A Comprehensive Compiler-Assisted Thread Abstraction
for Resource-Constrained Systems

Alexander Bernauer
Institute for Pervasive Computing
ETH Zirich
bernauer@inf.ethz.ch

ABSTRACT

While size and complexity of sensor networks software has in
creased significantly in recent years, the hardware cafebibf
sensor nodes have been remaining very constrained. Therpied
nant event-based programming paradigm addresses thelseahar
constraints, but does not scale well with the growing safévem-
plexity, often leading to software that is hard-to-manageé error-
prone. Thread abstractions could remedy this situationgxist-
ing solutions in sensor networks either provide incompthtead
semantics or introduce a significant resource overheads fEhi
flects the common understanding that one has to trade ekm@ress
ness for efficiency and vice versa. Our work, however, shbwast t
this trade-off is not inherent to resource-constrainedesys. We
propose a comprehensive compiler-assisted cooperatigading
abstraction, where full-fledged thread-based C code islated to
efficient event-based C code that runs atop an event-baszdtop
ing system such as Contiki or TinyOS. Our evaluation shows th
our approach outperforms thread libraries and generatis that
is almost as efficient as hand-written event-based code avith-
heads of 1 % RAM, 2 % CPU, and 3 % ROM.

Categories and Subject Descriptors

D.1.4 [Programming Techniquegd: Sequential Programming; D.3.4
[Programming Language$: Processors-Sode generationD.4.1
[Operating System$: Process ManagementFhreads

Keywords

Wireless Sensor Networks, Threads, Compiler

1. INTRODUCTION

One of the main challenges in wireless sensor networks (WWSNs
is to cope with the scarcity of physical resources. Whiletimeo
domains Moore’s law has led to hardware with ever increasag
pabilities, in WSNs advances in technology are applied td&/a
reduced size and cost [21]. Also, energy efficiency is ctdoraa
long system life-time, which is why today’s deploymentd sper-

Permission to make digital or hard copies of all or part o tvork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuies prior specific
permission and/or a fee.

IPSN’'13,April 8-11, 2013, Philadelphia, Pennsylvania, USA.
Copyright 2013 ACM 978-1-4503-1959-1/13/04 ...$15.00.

Kay ROmer
Institute of Computer Engineering
University of Libeck

roemer@iti.uni-luebeck.de

ate with 8- or 16- bit MCUs, as a modern 32-bit MCU such as the
ARM Cortex-M3 “incurs a~ 2x overhead in power draw” [11].

Due to these resource constraints, the event-based progngm
paradigm is predominant in sensor networks, as it allowddamp
mentations of concurrent applications with little memong @om-
putational overhead. While this approach is appropriatsifaple
sleep-sample-send applications, WSN software is recegatlying
complexity with motes running IP stacks [9], HTTP/CoAP seeg
[12], middleware [4], and business logic [18]. Such sofwvar-
cludes complex control and data flows that do not fit well with
the event-based paradigm. In fact, one has to do both, ingriem
complex control flows via long chains of events and handleitsgu
asynchronous functions, and manually manage data flowigsc
different event handlers. This often leads to confusingd kaman-
age, and error-prone code (e.g., [1, 6, 10, 16, 19, 21]).

For this reason, there have been quite some efforts to enable
thread-based programming on sensor nodes, as synchranuis f
tions and sequential computation often lead to simpler aiteb
manageable code. However, these thread libraries are éithe
ited in their expressiveness (e.g. [25]), or they add higérlesads
compared to event-based programs (e.g. [16]). CompilEstasi
thread abstractions (e.g., [6, 21]) escape this tradeyoffdnslat-
ing thread-based programs into equivalent event-bases, times
exploiting the duality of threads and events [13]. Overdlé ap-
plication is not only executed by an efficient event-basedime
system but the compiler can additionally apply applicaspecific
optimizations, which is why this approach is promising. tnf
tunately, existing compiler-assisted thread abstrastiomy pro-
vide incomplete thread semantiddrotothreads the most popular
amongst them, additionally fails to identify invalid inpamd gen-
erates faulty programs instead [6].

This paper presents a comprehensive compiler-assistedahr
abstraction that offers a full-fledged cooperative thnegdnodel.
We thereby target advanced software in the service andcappli
tion layers where cooperative threads provide a good pnogriag
model, as timing issues are of lesser conce@tram our com-
piler implementation, rejects invalid input and otherwigmerates
event-based code for any event-based runtime environmeeputir-
ing only a thin platform abstraction layer to be implemenede.
The supported thread model is only marginally constrictee t
limits that are inherent to the compiler-based approach.

The contributions of this paper are:

1. Aplatform-agnostic source-to-source transformatiresne
which translates ISO/IEC 9899:1999 (C99) programs using
cooperative threads and synchronous functions into egquiva
lent C99 program using events and asynchronous functions,

2. Ocram, a GPL-licensed compiler prototype that implement
the transformation,

3. platform abstraction layers to bind Ocram to Contiki and is used instead. Additionally, while a runtime-based sotugl-
TinyOS, ways has to support the most generic case, static analysiexca
ploit application-specific optimizations.
The first system that provided a compiler-assisted thréesttac-
tion for WSNs was Contiki'protothreads[6]. Technically, pro-
({othreads are a set of C preprocessor macros that enablgrthe s
actical illusion of threads and synchronous functionstiescon-
text of each thread (a.k.a. protothread process) compidggwo
bytes, the authors claim to provide the most efficient thiegale-
The remainder of the paper is organized as follows: Section 2 mentation. At a closer look, however, this convincing perfance
and 3 provide the context and an overview of our approach- Sec comes at the price of incomplete thread semantics. Firdt,dhe

4. an evaluation which a) shows the feasibility of compiler-
assisted threads for three different WSN application arche
types, b) verifies the correctness of the transformatiod, an
¢) measures the resource costs of this abstraction compare
to both native event-based implementations and thread li-
braries.

tion 4 describes the translation scheme while Section Sredbe state of automatic variables is not preserved across yieiats
interoperability between generated and existing eveséth@ode. Second, yield points can only be placed in the thread sta-fu
Section 6 documents the setup of the conducted experimadts a tion, which severely restricts the software architecturgrmto-
Section 7 presents the results of our evaluation. Fina#gtin 8 threads-based applications. In addition, certain usetakes are
gives an outlook on future research directions. not detected at compile time, but have to be indirectly exachi
by observing unexpected runtime behavior. Such mistakebea
2. STATE OF THE ART as subtle as usingwi t ch statements that interfere with those that

are expanded from the protothreads macros. As the C preproce
sor can only perform local substitution of language tokehese
limitations are inherent to the protothreads abstraction.

TinyVT[21] employs a dedicated compiler. This abstraction has
been specifically designed for TinyOS, which provides a comept-
based software architecture with event-based interfates/VT
enables software developers to implement single compsrant
writing sequential code, as it is possible to inline evemtdiers in
code blocks following a speciawai t statement. Also, the run-
time system preserves the state of automatic variablesioédth
TinyVT overcomes many of protothreads’ drawbacks, the sttpd
thread semantics is still restricted and deviates subatignfrom
common threading models. First of all, inlined event hargdieay
not containawai t statements. Additionally, it is not possible to
split the implementation of a component into multiple fuons,
which implies that code cannot be shared between multiptatts
and functions cannot be re-entrant.

The most recent compiler-assisted thread abstraction$&acked
C[17], “a source-to-source transformation that can traastaulti-
threaded programs into stackless continuations.” Thistighaid
approach, as the input application uses a thread librarly agc
TOSThreads [10] and the generated application relies on@ mo
ified version of this library. The translation reduces themoey re-
quirements of the application in particular by softening timing
guarantees of context switching (so-callady preemptiop Over-
all, the generated runtime system still depends on a thibeaty
and it remains to be seen if lazy preemption is appropriaté/f8N
applications.

In summary, runtime-based thread abstractions are naimeso
efficient and existing compiler-assisted thread abstastprovide
only incomplete or non-standard thread semantics. The aure
tribution of our work lies in overcoming the seemingly inéiet
trade-off between completeness of thread semantics androes
overheads that is prevalent in the state of the art. Spetyficar
approach offers cooperative threads with only minor rettms
while achieving the efficiency of event-based programmi@uir
dedicated compiler performs a platform-agnostic souoegseurce
transformation that exploits application-specific optiations, and
the output application only relies on the existence of amebased
operating system (OS).

Up to our knowledge, similar approaches have not been taken i
other embedded systems domains so far, presumably begglse a
cation complexity is low enough to be manageable with eyemts
because availability of resources is high enough to allavttfeead
libraries.

Operating systems lik&inyOS[8] and Contiki [5] target small
WSN devices by utilizing resource-efficient event dispatghHow-
ever, a continuous demand for thread abstractions hasdetiffitr-
ent approaches to enable threads on resource-constrgistedhs.
Unfortunately, all of them either have high resource-detisaor
provide only incomplete or non-standard thread semantics.

Fibers for instance, allow for exactly one additional thread [25]
while Y-Threadsindeed support multiple threads, but require to
manually distinguish “run-to-completion threads” [19]o imple-
ment a comprehensive thread abstractions, the most commapn w
is to have one stack per thread and switch context either dop-c
erative [16] or a preemptive fashion [2, 10]. Multiple, pteeated
stacks are, however, not resource efficient for two reasbirst,
each stack has to provide enough cut-off to support the vearst
of occurring interrupt handlers operating on the respeatiwrent
stack. And second, the size of all preallocated stacks iallysu
higher than the actual maximum stack consumption of an appli
cation because usually not all threads reach their maxintaok s
usage at the same time. As a consequence, multiple, pragdtbc
stacks do not scale well with the number of threads.

Qutside of the WSN domain, von Behren et al. have addressed
this problem withCappriccio[24]. This system automatically aug-
ments thread-based applications with code for dynamicksikc
location, thus avoiding preallocated stacks. Althoughk #rables
high performance and scalability for Internet services imuk, it is
not a viable option for WSNs. First of all, with dynamic stankn-
agement itis hard to guarantee that out-of-memory sitnatitw no
occur, which is certainly crucial for the reliability of améedded
system. Also, dynamic memory management not only introglace
runtime overhead, but also poses the problem of memory feagm
tation, as typical WSN devices are not equipped with a memory
management unit (MMU).

In general, threads and events are known to be dual to eaeh oth

[13]. Adya et al. even mix thread-based and event-basediocale
single program by using small adaptors and a special sabefdq!
As this is a multi-stacked, runtime-based solution, howelas
not resource-efficient. Overall, run-time based threadratons
entail a trade-off between completeness of the thread s&rmamd
resource overhead compared to event-based programming.

In contrast, compiler-assisted thread abstractions éxthke du-
ality of threads and events by translating a thread-basegram
into an equivalent event-based program, thus escapindrétds-
off. While the developer has the comfort of threads, theltiesu
program is both single-stacked and avoids the extra costeith-
ing overhead of a thread scheduler, as the existing evepatdiser

3. OVERVIEW

This sections gives an overview of relevant terms and progra
ming paradigms (Section 3.1), introduces our approach agta h
level (Section 3.2), and discusses its fundamental lifoitat(Sec-
tion 3.3).

3.1 Programming Paradigms

An application usually consists of multiptasks which are log-
ical groups of computations that pursue a common goal. Tefsks
fectively perform their work by calling functions of ttapplication
programming interfac¢API) of the OS. In case of aynchronous
function, the associated operation is guaranteed to hawpleted
when the function returns. In contrast, calling asynchronous
function only triggers an operation which will complete etelly.

The reportedly most efficient way to execute multiple tagks v
tually in parallel is to follow theevent-based paradigmin this

T-Code E-Code
Application |:Tran§:§ Application
1™ Tasynchronous APT |
L Somehronos A
~_| PAL
ﬁ: “asynchronous APT L
oS

Figure 1: System OverviewThe compiler translates the thread-
based program (T-code) into an equivalent event-basedaro(E-
code). The platform abstraction layer (PAL) mediates betwihe
generated application and the given operating system (OS).

paradigm, a task is formed by a causal chain of events and even functions into event handlers (cf. Section 4.2) and to presthe

handler functions, which is frequently initiated by redogrevents.
As the runtime system waits for a handler function to retwefote
processing the next event, a single stack suffices to exalttisks.
One major source of complexity of this paradigm is that ménag
the control flow of a task is hard, as the code is spread outrouer
tiple event handlers. A second major source of complexithas
the execution contexts of tasks (i.e., the values of vagighhave

value of automatic variables across single invocationséided (cf.
Section 4.1). And of course, the E-code should be equivabethie
T-code (cf. Section 4.3) to ensure that it behaves as intebgéhe
T-code programmer.

The generated E-code application contains one centrat baan
dler function per thread which contains the inlined bodieallan-
volved interruptable functions. Always after calling arcéde API

to be manually managed and preserved between subsequeht eve function, the handler returns control to the PAL which ineskhe

handler invocations. Additionally, every function thallsan asyn-
chronous function becomes asynchronous itself, whichrsaely
applies to the whole call stack and forces all functions’ lengen-
tations to be split up (cf. “stack ripping” [1]). In summanye
event-based programming paradigm is efficient, but reguaréot
of cumbersome and error-prone work to be done manually.

In contrast, thehread-based paradigmvercomes these prob-

lems by means of synchronous OS APIs, where the control flow

is sequential, and a task’s context can be storealitomatic(i.e.,
function-local) variables using a scope-based automiaeclycle
management. Ahreadis one flow of control that drives the execu-
tion of a task. It starts with the invocation offaread start function
and sequentially executes the statements of this function.

The reason why threads are considered inefficient is thatthe
text of a task is the complete stack of its thread. As it is galhe
difficult to estimate the maximum size of a stack, and as hardw
interrupt handlers always operate on the current stack ande
invoked at any point in time, a common approach is to add emoug
cutoff to be safe from out-of-stack situations. On sensaies
though, the cutoffs of a reasonable amount of threads qutkh
up beyond the total amount of available memory. This is wioy pr
viding comprehensive thread abstractions for WSNs is noatr

3.2 Our Approach

As depicted in Figure 1, in the context of our work, a dedi-
cated compiler called Ocram translates a thread-basedcapph
(T-codg into an equivalent event-based applicati@dodg. The
T-code application is built upon a synchronous T-code APictvh
has been manually derived from an asynchronous OS APl ddste
of implementing the T-code APl — which is what runtime-based
thread abstractions do — the compiler generates a corrdsppn
E-code APl which is used by the generated E-code applicaiiba
platform abstraction laye(PAL) (cf. Section 5) implements the E-
code API by means of the OS API.

Given the call graph of a T-code application, every functioet
has a path leading to a T-code API function is referred tinas
terruptable functionand every edge of such a path is referred to
asinterruptable call The compiler's task is to turn interruptable

handler again as soon as the requested event occurs. Rgsthin
task is possible, as each point of continuation is equippita av
label whose address is taken by the handler, passed to theaRAL
retrieved as a function parameter with the subsequent aticot

Additionally, the compiler generates a static data stmecfor
each thread which contains all variables that are read aften-
terruptable call. By replacing automatic variables withittstatic
counterparts, the relevant state of the task stays avail&hlerall,
the transformation of the control flow preserves the ordestate-
ment execution while the transformation of the data flow gmness
the effect of each statement, which is why T-code and E-coele a
equivalent.

3.3 Limitations

A major drawback of static analysis and translation is thét i
limited to decidable problems. In particular, the comphias to be
able to infer the application’s call graph, which impliesgthings.
First, it is not allowed to take the address of an interrujgtéiinc-
tion. Instead one has to use case differentiation, whickesonly
moderate overhead. Second, interruptable functions meyenie-
cursive, also because this would turn the estimation of taeks
consumption undecidable. For the same reason, howevarsiee
algorithms are uncommon in embedded systems, which maises th
a minor restriction. And third, we can not support dynamie#u
creation but have to statically assign threads with thréad finc-
tions. As WSN applications tend to be composed of a fixed set of
tasks, we don’t consider this a severe limitation either.

These limitations are all inherent to compiler-assistquaaches
and our compiler reliably rejects invalid T-code. Thus, Wil it
is appropriate to refer to our approach as a comprehensigeadh
abstraction.

Besides these limitations, the scarce resources additiaral
for cooperative threads as opposed to preemptive ones.ofreco
ative style, context switching only occurs at yield poiritgjs the
saved context only consists of the variables that are retad thie
yield point. In contrast, the context in preemptive stylaesists of
the thread’s complete stack and all CPU registers.

Of course, cooperative threads can not guarantee timings, p

typedef struct {
voi d*x cont;
doubl e resul t;
charx s;
int i;
uni on {
frane_c2_t c2;
frame_c3_t c3;
} franes;
} frane_cl_t;

doubl e cl(char* s){
c2(s);
int i =f();
c3();

return i;

}

POO~NOUAWNPRE

o

Figure 2: TheT-stack structureof an interruptable functionc1,
c2, andc3 are interruptable functions; is not.

orities, and fairness irrespective of the concrete implaatéen of
each thread. Thus, our approach targets application anidsday-
ers of WSN applications where real-time is less of an issug.iA
contrast to general purpose computing devices, motes aedlyis
not deployed with untrusted and thus uncooperative codeijniag
cooperative threads is feasible.

Finally, we consider cooperative threads the easier pnogriag
model, as shared state has to be checked only after yieltspdin
contrast, preemptive threads are non-deterministic baudief14],
and practice has shown that “humans are quickly overwhelmged
concurrency and find it much more difficult to reason about con
current than sequential code” [23].

4. TRANSLATION SCHEME

The goal of the translation is to transform valid T-code eqoiv-
alent E-code. To this end, the translation distinguishere/den
interruptable and non-interruptable functions. Non4intptable
functions are passed through unchanged and are not ceeciaey
further.

Regarding interruptable functions, the first step is thediation
into an intermediate representation (IR). Besides sontenteal-
ities such as the uniqueness of identifiers this implies tviogs.
First,whi | e andf or loops are replaced hiyf andgot o state-
ments with labels. And second, interruptable calls onlyeappn
one of two ways. Théirst normal formis a statement consisting of
a single interruptable call. In contrast, thecond normal forraon-
tains an arbitrary assignment operator, an I-value witirgatrupt-
able calls, and a single interruptable call, i.e., anyttihthe form
expression = interruptabl e_cal |l (paraneters);.

To establish the normal form, we make use of the fact that-inte
ruptable calls in nested expressions can be substitutedvoyari-
ables that are initialized by the same interruptable call directly
preceding statement. Special care is needed to handle &oole
short-circuit evaluation correctly, which is achieved Ipliting
Boolean expressions into a sequence folstatements as needed.

4.1 Data Flow

Given the IR, we use Hoopl [20] to perform a liveness analysis
on each interruptable function to find the seftcatical variables
i.e., automatic variables that are possibly read after serrumpt-
able call and thus have to be preserved. Because aliasing tur
this into an undecidable problem, the compiler makes coatiee
choices such as considering a variable as critical if itsesklis
taken somewhere.

The compiler then generates a so-callestack framdor each
interruptable function (cf. Figure 2). Such a frame corgatine
continuation i.e., information about where execution should con-
tinue when the interruptable function returns (line 2), teeurn
value of the function if existent (line 3), its parameteiadl4), its

void blinky() {
while(1) {
wai t () ;
/1 do sonet hing

8
1 |void thread_0O(..) {
2 |/1...
3 |start: if (!1) return;
4 stack_blinky. franes.wait.cont = &l abel _blinky_1;
5 goto | abel _wait_0;
6 |l abel _blinky_1:
7 /1 do sonet hing
8 goto start;
9 |l abel _wait_0:
10 /1 E-code body of wait
11 goto *stack_blinky.franes.wait.cont;
12 |}
Figure 3:Interruptable call of an interruptable function
void wait() {
sl eep(23);
/1 do sonet hing
}
(2
1 {void thread_O(void* cont) {
2 if (cont) goto *cont;
3 |//... E-code body of blinky
4 |l abel _wait_0O:
5 stack_blinky.franes.wait.frames.sleep.until = 23;
6 stack_blinky.frames.wait.franes. sl eep.cont =\
7 &8&l abel _wait_1,;
8 sl eep(&stack_blinky.frames. wait.franes. sl eep);
9 return;
10 || abel _wait _1:
11 /1 do sonet hing
12 goto *stack_blinky.franes.wait.cont;
13 |}

Figure 4:Interruptable call of a T-code API function

critical variables (line 5), andani on of the T-stack frames of all
callees (lines 6-9). Furthermore, one T-stack frame fon daead
starting function is instantiated statically and is caltbd T-stack
of the thread.

Similarly, theE-stack framef a function contains all of its non-
critical variables, and for each thread thai on of all E-stack
frames of the involved functions establish tRestack which is
an automatic variable of ththread execution functiofcf. next
section). Given these stacks, the compiler is rewritingeasdo
variables by replacing them with the corresponding vaeslfitom
the stacks.

4.2 Control Flow

To translate the control flow, the bodies of all interrupéatoinc-
tions that are used by a thread are inlined into one comtiimead
execution functiofior each thread. This thread execution function
serves as a single event handler function for all eventseraimg
the corresponding thread. When inlining, the compiler ps|@v-
ery first statement of a function body and every first statdratar
an interruptable call with a unique label, which serves asrdic-
uation point. The compiler also translates all interrufgdbnction
calls and returns.

Figure 3 depicts an example of how interruptable calls terint
ruptable functions are replaced by the following sequerfictabe-

ments: First, the callee’s parameters are written to thdkgnot

shown). Second, the continuation information for the eaidewrit- 1 | int dt = 500;
ten to the T-stack (line 4). Third, got o jumps to the start of the 2 |A | int et t—' Fdz()'{tl*t'i' * } .
callee’s body (line 5). Similarly, everyet ur n statement in the 4 I Yﬁ; tisﬁe(—)? ,sfl {‘ncfuieﬁ)fﬁom s head; file
T-code is replaced by got o statement that uses the continuation
information stored on the T-stack (line 11). In case of aerint & [H | __attribute ((tc_api)) void sleep(int until);
ruptable call in second normal form, the function’s retuatue is ; _attribute_((tc_thread)) void blinky()
copied from the T-stack and assigned to the translatedievaithe 9
normal form’s assignment (not shown). 10 | unsigned char state;
Figure 4 shows that interruptable calls to T-code API fumi 15 I o i(H g{Et teds();
are replaced by a slightly different sequence of statemefitst, 13 |F | wait();
function parameters (line 5) and continuation informatiiome 6— 14 | state ~= Oxff;
7) are also copied to the T-stack. But then, the E-code ARftian 12 I) set_leds(state);
is called, passing it a pointer to its T-stack frame (linel8st, the 17 }
thread execution function returns in order to pass contackko 18))
the PAL (line 9). » v dwait() {
The PAL takes care to call the thread execution functioniddal; | | now = time();
t hr ead_0 in this example) back as soon as the operation has cem; | sl eep(now + dt);
pleted, passing it the continuation that has previousiy lmpied 23
to the T-stack of the API function. The first statement in etacbad
execution function is got o (line 2) that resumes the computation Y
at this location. Again, the return value of the API functimam be 1 | int dt = 500;
copied from its T-stack frame if necessary (not shown). 2 |A]| int get_leds() { /* ... «/}
3 | void set_leds(int state) { /* ... %/ }
4 | int time();
5
4.3 Equivalence and Correctness 11 e ot b untin
In order to reason about the correctness of the transfoomatie 8 | } frame_sleep_t;
define an event-based application tceloiivalento a thread-base g I ty\’jgidsi zg;:‘_”ifn nowr
application if and only if every possiblebservable behaviasf the 11 | union { frame_sleep t sleep; } frames;
E-code corresponds to one possible observable behavibedf-t 12 |B | } frame_wait _t;
code, assuming we would actually execute the T-code. The i | typedef St et { Cate
ition behind this definition is twofold. First, if from an obser's ;g I 32.Slogn? ffa;re_\i,a?t i{ wait; } franes;
point of view, the interactions with the environment penfied by 16 | } frame_blinky_t;
the E-code and T-code are indistinguishable from each otem 17 cl i bl i nk K bl i k-
both variants apparently do “the same thing” and it does ratt njq | frame_blinky_t tstack_blinky;
ter which one is actually executed. And second, if every okeske 20 |D | typedef struct { int now } eframe_wait_t;
interaction of the E-code can be explained by a hypothetxatu- 21)
tion of the T-code, then “nothing surprising” can happen. H 1 void sleep(frame_sieep_t+);
Theobservable behavios defined as the order of all API callg4 voi d thread_O(voi d* cont) {
including thevaluesof all input parameters. Note however, thatté [E | union { efrane_wait_t wait; } estack;
exact timing of the API calls is not part of the observabledvédr, 26 if (cont) .
; . L. . goto *cont;
as cooperative threads are not viable for timing-critieaks. The 2g
valueof a parameter is defined as the bit representation of a Variab | tstack_blinky.state = get_leds();
of primitive type, recursively applied to structures andoms, and 32 I st I"";t :(I 1) return;
the value of a pointer is the value of the referenced object. 32 | tstack blinky.franmes.wait.cont = &l abel blinky 1;
When comparing the observable behavior, we refer to coorebi®83 | goto |abel _wait_0;
ing functions from the T-code API and the E-code API. As the g% |F | abel _blinky L ~ _
. . e . | tstack_blinky.state "= Oxff;
ter is systematically generated from the former, our définiof g | set_leds(tstack blinky.state):
equivalence is sound. 37 | goto start;
The transformation of the data flow leaves the observable qge- | abel vait O
havior unchanged because the variables that live on thksstan ,, aeset g‘é‘ﬁ' \tw—i t.now = time():
simulate the life cycle of the corresponding automatic alslgs. 41 tstack_blinky.frames.wait.franes.sleep.until =\
First, this is because E-stacks contain only non-criticalables 42 estack. wait.now + dt;
43 |G tstack_blinky.frames.wait.franmes.sleep.cont =\

and are automatic variables themselves. And second, Ksssao-
ulate runtime stacks of threads by design. So overall, testa-
tion simply exchanges the memory locations of variabledendi
statements formed with these variables keep their effects. 3

Concerning the transformation of the control flow, the tfans 49

45
46
47

&8l abel _wait_1;

sl eep(& stack_blinky.frames.wait.franes. sl eep);

return;
| abel _wait_1:

goto *tstack_blinky.franes.wait.cont;
}

mation preserves both the sequence of statement betwesgtietdio
points and the continuation of each interruptable call clvimain-
tains the equivalence of each of these steps. And as thetexeofi
T-code is non-deterministic with regard to the order ofrile@ving
tasks, for each possible sequence of events in the E-codeithe

Figure 5: A minimal, but complete exampl&ranslating T-code

(top) to E-code (bottom).

typedef enum {

API CALL_sl eep,

/* constants for other APl calls */
} APICall;

typedef struct {
uni on {
struct {
frane_sl eep_t* framne;
struct etiner et;

} sleep;
/* contexts of other APl calls */
} ctx;

API Cal | apical |;
} ThreadCont ext ;

ThreadCont ext threads[1];

static char event_handl er_0O(struct pt* ptinfo,
process_event ev, process_data_t data)
{

voi d* cont;
cur_thread = &t hreads[0];
if (ptinfo->lc ==0) { // first invokation
ptinfo->lc 1;
cont = NULL;
} else if (cur_thread->apicall AP| CALL_sl eep
&& ev == PROCESS_EVENT_TI MER
&& data == &cur_t hread->ctx. sl eep.et) {
cont = cur_thread->ctx. sl eep. frame->ec_cont;
} /' else handle other APl calls */
thread_O(cont);
return PT_YI ELDED;

Thr eadCont ext * cur_t hread;

void sleep(frame_sleep_t* fr) {
cur_thread->ctx.sleep.frane = fr;
cur _t hread- >api cal | = API CALL_sl eep;
clock_time_t now = clock_tinme();
etimer_set(&cur_thread->ctx.sleep.et, fr->until-now);

}

Figure 6:PAL implementation ofl eep

one possible control flow in the T-code. From this we can deduc
the overall equivalence.

4.4 Example

Figure 5 shows a minimal, but complete example. First, thesli
labeled with A in both listings show that everything that &ther
an interruptable function nor a T-code API function is passem
T-code to E-code unchanged.

Label B shows the T-stack frame structures for the inteatipt
functionss| eep, wai t, andbl i nky. For example, the integer
st at e (E-code, line 14) originates from the automatic variable
st at e of the functionbl i nky (T-code, line 10). Label C shows
the instantiation of the T-stack.

Label D shows the E-stack frame for the functisai t which
is the only function with a non-critical variable. Thus, tBestack
(Label E) contains only one member.

Label F and G show the body of the functibhi nky andwai t ,
respectively, and we can see two modifications. First, actes
variables and parameters is altered. For instance, aazessat e
andnow (T-code, line 11 and 21) gets translated to access to the T-
stack and E-stack (E-code, line 29 and 40). And second, thteato
flow is translated into continuation passing style. Thiolaes in-
strumenting the code with labels marking the single comtiimns
(E-code, line 34, 39, and 47). It also involves rewritingeimtipt-
able calls to interruptable functions (E-code, line 32 aBpehd to
E-code API functions (E-code, line 41-46).

Finally, label H shows how declarations of API functions get
translated.

5. PLATFORM ABSTRACTION LAYER

As already mentioned in Section 3.2, the PAL has to implement
the E-code API by means of the OS API. But it is important to
note that the PAL is not a conceptual requirement of our ctampi
assisted approach to cooperative threads. Instead, iyisemuired
to use Ocram with existing operating systems. In generaleker,
one could very well design an OS that already provides thesys
atic E-code API as assumed by Ocram. In this case no PAL would
be needed at all.

The complexity of the PAL directly depends on how similar the

Figure 7:PAL event handler running a T-code thread.

existing OS API is to the systematic E-code API. Likewises th
integration of existing native code with generated E-calal$o
handled by the PAL in an OS-specific manner.

To illustrate the building blocks of a Contiki PAL that we dse
for our evaluation (cf. Section 6), we assume a minimalibtiode
example employing only a single thread and the single ARitfon
sl eep from Figure 5. As already depicted there, the translation
generate$r ame_sl eep_t and the PAL needs to implement the
E-code API functiors| eep(frame_sl eep_t* frane) and
ensure a proper thread continuation.

Despite protothreads, Contiki builds upon an event-baged a
proach with a single event handler function for each taskclanfy
this, we avoided using any of the protothreads macros foCthe
tiki PAL. We are still using what is called a “process” in Cititas
this is unavoidable, but without protothreads, a procesmiking
more than an event handler and some meta information.

Figure 6 shows the implementationgdfeep and Figure 7 shows
the event handler that executes the single T-code threadaiel|
that the event handler has been called for the very first tyledk-
ing at the meta information ipt i nf 0. We memorize this case
and call the generated thread execution functibnead_0 with a
NULL continuation, thus starting the task. Soon after that,dbkk t
callssl eep, which sets a timer and returns. So does the thread
execution function and the PAL, leaving the system to waitlie
PAL being called again with a timer event. As soon as this bapp
the PAL calls the thread execution function with the regestiecon-
tinuation, thus resuming the task. As the PAL uses standantiii
primitives to communicate with other modules, integratmgsting
native code poses no problems.

PALs for other operating systems of course look different, b
in general it should always be possible to perform the nacgss
mapping. For example, our proof-of-concept implementetid
a TinyOS PAL employs one instance of a special component per
T-code thread and each of these components is wired to vératev
components it needs to implement the E-code API. API funstio
like sl eep are implemented similarly to Figure 6, but the occur-
rence of an anticipated event results in a task being posteidh
then calls the thread execution function.

6. EVALUATION

In order to evaluate our approach we have written Ocram, a
Haskell-based implementation of the translation scherserded
in Section 4. The source code of Ocram and of the complete eval
uation is publishetlunder a GPL license.

'https://gi t hub. conf copt on/ ocr am

We have additionally chosen a set of three case studiesf@ach
lowing a real WSN application archetype (cf. Section 6.2)d a
overall covering a representative range of applicatioresygoro-
gramming concepts and concurrency patterns. We implemiente
each of these case studies in three variants (cf. Sectignlf.4 na-
tive event-based version, 2) a thread-based version usimgad li-
brary, and 3) a T-code version using Ocram. All nine resglfiro-
grams are written for Contiki and executed via COOJA/MSRBSim
while an extra COOJA plugin collects various logs and mesasur
ments. Section 6.3 explains how we used the logs to verifgdine
rectness of the applications and the transformation antiddeg: 4
describes which measurements we took how.

6.1 Variants

For each case study application we first implementettive
(NAT) variant using the event-based paradigm. To this engl, w
either copied existing code or wrote an implementatiorofeihg
common programing patterns as encountered in the Contiki co
munity. This implies using protothreads, which disguidest the
runtime system is event-based and adds an overhead of tws byt
per protothread. We argue, though, that this does not signifly
bias the ground truth of our evaluation, which is the perfamoe
of a native event-based application.

In Section 2 we have argued why compiler-assisted thread ab-
stractions are more efficient than runtime-based solutidosver-
ify this hypothesis, we have secondly written a threadedaaof
the application which is directly executed usinghaead library
(TL). For this purpose, we have ported the TinyThreads [h&jad
library to Contiki, as it is the only available full-fledgedread li-
brary for cooperative threads in sensor networks. We kepbésic
context switching code and the general scheduler archiecdbut
we had to adapt the details to Contiki's APls. We also removed
support for preemption and dynamic thread creation anditberm
tion to avoid extra overhead for features that our abstadiioes
not provide. Overall, a single protothread executes theduder
and all application-level threads.

Finally, the third variant is the E-code applicatigenerate{GEN)
from a thread-based T-code application. To enable a fair-com
parison, the three variants only differ from each other & thf-
ferent programming models require so. We thus share most non
interruptable code via separate translation units and seapied
as many source code lines between the variants as possible.

6.2 Case Study Applications

receiving:
receive)
add values to ring buffer

col l ecting:

sl eep 23 second

read from sensor

add value to ring buffer

transactions:

sendi ng: sleep until next timneout
sleep 127 seconds if notified:)
enpty ring buffer accept new transaction
el se:

aggr egat e val ues

send results to parent send transaction

doubl e transaction tinmeout|

receiver:
(a) DCA receive
cancel pending transaction
notify stop-and-wait
server: client:
receive sl eep 10 seconds
if notified: stop-and-wai t of PUT
elsgg(_:i response stop-and-wait of GET

notify avail abl e worker stop-and-wai t :

for each fragnent:

WDTKEF 1- create transaction
wai t send transaction
handl e cal | wai t

handl e call:

if read fast sensor:
read sensor

if read sl ow sensor:
sl eep // enul ation
read sensor

if tell:

send call to peer
recei ve response
notify server

(b) CoAP

(c) RPC

Figure 8: Pseudo code of tisase study applications

edly sends PUT and GET requests to the server. The PUT request
sets the seed for a random resource on the server, while tiie GE
request retrieves a possibly large sequence of charactenstfiis
resource. Both the value of the seed and the length of thactear
sequence are chosen randomly. This application involvésdo

plicit thread synchronization viaai t andnot i f y and re-entrant
code. The native implementation for this study is ContikisAP
implementation [12].

Figure 8 shows simplified pseudo code for the three case study The third case study is motivated by a programming framework

applications. The underlined functions are thread starttfans
with an endless loop executing the listed code, while thie fianc-

tions are re-entrant interruptable functions. The thrg@ieations
use the API functions| eep, r ecei ve, andwai t and all three
of them can be interrupted vieot i fy.

The first case study is a typicehta collection and in-network
aggregation(DCA) application consisting of three tasks. Over-
all, the application reads values from the local sensorives
values from its child node(s) and sends aggregated valués to
parent node. This constitutes a consumer-producer patthn
inter-thread communication via a shared ring buffer, buexylicit
thread synchronization and no re-entrant code. The magtri-ar
tecture of this case study can be found in many deploymeris (e
[7]).

The second case study is a complete client-side impleniemtat
of the CoAP protocol[22] including application-level payload frag-
mentation via stop-and-wait [3], and a minimal applicatiayer.
The program consists of three tasks and overall the cligrgate

for sensor networks [18] that offers so-calledl actions where a
node may tell one or more other nodes to execute a (potergiail
chronous) command and the tell action itself waits untinaitles
have finished executing the command. In other words, a tell ac
tion basically is a synchronous one-to-maaynote procedure call
(RPC). In a network in which multiple tell actions can occtiaay
time, each node should be able to handle multiple RPCs aathe s
time. This calls for a thread pool, a common concurrencyepatt
that can be found in many RPC systems such as CORBA. Although
there are some RPC frameworks for sensor networks [15, 86& n
of them supports concurrent invocations. Thus, we impléaten
this framework from scratch.

In order to keep the focus on the programming model, we only
support three basic remote calls that conceptually coventtole
spectrum of interest: 1) reading a value from a fast sensidr as
a temperature sensor, 2) reading a value from a slow senkit w
involves some startup time and thus a synchronous functiche
callee’s side, and 3) a tell operation, which involves dateg any

of these three remote calls to a different node and thus atgdres

a synchronous function on the callee’s side. The applinatiple-
ments both the client and the server side of the RPC protowbl a
involves explicit thread synchronization and re-entramictions.

6.3 \Verification

The verification serves three purposes. First, we want toemak
sure that we measure only the effects of the different progriang
abstractions. Second, we want to test each variant of eqiicap
tion for bugs. And third, we want to verify the correctnesgio#
transformation.

To preserve the fairness of the comparison, we used the same

COOJA simulation for all variants, only exchanging the loynan-
der test in each case. This means that spatial mote distribut

these CPU cycles from the current process’ account, andrsiato
ering the cycles for the prologue and the epilogue of tharnps
functions and the cycles for the write operationgptoc_hook,
it measures the exact number of CPU cycles per process.

For NAT, we counted the CPU cycles of all processes that run an
application task, leaving out any OS processes. For TL, wateadl
the CPU cycles of the single scheduler process only, as duse
all application threads. And finally, for GEN, we counted €U
cycles of all Contiki processes that execute an applicatioead
(cf. Section 5). Overall, the counted CPU cycles cover theesa
application functionality in each case.
In order to measure th@aximum stack consumptioour plugin
installs a break point for updates to the stack pointer teg{SP).
For NAT and GEN, tracking the maximum SP value and subtract-

radio model, neighbor nodes, random seeds, etc. are canstan INd it from the start address of the stack is sufficient. For We

That is, the execution environment is deterministic ancipces
the same results repeatably. Additionally, we comparedtiuece
code of the three variants to make sure that they are not exsyll
dissimilar.

In order to verify the executed applications, we wrote a C®0J
plugin that collects a log opri nt f traces, which serves as an
input to an application-specific verification script. Anchcerning
the correctness of the transformation, the plugin alsectdla log
of the observable behavior (OB) as defined in Section 4.3.TLhe
variant de facto constitutes the execution of the T-codélev@dEN
is the execution of the E-code. Thus, comparing the OB of TL

and GEN ensures the equality of T-code and E-code and thus the7.

correctness of the transformation.

6.4 Measurements

As a first and simplest measurement, we countedlittes of
coderequired to implement the application logic for each varian
Lines of code is in general not very significant, but when gsin
identical code formatting rules, as we did in our evaluagtibpro-
vides a quick but good estimation of the expressivenesseqgbb-
gramming model. In order to focus on the effects of the differ
ent programming models, we did not include the shared @éosl
units into the counting. Similarly, we neither took GEN'sIPAor
TL's scheduler into account, as this code needs to be writtéy
once and can thus be regarded as being part of the operasiegsy
which we did not count either.

Next, we compiled each application for the Tmote Sky plaifor
using the MSP430 port of the GNU Compiler Collection (GCC)
version 3.2.3. The compilation process was performed byikisn
build system withrSMALL=1, which amongst other things instructs
the linker to remove unused functions. To obtain static meas
ments from the resulting binary we usedj dunmp from GCC'’s
binutils and retrieved the size of thextsection (i.e., the machine
code itself), the size of the initializedata section, and the size of
the uninitialized data section, also knownlessection.

Besides these static measurements, we were also inteiasted
runtime properties. To obtain a precise couniGHU cycles we
modified the Contiki system by introducingral ati |l e voi d+*
variable calledpr oc_hook. Right before invoking a process,
the scheduler writes the address of the descriptor of thiécpar
lar process tqr oc_hook. And right after the process returns
control,pr oc_hook is set toNULL. As pr oc_hook is declared
vol ati | e, its modifications are guaranteed to happen at the in-
tended moments and in the right order. Our plugin can thualins
a break point for updates fir oc_hook, which enables it to pre-
cisely sum up CPU cycles for each process individually.

All interrupt functions and the code that logs the OB sighairt
invocation viapr oc_hook as well. The plugin can thus remove

also need to take the stacks of the application threads auiouat,
though. Our plugin does this accurately and thus obtaingrérdse
amount of bytes required for each stack.

We used these values to set the size of the application stacks
thus reducing the size of the bss section as much as possibéna
abling a fair comparison. As interrupts happen non-detastically,

a single simulation run might not catch the worst case ofinf
function invocations. Thus, we added a safety margin of 2@y

to each stack and so far no stack overflows occurred during our
measurements, which of course is also monitored by themlugi

RESULTS

A major observation of the evaluation is that the resultsdere
terministic. Thus we can directly interpret these valuehatit any
additional statistics methods.

Figure 9a shows that in order to implement the same appitati
T-code requires 8 % to 17 % lelises of codghan a native Contiki
implementation. As already mentioned in the previous sacthis
measurement does not cover shared translation units, wbrthin
additional 2000 lines of code for CoAP and 300 for RPC.

As “with protothreads the number of lines of code was reduced
by one third” [6], we can estimate that a T-code applicatien r
quires up to 45 % less lines of code than an equivalent eveseeh
application. Although this result is not precise, it stillgports our
initial motivation for this work: synchronous functionscasequen-
tial computation provide an easier programming model treym-a
chronous functions and event handlers. The TL variant isecto
GEN but higher because it provides the same programming Imode
as GEN, but requires extra lines to define the applicatiarkstand
to start the threads.

7.1 Memory Resources

Of course, we expect our thread abstraction to also have some
costs. First of all, we are interested in the overall memary-c
sumption because random access memory (RAM) is very limited
on sensor network devices. To this end, Figure 9b showszbe§i
thedataand thebsssection along with the maximustack sizdor
each variant of each application. First, we can see thdtrakétvari-
ants have roughly the same amount of initialized data andge la
common block of bss memory. This is because each variant uses
the same operating system that adds its string constaritgome
stack buffers, etc.

Additionally, we can see that all three variants have roughl
equal maximum stack sizes because none of them uses the run-
time stack a lot: Protothreads useat i ¢ variables, TL uses the
stacks of the application threads for function-local atdtmvari-
ables, and GEN has its T-stacks. As a consequence, we cabh.see T
and GEN having larger bss segments.

lines of code

CPU cycles

47000

300 T 9500 S —
nat — pal XXX
o text ———
250 9000 46000 -
T L T L
200 =3 8500 g‘ 45000
2 k)
2 %
L 3 L
150 x 8000 & 44000
7500 + 43000 -
100
7000 L 42000 L L
50 nat tl gen nat tl gen nat tl gen nat tt gen nat tl gen nat tl gen
coap dca coap rpc dca coap rpc
(a) lines of code (b) RAM (c) text
820000 47000 T 9400 T
nat —— nat ——
L th—=— t—x—
800000 46500 - gen 9200 | gen
L gen-no-pal —&—
780000 46000 | 9000 |
760000 | = T
< 45500 2 8800
740000 2 s
S 45000 X 8600 r
720000 | = o
700000 - 44500 - 8400
680000 44000 8200 +
660000 | 43500 : . 5 . 8000 L
1 2 3 4 1 2 3 4

coap

(d) CPU cycles

number of worker threads

(e) text per thread

number of worker threads

(f) RAM per thread

Figure 9:Evaluation results(a)-(d): resource consumption of various resources parvaand application.
(e)-(f): resources consumption of RPC application perardrversus number of threads.

The interesting observation is that TL's overhead is sigaiitly
higher which reflects the common wisdom that thread libsagie
expensive (cf. Section 3.1). A second interesting obsienvas
that both GEN's overhead of the bss section and its overhiihe o
total amount of required RAM is approx. 1 % compared to NAT.

Another limited resource of sensor network devices is ROMsp
which means that we need to compare the binary size of the vari
ants. Figure 9c thus shows the size of thetsections and, in case
of the GEN variant, it also distinguishes between code tiesul
from the application layer and code added by the PAL.

First, we see the overhead of TL's scheduler as expected- Sim
larly, we see the overhead of GEN's PAL. But we also see that th
generated code itself, i.e., the E-code not including thi, PAal-
most the same size as the code of the NAT variant. And incjudin
the PAL, the overhead is below 3 %.

Overall, the results show that Ocram provides the comfort of
threads for just a small amount of extra RAM and ROM.

7.2 CPU cycles

Next, we want to know if the generated code involves more com-
putation than a native implementation because keeping &g C
busy prevents the device from going into a low-power idlésst®io
this end, Figure 9d shows th@PU cyclescount for each variant
of each application. The absolute range of the values depend
the duration of the simulation of each application and thusiges
little insight. But what we do see is that TL's scheduler adggo

CPU cycles than the native implementation. An explanatmmn f
this is that all interruptable functions are inlined in the&de, thus
saving extra cycles for function prologue and epiloguest d&u
course, this comes at the cost of a larger binary size in dase o
entrant functions.

7.3 Resource consumption per thread

To analyze this trade-off, we varied the number of workeealis
of the RPC application from one to four and performed the mea-
surements for each configuration. In each case, we adapted th
client mote to send the right amount of concurrent remotedit-w
ing RPC calls to have all worker threads busy at the same fiime.
previous figures showed results for the RPC application wwih
worker threads and using more than four workers alreadyeslece
the limited resources of the Tmote Sky.

Figure 9e shows the size of tibextsection of all three variants
versus the number of worker threads. Additionally, it shabes
PAL's share by plotting the GEN variant with the text sectidithe
PAL removed.

In the case of a single worker thread, we see the overhead®of TL
scheduler once again. But we also see that TL has the lovegs sl
of all, as increasing the number of worker threads only wesl
starting another application thread. The rest of TL's cadgeineric
in that sense and can be reused. For NAT, we have a slope of 187
bytes per worker. This originates from the additional pttateads
that run the extra workers. Although they share common dbae,

12 % of CPU cycles compared to the NAT variant. And we see that basic stub of each protothread is always required.

despite the additional PAL, GEN’s number of CPU cycles ig/onl
approx. 2 % higher compared to NAT.

Although we do not know the exact division between the PAL
and the application code, regarding the extra work perfdrime
the PAL, this result suggests that the E-code actually reguess

And finally for GEN, we see the biggest slope of 607 bytes per
worker including the PAL and 559 bytes per worker without the
PAL. The share added by the PAL has the same origin as in the
NAT case. And the share added by the E-code reflects the affde-
that we have chosen for the translation scheme: By inlirier

ruptable functions, we save CPU cycles and RAM, but we payext
for re-entrant interruptable functions. In this sensethinead pools
of the RPC application are a worst case scenario for thisltaiion
scheme.

Figure 9f shows the other side of the trade-off which is RAM.

fault diagnosis, forcing the developer to cope with the claxipy
of the underlying run-time system nevertheless and thuskiomg
the abstraction.

9. CONCLUSIONS

There we see that GEN has almost the same slope as NAT, i.e., he fi hensi i . h
182 vs. 158 bytes per worker. In contrast, TL has a slope of 310 _ e presented the first comprehensive compiler-assisteadhr

bytes per worker which has two major reasons. First, asdjrea
explained, each thread’s stack needs an extra margin toléd¢cab
host any occurring interrupt handler functions. And secdhé
generic nature of a thread library indeed saves in binawy, fiat

it pays in RAM because it has to support all possible casegerGi
the limited resources, the lack of static analysis is what Keread
libraries from improving their performance [17]. With coitgp-
assisted thread abstractions we aim to exploit exactlypibésibil-

ity.
7.4 Discussion

Overall, the evaluation results give three major insigtEgst,
the thread-based programming paradigm yields to more compa
code compared to event-based programming, which is anandic
tion for what is generally perceived as being an easier pragring
model. Second, the performance overhead of generated &-cod
compared to hand-written event-based code is in the singiesd
making the comfort of threads affordable for resource-transed
WSN devices. And third, the performance of generated E-t®de
better than what can currently be achieved with threadrigsa

Of course, a dedicated threads-to-events compiler is a imitfge
tial effort, but we argue that the major advantage of conmqailsisted
approaches is their capability to exploit applicationesfie opti-
mizations. Although Ocram currently only applies some bagpti-
mizations such as keeping non-critical variables on theeshaun-
time stack, on the medium term we expect the performance of E-
code to improve with more advanced translations, whileloead
libraries we do not see such opportunities of improvement.

8. FUTURE WORK

Although we believe that Ocram represents a major step tsvar
a practical and efficient thread abstraction for sensor owsy sev-
eral improvements are subject of our ongoing and future work

Our current compiler prototype only implements some oani
tions, but there are a number of further optimization opjties.

For example, if a function is only called from one locationtlire
whole program, there is no need to save the caller’s cortioua
memory. Instead, it can be hard-coded into the E-code. As-a se
ond example, in case of read-only parameters, the calleacss
the variables from the caller’s T-stack frame instead ofrgthem
copied to its own frame. Furthermore, different transtasohemes
have different trade-offs. A future T-code compiler therefcould
measure properties of the input application and use a hieutis
choose the most efficient translation scheme.

We have also developed an early prototype of a T-code debug-
ger, which offers typical source-level debugging priméswsuch as
break points and variable inspection on T-code level. Te dnid,
the Ocram compiler saves the performed variable and code map
ping in a separate debug file and the T-code debugger communi-
cates with a common E-code debugger such as the GDB. Wheneve
the user wants to access a source code line or a variable,chaeT
debugger consults the debug file to find the correspondingde-c
source line or variable and delegates a translated requése -
code debugger. By these means it is possible to completdsy hi
the event-based nature of the runtime system from the pregra
mer. Most other WSN programming abstractions fail to suppor

abstraction to address the increasing mote software caitypht

the service and application layers, where the simple exetibn
model of event-based programming leads to code that is loard t
manage and prone to errors.

Our evaluation showed that with our approach thread-based p
gramming is almost as efficient as event-based programriing:
overhead of RAM is approx. 1 %, for ROM below 3 %, and con-
cerning CPU cycles the overhead is below 2 %. Thus, our work
shows that the trade-off between expressiveness and pfjciaf
thread abstractions is not inherent to resource-constiagstems.

Additional optimizations, which are part of our ongoing dnel
ture work, are expected to stress this point even furtheusTine
argue that the effort of employing a dedicated threads+mvs
compiler pays off. We also believe that Ocram is a practiocal s
lution, as the generated code integrates seamlessly wisshirex
hand-written event-based code. Furthermore, Ocram caadily e
ported to other event-based kernels by implementing a tlaitz p
form abstraction layer, which is a one-time overhead.

10. ACKNOWLEDGMENTS

This work has been partially supported by the National Compe
tence Center in Research on Mobile Information and Comnaunic
tion Systems (NCCR-MICS), a center supported by the Swiss Na
tional Science Foundation under grant number 5005-673#Pbg
CONET, the Cooperating Objects Network of Excellence, &thd
by the European Commission under FP7 with contract numbér FP
2007-2-224053.

We want to thank Matthias Kovatsch, Institute for PervaSioen-
puting, ETH Zurich, for helping us with his expertise in Céit
Cooja and CoAP.

11. REFERENCES

[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.
Douceur. Cooperative Task Management Without Manual
Stack Management. IRroceedings of the General Track of
the USENIX Technical Conferengeges 289-302, 2002.

[2] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,
B. Shucker, C. Gruenwald, A. Torgerson, and R. Han.
MANTIS OS: An Embedded Multithreaded Operating
System for Wireless Micro Sensor Platfornviobile
Networks and Applicationd.0(4):563-579, 2005.

[3] C. Bormann and Z. Shelby. Blockwise Transfers in CoAP.

http://tools.ietf.org/htm/

draft-ietf-core- bl ock-10,2011.

P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco.

Programming Wireless Sensor Networks with the

TeenyLime Middleware. IProceedings of the Middleware

Conferencepages 429-449, 2007.

r [5] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A
Lightweight and Flexible Operating System for Tiny
Networked Sensors. IRroceedings of the Conference on
Local Computer Network$é. CN, pages 455462, 2004.

[6] A.Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothresd
Simplifying Event-driven Programming of
Memory-constrained Embedded SystemsPtaceedings of

(4]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

the Conference on Embedded Networked Sensor Systems
SenSys, pages 29-42, 2006.
A. Hasler, |. Talzi, J. Beutel, C. Tschudin, and S. Gruber

Wireless Sensor Networks in Permafrost Research: Concept, [23]

Requirements, Implementation, and Challenges. In
Proceedings of the Conference on Permafrpages

669-674, 2008.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and

K. S. J. Pister. System Architecture Directions for
Networked Sensor&d\CM SIGARCH Computer Architecture
News 28(5):93-104, 2000.

J. W. Hui and D. E. Culler. IP is Dead, Long Live IP for
Wireless Sensor Networks. Proceedings of the Conference
on Embedded Networked Sensor Syst&anSys, pages
15-28, 2008.

K. Klues, C.-J. M. Liang, J. Paek, R. Musaloiu-E, P. lsgvi

A. Terzis, and R. Govindan. TOSThreads: Thread-safe and
Non-invasive Preemption in TinyOS. Rroceedings of the
Conference on Embedded Networked Sensor Systems
SenSys, pages 127-140, 2009.

J. Ko, K. Klues, C. Richter, W. Hofer, B. Kusy, M. Brinig,

T. Schmid, Q. Wang, P. Dutta, and A. Terzis. Low Power or
High Performance? A Tradeoff Whose Time Has Come (and
Nearly Gone). IrProceedings of the European Conference
on Wireless Sensor NetworESWSN, pages 98-114, 2012.
M. Kovatsch, S. Duquennoy, and A. Dunkels. A Low-Power
CoAP for Contiki. InProceedings of the Conference on
Mobile Ad-hoc and Sensor SystelBASS, pages 855-860,
2011.

H. C. Lauer and R. M. Needham. On the Duality of
Operating System Structuré@perating Systems Review
13(2):3-19, 1979.

E. A. Lee. The Problem with ThreadE€EE Computer
39(5):33-42, 2006.

T. D. May, S. H. Dunning, and G. A. Dowding. An RPC
Design for Wireless Sensor NetworlRervasive Computing
and Communication(4):384—-397, 2007.

W. P. McCartney and N. Sridhar. Abstractions for Safe
Concurrent Programming in Networked Embedded Systems.
In Proceedings of the Conference on Embedded Networked
Sensor SystemSenSys, pages 167-180, 2006.

W. P. McCartney and N. Sridhar. Stackless Preemptive
Multi-Threading for TinyOS. IrProceedings of the
Conference on Distributed Computing in Sensor Systems
DCOSS, pages 1-8, 2011.

L. Mottola, G. P. Picco, P. Valleri, F. J. Oppermann, and

K. R6mer. The makeSense Programming Model. Technical
Report D-3.1, Swedish Institute of Computer Science,
Universita degli Studi di Trento, Universitat zu Liibeck,
2011.

C. Nitta, R. Pandey, and Y. Ramin. Y-threads: Suppgrtin
Concurrency in Wireless Sensor NetworksPlmceedings of
the Conference on Distributed Computing in Sensor Systems
DCOSS, pages 169-184, 2006.

N. Ramsey, J. Dias, and S. Peyton Jones. Hoopl: A Modular
Reusable Library for Dataflow Analysis and Transformation.
In Proceedings of the Symposium on Haskedlges

121-134, 2010.

J. Sallai, M. Mar6ti, and A. Lédeczi. A Concurrency
Abstraction for Reliable Sensor Network Applications. In
Proceedings of the Conference on Reliable Systems on
Unreliable Networked Platformpages 143-160, 2007.

[22] z. Shelby, K. Hartke, C. Bormann, and B. Frank. Consiedi

Application Protocol (CoAPhttp://tools.ietf.
org/htm/draft-ietf-core-coap-13,2011.

H. Sutter and J. Larus. Software and the Concurrency
Revolution.Queug 3(7):54-62, 2005.

R. von Behren, J. Condit, F. Zhou, G. C. Necula, and

E. Brewer. Capriccio: Scalable Threads for Internet Seszic
In Proceedings of the Symposium on Operating Systems
Principles SOSP, pages 268-281, 2003.

M. Welsh and G. Mainland. Programming Sensor Networks
Using Abstract Regions. IRroceedings of the Symposium
on Networked Systems Design and ImplementaNi@DI,
pages 29-42, 2004.

K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim,

J. Jeong, J. Hui, P. Dutta, and D. E. Culler. Marionette:
Using RPC for Interactive Development and Debugging of
Wireless Embedded Networks. Rroceedings of the
Conference on Information Processing in Sensor Networks
IPSN, pages 416-423, 2006.

