
Chapter 3
Robust Optimization for Environmental and
Energy Planning

F. Babonneau, J.-P. Vial, and R. Apparigliato

Abstract Uncertainty is often present in environmental and energy economics. Tra-
ditional approaches to optimization under uncertainty, e.g., stochastic programming,
chance-constrained programming or stochastic dynamic programming, encounter
the most severe numerical difficulties because models in this area are large and
complex, already in their deterministic formulation. The goal of the present chapter
is to introduce a relatively new field, known as robust optimization, as an alterna-
tive to traditional methods and formulations. Through an illustrative example, we
suggest ways of putting robust optimization at work in environmental and energy
optimization models.

3.1 Robust Optimization in short

Uncertainty is often present in environmental and energy economics. As models
in this area are often large and complex, introducing uncertainty with traditional
approaches, e.g., stochastic programming (26; 25; 18; 33), chance-constrained pro-
gramming (23; 22; 34; 36) or stochastic dynamic programming (13), generally leads
to numerical intractable model as soon as a relevant representation of uncertainty is
sought.

The goal of the present contribution is to introduce a relatively new field, known
as robust optimization (37), which is an alternative to traditional methods and for-
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mulations. The main feature of this approach is that it is does not resort to the calcu-
lus of probability, which makes it immune against the curse of dimensionality and
computational intractability. In the meantime, robust optimization turns out to be
a safe approximation of chance constrained programming (23). We shall illustrate
our presentation through an example, a simplified version in power supply subject
to constraints on admissible concentration of pollutants. This will provide a support
to the presentation of the main ideas, to the methodology and to the value of the
solutions.

Dealing with uncertainty raises formidable theoretical and practical modeling
problems. On the other hand, almost all solution methods stumble on intractability
issues. In the last decade, a new approach has emerged, which provides new ways to
attack the problem. It is named Robust Optimization, and works on a new paradigm.
To present it in few words only, we shall contrast it with traditional methods, such
as stochastic programming, chance-constrained programming and/or dynamic pro-
gramming. Roughly speaking, traditional methods posit the prerequisite of a well-
defined probability model of the uncertainties involved in the problem; they next
expand the mathematical programming model of the deterministic version of the
problem to incorporate the uncertainty. This last operation usually goes with an in-
crease of complexity that, most of the time, puts the computation of the solution
out of reach of the current optimization methods. This phenomenon is sometimes
described as the curse of dimensionality and/or computational intractability of the
model1. In contrast, the primary concern of Robust Optimization is to overcome the
complexity issue in adopting a non-probabilistic formulation of the uncertainty. The
main underlying idea is to start with a much simplified, if not simplistic, description
of uncertainty and look for solutions that remain satisfactory for all realizations of
the uncertain parameters that are allowed by the uncertainty model. Solutions hav-
ing this property are named robust. In Robust Optimization, no probability model
is assigned to the uncertainty, which makes it possible to avoid expensive computa-
tions of multi-dimensional integrals associated with probabilities and expectations.
Computing robust solution becomes a numerically tractable operation.

At first sight Robust Optimization can be assimilated to a worst case approach
on a selected subset of possible realizations of the uncertainty parameters. This may
give mixed feelings to people attached to the probabilistic aspect of the problem of
interest. Of course, one may object that Robust Optimization has the definite advan-
tage of avoiding the dramatic computational shortcomings of traditional approaches,
in particular in multistage problems. Indeed, representing with a minimum of accu-
racy probabilities as well as computing expectations with multivariate distributions
are formidable handicaps in the framework of optimization problems. But, recent
results in Robust Optimization (5; 22; 23; 20) offer a more positive view. In few
words, these results consist in a lower bound on the probability that the computed
solution remains robust when the whole set of possible realizations—those in the
uncertainty set and those outside of it— is considered. These strong results are ob-
tained at the cost of rather mild assumptions on the probability model of uncertainty

1 In very loose terms, a model is numerically intractable if no method can guarantee that a solution
can be obtained in polynomial time.
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(independence, a bounded range and an average value at the middle of the range).
Probabilities, which are discarded in the initial model, reappear unexpectedly and
give stronger confidence in Robust Optimization.

The first robust formulation for an optimization problem with uncertainty pa-
rameters has been proposed by Soyster (37) at the beginning of the seventies. The
concept was taken over in the nineties by El-Gahoui and Lebret (28) and by Ben-Tal
and Nemirovski (9). Since then, robust optimization has been intensively studied in
the literature. The main theoretical contributions are (28; 10; 8; 4; 12; 15; 14).

Robust optimization is operational and useful for a large set of decision problems
with uncertainty. One can mention decision problems in finance and risk measure
(17; 19; 21; 30), in supply chain and inventory management (1; 6; 16), in telecom-
munications (35) and in management of electricity production in hydraulic valley
(2; 3). This approach is also adapted in complement of optimization techniques
such as constraints in probability (20), dynamic optimization (32), or stochastic op-
timization (24).

The chapter is organized as follows. In Section 2, we present our illustrative ex-
ample and show that its deterministic solution performs poorly in an uncertainty
context. Section 3 is concerned with an application of the robust optimization con-
cepts developed in the next sections to the illustrative example with static uncer-
tainty. In Section 4, we introduce those basic concepts of robust optimization in a
static framework. In Section 5, we examine the dynamic case and propose the con-
cept of Linear Decision Rules to cope with the adaptive nature of decisions. Sec-
tion 6 is devoted to applications to the illustrative example, when the demand over
time is the source of uncertainty. We compare the robust optimization solution with
a stochastic programming approach. In Section 7 one explores a hybrid approach
mixing stochastic programming and robust optimization. In Section 8 we show that
bounds on the probability that the robust solution satisfies the constraint with uncer-
tain coefficients can be obtained at the cost of a mild assumption on the probability
distribution of the uncertain coefficients. This result shows an obvious relationship
between chance constrained programming and robust optimization. Finally, in Sec-
tion 9 we present an extension of the robust optimization concept that covers both
the cases when the uncertainty lies in the uncertainty set and when it lies out of
it. A short conclusion discusses possible issues in dealing with practical models in
environmental and energy planning that are necessarily of much larger size than the
illustrative example of this note. It also gives hints on new developments in the field
of robust optimization.

3.2 An example in power supply under pollution constraint

To help the reader on the concepts of robust optimization that will be presented
in this chapter, we illustrate them on a simple environmental and energy planning
problem, inspired by the MARKA-Geneva model (27). The energy planning side
concerns the simulation of the evolution of the energy system for a region. The
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model is based on the assumption of an optimal use of the resources and the simu-
lated planning is obtained by minimizing a welfare function. The energy planning
model is enriched to account for a cap on pollutant level in the various subregions.
The pollutant level in a given subregion results from local emissions by energy pro-
ducing sources and from transfers from other subregions. The model is dynamic
with three periods.

In this model, we consider two types of uncertainties. One is related to the pollu-
tant transfer rates from one subregion to another; the other one concerns the demand.
Those two sources of uncertainties are of different natures. We model the demand
as an auto-regressive process: a high demand at a time period is an indication that
the demand will also be relatively high in the next time period. The decision pro-
cess must make use of this information and be adaptive. The pollution effect does
not enjoy this property. The transfer rates are not stable, but they do not follow any
evolution pattern over time. The process is described by an i.i.d. process. In the rest
of the chapter, we shall use the terminology region for subregion.

3.2.1 Deterministic formulation

The problem we consider here is the planning of energy production under environ-
mental constraints. The model has four regions, three periods, and three technolo-
gies TEM. We denote R = {r1,r2,r3,r4} the set of regions, T = {t1, t2, t3} the set
of time periods and P = {p1, p2, p3} the set of production technologies. The model
assumes a single output with production target 10, 12 and 14 for the periods t1, t2
and t3 respectively. The company is committed to serve the demand at all times.
Nevertheless, delivery failures may occur if the demand is higher than the produc-
tion capacity, but the shortage costs, presumably very high, are not known. Thus
violations on the demands should be avoided by all means.

Three technologies can be used to produce the output. The admissible production
level for each technology depends on the installed capacity. This installed capacity
depends on installations performed prior to the planning horizon, thereafter named
residual capacity, and on investments in the successive periods. These technolo-
gies can be installed in four different regions. The residual capacities are given in
Table 3.2.

The total system cost is the sum over the three periods and the four regions of
the capacity investment, maintenance and operation costs for the three technologies.
The costs are reported in Table 3.1.

Table 3.1 Maintenance, investment and operation costs for the three technologies.

Cost r1 r2 r3 r4

Maintenance (Mr) 1 1 1 1
Investment (Ir) 5 3 4 5
Operation (Or) 2 2 3 2



3 Robust Optimization for Environmental and Energy Planning 83

Table 3.2 Residual capacities (resp,t,r).

Technology p1 Technology p2 Technology p3

t1 t2 t3 t1 t2 t3 t1 t2 t3

r1 1 1 - 0.5 - - - - -
r2 - - - - - - - - -
r3 - - - - - - - - -
r4 - - - - - - 1 1 -

The technologies have different pollutant emission rates, given in Table 3.3, in
each region. A pollution transport and dispersion process takes place. A source-
receptor matrix specifies, for each source location, the proportion of the emitted
pollutant that is deposited in the different receptor locations (see Table 3.4). These
data are used to determine the level of concentration (immission) in each region.
A standard environmental quality, Q = 1.5, is imposed on this concentration for all
regions and for all periods.

Table 3.3 Emission rates (Ep,r) by production technology and by region.

r1 r2 r3 r4

p1 0.7 0.8 0.8 0.6
p2 0.5 0.4 0.7 0.7
p3 0.8 0.9 0.6 0.7

Table 3.4 Source-receptor transfer matrix (Gri,r j ).

r1 r2 r3 r4

r1 0.5 0.1 0.1 0.05
r2 0.1 0.4 0.04 0.1
r3 0.09 0.05 0.5 0.1
r4 0.05 0.1 0.1 0.6

The model gives conditions under which a joint investment and production plan
meets the demand needs and the environmental standards at minimal cost.

For the model, we define the following variables:

• xp,t,r: production of technology p, at period t and in region r.
• yp,t,r: capacity investment of technology p, at period t and in region r.
• zp,t,r: installed capacity of technology p, at period t and in region r.
• et,r: emission at period t and in region r.

The optimization problem is given by
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min
x≥0,y≥0,z,e

∑
r
(Or ∑

p,t
xp,t,r + Ir ∑

p,t
yp,t,r +Mr ∑

p,t
zp,t,r) (1a)

zp,t,r = resp,t,r + ∑
τ≤t

yp,τ,r ∀t ∈T ,∀p ∈P,∀r ∈R (1b)

xp,t,r ≤ zp,t,r ∀t ∈T ,∀p ∈P,∀r ∈R (1c)

∑
p,r

xp,t,r = dt ∀t ∈T (1d)

∑
p

Ep,rxp,t,r = et,r ∀t ∈T ,∀r ∈R (1e)

∑
ρ∈R

et,ρ Gρ,r ≤ Q ∀t ∈T ,∀r ∈R. (1f)

In that formulation, the equality constraints (1b) express the total installed capac-
ities, zp,t,r, as the sum of the residual capacities and the capacities that are installed
in the previous periods. Inequality constraints (1c) limit production to the installed
capacities. Equations (1d) are demand constraints. The last two sets of constraints
firstly compute the pollutant emissions resulting from all technologies (1e), and sec-
ondly impose bounds on the final emissions resulting from the dispersion process
(1f).

Problem (3.1) has 108 variables and 99 constraints. Note that (3.1) can be for-
mulated in a more compact way by removing the z and e variables and the equality
constraints (1b) and (1e) (see Subsection 3.6 for more details). Solving problem
(3.1) gives the optimal objective value 162.056. The optimal investments, produc-
tions and emissions are reported in Table 3.5, 3.6 and 3.7, respectively.

Table 3.5 Optimal investment schedule.

t1 t2 t3

p1 p2 p3 p1 p2 p3 p1 p2 p3 Total

r1 - 1.41 - - 0.77 - - - - 2.18
r2 - 6.09 - - 1.73 - - 0.15 - 7.97
r3 - - - - - - - - 3.85 3.85
r4 - - - - - - - - - 0

Sum - 7.50 - - 2.50 - - 0.15 3.85

Total per period 7.50 2.50 4.00

We observe in Table 3.5 and Table 3.6 that the optimal solution is to invest in
technology p2 only, except in period t3 where technology p3 is also selected. As far
as production is concerned, the three technologies are used in the first two periods,
but the first production technology is abandoned in the last period. Table 3.7 shows
that only two emission constraints are active at the optimum (in region r2 at periods
t2 and t3), and one is close to be active (in region r3 at period t3). Should the optimal
investment/production plan be implemented within an uncertain environment, then,
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Table 3.6 Optimal production schedule.

t1 t2 t3

p1 p2 p3 p1 p2 p3 p1 p2 p3 Total

r1 1.00 1.91 - 1.00 2.18 - - 2.18 - 8.27
r2 - 6.09 - - 7.82 - - 7.97 - 21.88
r3 - - - - - - - - 3.85 3.85
r4 - - 1.00 - - 1.00 - - - 2.00

Sum 1.00 8.00 1.00 1.00 10.00 1.00 - 10.15 3.85

Total per period 10.00 12.00 14.00

Table 3.7 Emission associated with the optimal solution.

t1 t2 t3

r1 1.16 1.24 1.07
r2 1.21 1.50 1.50
r3 0.33 0.37 1.39
r4 0.75 0.82 0.60

those constraints would potentially be critical and one should expect violations for
some variations in the entries of the source-receptor transfer matrix.

3.2.2 Uncertainties in the power supply model

In the power supply model, we consider two sources of uncertainties, one on the
pollutant diffusion coefficients and the second one on the demand.

First we define the uncertainty on the coefficients of the source-receptor matrix
G. Let ξ be a random variable with values in the interval [−1,1], each coefficient of
the matrix G is given by

Gi, j(ξ ) = Ḡi, j + Ĝi, jξi, j, (3.2)

where Ḡi, j is the average coefficient reported in Table 3.4 and Ĝi, j corresponds to
the coefficient variability. Here we set Ĝi, j = 0.1Ḡi, j.

We now focus on the demand uncertainty. We adopt the following autoregressive
model

dt+1 = dt +αt+1 + d̂t+1ηt+1,

where ηt+1 is a random variable with values in the interval [−1,1] and αt+1 is a
deterministic trend factor. This formula can be explicited using backward substitu-
tion. Each demand dt appears then as a function of the past random factor ητ for
τ = 1, . . . , t. In our case with horizon of length 3, we have
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d1 = d̄1 + d̂1η1 (3a)
d2 = d̄2 + d̂1η1 + d̂2η2 (3b)
d3 = d̄3 + d̂1η1 + d̂2η2 + d̂3η3 (3c)

where d̄i and d̂i are the average demand and the variability of the demand, respec-
tively. We have d̄1 = 10, d̄2 = 12, d̄3 = 14 and d̂i = 0.1d̄i, ∀i.

3.2.3 Validation process

The validation process is an empirical study of the behavior of the solution under
a set of simulated values for the uncertain parameters. In our study, an item of the
simulation process is a set of independent realizations of the random factors (de-
mand and/or emission transfer parameters) over the three periods. We shall use the
terminology “scenario” to name one such set of realizations. To generate a scenario,
one needs a probabilistic model of the random factors. In our illustrative exam-
ple, we choose to have the underlying factor to be i.i.d. with a uniform distribution
on the range [−1,1]. The validation is performed on a sample of scenarios of size
1000; each scenario in the sample is a multidimensional vector of realizations of the
random factors η and ξ . The demands and the pollutant diffusion coefficients are
computed via (3.3) and (3.2), respectively.

In the evaluation of performance, we must differentiate among the two types of
uncertainties. Let us start with the emission transfer coefficients. Since there is no
recourse associated with this type of uncertainty, the investment/production can be
implemented as such, without a risk of violating the demand constraint. Of course,
the constraint on the air quality may not be satisfied, but this is just recorded without
any modification of the solution itself.

The case of an uncertain demand raises a new issue. One could just record the
violations of the demand constraint from above or from below as argued in the
previous case, but this would not be realistic. Since the production is adapted to
the manifested demand, it is difficult to stick to the view that the production should
be maintained at its scheduled value if the demand turns out to be smaller than
the production. In the validation process we adopt the following strategy. Let xp,t,r
and yp,t,r be the production and the investment in a particular solution. If the total
planned production ∑p,r xp,t,r at period t is less than the demand dt , the production is
kept as such, and we record a shortage. The ensuing constraint violation is measured
in relative value (max{dt−∑p,r xp,t,r,0})/dt . If the demand is less than the planned
production, production in each region with each technology is uniformly downsized
by the common factor dt/∑p,r xp,t,r. The treatment of the constraint on the pollutant
level in each region is simpler. It measures the amount of relative violation.
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3.2.4 Evaluation of the deterministic solution in the uncertain
environment

We now subject the deterministic optimal solution computed in the previous section
(see Tables 3.5, 3.6 and 3.7) to the simulation process.

Impact of uncertainty on pollutant diffusion
Table 3.8 gives the simulation results with uncertainty on the pollutant diffusion

coefficients. We observe that for only 46.5% of the simulations all the air quality
constraints are satisfied. For 4.2%, 47.8%, and 1.5% of the cases, one, two and three
air quality constraints are violated, respectively. The average and maximum relative
violations are about 4.3% and 9.3%, respectively. An analysis of the constraint vi-

Table 3.8 Simulation results with uncertain source-receptor matrix.

Average relative violation (%) 4.3
Maximum relative violation (%) 9.3
% of satisfaction 46.5
% of one violation 4.2
% of two violations 47.8
% of three violations 1.5

olations has revealed that the phenomenon occurred in the three pairs (region and
periods) that were critical or near critical in the deterministic study. In the other
pairs there is enough slack to absorb variations in the transfer rates.

Impact of uncertainty on the demand
In Table 3.9, we report the simulation results conducted on the optimal determin-

istic solution with a demand uncertainty.

Table 3.9 Simulation results with uncertain demands.

Predicted cost performance 162.056
Observed cost performance 160.871

Scenarios with demand violation(s) in % 62.0
Conditional average relative violation in % 2.5
Average number of violations per scenario 2.0

Contrary to the previous experiment, the uncertainty on the demand has an im-
pact on the cost performance. As a result we distinguish between the predicted
performance (the optimal cost in the deterministic model) and the observed per-
formance (the average cost in the simulation). Surprisingly enough, the observed
performance is better than the predicted one. The paradox is apparent and the expla-
nation is straightforward. When the demand is lower than the average value used in
the deterministic model, the production levels are scaled down to match the actual
demand and the production costs less than predicted by the deterministic plan. But
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when the demand is higher than this average, the production cannot be increased,
because the capacity constraints in the deterministic optimal solutions are tight; the
production costs remain as computed in the deterministic model, but part of the
demand is not satisfied. Thus, the seemingly improved cost performance must be
balanced with demand violations. In that respect, we observe a demand violation
in 62% of the scenarios and a conditional average of unsatisfied demand of 2.5%.
Finally, when a violation occurs in a scenario the average number of periods with
violation is approximately 2.0 (over the total of 3). The conditional average demand
violation is small with respect to the average demand, but one should recall that the
range of variation of the demand around the average is ±5%, ±10% and ±15%, in
periods 1, 2 and 3, respectively.

3.3 Case study: robust solution to a problem with uncertain
pollutant transfer coefficients

To motivate robust optimization, we propose a simple fix to handle uncertainties in
the power supply problem. We limit this illustration to uncertainties on the pollutant
diffusion coefficients, and consider that the demands are fixed. We shall use heuristic
arguments only and postpone theoretical justifications to later sections.

Let us start with a general formulation of a linear constraint with uncertain coef-
ficients

n

∑
j=1

ã jx j ≤ b, (3.4)

where ã j are uncertain. For the sake of a simpler presentation, we assume b to
be certain. We further describe the uncertain coefficients as linear functions of an
underlying random factor ξ

ã = ā+Pξ ,

where ξ ∈ Rm and P is an n×m matrix. We further assume that the random factor
has a symmetric distribution with mean 0. The certain vector ā is usually named the
normal factor. We can thus focus on the uncertain component of the constraint

āT x︸︷︷︸ + (PT x)T
ξ︸ ︷︷ ︸ ≤ b.

certain uncertain

We now evoke a common sense engineering approach that consists in replacing
the uncertain term by a safety term κ > 0. By taking a large enough safety term,
we give a sufficient guarantee that the solutions of āT x + κ ≤ b will almost always
remain feasible to (3.4). This says nothing on the critical way to choose the safety
factor, but many practitioners will be receptive to a so-called 2σ , 3σ , possibly 6σ

approach. This industrial practice is often justified through the following proba-
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bilistic and statistical argument. Assuming that the underlying random factor ξ is
a vector with probabilistically independent components with mean 0 and standard
deviation σ , we can state that the uncertain component (PT x)T ξ is a random vari-
able with mean 0 and standard deviation ||PT x||2. In the k×σ approach, the safety
term is κ = k||PT x||2, with the implicit argument that for most distributions a large
enough k, say k = 3, will guarantee that a solution to āT x+k||PT x||2 ≤ b will satisfy
the probabilistic constraint ∑

n
j=1 ã jx j ≤ b with high probability.

The two salient features of this “engineer-like” approach can be summarized as
follows. An uncertain constraint is replaced by a deterministic constraint with a
safety term, and the safety term depends on the decision variables x. Applying this
idea to our problem of interest, we obtain that the robust equivalent of the air quality
constraints (1f) is

∑
ρ∈R

et,ρ Ḡr,ρ + k|| ∑
ρ∈R

et,ρ Ĝr,ρ ||2 ≤ Q ∀t ∈T ,r ∈R. (3.5)

This formulation does not increase the problem size, but the linear air qual-
ity constraints are replaced by nonlinear ones. Those constraints are convex conic
quadratic, and problems with such constraints can be solved very efficiently by mod-
ern solvers (e.g., the open source code (38)).

If we wish to remain in the realm of linear programming, we have to replace the
safety factor by terms that are amenable to linear inequalities. The following bound
will be established in the next section

||α||2 ≤min
β

{
√

m ||α−β ||∞ + ||β ||1},

where ||α||1 = ∑
m
i=1 |αi| and ||α||∞ = maxi |αi|. Hence, the alternative, linear but

more restrictive formulation,

∑
ρ∈R

ep,ρ Ḡr,ρ +k
√

m || ∑
ρ∈R

ep,ρ Ĝr,ρ−β ||∞ +k||β ||1 ≤Q ∀p ∈P,r ∈R. (3.6)

In this experiment, we solve the robust equivalent problem with the two formula-
tions, the first one (3.5) with the conic quadratic constraint, and the other one (3.6)
with linear constraints. We use the same k in the two formulations, but make this k
vary to experiment with different degrees of safety. We shall compare the behavior
of the robust solutions with the deterministic solution. The results are reported in
Table 3.10.

In the second set of experiments we use the formulation with linear constraints
(3.6). We shall prove in the next section that (3.6) is equivalent to a system of linear
inequalities. It turns out that the robust formulation of a typical air quality constraint
(1f) corresponding to the pair (t ∈T ,r ∈R) is
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Table 3.10 Variable transfer coefficients: behavior on the sample of 1000 scenarios of a robust
solution with the conic quadratic formulation (3.5).

Deterministic Robust
k = 0.8 k = 1 k = 1.2

Cost performance 162.06 163.76 164.21 164.64

Conditional average of relative violation (%) 4.3 1.0 0.5 -
Maxi relative violation (%) 9.3 3.0 1.5 -
proportion of scenarios with violation (%) 53.5 25.4 6 0
proportion of scenarios with one violation (%) 4.2 17.2 5 -
proportion of scenarios with two violations (%) 47.8 6.4 1 -
proportion of scenarios with three violations (%) 1.5 1.8 - -

∑
i∈R

et,iḠr,i + k(∑
i∈R

ut,r,i +2vt,r)≤ Q (7a)

ut,r,ρ ′ + vt,r ≥ ∑
ρ∈R

et,ρ Ĝρ ′,ρ ∀ρ ′ ∈R (7b)

u≥ 0,v≥ 0 (7c)

The above robust counterpart is obtained from the set of inequalities (3.10) in Propo-
sition 1 (Section 3.4). The reader will notice that (3.10) also includes constraints like
(7b), but with right-hand side−∑ρ∈R et,ρ Ĝρ ′,ρ . In this particular problem, we know
that ∑ρ∈R et,ρ Ĝρ ′,ρ ≥ 0, which makes one half of the constraints redundant. So, we
eliminate them and obtain a robust equivalent model that is still linear but with 60
additional variables u’s and v’s and 48 additional constraints.

We solve the robust equivalent problem with different values of k and we report
the results of the simulations for each robust optimal solution in Table 3.11.

Table 3.11 Variable transfer coefficients: behavior on the sample of 1000 scenarios of a robust
solution with respect to the linear formulation (3.7).

Deterministic Robust
k = 0.6 k = 0.8 k = 1

Cost performance 162.06 163.49 163.99 164.49

Conditional average of relative violation (%) 4.3 1.2 0.7 -
Max relative violation (%) 9.3 3.5 1.7 -
proportion of scenarios with violation (%) 53.5 29.1 12.4 0
proportion of scenarios with one violation (%) 4.2 14.9 9.4 -
proportion of scenarios with two violations (%) 47.8 12.7 2.9 -
proportion of scenarios with three violations 1.5 1.5 0.1 -

The results of Table 3.10 and Table 3.11 are very much alike. Nevertheless, we
notice that with the same safety level k, say k = 0.8 for a typical example, the robust
solution with respect to the linear approximation (3.6) achieves a slightly worst cost
objective (163.99 vs. 163.76) than the solution with respect to the conic quadratic
formulation (3.5). In the meantime, the first solution achieves a better protection
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Table 3.12 Robust investment schedule for k = 0.8 and the linear formulation (3.7).

t1 t2 t3

p1 p2 p3 p1 p2 p3 p1 p2 p3 Total

r1 - 1.39 - - 1.51 - - 0.10 - 3.00
r2 - 5.94 - - 0.91 - - 0.16 - 7.01
r3 - - - - - - - - 3.74 3.74
r4 0.17 - - 0.08 - - - - - 0.25

Sum 0.17 7.33 - 0.08 2.42 - - 0.26 3.74

Total per period 7.50 2.50 4.00

against constraint violation. These observations conform to the fact that for identi-
cal k the linear safety factor in (3.6) in Table 3.11 is an upper bound of the conic
quadratic safety factor (3.5) in Table 3.10. The first one is more constrained is thus
more constrained. The cost performance in not so good, but it ensures a lesser pro-
tection against violations. The chances are that in a simulation we observe a lesser
number of constraint violations.

3.4 Robust Optimization for the static problem: theoretical
developments

Let us recall the formulation of a linear constraint with uncertain coefficients

n

∑
j=1

ã jx j ≤ b.

The first basic assumption on the uncertain parameters is that they depend on
some random factor ξ in a linear way.

Assumption 1 The uncertain vector ã is written as

ã = ā+Pξ ,

where ξ ∈ Rm and P is an n×m matrix.

The certain vector ā is usually named the normal factor. We can thus focus on the
uncertain component of the constraint

āT x︸︷︷︸ + (PT x)T
ξ︸ ︷︷ ︸ ≤ b.

certain uncertain
(3.8)

Our present goal is to use information on ξ to build the safety factor introduced
in the previous section (see inequalities (3.5) and (3.6)). The idea is to focus on
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a subset of all possible events that it is made of all realizations of the underlying
uncertain factor ξ that the modeler deems necessary to protect against. This is the so-
called uncertainty set. The robust version of the initial uncertain constraint ãT x≤ b
consists in enforcing the uncertain constraint (3.8), not for all possible realizations,
but only by those in the uncertainty set; that is, the less restrictive constraint

āT x+(PT x)T
ξ ≤ b, for all ξ ∈ Ξ ,

where Ξ ⊂ Rm is the uncertainty set. A solution to this constraint is called robust
with respect to Ξ . If Ξ is a continuous set, the robust constraint is a short-hand writ-
ing of an infinite number of simple linear constraints. This seems to put the whole
approach into the realm of semi-infinite programming, making the computation of
solutions a real issue. It turns out that this is not so, for a large variety of uncertainty
sets.

We shall consider a few different types of uncertainty sets. Let us start with the
ellipsoidal uncertainty set

Ξ = {ξ | ||ξ ||2 ≤ k}.

In the rest of the chapter, we shall describe the ellipsoidal uncertainty set as the ball
in the 2-norm, centered at the origin and with radius k. We denote it B2(0,k). We
shall also use more general balls, such as

Bp(0,k) = {ξ | ||ξ ||p ≤ k}

with 1 < p < ∞ and ||ξ ||p = (∑m
i=1 |ξi|p)1/p. The following lemma gives the clue

to the replacement of the robust constraint by a single finite-dimensional constraint
which will be named the robust equivalent.

Lemma 1. Let 1 < p < ∞ and let q be such that 1
p + 1

q = 1. For any d

max{dT
ξ | ||ξ ||p ≤ k}= k||d||q.

Proof. The proof in the general case is simple but tedious: we omit it. We just illus-
trate the case of the 2-norm. (See Figure 3.1.) �

d

d/||d|| The maximum is achieved at ξ ∗ = d/||d||
and takes the value

dT
ξ
∗ = dT d

||d||
= ||d||.

Fig. 3.1 Maximum of a linear form over a ball in the 2-norm.

Hölder's inequality

https://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality
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3.4.1 Robust equivalent: the case of the 2-norm

We can now state the robust equivalent of the robust constraint.

Theorem 1. The robust equivalent of the constraint

āT x+(PT x)T
ξ ≤ b, for all ξ ∈ Ξ = {ξ | ||ξ ||2 ≤ k},

is
āT x+ k||PT x||2 ≤ b.

Proof. The proof follows directly from the above lemma. It suffices to replace d by
PT x. �

The factor k plays a crucial role in Theorem 1. The larger its value, the greater
the number of realizations ξ against which a solution of āT x + k||PT x||2 ≤ b is
immunized in the constraint āT x +(PT x)T ξ ≤ b with uncertain coefficients . In the
sequel we shall use the terminology immunization factor k, or immunization level k.

At this stage we should raise some fundamental issues:

1. Is the nonlinear formulation of the robust equivalent a potential source of com-
plexity from a numerical point of view?

2. Should, or could, one consider alternative uncertainty sets?
3. What is the value of starting with the new concept of uncertainty set if one ends

up with the same formulation of an engineering safety factor?

We shall answer the first two questions, leaving the answer of the last question to
the final section of the chapter. Let us start with the first question. It is easy to show
that the new constraint is convex (a property of the 2-norm). Moreover, it can be
reformulated as

āT x+ kz ≤ b (9a)
PT x = u (9b)
||u||2 ≤ z. (9c)

The last constraint is conic quadratic, a feature that modern convex optimization
codes handle about as efficiently as a linear constraint.

Taking the uncertainty set as the primary concept shifts the focus on numeri-
cally tractable robust equivalent. However, people concerned with a probabilistic
approach may feel ill at ease with the apparent arbitrariness of the uncertainty set.
However, there is a powerful theorem in probability theory that assets that under a
very mild probabilistic assumption on the random factor ξ , one can provide a sur-
prisingly strong lower bound on the probability that the initial uncertain constraint
be satisfied by a robust solution (i.e., a solution to the robust equivalent).

The answer to the second question motivates the next section.
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3.4.2 Robust equivalent: the case of the `1 and `∞ norms

For some reasons, e.g., a lack of access to a conic quadratic solver, one may want
to remain in the realm of linear programming. This can be achieved by resorting to
polyhedral uncertainty sets. To link the results with the previous study with ellip-
soidal uncertainty sets, we resort to an approximation of the unit ball in the 2-norm
by the intersection of balls in the 1-norm and the infinity norm.

The `1 and `∞ norms are natural extensions of the p-norm with p = 1 and p = ∞.
It generates the balls

B1(0,k) = {ξ |
m

∑
i=1
|ξi| ≤ k}

and
B∞(0,k) = {ξ | max

i=1,...,m
|ξi| ≤ k}.

Both are polyhedral sets that can be represented by simple inequalities. The next
lemma extends Lemma 1 to the two limit cases p = ∞ and p = 1.

Lemma 2. We have
max{dT

ξ | ||ξ ||∞ ≤ k}= k||d||1
and

max{dT
ξ | ||ξ ||1 ≤ k}= k||d||∞.

The B1(0,k
√

m) and B∞(0,k) balls can be jointly used to approximate the B2(0,k)
ball in the m-dimensional space as it is illustrated in Figure 3.2. We can now give

Fig. 3.2 The set B1(0,
√

2)∩B∞(0,1)

the robust equivalent relative to the uncertainty set Ξ = B1(0,k1)∩B∞(0,k∞).

Lemma 3. We have

max
ξ

{dT
ξ | ξ ∈ B1(0,k1)∩B∞(0,k∞)}= min

w
{k1||d−w||∞ + k∞||w||1}.
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Proof. Let
z∗ = max

ξ

{dT
ξ | ξ ∈ B1(0,k1)∩B∞(0,k∞)}.

Let us replace B∞(0,k∞) by linear inequalities in the above maximization problem.
We obtain the alternative expression

max
ξ

dT
ξ

−k∞e≤ ξ ≤ k∞e

ξ ∈ B1(0,k1),

where e is the vector of all ones of appropriate dimension. We form the partial
Lagrangian

L(ξ ,u,v) = dT
ξ +uT (ξ + k∞e)+ vT (−ξ + k∞e) = k∞eT (u+ v)+(d +u− v)T

ξ .

Clearly
z∗ = max

ξ∈B1(0,k1)
min

u≥0,v≥0
L(ξ ,u,v)

and by linear programming duality

z∗ = min
u≥0,v≥0

max
ξ∈B1(0,k1)

L(ξ ,u,v).

The inner minimization problem is

L (u,v) = max
ξ

{k∞eT (u+ v)+(d +u− v)T
ξ | ξ ∈ B1(0,k1)}

By Lemma 2 we have

L (u,v) = k∞eT (u+ v)+ k1||d +u− v||∞.

One easily checks that an optimal solution of the minimization minu≥0,v≥0 L (u,v)
satisfies the complementary condition uivi = 0 for i = 1, . . . ,m. Hence u and v can
be viewed as the positive and negative parts of a real vector w = u− v. Therefore
eT (u+ v) = ||w||1 and one can write

z∗ = min
w
{k1||d−w||∞ + k∞||w||1}.

�

We can now state the robust equivalent for the new polyhedral uncertainty set.

Theorem 2. The robust equivalent of the robust constraint

āT x+(PT x)T
ξ ≤ b, for all ξ ∈ Ξ = {ξ | B1(0,k1)∩B∞(0,k∞)},

is the constraint in x and w
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āT x+ k1||PT x−w||∞ + k∞||w||1 ≤ b.

Proof. Using Lemma 3, we may write the robust equivalent as āT x + z∗ ≤ b. Since
for any w one has z∗ ≤ k1||PT x−w||∞ + k∞||w||1, we have that the new inequality
implies the robust inequality. By the strong linear duality theorem, the equivalence is
achieved because there always exists a w∗ such that z∗= k1||PT x−w∗||∞ +k∞||w∗||1.

�

Remark 1. The ball B1(0,k1) in Theorem 2 can be replaced by a ball Bp(0,kp) in
the norm `p, for any 1 < p < ∞. One obtains the following robust equivalent

āT x+ kp||PT x−w||q + k∞||w||1 ≤ b

with q such that 1/p+1/q = 1.

For implementation purposes, it is convenient to replace the norm expressions
into linear inequalities.

Proposition 1. The robust counterpart

āT x+ k1||PT x−w||∞ + k∞||w||1 ≤ b

has the same set of solutions as the system of linear inequalities

āT x+ k1t + k∞eT w ≤ b (10a)
w+ te ≥ PT x (10b)
w+ te ≥ −PT x (10c)

w≥ 0, t ≥ 0.

Proof. Let t be a scalar variable and write the minimization problem yielding z∗ =
minw k1||PT x−w||∞ + k∞||w||1 as the linear program

min k1t + k∞eT (u+ v)≤ b

−te≤ PT x+u− v≤ te

u≥ 0, v≥ 0, t ≥ 0.

This program can be simplified as follows. Consider first the case (PT x)i > 0. The
minimization operation entails ui = 0, and vi = max{(PT x)i− t,0}. A similar rea-
soning yields vi = 0 and ui = max{(−PT x)i− t,0}, when (PT x)i ≤ 0. Define w≥ 0
by wi = vi if (PT x)i > 0 and wi = ui if (PT x)i ≤ 0. By construction, w is such that
w+ te≥ PT x and w+ te≥−PT x.

Conversely, a solution (w, t) to (3.10) generates a solution (u,v, t) of the initial
system. Indeed, set ui = 0 and vi = wi if (PT x)i > 0 and ui = wi and vi = 0 if
(PT x)i ≤ 0. We have thus that the minimization problem is equivalent to

min k1t + k∞eT w

w+ te≥ PT x

w+ te≥−PT x

w≥ 0, t ≥ 0.
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This concludes the proof. �

3.4.3 Robust equivalent: bounded polyhedral uncertainty set

The balls in `1 and `∞ are special cases of polyhedra. We extend the construction of
the robust counterpart to the case of uncertainty sets defined by a bounded nonempty
polyhedral set defined by {ξ | Qξ ≤ t}. In that case the robustness test for the con-
straint (ā+Pξ )T x≤ b, ∀ξ ∈ Ξ is given by

max
ξ

{(PT x)T
ξ | Qξ ≤ t} ≤ −āT x+b.

Proposition 2. The condition

max
ξ

{(PT x)T
ξ | Qξ ≤ t} ≤ −āT x+b

is satisfied if and only if there exists a solution (x,u) for the linear system

āT x+ tT u ≤ b

PT x−QT u = 0
u ≥ 0.

Proof. In the proof, x is a fixed parameter. A direct derivation is obtained using
the theory of duality in linear programming. To define the worst case in the robust
constraint, we consider the linear programming problem

max
ξ

{(PT x)T
ξ | Qξ ≤ t}.

This problem is feasible and bounded. It has an optimal solution and its dual

min
u
{tT u | QT u−PT x = 0, u≥ 0}

also has an optimal value, which is equal to the optimal primal value. For all feasible
primal-dual pair (ξ ,u) we have the implication

Qξ ≤ t
QT u−PT x = 0, u≥ 0

}
⇒ (PT x)T

ξ ≤ tT u,

with equality if and only if the pair (ξ ,u) is optimal. If we substitute the bounding
value tT u to the maximization in the left-hand side of

āT x+max
ξ

{(PT x)T
ξ | Qξ ≤ t} ≤ b,
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we obtain a stronger inequality, which coincides with the initial one when u is dual
optimal. Consequently, the system

āT x+ tT u ≤ b

PT x−QT u = 0
u ≥ 0,

which contains the feasibility constraints of the dual is equivalent to the initial robust
constraint. �

3.4.4 Uncertainties in the objective function

Let us consider the following linear problem with uncertainty data

min
x

n

∑
j=1

c j(ξ )x j

Ax≤ b.

There is a big difference difference between the objective and the constraints. In
the latter, the values achieved by the left-hand side are irrelevant, insofar as they
are less than the right-hand side. In particular, the average value is not relevant.
In contrast, the average value of the objective function value is by all means an
important factor to be considered. Let us assume that the uncertain factor has a
symmetric distribution around 0 and that c(ξ ) is linear. The average value of the
objective is thus ∑

n
j=1 c j(0)x j and one can simply minimize it. But in so doing,

one completely ignore possible bad outcomes with high values for the objective
function.

A possible alternative is to focus on the worst case and consider the problem

min
x,z

z (11a)

n

∑
j=1

c j(ξ )x j− z≤ 0, ∀ξ ∈ Ξ (11b)

Ax≤ b. (11c)

The z value in (3.11) is an upper bound for the objective function for all possible
realizations in the uncertainty set. Minimizing this worst case performance is an
acceptable decision criterion, but one may argue that shifting from one problem to
the other amounts to pass from one extreme (no concern for the risk) to another (no
concern for the average performance).

At minimal computational cost, one may consider a bi-criteria problem involving
the two objectives. The Pareto frontier is obtained by solving the parametric problem
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min
x

n

∑
j=1

c j(0)x∗j

n

∑
j=1

c j(ξ )x j ≤ z∗+ γ, ∀ξ ∈ Ξ

Ax≤ b.

In that formulation γ > 0 determines an arbitrage between the average performance
and the guaranteed worst case performance.

3.4.5 Two-sided inequality constraints

In the robust optimization paradigm, the constraints are immunized separately with
respect to their specific uncertainty sets. In the case of the two-sided constraint

b≤
n

∑
j=1

ã jx j ≤ b̄

the robust formulation involves the two constraints

b≤ āT x+(PT x)T
ξ , ∀ξ ∈ Ξ

and
āT x+(PT x)T

ξ ≤ b̄, ∀ξ ∈ Ξ .

Assume the polyhedral uncertainty set Ξ = {ξ | B1(0,k1)∩B∞(0,k∞)}. In view of
Theorem 2, the two robust constraints generate their own robust counterpart

b≤ āT x− k1||PT x− v||∞− k∞||v||1 (3.12)

āT x+ k1||PT x−w||∞ + k∞||w||1 ≤ b̄. (3.13)

In view of Proposition 1, those two inequalities boil down into independent sets
of inequalities. The point of this section is that the two sets of extra inequalities
don’t need to be independent. Actually the same set is valid for both, thus saving
significantly on the problem size.

To see this, it suffices to notice that one need not to choose different vectors v and
w in the robust counterparts (3.12) and (3.13). Indeed, for a fixed x, the constraints
are equivalent to

k1||PT x− v||∞ + k∞||v||1 ≤ aT x−b

k1||PT x−w||∞ + k∞||w||1 ≤ b̄−aT x.

To check satisfiability of these constraints, it suffices to replace v and w by the
value that minimizes the left-hand sides. This can be conveniently formalized into a
theorem similar to Proposition 1.
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Proposition 3. The robust counterpart of the robust two-sided constraint

b≤ āT x+(PT x)T
ξ ≤ b̄, for all ξ ∈ Ξ = {ξ | B1(0,k1)∩B∞(0,k∞)},

is
k1||PT x−w||∞ + k∞||w||1 ≤min{aT x−b, b̄−aT x}.

It can be represented by the system of linear inequalities

k1t + k∞eT w ≤ aT x−b (14a)
k1t + k∞eT w ≤ b̄−aT x (14b)

w+ te ≥ PT x (14c)
w+ te ≥ −PT x (14d)
w≥ 0, t ≥ 0.

The practical importance of this theorem is that the robust counterpart of a two-sided
inequality is a set of inequalities with only one more inequality than in the case of a
simple one-sided inequality.

A similar treatment applies to a two-sided inequality with ellipsoidal uncertainty.
We then would get the robust counterpart

k||PT x||2 ≤min{aT x−b, b̄−aT x}.

3.4.6 Equality constraints

The meaning of an equality constraint with uncertain coefficients is questionable.
Using our standard representation of the uncertain parameters, we can formulate the
robust equality constraint ã(ξ )T x = b, with ã(ξ ) = ā + Pξ and ξ ∈ Ξ . The uncer-
tainty sets that have been considered so far have a non-empty interior and 0 ∈ Ξ .
Consequently ãT x = āT x +(PT x)T ξ = b for all ξ ∈ Ξ if and only if (PT x)T ξ ≡ 0
for all ξ ∈ Ξ . This implies PT x = 0. In other words, the vector x should lie in the
null space of PT . This is conveniently summarized in a proposition.

Proposition 4. Suppose the uncertainty set Ξ has a non-empty interior. The robust
equality constraint

āT x+(Pξ )T x = b, ∀ξ ∈ Ξ

is equivalent to the system of equations

āT x = b and PT x = 0.

The condition on x looks very restrictive. A possibility is that the presence of
uncertain coefficients in an equality constraint signals an error in passing from a de-
terministic version of the problem to an uncertain one. For instance, some inequality
constraints in the deterministic version are known to be necessarily tight at the op-
timum. This implicit knowledge makes it possible to write them as equalities in the
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deterministic formulation, but the true inequality formulation should be used in the
uncertainty case.

A more difficult situation occurs in multistage problems in which some decisions
are recourses that can be adjusted once the uncertainty is revealed. We shall see an
illustration of this problem in our energy environmental planning example in a later
section dealing with robust optimization in the dynamic case.

3.5 Dynamic problem with recourse

Multistage problems under uncertainty introduce a quantum of difficulties in that
the successive decisions can be made on the basis of the information revealed so
far. Those decisions will be named recourses thereafter, to emphasize the relation
with the revealed information. Recourses are functions defined on richer and richer
spaces. To cope with this extreme difficulty, it is reasonable to restrict the recourses
to functions in a limited class, a class simple enough to allow the formulation of
robust constraints, but rich enough to capture a meaningful part of the recourse
possibilities. The proposed class is the set of linear functions of the revealed values
of the uncertain factor ξ . Recourses in this class will be named Linear Decision
Rules, LDR in short. This concept has been introduced for control problem (31) and
for stochastic programming (29; 23). It is used in Robust Optimization under the
name of Affinely Adjustable Robust Counterpart (AARC) (8).

3.5.1 Linear decision rules

Consider a typical constraint in a two-stage problem:

a1(ξ1)T x1 +a2(ξ1,ξ2)T x2 ≤ b(ξ1,ξ2).

We assume that x1 and x2 are variables with dimension, respectively, n and m. The
coefficients a1 and a2 have also, respectively, dimension n and m. The dependence
of coefficients a1, a2 and b with the uncertainty underlying (ξ1,ξ2) is given by the
functions

a1(ξ1) = ā1 +P1ξ1 (15a)
a2(ξ1,ξ2) = ā2 +P21ξ1 +P22ξ2 (15b)
b(ξ1,ξ2) = b̄+bT

1 ξ1 +bT
2 ξ2. (15c)

In the last equality, b1 and b2 have same dimension than ξ1 and ξ2.
To capture the adaptive property of the recourse in stage 2, the variable x2 is

replaced by a LDR, that is by a linear (more accurately, an affine) function of ξ1,
that is:

x2(ξ1) = x̄2 +Dξ1.
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In the above expression, the components of x̄2 and D are the new decision variables
in the formulation of the problem with uncertain parameters. Note that those vari-
ables are to be determined prior to knowing the value of ξ1, but the actual value of
the recourse x2(ξ1) will be determined after the value of ξ1 has become known.

The robust equivalent of the constraint of the two-stage problem is then

(ā1 +P1ξ1)T x1 +(ā2 +P21ξ1 +P22ξ2)T (x̄2 +Dξ1)
−(b̄+b1ξ1 +b2ξ2)≤ 0, ∀(ξ1,ξ2) ∈ Ξ .

To build the robust counterpart, one must solve the optimization problem

max
(ξ1,ξ2)∈Ξ

(PT
1 x1 +PT

21x̄2 +DT ā2−b1)ξ1 +(PT
22x̄2−b2)T

ξ2 (3.16)

+(P21ξ1 +P22ξ2)T Dξ1

in which the variables x1, x̄2 and D are parameters. We notice that this problem is
quadratic with second order term

(P21ξ1 +P22ξ2)T Dξ1.

Remark 2. It is worth noticing that a LDR introduces uncertainty of its own. A con-
straint with deterministic coefficients, e.g., with P1 = P21 = 0, P22 = 0, b1 = 0 and
b2 = 0, becomes uncertain because of the term (DT ā2−b1)ξ1.

3.5.2 Problems with uncertain recourse parameters

If the coefficient a2(ξ1,ξ2) of the recourse variable is not fixed, the matrices P21
and P22 are not identically zero. Since D is not restricted to be in a certain class,
the quadratic term in the objective of (3.16) can be indefinite. The maximization
problem in (3.16) becomes non-convex and one cannot resort to duality theory to
build a simple robust counterpart, as it has be done until now. There is an exception
to this bad situation. If the uncertainty set Ξ is an ellipsoid, it can be shown that
the problem (3.16) is equivalent to a convex problem on the cone of the positive
semi-definite matrices. It becomes possible to derive a robust counterpart. We refer
the reader to (11) and (8) for more details. We just mention that there exist efficient
codes, e.g., the open source Sedumi (38), that can solve very efficiently problems
with constraints on the set of positive semi-definite matrices.

3.5.3 Problems with fixed recourse

To remain in the realm linear programming, we introduce the following assumption.

Assumption 2 The a2(ξ ) vector associated to the recourse is fixed (a2(ξ )≡ a2).
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Proposition 5. Assume the dynamic problem has fixed recourse. The robust coun-
terpart of a dynamic constraint with LDR and a polyhedral uncertainty set is given
by a set of linear constraints.

Proof. From the fixed-recourse assumption, we have P21ξ1 + P22ξ2 ≡ 0. Since the
quadratic term of the objective disappears, we can apply Proposition 2 and express
the robust counterpart as a set of linear constraints. �

The fixed-recourse assumption confines the uncertainty to the first stage coeffi-
cients and to the right-hand sides. This is obviously limitative, but still relevant to
interesting applications problems, for instance in supply chain management prob-
lem (6) or on the management of a hydraulic valley with uncertainty on the water
supply (3; 2).

In some dynamic problems, we encounter constraints aT x = b, with a determin-
istic and b uncertain. We shall get an example of it in our case problem. There, aT x
is a production that is achieved by combining factors in proportion given by x and
b is a demand. The only way to match an uncertain demand is to make the x vector
uncertain and have it adjusted to the random behavior of b. This is achieved by a
LDR incorporating the random factor in b. Two options are open. The first one is
to keep working with the equality constraint and achieve global robustness as de-
scribed in subsection 3.4.6. This approach has been followed in (35). An alternative
consists in relaxing the equality into the inequality aT x ≥ b, guaranteeing that the
demand will be satisfied at the possible cost of disposal if the production exceeds
the demand. This approach has been followed in (6).

3.6 Case study: uncertain demand with fixed recourse

In this section, the case study deals with the model with uncertain demand and no
uncertainty in the pollutant transfer coefficients. This is a multistage problem with
fixed recourse for which the LDR methodology of the previous section is appro-
priate. To contrast Robust Optimization with more classical approaches, we have
implemented a simple Stochastic Programming version. We built a discrete distri-
bution to approximate the stochastic demand process used in the validation process.
The number of branches is such that the so-called deterministic equivalent, i.e., the
extensive formulation of the problem relatively to the event tree, has about the same
size as the robust counterpart.

3.6.1 LDR and relaxed demand constraints

We reformulate Problem (3.1) to eliminate equality constraints, either by simple
elimination (constraints (1e)) or by relaxation (constraints (1d)). We get the follow-
ing relaxed version of (3.1)
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min
x≥0,y≥0

∑
r
(Or ∑

p,t
xp,t,r + Ir ∑

p,t
yp,t,r +Mr ∑

p,t
(resp,t,r + ∑

τ≤t
yp,τ,r)) (17a)

xp,t,r ≤ resp,t,r + ∑
τ≤t

yp,τ,r ∀t ∈T , p ∈P,r ∈R (17b)

∑
t,r

xp,t,r ≥ dt ∀t ∈T (17c)

∑
ρ∈R

∑
p

(Ep,ρ xp,t,ρ)Gρ,r ≤ Q ∀t ∈T ,r ∈R (17d)

This more compact formulation has 72 variables and 51 constraints. We now define,
for all pairs (p ∈P,r ∈R), the following linear decision rules for the production
variables xp,t,r and the investment variables yp,t,r.

xp,1,r = α
0
p,1,r +α

1
p,1,rη1 (18a)

xp,2,r = α
0
p,2,r +α

1
p,2,rη1 +α

2
p,2,rη2 (18b)

xp,3,r = α
0
p,3,r +α

1
p,3,rη1 +α

2
p,3,rη2 +α

3
p,3,rη3 (18c)

yp,1,r = β
0
p,1,r (18d)

yp,2,r = β
0
p,2,r +β

1
p,2,rη1 (18e)

yp,3,r = β
0
p,3,r +β

1
p,3,rη1 +β

2
p,3,rη2. (18f)

In that definition the random variables ηi are the ones of the demand uncertainty
defined in (3.3). Thus the variables x and y are function of the demand uncertainty.
Note that the investment in t is decided before the demand at t is known, while the
production is set after, hence the difference in the decision rules.

If we replace the variables in the constraints of (3.17) by their linear decision
rules, we obtain the LDR formulation
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min
α,β ,ξ

∑
r
(Or ∑

p,t
α

0
p,t,r + Ir ∑

p,t
β

0
p,t,r +Mr ∑

p,t
(resp,t,r +(4− p)β 0

p,t,r) (19a)

α
1
p,1,rη1 +α

0
p,1,r−β

0
p,1,r ≤ resp,1,r ∀p,r (19b)

α
2
p,2,rη2 +(α1

p,2,r−β
1
p,2,r)η1 +

+α
0
p,2,r−β

0
p,1,r−β

0
p,2,r ≤ resp,2,r ∀p,r (19c)

α
3
p,3,rη3 +(α2

p,3,r−β
2
p,3,r)η2 +(α1

p,3,r−β
1
p,2,r−β

1
p,3,r)η1 +

+α
0
p,3,r−β

0
p,1,r−β

0
p,2,r−β

0
p,3,r ≤ resp,3,r ∀p,r (19d)

(∑
p,r

α
1
p,1,r− d̂1)η1 +∑

p,r
α

0
p,1,r ≥ d̄1 (19e)

(∑
p,r

α
2
p,2,r− d̂2)η2 +(∑

p,r
α

1
p,2,r− d̂1)η1 +∑

p,r
α

0
p,2,r ≥ d̄2 (19f)

(∑
p,r

α
3
p,3,r− d̂3)η3 +(∑

p,r
α

2
p,3,r− d̂2)η2 +

+(∑
p,r

α
1
p,3,r− d̂1)η1 +∑

p,r
α

0
p,3,r ≥ d̄3 (19g)

∑
i∈R

∑
p

(Ep,iα
1
p,1,r)Gi,rη1 + ∑

i∈R
∑
p

(Ep,iα
0
p,1,r)Gi,r ≤ Q ∀r (19h)

∑
i∈R

∑
p

(Ep,iα
2
p,2,r)Gi,rη2 + ∑

i∈R
∑
p

(Ep,iα
1
p,2,r)Gi,rη1 +

+ ∑
i∈R

∑
p

(Ep,iα
0
p,2,r)Gi,r ≤ Q ∀r (19i)

∑
i∈R

∑
p

(Ep,iα
3
p,3,r)Gi,rη3 + ∑

i∈R
∑
p

(Ep,iα
2
p,3,r)Gi,rη2 +

+ ∑
i∈R

∑
p

(Ep,iα
1
p,3,r)Gi,rη1 + ∑

i∈R
∑
p

(Ep,iα
0
p,3,r)Gi,r ≤ Q ∀r (19j)

α
0
p,1,r +α

1
p,1,rη1 ≥ 0 ∀p,r (19k)

α
0
p,2,r +α

1
p,2,rη1 +α

2
p,2,rη2 ≥ 0 ∀p,r (19l)

α
0
p,3,r +α

1
p,3,rη1 +α

2
p,3,rη2 +α

3
p,3,rη3 ≥ 0 ∀p,r (19m)

β
0
p,1,r ≥ 0 ∀p,r (19n)

β
0
p,2,r +β

1
p,2,rη1 ≥ 0 ∀p,r (19o)

β
0
p,3,r +β

1
p,3,rη1 +β

2
p,3,rη2 ≥ 0 ∀p,r. (19p)

In that formulation all constraints depend on the random variables ξ and must be
given a robust counterpart. For each constraint we choose the uncertainty set to be
the intersection of the B1(0,k

√
m) and B∞(0,k) balls, where m is the number of

random variables in the constraint. We also select different immunization factors k
according to the type of constraints. Namely, we use kcap for the capacity constraints
(19b)–(19d), kdem for the demand constraints (19e)–(19g) and kemi for the air qual-
ity constraints (19h)–(19j). In the experiments, we set kcap = kemi = 1 and we test
different values for kdem. The robust equivalent of (3.19) has 419 variables and 502
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constraints. It corresponds to an increase with a multiplicative factor 4 of size of the
deterministic version (3.17).

We report the results in Table 3.13.

Table 3.13 Variable demand: behavior on the sample of 1000 scenarios of a robust solution with
LDR.

Deterministic LDR with robust
kdem = 0.4 kdem = 0.6 kdem = 0.7

Objective function
Predicted cost performance 162.06 165.84 167.09 167.40
Observed cost performance 160.87 165.07 166.14 167.47

Constraints on the demand
Scenarios with demand violation(s) in % 62.0 20.4 9.9 0
Conditional average relative violation in % 2.5 0.8 0.6 -
Average number of violations per scenario 2.0 1 1 -

Constraints on the air quality
Total number of violated air quality constraints 0 53 39 82

The conclusions to be derived from Table 3.13 are twofold. If we increase the
immunization level kdem, the robust solution better and better tracks the (relaxed)
demand constraint. On the other hand, a larger immunization factor induces more
variability in the LDR and increases risks of violations in the (otherwise determinis-
tic) air quality constraints. Note also the degradation of the cost performance when
the immunization increases.

3.6.2 LDR and exact demand constraints

In the previous section, we transformed the equality demand constraint in the de-
terministic model (1d) into the inequality constraint (17c) to match the uncertainty
in the right-hand side. We now follow the approach of Section 3.4.6 and keep the
equality in the demand constraint. In view of Proposition 4, the linear decision rule
coefficients must satisfy the following conditions. Namely, we replace the demand
equations (19e)–(19g) by the following set of equations

∑
p,r

α
0
p,1,r = d̄1, ∑

p,r
α

1
p,1,r = d̂1, (20a)

∑
p,r

α
0
p,2,r = d̄2, ∑

p,r
α

1
p,2,r = d̂1, ∑

p,r
α

2
p,2,r = d̂2, (20b)

∑
p,r

α
0
p,3,r = d̄3, ∑

p,r
α

1
p,3,r = d̂1, ∑

p,r
α

2
p,3,r = d̂2, ∑

p,r
α

3
p,3,r = d̂3. (20c)

These conditions ensure that the demand constraints will be globally satisfied for all
possible demands in the 3-dimensional space (R3). The model has now 412 variables
and 487 constraints.
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In the numerical example, we keep replacing the other constraints (the capac-
ity constraints (19b)–(19d), the air quality constraints (19h)–(19j) and the non-
negativity constraints on the production and capacities) with their equivalent ro-
bust counterpart. To make the results comparable, we set kcap = kemi = 1 as before.
The last set of constraints deals with non-negativity. To enforce those constraints
with maximum chances we use an immunization level k equal to 1. The results are
displayed in Table 3.14. Surprisingly enough, the results are very much alike the

Table 3.14 Variable demand: behavior on the sample of 1000 scenarios of a globally robust solu-
tion with respect to the demand constraint.

Predicted cost performance 167.40
Observed cost performance 167.47
Scenarios with demand violation(s) in % 0

Total number of violated air quality constraints 82

relaxed case with kdem = 0.7 in Table 3.13. This reflect the fact that it is relatively
easy to track the demand by simple adjustment in the current period.

3.6.3 Stochastic programming

To apply stochastic programming, we model the demand process by a finite event
tree. To end up with a problem with a size comparable to (3.19), we use a tree with 3
branches at each node and thus 27 scenarios in total. We assume that the probability
factors η1, η2 and η3 are i.i.d. with a uniform distribution. The best approximation
of the uniform distribution by a finite distribution with 3 elements consists in par-
titioning the range space [−1,1] into 3 elements and choose the mid-point value of
each subinterval to be the representative of the subinterval. The probability for each
representative is 1

3 . The tree is represented in Figure 3.3.
If we start from the compact problem (3.17), the stochastic formulation has 624

variables and 663 constraints (419 variables and 502 constraints for the LDR for-
mulation).

Table 3.15 Variable demand: behavior on the sample of 1000 scenarios of a stochastic program-
ming solution built on an approximating event tree with 3 branches per node.

Deterministic Stochastic

Predicted cost performance 162.06 165.18
Observed cost performance 160.87 164.80
Scenarios with demand violation(s) in % 62.0 50.4
Conditional average relative violation in % 2.5 1.0
Average number of violations per scenario 2.0 1.4
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t1 t2 t3
yt1r xt1r yt2r xt12r yt3r xt3r

d1 = 9.66

d1 = 10.00

d1 = 10.33

d2 = 11.26

11.66

12.06

11.60

12.00

12.40

11.93

12.33

12.73

d3 = 12.80
13.27

13.74

13.20
13.67

14.14

13.60
14.07

14.54

13.13
13.60

14.07

13.53
14.00

14.47

13.93
14.40

14.87

13.46
13.93

14.39

13.86
14.33

14.79

14.26
14.73

15.19

Fig. 3.3 Scenario decision tree

Table 3.15 suggests that the model cannot really cope with the uncertainty in the
demand constraints. Indeed, production is determined relatively to the representa-
tive demand at the node. In the simulations, the demand is never equal to the value
assigned to the node. With the symmetric distribution it lies above this value in
50% of the cases. However, we observe that the stochastic programming solution
improves upon the deterministic solution, and contrary to the robust solution with
LDR, it never induces air quality constraints. This is so because productions at each
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node are chosen to meet those constraints. In the simulations, the productions are ei-
ther kept unchanged or lowered to match lower demand; so, no air quality constraint
violation is to be expected.

It would be preposterous to derive definitive conclusions from this short example,
but we can stress few facts. Stochastic Programming is at pain to meet constraints,
while Robust Optimization controls violations pretty well. Stochastic programming
treats constraints at privileged points: the nodes on the event tree, but Robust Opti-
mization deals with the continuum of events in the event tree. To improve the control
on the constraint in Robust Optimization, it suffices to increase the immunization
level. A similar objective of better constraint satisfaction with Stochastic Program-
ming calls for a larger event tree to better approximate the stochastic process, an
approach that quickly leads to an numerically intractable optimization problem.

On the other side, Stochastic Programming delivers a richer output, provided
one has reliable and tractable information on the probability distribution. This takes
the form of the objective performance on each branch on the event tree, that gives
an interesting approximation of the probability distribution of the optimal function
value. It is even possible to add constraints, such as CVaR (conditional value at risk),
to take into account the amount of risk.

3.7 Case study: uncertainty in demands and pollutant transfers

We consider now the more involved case where both the demands and the pollutant
transfer coefficients are uncertain. As it has been pointed out earlier, LDR intro-
duce an uncertainty of their own in the constraints in which they appear. If some of
these constraints have themselves uncertain coefficients, the product of an uncertain
coefficient with the uncertain decision variable (defined by the LDR) generates a
bilinear form in the uncertainty. One cannot anymore use duality as in Section 3.4
to exhibit the robust counterpart.

To cope with this difficulty, we propose two empirical approaches, one that fully
remains in the realm of Robust Optimization and a hybrid one that mixes Robust
Optimization and Stochastic Programming.

3.7.1 A fully robust optimization approach

In the fully robust optimization approach, we eliminate the LDR in the air quality
constraints by the following gimmick. We introduce an artificial variable to bound
the value produced by the LDR. In our problem of interest the artificial variable
represents a deterministic upper bound on the productions prescribed by the LDR.
In view of the nature of air quality constraints with nonnegative coefficients only,
higher productions entail higher emissions and, after pollutant transmission, deteri-
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orate the local air quality. Therefore, it makes sense to replace the LDR value by an
upper bound to comply with the worst case requirement.

This idea is implemented as follows. The air quality constraints (19h)–(19j) in
the LDR formulation (3.19) are replaced by

∑
i∈R

∑
p

(Ep,ixp,t,r)Gi,r ≤ Q ∀r, t (21a)

α
0
p,1,r +α

1
p,1,rη1 ≤ xp,1,r ∀p,r (21b)

α
0
p,2,r +α

1
p,2,rη1 +α

2
p,2,rη2 ≤ xp,2,r ∀p,r (21c)

α
0
p,3,r +α

1
p,3,rη1 +α

2
p,3,rη2 +α

3
p,3,rη3 ≤ xp,1,r ∀p,r. (21d)

where the matrix G is uncertain. Because the upper bound x is deterministic, we
now can deal with uncertain coefficients G in (21a) and write their robust counter-
part. Note that constraints (21b)–(21d) together with the non-negativity constraints
(19k)–(19m) form a group of two-sided constraints. We use Proposition 3 to cut
down the number of constraints and variables in the robust counterpart of those
two-sided constraints. Note that the production LDR variables are replaced by an
upper bound in the air quality constraints (21a), but not in the capacity constraints
(19b)–(19d). The formulation has 487 variables and 542 constraints

The numerical experiments aim to compare the LDR solution computed in sub-
section 3.6.1 and the solution of the fully robust optimization approach. In the latter,
we used different immunization levels kemi for the air quality constraints. In all cases
we used the same immunization level kdem = 0.7 for the demand constraints. The
results are displayed in Table 3.16.

Table 3.16 Variable demand and variable transfer coefficients: behavior on the sample of 1000
scenarios of a robust solution with LDR.

Standard LDR LDR with robust const.
kemi = 0 kemi = 0.5 kemi = 1

Objective function
Predicted cost performance 167.40 167.66 169.21 170.72
Observed cost performance 167.47 167.51 169.28 170.78

Constraints on the demand
Scenarios with demand violation(s) in % 0 0 0 0
Conditional average relative violation in % - - - -
Average number of violations per scenario - - - -

Constraints on the air quality
Total number of violated air quality constraints 829 802 150 11

The reader will notice that the new approach with an the immunization level
in the air quality constraint set to kemi = 0, yields a solution such that the number
of violated air quality constraints is slightly less (802 instead of 829) than with
the standard LDR approach, while the cost performance is slightly worse (167.66
instead of 167.40). In both cases, the model treats the air quality constraint in a
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deterministic way, but in the new approach the LDR production variable is replaced
by an upper bound in the air quality constraint. This more conservative approach
is a safer for the constraint but also more costly. However the difference almost
negligible. If we increase the immunization level kemi, the solution with the new
approach ensures better and better protection against violations of the air quality
constraints.

3.7.2 A hybrid approach: stochastic programming with robust
constraints

We now assume both the coefficients of the source-receptor matrix G and the de-
mands are uncertain. As in the previous section, the demands are defined by (3.3).
Because we cannot use LDR in a constraint with other uncertain coefficients, we
choose to represent the demand uncertainty via a finite event tree. We shall use
stochastic programming to define the decision to be taken at each node of the tree.
The new feature is that those decisions will be requested to be robust with respect
to the air quality constraints. Therefore, we shall have to introduce different robust
counterparts of those constraints at each node of the tree. As before, we use the event
tree displayed in Figure 3.3. The hybrid formulation with a demand event tree and
robust air quality constraints at the tree nodes has 819 variables and 819 constraints.
The results are displayed in Table 3.17.

Table 3.17 Variable demand and variable transfer coefficients: behavior on the sample of 1000
scenarios of a solution obtained by the mixed approach.

Deterministic Hybrid
k = 0.5 k = 1.0 k = 1.2

Objective function
Predicted cost performance 165.18 166.35 167.46 167.88
Observed cost performance 164.80 165.98 167.09 167.51

Constraints on the demand
Scenarios with demand violation(s) in % 50.4 50.4 50.4 50.4
Conditional average relative violation in % 1.0 1.0 1.0 1.0
Average number of violations per scenario 1.40 1.36 1.36 1.36

Constraints on the air quality
% of simulations with air quality violations 54.6 27.1 1.5 0
Average number of air quality violations 1.7 1.5 1.2 0

If we compare the results of the LDR solution in Table 3.14 with those of the
hybrid approach in Table 3.17, we observe that the latter can achieve much better
control of the air quality constraints (even though there was no exogenous uncer-
tainty in the first case and some in the other), while the former enables full control
of the demand constraint, something that stochastic programming cannot achieve.
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3.8 Probability of constraint satisfaction

Prior to applying the robust optimization to the example, it is worth relating robust
optimization to chance-constrained programming. This alternative approach, that
was introduced in the late fifties by Charnes and Cooper (22), replaces the deter-
ministic constraint by a constraint in probability. Namely, it considers that a solution
is admissible if the probability that the constraint be satisfied with this solution is
higher than a certain threshold. Since robust optimization is not built on probabil-
ity grounds, comparing the two approaches seems to be out of order. Surprisingly
enough, it turns out that one can assess bounds on the probability of satisfaction of
a constraint by a robust solution, at the cost of mild assumptions on the probabil-
ity distributions of the uncertain parameters. The result stems from a theorem to be
found in Chapter 3 of (5). We give here a slightly stronger version than the one to
be found in the literature.

3.8.1 Bounds on the probability of constraint satisfaction

Theorem 3. Let ξi, i = 1, . . . ,m be independent random variables with values in
interval [−1,1] and with average zero: E(ξi) = 0. If zi, i = 1, . . . ,m are deterministic
coefficients, we have for all k ≥ 0

Prob

{
ξ |

m

∑
i=1

ziξi > k

√
m

∑
i=1

z2
i

}
≤ exp(− k2

1.5
).

Remark 3. The assumption in Theorem 3 deals with the support of the random vari-
ables, their expectation and their independence. No other probabilistic assumption
is made, in particular, nothing concerning distributions.

The following two lemmas are used in the proof of Theorem 3.

Lemma 4 (Chebytchev inequality).

Prob(X ≥ a)≤ e−aE(eX ).

Proof.

E(eX ) = E(eX |X < a)Prob(X < a)+E(eX | X ≥ a)Prob(X ≥ a)
≥ E(eX |X ≥ a)Prob(X ≥ a) (because eX > 0⇒ E(eX | X < a)≥ 0)
≥ eaProb(X ≥ a).

The last inequality is from

E(eX |X ≥ a)≥ E(ea|X ≥ a) = ea.

�
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Lemma 5. The inequality e
t2
α + t ≥ et with 1≤ α ≤

√
8
3 is valid for all t ≥ 0.

Proof. The function et2/α + t − et is decreasing in α for all t > 0. To prove the

property, we consider the extreme value of α . We assume in the following α =
√

8
3 .

The derivatives of function g(t) = et2/α + t− et are

g′(t) =
2
α

tet2/α +1− et

and

g′′(t) =
2
α

(
2
α

t2 +1)et2/α − et = et
(

2
α

(
2
α

t2 +1)et2/α−t −1
)

. (3.22)

We note that g′(0) = 0 and g′′(0) = 2/α−1≥
√

3/2−1 > 0. We show first that
g′′(t) ≥ 0 for all t ≥ 0. Thus we show that the term in parenthesis in the right hand
side of (3.22) is positive. From the inequality ex ≥ 1+ x, we have

2
α

(
2
α

t2 +1)et2/α−t −1≥ h(t) =
2
α

(
2
α

t2 +1
)(

1+
t2

α
− t
)
−1.

The right component is a fourth degree polynomial that is convex because α < 4
and

h′′(t) =
12
α2

(
4
α

t2−2t +1
)

=
12
α2

(
(1− t)2 +(

4
α
−1)t2

)
> 0.

The polynomial

h′(t) =
2
α

(
8

α2 t3− 6
α

t2 +
6
α

t−1
)

=

√
3
2

(
3t3−3

√
3
2

t2 +3

√
3
2

t−1

)

is thus increasing; its value at 0 is −
√

3/2 and it tends to +∞ when t tends to +∞.
It has a unique real root in t̄ = 0.366. The function has its minimum in t̄ and thus
g′′(t)≥ h(t)≥ h(t̄) = 0.0208.

We proved that g′′(t) ≥ 0 on the interval [0,1] and thus that the function g′(t) is
increasing. Since g′(0) = 0, we conclude that g′(t)≥ 0 and thus that g(t) is increas-
ing. Finally since g(0) = 0, we have g(t)≥ 0 on 0≤ t ≤ 1. �

Proof. Now we can prove Theorem 3. This proof is derived from (5). From Lemma 4
we write

Prob(∑
i

ziζi > k||z||)≤ e−k||z||E(e∑i ziζi).

Since the variables ζi are independent, then E(e∑i ziζi) = E(∏i eziζi) = ∏i E(eziζi).
We also have
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E(eziζi) = 1+ ∑
k≥2

E(
(ziζi)k

k!
) (because E(ζi) = 0)

≤ 1+ ∑
k≥2

|zi|k

k!
(because |ziζi| ≤ |zi|)

≤ e|zi| − |zi| ≤ e
z2
i

α .

The last inequality comes from Lemma 5. Thus we can write

Prob(∑
i

ziζi > k||z||)≤ e−k||z||
∏

i
e

z2
i

α = e−k||z||+ ||z||
2

α .

As the relation

Prob(∑
i

ziζi > k||z||) = Prob(γ ∑
i

ziζi > γk||z||)

is true for all γ > 0 , then we have

Prob(∑
i

ziζi > k||z||) ≤ min
γ>0

e−γk||z||+γ2 ||z||2
α

≤ e−
α2k2

4 ≤ e−
k2
1.5 .

Remark 4. The standard result gives the bound exp(−k2/2). An experimental study
of the function exp(t2/α) + t − exp(t) shows that the maximum value of α , for
which Lemma 5 remains true, is 1.79. The bound in the proposition is tighten to
exp(−t2/1.25).

Let us apply the result when the uncertainty set is the ball B2(0,k) and the vari-
able support for ξ j is the interval [−1,1]. We consider the robust constraint

āT x+(Pξ )T x≤ 0, ∀ξ ∈ B2(0,k).

From Lemma 1

max
ξ∈Ξ

(PT x)T
ξ ≤max

ξ

{(PT x)T
ξ | ||ξ ||2 ≤ k}= k||PT x||2.

Letting z = PT x, Theorem 3 yields

Prob
{
(ā+ Pξ )T x≤ 0 | ξ ∈ Ξ

}
≥ Prob

{
(PT x)T

ξ ≤ k||PT x||2
}
≥ 1− exp(− k2

1.5
).

Note that for k = 2.63 we get the bound 0.99 on the probability.
Using Theorem 3, we can also bound the probability associated with an uncer-

tainty set defined as the intersection of two balls in the `1 and `∞ norms respectively.
This done in the next corollary.
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Corollary 1. Let ξi, i = 1, . . . ,m be independent random variables with values in
the interval [−1,1] and average zero: E(ξi) = 0. If zi, i = 1, . . . ,m are deterministic
coefficients, we have for all k ≥ 0

Prob

{
ξ |

m

∑
i=1

ziξi > k
m

∑
i=1
|zi|

}
≤ exp(− k2

1.5m
).

Proof. The proof results from the relation between the norms `1 and `2 in Rm that
implies

B2(0,k/
√

m)⊆ B1(0,k).

Replacing k by k/
√

m in Theorem 3 we get the result. �

3.8.2 Uncertainty set versus constraint satisfaction

To get a flavor of the implication of Theorem 3 and its corollary, it is worth com-
paring the volume of the certainty set Ξ = B∞(0,1) with the volumes of the balls
B1(0,k

√
m) and B2(0,k), for some k guaranteeing a large probability of satisfying

the uncertain constraint. Since the ball B1(0,k
√

m) is a rotation of the ball B∞(0,k),
it has the same volume as the ball B∞(0,k), and hence a volume larger than the ball
B∞(0,1) by a factor km (for k ≥ 1). Notwithstanding, the ball B1(0,k

√
m) intersects

the ball B∞(0,1) for k ≤
√

m. Hence the uncertainty set Ξ = B∞(0,1)∩B1(0,k
√

m)
is smaller than the certainty set B∞(0,1), but not in large proportion.

The situation with the ball B2(0,k) is dramatically different. This fact is discussed
in (5) and is summarized by the inequality

VolB2(0,k)
VolB∞(0,1)

=
(k
√

π)m

2mΓ (m/2+1)
≤
(

k
√

eπ

2m

)m

.

For k = 2.63 and m = 30 the ratio on the right hand-side is strictly less than 1
and goes super-exponentially fast to zero as the dimension of the space of uncer-
tainty factor goes to infinity. Hence in large dimension the uncertainty set may be
incommensurably smaller than the certainty set, yet a solution which is robust with
respect to this uncertainty set may achieve a very high probability of satisfying the
constraint.

At this point, it is worth wondering whether it is appropriate to rely on an in-
tuitive justification of the robust optimization based on the idea that it is necessary
to select a large uncertainty set to achieve a high probability of constraint satisfac-
tion. For sure, the probability of satisfying the constraint is at least as large as the
probability associated with the uncertainty set, but the reverse is not true. We had a
first confirmation of this fact by comparing the volume of the B2(0,k) uncertainty
set with the volume of the certainty set B∞(0,1). We now provide an example that
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shows that on some circumstances, it is possible to achieve very high probability
while the uncertainty set has very small probability, even a zero probability!

Consider the constraint

m

∑
i=1

aixi ≤ b (3.23)

with uncertain coefficients ai = āi + âiξi, where ξi ∈Ω . (Note that it is a particular
case of the model a = ā+Pξ where P is the diagonal matrix with main diagonal â.)
We define an uncertainty set Ξ ⊂Ω and work with the robust constraint

m

∑
i=1

(āi + âiξi)xi ≤ b, ∀ξ ∈ Ξ .

Suppose we can assess a probability distribution for ξ on Ω . We have the implica-
tion

∑
m
i=1(āi + âiξi)xi ≤ b, ∀ξ ∈ Ξ and Prob(ξ ∈ Ξ)≥ 1−α

⇓
Prob(∑m

i=1(āi + âiξi)xi ≤ b)≥ 1−α.

Truly enough, the reverse implication does not hold. Yet, the direct implication sug-
gests that choosing an uncertainty set with large probability might be a good strat-
egy. The following example reveals that the strategy can be overly conservative.

In this example we assume the ai are independent random variables

ai =
{

1 with probability 1/2
0 with probability 1/2.

(3.24)

This uncertain constraint is cast into a robust optimization framework as follows.
For the time being, forget about the probability distribution and write the coefficients
in the form ai = 1

2 + 1
2 ξi with −1 ≤ ξi ≤ 1. Let the uncertainty set be the ellipsoid

Ξ = {ξ | ||ξ ||2 ≤ k}. The robust counterpart of the constraint

1
2 ∑

i
xi +

1
2 ∑

i
xiξi, ∀ξ ∈ Ξ

is
1
2 ∑

i
xi +

k
2

√
∑

i
x2

i ≤ b.

Since the ξi are independent random variables with zero mean with range [−1,1],
we can apply Theorem 3 and get

Prob

{
ξ̃ |

m

∑
i=1

ziξ̃i > k

√
m

∑
i

z2
i

}
≤ exp(− k2

1.5
)
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for arbitrary zi. For k = 2 we get the bound 0.07 on the probability of constraint
violation. If we apply the theorem to the robust counterpart, we have that a solution
to

1
2 ∑

i
xi +

√
∑

i
x2

i ≤ b

has a probability 1−0.07 = 0.93 to satisfy the probabilistic constraint

m

∑
i=1

ai(ξi)xi ≤ b

for any probability distribution satisfying the (weak) hypothesis of the theorem. In
particular, this is true for (3.24).

On the other hand, the set Ξ = {ξ | ||ξ ||2 ≤ 2} does not contain any single real-
ization of the random variable ξ as soon as ξ has dimension larger than 4. In other
words Prob(ξ ∈Ξ) = 0. So, we imposed x to be robust with respect to an uncertainty
set2 having probability 0, but we still guarantee that the robust solution satisfies the
uncertain constraint with a probability at least 0.93. Clearly, Robust Optimization
does much more than the intuition suggests.

Let us pursue the discussion with this example. Consider now the same version
of the problem but with binary variables xi and b = 60. The robust counterpart (still
with k = 2)

1
2 ∑

i
xi +

√
∑

i
x2

i ≤ 60

is equivalent to a bound on the number variables that can set to the value 1. We
easily find that this number is N = 100. We now ask the question: how good is
the lower bound 0.93 on the true probability of constraint satisfaction? Without
loss of generality, we assume that the robust solution is xi = 1, i = 1, . . .100 and
zero otherwise. The left-hand side in the constraint ∑

m
i=1 aixi ≤ 60 is a binomial

random variable, with parameter 1/2. From the tables, we get that the probability of
satisfaction is 0.98. It is certainly an improvement upon 0.93, but still it is quite an
achievement to get 0.93 with a robust approach, in view of the weak assumption on
the true distribution in Theorem 3.

3.9 Extension: Globalized robust optimization

As we have seen it again and again, robust optimization deals with worst cases
with respect to uncertainty sets. Robust optimization concentrates on solutions that
remain feasible for all realizations within the uncertainty sets, but is silent about re-
alizations that lie outside. In particular it does not take into account the magnitude of

2 Note that in this example, the ellipsoidal set has either probability 0, if k is small or probability
one.
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the violation. Globalized robust optimization (4) proposes an extension that admits
possible constraint violations, but control their magnitude.

3.9.1 The concept of globalized robust optimization

A globalized robust solution must satisfy the following two criteria:

1. The solution is robust for all realizations in the uncertainty set.
2. If a realization falls outside the uncertainty set, a violation of the constraint is

tolerated, but this violation must “remain under control”.

The fuzzy concept of remaining under control must be clarified, but we already see
that a globalized robust solution is robust. The concept is then more restrictive, but
it covers all cases, inside and outside the uncertainty set. To make the definition op-
erational, one needs to be more specific about the meaning of “being under control”.
In (4) the authors suggest to consider the distance from a current realization to the
uncertainty set. If this distance is positive, i.e., if the realization is strictly exterior to
the uncertainty set, a violation is acceptable, but its magnitude should be less than a
fixed multiple of this distance. This definition applies to the realizations within the
uncertainty set, because, the distance is null, and no violation is permitted.

To formalize the idea, we first define an arbitrary distance to the uncertainty set.
As in the previous examples, we consider the constraint

(ā+Pξ )T x = āT x+(PT x)T
ξ ≤ b

to be satisfied for any ξ in the uncertainty set. We assume that Ω = Rm and that Ξ

is convex. We introduce the convex distance function d(ξ ,Ξ) between ξ and the set
Ξ . A solution is called globally robust if it satisfies

āT x+(PT x)T
ξ ≤ b+αd(ξ ,Ξ), ∀ξ ∈Ω

where α > 0 is a user parameter. This parameter is chosen in function of the tolerated
violation. In this formulation, ξ can be given any value3 in Rm.

To check whether a solution x meets the globalized robustness requirements, it
suffices to replace the uncertain terms by its maximal value

āT x+max
ξ∈Ω

{(PT x)T
ξ −αd(ξ ,Ξ)} ≤ b.

To make things more precise, let us specify that the distance function is generated
by a norm. Let δ : Rm→ R+ be this norm, and define the distance as

d(ξ ,Ξ) = min
ξ ′∈Ξ

δ (ξ −ξ
′).

3 This requirement may be excessive and unrealistic. One could think that the set is bounded,
possibly with large bounds. This possibility is shortly discussed at the end of this section.
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The maximization operation in the left-hand side of the globalized robust equivalent
constraint is a convex problem (maximizing a concave function). It can be written
as

max
ξ∈Rm
{(PT x)T

ξ −α min
ξ ′∈Ξ

δ (ξ −ξ
′)}

= max
ξ∈Rm
{(PT x)T

ξ +α max
ξ ′∈Ξ

{−δ (ξ −ξ
′)}}

= max{(PT x)T
ξ −αδ (ξ −ξ

′) | ξ ∈ Rm, ξ
′ ∈ Ξ}.

We have thus the globalized robust equivalent written as

āT x+max{(PT x)T
ξ −αδ (ξ −ξ

′) | ξ ∈ Rm, ξ
′ ∈ Ξ} ≤ b. (3.25)

3.9.2 Globalized robustness with linear programming

We shall use this expression with a choice of the norm that keeps the whole for-
mulation in the realm of linear programming. To this end, we select a polyhedral
uncertainty set and an appropriate norm that can be described by a finite number of
linear inequalities, such as those generated by the balls in the `∞ and/or `1 norms.
The distance to this uncertainty set will also be defined with respect to `∞ and/or
`1, so that everything can be translated into linear inequalities. In principle, the
combination of the `∞ and `1 norms used in defining the distance may be totally
independent of the structure of the uncertainty set, but we choose to analyze a case
where the uncertainty set and the distance function derive both from the same norm.

Consider the uncertainty set Ξ = {ξ ∈ Ω | ||ξ ||1 ≤ k1, ||ξ ||∞ ≤ k∞} defined by
the intersection of the ball with radius k∞ in the norm `∞ and the ball with radius k1
in the norm `1. (In practice we often choose k1 = k∞

√
m.) This polyhedron can be

used to defined a norm as follows. Consider the homothetic set

Ξ(t) = {ξ ∈Ω | ||ξ ||1 ≤ k1t, ||ξ ||∞ ≤ k∞t}

with t > 0. We can use this polyhedron to define the norm

δ (µ) = min
t>0
{t | µ ∈ Ξ(t)}= max{1

k 1
||µ||1,

1
k ∞

||µ||∞}.

The distance from a point ξ to the set Ξ , is now defined by the optimization problem

d(ξ ,Ξ) = min
ν
{δ (ξ −ν) | ν ∈ Ξ}.

Figure 3.4 illustrates the distance from ξ to the set Ξ with the selected norm in
the 2-dimensional space with k1 = k∞

√
2. The blue dotted curves represent the sets

of points that are at the same distance of Ξ . The point ν ∈ Ξ is one of the closest
point from ξ . (The vector ν is not unique because the distance function is not strictly
convex.) The computed distance is d(ξ ,Ξ) = δ (ν ,ξ ) = 2.53.
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Ξ

ν

ξ

d = 1

d = 2

d = 2.53

Fig. 3.4 Distance d(ξ ,Ξ) with the composite norm

Proposition 6. Let ãT x ≤ b be a constraint with uncertain elements ã = ā + Pξ .
Let Ξ = {ξ ∈Ω | ||ξ ||1 ≤ k1, ||ξ ||∞ ≤ k∞} be the uncertainty set and let d(ξ ,Ξ) =
minξ ′∈Ξ δ (ξ −ξ ′) be the distance of a point ξ to Ξ , where δ (µ) = mint>0{t | µ ∈
Ξ(t)}= max{ 1

k1
||µ||1, 1

k∞
||µ||∞} is the norm induced by the polyhedron Ξ . Finally,

let α be the coefficient of globalized robustness.
The globalized robust equivalent of the globalized robust constraint

āT x+(PT x)T
ξ ≤ b+αd(ξ ,Ξ), ∀ξ ∈Ω

is given by the two constraints

āT x+ k1||PT x−u||∞ + k∞||u||1 ≤ b (26a)
k1||PT x− v||∞ + k∞||v||1 ≤ α. (26b)

Proof. Let us study the maximization problem yielding the worst case in the defini-
tion of the robust equivalent and show it to be a linear programming problem. First,
let us introduce the auxiliary variable ζ ∈ R and write the maximization problem
yielding the globalized robust equivalent as

z∗ = max
ξ ,ξ ′,ζ

{(PT x)T
ξ −αζ | δ (ξ −ξ

′)≤ ζ , ζ ≥ 0, ξ
′ ∈ Ξ , ξ ∈Ω}.

Note that we have added the redundant constraint ζ ≥ 0. The objective maximization
ensures ζ to be as small as possible, enforcing the equality δ (ξ ′ − ξ ) = ζ . Intro-
ducing the new variable η = ξ − ξ ′ and recalling that the norm δ is the maximum
of two norms, we obtain the alternative formulation
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z∗ = max
ξ ′,η ,ζ

(PT x)T (ξ ′+η)−αζ

||η ||∞ ≤ k∞ζ , ||η ||1 ≤ k1ζ , ζ ≥ 0
||ξ ′||∞ ≤ k∞, ||ξ ′||1 ≤ k1.

For fixed ζ , the problem is separable in ξ ′ and η . By Lemma 2, we have

z∗ = max
ζ≥0

min
u,v

{
k1||PT x−u||∞ + k∞||u||1 +ζ (k1||PT x− v||∞ + k∞||v||1−α)

}
= min

u,v
max
ζ≥0

{
k1||PT x−u||∞ + k∞||u||1 +ζ (k1||PT x− v||∞ + k∞||v||1−α)

}
.

The interchange between the max and min operators is allowed by the strong duality
theorem in linear programming. The last expression can be simplified upon noticing
that the inner maximization is either unbounded if k1||PT x− v||∞ + k∞||v||1 > α , or
takes the value k1||PT x− u||∞ + k∞||u||1 if k1||PT x− v||∞ + k∞||v||1 ≤ α (because
ζ = 0 in that case). Thus

z∗ = min
u,v
{k1||PT x−u||∞ + k∞||u||1 | k1||PT x− v||∞ + k∞||v||1 ≤ α}.

As shown in Proposition 1, the above linear programming problem can be explicitly
recast in terms of a linear objective and linear inequality constraints. Moreover, if
feasible, it achieves its optimal value. This makes it possible to write the determin-
istic equivalent as

āT x+ k1||PT x−u||∞ + k∞||u||1 ≤ b

k1||PT x− v||∞ + k∞||v||1 ≤ α.

�

Remark 5. A theorem similar to Proposition 1 can be stated for the globalized robust
equivalent (3.26) with norms l1 and l∞. We leave it to the reader to perform the
simple transformations that lead to equivalent linear inequalities.

Remark 6. In the definition of the globalized robustness, we assumed that the set
Ω of all possible realizations is Rm. This makes the globalized robustness condi-
tion rather demanding. It may be worth considering that Ω ⊂ Rm is constrained by
box constraints, such as Ω = {ξ | ξ ≤ ξ ≤ ξ̄}. In that case, the globalized robust
equivalent calls for two additional nonnegative variables and the constraints

āT x+ k1||PT x−u−w+ t||∞ + k∞||u||1 + ξ̄
T w−ξ

T t ≤ b

k1||PT x− v−w+ t||∞ + k∞||v||1 ≤ α

w≥ 0, t ≥ 0.

If we set w = 0 and t = 0, we retrieve (3.26), confirming that reducing the span of
Ω enlarges the set of solutions.
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Let us add few words of comments. Because of the additional constraint (26b),
the set of globalized robust solutions is more restricted than the set of standard
robust solutions. The globalized robustness uses the violation tolerance factor α .
The smaller this parameter, the smaller must be the constraint violation. On the
contrary, if α tends to infinity, constraint (26b) becomes inactive and we retrieve the
plain robust solution.

In this presentation we used polyhedral uncertainty sets. Similar results can
be obtained with ellipsoidal uncertainty sets. An interesting application to multi-
echelon, multi-period inventory control is reported in (7).

3.9.3 Case study: Globalized robustness with uncertain demands

We now apply the concept of globalized robust optimization to the LDR formulation
described in Subsection 3.6.1. We remind the reader that in Subsection 3.6.1 only
the demands were uncertain and that the experiments were performed with different
values of kdem. Here we propose to test different values of α on the particular case
kdem = 0.4. We report the simulation results for each globalized robust solution in
Table 3.18.

Table 3.18 Variable demand: behavior on the sample of 1000 scenarios of a globalized robust
solution with LDR.

LDR solutions with kdem = 0.4
α = 0.3 α = 0.2 α = 0.1

Predicted cost performance 165.84 166.26 166.82
Observed cost performance 165.07 165.71 166.62
Scenarios with demand violation(s) in % 20.4 16.0 1.1
Conditional average relative violation in % 0.8 0.6 0.4
Average number of violations per scenario 1 1 1

Total number of violated air quality constraints 69 69 69

We notice that for α = 0.3 we retrieve the standard robust solution. Lower values
of α permit a better control of the demand violations.

The model formulation has 433 constraints and 509 variables (419 variables and
502 constraints for the standard LDR formulation).

3.10 Conclusion

The main goal of this chapter was to present an alternative approach to the dealing
with uncertainties in environmental and energy planning. To this end, we introduced
basic concepts in robust optimization and we applied them to an illustrative example.
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For the sake of the exposition, we chose an overly simplified example of modest
size with three periods only. In practice, the models that are commonly used in
the area of environmental and energy planning are much larger and much more
complex, with thousands of variables and constraints. One should expect that the
robust optimization methodology generates robust counterparts of much larger size,
possibly to the point that they become impractical. This view must be qualified,
by differentiating the type of uncertainties that are taken into consideration. The
main difficulty stems from the multi-period feature of the models with uncertainties
described as stochastic process. At this point, there is a sharp distinction to be made,
depending on whether the realizations of the stochastic process are progressively
revealed to the decision-maker, or only at once at the end of the terminal stage.
If the exact value of the process remains unknown till the horizon of the model,
the decision process is essentially static: all present and future decisions are to be
taken at once, but the eventual effect of uncertainty is revealed in a second phase
with no possibility of recourse. We treated an example of this sort in Section 3.3.
The fact that the size of robust counterpart increases linearly with the dimension of
the uncertainty factors suggests that, in this situation, even large models could be
handled by robust optimization.

The situation is much more dramatic if the uncertainty is progressively revealed
in time. Then, the decision process must be adapted to the revealed information, a
fact that introduces a major, fundamental difficulty for all known methods, except
in some special cases4. Linear decision rules for problems with fixed recourses may
provide an acceptable approximation of an adaptive behavior and yield interesting
hindsight, as those obtained in Section 3.6. We even suggested that robust opti-
mization could be used in connection with traditional approaches to handle more
complex cases. Other possibilities are to be considered. LDR is a crude approxi-
mation of the anticipation mechanism in the decision process. But is is already a
highly complex one in regard of the actual decision process in the environmental
and energy planning problems (and in many other problems!). Moreover, in an im-
plementation phase of the model solution, the optimal LDR will almost surely never
be implemented as such. Rather, at each time stage, a fresh version of the problem
will be considered to account for the new situation. This leads to view the LDR not
as a practical “open loop control”, but like a tool yielding a plausible anticipation of
future evolution and providing valuable information in the design of the first stage
decisions.

An interesting alternative, though probably a computationally costly one, would
be to work in a folding horizon framework and scenario simulations. Suppose a sce-
nario is selected, which prescribes up to the horizon the realization of the various
uncertainties. The decision-maker only knows the probabilistic way the scenario is
built, but not the scenario itself. The planning model may have a rather rich descrip-
tion of uncertainty in its first stage, in a robust optimization framework, and a cruder
description for the later stages based on a LDR. The first stage optimal solution of
this model is implemented in connection with the realization of the stochastic pro-

4 For instance, Markovian decision processes with reduced state space cardinality can be treated
very efficiently by dynamic programming
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cess in the first stage. This determines the state of the system at the beginning of the
second stage, where a problem of the same nature as before, and a shorter horizon, is
considered anew. This approach has been implemented in (2; 3; 6) and could prove
interesting in more general models.

The secondary goal of this chapter was to give a simple enough introduction to
the burgeoning field of robust optimization. We deliberately confined our presen-
tation to the linear programming context, except for a few mention of ellipsoidal
uncertainty sets. In the latter case, the robust counterparts fall in the realm of second
order cone programming (SCOP) for which highly efficient solution methods exist.
The striking fact is that in the case of ellipsoidal uncertainty sets the robust counter-
part is obtained via similar duality-based arguments. Further generalizations can be
made that take advantage of the power of conic programming with linear constraints
and self-dual cones. Most recent contributions in robust optimization are concerned
with these extensions and/or use them intensively. They are beyond the scope of
this introduction, but they cannot be ignored. The hope is that this introduction will
make it easier for the reader to get around with the growing literature.

Finally, we would like to mention that the probabilistic results in Section 3.8 have
been considerably strengthened in some recent contributions. The crude hypotheses
of Theorem 3 of random factors with zero mean and a symmetric range around the
mean can be replaced by a range on the mean and a bound of the variance. Many
other results of comparable nature are reported in (5). They give more evidences of
the strong link between chance constrained programming and robust optimization.
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