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ABSTRACT

This paper presents a scalable algorithm for managing prop-
erty information about moving objects tracked by a sensor
network. Property information is obtained via distributed
sensor observations, but will be corrupted when objects mix
up with each other. The association between properties and
objects then becomes ambiguous. We build a novel rep-
resentation framework, exploiting an overcomplete Radon
basis dictionary to model property uncertainty in such cir-
cumstances. By making use of the combinatorial structure of
the basis design and sparse representations we can efficiently
approximate the underlying probability distribution of the
association between target properties and tracks, overcom-
ing the exponential space that would otherwise be required.
We conduct comparative simulations and the results validate
the effectiveness of our approach.

Categories and Subject Descriptors

C.2 [Computer Communication Networks]|: Distributed
Systems; G.2.1 [Discrete Mathematics]: Combinatorics—
Permutations and Combinations

General Terms
Theory, Algorithms

Keywords

Wireless Sensor Networks, Property Management, Homoge-
neous Spaces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IPSN’11, April 12-14, 2011, Chicago, Illinois.

Copyright 2011 ACM 978-1-4503-0512-9/11/04 ...$10.00.

25

Mo Li
Nanyang Tech University
Singapore, 639798
limo@ntu.edu.sg

Leonidas J. Guibas
Stanford University
_ Stanford, CA, 94305
guibas@cs.stanford.edu

1. INTRODUCTION

In this paper, we address the property management prob-
lem, in wireless sensor networks, which is related to the
identity management problem [9]. Both problems arise in
the context of accurately tracking and identifying multiple
moving targets with distributed sensors in the field.

We first give a brief review of the identity management
problem. Identity management for moving targets in the
sensor networks was first introduced by Shin et al [24]. Sup-
pose we have a sensor network which is tasked at tracking
multiple, simultaneously moving targets in the monitored
area. In such a setting, we assume that positions of the tar-
gets can be instantly tracked by the sensor nodes and we
focus on distinguishing their identities during the tracking.
When targets are well separated and good quality obser-
vations are obtained by the sensors, the problem factorizes
nicely. Different sensor nodes can focus on different targets,
forming collaboration groups to best determine target iden-
tities. The problem becomes more complicated, however,
when two targets come close to each other, which leads to
confusion as the signal signatures of two targets mix up. Af-
ter the two targets separate again, their positions may be-
come immediately distinguishable, but their identities can
still be confused, and the sensors may no longer be able to
tell who is who.

Such uncertainties about identities will be carried forward
in time with each target, until good quality observations on
their identities are obtained to allow disambiguation. How
to achieve accurate and efficient disambiguation is subtle,
e.g., when the identity of target A becomes clear due to a
new observation from a sensor close to A, another target B
which A has mixed up with earlier becomes unambiguous
as well, see figure 1-(a). Thus when there are many moving
targets with mixed trajectories, it becomes increasingly com-
plicated for the sensor network to resolve such ambiguities
globally. Such a problem is called the identity management
problem and the major task in addressing the problem is to
maintain a belief state for the correct association between
target tracks and target identities with continuous input of
target mixing events and updated identity observations from



sensors. The identity management problem poses a chal-
lenge for probabilistic inference as it needs to address the
fundamental combinatorial challenge that there are a fac-
torial number of possible associations to maintain between
tracks and identities. There have been many works proposed
to address the identity management problem.

Property management problem is another interesting prob-
lem related to the identity management problem. We note
that in many cases, we do not need to distinguish the iden-
tity of every individual target or the sensors are not pow-
erful enough to capture all target features for identification.
Instead we may only get coarse property information on tar-
gets and such information will suffice for many applications.
For example, when we track troops of different parties on
the battlefield so as to infer which party the individuals are
affiliated to, it would suffice that we correctly track their af-
filiations rather than their identities. Here their affiliations
are regarded as properties associated with the targets. As
a matter of fact, tracking such properties associated with
targets is a more natural assumption for sensor networks
because what sensors directly sense is property information
rather than identity features. While there have been many
efforts put in studying the identity management problem,
however, few studies have been done for the property man-
agement problem in sensor networks.

In this paper, we conduct the first study on such a prob-
lem, where we focus on target properties rather than their
identities. For simplicity of exposition, we restrict our at-
tention to the basic case where the targets can be classified
into two categories, red or blue. Similar to the identity man-
agement problem, confusion will arise when a red target and
a blue target mix up with each other and then depart. Fu-
ture property observations by sensors can help to resolve
such ambiguities. The property management problem is to
maintain a belief state for the correct association between
target tracks and target properties (red or blue) with target
mixing events and updated property observations.

The property management problem is closely related to
the identity management problem — we can reveal target
identities if we have enough target properties to differenti-
ate the identities. Typically, O(logn) target properties are
adequate to completely identify an object out of n. Thus,
property management provides us an alternative method to
study the identity management problem, while the identity
management solutions cannot be applied for property man-
agement. The property management problem has to be ad-
dressed separately, as multiple targets may share the same
property and the permutation machinery assumption that
each track corresponds to a unique identity no longer ap-
plies.

We summarize the contributions of our paper as follows:

1. To the best of our knowledge, this is the first work
to address the property management problem with sensor
networks.

2. We use novel overcomplete bases together with sparse

approximation algorithms to represent uncertainties to achieve

high accuracy as well as low computational overhead.

The paper is organized as follows: In Section 2, we in-
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Table 1: Localized Mixing and Observation Data

Event # Event Type
1 Tracks 1 and 3 mixed
2 Tracks 3 and 4 mixed
3 Observed target on track 3 is red

troduce some related works. In Section 3, we use a Markov
model to formulate the property management problem. A
novel overcomplete Radon basis dictionary for representing
uncertainties over homogeneous spaces is introduced in Sec-
tion 4. In Section 5, scalable algorithms are provided based
on the proposed framework. We conduct comparative simu-
lations to validate this approach in Section 6. In Section 7,
we conclude this paper.

2. RELATED WORKS

The key computational challenge in the identity manage-
ment problem is that the number of possible associations
between tracks and target identities can be very large. To
address such a problem, [24] uses the belief matriz to ap-
proximate the association probabilities, which collapses the
factorial distribution to its first-order marginals (marginal
probability that identity ¢ is associated with track j). An
alternative representation [22] is using an information ma-
triz whose elements represent marginal log-likelihoods. Both
methods provide efficient and scalable algorithms yet fail
to characterize higher order marginals, such as the associa-
tion probabilities between pairs of tracks and pairs of iden-
tities. The marginals of different orders are interconnected,
thus the formulation becomes quickly unmanageable. For-
tunately, there is an established mathematical theory that
ideally suits to disentangling all the information: the repre-
sentation theory of permutation group [6, 21, 23]. It turns
out that one can define Fourier transforms for functions over
all permutations, and low (high) order Fourier coefficients
contain information about low (high) order marginals. [14]
uses a general set of Fourier coefficients to represent uncer-
tainty over permutations and demonstrates improvements
against only using low order Fourier coefficients. Recently,
[11] proposes an algorithm, called Kronecker Conditioning,
which performs all probabilistic inference operations com-
pletely in the Fourier domain. Such a method can address
any mixing or observation model and gains efficiency by
truncating the Fourier expansions, allowing for a principled
tradeoff between computational complexity and approxima-
tion accuracy. Though polynomial, the Fourier methods are
still quite computational demanding when the number of
targets is of even modest size. One way to mitigate the
overhead is to factorize the problem into smaller clusters, so
that highly certain individual or group associations can be
pulled out of a global Fourier representation and represented
compactly [12].

The identity management problem is not identical with
the classical data association problem of maintaining corre-
spondences between tracks and observations. In the iden-
tity management problem, the rate at which observations
happen that are informative about target identities is not
coupled to the rate of observations about target positions
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Figure 1: Targets move in a sensor network. (a) Identities of targets can get confused when they pass each

other.

(b) Four red or blue targets (denoted by red triangles and blue squares) moving around. We get

confused about colors when tracks 1 crosses with track 3, then track 3 crosses with track 4. In the end, we

observe target on track 3 is red.

and can be much lower. We note that a vast literatures
already exist on the the data association problem, begin-
ning with the multiple hypothesis testing approach (MHT)
of Reid [20]. MHT is a deferred logic method in which past
observations are exploited in forming new hypotheses when
a new set of observations arises. Since the number of hy-
potheses can grow exponentially over time, various heuris-
tics have been proposed to help cope with the complexity.
For example, one can choose to maintain only the k best
hypotheses for some parameter k [5], using Murty’s algo-
rithm [16]. But for the approximation to be effective, k still
has to be exponential in the number of targets. A slightly
more recent filtering approach is the joint probabilistic data
association filter (JPDA) [3], which is a suboptimal single-
stage approximation of the optimal Bayesian filter. JPDA
makes associations sequentially and is unable to correct er-
roneous associations made in the past [19]. Even though it
is more efficient than MHT, the calculation of the JPDA as-
sociation probabilities is still an NP-hard problem [4]. Poly-
nomial approximation algorithms to the JPDA association
probabilities have recently been studied using Markov chain
Monte Carlo (MCMC) methods [17, 18]. Generalized sensor
models, e.g., binary sensors [2] which can only tell whether
the target is moving toward the sensor or away from the sen-
sor, as well as the related localizability problems [26] have
also been considered in the literature. However, none of
those proposed approaches can be used to address the prop-
erty management problem. To the best of our knowledge,
there is neither theoretical study on the problem itself nor
algorithmic efforts in making distributed solutions in sensor
networks.

Modern computer technologies have made it possible for
us to deploy densely distributed sensor network systems.
Such systems can hold up to hundreds of sensor nodes, which
can perform lots of sensing and controlling tasks such as
multi-target tracking [7], intrusion detection [1], ecosystem
surveillance [15] and etc. The classical problem of reliably
tracking also connects the vision community if one considers
the camera network for object detection and recognition [25].
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Given that the tracking literature is becoming mature,
however, we note that the property management problem
still needs to be addressed. In this problem, we don’t as-
sume a dense in time and accurate in space measurements
of the target positions which are typically assumed in the
tracking literature because those dense measurements are
quite expensive to acquire. We also note that in a sensor
network, often different types of sensors convey property
information than positional information, and typically the
former are more expensive. For example, we can imagine
a network of simple proximity sensor that can be used to
detect the presence of targets (and therefore provide infor-
mation about locations), but which cannot differentiate the
mobile targets from each other. These inexpensive sensors
then can be augmented with a network of sparse but ex-
pensive camera sensors that can observe other properties of
targets, such as colors, which help in differentiating or iden-
tifying the targets. The latter observations occur much less
frequently, however. Thus, such a problem setup deserves
the research attention from a theoretical perspective.

3. FORMULATION

We start with a simple tracking problem with four tar-
get tracks. As depicted in figure 1-(b), four targets, where
two are red and the other two are blue, are moving within a
field deployed with sensors. The sensors are capable of sens-
ing target properties (red or blue). As we have mentioned
earlier, the property management problem requires to main-
tain a belief state for the correct association between target
tracks and target properties (red or blue), without distin-
guishing among red (blue) targets.

In this particular example, when the four targets are mov-
ing within the field, local sensors may report two types of
events, namely, mizing events — two tracks get mixed when
the targets get too close to each other; observation events
— the target property on a particular track is clearly ob-
served by a local sensor. Hence, a stream of localized data



is observed about the four tracks, which is recorded in table
1.

Assume initial colors of the targets are known. Then from
table 1, we know track 2 never mixes with other tracks. Ob-
serving red target on track 3 will clarify all the ambiguities,
e.g., targets on tracks {2,3} are red and targets on tracks
{1,4} are blue. Such a simple example illustrates the com-
binatorial nature of the property management problem —
reasoning on the mixing events allows us to determine which
targets move along which tracks even though we only have
partial observations on the tracks.

In the following, we introduce a Markov model to formu-
late the property management problem. The Markov model
is constructed over homogeneous spaces which will be for-
mally defined. Based on that, we provide probabilistic mod-
els for mixing and observation events.

3.1 The Markov Model

Consider we have n targets, k of them are red and n—k of
them are blue. We consider all possible k—subsets of the set
{1,2,--- ,n}, so that each k—subset characterize a state in-
dicating which k tracks have the red targets. We introduce
a Markov model to model the uncertainty, which is repre-
sented by a probability distribution f over all k—subsets
z® at time t = 0,1,2,---. Such a distribution encodes the
probability of an arbitrary k—subset of the tracks being red
at time t. As figure 2 illustrates, we will update the distri-
bution f over 2" at each time step.

In figure 2, to model the conditional probability distribu-
tion P(z®|z¢~V), we will work on a mizing model so that
the mixing model reflects, for example, that the targets be-
longing to two tracks are swapped with some probability at
a mixing event. To model the distribution L(z®|z®), we
will work on an observation model, which captures the like-
lihood of observation z*), given that targets on a k—subset
of tracks z(*) are all red.

We focus on filtering, where one queries the Markov model
for posterior at each time step, based on all past obser-
vations. Given distribution f(:c(t>|z(0), o, 2M), we recur-
sively compute f(z+1]|2( ... 2t+D) with two steps: a
rollup step and a conditioning step. The rollup step multi-
plies the distribution in the mixing model and the distribu-
tion of the previous step:

f(:n(t+1)|z(0), e z(t)) _ Z P(z(t+1)|m(t))f(:c(t> ‘Z(O)’ .
2D

.2,

The conditioning step conditions the distribution on an ob-
servation z(*+1) using Bayes rule:

f(w<t+1)|z(0), e, z(t+1)) - L(z<t+1)|w(t+l))f(w(t+l) \2(0), .

Since the space of all k—subsets of an n—set is of size (:),
a single iteration of the algorithm requires at least O((Z))
operations, which is not polynomial with k. As will be de-
tailed later, the approach that we advocate is to use a novel
representation of distributions over all k—subsets, through
which we can always maintain a compact representation for

2.
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an arbitrary distribution. We will also present scalable al-
gorithms such that updating distributions under the rollup
and conditioning steps in such a representation framework
requires polynomial complexity in both n and k.

The unique feature of this problem is that there is inherent
dependencies among the property values, where the joint
probability can not be factorized as products of marginal
probabilities. Many typical compact representations, such
as graphical models, cannot capture the inherent mutual
exclusivity constraints associated with the problem where &
targets are red reflect that the other n — k targets are blue.

As final remarks of the Markov model, we assume through-
out this paper, k is known as a priori. This is true in certain
cases, e.g., tracking football players where for each player
we only know the color information. It turns out that the
general case where k is now known as a priori can be dealt
with the same technical machinery proposed in this paper.
We will come back to this point in the discussion section.
We also focus the case where there are two possible colors
associated with the targets in this paper. It turns out that
for a more general case where there are multiple colors, the
mathematics for characterizing the mutual exclusivity con-
straint will be much harder.

3.2 Permutation Groups and Homogeneous
Spaces

In this section, we formally introduce permutation groups
and homogeneous spaces which are used in modeling our
problem. In mathematics, the set of all k—subsets of an
n—set is known as a homogeneous space. Such a homoge-
neous space is associated with the permutation group, which
acts on the homogeneous space in a transitive way.

Definition 1 A permutation on n elements is a one-to-
one mapping of the set {1,---,n} onto itself and can be
written as a tuple, o = [0(1),0(2),---,0(n)], where o(i)
denotes where the i-th element is mapped with the permu-
tation. The set of all permutations on n elements forms the
permutation group S, under the operation of function com-
position. We sometimes notate o = (7,j) which denote a
swap of ¢ with j.

Definition 2 The collection of all k—subsets of {1,2,

- ,n} is a homogeneous space, denoted by X*. The per-
mutation group S, acts on X* in the following way: sup-
pose 0 € S, and = = {z1,22, - , Tk} € X’“, then ocx =
of{z1, @2, -+ ,x} = {o(z1),0(z2), - ,0(zk)}. It is easy to
verify that S, acts transitively on X*(any z,y € X* there
exists a o such that oz = y).

A permutation acting on a homogeneous space models the
process of how tracks followed by targets might be mixed or
swapped, when the two targets approach or cross each other.
It turns out that homogeneous spaces are natural for describ-
ing the Markov states of our system, and there is abundant
mathematical structure that we can make use of to facili-
tate our formulation. Recently, [13] invented an approach
based on the homogeneous space to study the clique de-
tection problem in social networks. Although homogeneous
spaces are well-studied objects in mathematics, to the best
of our knowledge, they have not been used before to model



P(x(D|x(0))

Px® |x(1))

P(x®|x(2))

) e

TL(Z(UH:E(O)) TL(z(lNac“))

20 zZ1

e

e

TL(Z(Q)M(Z)) TL(Z(:*.)‘;C@))

z2 z3

Figure 2: The Markov model for the property management problem.

such association problems.

Example 1 In the previous example depicted in figure
1-(b), we consider the homogeneous space — all 2—subsets
of {1,2,3,4} (denoting the four tracks). At the beginning,
targets on tracks {1,2} are red. If tracks 1 and 3 swapped
the targets, then targets on tracks {2,3} will be red. Using
mathematical terms, it can be stated in the following way:
the permutation (1,3) act on on {1,2} (an element in X?)
will be {2,3}.

3.3 Mixing Model

In this paper, we consider a particular class of probabilistic
mixing models — that of random walks over the permutation
group, which assumes that z*? is generated from z(*) by
drawing a random permutation o™ from some distribution
Q" over the permutation group S,. With such a proba-
bilistic mixing model, we can write the rollup operation as
a Markov transition matrix times the prior distribution. In
our problem, o(*) € S, represents a random permutation
that might occur among tracks when they get too close to
each other. As we have introduced in the previous section,
a permutation o® acts on a state z® in the homogeneous
space X* as o®Wz®, Hence, the distribution over Y
generated from z*) by a random draw from the distribution
Q over S, is:

f(:v(t+1)|z(0)7 . ,2(t)) — Z P(:v(t+1) \a:(t))f(w(t)|z(0), .
()

Qo) f(=zM P, ..

7Z(t))
() [ o): oa(t) =z (t+1)

— T(z(t),w(t+l))f(:r(t)|z(0), . ,z(t)),

where T'(z,y) = >,.,,—, @(0), meaning that all Q(o) such
that oz = y will contribute to the (x,y)—entry of the tran-
sition matrix. In addition, we have the following theorem:

Theorem 1 Let @ be a probability distribution on Sh,
then @ induces a doubly stochastic Markov transition matriz
for X* with transitions: T(z,y) = > oioa—y Q(0).

The above theorem gives an explicit formula for transition
matrices of a distribution over the homogeneous space. As
we will see later, transition matrices induced from the distri-
bution @ also interact nicely with the homogeneous space,
which can be utilized to simplify the computation of the
rollup step.

In this paper, we consider the simplest probabilistic mix-
ing model which assumes that with probability p, nothing
happens to the two targets, and with probability (1 — p),
the targets for tracks ¢ and j are swapped (similar mod-
els are considered in [11]). With no priori knowledge about

2)
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whether two targets will swap, we can simply take p to be
1/2. If more information, e.g., moving speed, direction or
other behavior of the targets, are available, then we can have
a better estimate of how likely the two targets may swap.
In any case, the probability distribution @ over S,, for this
probabilistic mixing model is therefore:

p if o =1id
Qo) =< 1—p ifo=(i7)
0 otherwise

We note that there are special structures that we can ex-
plore in the transition matrix induced from the particular
distribution @ over Sy, i.e., each row or column has either
one nonzero entry (which must be 1) or two nonzero entries
(which must be p and 1 — p). We will use such a fact to do
the rollup operation in an efficient way.

Example 2 We run the mizing update routines on the
first two mizing events of the example in figure 1-(b). For
each mizing event, we assume two tracks i and j swap tar-
gets with equal probability. Using the probabilistic mizing
model we obtain distributions f(a:<t)) fort=20,1,2 as shown
in table 2. Here, f(z[2©, M) ...

f®).

,2®) is abbreviated as

3.4 Observation Model

In contrast to the rollup step, the conditioning step can
potentially decrease uncertainty. We use Bayes rules to find
the posterior distribution P(z®|2(") after observing some
evidence 2V, which can be expressed as the following:

LD e fz® 2@ 0 .. 20

F@® 2@ 0 0y

it requires two steps to compute the posterior — a point-
wise product of prior f(a:(t) |z(0>, 2 ,z(t>) and likelihood
L(z(t)|x(t>), followed by normalization step, which is com-
puting 3" L(Z(t)|‘,E(t>)f(3,j<t)‘Z<0)7 2. ,z(t)).

The simplest observation model assumes that we get ob-
servation z of the form: “see red on track i” (similar models
are considered in [11, 14]). Now we assume all red (blue)
targets have the same color histograms; sensors sense prop-
erties by a random draw from the color histogram of the
target. If, for example, all red targets have 80% of red, 10%
of blue and 10% of other colors (yellow, grey, etc.) while all
blue targets have 70% of blue, 20% of red and 10% of other
colors. Then the likelihood function for observation event
z=’see red on track i’ given ’targets on k—subset tracks x
are red’ is:

o If i € z, L(z|x) = L(z|z are red) = L(z|i is red) = .8.

0 LEORO) @0, 20, 20)



Table 2: Updated Priors when Mixing Happens

{12} | {1,3} | {1,4} | {2,3} | {2,4} | {3,4}
f(z©®) 1 0 0 0 0 0
fa | 1/2 0 0 1/2 0 0
f@®) [ 1/2 0 0 1/4 | 1/4 0

o If i ¢ x, L(z|x)
L(z|i is blue) = .2.
So we have

L(z|x are red) = L(z|z¢ are blue)

vem={ 3 g

We conclude this section by pointing out that both the
rollup step and conditioning step are of complexity at least
O((})), if we explicitly form the distribution on the homo-
geneous space. In the next section, we will explore the math
structure of homogeneous spaces to overcome such a com-

plexity issue.

4. EFFICIENT REPRESENTATION

In this section, we propose a novel representation frame-
work to characterize distributions over homogeneous spaces.

4.1 Hierarchical Radon Basis

Let L(X") be the set of all functions on the homogeneous
space X*. There is a special technique for decomposing
L(X"). For each 0 < j < k, define a matrix ®* as an (})
by (?) matrix where each row represents a k—subset and
each column represents a j—subset. The entries in ®7** are
binary, indicating whether the j—subset is a subset of the
k—subset. The matrix ®* can be interpreted as a map-
ping from functions on all j—subsets to functions on all
k—subsets. The columns of the matrix ®* span an (;‘)

dimensional subspace of L(X¥), which are called the Radon
bases of order j. With a Radon basis we can represent a dis-
tribution over k—subsets by using coefficients on j—subsets,
where 0 < j < k.

In section 3.3, we noticed that a probability distribution
Q@ over S, can induce an action on a distribution over all
k—subsets, i.e., @ induces a transition matrix for updating
distributions over all k—subsets. However, there is nothing
special about k£ when we define the transition matrix there.
Thus we can generally let @@ induce a transition matrix for
updating distributions over all j—subsets, where 0 < 5 < k.
Here the transition matrix is 77 (z,y) = 3. vamy @(0)
where x,y are two j—subsets. The following proposition
summarizes important properties regarding @j’k(() <j<k)
and the transition matrices induced from Q.

Theorem 2 Let Q be a distribution over Sy, we have the
following three propositions:

1. R(®%%) c R(®"*) C --
notes the range of a matriz.

2. Each subspace R(®7*) is invariant under the action of
the distribution Q.

3. The matriz & commutes with the action of the distri-
bution Q, i.e., ®VFTI = TE®IE where T, T* are transition

- C R(®"*) where R(:) de-
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matrices induced from the same distribution Q.

The first proposition states that the range of matrices &%
forms a hierarchical decomposition of L(X*). Bases that
span R(®7F) of small (large) j are efficient for approximat-
ing smooth (peaky) distributions over X* respectively. We
note that such a hierarchical basis design derives from the
representation theory of permutation groups in such a way
that each subspace is invariant under group actions [6]. The
second proposition tells us that if f € L(X*) lies in the
range of ®7* for some j < k, then after the rollup opera-
tion, the updated distribution still lies in the range of ®7'*.
The third proposition suggests us an efficient algorithm to
update f when f € R(®7F). Suppose we have a distribu-
tion over k—subsets f = ®'*¢; where ¢; are coefficients on
j—subsets, then because of this commutative property, the
rollup operation for f can be performed simply by comput-
ing rollup operation for coefficients c;:

TFf =TrFe e, = 97 TIc; = 3k (T ¢;y).

One interesting fact about the Radon basis matrix ®7%
is that it has a pseudo-inverse (®*)T which maps from
functions on k—subsets to functions on j—subsets. ®** and
(®7F)T satisfies that (®7%)T®7F is identity and &7F (%)
is an orthogonal projection. Given Radon bases consisting of
delta functions on all j—subsets and k—subsets respectively,

B\ i —1)k I (k—j
the (r,s) element of (®")* is (71;‘571"37(”(‘]73_]»

s—r|

s — r means the set difference, i.e., s — 7 = sNre.

, where
)

4.2 Overcomplete Basis Representation

Recent approaches [11, 14] in modeling the identity man-
agement problem keep compact representation of distribu-
tions over permutation groups by storing only low order
Fourier coefficients. Clearly, similar ideas can be adopted
here — we can use coefficients for low order Radon bases
(®7* with small 7) to represent a distribution over the ho-
mogeneous space X*. Using a low order Radon basis, how-
ever, fails to characterize highly certain cases, e.g., a delta
function on X* which can be characterized by a single basis
in ®"*_ while a low order Radon basis is incapable of rep-
resenting accurately such a peaky distribution; on the other
hand, high order Radon bases are not efficient for represent-
ing smooth distributions over X*, e.g., a constant function
can be characterized by a single basis in ®%*, while one
cannot have a compact representation for such a smooth
function by using high order bases. Similar problems hap-
pen in the identity management problem, where a low order
Fourier basis fails to represent peaky functions on permuta-
tion groups while high order Fourier bases are not efficient to
represent smooth functions. In reaction to that, we propose
to use an overcomplete Radon basis dictionary to represent
distributions over homogeneous space X* where we concate-



nate all &%’ i.e.,

k
f= <I)O’kco + ‘t’l’kcl + -+ ‘bk'kck = Z (PJ,’CCJW
Jj=0

where c; are coefficients on j—subsets. By using a hierarchi-
cal overcomplete Radon basis, we will hopefully have sparse
representation for any distribution over X*.

Example 3 In the example in figure 1-(b), the distribu-
tion f at t = 2 can be represented with coefficients co = 0,
c1 = [0,1/4,0,0]7, and c2 = [1/4,0,0,0,0,0]T to f as the
second column of ®%? indicates three 2—subsets which con-
tain 2.

5. ALGORITHM DESIGN

In this section, we design algorithms based on aforemen-
tioned theorems for updating probabilistic distributions over
the homogeneous space X*. We assume that, using over-
complete bases, sparse representations are available for the
distributions over X* which we work with. By making use
of the combinatorial structure of the basis matrices and our
sparse representation assumptions, we obtain efficient algo-
rithms for updating distributions over X* polynomial in n
and k, which will be detailed in section 5.1 and section 5.2.
When we keep updating the Radon basis coefficients, how-
ever, we may gradually lose sparsity. To resolve such an
issue, we propose in section 5.3 sparse approximation algo-
rithms to re-organize the coefficients and regain sparsity.

5.1 Algorithm for Rollup Step

Given a distribution f over homogeneous space X* using
overcomplete Radon bases, we have f = Z?:o ®7*¢; where
¢;j are coefficients over j—subsets. If each ¢;(0 < j < k)
is sparse, then we can store f by only storing the nonzero
values in each c;j and their corresponding column indices,
which are j—subsets. We can represent f in another way:

f=>"%aca,
[e3

where « is a subset of size at most k, and ¢, is the coefficient
for the basis column ®,.

We now describe the algorithm for updating Radon basis
coefficients when mixing events happen. In particular, we
consider probabilistic mixing models as described in section
3.3. When a mixing event happens, we need to perform an
rollup operation: f < T*f where T* is a transition matrix
for distribution f over all k—subsets, and T* is induced from
a probability @ on permutation group Sy,. In section 4.1, we
know that the basis matrices ¢”'* commute with the action
of a distribution @ over S,. Hence, we have

k k k
TR =TF Y @0 e, = > TReI e = 3 el e
=0 i=0 Jj=0

To update f, we only need to update coefficients c;’s as
cj < T¢j, for 0 <5< k.

When tracks ¢; and ¢; mix, according to the probabilistic
mixing model in section 3.3, we have a distribution @ which
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Algorithm 1 Algorithm for Rollup Step

Input: A collection of subsets with associated values I = {(«a, cq) :
ca # 0}
Output: A collection of subsets with associated values O
Procedure:
Initialize O «+ {}
for each (a,cq) € I do
if t; €, t; €Eaort; € a,t; ¢ a then
O+ OU{(a,ca)}
elseif t; € a,t; ¢ aort; ¢ a,t; € o then
B <+ OLA{t,;, t]‘}
Retrieve value v, associated with «, if a exist in O; otherwise

set vy =0
Retrieve value vg associated with g3, if 8 exist in O; otherwise
set vg =0

O+ OU{a,vq +pca’
O« O0U{B,vg+(1—-p)cs}
end if
end for

takes nonzero values only on id and (¢;,¢;). Note that there
is a special structure within the induced transition proba-
bility matrix — each column of the transition matrix 77
has either one nonzero entry (which is 1) or two nonzero
entries (which are p and 1 — p). If we store f by using a
collection of subsets a’s with associated values c,’s, then
we can efficiently get the result of the rollup operation. In
cases where t; € a,t; € a, or t; & a,t; ¢ a, Paca will not
be affected after updating, i.e., Tk(éaca) = ®,cq; in cases
where t; € a,t; ¢ a, or t; ¢ a,t; € a, Paca will be splitted
into pco and (1 — p)ea on a and S = aA{t;, t;}, where A
denotes the symmetric difference between two sets (AAB =
(AUB)N(ANB)®), ie., TF(®aca) = Pu(pca) +Ps(1—p)ca.

We have the following theorem regarding algorithm 1.

Theorem 3 Suppose f =3 Paca, N is the number of
nonzero coefficients co’s and k is the number of red targets.
The rollup algorithm can generate output in O(kN log N)
computational time. The size of nonzero coefficients in the
output is at most 2N .

Example 4 In the example in figure 1-(b), at time t = 1
the distribution over 2—subsets can be stored by

I= {({1’ 2}5 1/2)7 ({25 3}’ 1/2)}'

After the mizing event happens between tracks 3 and 4 where
we have a probability distribution QQ over Sy:

1/2  ifo=id
Qo) =14 1/2 ifo=(3,4)
0 otherwise

The updated distribution can be stored as:

0 ={({1,2},1/2), ({2,3},1/4), ({2,4}, 1/4)}.

5.2 Algorithm for Conditioning Step

Two computation phases are involved in the condition-
ing step. First, a pointwise product needs to be computed,
and secondly, we need to compute the normalizing constant.
Note that in the observation model in section 3.4, the like-
lihood function L(z|z) are of the form:

if 7 €
Lize) ={ § Higs



Algorithm 2 Algorithm for Conditioning Step— Comput-
ing Posterior Distribution

Input: Two collection of subsets with associated values I =
{(a,ca) :ca #0},I2 = {(B,1p) : lg # 0}
Output: A collection of subsets with associated values O
Procedure:
for each (o, cq) € I do
for each (8,1g) € Iz do
if |a U B| < k then
Retrieve value v, associated with ~, if v exist in O; other-
wise set vy, =0
Y+ aUp
Uy & Vy + calp
0+ 0U{(v,v,)}
end if
end for
end for
Compute normalizing constant Z « 3 (Z:Hl‘)(‘,y

Divide each ¢ in O by Z

Such a likelihood function L(z|z) lies in the space of R(®"*).
If we define a function L; on 1—subset as follows:

Li(i) = {

it is easy to verify that L(z|z) = R“Li. We can even
express L(z|z) in a more compact way: L(z|z) = b®Py+ (a —
b) D4y

Given f(z) =}, Paca and L(z|z) = 3,5 Pscp where 3’s
are at most 1—subsets, the pointwise product is

ifj =i
ifj#i

a— %b
ip
k

f@) - L(zle) = Q] ®aca) - (D Psls) = D cals(®a - ®p),
a B a,B

where the last equality is due to the distributive law for the
pointwise product operation.

For the basis vector corresponding to o and the basis vec-
tor corresponding to 3, the pointwise product between &,
and ®3 can be estimated as:

if | U

_J ®aup
¢a'¢6“{ 0 if|au

Bl <k
Bl >k

The normalizing constant actually equals to the [ norm
of f(z) - L(z|z). If we have f(z) - L(z|z) = 3_ ®ycy, then

Z=3 |10y =% (1217)es

The algorithm for updating Radon basis coefficients when
an observation event happens is summarized in algorithm
2, which can be used to deal with general likelihood func-
tions. In the special case where the likelihood function can
be compactly represented as a linear combination of ®g and
®(;3, we have the following theorem:

Theorem 4 Suppose f =3 Paca, N is the number of
nonzero coefficients co’s and k is the number of red tar-
gets. The conditioning algorithm can generate output in
O(kNlog N) computational time. The size of nonzero co-
efficients in the output is at most 2N.

We remark that in the conditioning algorithm, the nor-
malizing step is not essential because if we do not normalize
the distribution, the result is still accurate up to a multipli-
cation constant. We may even choose a special likelihood
function L(z|z) = b®p + (a — b)Py;y where b = 1 with the
benefit that if f =)  ®aca is the prior distribution, then
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Algorithm 3 Orthogonal Matching Pursuit Algorithm

Input: Basis dictionary ®, distribution f, stopping criteria €
Output: Residual r, coefficients x, indices A
Procedure:
while ||7|| > € do
Measure correlations ¢ « ®7'r
A <+ AU {argmax; c(j)}
T 4 argmin.supp(z)ca If — @22
r<« f— oz
end while

co will not change after the conditioning step when the re-
ported target i does not belong to a.

5.3 Sparse Approximation

We have developed algorithms for updating Radon basis
coefficients at the rollup step and conditioning step. For
the rollup step, coefficients only propagate within Radon
bases of the same order while for the conditioning step coef-
ficients may propagate to Radon bases of higher orders, i.e.,
the more observations we have, the more we will be certain
about which k—subset has the red targets.

The one step rollup and conditioning algorithms are quite
scalable. As we keep updating the Radon basis coefficients
using the rollup and conditioning algorithms, however, we
may need more and more coefficients to represent the distri-
bution over all k—subsets (As revealed by theorem 3 and 4,
we may need up to two times more coefficients to character-
ize the distribution). As a result, the number of coefficients
used to represent the distribution may grow exponentially
as we proceed with the rollup steps and conditioning steps.

To overcome the exponential growth of number of bases
used in the representation, we develop an approximation al-
gorithm to re-organize the Radon basis coefficients such that
we can always keep compact representation of the distribu-
tion. This is possible since we used overcomplete Radon
bases, which for any distribution, there are more than one
way to characterize it. Thus we can search for a sparse ap-
proximation representation for the distribution if it is not
represented in a compact way.

5.3.1 Orthogonal Matching Pursuit

We note that after a series of mixing events happen, distri-
butions on the homogeneous space X * become smoother and
their energies gradually concentrate to subspaces spanned by
low order Radon bases. More precisely, for any distribution
f € L(X"), if we consider the I3 distance between f and the
orthogonal projection of f to the subspace spanned by the
columns in ®* (0 < j < k), it is easy to prove that such a
distance will decrease after each rollup step. For example,
in the special case where j = 0, it reduces to the conclusion
that the 2 distance between f and the uniform distribution
will decrease after each rollup step. In such sense, we should
introduce lower order Radon bases to see if we can more ef-
ficiently represent the distribution f after a series of mixing
events.

In [8], a greedy algorithm, Orthogonal Matching Pursuit
(OMP) (see algorithm 3) is proposed to solve the sparse



approximation problem over redundant dictionaries, which
works by greedily searching for bases most correlated with
the residual and use them to fit the distribution. The Or-
thogonal Matching Pursuit algorithm also has better theo-
retical guarantees about quality of the approximation, given
that the dictionary has smaller incoherent parameter [8].
In our case, we can use the entire overcomplete Radon ba-
sis dictionary as input basis dictionary to OMP, yet with
a large incoherent parameter. However, the computational
burden of searching a combinatorial size basis dictionary is
unaffordable. We observe that in our probabilistic mixing
model (which assumes that at each timestep only two tar-
gets may swap), targets will not get well mixed very quickly.
For example, coefficients ¢, on the set o will evenly spread
its energy to other subsets of the same size only if there is a
target i in o which well mixes with all targets in a°, with the
basis ®,_y;) being efficient in representing the distribution
after those mixing events.

As a result, we may adaptively downsample the whole
overcomplete Radon basis dictionary according to current
representation of f. Given f =37 . ®aca, we downsample
a subset of the basis dictionary, e.g., {8 : 8 C a,|a — 8] <
s,a € I} (i.e., the basis 8 which is a subset of some o € I
and B differs from a at most s elements). For example, if
s =1and a = {1,2,--- ,k} € I, then all (k — 1)-subset
of a together with « itself are sampled as candidate bases
for approximation. If we use N bases to represent f, then
we will downsample at most kN bases. With fewer bases
sampled, we also achieve a smaller incoherence parameter.

For the computational complexity of the Orthogonal Match-
ing Pursuit algorithm in our case, we note that, given f =
Za ® cq, the inner product of a basis ®3 in the basis dictio-
nary ¢ and f can be computed in polynomial time because

(P, f) = > o (Ps, Pa)ca, where
_ L GIISE) iflauBli<k
(Pg, Pa) = { el S

Solving a least square problem can also be done in polyno-
mial time because the least square solution is (®T<I>)71<I>Tf,
where estimating ®7® reduces to evaluating inner product
of two bases in the basis dictionary and estimating ®7 f re-
duces to evaluating the inner product between a basis in the
basis dictionary and f. So we have the following theorem:

Theorem 5 Suppose f =3 Paca, N is the number of
nonzero coefficients co’s and k is the number of red targets.
If we downsample at most kN bases and use OMP algo-
rithm to generate an m-term approzrimation solution, then
the complexity of the OMP algorithm is O(k* N (N 4+m)m +
(k +m)m?).

Example 5 In the example in figure 1-(b), we see that
the distribution f can be represented as

f = @{12} N 5 + q’{gyg} N 25 + @{2’4} : 25

If we run OMP on f, the basis 12 and ®112 can be iden-
tified which help us to re-organize coefficients for f as

f= ‘13‘{2} -.25 + @{1’2} -.25.

In such a simple example, the approrimation is highly accu-
rate.

33

Figure 3: A view of the simulated data.

5.3.2  Thresholding

We may also choose to do thresholding on Radon basis
coefficients to maintain sparse approximation to the distri-
bution. Such a technique is especially useful after a sequence
of observation events happen, since conditioning steps may
result in exponential decay of Radon basis coefficients.

Given f = Za P,co, where c,’s are Radon basis coeffi-
cients. If we always insist on the positiveness of the Radon
basis coefficients, then one can directly estimate the [y norm
of oo as (Ziﬂif)% Based on [; norm contribution of ®cq
to the distribution f, we can threshold off the insignificant
bases to maintain a sparse approximation of f. Such an

algorithm is quite scalable and in practice works well.

Finally we should note that OMP can help to represent
the distribution on homogeneous spaces by lower order bases
while thresholding do not have such a property.

5.4 Discussion

In this section, we give brief discussion on several issues
related to the proposed algorithms.

e FError Propogation: Whenever we do sparse approxi-
mation to approximate f by f’, we introduce errors. Mix-
ing events always shrink the approximation error ||f — f/||
which is due to the fact that mixing matrices have eigenval-
ues bounded by 1, while observation events do not. However,
we note that n independent observations of all the targets
will drive both f and f’ to converge to delta distributions.
In this sense, approximation errors can be under control.

e Sparsity Propogation: Theoretically one may need up
to two times more coefficients to represent the updated dis-
tribution. In practice, if mixing and observation events hap-
pen locally, sparsity can always be kept to a relatively low
level.

e Timing for Sparsification: In practice, we do sparsifica-
tion after a sequence of mixing events happen or a sequence
of observations happen such that the true distribution be-
comes more smooth or peaky while the coefficients used are
too many.

e Positiveness of Coefficients: Clearly, rollup and con-
ditioning algorithms will keep the positiveness of the coeffi-
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cients. However, OMP algorithm may result in approimat-
ing the distribution with negative coefficients. In practice,
we preserve positiveness of the coefficients by projecting on
the positive cone.

e Prediction: By using pseudo-inverse (®7°*)* mentioned
in section 4.1, we are able to compute the score for each tar-
get. We pick out k tracks which have the hightest scores
and predict the targets on those k tracks are red. This is
equivalent to looking at orthogonal projection of f to sub-
spaces spanned by ®1'* and find out which k—subset has the
largest weight.

o Comparative Methods: Similar as the approaches taken
in [12, 14] in studying identity management problem, we can
approximate the distribution over X* by using low order
Radon bases, i.e., f ~ R"F¢; with small j’s so that we only
store c¢; which is a vector of length (7;) Though polynomial
in n, low order Radon bases are incapable of characterizing
peaky distribuion over X*. In section 6, we will compare our
approach with using only low order Radon basis coefficients.

e k is mot known as a priori: For a more general case
where k - the number of red targets is not known as a priori,
we can still use the Radon bases to address the problem.
Essentially the rollup step and the conditioning step will be
unaffected, because we can see that the algorithm for the
rollup step is independent of k, while the algorithm for the
conditioning step can also be adapted to the case that k is
not known (we just pretend the ’if’ statement is not there).
For the sparse approximation step, we note that since the
spaces spanned by Radon bases of different orders have a
particular hierarchical structure, thus we can approximate
high (low) order Radon bases coefficients with nearing low
(high) order Radon bases coefficients, depending on the sce-
nario is highly uncertain (certain). Such an operation will
be independent of k.

e Connections between Property Management and Iden-
tity Management: As for the difference between property
management and identity management, property manage-
ment tries to infer less information and therefore can be
easier and less costly to implement. At the same time, in
many settings, information about properties can be suffi-
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cient for the network needs, e.g., to differentiate friend from
enemy.

The approach for the property management problem pro-
vides an alternative method for the identity management
problem. From a mathematical point of view, suppose we
have n targets, then we can code them using O(logn) bits
such that each identity has a unique binary code of length
O(logn). For each bit, all the targets can be classified as
either red or blue depending on whether the bit is 0 or 1.
Then based on probabilistic beliefs on each bit, we can infer
the target identity. One can generalize such an approach
where properties of the targets act as features which they
collaboratively determine the target identities.

On the other hand, it turns out that the Fourier basis coef-
ficients used for the identity management problem [11, 12]
can be collapsed to the Radon basis coefficients discussed in
this paper. The intuition is that if we have a distribution
over the permutation group (each permutation assigns tar-
get positions to the identities), and if the first k& identities
have color property red, then by summing up the probabil-
ities over all permutations such that it maps a particular
k—subset to the first k identities, i.e., we don’t care the
permutation within, essentially we are collpasing the fourier
basis coefficients for permutation groups to the Radon basis
coefficients for the homogeneous spaces. Thus, using Radon
bases to address the property management problem can be
viewed as an approach which collapse the probability dis-
tributions given by the Fourier coefficients for the identity
management problem.

6. EVALUATION

In this section, we perform several experiments to illus-
trate the effectiveness and efficiency of the proposed ap-
proach. We use the Delta3D game engine to generate sim-
ulated crowds of up to 100 moving targets wearing either
red or blue clothes and walking around in an outdoor mar-
ket [10]; figure 3 depicts a snapshot view of the simulated
crowd. Such a simulation approach allows us to obtain accu-
rate ground truth for big crowds than was feasible in usual
physical testbed. The data contains interesting movement
patterns and we can extract mixing and observation events
directly from the data. We log a mixing event whenever
two targets get close to each other within some distance
and an observation event whenever one target is separated
from all the other targets for some distance. We can control
the percentages of mixing events by adjusting the distance
parameters as well. We measure tracking errors using the
fraction of mislabeled target properties over the tracks.

We first run a small scale experiments where there are 10
targets, 5 red and 5 blue. The homogeneous space X° is of
size (V) = 252. As illustrated in figure 4, four sets of ex-
periments with different percentages of mixing events were
performed, reflecting scenarios of highly certainty to highly
confusion. For each set of experiments, we run the overcom-
plete basis algorithm and compare with using only low order
Radon basis coefficients. We measure tracking errors using
the fraction of mislabeled target properties over the tracks.
When mixing events happen rarely, using high order Radon
basis coefficients can greatly help to improve tracking accu-



Table 3: Large Scale Experiments

Methods #Targets | Tracking Errors | Running Time
n =20 0.3167 0.02(s)
1st Order Radon Basis n = 60 0.2804 0.17(s)
n = 100 0.2836 0.46(s)
n = 20 0.2977 29.79(s)
3rd Order Radon Basis n = 60 0.2845 119.45(s)
n = 100 0.2891 912.21(s)
n = 20 0.1727 29.69(s)
Overcomplete Basis n = 60 0.1751 292.90(s)
n = 100 0.1823 1342.35(s)

Table 4: Identity Management Tracking Accuracy

Methods || Fourier Approach (order) Radon Approach (#Properties)
0.3842 (1) 0.4543 (3)
n =20 0.3740 (2) 0.4189 (5)
0.3603 (3) 0.3592 (7)
0.3811 (1) 0.4428 (5)
n = 60 0.3701 (2) 0.3741 (7)
0.3595 (3) 0.3624 (9)
0.3814 (1) 0.4250 (7)
n = 100 0.3569 (2) 0.3809 (9)
0.3499 (3) 0.3447 (11)
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Figure 5: Tracking errors with large scale data.

racy; while if mixing events happen frequently, using high
order Radon basis coefficients does not help much to im-
prove tracking accuracy. This is reasonable since if mixing
events happen rarely, distributions can be well characterized
by a high order Radon basis while low order bases are not
sufficient to characterize distributions; on the other hand, if
mixing events happen frequently, distributions can be well
characterized by low order Radon bases, so using a high
order Radon basis would not provide additional benefits.
Our overcomplete basis approach uses on average about 50
bases to characterize the distribution over X°. The track-
ing accuracy is almost comparable to completely storing the
distribution on X?®, which requires storing 252 coefficients.

From the small scale experiment, we can see that there is
a fundamental trade off between the number of coefficients
used and the tracking accuracy. With more bases used, we
can track targets better, however, we can not use as many
bases as we want if the problem size goes large because in
the extreme case we would use exponentially many bases.
Moreover, the Heisenberg uncertainty principle plays an im-
portant role in our experiments. The scenario where there
are very few mixing events can be well characterized by us-
ing only the low order Radon bases; while the scenario where
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there are a lot of observation events can be well characterized
by using only the high order Radon bases. That’s why we
see greater improvements of the tracking accuracy by using
more high order Radon bases for the case where the targets
have few mixings; while there are relatively smaller improve-
ments of tracking accuracy by using more high order Radon
bases if targets are well mixed. Thus, using overcomplete
Radon basis is a good way to balance high tracking accu-
racy requirement and computational efficiency.

Our algorithm shows great benefits on tracking accuracy
and computational time in larger scale experiments. When
there are n (n > 20) targets and half of them are red, it
would be impossible to store the entire distribution f. Thus
we compare our approach with using only low order Radon
basis coefficients which approximates f, i.e., we approximate
f by R ¢; with small j. In our experiments, there are 1000
time steps and half of them are mixing events. We use up
to 100, 300 and 500 bases in the overcomplete basis algo-
rithm to characterize the distribution. From table 3, we see
that our approach improves the tracking accuracy greatly
compared with only using low order Radon basis coefficients
and the running time of our approach is comparable to using
Radon basis coefficients of order 3. We also run the large
scale experiments to see how the tracking accuracy varies
with changes of the percentages of mixing events. As shown
in figure 5, the tracking errors increase when mixing events
happen more frequently, which coincides with the intuition.
The tracking errors also increase with the increment of the
number of targets. The explanation for this is that we use
linear growing number of bases to approximate a distribu-
tion of whose size is exponentially growing.

We finally set up an experiment which compares using
the properties to infer the target identities with the exist-
ing Fourier approach for identity management problem. In
this experiment, each target has many properties (features),
which collaboratively determine its identity. It can be seen
from table 4 that the more features are used, the better
tracking accuracy can be achieved. The tracking accuracy
of two approaches are comparable.



7. CONCLUSION

In this paper, we studied the property management prob-
lem. A novel method which uses an overcomplete Radon ba-
sis dictionary to represent uncertainties is proposed. We de-
veloped scalable algorithms to efficiently update the Radon
basis coefficients, together with approximation algorithms
which maintain a sparse approximation of the true distribu-
tion. Compared with other possible methods, the proposed
approach achieves better performance in tracking accuracy
with tolerable computation overhead.
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