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What is Motion Planning?
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Type of Robot

Robot arm
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Type of Robot

Mobile robot
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Definition

What is Motion Planning?

Determining where to go without hit obstacles

Given:

a robot R, with start and goal position
set S of obstacles

find collision-free path for the robot.
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Simplification

Assumptions

Look at a 2-dimensional motion planning problem

The environoment is a planar region

Obstacles and robot are polygons

There are no mobile obstacles

Robot can move in arbitrary directions
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Specifying a Robot placement

rigid object in 2D,
translation only

x- and y -coord of
reference point
2 degrees of freedom

rigid object in 2D,
translations and
rotations

x- and y -coord of
reference
point, angle of rotation
3 degrees of freedom

point robot with k
arms,
translations and
movement of arms

x- and y -coord of
reference
point, k rotation angles
k + 2 degrees of
freedom
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Configuration spaces

Placement

Placement of robot with f degrees of freedom can be specified with f
parameters

The parameter space of a robot R is usually called its configuration space
that denote by C (R)

a placement in work space ⇔ a point in f -dimensional configuration space
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Configuration spaces

example

Robot in 2D, translations only =⇒ configuration space: R2

For robat in 2D, translations and rotations:

A point (x , y , φ) in configuration space corresponds to the placement
R(x , y , φ) in the work space

That is:

configuration space : R2 × [0 : 2π]
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Free and Forbidden spaces

Free Space

Points in configuration space
corresponding to collision-free
placements
Denote by Cfree (R,S)

Forbidden Space

Points in configuration space
corresponding to colliding
placements
Denote by Cforb (R,S)
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To map placement and path
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How to map obstacles to configuration space?

Configuration space obstacles

An obstacle P is mapped to the set of points p in configuration space
such that R(p) intersects P.
Denote by C -obstacle

obstacles are open sets, so that the robot is allowed to touch them

C -obstacles may overlap even when the obstacles in the work space are
disjoint.This happens when there are placements of the robot where it
intersects more than one obstacle at the same time.
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Overview

Total Procedure

1 Decompose free space into constant-complexity cells

2 Construct dual graph of decomposition

3 Find path in graph

4 Transform path in graph to path in configuration space
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A Point Robot

Start with a simple case

problem reduces to motion planning for point robot in configuration space

For a point Robot, the work space and the configuration space are
identical

Marking:

denote the robot by R
denote the obstacle by P1, · · · ,Pt

The obstacles are polygons with disjoint interiors, whose total number of
vertices is denoted by n.

We will construct a data structure storing a representation of the free
space
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Simplification

Assumptions

To simplify we restrict the motion of the robot to a large bounding box B
that contains the set of polygons

Cfree = B \
⋃T

i=1 Pi
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Algorithm ComputeFreeSpace(S)
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Trapezoidal map
T (Cfree)

How do we find the trapezoids inside the obstacles?

we know for each trapezoid the edge that bounds it from the
top,therefore it suffices to check whether the edge bounds the obstacle
from above or from below
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Complexity of Algorithm ComputeFreeSpace

Lemma 13.1

A trapezoidal map of the free configuration space for a point robot
moving among a set of disjoint polygonal obstacles with n edges in total
can be computed by a randomized algorithm in O (n log n) expected time.
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Finding a path

How do we use T (Cfree) to find a path from Pstart to Pgoal?

1 If Pstart and Pgoal are in the same trapezoid of the map:
the path is a straight line.

2 If the start and goal position are in different trapezoids:
To guide the motion across trapezoids we construct a road map through
the free space.
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How do to construct the road map?

Step

1 Place a node in the center of each trapezoid

2 Place a node in the middle of each vertical extension

3 There is an arc between two nodes if and only if one node is in the center
of a trapezoid and the other node is on the boundary of that same
trapezoid
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Road Map

Constructed Time

The road map groad can be constructed in O(n) time by traversing the
doubly-connected edge list of T (Cfree)
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To Use the Road Map

Finding a path

We can use the road map, together with the trapezoidal map, to plan a
motion from a start to a goal position.
To this end:

Determine the trapezoids 4start and 4goal containing these points.

if they are the same trapezoid: motion is only in a straight line

Otherwise, let vstart and vgoal be the nodes of groad that have been placed
in the center of these trapezoids.
The path will construct now consists of three parts
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Summarize

The path will construct now consists of three parts:

1 a straight-line motion from Pstart to vstart

2 a path from vstart to vgoal along the arcs of the road map (with
breadth-first search)

3 a straight-line motion from vgoal to Pgoal
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Algorithm ComputePath
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Correctness of Algorithm

Are the reported path always collision-free?

Any path we report must be collisionfree, since it consists of segments
inside trapezoids and all trapezoids are in the free space.

Do we always find a collision-free
path if one exists?

suppose that there is a
collision-free path from pstart to
pgoal

The path from pstart to pgoal must
cross a sequence of trapezoids
41, ...,4k

Let vi be the node of groad that is
in the center of 4i
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Do we always find a collision-free
path if one exists?

suppose that there is a
collision-free path from pstart to
pgoal

The path from pstart to pgoal must
cross a sequence of trapezoids
41, ...,4k

Let vi be the node of groad that is
in the center of 4i

29 / 77

Robot Motion Planing, Getting Where You Want to Be



Introduction Work Space and Configuration Space A Point Robot Minkowski Sums Translational Motion Planning

Conclusion

Theorem 13.2

Let R be a point robot moving among a set S of polygonal obstacles
with n edges in total. We can preprocess S in O(nlogn) expected time,
such that between any start and goal position a collision-free path for R
can be computed in O(n) time, if it exists

Note

The path computed by the algorithm is collision-free, but we can give no
guarantee that the path does not make large detours
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Outline

1 Introduction

2 Work Space and Configuration Space

3 A Point Robot

4 Minkowski Sums
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Motion Planning problem for a Polygon Robot

Recall

We assume that the robot R is convex, and for the moment we also
assume that the obstacles are convex

R(x , y) to denote the placement of R with its reference point at (x , y).

C -obstacle, of an obstacle P and the robot R is defined as the set of
points in configuration space such that the corresponding placement of R
intersects P.

CP := {(x , y) : R(x , y) ∩ P 6= ∅}
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C -obstacle

CP := {(x , y) : R(x , y) ∩ P 6= ∅}
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Minkowski Sum

Definition

The Minkowski sum of two sets S1 ⊂ R2 and S2 ⊂ R2 is:

S1 ⊕ S2 := {p + q : p ∈ S1, q ∈ S2}

p + q := (px + qx , py + qy )

Notation

For a point p = (px , py ) we define −p := (−px ,−py ), and for a set S we
define −S := {−p : p ∈ S}
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Minkowski Sum

Example

A = {(1, 0), (0, 1), (0, 1)}

B = {(0, 0), (1, 1), (1, 1)}

then the Minkowski sum is:

A⊕ B = {(1, 0), (2, 1), (2, 1), (0, 1), (1, 2),

(1, 0), (0, 1), (1, 0), (1, 2)}
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Example for Minkowski Sum
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Theorem 13.3

Theorem 13.3

Let R be a planar, translating robot and let P be an obstacle. Then the
C -obstacle of P is P ⊕ (−R(0, 0)).

Proof

R(x , y) Intersect P ⇐⇒ (x , y) ∈ P ⊕ (−R(0, 0))
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Proof Of Theorem 13.3

If intersect,(x , y) is in CP

A Point q in intersection ⇒
q ∈ R(x , y) ∧ q ∈ P

∵ q ∈ R(x , y)⇒
(qx − x , qy − y) ∈ R(0, 0)
(−qx + x ,−qy + y) ∈ −R(0, 0)

∵ q ∈ P ⇒
(qx , qy ) + (−qx + x ,−qy + y) =
(x , y) ∈ P ⊕ (−R(0, 0))
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Proof Of Theorem 13.3

If (x , y) is in CP, R(x , y) and P
intersect

(x , y) ∈ P ⊕ (−R(0, 0)) =⇒

∃(rx , ry ) ∈ R(0, 0) ∧ ∃(px , py ) ∈ P
Such that: (x , y) = (px − rx , py − ry ))

That is:
px = x + rx
py = y + ry
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Observation

Observation 13.4

Let P and R be two objects in the
plane, and let CP := P ⊕ R.
An extreme point in direction ~d on
CP is the sum of extreme points in
direction ~d on P and R.
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Theorem

Theorem 13.5

Let P and R be two convex
polygons with n and m edges,
respectively. Then the Minkowski
sum P ⊕ R is a convex polygon with
at most n + m edges.

Proof

First part follows directly from the
definition.(sliding argument)

consider an edge e that is extreme
in the direction of its outer
normal.

Question

Why we say at most?
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A pair of Pseudodiscs

Definition

Consider two planar objects o1 and o2, each bounded by a simple closed
curve.
the pair o1, o2 is called a pair of pseudodiscs:

Definition 1: if their boundaries ∂o1 and ∂o2 intersect in at most two
points

Definition 2: if ∂o1 ∩ int(o2) is connected and ∂o2 ∩ int(o1) is connected

Definition 3: if o1 − o2 is connected and o2 − o1 is connected
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Collection of pseudodiscs

Definition

A collection of objects, each bounded by a simple closed curve, is called a
collection of pseudodiscs if every pair of objects in the collection is a pair
of pseudodiscs

Note

pseudodisc property is about the way in which (the boundaries of) two
objects can interact. It does not make sense to say of a single object that
it is a pseudodisc.
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Boundary crossing

Definition

consider two polygons P and P
′
.

an intersection point p ∈ ∂P ∩ ∂P
′

is a boundary crossing if ∂P crosses
from the interior of P

′
to the exterior of P

′
at p
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An important property of polygonal
pseudodiscs

Observation 13.6

A pair of polygonal pseudodiscs P,P
′

defines at most two boundary
crossings.
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The more extreme of polygon

Definition

Consider the pairs of convex polygons with disjoint interiors

one polygon is more extreme in a direction ~d than another polygon if its
extreme points lie further in that direction than the extreme points of the
other polygon
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extreme points for various directions

Definition

The range from a direction ~d1 to a direction
~d2 is defined as the directions corresponding
to points in the counterclockwise circle
segment from the point representing ~d1 to
the point representing ~d2.
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Observation

Observation 13.7

Let P1 and P2 be convex polygons with disjoint interiors.
Let ~d1 and ~d2 be directions in which P1 is more extreme than P2.

Then either P1 is more extreme than P2 in all directions in the range from
~d1 to ~d2, or it is more extreme in all directions in the range from ~d2 to ~d1.
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Observation
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Then either P1 is more extreme than P2 in all directions in the range from
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P1

P2

Not holed for non- convex polygons
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Minkowski sums forms a collection of
pseudodiscs

Theorem 13.8

Let P1 and P2 be two convex polygons with disjoint interiors, and let R
be another convex polygon. Then the two Minkowski sums P1 ⊕ R and
P2 ⊕ R are pseudodiscs.

Proof

Define:
CP1 := P1 ⊕ R

CP2 := P2 ⊕ R

By symmetry, it suffices to show that ∂CP1 ∩ int(CP2) is connected

Proof with Contradiction
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complexity of union

Theorem 13.9

Let S be a collection of convex polygonal pseudodiscs with n edges in
total. Then the complexity of their union is at most 2n

Proof

We prove the bound by charging every vertex of the union to a
pseudodisc vertex in such a way that any pseudodisc vertex is charged at
most two times
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Compute the Minkowski sum

A very simple algorithm

1 For each pair v ,w of vertices, with v ∈ P and w ∈ R,compute v + w

2 compute the convex hull of all these sums

Problems

this algorithm inefficient when the polygons have many vertices, because
it looks at every pair of vertices.
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Compute the Minkowski sum

an alternative algorithm and easy to implement

only looks at pairs of vertices that are extreme in the same direction

it run in linear time
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angle

Definition

In the algorithm we use the notation angle (pq) to denote the angle that
the vector ~pq makes with the positive x-axis.
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Algorithm MinkowskiSum
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A sample of implement
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Theorem

Theorem 13.10

The Minkowski sum of two convex polygons with n and m vertices,
respectively, can be computed in O(n + m) time.
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The Minkowski Sum for non-convex polygons

Compute the convex R ⊕ Non-convex P

the following equality holds for any sets S1,S2, and S3:

S1 ⊕ (S2 ∪ S3) = (S1 ⊕ S2) ∪ (S1 ⊕ S3)

Therefor,we can do the following steps:

1 Triangulate P into t1, ..., tn−2
2 Compute R ⊕ t1, ...,R ⊕ tn−2
3 Compute their union

P ⊕ R =

n−2⋃
i=1

ti ⊕ R
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The Minkowski Sum for non-convex polygons

complexity of P ⊕ R

ti ⊕ R is a convex polygon with at most m + 3 vertices(according to
Theorem 13.5)

the triangles have disjoint interiors, so the collection of Minkowski sums is
a collection of pseudodiscs(according to Theorem 13.8)

Hence, the complexity of their union is linear in the sum of their
complexities(according to Theorem 13.9)

This implies that the complexity of P ⊕ R is 2 [(n − 2)(m + 3)] ∈ O(nm)
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The worst case
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The Minkowski Sum for non-convex polygons

Compute the Non-Convex R ⊕ Non-convex P

1 triangulate both polygons and get a collection of n − 2 triangles ti , and a
collection of m − 2 triangles uj

2 Minkowski sum of P and R is now the union of the Minkowski sums of
the pairs ti , uj

Each sum ti ⊕ uj has constant complexity.

3 P ⊕ R is the union of (n − 2)(m − 2) constant-complexity polygons

P ⊕ R =
n−2⋃
i=1

m−2⋃
j=1

ti ⊕ uj

This implies that the total complexity of P ⊕ R is O(n2m2)
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The worst case
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summarize

Theorem 13.11

Let P and R be polygons with n and m vertices, respectively.
The complexity of the Minkowski sum P ⊕ R is bounded as follows:

it is O(n + m) if both polygons are convex

it is O(nm) if one of the polygons is convex and one is non-convex

it is O(n2m2) if both polygons are non-convex

These bounds are tight in the worst case.
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summarize
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Outline

1 Introduction

2 Work Space and Configuration Space

3 A Point Robot

4 Minkowski Sums

5 Translational Motion Planning
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Return to the planar motion planning problem

Theorem 13.12

Let R be a convex robot of constant complexity, translating among a set
S of non-intersecting polygonal obstacles with a total of n edges. Then
the complexity of the free configuration space Cfree(R,S) is O(n)

Proof

Any triangle is convex, with disjoint interiors

The free configuration space is the complement of the union of the
C -obstacles of these triangles

Therefor:

Triangulate each obstacle polygon =⇒ get a set of O(n) triangular,
robot has constant complexity =⇒ any C -obstacle have constant
complexity( m + 3 is constant)
C -obstacles form a set of pseudodiscs =⇒ the union has linear
complexity(total number of C -obstacle is n )
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Algorithm to construct the free space

Cfree = B − Cforb

computing the free space Cfree , we shall compute the forbidden space Cforb

the free space is simply its complement.

Let P1, ...,Pn denote the triangles that we get when we triangulate the
obstacles:

Cforb =
n⋃

i=1

CPi =
n⋃

i=1

Pi ⊕ (−R(0, 0))

Therefor the problem convert to computing forbidden space
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Algorithm Forbidden Space
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Algorithm Forbidden Space
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Running Time

Lemma 13.13

The free configuration space Cfree of a convex robot of constant
complexity translating among a set of polygons with n edges in total can
be computed in O(nlog2n) time.
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Lemma 13.13

Proof

mi =⇒ complexity of obstacle Pi

triangulating all the obstacles takes time:

t∑
i=1

mi logmi 6
t∑

i=1

mi logn = nlogn

Computing the C -obstacles of each of the resulting triangles takes linear
time in total

the merge step (line 5) can be done in:

O((n1 + n2 + k)log(n1 + n2))

n1 ⇒ the complexity of C 1
forb

n2 ⇒ the complexity of C 2
forb

k ⇒ the complexity of C 1
forb ∪ C 2

forb

n1, n2 and k are all O(n), so the time for the merge step is O(nlogn)
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Lemma 13.13

Time the algorithm

T (n) = T (dn/2e) + T (bn/2c) + O(nlogn)

⇓

O(nlog2n)
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Time the algorithm
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Continuance is same way as point Robot
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Running Time

Lemma 13.13

Let R be a convex robot of constant complexity translating among a set
S of disjoint polygonal obstacles with n edges in total. We can
preprocess S in O(nlog2n) expected time, such that between any start
and goal position a collision-free path for R, if it exists, can be computed
in O(n) time.
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END
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