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This paper presents compression of 3-D medical images using 3-D wavelet encoders. Four
wavelet transforms, namely, Daubechies 4, Daubechies 6, Cohen–Daubechies–Feauveau 9/7
and Cohen–Daubechies–Feauveau 5/3 are used in the first stage with encoders such as
3-D SPIHT, 3-D SPECK and 3-D BISK used in the second stage for the compression and
the optimal wavelet–encoder combination is identified. Two versions of wavelet transform,
symmetric and decoupled wavelet transform are considered. Experiments are performed
using medical test images such as magnetic resonance images (MRI) and X-ray angiograms
(XA). The performances of the proposed scheme are evaluated in terms of peak signal-to-
noise ratio and bit rate. Further mean structural similarity (MSSIM) index is introduced
to evaluate the structural similarity between the original and the reconstructed images.
It is found from the test results that the 3-D Cohen–Daubechies–Feauveau 9/7 symmetric
wavelet along with the 3-D SPIHT encoder yields the best compression result.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

For teleradiological applications, quality of reconstructed medical images plays a crucial role in diagnosis as well as treat-
ment of patients. In the recent years, the stringent demand of storage and transmission of multidimensional medical images
has provoked significant research interest in the filed of medical image compression [1–7]. Compression can be lossless if it
provides the exact replica of the original and lossy when incorporates certain quantization [1–7]. For medical image com-
pression, lossy compression is allowed as long as the required diagnostic quality is preserved in the reconstructed images
[4–6]. It is known that medical experts prefers 3-D images for analysis as it provides the flexibility of viewing the anatomical
cross sections required for accurate detection of abnormalities [1–4]. Several works on 3-D medical image compression have
been reported in the literature [1–14]. In [1] Schelkens et al. proposed new compression methods exploiting the quadtree
and block-based coding concepts, layered zero-coding principles, and context-based arithmetic coding and have compared
the performances of these coders with those of the JPEG2000, 3-D Set Partitioning In Hierarchical Trees (3-D SPIHT) and
3-D Set Partitioned Embedded bloCK (3-D SPECK). They have shown that in the case of lossless compression, the proposed
coders give excellent results whereas for lossy compression it provides comparable results. Xiong et al. have studied the
lossy and lossless compression of CT and MR volumetric data sets using 3-D integer wavelet transforms. They have modified
the 3-D SPIHT and the 3-D Embedded Block Coding with Optimized Truncation (3-D EBCOT) coding schemes and applied
them for compressing the medical data and have shown that their method gives comparable results for both lossy and
lossless compression [6]. Chao et al. proposed an optimal 3-D coefficient tree structure for 3-D zero tree wavelet video
coding and have shown that the 3-D zero tree coding need not be applied symmetrically along all the directions and that
the asymmetrical trees can produce higher compression ratio than the symmetrical ones [11]. Gibson et al. have suggested
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Fig. 1. Block diagram of the 3-D wavelet transform based storage/transmission.

a novel method for compression of angiogram video sequences which is based on the idea that diagnostically significant
areas of the image should be allocated the greatest proportion of the total available bit budget. They have incorporated the
region of interest (ROI) detection stage and texture modelling stage into the 3-D wavelet and SPIHT framework [12].

3-D SPECK and 3-D binary set splitting with k-D trees (3-D BISK) have been used mostly for compression of hyper
spectral images. Tang et al. have used 3-D SPECK compression of hyper spectral images, which are sequences of images
generated by collecting contiguously spaced spectral bands of data. They have shown that 3-D SPECK gives comparable
performance to that of the 3-D SPIHT coder [13]. Fowler and Rucker have given an overview on the major concepts in 3-D
embedded wavelet-based compression for hyperspectral imagery including 2-D and 3-D SPECK [14]. They have shown that
the performances of the different techniques are roughly similar in terms of rate distortion performance. Lu and Pearlman
have used the OB-SPECK algorithm (object based set partitioned embedded block coder) for wavelet coding of arbitrary
shaped video objects [15]. The proposed scheme achieves high coding efficiency and preserves the features of an embed-
ded bit stream, low computational complexity and exact bit rate control. Rucker and Fowler have used 3-D BISK for shape
adaptive coding of ocean-temperature data. The performance of 3-D BISK is compared to prominent shape-adaptive coders
and superior performance is demonstrated [16]. Although several work have been reported for 3-D medical image compres-
sion using wavelets, to the extent of author’s knowledge, optimal wavelet coders suitable for medical image compression
problems has not been explored.

This paper discusses the performance evaluation of 3-D lossy medical image compression using 3-D wavelet trans-
forms followed by 3-D wavelet encoders. Four wavelet transforms, namely, Daubechies 4 (D4), Daubechies 6 (D6), Cohen–
Daubechies–Feauveau 9/7 (CDF 9/7) and Cohen–Daubechies–Feauveau 5/3 (CDF 5/3) are used in the first stage with encoders
such as 3-D SPIHT, 3-D SPECK and 3-D BISK used in the second stage for the compression. Experiments are performed using
magnetic resonance images (MRI) and X-ray angiograms (XA) test images. The performances of the 3-D medical images are
evaluated in terms of peak signal-to-noise ratio (PSNR) and bit rate and the optimal wavelet transform–encoder is identified.
Fig. 1 shows the block diagram for the compression technique using the 3-D wavelet encoders. First the 3-D medical image
is split into groups of slices (GOS). Then the 3-D wavelet transform is applied, followed by 3-D encoding.

2. 3-D wavelet transform

It is known that 3-D wavelet transform can be obtained by applying 1-D wavelet transform along each dimension [11].
If W x, W y, W z represent the wavelet transformations applied along the x, y and z axes then transform of this image is
defined as W = (W xW y W z)1(W xW y W z)2 . . . (W xW y W z)L where L is the number of levels. This is called the 3-D sym-
metrical wavelet transformation, where all the dimensions are decomposed to equal number of levels by applying wavelet
transform alternately to each axis (see Fig. 2) [11]. On the other hand, 3-D wavelet transform can be also be obtained
by applying 2-D spatial transform first, followed by wavelet transform on the z axis separately. This can be defined as
W = (W xW y)1(W xW y)2 . . . (W xW y)L(W z)1(W z)2 . . . (W z)l . The spatial axis are decomposed to equal number of levels ‘L’
but the z axis can be decomposed to ‘l’ levels which need not be equal to ‘L’. This is called the decoupled 3-D wavelet
transform or the 3-D wavelet packet transform [11]. For further details one can refer [22]. The lifting approach used for
implementing wavelets has been proposed by Sweldens [17]. The major advantage of lifting is the fact that it requires lesser
memory and is faster than the general wavelet transform, hence providing a platform for real time applications. 3-D DWT
can be realized by applying 1-D DWT along each dimension.

For 1-D wavelet lifting, the input signal is split into and odd and even samples followed by a series of predict (P)
and update (U) lifting steps to obtain the low pass (LP) and high pass (HP) coefficients respectively. The LP coefficients
represent the coarse values and the HP coefficients represent the detail values in the data [18]. The predict and update
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Fig. 2. 3-D symmetric DWT with two levels of decomposition.

(a)

(b)

Fig. 3. Wavelet transform: (a) Forward lifting step, (b) inverse lifting step.

steps are sometimes referred to as dual and primal lifting steps. The inverse transform is formed by reversing the steps of
the forward transform and flipping the signs. The forward and inverse lifting steps are shown in Fig. 3 [19].

In the predict step, the odd elements are predicted using the even elements. Then the detail coefficient is given by the
difference between the original odd value and its predicted value. The detail coefficient replaces the original odd value for
further calculations. This can be explained as follows:

If ‘d’ represents the detail coefficient and ‘s’ represents the coarse coefficient then, the prediction step can be defined
as dn−1 = dn − P (sn), where P is the prediction operator. Similar to the predict step, the update step can be defined as
sn−1 = sn + U (dn−1), where U is the update operator. The predict and update steps required for the wavelets considered in
this paper are given in Table 1 [19,20].

3. Experimental setup and performance evaluation

In medical imaging, 3-D images refer to the time sequence of radiographic images or tomographic slice images of a
dynamic object or a volume of tomographic slice image of a static object [23]. In this paper, 3-D data sets refer to the latter
case. In other words, the 3-D image can be visualized as 2-D image slices stacked one after the other where each slice
shows the progressive variation of a static object. Thus the 3-D medical image is a 3-D rectangular array of voxels, with a
value assigned to each voxel [23]. The 3-D medical image data considered in this work are MR and XA images. Samples of
XA and MR images with all the 16 slices are shown in Fig. 4.

The slices in each GOS are chosen as 4, 8 and 16. The numbers of decompositions for the symmetric and the decoupled
wavelet transform are given in Table 2. The details of the experimental test data used in the performance evaluation of the
3-D wavelets transform are given in Table 3.
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Table 1
Forward transforms for lifting based wavelet transforms.

D4 d1[n] = d0[n] − √
3s0[n]

s1[n] = s0[n] +
√

3
4 d1[n] +

√
3−2
4 d1[n + 1]

d2[n] = d1[n] + s1[n − 1]
s2[n] = s1[n] + ( 2

(
√

3+1)2 −
√

2√
3+1

)
d2[n]

d3[n] = d2[n] +
√

3+1√
2

s2[n]

D6 d1[n] = d0[n] − 211
512 s0[n]

s1[n] = s0[n] + 45
128 d1[n] − 50

32 d1[n − 1]
d2[n] = d1[n] − 29

1024 s1[n] + 63
128 s1[n + 1]

s2[n] = s1[n] + 25
64 d2[n]

d3[n] = d2[n] + s2[n]

CDF 9/7 d1[n] = d0[n] − 203
128 s0[n + 1] − s0[n]

s1[n] = s0[n] − 217
4096 d1[n] − d1[n − 1]

d2[n] = d1[n] + 113
128 s1[n + 1] + s1[n]

s2[n] = s1[n] + 1817
4096 d1[n] + d1[n − 1]

CDF 5/3 d[n] = d0[n] − 1
2 s0[n + 1] + s0[n]

s[n] = s0[n] + 1
4 d[n] + d[n − 1]

(a) (b)

Fig. 4. (a) Sample of XA image, (b) sample of MR brain image.

Table 2
Number of decomposition levels.

Wavelet
transform

GOS size No. of spatial decompositions No. of temporal decompositions
(for both MR and XA)MR (spatial size

256 × 256)
XA (spatial size
512 × 512)

Symmetric 4 1 1 1
8 2 2 2

16 3 3 3

Decoupled 4 7 8 1
8 7 8 2

16 7 8 3

Table 3
Test data used for the experiments.

Modality Resolution (2-D) Total number of slices No. of patient data sets

MR image 256 × 256 16 10
XA image 512 × 512 16 10
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Table 4
Compression results for GOS of 16 slices for XA images.

3-D
encoder

Bit rate Symmetric Decoupled

CDF 9/7 CDF 5/3 D4 D6 CDF 9/7 CDF 5/3 D4 D6

SPIHT 0.1 20.39 20.42 20.25 20.1 20.24 20.81 20.4 20.2
0.5 26.58 26.22 25.58 25.6 25.85 25.63 24.79 24.65
1 32.35 31.24 30.2 30.25 30.55 28.3 28.4 27.56
1.5 39.03 38.75 38.2 37.59 35.86 34.58 34.21 33.65
2 44.9 42.74 42.12 41.56 42.06 39.65 38.5 38.12
3 57.23 56.8 55.89 54.26 51.43 48.2 47.21 47.11

BISK 0.1 20.55 20.12 17.85 19.52 21.23 20.05 21.1 20.8
0.5 26.21 25.88 25.26 24.52 23.85 22.2 22.9 22.5
1 32.2 31.1 30.23 30.12 27.06 26.2 27.1 26.56
1.5 38.12 37.23 37.11 36.58 27.53 27.44 27.57 27.32
2 44.55 43.25 42.25 41.65 28.52 28.38 28.5 28.1
3 55.12 53.12 52.25 52.1 32.21 31.96 32.2 31.2

SPECK 0.1 20.25 20.1 20.21 20.5 20.23 20.05 20.1 20.8
0.5 26.1 25.56 25.1 25.32 23.85 22.1 22.5 22.3
1 31.56 30.91 30.1 30.21 26.16 26.12 26.8 26.46
1.5 36.52 35.23 34.56 34.9 27.43 27.54 27.47 27.34
2 42.23 42.1 42.22 41.23 28.42 28.56 28.45 28.14
3 54.56 54.21 54.2 53.69 32.23 31.9 32.23 31.25

Table 5
Compression results for GOS of 8 slices for XA images.

3-D
encoder

Bit rate Symmetric Decoupled

CDF 9/7 CDF 5/3 D4 D6 CDF 9/7 CDF 5/3 D4 D6

SPIHT 0.1 18.39 18.32 18.25 18.1 18.24 18.1 18.24 18.28
0.5 24.58 24.42 23.58 23.6 23.75 23.52 22.65 22.54
1 30.35 30.1 28.7 29 28.5 26.37 26.41 25.61
1.5 37.03 36.5 36.2 35.59 33.68 32.81 32.21 31.12
2 42.9 41.4 40.2 40.5 40.16 37.6 36.51 36.23
3 55.23 54.28 53.89 53.26 48.19 46.28 45.16 45.47

BISK 0.1 18.15 18.12 17.5 18.1 18.2 18.09 18.05 17.58
0.5 24.21 23.88 22.26 22.52 21.5 21.2 21.8 21.35
1 30.2 30.1 28.2 28.12 24.26 24.2 24.1 24.56
1.5 36.12 36.23 35.17 35.18 25.23 25.24 25.7 25.2
2 42.55 42.25 40.51 40.36 27.52 27.38 27.58 27.21
3 53.12 52.12 51.25 51.21 31.21 30.62 31.2 30.52

SPECK 0.1 18.25 18.21 17.59 18.06 18.11 17.80 17.95 17.28
0.5 24.17 23.8 22.35 22.65 21.15 21.32 21.6 21.3
1 29.82 29.17 28.32 28.1 24.16 24.22 24.11 24.35
1.5 35.72 34.23 34.87 35.42 24.98 25.2 25.32 24.98
2 41.55 41.25 40.59 40.33 27.1 27.2 27.65 27.62
3 53.18 52.28 51.35 51.28 31.1 30.3 31.05 31.1

The parameters that are used for the performance comparison are peak signal-to-noise ratio (PSNR) and bit rate (BR)
defined as in (1) and (2) respectively [21].

PSNR (dB) = 20 × log10(Maximum pixel value)√
MSE

(1)

MSE in (1) represents the mean squared error of the image defined as

MSE = 1

N
×

∑

i

∑

j

(
f (i, j) − F (i, j)

)2
(2)

where N is the total number of pixels, F (i, j) denotes the pixel value in the reconstructed image and f (i, j) is the pixel
value in the original image.

BR (bpp) = Size of the compressed image in bits

Total no of pixels
(3)

Tables 4–9 show the performance of the 3-D XA and MRI images with 16, 8 and 4 slices respectively in terms of PSNR at
different bit rates. Different symmetric and decoupled 3-D wavelet transforms are used in the first stage and different 3-D
encoders are used in the second stage and the results are reported for all possible combinations.
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Table 6
Compression results for GOS of 4 slices for XA images.

3-D
encoder

Bit rate Symmetric Decoupled

CDF 9/7 CDF 5/3 D4 D6 CDF 9/7 CDF 5/3 D4 D6

SPIHT 0.1 16.39 15.32 16.25 16.1 15.24 16.1 16.24 16.28
0.5 22.58 22.42 21.58 22.6 21.75 21.52 21.75 20.54
1 28.35 28.1 26.7 29 26.5 25.37 25.34 24.36
1.5 34.03 33.5 31.2 32.59 30.8 30.81 30.52 30.12
2 40.9 39.4 38.2 37.5 37.16 36.56 35.95 35.63
3 50.23 49.28 49.89 48.26 43.19 44.28 43.16 44.74

BISK 0.1 16.9 15.32 16.15 15.51 15.2 15.9 15.51 15.11
0.5 21.8 22.2 21.5 21.96 20.5 20.42 20.88 20.55
1 27.35 27.1 26.57 27.9 23.26 22.98 22.58 22.62
1.5 33.93 33.55 30.98 33.15 24.23 23.4 23.97 23.58
2 40.59 39.64 38.42 38.15 26.52 25.81 25.58 25.21
3 49.3 48.2 48.9 48.26 30.21 29.62 29.2 29.52

SPECK 0.1 16.29 15.32 16.25 16.51 15.2 15.9 15.51 15.11
0.5 21.89 21.8 21.15 21.6 20.5 20.42 20.88 20.55
1 27.5 26.1 25.57 26.23 23.26 22.98 22.58 22.62
1.5 33.38 32.59 30.1 31.5 24.23 23.4 23.97 23.58
2 40.1 38.64 38.2 38.75 26.52 25.81 25.58 25.21
3 47.98 47.2 46.9 46.26 30.21 29.62 29.2 29.52

Table 7
Compression results for GOS of 16 slices for MR images.

3-D
encoder

Bit rate Symmetric Decoupled

CDF 9/7 CDF 5/3 D4 D6 CDF 9/7 CDF 5/3 D4 D6

SPIHT 0.1 22.92 22.42 22.25 22.13 22.24 22.81 22.4 22.22
0.5 28.83 28.22 27.58 27.16 27.85 27.63 26.79 26.11
1 34.51 33.24 32.2 32.25 32.55 29.3 30.4 29.98
1.5 42.10 40.75 40.12 39.59 37.86 35.58 36.21 35.59
2 47.19 46.74 46.12 45.6 44.06 41.65 39.5 39.21
3 56.23 56.18 56.89 56.26 53.43 50.21 47.1 46.91

BISK 0.1 22.2 22.12 21.75 21.11 22.3 22.05 22.1 22.8
0.5 28.13 27.22 27.88 26.16 24.88 24.29 24.9 24.5
1 34.41 33.4 33.1 32.5 26.26 26.21 27.1 27.3
1.5 41.40 41.15 40.2 40.11 28.33 28.44 28.57 28.32
2 46.49 46.4 45.28 44.6 29.12 29.3 29.45 29.12
3 55.23 55.18 54.9 54.36 33.24 33.6 33.2 33.22

SPECK 0.1 22.12 21.12 21.75 21.15 21.3 21.05 21.1 21.8
0.5 27.78 26.22 27.88 26.16 24.68 24.19 24.91 24.65
1 34.1 34.1 33.41 32.1 26.26 26.21 27.1 27.3
1.5 42.10 41.1 40.12 40.11 28.35 28.49 28.51 28.52
2 46.29 46.41 45.8 44.69 29.29 29.37 29.56 29.82
3 55.3 54.78 53.98 53.67 33.4 33.7 33.12 33.62

It can be seen from Tables 4 to 9 that the symmetric wavelets perform better than their decoupled wavelet counterpart
for both XA and MRI test images. Among the four wavelets the CDF 9/7 gives the best result. Among the encoders the 3-D
SPIHT gives the best result. It is also observed that the GOS of 16 slices gives the best result.

4. Discussion

A major design of any compression scheme is to obtain the best visual quality with minimum bit utilization. The pa-
rameter, peak signal-to-noise ratio is generally used for assessing the quality of the reconstructed image thereby trade off
between the quality and the bit rate can be established. Fig. 5 shows the plot indicating the average values of PSNR obtained
for MRI and XA images as stated in Tables 4 and 7 for different bit rate. Although [1–14] discuss the 3-D image compression
problems, only [1] and [5] address the compression of 3-D medical images. The results obtained using the applied various
wavelet based transforms and encoders are compared with the 3-D transforms such as discrete Hartley transform (DHT),
discrete cosine transform (DCT) and discrete Fourier transform (DFT) as reported in [26]. Further the fidelity results are also
compared with different versions of JPEG standards, JPEG-LS, JPEG 2000, JPEG2K-3D [1,25].

It can be seen from Fig. 5 that the increase in bit rate results in improvement in quality of the reconstructed image. The
performance of the wavelet based algorithms yields better results than JPEG and other 3-D transforms. It can be concluded
that the user can fix the bit rate depending on his reconstructed image quality requirements.
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Table 8
Compression results for GOS of 8 slices for MR images.

3-D
encoder

Bit rate Symmetric Decoupled

CDF 9/7 CDF 5/3 D4 D6 CDF 9/7 CDF 5/3 D4 D6

SPIHT 0.1 20.8 20.42 20.25 20.13 20.24 20.48 20.4 20.28
0.5 26.8 26.22 25.8 25.16 25.85 25.63 25.79 25.11
1 32.45 31.21 31.2 31.25 30.55 28.3 28.4 28.98
1.5 40.15 38.7 39.12 39.59 35.86 34.58 34.21 34.59
2 45.21 44.75 44.92 44.6 42.06 40.5 39.15 38.21
3 54.25 54.12 53.89 53.26 51.43 48.2 45.1 45.91

BISK 0.1 20.5 20.2 18.51 19.2 20.23 20.25 20.17 20.8
0.5 26.2 25.8 25.61 24.12 23.85 22.23 22.91 22.5
1 32.12 31.21 30.13 30.32 27.06 26.21 27.13 26.56
1.5 38.72 37.73 37.13 36.38 27.83 27.44 27.57 27.32
2 44.25 43.95 42.26 41.25 28.52 28.38 28.54 28.1
3 52.12 52.12 51.25 51.21 32.21 31.96 32.25 31.2

SPECK 0.1 20.51 20.27 18.39 19.2 20.23 20.27 20.1 20.1
0.5 25.92 25.83 25.62 24.12 25.85 22.91 22.71 22.29
1 31.92 31.29 30.39 30.28 27.06 26.51 27.13 26.62
1.5 39.1 37.75 37.13 36.38 27.83 27.94 27.51 27.82
2 45.1 44.95 44.26 43.25 28.52 28.48 28.12 28.51
3 53.5 53.12 53.25 51.21 32.21 31.76 31.98 31.2

Table 9
Compression results for GOS of 4 slices for MR images.

3-D
encoder

Bit rate Symmetric Decoupled

CDF 9/7 CDF 5/3 D4 D6 CDF 9/7 CDF 5/3 D4 D6

SPIHT 0.1 17.97 17.2 17.5 17.31 17.41 17.14 17.44 17.81
0.5 24.8 24.49 24.18 23.96 23.51 23.22 23.31 23.12
1 30.35 30.13 28.71 29.3 28.15 27.22 27.43 26.63
1.5 37.03 36.15 36.52 35.57 34.26 33.32 33.22 32.44
2 42.9 41.4 40.2 40.5 40.46 37.26 36.15 36.25
3 48.23 47.28 47.1 47.26 45.59 45.22 45.11 45.46

BISK 0.1 17.15 17.12 17.12 17.1 16.2 16.09 16.75 16.56
0.5 24.21 23.88 22.26 22.52 21.5 21.62 21.28 21.55
1 30.12 30.1 28.2 28.12 24.26 24.27 24.61 24.52
1.5 36.19 36.23 35.17 35.18 25.23 25.24 25.7 25.12
2 42.15 42.25 40.51 40.36 27.52 27.38 27.58 27.11
3 47.12 47.12 47.25 47.21 30.21 29.62 29.2 29.52

SPECK 0.1 17.25 17.21 16.99 17.06 16.11 16.81 16.5 16.28
0.5 24.17 23.8 22.35 22.65 21.15 21.32 21.6 21.37
1 29.82 29.17 28.32 28.1 24.16 24.22 24.11 24.35
1.5 35.72 34.23 34.87 35.42 24.98 25.24 25.32 24.98
2 41.55 41.25 40.59 40.33 27.13 27.22 27.65 27.62
3 47.18 52.28 51.35 51.28 31.14 30.31 31.05 30.99

It is well known that the perceived visual quality of the reconstructed image cannot be justified using MSE. It has
been shown by the author [25] that the reconstructed image quality can be very well assessed by the parameter, mean
structure similarity index (MSSIM index) [24]. MSSIM index is an image quality assessment parameter based very much on
the characteristics of HVS and measures the structural similarity rather than error visibility between two images. The SSIM
is defined as

SSIM(i, i′) = (2μiμi′ + C1) + 2σii′ + C2

(μ2
i μ

2
i′ + C1)(σ

2
i σ 2

i′ + C2)
(4)

where i and i′ are spatial patches (windows) of original image I and reconstructed image I ′ respectively, μi and μi′ are
the mean intensity values of i and i′ respectively, σi and σi′ are standard deviation of i and i′ respectively, and C1, C2 are
constants. The mean value is given by

MSSIM(I, I ′) = 1

M

M∑

j=1

SSIM
(
i j i

′
j

)
(5)

where M is the number of windows of the image. Fig. 6 shows the plot of bit rate vs MSSIM index for different compression
schemes.
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Fig. 5. Rate distortion plot.

Fig. 6. Plot of bit rate vs MSSIM index.

From the plot shown in Fig. 6, symmetric wavelet outperforms other methods. It can be further seen that for high bit
rates the value of MSSIM index reaches closely to one.

In order to determine the efficiency of the wavelet technique, processing time (PT in seconds) which is based on encoding
and decoding time period of the wavelet algorithm is calculated for different GOF. A new parameter, called computational
efficiency (CE) as defined in (6) is used to evaluate the overall performance.

CE = PSNR

PT
(6)

Fig. 7 shows the performance plot obtained using symmetric wavelet. The average values obtained for MRI and XA are
shown.

It can be seen from Fig. 6 that the GOF 16 yields the best result.
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Fig. 7. Overall performance characteristics.

5. Conclusion

This paper discusses the performance evaluation of 3-D medical image using 3-D wavelet coders. Four symmetric and de-
coupled wavelet transforms, Daubechies 4, Daubechies 6, Cohen–Daubechies–Feauveau 9/7 and Cohen–Daubechies–Feauveau
5/3 have been used in the first stage with encoders such as 3-D SPIHT, 3-D SPECK and 3-D BISK used in the second stage
for the compression. Two medical images, magnetic resonance images (MRI) and X-ray angiograms (XA) with group of slices
(GOS) 4, 8 and 16 respectively were considered. The performance of the two-stage schemes has been evaluated using the
bit rate and PSNR. It has been found from the experimental results that the symmetrical wavelet performs better than
decoupled wavelet transform. It can be concluded that the Cohen–Daubechies–Feauveau 9/7 (CDF 9/7) wavelet in the first
stage with 3-D SPIHT encoder in the second stage has been identified as the optimal wavelet–encoder for the compression
of 3-D medical images. The GOS consisting of 16 slices was found to be the optimum GOS.
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