A Comprehensive Branch Model for Transformers

Figure 1. shows the basic equivalent circuit of transformer in respect to the complex current (I_i, I_i', I_j) , complex voltages (V_i, V_i', V_j) , complex tap ratio (t) and admittance y.

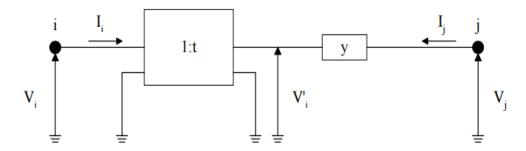


Figure 1. Transformer equivalent circuit

The voltage and current ratio can be then defined as follows:

$$V_i : V_i' = 1 : t \text{ and } I_i : I_i' = t^* : 1 \text{ due to } V_i^* I_i = V_i^{**} I_i'$$
 (T1)

where:

- * -refers to conjugate complex number
- V_i -is the complex voltage at the i end of the line i-j,
- V_i -is the complex voltage behind the ideal transformer,
- V_j -is the complex voltage at the j end of the line i-j,
- I_i -is the complex current at the i end of the line i-j,
- I_i-is the complex current behind the ideal transformer,
- I_j -is the complex current at the j end of the line i-j,
- t -refers to the complex tap ratio of the transformer.

The transformer equivalent circuit shown in Fig. 1. can be transformed to an equivalent π circuit using the following equations:

$$I_i = t^* I_i' = t^* (V_i' - V_j) y = t^* (t V_i - V_j) y = t^2 V_i y - t^* V_j y$$

$$I_{i} = (V_{i} - V_{i})y = (V_{i} - tV_{i})y = -tV_{i}y + V_{j}y$$

or in a matrix form:

$$\begin{bmatrix} I_i \\ I_j \end{bmatrix} = \begin{bmatrix} t^2 y & -t^* y \\ -t y & y \end{bmatrix} \begin{bmatrix} V_i \\ V_j \end{bmatrix}$$
 (T2)

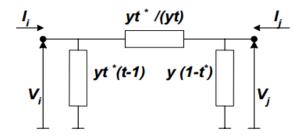


Figure 2. Comprehensive branch model for8 transformers

Based on equation (T2) a comprehensive branch model is shown in Fig. 2. It should be noted that only phase shifter transformer has $y_{ij} \neq y_{ji}$, while for all others types of transformer $t^* = t$ and consequently $y_{ij} = y_{ji}$. Besides, this branch model assumes that the transformer admittance is behind the off nominal side of transformer. Some other branch models are given in [1].

The complex line flow from node *i* to node *j* can be formulated as:

$$S_{ii} = V_i^* \{ yt^*(t-1)V_i + (V_i - V_i)yt^* \} = V_i^2t^2y - V_i^2t^*y + V_i^2t^*y - V_i^*V_it^*y$$

$$S_{ij} = V_i^2 t^2 y - V_i^* V_j t^* y \tag{T3}$$

Using polar coordinates the voltages, tap ratio and admittance can be written as follows:

•
$$V_i = V_i e^{j\theta_i}, V_i = ||V_i||, \ \theta_i = \angle V_i$$
 (T4)

$$V_j = V_j e^{j\theta_j}, V_j = ||V_j||, \theta_j = \angle V_j$$
(T5)

$$t = te^{j\theta}, t = ||t||, \theta = \angle t.$$
 (T6)

$$y = ye^{j\psi} = g + jb, \ \psi = \arctan \frac{b}{g}$$
 (T7)

Substituting the complex variables with the polar coordinates given in equations (T4-T7), equation (T3) can be rewritten as:

$$\mathbf{S}_{ij} = V_i^2 t^2 (g + \mathbf{j}b) - V_i V_j ty e^{-\mathbf{j}(\theta_i - \theta_j - \psi + \theta)}), \tag{T8}$$

در رابطه با سوال ۸۷ بررسی

سلام لطفا بدید مهندس عرب بررسی کنه ببینه بازم با افزایش تپ توان راکتیو کاهش پیدا میکنه ممنون