

Divide-and-Conquer Algorithms
Part One

Announcements

● Problem Set One completely due right
now. Solutions distributed at the end of
lecture.

● Programming section today in Gates B08
from from 3:45PM – 5:00PM.
● Resumes at normal Thursday schedule

(4:15PM – 5:05PM) next week.

Where We've Been

● We have just finished discussing
fundamental algorithms on graphs.

● These algorithms are indispensable and
show up everywhere.

● You can now solve a large class of
problems by recognizing that they
reduce to a problem you already know
how to solve.

Where We're Going

● We are about to explore the
divide-and-conquer paradigm, which
gives a useful framework for thinking
about problems.

● We will explore several major techniques:
● Solving problems recursively.
● Intuitively understanding how the structure

of recursive algorithms influences runtime.
● Recognizing when a problem can be solved

by reducing it to a simpler case.

Outline for Today

● Recurrence Relations
● Representing an algorithm's runtime in

terms of a simple recurrence.

● Solving Recurrences
● Determining the runtime of a recursive

function from a recurrence relation.

● Sampler of Divide-and-Conquer
● A few illustrative problems.

Insertion Sort

● As we saw in Lecture 00, insertion sort
can be used to sort an array in time Ω(n)
and O(n2).
● It's Θ(n2) in the average case.

● Can we do better?

A Better Sorting Algorithm: Mergesort

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(½n) ≈ ¼T(n) T(½n) ≈ ¼T(n)

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

T(½n) ≈ ¼T(n) T(½n) ≈ ¼T(n)

The Key Insight: Merge

The Key Insight: Merge

108742 96531

The Key Insight: Merge

108742 96531

The Key Insight: Merge

108742 96531

The Key Insight: Merge

108742 9653

1

The Key Insight: Merge

108742 9653

1

The Key Insight: Merge

10874 9653

1 2

The Key Insight: Merge

10874 9653

1 2

The Key Insight: Merge

10874 965

1 2 3

The Key Insight: Merge

10874 965

1 2 3

The Key Insight: Merge

1087 965

1 2 3 4

The Key Insight: Merge

1087 965

1 2 3 4

The Key Insight: Merge

1087 96

1 2 3 4 5

The Key Insight: Merge

1087 96

1 2 3 4 5

The Key Insight: Merge

1087 9

1 2 3 4 5 6

The Key Insight: Merge

1087 9

1 2 3 4 5 6

The Key Insight: Merge

108 9

1 2 3 4 5 6 7

The Key Insight: Merge

108 9

1 2 3 4 5 6 7

The Key Insight: Merge

10 9

1 2 3 4 5 6 7 8

The Key Insight: Merge

10 9

1 2 3 4 5 6 7 8

The Key Insight: Merge

10

1 2 3 4 5 6 7 8 9

The Key Insight: Merge

1 2 3 4 5 6 7 8 9 10

procedure merge(list A, list B):
 let result be an empty list.
 while both A and B are nonempty:
 if head(A) < head(B):
 append head(A) to result
 remove head(A) from A
 else:
 append head(B) to result
 remove head(B) from B

 append all elements remaining in A to result
 append all elements remaining in B to result

 return result

procedure merge(list A, list B):
 let result be an empty list.
 while both A and B are nonempty:
 if head(A) < head(B):
 append head(A) to result
 remove head(A) from A
 else:
 append head(B) to result
 remove head(B) from B

 append all elements remaining in A to result
 append all elements remaining in B to result

 return result

Complexity: Θ(m + n),
where m and n are the lengths of the input lists.

Motivating Mergesort

● Splitting the input array in half, sorting
each half, and merging them back
together will take roughly half as long as
soring the original array.

● So why not split the array into fourths?
Or eighths?

● Question: What happens if we never
stop splitting?

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

4

4

4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

4

4

4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

4

4

4

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12

4

4

13

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12

4

13

13

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12

16

13

13

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

High-Level Idea

● A recursive sorting algorithm!
● Base Case:

● An empty or single-element list is already
sorted.

● Recursive step:
● Break the list in half and recursively sort

each part.
● Merge the sorted halves back together.

● This algorithm is called mergesort.

procedure mergesort(list A):
 if length(A) ≤ 1:
 return A

 let left be the first half of the elements of A
 let right be the second half of the elements of A

 return merge(mergesort(left), mergesort(right))

procedure mergesort(list A):
 if length(A) ≤ 1:
 return A

 let left be the first half of the elements of A
 let right be the second half of the elements of A

 return merge(mergesort(left), mergesort(right))

What is the complexity of mergesort?

procedure mergesort(list A):
 if length(A) ≤ 1:
 return A

 let left be the first half of the elements of A
 let right be the second half of the elements of A

 return merge(mergesort(left), mergesort(right))

procedure mergesort(list A):
 if length(A) ≤ 1:
 return A

 let left be the first half of the elements of A
 let right be the second half of the elements of A

 return merge(mergesort(left), mergesort(right))

procedure mergesort(list A):
 if length(A) ≤ 1:
 return A

 let left be the first half of the elements of A
 let right be the second half of the elements of A

 return merge(mergesort(left), mergesort(right))

procedure mergesort(list A):
 if length(A) ≤ 1:
 return A

 let left be the first half of the elements of A
 let right be the second half of the elements of A

 return merge(mergesort(left), mergesort(right))

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

procedure mergesort(list A):
 if length(A) ≤ 1:
 return A

 let left be the first half of the elements of A
 let right be the second half of the elements of A

 return merge(mergesort(left), mergesort(right))

procedure mergesort(list A):
 if length(A) ≤ 1:
 return A

 let left be the first half of the elements of A
 let right be the second half of the elements of A

 return merge(mergesort(left), mergesort(right))

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

procedure mergesort(list A):
 if length(A) ≤ 1:
 return A

 let left be the first half of the elements of A
 let right be the second half of the elements of A

 return merge(mergesort(left), mergesort(right))

procedure mergesort(list A):
 if length(A) ≤ 1:
 return A

 let left be the first half of the elements of A
 let right be the second half of the elements of A

 return merge(mergesort(left), mergesort(right))

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

Recurrence Relations

● A recurrence relation is a function or sequence
whose values are defined in terms of earlier values.

● In our case, we get this recurrence for the runtime of
mergesort:

● We can solve a recurrence by finding an explicit
expression for its terms, or by finding an asymptotic
bound on its growth rate.

● How do we solve this recurrence?

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

Simplifying our Recurrence

● It is often difficult to solve recurrences involving floors
and ceilings, as ours does.

● Note that if we only consider n = 1, 2, 4, 8, 16, …, then
the floors and ceilings are always equivalent to
standard division.

● Simplifying Assumption 1: We will only consider the
recurrence as applied to powers of two.

● We need to justify why this is safe, which we'll do later.

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

Simplifying our Recurrence

● It is often difficult to solve recurrences involving floors
and ceilings, as ours does.

● Note that if we only consider n = 1, 2, 4, 8, 16, …, then
the floors and ceilings are always equivalent to
standard division.

● Simplifying Assumption 1: We will only consider the
recurrence as applied to powers of two.

● We need to justify why this is safe, which we'll do later.

T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

Simplifying our Recurrence

● It is often difficult to solve recurrences involving floors
and ceilings, as ours does.

● Note that if we only consider n = 1, 2, 4, 8, 16, …, then
the floors and ceilings are always equivalent to
standard division.

● Simplifying Assumption 1: We will only consider the
recurrence as applied to powers of two.

● We need to justify why this is safe, which we'll do later.

T(1) = Θ(1)
T(n) = T(n / 2) + T(n / 2) + Θ(n)

T(1) = Θ(1)
T(n) = T(n / 2) + T(n / 2) + Θ(n)

Simplifying our Recurrence

● It is often difficult to solve recurrences involving floors
and ceilings, as ours does.

● Note that if we only consider n = 1, 2, 4, 8, 16, …, then
the floors and ceilings are always equivalent to
standard division.

● Simplifying Assumption 1: We will only consider the
recurrence as applied to powers of two.

● We need to justify why this is safe, which we'll do later.

T(1) = Θ(1)
T(n) = 2T(n / 2) + Θ(n)

T(1) = Θ(1)
T(n) = 2T(n / 2) + Θ(n)

Simplifying our Recurrence

● Without knowing the actual functions hidden by the Θ
notation, we cannot get an exact value for the terms in
this recurrence.

● If the Θ(1) just hides a constant and Θ(n) just hides a
multiple of n, this would be a lot easier to manipulate!

● Simplifying Assumption 2: We will pretend that Θ(1)
hides some constant and Θ(n) hides a multiple of n.

● We need to justify why this is safe, which we'll do later.

T(1) = Θ(1)
T(n) = 2T(n / 2) + Θ(n)

T(1) = Θ(1)
T(n) = 2T(n / 2) + Θ(n)

Simplifying our Recurrence

● Without knowing the actual functions hidden by the Θ
notation, we cannot get an exact value for the terms in
this recurrence.

● If the Θ(1) just hides a constant and Θ(n) just hides a
multiple of n, this would be a lot easier to manipulate!

● Simplifying Assumption 2: We will pretend that Θ(1)
hides some constant and Θ(n) hides a multiple of n.

● We need to justify why this is safe, which we'll do later.

T(1) = c₁
T(n) = 2T(n / 2) + c₂n

T(1) = c₁
T(n) = 2T(n / 2) + c₂n

Simplifying our Recurrence

● Working with two constants c₁ and c₂ is most accurate,
but it makes the math a lot harder.

● If all we care about is getting an asymptotic bound,
these constants are unlikely to make a noticeable
difference.

● Simplifying Assumption 3: Set c = max{c₁, c₂} and
replace the equality with an upper bound.

● We need to justify why this is safe, which we'll do later.

T(1) = c₁
T(n) = 2T(n / 2) + c₂n

T(1) = c₁
T(n) = 2T(n / 2) + c₂n

Simplifying our Recurrence

● Working with two constants c₁ and c₂ is most accurate,
but it makes the math a lot harder.

● If all we care about is getting an asymptotic bound,
these constants are unlikely to make a noticeable
difference.

● Simplifying Assumption 3: Set c = max{c₁, c₂} and
replace the equality with an upper bound.

● This is less exact, but is easier to manipulate.

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

The Final Recurrence

● Here is the final version of the recurrence we'll
be working with:

● As before, we will justify why all of these
simplifications are safe later on.

● The analysis we're about to do (without
justifying the simplifications) is at the level we
will expect for most of our discussion of
divide-and-conquer algorithms.

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

Getting an Intuition

● Simple recurrence relations often give rise to
surprising results.

● It is often useful to build up an intuition for
what the recursion solves to before trying to
formally prove it.

● We will explore two methods for doing this:
● The iteration method.
● The recursion-tree method.

Getting an Intuition

Simple recurrence relations often give rise to
surprising results.

It is often useful to build up an intuition for
what the recursion solves to before trying to
formally prove it.

We will explore two methods for doing this:
● The iteration method.

The recursion-tree method.

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T (n) ≤ 2T (n2)+c n
≤ 2(2T (n4)+c n2)+c n
= 4T (n4)+c n+c n
= 4T (n4)+2c n

≤ 4(2T(n8)+c n4)+2c n

= 8T (n8)+c n+2 c n

= 8T (n8)+3c n

...

≤ 2kT (n2k)+k c n

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T (n) ≤ 2T (n2)+c n
≤ 2(2T (n4)+c n2)+c n
= 4T (n4)+c n+c n
= 4T (n4)+2c n

≤ 4(2T(n8)+c n4)+2c n

= 8T (n8)+c n+2 c n

= 8T (n8)+3c n

...

≤ 2kT (n2k)+k c n

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T (n) ≤ 2T (n2)+c n
≤ 2(2T (n4)+c n2)+c n
= 4T (n4)+c n+c n
= 4T (n4)+2c n

≤ 4(2T(n8)+c n4)+2c n

= 8T (n8)+c n+2 c n

= 8T (n8)+3c n

...

≤ 2kT (n2k)+k c n

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T (n) ≤ 2T (n2)+c n
≤ 2(2T (n4)+c n2)+c n
= 4T (n4)+c n+c n
= 4T (n4)+2c n

≤ 4(2T(n8)+c n4)+2c n

= 8T (n8)+c n+2 c n

= 8T (n8)+3c n

...

≤ 2kT (n2k)+k c n

T (n) ≤ 2T (n2)+c n
≤ 2(2T (n4)+c n2)+c n
= 4T (n4)+c n+c n
= 4T (n4)+2c n

≤ 4(2T(n8)+c n4)+2c n

= 8T (n8)+c n+2 c n

= 8T (n8)+3c n

...

≤ 2kT (n2k)+k c n

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T (n) ≤ 2T (n2)+c n
≤ 2(2T (n4)+c n2)+c n
= 4T (n4)+c n+c n
= 4T (n4)+2c n

≤ 4(2T(n8)+c n4)+2c n

= 8T (n8)+c n+2 c n

= 8T (n8)+3c n

...

≤ 2kT (n2k)+k c n

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T (n) ≤ 2T (n2)+c n
≤ 2(2T (n4)+c n2)+c n
= 4T (n4)+c n+c n
= 4T (n4)+2c n

≤ 4(2T(n8)+c n4)+2c n

= 8T (n8)+c n+2 c n

= 8T (n8)+3c n

...

≤ 2kT (n2k)+k c n

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T (n) ≤ 2T (n2)+c n
≤ 2(2T (n4)+c n2)+c n
= 4T (n4)+c n+c n
= 4T (n4)+2c n

≤ 4(2T(n8)+c n4)+2c n

= 8T (n8)+c n+2 c n

= 8T (n8)+3c n

...

≤ 2kT (n2k)+k c n

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T (n) ≤ 2T (n2)+c n
≤ 2(2T (n4)+c n2)+c n
= 4T (n4)+c n+c n
= 4T (n4)+2c n

≤ 4(2T(n8)+c n4)+2c n

= 8T (n8)+c n+2 c n

= 8T (n8)+3c n

...

≤ 2kT (n2k)+k c n

n / 2k = 1
n = 2k

log2 n = k

n / 2k = 1
n = 2k

log2 n = k

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T (n) ≤ 2T (n2)+c n
≤ 2(2T (n4)+c n2)+c n
= 4T (n4)+c n+c n
= 4T (n4)+2c n

≤ 4(2T(n8)+c n4)+2c n

= 8T (n8)+c n+2 c n

= 8T (n8)+3c n

...

≤ 2kT (n2k)+k c n

n / 2k = 1
n = 2k

log2 n = k

n / 2k = 1
n = 2k

log2 n = k

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T (n) ≤ 2T (n2)+c n
≤ 2(2T (n4)+c n2)+c n
= 4T (n4)+c n+c n
= 4T (n4)+2c n

≤ 4(2T(n8)+c n4)+2c n

= 8T (n8)+c n+2 c n

= 8T (n8)+3c n

...

≤ 2kT (n2k)+k c n

n / 2k = 1
n = 2k

log2 n = k

n / 2k = 1
n = 2k

log2 n = k

T(n) ≤ 2k T(n2k)+k c n
= 2

log2nT(1)+c n log2n

= nT(1)+c n log2n

≤ c n+c n log2n

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(n) ≤ 2k T(n2k)+k c n
= 2

log2nT(1)+c n log2n

= nT(1)+c n log2n

≤ c n+c n log2n

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(n) ≤ 2k T(n2k)+k c n
= 2

log2nT(1)+c n log2n

= nT(1)+c n log2n

≤ c n+c n log2n

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(n) ≤ 2k T(n2k)+k c n
= 2

log2nT(1)+c n log2n

= nT(1)+c n log2n

≤ c n+c n log2n

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(n) ≤ 2k T(n2k)+k c n
= 2

log2nT(1)+c n log2n

= nT(1)+c n log2n

≤ c n+c n log2n

= O (n log n)

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

The Iteration Method

● What we just saw is an example of the
iteration method.

● Keep plugging the recurrence into itself
until you spot a pattern, then try to
simplify.

● Doesn't always give an exact answer, but
useful for building up an intuition.

Getting an Intuition

● Simple recurrence relations often give rise to
surprising results.

● It is often useful to build up an intuition for
what the recursion solves to before trying to
formally prove it.

● We will explore two methods for doing this:
● The iteration method.
● The recursion-tree method.

Getting an Intuition

Simple recurrence relations often give rise to
surprising results.

It is often useful to build up an intuition for
what the recursion solves to before trying to
formally prove it.

We will explore two methods for doing this:

The iteration method.
● The recursion-tree method.

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

cn cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

cn

cn / 2 cn / 2

cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

cn

cn / 2 cn / 2

cn

cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

cn

cn / 2 cn / 2

cn / 4 cn / 4 cn / 4 cn / 4

cn

cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

cn

cn / 2 cn / 2

cn / 4 cn / 4 cn / 4 cn / 4

cn

cn

cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

cn

cn / 2 cn / 2

cn / 4 cn / 4 cn / 4 cn / 4

cn

cn

cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

…

cn

cn / 2 cn / 2

cn / 4 cn / 4 cn / 4 cn / 4

cn

cn

cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

…

There are log₂ n + 1 layers in the tree
(numbered 0, 1, 2, …, log₂ n).

The first log₂ n of them are the recursive case.
The last one consists purely of base cases.

There are log₂ n + 1 layers in the tree
(numbered 0, 1, 2, …, log₂ n).

The first log₂ n of them are the recursive case.
The last one consists purely of base cases.

cn

cn / 2 cn / 2

cn / 4 cn / 4 cn / 4 cn / 4

cn

cn

cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

…

cn

cn / 2 cn / 2

cn / 4 cn / 4 cn / 4 cn / 4

cn

cn

cn

cn log₂ n + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

…

cn

cn / 2 cn / 2

cn / 4 cn / 4 cn / 4 cn / 4

T(1) T(1) T(1) T(1) T(1) T(1)T(1)T(1)…

cn

cn

cn

cn log₂ n + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

…

cn

cn / 2 cn / 2

cn / 4 cn / 4 cn / 4 cn / 4

c c c c c ccc…

cn

cn

cn

cn log₂ n + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

…

cn

cn / 2 cn / 2

cn / 4 cn / 4 cn / 4 cn / 4

c c c c c ccc…

cn

cn

cn

cn

cn log₂ n + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

…

cn

cn / 2 cn / 2

cn / 4 cn / 4 cn / 4 cn / 4

c c c c c ccc…

cn

cn

cn

cn

cn log₂ n + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

…

The Recursion Tree Method

● This diagram is called a recursion tree
and accounts for how much total work
each recursive call makes.

● Often useful to sum up the work across
the layers of the tree.

A Formal Proof

● Both the iteration and recursion tree
methods suggest that the runtime is at
most

cn log₂ n + cn
● Neither of these lines of reasoning are

perfectly rigorous; how could we
formalize this?

● Induction!

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds for all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds for all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds for all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds for all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds for all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds for all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds for all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

Theorem: If n is a power of 2, T(n) ≤ cn log₂ n + cn

Proof: By induction. As a base case, if n = 20 = 1, then

 T(n) = T(1)
 ≤ c
 = cn log₂ n + cn.

For the inductive step, assume the claim holds for all
n' < n that are powers of two. Then

T(n) ≤ 2T(n / 2) + cn
 = 2((cn / 2) log₂ (n / 2) + cn / 2) + cn
 = cn log₂ (n / 2) + cn + cn
 = cn (log₂ n – 1) + cn + cn
 = cn log₂ n – cn + cn + cn
 = cn log₂ n + cn ■

What This Means

● We have shown that as long as we only look at
powers of two, the runtime for mergesort is
bounded from above by cn log₂ n + cn.

In most cases, it's perfectly safe to stop
here and claim we have a working bound.

Mergesort is indeed O(n log n).
● For completeness, let's take some time to see

why it is safe to stop here.

● In the future, we won't go into this level of
detail.

Replacing Θ

● Our original recurrence was

● We claimed it was safe to remove the Θ notation
and rewrite it as

● Why can we do this?

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

Fat Base Cases

● When n ≥ n₀, we can replace Θ(n) by cn for
some constant c.

● Our simplification in the previous step assumed
that n₀ = 0. What if this isn't the case?

● Can always rewrite the recurrence to use a “fat
base case:”

Makes the induction a lot harder to do, but the
result would come out the same.

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

Fat Base Cases

● When n ≥ n₀, we can replace Θ(n) by cn for
some constant c.

● Our simplification in the previous step assumed
that n₀ = 0. What if this isn't the case?

● Can always rewrite the recurrence to use a “fat
base case:”

● Makes the induction a lot harder to do, but the
result would come out the same.

T(n) ≤ T(⌈n / 2⌉)+T(⌊n / 2⌋) + cn (if n ≥ n₀)
T(n) ≤ c (otherwise)

T(n) ≤ T(⌈n / 2⌉)+T(⌊n / 2⌋) + cn (if n ≥ n₀)
T(n) ≤ c (otherwise)

Non Powers of Two

● Consider this recurrence:

● We know that for powers of two, this is upper

bounded by cn log₂ n + cn.
● Does that upper bound still hold for values

other than powers of two?
● If not, is our bound even useful?

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

Non Powers of Two

● Can we claim that since T(n) ≤ cn log₂ n + cn
when n is a power of two, that T(n) = O(n log n)?

Without more work, no. Consider this function:

Only looking at inputs that are powers of two, we
might claim that f(n) = Θ(n log n), even though
this isn't the case!

Non Powers of Two

● Can we claim that since T(n) ≤ cn log₂ n + cn
when n is a power of two, that T(n) = O(n log n)?

● Without more work, no. Consider this function:

● Only looking at inputs that are powers of two, we
might claim that f(n) = Θ(n log n), even though
this isn't the case!

● We need to do extra work to show that T(n) is
“well-behaved” enough to extrapolate.

n log₂ n
f(n) =

n!

if n = 2k

otherwise

a(n)

b(n)

a(n)

b(n)

b(n) = Θ(a(n))

Our Proof Strategy

● We will proceed as follows:
● Show that the values generated by the

recurrence are nondecreasing.
● For each non power-of-two n, provide an

upper bound T(n) using our upper bound on
the next power of two greater than n.

● Show that the upper bound we find this way
is asymptotically equivalent (in terms of Θ)
to our original bound.

Making Things Easier
● We are given this recurrence:

● This only gives an upper bound on T(n); we don't
know the exact values.

● Let's define a new function f(n) as follows:

● Note that T(n) ≤ f(n) for all n ∈ ℕ.

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

Making Things Easier
● We are given this recurrence:

● This only gives an upper bound on T(n); we don't
know the exact values.

● Let's define a new function f(n) as follows:

● Note that T(n) ≤ f(n) for all n ∈ ℕ.

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

T(0) ≤ c
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

Lemma: f(n + 1) ≥ f(n) for all n ∈ ℕ.

Proof: By induction on n. As a base case, note that

f(1) = c ≥ c = f(0)

For the inductive step, assume that for some n that
the lemma holds for all n' < n. Then

f(n + 1) = f(⌈(n+1) / 2⌉) + f(⌊(n+1) / 2⌋) + c(n+1)
 ≥ f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn
 = f(n) ■

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

Lemma: f(n + 1) ≥ f(n) for all n ∈ ℕ.

Proof: By induction on n. As a base case, note that

f(1) = c ≥ c = f(0)

For the inductive step, assume that for some n that
the lemma holds for all n' < n. Then

f(n + 1) = f(⌈(n+1) / 2⌉) + f(⌊(n+1) / 2⌋) + c(n+1)
 ≥ f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn
 = f(n) ■

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

Lemma: f(n + 1) ≥ f(n) for all n ∈ ℕ.

Proof: By induction on n. As a base case, note that

f(1) = c ≥ c = f(0)

For the inductive step, assume that for some n that
the lemma holds for all n' < n. Then

f(n + 1) = f(⌈(n+1) / 2⌉) + f(⌊(n+1) / 2⌋) + c(n+1)
 ≥ f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn
 = f(n) ■

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

Lemma: f(n + 1) ≥ f(n) for all n ∈ ℕ.

Proof: By induction on n. As a base case, note that

f(1) = c ≥ c = f(0)

For the inductive step, assume that for some n that
the lemma holds for all n' < n. Then

f(n + 1) = f(⌈(n+1) / 2⌉) + f(⌊(n+1) / 2⌋) + c(n+1)
 ≥ f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn
 = f(n) ■

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

Lemma: f(n + 1) ≥ f(n) for all n ∈ ℕ.

Proof: By induction on n. As a base case, note that

f(1) = c ≥ c = f(0)

For the inductive step, assume that for some n that
the lemma holds for all n' < n. Then

f(n + 1) = f(⌈(n+1) / 2⌉) + f(⌊(n+1) / 2⌋) + c(n+1)
 ≥ f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn
 = f(n) ■

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

Lemma: f(n + 1) ≥ f(n) for all n ∈ ℕ.

Proof: By induction on n. As a base case, note that

f(1) = c ≥ c = f(0)

For the inductive step, assume that for some n that
the lemma holds for all n' < n. Then

f(n + 1) = f(⌈(n+1) / 2⌉) + f(⌊(n+1) / 2⌋) + c(n+1)
 ≥ f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn
 = f(n) ■

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

Lemma: f(n + 1) ≥ f(n) for all n ∈ ℕ.

Proof: By induction on n. As a base case, note that

f(1) = c ≥ c = f(0)

For the inductive step, assume that for some n that
the lemma holds for all n' < n. Then

f(n + 1) = f(⌈(n+1) / 2⌉) + f(⌊(n+1) / 2⌋) + c(n+1)
 ≥ f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn
 = f(n) ■

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

f(0) = c
f(1) = c
f(n) = f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn

Lemma: f(n + 1) ≥ f(n) for all n ∈ ℕ.

Proof: By induction on n. As a base case, note that

f(1) = c ≥ c = f(0)

For the inductive step, assume that for some n that
the lemma holds for all n' < n. Then

f(n + 1) = f(⌈(n+1) / 2⌉) + f(⌊(n+1) / 2⌋) + c(n+1)
 ≥ f(⌈n / 2⌉) + f(⌊n / 2⌋) + cn
 = f(n) ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Theorem: T(n) = O(n log n)

Proof: Consider any n ∈ ℕ with n ≥ 1. Let k be
such that 2k ≤ n < 2k+1. Thus 2k+1 ≤ 2n < 2k+2.

From our lemma, we know that

T(n) ≤ f(n) ≤ f(2k+1)

Using our upper bound for powers of two:

f(2k+1) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)

Therefore

T(n) ≤ c(2k+1) log₂ (2k+1) + c(2k+1)
 ≤ c(2n) log₂ (2n) + 2cn
 = 2cn (log₂ n + 1) + 2cn

 = 2cn log₂ n + 4cn
So for any n ≥ 1, T(n) ≤ 2cn log₂ n + 4cn. Thus
T(n) = O(n log n). ■

Summary

● We can safely extrapolate from the runtime
bounds at powers of two for the following
reasons:
● The runtime is nondecreasing, so we can use

powers of two to provide upper bounds on other
points.

● The runtime grows only polynomially, so this
upper bounding strategy does not produce
values that are “too much” bigger than the
actual values.

● In the future, we will assume that this line
of proof works and will not repeat it.

Perfectly Safe Assumptions

● For the purposes of this class, you can
safely simplify recurrences by
● Only evaluating the recurrences at powers of

some number to avoid ceilings and floors.
● Replace Θ(f(n)) or O(f(n)) terms in a

recurrence with a constant multiple of f(n).
● Replace all constants with a single constant

equal to the max of all of the constants.

A Different Problem:
Maximum Single-Sell Profit

Maximum Single-Sell Profit

13 81517 1914 15 7 8 9

Maximum Single-Sell Profit

13 81517 1914 15 7 8 9

BUY

SELL

Maximum Single-Sell Profit

13 81517 1914 15 7 8 9

BUY

SELL

Maximum Single-Sell Profit

13 81517 1914 15 7 8 9

BUY

SELL

Maximum Single-Sell Profit

13 81517 1914 15 7 8 9

BUY

SELL

Maximum Single-Sell Profit

13 81517 1914 15 7 8 9

Maximum Single-Sell Profit

13 81517 1914 15 7 8 9

procedure maxProfit(list prices):
 let best = 0
 for i = 0 to length(prices) – 1:
 for j = i + 1 to length(prices) – 1:
 if prices[j] – prices[i] > best:
 best = prices[j] – prices[i]
 return best

procedure maxProfit(list prices):
 let best = 0
 for i = 0 to length(prices) – 1:
 for j = i + 1 to length(prices) – 1:
 if prices[j] – prices[i] > best:
 best = prices[j] – prices[i]
 return best

Maximum Single-Sell Profit

13 81517 1914 15 7 8 9

Maximum Single-Sell Profit

13 81517 1914 15 7 8 9

MIN

MAX

Maximum Single-Sell Profit

13 81517 1914 15 7 8 9

procedure maxProfit(list prices):
 if length(prices) ≤ 1:
 return 0

 let left be the first half of prices
 let right be the second half of prices

 return max(maxProfit(left), maxProfit(right),
 max(right) - min(left))

procedure maxProfit(list prices):
 if length(prices) ≤ 1:
 return 0

 let left be the first half of prices
 let right be the second half of prices

 return max(maxProfit(left), maxProfit(right),
 max(right) - min(left))

Analyzing the Algorithm
procedure maxProfit(list prices):
 if length(prices) ≤ 1:
 return 0

 let left be the first half of prices
 let right be the second half of prices

 return max(maxProfit(left), maxProfit(right),
 max(right) - min(left))

procedure maxProfit(list prices):
 if length(prices) ≤ 1:
 return 0

 let left be the first half of prices
 let right be the second half of prices

 return max(maxProfit(left), maxProfit(right),
 max(right) - min(left))

Analyzing the Algorithm
procedure maxProfit(list prices):
 if length(prices) ≤ 1:
 return 0

 let left be the first half of prices
 let right be the second half of prices

 return max(maxProfit(left), maxProfit(right),
 max(right) - min(left))

procedure maxProfit(list prices):
 if length(prices) ≤ 1:
 return 0

 let left be the first half of prices
 let right be the second half of prices

 return max(maxProfit(left), maxProfit(right),
 max(right) - min(left))

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

Analyzing the Algorithm
procedure maxProfit(list prices):
 if length(prices) ≤ 1:
 return 0

 let left be the first half of prices
 let right be the second half of prices

 return max(maxProfit(left), maxProfit(right),
 max(right) - min(left))

procedure maxProfit(list prices):
 if length(prices) ≤ 1:
 return 0

 let left be the first half of prices
 let right be the second half of prices

 return max(maxProfit(left), maxProfit(right),
 max(right) - min(left))

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

Analyzing the Algorithm
procedure maxProfit(list prices):
 if length(prices) ≤ 1:
 return 0

 let left be the first half of prices
 let right be the second half of prices

 return max(maxProfit(left), maxProfit(right),
 max(right) - min(left))

procedure maxProfit(list prices):
 if length(prices) ≤ 1:
 return 0

 let left be the first half of prices
 let right be the second half of prices

 return max(maxProfit(left), maxProfit(right),
 max(right) - min(left))

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(n) = O(n log n)

The Divide-and-Conquer Framework

● The two algorithms we have just seen are
examples of divide-and-conquer algorithms.

● These algorithms usually have two steps:
● (Divide) Split the input apart into multiple smaller

pieces, recursively solving each piece.
● (Conquer) Combine the solutions to each smaller

piece together into the overall solution.

● Typically, correctness is proven inductively and
runtime is proven by solving a recurrence relation.

● In many cases, the runtime is determined without
actually solving the recurrence; more on that later.

Another Algorithm: Binary Search

1 3 7 14 16 19 22 25 27 31 34 39 42 45 50

1 3 7 14 16 19 22 25 27 31 34 39 42 45 50

1 3 7 14 16 19 22 25 27 31 34 39 42 45 50

1 3 7 14 16 19 22 25 27 31 34 39 42 45 50

1 3 7 14 16 19 22 25 27 31 34 39 42 45 50

1 3 7 14 16 19 22 25 27 31 34 39 42 45 50

1 3 7 14 16 19 22 25 27 31 34 39 42 45 50

1 3 7 14 16 19 22 25 27 31 34 39 42 45 50

1 3 7 14 16 19 22 25 27 31 34 39 42 45 50

procedure binarySearch(list A, int low, int high,
 value key):
 if low ≥ high:
 return false

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] = key:
 return true
 else if A[mid] > key:
 return binarySearch(a, low, mid)
 else (A[mid] < key):
 return binarySearch(a, mid + 1, high)

procedure binarySearch(list A, int low, int high,
 value key):
 if low ≥ high:
 return false

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] = key:
 return true
 else if A[mid] > key:
 return binarySearch(a, low, mid)
 else (A[mid] < key):
 return binarySearch(a, mid + 1, high)

procedure binarySearch(list A, int low, int high,
 value key):
 if low ≥ high:
 return false

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] = key:
 return true
 else if A[mid] > key:
 return binarySearch(a, low, mid)
 else (A[mid] < key):
 return binarySearch(a, mid + 1, high)

procedure binarySearch(list A, int low, int high,
 value key):
 if low ≥ high:
 return false

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] = key:
 return true
 else if A[mid] > key:
 return binarySearch(a, low, mid)
 else (A[mid] < key):
 return binarySearch(a, mid + 1, high)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

procedure binarySearch(list A, int low, int high,
 value key):
 if low ≥ high:
 return false

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] = key:
 return true
 else if A[mid] > key:
 return binarySearch(a, low, mid)
 else (A[mid] < key):
 return binarySearch(a, mid + 1, high)

procedure binarySearch(list A, int low, int high,
 value key):
 if low ≥ high:
 return false

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] = key:
 return true
 else if A[mid] > key:
 return binarySearch(a, low, mid)
 else (A[mid] < key):
 return binarySearch(a, mid + 1, high)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌊n / 2⌋) + Θ(1)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌊n / 2⌋) + Θ(1)

procedure binarySearch(list A, int low, int high,
 value key):
 if low ≥ high:
 return false

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] = key:
 return true
 else if A[mid] > key:
 return binarySearch(a, low, mid)
 else (A[mid] < key):
 return binarySearch(a, mid + 1, high)

procedure binarySearch(list A, int low, int high,
 value key):
 if low ≥ high:
 return false

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] = key:
 return true
 else if A[mid] > key:
 return binarySearch(a, low, mid)
 else (A[mid] < key):
 return binarySearch(a, mid + 1, high)

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

The Iteration Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

The Iteration Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T (n) ≤ T (n2)+c
≤ (T (n4)+c)+c
= T (n4)+2c

≤ (T (n8)+c)+2c

= T (n8)+3c

...

≤ T (n2k)+k c

The Iteration Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T (n) ≤ T (n2)+c
≤ (T (n4)+c)+c
= T (n4)+2c

≤ (T (n8)+c)+2c

= T (n8)+3c

...

≤ T (n2k)+k c

The Iteration Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T (n) ≤ T (n2)+c
≤ (T (n4)+c)+c
= T (n4)+2c

≤ (T (n8)+c)+2c

= T (n8)+3c

...

≤ T (n2k)+k c

The Iteration Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T (n) ≤ T (n2)+c
≤ (T (n4)+c)+c
= T (n4)+2c

≤ (T (n8)+c)+2c

= T (n8)+3c

...

≤ T (n2k)+k c

The Iteration Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T (n) ≤ T (n2)+c
≤ (T (n4)+c)+c
= T (n4)+2c

≤ (T (n8)+c)+2c

= T (n8)+3c

...

≤ T (n2k)+k c

The Iteration Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T (n) ≤ T (n2)+c
≤ (T (n4)+c)+c
= T (n4)+2c

≤ (T (n8)+c)+2c

= T (n8)+3c

...

≤ T (n2k)+k c

The Iteration Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T (n) ≤ T (n2k)+k c
= T (1)+c log2n

= c+c log2n

The Iteration Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T (n) ≤ T (n2k)+k c
= T (1)+c log2n

= c+c log2n

The Iteration Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T (n) ≤ T (n2k)+k c
= T (1)+c log2 n

≤ c+c log2n

The Iteration Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T (n) ≤ T (n2k)+k c
= T (1)+c log2 n

≤ c+c log2n

= O (log n)

The Recursion Tree Method

The Recursion Tree Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c

The Recursion Tree Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c c

The Recursion Tree Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c c

c

The Recursion Tree Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c c

c

c

The Recursion Tree Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c c

c

c

…

The Recursion Tree Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c c

c

c

T(1)

…

The Recursion Tree Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c c

c

c

c

…

The Recursion Tree Method

T(1) ≤ c
T(n) ≤ T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + c c

c

c

c

…

c log₂ n + c

Formalizing Our Argument

● To formalize correctness, it's useful to use
this invariant:

If key = A[i] for some i, then
low ≤ i < high

● You can prove this is true by induction on the
number of calls made.

● We can also formalize the runtime bound by
induction to prove the O(log n) upper bound,
but it's not super exciting to do so.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202

