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Abstract

A method for solving probabilistic linear programming problems with exponential random variables is presented in
this paper. Assuming that either some or all of the parameters are exponential random variables a transformation is
presented to convert the probabilistic linear programming problem to a deterministic mathematical programming
problem. A non-linear programming algorithm can then be used to solve the resulting deterministic problem. © 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

Charnes and Cooper [1,2] first introduced chance constrained programming model which is also known
as probabilistic programming. They suggested three models that have different objective functions and
probabilistic types of constraints, a model that maximizes the expected value of the objective function (the
E-model), a model that minimizes the generalized mean square of the objective function (the V-model), and
a model that maximizes the probability of exceeding an aspiration level of the objective function (the P-
model). In the literature of the stochastic linear programming [3,4], various models have been suggested by
several researchers. A bibliography has been presented by Stancu-Minasian and Wets [5]. Most of the
probabilistic models assume normal distribution for model coefficients. Goicoechea and Duckstein [6]

* Corresponding author. E-mail: mpb@maths.iitkgp.ernet.in

0377-2217/98/$ 19.00 © 1998 Elsevier Science B.V. All rights reserved.
PIIS0377-2217(97)00319-6



590 M.P. Biswal et al. | European Journal of Operational Research 111 (1998) 589-597

presented some deterministic equivalents for some probabilistic programming with non-normal distribu-
tions.

In this paper we investigate a probabilistic linear programming problem with exponential random
variables. A mathematical model of a probabilistic linear programming problem can be presented as fol-
lows:

max: Z= chxj (1)
J=1

s.t. Prob(Za,-jijb,) =1 —oy, I= 1,2,...,1’1’!, (2)
J=1

20, j=1,2,...n 3)

where 0 < o; < 1 and is a given constant. It is assumed that a;; and ¢; are independent exponential random
variables with known distributions for i = 1,2,...,m and j = 1,2, ..., n. The results in this paper can be
readily extended to situations where b;’s are also exponential random variables [7]. Goicoechea et al. [§]
presented a probabilistic model involving only two independent exponential random parameters. The main
aim of the paper is to present a solution scheme for general probabilistic linear programming problems
involving independent exponential random variables in the probabilistic constraints. At first we find the
probability density function (p.d.f.) of the linear combination of n independent exponential random
variables. Then using the p.d.f., the probabilistic constraints are transformed to the deterministic con-
straints. The resulting equivalent non-linear deterministic model can be then solved by some suitable non-
linear programming solution scheme [9].

2. Probability distribution of Y; = Zlea,-jxj and the deterministic forms of the probabilistic constraints

In this section we present the p.d.f. of the random variable ¥; = Z?:I a;x;, where a;;, j =1,2,...,n, are
independent exponential random variables with known means and x;, j=1,2,...,n, are some scalar
quantities. Then we can use it to find a deterministic form of the probabilistic constraint in a probabilistic
linear programming problem. The density function of ¥; and the proof for general situations will be pre-
sented at the end of this section after we study the special cases with n =2 and n = 3.

We start by considering a mathematical model where only two random variables are involved. The ith
probabilistic constraint can be stated explicitly as

Prob(ailxl fapxor<b)=zl—o, i=12 ... m, (4)

where a;; and a; are the two independent exponential random variables with known means. The joint
probability density function of a;; and a;» can be stated as

JitApe” Ay ap > 0 5)

0, elsewhere,

ﬁ(ailyaiZ) = {

where E(a;1) =1/, and E(an) = 1/2n, Aa, A2 > 0. The cumulative density function (c.d.f.) of the random
variable Y; = a;;x| 4+ apx, can be computed as
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Yi/x2 (vi—anx2)/x
Gi(y) = / / Lt dpe @ =l dg. dap. (6)

ap=0  a;=0
After the integration the above integral can be simplified as

X ;Ll_267Yi;Lrl /x1 X iize*}’ii»iz/xz

G i) = 1+ _ _ e*y,iiz/xz _ ) 7
) Xolil — X1/ X22i1 — X1 ™
Differentiating both sides of (7) with respect to y; the p.d.f. of ¥; can be obtained as
Jil Ape it/ Jit e Yiti2 /72 . ]
gi(yi) = )lflizfz—xzifl ;ZJvil_xl;viz i if Yi > 0, (8)
0, elsewhere.

Hence the ith probabilistic constraint can be made a deterministic constraint by integrating the p.d.f. of ¥;
as stated below

bi

/gi(yi)dyi>1—06i7 i:1,2,...,m. (9)

This can be further simplified as follows (see [3]):

xle—biln /x1 xze_bi;tiZ/xz

)“il/li2|: <O(i7 i= 1,2,...,m. (10)

it(x1dip —x22i1)  An(x2din —x1dn)

We now consider a probabilistic constraint involving three random variables. The ith probabilistic
constraint involving three random variables can be presented as

3
Prob(Zaijxjéb,) >1—o;, i=12,....m, (11)
Jj=1

where a;1, ap and a;3 are three independent exponential random variables with known means. The joint
p.d.f. of a;1, a; and a;3 can be stated as

) —ajp i —apln—aili
AilAipAz€” TRt At ai,an, a3 >0,

(12)

0, elsewhere,

gi<ai1>ai2;ai3) = {

where E(a;1) = 1/ A1, E(an) = 1/Ap and E(a;) = 1/ A3, Ai, A, 43 > 0. The c.d.f. of the random variable
Y; = a;1x1 + apxs + aizxs can be computed as

Vi/xs (yi—aizxs)/x2(yi—ainx2—ainxs)/x
Gi (yi) — / / / /lil)»izflﬂeimm] —apAR—ai343 dai] dai2 daiS- (13)
a3=0  ap=0 aj=0

After integrating the above integral, the c.d.f. of ¥; can be obtained as
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X253 X223

Gi(y)=1- e VAn/xs 4 . e V¥ _ e Vit /X
i) X342 — X243 X3 — X233
x%}“izj‘i3 e—yx'ifz/xz _ x%)”iz;% e_/lil)’[/xl
(X241 — X122) (X341 — X133) (x24i1 — x1i2) (X341 — X1433)
n X1X24i i3 o—lanilx _ x1X24i2 3 e—rani/x (14)
(X241 — X122) (X342 — X2433) (x24it — x12) (X342 — X2/33)
Differentiating the c.d.f. with respect to y; the p.d.f. of ¥; can be obtained as
xle*iilyf/xl xze*iizy/‘/xz
&) = Antiliz - +—
i) = 2k (X142 = x22i1) (¥143 — x341)  (v2dit — X142) (X243 — X342)
X e*iizyi/xz )
S if y; > 0. (15)

+ .
(x34i1 — x1413) (¥342 — X2413)

Hence the ith probabilistic constraint can be converted to a deterministic constraint by integrating the p.d.f.
gi(») as follows:

bi
/glyl Ydyiz1l—o, i=1,2,....m. (16)
0

This can be simplified as follows:

x%efi”b'/xl x%efﬂ,ab /Xz

AitAindi + -
s {/1[1 (X142 = x22i1) (¥1d3 —x34i1) (x4 — x1dn) (X243 — x3422)

Zisbi/x3
x3e”

+ - - <o, 1=1,2,...,m. 17
Aiz(x3hin — x12:3) (¥342 — X223) (17

Finally, we generalize the result for n number of random variables by using mathematical induction.

Theorem 1. If a;;,j = 1,2,...,n, are independent exponential random variables with known means, then for
some scalars xj,j = 1,2,...,n, the probability density function of the random variable Y; = Z;;l a;jx; is given
by

n 20— Aikyi/ X

&) HA” [Z Hz 1 (ki —xlek)l von=0 {18

where E(a,»j) = 1/}4}',/1,']‘ > 0, j= 1,2,...,7’!

Proof. The method of induction is used to prove Theorem 1. For n =1, ¥; = a;;x;. If we set n =1 in
Eq. (18), then we find the p.d.f. of ¥; as:

.
giln) = e, >0, (19)

which is true for n = 1. Forn = 2, ¥; = a;1x1 + apx,. If we set n = 2 in Eq. (18), then we find the p.d.f. of ¥;
as
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Al A€ 1151 Jil e Yiti2 /X . '

g( ) = X14i2—X2 i1 + XAl —xX1pp if Yi > 07 (20)

i\Vi
0, elsewhere

which is also proven in Eq. (8). We further assume that the result is true for n =s, i.e., the p.d.f. of
Y= 2521 a;jx; is given by

S 20— Aikyi/xk

yl H/Llj [Z H‘ 1 xk) . —x;/lk)] if Yi > 0. (21)

Finally, it is necessary to prove that the result is true for n = s 4+ 1. This can be proved as follows: Let
Z”{ a;x; = a + a;511Xg41, Where the p.d.f. of a = Z‘;:l ajjx; and a; 4 are given by g(a) and f(a;1),
respectlvely as:

k@ /X

Hx,,[znuxkl[_wk)} if a>0, (22)

Jigrie s 14541 , Ajst1 > O’
Flagaen) = § o :
0, elsewhere.

The c.d.f. of the random variable ¥; = a + a; s, 1x511 1s given by:

Vil Xgr1 Vi Gisi1Xs11

Gil) = / / 2(a) f(ars1) dadass. (24)

ajg41=0  a=0

or
yi/x.v-l Vi—Qis+1X5+1 stl N s x[vc—2e—/1,'ka/xk
G: Vi) = / / H} e distllistl w Z ‘ dada; 1 25
z( 1) . . s ) o H;:j(xkii/ _ xliik) i,5+ ( )
Ais+1= a=
or
G Wil s+1) s xli_l (e—li,ﬁlai.ﬁl — exp{ Jikdi i1 (xk;vw#rlx;xwrl/lik)} | o6
Vi) = H ajs+1
o = Y Lik Hﬁk{(xk/tiz — X14ik) o
i,s+
or
s+1 s —1(1 _ a—lise1Vi/Xst1 —ikdi) Xk _ a—list1Vi/Xs41
, x (1 — e tosravilr X (€77 e
J=1 =1 ik i s+1 5;16 kil ik Lik ;;llc kil 1k

Differentiating G;(y;) with respect to y; the p.d.f. of the ¥; can be obtained as
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s+1 s+1 x]ycflefi,ky,-/xk

gi(y) = H/lij Z —
=1k

=1

: A if 3> 0. (28)
o (xkAir — X1k

This completes the proof. [

As a special case if we assume Y; = ;1 + ap, where a;; and a are the two independent exponential
random variables with E(a;;) = E(a;n) = 1/4;, then the random variable ¥; can be proven to follow a
gamma distribution. If we set 1;; = 4» = 4; in Eq. (8) we find

lie_yl/lf/xl /’Lie_yz)fi/xl
gi(v) =

X1 — X2 X2 — X1

Ai Yidi )’-2)v2 Yili )’2/1'2
() = 1 — (I N i 30
&) xlxz{< X1 +2!x% X2 +2!x§ (30)

2 2
My i —x) pkid —x)) AN —x3)
5 T 3.3 U
x| —X2) X1X2 21xix3 3lxix;

or

or

gi) = ( (31)

After cancelling (x; — x;) from the numerator and denominator and setting x; = x, = 1 we find the p.d.f. of
Yi =an +ap as:

A 2.2
AiYi i,‘y,‘
gi(yf):ifyi<1— TR —) yi >0, (32)
or

() = Zye ™ 3> 0. (33)

Now it is clear that ¥; = a;; + a;» follows gamma distribution.
For general case the mean and the variance of the random variable ¥; can be obtained by using the
properties of the independent random variables as

E(Yl) = zn:xj/ﬂvij, (34)
j=1
Var(¥;) = Zn:xj%/;fj. (3%)
j=1

Using the p.d.f. of ¥; as stated in Eq. (18) again the mean and the variance of ¥; can be computed as given in
Egs. (34) and (35), respectively.

Finally, for the general case a deterministic constraint can be obtained by integrating the p.d.f. of ¥; as
stated below
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bi
/gi(yi)dJ/fZI—oci, i=1.2,...m. (36)
0
The above integral can be simplified as follows:
—Likbi [xk
; <o, i=1,2,....m. 37
HA’ [th [T (oedir = xi2) S " (37)

3. Deterministic model of the probabilistic linear programming problem

If we assume a;;, and c¢; are independent exponential random variables with known distributions, then
the probabilistic linear programming model as stated in Eqgs. (1)—(3) can be transformed to a deterministic
non-linear programming problem as

= Elejlx; (38)
Jj=1
n n xn— 1 e—)v,;th,/xk
s.t. i "k <oy, i=1,2,...,m, 39
11:[1 / kz:; Aik Hz’;i (.Xk)ui[ - x;i,-k) ( )
xj?O7 j:1,2,...,l’l. (40)

In this section one numerical example is presented to illustrate the methodology.

Example 1.
max: Z = cix1 + caxy + ¢3x3 (41)
s.t  Prob(ajix; + ajpxs + a;3x3; <10) = 0.95, (42)
Prob(azixi + axnxs + axx3 <20) > 0.90, (43)
X1,%x2,x3 = 0. (44)

In the above numerical example a;; and c; are independent exponential random variables with known
means

E(a”) =5, E(alz) =4, E(a13) =38, E(azl) =10, E(azz) =2, E(azg) =20,

E(c1) =5, E(c)=6, E(c3)=3, b1 =10, by=20, o5 =005 o =0.10.
The deterministic model can be obtained using Eqs. (38)—(40) as

max: E[Z] = 5x; + 6xp + 3x3 (45)



596 M.P. Biswal et al. | European Journal of Operational Research 111 (1998) 589-597

0.03125x%e‘2/x1 N 0.025x%e‘2‘5/x2
(0.25x1 — 0.2x2)(0.125x; — 0.2x3) = (0.2x2 — 0.25x7)(0.125x, — 0.25x3)

s.t.

0.05x3e 125/
0.2x3 — 0.125x1)(0.25x3 — 0.125x;)

+ <0.05, (46)

0.025x2¢ 2/ N 0.005x2¢ 10/
(0.5)61 — O.Ixz)(0.0le — O.1X3) (0.1)62 — O.le)(0.0sz — 0.5)63)

N 0.05x%e~1/%
(0.1x3 — 0.05x1)(0.5x3 — 0.05x3)

<0.10, (47)

X1,X2,X3 > 0. (48)

The above deterministic problem is solved by using GINO package [9] and the optimal solution is obtained
as

x1 =0.001177, x, =0.346094, x; =0.000010, and £E[Z] = 2.082476.

4. Conclusions

In this paper we have established the p.d.f. of the random variable ¥; = 3°"_; a;;x;, where a;; are inde-
pendent exponential random variables with known means. Then using the derived p.d.f. a probabilistic
linear programming problem can be transformed into a deterministic non-linear programming problem.
The result in this paper has generalized the existing literature to cases with n independent exponential
random variables. If there are multiple objective functions present in the probabilistic model, some ex-
tensions can be easily done by using the deterministic model. To solve the multi-objective deterministic
problem we may use either non-inferior solution methodology [10] or fuzzy programming approach [11,12].
We may apply the fuzzy programming approach to obtain the optimal compromise solution. If the pa-
rameter b; is the only exponential random variable in a probabilistic constraint, by integrating the prob-
ability density function of b; the deterministic model can be obtained for a probabilistic linear programming
problem [7]. For situations where all the a;; and b; are exponential random variables in a probabilistic
constraint with known means, then the p.d.f. of ¥; = Z?:l a;ix; — b; need to be obtained and the deter-
ministic model need to be established.
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