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Abstract
Interoperability is essential for the commercial adoption

of wireless sensor networks. However, existing sensor net-
work architectures have been developed in isolation and thus
interoperability has not been a concern. Recently, IP has
been proposed as a solution to the interoperability problem of
low-power and lossy networks (LLNs), considering its open
and standards-based architecture at the network, transport,
and application layers. We present two complete and in-
teroperable implementations of the IPv6 protocol stack for
LLNs, one for Contiki and one for TinyOS, and show that
the cost of interoperability is low: their performance and
overhead is on par with state-of-the-art protocol stacks cus-
tom built for the two platforms. At the same time, exten-
sive testbed results show that the ensemble performance of
a mixed network with nodes running the two interoperable
stacks depends heavily on implementation decisions and pa-
rameters set at multiple protocol layers. In turn, these results
argue that the current industry practice of interoperability
testing does not cover the crucial topic of the performance
and motivate the need for generic techniques that quantify
the performance of such networks and configure their run-
time behavior.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Net-

work Protocols; C.2.6 [Computer-Communication Net-
works]: Internetworking—Standards
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1 Introduction
For wireless sensor networks to be widely adopted by

the industry, hardware and software implementations from
different vendors need to interoperate and perform well to-
gether. While IEEE 802.15.4 has emerged as a common
physical layer that is used both in commercial sensor net-
works and in academic research, interoperability at the phys-
ical layer is not enough: multiple layers of the stack must
interoperate. Likewise, interoperability without high perfor-
mance (e.g., high packet reception ratio) is inadequate given
the critical nature of some of the industrial applications en-
visioned for wireless sensor networks (e.g., process control)
and the severe resource limitations of mote platforms.

Academia has paid little attention to interoperability,
since it has focused on producing systems and network
stacks that help in attaining research results (e.g., [1, 6]).
Moreover, research deployments have been homogeneous in
both hardware and software, providing little incentive for
work towards interoperability. This course of research has
filled an important need: it has allowed the community to
focus on the fundamental problems, leaving standardization
and interoperability to the time when the fundamental issues
were addressed.

The Internet Protocol (IP), which has proven its interoper-
ability and extensibility as the protocol underlying the global
Internet over the last 30 years, is seen by many as a promis-
ing solution to the interoperability problem in low-power and
lossy networks [5, 12, 19, 21]. In support of this effort, the
Internet Engineering Task Force (IETF) recently specified a
number of protocols and adaptation layers that allow IPv6 to
run over IEEE 802.15.4 link layers. In particular, the 6LoW-
PAN working group specified header compression and frag-
mentation for IPv6 over IEEE 802.15.4 [16] and the IETF



RoLL working group designed the RPL protocol as a pro-
posed standard for IPv6 routing in low-power and lossy net-
works (LLNs) [21, 22]. These specifications provide a firm
foundation for interoperable systems.

We present two independent implementations of the IPv6
stack for LLNs, one for the Contiki operating system and an-
other for TinyOS. Both efforts implement the necessary parts
of the IPv6 protocol, IPv6 header compression and frag-
mentation with the 6LoWPAN adaptation layer, routing over
LLNs with the RPL protocol, as well as a set of protocols
from the TCP/IP protocol suite [3, 5, 8]. We demonstrate
that the two implementations interoperate, but more impor-
tantly we show that protocol interoperability is not enough:
implementation decisions and protocol settings result in per-
formance degradations that traditional interoperability test-
ing methods do not detect.

The industry’s standard practice for interoperability test-
ing comprises two main methods. First, so-called bake-offs,
or interoperability events, during which systems from dif-
ferent vendors are tested against each other. Second, con-
formance testing, where systems are tested against a refer-
ence implementation. For example, the IP for Smart Ob-
jects (IPSO) Alliance [7], formed to promote the use of IP
for WSNs, has to this date held three interoperability test-
ing events. These events have relied on vendors to either
be physically present so their devices can communicate di-
rectly, or be virtually present during the same time, to al-
low network-level communication between devices. Further-
more, the IPv6 Ready forum provides a reference implemen-
tation of the IPv6 stack that sensor network IP software have
used for conformance testing [8, 9].

We argue that such interoperability events are not enough
since they cannot, nor are they supposed to, detect perfor-
mance degradations such as the ones we discovered in our
work. Detecting performance reductions requires large-scale
experiments with controlled parameters and visibility at the
network layer. For these reasons, network simulation should
be an additional tool in the interoperability tester’s toolbox
since it allows interoperability testing at network scale with
full control over all network parameters and full visibility
into the network.

The contributions of this paper are two. First, we demon-
strate IPv6 interoperability between the leading sensor net-
work operating systems, TinyOS and Contiki. Interoperabil-
ity is highly relevant to the industry but has not received
much attention in academic research. Second, we show
that interoperability between independent implementations
of LLN stacks is not enough: implementation choices and
protocol settings can affect system performance in unex-
pected ways. Our results show that although two RPL imple-
mentations interoperate, one must look deeper into the net-
work performance as subtle variations in underlying compo-
nents may affect the network’s packet delivery performance.

The rest of the paper is structured as follows. We dis-
cuss the need for interoperability in wireless sensor networks
and present the IPv6 architecture for sensor networks in Sec-
tion 2. In Section 3 we present our IPv6 implementations
for Contiki and TinyOS and in Section 4 we discuss how we
leverage the Contiki simulation environment to perform in-

teroperability testing. We run Contiki and TinyOS in a set
of testbed experiments and simulation setups in Section 5,
demonstrating both that our systems interoperate and that
system performance can be affected by inconsistent deci-
sions across implementations. We discuss our findings and
their implications for future work in Section 6. We review re-
lated work in Section 7 and conclude the paper in Section 8.

2 The Case for Interoperability in Wireless
Sensor Networks

In the early sensor network vision, networks were homo-
geneous and interoperability was not a concern. Likewise,
early industry efforts used proprietary technologies with no
provisions for working with other systems. But to reach
widespread commercial adoption of sensor networks, inter-
operability is essential. Without interoperability, customers
are locked in with one vendor.

The Internet Protocol (IP) has recently been suggested
as a way to attain interoperability in low-power sensor net-
works [5, 8, 12, 19, 21]. By running IP, sensor networks
leverage knowledge, systems, software, and equipment from
the global Internet. Experience has shown that IP is both
lightweight enough to run on even severely resource con-
strained systems [5, 8] and that the power consumption and
performance is on par with that of heavily optimized sen-
sor network protocols [12, 19]. Furthermore, IPv6 allows
emerging commercial WSN applications to scale. The ad-
dress space of IPv6 is large enough to accommodate billions
of systems and the built-in auto-configuration mechanisms
simplify network deployment and management.

Open standards are of primary importance for widespread
commercial adoption of sensor network technology. With
proprietary specifications and non-standards, customers are
at risk of vendor lock-in, where they become completely de-
pendent on one particular vendor. This is a significant busi-
ness risk: should the vendor choose to discontinue its prod-
uct line, the customer must make an expensive switch to a
different technology. With open standards, customers may
choose among multiple vendors.

At the same time, open standards are useful only if mul-
tiple implementations exist. This is one of the tenets of the
standardization work within the IETF, which requires spec-
ifications to have multiple independent implementations be-
fore the specification is moved towards publication in the
standard track. In turn, the existence of multiple implemen-
tations means that interoperability is essential to making the
standard widely adopted. In fact, interoperability is impor-
tant for both vendors, who can use it as a market advantage,
and customers, who can feel that the purchased equipment
will work with other vendors’ equipment.

The need for interoperability has been highlighted by sev-
eral recent industrial efforts. The IPSO Alliance [7] was
formed to promote the use of IP for connecting smart objects
and has established an interoperability program at both the
IPv6 and the lower layers of the IPSO stack. The ZigBee/IP
effort aims to formulate a subset of the IPSO standards for
specific applications.



2.1 Emerging Applications
The evolution of wireless sensor networks is largely

driven by a set of emerging applications [21]. The smart grid
is intended to improve the electrical power grid and save con-
siderable amounts of energy for society as a whole. Building
and home automation improves the quality of indoor envi-
ronments in terms of temperature, air quality, and lighting,
while saving energy in the process. Industrial automation
improves the quality of industrial processes. Smart cities al-
low new services inside increasingly populated cities, such
as automatic parking management and pollution monitoring.
Wireless sensors are an integral part of all these applications.

The smart grid covers a wide range of topics, rang-
ing from efficient high-voltage current transmission to
lightweight power measurement of individual devices in
homes and offices. Communication is a central part of the
smart grid. Power meters transmit their readings to the utility
companies. Small-scale producers, such as homes with so-
lar cells, communicate with utilities to negotiate both power
levels and pricing. Individual devices, such as washing ma-
chines, ask for the current price rates and adjust their oper-
ation to reduce cost. Due to the need for interoperability,
the need for open standards, and the large-scale nature of
the smart grid, many standardization organizations, such as
NIST in the U.S., have proposed the using IPv6 as the basis
for all smart grid communication.

In building and home automation, communication is used
for both sensing and control. Temperature, humidity, and
presence sensors provide input to control algorithms with
the goal of improving the conditions inside buildings while
reducing their power consumption. The control algorithms
send commands to heaters, lighting controllers, shutters, air
coolers, and other actuators. Given the large number of dif-
ferent sensors and actuators even in small deployments, in-
teroperability between different vendors is critical.

In industrial automation, predictability and real-time reli-
ability are important aspects, but also interoperability and the
ability to communicate with existing applications. In indus-
trial automation, sensors are used for both process monitor-
ing and for assisting a mobile workforce to make informed
decisions on the factory floor. Workers with hand-held com-
puters will need to communicate with sensors and actuators.
Even though many industrial automation installations may
consist of equipment from a single vendor, they will need to
be augmented with new equipment over time, highlighting
the need for interoperability.

For smart cities, communicating sensors will be used for
tracking vehicles and parking spaces, measuring and track-
ing pollution, and for controlling traffic and street lights.
These large scale systems will comprise different types of
devices and networks. 3G and 4G networks will be used for
long-range links. WiFi and WiMax for shorter range links,
where throughput is important and power consumption is
not an issue. Low-power wireless networks, such as IEEE
802.15.4, will be used for short-range multi-hop networks.
With this large number of systems and vendors, interoper-
ability is essential for the success of these efforts.

2.2 IPv6 for Lossy, Low-Power Networks
TCP/IP is arguably a highly successful network architec-

ture that has proven its stability, scalability, and ability to
support a plethora of applications. For wireless sensor net-
works, the IP protocol stack can provide interoperability be-
tween devices within the WSN and between the WSN and
existing IP-based systems.

2.2.1 Link Layers
Emerging wireless sensing applications use different link

layers. Some installations use existing network technologies
such as Ethernet or WiFi but many use emerging low-power
wireless technologies such as IEEE 802.15.4 for installation
efficiency. Finally, others use existing wired infrastructure
such as power-line communication (PLC).

Low-power wireless communication technologies, such
as IEEE 802.15.4 and PLC, can be classified as low-power
and lossy networks (LLNs). Low-power operation is im-
portant for both technologies: (i) wireless systems are of-
ten powered by batteries whereby the system’s energy con-
sumption determines its lifetime, (ii) power consumption de-
termines the physical size of the power transformers used in
PLC systems. Moreover, both networks have similar proper-
ties in terms of lossiness, whereas loss rates vary by orders of
magnitude over both short and long time scales. In turn, the
differences between LLNs and the mostly stable links that IP
expects have prompted the design of new link-layer adapta-
tion mechanisms and routing protocols for IP-based LLNs.

2.2.2 Header Compression with 6LoWPAN
IPv6 was designed for high-bandwidth networks where

performance in terms of throughput and packet forwarding
speed is crucial. For this reason, the IPv6 headers were
designed for efficient parsing in hardware, with fixed size
header fields aligned at word boundaries. On the other hand,
LLN links typically have low bandwidth and small maxi-
mum frame sizes and applications generate little data. In this
context, the IPv6 header size can be problematic.

Header compression is a well-known technique to reduce
the header size of IP packets. The 6LoWPAN IETF working
group defined a header compression scheme for IPv6 over
IEEE 802.15.4 [16], commonly called 6LoWPAN. IEEE
802.15.4 has a maximum frame size of 127 bytes and since
IPv6 requires the link layer to support a minimum packet size
of 1280 bytes, 6LoWPAN also provides a link-layer frag-
mentation and reassembly mechanism. While originally de-
fined for IEEE 802.15.4, 6LoWPAN has been subsequently
used for other link layers such as PLC.

2.2.3 Routing with RPL
The IPv6 Routing Protocol for Low-power and Lossy

Networks (RPL) is the routing protocol for IPv6-based LLNs
proposed by the IETF’s RoLL working group [22]. RPL is
designed for networks with significantly higher packet loss
rates than those assumed by existing routing protocols. RPL
is primarily designed for many-to-one (collection) traffic pat-
terns, a common traffic pattern for LLN applications, but
works well for point-to-multipoint and point-to-point traf-
fic as well. Being optimized for low-speed links, RPL fo-
cuses on maintaining low control plane overhead. Finally,



RPL supports multi-topology routing: a set of virtual rout-
ing topologies that can be built that are optimized for differ-
ent metrics and sets of constraints.

At the core of RPL routing is the Destination-Oriented
Directed Acyclic Graph (DODAG). This DODAG, rooted at
an edge router, is used by all nodes in a RPL network to
maintain a default route to the DODAG’s root. In order to
construct and maintain the DODAG, RPL specifies ICMPv6
messages called DODAG Information Objects (DIOs). DIO
messages carry reachability information and DODAG Infor-
mation Solicitations (DISes) which request DIO transmis-
sions from neighboring nodes. DIOs also carry the DODAG
rank of the nodes that generated the messages. This DODAG
rank value represents the relative distance of the DIO’s origi-
nator from the root and is essential to the DODAG given that
nodes use it to determine their preferred parents.

RPL attempts to support different application require-
ments through multiple objective functions (OFs), used for
parent selection. These OFs are carried in DIOs and de-
scribe how a node should compute its DODAG rank value
given a set of metrics. An objective function can be tailored
so that RPL computes routing paths that achieve application-
specific goals, such as providing latency-sensitive routes for
real-time applications. As a basis for interoperability, RPL
includes default Objective Function 0 (OF0), that selects
routes based on the hop-count to the DODAG root [20].

3 IPv6 in Contiki and TinyOS
While protocol design can simplify interoperability, only

when two independent implementation work together one
can claim that interoperability has been demonstrated. We
present two independent implementations of the IPv6 LLN
stack: one for Contiki and another for TinyOS. While the two
implementations were developed independently they share
many design principles. Both implementations implement
the IPv6 protocol, including ICMPv6, with support for the
UDP and TCP transport protocols. Underneath the IPv6
layer, both stacks implement the 6LoWPAN layer. Finally,
each stack provides its own implementation for the RPL
routing protocol (version 18 at the time of writing [22]).

Figure 1 shows the software architecture of our two im-
plementations. Empty arrows show the path of packets
through the stack, while filled arrows correspond to func-
tion calls. The structure of the two stacks is similar: the IPv6
layers call the RPL routing modules when receiving ICMPv6
messages and discovering neighbors. RPL modules call the
IPv6 stacks to install routes to the IPv6 routing tables. At the
same time, there are also subtle differences between the two
stacks. Link layer feedback is handled in the Link Estimator
module in Contiki, whereas link layer feedback is handled as
part of the TinyOS BLIP module. However, both RPL mod-
ules respond similarly to link layer feedback, recalculating
routes accordingly. TinyOS validates RPL data headers by
exchanging information between BLIP and TinyOS, whereas
this is performed fully within the ContikiRPL module. In
both cases, the observable result is indistinguishable: the dif-
ferences in structure are due to implementation choices.

The IPv6 stack in Contiki is has been certified under the
IPv6 Ready Silver logo program [8] and its TCP implemen-

tation fulfills all the RFC requirements [5]. ContikiRPL has
successfully completed interoperability testing through the
IPSO Alliance’s interop program, where it was used on three
different platforms and ran over two different link layers,
IEEE 802.15.4 and the Watteco low-power power-line com-
munication module. Also, at least two sensor network de-
ployments have used ContikiRPL. The TinyOS IPv6 stack
supports IPv6, ICMPv6, DHCPv6, UDP, and TCP [3] and
has been used in several deployments [4, 14].

Both stacks provide means to route packets from the sen-
sor network to other networks. Contiki and TinyOS in-
clude implementations of the Point-to-Point Protocol (PPP)
for tunneling packets over serial links. Contiki additionally
supports Serial Line IP (SLIP) and Ethernet adaptation.

3.1 The IPv6 / RPL Interface
TinyRPL and ContikiRPL interact directly with their re-

spective IPv6 implementations, BLIP and uIPv6. In both
cases, the IPv6 stack forwards packets while the RPL layer
installs entries in the forwarding tables. TinyOS uses RPL
option header support [13] and uses BLIP’s exposed packet
forwarding plane to query TinyRPL for protocol-specific for-
warding decisions.

3.2 RPL Objective Function Support
Objective functions in RPL determine how parent selec-

tion and forwarding decisions are made. Multiple objec-
tive functions exist, each aiming to optimize different met-
rics [21, 22]. ContikiRPL and TinyRPL support both the
OF0 and the MRHOF objective functions and are capable
of supporting any of the objective functions documented as
Internet Drafts by the IETF RoLL working group through
modular design.

3.3 RPL Link Quality Estimation
TinyRPL and ContikiRPL use per-link ETX to estimate

link quality. Both implementations update ETX value Ep
after sending packet p using an EWMA filter

Ep = αTp +(1−α)Ep−1,

where Tp is the number of transmission attempts for packet
p, provided by the underlying MAC layer, and α ≤ 1 is an
implementation-defined constant. ContikiRPL uses α = 0.2
and initializes the ETX of new neighbors to 3.5, while
TinyRPL uses α = 0.5 and an initial ETX of 5.0, adapting
faster to changes in the number of packet retransmissions.

In the case of OF0, the ETX estimates are used as tie-
breakers among multiple potential parents with the same
hop-count, while MRHOF uses the ETX of the end-to-end
path to select minimum cost routes.

In ContikiRPL, an external neighbor information mod-
ule updates link cost estimates through a callback function.
Within one second of such an update, ContikiRPL recom-
putes the path cost to the sink via the updated link and checks
with the selected objective function whether to switch the
preferred parent. Whenever the ETX of a node in the parent
set changes, TinyRPL immediately selects the node with the
lowest metric as the desired parent in the DODAG.
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Figure 1. The IPv6 LLN implementations in Contiki and TinyOS 2.x. uIPv6 in Contiki and BLIP in TinyOS pro-
vide support for IPv6. ContikiRPL and TinyRPL implement the RPL routing protocol and communicate with their
respective packet forwarding engines.

4 An Interoperability Simulation
Environment

We leverage both a WSN testbed and a controllable sim-
ulation environment as tools to test the interoperability of
the two implementations presented above. On one hand, the
testbed provides the ability to validate performance in real
wireless channel environments. However, relying solely on
testbed results complicates the task of examining the net-
work’s behavior and diagnosing the root causes of perfor-
mance degradations. For this purpose, while simulators lack
the realism of testbeds, we leverage their ability to provide
repeatability and full control over the parameter space. Fur-
thermore, unlike a testbed setup, which is by necessity con-
fined both in time and in space, a simulation can be made
arbitrary complex. Moreover, interoperability testing can be
accelerated by running multiple simulations in parallel.

We selected the Contiki simulation environment in our
work (http://www.sics.se/contiki/). The Contiki sim-
ulation environment consists of two parts: the Cooja network
simulator, which allows large-scale network simulation with
a range of radio models, and the MSPsim mote emulator,
which combines cycle-accurate emulation of MSP430-based
motes such as the Tmote Sky with bit-accurate emulation of
the CC2420 radio transceiver. With MSPsim, the exact same
binary code that runs on the mote can be executed in simu-
lation. Likewise, Cooja can simulated a network of MSPsim
nodes with exact timing of all message exchanges.

The Contiki simulation environment allows combining
different software stacks into the same simulation. This is
a necessity for testing the interoperability of different pro-
tocol implementations, as interoperability relies on the si-
multaneous execution of different software implementations.
The Contiki simulation environment also supports different

hardware as part of the same simulation, allowing interop-
erability testing across hardware platforms. In addition to
the MSPsim emulator, the simulation environment also con-
tains the AvroraZ emulator, which emulates the AVR-based
MicaZ mote.

Combining timing-accurate network simulation with
cycle-accurate binary emulation allows testing both the in-
teroperability of different implementations and the perfor-
mance of the resulting system as a whole. By contrast, a
testbed can prove the interoperability of two systems, but
complicates the diagnosis of performance issues. Finally, bi-
nary emulation allows interoperability testing between sys-
tems that are shipped only in binary form by the software
vendor. Although binary-only software releases are uncom-
mon in academia, this frequently occurs in the commercial
sector as it allows vendors to maintain trade secrets and
source code.

5 Evaluation
The purpose of this evaluation is to explore the perfor-

mance implications of interoperability. Specifically, we are
interested in any potential performance shortcomings of in-
teroperable systems compared to state-of-the-art, yet custom
protocols as well as performance degradations that emerge
when multiple implementations have to interoperate.

We perform our experiments using two different tools.
First, using a medium-sized indoor testbed, we measure the
performance of different IPv6 implementations, when run-
ning separately and together, under realistic wireless channel
conditions. Second, we use the Contiki simulation environ-
ment as a way to control all of the experiments’ parameters.
5.1 Initial Testbed Experiments

We first evaluate the two systems by measuring the packet
reception ratio (PRR) in an indoor testbed consisting of 51
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Figure 2. The simulation topology consists of 39 sender nodes and one root. The figure shows a sample RPL topology
graph with both Contiki (lighter shade) and TinyOS nodes (darker shade).

Routing Protocol Average PRR (Std. Dev.)

TinyOS IPv6 97.84% (1.06)

Contiki IPv6 95.96% (0.92)

TinyOS + Contiki 87.01% (1.23)

Table 1. Packet reception ratio (PRR) of the two systems
operating individually and together in the same network.
The mixed network has 26 TinyOS nodes (including the
network’s root) and 25 Contiki nodes. When the two pro-
tocols are combined with their default parameter config-
urations PRR decreases by ∼9-10%.

TelosB motes distributed over two floors of an office build-
ing. The wireless channel fluctuations mostly happen during
daytime, driven by people moving throughout the building.
We evaluate the performance of the IPv6 implementations
in TinyOS and Contiki separately and present results for a
heterogeneous network consisting of 26 TinyOS nodes, one
of which is the root, and 25 Contiki nodes. All non-root
nodes transmit one packet every eight seconds towards the
root. We tested each network configuration three times, over
three consecutive days. In all cases, we used the OF0 RPL
objective function.

Table 1 presents the PRR from these initial testbed ex-
periments. The results point to three important findings.
First, Contiki and TinyOS, when independent, achieve high
PRR (>95%), which is what one would expect from a
good protocol implementation. Second, the results of the
TinyOS + Contiki configuration suggest that interoperability
is possible. Third, even though the two implementations do
interoperate, the PRR of the heterogeneous network is∼9-
10% lower than either of the two homogeneous networks.

This result is somewhat surprising given that the root node
controls the timer values that nodes use to generate their pe-
riodic control traffic. It does so by including these values in
the DIO messages it transmits, indirectly affecting the parent
selection mechanism as well as the link estimation and se-
lection processes. We note that using a Contiki node as root
did not change the results appreciably.

5.2 A Deeper Understanding with Simulation
To understand the causes underlying the results from the

previous section we move to the Contiki simulation environ-
ment. While Cooja provides multiple radio models, we use
a unit disk graph model with Bernoulli losses in which the
loss probability is proportional to the square of the node dis-
tance. The loss probability at the edge of the transmission
range is configurable and we use three different configura-
tions: one with no path loss; another with 50% loss at the
edge of the transmission range, resulting in an average link
PRR of 78%; and a third with 100% loss at the edge of the
transmission range, resulting in an average link PRR of 56%
among all the connected links in the network. We realize
that this loss model does not accurately capture the channel
loss behaviors seen in real-world environments. On the other
hand, we do not attempt to emulate reality with this model.
Instead, we use it to create the network dynamics (i.e., packet
transmissions, parent changes) necessary to examine the two
implementations’ behaviors.

Figure 2 shows a sample RPL DODAG for the 40 TelosB
mixed-implementation network simulated in Cooja. We
change the nodes’ positions between simulation runs, while
keeping the traffic pattern identical to the one used in Sec-
tion 5.1.

We first measure the PRR of mixed TinyOS and Contiki
networks. To do so, we vary the distribution of Contiki and
TinyOS nodes in 10-node increments. We test each node
configuration with a Contiki and a TinyOS root and run each
experiment ten times with different random seeds. We mea-
sure the end-to-end PRR and present the results in Figure 3.

Similar to the testbed results in Table 1, Figure 3 exhibits
a considerable decrease in PRR for mixed networks. This
agreement suggests that the performance degradation is not
an artifact of the wireless channel’s vagaries, but rather due
to an underlying interoperability issue.

We note that the results in Table 1 and Figure 3 were
gathered with the two implementations using their default
MAC-layer parameters and network queue sizes. Specifi-
cally, TinyOS nodes had a retransmission interval of 50 mil-
liseconds and a queue size of 10 packets, while Contiki nodes
had a queue size of four packets and the interval between
retransmissions was 128 milliseconds. One would then ex-
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mains high, while the performance of the mixed networks
is significantly lower. This effect is pronounced when link
losses are high.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

All
TinyOS

All
Contiki

A
v
e

ra
g

e
 Q

u
e

u
e

 O
c
c
u

p
a

n
c
y

Contiki
TinyOS

Figure 4. Average queue occupancy of Contiki and
TinyOS nodes in the lossiest link environment (avg. link
PRR=56%). Contiki and TinyOS nodes use their default
queue size and MAC-layer parameters.

pect Contiki to perform worse, given its smaller queue size.
Surprisingly, a homogeneous network of Contiki nodes per-
forms better than networks with mixed Contiki and TinyOS
nodes. This effect is even more prominent as the average link
quality decreases.

Figure 4 plots the average queue occupancy for Contiki
and TinyOS nodes in the lossiest simulation setup (i.e., aver-
age link PRR =56%). It is clear that Contiki has higher queue
occupancy than TinyOS when the two systems coexist. One
can then imply that Contiki nodes take longer to deplete their
queues due to their longer MAC-layer retransmission inter-
vals. Thus Contiki nodes are more likely to overflow their
queues when intermixed with TinyOS nodes.

Figure 5 plots the percentage of packets that are lost due
to queue drops. These results suggest that the majority of the
losses in Figure 3 are due to queue drops. Moreover, we note
that in all, other than the “All TinyOS”, configurations 100%
of the queue drops happened at the Contiki nodes. Notice
that most queue drops occurred when 25% of the network’s
node ran Contiki. The reason is that in such a configuration
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Figure 5. Percentage of packets lost due to queue drops
when running TinyOS and Contiki with their default
configurations (avg. link PRR=56%). The majority of
the losses seen in Figure 3 are due to queue drops. In
all cases, except for the “All TinyOS” case, 100% of the
queue drops happen at Contiki nodes.
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Figure 6. PRR results for lossy channel conditions (avg.
link PRR=56%), when both MAC layers use the same re-
transmission interval (50 ms), same number of retrans-
missions (10), but different queue sizes (Contiki = 4,
TinyOS = 10). The difference in queue sizes affects per-
formance significantly.

most of the children of a Contiki node will be TinyOS nodes
that aggressively retransmit their packets, leading to queue
overflows and packet drops. As the ratio of TinyOS nodes
decreases, Contiki nodes face less pressure in their queues
and PRR increases.

In conclusion, our findings suggest that different MAC-
layer retransmission intervals and message queue sizes
between the two implementations cause the performance
degradation in mixed networks.

Our results thus far imply that when considering the in-
teroperability of LLN IPv6 implementations one should not
focus at a single layer, such as routing, but on system-wide
interoperability. Would performance deteriorations, such as
the one we discovered, disappear by using the same stan-
dardized MAC protocol? While MAC protocols can spec-
ify values for retransmission intervals, queue size are typ-
ically implementation-specific, constrained by the hardware
resources available and affected by run-time aspects. In other
words, even fully compliant systems can have different net-
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Figure 7. PRR is consistently high across all configura-
tions when Contiki and TinyOS use the same values for
MAC-layer parameters and queue sizes.
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work queue sizes.
To evaluate the effect of queue size on performance, we

ran a simulation in which we configured Contiki and TinyOS
to have the same MAC-layer retransmission intervals (50
milliseconds) but different queue sizes (four packets for Con-
tiki and 10 for TinyOS). Figure 6 presents the PRR measure-
ments for this scenario, using the lossiest link setup. A sim-
ilar decrease in performance is evident in this case as well,
although slightly less pronounced than in Figure 3.

Next, we investigate the case when we configure Contiki
and TinyOS with the same MAC-layer retransmission (50
milliseconds) and queue size parameters (10 packets). Fig-
ure 7 presents the PRR results for low, medium, and high
quality links. We notice that for all link conditions, the PRR
performance is consistent, in contrast to Figures 3 and 6.
This result suggest that achieving high performance in inter-
operable systems requires going further than simply testing
standards compliance.
5.3 A Point of Comparison: Native Data

Collection Protocols
To provide a point of comparison for the performance re-

sults of the IPv6 implementations, we compare them to those
of the native Contiki and TinyOS data collection protocols,

the Contiki Collect protocol and the TinyOS Collection Tree
Protocol (CTP) [11]. Both Contiki Collect and TinyOS CTP
are state-of-the-art address-free data collection protocols that
provide a way for nodes to send data packets towards a data
sink. Nodes do not need to know the address of the sink:
the protocol takes responsibility for delivering the data to
the closest sink. Both TinyOS CTP and Contiki Collect
use ETX, finding paths that minimize the number of packet
transmissions to reach the root. Moreover, neither CTP nor
Contiki Collect are IPv6-based. CTP uses the TinyOS active
messages network stack [1] while Contiki Collect uses the
Contiki Rime stack [6].

At this point we wish to highlight that our comparison is
explicitly unfair: the native data collection protocols use reli-
ability mechanisms, such as extensive hop-by-hop recovery,
which are not part of the best-effort UDP protocols used in
our IPv6 experiments. Also, the native protocols use ETX-
based route selection techniques that are known to outper-
form the hop count-based mechanisms that the RPL imple-
mentations use. We thus expect the IPv6-based networks to
perform worse than the native data collection networks.
5.3.1 Packet Reception Ratio

Table 2 shows the daily, minimum, and maximum per-
hour PRR computed over three 24-hour runs in an indoor
testbed for TinyOS CTP, Contiki Collect, TinyOS IPv6 stack,
Contiki IPv6 stack, and a heterogeneous network consist-
ing of an equal number of IPv6-based TinyOS and Contiki
nodes. We see that on average, the daily performance of the
mixed IPv6 implementations are on par with CTP and Con-
tiki Collect.

As Table 2 suggests, the PRR performance of the IPv6-
based systems fluctuates more than that of CTP and Contiki
Collect. Using Figure 8, in which we plot the per-hour PRR
of TinyOS IPv6, Contiki IPv6 and the mix of the two imple-
mentations over 24 hours, we can see that the heterogeneity
of interoperable implementations does not affect the perfor-
mance of the network on a temporal scale. Instead, the re-
sults are due to differences in the protocols as such, not in
their implementation.
5.3.2 Overhead and End-to-end Efficiency

Knowing that the average PRR performance of interoper-
able IPv6 implementations is comparable with custom sen-
sor network data collection protocols, we set the next goal of
our evaluation to measure the overhead caused by operating
an interoperable network.

First, we examine the quality of the links that the different
protocols select in Figure 9. Specifically, Figure 9 plots the
average number of transmission attempts of the link to the
parent node that each implementation selects. The results
suggest that CTP selects paths with the lowest per-link trans-
mission attempts and the links that Contiki Collect selects
are the second best. In addition, we can notice that the links
selected by the three IPv6-based configurations are very sim-
ilar among themselves and not far for from CTP or Contiki
Collect.

We also measure the end-to-end efficiency of the packets
that reach the root. Figure 10 presents the average end-to-
end number of transmission attempts of the successfully re-
ceived packets and also present the average number of hops



Routing Protocol Avg. Daily PRR (Std. Dev.) Min. per-hour PRR Max. per-hour PRR ReTx Limit

TinyOS CTP 99.82% (0.11) 98.09% 100% 30

Contiki Collect 99.45% (0.12) 98.26% 100% 10

TinyOS IPv6 97.84% (1.06) 93.46% 100% 10

Contiki IPv6 98.01% (1.01) 92.79% 99.99% 10

TinyOS + Contiki (IPv6) 97.45% (1.20) 91.98% 100% 10

Table 2. Average daily packet reception ratio (PRR), minimum and maximum per-hour PRR computed over three 24-
hour runs in an indoor testbed for five different network configurations: TinyOS CTP, Contiki Collect, TinyOS IPv6,
Contiki IPv6, and a 50/50 mix of TinyOS and Contiki nodes. The Contiki IPv6 and TinyOS IPv6 nodes use the same
MAC-layer retransmission interval and queue length parameters. The PRR performance of the interoperable IPv6-
based configuration is comparable with TinyOS CTP and Contiki Collect, which are the state-of-the-art proprietary
routing protocols included with each operating system. The ∼2% difference in the average PRR performance is due to
the naive routing metric used by both RPL implementations (i.e., the hop-count based OF0).
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Figure 9. Number of transmission attempts of links se-
lected by TinyOS CTP, Contiki Collect, TinyOS IPv6,
Contiki IPv6, and a 50/50 mix of TinyOS IPv6 and Con-
tiki IPv6. Each bar represents the average number of
transmission attempts for links in the network and the
error bars indicate the maximum and minimum values
observed over three testbed runs. The overhead of uni-
form and mixed IPv6 configurations is on par with that
of state-of-the art proprietary routing protocols.

that these packets traveled. We can notice that the end-to-
end number of transmission attempts of Contiki Collect is
the most efficient. We attribute this to Contiki Collect incor-
porating an active probing scheme for precise link quality es-
timations. While the four-bit link estimator [10] that TinyOS
CTP uses relies only on beacon sequence numbers to esti-
mate ETX between nodes that do not exchange data pack-
ets, Contiki Collect sends explicit unicast probe messages to
the neighbors that lack link quality samples when computing
the ETX. This allows Contiki Collect to make more frequent
and accurate link quality measurements thereby promptly
discovering paths that can deliver packets with lower costs.
The price that IPv6-based implementations pay is tolerable.
Considering that the IPv6 implementations all use the OF0
objective function, which selects parents based hop count,
using an objective function, such as MRHOF, that effectively
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minimizes path costs can potentially improve PRR.

6 Interoperability Experiences
The analysis of the performance of IPv6 implementations

revealed that interoperability testing should be done at mul-
tiple layers of the protocol stack and that the performance of
the resulting system must also be evaluated. If testing stops
after interoperability is achieved, the performance of a net-
work with multiple implementations might suffer.

6.1 Leverage Simulation
Network-scale simulation is an invaluable tool for inter-

operability performance testing. Although simulators can-
not be expected to fully mimic the behavior of real wire-
less channels, they are effective in discovering the root
causes underlying performance degradations caused from
implementation-specific design choices. In this regard, our
findings motivate the need for techniques that go beyond ba-
sic interoperability testing. The development of tools that



quantify the expected performance of multiple “black-box”
implementations and protocols that maximize performance
by adjusting protocol parameters once a system is deployed
are research directions that can have large impact in practice.

6.2 Distinguishing Causes for Performance
Degradation

In our experience, both interoperability issues and proto-
col decisions cause performance deteriorations. For exam-
ple, we found that native collection protocols outperform the
standards-based interoperable IPv6 implementations. How-
ever, the reason in this case is that CTP and Contiki Collect
use a better link metric (ETX) than the one RPL used in our
tests (hop-count). Interestingly, we used the OF0 objective
function, even though both RPL implementations support the
ETX-based MRHOF objective function, because it simpli-
fied interoperability testing. Resolving the tension between
ease of interoperability and high performance is an interest-
ing avenue of research.

6.3 Intricate Interoperability Bugs
This paper extends our previous work on interoperabil-

ity testing of IPv6 implementations for LLNs [15] through
testbed experiments, a deeper analysis of the results, and a
quantitative comparison with CTP and Contiki Collect.

Our earlier work was based on preliminary RPL imple-
mentations that lacked support for route poisoning and path
validation. Including these components added a level of
complexity to the system: an intricate bug in the route poi-
soning code of one of the stacks would trigger a bug in the
other, causing a routing black hole. Packets were routed to-
wards a node that had no outward routes where they were
discarded. To find this bug, we studied a small set of sim-
ulation traces that exhibited the problem. The bug never
manifested itself in any of our extensive testbed experiments,
strengthening our belief in the utility of simulations in the
testing of interoperable systems.

We hope that this work will influence protocol de-
sign, protocol implementation, and interoperability test-
ing frameworks within organizations as the IETF, the
IPSO Alliance, as well as with software vendors that
implement these protocols. Both stacks are included
in the TinyOS and Contiki operating system repos-
itories, available from http://www.tinyos.net/ and
http://www.sics.se/contiki/ respectively.

7 Related Work
Interoperability has always been a cornerstone of proto-

col standardization within the IETF: only protocol specifica-
tions with interoperable implementations can become stan-
dards. Experience has shown that implementation aspects
have a significant impact on network performance. Paxson
showed that subtle differences in implementations of TCP,
the most widely used transport protocol on the Internet, have
a deep impact on network performance [17]. This finding
prompted work that subsequently resulted in the publication
of RFC2525 [18], outlining potential TCP interoperability
problems. Our aim with this work is to identify potential
interoperability issues in RPL and in this way increase the
stability and interoperability of future implementations.

In the sensor networking domain, mechanisms such as
network types [2] and architectures such as Chameleon [6]
can provide interoperability at the protocol header level, but
not at the protocol logic level. Our experience shows that
even when implementations interoperate at the protocol logic
level, implementation decisions at multiple layers affect the
performance of mixed networks.

8 Conclusions
As sensor networks move towards widespread industrial

adoption, interoperability is becoming increasingly impor-
tant. At the same time, the research community has largely
ignored this issue, instead focusing on custom and incom-
patible systems. In this paper we present two interopera-
ble implementations of the IPv6 protocol stack for LLNs for
two leading sensor network operating systems: Contiki and
TinyOS. We demonstrate that the two implementations in-
teroperate, but also show that interoperability is not enough.
Rather, we expose the fact that subtle differences in different
layers of the protocol stack can affect the resulting system
performance. Our findings imply that two systems that have
not been jointly tuned can have substandard performance.
Therefore, sensor network stacks should not only be tested
for interoperability, but also for their expected performance
in heterogeneous settings.

We envision this work as the initial step for further re-
search on interoperable and high-performance sensor net-
works that can be deployed at commercial scales. Such re-
search is important for the continued industrial and commer-
cial adoption of wireless sensor networks. Moreover, inter-
operability testing of wireless sensor networks should evolve
to test systems for performance as well as compatibility, as
is the practice for testing equipment for wired networks.
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