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Recent advances in detectors and computer science have enabled the acquisition and the processing of

multidimensional datasets, in particular in the field of spectral imaging. Benefiting from these new

developments, Earth scientists try to recover the reflectance spectra of macroscopic materials (e.g., water,

grass, mineral typesy) present in an observed scene and to estimate their respective proportions in each

mixed pixel of the acquired image. This task is usually referred to as spectral mixture analysis or spectral

unmixing (SU). SU aims at decomposing the measured pixel spectrum into a collection of constituent

spectra, called endmembers, and a set of corresponding fractions (abundances) that indicate the proportion

of each endmember present in the pixel. Similarly, when processing spectrum-images, microscopists

usually try to map elemental, physical and chemical state information of a given material. This paper

reports how a SU algorithm dedicated to remote sensing hyperspectral images can be successfully applied

to analyze spectrum-image resulting from electron energy-loss spectroscopy (EELS). SU generally over-

comes standard limitations inherent to other multivariate statistical analysis methods, such as principal

component analysis (PCA) or independent component analysis (ICA), that have been previously used to

analyze EELS maps. Indeed, ICA and PCA may perform poorly for linear spectral mixture analysis due to the

strong dependence between the abundances of the different materials. One example is presented here to

demonstrate the potential of this technique for EELS analysis.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Over the two last decades, scanning transmission electron
microscopy (STEM) has benefit from important advances in elec-
tron-based instrumentation and technology. These recent advances
have enabled the development of electron energy-loss spectroscopy
(EELS). EELS provide spectrum-images, that have been widely used
in various applications, including material science and chemical
analysis [1,2]. The multidimensional data coming from EELS analysis
exploit inherent spatial information to build elemental maps. An
elemental map is useful per se, however it does not exploit
additional crucial information present in the acquired spectrum
image. As EELS signal is sensitive to chemical changes and atom
environment, building a map of the different materials would be
more much more relevant. Therefore, there is a real need for
efficient techniques to process EELS spectrum-images, able to
identify and quantify the spectral components that represent the
different compounds present in the imaged sample.

Attempts to extract information from EELS spectra were
conducted in 1999 mainly based on multivariate data analysis
techniques, specifically principal component analysis (PCA) [3].
A PCA-based method was written for DigitalMicrograph and
ll rights reserved.

).
commercialized by Ishizuka in 2001 [4] and is now rather widely
used for data filtering and dimensional reduction [5]. However,
such analysis faces the difficulty of extracting physically mean-
ingful spectra from the computed eigenvalues.

Conversely, independent component analysis (ICA) aims at
identifying statistically independent components from multivari-
ate data. In 2005, Bonnet and Nuzillard [6] applied the ICA-based
SOBI algorithm to process spectrum image data set. The authors
noticed that, since EELS spectra are not composed of separated
peaks, the independence hypothesis is not fulfilled. To overcome
this issue, successive derivatives of EELS-spectra are analyzed.
From this analysis, it seems that first derivatives produce more
interpretable results than second derivatives. Unfortunately, this
finding was empirical and no theoretical argument was found to
justify this point. De La Peña proposed in [7] to use a kernelized
version of ICA. This approach allows C, SnO2 and TiO2 signals to be
successfully separated while analyzing a spinodally decomposed
solid solution. Satisfactory quantitative analysis was obtained but
no fine structure analysis was performed. The authors noticed
that difficulties could be encountered because of multiple scatter-
ing and energy instabilities introducing non linearity.

Recently a matrix factorization technique has been proposed
to map plasmon modes on silver nanorods [8]. The analysis,
relying on the software AXSIA developed by Keenan [9] consists in
looking for a rotation matrix to be applied on orthogonal factors
to maximize the intrinsic ‘‘simplicity’’ of the decomposition.
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Fig. 1. Geometrical formulation of spectral mixture analysis (SMA). The scatter-

plot represents the data observed in a 2-D space. The mixed pixels (gray circles)

belong to the simplex (simplest geometric figure that is not degenerate in

n-dimensions), whose vertices are the 3 endmembers. SMA algorithms exploit

different properties of the simplex.
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Specifically, the optimal solution is defined by the sparsity of the
spatial distribution of each individual material.

In a significantly different area – namely remote sensing and
geoscience – reflectance spectroscopy is widely used to charac-
terize and discriminate materials on the Earth surface for various
applications [10]. Usually mounted on aircrafts, balloons or
satellites, spectral sensors collect electromagnetic radiations from
the Earth surface. Most of the recorded signals are reflectance
spectroscopic signals measured in the infra-red/visible range.
The collection of these signals over an observed scene provides
a multi-band image formed as a 3-dimensional data cube. Each
pixel of the atmospheric-corrected image is characterized by a
vector of reflectance measurements. Specifically, hyperspectral

images are composed of pixels with several hundreds of narrow
and contiguous spectral bands.

Faced with this amount of data, the geophysicist community has
developed analysis methods to extract physical information from
these images. One of the main objectives of these methods is to
identify spectral properties corresponding to distinct materials in a
given scene and thus to get classification maps of the image pixels.
However, because of the intrinsically limited spatial resolution of
the hyperspectral sensors, several materials (e.g., water, grass,
mineral typesy) usually contribute to the spectrum measured at
a given single pixel. The resulting spectral measurement is a
combination of the individual spectra that are characteristic of the
macroscopic materials. Consequently, techniques to estimate the
constituent substance spectra and their respective proportions from
mixed pixels are needed. Spectral unmixing is the procedure that
aims at (i) decomposing the measured pixel spectrum into a
collection of constituent spectra, or endmembers, and (ii) estimating
the corresponding fractions, or abundances, that indicate the propor-
tion of each endmember present in the pixel [11].

What is usually known as )spectrum image* in the microscopist
community corresponds very precisely to a )hyperspectral image* for
the geoscience-related applications. The analogy between these two
fields of research is undeniable. However, at the present time
microscopists are less advanced in their ability of conducting efficient
multivariate analysis of their data. In this work we describe how a
recent spectral unmixing algorithm developed by Dobigeon et al. [12]
for analyzing hyperspectral images can be successfully applied to
spectrum images resulting from EELS maps.

2. Methods and experimental setup

2.1. Spectral mixture analysis

This paragraph formulates the so-called spectral unmixing or
spectral mixture analysis. Let Y denote the L by N observed data
matrix that gathers the whole set of N measured pixel spectra. Each
column of the Y is a vector of size L which corresponds to the
reflectances measured in the L spectral bands. The spectral mixture
analysis (SMA) conducted on the spectrum image consists of decom-
posing this matrix Y into a product matrix SA. In this decomposition
scheme, each column of the L by R matrix S is the spectral signature
of a constituent (endmember). Conversely, each column of A is a set
of R coefficients corresponding to the relative proportions of the
signatures in the pixels. Thus, like any factorization matrix method,
SMA estimates the two latent variables S and A leading to the
product SA that best approximates the observed matrix Y. Since this
decomposition is non-unique, the problem of estimating S and A
from Y is ill-conditioned. To reduce the set of admissible solutions,
additional constraints on S and A are considered. First, as any non-
negative matrix factorization (NMF) approach, the elements of S and
A are assumed to be positive. Moreover, since the coefficients in each
column of A represent proportions, it is natural to consider an
additional sum-to-one constraint on these columns. This constrained
matrix factorization problem has been widely addressed in the
geoscience and remote sensing literature since SMA is a crucial step
in analyzing multi-band images, e.g., hyperspectral data. Note that,
from a geometrical point of view, SMA consists of identifying the
vertices of a lower dimensional simplex formed by the observed data
(Fig. 1). Indeed, under the positivity and additivity constraints
introduced previously, the observed spectral vectors form a simplex
whose vertices correspond to the endmembers to be identified. Rþ1
pure endmembers spectra form the vertices of an R-simplex. Thus, as
examples, a 2-simplex is a triangle (Fig. 1), a 3-simplex a tetrahedr-
ony Several algorithms of the geoscience and remote sensing
literature have proposed to exploit this geometrical formulation to
solve the spectral unmixing problem. Vertex Component Analysis
(VCA) is one of the most popular geometric algorithm [13]. It consists
of iteratively (i) projecting the data onto the direction orthogonal to
the subspace spanned by the endmembers previously identified (ii)
assigning the extreme projection as a new endmember.

Geometrical algorithms have the great advantage of being
computationally efficient. However, most of them, such as VCA,
rely on the hard hypothesis of ‘‘pure pixels’’, i.e., they assume that
the endmembers are present among the observed pixels. Unfor-
tunately, this assumption can be rarely ensured and alternative
strategies must be considered.

In this work, SMA is conducted with the Bayesian Linear
Unmixing (BLU) method proposed by Dobigeon et al. [12].
Originally developed to address the hyperspectral unmixing of
remote sensing images, BLU relies on a Bayesian formulation of
the estimation problem. This Bayesian framework allows the
positivity and sum-to-one constraints introduced above to be
conveniently included into the observation model.

The proposed BLU method has the great advantage of recovering
the endmember signatures S and their respective proportions A
jointly in a single step. Naturally, this strategy casts SMA as a standard
blind source separation (BSS) problem. Moreover, contrary to geome-
trical based algorithm like VCA, it does not require the assumption of
having pure pixels among the data. Moreover, note that BLU solves
the endmember estimation problem directly on a lower dimensional
space, exploiting the intrinsic geometrical interpretation of SMA
noticed above. By conducting SMA in the subspace spanned by the
identified simplex, the number of freedom associated with the
parameters to be estimated is significantly reduced when compared
to other algorithms dedicated to SMA.

The methodology of BLU can be summarized as follows. First,
appropriate prior distributions p(S) and p(A) are assigned to the
unknown parameters S and A, respectively. These distributions are
chosen to ensure the positivity and sum-to-one constraints imposed
on the unknown matrices S and A. Then, based on this prior modeling
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Fig. 3. Typical EELS spectra extracted from the 64�64 spectrum image in Fig. 2.

Boron, carbon, nitrogen and oxygen K edges are represented.
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and the well-admitted assumption of a Gaussian likelihood p(Y9S, A),
the joint posterior distribution p(S, A9Y) is computed using the Bayes
paradigm. Unfortunately, this posterior is too complex to easily derive
the closed-form expressions of the standard Bayesian estimators,
such as the maximum a posteriori or posterior mean. Consequently, a
Markov chain Monte Carlo (MCMC) algorithm is designed to generate
samples S(t) and A(t) (t¼1,yNMC) asymptotically distributed accord-
ing to the posterior of interest. Finally, the Bayesian estimators of the
endmember matrix S and the proportion matrix A are then approxi-
mated using these NMC generated samples. Note that a Matlab& code
of the BLU algorithm is freely available online [12].

2.2. Experimental data

In the following sections, SMA of a spectrum-image of nano-
particles is conducted. More precisely, the ability of BLU to
provide interpretable spectral signatures is demonstrated, thus
overcoming the standard limitations inherent to other multi-
variate analysis techniques, such as PCA and ICA.

The analyzed dataset consists of a 64�64 pixel spectrum-
image acquired in 1340 energy channels over a region composed
of several nanocages in a boron-nitride nanotubes (BNNT) sample.
Note that nanocages are supported by a holey carbon film for TEM
analysis. These data have been extensively described and ana-
lyzed in [14] and a high angle dark field image of the region of
interest is depicted in Fig. 2. In this study, ELNES )fingerprints* for
different bonding configurations of boron (B–B, B–O, B–Npn,
B–Nsn) have been extracted from selected area of the sample.
Then reconstructed spectra are computed according to a linear
combination of a power law and four fingerprints thanks to a
multiple least squares fitting procedure. Fig. 3 displays character-
istic spectra with the involved edges (B–K, C–K, N–K and O–K).
3. Results

3.1. Principal component analysis

PCA has demonstrated its ability to extract relevant informa-
tion from multidimensional data. For instance, this method and
its application to EELS data have been described in [3]. Moreover,
this powerful multivariate analysis technique is also able to
provide a minimal representation of the signal of interest,
performing an explicit dimensionality reduction. In particular, in
the specific context of SMA and according to the geometrical
interpretation of spectral unmixing given in the previous section,
Fig. 2. HADF image corresponding to a 64�64 spectrum-image recorded in an

area rich in nanoparticles containing boron (pure boron, boron oxide or h-BN).
the intrinsic dimension of the data is straight related with the
number of endmembers to be recovered. When the mixed pixels
are assumed to be obtained from the constrained linear combina-
tion of R spectral components, only R-1 dimensions are required
to represent the data without loss of any information.

The method commonly advocated to determine the intrinsic
dimensional of the data is to monitor the eigenvalues obtained by
PCA. Only eigenvectors associated with eigenvalues of highest
magnitudes are retained as significant contributions. Several
criteria have been proposed to decide on the number of relevant
eigenvalues. One solution consists in plotting the logarithm
of these eigenvalues previously arranged in decreasing order.
Ideally, smallest values related to noise correspond to the final
linear part of the plot. However, the actual dimensionality of the
data is generally difficult to assessed in practice, since changes
between two adjacent eigenvalues may not be significant. This is
typically the case for real data encountered in hyperspectral
imagery, such as the HYDICE image scene. In [15], the authors
conclude that only a crude estimate of the number of signal
sources can be provided. Indeed the signature of an unique target
may vary significantly from one area to another. Moreover, signal
of weak amplitude might be difficult to separate from noise.

The eigenvalues for the analyzed spectrum-image are plotted in
Fig. 4. As expected, the threshold cannot be clearly defined since there
is no drastic drop in the eigenvalues distribution. The main objective
of the study is to separate B–Npn from B–Nsn while keeping a
minimum number of components for the other signatures. In
practice, the analysis of the considered EELS dataset has been
conducted with a number of spectral signatures R ranging from 6
to 8 for each evaluated analysis method (PCA, ICA and SMA).

PCA has been performed with R¼8 using the open source
Hyperspy toolbox [7], with a weighted version of PCA. The first
eight spectra corresponding to PCA eigenvectors of highest
relevance are displayed in Fig. 5. It clearly appears that these
components do not correspond to any meaningful physical
spectra. Consequently, they do not allow any interpretation,
quantification or comparison with reference spectra. This can be
explained by the fact that PCA searches for orthogonal compo-
nents, which is not a realistic assumption for EELS application.

3.2. Independent component analysis

Whereas PCA searches for orthogonal components, ICA aims
at identifying statistically independent components. Different
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measures of independence have been exploited in the literature,
corresponding to different algorithms. In this work ICA has been
performed using the open source Hyperspy toolbox [7], choosing
the CubICA algorithm. In contrast to other ICA methods, CubICA
can be used without any parameter adjustments. It is thus easy to
use and has been already applied for EELS spectrum-imaging data
analysis. After visual expertise of the results obtained for R¼6,
R¼7 and R¼8 components, we considered that R¼7 provides the
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arranged in a decreasing order (depicted in logarithmic scale). The threshold

between eigenvalues associated signal and those associated with noise is not easy

to determine. Indeed, there is no drastic drop in the eigenvalue distribution. In this

work, the intrinsic dimensionality of the data is estimated around 7.
most physically interpretable results. The identified components
and their respective abundance maps are depicted in Figs. 6 and 7,
respectively. The component IC5 is clearly identified as amor-
phous carbon and the map corresponds to the carbon supporting
film. The 3 components IC1, IC4 and IC7 are associated with pure
Boron and the corresponding abundance maps match those
obtained in [14] for this specific compound. The separation of
the signature into 3 different components may be explained by
thickness effects. By analyzing the abundance map associated
with IC2, this component can be identified as B–Npn, but its
features are significantly different from those of the reference
spectrum in [14] and do not correspond to any proper EELS edge.
Similarly IC3 should correspond to B2O3. However, whereas O–K
edge appears properly, no real physical edge for the B–K is
obtained. Finally, unfortunately, component IC6 does not corre-
spond to physically acceptable spectra and its abundance map is
not interpretable. As a consequence, we have to conclude that ICA
has failed to completely unmix the signal sources. In particular,
we do not obtain the signature for B–Npn, B–Nsn. This limitation of
ICA has already been noticed in [16]. Note that considering other
numbers of components does not significantly improve the
results.

We also tried to perform the analysis by restricting the energy
range to a window corresponding to B–K edge, i.e., 188–206 eV,
following the strategy in [14]. However, once again, ICA fails to
unmix properly the components. By choosing the energy range
330–610 eV, which only corresponds to Ca, N and O, satisfying
unmixing results can be obtained with 4 components: background,
BN, B2O3 and pure boron (Figs. 8 and 9). In this case, the differences
between the two orientations of h-BN are too small to be detected on
the N–K edge, providing only one component for h-BN. Consequently,
it seems that ICA performs better with high energy ranges, as it was
the case in [7] with a 430–800 eV energy window. According to [7],
1000
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ogonal and thus do not correspond to any ‘‘physically’’ significant spectral signature.
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this could be explained by non-linear effects caused by multiple
scattering and by the variance of the C–K edge which is of the same
order of magnitude as the other signals. In the analyzed example,
since B–K is the edge of interest, the energy levels that contain
this non-linearity cannot be removed from the analysis without
losing crucial and discriminative information initially contained in
the data.
3.3. Spectral mixture analysis with VCA and BLU

SMA of the EELS spectrum-imaging data is conducted by using
the BLU algorithm presented in paragraph 2.1. We found that
R¼8 give the most satisfying results. The BLU algorithm has been
initialized with endmembers provided by the VCA algorithm
introduced in Section 2.1. Unmixing results provided by VCA are
also reported to be compared with endmembers identified by
BLU. VCA and BLU calculations were performed in the Matlabs

(Release 2010b) environment.
Results obtained with VCA are presented in Figs. 10 and 11.

It clearly appears that (i) all spectra correspond to realistic
EELS spectra with characteristic edges on a decreasing back-
ground, and (ii) the related maps correctly separate different
areas on the sample, which was not the case for maps obtained
with ICA. The comparison of maps and endmembers with results
obtained in [14] allows some target signature to be easily
identified:
�

Fig
are
According to the C map of [14], component VCA1 corresponds
to the C supporting film.
�
 VCA2 and VCA6 both correspond to pure B in [14]. This is
similar to the case of AVIRIS hyperspectral data where the
)playa* signature is separated into two distinct regions [15].
It is likely that the splitting of the pure-B component does not
correspond to 2 physically distinct signals.
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VCA3 is related to holes in the sample, thus there is no
characteristic signal. This component is nevertheless necessary
to account for the absence of signal in these pixels.
�
 VCA4 corresponds to B–Nsn but the map is slightly different
from the one obtained in [14].
�
 VCA5 can be associated with B2O3 since fine structure in the
corresponding abundance map the presence of O are in good
agreement with results obtained in [14] for boron oxide.
�
 Component VCA7 corresponds to B–Npn, with a observable
N–K edge.

The endmember spectra estimated by the proposed BLU
algorithm are depicted in Fig. 12 and the abundance maps in
Fig. 13. For some components, results are quite similar to those
obtained with VCA.
�
 VCA7 and BLU7 correspond to B–Npn with an identifiable
N–K edge.
�
 VCA4 and BLU4 correspond to B–Nsn.

�
 VCA1 and BLU1 correspond to the C supporting film.

�
 Pure B is separated into two components, BLU2 and BLU6

(VCA2 and VCA6, respectively).

However some endmembers unmixed by BLU are significantly
different.
�
 Whereas B–O signature was divided into 2 distinct compo-
nents with VCA (VCA5 and VCA8), BLU is able to identify only
one spectral signature with a strong O signal (BLU5).
�
 Vacuum signal is classified into 2 components (BLU3 and
BLU8).

This later feature is quite difficult to be interpreted. When
applied with only 7 components, the BLU algorithm does not
separate the components corresponding to B–Npn and B–Nsn

although the vacuum signature is still decomposed into two
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distinct signatures. Some authors report that some minor com-
ponents can be masked by the spectral variability of major
components [10,15,17]. It can be thus necessary to consider a
number of components greater that the number of targets to be
identified.

Restricting the analysis to an energy window corresponding to
B–K edge does not improve significantly the results. Furthermore,
when considering only a restrictive part of the spectra, relevant
information composed of the different edges can be lost. For
instance, endmember BLU5 with a strong O–K edge is associated
with a B–K edge whose fine structure undoubtedly corresponds to
B2O3. Endmember BLU4 corresponding to a high pn/sn ratio for
the B–K edge includes a N–K edge with the same feature (Fig. 14).

The maps obtained with BLU seem to be in good agreement with
those presented in [14], in particular with a higher intensity of
component BLU4 corresponding to particle 2 (particles are located
in Fig. 2). The small particle 3 is also better defined with BLU7 than
with VCA7. This better agreement of the maps with the one found in
[14] illustrate the accuracy of the BLU method when conducting SMA.
4. Discussion

PCA is one of the most commonly used technique to identify
significant patterns from multivariate data. As the EELS signatures to
be recovered are not orthogonal, components recovered by PCA do
not have any physical meaning. As a consequence, it is quite
legitimate to conclude that PCA fails to perform interesting spectral
unmixing. Nevertheless, since the most relevant components identi-
fied by PCA can be used to reconstruct the spectrum-image, PCA can
be advocated as a powerful filtering technique, e.g., to denoise the
measured signal. Traditional chemical mapping can then be per-
formed on the filtered spectrum-image with a significant increase of
the signal-to-noise ratio. However, to go further in the data analysis, it
is necessary to resort to more advanced analysis methods.

In [14] bonding maps have been obtained by fitting reference
spectra manually extracted from regions of pure compounds.
Nevertheless, this supervised method requires a careful inspec-
tion of both the elemental maps and the fine structure to correctly
select the reference spectra. Advantages of fully unsupervised
analysis such as SMA are to rely as little as possible on these
subjective choices operated by an expert. In addition, in certain
practical circumstances, these choices can be not straightforward.
For instance, the pure boron map of [14] actually corresponds to
2 distinct components identified when conducting SMA (BLU2
and BLU6). Consequently, in this typical case, it would be difficult
to decide which component should be chosen as a reference for
the least square fitting method employed in [14].

In various application fields, ICA has been considered as an
efficient tool to extract sources from mixed signals. Plenty of
ICA-based methods have been proposed in the literature,
and numerous toolboxes are even freely available. These matrix
factorization techniques rely on the independence of the
signatures to be recovered. However, independence is rather a
stringent condition in the targeted application focused in this
paper. Indeed, EELS spectrum-images seldom fulfill this critical
requirement. Consequently, even if ICA has provided interesting
results in some specific cases [7,18], components extracted
by this methodology have been demonstrated to be difficulty
interpretable.
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Contrary to PCA and ICA, SMA does not require any orthogonality
or independence assumptions on the components. Conversely, by
explicitly constraining the signatures to be non-negative and the
abundances to be related to proportions (i.e., with sum-to-one and
positivity constraints), SMA allows the interpretability of the identi-
fied patterns to be guaranteed. The statistical BLU algorithm,
designed to perform SMA, was able to extract endmembers close
to the reference spectra manually extracted in [14]. Contrary to VCA
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Fig. 13. Maps of the spectral components estimated by BLU (the spectral signatures are depicted in Fig. 12).
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Fig. 12. Spectral components estimated by BLU. The recovered endmembers properly correspond to EELS spectra. Contrary to VCA, these signatures are not initially

present in the measures EELS spectrum-image. Indeed, BLU does not require the assumption of the presence of pure pixels in the analyzed image. The corresponding maps

are depicted in Fig. 13.
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which is a geometrical unmixing method, BLU does not require the
presence of pure pixels in the analyzed spectrum-image, i.e., pixels
composed of a unique endmember. Consequently, BLU has
demonstrated undeniable abilities to extract relevant components
from EELS spectrum image, and to provide an accurate mapping of
these components over the sample.
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5. Conclusions

This work demonstrated the interest of using spectral unmixing,
initially devoted to remote sensing images, to perform fine
structure analysis of EELS spectrum-images. Several unmixing
methods, namely VCA and BLU, were presented as alternative
analysis methods to PCA, ICA or least square fitting. According to
the conducted study, VCA algorithm was noteworthy for its low
computational complexity and could be used on line for a first
check of the data during the STEM experiments. At a higher
computational price, BLU provided a finer and more relevant
mapping of the spectral components. In particular, obtained
results were all the more promising as the studied sample was
rather complicated, with the presence of vacuum, amorphous
carbon support, contamination unexpected elements as Ca.

Spectral mixture analysis, and more specifically the BLU algo-
rithm, represents a significant step in the evolution of the multi-
variate analysis methods able to extract relevant information from
EELS data. More generally, SMA brings an efficient solution to the
crucial issue that consists of processing an increasing amount of
collected data—in 1998 the data set consisted of only 64 spectra [3],
whereas spectrum images of 128�128 pixels are now frequently
acquired. One of the main advantages of spectral unmixing meth-
odology is its ability of providing more detailed and more inter-
pretable information about the fine structure of the edges. This work
significantly widens the range of analysis methodologies available
for the EELS community.
Acknowledgments

The authors would like to thank O. Stephan and R. Arenal for
providing the EELS data.

References
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