Membrane Biophysics: Carriers & Channels

The membrane lipid barrier: Passive diffusion through the lipid bilayer

- Concentration gradient up, diffusion up
- Molecule lipid solubility up, diffusion up
- Molecular size up, diffusion down
- Molecule electrically charged, diffusion blocked

Most channel transporters are gated

- Opening & closing of the gate mechanism
 - Ligand gated
 - Voltage gated
 - Mechanically gated
 - Other types later in the course

Leak channels

- Open all the time
- Best known type are K⁺ channels
- K⁺ going down concentration gradient out of the cell
- Increases inside negativity of the cell
- Gradient created by the Na⁺-K⁺ pump

Ligand gated channels

- Binding of ligand changes conformation of the channel
- Gate opens to allow an ion (+ or -) to enter or exit the cell

Hormones can trigger secretion

- Example- Pancreatic cells secrete digestive enzymes into the small intestine
- Ligand opens gate on Ca⁺⁺ channel
- Membrane potential & Ca⁺⁺ gradient sum
- Ca⁺⁺ entering triggers fusion of vesicles with membrane

Voltage gated channels

- Are sensitive to voltage across the cell membrane
- When the voltage changes to a trigger level, it opens
- The gate will close again when the voltage returns to the trigger level
- The voltage gated Na⁺ channel serves as a good example

Mechanically gated channels: hair cells in the ear

Membrane Potential

- Difference in electrical potential across cell membrane
- Generated in all cells
- Produced by separation of charges across cell membrane
 - Ion solutions
 - Extracellular fluid
 - Cytoplasm
 - Cell membrane
 - Impermeable barrier
 - Ion channels
 - Permit passage of ions through cell membrane
 - Passive (leaky channels) = with gradient
 - Active = against gradient
- Resting membrane potential

Nernst Equation

Resting Membrane Potential

- Actually 4 ions (K⁺, Na⁺, Cl⁻, Ca²⁺) that strongly influence potential
- Goldman-Hodgkin-Katz Equation
 - Takes into account all ionic species and calculates the membrane potential

•
$$\mathbf{P} = \text{permeabili} E_m = \frac{RT}{F} \ln \left(\frac{\sum_i^N P_{M_i^+}[M_i^+]_{\text{out}} + \sum_j^M P_{A_j^-}[A_j^-]_{\text{in}}}{\sum_i^N P_{M_i^+}[M_i^+]_{\text{in}} + \sum_j^M P_{A_j^-}[A_j^-]_{\text{out}}} \right)$$

- Not specific to the resting membrane potential
- Can replace p with conductance (G) and [ion]in/[ion]out with Eion
- Greater the membrane permeability = greater influence on membrane potential
- Permeability: $P_{\rm K}$: $P_{\rm Na}$: $P_{\rm Cl}$ = 1 : 0.04 : 0.45
 - Cl- typically not pumped, so at equilibrium
 - K⁺ dominates because greatest conductance
 - Resting membrane potential usually very negative -70 mV

Membranes as Capacitors

- Capacitor
 - Two conductors separated by an insulator
 - Causes a separation of charge
 - Positive charges accumulate on one side and negative charges on the other
- Plasma Membrane
 - Lipid bilayer = insulator
 - Separates electrolyte solutions = conductors
 - Ionic gradient as a battery

PASSIVE ELECTRICAL PROPERTIES

- Membrane Capacitance (C)
 - Limits the conduction velocity
 - $\Delta V = I_c \times \Delta t / C$, where $I_c = current$ flow across capacitor, t = time, and C = capacitance
 - Takes time to unload the charge on a capacitor when changing potential.
 - Function of surface area of plates (A), distance between plates (d) and insulator properties (ε)

$$C = \frac{\varepsilon A}{d}$$

 Lipid bilayer = great insulator properties and very thin = high capacitance

Increasing Conduction Velocity

- Myelination of axons
 - Wrapping of glial membranes around axons
 - Increases the functional thickness of the axonal membrane
 - 100x thickness increase
 - Decreases capacitance of the membrane

$$C = \frac{\varepsilon A}{d}$$

- Same increase in axonal diameter by myelination produces larger decrease in r_aC_m
 - More effective increase of conduction velocity

Myelin

- Lipid-rich substance
- Produced by Schwann cells and Oligodendrocytes that wrap around axons
- Gaps between = Nodes of Ranvier

Action Potential Propagation

- Myelin decreases capacitance
 - Depolarization current moves quickly
 - Current flow not sufficient to discharge capacitance along entire length of axon
- Myelin sheath interrupted every 1-2 mm
 - Nodes of Ranvier
 - Exposed bare membrane (~2 um)
 - Increases capacitance
 - Depolarization current slows
 - High density of Na+ channels
 - Intense depolarization
 - Regenerates full depolarization of amplitude
 - Prevents action potential from dying out
- Saltatory Conduction
 - Action potential "hops" from one node of Ranvier to the next, down the axon
 - Fast in myelinated regions
 - Slow in bare membrane regions

Demyelination

Loss of the myelin sheath that insulates axons

- Examples:
 - Multiple sclerosis
 - Acute disseminated encephalomyelitis
 - Alexander's Disease
 - Transverse myelitis
 - Chronic inflammatory demyelinating neuropathy
 - Central pontine myelinosis
 - Guillain-Barre Syndrome
- Result:
 - Impaired or lost conduction
 - Neuronal death
 - Symptoms vary widely and depend on the collection of neurons affected

Symptoms vary greatly

- Changes in sensation
- Neuropathic pain
- Muscle weakness, spasms, or difficulty moving
- Difficulty with coordination and balance
- Speech, swallowing or visual problems
- Fatigue
- Cognitive impairment