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Reactive Power Multi-objective Optimization for
Multi-terminal AC/DC Interconnected Power
Systems Under Wind Power Fluctuation

Qian Hui, Yun Teng, Member, IEEE, Hao Zuo, and Zhe Chen, Fellow, IEEE

Abstract—In view of the reactive power coordination difficul-
ties caused by reactive power strong coupling, the provincial
power grids in the interconnected system are formed by the multi-
AC/DC transmission. Wind power channels are under the condi-
tions of large-scale long-distance transmission of wind power and
other forms of renewable power generation. The AC-DC hybrid
power flow equation of the interconnected system, including the
AC-DC tie lines, is presented in this paper, along with the robust
dynamic evolutionary optimization of the reactive power system
in interconnected systems under fluctuating and uncertain wind
power conditions. Therefore, the rapid collaborative optimization
of reactive power flow and the exchange of reactive power
between tie lines between provincial power grids are realized.
The analysis was made by taking four interconnected large-scale
provincial power grids of Eastern Mongolia, Jilin, Liaoning and
Shandong as an example. The simulation results demonstrate
the effectiveness and superiority of the proposed reactive power
dynamic multi-objective optimization method for interconnected
power grids.

Index Terms—Multi-objective robust evolution, multi terminal
AC/DC interconnection, reactive power optimization, wind
power transmission.

I. INTRODUCTION

EVERAL provincial power grids have been intercon-

nected by large-capacity, long-distance UHV, AC-DC
transmission lines for transferring the wind power generated
due to the rapid development of wind power in the western
and northern regions of China. This causes the voltage stability
problems to become more and more prominent with a greater
threat to the safe and stable operation of the power system. A
great deal of work has been done [1]-[4] in order to improve
the voltage stability level. References [5]-[8] used the fuzzy
clustering method to solve the partition problem in secondary
voltage control, and complete the fuzzy clustering partition
through the composing index of control effect of reactive
power source to nodes. In [9], [10], a coordinated control

Manuscript received February 10, 2019; revised April 15, 2019; accepted
May 17, 2019. Date of online publication August 1, 2019; date of current ver-
sion April 27, 2020. This work was supported by the National Key Research
and Development Program of China under Grant No. 2017YFB0902100.

Q. Hui, Y. Teng (corresponding author, e-mail: tengyun@sut.edu.cn), H.
Zuo and Z. Chen are with Shenyang University of Technology, Shenyang
110870, China. Z. Chen is also with the Aalborg University, Aalborg 9220,
Denmark.

DOI: 10.17775/CSEEJPES.2019.00270

strategy of nonelectric voltage in the area with wind farms is
proposed for solving the voltage instability problem caused by
centralized access of large-scale wind power. Reference [11]
considered the control of the voltage when the wind power
is integrated and guarantees the normal and safe operation
within the area, based on the voltage control. Reference [12]
constructed a fitness function suitable for multi-objective opti-
mization by taking the weight setting as the standard of quan-
tization partitioning, which has a good effect in partitioning
a single provincial power grid, however, the applicability for
multi-area interconnected systems still requires further study.
Reference [14] introduced the differential game theory to solve
the problem of multi-controller dynamic coordination in power
systems. On the basis of this, reference [15] used a dynamic
game approach to solve the problem of conflicts among
multiple control subjects of regional voltage and obtained a
Nash equilibrium solution by applying two-layer iterations,
rather than conducting optimization analysis to the voltage
control in multiple large areas; moreover, the Nash equilibrium
in the game does not mean an overall optimal state of two sides
of the game; therefore, the real optimal strategy may not be
obtained through the game.

At present, the research primarily focuses on the centralized
or decentralized control within a specific provincial power
grid, and little has been done about the voltage coordination
control among multiple provincial power grids. Meanwhile,
with the development of large-scale interconnected power
grids, the connection between the provincial power grids is
intensively increasing, and the inter-regional interactions have
become inevitable and important. Especially in an emergency,
the reactive power weak coupling between adjacent regions
often no longer exists. Neglecting reactive power coupling
between regions can cause voltage fluctuations and even os-
cillations [16]. In a complex multi-area interconnected power
grid coupled by multi-end AC-DC tie lines, local voltage
disturbances may cause instability of the interconnected sys-
tems due to lack of reginal reactive power coordination [17].
On the other hand, the reactive power exchange caused by
wind power fluctuation in the sending-end grid may not only
have an impact on the voltage stability of the sending-end
gird but it may even cause a voltage stability problem in
the entire interconnected system. Therefore, achieving reactive
dynamic optimization control in AC-DC interconnected multi-
provincial power grids is of great importance to all provincial
power grids and the entire interconnected system [18].
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In order to solve the problem of reactive power coordination
optimization in different regions, this paper analyzed the dy-
namic multi-objective evolutionary optimization theory based
on traditional reactive power and voltage control, and proposed
a multi-terminal coordinated control method for improving
voltage stability, using the robust optimization model. The
decomposed multi-objective evolutionary algorithm is used
to realize the dynamic reactive power control strategy to
deal with the impact caused by uncertain wind power. The
simulation analysis of the interconnected system, consisting
of the four grids of Eastern Mongolia, Jilin, Liaoning and
Shandong provinces, shows that the proposed multi-objective
reactive power optimization method is robust and can better
coordinate the inter-regional interconnections reactive power
distribution, and the relationship between the reactive power
balance and wind power fluctuations.

II. MULTI-END AC-DC INTERCONNECTED POWER GRID
REACTIVE POWER CONTROL MODEL

The reactive power voltage control of each provincial power
grid in the AC/DC interconnected system is a complex multi-
objective optimization problem. A reactive power flow model
is first established. When performing multi-terminal AC-DC
interconnection grid reactive power control, set the sending
and receiving areas of the AC and DC lines to A and B
respectively. The frequency deviation of the inertia center
angle between the two regions of the DC transmission line
and the receiving end is equal to zero. The specific circuit
diagram is shown in Fig. 1.

region A region B

Otherregion

Fig. 1. AC and DC transmission line sending and receiving line diagram.
The power flow equation of the AC-DC combined power
system 1is:

P — E Pij(Ui, U;, 0;, 9‘7‘) +aP; =0
jEi (1)
Qi — % Qi (Ui, Uj,0i,05) — Qai = 0
Jer
where P? and ()f are respectively the active power and reactive
power in flow of the node I in AC network; P;; and @,
are respectively the active and reactive power of the outflow
node ¢; U; and 6; are respectively the voltage amplitude and
voltage phase angles of the node i; U; and 6; are respectively
the voltage amplitude and phase angles at node j; « is the
signal variable of the rectifier or inverter accessing; take —1
while node ¢ connecting the rectifier and 1 while connecting
the inverter.
The constraint equation of the DC transmission line is:

Pap — Par —IfR =0 )

It can be seen from equations (1), (2) that the AC-DC hybrid
system power flow correction equation [2] is:
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where Py and AP, are respectively the vectors of the DC
active power and the unbalanced power vector of the DC active
power in the DC transmission unit; Q4 is the vector of the
reactive power in the DC transmission lines; P and @ are the
vectors of the active power and reactive power of the nodes;
AP and AQ are the vectors of the unbalanced active power
and reactive power; Iy and Al are the vectors and correction
vectors of the DC current in the DC transmission line; AU
and A# are respectively the voltage amplitude and phase angle
correction vectors of the nodes; U is the voltage amplitude
vector of the nodes.

It is a well-known fact that the reactive power balance of
the total system means that the total reactive power generation
is equal to the total reactive power load consumption in the
interconnected power grid interconnected by multi-end AC-DC
channels. For the reactive power control of the interconnected
power grid, the change of reactive power in any provincial
power grid will cause the change of reactive power distribution
and reactive power balance in the interconnected system.
Meanwhile, the fluctuation in total wind power output of
the interconnected system will also cause the changes in the
reactive power at the provincial power grids and AC-DC tie
lines in the interconnected power grid. Therefore, the goal of
reactive power optimization control for interconnected power
grids is to ensure the reactive power balance under the certain
voltage level of provincial power grids during the fluctuation
of wind power on the premise of the minimum reactive power
exchange in the tie line.

The reactive power control model of the interconnected grid
can be obtained:

min{ f(AQij, AQ;, AP;;, AP )}
s.t. g(QGla Q627 o 7QGT‘U QLla QL27 o 7QLTL) =0

where AQ);; is the reactive power change of the lines transfer-
ring wind power; AP;; is the active power exchange of wind
power transmission line; AQ); is the provincial power grid
reactive power of interconnected system; A P,y is the amount
of wind power fluctuation in the interconnected system; and
,j=1,2,---  n.

“4)

III. REACTIVE POWER MULTI-OBJECTIVE OPTIMIZATION
MODEL OF AC-DC INTERCONNECTED POWER GRID

The reactive power control problem in interconnected sys-
tems is a multi-agent multi-objective dynamic optimization
control problem. The optimization of reactive power in the
interconnected power grids includes the output of reactive
power at each provincial level, the voltage stability index,
reactive power exchange capacity between grids, etc.; con-
straints include the active power of the AC-DC tie line, and the
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wind power capacity and load levels of provincial power grids.
However, the number of parameters for the reactive power
optimization and the dimensionalities and parameters of the
variables of the objective function will change dynamically
with grid operational status and wind power output, which
results in the change of the optimal solution of reactive power
control in the interconnected system. Therefore, the problem
of reactive power optimization in a multi-area power system
is actually a kind of dynamic multi-objective optimization
problem (DMOP).

In this paper, the dynamic multi-objective optimization
problem, which deals with the reactive power optimization
in the power grids interconnected by multiple AC-DC lines
of provincial power girds under the changes with the wind
power output, was primarily considered. This problem can be
described as:

min F(z, a(t)) = {f1(z, a(t)),
reSs

- fu(z,alt)}
)

s.t.
where z is a decision variable; S C RN is a decision-making
space; F : (z,a(k)) — RM is a multi-objective reactive
optimization function that contains M objective functions; RM
is the objective space; and «(t) is the wind power related
dynamic parameters.

It is generally considered that wind power changes dis-
cretely according to the time, that is, wind power changes
only occur at some non-continuous time points, corresponding
dynamic parameters can be discretized and satisfy:

Va(k),a(k) # a(k+1)

For all wind power outputs, if «(k) is kept unchanged, then
the corresponding objective function is unchanged. Thus, the
above dynamic multi-objective optimization problem is trans-
formed into K static multi-objective optimization problems and
denoted as:

(min F(z, (1)), -+ ,min F(z, a(K)))

For any static multi-objective optimization problem of wind
power output, the Pareto optimal solution set obtained is
denoted as: PS(k),k =1,2,--- K. The corresponding Pareto
front end is denoted as: PF(k),k=1,2,--- K.

The goal of dynamic multi-objective optimization is to find
the Pareto optimal solution PS(k) satisfying min F'(z, a(k))
quickly before the dynamic change of wind power output, in
order to perform on the line control, in other words, before
the occurrence of a(k + 1).

The idea of robust optimization [19] was proposed by the
statistician Wald in 1950. This paper presents the concept
of robust optimization overtime (ROOT) based on the time-
varying characteristics of wind power output of the sending-
end gird. Its core idea is to find a set of robust solutions for
determining the reactive power of provincial power grids; each
robust solution can be applied to the case where wind power
output dynamically changes in several consecutive times with
a certain degree of satisfaction. The robust Pareto optima
over time (RPOOT) model describing the adaptability of
Pareto solutions to wind power output changes is proposed for
the dynamic multi-objective optimization of complex power

grids interconnected by AC-DC wind power transmission lines
across multiple provincial power grids, and the description
about lifetime and average fitness of Robust Pareto Solutions
are also established.

The RPOOT solution for reactive power at each provincial
grid in the interconnected power grid should consider two
aspects: first, it is necessary to optimize two objectives,
reactive power and voltage of several grids at the same time,
which are contradictory in the usual case. The single-objective
optimal solution for one provincial power grid is generally
the reactive power boundary. When taking into account the
reactive power and voltage indexes of multiple girds, it is
necessary to compromise the optimal solution of a single
power network, but the compromised solution generally cannot
completely satisfy the optimal reactive power objective of all
provincial grids at the same time. Therefore, the robustness
of a certain optimal solution should not only consider the
fitness value of a certain objective under continuous dynamic
wind fluctuations, but also needs to measure the relative
changes of all its sub-targets. Secondly, in the process of
solving dynamic multi-objective robust solutions of multiple
grids, it is often necessary to predict the fitness of solutions
under future continuous dynamic wind fluctuations. Because
of multi-objective optimization problems, all of each other’s
non-dominant solutions will become the optimal solutions
and constitute the Pareto optimal solution set, so in RPOOT,
the objective time series of multiple non-dominant solutions
constitutes a multi-time series prediction problem.

Aiming at the frequent changes of wind power output
of multi-AC/DC transmission lines, especially during small
and fast fluctuation of wind power, the change of reactive
power optimization solutions among provincial power grids
may result in big reactive power exchanges and increase
security and stability costs. However, the traditional dynamic
multi-objective optimization method usually obtains the Pareto
optimal solution that accommodates wind power fluctuations
through searching for re-optimized solutions under every new
wind power output. Meanwhile, changing the optimal solution
of the multi-objective will result in large power exchanges in
the entire interconnected power grid and even failure in finding
the multi-objective optimal solution for reactive power over the
entire grid during rapid changes of wind power in each time
interval. The key idea of the dynamic multi-objective robust
evolutionary optimization method presented in this paper is to
find a set of robust Pareto solutions, in which each robust
Pareto solution can be applied to a number of continuous
dynamic wind speeds with a certain degree of satisfaction,
thus to avoid the time delay and the increase in scheduling
cost caused by the frequent calculation of the Pareto optimal
solution under each dynamic wind power output.

IV. REACTIVE MULTI-OBJECTIVE ROBUST
EVOLUTIONARY OPTIMIZATION ALGORITHM FOR
INTERCONNECTED POWER GRIDS

A. Reactive Multi-objective Robust Evolutionary Algorithm
Model for Interconnected Power Grids

The core of reactive multi-objective optimization of multi-
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provincial interconnected power systems as shown in (5) is
to find a set of robust pare to optimal solution sets, and the
robust Pareto optimal solution denoted as:

RPS = RPS(1),-- ,RPS(LS),LS < K (6)

where each robust Pareto optimal solution RPS(i) can be
applied to multiple continuous dynamic wind power output
fluctuations. Traditional dynamic multi-objective optimization
problems often only consider the convergence and distribution
under the dynamic changes of a certain grid parameter, without
considering the applicability of the Pareto solution under the
continuous dynamic fluctuation of wind power output in the
future. How to evaluate the adaptability of wind power fluctu-
ation of every reactive Pareto solution and how to approximate
the convergence of the real Pareto front under every dynamic
fluctuation are crucial in the robust multi-objective reactive
power optimization for interconnected power systems.

In dynamic multi-objective robust optimization, RPOOT
obtains the robust Pareto optimal solution PS(k) of each dy-
namic wind power output, rather than seeking a Pareto optimal
solution PS (k). When the wind power fluctuates, the method
not only needs to approximate convergence to the real Pareto
optimal solution, but also should approximate the real Pareto
optimal solution as much as possible, while the subsequent
wind power output continues to fluctuate dynamically. In this
way, it is necessary to know the current fitness of the Pareto
solution PS(k) and its fitness value under future possible
wind power fluctuations during evolutionary optimization. The
following model is constructed for the dynamic robust Pareto
optimization.

min F*(z, a(k)) = (/1" (2, a(k)), -, fir (@, a(k)))
o IFew o) — Pl okt _
[F2ve (@, (k)| -
q=0,---,T—1
(N

where x is the reactive power optimal solution for the in-
terconnected grid; k is the corresponding moment of wind
power output; 1" is the wind power fluctuation time window
of sending-end grid; F*'¢(z, a(k)) is the average fitness value
of solution x within a fixed time window 7" under the dynamic
wind power output moment k; 7 is the stability threshold
of the standard deviation of the current fitness function of
solution x and the fitness value at 7-1ladjacent wind power
output moments.

While ¢ = 0 in F'(z, a(k+q)), the result is F'(z, a(k+q)) =
F(z,a(k)).

Equation (7) guarantees the approximation ability of solu-
tion x to the real Pareto front under the continuous constraints
within the time window.

B. Evolutionary Optimization Algorithm of Reactive Power
Multi-objective RPOOT Based on Decomposition

In the above robust evolutionary algorithm model, two types
of robustness metrics in the dynamic multi-objective robust
optimization problem are transformed into the performance
robustness under the fixed-time robustness, that is, the average

fitness value of a certain solution under current wind power
output and future 7-1 wind power output continuous fluctu-
ations [20]-[22]. Therefore, for this type of transformation
model, the core of the optimization process is to find a robust
Pareto optimal solution with good convergence to current and
future dynamic wind power output within the time window.
Being different from the traditional DMOPs, on the one
hand, the optimization objective is the average fitness of each
solution in the time window T'; on the other hand, the fitness
value of the solution under unknown conditions is unknown
in the future, the estimation should be made by applying
the time series prediction method. In order to solve the
model, the traditional multi-objective evolutionary algorithm
based on decomposition (MOEA/D) is adopted, in which,
the decomposition method uses the penalty-based boundary
intersection (PBI). The algorithm flow is shown in Fig. 2.

Initialization moment k=1, Get
environment parameters a (k)

¥

Randomly initialized population p,Estimating the
current average fitness value for each solution x in
the population F(x;, a(k)), i=1,2,...,.N
12
Initial reference point, z(k)=(z,(k),***,z,,(k)), among
them, z;(k)=min {f{(x,. ()., fiCeyecx(R)}

l¢
&
Generate weight phasors according to uniform
distribution, The dynamic PBI decomposition
method is used to decompose the target into N
dynamic scalar quantum problems, in which the
dynamic scalar objective function is f,(x(k),4,z)
12
Calculate the Euclidean distance of any two
weight phasors, and select the nearest r phasors
as their neighborhood for each phasor, denoted as
B()=(A;-++4), i=1,2,...,N
v

Let evolutionary algebra =1,
total evolution algebra Gen

According to the differential
evolution and Gaussian mutation,
the progeny P() is generated, and
the reference point z(k) is updated

for each j=1,2,...,m; updating the
neighborhood solution

Output (xy,0(k)),f;(xn,a(k))

{FOoy(k)a(k)),++ Foog(R)a(k))}
A as a robust Pare optimal solution in
the kth dynamic environment

Fig. 2. Flow chart of dynamic multi-objective robust optimization algorithm.
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In the process of evolution, the core of constraint processing
lies in the determination of constraint satisfaction. As seen
in (7), due to the influence of the prediction error and the
dynamic change of wind power output, with the increase
of T, the feasible solution that satisfies constraints at 7T
will be greatly reduced. Therefore, the above constraints are
transformed into the degree of constraint satisfaction, and
individuals are compared by using the weakened constraint
after being transformed.

I, a(k) - F,olk 1 )
e S O )

_ngoquov‘”aT_l

3
Based on the above transformation of constraints, the defi-
nition of the constraint satisfaction function is:

Vi(w, a(k)) =Y max{gq(z, a(k)),0} )
q=0
where s =0,--- , T — 1.
When Vi(z,a(k)) = 0 is satisfied, the individual x is a
weak feasible solution that satisfies the first s constraints in
(9); otherwise, x is not a weak feasible solution.

C. Reactive Multi-objective Prediction Mechanism

In the process of solving the dynamic multi-objective
optimization problem, the prediction mechanism can effec-
tively improve the evolutionary efficiency of the algorithm. In
RPOOQOT, the robustness of the robust Pareto solution should
be considered to determine its applicability to dynamic wind
power output in the future. Therefore, the fitness value of
the robust Pareto solution under future dynamic wind power
output should be used. For the actual dynamic optimization
problem on line, the fitness value of the solution under
future dynamic wind power output is unknown and needs to
be estimated by the prediction method [23]. Therefore, the
essence of prediction in RPOOT is to estimate the fitness value
of the current solution under future continuous wind power
output based on historical information and trends of dynamic
wind power output. In the robust evolutionary algorithm
model, the optimization goal is the average fitness function
value F*¢(z, a(k)). It can be determined from (7) that the
average fitness of x in the case of continuous fluctuation
of wind power output in the time window depends on the
fitness value of x in the future continuous fluctuation of
wind power output. Therefore, in the process of dynamic
multi-objective robust optimization, the future fitness value
of all solutions in each generation population needs to be
predicted on multiple objectives, so that the RPOOT prediction
problem is transformed into a multi-dimensional time series
prediction problem with a dimension of N x M. To reduce the
computational complexity, the design of the prediction method
needs to be considered from the following two aspects: first,
the space complexity of the prediction method can’t be too
high; second, the time complexity of the prediction method
can’t be too large; otherwise real-time performance of the
dynamic multi-objective optimization algorithm will be greatly
affected.

The moving average (MA) prediction model is applied in
this paper. MA is a simple and effective time series prediction
model. First, supposing that a time series with a length of m
for each solution 2 in the population under the k*" dynamic
wind power output is constructed:

(F(z,alk —m+1)), -, F(z,a(k))) (10)

where, F(z,a(i)), k—m+1 < i < k is the vector of fitness

of solution x under the wind power output, which is composed

of fj(z,a(k)), 1 < j < M. The purpose of the prediction is

to estimate F'(z,a(k + 1)), 1 < i < T — 1 under the future

dynamic wind power output based on the above time series.
The MA model is defined as follows:

F(z,a(k+1)) =b+e(k) (11)

where e(k) ~ U(0,0?) is the Gaussian of the white noise
variance o2. b is the average estimate of the first m data points
adjacent in the time series.

1 m
b=— F i — j
2 Flalk+i=j) (12)
J=1
Variance o2 is estimated by the following equation:
1 m
~2 - . 2
=— F k —j))—0b 13
7=y Ptk ri=) bt a3

It can be seen that the fitness value of F'(z, a(k +1)) under
continuous fluctuations of future wind power output can be
predicted as a value with mean b and variance o2.

V. SIMULATION AND RESULT ANALYSIS

To verify the feasibility and superiority of the proposed
control method, modeling and simulation are carried out in
a MATLAB based on the dynamic reactive power multi-
objective robust evolutionary optimization model for inter-
connected power grids mentioned above. The example of an
interconnected power system is shown in Fig. 3.

In Fig. 3, the Jilin Power Grid is connected to the Eastern
Mongolia Power Grid via three 500 kV AC transmission lines,
while the Liaoning Power Grid is connected to the Eastern
Mongolia Power Grid via one 500 kV AC transmission line,
while the Shandong Power Grid is connected to the Eastern
Mongolia Power Grid via one 500 kV DC transmission line.
The four provincial power grids are connected by 5 lines, 4 AC
lines and 1 DC line, forming a large interconnected power grid.
Wind power in Jilin, Liaoning and Eastern Mongolia grids
are collected in the Zhalute AC and DC station in Eastern
Mongolia, which is sent out to the Shandong Power Grid
via DC channels. 5 and 2 sets of thermal power units are
respectively arranged in the Eastern Mongolia Power Grid and
Jilin Power Grid to stabilize the wind power fluctuations.

The interconnected system model parameters used in this
paper are as follows: the load of the Eastern Mongolia Power
Grid is 5,000 MW, the load of the Liaoning Power Grid is
20,000 MW, the load of the Jilin Power Grid is 15,000 MW
and the load of the Shandong Power Grid is 50,000 MW.
The operational conditions of the interconnected systems in
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Fig. 3. Topological structure of interconnected power system.

the simulation are as follows: Eastern Mongolia Wind Power
delivers 7,000 MW, Jilin Wind Power delivers 1,500 MW and
the Liaoning Wind Power delivers 1,500 MW. The total wind
power transmission capacity in the interconnected system is
1,000 kW. With 25% uncertainty added to the output of wind
power and a sudden increase in total wind power output in
the interconnected grid, two cases of simulation analysis have
been made, one with dynamic robust optimization control and
the other one without dynamic robust optimization control.
Reactive power curves in the interconnected system are shown
in Fig. 4.

Rea‘c/tive dynamic robust control is

g 1.0
5203
v O
2z 0.6
g i 0.4 Join reactive dynamic
5.2 robust control
=502
=
20 I I 1 1 | )
0 1 2 3 4 5
1(s)

Fig. 4. Dynamic robust optimization of reactive power.

As can be seen from Fig. 4, after adding the reactive dy-
namic robust optimization control, the reactive power response
speed of the system is significantly increased, and reactive
power fluctuations and overshoot are significantly reduced.

In the simulation system, the reactive multi-objective dy-
namic robust evolutionary optimization model of the inter-
connected power grid established in this paper is used; the
wind power fluctuation of —30 ~ 30% is added to the typical
daily load curve of multiple power grids in the whole system,
and 25% uncertainty of the wind power output disturbance
is added at 17:00 to optimize reactive power control of
the interconnection system. The simulated calculation about
voltage fluctuation of the 500 kV system in 4 provincial power
grids is as shown in Figs. 5-8.
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Fig. 5. Voltage and reactive power level under multi-objective robust
optimization (Eastern Mongolia Grid). (a) Uncertainty of the wind power
is 0. (b) Uncertainty of the wind power is 25%.
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Fig. 6. Voltage and reactive power level under multi-objective robust opti-
mization (Jilin Grid). (a) Uncertainty of the wind power is 0. (b) Uncertainty
of the wind power is 25%.
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Fig. 7.  Voltage and reactive power level under multi-objective robust
optimization (Liaoning Grid). (a) The uncertainty of the wind power is 0.
(b) The uncertainty of the wind power is 25%.
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TABLE I
COMPARISON OF VOLTAGE FLUCTUATION INDEXES BEFORE AND AFTER REACTIVE MULTI-OBJECTIVE ROBUST OPTIMIZATION
. Average daily Peak Daily Average

R(fg‘e“ral i Valley Difference (kV) B?szence Drop (%)  Standard Deviation (kV) (Si;a‘.’gt?‘;‘jl decrease (%)
power gri No control ~ With control ! p (7o No control ~ With control Vit se (7
Eastern Mongolia ~ 35.55 25.35 28.69 15.01 10.94 27.12

Liaoning 33.28 27.24 18.15 16.09 10.83 32.69

Jilin 32.29 24.75 23.35 12.17 10.69 12.16

Shandong 36.11 22.99 36.33 15.12 10.67 29.43

g . . . .

3 1.008 ' ' ' grid, are active power optimization method based on finding

5 ! After control the robust dynamic Pareto optimal solution sets of intercon-

7 nected provincial power grids was proposed in this paper for

& 0972 large-scale power grids interconnected by multi-terminal wind

) Before control .. .

k= power AC-DC transmission lines.

o L L L . . . . . . .

> 0‘966‘:00 6:00 12:00 18:00 24:00 1) The reactive dynamic multi-objective optimization prob-
U(lan)e lem of multiple provincial grids was transformed into two

21, types of robust optimization models. The decomposition-based

< i i i . . . . .. . .

> Look multi-objective evolutionary optimization method was applied

§ 0'98 After control to construct a reactive dynamic multi-objective decomposition

B robust evolutionary optimization method.

L 096+ Before control ] K o .

Z 2) According to the characteristics of wind power output

Q

0.94 A s . . - . )

E 0-00 6:00 12:00 13:00 24:00 fluctuation, a .ﬁtness prgdlctlon algorlthm was established
time for the dynamic fluctuation of future wind power output to
®) restrain reactive power exchange caused by wind power output

Fig. 8. Voltage and reactive power level under multi-objective robust fluctuation.

optimization (Shandong Grid). (a) Uncertainty of the wind power is 0. (b)
Uncertainty of the wind power is 25%.

It can be seen from Figs. 5-8 that the fluctuation of reactive
power and voltage of all the grids after the inputting control
are obviously smaller than those without control. There is
an obvious voltage drop in the contact node of each grid at
17:00. After the reactive power multi-objective optimization
of the interconnected power grid, voltage and reactive power
of all the provincial power grids in the entire interconnected
power grid could stay stable to suppress the voltage fluctuation
effectively, even if the wind power output experiences severe
change.

To further prove the effectiveness of the control, two long
periods of time were chosen for comparative analysis. In view
of the uncertainties of the output fluctuation of various wind
power sources in the interconnected system, 3-5 periods of
time with small wind power fluctuations and 3-5 periods of
time with large wind power fluctuations are selected for model
verification. The time period of about 20-30 days has good
representativeness.

Under the two types of wind power fluctuation conditions,
the reactive power voltage controls of the interconnected
grid were carried out respectively with the dynamic multi-
objective robust algorithm and without the algorithm to verify
the effectiveness of the model. Data analysis and comparison
results are shown in Table I. The data comparison results show
that the dynamic multi-objective robust optimization model for
interconnected power grids has a good effect on voltage and
reactive power control over a long time scale.

VI. CONCLUSION

For solving the robust optimization problem during strong
nonlinear transient processes in the interconnected power

3) The results of simulation analysis about large-scale
interconnected power grids formed by four provincial power
grids showed that reactive power voltage control based on
the reactive power dynamic multi-objective fast robust evo-
lutionary optimization model of interconnected power grids
has obtained favorable control effect.
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