2
M= a(l;e ! 3/2 a(1-e2)(1 + % e“sin ¢+—2 eh‘un ¢+“2 e sin ¢+ ).
' (1-e° sin¢) (3)

We treat a(l—ez) as a constant outside the integration and obtain

S = a(l—ez) f2[1+i e251n2¢ + l% ehsinh¢ + §g'e6sin6¢ + ..]d¢ .

2 1 (%)
Splitting this into parts yields

>

s = a(1-e2) [r%as + /23 Bainp)astr® (22 Msin® 4)ag + ... 1.
o 0'2 o 8 (5)

Evaluating each integral separately

Pag = 6l® = o, (5a)
o
: 0
fi(%-egsin2¢)d¢ = %-eg[%-— §iﬁ—§£ ]O (5b)

= %'e2¢ - %-ee sin 2¢ ,
. . ¢
fg(_% ehsin $)as = l%'eh{3g _ s1nh2¢ + 31n32¢] (5¢)
> °
= %% eh¢ - %% ehsin 2¢ + Egg e sin 4o .
Thus,
S = a(l—eg)[¢ + %‘e2¢ - %-ezsin 2¢ + %ﬁ-eu¢ - %% e'sin 2¢ + %ggehsin ﬁ¢ + ..]
(6)
and
s = 3 2 3 2. L4s h ;geh ) 15 b .
= a(¢+E e ¢ - g € sin 2¢ + ci ¢ ¢ - 35 sin 2¢ + 556 e ¢sin ?¢)-
7
—e2¢— %-eh¢ + %‘ehsin 2¢ - %% e6¢ + *%ge6sin 2¢ - E%% e6sin he + ...) .

Collecting terms for ¢, sin 2¢, sin L4¢, etc.
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S =al(¢ + f—e2¢ - e2¢ + %g eu¢ - S—eu¢ - %%-e6¢+ ee.)

+ (- %'ezsin 2¢ - %% ehsin 2¢ + %-ehsin 2¢ + %g e6sin 2¢ + ...)
+ %‘g—éehsin h¢*%§€36sm he + ...)). (Ta)

Including more terms in our series expansion results in the

following formula for the meridian arc length,

S = a[AO¢ - Azsin 2¢ + Ahsin L - A6sin 6¢ + Aasin 8¢] (8)
where )
Ao =1 - %'ez - %E eh - ggg-e6 - i%%%g e8 . (9)
Ay =3 (% + %-eh + %gg-e6 - %%gg'eB) , (10)
A, = %%g (e + g-e6 %%3_68) , (11)
N TR a2
ag = - 121372 &8 (13)

This formula for the meridian arc length is accurate to less than 0.001 m.



APPENDIX II. EVALUATION OF FOOTPOINT LATITUDE

When dealing with the T.M. conformal prejectim we remember
that the inverse formulae for AA and A¢ are given in terms of the
"footpoint" latitude, ¢l. Thus, we need an expression for determining
¢l from y.

Remembering that the length of a meridian arc is given by

>

= b
s = /. Md¢

and that along the central meridian,

y =8 = f¢ Md¢ ,
o
then our footpoint latitude will be given by the meridian arc length "y"
along the central meridian.

To solve this problem, we use the Newton-Raphson iterative
procedure (see pp. 26-28). In brief, we require the following three
steps:

(1) Obtain an initial appropriate value for ¢ (¢0);

(2) Evaluate the iterative improved solution from

o =0 _f.‘.(_(t)._ . (ll#)

n n-1 "~ £' (¢) ’
(3) Continue the iterative procedure until

6, = ¢, 1] <<
T

where £ = 1072 yadians (which is approximately 2 x 10~V arcsee).
Specifically, we have (from 8)

S =y = a(Ao¢ - A,sin 2¢ + Ajsin be - Acsin 6¢ + Agsin 8¢ = wu.).
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Then

f(¢) = a(AO¢ - A,sin 2¢ + Ahsin L¢ - A6sin 69 + ABSin 8¢) -y , (15)

2
and

£1(¢) = a(Ao - 2A,cos 2¢ + hAhcos ho - 6A6cos 6¢ + 8A8cos 8¢) , (16)
where A _, A,, Ays Ags A8 are given by (9), (10), (11), (12), (13) res-

pectively. For an initial approximation, we use a spherical approximation,

that is e = 0, and (8) becomes

y = ad (AO =1; A, =0, 1 =2, L, 6, 8, ...) . (17)
Then .
= L
¢, =% (18)

Using ¢o, we get first approximations for f(¢) and f'(¢) (equations (15)

and (16) respectively). For n = 1

£(9,) |
o, = 6, - ?TT$;Y , (19)
and
€ = l¢l - ¢o' : el < 10"12 rad.? (20)
Continuing, we then get n = 2 and
£(¢,)

and

€. = ]¢2 - ¢l| 5 82 < 10-12 rad.

Thus, we compute the footpoint latitude, and using this we can
complete the inverse problem for the Transverse Mercator projection

(e.g. solve for A\, Ad, thence ¢ and X).
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APPENDIX IIT

ALTERNATIVE DERIVATION OF LAMBERT CONFORMAL CONICAL PROJECTION

14

In the polar coordinate system, the linear element ds is com-

puted by the well-known formula

2 2 2

ds”™ = dp + p d62 = 02

{(%ﬁoe +asc] . (1)

It is obvious from the above expression that § and p are not
isometric coordinates. The isometric coordinates must generally have

the following form

as® = [£(u, v)1° (au® + avo) . (2)

However, by a simple substitution

- dp = (3)

°fe

we can transform into an isometric system, where new variable E-is directly
determined by the integration of the above equation

-p=2np-2nk , (&)
or

p=K-e? . (5)
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Now, using the obtained isometric coordinates we can set the
fundamental expression of conformal mapping
p+id="~f(g+1i1e) , v (6)
where

£=A =X . ‘ ' (1)

Conical projections are defined as projections in which meridians
are transformed into straightvlines intersecting at one point and parallels
become concentric circles with the centre in the intersection point of
meridians. The angles between meridians are proportional” to the
corresponding angles on the ellipsoid.

Mathematically translated, these conditions mean
p+i6=Kp+is), p=Kp, 8§=K21 . (8)
Substituting the derived value for E.from (5) we have

p =K+ e § =K « & , (9)

or for rectangular coordinates

i
N
[t

e}
w
;-
~
=

p sin 6

"
]

b

(10)

1]
=
4]

fie]
8
0
A
=

p cos &

g
[






