TER ORGANIZATION AND DESIGN

The Hardware /S oftware Interface

DAVID A.PATTERSON AND

CS5Y have gre

UnlJ

n an impressive number
wd contemporary issues into a
sted fundamentals.”

Chong, University of California,
Santa Barbara

bf multiprocessors and paral-
his well-written

ntle introduc-
s, as well 2 ny details and
n current hardware.”

standards of ©

otivatec

—John Greiner, Rice University

o computer organization hook is
pdated to provide a new focus
tionary change raking place
¢ switch from uniprocessor ro
essors. This new emphasis on
ted by npdates reflecting the
with examples highlighting the
oris and benchmarking stan-
lus editions, a MIPS processor is
nt the fundamentals of hardware
y language, computer arithmeric,
ierarchies and /O, Sections on
chitectures ate also included.

ovides a toolkit of simulators
 with tutorials for using them,
lcontent for further study and a
ding content on the CD and in

Computer Systems Design N: §78-D-12-374493-7
||I]|||||IIII|||| [N 290800

hbRGAN KAUFMANN PUBLISHERS

IMPRINT OF ELSEVIER

w.mkp.com

FREE

SOFTWARE

JOHN L. HENNESSY

INCLUDED

FOURTH EDITION FEATURES

Covers the revolutionary change from

quential to parallel computing, with a new
x_‘h.‘. I OF elism and sections in every
cha |\'r r hig shli ghring parallel hardware ¢
software 1oplcs.

Includes a new appendix by the Chief
Scientist and the Director of Architecture of
NVIDIA covering the emer
of the moderm GPU, describir
first time the highly parallel,

multiprocessor optimized for visuz {I con |p iTing,

Describes a novel approach to measuring
multicore performance—the “Roofline

model”—with benchmarks and analysis for

the AMD Opteron X4, Intel Xeon 5000, Sun

UlteaSPARC T2, and IBM Cell,

Includes new content on Flash memory and
Virrual Machines.

Provides a large. stimulating set of new
exercises, covering almaose 200 pages,
Fearures the AMD Opreron X4 and Intel
Nehalem as real-world examples throngh-
our the book.

Updates all processor perfarmance

examples using the SPEC CPU2006 suite.

Computer Hordware

Libra

NN!\\NI\)IN\WI\|ll\\HlillU\|\\lNU\)WHHNIWW\WWH\

nee and umpors
in derail for ¢

JUVMIJOS/IAIVMAYIVYH FHL

NOTSTId aNv

FDV4dddLNI

NOSTdLLY d

COMPUTER
ORGANIZATION
AND DESIGN

THE HARDWARE / SOFTWARE INTERFACE

] -

DAVID A. PATTERSON
JOHN L. HENNESSY

FREE

SOFTWARE

M ¢

MORGAN KAUFMANN

INCLUDED




F 00 ROE M EDITI1GON

Computer Organization and Design

THE HARDWARE/SOFTWARE INTERFACE



ACKNOWLEDGMENTS

Figures 1.7, 1.8 Courtesy of Other World Computing (wawwniacsales.com).

Figures 1.9, 1.19, 5.37 Courtesy of AMD.
Figure 1.10 Courtesy of Storage Technology Corp.

Figures 1,101, 1,10.2, 4.15.2 Courtesy of the Charles Babbage
Institute, University of Minnesota Libraries, Minneapolis.

Figures 1.10.3, 4.15.1, 4.13.3, 5.12.3, 6.14.2 Courtesy ol 1BM.
Figure 1.10.4 Courtesy of Cray Inc.

Figure 1.10.5 Courtesy of Apple Computer, Inc.

Figure 1.10.6 Courtesy of the Computer History Museum.
Figures 5.12.1, 5.12.2 Courtesy of Muscum of Science, Boston.
Figure 5.12.4 Courtesy of MIPS Technologies, Inc.

Figures 6.15, 6.16, 6.17 Courtesy of Sun Microsystems, Inc.
Figure 6.4 © Peg Skorpinski.

Figure 6.1-L.1 Courtesy of the Computer Muscum of America.

Figure 6.14.3 Courtesy of the Commercial Computing Museum.

Figures 7.13.1 Courtesy of NASA Ames Rescarch Cenler.

Isik University Lib

Hll\llWIU!IWNII!HIII)NlﬂIHM)\HﬂIIUIUIIHIWNNI Tl

FOURTH EDITI1ION

Computer Organization and Design

THE.-HARDWARE/SOFTWARE INTERFACE

{
David A. Patierson
University of California, Berkeley
John L. Hennessy
Stanford University
With contributions by
Perry Alexander David Kaeli Kevin Lim
The University of Kansas Northeastern University Hewlett-Packard
Peter J. Ashenden Nicole Kaiyan John Nickolls
Ashenden Designs Pty Lid University of Adelaide NVIDIA
Javier Bruguera David Kirk John Oliver
Universidade de Santiago de Compostela NVIDIA Cal Poly, San Luis Obispo
Jichuan Chang James R. Larus Milos Prvulovic
Hewlett-Packard Microsoft Research Geargia Tech
Matthew Farrens Jacob Leverich Partha Ranganathan
University of California, Davis Hewlett-Packard Hewlett-Packard

AMSTERDAM » BOSTON + HEIDELBERG * LONDON

®
NEW YORK + OXFORD * PARIS - SAN DIEGO M 4 <
SAN FRANCISCO + SINGAPORE - SYDNEY * TOKYO A

ELSEVIER Morgan Kaufmann is an imprint of Elsevier MORGAN KAUFMANN PUBLISHERS



-
3
it
o
Morgan Kaufimann Publishers is an imprint of Elsevier. i
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA e

This book is printed on acid-free paper. ’\50

Copyright © 2009 by Elsevier Ing, All rights reserved,

Designations used by companies to distinguish their products are ofien claimed as trademarks or registered tradenmarks, [n all instances in
which Morgan Kaufmann Publishers is aware of a claim, the product pames appear in initia} capital or all capital letiers, All rademarks that
appear or are otherwise referred to in this work belong to their respective awners. Neither Morgan Kaulmann Publishers nor the authors
and other contributors of this wark have any relationship or affilintion with such trademark owners nor do such trademark owners confirm,
endorse or approve the contents of this work. Readers, however, should contact the appropriate companies for more information regarding
trademarks and any related registrations.

No part of this publication may be reproduced, stored in a retricval system, or transmitted in any form or by anv means—electronic,
mechanical, photocopying, scanning, or atherwise—without prior written permissien of the publisher.

Permissions may be sought direcily from Elsevier'’s Science & Technology Rights Department in Oxford, UK: phone: (+14) 1865 843830,
fax: {+44) 1865 §53333, E-mail: permissions@elsevier.com. You may also complete your request online via the Elsevier homepage
(hup:/ielseviercomy), by setecting “Support & Contact” then “Copyright and Permission” and then "Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Patierson, David A.
Computer organization ard design : the hardware/software interface / David A. Patterson, fohn L. Hennessy. - 4th ed.
p.cm.
Includes index.
1SBN 978-0-12-374493-7 (pbk. : alk. paper}
1. Compnter organization. 2. Computer engineering. 3. Computer interfaces. 1. Hennessy, John L[4 Title.
QA76,9.C643P37 2008
004.6-dc22
2008026443

1SBIN: 976-0-12-374493-7

For informalion on all Morgan Kaufmann publications,
visit our Web site at wunvenkp.conr or wivw elsevicrdirect.com

Printed in Canada.
08 09 10 54321

Working together to grow
libraries in developing countries

wiww.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER  BOOKAID  oihre Foundation

-

To Linda,
who has been, is, and always will be the love of ry life



Contents

Preface xv
CH A PTERS

n Computer Abstractions and Technology 2

1.1 Introduction 3

1.2 Below Your Program 10

1.3 Under the Covers 13

1.4 Performance 26

1.5 The Power Wall 39

1.6 The Sea Change: The Switch from Uniprocessors to
Multiprocessors 41

1.7 Real Stuff: Manufacturing and Benchmarking the AMD
Opteron X4 44

1.8 Fallacies and Pitfalls 51

1.9 Concluding Remarks 54

e 1.10 Historical Perspective and Further Reading 55
1.11 Exercises 56

E Instructions: Language of the Computer 74

Introduction 76

Operations of the Computer Hardware 77
Operands of the Computer Hardware 80

Signed and Unsigned Numbers 87

Representing Instructions in the Computer 94
Logical Operations 102

Instructions for Making Decisions 105

Supporting Procedures in Computer Hardware 112
Communicating with People 122

MIPS Addressing for 32-Bit Immediates and Addresses 128
Parallelism and Instructions: Synchronization 137
Translating and Starting a Program 139

A C Sort Example to Put It All Together 149

ok o b

B 19 1o o 0 12 o o I N NN
S

[ S TR =N

W I



Contents

xi

Contents
2.14 Arrays versus Pointers 157
(=) 215 Advanced Material: Compiling C and Interpreting Java 161
2.16 Real Stuff: ARM Instructions 161
2.17 Real Stuff: x86 Instructions 165
218 Fallacies and Pitfalls 174
2.19 Concluding Remarks 176
) 2,20 Historical Perspective and Further Reading 179
221 Exercises 179

Arithmetic for Computers 222

3.1
32
3.3
34
35
36
3.7
3.8
39
3.10
311

Introduction 224

Addition and Subtraction 224

Multiplication 230

Division 236

Floating Point 242

Parallelism and Computer Arithmetic: Associativity 270
Real Stuff: Floating Point in the x86 272
Fallacies and Pitfalls 275

Concluding Remarks 280

Historical Perspective and Further Reading 283
Exercises 283

The Processor 298

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13
4.14
4.15
4.16

Introduction 300

Logic Design Conventions 303

Building a Datapath 307

A Simple Implementation Scheme 316

An Overview of Pipelining 330

Pipelined Datapath and Contro]l 344

Data Hazards: Forwarding versus Stalling 363

Control Hazards 375

Exceptions 384

Paratlelism and Advanced Instruction-Level Parallelism 391
Real Stuff: the AMD Opteron X4 (Barcelona) Pipeline 404
Advanced Topic: an Introduction to Digital Design

Using a Hardware Design Language to Describe and

Model a Pipeline and More Pipelining Illustrations 406
Fallacies and Pitfalls 407

Concluding Remarks 408

Historical Perspective and Further Reading 409

Exercises 409

Large and Fast: Exploiting Memory Hierarchy 450

5.1 Introduction 452

5.2 The Basics of Caches 457

5.3 Measuring and Improving Cache Performance 475

54  Virtual Memory 492

5.5 A Common Framework for Memory Hierarchies 518

5.6 Virtual Machines 525

5.7  Usinga Finite-State Machine to Control a Simple Cache 529

5.8  Parallelism and Memory Hierarchies: Cache Coherence 534

5.9  Advanced Material: Implementing Cache Controllers 538

5.10 Real Stuff: the AMD Opteron X4 (Barcelona) and Intel Nehalem
Memory Hierarchies 539

5.11 Fallacies and Pitfalis 543

5.12 Concluding Remarks 547

5.13 Historical Perspective and Further Reading 548

5.14 Exercises 548

Storage and Other /0 Topics 568

6.1 Introduction 570
6.2 Dependability, Reliability, and Availability 573
6.3 Disk Storage 575
6.4  Flash Storage 580
6.5 Connecting Processors, Memory, and /O Devices 582
6.6 Interfacing /O Devices to the Processor, Memory, and
Operating System 586
6.7 1/O Performance Measures: Examples from Disk and File Systems 596
6.8  Designing an [/O System 598
6.9 Parallelism and [/O: Redundant Arrays of Inexpensive Disks 599
6.10 Real Stuff: Sun Fire x4150 Server 606
6.11 Advanced Topics: Networks 612
6.12 Fallacies and Pitfalls 613
6.13 Concluding Remarks 617
6.14 Historical Perspective and Further Reading 618
6.15 Exercises 619

Multicores, Multiprocessors, and Clusters 630

7.1 lIntroduction 632
7.2 The Difficulty of Creating Paraltel Processing Programs 634
7.3 Shared Memory Multiprocessors 638



xii

Contents

7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

7.12
7.13
(=) 7.14
7.15

Clusters and Other Message-Passing Multiprocessors 641
Hardware Multithreading 645

SISD, MIMD, SIMD, SPMD, and Vector 643
Introduction to Graphics Processing Units 654
introduction to Multiprocessor Network Topologies 660
Multiprocessor Benchmarks 664

Roofline: A Simple Performance Model 667

Real Stuff Benchmarking Four Multicores Using the
Roofline Model 675

Fallacies and Pitfalls 684

Concluding Remarks 686

Historical Perspective and Further Reading 688
Exercises 688

APPENPDPICES

n Graphics and Computing GPUs A-2

Al
A2
Al
Ad
A5
AG
A7
A8
A9

Introduction  A-3

GPU System Architectures  A-7

Programming GPUs  A-12

Multithreaded Multiprocessor Architecture  A-25
Parallel Memory System  A-36

Floating Point Arithmetic ~ A-41

Real Stuff: The NVIDIA GeForce 8800  A-46
Real $tuff: Mapping Applications to GPUs ~ A-55
Fallacies and Pitfalls  A-72

A.10 Concluding Remarks  A-76
@ A1 Historical Perspective and Further Reading  A-77

B Assemblers, Linkers, and the SPIM Simulator B-2

B1
B.2
B3
B4
B.5
B.6
B.7
B8
B.9

Introduction  B-3

Assemblers  B-10

Linkers B-18

Loading B-19

Memory Usage B-20
Procedure Call Convention  B-22
Exceptions and Interrupts  B-33
input and Qutput  B-38

SPIM  B-40

B.10 MIPS R2000 Assembly Language  B-45
B.11 Concluding Remarks B-81
B.12 Exercises B-82

Index [-1

CD-ROM CONTENT

C@; . The Basics of Logic Design C-2

C.1 Introduction C-3

C.2  Gates, Truth Tables, and Logic Equations  C-4
C.3 Combinational Logic C-9

C4  Using a Hardware Description Language C-20
C.5 Constructing a Basic Arithmetic Logic Unit  C-26
C.6  Faster Addition: Carry Lookahead C-38

C.7 Clocks C-48

C.8 Memory Elements: Flip-Flops, Latches, and Registers  C-50
C.9 Memory Elements: SRAMs and DRAMs  C-58
C.10 Tinite-State Machines C-67

C.11 Timing Methodologies C-72

C.12 Field Programmable Devices C-78

C.13 Concluding Remarks C-79

C.14 Exercises C-80

Mapping Control to Hardware D-2

D.1 Introduction D-3

D2 Implementing Combinational Control Units  D-4

D3 Implementing Finite-State Machine Control  D-8

D4 Implementing the Next-State Function with a Sequencer  D-22
D.5  Translating a Microprogram to Hardware 1DD-28

D.6 Concluding Remarks D-32

D.7 Exercises D-33

A Survey of RISC Architectures for Desktop,
Server, and Embedded Computers E-2

E.l Introduction E-3
E.2  Addressing Modes and Instruction Formats  E-5
E3 Instructions: The MIPS Core Subset  E-9



Xiv

Contents

E4
E5

EG
E7
ES8
E9
E.10
E.l1
E.12
E.13
E.l4
E.15
E.16
E17
@ Glossary G-1

Instructions; Multimedia Extensions of the
Desktop/Server RISCs  E-16

Instructions: Digital Signal-Processing Extensions of the
Embedded RISCs  E-19

Instructions: Common Extensions to MIPS Core  E-20
Instructions Unique to MIPS-64  E-25

[nstructions Unique to Alpha  E-27

Instructions Unique to SPARCv.9  E-2%

[nstructions Unique to PowerPC  E-32

Instructions Unique to PA-RISC 2.0 E-34
Instructions Unique to ARM ~ E-36

Instructions Unique to Thumb  E-38

[nstructions Unique to Supertl  E-39

Instructions Unique to M32R  E-40

Instructions Unique to MIPS-16  E-40

Concluding Remarks  E-43

@ Further Reading  FR-1

Preface

The most beautiful thing we can experience is the mysterious,
It is the source of all trie art and science.

Albert Einstein, What 1 Believe, 1930

About This Book

We believe that learning in computer science and enginecring should reflect the
current state of the field, as well as introduce the principles that are shaping com-
puting. We also feel that readers in every specialty of computing need to appreciate
the organizational paradigms that determine the capabilities, performance, and,
ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing spe-
cialty to understand both hardware and software. The interaction between hard-
ware and software at a variety of levels also offers a framework for understanding
the fundamentals of computing. Whether your primary interest is hardware or
software, computer science or electrical engineering, the central ideas in computer
organization and design are the same. Thus, our emphasis in this book is to show
the relationship between hardware and software and to focus on the concepts that
are the basis for current computers.

The recent switch from uniprocessor to multicore microprocessors confirmed
the soundness of this perspective, given since the first edition. While programmers
could ignore the advice and rely on computer architects, compiler writers, and
silicon engineers to make their programs run faster without change, that era is over.
For programs to run faster, they must become parallel. While the goal of many
researchers is to make it possible for programmers to be unaware of the underlying
parallel nature of the hardware they are programming, it will take many years to
realize this vision. Our view is that for at least the next decade, most programmers
are going to have to understand the hardware/software interface if they want
programs to run efficiently on parallel computers.

The audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization as
well as readers with backgrounds in assembly language and/or logic design who
want to learn how to design a computer or understand how a system works and
why it performs as it does.
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About the Other Bock

.
Some readers may be familiar with Computer Architecture: A Quantitative A pproach,
popularly known as Hennessy and Patterson. (This book in turn is often called
Patterson and Hennessy.) Qur motivation in writing the carlier book was to describe
the principles of computer architecture using solid engineering fundamentals and
quantitative cost/performance tradeoffs. We used an approach that combined exam-
ples and measurements, based on commercial systems, to create realistic design
experiences. Our goal was to demonstrate that computer architecture could be
learned using quantitative methodologies instead of a descriptive approach. It was
intended for the serious computing professional who wanted a detailed under-
standing of computers.

A majority of the readers for this book do not plan to become computer archi-
tects. The performance and energy efficiency of future software systems will be
dramatically affected, however, by how well software designers understand the basic
hardware techniques at work in a system. Thus, compiler writers, operating system
designers, database programmets, and most other software engineers need a firm
grounding in the principles presented in this book. Similatly, hardware designers
must understand clearly the effects of their work on software applications.

Thus, we knew that this book had to be much more than a subset of the material
in Computer Architecture, and the material was extensively revised to match the
different audience. We were so happy with the result that the subsequent editions
of Computer Architecture were revised to remove most of the introductory mate-
rial; hence, there is much less overlap today than with the first editions of both
books.

Changes for the Fourth Edition

We had five major goals for the fourth edition of Computer Organization and
Design: given the multicore revolution in microprocessors, highlight parallel
hardware and software topics throughout the book; streamline the existing mate-
rial to make room for topics on parallelism; enhance pedagogy in general; update
the technical content to reflect changes in the industry since the publication of the
third edition in 2004; and restore the usefulness of exercises in this Internet age.
Before discussing the goals in detail, let’s look at the table on the next page. It
shows the hardware and software paths through the material. Chapters 1, 4, 5,and
7 are found on both paths, no matter what the experience or the focus. Chapter 1
is a new introduction that includes a discussion on the importance of power and
how it mativates the switch from single cose to multicore microprocessors. It also
includes performance and benchmarking material that was a separate chapter in
the third edition. Chapter 2 is likely to be review material for the hardware-oriented,
but it is essential reading for the software-oriented, especially for those readers
interested in learning more about compilers and object-oriented programming

Preface xvii
Chapter or appendix Sections Software focus Hardware focus

1. Computer Abstractions _11t01.8 = =neEy
and Technology @ 1.10 (History) o= o
2110214 = =2rc

2. Instructions: Language [ 2.15 (Compilers & Java) =
of the Computer 21610 2.19 Ee =T
@ 2.20 History) o o

E. RISC Instruction-Set Architectures m E1toEAQ o
3. Arithmetic for Computers 2l 10 3.9 =X =
@ 3.10 {History) o b pud
C. The Basics of Logic Design @ citocis =
4.1 (Overview) = ==
4.2 (Logic Gonventions) =re
4.3 10 4.4 {Simple Implementation) @Y w=rey
4.5 {Pipelining Overview) =y =rey
4. The Processor 4.6 (Pipelined Datapath) -y =ex
4.7 t0 4.9 (Hazards, Exceptions) =rar
4.10to 4.11 (Parallel, Real Siuff) ey =reEy
| @ 4.12 (Verilog Pipeline Control) faaey
4.13 1o 4.14 (Fallacies) =rey =re
@ 4.15 (History) o
D. Mapping Conitrol to Hardware @ D1toD6 b g g
5.1105.8 =re =rer
5. Large and Fast: Exploiting @so (Verilog Cache Contraller) o
Memory Hierarchy 51010 5.12 == =rey
@ 5.13 (History) o= [
6.1t06.10 prged p g
6. Storage and @) 6.11 (Networks) popud b pwd
Other I/0 Topics 6.121t06.13 =y haw g wd
| 6.14 (Histoy) o= o
7. Multicores, Multiprocessors, 7117.13 e =
and Clusters _ﬁ 7.14 (History) b pwd b pwd
A. Graphics Processor Units Alto A2 ppwg p g

B. Assemblers, Linkers, and B.1toB.12

jargusg X

the SPIM Simulator

Read carefully — ==re
Review or read BN

Read if have time XX Relerence
Read for culture 2

pi puicg



Preface

languages. It includes material from Chapter 3 in the third edition so that the
complete MIPS architecture is now in a single chapter, minus the floating-point
instructions. Chapter 3 is for readers interested in constructing a datapath or in
learning more about floating-point arithmetic. Some will skip Chapter 3, either
because they don'’t need it or because it is a review. Chapter 4 combines two chap-
ters from the third edition to explain pipelined processors. Sections 4.1, 4.5, and
4.10 give overviews for those with a software focus. Those with a hardware focus,
however, will find that this chapter presents core material; they may also, depend-
ing on their background, want to read Appendix C on logic design firsi. Chapter 6
on storage is critical to readers with a software focus, and should be read by others
if time permits. The last chapter on multicores, multiprocessors, and clusters is
mostly new content and should be read by everyone.

The first goal was to make parallelisin a first class citizen in this edition, as it
was a separate chapter on the CD in the last edition. The most obvious example is
Chapter 7. In particular, this chapter introduces the Roofline performance model,
and shows its value by evaluating four recent multicore architectures on two
kernels. This model could prove to be as insightful for multicore microprocessors
as the 3Cs model is for caches,

Given the importance of parallelism, it wasn't wise to wait until the last chapter
to talk about, so there is a section on parallelism in each of the preceding six
chapters:

W Chapter I: Parallelisnt and Power, Tt shows how power limits have forced the
industry to switch to parallelism, and why parallelism helps.

B Chapter 2: Parallelism and [nsiructions: Synchronization. This section dis-
cusses locks for shared variables, specifically the MIPS instructions Load
Linked and Store Conditional.

W Chapter 3: Parallelisn and Computer Arithmetic: Floating-Point Associativiry.
This section discusses the challenges of numerical precision and floating-
point calculations.

m Chapter 4: Parallelism and Advanced Instruction-Level Parallelisn. 1t
covers advanced [LP—superscalar, speculation, VLIW, loop-unrolling, and
0O00—as well as the relationship between pipeline depth and power
consumption.

m Chapter5: Parallefisn and Memory Hierarchies: Cache Caherence. Itintroduces
coherency, consistency, and snooping cache protocols.

B Chapter 6: Paralielism and 1/0: Redundant Arrays of Inexpeusive Disks. 1t
describes RAID as a parallel 1/O system as well as a highly available [CO
systen.

Preface
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Chapter 7 concludes with reasons for optimism why this foray into parallelism
should be more successful than those of the past.

[ am particularly excited about the addition of an appendix on Graphical
Processing Units written by NVIDIA's chief scientist, David Kirk, and chief archi-
tect, Jolin Nickolls. Appendix A is the first in-depth description of GPUs, which
is a new and interesting thrust in computer architecture. The appendix builds
upon the parallel themes of this edition to present a style of computing that allows
the programmer to think MIMD yet the hardware tries to execute in SIMD-style
whenever possible. As GPUs are both inexpensive and widely available—they are
even found in many laptops—and their programming environments are freely
available, they provide a parallel hardware platform that many could experiment
with.

The second goal was to streamline the book to make room for new material in
parallelism. The first step was simply going through all the paragraphs accumulated
over threc editions with a fine-toothed comb to see if they were still necessary. The
coarse-grained changes were the merging of chapters and dropping of topics. Mark
Hill suggested dropping the multicycle processor implementation and instead
adding a multicycle cache controller to the memory hierarchy chapter. This allowed
the processor to be presented in a single chapter instead of two, enhancing the
processor material by omission. The performance material from a separate chapter
in the third edition is now blended into the first chapter.

The third goal was to improve the pedagogy of the book. Chapter 1 is now
meatier, including performance, integrated circuits, and power, and it sets the stage
for the rest of the book. Chapters 2 and 3 were originally written in an evolutionary
style, starting with a “single celled” architecture and ending up with the full MIPS
architecture by the end of Chapter 3. This leisurely style is not a good match to the
modern reader. This edition merges all of the instruction set material for the integer
instructions into Chapter 2—making Chapter 3 optional for many readers—and
each section now stands on its own. The reader no longer needs to read all of the
preceding sections. Hence, Chapter 2 is now even better as a reference than it was in
prior editions. Chapter 4 works better since the processor is now a single chapter, as
the multicycle implementation is a distraction today. Chapter 5 has a new section
on building cache controllers, along with a new CD section containing the Verilog
code for that cache.

The accampanying CD-ROM introduced in the third edition allowed us to
reduce the cost of the boolk by saving pages as well as to go into greater depth on
topics that were of interest to some but not all readers. Alas, in our enthusiasm
to save pages, readers sometimes found themselves going back and forth between
the CD and book more ofien than they liked. This should not be the case in this
edition. Each chapter now has the Historical Perspectives section on the CD and
four chapters also have one advanced material section on the CD. Additionally, all
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exercises are in the printed book, so flipping between book and CD should be rare
in this edition. .

For those of you who wonder why we include a CD-ROM with the book,
the answer is simple: the CD contains content that we feel should be easily and
immediately accessible to the reader no matter where they are. If you are interested
in the advanced content, or would like to review a VHDL tutorial {for example), it
is on the CD, ready for you to use. The CD-ROM also includes a feature that should
greatly enhance your study of the material: a search engine is included that allows
you to search for any string of text, in the printed book or on the CD itself. If you
are hunting for content that may not be included in the book’s printed index, you
can simply enter the text you're searching for and the page number it appears on
will be displayed in the search results. This is a very useful feature that we hope you
make frequent use of as you read and review the book.

This is a fast-moving field, and as is always the case for our new editions, an
important goal is to update the technical content. The AMD Opteron X4 model
2356 (code named “Barcelona”) serves as a running example throughout the book,
and is found in Chapters 1,4, 5, and 7. Chapters 1 and 6 add results from the new
power benchmark from SPEC. Chapter 2 adds a section on the ARM architec-
ture, which is currently the world’s most popular 32-bit ISA. Chapter 5 adds a new
section on Virtual Machines, which are resurging in importance. Chapter 5 has
detailed cache performance measurements on the Opteron X4 multicore and a
few details on its rival, the Intel Nehalem, which will not be announced until afier
this edition is published. Chapter 6 describes Flash Memory for the first time as
well as a remarkably compact server from Sun, which crams 8 cores, 16 DIMMs,
and 8 disks into a single 1U bit. It also includes the recent results on long-term
disk failures, Chapter 7 covers a wealth of topics regarding parallelism—including
multithreading, SIMD, vector, GPUs, performance models, benchmarks, multipro-
cessor networks—and describes three multicores plus the Opteron X4: Intel Xeon
model e5345 (Clovertown), IBM Cell model Q520, and the Sun Microsystems T2
model 5120 (Niagara 2).

The final goal was to try to make the exercises useful to instructors in this Internet
age, for homework assignments have long been an important way to learn material.
Alas, answers are posted today almost as soon as the book appears. We have a two-
part approach. First, expert contributors have worked to develop entirely new
exercises for each chapter in the book. Second, most exercises have a qualitative
description supported by a table that provides several alternative quantitative
parameters needed to answer this question. The sheer number plus flexibility in
terms of how the instructor can choose to assign variations of exercises will make
it hard for students to find the matching solutions online. Instructors will also be
able to change these quantitative parameters as they wish, again frustrating those
students who have come o rely on the Internet to provide solutions for a static and
unchanging set of exercises. We feel this new approach is a valuable new addition
to the book—please let us know how well it works for you, either as a student or
instructor!

Preface

We have preserved useful book elements from prior editions. To make the book
work better as a reference, we still place definitions of new terms in the margins
at their first occurrence. The book element called “Understanding Program Per-
formance™ sections helps readers understand the performance of their programs
and how to improve it, just as the “Hardware/Software Interface” book element
helped readers understand the tradeoffs at this interface. “The Big Picture” section
remains so that the reader sees the forest even despite all the trees. “Check Yoursel”
sections help readers to confirm their comprehension of the material on the first
time through with answers provided at the end of each chapter. This edition also
includes the green MIPS reference card, which was inspired by the “Green Card” of
the IBM System/360. The removable card has been updated and should be a handy
reference when writing MIPS assembly language programs.

Instructor Support

We have collected a great deal of material to help instructors teach courses using this
book. Solutions to exercises, chapter quizzes, figures from the book, lecture notes,
lecture slides, and other materials are available to adopters from the publisher.
Check the publisher’s Web site for more information:

texthooks.elsevier.coni/9780123744937

Concluding Remarks

If you read the following acknowledgments section, you will see that we went to
great lengths to correct mistakes. Since a book goes through many printings, we
have the opportunity to male even more corrections, If you uncover any remaining,
resilient bugs, please contact the publisher by electronic mail at coddbugs@mkp.
cont or by low-tech mail using the address found on the copyright page.

This edition marks a break in the long-standing collaboration between Hennessy
and Patterson, which started in 1989. The demands of running one of the world’s
great universities meant that President Hennessy could no longer make the sub-
stantial commitment to create a new edition. The remaining author felt like a jug-
gler who had always performed with a partner who suddenly is thrust on the stage
as a solo act. Hence, the people in the acknowledgments and Berkeley colleagues
played an even larger role in shaping the contents of this book. Nevertheless, this
time around there is only one author to blame for the new material in what you
are about to read.
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David Weaver.
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Introduction

Welcome to this book! We're delighted to have this opportunity to convey the

excitement of the world of computer systems. This is not a dry and dreary field,

com puter where progress is glacial aj}d whe.re new ideas.atrophy from neglect. No! Comput-

ers are the product of the incredibly vibrant information technology industry, ali

- aspects of which are responsible for almost 10% of the gross national product of

Abstractlons the United States, and whose economy has become dependent in part on the rapid

improvements in information technology promised by Moore’s law. This unusual

industry embraces innovation at a breathtaking rate. In the last 25 years, there have

a“d TeCh“0|ogy been a number of new computers whose introduction appeared to revolutionize

Civilization advances the computing industry; these revolutions were cut short only because someone
else built an even better computer.

by extendm-g the 11 Introduction 3 This race to innovate has led to unprecedented progress since the inception of
number OfliﬂpOTTL’Hlt 1.2 Below Your Program 10 electronic computing in the late 1940s. Had the transportation industry kept pace

111 i 1.3 Under the Covers 13 with the computer industry, for example, today we could travel friom New York
operations which we to London in about a second for roughly a few cents. Take just a moment to

1.4 Performance 26

cait perform without contemplate how such an improvement would change society—living in Tahiti

thinking about them 15 The Power Wall 39 while working in San Francisco, going to Moscow for an evening at the Bolshoi
1.6 The Sea Change: The Switch from Ballet—and you can appreciate the implications of such a change.
Alfred North Whitehead Uniprocessors to Multiprocessors 41

An Introduction to Mathenatics, 1911
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Computers have led to a third revolution for civilization, with the information
revolution taking its place alongside the agricultural and the industrial revolu-
tions. The resulting multiplication of humankind’s intellectual strength and reach
naturally has affected our everyday lives profoundly and changed the ways in which
the search for new knowledge is carried out. There is now a new vein of scientific
investigation, with computational scientists joining theoretical and experimental
scientists in the exploration of new frontiers in astronomy, biology, chemistry, and
physics, among others.

The computer revolution continues. Each time the cost of computing improves
by another factor of 10, the opportunities for computers multiply. Applications
that were economically infeasible suddenly become practical. In the recent past, the
following applications were “computer science fiction.”

m Computers in automobiles: Until microprocessors improved dramatically in
price and performance in the early 1980s, computer control of cars was ludi-
crous. Today, computers reduce pollution, improve fuel efficiency via engine
controls, and increase safety through the prevention of dangerous skids and
through the inflation of air bags to protect occupants in a crash.

m Cell phones: Who would have dreamed that advances in computer systems
would lead to mobile phones, allowing person-to-person communication
almost anywhere in the world?

W Husan genome project: The cost of computer equipment to map and ana-
lyze human DNA sequences is hundreds of millions of dollars. It's unlikely
that anyone would have considered this project had the computer costs been
10 to 100 times higher, as they would have been 10 to 20 years ago. More-
over, costs continue to drop; you may be able to acquire your own genome,
allowing medical care to be tailored to you.

m World Wide Web: Not in existence at the time of the frst edition of this book,
the World Wide Web has transformed our society. For many, the WWW has
replaced libraries.

m Search engines: As the content of the WWW grew in size and in value, find-
ing relevant information became increasingly important. Today, many peo-
ple rely on search engines for such a large part of their lives that it would be a
hardship te go without them.

Clearly, advances in this technology now affect almost every aspect of our soci-
ety. Hardware advances have allowed programmers to create wonderfully useful
software, which explains why computers are omnipresent. Today’s science fiction
suggests tomorrow’s killer applications: already on their way are virtual worlds,
practical speech recognition, and personalized health care.

1.1 iIntroduction

Classes of Computing Applications and Their Characteristics

Although a common set of hardware technologies (see Sections 1.3 and 1.7) is used
in computers ranging from smart home appliances to cell phones to the largest
supercomputers, these different applications have different design requirements
and employ the core hardware technologies in different ways. Broadly speaking,
computers are used in three different classes of applications.

Desktop computers are possibly the best-known form of computing and are
characterized by the personal computer, which readers of this book have likely used
extensively. Desktop computers emphasize delivery of good performance to single
users at low cost and usually execute third-party software, The evolution of many
computing technologies is driven by this class of computing, which is only about
30 years old!

Servers are the modern form of what were once mainframes, minicomputers,
and supercomputers, and are usually accessed only via a network. Servers are ori-
ented to carrying large workloads, which may consist of either single complex
applications—usually a scientific or engineering application—or handling many
small jobs, such as would occur in building a large Web server. These applications
are usually based on software from another source (such as a database or simula-
tion system), but are often modified or customized for a particular function. Serv-
ers are built from the same basic technology as desktop computers, but provide for
greater expandability of both computing and input/output capacity. In general,
servers also place a greater emphasis on dependability, since a crash is usually more
costly than it would be on a single-user desktop computer,

Servers span the widest range in cost and capability. At the low end, a server
may be little more than a desktop computer without a screen or keyboard and
cost a thousand dollars. These low-end servers are typically used for file storage,
small business applications, or simple Web serving (see Section 6.10). At the other
extreme are supercomputers, which at the present consist of hundreds to thou-
sands of processors and usually terabytes of memory and petabytes of storage, and
cost miliions to hundreds of millions of dollars. Supercomputers are usually used
for high-end scientific and engineering calculations, such as weather forecasting,
oil exploration, protein structure determination, and other large-scale problems.
Although such supercomputers represent the peak of computing capability, they
represent a relatively small fraction of the servers and a relatively small fraction of
the overall computer market in terms of total revenue.

Although not called supercomputers, Internet datacenters used by companies
like eBay and Google also contain thousands of processors, terabytes of memory,
and petabytes of storage. These are usually considered as large clusters of comput-
ers (see Chapter 7).

Embedded computers are the largest class of computers and span the wid-
est range of applications and performance. Embedded computers include the

desktop computer

A computer designed
for use by an individual,
usually incorporating a
graphics display, a key-

board, and & mouse.

server A computer

used for running larger
programs for multiple
users, often simultaneously,
and typically accessed only
via a network.

supercomputer A class
of computers with the
highest performance and
cost; they are configured
as servers and {ypically
cost millions of dollars.

terabyte Originally
1,099,511,627,776 (2')
bytes, although some
communications and
sccondary storage systems
have redefined it to mean
1,000,000,000,000 (10™)
bytes.

petabyte Depending
on the situatien, either
1000 or 1024 terabytes.

datacenter A reom or
building designed to
handle the power, cooling,
and networking needs of
a large number of servers.

embedded computer

A computer inside
another device used

for running one
predetermined application
or collection of software.
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microprocessors found in your car, the computers in a cell phone, the computers
in a video game or television, and the networks of processors that control a mod-
ern airplane or cargo ship. Embedded computing systems are designed to run one
application or one set of related applications, that are normally integrated with
the hardware and delivered as a single system; thus, despite the large number of
embedded computers, most users never really see that they are using a computer!

Figure 1.1 shows that during the last several years, the growth in cell phones that
rely on embedded computers has been much faster than the growth rate of desktop
computers. Note that the embedded computers are also found in digital TVs and
set-top boxes, automobiles, digital cameras, music players, video games, and a
variety of other such consumer devices, which further increases the gap between
the number of embedded computers and desktop computers.

I Cell Phones @ PCs [ TVsl

FIGURE 1.1 The number of cell phones, personal computers, and televisions manufactured
per year between 1997 and 2007, (We have television data only from 2004.) More than a bitlion new
celt phones were shipped in 2006. Cell phones sales exceeded PCs by only a facter of 1.4 in 1997, but the
ratio grew to 4.5 in 2007. The total number in use in 2004 is estimated to be about 2.0B televisions, 1.8B cell
phones, and 0.8 PCs. As the world population was about 6.4B in 2004, there were approximaiely one PC,
2.2 celf phones, and 2.5 televisions for every eight people on the planet. A 2006 survey of ULS. families found
that they owned on average 12 gadgets, including three 'TVs, 2 PCs, and other devices such as game consoles,
MDP3 players, and cell phones.

1.1 Introduciion

Embedded applications often have unique application requirements that
combine a minimum performance with stringent limitations on cost or power. For
example, consider a music player: the processor need only be as fast as necessary to
handle its limited function, and beyond that, minimizing cost and power are the
most important objectives. Despite their low cost, embedded computers often have
lower tolerance for failure, since the results can vary from upsetting (when your
new television crashes) to devastating (such as might occur when the computer in
a plane or cargo ship crashes). In consumer-oriented embedded applications, such
as a digital home appliance, dependability is achieved primarily through simplic-
ity—the emphasis is on doing one function as perfectly as possible. In large embed-
ded systems, techniques of redundancy from the server world are often employed
{see Section 6.9). Although this book focuses on general-purpose computers, most
concepts apply directly, or with slight modifications, to embedded computers.

Elaboration: Elaborations are short sections used throughout the text to provide more
detail on a particular subject that may be of interest. Disinterested readers may skip
over an elaboration, since the subsequent material will never depend on the contents
of the elaboration.

Many embedded processors are designed using processor cores, a version of a proces-
sor written in a hardware description language, such as Verilog or VHDL (see Chapter 4).
The core ailows a designer to integrate other application-specific hardware with the pro-
cessor core for fabrication on a single chip.

What You Can Learn in This Book

Successful programmers have always been concerned about the performance of
their programs, because getting results to the user quickly is critical in creating
successful software, In the 1960s and 1970s, a primary constraint on computer
performance was the size of the computer’s memory. Thus, programmers often
followed a simple credo: minimize memory space to make programs fast. In the
last decade, advances in computer design and memory technology have greatly
reduced the importance of small memory size in most applications other than
those in embedded computing systems.

Programmers interested in performance now need to understand the issues
that have veplaced the simple memory model of the 1960s: the parallel nature of
processors and the hierarchical nature of memories. Programmers who seel to build
competitive versions of compilers,operating systems, databases,and evenapplications
will therefore need to increase their knoewledge of computer organization.

We are honored to have the opportunity to explain what's inside this revolution-
ary machine, unraveling the software below your program and the hardware under
the covers of your computer. By the time you complete this book, we believe you
will be able to answer the following questions:
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multicore
microprocesser A
MiCroprocessor containing
multiple processors
(“cores™) in a single
integrated circuit.

acronym A word
constructed by taking the
initial letters of a string of
words, For example:
RAM s an acronym for
Random Access Memory,
and CPU is an acronym
for Central Processing
Unit.

m How are programs written in a high-level language, such as C or Java, trans-
lated into the language of the hardware, and how does the hardware execute
the resulting program? Comprehending these concepts forms the basis of
understanding the aspects of both the hardware and software that affect
program performance.

m What is the interface between the software and the hardware, and how does
software instruct the hardware to perform needed functions? These concepts
are vital to understanding how to write many kinds of software.

m What determines the performance of a program, and how can a program-
mer improve the performance? As we will see, this depends on the original
program, the software translation of that program inte the computer’s
language, and the effectiveness of the hardware in executing the program.

B What techniques can be used by hardware designers to improve performance?
This book will introduce the basic concepts of modern computer design. The
interested reader will find much more material on this topic in our advanced
book, Computer Architecture: A Quantitative Approach.

®m What are the reasons for and the consequences of the recent switch from
sequential processing to parallel processing? This bool gives the motivation,
describes the current hardware mechanisms to support parallelism, and
surveys the new generation of “multicore” microprocessors (see Chapter 7).

Without understanding the answers to these questions, improving the perfor-
mance of your program on a modern computer, or evaluating what features might
make one computer better than another for a particular application, will be a
complex process of trial and error, rather than a scientific procedure driven by
insight and analysis.

This first chapter lays the foundation for the rest of the book. It introduces the
basic ideas and definitions, places the major components of software and hardware
in perspective, shows how to evaluate performance and power, introduces inte-
arated circuits (the technology that fuels the computer revolution), and explains
the shift to multicores.

in this chapter and later ones, you will likely see many new words, or words
that you may have heard but are not sure what they mean. Don’t panic! Yes, there
is a lot of special terminology used in describing modern computers, but the ter-
minology actually heips, since it enables us to describe precisely a function or
capability. [n addition, computer designers (including your authors) love using
acronyms, which are ensy to understand once you know what the letters stand for!
To help you remember and locate terms, we have included a highlighted defini-
tion of every term in the margins the first time it appears in the text. After a short
time of working with the terminology, you will be fluent, and your friends will
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM,
PCIE, SATA, and many others.

1.1 Introduction

To reinforce how the software and hardware systems used to run a program will
affect performance, we use a special section, Understanding Program Performance,
throughout the book to summarize important insights into program performance.
The first one appears below.

The performance of a program depends on a combination of the effectiveness of
the algorithms used in the program, the software systems used to create and trans-
late the program into machine instructions, and the effectiveness of the computer
in executing those instructions, which may include input/output {1/Q) operations.
This table summarizes how the hardware and software affect performance.

How this component affects Where is this
component performance topic covered?

Algorithm Determines both the number of source-level | Other books!
statements and the number of 170 operations
executed

Determines the number of computer
instructlons for each source-level statement

Programming language, Chapters 2 and 3

compiler, and architecture
Processor and memory system | Determines how fast instructions can be
executed

Chapters 4,5, and 7

Determines how fast /O operations may be | Chapter 6
aperating system) executed

Check Yourself sections arc designed to help readers assess whether they compre-
hend the major concepts introeduced in a chapter and understand the implications
of those concepts. Some Check Yourself questions have simple answers; others are
for discussion among a group. Answers to the specific questions can be found at
the end of the chapter. Check Yourself questions appear only at the end of a section,
making it easy to skip them if you are sure you understand the material.

1. Section 1.1 showed that the number of embedded processors sold every year
greatly outnumbers the number of desktop processors. Can you confirm or
deny this insight based on your own experience? Try to count the number of
embedded processors in your home. How does it compare with the number
of desktop computers in your home?

=]

As mentioned earlier, both the software and hardware affect the performance
of a program. Can you think of examples where each of the following is the
right place to look for a performance bottleneck?

m Thealgorithm chosen

m The programming language or compiler
m The operating system

® The processor

B The I/O system and devices

Understanding
Program
Performance

Check
Yourself
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thent in Freuch; [ never
did succeed i imaking
those idiots understand
their owit language.

Mark Twain, The
nnocents Abroad, 1869

systems software
Sofrware that provides
services that are
commonly useful,
including operating
systems, compilers,
loaders, and assemblers.

operating system
Supervising program that
manages the resources of
a computer for the benefit
of the programs that run
on that computer.

Below Your Program

A typical application, such as a word processor or a large database system, may
consist of millions of lines of code and rely on sophisticated software libraries that
implement complex functions in support of the application. As we will see, the
hardware in 2 computer can only execute extremely simple low-level instructions,
To go from a complex application to the simple instructions involves several layers
of software that interpret or translate high-level operations into simple computer
instructions.

Figure 1.2 shows that these layers of software are organized primarily in a hier-
archical fashion, with applications being the outermost ring and a variety of
systems software sitting between the hardware and applications software.

There are many types of systemns software, but two types of systems sofiware are
central to every computer system today: an operating system and a compiler. An
operating system interfaces between a user’s program and the hardware and pro-
vides a variety of services and supervisory functions. Among the most impaortant
functions are

B Handling basic input and output operations
m Allocating storage and memory

& Providing for protected sharing of the computer among muitiple applications
using it simultaneously.

Examples of operating systems in use today are Linux, MacOS, and Windows.

e
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FIGURE 1.2 A simplified view of hardware and software as hierarchical fayers, shown as
concentric circles with hardware in the center and applications software outermost. In
complex applications, there are often mudtiple layers of application soltware as well. For example, a database
system may run on top of the systems software hosting an application, which in turn runs on top of the
datahase.
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Compilers perform another vital function: the translation of a program written
in a high-level language, such as C, C++, Java, or Visual Basic into instructions
that the hardware can execute. Given the sophistication of modern programming
languages and the simplicity of the instructions executed by the hardware, the
translation from a high-level language program to hardware instructions is
complex. We give a brief overview of the process here and then go into more depth
in Chapter 2 and Appendix B,

From a High-Level Language to the Language of Hardware

To actually speak to electronic hardware, you need to send electrical signals. The
easiest signals for computers to understand are on and off; and so the computer
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit
how much can be written, the two letters of the computer alphabet do not limit
what computers can do. The two symbols for these two letters are the numbers 0
and 1, and we commonly think of the computer language as numbers in base 2, or
binary imunibers. We refer to each “letter” as a binary digit or bit. Computers are
slaves to our commands, which are called instructions. Instructions, which are just
collections of bits that the computer understands and obeys, can be thought of as
numbers. For example, the bits

1000110010106000

tell one computer to add two numbers. Chapter 2 explains why we use numbers
for instructions and data; we don't want to steal that chapter’s thunder, but using
numbers for both instructions and data is a foundation of computing.

The first programimers communicated to computers in binary numbers, but this
was so tedious that they quickly invented new notations that were closer to the way
humans think. At first, these notations were translated to binary by hand, but this
process was still tiresome. Using the computer to help program the computer, the
pioneers invented programs to translate from symbaolic notation to binary. The first
of these programs was named an assembler, This program translates a symbolic
version of an instruction into the binary version. For example, the programmer
would write

add A,B
and the assembler would translate this notation into

1000110010100000

This instruction tells the computer to add the two numbers A and B. The name
coined for this symbolic language, still used today, is assembly language, In con-
trast, the binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the
notations a scientist might like to use to simulate fluid flow or that an accountant
might use to balance the books. Assembly language requires the programmer

compiler A program
that translates high-levet
language statements
into assembly language
statements.

binary digit Also called
a bit. One of the twa
numbers in base 2 (0 or 1)
that are the components
of information.

instruction A command
that computer hardware
understands and obceys.

assembler A program
that trapslates a symbolic
version of instructions
into the binary version.

assembly language
A symbolic representation
of machine instructions.

machine language
A binary representation of
machinc instructions.
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high-level
programming
language A portable
language such as C, Ci+,
Java, or Visual Basic that
is composed of words
and algebraic notation
that can be translated by
a compiler into assembly
language.

to write one line for every instruction that the computer will follow, forcing the
programmer to think like the computer. '

The recognition that a program could be written to translate a more powerful
language into computer instructions was one of the great breakthroughs in the
early days of computing. Programmers today owe their productivity—and their
sanity—to the creation of high-level programming languages and compilers that
translate programs in such languages into instructions. Figure 1.3 shows the rela-
tionships among these programs and languages.

High-level swap(int v[]. int k)
language lint temp:

program temp = v[k]:

(in C) vik]} = v[k+1]:

v[k+l] = temp;

!

Assembly swap:

language muli 32, $5,4

program add %2, $4,32
{for MIPS) v $15, 0(%2)

Tw 816, 4(32)
sk $16, 0(3$2)
swo $15, 4(32)
jr $31

Assembler

Binary machine  00000000101000010000000000011000

language 000C0000006110000001100000100001
pragram 10001100011000100000000000000000
{for MIPS) 10001100111100100000000000000100

10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

FIGURE 1.3 C progr iled into bly language and then bled into binary
machine language. Although the translation from high-level language to binary machine language is
shown in two sieps, some compilers cut out the middleman and produce binary machine linguage direcily.

These languages and this program are examined in more detail in Chapter 2.
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A compiler enables a programmer to write this high-level language expression:
A+ B
The compiler would compile it into this assembly language statement:

add A,B

As shown above, the assembler would translate this statement into the binary
instructions that tell the computer to add the two numbers A and B.

High-level programming languages offer several important benefits. First, they
allow the programmer to think in a more natural language, using English words
and algebraic notation, resulting in programs that look much more like text than
like tables of cryptic symbols (see Figure 1.3). Moreover, they allow languages to be
designed according to their intended use. Hence, Fortran was designed for scientific
computation, Cobol for business data processing, Lisp for symbol manipulation,
and so on. There are also domain-specific languages for even narrower groups of
users, such as those interested in simulation of fluids, for example.

The second advantage of programming languages is improved programmer
productivity. One of the few arcas of widespread agreement in software develop-
ment is that it takes less time to develop programs when they are written in
languages that require fewer lines to express an idea. Conciseness is a clear
advantage of high-level languages over assembly language.

The final advantage is that programming languages allow programs to be inde-
pendent of the computer on which they were developed, since compilers and
assemblers can translate high-level language programs to the binary instructions
of any computer. These three advantages are so strong that today little program-
ming is done in assembly fanguage.

Under the Covers

Now that we have looked below your program to uncover the underlying software,
let’s open the covers of your computer to learn about the underlying hardware, The
underlying hardware in any computer performs the same basic functions: inputting
data, outputting data, processing data, and storing data, How these functions are
performed is the primary topic of this book, and subsequent chapters deal with
different parts of these four tasks.

When we come to an important point in this book, a point so important
that we hope you will remember it forever, we emphasize it by identifving it as a
Big Picture item. We have about a dozen Big Pictures in this book, the first being
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the five components of a computer that perform the tasks of inputting, outputting,
processing, and storing data. .

The five classic components of a computer are input, output, memory,

datapath, and contral, with the last two sometimes combined and called

the processor. Figure 1.4 shows the standard organization of a computer.

The BIG ' This organization is independent of hardware technology: you can place

Picture every piece of every computer, past and present, into one of these five cat-

egories. To help you keep all this in perspective, the five components of a

computer are shown on the front page of each of the following chapters,
with the portion of interest to that chapter highlighted.

Campiler

o

Intertace @_’

Computer

© AR
Dalapa1h

Evaluating R . <

performance p lh TE :

Pracessor Memary

FIGURE 1.4 The or of a p , showing the five classic components. The
processor gets instructions and data frem memory. Input writes data to memory, and oulput reads data
{rom memory. Contrel sends the signals that determine the operations of the datapath, memory, inpw, and
oulput.
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FIGURE 1.5 A desktop computer. The liquid crystal display (LCD) screen is the primary output
device, and the keyboard and mouse are the primary input devices. On the right side is an Ethernet
cable that connected the laptop 10 the network and the Web. The laptop contains the processor, memary,
and additional [/O devices. This system is a Macbook Pro 15" laptop connected to an external display.

Figure 1.5 shows a computer with keyboard, wireless mouse, and screen. This
photograph reveals two of the key components of computers: input devices, such
as the keyboard and mouse, and output devices, such as the screen. As the names
suggest, input feeds the computer, and output is the result of computation sent to
the user. Some devices, such as networks and disks, provide both input and output
to the computer.

Chapter 6 describes input/output (I/O) devices in more detail, but let’s take an
introductery tour through the computer hardware, starting with the external [/O
devices,

input device

A mechanisn through
which the computer is fed
information, such as the
keyboard or mouse.

output device

A mechanism that
conveys the result of a
computation to a user or
another computer.
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1 got the idea for the
niouse while attending
a talk at a compiter
conference. The speaker
was 5o boring that [
started daydreaming
and hit upon the idea.

Doug Engelbart

Through computer
displays I have landed
an airplane on the deck
of a noving carrier,
observed a nuclear
particle ltit a potential
well, flown in a rocket
at nearly the speed of
light and watched a
computer reveal fts
innermost workings.

Ivan Sutherland, the
“father” of computer
graphics, Seientific
Aunerican, 1984

liquid crystal display

A display technology
using a thin layer of liquid
pelymers that can be used
ta transmil or block tight
according to whethera
charge is applied.

active matrix display

A liquid crystal display
using a transistor (0
control the transmission
of light at each individual
pixel.

pixel The smallest
individual picture element.
Screens are composed of
hundreds of thousands

to millions of pixels,
organized in a matrix.

Anatomy of a Mouse

Although many users now take mice for granted, the idea of a pointing device such
as a mouse was first shown by Doug Engelbart using a research prototype in 1967.
The Alto, which was the inspiration for all workstations as well as for the Macintosh
and Windows OS, included a mouse as its pointing device in 1973. By the 1990s, all
desktop computers included this device, and new user interfaces based on graphics
displays and mice became the norm.

The original mouse was electromechanical and used a large ball that when rolled
across a surface would cause an xand y counter to be incremented. The amount of
increase in each counter told how far the mouse had been moved.

The electromechanical mouse has largely been replaced by the newer all-optical
mouse. The optical mouse is actually a minjature optical processor including an
LED to provide lighting, a tiny black-and-white camera, and a simple optical pro-
cessor. The LED illuminates the surface underneath the mouse; the camera takes
1500 sample pictures a second under the illumination. Successive pictures are sent
to a simple optical processor that compares the images and determines whether
the mouse has moved and how far. The replacement of the electromechanical
mouse by the electro-optical mouse is an illustration of a common phenomenon
where the decreasing costs and higher reliability of electronics cause an electronic
solution to replace the older electromechanical technology. On page 22 we'll see
another example: flash memory.

Through the Looking Glass

The most fascinating /O device is probably the graphics display. All laptop and
handheld computers, calculators, cellular phones, and almost all desktop comput-
ers now use liquid crystal displays (LCDs) to get a thin, low-power display.
The LCD is not the source of light; instead, it controls the transmission of light.
A typical LCD includes rod-shaped molecules in a liquid that form a twisting
lelix that bends light entering the display, from either a light source behind the
display or less often from reflected light. The rods straighten out when a current is
applied and no longer bend the light. Since the liquid crystal material is between
two screens polarized at 90 degrees, the light cannot pass through unless it is bent.
Today, most LCD displays use an active matrix that has a tiny transistor switch at
cach pixel to precisely control current and make sharper images. A red-green-blue
mask associated with each dot on the display determines the intensity of the three
color components in the final image; in a color active matrix LCD, there are three
transistor switches at each point.

The image is composed of a matrix of picture elements, or pixels, which can be
represented as a matrix of bits, called a bit map. Depending on the size of the screen
and the resolution, the display matrix ranges in size from 640 x 480 to 2560 x [600
pixels in 2008, A color display might use 8 bits for each of the three colors (red,
Dblue, and green), for 24 bits per pixel, permitting millions of different colors to be
displayed.
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The computer hardware support for graphics consists mainly of a raster refresh
buffer, or frame buffer, to store the bit map. The image to be represented onscreen is
stored in the frame buffer, and the bit pattern per pixel is read out to the graphics
display at the refresh rate. Figure 1.6 shows a frame buffer with a simplified design
of just 4 bits per pixel.

Frame bufter

Raster scan CRT display

Yo +——

f
Xg X Xo X

FIGURE 1.8 Each coordinate in the frame buffer on the left determines the shade of
the corresponding coordinate for the raster scan CRT display on the right. Pixel (X, Y
contains the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (XY

The goal of the bit map is to faithfully represent what is on the screen. The
challenges in graphics systems arise because the human eye is very good at detecting
even subtle changes on the screen.

Opening the Box

1f we open the box containing the computer, we see a fascinating board of thin
plastic, covered with dozens of small gray or black rectangles. Figure 1.7 shows the
contents of the laptop computer in Figure 1.5. The motherboard is shown in the
upper part of the photo. Two disk drives are in front—the hard drive on the lefr and
a DVD drive on the right. The hole in the middle is for the laptop battery.

The small rectangles on the motherboard contain the devices that drive our
advancing technology, called integrated circuits and nicknamed chips, The board
is composed of three pieces: the piece connecting to the [/O devices mentioned
earlier, the memory, and the processor.

The memory is where the programs are kept when they are running; it also
contains the data needed by the running programs. Figure 1.8 shows that memory
is found on the two small boards, and each small memory board contains eight
integrated circuits. The memory in Figure 1.8 is built from DRAM chips. DRAM

maotherboard

A plastic board containing
packages of integrated
circuits or chips, including
processor, caclie, memory,
and cannectors for L/O
devices such as networks
and disks.

integrated circuit Also
called a chip, A device
combining dozens to
millions of transistors,

memory The storage
arca in which programs
are kept when they are
running and that contains
the data needed by the
rUnNning programs.
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Hard drive Processor Fanwith  8Spot for Spot for Motherboard Fan with  DVD drive
cover memory battery cover
DIMMs

FIGURE 1.7 Inside the laptop computer of Figure 1,5. The shiny box with the white label on the lower left is a 100 GB SATA
hard disk drive, and the shiny metal box on the lower right side is the DVD drive. The hole between them is where the laptop battery would
be Jocated. The small bole above the battery hole is for memory DIMMs. Figure 1.8 is a clasc-up of the DIMMs, which are inserted from the
bottom in this laptap. Above the battery hole and DVD drive is a printed circuit board (PC board), called the urotherboard, which contains
most of the elsctronics of the computer. The two shiny circles in the upper half of the picture are two fans with covers. The processor is the
large raised rectangle just below the Jeft fan, Photo caurtesy of OtherWorldComputing.com.
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stands for dynamic random access memory. Several DRAMs are used together
to contain the instructions and data of a program. In contrast to sequential access
memaories, such as magnetic tapes, the RAM portion of the term DRAM means that
memory accesses take basically the same amount of time no matter what portion
of the memory is read.

FIGURE 1.8 Close-up of the bottom of the laptop r 15 the Y. The main memory is
contairied on one or more small boards shown en the left. The hole for the battery is to the right. The DRAM
chips are mounted on these boards (called DIMMs, for dual inline memory modules) and then plugged into
the connectors. Photo courtesy of OtherWorldComputing.com.

The processor is the active part of the board, following the instructions of a pro-
gram to the letter. It adds numbers, tests numbers, signals I/O devices to activate,
and so on. The processor s under the fan and covered by a heat sink on the left
side of Figure 1.7. Occasionally, people call the processor the CPU, for the more
bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of a micro-
processor. The processor logically comprises two main components: datapath and
control, the respective brawn and brain of the processor. The datapath performs
the arithmetic operations, and control tells the datapath, memory, and 1/0 devices
what to do according to the wishes of the instructions of the program. Chapter 4
explains the datapath and control for a higher-performance design.

dynamic random access
memory (DRAM)
Memory built as an
integrated circuit; it
provides random access to
any location.

dual inline memory
module (DIMM)

A small board that
contains DRAM chips on
both sides. (SIMMs have
DRAMs on only one side.)

central processor

unit (CPU) Also called
processor. The active part
of the computer, which
contains the datapath and
control and which adds
numbers, tests numbers,
signals I/O devices to
activate, and so on.

datapath The
comporent of the
processor that performs
arithmetic operations

control The component
of the processor that
commands the datapath,
memory, and 1O devices
according to the instruc-
tions of the program.
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FIGURE 1.9 Inside the AMD B: I icropi

The lefi-hand side is a microphotograph of the AMD Barcelona processor

chip, and the right-hand side shows the major blocks in the processor. This chip has four processors or "cores™ The microprocessor in the
laptop in Figure 1.7 has 1wo cores per chip, called an Intel Core 2 Duo.

cache memory A small,
fast memory that actsasa
buffer for a slower, larger
memory.

static random access
memory (SRAM) Also
memory built as an
integrated circuit, but
faster and less dense than
DRAM.

abstraction A model
that renders lower-level
details of computer
systems temporarily
invisible to facilitate
design of sophisticated
systems.

Descending into the depths of any component of the hardware reveals insights
into the computer. Inside the processor is another type of memory—cache mem-
ory. Cache memory consists of a small, fast memory that acts as a buffer for the
DRAM memory. (The nontechnical definition of cache is a safe place for hiding
things.) Cache is built using a different memory technology, static random access
memory (SRAM). SRAM is faster but less dense, and hence more expensive, than
DRAM (see Chapter 5).

You may have noticed a common theme in both the software and the hardware
descriptions: delving into the depths of hardware or software reveals more infor-
mation or, conversely, lower-level details are hidden to offer a simpler model at
higher levels. The use of such layers, or abstractions, is a principal technique for
designing very sophisticated computer systems.

One of the most important abstractions is the interface between the hard-
ware and the lowest-level software. Because of its importance, it is given a special
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name: the instruction set architecture, or simply architecture, of a computer.
The instruction set architecture includes anything programmers need to know
to make a binary machine language program work correctly, including instructions,
1/0 devices, and so on. Typically, the operating system will encapsulate the details
of doing /O, allocating memory, and other low-level system functions so that
application programmers do not need to worry about such details. The combina-
tion of the basic instruction set and the operating system interface provided for
application programmers is called the application binary interface (ABI).

An instruction set architecture allows computer designers to talk about func-
tions independently from the hardware that performs them. For example, we
can talk about the functions of a digital clock (keeping time, displaying the time,
setting the alarm) independently from the clock hardware {quartz crystal, LED
displays, plastic buttons). Computer designers distinguish architecture from an
implementation of an architecture along the same lines: an implementation is
hardware that obeys the architecture abstraction. These ideas bring us to another
Big Picture.

1ayer hrdmg details from the level above. This principle of abstraction is
the way both hardware demgners and software designers cope with the
complexity of computer systems. One key interface between the levels
of abstraction is the iustruction ser architecture—the interface between
the hardware and low-level software. This abstract interface enables
many implementations of varying cost and performance to run identical
software,

A Safe Place for Data

Thus far, we have seen how to input data, compute using the data, and display
data. If we were to lose power to the computer, however, everything would be lost
because the memory inside the computer is volatile—that is, when it loses power,
it forgets. In contrast, a DVD doesn’t forget the recorded film when you turn off the
power to the DVD player and is thus a nonvolatile memory technology.

To distinguish between the volatile memory used to hold data and programs
while they are running and this nonvolatile memory used to store data and pro-
grams between runs, the term main memory or primary memory is used for the

instruction set
architeciure Also

called architecture, An
abstract interface between
the hardware and the
lowest-level software

that encompasses all the
information necessary to
write a machine language
program that will run
correctly, including
instructions, registers,
memery access, /O, ...

applicatien binary
interface (ABI) The user
portion of the instruction
set plus the operating
system interfaces used by
application programmers.
Defines a standard for
binary portability across
computers.

implementation
Hardware that obeys the
architecture abstraction.

the BIG

Picture

volatile memory Stor-
age, such as DRAM, that
retaing data only if it is
recetving power.

nonvolatile memory

A form of memory that
retains data even in

the absence of a power
source and that is used to
store programs between
runs. Magnetic disk is
nonvolatile.

main memory Also
called primary memory,
Memory used to hold
programs while they are
running; typically consists
of DRAM in today’s
compulers.
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secondary memory
Nonvolatile memory
used to storc programs
and data between runs;
typically consists of mag-
netic disks in today's
computers.

magnetic disk Also
called hard disk. A form
of nonvolatile secondary
memory composed of
rotating platters coated
with a magnetic recording
material.

flash memory

A noonvolatile semi-
conductor memory. It

is cheaper and slower
than DRAM but more
expensive and faster than
magnetic disks.

former, and secondary memory for the latter. DRAMSs have dominated main
memory since 1975, but magnetic disks have dominated secondary memeory
since 1965. The primary nonvolatile storage used in all server computers and
worlkstations is the magnetic hard disk. Flash memory, a nonvolatile semiconduc-
tor memory, is used instead of disks in mobile devices such as cell phones and is
increasingly replacing disks in music players and even laptops.

As Figure 1.10 shows, a magnetic hard disk consists of a callection of platters,
which rotate on a spindle at 5400 to 15,000 revolutions per minute. The metal
platters are covered with magnetic recording material on both sides, similar to the
material found on a cassette or videotape. To read and write information on a hard
disk, a movable arn containing a small electromagnetic coil called a read-write
Iead is located just above each surface. The entire drive is permanently sealed to
control the environment inside the drive, which, in turn, allows the disk heads to
be much closer to the drive surface.

FIGURE 1.10 A disk showing 10 disk platters and the read/write heads.
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Diameters of hard disks vary by more than a factor of 3 today, from | inch to
3.5 inches, and have been shrunk over the years to fit into new products; workstation
servers, personal computers, laptops, palmtops, and digital cameras have all inspired
new disk form factors. Traditionally, the widest disks have the highest performance
and the smallest disks have the lowest unit cost. The best cost per gigabyte varies.
Although most hard drives appear inside compuers, as in Figure 1.7, hard drives
can also be attached using external interfaces such as universal serial bus (USB).

The use of mechanical components means that access times for magnetic disks
are much slower than for DRAMs: disks typically take 5-20 milliseconds, while
DRAMs take 50-70 nanoseconds—making DRAMs about 100,000 times faster. Yet
disks have much lower costs than DRAM for the same storage capacity, because the
production costs for a given amount of disk storage are lower than for the same
amount of integrated circuit, In 2008, the cost per gigabyte of disk is 30 to 100
times less expensive than DRAM.

Thus, there are three primary differences between magnetic disks and main
memory: disks are nonvolatile because they are magnetic; they have a slower
access time because they are mechanical devices; and they are cheaper per gigabyte
because they have very high storage capacity at a modest cost.

Many have tried to invent a technology cheaper than DRAM but faster than
disk to All that gap, but many have failed. Challengers have never had a product to
market at the right time. By the time a new product would ship, DRAMs and disks
had continued to male rapid advances, costs had dropped accordingly, and the
challenging product was immediately obsolete.

Flash memory, however, is a sericus challenger. This semiconductor memory
is nonvolatile like disks and has about the same bandwidth, but latency is 100 to
1000 times faster than disk. Flash is popular in cameras and portable music players
because it comes in much smaller capacities, it is more rugged, and it is more
power efficient than disks, despite the cost per gigabyte in 2008 being about 6 to 10
times higher than disk. Unlike disks and DRAM, flash memory bits wear out after
100,000 to 1,000,000 writes. Thus, file systems must keep track of the number of
writes and have a strategy to avoid wearing out storage, such as by moving popular
data. Chapter 6 describes flash in more detail.

Although hard drives are not removable, there are several storage technologies
in use that include the following:

m Optical disks, including both compact disks (CDs) and digital video disks
(DVDs), constitute the most common form of removable storage. The Blu-
Ray (BD) optical disk standard is the heir-apparent to DVD.

m Flash-based removable memory cards typically attach to a USB connection
and ate often used to transfer files.

®m Magnetic tape provides only slow serial access and has been used to back up
disks, a role now often replaced by duplicate hard drives.

gigabyte Traditionally
1,073,741,824 (2™}

bytes, although some
communications and
sccondary storage systems
have redefined it to mean
1,000,000,000 (10”) bytes.
Similarly, depending on
the context, megabyic iy
either 2 o1 10 bytes.
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Optical disk technology works differently than magnetic disk technology. In
a CD, data is recorded in a spiral fashion, with individual bits being recorded by
burning small pitls—approximately 1 micron (107 meters) in diameter—into the
disk surface. The disk is read by shining a laser at the CD surface and determining
by examining the reflected light whether there is a pit or flat (reflective) surface.
DVDs use the same approach of bouncing a laser beam off a series of pits and flat
surfaces. In addition, there are multiple layers that the laser beam can focus on, and
the size of each bit is much smaller, which together increase capacity significantly.
Blu-Ray uses shorter wavelength lasers that shrink the size of the bits and thereby
increase capacity.

Optical disk writers in personal computers use a laser to make the pits in the
recording layer on the CD or DVD surface. This writing process is relatively slow,
taking from minutes (for a full CD) to tens of minutes (for a full DVD). Thus,
for large quantities a different technique called pressing is used, which costs only
pennies per optical disk.

Rewritable CDs and DVDs use a different recording surface that has a crystal-
line, reflective material; pits are formed that are not reflective in a2 manner similar
to that for a write-once CD or DVD. To erase the CD or DVD, the surface is heated
and cooled slowly, allowing an annealing process to restore the surface recording
layer to its crystalline structure. These rewritable disks are the most expensive, with
write-once being cheaper; for read-only disks—used to distribute software, music,
or movies—both the disk cost and recording cost are much lower.

Communicating with Other Computers

We've explained how we can input, compute, display, and save data, but there is
still one missing item found in today’s computers: computer networks. Just as the
processor shown in Figure 1.4 is connected to memory and 1/0 devices, networks
interconnect whole computers, allowing computer users to extend the power of
computing by including communication. Networks have become so popular that
they are the backbone of current computer systems; a new computer without an
optional network interface would be ridiculed. Networked computers have several
major advantages:

N Conununication: Information is exchanged between computers at high speeds.

W Resource sharing: Rather than each computer having its own /O devices,
devices can be shared by computers on the networl.

® Noulocal access: By connecting computers over long distances, users need not
be near the computer they are using.

Networks vary in length and performance, with the cost of communication
increasing according to both the speed of communication and the distance that
information travels. Perhaps the most popular type of network is Etherner. It can
be up to a kilometer long and transfer at upto 10 gigabits per second. Its length and
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speed make Ethernet useful to connect computers on the same floor of a building;
hence, it is an example of what is generically called a local area network. Local area
networks are interconnected with switches that can also provide routing services
and security. Wide area networks cross continents and are the backbone of the
Internet, which supports the World Wide Web. They are typically based on optical
fibers and are leased from telecommunication companies,

Networks have changed the face of computing in the last 25 years, both by
becoming much more ubiquitous and by making dramatic increases in perfor-
mance. In the 1970s, very few individuals had access to electronic mail, the internet
and Web did not exist, and physically mailing magnetic tapes was the primary way
to transfer large amounts of data between two locations. Local area networks were
almost nonexistent, and the few existing wide area networks had limited capacity
and restricted access.

As networking technology improved, it became much cheaper and had a much
higher capacity. For example, the first standardized local area network technology,
developed about 25 years ago, was a version of Ethernet that had a maximum
capacity (also called bandwidth) of 10 million bits per second, typically shared
by tens of, if not a hundred, computers. Today, local area network technology
offers a capacity of from 100 million bits per second to 10 gigabits per second,
usually shared by at most a few computers. Optical communications technology
has allowed similar growth in the capacity of wide area networks, from hundreds
of kilobits to gigabits and from hundreds of computers connected to a worldwide
network to millions of computers connectedl. This combination of dramatic rise in
deployment of networking combined with increases in capacity have made network
technology central to the information revolution of the last 25 years.

For the last decade another innovation in networking is reshaping the way com-
puters communicate. Wireless {echnology is widespread, and laptops now incorpo-
rate this technology. The ability to make a radio in the same low-cost semiconductor
technology (CMOS) used for memory and microprocessors enabled a significant
improvement in price, leading to an explosion in deployment. Currently available
wireless technologies, called by the IEEE standard name 802.11, allow for transmis-
sion rates from | to nearly 100 million bits per second. Wireless technology is quite
a bit different from wire-based networks, since all users in an immediate area share
the airwaves,

B Semiconductor DRAM and disk storage differ significantly. Describe the
fundamental difference for each of the following: volatility, access time,
and cost.

Technologies for Building Processors and Memory

Processors and memory have improved at an incredible rate, because computer
designers have long embraced the latest in electronic technology to try to win the
race to design a better computer. Figure 1.11 shows the technologies that have been

focal area network
{LAN) A network
designed to carry data
within a geographically
confined area, typically
within asingle building.
wide area network
(WAN) A network
extended over hundreds
of kilometers that can
span a continent.

Check
Yourself
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vacuum tube An
clectronic component,
predecessor of the
transistor, thal consists of
i hollow glass tube about
5to 10 em long from
which as much air has
been removed as possible
and that uses an electron
beam to transfer data.

transistor An on/off
switch controlied by an
electric signal.

very large-scale
integrated {(VLSI)
circuit A device con-
taining hundreds of
thousands ta millions of
Lransistors.

used over time, with an estimate of the relative performance per unit cost for
each technology. Section 1.7 explores the technology that has fueled the compuler
industry since 1975 and will continue to do so for the foreseeable future. Since this
technology shapes what computers will be able to do and how quickly they will
evolve, we believe all computer professionals should be familiar with the basics of
infegrated circuits.

Technology used in computers Relative performance/unit cost

1951 | Vacuum tube 1
1965 | Transistor 35
1875 | Integrated circuit 200
1995 | Very large-scale integrated circuit 2,400,000 T
2005 | Uitra large-scale integrated circuit 6,200.000,000
FIGURE 1.11 Relative performance per unit cost of technel used in cc ters over

time. Source: Computer Museum, Boston, with 2005 extrapolated by the authors, See Section 110 an the CD.

A transistor is simply an on/off switch controlled by electricity. The inte-
grated eircuit (IC) combined dozens to hundreds of transistors into a single
chip. To describe the tremendous increase in the number of transistors from
hundreds to millions, the adjective very large seale is added to the term, creating the
abbreviation VLS, for very large-scale integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.12
shows the growth in DRAM capacity since 1977, For 20 years, the industry has
consistently quadrupled capacity every 3 years, resulting in an increase in excess
of 16,000 times! This increase in transistor count for an integrated circuit is popu-
larly known as Moore’s law, which states that transistor capacity doubles every
18-24 months. Moore’s law resulted from a prediction of such growth in IC
capacity made by Gordon Moore, one of the founders of Intel during the 1960s.

Sustaining this rate of progress for almost 40 years has required incredible
innovation in manufacturing technigues. In Section 1.7, we discuss how to manu-
facture integrated circuits.

Performance

Assessing the performance of computers can be quite challenging. The scale and
intricacy of modern software systems, together with the wide range of perfor-
mance improvement techniques employed by hardware designers, have made per-
formance assessment much more difficult.

When trying to choose among different computers, performance is an important
attribute. Accurately measuring and comparing different computers is critical to
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FIGURE 1.12 Growth of capacity per DRAM chip over time. 'Ihe y-uxis is measured in Kilobits,
where K= 1024 (2"), The DRAM industry quadrupled capacity almost every three years, + 68% increase per
vear, for 20 years. fn recent years, the rate has slowed down and is somewhat closer to doubling every two
years to three years.

purchasers and therefore to designers. The people selling computers know this as
well. Often, salespeople would like you to see their computer in the best possible
light, whether or not this light accurately reflects the needs of the purchaser’s
application. Hence, understanding how best to measure performance and the
limitations of performance measurements is important in selecting a computer.

The rest of this section describes different ways in which performance can be
determined; then, we describe the metrics for measuring performance from the
viewpoint ol both a computer user and a designer. We also look at how these metrics
are related and present the classical processor performance equation, which we will
use throughout the text.

Defining Performance

When we say one computer has better performance than another, what do we
mean? Although this question might seem simple, an analogy with passenger
airplanes shows how subtle the question of performance can be. Figure 1.13 shows
some typical passenger airplanes, together with their cruising speed, range, and
capacity. If we wanted to know which of the planes in this table had the best per-
formance, we would first need to define performance. For example, considering
different measures of performance, we see that the plane with the highest cruising
speed is the Concorde, the planc with the longest range is the DC-8, and the planc
with the largest capacity is the 747,

Let's suppose we define performance in terms of speed. This still leaves two possi-
ble definitions. You could define the fastest plane as the one with the highest cruising
speed, taking a single passenger from one point to another in the least time. If you
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response time Also
called execution time,
The total time required
for the computer to
complete a task, including
disk accesses, memory
accesses, [/O activities,
operating system aver-
head, CPU execution
time, and so on.

throughput Also called
bandwidth. Another
measure of performance,
itis the number of tasks
completed per unil time.

Passenger | Cruising range | Cruising speed | Passenger throughput
Airplane capacity (miles) (m. ) (passengers x m.p.h.)
I ] O ]

Boeing 777 4630 228,750
Boeing 747 ~ a0 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 T 178,200
Douglas DC-8-50 146 8720 544 79.424

FIGURE 1.13 The capacity, range, and speed for a number of commaerciail airplanes. The lust
column shows the rate at which the airplane transports passeagers, whiclt is the capacity times the cruising
speed (ignoring range and takeoff and landing times).

were interested in transporting 450 passengers from one point to another, however,
the 747 would clearly be the fastest, as the last column of the figure shows. Similarly,
we can define computer performance in several different ways.

If you were running a program on two different desktop computers, you'd say that
the faster one is the desktop computer that gets the job done first. 1f you were running
a datacenter that had several servers running jobs submitted by many users, you'd say
that the faster computer was the one that completed the most jobs during a day.
As an individual computer user, you are interested in reducing response time—the
time between the start and completion of a task—also referred to as execution time.
Datacenter managers are often interested in increasing throughput or bandwidth—
the total amount of wotk done in a given time. Hence, in most cases, we will need
different performance metrics as well as different sets of applications to benchmark
embedded and desktop computers, which are more focused on response time, versus
servers, which are more focused on throughput.

Throughput and Response Time
Do the following changes to a computer system increase throughput, decrease
response time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors
for separate tasks—for example, searching the World Wide Web

Decreasing response time almost always improves throughput. Hence, in case 1,
both response time and throughput are improved. In case 2, no one task gets

work done faster, so only throughput increascs.

' If, however, the demand for processing in the second case was almost as large

as the throughput, the system might force requests to queue up. In this case,

reduce the waiting time in the queue. Thus, in many real computer systems,
changing either execution time or throughput often affects the other.

| increasing the throughput could also improve response time, since it would
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In discussing the performance of compurers, we will be primarily concerned
with response time for the first few chapters. To maximize performance, we want
to minimize response time or execution time for some task. Thus, we can relate
performance and execution lime for a computer X:

Performance, = ‘1—
X Execution time,

This means that for two computers X and Y, if the performance of X is greater
than the performance of Y, we have

Performance\ > Pcrfommncc‘,

1 1
T - > - -
Execution tlmex Execution tl]ﬂ@\,

Execution time, > Execution time,

That is, the execution time on Y is longer than that on X, if X is faster than Y.

In discussing a computer design, we often want to retate the performance of two
different computers quantitatively. We will use the phrase “X is 11 times faster than
Y"—or equivalently “X is 1 times as fast as Y"—to mean

Performance,
Performan ce, B

IE X is 1 times faster than Y, then the exccution tinic on Y is # times longer than it is
on X:

PerformnnccV Execution time,

Perfornmnce‘. Execution rime‘ -

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same
program in )5 seconds, how much faster is A than B?

We know that A is n times faster than B if

Perform:mcc\ Exccution time,,

= — =
Performance" Execution tume,

Istk Univercity Library
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(ZPU execution time
Also called CPU time,
The actual time the CPU
spends compuling for a
specific task.

user CPU time The
CPU time speni in a
program itself.

system CPU time
The CPU time spent in
the operating system
performing tasks on
behalf of the program.

Thus the performance ratio is

and A is therefore 1.5 times faster than B.

Tn the abeve example, we could also say thal computer B is 1.5 times slower thau
computer A, since

Performance
[ N I
Performance,
means that
Performance,
= Performance
1.5 B

For simplicity, we will normally use the terminology faster than when we try to
compare computers quantitatively. Because performance and execution time are
reciprocals, increasing performance requires decreasing execution time. To avoid
the potential confusion between the terms increasing and decreasing, we usually
say “improve performance” or “improve execution time” when we mean “increase
performance” and “decrease execution time.”

Measuring Performance

Time is the measure of computer performance: the computer that performs the
same amount of work in the least time is the fastest. Program execittion tme is
measured in seconds per program. However, time can be defined in different ways,
depending on what we count, The most straightforward definition of time is called
wall clack time, response tiie, or elapsed time. These terms mean the total time
to complete a task, including disk accesses, memory accesses, input/output (110)
activities, operating system overhead—everything.

Computers are often shared, however, and a processor may work on several
programs simultaneously. In such cases, the system may try to optimize through-
put rather than attempt to minimize the elapsed time for one program. Hence,
we often want to distinguish between the elapsed time and the time that the
processor is working on our behalf. CPU execution time or simply CPU time,
which recognizes this distinction, is the time the CPU spends computing for this
task and does not include time spent waiting for /O or running other programs.
(Remember, though, that the response time experienced by the user will be the
elapsed time of the program, not the CPU time.) CPU time can be further divided
into the CPU time spent in the program, called user CPU time, and the CPU time
spent in the operating system performing tasks on behalf of the program, called
system CPU time, Differentiating between system and user CPU time is difficult to
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do accurately, because it is often hard to assign responsibility for operating system
activities to one user program rather than another and because of the functionality
differences among operating systems.

For consistency, we maintain a distinction between performance based on
elapsed time and that based on CPU execution time. We will use the term system
performance to refer to elapsed time on an unloaded system and CPU performance
to refer to user CPU time. We will focus on CPU performance in this chapter,
although our discussions of how to summarize performance can be applied to
either clapsed time or CPU time measurements.

Different applications are sensitive to different aspects of the performance of a
computer system. Many applications, especially those running on scrvers, depend
as much on I/O performance, which, in turn, relies on both hardware and software.
Total elapsed time measured by a wall clock is the measurement of interest. In
some application environments, the user may care about throughput, response
time, or a complex combination of the two (e.g., maximum throughput with a
worst-case response time), To improve the performance of a program, one must
have a clear definition of what performance metric matters and then proceed to
look for performance bottlenecks by measuring program execution and looking
for the likely bottlenecks. In the following chapters, we will describe how to search
for bottlenecks and improve performance in various parts of the system.

Although as computer users we care about time, when we examine the details
of a computer it’s convenient to think about performance in other metries. In par-
ticular, computer designers may want to think about a computer by using a inea-
sure that relates to how fast the hardware can perform basic functions. Almost al
computers are constructed using a clock that determines when events take place in
the hardware. These discrete time intervals are called clock cycles (or ticks, clock.
ticks, clock periods, clocks, cycles). Designers refer to the length of a clock period
both as the time for a complete clock cyele (e.g., 250 picoseconds, or 250 ps) and as
the clock rate {e.g., 4 gigahertz, or 4 GHz}, which is the inverse of the clock peried.
In the next subsection, we will formalize the relationship between the clock cycles
of the hardware designer and the seconds of the computer user.

1. Suppose we know that an application that uses both a desktop client and a
remote server is limited by network performance. For the following changes,
state whether only the throughput improves, both response time and
throughput improve, or neither improves.

a. An extra network channel is added between the client and the server,
increasing the total network throughput and reducing the delay to obtain
network access (since there are now two channels).

Understanding
Program
Performance

clock cyele Also called
tick, clock tick, clock
period, clock, cycle, The
time for one clock period,
usually of the processor
clock, which runs at a
constant rate.

clock period The length
of cach clock cycle.

Check
Yourself
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b. The networking software is improved, thereby reducing the network
communication delay, but not increasing throughput. '
¢. More memory is added to the computer.
2. Computer C’s performance is 4 times faster than the performance of com-
puter B, which runs a given application in 28 seconds. How long will computer
C take to run that application?

CPU Performance and Its Factors

Users and designers often examine performance using different metrics. If we could
relate these different metrics, we could determine the effect of a design change
on the performance as experienced by the user. Since we are confining ourselves
to CPU performance at this point, the bottom-line performance measure is CPU
execution time. A simple formula relates the most basic metrics (clock cycles and
clock cycle time) to CPU time:

CPU execution time _ CPU clock cycles x Clock evcle time
foraprogram for a program ock cycle
Alternatively, because clock rate and clock cycle time are inverses,

CPU execution time _ CPU clock cycles for a program
for a program Clock rate

This formula makes it clear that the hardware designer can improve performance
by reducing the number of clock cycles required for a program or the length of
the clock cycle. As we will see in later chapters, the designer often faces a trade-off
between the number of clock cycles needed for a program and the length of cach
cycle. Many techniques that decrease the number of clock cycles may also increase
the clock cycle time.

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz
clock. We are trying to help a computer designer build a computer, B, which will
run this program in 6 seconds. The designer has determined that a substantial
increase in the clock rate is passible, but this increase will affect the rest of the
CPU design, causing computer B to require 1.2 times as many clock cycles as
compitter A for this program. What clock rate should we tell the designer to
target?
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Let’s first find the number of clock cycles required for the program on A:

. CPU clock cycles,
CPUtime = -
A Clock rate,

CPU clock cycles,

10 seconds =
cycles

2% 10°
second

cycles
second

CPU time for B can be found using this equation:

CPU dock cycles, = 10 seconds x 2 x 107 =20x 107 cycles

1.2 X CPU clocle cycles,

Clock rate,

CPU time, =

1.2 %20 x 10% cycles

| G seconds =
Clock rate,

1.2%20 x 107 cycles 0.2 x20 x10% cycles 4% 10? cycles
Clock rate, = = = =4 GHz
6 seconds second second

| To run the program in 6 secends, B must have twice the clock rate of A.

Instruction Performance

The performance equations above did not include any reference to the number of
instructions needed for the program. (We'll see what the instructions that make up
a program look like in the next chapter.) However, since the compiler clearly gener-
ated instructions to execute, and the computer had to execute the instructions to
run the program, the execution time must depend on the number of instructions
in a program. One way to think about execution time is that it equals the number
of instructions executed multiplied by the average time per instruction. Therefore,
the number of clock cycles required for a program can be written as

Average clock cycles

CPU clock cycles = Instructions for a program X , ¢
per instruction

The term clock cycles per instruction, which is the average number of clock
cycles each instruction takes to execute, is often abbreviated as GPI. Since different

clock cycles per
instruction {CPI)
Average number of clock
cycles per instruction for
4 program or program
fragment.
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instructions may take different amounts of time depending on what they do,
CPI is an average of all the instructions executed in the program. CPI provides
one way of comparing two different implementations of the same instruction
set architecture, since the number of instructions executed for a program will, of
course, be the same.

Using the Performance Equation

Suppose we have two implementations of the same instruction set architec-
ture. Computer A has a clock cycle time of 250 ps and a CP1 of 2.0 for some
program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2
for the same program. Which computer is faster for this program and by how
much?

We know that each computer executes the same number of instructions for
the program; let’s call this number [. First, find the number of processor clock
cycles for each computer:

CPU clock cycles, = [ 2.0
CPU clock cycles, = 1x 1.2

Now we can compute the CPU time for each computer:
CPU time, = CPU clock cycles x Clock cycle time

= Ix2.0x250 ps=500xIps
Likewise, for B:

CPU time, = I'x 1.2 X 500 ps =600 X I ps

Clearly, computer A is faster. The amount faster is given by the ratio of the
execution times:

CPU performance,  Execution time;, 600X I ps 12

CPU performance, ~ Execution time = 500% Tps

We can conclude that computer A is 1.2 times as fast as computer B for this
progranm.
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The Classic CPU Performance Equation

We can now write this basic performance equation in terms of instruction count
(the number of nstructions executed by the program), CPI, and clock cycle time:

CPU time = Instruction counl X CPI x Clock cycle time

or, since the clock rate is the inverse of clock cycle lime:

CPU time = Instruction count x CPI
Clock rate

Thesc formulas are particularly useful because they separate the three key factors
that affect performance. We can usc these formulas to compare two different
implementations or to evaluate a design alternative if we know its impact on these
three parameters.

Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a par-
ticular computer. The hardware designers have supplied the following facts:

-
\ cPI \ 1 | 2 | 3 |

For a particular high-level language statement, the compiier writer is consid-
ering two code sequences that require the following instruction counts:

Instruction counts for aach instruction class
T

2 | 4 | 1 | 1

Which code sequence executes the most instructions? Which will be faster?

What is the CPI for each sequence?

instruction count The
number of instructions
exccuted by the program.
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The BlG

Picture

Sequence 1 executes 2+ | +2=5 instructions. Sequence 2 executes 4 + I1+1=6
instructions. Therefore, sequence | executes fewer instructions. '

We can use the equation for CPU clock cycles based on instruction count
and CPI to find the total number of clock cycles for each sequence:

"

CPU clock cycles = 2 (CPLxC)

This yields
CPU clock cycles, = (2x 1) + (1 x2)+(2x3)=2+2+6=10cycles
CPU clock cycles, = (4 x 1) + (1 % 2)+ (1 x3)=4+2+3=9cycles

So code sequence 2 is faster, even though it executes one extra instruction.
Since code sequence 2 takes fewer overall clock cycles but has more instruc-
tions, it must have a lower CPL. The CPI values can be computed by

CPU clock cycles
~ Instruction count

CPI

CPU clock cycles, 19

CPl=—————'=T=

- . = 0
' Instruction count, 5

=

CPU clock cycles,
Pl = —— oI 95

27 [nstruction count, 6

Figure 1.14 shows the basic measurements at different levels in the

computer and what is being measured in each case. We can see how these

factors are combined 1o yield execution time measured in seconds per

program:

Instructions Clock cycles . Seconds
Program Instruction  Clock cycle

Time = Seconds/Program =

Always bear in mind that the only complete and reliable measurc of
computer performance is time. For example, changing the instruction set
to lower the instruction count may lead to an organization with a slower
clock cycle time or higher CPI that offsets the improvement in instruction
count. Similarly, because CPI depends on type of instructions executed,
the code that executes the fewest number of instructions may not be the
fastest.
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Convomans of perfornancs

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CP) Average number of clocl eycles per instruction

Clock cycle time Seconds per clock cycle

FIGURE 1.14 The basic components of performance and how each is measured.

How can we determine the value of these factors in the performance equation?
We can measure the CPU execution time by running the program, and the clock
cycle time is usually published as part of the documentation for a computer. The
instruction count and CPI can be more difficult to obtain. Of course, if we know
the clock rate and CPU execution time, we need only one of the instruction count
or the CPI to determine the other.

We can measure the instruction count by using software tools that profile the
execution or by using a simulator of the architecture. Alternatively, we can use
hardware counters, which are included in most processors, to record a variety of
measurements, including the number of instructions executed, the average CP1, and
often, the sources of performance loss. Since the instruction count depends on the
architecture, but not on the exact implementation, we can measure the instruction
count without knowing all the details of the implementation. The CPI, however,
depends on a wide variety of design details in the computer, including both the
memory system and the processor structure (as we will see in Chapters 4 and 5), as
well as on the mix of instruction types executed in an application. Thus, CPI varies
by application, as well as among implementations with the same instruction set.

The above example shows the danger of using only one factor {(instruction count)
to assess performance. When comparing two computers, you must look at all three
components, which combine to form execution time. If some of the factors are
identical, like the clock rate in the above example, performance can be determined
by comparing all the nonidentical factors. Since CPI varies by instruction mix,
both instruction count and CPI must be compared, even if clock rates are identical.
Several exercises at the end of this chapter ask you to evaluate a series of computer
and compiler enhancements that affect clock rate, CPI, and instruction count. In
Section 1.8, we’ll examine a common performance measurement that does not
incorporate all the terms and can thus be misleading.

instruction mix

A measure of the dynamic
frequency of instructions
4Crass one or many
programs.
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Understanding The performance of a program depends on the algorithm, the language, the
Program compiler, the architecture, and the actual hardware. The following table summarizes
how these components affect the factors in the CPU performance equation.
Performance
Hardware
or softwara
component | Affects what?
Algorithm ] Inslrui:_liun_count: _Tﬁaﬁ;oﬁhm determines the number of source program ]
possibly CPI instructions executed and hence the number of processor
instructions executed. The algorithm may also affect the CP1, by
favoring slower or faster instructions. For example, if the
algorithm uses more floating-paint operations, it will tend to have
| a higher CP1.
Programming Instruction count, | The programming language certalnly affects the instruction count,
language CPI since statements in the language are transtated to processor
| instructions, which determine Instruction count. The language
may also affect the CPI because of its features, for example,
a language with heavy supporl for data abstraction {g.¢., Java)
will require indirect calls, which will use higher CPl instructions.
Compiler ‘ Instruction count, | The efficiency of the compiler affects both the instruction count
| cP1 and average cycles per instruction, since the compiler determines
the translation of the source language instructions into computer
Instructions. The compiler's role can be very complex and affect
the CPIl in complex ways.
Instruction set Instruction count. | The instruction set architecture affecis all three aspects of CPU
architecture clock rate, perfarmance, since it affects the instructions needed for a
CPI function, the costin cycles of each instruction, and the gverall
clock rate of the processor.
Elaboration: Aithough you might expect that the minimum CPI is 1.0, as we'll see
in Chapter 4, some processors fetch and execute multiple instructions per clock cycle.
To reflect that approach, some designers invert CPI to talk about /PC, or instruction per
clocl cycle. If a processor executes on average 2 instructions per clock cycle, then it has
an IPC of 2 and hence a CP1 of 0.5.
Check A given application written in Java runs 15 seconds on a desktop processor. A new
Yourself Java compiler is released that requires only 0.6 as many instructions as the old

compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the
application to run using this new compiler? Pick the right answer from the three

choices below

15%06
I.1

b. 15x0.6x1.1=9.9sec

a. =8.2 sec

C. 1) =27.5scc

0.6
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The Power Wall

Figure 1.15 shows the increase in clock rate and power of eight generations of Intel
microprocessors over 25 years. Both clock rate and power increased rapidly for
decades, and then flattened off recently. The reason they grew together is that they
are correlated, and the reason for their recent slowing is that we have run into the
practical power limit for cooling commodity microprocessors.
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FIGURE 1.15 Clock rate and Power for Intel x86 microprocessors over eight generations
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance.
The Prescott thermal problems led 1o the abandonment of the Pentium 4 fine, The Core 2 Jine reveris to a
simpler pipeline with lower clack rates and multiple processors per chip.

The dominant technology for integrated circuits is called CMOS {complemen-
tary metal oxide semiconductor). For CMOS, the primary source of power dissi-
pation is so-called dynamic power—that is, power that is consumed during
switching. The dynamic power dissipation depends on the capacitive loading
of cach transistor, the voltage applied, and the frequency that the transistor is
switched:

Power = Capacitive load x Voltage® x Frequency switched
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Frequency switched is a function of the clock rate. The capacitive load per
transistor is a function of both the number of transistors connected to an output
(called the fanour) and the technology, which determines the capacitance of both
wires and transistors.

How could clock rates grow by a factor of 1000 while power grew by only a
factor of 302 Power can be reduced by lowering the voltage, which occurred with
cach new generation of technology, and power is a function of the voltage squared.
Typically, the voltage was reduced about 15% per generation. In 20 years, voltages
have gone from 5V to 1V, which is why the increase in power is only 30 times.

Relative Power

Suppose we developed a new, simpler processor that has 85% of the capacitive
load of the more complex older processor. Further, assume that it has adjust-
able voltage so that it can reduce voltage 15% compared to processor B, which
results in a 15% shrink in frequency. What is the impact on dynamic power?

Power,  {Capacitive load x 0.83) x (Voltage x 0.85)" x (Frequency switched x 0.85)
= Capacitive load x Voltage® X Frequency swiiched

Power
uld

Thus the power ratio is
0.85'=0.52

Hence, the new processor uses about half the power of the old processor.

The problem today is that further lowering of the voltage appears to make the
transistors too leaky, like water faucets that cannot be completely shut off. Even
today about 40% of the power consumption is due to leakage. If transistors started
leaking more, the whole process could become unwieldy.

To try to address the power problem, designers have already attached large
devices to increase cooling, and they turn off parts of the chip that are not used ina
given clock cycle. Although there are many more expensive wiys to cool chips and
thereby raise their power to, say, 300 watts, these techniques are too expensive for
desktop computers.

Since computer designers slammed into a power wall, they needed a new way
farward. They chose a different way from the way they designed microprocessors
for their first 30 years.

Elaboration: Although dynamic power is the primary source of power dissipation in
CMOS, static power dissipation occurs because of leakage current that flows even when
a transistor is off. As mentioned above, leakage is typically responsible for 40% of
the power consumption in 2008. Thus, increasing the number of transistors increases
power dissipation, even if the transistors are always off. A variety of design techniques
and technology innovations are being deployed to contro! leakage, but it's hard to lower
voltage further.
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41

The Sea Change: The Switch from
Uniprocessors to Multiprecessors

The power limit has forced a dramatic change in the design of microprocessors.
Figure 1.16 shows the improvement in response time of programs for deskiop
microprocessors over time. Since 2002, the rate has slowed from a factor of 1.5 per
year to less than a factor of 1.2 per year.

Rather than continuing to decrease the response time of a single program run-
ning 6n the single processor, as of 2006 all desktop and server companies are ship-
ping microprocessors with multiple processors per chip, where the benefit is often
more on throughput than on response time. To reduce confusion between the
words processor and microprocessor, companies refer to processors as “cores,” and
stuch microprocessors are generically called multicore microprocessors. Hence, a
“quadcore” microprocessor is a chip that contains four processors or four cores.

Figure 1.17 shows the number of processors (cores), power, and clock rates
of recent microprocessors. The official plan of record for many companies is to
double the number of cores per microprocessor per semiconductor technology
generation, which is about every two years (see Chapter 7).

In the past, programmers could rely on innovations in hardware, architecture,
and compilers to double performance of their programs every 18 months without
having to change a line of code. Today, for programmers to get significant improve-
ment in response time, they need to rewrite their programs to take advantage of
multiple processors. Moreover, to get the historic benefit of running faster on new
microprocessors, programimers will have to continue to improve performance of
their code as the number of cores doubles.

To reinforce how the software and hardware systems work hand in hand, we use
a special section, Hardware/Software Interface, throughout the book, with the first
one appearing below. These elements summarize important insights at this critical
interface.

“Up to now, niost
software has been like
ntusic written for a
solo perforiner; with
the current generation
of chips we're getting a
little experience with
duets and quartets and
other simall ensembles;
bt scoring a work for
large orchestra and
chorus is a different
kind of challenge.”
Brian Hayes, Computing
it a Parallel Universe,
2007,

Parallelism has always been critical to performance in computing, but it was often
hidden. Chapter 4 will explain pipelining, an elegant technique that runs pro-
grams faster by overlapping the execution of instructions. This is one example of
instruction-level parallelisim, where the parallel nature of the hardware is abstracted
away so the programmer and compiler can think of the hardware as executing
instructions sequentially.

Forcing programmers to be aware of the parallel hardware and to explicitly
rewrite their programs to be parallel had been the “third rail” of computer architec-
ture, for companies in the past that depended on such a change in behavior failed
(see Section 7.14 on the CD). Frem this historical perspective, it’s startling that
the whole [T industry has bet its future that programmers will finally successfully
switch to explicitly parallel programming,

Hardware/
Software
Interface
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FIGURE 1.16 Growth in processor performance since the mid-1980s. This chart plois performance relative 1o the VAX 11/780

as measured by the SPECint benchmarks (see Section 1.8). Prior 1o the nid-1980s, proc

sar performance growth was largely technology-

driven and averaged about 25% per year. The increase in growth to aboul 52% since then is attribulable 10 mare advanced ar(hilclclur:ll ;‘m(l
organizatienal ideas. By 2002, this growth led 1o a difference in performance of about a fac_lnr of seven. Pc‘::fm‘m;mcu for ﬂoalmg-polnf-
oricnted calculatians has focreased even faster. Since 2002, she limits of power, available instroction-Jlevel parallelism, and long memary latency
have slowed uniprocessor performance recently, to about 20% per year.

AMD Sun

Ultra SPARC T2
(Niagara 2)

Opteron X4
(Barcelona)

Product Intel Nehalem | IBEM Power 6

?ores per chip 4 4 2 8
Clock rate 2.5 GHz ~2.5GHz? 4.7 GHz 1.4 GHz
Microprocessor power 120w L ~100W? ~ 100 W ?7_ 1 o4 W

FIGURE 1.17 Number of cores per chip, clock rate, and power for 2008 multicore micro-
processors.

Why has it been so hard for programmers to write explicitly parallel programs?
The first reason is that parallel programming is by definition performance pro-
gramming, which increases the difficulty of programming. Not on.ly does the
program need to be correct, solve an important problem, and provide a uscful
interface to the people or other programs that invoke it, the program must also be
fast. Otherwise, if you dom’t need performance, just write a sequential program.

The second reason is that fast for parallel hardware means that the programmer
must divide an application so that each processor has roughly the same amount to

1,6 The Sea Change: The Switch from Uni S to Multip I

do at the same time, and that the overhead of scheduling and coordination doesn’t
fritter away the potential performance benefits of parallelism.

As an analogy, suppose the task was to write a newspaper story. Eight reporters
working on the same story could potentially write a story eight times faster. To
achieve this increased speed, one would need to break up the task so that each
reporter had something to do at the same time. Thus, we must schedile the sub-
tasks. [f anything went wrong and just one reporter took longer than the seven
others did, then the benefits of having eight writers would be diminished. Thus, we
must balance the load evenly to get the desired speedup. Another danger would be
if reparters had to spend a lot of tine talking to each other to write their sections.
You would also fall short if one part of the story, such as the conclusion, couldn’t
be written until all of the other parts were completed. Thus, care must be taken
to reduce connmmication and synchronization overhead. For both this analogy and
parallel programming, the challenges include scheduling, load balancing, time for
synchronization, and overhead for communication between the parties. As you
might guess, the challenge is stiffer with more reporters for a newspaper story and
more processors for parallel programming.

To reflect this sea change in the industry, the next five chapters in this edition of
the book each have a section on the implications of the parallel revolution to that
chapter:

W Chapter 2, Section 2.11: Parallelisur and lnstructions: Spnehronization. Usually
independent parallel tasks need 10 coordinate at times, such as to say when
they have completed their work. This chapter explains the instructions used
by multicore processors to synchronize tasks,

W Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Associativity.
Often parallel programmers start from a working sequential program.
A natural question to learn if their parallel version works is, “does it get the
same answer?” If not, a logical conclusion is that there are bugs in the new
version. This logic assumes that computer arithmetic is associative: you get
the same sum when adding a million numbers, no matter what the order.
This chapler explains that while this logic holds for integers, it doesn'’t lold
for floating-point numbers.

W Chapler 4, Section 4.10: Parallelism and Advaced Instruction- Level Parallelisi,
Given the difficulty of explicitly parallel programming, tremendous effort was
invested in the 1990s in having the hardware and the compiler uncover implicit
parallelism. This chapter describes some of these aggressive tech niques,includ-
ing fetching and executing multiple instructions simultanecusly and guessing
on the outcomes of decisions, and executing instructions speculatively.



Chapter 1 Computer Abstractions and Technology

1 thought [coniputers]
would be a universally
applicable idea, like a
book is. But I didit’t
think it would develop
as fast as it did, because
I didn't envision we'd
be able to get as mainy
parts on a chip as

we finally got. The
transistor caime afong
witexpectedly. It all
happened uiueh faster
than we expected.

J. Presper Eckert,
coinventor of ENIAC,
speaking in 1991

m Chapter 5, Section 5.8: Parallelisi aird Memory Hierarchies: Cache Coherence.
One way lo lower the cost of communication is to have all processors use
the same address space, so that any processor can read or write any dala.
Given that all processors today use caches to keep a temporary copy of the
data in faster memory near the processor, it’s easy to imagine that parallel
programming would be even more difficult if the caches associated with each
processor had inconsistent values of the shared data. This chapter describes
the mechanisms that keep the data in all caches consistent.

m Chapter 6, Section 6.9: Parallelism and I/O: Redundant Arrays of hnexpensive
Disks. If you ignore input and output in this parallel revolution, the
unintended consequence of parallel programming may be to make your
parallel program spend most of its time waiting for 1/O. This chapter
describes RAID, a technique to accelerate the performance of storage
accesses. RAID points out another potential benefit of parallelism: by having
many copies of resources, the system can continue to provide service despite
a failure of one resource. Hence, RAID can improve both 1/O performance
and availability.

In addition to these sections, there is a full chapter on parallel processing.
Chapter 7 goes into more detail on the challenges of parallel programming;
presents the two contrasting approaches to communication of shared addressing
and explicit message passing; describes a restricted model of parallelism that is
easier to program; discusses the difficulty of benchmarking parallel processors;
introduces a new simple performance model for multicore microprocessors and
finally describes and evaluates four examples of multicore microprocessors using
this model.

Starting with this edition of the book, Appendix A describes an increasingly
popular hardware component that is included with desktop computers, the graph-
ics processing unit (GPU). Invented to accelerate graphics, GPUs are becoming
programming platforms in their own right. As you might expect, given these times,
GPUs are highly parallel. Appendix A describes the NVIDIA GPU and highlights
parts of its parallel programming environment.

1.7 Real Stuff: Manufacturing and
= Benchmarking the AMD Opteron X4

Each chapter has a section entitled “Real Stuff” that ties the concepts in the book
with a computer you may use every day. These sections cover the technology
underlying modern eomputers. For this first “Real Stuff” section, we look at how
integrated circuits are manufactured and how performance and power are mea-
sured, with the AMD Opteron X4 as the example.

1.7 Real Stuff: Manuf: ing and king the AMD Opteron X4
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Let’s start at the beginning, The manufacture of a chip begins with silicon, a
substance found in sand. Because silicon does not conduct electricity well, it is
called a semiconductor. With a special chemical process, it is possible to add
materials to silicon that allow tiny areas to transform into one of three devices:

N Excellent conductors of electricity (using either microscopic copper or
aluminum wire)

m Excellent insulators from electricity (like plastic sheathing or glass)
W Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of combi-
nations of conductors, insulators, and switches manufactured in a single small
package.

The manufacturing process for integrated circuits is critical to the cost of the
chips and hence important to computer designers. Figure 1.18 shows that process.
The process starts with a silicon crystal ingot, which looks like a giant sausage.
Today, ingots are 8—12 inches in diameter and about 12-24 inches long. An ingot is
finely sliced into wafers no more than 0.1 inch thick. These wafers then go through
a series of processing steps, during which patterns of chemicals are placed on

Blank
Silicon ingot wafers
@ Slicer 20 10 40
processing steps
Testled dies Patterned wafers
oo T
Bond die t D&DDDED “ §
0 e Wafer mmy =S
package OOXROO Dicer tester S
it iy i) =[] £
ag I
SEnzg

Packaged dies
| Part
[ tester

FIGURE 1.18 The chip manufacturing process. Afier being sliced {rom the silicon ingot, bank
wafers are pul through 20 to 40 steps 1o create patterned wafers (see Figure 1.19). These patterned wafers
are then tested with a wafer tester, and a map of the good parts is made. Then, the wafees are diced into dies
(sec Figure 1.9). In this figure, one wafer produced 20 dies, of which 17 passed testing. (X means the dic is
bad.) The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages
and tested one more time before shipping the packaged parts to customers. One bad packaged part was
tound in this final test.

Ship te ’

customers |
I

silicom A natural element
that is a semiconductor,

semiconductor
A substance that docs not
conduct electricity well.

silicon crystal ingot

A rod composed of a
silicon erystal that is
between 8 and 12 inches
in diameter and about 12
to 24 inches long.

wafer A slice from a
silicon ingot no more
than 0.1 inch thick, used
to create chips.
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defect A microscopic
flaw in o wafer or in
patierning steps that can
result in the faifure of the

dic containing that defect.

die The individual
rectangular scctions that
are cut from a wafer,
mare informally known
as chips,

yield The percentage of
good dies from the total
number of dies on the
waler.

each wafer, creating the transistors, conductors, and insulators discussed earlier.
Today’s integrated circuits contain only one layer of transistors but may have from
two to eight levels of metal conductor, separated by layers of insulators.

A single microscopic flaw in the wafer itself or in one of the dozens of pattern-
ing steps can result in that area of the wafer failing. These defects, as they are
called, make it virtually impossible to manufacture a perfect wafer. To cope with
imperfection, severa! strategies have been used, but the simplest is to place many
independent components on a single wafer. The patterned wafer is then chopped
up, or diced, into these components, called dies and more informally known as
chips. Figure 1.19 is a photograph of a wafer containing microprocessors before
they have been diced; earlier, Figure 1.9 on page 20 shows an individual micro-
processor die and its major components.

Dicing enables you to discard only those dies that were unlucky enough to con-
tain the flaws, rather than the whole wafer. This concept is quantified by the yield
of a process, which is defined as the percentage of good dies from the total number
of dies on the wafer.

The cost of an integrated circuit rises quickly as the die size increases, due both
to the lower yield and the smaller number of dies that fit on a wafer. To reduce
the cost, a large die is often “shrunk” by using the next generation process, which
incorporates smaller sizes for both transistors and wires. This improves the yield
and the die count per wafer.

Once youw've found good dies, they are connected to the input/output pins
of a package, using a process called bosding. These packaged parts are tested a
final time, since mistakes can occur in packaging, and then they are shipped to
customers.

As mentioned above, an increasingly important design constraint is power,
Power is a challenge for two reasons. First, power must be brought in and distrib-
uted around the chip; modern microprocessors use hundreds of pins just for power
and ground! Similarly, multiple levels of interconnect are used solely for power and
ground distribution to portions of the chip. Second, power is dissipated as heat and
must be removed. An AMD Opteron X4 model 2356 2.0 GHz burns 120 watts in
2008, which must be removed from a chip whose surface area is just over 1 cm?!

Elaboration: The cost of an integrated circuit can be expressed in three simple

equations:
) Cost per wafer
Cost per die = Dieg per wafer x yield
Dies per wafer = w
Die area

1
(1 + (Defects per area x Die area/2))?

Yield =
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FIGURE 1,19 A 12-inch (300mm) wafer of AMD Opteron X2 chips, the predecessor of
Opteron X4 chips {Courtesy AMD). The mumber of dics per wafer al 100 vield is 117. The severa)
dozen partially rounded chips at the boundaries of the waler are uscless; they arc included because it's casier
to create the masks used to pattern the silicon. This die uses a 90-nanometer technology, which means that the
smallest transistors are approximately 90 nm in siec, althaugh they are typically somewhat smaller than the
actual feature size, which refers W the size of the transistors as “driwen” versus the final manufactured size.

The first eguation is straightforward to derive. The second is an approximation,
since it does not subtract the area near the border of the round wafer that cannot
accommodate the rectangular dies (see Figure 1.19). The final equation is based on
empirical observations of yields at integrated circuit factories, with the exponent related
to the number of critical processing steps.

Hence, depending on the defect rate and the size of the die and wafer, costs are
generally not linear in die area.
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workload A set of
programs run ona
computer that is either
the actual collection of
applications run by a user
or constructed from real
programs to approximate
such a mix. A typical
workload specifies both
the programs and the
relative frequencies.

benchmark A program
selected for use in
comparing computer
performance.

SPEC CPU Benchmark

A computer user who runs the same programs day in and day out would be the
perfect candidate to evaluate a new computer. The set of programs run would form
2 workload. To evaluate two computer systems, a user would simply compare the
execution time of the workload on the two computers. Most users, however, are
not in this situation. Instead, they must rely on other methods that measure the
performance of a candidate computer, hoping that the methods will reflect how
well the computer will perform with the user’s workload. This alternative is usually
followed by evaluating the computer using a set of benchmarks—programs
specifically chosen to measure performance. The benchmarks form a workload
that the user hopes will predict the performance of the actual workioad.

SPEC (System Performance Evaluation Cooperative) is an effort funded and
supported by a number of computer vendors to create standard sets of benchmarks
for modern computer systems. In 1989, SPEC originally created a benchmark
set focusing on processor performance (now cailed SPECS9), which has evolved
through five generations. The latest is SPEC CPU2006, which consists of aset of 12
integer benchmarks (CINT2006) and 17 floating-point benchmarks (CFP2006).
The integer benchmarks vary from part of a C compiler to a chess program to a
quantum computer simulation. The floating-point benchmarks include structured
grid codes for finite element modeling, particle method codes for molecular
dynamics, and sparse linear algebra codes for fluid dynamics.

Figure 1.20 describes the SPEC integer benchmarks and their execution time
on the Opteron X4 and shows the factors that explain execution time: instruction
count, CPl, and clock cycle time. Note that CPI varies by a factor of 13.

To simplify the marketing of computers, SPEC decided to report a single
number to summarize all 12 integer benchmarks. The execution time measure-
ments are first normalized by dividing the execution time on a reference processor
by the execution time on the measured computer; this normalization yields a
measure, called the SPECratio, which has the advantage that bigger numeric
results indicate faster performance (i.e., the SPECratio is the inverse of execution
time). A CINT2006 or CFP2006 summary measurement is obtained by taking the
geometric mean of the SPECratios.

Elaboration: When comparing two computers using SPECratios, use the geometric
mean so that it gives the same relative answer no matter what computer is used to
normalize the results. If we averaged the normalized execution time values with an
arithmetic mean, the results would vary depending on the computer we choose as the
reference.
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Reference
Instruction Clock cycle time Time
Dascription Name Count x 10° (seconds x 10°) (seconds) | SPECratio

Interpreted string processing | perl 2,118 0.75 0.4 9,770 153
Blocl-s0rting bzip2 2,389 0.85 0.4 9,650 11.8
compression ' ’

GNU C compiler gce 1,050 1.72 0.4 724 8,050 11.1
Combinatorial optimization | mcf 336 10.00 0.4 1,345 9,120 6.8
Go game (Al) go 1.658 1.09 o4 | 72 10,490 14.6
Search gene sequence | hmmer 2,783 0.80 0.4 890 9,330 10.5
Chess game (Al) sjeng 2,176 0.96 0.4 8371 12,100 14.5
Quantum computer iibquantum 1,623 1.61 0.4 1,047 20,720 19.8
simulation ' '

Videa compression h264ave 3,102 0.80 0.4 993 | 22.130 223
Discrete event omnetpp 587 2.94 0.4 690 6,250 9.4
simulation Fhrary ' ’

Games/path finding astar 1,082 .79 0.4 773 7,020 9.4
XML parsing | xelancbmk | 1,058 2,70 0.4 1,143 6,900 6.0
Geometric Mean 11.7

FIGURE 1.20 SPECINTC2006 benchmarks running on AMD Opteron X4 miodel 2356 (Barcelona). As the vcquation on
Ppage 35 explains, execution time is the product of the three factors in this table: instruction count in billions, clocks per instruction (CPL), and
clock ¢ycle time in nanoseconds, SPLECratio is simply the reference time, which is supplied by SPEC, divided by the measured exceution ;ime
The single number quoted as SPECINTC2006 is the geometric mean of the SPECratios. Figure 5.40 on page 542 shows that mef, lil\quunlum.
omnetpp, and xalanchmk have relatively high CPls because they have high cache miss rates. ' '

The formula for the geometric mean is

I'n
nv\’H Execution time ratio,
i=1
where Execution time ratio, is the execution time, normalized to the reference computer,
for the ith program of a total of n in the workload, and
n

]__[ a means the product a, xa, X ... xa
1=1 -

n

SPEC Power Benchmark

Today, SPEC offers a dozen different benchmark sets designed to test a wide
variety of computing environments using real applications and strictly specified
execution rules and reporting requirements. The most recent is SPECpower. [t
reports power consumption of servers at different workload levels, divided into
10% increments, over a period of time. Figure 1.21 shows the results for a server
using Barcelona.

SPECpower started with the SPEC benchmark for Java business applications
(SPEC]BB2005), which exercises the processors, caches, and main memory as well
as the Java virtual machine, compiler, garbage collector, and pieces of the operating
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Check
Yourself

Performance Average Power
Target Load % {ss]_ops) (Watts)

100% 231,867 285
90% 211,282 286
80% 185,803 275
70% 163,427 265
60% 140,160 256
) 50% 118,324 246
40% 92,035 B 233
30% 70,500 222 ]
20% 47,126 206
10% 23,066 180
o% 0 141 *
Qverall Sum 1,283,590 2,605
Zssj_ops / Lpower = 493

FIGURE 1.21 SPECpower_ss5j2008 running on dual socket 2.3 GHz AMP Opteron X4 2356
(Barcelona) with 16 GB Of DDR2-667 DRAM and one 500 GB disk.

system. Performance is measured in throughput, and the units are business
operations per second. Once again, to simplify the marketing of computers, SPEC
boils these numbers down to a single number, called “overall ssj_ops per Watt." The
formula for this single summarizing metric s

10

Y ssj_ops,

i=n

overall ssj_ops per Watt =

1w
/ (Z power,

=0

where ssj_ops, is performance at each 10% increment and power, is power con-
sumed at each performance Jevel,

A key factor in determining the cost of an integrated circuit is volume. Which of
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular
design, increasing the yield.

2. Itis less work to design a high-volume part than a low-volume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower
for higher volumes.

4. Engineering development costs are high and largely independent of volume;
thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts and
therefore have higher yield per wafer.

1.8 Fallacies and Pitfalls
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Fallacies and Pitfalls

The purpose of a section on fallacies and pitfalls, which will be found in every
chapter, is to explain some commonly held misconceptions that you might
encounter. We call such misbeliefs fallacies. When discussing a fallacy, we try to
give a counterexample. We also discuss pitfalls, or easily made mistakes. Often pit-
falls are generalizations of principles that are true in a limited context. The purpose
of these sections is to help you avoid making these mistakes in the computers you
may design or use, Cost/performance fallacies and pitfalls have ensnared many a
computer architect, including us. Accordingly, this section suffers no shortage of
relevant examples. We start with a pitfall that traps many designers and reveals an
important relationship in computer design.

Pitfall: Expecting the improvenient of onc aspect of a computer to increase overall
performance by an amount proportional to the size of the improvement,

This pitfall has visited designers of both hardware and software. A simple design prob-
lem illustrates it well. Suppose a program runs in 100 seconds on a computer, with
multiply operations responsible for 80 seconds of this time. How much do I have to
improve the speed of multiplication if | want my program to run five times faster?

The execution time of the program after making the improvement is given by
the following simple equation known as Amdahl’s law:

Execution time after improvement =

Execution time affected by improvement

- + Execution time unaffected
Amount of improvement

For this problem:

80 seconds

Execution time after improvement = 7

+ (100 — 80 seconds)
Since we want the performance to be five times faster, the new execution time
should be 20 seconds, giving

80 seconds

- + 20 seconds

20 seconds =

_ B0 seconds
0= [0

That s, there is 1o amount by which we can enhance-multiply to achieve a fivefold
increase in performance, if multiply accounts for only 809 of the workload.

Science must begin
with nipths, and the

criticisnt of niyths.
Sir Karl Popper, The
Philosoplty of Science,
1957

Amdahl's law A rule

stating that the

performance enhance-

ment possible with a

given improvement is
limited by the amount

that the improved feature

is used. It is a quantita-

tive version of the law of

diminishing returns.
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The performance enhancement possible with a given improvement is limited by
the amount that the improved feature is used. This concept also yields whatr we
call the law of diminishing returns in everyday life.

We can use Amdahl’s law to estimate performance improvements when we
know the time consumed for some function and its potential speedup. Amdahl’s
laty, together with the CPU performance equation, is a handy tool for evaluating
potential enhancements. Amdahl’s faw is explored in more detail in the exercises.

A common theme in hardware design is a corollary of Amdahl’s law: Make the
coinnion case fast. This simple guideline reminds us that in many cases the frequency
with which one event occurs may be much higher than the frequency of another.
Amdah!’s law reminds us that the opportunity for improvement is affected by how
much time the event consumes, Thus, making the common case fast will tend to
enhance performance better than optimizing the rare case. [ronically, the common
case is often simpler than the rare case and hence is often easicr to enhanee,

Amdahl's law is also used to argue for practical limits to the number of parallel
processors, We examine this argument in the Fallacies and Pitfalls section of
Chapter 7.

Fallacy: Comipitters at low ntilization wsc little power.

Power efficiency matters at low utilizations because server workloads vary. CPU
utilization for servers at Google, for example, is between 10% and 50% most of the
time and at 100% less than 1% of the time. Figure 1.22 shows power for servers
with the best SPECpower results at 100% load, 50% load, 109 load, and idle. Even
servers that are only 10% utilized burn about two-thirds of their peak power.

Since servers’ workloads vary but use a large fraction of peak power, Luiz
Barroso and Urs Halzle [2007] argue that we should redesign hardware to achieve
“energy-proportional computing,” If future servers used, say, 10% of peak power at
10% workload, we could reduce the electricity bill of datacenters and become good
corporate citizens in an era of increasing concern about CO, emissions.

Peak Load/ | 10% Active
Server Micro- Cores/ | Clock |Performance Load die
Manufacturer | processor | Sockets| Rate (ssj_ops) |Power | Power | Power | Power | Power | Power | Power
e [¥eon 5440 | 8/2 |3.0GHz| 308,022 |269W|227W| 84% |174W | G5% |160W | 59%
Dell iXeon £5440 | B8/2 |2.8GHz| 305413 | 276W | 230W | &3% I 173w E'E% 157 W | 57%
Fruitsu Seimens | Xeon X3220 | 471 } 24GHz| 143742 | 132W 110w | 83% | 85W | 65% | S0W ] 60% |

FIGURE 1.22 SPECPower results for three servers with the best overall ssj_ops per watt in the fourth quarter of
2007, The overall ssi_ops per watt of the three servers are 698, 682, and 667, respectively. The memory of the top twa servers i 16 GB and
the bottom is 8 GB.

Pitfall: Using a subset of the performance equation as a performance metric.

We have already shown the fallacy of predicting performance based on simply one
of clock rate, instruction count, or CPI. Another common mistake is to use only
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two of the three factors to compare performance, Although using two of the three
factors may be valid in a limited context, the concept is also easily misused. Indeed,
nearly all proposed alternatives to the use of time as the performance metric have
led eventually to misleading claims, distorted results, or incorrect interpretations.

One alternative (o time is MIPS (million instructions per second). For a given million instructions
program, MIPS is simply per second (MIPS)
A measurenient of
program execution speed
based on the number of

Singe MIPS is an instruction execution rate, MIPS i milions of instructions.
: spec "manc :
> pecifies performance MIPS is computed as the

inversely to execution time; faster computers have a higher MIPS rating. The 20od  instruction count divided
news about MIPS is that it is easy to understand, and faster computers mean bigger by the prod:cl of thlugl :
MIPS, which matches intuition.

There are three problems with using MIPS as a measure for comparing com-
puters. First, MIPS specifies the instruction execution rate but does nat take into
account the capabilities of the instructions. We cannot compaie computers with
different instruction sets using MIPS, since the instruction counts will certainly
differ. Second, MIPS varies between programs on the same computer; thus, a com-
puter cannot have a single MIPS rating. For example, by substituting for execution
time, we see the relationship berween MIPS, clock rate, and CPI:

MIPS = ll]Stl‘l:lCi'lO.n count
Execution time x 10°

execution lime and 10"

MIPS = Instruction count _ Clock rate

"~ Instruction count x CPI xlge  CPIx10°
Clock rate

Rgca]l that CP! varied by 13x for SPEC2006 on Opteron X4, so MIPS does as well.
Fmal@y, and most importantly, if a new program executes more instructions but
cach instruction is faster, MIPS can vary independently from performance!

Consider the following performance measurements for a program: Check
Yourself

instruction count 10biion | 8hillion

Clock rate 4 GHz 4 GHz _{

cPl i 1.0 11 ]

a. Which computer has the higher MIPS rating?

b. Which computer is faster?
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Where . .. the ENIAC
is equipped with
18,000 vaction tubes
and weighs 30 tons,
computers in the future
may have 1,000
vacuum tiebes and
perhaps weigh just
145 tons.

Popular Mechanics,
March 1949

the BIG

Picture

Concluding Remarks

Although it is difficalt to predict exactly what level of cost/performance comput-
ers will have in the future, it’s a safe bet that they will be much better than they
are today. To participate in these advances, computer designers and programmers
mmust understand a wider variety of issues,

Both hardware and software designers construct computer systems in hierar-
chical layers, with each lower layer hiding details from the level above. This princi-
ple of abstraction is fundamental to understanding today’s computer systems, but it
does not mean that designers can limit themselves to knowing a single abstraction.
Perhaps the most important example of abstraction is the interface between
hardware and low-level software, called the instruction set architecture. Maintain-
ing the instruction set architecture as a constant enables many implementations of
that architecture—presumably varying in cost and performance—to run identical
software. On the downside, the architecture may preclude introducing innovations
that require the interface to change.

There is a reliable method of determining and reporting performance by using
the execution time of real programs as the metric. This execution time is related to
other important measurements we can make by the following equation:

Seconds
Clock ¢ycle

Seconds _ Instructions

Clock cycles
= X
Program Program

Instruction

We will use this equation and its constituent factors many times. Remember,
though, that individually the factors do not determine performance: only the
product, which equals execution time, is a reliable measure of performance.

Execution time is the only valid and unimpeachable measure of perfor-
mance. Many other metrics have been proposed and found wanting,
Sometimes these metrics are flawed from the start by not reflecting exe-
cution time; other times a metric that is valid in a limited context is
extended and used beyond that context ar without the additional clarifi-
cation needed to make it valid.

The key hardware technology for modern processors is silicon. Equal in impor-
tance to an understanding of integrated circuit technology is an understanding of
the expected rates of technological change. While silicon fuels the rapid advance
of hardware, new ideas in the organization of computers have improved price/
performance. Two of the key ideas are exploiting parallelism in the program,

1.10 Historical Perspective and Further Reading

55

typically today via multiple processors, and exploiting locality of accesses to a
memory hierarchy, typically via caches.

Power has replaced die area as the most critical resource of microprocessor
design. Conserving power while trying to increase performance has forced the
hardware industry to switch to multicore microprocessors, thereby forcing the
software industry 1o switch to programming parallel hardware.

Computer designs have always been measured by cost and performance, as well
as other importanl factors such as power, refiability, cost of ownership, and scal-
ability. Although this chapter has focused on cost, performance, and power, the
best designs will strike the appropriate balance for a given market among all the
factors.

Reoad Map for This Book

At the bottom of these abstractions are the five classic components of a computer:
datapath, contrel, memory, input, and output (refer to Figure 1.4). These five
components also serve as the framework for the rest of the chapters in this book:

W Datapath: Chapters 3,4, 7, and Appendix A
w Control: Chapters 4,7, and Appendix A

m Memory: Chapter 5

u [nput: Chapter 6

u Qutput: Chapter 6

As mentioned above, Chapter 4 describes how processors exploit implicit par-
allelism, Chapter 7 describes the explicitly parallel multicore microprocessors that
are at the heart of the parallel revolution, and Appendix A describes the highly
parallel graphics processor chip. Chapter 5 describes how a memory hierarchy
exploits locality. Chapter 2 describes instruction sets—the interface between com-
pilers and the computer—and emphasizes the role of compilers and programming
languages in using the features of the instruction set. Appendix B provides a
reference for the instruction set of Chapter 2. Chapter 3 describes how computers
handle arithmetic data. @ Appendix C, on the CD, introduces logic design.

)

Historical Perspective and Further Reading

For each chapter in the text, a section devoted to a historical perspective can be
found on the CD thai accompanies this book. We may trace the development of
an idea through a series of computers or describe some important projects, and we
provide references in case you are interested in probing further.

An active freld of
science is ke an
innnense anthidl; ihe
individual alinost
vasishics tito the mass
of utinds timbling
aver each other, carry-
ing inforniation from
place to place, passing
it aroind at the speed
of light.

Lewis Thomas, “Natural
Science,” in The Lives of
a Cell, 1974



56

Chapter 1 Computer Abstractions and Technology

The historical perspective for this chapter provides a background for some
of the key ideas presented in this opening chapter. Its purpose is to give you the
human story behind the technological advances and to place achievements in
their historical context. By understanding the past, you may be better able to
understand the forces that will shape computing in the future. Each historical per-
spectives section on the CD ends with suggestions for further reading, which are
also collected separately on the CD under the section “Fu rther Reading.” The rest
of @ Section 1.10 is found on the CD.

Exercises

Contributed by Javier Bruguera of Universidade de Santiago de Compustela

Most of the exercises in this edition are designed so that they feature a qualitative
description supported by a table that provides alternative quantitative parameters.
These parameters are needed to solve the questions that comprise the exercise.
Individual questions can be solved using any or all of the parameters—you decide
how many of the parameters should be considered for any given exercise question.
For example, it is possible to say “complete Question 4.1.1 using the parameters
given in row A of the table” Alternately, instructors can customize these exercises
to create novel solutions by replacing the given parameters with your own unique
values.

The number of quantitative exercises varies from chapier to chapter and depends
largely on the topics covered. More conventional exercises are provided where the
quantitative approach does not fit.

The relative time ratings of exercises are shown in square brackets after each
exercise number. On average, an exercise rated [10] will take you twice as long as
one rated [5]. Sections of the text that should be read before attempting an exercise
will be given in angled brackets; for example, <1.3> means you should have read
Section 1.3, Under the Covers, to help you solve this exercise.

Exercise 1.1

Find the word or phirase from the list below that best matches the description in the
following questions. Use the numbers to the left of the words in the answer. Each
answer should be used only once.
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i virtual worlds 14, operating system
2. desktop computers 15. compiler

—3— servers 16. bit
4. low-end servers. 17. instruction
2 SUpercomputers is. assembly language
6 terabyte 19. machine language

L1' petabyte 20. C

LB' . datacenters 21. assembler
9. embedded computers 22. high-level language
10. multicore processors 23. system software
1. YHDL 24, application software
12, RAM 25, cobol
13, CPU 26. fortran

1.1.1 [2] <1.1> Computer used to run large problems and usually accessed via a
network

1.1.2 (2] <i.1> 10" or 2% bytes

1.1.3 |2] <1.1> Computer composed of hundreds to thousands of processors and
terabytes of memory

1.1.4 [2] <1.1> Today’s science fiction application that probably will be available
in near future

1.1.5 (2] <1.1> A kind of memory called random access memory

1.1.6 (2] <1.1> Part of a computer called central processor unit

1.1.7 {2] <1.1> Thousands of processors forming a large cluster

1.1.8 [2] <I1.1> A microprocessor containing several processors in the same chip

1..1.9 [2] <1.1> Desktop computer without screen or keyboard usually accessed
via a network

1.1.10 (2] <l.i> Currently the largest class of computer that runs one application
or one set of related applications

L.1.11 [2] <L.1> Special language used to describe hardware components
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1.1.12 [2] <1.1> Personal computer delivering good performance to single users
at low cost .

1.1.13 [2] <1.2> Program that translates statements in high-level language to
assembly language

1.1.14 (2] <1.2> Program that translates symbolic instructions to binary
instructions

1.1.15 (2] <1.2> High-level language for business data processing
1.1.16 (2] <1.2> Binary language that the processor can understand
1.1.17 [2] <1.2> Commands that the processors understand
1.1.18 |2 ]<1.2> High-level language for scientific computation
1.1.19 {2] <1.2> Symbolic representation of machine instructions

1.1.20 [2] <1.2> Interface between user’s program and hardware providing a
variety of services and supervision functions

1.1.21 [2] <1.2> Software/programs developed by the users
1.1.22 [2] <1.2> Binary digit (value 0 or 1)

1.1.23 [2] <1.2> Software layer between the application software and the hard-
ware that includes the operating system and the compilers

1.1.24 (2] <1.2> High-level language used to write application and system software

1.1.25 [2| <1.2> Portable language composed of words and algebraic expres-
sions that must be translated into assembly language before run in a computer

1.1.26 |2) <1.2> 10" or 2" bytes

Exercise 1.2

1.2.1 [10] <1.3> For a color display using 8 bits for each of the primary colors
(red, green, blue) per pixel and with a resolution of 1280 x 800 pixels, what should
be the size (in bytes) of the frame buffer to store a frame?

1.2.2 [5] <1.3> If a computer has a main memory of 2 GB, how many frames
could it store, assuming the memory conlains no other information?
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1.2.3 [5] <1.3> If a computer connected to a 1 gigabit Ethernet network needs to
send a 256 Kbytes file, how long it would take?

1.2.4 (5] <1.3> Assuming that a cache memory is ten times faster than a DRAM
memory, that DRAM is 100,000 times faster than magnetic disk, and that flash
memory is 1000 times faster than disk, find how long it takes to read a file from
a DRAM, a disk, and a flash memory if it takes 2 microseconds from the cache
memory?

Exercise 1.3

Consider three different processors P1, P2, and P3 executing the same instruction
set with the clock rates and CPIs given in the following table.

Pl 2 GHz 15 ]
P2 1.5 GHz 1.0
P3 3 GHz 25

1.3.1 [5] <1.4> Which processor has the highest performance?

1.3.2 [5] <1.4> If the processors each execute a program in 10 seconds, find the
number of cycles and the number of instructions.

1.3.3 [10] <1.4> We are trying to reduce the time by 30% but this leads to
an increase of 20% in the CPI. What clock rate should we have to get this time

reduction?

For problems below, use the information in the following table.

P1 s

2 GHz 20 % 10° 7
P2 1.5 GHz 30 x 10° 10s
P3 3 GHz 90 % 10° 9s

1.3.4 [10] <1.4> Find the IPC (instructions per cycle) for each processor.

1.3.5 (5] <1.4> Find the clock rate for P2 that reduces its execution time to that
of P1.

L.3.6 (5] <1.4> Find the number of instructions for P2 that reduces its execution
time to that of P3.



€0

Chapter 1 Computer Abstractions and Technology

Exercise 1.4

Consider two different implementations of the same instruction set architecture.
There are four classes of instructions, A, B, C, and D. The ciock rate and CPI of each
implementation are given in the following table.

_ Clock rate CPiClass A | CPIClassB | CPIClassC | CPIClass D
P1 1 2 3 4

1.5 GHz

P2 2 GHz 2 2 2 2

1.4.1 [10] <1.4> Given a program with 10° instructions divided into classes as
follows: 10% class A, 20% class B, 50% class C and 20% class D, which implemen-
tation is faster?

1.4.2 [5] <1.4> What is the global CPI for each implementation?

1.4.3 [5] <1.4> Find the clock cycles required in both cases.

The following table shows the number of instructions for a program.

I S T T T
| 50 ‘ 100

| 500 [ 50 | 700 ‘

1.4.4 (5] <l.4> Assuming that arith instructions take I cycle, load and store 5
cycles and branch 2 cycles, what is the execution time of the program in a 2 GHz
processor?

1.4.5 [5] <1.4> Find the CPI for the program.

1.4.6 [10] <1.4> If the number of load instructions can be reduced by one-half,
what is the speed-up and the CPI?

Exercise 1.5

Consider two different implementations, P1 and P2, of the same instruction set.
There are five ctasses of instructions (A, B, C, D, and E}) in the instruction set. The
clock rate and CPI of each class is given below.

. Clock rate | CPI Class A | CPI Class B | CPI Class C | CPI Class D | CPIClass E
a. | P1 1.0 GHz 1 2 3 4 3
P2 1.5 GHz 2 2 2 4 4
b. | P1 1.0 GHz 1 1 2 3 2
P2 1.5 GHz 1 2 3 4 3
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1.5.1 [5] <1.4> Assume that peak performance is defined as the fastesl rate that
acompuler can exectite any instruction sequence. What are the peak performances
of P1 and P2 expressed in instructions per second?

1.5.2 [5] <i.4> If the number of instructions exccuted in a certain program is
divided equally among the classes of instructions except for class A, which occurs
twice as often as each of the others. Which computer is faster? How much faster is it?

1.5.3 [5] <1.4> If the number of instructions exccuted in a certain program is
divided equally among the classes of instructions except for class E, which occurs
twice as often as each of the others? Which computer is faster? How much faster
is it2

The table below shows instruction-type breakdown for different programs. Using
this data, you will be exploring the performance tradeoffs with different changes
made to a MIPS processor.

|| commte [toa | stoo [ mrancn [ Totar
400 100 50 ‘

1
a. Program 1 | 1000 | 1550

b. | Program 4 ‘ 1500 300 100 100 | 1750

1.5.4 [5] <l.4> Assuming that computes take | cycle, loads and store instructions
take 10 cycles, and branches take 3 cycles, find the execution time of each program
on a3 GHz MIPS processor.

1.5.5 [5] <1.4> Assuming that computes take I cycle, loads and store instructions
take 2 cycles, and branches take 3 cycles, find the execution time of each program
on a 3 GHz MIPS processor.

1.5.6 [5] <1.4> Assuming that computes take 1 ¢ycle, loads and store instructions
take 2 cycles, and branches take 3 cycles, what is the speed-up of a program il the
number of compute instruction can be reduced by one-half?

Exercise 1.6

Compilers can have a profound impact on the performance of an application on a
given processor. This problem will explore the impact compilers have on execution
time.
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12 S A Y S o N S
[ et Wt
.

1.00E+09 1s 1.20E+09 | 145

b. 1.00E+09 08s 1.20E+00 " 07s

1.6.1 [5] <1.4> For the same program, two different compilers are used. The
table above shows the execution time of the two different compiled programs. Find
the average CPI for each program given that the processor has a clock cycle time
of 1 nS.

1.6.2 [5] <1.4> Assume the average CPls found in 1.6.1, but that the compiled
programs run on two difference processors. If the execution times on the two
processors are the same, how much faster is the clock of the processor running
compiler A's code versus the clock of the processor running compiler B’s code?

1.6.3 [5] <1.4> A new compiler is developed that uses only 600 million instruc-
tions and has an average CPI of 1.1, What is the speed-up of using this new compiler
versis using Compiler A or B on the original processor of 1.6.17

Consider two different implementations, P1 and P2, of the same instruction set.
There are five classes of instructions (A, B, C, D, and E) in the instruction set. P1
has a ¢lock rate of 4 GHz, and P2 has a clock rate of 6 GHz. The average number of
cycles for each instruction class for P1 and P2 are listed in the following table.

™ T S |
|

Bl 0NN

1
2
3
4
5

mIQ|O|®|>

m|lo|laojo|»
S I N A I
Blh N[N0 N
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1.6.4 [5] <1.4> Assume that peak performance is defined as the fastest rate that
a computer can execute any instruction sequence. Whal are the peak performances
of P1 and P2 expressed in instructions per second?

1.6.5 |5] <1.4> If the number of instructions executed in a certain program is
divided equally among the classes of instructions in Problem 2.36.4 except for
class A, which occurs twice as often as each of the others, how much faster is P2
than P1?

1.6.6 [5] <].4> At what frequency does P2 have the same performance as P1 for

the instruction mix given in 1.6.57

Exercise 1.7

The following table shows the increase in clock rate and power of eight generations
of Tntel processors over 28 years.

T T T

r 80286 (1982} 12.5 MHz | 33w N
L 80386 (1985) T lew 41w -
80486 (1989) s min 19w N
Pentlum (1993) 66 MHz 101 W
Pentium Pro (1997) 200 MHz 291w o
Pentium 4 Willamette (2001 26Hz 753 W )
Pentium 4 Prescott (2004) 3.6 GHz ) . 103w ]
\_core 2 Ketsfield (2007) 2.667 GHz 95w

1.7.1 (5] <1.5> What is the geometric mean of the ratios between consecutive
generations for both clock rate and power? {The geometric mean is described in
Section 1.7.)

1.7.2 [5]<1.5> Whatis the largest relative change in clock rate and power between
generations?

1.7.3 [5] <1.5> How much larger is the clock rate and power of the last generation
with respect to the first generation?
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Consider the following values for voltage in each generation.

80286 (1982) 5
80386 {1985) 5
80486 {1989) 5 -
Pentium (1993} 5 T
T Pentium Pro (1997) 33
Pentium 4 Willamette (2001) 1.75
I Pentium 4 Prescott (2004) 1.25
Core 2 Ketsfield (2007) 1.1

1.7.4 |5] <1.5> Find the average capacitive loads, assuming a negligible static
power consumption.

1.7.5 [5] <1.5> Find the largest relative change in voltage between generations.

1.7.6 [5] <1.5> Find the geometric mean of the voltage ratios in the generations
since the Pentium,

Exercise 1.8

Suppose we have developed new versions of a processor with the following
characteristics.

version 1 5v 0.5 GHz

version 2 3.3v 1 GHz

1.8.1 [5] <1.5> By how much has the capacitive load been reduced between
versions if the dynamic power has been reduced by 10%?

1.8.2 (5] <1.5> By how much has the dynamic power been reduced if the capaci-
tive load does not change?

1.8.3 [5] <1.5> Assuming that the capacitive load of version 2 is 80% the capaci-
tive load of version 1, find the voltage for version 2 if the dynamic power of version
2 is reduced by 40% from version 1.
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Supposing that the industry trends show that a new process generation scales as
follows:

1

[ ’ 1727 ‘ quz | 2 ‘

1.8.4 [5] <1.5> By what factor does the dynamic power scales?

1.8.5 |5] «1.5> Find the scaling of the capacitance per unit area.

1.8.6 [5] <1.5> Using data from Exercise 1.7, find the voltage and clock rate of
the Core 2 processor for the next process generation.

Exercise 1.9

Although the dynamic power is the primary source of power dissipation in CMOS,
leakage current produces a static power dissipation V x 1. The smaller the on-chip
dimensions, the more significant is the static power. Assume the figures shown in the
following table for static and dynamic power dissipation for several generations of
processors.

1 fcimtony oo powr ) siaticpover | Vonso 0|
a. 49 1 33

250 nm
b, 90 nm 75 45 14

1.9.1 [5] <1.5> Find the percentage of the total dissipated power comprised by
static power,

1.9.2 [5] <1.5> If the static power depends on the leakage current, P, =V x |
find the leakage current for each technology.

Teab?

1.9.3 (5] <1.5> Determine the ratio of static power to dynamic power for each
technology.

Consider now the dynamic power dissipation of different versions of a given
processor for three different voltages given in the following table.

| a gOwW oW a0wW
| b 65 W 55 W W




66

Chapter1 Ci ter Abstracti and Technology

1.9.4 [5] <1.5> Determine the static power for each version at 0.8 V, assuming a
static to dynamic power ratio of 0.6. '

1.9.5 [5] <1.5> Find the leakage current for each version at 0.8 V.

1.9.6 (10] <1.5> Determine the larger of the two leakage currents at 1.0 V and
1.2 V, assuming a static to dynamic power ratio of 1.7.

Exercise 1.10

The table below shows the instruction type breakdown of a given application
executed on 1,2, 4, or § processors. Using this data, you will be exploring the speed-
up of applications on parallel processors.

5 oo e s A AR
][ et [ionsstorssranc | et [“ne/stor] v |

a. 1 2560 1280 255 1 4 2

2 1280 G40 128 1 4 2

4 640 320 64 1 4 2

8 320 160 32 1 4 2
BT e [ T |
I T e L P P I

b. 1 2560 1280 256 1 4 2

2 1350 80O 128 1 G 2

F: 800 600 64 1 9 2

8 GO0 500 32 1 13 2

1.10.1 [5] <1.4, 1.6> The table above shows the number of instructions required
per processor to complete a program on a multiprocessor with 1, 2, 4, or 8 proces-
sors. What is the total number of instructions executed per processor? What is the
aggregate number of instructions executed across all processors?

1.10.2 [5] <1.4, 1.6> Given the CPI values on the right of the table above, find
the total execution time for this program on 1,2, 4, and 8 processors. Assume that
each processor has a 2 GHz clock frequency.

1.10.3 [10] <l.4, 1.6> 1f the CPI of arithmetic instructions was doubled,
what would the impact be on the execution time of the program on 1, 2, 4, or 8
processors?
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The table below shows the number of instruction per processor core on a multicore
processar as well as the average CPI for executing the program on 1, 2,4, or 8 cores.
Using this data, you will be exploring the speed-up of applications on multicare
processars.

e B
a. 1 T | 1.2

1.00E+10
2 N 5.00E+00 T 1
4 2.50E+09 s
\__: B zE - 1esE09 | __1.8 __‘
e e
b | 1 ' 1.00E+10 l 2 |
2 5.00E+09 12 (
4 2506409 | [ 12 ‘
8 1.256+09 ‘ 1.2 |

1.10.4 |10] <14, 1.6> Assuming a 3 GHz clock frequency, what is the execution
time of the program using 1, 2, 4, or 8 cores.

1.10.5 |10] <1.5, 1.6> Assume that the power consumiption of a processor core
can be described by the following equation
5.0mA B
Power = BYiirs Voltage?
where the operation voltage of the processor is described by the following
equation

Voltage = < Frequency + 0.4

1
5
with the frequency measured in GHz. So, at 5 GHe, the voltage would be 1.4 V. Find
the power consumption of the program executing on 1, 2, 4, and 8 cores assuming
that each core is operating at a 3 GHz clock frequency. Likewise, find the power
consumption of the program executing on 1, 2, 4, or 8 cores assuming that each
core is operating at 500 MHz.

1.10.6 [10] <1.5, 1.6> Find the energy required to execute the program for [, 2, 4,
and 8 cores assuming that each core has a clock frequency of 3 GHz and 500 MHa.
Assume the power consumption equations from 1.10.5.
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Exercise 1.11

The following table shows manufacturing data for various processors.

15 cm

0,018 defects/cm?

25 cm

140

0.024 defects/cm”

20

1.14.1 {10} <1.7> Find the yield.
1.11.2 [5] <1.7> Find the cost per die.

1.11.3 [10] <1.7> If the number of dies per wafer is increased by 10% and the
defects per area unit increases by 15%, find the die area and yield.

Suppose that, with the evolution of the electronic devices manufacturing tech-
nology, the yield varies as shown in the following table.

\ yield \ 0.85 092 \

1.11.4 [10] <1.7> Find the defects per area unit for each technology given a die
area of 200 mm?

1.11.5 [5] <1.7> Represent graphically the variation of the yield rogether with
the variation of defects per unit area.

Exercise 1.12

The following table shows results for SPEC2006 benchmark programs running on
an AMD Barcelona.

-- Execution time (seconds) | Reference time (seconds)

pert 2118 500 9770
b. maf 336 1200 9120

1.12.1 [5] <1.7> Find the CPI if the clock cycle time is 0.333 ns.
1.12.2 [5] <1.7> Find the SPEC ratio.

1.12.3 [5] <1.7> For these two benchmarks, find the geemetric mean.
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The following table shows data for further benchmarks.

sjeng

0.96

4 GHz

14.5

4 GHz

9.1

b. omnetpp 2.94

1.12.4 (5] <1.7> Find the increase in CPU time if the number of instruction of
the benchmark is increased by 10% without affecting the CPI.

1.12.5 [5] «<1.7> Find the increase in CPU time if the number of instruction of
the benchmark is increased by 10% and the CP1 is increased by 5%.

1.12.6 [5] <1.7> Find the change in the SPECratio for the change described in
1.12.5.

Exercise 1.13

Suppose that we are developing a new version of the AMD Barcelona processor
with a 4 GHz clock rate. We have added some additional instructions to the
instruction set in such a way that the number of instructions has been reduced by
15% from the values shown for each benchmark in Exercise 1.12. The execution
times obtained are shown in the following table.

-m Execution time (seconds) Reference time (seconds) SPECratio

per! 9770 2.7
b. mcf 1150 9120 7.9

1.13.1 [10] <1.8> Find the new CPL.

1.13.2 {i0] <1.8> In general, these CPI values are Jarger than those obtained in
previous exercises for the same benchmarks, This is due mainly to the clock rate
used in both cases, 3 GHz and 4 GHz. Determine whether the increase in the CPI
is similar to that of the clock rate. If they are dissimilar, why?

1.13.3 [5] <1.8>By how much has the CPU time been reduced?

The following table shows data for further benchmarks.

L e O Y

sjeng 820 0.96 3 GHz

b. omnetpp 580 2.94 3 GHz
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1.13.4 [10] <1.8> If the execution time is reduced by an additional 10% without
affecting the CPl and with a clock rate of 4 GHz, determine the number of
instructions.

1.13.5 [10] <1.8> Determinetheclock rate required to give a further 10% reduction
in CPU time while maintaining the number of instructions and CPI unchanged.

1.13.6 [10] <1.8> Determine the clock rate if the CPl is reduced by 15% and the
CPU time by 20% while the number of insiructions is unchanged.

Exercise 1.14

Section 1.8 cites as a pitfall the utilization of a subset of the performance equation
as a performance metric. To illustrate this, consider the following data for the
execution of given instruction sequence of 10° instructions in different processors.

cockrm | on |

Pi 4 GHz 1.25

P2 3 GHz Q.75

1.14.1 [5] <1.8> One usual fallacy is to consider the computer with the largest
clock rate as having the large performance. Check if this is true for P1 and P2.

1.14.2 [10] <1.8> Another fallacy is to consider that the processor executing
the largest number of instruction will need a larger CPU time. Considering that
processor P1 is executing a sequence of 10° instructions and that the CP1 of
processors P1 and P2 do not change, determine the number of instructions that P2
can execute in the same time that P1 needs to execute 10° instructions.

1.14.3 [10] <1.8> A common fallacy is to use MIPS (millions of instructions per
second) to compare the performance of two different processors, and consider that
the processor with the largest MIPS has the largest performance. Check if this is
true for P1 and P2.

Another common performance figure is MFLOPS (million of floating-point
operations per second), defined as
MFLOPS = No. FP operations/execution time x 10°

but this figure has the same problems as MIPS. Consider the programs in the
following tabie, running on a processor with clock rate = 3 GHz.

B T P e e e e
50%

i 10% | 078
b| 3x10° 40% 40% 20% | 125 | 070 1.25
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1.14.4 [10] <1.8> Find the MFLOPS figures for the programs.
1.14.5 [10] <1.8> Find the MIPS figures for the programs.

1.14.6 [10] <1.8> Find the performance for the programs and compare with
MIPS and MFLOPS.

Exercise 1.15

Another pitfall cited in Section 1.8 is expecting to improve the overall performance
of a computer by improving only one aspect of the computer. This might be true,
but not always. Consider a computer running programs with CPU times shown in
the following table.

I T T T

a5s 85 s ] 505 0s 200 s
rn. 505 80s | 505 a0s 2105

1.15.1 |5] <1.8> By how much is the total time reduced if the time for FP
operations is reduced by 20%?

1.15.2 [5] <1.8> By how much is the time for INT operations reduced if the total
time is reduced by 20%?

1.15.3 [5] <1.8> Can the total time can be reduced by 20% by reducing only the
time for branch instructions?

The following table shows the instruction type breakdown per processor of a given
application executed in different numbers of processors.

Branch cPI CPI
# Processors INT instr. L/S instr. Instr. (INT) | (L/S) (Bram:h}

560 x 10° 2000 x 10° 1280 % 10° 256 x 10°

__J

b. 8 80 x 10° 240 x 10° 160 x 10° { 32 x 108 \ 1

1

Assume that each processor has a 2 GHz clock rate.
1.15.4 [10] <1.8> By how much must we improve the CPI of FP instructions if
we want the program to run two times faster?

1.15.5 (10} <1.8> By how much must we improve the CPI of L/§ instructions if
we want the program to run two times faster?
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1.15.6 (5] <1.8> By how much is the execution time of the program improved
if the CPI of INT and FP instructions is reduced by 40% and the CPI of L/8 and
branch is reduced by 30%?

Exercise 1.16

Another pitfall, relating to the execution of programs in multiprocessors systems,
is expecting improvement in performance by improving only the execution time of
part of the routines. The following table shows the execution time of five routines
of a program running on different numbers of processors.

Routine A Routine B Routine C Routine D Routine E
# Processors (ms) (ms) (ms) (ms) (ms)
a. 2 20 80 10 70 5

b. 16 4 14 2 12 2

1.16.1 [10] <1.8> Find the total execution time and by how much it is reduced if
the time of routines A, C, and E is improved by 15%.

1.16.2 [10] <1.8> By how much is the total time reduced if routine B is improved
by 10%?

1.16.3 [10] <1.8> By how much is the total time reduced if routine D is improved
by 10%?

Execution time in a multiprocessor system can be split into computing time for
the routines plus routing time spent sending data from one processor to another.
Consider the execution time and routing time given in the following table. In this
case, the routing time is an important component of the total time.

Routine A | Routine B | Routine C | Routine D | Routine E | Routing
# Processors (ms) (ms) (ms) (ms) (ms) (ms)
2 20 78 65 11

9 4
4 12 44 3 34 2 13
8 1 23 3 19 3 17
16 4 13 1 10 2 22
32 2 5 1 5 1 23
84 1 2 0.5 1 1 26
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1.:!.6.4 [10) <1.8> For each doubling of the number of processors, determine the
ratio of new to old computing time and the ratio of new to old routing time.

1.16.5 (5] <1.8> Using the geometric means of the ratios, extrapolate to find the
computing time and routing time in a 128-processor system.

1.16.6 [10] <1.8> Find the computing time and routing time for a system with
One Processor.

§1.1, page 9: Discussion questions: many answers are acceptable.

§1.3, page 25: Disk memory: nonvolatile, long access time (milliseconds), and cost
$0.20-%2.00/GB. Semiconductor memory: volatile, short access time (nanoseconds),
and cost $20-$75/GB.

$1.4, page 31: 1. a; both, b: latency, c: neither. 2. 7 seconds.

§1.4, page 38: b.

$1.7, page 50: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because
high volume can make the extra investment to reduce die size by, say, 10% a good
economic decision, but it doesn’t have to be frue.

§1.8, page 53: a. Computer A has the higher MIPS rating, b. Computer B s faster.

Answers to
Check Yourself
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instruction set The
vocabulary of commands
understood by a given
architecture.

Iintroduction

To command a computer’s hardware, you must speak its language. The words
of a computer’s language are called insiructions, and its vocabulary is called an
instruction set. In this chapter, you will see the instruction set of a real computer,
both in the form written by pecple and in the form read by the computer. We
introduce instructions in a top-down fashion. Starting from a notation that looks
like a restricted programming language, we refine it step-by-step until you see
the real language of a real computer. Chapter 3 continues our downward descent,
unveiling the hardware for arithmietic and the representation of floating-point
numbers.

You might think that the languages of computers would be as diverse as those
of people, but in reality computer languages are quite similar, more like regional
dialects than like independent languages. Hence, once you learn one, it is easy to
pick up others. This similarity occurs because all computers are constructed from
hardware technologies based on similar underlying principles and because there
are a few basic operations that all computers must provide. Moreover, computer
designers have a common goal: to find a language that makes it easy to build the
hardware and the compiler while maximizing performance and minimizing cost
and power. This goal is time honored; the following quote was written before you
could buy a computer, and it is as true today as it was in 1947:

Itis easy to see by formal-logical methods that there exist certain {instruction
sets] that are in abstract adequate to control and cause the execution of any
sequence of operations. . . . The really decisive considerations fronr the present
pointof view, in selecting an [instruction set], are more of a practical nature:
simplicity of the equipnient demanded by the [instruction set], and the clarity of
its application to the actually importani problenis together with the speed of its
handling of those problems.

Burks, Goldstine, and von Neumann, 1947

The “simplicity of the equipment” is as valuable a consideration for today’s
computers as it was for those of the 1950s. The goal of this chapter is to teach
an instruction set that follows this advice, showing both how it is represented
in hardware and the relationship between high-level programming languages
and this more primitive one. Qur examples are in the C programming language;
@ Section 2.15 on the CD shows how these would change for an object-oriented
language like Java.

2.2 Operations of the Computer Hardware
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By learning how to represent instructions, you will also discover the secret of
computing: the stored-program concept. Moreover, you will exercise your “foreign
language” skills by writing programs in the language of the computer and running
them on the simulator that comes with this book. You will also see the impact of
programining languages and compiler optimization on performance. We conclude
with a loolt at the historical evolution of instruction sets and an overview of other
computer dialects.

The chosen instruction set comes from MIPS Technologies, which is an elegant
example of the instruction sets designed since the 1980s. Later, we will take a quick
look at two other popular instruction sets. ARM is quite similar to MIPS, and more
than three billion ARM processors were shipped in embedded devices in 2008. The
other example, the Intel x86, is inside almost all of the 330 million PCs made in
2008,

We reveal the MIPS instruction set a piece at a time, giving the rationale along
with the computer structures, This top-down, step-by-step tutorial weaves the
components with their explanations, making the computer’s language more palat-
able. Figure 2.1 gives a sneak preview of the instruction set covered in this chapter.

Operations of the Computer Hardware

Every computer must be able to perform arithmetic. The MIPS assembly language
notation

add a, b, c

instructs a computer to add the two variables b and ¢ and to put their sum in a.
This notation is rigid in that each MIPS arithmetic instruction performs only
one operation and must always have exactly three variables. For example, suppose
we want to place the sum of four variables b, ¢, d, and e into variable a. (In this
section we are being deliberately vague about what a “variable” is; in the next
section we'll explain in detail.)
The following sequence of instructions adds the four variables:

add a., b, ¢
add a, a. d
add a, a, e

f# The sum of b and ¢ is placed in a.
# The sum of b, ¢, and d s now in a.
## The sum of b, ¢, d, and e is now in a.

Thus, it takes three instructions to sum the four variables.

The words to the right of the sharp symbol (#) on each line above are cominents
for the human reader, and the computer ignores them. Note that unlike other pro-
gramming languages, each line of this language can contain at most one instruction.
Another difference from C is that comments always terminate at the end of a line.

stored-program
cancept The idea that
instructions and data of
many types can be stored
in memory as numbers,
leading to the stored-
program cnnlpulcr.

There niust certaindy
be instructions

for performing

the fundaniental
aritlnetic operations.
Burks, Goldstine, and
von Neumann, 1947
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32 registers

MIPS operands

Name

'Ssor§57,_st0~3t9, $zer0.
$30-%a3, sv0-Svi, sgp. %fp,

Fast iocations for data. In MIF_’S data must be in registers to perfor?n arithmetic.
register $zero always equals 0, and register $al is reserved by the assembler to

handle large constants.

$sp. sra. sat

239 memaory

words Memory|4294967 29

Memory[0], Memory[4],. ..,

2]

spilled

registers.

Accessed only by data transfer instructions. MIPS uses byte addresses, so
sequentia) word addresses differ by 4. Memory holds data structures, arrays, and

| ada

MIPS assembly language

add 551,552,553 | BS1 =552 + 553 Three register operands
Arithmetic subtract sub $51,$52,353 | $s5l =352 - 53 Three register operands
add immediate eddl $s51,552,20 |sl=1%s52+20 Used to add constants
load word v 551,20(352) 551 = Memory[$s2 + 20] Word from memory to register
store word sw o $51,20(852) Memory($s2 + 20§ = §51 Word from register to memery
Joad half Th $s1,20(%s52) $s1 = Memory[$s2 + 20] Halfword memery to register
load half unsigned | Thu  $51.20(%52) |3s] = Memony3s2+ 20} Halfword memory to register
store half sh §51.20(%s52) Memery[$52 + 20) = $51 Halfword register to mermory
Sz:fsfer load Dyte T $51,20($52) |%s] =nmMemary$s2 + 20] Byte from memory to register
load byte unsigned | Tby  $s51,20(3s2) | 351 = Memory3s2 + 20) Byte from memory to register
store byte sb $51,20(552) I Memory[$52 + 20] = 551 Byte from register to memory
{oad linked word 11 $51,20{352) $31 = Memory[$52 + 20] Load word as st half of atomic swap
store condition. word | se §s1,20{3s2) Memory{$52+20]=$s1:851=0 or 1 | Store word as 2nd half of atomic swap
load upperimmed. |1ui $s].20 $s1=20=2'" Loads constant in upper 16 bits
and and  %s1,%52,953 | %51 =352 & $53 Three reg. operands: bitby-bit AND
or or 551,952,953 351 =952]$53 Thiee reg. operands: bil-by-bil OR
nor nor §51,5s2,853 | 851 =~ ($52]1453) Three reg. operands; bit-by-bit NOR
Logical and immediate andi $s1.3s2,20 |$51=3s2&20 Bit-by-bit AND reg with constant
or immediate ori $s1.%52,20 |%s1=%s2|20 Bit-by-bit OR reg with constant
shift left logical 511 $s1,352.10 |4s] =552 << 10 Shift left by coristant
shift right logical srl $s1,352.10 |$s]=9$s52>>10 Shift right by constant
branch on equal beq $s1,$s82,25 if{3sl ==%s2)goto Equal test; PC-relative branch
PC + 4 + 100
branch on not equal | bne  §s),%s2,25 |if{3sll= 552)goto Not equal test; PC-relative
PC + 4 + 10C
set on less than sTt 551,552,883 [if($52 < $53) $si=1; Compare less than; for beq, bie
Canditional else 551 =0
branch sel on less than sTtu 851,352,383 |if (352 < §53) 831 =1; Compare less than unsigned
unsigned else 3s1 =0
set less than slti $s1,352,20 if($52 <20) 3s1 =1; Campare less than constant
immediate else 3s1=0
set less than sltiu $s51,%s2,20 |if(3s2<20)3$s1=1; Compare less than constaat
immediate unsigned else 351=0 unsigned
— Tjump i 2500 go to 10000 Jump o target address
}Jncond|llunal jump register ir $ra gotosra ] For switch, procedure return
e |jump and link jal 2500 $ra = PC -+ 4; go lo 10000 | Far precedure call |
FIGURE 2.1 MIPS Biy 1 ger led in this chap This information is also found in Column 1 of the M[PS Reference

Data Card at the front of 1his book.
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The natural number of operands for an operation like addition is three: the
two numbers being added together and a place to put the sum. Requiring every
instruction to have exactly three operands, no more and no less, conforms o the
philosophy of keeping the hardware simple: hardware for a variable number of
operands is more complicated than hardware for a fixed number. This situation
illustrates the first of four underlying principles of hardware design:

Destgn Principle 1: Simplicity favors regularity.
We can now show, in the two examples that follow, the relationship of programs

written in higher-level programming languages to programs in this more primitive
notation.

Compiling Two ¢ Assignment Statements into MIPS

This segment of a C program contains the five variables a, b, ¢, d, and e. Since
Java evolved from C, this example and the next few work for either high-level
programming language:

a=>b+c;
d=2a - e;

The translation from C to MIPS assembly language instructions is performed
by the coupiler. Show the MIPS code produced by a compiler.

{’\ MIPS instruction operates on two source operands and places the result
in one dlestmanon operand. Hence, the two simple statements above compile
directly into these two MIPS assembly language instructions:

add a, b, ¢
sub d, a, e

Compiling a Complex € Assignment into MIPS

A somewhat complex statement contains the five variables f,9,h,1,and j:

f=09+h) - (i +j);

What might a C compiler produce?
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The compiler must break this statement into several assembly instructions,
since only one operation is performed per MIPS instruction. The firsty MIPS
instruction calculates the sum of g and h. We must place the result somewhere,
50 the compiler creates a temporary variable, called £ 0:

add 10,9,k # temporary variable t0 contains g +h
Although the next operation is subtract, we need to calculate the sum of { and

j before we can subtract. Thus, the second instruction places the sum of i and
§ in another temporary variable created by the compiler, called t1:

add t1.i.j 4 temporary variable tl contains i + ]

Finally, the subtract instruction subtracts the second sum from the first and
places the difference in the variable ¥, completing the compiled code:

sub f.t0.tl ## T gets t0 - tl1, which is (g + h}y - (1 + )

For a given function, which programming language likely takes the most lines of
code? Put the three representations below in order.

1. Java
2. C
3. MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a
software interpreter. The instruction set of this interpreter is called Java bytecodes (see
@ Section 2.15 on the CD), which is quite different from the MIPS instruction set. To
get performance close to the equivalent C program, Java systems today typically compile
Java bytecodes into the native instruction sets like MIPS. Because this compilation is
normally done much later than for C programs, such Java compilers are often called Just
in Time (JIT) compilers. Section 2.12 shows how JITs are used later than C compilers
in the start-up process, and Section 2.13 shows the performance consequences of
compiling versus interpreting Java programs.

Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions
are restricted; they must be from a limited number of special locations built directly
in hardware called registers. Registers are primitives used in hardware design that

2.3 Operands of the Computer Hardware
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are also visible to the programmer when the computer is completed, so you can
think of registers as the bricks of computer construction. The size of a register in
the MIPS architecture is 32 bits; groups of 32 bits occur so frequently that they are
given the name word in the MIPS architecture.

One major difference between the variables of a programming language and
registers is the limited number of registers, typically 32 on current computers,
like MIPS. (See Section 2.20 on the CD for the history of the number of reg-
isters.) Thus, continuing in our top-down, stepwise evolution of the symbolic
representation of the MIPS language, in this section we have added the restriction
that the three operands of MIPS arithmetic instructions must each be chosen from
one of the 32 32-bit registers.

The reason for the limit of 32 registers may be found in the second of our four
underlying design principles of hardware technology:

Design Principle 2: Smaller is faster.

A very large number of registers may increase the clock cycle time simply because
it takes electronic signals longer when they must travel farther.

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be
faster than 32. Yet, the truth behind such observations causes computer designers
to take them seriously. In this case, the designer must balance the craving of pro-
grams for more registers with the designer’s desire to keep the clock cycle fast.
Another reason for not using more than 32 is the number of bits it would take in
the instruction format, as Section 2.5 demonstrates.

Chapter 4 shows the central role that registers play in hardware construction;
as we shall see in this chapter, effective use of registers is critical to program
performance.

Although we could simply write instructions using numbers for registers, from
0 to 31, the MIPS convention is to use two-character names following a dollar sign
to represent a register, Section 2.8 will explain the reasons behind these names. For
now, we will use $50, $51, ... for registers that correspond to variables in C and
Java programs and $t0, $t1, ... for temporary registers needed to compile the
program into MIPS instructions.

Compiling a C Assignment Using Registers

It is the compiler’s job to associate program variables with registers. Take, for
instance, the assignment statement from our earlier example:

[ f=1(g+h) -0 +]J);

The variables , g, h, 7, and j are assigned io the registers $50, $51, $52, $53,
and $s4, respectively. What is the compiled MIPS code?

word The natural unit
of access in a computer,
usually a group of 32 bits;
corresponds to the size

of a register in the MIPS
architectuse.



data transfer instruction
A command that moves
data between memory
and registers.

address A value used to
delineate the location of
a specific data element
within a memory array.
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| The compiled program is very similar to the prior example, except we replace
the variables with the register names mentioned above plus two temporary

\ registers, $t0 and $t1, which correspond to the temporaty variables above:

|

add $t0,%51,$s2 # register $t0 contains 9 % h
add $t1,$s3.%s4 # register $tl contains i+
cub $s0.$t0,$t1 # f gets $t0 - #tl, which is (g + h)-(i + J)

Memory Operands

Programming languages have simple variables that contain single data elements, as
in these examples, but they also have more complex data structures—arrays and
structures. These complex data structures can contain many more data elements
than there are registers in a computer. How can a computer represent and access
such large structures?

Recall the five components of & computer introduced in Chapter 1 and repeated
on page 75. The processor can keep only a small amount of data in registers, but
computer memory contains billions of data elements. Hence, data structures
(arrays and structures) are kept in memory.

As explained above, arithinetic operations occur only on registers in MTPS
instructions; thus, MIPS must inciude instructions that transfer data between
memory and registers. Such instructions are called data transfer instructions.
To access a word in memory, the instruction must supply the memory address.
Memory is just a large, single-dimensional array, with the address acting as the
index to that array, starting al 0. For example, in Figure 2.2, the address of the third
data element is 2, and the value of Memory[2] is 10.

3 100
10
1
:

Address Data

N

Processor Memory
FIGURE 2.2 Memory addresses and contents of memory at those locations. [f these elements

\were words, these addresses would be incorrect, since MIBS actually uses byte addressing, with each word
representing four bytes. Figure 2.3 shows the memory addressing for scquential word addresses.

2.3 Op of the
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T}l_e data transfer instruction that copies data from memory to a register is
tradltlgnally called load. The format of the load instruction is the name of the
operation followed by the register to be loaded, then a constant and regisier used
to access memory. The sum of the constant portion of the instruction and the con-
tents of the second register forms the memory address. The actual MIPS name for
this instruction is 1w, standing for lead word.

Compiling an Assignment When an Operand Is in Memory

Lgt’s assume that A is an array of 100 words and that the compiler has asso-
ciated the variables g and h with the registers $s1 and $52 as before. Let’s
also assume that the starting address, or base address, of the array is in‘ $s3
Compile this C assignment statement: .

g =h + A[8]:

Although there is a single operation in this assignment statement, one of
the operands is in memory, so we must first transfer A[8] to a register. The
add.ress of this array element is the sum of the base of the array AD .fom;d in
register $53, plus the number to select element 8, The data should,be placed
in a temporary register for use in the next instruction. Based on Figure 2.2, the
first compiled instruction is o

Tw $t0,8(%s3) # Temporary reg $t0 gets A[8]

(On tl?e next page we’ll make a slight adjustment to this instruction, but we'll
use this simplified version for now.) The following instruction can o’perate on
the value in $t0 {which equals A[8]) since it is in a register. The instruction
must add h {contained in $52) to A[8] ($10) and put the sum in the register
corresponding to g (associated with $51):

add  $s1,$s2,%t0 # g = h + A[B]

The constant in a data transfer instruction (8) is called the offset, and the reg-

ister added to form the addvress ($53) is called the base register.
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Hardware/
Software
Interface

alignment restriction
A requirement that data
be aligned in memory on
natural boundaries.

In addition to associating variables with registers, the compiler allocates data
structures like arrays and structures to locations in memory. The compiler can then
place the proper starting address into the data transfer instructions.

Since 8-bit bytes are useful in many programs, most architectures address indi-
vidual bytes. Therefore, the address of a word matches the address of one of the
4 bytes within the word, and addresses of sequential words differ by 4. For example,
Figure 2.3 shows the actual MIPS addresses for the words in Figure 2.2; the byte
address of the third word is 8.

In MIPS, words must start at addresses that are multiples of 4. This require-
ment is called an alignment restriction, and many architectures have it. (Chapter 4
suggests why alignment leads to faster data transfers.)

Computers divide into those that use the address of the leftmost or “big end
byte as the word address versus those that use the rightmost or “little end” byte.
MIPS is in the big-endian camp. (Appendix B, shows the two options to number
bytes in a word.)

Byte addressing also affects the array index. To get the proper byte address in
the code above, the offset to be added to the base register $53 nust be 4% 8, or 32,50
that the load address will select A[B] and not A[8/41], (See the related pitfall on
page 175 of Seciion 2.18.)

5

12 100
8 10
4 101
o] 1

Byte Address ~ Data

Processor Memory
FIGURE 2.3 Actual MIPS y add and tents of y for those words.

The changed addresses are highlighted to contrast with Figure 2.2. Since MIPS addresses each byte, word
addresses are multiples of 4: there are 4 bytes in a word.

2.3 Operands of the Computer Hardware

The instruction complementary to load is traditionally called store; it copies
data from a register to memory. The format of a store is similar to that of a load:
the name of the operation, followed by the register to be stored, then offset to select
the array element, and finally the base register. Once again, the MIPS address is
specified in part by a constant and in part by the contents of a register. The actual
MIPS name is sw, standing for sterc word.

Compiling Using Load and Store

Asswme variable h is associated with register $s2 and the base address of the
array A is in $53. What is the MIPS assembly code for the C assignment state-
ment below?

A[12] = h + A[8];

Although there is a single operation in the C statement, now two of the oper-
ands are in memory, so we need even more MIPS instructions, The first two
instructions are the same as the prior example, except this time we use the
proper offset for byte addressing in the load word instruction to select A[81,
and the add instruction places the sum in $t0:

Tw $t0,32(%s3) # Temporary reg $t0 gets A[8]
add $t0,%$s2,3t0 # Temporary reg $t0 gets h + A[8]

The final instruction stores the sum into A[ 127, using 48 (4 X 12) as the offset
and register $53 as the base register.

sw  $t0,48($s3) # Stores h + A[8] back into A[12]

Load word and store word are the instructions that copy words between
memory and registers in the MIPS architecture, Other brands of computers use
other instructions along with load and store to transfer data. An architecture with
such alternatives is the Intel x86, described in Section 2.17.

EXAMPLE
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Many programs have more variables than computers have registers. Consequently,
the compiler tries to leep the most frequently used variables in registers and places
the rest in memory, using loads and stores to move variables between registers and
memory. The process of putting less commonly used variables (or those needed
later) into memory is called spilling registers.

The hardware principle relating size and speed suggests that memory must be
slower than registers, since there are fewer registers. This is indeed the case; data
accesses are faster if data is in registers instead of memory.

Moreover, data is more useful when in a register. A MIPS arithmetic instruc-
tion can read two registers, operate on them, and write the result. A MIPS data
transfer instruction only reads one operand or writes one operand, without oper-
ating on it.

Thus, registers take less time to access and have higher throughput than memory,
making data in registers both faster to access and simpler to use, Accessing registers
also uses less energy than accessing memory. To achieve highest performance and
conserve energy, compilers must use registers efficiently.

Constant or Inmediate Operands

Many times a program will use a constant in an operation—for example, incre-
menting an index to point to the next element of an array. In fact, more than half
of the MIPS arithmetic instructions have a constant as an operand when running
the SPEC2006 benchmarks.

Using only the instructions we have seen so far, we would have to load a constant
from memory to use one, (The constants would have been placed in memory when
the program was loaded.) For example, to add the constant 4 to register $53, we
could use the code

I

constant 4
$s3 + $t0 (§t0 == 4)

Tw $t0, AddrConstant4($sl)
add $s3,8s3,510

# 5t0
# $s3

assuming that $s1 + AddrConstant4 is the memory address of the constant 4.

An alternative that avoids the load instruction is to offer versions of the arith-
metic instructions in which one operand is a constant. This quick add instruction
with one constant operand is called add immediate or addi. To add 4 to register
$53, we just write

addi $s3,%s53,4 # $53 = $53 + 4

Immediate instructions illustrate the third hardware design principle, first
mentioned in the Fallacies and Pitfalls of Chapter 1:

Design Principle 3: Male the common case fast.

2.4 Signed and Unsigned Numbers
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Constant operands occur frequently, and by including constants inside arithmetic
instructions, operations are much faster and use less energy than if constants were
loaded from memory.

The constant zero has another role, which is to simplify the instruction set by
offering useful variations. For example, the move operation is just an add instruc-
tion where one operand is zero, Hence, MIPS dedicates a register $zero to be hard-
wired to the value zero. (As you might expect, it is register number 0.)

Given the importance of registers, what is the rate of increase in the number of
registers in a chip over time?

1. Very fast: They increase as fast as Moore’s law, which predicts doubling the
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the
computer, there is inertia in instruction set architecture, and so the number
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a
G4-bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight,
they are officially called MIPS-32 and MIPS-64. In this chapter, we use a subset of
MIPS-32. B Appendix E shows the differences between MIPS-32 and MIPS-64.

The MIPS offset plus base register addressing is an excellent match to structures
as well as arrays, since the register can point to the beginning of the structure and the
offset can select the desired element. We'll see such an example in Section 2.13.

The register in the data transfer instructions was originally invented to hold an index
of an array with the offset used for the starting address of an array, Thus, the base
register is also called the index register. Today's memories are much larger and the
software model of data allocation is more sophisticated, so the base address of the
array is normally passed in a register since it won't fit in the offset, as we shall see.

Since MIPS supports negative constants, there is no need for subtract immediate in
MIPS.

Signed and Unsigned Numbers

First, let’s quickly review how a computer represents numbers. Humans are taught
to think in base 10, but numbers may be represented in any base. For example, 123
base 10 = 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are
called decinal numbers, base 2 numbers are called binary numbers.)

A single digit of a binary number is thus the “atom” of computing, since all
information is composed of binary digits or bits. This fundamental building block

Check
Yourself

binary digit Also
catled binary bit. One
of the two numbers

in base 2, D or 1, that
are the components of
information.
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least significant bit
The rightmost bicin a
MIPS word.

most significant bit
The lefimost bitina
MIPS word.

can be one of two values, which can be thought of as several alternatives: high or
low, on or off, true or false, or 1 or 0. '
Generalizing the point, in any number base, the value of ith digit dis

dx Base'

where 7 starts at 0 and increases from right to left. This leads to an obvious
way to number the bits in the word: simply use the power of the base for that
bit. We subscript decimal numbers with fen and binary numbers with two. For
example,

10110

represents
(1x2) +(0x2Y) +(lx2h) + (1x29.,
={1l x8) + (0 x4) + (1 x2) + {1 x 1),
= 8 + 0 + Z + lien
= 11Len

We number the bits 0, 1,2, 3, . . . from right to left in a word. The drawing below
shows the numbering of bits within a MIPS word and the placement of the number
101 llwc):

3130292827 2625242322212019181716151413121210 9 8 7 6 5 4 3 2 1 O

IiOOO—[OOOOO000‘0000‘0000|0000‘0000'1011

(32 bits wide)

Since words are drawn vertically as well as horizontally, leftmost and rightmost
may be unclear. Hence, the phrase least significant bit is used to refer to the right-
most bit {(bit 0 above) and most significant bit to the leftmost bit (bit 31).

The MIPS word is 32 bits long, so we can represent 2% different 32-bit patterns.
It is natural to let these combinations represent the numbers from 0 to 232 — 1
(4,294,967,295, , ):

0000 0000 0000 0000 0000 0000 0000 0000,., = Oyen
0000 0000 DGOO 0000 000G 0000 0000 0001, = Iy
0000 0000 D000 0000 0000 0000 0000 0010, = Zqen

1111 1111 1111 1111 1111 1111 1121 1101,,, = 4.294,967,293,,
1111 1111 1111 1111 1111 1311 1111 1110, = 4.294,967,29%4,,,
1117 1111 1111 1111 1111 1111 1111 1111, = 4.294.967.295,,,

That is, 32-bit binary numbers can be represented in terms of the bit value times a
power of 2 (here xi means the ith bit of x):

2.4 Signed and Unsigned Nuimbers

8s

(31 % 221+ (305 23 + (329 % 22 + .+ (x1 x 21 + (x0 % 29)

Keep in mind that the binary bit patterns above are simply representatives of
numbers. Numbers really have an infinite number of digits, with almost all being
0 except for a few of the rightmost digits. We just don’t normally show leading Os.

Hardware can be desigied to add, subtract, multiply, and divide these binary
bit patterns. If the number that is the proper result of such operations cannat be
represented by these rightmost hardware bits, overflow is said to have occurred.
It’s up to the programming language, the operating system, and the program to
determine what to do if overflow occurs.

Computer programs calculate both positive and negative numbers, so we need a
representation that distinguishes the positive from the negative. The most obvious
solution is to add a separate sign, which conveniently can be represented in a single
bit; the name for this representation is sign and magiititde.

Alas, sign and magnitude representation has several shortcomings. First, it’s
not obvious where to put the sign bit. To the right? To the left? Early camputers
tried both. Second, adders for sign and magnitude may need an extra step to set
the sign because we can't know in advance what the proper sign will be. Finally, a
separate sign bit means that sign and magnitude has botli a positive and a negative
zero, which can lead 1o problems for inattentive programmers. As a result of these
shortcomings, sign and magnitude representation was soon abandoned.

In the search for a more attractive alternative, the question arose as to what
would be the result for unsigned numbers if we tried to subtract a large number
from a small one. The answer is that it would try to borrow from a string of leading
Os, so the result would have a string of leading 1s.

Given that there was no obvious better alternative, the final solution was to pick
the representation that made the hardware simple: leading 0s mean positive, and
leading 15 mean negative, This convention for representing signed binary numbers
is called rwo’s conrplenient representation:

0000 0000 0000 0000 000¢ 0000 000G 0000,,, = 0,.,
0000 0000 0000 6000 0000 G000 0000 000% ., = 1,u
0000 0000 0000 0000 00CO 06000 0000 0010, = 2, en

01111121111112111 1111 1111 1111 1101, = 2,147,483,645,,,
011111111111 1311 11111111 1111 1110,,, = 2,147.483.646,,,
011111111111 11111111 1111 1111 1111, = 2.147,483,647,,,
1000 0000 0000 0000 0000 0000 0000 0000,,,, = -2,147 483, 648,,,
1000 0000 0000 0000 0000 00CO 0000 0001, = -2.147,483,647,,,
1000 0000 0000 0000 0000 0000 0000 0010,,, = -2,147,483,646,,,

1113 11011311 1110 1201 1111 1111 11004y = =3yen
11111111 1111 1111 1111 11111111 1110, = 2,0
111111111111 1023 2111 1000 1111 1000y = -1ygn
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The positive half of the numbers, from 0 to 2,147,483,647¢, (23 - 1), use the
same representation as before. The following bit pattern (1000 . ..0000,,4) rep-
resents the most negative number —2,147,483,648,,, (=2*". 1t is followed by a
declining set of negative numbers: —2,147,483,647,,,, (1000.... 0001,,,,) down to
e (1111 1 )

Two's complement does have one negative number, —2,147,483,648,¢,, that has
no corresponding positive number. Such imbalance was also a worry to the inat-
tentive programmer, but sign and magnitude had problems for both the program-
mer and the hardware designer. Consequently, every computer today uses two's
complement binary representations for signed numbers.

Two's complement representation has the advantage that all negative numbers
have a 1 in the most significant bit. Consequently, hardware needs to test only this
bit to see if a number is positive or negative (with the number 0 considered posi-
tive). This bit is often called the sigi bit. By recognizing the role of the sign bit, we
can represent pesitive and negative 32-bit numbers in terms of the bit value times
a power of 2:

(x31 % =231) 4 (530 % 239) 4+ (29 2¥) + ...+ (x1 x 21) + (0 % 29

The sign bit is multiplied by —2%, and the rest of the bits are then multiplied by
positive versions of their respective base values.

Binary to Decimal Conversien
What is the decimal value of this 32-bit two’s complement number?

1111 1111 1111 1111 1111 1111 1111 1100y,

Substituting the number’s bit values into the formula above:

(1x—2-“)+(1x2~‘“)+(1><21°)+...+(1><23)+(0><2‘)+(0x2")
=29 4 20 4+ 3¥ +.+ 22+ 0 + 0

= —2,147,483,648,,, + 2,147,483,644 .,

=—4

len

We'll see a shortcut to simplify conversion from negative to positive soon.

Just as an operation on unsigned numbers can overflow the capacity of hard-
ware to represent the result, so can an operation on two's complement numbers.
Overflow occurs when the leftrnost retained bit of the binary bit pattern is not the
same as the infinite number of digits to the left (the sign bit is incorrect): a 0 on
the left of the bit pattern when the number is negative or a | when the number is
positive.

2.4 Signed and Unsigned Numbers

a1

Unlike the numbers discussed above, memory addresses naturally start at 0 and con-
tinue to the largest address, Put another way, negative addresses make no sense. Thus,
programs want to deal sometimes with numbers that can be positive or negative and
sometimes with numbers that can be only positive. Some programining languages
reflect this distinction. C, for example, names the former integers {declared as int in
the program) and the latter unsigned integers (unsigned int). Some C style guides
even recommend declaring the former as s1gned 1nt to keep the distinction clear.

Let’s examine two useful shortcuts when working with two’s complement
numbers. The first shortcut is a quick way to negate a two’s complement binary
number. Simply invert every 0 to 1 and every 1 to 0, then add one to the result. This
shortcut is based on the observation that the sum of a number and its inverted
representation must be 111 ... 111, which represents —1. Since x + ¥ = -1,
therefore x+x+1=00r X+ 1=-x,

Negation Shortcut

Negate 2,,,,, and then check the result by negating -2,,,,.

2., = 0000 0000 0000 0000 0000 0000 0000 0010

two

Negating this number by inverting the bits and adding one,

111111111211 1311338111121 1211 110144

twa

= B T A S O A A O A G Y

- ~2ien

Hardware/
Software
Interface
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EXAMPLE

Going the other direction,
111111111111 1121 31111111 1122 11104,
is first inverted and then incremented:

¢000 0000 0000 0000 0000 0000 00000001,
+ ]'Y.WO

0000 0000 0000 0000 G000 0000 0000 0010,
2ken

1l

Our next shorteut tells us how to convert a binary number represented in 1 bits
to a number represented with more than # bits. For example, the immediate field
in the load, store, branch, add, and set on less than instructions contains a two’s
complement 16-bit number, representing —32,768,, {=2'5) to 32,767, (2 - 1).
To add the immediate field to a 32-bit register, the computer must convert that
16-bit number to its 32-bit equivalent. The shortcut is to take the most significant
bit from the smaller quantity—the sign bit—and replicate it to fill the new bits of
the larger quantity. The old bits are simply copied into the right portion of the new
word. This shortcut is commonly called sign extension.

Sign Extension Shortcut

Convert 16-bit binary versions of 2,,, and =2, to 32-bit binary numbers.

The 16-bit binary version of the number 2 is

0000 0000 0000 0010, = Zren

It is converted to a 32-bit aumber by making 16 copies of the value in the most
significant bit (0) and placing that in the left-hand half of the word. The right
half gets the old value:

0000 0000 0000 0000 0000 0000 0000 00105 = Zgen

2.4 Sigr
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Let’s negate the 16-bit version of 2 using the earlier shortcut. Thus,
0000 00000000 0010,

becomes

111111111111 1101,

+
]' two

= 11111111 11111110,

| - Qreating a 32-bit version of the negative number means copying the sign bit
16 times and placing it on the left:

11111111 11111111 11111111 1111 1110, = -2yes

This trick works because positive two’s complement numbers really have an
infinite number of Us on the left and negative two’s complement numbers have an
infinite number of 1s. The binary bit pattern representing a number hides leading
bits to fit the width of the hardware; sign extension simply restores some of them.

Summary

Tl.le rpain point of this section is that we need to represent both positive and neg-
ative integers within a computer word, and although there are pros and cons to any
option, the overwhelming choice since 1965 has been two’s complement.

What is the decimal value of this 64-bit two’s complement number? Check
11111110 111119111111 1111 1101 111 1111 111111311111 1111 1111 1111 1000,,,,  Yourself
1) -dien

2) -8ien

3) ~16,4,

4) 18.446,744,073,709,551,609,,,

Elabura_iion; Two's complement gets its name from the rule that the unsigned sum
of an nbit number and its negative is 2™ hence, the complement or negation of a two's
complement number x is 2" — .
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one’s complement

A nolation that represents
the most negative value
by 10...000,,, and the
most positive value by

01 ... 11y Jeaving

an equal number of
negatives and positives
but ending up with

WO zeros, one positive
(00 ...00) and one
negative (11 ... Llyg)-
The term is also used to
mean the invession of
every bit in a pattern: 0 10
land 1 to 0.

biased notation

A notation that represents
the most negative value
by 00 ... 000, and

the mosl positive value
by 11... e with @
rypically having the value
10.. . 00, thereby
biasing the number such
that the number plus the
bias has a nonnegative
representation.

A third alternative representation to two's complement and sign and magnitude is
called one’'s complement. The negative of a one’s complement is found by inverting each
bit, from O to 1 and from 1 to O, which helps explain its name since the complement of
xis 27— x— 1. It was also an attempt to be a better solution than sign and magnitude,
and several early scientific computers did use the notation. This representation is
simitar to twe's complement except that it also has two 0s: Q0 ... 00y, is positive
0and 11 ... 11, is negative 0. The most negative number, 10 . . . 000y, represents
_2,147,483,647,,,, and so the positives and negatives are balanced. One's complement
adders did need an extra step to subtract a number, and hence two's complement
dominates today.

A final notation, which we will look at when we discuss fioating peint in Chapter 3,
is to represent the most negative value by 00...000,, and the most positive value
by 11. . . 11, with O typically having the value 10 . .. 00y This is called a biased
notatian, since it biases the number such that the number plus the bias has a nonneg-
ative representation.

Elaboration: For signed decimal numbers, we used "~" to represent negative because
there are no limits to the size of a decimal number. Given a fixed word size, binary and
hexadecimal (see Figure 2.4) bit strings can encode the sign; hence we do not narmally
use “+” or “=" with binary or hexadecimal notation.

Representing Instructions in the Computer

We are now ready to explain the difference between the way humans instruct
computers and the way computers see instructions.

Instructions are kept in the computer as a series of high and low electronic
signals and may be represented as numbers. In fact, each piece of an instruction
can be considered as an individual number, and placing these numbers side by side
forms the instruction.

Since registers are referred to by almost all instructions, there must be a con-
vention to map register names into numbers. In MIPS assembly language, registers
$50 to $57 map onto registers 16 to 23, and registers $t0 to $t7 map onto registers
8 to 15. Hence, 350 means register 16, $51 means register 17, $52 means register
18, ..., $t0 means register 8, $t1 means register 9, and 50 on. we'll describe the
convention for the rest of the 32 registers in the following sections.

2.5 Representing Instructions in the Computer
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Translating a MIPS Assembly Instruction into a Machine Instruction

Let’s do the next step in the refinement of the MIPS language as an example.
We'll show the real MIPS language version of the instruction represented
symbolically as

add $t0,8%s51,%s2

furst as a combination of decimal numbers and then of binary numbers.

The decimal representation is

[ 0 T 8 [ 0 -

Each of these segments of an instruction is called a field. The first and last fields
(containing 0 and 32 in this case) in combination tell the MIPS computer that
this instruction performs addition. The second field gives the number of the reg-
ister that is the first source operand of the addition operation (17 = $51), and the
third field gives the other source operand for the addition (18 = $52). The fourth
field confains the number of the register that is to receive the sum (8= $t£0). The
fifth field is unused in this instruction, so it is set to 0. Thus, this instruction adds
register $51 to register $52 and places the sum in register $t0.

This instruction can also be represented as fields of binary numbers as
opposed to decimal:

| oooooo |
G bits

10001 |
5 bits

10010 |
5 bits

01000 |
5 bits

00000 |
5bits

100000 |
6 bits

This layout of the instruction is called the instruction format. As you can see
from counting the number of bits, this MIPS instruction takes exactly 32 bits—the
same size as a data word. In keeping with our design principle that simplicity favors
regularity, all MIPS instructions are 32 bits long.

To distinguish it from assembly language, we call the numeric version of instruc-
tions machine language and a sequence of such instructions machine code.

1 would appear that you weuld now be reading and writing long, tedious strings
of binary numbers. We avoid that tedium by using a higher base than binary that
converts easily into binary. Since almost all computer data sizes are multiples of 4,
hexadecimal (base 16) numbers are popular. Since base 16 is a power of 2, we can
trivially convert by replacing each group of four binary digits by a single hexadeci-
mal digit, and vice versa. Figure 2.4 converts between hexadecimal and binary.

instruction format

A form of representation
of an instruction
composed of ficlds of
bireary numbers.

machine language
Binary representation
used for communication
within a computer system.

hexadecimal
Numbers in base 16.
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Hexadecimal Hoxadecimal | Binary | Hexadecimal | Binary | Hexadecimal

Ohex 00000 Ahex 0100y Bhex 10000 Chex 1100440 ‘
Lhex 00011 Shex 01010 Shex 100140 dhex 110%0
Zhex 001040 Shex 011010 Aex 101010 ©nex 111040
3hex 0011y,0 Thex 011 Ly bhex 101140 fhex 1111\\*&0

FIGURE 2.4 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by

the corresponding four binary

digits, and vice versa. If the length of the binary number is not a multiple of 4, go from right to left.

Because we frequently deal with different number bases, to avoid confusion we
will subscript decimal numbers with #en, binary numbers with fwo, and hexadeci-
mal numibers with Jrex. (I there is no subscript, the default is base 10.) By the way,
C and Java use the notation Oxyitnn for hexadecimal numbers.

Binary to Hexadecimal and Back
Convert the following hexadecimal and binary numbers into the other base:

eca8 6420),
0001 0011 0101 0111 1001 1011

Using Figure 2.4, the answer is just a table lookup one way:

1101 1111 4

/?/c/af 6420pex

7

,i/ 4 "
1110 1100 1010 1000 0110 0100 0010 0000,

-4

And then the other direction:

0001 0011 0101 01]]11 1001 1011 1101 1111y,

/
~ o \\‘ J "/;f
\\‘3% 7
1357 9bdTex

MIPS Fields

MIPS fields are given names to make them easier to discuss:

op ‘ rs rt

G bits 5 bits & bits 5 bits 5 bits 6 bits

\ rd shamt \ funct ‘

in the C t

ting Instr p
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97

Here is the meaning of each name of the fields in MIPS instructions:
B op; Basic operation of the instruction, traditionally called the opcode.
m rs: The first register source operand.
m rt; The second register source operand.
B rd: The register destination operand. It gets the result of the operation.
[

shamt: Shift amount. (Section 2.6 explains shift instructions and this term; it
will not be used until then, and hence the field contains zero in this section.)

B funcr: Function. This field, often called the function code, sclects the specific
variant of the operation in the op field.

A problem occurs when an instruction needs longer fields than those shown
above. For example, the load word instruction must specify two registers and a
constant, If the address were to use one of the 5-bit fields in the format above,
the constant within the load word instruction would be limited to only 2% or 32.
This constant is used to select elements from arrays or data structures, and it often
needs to be much larger than 32. This 5-bit field is too small to be useful.

Hence, we have a conflict between the desire to keep all instructions the same
length and the desire to have a single instruction format. This leads us to the final
hardware design principle:

Design Principle 4: Good design demands good compromises.

The compromise chosen by the MIPS designers is to keep all instructions the
same length, thereby requiring different kinds of instruction formats for different
kinds of instructions. For example, the format above is called R-type (for register)
or R-formmat. A second type of instruction format is called I-fype (for immediate)
or [-format and is used by the immediate and data transfer instructions. The fields
of I-format are

constant or address

6 bits 5 bits 5 bits 16 bits

The 16-bit address means a load word instruction can load any word within a

region of +2'% or 32,768 bytes (+2'7 or 8192 words) of the address in the base

register rs. Similarly, add immediate is limited to constants no larger than +2'%. We

see that more than 32 registers would be difficult in this format, as the rs and rt

fields would each need another bit, making it harder to fit everything in one word.
Let’s look at the load word instruction from page 83:

Tw  $t0,32(%$s3) ff Temporary reg $t0 gets A[8]

opeode The Geld that
denotes the operation and
format of an instruction.
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Here, 19 (for $53) is placed in the rs field, 8 {for $t0) is placed in the rt field, and
32 is placed in the address field. Note that the meaning of the rt field has changed
for this instruction: in a Joad word instruction, the t field specifies the destination
register, which receives the result of the load.

Although multiple formats complicate the hardware, we can reduce the complex-
ity by keeping the formats similar. For example, the first three fields of the R-type and
I-type formats are the same size and have the same names; the length of the fourth
field in I-type is equal to the sum of the lengths of the last three fields of R-type.

In case you weie wondering, the formats are distinguished by the values in the
fist Reld: each format is assigned a distinct set of values in the first field (op) so
that the hardware knows whether to treat the last half of the instruction as three
fields (R-type) or as a single field (I-type). Figure 2.5 shows the numbers used in
each field for the MIPS instructions covered here.

| tnstruction | Format | op | rs | it | e [ shame | funct | adaress |
reg reg reg Q n.a.

| add R 0 32en

sub (subtract} R 0 reg reg reg o] 3y n.a.
add immediate | 8 | TEE reg | n.a. n.a. n.a. constant
e {load word) | 3Bien | TEE reg | n.a. n.a. n.a. address
sw (store word) | 43, | TeE reg na. n.a. na. address

FIGURE 2.5 MIPS instruction encoding. In the table above, “reg” means a register number between
0 and 31, “address” means a 16-bit address, and “n.a” (not applicable) means this ficld does not appear in this
format. Note that add and sub instructions have the same value in the op field; the hardware uses the funct
field 1o decide the variant of the operation: add (32} or subtract (34).

Translating MIPS Assembly Language into Machine Language

We can now take an example all the way from what the programmer writes to
what the computer executes. If $t1 has the base of the array A and $s2 corre-
sponds to h, the assignment statement

A[300]1 = h + A[300];
is compiled into

1w $t0,1200($t1)# Temporary reg $t0 gets A[300]
add  $t0,$s2.3t0 # Temporary reg %t0 gets h + A[300]
cw  $t0,1200(5t1) # Stores h + A[300] back into A[300]

What is the MIPS machine language code for these three instructions?

2.5 Representing Instructions in the Computer

For cenvenience, let’s first represent the machine language instructions using
decimal numbers. From Figure 2.5, we can determine the three machine lan-
guage instructions:

n_ ot
et shamt funct
35 9 8

1200
0 18 8 8 | 5 | 2
43 9 8 1200

The 1w instruction is identified by 35 (see Figure 2.5) in the first field (op).
The base register 9 ($t 1) is specified in the second field (1s), and the destination
register 8 ($10) is specified in the third field {rt). The offset to select AL300]
(1200 =300 % 4) is found in the final field (address).

The add instruction that follows is specified with 0 in the first field (op) and
32 in the fast field (funct). The three register operands (18, 8, and 8) are found
in the second, third, and fourth fields and correspond to $52, $t0, and $t0.

‘ The sw instruction is identified with 43 in the first field. The rest of this final
instruction is identical to the 1w instruction.

Since 1200,,,, = 0000 0100 1011 0000,,,,, the binary equivalent to the decimal

form is:
100011 01001 01000 0000 0100 1011 0000
000000 10010 01000 01000 00000 | 100000
101011 01001 01000 0000 0100 1011 GO0

. Note the similarity of the binary representations of the first and last instruc-
tionss. The only difference is in the third bit from the left, which is highlighted here.

Figure 2.6 summarizes the portions of MIPS machine language described in this
section. As we shall see in Chapter 4, the similarity of the binary representations
of related instructions simplifies hardware design. These similarities are another
example of regularity in the MIPS architecture.

ANSWER
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MIPS machine language .
T e e " S
asd | R | o | 18 | 19 17 o | 32 | add $51.552, 553
sub R 0 18 19 17 0 | 34 sub $51.$52.$53
aai ] 8 18 17 100 addi 351,352,100
Iw T 35 8 | a7 100 w $51.100(%52)
sw s 18 | 17 100 I sw 3s1.100(352)
Field size G bits 5 bits _ﬂ';S bits | 5 bits 5 bits G bits All MIPS instructions are 32 bits long
R-format R op rs ul [ rd shamt funct Arithmetic instruction format
|-format | op s r 2ddress Data transfer format

ats so far are Rand [ The first

FIGURE 2.6 MIPS architecture revealed through Section 2.5. The two MIPS instruction for
16 bits are the same: both contain an op field, giving the base operation; an rs ficld, giving one of the sources; and the ri ficld, which specities
the other source operand, except for load word, where it specifies the destination register. R-format divides the last 16 bits into an rd field,
specifying the destination register; the shamt ficld, which Section 2.6 explains; and the fimer ficld, which specifies the specific operation of
R-format instructions. T-formit combines the last 16 bits into # single adelress field.

Today's computers are built on two key principles:

the BIG

Picture

1. Instructions are represented as numbers.

2. Programsarestored in memory to be read or written, just like numbers.

These principles lead to the stored-program concept; its invention let the
computing genie out of its botde. Figure 2.7 shows the power of the concepy;
specifically, memaory can contain the source code for an editor program, the
corresponding compiled machine code, the text that the compiled program is
using, and even the compiler that generated the machine code.

One consequence of instructions as numbers is that programs are often
shipped as files of binary numbers. The commercial implication is that
computers can inherit ready-made software provided they are compatible
with an existing instruction set. Such “binary compatibility” often leads
industry to align around a small number of instruction set architectures.

2.5 Representing Instructions in the Computer
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Processar

Accounling program |

(machine code ;
: Editor program |
| (machine code) :
| C compiter 1
! (machine code) !

i
3 Source codein C
! for editor program !

FIGURE 2.7 The stored-program concept. Stored programs allow a compuier that performs
accounting 1o beeome, in the biink of an eye, a computer that helps an authar write 1 book. The switch hap-
pens simply by laading memary with programs and data and thun telling the camputer to begin executing al
agiven Jocation in memary. Treating instructions in the same way as daa greatly simplifies both the memory
hardware and the software of computer systems. Specifically, the memory echnalogy needed for data ca "
also be used for programs, and programs like compilers, for instance, can translate code written in a notation

far more conveniernt for humans into code that the computer ean understand.

What MIPS instruction does this represent? Chose from one of the four options

below.

I T S T
Lo [ s [ 9 T 30 l*"im S|

1. add $s0, $sl, $s2
add $s2, $s0, $sl
add $s2, $s1, $s0
sub $s2, $s0, $sti

B VS R N ]

Check
Yourself
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“Contrariwise,”
continued Tiveedledee,
“if it was so, it might
be; and if it were so,

it would be; but as it
isu't, itain’t. That'’s
logic”

Lewis Carroll, Alice’s
Adventures it
Wonderland, 1865

Logical Operations

Although the first computers operated on full words, it soon became _cl-ear tha? it
was useful to operate on fields of bits within a word or even on inle.ldLlE!l bits.
Examining characters within a word, each of which is stored as 8 bits, is one
example of suclian operation (see Section 2.9). It follows that operati‘ons were added
to programming languages and instruction set architectures to snnplllfy, amang
other things, the packing and unpacking of bits into words. The.se instructions
are called logical operations. Figure 2.8 shows logical operations in C, fava, and
MIPS.

Logea aperons PS mtrctons
<< <«

Shift left s1)
Shift right > >3 srl
Bit.by-bit AND 3 & and, andi
Bit-by-bit OR | | or, ori

Bit-bybit NOT ~ - nor

FIGURE 2.8 C and Java logical operators and thelr corresponding MIPS instructions. MIPS
implements NOT using a NOR wilh one operand beinyg zero.

The first class of such operations is called shiffs. They move all the bits in a word
to the left or right, filling the emptied bits with 0s. For example, if register $s0
contained

0000 0000 0000 0000 D000 D000 0000 1001,,,= e
and the instruction to shift left by 4 was executed, the new value would be:
0000 0000 0000 0000 0000 0000 1001 0Q00,,,,= 144..,

The dual of a shift left is a shift eight. The actual name of the two MIPS sl_lift
instructions are called shift feft logical (311} and shift right logical (sr1). The following

2.6 Logical Operations
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instruction performs the eperation above, assuming that the original value was in
register $50 and the result should go in register $t2:

s11 $5t2.8s0.4  ff reg $t2 = reg $s30 << 4 bits

We delayed explaining the shanit field in the R-format, Used in shift instructions,
it stands for shift amonnt. Hence, the machine language version of the instruction
above is

op s it rd shamt funct

[ o ! 0 T 16 ; 10 2 } 0 ;:]

The encoding of 511 is ¢ in both the op and funct fields, rd contains 10 (register
$12), rt contains 16 (register $50), and shamt contains 4. The rs field is unused
and thus is set to 0.

Shift left logical provides a bonus benefit. Shifting left by i bits gives the
same result as multiplying by 2, just as shifting a decimal number by i digits is
equivalent to multiplying by 10". For example, the above s11 shifts by 4, which
gives the same result as multiplying by 2 or 16. The first bit patiern above
represents 9, and 9 X 16 = 144, the value of the second bit pattern.

Another useful operation that isolates fields is AND. (We capitalize the word
to avoid confusion between the operation and the English conjunction.) AND is a
bit-by-bit operation that leaves a 1 in the result only if both bits of the operands are
1. For example, if register $ L2 contains

0000 0600 0000 0000 000011011100 0000

Lwo

and register $t1 contains
0000 0000 0000 0000 0011 1100 0000 0000,,,
then, after executing the MIPS instruction

and $t0,%$t1,%t2 # reg $t0 = reg $tl & reg $t2

the value of register $£0 would be

0000 0000 0000 0000 0000 1100 0000 0000

Lo

AND A logical bit-by-
bit operation with two
operands that calculates
alonlyifthereisa | in
both operands.
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OR A logical bit-by-

bit operation with two
operands that calculates
alifthereisa | in either
operand.

NOT A logical bit-by-
bit operation with one
operand that inverts the
bits; that is, it replaces
every | with a 0,and every
Owithal.

NOR A logical bit-by-
bit operation with two
operands that calculates
the NOT of the OR of the
two operands. That is, it
caleulates a 1 only if there
is a 0 in both operands,

As you can see, AND can apply a bit pattern to a set of bits o force 0s where there
is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is traditionally
called a mnask, since the mask “conceals” some bits.

Te place a value into one of these seas of 0s, there is the dual to AND, called OR.
It is a bit-by-bit operation that places a 1 in the result if either operand bitisa 1. To
elabarate, if the registers $t1 and $t2 are unchanged from the preceding example,
the result of the MIPS instruction

or $t0.$%t1,$t2 # reg $t0 = reg $tl | reg $t2
is this value in register $t0:

(0000 0000 000C 0000 0011 1101 1100 0000,

The final logical operation is a contrarian. NOT takes one operand and
places a 1 in the result if one operand bit is a 0, and vice versa, In keeping with the
three-operand format, the designers of MIPS decided to include the instruction
NOR (NOT OR) instead of NOT. If one operand is zero, then it is equivalent to
NOT: A NOR 0 =NOT (A OR 0) =NOT (A).

If the register $t1 is unchanged from the preceding example and register $13
has the value 0, the result of the MIPS instruction

nor $t0,$t1,%t3 # reg $t0 = - (reg $tl | reg §t3)

is this value in register $t0:

111133111 11311111 11000011 1121 1311,

Figure 2.8 above shows the relationship between the C and Java operators and
the MIPS instructions. Constants are useful in AND and OR logical operations
as well as in arithmetic operations, so MIPS also provides the instructions aud
immediate (and 1} and or inmuediate (ori). Constants are rare for NOR, since its
main use is to invert the bits of a single operand; thus, the MIPS instruction set
architecture has no immediate version,

Elaboration: The full MIPS instruction set also includes exclusive or (XOR), which
sets the bit to * when two corresponding bits differ, and to 0 when they are the same.
C allows bit fields or fields to be defined within words, both allowing objects to be
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packed within a word and to match an externally enforced interface such as an 1/0
device. All fields must fit within a singfe word. Fields are unsigned integers that can be
as short as 1 bit. C compilers insert and extract fields using logical instructions in MIPS:
and,or,s11,and srl,

Which operations can isolate a field in a word?
1. AND
2. Ashiftleft followed by a shift right

Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make deci-
stons. Based on the input data and the values created during computation, different
instructions execute, Decision making is commonly represented in programming
languages using the if statement, sometimes combined with go to statements and
labels. MIPS assembly language includes two decision-making instructions, simi-
lar to an ifstatement with a go fo. The first instruction is

beg registerl. register?, L1
This instruction means go to the statement labeled L1 if the value in registerl
equals the value in regi ster2. The mnemonic beq stands for branch if equal. The
second instruction is

bne registerl, register?, L1
[t means go to the statement labeled L1 if the value in register? does not equal

the value in register2. The mnemonic bne stands for branch if not equal, These
two instructions are traditionally called conditional branches.

Check
Yourself

The utility of mn
automatic computer

lies in the possibility of
using a given sequieice of
instructions repeatedly,
the imanber of times it is
iternted being deperclent
upont the residis of the
coniputation. ... This
choice can be made

to depend upon tie
sign of a nimber

zero being reckoned
as plus for inachine
purposes), Conseqently,
we introduce an
[instruction] (the
conditional transfer
[instruction] ) which will,
depending on the sign of
a given niunber, cause
the proper oire of two
routines to be execuitedd.
Burks, Goldstine, and
von Neumann, 1947

conditional branch

An instruction that
requires the comparison
of two values and that
allows for a subsequent
transfer of control to

a new address in the
program based on

the outcome of the
comparison.
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' . Ll et i, |
— 3 fangr
Compiling if-then-else into Conditional Branches — o

-
In the following code segment, T, g, h, 1, and j are variables. If the five vari- Else:
EXAMPLE ables f through j correspond to the five registers 450 through $s4, what is the Feg+h f=g-lt
compiled MIPS code for this C if statement?
if (i ==13) f=9+h; else f=g-h;
Figure 2.9 is a flowchart of what the MIPS code should do. The first expres- .
sion compares for equality, so it would seem that we would want the branch if Exit:
regjsters are equal instruction (beq). In general, the code will be more efficient
if we test for the Oppgsite condition to branch aver the code that Perfm-ms the FIGURE 2.8 lllusltratlon of the options in the if statement above. The left box correspands Lo
subsequem thein part of the if(the fabel E1se is defined below) and so we use the thren part of the if statement, and the right box corresponds 1o the else part.

the branch if registers are 1ot equal instruction (bne): ) )
Notice that the assembler relieves the compiler and the assembly language pro-

bne $s3.%s54,E1se # go to Else if i =] grammer from the tedium of calculating addresses for branches, just as it does for

. . . . calculating data addresses for loads and stores jon2.12
The next assignment statement performs a single operation, and if all the 5 (see Section 2.12),

operands are allocated to registers, it is just one instruction:

add $s0,%s1,%52 #f =g+ h (skipped if i = j) )
Compilers frequently create branches and labels where they do not appear in Hardware/

We now need to go to the end of the if statement. This example introduces the programming language. Avoiding the burden of writing explicit labels and
another kind of branch, often called an snconditional branch. This instruc- branches is one benefit of writing in high-level programming languages and is a Software
tion says that the processor always follows the branch. To distinguish between reason coding is faster at that level. Interface

conditional and unconditional branches, the MIPS name for this type of
instruction is jusip, abbreviated as j (the label Ext is defined below).

j Exit ## go to Exit | Loops
The assigmment statement in the else portion of the if statement can again | Decisions are important both for choosing between two alternatives—found in if
be compiled into a single instruction. We just need to append the label E1se statements—and for iterating a computation—found in loops. The same assembly
to this instruction. We also show the label Exit that is after this instruction, | instructions ave the building blocks for both cases.
showing the end of the if-then-else compiled code:

Else:sub $s0,%s1,3s2 ## f =g - h (skipped if i = j) ——————
Exit:

Compiling a while Loop in C
Here is a traditional loop in C:
while (save(i] == k) m
i+= 1

Assume that 1 and k correspond to registers $53 and $55 and the base of the
array save is in $56. What is the MIPS assembly code corresponding to this
C segment?
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The first step is to load save[ 1] into a temporary register. Before we can load
save[i] into a temporary register, we need to have its address. Beforerwe can
add i to the base of array save to form the address, we must multiply the
index 7 by 4 due to the byte addressing problem. Fortunately, we can use shift
left logical, since shifting left by 2 bits multiplies by 22 or 4 (see page 103 in the
prior section). We need to add the label Loop to it so that we can branch back

to that instruction at the end of the loop:
s11 # Temp reg $t1 =1 * 4

To get the address of save[ 1], weneed toadd $11 and the base of save in $56:

Loop: $t1,$s3,2

add $tl,$t1,%s0 # $tl = address of saveli]

Now we can use that address to load savel i ] into a temporary register:
$L0,008t1) # Temp reg $t0 = save[i]

The next instruction performs the loop test, exiting if save[1] =k:

Tw

bne $t0,$s5, Fxit # go to Exit if save[i] =k

The next instruction adds 1 to i:
addi  $s3,%s3.1 #i=1+1

The end of the loop branches back to the while test at the top of the loop. We

just add the Ex it label after it, and we're done:
j Loop # go to Loop

Exit:

(See the exercises for an optimization of this sequence.)

[==————ae

Hardware/
Software
Interface

basic block A sequence
of instructions without
branches (except possibly
at the end) and without
branch targets or branch
labels (except possibly at
the beginning).

Such sequences of instructions that end in a branch are so fundamental to compiling
that they are given their own buzzword: a basic block is a sequence of instructions
without branches, except possibly at the end, and without branch targets or branch
labels, except possibly at the beginning, One of the first early phases of compilation is
breaking the program into basic blocks.

The test for equality or inequality is probably the most popular test, but some-
times it is useful to see if a variable is less than another variable. For example, a for
loop may want to test to see if the index variable is less than 0. Such comparisons are
accomplished in MIPS assembly langnage with an instruction that compares two

-~
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registers and sets a third register to 1 if the first is less than the second; otherwise, it is
set to 0. The MIPS instruction is called ser on less than, or s1t. For example,

slt $t0, $s3, $s4 4 $t0 =1 if $53 < $s4

means that register 310 is set to 1 if the value in register $53 is less than the value
in register $54; otherwise, register 30 is set to 0.

Constant operands are popular in comparisons, so there is an immediate ver-
sion of the set on less than instruction. To test if register $52 is less than the con-
stant 10, we can just write

sTti

$10,$s2,10 # 810 =1 1f $s2 ¢ 10

MIPS compilers use the s1t, s1ti, beq, bne, and the fixed value of 0 (always
available by reading register $zero) to create all relative conditions: equal, not
equal, less than, less than or equal, greater than, greater than or equal.

Heeding von Neumann’s warning about the simplicity of the “equipment,” the
MIPS architecture doesn’t include branch on less than because it is too compli-
cated; either it would stretch the clock cycle time or it would take extra clock cycles
per instruction. Two faster instructions are more useful.

Hardware/
Software
Interface

Comparison instructions must deal with the dichotomy between signed and
unsigned numbers. Sometimes a bit pattern with a 1 in the most significant bit
represents a negative number and, of course, is less than any positive number,
which must have a 0 in the most significant bit. With unsigned integers, on the
other hand, a 1 in the most significant bit represents a number that is larger than
any that begins with a 0. (We'll soon take advantage of this dual meaning of the
most significant bit to reduce the cost of the array bounds checking.)

MIPS offers two versions of the set on less than comparison to handle these
a}tcl‘llatives. Set on less than (s1t) and set on less than immediate (s111) work with
signed integers. Unsigned integers are compared using set on less than nnsigned
(s1tu) and ser on less than inumediate unsigned (s1t1u).

Hardware/
Software
Interface
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Signed versus Unsigned Comparison
Suppose register $50 has the binary number

7111 1111 1111 111t 1111 1111 1111 1111,
and that register $51 has the binary number

0000 0000 000C 0000 €000 0000 Q000 0001440

What are the values of registers $T0 and 311 after these two instructions?

$t0, $s0, $s1 # signed comparison

sit
$t1. $s0, $sl # unsigned comparison

sltu

The value in register $50 represents =1, ifit is an integer and 4,294,967,295 .,
if i is an unsigned integer. The value in vegister $51 represents L, in cither
case. Then register $£0 has the value 1, since =1, < 1,... and register $t1 has
the value 0, since 4,294,967,295,,, > 1

ey were unsigned gives us a low cost way of
he index out-of-bounds check for arrays. The
key is that negative integers in two's complement notation look like large numbers
in unsigned notation; that is, the most significant bit is a sign bit in the former
notation but a large part of the number in the latter, Thus, an unsigned comparisen
of x < yalso checks if x is negative as well as if xis less than y.

Treating signed numbers as if th
checking if 0 < x < y, which matches t

Bounds Check Shortcut
Use this shortcut to reduce an index-out-of-bounds check: jump to
[ndexOut0fBounds if $s1 = $t2 orif $51 is negative.

The checking code just uses s1tu to do both ¢hecls:

sltu $t0.%s1,$t2 # $t0=0 if 551>=Tength or $s1<0
beq $t0,$zero. IndexOutlfBounds #if bad, goto Error

—

2.7 Instructions for Making Decisions

111

case/Switch Statement

Most programming languages have a case ot sivitch statement that allows the pro-
grammer (o select one of many alternatives depending on a single value. The simplest
way to implement switch is via a sequence of conditional tests, turning the switch
statement into a chain of if-then-else statements.

Sometimes the alternatives may be more efficiently encaded as a table of
addresses of alternative instruction sequences, called a jump address table or jum
table, an.d the program needs only to index into the table and then jump tlo lhI::
appropriate sequence. The jump table is then just an array of words containing
addresses that correspond to labels in the cade. The program loads the appropriate
entry from the jump table into a register. It then needs to jump using the address
in ch<2 1“egister. To support such situations, computers like MIPS include a jump
register {nstruciion (Jr), meaning an unconditional jump to the address specified
in a register. Then it jumps to the proper address using this instruction, which is
described in the next section. ’

Jump address table
Also called jump talie.
A table of addresses of
alternative instruction
sequences.

Although there are many statements for decisions and loops in programming
languages like C and Java, the bedrock statement that implements them at the
instruction set Jevel is the conditional branch.

Elahlf)ration: If you have heard about delayed branches, covered in Chapter 4, don't
worry: the MIPS assembler makes them invisible to the assembly language programmer.

I. C has many statements for decisions and loops, while MIPS has few. Which of
the following do or do not explain this imbalance? Why?

1. More decision statements make code easier to read and understand.

, . o
2. Fewer d.ec151on statements simplify the task of the undetlying layer that is
responsible for execution.

3. MoFe degslon statements mean fewer lines of code, which generally reduces
coding time.

4. More dec:sm‘n statements mean fewer lines of code, which generally results
in the execution of fewer operations.

Hardware/
Software
Interface

Check
Yourself
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procedure A stored
subroutine that performs
a specific task based on
the parameters with
which it is provided.

11. Why does C provide two sets of operators for AND (& and &&) and two sets of
operators for OR {|and |}), while MIPS doesn’t? B

l. Logical operations AND and OR implement & and |, while cenditional
branches implement && and ||.

The previous statement has it backwards: && and || correspond to logical
operations, while & and | map to conditional branches.

(o]

3. They are redundant and mean the same thing: && and || are simply inherited
from the programming language B, the predecessor of C.

Supporting Procedures in Computer
Hardware

A procedure or function is one tool programmers use to structure programs, both
to make them easier to understand and to allow cade to be reused. Procedures
allow the programmer to concentrate on jusl one portion of the task at a time;
parameters act as an interface between the procedure and the rest of the program
and data, since they can pass vatues and return results. We describe the faquwalent
to proceditres in Java in Section 2.15 on the CD, but Java needs everything froma
computer that C needs. _

You can think of a procedure like a spy who leaves with a secret plan, acquires
resources, performs the task, covers his or her tracks, and then returns to the qut
of origin with the desired result. Nothing else should be perturbed once the mission
is complete. Moreaver, a spy operates on only a “need to know” basis, so the spy
can’t make assumptions about his employer. )

Similarly, in the execution of a procedure, the program must follow these six
steps:

1. Put parameters in a place where the procedure can access them.
2. Transfer control to the procedure.
Acquire the storage resources needed for the procedure.

Perform the desired task.

Put the result value in a place where the calling program can access it.

o W e

Return control to the point of origin, since a procedure can be called from
several points in a program.

2.8 Supporting P
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As mentioned above, registers are the fastest place to hold data in a computer,
so we want to use them as much as possible. MIPS software follows the following
convention for procedure calling in allocating its 32 registers:

m $30-%a3: four argument registers in which to pass parameters
| $v0—$v1: two value registers in which to return values

® Jra: onereturn address register to return to the point of origin

In addition to allocating these registers, MIPS assembly language includes an
instruction just for the procedures: it jumps to an address and simultaneously
saves the address of the following instruction in register $ra. The jump-and-link
instruction (ja1) is simply written

jal ProcedureAddress

The lintk portion of the name means that an address or link is formed that points to
the calling site to allow the procedure to return to the proper address. This “link,”
stored in register $ra (register 31), is called the return address. The return address
is needed because the same procedure could be called from several parts of the
program.

To support such situations, computers like MIPS use jump register instruction
(jr), introduced above to help with case statements, meaning an unconditional
jump to the address specified in a register:

jr $ra

Jump register instruction jumps to the address stored in register $ra—which is
just what we want. Thus, the calling program, or caller, puts the parameter values
in$a0-%a3 anduses jal X to jump to procedure X (someiimes named the callee).
The callee then performs the calculations, places the results in $v0 and $v1, and
returns control to the caller using jr $ra.

Implicit in the stored-program idea is the need to have a register to hold the
address of the current instruction being executed. For historical reasons, this reg-
ister is almost always called the program counter, abbreviated PC in the MIPS
architecture, although a more sensible name would have been instruction address
register. The jal instruction actually saves PC + 4 in register $ra to link to the
following instruction to set up the procedure return.

jump-and-link
instruction An
instruction that jumps
to an address and
simultancously saves the
address of the following
instruction in a register
(4ra in MIPS).

return address A link lo
the calling site that allows
a procedure to refurn

to the proper address;

in MIPS it is stored in
register $ra.

caller The program that
instigates a procedure and
provides the necessary
parameter values.

callee A procedure that
executes a series of stored
instructions based on
parameters provided by
the caller and then returns
control to Lhe caller.

pregram counter

{PC) The register
containing the address of
the instruction in the pro-
gram being exccuted.
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stack A data structure
for spilling registers
organized as a fast-in-
first-out queue.

stack pointer A value
denoting the most
recently allocated address
in a stack that shows
where registers should

be spilled or where old
register values can be
found. In MIPS, it is
register $sp.

push Add element 10
stack.

pop Remove element
[rom stack.

Using More Registers

Suppose a compiler needs more regisiers for a procedure than the four argument
and two return value registers. Since we must cover our tracks after our mission
is complete, any registers needed by the caller must be restored to the values that
they contained before the procedure was invoked. This situation is an example in
which we need to spill registers to memory, as mentioned in the Hardware/Software
Interface section.

The ideal data structure for spilling registers is a stack—a last-in-first-out
queue. A stack needs a pointer to the most recently allocated address in the stack
to show where the next procedure should place the registers to be spilled or where
old register values are found. The stack pointer is adjusted by one word for each
register that is saved or restored. MIPS software reserves register 29 for the stack
pointer, giving it the obvious name $sp. Stacks are so popular that they have their
own buzzwords for transferring data to and from the stack: placing data onto the
stack is called a push, and removing data from the stack is called a pop.

By historical precedent, stacks “grow” from higher addresses to lower addresses.
This convention means that you push values onto the stack by subtracting from
the stack pointer. Adding to the stack pointer shrinks the stack, thereby popping
values off the stack.

Compiling a C Procedure That Deesn't Call Another Procedure
Let’s turn the example on page 79 from Section 2.2 into a C procedure:

int leaf_example (int g, int h, int §, int j)
|
int f;

f=1(g+h) - +j)
return f;

}
What is the compiled MIPS assembly code?

The parameter variables g, h, 7, and j correspond to the argument registers
$a0, $al, $a2, and $a3, and f corresponds to $s0. The compiled program
starts with the label of the procedure:

leaf_example:

2.8 Supporting Procedures in Computer Hardware
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The next step is 1o save the registers used by the procedure. The C assignment
statement in the procedure body is identical to the example on page 79, which
uses two temporary registers. Thus, we need to save three registers: $50, $t0,
and $L£1. We “push” the old values onto the stack by crealing space for three
words (12 bytes) on the stack and then store them:

addi 3sp, $sp, 12  adjust stack to make room for 3 {tems
swo $tl, B($sp) ff save register $t1 for use aflerwards
sv o $t0, 4($sp) # save register $t0 for use afterwards
sw o $s50, 0(%sp) # save register $s0 for use afterwards

Figure 2.10 shows the stack before, during, and after the procedure call.

The next three statements correspond to the body of the procedure, which
follows the example on page 79:

add $t0,3a0.%al # register $t0 contains g + h
add $t1,5a2,%a3 # register $tl contains i + |
sub $s0,%t0, $tl # 7 = §t0 - $t1, which is (g + h)-¢i + 1)

To return the value of , we copy it into a return value register:
add $v0.5s0,8zero # returns f ($v0 = 350 + )

Beforel returning, we restore the three old values of the registers we saved by
“popping” them from the stack:

Tw %50, 0($sp) # restore register $s0 for caller
Tw $t0. 4(%sp) # restore register $t0 for caller
Tw 3t1, 8(3sp) # restore register $t1 for caller
addi $sp.$sp,12 # adjust stack to delete 3 items

The procedure ends with a jump register using the return address:

Jjr fra # jump back to calling routine

In the previous example, we used temporary registers and assumed their old
values- must be saved and restored. To avoid saving and restoring a register whose
value is never used, which might happen with a temporary register, MIPS software
separates 18 of the registers into two groups:

B $10-$L9:ten temporary registers that are sior preserved by the callee (called
procedure) on a procedure call

N $50-557:eight saved registers that must be preserved on a procedure call (if
used, the callee saves and restores them)

This simple convention reduces register spilling. In the example above, since the
caller does not expect registers $£0 and $t1 to be preserved across a procedure call,
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we can drop two stores and two loads from the code, We still must save and restore
%50, since the callee must assume that the caller needs its value. '

High address

Ssp— Esp—
Contents of register §L1
Contents of register $10
$sp— |Conients of register §50
Low address
a. b. c.

FIGURE 2,10 The values of the stack pointer and the stack (a) before, {b) during, and (c)
after the procedure call. The stack painter always points ta the “top” of the stack, or the last word in
the stack in this drawing.

Nested Procedures

Procedures that do not call others are called feaf procedures. Life would be simple if
all procedures were leaf procedures, but they aren’t. Just as a spy might employ other
spies as part of a mission, who in turn might use even more spies, so do procedures
invoke other procedures. Moreover, recursive procedures even invoke “clones” of
themselves. just as we need to be careful when using registers in procedures, more
care must also be taken when invoking nonleaf procedures.

For example, suppose that the main program calls procedure A with an argument
of 3, by placing the value 3 into register $30 and then using jal A. Then suppose
that procedure A calls procedure B via ja1 B with an argument of 7, also placed in
$a0. Since A hasn't finished its task yet, there is a conflict aver the use of register
$a0, Similarly, there is a conflict over the return address in register $ra, since it
now has the return address for B. Unless we take steps to prevent the problem, this
conflict will eliminate procedure A’s ability to return to its caller.

One solution is to push all the other registers that must be preserved onto
the stack, just as we did with the saved registers. The caller pushes any argument
registers ($a0-$a3) or temporary registers ($t0-$L9) that are needed after
the call. The callee pushes the return address register $ra and any saved registers
($50-357) used by the callee. The stack pointer §sp is adjusted to account for the
number of registers placed on the stack. Upon the return, the registers are restored
from memory and the stack pointer is readjusted.

>-—
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Compiling a R i i
Linki':ng E a Recursive € Procedure, Showing Nested Procedure

Let’s tackle a recursive procedure that calculates factorial:

int fact {int n)
|
if (n < 1) return (1);

} else return (n * fact(n - 1)):

What is the MIPS assembly code?

The parameter variable n corresponds to the argument register $30. The
complled program starts with the label of the procedure and then saves two
registers on the stack, the rerurn address and §20:

fact:
addi  $sp, $sp, -8 # adjust stack for 2 items
Sw $ra, 4($sp)  # save the return address
Sw $a0, 0($sp)  # save the argument n

The first time fact is called, sw saves an address in the program that called

fact. The next two instructi i i
et tctions test whether n is less than 1, going to L1 if

s1ti $tG,%a0.1 # test for n < 1
beq $t0,5zero, L1 #if no>=1, go to L1

éf:nlds le]ss rhatr,l lt, fact returns 1 by putting 1 into a value register: it adds | to
and places that sum in $v0. It then pops the two saved

‘ aved values of stack

and jumps to the return address: roffthe sack

addi  $v0,3zero,1 # return 1

a_(ifdi $5p.¥sp,8 # pop 2 items off stack
Jr $ra #f return to caller

Eefore popping two items off the stack, we could have loaded $a0 and $ra. Since
a ;Jfanc'f $ra don’t change when n is less than 1, we skip those instructions.
n is not !ess than 1, the argument n is decremented and then fact is
called again with the decremented valye:

Ll qddi tal,%a0,-1 #no>=1: argument gets (n ~ 1)
Jjal fact # call fact with (n - 1)

117
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The next instruction is where fact returns. Now the old return address and
old argument are restored, along with the stack pointer: '

{f return from jal: restore argument n
f# restore the return address
## adjust stack pointer to pop 2 items

Tw $a0, 0(3sp)
Tw $ra. 4(%sp)
addi $sp, $sp. 8

Next, the value register $v0 gets the product of old argument $a0 and the
current value of the value register. We assume a multiply instruction is avail-
able, even though it is not covered until Chapter 3:

mul $v0,$a0,%v0 # return n * fact (n - 1)

Finally, fact jumps again to the return address:

jr $ra ## return to the caller

Hardware/
Software
Interface

global pointer The
register that is reserved to
poinl to the static area.

A Cvariable is generally a location in storage, and its interpretation depends both on
its typeand storage class. Examples include integers and characters (see Section 2.9).
C has two storage classes: antonmatic and static. Automatic variables are local to a
procedure and are discarded when the procedure exits. Static variables exist across
exits from and entries to procedures. C variables declared outside all procedures
are considered static, as are any variables declared using the keyword static. The
rest are automatic. To simplify access to static data, MIPS software reserves another
register, called the global pointer, or $gp.

Figure 2.11 summarizes what {s preserved across a procedure call. Note that sev-
eral schemes preserve the stack, guaranteeing that the caller will get the same data
back on a load from the stack as it stored onto the stack. The stack above $5p is
preserved simply by making sure the callee does nat write above $5p; $5p is itself
preserved by the callee adding exactly the same amount that was subtracted from it;
and the other registers are preserved by saving them on the stack (if they are used)
and restoring them from there.

Saved registers: $s0~3s7
Stack pointer register: $sp
Return address register: $ra
Stack above the stack pointer

Argument registers: $a0-%23
Return value registers: sv0-3v]
Stack below the stack pointer ‘

FIGURE 2.11 What is and what is not preserved across a procedure call. If the software relies
on the frame pointer register or on the global pointer register, discussed in the following subsections, they
are also preserved.

—
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Allocating Space for New Data on the Stack

The final complexity is that the stack is alse used to store variables that are local
to the procedure but do rot fit in registers, such as local arrays ov structures. The
segment of the stack containing a procedure’s saved registers and local variables is
called a procedure frame or activation record. Figure 2.12 shows the state of the
stack before, during, and after the procedure call.

Some MIPS software uses a frame pointer ($7p) to point to the first word of
the frame of a procedure. A stack pointer might change during the procedure, and
so references to a local variable in memory might have different offsets depending
on where they are in the procedure, making the procedure harder to understand.
Alternatively, a frame painter offers a stable base register within a procedure for
local memory-references. Note that an activation record appears on the stack
whether or not an explicit frame pointer is used, We’ve been avoiding using $fp by
avoiding changes to $sp within a procedure: in our examples, the stack is adjusted
only on entry and exit of the procedure,

High address
sfp— §Fpr
55p-—- $5p—s
Ho— [ saved argument
registers (if any)
Saved re!urn address
Saved saved
registers (if any)
Local arrays and
$sp- | Slructures (it any)
Low address
a. b. c.

FIGURE 2.12 Mlustration of the stack allocation (a) before, (b) during, and (c) after the
pn?cedura call. The frame pointer ($7p) points to the Arst word of the frame, often a saved argument
register, and the stack pointer ($5p) points 1o the top of the stack. The stck is adjusted 1o make room for
all the saved re}%islcrs and any memory-resident local variables. Sinee the stack pointer may change during
program execution, it’s easier for programmers to reference variables via the stable frame pointer, although it
¢ould be done just with the stack pointer and a lite address arjthmetic. If theee are no local v;zri;’nbjec on the
stuck within a procedure, the compiler will save time by nor setting and restoring the frame pointer. -Wlml a
_frﬂmv.' pointer is used, it is initialized using the address in $5p on a call, and $5pis restored using ‘S.fp. Thi‘s
information is also found in Column 4 of the MiP$ Reference Data Carrd at the froncaf this book., .

procedure frame Also
called activation record
The segment of the stack
conhiining a procedure’s
saved registers and local
variables.

frame pointer A value
denoting the location of
the saved regisiers and
local variables for a given
procedure.
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text segment The
segment of a UNIX object
file that contains the
machine language code
for routines in the source
file.

Allocating Space for New Data on the Heap

In addition to automatic variables that are local to procedures, C programm'crs need
space in memory for static variables and for dynamic data structures. Figure 2.13
shows the MIPS convention for allocation of memory. The stack starts in the
high end of memory and grows down. The furst part of the low end of memory is
reserved, followed by the home of the MIPS machine code, traditionally called the
text segment. Above the cade is the static data seginent, which is the place for con-
stants and other static variables. Although arrays tend to be a fixed length and thus
are a good match to the static data segment, data structures like linked lists tend to
grow and shrink during their lifetimes. The segment for such data structures is tra-
ditionally called the Jieap, and it is placed next in memory. Note that this allocation
allows the stack and heap to grow toward each other, thereby allowing the efficient
use of memory as the two segments wax and wane.

fsp—= 7f{T TFfChex Stack

|

Dynamic dala
$gp— 1000 8000, Static data
1000 0000,
Texi
pc—= 0040 0000,
0 Resarved

FIGURE 2.13 The MIPS memory allocation for program and data. These addresses are
only a software convention, and not part of the MIPS architecture. The stack pointer is initialized o
TEF1 £ fFCyey and grows down toward the data segment. At the other end, the program code (“text”) starts
at 0040 0000),,,. The static data starts at 1000 00004, Dynamic data, allocated by malloc in Cand
by new in Java, is nest, [t grows up toward the stacl in an area called the heap. The global pointer, $gp, is
set to an address to malce it casy to access data. [t is initialized to 1000 8000,, so that it can access from
1000 0000y, to 1000 £ )5, using the positive and negative 16-bit offscts (rom $gp. This information
is also found in Column < of the MIPS Reference Data Card at the front of this book.

C allocates and frees space on the heap with explicit functions. malioc( ) allo-
cates space on the heap and returns a pointer to it, and free() releases space on
the heap to which the pointer points. Memory allocation is controlled by programs
in C,and it is the source of many common and difficult bugs. Forgetting to free space
leads to a “memory leak,” which eventually uses up so much memory that the oper-
ating system may crash. Freeing space too early Jeads to “dangling pointers,” which
can cause pointers to point to things that the program never intended. Java uses
automatic memory allocation and garbage collection just to avoid such bugs.

2.8 Supporting Procedures in Computer Hardware
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Figure 2,14 summarizes the register conventions for the MIPS assembly language.

Preserved on
Name Register number Usage call?
0  na |

3zero The constant value 0

$y(0-3vl 2-3 Values for results and expression evaluation no
sa0-%a3 4-7 Arguments no
st0-3t7 8-15 Termporaries no
$50-3s7 16-23 Saved yes
5t8-5t9 24-25 Mare temporaries no
3gp 28 Global pointer yes
$sp 29 Stack pointer yes
$Tp 30 Frame pointer yes
$ra 31 Return address yes

FIG'!JRE 214 MIP_S register conventions. Register 1, called $at, is reserved for the assembler (see
ISCC[IOH 2.12),_zmd registers 26=27, called $k0-3k1, are reserved for the operating system. This information
is also found in Column 2 of the MIPS Reference Data Card at the (ront of this beok.

Eiaboration: What if there are more than four parameters? The MIPS convention is
to place the extra parameters on the stack just above the frame pointer. The procedure
then expects the first four parameters to be in registers $a0 through $a3 and the rest
in memory, addressable via the frame pointer.

As mentiened in the caption of Figure 2.12, the frame pointer is convenient because all
references to variables in the stack within a procedure will have the same offset. The frame
pointer is not necessary, however. The GNU MIPS C compiler uses a frame pointer, but the
€ compiler from MIPS does not; it treats register 30 as another save register ($58).

EIabqralinn: _Some recursive procedures can be implemented iteratively without using
recursicn. lteration can significantly improve performance by removing the overhead associ-
ated with procedure calls. For example, consider a procedure used to accumulate a sum:

int sum (int n, int acc) |
if (n>0)
return sum{n - 1, acc +n);
else
return acc;
|
Consider the procedure call sum(3,0). This will result in recursive calls to
§um( 2,3),sum{1,5), and sum(0,6), and then the result 6 will be returned four
times. This recursive call of sum is referred to as a taif call, and this example use of tail
recursion can be implemented very efficiently (assume $a0 = nand $al = acc):

sum: s1ti$a0,l # test if n<=20
beq$al, $zero, sum_exit # go to sum_exit if n <=0
addsal, $al, $a0 # add n to acc
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P

@] => (wow open
tab at bar is great)

Check
Yourself

Fourth line of the
keyboard poem “Hatless

Atlas,” 1991 (some
give names to ASCH
characters:

W

is “wow,”

“(”is open, “" is bar, and

$0 on).

addi$a0, $al, -1
J osum

sum_exit:
add$vQ, $al, $zero
jr %$ra

# subtract 1 from n
# go to sum '

# return value acc
# return to caller

Which of the following statements about C and Java are generally true?

1.

C programmiers manage data explicitly, while it’s automatic in Java.

2. Cleads to more pointer bugs and memory leak bugs than does Java.

Communicating with People

Computers were invented to crunch numbers, but as soon as they became com-
mercially viable they were used to process text. Most computers today offer 8-bit |
bytes to represent characters, with the American Standard Code for Informa-
tion Interchange (ASCII) being the representation that nearly everyone follows.
Figure 2.15 summarizes ASCII,

Ascll
valug
I

Char- Char- Char-
acter acter acter
48 0 64 @ 80

Char- | ASCIl ASCHl | Char |
acter value value acter |
-
P 96 - 112 p

space |

33 ! 49 1 65 A 81 Q 97 a 113 q
34 . 50 2 66 B B2 R o8 b 114 r
35 # 51 3 67 C 83 5 99 c 115 5
36 ] 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 u 101 e 117 u
a8 & 54 5 70 F 86 v 102 t 118 v
39 ' 55 7 71 G 87 w 103 g 119 w
0 { 56 8 72 H 88 X 104 h 120 x
a1 ) 57 9 73 | 89 Y 105 [ 121 y
a2 * 58 : 74 J 90 z 106 i 122 z
43 + 59 75 K o1 [ 107 k 123 {
44 . 60 < 6 L 02 \ 108 [ 124 [
45 61 = 77 M 53 ] 109 m 125 }

EE - 62 > 78 N 94 A 110 n 126 ~

| a7 / 63 ? 79 0 95 _ 111 o 127' | DEL

FIGURE 2.15 ASCH representation of characters. Note that upper- and lowercase letters differ by exactly 32; this observation can Jead
to shortcuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents a backspace,
9 represents a tab character, and 13 a carriage return, Another useful value is 0 for null, the value the programming language C uses to mark the
end of a string, This information is also found in Column 3 of the MIPS Reference Data Card at the front of this book.
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Base 2 is not natural to human beings; we have 10 fingers and so find base
10 natural. Why didn’t computers use decimal? In fact, the first commercial
computer did offer decimal arithmetic. The problem was that the computer still
used on and off signals, so a decimal digit was simply represented by several
binary digits. Decimal proved so inefficient that subsequent computers reverted
to all binary, converting to base 10 only for the relatively infrequent input/output
events.

ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as integers.
How much does storage increase if the number 1 billion is represented in
ASCII versus a 32-bit integer?

One billion is 1,000,000,000, so it would take 10 ASCII digits, each 8 bits long.
Thus the storage expansion would be (10 x 8)/32 or 2.5. In addition to the
expansion in storage, the hardware to add, subtract, multiply, and divide such
decimal numbers is difficult. Such difficulties explain why computing profes-
sionals are raised to believe that binary is natural and that the occasional dec-
imal computer is bizarre.

A series of instructions can extract a byte from a word, so load word and store
word are sufficient for transferring bytes as well as words. Because of the popularity
of text in some programs, however, MIPS provides instructions to move bytes. Load
byte (1b) loads a byte from memory, placing it in the rightmost 8 bits of a register.
Store byte (sb) takes a byte from the rightmost 8 bits of a register and writes it to
memory. Thus, we copy a byte with the sequence

b $t0,0(%sp) # Read byte from source
sb $t0,0(%gp) # Write byte to destination

Hardware/
Software
Interface
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Hardware/ Signed versus unsigned applies to loads as well as to arithmetic. The filuction of
Software ° signed load is to copy the sign repeatedly to fill the rest of the register—called
sign extension—but its purpose is to place a correct representation of the number
Interface ithin that register. Unsigned loads simply fll with 0s to the left of the data, since

the number represented by the bit pattern is unsigned.

When loading a 32-bit word into a 32-bit register, the point is moot; signed and
unsigned loads are identical. MIPS does offer two flavors of byte loads: load byte
(1b) treats the byte as a signed number and thus sign-extends to fill the 24 lefi-
most bits of the register, while lond byte unsigned (1bu) works with unsigned
integers. Since C programs almost always use bytes to represent characters rather
than consider bytes as very short signed integers, 1 bu is used practically exclusively
for byte loads.

Characters are normally combined into strings, which have a variable number
of characters. There are three choices for representing a string: (1} the first position
of the string is reserved to give the length of a string, (2) an accompanying variable
has the length of the string (as in a structure), or (3) the last position of a string is
indicated by a character used to mark the end of a string. C uses the third choice,
terminating a string with a byte whose value is 0 (named null in ASCII). Thus,
the string “Cal” is represented in C by the following 4 bytes, shown as decimal
numbers: 67, 97, 108, 0. { As we shall see, Java uses the first option.)

Compiling a String Copy Procedure, Showing How to Use C Strings

The procedure strcpy copies string y to string x using the null byte
termination convention of C:

void strcpy (char x[J, char y[(1)

{
int i:
i=0;
while ((x[i] = y[i]) = *7\0") /* copy & test byte */
i +=1:

|

What is the MIPS assembly code?

2.9 Communicating with People
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Below is the basic MIPS assembly code segment. Assume that base addresses
forarrays x and y are found in $a0 and $al, while i isin $s0. strcpy adjusts
the stack pointer and then saves the saved register $50 on the stack:

strepy:
addi  $sp,ssp,-4
Sy $s0, 0(%$sp)

# adjust stack for 1 more item
# save $s0

To initialize 1 to 0, the next instruction sets $50 to 0 by adding 0 to 0 and plac-
ing that sum in $s0:

add $s0.3zero,$zero £ 1 =0 + 0

This is the beginning of the loop. The address of y[ 1] is first formed by add-
ingitoy[]:

L1: add $t1,%550,%5al # address of y[i] in $tl

Note that we don’t have to multiply i by 4 since y is an array of byses and not
of words, as in prior examples.

To load the character in y[1], we use load byte unsigned, which puts the
character into $t2:

1bu $t2, 0(stl) # st2 = yi(i]

A similar address calculation puts the address of x[1] in $t3, and then the
character in $12 is stored at that address.

add $t3.950,%a0
sb $tz, 0(3t3)

# address of x[i] in $t3
# x[i) = y[i]

Next, we exit the loop if the character was 0. That is, we exit if it is the last
character of the string:

beq $t2 . tzero. L2 # if y[i] == 0, go to L2
If not, we increment i and leop back:

addi  $s0, $s50,1
J L1

#Fi=19+1
# go to L1
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If we don’t loop back, it was the last character of the siring; we restore 3s0 and
the stack pointer, and then return. .

L2: Mw $s0, 0(%sp) # y[il == 0: end of string. Re-
store 01d $s0

addi  $sp.$sp.4  # pop 1 word off stack

jr $ra # return
String copies usually use pointers instead of arrays in C to avoid the operations
on i in the code above. See Section 2.14 for an explanation of arrays versus
pointers.

Since the procedure strcpy above is a leaf procedure, the compiler could allo-
cate i to a temporary register and avoid saving and restoring $s0. Hence, instead
of thinking of the 3t registers as being just for temporaries, we can think of them as
registers that the callee should use whenever convenient. When a compiler finds a leaf
procedure, it exhausts all temporary registers before using registers it must save.

Characters and Strings in Java

Unicode is a universal encoding of the alphabets of most human languages.
Figure 2.16 is a list of Unicode alphabets; there are almost as many alphabets in
Unicode as there are useful symibols in ASCIL To be more inclusive, Java uses
Unicede for characters. By default, it uses 16 bits to represent a character.

The MIPS instruction set has explicit instructions to load and store such 16-bit
quantities, called Ialfivords. Load half (11) loads a halfword from memory, placing
it in the rightmost 16 bits of a register. Like load byte, load half (1h) treats the
halfword as a signed number and thus sign-extends to fill the 16 leftmost bits of the
register, while load halfword nnsigned (1hu) works with unsigned integers. Thus,
1hu is the more popular of the two. Store half (sh) takes a halfword from the
rightniost 16 bits of a register and writes it to memory. We copy a halfword with
the sequence

Thu $t0,0(%sp) # Read halfword (16 bits) from source
sh $t0,0(%gp) # Write halfword (16 bits) to destination

Strings are a standard Java class with special built-in support and predefined
methods for concatenation, comparison, and conversion. Unlike C, Java includes a
ward that gives the length of the string, similar to Java arrays.

Elaboration: MIPS software tries to keep the stack aligned to word addresses, allowing
the program to always use 1w and sw (which must be aligned) to access the stack. This
convention means that a char variable allocated on the stack accupies 4 bytes, even
though it needs less. However, a C string variable or an array of bytes will pack 4 bytes per
word, and a Java string variable or atray of shorts packs 2 halfwords per word.
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Latin Malayalam Tagbanwa General Punctuation

Greek Sinhala Khmer Spacing Modifier Letters

Cyrillic Thai Mongolian Currency Symbols

Armenian lL.ao Limbu Combining Diacritical Marks

Hebrew Tibetan Tai Le Combining Marks for Symbols

Arabic Myanmar Kangxi Radicals Superseripts and Subscripts

’syn'ac Georgian Hiragana Number Forms

Thaana Hangul Jamo Kalalkana Mathematical Cperators

Devanagari Ethiopic Bopomofo Mathematical Alphanumeric Symbols

Bengali Cherokee Kanbun Braille Patterns

Gurmukhi Unified Canadian Shavian Qptical Character Recognitlon
Aboriginal Syllabic

Gujarati Ggham Qsmanya Byzantine Musical Symboals

Oriya RAunic Cypriot Syltabary Musical Sysabols

Tamil Tagalog Tai Xuan Jing Symbols Arrows

Telugu Hanunoo ‘ Yijing Hexagram Symbols | Box Drawing

Kannada Buhid [ Aegean Numbers Geometric Shapes

FIGURE 2.16 E Iphabets in Unicode, Unicode version L0 has more than 160 “blocks,”

which is their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at
0370} and Cyrillic at 0400g,,. The frst three columns show 48 blocks that correspond to human languages
in roughly Unicode numerical order. The last column has 16 blocks that are multilingual and are not in order.
A 16-bit encoding, called UTF-16, is the default. A variable-lenpth encoding, called UTF-8, keeps the ASCH
subsct as cight bits and uses 16-32 bits for the other characters. UTF-32 uses 32 bils per characler. To learn
more, see wwav.rnicode.org.

1. Which of the following statements about characters and strings in C and Java
are true?

1. Astring in C takes about half the memory as the same string in Java.

2. Strings are just an informal name for single-dimension arrays of characters
in C and Java.

3. Strings in C and Java use null (0) to mark the end of a string.
4. Operations on strings, like length, are faster in C than in Java,

II. Which type of variable that can contain 1,000,000,000,,, takes the most memory
space?

1. intinC
2, stringinC

3, stringinJava

Check
Yourself
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MIPS Addressing for 32-Bit Immediates
and Addresses

Although keeping all MIPS instructions 32 bits long simplifies the hardware, there
are times where it would be convenient to have a 32-bit constant or 32-bit address,
This section starts with the general solution for large constants, and then shows the
optimizations for instruction addresses used in branches and jumps.

32-Bit Inmediate Operands

Although constants are frequently shortand fit into the 16-bit field, sometimes they
are bigger. The MIPS instruction set includes the instruction load 1npper intmediate
(1ui) specifically to set the upper 16 bits of a constant in a register, allowing a
subsequent instruction to specify the lower 16 bits of the constant. Figure 2.17
shows the operation of Tuf,

Loading a 32-Bit Constant
What is the MIPS assembly code to load this 32-bit constant inio repister $50?

0000 0000 0011 1101 0000 1001 0000 0000

First, we would load the upper 16 bits, which is 61 in decimal, using Tu1:
Tui $s0, 61 ## 61 decimal = 0000 0000 0011 1101 binary
The value of register $50 afterward is
0000 0000 0011 1101 0000 0000 0000 0000
The next step is to insert the lower 16 bits, whose decimal value is 2304:
ori $s0, $s0, 2304 # 2304 decimal = 0000 1001 0000 0000
The final value in register $50 is the desired value:

0000 0000 0011 1101 0000 1001 0000 0000

¥
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The machine language version of 1ui 313, 2955 # st0 is register 8:

‘ 001111 00000 01000 J 00000000 1111 1111

Contents of register 310 after executing lui %10, 255! /

\ 00000000 111 1111 \

0000 0000 0000 0000

FIGURE 2.17 The effect of the 1ui instruetion. The instruction Tui transfers the 16-bit iminediate constant field value into the

leftmost 16 bits of the register, filling the lower 16 bits with 0s.

Either the compiler or the assembler must break large constants into pieces and
then reassemble them into a register. As you might expect, the immediate field’s
size restriction may be a problem for memory addresses in loads and stores as well
as for constants in immediate instructions. If this job falls to the assembler, as it
does for MIPS software, then the assembler must have a temporary register avail-
able in which to create the long values. This is a reason for the register $at, which
is reserved for the assembler.

Hence, the symbolic representation of the MIPS machine language is no longer
limited by the hardware, but by whatever the creator of an assembler chooses to include
(see Section 2.12). We stick close to the hardware to explain the architecture of the
computer, noting when we use the enhanced language of the assembler that is not
found in the processor.

Elaboration: Creating 32-bit constants needs care. The instruction addi copies the
leftmast bit of the 16-bit immediate field of the instruction into the upper 16 bits of a
word, Logical or immediate from Section 2.6 lcads Os into the upper 1.6 bits and hence
is used by the assembler in conjunction with 117 to create 32-bit constants.

Addressing in Branches and Jumps

The MIPS jump instructions have the simplest addressing. They use the final MIPS
instruction format, called the J-type, which consists of 6 bits for the operation field

and the rest of the bits for the address field. Thus,
j 10000  # go to location 10000

could be assembled into this format (it’s actually a bit more complicated, as we
will see):

Hardware/
Software
Interface
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C-relative addressing
An addressing regime
in which the address is
the sum of the program
counter (PC) and a con-
stant in the instruction.

2 10000

]

6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 10000.
Unlike the jump instruction, the conditional branch instruction must specify

two operands in addition to the branch address. Thus,
bne $s0,9s1,Exit # go to Exit if §s0 = $sl

is assembled into this instruction, leaving only 16 bits for the branch address:

5 16 ‘ 17 | Exit

6 bits 5 bits 5 bits 16 bits

If addresses of the program had to fit in this 16-bit field, it would mean that
no program could be bigger than 2'%, which is far too small to be a realistic option
today. An alternative would be to specify a register that would always be added to
the branch address, so that a branch instruction would calculate the following:

Program counter = Register + Branch address

This sum allows the program to be as large as 2* and still be able to use conditional
branches, solving the branch address size problem. Then the question is, which
register?

The answer comes from seeing how conditional branches are used. Conditional
branches are found in loops and in if statements, so they tend to branch to a
nearby instruction. For example, about half of all conditional branches in SPEC
benchmarks go to locations less than 16 instructions away. Since the program
counter (PC) contains the address of the current instruction, we can branch within
+2'% words of the current instruction if we use the PC as the register to be added
to the address. Almost all loops and if statements are much smaller than 2'¢ words,
so the PC is the ideal choice.

This form of branch addressing is called PC-relative addressing. As we shall see
in Chapter 4, it is convenient for the hardware to increment the PC early to point to
the next instruction. Hence, the MIPS address is actually relative to the address of
the following instruction (PC -+ 4) as opposed to the current instruction (PC).

Like most recent computers, MIPS uses PC-relative addressing for all condi-
tional branches, because the destination of these instructions is likely to be close to
the branch. On the other hand, jump-and-link instructions invoke procedures that
have no reason to be near the call, so they normally use other forms of addressing.
Hence, the MIPS architecture offers long addresses for procedure calls by using the
J-type format for both jump and jump-and-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of the
branch by having PC-relative addressing refer to the number of words to the next
instruction instead of the number of bytes. Thus, the 16-bit field can branch four

r_
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times as far by interpreting the field as a relative word address rather than as a
relative byte a?ldress. Similarly, the 26-bit field in jump instructions is also a word
address, meaning that it represents a 28-bit byte address.

Elaboration: Since the PC is 32 bits, 4 bits must come from somewhere else for
jumps. the MIPS jump instruction replaces only the lower 28 bits of the PC leaving
the upper 4 bits of the PC unchanged. The loader and linker (Section 2.12) lr-nust be
careful _to avoid placing a program across an address boundary of 256 MB (64 million
instruc_tlons); otherwise, a jump must be replaced by a jump register instruction preceded
by other instructions to toad the full 32-bit address into a register.

|
Showing Branch Offset in Machine Language

The whileloop on page 107108 was compiled into this MIP$ assembler code:

Loop:sil $t1.%s3,2 # Temp reg $t1 = 4 * §
add $t1,$t1,%s6 # $t1 = address of saveli)
Tw  $t0,0(3t1) # Temp reg $t0 = saveli]

bne $t0,8s5, Exit # go to Exit if savel[i] = k
addt $s3.%s3,1 ffi=1+1

~J Loop # go to Loop
Exit:

If we assume we place the loop starting at location 80000 in memory, what is
the MIPS machine code for this loop?

The assembled instructions and their addresses are:

Boooo | o o [ 1o s 2 1 o |
80004 0 ‘_QJL M
80008 35 9 | & | 0

80012 5 8 | = 5

80016 8 19 ) 1

80020 20000

80024 ...
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| Remember that MIPS instructions have byte addresses, so addresses of
sequential words differ by 4, the number of bytes in a word, The bne instruc-

‘ tion on the fourth line adds 2 words or 8 bytes to the address of the following
instruction (80016), specifying the branch destination relative to that following
instruction (8 + 80016) instead of relative to the branch instruction (12 +80012)

| or using the full destination address (80024). The jump instruction on the last

i line does use the full address (20000 x 4 = 80000}, corresponding to the label
Loop.

Hardware/
Software
Interface

EXAMPLE

addressing mode One of
several addressing regimes
delimited by their varied
use of operands and/or
addresses.

Most conditional branches are to a nearby location, but occasionally they branch
far away, farther than can be represented in the 16 bits of the conditional branch
instruction. The assembler comes to the rescue just as it did with large addresses
or constants: it inserts an unconditional jump to the branch target, and inverts the
condition so that the branch decides whether to skip the jump.

Branching Far Away
Given a branch on register $50 being equal to register $s1,

beq $s50, $s1, L1

replace it by a pair of instructions that offers a much greater branching distance.

These instructions replace the short-address conditional branch:

bne $s0, $sl, L2
J L1

L2:

MIPS Addressing Mode Summary

Multiple forms of addressing are generically called addressing modes. Figure 2.18
shows how operands are identified for each addressing mode. The MIPS address-
ing modes are the following:

1. Immediate addressing, where the operand is a constant within the instruc-
tion itself

2. Register addressing, where the operand is a register

210 MIPS Addressing for 32-Bit Immediates and Addresses

1. Immediate addrassing
‘op‘ rs ‘ it | lmmediatﬂ

2. Register addressing

} op l r‘s ‘ i ‘ rcl [ ‘funct‘ Registers

| Register

_ 3. Base addressing

‘op‘ rs ‘ rt ‘ Address ‘ Memory

‘ Register ( Bl Haivoid]  Word

4. PC-relative addressing
‘op‘ rs ‘ rt | Address —‘

Memary

\_ﬁ
e

5. Pseudodirect addressing

\ﬂ‘ Address —‘ Memary

10—

| PC
[ 1

FIGURE 2.18 Hlustration of the five MIPS addressing modes, The operands are shaded in color.
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load
and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself, Modcs
4and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the PCand
mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC.

3. Base or displacement addressing, where the operand is at the memory loca-
tion whose address is the sum of a register and a constant in the instruction

4. PC-relative addressing, where the branch address is the sum of the PC and a
constant in the instruction

5. l?scndadirecr addressing, where the jump address is the 26 bits of the instruc-
tion concatenated with the upper bits of the PC
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=
Hardware/ Although we show MIPS as having 32-bit addresses, nearly all microprocessors
Software (including MIPS) have 64-bit address extensions (see B Appendix E). These exten-
sions were in response to the needs of software for larger programs. The process of
Interface insiruction set extension allows architectures to expand in such a way that is able to

move software compatibly upward to the next generation of architecture.

Note that a single operation can nse more than one addressing mode. Add, for
example, uses both immediate (addi ) and register (add) addressing.

Decoding Machine Language

Sometimes you are forced to reverse-engineer machine language to create the origi-
nal assembly language. Cne example is when looking at “core dump?” Figure 2.19
shows the MIPS encoding of the fields for the MIPS machine language. This figure
helps when translating by hand between assembly language and machine language.

Decoding Machine Code

What is the assembly language statement corresponding to this machine
instruction?

00af8020hex

The first step in converting hexadecimal to binary is to find the op fields:

(Bits:31 28 26 5 2 0)
0000 0000 1010 1111 1000 0000 0010 0000

We look at the op field to determine the operation. Referring to Figure 2.19,
when bits 31-29 are 000 and bits 28—26 are 000, it is an R-format instruction.
Let’s reformat the binary instruction into R-format fields, listed in Figure 2.20:

shamt funct
100000

op rs rt rd
pooooo 00tol 01111 10000 00000

The battom portion of Figure 2.19 determines the operation of an R-format
instruction. In this case, bits 5—3 are 100 and bits 2—0 are 000, which means
this binary pattern represents an add instruction.

We decode the rest of the instruction by looking at the field values. The
decimal values are 5 for the rs field, 15 for rt, and 16 for rd (shamt is unused).
Figure 2.14 shows that these numbers represent registers $al, $17, and $s0.
Now we can reveal the assembly instruction:

add $s0,%al,3t7
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op{31:26)

28-26 {000} 1{001) 2(010} 3(011) 4(100) 5(101) 6(110) 7i111)
31-29
(000} R-format Bltz/gez Jump Jjump & Tink| hranch eq | branch blez bgtz
ne

1{001) add addiu set less set 1ess andi ari xort load upper

imiediate than imm. than imm. immadiate

unsigned
2(010) TLB FipPt
3(011)
4(100) Toad byte Toad half | 1wl load word | load byte | lcad lur
unsigned |half
unsigned

5(101}) store byie store half | sw! storg word swr
6(110) lead Vinked |lwcl

word
T(111} store cond, |swcl

vord

op(31:26)=010000 (TLE), rs(25:21)
23-21 0(000) 1{001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)
25-24
0(00) micO cfc mtco crcO
1(01)
2(10}
3(11)
op(31:26)=000000 (R-format), funct(5:0)

2-0 0(000) 1{001) 2(010} 3(011) 4(100) 5(101) 6(110) 7(111)
5-3
Q(000) shift left shiflright|sra sy ) srily Srav

logical lagical
1{001) jump register| jalr syscall break
2(010) mfhi mEhi milo mtlo
3(011) mult ol tu div divu ]
4{100) add addu subtract subu and or xor not or {(nar)
5(101) set 1.1, set 1.t

unsigned

6(110)
7(111) J

FIGURE 2.19 MIPS instruction encoding. This notation gives the value of a ficld by row and by column. For example, the 1op portion
of the Aigure shows 10ad word in row number 4 (100, for bits 31-29 of the instruction) and column number 3 (011, for bits 28-26 of the
instruction), so the corresponding value of 1he op field {bits 31=26) is 10001 [,,,. Underscore means the field is used elsewhere. For example,
R-format in row 0 and column ¢ (op = 000000,,,,) is defined in the botom part of the figure. Hence, subiract in row 4 and column 2
of the bottem section means that the funct field (bits 5-0) of the instruction is 100010, and the op field (bits 31~26) is 000004, ,,,. The
floating point value in row 2, column | is defined in Figure 3.18 in Chapier . Bltz/gez is the opeode for four instructions fu‘u‘nd in
ﬁppcndix B:b1tz,bgez,bltzal,and bgeza). This chapler describes instructions given in full name using color, while Chapter 3 describes
instructions given in mnemonics using color. Appendix B covers all instructions,



