
Copyright © tutorialspoint.com

PYTHON FILES I/OPYTHON FILES I/O

This chapter covers all the basic I/O functions available in Python. For more functions, please refer
to standard Python documentation.

Printing to the Screen
The simplest way to produce output is using the print statement where you can pass zero or more
expressions separated by commas. This function converts the expressions you pass into a string
and writes the result to standard output as follows −

#!/usr/bin/python

print "Python is really a great language,", "isn't it?"

This produces the following result on your standard screen −

Python is really a great language, isn't it?

Reading Keyboard Input
Python provides two built-in functions to read a line of text from standard input, which by default
comes from the keyboard. These functions are −

raw_input

input

The raw_input Function
The raw_input[prompt] function reads one line from standard input and returns it as a string
removingthetrailingnewline.

#!/usr/bin/python

str = raw_input("Enter your input: ");
print "Received input is : ", str

This prompts you to enter any string and it would display same string on the screen. When I typed
"Hello Python!", its output is like this −

Enter your input: Hello Python
Received input is : Hello Python

The input Function
The input[prompt] function is equivalent to raw_input, except that it assumes the input is a valid
Python expression and returns the evaluated result to you.

#!/usr/bin/python

str = input("Enter your input: ");
print "Received input is : ", str

This would produce the following result against the entered input −

Enter your input: [x*5 for x in range(2,10,2)]
Recieved input is : [10, 20, 30, 40]

Taradof.Blog.irTaradof.Blog.ir

Opening and Closing Files
Until now, you have been reading and writing to the standard input and output. Now, we will see
how to use actual data files.

Python provides basic functions and methods necessary to manipulate files by default. You can do
most of the file manipulation using a file object.

The open Function
Before you can read or write a file, you have to open it using Python's built-in open function. This
function creates a file object, which would be utilized to call other support methods associated
with it.

Syntax

file object = open(file_name [, access_mode][, buffering])

Here are parameter details:

file_name: The file_name argument is a string value that contains the name of the file that
you want to access.

access_mode: The access_mode determines the mode in which the file has to be opened,
i.e., read, write, append, etc. A complete list of possible values is given below in the table.
This is optional parameter and the default file access mode is read r.

buffering: If the buffering value is set to 0, no buffering takes place. If the buffering value is
1, line buffering is performed while accessing a file. If you specify the buffering value as an
integer greater than 1, then buffering action is performed with the indicated buffer size. If
negative, the buffer size is the system defaultdefaultbehavior.

Here is a list of the different modes of opening a file −

Modes Description

r Opens a file for reading only. The file pointer is placed at the beginning of the file. This
is the default mode.

rb Opens a file for reading only in binary format. The file pointer is placed at the
beginning of the file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer placed at the beginning of
the file.

rb+ Opens a file for both reading and writing in binary format. The file pointer placed at
the beginning of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the file does not
exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If the
file does not exist, creates a new file for writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file exists. If
the file does not exist, creates a new file for reading and writing.

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing file if
the file exists. If the file does not exist, creates a new file for reading and writing.

a Opens a file for appending. The file pointer is at the end of the file if the file exists.
That is, the file is in the append mode. If the file does not exist, it creates a new file for
writing.

ab Opens a file for appending in binary format. The file pointer is at the end of the file if

Taradof.Blog.ir

the file exists. That is, the file is in the append mode. If the file does not exist, it creates
a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of the file if
the file exists. The file opens in the append mode. If the file does not exist, it creates a
new file for reading and writing.

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the
end of the file if the file exists. The file opens in the append mode. If the file does not
exist, it creates a new file for reading and writing.

The file Object Attributes
Once a file is opened and you have one file object, you can get various information related to that
file.

Here is a list of all attributes related to file object:

Attribute Description

file.closed Returns true if file is closed, false otherwise.

file.mode Returns access mode with which file was opened.

file.name Returns name of the file.

file.softspace Returns false if space explicitly required with print, true otherwise.

Example

#!/usr/bin/python

Open a file
fo = open("foo.txt", "wb")
print "Name of the file: ", fo.name
print "Closed or not : ", fo.closed
print "Opening mode : ", fo.mode
print "Softspace flag : ", fo.softspace

This produces the following result −

Name of the file: foo.txt
Closed or not : False
Opening mode : wb
Softspace flag : 0

The close Method
The close method of a file object flushes any unwritten information and closes the file object, after
which no more writing can be done.

Python automatically closes a file when the reference object of a file is reassigned to another file.
It is a good practice to use the close method to close a file.

Syntax

fileObject.close();

Example

Taradof.Blog.ir

#!/usr/bin/python

Open a file
fo = open("foo.txt", "wb")
print "Name of the file: ", fo.name

Close opend file
fo.close()

This produces the following result −

Name of the file: foo.txt

Reading and Writing Files
The file object provides a set of access methods to make our lives easier. We would see how to use
read and write methods to read and write files.

The write Method
The write method writes any string to an open file. It is important to note that Python strings can
have binary data and not just text.

The write method does not add a newline character ′\n ′ to the end of the string −

Syntax

fileObject.write(string);

Here, passed parameter is the content to be written into the opened file.

Example

#!/usr/bin/python

Open a file
fo = open("foo.txt", "wb")
fo.write("Python is a great language.\nYeah its great!!\n");

Close opend file
fo.close()

The above method would create foo.txt file and would write given content in that file and finally it
would close that file. If you would open this file, it would have following content.

Python is a great language.
Yeah its great!!

The read Method
The read method reads a string from an open file. It is important to note that Python strings can
have binary data. apart from text data.

Syntax

fileObject.read([count]);

Here, passed parameter is the number of bytes to be read from the opened file. This method starts
reading from the beginning of the file and if count is missing, then it tries to read as much as
possible, maybe until the end of file.

Example

Taradof.Blog.ir

Let's take a file foo.txt, which we created above.

#!/usr/bin/python

Open a file
fo = open("foo.txt", "r+")
str = fo.read(10);
print "Read String is : ", str
Close opend file
fo.close()

This produces the following result −

Read String is : Python is

File Positions
The tell method tells you the current position within the file; in other words, the next read or write
will occur at that many bytes from the beginning of the file.

The seekoffset[, from] method changes the current file position. The offset argument indicates the
number of bytes to be moved. The from argument specifies the reference position from where the
bytes are to be moved.

If from is set to 0, it means use the beginning of the file as the reference position and 1 means use
the current position as the reference position and if it is set to 2 then the end of the file would be
taken as the reference position.

Example
Let us take a file foo.txt, which we created above.

#!/usr/bin/python

Open a file
fo = open("foo.txt", "r+")
str = fo.read(10);
print "Read String is : ", str

Check current position
position = fo.tell();
print "Current file position : ", position

Reposition pointer at the beginning once again
position = fo.seek(0, 0);
str = fo.read(10);
print "Again read String is : ", str
Close opend file
fo.close()

This produces the following result −

Read String is : Python is
Current file position : 10
Again read String is : Python is

Renaming and Deleting Files
Python os module provides methods that help you perform file-processing operations, such as
renaming and deleting files.

To use this module you need to import it first and then you can call any related functions.

The rename Method

Taradof.Blog.ir

The rename method takes two arguments, the current filename and the new filename.

Syntax

os.rename(current_file_name, new_file_name)

Example
Following is the example to rename an existing file test1.txt:

#!/usr/bin/python
import os

Rename a file from test1.txt to test2.txt
os.rename("test1.txt", "test2.txt")

The remove Method
You can use the remove method to delete files by supplying the name of the file to be deleted as
the argument.

Syntax

os.remove(file_name)

Example
Following is the example to delete an existing file test2.txt −

#!/usr/bin/python
import os

Delete file test2.txt
os.remove("text2.txt")

Directories in Python
All files are contained within various directories, and Python has no problem handling these too.
The os module has several methods that help you create, remove, and change directories.

The mkdir Method
You can use the mkdir method of the os module to create directories in the current directory. You
need to supply an argument to this method which contains the name of the directory to be
created.

Syntax

os.mkdir("newdir")

Example
Following is the example to create a directory test in the current directory −

#!/usr/bin/python
import os

Create a directory "test"
os.mkdir("test")

Taradof.Blog.ir

The chdir Method
You can use the chdir method to change the current directory. The chdir method takes an
argument, which is the name of the directory that you want to make the current directory.

Syntax

os.chdir("newdir")

Example
Following is the example to go into "/home/newdir" directory −

#!/usr/bin/python
import os

Changing a directory to "/home/newdir"
os.chdir("/home/newdir")

The getcwd Method
The getcwd method displays the current working directory.

Syntax

os.getcwd()

Example
Following is the example to give current directory −

#!/usr/bin/python
import os

This would give location of the current directory
os.getcwd()

The rmdir Method
The rmdir method deletes the directory, which is passed as an argument in the method.

Before removing a directory, all the contents in it should be removed.

Syntax:

os.rmdir('dirname')

Example
Following is the example to remove "/tmp/test" directory. It is required to give fully qualified name
of the directory, otherwise it would search for that directory in the current directory.

#!/usr/bin/python
import os

This would remove "/tmp/test" directory.
os.rmdir("/tmp/test")

File & Directory Related Methods
There are three important sources, which provide a wide range of utility methods to handle and

Taradof.Blog.ir

manipulate files & directories on Windows and Unix operating systems. They are as follows −

File Object Methods: The file object provides functions to manipulate files.

OS Object Methods: This provides methods to process files as well as directories.

Taradof.Blog.ir

