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a b s t r a c t

As a result of the growing demand for health services, China's large city hospitals have become markedly
overstretched, resulting in delicate and complex operating room scheduling problems. While the oper-
ating rooms are struggling to meet demand, they face idle times because of (human) resources being
pulled away for other urgent demands, and cancellations for economic and health reasons. In this re-
search we analyze the resulting stochastic operating room scheduling problems, and the improvements
attainable by scheduled cancellations to accommodate the large demand while avoiding the negative
consequences of excessive overtime work. We present a three-stage recourse model which formalizes
the scheduled cancellations and is anticipative to further uncertainty. We develop a solution method for
this three-stage model which relies on the sample average approximation and the L-shaped method. The
method exploits the structure of optimal solutions to speed up the optimization. Scheduled cancellations
can significantly and substantially improve the operating room schedule when the costs of cancellations
are close to the costs of overtime work. Moreover, the proposed methods illustrate how the adverse
impact of cancellations (by patients) for economic and health reasons can be largely controlled. The
(human) resource unavailability however is shown to cause a more than proportional loss of solution
value for the surgery scheduling problems occurring in China's large city hospitals, even when applying
the proposed solution techniques, and requires different management measures.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the first decade of the present millennium, China's GDP has
grown at an average rate of more than 10% [35]. These economic
developments have gone hand in hand with social and demo-
graphic developments. The urban population grew from 452 mil-
lion to 721 million [45], the public transportation system improved
considerably, and health insurance coverage grew from below 30%
around the turn of the millennium to over 95% in 2011 [34]. These
changes have driven an enormous growth in demand for health
services, and in health expenditures of which 71% are accounted
for by hospitals [2]. As a result of these developments, particularly
the demand for services at the large (level 3) hospitals in big cities
increased [38]. Despite a tenfold growth in government spending
on health [28] and a growth in the number of hospitals by more
than 40% since the year 2000 [36], the increase in health service
Ltd. This is an open access article u

.edu.cn (M. Dong),
capacity has not been able to cope with the rising demand. The
level 3 hospitals in big cities have become markedly overstretched
[41]. These phenomena are concretely illustrated by the 2013 data
provided for the purpose of the analysis presented in this manu-
script by Shanghai General Hospital, where the actual average
surgical workload exceeded the daily capacity by as much as 20%,
and average operating room opening hours are almost 14 h daily.

Because a referral system is lacking, an important part of the
increased demand directly reaches the hospitals in the form of
ever higher numbers of outpatients, which tend to pull away
physicians and other staff from wards and operating rooms. The
number of outpatient visits to hospitals has grown from 2.12 bil-
lion per year to 3.45 billion per year in the first decade of the new
millennium [29]. The increase in outpatient services may cause
physicians to be late for operating room shifts or to be called away
during operating room shifts, causing idle time at the operating
room. (From the complete operating room data for the year 2013,
we estimate that idle time at Shanghai General Hospital is around
17%.) In the same decade, the number of inpatient visits in China
has more than doubled from 53 million to 133 million annually.
Meara et al. [33] recently conservatively estimated the annually
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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needed number of surgeries in China at 57 million, of which they
considered 27 million to be unmet. The already overstretched
operating rooms are therefore likely to face considerable further
increases in demand in the coming years. Hence Chinese hospitals
face severe operational problems, now and in the coming years.

Our aim is to develop scheduling methods to solve the urgent
capacity management problems in China's large city hospitals –

which form a priority in the current health system reform – and
see how their effectiveness interacts with accompanying opera-
tions management measures. As we outline more extensively in
the literature review in the next section, current losses of scarce
capacity are mostly not due to poor scheduling, but to other causes
such as unavailability of scarce (human) resources, and cancella-
tions of planned surgeries. Scheduled surgeries may be canceled
for a variety of reasons which are beyond the locus of control of
operating room management, such as no-show, deteriorating
health conditions, and hospital logistics. In anticipation of such
exogenous cancellations, operating room management may choose
to schedule more patients than capacity allows, potentially re-
sulting in capacity problems when cancellations are fewer than
expected, or surgeries take longer than expected. The schedulers
may subsequently solve the capacity problems by cancelling one
or more of the final patients for which surgery was scheduled at
the end of the day. Such cancellations may cause dissatisfaction,
anxiety and loss of health for the patients, and have led to tense
relations between patients and staff. The alternative to further
extend overtime hours, on the other hand, is associated with in-
creased risks of complications and medical errors, as well as dis-
satisfaction among scarce staff ([39] and references therein). The
scheduling of operating rooms in the overstretched Chinese hos-
pitals is therefore a stochastic balancing act which is complicated
by resource unavailability and exogenous cancellations.

Operating room schedules are typically constructed one or
several days in advance. Because of the stochastic nature of sur-
gical services and the related health service processes, schedules
are subsequently often adjusted as the day progresses. For oper-
ating rooms for elective surgeries, such adjustments are primarily
constrained to changes in surgery start times and, when needed,
to cancellations of one or more surgeries of the final patients of
the day. It is preferable to take such scheduling decisions to cancel
one or more of the final patients early, so as to limit the negative
effects for patients and staff mentioned above. In practice, such
cancellations may also take the form of redirecting patients to
another hospital.

The first research objective is now to optimize the operating
room schedules. This starts with the optimization of the schedules
created one or more days in advance per single elective operating
room, henceforth referred to as the first stage problem. Secondly,
we consider the optimization of early scheduled cancellations,
cancellations initiated by the operating room schedulers after an
initial part of the daily schedule has been completed (see for in-
stance [39]), referred to as the second stage problem. In particular,
we analyze the improvements attainable by introducing a two
stage approach (in which the first stage solution takes into account
that a second stage follows) over the common practice of a single
stage approach which disregards cancellation until the end of the
day. The objective will be to balance the benefits from performing
surgeries with the costs of overtime work and negative effects of
scheduled cancellations. Our modelling of overtime costs reflects
the empirical findings that overtime work is increasingly un-
desirable for patients and staff as the duration lengthens. More-
over, we model resource unavailability and exogenous cancella-
tions as independent stochastic processes and consider surgical
durations to be stochastic as well, fitting real life data. As we are
interested in the performance improvement possible by adopting
a two stage approach, we develop solution methods which solve
the problem with and without scheduled cancellations (almost) to
optimality. (See Fig. 1 in Section 3.1 for a visualization of the multi-
stage model.)

With these solution methods at hand, the second research
objective is then to analyze the extent to which scheduling can
overcome the difficulties posed by stochastic resource un-
availabilities and exogenous cancellations or, alternatively, whe-
ther additional operations management measures are required for
this purpose. This second research objective is particularly re-
levant as the literature review below shows that resource un-
availability and exogenous cancellations are, to a certain extent,
under the control of hospital management. Hence, our results
provide insight in how operating room scheduling and hospital
management can interact to alleviate China's hospital over-
crowding problems.

Section 2 reviews related literature on (surgical) scheduling
with cancellations as well as literature on the occurrence and
causes of surgical cancellation. Section 3 formally defines the
problem and formulates it as a general three-stage model with
integer recourse. Section 4 analyzes theoretical model properties
which can help to reduce solution times. Section 5 proposes spe-
cific solution algorithms for the problem, and finally Section 6
presents numerical results and analysis. The numerical analysis
tests the newly developed 3-stage stochastic programming ap-
proach by (almost) optimally solving instances derived from 2013
operating room data of Shanghai General Hospital. To this purpose,
we fit distributions to the underlying stochastic processes using a
complete data set on surgical operations. QQ-plots show that log-
normal distributions fit these surgical durations well, and the
proposed SAA approach is able to deal with these analytically in-
convenient distributions. The computational results provide in-
sight in the benefits attainable by scheduled cancellations for
current rates of resource unavailability and exogenous cancella-
tions. Moreover, we consider scenarios in which additional mea-
sures are taken to reduce resource unavailability and exogenous
cancellations. We conclude by considering practical implications
for operating room management and scheduling in China's over-
crowded hospitals.

 

 

2. Literature review

The phenomena of cancellation, no-show and overbooking
have been studied extensively in the operations management lit-
erature, mostly originating from revenue management applica-
tions in the airline industry [42]. In this setting, no-show refers to
passengers not showing up for a flight without giving prior notice,
and cancellation to passengers cancelling their booked flights in
advance (which is different from the definitions for cancellations
provided above). Like it is the case in the surgical scheduling
problem we consider, revenue management models typically ex-
ploit the expected benefits from overbooking capacity, taking into
account that penalties must be paid when the eventual number of
patients showing up exceeds capacity. For instance Subramanian
et al. [40] consider an application which includes no-show, can-
cellation and overbooking. While the revenue management pro-
blems considered in the airline and hotel industry are essentially
different from surgical scheduling, they share general properties
and solution approaches. For instance, Karaesmen and Van Ryzin
[20] present a two-stage stochastic program to model no-show
and overbooking, where cancellations have become known in the
second stage (as is partially the case in our model). Lai and Ng [25]
propose a stochastic network optimization model for hotel rev-
enue management and use robust optimization techniques to deal
with cancellations, no-show and over-booking of hotel guests.
Overbooking has also been introduced in health care, first and 
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foremost in appointment scheduling for outpatients. For instance
LaGanga and Lawrence [24] and Berg et al. [4] use overbooking to
hedge against patient no-show and present simulation results
showing a significant improvement in access and provider pro-
ductivity, while increasing both patient wait times and provider
overtime.

With regard to surgery scheduling, May et al. [32] conclude
from a literature review that ‘it remains to be seen if the existing
results and observations regarding manufacturing replanning and
rescheduling would extend to surgery’ (where rescheduling refers
to the possibility to adjust the initial schedule during execution).
Much of the literature on surgical scheduling optimizes the se-
quence and schedule for a fixed pool of patients while taking the
stochastic nature of several problem parameters, especially sur-
gery duration, into account. Mancilla and Storer [31], Denton et al.
[12] and Berg et al. [4] simultaneously consider patient waiting
time, resource idle time, and overtime. Xiao et al. [47] propose an
adaptive scheduling approach for a problem that is closely related
to the one considered in this paper, yet without considering can-
cellation. Stepaniak et al. [39] present a simulation study on can-
cellation, which they refer to as ‘patient rejection’. Formal sche-
duling models which explicitly include cancellation, as is parti-
cularly relevant for overcrowded hospitals, appear to have re-
ceived little or no attention in operating room scheduling so far.

The scheduling process we adopt matches a multiple stage
stochastic programming approach. Standard two-stage stochastic
programs with linear or convex functions are often solved using
the L-shaped method or Bender's decomposition [44,6,7]. How-
ever, our recourse decision (scheduled cancellations) is still an-
ticipative to further uncertainty, namely the second shift surgery
durations, unavailability and cancellations. As such, the decision
problem can be viewed as a three-stage recourse model [5,6].
Solving the scheduling problem is further complicated because the
recourse function is integer. Laporte and Louveaux [26] propose
modified L-shaped decomposition with adjusted optimal cuts for
two stage stochastic program with integer recourse. Angulo et al.
[1] alternately generate optimal cuts of the linear sub-problem and
the integer sub-problem, which improves the practical con-
vergence (see also [15,8]). We follow a sample average approx-
imation approach (SAA) which uses this framework. Moreover, we
prove and exploit a specific relationship between the first-stage
realization and the optimal number of scheduled cancellations to
speed up the computation of integer cuts. We use Jensen's in-
equality [17] to upper bound the minus second (and third) stage
cost, a technique that was proposed by Batun et al. [3].

We now review studies on the occurrence and cause of surgery
cancellations. Cancellation of surgery is a common phenomenon
globally and appears to be more frequent in developing counties.
For instance, Kumar and Gandhi [23] (India) report that 17.6% of
scheduled surgeries are canceled on the day of surgery. Several
authors, e.g., Kumar and Gandhi [23], Kolawole and Bolaji [22]
(Nigeria), Chiu et al. [10] (China), Chalya et al. [9] (Tanzania),
analyze causes of cancellation, citing variations and prolonged
durations of previous surgeries as a prime source. A Daily Briefing
[11] report discusses a case study in the USA in which 6.7% of
scheduled surgeries in 2009 are canceled, one-third of which was
due to hospital related causes, such as poor scheduling. In addi-
tion, Yoon et al. [49] (Korea), Hussain and Khan [16] (Pakistan),
Perroca et al. [37] (Brazil) and Fernando et al. [14] (UK) explore
cancellations. The latter authors point at the management role to
address the inefficiencies that cancellations may cause. The Lancet
Commission on Global Surgery posits that management might be
even more important in settings in which maximal use of the few
available resources is a practical necessity to advance on meeting
the unmet global need of 143 million surgeries yearly [33].

Various authors report cancellation rates of between 10% and
15% for Chinese hospitals. Jiang et al. [18] report that 12.88% of
children's elective surgeries are canceled in Hunan children's
hospital in 2010 due to emergent infection (70.30%), inappropriate
preoperative preparation (15.12%), poor scheduling and other
factors (14.58%). Jie et al. [19] take a statistical analysis on
Guangdong General Hospital, which is a large general hospital, and
show that the cancellation rate is at 11.2%. Causes for cancellations
are patients' illnesses (65.97%), lack of preoperative preparations
(14.03%), economic reasons and risk concerns (10.99%), and acci-
dents (9.01%). (Economic reasons refer to the patients inability to
pay.) Li et al. [27] study cancellation at Zunyi Medical College, and
report as main causes of cancellation: upper respiratory tract in-
fection (18.39%), high blood pressure (12.86%), lack of preoperative
preparation (11.79%), and economic concerns (9.64%). Xiang et al.
[46] report a cancellation rate of 5.1% caused by recent changes in
health conditions (55.8%), patients' determination changes (23.1%),
and poor scheduling. Zhang et al. [50] report a 2010 case study and
find that the cancellation rate is 13.9%, due to illnesses (68.7%),
exogenous cancellations (20.3%), and preoperative preparations
(7.7%). The reader may refer to Xu et al. [48] for related work. Next
to scheduling related reasons, several of these authors mention
the length of schedules and workload as reasons for scheduled
cancellations.

Briefly reflecting on these causes of cancellations, we notice
that they are mostly attributed to emergent infection, illness, re-
cent changes in health condition and the like. It is not uncommon
that these conditions relate to hospital acquired infections, which
are preventable. Procedures for hospitalization and infection pre-
vention may reduce the prevalence of these cancellations. Another
important source of cancellation stems from the high out-of-
pocket (co-)payments patients have difficulty to effectuate. Im-
provements in health insurance coverage, as currently in pro-
gression, may reduce the number of these economically driven
cancellations. In our computational experiments we explore sce-
narios in which exogenous cancellations are less frequent.

 

 

3. The model

3.1. Problem description and notation

For the single operating room scheduling problem under con-
sideration, we denote by t̂ the regular working time. For example,
in Shanghai General Hospital, t̂ equals 570 min (9.5 h). An initial
schedule is made at least one day ahead. This initial schedule
specifies a sequence for the patients and expected starting times of
their surgeries. The patients to be scheduled are selected from a
given set = { … }I n1, 2, , p . The reward of performing surgery on
patient ∈i I equals ri. This reward can be interpreted strictly fi-
nancially, in which case it corresponds to the associated hospital
revenue [13], or can be defined more broadly to incorporate for
instance also the benefits for the patients (see also [47]). Notice
that in the latter case, the corresponding values may not be readily
available from hospital information systems. Scheduled cancella-
tion of surgery for patient ∈i I leads to a penalty of ci, which can in
turn be a financial penalty incurred by the insurer, including
wasted pre-operative costs, and more generally including patient
inconveniences and losses of health.

Each patient ∈i I has an associated surgical time distribution,
which will be denoted by ξ′i . We assume that the surgery times for
different patients are independent. We also include a probability
of exogenous cancellation, which will be denoted by pi for all ∈i I .
There are no rewards for exogenously canceled surgeries and they
do not take time except for a constant td switching time. For each
patient ∈i I , selecting patient i thus consumes ξ′i time units of 
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Fig. 1. A chart showing the flow of the patients in the various decision stages in our
scheduling problem.
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operating theater capacity with probability − p1 i, and td time units
of capacity with probability pi. We let ξi represent this compound
random variable which equals ξ′i with probability − p1 i and td with
probability pi.

In many practical contexts, a number of patients may have the
same characteristics (from the perspective of scheduling), because
they have to undergo the same procedure. To accommodate this, if
for patients i and ′i we have that = ′r ri i , = ′c ci i , = ′p pi i , and that ξ′i
and ξ′′i are identically distributed, then we will say that patients i
and ′i belong to the same surgery class. This will be denoted by

∼ ′i i . Let it be noted however that ξ′i and ξ′′i will still be in-
dependent. More explicitly, while patients may share character-
istics, the surgery time distributions ξ′i and ξ′′i of each pair of pa-
tients i and ′i are independent, even if ξ′i and ξ′′i are identically
distributed.

As outlined in the introduction, unavailability of surgical re-
sources (staff and/or facilities) is another important source of
uncertainty which reduces the effective time available for surgery
in the operating room. We thus introduce η1 and η2, which re-
present the total length of such interruptions in the first and
second shift, respectively.

In practice, decision making regarding scheduled cancellations
may for instance take place daily at a fixed moment in time (see
e.g. [39] for example set this moment at 2 PM). We adopt a dif-
ferent approach, which guarantees a first shift of patients that
their surgeries will be scheduled, and allows to inform a second
shift of scheduled patients that they will either receive final con-
firmation or notification of cancellation after the first shift is
completed. We consider this approach to be more patient centered
as it eliminates uncertainty for the first shift patients and provides
clarity to all others after this first shift has been completed. To this
purpose, we set the moment of decision making on scheduled
cancellations upon completion of half of the scheduled patients
(rounded down in case of an odd number of patients). The time of
completion of the first shift therefore forms the recourse moment
in the proposed multi-stage stochastic programming approach.
The second stage thus entails to decide on possible scheduled
cancellations of surgeries for patients scheduled in the second
shift. After this recourse moment, the second shift surgery dura-
tions are revealed and final costs are incurred, making the problem
a three-stage recourse model [6].

Following current practice, we assume that scheduled cancel-
lations always regard the last patients in the sequence implied by
the surgical schedule, working backwards through the sequence if
more than one scheduled patient is canceled. To model the
scheduled cancellations we introduce positions. All patients
scheduled in the first shift are considered to be in position j¼0,
because their order is inconsequential from the viewpoint of our
model. For the second shift, we introduce positions κ∈ { … }j 1, , ,
that are to be filled sequentially, starting from position 1. We later
comment on how to set κ. The set of all positions will be denoted
by κ{ … }0, 1, , ; this includes the first and second shifts.

We introduce binary decision variables xij, κ∈ ∈ { … }i I j, 0, 1, , ,
where xij equals 1 if patient i is scheduled in the jth position, and
0 otherwise. For convenience, let κ= { | ∈ ∈ { … }}x i I jx , 0, 1, ,ij . By

interpretation, ∑ = xi
n

i1 0
p represents the number of patients sched-

uled for the first shift. Second shift slots κ∈ { … }j 1, , may contain
at most a single patient. To balance the patient numbers between
the shifts as described above, we use the restriction
∑ = ⌊ ∑ ∑ ⌋κ

= = =x x /2i
n

i i
n

j ij1 0 1 0
p p , where ⌊ ⌋x is the largest integer no

greater than x. We thus need no more than ⌊ ⌋ +n /2 1p second shift
positions, and may set κ = ⌊ ⌋ +n /2 1p accordingly.

To specify the three-stage recourse model with (integer) re-
course, we create i.i.d. copies si of each random variable ξi, which
will represent the surgery times in the first shift. Variables si and
ξi follow the same distribution but are independent. We then
denote the first shift of the schedule by η= ( … )s s ss , , , ,n1 2 1p

, and

the second shift by ξ ξ ξ η= ( … ), , ,n1 2p
. We set the rewards for pa-

tients corresponding to exogenous cancellations to zero. Thus,
reward loss due to exogenous cancellations can be modeled as
∑ ( )= I s rxi

n
i i i1 0 0

p , and the indicator function ( ) =I s 1i0 if si¼td, and
0 otherwise. Next consider the binary decision variables ( )y sij ,

κ∈ ∈ { … }i I j, 1, , , which depend on the outcome of s. We let
( ) =y s 1ij if treatment of patient i in slot j is canceled under sce-

nario s, and ( ) =y s 0ij otherwise. For convenience, let

κ= { | ∈ ∈ { … }}y i I jy , 1, ,ij . Scheduled cancellation of patient i re-

sults in a penalty ′ri . Moreover, scheduled cancellations require
zero time. The total amount of time that schedule ( )x y, takes is

therefore η ξ η∑ + + ∑ ∑ [ − ( )] +κ
= = =s x x y si

n
i i i

n
j ij ij i1 0 1 1 1 2

p p . The loss of

reward in the second stage due to exogenous cancellation is
ξ∑ ∑ [ − ( )] ( )κ

= = x y rIsi
n

j ij ij i i1 1 0
p .
We assume that overtime work incurs a cost, which may in-

clude financial costs such as salary, employee dissatisfaction, and
patient safety risks, which increase with the duration of overtime
(see also Section 1). We therefore model the overtime cost func-
tion to be piecewise linear and convex, as illustrated in the ex-
ample in Fig. 2. In the example overtime starts after 570 min and
overtime cost per time unit becomes more expensive per time unit
after 120 min of overtime.



Fig. 2. Piecewise linear and convex function D(t). Penalty cost D(t) as a function of
working time t as illustrated for ( )t0 .
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3.2. Stochastic programming formulation

We now formulate the scheduling problem as a stochastic
program with recourse. For ease of reference, we repeat that

η= ( … )s s ss , , , ,n1 2 1p
and ξ ξ ξ η= ( … ), , ,n1 2p

are the random variables

pertaining to the first and second shift, respectively. Note that the
recourse decision (scheduled cancellations) must be made after s
is revealed, but based on distributional information on ξ alone. We
obtain the following formulation:

∑ ∑ · − ( )
( )

κ

∈ = =

r x E Q x smax ,
1X i

n

j
i ij

x
s

1 0

p

where

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

η ξ η

ξ

( ) = ( ) + ( )

+ [ + + [ − ( )] +

+ ( ) [ − ( )]]
( )

ξ

κ

κ

κ

= ( )∈ ( ) = =

= = =

= =

Q I s rx c y

E D s x x y

I r x y

x s s

s

s

, min

.
2

i

n

i i i
Y i

n

j
i ij

i

n

i i
i

n

j
ij ij i

i

n

j
i i ij ij

y s x1
0 0

1 1

1
0 1

1 1
2

1 1
0

p p

p p

p

X and ( )Y x will be detailed below: They represent the feasible
domain for the first and second stage decisions, respectively. In
particular, we have

∑

= { ( )–( )}

≤
( )=

X

x

x 3 8

1
3i

n

i
1

1

p

∑ ∑ κ− ≤ ∀ ∈ { … − }
( )=

+
=

x x j0, 1, , 1
4i

n

ij
i

n

ij
1

1
1

p p

∑ ∑ ∑≤ − ≤
( )

κ

= = =

x x0 1
5i

n

j
ij

i

n

i
1 1 1

0

p p
∑ ≤ ∀ ∈
( )

κ

=

x i I1,
6j

ij
0

∑ κ≤ ∀ ′ ∈ ∼ ′ < ′ ∈ { … − }
( )

+
=

′x x i i I i i i i j, , : , , 0, , 1
7

ij
k

j

i k1
1

κ∈ { } ∀ ∈ ∈ { … } ( )x i I j0, 1 , , 0, , 8ij

Combining (3) and (4) ensures that second shift positions
κ∈ { … }j 1, , are filled sequentially, and with at most a single pa-

tient. The workload is balanced by (5), which ensures that the
number of patients scheduled in the first shift is equal to the
number of patients in the second shift, or one less. Each patient is
scheduled at most once by (6). While (7) is not necessary, it greatly
reduces the search space by reducing symmetry.

The feasible domain for the second stage decisions depends on
the first stage decision x , and is given by:

∑ ∑ κ

( ) = { |( )–( )}

− ≤ − ∀ ′ ∈ ∀ ∈ { … − }
( )

′
=

+
=

+

Y

y y x i I j

x y 9 11

1 , , 1, , 1
9

i j
i

n

ij
i

n

ij
1

1
1

1

p p

κ≤ ∀ ∈ ∈ { … } ( )y x i I j, , 1, , 10ij ij

κ∈ { } ∀ ∈ ∈ { … } ( )y i I j0, 1 , , 1, , 11ij

We may not cancel a patient in a position unless all patients with
higher position are also canceled, which is enforced by (9). Indeed,
if a patient is scheduled in position +j 1, then ∑ == +x 1i

n
ij1 1

p , and
(9) enforces that a treatment at position j can only be canceled if a
treatment at position +j 1 is canceled as well. If no patient is
scheduled at position +j 1, then ∑ == +x 0i

n
ij1 1

p , and we are free to
cancel the treatment at position j. Only patients who are actually
scheduled may be canceled, which is enforced by (10).

For later convenience, define X̄ and Ȳ as the continuous relaxation
of X and Y , respectively. Hence, ¯ = { (( )–( )) + ( )}X x 3 7 12 , with

κ∈ [ ] ∀ ∈ ∈ { … } ( )x i I j0, 1 , , 0, , 12ij

and ¯ ( ) = { (( )–( )) + ( )}Y x y 9 10 13 , with

κ∈ [ ] ∀ ∈ ∈ { … } ( )y i I j0, 1 , , 1, , 13ij

3.3. A different formulation of the second-stage problem

For any first stage solution x , let = ∑ ∑κ
= =k xi

n
j ijmax 1 1

p . We now
present an equivalent formulation of the second stage problem

( )Q x s, :
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(where ∑ ≔= 0j
k

1
s when =k 0s ). Clearly, the decision variable ks,

which appears as a summation index, makes this formulation
non-standard and less suitable for computational purposes. The
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formulation nevertheless allows to deduce some structural
properties.

Lemma 1. The second stage decision problems ( )Q x s, and ˜ ( )Q x s,
are equivalent for any ∈ Xx and realization of s.

All proofs of lemmas and propositions are provided in Appendix A.
This lemma yields the following equivalent formulation of (1),
which will be analyzed in the next section:

∑ ∑ · − ˜ ( )
( )

κ

∈ = =

r x E Q x smax ,
15X i

n

j
i ij

x
s

1 0

p

4. Analytical Insights

4.1. Structural properties of the second stage problem

In this section we develop a relation between the capacity used
by the first shift and the cancellations in the second shift for a
fixed schedule ∈ Xx . Firstly, we introduce some notations:

∑ η^ = +
( )=

s x s
16i

n

i i
1

0 1

p

∑( ) = ( )
( )=

R I s rxs
17i

n

i i i
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0 0

p
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⎢⎢
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^
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i ij
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i i ij
1 1 1 1
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1 1

0

(^) = (^ )
( )≤ ≤

^
^

f s g s kmin ,
19k k

s
0 s max

* = [ (^ )]
( )^

≤ ≤
^

^
k g s kmax arg min ,

20s k k
s

0 s max

Thus, we let ŝ denote the total realized time of the first shift for a
given first stage solution x and we let (^ )^g s k, s be the corre-
sponding second stage cost (excluding ( )R s ) when ^ks patients are
kept in the second shift. By *̂k

s
, we denote the optimal number of

patients to keep (not scheduled for cancellation), i.e., the index
minimizing (^ )^g s k, s , choosing the largest possible index in case of a
tie. The associated minimum cost is denoted by (^)f s .

Proposition 1. Let ∈ Xx be given, and conditioned on ŝ , then
(^ )^g s k, s is a supermodular function.

With Proposition 1 at hand, we can then prove that:

Proposition 2. Let ∈ Xx be given, and consider two realizations of
the total time of the first shift: ŝ1 and ŝ2 with ^ ≤ ^s s1 2, then * ≥ *^ ^k k

s s1 2
.

Since ( )Q x s, and ˜ ( )Q x s, are equivalent by Lemma 1, the intuitive
practical interpretation of this result is that the number of
scheduled cancellations increases with the length of realization
of the first shift. The result will be used in the L-shaped method to
accelerate the solution of the integer subproblem.

We now rewrite the second stage cost function (18)
conditioned on ŝ as follows: (^ ) = ∑ ∑ · +κ

= =F s c yy, i
n

j i ij1 1
p

ξ η ξ[ [^ + ∑ ∑ ( − ) + ] + ∑ ∑ ( ) ( − )]ξ
κ κ

= = = =E D s x y I r x yi
n

j i ij ij i
n

j i i ij ij1 1 2 1 1 0
p p . Beca-

use the L-shaped method requires convexity, the following result
is helpful to solve the relaxed model with continuous recourse:

Lemma 2. Let ∈ X̄x be given and ŝ be defined by (16), then (^ )F s y, is
convex in ∈ ¯ ( )Yy x .

Observing that ( )R s is independent of y , we therefore also have
that the second stage objective function is convex in ∈ ¯ ( )Yy x . The
convexity of the second stage objective function in ∈ ¯ ( )Yy x will be
used in the L-shaped method in Section 5.3 to approximately
evaluate the original subproblem with integer recourse.

We conclude this section by a general convexity result for the
minimum cost function of the continuous relaxation of the second
stage problem, which is further used in Section 4.2.

Proposition 3. Let ∈ Xx be given and ŝ be defined by (16), then
(^) = (^ )∈ ¯f s F s ymin ,Yy and (^)f s is convex in ŝ . Besides, ∑ ( )= I s rxi

n
i i i1 0 0

p is
also convex in s.

4.2. Convexity of the second stage problem

We now proceed to derive optimality cuts for the integral
master problem and its continuous relaxation on the basis of
Jensen's inequality. By Proposition 3 and Lemma 1, we can apply
Jensen's inequality [17] to obtain

( (^) + ( )) ≥ ( (^)) + ( ( )) ( )E f s R f E s R Es s 21

By definition, (^ ) ≥ (^)∈ F s f symin ,Yy for ∀ ŝ . Now, by taking ex-
pectation on both sides and using inequality (21), we can further
derive that

( (^ ) + ( )) ≥ ( (^)) + ( ( ))
( )∈

E F s R f E s R Ey s smin ,
22Yy

We will use inequalities (21) and (22) to strengthen our L-shaped
algorithm by formulating valid inequalities for continuous and
integral master problems, cf. Batun et al. [3].

 

 

5. Solution methods

As our research questions require to compare the optimal so-
lutions of various models and parameter settings, we now set out
to describe solution techniques designed to present near to opti-
mal solutions. More specifically we present a solution method
based on SAA in Section 5.2. Because of the stochasticity still in-
volved after the second stage, we require many samples to accu-
rately represent the stochastic nature of the problem, which
makes the SAA approach non-standard and computationally
challenging. We use the theoretical results derived in Section 4 to
reduce the computation times required to solve the SAA in Section
5.3. In Appendix B.2, the resulting formulation is strengthened
using Jensen's inequalities.

5.1. Linearizing the objective function

In order to formulate the SAA as a MIP, we linearize the ob-
jective function by writing the overtime cost function as follows:

∑

∑
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=
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Note that each piecewise linear convex function on [ ∞)0, with
+q 1breakpoints can be written in this fashion. Here, the length of

interval ∈ { … }v q0, , is lv, and its slope is τv. The slopes should 
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satisfy τ τ≥u v for ≥u v.

5.2. SAA formulation

For the SAA, we use n̂ independent samples of s, for which we
will use the index ∈ { … ^}n n1, , , and m̂ independent samples of ξ ,
for which we will use the index ∈ { … ^ }m m1, , . Denote the first
shift surgery time for patient i for sample n by sin, and the time lost
due to resource unavailability by η1n. Denote the second shift
surgery time and time lost due to resource unavailability for
sample m by ξim and η2m, respectively. Solving the problem con-
sists in finding first stage decisions κ= { | ∈ ∈ { … }}x i I jx , 0, 1, ,ij ,

and for each sample ∈ { … ^}n n1, , a second stage decision
κ( ) = { ( )| ∈ ∈ { … }}n y n i I jy , 0, 1, ,ij , such that each ( ) ∈ ( )n Yy x .

Here, ( )ny is short for ( )y sn .
We now formulate the associated sample average approxima-

tion (SAA) for (1):
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where l is introduced to simplify the formulation. Note that by
definition, the set inclusions ∈ Xx and ( ) ∈ ( )n Yy x can be ex-
pressed using linear inequalities and binary variables. For ex-
ample, ( ) ∈ ( )n Yy x can be expressed using (9)–(11), with yij(n)

taking the place of yij. We let ( ) =
∑ ( )

^
=

^

Q x
Q n

n

x,n
n

1 .

For the L-shaped method introduced in Section 5.3 we will also
use the continuous recourse relaxation ( )Q nx,LP of ( )Q nx, , which
is obtained by relaxing (28) to

( ) ∈ ¯( ) ( )n Yy x . 29

We let ( ) =
∑ ( )

^
=

^

Q x
Q n

n

x
LP

,n
n

1 LP .

5.3. Application of L-shaped method

The L-shaped method iteratively generates feasibility and op-
timality cuts. For the problem under consideration, only optimality
cuts are needed. Denote the set of generated optimality cuts by Θ.
Each optimality cut provides a lower bound to the second stage
cost. That is, for every ∈ Xx and ρ Θ( ) ∈v ,k k we have that

ρ( ) ≥ +Q x v xk
T

k and ρ− ( ) ≤ − −Q x v xk
T

k [26] (here vk
T is the trans-

pose of )vk .

∑ ∑ θ+
( )

κ

= =

rxmax
30i

n

j
i ij

x 1 0

p

θ ρ ρ Θ≤ − − ∀ ( ) ∈ ( )v x vs.t. , , 31k
T

k k k

∈ ( )Xx 32

Notice that θ bounds the minus of the second stage cost, i.e., θ
bounds − ( )Q x . We will also refer to the relaxed master problem, in
which (32) is replaced by ∈ X̄x . In order to strengthen both the
master problem and the relaxed master problem, Jensen's in-
equality is added in the form of an additional constraint involving
θ (cf. Appendix B.2).

In the course of our algorithm, we will generate two types of
cuts. For the first type, which will be referred to as continuous
recourse optimality cuts, we note that for every ∈ X̄xl , we can use
Benders' decomposition [6] to obtain a cut ρ( )v, such that

ρ+ = ( )Qv x xT
l lLP . That is, at xl the cut is tight for the continuous

recourse relaxation.
For the second type, which will be referred to as integer

optimality cuts, note that for every ∈ Xxl we may compute ( )Q xl
by solving the integer second-stage problems. We can then
generate a cut ρ( )v, that represents the inequality
θ ≤ − ( ( ) − )( ∑ − ∑ − | ( )|) − ( )( )∈ ( ) ( )∉ ( )Q l x x S Qx x xl i j S ij i j S ij l lx x0 , ,l l

. Here

( ) = {( )| = }S i j xx , 1l lij . The constant l0 is a lower bound of ( )Q x over
∈ Xx [1]. We can set =l 00 in our case.
To efficiently compute ( )Q x , we apply the submodularity result

derived in Section 4.1. More precisely, the procedure can be de-
scribed as follows:

(a) Let Π be a set containing information on cancellations, and
initially Π = ∅, x is a given first stage solution, n¼1;

(b) If n¼1, calculate its first stage realization ŝn by (16), get its
objective value ( )Q nx, and cancellation decision ( )ny by
integer subproblem (24)–(28), and meanwhile store a triple
(ŝn, ŝn, ( )ny ) intoΠ, here ŝn acts as both a lower bound (LB) and
an upper bound (UB) of first stage realization values that lead
to cancellation decision ( )ny , = +n n 1;

(c) If ≤ ^n n, calculate first stage realization ŝn by (16),
1. if ŝn falls in [ ]π πLB UB, of any triple π in Π, then we directly
get its optimal cancellation decision the same as πy , evaluate
its objective value ( )Q nx, ;
2. otherwise, calculate its ( )ny by integer subproblem (24)–
(28) and get its objective value ( )Q nx, . If the newly calculated

( )ny equals πy in any triple π in Π, we update its
= { ^ }π πUB UB smax , n , = { ^ }π πLB LB smin , n , otherwise add triple

(^ ^ ( ))s s ny, ,n n to Π, let = +n n 1 and then go to step (c).

Our overall L-shaped algorithm follows the same general
structure as the algorithm described in Angulo et al. [1] and can be
found in Appendix B.1.

 

 

6. Computational results

In this section, we will apply the methods and algorithms de-
veloped in this paper to solve instances derived from Shanghai
General Hospital data, and analyze how reductions of resource 



Table 2
Intervals and slopes of the overtime cost function and associated terminology.

Terminology Regular time Regular overtime Excessive overtime

Interval (min) [0,570] (570,690] ( ∞)690,
Slope 0 1.5 2.0
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unavailability and exogenous cancellation can alleviate the pro-
blems caused by overcrowding. Moreover, we present comparative
analysis on the ESC model which allows scheduled cancellations
and the ECO model which does not. To this end, we employ the
methods developed in previous sections to obtain lower and upper
bounds on the performance of these models, cf. Appendix D. Be-
fore discussing the results in Section 6.3, we consider the setup of
the experiments in this section.

We consider two scheduling models:

1. Exogenous Cancellations Only (ECO): Patients are scheduled a
day ahead, and processed accordingly. (Exogenous cancellations
still occur.)

2. Exogenous and Scheduled Cancellations (ESC): Cancellation of
surgeries (in reverse order of the scheduled sequence) is al-
lowed after the completion of the first shift (as introduced in
Section 3).

The ECO model is obtained by imposing ( ) =y s 0ij for all i j, in the
ESC model.

Surgery time distribution: To apply the methods developed in
this paper, we fit surgery time distributions to surgery data col-
lected between October 2013 and October 2014 at Shanghai
General Hospital. For practical and statistical reasons, we consider
instances containing the six surgery classes with highest volumes
over this period. Our tests revealed that the log-normal distribu-
tion fits the data well, as is confirmed by the QQ-plots depicted in
Appendix C. The corresponding parameters are given in Table 1.
Note that the flexibility of the SAA approach can easily deal with
the log-normal distribution that is difficult to handle analytically.

The base case: Having estimated these surgery time distribu-
tions, we now first construct a basic problem instance, referred to
as base case, and consider variations for the purpose of sensitivity
analysis. For the base case, we set surgical time distributions for
six patient classes based on Table 1. To account for surgery specific
set-up times, we add 5 min to the surgery durations, which is close
to the median reported setup time. We assume that 3 patients are
available for each of the six classes, so np¼18. On the basis of the
evidence reported in Section 2, we set the probability of exogen-
ous cancellations to 15%. Following personal communication and
data analysis regarding the time between surgeries which exceeds
the regular setup time, we estimate the time lost per exogenous
cancellation to be 15 min. Adding 5 min of normal setup time re-
served for the next patient, this gives 20 min in total to prepare
the next patient in case of exogenous cancellation. Resource un-
availability is also derived from Shanghai General Hospital data.
We estimate the average daily resource unavailability to equal 2 h,
which we divide evenly over the shifts. Specifically, we set re-
source unavailability for both first and second shift as i.i.d log-
Table 1
The mean (m) and standard deviation (s) (in minutes) of the log-normal distribu-
tion with parameters μ σ( ), fitted to data for various surgery classes, surgery classes
are sorted in increasing order of mean.

Departments Index Number of
observations

Log-normal
parameters

Mean and std
deviation

μ s m s

Obstetrical 1 2949 4.02 .41 60.75 25.75
Gynecology 2 5368 4.11 .88 90.14 97.62
Orthopedic 3 2236 4.70 .59 130.86 84.70
General 4 4003 4.85 .59 152.13 98.91
Thoracic 5 1303 4.98 .52 165.67 91.82
Neurosurgical 6 1234 5.06 .68 197.67 150.42
normal distributions with parameters μ = 4 and σ = 0.5, and thus
a mean of approximately 62 min. Table 2 gives the intervals on
which the overtime cost function is linear, as well as the slopes for
those intervals. Overtime costs are thus only incurred after regular
working hours, which has a duration of 9.5 h, and additional costs
for excessive overtime are occurred after 11.5 h. Lacking specific
financial data, as well as data on health benefits from surgery, we
normalize the reward r for each of the surgeries to equal the ex-
pected surgical duration ′m , where ′m equals m plus the five
minutes' preparation time. The penalty associated with scheduled
cancellation is set to 1.05 times the reward in the base case.

6.1. Results

Section 6.1.1 investigates the performance of the developed
solution methods for the base case and three variations. It also
presents the comparative analysis between ESC and ECO in terms
of optimal solution values. Section 6.1.2 investigates the impact of
decreasing resource unavailability and reducing exogenous can-
cellations as means to alleviate the problems caused by
overcrowding.

6.1.1. Comparative analysis
We consider four cases in order to compare the performances

of the ESC and ECO policies. The three variations of the base case
are obtained by varying the rewards and penalties of the surgery
classes. Note that overtime costs, rewards, and cancellation costs
should be understood relative to each other: the cost coefficients
measure the relative importance of achieving the various con-
flicting objectives. The final objective is referred to as yield. Ta-
ble 3 lists the variations and the base case. Remember that ′m is
the average surgical time including preparation time, which is set
at ′ = +m m 5. For the resulting cases, we determine the yields
obtained by our algorithms for ESC and ECO, as well as associated
upper bounds. The results are summarized in Table 4. The table
shows that, with one mild exception, our algorithm consistently
finds solutions that are within 1% from the corresponding upper
bound. In view of the stochasticity involved in the third stage of
the three-stage recourse model, after the scheduled cancellations
are decided, we consider this performance satisfactory.

Table 5 compares the solution values obtained for ESC and ECO
and provides insight on the benefits of allowing scheduled can-
cellations. Naturally, these benefits depend on the cancellation
cost. The benefit of scheduled cancellations is as much as 11.23% in
the base case, and then reduces as scheduled cancellations become
Table 3
The base case and three variations for computing the reward r and cancellation
penalty c from the mean ′m and standard deviation s of the surgery time plus
preparation time.

Case Reward (r) Penalty (c)

Base case ′m ′m1.05
Case a ′m ′m1.2
Case b ′ +m s0.5 ( ′ + )m s1.05 0.5
Case c ′ +m s0.5 ( ′ + )m s1.2 0.5

 



Table 4
The yield obtained by the ESC and ECO scheduling policies using the algorithms
developed in this paper, as well as associated upper bounds and optimality gaps.

Policy Statistic Base case Case A Case B Case C

Yield 397.0270.51 376.2970.69 609.2270.69 589.2170.83
ESC Upper

bound
400.6170.65 381.1570.91 614.2572.12 594.1071.88

Gap (%) (0.9070.20) (1.2770.42) (0.8270.46) (0.8270.45)
Yield 356.9570.62 356.9570.62 585.4770.93 585.4770.93

ECO Upper
bound

359.8670.49 359.8670.49 585.4770.93 585.4770.93

Gap (%) (0.8170.31) (0.8170.31) (070.32) (070.32)

Table 5
The improvement of ESC over ECO for each of four cases, as well as the ratio be-
tween the costs of cancelling a surgery versus the cost of performing the surgery in
(excessive) overtime.

Statistic Base case Case A Case B Case C

ESC vs ECO ((ESC-
ECO)/ECO, in %)

(11.2370.32) (5.4270.37) (4.0670.28) (0.6470.30)

Cost ratio of can-
cellation vs reg-
ular overtime

1.05:1.275 1.20:1.275 1.41:1.275 1.61:1.275

Cost ratio of can-
cellation vs ex-
cessive overtime

1.05:1.70 1.20:1.70 1.41:1.70 1.61:1.70
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penalized heavier. In comparison to a weak and simple upper
bound which assumes that there is a revenue of 1 for every ex-
pected non-idle unit of regular operating room time and no cost of
cancellation or overtime work, ESC closes around 50% of the gap
between this bound and the solution value for ECO. A similar re-
sult holds for case B. ESC closes less than 25% of this gap for the
cases A and C.

To allow the reader to appreciate the effects of increasing the
costs of scheduled cancellations, we tabulate the cost ratio between
performing a surgery in overtime and cancelling the surgery, as well
as the ratio between performing a surgery in excessive overtime
and cancelling the surgery. (Note that the cancellation decision is
nontrivial even though these ratios are known: At the moment of
deciding on scheduled cancellations there is considerable un-
certainty regarding the starting times of second shift surgeries.)
These ratios vary case by case. They also depend to a limited extent
Fig. 3. The impact of the exogenous cancellations. The left figure shows the relative im
improvement is measured with respect to the base case of 15% exogenous cancellation
over ECO as the exogenous cancellation rate is reduced.
on the surgery class, but relative variation is less than 8.86% over
the six surgery classes. Table 5 gives the average ratio over the six
surgery classes for each case. The calculated ratios account for the
probability of exogenous cancellation in the expected surgery
durations. Overtime is associated with increased risks of compli-
cations and medical errors, as well as dissatisfaction among scarce
staff. By consequence, hospitals may prefer scheduled cancellations
and delays of the corresponding patients to the next day to per-
forming the surgery in overtime. The base case assumes that it is
1.275
1.05

times more desirable to cancel a surgery than to perform it in
regular overtime. For the base case, the yield improvement of ESC
over ECO is ( ± )11.23 0.32 %, which shows that there is considerable
value in allowing scheduled cancellations, even if the cancellation
decision is to be taken already after completing the first shift of at
most half of the scheduled patients. Cases A and B represent cases
where scheduled cancellations are only 1.275

1.20
and 1.275

1.41
times more

desirable than performing the corresponding surgeries in regular
overtime, while excessive overtime is still much more undesirable
relative to scheduled cancellation. In that case, the value of allowing
cancellations reduces to ( ± )5.42 0.37 % and ( ± )4.06 0.28 %, respec-
tively. In Case C, the penalty for scheduled cancellation is so high
that the recourse offers little improvement opportunity. It is
therefore not surprising that the value of scheduled cancellations is
very limited in case C at ( ± )0.64 0.30 %.

6.1.2. Insights
In this section, reward and penalty cost are fixed to the base

case, and we explore the impact of reducing exogenous cancella-
tions and resource unavailability to the ESC and ECO policies as
means to alleviate hospital overcrowding problems. We vary the
rate of exogenous cancellations to be 0%, 5% and 15%. The latter is
based on existing evidence reported in the scientific literature (cf.
Section 2). The 5% appears to be a lower bound among the values
reported in the scientific literature. The 0% scenario merely gives
insight in the overall potential of eliminating exogenous cancel-
lations altogether. The results are shown in Fig. 3. The figure shows
that exogenous cancellation has a significant adverse impact on
performance: For the ESC policy, yields increase by 5% as exo-
genous cancellation rate decreases from 15% to 0%. For the ECO
policy, this increase is 8%. These results show that ESC can better
control the adverse impact of cancellations than ECO. For all tested
values of exogenous cancellation rate, the ESC policy significantly
outperforms the ECO policy by about 9%, which underlines the
potential value of scheduled cancellations in dealing with un-
certainties, even if they will be reduced in the future.

 

 

provement in objective as the exogenous cancellation rate is reduced, where the
rate for both ECO and ESC. The right figure shows the relative improvement of ESC

 



Fig. 4. The impact of the resource unavailability. The left figure shows the relative improvement in objective as the resource unavailability is reduced, where the im-
provement is measured with respect to the base case of resource unavailability equal 60 min for both ECO and ESC. The right figure shows the relative improvement of ESC
over ECO as the resource unavailability is reduced.
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Next, we investigate the sensitivity of the optimal solutions to
resource unavailability. To this purpose, we vary the unavailability
while keeping other parameters as in the base case. The mean
resource unavailability is set to 0 (lognormal with μ = 0, σ = 0), 33
(lognormal with μ = 3, σ = 1) and 62 (lognormal with μ = 4,
σ = 0.5) minutes per shift. The latter value is derived from the
provided recent data and used as benchmark. Notice that the latter
value corresponds to an unavailability of slightly over two hours
on a 9.5 h working day, and hence to about 21.5%. Fig. 4 shows
that resource unavailability has a more than proportional adverse
impact on performance: Resource unavailability of (on average)
62 min per shift reduces expected yield by around 25% for the
obtained solution for ESC and even more for ECO. The ESC model
significantly outperforms ECO by at least 9%, and mostly when
unavailability is highest. ESC offers an increasing advantage as the
unavailability increases. This is further confirmed by experiments
where we compare solutions which ignore the expected resource
unavailability. For the ESC model, this results in a small but highly
significant decrease in solution value (of around 1%), whereas the
highly significant decrease exceeds 5% for ECO.
7. Discussion and practical implications

This work considers single operating room scheduling pro-
blems as they occur in overcrowded Chinese hospitals. Over-
crowding is caused by societal and economic developments which
are likely to sustain for years to come. As it severely impacts access
to health care, as well as the quality and safety of care when so-
lutions are sought in working long overtime hours, adequate so-
lution methods for these scheduling problems are urgently called
for. The scheduling problems are complicated by frequent can-
cellations for reasons that are exogenous to operating room
management, such as cancellations by patients for economic rea-
sons, and cancellations because of recent (hospital) acquired in-
fections. Moreover, the operating rooms suffer from human re-
source unavailabilities as caused by urgent demands in other de-
partments in the overcrowded hospitals. These stochastic char-
acteristics make the resulting scheduling problems significantly
more challenging to solve than previously studied stochastic op-
erating room scheduling problems in the scientific literature,
which primarily take stochastic surgery times into account.

Our study analyzes the impact of the exogenous cancellations
and resource unavailabilities on the optimal schedules, so as to
understand if and how reducing the exogenous cancellations and
resource unavailabilities can assist hospitals to cope with the
sustained excess demand. To this purpose, we developed solution
methods for the presented operating room scheduling problems.
Moreover, we analyzed the known practice of scheduled cancel-
lations, which from a modelling perspective defines a second stage
recourse moment in the stochastic scheduling problem.

The resulting problem forms a three-stage scheduling problem
with recourse, as the realizations of the exogenous cancellations,
unavailability and surgery durations for a second shift of patients
only become known after the second stage decisions on scheduled
cancellations have been made. We solve the three-stage recourse
problem using sample average approximation methods and cor-
responding optimization techniques. Because of the stochasticity
involved in the third stage however, the lower and upper bounds
available are slightly weaker than it is often the case in two stage
problems, and computation times can become larger. To remedy
these computational problems, we derive several structural
properties on the optimal schedule and scheduled cancellations,
which allow us to speed up the optimization. Thus the proposed
sample approximation approach which relies on the L-shaped
method and optimality cuts forms a nontrivial innovation in sto-
chastic scheduling itself. The developed solution methods deliver
solutions which are mostly within 1% of optimal, thus allowing
comparative analysis and sensitivity analysis of the various sche-
duling models by considering their solutions.

In many current practices, operating room schedules are com-
posed without explicit consideration of the stochastic processes
involved (yet only considering mean surgery times), or even
without evaluation of the schedule at all. Our research firstly
shows that the stochasticity of human resource unavailability,
exogenous cancellations and procedure times can be simulta-
neously included in a scheduling model, for which good quality
solutions balancing overtime costs with high workloads can be
found. Our results show that taking the stochasticity into account
yields substantially and significantly better operating room sche-
dules. The improvements obtained for solutions with scheduled
cancellations of up to 11% are much above the upper bounds on
the solutions without scheduled cancellations, thus ensuring that
the optimality gaps do not invalidate the conclusions.

Implementing the approach may take prolonged effort because
substantial data collection is needed. But our results indicate that
significant and substantial improvements are already attainable by
(a) taking unavailability and no-show explicitly into account when
constructing the initial schedules, and (b) systematic use of (early)
scheduled cancellations. Likely benefits are better control of op-
erating costs, increased staff satisfaction, and improvement of
patient safety and satisfaction.  
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With these solution methods at hand, we have further analyzed
exogenous cancellation and resource unavailability. As the latter
may be in the order of 20% of regular opening hours, it is clear that
improving unavailability holds great potential to alleviate the
problems caused by overcrowding. Our results reveal that – while
scheduled cancellations can limit the negative impact of resource
unavailability – the overall impact on the solution values is more
than proportional to the unavailability and exceeds 25% in the
presented instances. A practical implication is therefore that hos-
pitals and patients can greatly benefit from better management
and control of the operational deployment of (human) resources
to reduce their unavailability.

Although evidence indicates that exogenous cancellation may
apply to as much as 15% of scheduled surgeries, it poses fewer
difficulties for operating room scheduling and utilization than
resource availability. This holds particularly true for the ESC model
as its optimal solution value does not improve beyond 5%, even
when exogenous cancellation is reduced by the full 15%. The im-
pact for the model without scheduled cancellations is larger,
confirming the potential of scheduled cancellations. From a prac-
tical operating room management perspective, these results imply
that reduction of exogenous cancellations is worth considering
after implementation of scheduled cancellations and reducing
human resource unavailability. Especially so as the causes of
scheduled cancellations are beyond the control of operating room
management. As exogenous cancellations often follow from fi-
nancial barriers and worsening of health status, reducing exo-
genous cancellations remains of urgency and importance.

While our analysis relies on data from a single hospital,
Shanghai General Hospital, we believe that the model, solution
methods, and analyses are likely to have relevance for the many
other level 3 large city hospitals in China, which are presently
overcrowded and face further demand increases. Similar problems
occur in other developing countries as well. Our research presents
first theoretical advancements on the resulting operating room
scheduling problems as well as practical improvement sugges-
tions. At the same time, it is clear that it has limitations and poses
new research questions. For example, models which set the re-
course moment at a fixed moment in time, or divide the shifts
based on minutes workload rather than numbers of patients are
worthy of further study. Moreover, one may consider the problem
of determining the optimal moment in time, workload minutes, or
relative patient number after which to end the first shift. We
therefore hope that our research motivates other researchers to
advance the work on the presently under-researched urgent op-
erations management problems occurring in the operating rooms
of China and other – mostly developing – countries, serving the far
majority of the global population.
Appendix A. Proofs of lemmas and theorems
Lemma 1. The second stage decision problems ( )Q x s, and ˜ ( )Q x s,
are equivalent for any ∈ Xx and realization of s.

Proof. Let ( )y sij and ks are, respectively, the optimal solution to
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Summarizing above, we can conclude that ( )Q x s, and ˜ ( )Q x s, are
equivalent for any ∈ Xx and realization of s.□
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The convexity of function D(x) in x justifies inequality (A.4) and the
proof is done.□

Proposition 2. Let ∈ Xx be given, and consider two realizations of
the total time for the first shift: ŝ1 and ŝ2 with ^ ≤ ^s s1 2, then * ≥ *^ ^k k

s s1 2
.

Proof. As Proposition 1 showed, (^ )^g s k, s is supermodular in vector
(^ )^s k, s , by introducing = − ^t s , we can get submodular function

( )^g t k, s , and applying the property of submodular function [43], we
can get that *̂k

s
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s
decreases in ŝ .□
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Since D(x) is convex in x, the second inequality holds for any
λ ∈ [ ]0, 1 and y y,1 2, and the proposition is true.□

Proposition 3. Let ∈ Xx be given and ŝ be defined by (17), then
(^) = (^ )∈ ¯f s F s ymin ,Yy and (^)f s is convex in ŝ . Besides, ( )R s defined in
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n
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p is also convex in s.

Proof. We can easily get (^) = (^ )∈ ¯f s F s ymin ,Yy by Lemma 1. Next
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and (^ )f s2 , then λ λ+ ( − )y y11 2 is a feasible solution to

λ λ( ^ + ( − )^ )f s s11 2 and

λ λ λ λ λ λ( ^ + ( − )^ ) ≤ ( ^ + ( − )^ + ( − ) )f s s F s s y y1 1 , 11 2 1 2 1 2

What's more,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤

⎦
⎥
⎥

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

λ λ λ λ λ λ

λ ξ η ξ

λ ξ η

ξ

ξ λ λ λ λ η

ξ λ λ

λ ξ η

λ ξ η

λ ξ η

λ ξ η

(^ ) + ( − ) (^ ) − ( ^ + ( − )^ + ( − ) )

= [ ( − ) + ^ + + ( ) ( − )]

+ ( − ) [ ( − ) + ^ +

+ ( ) ( − )]

− [ ( − − ( − ) + ^ + ( − )^ + )

+ ( ) ( − − ( − ) )]

= ( − ) + ^ +

+ ( − ) ( − ) + ^ +

− ( − ) + ^ +

+ ( − ) ( − ) + ^ + ≥

ξ

ξ

ξ

ξ

ξ

ξ

κ κ

κ

κ

κ

κ

κ

κ

κ

κ

= = = =

= =

= =

= =

= =

= =

= =

= =

= =

f s f s F s s

E D x y s I r x y

E D x y s

I r x y

E D x y y s s

I r x y y

E D x y s

E D x y s

E D x y s

x y s

y y1 1 , 1

1

1 1

1

1

1 0

i

n

j
i ij ij

i

n

j
i i ij ij

i

n

j
i ij ij

i

n

j
i i ij ij

i

n

j
i ij ij ij

i

n

j
i i ij ij ij

i

n

j
i ij ij

i

n

j
i ij ij

i

n

j
i ij ij

i

n

j
i ij ij

1 2 1 2 1 2

1 1

1
1 2

1 1
0

1

1 1

2
2 2

1 1
0

2

1 1

1 2
1 2 2

1 1
0

1 2

1 1

1
1 2

1 1

2
2 2

1 1

1
1 2

1 1

2
2 2

p p

p

p

p

p

p

p

p

p

Since D(x) is convex in x, the last inequality holds and inequality
(A.5) is true. Moreover, ( )I si0 is convex in s, which can directly
derive that ( )R s is also convex in s.□
Appendix B. Application of L-shaped method

B.1. Algorithm of L-shaped method

Our overall L-shaped algorithm follows the same general
structure as the algorithm described in Angulo et al. [1]. Based on
the above analysis, it can be described as follows:

Algorithm 1.

Step 0 Initiate Θ = ∅. Throughout,Θ will be used for the master
problem.

Step 1 Optimize the integral master problem to obtain an op-
timal solution ∈ Xx and corresponding objective value z

and θ. If > ϵθ − (− ( ))
(− ( ))

Q
Q

x
x

LP

LP
, add the corresponding optimality

cut ρ( )v, to Θ and go to Step 1, otherwise go to Step 2.

Step 2 If > ϵθ − (− ( ))
(− ( ))

Q
Q

x
x

, add the corresponding integer optimality

cut to Θ, and go to Step 1. Otherwise, if ) ≤ ϵθ − (− ( ))
(− ( )

Q
Q

x
x

,

terminate, designating x as the ϵ-optimal solution.

B.2. Upper bound by Jensen's inequality

The L-shaped method from the previous section can be
enhanced by adding Jensen's inequality as a constraint to both the
integral and relaxed master problem. By the results obtained in
Section 4.2, the second stage costs can be bounded from below if
all first shift surgeries take on their expected value (for the SAA
approach, this translated to replacing the expected value by the

sample mean). To explicitly give the constraints, let ¯ =
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These constraints extend the results in Batun et al. [3] for our
problem.

 

 

Appendix C. QQ-plots of surgery time distribution

The log-normal distribution fits the surgery time data quite
well, as is confirmed by the QQ-plots depicted in Fig. C1.
Appendix D. Obtaining performance bounds

The general method for obtaining upper and lower bound es-
timates from the SAA of two-stage stochastic programs has been
discussed in Mak et al. [30] and Kleywegt et al. [21]. Let us recall,
however, that the ESC scheduling problem is a three-stage SP.
Upper and lower bounds are therefore obtained from the
SAA (23)–(28) as follows. (Recall that we are maximizing.) The SAA
objective averages all combinations of n̂ first shift samples and m̂
second shift samples, which equals a total of ^ × ^n m combinations.
Because the problem is three-stage, it requires relatively many
samples to sufficiently accurately represent the randomness. In
our numerical experiments we use ^ = ^ =n m 500, for a total of
250,000 combinations. The target accuracy ϵ of Algorithm 1 is set
at 0.5% when running time is shorter than 24 h, and is increased
to 2% when this running time bound is exceeded. An upper bound
estimate is obtained by averaging the upper bound on the optimal
objective value for 10 collections of ^ × ^n m samples. (Thus, the our
upper bound becomes weaker as ϵ increases.)

To obtain a lower bound estimate, we select a solution ′ ∈ Xx
that optimizes the SAA for a 500�500 sample. We then fix the
schedule to this ′x , and solve the SAA for a single first shift sample
( ^ =n 1), while setting ^ =m 2000. This yields a single appropriate
cancellation decision for that first shift realization. The outcome
for the first shift sample with that cancellation decision is eval-
uated using a new, independent set of 2000 second shift realiza-
tions. This yields an unbiased lower bound estimate. A reliable
lower bound estimate with associated standard deviation is
obtained by averaging the result of this procedure for 2000
replications, i.e., (1) generate new first shift and second shift 



Fig. C1. QQ plots of the data versus the fitted lognormal distribution, for various surgery classes.
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samples, (2) determine an appropriate cancellation decision, and
(3) evaluate the outcome of the first shift sample and cancellation
decision with a new second shift sample.
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