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Driving State Adaptive Control of an
Active Vehicle Suspension System

Guido Koch and Tobias Kloiber

Abstract— A new adaptive vehicle suspension control method
is presented that adjusts the controller parametrization to the
current driving state and thereby enables to significantly enhance
ride comfort while the dynamic wheel load and the suspension
deflection remain within safety critical bounds. To this end, the
adaptive controller structure dynamically interpolates between
differently tuned linear quadratic regulators governed by the
dynamic wheel load and the suspension deflection. The stability
of the adaptive controller structure is analyzed by means of
a common Lyapunov function approach taking into account
the nonlinear damper characteristic of the suspension system.
In order to provide a realistic framework for the controller
design and the performance analysis, a quarter-car test rig based
on an all-terrain vehicle suspension that has been equipped
with an electrical linear motor to realize an active suspension
system, is employed as testbed for the study. On this test rig,
the significant performance of the adaptive control concept is
successfully validated in a comparison to benchmark suspension
controllers.

Index Terms— Active suspension systems, adaptive control,
switching control, vehicle dynamics, vehicle suspension control.

I. INTRODUCTION

SUSPENSION systems transfer the forces between the
vehicle and the road and thereby mainly determine ride

comfort and ride safety. The dynamic behavior of the suspen-
sion system significantly influences the handling capabilities of
a vehicle, i.e., improvements of the system’s performance do
not only positively influence the driver’s subjective impression
of the vehicle but can also lower the number of traffic fatalities
by facilitating the driver’s authority over the vehicle and
preventing physical fatigue of the driver.

Ride comfort and ride safety are governed by the vertical
dynamic behavior of the vehicle. If the motions of the four
wheels are assumed to be decoupled and the suspension
dynamics are only considered in the frequency range of
interest for the vertical vehicle dynamics (0–25 Hz), the well-
known quarter-car model represents an appropriate modeling
framework [1]. It describes the dynamic behavior of the
unsprung mass mw (representing the mass of a tire, the wheel,
the brake, the wheel carrier, and parts of the suspension
system) and the sprung mass mc (mainly determined by a
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Fig. 1. (a) Passive, (b) semi-active, and (c) fully active suspension system.

quarter of the chassis mass, including passengers and vehicle
payload), which are connected by the suspension system.
Moreover, a quarter-car model includes a tire model, which
is frequently represented by a parallel spring and damper
configuration.

Conventional, passive suspension systems include spring
and damper elements to isolate the chassis of the vehicle from
road-induced vibrations and to prevent the tire from losing
ground contact. Mechatronic suspension systems incorporate
controlled actuators and thus are able to enhance the perfor-
mance of the suspension system by modulating the suspension
forces [1], [2]. Semi-active suspension systems feature variable
dampers, i.e., their damper characteristic can be adjusted
within a given range. Due to their low energy consumption,
they are available in a wide range of production vehicles [3].
However, the resulting damper forces are restricted by pas-
sivity constraints, i.e., they can only counteract the relative
motion of the damper. Active suspension systems in contrast
require a power supply and are able to generate forces inde-
pendent of the relative suspension motion. In the case of fully
active suspension systems, the actuator bandwidth is higher
than 20 Hz. However, due to their energy requirements as
well as weight and packaging aspects, fully active suspension
systems have not been integrated in production vehicles yet.
Fig. 1 depicts the corresponding quarter-car models of the
three suspension configurations.

In the following, the equations of motion are derived for the
fully active system, including a passive damper, since the other
two suspension models result from this model if the control
force vanishes, i.e., F(t) = 0 (passive system), and the damp-
ing is adjustable, i.e., dc = dc(t) (semi-active system). For the
introductory remarks in this Section, linear component charac-
teristics of the spring and damper elements are assumed. Let

x = [
x1 x2 x3 x4

]T = [
xc − xw ẋc xw − xg ẋw

]T (1)

be the state-vector and u = F(t) and ud = ẋg be the control
input and the disturbance input of the model, respectively.
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The output vector

y = [
ẍc Fdyn xc − xw

]T (2)

includes the variables of interest for the suspension
performance, in particular Fdyn = cw(xg −xw)+dw

(
ẋg − ẋw

)

denoting the dynamic wheel load. The quarter-car model can
then be expressed as the linear state-space model
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In the framework of vertical vehicle dynamics, ride comfort
is primarily associated with low vertical chassis accelerations
ẍc(t). However, the human sensitivity for vertical vibrations
is especially distinctive in the frequency range 4–8 Hz [4].
Therefore, to assess ride comfort in this paper, the vertical
chassis acceleration ẍc(t) is weighted using the shaping filter
G f,comf(s) that emphasizes the comfort relevant frequency
range [Fig. 2(b)]. To assure ride safety, the dynamic wheel
load must be bounded so that longitudinal and lateral forces
can be transferred by the tire between the vehicle and the
road. However, the objectives ride comfort and ride safety for a
suspension system are conflicting. On the one hand, a comfort-
oriented suspension should have a low damping of the chassis
mass to provide sufficient isolation especially in the frequency
range from 4–8 Hz. On the other hand, the resonance peaks of
the chassis (sprung mass) and the wheels (unsprung masses)
must be limited by sufficiently high damping in order to pro-
vide safe driveability and tire road contact for the vehicle. The
resulting damping-isolation conflict is visualized in Fig. 2(a)
that shows the Bode magnitude plot of the disturbance transfer
function Gẍc ẋg (s) for different damping coefficients dc (see
also [2]). The vibration isolation properties of a suspension can
be enhanced by softer primary springs. However, packaging
requirements limit the available suspension deflection and the
resulting deflection bounds need to be taken into account in
the suspension design process.

Mechatronic suspension systems can ease the conflict
between the objectives ride comfort and ride safety compared
to passive suspension systems. Fig. 3 shows this aspect in a
conflict diagram. The Pareto front that indicates the achievable
performance of passive suspension systems can be shifted
toward better ride comfort and safety utilizing active suspen-
sion systems. However, a tradeoff between these objectives
is still persistent although the tuning parameters change from
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Fig. 2. (a) Damping isolation conflict and (b) Bode magnitude plot of the
shaping filter G f,comf (s) [4].
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Fig. 3. Conflict diagram for different vehicle suspension configurations.

the choice of passive suspension elements (cc and dc) to the
choice of the parametrization of the suspension controller.

A wide range of techniques has been presented for sus-
pension controller design. Surveys of suspension control
applications, algorithms and performance potentials are e.g.,
[2], [5], [6]. Moreover, general limitations of mechatronic
suspension concepts due to actuator placement restrictions,
structural constraints as well as bandwidth and energy limits
are discussed, e.g., in [7] and [8]. The scope of control
techniques for mechatronic suspension systems reaches from
skyhook approaches [9]–[11], controllers utilizing preview
information on the road profile ahead of the vehicle [12],
[13], optimal control [2], [14], [15], H∞-control [16], [17],
to model predictive control [18], and adaptive control to take
into account nonlinear actuator dynamics [19] or unknown or
time-varying vehicle parameters [20]–[22].
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Already in early works on suspension control (e.g., [5],
[23]–[25]) a potential approach to fully utilize the flexibility
provided by the integrated actuators has been pointed out:
to adaptively adjust controller parameters according to the
suspension deflection and/or the dynamic wheel load and to
thereby vary the suspension tuning depending on the vehicle’s
driving state. In [26], Venhovens has proposed an accord-
ing wheel load adaptive suspension controller that schedules
between a comfort focused skyhook damping constant and
a ride safety-oriented passive damping configuration. The
structure of the adaptation logic utilized in [26] serves as basis
for the logic that detects the criticality of the driving state in
this paper. In [27], a method adjusting the parametrization of
a nonlinear filter depending on the suspension deflection is
presented that schedules between different controller settings
to prevent exceeding the suspension deflection limits while
focusing on ride comfort otherwise. A similar functionality is
provided by the linear parameter varying suspension controller
presented in [28] and [29]. Lu [30] proposed an estimation
scheme for the main frequency components of the road
excitation to schedule between mixed H2/H∞ multiobjective
controllers by means of a simple fuzzy-logic-like scheme.
Moreover, approaches have been presented that consider a con-
troller adaptation with respect to tire slip [31] or properties of
the road-induced vibration itself [32], [33]. The performance
potential of fast adaptive suspension systems, that adjust their
dynamic behavior to the driving state of the vehicle or the road
profile, has been pointed out in all the previously mentioned
works. However, the stability of the adaptive system is seldom
discussed in detail, the presented simulations are based on
linear suspension models and an experimental validation is
not conducted.

This paper presents a control approach to exploit the capa-
bility of a mechatronic suspension system by dynamically
adjusting the controller parameters with respect to the current
driving situation. To this end, an adaptive controller structure
is designed, which schedules the controller parametrization
according to the current driving state specified in terms of
the dynamic wheel load and the suspension deflection. The
resulting fast adaptive suspension thus maximizes ride comfort
as long as constraints on the dynamic wheel load and the
suspension do not tend to be violated. To focus on the
improvement resulting from the control concept instead of
analyzing limitations from actuator constraints, a fully active
suspension configuration is chosen as hardware architecture
for this paper.1 The presented controller design method rep-
resents an enhancement of a previous concept of the authors
[34] that has been tested in simulations with linear models.
Main new approaches addressed in this paper are aspects to
be taken into account in the controller design to guarantee
stability of the system as well as the experimental performance
validation in a realistic framework. For the optimization-based
tuning of the linear quadratic regulators (LQRs), a detailed
nonlinear quarter vehicle model is utilized. To evaluate the
controller performance, the proposed concept is compared

1It is noted that the presented techniques can also be applied to slow active
or semi-active mechatronic suspension systems.

(a) (b)

(c) (d)

Fig. 4. (a) Experimental vehicle, (b) left front suspension, (c) test rig
structure, and (d) test rig.

to established skyhook-based control strategies as well as a
conventional linear quadratic optimal controller. For a more
detailed presentation of the results, the reader is referred
to [35].

The remainder of this paper is structured as follows. In
Section II, the quarter-car test rig employed for the exper-
imental validation is presented and the requirements for
the mechatronic suspension system are formulated in detail.
Realistic models of the considered suspension system and
the actuator are derived in Section III. Stability aspects, the
optimization-based controller parametrization, and an analysis
of its performance potential are presented in Section IV.
The experimental validation of the controller performance is
discussed in a comparison to benchmark systems in Section V.

II. QUARTER-CAR TEST RIG AND

SYSTEM REQUIREMENTS

A. Quarter-Car Test Rig

The test rig is based on an all terrain vehicle (ATV)
[Fig. 4(a)] suspension system since this vehicle has a sus-
pension configuration similar to an automobile but it has
a considerably lower mass, which simplifies the design of
the active suspension system. The left front suspension has
been integrated in the test rig structure [Fig. 4(c)] and a
force controlled custom-made, ironless, permanently excited
synchronous electrical linear motor has been mounted between
a vertically guided plate representing the chassis mass and the
wheel. A second electrical linear motor is utilized to emulate
the road-induced vibrations by exciting the tire vertically. The
sensor architecture employed in the active suspension system
represents a configuration of modern production vehicles and
contains accelerometers for the vertical chassis and wheel
acceleration as well as a wire rope actuated position transducer
(WRAPT) for the suspension deflection. The current of the
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suspension actuator, which is proportional to the actuator
force, is also measured. Only these sensors are used for
the suspension control and estimation tasks presented in this
paper. Additionally, the test rig is equipped with a force
sensor to measure the dynamic wheel load for the performance
evaluation. A real time controller board operating with a
sampling frequency of fs = 1 kHz is used for the controller
implementation. More technical details on the test rig are given
in [35] and [36].

B. Road Disturbance Input

In general, public roads induce stochastic vibrations to a
passing vehicle (see [1] and [2] for more detailed discussions
on the properties of road-induced vibrations). In order to pro-
vide a realistic framework regarding the excitation signals in
this paper, measurements of real road profiles are used for the
simulations and for the conducted experiments. The considered
road profiles have been recorded by a measurement vehicle
equipped with laser scanners on two German country roads.
Profile P1 causes large suspension deflections and profile P2
contains primarily high frequency components. Besides sto-
chastic signals also singular disturbance events, such as bumps
have a major influence on the ride safety of the vehicle as well
as the perception of the driver concerning ride comfort. A
simple model of the vertical road displacement xg(t) resulting
from a singular disturbance event is given in [1] as

xg(t) =
{

h
(

1 − cos
(

2πvb
L t

))
, for 0,≤ t ≤ L

vb

0, else
(5)

where h represents half the bump height ĥ, L is the bump
length, and vb is the velocity of the passing vehicle.

C. System Requirements

The system requirements can be summarized as follows.
1) The root mean square (rms) value of the vertical chassis

acceleration ‖ẍc‖rms should be minimized to increase
ride comfort, especially in the frequency range 4–8 Hz as
pointed out in Section I. Thus, ‖ẍc,comf‖rms is considered
as a measure for ride comfort, which is calculated from
ẍc(t) after filtering the signal with the shaping filter

G f,comf(s)= 6.9 · 104s2(s+6.9)

(s+0.8)2(s+12.6)(s+94.3)(s+628.3)
.

(6)
This transfer function [see also Fig. 2(b)] is an approx-
imation of the frequency characteristic for the human
sensitivity to vertical mechanical vibration given in [37].
Furthermore, max(|ẍc(t)|) is also evaluated to consider
peaks in the chassis acceleration signal, which can be
especially distinct for singular disturbance events.

2) An important preliminary for ride safety is to ensure
contact between the tire and the road. Thus, the transfer
of longitudinal and lateral forces is enabled, so that the
driver can control the vehicle by steering, throttle, and
brake inputs. Therefore, the dynamic wheel load’s rms-
value should be bounded by

max
(‖Fdyn‖rms

) ≤ (mc + mw)g

3
= Fstat

3
(7)

where g denotes the gravitational constant and Fstat is
the static wheel load. This is derived from the 3σ -rule
and assures—assuming a normally distributed dynamic
wheel load caused by the stochastic disturbance signal—
that Fdyn remains within ±Fstat for 99.7% of the time2

[1]. In the considered test rig application, the static
wheel load is Fstat = 1160.5 N.

3) The suspension deflection xcw = xc − xw at the test
rig is limited to ±0.05 m. Due to the dynamic change
of the suspension’s equilibrium position caused by the
asymmetric damping characteristic when the suspension
is subject to road-induced vibrations, the standard devi-
ation ‖xc − xw‖std is considered for the analysis of the
suspension deflection instead of its rms-value.

4) The displacement �xact of the suspension actuator
is limited to ±0.05 m, its maximum rms-force is
max(‖F(t)‖rms) = 800 N and its peak force limit is
max(|F(t)|) = 4 kN.

5) Minimum power demand of the actuator is intended,
which is quantified by the rms-value of the positive
mechanical power resulting from the actuator force F(t)
and its velocity vact(t) as

‖P+‖rms =
√

1

T

∫ T

0

(
P+(τ )

)2
dτ

with

P+(t) =
{

F(t)vact(t), for F(t)vact(t) > 0

0, else.
(8)

It is noted that for a more realistic analysis of the
absolute power demand, the electrical efficiency factors
of the actuator system as well as potential recuperation
effects have to be taken into account. However, since
these factors are not exactly known for the actuator
at hand and primarily a relative comparison of power
demand between different control concepts is intended,
the described approach represents a suitable method for
the analysis.

III. MODELING

A. Suspension Component Characteristics and Nonlinearities

1) Suspension Kinematics: The kinematic relations between
the deflection of the suspension strut and the vertical move-
ments of the chassis and the wheel are described as proposed
in [38] by using a transmission factor i = �ẋel/ẋc − ẋw with
�ẋel being the relative velocity of the suspension strut in the
direction of the element’s center line. The factor transforms the
forces and kinematic relations at the elements (axial damper
force F̄d (�ẋel), axial spring force F̄cc = c̄c�xel with c̄c being
the spring stiffness) to the corresponding quantities of the
quarter-car model (see Fig. 1). According to [38], the primary
spring stiffness results as

cc = i2c̄c + F̄cc
di

d(xc − xw)
. (9)

2Since negative dynamic wheel loads are most critical, the probability that
Fstat − Fdyn > 0 holds and tire road contact is kept increases to 99.87% due
to the symmetry of the Gaussian probability distribution.
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TABLE I

PARAMETERS OF THE NONLINEAR QUARTER-CAR MODEL

Model Parameter Symbol Value Unit

Sprung mass mc 94.38
[
kg

]

Unsprung mass mw 23.92
[
kg

]

Primary spring stiffness cc = i2 c̄c 8400 [N/m]
Linear tire stiffness cw 152186 [N/m]
Friction force spring/damper F f,1 115 [N]
Friction scaling spring/damper k f,1 125 [sec/m]
Friction force chassis mass guides F f,2 20 [N]
Friction scaling chassis mass
guides k f,2 125 [sec/m]

Transmission factor i 0.392 [−]
Tire damping coefficient dw 50 [Nsec/m]
Damping ratio sprung mass Dc 0.39 [−]
Damping ratio unsprung mass Dw 0.18 [−]
Undamped natural frequency of
the sprung mass fc 1.5 [Hz]

Undamped natural frequency of
the unsprung mass fw 12.7 [Hz]

The second term in (9) can be neglected for the con-
sidered suspension model because it has been identified to
be small (see [36]). Due to the concentric configuration of
the suspension strut, the transmission factors for the spring
and the damper are the same and the damper force in the
coordinates of the quarter-car model results accordingly as
Fd (ẋwc) = i F̄d (i ẋwc) with ẋwc = ẋw − ẋc. The parameters
are given in Table I.

2) Suspension Component Characteristics: The main non-
linearity of the suspension system is the degressive force-
velocity characteristic of the damper. The characteristic has
been supplied by the manufacturer of the damper and is
depicted in Fig. 5(a). The characteristic of the primary spring
has been identified to be linear in the operating range of the
test rig, i.e., the spring force is calculated as Fc = cc(xc −xw).
The nonlinearity resulting from the spring’s end stop is not
taken into account since the adaptive controller presented in
Section IV prevents the suspension deflection from exceeding
its limits. The tire force-deflection characteristic has been iden-
tified to be progressive [Fig. 5(b)] but can be linearized in the
operating point given by the static wheel load. The identified
tire damping is comparably small (dw = 50 Nsec/m), which
is coherent with the literature (see [1]).

3) Friction Effects: Coulomb friction forces (see [39])
in the suspension (F f,1) and in the vertical guides of the
chassis mass (F f,2) are taken into account for the modeling.
They are approximated by tanh-functions for smooth zero
crossings (see [40]) so that the resulting friction model is
F f,i = F̂ f,i tanh(�vi k f,i ) with �v1 = ẋc, �v2 = ẋc − ẋw

and the scaling factors k f,1 = k f,2. The numerical values have
been identified experimentally (see Table I and [36]).

B. Actuator Model

The input signal of the suspension actuator is a control
voltage uv (t) and the measured output signal is the actuator
current iact(t). Identification experiments have indicated that
the dynamic behavior of the actuator current can be modeled
using a first order low pass and a time delay of Td = 4 msec,
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Fig. 5. Nonlinear characteristics of the damper in coordinates of
(a) quarter-car model and (b) tire.

which is considered using a first order Padé-approximation
for the corresponding transfer function e−Td s ≈ (Tds + 1)−1

(see [41]). The resulting second-order actuator model is

ẋlm(t) =
[−320.4019 0

250 −250

]

︸ ︷︷ ︸
Alm

xlm(t) +
[

1.2131
0

]

︸ ︷︷ ︸
blm

uv (t) (10)

iact(t) = [
0 839.4076

]

︸ ︷︷ ︸
cT

lm

xlm(t) (11)

with xlm(t) being the actuator state vector. The measured
actuator current iact(t) is proportional to the actuator force
(1 A ∼ 0.1 kN). The actuator bandwidth is approx. ωact =
2π ·28.6 rad

sec , which is sufficient for the fully active suspension
system.

C. Nonlinear Suspension Model

The resulting test rig model includes the actuator dynamics
and the nonlinear quarter-car model of the suspension system.
The input signals are the vertical velocity of the road excitation
ud = ẋg(t) and the actuator control input uv (t). The resulting
suspension model has the order six and can be formulated with
the state vector

x = [
xc − xw ẋc xw − xg ẋw xlm,1 xlm,2

]T (12)

and the output vector ym = [
ẍc ẍw xc − xw

]T that gathers the
measurement signals, which can be employed for suspension
control. The nonlinear state-space model is expressed as

ẋ(t) = f(x(t), uv (t), ud (t)) (13)

ym(t) = h(x(t), uv (t), ud (t)). (14)

The performance output vector, which contains the relevant
system quantities according to the requirements formulated in
Section II-C, is defined as

y(t) = [
ẍc Fdyn xc − xw

]T (15)

and can be expressed by reformulating (14) as y(t) =
h̃(x(t), uv (t), ud (t)). The explicit model formulation is omit-
ted for the sake of brevity but is given in similar form in
[35] and [36]. The natural frequencies of the sprung and
the unsprung mass are fc = 1.5 Hz and fw = 12.7 Hz and
the damping ratio of the sprung mass is Dc ≈ 0.39. Thus,
the suspension has a similar vertical dynamic behavior to an
automotive suspension system (compare e.g., [1]).
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Fig. 6. (a) Adaptive controller structure and (b) realization of the approach at the test rig.

IV. CONTROLLER DESIGN

As pointed out in Section I, the main idea of the following
driving state adaptive suspension control approach is to focus
on ride comfort as long as the limits for the dynamic wheel
load and suspension deflection permit. Only if the driving
state tends to become critical, a more safety-oriented controller
parametrization is chosen. To this end, an adaptive controller
structure is proposed, which is shown in Fig. 6. An adaptation
logic schedules between N differently tuned state feedback
controllers kT

i depending on the dynamic wheel load and the
suspension deflection. In Section IV-C, it is derived that N = 3
represents a good tradeoff between controller performance
and complexity of the controller design and implementation.
The term σ(qi ) denotes a scheduling signal depending on the
scheduling parameters qfdyn(t) and qsusp(t), which reflect the
criticality of the vertical dynamic driving state of the vehicle
(see Section IV-A).

Since the system requirements for ride safety and ride
comfort involve rms-formulations, LQRs are chosen to be
implemented in the adaptive controller structure. They min-
imize a quadratic cost functional and have a fairly transparent
tuning procedure using weighting matrices for the performance
output signals and the control input. LQR designs are fre-
quently employed in the literature for performance potential
studies of suspension systems (see [2], [5], [25], [42]). For the
parametrization of the state feedback controllers in this paper,
an optimization-based procedure is utilized (see Section IV-C).

In order to prevent discontinuities in the control signal
caused by discontinuous switching between the controllers,
an interpolation approach that provides continuous scheduling
of the controller gains is realized. The corresponding control
law is

u(t) = −kT
adp(t)x(t) (16)

kT
adp(t) = (1 − qsusp(t))

(
(1 − qfdyn(t))kT

comf + . . .

. . . + qfdyn(t)kT
safe

)
+ qsusp(t)kT

susp

(17)

with kT
comf , kT

safe, and kT
susp being state feedback gain vectors

for the objectives ride comfort enhancement, dynamic wheel
load minimization, and suspension deflection minimization,
respectively. The design of these state feedback controllers

and an analysis of the performance potential resulting from the
scheduling approach are presented in Sections IV-C and IV-D.

For the implementation of the state feedback based con-
troller structure [see Fig. 6(b)], an estimator concept is
required since not all state variables are measured and for the
calculation of the scheduling parameter qfdyn(t) knowledge of
the dynamic wheel load Fdyn(t) is required. The employed
estimator concept involves two parallel Kalman filters to infer
estimates of the state vector of the vehicle suspension system
defined in (1) and has been presented by the authors in [43].
The estimator takes into account the nonlinear damper char-
acteristic by considering the damper force, that is calculated
from the estimated damper velocity and the known damper
characteristic, as an additional input signal for the Kalman
filters (an approach proposed in [44]). In order to establish a
good estimation performance despite the nonlinearities of the
system, the two parallel Kalman filters have been parametrized
by means of genetic optimization. Each of them supplies the
required state variables (1), that are estimated with maximum
quality, and an estimate for the dynamic wheel load F̂dyn is
also provided. In [45], it has been experimentally shown that
the estimator concept outperforms an Extended Kalman filter
for the considered suspension control application.

A. Adaptation Logic

The task of the adaptation logic is to detect the criticality of
the driving state from the measured and estimated data. To this
end, the two scheduling parameters qfdyn(t) and qsusp(t) are
determined by a method that extends an approach proposed
by Venhovens in [26].

1) Wheel Load Adaptation: The scheduling parameter
qfdyn(t) is derived from the estimate of the dynamic wheel
load F̂dyn(t) and takes into account slow variations of the
dynamic wheel load, i.e., changes of its rms-value, as well
as rapid increases. While the latter is realized by the upper
branch (fast adaptation) in the block diagram shown in Fig. 7,
the variance of the dynamic wheel load is approximated by
the slow adaptation part (lower branch).

For the fast adaptation, a nonlinear scaling function
w(F̂dyn/Fstat) [Fig. 8(a)], which is constructed from a fourth-
order polynomial and a dead zone, causes e f (t) to rise if
|F̂dyn|/Fstat ≥ �fdyn,f = 0.8 holds (see also [27] for a similar
scheduling approach). For the calculation of the fast adaptation
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signal q f (t), a low-pass filter with a time constant τ f =
1/2

√
mw/(cc + cw) ≈ 0.006 sec is employed to avoid too

rapid changes in the adaptation of the controller parameters.
The lower branch illustrated in Fig. 7 calculates the slow

adaptation signal qs(t) to take into account slow changes
of the stochastic properties of the road excitation. Following
Venhovens’ approach in [26], the variance of the estimated
dynamic wheel load is approximated by

σ 2
Fdyn

(s) ≈ 1

τss + 1
F̂2

dyn(s). (18)

The time constant of the low-pass filter τs is chosen as
τs = 1/2

√
mc/cc ≈ 0.053 sec. The ratio of the dynamic

wheel load filtered in this manner and the static wheel load is
compared to the bound �fdyn,s = 1

3 according to the 3σ -rule-
based system requirement formulated in (7). The deviation
es(t) is integrated by an output-limited integrator with an
output signal range of [0, 1] resulting in qs(t). It is noted
that output limitation in this context refers to deactivation of
the integral action when the limit is reached to prevent wind-
up. For the dynamic wheel load adaptation, the integrator gain
is gs = 1. The resulting scheduling parameter is qfdyn(t) =
min

(
1, qs(t) + q f (t)

)
. While qfdyn(t) remains close to zero,

a comfort-oriented controller can be activated [see (17)].
Accordingly, if qfdyn(t) rises, it indicates higher dynamic
wheel loads and the urgency to activate a more safety-oriented
controller parametrization. The main differences compared to
Venhovens approach in [26] for the wheel load adaptation
logic are the output-limiting of the integrator instead of the
reset approach presented in [26], smaller time constants τ f

and τs to improve the response time of the logic, and a higher
gain value for gs to ensure ride safety by the logic.

2) Suspension Deflection Adaptation: For the calculation
of the scheduling signal qsusp(t), which indicates if the

suspension deflection becomes critical, the same structure
of the adaptation logic as for the dynamic wheel load (see
Fig. 7) is employed. As in the dynamic wheel load adaptation
scheme, the slow adaptation is based on an rms-constraint
max (‖xcw‖rms) ≤ x̄cw/3 derived from the 3σ -rule (with
x̄cw = 5 cm). In the fast adaptation, the nonlinear scaling
function g(xcw/xcw) [Fig. 8(b)], that is substituted for w(u) in
Fig. 7, is also constructed from a dead zone and a fourth-order
polynomial. The time constant of the low-pass filter in the
fast adaptation is chosen as τ f,susp = 1/3

√
mw/(cc + cw) ≈

0.004 sec to be able to quickly prevent the suspension from
hitting the limits. The parameters of the slow adaptation are
chosen as τs,susp = √

mc/cc ≈ 0.110 sec and gs,susp = 1.5.

B. Preliminaries for Stability of the Switched System

In order to guarantee stability for the proposed adaptive
controller structure (Fig. 6), two main aspects have to be taken
into account, both of which are addressed in the following.

1) For the design of the LQRs, a linear suspension model
must be employed although the dynamic behavior of the
physical system is nonlinear. If the nonlinear damper
characteristic is linearized at its origin (at the equilib-
rium, the damper velocity is zero), the damper forces in
the linearized model are higher than the ones in the non-
linear system due to the degressive shape of the damper
characteristic. Consequently, applying the resulting LQR
to the original system could cause instability, which must
be prevented by altering the linear model employed for
the LQR design.

2) The state feedback controller gains of the closed-loop
system can change rapidly due to the adaptation to
the current driving state. Therefore, the stability of the
adaptive system with the scheduling control approach
(17) must be analyzed.

a) Nonlinear damper characteristic: For the following
analysis, the degressive force-velocity characteristic of the
damper is considered to be the only nonlinearity of an oth-
erwise linear quarter-car model obtained from linearizing the
tire force-deflection characteristic [see Fig. 5(b)] and omitting
the friction forces. If the state-dependent damper coefficient
dc(x) = dc(ẋwc) = Fd (ẋwc)/ẋwc with ẋwc = ẋw − ẋc is
introduced, the system can be represented in quasi-linear form
as

ẋ =

⎡

⎢
⎢
⎣

0 1 0 −1
− cc

mc
− dc(x)

mc
0 dc(x)

mc

0 0 0 1
cc

mw

dc(x)
mw

− cw
mw

− dc(x)+dw
mw

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
A(x)

x +

⎡

⎢
⎢
⎣

0
1

mc

0
− 1

mw

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
b

u. (19)

In order to obtain a linear system for the controller design
dc(x) in (19) is replaced by its minimum value dc,min on the
damper velocity interval ẋcw ∈ [−1.5 m/sec, 1.5 m/sec] (see
Fig. 9). This interval represents a conservative approximation
of realistic relative damper velocities based on the insights
from simulations and measurements (see also [46]).

It is intended to show that (19) is asymptotically stable with
a state feedback controller that has been designed to asymp-
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Fig. 9. Damper characteristic (in coordinates of the quarter-car model) and
different linear approximations.

totically stabilize the linear system with minimum damping.
This is done by means of the circle criterion.

To this end, (19) with u = −kT x must be transformed into
a feedback connection of a linear dynamical system and a
nonlinear element (the damper characteristic). This is achieved
by defining the output signal y = x4 − x2 and the nonlinearity
�(y) = Fd (y) − dc,min y. Then the closed-loop system can be
represented in the desired form

ẋ =

⎡

⎢⎢
⎢
⎣

0 1 0 −1
− cc

mc
− dc,min

mc
0 dc,min

mc

0 0 0 1
cc

mw

dc,min
mw

− cw
mw

− dc,min+dw

mw

⎤

⎥⎥
⎥
⎦

x − bkT x

︸ ︷︷ ︸
Alin(dc,min)x−bkT x=Aregx

−

⎡

⎢
⎢
⎣

0
− 1

mc

0
1

mw

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
bFd

�(y) (20)

y = [
0 −1 0 1

]

︸ ︷︷ ︸
cT

x (21)

with (Areg, bFd ) being controllable and (Areg, cT ) being
observable, respectively. From the shape of the nonlinear
damper characteristic (Fig. 9), it becomes obvious that �(y)
satisfies the sector condition

0≤ y�(y)≤ y2 (
dc,max− dc,min

) ∀ y ∈
[
−1.5

m

sec
, 1.5

m

sec

]
.

(22)

The transfer function of the linear system is given by G(s) =
cT (sI − Areg)

−1bFd , which is Hurwitz since u = −kT x
asymptotically stabilizes the linear system with minimum
damping dc,min. Hence, it follows that (20) is absolutely stable
for all nonlinearities satisfying (22) if

Re[G( jω)] > − 1

dc,max − dc,min
(23)

holds [47, Th. 10.1].
The LQRs are designed for the linear system representation

with minimum damping and the circle criterion (23) is tested
in the controller design process numerically for every con-
troller presented in Section IV-C. If (23) holds, it is concluded

that the respective closed-loop system is asymptotically stable
in the relevant operating range despite the nonlinear damper
characteristic.

b) Common quadratic Lyapunov function approach: In
the following, a common quadratic Lyapunov function (CQLF)
approach is used to establish asymptotic stability of the unper-
turbed adaptively controlled system [Fig. 6(a) with ud(t) = 0]
taking into account the nonlinear damper characteristic.

Proposition 1: Consider (19) with u = −kT
adpx, where

kT
adp is defined in (17). Assume there is a matrix

P = PT > 0 and an ε > 0 such that

PA(i) +
(

A(i)
)T

P ≤ −εI (24)

with I representing the unity matrix of appropriate dimension,
holds for all matrices

A(1) = Alin(dc,min) − bkT
comf , A(2) = Alin(dc,max) − bkT

comf

(25)

A(3) = Alin(dc,min) − bkT
safe, A(4) = Alin(dc,max) − bkT

safe

(26)

A(5) = Alin(dc,min) − bkT
susp, A(6) = Alin(dc,max) − bkT

susp

(27)

with Alin(dc,max) following from (19) accordingly. Then,
(19) is uniformly exponentially stable for arbitrary qsusp(t):
[0,∞) → [0, 1] and qfdyn(t) : [0,∞) → [0, 1] and dc,min ≤
dc ≤ dc,max.

Proof: Following the derivation of [47, Th. 10.4], for a
given trajectory x(t) the time-varying gain r(t) defined by
�(y) = r(t) (x4(t) − x2(t)) is introduced. By assumption
0 ≤ r(t) ≤ dc,max − dc,min holds irrespective of the particular
trajectory. Utilizing r(t) and the system representation (20),
the time derivative of the Lyapunov function candidate V (x) =
xT Px can be formulated as

V̇ (x, t)=xT
(

PÃ+ÃT P
)

x =: W (x, qsusp(t), r(t), qfdyn(t))

(28)

with

Ã(qsusp(t), r(t), qfdyn(t))=Alin(dc,min)−bkT
adp − bFd r(t)cT.

(29)

Due to the structure of kT
adp defined in (17),

W (x, qsusp(t), r(t), qfdyn(t)) is a multilinear function in
qsusp(t), r(t) and qfdyn(t) over the convex hypercube

H =
⎧
⎨

⎩

⎡

⎣
qsusp

r
qfdyn

⎤

⎦

∣
∣
∣
∣
∣
∣

⎡

⎣
0
0
0

⎤

⎦ ≤
⎡

⎣
qsusp

r
qfdyn

⎤

⎦ ≤
⎡

⎣
1

dc,max − dc,min
1

⎤

⎦

⎫
⎬

⎭

(30)

where the inequality is to be interpreted componentwise.
Moreover, if qsusp and r are subsumed in z = [ qsusp r ]T,
from (17) it follows that W (x, z, qfdyn) is affine in z for a
fixed qfdyn, and it is also affine in qfdyn for a fixed z. Thus,
W (x, z, qfdyn) is biaffine and hence biconvex in z and qfdyn.
Therefore, by [48, Lemma 1], it attains its maximum value
over H at one of the vertices of H . Consequently, it suffices
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to prove that W (x, z, qfdyn) ≤ −εxT x holds at the vertices
of H to ensure that W (x, z, qfdyn) ≤ −εxT x is satisfied for
all [ qsusp r qfdyn ]T ∈ H . If the latter holds, it follows that
V̇ (x, t) ≤ −εxT x is satisfied along the trajectories of the
adaptively controlled system. This proves uniform exponential
stability.

After a set of controllers kT
comf , kT

safe, kT
susp has been

determined, the YALMIP optimization toolbox (see [49]) and
the SeDuMi solver (see [50]) for MATLAB can be used to test
if a matrix P satisfying the conditions given in Proposition 1
(with ε = 1) can be calculated numerically.

It is noted that in general, the system state will not tend
to the origin for t → ∞ due to the stochastic and persistent
nature of the road-induced disturbance ẋg(t). However, since
the system is uniformly exponentially stable it is also totally
stable (see [51]) and thus stability is preserved despite small
disturbances, i.e., those caused by realistic road excitations
ẋg . For a more detailed discussion on this matter, the reader
is referred to [35].

C. Optimization-Based LQR Design

The parametrization of the LQR-based state feedback con-
trollers is done by means of numerical optimization taking
into account the stability considerations described in the
previous Section. The LQR design is conducted for the linear
model3 resulting from (19) with dc(x) = dc,min. The actuator
dynamics are not considered for the LQR-design since the
actuator bandwidth (28.6 Hz) is above the frequency range of
interest in suspension control (0–25 Hz, see [1]). However,
it is noted that the optimization-based parametrization of
the controller gains kT

i ∈ R
1×4 is accomplished utilizing

simulations of the sixth-order model, including the actuator
dynamics and all nonlinearities of the system presented in
Section III.

With the control input being the actuator force u(t) = F(t)
and the performance output y(t) as defined in (15), the
performance index for the LQR design is chosen as

JL Q R =
∫ ∞

0

(
yT Qyy + Ru2

)
dt (31)

where R is fixed4 at R = 1 and Qy = diag
([

qẍc qFdyn qxcw

])

is positive definite. Consequently, the decision variables for the
numerical optimization are the diagonal entries of Qy , which
are subsumed in the vector

η = [
qẍc qFdyn qxcw

]T
(32)

and the vectorial cost functional is chosen according to the
control objectives as

Jt (η) = [ ‖ẍc,comf‖rms ‖Fdyn‖rms
]T

. (33)

The resulting multiobjective optimization problem for the
determination of Pareto optimal controller weights can be

3It is noted that this model is controllable and observable.
4This is without loss of generality since the state feedback gain, which

minimizes the cost functional (31) with Qy and R = 1, also minimizes the
cost functional with cQy and R = c for any c > 0.
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Fig. 10. Pareto front for comfort and safety-oriented LQR parametrizations.

formulated as

min Jt (η) (34)

s.t. max
t∈[0,Tsim](|xcw(t)|) ≤ 0.05 m (35)

where Tsim denotes the simulation time. By (35), the sus-
pension deflection limits are taken into account. For the
optimization, the measured data of road profile P1 is used
(passed with the velocity v p1 = 50 km/h) because it represents
a typical broadband stochastic road profile. The optimization
problem (34) and (35) is solved by means of the multiobjective
genetic algorithm NSGA-II (see [52]). The parameter space
for η is discretized logarithmically due to the large specified
range for the decision variables, and 200 individuals and
35 generations are chosen for the optimization. A similar
optimization approach has been presented in [53] for the
design of H∞-controllers.

The resulting Pareto front has a gap over an interval of
‖Fdyn‖rms, in which no Pareto-optimal configurations exist.
Fig. 10 depicts the part of the Pareto front that is relevant for
suspension control, i.e., the part with low chassis accelerations
‖ẍc,comf‖rms. From the end-points of this part of the Pareto
front, the comfort controller kT

comf and the safety controller
kT

safe are chosen. The CQLF-based stability test, involving
the LMIs formulated in (24)–(26) shows that the individual
closed-loop systems resulting from these two controllers pos-
sess a CQLF. As can be seen in Fig. 10, the comfort gain
between the two chosen controllers is significant and for the
considered road profile the controller kT

comf does not violate
the rms-limit [see (7) with Fstat/3 ≈ 387 N] for the dynamic
wheel load.

After kT
comf , kT

safe and the matrix P of the CQLF have been
fixed, the suspension deflection controller kT

susp is designed
such that (24) is satisfied with the matrices A(5), A(6) given in
(27). To this end, the weighting term qxcw in (32) of the safety-
oriented controller kT

safe is successively increased and for every
increase the condition (24) for the CQLF is tested with A(5),
A(6). The suspension controller parametrization results from
this iterative procedure from the weight vector η with the
highest value of qxcw , for which (24) is still satisfied with
A(5), A(6). The rationale behind this procedure is the fact that
driving states, which are critical for the dynamic wheel load,
are frequently also critical for suspension deflection. By this
procedure, the suspension deflection weight has been increased
from qsafe

xcw
= 1.5849 · 1010 to qsusp

xcw = 3.5413 · 1010.
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The numerical values for the three suspension controllers
and the matrix P of the derived CQLF (rounded to multiples
of 10−2 and 10−4, respectively) are

kT
comf =[−7605.45 21.25 789.35 364.00

]
(36)

kT
safe =[−7626.72 42.00 −20578.39 −503.75

]
(37)

kT
susp =[−7245.52 132.82 −20923.90−500.93

]
(38)

P =

⎡

⎢
⎢
⎣

5.5024 0.8632 −5.2069 0.0128
0.8632 0.8574 −4.2785 0.0121

−5.2069 −4.2785 2060.9480 0.2039
0.0128 0.0121 0.2039 0.3257

⎤

⎥
⎥
⎦. (39)

In the proposed controller design approach, the CQLF-based
stability test, involving the LMIs formulated in (24)–(27)
is performed after the Pareto front, which shows the controller
performance, has been generated. Although this might be con-
sidered as a drawback of the proposed approach from a control
theoretical point of view, it increases the transparency of the
achievable controller performance, which is determined using
the nonlinear model of the suspension for the controller opti-
mization. By the proposed optimization approach, the suspen-
sion designer gets a clear sense of the performance achievable
with the controllers for the nonlinear model and can then pick
a set of controllers based on their performance and the desired
suspension characteristic of the vehicle. Afterwards it is
checked for kT

comf and kT
safe if the stability conditions (24)–(26)

are satisfied. If the conditions were not satisfied, it would be
an iterative procedure choosing a different set of controllers,
which are located “closer to each other” on the Pareto front,
thus offering a slightly lower performance until a set of
controllers is found that satisfies (24)–(26). Afterwards the
suspension deflection controller kT

susp is designed employing
the abovementioned procedure that involves the test if (27) is
also satisfied for the resulting set of three controllers.

D. Interpolation Performance

The proposed interpolation approach (17) offers continuous
control signals and involves only a small number of state
feedback controllers to be stored in an electronic control unit.
The stability of the approach has been studied in the last
Section. In the following, it is analyzed which performance
results from the interpolation-based control law (17) and if
the number of N = 3 controllers is sufficient.

An important fact is that the state feedback gain result-
ing from the interpolation of the LQRs formulated in (17)
is in general not an LQR in terms of the quadratic cost
functional (33). However, if the resulting performance is
comparable to the LQR performance given by the Pareto front
in Fig. 10 and the suspension deflection does not rise signif-
icantly, the interpolation method is suitable for the adaptive
suspension control approach. To verify the performance of
the controller parametrizations resulting from the interpolation,
the co-domains of qfdyn(t) and qsusp(t) have been quantized
and simulations with the nonlinear test rig model have been
performed for the resulting controller configurations using
profile P1 as excitation (v p1 = 50 km/h). In order to study
the performance with respect to the system requirements
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Fig. 11. Performance results for the interpolation between the controllers
kT

comf , kT
safe, and kT

susp in comparison to the LQR configurations of the Pareto
front of Fig. 10. (a) Ride comfort versus ride safety. (b) Ride comfort versus
suspension deflection. (c) Ride safety versus suspension deflection.

described in Section II-C, the carpet plots resulting from the
interpolation between each pair of controllers are depicted
for the quantities ‖ẍc,comf‖rms, ‖Fdyn‖rms and ‖xc − xw‖std in
Fig. 11. Note that due to the more transparent representation
only the resulting performance from interpolating between
two controllers is depicted in each case. However, further
simulations have shown that the depicted performance regions
in the conflict diagrams are representative bounds for the
performance resulting for controller parametrizations with 0 <
qfdyn < 1 ∧ 0 < qsusp < 1. The Pareto front from Fig. 10 and
the passive suspension configuration are also shown in each
conflict diagram.
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As Fig. 11 shows, the performance of the interpolated state
feedback gains is even better with respect to most aspects
than the performance of the LQRs from the Pareto front. The
suspension deflection controller offers significant benefit in
terms of ‖xc − xw‖std [Fig. 11(b)], while it only marginally
deteriorates ride comfort and ride safety [Fig. 11(a)]. None
of the controllers resulting from the interpolation violates
the bounds on the dynamic wheel load (‖Fdyn‖rms ≤ 387 N
and min(Fdyn) > −1160.5 N) or the suspension deflection
(‖xc − xw‖std ≤ 1.67 cm and max(|xc − xw|) ≤ 5 cm).
Although it becomes apparent that the LQR approach does
not achieve the optimal overall performance for the consid-
ered realistic suspension setting, no controller parametrization
results from the considered interpolation approach, which
dominates the comfort controller in terms of ride comfort.
Since the interpolation-based adaptive controller outperforms
the LQR configurations regarding ride safety and suspension
deflection, it represents a feasible approach, which offers a
fairly transparent controller design process and a significant
performance potential.

V. EXPERIMENTAL VALIDATION

The experiments to validate the performance capability of
the proposed adaptive control approach are conducted on
the test rig presented in Section II-A. To provide a realistic
framework, the two real measured road profiles (being passed
with v p1 = 50 km/h and v p2 = 30 km/h, respectively) as well
as the synthetic singular disturbance event (with ĥ = 4.5 cm,
L = 0.5 m, vb = 8 km/h), which have been described in
Section II-B, are used as excitation signals.

A. Benchmark Systems

For the evaluation of the performance of the proposed con-
trol approach, the following benchmark systems are utilized
besides the passive suspension system.

1) Skyhook Controller: In this established suspension con-
trol concept (proposed for semi-active dampers by
Karnopp in [9]), a skyhook damping force F̃d,sky =
−dskyẋc is generated to reduce the absolute velocity ẋc

of the chassis mass. The skyhook controller is employed
for the active suspension configuration (Act.-Skyh.) and
an emulation of a semi-active suspension (SA-Skyh.).
For the implementation, a lower passive damping ratio
(D̃c,p = 0.28 resembling a linear damper with dc =
500 Nsec/m) is emulated by the actuator before the
skyhook damping force (with dsky = 2000 Nsec/m) is
superimposed since the original damper characteristic
of the ATV provides a more safety-oriented suspen-
sion configuration and the skyhook damping could not
achieve significant comfort gain in the semi-active case.
Both damping coefficients dc and dsky have been deter-
mined by conflict diagram-based optimization in a simi-
lar manner as the controller parametrization described in
Section IV-C. The resulting damping force in the
suspension is

F̃d = −dskyẋc − dc(ẋc − ẋw). (40)

In the semi-active case, the actuator control logic clips
the skyhook control force if it violates the passivity
restriction F̃d (t) (ẋc(t) − ẋw(t)) ≤ 0.

2) Adaptive Skyhook Controller: The adaptation logic pre-
sented in Section IV-A is used to interpolate between
two semi-active controller settings according to the
current driving state. The first setting is the comfort-
oriented skyhook setting described above. The second
setting is more safety oriented with dc = 500 Nsec/m
and dsky = 0 Nsec/m. The adaptive skyhook controller
(SA-Ad.) is implemented for the emulated semi-active
suspension configuration.

3) Classical LQR: From the Pareto front depicted in
Fig. 10, a moderately tuned comfort-oriented LQR is
chosen that exhibits a dynamic wheel load exactly
between the passive configuration and the comfort con-
troller, i.e., ‖Fdyn‖rms = 331 N.

B. Performance Evaluation

Based on the system requirements formulated in
Section II-C, performance measures are derived. In this
context, the suspension performance of each analyzed
controller configuration relative to the passive suspension
system is of particular interest. Consequently, the performance
gain

Pg,obj = 1 − ‖objcont‖i

‖objpass‖i
(41)

is introduced, where ‖objcont‖i denotes the absolute perfor-
mance of the controlled suspension with respect to any of the
given criteria ‖·‖i (rms-value, peak values etc.) and ‖objpass‖i

is the performance of the passive reference. A positive value
of Pg,obj denotes a reduction of the absolute value of the
corresponding quantity and thus a performance improvement.

C. Measurement Results

Fig. 12 shows the measurement signals for the singular
disturbance event. The fast adaptation prevents the limits for
the dynamic wheel load and the suspension deflection to be
exceeded and the peaks in the vertical chassis acceleration are
lowered so that a performance gain of Pg,‖ẍc,com f ‖rms ≈ 35%
with respect to the passive suspension can be achieved. The
resulting performance gains [see (41)] are summarized in the
spider charts in Fig. 13 for all three considered excitation sig-
nals5 (in the diagrams, the center represents Pg,obj ≤ −40%).
In terms of suspension deflection, the peak deflection in
compression direction (min(xc−xw)) of the suspension strut is
analyzed since hitting the compression endstop is particularly
critical in terms of ride comfort and wear of components.

The semi-active skyhook controllers (SA-Skyh. and
SA-Ad.) can only slightly enhance ride comfort although the
adaptive skyhook approach offers advantages regarding peak
chassis acceleration over the conventional skyhook controller
for P1. Especially for profile P2, which primarily contains high
frequency components being critical for ride safety despite

5The interested reader can find plots of the corresponding measurement
signals for profile P1 in [35].
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Fig. 12. Measurement results of the adaptively controlled suspension versus
the passive suspension (singular disturbance event); the dashed-dotted lines
indicate the limits for the peak-value of Fdyn (i.e., −Fstat) and the suspension
deflection limits.

their low amplitudes, the absolute velocity of the chassis mass
is too low to benefit from skyhook damping. The performance
deterioration in terms of suspension deflection is uncritical
for all controllers for profile P2 since the passive reference
shows very low suspension deflections for this road profile
(‖xc − xw‖std = 0.25 cm and min(xc − xw) = −1.1 cm).
The active skyhook controller (Act.-Skyh.) in comparison
achieves significantly better ride comfort for P1, which comes
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Fig. 13. Measurement results of the controller performance for (a) profile
P1 with v p1 = 50 km/h, (b) profile P2 with v p2 = 30 km/h, and (c) singular
disturbance event.

at the price of violating the rms-limit of the dynamic wheel
load and the highest power consumption of all considered
active suspension configurations (‖P+‖rms = 46.9 W for
P1). Unlike the active skyhook controller, the LQR and the
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adaptive controller can increase ride comfort for P2 and the
singular disturbance event while keeping the dynamic wheel
load peaks at levels of the passive suspension system for the
latter excitation profile. An important fact for the performance
in terms of the dynamic wheel load is that the passive system,
which is the reference for the calculation of the performance
gain in (41), has a very ride safety-oriented suspension design
due to a comparably high passive damping (damping ratio of
the unsprung mass Dc ≈ 0.39). Thus, increases in the dynamic
wheel load do not immediately effect ride safety in a critical
way as long as the given bound (7) for the dynamic wheel
load is not violated.

The LQR performs well for all considered excitation signals
(power consumption ‖P+‖rms = 17 W for P1). The adaptive
controller, however, offers by far the best ride comfort for all
considered road profiles while keeping the constraints for the
suspension deflection and the dynamic wheel load formulated
in Section II-C. Its power consumption for P1 (‖P+‖rms =
24.8 W) is lower than the one of the active skyhook controller
(Act.-Skyh.).

The performance advantage of the adaptive controller
becomes even more apparent if the amplitude of profile P1
is increased by 25%. The adaptive controller can improve ride
comfort even by 31.41% and still keeps the rms-limit for the
dynamic wheel load as well as the suspension deflection limit
while all considered benchmark systems, including the passive
system violate the dynamic wheel load and/or the suspension
deflection limits.

VI. CONCLUSION

In this paper it has been experimentally shown that the
proposed adaptive control approach can overcome the con-
servatism, which is frequently introduced by time-invariant
suspension controllers. Moreover, a framework was presented
to ensure stability of the adaptively controlled suspension.
The proposed controller structure offers significant ride com-
fort improvements while keeping the limits on suspension
deflection and dynamic wheel load for all considered real-
istic excitation profiles. The proposed adaptive controller
outperformed the considered benchmark controllers, which
partially (LQR and fast adaptive skyhook concept) even go
beyond the state-of-the-art of suspension controllers integrated
in production vehicles. The objective in this paper is the
maximization of ride comfort. However, the modular controller
structure could also be adjusted to rather focus on vehicle
handling improvements by minimizing the dynamic wheel
load. According adjustments in the adaption logic can be made
without affecting the stability of the system. In order to utilize
the performance potential of the proposed control approach in
modern efficiency focused production vehicles, future work
will involve the further development of driving state adaptive
control strategies for semi-active suspension configurations.
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