
A Comprehensive Compiler-Assisted Thread Abstraction
for Resource-Constrained Systems

Alexander Bernauer
Institute for Pervasive Computing

ETH Zürich
bernauer@inf.ethz.ch

Kay Römer
Institute of Computer Engineering

University of Lübeck
roemer@iti.uni-luebeck.de

ABSTRACT
While size and complexity of sensor networks software has in-
creased significantly in recent years, the hardware capabilities of
sensor nodes have been remaining very constrained. The predomi-
nant event-based programming paradigm addresses these hardware
constraints, but does not scale well with the growing software com-
plexity, often leading to software that is hard-to-manage and error-
prone. Thread abstractions could remedy this situation, but exist-
ing solutions in sensor networks either provide incompletethread
semantics or introduce a significant resource overhead. This re-
flects the common understanding that one has to trade expressive-
ness for efficiency and vice versa. Our work, however, shows that
this trade-off is not inherent to resource-constrained systems. We
propose a comprehensive compiler-assisted cooperative threading
abstraction, where full-fledged thread-based C code is translated to
efficient event-based C code that runs atop an event-based operat-
ing system such as Contiki or TinyOS. Our evaluation shows that
our approach outperforms thread libraries and generates code that
is almost as efficient as hand-written event-based code withover-
heads of 1 % RAM, 2 % CPU, and 3 % ROM.

Categories and Subject Descriptors
D.1.4 [Programming Techniques]: Sequential Programming; D.3.4
[Programming Languages]: Processors—Code generation; D.4.1
[Operating Systems]: Process Management—Threads

Keywords
Wireless Sensor Networks, Threads, Compiler

1. INTRODUCTION
One of the main challenges in wireless sensor networks (WSNs)

is to cope with the scarcity of physical resources. While in other
domains Moore’s law has led to hardware with ever increasingca-
pabilities, in WSNs advances in technology are applied towards
reduced size and cost [21]. Also, energy efficiency is crucial for a
long system life-time, which is why today’s deployments still oper-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’13,April 8–11, 2013, Philadelphia, Pennsylvania, USA.
Copyright 2013 ACM 978-1-4503-1959-1/13/04 ...$15.00.

ate with 8- or 16- bit MCUs, as a modern 32-bit MCU such as the
ARM Cortex-M3 “incurs a∼ 2× overhead in power draw” [11].

Due to these resource constraints, the event-based programming
paradigm is predominant in sensor networks, as it allows imple-
mentations of concurrent applications with little memory and com-
putational overhead. While this approach is appropriate for simple
sleep-sample-send applications, WSN software is recentlygaining
complexity with motes running IP stacks [9], HTTP/CoAP services
[12], middleware [4], and business logic [18]. Such software in-
cludes complex control and data flows that do not fit well with
the event-based paradigm. In fact, one has to do both, implement
complex control flows via long chains of events and handlers using
asynchronous functions, and manually manage data flowing across
different event handlers. This often leads to confusing, hard to man-
age, and error-prone code (e.g., [1, 6, 10, 16, 19, 21]).

For this reason, there have been quite some efforts to enable
thread-based programming on sensor nodes, as synchronous func-
tions and sequential computation often lead to simpler and better
manageable code. However, these thread libraries are either lim-
ited in their expressiveness (e.g. [25]), or they add high overheads
compared to event-based programs (e.g. [16]). Compiler-assisted
thread abstractions (e.g., [6, 21]) escape this trade-off by translat-
ing thread-based programs into equivalent event-based ones, thus
exploiting the duality of threads and events [13]. Overall,the ap-
plication is not only executed by an efficient event-based runtime
system but the compiler can additionally apply application-specific
optimizations, which is why this approach is promising. Unfor-
tunately, existing compiler-assisted thread abstractions only pro-
vide incomplete thread semantics.Protothreads, the most popular
amongst them, additionally fails to identify invalid inputand gen-
erates faulty programs instead [6].

This paper presents a comprehensive compiler-assisted thread
abstraction that offers a full-fledged cooperative threading model.
We thereby target advanced software in the service and applica-
tion layers where cooperative threads provide a good programming
model, as timing issues are of lesser concern.Ocram, our com-
piler implementation, rejects invalid input and otherwisegenerates
event-based code for any event-based runtime environment,requir-
ing only a thin platform abstraction layer to be implementedonce.
The supported thread model is only marginally constricted due to
limits that are inherent to the compiler-based approach.

The contributions of this paper are:

1. A platform-agnostic source-to-source transformation scheme
which translates ISO/IEC 9899:1999 (C99) programs using
cooperative threads and synchronous functions into equiva-
lent C99 program using events and asynchronous functions,

2. Ocram, a GPL-licensed compiler prototype that implements
the transformation,

3. platform abstraction layers to bind Ocram to Contiki and
TinyOS,

4. an evaluation which a) shows the feasibility of compiler-
assisted threads for three different WSN application arche-
types, b) verifies the correctness of the transformation, and
c) measures the resource costs of this abstraction compared
to both native event-based implementations and thread li-
braries.

The remainder of the paper is organized as follows: Section 2
and 3 provide the context and an overview of our approach. Sec-
tion 4 describes the translation scheme while Section 5 covers the
interoperability between generated and existing event-based code.
Section 6 documents the setup of the conducted experiments and
Section 7 presents the results of our evaluation. Finally, Section 8
gives an outlook on future research directions.

2. STATE OF THE ART
Operating systems likeTinyOS[8] and Contiki [5] target small

WSN devices by utilizing resource-efficient event dispatching. How-
ever, a continuous demand for thread abstractions has lead to differ-
ent approaches to enable threads on resource-constrained systems.
Unfortunately, all of them either have high resource-demands or
provide only incomplete or non-standard thread semantics.

Fibers, for instance, allow for exactly one additional thread [25],
while Y-Threadsindeed support multiple threads, but require to
manually distinguish “run-to-completion threads” [19]. To imple-
ment a comprehensive thread abstractions, the most common way
is to have one stack per thread and switch context either in a coop-
erative [16] or a preemptive fashion [2, 10]. Multiple, preallocated
stacks are, however, not resource efficient for two reasons.First,
each stack has to provide enough cut-off to support the worstcase
of occurring interrupt handlers operating on the respective current
stack. And second, the size of all preallocated stacks is usually
higher than the actual maximum stack consumption of an appli-
cation because usually not all threads reach their maximum stack
usage at the same time. As a consequence, multiple, preallocated
stacks do not scale well with the number of threads.

Outside of the WSN domain, von Behren et al. have addressed
this problem withCappriccio[24]. This system automatically aug-
ments thread-based applications with code for dynamic stack al-
location, thus avoiding preallocated stacks. Although this enables
high performance and scalability for Internet services on Linux, it is
not a viable option for WSNs. First of all, with dynamic stackman-
agement it is hard to guarantee that out-of-memory situations do no
occur, which is certainly crucial for the reliability of an embedded
system. Also, dynamic memory management not only introduces a
runtime overhead, but also poses the problem of memory fragmen-
tation, as typical WSN devices are not equipped with a memory
management unit (MMU).

In general, threads and events are known to be dual to each other
[13]. Adya et al. even mix thread-based and event-based codein a
single program by using small adaptors and a special scheduler [1].
As this is a multi-stacked, runtime-based solution, however, it is
not resource-efficient. Overall, run-time based thread abstractions
entail a trade-off between completeness of the thread semantics and
resource overhead compared to event-based programming.

In contrast, compiler-assisted thread abstractions exploit the du-
ality of threads and events by translating a thread-based program
into an equivalent event-based program, thus escaping thistrade-
off. While the developer has the comfort of threads, the resulting
program is both single-stacked and avoids the extra contextswitch-
ing overhead of a thread scheduler, as the existing event dispatcher

is used instead. Additionally, while a runtime-based solution al-
ways has to support the most generic case, static analysis can ex-
ploit application-specific optimizations.

The first system that provided a compiler-assisted thread-abstrac-
tion for WSNs was Contiki’sprotothreads[6]. Technically, pro-
tothreads are a set of C preprocessor macros that enable the syn-
tactical illusion of threads and synchronous functions. Asthe con-
text of each thread (a.k.a. protothread process) comprisesonly two
bytes, the authors claim to provide the most efficient threadimple-
mentation. At a closer look, however, this convincing performance
comes at the price of incomplete thread semantics. First of all, the
state of automatic variables is not preserved across yield points.
Second, yield points can only be placed in the thread start func-
tion, which severely restricts the software architecture of proto-
threads-based applications. In addition, certain user mistakes are
not detected at compile time, but have to be indirectly examined
by observing unexpected runtime behavior. Such mistakes can be
as subtle as usingswitch statements that interfere with those that
are expanded from the protothreads macros. As the C preproces-
sor can only perform local substitution of language tokens,these
limitations are inherent to the protothreads abstraction.

TinyVT[21] employs a dedicated compiler. This abstraction has
been specifically designed for TinyOS, which provides a component-
based software architecture with event-based interfaces.TinyVT
enables software developers to implement single components by
writing sequential code, as it is possible to inline event handlers in
code blocks following a specialawait statement. Also, the run-
time system preserves the state of automatic variables. Although
TinyVT overcomes many of protothreads’ drawbacks, the supported
thread semantics is still restricted and deviates substantially from
common threading models. First of all, inlined event handlers may
not containawait statements. Additionally, it is not possible to
split the implementation of a component into multiple functions,
which implies that code cannot be shared between multiple threads
and functions cannot be re-entrant.

The most recent compiler-assisted thread abstraction isUnStacked
C [17], “a source-to-source transformation that can translate multi-
threaded programs into stackless continuations.” This is ahybrid
approach, as the input application uses a thread library such as
TOSThreads [10] and the generated application relies on a mod-
ified version of this library. The translation reduces the memory re-
quirements of the application in particular by softening the timing
guarantees of context switching (so-calledlazy preemption). Over-
all, the generated runtime system still depends on a thread library
and it remains to be seen if lazy preemption is appropriate for WSN
applications.

In summary, runtime-based thread abstractions are not resource-
efficient and existing compiler-assisted thread abstractions provide
only incomplete or non-standard thread semantics. The corecon-
tribution of our work lies in overcoming the seemingly inherent
trade-off between completeness of thread semantics and resource
overheads that is prevalent in the state of the art. Specifically, our
approach offers cooperative threads with only minor restrictions
while achieving the efficiency of event-based programming.Our
dedicated compiler performs a platform-agnostic source-to-source
transformation that exploits application-specific optimizations, and
the output application only relies on the existence of an event-based
operating system (OS).

Up to our knowledge, similar approaches have not been taken in
other embedded systems domains so far, presumably because appli-
cation complexity is low enough to be manageable with events, or
because availability of resources is high enough to allow for thread
libraries.

3. OVERVIEW
This sections gives an overview of relevant terms and program-

ming paradigms (Section 3.1), introduces our approach on a high
level (Section 3.2), and discusses its fundamental limitations (Sec-
tion 3.3).

3.1 Programming Paradigms
An application usually consists of multipletasks, which are log-

ical groups of computations that pursue a common goal. Tasksef-
fectively perform their work by calling functions of theapplication
programming interface(API) of the OS. In case of asynchronous
function, the associated operation is guaranteed to have completed
when the function returns. In contrast, calling anasynchronous
function only triggers an operation which will complete eventually.

The reportedly most efficient way to execute multiple tasks vir-
tually in parallel is to follow theevent-based paradigm. In this
paradigm, a task is formed by a causal chain of events and event
handler functions, which is frequently initiated by recurring events.
As the runtime system waits for a handler function to return before
processing the next event, a single stack suffices to executeall tasks.
One major source of complexity of this paradigm is that managing
the control flow of a task is hard, as the code is spread out overmul-
tiple event handlers. A second major source of complexity isthat
the execution contexts of tasks (i.e., the values of variables) have
to be manually managed and preserved between subsequent event
handler invocations. Additionally, every function that calls an asyn-
chronous function becomes asynchronous itself, which recursively
applies to the whole call stack and forces all functions’ implemen-
tations to be split up (cf. “stack ripping” [1]). In summary,the
event-based programming paradigm is efficient, but requires a lot
of cumbersome and error-prone work to be done manually.

In contrast, thethread-based paradigmovercomes these prob-
lems by means of synchronous OS APIs, where the control flow
is sequential, and a task’s context can be stored inautomatic(i.e.,
function-local) variables using a scope-based automatic live-cycle
management. Athreadis one flow of control that drives the execu-
tion of a task. It starts with the invocation of athread start function
and sequentially executes the statements of this function.

The reason why threads are considered inefficient is that thecon-
text of a task is the complete stack of its thread. As it is generally
difficult to estimate the maximum size of a stack, and as hardware
interrupt handlers always operate on the current stack and can be
invoked at any point in time, a common approach is to add enough
cutoff to be safe from out-of-stack situations. On sensor nodes,
though, the cutoffs of a reasonable amount of threads quickly sum
up beyond the total amount of available memory. This is why pro-
viding comprehensive thread abstractions for WSNs is not trivial.

3.2 Our Approach
As depicted in Figure 1, in the context of our work, a dedi-

cated compiler called Ocram translates a thread-based application
(T-code) into an equivalent event-based application (E-code). The
T-code application is built upon a synchronous T-code API which
has been manually derived from an asynchronous OS API. Instead
of implementing the T-code API — which is what runtime-based
thread abstractions do — the compiler generates a corresponding
E-code API which is used by the generated E-code application. The
platform abstraction layer(PAL) (cf. Section 5) implements the E-
code API by means of the OS API.

Given the call graph of a T-code application, every functionthat
has a path leading to a T-code API function is referred to asin-
terruptable functionand every edge of such a path is referred to
as interruptable call. The compiler’s task is to turn interruptable

Application

synchronous API

Application

asynchronous API

PAL

asynchronous API

T-Code E-Code

OS

Translate

Figure 1: System Overview: The compiler translates the thread-
based program (T-code) into an equivalent event-based program (E-
code). The platform abstraction layer (PAL) mediates between the
generated application and the given operating system (OS).

functions into event handlers (cf. Section 4.2) and to preserve the
value of automatic variables across single invocations if needed (cf.
Section 4.1). And of course, the E-code should be equivalentto the
T-code (cf. Section 4.3) to ensure that it behaves as intended by the
T-code programmer.

The generated E-code application contains one central event han-
dler function per thread which contains the inlined bodies of all in-
volved interruptable functions. Always after calling an E-code API
function, the handler returns control to the PAL which invokes the
handler again as soon as the requested event occurs. Resuming the
task is possible, as each point of continuation is equipped with a
label whose address is taken by the handler, passed to the PAL, and
retrieved as a function parameter with the subsequent invocation.

Additionally, the compiler generates a static data structure for
each thread which contains all variables that are read afteran in-
terruptable call. By replacing automatic variables with their static
counterparts, the relevant state of the task stays available. Overall,
the transformation of the control flow preserves the order ofstate-
ment execution while the transformation of the data flow preserves
the effect of each statement, which is why T-code and E-code are
equivalent.

3.3 Limitations
A major drawback of static analysis and translation is that it is

limited to decidable problems. In particular, the compilerhas to be
able to infer the application’s call graph, which implies three things.
First, it is not allowed to take the address of an interruptable func-
tion. Instead one has to use case differentiation, which causes only
moderate overhead. Second, interruptable functions may not be re-
cursive, also because this would turn the estimation of the stack
consumption undecidable. For the same reason, however, recursive
algorithms are uncommon in embedded systems, which makes this
a minor restriction. And third, we can not support dynamic thread
creation but have to statically assign threads with thread start func-
tions. As WSN applications tend to be composed of a fixed set of
tasks, we don’t consider this a severe limitation either.

These limitations are all inherent to compiler-assisted approaches
and our compiler reliably rejects invalid T-code. Thus, we think it
is appropriate to refer to our approach as a comprehensive thread
abstraction.

Besides these limitations, the scarce resources additionally call
for cooperative threads as opposed to preemptive ones. In cooper-
ative style, context switching only occurs at yield points,thus the
saved context only consists of the variables that are read after the
yield point. In contrast, the context in preemptive style consists of
the thread’s complete stack and all CPU registers.

Of course, cooperative threads can not guarantee timings, pri-

double c1(char* s){
c2(s);
int i = f();
c3();
return i;

}

⇒

1typedef struct {
2void* cont;
3double result;
4char* s;
5int i;
6union {
7frame_c2_t c2;
8frame_c3_t c3;
9} frames;
10} frame_c1_t;

Figure 2: TheT-stack structureof an interruptable function.c1,
c2, andc3 are interruptable functions;f is not.

orities, and fairness irrespective of the concrete implementation of
each thread. Thus, our approach targets application and service lay-
ers of WSN applications where real-time is less of an issue. As, in
contrast to general purpose computing devices, motes are usually
not deployed with untrusted and thus uncooperative code, requiring
cooperative threads is feasible.

Finally, we consider cooperative threads the easier programming
model, as shared state has to be checked only after yield points. In
contrast, preemptive threads are non-deterministic by default [14],
and practice has shown that “humans are quickly overwhelmedby
concurrency and find it much more difficult to reason about con-
current than sequential code” [23].

4. TRANSLATION SCHEME
The goal of the translation is to transform valid T-code intoequiv-

alent E-code. To this end, the translation distinguishes between
interruptable and non-interruptable functions. Non-interruptable
functions are passed through unchanged and are not considered any
further.

Regarding interruptable functions, the first step is the translation
into an intermediate representation (IR). Besides some technical-
ities such as the uniqueness of identifiers this implies two things.
First,while andfor loops are replaced byif andgoto state-
ments with labels. And second, interruptable calls only appear in
one of two ways. Thefirst normal formis a statement consisting of
a single interruptable call. In contrast, thesecond normal formcon-
tains an arbitrary assignment operator, an l-value withoutinterrupt-
able calls, and a single interruptable call, i.e., anythingof the form
expression = interruptable_call(parameters);.

To establish the normal form, we make use of the fact that inter-
ruptable calls in nested expressions can be substituted by new vari-
ables that are initialized by the same interruptable call ina directly
preceding statement. Special care is needed to handle Boolean
short-circuit evaluation correctly, which is achieved by splitting
Boolean expressions into a sequence ofif statements as needed.

4.1 Data Flow
Given the IR, we use Hoopl [20] to perform a liveness analysis

on each interruptable function to find the set ofcritical variables,
i.e., automatic variables that are possibly read after an interrupt-
able call and thus have to be preserved. Because aliasing turns
this into an undecidable problem, the compiler makes conservative
choices such as considering a variable as critical if its address is
taken somewhere.

The compiler then generates a so-calledT-stack framefor each
interruptable function (cf. Figure 2). Such a frame contains the
continuation, i.e., information about where execution should con-
tinue when the interruptable function returns (line 2), thereturn
value of the function if existent (line 3), its parameters (line 4), its

void blinky() {
while(1) {

wait();
// do something

}
}

⇓

1 void thread_0(..) {
2 //...
3 start: if (!1) return;
4 stack_blinky.frames.wait.cont = &&label_blinky_1;
5 goto label_wait_0;
6 label_blinky_1:
7 // do something
8 goto start;
9 label_wait_0:

10 // E-code body of wait
11 goto *stack_blinky.frames.wait.cont;
12 }

Figure 3:Interruptable call of an interruptable function

void wait() {
sleep(23);
// do something

}

⇓

1 void thread_0(void* cont) {
2 if (cont) goto *cont;
3 //... E-code body of blinky
4 label_wait_0:
5 stack_blinky.frames.wait.frames.sleep.until = 23;
6 stack_blinky.frames.wait.frames.sleep.cont = \
7 &&label_wait_1;
8 sleep(&stack_blinky.frames.wait.frames.sleep);
9 return;

10 label_wait_1:
11 // do something
12 goto *stack_blinky.frames.wait.cont;
13 }

Figure 4:Interruptable call of a T-code API function

critical variables (line 5), and aunion of the T-stack frames of all
callees (lines 6–9). Furthermore, one T-stack frame for each thread
starting function is instantiated statically and is calledthe T-stack
of the thread.

Similarly, theE-stack frameof a function contains all of its non-
critical variables, and for each thread theunion of all E-stack
frames of the involved functions establish theE-stack, which is
an automatic variable of thethread execution function(cf. next
section). Given these stacks, the compiler is rewriting access to
variables by replacing them with the corresponding variables from
the stacks.

4.2 Control Flow
To translate the control flow, the bodies of all interruptable func-

tions that are used by a thread are inlined into one commonthread
execution functionfor each thread. This thread execution function
serves as a single event handler function for all events concerning
the corresponding thread. When inlining, the compiler equips ev-
ery first statement of a function body and every first statement after
an interruptable call with a unique label, which serves as a contin-
uation point. The compiler also translates all interruptable function
calls and returns.

Figure 3 depicts an example of how interruptable calls to inter-
ruptable functions are replaced by the following sequence of state-

ments: First, the callee’s parameters are written to the T-stack (not
shown). Second, the continuation information for the callee is writ-
ten to the T-stack (line 4). Third, agoto jumps to the start of the
callee’s body (line 5). Similarly, everyreturn statement in the
T-code is replaced by agoto statement that uses the continuation
information stored on the T-stack (line 11). In case of an inter-
ruptable call in second normal form, the function’s return value is
copied from the T-stack and assigned to the translated l-value of the
normal form’s assignment (not shown).

Figure 4 shows that interruptable calls to T-code API functions
are replaced by a slightly different sequence of statements. First,
function parameters (line 5) and continuation information(line 6–
7) are also copied to the T-stack. But then, the E-code API function
is called, passing it a pointer to its T-stack frame (line 8).Last, the
thread execution function returns in order to pass control back to
the PAL (line 9).

The PAL takes care to call the thread execution function (called
thread_0 in this example) back as soon as the operation has com-
pleted, passing it the continuation that has previously been copied
to the T-stack of the API function. The first statement in eachthread
execution function is agoto (line 2) that resumes the computation
at this location. Again, the return value of the API functioncan be
copied from its T-stack frame if necessary (not shown).

4.3 Equivalence and Correctness
In order to reason about the correctness of the transformation, we

define an event-based application to beequivalentto a thread-based
application if and only if every possibleobservable behaviorof the
E-code corresponds to one possible observable behavior of the T-
code, assuming we would actually execute the T-code. The intu-
ition behind this definition is twofold. First, if from an observer’s
point of view, the interactions with the environment performed by
the E-code and T-code are indistinguishable from each other, then
both variants apparently do “the same thing” and it does not mat-
ter which one is actually executed. And second, if every observed
interaction of the E-code can be explained by a hypotheticalexecu-
tion of the T-code, then “nothing surprising” can happen.

Theobservable behavioris defined as the order of all API calls
including thevaluesof all input parameters. Note however, that the
exact timing of the API calls is not part of the observable behavior,
as cooperative threads are not viable for timing-critical tasks. The
valueof a parameter is defined as the bit representation of a variable
of primitive type, recursively applied to structures and unions, and
the value of a pointer is the value of the referenced object.

When comparing the observable behavior, we refer to correspond-
ing functions from the T-code API and the E-code API. As the lat-
ter is systematically generated from the former, our definition of
equivalence is sound.

The transformation of the data flow leaves the observable be-
havior unchanged because the variables that live on the stacks can
simulate the life cycle of the corresponding automatic variables.
First, this is because E-stacks contain only non-critical variables
and are automatic variables themselves. And second, T-stacks sim-
ulate runtime stacks of threads by design. So overall, the transla-
tion simply exchanges the memory locations of variables while all
statements formed with these variables keep their effects.

Concerning the transformation of the control flow, the transfor-
mation preserves both the sequence of statement between twoyield
points and the continuation of each interruptable call, which main-
tains the equivalence of each of these steps. And as the execution of
T-code is non-deterministic with regard to the order of interleaving
tasks, for each possible sequence of events in the E-code there is

1 | int dt = 500;
2 A | int get_leds() { /* ... */ }
3 | void set_leds(int state) { /* ... */ }
4 | int time(); // included from OS header file
5
6 H | __attribute__((tc_api)) void sleep(int until);
7
8 __attribute__((tc_thread)) void blinky()
9 {

10 | unsigned char state;
11 | state = get_leds();
12 | while(1) {
13 F | wait();
14 | state ^= 0xff;
15 | set_leds(state);
16 | }
17 }
18
19 void wait() {
20 | int now;
21 G | now = time();
22 | sleep(now + dt);
23 }

⇓

1 | int dt = 500;
2 A | int get_leds() { /* ... */ }
3 | void set_leds(int state) { /* ... */ }
4 | int time();
5
6 | typedef struct {
7 | void* cont; int until;
8 | } frame_sleep_t;
9 | typedef struct {

10 | void* cont; int now;
11 | union { frame_sleep_t sleep; } frames;
12 B | } frame_wait_t;
13 | typedef struct {
14 | unsigned char state;
15 | union { frame_wait_t wait; } frames;
16 | } frame_blinky_t;
17
18 C | frame_blinky_t tstack_blinky;
19
20 D | typedef struct { int now; } eframe_wait_t;
21
22 H | void sleep(frame_sleep_t*);
23
24 void thread_0(void* cont) {
25 E | union { eframe_wait_t wait; } estack;
26
27 if (cont) goto *cont;
28
29 | tstack_blinky.state = get_leds();
30 | start:
31 | if (!1) return;
32 | tstack_blinky.frames.wait.cont = &&label_blinky_1;
33 | goto label_wait_0;
34 F | label_blinky_1:
35 | tstack_blinky.state ^= 0xff;
36 | set_leds(tstack_blinky.state);
37 | goto start;
38
39 | label_wait_0:
40 | estack.wait.now = time();
41 | tstack_blinky.frames.wait.frames.sleep.until = \
42 | estack.wait.now + dt;
43 G | tstack_blinky.frames.wait.frames.sleep.cont = \
44 | &&label_wait_1;
45 | sleep(&tstack_blinky.frames.wait.frames.sleep);
46 | return;
47 | label_wait_1:
48 | goto *tstack_blinky.frames.wait.cont;
49 }

Figure 5: A minimal, but complete example:Translating T-code
(top) to E-code (bottom).

typedef enum {
APICALL_sleep,
/* constants for other API calls */

} APICall;

typedef struct {
union {

struct {
frame_sleep_t* frame;
struct etimer et;

} sleep;
/* contexts of other API calls */

} ctx;
APICall apicall;

} ThreadContext;

ThreadContext threads[1];
ThreadContext* cur_thread;

void sleep(frame_sleep_t* fr) {
cur_thread->ctx.sleep.frame = fr;
cur_thread->apicall = APICALL_sleep;
clock_time_t now = clock_time();
etimer_set(&cur_thread->ctx.sleep.et, fr->until-now);

}

Figure 6:PAL implementation ofsleep

one possible control flow in the T-code. From this we can deduce
the overall equivalence.

4.4 Example
Figure 5 shows a minimal, but complete example. First, the lines

labeled with A in both listings show that everything that is neither
an interruptable function nor a T-code API function is passed from
T-code to E-code unchanged.

Label B shows the T-stack frame structures for the interruptable
functionssleep, wait, andblinky. For example, the integer
state (E-code, line 14) originates from the automatic variable
state of the functionblinky (T-code, line 10). Label C shows
the instantiation of the T-stack.

Label D shows the E-stack frame for the functionwait which
is the only function with a non-critical variable. Thus, theE-stack
(Label E) contains only one member.

Label F and G show the body of the functionblinky andwait,
respectively, and we can see two modifications. First, access to
variables and parameters is altered. For instance, access to state
andnow (T-code, line 11 and 21) gets translated to access to the T-
stack and E-stack (E-code, line 29 and 40). And second, the control
flow is translated into continuation passing style. This involves in-
strumenting the code with labels marking the single continuations
(E-code, line 34, 39, and 47). It also involves rewriting interrupt-
able calls to interruptable functions (E-code, line 32 and 33) and to
E-code API functions (E-code, line 41–46).

Finally, label H shows how declarations of API functions get
translated.

5. PLATFORM ABSTRACTION LAYER
As already mentioned in Section 3.2, the PAL has to implement

the E-code API by means of the OS API. But it is important to
note that the PAL is not a conceptual requirement of our compiler-
assisted approach to cooperative threads. Instead, it is only required
to use Ocram with existing operating systems. In general, however,
one could very well design an OS that already provides the system-
atic E-code API as assumed by Ocram. In this case no PAL would
be needed at all.

The complexity of the PAL directly depends on how similar the

static char event_handler_0(struct pt* ptinfo,
process_event ev, process_data_t data)

{
void* cont;
cur_thread = &threads[0];
if (ptinfo->lc == 0) { // first invokation

ptinfo->lc = 1;
cont = NULL;

} else if (cur_thread->apicall == APICALL_sleep
&& ev == PROCESS_EVENT_TIMER
&& data == &cur_thread->ctx.sleep.et) {

cont = cur_thread->ctx.sleep.frame->ec_cont;
} /* else handle other API calls */
thread_0(cont);
return PT_YIELDED;

}

Figure 7:PAL event handler running a T-code thread.

existing OS API is to the systematic E-code API. Likewise, the
integration of existing native code with generated E-code is also
handled by the PAL in an OS-specific manner.

To illustrate the building blocks of a Contiki PAL that we used
for our evaluation (cf. Section 6), we assume a minimalisticT-code
example employing only a single thread and the single API function
sleep from Figure 5. As already depicted there, the translation
generatesframe_sleep_t and the PAL needs to implement the
E-code API functionsleep(frame_sleep_t* frame) and
ensure a proper thread continuation.

Despite protothreads, Contiki builds upon an event-based ap-
proach with a single event handler function for each task. Toclarify
this, we avoided using any of the protothreads macros for theCon-
tiki PAL. We are still using what is called a “process” in Contiki, as
this is unavoidable, but without protothreads, a process isnothing
more than an event handler and some meta information.

Figure 6 shows the implementation ofsleep and Figure 7 shows
the event handler that executes the single T-code thread. Wecan tell
that the event handler has been called for the very first time by look-
ing at the meta information inptinfo. We memorize this case
and call the generated thread execution functionthread_0with a
NULL continuation, thus starting the task. Soon after that, the task
callssleep, which sets a timer and returns. So does the thread
execution function and the PAL, leaving the system to wait for the
PAL being called again with a timer event. As soon as this happens,
the PAL calls the thread execution function with the registered con-
tinuation, thus resuming the task. As the PAL uses standard Contiki
primitives to communicate with other modules, integratingexisting
native code poses no problems.

PALs for other operating systems of course look different, but
in general it should always be possible to perform the necessary
mapping. For example, our proof-of-concept implementation of
a TinyOS PAL employs one instance of a special component per
T-code thread and each of these components is wired to whatever
components it needs to implement the E-code API. API functions
like sleep are implemented similarly to Figure 6, but the occur-
rence of an anticipated event results in a task being posted,which
then calls the thread execution function.

6. EVALUATION
In order to evaluate our approach we have written Ocram, a

Haskell-based implementation of the translation scheme described
in Section 4. The source code of Ocram and of the complete eval-
uation is published1 under a GPL license.

1https://github.com/copton/ocram

We have additionally chosen a set of three case studies, eachfol-
lowing a real WSN application archetype (cf. Section 6.2), and
overall covering a representative range of application types, pro-
gramming concepts and concurrency patterns. We implemented
each of these case studies in three variants (cf. Section 6.1): 1) a na-
tive event-based version, 2) a thread-based version using athread li-
brary, and 3) a T-code version using Ocram. All nine resulting pro-
grams are written for Contiki and executed via COOJA/MSPSim,
while an extra COOJA plugin collects various logs and measure-
ments. Section 6.3 explains how we used the logs to verify thecor-
rectness of the applications and the transformation and Section 6.4
describes which measurements we took how.

6.1 Variants
For each case study application we first implemented anative

(NAT) variant using the event-based paradigm. To this end, we
either copied existing code or wrote an implementation following
common programing patterns as encountered in the Contiki com-
munity. This implies using protothreads, which disguises that the
runtime system is event-based and adds an overhead of two bytes
per protothread. We argue, though, that this does not significantly
bias the ground truth of our evaluation, which is the performance
of a native event-based application.

In Section 2 we have argued why compiler-assisted thread ab-
stractions are more efficient than runtime-based solutions. To ver-
ify this hypothesis, we have secondly written a threaded variant of
the application which is directly executed using athread library
(TL). For this purpose, we have ported the TinyThreads [16] thread
library to Contiki, as it is the only available full-fledged thread li-
brary for cooperative threads in sensor networks. We kept the basic
context switching code and the general scheduler architecture, but
we had to adapt the details to Contiki’s APIs. We also removed
support for preemption and dynamic thread creation and termina-
tion to avoid extra overhead for features that our abstraction does
not provide. Overall, a single protothread executes the scheduler
and all application-level threads.

Finally, the third variant is the E-code applicationgenerated(GEN)
from a thread-based T-code application. To enable a fair com-
parison, the three variants only differ from each other if the dif-
ferent programming models require so. We thus share most non-
interruptable code via separate translation units and we also copied
as many source code lines between the variants as possible.

6.2 Case Study Applications
Figure 8 shows simplified pseudo code for the three case study

applications. The underlined functions are thread start functions
with an endless loop executing the listed code, while the italic func-
tions are re-entrant interruptable functions. The three applications
use the API functionssleep, receive, andwait and all three
of them can be interrupted vianotify.

The first case study is a typicaldata collection and in-network
aggregation(DCA) application consisting of three tasks. Over-
all, the application reads values from the local sensor, receives
values from its child node(s) and sends aggregated values toits
parent node. This constitutes a consumer-producer patternwith
inter-thread communication via a shared ring buffer, but noexplicit
thread synchronization and no re-entrant code. The major archi-
tecture of this case study can be found in many deployments (e.g.
[7]).

The second case study is a complete client-side implementation
of theCoAP protocol[22] including application-level payload frag-
mentation via stop-and-wait [3], and a minimal applicationlayer.
The program consists of three tasks and overall the client repeat-

receiving:
receive
add values to ring buffer

collecting:
sleep 23 second
read from sensor
add value to ring buffer

sending:
sleep 127 seconds
empty ring buffer
aggregate values
send results to parent

(a) DCA

transactions:
sleep until next timeout
if notified:
accept new transaction
else:
send transaction
double transaction timeout

receiver:
receive
cancel pending transaction
notify stop-and-wait

client:
sleep 10 seconds
stop-and-wait of PUT
stop-and-wait of GET

stop-and-wait:
for each fragment:
create transaction
send transaction
wait

(b) CoAP

server:
receive
if notified:
send response
else:
notify available worker

worker [1-N]:
wait
handle call

handle call:
if read fast sensor:
read sensor
if read slow sensor:
sleep // emulation
read sensor
if tell:
send call to peer
receive response
notify server

(c) RPC

Figure 8: Pseudo code of thecase study applications.

edly sends PUT and GET requests to the server. The PUT request
sets the seed for a random resource on the server, while the GET
request retrieves a possibly large sequence of characters from this
resource. Both the value of the seed and the length of the character
sequence are chosen randomly. This application involves both ex-
plicit thread synchronization viawait andnotify and re-entrant
code. The native implementation for this study is Contiki’sCoAP
implementation [12].

The third case study is motivated by a programming framework
for sensor networks [18] that offers so-calledtell actions, where a
node may tell one or more other nodes to execute a (potentially syn-
chronous) command and the tell action itself waits until allnodes
have finished executing the command. In other words, a tell ac-
tion basically is a synchronous one-to-manyremote procedure call
(RPC). In a network in which multiple tell actions can occur at any
time, each node should be able to handle multiple RPCs at the same
time. This calls for a thread pool, a common concurrency pattern
that can be found in many RPC systems such as CORBA. Although
there are some RPC frameworks for sensor networks [15, 26], none
of them supports concurrent invocations. Thus, we implemented
this framework from scratch.

In order to keep the focus on the programming model, we only
support three basic remote calls that conceptually cover the whole
spectrum of interest: 1) reading a value from a fast sensor such as
a temperature sensor, 2) reading a value from a slow sensor, which
involves some startup time and thus a synchronous function on the
callee’s side, and 3) a tell operation, which involves delegating any

of these three remote calls to a different node and thus also requires
a synchronous function on the callee’s side. The application imple-
ments both the client and the server side of the RPC protocol and
involves explicit thread synchronization and re-entrant functions.

6.3 Verification
The verification serves three purposes. First, we want to make

sure that we measure only the effects of the different programming
abstractions. Second, we want to test each variant of each applica-
tion for bugs. And third, we want to verify the correctness ofthe
transformation.

To preserve the fairness of the comparison, we used the same
COOJA simulation for all variants, only exchanging the binary un-
der test in each case. This means that spatial mote distribution,
radio model, neighbor nodes, random seeds, etc. are constant.
That is, the execution environment is deterministic and produces
the same results repeatably. Additionally, we compared thesource
code of the three variants to make sure that they are not needlessly
dissimilar.

In order to verify the executed applications, we wrote a COOJA
plugin that collects a log ofprintf traces, which serves as an
input to an application-specific verification script. And concerning
the correctness of the transformation, the plugin also collects a log
of the observable behavior (OB) as defined in Section 4.3. TheTL
variant de facto constitutes the execution of the T-code, while GEN
is the execution of the E-code. Thus, comparing the OB of TL
and GEN ensures the equality of T-code and E-code and thus the
correctness of the transformation.

6.4 Measurements
As a first and simplest measurement, we counted thelines of

coderequired to implement the application logic for each variant.
Lines of code is in general not very significant, but when using
identical code formatting rules, as we did in our evaluation, it pro-
vides a quick but good estimation of the expressiveness of the pro-
gramming model. In order to focus on the effects of the differ-
ent programming models, we did not include the shared translation
units into the counting. Similarly, we neither took GEN’s PAL nor
TL’s scheduler into account, as this code needs to be writtenonly
once and can thus be regarded as being part of the operating system,
which we did not count either.

Next, we compiled each application for the Tmote Sky platform
using the MSP430 port of the GNU Compiler Collection (GCC)
version 3.2.3. The compilation process was performed by Contiki’s
build system withSMALL=1, which amongst other things instructs
the linker to remove unused functions. To obtain static measure-
ments from the resulting binary we usedobjdump from GCC’s
binutils and retrieved the size of thetextsection (i.e., the machine
code itself), the size of the initializeddatasection, and the size of
the uninitialized data section, also known asbsssection.

Besides these static measurements, we were also interestedin
runtime properties. To obtain a precise count ofCPU cycles, we
modified the Contiki system by introducing avolatile void*
variable calledproc_hook. Right before invoking a process,
the scheduler writes the address of the descriptor of the particu-
lar process toproc_hook. And right after the process returns
control,proc_hook is set toNULL. As proc_hook is declared
volatile, its modifications are guaranteed to happen at the in-
tended moments and in the right order. Our plugin can thus install
a break point for updates toproc_hook, which enables it to pre-
cisely sum up CPU cycles for each process individually.

All interrupt functions and the code that logs the OB signal their
invocation viaproc_hook as well. The plugin can thus remove

these CPU cycles from the current process’ account, and by consid-
ering the cycles for the prologue and the epilogue of the interrupt
functions and the cycles for the write operations toproc_hook,
it measures the exact number of CPU cycles per process.

For NAT, we counted the CPU cycles of all processes that run an
application task, leaving out any OS processes. For TL, we counted
the CPU cycles of the single scheduler process only, as it executes
all application threads. And finally, for GEN, we counted theCPU
cycles of all Contiki processes that execute an applicationthread
(cf. Section 5). Overall, the counted CPU cycles cover the same
application functionality in each case.

In order to measure themaximum stack consumption, our plugin
installs a break point for updates to the stack pointer register (SP).
For NAT and GEN, tracking the maximum SP value and subtract-
ing it from the start address of the stack is sufficient. For TL, we
also need to take the stacks of the application threads into account,
though. Our plugin does this accurately and thus obtains theprecise
amount of bytes required for each stack.

We used these values to set the size of the application stacks,
thus reducing the size of the bss section as much as possible and en-
abling a fair comparison. As interrupts happen non-deterministically,
a single simulation run might not catch the worst case of interrupt
function invocations. Thus, we added a safety margin of 20 bytes
to each stack and so far no stack overflows occurred during our
measurements, which of course is also monitored by the plugin.

7. RESULTS
A major observation of the evaluation is that the results arede-

terministic. Thus we can directly interpret these values without any
additional statistics methods.

Figure 9a shows that in order to implement the same application,
T-code requires 8 % to 17 % lesslines of codethan a native Contiki
implementation. As already mentioned in the previous section, this
measurement does not cover shared translation units, whichcontain
additional 2000 lines of code for CoAP and 300 for RPC.

As “with protothreads the number of lines of code was reduced
by one third” [6], we can estimate that a T-code application re-
quires up to 45 % less lines of code than an equivalent event-based
application. Although this result is not precise, it still supports our
initial motivation for this work: synchronous functions and sequen-
tial computation provide an easier programming model than asyn-
chronous functions and event handlers. The TL variant is close to
GEN but higher because it provides the same programming model
as GEN, but requires extra lines to define the application stacks and
to start the threads.

7.1 Memory Resources
Of course, we expect our thread abstraction to also have some

costs. First of all, we are interested in the overall memory con-
sumption because random access memory (RAM) is very limited
on sensor network devices. To this end, Figure 9b shows the size of
thedataand thebsssection along with the maximumstack sizefor
each variant of each application. First, we can see that all three vari-
ants have roughly the same amount of initialized data and a large
common block of bss memory. This is because each variant uses
the same operating system that adds its string constants, network
stack buffers, etc.

Additionally, we can see that all three variants have roughly
equal maximum stack sizes because none of them uses the run-
time stack a lot: Protothreads usestatic variables, TL uses the
stacks of the application threads for function-local automatic vari-
ables, and GEN has its T-stacks. As a consequence, we can see TL
and GEN having larger bss segments.

 50

 100

 150

 200

 250

 300

dca coap rpc2

lin
es

 o
f c

od
e

nat
tl

gen

(a) lines of code

 7000

 7500

 8000

 8500

 9000

 9500

nat tl gen nat tl gen nat tl gen

R
A

M
 [b

yt
e]

dca coap rpc

stack
data
bss

(b) RAM

 42000

 43000

 44000

 45000

 46000

 47000

nat tl gen nat tl gen nat tl gen

te
xt

 [b
yt

e]

dca coap rpc

pal
text

(c) text

 660000

 680000

 700000

 720000

 740000

 760000

 780000

 800000

 820000

dca coap rpc2

C
P

U
 c

yc
le

s

nat
tl

gen

(d) CPU cycles

 43500

 44000

 44500

 45000

 45500

 46000

 46500

 47000

1 2 3 4

te
xt

 [b
yt

e]

number of worker threads

nat
tl

gen
gen-no-pal

(e) text per thread

 8000

 8200

 8400

 8600

 8800

 9000

 9200

 9400

1 2 3 4

R
A

M
 [b

yt
e]

number of worker threads

nat
tl

gen

(f) RAM per thread

Figure 9:Evaluation results: (a)-(d): resource consumption of various resources per variant and application.
(e)-(f): resources consumption of RPC application per variant versus number of threads.

The interesting observation is that TL’s overhead is significantly
higher which reflects the common wisdom that thread libraries are
expensive (cf. Section 3.1). A second interesting observation is
that both GEN’s overhead of the bss section and its overhead of the
total amount of required RAM is approx. 1 % compared to NAT.

Another limited resource of sensor network devices is ROM space,
which means that we need to compare the binary size of the vari-
ants. Figure 9c thus shows the size of thetextsections and, in case
of the GEN variant, it also distinguishes between code resulting
from the application layer and code added by the PAL.

First, we see the overhead of TL’s scheduler as expected. Simi-
larly, we see the overhead of GEN’s PAL. But we also see that the
generated code itself, i.e., the E-code not including the PAL, is al-
most the same size as the code of the NAT variant. And including
the PAL, the overhead is below 3 %.

Overall, the results show that Ocram provides the comfort of
threads for just a small amount of extra RAM and ROM.

7.2 CPU cycles
Next, we want to know if the generated code involves more com-

putation than a native implementation because keeping the CPU
busy prevents the device from going into a low-power idle state. To
this end, Figure 9d shows theCPU cyclescount for each variant
of each application. The absolute range of the values depends on
the duration of the simulation of each application and thus provides
little insight. But what we do see is that TL’s scheduler addsup to
12 % of CPU cycles compared to the NAT variant. And we see that
despite the additional PAL, GEN’s number of CPU cycles is only
approx. 2 % higher compared to NAT.

Although we do not know the exact division between the PAL
and the application code, regarding the extra work performed by
the PAL, this result suggests that the E-code actually requires less

CPU cycles than the native implementation. An explanation for
this is that all interruptable functions are inlined in the E-code, thus
saving extra cycles for function prologue and epilogues. But of
course, this comes at the cost of a larger binary size in case of re-
entrant functions.

7.3 Resource consumption per thread
To analyze this trade-off, we varied the number of worker threads

of the RPC application from one to four and performed the mea-
surements for each configuration. In each case, we adapted the
client mote to send the right amount of concurrent remotely wait-
ing RPC calls to have all worker threads busy at the same time.The
previous figures showed results for the RPC application withtwo
worker threads and using more than four workers already exceeds
the limited resources of the Tmote Sky.

Figure 9e shows the size of thetextsection of all three variants
versus the number of worker threads. Additionally, it showsthe
PAL’s share by plotting the GEN variant with the text sectionof the
PAL removed.

In the case of a single worker thread, we see the overhead of TL’s
scheduler once again. But we also see that TL has the lowest slope
of all, as increasing the number of worker threads only involves
starting another application thread. The rest of TL’s code is generic
in that sense and can be reused. For NAT, we have a slope of 187
bytes per worker. This originates from the additional protothreads
that run the extra workers. Although they share common code,the
basic stub of each protothread is always required.

And finally for GEN, we see the biggest slope of 607 bytes per
worker including the PAL and 559 bytes per worker without the
PAL. The share added by the PAL has the same origin as in the
NAT case. And the share added by the E-code reflects the trade-off
that we have chosen for the translation scheme: By inlining inter-

ruptable functions, we save CPU cycles and RAM, but we pay extra
for re-entrant interruptable functions. In this sense, thethread pools
of the RPC application are a worst case scenario for this translation
scheme.

Figure 9f shows the other side of the trade-off which is RAM.
There we see that GEN has almost the same slope as NAT, i.e.,
182 vs. 158 bytes per worker. In contrast, TL has a slope of 310
bytes per worker which has two major reasons. First, as already
explained, each thread’s stack needs an extra margin to be able to
host any occurring interrupt handler functions. And second, the
generic nature of a thread library indeed saves in binary size, but
it pays in RAM because it has to support all possible cases. Given
the limited resources, the lack of static analysis is what kept thread
libraries from improving their performance [17]. With compiler-
assisted thread abstractions we aim to exploit exactly thispossibil-
ity.

7.4 Discussion
Overall, the evaluation results give three major insights.First,

the thread-based programming paradigm yields to more compact
code compared to event-based programming, which is an indica-
tion for what is generally perceived as being an easier programming
model. Second, the performance overhead of generated E-code
compared to hand-written event-based code is in the single digits,
making the comfort of threads affordable for resource-constrained
WSN devices. And third, the performance of generated E-codeis
better than what can currently be achieved with thread libraries.

Of course, a dedicated threads-to-events compiler is a hugeini-
tial effort, but we argue that the major advantage of compiler-assisted
approaches is their capability to exploit application-specific opti-
mizations. Although Ocram currently only applies some basic opti-
mizations such as keeping non-critical variables on the shared run-
time stack, on the medium term we expect the performance of E-
code to improve with more advanced translations, while for thread
libraries we do not see such opportunities of improvement.

8. FUTURE WORK
Although we believe that Ocram represents a major step towards

a practical and efficient thread abstraction for sensor networks, sev-
eral improvements are subject of our ongoing and future work.

Our current compiler prototype only implements some optimiza-
tions, but there are a number of further optimization opportunities.
For example, if a function is only called from one location inthe
whole program, there is no need to save the caller’s continuation in
memory. Instead, it can be hard-coded into the E-code. As a sec-
ond example, in case of read-only parameters, the callee canaccess
the variables from the caller’s T-stack frame instead of having them
copied to its own frame. Furthermore, different translation schemes
have different trade-offs. A future T-code compiler therefore could
measure properties of the input application and use a heuristic to
choose the most efficient translation scheme.

We have also developed an early prototype of a T-code debug-
ger, which offers typical source-level debugging primitives such as
break points and variable inspection on T-code level. To this end,
the Ocram compiler saves the performed variable and code map-
ping in a separate debug file and the T-code debugger communi-
cates with a common E-code debugger such as the GDB. Whenever
the user wants to access a source code line or a variable, the T-code
debugger consults the debug file to find the corresponding E-code
source line or variable and delegates a translated request to the E-
code debugger. By these means it is possible to completely hide
the event-based nature of the runtime system from the program-
mer. Most other WSN programming abstractions fail to support

fault diagnosis, forcing the developer to cope with the complexity
of the underlying run-time system nevertheless and thus breaking
the abstraction.

9. CONCLUSIONS
We presented the first comprehensive compiler-assisted thread

abstraction to address the increasing mote software complexity at
the service and application layers, where the simple event-action
model of event-based programming leads to code that is hard to
manage and prone to errors.

Our evaluation showed that with our approach thread-based pro-
gramming is almost as efficient as event-based programming:The
overhead of RAM is approx. 1 %, for ROM below 3 %, and con-
cerning CPU cycles the overhead is below 2 %. Thus, our work
shows that the trade-off between expressiveness and efficiency of
thread abstractions is not inherent to resource-constrained systems.

Additional optimizations, which are part of our ongoing andfu-
ture work, are expected to stress this point even further. Thus we
argue that the effort of employing a dedicated threads-to-events
compiler pays off. We also believe that Ocram is a practical so-
lution, as the generated code integrates seamlessly with existing
hand-written event-based code. Furthermore, Ocram can be easily
ported to other event-based kernels by implementing a thin plat-
form abstraction layer, which is a one-time overhead.

10. ACKNOWLEDGMENTS
This work has been partially supported by the National Compe-

tence Center in Research on Mobile Information and Communica-
tion Systems (NCCR-MICS), a center supported by the Swiss Na-
tional Science Foundation under grant number 5005-67322, and by
CONET, the Cooperating Objects Network of Excellence, funded
by the European Commission under FP7 with contract number FP7-
2007-2-224053.

We want to thank Matthias Kovatsch, Institute for PervasiveCom-
puting, ETH Zurich, for helping us with his expertise in Contiki,
Cooja and CoAP.

11. REFERENCES
[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.

Douceur. Cooperative Task Management Without Manual
Stack Management. InProceedings of the General Track of
the USENIX Technical Conference, pages 289–302, 2002.

[2] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,
B. Shucker, C. Gruenwald, A. Torgerson, and R. Han.
MANTIS OS: An Embedded Multithreaded Operating
System for Wireless Micro Sensor Platforms.Mobile
Networks and Applications, 10(4):563–579, 2005.

[3] C. Bormann and Z. Shelby. Blockwise Transfers in CoAP.
http://tools.ietf.org/html/
draft-ietf-core-block-10, 2011.

[4] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco.
Programming Wireless Sensor Networks with the
TeenyLime Middleware. InProceedings of the Middleware
Conference, pages 429–449, 2007.

[5] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A
Lightweight and Flexible Operating System for Tiny
Networked Sensors. InProceedings of the Conference on
Local Computer Networks, LCN, pages 455–462, 2004.

[6] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads:
Simplifying Event-driven Programming of
Memory-constrained Embedded Systems. InProceedings of

the Conference on Embedded Networked Sensor Systems,
SenSys, pages 29–42, 2006.

[7] A. Hasler, I. Talzi, J. Beutel, C. Tschudin, and S. Gruber.
Wireless Sensor Networks in Permafrost Research: Concept,
Requirements, Implementation, and Challenges. In
Proceedings of the Conference on Permafrost, pages
669–674, 2008.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and
K. S. J. Pister. System Architecture Directions for
Networked Sensors.ACM SIGARCH Computer Architecture
News, 28(5):93–104, 2000.

[9] J. W. Hui and D. E. Culler. IP is Dead, Long Live IP for
Wireless Sensor Networks. InProceedings of the Conference
on Embedded Networked Sensor Systems, SenSys, pages
15–28, 2008.

[10] K. Klues, C.-J. M. Liang, J. Paek, R. Musaloiu-E, P. Levis,
A. Terzis, and R. Govindan. TOSThreads: Thread-safe and
Non-invasive Preemption in TinyOS. InProceedings of the
Conference on Embedded Networked Sensor Systems,
SenSys, pages 127–140, 2009.

[11] J. Ko, K. Klues, C. Richter, W. Hofer, B. Kusy, M. Brünig,
T. Schmid, Q. Wang, P. Dutta, and A. Terzis. Low Power or
High Performance? A Tradeoff Whose Time Has Come (and
Nearly Gone). InProceedings of the European Conference
on Wireless Sensor Networks, EWSN, pages 98–114, 2012.

[12] M. Kovatsch, S. Duquennoy, and A. Dunkels. A Low-Power
CoAP for Contiki. InProceedings of the Conference on
Mobile Ad-hoc and Sensor Systems, MASS, pages 855–860,
2011.

[13] H. C. Lauer and R. M. Needham. On the Duality of
Operating System Structures.Operating Systems Review,
13(2):3–19, 1979.

[14] E. A. Lee. The Problem with Threads.IEEE Computer,
39(5):33–42, 2006.

[15] T. D. May, S. H. Dunning, and G. A. Dowding. An RPC
Design for Wireless Sensor Networks.Pervasive Computing
and Communications, 2(4):384–397, 2007.

[16] W. P. McCartney and N. Sridhar. Abstractions for Safe
Concurrent Programming in Networked Embedded Systems.
In Proceedings of the Conference on Embedded Networked
Sensor Systems, SenSys, pages 167–180, 2006.

[17] W. P. McCartney and N. Sridhar. Stackless Preemptive
Multi-Threading for TinyOS. InProceedings of the
Conference on Distributed Computing in Sensor Systems,
DCOSS, pages 1–8, 2011.

[18] L. Mottola, G. P. Picco, P. Valleri, F. J. Oppermann, and
K. Römer. The makeSense Programming Model. Technical
Report D-3.1, Swedish Institute of Computer Science,
Università degli Studi di Trento, Universität zu Lübeck,
2011.

[19] C. Nitta, R. Pandey, and Y. Ramin. Y-threads: Supporting
Concurrency in Wireless Sensor Networks. InProceedings of
the Conference on Distributed Computing in Sensor Systems,
DCOSS, pages 169–184, 2006.

[20] N. Ramsey, J. Dias, and S. Peyton Jones. Hoopl: A Modular,
Reusable Library for Dataflow Analysis and Transformation.
In Proceedings of the Symposium on Haskell, pages
121–134, 2010.

[21] J. Sallai, M. Maróti, and A. Lédeczi. A Concurrency
Abstraction for Reliable Sensor Network Applications. In
Proceedings of the Conference on Reliable Systems on
Unreliable Networked Platforms, pages 143–160, 2007.

[22] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. Constrained
Application Protocol (CoAP).http://tools.ietf.
org/html/draft-ietf-core-coap-13, 2011.

[23] H. Sutter and J. Larus. Software and the Concurrency
Revolution.Queue, 3(7):54–62, 2005.

[24] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: Scalable Threads for Internet Services.
In Proceedings of the Symposium on Operating Systems
Principles, SOSP, pages 268–281, 2003.

[25] M. Welsh and G. Mainland. Programming Sensor Networks
Using Abstract Regions. InProceedings of the Symposium
on Networked Systems Design and Implementation, NSDI,
pages 29–42, 2004.

[26] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim,
J. Jeong, J. Hui, P. Dutta, and D. E. Culler. Marionette:
Using RPC for Interactive Development and Debugging of
Wireless Embedded Networks. InProceedings of the
Conference on Information Processing in Sensor Networks,
IPSN, pages 416–423, 2006.

