Constraint Satisfaction Problems

Chapter 5

Constraint Satisfaction Problem(CSP)

CSP:

- Set of variables {*X1, X2, ..., Xn*} that each variable Xi has a value from domain *Di*
	- Usually *Di* is discrete and finite
- Set of constraints {*C1, C2, …, Cp*} that specify allowable combinations of values for subsets of variables (goal test)
- Solution(goal): Assign a value to every variable such that all constraints are satisfied

Example: map-coloring

- Variables:
	- *WA,NT ,Q, NSW, V, SA, T*
- Domain: D1={*red, green, blue*}
- Constraint: adjacent regions must have different colors

WA≠NT, WA≠SA, NT≠SA, NT≠O, SA^{\neq}*Q, SA* \neq *NSW, SA* \neq *V,Q* \neq *NSW, NSW* \neq *V*

• Solutions are complete and consistent assignments

e.g., *WA = red, NT = green, Q = red,* $NSW = green, V = red, SA = blue,$ *T = green*

Example: 8-Queens Problem

- 8 variables Xi , $i = 1$ to 8
- Domain for each variable $\{1,2,...,8\}$
- Constraints are of the forms:

$$
-Xi = k \rightarrow Xj \neq k \text{ for all } j = l \text{ to } 8, j \neq i
$$

 $-Xi = ki$, $Xi = kj \rightarrow i-j$ $\neq ki$ $\rightarrow ki$ $\neq ki$ $\rightarrow kj$ for all $j = 1$ to 8, $j \neq i$

Example: Sudoku

- Variables: *Xij*
- Domains: $\{1, 2, ..., 9\}$
- Constraints:

Alldiff $(X$ in the same unit)

Varieties of constraints

• **Unary** constraints involve a single variable.

 $-$ E.g., *SA* \neq *green*

• **Binary** constraints involve pairs of variables.

 $-$ E.g., *SA* \neq *WA*

- **Higher-order** constraint involve 3 or more variables.
- **preferences** (soft constraints), e.g., red is better than green

Constraint Graph

• **Constraint graph:**

- Nodes are variables
- Arcs show constraints (Two variables are adjacent or neighbors if they are connected by an edge or an arc)

WA^{\neq}*NT*, *WA*^{\neq}*SA*, *NT*^{\neq *Q*, *SA* \neq *Q*, *SA* \neq *NSW*, *SA* \neq *V*, *Q* \neq *NSW*, *NSW* \neq *V*}

Real-word CSPs

• Assignment problems

–e.g., who teaches what class

• Timetable problems

e.g., which class is offered when and where?

- Transportation scheduling
- More examples of CSPs: http://www.csplib.org/

Standard search formulation (incremental)

• **states:**

– Values assigned so far

• **Initial state:**

 $-$ The empty assignment $\{ \}$

• **Successor function:**

– Choose any unassigned variable and assign to it a value that does not violate any constraints.

• **Goal test:**

– The current assignment is complete and satisfies all constraints

Standard search formulation (incremental)

- What is the **depth of any solution**(assuming *n* variables)? *n*–This is the good news.
- Given that there are *m* possible values for any variable, how many paths are there in the search tree?
- *n!∙m* ^*n* –This is the bad news
- How can we **reduce** the <u>branching factor</u>?

Backtracking search

• In CSP's, variable assignments are **commutative:**

i.e., [*WA = red* then *NT = green*] is the same as [*NT = green* then *WA = red*]

- only need to consider assignments to a single variable at each level $\longrightarrow b=d$ and there are $d^{\wedge}n$ leaves.
- Depth-first search for CSPs with single-variable assignments is called **backtracking search.**
- Backtracking search is the basic uniformed algorithm for CSPs

Backtracking search

function $\text{BACKTRACKING-SEARCH}(csp)$ returns solution/failure return RECURSIVE-BACKTRACKING($\{ \}$, csp)

function RECURSIVE-BACKTRACKING (assignment, csp) returns soln/failure if assignment is complete then return assignment

 $var \leftarrow$ SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS $[csp]$ then add $\{ var = value \}$ to *assignment* $result \leftarrow$ RECURSIVE-BACKTRACKING(assignment, csp) if result \neq failure then return result remove $\{var = value\}$ from *assignment* **return** failure

Improving backtracking efficiency

- 1. which variable should be assighned next?
- 2. In what order should its values be tried?
- 3. can we detect invitable failure early?
- 4. can we take advantage of problem structure?

Which variable should be assigned next?

- **Minimum remaining values** (MRV)
	- Choose the variable with **the fewest** legal values

- **Tie-breaker among among most constrained variables (degree heuristic)**
	- Choose the variable with **the most** constraints on remaining variable

Minimum remaining values

– Choose the variable with **the fewest** legal values

degree heuristic

• Choose the variable with **the most** constraints on remaining variable

Given a variable, in which order should its values be tried?

- Choose the **least constraining value**:
	- The value that rules out **the fewest** values in the remaining variables.

Early detection of failure: Forward checking

- **Idea:** keep track of remaining legal values for unassigned variables
	- Terminate search when any variables has no legal values

Forward checking

Forward checking

Forward checking

Constraint propagation

• Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures.

• *NT* and *SA* can not both be blue!!!

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is **consistent** iff

for **every** value *x* of *X* there is **some** allowed value of *Y*

• When checking $X \rightarrow Y$ throw out any values of X for which there isn't an allowed value of *Y*

Arc consistency

If *X* loses a value, neighbors of *X* need to rechecked

Arc consistency

Arc consistency detects failures earlier than forward checking

Can we take advantage of problem structure?

- *T* is **independent subproblems**
- Suppose each subproblem has *C* variables out of *n* total
	- Worst-case solution cost is *n/c .d^c*

E.g., $n = 80$, $d = 2$, $c = 20$

 $2^{80} = 4$ billion years at 10 million nodes/sec

 $4 \cdot 2^{20} = 0.4$ seconds at 10 million nodes/sec

End of chapter 5