
  

Divide-and-Conquer Algorithms
Part One



  

Announcements

● Problem Set One completely due right 
now.  Solutions distributed at the end of 
lecture.

● Programming section today in Gates B08 
from from 3:45PM – 5:00PM.
● Resumes at normal Thursday schedule 

(4:15PM – 5:05PM) next week.



  

Where We've Been

● We have just finished discussing 
fundamental algorithms on graphs.

● These algorithms are indispensable and 
show up everywhere.

● You can now solve a large class of 
problems by recognizing that they 
reduce to a problem you already know 
how to solve.



  

Where We're Going

● We are about to explore the 
divide-and-conquer paradigm, which 
gives a useful framework for thinking 
about problems.

● We will explore several major techniques:
● Solving problems recursively.
● Intuitively understanding how the structure 

of recursive algorithms influences runtime.
● Recognizing when a problem can be solved 

by reducing it to a simpler case.



  

Outline for Today

● Recurrence Relations
● Representing an algorithm's runtime in 

terms of a simple recurrence.

● Solving Recurrences
● Determining the runtime of a recursive 

function from a recurrence relation.

● Sampler of Divide-and-Conquer
● A few illustrative problems.



  

Insertion Sort

● As we saw in Lecture 00, insertion sort 
can be used to sort an array in time Ω(n) 
and O(n2).
● It's Θ(n2) in the average case.

● Can we do better?



  

A Better Sorting Algorithm: Mergesort



  

Thinking About O(n2)
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procedure merge(list A, list B):
   let result be an empty list.
   while both A and B are nonempty:
      if head(A) < head(B):
         append head(A) to result
         remove head(A) from A
      else:
         append head(B) to result
         remove head(B) from B

   append all elements remaining in A to result
   append all elements remaining in B to result

   return result

procedure merge(list A, list B):
   let result be an empty list.
   while both A and B are nonempty:
      if head(A) < head(B):
         append head(A) to result
         remove head(A) from A
      else:
         append head(B) to result
         remove head(B) from B

   append all elements remaining in A to result
   append all elements remaining in B to result

   return result

Complexity: Θ(m + n),
where m and n are the lengths of the input lists.



  

Motivating Mergesort

● Splitting the input array in half, sorting 
each half, and merging them back 
together will take roughly half as long as 
soring the original array.

● So why not split the array into fourths?  
Or eighths?

● Question: What happens if we never 
stop splitting?
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High-Level Idea

● A recursive sorting algorithm!
● Base Case:

● An empty or single-element list is already 
sorted.

● Recursive step:
● Break the list in half and recursively sort 

each part.
● Merge the sorted halves back together.

● This algorithm is called mergesort.



  

procedure mergesort(list A):
   if length(A) ≤ 1:
      return A

   let left  be the first  half of the elements of A
   let right be the second half of the elements of A

   return merge(mergesort(left), mergesort(right))

procedure mergesort(list A):
   if length(A) ≤ 1:
      return A

   let left  be the first  half of the elements of A
   let right be the second half of the elements of A

   return merge(mergesort(left), mergesort(right))



  

What is the complexity of mergesort?
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Recurrence Relations

● A recurrence relation is a function or sequence 
whose values are defined in terms of earlier values.

● In our case, we get this recurrence for the runtime of 
mergesort:

 

● We can solve a recurrence by finding an explicit 
expression for its terms, or by finding an asymptotic 
bound on its growth rate.

● How do we solve this recurrence?

T(0) = Θ(1)
T(1) = Θ(1)
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Simplifying our Recurrence

● It is often difficult to solve recurrences involving floors 
and ceilings, as ours does.

● Note that if we only consider n = 1, 2, 4, 8, 16, …, then 
the floors and ceilings are always equivalent to 
standard division.

● Simplifying Assumption 1: We will only consider the 
recurrence as applied to powers of two.

● We need to justify why this is safe, which we'll do later.
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Simplifying our Recurrence

● Without knowing the actual functions hidden by the Θ 
notation, we cannot get an exact value for the terms in 
this recurrence.

● If the Θ(1) just hides a constant and Θ(n) just hides a 
multiple of n, this would be a lot easier to manipulate!

● Simplifying Assumption 2: We will pretend that Θ(1) 
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Simplifying our Recurrence

● Working with two constants c₁ and c₂ is most accurate, 
but it makes the math a lot harder.

● If all we care about is getting an asymptotic bound, 
these constants are unlikely to make a noticeable 
difference.

● Simplifying Assumption 3: Set c = max{c₁, c₂} and 
replace the equality with an upper bound.

● We need to justify why this is safe, which we'll do later.
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Simplifying our Recurrence

● Working with two constants c₁ and c₂ is most accurate, 
but it makes the math a lot harder.

● If all we care about is getting an asymptotic bound, 
these constants are unlikely to make a noticeable 
difference.

● Simplifying Assumption 3: Set c = max{c₁, c₂} and 
replace the equality with an upper bound.

● This is less exact, but is easier to manipulate.
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The Final Recurrence

● Here is the final version of the recurrence we'll 
be working with:

● As before, we will justify why all of these 
simplifications are safe later on.

● The analysis we're about to do (without 
justifying the simplifications) is at the level we 
will expect for most of our discussion of 
divide-and-conquer algorithms.

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn



  

Getting an Intuition

● Simple recurrence relations often give rise to 
surprising results.

● It is often useful to build up an intuition for 
what the recursion solves to before trying to 
formally prove it.

● We will explore two methods for doing this:
● The iteration method.
● The recursion-tree method.
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The Iteration Method

● What we just saw is an example of the 
iteration method.

● Keep plugging the recurrence into itself 
until you spot a pattern, then try to 
simplify.

● Doesn't always give an exact answer, but 
useful for building up an intuition.
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what the recursion solves to before trying to 
formally prove it.

● We will explore two methods for doing this:
● The iteration method.
● The recursion-tree method.
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what the recursion solves to before trying to 
formally prove it.

We will explore two methods for doing this:

The iteration method.
● The recursion-tree method.
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There are log₂ n + 1 layers in the tree 
(numbered 0, 1, 2, …, log₂ n).

The first log₂ n of them are the recursive case.  
The last one consists purely of base cases.

There are log₂ n + 1 layers in the tree 
(numbered 0, 1, 2, …, log₂ n).

The first log₂ n of them are the recursive case.  
The last one consists purely of base cases.
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The Recursion Tree Method

● This diagram is called a recursion tree 
and accounts for how much total work 
each recursive call makes.

● Often useful to sum up the work across 
the layers of the tree.



  

A Formal Proof

● Both the iteration and recursion tree 
methods suggest that the runtime is at 
most 

cn log₂ n + cn
● Neither of these lines of reasoning are 

perfectly rigorous; how could we 
formalize this?

● Induction!



  

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction.  As a base case, if n = 20 = 1, then

 T(n) = T(1)
  ≤ c
  = cn log₂ n + cn.

For the inductive step, assume the claim holds all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
        = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
        = cn log₂ (n / 2) + cn + cn
        = cn (log₂ n – 1) + cn + cn
        = cn log₂ n – cn + cn + cn
        = cn log₂ n + cn ■
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What This Means

● We have shown that as long as we only look at 
powers of two, the runtime for mergesort is 
bounded from above by cn log₂ n + cn.

In most cases, it's perfectly safe to stop 
here and claim we have a working bound.  

Mergesort is indeed O(n log n).
● For completeness, let's take some time to see 

why it is safe to stop here.

● In the future, we won't go into this level of 
detail.



  

Replacing Θ

● Our original recurrence was

 

 

● We claimed it was safe to remove the Θ notation 
and rewrite it as

 

 

● Why can we do this?

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)



  

Fat Base Cases

● When n ≥ n₀, we can replace Θ(n) by cn for 
some constant c.

● Our simplification in the previous step assumed 
that n₀ = 0.  What if this isn't the case?

● Can always rewrite the recurrence to use a “fat 
base case:”

Makes the induction a lot harder to do, but the 
result would come out the same.

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)



  

Fat Base Cases

● When n ≥ n₀, we can replace Θ(n) by cn for 
some constant c.

● Our simplification in the previous step assumed 
that n₀ = 0.  What if this isn't the case?

● Can always rewrite the recurrence to use a “fat 
base case:”

● Makes the induction a lot harder to do, but the 
result would come out the same.

T(n) ≤ T(⌈n / 2⌉)+T(⌊n / 2⌋) + cn (if n ≥ n₀)
T(n) ≤ c (otherwise)

T(n) ≤ T(⌈n / 2⌉)+T(⌊n / 2⌋) + cn (if n ≥ n₀)
T(n) ≤ c (otherwise)



  

Non Powers of Two

● Consider this recurrence:

 

 
● We know that for powers of two, this is upper 

bounded by cn log₂ n + cn.
● Does that upper bound still hold for values 

other than powers of two?
● If not, is our bound even useful?

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn



  

Non Powers of Two

● Can we claim that since T(n) ≤ cn log₂ n + cn 
when n is a power of two, that T(n) = O(n log n)?

Without more work, no.  Consider this function:

 

 

Only looking at inputs that are powers of two, we 
might claim that f(n) = Θ(n log n), even though 
this isn't the case!



  

Non Powers of Two

● Can we claim that since T(n) ≤ cn log₂ n + cn 
when n is a power of two, that T(n) = O(n log n)?

● Without more work, no.  Consider this function:

 

 

● Only looking at inputs that are powers of two, we 
might claim that f(n) = Θ(n log n), even though 
this isn't the case!

● We need to do extra work to show that T(n) is 
“well-behaved” enough to extrapolate.

n log₂ n
f(n) =

n!

if n = 2k

otherwise
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a(n)

b(n)

b(n) = Θ(a(n))



  

Our Proof Strategy

● We will proceed as follows:
● Show that the values generated by the 

recurrence are nondecreasing.
● For each non power-of-two n, provide an 

upper bound T(n) using our upper bound on 
the next power of two greater than n.

● Show that the upper bound we find this way 
is asymptotically equivalent (in terms of Θ) 
to our original bound.



  

Making Things Easier
● We are given this recurrence:

 

● This only gives an upper bound on T(n); we don't 
know the exact values.

● Let's define a new function f(n) as follows:
 

● Note that T(n) ≤ f(n) for all n ∈ ℕ.

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn
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Lemma: f(n + 1) ≥ f(n) for all n ∈ ℕ.

Proof: By induction on n.  As a base case, note that

f(1) = c ≥ c = f(0)

For the inductive step, assume that for some n that 
the lemma holds for all n' < n.  Then

f(n + 1) = f(⌈(n+1) / 2⌉) + f(⌊(n+1) / 2⌋) + c(n+1)
   ≥ f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn
   = f(n) ■
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Summary

● We can safely extrapolate from the runtime 
bounds at powers of two for the following 
reasons:
● The runtime is nondecreasing, so we can use 

powers of two to provide upper bounds on other 
points.

● The runtime grows only polynomially, so this 
upper bounding strategy does not produce 
values that are “too much” bigger than the 
actual values.

● In the future, we will assume that this line 
of proof works and will not repeat it.



  

Perfectly Safe Assumptions

● For the purposes of this class, you can 
safely simplify recurrences by
● Only evaluating the recurrences at powers of 

some number to avoid ceilings and floors.
● Replace Θ(f(n)) or O(f(n)) terms in a 

recurrence with a constant multiple of f(n).
● Replace all constants with a single constant 

equal to the max of all of the constants.



  

A Different Problem:
Maximum Single-Sell Profit
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procedure maxProfit(list prices):
  let best = 0
  for i = 0 to length(prices) – 1:
     for j = i + 1 to length(prices) – 1:
        if prices[j] – prices[i] > best:
            best = prices[j] – prices[i]
  return best

procedure maxProfit(list prices):
  let best = 0
  for i = 0 to length(prices) – 1:
     for j = i + 1 to length(prices) – 1:
        if prices[j] – prices[i] > best:
            best = prices[j] – prices[i]
  return best
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procedure maxProfit(list prices):
  if length(prices) ≤ 1:
     return 0

  let left  be the first  half of prices
  let right be the second half of prices

  return max(maxProfit(left), maxProfit(right),
             max(right) - min(left))

procedure maxProfit(list prices):
  if length(prices) ≤ 1:
     return 0

  let left  be the first  half of prices
  let right be the second half of prices

  return max(maxProfit(left), maxProfit(right),
             max(right) - min(left))
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The Divide-and-Conquer Framework

● The two algorithms we have just seen are 
examples of divide-and-conquer algorithms.

● These algorithms usually have two steps:
● (Divide) Split the input apart into multiple smaller 

pieces, recursively solving each piece.
● (Conquer) Combine the solutions to each smaller 

piece together into the overall solution.

● Typically, correctness is proven inductively and 
runtime is proven by solving a recurrence relation.

● In many cases, the runtime is determined without 
actually solving the recurrence; more on that later.



  

Another Algorithm: Binary Search
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procedure binarySearch(list A, int low, int high,
                       value key):
  if low ≥ high:
     return false

  let mid = (high + low) / 2⌊ ⌋
  if A[mid] = key:
     return true
  else if A[mid] > key:
     return binarySearch(a, low, mid)
  else (A[mid] < key):
     return binarySearch(a, mid + 1, high)
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  if A[mid] = key:
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     return binarySearch(a, mid + 1, high)
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The Iteration Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T (n) ≤ T (n2k )+k c
= T (1)+c log2 n

≤ c+c log2n

= O (log n)
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T(1) ≤ c
T(n) ≤ T(n / 2) + c
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T(n) ≤ T(n / 2) + c c

c
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T(1)
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The Recursion Tree Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c c

c

c

c

…



  

The Recursion Tree Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c c

c

c

c

…

c log₂ n + c



  

Formalizing Our Argument

● To formalize correctness, it's useful to use 
this invariant:

If key = A[i] for some i, then
low ≤ i < high 

● You can prove this is true by induction on the 
number of calls made.

● We can also formalize the runtime bound by 
induction to prove the O(log n) upper bound, 
but it's not super exciting to do so.
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