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PREFACE 
 

In order to make our extensive series of lecture notes more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 



PREFACE 

The purpose of these notes is to give the theory and use of 

some common conformal map projections. The approach used is straight­

forward. It begins with the basics of differential geometry and 

conformal mapping. Then, given the conditions for a particular map 

projection, the particular conformal mapping equations are derived. 

This is a self-contained analytical approach. 

The author is aware of attempts by at least one mathematician 

[Wray, 1973] to unify all classes of map projections such that the same 

set of mapping equations can be used to obtain all or many of the well­

known projections, simply by assigning appropriate v~lues to certain 

parameters in some generalized equations. This is somewhat of a 

simplified explanation of what actually happens, but it at least 

illustrates the generality of this contemporary approach. As of the 

date of writing these notes, the details (necessary for instruction at 

the undergraduate level) were not yet worked out and thus no use was 

made of it. 

There is yet another attempt to obtain a generalized set of 

equations for conformal map projections alone. As explained in Section 

9, this approach consists of one set of mapping equations which is 

capable of producing the well-known conformal projections · Mercator, 

Transverse Mercator, Lambert Conformal Conic, Stereographic and even 

other unnamed projections. This is achieved simply by assigning specific 

values for certain constants in a generalized set of equations. This 

approach is not readily usable since the expressions have not been 
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developed to a sufficient degree of accuracy, and thus are not satis­

factory for the practising surveyor. Only a brief description of this 

approach is given in these notes. 

More on the approach used herein. Complex arithmetic is 

exploited at every opportunity. Series expansions are avoided at 

occasions when the closed form exists. The reason being that computer 

centres nowad~s have routines to evaluate natural logs, exponentiation, 

etc. Derivations are given to show the origin and important steps in 

the development of the main equations. Lengthy and detailed derivations 

are omitted from the text and reference made to an appropriate source or 

an appendix added. 

These notes have been w:~i tten under the assumption that the 

reader has knowledge of differential and integral calculus, complex 

arithmetic, ellipsoid geometry, and some knowledge of computer programm­

ing. 

These notes have evolved from the author's lecture notes over 

the past few years. Two main sources are acknowledged at the outset as 

being the starting point for these notes - Thomas' "Conformal Projections 

in Geodesy and Cartography", U.S. Geodetic Survey Special Publication 

No. 251, and Dr. Richard H. Rapp's lecture notes on "Advanced Map Pro­

jections", Department of Geodetic Science, The Ohio State University, 

Columbus. Other sources used for important details are referenced within 

the text. 

The author wishes to acknowledge the contribution made by the 

Surveying Engineering undergraduate class of 1974-75 to improving the 



notes by finding typographical errors. Messrs. Donald B. Thomson and 

M. Nassar, graduate students, are acknowledged for their constructive 

criticism of the notes, Mr. Thomson is particularly acknowledged for 

the preparation of the appendices. 

E • Kraki wsky 

December 9, 1974 

The author wishes to acknowledge Kresho Frankich for his 

detailed critique of the December, 1974 version of this work. His 

involvement has lead to the improvement of section 2.4 and Chapters 

7, 8 and 10. Dr. Donald B. Thomson helped to clarify aspects of the 

stereographic projection. Robin Steeves extended various formulae to 

meet a higher degree of accuracy. Ms. Wendlynn Wells is thanked for 

her editorial assistance in preparing this version. 

E. Krakiwsk:y 

July 18, 1977 
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GENERAL 

Conformal map projections are the class of projections in 

which angles on the surface to be mapped are preserved, tnat is, corr­

esponding angles on the map plane and the surface are equal. We will 

restrict the surface to be mapped to be the ellipsoid as defined in 

geodesy. The map plane is regarded as a flat - two dimensional surface. 

The two corresponding sets of coordinates for any point are the geodetic 

latitude cp and longitude A., and the mapping coordinates x andy. 

There are two main problem areas in conformal map projections. 

The first area is concerned with the transformation (mapping) of the 

geodetic latitude (cp) and longitude (A.) into a pair of mapping coor­

dinates x andy, and vice versa, that is the mapping of x andy into 

¢ and A.. The second problem area involves the computations of geodetic 

positions on the conformal mapping plane from observed quantities that 

have been appropriately projected onto the map plane. Because of the 

clear identification of these two tasks, the notes have been structured 

into two sections. Section I is called Conformal Mapping, while 

Section II is called Computations on a Mapping Plane. 

1 
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SECTION I 

CONFORMAL MAPPING 
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1. INTRODUCTION TO CONFORMAL MAPPING 

It was stated in the general introduction that the problem at 

hand is the determination of the conformal transformation equations for 

mapping~' A into x, y, and x, y into~' A. Employing complex arith­

metic notation, the problem is symbolized as 

1-1 

and 

1-2 

where r1 and r2 are the analytic functions to be determined, and i = ;-:I, 

The first equation describes the direct problem and the second the 

inverse problem. 

The solution of these problems requires the use of same 

elementary complex algebra which is reviewed in Section 2. Also, same 

differential geometry is needed to characterize differential elements on 

the ellipsoid and plane surfaces - this material is reviewed in Section 3. 

The principles of conformal mapping theory needed for our problemsare 

briefly given in Section 4. Sections 5 through 8 respectively treat the 



Mercator, Transverse Mercator, Lambert Conformal Conic and Stereographic 

conformal projections. A brief description of the implementation of some 

of these projections in practise as official coordinate systems is 

given. The generalized set of mapping equations mentioned in the 

preface is briefly described in Section 9. 
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2 • REVIEW OF COMPLEX VARIABLES 

Complex algebra is used liberally in the development of the 

various conformal mapping equations. The purpose of this section is to 

briefly review, thus summarize, those parts of complex algebra needed 

herein. The formal and complete treatment can be found in many math­

ematical texts. 

Reviewed in this section are: rules of complex arithmetic; 

the complex plane; the complex function; differentiation of a complex 

function and the derivation of the Cauchy-Riemann equations; special 

complex mapping functions. 

2.1 Rules of Complex Arithmetic 

For a complex number 

z = a + ib; i = 1(:15 2-l 

where a is the real part and b the imaginary part, the following rules 

and definitions apply: 
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1. The sum of two complex numbers is a complex number, that is, 

2-2 

2. Addition is associative (grouping is immaterial), that is, 

2-3 

3. Every complex number has a unique negative, that is 

z = a + ib 

and -z = -a - ib 2-4 

4. Addition is co'1liilutative (order is immaterial), that is 

2-5 

5. Multiplication is defined as 

2-6 

6. Multiplication is associative, that is 

7. Every non-zero complex number z has a unique inverse, that is 

-1 1 1 < a-ib) a-ib z =- = (a+ib) (a-ib) = z a2+b2 

a 
i 

b = 2 b2 2 b2 a+ a+ 

8. The complex conjugate of z is 

-z = a - ib. 2-9 
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2.2 Complex Plane 

The rectangular form of a complex number is 

z = x1 + iy1 . 2-10 

The geometric interpretation is a vector in two dimensional space, with 

the real part (x) as the abscissa and the imaginary part (y) as the 

ordinate (Figure 2-1) 

y 

y 
1 

0 

1 

Figure 2-1. He<:'l!ini<:uJ '1.r ?0rm 

X 

The polar form of a complex number is (Figure 2-2) 

since 

y 

x1 = r 1 cose1 

y1 = r 1 sine1 

X 

Figure 2-2 Polar Form 

2-11 

2-12 



The argument of z is denoted as e1 , and defined by 

-1 
el = tan 

The modulus of z1 is denoted as r 1 , and defined by 

2 2 l/2 
rl = lzll = lxl + iylj = (xl + yl) 

The x-y plane is called the complex plane. 

2.3 Complex Function 

w is said to be a function of z, that is 

2-13 

2-14 

w= f(z) , 2-15 

if there exists one or two values of the ·complex variable w for every 

value of the complex variable z. In this arrangement, z is the independent 

variable and w the dependent variable. 

An ex&~ple of a single valued function is 

2 
w = z 

and of a many valued (twcin this example) function i~ 

l/2 
w 0: z 

2-16 

2-17 

In mapping the ellipsoid onto a plane, we are interested only in single 

valued functions. 

In general 

w = f(z) = u + iv , 

= f(x+iy) = u(x, y) + iv(x, y). 2-18 

The corresponding conjugate is 

w = f(z) = u(x, y) - iv(x, y) . 2-19 
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2.4 Differentiation of a Complex Function 

This section first defines the derivative of a complex function, that 

is f'(z), and then the very useful and important Cauchy-Riemann equations. 

Consider a set of complex numbers {z , z1 , ••• , z }, where z 
· o n o 

and z are particular values. It is said that f(z) is differentiable 
n 

at z if 
0 

or 

limit 
z -+ z 

n o 

f( z ) - f( z ) 
n o 
z - z n o 

limit f(z + ~z) - f(z ) 
0 0 

~z -+ 0 ~z 

2-20 

exists. 2-21 

The basic equation for defining the derivative f'(z) follows 

from above after recognizing that from 

Z = X + iy 

~z = ~ + i!J.y 2-22 

and 

f(z + ~z) = u(x + ~. y + !J.y) + iv(x + ~. y + ~y) . 2-23 

The basic equation-is 

f(z + ~z)- f(z) 
f'(z) =limit.--------

~z -+ 0 ~z 

limit {u(x + rue, y + ~y.) - u(x, y) + 
-~z -+ 0 ~ + i~y 

+ 1. v ( x + t.x , y + t.y ) - v (x , y ) } 4 2-2 rue + i~y 

and is independent of the approat:h tuken~ But, for the'· approach 

y = constant, that is, ~y = 0, and ·l'J.z = t:lx., . t'he result is 
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f' ( z) = limit u~x + b.x2 ;d - u{x 2 :t1 + 
b.x -+ 0 b.x 

+ limit i v{x + b.x2 J::) - v{xz :tl 
b.x 

b.x -+ 0 
2-25 

au av 
f'(z) = -+ i 

ax ax 2-26 

For the approach ~z -+ 0 along x = constant, that is b.x = 0, 

~z = i!::.y • The result is,: 

f'(z) = 

+ 

limit ~ u(x, y + ~y) - u(x, y) + 
!::.y -+ 0 i ~y 

limit 
!::.y -+ 0 

v(x, y + ~y) - v(x 2 y) 
~y 

f' ( z) 
1 au av =--.-+-
i ay ay 

2-27 

2-28 

The Cauchy-Riemann equations are obtained by equating the two 

definitions of the derivative, equations 2-28 and 2-26, namely 

2-29 

-i au + av = au + i av 
ay ay ax ax 2-30 

Equating real and imaginary parts yields the Cauchy-Riemann equations 

au av -= ax ay 

av au 
a;z =-ay 

2-31 
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A function of complex number z which is single valued and 

differentiable at every point of its domain, is said to be regular. The 

necessary condition for the function f(z) to be differentiable at the 

point z is that the four partial derivatives u , u , v , v must exist 
X y X y 

and satisfy the Cauchy-Riemann equations. 

Since the partial derivatives of u and v are connected by the 

Cauchy-Riemann equations (2-31) and assuming that these derivatives exist 

and satisfy the relation u = u v 
xy yx' xy = vyx' it follows by partial 

differentiation that 

and 

Thus both u and v satisfy Laplace's equation 

2 2 . 
V2u = a u + ~ = 0 

ax2 ay2 

2-32 

2-33 

By separating any regular function of z, i.e. a function with 

existing derivatives, into its real and imaginary parts, we obtain immed-

iately two solutions of Laplace's equation. 

From the equations (2-31) we can also have the following 

relationship 

2-34 

whose geometrical interpretation is that the families of curves in the 

x, y plane, corresponding to constant values of u and v, intersect at 

right angles at all their points. 

Let us now take an analytic function f which maps the domain 

D of the independent complex variable w = u + i v into the domain of D' 
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of the dependent complex variable z = x + i y. If two arbitrary curves 

in the domain D intersect at the point P(u , v ) at an angle e, then the 
0 0 

mapping is called isogonal if the corres.ponding curves intersect in the 

domain D' also at the angle e. If the sense of the rotation as well as 

the magnitude of the angle is preserved, the mapping is said to be 

conformal. 

To prove this statement let us take in the w plane an 

arbitrary point P(w ) and two continuous curves passing through the 
0 

point and let tangents to these curves at the point P mak~ angles a1 and 

a 2 with the real axis of the coordinate system. Suppose we select on 

each curve additional points close to P and at the distance r from P. 

Then 

i8 = r e l 

w2 - w0 = r ei82 

and as r approaches zero, 81 and 82 become the angles a1 and a 2 • 

w-plane 

The point P(w ) is transformed from the domain D by the a· 

2-35 

analytic function into P'(z ) of the domain D~. The projected curves are 
0 

denoted by ci and c2. 
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z-plane 

Then 

zl - z = pl 
ih e 

0 

z2 - z = p2 ei<P2 
0 

2-36 

By the definition of derivatives we have 

lim zl - z lim z - z 
0 f' ( z ) and 2 0 f I ( Z ) ' = = or w -+w wl - w 0 w -+w w2 - w 0 

l 0 0 2 0 0 

p ih p i<P2 
1 

e ia. 2 
e ia. 

lim = k . e and lim = k . e ie1 i82 r e r e 
2-37 

It is obvious from the above relations that 

and 2-38 

or the angles between the corresponding curves in the conformal mapping 

remain unchanged. 

At the same time it is important to notice that 

pl . p2 
1 im - = l1m - = k = I f' ( w ) I 

r r o 2-39 

is the scale factor and has the same value in all directions through the 

same point but it varies from point to point. This is an extremely 

important property of conformal mapping. 



Other expressions related to the derivative of a complex 

function are needed. The first of these is 

dw • dw = (du + idv)(du- idv) 

2 2 
= du + dv 

= f'(x + iy) f'(x iy)(dx + idy)(dx- idy) 

= f'(z) f'(z)(dx2 + dy2 ) 2-4o 

and realizing that 

f'(z) = f' (x - iy) 
au i av = av + i au =--ax ax ay (ly 

and that 

(au) 
2 

( av) 
2 

f' ( z) f' ( z) = + 2-41 ax ax 

( av) 
2 

(au) 
2 

= + 2-42 ay ay 

[ (au) 
2 

( av) 
2 

] ( dx2 dy2) dw • dw = + + · ax ax 
2-43 

2.5 Special Complex Functions 

The following identities are useful in simplifying conformal 

mapping equations. The first identity is a result of De Moivre's Theorem 

which gives a relationship between multiples and powers of trigonometric 

functions. The theorem is briefly stated. For 

Z = X + iy 

= r (cos e + i sin e) 

the product of two complex numbers is 

z1 • z2 = r 1 (cose1 + i sin81 ) r 2(cose2 + i sine2 ) 

= r 1r 2 [cose1 cose2 - sine1 sin82 + i(cose1 sine2 + sin81 cose 2 )J 

= r 1r 2[cos(e1 + e2 ) + i sin(e1 +'e2 )] 2-44 



1 ') 

and an extrapolation ton complex numbers for the case r 1 = r 2 - ... = 

and el = e2 = ... =en' yields 

r ' n 

zn = rn[cos ne + i sin ne] = [r(cose + i sin6)]n 

and finally 

j cos ne + i sin ne = [cose + i sine]n .j 2-45 

The second useful formulae is Euler's which relates exponential 

and trigonometric functions. It is employed in the derivation of the 

Lrunbert conformal conic mapping equations. Begin by 

e 2 3 en 
e = 1 + e +!_+!_+ +-

2! 3! n! 

and substituting ie for e, the above becomes 

ie = l + ie + (ie) 2 
+ + 

( ie )n 
e 2! ... 

n! 

and after grouping real and imaginary parts 

ie 
e 

e2 e4 e6 e3 e5 
= (l--+1.7-"""T:"I + ... ) + i(e --, +-,-2! 4! Dl 3, 5. 

which is of course 
ie e . . e e = cos + 1 s1n 

considering 

2-46 

2-47 

... ) 

2-48 

The above is known as Euler's formula. Substituting -8 for e in the above 

yields 
-ie 1 e = cos e - i sin e. 2-49 

Together the above two formulae yield two more useful formulae, namely 

1 ( ie -ie) cose = 2 e + e 2-50 

1 ( ie -ie) sine = 2 i e - e 2-51 

The last set of formulae are the sin and cos of complex numbers. 

Substituting z for e in 2-50 and 2-51, yields 

Further 

1 ( iz e-iz) cos z = 2 e + 

1 ( iz -iz) sin z = 2i e - e 

iy 
e 

X ( 1' i ) = e cos y + s n y • 

2-52 

2-53 

2-54 
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3. REVIEW OF DIFFERENTIAL GEOMETRY 

The purpose of this section is to review and write in our 

notation some well-known results of differential geometrr. No attempt 

has been made to be exhaustive, in fact, only those aspects needed 

herein are given. We treat: parametric equations for a surface; the 

Gaussian fundamental quantities; angles between parametric curves. 

3.1 Parametric Eauations 

Let us nm-r discuss hmr to ;:-,athematically describe the surface 

to be mapped. 

The general equation describing any surface* is 

where 

F(X, Y, Z) = 0 , 

X = X(¢, A) 

Y=Y(¢,A) 

Z=Z(¢,A) 

3-l 

3-2 

are known as the parametric eguations. X, Y and Z are understood to be 

*X, Y, Z used as coordinates on sur:f'ace to be mapped.; x, y used as 
as coordinates on map plane. 
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Cartesian coordinates while ~ and A are regarded as curvilinear coordin-

ates on the particular surface in question. 

The 

For example, the equation of a spherical surface is 

2 2 2 2 F(X, Y, Z) • X + Y + Z - R = 0 

corresponding parametric equations are 

X = X(~, A) = R cos~ COSA 

y = Y(~, A) = R cos~ sinA 

z = Z{~) = R sincp 

3-3 

3-3a 

where R is the radius, and ~ and A the spherical latitude and longitude, 

respectively. 

The equation of an ellipsoid surface is 

F = x2 + y2 + z2 - N2 = 0 . 3-4 

The parametric equations are 

X = N coscp COSA 

y = N cos~ sinA 3-4a 

2 z = N(l-e ) sin~ 

where if> and A are the geodetic latitude and longitude respectively, and 

2 
N = ------~a~------------~- = ______ a ______ ~~ 

(a2 2 2 2 1 / 2 2 2 1/~ 
cos ~ + b sin ~) (1-e sin •) 

3-4b 

is the radius of curvature of the ellipsoid in the ~rime vertical plane, 

a and b are the semi-major and semi-minor axes, respectively, and 

Parametric equations allow us to describe, in a mathematical 

way, certain curves on a surface. For example when 4> is equal to some 

constant c1 , then the parametric equations become 
<. 

X= X(c1 , A) 

y = Y(cl, A) 3-5 
z = z ( c, , A) 
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which can be imagined to describe some sort of parallel of latitude. 

Analogously a meridian arc is described by 

X= X ($, c2 ) 

y = Y ($, c2) 

Z = Z ($, c2 ) 

3-6 

The equation of an arbitrary curve is denoted by S($, A.), which is in 

essence an expression of some functional relationship between $ and A.. 

3.2 Gaussian Fundamental Quantities 

The Gaussian fundamental quantities are a means of describing 

the geometrical properties of the surface to be mapped. The derivation 

:i.s as follows. 

Consider an arbitrary curve on any surface (Figure 3-1) with 

X 

z 
P(X, Y, Z) 
any surface 

~--curve S = S(cjl, A.) 

y 

Flgure 3-l. 3urf~::tce Element 

a point P(X, Y, Z) on it and a second point Q(X+~X, Y+~Y, Z+~Z) located 

infinitesimally close to P. Let ~L be the chord length between P and Q 

and 6.S the corresponding length on the surface. We can then write that 

3-7 

and 
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As the point Q approaches P, ~L approaches ~S and we get 

= ( d.X) 2 (~) 2 + ( d.Z) 2 1 d'S + dg dS 3-9 

which can be interpreted as the direction cosines of a line on the 

surface. 

From the above we can get an expression for the .. change in arc 

length as a function of changes in the Cartesian coordinates, namely 

d tf = d + d:l- + d i- 3-10 

Recall that 

X= X(cp, >.), 

.y = Y(cp, >..) ' 3-11 

Z = Z( <P, /,) , 

and thus the differentials in 3-10 are 

ax ax 
dX = ~ d4> + ai dA , 

3-12 

dz = ~ d"' + ~ ' acp "' :n d/\ • 

Squaring 3-12 and substituting into 3-10 yields an expression for the 

changes in arc length on a surface as a fUnction of changes in curvi-

linear coordinates, the result is 

3-13 
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where 

2 2 
(ax) ay az 

E = + (~) + (~) ' o4> 
3-14 

F 
ax ax ay ay az az 

=~a>:+ ~a>:+ ~ai' 

ax 2 ay 2 2 
G = (a>;) + (a>;) + (~) . a). 

' 

E, F, and G are known as the Gaussian fundamental quantities for a 
., 

surface. Their specific use is in Sections 4.2 and 4.3, which respect-

ively deal with the definition of the scale factor and condition for 

conformality. 

where 

For the ellipsoid (from 3-4a and 4-14) 

E = M2 

F = 0 

2 2 
G = N cos ¢ 

2 
M = a(l-e ) 

(1 2 . 2,._)3/2 
-e Sl.n "' 

3-15 

is the radius of curvature of the meridian of the ellipsoid. The differ-

ential arc length squared is 

3-16 

and a useful form is 

3-17 



21 

3.3 Angle Between Parametric Curves 

In this section we treat the description of·the angle between 

curves in terms of the Gaussie.n fund8lllentli..l !qutintiti~s::·: ' IA ':.p~ticular . 
. ............. 

the angl~ between meridians and.parallels is described. 

To do this we need the evaluation of the Cartesian total 

differentials (equation 3-12) for ~ = c1 and >. 

• c 
2 

= C0 (Figure 3-2). 
'-

Figure 3-2. Angle Between a Merid:i.an and a Parallel 

The result is tabulated in Table 3-1. 

Also needed is the evaluation of the total differential of the 

length of a curve S (equation 3-13} For ~ = c1 and d~ = 0, 

as~ = IG) d>. 3-139. 

and for >. = c2 , d>. = 0 , 

3-13b-
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~ = cl ). = C 
2 

dX ax.d:\ .... a.x. d~ 
·if· dA ~' ' ·:~' ,'!', ' •. 

d;Y 2_1 dA aY 
(l). ~ d~ 

d:Z 
az 
aT dA 

az 
~del> 

Table 3-1. Evaluation of Cartesian Total Differentials 

The angle 6 between the meridian and parallel is the angle 

between the two tangent vectors T1 and T2 (Figure 3-2), and is computed 

from 

where J, K, and L are direction cosines of the two vectors. The direction 

cosines are (using 3-13a.;:aild; 3•-,_lb') 

' 

Kl = dY = .£I. . -r:::-Gl 
dS4> dA Yti 

3-18a 
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dX .. ax 1 
J2 = dsT = ~ • 7E ' 

· az.az 1 
1 2 = dSr = a., .• 7E . 

After substitution of 3-18a and 3-18b into 3-18, we get 

ax ax ay aY az az 1 
cos e = [ax ~ + 33: ~ + 33: ~] -

lEG 

3-18b 

3-19 

and noting that the term in brackets is the Gaussian fundamental.quantity 

F, the final result is achieved, that is 

F 
e =lEG" ·I 3-29 

The above equation is valid for any surface (e.g. sphere, 

ellipsoid, plane). It defines the angle between a meridian and a 

parallel. It can be used to determine the value of an angle or to help 

enforce a certain value for e in the way of a condition. 

Applying it to the ellipsoid simply tells us that 6 • 90°, 

since F = O, E # 0, and G # 0 (equation 3-15). 
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4. CONFORMAL PROJECTIONS IN GENERAL 

This section describes the general problem of conformal mapping 

of the ellipsoid surface onto the plane. The expressions developed are 

applicable to all conformal map projections alike. Discussed immediately 

below are the isometric plane, scale factor definition, condition for 

conformality, scale factor evaluation, geometry of projected curves, 

and meridian convergence. 

4.1 Isometric Plane 

We are concerned with three surfaces in the subject of conformal 

map projections - the ellipsoid surface which is to be mapped, the map 

plane surface which is the surface where the mapping takes place, and 

the isometric plane surface which is the intermediate plane surface 

-
through which all,the conformal map projections are derived. 

The isometric plane is mathematically described by first 

considering the expression (equation 3-17) for the total differential 

of the length of a curve on the ellipsoid surface. 

Recall 

4-1 

By defining the total differential of a new quantity q as 

M 
dq = N sec ~ d~ 4-2 

4-1 cru1 be written as 
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4-3 

By inspection one can see that the term in brackets in 4-3 resembles a 

distance element squared on some sort of plane surface. This plane 

surface is called the isometric plane. The two coordinate values on 

" this plane are the geodetic longitude. ;l. and isometric latitude q. 

An expression for the isometric latitude q, in terms of the 

geodetic latitude ~, is obtained by integrating 4-2, that is 

where 

q ~ M 
f dq =! N sec ~ d~ , 
0 0 

2 
M = a(l-e ) 

(l 2 . 2,~,)3/2 -e s1n '~' 

N = ----~a~----~ 
(l 2 . 2,~,)1/2 -e s1n 'I' 

Continuing the integration we get 

q 
! dq 
0 

~ dp = ! cos ~ 
0 

The first integral yields 

!~ dm __ 1T "' 
~ in [tan(r + ~2 )] ~ 
cos~ q 

0 

where in denotes the natural logarithm. 

4-4 

4-5 

4-6 

4-8 

4-9 



then 
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To evaluate the second integral let 

sin ~ = p, cos ~ dcp = dp , 

e2 f _d=p;;.._...,.. = ~ 1 I 1 + ep] 
2 2 2 n 1 - ep 

1-e p 

1 + . : e/2 = ln [ e sln !] 
1 - e sin <P 

Combining the results of the first two integrals gives 

TI ~ 1 + e sin : e/2 
q = ln [tan(4 + 2)]- ln [.;::.l----=e;......=.;sl::.;:;.n;:.....L.¢J ' 

TI ~ 1 - e sin p e/2 
q = ln [tan(,- + .:t..2 ) (...;:.1--"--=;;..._r...;;;) ] 

4 + e sin '~' 

where e2 = (a. -b 

4-10 

4-11 

4-12 

'Thus we see that there is a value of q for each value of ~. Listed in 

Ta:Jle 4-l are pairs of values for the isometric and geodetic latitudes 

from¢ equals 0° to 89°. Note that the value of q is less than ¢up to 

about <P = 11°, and is greater beyond about <P = 12°; At cp = 89°, q is 

several times greater. 

The geometric interpretation of the situation on the isometric 

plane is that meridians are parallel with constant spacing, while the 

spacings of the parallels vary. In fact, we witness for example, large 

spa~ings between the northern or southern parallels (Figure ~~-1',. 

There is the task of computing the geodetic latj +,ude <P from 

the isometric latitude q. Since 4-12 cannot be inverted, that is, ¢ 

expressed explicitly as a function of q, some other method is needed. 

We give below an iterative method of conversion of the isometric latitude 
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Geodetic Latitude (~) Isometric Latitude (q) 

l 0.9934132219 

10 9.9851128986 

11 10.9956288708 

12 12.0096232035 

20 20.2888725073 

30 31.2726570656 

4o 43.4668126053 

50 57.6161578380 

60 75-1262119163 

70 99.0738773214 

75 115.804191.6752 

80 139.2112650896 

85 179.0306399306 

86 191.8283989049 

87 208.3211451844 

88 231.5595670367 

89 271.2781638574 

Table 1. Isometric and Geodetic Latitudes (units-degrees) 

Everest Ellipsoid ClYt = '30D~80l't 
·a= 6377276.345 
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Figure 4-1. 
Plot of Meridians and Parallels on the Isometric 

Plane. 

into geodetic latitude. The iteration method employed is that of 

Newton-Raphson [ Conte and Boor 197_2; Wells- 1971]. 

A summary of the method follows. Given the non-linear 

equation f(x) = 0, the steps for the solution are: 

where 

(1) Select an approximate solution p ; 
. 0 

(2)Evaluate the iterative improved solutions p from 
n 

p = g(p 1 ); n = 1, 2, ••• , 
n n-

( f(x) 
gx)=x-f'(x) 

4-13 

4-14 

( 3) Stop the iteration when I pn - pn_1 1 < e:, where e: is a 

( -6 predetermined accuracy limit say 10 for single precision on the 

6 -12 IBM 3 0, or 10 for double precision); 
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(4) The solution to f(x) = 0 is then x = p , and is accurate 
n 

to within + e::. 

The application of the above to the isometric latitude q 

(equation 4-12) follows. Recall 

~ 1 . ~ e/2 
q = ln Itan. <% + 2)( 1 ~ : :~: ~) ] 4-15 

and 

q = ~ fln (l+sin ~) - ln(l-sin ~) + e ln(l - ~ sin ~) -

- e ln (1 + e sin ~)] . 4-16 

Our function f(x) that equals zero is 

f(~) = 0 ' 

r(¢) = ~ [ln(l+sin ¢)- ln(l-sin ¢)+e ln(l-e sin ¢)-e ln(l+e sin ¢)1-
c 

1 4-17 
~--------------------------------------------~-------J 

- q = 0 ' 

and 
I 

f(¢) = 4-18 

(1) For an initial approximation (¢ 0 ), assume a spherical case 

in l1-l), that is e = 0. Then 

1T ¢0 
q = ln [tan(4 + ~ )] , 

aml inverting the equation; 

¢ = 2 tan-l [exp (q)] 
0 

TT 

2 

(2) Evaluate the iterative improved solutions ¢ from 
n 

¢n = g (¢n-l)' n = 1, 2~ ... 

4-19 

4-20 

4-21 



where in general 

g(¢) 

namely 

30 

= "' f(p) 
'I'- f'(¢} 4-22 

I \1 ( -12 (3) Stop iteration when (~~,1 1 < £. For £ = 10 radians, 
n-

eon vergence is achieved within about three iterations for 0° < ~ < 89°). 

h.? Scale Factor Definition 

The scale factor describes, at each point on the map projection, 

the amount of distortion in length. This distortion is of course due 

to maintaining conformality and fulfilling other conditions prescribed 

for the projection. It should not be confused with the "line scale" 

(discussed in Section II), which is concerned with the scale distortion 

over a finite length of line. 

We now focus our attention on two surfaces - the ellipsoid 

and the !!lap plane surfaces. It was :proved in Section 3.3 that the 

meridians and :parallels on the ellipsoid surface are :perpendicular. 

Since the projection is conformal, these two curves are also perpendicular 

on the map plane. In mathematical language, the Gaussian fundamental 

quantity F equals zero. It follows then from 3-13 that the square of 

the differential change in the length of a curve on the ellipsoid 

sur race j s 
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4-24 

and on the map surface*the corresponding equation is 

4-25 

The scale factor k is defined through the ratio 

4-26 

We now define the scale factor for the isometric and ellipsoid 

surfaces with the aid of the following two parametric equations: 

and 4-27 

Note the replacement of 4> by q in thP :para:~etric eCJ.uations which 

formerly related the map coordinates x and y with the ellipsoid 

coordinates 4> and X. 

The linear distance element squared on the map plane in terms 

of q and A is (see equation 3-13) 

2 2 2f dq dX + qdX2 ds2 = e dq + 4-28 

where 

(ax) 
2 

(b::) 
2 

e = + aq aq 4-29 

f = (ax) (ax) + (~) (2z) 
' aq ax aq ()A 

4-30 

(ax) 
2 

(b::) 
2 

g = + 
dA dA 

4-31 

* Note the use of lower case x, y for the coordinates on the map 
plane. 



If angles on the ellipsoid are to be preserved on the map plane, then 

f = 0, and 

4-32 

The scale factor is now defined through the ratio 

2 
e dg2 + gd:A 2 k2 

ds2 
= -- = 

dS2 2 2 2 d:A2) ' 
1 

N cos <P(dq + 
4-33 

where the denominator is the square of the differential change in the 

length of a curve on the ellipsoid surface in terms of the isometric 

latitude (see equation 4-3). Note the usage of the isometric latitude -

first on the mapping surface (numerator 4-33) and secondly on the 

ellipsoid surface (denominator 4-33). 

l~ . 3 Condition for C onformali ty 

In this section we derive the equation from which the 

definiticn of conformality is obtained. This condition is then rep-

resented by the Cauchy-RiemB.!ln equations, in terms of the map coor-

dinates x and y, and the isometric latitude q and geodetic longitude :>... 

From Figure 4-2, 

_ N cos cp 
tan a - M d <P d:A , 4-34 

where the newly introduced quantity a is the geodetic azimuth of the 

diagonal of the differentially small figure. Recall the definition of 



33 

equator 
~+d::.. 

Figure 4-2. Different~al Area on the Ellipsoid S~rface 

dq (equation 4-2) 

d _ M d¢ _ 
q - N cos¢ 

Substituting 4-35 into 4-34 yields 

or 

tan a ·-
d>.. 
dq 

d/. = tana dq • 

4-35 

4-36 

4-37 

Now substituting 4-37 into the definition of the scale factor (equation 4-33), 

we get an expression for the scale factor as a function of the direction, 

namely 

2 . 2 
e· cos a + g s1n a 

2 2 
N cos ¢ 

We know, however that for conformal projections the scale factor 

cannot be a function of the direction if angles are to be preserved. 



jll 

Therefore, to force 4-38 to satisfy this condition, we choose e equal 

to g in l1-38. Thus 

k 2 = _....;e:;;.__ = _ _.g..___ 
2 2 2 2 

N cos ¢ N cos ¢ 
4-38a 

Now we can describe conformal projections in terms of Gaussian fundamental 

quantities, namely 

f= 0 4-39 

and 

e=g 4-40 

Recall, that the first was a result of requiring the meridians and 

parallels to intersect at 90° on the map plane (see Section 3.3). 

~he Cauchy-Riemann equations can be derived by application of 

4-3SI and 4-l,o along with equations 4-29, 4-30, and 4-31, which respectively 

cld'i :we, f and g in terms of x, y, q and A. Firstly 

and 

Secondly 

f = 0 ' 

'dx ax --2z_ 
en -

ag at-
'}.x 
aq 

e = g 

2 
+ (~) 

aq 

4-41 

4-42 

4~43 



Substituting 4-42 in 4-43, yields 

(ax)2 
aA + 

35 

4-44 

4-45 

These are only two possible cases for which the above equation is satis-

fied, namely 

2 
(ll.)2 = (ax) + 0 aq aq 4-46 

and 

(ax) 2 2 
= (Ez) n aq 4-47 

From 4-47, we get 

~ = + .£z . 4-48 at. - Clq 

Taking the positive root and substituting into 4-41 (f = 0), results in 

ax 2z 
aq = - a>. 4-49 

The above equation, along with the positive root of 4-48, are known as 

the Cauchy-Riemann equations, which we label as set number one: 

ax _ _£z 
a>. - Clq 

4-50 
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By choosing the negative root of 4-48, we arrive at the alter-

native set of Cauchy-Riemann equations, namely 

ax 2L 
ai = - aq 

4-51 

As stated earlier these equations represent the conformality 

condition and are used to _either help derive the mapping function f 1 or f2 in 

x + iy = fl (A + iq) • 4-52 

and 

A. + iq = f 2 (x + iy) , 4-53 

or corroborate whether these functions, as determined by other means, 

result in a conformal transformation. 

L1. l+ Scale Factor Evaluation 

We now can evaluate the general expression for the scale 

factor {equation 4-26). Recall 

2 
k2 ds2 

= dS 2 = 
l 

dx2 d 2 + y 4-54 

Also, recall from complex algebra (equation 2-40) that the aistance 

squared is given by 

4-55 

(general-note.tion). In map proje~~tion-notation and for the map plane, 

the distar:ce element squared is 
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'l'he scale factor expression, in terms of derivatives of complex 

functions, is 

k2- !'(~+iq) f'(~-ig) (dq2 + d.\ 2 ) 
- 2 2 2 2 

N cos ~ (dq + d.\ ) 

= f'(A+ig) f'(~-ig) 
2 2 N cos ¢ 

4-57 

4-58 

'rhe above expression is simplified by recalling that (equation 2-33) 

r'(:z.) r'(z) 4-59 

(general-notation). In map 11ro,jection-notation 

z = .\ + iq 

thcre-!'(.1re 

:f'(A+iq) f'(.\-iq) 4-60 

4-61 

Substituting 4·-60 and 4-61 into l1-58, yields the final result for the 

scale factor: 

4-62 k - N cos ~ 

;((Jx)2 + 
aq 

(~)2 
aq 

k ·- 4-63 
N cos ¢ 
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Note the two forms. For example, the first is used to evaluate the 

scale factor for the Transverse Mercator (since x = x( A.)), while the second 

is used for the Lambert Conformal Conic (since x = x(q)). 

4.5 Geometry of Projected Curves 

At this stage in the notes, it is necessary to describe the 

geometry of projected curves. Specifically, we show the configuration of 

meridians, parallels, and geodesics on the map plane, and their relation­

ships to the map grid system. Also,numerous terms are defined for later 

use. 

Consider a map plane, as depicted in Figure 4-3, upon which two 

points have been mapped (transformed) from the ellipsoid surface. The 

parallel and meridian passing through point 1, along with the geodesic 

from points 1 to 2, have also been mapped. Shown on the map are 

tangents to the latter two curves. 

Three coordinate systems are shown: the map coordinate system 

(grid system) denoted by x and y; the translated map system denoted by 

x' and y'; and the geodesic system denoted by ~ and 11· The latter 

system is orientated with the abscissa axis tangent to the projected geodesic. 

The ordinate axis of the grid system makes an angle of y with the tangent 

to the projected meridian. This angle is called the meridian convergence. 

The geodetic azimuth a of the projected geodesic is the clock­

wise angle from the tangent to the meridian, to the tangent to the projected 

geodesic. The grid azimuth T of the projected geodesic is the clockwise 

angle from the ordinate axis to the tangent to the projec~ed geodesic. 



proje~ted meridian 

y to projF>cted meridian 

x, y- map plane coordinates (grid coordinates) 

a - geodetic azimuth of projected geodesic 

T - grid azimuth of projected geodesic 

t - grid azimuth of chord 

y -- meridian convergence 

prnjP~ted geodesic 

tangent to 
p~·c.j ected 
geodesic 

X 

S - length of projected geodesic on the map plane 

d - chord length 

Figure 4--3. Geometry of Projected Curves. 
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The grid azimuth t is the clockwise angle from the crdinate axis to the 

straight line (chord) connecting the two points. The chord length d is 

the straight line distance between points l and 2. The projected length 

S is the length of the geodesic on the map plane. 

4.6 Meridian Convergence 

In this section we derive a general expression for the meridian 
.., 

convergence in terms of general functions of the isometric latitude q 

and geodetic longitude A. 

From Figure 4-3, we define the angle.... /3 between the. x • and l; 

abscissae axes (Figure 4-4). We can write 

r----·· ... - ·-------· ·-------------------------, 
l 
I 
I 
I 

y (parallel toy) 
2 . 

tan /3 = .9z. 
dx 

projected geodesic 

4-64 

The equation for the projected geodesic in terms of q and A is 

f(q, A) = 0 , 4-65 



and the parametric equations are 

x=x(q, A.), 

y=y(q, A.). 

The total differentials are 

and 

ax ax 
dx =- dq +- d:A aq . en 

dy = ~ dq + %f dA . 

Substituting the above in 4-64, yi~lds 

tan S 
'q_d 

- aq q 
- ax d 

aq q 

'EL + a:A d:A 

ax 
+ aJ: d:A 

and changing its form gives 

tan S 

Recall from 4-36, that 

2z. + 2z. ~ 
_ a9 a» dg 
- ax ax dA. 
-+--
aq n dq 

d:A -=tan a· dq 

Substituting 4-71 into 4-70, yields 

tan S 

and 

tan a 

2z. av 
= ag + 3>:" 

ax + ax 
aq a;.. 

tan a 

tan a 

EL _ax_ tan 13 aq - a9 -- ..;;._;;j,_....:;_;;.__ __ 

'q_ ax 
3A - a5: tan 13 

4-66 

4-67 

4-68 

4-69 

4-70 

4-71 

4-72 

4-73 



The above two equations are rather basic and need further development 

before an expression for the meridian convergence can be obtained. 

and 

Consider the case (Figure 4-5) 

pr 
m 

y 

y = 8 

projected ~ 

parallel 

~----------------------------•X 

Figure 4-5. Meridi~n Co~vergence 

Rewriting Ll-72 to handle tan 90° == oo, we get 

tan 8 = 

1 2::r+2J£.. 
tan a Clq ClA 

1 .£2s.. + Clx 
tan a Clq ClA 

Substituting 4-74 and 4-75 in 4-76, yields 

tan y = 

'I'he Cauchy-Riemann equations 

allow us to write 

2:;L _ dX 
Clq - a>. 

q_ = ·- ax 
31. <lq ' 

4-74 

4-75 

4-76 

4-77 



tan y 

ax 
- - ag • 
- .£z 

aq 
4-78 

Both of the above expressions are used to obtain the value of the 

meridian convergence for specific map projections. For example, the 

latter E used for the Lambert Conformal Conic, while the former is used 

in the Transverse Mercator. 
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5. MERCATOR PROJECTION 

In about 1550, Mercator created this projection imperically as 

a result of attempting to have the loxodrome on the globe appear as a 

straight line on the map. About !10 years later, Wright gave the math­

ematical description of the projection. 

The requirements for the Mercator projection are: 

( 1) 'rhe scale is true along the equator; 

(2) The origin for the ordinate y is at the equator. 

In this section we treat the direct problem, the scale factor, 

the meridian convergence, the appearance of the Mercator projection, 

the loxodrome, and the inverse problem. 

).l Direct Problem 

The direct problem is the determination of the map coordinates 

x andy from the geodetic coordinates ¢ and A. In other words, we are 

to determine the mapping function f in 

X + iy = f(A + iq) . 5-l 

Notice~ is replaced by q~ as will be the case for all projections,since 

the isometric plane is employed as an intermediate mapping plane. 

The first requirement i~plies that 

x = aA , 5-2 

where a is the semi-major axis of the ellipsoid. The equator portion of 

the ellipsoid surf~;tce is mapped at iir.s true size. 

The Beccmd requirement impli1ts :a: particulai' correspondence 

between three quantities at the equator, namely 



¢ = q_ = y = 0 . 5-3 

Under th·cse conditions our complex mapping function becomes 

I x + iy = a( A + iq) . I 5-4 

'T'rk above mapping function is conformal since the Cauchy-Riemann 

equations are satisfied, namely 

dX Ex _ 
"'3'I = 3q - a ' 

'lilll 

dX lJ.x = 
3q = - J>. 0 

'rhis complex function can be programmed using complex arith-

weti c routines, or explicitly separated into real and imaginary parts to 

x = a>. , 
5-5 

y = aq . 

:iote that the units of x and y are those of a, since the units of >. and 

q :u·e cadians. 

).~ 0cale Factor 

Recall one of the general equations (equation 4-62) for 

C\''.i.lu:~'.ing the scale factor: 

k = H C'OS 
5-6 

:·Joe p,no!· ial de:r.i. ve.ti ves an· eval.uateC. by ,·escrt ing to the para:netric 

·.>qwtt ions of the Jvjercator rroj er';~ ion \ equa.t ion 5-5). The rese1J t is 
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ax ai =a; ~-a>. - o . 5-7 

The scale factor becomes 

k =_.;;;;a __ 5-8 
N cos 4> 

The scale distortion is zero on the equator and increases with latitude. 

At 4> = 90° the distortion is infinite which simply means the pole is 

represented as a line like a parallel. 

5.3 Meridian Convergence 

Recall the general expression (equation 4-77) for evaluating 

the meridian convergence: 

tan y 

For the Mercator projection 

tan y 

and 

~ 
a.>. 

=a.x 
a.A 

0 =- = 
a 

5-9 

0 ' 

That is, the grid ordinate axis coincides with the tangent to the 

projected meridian. 

5.4 Appearance of the Mercator Projection 

The appearance of the Mercator projection is deduced from the 

several factors listed below (see Figure 5-l). 
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Appearance: 

X = aA 

Y = aq @ ~= 90 q = 00 

40° ------~--~--~---+---+---4----~--+---~---+--~--~--

scale maintained along Equator 

-10° ------~--~---4----~--+---~---+--~r---+----r---+--~--

-20° -------+---+----~--4----+--~~--+----+--~----4----+--~--

-30° ------~--~--~--~---+---4----~--+---+----+---+---+--

-40° ------+---+---+---+---4---4---~---r---r---+--~---+--

Figure 5-l. Appearance of the Mercator Projection 
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(1) y = 0; 

(2) k = 1 along equator; 

(3) meridians and parallels intersect at 90°; 

(4) meridians are equally spaced; 

(5) the spacings of parallels increase as one goes away from 

the equator. 

5.5 The Loxodrame 

Let us now show that a loxodrame or rumb•line is a straight line 

on the Mercator projector. Recall that a loxodrome is a curve on the 

surface of the earth (more strictly on the ellipsoid surface) that meets 

the meridians at the same angle that is constant azimuth (Figure 5-2). 

pole 

~oxodrome 

N cos~ dA 

Figure 5-2. Loxodrome 



From the figure 

and 

tan a = N cos p 
M 

M 
dA. = tan a N sec ~ d~ • 

Integrating the above, yields · 

or 

A - A = tan a q 
0 

A = q tan a + >.. 
0 

5-10 

5-11 

5-12 

which is the basic equation for the loxodrame on the surface of ellipsoid 

in terms of q. Given the mapping equations 

q=Z. 
a 

A. = .!. 
a 

5-13 

and substituting these into 5-12, yields the equation of the loxodrome 

on the map surface, namely 

y tan a + a>.. 
0 

5-14 

This is nothing else but the equation of a straight line, where tan a is 

the slope and a>.. is the x-intercept. 
0 

5.6Inverse Problem 

The inverse problem is to compute ~ and A given x and y. The 

steps for achieving this are: 

(1) Compute the longitude ). from 

~ 
~ 

5-15 
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(2) Compute the isometric latitude q from 

I q=~ ;I 5-16 

(3) Compute the value of the geodetic latitude ~ corresponding 

to q by the iterative method described in S:!ction 4.1 . 
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6. TRANSVERSE MERCATOR PROJECTION 

This very widely used conformal map projection was invented by 

Johann Heinrich Lambert in 1772. His development was based on elementary 

considerations (probably a geometric approach). Some 50 years later, 

Gauss gave an analytical derivation for the projection, showing that it 

was a special case of the conformal mapping of one surface onto another. 

Then L. Kruger, in 1912, completed the development of the Transverse 

Mercator projection by developing the formulae further in order that they 

would be suitable for numerical calculations (similar to those of 6-25 

and 6-26). What a beautiful example of creating- formalizing-

implementing, all three processes taking over a century. 

The requirements for the Transverse Mercator projection are: 

( l) 'l'he scale is true along the central meridian; 

( 2) The origin of the ordinate y is at the equator; 

( 3) The origin of the abscissa X is at central meridian. 

Treated in this section are: the direct problem; the scale 

factor in terms of geodetic coordinates; the meridian convergence in 

terms of geodetic coordinates; the appearance of the Transverse Mercator 

projection; the inverse problem; the scale factor in terms of map 

coordinates; the meridian convergence in terms of map coordinates; the 

Universal Transverse Mercator Projection; and the Transverse Mercator 

in three degree zones. 

6.1 Direct Problem 

Given the general complex mapping function 

X + iy = f(A + iq) , ( 6-1) 

the problem is to determine the specific mapping function f which fulfills 

the requirements stated above. 
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The third requirement implies that for the central meridian 

X = A = 0 . . . 

thus for the central meridian (from equation 6-1) 

iy = f(iq) 

y = f(q) 

6-2 

6-3 

On the other hand, the first requirement implies that the ordinate value 

y on the projection be equivalent to the length of the meridian Sci> on the 

ellipsoid (Figure 6-1). 

ellipsoid surface 

Figure 6-1. Lengtit of Meridian on Ellipsoid 

The length of the meridian, from the equator to the point in question, is 

given by the integral 

y = s 
4> 

4> 
= ! Mdcj> 

0 

Appendix I contains the solution of this integral. 

6-4 



Further, 
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«P 

y = ! N cos «jl dq , 
0 

y = f(q) ' 

since, through the definition of the isometric latitude, 

Md«jl = N cos «jl dq • 

6-5 

6-6 

We thus have been able to determine the function f in 6-1~ but only for 

points on the meridian. 

The next step is to generalize the approach for points away 

from the central meridian, but still close - say within 3° or so. For 

these points, the abscissa~ value will· be non-zero and the ordiute will 

not be equal.to the length of the .Dlet";l:dianfrom the. equator to the point. 

To help solve this problem, we approximate the mapping function 

X + iy = f(A + iq) 

by a Taylor series, choosing some arbitrary point with coordinates A 
0 

and q as the point of expansion (Figure 6-2). First, 
0 

Central 
meridian ~point 

I 
lllq 

. I 
po~nt of 1 
expansion e---_J 

( "o' qo) 

in question 

equator 

Figure 6-2. Arbitrary Point of Expansion 
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X + iy = f_(A. + iq) 

= flA +A>. + i(q +l.\q)] 
o· 0 

= fl(A +iq ) + ( l.\A+il.\q)] 
0 0 . 

= f(z +l.\z) = f(z) 
0 

. 6-7 

series Then, approximating the complex function f( z) with a Taylor 

r1~z. )(l1z) 2 fti~z )(l1z) 3 

f ( z) = f ( z 0) + ri ( z 0) l.\z + 2 ~ + __ 3_!.;:;o ___ +. 6: 8 

or 

x+iy ( ) I( )( , ) fii(' +i ){_AA+iAq) 2 = r A +iq0 + f A +iq l1A+il.\q + A q 
0 . 0 0 . 0 0 2! 6-9 

The above equations are made practical by choosing a different point of 

expansion. This time the point is chosen to have coordinates q of the 

point in question and to be on the central meridian (Figure 6-3). This 

implies 

Central 
meridian 

( 0, q) 

~point of expansion 

(A' q) 

• 
point in question 

----~------------------------------~equator 

Figure 6-3. Transverse Mercator Point of Expansion 
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). = 0 ' 0 . 

D.q = 0 ' 

n = q + 6q = q ' 
':1. 0 0 

A = A + 6A = D-A • 
0 . 

Substituting 6-11 into 6- .9, yields 

x+iy = f(iq) + ri(iq)A + -2-1 -- + --3-~--··+. · · 

6-10 

6-11 

6-12 

To evaluate the function and its derivatives~·we-retlift~~el:.1tJae fact 

that the length of the meridian is (6-5) 

~ 
s~ = r(q) = ! N cos ~ dq • 

0 

The function itself is 

cp 

f(iq) = if(q) = i f N coscj> dq • 
0 

The first derivative is 

= df{z) = 
dz 

df( z) . .s!q - idf( 9) • .s!q 
dq dz - · dq dz 

Since 

z = iq 

and 

6-13 

6-14 

6-15 

6-16 



that is 

y:i.elds 

~::::1:..=-i 
dz i 

The second derivative is 

= .9:_ {df(q)} ~ 
dq dq dz 

6-17 

6-18 

6-19 

6-20 

The higher derivatives, are derived in an c.nalogous manner, 

fiii(. ) lCJ :::: - fiii (g) 
' 

rrv ( iq) = if'IV ( q) 
' 

6-21 

rv (iq) ::: rv ( q) ' 

Substituting the evaluation of the derivatives into 6-12, 

,__ __________ , ____________ ..., 
x+iy = f(~+iq) = f(iq) + f'(q)~ + 

6-22 

--------------------------~ 
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All that we have achieved up to this stage is to replace the complex 

derivatives with real ones (compare 6-22 with 6-12). 

After separating into real and imaginary parts 

X = + • • • ' 

6-22a 

x and y can be solved for in the above after specifying the values of A 

(longitude positive east of' point re·lative to· the centraJ:\~ridi~~ i.~·. 

~ = A - A • t) and q (computed from <fl). · The only problem left- to be CM p01n 

solved is the evaluation of·f(iq), f 1 (iq), etc. 

We have to evaluate the real derivatives still further to get 

an expression that is suitable for computations. 

The first derivative is (from 6-5) 

dS Jf( q) } 
fl(q) = ~ = = N cos <fl • 

dq dq 

The second derivative is 

~ dN 
f .. tq) = [dcfl cos cfl - N sin cj>] !!t t 

dq 

where, from the definition of the isometric latitude, 

!!t = ! cos "' 
dq M "' ' 
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dN 
dcj> = (N-M) tan <I> , 6-23 

so 

f"(q) = -N sin 241 • 6-24 
2 

The higher derivatives are computed in Thomas [1952]. Substituting these 

into 6-22a yields 

X - = N 

+ 4n6 - 64n4t 2 - 24n6t 2) 

+ ~7 cos7
<1> {61- 479t2 + 179t4 - t 6 ) 

5040 6-25 

i = ~ + ~2 sin <1> cos <1> +~sin <1> cos3
cj> {5 - t 2 + 9n2 + 4n4 ) 

A6 . 5 2 4 2 2 2 + 720 s1n <1> cos cj>(6l - 58t + t + 270n - 330t n 

+ 445n4 + 324n6 - 68on4t 2 + 88n8 - 6oon6t 2 - 192n8t 2 ) 

AB • 7 2 4 6 
+ 40320 s1n <1> cos cj>(l385 - 3llt + 543t - t ) , 6-26 

where the longitude A is expressed in radians, and 
<I> 

s41 = l Mdljl , (from Appendix I) 

t = tan <1> , 

2 2 2 n = (e') cos <1> 

2 2 
(e')2=a -b 

b2 

6-27 

6-28 

6-29 

The above mapping equations yield x andy values accurate to 0.001 metres 

for A=± 3°. This completes the direct problem. 
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6.2 Meridian Convergence in Terms of Geodetic Coordinates 

Recall the general equation (equation 4-J7) defining the 

meridian convergence 

tan y 

a 
a . .>. =--a.x 
;n 

If we differentiate equations 6-25 and 6-26 with respect to A, and 

substitute into 6-30, we get {Thomas 1952, p. 97] 

4 4 2 4 2 4 + A cos P (2 + 4t + 2t + 15n + 35n -
15 

6-30 

6-31 

This expression is developed by a series expansion of the arc tan, that is 

-1 
y =tan {R.H.S.} in the above. The result is [U.T.M., 1958] 

2 2 . 4 4 
. [ A cos ~ ( 2 4) l cos p ( 2)] 6 y = l s1n t 1 + 3( ") 1 + 3n + 2n + 4 2- t , -32 

p 15(p") 

where y and A. are in radians; p" = cosec 1". The above expression has 

been truncated and can be applied out to 3° from the central meridian 

with an expected accuracy of O'! 01 in y. We note that the meridian 

convergence increases as we go away from the central meridian. 



60 

6.3 Scale Factor in Terms of Geodetic C~ordinates 

Recall the general expression for evaluating the scale factor 

on a conformal projection (equation 4-62) 

/c.( Clx)2 . (2z)2 
()),. + aA 

k = --~------~--N cos cjl 

We first change the form of the above to be a function of tan y by 

squaring 6-30, namely 

and 

2 tan y = 

Substituting 6-34 into 6-33, yields 

~~ h + tan2y 
k = ~-----------N cos cjl 

6-34 

6-35 

Since tan2y is small, we can expand the square root term into a series, 

and after evaluating the partial derivative, the result is 

6 6 
+ A cos p (61 - 148t2 + 16t4 ) • 

720 

A somewhat truncated expression is 

6-36 
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6-37 

where the eighth significant digl.t may be in error by one or two units. 

Note the scale factor increases as one's longitude relative to the 

central meridian increases;; for a constant latitude. Along the same 

meridian an increase in latitude causes a decrease in the scale factor. 

6. 4 Appearance of the Transverse Mercator Pro,jection 

The following facts govern the appearance of the Transverse 

Central 
merid.i. an 

Pole 

equator 

Figure ~-4. Appearf.l.nce uf the 'I'rsnsverse Mercator 
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(1) k = 1 along the central meridian, thus the two poles 

are plotted at ordinate values equivalent to the length of the meridian 

between the pole and the equator; 

(2) for points off the central meridian the ordinate value y' 

is greater than the ordinate value y, a point on the same parallel of 

latitude but on the central meridian; 

(3) y increases with longitude away from central meridian; 

(4) meridians and parallels intersect at 90°. 

6.5 Inverse Problem 

The direct problem was stated in equation form as 

X + iy = f(A + iq) 6-38 

We write the inverse problem analogously as 

A + iq = F(x + iy) 6-39 

where F is the ampping function to be determined and is different from 

f o f the direct problem. 

We begin by approximating F(x + iy) in 6-39 by a Taylor series. 

rhe point of expansion will, at first, be chosen to be some ·~bitrary 

point on the map plane with coordinates x and y (Figure 6-5). 
0 0 
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Transverse Mercator 
Point of expansion 
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c 
parallel of latitude 

( 0' y) 
(x, y) point -------------- ~ in question 

Thus 

I 
I 
I 
I 

(xo, yo) I 
----------' 
I 

arbitrary point of expansion 

--t-------------------------------------------~~ X 

Figure 6-5. Arbitrary and Transverse Mercator Points of 

Expansion (Inverse Problem) 

= F(x +iy ) +F1 (x +iy )(~x+i~y) + 
0 0 0 0 

F1fx +iy ) + __ ;::.0 _ _..;::.0_ 

2! 
(~+i~y) 2 + •.• 6-40 

== F(z ) + 
0 

... ,. 

I FEl(z )(~zj 2 Jil:11(z )(~z) 3 
F ( z 0 )(~z) + ~! + --....;~;;..1--'-·- + ••• 

6-41 
Now we choose a more practical point of expansion for our Taylor series -

this time one with coordinates (o, y) (Figure 6-5). 

x == 0 implies x = x + ~ = ~ and (A -· ~A) ; 
0 0 

6-h2 

y0 = y implies ~y = 0 and (~q = 0) • 6-43 

'l'aking into account the above implications in 6-l~O, we get 
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'+' = F(. ) + FI(. )x + iU{iy)x2 + Jil!IIl{iy)x3 
A. ~q · ~y ~y 2!. 31 + ••• 6-44 

Note that on the central meridian 

X= 0 

iq = F{iy) • 6-45 

The geometrical situation associated with the above equation 

is depicted in Figure 6-·6. Shown are two parallels of latitude - the 

parallel through the point in question with latitude 4>. , ~d the parallel 

through the ordinate value y on the central meridian. The latitude of 

the latter parallel is 4>1 .. -~d!~is~_c.~!~~?-~~e:-,:_f~t?~~~l,iliatittide"l'.~n: :-. .. >~ 

Thomas [1952]. Corresponding to 4>1 is the footpoint isometric latitude 

ql · Accordingly, 6-45 is written as 

iq1 = F(iy) . 6-46 

As a first step in making the mapping equations (6-44) practical 

for numerical computations, we evaluate F(iy) and its derivatives, leav-

ing off the subscript l for the time being. 

Foot point 
latitude 

central 
meridian 

y 

4>1 
latitude-----

I 
I 
ly 
I 
I 
I 
I 
I 

through y of point in 

Parallel of point in question 

~ s~ {..__--

___ ,_ _____________________ _L ____________________ ~ 

X X 

Figure 6-6. Footpoint Latitude. 



b) 

The first derivative is 

FI(i ) = dF(iy) = d(ig) = 
y d ( iy) d ( iy) 

• dn 
l. ~ • 
· dSq 

where in general 

iy = iS4> , 

and in particular 

Then the last derivative in the above becomes 

If we define 

then the result is 

dS 
1 q 

=-
i dS i 

q 

~=I q 
dS 

q 

Fr(iy) = qr ·I 
The second derivative is 

dS<). 

d(iS ) 
q 

dSq 
d( iy) ' 

Ill 
= q i 

6-47 

6-48 

6-49 

6-50 

6-51 

6-52 

6-53 

6-54 

The higher derivatives can be derived in ari analogous fashion, 

they are: 

FIII( iy) III - - q 

FIV (iy) iq IV = 6-55 

Fv (iy) v = q 

(sequence repeats) 



66 

Replacing the subscripts for the footpoint latitude in the 

function and its derivatives, 6-44 becomes 

.II2 
~ql X 

21 

III 3 
ql X 

3! + 

i IV 4 
ql X 

4! + • • • , 

and separating into real and imaginary parts the above becomes 

+ .. • • , 

+ • • . • • 

6-56 

6-57 

6-58 

Note the last equation in the above gives the difference, 6q = q-q1 , 

between the two isometric latitudes. This is used below in deriving the 

final expression for the geodetic latitude. 

Derivatives of complex functions in 6-44 have been replaced by 

real derivatives as shown above. Now we evaluate the real derivatives. 

Recall 

S = J N cos~ dq • q 
0 

The first derivative is 

q I _ .!!g_ __ 1 ___ _ 

- dS - N cos<jl 
q 

The second derivative is 

II d2 t 
q = ~= 

dS2 2 
q N cos~ 

The t.hird derivative is 

III d3 1 
q = .9:......9.. = 

dS3 N3 cos<jl 
q 

6-59 

6-60 

6-61 

(1+2t2+n2 ) . 6-62 
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The higher derivatives have been worked out in Thomas 

[1952, p. 101]. 

Substituting the derivatives in 6-57 and 6-58 along with the 

above expressions results in the following expression for the longitude 

A: 

A = sec 

6-63 

where the subscript 1 denotes that the functions be evaluated using the 

footpoint latitude ~l (Appendix II), and·t1 , n1 are given by 6-2'7 and 6-29. 

The accuracy of the above formula is plus or minus 0.00001 arcsecond for 

A less than 3° from the central meridian. 

The derivation of the corresponding expression for the latitude 

~ is more involved. It is necessary to obtain an expression for ~~ = ~-~1 

as a function of the difference ~q = q-q1 (6-58). Then the solution for 

the latitude is 

6-64 

where ~l is the footpoint latitude corresponding to a meridian of length 

y. The determination of ~l given y is documented in Appendix II. 

We now expand ~~ by a Taylor series in ~q, 

~·- cp = g(~q) 
1 

2 2 3 
d~l ~ql d ~1 ~ 3 d ~1 

=~q--+----+~-+ 
dql 2! d 2 3! d 3 

ql ql 

Noting that, from the definition of the isometric latitude, 

... 6-65 
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6-66 

The second derivative is 

2 N 
cos cpl ( 2 - 3 ~) 

The higher derivatives are given in Thomas [1952, p. 102]. Substituting 

the derivatives of q (6-60, 6-61, 6-62) into 6-58, and the result for Aq 

into 6-65 along with the derivatives of ¢1 (6-66, 6-67) into 6-65, the 

final equation for determining the latitude is obtained: 

t x8 
+ 1 7 (1385 + 3633t~ + 4095t~ + 1575t~) 
40320~N1 

6-68 

where 

t 1 = tan cp1 

2 2 2 n = ( e') cos ,~, 1 '1'1 

(e')2 = (a2- b2)/b2 

The accuracy of the formulae is ± 0~00001 within 3° of the central 

meridian. 
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6.6 Meridian Convergence in Terms of Map Coordinates 

In the inverse problem the map coordinates x and y are given. 

The aim of this section is to express the meridian convergence as a 

function of x only. 

From equations 4-77 and 4-78, 

!x. ax 
tan y a " ·-:~ . '!9..._ .9x. 

= ax = 1··'2z. = dx 6-69 
at.. aq 

for q = constant. Knowing that in general 

q = q (x, y) 

and that the total differential for the case when q is constant is 

and 

Thus 

dq = !9. dx + .£.9... dy = 0 ax ay ' 

~=-!9.;!9. 
dx ax - ay 

tan y = ~ = 
dx 

h 
ax - ----= 
.£.9... 
ay 

h 
ax 

- aA. ' 
ax 

since from the Cauchy-Rieman equations (equation 4-50) 

h-~ ay - ax 

6-70 

6-71 

6-72 

The derivatives of 6-71 are obtained by differentiating 6-57 

(A.= A.(x)) and 6-58 (q = q(x)). The result is 
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.!9... 
II x3 IV x 5 VI 

xq -6q +-q 1 - ... 
ax 1 1 120 

6-73 tan y = ---= I x2 III ·x4 aA v 
ox ql- 2 ql + 24 ql - ... 

Substituting the expressions for the partial derivatives, from 6-60 

through 6-62, into the above, yields [Thomas, 1950, p. 104] 

tl tl (~ )3 (1 2 4 tan y =-x -- - nl - 2n1 ) + 
Nl 3 1 

t 5 2 4 2 2 6 + _1:. (.!-) (2 + 2n1 + 9n1 + 6t1n1 + 20n1 + 
15 N1 

6-74 

y may be computed knowing x and the footpoint latitude ~l corresponding 

to y. 

6.7 Scale Factor in Terms of Map Coordinates 

It is often convenient to compute the scale factor as a 

function of the map coordinates. You will witness this is Section II 

when we deal with computations on a conformal map plane. 

From equation 6-35, the reciprocal of the scale factor is 

1 oA 2 l/2 
k = N cos ~ ax I (l+tan y) • 6-75 

After computing the part~al derivative from 6-57 (A = A(x)), expressing 

the square root term in a series, and expanding N cos ~ in a Taylor 

series with the point of expansion being the footpoint latitude ~1 , the 

equation for the reciprocal of the scale factor becomes [Thomas 1952, p. 105] 
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2 4 6 2 4 2 2 4 6 l 1+1112 2 5 + 6n - 3n1 - 4n + 24t1n1 + 24t1n1 61 (X ) l (!.....) + 1 1 (!.....) - = --- 24 - 72o 'N k 2 Nl Nl 1 
6-76 

The reciprocal of both sides yields the expression for the scale factor, 

namely 

1 + 

6-77 

6.8 Universal Transverse Mercator (UTM) 

The Universal Transverse Mercator projection is based completely 

on the transverse.mercator projection. In this section we give the 

specifications for the UTM, and the equations for the direct and inverse 

problems. 

Its specifications are as follows [UTM 1958]: 

(l) transverse mercator in zones 6° wide; 

(2) reference ellipsoid - Clark 1866 in North America, with other 

ellipsoids used elsewhere; 

(3) longitude origin - the central meridian; 

(4) latitude origin - the equator; 

(5) unit -metre; 

(6) false northing (y): 0 metres for northern hemisphere; 10,000,000 

metres for southern hemisphere; 

(7) false easting (x): 500,000 metres; 

(8) scale factor at the central meridian: 0.9996; 

(9) zone numbering: beginning with 1 for zone between l8v0 W and 174° W 

meridians and increasing to 60 for the zone bounded by meridians 

174°E and 180° E (Figure 6-7). 



Zone 
l 

Zone 
2 
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A 
v v 

Figure 6-7. UTM Zones 

(See Figure 6-8 for the zones for North America). 

Zone 
60 

equator 

(10) The latitude limits for the system are 80°N and 80°S due to the many 

zones·' that would he involved when v.:;l'k.ing :within an area ef any 

appreciable extent. 

Scale Factor on the UTM 

By choosing a scale factor of 0.9996 on the central meridian 

we expect from equation 6-37 

). 2 2 
k = l +~cos~+ ••• ' 6-78 

that the scale factor increases as we go away from the central meridian, 

reaches a value of l, and then increases beyond a value of l (Figure 6-9). 
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---------- Central meridian 

= 0.9996 

220 km 

k = 1 k = 1 

Isoscale curve 

Figure 6-9. Scale Factor on the UTM 

At what distance away from the central meridian, say along 

the equator, is the scale factor equal to 1? To answer this question 

we first write 6-78 as 

2 
k = k [1 + A2 cos p ] 

0 2 ' 

where k0 is the scale factor on the central meridian (for the UTM 

k0 = 0.9996). If 6k is the scale difference between that at the 

central meridian k0 &hd k, then 
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we get 

cos 4> 

6k 1/2 
I-J 

k 
0 

6 I 4 -4 For our case, Ak = 1 - 0.999 = 1 2500 = x 10 • 

6-80 

Therefore at 

Along the equator, at a distance of about 220,000 metres, the 

scale factor is equal to unity. 

Mapping Equations for the UTM 

Let us trace through the equations of the transverse mercator 

and see how they are affected by the stipulation of k = 0.9996 on the 
0 

central meridian. First,the meridian distance is 

4> 4> 
y = k s = k JM •.. dcf> = 

0 <P 0 
0 

k0 /N coscj> dq = k0 f(q).6-81 
0 

We see that the function f(q) is modified by k , and thus all derivatives 
0 

will be also modified, namely 

k 
0 

6-82 
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Then the mapping equations for the direct problem for the UTM in terms 

of the Trans'i'erse Marcator equation is 

X 
{ } 

y UTM 
= k { 

0 

X 
} 

y TM 
6-83 

The meridian convergence for the. UTM is the same as the TM since in 

t _ 2z I ax 
any-en at.. 

the k 0 cancels. Therefore 

The scale factor for the UTM becomes 

6-84 

6-85 

6-86 

For the inverse problem we wish to 

UTM coordinates. This means ~!1 = 

use the TM expressions but with 

xUTM 
k , so in the expression for A we 

0 

write 

3 
~M I ~ III A=--q ---q 

k0 1 31 k3 1 
0 

v 
ql + ••• 6-87 

Thus we see that the derivatives need appropriate division when UTM 

coordinates are used in the expression. The same holds for the equation 

for the latitude. 

Tables have been prepared for the computation of the direct 

and inverse problems. The interested reader is referred to [UTM 1957]. 
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6.9 Transverse Mercator in Three Degree Zones 

We have seen that the U.T.M. is the transverse mercator 

projection in 6° zones. In Canada the transverse mercator in 3° zones 

is also being used. For example, in Ontario [Dept. of Highway 1968] 

Canadian numbered zones 8 through 17 are used as a basis for the Ontario 

Coordinate System (Figure 6-10). In fact, the boundaries of these 3° 

zones are slightly modified (see Figure 6-11). 

Since the zone width is chosen to be only 3°, and a scale 

factor of k = 0.9999 assigned to the central meridian, we can expect 
0 

a smaller scale error throughout the zone. In fact, the error is 

l/10,000 on the central meridian as compared to 1/2,500 for the UTM. 

We can compute the distance away from the central meridian where the 

scale factor is l. This can be done by simply employing equation 6-80, 

where, in this case, ~k = 1-0.9999 = l/10,000. Therefore at 

cp = 0° , A = 0° . 81, 

cp = 50°, A = l 0 • 26. 

At :>. = l 0 30 ', and cp = 42?712, k = l. 000085. (see figure 6-12). 

The transverse mercator equations can be employed here as well 

by simply using the scale faetor k = 0.'9999. 
0 
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7. LAMBERT CONFORMAL CONIC PROJECTION 

Lambert developed his conformal conic preojection in 1772 -

the same year in which he created the Transverse Mercator projection. 

The Conformal Conic is used worldwide. 

The requirements of this projection are: 

(1) parallels are to be parts of concentric circles; 

(2) meridians are to be radii of concentric circles. 

Treated in this section are: the direct problem; the scale 

factor; the meridian convergence; the one and two standard parallel 

cases; and the inverse problem. 

7.1 Direct Problem 

As before we state the direct problem as 

X + iy = f(A + iq) , 

where the complex mapping function f is to be determined. f is 

determined by first separating into two functions r1 and f 2 • These two 

functions are determined by the help of the Cauchy-Rieman equations. 

The following equation of a circle is a mathematical char­

acterization of the first requirement for circular parallels: 
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X2 + y2 • .o ( ) = l\.-fl q 7-1 

where K is the constant for the radius and is to be solved for, ·f1 (q} is 

a function of the isometric latitude q and is to be determined, and x and 

y are the map coordinateScorresponding to the coordinate system shown 

in Figure 7 .1. 

y 

Pole 

ar~ straight lines 

paralJe1s are circles 

central 
x meridian 

Figure 7-l. Parallels and Meridians on the LCV 

The second requirement for straight line meridians is given by 

y = f 2 0.)x + 0. 

where f2 (~) is the second function to be determined. 

Substituting 7-2 into 7-1 yields 

X 2 + f 2 2 ( ). ) X2 = r f 1 ( q) • 

From the above, the following parametric equations can be written: 

x = x(A,q) 

K[fl (q) ]1/2 
X = 

[1 + f 2p,) ]l/2 , 
2 

7-2 

7-3 



and 

7-4 

We now employ theCauc~Ri~man. equations to help us solve for the t 1 (q) 

and f 2 (;\). 

Recall from equation 4-50 

ax =·.£.l. . ax = 2z. 
aq aA ' aA aq 7-5 

The above partial derivatives of 7-3 and 7-4 are (note variable is left 

off function from this point forward): 

K fi 
ax _....;1=---=--------,,..... 
aq = 2(r1)1/2(1+f22)1/2 

-K(f )1 / 2 f f I 
dX 1 2 2 
~ = (1 + f 2)3/2 

2 

2z. - 1. 
aq - 2 

From the first set of Cauchy-Rieman equations we get 

f I 2f I 
1 2 - - = __..;;::;...__ = 2i ' 

f1 1 + f 2 
2 

7-6 

7-8 

7-9 

7-10 

where i is a new constant to be determined. So from 7-10, we can write 

two equations: 
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fr 
l -2 R. 

fl = 

fr 
2 -=-- = .R.. 

l+f 2 
2 

7-ll 

7-12 

We shall see later that the constant i is associated with the longitude 

and is a function of the latitude ~. 
From the second set of Cauchy-Rieman equations we get 

f I 
2 

f I 
1 l 

:::: 2 f = ... .f,.; 
l 

7-13 

where i is the same constant as for the first set. The two equations 

arising from the above are: 

f I 
1 --= 

f I 
2 

-2R., 

::;: 2. 

7-14 

7-15 

Up to this point we have determined two equations from which we shall 

be able to compute expressions for f 1 (q) and f 2 (t..) in terms of the constant 

K and £. 

namely 

'ro begin with, let us determim f 1 (q) from 7-14 by integration, 

= -2tdq 

dfl 
!-- = -211,! dq' 
fl 

J.l'l f 1 + c 2 = -2Y.q + c1 , 

7-16 

7-17 

7-18 



NJ. f 1 = -2tq + c3 , 7-19 

where c3 is the combined constant of integration. c3 is evaluated by 

considering that 

.l.n f1 = 

when q = 

thus c3 = 

We have then 

ln f1 = 

f = 1 

0, 

0, 

0 . 

-2R.q, 

e -21q 

7-20 

7-21 

7-22 

7-23 

7-24 

The second function f 2 (A) is determined from 7-15 by integration, 

namely 

f 
1 

df2 It~ = 
1 + (f )2 

2 

7-25 

tan -1 
f2 lA ·. , = 7-26 

f2 = tan (H). 7-27 

Introducing the expressions for f 1 and f 2 into the parametric 

equations given by ·}3 and 7-4, yields 

X= K (e-2R.q)1/2 

[l + tan2 (1A)] 1/~ 

x = K e-iq cosR.A 

y = K e-iq sinR.A 

7-28 

7-29 

7-30 

From the above mapping equations, we can compute the radius of 

any parallel from: 
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2 2 2 
r = X + y 

' 
2 K2 -2R.q 2 2 

R.>..) ' r = e . (cos R.A + sin 

lr = 
R. ' K e- q I 

The mapping equations can be now rewritten as 

x = r cosR.A. 

y = r sinR..>.. 

where r and £A are shown in Figure 7-2. 

y (east 

Pole 

Figure 7-2. 

meridian 

central 
---l.,....,..meridian 

X 

Polar Coordinates for LCC 

Figure 7-2. Polar Coordinates for LCC 

7-31 

7-32 

7-33 

The complex mapping function f is finally determined by com-

bining 7-29 and 7-30. He get 

X + iy = f(A + iq) 

= Ke-lq (cosR.A. + i sin R.A.) 7-34 

and by using Euler's equation ( 2-l~O) , 

iy 1\: -lq iQ.A 
X + -- .e e 

X + iy = Ke 
R. ( -q+iA) 

[ X. + iy = 
v H(A.+iq) .. e . 7-35 
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Note the above complex mapping equation ~s in closed form. This expression 

can be programmed using complex arithmetic once the constan~K andi are 

defined. K and 1 are defined below for the one and two standard parallel 

cases. 

7.2 Scale Factor 

The general expression for the scale factor is (from equation 4-63). 

For the LCC 

and 

ax -iq 
aq = - K£ . e cos £/.. 

k = 
Kle-tq 
N cos <I> 

7-37 

7-38 

7-39 

The scale factor can be computed for any point on the projection 

with known geodetic coordinates, again, once the constants K and :t defined. 

7.3 Meridian Convergence 

One of the gerer~ expre~sions for the meridian convergence 

derived earlier (equation 4-77) was 

tan y 7-40 

F·or the LCC 



88 

~-dA - R. r sin R. A ' 7-41 

ax = ..i r cos R. A' 7-42 
dA 

thus 

tan y = tan R. A 

y = R. A 7-43 

7.4 Two Standard Parallel LCC 

In this section we develop the mapping equations for the two 

standard parallel LCC. 

If we stipulate the scale factor to be equal to one along two 

parallels, then we can write (using 7-39) 

K £ e-~1 K£. e--~2 
.R. = = N1 cos~1 N~o~2 

7-44 

e -.(ql Nl cos~1 
= 7-45 

e-lq2 
N2 cos~~ 

where the subscript quantities pertain to the two parallels. 

Taking natural log of each side of the above equation yields 

which defines the constant t: 

R. = 
ln N1 - ln N2 + ln cos~1 - ln cos~2 

q2 - ql 
7-47 



From 7-44, the following expnssion·defines the constant K: 

N1 cos~1 N2 cos~2 
K = = --=---.::::.. 7-48 

~.e-_R.ql R.e--R.q2 ... 

The above two expressions for the constants K and ~ complete 

the description of the direct problem - recall the complex mapping equation 

(7-35) 

X + iy = K ei.R,( :\+iq) 7-49 

7.5 One Standard Parallel LCC 

The one standard paralled LCC has as its basis the stipulation 

that the scale factor be equal to one along only one parallel of latitude 

¢ . We can then write 
0 

k = l = 

N cos~ 
0 0 

-R.q 
=R. Ke o 

But from 7-31, the radius of any parallel is given by 

r = K e-iq , 

7-50 

7-51 

7-52 

so we can write an expression for the radius of the parallel with latitude 

¢ , namely 
0 

'(-51 then becomes 

r 
0 

-R.q = K e o . 

N cos¢ = £r . 
0 0 0 

7-53 

7-54 
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This special radius also has a geometric interpretation as illustrated in 

Figure 7-3. 

Figure T-3: Geometric Interpretation of Radius of Standard Parallel 

Another expression for standard radius is 

r = N cot ¢ • 
0 0 0 

7-55 

'I'he constant 1 can be determined by substituting 7-55 into 7-51+, 

N cos¢ = £ N cotcp 
0 0 0 0 

< = sin~ 0 j 
The expression for the constant K becomes (from 7-31) 

I K = N0 cotcp0 eqosincpo I 
'I'he above two expressions along with the complex mapping f'untion 

[X + iy = K e"- ~ +iq) •I 

7-56 

7-57 

7-58 

constitute the equations for the direct problem for the LCC one standard 

parallel projection. 
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7 ·6 Modification to Coordinate System 

The coordinate system exhibited in Figure 7~2 is not convenient 

in practise. We make two modifications: interchange the x andy, and 

change the location of the origin to decrease the magnitude of one of the 

coordinate values. 

We had from 7-32 and 7-33 

x = r cos R. A 7-59 

y = r sin R. A 

Now we interchange the coordinates which results in 

x = r sin 1 A 

y = r cos R. A 7-60 

The equations which reflect a change in the origin are 

(Figure 7-4) 

x = r sin R. A. , 
7-61 

y = r - r cos R. A., 
0 

where r is usually selected such that it is slightly larger than the 
0 

y 

I 
I 

I 
I 

I 
I 

I 

origin parallel - close to area 

r 
0 

--
I / 
I ,"' _ .......... ,. 

/ 
/ 

X 

Figure 7-4: Modification to Original LCC Coordinate System 
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Two ways in which to select r is to select some cj> below the area 
0 0 

in question and compute 

or 

7.7 Inverse Problem 

r 
0 

r = N cot<P 
0 0 . 0 

(q from cj> ), 
0 0 

7-62 

7-63 

In the inverse problem the map coordinates x a~d y are given along 

with the constants r ,t., and K. Required are the geodetic coordinates 
0 . 

<P and A. 

r 
Ci 

Figure 7-5. Inve!"8e ~lem 

From Figure 7-5, we can get the ·expression for the longitude by writing 

and 

tane = 

e = u 

X 

r -y 
0 

~ 
~ 

7-64 

7-65 

7-66 
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The latitude is obtained in the following steps. First 

compute r from 

We know that 

so 

and thus 

r - y 
r = ......;;.o __ _ 

cos e 

r = K e-R.q 

ln r = ln K -5/, .q 

q = ln K - ln r 
5/, 

7-67 

7-68 

7-69 

7-70 

Once the isometric latitude is determined,~ may be determined by using 

the Newton - Raphson approach described earlier. 



8. STEREOGRAPHIC PROJECTION 

In this section we first derive the expressions for polar 

stereographic projection and its implimented system - the Universal 

Stereographic Projection. Secondly~ we give references pertaining to 

the stereographic projection as implemented in New Brunswick. 

8.1 Polar Stereographic Projection 

The polar stereographic projection is a limiting case of the 

LCC. Meridians are straight lines and parallels are concentric circles. 

In this section we deduce expressions for the direct problem~ scale 

factor, meridian convergence, and inverse problem from the expressions 

already derived for the LCC. 

The constant t for the one standard parallel is (7-56) 

For the pole, ~ = 90, and 
0 

factor then becomes (7-39) 

t = sin ~0 

t = 1 

. k = 

and 

K = k N cos ~ eq 

The expression for the scale 

8-1 

8-2 

8-3 

We have seen that q increases without limit as ~ approaches 

TI 

2 , so the above expression breaks down at the pole. We transform the 

expression as follows: 
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K = k N cos ~ eq = k N cos ~ tan (~ + ~) (1 - e sin f) e/2 
4 2 1 + e sin + 

8-4 

We make the trigonometric substitution 

( 'IT !) cos p 
·tan 4 + 2 = -1 ;;.:-;.=_s~"-· n-~ 

2 
K = k N cos p 

1 -· sin ~ 
(1 - e sin p )e/2 
1 + e sin ~ 

= k a (1 + sin p) 
(1 2 . 2 ~)1/2 

- e s~n "' 

(1 - e sin p)e/2 
1 + e sin.~ 

At. the pole ~ = 90° and k = 1, so 

K = 

The expression for the scale factor is 

k = 2a2 (1-e)e/2 
b N cos ¢ l+e 

The meridian convergence is 

y = R,).. = ).. 

-q 
e 

The compleS mapping equation for the direct 

I + - lt ii.(~+iq) x ~y = e 

problem is 

; I 

8-5 

8-6 

8-7 

8-8 

8-9 

8-10 

8-11 

8-12 

where t and IC are definei above. The inverse problem is solved a.s··ror the 

LCC. 

The Polar stereographic system is applied in practice as the 

universal stereographic projection (U.P.S .). It has the following char-

acteristics [UPS 19 58 ] : 

1) units - metres 

2) ellipsoid - international; 



3) pole coordinates: x = 2,000,000; y = 2,000,000; 

4) k = 0.994 . pole 

The UPS was designed to be used in conjunction with the UTM to 

cover the entire globe: UTM to B0° latitude and USP from B0° to 90°. 

B.2 The Stereographic Projection System in New Brunswick 

The above is not a complete treatment of stereographic pro-

jection. For a more detailed coverage, see the following two Department 

of Surveying Engineering, University of New Brunswick Technical Reports: 

(1) Frankich, K. (1977). A Study in Conformal Mapping. Department of 

Surveying Engineering, Technical Report No. 4~, University of 

New Brunswick, Fredericton. 

(2) Thomson, D.B., M.P. Mepham, R.R. Steeves (1977). The Stereographic 

Double Projection. Department of Surveying Engineering, 

Technical Report No. 1+6, University of New Brunswick, Fredericton. 
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9. A GENERALIZED SET OF CONFORMAL MAPPING EQ0ATIONS 

9.1 Introduction 

In the previous sections, we indicated Which conformal map 

projection is best suited for areas of a particular shape such that the 

scale error would be a minimum. For example: 

(a) North-south extent, Transverse Mercator, 

(b) East-west extent, Lambert Conformal Conic, 

A legitimate question to pose is: What map projection is to 

be employed when an area is located obliquely to the north-south or 

east-west directions. An oblique projection? This is one possible 

answer, but how about areas which are arc-shaped, e.g. circular, 

hyperbolic? A possible answer to the above questions is given below in 

connection with the analysis of a generalized set of formulae for the 

conformal mapping of the ellipsoid onto the plane. 
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9. 2 Generalized Formula.e for Conformal Projections 

The generalized set of formulae were formulated after. a careful 

analysis of the equations belonging to the various particular conformal 

map projections .[~$.k::l.:'li.sky· 1967]. Given below is the generalized set of 

formulas in our notation where C* is a constant, R is the radius of curva-

ture of the ellipsoid at the central parallel, S~ the length of the 

meridian, at,td· the length of a parallel given by S = ).N cps 4>. 9-1 p 

X = (1 + 

y = 84> + 

3 s 2 
p ) 

C* ~ 

C* R 2 

S + (C* - 6 
p 6C* R 2 

The corresponding general scale factor equation is 

k = 1 .. 
6s 2 + (c* - 6) s2 

cp p 
-2 

2 C* R 

+ ••• 9-2 

+ ••• 9-3 

9-4 

~e main result is the above equation for the scale factor. 

The above set of formulas are good for maps at a scale of 1:50,000. In 

order to insure an accuracy of 1 to 4 meters in x andy, the area is 

limited to 450 km in latitude and longitude. More accur~cy in x andy 

can possibly be achieved simply by including more terms in the expansion. 

9.3 Application of the General Scale Formula 

Specific map projections along with their varying shaped isoscale 

curves are derived by simply stipulating particular values for the constant 

C* in 9-4. An interesting analogy exists in physics where the path of 
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motion of a particle in a central force field is determined to be an 

ellipse, hyperbola, etc. by simply stipulating a certain value of a 

constant in the solution of the differential equation of motion. 

A wise selection of the constant C* makes it possible to obtain 

projections whose isoscale curves have the shape approaching that of the 

area to be mapped. 

It should be noted that 9-4 is to be used only to investigate 

"' possible conformal projections; the actual computation of the scale should 

be performed with extended formulas giving more accuracy. 

lrunediately below, seven possible conformal projections are .. 

discussed as special cases of the general, among which will appear the 

four basic (Mercator, T.M., L.C.C., Polar Stereographic) conformal 

projections described earlier in these notes. 

Case C* = oo (Transverse Mercator): 

The scale factor equation becomes 

6 s 2 C* S 2 
k = 1 + ~ + E 

2 C* R 2 2 C* ~ 

2 

6 s 2 
E 

2 C* ~ 

9-5 

which is identical to the truncated form for the Transverse Mercator 

derived earlier. Similarly, expressions for x and y are obtained by 

substituting C* = oo in 9-2 and 9-3: 



X= 8 
p 

t s 2 
Y = 8~ + 2N p 

100 

. . . ' 

+ • • • 

FOr the remaining cases, the x-y equations will not be given. 

9-6 

9-7 

The main point of interest lies in the shape of the isoscale 

curves. From 9-5, the longitude from the central meridian of all points 

having a scale of 1 + 6k is 

12 6k l/2 . 
"Ao 'o ( ) =p--,~,k-cos 'I' 

0 

9-8 

Basically, the curve has the shape 1 curve which changes slowly 
cos cp 

near the equator and rapidly near the_ pQ]..~s (_EJgure 9-1 } _ _! 

~----------------------------------------------------------------~ 

Pole 

isoscale curves 

equator 

isoscale curves 

Pole 

Figure 9-1: Isoscale Curves for Transverse Mercator C* = oo 
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Conclusion. The above figure illustrates that an area great in 

north-south extent but not too close to the poles may enjoy constant scale 

error throughout its length and further the scale error ~ be made 

minimal if east-west zones are devised like in the U.T.M. It has already 

been mentioned that zones near the poles may be made as wide as 30° simply 

because of the shape of the isoscale curves in this area (e.g., at~= 85° 

and k = 0.9996, k = 1 at A = 18°). 
0 

Case 12 < C* < ~. C* = 18: 

The equation for the scale error becomes 

s/ + 2 sP2 

6 R 2 
k = 1 + 

or 

= k - 1 . 

According to quadratic surfaces in solid analytical geometry, 

9-9 

9-10 

9-11 

is the trace of an ellipsoid in the x-y plane with semi-maJor and mino~ 

axes o"r a and b, respectively. In our problem the elliptical trace 

has parameters 

a = 9-12 

b=I3R. 9-13 

Thus the isoscale curves are ellipses elongated approximately two times 

more along the meridians than along the parallels (Figure 9-2). 
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____ .;._ ________ ""'···------------~ 

k = 1 or k 
0 

central 
merid.ian 

isoscale curves 

Figure 9-2: Isoscale Curves for 12 < C* < oo 

Conclusion. According to 9-9, k = 1 at one point only and from 

that general point the scale error increases in a specified manner. In 

order to have a nearly constant and minimal scale error in an elliptically 

shaped area,a value less than unity could be chosen for the central point. 

Such a selection could be based on a least square adjustment. 

Case C* = 12 (stereographic): 

The scale error equation becomes 
s 2 

K=l+l + 
- 2' 
R 
3 

s 2 
_F_;. 
-2 
R 
3 

9-14 

and clearly the traces on the mapping plane are circles c~ntered at a 

central point within the area to be mapped (Figure 9-·3). 



k = 1 or k 
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---- --z_central point 
ot area 

Figure 9-3: Stereographic Projection, C* = 12 

The Polar Stereographic Projection is obtained by choosing 

the central point as the pole. Further, the U.&.P. is obtained by choosing 

k =0.994 at the pole. 
0 

Conclusion. The stereographic projection or U.S.P. seems well 

suited for small circular areas, which is undoubtedly the reason for using 

it in the polar areas. 

Case 6 < C* < 12 3 C* = 9. 

The scale error equation becomes 

s 2 s 2 
k = 1 + l + E 

3R 2 6 'R 2 
9-15 

This case is simply Case C* = 19, rotated 90°. 
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Conclusion. This case of conformal map projection should be 

used for small areas elliptically elongated in the longitudinal direction. 

Case C* = 6 (Lambert Conformal Conic) 

The scale error equation becomes 

9-16 

The isoscale curves are functions solely of the meridian distance from 

the standard parallel and coincide with the parallels of ~atitude. This 

is obviously the case in the Lambert Conformal Conic Projection. 

Conclusion. Since the scale can be kept constant along a 

given parallel, the use is obvious in any area of great longitudinal extent. 

In order to increase the latitudinal coverage, two standard parallels are 

introduced with scale factors different from unity. 

Case C*:: 6, C* = 3 

The scale error equation is 

s 2 
K = 1 +­

'R2 9-17 

The unequal denominators and the minus sign in the above equation signify 

that the traces of the isoscale curves on the map plane are hyperbolic 

curves whose vertical axis coincides with the central meridian (Figure 9-4). 

The Transverse Mercator case which is similar to this one can 

be obtained from Equation 9-17 by omitting the second term and changing 

the sign of the third, however without mathematical justification. 



arced­
shaped area 
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central 
meridian isoscale.curves 

p 

Figuxe 9-l+: Isoscale Cuxves Case C* = 3 

~------------------------------------------------------------------------~ 
Conclusion. The above figure depicts the odd shape of the isoscale 

curves. A stipulation of unity for the scale factor at the central point 

in this case would be a bad choice since there is a rapid change of the 

scale factor from this point. A better choice would be some value less 

than tmi ty such that a curve away from the central point and which passes 

through the centre of an arced-shaped area would have a value of k = 1 

(Figure 9-lt) . 

Case C* < 02 C* = -3 

s 2 s 2 

K = 1 + E l 9-18 
2-2 -2 
-R R 
3 
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The isoscale curves in this case are hyperbolic with the main axis coin-

ciding with the central parallel. 

This case slightly resembles the Mercator. Equation 9-18 could 

be revamped to fit the Mercator Projection by omitting th~ 2nd last term 

(making the scale factor dependent on latitude only), thus 

1 + <1>2 9-19 

as compared to 

k = a = 1 + a - N cos ; _ 1 + 1 - cos p 
N cos 4> N cos 4> - cos 4> 

9-20 

These two equations are not completely equivalent. 

Conclusion. This projection ~d be used for areas which are 

arced-shaped and extend slightly obliquely to the E-W direction, i.e., East-

East-North (EEN). 

9.4 Summary 

By studying the gerneral equation for the ~cale factor, it was 

demonstrated how projections with quite distinctly different shaped isoscale 

curves could be derived. It was also stated which case or shape of isoscale 

curve may be best suited for an area of particular shape. Table 9-1 serves 

as a summary of the foregoing. 

In general, it may be stated that when mapping small areas, pro-

jections with closely knit isoscale curves should be used, thus achieving 

minimal scale error within the area with a minimum number of zones. 

Medium and large sized areas of' varying shape may be mapped with projections 
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possessing more sweeping isoscale curves like hyperbolas. When the 

entire earth ·is to be mapped, the projection with the most sweeping 

isoscale curves used in conjunction with zones is the most satisfactory, 

namely the Transverse Mercator. 
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Table 9-l: Su[gested Conformal Projection 

Area Description Case Projection Name Shape of Isoscale Curves 

N - S C* = "' Transverse Mercator Oblong along central meridian 

E- W C* = 6 Lambert Conformal Conic Corresponding to parallels 

C* =-3? Mercator Straight lines (infinitely large 
hyperbolas) 

}NNE and other C* = 3 ? Hyperbolas with central meridian 
Oblique quadrants as main axis 

or 
Arced EEN and other c* = -3 ? Hyperbolas with central parallel 

quadrants as main axis 

Circular (e.g. polar areas) C* = 12 Stereographic Concentric circles 

Elliptical N - S C* = 18 ? Ellipses extended along meridian 

Elliptical E - W C* = 9 ? Ellipses extended along parallel 

-----·-·- -- -- ---------- -----

Note: Based on the assumption that minimal error is desired within area. 

I-' 
0 
CD 
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SECTION II 

COMPUTATIONS ON A CONFORMAL MAl) 

PRO,JECTION PLANE 
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10. INTRODUCTION TO COMPUTATIONS ON A CONFORMAL MAP PROJECTION PLANE 

In Section I we treated the problem of transformation of 

geodetic coordinates (~, A) on the ellipsoid to map coordinates (x, y) 

on the conformal map plane, and vice versa. The first objective of 

this section is to show how geodetic position computations, such as 

the direct and inverse problem, can be made in terms cf map coordinates. 

The advantage of this approach is that the mathematical models can be 

characterized by plane geometry. The disadvantage is that observations, 

such as distances, directions, astronomic or gyro-theodolite azimuths, 

must be reduced to the conformal map projection plane. The development 

of the formulae for the reductions is the second ob,jective of Section II. 

It is worthwhile to place the map projection method of geodetic 

position computation in context by outlining at least two other methods 

of computation. First, recall that computations in three-dimensions 

required that observations remain in space, as observed, with correction 

made only for the effects of the gravity field and the atmosphere. No 

surface such as an ellipsoid, sphere, or plane was eA~licitly employed, 

thus no reductions of the observations was necessary. Mathematical models 

were characterized by three-dimensional geometry. Coordinates of points 

were expressed in terms of three dimensional coordinates (x, y, z, or ~. 
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A, h). Also, recall that computations on the surface of the ellipsoid 

required that observations be reduced to the surface of the ellipsoid by 

first taking into account the effects of the gravity field and the atmos­

phere, and then the effect of the height of target and geodesic-normal 

section separation. Mathematical models were characterized in terms of 

ellipsoid surface geometry. Coordinates for points were given in terms 

of horizontal geodetic coordinates($, A). 

Why compute geodetic positions on a conformal projection pl~ne 

instead of, for example, on an equiareal or an equidistan~ map projection 

plane? The answer to this question is straightforward. Conformal pro­

jections preserve angles and therefore measured angles can be directly 

used for computational purposes. However, sometimes these angles need to 

be corrected in order to transform them into the corresponding plane angles 

required for plane computations (see equation 11-1). The scale factor at 

a point in conformal mapping is a function of the position of the point 

only. 

k = k($, A) 10-1 

In other words, all distances in a relatively small area must be multiplied 

by one and the same scale factor. However, for longer lines some average 

scale factor should be used. 

In equiareal and equidistant projections, the scale factor is 

also a function of the azimuth at a point, i.e. 

k = k($, A, a) 10-2 

which implies that the angles are not preserved. 

The third important advantage of conformal projections is the 

fact that with a priori defined relative accuracy of linear scale factor 

conformal maps will cover the largest domain compared to all other 
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conceivable map projections. That means with conformal maps we shall 

have a minimum number of zones or projection systems. 

In the chapters to follow, we discuss: the problem of reduction 

of observations onto the map projection plane (section 11); the various 

mathematical models for computation on a map projection plane (section 

12); the general formulae for reductions (section 13); the reduction 

formulae for specific projections (section 14)~ 
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11. REDUCTION OF OBSERVATIONS 

In this section we treat the problem of the reduction of 

distance, direction, and azimuth observations onto the conformal map 

plane. First we describe why these reductions are needed. 

During the conformal mapping process, lengths of ellipsoid 

geodesics are altered. The directional characteristics of these 

geodesics on the map plane is dictated by the· e0n:fcmn~tj:"~Ondt'tfcijl~ that 
. " . .,.,. .. · ,. .... 

is to say, geodesics are projected onto the map plane in a manner that 

preserves the angle which a given pair of geodesics define. 

11.1 Reduction of Angles 

Let us examine two specific angles on the map plane. The 

first is the angle between two projected geodesics at a point to two 

other points, and the second is the angle between the two chords at a 

point to two other points. 
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Figure 11-1. Angles. 

2 

(T-t)l2 

(T-t)l3 

3 

Because of conformality the ellipsoid angle is equivalent to 

the angle between the two projected geodesics (a213 ) . The grid azimuth 

of the projected geodesic is denoted by T12 , while the grid azimuth of 

the chord is denoted by t 12• The difference between these two azimuths 

is known as the "T minus t" correction. A similar situation exists 

between points 1 and 3. The angle between the two g~odesics is related 

to the grid angle by the equation 

1•213 = 8~13 + (T-t)12 + (T-t)l3 ' 11-1 

a213 is the angle needed in the computation of positions of unknown 

points. In general (T-t) 12 does not equal (T-t)13 , and ~rther the 

formulae for computing the (T-t) correction is different for each 

conformal map projection. 
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11.2 Reduction of Azimuths 

There are three different azimuths to contend with. Two have 

already been defined (T and t). The third is the angle b~tween the 

tangent to the projected meridian and the tangent to the projected 

geodesic and is denoted as a12 (Figure ll-2). The following relation­

ship is valid 

where y is the meridian convergence. Further 

projected 
meridian 

y 

Figure ll-2. Azimuths 

11-2 

11-3 

projected geodesic 

X 

The above expression gives the value of the grid azimuth on the plane in 

terms of the "observed" ellipsoid azimuth. t 12 is needed in computations 
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on the plane. Expressions for y have already been derived. What remains 

to be done is the derivation of expressions for (T-t} for the various 

projections. 

11.3 Reduction of Distances 

Three types of distances are involved: the "observed" geodesic 

distance S*; the length of the projected geodesic distance S; the chord 

length d (Figure ll-3). The chord distance is 

11-4 

where (S*-8) 12 is the correction due to the length distortion of the 

geodesic, while (S-d12is due to the difference in length between the 

projected geodesic and the chord. These two corrections are usually 

combined into one as we will see later when it is de~ived for the various 

map projections. 

y 

l 

Figure ll-3. Distance 
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12. MATHEMATICAL MODELS FOR COMPUTATION OF POSITIONS 

Let us turn away from the conformal mapping problem pursue to 

the problem of computing on the mapping plane. The reason for doing 

this is purely stategical. We use this application-oriented section as 

motivation, which will undoubtedly help us endure the rather tedious but 

interesting, development of the reduction formulae. 

The mathematical models are not new to· a student at this level. 

The intent is to recapituate the models and show where and when the 

various reductions are necessary. For an exhaustive treatment of 

models for the computations on a plane, see for example, Faig [19721. 

We treat the problems of: intersection, traverse with astro­

nomic azimuth orientation; traverse with grid azimuth orientation; 

adjustment of a network on a plane; and calibration of a gyro-theodolite 

using conformal map projection coordinates. 

12.1 Intersection 

The intersection problem is depicted in Figure 12-1 along with 

the projected geodesics. The knowns are the map coordinates of the two 
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points 1 and 2; the unknowns are the map coordinates of the third point 

3; the observed quantities are the two angles at 1 and 2. 

t 
1 

1 

Figure 12-l. Intersection and Projected Geodesics 

The solution for the two unknown coordinates x 3 ,a.nd y3is made 

from the two equations: 

and 

tan t 13 = 

= ~3 - x2 

y3 - y2 
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Note t 12 and t 21 are computed from known coordinates; ~ and a2 observed 

(ellipsoid values); while the (T-t) correction needs to be computed 

(expressions to be derived in Section 13). 

12.2 Traverse with Astronomic Azimuth Orientation 

The traverse problem along with the projected m~ridians and 

geodesics is depicted in Figure 12-2. The knowns are the~ap coordinates 

of a starting point 1. The observed quantities are the astronomic 

azimuth of the geodesic ( 1-2) ~ the angles and the distances • 'r!W-U'nk.nowris 

are the coordinates of points 2 to n. 

1 
Figure 12-2. Traverse 

The coordinates of point 2 (e.g. x2 ) can be computed from 

sin t 12 = 

where 

and 
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dl2 = 8~2 - (S* - S)l2 - (S - d)l2 ' 

Again we see that (T-t) correction is necessary along with the 

meridian convergence. Distances also need reduction. 

12.3 Traverse with Grid Azimuth Orientation 

The solution to this problem is similar to the previous case, 

with one change, that is 

tl2 = tl + al + (T-t)l- (T-t)l2 . 

Note an observed angle at 1 is necessary. This requires a computation of 

a (T-t) correction for the backsight. All other corrections are 

identical to that explained immediately before. 

Ll. l1 Ad,justment of a Network on a Conformal Map Plane 

The unknowns in the adjustment of a network on a conformal 

map plane are the usual unknown coordinates (possibly some nuisance 

parameters such as an orientation unknown at each station). The 

knowns are the map coordinates of the stations to be fixed. The 

observed quantities are directions, distances and azimuths. These 

need to be reduced to the map plane as expressed by 11-1, 11-3, 11-4. 

The adjustment then proceeds as usual. 
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12.5 Gyro-Theodolite Calibration Using Map Coordinates 

The basic idea is to compare the azimuth observed by the gyro 

with the azimuth computed from map coordinates. They are, of course, 

two different kinds of azimuths, thus one must be "reduced" to the 

other. What reductions are necessary? All necessary concepts needed 

to answer this question have already been dealt with - thus this 

problem is left as an exercise. 

Assume that a gyro-azimuth is equivalent to an astra-azimuth. 
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13. GENERAL FORMULAE FOR REDUCTION TO THE MAP PROJECTION PLANE 

The general formulae for reduction of distances and directions 

to the conformal map projection plane are discussed in this section. 

These general formulae are valid for most conformal projections. The 

purpose of this discussion is to give the reader an appreciation for the 

fundamentals underlying the computational versions of these formulae given 

in Section 14 for some specific projections. By understanding the fun-

damentals, the users of the computational formulae can better understand 

their application and limitations. 

Discussed immediately below are: 

(1) the radius of curvature of a projected geodesic; 

(2) the parametric equations of the projected geodesic; 

(3) the difference in length between the projected geodesic and the chord; 

(4) the difference in length between the geodesic and the projected 

geodesic ; 

(5) the angle between the projected geodesic and the chord. 
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Just the main steps of the derivations are given. More details 

can be f01md in 'rhomas [1952]. 

13.1 Curvature of the Projected Geodesic 

By studying the curvature of the projected geodesic we gain 

insight into the geometry of these curves on the map plane. From calculus 

we know that the curvature is defined as 

13-1 

where H is the radius of curvature, and 

x = x(s) 
13-2 

y = y(s) 

are functions of the variable s, which is the length of the projected 

geodesic. From Figure 1+-4, 

I 
X 

II 
X 

dx =- = 

= 

ds 

2 
d X 

ds2 

cos (3 ' 

sin 6 

YI ::::: 2x. - sin (3 ds -

Substituting 13-3 into 13-l yields 

cJ = 

2 dS cos s -+ 
1 ds - = -R (cos 2 

(3 

= dB 
ds 

. 2(3 dS s1n 
ds 

+ . 2(3)3/2 
Slll 

13-3 

cos (3 d(3_ 
ds 

13-4 

'J'homas derives an expression for the curvature as a function of 

the c>cale factor k and coordinate n (figure 4-4). Namely 
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dB 1 ok . ok 
) ' 0 = -= - (- S1n 6 - cos a ds k ax ay 

13-5 

l (ak h + 
ok ~) 1 ok 

= = k ax on ay an k an 

Note in the above all quantities are evaluated. at the point where d is 

desired. 

13.2 Parametric Equations of the Projected Geodesic 

The projected geodesic is described by two parametric equations 

of the form 

n=n(s), 
13-6 

~=~(s)., 

Approximating the above equations with a Maclaurin series, with point 1 as 

the point of expansion, we get (Figure 13-1) 

y 

projected 
geodesic 

Figure 13-1: Coordinate Systems for 

Parametric Equations 

X 
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dt; ( 0) s 2 d2~~o) 3 3 
= s + ~ d ~~0~ + 

ds + 21 2 3! ds3 
. . . ' ds 

n 
dn(o) 

2 2 3 3 s d n(o) E._ £_nl£) :::: s +- + + ds 2! 2 3! ds 3 
. . . . 

ds 

13-5 

From 13-l 

13-6 

By f:Lrst evaluating the derivatives in 13-5 and then replacing them with 

curvatures 
3 c• 

~ " ·- s - 6 

where 

(13-6). we get 
5 

2 a -
0 

4 s I s -a a - ·--8 0 0 120 

I a 
dO II 

-· ds ' 0 

are eval.uated from 

II 3(a I)2 (4a a + 
0 0 0 

4 
a ) -

0 
... ' 

2 I 6a a)+ ••• , 
0 0 

and where the subscript "o" means evaluated at the point of expansion. 

13.3 Difference in Length Between Projected Geodesic and Chord 

13-7 

13-8 

Since we compute with chords, we need to determine the difference 

in length between the projected geodesic and chord. From Figure 13-1, we 

can write and expression for the chord length d in terms of the coordinates 

~ and n, (13-7), namely 



d2 = n2 

2 = s 

+ 1;;2 

4 
- s 
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13-9 

13-10 

d = (1;;2 + n2)1/2 

2 
s 2 I s 2 II I 2 4 l/ 2 

= s { 1 - 12 [a 0 +a 0 a 0 s + 30 ( 9a 0 a 0 + 8 (a 0 ) -a 0 ) + .• ]} • 

13-11 

Since the second term in brackets is small the expression to the 1/2 power 

may be expanded. The result gives the difference 

s - d 
a a 

0 0 

24 

I 

If we expand about the mid-point of s instead of at one end, then 

3 2 
s 02 

s-d = 24 ( ..... ) , 
where o2 is the radius of curvature at the midpoint of the projected 

geodesic. The value of this difference is usually small. 

13-12 

13-13 

13.4 Difference in Length.Between the Projected Geodesic and the Geodesic 

Combined with the difference s-d, the difference in length 

between the projected geodesic and the geodesic (s), that is 8- sallows 

one to reduce geodesic lengths on the ~ipsoid to chord lengths on the 

projection. 

The basic relationship used in this context follows from the 

definition of the scale factor, namely 

ds = k dS . 13-14 
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The distance on the map projection (projected geodesic) is then 

s =r k ds 13-15 

Thomas derives an expression for the above which involves a series develop-

ment of the scale factor with point of expansion being one end of the line. 

The result is 

13-16 

I dk 
where k = -- . The second and higher terms account for the change of scale ds 

away from the point of expression. The equation for the difference is 

s - s 

53 
6 + .•. ' 13-17 

where 1/k is the reciprocal for the scale factor. 

Analogous expressions to 3-16 and 3-17 for a midpoint-point of 

expansion are 

13-18 

and 

s - s l = (-- l) 
kM 

s + + .•••• 13-19 

13.5 The Angle Between the Projected Geodesic and the Chord 

In conformal projections, the azimuths of the geodesic and 

projected geodesics are identical, but not so for distances as we have just 

seen. For this reason we need concern ourselves only with the one angle -

that between the chord and projected geodesic. 
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The angle we seek is defined by (Figure 13-l) e = T - t. 

In terms of the coordinates ~ and n 

tane = .!1 " 
E;; 

13-20 



14. SPECIFIC FORMULAE FOR REDUCTION TO VARIOUS MAP PROJECTION 

PLANES 

In Section 13 we derived the general formulae for the reduction 

of ellipsoidal distances and directions to the map projection plane. 

These formulae are expressed in terms of the curvature of the projected 

geodesic and the scale factor. In this section we derive reduction 

formulae for the Transverse Mercator projection by evaluating the curva­

ture and scale factor. We also state the reduction formulae of the 

Stereographic Projection in New Brunswick. 

Reduction formulae are not given for the Mercator or Universal 

Stereographic Projections as geodetic computations of positions are not 

usually performed on these projections. The reasons being is that the 

USP is used in the polar regions while the Mercator is used mainly for 

navigation. 

14.1 Reduction Formulae for the Transverse Mercator 

Evaluated immediately below is the curvature of the projected 

geodesic. Then the reduction formulae for directions and distances are 

derived. 
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14.1.1 Curvature 

Recall the expression for the curvature (13-5) 

a =~(~sin e - Clk cos e) . 
k ax ay 

For the TM~ has the form 

where, for example 
1 + 2 nl 

c = ----:-
1 2N 2 

1 

14-1 

14-2 

14-3 

We recognize that k depends mainly on x and only slightly on y because 

y is only implicitly•involved in n1 .and Ni through ~l the foot point latitude 

Equation 14-1 can then be approximated by 

1 Clk . Q 

a= k Clx Sl.n iJ, 14-4 

For further use we need the following expressions which are 

derived in Thomas [1952] 

I 3k 
k = ax cos (3 14-5 

II a2k 2 2 
k = -- cos e - ka 

ax2 
14-6 

1 
1 I d(k) 

(k) = "dX cos (3 14-7 

2 
(~)II= EL_ (-l) cos2i3 
k dx2 k 

14-8 

14.1.2 Arc to Chord Evaluation 

Recall the general formulae giving the angle between the arc of 

the projected geodesic and the chord (13-21) 
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2 s s I e = T - t = 2 o0 + 6 o0 + ••• 14-8 

We first evaluate o0 for the TM. For 1/k in 14-4 we get from (14-2 and 

6-77 ). 

and 

Also 

1 • 1 - = 1 --k 2 

k :: 1 +l 
2 

dk X 

dx = N 2 
1 

X 

Nl 
2 

2 
X 

Nl 
2 

Sub'stituting 14-9 and 14-11 into 14-4 yields 

0 = (1 - l -L) 
. 2 N 2 

1 

X 

N 2 
1 

14-9 

14-10 

14-11 

sin ~ · 14-12 

The curvature at one end of the line (say point 1) can then be evaluated 

as 

(1 1 xl xl 
0 = -- -) sin al 0 2 N 2 N 2 

. 
1 1 

14-13 

y 2 

~-----------------------------------------~ 
X 

Figure 14-1 Chord and Arc 
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We now wish to approximate x in 14-12 with (Figure 14-1) 

X::: x1 + S COS a 14-14 

where s · d at any point between 1 and 2. Substituting 14-14 in 14-12 

yields 

1 (x1 + s cos 8)2 x1 + s cos 8 
0 = [1 -- ] ( ) sin 8 2 N 2 N 2 

1 1 

(x1 + s cos 8) sin B 1 (x1 + s cos 8 )3 sin 8 cos 13 
= --

N 2 2 
N1 1 

The other quantity reading evaluation is the change of the 

I curvature o in 14-18. From 14-15 
0 

(xl 
2 2 

I do cos 8 sin a - l 
+ s cos 6) sin 8 cos 8 

(J =- = 
N 4 ds N 2 2 

1 1 

+ 

14-15 

14-16 

Thus 
I 

a0 at point l is obtained from above by replacing B by 81 (Figure 

14-1). 

The expression for T - t is obtained by substitution of 14-16 

(with S = 81 ) and 14-13 into 14-8. 

The result is 
s x1 sin 81 

8 = T - t = 2 N 2 

1 

3 
1 x1 

- -:::-4 
2 N 

1 

2 sin sl cos 81 3 2 
+ ~ (---~:------= 

6 N 2 - 2 xl 
1 

s x1 sin81 2 
---=--=+~ 
- 2 N 2 6 

1 

+ •.• 14-17 

+ . • • 14-18 
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Eliminating 81 from the above by (Figure 14-1) 

s 14-19 

s 

we get 

a=T-t= 14-20 

where N1 can be approximated by the Gaussian mean radius at point 1. 

The above equation is of sufficient accuracy for most work. It 

can be compared to the. following formulae of Bamford [1962] 

T - t = 

where 

(y2- yl} (x2 + 2xl) 

6R 2 
m 

R =IMN, 
m 

M and N evaluated at (~1 + ~ 2 )/ 2. The accuracy of this formulae is 

claimed to be O". 02 for a line 100 km in length but within 3° of the 

central meridian. 

14-21 

The cd>rreet application of the correction is made by realizing 

that projected geodesics are concave towards the central meridian (see 

Figure 6-4 ) . 

14.1.3 Line Scale 

The line scale is the average scale over the line. It allows 

us to get the difference between the lengths of the geodesic (S) and the 

projected geodesic (s). Recall the general expression (13-17) 
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2 3 
S - s = {_!_- 1) s + (~I .L + (1)II .L + 

k k 0 2 k 0 6 . . . ' 14-22 
0 

where the derivatives are defined by 14-7 and 14-8. We now evaluate 

14-23 

14-24 

14-25 

xl 
sin 131, (j =-

0 
Nl 

2 14-26 

y2 - y 
sin 131 

1 = 
d 

14-27 

14-28 
d 

Substitution of 14-24 to 14-28 in 14-7 and 14-8 yields 

1 I -xl x2 - xl 
{k)o = N 2 d 

1 2 
{ J:.) I I = _ { x2 - x1 ) + 
k o N 2d2 

1 

14-29 

14-30 

Substitution of 14-29, 14-30, 14-23, in 14-22, along with the approximation 

that d = s, we get 

s = d [ 1 

14-31 
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s - = d 
1 2 2 [ 1 - - ( x + x1x2 + x2) ] 

6N2 1 
1 

14-32 

where N1 can be approximated by R = IIMli. The formula is of sufficient 

accuracy for most work. 

The following more accurate formula for the line scale (k) is 

given in Bamford [1962]: 

where 

~--------~----------~ 
2 

X 
2 

X 

k = 1 + u2 (1 
6R 

+ _u_) 

36R2 
m m 

R = IMN m 

14-33 

14-34 

M and N evaluated at ($1 + $2)/2. The accuracy of the above formula is 

6 about 0 .l/10 for lines of about 150 km in length and within 3° of the 

central meridian. Thus d = ks, without computing s (see 14-31). 

14.2 Reduction Formulae for the New Brunswick Stereographic Projection 

The reduction formulae for the New Brunswick stereographic 

projection are given here without derivation. The full derivation is 

given in Thomson et al. [1977]. 

14.2.1 Arc to chord (T-t) reduction 

The arc to chord correction is given by [Thomson et al., 1977]; 

_1 xjy. - x.yj 
(T-t) .. = tan [ - ~ ~ h 2 ] 

~J x.xj + y.yj + (k R) 
l. l. 0 

where, xi, y i, x j, y j are the map coordinates of points Pi and P j; k0 is 

the scale factor at the origin and 
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evaluated at ~ , the latitude of the origin. 
0 

14.2.2 Geodesic to Chord Length Reduction 

The line scale factor mij used to obtain the plane length d 

from the geodesic lengthS between two points Pi and Pj is given by 

[Thomson et al., 1977], 

1 s 1 1 4 1 - = - = - (- + - + -) 
m.j d 6 m. m mj 

l. l. m 

where, m., m and mj are the point scale factors at P., the mid-point of 
l. m l. 

the line (Pm), and Pj respectively. The point scale factor at Pi, for 

example, is given by[Thomson et al., 1977], 

k 
0 

= k 
0 
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APPENDIX I: EVALUATION OF MERIDIAN ARC LENGTH :.. 

~ = constant 

Meridian Arc 

The length of a differential :part of a meridian arc S is 

given by 

dS = Md¢1 , (1) 

where 

M = a(1-e2 ) 
(1 2 . 2,~,)3/2 

-e s~n "' 

is the corresponding radius of curvature. For the total arc, S, we can 

write 

(2) 

In the case of the TM projection, we are interested in the 

length of the meridian arc from the equator (<P1 = 0) to our point of 

interest (q, 2 = q,). Then we write 

2 
= 1q, a( 1-e ) d<P 

0 (1 2 . 2,~,)3/2 -e s~n "' 
(2a) 



139 

The expression for M can be expanded in a series and written 

as 

2 
M _ a(l-e ) = 

-(1 2 . 2,~.)3/2 
-e s~n "' 

(1 2)(l 3 2 . 2,~. lS 4 . 4,~. 3S 6 . 6,~. ) 
a -e + 2 e s~n "'~ e a1n '~'+it e s~n "'+ •••• 

(3) 

2 We treat a(l-e ) as a constant outside the integration and obtain 

2 <P 3 2.2 12. 4.4 12,6 6 J 
S = a(l-e) !0[1~ e s1n <P + 8 e s~n <P + 16 e sin <P(t)·· d<P. 

Splitting this into parts yields 

... ] . 
( 5) 

Evaluating each integral separately 

I!d<t> =<~>I!= <t> , (5a) 

f<P(l e2sin2<P)d<P = l e2[i- sin 2p ]<P 
0 2 2 2 4 

( 5b) 
0 

3 2~ 3 2 . 2~ = 4 e "' - 8 e s1n "' , 

f cJ>(l2 4 . 4~)d~ _ 12. 4r3~ sin 24> + sin 4p] <P 
o 8 e s~n "' "' - 8 e ~ - 4 3?. (5c) 

0 

Thus, 

S = a(l-e2 )[<P + t e2cp- i e2sin 24> + ~ e4<P- ~ e4sin 24> + ;;6e4sin 44> + •• ] 

( 6) 
and 

{ 3 2 3 2 . 2 ,~. ~ 4 lS 4 . 2,~. _12 4,~. . 4~ 
S = a cJ>+t e <P - 8 e s~n "' + 64 e <P - ~ s1n "' + 256 e "'s1n "' -

(7) 
2 3 4 3 4 . ~ 6 lS 6 . _12 6 . ) -e 4>- 4 e <P + 8 e s~n 24> - 64 e <1> + ~ sl.n 24> - 256 e sl.n 4<jl + • • • • 

Collecting terms for cp, sin 2cj>, sin 4¢, etc. 



3 2 2 45 4 3 4 45 6 
S-a((¢+ 4 e rp- e 4> + 64 e ¢- 4 e 4>- 64 e Q>+ ••• ) 

( 15 4 . 4 15 6 .• 4 ) ) + 256 e s:m 4> - "2'"§6 e s1n 4> + . . . • (Ta) 

Including more terms in our series expansion results in the 

following formula for the meridian arc length, 

where 

A -
0 

A2 

1 l 2 3 l~ 5 6 1"(5 
- 4 e - 64 e - 256 e - 16384 

= i (e 
2 1 

+4e 
l.~ 15 6 455 8 

+ 128 e - l+096 e ) 

15 4 3 6 77 8 
A4 = "2'"§6 ( e + 4 e - 128 e ) 

3'5 6 _ hl e8) 
A6 = 3072 (e 32 -

- 315 8 A8 - - e 131072 

(8) 

8 
e (9) 

(10) 

(11) 

(12) 

(13) 

'l'his formula for the meridian arc length is accurate to less than 0.001. m. 



APPENDIX II. EVALUATION OF FOOTPOINT LATITUDE 

When dealing with the T.M. conformal projeetknwe remember 

that the inverse formulae for ~A and ~~ are given in terms of the 

"foot point" latitude, ~1 . Thus, we need an expression for determining 

~l from y. 

Remembering that the length of a meridian arc is given by 

S = !~ Md~ 
0 

and that along the central meridian, 

y = S = !~ Md~ , 
0 

then our footpoint latitude will be given by the meridian arc length "y" 

along the central meridian. 

To solve this problem, we use the Newton-Raphson iterative 

procedure (see pp. 26-28). In brief, we require the following three 

steps: 

(1) Obtain an initial appropriate value for ~ (.!. ) • 
'~'o ' 

(2) Evaluate the iterative improved solution from 

~n = ~n-1 - ~~¢~~) ; (14) 

(3) Continue the iterative procedure until 

~~n- ~n-11 < £ ' 

where E = lo-12 radians (which is approxim,ately 2 x ia-7.· arcsec). 

Specifically, we have (from 8) 
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Then 

and 

f'(~) = a(A0 - 2A2cos 2~ + 4A4cos 4' - 6A6cos 6' + 8A8cos 8') , (16) 

where A0 , A2 , A4, A6 , A8 are given by (9), (10), (11), (12), (13) res-

pectively. For an initial approximation, we use a spherical approximation, 

that is e = 0, and (8) becomes 

Y = a' (A0 = 1; Ai = 0, i = 2, 4, 6, 8, .•. ) 

Then 

~ = y_ 
o a 

Using ~ , we get first approximations for f( ~) and f' ( 4>) 
0 

and (16) respectively). For n = l 
f(q, ) 

q, = 0 

1 <Po- f'(q, ) 
0 

and 

E:l = jq,l <Po I -12 
£ 1 < 10 rad.? 

Continuing, we then get n = 2 and 

and 

f(q,l) 
~2 = q,l- f'(<P ) 

1 

£2 = I <~>2 - ~1l ; -12 c2 < 10 rad. 

(17) 

(18) 

(equations (15) 

(19) 

( 20) 

Thus, we compute the footpoint latitude, and using this we can 

complete the inverse problem for the Transverse Mercator projection 

(e.g. solve for 6A, 6~, thence <f> and A). 
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APPENDIX III 

ALTERNATIVE DERIVATION OF LAMBERT CONFORMAL CONICAL PROJECTION 

p 

In the polar coordinate system, the linear element ds is com-

puted by the well-known formula 

ds2 = dp2 + P2 do2 = p2[(~)2 + do2] 
p 

It is obvious from the above expression that o and p are not 

isometric coordinates. The isometric coordinates must generally have 

the following form 

However, by a simple substitution 

- £e. - dp = p 

(1) 

( 2) 

( 3) 

we can transform into an isometric system, where new variable p is directly 

determined by the integration of the above equation 

- p = in p - in K (4) 

or 

p = K • e-p ( 5) 



Now, using the obtained isometric coordinates we can set the 

fundamental expression of conformal mapping 

where 

p + i 0 = f{g + i 1) 

l = A - A 
0 

(6) 

(7) 

Conical projections are defined as projections in which meridians 

are transformed into straight lines intersecting at one point and parallels 

become concentric circles with the centre in the intersection point of 

meridians. The angles between meridians are proportional~to the 

corresponding angles on the ellipsoid. 

Mathematically translated, these conditions mean 

p + i 6 = K(p + i £), P = K p , o = K £ 

Substituting the derived value for p from (5) we have 

-Kq 
p = K • e 6 = K • £ 

or for rectangular coordinates 

-Kq x = p sin 6 = K e sin K 1 , 

-Kq y = p cos o = K e cos K l . 

(8) 

(9) 

(10) 




