


Numerical Linear Algebra with Applications



This page intentionally left blank



Numerical Linear Algebra
with Applications
Using MATLAB

By

William Ford
Department of Computer Science
University of the Pacific

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Academic Press is an imprint of Elsevier



Academic Press is an imprint of Elsevier
32 Jamestown Road, London NW1 7BY, UK
525 B Street, Suite 1800, San Diego, CA 92101-4495, USA
225 Wyman Street, Waltham, MA 02451, USA
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

First edition 2015

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on
how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as
the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes
in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety
and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or
damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

For information on all Academic Press publications
visit our web site at store.elsevier.com

Printed and bound in USA

ISBN: 978-0-12-394435-1



Dedication

Dedicated to my friend the late Paul Burdick
for all the wonderful conversations we had

and to
Dr. Ravi Jain, a great Dean and friend



This page intentionally left blank



Contents

List of Figures xiii
List of Algorithms xvii
Preface xix

1. Matrices 1

1.1. Matrix Arithmetic 1
1.1.1. Matrix Product 2
1.1.2. The Trace 5
1.1.3. MATLAB Examples 6

1.2. Linear Transformations 7
1.2.1. Rotations 7

1.3. Powers of Matrices 11
1.4. Nonsingular Matrices 13
1.5. The Matrix Transpose and Symmetric

Matrices 16
1.6. Chapter Summary 18
1.7. Problems 19

1.7.1. MATLAB Problems 22

2. Linear Equations 25

2.1. Introduction to Linear Equations 25
2.2. Solving Square Linear Systems 27
2.3. Gaussian Elimination 28

2.3.1. Upper-Triangular Form 29
2.4. Systematic Solution of Linear Systems 31
2.5. Computing the Inverse 34
2.6. Homogeneous Systems 36
2.7. Application: A Truss 37
2.8. Application: Electrical Circuit 39
2.9. Chapter Summary 40
2.10. Problems 42

2.10.1. MATLAB Problems 43

3. Subspaces 47

3.1. Introduction 47
3.2. Subspaces of Rn 47
3.3. Linear Independence 49
3.4. Basis of a Subspace 50
3.5. The Rank of a Matrix 51
3.6. Chapter Summary 55
3.7. Problems 56

3.7.1. MATLAB Problems 57

4. Determinants 59

4.1. Developing the Determinant of a 2 × 2
and a 3 × 3 Matrix 59

4.2. Expansion by Minors 60
4.3. Computing a Determinant Using Row

Operations 64
4.4. Application: Encryption 71
4.5. Chapter Summary 73
4.6. Problems 74

4.6.1. MATLAB Problems 76

5. Eigenvalues and Eigenvectors 79

5.1. Definitions and Examples 79
5.2. Selected Properties of Eigenvalues

and Eigenvectors 83
5.3. Diagonalization 84

5.3.1. Powers of Matrices 88
5.4. Applications 89

5.4.1. Electric Circuit 89
5.4.2. Irreducible Matrices 91
5.4.3. Ranking of Teams Using

Eigenvectors 94
5.5. Computing Eigenvalues and Eigenvectors

using MATLAB 95
5.6. Chapter Summary 96
5.7. Problems 97

5.7.1. MATLAB Problems 99

6. Orthogonal Vectors
and Matrices 103

6.1. Introduction 103
6.2. The Inner Product 104
6.3. Orthogonal Matrices 107
6.4. Symmetric Matrices and Orthogonality 109
6.5. The L2 Inner Product 110
6.6. The Cauchy-Schwarz Inequality 111
6.7. Signal Comparison 112
6.8. Chapter Summary 113
6.9. Problems 114

6.9.1. MATLAB Problems 116

vii



viii Contents

7. Vector and Matrix Norms 119

7.1. Vector Norms 119
7.1.1. Properties of the 2-Norm 121
7.1.2. Spherical Coordinates 123

7.2. Matrix Norms 126
7.2.1. The Frobenius Matrix Norm 127
7.2.2. Induced Matrix Norms 127

7.3. Submultiplicative Matrix Norms 131
7.4. Computing the Matrix 2-Norm 132
7.5. Properties of the Matrix 2-Norm 136
7.6. Chapter Summary 138
7.7. Problems 140

7.7.1. MATLAB Problems 142

8. Floating Point Arithmetic 145

8.1. Integer Representation 145
8.2. Floating-Point Representation 147

8.2.1. Mapping from Real Numbers
to Floating-Point Numbers 148

8.3. Floating-Point Arithmetic 150
8.3.1. Relative Error 150
8.3.2. Rounding Error Bounds 151

8.4. Minimizing Errors 155
8.4.1. Avoid Adding a Huge Number to a

Small Number 155
8.4.2. Avoid Subtracting Numbers That Are

Close 155
8.5. Chapter Summary 156
8.6. Problems 158

8.6.1. MATLAB Problems 160

9. Algorithms 163

9.1. Pseudocode Examples 163
9.1.1. Inner Product of Two Vectors 164
9.1.2. Computing the Frobenius

Norm 164
9.1.3. Matrix Multiplication 164
9.1.4. Block Matrices 165

9.2. Algorithm Efficiency 166
9.2.1. Smaller Flop Count Is Not

Always Better 168
9.2.2. Measuring Truncation Error 168

9.3. The Solution to Upper and Lower
Triangular Systems 168
9.3.1. Efficiency Analysis 170

9.4. The Thomas Algorithm 171
9.4.1. Efficiency Analysis 173

9.5. Chapter Summary 174
9.6. Problems 175

9.6.1. MATLAB Problems 177

10. Conditioning of Problems
and Stability of Algorithms 181

10.1. Why Do We Need Numerical
Linear Algebra? 181

10.2. Computation Error 183
10.2.1. Forward Error 183
10.2.2. Backward Error 184

10.3. Algorithm Stability 185
10.3.1. Examples of Unstable

Algorithms 186
10.4. Conditioning of a Problem 187
10.5. Perturbation Analysis for Solving a

Linear System 190
10.6. Properties of the Matrix Condition

Number 193
10.7. MATLAB Computation of a Matrix

Condition Number 195
10.8. Estimating the Condition Number 195
10.9. Introduction to Perturbation Analysis

of Eigenvalue Problems 196
10.10. Chapter Summary 197
10.11. Problems 199

10.11.1. MATLAB Problems 200

11. Gaussian Elimination and the LU
Decomposition 205

11.1. LU Decomposition 205
11.2. Using LU to Solve Equations 206
11.3. Elementary Row Matrices 208
11.4. Derivation of the LU Decomposition 210

11.4.1. Colon Notation 214
11.4.2. The LU Decomposition

Algorithm 216
11.4.3. LU Decomposition Flop

Count 217
11.5. Gaussian Elimination with Partial

Pivoting 218
11.5.1. Derivation of PA=LU 219
11.5.2. Algorithm for Gaussian

Elimination with Partial
Pivoting 223

11.6. Using the LU Decomposition to Solve
Axi = bi, 1 ≤ i ≤ k 225

11.7. Finding A--1 226
11.8. Stability and Efficiency of Gaussian

Elimination 227
11.9. Iterative Refinement 228
11.10. Chapter Summary 230
11.11. Problems 232

11.11.1. MATLAB Problems 236



Contents ix

12. Linear System Applications 241

12.1. Fourier Series 241
12.1.1. The Square Wave 243

12.2. Finite Difference Approximations 244
12.2.1. Steady-State Heat and Diffusion 245

12.3. Least-Squares Polynomial Fitting 247
12.3.1. Normal Equations 249

12.4. Cubic Spline Interpolation 252
12.5. Chapter Summary 256
12.6. Problems 257

12.6.1. MATLAB Problems 260

13. Important Special Systems 263

13.1. Tridiagonal Systems 263
13.2. Symmetric Positive Definite Matrices 267

13.2.1. Applications 269
13.3. The Cholesky Decomposition 269

13.3.1. Computing the Cholesky
Decomposition 270

13.3.2. Efficiency 272
13.3.3. Solving Ax = b If A Is Positive

Definite 272
13.3.4. Stability 273

13.4. Chapter Summary 273
13.5. Problems 274

13.5.1. MATLAB Problems 277

14. Gram-Schmidt Orthonormalization 281

14.1. The Gram-Schmidt Process 281
14.2. Numerical Stability of the

Gram-Schmidt Process 284
14.3. TheQR Decomposition 287

14.3.1. Efficiency 289
14.3.2. Stability 290

14.4. Applications of the QR Decomposition 290
14.4.1. Computing the Determinant 291
14.4.2. Finding an Orthonormal Basis for

the Range of a Matrix 291
14.5. Chapter Summary 292
14.6. Problems 292

14.6.1. MATLAB Problems 293

15. The Singular Value Decomposition 299

15.1. The SVD Theorem 299
15.2. Using the SVD to Determine

Properties of a Matrix 302
15.2.1. The Four Fundamental

Subspaces of a Matrix 304
15.3. SVD and Matrix Norms 306
15.4. Geometric Interpretation of the SVD 307
15.5. Computing the SVD Using MATLAB 308

15.6. Computing A--1 309
15.7. Image Compression Using the SVD 310

15.7.1. Image Compression Using
MATLAB 311

15.7.2. Additional Uses 313
15.8. Final Comments 314
15.9. Chapter Summary 314
15.10. Problems 316

15.10.1. MATLAB Problems 317

16. Least-Squares Problems 321

16.1. Existence and Uniqueness of
Least-Squares Solutions 322
16.1.1. Existence and Uniqueness

Theorem 322
16.1.2. Normal Equations and

Least-Squares Solutions 324
16.1.3. The Pseudoinverse,m ≥ n 324
16.1.4. The Pseudoinverse,m<n 325

16.2. Solving Overdetermined Least-Squares
Problems 325
16.2.1. Using the Normal Equations 326
16.2.2. Using the QR Decomposition 327
16.2.3. Using the SVD 329
16.2.4. Remark on Curve Fitting 332

16.3. Conditioning of Least-Squares
Problems 332
16.3.1. Sensitivity when using the

Normal Equations 333
16.4. Rank-Deficient Least-Squares Problems 333

16.4.1. Efficiency 338
16.5. Underdetermined Linear Systems 338

16.5.1. Efficiency 341
16.6. Chapter Summary 341
16.7. Problems 342

16.7.1. MATLAB Problems 343

17. Implementing the QR
Decomposition 351

17.1. Review of the QR Decomposition
Using Gram-Schmidt 351

17.2. Givens Rotations 352
17.2.1. Zeroing a Particular Entry in a

Vector 353
17.3. Creating a Sequence of Zeros in a

Vector Using Givens Rotations 355
17.4. Product of a Givens Matrix with a

General Matrix 356
17.5. Zeroing-Out Column Entries in a

Matrix Using Givens Rotations 357
17.6. Accurate Computation of the Givens

Parameters 358



x Contents

17.7. The Givens Algorithm for the QR
Decomposition 359
17.7.1. The Reduced QR

Decomposition 361
17.7.2. Efficiency 362

17.8. Householder Reflections 362
17.8.1. Matrix Column Zeroing Using

Householder Reflections 365
17.8.2. Implicit Computation with

Householder Reflections 367
17.9. Computing the QR Decomposition

Using Householder Reflections 368
17.9.1. Efficiency and Stability 372

17.10. Chapter Summary 373
17.11. Problems 373

17.11.1. MATLAB Problems 376

18. The Algebraic Eigenvalue Problem 379

18.1. Applications of the Eigenvalue
Problem 379
18.1.1. Vibrations and Resonance 380
18.1.2. The Leslie Model in

Population Ecology 383
18.1.3. Buckling of a Column 386

18.2. Computation of Selected Eigenvalues
and Eigenvectors 388
18.2.1. Additional Property of a

Diagonalizable Matrix 389
18.2.2. The Power Method for

Computing the Dominant
Eigenvalue 390

18.2.3. Computing the Smallest
Eigenvalue and Corresponding
Eigenvector 393

18.3. The BasicQR Iteration 394
18.4. Transformation to Upper Hessenberg

Form 395
18.4.1. Efficiency and Stability 400

18.5. The Unshifted Hessenberg QR
Iteration 400
18.5.1. Efficiency 403

18.6. The Shifted Hessenberg QR Iteration 403
18.6.1. A Single Shift 404

18.7. Schur’s Triangularization 405
18.8. The Francis Algorithm 409

18.8.1. Francis Iteration of
Degree One 409

18.8.2. Francis Iteration of Degree Two 413
18.9. Computing Eigenvectors 420

18.9.1. Hessenberg Inverse Iteration 421
18.10. Computing Both Eigenvalues

and Their Corresponding
Eigenvectors 423

18.11. Sensitivity of Eigenvalues to
Perturbations 424
18.11.1. Sensitivity of Eigenvectors 427

18.12. Chapter Summary 428
18.13. Problems 430

18.13.1. MATLAB Problems 432

19. The Symmetric Eigenvalue Problem 439

19.1. The Spectral Theorem and Properties
of a Symmetric Matrix 439
19.1.1. Properties of a Symmetric Matrix 440

19.2. The Jacobi Method 440
19.2.1. Computing Eigenvectors Using

the Jacobi Iteration 444
19.2.2. The Cyclic-by-Row Jacobi

Algorithm 444
19.3. The SymmetricQR Iteration Method 446

19.3.1. Tridiagonal Reduction of a
Symmetric Matrix 449

19.3.2. Orthogonal Transformation to a
Diagonal Matrix 451

19.4. The Symmetric Francis Algorithm 452
19.4.1. Theoretical Overview and

Efficiency 453
19.5. The Bisection Method 453

19.5.1. Efficiency 457
19.5.2. Matrix A Is Not Unreduced 457

19.6. The Divide-and-Conquer Method 458
19.6.1. Using dconquer 461

19.7. Chapter Summary 461
19.8. Problems 463

19.8.1. MATLAB Problems 465

20. Basic Iterative Methods 469

20.1. Jacobi Method 469
20.2. The Gauss-Seidel Iterative Method 470
20.3. The SOR Iteration 471
20.4. Convergence of the Basic Iterative

Methods 473
20.4.1. Matrix Form of the Jacobi

Iteration 473
20.4.2. Matrix Form of the Gauss-Seidel

Iteration 473
20.4.3. Matrix Form for SOR 474
20.4.4. Conditions Guaranteeing

Convergence 474
20.4.5. The Spectral Radius and Rate of

Convergence 476
20.4.6. Convergence of the Jacobi and

Gauss-Seidel Methods for
Diagonally Dominant Matrices 477

20.4.7. Choosing ω for SOR 478
20.5. Application: Poisson’s Equation 478



Contents xi

20.6. Chapter Summary 481
20.7. Problems 483

20.7.1. MATLAB Problems 486

21. Krylov Subspace Methods 491

21.1. Large, Sparse Matrices 491
21.1.1. Storage of Sparse Matrices 492

21.2. The CG Method 493
21.2.1. The Method of Steepest

Descent 493
21.2.2. From Steepest Descent to CG 497
21.2.3. Convergence 501

21.3. Preconditioning 501
21.4. Preconditioning for CG 503

21.4.1. Incomplete Cholesky
Decomposition 503

21.4.2. SSOR Preconditioner 506
21.5. Krylov Subspaces 508
21.6. The Arnoldi Method 509

21.6.1. An Alternative Formulation of
the Arnoldi Decomposition 511

21.7. GMRES 512
21.7.1. Preconditioned GMRES 514

21.8. The Symmetric Lanczos Method 516
21.8.1. Loss of Orthogonality with the

Lanczos Process 516
21.9. The MINRES Method 519
21.10. Comparison of Iterative Methods 520
21.11. Poisson’s Equation Revisited 521
21.12. The Biharmonic Equation 523
21.13. Chapter Summary 524
21.14. Problems 526

21.14.1. MATLAB Problems 528

22. Large Sparse Eigenvalue Problems 533

22.1. The Power Method 533
22.2. Eigenvalue Computation Using the

Arnoldi Process 534
22.2.1. Estimating Eigenvalues Without

Restart or Deflation 535
22.2.2. Estimating Eigenvalues Using

Restart 536
22.2.3. A Restart Method Using

Deflation 537
22.2.4. Restart Strategies 539

22.3. The Implicitly Restarted Arnoldi
Method 540
22.3.1. Convergence of the Arnoldi

Iteration 544

22.4. Eigenvalue Computation Using the
Lanczos Process 544
22.4.1. Mathematically Provable

Properties 546
22.5. Chapter Summary 547
22.6. Problems 548

22.6.1. MATLAB Problems 548

23. Computing the Singular Value
Decomposition 551

23.1. Development of the One-Sided Jacobi
Method for Computing the Reduced
SVD 551
23.1.1. Stability of Singular Value

Computation 554
23.2. The One-Sided Jacobi Algorithm 555

23.2.1. Faster and More Accurate Jacobi
Algorithm 557

23.3. Transforming a Matrix to
Upper-Bidiagonal Form 558

23.4. Demmel and Kahan Zero-ShiftQR
Downward Sweep Algorithm 559

23.5. Chapter Summary 565
23.6. Problems 565

23.6.1. MATLAB Problems 566

A. Complex Numbers 569

A.1. Constructing the Complex
Numbers 569

A.2. Calculating with Complex
Numbers 570

A.3. Geometric Representation of C 571
A.4. Complex Conjugate 571
A.5. Complex Numbers in MATLAB 573
A.6. Euler’s Formula 575
A.7. Problems 575

A.7.1. MATLAB Problems 576

B. Mathematical Induction 579

B.1. Problems 581

C. Chebyshev Polynomials 583

C.1. Definition 583
C.2. Properties 584
C.3. Problems 584

C.3.1. MATLAB Problems 585

Glossary 587
Bibliography 595
Index 597



This page intentionally left blank



List of Figures

Fig. 0.1 NLALIB hierarchy. xxvi
Fig. 1.1 Matrix multiplication. 3
Fig. 1.2 Rotating the xy-plane. 7
Fig. 1.3 Rotated line 8
Fig. 1.4 Rotate three-dimensional coordinate system. 9
Fig. 1.5 Translate a point in two dimensions. 9
Fig. 1.6 Rotate a line about a point. 10
Fig. 1.7 Rotation about an arbitrary point. 11
Fig. 1.8 Undirected graph. 12
Fig. 2.1 Polynomial passing through four points. 26
Fig. 2.2 Inconsistent equations. 31
Fig. 2.3 Truss. 38
Fig. 2.4 Electrical circuit. 39
Fig. 2.5 Truss problem. 45
Fig. 2.6 Circuit problem. 45
Fig. 3.1 Subspace spanned by two vectors. 48
Fig. 4.1 Geometrical interpretation of the determinant. 75
Fig. 5.1 Direction of eigenvectors. 80
Fig. 5.2 Circuit with an inductor. 89
Fig. 5.3 Currents in the RL circuit. 92
Fig. 5.4 Digraph of an irreducible matrix. 93
Fig. 5.5 Hanowa matrix. 101
Fig. 6.1 Distance between points. 104
Fig. 6.2 Equality, addition, and subtraction of vectors. 104
Fig. 6.3 Scalar multiplication of vectors. 104
Fig. 6.4 Vector length. 106
Fig. 6.5 Geometric interpretation of the inner product. 106
Fig. 6.6 Law of cosines. 106
Fig. 6.7 Triangle inequality. 112
Fig. 6.8 Signal comparison. 112
Fig. 6.9 Projection of one vector onto another. 115
Fig. 7.1 Effect of an orthogonal transformation on a vector. 122
Fig. 7.2 Spherical coordinates. 123
Fig. 7.3 Orthonormal basis for spherical coordinates. 124
Fig. 7.4 Point in spherical coordinate basis and Cartesian coordinates. 125
Fig. 7.5 Function specified in spherical coordinates. 126
Fig. 7.6 Effect of a matrix on vectors. 128
Fig. 7.7 Unit spheres in three norms. 129
Fig. 7.8 Image of the unit circle. 133
Fig. 8.1 Floating-point number system. 149
Fig. 8.2 Map of IEEE double-precision floating-point. 150
Fig. 9.1 Matrix multiplication. 165
Fig. 10.1 Forward and backward errors. 184
Fig. 10.2 The Wilkinson polynomial. 187
Fig. 10.3 Ill-conditioned Cauchy problem. 188
Fig. 10.4 Conditioning of a problem. 189
Fig. 11.1 LU decomposition of a matrix. 206
Fig. 11.2 k × k submatrix. 215
Fig. 11.3 Gaussian elimination flop count. 217
Fig. 12.1 Square wave with period 2π . 244
Fig. 12.2 Fourier series converging to a square wave. 244
Fig. 12.3 The heat equation: a thin rod insulated on its sides. 245

xiii



xiv List of Figures

Fig. 12.4 Numerical solution of the heat equation: subdivisions of the x and t axes. 245
Fig. 12.5 Numerical solution of the heat equation:locally related points in the grid. 246
Fig. 12.6 Grid for the numerical solution of the heat equation. 246
Fig. 12.7 Graph of the solution for the heat equation problem. 247
Fig. 12.8 Linear least-squares approximation. 250
Fig. 12.9 Quadratic least-squares approximation. 251
Fig. 12.10 Estimating absolute zero. 252
Fig. 12.11 Linear interpolation. 253
Fig. 12.12 Cubic splines. 253
Fig. 12.13 Cubic spline approximation. 256
Fig. 12.14 Sawtooth wave with period 2π . 258
Fig. 13.1 Conductance matrix. 270
Fig. 14.1 Vector orthogonal projection. 282
Fig. 14.2 Removing the orthogonal projection. 282
Fig. 14.3 Result of the first three steps of Gram-Schmidt. 283
Fig. 15.1 The four fundamental subspaces of a matrix. 305
Fig. 15.2 SVD rotation and distortion. 308
Fig. 15.3 (a) Lena (512× 512) and (b) lena using 35 modes. 312
Fig. 15.4 Lena using 125 modes. 312
Fig. 15.5 Singular value graph of lena. 313
Fig. 15.6 SVD image capture. 314
Fig. 16.1 Geometric interpretation of the least-squares solution. 322
Fig. 16.2 An overdetermined system. 322
Fig. 16.3 Least-squares estimate for the power function. 329
Fig. 16.4 The reduced SVD for a full rank matrix. 330
Fig. 16.5 Velocity of an enzymatic reaction. 332
Fig. 16.6 Underdetermined system. 339
Fig. 17.1 Givens matrix. 353
Fig. 17.2 Givens rotation. 354
Fig. 17.3 Householder reflection. 363
Fig. 17.4 Linear combination associated with Householder reflection. 363
Fig. 17.5 Householder reflection to a multiple of e1. 366
Fig. 17.6 Transforming an m× n matrix to upper triangular form using householder reflections. 369
Fig. 17.7 Householder reflections and submatrices. 369
Fig. 17.8 Householder reflection for a submatrix. 369
Fig. 18.1 Tacoma Narrows Bridge collapse. 380
Fig. 18.2 Mass-spring system. 380
Fig. 18.3 Solution to a system of ordinary differential equations. 382
Fig. 18.4 Populations using the Leslie matrix. 387
Fig. 18.5 Column buckling. 387
Fig. 18.6 Deflection curves for critical loads P1, P2, and P3. 389
Fig. 18.7 Reduced Hessenberg matrix. 401
Fig. 18.8 Inductive step in Schur’s triangularization. 407
Fig. 18.9 Schur’s triangularization. 407
Fig. 18.10 Eigenvalues of a 2× 2 matrix as shifts. 413
Fig. 18.11 Springs problem. 430
Fig. 19.1 Bisection. 454
Fig. 19.2 Interlacing. 454
Fig. 19.3 Bisection method: λk located to the left. 456
Fig. 19.4 Bisection method: λk located to the right. 457
Fig. 19.5 Bisection and multiple eigenvalues. 458
Fig. 19.6 Secular equation. 460
Fig. 20.1 SOR spectral radius. 479
Fig. 20.2 Region in the plane. 479
Fig. 20.3 Five-point stencil. 480
Fig. 20.4 Poisson’s equation. (a) Approximate solution and (b) analytical solution. 481
Fig. 20.5 One-dimensional Poisson equation grid. 484
Fig. 20.6 One-dimensional red-black GS. 486
Fig. 21.1 Examples of sparse matrices. (a) Positive definite: structural problem, (b) symmetric indefinite: quantum chemistry problem, and

(c) nonsymmetric: computational fluid dynamics problem. 492
Fig. 21.2 Steepest descent. (a) Quadratic function in steepest descent and (b) gradient and contour lines. 495
Fig. 21.3 Steepest descent. (a) Deepest descent zigzag and (b) gradient contour lines. 495
Fig. 21.4 2-Norm and A-norm convergence. 498
Fig. 21.5 CG vs. steepest descent. (a) Density plot for symmetric positive definite sparse matrix CGDES and (b) residuals of CG and steepest

descent. 502



List of Figures xv

Fig. 21.6 Cholesky decomposition of a sparse symmetric positive definite matrix. 504
Fig. 21.7 CG vs. PRECG. 506
Fig. 21.8 Arnoldi projection from R

n into R
m , m� n. 509

Fig. 21.9 Arnoldi decomposition form 1. 511
Fig. 21.10 Arnoldi decomposition form 2. 512
Fig. 21.11 Large nonsymmetric matrix. 515
Fig. 21.12 Lanczos decomposition. 516
Fig. 21.13 Lanczos process with and without reorthogonalization. (a) Lanczos without reorthogonalization and (b) Lanczos with

reorthogonalization. 518
Fig. 21.14 Large sparse symmetric matrices. 520
Fig. 21.15 Iterative method decision tree. 521
Fig. 21.16 Poisson’s equation grid for n = 4. 521
Fig. 21.17 Estimating the normal derivative. 523
Fig. 21.18 36 × 36 biharmonic matrix density plot. 524
Fig. 21.19 The biharmonic equation. (a) Biharmonic equation numerical solution and (b) biharmonic equation true solution. 525
Fig. 21.20 (a) Electrostatic potential fields induced by approximately 15 randomly placed point charges (b) contour plot of randomly placed

point charges. 532
Fig. 22.1 Nonsymmetric sparse matrix used in a chemical engineering model 534
Fig. 22.2 Eigenvalues and Ritz values of a random sparse matrix. 536
Fig. 23.1 Demmel and Kahan zero-shift QR downward sweep. 562
Fig. A.1 Complex addition and subtraction. 572
Fig. A.2 Complex conjugate. 572
Fig. A.3 Riemann zeta function. 577
Fig. C.1 The first five Chebyshev polynomials. 584



This page intentionally left blank



List of Algorithms

Algorithm 9.1 Inner Product of Two Vectors 164
Algorithm 9.2 Frobenius Norm 164
Algorithm 9.3 Product of Two Matrices 165
Algorithm 9.4 Solving an Upper Triangular System 169
Algorithm 9.5 Solving a Lower Triangular System 169
Algorithm 9.6 The Thomas Algorithm 173
Algorithm 11.1 LU Decomposition Without a Zero on the Diagonal 216
Algorithm 11.2 Gaussian Elimination with Partial Pivoting 223
Algorithm 11.3 Solve Ax = b for Multiple Right-Hand Sides 226
Algorithm 11.4 Iterative Improvement 229
Algorithm 12.1 Cubic Spline Approximation 255
Algorithm 13.1 Computing the LU Decomposition of a Tridiagonal Matrix 265
Algorithm 13.2 Solve a Factored Tridiagonal System 266
Algorithm 13.3 The Cholesky Decomposition 271
Algorithm 14.1 Classical Gram-Schmidt 285
Algorithm 14.2 Modified Gram-Schmidt 286
Algorithm 14.3 Modified Gram-Schmidt QR Decomposition 288
Algorithm 16.1 Least-Squares Solution Using the Normal Equations 327
Algorithm 16.2 Solving the Least-Squares Problem Using the QR Decomposition 328
Algorithm 16.3 Solving the Least-Squares Problem Using the SVD 330
Algorithm 16.4 Minimum Norm Solution to the Least-Squares Problem 336
Algorithm 16.5 Solution of Full-Rank Underdetermined System Using QR Decomposition 340
Algorithm 17.1 Product of a Givens Matrix J with a General Matrix A 356
Algorithm 17.2 Computing the Givens Parameters 359
Algorithm 17.3 Givens QR Decomposition 360
Algorithm 17.4 Zero Out Entries in the First Column of a Matrix using a Householder Reflection 368
Algorithm 17.5 Computation of QR Decomposition Using Householder Reflections 371
Algorithm 18.1 The Power Method 391
Algorithm 18.2 Transformation to Upper Hessenberg Form 400
Algorithm 18.3 Unshifted Hessenberg QR Iteration 402
Algorithm 18.4 Single Shift Using the Francis Iteration of Degree One 413
Algorithm 18.5 Implicit Double-Shift QR 419
Algorithm 18.6 Inverse Iteration to Find Eigenvector of an Upper Hessenberg Matrix 422
Algorithm 18.7 Compute the Condition Number of the Eigenvalues of a Matrix 426
Algorithm 19.1 Jacobi Method for Computing All Eigenvalues of a Real Symmetric Matrix 445
Algorithm 19.2 Orthogonal Reduction of a Symmetric Matrix to Tridiagonal Form 450
Algorithm 20.1 SOR Iteration 472
Algorithm 21.1 Steepest Descent 496
Algorithm 21.2 Conjugate Gradient 500
Algorithm 21.3 Preconditioned Conjugate Gradient 505
Algorithm 21.4 Arnoldi Process 511
Algorithm 21.5 GMRES 513
Algorithm 21.6 Incomplete LU Decomposition 514
Algorithm 21.7 Lanczos Method 517
Algorithm 21.8 MINRES 519
Algorithm 22.1 The Implicitly Restarted Arnoldi Process 543
Algorithm 23.1 One-Sided Jacobi Algorithm 555
Algorithm 23.2 Reduction of a Matrix to Upper-bidiagonal Form 559
Algorithm 23.3 Demmel and Kahan Zero-Shift QR Downward Sweep. 563

xvii



This page intentionally left blank



Preface

This book is intended for an advanced undergraduate or a first-year graduate course in numerical linear algebra, a very
important topic for engineers and scientists. Many of the numerical methods used to solve engineering and science problems
have linear algebra as an important component. Examples include spline interpolation, estimation using least squares, and
the solution of ordinary and partial differential equations. It has been said that, next to calculus, linear algebra is the most
important component in engineering problem solving. In computer science, linear algebra is a critical as well. The Google
matrix is an example, as is computer graphics where matrices are used for rotation, projection, rescaling, and translation.
Applications to engineering and science are provided throughout the book.

Two important problems in a customary applied linear algebra course are the solution of general linear algebraic systems
Ax = b, where A is an m × n matrix, and the computation of eigenvalues and their associated eigenvectors. If the system
is square (m = n) and nonsingular, the student is taught how to find a solution to Ax = b using Cramer’s Rule, Gaussian
elimination and multiplication by the inverse. In many areas of application, such as statistics and signal processing, A is
square and singular or m �= n. In these situations, the transformation to reduced row echelon form produces no solution or
infinitely many, and this is just fine in a theoretical sense, but is not helpful for obtaining a useful solution. Eigenvalues are
often discussed late in the course, and the student learns to compute eigenvalues by finding the roots of the characteristic
polynomial, never done in practice.

A study of numerical linear algebra is different from a study of linear algebra. The problem is that many of the theoretical
linear algebra methods are not practical for use with a computer. To be used on a computer, an algorithm, a method for
solving a problem step by step in a finite amount of time, must be developed that deals with the advantages and problems
of using a computer. Any such algorithm must be efficient and not use too much computer memory. For instance, Cramer’s
Rule is not practical for matrices of size 4× 4 or greater, since it performs far to many operations. Since a digital computer
performs arithmetic in binary with a fixed number of digits, errors occur when entering data and performing computations.
For instance, 1/3 cannot be represented exactly in binary, and its binary representation must be approximated. In addition,
computation using the operations of addition, subtraction, multiplication, and division rarely can be done exactly, resulting
in errors. An algorithm must behave properly in the presence of these inevitable errors; in other words, small errors during
computation should produce small errors in the output. For example, the use of Gaussian elimination to solve an n×n linear
system should use a method known as partial pivoting to control errors. When the matrix A ism×n, m �= n, a solution must
be obtained in the sense of least-squares, and the efficient and implementation of least-squares presents challenges. The
eigenvalue problem is of primary importance in engineering and science. In practice, eigenvalues are not found by finding
the roots of a polynomial, since polynomial root finding is very prone to error. Algorithms have been developed for accurate
solution of the eigenvalue problem on a computer.

In the book, algorithms are stated using pseudocode, and MATLAB is the vehicle used for algorithm implementation.
MATLAB does a superb job of dealing with numeric computation and is used in most engineering programs. Accompanying
the text is a library ofMATLAB functions and programs, namedNLALIB, that implements most of the algorithms discussed
in the book. Many examples in the book include computations using MATLAB, as do many exercises. In some cases, a
problem will require the student to write a function or program using the MATLAB programming language. If the student
is not familiar with MATLAB or needs a refresher, the MathWorks Web site www.mathworks.com provides access to
tutorials. There are also many free online tutorials.

If the reader does not have access to MATLAB, it is possible to use GNU Octave, a system primarily intended for
numerical computations. The Octave language is quite similar to MATLAB so that most programs are easily portable.

This book is novel, in that there is no assumption the student has had a course in linear algebra. Engineering students
who have completed the usual mathematics sequence, including ordinary differential equations, are well prepared. The
prerequisites for a computer science student should include at least two semesters of calculus and a course in discrete
mathematics. Chapters 1-6 supply an introduction to the the basics of linear algebra. A thorough knowledge of these chapters

xix



xx Preface

prepares the student very well for the remainder of the book. If the student has had a course in applied or theoretical linear
algebra, these chapters can be used for a quick review.

Throughout the book, proofs are provided for most of the major results. In proofs, the author has made an effort to be
clear, to the point of including more detail than normally provided in similar books.It is left to the instructor to determine
how much emphasis should be given to the proofs.

The exercises include routine pencil and paper computations. Exercises of this type force the student to better understand
the workings of an algorithm. There are some exercises involving proofs. Hints are provided if a proof will be challenging
for most students. In the problems for each chapter, there are exercises to be done using MATLAB.

TOPICS

Chapters 1-6 provide coverage of applied linear algebra sufficient for reading the remainder of the book.

Chapter 1: Matrices

The chapter introduces matrix arithmetic and the very important topic of linear transformations. Rotation matrices provide
an interesting and useful example of linear transformations. After discussing matrix powers, the concept of the matrix
inverse and transpose concludes the chapter.

Chapter 2: Linear Equations

This chapter introduces Gaussian elimination for the solution of linear systems Ax = b and for the computation of the matrix
inverse. The chapter also introduces the relationship between the matrix inverse and the solution to a linear homogeneous
equation. Two applications involving a truss and an electrical circuit conclude the chapter.

Chapter 3: Subspaces

This chapter is, by its very nature, somewhat abstract. It introduces the concepts of subspaces, linear independence, basis,
matrix rank, range, and null space. Although the chapter may challenge some readers, the concepts are essential for
understanding many topics in the book, and it should be covered thoroughly.

Chapter 4: Determinants

Although the determinant is rarely computed in practice, it is often used in proofs of important results. The chapter introduces
the determinant and its computation using expansion byminors and by row elimination. The chapter ends with an interesting
application of the determinant to text encryption.

Chapter 5: Eigenvalues and Eigenvectors

This is a very important chapter, and its results are used throughout the book. After defining the eigenvalue and an associated
eigenvector, the chapter develops some of their most important properties, including their use in matrix diagonalization. The
chapter concludeswith an application to the solution of systems of ordinary differential equations and the problemof ranking
items using eigenvectors.

Chapter 6: Orthogonal Vectors and Matrices

This chapter introduces the inner product and its association with orthogonal matrices. Orthogonal matrices play an
extremely important role in matrix factorization. The L2 inner product of functions is briefly introduced to emphasize the
general concept of an inner product.



Preface xxi

Chapter 7: Vector and Matrix Norms

The study of numerical linear algebra begins with this chapter. The analysis of methods in numerical linear algebra relies
heavily on the concept of vector and matrix norms. This chapter develops the 2-norm, the 1-norm, and the infinity norm for
vectors. A development of matrix norms follows, the most important being matrix norms associated with a vector norm,
called subordinate norms. The infinity and 1-norms are easy to compute, but the connection between their computation and
the mathematical definition of the a matrix norm is somewhat complex. A MATLAB program motivates the process for
the computation of the infinity norm, and the chapter contains a complete proof verifying the algorithm for computing the
infinity norm. The 2-norm is the most useful matrix norm and by far the most difficult to compute. After motivating the
computation process with a MATLAB program, the chapter provides a proof that the 2-norm is the square root of the largest
singular value of the matrix and develops properties of the matrix 2-norm.

Chapter 8: Floating Point Arithmetic

The chapter presents the representation of integer and floating point data in a computer, discusses the concepts of overflow
and underflow, and explains why roundoff errors occur that cannot be avoided. There is a careful discussion concerning
the concepts of absolute and relative error measurement and why relative error is normally used. The chapter presents a
mathematical analysis of floating point errors for addition and states results for other operations. The chapter concludes with
a discussion of situations where a careful choice of algorithm can minimize errors. This chapter is critical for understanding
the remaining chapters. The only content that can be reasonably omitted is the mathematical discussion of floating point
errors.

Chapter 9: Algorithms

The algorithms in the book are presented using pseudocode, and the pseudocode is quite complete. It is intended that in
most cases the conversion between pseudocode and MATLAB should not be difficult. The chapter introduces the concept
of algorithm efficiency by computing the the number of floating point operations, called the flop count, or representing it
using big-O notation. The presentation of algorithms for matrix multiplication, the solution to upper and lower triangular
systems, and the Thomas algorithm for the solution of a tridiagonal system are the primary examples. Included is a brief
discussion of block matrices and basic block matrix operations.

Chapter 10: Conditioning of Problems and the Stability of Algorithms

The chapter introduces the concept of stability and the conditioning. An algorithm is unstable if small changes in the data
can cause large changes in the result of the computation. An algorithm may be stable, but the data supplied to the algorithm
can be ill-conditioned. For instance, somematrices are very sensitive to errors duringGaussian elimination. After discussing
examples and introducing some elementary perturbation analysis using backward and forward error, the chapter develops
the condition number of a matrix and its properties. The condition number of a matrix plays an important role as we develop
algorithms in the remainder of the book. This material is at the heart of numerical linear algebra and should be covered at
least intuitively. There are a number of problems involving numerical experiments, and some of these should be done in
order to appreciate the issues involved.

Chapter 11: Gaussian Elimination and the LU Factorization

This chapter introduces the LU decomposition of a square matrix. The LU decomposition uses Gaussian elimination, but
is not a satisfactory algorithm without using partial pivoting to minimize errors. The LU decomposition properly computed
can be used to solve systems of the form Axi = bi, 1 ≤ i ≤ k. The somewhat expensive Gaussian elimination algorithm
need be used only once. After its computation, many solutions {xi} are quickly found using forward and back substitution.

Chapter 12: Linear Systems Applications

Four applications that involve linear systems comprise this chapter. A discussion of Fourier series introduces the concept of
an infinite dimensional vector space and provides an application for the L2 inner product introduced in Chapter 6. A second
application involves finite difference approximations for the heat equation. Finite difference techniques are important when



xxii Preface

approximating the solution to boundary value problems for ordinary and partial differential equations. Chapter 16 discusses
least-squares problems. As a tune-up for this chapter, the third application develops approximation by polynomial least-
squares. The last application is a discussion of cubic spline interpolation. Using this process, a series of cubic polynomials
are fitted between each pair of data points over an interval a ≤ x ≤ b, with the requirement that the curve obtained be twice
differentiable. These cubic splines can then be used to very accurately estimate the data at other points in the interval. The
computation of cubic splines involves the solution of a tridiagonal system of equations, and the Thomas algorithm presented
in Chapter 9 works very well.

Chapter 13: Important Special Systems

Numerical linear algebra is all about computing solutions to problems accurately and efficiently. As a result, algorithmsmust
be developed that take advantage of a special structure or properties of a matrix. This chapter discusses the factorization
of a tridiagonal matrix and the Cholesky factorization of a symmetric positive definite matrix. In both cases, the matrix
factorization leads to more efficient means of solving a linear system having a coefficient matrix of one of these types.

Chapter 14: Gram-Schmidt Orthonormalization

The Gram-Schmidt algorithm for computing an orthonormal basis is time-honored and important. It becomes critical in the
development of algorithms such as the singular value and Arnoldi decompositions. The chapter carefully develops the QR
decomposition using Gram-Schmidt. Although the decomposition is not normally done this way, it serves to demonstrate
that this extremely important tool exists. As a result, the MATLAB algorithm qr can be used with some understanding until
efficient methods for the QR decomposition are explained.

Chapter 15: The Singular Value Decomposition

The singular value decomposition (SVD) is perhaps the most important result in numerical linear algebra. Its uses are
many, including providing a method for estimating matrix rank and the solution of least-squares problems. This chapter
proves the SVD theorem and provides applications. Perhaps the most interesting application is the use of the SVD in image
compression. Practical algorithms for the computation of the SVD are complex, and are left to Chapter 23.

Chapter 16: Least Squares Problems

Approximation using least-squares has important applications in statistics and many other areas. For instance, data collected
by sensor networks is often analyzed using least-squares in order to approximate events taking place. Least-squares problems
arise when the data requires the solution to an m × n system Ax = b , where m �= n. Normally, there is no solution x̄ such
that Ax̄ = b , or there are infinitely many solutions, so we seek a solution that minimizes the Euclidean norm of Ax − b.
Least-squares provides an excellent application for the QR factorization and the SVD.

Chapter 17: Implementing the QR Factorization

The QR factorization using the Gram-Schmidt process was developed in Chapter 14. This chapter presents two other
approaches to the factorization, the use of Givens rotations and Householder reflections. In each case, the algorithm is
more stable than Gram-Schmidt. Also, we will have occasion to use Givens rotations and Householder reflections for
other purposes, such as the computation of eigenvalues. If a detailed presentation is not required, these ideas have a nice
geometrical interpretation.

Chapter 18: The Algebraic Eigenvalue Problem

The applications of the eigenvalue problem are vast. The chapter begins by presenting three applications, a problem in
vibration and resonance, the Leslie model in population biology, and the buckling of a column. The accurate computation of
eigenvalues and their associated eigenvectors is difficult. The power and inverse powermethods are developed for computing
the largest and smallest eigenvalues of amatrix. Thesemethods are important but have limited use. The chapter discusses the
QR iteration for the computation of all the eigenvalues and their associated eigenvectors of a real matrix whose eigenvalues



Preface xxiii

are distinct. The development is detailed and includes the use of the shifted Hessenberg QR iteration. The chapter also
develops the computation of eigenvectors using the Hessenberg inverse iteration. The method used in most professional
implementations is the implicit QR iteration, also known as the Francis iteration. The chapter develops the algorithm for
the computation of both the real and complex eigenvalues of a real matrix.

Chapter 19: The Symmetric Eigenvalue Problem

If a matrix is symmetric, an algorithm can exploit its symmetry and compute eigenvalues faster and more accurately.
Fortunately, many very important problems in engineering and science involve symmetric matrices. The chapter develops
five methods for the computation of eigenvalues and their associated eigenvectors, the Jacobi method, the symmetric QR
iteration method, the Francis algorithm, the bisection method, and the divide and conquer method.

Chapter 20: Basic Iterative Methods

Iterative methods are used for the solution of large, sparse, systems, since ordinary Gaussian elimination operations will
destroy the sparse structure of the matrix. This chapter presents the classical Jacobi, Gauss-Seidel, and SOR methods,
along with discussion of convergence. The chapter concludes with the application of iterative methods to the solution of the
two-dimensional Poisson equation.

Chapter 21: Krylov Subspace Methods

This is a capstone chapter, and should be covered, at least in part, in any numerical linear algebra course. The conjugate
gradient method (CG) for the solution of large, sparse symmetric positive definite systems is presented. This method is one
of the jewels of numerical linear algebra and has revolutionized the solution of many very large problems. The presentation
motivates the algorithm and provides mathematical details that explain why it works. The conjugate gradient method is a
Krylov subspace method, although the book does not develop it using this approach. However, the next algorithm presented
is the general minimum residual method (GMRES) for the iterative solution of large, sparse, general matrices, and it is
approached as aKrylov subspacemethod. TheKrylov subspace-basedminimum residual (MINRES)method for the solution
of large, sparse, symmetric, non-positive definite matrices is the last method presented. If a matrix is ill-conditioned, CG,
GMRES, andMINRES do not performwell. The solution is to precondition the system before applying an iterative method.
The chapter presents preconditioning techniques for CG andGMRES. After presenting a chart detailing approaches to large,
sparse problems, the chapter concludes with another approach to the Poisson equation and a discussion of the biharmonic
equation that is one of the most important equations in applied mechanics.

Chapter 22: Large Sparse Eigenvalue Problems

The chapter discusses the use of the Arnoldi and Lanczos processes to find a few eigenvalues of large, sparse matrices. Two
approaches are discussed, explicit and implicit restarting. The mathematics behind the performance of these methods is
beyond the scope of the text, but the algorithms are presented and MATLAB implementations provided. Various exercises
test the methods and clearly demonstrate the challenge of this problem.

Chapter 23: Computing the Singular Value Decomposition

The chapter develops two methods for computing the SVD, the one-sided Jacobi method, and the Demmel and Kahan
zero-shift QR downward sweep algorithm. Developing the two methods requires a knowledge of many results from earlier
chapters.

Appendices A, B, and C

Appendix A provides a discussion of complex numbers so that a reader unfamiliar with the topic will be able to acquire the
knowledge necessary when the book uses basic results from the theory of complex numbers. Appendix B presents a brief
discussion of mathematical induction, and Appendix C presents an overview of Chebyshev polynomials. Although these
polynomials are not used within any proof in the book, they are referenced in theorems whose proofs are provided by other
sources.



xxiv Preface

INTENDED AUDIENCE

Numerical linear algebra is often a final chapter in a standard linear algebra text, and yet is of paramount importance for
engineers and scientists. The book covers many of the most important topics in numerical linear algebra, but is not intended
to be encyclopedic. However, there are many references to material not covered in the book. Also, it is the author’s hope that
the material is more accessible as a first course than existing books, and that the first six chapters provide material sufficient
for the book to be used without a previous course in applied linear algebra. The book is also is very useful for self-study
and can serve as a reference for engineers and scientists. It can also serve as an entry point to more advanced books, such
as James Demmel’s book [1] or the exhaustive presentation of the topic by Golub and Van Loan [2].

WAYS TO USE THE BOOK

The instructor will need to decide how much theory should be covered; namely, how much emphasis will be placed on
understanding the proofs and doing problems involving proofs. If the students are not experiencedwith proofs, one approach
is to explain methods and theorems as intuitively as possible, supporting the discussion with numerical examples in class,
and having the students do numerous numerical exercises both in class and in assignments. For instance, using Jacobi
rotations to compute the eigenvalues of a real symmetric matrix is easily explained using simple diagrams and running a
MATLAB program included with the software distribution graphically demonstrates how the method performs a reduction
to a diagonal matrix. This approach works well with engineering students who have little or no experience with theorems
and proofs. They will learn how to solve problems, large and small, using the appropriate methods.

If the audience consists of students who are mathematics majors or who have significant mathematical training, then
some proofs should be covered and assignments should include proofs. Some of these exercises include hints to get the
student started. The author believes that for a student to stare at the hypothesis and conclusion only to give up in frustration
makes no sense, when a simple hint will kick start the process.

Of course, the amount of material that the instructor can cover depends on the background of the students. Mathematics
majors will likely have taken a theoretical or applied linear algebra course. After optionally reviewing the material in
Chapters 1-6 the study of numerical linear algebra can begin. The following is a list of suggestions for various chapters
that outlines material that can be omitted, covered lightly, or must be covered.

● In Chapter 7, proofs that justify methods for computing matrix norms can be omitted, but MATLAB programs that
motivate the methods should be discussed.

● Chapter 8 is essential to an understanding of numerical linear algebra. It presents storage formats for integers and floating
point numbers and shows why the finite precision arithmetic used by a computer leads to roundoff error. Some examples
are provided that show how rearranging the order of computation can help to reduce error.

● Chapter 10 that discusses the stability and conditioning of algorithms should be covered at least intuititely. There are
numerous examples and problems in the book that illustrate the problems that can occur with floating point arithmetic.

● In Chapter 11, the LU decomposition must be presented, and the student should use it to solve a number of problems.
If desired, the use of elementary row matrices to prove why the LU decomposition works can be omitted. It is very
important the student understand that multiple systems can be solved with only one LU decomposition. The efficiency
of many algorithms depends on it.

● The instructor can choose among the applications in Chapter 12, rather than covering the entire chapter.
● In Chapter 13, factoring tridiagonal matrices can be safely omitted, but positive definite matrices and the Cholesky

decomposition must be covered.
● The Gram-Schmidt orthogonalization method and its use in forming the QR decomposition is important and not

particularly difficult, so it should be covered.
● Except for the proof of the SVD theorem, all of Chapter 15 should be presented. The use of the SVD for image

compression excites students and is just plain fun.
● In Chapter 16, rank-deficient and underdetermined least-squares can be omitted, since the majority of applications

involve full rank overdetermined systems.
● It is recommended that Chapter 17 concerning the computation of the QR decomposition using Givens rotations and

Householder reflections be covered. These tools are needed later in the book when discussing the eigenvalue problem.
Both of these methods can be explained intuitively, supported by MATLAB programs from NLALIB, so the instructor
can omit many of the details if desired.

● Chapter 18 discusses the general algebraic eigenvalue problem, and should be covered in part. Certainly it is important
to discuss the power and inverse power methods and the QR iteration with and without shifts and deflation. The Francis,



Preface xxv

or implicit QR iteration, is used in practice with both single and double implicit shifts. The details are complex, but an
overview can be presented, followed by numerical experiments.

● The Spectral Theorem is used throughout the book, and its proof in Chapter 19 can be omitted with no harm. The Jacobi
method for computing the eigenvalues and eigenvectors of a symmetric matrix can be covered thoroughly or intuitively.
There are a number of programming and mathematical issues involved, but the idea is quite simple, and an intuitive
explanation will suffice. Certainly the symmetric QR iteration method should be covered. If the Francis algorithm was
covered in Chapter 18, it makes sense to present the single shift Francis algorithm. The bisection method is interesting
and not difficult, so covering it is a good option. The chapter concludes with the complex divide-and-conquer method,
and it is optional. NLALIB contains a C implementation of the algorithm using the MATLAB MEX interface, and it
might be interesting demonstrate the algorithm’s performance on a large, dense, symmetric matrix.

● The author feels that some coverage of iterative methods is very important since many engineering and science students
will deal with projects that involve large, sparse matrices. The classical material on the Jacobi, Gauss-Seidel, and SOR
iterations in Chapter 20 can be covered quickly by not presenting convergence theorems.

● The conjugate gradient method (CG) in Chapter 21 should be introduced and the student should gain experience using
it and the preconditioned CG to solve large systems. The approach to its development is through the method of steepest
descent. That algorithm is simple and can be supported by geometrical arguments. CG is an improvement of steepest
descent, and the mathematical details can be skipped if desired. The application of Krylov subspace methods to develop
the Arnoldi and Lanczos decompositions is somewhat technical, but the results are very important. At a minimum, the
student should work some exercises that involve using NLALIB to execute some decompositions. It is then easy to see
how these decompositions lead to the GMRES and MINRES methods. The software distribution contains a number of
large, sparse matrices used in actual applications. These are used for examples and exercises in the book.

● Chapter 22 is very interesting both from a practical and theoretical standpoint. However, the material is challenging and
can be left to more advanced courses. A possibility is using the chapter as an introduction to such books as Refs. [3–6].

● The SVD is used from Chapter 15 on, so the student is very familiar with its applications. Chapter 23 contains two
methods for computing the SVD, and this material can be left to a subsequent course.

MATLAB LIBRARY

NLALIB is an essential supplement to the book. Figure 0.1 shows the structure of the library, in which almost all major
algorithms are implemented as functions. As is customary, directory names are abbreviations; for instance, the subdirectory
geneigs contains demonstration software for methods to compute the eigenvalues of a general, non-sparse, matrix. The book
provides many examples of matrices from actual applications or matrices designed for testing purposes, and these matrices
are included in NLALIB in MATLAB matrix format.

SUPPLEMENTS

At http://textbooks.elsevier.com/web/Manuals.aspx?isbn=9780123944351, the instructor will find supplements that include
the solution to every problem in the book, laboratory exercises that can be used after lectures for more interactive

SVD

sparse-gensys
sparse-posdef

sparse-sym-indefinite

sparse-eig
QR
LU

symeigs

nonsymmetric

divide-and-conquer
matrices

sparse-matrices
outputdouble

SVD-compress

symmetric

geneigs

general

posdefinite

symmetric-indefinite

MATLAB functions

demos

FIGURE 0.1 NLALIB hierarchy.



xxvi Preface

learning, and a complete set of PowerPoint slides. For students, Elsevier provides the Web site http://booksite.elsevier.
com/978012394435 that provides students with review questions and solutions. The author also provides the Web site
http://ford-book.info that provides a summary of the book and links to associated Web sites.

ACKNOWLEDGMENTS

Although I have co-authored a number of books in computer science, this is my first mathematics text. I am indebted
to Patrcia Osborn, the acquisitions editor at Elsevier who had faith in the book and ushered it through the acceptance
phase. I would also like to thank the reviewers of the book, Jakub Kurzak, Ph.D., Research Director, Innovative Computing
Laboratory, University of Tennessee, Rajan Bhatt, Ph.D., research engineer at the University of Iowa Center for Computer
Aided Design, and Zhongshan Li, Ph.D., Professor and Graduate Director of Mathematics, Georgia State University. Their
comments were helpful and encouraging. I also appreciate the efforts of the editorial project managers, Jill Cetel, Jessica
Vaughn, and Paula Callaghan, who were invaluable in helping me through what is a difficult process. I also wish to thank
Anusha Sambamoorthy, Project Manager, Book Production, Chennai, Elsevier, for her help with getting the book into print.

Dr Keith Matthews, Honorary Research Consultant, University of Queensland, gave me permission to use his online
textbook, Elementary Linear Algebra, as a starting point for the material in the first six chapters. While I have made many
changes to suit the needs of the book, his generosity saved me much time.

I thank the University of the Pacific, School of Engineering and Computer Science, Stockton, California, for providing
resources and a sabbatical leave during the development of the book. I also appreciate comments made by engineering
graduate students as I used the manuscript in an advanced computation course. Lastly, I am indebted to William Topp,
Ph.D., with whom I have coauthored a number of books. He provided encouragement and consolation during the lengthy
process of developing the text.



Chapter 1

Matrices

You should be familiar with

● Two- and three-dimensional geometry
● Elementary functions

Linear algebra is a branch of mathematics that is used by engineers and applied scientists to design and analyze complex
systems. Civil engineers use linear algebra to design and analyze load-bearing structures such as bridges. Mechanical
engineers use linear algebra to design and analyze suspension systems, and electrical engineers use it to design and analyze
electrical circuits. Electrical, biomedical, and aerospace engineers use linear algebra to enhance X-rays, tomographs, and
images from space. This introduction is intended to serve as a basis for the study of numerical linear algebra, the study of
procedures used on a computer to perform linear algebra computations, most notably matrix operations. As you will see,
there is a big difference between theoretical linear algebra and applying linear algebra on a computer and obtaining reliable
results. It is assumed only that the reader has completed one or more calculus courses and has had some exposure to vectors
and matrices, although the text provides a review of the basic concepts. It will be helpful but not necessary if the reader has
taken a course in discrete mathematics that provided some exposure to mathematical proofs.

Section 1.1 discusses matrix operations, including matrix multiplication and that matrix multiplication obeys many of
the familiar laws of arithmetic apart from the commutative law. While matrix multiplication is most often performed on a
computer, it is necessary to understand its definition, fundamental properties, and applications. For instance, a linear system
of equations is elegantly expressed in matrix form. This section also introduces the matrix trace operator and the very useful
fact that trace (AB) = trace (BA) for square matrices A and B. This section concludes with a presentation of basic MATLAB
operations for executing these fundamental matrix operations.

A linear transformation is an absolutely critical concept in linear algebra, and Section 1.2 presents the concept and shows
how a linear transformation performs a rotation of a figure in the xy-plane or in three-dimensional space. This application
of linear transformations is fundamental to computer graphics.

Section 1.3 discusses powers of matrices and shows the connection between matrix powers and the number of possible
paths between two vertices of a graph. This section also presents the interesting Fibonacci matrix.

Section 1.4 introduces the matrix inverse and a number of its properties. It is shown that a linear system has a unique
solution when its coefficient matrix has an inverse.

Section 1.5 discusses the matrix transpose and this motivates the definition of a symmetric matrix. As we will see in
later chapters, symmetric matrices have many applications in engineering and science.

1.1 MATRIX ARITHMETIC

A matrix is a rectangular array of numbers with m rows and n columns. The symbol Rm×n denotes the collection of all
m×nmatrices whose entries are real numbers. Matrices will usually be denoted by capital letters, and the notation A = [aij]
specifies that the matrix is composed of entries aij located in the ith row and jth column of A.

A vector is a matrix with either one row or one column; for instance,

x =
⎡⎣ 1
−2
6

⎤⎦
is a column vector, and

y = [
6 −1 3

]
is a row vector. The elements of a vector require only one subscript. For the vector x, x2 = −4.
Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00001-6
Copyright © 2015 Elsevier Inc. All rights reserved. 1



2 Numerical Linear Algebra with Applications

Example 1.1. The formula aij = 1/(i+ j) for 1 ≤ i ≤ 3, 1 ≤ j ≤ 4 defines a 3× 4 matrix A = [aij], namely,

A =
⎡⎢⎣

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

⎤⎥⎦ .

The first column of A is the column vector

⎡⎢⎣
1
2
1
3
1
4

⎤⎥⎦. �

Definition 1.1 (Equality of matrices). Matrices A and B are said to be equal if they have the same size and their
corresponding elements are equal; i.e., A and B have dimension m × n, and A = [aij],B = [bij], with aij = bij for
1 ≤ i ≤ m, 1 ≤ j ≤ n.

Definition 1.2 (Addition of matrices). Let A = [aij] and B = [bij] be of the same size. Then A+B is the matrix obtained
by adding corresponding elements of A and B; that is,

A+ B = [aij]+ [bij] = [aij + bij].

Definition 1.3 (Scalar multiple of a matrix). Let A = [aij] and t be a number (scalar). Then tA is the matrix obtained
by multiplying all elements of A by t; that is,

tA = t[aij] = [taij].

Definition 1.4 (Negative of a matrix). Let A = [aij]. Then−A is the matrix obtained by replacing the elements of A by
their negatives; that is,

−A = −[aij] = [−aij].

Definition 1.5 (Subtraction of matrices). Matrix subtraction is defined for two matrices A = [aij] and B = [bij] of the
same size, in the usual way; that is,

A− B = [aij]− [bij] = [aij − bij].

Definition 1.6 (The zero matrix). Each m× n matrix, all of whose elements are zero, is called the zero matrix (of size
m×n) and is denoted by the symbol 0.

The matrix operations of addition, scalar multiplication, negation and subtraction satisfy the usual laws of arithmetic. (In
what follows, s and t are arbitrary scalars and A,B,C are matrices of the same size.)

1. (A+ B)+ C = A+ (B+ C);
2. A+ B = B+ A;
3. 0+ A = A;
4. A+ (−A) = 0;
5. (s+ t)A = sA + tA, (s− t)A = sA− tA;
6. t(A + B) = tA+ tB, t(A− B) = tA− tB;
7. s(tA) = (st)A;
8. 1A = A, 0A = 0, (−1)A = −A;
9. tA = 0⇒ t = 0 or A = 0.

Other similar properties will be used when needed.

1.1.1 Matrix Product

Definition 1.7 (Matrix product). Let A = [aij] be a matrix of size m×p and B = [bjk] be a matrix of size p×n (i.e., the
number of columns of A equals the number of rows of B). Then AB is the m×n matrix C = [cik] whose (i, j)th element is
defined by the formula



Matrices Chapter| 1 3

¼b

a11

c11

c21

a12 a1p

a21 a22 a2p

ai1

ai1

b11 b1nb1j

b2j b2n

c1n

c2n

cpn

cij

bpn

=

b2j

bpj

b1j

b12 c12

c22

cp2cp1

Multiply corresponding
elements together and

add the results to
form cij.

b22b21

bp1 bp2

ai2

ai2

aip

bpj

aip

am1 am2 amp

¼

¼
¼

¼

¼
¼

¼
¼

¼

¼

¼

¼

¼¼¼

¼¼

¼ ¼ ¼¼ ¼

¼ ¼

¼ ¼

¼

FIGURE 1.1 Matrix multiplication.

cij =
p∑

k=1
aikbkj = ai1b1j + · · · + aipbpj.

A way to look at this is that cij is the sum of the products of corresponding elements from row i of A and column j of B. For
hand computation, fix on row 1 of A. Form the sum of products of corresponding elements from row 1 of A and column 1 of
B, then the sum of products of corresponding elements from row 1 of A and column 2 of B, and so forth, until forming the
sum of the products of corresponding elements of row 1 of A and column n of B. This computes the first row of the product
matrix C. Now use row 2 of A in the same fashion to compute the second row of C. Continue until you have all m rows of
C (Figure 1.1).

Example 1.2. [
1 2
3 4

][
5 6
7 8

]
=

[
1× 5+ 2× 7 1 × 6 + 2× 8
3× 5+ 4× 7 3 × 6 + 4× 8

]
=
[
19 22
43 50

]
,[

5 6
7 8

][
1 2
3 4

]
=

[
23 34
31 46

]
�=
[
1 2
3 4

][
5 6
7 8

]
,[

1
2

] [
3 4

] = [
3 4
6 8

]
,

[
3 4

] [ 1
2

]
= [

11
]
,[

1 −1
1 −1

][
1 −1
1 −1

]
=

[
0 0
0 0

]
. �

Remark 1.1. Matrix multiplication is a computationally expensive operation. On a computer, multiplication is a much
more time-consuming operation than addition. Consider computing the product of an m × k matrix A and a k × n matrix
B. The computation of (AB) ij requires calculating k products. This must be done n times to form each row of AB, so the
computation of a row of AB requires kn multiplications. There are m rows in AB, so the total number of multiplications is
m (kn) = mkn. If A and B are both n× n matrices, n3 multiplications must be performed. For example, if the matrices have
dimension 10 × 10, the computation of their product requires 1000 multiplications. To multiply two 100 × 100 matrices
involves computing 1,000,000 products. A matrix most of whose entries are zero is called sparse. There are faster ways to
multiply sparse matrices, and we will deal with these matrices in Chapters 21 and 22.

Theorem 1.1. Matrix multiplication obeys many of the familiar laws of arithmetic apart from the commutative law.

1. (AB)C = A (BC) if A,B,C are m×p, p×k, k×n, respectively;
2. t(AB) = (tA)B = A(tB), A(−B) = (−A)B = −(AB);
3. (A+ B)C = AC + BC if A and B are m×n and C is n×p;
4. D(A+ B) = DA+ DB if A and B are m×n and D is p×m.



4 Numerical Linear Algebra with Applications

We prove the associative law only:

Proof. Assume that A is an m× p matrix, B is a p× k matrix, and C is a k × n matrix. Observe that (AB)C and A(BC) are
both of size m×n.

Let A = [aiq],B = [bql],C = [clj]. Then

((AB)C)ij =
k∑

q=1
(AB)iqcqj =

k∑
q=1

( p∑
l=1

ailblq

)
cqj

=
k∑

q=1

p∑
l=1

ailblqcqj.

Similarly,

(A(BC))ij =
p∑
l=1

k∑
q=1

ailblqcqj.

However, the double summations are equal. Sums of the form

k∑
q=1

p∑
l=1

dlq and
p∑
l=1

k∑
q=1

dlq

represent the sum of the kp elements of the rectangular array [dlq], by rows and by columns, respectively. Consequently,
((AB)C)ij = (A(BC))ij for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Hence, (AB)C = A(BC).

One of the primary uses of matrix multiplication is formulating a system of equations as a matrix problem. The system
of m linear equations in n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm

is equivalent to a single-matrix equation⎡⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
b1
b2
...
bm

⎤⎥⎥⎥⎦ ,

that is, Ax = b, where A = [aij] is the coefficient matrix of the system, x =

⎡⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎦ is the vector of unknowns and

b =

⎡⎢⎢⎢⎣
b1
b2
...
bm

⎤⎥⎥⎥⎦ is the vector of constants.

Another useful matrix equation equivalent to the above system of linear equations is

x1

⎡⎢⎢⎢⎣
a11
a21
...
am1

⎤⎥⎥⎥⎦+ x2

⎡⎢⎢⎢⎣
a12
a22
...
am2

⎤⎥⎥⎥⎦+ · · · + xn

⎡⎢⎢⎢⎣
a1n
a2n
...
amn

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
b1
b2
...
bm

⎤⎥⎥⎥⎦ .



Matrices Chapter| 1 5

We will begin a study of n× n linear systems in Chapter 2 and continue the study throughout the book. In Chapter 16, most
of the systems we deal with will have dimension m× n, where m �= n.

Example 1.3. The system

x+ y+ z = 1,

x− y+ z = 0,

3x+ 5y− z = 2

is equivalent to the matrix equation ⎡⎣ 1 1 1
1 −1 1
3 5 −1

⎤⎦⎡⎣ x
y
z

⎤⎦ =
⎡⎣ 1
0
2

⎤⎦
and to the equation

x

⎡⎣ 1
1
3

⎤⎦+ y

⎡⎣ 1
−1
5

⎤⎦+ z

⎡⎣ 1
1
−1

⎤⎦ =
⎡⎣ 1
0
2

⎤⎦ .

The solution to the system is

⎡⎣ 0.0000
0.5000
0.5000

⎤⎦:
(1) 0.0000+ (1) 0.5000+ (1) 0.5000 = 1,

(1) 0.0000− (1) 0.5000+ (1) 0.5000 = 0,

3 (0.0000)+ 5 (0.5000)− (1) 0.5000 = 2. �

1.1.2 The Trace

The trace is a matrix operation that is frequently used in matrix formulas, and it is very simple to compute.

Definition 1.8. If A is an n× n matrix, the trace of A, written trace (A), is the sum of the diagonal elements; that is,

trace (A) = a11 + a22 + · · · + ann =
n∑
i=1

aii.

Example 1.4. If A =

⎡⎢⎢⎣
5 8 12 −1
7 4 −8 7
0 3 −6 5
−1 −9 4 3

⎤⎥⎥⎦, then trace (A) = 5+ 4+ (−6)+ 3 = 6. �

There are a number of relationships satisfied by trace. For instance, trace (A+ B) = trace (A) + trace (B)

(Problem 1.22(a)), and trace (cA) = c trace (A), where c is a scalar (Problem 1.22(b)). A more complex relationship is
the trace of product of two matrices.

Theorem 1.2. If A is an n× n matrix and B is an n× n matrix, then trace (AB) = trace (BA).

Proof. By the definition of matrix multiplication,

trace (AB) =
n∑
i=1

(AB)ii =
n∑
i=1

(
n∑

k=1
aikbki

)
=

n∑
k=1

(
n∑
i=1

bikaki

)
= trace (BA) .



6 Numerical Linear Algebra with Applications

1.1.3 MATLAB Examples

There are numerous examples throughout this book that involve the use of MATLAB. It is fundamental to our use of
MATLAB that you are familiar with “vectorization.” When performing vector or matrix operations using the operators “*”,
“/”, and “^”, it may be necessary to use the dot operator (“.”). As stated in the preface, the reader is expected to be familiar
with MATLAB, but it is not necessary to be an expert.

Example 1.5. Matrix Operations
The operators+, −, * work as expected in MATLAB, and the command trace computes the trace of a matrix.

>> A = [1 5 1;2 -1 6;1 0 3]

A =

1 5 1

2 -1 6

1 0 3

>> B = [2 3 0;3 -1 7;4 8 9]

B =

2 3 0

3 -1 7

4 8 9

>> 5*A -10*B + 3*A*B

ans =

48 13 137

55 170 101

7 1 6

>> trace(A + B)

ans =

13

>> 7*trace(A + B)

ans =

91

>> trace(A*B)

ans =

103

>> trace(B*A)

ans =

103

>> A.*B

ans =

2 15 0

6 1 42

4 0 27 �



Matrices Chapter| 1 7

1.2 LINEAR TRANSFORMATIONS

Throughout this book we will assume that matrices have elements that are real numbers. The real numbers include the
integers (. . . ,−2,−1, 0, 1, 2, . . .), which are a subset of the rational numbers (p/q), where p and q are positive integers,
q �= 0. The remaining numbers are called irrational numbers; for instance, π and e are irrational numbers. We will use the
symbol R to denote the collection of real numbers. An n-dimensional column vector is an n×1 matrix. The collection of all
n-dimensional column vectors is denoted by Rn.

Every matrix is associated with a type of function called a linear transformation.

Definition 1.9 (Linear transformation). We can associate an m× n matrix A with the function TA : R
n → R

m, defined
by TA(x) = Ax for all x ∈ R

n. More explicitly, using components, the above function takes the form

y1 = a11x1 + a12x2 + · · · + a1nxn
y2 = a21x1 + a22x2 + · · · + a2nxn

...

ym = am1x1 + am2x2 + · · · + amnxn,

where y1, y2, . . . , ym are the components of the column vector TA(x), in other words y = Ax.

A linear transformation has the property that

TA(sx+ ty) = sTA(x)+ tTA(y)

for all s, t ∈ R and all n-dimensional column vectors x, y. This is true because

TA(sx+ ty) = A(sx+ ty) = s(Ax) + t(Ay) = sTA(x)+ tTA(y).

1.2.1 Rotations

One well-known example of a linear transformation arises from rotating the (x, y)-plane in two-dimensional Euclidean
space counterclockwise about the origin (0, 0) through θ radians. A point (x, y) will be transformed into the point (x, y). By
referring to Figure 1.2, the coordinates of the rotated point can be found using a little trigonometry.

x = d cos (θ + α) = d cos (θ) cos (α)− d sin (θ) sin (α) = x cos (θ)− y sin (θ) ,

y = d sin (θ + α) = d sin (θ) cos (α)+ d cos (θ) sin (α) = x sin (θ)+ y cos (θ) .

The equations in matrix form are

R =
[
x
y

]
=
[

cos θ − sin θ

sin θ cos θ

][
x
y

]
.

Example 1.6. Rotate the line y = 5x+ 1 an angle of 30◦ counterclockwise. Graph the original and the rotated line.

d

d

a

a

x

(x,y)

y
q

(x,y)

FIGURE 1.2 Rotating the xy-plane.



8 Numerical Linear Algebra with Applications

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−4

−3

−2

−1

0

1

2

3

4

5

6

FIGURE 1.3 Rotated line

Since 30◦ is π/6 radians, the rotation matrix is[
cos π

6 − sin π
6

sin π
6 cos π

6

]
=
[
0.866 −0.5
0.5 0.866

]
.

Now compute the rotation. [
x
y

]
=
[
0.866 −0.5
0.5 0.866

][
x

5x+ 1

]
=
[ −1.634x− 0.5
4.83x+ 0.866

]
.

Choose two points on the line y = 5x + 1, say (0, 1) and (1, 6), apply the transformation to these points, and determine
two points on the line. [

x1
y1

]
=

[ −0.5
0.866

]
,[

x2
y2

]
=

[ −2.134
5.696

]
.

Figure 1.3 is the graph of the original and the rotated line. �

In three-dimensional Euclidean space, the equations

x = xcosθ − ysinθ , y = xsinθ + ycosθ , z = z,

x = x, y = ycosφ − zsinφ, z = ysinφ + zcosφ,

x = xcosψ − zsinψ , y = y, z = xsinψ + zcosψ

correspond to rotations about the positive z-, x-, and y-axes, counterclockwise through θ ,φ,ψ radians, respectively.
The product of two matrices is related to the product of the corresponding linear transformations:
If A is m×k and B is k×n, the linear transformation TATB first performs transformation TB, and then TA. For instance,

we might rotate about the x-axis, followed by a rotation about the z-axis. This transformation is in fact equal to the linear
transformation TAB, since

TATB(x) = A(Bx) = (AB)x = TAB(x).

The following example is useful for producing rotations in three-dimensional animated design (see Ref. [7, pp. 97-112]).



Matrices Chapter| 1 9

x

y

z

Æ

y

q

FIGURE 1.4 Rotate three-dimensional coordinate system.

tx

ty

(x,y)

(x ¢,y ¢)

FIGURE 1.5 Translate a point in two dimensions.

Example 1.7. The linear transformation resulting from successively rotating three-dimensional space about the positive
z, x, and y-axes, counterclockwise through θ ,φ,ψ radians, respectively (Figure 1.4), is equal to TABC, where

C =
⎡⎣ cosθ −sinθ 0

sinθ cosθ 0
0 0 1

⎤⎦ , B =
⎡⎣ 1 0 0
0 cosφ −sinφ

0 sinφ cosφ

⎤⎦ , A =
⎡⎣ cosψ 0 −sinψ

0 1 0
sinψ 0 cosψ

⎤⎦ .

The matrix ABC is somewhat complex:

A(BC) =
⎡⎣ cosψ 0 −sinψ

0 1 0
sinψ 0 cosψ

⎤⎦⎡⎣ cosθ −sinθ 0
cosφsinθ cosφcosθ −sinφ

sinφsinθ sinφ cos θ cosφ

⎤⎦
=
⎡⎣ cosψcosθ − sinψsinφsinθ −cosψsinθ − sinψsinφ sin θ −sinψcosφ

cosφsinθ cosφcosθ −sinφ

sinψcosθ + cos ψsinφsinθ −sinψsinθ + cos ψsinφcosθ cosψcosφ

⎤⎦ . �

Now consider a new problem. Reposition a point (x, y) along a straight line a distance of (tx, ty), where t is a scalar.
The new location of the point is (x+ tx, y+ ty) (Figure 1.5).

To determine a linear transformation, we use a 3× 3 matrix

T =
⎡⎣ 1 0 tx
0 1 ty
0 0 1

⎤⎦

and multiply T by the column vector

⎡⎣ x
y
1

⎤⎦. Then
⎡⎣ 1 0 tx
0 1 ty
0 0 1

⎤⎦⎡⎣ x
y
1

⎤⎦ =
⎡⎣ x+ tx
y+ ty
1

⎤⎦ .



10 Numerical Linear Algebra with Applications

In order to combine translation and rotation using matrix multiplication, we need to create a 3 × 3 matrix that performs a
two-dimensional rotation. Define

R =
⎡⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤⎦ .

Now, ⎡⎣ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤⎦⎡⎣ x
y
1

⎤⎦ =
⎡⎣ x cos θ − y sin θ

x sin θ + y cos θ

1

⎤⎦ .

In each case, we can ignore the z component of 1.

Example 1.8. Now we can perform an interesting and practical matrix calculation. Take the line y = 5x+ 1 and rotate it
30◦ counterclockwise about the point (2, 11).

To solve this problem, first translate the point (2, 11) to (0, 0), rotate 30◦ counterclockwise, and then translate the point
from the origin back to (2, 11) (Figure 1.6).

Here are the matrices involved.

T1 =
⎡⎣ 1 0 −2
0 1 −11
0 0 1

⎤⎦. Translate (2, 11) to the origin using tx = −2 and ty = −11.

R =
⎡⎣ cos π

6 − sin π
6 0

sin π
6 cos π

6 0
0 0 1

⎤⎦. Rotate 30◦
T2 =

⎡⎣ 1 0 2
0 1 11
0 0 1

⎤⎦. Translate back to (2, 11) using tx = 2 and ty = 11.

Compute the product F = T2RT1.

F =
⎡⎣ 0.8660 −0.5000 5.7679
0.5000 0.8660 0.4737

0 0 1.0000

⎤⎦ .

FIGURE 1.6 Rotate a line about a point.



Matrices Chapter| 1 11

FIGURE 1.7 Rotation about an arbitrary point.

By computing the two points F

⎡⎣ 0
1
1

⎤⎦ and F

⎡⎣ 2
11
1

⎤⎦ on the rotated line and using the two point formula for the equation of

a line, we obtain the equation y = −2.9561x+ 16.9121.
Figure 1.7 is a plot of both the original and the rotated line. �

1.3 POWERS OF MATRICES

Definition 1.10 (The identity matrix). The n×n matrix I = [δij], defined by δij = 1 if i = j, δij = 0 if i �= j, is called
the n×n identity matrix of order n. In other words, the columns of the identity matrix of order n are the vectors

e1 =

⎡⎢⎢⎢⎢⎢⎣
1
0
...
0
0

⎤⎥⎥⎥⎥⎥⎦ , e2 =

⎡⎢⎢⎢⎢⎢⎣
0
1
...
0
0

⎤⎥⎥⎥⎥⎥⎦ , . . . , en =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ .

For example, I =
[
1 0
0 1

]
and I =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦. The identity matrix plays a critical role in linear algebra. When any n× n

matrix A is multiplied by the identity matrix, either on the left or the right, the result is A. Thus, the identity matrix acts like
1 in the real number system. For example,⎡⎣ 2 6 1

7 2 9
−1 5 −4

⎤⎦⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ =
⎡⎣ 2 (1)+ 6 (0)+ 1(0) 2 (0)+ 6 (1)+ 1(0) 2 (0)+ 6 (0)+ 1(1)

7 2 9
−1 5 −4

⎤⎦ =
⎡⎣ 2 6 1

7 2 9
−1 5 −4

⎤⎦ .

Definition 1.11 (kth power of a matrix). If A is an n×n matrix, we define Ak as follows: A0 = I and Ak =
A× A× A · · ·A× A︸ ︷︷ ︸

A occurs k times

for k ≥ 1.



12 Numerical Linear Algebra with Applications

For example, A4 = A× A× A× A. Compute from left to right as follows:

A2 = A× A, A3 = (A)2 × A, A4 = (A)3 × A.

Example 1.9. The MATLAB exponentiation operator ^ applies to matrices.

>> A = [1 1;1 0]

A =

1 1

1 0

>> A^8

ans =

34 21

21 13

A is known as the Fibonacci matrix, since it generates elements from the famous Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . �

Example 1.10. Let A =
[

7 4
−9 −5

]
. Let’s investigate powers of A and see if we can find a formula for An.

A2 =
[

7 4
−9 −5

][
7 4
−9 −5

]
=
[

13 8
−18 −11

]
,

A3 =
[

13 8
−18 −11

][
7 4
−9 −5

]
=
[

19 12
−27 −17

]
,

A4 =
[

19 12
−27 −17

][
7 4
−9 −5

]
=
[

25 16
−36 −23

]
,

A5 =
[

25 16
−36 −23

][
7 4
−9 −5

]
=
[

31 20
−45 −29

]
.

The elements in positions (1, 2) and (2, 1) follow a pattern. The element in position (1, 2) is always 4n, and the element
at position (2, 1) is always −9n. The element at (1, 1) is 6n + 1, so we only need the pattern for the entry at (2, 2). It is
always one (1) more than −6n, so it has the value 1 − 6n. Here is the formula for An.

An =
[
1+ 6n 4n
−9n 1− 6n

]
if n ≥ 1.

This is not a mathematical proof, just an example of pattern recognition. The result can be formally proved using
mathematical induction (see Appendix B). �

Our final example of matrix powers is a result from graph theory. A graph is a set of vertices and connections between
them called edges. You have seen many graphs; for example, a map of the interstate highway system is a graph, as is the
airline route map at the back of those boring magazines you find on airline flights. Consider the simple graph in Figure 1.8.
A path from one vertex v to another vertex w is a sequence of edges that connect v and w. For instance, here are three paths
from A to F: A-B-F, A-B-D-F, and A-B-C-E-B-F. The length of a path between v and w is the number of edges that must

FIGURE 1.8 Undirected graph.



Matrices Chapter| 1 13

be crossed in moving from one to the other. For instance, in our three paths, the first has length 2, the second has length 3,
and the third has length 5.

If a graph has n vertices, the adjacency matrix of the graph is an n × n matrix that specifies the location of edges. The concept is
best illustrated by displaying the adjacency matrix for our six vertex graph, rather than giving a mathematical definition.

A B C D E F
A 0 1 0 0 0 0
B 1 0 1 1 1 1

Adj = C 0 1 0 0 1 0
D 0 1 0 0 0 1
E 0 1 1 0 0 0
F 0 1 0 1 0 0

A one (1) occurs in row A, column B, so there is an edge connecting A and B. Similarly, a one is in row E, column C, so
there is an edge connecting E and C. There is no edge between A and D, so row A, column D contains zero (0).

There is a connection between the adjacency matrix of a graph and the number of possible paths between two vertices.
Clearly, Adj1 specifies all the paths of length 1 from one vertex to another (an edge).

If Adj is the adjacency matrix for a graph, then Adjk defines the number of possible paths of length k between any two
vertices.We will not attempt to prove this, but will use our graph as an example.

Adj2 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 1 1 1 1
0 5 1 1 1 1
1 1 2 1 1 1
1 1 1 2 1 1
1 1 1 1 2 1
1 1 1 1 1 2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Adj3 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 5 1 1 1 1
5 4 6 6 6 6
1 6 2 2 3 2
1 6 2 2 2 3
1 6 3 2 2 2
1 6 2 3 2 2

⎤⎥⎥⎥⎥⎥⎥⎦ .

By looking at Adj2, we see that there is one path of length 2 between C and E, C-B-E, and two paths of length 2
connecting E to E (E-C-E, E-B-E). There are five (5) paths of length 3 between B and A (B-A-B-A, B-D-B-A, B-C-B-A,
B-E-B-A, B-F-B-A). Note that if we reverse each path of length three from B to A, we have a path that starts at A and ends
at B. Look carefully at Adj, Adj2, and Adj3 and notice that the entry at position (i, j) is always the same as the entry at
(j, i). Such a matrix is termed symmetric. If you exchange rows and columns, the matrix remains the same. There are many
applications of symmetric matrices in science and engineering.

1.4 NONSINGULAR MATRICES

Definition 1.12 (Nonsingular matrix). An n× n matrix A is called nonsingular or invertible if there exists an
n× n matrix B such that

AB = BA = I.

If A does not have an inverse, A is called singular.

A matrix B such that AB = BA = I is called an inverse of A. There can only be one inverse, as Theorem 1.3 shows.

Theorem 1.3. A matrix A can have only one inverse.

Proof. Assume that AB = I, BA = I, and CA = AC = I. Then,
C (AB) = (CA)B, and CI = IB, so C = B.



14 Numerical Linear Algebra with Applications

When determining if B is the inverse of A, it is only necessary to verify AB = I or BA = I. This is important because an
procedure that computes the inverse of A need only to verify the product in one direction or the other.

Theorem 1.4. If B is a matrix such that BA = I, then AB = I. Similarly, if AB = I, then BA = I.

Proof. Assume that BA = I. Then ABAB = AIB = AB, and ABAB− AB = 0. Factor out AB, and AB (AB− I) = 0. Either
AB = 0 or AB− I = 0. If AB = 0, then ABA = 0 (A) = 0. But, BA = I, and so it follows that A = 0. The product of any
matrix with the zero matrix is the zero matrix, so BA = I is not possible. Thus, AB− I = 0, or AB = I. The fact that AB = I
implies BA = I is handled in the same fashion.

If we denote the inverse by A−1, then (
A−1

)
A = I,

A
(
A−1

)
= I,

and it follows that

(A−1)−1 = A.

This says the inverse of A−1 is A itself.
The inverse has a number of other properties that play a role in developing results in linear algebra. For instance,(

B−1A−1
)

(AB) = B−1
(
A−1A

)
B = B−1IB = B−1B = I,

and so

(AB)−1 = B−1A−1.

By Theorem 1.4, we do not need to verify that (AB)
(
B−1A−1

) = I.

Remark 1.2. The above result generalizes to a product of m nonsingular matrices: If A1, . . . ,Am are nonsingular n×n
matrices, then the product A1 . . .Am is also nonsingular. Moreover,

(A1 . . .Am)−1 = A−1m . . .A−11 ,

so the inverse of a product equals the product of the inverses in the reverse order.

Example 1.11. If A and B are n×n matrices satisfying A2 = B2 = (AB)2 = I, show that AB = BA.
This says that A, B, and AB are each their own inverse, or (AB)−1 = AB, B−1 = B, and A−1 = A. Now,

AB = (AB)−1 = B−1A−1 = BA,

and so AB = BA. �

Normally, is it not true that AB = BA for n× n matrices A and B. For instance,[
1 2
−1 5

][
6 1
−7 4

]
=
[ −8 9
−41 19

]
,

and [
6 1
−7 4

][
1 2
−1 5

]
=
[

5 17
−11 6

]
.

Remark 1.3. Wewill show how to compute the inverse in Chapter 2; however, it is computationally expensive. The inverse
is primarily a tool for developing other results.

A matrix having an inverse guarantees that a linear system has a unique solution.



Matrices Chapter| 1 15

Theorem 1.5. If the coefficient matrix A of a system of n equations in n unknowns has an inverse, then the system Ax = b
has the unique solution x =A−1b.

Proof. 1. (Uniqueness) Assume Ax = b. Then

A−1 (Ax) = A−1b,(
A−1A

)
x = A−1b,

Ix = A−1b,
x = A−1b.

2. (Existence) Assume x = A−1b. Then

Ax = A
(
A−1b

)
=
(
AA−1

)
b = Ib = b.

A linear system Ax = 0 is said to be homogeneous. If A is nonsingular, then x = A−10 = 0, so the system has only 0 as
its solution. It is said to have only the trivial solution.

Example 1.12. Consider the homogeneous system [
1 3
1 2

]
x = 0.

A simple calculation verifies that

[
1 3
1 2

]−1
=
[ −2 3

1 −1
]
, and so[ −2 3

1 −1
][

1 3
1 2

]
x =

[ −2 3
1 −1

] [
0
0

]
,

Ix = x = 0. �

There are some cases where there is an explicit formula for the inverse matrix. In particular, we can demonstrate a
formula for the inverse of a 2× 2 matrix subject to a condition.

Let A =
[
a b
c d

]
with ad − bc �= 0 and let B = (1/(ad − bc))

[
d −b
−c a

]
. Perform a direct calculation of AB.[

a b
c d

](
1

ad − bc

)[
d −b
−c a

]
=

(
1

ad − bc

)[
a b
c d

][
d −b
−c a

]
=

(
1

ad − bc

)[
ad − bc −ab+ ab
cd − cd ad − bc

]
=
[
1 0
0 1

]
= I

Remark 1.4. The expression ad − bc is called the determinant of A and is denoted by det(A). Later we will see that A
has an inverse if and only if detA �= 0.

The MATLAB function that computes the inverse of an n× n matrix is inv. If A is an n× n matrix, then

>> B = inv(A);

computes A−1.

Example 1.13. The following MATLAB statements demonstrate the use of inv and verify that (AB)−1 = B−1A−1 for
two particular matrices.

>> format rational;

>> A = [1 3 -1; 4 1 6; 0 2 3]

A =

1 3 -1

4 1 6

0 2 3



16 Numerical Linear Algebra with Applications

>> A_inv = inv(A)
A_inv =

9/53 11/53 -19/53

12/53 -3/53 10/53

-8/53 2/53 11/53

>> B = [1 4 0; 3 5 1; 2 -7 8]

B =

1 4 0

3 5 1

2 -7 8

>> B_inv = inv(B)
B_inv =

-47/41 32/41 -4/41

22/41 -8/41 1/41

31/41 -15/41 7/41

>> inv(A*B)
ans =

-7/2173 -621/2173 1169/2173

94/2173 268/2173 -487/2173

43/2173 400/2173 -662/2173

>> B_inv * A_inv

ans =

-7/2173 -621/2173 1169/2173

94/2173 268/2173 -487/2173

43/2173 400/2173 -662/2173 �

1.5 THE MATRIX TRANSPOSE AND SYMMETRIC MATRICES

There is another property of a matrix that we will use extensively, the matrix transpose.

Definition 1.13 (The transpose of a matrix). Let A be an m×n matrix. Then AT, the transpose of A, is the matrix
obtained by interchanging the rows and columns of A. In other words if A = [aij], then

(
AT
)
ij = aji. Consequently AT is an

n×m matrix.

For instance, if

A =

⎡⎢⎢⎣
1 9 0
3 7 15
4 8 1
−7 12 3

⎤⎥⎥⎦ ,

then

AT =
⎡⎣ 1 3 4 −7
9 7 8 12
0 15 1 3

⎤⎦ .

Theorem 1.6. The transpose operation has the following properties:

1.
(
AT
)T = A;

2. (A± B)T = AT ± BT if A and B are m×n;
3. (sA)T = sAT if s is a scalar;
4. (AB)T = BTAT if A is m×k and B is k×n;



Matrices Chapter| 1 17

5. A is nonsingular, then AT is also nonsingular and
(
AT
)−1 = (

A−1
)T
.

6. xTx = x21+ · · ·+x2n if x = [x1, . . . , xn]T is a column vector.

Proof. We will verify 5 and 6 and leave the remaining properties to the exercises.
Property 5: AT

(
A−1

)T = (
A−1A

)T
by property 4. Therefore, AT

(
A−1

)T = IT = I.

Property 6: xTx = [
x1 · · · xn

] ⎡⎢⎣ x1
...
xn

⎤⎥⎦ = x21 + · · ·+ x2n.

There is a frequently occurring class of matrices defined in terms of the transpose operation.

Definition 1.14 (Symmetric matrix). Amatrix A is symmetric if AT = A. In other words A is square (n×n) and aji = aij
for all 1 ≤ i ≤ n, 1 ≤ j ≤ n. Another way of looking this is that when the rows and columns are interchanged, the resulting
matrix is A. For instance,

A =
[
a b
b c

]
is a general 2× 2 symmetric matrix.

Example 1.14. A =

⎡⎢⎢⎣
1 8 12 3
8 5 1 10
12 1 6 9
3 10 9 2

⎤⎥⎥⎦ is a symmetric matrix. Notice row 1 has the same entries as column 1, row 2 has

the same entries as column 2, and so forth. �

The following proposition proves a property of ATA that is critical for the computation of what are termed singular
values in Chapter 7.

Proposition 1.1. If A is an m× n matrix, then ATA is a symmetric matrix.

Proof. ATA is an n× n matrix, since AT has dimension n× m, and A has dimension m× n. ATA is symmetric, since(
ATA

)T = AT
(
AT
)T = ATA.

Example 1.15. In MATLAB, the transpose operator is ′.
>> A = [1 8 -1; 3 -9 15; -1 5 3]

A =

1 8 -1

3 -9 15

-1 5 3

>> A_TA = A’*A

A_TA =

11 -24 41

-24 170 -128

41 -128 235

>> A_TA - A_TA’

ans =

0 0 0

0 0 0

0 0 0 �



18 Numerical Linear Algebra with Applications

1.6 CHAPTER SUMMARY

Matrix Arithmetic

This chapter defines a matrix, introduces matrix notation, and presents matrix operations, including matrix multiplication.
To multiply matrices A and B, the number of columns of Amust equal the number of rows of B. It should be emphasized that
multiplication of large matrices, most of whose elements are nonzero, is a time-consuming computation. When matrices
in applications are very large, they normally consist primarily of zero entries, and are termed sparse. Although matrix
multiplication obeys most of the laws of arithmetic, it is not commutative; that is, if A and B are n×nmatrices, AB is rarely
equal to BA.

A vector is a matrix having one row or one column. In this book, we will primarily use column vectors such as⎡⎣ −13
7

⎤⎦ .

The trace of an n×n matrix is the sum of its diagonal elements aii, 1 ≤ i ≤ n, or trace (A) =∑n
i=1 aii. The trace occurs

in many matrix formulas, and we will encounter it in later chapters. It is important to note that even though AB �= BA in
general, in fact trace (AB) = trace (BA).

A primary topic in this book is the solution of linear systems of equations, and we write them using matrix notation; for
instance, the system

x1 − x2 + 5x3 = 1,

−2x1 + 4x2 + x3 = 0,

7x1 − 2x2 − 6x3 = 8

using matrix notation is ⎡⎣ 1 −1 5
−2 4 1
7 −2 −6

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =
⎡⎣ 1
0
8

⎤⎦ .

Linear Transformations

If A is an m × n matrix, a linear transformation is a mapping from Rn to Rm defined by y = Ax. We will deal with linear
transformations throughout the remainder of this book. An excellent example is a two-dimensional linear transformation of
the form

y =
[

cos θ − sin θ

sin θ cos θ

] [
x1
x2

]
that rotates the vector

[
x1
x2

]
counter clockwise through angle θ . Such linear transformations perform rotation, displace-

ment, and scaling of objects in computer graphics.

Powers of Matrices

There are numerous applications of matrix powers, Ak, k ≥ 0. Given an undirected graph, powers of the adjacency matrix
provide a count of the number of paths between any two vertices. We will see in Chapters 21 and 22 that a sequence of
the form Ax0, A2x0, . . . , Ak−1x0 forms the basis for series of important methods that solve linear systems and compute
eigenvalues of large, sparse matrices. We will discuss solving linear systems in Chapter 2 and eigenvalues in Chapter 5.

Nonsingular Matrices

The inverse of a matrix is of great theoretical importance in linear algebra. An n × n matrix A has inverse A−1 if

A−1A = AA−1 = I,



Matrices Chapter| 1 19

where I is the identity matrix ⎡⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . . 0
0 1 0 . . . 0

0 0
. . . . . . 0

...
...
. . . 1

...
0 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

When it exists, the inverse is unique, and the matrix is termed nonsingular. Not all matrices have an inverse, and such
matrices are said to be singular. A linear system Ax = b has a unique solution x = A−1b when A is nonsingular.
A very important result is that a homogeneous system of the form Ax = 0 has only the solution x = 0 if A is
nonsingular.

The Matrix Transpose and Symmetric Matrices

The transpose of an m × n matrix A, named AT, is the n × m matrix obtained by exchanging the rows and columns of A.
Theorem 1.6 lists properties of the transpose.

An important class of matrices are the symmetric matrices. A square matrix A is symmetric if AT = A, and this means
that aij = aji, 1 ≤ i, j ≤ n. Many problems in engineering and science involve symmetric matrices, and entire sections of
this book deal with them. As you will see, when a problem involves a symmetric matrix, this normally leads to a faster and
more accurate solution.

It is of the utmost importance that you remember the relationship (AB)T = BTAT, as we will use it again and again
throughout this book. Here is an interesting fact we will use beginning in Chapter 7. If A is any m× n matrix, then ATA is
symmetric, since (

ATA
)T = AT

(
AT
)T = ATA.

1.7 PROBLEMS

1.1 For

A =
⎡⎣ 1 8 −1
0 6 −7
2 4 12

⎤⎦ , B =
⎡⎣ 6 −1 25

14 −6 0
−9 15 25

⎤⎦
compute the following:
a. A− B
b. 8A
c. 5A+ 7B

1.2 Using the matrices A and B from Problem 1.1, compute AB. Do not use a computer program. Do it with pencil and
paper.

1.3 Let A,B,C,D be matrices defined by

A =
⎡⎣ 3 0
−1 2
1 1

⎤⎦ , B =
⎡⎣ 1 5 2
−1 1 0
−4 1 3

⎤⎦ ,

C =
⎡⎣ −3 −12 1

4 3

⎤⎦ , D =
[
4 −1
2 0

]
.

Which of the following matrices are defined? Compute those matrices which are defined.

A+ B,A+ C,AB,BA,CD,DC,D2.



20 Numerical Linear Algebra with Applications

1.4 Let A =
[ −1 0 1

0 1 1

]
. Show that if B is a 3× 2 matrix such that AB = I, then

B =
⎡⎣ a b
−a− 1 1− b
a+ 1 b

⎤⎦
for suitable numbers a and b. Use the associative law to show that (BA)2B = B.

1.5 If A =
[
a b
c d

]
, show that A2 − (a+ d)A+ (ad − bc)I2 = 0.

1.6 A square matrix D = [dij] is called diagonal if dij = 0 for i �= j; that is the off-diagonal elements are zero. Show that
premultiplication of a matrix A by a diagonal matrix D results in matrix DA whose rows are the rows of A multiplied
by the respective diagonal elements of D.

1.7 Write the following linear algebraic system in matrix form.

5x1 + 6x2 − x3 + 2x4 = 1,

−x1 + 2x2 + x3 − 9x4 = 8,

2x1 − x3 = −3,
3x2 + 28x3 − 2x4 = 0.

1.8 Write this matrix equation as a system of equations.⎡⎣ 1 0 9
−8 3 45
12 −6 55

⎤⎦ x =
⎡⎣ 1
0
1

⎤⎦ .

1.9 Define the linear transformation TA : R
5 → R

5 using the matrix

A =

⎡⎢⎢⎢⎢⎣
1 7 0 0 0
4 5 8 0 0
0 6 1 1 0
0 0 7 3 −9
0 0 0 1 2

⎤⎥⎥⎥⎥⎦ .

A is termed a tridiagonal matrix, since the only non-zero entries are along the main diagonal, the diagonal below, and
the diagonal above.

a. Compute A

⎡⎢⎢⎢⎢⎣
0
1
−1
3
2

⎤⎥⎥⎥⎥⎦.

b. Compute A

⎡⎢⎢⎢⎢⎣
6
0
1
3
0

⎤⎥⎥⎥⎥⎦.
c. Compute the general product ⎡⎢⎢⎣

a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34
0 0 a43 a44

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦ .

d. Propose a formula for the product y = Ax of an n× n tridiagonal matrix A and an n× 1 column vector x. Use the
result of part (c) to help you formulate your answer.



Matrices Chapter| 1 21

1.10 Rotate the line y = −x+ 3 30◦ counterclockwise about the origin, and graph the two lines on the same set of axes.
1.11 Rotate the line y = −x+ 3 60◦ counterclockwise about the point (4, −1), and graph the two lines on the same set of

axes.

1.12 Let A =
[

1 4
−3 1

]
. Show that A is nonsingular by verifying that

A−1 =
[

1
13 − 4

13
3
13

1
13

]
.

1.13 Let A =
[
1 3
2 0

]
a. Find the inverse of the matrix
b. Use A−1 to solve the system

x1 + 3x2 = 6,

2x1 − 9x2 = 1.

1.14 If A =
[

1 4
−3 1

]
.

a. Verify that A2 − 2A+ 13I = 0
b. Show that A−1 = − 1

13 (A− 2I).

1.15 Let A =
⎡⎣ 1 1 −1
0 0 1
2 1 2

⎤⎦. Verify that A3 = 3A2 − 3A+ I.

1.16 Let A be an n×n matrix.
a. If A2 = 0, prove that A is singular. Start by assuming A−1 exists. Compute A−1 (A)2and deduce that A must be
singular.

b. If A2 = A and A �= I, prove that A is singular. Use the same logic as in part (a).

1.17 If X =
⎡⎣ 1 2
3 4
5 6

⎤⎦ and Y =
⎡⎣ −13

4

⎤⎦, find XXT,XTX, YYT, YTY.
1.18 For matrices A and B, show that (AB)T = BTAT.

A =
⎡⎣ 1 4 −1
0 7 1
1 7 2

⎤⎦ , B =
⎡⎣ 1 2 6
1 −7 3
0 1 2

⎤⎦ .

1.19 If A is a symmetric n×n matrix and B is n×m, prove that BTAB is a symmetric m×m matrix.

1.20 Show that A =
⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ is its own inverse.

1.21 It is not usually the case for n× n matrices A and B that AB = BA. For instance,

A =
[
1 2
0 3

]
, B =

[
7 3
1 8

]
, AB =

[
9 19
3 24

]
, BA =

[
7 23
1 26

]
.

Let A and B be n× n diagonal matrices:

A =

⎡⎢⎢⎢⎣
a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
b11 0 · · · 0
0 b22 · · · 0
...

...
. . .

...
0 0 · · · bnn

⎤⎥⎥⎥⎦ .

Show that AB = BA.



22 Numerical Linear Algebra with Applications

1.22 Prove the following formulas are satisfied by the trace matrix operator.
a. trace (A + B) = trace (A)+ trace (B)

b. trace (cA) = c trace (A), where c is a scalar.
1.23 For an arbitrary n×1 column vector and an n×nmatrix A, show that xTAx is a real number. This is called a quadratic

form. For x = [1 3 9]T, compute xTAx for the matrix

A =
⎡⎣ 1 −8 3
4 0 −1
3 5 7

⎤⎦ .

1.24 Prove the following properties of the matrix transpose operator.
a.
(
AT
)T = A.

b. (A± B)T = AT ± BT if A and B are m×n.
c. (sA)T = sAT if s is a scalar.

1.25 Prove that (AB)T = BTAT if A is m×n and B is n×p. Hint: Use the definition of matrix multiplication and the fact
that taking the transpose means element aij of A is the element at row j, column i of AT.

1.7.1 MATLAB Problems

1.26 For this exercise, use the MATLAB command format rational so the computations are done using rational
arithmetic. Find the inverse of matrices A and B.

A =
⎡⎣ 1 4 1

1 3 2
−1 2 7

⎤⎦ , B =
⎡⎣ 1 0 1

2 5 12
−9 1 1

⎤⎦
Verify that (AB)−1 = B−1A−1.

1.27 Use MATLAB to find the inverse of the matrix A =

⎡⎢⎢⎣
1 3 −1 −9
0 3 0 1
12 8 −11 0
2 1 5 3

⎤⎥⎥⎦.
1.28 The n× n Hilbert matrices are defined by H (i, j) = 1/(i+ j− 1), 1 ≤ i, j ≤ n. For instance, here is the 5× 5 Hilbert

matrix.

H =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1

2
1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

1
7

1
8

1
9

⎤⎥⎥⎥⎥⎥⎥⎦ .

Systems of the form Hx = b, where H is a Hilbert matrix are notoriously difficult to solve because they are ill-
conditioned. This means that a solution can change widely with only a small change in the elements of b or H.
Chapter 10 discusses ill-conditioned matrices. The MATLAB command hilb builds an n × n Hilbert matrix. For
instance to find the 6× 6 Hilbert matrix, execute

>> H = hilb(6);

a. The command

format shortg

causes output of the best of fixed or floating point format with 5 digits. Using this format, compute the inverse of
the 6 × 6 Hilbert matrix. What makes you suspicious that it is ill-conditioned?

b. The exact inverse of any Hilbert matrix consists entirely of integer entries. Using the Symbolic Toolbox will
provide an exact answer. If your MATLAB distribution has this software, use the help system to determine how to
use the commands syms and sym. Determine the exact value of H−1.



Matrices Chapter| 1 23

1.29 a. Write a MATLAB function t = tr(A) that computes the trace of matrix A. Test to make sure A is a square
matrix.

b. Use tr to compute the trace for the matrix of Problem 1.9 and the Hilbert matrix of order 15 (Problem 1.28).
Verify your result by using the MATLAB command trace.

1.30 This problem uses the result of Problem 1.9(d).
a. Write a MATLAB function y = triprod(A,x) that forms the product of an n × n tridiagonal matrix A with
an n× 1 column vector x.

b. Test the function using the matrix and vectors specified in Problem 1.9, parts (a), and (b).



This page intentionally left blank



Chapter 2

Linear Equations

You should be familiar with

● Matrix arithmetic
● Linear transformations
● The matrix transpose and symmetric matrices

The solution of linear systems of equations is of primary importance in linear algebra. The problem of solving a linear
system arises in almost all areas of engineering and science, including the structure of materials, statics and dynamics, the
design and analysis of circuits, quantum physics, and computer graphics. The solution to linear systems also hides under
the surface in many methods. For instance, a standard tool for data fitting is cubic splines. The fit is found by finding the
solution to a system of linear equations.

This chapter introduces the basics of solving linear equations using Gaussian elimination. Since most applications deal
with systems that have the same number of equations as unknowns (square systems), we will restrict our discussion to these
systems. The approach we take is naive, in that it will ignore the numerical problems involved with performing Gaussian
elimination on a computer. As we will see in Chapter 8, errors occur due to the fact that a digital computer performs
arithmetic operations with a fixed number of digits. The issue of solving systems accurately is discussed in Chapter 11.

2.1 INTRODUCTION TO LINEAR EQUATIONS

A linear equation in n unknowns x1, x2, . . . , xn is an equation of the form

a1x1 + a2x2 + · · · + anxn = b,

where a1, a2, . . . ,an, b are given real numbers. For example, with x and y instead of x1 and x2, the linear equation 2x+ 3y = 6
describes the line passing through the points (3, 0) and (0, 2).

Similarly, with x, y, and z instead of x1, x2, and x3, the linear equation 2x + 3y + 4z = 12 describes the plane passing
through the points (6, 0, 0), (0, 4, 0), (0, 0, 3).

A system of n linear equations in n unknowns x1, x2, . . . , xn is a family of equations

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...

an1x1 + an2x2 + · · · + annxn = bn.

We wish to determine if such a system has a solution, that is to find out if there exist numbers x1, x2, . . . , xn that satisfy each
of the equations simultaneously. We say that the system is consistent if it has a solution. Otherwise, the system is called
inconsistent.

Geometrically, solving a system of linear equations in two (or three) unknowns is equivalent to determining whether or
not a family of lines (or planes) has a common point of intersection.

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00002-8
Copyright © 2015 Elsevier Inc. All rights reserved. 25



26 Numerical Linear Algebra with Applications

Example 2.1. Solve the system

2x+ 3y = 6,

x − y = 2.

Multiply the second equation by 3 and add the result to the first equation.

5x+ 0y = 12 =⇒ x = 12/5.

Now substitute x = 12/5 into the second equation to obtain

y = x− 2 = 12

5
− 2 = 2

5
.

The solution to the system is x = 12/5, y = 2/5. �

In Example 2.1, we solved the problem by dealing directly with the equations in symbolic form. This approach would
be tedious and virtually unworkable for a large number of equations. We will develop a means of solving systems by using
the matrix form of the equation, as discussed in Section 1.1.1.

Example 2.2. Find a polynomial of the form y = a0 + a1x + a2x2 + a3x3 which passes through the points
(−3,−2), (−1, 2), (1, 5), (2, 1) (Figure 2.1).

When x has the values −3,−1, 1, 2, then y takes corresponding values −2, 2, 5, 1 and we get four equations in the
unknowns a0, a1, a2, a3:

a0 − 3a1 + 9a2 − 27a3 = −2,
a0 − a1 + a2 − a3 = 2,

a0 + a1 + a2 + a3 = 5,

a0 + 2a1 + 4a2 + 8a3 = 1.

We will learn how to solve such a system using matrix techniques. Essentially, the process is the same as in Example 2.1. We
eliminate unknowns from equations until we find one value. Using it, we are able to determine the other unknown values.
The process is called Gaussian elimination. For our problem, the unique solution is

a0 = 93/20, a1 = 221/120,

a2 = −23/20, a3 = −41/120,
and the required polynomial is

y = 93

20
+ 221

120
x− 23

20
x2 − 41

120
x3. �

Polynomial passing through four points
(1, 5)

(–1, 2)

(–3, –2)

(2, 1)

–5 –4 –3 –2
–2

–1

–1

0

0

1

1

y

x

2

2

3

4

5

3 4

–41/120x3 − 23/20x2 + 221/120x + 93/20

FIGURE 2.1 Polynomial passing through four points.



Linear Equations Chapter| 2 27

2.2 SOLVING SQUARE LINEAR SYSTEMS

Note that the system 2.1 can be written concisely as

n∑
j=1

aijxj = bi, i= 1, 2, . . . , n. (2.1)

We will deal with the system in matrix form. The matrix⎡⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

⎤⎥⎥⎥⎦
is called the coefficient matrix of the system, while the matrix⎡⎢⎢⎢⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
b1
b2
...
bn

⎤⎥⎥⎥⎦
is called the augmented matrix of the system.

We show how to solve any square system of linear equations, using the Gaussian elimination process. Consider the
following 3× 3 system of equations:

2x1 + 3x2 − x3 = 8,

−x1 + 6x2 + 5x3 = 1,

9x1 − 5x2 = 4.

In matrix form, the system is written as Ax = b, where

A =
⎡⎣ 2 3 −1
−1 6 5
9 −5 0

⎤⎦ ,

b =
⎡⎣ 8
1
4

⎤⎦ .

The augmented matrix for the system is ⎡⎣ 2 3 −1
−1 6 5
9 −5 0

∣∣∣∣∣∣
8
1
4

⎤⎦ .

Thematrix is really just a compact way of writing the system of equations.We now need to define some terms. The following
operations are the ones used on the augmented matrix during Gaussian elimination and will not change the solution to the
system. Note that performing these operations on the matrix is equivalent to performing the same operations directly on the
equations.

Definition 2.1 (Elementary row operations). Three types of elementary row operations can be performedonmatrices:

1. Interchanging two rows:

Ri ↔ Rj interchanges rows i and j.

2. Multiplying a row by a nonzero scalar:

Ri → tRi multiplies row i by the nonzero scalar t.

3. Adding a multiple of one row to another row:

Rj → Rj + tRi adds t times row i to row j.



28 Numerical Linear Algebra with Applications

Definition 2.2 (Row equivalence). Matrix A is row-equivalent to matrix B if B is obtained from A by a sequence of
elementary row operations.

Example 2.3. Consider the 3× 3 system

x + 2y = 1
2x+ y+ z = 3
x − y+ 2z = 2

.

In matrix form, the system is ⎡⎣ 1 2 0
2 1 1
1 −1 2

⎤⎦⎡⎣ x
y
z

⎤⎦ =
⎡⎣ 1
3
2

⎤⎦ .

The augmented matrix is ⎡⎣ 1 2 0
2 1 1
1 −1 2

∣∣∣∣∣∣
1
3
2

⎤⎦ .

Now begin row operations. In each case, we show the result if the operations are performed directly on the system rather
than using matrix operations. You will see that performing these operations on the matrix is equivalent to performing the
same operations directly on the equations. Working from left to right,

A =
⎡⎣ 1 2 0
2 1 1
1 −1 2

∣∣∣∣∣∣
1
3
2

⎤⎦−−−−−−−−−−→R2 = R2 − 2R1

⎡⎣ 1 2 0
0 −3 1
1 −1 2

∣∣∣∣∣∣
1
1
2

⎤⎦
x +2y = 1
2x +y +z = 3
x −y +2z = 2

→
x +2y = 1
−3y +z = 1

x −y +2z = 2

−−−−−→
R2 ↔ R3

⎡⎣ 1 2 0
1 −1 2
0 −3 1

∣∣∣∣∣∣
1
2
1

⎤⎦−−−−−−→R1 = 2R1

⎡⎣ 2 4 0
1 −1 2
0 −3 1

∣∣∣∣∣∣
2
2
1

⎤⎦ = B

x +2y = 1
x −y +2z = 2
−3y +z = 1

→
2x +4y = 2
x −y +2z = 2
−3y +z = 1

Thus, A is row-equivalent to B. Clearly, B is also row-equivalent to A, by performing the inverse row-operations
R1 → 1

2R1,R2 ↔ R3,R2 → R2 + 2R1 on B. �

It is not difficult to prove that if A and B are row-equivalent augmented matrices of two systems of linear equations, then the
two systems have the same solution sets—a solution of the one system is a solution of the other. For example, the systems
whose augmented matrices are A and B in the above example are, respectively,⎧⎨⎩ x+ 2y = 1

2x+ y+ z = 3
x− y + 2z = 2

and

⎧⎨⎩ 2x+ 4y = 2
x− y+ 2z = 2
−3y+ z = 1

and these systems have precisely the same solutions.

2.3 GAUSSIAN ELIMINATION

The augmented matrix for a system of n equations and n unknowns is⎡⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
b1
b2
...
bn

⎤⎥⎥⎥⎦
Gaussian elimination performs row operations on the augmented matrix until the portion corresponding to the coefficient
matrix is reduced to upper-triangular form.



Linear Equations Chapter| 2 29

Definition 2.3. An n × n matrix A whose entries are of the form

Uij =
{
aij, i ≤ j
0, i > j

is called an upper triangular matrix.

U =

⎡⎢⎢⎢⎣
a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...
0 0 . . . ann

⎤⎥⎥⎥⎦

Starting with the matrix A =

⎡⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
b1
b2
...
bn

⎤⎥⎥⎥⎦, row elimination produces a matrix in upper triangular form

⎡⎢⎢⎢⎣
c11 c12 . . . c1n
0 c22 . . . c2n
...

...
. . .

...
0 0 . . . cnn

∣∣∣∣∣∣∣∣∣
b
′
1
b
′
2
...
b
′
n

⎤⎥⎥⎥⎦ ,

which is easy to solve.

2.3.1 Upper-Triangular Form

In upper-triangular form, a simple procedure known as back substitution determines the solution. Since the linear algebraic
systems corresponding to the original and final augmentedmatrix have the same solution, the solution to the upper-triangular
system ⎡⎢⎢⎢⎢⎢⎢⎣

c11 c12 . . . c1n
0 c22 . . . c2n
...

...
. . .

...
0 . . . cn−1,n−1 cn−1,n
0 0 . . . cn

∣∣∣∣∣∣∣∣∣∣∣∣

b
′
1
b
′
2
...

b
′
n−1
b
′
n

⎤⎥⎥⎥⎥⎥⎥⎦
begins with

xn = b
′
n

cnn
followed by

xn−1 =
b
′
n−1 − cn−1,nxn
cn−1,n−1

.

In general,

xi =
b
′
i −

∑n
j=i+1 cijxj
cii

, i = n− 1, n− 2, . . . , 1.

We now formally describe theGaussian elimination procedure. Start with matrix A and producematrixB in upper-triangular
form which is row-equivalent to A. If A is the augmented matrix of a system of linear equations, then applying back
substitution to B determines the solution to the system. It is also possible that there is no solution to the system, and the
row-reduction process will make this evident.

Begin at element a11. If a11 = 0, exchange rows so a11 �= 0. Now make all the elements below a11 zero by subtracting
a multiple of row 1 from row i, 2 ≤ i ≤ n. The multiplier used for row i is

ai1
a11

.



30 Numerical Linear Algebra with Applications

The matrix is now in this form ⎡⎢⎢⎢⎣
a11 a12 . . . a1n
0 a

′
22 . . . a

′
2n

...
...

. . .
...

0 a
′
n2 . . . a

′
nn

∣∣∣∣∣∣∣∣∣
b1
b
′
2
...
b
′
n

⎤⎥⎥⎥⎦ .

Now perform the same process of elimination by using a
′
22 and multipliers a

′
i2/a

′
22, making a row exchange if necessary, so

that all the elements below a
′
22 are 0, ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . . . . a1n
0 a

′
22 . . . . . . a

′
2n

... 0 a
′′
33

... a
′′
3n

0 0 a
′′
43

. . . a
′′
4n

...
...

...
. . .

...
0 0 a

′′
n3 . . . a

′′
nn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1
b
′
2
b
′
3
b
′
4
...
b
′
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Repeat this process until the matrix is in upper-triangular form, and then execute back substitution to compute the solution.

Example 2.4. Solve the system

x1 + x2 − x3 = 1,

2x1 + x2 + x3 = 0,

−x1 − 2x2 + 3x3 = 2.

Row reduce the augmented matrix to upper-triangular form.⎡⎣ 1 1 −1
2 1 1
−1 −2 3

∣∣∣∣∣∣
1
0
2

⎤⎦−−−−−−−−−−→R2 = R2 − 2R1

⎡⎣ 1 1 −1
0 −1 3
−1 −2 3

∣∣∣∣∣∣
1
−2
2

⎤⎦
⎡⎣ 1 1 −1

0 −1 3
−1 −2 3

∣∣∣∣∣∣
1
−2
2

⎤⎦−−−−−−−−−−−−−→R3 = R3 − (−1)R1
⎡⎣ 1 1 −1
0 −1 3
0 −1 2

∣∣∣∣∣∣
1
−2
3

⎤⎦
⎡⎣ 1 1 −1
0 −1 3
0 −1 2

∣∣∣∣∣∣
1
−2
3

⎤⎦−−−−−−−−−−−→R3 = R3 − (1)R2

⎡⎣ 1 1 −1
0 −1 3
0 0 −1

∣∣∣∣∣∣
1
−2
5

⎤⎦
Execute back substitution.

(−1) x3 = 5, x3 = −5,
−x2 + 3 (−5) = −2, x2 = −13,

x1 + (1) (−13)− (−5) = 1, x1 = 9.

Final solution: x1 = 9, x2 = −13, x3 = −5
When computing a solution “by hand,” it is a good idea to verify that the solution is correct.

9+ (−13)− (−5) = 1,

2 (9)+ (−13)+ (−5) = 0,

− (9)− 2 (−13)+ 3 (−5) = 2. �



Linear Equations Chapter| 2 31

2.4 SYSTEMATIC SOLUTION OF LINEAR SYSTEMS

Suppose a system of n linear equations in n unknowns x1, . . . , xn has augmented matrix A and that A is row-equivalent to a
matrix B in upper-triangular form. Then A and B have dimension n×(n+1).
Case 1: if we perform elementary row operations on the augmented matrix of the system and get a matrix with one of its
rows equal to [0 0 0 . . . 0 b], where b �= 0, or a row of the form [0 0 0 . . . 0], then the system is said to be inconsistent. In
this situation, there may be no solution of infinitely many solutions. In Figure 2.2, lines in the plane illustrate these two
situations.

Case 2: There is a unique solution if Case 1 does not occur.

Example 2.5. Solve the system

x1 + 2x2 = 1,

2x1 + x2 + x3 = 0,

−x1 + 6x2 + 3x3 = 1.

The augmented matrix of the system is

A =
⎡⎣ 1 2 0

2 1 1
−1 6 3

∣∣∣∣∣∣
1
0
1

⎤⎦ ,

which is row equivalent to the upper-triangular matrix

B =
⎡⎣ 1 2 0
0 −3 1
0 0 17

3

∣∣∣∣∣∣
1
−2
− 10

3

⎤⎦ .

Back substitution gives the solution

x1 = 1

17
, x2 = 8

17
, x3 = −10

17
.

�
Solve the system

2x1 + 2x2 − 2x3 = 5,
7x1+7x2 + x3 = 10,
5x1 + 5x2 − x3 = 5.

FIGURE 2.2 Inconsistent equations.



32 Numerical Linear Algebra with Applications

The augmented matrix is

A =
⎡⎣ 2 2 −2
7 7 1
5 5 −1

∣∣∣∣∣∣
5
10
5

⎤⎦ ,

which is row equivalent to

B =
⎡⎣ 2 2 −2
0 0 8
0 0 0

∣∣∣∣∣∣
5

−15/2
−15/4

⎤⎦ .

The system is inconsistent, since the last row is [0 0 0 − 15/4], which implies that

(0) x1 + (0) x2 + (0) x3 = −15/4.
The system has no solution. �

Example 2.6. Solve the system

x1 + 2x2 + x3 = −1,
7x1+4x2+4x3 = 5, (2.2)

6x1 + 2x2 + 3x3 = 6.

The augmented matrix is ⎡⎣ 1 2 1
7 4 4
6 2 3

∣∣∣∣∣∣
−1
5
6

⎤⎦ .

Now, ⎡⎣ 1 2 1
7 4 4
6 2 3

∣∣∣∣∣∣
−1
5
6

⎤⎦−−−−−−−−−−−→R2 = R2 − (7)R1

⎡⎣ 1 2 1
0 −10 −3
6 2 3

∣∣∣∣∣∣
−1
12
6

⎤⎦
⎡⎣ 1 2 1
0 −10 −3
6 2 3

∣∣∣∣∣∣
−1
12
6

⎤⎦−−−−−−−−−−−→R3 = R3 − (6)R1

⎡⎣ 1 2 1
0 −10 −3
0 −10 −3

∣∣∣∣∣∣
−1
12
12

⎤⎦
⎡⎣ 1 2 1
0 −10 −3
0 −10 −3

∣∣∣∣∣∣
−1
12
12

⎤⎦−−−−−−−−−−→R3 = R3−(1)R2

⎡⎣ 1 2 1
0 −10 −3
0 0 0

∣∣∣∣∣∣
−1
12
0

⎤⎦
Note that any values of x1, x2, and x3 will satisfy

(0) x1 + (0) x2 + (0) x3 = 0.

Let’s continue backward:

−10x2 − 3x3 = 12,

so

x2 = −3x3 − 12

10
.

Substitute this relationship into the first equation of 2.2, and after a little algebra obtain

x1 = −2x3 + 7

5
.



Linear Equations Chapter| 2 33

We have determined x1 and x2 in terms of x3. The complete solution is

x1 = −2x3 + 7

5
, x2 = −3x3 − 12

10
,

with x3 arbitrary, so there are infinitely many solutions. �

Example 2.7. For which rational numbers a and b does the following system have (i) no solution, (ii) a unique solution,
(iii) infinitely many solutions?

x1 − 2x2+3x3 = 4,

2x1 − 3x2 + ax3 = 5,

3x1 − 4x2 + 5x3 = b.

The augmented matrix of the system is ⎡⎣ 1 −2 3
2 −3 a
3 −4 5

∣∣∣∣∣∣
4
5
b

⎤⎦
⎡⎣ 1 −2 3
2 −3 a
3 −4 5

∣∣∣∣∣∣
4
5
b

⎤⎦−−−−−−−−−−−→R2 = R2−(2)R1
R3 = R3−(3)R1

⎡⎣ 1 −2 3
0 1 a− 6
0 2 −4

∣∣∣∣∣∣
4
−3

b− 12

⎤⎦
−−−−−−−−−−→
R3 = R3 − 2R2

⎡⎣ 1 −2 3
0 1 a− 6
0 0 −2a+8

∣∣∣∣∣∣
4
−3
b− 6

⎤⎦ = B.

Case 1. a �= 4. Then −2a+8 �= 0 and back substitution gives a unique solution with

x3 = b− 6

8− 2a
.

Case 2. a = 4. Then

B =
⎡⎣ 1 −2 3
0 1 −2
0 0 0

∣∣∣∣∣∣
4
−3
b− 6

⎤⎦ .

If b �= 6 we get no solution, whereas if b= 6 then

x2 − 2x3 = −3, x2 = −3+ 2x3,

x1 − 2 (−3+ 2x3)+ 3x3 = 4, x1 = −2+ x3.

The complete solution is

x1= −2+x3, x2= −3+ 2x3, with x3 arbitrary. �

The MATLAB operator for solving the linear algebraic system Ax = b is “\”. Use the syntax A\b to obtain the solution x.
If MATLAB detects that A may be singular, you will get an error message.

>> A = [1 -2 3;2 -3 4;3 -4 5];

>> b = [4 5 7]’;

>> A\b

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 2.312965e-018.

ans =

1.0e+015 *

-4.5036

-9.0072

-4.5036

>> B = [1 5 -1;3 5 2;1 5 3]



34 Numerical Linear Algebra with Applications

B =

1 5 -1

3 5 2

1 5 3

>> B\b

ans =

-0.6250

1.0750

0.7500

2.5 COMPUTING THE INVERSE

It is often useful to represent a matrix as a sequence of column vectors. If v1, v2, . . . , vn are n × 1 column vectors, the
matrix A = [v1 v2 . . . vn] is the n× n matrix with first column v1, second column v2, . . ., and last column vn.

Given the three column vectors v1 =
⎡⎣ 1
−1
4

⎤⎦, v2 =
⎡⎣ 6
0
8

⎤⎦, v3 =
⎡⎣ 5
3
7

⎤⎦, then A = [v1 v2 v3] =
⎡⎣ 1 6 5
−1 0 3
4 8 7

⎤⎦.
This notation can also be used to represent a matrix product:

⎡⎢⎢⎢⎢⎢⎢⎣

a11 . . . a1i . . . a1n

a21 . . .
... . . . a2n

a31 . . . aii . . . a3n
... . . .

...
. . .

...
an1 . . . ani . . . ann

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

b11 . . . b1i . . . b1n

b21 . . .
... . . . b2n

b31 . . . bii . . . b3n
... . . .

...
. . .

...
bn1 . . . bni . . . bnn

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣A

⎡⎢⎢⎢⎢⎢⎣
b11
b21
b31
...
bn1

⎤⎥⎥⎥⎥⎥⎦ . . . A

⎡⎢⎢⎢⎢⎢⎢⎣

b1i
...
bii
...
bni

⎤⎥⎥⎥⎥⎥⎥⎦ . . . A

⎡⎢⎢⎢⎢⎢⎣
b1n
b2n
b3n
...
bnn

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.3)

An example with a 2× 2 matrix is easily generalized to the n× n case.

AB =
[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=
[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
=
[
A

[
b11
b21

]
A

[
b12
b22

]]
.

Equation 2.3 can be used to develop a method for the computation of A−1. Solve n linear equations.

Axi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
1
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 1 ≤ i ≤ n

for column vectors xi. In other words, find the solutions of

Ax1 =

⎡⎢⎢⎢⎢⎢⎣
1
0
0
...
0

⎤⎥⎥⎥⎥⎥⎦ ,Ax2 =

⎡⎢⎢⎢⎢⎢⎣
0
1
0
...
0

⎤⎥⎥⎥⎥⎥⎦ ,Ax3 =

⎡⎢⎢⎢⎢⎢⎣
0
0
1
...
0

⎤⎥⎥⎥⎥⎥⎦ , . . . ,Axn =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
...
1

⎤⎥⎥⎥⎥⎥⎦ .



Linear Equations Chapter| 2 35

Now form the n× n matrix B whose first column is x1 =

⎡⎢⎢⎢⎢⎢⎣
x11
x21
x31
...
xn1

⎤⎥⎥⎥⎥⎥⎦, whose second column is x2 =
⎡⎢⎢⎢⎢⎢⎣
x12
x22
x32
...
xn2

⎤⎥⎥⎥⎥⎥⎦ , . . ., and whose

last column is xn =

⎡⎢⎢⎢⎢⎢⎣
x1n
x2n
x3n
...
xnn

⎤⎥⎥⎥⎥⎥⎦, and we have

AB = A

⎡⎢⎢⎢⎢⎢⎢⎣

x11 . . . x1i . . . x1n

x21 . . .
... . . . x2n

x31 . . . xii . . . x3n
... . . .

...
. . .

...
xn1 . . . xni . . . xnn

⎤⎥⎥⎥⎥⎥⎥⎦ = [Ax1 Ax2 . . . Axi . . . Axn] =

⎡⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎣
1
0
0
...
0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
0
1
0
...
0

⎤⎥⎥⎥⎥⎥⎦ . . .

⎡⎢⎢⎢⎢⎢⎣
0
0
0
...
1

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦ = I.

This calculation is most conveniently done by forming the augmented matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1,n−1 a1n
a21 a22 . . . a2,n−1 a2n
...

...
. . .

...
...

an−1,1 an−1,2 . . . an−1,n−1 an−1,n
an1 an2 . . . an,n−1 ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0
0 1 . . . 0
...
...
. . .

...

0 0 . . .
...

0 0 . . . 0
0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and row-reducing the coefficient matrix to upper-triangular form, all the while performing the row operations on the
augmented portion of the matrix. Then perform back substitution n times to find x1, x2, . . . , xn.

Example 2.8. Find the inverse of the matrix

A =
⎡⎣ 1 0 2
1 3 0
2 1 5

⎤⎦ .

⎡⎣ 1 0 2
1 3 0
2 1 5

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

⎤⎦−−−−−−−−−−−−→R2 = R2 − (1)R1
R3 = R3 − (2)R1

=
⎡⎣ 1 0 2
0 3 −2
0 1 1

∣∣∣∣∣∣
1 0 0
−1 1 0
−2 0 1

⎤⎦
−−−−−−−−−−−−−→
R3 = R3 −

(
1

3

)
R2

⎡⎣ 1 0 2
0 3 −2
0 0 5

3

∣∣∣∣∣∣
1 0 0
−1 1 0
− 5

3 − 1
3 1

⎤⎦
Now do back substitution.

5

3
x31 = −5

3
, x31 = −1,

3x21 − 2x31 = −1, x21 = 2x31 − 1

3
= −1,

x11 + 0 (x21)+ 2x31 = 1, x11 = 1− 2x31 = 3.



36 Numerical Linear Algebra with Applications

The first column of A−1 is

⎡⎣ 3
−1
−1

⎤⎦. Perform back substitution two more times to obtain

A−1 =
⎡⎢⎣ 3 2

5 − 6
5

−1 1
5

2
5

−1 − 1
5

3
5

⎤⎥⎦ . �

Since not every matrix has an inverse, this process may fail. The matrix is singular if during back substitution you obtain
a row of zeros in the coefficient matrix.

Example 2.9. A =
⎡⎣ 1 2 3
1 0 1
3 4 7

⎤⎦
⎡⎣ 1 2 3
1 0 1
3 4 7

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

⎤⎦−−−−−−−−−−−→R2 = R2 − R1
R3 = R3 − 3R1

⎡⎣ 1 2 3
0 −2 −2
0 −2 −2

∣∣∣∣∣∣
1 0 0
−1 1 0
−3 0 1

⎤⎦
−−−−−−−−−→
R3 = R3 − R2

⎡⎣ 1 2 3
0 −2 −2
0 0 0

∣∣∣∣∣∣
1 0 0
−1 1 0
−2 −1 1

⎤⎦
There is a row of zeros. A is singular. �

2.6 HOMOGENEOUS SYSTEMS

An n× n system of homogeneous linear equations

a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0
...

an1x1 + an2x2 + · · · + annxn = 0

is always consistent since x1= 0, . . . ,xn = 0 is a solution. This solution is called the trivial solution, and any other solution
is called a nontrivial solution. For example, consider the homogeneous system

x1 − x2 = 0,

x1+x2 = 0.

Using the augmented matrix, we have [
1 −1
1 1

∣∣∣∣ 00
]−−−−−−−−−→
R2 = R2 − R1

[
1 −1
0 2

∣∣∣∣ 00
]
,

so x1 = x2 = 0, and the system has only the trivial solution. Notice that is really not necessary to attach the column of
zeros.

Example 2.10. Solve the homogeneous system

x1 + 2x2 + x3 = 0,

5x1 + 2x2+7x3 = 0,

2x1 + 3x3 = 0.



Linear Equations Chapter| 2 37

⎡⎣ 1 2 1
5 2 7
2 0 3

⎤⎦−−−−−−−−−−−→R2 = R2 − 5R1
R3 = R3 − 2R1

⎡⎣ 1 2 1
0 −8 2
0 −4 1

⎤⎦−−−−−−−−−−−−−→R3 = R3 −
(
1

2

)
R2

⎡⎣ 1 2 1
0 −8 2
0 0 0

⎤⎦ ,

so the system has the solution x1 = − 3
2x3, x2 = x3/4, with x3 arbitrary. Choosing x3 = 1 gives rise to the nontrivial solution

x1 = −3

2
, x2 = 1

4
, x3 = 1. �

Recall that in Chapter 1, we showed that if A is nonsingular, then the homogeneous system has only the trivial solution.
We are now in a position to show that the reverse is also true.

Theorem 2.1. If the homogeneous system Ax = 0 has only the trivial solution, then A is nonsingular; that is A−1 exists.

Proof. During row-reduction of the augmented matrix used to compute A−1, there cannot be a row of zeros, or Ax = 0
would have an infinite number of solutions. As a result, back substitution will produce the inverse, and A is nonsingular.

2.7 APPLICATION: A TRUSS

A truss is a structure normally containing triangular units constructed of straight members with ends connected at joints
referred to as pins. Trusses are the primary structural component of many bridges. External forces and reactions to those
forces are considered to act only at the pins and result in internal forces in the members, which are either tensile or
compressive. Civil engineers design trusses and must determine the forces at the pins of a truss so it will remain static
under a load. Figure 2.3 depicts a truss under a load of 1500 units. It is allowed to move slightly horizontally at pin 1 and
is static at pin 5. The figure names the pins, member forces and reaction forces. There are seven member forces labeled D,
E, F, G, H, I, and J. A positive value for a member force means that it is a tensile force so the member force is directed
away from the pins at its ends. The three reaction forces are labeled as A, B, and C. These are due to a roller and a pinned
support, and a positive value for a reaction force means that it acts in the direction shown, while a negative value means the
assumed sense is wrong and should be the opposite.

The values of all these unknown (internal and reaction) forces can be found by solving a system of equations. The truss
is in equilibrium, so each pin of the truss contributes two equations to the system. One equation expresses the fact that the
x components of the forces on that joint add to zero, and the other equation expresses the fact that the y components do
also. This truss contains 5 joints, labeled 1, 2, 3, 4, 5, and thus yields 10 equations, so the resulting system of equations is
10× 10. There is a unique solution (meaning the truss is stable) as long as the coefficient matrix is nonsingular. If the truss
consists only of triangles, then this is guaranteed by the laws of statics.

At pin 5, each force is either in the horizontal or vertical direction. At the remaining pins, there are both horizontal and
vertical components of force, so the necessary angles must be known. If we apply the equilibrium rules, the equations for
determining the truss forces are

Equation A B C D E F G H I J RHS

1− x 0 0 0 − cos (48.4) 0 −1 0 0 0 0 0

1− y −1 0 0 sin (48.4) 0 0 0 0 0 0 0

2− x 0 0 0 − cos (48.4) cos (60.9) 0 1 0 0 0 0

2− y 0 0 0 − sin (48.4) − sin (60.9) 0 0 0 0 0 0

3− x 0 0 0 0 − cos (60.9) −1 0 cos (45.0) 0 1 0

3− y 0 0 0 0 − sin (60.9) 0 0 − sin (45.0) 0 0 1500

4− x 0 0 0 0 0 0 −1 − cos (45.0) 0 0 0

4− y 0 0 0 0 0 0 0 − sin (45.0) −1 0 0

5− x 0 −1 0 0 0 0 0 0 0 −1 0

5− y 0 0 −1 0 0 0 0 0 1 0 0



38 Numerical Linear Algebra with Applications

B

C

5
45.0

3

1500

60.9 J

I
HE

F

A

1
48.4

D

2 G 4

FIGURE 2.3 Truss.

These equations correspond to the matrix formulation⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −0.6639 0 −1 0 0 0 0
−1 0 0 0.7478 0 0 0 0 0 0
0 0 0 −0.6639 0.4863 0 1 0 0 0
0 0 0 −0.7478 −0.8738 0 0 0 0 0
0 0 0 0 −0.4863 −1 0 0.7071 0 1
0 0 0 0 −0.8738 0 0 −0.7071 0 0
0 0 0 0 0 0 −1 −0.7071 0 0
0 0 0 0 0 0 0 −0.7071 −1 0
0 −1 0 0 0 0 0 0 0 −1
0 0 −1 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
B
C
D
E
F
G
H
I
J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

1500
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that the coefficient matrix contains mostly zeros, so it is a sparse matrix.
The software distribution contains two files, TRUSS.mat and TRUSS.txt. TRUSS.mat is the truss coefficient matrix in

internal MATLAB format, and TRUSS.txt is a text file representation of the matrix. After reading in the matrix using either
file and applying the MATLAB “\” operator, the solution is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
B
C
D
E
F
G
H
I
J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

613.66
0.0

886.34
820.62
−702.29
−544.81
886.34
−1253.5
886.34
0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

>> load Truss

>> format shortg % output looks better

>> rhs = zeros(10,1);
>> rhs(6) = 1500;

>> Truss\rhs

ans =

613.66

0

886.34

820.62

-702.29



Linear Equations Chapter| 2 39

-544.81

886.34

-1253.5

886.34

0

2.8 APPLICATION: ELECTRICAL CIRCUIT

Figure 2.4 is a diagram of a DC electric circuit containing batteries and resistors. The voltage across a resistor in a circuit
is determined using Ohm’s Law, V = RI, where R is the resistance and I is the current. We would like to determine the
currents ii, i2, i3. The currents can be determined by using Kirchhoff’s rules, which state that

1. At any junction point in a circuit where the current can divide, the sum of the currents into the junction must equal the
sum of the currents out of the junction.

2. When any closed loop in the circuit is traversed, the sum of the changes in voltage must equal zero.

Rule 1 is called the Kirchhoff’s Current Law, and is a consequence of conservation of charge. Rule 2 is termed the
Kirchhoff’s Voltage Law, and is a consequence of the conservation of energy. In the circuit of Figure 2.4, there are two
junction points A and B and two loops. What we must do is apply Kirchhoff’s rules to obtain a system of equations that
will allow us to find the current values. Before we can begin, the direction of the current in each branch must be assigned.
Once this is done, appropriate signs must be given to each resistor and voltage. Label the side of a resistor on which the
current enters as positive (+) and the side on which the current exits as negative (−). It can be difficult to determine in
which direction the current actually flows. If the direction is not correct, the current will be negative in that branch. Note
the choices made for the circuit of Figure 2.4. It is now time to apply Kirchhoff’s rules as follows:

1. Apply the first rule to all but one junction point. Each time you use the first rule, a current not already used must be
included; otherwise, you will have redundant equations.

2. Apply the second rule to enough loops so the currents in the loop equations and those in the junction equations equal
the number of unknown currents.

We will now determine the equations for the circuit in Figure 2.4.

Apply rule 1 at junction A: i1 + i3 = i2.

In the two applications of the loop rule, note that the signs in each equation are determined by whether the current moves
from + to − or − to +.

Apply rule 2 to loop 1: −V1 + R1i1 + R2i2 + V2 + R4i1 = 0, and (R1 + R4) i1 + R2i2 = V1 − V2
Apply rule 2 to loop 2: R2i2 + V2 − V3 + R3i3 = 0, and R2i2 + R3i3 = V3 − V2
We now have three equations and three unknowns:

i1 − i2 + i3 = 0,

(R1 + R4) i1 + R2i2 = V1 − V2, (2.4)

R2i2 + R3i3 = V3 − V2.

Loop 1 Loop 2

R4

R1

R2

R3

V2

V3

B

A

V1

+

+

+

+

+

+

+

−

− −

−

−
−

−

i1
i3

i2

FIGURE 2.4 Electrical circuit.



40 Numerical Linear Algebra with Applications

Choose the following values for the batteries and the resistors:

Components V1 V2 V3 R1 R2 R3 R4

2V 3V 5V 1
 2
 5
 3


Equation 2.4 then becomes

i1 − i2 + i3 = 0,

4i1 + 2i2 = −1,
2i2 + 5i3 = 2.

In matrix form, the system is

⎡⎣ 1 −1 1
4 2 0
0 2 5

⎤⎦⎡⎣ i1
i2
i3

⎤⎦ =
⎡⎣ 0
−1
2

⎤⎦, and the currents are
i1 = −0.2895, i2 = 0.0789, i3 = 0.3684.

Note that i1 flows in the direction opposite to what is shown in Figure 2.4.

2.9 CHAPTER SUMMARY

Introduction to Linear Equations

A system of n linear equations in n unknowns x1, x2, . . . , xn is a family of equations

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...

an1x1 + an2x2 + · · · + annxn = bn

Determine if there exist numbers x1, x2, . . . , xn which satisfy each of the equations simultaneously. To determine a solution
using Gaussian elimination, multiply an equation by a constant and subtract from another equation in order to eliminate an
unknown. Do this in an organized fashion until obtaining an equation containing only one unknown. Compute it and then
execute a process of substitution to determine the remaining unknowns. It is tedious to do this by writing down equations,
and we want an approach that we can implement on a computer. The solution is to write the system in matrix form Ax = b,
where A is the matrix of coefficients and to perform matrix operations, something a computer can do very well.

Solving Square Linear Equations

Given a matrix A, there are three fundamental operations we can perform:

● Multiply a row by constant.
● Exchange two rows.
● Multiply a row by a constant and subtract it from another row.

These are termed elementary row operations, and a matrix produced by one or more of these operations is said to be
row equivalent to the original matrix. The approach we take to solving linear systems is to attach the right-hand sides as an
additional column to form an n×(n+ 1)matrix. This is called the augmentedmatrix. Performing elementary row operations
with this matrix is equivalent to performing the same operations directly on the equations. If we transform the augmented
matrix



Linear Equations Chapter| 2 41

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a22 . . . a1, n−1 a1n
a21 a22 . . . a2, n−1 a2n
...

...
. . .

...
...

...
...

...
. . .

...
an1 an2 . . . an,n−1 ann

∣∣∣∣∣∣∣∣∣∣∣

b1
b2
...

bn−1
bn

⎤⎥⎥⎥⎥⎥⎥⎦
to a matrix ⎡⎢⎢⎢⎢⎢⎢⎣

ā11 ā12 . . . ā1, n−1 ā1n
ā21 ā22 . . . ā2, n−1 ā2n
...

...
. . .

...
...

...
...

...
. . .

...
ān1 ān2 . . . ān, n−1 ānn

∣∣∣∣∣∣∣∣∣∣∣∣

b̄1
b̄2
...
...
b̄n

⎤⎥⎥⎥⎥⎥⎥⎦ ,

the two systems have the same solutions.

Gaussian Elimination

To execute Gaussian elimination, create the augmentedmatrix and perform row operations that reduce the coefficient matrix
to upper-triangular form. The solution to the upper-triangular system is the same as the solution to the original linear system.
Solve the upper-triangular system by back substitution, as long as the element at position (n, n) is not zero. The unknown
xn is immediately available using the last row of the augmented matrix. Using xn in the equation represented by row n− 1,
we find xn−1, and so forth, until determining x1. If position (n, n) is zero, then the entire last row of the coefficient matrix
is zero, and there is either no solution or infinitely many solutions.

Systematic Solution of Linear Equations

One method of solving a linear system Ax = b is reduction to upper triangular form. If a11 = 0, exchange rows so it is
nonzero. Multiply row 1 by a21/a11 and subtract from row 2. That zeros-out the element in row 2, column 1. Now multiply
row 1 by a31/a11 and subtract from row 3, zeroing out the element in row 3, column 1. Continue until zeroing-out a1n. The
first column now has the form ⎡⎢⎢⎢⎣

a11
0
...
0

⎤⎥⎥⎥⎦ .

Move down one row and over one column to position (2, 2). Make sure the element there, ā22, is nonzero; if not, swap rows.
Using ā22, zero-out the elements at positions (3, 2) , (4, 2) , . . . , (n, 2). Move to row 3, column 3 and repeat the process.
After processing n− 1 columns the augmented matrix is in upper-triangular form⎡⎢⎢⎢⎣

c11 c12 . . . c1n
0 c22 . . . c2n
...

...
. . .

...
0 0 . . . cnn

∣∣∣∣∣∣∣∣∣
b
′
1
b
′
2
...
b
′
n

⎤⎥⎥⎥⎦ .

Perform back substitution to compute the unique solution, if it exists.
If the last row of the reduced coefficient matrix is all zeros, and the corresponding element of the augmented column is

nonzero, the system has no solution; otherwise, there are infinitely many solutions.

Computing the Inverse

To compute the inverse, attach the n columns of the identity matrix to form an augmentedmatrix. By performing elementary
row operations on the entire augmentedmatrix, reduce the coefficient matrix portion to upper-triangular form. Perform back



42 Numerical Linear Algebra with Applications

substitution once for every attached column that was produced from the identity matrix. The solution obtained from the

original right-hand side

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ is the first column of the inverse. Continue in the same fashion to obtain columns 2 − n of

the inverse.

Homogeneous Systems

To solve a system of the form Ax = 0, there is no reason to form the augmented matrix, since all components will remain
zero during row elimination. After reduction to upper-triangular form, if the element in position (n, n) is nonzero, the system
has the unique solution x = 0; otherwise, there is an infinite number of solutions, and the matrix A is singular.

Applications

A truss presents a problem in statics. Forces must balance so the truss remains intact under a given load or loads. At the
pins, the force-in must equal the force-out. If there are k pins, a system with 2k equations and 2k unknowns results, where
the right-hand side is formed from the loads. A solution of the system gives the forces at the pins.

If an electrical circuit has one or more batteries and consists entirely of resistors, the currents in the circuit are found by
solving a linear system determined by using the relationship V = RI for every resistor and applying Kirchhoff’s rules.

2.10 PROBLEMS

2.1 Find the unique solution to each system of linear equations.
a. 2x+ y = 3
x− y = 1

b. x1 + 2x2 + x3 = 1
x2 − x3 = 0
x1 + 2x2 + 2x3 = 1

2.2 Solve the following systems of linear equations by reducing the augmented matrix to upper-triangular form:
a. x1 + x2 + x3 = 2
2x1 + 3x2 − x3 = 8
x1 − x2 − x3 = −8

b. 2x2+3x3 − 4x4 = 1
2x3+3x4 = 4
2x1 + 2x2 − 5x3 + 2x4 = 4
2x1 − 6x3+9x4= 7

2.3 Show that the following system is consistent if c = 2a− 3b and solve the system in this case.

2x− y+3z = a

3x+ y− 5z = b

−5x − 5y+21z = c

2.4 Solve the homogeneous system

−3x1 + x2 + x3 + x4 = 0

x1 − 3x2 + x3 + x4 = 0

x1 + x2 − 3x3 + x4 = 0

x1 + x2 + x3 − 3x4 = 0.

2.5 For which rational numbers λ does the homogeneous system

x+ (λ− 3)y = 0

(λ− 3)x+ y = 0

have a nontrivial solution?



Linear Equations Chapter| 2 43

2.6 Let A =
[
a b
c d

]
. Show that A is row-equivalent to

[
1 0
0 1

]
if ad − bc �= 0, but is row-equivalent to a matrix whose

second row is zero, if ad − bc = 0.
2.7 For which rational numbers a does the following system have (i) no solutions, (ii) exactly one solution, (iii) infinitely

many solutions?

x1 + 2x2 − 3x3 = 4

3x1 − x2 + 5x3 = 2

4x1 + x2 + (a2 − 14)x3 = a+2

2.8 Find the rational number k for which the matrix A =
⎡⎣ 1 2 k
3 −1 1
5 3 −5

⎤⎦ is singular.

2.9 Show that the matrix A =
⎡⎣ 1 a b
−a 1 c
−b −c 1

⎤⎦ is nonsingular by demonstrating that A is row-equivalent to I.

2.10 Find the inverse, if it exists, for each matrix.

a.
[
1 3
0 2

]
b.
[
1 3
2 6

]

c.

⎡⎣ 1 −1 2
0 1 3
0 4 2

⎤⎦

d.

⎡⎢⎢⎣
1 2 0 0
1 3 −1 0
0 −1 1 3
0 0 2 3

⎤⎥⎥⎦

e.

⎡⎢⎢⎣
1 2 0 0
1 1 −1 0
0 −1 1 3
0 0 2 3

⎤⎥⎥⎦
(e) and (d) differ only in row 2, column 2. Note the huge difference!

f. What type of matrices are those in (d) and (e)?

2.10.1 MATLAB Problems

2.11 Use MATLAB to solve the linear algebraic system⎡⎢⎢⎣
1 3 8 0
−1 −12 3 1
15 3 5 6
55 2 35 5

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1
0
2
3

⎤⎥⎥⎦ .

2.12 Solve the system Hx = [1 1 . . . 1]T, where H is the 20× 20 Hilbert matrix discussed in Problem 1.28 of Chapter 1.
Now solve the system Hx = [0.99 0.99 . . . 0.99]T. Discuss the results.

In algebra, the polynomial x2 − 5x + 6 can be factored as (x− 3) (x− 2). Under the right conditions, a matrix
can also be factored. Exercises 2.13 and 2.14 are designed to introduce you to matrix factorization, a topic of great
importance in numerical linear algebra.



44 Numerical Linear Algebra with Applications

2.13 A bidiagonal matrix is a matrix with nonzero entries along the main diagonal and either the diagonal above or the
diagonal below. The matrix B1 is an upper bidiagonal matrix and B2 is a lower bidiagonal matrix.

B1 =

⎡⎢⎢⎣
5 1 0 0
0 5 2 0
0 0 5 3
0 0 0 5

⎤⎥⎥⎦ , B2 =

⎡⎢⎢⎣
5 0 0 0
−1 5 0 0
0 −2 5 0
0 0 −3 5

⎤⎥⎥⎦ .

A tridiagonal matrix has only nonzero entries along the main diagonal and the diagonals above and below. T is a
tridiagonal matrix.

T =

⎡⎢⎢⎢⎢⎣
5 −1 0 0 0
1 5 −1 0 0
0 1 5 −1 0
0 0 1 5 −1
0 0 0 1 5

⎤⎥⎥⎥⎥⎦ .

Wewill show in Chapter 13 that a nonsingular tridiagonalmatrix can be factored into the product of a lower bidiagonal
matrix and an upper bidiagonal matrix. The lower bidiagonal matrix has ones on its diagonal.
a. Using pencil and paper, verify that⎡⎣ 1 2 0

3 −1 1
0 5 2

⎤⎦ =
⎡⎣ 1 0 0
3 1 0
0 −5/7 1

⎤⎦⎡⎣ 1 2 0
0 −7 1
0 0 19/7

⎤⎦ .

b. Using the MATLAB command diag, build the tridiagonal matrix T as follows:

>> a = ones(4,1);

>> b = 5*ones(5,1);

>> c = -ones(4,1);

>> T = diag(a,-1) + diag(b) + diag(c,1);

The book software distribution supplies the function trifact that factors a tridiagonal matrix. Enter the following
MATLAB statements and then verify that T = LU.

>> [L U] = trifact(T);

You will learn how to efficiently program trifact in Chapter 13.
2.14 If A is an n× nmatrix, consider the product xTAx. If vector x is an n×1 column vector, then xT is a 1× n row vector.

The product is of dimension (1 × n) (n× n) (n× 1) = 1 × 1, or a scalar. A symmetric matrix with the property
that xTAx > 0 for all x �= 0 is said to be positive definite. Positive definite matrices play a role in many fields of
engineering and science. We will study these matrices in Chapter 13 and subsequent chapters.

a. Show that the matrix A =
[
2 1
1 2

]
is positive definite by showing that

[x1 x2] A

[
x1
x2

]
> 0 for all

[
x1
x2

]
�=
[
0
0

]
.

b. A positive definite matrix can be uniquely factored into the product RTR, where R is an upper-triangular matrix.

If R =
⎡⎣ √2 1√

2

0
√

3
2

⎤⎦Show that

[
2 1
1 2

]
=
⎡⎣ √2 0

1√
2

√
3
2

⎤⎦⎡⎣ √2 1√
2

0
√

3
2

⎤⎦ .



Linear Equations Chapter| 2 45

c. The MATLAB command gallery produces many different kinds of matrices to use for testing purposes. Enter
the command

>> A = gallery(‘moler’,5)

It generates a 5× 5 positive-definite matrix. The MATLAB command chol(A) computes the matrix R. Use it to
find the factorization RTR of A.

2.15 Given the truss problem in Figure 2.5, find the forces necessary to hold the truss in equilibrium.
2.16 a. Set up a linear system to determine the currents in Figure 2.6.

b. Solve for the currents using the following values:

Components V1 V2 R1 R2 R3

5V 2V 2
 4
 1


−2000

2

48.4 66.0

4

26.6 56.3
1

−2500

3
5

6

CA

BE

K

D

G H L

I

JF

FIGURE 2.5 Truss problem.

A

B

C

D

E

F

i1

i3

i2

R1

R2

R3

V1

V2

+ −

+−

FIGURE 2.6 Circuit problem.



This page intentionally left blank



Chapter 3

Subspaces

You should be familiar with

● Vector operations
● Row reducing a matrix
● Solving linear systems using row elimination

3.1 INTRODUCTION

Throughout this chapter, we will be studying Rn, the set of n-dimensional column vectors with real-valued components. We
continue our study of matrices by considering a class of subsets of Rn called subspaces. These arise naturally, for example,
when we solve a system of n linear homogeneous equations in n unknowns. The row space, column space, and null space of
the coefficient matrix play a role in many applications. We also study the concept of linear independence of a set of vectors,
which gives rise to the concept of subspace dimension.

Remark 3.1. We will use the mathematical symbol ∈ that means “contained in.” For instance, u ∈ R2 means that u is a

vector in the plane, so u =
[
u1
u2

]
, where u1, u2 are real numbers.

3.2 SUBSPACES OF Rn

Definition 3.1. A subset S of R
n is called a subspace of R

n if

1. The zero vector belongs to S (i.e., 0 ∈ S);
2. If u ∈ S and v ∈ S, then u+ v ∈ S (S is said to be closed under vector addition);
3. If u ∈ S and t ∈ R, then tu ∈ S (S is said to be closed under scalar multiplication).

Rn is a subspace of itself, and we call Rn a vector space. The complete definition of a vector space is very general, and
we will not provide it here. In Chapter 12, we will introduce Fourier series as an example of a vector space whose elements
are functions.

Example 3.1. Let A be an n × n matrix. Then the set of vectors x ∈ Rn satisfying Ax = 0 is a subspace of Rn called the
null space of A and is denoted by N(A).
Verify each property of a subspace.

1. A× 0 = 0, so 0 ∈ N(A).
2. If x, y ∈ N(A), then Ax = 0 and Ay = 0, so A(x+ y) = Ax+ Ay= 0+ 0 = 0 and x+ y ∈ N(A).
3. If x ∈ N(A) and t ∈ R, then A(tx) = t(Ax) = t0 = 0, so tx ∈ N(A). �

Example 3.2. If A =
[
1 0
0 1

]
, the only solution to Ax = 0 is x = 0, so N(A) = {0}, the set consisting of just the zero

vector.

The matrix A =
[
1 2
2 4

]
row reduces to

[
1 2
0 0

]
, so x1+2x2 = 0, and x1 = −2x2. N(A) is the set of all scalar multiples

of

[ −2
1

]
, a line in the plane. �

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00003-X
Copyright © 2015 Elsevier Inc. All rights reserved. 47



48 Numerical Linear Algebra with Applications

0

0
0

2
4 6

–x + 6y + z = 0

50

–50

5

–6
–4

–2
y x–5

FIGURE 3.1 Subspace spanned by two vectors.

In the vector space R3, take the vectors
[
1 1 5

]T and
[
2 −1 −8 ]Tand form all possible linear combinations

c1
[
1 1 5

]T + c2
[
2 −1 −8 ]T. This set of vectors is a plane in R3(Figure 3.1). �

Definition 3.2. If x1, . . . ,xm is a set of vectors in Rn, then an expression of the form c1x1 + · · · + cmxm is said to be a
linear combination of x1, . . . ,xm.

Theorem 3.1. Let x1, . . . ,xm ∈ Rn. Then the set consisting of all linear combinations

c1x1 + · · · + cmxm,

where c1, . . . ,cm ∈ R is a subspace of Rn. This subspace is called the subspace spanned by x1, . . . ,xm and is denoted by

span {x1, . . . ,xm} .

Proof. To show that the set of all linear combinations of x1, x2, . . . , xm is a subspace, we must verify properties 1, 2, and 3
of Definition 3.1.

Property 1: 0 = 0x1 + · · ·+0xm, so 0 ∈ span {x1, . . . ,xm}.
Property 2: If x, y ∈ span {x1, . . . ,xm}, then x = c1x1 + · · · + cmxm and y = d1x1 + · · · + dmxm, so

x+ y = (c1x1 + · · · + cmx)+ (d1x1 + · · · + dmxm)

= (c1 + d1)x1 + · · · + (cm + dm)xn

and x+ y ∈ span {x1, . . . ,xm} .
Property 3: If x ∈ span {x1, . . . ,xm} and t ∈ R

n, then x = c1x1 + · · · + cmxm, tx = t(c1x1 + · · · + cmxm) = (tc1) x1 + · · · +
(tcm) xm ∈ span {x1, . . . ,xm}.

Definition 3.3. If A is an n× nmatrix, the subspace spanned by the columns of A is a subspace of Rn, called the column
space of A. Also, the subspace spanned by the rows of A is a subspace of Rn called the row space of A.

Example 3.3. The n× n identity matrix has columns

e1 =
[
1 0 . . . 0

]T
, e2 =

[
0 1 . . . 0

]T
, . . . , en−1 =

[
0 . . . 1 0

]T
,
[
0 . . . 0 1

]T
.



Subspaces Chapter| 3 49

Since
[
x1 x2 . . . xn−1 xn

]T = x1e1 + x2e2 + · · · + xn−1en−1 + xnen, the column space of I is Rn. The ei are called the
standard basis vectors. Any vector in R

n can be written as a linear combination of the standard basis vectors. In a similar
fashion, the rows of I span Rn. �

Example 3.4. The equation 2x−3y+5z = 0 defines a relationship between the components of a vector
[
x y z

]T. Find
the subspace S of R3 spanned by all such vectors. If [x, y, z]T ∈ S, then x = 3

2y− 5
2 z, so⎡⎣ x

y
z

⎤⎦ =
⎡⎣ 3

2y− 5
2 z

y
z

⎤⎦ = y

⎡⎣ 3
2
1
0

⎤⎦+ z

⎡⎣ − 5
2

0
1

⎤⎦ .

Thus, S is the subspace spanned by

⎡⎣ 3
2
1
0

⎤⎦ and

⎡⎣ − 5
2

0
1

⎤⎦. This subspace is not R3. Consider the vector

⎡⎣ 1
2
3

⎤⎦ and determine

if it can be written as a linear combination of

⎡⎣ 3
2
1
0

⎤⎦ and

⎡⎣ − 5
2

0
1

⎤⎦. There must be scalars c1 and c2 such that
c1

⎡⎣ 3
2
1
0

⎤⎦+ c2

⎡⎣ − 5
2

0
1

⎤⎦ =
⎡⎣ 1
2
3

⎤⎦ .

This requires that

3

2
c1 − 5

2
c2 = 1.

We must have c1 = 2 and c2 = 3, but

3

2
(2)− 5

2
(3) = −41

2
�= 1.

The two vectors do not span R
3. In general, it takes n vectors to span R

n. �

3.3 LINEAR INDEPENDENCE

Definition 3.4. The concept of linear independence of a set of vectors in R
n is extremely important in linear algebra and

its applications.
Vectors x1, . . . ,xm in Rn are said to be linearly dependent if there exist scalars c1, . . . ,cm, not all zero, such that

c1x1 + · · · + cmxm= 0. (3.1)

Suppose ci �= 0. Then, xi = − (c1x1 + c2x2 + · · · + ci−1xi−1 + ci+1xi+1 + · · · + cmxm) /ci. The vector xi can be written
as a linear combination of the remaining vectors; in other words, it is dependent on them. The vectors x1, . . . ,xm are called
linearly independent if they are not linearly dependent. To test for linear independence, Equation 3.1 is a linear homogeneous
equation with unknowns

[
c1 c2 . . . cm−1 cm

]T
. The vectors are linearly independent if the system has only the trivial

solution c1= 0, . . . ,cm = 0. Conversely, if x1, x2, . . . , xm are linearly independent, then the homogeneous system has only
the trivial solution.

Example 3.5. Are the following three vectors in R3 linearly independent or dependent?

x1 =
⎡⎣ 1
2
3

⎤⎦ , x2 =
⎡⎣ −11

2

⎤⎦ , x3 =
⎡⎣ −17

12

⎤⎦ .

Form

c1

⎡⎣ 1
2
3

⎤⎦+ c2

⎡⎣ −11
2

⎤⎦+ c3

⎡⎣ −17
12

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦ .



50 Numerical Linear Algebra with Applications

This corresponds to the homogeneous system. ⎡⎣ 1 −1 −1
2 1 7
3 2 12

⎤⎦⎡⎣ c1
c2
c3

⎤⎦ = 0

⎡⎣ 1 −1 −1
2 1 7
3 2 12

⎤⎦−−−−−−−−−−−→R2 = R2− 2R1
R3 = R3− 3R1

⎡⎣ 1 −1 −1
0 3 9
0 5 15

⎤⎦−−−−−−−−−−−−−→R3 = R3− (5/3)R2

⎡⎣ 1 −1 −1
0 3 9
0 0 0

⎤⎦ .

The row of zeros in the row-reduced matrix indicates that there are infinitely many solutions to the homogeneous system,
so x1, x2, x3 are linearly dependent. �

Example 3.6. Are the vectors u =
⎡⎣ 1

2
−1

⎤⎦ , v =
⎡⎣ 1
−1
3

⎤⎦ , w =
⎡⎣ 1
2
3

⎤⎦ linearly independent? Let c1u+ c2v+ c3w = 0.

This corresponds to the linear homogeneous system⎡⎣ 1 1 1
2 −1 2
−1 3 3

⎤⎦⎡⎣ c1
c2
c3

⎤⎦ = 0.

⎡⎣ 1 1 1
2 −1 2
−1 3 3

⎤⎦−−−−−−−−−−−−−−→R2 = R2− 2R1
R3 = R3− (−1)R1

⎡⎣ 1 1 1
0 −3 0
0 4 4

⎤⎦−−−−−−−−−−−−−−−→R3 = R3− (−4/3)R2
⎡⎣ 1 1 1
0 −3 0
0 0 4

⎤⎦
The final system in the row-elimination process has the unique solution c1 = c2 = c3 = 0, so u, v, and w are linearly

independent. �

3.4 BASIS OF A SUBSPACE

We now come to the fundamental concept of a basis for a subspace.

Definition 3.5. Vectors x1, . . . ,xm belonging to a subspace S are said to form a basis for S if

1. x1, . . . ,xm span S.
2. x1, . . . ,xm are linearly independent.

Example 3.7. The standard basis vectors e1, . . . ,en form a basis for Rn. This is the reason for the term “standard basis.”

If x =
⎡⎢⎣ x1

...
xn

⎤⎥⎦, then x = x1e1 + x2e2 + · · · + xnen, so e1, e2, . . ., en span Rn. They are linearly independent, since if

c1e1 + c2e2 + · · · + cnen =

⎡⎢⎢⎢⎣
c1
c2
...
cn

⎤⎥⎥⎥⎦ = 0, then c1 = c2 = · · · = cn = 0. �

A subspace normally has more than one basis; for instance, let u, v, and w be the linearly independent vectors of
Example 3.6. To show that the vectors are a basis forR3, it is necessary to show that the vectors span R3. Let x be any vector
in R3. There must be a linear combination of u, v, and w that equals x; in other words, there must be scalars c1, c2, c3, such
that c1u+ c2v+ c3w = x. This is a system of linear equations⎡⎣ 1 1 1

2 −1 2
−1 3 3

⎤⎦⎡⎣ c1
c2
c3

⎤⎦ =
⎡⎣ x1
x2
x3

⎤⎦ .



Subspaces Chapter| 3 51

Form the augmented matrix

⎡⎣ 1 1 1
2 −1 2
−1 3 3

∣∣∣∣∣∣
x1
x2
x3

⎤⎦. The row-reduction operations performed in Example 3.6 show that there

is a unique solution for

⎡⎣ c1
c2
c3

⎤⎦, and so u, v, and w form a basis for R3.

There are some important properties of a basis that are stated in Theorem 3.2.

Theorem 3.2. If S is a subspace of Rn, then

1. Each vector in a basis for S must be nonzero.
2. If u is a vector in S, there is one and only one way to write u as a linear combination of basis vectors for S.
3. A subspace span {x1, . . . ,xm}, where at least one of x1, . . . ,xm is nonzero, has a basis v1, . . . ,vp, where p ≤ m.

Proof. To prove 1, assume that x1, . . . ,xm is a basis for S, and that x1 = 0. Then we have the nontrivial linear combination
1 (x1)+ 0 (x2)+ · · · + 0 (xm) = 0, and x1, . . . ,xm are linearly dependent.

Let x1, . . . ,xm be a basis for S. Assume that u = c1x1 + c2x2 + · · · + cmxm and that u = d1x1 + d2x2 + · · · + dmxm.
Subtract the two equations to obtain

(c1 − d1) x1 + (c2 − d2) x2 + · · · + (cm − dm) xm = 0.

Since x1, . . . ,xm are linearly independent, (c1 − d1) = 0, (c2 − d2) = 0, . . . , (cm − dm) = 0, and ci = di, 1 ≤ i ≤ m. We
have proved 2.

Statement 3 tells us that the span of any set of vectors has a basis as long as all the vectors are not zero. Scan x1, . . . ,xm
from left to right and let xj1be the first nonzero vector. If j1 = m or all the vectors xk, j1 + 1 ≤ k ≤ m are multiples of
xj1 , then p = 1. Otherwise, let xj2be the next nonzero vector following xj1such that xj2 is not a multiple of xj1 . If j2 = m
or if all the vectors xk, j2 + 1 ≤ k ≤ m are linear combinations of xj1 and xj2 , then p = 2. This argument will eventually
terminate with a set of vectors xj1 , xj2 , . . . , xjp that must be linearly independent. Any vectors among x1, . . . ,xm that were
combinations of other vectors have been eliminated, so xj1 , xj2, . . . , xjp spans S, and is a basis for S.

Example 3.8. Let x and y be linearly independent vectors in Rn. Consider the subspace span {0, 2x, x, −y, x+ y}. Apply
the technique used in proving part 3 of Theorem 3.1. Skip over 0 and record 2x as a nonzero vector. Move right and discard
x because it is a multiple of 2×. The next vector, −y, is not a multiple of x because x and y are linearly independent. The
final vector x+ y is a linear combination of 2x and −y. The subspace {0, 2x, x, −y, x+ y} has a basis 2x, −y. �

By using arguments similar to those in Theorem 3.2, the following claims can be proved. The proofswill not be provided,
but the interested reader can consult Strang [8, pp. 175-175] for very readable arguments.

Claim 3.1. If S is a subspace of Rn, then

1. Any two bases for a subspace S must contain the same number of elements. This number is called the dimension of S
and is written dim S.

2. If a subspace has dimension m, then any set of m linearly independent vectors is a basis for S.

3.5 THE RANK OF A MATRIX

In this section, we will determine how to find a basis for the row space of a matrix and discuss the relationship between the
row space and the column space of a matrix.

Definition 3.6. The number of elements in a basis for the row space is called the rank of the matrix.

The rank is defined for any m × n matrix, but we will deal only with square matrices for now. The process we develop
to find the rank of a matrix will involve row reductions, but we will go beyond just getting to upper-triangular form and
will also “zero out” as many elements in the upper triangle as we can. The process is illustrated with examples and is based
upon the following lemma and a theorem that follows from it.



52 Numerical Linear Algebra with Applications

Lemma 3.1. Subspaces span {x1, x2, . . . , xr} and span {y1, y2, . . . , ys} are equal if each of x1, x2, . . . , xr is a linear
combination of y1, y2, . . . , ys and each of y1, y2, . . . , ys is a linear combination of x1, x2, . . . , xr.

Proof. Let x = c1x1 + . . .+ cr. Since each of x1, x2, . . . , xr is a linear combination of y1, y2, . . . , ys, it follows that x is a
linear combination of y1, y2, . . . , ys. Similarly, if y = d1y1 + · · · + dsys, then y is a linear combination of x1, x2, . . . , xr.
This shows the two subspaces are equal.

Theorem 3.3. The row space of a matrix is the same as the row space of any matrix derived from it using row reduction.

Proof. Suppose that matrix B is obtained from matrix A by a sequence of elementary row operations. Then each row of B
is a linear combination of the rows of A. But A can be obtained from B by a sequence of elementary row operations, so each
row of A is a linear combination of the rows of B. By Lemma 3.1, the two row spaces are equal.

Example 3.9. Let A =
[
1 2
2 4

]
. The upper-triangular form for A is B =

[
1 2
0 0

]
, and we cannot eliminate any more

elements. The row space of A and B is the same and consists of all multiples of the vector
[
1 2

]
. Hence,

[
1 2

]
is a basis

for the row space of A and the rank of A is 1.

Find the row space and rank of A =
[
1 2
3 4

]
. We begin row reduction with

[
1 2
3 4

]−−−−−−−−−−→
R2 = R2− 3R1

[
1 2
0 −2

]
.

Continue on and use the −2 in row 2, column 2 to eliminate the element above it in row 1, column 2. Also, remember we
can multiply any row by a constant during row reduction.

[
1 2
0 −2

]−−−−−−−−−−−−−→
R1 = R1− (−1)R2

[
1 0
0 −2

]−−−−−−−−−−→
R2 = R2/ (−2)

[
1 0
0 1

]

The row space consists of all linear combinations of the vectors
[
1 0

]
and

[
0 1

]
, and so the row space is R2, and the

rank of A is 2. �

Example 3.10. Consider A =
⎡⎣ 1 0 2
0 1 3
1 4 5

⎤⎦. Perform row reductions to determine a basis for the row space and the

rank of A.

⎡⎣ 1 0 2
0 1 3
1 4 5

⎤⎦−−−−−−−−−−−−→R3 = R3− (1)R1

⎡⎣ 1 0 2
0 1 3
0 4 3

⎤⎦−−−−−−−−−−→R3 = R3− 4R2

⎡⎣ 1 0 2
0 1 3
0 0 −9

⎤⎦
This is upper-triangular form, but continue eliminating as many elements as we can. To make things easier, divide row
3 by −9.

⎡⎣ 1 0 2
0 1 3
0 0 −9

⎤⎦−−−−−−−−−−→R3 = R3/ (−9)
⎡⎣ 1 0 2
0 1 3
0 0 1

⎤⎦−−−−−−−−−−−→R2 = R2− 3R3
R1 = R1− 2R3

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦
The row space of A is R3, and the rank of A is 3. Note that this matrix has no null space; in other words, the null space of A
is the empty set. �



Subspaces Chapter| 3 53

Example 3.11. Let A =

⎡⎢⎢⎣
2 5 −4 1
3 8 −9 2
1 1 7 −1
1 2 1 0

⎤⎥⎥⎦. Perform row reductions to determine a basis for the row space and the rank

of A. ⎡⎢⎢⎣
2 5 −4 1
3 8 −9 2
1 1 7 −1
1 2 1 0

⎤⎥⎥⎦
−−−−−−−−−−−−−−→
R2 = R2− (3/2)R1
R3 = R3− (1/2)R1
R4 = R4− (1/2)R1

⎡⎢⎢⎢⎣
2 5 −4 1
0 1

2 −3 1
2

0 − 3
2 9 − 3

2

0 − 1
2 3 − 1

2

⎤⎥⎥⎥⎦
−−−−−−−−−−−−−−→
R3 = R3− (−3)R2
R4 = R4− (−1)R2

⎡⎢⎢⎣
2 5 −4 1

0 1
2 −3 1

2
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
Now eliminate the 5 in row 1, column 2.⎡⎢⎢⎢⎣

2 5 −4 1

0 1
2 −3 1

2
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦−−−−−−−−−−−−−→R1 = R1− (10)R2

⎡⎢⎢⎢⎣
2 0 26 −4
0 1

2 −3 1
2

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ .

We cannot go any further without removing the zero we just produced; however, let’s multiply row 1 by 1
2 and row 2 by 2

to make the leading element of each nonzero row 1.⎡⎢⎢⎢⎣
2 0 26 −4
0 1

2 −3 1
2

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦
−−−−−−−−−−→
R1 = (1/2)R1
R2 = (2)R2

⎡⎢⎢⎢⎣
1 0 13 −2
0 1 −6 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ .

The rank of A is 2, and
[
1 0 13 −2 ], [ 0 1 −6 1

]
are a basis for the row space. �

This process of finding the rank of a matrix seems somewhat disorganized. In reality, the rank of a matrix is found by
computing the singular value decomposition (SVD). We will discuss the SVD in Chapter 15, and will show how to compute
it accurately and efficiently in Chapter 23.

Example 3.12. We have computed the row space for some matrices, and now we will find the null space and nullity of a
matrix. Let A be the matrix of Example 3.11. The null space of A is the subspace of vectors x such that Ax = 0. Using the
computations in Exercise 3.11, we have

A =

⎡⎢⎢⎣
2 5 −4 1
3 8 −9 2
1 1 7 −1
1 2 1 0

⎤⎥⎥⎦ =⇒
⎡⎢⎢⎣
1 0 13 −2
0 1 −6 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .

This says that

x1 + 13x3 − 2x4 = 0,

x2 − 6x3 + x4 = 0.

From these equations,
x1 = −13x3 + 2x4, x2 = 6x3 − x4. The variables x4 and x3 are arbitrary, so a basis for the null space of A is

z1 =

⎡⎢⎢⎣
−13
6
1
0

⎤⎥⎥⎦ , z2 =

⎡⎢⎢⎣
2
−1
0
1

⎤⎥⎥⎦ .

Note the presence of two zero rows and a nullity of two. �

Find the rank of a matrix using the MATLAB command rank(A). The command Z = null(A) is used to find a basis
for the null space of a matrix as a set of column vectors that form the matrix Z. If you only want the nullity of the matrix,
obtain the number of columns of the matrix returned by null using size(null(A),2).



54 Numerical Linear Algebra with Applications

Example 3.13. Note that in the MATLAB output, (A*Z(:,1))’ should be a row vector of zeros, but very small nonzero
vector components are the result. In Chapter 8, we will discuss why this occurs.

>> A = [2 5 -4 1;3 8 -9 2;1 1 7 -1;1 2 1 0];

>> rank(A)

ans =

2

>> Z = null(A);
>> (A*Z(:,1))’

ans =

1.0e-014 *

-0.0860 -0.1277 -0.0583 -0.0472

>> size(null(A),2)

ans =

2 �

Notice that in Example 3.13, the rank of the matrix is 2 and the nullity is 2, so rank + nullity = 4, the matrix size. This
is an example of the relation between the dimension of the row space of a matrix and its null space.

Theorem 3.4. If A is an n×n matrix, the rank of A plus the nullity of A equals n.

We will prove this result in Chapter 15 when we present the singular value decomposition of a matrix.

Remark 3.2. An n× nmatrix A is said to have full rank if the rank of A is n. It follows from Theorem 3.4 that if a matrix
has full rank, then there is no null space.

Example 3.14. Let A be the matrix in Examples 3.12 and 3.13. As stated in Definition 3.1, the column space of a
matrix A is the subspace spanned by the columns of A. We will find a basis for the column space of A, the subspace

spanned by

⎡⎢⎢⎣
2
3
1
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
5
8
1
2

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
−4
−9
7
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
2
−1
0

⎤⎥⎥⎦. Form AT, the matrix whose rows are the columns of A and perform row

operations on AT.

⎡⎢⎢⎣
2 3 1 1
5 8 1 2
−4 −9 7 1
1 2 −1 0

⎤⎥⎥⎦
−−−−−−−−−−−−−−→
R2 = R2− (5/2)R1
R3 = R3− (−2)R1
R4 = R4− (1/2)R1

⎡⎢⎢⎢⎣
2 3 1 1

0 1/2 −3/2 −1/2
0 −3 9 3
0 1/2 −3/2 −1/2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
2 3 1 1
0 1/2 −3/2 −1/2
0 −3 9 3
0 1/2 −3/2 −1/2

⎤⎥⎥⎥⎦
−−−−−−−−−−−−−−→
R3 = R3− (−6)R2
R4 = R4− (1)R2

⎡⎢⎢⎣
2 3 1 1
0 1/2 −3/2 −1/2
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
2 3 1 1
0 1/2 −3/2 −1/2
0 0 0 0
0 0 0 0

⎤⎥⎥⎦−−−−−−−−−−−−→R1 = R1− (6)R2

⎡⎢⎢⎣
2 0 10 4
0 1/2 −3/2 −1/2
0 0 0 0
0 0 0 0

⎤⎥⎥⎦



Subspaces Chapter| 3 55

This is as far as we can go, so a basis for the column space of A is⎡⎢⎢⎣
2
0
10
4

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
1/2
−3/2
−1/2

⎤⎥⎥⎦ . �

Notice that the dimension of the column space of A in Example 3.14 is the same as the dimension of the row space of
A. This is true for any m× n matrix, and we will prove this in Chapter 15.

3.6 CHAPTER SUMMARY

Subspaces of Rn

Rn is a vector space, and subsets of Rn, including Rn itself, are called subspaces. A subspace satisfies three properties:

● The zero vector is in the subspace.
● If x is a vector in the subspace, then cx is in the subspace, where c is a number.
● If x and y are in the subspace, then so is x+ y.

If x1, x2, . . . , xk are in Rn, k ≤ n, then the set of all linear combinations c1x1 + c2x2 + · · · + ckxk is a subspace, and is said
to be the subspace, S, of Rn spanned by x1, . . . ,xk, and we write

S = span {x1, . . . ,xk} .

As an example, let x1 =
⎡⎣ −10

5

⎤⎦ and x2 =
⎡⎣ 3

1
−8

⎤⎦. The subspace spanned by these vectors is a plane in three-space.
Important examples of subspaces include the column space, row space, and the null space of a matrix.

Linear Independence

A collection of vectors is linearly independent if no vector can be written as a linear combination of the others. For instance,

if u =
⎡⎣ 1

0
−1

⎤⎦ , v =
⎡⎣ 2
7
3

⎤⎦ ,w =
⎡⎣ 1
0
0

⎤⎦, then these vectors are linearly independent. But, if we let v =
⎡⎣ 4

0
−1

⎤⎦, then
v = u+ 3w, and the vectors are linearly dependent.

In general, a set of vectors v1, . . . ,vk is linearly independent if

c1v1 + c2v2 + · · · + ckvk = 0

only when c1 = c2 = · · · = ck = 0. This means that the homogeneous system

[
v1 v2 . . . vk−1 vk

]
⎡⎢⎢⎢⎢⎢⎣

c1
c2
...

ck−1
ck

⎤⎥⎥⎥⎥⎥⎦ = 0

has only the zero solution.

Basis of a Subspace

The basis for a subspace is a set of vectors that span the subspace and are linearly independent. For instance, the standard
basis for Rn is

e1 =
[
1 . . . 0 0

]T , e2 = [
0 1 . . . 0

]T , . . . , en = [
0 . . . 0 1

]T .



56 Numerical Linear Algebra with Applications

A subspace can have more than one basis. For instance, the vectors u, v,w in Section “Linear Independence” are a basis for
R3, as is e1, e2, e3. However, all bases for a subspace have the same number of vectors, and this number is the dimension of
the subspace.

Matrix Rank

The rank of a matrix is the dimension of the subspace spanned by its rows. As we will prove in Chapter 15, the dimension
of the column space is equal to the rank. This has important consequences; for instance, if A is an m× n matrix and m ≥ n,
then rank (A) ≤ n, but if m < n, then rank (A) ≤ m. It follows that if a matrix is not square, either its columns or its rows
must be linearly dependent.

For small square matrices, perform row elimination in order to obtain an upper-triangular matrix. If a row of zeros
occurs, the rank of the matrix is less than n, and it is singular. As we will see in Chapters 7, 15 and 23, finding the rank of
an arbitrary matrix is somewhat complex and relies on the computation of what are termed its singular values.

For any m × n matrix, rank (A)+ nullity (A) = n. Thus, if A is n × n, then for A to be nonsingular, nullity (A) must
be zero.

3.7 PROBLEMS

3.1 Which of the following subsets of R2are subspaces?

a.
[
x
y

]
satisfying x = 2y;

b.
[
x
y

]
satisfying x = 2y and 2x = y;

c.
[
x
y

]
satisfying x = 2y+1;

d.
[
x
y

]
satisfying xy = 0;

e.
[
x
y

]
satisfying x ≥ 0 and y ≥ 0.

3.2 Determine if x1 =

⎡⎢⎢⎣
1
0
1
2

⎤⎥⎥⎦ , x2 =

⎡⎢⎢⎣
0
1
1
2

⎤⎥⎥⎦, x3 =
⎡⎢⎢⎣
1
1
1
3

⎤⎥⎥⎦, and x4 =
⎡⎢⎢⎣
0
1
4
5

⎤⎥⎥⎦ are linearly independent in R4.

3.3 For which real numbers λ are the following vectors linearly independent in R3?

x1 =
⎡⎣ λ

−1
−1

⎤⎦ , x2 =
⎡⎣ −1λ
−1

⎤⎦ , x3 =
⎡⎣ −1−1

λ

⎤⎦ .

3.4 Find a basis for the row space of the following matrix. What is the rank of A?

A =

⎡⎢⎢⎣
1 1 2 0
2 2 5 0
0 0 0 1
8 11 19 0

⎤⎥⎥⎦ .

3.5 Find a basis for the row space of the following matrix. What is the rank of A? Find a basis for the column space
of A.

A =

⎡⎢⎢⎣
1 0 1 0
0 1 0 1
1 1 1 1
0 0 1 1

⎤⎥⎥⎦ .



Subspaces Chapter| 3 57

3.6 Determine the rank of A, and find a basis for the column space of A.

A =

⎡⎢⎢⎣
1 0 1 −1
0 1 2 −4
1 0 1 −1
1 1 3 −5

⎤⎥⎥⎦ .

3.7 Find a basis for the subspace S of R3 defined by the equation

x+ 2y+3z = 0.

Verify that y1= [− 1, − 1, 1]T ∈ S, and find a basis for S that includes y1.
3.8 Find the null space of the matrix

A =
⎡⎣ 1 7 2
−1 23 8
3 6 1

⎤⎦ .

3.9 If A is a 4× 4 nonsingular matrix, what can you say about the columns of A?
3.10 This problem deals with the very important concept of matrix range.

a. The range of an n× n matrix A is set of all vectors Ax as x varies through all vectors in Rn. Describe the range in
terms of the rows or columns of A. How would you find a basis for the range of A?

b. Find a basis for the range of the matrix A =
⎡⎣ 1 6 2
−1 3 0
−2 15 2

⎤⎦.
3.11 The left nullspace of a matrix A is the set of all vectors x such that xTA = 0.

a. Find the left nullspace of the matrix A in Problem 3.10.
b. Find the nullspace of AT.
c. Prove that if A is an n× n matrix, the left nullspace of A is equal to the nullspace of AT.

3.12 If u1, u2, . . . , un is a basis for R
n and A is an invertible n × n matrix, show that Au1, Au2, . . . , Aun is also a basis

for Rn.
3.13 If v1, v2, v3 are linearly independent, for what values of c are the vectors v2 − v1, cv3 − v2 and v1 − v3 linearly

independent?
3.14 Prove that if A is an n× n matrix, rank (A) = rank

(
AT
)
.

3.15 Given n× n matrices A and B, prove that rank (AB) ≤ min {rank (A) , rank (B)}.
Hint: Does ABx = A (Bx) give you a portion of the required result? The result of Problem 3.14 says that rank
(AB) = rank

(
[AB]T

)
3.16 a. If a matrix A has dimension m× n, with m > n, what is the maximum rank of A?

b. If a matrix A has dimension m× n with m < n, what is the maximum rank of A?
c. Assuming that the MATLAB function rand returns a matrix of random numbers, if the computation

rank (rand (k, 5))

is executed for k = 1, 2, . . . , 8, what output do you expect?

3.7.1 MATLAB Problems

3.17 An n × n matrix is rank deficient if its rank is less than n. The 8 × 8 rosser matrix is often used for testing, and
we will have occasion to use it later in this book. Assign A to be the rosser matrix using the MATLAB command
A = rosser.
a. Is A rank deficient?
b. Using your answer to (a), is A invertible? Try to find the inverse using the MATLAB command inv(A).
c. Is A symmetric?



58 Numerical Linear Algebra with Applications

3.18 Let D =
⎡⎣ 1 3 7 1 1 1 5 0
2 2 6 0 1 7 3 1
1 1 3 1 0 2 1 0

⎤⎦.
The MATLAB functions rank and null apply to any matrix. Obtain the rank of a matrix D using rank(D). The
function null has two variations, and for this problem use null(A,’r’). The parameter “r” specifies that MATLAB
is to use row reduction to determine a basis for the null space. Use MATLAB to find the following:
a. the nullity of D.
b. a basis for the null space of D
c. the rank of D

3.19 MATLAB has a suite of matrices used for testing software and is accessed using the gallery command. The first
argument is a string naming the matrix.
a. Assign A to be the clement matrix using the command A = gallery(‘clement’, 5). What is the rank of A?
Is A rank deficient?

b. Is A singular?
c. Execute the commands B = A; B(1,1) = 1.0e-14;B(2,2) = 1.0e-14;B(3,3) = 1.0e-14. What is the
rank of B?

d. Using the MATLAB command inv, find the inverse of B.
e. Is it reasonable to say that B is nearly rank deficient?

3.20 Let A =

⎡⎢⎢⎣
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎤⎥⎥⎦.
a. What is the rank of A?

b. Find the rank of U =

⎡⎢⎢⎣
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎤⎥⎥⎦.
c. What is the rank of UA and AU? Does this support the result of Problem 3.15?

3.21 Let A =

⎡⎢⎢⎣
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
−1 1 2
4 5 6
7 8 9
10 11 12

⎤⎥⎥⎦
a. Compute the rank of A and the rank of B.
b. Compute the rank of the square matrices ATA and BTB.
c. Is there a general relationship you can postulate by considering the specific results in parts (a) and (b)?



Chapter 4

Determinants

You should be familiar with

● Matrix row elimination
● Linear system of equations

The determinant is defined for any n × n matrix and produces a scalar value. You have probably dealt with determinants
before, possibly while using Cramer’s rule. The determinant has many theoretical uses in linear algebra. Among these is
the definition of eigenvalues and eigenvectors, as we will see in Chapter 5. In Section 4.1, we will develop a formula for the
inverse of a matrix that involves a determinant. A matrix is invertible if its determinant is not zero. In vector calculus, the
Jacobian matrix is the matrix of all first-order partial derivatives of a multivariate function. The determinant of the Jacobian
matrix, called the Jacobian, is used in multivariable calculus.

Although the determinant has theoretical uses, because of the complexity of its calculation, a determinant is seldom
used in practice unless the matrix size is small. In this chapter, we will begin with the definition of the determinant and then
discuss its evaluation using expansion by minors and Gaussian elimination. This chapter ends with an interesting example
where determinants play a role in file encryption.

4.1 DEVELOPING THE DETERMINANT OF A 2 × 2 AND A 3 × 3 MATRIX

The determinant of an n× nmatrix is the sum of all possible products of n elements formed by choosing one element from
each row in the order 1, 2, . . . , n in different columns along with the proper sign. The sign is found by writing down the
sequence of column indices in each product and counting the number of interchanges necessary to put the column indices
in the order 1, 2, . . . , n. If the number of interchanges is even, the sign is +; otherwise, the sign is −.

Example 4.1. Find the determinant of the general 2× 2 matrix A =
[
a11 a12
a21 a22

]
. First list the products without the sign.

Note that in the first product we chose a11 from row 1 and a22 from row 2. In the second product, we chose a12 from row 1
and a21 from row 2.

a11a22 a12a21

In the first product, the sequence of column indices is 1, 2, so its sign is +. In the second product, the column indices
are in the order 2, 1, so its sign is −. Thus, the determinant of A, det (A), is

det (A) = a11a22 − a12a21. �

Example 4.2 finds the formula for the determinant of a 3 × 3 matrix. After reading through the example, you will see
why we will not give the formula for the determinant of a 4 × 4 matrix.

Example 4.2. Let A =
⎡⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦. Here is the sum of products, each with its sign.

a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31 =
a11 (a22a33 − a23a32)− a12 (a21a33 − a23a31)+ a13 (a21a32 − a22a31) �

Note that the number of products to be evaluated in a 2 × 2 matrix is 2 = 2(1) = 2!, and in a 3 × 3 matrix is 6 =
3(2)(1) = 3!. In general, to evaluate the determinant of an n× n matrix involves choosing one of n elements in row 1, then
one of (n− 1) elements in row 2, . . ., and 1 element in row n, for a total of n (n− 1) (n− 2) . . . (2) (1) = n! products.

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00004-1
Copyright © 2015 Elsevier Inc. All rights reserved. 59



60 Numerical Linear Algebra with Applications

For instance, to evaluate the determinant of a 15 × 15 matrix requires the computation of 15! = 1, 307, 674, 368, 000
products. This is an unbelievably huge number of products, and it would be futile to try to use the definition of a determinant
even with a supercomputer.

Remark 4.1. Another and sometimes more convenient notation for the determinant of a square matrix A is |A|.

Using the definition is “messy,” but fromExamples 4.1 and 4.2, we can introduce the concept of evaluating a determinant
using expansion by minors. Looking at the result of Example 4.2, each factor in parentheses is the determinant of a 2 × 2

matrix by the result of Example 4.1. Thus, the determinant of a 3× 3 matrix A =
⎡⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦ has the value

a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣ . (4.1)

Looking at Equation 4.1, note that the multipliers of the determinants move through row 1 in the order column 1, 2, and 3
and alternate in sign. Each term contains the determinant of the 2× 2 matrix obtained by crossing out the row and column
of the multiplier. This process can be generalized to what is termed expansion by minors.

4.2 EXPANSION BY MINORS

In Section 4.1, we found a formula for the determinant of a 2×2 and a 3 × 3 matrix and indicated that those results can
be generalized to compute the determinant of an n × n matrix. This process, stated in Theorem 4.1 without proof, is said
to be recursive because it involves computing determinants of smaller matrices until the problem reduces to evaluating
determinants of 2× 2 matrices.

Theorem 4.1. Let Mij(A) (or simply Mij if there is no ambiguity) denote the determinant of the (n−1)× (n−1) submatrix
of A formed by deleting the ith row and jth column of A. Assume that the determinant function has been defined for matrices
of size (n − 1)× (n − 1). Then the determinant of the n × n matrix A is defined by what we call the first-row Laplace
expansion:

|A| = a11M11(A)−a12M12(A)+ · · · + (−1)1+nM1n(A)

=
n∑
j=1

(−1)1+ja1jM1j.

The values Mij are termed minors, and the evaluation process in Theorem 4.1 is an example of expansion by minors.

Example 4.3. Compute the determinant of the 3× 3 matrix

⎡⎣ 1 2 −1
0 4 1
3 5 −9

⎤⎦.
∣∣∣∣∣∣
1 2 −1
0 4 1
3 5 −9

∣∣∣∣∣∣ = (1)

∣∣∣∣ 4 1
5 −9

∣∣∣∣− (2)

∣∣∣∣ 0 1
3 −9

∣∣∣∣ + (−1)
∣∣∣∣ 0 4
3 5

∣∣∣∣
= (1) (−41)− (2) (−3)+ (−1) (−12) = −23. �

Example 4.4. A matrix and its transpose have equal determinants; that is
∣∣AT ∣∣ = |A| (Problem 4.19).∣∣∣∣∣∣

1 0 2
1 2 5
3 −1 1

∣∣∣∣∣∣ = (1)

∣∣∣∣ 2 5
−1 1

∣∣∣∣− (0)

∣∣∣∣ 1 5
3 1

∣∣∣∣+ (2)

∣∣∣∣ 1 2
3 −1

∣∣∣∣ = 7− 14 = −7,∣∣∣∣∣∣
1 1 3
0 2 −1
2 5 1

∣∣∣∣∣∣ = (1)

∣∣∣∣ 2 −15 1

∣∣∣∣− (1)

∣∣∣∣ 0 −12 1

∣∣∣∣+ (3)

∣∣∣∣ 0 2
2 5

∣∣∣∣ = 7− 2− 12 = −7. �

Sometimes the calculation of the determinant by minors (generally a tedious process) is simple.



Determinants Chapter| 4 61

Theorem 4.2. If a row of a matrix is zero, then the value of the determinant is 0.

Proof. Assume the matrix has the form

⎡⎢⎢⎢⎢⎢⎣
a11 a12 a13 . . . a1,n−1 a1n
a21 a22 a23 . . . a2,n−1 a2n
...

...
. . . . . . . . .

...
0 0 0 . . . . . . 0
an1 an2 an3 . . . . . . ann

⎤⎥⎥⎥⎥⎥⎦. When we expand by minors across the first

row, each (n− 1) × (n− 1) matrix has a row of zeros. This continues as we proceed with ever smaller matrices. Finally,
we will arrive at a set of 2× 2 matrices each with a row of zeros, and such a matrix has a determinant of 0.

Example 4.5. Let A =
⎡⎣ 1 −1 6

0 0 0
−8 9 10

⎤⎦.
∣∣∣∣∣∣
1 −1 6
0 0 0
−8 9 10

∣∣∣∣∣∣ = (1)

∣∣∣∣ 0 0
9 10

∣∣∣∣− (−1)
∣∣∣∣ 0 0
−8 10

∣∣∣∣ + (6)

∣∣∣∣ 0 0
−8 9

∣∣∣∣ = 0. �

Another determinant it is easy to evaluate is that of a lower triangular matrix.∣∣∣∣∣∣∣∣∣
a11 0 . . . 0
a21 a22 . . . 0
...

...
. . .

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
Its determinant is the product of the diagonal elements, a11a22 . . . ann. We can see this by observing the sequence of
expansion by minors.∣∣∣∣∣∣∣∣∣

a11 0 . . . 0
a21 a22 . . . 0
...

...
. . .

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ = a11

∣∣∣∣∣∣∣∣∣
a22 0 . . . 0
a32 a33 . . . 0
...

...
. . .

an2 an3 . . . ann

∣∣∣∣∣∣∣∣∣ = a11a22

∣∣∣∣∣∣∣∣∣
a33 0 . . . 0
a43 a44 . . . 0
...

...
. . .

an3 an4 . . . ann

∣∣∣∣∣∣∣∣∣ = · · ·
We continue this process until evaluating a 2 × 2 matrix. At this point, we are done and have computed the value
a11a22 . . . ann.

We will leave it to the exercises, but the same result applies to the determinant of an upper triangular matrix.

|A| = a11a22 . . . ann.

A special case that plays a role in applications is when A is a diagonal matrix. If

A = diag (a11, . . . ,ann) =

⎡⎢⎢⎢⎢⎢⎣
a11

a22
. . .

an−1,n−1
ann

⎤⎥⎥⎥⎥⎥⎦ ,

then |A| = a11 . . . ann. In particular, for a scalar matrix product tI, we have det (tI) = tn.

Remark 4.2. A very useful fact concerning determinants is that det (AB) = (det A) (det B). We will not provide a proof
but will use this result numerous times.

Example 4.6. Let A =
⎡⎣ 1 4 5
0 −9 12
0 0 2

⎤⎦ and B =
⎡⎣ 8 0 0
100 2 0
2 6 −1

⎤⎦. Note that A is upper triangular and B is lower

triangular, so

|A| |B| = [(1) (−9) (2)] [(8) (2) (−1)] = 288.



62 Numerical Linear Algebra with Applications

The matrix AB is

AB =
⎡⎣ 418 38 −5
−876 54 −12
4 12 −2

⎤⎦ .

This determinant would be a chore to evaluate using expansion by minors, so we will use the MATLAB function det.

>> det(C)

ans =

288.0000 �

The evaluation of an n×nmatrix was presented in terms of the first-row expansion. Actually, we can expand the determinant
along any row or column, and we call this expansion by minors.

det A =
n∑
j=1

(−1)i+jaijMij(A)

is the ith row expansion and

det A =
n∑
i=1

(−1)i+jaijMij(A)

is the jth column expansion.

Remark 4.3. The expression (−1)i+j obeys the chessboard pattern of signs:⎡⎢⎢⎢⎣
+ − + · · ·
− + − · · ·
+ − + · · ·
...

⎤⎥⎥⎥⎦ .

Example 4.7. Evaluate

∣∣∣∣∣∣
1 1 −1
2 0 3
8 −7 1

∣∣∣∣∣∣ using expansion by minors across row 2.

∣∣∣∣∣∣
1 1 −1
2 0 3
8 −7 1

∣∣∣∣∣∣ = − (2)

∣∣∣∣ 1 −1
−7 1

∣∣∣∣+ (0)

∣∣∣∣ 1 −18 1

∣∣∣∣− (3)

∣∣∣∣ 1 1
8 −7

∣∣∣∣ = 12+ 0+ 45 = 57.

Using the Laplace expansion, we get∣∣∣∣∣∣
1 1 −1
2 0 3
8 −7 1

∣∣∣∣∣∣ = (1)

∣∣∣∣ 0 3
−7 1

∣∣∣∣− (1)

∣∣∣∣ 2 3
8 1

∣∣∣∣+ (−1)
∣∣∣∣ 2 0
8 −7

∣∣∣∣ = 21+ 22+ 14 = 57. �

As we have said, the determinant is primarily a theoretical tool, and one matrix built by using the determinant is useful
in that regard.

Definition 4.1 (Cofactor). The (i, j) cofactor of A, denoted by Cij(A) (or Cij if there is no ambiguity), is defined by

Cij(A) = (−1)i+jMij(A).

Remark 4.4. Notice that Cij(A), like Mij(A), does not depend on aij.



Determinants Chapter| 4 63

Definition 4.2 (Adjoint). If A= [aij] is an n×nmatrix, the adjoint of A, denoted by adjA, is the transpose of the matrix
of cofactors. Hence,

adjA =

⎡⎢⎢⎢⎣
C11 C21 . . . Cn1
C12 C22 . . . Cn2
...

...
C1n C2n . . . Cnn

⎤⎥⎥⎥⎦ .

Example 4.8. Let A =
⎡⎣ 1 2 3
4 5 6
8 8 9

⎤⎦.
adj (A) =

⎡⎣ C11 C21 C31
C12 C22 C32
C13 C23 C33

⎤⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣ 5 6
8 9

∣∣∣∣ −
∣∣∣∣ 2 3
8 9

∣∣∣∣ ∣∣∣∣ 2 3
5 6

∣∣∣∣
−
∣∣∣∣ 4 6
8 9

∣∣∣∣ ∣∣∣∣ 1 3
8 9

∣∣∣∣ −
∣∣∣∣ 1 3
4 6

∣∣∣∣∣∣∣∣ 4 5
8 8

∣∣∣∣ −
∣∣∣∣ 1 2
8 8

∣∣∣∣ ∣∣∣∣ 1 2
4 5

∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ −3 6 −3
12 −15 6
−8 8 −3

⎤⎦ .

In addition, compute the product of A and its adjoint:

A (adj (A)) =
⎡⎣ 1 2 3
4 5 6
8 8 9

⎤⎦⎡⎣ −3 6 −3
12 −15 6
−8 8 −3

⎤⎦ =
⎡⎣ −3 0 0

0 −3 0
0 0 −3

⎤⎦ = −3I.
Also compute the determinant of A.

|A| =
∣∣∣∣ 5 6
8 9

∣∣∣∣− 2

∣∣∣∣ 4 6
8 9

∣∣∣∣+3 ∣∣∣∣ 4 5
8 8

∣∣∣∣= −3+ 24− 24= −3. �

Example 4.8 illustrates a very interesting property of the adjoint. The product of a matrix A and its adjoint is a diagonal
matrix whose diagonal entries are det (A). We will not prove this result, but will use it to develop a formula for computing
the inverse of a matrix.

Theorem 4.3. The inverse of a matrix is related to the adjoint by the relation

A−1 = 1

det A
adj (A) . (4.2)

Proof. Since

A× adj (A) =

⎡⎢⎢⎢⎢⎢⎣
det A 0 0
0 det A

. . .
det A

0 det A

⎤⎥⎥⎥⎥⎥⎦ ,

we have A × adj (A) = (det A) I. Thus, A((1/det A)adj(A)) = I, and A−1 = (1/detA)adj(A)



64 Numerical Linear Algebra with Applications

Example 4.9. We computed the determinant and the adjoint of the matrix A =
⎡⎣ 1 2 3
4 5 6
8 8 9

⎤⎦ in Example 4.8.

Equation 4.2 computes the inverse of A.

A−1 = −1

3

⎡⎣ −3 6 −3
12 −15 6
−8 8 −3

⎤⎦ . �

4.3 COMPUTING A DETERMINANT USING ROW OPERATIONS

A determinant has properties that allow its computation without resorting to expansion by minors. Example 4.10
demonstrates the properties.

Example 4.10.
1. A determinant is a linear function of each row separately.

If two rows are added, with all other rows remaining the same, the determinants are added.

∣∣∣∣∣∣
2 3 4
−1 −2 −3
−4 −3 −4

∣∣∣∣∣∣+
∣∣∣∣∣∣
5 6 7
−1 −2 −3
−4 −3 −4

∣∣∣∣∣∣ = 2+ 8 = 10,

∣∣∣∣∣∣
2+ 5 3+ 6 4 + 7
−1 −2 −3
−4 −3 −4

∣∣∣∣∣∣ =
∣∣∣∣∣∣
7 9 11
−1 −2 −3
−4 −3 −4

∣∣∣∣∣∣ = 10.

If a row of A is multiplied by a scalar t, then the determinant of the modified matrix is t detA.∣∣∣∣∣∣
1 4 0
(7)2 (7)5 (7)1
1 0 0

∣∣∣∣∣∣ = (1)

∣∣∣∣ 4 0
35 7

∣∣∣∣ = 28 = (7)

∣∣∣∣∣∣
1 4 0
2 5 1
1 0 0

∣∣∣∣∣∣ = (7) (4)

2. When two rows of a matrix are equal, the determinant is zero.∣∣∣∣∣∣
1 0 1
2 1 8
1 0 1

∣∣∣∣∣∣ = (1)

∣∣∣∣ 1 8
0 1

∣∣∣∣− (2)

∣∣∣∣ 0 1
0 1

∣∣∣∣+ (1)

∣∣∣∣ 0 1
1 8

∣∣∣∣ = 1− 0+ (1) (−1) = 0

3. If two rows of a matrix are exchanged, the determinant changes sign.∣∣∣∣∣∣
1 0 0
2 5 1
1 4 0

∣∣∣∣∣∣ = (1)

∣∣∣∣ 5 1
4 0

∣∣∣∣ = −4
∣∣∣∣∣∣
1 4 0
2 5 1
1 0 0

∣∣∣∣∣∣ = (1)

∣∣∣∣ 5 1
0 0

∣∣∣∣− (4)

∣∣∣∣ 2 1
1 0

∣∣∣∣ = 4

4. If a multiple of a row is subtracted from another row, the value of the determinant remains unchanged.∣∣∣∣∣∣
1 4 0
2 5 1
1 0 0

∣∣∣∣∣∣−−−−−−−−−−→R2 = R2− 8R1

∣∣∣∣∣∣
1 4 0
−6 −27 1
1 0 0

∣∣∣∣∣∣ = (1)

∣∣∣∣ 4 0
−27 1

∣∣∣∣ = 4 �

Theorem 4.5 formally states the properties demonstrated in Example 4.10.

Theorem 4.4.

1. A determinant is a linear function of each row separately.
2. If two rows of a matrix are equal, the determinant is zero.



Determinants Chapter| 4 65

3. If two rows of a matrix are interchanged, the determinant changes sign.
4. If a multiple of a row is subtracted from another row, the value of the determinant is unchanged.

Proof. 1. Assume matrices A and B as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1, n−1 a1n
...

. . . . . . . . .
...

ai1 ai2 . . . ai, n−1 ain
...

...
...

...
...

an1 an2 . . . an, n−1 ann

⎤⎥⎥⎥⎥⎥⎥⎦, B =
⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1, n−1 a1n
...

. . . . . . . . .
...

a′i1 a′i2 . . . a′i, n−1 a′in
...

...
...

...
...

an1 an2 . . . an, n−1 ann

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1,n−1 a1n
...

. . . . . . . . .
...

ai1 + a′i1 ai2 + a′i2 . . . ai, n−1 + a′i, n−1 ain + a′in
...

...
...

...
...

an1 an2 . . . an,n−1 ann

∣∣∣∣∣∣∣∣∣∣∣∣
=

∑n
k=1 (−1)i+k (aik + a′ik

)
Mik =∑n

k=1 (−1)i+kaikMik +∑n
k=1 (−1)i+ka′ikMik =

|A| + |B|
The proof that det (tA) = t det (A) is left to Problem 4.13.

2. See Problem 4.15.
3. See Problem 4.14.
4. Subtract a multiple, t, of row j from row i.⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1, n−1 a1n
...

. . . . . . . . .
...

ai1 − taj1 ai2 − taj2 . . . ai, n−1 − taj, n−1 ain − tajn
...

...
...

...
...

an1 an2 . . . an, n−1 ann

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1, n−1 a1n
...

. . . . . . . . .
...

ai1 ai2 . . . ai, n−1 ain
...

...
...

...
...

an1 an2 . . . an, n−1 ann

⎤⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1, n−1 a1n
...

. . . . . . . . .
...

−taj1 −taj2 . . . −taj,n−1 −tajn
...

...
...

...
...

an1 an2 . . . an,n−1 ann

⎤⎥⎥⎥⎥⎥⎥⎦ = (property 1)

A− t

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1, n−1 a1n
...

. . . . . . . . .
...

aj1 aj2 . . . aj, n−1 ajn
...

...
...

...
...

an1 an2 . . . an, n−1 ann

⎤⎥⎥⎥⎥⎥⎥⎦ = A− t × 0 = A (properties 1 and 2)

Property 2 applies because row j appears twice in

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1, n−1 a1n
...

. . . . . . . . .
...

aj1 aj2 . . . aj, n−1 ajn
...

...
...

...
...

an1 an2 . . . an, n−1 ann

⎤⎥⎥⎥⎥⎥⎥⎦.



66 Numerical Linear Algebra with Applications

The properties in Theorem 4.4 provide a means for calculating a determinant without using expansion byminors. Reduce
the matrix to upper triangular form, recording any sign changes caused by row interchanges, together with any factors taken
out of a row. Then compute the product of the diagonal elements. Here are some examples.

Example 4.11. Evaluate the determinant

∣∣∣∣∣∣
1 2 3
4 5 6
8 8 9

∣∣∣∣∣∣ .
Using row operations R2 → R2 − 4R1 and R3 → R3 − 8R1 gives∣∣∣∣∣∣

1 2 3
4 5 6
8 8 9

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 2 3
0 −3 −6
0 −8 −15

∣∣∣∣∣∣ .
Now perform the row operation R3 → R3 − 8

3R2∣∣∣∣∣∣
1 2 3
4 5 6
8 8 9

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 2 3
0 −3 −6
0 0 1

∣∣∣∣∣∣ = (1) (−3) (1)= −3. �

Example 4.12. Evaluate the determinant

∣∣∣∣∣∣∣∣
1 1 2 1
3 1 4 5
7 6 1 2
1 1 3 4

∣∣∣∣∣∣∣∣ .
Begin by using row operations to zero-out the elements in column 1, rows 2-4.

∣∣∣∣∣∣∣∣
1 1 2 1
3 1 4 5
7 6 1 2
1 1 3 4

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 1 2 1
0 −2 −2 2
0 −1 −13 −5
0 0 1 3

∣∣∣∣∣∣∣∣ (factor − 2 from row 2)

= − 2

∣∣∣∣∣∣∣∣
1 1 2 1
0 1 1 −1
0 −1 −13 −5
0 0 1 3

∣∣∣∣∣∣∣∣ (add row 2 to row 3)

= − 2

∣∣∣∣∣∣∣∣
1 1 2 1
0 1 1 −1
0 0 −12 −6
0 0 1 3

∣∣∣∣∣∣∣∣ (swap rows 3 and 4 to put 1 on the main diagonal)

= 2

∣∣∣∣∣∣∣∣
1 1 2 1
0 1 1 −1
0 0 1 3
0 0 −12 −6

∣∣∣∣∣∣∣∣ (R4 → R4 + 12R3)

= 2

∣∣∣∣∣∣∣∣
1 1 2 1
0 1 1 −1
0 0 1 3
0 0 0 30

∣∣∣∣∣∣∣∣ (multiply the diagonal elements)= 60. �



Determinants Chapter| 4 67

In Chapter 12, we will introduce the Vandermonde matrix V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12

1 x3 x23 . . . xn−13
...

...
...

. . .
...

1 xn x2n . . . xn−1n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
in connection with finding a

polynomial that approximates data in the least-squares sense. The determinant of the Vandermonde matrix has a simple
formula, and Example 4.13 demonstrates this for a 3× 3 matrix.

Example 4.13. Find the determinant of the Vandermonde matrix V =
⎡⎢⎣ 1 x1 x21
1 x2 x22
1 x3 x23

⎤⎥⎦.
⎡⎢⎣ 1 x1 x21
1 x2 x22
1 x3 x23

⎤⎥⎦−−−−−−−−−−−−−→R2 = R2− (1)R1
R3 = R3− (1)R1

⎡⎢⎣ 1 x1 x21
0 x2 − x1 x22 − x21
0 x3 − x1 x23 − x21

⎤⎥⎦ =
⎡⎢⎣ 1 x1 x21
0 x2 − x1 (x2 − x1) (x2 + x1)

0 x3 − x1 (x3 − x1) (x3 + x1)

⎤⎥⎦
Noting that only one entry in column 1 is nonzero, expand by minors down the first column.

det

⎡⎣ 1 x1 x21
0 x2 − x1 (x2 − x1) (x2 + x1)
0 x3 − x1 (x3 − x1) (x3 + x1)

⎤⎦ = det

[
x2 − x1 (x2 − x1) (x2 + x1)
x3 − x1 (x3 − x1) (x3 + x1)

]
=

(x2 − x1) (x3 − x1) (x3 + x1)− (x3 − x1) (x2 − x1) (x2 + x1) =
(x2 − x1) (x3 − x1) [x3 + x1 − (x2 + x1)] = (x2 − x1) (x3 − x1) (x3 − x2) �

During row reduction from A to B, multiplying a row by a scalar and subtracting from another row does not change the
determinant, det B = det A; however, a row may be multiplied by a scalar or two rows exchanged. In either of these cases,
it follows that det B = c det A, where c �= 0. Hence, det B �= 0 if and only if det A �= 0 and det B = 0 if and only if
det A = 0. This logic leads to a useful theoretical result.

Theorem 4.5.
1. A is nonsingular if and only if det A �= 0;
2. A is singular if and only if det A = 0;
3. The homogeneous system Ax = 0 has a nontrivial solution if and only if det A = 0.

Proof.
1. Perform a sequence of elementary row operations reducing A to B, where we intend for B to be the identity matrix. B

cannot have a zero row, for otherwise the homogeneous equationAx = 0will have a nonzero solution. Thus, the reduction
must be successful, so B = I, and it follows that det A = c det I = c �= 0, so detA �= 0. Since A−1 = (1/|A|)adj(A),
A−1 exists, and A is nonsingular.

2. The previous statement logically implies that “ det A = 0 if and only if A is singular.”
3. If Ax = 0 has a nontrivial solution, then reduction to upper triangular form must produce a zero row, so det A = 0. If

Ax = 0 has a unique solution, then after reduction to upper triangular form there can be no zeros on the diagonal, or
there will be infinitely many solutions. Thus detA �= 0.

Example 4.14. This example uses MATLAB statements to illustrate Theorem 4.5. Note that in addition to having a zero
determinant, the nullity of B is nonzero, also indicating that B is singular.

>> A = [1 6 25;16 32 19;56 53 5];

>> det(A)

ans =

-18543

>> A\[1 2 5]’

ans =

0.0910



68 Numerical Linear Algebra with Applications

-0.0053

0.0376

>> B = [1 3 2;5 14 7;2 5 1];

>> det(B)

ans =

-3.3307e-015

>> size(null(B),2) % compute the nullity of B

ans =

1

>> B\[1 2 5]’

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 4.587698e-018.

ans =

1.0e+016 *

1.2610

-0.5404

0.1801

Note that in the MATLAB results, det B is very small but not zero as it would be if we did the calculation by hand. The
MATLAB command det uses the row elimination method to compute the determinant. As you will see in Chapter 8, a
computer in general does not perform exact arithmetic, and small errors are made during the elimination process. �

Example 4.15. Find numbers a for which the following homogeneous system has a nontrivial solution and solve the
system for these values of a:

x− 2y+ 3z = 0,

ax+ 3y+ 2z = 0,

6x+ y+ az = 0.

The determinant of the coefficient matrix is

� =
∣∣∣∣∣∣
1 −2 3
a 3 2
6 1 a

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 −2 3
0 3+ 2a 2− 3a
0 13 a− 18

∣∣∣∣∣∣
=

∣∣∣∣ 3+ 2a 2− 3a
13 a− 18

∣∣∣∣
after expanding by minors using the first column. The value of the determinant is then

(3+ 2a)(a − 18)− 13(2− 3a) = 2a2+6a− 80 = 2(a+8)(a− 5).

So � = 0 ⇔ a= −8 or a = 5 and these values of a are the only values for which the given homogeneous system has a
nontrivial solution.

If a = −8, reduction of the coefficient matrix to upper triangular form gives⎡⎣ 1 0 −1
0 1 −2
0 0 0

⎤⎦ ,

and so the complete solution is x = z, y = 2z, with z arbitrary, and the null space is spanned by

⎡⎣ 1
2
1

⎤⎦. The case of a = 5

is left to the exercises. �



Determinants Chapter| 4 69

If the Symbolic Toolbox is available in yourMATLAB distribution, there are many possibilities for performing symbolic
manipulation with linear algebra. The following is a partial quotation from the help system for the toolbox.

Symbolic objects are a special MATLAB® data type introduced by the SymbolicMath Toolbox™ software. They allow you to perform
mathematical operations in the MATLABworkspace analytically, without calculating numeric values. You can use symbolic objects
to perform a wide variety of analytical computations: . . .

Example 4.16 shows how to solve the problem in Example 4.15 using the Symbolic Math Toolbox. This example
is entirely optional. We will introduce a small number of additional examples using the toolbox at various points in
the book.

Example 4.16. The command syms constructs symbolic objects, in this case a and A. The command det operating on a
symbolic matrix does symbolic calculations. Notice that it computed the same determinant that was found in Example 4.15.
The command solve finds the solutions to det(A) = 0. After assigning a = -8, the first of the two values, to locations (2,1)

and (3,3), the command null(A) finds the null space of the matrix A. The result is that the null space is spanned by

⎡⎣ 1
2
1

⎤⎦,
precisely the result of Example 4.15. The command colspace(A) finds a basis for the column space of A. There are two
vectors, so the rank of A is 2.

>> syms a A

>> A = [1 -2 3;a 3 2;6 1 a]

A =

[ 1, -2, 3]

[ a, 3, 2]

[ 6, 1, a]

>> D = det(A)

D =

2*a^2 + 6*a - 80

>> vals = solve(D)

vals =

-8

5

>> A(2,1) = vals(1);

>> A(3,3) = vals(1);

>> null(A)

ans =

1

2

1

>> colspace(A)

ans =

[ 1, 0]

[ 0, 1]

[ -2, -1] �

To finish this section, we present an old (1750) method of solving a system of n equations in n unknowns called Cramer’s
rule. It is useful for solving 2×2 and 3×3 systems, but otherwise is too computationally expensive to use for larger systems.
It does have theoretical uses in areas of mathematics such as differential equations.

Theorem 4.6. The system of n linear equations in n unknowns x1, . . . ,xn

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2



70 Numerical Linear Algebra with Applications

...

an1x1 + an2x2 + · · · + annxn = bn

has a unique solution if � = det

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1,n−1 a1n
a21 a22 . . . a2,n−1 a2n
...

...
. . .

...
...

an−1,1 an−1,2
. . . an−1,n−1 an−1,n

an1 an2 . . . an,n−1 ann

⎤⎥⎥⎥⎥⎥⎥⎦ �= 0, namely,

x1 = �1

�
, x2 = �2

�
, . . . , xn = �n

�
,

where �i is the determinant of the matrix formed by replacing the ith column of the coefficient matrix A by the entries
b1, b2, . . . ,bn.

Proof. Suppose the coefficient determinant � �= 0. Then A−1 exists and is given by A−1 = (1/�)adjA, and the system has
the unique solution

⎡⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎦ = A−1

⎡⎢⎢⎢⎣
b1
b2
...
bn

⎤⎥⎥⎥⎦ = 1

�

⎡⎢⎢⎢⎣
C11 C21 . . . Cn1
C12 C22 . . . Cn2
...

...
C1n C2n . . . Cnn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
b1
b2
...
bn

⎤⎥⎥⎥⎦ (4.3)

= 1

�

⎡⎢⎢⎢⎣
b1C11 + b2C21+ · · ·+bnCn1
b1C12 + b2C22+ · · ·+bnCn2
...
b1C1n + b2C2n+ · · ·+bnCnn

⎤⎥⎥⎥⎦ . (4.4)

Consider

�i =

∣∣∣∣∣∣∣∣∣∣∣∣

. . . a1,i−1 b1 a1,i+1 . . .

. . . a2,i−1 b2 a2,i+1 . . .
...

...
...

...
...

...
...

...
...

...
. . . an,i−1 bn an,i+1 . . .

∣∣∣∣∣∣∣∣∣∣∣∣
= b1C1i + b2C2,i + · · · + bnCni. (4.5)

The value of �i in Equation 4.5 is the entry in row i in Equation 4.4. Hence,

⎡⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎦ = 1

�

⎡⎢⎢⎢⎣
�1
�2
...
�n

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

�1/�

�2/�
...
�n/�

⎤⎥⎥⎥⎦ .



Determinants Chapter| 4 71

Example 4.17. Use Cramer’s rule to find the solution to the system

⎡⎣ 1 −1 5
8 3 12
−1 −9 2

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =
⎡⎣ 5
3
1

⎤⎦. We will perform

the calculations using the MATLAB function det and compare the result with the solution using the operator “\.”
>> A = [1 -1 5;8 3 12;-1 -9 2];

>> b = [5 1 3]’;

>> delta = det(A);
>> x1 = det([b A(:,2) A(:,3)])/delta

x1 =

-2.1970

>> x2 = det([A(:,1) b A(:,3)])/delta

x2 =

0.2414

>> x3 = det([A(:,1) A(:,2) b])/delta

x3 =

1.4877

>> A\b

ans =

-2.1970

0.2414

1.4877 �

4.4 APPLICATION: ENCRYPTION

We begin this section with an interesting and useful result about matrices having integer entries. We are able to prove this
from our work with adjoints and determinants.

Theorem 4.7. If an n× n matrix A has all integer entries and det(A) = ±1, then A−1 exists and has all integer entries.

Proof. We have

A−1 = 1

detA
adjA,

where adjA is the adjoint of A. Recall that the adjoint of A is the transpose of the matrix of cofactors of A

adj (A) =

⎡⎢⎢⎢⎣
C11 C21 . . . Cn1
C12 C22 . . . Cn2
...

...
C1n C2n . . . Cnn

⎤⎥⎥⎥⎦ .

Each cofactor Cij= (−1)i+jMij, where Mij is the minor for the entry in row i, column j. In this situation, each minor is the
determinant of a matrix of integer entries, so every cofactor is an integer. Since detA = ±1, it follows that A−1 has only
integer entries.



72 Numerical Linear Algebra with Applications

There are many ways to encrypt a message, and the use of encryption has become particularly significant in recent
years (e.g., due to the explosion of financial transactions on Internet). One way to encrypt or code a message uses invertible
matrices. Consider an n× n invertible matrix A. Convert the message into an n× m matrix B so that AB can be computed.
Send the message generated by AB. The receiving end will need to know A−1 in order to decrypt the message sent using

A−1 (AB) = B.

Keep in mind that whenever an undesired intruder finds A, we must be able to change it. So we should have a mechanical
way of generating simple matrices Awhich are invertible and have simple inverse matrices. Note that, in general, the inverse
of a matrix involves fractions which are not easy to send in an electronic form. The optimal situation is to have both A and
its inverse have integer entries. In fact, we can use Theorem 4.7 to generate such a class of matrices. One practical way is to
start with an upper triangular matrix with entries of±1 on the diagonal and integer entries. Since the determinant of an upper
triangular matrix is the product of its diagonal elements, such a matrix will have determinant ±1. Now use elementary row
operations to alter the matrix. Do not multiply rows with nonintegers while doing elementary row operations. Recall that
adding a multiple of one row to another does not change the value of a determinant, and swapping two rows just changes
the sign of the determinant. Here is an example.

Example 4.18. Consider the matrix ⎡⎣ 1 2 9
0 −1 3
0 0 1

⎤⎦ .

Add the first row to both the second and third rows to obtain⎡⎣ 1 2 9
1 1 12
1 2 10

⎤⎦ .

Now add the second row to the third ⎡⎣ 1 2 9
1 1 12
2 3 22

⎤⎦ .

Finally, add rows two and three together, multiply the sum by −2 and add to the first row. We obtain the matrix

A =
⎡⎣ −5 −6 −591 1 12

2 3 22

⎤⎦ .

Verify that detA = −1. This must be the case since the original upper triangular matrix has determinant −1 and we only
added multiples of one row to another. The inverse of A is

A−1 =
⎡⎣ 14 45 13
−2 −8 −1
−1 −3 −1

⎤⎦ .

Now consider the message
TODAY IS A GOOD DAY

To every letter we will associate a number. An easy way to do that is to associate 0 to a space, 1 to “A,” 2 to “B,” etc. Another
way is to associate 0 to a blank or space, 1 to “A,” −1 to “B,” 2 to “C,” −2 to “D,” etc. Let us use the second choice. We
encode our message as follows:



Determinants Chapter| 4 73

T O D A Y I S A G O O D D A Y

-10 8 -2 1 13 0 5 10 0 1 0 4 8 8 -2 0 -2 1 13

Now we rearrange these numbers into a matrix B. For example, sequence the numbers by columns, adding zeros in the last
column if necessary. The matrix B must have three rows for the product AB to be defined.

B =
⎡⎣ −10 1 5 1 8 0 13

8 13 10 0 8 −2 0
−2 0 0 4 −2 1 0

⎤⎦
Now perform the product AB. We get⎡⎣ −5 −6 −591 1 12

2 3 22

⎤⎦⎡⎣ −10 1 5 1 8 0 13
8 13 10 0 8 −2 0
−2 0 0 4 −2 1 0

⎤⎦ =
⎡⎣ 120 −83 −85 −241 30 −47 −65
−26 14 15 49 −8 10 13
−40 41 40 90 −4 16 26

⎤⎦
The encrypted message to be sent is

120 -26 -40 -83 14 41 -85 15 40 -241 49 90 30 -8 -4 -47 10 16 -65 13 26 �

4.5 CHAPTER SUMMARY

Development of the Determinant Concept

The determinant of an n× nmatrix is a concept used primarily for theoretical purposes and is the basis for the definition of
eigenvalues, the subject of Chapters 5, 18, 19, 22, and 23. The original definition of a determinant is a sum of permutations
with an attached sign. This definition is rarely used to evaluate a determinant. A determinant can be evaluated using a process
known as expansion by minors.

Expansion by Minors

Expansion by minors is a simple way to evaluate the determinant of a 2 × 2 or a 3 × 3 matrix. For larger values of n, the
method is not practical, but we will see it is very useful in proving important results.

The minor, Mij(A), is the determinant of the (n − 1)× (n − 1) submatrix of A formed by deleting the ith row and jth
column of A. Expansion by minors is a recursive process. The determinant of an n × n matrix is a linear combination of
the minors obtained by expansion down any row or any column. By continuing this process, the problem reduces to the
evaluation of 2× 2 matrices, where

det

[
a11 a12
a21 a22

]
= a11a22 − a12a21.

Important properties of determinants include

● detAT = detA
● det (AB) = det (A) det (B)

● If a row or column of A is zero, detA = 0.
● The determinant of an upper or lower triangular matrix is the product of its diagonal elements.
● A cofactor Cij(A) = (−1)i+jMij (A). The adjoint is the transpose of the matrix of cofactors, and it follows that

A−1 = adj (A)

detA
.

Like determinants in general, this result is useful for theoretical purposes. We make use of it in Section 4.4.

Computing a Determinant Using Row Operations

The following facts about determinants allow the computation using elementary row operations.

● If two rows are added, with all other rows remaining the same, the determinants are added, and det (tA) = t det (A)

where t is a constant.
● If two rows of a matrix are equal, the determinant is zero.



74 Numerical Linear Algebra with Applications

● If two rows of a matrix are interchanged, the determinant changes sign.
● If a multiple of a row is subtracted from another row, the value of the determinant is unchanged.

Apply these rules and reduce the matrix to upper triangular form. The determinant is the product of the diagonal elements.
This is howMATLAB computes det(A). Aswe will see in Chapter 8, errors inherent in floating point arithmetic may produce
an answer that is close to, but not equal to the true result.

Using row operations on a determinant, we can show that

● A is nonsingular if and only if det A �= 0;
● A is singular if and only if det A = 0;
● The system Ax = 0 has a nontrivial solution if and only if det A = 0.

Although the chapter developed Cramer’s rule, it should be used for theoretical use only.

Application of Determinants to Encryption

Let A be an n×nmatrix. Using the result A−1 = adj (A)/detA, the inverse of a matrix with integer entries has integer entries.
Form an upper triangular matrix with integer entries, all of whose diagonal entries are±1. Subtract integer multiples of one
row from another and swap rows to “jumble up” the matrix, keeping the determinant to be±1. Find the inverse. Encode the
message as a sequence of integers stored in an n× p matrix B, and transmit AB. Capture the encoded message by forming
A−1 (AB) = B.

4.6 PROBLEMS

4.1 Compute

∣∣∣∣∣∣
1 −1 2
2 3 1
5 1 −1

∣∣∣∣∣∣ using the definition of a determinant as the sum over all permutations of the set {1, 2, 3}.

4.2 Using pencil and paper, evaluate the following determinants:

(a)

∣∣∣∣∣∣
1 −1 5
7 1 0
3 3 2

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣
−1 4 5
9 1 −2
−4 1 3

∣∣∣∣∣∣
4.3 In the matrix A, an x means “any value.” Show that the determinant of A is 0 regardless of the x values.

A =

⎡⎢⎢⎢⎢⎣
x x x x x
0 0 0 x x
0 0 0 x x
0 0 0 x x
0 0 0 x x

⎤⎥⎥⎥⎥⎦ .

4.4 Compute the inverse of the matrix A =
⎡⎣ 1 0 −2
3 1 4
5 2 −3

⎤⎦ by first computing the adjoint matrix.

4.5 Let Pi = (xi, yi),i= 1, 2, 3. If x1, x2, x3 are distinct, show that there is precisely one curve of the form y = ax2+bx+c
passing through P1, P2, and P3.

4.6 By considering the determinant of the coefficient matrix, find a relationship between a and b for which the following
system has exactly one solution:

x− 2y+ bz = 3,

ax+ 2z = 2,

5x+ 2y = 1.

4.7 Use Cramer’s rule to solve the system

−2x+ 3y− z = 1
x+ 2y− z = 4
−2x− y+ z = −3



Determinants Chapter| 4 75

4.8 Show that∣∣∣∣∣∣∣∣
1 1 1 1
r 1 1 1
r r 1 1
r r r 1

∣∣∣∣∣∣∣∣= (1−r)3.

4.9 Find a 3× 3 matrix consisting entirely of values 1 and −1 that has the largest possible determinant.
4.10 Complete Example 4.15 for a = 5.
4.11 Complete Example 4.16 for a = 5.
4.12 Prove that the determinant of an upper triangular matrix is the product of its diagonal elements.
4.13 Prove that if a row of a square matrix A is multiplied by a scalar t, then the determinant of the modified matrix is

t det (A).
4.14 In this problem, you will prove that if two rows of a matrix are interchanged, the determinant changes sign. Represent

the matrix as a column of rows: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1
...
ri
...
rj
...
rn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
By using this representation, explain the validity of each step in the proof.
a. Add row j to row i.
b. Subtract row i from row j.
c. Add row j to row i.
d. Multiply row j by −1, and the proof is complete.

4.15 Prove that if two rows of a matrix are equal, the determinant is zero. Hint: Exchanging the two equal rows causes the
sign to change.

4.16 Using the fact that |AB| = |A| |B| show that if A is invertible, then
∣∣A−1∣∣ = 1/|A|.

4.17 Show that if AT = −A and n is odd, then |A| = 0. Hint: |−A| = (−1)n |A|.
4.18 Show that if A2 + I = 0, then must n be even. Hint:

∣∣A2∣∣ = |A|2 .
4.19 Prove that detA = detAT using mathematical induction.

a. Show the statement is true for n = 2. This is the base case.
b. Assume the statement is true for any n, and show it is true for n+1. Hint: Expansion by minors requires evaluating

the determinants of n× n matrices.
4.20 If A is a real matrix, there is a geometrical interpretation of detA (Figure 4.1). Let P = (x1, y1) and Q = (x2, y2) be

points in the plane, forming a triangle with the origin O= (0, 0).
1. Let (r1, θ1) , (r1, θ2) be the polar coordinate representation of (x1, y1) , (x2, y2), and α = θ2−θ1. Show that apart

from sign, 12

∣∣∣∣ x1 y1
x2 y2

∣∣∣∣ is the area of the triangle OPQ.
2. Find the area of a parallelogram as a determinant.

x

y

Q(x2,y2) P(x1,y1)

O

FIGURE 4.1 Geometrical interpretation of the determinant.



76 Numerical Linear Algebra with Applications

4.6.1 MATLAB Problems

4.21 Each matrix is singular. Verify this using the determinant, and apply the MATLAB command null to find the nullity
of each. What is the rank of A and B?

A =
⎡⎣ 1 19 −122

3 57 −366
−1 −19 122

⎤⎦ , B =
⎡⎣ 1 0.25 −9.25

3 0.75 −27.75
−17 4.25 216.75

⎤⎦
4.22 Evaluate the following determinants:

(a)

∣∣∣∣∣∣
246 427 327
1014 543 443
−342 721 621

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣∣∣
1 2 3 4
−2 1 −4 3
3 −4 −1 2
4 3 −2 −1

∣∣∣∣∣∣∣∣.
4.23 Using the Symbolic Toolbox, express the determinant of the matrix

B =

⎡⎢⎢⎣
1 1 2 1
1 2 3 4
2 4 7 2t+6
2 2 6−t t

⎤⎥⎥⎦
as polynomial in t, and determine the values of t for which B−1 exists.

4.24 Use the Symbolic Math Toolbox to find the column space of each matrix in Problem 4.21.
4.25 Use MATLAB to compute the determinant of

A =

⎡⎢⎢⎢⎢⎣
20 −34 8 12 3
−99 17 23 67 10
1 0 3 9 18
3 5 0 9 11
7 1 53 5 55

⎤⎥⎥⎥⎥⎦ .

4.26 Using MATLAB, execute

>> A = rosser

This creates a matrix we will use numerous times throughout the book for testing purposes.
a. Using rank, verify that the matrix is singular.
b. Compute its determinant using det. Is the output correct?
c. Compute the determinant of A using the Symbolic Toolbox as follows:

>> syms A;

>> A = sym(rosser);
>> det(A)

d. Given the fact that MATLAB uses row operations to compute the determinant in part (b), suggest a reason for the
large difference between the results of (b) and (c).

4.27 The MATLAB command rand(n) builds an n× n matrix containing pseudo random values in the range 0 < x < 1
drawn from the standard uniform distribution. This means that it is equally probable you will obtain a number from
any collection of subintervals of 0 < x < 1 of the same length; for instance, the chance of obtaining a number from
the interval 0.25 ≤ x ≤ 0.35 has the same probability as obtaining a number from the interval 0.60 ≤ x ≤ 0.70. Find
the determinant of randommatrices of order 5, 10, 25, 50, 100, 250, 400, and 500. Does a pattern develop? If you got
Inf as output, what does it mean?

4.28 This interesting problem was described on a MathWorks Web page. The famous Fibonacci numbers are generated
from the sequence

f0 = 0, f1 = 1, fn = fn−1 + fn−2, n ≥ 2.

Most students have had some exposure to complex numbers. If not, consult Appendix A. In the complex number
system, the number i = √−1, so i2 = −1, i3 = −i, i4 = 1, and so forth. MATLAB deals naturally with complex



Determinants Chapter| 4 77

numbers. Create a tridiagonal matrix, with ones on the main diagonal, and i on the first sub and super diagonals with
the anonymous function

fibmat = @(n) eye(n) + diag(repmat(sqrt(-1),n-1,1),1) + diag(repmat(sqrt(-1),n-1,1),-1);

The command spy(A) produces a figure placing “*” in locations that are nonzero and leaving the remainder of the
figure blank. Verify that the matrix has a tridiagonal pattern by executing the following commands.

>> spy(fibmat(5));

>> figure(2);

>> spy(fibmat(10));

>> figure(3);

>> spy(fibmat(25));

Compute the determinants of the sequence of matrices fibmat(1), fibmat(2), . . ., fibmat(10) by executing
the loop

for n = 1:10

det(fibmat(n))

end

Comment on the results.
4.29 In Chapter 11, we will show that if no row interchanges are performed, an n×n matrix can be factored into a product

A = LU, where L is a lower triangular matrix with ones on its diagonal and U is the upper triangular matrix obtained
from Gaussian elimination. For instance, if

A =
⎡⎣ 1 4 3

2 9 12
−1 −9 3

⎤⎦ ,

then

A =
⎡⎣ 1 0 0

2 1 0
−1 −5 1

⎤⎦⎡⎣ 1 4 3
0 1 6
0 0 36

⎤⎦ .

a. Develop a function

function d = ludet(L,U)

that takes the factors L andU of a matrix A and computes detA. Check your function by computing the determinant
of the matrix A using ludet and MATLAB’s det.

b. The function lugauss in the software distribution computes the LU decomposition of a matrix without using row
exchanges. It must be the case that during row elimination, a zero never appears on the diagonal. Create three
matrices, of dimension 3× 3, 4× 4, and 5× 5, and use ludet to compute the determinant of each matrix. Verify
your results using det.

4.30 The n × n Hilbert matrices are defined by H (i, j) = 1/(i+ j− 1), 1 ≤ i, j ≤ n. These matrices are famous because
they are ill-conditioned. A small change in a matrix entry or the right-hand side vector can cause the systemHx = b to
have a very different solution. We will study ill-conditioning in Chapter 10. For now, we will look at the determinants
of Hilbert matrices and their inverses. The MATLAB command hilb(n) builds the n× n Hilbert matrix.
a. Compute the determinant of the Hilbert matrices of order 5, 10, 15, and 25. What appears to happen as the order
increases?

b. It can be shown that the inverse of a Hilbert matrix consists entirely of integers. Compute the inverse of the Hilbert
matrix of order 5.

c. Compute the determinant of the inverse for each of the Hilbert matrices of order 5, 10, 15, and 25. Relate your
results to those of part (a).

4.31 Encode the message “ I LOVE LINEAR ALGEBRA” using the technique described in Section 4.4. Verify that the
coded message decodes correctly.



This page intentionally left blank



Chapter 5

Eigenvalues and Eigenvectors

You should be familiar with

● Solution to homogeneous systems of equations
● Polynomials and their roots
● Nonsingular and singular matrices
● Diagonal matrices

Let A be an n × n matrix. For a large number of problems in engineering and science, it is necessary to find vector v such
that Av is a multiple, λ, of v; in other words, Av = λv. Av is parallel to v, and λ either stretches or shrinks v. The value
λ is an eigenvalue and v is an eigenvector associated with λ. Computing eigenvalues and eigenvectors is one of the most
important problems in numerical linear algebra. Eigenvalues are critical in such fields as structural mechanics, nuclear
physics, biology, the solution of differential equations, computer science, and so on. Eigenvalues play a critical role in the
study of vibrations, where they represent the natural frequencies of a system. When vibrating structures begin to have larger
and larger amplitudes of vibration, they can have serious problems. Some examples include the wobbling of the Millennium
Bridge over the River Thames in London and the collapse of the Tacoma Narrows Bridge in the state of Washington. These
are examples of a phenomenon known as resonance. A mathematical analysis of a general model for vibrating structures
shows that when the system is excited by a harmonic force that depends on time, the system approaches a resonance state
when the forces approach or reach a particular eigenvalue. We will discuss specific applications of eigenvalues at various
places in the remainder of this book.

Note that some applications involve matrices with complex entries and vectors spaces of complex numbers. We do not
deal with matrices of this type in the book; however, many of the techniques we discuss can be adapted for use with complex
vectors and matrices. The reader can consult books such as in Refs. [1, 2, 9] for details.

5.1 DEFINITIONS AND EXAMPLES

If A is an n× n matrix, in order to find eigenvalue λ and an associated eigenvector v, it must be the case that Av = λv, and
this is equivalent to the homogeneous system

(A− λI) v = 0. (5.1)

We know from Theorem 4.5 that

det (A− λI) = 0 (5.2)

in order that the system 5.1 have a nonzero solution. The determinant of A−λI is a polynomial of degree n, so Equation 5.2
is a problem of finding roots of the polynomial

p (λ) = det (A− λI) .

Remark 5.1. A polynomial p (λ) = anλn + an−1λn−1 + · · · + a2λ2 + a1λ+ a0 of degree n has exactly n roots, and any
complex roots occur in conjugate pairs. (If you are unfamiliar with complex numbers, see Appendix A.) The polynomial
may have one or more roots of multiplicity two or more. This means that the polynomial has a factor (x− r)k , 2 ≤ k ≤ n.
The root r is counted k times.

Definition 5.1 officially defines the eigenvalue problem and introduces some terms.

Definition 5.1. If A is an n× nmatrix, the polynomial p (λ) = det (A− λI) is called the characteristic polynomial of A,
and the equation p (λ) = 0 is termed the characteristic equation. If λ is a root of p, it is termed an eigenvalue of A, and if v

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00005-3
Copyright © 2015 Elsevier Inc. All rights reserved. 79



80 Numerical Linear Algebra with Applications

is a nonzero column vector satisfying Av = λv, it is an eigenvector of A. We say that v is an eigenvector corresponding to
the eigenvalue λ.

When multiplied by a matrix A, an arbitrary vector v normally changes direction and length. Eigenvectors are special.
The product Av may expand, shrink, or leave the length of v unchanged, but Av will always point in the same direction as v
or in the opposite direction.

Example 5.1. Let A =
[ −0.4707 0.7481

1.7481 1.4707

]
, w = [

1 −1 ]T , v = [
0.2898 0.9571

]T.
Aw = [ −1.2188 0.2774

]T ,
Av = [

0.5796 1.9142
]T .

Note that Av = [
0.5796 1.9142

]T = 2.0v, and v is an eigenvector of A corresponding to eigenvalue 2.0. Figure 5.1 is a
graph of w, Aw, and v, Av. Note how Aw has a different direction than w, but Av points in the same direction as v. �

The following steps show how to use Definition 5.1 to find the eigenvalues and eigenvectors of an n× n matrix. It must be
noted that in the case of a root, λ, with multiplicity of two or more, there may be only one eigenvector associated with λ. In
practice, the accurate computation of eigenvalues and associated eigenvectors is a complex task and is not generally done
this way for reasons we will explain in later chapters.

Given an n× n matrix A:

1. Find the polynomial p (λ) = det (A− λI).
2. Compute the n roots of p (λ) = 0. These are the eigenvalues λ1, λ2, . . . ,λn of A.
3. For each distinct λi, find an eigenvector xi such that

Axi = λix

by solving

(A− λI) v = 0

If λi is a multiple root, there may be only one associated eigenvector. If not, compute the distinct eigenvectors.

FIGURE 5.1 Direction of eigenvectors.



Eigenvalues and Eigenvectors Chapter| 5 81

Example 5.2. Find the eigenvalues of A =
[
2 1
1 2

]
and all the eigenvectors. The characteristic polynomial is

det

([
2− λ 1
1 2− λ

])
= (2− λ)2 − 1 = λ2 − 4λ + 3, so the eigenvalues are the roots of the characteristic equation

λ2−4λ+3 = (λ− 1)(λ− 3) = 0. Hence, λ = 1 and λ = 3 are the eigenvalues of A. To find the eigenvector corresponding

to λ = 1, solve the homogeneous system

[
2− (1) 1
1 2− (1)

][
x
y

]
=
[
1 1
1 1

][
x
y

]
=
[
0
0

]
, which corresponds to the

equations

x+ y = 0,

x+ y = 0.

These two equations simply say that the sum of x and y must be 0, so x = −y. Consider y to be a parameter that varies
through all real numbers not equal to 0. Consequently, the eigenvectors corresponding to λ = 1 are the vectors of the form[
x
y

]
=
[ −y

y

]
= y

[ −1
1

]
, with y �= 0. Choose y = 1 to obtain a specific eigenvector

[ −1
1

]
.

Taking λ = 3 gives the two equations

−x+ y = 0,

x− y = 0.

These equations require that x = y. Again, considering y to be a parameter,

[
x
y

]
=
[
y
y

]
= y

[
1
1

]
. Let y = 1 to obtain the

eigenvector

[
1
1

]
. �

Summary: The final result is

λ Eigenvectors

1
[ −1

1

]
3

[
1
1

]
�

Although more work is involved, the same procedure can be performed to compute the eigenvalues and corresponding
eigenvectors of a 3× 3 matrix.

Example 5.3. Let A =
⎡⎣ 4 8 3
0 −1 0
0 −2 2

⎤⎦. Determine the characteristic polynomial:
det (A− λI) = det

⎡⎣ 4− λ 8 3
0 −1− λ 0
0 −2 2− λ

⎤⎦
= (4− λ) det

([ −1− λ 0
−2 2− λ

])
= (4− λ) (−1− λ) (2− λ) .

The roots of the characteristic polynomial are λ1 = 4, λ2 = −1, λ3 = 2. We will find three eigenvectors

x1 =
⎡⎣ x11
x21
x31

⎤⎦ , x2 =
⎡⎣ x12
x22
x32

⎤⎦ , x3 =
⎡⎣ x13
x23
x33

⎤⎦ by finding nonzero solutions to

⎡⎣ 4− λ 8 3
0 −1− λ 0
0 −2 2− λ

⎤⎦ x = 0. (5.3)

for each value of λ.



82 Numerical Linear Algebra with Applications

λ1 = 4 in Equation 5.3:

Solve the homogeneous system

⎡⎣ 0 8 3
0 −5 0
0 −2 −2

⎤⎦⎡⎣ x11
x21
x31

⎤⎦ = 0. Using Gaussian elimination, we have

⎡⎣ 0 8 3
0 −5 0
0 −2 −2

⎤⎦−−−−−−−−−−−−→R3 = R3− 2/5 R2 =
⎡⎣ 0 8 3
0 −5 0
0 0 −2

⎤⎦. Thus, x31 = x21 = 0. The first row specifies that (0) x1 + 8 (0) +

3 (0) = 0. The component x11 is not constrained. Any value of x11 will work. Choose x11 = 1 to obtain the eigenvector

x1 =
⎡⎣ 1
0
0

⎤⎦.
λ2 = −1 in Equation 5.3:
The homogeneous system we need to solve is

⎡⎣ 5 8 3
0 0 0
0 −2 3

⎤⎦⎡⎣ x12
x22
x32

⎤⎦ = 0. Exchange rows 2 and 3 to obtain the system⎡⎣ 5 8 3
0 −2 3
0 0 0

⎤⎦⎡⎣ x12
x22
x32

⎤⎦ = 0. The second row of the system specifies that −2x22 + 3x32 = 0, so x22 = 3/2x32. The first row

requires that 5x12+8 (3/2x32)+3x32 = 0, and x12 = −3x32. This gives a general eigenvector of x32
⎡⎣ −33/2

1

⎤⎦. If we choose
x32 = 1, the eigenvector is x2 =

⎡⎣ −33/2
1

⎤⎦.
λ3 = 2 in Equation 5.3:

Solve the homogeneous system

⎡⎣ 2 8 3
0 −3 0
0 −2 0

⎤⎦⎡⎣ x13
x23
x33

⎤⎦ = 0. Gaussian elimination gives

⎡⎣ 2 8 3
0 −3 0
0 −2 0

⎤⎦
−−−−−−−−−−−−−−−→
R3 = R3− (−2/3)R2 =

⎡⎣ 2 8 3
0 −3 0
0 0 0

⎤⎦. The second row requires that x23 = 0. Row 1 specifies that 2x13+8 (0)+3x33 = 0,

and x13 = −3/2x33. This gives the general eigenvector x3 = x33

⎡⎣ −3/20
1

⎤⎦. By choosing x33 = 1, the eigenvector is

x3 =
⎡⎣ −3/20

1

⎤⎦. �

Example 5.4. Let A =
⎡⎣ 6 12 19
−9 −20 −33
4 9 15

⎤⎦. The characteristic polynomial of A is (λ+ 1) (λ− 1)2, so λ = 1 is a multiple

root. To find an eigenvector(s) associated with λ = 1, we need to solve⎡⎣ 5 12 19
−9 −21 −33
4 9 14

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦ .

AfterGaussian elimination, we obtain the upper-triangularmatrix

⎡⎣ 5 12 19
0 3/5 6/5
0 0 0

⎤⎦, and a solution to the upper-triangular
system is x3

⎡⎣ 1
−2
1

⎤⎦. There is only one linearly independent eigenvector associated with λ = 1. �

There are cases where an eigenvalue of multiplicity k does produce k linearly independent eigenvectors.



Eigenvalues and Eigenvectors Chapter| 5 83

Example 5.5. If A =
⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦, the characteristic equation is λ2 (λ− 3), and λ = 0 is an eigenvalue of multiplicity 2.

After performing Gaussian elimination, the homogeneous equation is⎡⎣ 1 1 1
0 0 0
0 0 0

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦ ,

and its solution is x1 = −x2−x3, where x2 and x3 are arbitrary. Thus, any solution of the homogeneous system is of the form

x = c1

⎡⎣ −11
0

⎤⎦+ c2

⎡⎣ −10
1

⎤⎦ .

⎡⎣ −11
0

⎤⎦ and

⎡⎣ −10
1

⎤⎦ are linearly independent eigenvectors. �

Remark 5.2. Note that the matrix in Example 5.5 is symmetric. Whenever an n × n real matrix is symmetric, it has n
linearly independent eigenvectors, even if its characteristic equation has roots of multiplicity 2 or more. This will be proved
in Chapter 19.

5.2 SELECTED PROPERTIES OF EIGENVALUES AND EIGENVECTORS

There are some properties of eigenvalues and eigenvectors you should know, and developing them will support your
understanding of the eigenvalue problem. First, there is a relation between the eigenvalues of a matrix and whether the
matrix is invertible.

Proposition 5.1. An n× n matrix A is singular if and only if it has a 0 eigenvalue.

Proof. If A is singular, by Theorem 4.3, Ax = 0 has a solution x �= 0. Thus, Ax = (0) x = 0, and λ = 0 is an eigenvalue.
If A has a eigenvalue λ = 0, then there exists a vector x �= 0 such that Ax = λx = 0, and the homogeneous system

Ax = 0 has a nontrivial solution. If A is nonsingular, then x = A−10 = 0 is the unique solution. Thus, A is singular.

Note that if v is an eigenvector of A corresponding to eigenvalue λ and α is a constant, then A (αv) = αAv = α (λv) =
λ (αv), and αv is an eigenvector of A. This causes us to suspect that the set of eigenvectors corresponding to λ is a subspace.

Lemma 5.1. Together with 0, the eigenvectors corresponding to λ form a subspace called an eigenspace.

Proof. To show that a set of vectors form a subspace S, we must show that 0 is in S, that αv is in S for any constant α and
any v in S, and that if v1, v2 are in S, then so is v1 + v2. Let S be the set containing the zero vector and all eigenvectors of A
corresponding to eigenvalue λ. By hypothesis, 0 is in S. We already showed that if v is an eigenvector corresponding to λ,
then so is αv for any constant α. If v1 and v2 are eigenvectors of A, then A (v1 + v2) = Av1+Av2 = λ (v1 + v2), and v1+ v2
is in S, so S is a subspace.

The next result will support your understanding of the relationship between eigenvalues and the roots of the characteristic
equation.

Proposition 5.2. If A is an n× n matrix, then det A = �n
i=1λi.

Proof. First assume that all the eigenvalues λ1, λ2, . . . , λn of A are distinct; in other words λk �= λj, k �= j. The
characteristic polynomial p (λ) is of degree n, and is the determinant of



84 Numerical Linear Algebra with Applications

⎡⎢⎢⎢⎢⎢⎢⎣

a11 − λ a12 . . . . . . a1n
a21 a22 − λ . . . . . . a2n
...

...
. . . . . .

...
...

... . . . an−1, n−1 − λ an−1, n
an1 an2 . . . an, n−1 ann − λ

⎤⎥⎥⎥⎥⎥⎥⎦ .

Expansion by minors shows us that the leading term of p (λ) is (−1)n λn. By Remark 5.1,

det (A− λI) = p (λ) = (−1)n (λ− λ1) (λ− λ2) . . . (λ− λn) .

Let λ = 0, and we have det A = (−1n) (−1)n λ1λ2 . . . λn = �n
i=1λi.

Now assume that one or more eigenvalues are repeated. In this case, p (λ) has one or more factors of the form (λ− λi)
k,

where k ≥ 2. Think of such a factor as

(λ− λi1) (λ− λi2) . . . (λ− λik) ,

where λi1 = λi2 = · · · = λik. The same argument we just gave shows that det A = �n
i=1λi.

5.3 DIAGONALIZATION

In this section, we will show that, under the right conditions, we can use the eigenvectors of a matrix to transform it into
a diagonal matrix of eigenvalues. The process is termed diagonalization, and is an important concept in matrix algebra; in
fact, it is critical to developing results such as the singular value decomposition (Chapter 15), and computing eigenvalues
of symmetric matrices (Chapter 19).

Definition 5.2. Matrix B is similar to matrix A if there exists a nonsingular matrix X such that

B = X−1AX.

Example 5.6. Let A =
⎡⎣ 1 −1 2
−2 1 1
−1 3 1

⎤⎦ and X =
⎡⎣ 1 2 1
2 3 3
4 7 6

⎤⎦. Now, X−1 =
⎡⎣ 3 5 −3

0 −2 1
−2 −1 1

⎤⎦ , so

B = X−1AX =
⎡⎣ 14 27 23

1 2 0
−9 −18 −13

⎤⎦
is similar to A. �

Definition 5.3. The n × n matrix A is diagonalizable if it is similar to a diagonal matrix. We also say that A can be
diagonalized.

Example 5.7. Let A =
⎡⎣ −3 6 −2
−12 7 0
−24 16 −1

⎤⎦, and X be the matrix in Example 5.6. Then,

X−1AX =
⎡⎣ 1 0 0
0 −1 0
0 0 3

⎤⎦ ,

and A is diagonalizable. �

Remark 5.3. Determining whether a matrix can be diagonalized and performing the diagonalization requires that we
prove some results.

The fact that det (AB) = det (A) det (B) can be used to show the relation between the determinant of A and that of its
inverse.



Eigenvalues and Eigenvectors Chapter| 5 85

Lemma 5.2. If A is invertible, then det(A) det(A−1) = 1.

Proof. Since A is invertible, AA−1 = I. The determinant of a product is the product of the determinants, so

det(AA−1) = det(A) det(A−1) = det(I) = 1.

We can use Lemma 5.2 to prove the following useful result.

Theorem 5.1. Two similar matrices have the same eigenvalues.

Proof. Assume A and B are similar matrices. Then, B = X−1AX for some nonsingular matrix X. It follows that

det (B− λI) = det
(
X−1AX − λX−1X

)
= det

(
X−1 [A− λI]X

)
= det

(
X−1

)
det (A− λI) det (X) = det

(
X−1

)
det (X) det (A− λI) = det (A− λI) .

A and B have the same characteristic polynomial and thus the same eigenvalues.

If A is diagonalizable, then there exist matrices X and D such that D = X−1AX. A is similar to D and thus has the same
eigenvalues as D. Now, D has the form

D =

⎡⎢⎢⎢⎢⎢⎣
d11

d22
. . .

dn−1, n−1
dnn

⎤⎥⎥⎥⎥⎥⎦ ,

so the eigenvalues of D are the roots of

det

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
d11 − λ

d22 − λ

. . .
dn−1, n−1 − λ

dnn − λ

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ = (d11 − λ) (d22 − λ) . . . (dnn − λ) .

The eigenvalues of D are {d11, d22, . . . , dnn}.
The next result is useful in its own right, and we will have occasion to apply it a number of times in this book.

Theorem 5.2. Eigenvectors v1, v2, . . . , vi that correspond to distinct eigenvalues are linearly independent.

Overview:

The proof is algebraic. If c1v1 + c2v2 + · · · + civi = 0 and we show that ck = 0, 1 ≤ k ≤ i, then v1, v2, . . . , vi are linearly
independent. Pairs of equations are created and subtracted, and in the process vi is eliminated. Continue the process and eliminate
vi−1 and so forth until arriving at an equation Kc1v1 = 0, K �= 0. Since v1 �= 0, c1 = 0. The same process can be used to show
that c2 = 0, . . . , ci = 0.

Proof. Suppose that

c1v1 + c2v2 + · · · + civi = 0. (5.4)

Multiply by A, noting that Avi = λivi, to obtain

c1λ1v1 + c2λ2v2 + · · · + ciλivi = 0. (5.5)

Multiply Equation 5.4 by λi and subtract from Equation 5.5 to obtain Equation 5.6 that does not involve vi.

c1 (λ1 − λi) v1 + c2 (λ2 − λi) v2 + c3 (λ3 − λi) v3
+ · · · + ci−1 (λi−1 − λi) vi−1 = 0. (5.6)



86 Numerical Linear Algebra with Applications

Multiply Equation 5.6 by A to obtain

c1 (λ1 − λi) λ1v1 + c2 (λ2 − λi) λ2v2 + c3 (λ3 − λi) λ3v3
+ · · · + ci−1 (λi−1 − λi) λi−1vi−1 = 0. (5.7)

Multiply Equation 5.6 by λi−1 and subtract from Equation 5.7 to get an equation not involving vi−1.

c1 (λ1 − λi) (λ1 − λi−1) v1 + c2 (λ2 − λi) (λ2 − λi−1) v2
+ · · · + ci−2 (λi−2 − λi) (λi−2 − λi−1) vi−2 = 0.

If we continue by eliminating vi−2, vi−3, and so forth until eliminating v2, we are left with

(λ1 − λ2) (λ1 − λ3) . . . (λ1 − λi) c1v1 = 0.

Now (λ1 − λ2) �= 0, (λ1 − λ3) �= 0, . . ., (λ1 − λi) �= 0 by hypothesis, and so c1 = 0. In a similar fashion, we can show
that c2 = c3 = · · · = ci = 0, and thus v1, v2, . . . , vi are linearly independent.

If A has n linearly independent eigenvectors, we are now in a position to develop a method for diagonalizing A.

Theorem 5.3. Suppose the n× n matrix A has n linearly independent eigenvectors v1, v2, . . . , vn. Place the eigenvectors
as columns of the eigenvector matrix X = [v1, v2, . . . vn]. Then

X−1AX = D =

⎡⎢⎢⎢⎣
λ1 0

λ2
. . .

0 λn

⎤⎥⎥⎥⎦ ,

and A can be diagonalized.

Proof.

AX = A
[
v1 v2 . . . vn

] = [
Av1 Av2 . . . Avn

]
= [

λ1v1 λ2v2 . . . λnvn
]

= [
v1 v2 . . . vn

]
⎡⎢⎢⎢⎣

λ1 0
λ2

. . .
0 λn

⎤⎥⎥⎥⎦ = XD. (5.8)

Since v1, v2, . . . , vn are linearly independent, X is invertible. From Equation 5.8, we have

D = X−1AX.

To diagonalize matrix A we need to know that it has n linearly independent eigenvalues. Having distinct eigenvalues
does the trick.

Theorem 5.4. If an n× n matrix A has distinct eigenvalues, it can be diagonalized.

Proof. Let v1, v2, . . . , vn be eigenvectors of A corresponding to eigenvalues λ1, λ2, . . . , λn, respectively. By Theorem 5.2,
v1, v2, . . . , vn are linearly independent and, by Theorem 5.3, A can be diagonalized.

Remark 5.4. If the matrix does not have n linearly independent eigenvectors, it cannot be diagonalized.

Example 5.8. Let A =
⎡⎣ 4 8 3
0 −1 0
0 −2 2

⎤⎦ be the matrix of Example 5.3. We found that the eigenvalues are λ1 = 4, λ2 = −1,

and λ3 = 2. By Theorem 5.4, A can be diagonalized. In Example 5.3, we found eigenvectors v1 =
⎡⎣ 1
0
0

⎤⎦, v2 =
⎡⎣ −3
3/2
1

⎤⎦,



Eigenvalues and Eigenvectors Chapter| 5 87

and v3 =
⎡⎣ −3/20

1

⎤⎦ corresponding to λ1, λ2, and λ3, respectively. To diagonalize A, form the eigenvector matrix

X = [
v1 v2 v3

] =
⎡⎣ 1 −3 −3/2
0 3/2 0
0 1 1

⎤⎦ .

It is straightforward to verify that X−1AX =
⎡⎣ 4 0 0
0 −1 0
0 0 2

⎤⎦. �

Remark 5.2 states that a real symmetric matrix A always has n linearly independent eigenvectors and so can be
diagonalized. If the characteristic equation of a nonsymmetric matrix A has a factor (λ− λi)

k , k ≥ 2 there must be k
linearly independent eigenvectors associated with eigenvalue λi for A to be diagonalizable.

Example 5.9. Let A =
⎡⎣ 6 12 19
−9 −20 −33
4 9 15

⎤⎦ be the matrix of Example 5.4. The characteristic polynomial of A is

(λ+ 1) (λ− 1)2, so λ = 1 is a multiple eigenvalue with multiplicity k = 2. We found that there is only one linearly
independent eigenvector associated with λ = 1, so A cannot be diagonalized. �

In summary, the procedure for diagonalizing a matrix A can be done in series of steps:

1. Form the characteristic polynomial p (λ) = det (A− λI) of A.
2. Find the roots of p. If there are complex roots, the matrix cannot be diagonalized in Rn×n.
3. For each eigenvalue λi of multiplicity ki, find ki linearly independent eigenvectors. If this is not possible,A cannot

be diagonalized.
4. Form the matrix X = [

v1 v2 . . . vn−1 vn
]
whose columns are eigenvectors of A corresponding to eigenvalues

λ1, λ2, . . . λn−1, λn . Then, D = X−1AX, where D is the diagonal matrix with λ1, λ2, . . . λn−1, λn on its
diagonal.

Example 5.10. Let A =
⎡⎣ −5 2 0

0 1 0
2 −1 1

⎤⎦. Its eigenvalues are λ1 = 1, λ2 = 1, λ3 = −5. For A to be diagonalizable, there

must be two linearly independent eigenvectors corresponding to λ = 1. We must solve the homogeneous system⎡⎣ −6 2 0
0 0 0
2 −1 0

⎤⎦ x = 0.

Its solution space is all multiples of

⎡⎣ 0
0
1

⎤⎦. This subspace has dimension 1, so A is not diagonalizable. �

Example 5.11. Let A =

⎡⎢⎢⎣
1 0 0 0
4 3 0 0
−2 2 0 0
5 −1 0 0

⎤⎥⎥⎦. By performing expansion by minors down column 4, we see that the

determinant of A is 0. Thus, A is not invertible and has an eigenvalue of 0. In fact, the eigenvalues of A are λ1 = λ2 = 0,
λ3 = 3, λ4 = 1, so the multiplicity of the 0 eigenvalue is 2. The homogeneous system⎡⎢⎢⎣

1− 0 0 0 0
4 3− 0 0 0
−2 2 0− 0 0
5 −1 0 0− 0

⎤⎥⎥⎦ x = 0



88 Numerical Linear Algebra with Applications

can be row-reduced to the problem ⎡⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ x = 0,

which has the two solutions x1 = [
0 0 1 0

]T, x2 = [
0 0 0 1

]T. Now, [ 0 −3 −2 1
]T is an eigenvector

corresponding to λ3 = 3, and
[ −1/6 1/3 1 −7/6 ]T corresponds to λ4 = 1. A can be diagonalized by

X =

⎡⎢⎢⎣
0 0 0 −1/6
0 0 −3 1/3
1 0 −2 1
0 1 1 −7/6

⎤⎥⎥⎦ . �

Remark 5.5. The procedure we have presented for diagonalizing a matrix is based upon finding the roots of the
characteristic equation. As we will see in the beginning of Chapter 10, the procedure is never done this way in practice
because the roots of a polynomial are generally difficult to compute accurately.

5.3.1 Powers of Matrices

If a matrix A can be diagonalized, computing An is greatly simplified. Since D = X−1AX, A = XDX−1, and

A2 =
(
XDX−1

) (
XDX−1

)
= (XD) I

(
DX−1

)
= XD2X−1.

Continuing, we have

A3 = A2A =
(
XD2X−1

)(
XDX−1

)
= XD3X−1,

and in general by mathematical induction (Appendix B)

An = XDnX−1.

Example 5.12. The matrix F =
[
1 1
1 0

]
is called the Fibonacci matrix because its powers can be used to compute the

Fibonacci numbers

f0 = 0, f1 = 1,

fn = fn−1 + fn−2, n ≥ 2.

The first few numbers in the sequence are 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89. F is symmetric, so it can be diagonalized. The
eigenvalues of F are (verify)

λ1 = 1+√5
2

, λ2 = 1−√5
2

,

and the corresponding eigenvectors are (verify)

v1 =
[

1+√5
2

1

]
, v2 =

[
1−√5
2

1

]
.

The eigenvalue (1+√5)/2 = 1.61803 . . . is called the Golden ratio and was known to the ancient Greeks. Some artists
and architects believe the Golden ratio makes the most pleasing and beautiful shape. Using the eigenvalues and eigenvectors
of F, we have

F =
[

1+√5
2

1−√5
2

1 1

][
1+√5
2 0

0 1−√5
2

][
1+√5
2

1−√5
2
√
5

1 1

]−1

=
[

1+√5
2

1−√5
2

1 1

][
1+√5
2 0

0 1−√5
2

]⎡⎣ 1√
5
− 1−√5

2
√
5

− 1√
5

1+√5
2
√
5

⎤⎦ .



Eigenvalues and Eigenvectors Chapter| 5 89

Now Fn =
[

1+√5
2

1−√5
2

1 1

]⎡⎣
(
1+√5
2

)n
0

0
(
1−√5
2

)n
⎤⎦⎡⎣ 1√

5
− 1−√5

2
√
5

− 1√
5

1+√5
2
√
5

⎤⎦. Using MATLAB to compute F50 gives

[
20365011074 12586269025
12586269025 7778742049

]
.

It can be shown that

Fn =
[
fn+1 fn
fn fn−1

]
,

and

fn = 1√
5

⎡⎣(1+√5
2

)n+1
−
(
1−√5

2

)n+1⎤⎦ .

The latter formula is quite remarkable since each term in the formula involves
√
5. From F50, we deduce that f51 =

20365011074, f50 = 12586269025, and f49 = 7778742049. �

5.4 APPLICATIONS

In the introduction of this chapter, we noted that eigenvalues and eigenvectors have very significant applications to
engineering and science. In this section, two applications are outlined. Later in this book, when we have more understanding
of eigenvalues and eigenvectors, other applications will be presented in more detail.

5.4.1 Electric Circuit

In Section 2.8, we solved for the currents in a circuit that involved three batteries and four resistors (Figure 2.4). The resistors
obey Ohm’s Law, V = RI, where V is the voltage, R is the resistance, and I is the current. To determine the currents, we had
to solve a system of linear algebraic equations. We will now add two inductors to the circuit (Figure 5.2). The relationship
between the voltage v (t) across an inductor with inductance L and the current x (t) passing through it is described by the
relation v (t) = Ldx/dt. In other words, the voltage across an inductor is proportional to the rate of change of the current.
As a result, the problem of determining the currents becomes a system of differential equations

x1 − x3 + x2 = 0,

(R1 + R4) x1 + R2x3 + L2
dx1
dt
= V1 − V2,

R2x3 + R3x2 + L1
dx2
dt
= V3 − V2.

Choose the following values for the batteries, the resistors, and the inductors.

Components V1 V2 V3 R1 R2 R3 R4 L1 L2
2V 3V 5V 1
 2
 5
 3
 1H 1H

FIGURE 5.2 Circuit with an inductor.



90 Numerical Linear Algebra with Applications

The equations for current flow then become

x1 − x3 + x2 = 0,

4x1 + 2x2 + dx1
dt
= −1,

2x2 + 5x3 + dx2
dt
= 2.

Solving for x3 in terms of x1 and x2 results in the following system of differential equations:

dx1
dt
= −4x1 − 2x2 − 1,

dx2
dt
= −5x1 − 7x2 + 2,

which after conversion to matrix form is
dx

dt
= Ax+ b, (5.9)

where A =
[ −4 −2
−5 −7

]
and b =

[ −1
2

]
.

To find the general solution to a 2× 2 system of first-order differential equations with constant coefficients, first find a
general solution to the homogeneous system

dxh
dt
= Axh, (5.10)

and then determine a particular solution, xp (t) to Equation 5.9. The function x (t) = xh (t) + xp (t) is a solution to
Equation 5.9, since

dx

dt
= dxh

dt
+ dxp

dt
= Axh (t) + (

Axp (t)+ b
) = A

(
xh (t)+ xp (t)

)+ b = Ax+ b.

For a proof that x (t) is a general solution to Equation 5.9, see Ref. [10] or any book on elementary differential equations.
To determine a general solution to Equation 5.9, let xh (t) = v f (t) ,where v is a vector and f varies with time. Substituting

xh (t) into Equation 5.10 results in

vf ′ (t) = f (t) Av,

so

Av =
(
f ′ (t)
f (t)

)
v.

For a fixed t, this is an eigenvalue problem, where λ = f ′ (t)/f (t). If the eigenvalues of A are distinct, there are two
eigenvalues λ1 and λ2 corresponding to linearly independent eigenvectors v1 and v2. For i = 1, 2, let

λi = f ′ (t)
f (t)

,

so

f ′ (t) = λi f (t) ,

for which a solution is

f (t) = cie
λit.

Thus, the general solution to the homogeneous equation (5.10) is

xh (t) = c1v1eλ1t + c2v2eλ2t.

It remains to determine a particular solution xp (t). The right-hand side of Equation 5.9 contains the constant vector b, so we
will try a solution of the form xp (t) = w, where w is a constant vector. Substituting this into Equation 5.9 gives 0 = Aw+ b
and, assuming A is nonsingular, w is the unique solution to

Aw = −b.



Eigenvalues and Eigenvectors Chapter| 5 91

We now have the general solution

x (t) = c1v1e
λ1t + c2v2e

λ2t + w,

and are able to solve our problem

dx

dt
=
[ −4 −2
−5 −7

][
x1
x2

]
+
[ −1

2

]
.

The eigenvalues of A are λ1 = −2 and λ2 = −9, with corresponding eigenvectors v1 =
[ −1

1

]
and v2 =

[
2
5

1

]
, so

xh (t) = c1v1e−2t + c2v2e−9t.

To find xp (t), solve the system

Aw =
[

1
−2

]
.

The unique solution is w =
[ −0.61111

0.72222

]
, and so the general solution is

x (t) = c1e
−2t

[ −1
1

]
+ c2e

−9t
[

2
5

1

]
+
[ −0.61111

0.72222

]
.

Assume that at t = 0, x1 (0) = x2 (0) = 0, so

c1

[ −1
1

]
+ c2

[
2
5

1

]
+
[ −0.61111

0.72222

]
= 0,

that results in the system [
−1 2

5

1 1

][
c1
c2

]
=
[

0.61111
−0.72222

]
,

whose solution is

c1 = −0.64286, c2 = −0.079365.
The solution to Equation 5.9 is

x (t) = −0.64286 e−2t
[ −1

1

]
− 0.079365 e−9t

[
2
5

1

]
+
[ −0.61111

0.72222

]
,

and the solution to the circuit problem is

x1 (t) = 0.64286 e−2t − 0.031746 e−9t − 0.61111,

x2 (t) = −0.64286 e−2t − 0.079365 e−9t + 0.72222,

x3 (t) = −0.11111e−9t + 0.11111,

whose graph is shown in Figure 5.3.
Note that the solution to the homogeneous equation (the transient solution) dies out quickly (Figure 5.3), leaving the

particular solution (the steady state).

5.4.2 Irreducible Matrices

Our aim in Section 5.4.2 is to show how the eigenvalue problem can be used to create a ranking method. In our case, we
will develop a simple method for ranking sports teams, but more advanced methods of ranking using eigenvalues are in use.
For instance, sophisticated methods are used to rank NFL teams. Many of these ranking methods require that the matrix be
irreducible.



92 Numerical Linear Algebra with Applications

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

x i
(t

)

Currents in the RL Circuit

x2 (t)
x3 (t)

x1 (t)

FIGURE 5.3 Currents in the RL circuit.

Definition 5.4. An n × n matrix A is reducible if its indices 1 to n can be divided into two disjoint nonempty sets
S = {i1, i2, . . . , iα}, T =

{
j1, j2, . . . , jβ

}
, α + β = n, such that

aip, jq = 0,

for 1 ≤ p ≤ α and 1 ≤ q ≤ β.

Example 5.13. Let A =

⎡⎢⎢⎢⎢⎣
0 0 1 0 0
1 0 0 2 3
8 0 0 0 9
5 0 0 0 0
0 0 0 12 0

⎤⎥⎥⎥⎥⎦. Let S = {1, 3, 4, 5} and T = {2}. Now, a12 = a32 = a42 = a52 = 0, so A is

reducible. �

For a matrix A to be irreducible, it must not be possible to perform such a partitioning. We will discuss two ways
other using the definition to show that a matrix is irreducible, one involving simple graph theory, and the other an algebraic
approach. For the graph approach, let the set V = {1, 2, . . . , n} and create vertices labeled “1,” “2,” . . ., “n.” Connect vertex
i to vertex j by a directed arc when aij �= 0. Such a structure is called a digraph. For instance, consider the matrix T

T =

⎡⎢⎢⎢⎢⎣
0 1 0 1 0
1 0 0 0 1
0 1 0 1 1
0 0 1 0 1
0 0 1 0 0

⎤⎥⎥⎥⎥⎦ . (5.11)

It is convenient to label the rows and columns:

T =

1 2 3 4 5
1 0 1 0 1 0
2 1 0 0 0 1
3 0 1 0 1 1
4 0 0 1 0 1
5 0 0 1 0 0

Figure 5.4 is the digraph for T.



Eigenvalues and Eigenvectors Chapter| 5 93

5
4

3

21

FIGURE 5.4 Digraph of an irreducible matrix.

A matrix is irreducible if beginning at any vertex, arcs can be followed to any other vertex, so that the partitioning in
Definition 5.4 is not possible. This type of structure is called a strongly connected digraph. Our matrix T is irreducible.

The matrices we deal with for ranking purposes will consist entirely of nonnegative elements (all entries ≥ 0). Such
a matrix A is said to be nonnegative, and we write A ≥ 0. If all the elements of A are positive, then A > 0. An
algebraic approach to verify that a nonnegative matrix is irreducible is specified by the following theorem. For a proof, see
Ref. [11].

Theorem 5.5. A is a nonnegative irreducible n× n matrix if and only if

(I + A)n−1 > 0.

Example 5.14. Perform this computation for the matrix T (5.11) and for the matrix A of Example 5.13.

(I + T)4 =

⎡⎢⎢⎢⎢⎣
9 14 17 14 22
9 13 14 12 19
9 18 26 18 32
5 13 22 14 26
4 9 14 9 17

⎤⎥⎥⎥⎥⎦ , (I + A)4 =

⎡⎢⎢⎢⎢⎣
9 0 8 4 7
19 1 12 11 9
12 0 9 7 8
8 0 7 2 4
7 0 4 4 2

⎤⎥⎥⎥⎥⎦
T is irreducible and A is not. �

Now we need to see how eigenvalues/eigenvectors are connected with irreducible matrices. The key is the Perron-
Frobenius theorem for irreducible matrices (for a proof, see Ref. [12]). In the theorem, an eigenvector of matrix A is said to
be simple if its corresponding eigenvalue is not a multiple root of the characteristic equation for A.

Theorem 5.6. If the n× n matrix A has nonnegative entries, then there exists an eigenvector r with nonnegative entries,
corresponding to a positive eigenvalue λ. Furthermore, if the matrix A is irreducible, the eigenvector r has strictly positive
entries, is unique and simple, and the corresponding eigenvalue is the largest eigenvalue of A in absolute value.

You know how to compute the distance between two vectors. If v is a vector in Rn, then the length of v is written as

length (v) =
√
v21 + v22 + · · · + v2n. The eigenvector r in Theorem 5.6 is computed by the formula

r = lim
n−→∞

Anr0
length (Anr0)

,

for any nonnegative vector r0. For the purposes of computing the ranking vector, the book software distribution contains
a MATLAB function, perronfro, that takes the matrix as an argument and returns an approximation to r and the
corresponding eigenvalue λ. This process of computing an eigenvector is called the power method and will be discussed in
Chapter 18.

Example 5.15. The matrix T (5.11) is irreducible, and T ≥ 0, so the Perron-Frobenius theorem applies. The following
MATLAB statements find the unique eigenvector and the corresponding largest eigenvalue in magnitude.



94 Numerical Linear Algebra with Applications

>> [r lambda] = perronfro(T)

r =

0.4366

0.3829

0.5945

0.4643

0.3064

lambda =

1.9404 �

5.4.3 Ranking of Teams Using Eigenvectors

Have you ever wondered how the Google search engine orders the results of a search? It uses a very large matrix and
applies the PageRank process, which involves computing eigenvectors. We will not attempt to explain the process (see
Refs. [13, 14]) but rather will present a much simpler procedure that is related to the PageRank process.

This discussion derives from Ref. [12], and the paper presents other ranking schemes. The problem is to rank things in
order of importance based on some measure of the influence that they have over each other. Suppose that a set of n football
teams represented by variables xi, 1 ≤ i ≤ n, are to be ranked. We assume that each team played every other team, and
that elements

{
rij
}
are weights used in ranking, where i refers to team i, j to team j and rii = 0. The ranking of team i is

proportional to the sum of the rankings of the remaining teams weighted by rij, so

xi = k
n∑
j=1

rijxj, 1 ≤ i ≤ n, (5.12)

where k is the constant of proportionality. We can write Equations 5.12 in the matrix form kRx = x, where R = [
rij
]
. This

is an eigenvalue/eigenvector problem!

Rx = 1

k
x. (5.13)

Theorem 5.6 applies to our eigenvalue problem 5.13 if the matrix R is irreducible. We have the problem of defining the rij
so this is the case. There are many ways to do this, the simplest of which is to let rij = 1 if team i defeats team j or rij = 0
if team i loses to team j. The problem with this assignment is that the losing team gets no credit at all if the score is close,
and the winning team gets no extra benefit if it scores many more points than the losing team. Also, this assignment will
result in a row of 0s if a team loses all of its games, and such a matrix is not irreducible (convince yourself of this). A better
approach is to base the value of rij on the score of the game. Let Sij be the number of points scored by team i when it played
team j, and define rij = Sij/(Sij + Sji). This is an improvement but has the problem that if a game ends in a score like 6-0,
the losing team gets no credit at all even though the score was close. We will settle on the following definition of rij:

rij =
⎧⎨⎩

Sij + 1

Sij + Sji + 2
, i �= j,

0, i = j.
(5.14)

The losing team gets some credit, there cannot be a zero row, and so R will be irreducible. For an example, assume that
eight teams played each other and Table 5.1 contains the scores. For instance, when teams 1 and 2 played, team 1 scored
14 points and team 2 scored 7 points.

Applying Equation 5.14 to the data in Table 5.1 gives the matrix

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.6522 0.3333 0.5806 0.4717 0.2000 0.4800 0.4286
0.3478 0.0000 0.3191 0.7442 0.6133 0.1071 0.5556 0.6304
0.6667 0.6809 0.0000 0.5513 0.1818 0.3000 0.2222 0.5303
0.4194 0.2558 0.4487 0.0000 0.4286 0.8000 0.4815 0.5000
0.5283 0.3867 0.8182 0.5714 0.0000 0.2632 0.3333 0.6000
0.8000 0.8929 0.7000 0.2000 0.7368 0.0000 0.4375 0.8000
0.5200 0.4444 0.7778 0.5185 0.6667 0.5625 0.0000 0.5814
0.5714 0.3696 0.4697 0.5000 0.4000 0.2000 0.4186 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The book software distribution contains a function rankmatrix that takes the matrix S of scores and returns the ranking
matrix R obtained by applying Equation 5.14. Then apply the function perronfro to R to obtain the ranking vector.



Eigenvalues and Eigenvectors Chapter| 5 95

TABLE 5.1 Ranking Teams

Team 1 2 3 4 5 6 7 8

1 0 14 3 17 24 0 35 2

2 7 0 14 31 45 2 29 28

3 7 31 0 42 7 17 7 34

4 12 10 34 0 20 31 12 14

5 27 28 35 27 0 14 15 20

6 3 24 41 7 41 0 13 35

7 38 23 27 13 31 17 0 49

8 3 16 30 14 13 8 35 0

Example 5.16. Assuming the scores in Table 5.1, the following command sequence finds the ranking vector. The largest
component of the ranking vector is the top-rated team, the second largest the second rated team, and so forth.

>> R = rankmatrix(S);

>> [r lambda] = perronfro(R)

r =

0.3198

0.3330

0.3134

0.3506

0.3448

0.4404

0.4050

0.2981

lambda =

3.9342

By looking at the vector r, we see that the teams are ranked from first to last as follows:

6 7 4 5 2 1 3 8
�

5.5 COMPUTING EIGENVALUES AND EIGENVECTORS USING MATLAB

The computation of eigenvalues and eigenvectors in MATLAB is done by the function eig(A). To obtain the eigenvalues
and associated eigenvectors, call it using the format

>> [V,D] = eig(A);

D is a diagonal matrix of eigenvalues and V is a matrix whose columns are the corresponding eigenvectors; for instance, if
the eigenvalue/eigenvector pairs are

λ1 = −12.2014, v1 =
⎡⎣ 0.0278

0.4670
−0.8838

⎤⎦ ,

λ2 = 1.3430,

⎡⎣ 0.9925
0.0357
0.1167

⎤⎦ ,

λ3 = 5.8584,

⎡⎣ 0.5911
0.7333
0.3359

⎤⎦ ,



96 Numerical Linear Algebra with Applications

then

V =
⎡⎣ 0.0278 0.9925 0.5911

0.4670 0.0357 0.7333
−0.8838 0.1167 0.3359

⎤⎦
and

D =
⎡⎣ −12.2014 0 0

0 1.3430 0
0 0 5.8584

⎤⎦ .

If you want only the eigenvalues, call eig as follows:

>> E = eig(A);

Example 5.17. Compute the eigenvalues and eigenvectors for the matrix B =
⎡⎣ 1 6 3
−1 4 9
12 35 1

⎤⎦ �.

>> [V E] = eig(B)

V =

0.0118 0.9119 0.2500

0.4211 -0.3220 0.4278

-0.9069 0.2545 0.8686

E =

-15.4092 0 0

0 -0.2812 0

0 0 21.6905

>> eig(B)

ans =

-15.4092

-0.2812

21.6905 �

5.6 CHAPTER SUMMARY

Defining Eigenvalues and Their Associated Eigenvectors

λ is an eigenvalue of n × n matrix A, and v �= 0 is an eigenvector if Av = λv; in other words, Av is parallel to v and either
shrinks or contracts it. The relationship Av = λv is equivalent to (A− λI) v = 0, and in order for there to be a nontrivial
solution, we must have

det (A− λI) = 0.

This is called the characteristic equation, and the polynomial

p (λ) = det (A− λI)

is the characteristic polynomial. The eigenvalues are the roots of the characteristic polynomial, and an eigenvector associated
with an eigenvalue λ is a solution to the homogeneous system

(A− λI) v = 0.

The process of finding the eigenvalues and associated eigenvectors would seem to be

Locate the roots λ1, λ2, . . . ,λn of p and find a nonzero solution to (A− λiI) vi = 0 for each λi.

There is a serious problem with this approach. If p has degree five or more, the eigenvalues must be approximated using
numerical techniques, since there is no analytical formula for roots of such polynomials. We will see in Chapter 10 that
polynomial root finding can be difficult. A small change in a polynomial coefficient can cause large changes in its roots.



Eigenvalues and Eigenvectors Chapter| 5 97

Selected Properties of Eigenvalues and Eigenvectors

A matrix with a 0 eigenvalue is singular, and every singular matrix has a 0 eigenvalue. If we can find the eigenvalues of A
accurately, then detA = ∏n

i=1 λi. If we happen to need the determinant, this result can be useful.

Matrix Diagonalization

Square matrices A and B are similar if there exists an invertible matrix X such that B = X−1AX, and similar matrices have
the same eigenvalues. The eigenvalues of A are the diagonal elements of B, and we are said to have diagonalized A. As we
will see in later chapters, diagonalization is a primary tool for developing many results.

To diagonalize a matrix requires that we find n linearly independent eigenvectors. If the matrix has n distinct eigenvalues,
then it has a basis of n eigenvectors. Form X by making its columns the eigenvectors, keeping the eigenvalues in the same
order in the diagonal matrix. If a matrix is symmetric, it has n linearly independent eigenvectors, even in the presence
of eigenvalues of multiplicity two or more. Furthermore, the matrix X is orthogonal. If a matrix does not have n linearly
independent eigenvectors, it cannot be diagonalized.

If a matrix A is diagonalizable, then it is simple to compute powers of A, since

Ak = XDkX−1 = X

⎡⎢⎢⎢⎣
σ k1

σ k2
. . .

σ kn

⎤⎥⎥⎥⎦X−1.

Applications

The applications of eigenvalues are vast, including such areas as the solution of differential equations, structural mechanics,
and the study of vibrations, where they represent the natural frequencies of a system.

In electrical engineering, when a circuit contains resistors, inductors, and batteries, there results a system of first-order
differential equations of the form dx/dt = Ax+ b, and the eigenvalues of A are required for the solution.

A very interesting application of eigenvalues and eigenvectors is in the theory of ranking. The text provides a simple
example of ranking teams in a tournament.

Using MATLAB to Compute Eigenvalues and Eigenvectors

The computation of eigenvalues or both eigenvalues and eigenvectors using MATLAB is straightforward. To compute just
the eigenvalues, use the format

>> E = eig(A);

and to find the eigenvectors and a diagonal matrix of eigenvalues, use

>> [V,D] = eig(A);

If A has distinct eigenvalues, then V−1AV = D. If A has n linearly independent eigenvectors, this is also true. If A is
symmetric, then things are even nicer, since PTAP = D, where P is orthogonal.

5.7 PROBLEMS

5.1 Find the eigenvalues and associated eigenvectors for the matrix

[
1 3
0 9

]
.

5.2 Find the eigenvalues and associated eigenvectors for the matrix

⎡⎣ 1 2 1
6 −1 0
−1 −2 −1

⎤⎦.
5.3 Let A =

⎡⎣ 1 2 1
0 2 1
3 0 2

⎤⎦. Verify that (A−1)T = (
AT
)−1

.



98 Numerical Linear Algebra with Applications

5.4 Let A =
[
1 4
2 3

]
, B =

[ −1 7
1 −4

]
. Verify that AB and BA have the same eigenvalues.

5.5 Show that the following properties hold for similar matrices A and B.
a. A is similar to A.
b. If B is similar to A, then A is similar to B.
c. If A is similar to B and B is similar to C, then A is similar to C; in other words, similarity is transitive.

5.6 Let A =
⎡⎣ 1/2 1/2 0
1/4 1/4 1/2
1/4 1/4 1/2

⎤⎦ .

a. Verify that det(A− λI), the characteristic polynomial of A, is given by(λ− 1)λ(λ− 1
4 ).

b. Diagonalize A.
5.7 Assume A can be diagonalized. Under what conditions will

lim
k−→∞Ak = 0?

5.8 Solve the first-order system of differential equations with initial conditions:

dx1
dt
= −3x1 + x2,

dx2
dt
= 2x1 − 4x2 + 1,

x1 (0) = 1, x2 (0) = 0.

5.9 Draw the digraph for each matrix and determine which matrices are irreducible.

a.

⎡⎢⎢⎢⎢⎣
0 1 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

⎤⎥⎥⎥⎥⎦

b.

⎡⎢⎢⎢⎢⎣
0 0 0 1 0
1 0 1 1 1
0 0 0 1 0
1 0 1 0 1
0 0 0 1 0

⎤⎥⎥⎥⎥⎦
5.10

a. Show that A =
[
a 1
0 a

]
has only one eigenvalue λ = a of multiplicity two and that all eigenvectors are multiples

of e1 =
[
1
0

]
.

b. Consider a general version of part (a), An×n =

⎡⎢⎢⎢⎢⎢⎢⎣

a 1 0
a 1

a
. . .
. . . 1

0 a

⎤⎥⎥⎥⎥⎥⎥⎦. Show that A has one eigenvalue of multiplicity

n and that all eigenvectors are multiples of e1 =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦.
5.11 Using matrix of Problem 5.2, verify that the eigenvalues of AT and A are equal. Can you say the same about the

eigenvectors?



Eigenvalues and Eigenvectors Chapter| 5 99

5.12
a. If A and B are n × n upper-triangular matrices, are the eigenvalues of A + B the sum of the eigenvalues and A
and B?

b. Is part (a) true for two arbitrary n× n matrices A and B?
5.13 If A is an n× n nonsingular matrix, prove that (A−1)T = (AT)−1.
5.14 If A and B are n × n matrices, prove that AB and BA have the same eigenvalues. Hint: You must show that every

eigenvalue ofAB is an eigenvalue ofBA, and every eigenvalue ofBA is an eigenvalue ofAB. Suppose λ is an eigenvalue
of AB. Then ABx = λx, so (BA)Bx = λ (Bx).

5.15 Show that the trace of a 3× 3 matrix is equal to the sum of its eigenvalues using the following steps:
a. Find the characteristic polynomial p (λ) and show that the coefficient of λ2 is the trace of A.
b. Explain why p (λ) = (−1) (λ− λ1) (λ− λ2) (λ− λ3), where the λi are the eigenvalues of A.
c. Show that the coefficient of λ2 is λ1 + λ2 + λ3, and argue that this completes the proof.

5.16 Assume A is a real n× n matrix with a complex eigenvalue λ, and v is an associated eigenvector. If v is the complex
conjugate of v, show that v is an eigenvector of A associated with eigenvalue λ.

5.17 Prove that A and AT have the same eigenvalues. Hint: By Problem 4.19, detA = detAT. Apply this result to the
characteristic equation of A.

5.7.1 MATLAB Problems

5.18 The MATLAB function eigshow is a graphical demonstration of eigenvalues and eigenvectors. When invoked by
eigshow(A), where A is a 2 × 2 matrix, a graphical dialog appears. Do not press the button labeled eig/(svd). You
will see two vectors, a unit vector x, and the vector Ax. We will show in Chapter 15 that as the tip of x traces out the
unit circle x21+x22 = 1 the tip of the vector Ax traces out an ellipse whose center is the center of the circle. Move xwith
the mouse until x and Ax are parallel, if you can. If you are successful, Ax is a multiple of x, so Ax = kx. Since x has
length 1, length (Ax) = |k| and k is an eigenvalue ofA corresponding to the eigenvector x, and its magnitude is |k|. Run
eigshow for each of the following three matrices and estimate the eigenvalues, if you can make Ax parallel to x. There
are three possibilities: there are two distinct eigenvalues, a double eigenvalue, and two complex conjugate eigenvalues.

A =
[

1 −1
−1 2

]
, B =

[
5 1
−1 3

]
, C =

[
1 4
−1 3

]

5.19 Diagonalize A =
⎡⎣ 26 48 8
35 28 13
45 7 43

⎤⎦.
5.20 Use MATLAB to find the eigenvalues and eigenvectors of the matrix

A =

⎡⎢⎢⎢⎢⎣
1 6 0 −1 5
5 −9 22 2 1
0 1 3 5 7
9 0 −4 −7 −1
3 5 2 15 35

⎤⎥⎥⎥⎥⎦ .

Note that two of its eigenvalues and its corresponding eigenvectors are complex.
5.21 In MATLAB, W = wilkinson(n) returns one of Wilkinson’s n × n eigenvalue test matrices. The matrix is

symmetric and tridiagonal, with pairs of nearly, but not exactly, equal eigenvalues. The most frequently used case
is wilkinson(21). Its two largest eigenvalues are both about 10.746; they agree to 14, but not to 15, decimal places.
Find the eigenvalues of the matrices wilkinson(11) and wilkinson(21).

5.22
Team 1 2 3 4 5 6

1 0 17 25 25 10 30

2 38 0 24 48 21 29

3 20 31 0 14 24 17

4 36 3 25 0 24 45

5 24 30 13 14 0 0

6 28 24 20 10 23 0



100 Numerical Linear Algebra with Applications

a. Rank the teams whose scores are given in the table using Equation 5.14.
b. Use the simple scheme aij = 1 if team i defeats team j and aij = 0 if team i loses to team j. Compare the results

of part (a).
c. Use the formula aij = Sij/(Sij + Sji), and compare the results with those of parts (a) and (b).

5.23 Let A =
⎡⎣ 1 2 3
−3 −7 −4
−1 −3 1

⎤⎦.
a. Perform the computation

>> EA = eig(A);
>> EAINV = eig(inv(A));

b. Does part (a) motivate a general result concerning the eigenvalues of A and A−1? If your answer is yes, prove it.
5.24 The Cayley-Hamilton theorem is an interesting result in theoretical linear algebra. It says that any n×nmatrix satisfies

its own characteristic equation. For instance, if the characteristic polynomial for a matrix A is λ3+ 3λ2− λ+ 1, then
A3+ 3A2−A+ I = 0. Verify the Cayley-Hamilton theorem for each matrix. Note: The MATLAB function poly(A)
returns a vector containing the coefficients of A’s characteristic polynomial from highest to lowest power of λ.

a. A =
[
1 −1
3 5

]

b. A =
⎡⎣ 1 0 5
2 1 −6
0 2 3

⎤⎦

c. A =

⎡⎢⎢⎢⎢⎣
1 −5 2 55 12
0 4 13 6 −8
0 0 18 1 −56
0 0 0 −7 88
0 0 0 0 5

⎤⎥⎥⎥⎥⎦
5.25 The MATLAB statement

>> F = gallery(‘frank’,n,1);

returns an n × n matrix. Create the matrix F = gallery(‘frank’,15,1) and perform the following computa-
tions:
a. The determinant of any Frank matrix is 1. Verify this for F.
b. If n is odd, 1 is an eigenvalue. Verify this for F.
c. Some of the eigenvalues of F are sensitive to changes in the entries of F. Perturb the entries of F by executing
the statement

>> F = F + 1.0e-8*ones(15,15);

and compute the eigenvalues. Comment on the change in eigenvalues between the original F and the perturbedF.
5.26 If a matrix has eigenvalues of multiplicity greater than 1, generally those eigenvalues are more sensitive to small

changes in thematrix. Thismeans that small changes in thematrixmight cause significant changes in its eigenvalues.

a. Build the matrix A =
⎡⎣ 1 0 0
1 1 0
5 −3 1

⎤⎦ and execute

>> [V D] = eig(A);

b. How many linearly independent eigenvectors does A have?

c. Build the matrix B =
⎡⎣ 0.9999 0 0
0.9999 0.9998 0
4.9999 −3.0001 1.0001

⎤⎦ and show it has three distinct eigenvalues.



Eigenvalues and Eigenvectors Chapter| 5 101

m
m

m
m

m × m

m × m

m × m

m × m
1

2

d
d

d
d

d
d

d
d

–1

–1

–1

–2

FIGURE 5.5 Hanowa matrix.

d. Let δ =
⎡⎣ 0 1.0× 10−6 1.0× 10−6
0 0 1.0× 10−6
0 0 0

⎤⎦ and compute the eigenvalues of B + δ. Comment on the results and

propose a relationship between A and B+ δB that might account for what you see.
5.27 A block structured matrix is built by putting together submatrices, where each submatrix is a block. An example is

a Hanowa matrix. If m is an integer and d is a real number, then a (2m) × (2m) Hanowa matrix has block structure
(Figure 5.5). We will discuss block matrices in Section 9.1.4.
a. Using the MATLAB functions eye and diag, construct a 6× 6 Hanowa matrix H with d = 3.
b. Find the eigenvalues of H.
c. Using d = 3, build Hanowa matrices of dimensions 10× 10 and 20× 20 and compute their eigenvalues.
d. From your results in parts (b) and (c), propose a formula for the eigenvalues of an n× n Hanowa matrix.



This page intentionally left blank



Chapter 6

Orthogonal Vectors and Matrices

You should be familiar with

● Distance between points in two- and three-space
● Geometric interpretation of vector addition and subtraction
● Simple geometry and trigonometry
● Rotation matrices
● Real symmetric matrices
● Computation of

∫ b
a f (t) g (t) dt (for Section 6.5)

6.1 INTRODUCTION

We will have occasion in the book to use two- and three-dimensional vectors as examples. If we are discussing a property
or operation that applies to all vectors, we can use vectors in R2 and R3as illustrations, since we can visualize the results,
whereas that is not possible for a vector in Rn, n ≥ 4.

In three-dimensional space, points are defined as ordered triples of real numbers and the distance between points
P1 = (x1, y1, z1) and P2 = (x2, y2, z2) is defined by the formula (Figure 6.1)

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Directed line segments
−−→
P1P2 (Figure 6.1) are introduced as three-dimensional column vectors: If P1 = (x1, y1, z1) and

P2 = (x2, y2, z2), then

−−→
P1P2 =

⎡⎣ x2 − x1
y2 − y1
z2 − z1

⎤⎦ .

If P is a point, we let P = −→OP and call P the position vector of P, where O is the origin.
There are geometrical interpretations of equality, addition, subtraction, and scalar multiplication of vectors

(Figure 6.2).

1. Equality of vectors: Suppose A,B,C,D are distinct points such that no three are collinear. Then
−→
AB = −→CD if and only if−→

AB ‖ −→CD and
−→
AC ‖ −→BD.

2. Addition of vectors obeys the parallelogram law: Let A,B,C be non-collinear. Then

−→
AB+−→AC = −→AD,

where D is the point such that
−→
AB ‖ −→CD and

−→
AC ‖ −→BD

3. The difference of two vectors
−→
AB−−→AC is a vector whose start is the tip of

−→
AC and whose tip coincides with the tip of

−→
AB.

4. Scalar multiplication of vectors (Figure 6.3): Let
−→
AP = t

−→
AB, where A and B are distinct points. Then P is on the line AB,

and
a. P = A if t = 0, P = B if t = 1;
b. P is between A and B if 0 < t<1;
c. B is between A and P if t > 1;
d. A is between P and B if t<0.

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00006-5
Copyright © 2015 Elsevier Inc. All rights reserved. 103



104 Numerical Linear Algebra with Applications

x

P1P2=

X2−X1

(X2−X1)2+ (Y2−Y1)2+ (Z2−Z1)2

Y2−Y1

Z2−Z1

d=

z

d
y

P1(X1,Y1,Z1)

P2(X2,Y2,Z2)

FIGURE 6.1 Distance between points.

AB = CD,  AC= BD

AB +AC = AD

AB –AC = CB

A

B

D

C

o

FIGURE 6.2 Equality, addition, and subtraction of vectors.

T

O

A

P

B

z

y

AP= t AB, 0 < t< 1

FIGURE 6.3 Scalar multiplication of vectors.

6.2 THE INNER PRODUCT

Along with matrix multiplication, the inner product is an important operator in linear algebra. It defines vector length,
orthonormal bases, the L2 matrix norm, projections, and Householder reflections. We will study these and many more
constructs that use the inner product.

Definition 6.1. Given two vectors x =
⎡⎢⎣ x1

...
xn

⎤⎥⎦ and

⎡⎢⎣ y1
...
yn

⎤⎥⎦ in Rn, we define the inner product of x and y, written 〈x, y〉

to be the real number

〈x, y〉 = x1y1 + x2y2 + · · · + xnyn =
n∑
i=1

xiyi.



Orthogonal Vectors and Matrices Chapter| 6 105

Note that xTy = [
x1 . . . xn

] ⎡⎢⎣ y1
...
yn

⎤⎥⎦= 〈x, y〉, so we can compute the inner product as the matrix product, xTy. Since

∑n
i=1 xiyi =

∑n
i=1 yixi , yTx is another way to compute the inner product.

Remark 6.1. In many books, the notation x · y to refers to the inner product, and it is called the dot product. We will
seldom use this notation in the book.

Example 6.1. In R3, if x =
⎡⎣ a1
b1
c1

⎤⎦ and y =
⎡⎣ a2
b2
c2

⎤⎦, then 〈x, y〉 = a1a2 + b1b2 + c1c2. For instance, if u =
⎡⎣ 4
6
4

⎤⎦ ,

v =
⎡⎣ −97
−1

⎤⎦, then 〈u, v〉 = 4 (−9)+ 6 (7)+ 4 (−1) = 2 �

There are properties of the inner product that we will use throughout the book.

Theorem 6.1. The inner product has the following properties:

1. 〈x, y+ z〉 = 〈x, y〉 + 〈x, z〉
2. 〈cx, y〉 = 〈x, cy〉 = c 〈x, y〉, where c is a scalar
3. 〈x, y〉 = 〈y, x〉
4. 〈x, 0〉 = 0
5. 〈x, x〉 =∑n

i=1 x2i
6. If 〈x, x〉 = 0, then x = 0

Proof. We will prove properties 5 and 6, leaving the remaining properties to the exercises.

Property 5: 〈x, x〉 = [
x1 . . . xn

]T ⎡⎢⎣ x1
...
xn

⎤⎥⎦ = x21 + x22 + · · · + x2n−1 + x2n =
∑n

i=1 x2i

Property 6: If 〈x, x〉 = 0, then from Property 5 x21 + x22 + · · · + x2n−1 + x2n = 0. The only way this can occur is if
xi = 0, 1 ≤ i ≤ n.

There are many occasions wherewewill need to deal with the length of a vector, so we need a compact notation for vector
length. A vector u in the plane has length

√
x2 + y2, and a vector u in three-dimensional space has length

√
x2 + y2 + z2

(Figure 6.4). Using Property 5 of Theorem 6.1, we see that in either two or three dimensions length (u) = √〈u, u〉. The
notation ‖u‖2 will be used to specify the length of vector u. This notation will be fully developed in Chapter 7 when we
discuss vector norms.

There is a nice geometric interpretation for the inner product of vectors in R2 and R3. For simplicity, we will consider
vectors in R

2, but the same reasoning applies to three-dimensional vectors. Suppose that θ is the angle between vectors u
and v such that 0 ≤ θ ≤ π as shown in Figure 6.5. It follows that 〈u, v〉 = ‖u‖2 ‖v‖2 cos θ . In Figure 6.6, the three vectors
form the triangle AOB. Note that the length of each side is the length of the vector forming that side. The law of cosines
tells us that

‖u− v‖22 = ‖u‖22 + ‖v‖22 − 2 ‖u‖2 ‖v‖2 cos θ . (6.1)

Using the properties of inner products, we can write the left-hand side of Equation 6.1 as

‖u− v‖22 = 〈u− v, u− v〉 = 〈u, u〉 − 2 〈u, v〉 + 〈v, v〉 = ‖u‖22 − 2 〈u, v〉 + ‖v‖22 .
Equating the rewritten left-hand side of Equation 6.1 with the right-hand side gives

‖u‖22 − 2 〈u, v〉 + ‖v‖22 = ‖u‖2 + ‖v‖22 − 2 ‖u‖2 ‖v‖2 cos θ . (6.2)

After cancelation of terms in Equation 6.2, we have the result

〈u, v〉 = ‖u‖2 ‖v‖2 cosθ . (6.3)



106 Numerical Linear Algebra with Applications

(x,0,0)
x2+y2 

(0,y,0)

(0,0,z)

u
z

(length (u))2 = ( x2  + y2)2 + z2 = x2  + y2 + z2 

length (u) =  x2 + y2  + z2 

FIGURE 6.4 Vector length.

v

u

q

FIGURE 6.5 Geometric interpretation of the inner product.

v

u

q A

B

O

u − v

FIGURE 6.6 Law of cosines.



Orthogonal Vectors and Matrices Chapter| 6 107

This formula is usually used to determine the angle between two vectors, not to compute the inner product.

Example 6.2. Determine the angle between u =
⎡⎣ 3
−4
−1

⎤⎦ and v =
⎡⎣ 0
5
2

⎤⎦.
〈u, v〉 = −22, ‖u‖2 =

√
26, ‖v‖2 =

√
29. The angle between the two vectors is given by

cos θ = 〈u, v〉
‖u‖2 ‖v‖2

= −22√
26
√
29
= −0.8011927,

so
θ = cos−1(−0.8011927) = 2.5 rad = 143.24◦. �

Another application of the inner product is to determine whether two vectors are perpendicular or parallel. Vectors u and
v are perpendicular, when the angle θ between them is π/2. Assume u and v are nonzero. The cosine of π/2 is 0, so by
Equation 6.3, 〈u, v〉 = 0, and u and v are perpendicular. Vectors u and v are parallelwhen the angle between them is either 0
radians (pointing in the same direction) or π radians (pointing in opposite directions). Since cos (0) = 1 and cos (π) = −1,
it follows from Equation 6.3 that either

〈u, v〉 = ‖u‖2 ‖v‖2 (θ = 0) or 〈u, v〉 = −‖u‖2 ‖v‖2 (θ = π)

implies that u and v are parallel.

Example 6.3. Determine if the following vectors are parallel, perpendicular, or neither.

a. u =
⎡⎣ 6
−2
−1

⎤⎦ , v =
⎡⎣ 2
5
2

⎤⎦
〈u, v〉 = 6 (2)− 2 (5)− 1 (2) = 0

u and v are perpendicular.

b. u =
[

2
−1

]
, v =

[ −1/2
1/4

]
.

〈u, v〉 = 2 (−1/2)+ (−1) (1/4) = − 5
4

Compute their lengths, and test to see if they are parallel.

‖u‖2 =
√
5 and ‖v‖2 =

√
5/16 =

√
5
4 . Now, 〈u, v〉 = − 5

4 = −
√
5
(√

5
4

)
= −‖u‖2 ‖v‖2

The two vectors are parallel. �

6.3 ORTHOGONAL MATRICES

Vectors u and v are called orthogonal if 〈u, v〉 = 0. We briefly mentioned orthogonal matrices in Chapter 5, and will
now provide a formal definition. Many tools in numerical linear algebra involve orthogonal matrices, such as the QR
decomposition (introduced in Chapter 14) and the singular value decomposition (SVD) (introduced in Chapter 15). Over
the course of this book, we will see that orthogonal matrices are the most beautiful of all matrices, and that they have an
intimate relation with orthogonal vectors.

Definition 6.2. An n × n matrix P is orthogonal if PT = P−1.

The simplest example of an orthogonal matrix is the 2 × 2 rotation matrix introduced in Chapter 1.

Example 6.4. A rotation matrix P =
[

cos θ − sin θ

sin θ cos θ

]
is orthogonal, since

PTP =
[

cos θ sin θ

− sin θ cos θ

][
cos θ − sin θ

sin θ cos θ

]
=
[

cos2 θ + sin2 θ 0
0 cos2 θ + sin2 θ

]
=
[
1 0
0 1

]
. �

Orthogonal matrices of many sizes occur in applications, from 2× 2 to 1000× 1000, and larger.



108 Numerical Linear Algebra with Applications

Example 6.5. Let P =
⎡⎣ 0.00 −0.80 −0.60
0.80 −0.36 0.48
0.60 0.48 −0.64

⎤⎦. To verify that P is an orthogonal matrix, form PTP.

⎡⎣ 0.00 0.80 0.60
−0.80 −0.36 0.48
−0.60 0.48 −0.64

⎤⎦⎡⎣ 0.00 −0.80 −0.60
0.80 −0.36 0.48
0.60 0.48 −0.64

⎤⎦ =
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

Now, take a look at the columns of P.∥∥∥∥∥∥
0.00
0.80
0.60

∥∥∥∥∥∥
2

=
∥∥∥∥∥∥
−0.80
−0.36
0.48

∥∥∥∥∥∥
2

=
∥∥∥∥∥∥
−0.60
0.48
−0.64

∥∥∥∥∥∥
2

= 1,

so each column has length 1 (a unit vector). Take the inner product of columns 1 and 2.〈⎡⎣ 0.00
0.80
0.60

⎤⎦ ,

⎡⎣ −0.80−0.36
0.48

⎤⎦〉 = 0.00 (−0.80)+ 0.80 (−0.36)+ 0.60 (0.48) = 0.

Verify that the two remaining inner products are also zero. In summary, for this matrix, the columns of P are orthogonal,
and each column has length 1. A set of orthogonal vectors, each with unit length, are said to be orthonormal. It is not a
coincidence that the columns are orthonormal. �

Theorem 6.2. Let P be an n× n real matrix. Then P is an orthogonal matrix if and only if the columns of P are orthogonal
and have unit length.

Proof. Let P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 . . . a1i . . . a1n

a21 . . .
... . . . a2n

... aii
...

...
...

...
an1 ani ann

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, PTP = I. View P as P = [

v1 . . . vi . . . vn
]
, where vi =

⎡⎢⎢⎢⎢⎢⎣
a1i
a2i
...

an−1,i
ani

⎤⎥⎥⎥⎥⎥⎦ ,

1 ≤ i ≤ n are the columns of P. Then, PT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vT1
vT2
...

vTn−1
vTn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, where vTi , 1 ≤ i ≤ n are the rows of PT.

Thus,

PTP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

vT1
vT2
...

vTn−1
vTn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
v1 . . . vi . . . vn

] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vT1v1 . . . vT1vi . . . vT1 vn

vT2v1
. . .

... . . . vT2 vn
...

... vTi vi
...

...
...

...
...

. . .
...

vTn v1 . . . vTnvi . . . vTn vn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.4)

.

If PTP = I =

⎡⎢⎢⎢⎢⎢⎣
1 0
1

. . .
1

0 1

⎤⎥⎥⎥⎥⎥⎦, then Equation 6.4 implies that
〈
vi, vj

〉 = {
1, i = j
0, i �= j

, so the columns of P are

orthogonal. Since 〈vi, vi〉 = 1, ‖vi‖22 = 1, and the columns of P have unit length.



Orthogonal Vectors and Matrices Chapter| 6 109

If the columns of P are orthogonal and of unit length, Equation 6.4 implies that PTP = I, and P is an orthogonal
matrix.

Orthogonal matrices have other interesting properties. Among them is the fact the their determinant is always ±1.

Theorem 6.3. If P is orthogonal, detP = ±1.

Proof. Recall that the determinant of a product is the product of the determinants, and detPT = detP. Then,

det (I) = det
(
PTP

) = (
detPT

)
(detP) = (detP) (degP) = (detP)2 ,

so (detP)2 = det I = 1, and det P = ±1.

Remark 6.2. If the determinant of an orthogonal matrix is 1, we say it is a proper orthogonal matrix.

6.4 SYMMETRIC MATRICES AND ORTHOGONALITY

In this and later chapters, we will discover many interesting and useful facts about symmetric matrices; in particular, many
computations can be done faster and more accurately for a symmetric matrix. A good example is the computation of the
eigenvalues of a symmetric matrix. We will begin right here with Theorem 6.4 that tells us the relationship between any
two distinct eigenvalues and the corresponding eigenvectors of a real symmetric matrix.

Theorem 6.4. If A is a real symmetric matrix, then any two eigenvectors corresponding to distinct eigenvalues are
orthogonal.

Proof. Let λ1 and λ2 be distinct eigenvalues with associated eigenvectors v1 and v2. Then, Av1 = λ1v1 and Av2 = λ2v2.
Take the inner product of the first equation by v2 and the inner product of the second equation by v1:

vT2 (Av1) = λ1 〈v2, v1〉 , (Av2)
T v1 = λ2 〈v2, v1〉 . (6.5)

In Equation 6.5, (Av2)T v1 = vT2A
Tv1, so Equation 6.5 becomes

vT2 (Av1) = λ1 〈v2, v1〉 , vT2A
Tv1 = λ2 〈v2, v1〉 . (6.6)

Since AT = A, in Equation 6.6, we have

vT2 (Av1) = λ1 〈v2, v1〉 , vT2 (Av1) = λ2 〈v2, v1〉 ,
and

λ1 〈v2, v1〉 = λ2 〈v2, v1〉 . (6.7)

Equation 6.7 gives

(λ1 − λ2) 〈v2, v1〉 = 0.

.
Since λ1 �= λ2, 〈v2, v1〉 = 0, and v1, v2 are orthogonal.

Example 6.6. Let A be the symmetric matrix A =
⎡⎣ 3 1 −1

1 3 −1
−1 −1 5

⎤⎦. The eigenvalues of A are λ1 = 2, λ2 = 3, λ3 = 6,

and eigenvectors corresponding to the eigenvalues are⎡⎣ 1
−1
0

⎤⎦ ,

⎡⎣ 1
1
1

⎤⎦ ,

⎡⎣ −1−1
2

⎤⎦ ,



110 Numerical Linear Algebra with Applications

respectively. The three eigenvectors are mutually orthogonal, and you also should note that the eigenvectors are linearly

independent, so they are a basis for R3. As a result, the matrix X =
⎡⎣ 1 1 1
−1 1 −1
0 1 2

⎤⎦ is invertible. If we form the product

X−1AX, the result is

X−1AX = D,

where D is the diagonal matrix D =
⎡⎣ 2 0 0
0 3 0
0 0 6

⎤⎦ with the eigenvalues of A on the diagonal. In other words, A is

diagonalizable. Let’s go one step further and build a matrix, P, whose columns are those of X converted to a unit vector. Do

this by dividing each column vector by its length, and obtain P =
⎡⎣ 0.7071 0.5774 −0.4082
−0.7071 0.5774 −0.4082
0.0000 0.5774 0.8165

⎤⎦. By Theorem 6.2, P is

an orthogonal matrix. Now compute PTAP and you will again get D. Thus, A is diagonalizable using an orthogonal matrix.
�

Real symmetric matrices have wonderful properties. We can get a hint of this by taking a look at the nonsymmetric

matrix A =
⎡⎣ 1 2 4
0 1 −1
0 0 2

⎤⎦. Since det

⎡⎣ 1− λ 2 4
0 1− λ −1
0 0 2− λ

⎤⎦ = (1− λ) (1− λ) (2− λ) , the eigenvalues of A are λ1 =
1, λ2 = 1, λ3 = 2. A computation shows that the eigenvectors corresponding to the eigenvalues are

v1 =
⎡⎣ 1
0
0

⎤⎦ , v2 =
⎡⎣ −10

0

⎤⎦ , v3 =
⎡⎣ 2
−1
1

⎤⎦ .

The eigenvectors span a subspace of dimension two. This is caused by the duplicate eigenvalue 1, and this matrix cannot
be diagonalized.

Example 6.7. Let A =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎦. A is symmetric and has characteristic polynomial p (λ) = λ4 (λ− 5), so A has

four eigenvalues of 0. Despite this, there are five linearly independent eigenvectors. Use the MATLAB command [V D] =

eig(A)and note there are four values of 0 on the diagonal of D. Verify the following:

● V is an orthogonal matrix.
● The rank of V is 5, so the columns of V are linearly independent and form a basis for R5.
● VTAV = D

Despite the fact that A has four equal eigenvalues, it can be diagonalized. �

6.5 THE L2 INNER PRODUCT

We have presented the inner product for the vector space R
n, and showed that it satisfies the properties in Theorem 6.1. The

general concept of an inner product extends beyond Euclidean space to any vector space for which an inner product can be
defined. In particular, there are many applications for vector spaces whose elements are functions, and such vector spaces
normally have infinite dimension. Chapter 12 presents Fourier series to illustrate this concept. Fourier series is one of the
most useful topics in engineering and science. The applications of Fourier series include heat conduction, signal processing,
analysis of sound waves, seismic imaging, and solving differential equations. The inner product used with Fourier series
and many other vector spaces of functions is the L2 inner product.

Definition 6.3. If functions f (t) and g (t) are continuous on the interval a ≤ t ≤ b, the L2 inner product is

〈f , g〉L2 =
∫ b

a
f (t) g (t) dt.



Orthogonal Vectors and Matrices Chapter| 6 111

It is not difficult to show that 〈·, ·〉L2 satisfies the requirements for an inner product. For instance,

〈cf , g〉L2 =
∫ b

a
(cf (t)) g (t) dt =

∫ b

a
f (t) (cg (t)) dt = 〈f , cg〉L2 = c

∫ b

a
f (t) g (t) dt = c 〈f , g〉L2 ,

so

〈cf , g〉L2 = 〈f , cg〉L2 = c 〈f , g〉L2 .
Proving the remaining properties is left to the exercises.

The length of a vector u is
√〈u, u〉. We can also define the length or size of a function over the interval a ≤ t ≤ b by

‖f‖L2 =
√〈f , f 〉L2 =

√∫ b

a
f 2 (t) dt.

A function f is normalized if 〈f , f 〉L2 = 1, and two functions f and g are orthogonal if 〈f , g〉L2 = 0. A Fourier series consists
of an infinite sequence of normalized trigonometric functions that are mutually orthogonal with respect to the L2 norm.

Example 6.8. Given the functions f (t) = (1/
√

π) sin (5t) and g (t) = (1/
√

π) cos (3t), compute 〈f , g〉L2 and ‖f‖L2 .

a. 〈f , g〉L2 = (1/π)
∫ 2π
0 sin (5t) cos (3t) dt = −(1/4π)

(
cos 2t+ 1

4 cos 8t
)∣∣∣ 2π0 =0. (f and g are orthogonal.)

b. ‖f‖L2 =
√

(1/π)
∫ 2π
0 sin2 5t dt =

√
(1/π)

[
(t/2) − 1

20 sin 10t
] ∣∣∣∣ 2π0 =1 �

Similarly, ‖g‖2 = 1, so f and g are orthogonal and have unit length using the L2 inner product.

6.6 THE CAUCHY-SCHWARZ INEQUALITY

TheCauchy-Schwarz inequality is one of themost widely used inequalities inmathematics, andwill have occasion to use it in
proofs.We can motivate the result by assuming that vectors u and v are inR

2 or R
3. In either case, 〈u, v〉 = ‖u‖2 ‖v‖2 cos θ .

If θ = 0 or θ = π , |〈u, v〉| = ‖u‖2 ‖v‖2. This occurs when u and v are parallel, or when v = cu for some scalar multiple c.
For 0 < θ < π , |cos θ | < 1, so | 〈u, v〉| ≤ ||u||2 ||v||2.

Theorem 6.5 (Cauchy-Schwarz inequality). For any n-dimensional vectors u and v,

|〈u, v〉| ≤ ||u||2 ||v||2,
and equality occurs if and only if v = cu.

For a proof, see (15, p. 316).

Remark 6.3. The Cauchy-Schwarz inequality applies to any vector space that has an inner product; for instance, it applies
to a vector space that uses the L2-norm.

Recall in high school geometry you were told that the sum of the lengths of two sides of a triangle is greater than the third
side. This is an instance of the triangle inequality that follows by using the Cauchy-Schwarz inequality:

‖u+ v‖22 = ‖u‖22 + 2 〈u, v〉 + ‖v‖22 ≤ ‖u‖22 + 2 ‖u‖2 ‖v‖2 + ‖v‖22 = (‖u‖2 + ‖v‖2)2 ,
and

||u+ v||2 ≤ ||u||2 + ||v||2.
The triangle inequality holds for any number of dimensions, but is easily visualized in R3. In Figure 6.7, note the

progression from a normal triangle to the three sides collapsing into a line, corresponding to v = cu. In this case,
‖x+ y‖2 = ‖x‖2 + ‖y‖2.



112 Numerical Linear Algebra with Applications

v

v

v v

y

x x

y y

=

x

z z z
u + v

u + v

u + v u + v

v = cu

< <u u u

u

+ + +

v

v

vu

u + v

FIGURE 6.7 Triangle inequality.

6.7 SIGNAL COMPARISON

There is a particularly interesting implication of the Cauchy-Schwartz inequality [89].We ask the question “When is an
expression of the form |〈u/‖u‖2, v/‖v‖2〉| a maximum?” Note that both u/‖u‖2 and v‖v‖2 are unit vectors. By the Cauchy-
Schwartz inequality, we know that |〈u/‖u‖2, v/‖v‖2〉| ≤ ‖u/‖u‖2‖ ‖v/‖v‖2‖ = 1 and that |〈u/‖u‖2, v/‖v‖2〉| = 1 if and
only if v/‖v‖2 = cu/‖u‖2 for some scalar c. Hence, |〈u/‖u‖2, v/‖v‖2〉| attains a maximum when v/‖v‖2 = cu/‖u‖2 for
some c. Now suppose we collect numerous samples of scalars of the form |〈u/‖u‖2, v/‖v‖2〉|. The largest values will occur
when v = cu. This result is very useful in developing matched filter detector techniques. When dealing with signals, we
replace vectors by functions. Use the L2 inner product to compare functions, and the Cauchy-Schwarz inequality applies to
the L2 inner product. We want to find the member signal in a set S of signals that most closely matches a target signal v.
Define f (u, v) = |〈u/‖u‖2, v/‖v‖2〉|. To find the best matching signal we need to evaluate

umax = max
u∈S f (u, v).

The value umax that produces the maximum value of f (u, v) is not necessarily unique, so there may be more than one
matching signal in S. It is possible that among the current members of S, the signal, umax, giving the maximum value of
f (u, v) may be small and a poor match for the target signal v. A solution is to set a threshold and return no matching
signals if f (u, v) is below the threshold. There also may be a signal u that produces an very high value of f (u, v),
well above the actual match desired. This corresponds to a local maximum, and there are techniques to filter out local
maxima.

Example 6.9. Here is the target signal and a set of three candidate signals (Figure 6.8). An application of the technique
we have outlined will determine that among the candidate signals (c) is the best match for f (t). �

f(t)

g
1
(t)

(a) (b) (c)

g
2
(t) g

3
(t)

FIGURE 6.8 Signal comparison.



Orthogonal Vectors and Matrices Chapter| 6 113

6.8 CHAPTER SUMMARY

The Inner Product

The inner product of two vectors is often called the dot product, although we will seldom use the term in the text. If x and
y are vectors in Rn, the inner product of x and y is 〈x, y〉 = ∑n

i=1 xiyi, alternatively written 〈x, y〉 = xTy. Since the inner
product is commutative, we can also write 〈x, y〉 = yTx. This expression for the inner product will be useful in many places
throughout the book.

Among the most important properties of the inner product is that 〈x, x〉 =∑n
i=1 x2i , and so the length of a vector can be

expressed as length (x) = √〈x, x〉 = ‖x‖2. Also, if 〈x, x〉 = 0, x = 0.
In two and three dimensions, the inner product has the geometric interpretation

〈x, y〉 = ‖x‖2 ‖y‖2 cos θ ,

where θ is the angle between x and y.

Orthogonal Matrices

Orthogonal matrices are the most beautiful of all matrices. A matrix P is orthogonal if PTP = I, or the inverse of P is its
transpose. Alternatively, a matrix is orthogonal if and only if its columns are orthonormal, meaning they are orthogonal and
of unit length. An interesting property of an orthogonal matrix P is that detP = ±1. As an example, rotation matrices are
orthogonal.

Orthogonal matrices are involved in some of the most important decompositions in numerical linear algebra, the QR
decomposition (Chapter 14), and the SVD (Chapter 15). The fact that orthogonal matrices are involved makes them
invaluable tools for many applications.

Symmetric Matrices and Orthogonality

Symmetric matrices can always be diagonalized with an orthogonal matrix; in other words, there is an orthogonal matrix
of eigenvectors such that PTAP = D, where D is a diagonal matrix of eigenvalues. This allows us to develop method
for computing their eigenvalues more rapidly than we can find eigenvalues for nonsymmetric matrices. We begin the
development of this diagonalization result by showing that any eigenvectors of a symmetric matrix corresponding to distinct
eigenvalues are orthogonal.

The L2 Inner Product

The inner product can be extended to functions by defining

〈f , g〉L2 =
∫ b

a
f (t) g (t) dt,

so that

‖f‖2L2 =
∫ b

a
f 2 (t) dt.

There are important sequences of functions that are orthogonal under the L2 inner product. Chapter 12 looks at Fourier
series, where the functions are trigonometric.

The Cauchy-Schwarz Inequality

The inequality,

|〈x, y〉| ≤ ‖x‖2 ‖y‖2
applies to any vector space with an inner product, and is called the Cauchy-Schwarz inequality. Among other things, it can
be used to prove the triangle inequality

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2 .



114 Numerical Linear Algebra with Applications

Although we will use the Cauchy-Schwarz inequality in later chapters as a theoretical tool, it has applications in matched
filter detector techniques. Given function f (t), it can be used to determine the best match to f (t) among a set of candidate
signals.

6.9 PROBLEMS

6.1 Compute the distance between the specified points.

a.
[
1 −6 7

]T , [ 3 2 1
]T

b.
[ −1 4 −9 12 15

]T
,
[
2 −8 0 −7 3

]T
6.2 Draw the vectors in R2.

a.
[

1
−9

]
+ 4

[ −14
2

]
b.
[
5
1

]
− 3

[ −1
2

]
6.3 Find the inner product of each vector pair.

a.
[
1 −5 2

]T
,
[ −10 1 −8 ]T

b.
[
17 0 −4 12 3

]T , [ 1 −1 5 9 2
]

6.4 Determine if each pair of vectors is orthogonal.

a.
[
1 −1 2

]T , [ 1 −1 −1 ]T
b.
[
1 −2 5 7

]T
,
[ −1 2 1 1

]T
6.5 Normalize each vector in Problem 6.4.
6.6 If u and v are unit vectors, compute the following:

a. 〈u+ v, u− v〉
b. 〈u+ v, u+ v〉

6.7 Find a vector parallel to the vector

⎡⎢⎢⎣
−1
2
5
7

⎤⎥⎥⎦ and a vector orthogonal to it.

6.8 Find the angle between the vectors
[ −1 2 5

]T
and

[
1 −8 2

]
T.

6.9 What is the length of the 10-dimensional vector u = [
1 −1 1 −1 2 1 1 1 1 1

]
? Find a vector orthogonal to

u and normalize each vector.

6.10 Verify the Cauchy-Schwarz and triangle inequalities for the vectors x =
⎡⎣ 1
−1
2

⎤⎦ , y =
⎡⎣ 2

3
−4

⎤⎦.
6.11 Explain the result of applying the Cauchy-Schwarz inequality to the vectors u=

⎡⎣ 0.88
−1.55
2.68

⎤⎦ ,

v =
⎡⎣ −7.92

13.95

−24.12

⎤⎦.
6.12 Prove the parallelogram law 2 ‖u‖22 + 2 ‖v‖22 = ‖u+ v‖22 + ‖u− v‖22. Explain where its name comes from by

considering vectors u, v in the plane.
6.13 Determine if all possible pairings of the following vectors are parallel, orthogonal or neither.

u =
⎡⎣ −14

2

⎤⎦ , v =
⎡⎣ 1/2

1/16
1/8

⎤⎦ , w =
⎡⎣ −64−8

16

⎤⎦
6.14 Show that the triangle formed by the points (−3, 5, 6), (−2, 7, 9), and (2, 1, 7) is a 30-60-90 triangle.



Orthogonal Vectors and Matrices Chapter| 6 115

v

d

u

proju (v)

FIGURE 6.9 Projection of one vector onto another.

6.15 One of the primary applications of the inner product is the projection of one vector onto another. Looking at the
Figure 6.9, develop a formula for the vector that is a projection of vector v onto vector u.

6.16 Prove parts 1, 2, 3, and 4 of Theorem 6.1.
6.17 Prove that if x and y are vectors in Rn, then 〈Ax, y〉 = 〈

x, ATy
〉
.

Problems 6.18–6.24 deal with the cross product, which is defined for three dimensions as follows:

Definition 6.4. Let i =
⎡⎣ 1
0
0

⎤⎦ , j =
⎡⎣ 0
1
0

⎤⎦ , k =
⎡⎣ 0
0
1

⎤⎦ be the standard basis for R
3. The cross product of u =

⎡⎣ u1
u2
u3

⎤⎦,
and v =

⎡⎣ v1
v2
v3

⎤⎦, written u× v is the vector

u× v =
∣∣∣∣∣∣
i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ . (6.8)

Equation 6.8 is not a normal determinant. Treat vectors i, j, and k as scalars for the computation and then consider them
vectors.

6.18 Show that

u× v = (u2v3 − u3v2) i+ (u3v1 − u1v3) j+ (u1v2 − u2v1) k.

6.19 What is the relationship between u× v and v× u?
6.20 Show that u× v is perpendicular to both u and v.
6.21 Show that u× u = 0.
6.22 For each pair of vectors, compute the cross product.

a.

⎡⎣ 1
−1
3

⎤⎦ ,

⎡⎣ −712
1

⎤⎦
b.

⎡⎣ a
−a
b

⎤⎦ ,

⎡⎣ −ba
a

⎤⎦, where a and b are scalars.
6.23 The equation of a plane is determined by three non-collinear points A, B and C. Take the two vectors

−→
AB and

−→
AC in

the plane and use the cross product to find a vector n perpendicular to the plane. Pick an arbitrary point P : (x, y, z)
in the plane and require that

〈
n,
−→
PA
〉
= 0. This generates what is called the normal equation of a plane.

a. Draw a figure that illustrates this process.
b. Find the equation of the plane containing the points A : (−1, 2, 3), B (5, 1, 2), and C : (−7, 1, 3).

6.24 Using the process of computing the normal equation to a plane in Problem 6.23, find an equation for a plane involving
a determinant.

6.25 Show that if P is an orthogonal matrix, and x and y are vectors in Rn, then 〈Px, Py〉 = 〈x, y〉.
6.26 Show that if A and B are orthogonal matrices, then AB and BA are orthogonal matrices.



116 Numerical Linear Algebra with Applications

6.27 The matrix A has orthogonal columns. Convert it to an orthogonal matrix by normalizing the columns.

A =
⎡⎣ −1 1 −3
−1 1 3
2 1 0

⎤⎦
6.28 Find one eigenvalue and its corresponding eigenvector of the symmetric matrix A by hand. Compute the other two

usingMATLAB. UsingMATLAB, show that any two eigenvectors corresponding distinct eigenvalues are orthogonal,
and diagonalize A with an orthogonal matrix.

A =
⎡⎣ 0 1 −1

1 1 1
−1 1 0

⎤⎦
6.29 Find the eigenvalues of matrix A. Can you diagonalize it? Explain.

A =
⎡⎣ −1 1 1
−1 1 1
1 −1 −1

⎤⎦
6.30 Find the eigenvalues of A. The matrix A has two equal eigenvalues, but it still has three linearly independent

eigenvectors. Diagonalize A with an orthogonal matrix using MATLAB.

A =
⎡⎣ 0 1 −1

1 0 1
−1 1 0

⎤⎦
6.31 Find the L2 inner product of f (t) = sin (π t), g (t) = cos (3π t), 0 ≤ t ≤ 2π . Also compute 〈f , f 〉2.
6.32 Over the interval 0≤ t≤ 2π , show that

〈
cos it/

√
π , cos jt/

√
π
〉
L2 = 0 for i, j≥ 1, i �= j and that 〈cos it/

√
π , cos it/√

π
〉
L2 = 1, i ≥ 1.

6.33 A permutation matrix is a matrix obtained by swapping one or more rows of the identity matrix. Prove that a
permutation matrix is orthogonal.

6.34 The vector outer product , u⊗ v, takes an m× 1 column vector, u, an n × 1 column vector, v, and returns an m× n
matrix obtained by multiplying each element of u by each element of v. In particular, (u× v)ij = uivj. The product
u⊗v is also called the tensor product.The outer product computes the inertial tensor in rigid body dynamics, performs
transform operations in digital signal processing and digital image processing, and has applications in statistics.
a. Show that u⊗ v = uTv.
b. Show that if A = u⊗ v, then Av = u ‖v‖22

6.9.1 MATLAB Problems

6.35 a. Develop function d = veclength(v) that computes the length of a vector v.
b. Use your function to find the length of each vector.

i.

⎡⎢⎢⎢⎢⎣
−1
2
4
12
−3

⎤⎥⎥⎥⎥⎦

ii.

⎡⎢⎢⎣
−1
35
52
6

⎤⎥⎥⎦
6.36 The SVD discussed in Chapter 15 says that if A is any n × n matrix, there exist orthogonal matrices U and V and a

diagonal matrix � such that A = U�VT.
a. Show that ATA = V�2VT

b. Prove that the eigenvalues of ATA are the squares of the elements on the diagonal of �.



Orthogonal Vectors and Matrices Chapter| 6 117

c. Let A =

⎡⎢⎢⎢⎢⎣
1 −1 5 0 3
5 −1 3 6 1
8 −9 2 7 4
8 4 −3 5 1
−1 −4 3 0 2

⎤⎥⎥⎥⎥⎦. Execute the MATLAB command [U S V] = svd(A) and verify that

A = USVT by computing veclength(A-U*S*V’) if you did Problem 6.35; otherwise use norm(A-U*S*V’).
d. Find the eigenvalues of ATA and verify the result of part (b). The elements on the diagonal of S are sorted in

descending order. Sort the eigenvalues,E, ofATA using sort(E, ‘descend’) before computing ‖E − diag (S)‖2.
6.37 A floating point number is a number that contains a fractional part, such as 0.3, 234.56819, and 1.56×10−8. Because

a computer generally cannot perform floating point calculations exactly, errors, called round-off errors, are introduced
during computation. Chapter 8 discusses round-off errors and their effect on the accuracy of computer calculations.
For example, if the exact value of calculation is 0.0, the computed result may be 3.0 × 10−16. Using MATLAB,
compute the inner product of u and v. Find the inner product using exact arithmetic, and comment on the results.

u = [
3.2 −1.5 6.3 −2.5 ]T , v = [

4.3 0 1.8 10.04
]T .

6.38 Show that each matrix is orthogonal in two different ways, using the definition and by directly showing that the
columns have unit length and are orthogonal.

a. P1 =
⎡⎣ −0.40825 0.43644 0.80178
−0.8165 0.21822 −0.53452
−0.40825 −0.87287 0.26726

⎤⎦
b. P2 =

⎡⎣ −0.51450 0.48507 0.70711
−0.68599 −0.72761 0.0000
0.51450 −0.48507 0.70711

⎤⎦
6.39 Are any of the two matrices orthogonal?

a. P1 =
⎡⎣ −0.58835 0.70206 0.40119
−0.78446 −0.37524 −0.49377
−0.19612 −0.60523 0.77152

⎤⎦
b. P2 =

⎡⎣ −0.47624 −0.4264 0.30151
0.087932 0.86603 −0.40825
−0.87491 −0.26112 0.86164

⎤⎦
6.40 In Chapter 14, we will begin the study of the QR decomposition. A special case of this decomposition states that for

any n× n matrix A, there exists an n× n orthogonal matrix Q and an n× n upper triangular matrix R such that

A = QR.

The MATLAB command

[Q R] = qr(A)

computes the factorsQ andR. Find theQR decomposition of thematrix in Problem6.36(c). Verify thatQ is orthogonal.
6.41 For a matrix whose elements are complex numbers, there is a definition analogous to the transpose of a real matrix.

A∗, called the conjugate transpose, is the matrix obtained by taking the complex conjugate of the entries of A and
exchanging rows and columns. A matrix is said to be Hermitian if A∗ = A.
a. Find the conjugate transpose of the matrix.⎡⎢⎢⎣

1− i 3+ i 7 8− 3i
6+ 7i 4− i i 1+ i
2− 3i 6+ i 3 9+ i
−1− i 10+ i 7 12+ 2i

⎤⎥⎥⎦
b. Using MATLAB, verify your result of part (a).



118 Numerical Linear Algebra with Applications

c. Investigate whether the MATLAB function eig applies to a complex matrix by using it with the matrix in part (a).
d. Prove that if A is Hermitian, its diagonal entries are real numbers.

6.42 a. Write a function c = mycross(u,v) that computes the cross product of vectors v and w.
b. Execute the function with two vectors. In each case, compare the result with the MATLAB function cross.

6.43 The inner product, or tensor product, is defined in Problem 6.34.
a. Write a function t = tensor(u,v) that computes the inner product of m× 1 vector u and n× 1 vector v.
b. Test the function for two pairs of vectors, one pair giving a 5× 5 matrix and another giving a 6× 4 matrix.



Chapter 7

Vector and Matrix Norms

You should be familiar with

● Basic two- and three-dimensional geometry
● Vector and matrix properties
● The inner product
● Partial derivatives (for Section 7.1.2)
● Eigenvalues
● Symmetric matrices
● Orthogonal matrices

Chapters 1–6 provide sufficient background for the remainder of this book. This chapter actually begins our study of
numerical linear algebra that, as we have stated, is very different from theoretical linear algebra. This is because we use a
computer and are concerned with numerical accuracy and execution time. Since we are dealing with a numerical subject, it is
natural to assume there must be ameans ofmeasuring the length of a vector and the “size” of amatrix. In each case, we define
what is termed a norm. Vector norms have applications in many areas, including signal processing, quantum information
theory, measuring deflections, and determining convergence of sequences of vectors. We studied the solution of square
linear algebraic systems in Chapter 2. In some cases, the coefficient matrix is sensitive to changes in data; for instance,
if there are small changes to the vector b in the system Ax= b due to experimental error, the solution may differ widely,
leading to incorrect results. In such a case, the matrix is said to be ill-conditioned. The matrix norm plays a critical role in
determining if a matrix is ill-conditioned. In addition, there are many applications of matrix norms to specific disciplines
such as structural analysis and input-output response in electrical engineering problems.

We begin with a definition of a vector norm and develop some examples of vector norms. These norms are important in
their own right, and we will see that some frequently used matrix norms are derived from a vector norm.

7.1 VECTOR NORMS

A vector norm gives us a way of measuring vector length. You are already familiar with the most-used vector norm, the
formula for the length of a vector u in R

n. In Chapter 6, we used the notation ‖u‖2 for the length of a vector, where

‖u‖2 =
√
u21 + u22 + · · · + u2n. (7.1)

Figure 6.4 graphically shows why this function computes the length of a three-dimensional vector. Let’s examine some
properties of this length function.

● Since u2i ≥ 0, 1 ≤ i ≤ n, ‖u2‖ = 0 if and only if u = 0.
● If α is a scalar,

‖αu‖2 =
√

(αu1)2 + (αu2)2 + · · · + (αun)2

=
√

α2
[
u21 + u22 + · · · + u2n

] = |α|√u21 + u22 + · · · + u2n

● In Chapter 6, we developed the triangle inequality for vectors x, y in Rn, which states that ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2.
Any function that takes a vector argument, computes a real number, and satisfies these three conditions is called a vector

norm, so ‖u‖2 =
√
u21 + u22 + · · · + u2n is our first vector norm.

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00007-7
Copyright © 2015 Elsevier Inc. All rights reserved. 119



120 Numerical Linear Algebra with Applications

Definition 7.1. A function ‖·‖:Rn → R is a norm provided:

1. ‖x‖ ≥ 0 for all x ∈ Rn; ‖x‖ = 0 if and only if x = 0 (positivity);
2. ‖αx‖ = |α| ‖x‖ for all α ∈ R (scaling);
3. ‖x+ y‖ ≤‖ x ‖ +‖y‖ for all x, y ∈ Rn (triangle inequality).

In this book, the only vector norms we will use are the p-norms defined by

‖x‖p =
(

n∑
i=1
|xi|p

)1/p

,

for p = 1, 2, . . . The values p = 1, 2, and∞ are the most commonly used norms. Equation 7.1 corresponds to p = 2 and
we will refer to it as the Euclidean norm or the 2-norm, and indicate this using the notation

‖u‖2 =
√
u21 + u22 + · · · + u2n =

√
uTu.

For p = 1 and∞, the norms are

‖x‖1 =
n∑
i=1
|xi|

‖x‖∞ = max
i=1,...,n

|xi|

Problem 7.9 justifies the formula for ‖x‖∞.

Example 7.1. Let u =
⎡⎣ −1−9

2

⎤⎦.
‖u‖1 = |−1| + |−9| + |2| = 12,

‖u‖2 =
√

(−1)2 + (−9)2 + (2)2 = √86 = 9.2736,

‖u‖∞ = max {|−1| , |−9| , |2|} = 9,

‖u‖5 =
(
(|−1|)5 + (|−9|)5 + (|2|)5

)1/5 = 9.0010. �

We have already shown that ‖.‖2 is a norm, but we should not take for granted that the 1- and∞-norms satisfy the three
requirements for a norm. Theorem 7.1 shows that ‖·‖∞ satisfies the required properties. Showing that ‖.‖1is a norm is left
to the exercises.

Theorem 7.1. ‖.‖∞ is a norm.

Proof. Positivity: Clearly, ‖x‖∞ ≥ 0 for all x �= 0. If

‖x‖∞ = max
1≤i≤

|xi| = 0,

then x = 0. If x = 0, then all its components are 0.
Scaling:

‖αx‖∞ = max
1≤i≤n

|αxi| = |α| max
1≤i≤n

|xi| = |α| ‖x‖∞ .

Triangle inequality:

‖x+ y‖∞ = max
1≤i≤n

|xi + yi| ≤ max
1≤i≤n (

|xi| + |yi|) = max
1≤i≤n

|xi| + max
1≤i≤n

|yi| = ‖x‖∞ + ‖y‖∞ .

Which norm to use can depend on the application. Also, all three norms are equivalent, which means that each norm is
bounded below and above by a multiple of one of the other norms.



Vector and Matrix Norms Chapter| 7 121

Lemma 7.1.

‖x‖∞ ≤ ‖x‖2 ≤
√
n ‖x‖∞ ,

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞ ,

‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2 .

Proof. We will prove the first of the three inequalities. Proofs of the remaining ones are left to the exercises.
Assume that the maximum absolute value of the vector components occurs at index i, so |xi| = ‖x‖∞. Now, ‖x‖∞ =√
x2i ≤

√
x21 + x22 + · · · + x2i + · · · + x2n = ‖x‖2.

‖x‖2 =
√
x21 + x22 + · · · + x2i + · · · + x2n ≤

√
n (xi)2 = √n |xi| = √n ‖x‖∞

Example 7.2. Let x =
⎡⎣ 1

4
−9

⎤⎦. Then,
‖x‖∞ = 9, ‖x‖1 = 14, ‖x‖2 =

√
86.

Now test each inequality in Lemma 7.1.

9 ≤ √86 ≤ 9
√
3,
√
86 ≤ 14 ≤ √258, 9 ≤ 14 ≤ 27

The 2-norm is more computationally expensive than the∞- or the 1-norm. If an application requires the computation
of a norm many times, it could be advantageous to use the∞- or the 1-norm. �

Example 7.3. TheMATLAB norm command will compute norms of a vector. For instance, if v =
⎡⎣ 1
−7
2

⎤⎦, the following
MATLAB statements compute the∞-norm, the 1-norm, and the 2-norm of v. �

>> norm(v, 1)

ans =

10.0000

>> norm(v, ‘inf’)

ans =

7

>> norm(v, 2)

ans =

7.3485 �

7.1.1 Properties of the 2-Norm

The 2-norm is the norm most frequently used in applications, and there are good reasons why this is true. There are many
relationships satisfied by the 2-norm, and one of the most frequently used is the Cauchy-Schwarz inequality:

|〈x, y〉| = ∣∣xTy∣∣ ≤ ‖x‖2 ‖y‖2 ,
with equality holding when x and y are collinear (Theorem 6.5). Another relationship involving the Euclidean norm is the
Pythagorean Theorem for orthogonal x and y,

‖x+ y‖22 = ‖x‖22 + ‖y‖22 .
The vector 2-norm enjoys yet another property: it is orthogonally invariant. This means that for any n × n orthogonal
matrix P

‖Px‖2 = ‖x‖2
for all x in Rn, since

‖Px‖22 = (Px)T Px = xTPTPx = xTIx = xTx = ‖x‖22 .



122 Numerical Linear Algebra with Applications

FIGURE 7.1 Effect of an orthogonal transformation on a vector.

In other words, multiplication of a vector, x, by an orthogonal matrix will likely rotate x, but the resulting vector Px
has the same length. This is one of the reasons that orthogonal matrices are useful in computer graphics. Figure 7.1

shows the result of applying the orthogonal transformation P =
⎡⎣ 0.4082 0.5774 0.7071
0.4082 0.5774 −0.7071
0.8165 −0.5774 0

⎤⎦ to u =
⎡⎣ 8

5
12

⎤⎦
producing the vector v = Pu =

⎡⎣ 14.6380
−2.3325
3.6452

⎤⎦. Note that ‖u‖2 = √
82 + 52 + 122 = 15.2643, and ‖Pu‖2 =√

(14.6380)2 + (−2.3325)2 + (3.6452)2 = 15.2643.

Theorem 7.2 gives us another important property. A set of orthogonal vectors is a basis for the subspace spanned by
those vectors.

Theorem 7.2. If the nonzero vectors u1, u2, . . . , uk in R
nare orthogonal, they form a basis for a k-dimensional subspace

of R
n.

Proof. Let

c1u1 + c2u2 + · · · + ci−1ui−1 + ciui + ci+1ui+1 + · · · + ckuk = 0.

Choose any i, 1 ≤ i ≤ k. Then,

c1 〈u1, ui〉 + c2 〈u2, ui〉 + . . .+ ci−1 〈ui−1, ui〉 + ci 〈ui, ui〉 + ci+1 〈ui+1, ui〉 + . . .+ ck 〈uk, ui〉
= c1 (0)+ c2 (0)+ · · · + ci−1 (0)+ ci (1)+ ci+1 (0)+ · · · + ck (0) = ci = 0.

Since ci = 0, 1 ≤ i ≤ k, the ui are linearly independent, and thus are a basis.

If the vectors in a basis u1, u2, . . . , un are mutually orthogonal and each vector has unit length

(〈
ui, uj

〉 = {
0 i �= j
1 i = j

)
,

we say the basis is orthonormal. We proved in Theorem 6.2 that if P is an n× n real matrix, then P is an orthogonal
matrix if and only if the columns of P are orthogonal and have unit length. It follows from Theorem 7.2 that the columns
of an n × n orthogonal matrix P are an orthonormal basis for Rn. This fact has a natural physical interpretation. The
vector



Vector and Matrix Norms Chapter| 7 123

Ux =

⎡⎢⎢⎢⎣
u11 u12 . . . u1n
u21 u22 . . . u2n
...

...
. . .

...
un1 un2 . . . unn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎦ = [
u1 u2 . . . un

]
⎡⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎦ =
n∑
i=1

xiui

is a representation of the vector x in the coordinate system whose axes are given by u1, u2, . . . , un. The statement
‖Ux‖2 = ‖x‖2 simply means “the length of x does not change when we convert from the standard orthonormal basis
e1 = [ 1 0 . . . 0 0 ]T, e2 = [ 0 1 . . . 0 0 ]T, . . . , en = [ 0 0 . . . 0 1 ]T to the neworthonormal basis u1, u2, . . . , un.”

7.1.2 Spherical Coordinates

A very good example of this change of basis is the spherical coordinate system used in geography, astronomy, three-
dimensional computer games, vibration problems, and many other areas. The representation for a point in space is
given by three coordinates (r, θ , φ). Fix a point O in space, called the origin, and construct the usual standard basis

i =
⎡⎣ 1
0
0

⎤⎦ , j =
⎡⎣ 0
1
0

⎤⎦ , k =
⎡⎣ 0
0
1

⎤⎦ centered at O. The r coordinate of a point P is the length of the line segment from O

to P, θ is the angle between the direction of vector k and P, and φ is the angle between the i direction and the projection of−→
OP onto the ij plane. In order for coordinates to be unique we require, r ≥ 0, 0 ≤ θ ≤ π , and 0 ≤ φ ≤ 2π (Figure 7.2).
The name spherical coordinates comes from the fact that the equation of a sphere in this coordinate system is simply r = a,
where a is the radius of the sphere. An application of trigonometry shows that rectangular coordinates are obtained from
spherical coordinates (r, θ , φ) as follows:

x = r sin θ cos φ,

y = r sin θ sin φ,

z = r cos θ .

The position vector for a point, P, in space is
−→
P = xi+ yj+ zk. Now write the vector with x, y, and z replaced by their

equivalents in spherical coordinates.
−→
P = r sin θ cos φi+ r sin θ sin φj+ r cos θk.

Our aim is to develop a basis in spherical coordinates. Such a basis must have a unit vector er in the direction of r, eθ in the
direction of θ , and eφ in the direction of φ (Figure 7.3) such that the position vector

−→
P = rer + θeθ + φeφ .

The vectors er, eθ , eφ change direction as the point P moves. If θ and φ are fixed and we increase r, er is a unit vector
in the direction of change in r. This means we take the partial derivative.

∂
−→
P

∂r
= ∂ (r sin θ cos φi+ r sin θ sin φj+ r cos θk)

∂r

O

q

f

P

r

i

j

k

FIGURE 7.2 Spherical coordinates.



124 Numerical Linear Algebra with Applications

Z

r

r

q

f

f

y

X

e

e

e

FIGURE 7.3 Orthonormal basis for spherical coordinates.

= sin θ cos φi+ sin θ sin φj + cos θk

=
⎡⎣ sin θ cos φ

sin θ sin φ

cos θ

⎤⎦ ,

and

er =
∂
−→
P

∂r∥∥∥ ∂
−→
P

∂r

∥∥∥ .
Similarly,

eθ =
∂
−→
P

∂θ∥∥∥ ∂
−→
P

∂θ

∥∥∥ , eφ =
∂
−→
P

∂φ∥∥∥ ∂
−→
P

∂φ

∥∥∥ .
After performing the differentiation and division, the result is

er =
⎡⎣ sin θ cos φ

sin θ sin φ

cos θ

⎤⎦ , eθ =
⎡⎣ cos θ cos φ

cos θ sin φ

− sin θ

⎤⎦ , eφ =
⎡⎣ − sin φ

cos φ

0

⎤⎦ .

Now,

−→
P =

⎡⎣ x
y
z

⎤⎦ = rer + θeθ + φeφ = r

⎡⎣ sin θ cos φ

sin θ sin φ

cos θ

⎤⎦+ θ

⎡⎣ cos θ cos φ

cos θ sin φ

− sin θ

⎤⎦+ φ

⎡⎣ − sin φ

cos φ

0

⎤⎦ ,

and

x = (sin θ cos φ) r + (cos θ cos φ) θ − (sin φ) φ,

y = (sin θ sin φ) r + (cos θ sin φ) θ + (cos φ) φ,

z = (cos θ) r − (sin θ) θ .

In matrix form ⎡⎣ x
y
z

⎤⎦ =
⎡⎣ sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

⎤⎦⎡⎣ r
θ

φ

⎤⎦ = P

⎡⎣ r
θ

φ

⎤⎦ . (7.2)

The matrix P is orthogonal, as we can see by applying simple trigonometry, so P−1 = PT and⎡⎣ r
θ

φ

⎤⎦ =
⎡⎣ sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎤⎦⎡⎣ x
y
z

⎤⎦ ,



Vector and Matrix Norms Chapter| 7 125

Furthermore,
{
er, eθ , eφ

}
is an orthonormal basis. It must be noted that the basis is a local basis, since the basis vectors

change. Applications include the analysis of vibrating membranes, rotational motion, and the Schrodinger equation for the
hydrogen atom. In Equation 7.2, the xyz-coordinate system is fixed, but the rθφ-coordinate system moves. If we choose
r = 1, θ = π/4,φ = π/4, the orthogonal matrix in Equation 7.2 is

P =
⎡⎣ 0.5000 0.5000 −0.7071
0.5000 0.5000 0.7071
0.7071 −0.7071 0

⎤⎦ ,

and

P

⎡⎣ 1
π
4
π
4

⎤⎦ =
⎡⎣ 0.33734

1.4481
0.15175

⎤⎦ .

This says that in the coordinate system defined by the spherical basis with r = 1, θ = π/4, φ = π/4, the vector

⎡⎣ 1
π
4
π
4

⎤⎦
corresponds to the vector

⎡⎣ 0.33734
1.4481
0.15175

⎤⎦ in the Cartesian coordinate system (Figure 7.4).

P =

0.5 0.5 -0.70711

0.5 0.5 0.70711

0.70711 -0.70711 0

>> P*[1 theta phi]’

ans =

0.33734

1.4481

0.15175

0

1

2

0
0.5

1
1.5

2
2.5

3

−0.5

0

0.5

1

1.5

2

2.5

x

Basis for Spherical Coordinates

y

z

U

ef
eq

er

FIGURE 7.4 Point in spherical coordinate basis and Cartesian coordinates.



126 Numerical Linear Algebra with Applications

15

10

15

0z

−5

−10

−15
8 6 4 2 0

y
x−2 −4 −6

using the spherical coordinate basis
q = 0.5f, r = 0.5f, 0 � f � 2pi

−8

−5
0

5
10

15

−10
−10

6 4 2 0 x−2 4 6
−5

0
5

10

10

FIGURE 7.5 Function specified in spherical coordinates.

Example 7.4. Apply the change of basis from spherical to Cartesian coordinates to graph the surface formed by the
equations θ = 1

2φ, r = 2φ, 0 ≤ φ ≤ 2π . Unfortunately, there is no fixed standard for spherical coordinates. We have
defined spherical coordinates as commonly used in physics. MATLAB switches the roles of θ and φ; furthermore, φ is
the angle between the projection of

−→
OP onto the xy-plane and OP. As a result, −(π/2) ≤ φ ≤ π/2. The book software

distribution contains a MATLAB function

[x y z] = sph2rect(r, theta, phi)

that uses our definition of spherical coordinates. It takes r, theta, phi in the local basis and returns Cartesian coordinates
suitable for graphing a function using the MATLAB surf or mesh functions. The resulting graph is shown in Figure 7.5.

>> phi = linspace(0,2*pi);
>> theta = 0.5*phi;

>> [theta phi] = meshgrid(theta, phi);

>> r = 2*phi;

>> [x y z] = sph2rect(r, theta, phi);

>> surf(x,y,z); �

7.2 MATRIX NORMS

We used vector norms to measure the length of a vector, and we will develop matrix norms to measure the size of a matrix.
The size of a matrix is used in determining whether the solution, x, of a linear system Ax = b can be trusted, and determining
the convergence rate of a vector sequence, among other things. We define a matrix norm in the same way we defined a vector
norm.

Definition 7.2. A function ‖·‖ : Rm×n → R is a matrix norm provided:

1. ‖A‖ ≥ 0 for all A ∈ Rm×n; ‖A‖ = 0 if and only if A = 0 (positivity);
2. ‖αA‖ = |α| ‖A‖ for all α ∈ R (scaling);
3. ‖A+ B‖ ≤‖ A ‖ +‖B‖ for all A, B ∈ R

m×n (triangle inequality)



Vector and Matrix Norms Chapter| 7 127

7.2.1 The Frobenius Matrix Norm

One of the oldest and simplest matrix norms is the Frobenius norm, sometimes called theHilbert-Schmidt norm. It is defined
as the square root of the sum of the squares of all the matrix entries, or

‖A‖F =
⎛⎝ m∑
i=1

n∑
j=1

a2ij

⎞⎠1/2

.

Clearly, it measure the “size” of matrix A. A matrix with small (large) entries will have a small (large) Frobenius norm, but
we need to prove it is actually a matrix norm.

Theorem 7.3. ‖·‖F is a matrix norm.

Proof. Positivity: Clearly, ‖A‖F ≥ 0, and ‖A‖F = 0 if and only if A = 0.

Scaling: ‖αA‖ =
(∑m

i=1
∑n

j=1
(
αaij

)2)1/2 = (
α2∑m

i=1
∑n

j=1 a2ij
)1/2 = |α| (∑m

i=1
∑n

j=1 a2ij
)1/2

=|α| ‖A‖F.
Triangle inequality: Consider the n × n matrix A to be a vector in Rn2 by forming the column vector vA =[

a11 . . . am1 a12 . . . am2 . . . a1n . . . amn
]T. Similarly, form the vector vB from matrix B. Then,

‖A+ B‖F =
⎛⎝ n∑
i=1

n∑
j=1

(
aij + bij

)2⎞⎠1/2

= ‖vA + vB‖2 ≤ ‖vA‖ + ‖vB‖ = ‖A‖F + ‖B‖F

by applying the triangle inequality to the vectors vA and vB.

Example 7.5. If A =
⎡⎣ −1 2 5
−1 2 7
23 4 12

⎤⎦ , B =
⎡⎣ 1 1 0
2 −6 3
1 1 2

⎤⎦, then
‖A‖F =

√
(−1)2 + 22 + 52 + · · · + 122 = 27.8029, ‖B‖F = 7.5498, and

‖A+ B‖F =
∥∥∥∥∥∥
⎡⎣ 0 3 5

1 −4 10
24 5 14

⎤⎦∥∥∥∥∥∥
F

= 30.7896. Note that 30.7896 < 27.8029 + 7.5498 = 35.3527 as expected by the

triangle inequality. �

7.2.2 Induced Matrix Norms

The most frequently used class of norms are the induced matrix norms, that are defined in terms of a vector norm.

Definition 7.3. Assume ‖·‖ is a vector norm, A is an m × n matrix, and x an n × 1 vector. Then the matrix norm of A
induced by ‖·‖ is

‖A‖ = max
x�=0

‖Ax‖
‖x‖ . (7.3)

The definition measures the norm of a matrix by finding the largest size of Ax relative to x. If ‖Ax‖ becomes large for a
particular range of vectors, x, that do not have large norms, then ‖A‖ will be large. An induced matrix norm measures the
maximum amount the matrix product Ax can stretch (or shrink) a vector relative to the vector’s original length. Figure 7.6
illustrates the effect of a matrix on two vectors in R2.

Remark 7.1. We use the notation ‖A‖p to denote that the norm of A is derived from the p-norm in Equation 7.3.
An induced matrix norm is often called a subordinate matrix norm.

We have commented that orthogonal matrices are beautiful things, and when it comes to their norms, they do not
disappoint.

Lemma 7.2. If P is an orthogonal matrix, then ‖P‖2 = 1.



128 Numerical Linear Algebra with Applications

2.0000

1.7500

3
3

2

3

3

1

5 1

2

2

3
1

x1

x2

−1

−2

−1

−2

1 4

5

−1

Ax2

Ax1

A

1

1

1

1

A

A

FIGURE 7.6 Effect of a matrix on vectors.

Proof. An orthogonal matrix maintains the 2-norm of x when forming Px, so ‖Px‖2 = ‖x‖2. It follows that
‖P‖2 = max

x �=0
‖Ax‖2
‖x‖2 = ‖x‖2

‖x‖2 = 1.

Not all matrix norms are induced. The Frobenius norm is not induced by any vector norm (Problem 7.10).
Another, perhaps easier, way to understand the concept of an induced matrix norm is to use the scaling property of a

vector norm as follows:

‖A‖ = max
x �=0

‖Ax‖
‖x‖ = max

x �=0

∥∥∥∥( 1

‖x‖
)
Ax

∥∥∥∥ = max
x�=0

∥∥∥∥A( x

‖x‖
)∥∥∥∥ = max‖x‖=1

‖Ax‖ . (7.4)

Equation 7.4 says that to compute induced norm ‖A‖, find the maximum value of ‖Ax‖, where x ranges over the unit sphere
‖x‖ = 1. It is helpful to view the unit sphere of a norm, which is possible for R

2 and R
3. For vectors in R

2, the unit spheres
for the∞-, 1-, and 2-norm have equations

−1 ≤ x ≤ 1, |y| = 1, −1 ≤ y ≤ 1, |x| = 1,

‖(x, y)‖1 = |x| + |y| = 1,

‖(x, y)‖2 =
√
x2 + y2 = 1.

Figure 7.7 shows a graph of all three unit spheres.

You may not have seen a definitions like Equations 7.3 and 7.4. For instance, if A =
[

1 −8
−1 3

]
, then

‖A‖∞ = max‖x‖∞=1
[max (|x1 − 8x2| , |−x1 + 3x2|)] .

Computing this value seems complex. Let’s run a numerical experiment so we can make an educated guess for the
value of the induced infinity matrix norm. We need x to vary over the unit sphere, which is the set of points (x, y) in
the plane such that max {|x| , |y|} = 1. This is a square (Figure 7.7). Example 7.6 estimates‖Ax‖∞ using the function
approxinfnorm(A). The function generates 2500 random vectors on each side of the square and finds the maximum value
of ‖Ax‖∞ among the 10,000 values. Following the estimation of ‖A‖∞, the example applies the function to the matrix

B =
[

0.25 −0.75
−0.75 0.30

]
.



Vector and Matrix Norms Chapter| 7 129

Example 7.6. Experimentally estimate ‖·‖∞ for two matrices.

function max = approxinfnorm(A)

%APPROXINFNORM Generate 10,000 random values on the unit circle for the

%infinity norm in the plane. Return the maximum value of norm(A*x, ’inf’).

%input : Matrix A

%output : real value max

max = 0.0;

for i = 1:10000

r = 1 - 2*rand;
if i <= 2500

x = [1.0 r]’;

elseif i <= 5000

x = [r, 1.0]’;

elseif i <= 7500

x = [-1.0 r]’;

else
x = [r -1.0]’;

end

bvalue = norm(A*x,’inf’);
if bvalue > max

max = bvalue;

end
end

>> approxinfnorm(A)

ans =

9.0000

>> approxinfnorm(A)

ans =

8.9998

>> approxinfnorm(B)

ans =

1.0500

>> approxinfnorm(B)

ans =

1.0497 �

(1,0)

(0,1)

(0,-1)

(-1,0)

x

x

x

1
1

∞

2

1

1

FIGURE 7.7 Unit spheres in three norms.



130 Numerical Linear Algebra with Applications

Notice that in Example 7.6, the experimental results using matrix A indicate an actual value of 9.0, which is the sum of
the absolute value of the entries in row 1. For matrix B, the experiment indicates that the norm is the sum of the absolute
values of the entries in row 2. In fact, here is the way to compute‖A‖∞ for any m× n matrix. Find the sum of the absolute
values of the elements in each row of A and take ‖A‖∞ be the maximum of these sums; in other words,

‖A‖∞ = max
1≤k≤n

n∑
j=1

∣∣akj∣∣ .
How do we get from the definition of the infinity-induced matrix norm

max‖x‖=1
‖Ax‖∞

to this simple expression? Theorem 7.4 answers that question. The proof is somewhat technical, and is here for the interested
reader.

Theorem 7.4. If A is an m× n matrix,

‖A‖∞ = max
1≤i≤m

n∑
j=1

∣∣aij∣∣ .
Proof. We can assume A �= 0, since the result is certainly true for A = 0.

Ax =

⎡⎢⎢⎢⎢⎢⎣
a11x1 + · · · + a1nxn
a21x1 + · · · + a2nxn

...
am−1,1x1 + · · · + an−1,nxn
am1x1 + · · · + amnxn

⎤⎥⎥⎥⎥⎥⎦ ,

and

‖Ax‖∞ = max
1≤i≤m

∣∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣∣ .
Using the fact that |xi| ≤ ‖x‖∞ , 1 ≤ i ≤ n for vector x, it follows that

‖Ax‖∞ ≤ max
1≤i≤m

n∑
j=1

∣∣aij∣∣ ∣∣xj∣∣ ≤ ‖x‖∞ max
1≤i≤m

n∑
j=1

∣∣aij∣∣ . (7.5)

By the definition of an induced matrix norm and Equation 7.5,

‖A‖∞ = max‖x‖∞=1
‖Ax‖∞ ≤ max

1≤i≤m

n∑
j=1

∣∣aij∣∣ . (7.6)

Let imax be the row index that gives the maximum sum in Equation 7.6 so that

max
1≤i≤m

n∑
j=1

∣∣aij∣∣ ≤ n∑
j=1

∣∣aimax,j
∣∣ . (7.7)

Let vector xmax ∈ Rn be defined by xmax
j = 0 if aimax,j = 0 and xmax

j = aimax,j/
∣∣aimax,j

∣∣ if aimax,j �= 0. Since A �= 0, xmax �= 0,
and ‖xmax‖∞ = 1. Furthermore, using Equation 7.7 we have

‖A‖∞ = max‖x‖∞=1
‖Ax‖∞ ≥

∣∣∣∣∣∣
n∑
j=1

aimax,jx
max
j

∣∣∣∣∣∣ =
n∑
j=1

(
aimax,j

)2∣∣aimax,j∣∣ =
n∑
j=1

∣∣aimax,j
∣∣ ≥ max

1≤i≤m

n∑
j=1

∣∣aij∣∣ . (7.8)

Now, Equation 7.6 says

‖A‖∞ ≤ max
1≤i≤m

n∑
j=1

∣∣aij∣∣ ,



Vector and Matrix Norms Chapter| 7 131

and Equation 7.8 says

‖A‖∞ ≥ max
1≤i≤m

n∑
j=1

∣∣aij∣∣ ,
and so

‖A‖∞ = max
1≤i≤m

n∑
j=1

∣∣aij∣∣ .
The same type of argument (Problem 7.5) shows that the 1-norm is the maximum absolute column sum, or

‖A‖1 = max
1≤k≤n

m∑
i=1
|aik| .

Example 7.7. If A =

⎡⎢⎢⎢⎢⎣
−2 1 −8 1
0 −4 −21 18
−33 16 −6 20
14 −20 −18 5
8 −1 12 16

⎤⎥⎥⎥⎥⎦, then
‖A‖∞ = 33+ 16+ 6 + 20 = 75, ‖A‖1 = 8+ 21+ 6+ 18+ 12 = 65. �

MATLAB computes matrix norms using the same command, norm, that it uses for a vector. For a matrix, in addition to the
∞-, 1-, and 2-norms, the Frobenius norm is available. We apply those norms to the matrix of Example 7.7.

>> norm(A,’inf’)

ans =

75

>> norm(A,1)

ans =

65

>> norm(A,’fro’)

ans =

63.5767

Remark 7.2. From the definition of an induced norm, (‖Ax‖/‖x‖) ≤ ‖A‖, and so
‖Ax‖ ≤ ‖A‖ ‖x‖ (7.9)

We will have occasion to use Equation 7.9 numerous times throughout the remainder of the book.

7.3 SUBMULTIPLICATIVE MATRIX NORMS

Example 7.8. Let A =
⎡⎣ −1 2 5
−1 2 7
23 4 12

⎤⎦ and B =
⎡⎣ 1 1 0
2 −6 3
1 1 2

⎤⎦. The product AB =
⎡⎣ 8 −8 16
10 −6 20
43 11 36

⎤⎦, and its Frobenius
norm is ‖AB‖F = 64.6993. The product of the Frobenius norms is ‖A‖F ‖B‖F = 209.9071, and so

‖AB‖F ≤ ‖A‖F ‖B‖F . �

The inequality ‖AB‖F ≤ ‖A‖F ‖B‖F is not a coincidence.Our first matrix norm, the Frobenius norm is sub-multiplicative.

Definition 7.4. If the matrix norm ‖.‖ satisfies ‖AB‖ ≤ ‖A‖ ‖B‖ for all matrices A and B in Rn×n, it said to be sub-
multiplicative.



132 Numerical Linear Algebra with Applications

Theorem 7.5. The Frobenius matrix norm is sub-multiplicative.

Proof. Let C = AB. Then, cij =∑n
k=1 aikbkj, and

‖AB‖2F =
n∑
i=1

n∑
j=1

c2ij =
n∑
i=1

n∑
j=1

(
n∑
k=1

aikbkj

)2

=
n∑
i=1

n∑
j=1

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
ai1
ai2
...

ai,n−1
ain

⎤⎥⎥⎥⎥⎥⎦
T⎡⎢⎢⎢⎢⎢⎣

b1j
b2j
...

bn−1,j
bnj

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠

2

≤
n∑
i=1

n∑
j=1

⎛⎜⎜⎜⎜⎜⎝

∥∥∥∥∥∥∥∥∥∥∥

ai1
ai2
...

ai,n−1
ain

∥∥∥∥∥∥∥∥∥∥∥
2

∥∥∥∥∥∥∥∥∥∥∥

b1j
b2j
...

bn−1,j
bnj

∥∥∥∥∥∥∥∥∥∥∥
2

⎞⎟⎟⎟⎟⎟⎠
2

(7.10)

=
n∑
i=1

n∑
j=1

[(
n∑
k=1

a2ik

)(
n∑

k=1
b2kj

)]
= ‖A‖2F ‖B‖2F . (7.11)

We used the Cauchy-Schwarz inequality in Equation 7.10. Verifying Equation 7.11 is left to the exercises.

The induced matrix norms are sub-multiplicative:

‖AB‖ = max
x�=0

‖ABx‖
‖x‖ = max

x�=0
‖A (Bx)‖
‖Bx‖

‖Bx‖
‖x‖ ≤

(
max
x �=0

‖Ax‖
‖x‖

)(
max
x �=0

‖Bx‖
‖x‖

)
= ‖A‖ ‖B‖

There exist norms that satisfy the three basic matrix norm axioms, but are not submultiplicative; for instance,

‖A‖ = max
1≤i,j≤n

∣∣aij∣∣
satisfies the positivity, scaling, and triangle inequality properties, but is not sub-multiplicative (see Exercise 7.6).

7.4 COMPUTING THE MATRIX 2-NORM

The most useful norm for many applications is the induced matrix 2-norm (often called the spectral norm):

‖A‖2 = max
x �=0

‖Ax‖2
‖x‖2

or

‖A‖2 = max‖x‖2=1
‖Ax‖ .

It would seem reasonable that this norm would be more difficult to find, since

‖x‖2 =
√
x21 + x22 + · · · + x2n

is a more complex calculation than ‖x‖∞ or ‖x‖1. In fact, it is a nonlinear optimization problemwith constraints. InR2, ‖A‖2
is themaximumvalue of ‖Ax‖2 for x on the unit circle. As you can see in Figure 7.8, the image of thematrixA =

[
1 −8
−1 3

]
as x varies over the unit circle is an ellipse. The problem is to find the largest value of ‖Ax‖2 on this ellipse.

Let’s examine Figure 7.8 in more detail. A semi-major axis of the ellipse is the longest line from the center to a point
on the ellipse, and the length of the semi-major axis for our ellipse is 8.6409. Create A with MATLAB and use the norm
command to compute its 2-norm.



Vector and Matrix Norms Chapter| 7 133

Semimajor axis

0
x

y 0

−8 −6
−6

−4

−4

−2

−2

2

2

4

4

6

6

8

1

1

1

−1

−8

3

2

2

2 ,

Semiminor axis

Image of the Unit Circle

A

Ax

x

x

FIGURE 7.8 Image of the unit circle.

>> A = [1 -8;-1 3];

>> norm(A)

ans =

8.6409

This is not a coincidence. We will show in Chapter 15 that the norm of a matrix is the length of a semi-major axis of an
ellipsoid formed from the image of the unit sphere in k-dimensional space, k ≤ m.

If A is an m× n matrix, ATA is of size n× n and since
(
ATA

)T = ATA, it is also symmetric. The method for computing
‖A‖2 exploits properties of ATA. The following is a summary of the process, followed by an example.
● The eigenvalues of a symmetric matrix are real.
● ATA is symmetric, so it has real eigenvalues. Furthermore, it can be shown that the eigenvalues of ATA are nonnegative

(≥ 0).
● The square roots of the eigenvalues of ATA are termed singular values of A. The norm of an m × n matrix, A, is the

largest singular value.

Example 7.9. Find the 2-norm of A =

⎡⎢⎢⎣
1 13 5 −9
12 55 5 −6
18 90 1 −1
3 0 2 3

⎤⎥⎥⎦ using the MATLAB commands eig and norm.

>> E = eig(A’*A)

E =

1.0e+004 *

0.0000

0.0021

0.0131

1.1802

>> sqrt(max(E))

ans =

108.6373

>> norm(A,2)

ans =



134 Numerical Linear Algebra with Applications

108.6373

>> norm(A) % default without second argument is the 2-norm

ans =

108.6373 �

Remark 7.3. The fact that

‖A‖2 = max‖x‖2=1
‖Ax‖2 = max

(√
si
)
,

where si are the eigenvalues of ATA, is really a theoretical result that will lead to methods for efficiently computing ‖A‖2.
Computing the norm like we did in Example 7.9 is too slow and prone to errors. Chapter 8 provides justification for this
statement.

It is useful to note that

〈Bx, y〉 = (Bx)T y = xTBTy = 〈
x, BTy

〉
.

This says that you can move matrix B from one side of an inner product to the other by replacing B by BT. Now, if B is
symmetric B = BT, and we have

〈Bx, y〉 = 〈x, By〉 . (7.12)

The remainder of this section mathematically derives the computation of ‖A‖2 from the eigenvalues of ATA, and can
be skipped if the reader does not need to see the details.

The proof of Lemma 7.3 uses the concept of the conjugate of a complex number and the conjugate transpose of a complex
matrix (Definition A.3).

Lemma 7.3. The eigenvalues of a symmetric matrix are real, and the corresponding eigenvectors can always be assumed
to be real.

Proof. Suppose λ is an eigenvalue of the symmetric matrix A, and u is a corresponding eigenvector. We know that the
eigenvalues of an n× n matrix with real coefficients can be complex and, if so, occur in complex conjugate pairs a+ib and
a-ib. Since λ might be complex, the vector u may also be a complex vector. Because u is an eigenvector with eigenvalue λ,

Au = λu

Now take the conjugate transpose of both sides of the latter equation and we have

u∗A = λu∗ (7.13)

Multiply 7.13 by u on the right, and (
u∗A

)
u = λu∗u

u∗ (Au) = λu∗u
u∗ (λu) = λu∗u

λu∗u = λu∗u (7.14)

From 7.14, there results (
λ− λ

)
u∗u = 0.

Now, u∗u > 0, since u is an eigenvector and cannot be 0. It follows that

λ− λ = 0,

and λ = λ means that λ is real.



Vector and Matrix Norms Chapter| 7 135

This finishes the first portion of the proof. We now need to show that for any eigenvalue λ, there is a corresponding real
eigenvector. Assume that u is an eigenvector of A, so

Au = λu.

If we take the complex conjugate of both sides, we obtain

Au = λu.

By adding the two equations, we have

A (u+ u) = λ (u+ u) .

Thus, u+ u is an eigenvector of A. If u = x+ iy, then u+ u = (x+ iy)+ (x− iy) = 2x, which is real.

Remark 7.4. If A is a symmetric square matrix, all its eigenvalues are real, and A has real eigenvectors; however, this does
not mean that A has no complex eigenvectors. For instance, consider the symmetric matrix

A =
[

1 −8
−8 1

]
.

A has eigenvalues λ = −7 and λ = 9. For λ = 9, u =
[ −0.7071

0.7071

]
is an eigenvector, but so is (1− 9i)

[ −0.7071
0.7071

]
.

Lemma 7.3 says we can always find a real eigenvector for each real eigenvalue. If A is not symmetric, it may have complex
eigenvalue λ, in which case a corresponding eigenvector will be complex.

We are getting closer to deriving the formula for ‖A‖2. Because ATA is an n× n symmetric matrix, Lemma 7.3 says it has
real eigenvalues. The following lemma shows that the eigenvalues of ATA are in fact always greater than or equal to 0.

Lemma 7.4. If A is an m× n real matrix, then the eigenvalues of the n× n matrix ATA are nonnegative.

Proof. The eigenvalues of ATA are real from Lemma 7.3. Let λ be an eigenvalue of ATA and u �= 0 be a corresponding
eigenvector, so that (

ATA
)
u = λu.

Take the inner product of this equality with u to obtain〈(
ATA

)
u, u

〉 = λ ‖u‖22
from which we arrive at

λ =
〈(
ATA

)
u, u

〉
‖u‖22

.

Note that
〈(
ATA

)
u, u

〉 = (
AT (Au)

)T
u = (Au)T Au = 〈Au, Au〉, and so

λ = ‖Au‖
2
2

‖u‖22
≥ 0.

We are almost in a position to compute the 2-norm of a matrix, but first we need to define the singular values of A.

Definition 7.5. The singular values {σi} of an m× n matrix A are the square roots of the eigenvalues of ATA.

Remark 7.5. We can always compute
√

λ, where λ is an eigenvalue of ATA because Lemmas 7.3 and 7.4 guarantee λ is
real and nonnegative.

Example 7.10. Let A be the 4× 2 matrix

⎡⎢⎢⎣
2 5
1 4
−1 6
7 8

⎤⎥⎥⎦. ATA = [
55 64
64 141

]
, and the eigenvalues of AAT are

λ1 = 175.1, and λ2 = 20.896, so the singular values are σ1 = 13.233, σ2 = 4.571. �



136 Numerical Linear Algebra with Applications

Before proving how to compute ‖A‖2 in Theorem 7.7, we state a result concerning symmetric matrices called the spectral
theorem that we will prove in Chapter 19. It says that any real symmetric matrix A can be diagonalizedwith a real orthogonal
matrix.

Theorem 7.6 (Spectral theorem). If A is a real symmetric matrix, there exists an orthogonal matrix P such that

D = PTAP,

where D is a diagonal matrix containing the eigenvalues of A, and the columns of P are an orthonormal set of eigenvalues
that form a basis for R

n.

We are now in a position to prove how to compute ‖A‖2.

Theorem 7.7. If A is an m× n matrix, ‖A‖2 is the square root of the largest eigenvalue of ATA.

Proof. The symmetric matrix ATA is diagonalizable (D = PTATAP), and its eigenvalues λi are nonnegative real numbers.
Let y = PTx, and

‖A‖22 = max
x �=0

‖Ax‖22
‖x‖22

= max
x �=0

(Ax)T Ax

‖x‖22

= max
x �=0

xTATAx

‖x‖22
= max

x �=0
xTPDPTx

‖x‖22

= max
x �=0

(
PTx

)T
D
(
PTx

)∥∥PTx∥∥22 = max
y �=0

yTDy

‖y‖22

= max
y �=0

∑n
i=1 λiy2i∑n
i=1 y2i

≤ λmax

∑n
i=1 y2i∑n
i=1 y2i

= λmax. (7.15)

Assume that λmax occurs at index (k,k). We have Pek = xk, where xk is column k of P and ek is the kth standard basis vector,
so ek = PTxk. By choosing y = ek, the inequality in Equation 7.15 is an equality, and ‖A‖2 =

√
λmax.

Remark 7.6. For values of p other than 1, 2, and∞, there is no simple formula for the induced matrix p-norm.

Example 7.11. In Example 7.10, we computed the largest singular value of A =

⎡⎢⎢⎣
2 5
1 4
−1 6
7 8

⎤⎥⎥⎦, σ1 = 13.233. Using the

MATLAB command norm, compute the 2-norm of A.

>> norm(A,2)

ans =

13.233 �

7.5 PROPERTIES OF THE MATRIX 2-NORM

There are a number of important properties of the matrix 2-norm. Since we have the tools to develop the properties, we will
do so now and then refer to them as needed.

The matrix 2-norm inherits orthogonal invariance from the vector 2-norm. This means that multiplying matrix A on the
left and right by orthogonal matrices does not change its 2-norm.

Theorem 7.8. For any orthogonal matrices U and V, ‖UAV‖2 = ‖A‖2 .



Vector and Matrix Norms Chapter| 7 137

Proof. We first consider the case of multiplication on the left by a single orthogonal matrix P, and then use this to prove that
multiplication on the right by a single orthogonal matrix also preserves the 2-norm. The combination of these two results
will allow us to prove the more general result.

‖PA‖22 = max
x �=0

(PAx)T (PAx)

‖x‖22
= max

x�=0

(
xTATPT

)
(PAx)

‖x‖22
= max

x �=0
xTATIAx

‖x‖22
= max

x�=0
(Ax)T (Ax)

‖x‖22
= max

x �=0
‖Ax‖22
‖x‖22

= ‖A‖22 .

Now, noting that ‖x‖2 = ‖Px‖2 for any vector x,

‖AP‖22 = max
x�=0

‖APx‖22
‖x‖22

= max
x �=0

‖A (Px)‖22
‖Px‖22

= max
y�=0

‖Ay‖22
‖y‖22

= ‖A‖22 .

Now consider multiplication by orthogonal matrices U on the left and V on the right.

‖UAV‖2 = ‖U (AV)‖ = ‖AV‖2 = ‖A‖2 .
This section concludes with the development of four properties of the matrix 2-norm. One of the properties involves the
spectral radius of a matrix.

Definition 7.6. Let A be an n× n real matrix with eigenvalues, {λ1, λ2, . . . , λn}. Then the spectral radius, ρ (A), of A is

ρ (A) = max
1≤i≤n

|λi| .

Before considering the five properties in Theorem 7.9, there is a fact we have not needed until now.

Lemma 7.5. If A is invertible, the eigenvalues of A−1 are inverses of the eigenvalues of A; in other words, the eigenvalues
of A−1are {1/λ1, 1/λ2, . . . , 1/λn}, where the λi are the eigenvalues of A. Note that there is no problem with division by 0,
since an invertible matrix cannot have a 0 eigenvalue (Proposition 5.1). Furthermore, A and A−1 have the same eigenvectors.
Also, the maximum eigenvalue of A−1 in magnitude is 1/λmin, where λmin is the smallest eigenvalue of A in magnitude.

Proof. Let λ be an eigenvalue A and x be a corresponding eigenvector. Then Ax = λx, and A−1x = (1/λ)x. Thus, 1/λ is an
eigenvalue of A−1 and x is a corresponding eigenvector. Clearly, if λmin is the smallest eigenvalue of A in magnitude, then
1/λmin is the largest eigenvalue of A−1.

Theorem 7.9. The matrix 2-norm has the following properties:

1. If A is a symmetric matrix, ‖A‖2 = ρ (A), where ρ (A) is the spectral radius of A.
2. If A is a symmetric matrix, its singular values are the absolute value of its eigenvalues.
3. ‖A‖2 =

∥∥AT∥∥2.
4.

∥∥ATA∥∥2 = ∥∥AAT∥∥2 = ‖A‖22.
5.

∥∥A−1∥∥2 = 1
σmin

, where σmin is the minimum singular value of A.

Proof. The proof of parts 1 and 5 are left to the exercises.
For part (2), assume that λ is an eigenvalue of A with associated eigenvector, so Av = λv. To obtain singular values, we

need to find the eigenvalues of ATA = A2 since A is symmetric. Multiply both sides of Av = λv by A, and we have

A2v = λ (Av) = λ (λv) = λ2v.

Assume the eigenvalues are sorted by decreasing absolute value. The singular values are nonnegative and are square roots
of λ2, so σ 1 = |λ1|, σ2 = |λ2|, . . ., σn = |λn|.

Begin the proof of part (3) with

‖Ax‖22 = (Ax)T (Ax) = xTATAx = 〈
x, ATAx

〉 ≤ ‖x‖2 ∥∥ATAx∥∥2 (7.16)

by the Cauchy-Schwarz inequality. From Equation 7.9

‖x‖2
∥∥ATAx∥∥2 ≤ ‖x‖22 ∥∥ATA∥∥2 , (7.17)



138 Numerical Linear Algebra with Applications

and by putting Equations 7.16 and 7.17 together, we have

‖Ax‖2 ≤
√∥∥ATA∥∥2 ‖x‖2 . (7.18)

By Equation 7.18,

‖A‖2 = max
x�=0

‖Ax‖2
‖x‖2 ≤ max

x �=0

√∥∥ATA∥∥2 ‖x‖2
‖x‖2 =

√∥∥ATA∥∥2. (7.19)

The matrix 2-norm is submultiplicative so by squaring both sides of Equation 7.19,

‖A‖22 ≤
∥∥ATA∥∥2 ≤ ∥∥AT∥∥2 ‖A‖2 .

Divide by ‖A‖2 when A �= 0 to obtain

‖A‖2 ≤
∥∥AT∥∥2 .

Clearly, this is also true if A = 0. In the last inequality, replace A by AT and we now have the two inequalities, ‖A‖2 ≤
∥∥AT∥∥2

and
∥∥AT∥∥ ≤ ∥∥∥(AT)T∥∥∥

2
= ‖A‖2,

so

‖A‖2 =
∥∥AT∥∥2 .

For part (4), from Theorem 7.7, ‖A‖2 =
√

λmax, where λmax ≥ 0 is the maximum eigenvalue of ATA, so ‖A‖22 = λmax. ATA
is a symmetric matrix, its eigenvalues are positive real numbers, and from (1) its 2-norm is its spectral radius, λmax, so∥∥ATA∥∥2 = λmax = ‖A‖22 .
Now replace A by AT to obtain ∥∥∥(AT)T AT∥∥∥

2
= ∥∥AAT∥∥2 = ∥∥AT∥∥22 = ‖A‖22

using part (3).

7.6 CHAPTER SUMMARY

Vector Norms

A vector norm measures length. The most commonly used norm is the 2-norm, or the Euclidean norm, where

‖u‖2 =
√
u21 + u22 + · · · + u2n =

√〈u, u〉.
Motivated by the properties of the 2-norm, we define a general vector norm as a function mappingRn into the real numbers
with the following properties:

a. ‖x‖ ≥ 0 for all x ∈ Rn; ‖x‖ = 0 if and only if x = 0 (positivity);
b. ‖αx‖ = |α|‖x‖ for all α∈ R (scaling);
c. ‖x+ y‖ ≤ ‖ x ‖ + ‖y‖ for all x, y ∈ Rn (triangle inequality).

Aside from the 2-norm, other useful norms are the 1-norm,

‖u‖1 =
n∑
i=1
|ui| ,

and the∞-norm,

‖u‖∞ = max
1≤i≤n

|ui| .



Vector and Matrix Norms Chapter| 7 139

Properties of the 2-Norm

The 2-norm has unique properties that will be useful throughout the book. It satisfies

● the Cauchy-Schwarz inequality, |〈u, v〉| = ∣∣uTv∣∣ ≤ ‖u‖2 ‖v‖2,
● the Pythagorean Theorem, ‖u+ v‖2 = ‖u‖22 + ‖v‖22, when u and v are orthogonal,
● orthogonal invariance, ‖Px‖2 = ‖x‖2 when P is an orthogonal matrix.

Orthogonal invariance is of particular importance in computer graphics. If a rotation is applied to the elements in an object,
the object’s size and shape do not change.

A set of k orthogonal vectors u1, u2, . . . , uk is linearly independent and forms a basis for a k−dimensional subspace of
Rn. If we normalize each vector to form, vi = ui/‖ui‖2, then the matrix [v1v2 . . . vk] is orthogonal.

Spherical Coordinates

Spherical coordinates are useful in computer graphics, vibrating membranes, and the Schrodinger equation for the hydrogen
atom. With some work, we can build an orthogonal matrix that implements a change of coordinates from rectangular to
spherical and spherical to rectangular.

Matrix Norms

The definition of a matrix norm is the same as that for a vector norm. It has the properties of positivity, scaling, and the
triangle inequality. Essentially, it measure the size of a matrix. The oldest matrix norm is the Frobenius norm defined by

‖A‖F =
√√√√ m∑

i=1

n∑
j=1

a2ij,

which can be viewed as the norm of a vector in Rmn.

Induced Matrix Norm

A vector norm, ‖.‖, can be used to define a corresponding matrix norm as follows:

‖A‖ = max
x �=0

‖Ax‖
‖x‖ = max‖x‖=1

‖Ax‖ .
From the definition, there results a frequently used inequality, ‖Ax‖ ≤ ‖A‖ ‖x‖.

The three most used induced matrix norms are the 2-norm, the 1-norm, and the∞-norm. The definition can be used to
develop simple formulas for the matrix∞- and 1-norms:

‖A‖∞ = max
1≤i≤m

n∑
j=1

∣∣aij∣∣ ,
‖A‖1 = max

1≤j≤n

m∑
i=1

∣∣aij∣∣ .
Submultiplicative Matrix Norms

The induced norms are submultiplicative, which means that

‖AB‖ ≤ ‖A‖ ‖B‖ .
The Frobenius norm is submultiplicative, but is not an induced matrix norm.

Computation of ‖A‖2
The computation of ‖A‖2 is more complex. First, note that for any m× nmatrix ATA is a symmetric n× nmatrix. As such,
its eigenvalues are all real, but in addition all its eigenvalues are greater than or equal to zero. The singular values of A are
the square root of the eigenvalues of ATA, and the 2-norm is the largest singular value. In addition, the 2-norm of A−1 is the
reciprocal of the smallest singular value of A.



140 Numerical Linear Algebra with Applications

Properties of ‖A‖2
The matrix 2-norm has the following properties:

1. For any orthogonal matrices U and V, ‖UAV‖2 = ‖A‖2 .
2. If A is a symmetric matrix, ‖A‖2 = ρ (A), where ρ (A) is the spectral radius of A, the magnitude of its largest eigenvalue.
3. If A is a symmetric matrix, its singular values are the absolute value of its eigenvalues.
4. ‖A‖2 =

∥∥AT∥∥2.
5.

∥∥ATA∥∥2 = ∥∥AAT∥∥2 = ‖A‖22.
7.7 PROBLEMS

7.1 Compute the 1-norm, the∞-norm, and the 2-norm for the following vectors. Do the calculations with paper, pencil,
and a calculator.

a.
[
1
5

]

b.

⎡⎣ 4
1
3

⎤⎦
c.

⎡⎣ −1−9
−6

⎤⎦

d.

⎡⎢⎢⎣
1
4
−1
2

⎤⎥⎥⎦
7.2 Compute the 1-norm, the ∞-norm, the 2-norm, and the Frobenius norm for the following vectors. Except for the

2-norm, do the calculations with paper and pencil. To compute the 2-norm, you may use MATLAB to find the
required eigenvalues.

a.
[

1 9
−1 5

]
b.
[
2 5 3
0 4 1

]
7.3 Show that ‖x‖1 is a vector norm by verifying Definition 7.1.
7.4 Prove that

a. ‖I‖2 = 1
b. ‖I‖F =

√
n.

7.5 Prove that

‖A‖1 = max
1≤k≤n

∑
|aik|

using the proof of Theorem 7.4 as a guide.
7.6 Prove the following:

a.

‖A‖max = max
1≤i,j≤n

∣∣aij∣∣
is a matrix norm.

b.

‖A‖max = max
1≤i,j≤n

∣∣aij∣∣
is not sub-multiplicative. Hint: Let A be a matrix whose entries are all equal to 1.



Vector and Matrix Norms Chapter| 7 141

7.7
a. In Lemma 7.1, we proved that ‖x‖2 ≤

√
n ‖x‖∞. Prove that ‖x‖1 ≤

√
n ‖x‖2 Hint: Consider using the Cauchy-

Schwarz inequality involving vectors x and
[
1 . . . 1

]T.
b. Find a vector

⎡⎢⎣ x1
...
xn

⎤⎥⎦ for which the inequalities in (a) are an equality.

7.8 Show that if ‖.‖ is an induced matrix norm, then |λ| ≤ ‖A‖, where λ is an eigenvalue of A.
7.9 This problem demonstrates why ‖·‖∞ is a p-norm by showing that

lim
p−→∞

(
n∑
i=1
|xi|p

)1/p

= max
1≤i≤n

|xi| = ‖x‖∞ .

Reorder the elements in
∑n

i=1 |xi|p so that |x1| = |x2| = · · · = |xk| are the largest elements in magnitude, and let
|xk+1| , |xk+2| , . . . , |x|n be the remaining elements. Show that(

n∑
i=1
|xi|p

)1/p

= |x1|
(
k +

∣∣∣∣xk+1x1

∣∣∣∣p + · · · + ∣∣∣∣xnx1
∣∣∣∣p)1/p ,

and complete the argument.
7.10

a. If ‖.‖ is an induced matrix norm, show that ‖I‖ = 1.
b. Show that the Frobenius norm is not an induced norm.

7.11 Let A be an n× n matrix, ρ (A) its spectral radius, and ‖·‖ be an induced matrix norm. Prove that for every k ≥ 1

ρ (A) ≤
∥∥∥Ak∥∥∥1/k .

Hint: Begin by showing that Akv = λkv if λ is an eigenvalue of A with corresponding eigenvector v.
7.12 Show that the Frobenius norm can be computed as ‖A‖F =

(
trace

(
ATA

))1/2
or ‖A‖F =

(
trace

(
AAT

))1/2
.

7.13 Verify that
∑n

i=1
∑n

j=1
[(∑n

k=1 a2ik
) (∑n

k=1 b2kj
)]
= ‖A‖2F ‖B‖2F.

7.14 If A is an m× n matrix, prove that

max
1≤i≤m, 1≤j≤n

∣∣aij∣∣ ≤ ‖A‖F .
7.15 Prove the Pythagorean Theorem for orthogonal x and y,

‖x+ y‖22 = ‖x‖22 + ‖y‖22 .
7.16 Prove that if A is a symmetric matrix and ρ (A) < 1, then

lim
k→∞Ak = 0.

Use the spectral theorem.
7.17 Prove that if A is an n× n matrix and

lim
n→∞An = 0,

then ρ (A) < 1. Consult the hint for Problem 7.11.
7.18 A matrix norm and a vector norm are compatible if it is true for all vectors x and matrices A that ‖Ax‖ ≤ ‖A‖ ‖x‖.

Show that the Euclidean vector norm is compatible with the Frobenius matrix norm; in other words, show that

‖Ax‖2 ≤ ‖A‖F ‖x‖2 .
7.19 A Schatten p-norm is the p-norm of the vector of singular values of a matrix. If the singular values are denoted by σi,

then the Schatten p-norm is defined by

‖A‖p =
(

n∑
i=1

σ
p
i

)1/p

.



142 Numerical Linear Algebra with Applications

a. Show that the Schatten∞-norm is the spectral norm, ‖A‖2.
b. In Chapter 15, we will be able to use the SVD to show that trace

(
ATA

) =∑n
i=1 σ 2

i . Using this result, show that
the Schatten 2-norm is the Frobenius norm.

7.20 Prove
a. If A is a symmetric matrix, ‖A‖2 = ρ (A), where ρ (A) is the spectral radius of A.
b. Assume that ATA and AAT have the same eigenvalues, a fact we will deal with in Chapter 15. Prove that

∥∥A−1∥∥2 =
1/σmin, where σmin is the minimum singular value of A.

7.21 Complete the proof of Lemma 7.1 by showing that
a. ‖x‖2 ≤ ‖x‖1 ≤

√
n ‖x‖2

b. ‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞
7.22 Prove that for any induced matrix norm, ρ (A) ≤ ‖A‖.
7.23 If A is an n× n matrix, ρ (A) ≥ 0. Show that the spectral radius is not a matrix norm by using the matrices

A =
[
2 0
5 0

]
, B =

[
0 5
0 2

]
.

7.7.1 MATLAB Problems

7.24 It can be shown that if A is an m× n matrix, then

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m ‖A‖∞

and

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n ‖A‖1 .

Using MATLAB, verify these relationships for the matrix A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 1
1 1 1
0 0 1
1 1 1
0 1 1
1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦.
7.25 Run an experiment like that in Example 7.6 to formulate a good guess for the value of the matrix 1-norm.
7.26 The software distribution contains a function P =sphereorthog(theta, phi) that returns the orthogonal matrix

in Equation 7.2. Convert

⎡⎣ 2
3
8π

π/6

⎤⎦ from the spherical coordinate basis to Cartesian coordinates. Using the MATLAB

function quiver3, draw the spherical basis vectors er, eφ , eθ , and the vector

u = 2er + 3

8
πeθ + π

6
eφ .

7.27 Let A be the 2 × 2 matrix A =
[
1 −1
3 5

]
. The following function plots the unit circle and the range of Ax as

x varies over the circle. Add code that computes vectors x1 and x2 such that ‖Ax1‖2 and ‖Ax2‖2 are largest and
smallest, respectively, among the points generated on the unit circle. Using the MATLAB function quiver, draw
the two vectors Ax1, Ax2. Also output ‖Ax1‖2 and 1/ ‖Ax2‖. Compute ‖A‖2 and

∥∥A−1∥∥2. What conclusion can you
make?

function matimage(A)

% build the unit circle

t=0:0.01:2*pi;
x=cos(t)’;y=sin(t)’;
npts = length(t);
Ax = zeros(npts,1);
%Image of the unit circle under A

for i = 1:npts



Vector and Matrix Norms Chapter| 7 143

v=[x(i);y(i)];

w=A*v;

Ax(i)=w(1);

Ay(i)=w(2);

end
% Plot of the circle and its image

plot(x,y,Ax,Ay,’.’,’MarkerSize’,10,’LineWidth’,3);
grid on; axis equal;

title(’Action of a linear transformation on the unit circle’);
xlabel(’x’); ylabel(’y’);

7.28 Plot the surface r = θ2, θ = φ, 0 ≤ θ ≤ π .
7.29 A magic square is an n× n matrix whose rows, columns, and both diagonals add to the same number. For instance,

M is a 4× 4 magic square, whose sums are 34.

M =

⎡⎢⎢⎣
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

⎤⎥⎥⎦
a. What is the sum for an n× n magic square?
b. The time required to execute one or more MATLAB commands can be timed by entering a single line_using

tic/toc as follows:

tic;command1;command2;...;last command;toc;

It is faster to compute the Frobenius norm, the 1-norm, and the ∞-norm of a matrix than to compute the
2-norm. You are to perform an experiment. Generate a 1000× 1000 magic square using the MATLAB command
“M = magic(1000);”, and do not omit the “;” or 1,000,000 integers will begin spewing onto your screen. Using
tic/toc, time the execution of norm(A) and then the execution of the other norms. Comment on the results.

7.30 As we have noted, a computer does not perform exact floating point arithmetic, and errors occur. Norms play a role
in determining if one can depend on the solution to a linear system obtained using Gaussian elimination. Assume that
the entries of matrix A are precise. Let x be the true solution to the system Ax = b and that xa is the solution obtained
using Gaussian elimination. If the product Axa is not exact, then Axa = b+�b,�b �= 0.
a. Using Ax = b, show that xa − x = A−1�b.
b. Noting that ‖b‖2 = ‖Ax‖2, show that (‖xa − x‖2/‖x‖2) ≤

∥∥A−1∥∥2 ‖A‖2 ‖�b‖2/‖b‖2.
c. The product

∥∥A−1∥∥2 ‖A‖2 is called the condition number of A. If it is large, errors relative to the correct values
can be large. For each matrix, find the condition number.

A =
⎡⎣ 1 3 −1
5 −1 2
1 7 8

⎤⎦ , B =

⎡⎢⎢⎣
−4.0000 0.5000 0.3333 0.2500
−120.0000 20.0000 15.0000 12.0000
240.0000 −45.0000 −36.0000 −30.0000
−140.0000 28.0000 23.3333 20.0000

⎤⎥⎥⎦.
d. For each matrix, let b be a vector consisting of all ones. Find the MATLAB solution x. Then multiply b by 0.999

and solve the system again to obtain xp. Compute ‖x − xp‖2. What are your conclusions?

7.31 Let A =

⎡⎢⎢⎢⎢⎣
0.6 1 6 −1 5
0 0.6 1 1 0
0 0 0.6 1 3
0 0 0 0.6 1
0 0 0 0 −0.7

⎤⎥⎥⎥⎥⎦.
a. Without using MATLAB, find the eigenvalues of A.
b. Is there a basis of eigenvectors for R

5?
c. What is the spectral radius of A?
d. Plot ‖An‖2 for n = 0, 1, . . . , 50.
e. Find the maximum value of ‖An‖2 , 0 ≤ n ≤ 50.
f. Build another nonsymmetric matrix with ρ (A) < 1. Do parts (d) and (e) for it.



144 Numerical Linear Algebra with Applications

g. Perform the same actions with the symmetric matrix SYMMAT in the software distribution.
h. Attempt to explain your results. For a symmetric matrix, use the spectral theorem. We will develop Schur’s

triangularization in Chapter 19. It states that very n × n real matrix A with real eigenvalues can be factored
into A = PTPT, where P is an orthogonal matrix and T is an upper-triangular matrix. Apply this result to the
nonsymmetric case. In particular, is there a relationship between the eigenvalues of A and T that can explain what
happens to ‖An‖2 as n increases?

7.32 The inner product of two n × 1 vectors u, v is the real number 〈u, v〉 = uTv. Now let’s investigate the n × n matrix
A = uvT. For n = 5, 15, 25, generate vectors u = rand (n, 1) and v = rand (n, 1). In each case, compute rank

(
uvT

)
,

‖u‖2 ‖v‖2, and
∥∥uvT∥∥2. What do you conclude from the experiment? Prove each assertion. It will help to recall that

rank + nullity = n (Theorem 3.4).
7.33 This problem investigates how some norm values compare with the maximum of the absolute values of all matrix

entries,

max
1≤i, j≤n

∣∣aij∣∣ ,
that can be computed using the MATLAB command max(max(abs(A))). For n = 5, 15, 25, build matrices

An =randi([-100 100],n,n)

and compute

max
1≤i, j≤n

∣∣∣a(n)
ij

∣∣∣ , ‖An‖∞ , ‖An‖1 , ‖A‖2 and ‖An‖F .
What is the apparent relationship between

max
1≤i, j≤n

∣∣∣a(n)
ij

∣∣∣
and the matrix norms? Prove your assertion. Hint: For the induced norms, assume

m = max
1≤i, j≤n

∣∣∣a(n)
ij

∣∣∣
occurs at indices (imax, jmax). By definition

‖A‖ = max‖x‖�=0
‖Ax‖
‖x‖ .

If ek is a standard basis vector, then (‖Aek‖/‖ek‖) = ‖Aek‖ ≤ ‖A‖.



Chapter 8

Floating Point Arithmetic

You should be familiar with

● Number systems, primarily binary, hexadecimal, and decimal
● Geometric series
● Euclidean vector norm
● Quadratic equation

In this day and age when we rely on computers for so many things, it seems unreasonable to think they make errors. In
fact, when performing arithmetic with real numbers such as 0.3 and 1.67 × 108, there is error when the number is placed
in computer memory, and it is called round-off error. And worse, the error propagates with arithmetic operations such
as addition and division. In engineering and scientific applications, it is often necessary to deal with large-scale matrix
operations. These computations must be done with minimal error. The engineer or scientist must be aware that errors will
occur, why they occur, and how to minimize them.

Engineering applications deal with the computation of functions like ex, cos x, and the error function
erf (x)= (2/

√
π)
∫ x
0 e

−t2dt. These functions are defined in terms of infinite series, and we must cut off summing terms
at some point. This is called truncation error. Engineering and science applications often have to deal with very large,
sparse, matrices. Such matrices have a small number of nonzero entries, and methods of dealing with them are primarily
iterative. An iterative method computes a sequence of approximate solutions {xi} that approaches a solution. Such methods
suffer from truncation error.

We discuss the representation of numbers in digital computers and its associated arithmetic. A digital computer stores
values using the binary number system, where a number is represented by a string of 0’s and 1’s. Each binary digit is termed
a bit. Since digital computers have a finite bit capacity (memory), integers and real numbers are represented by a fixed
number of binary bits. We will see that integers can be represented exactly as long as the integer value falls within the fixed
number of bits. Floating point numbers are another story. Most such values cannot be represented exactly. We will describe
representation systems so that we will understand the problems involved when dealing with both integers and floating point
numbers.

8.1 INTEGER REPRESENTATION

Suppose that p bits are available to represent an integer. Here is a simple way to do it. A positive integer has a zero in the
last bit and the p−1 other bits contain the binary (base-2) representation of the integer. For example, for p = 8, the positive
integer

21 = 1× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20 is encoded as

0 0 0 1 0 1 0 1

and 58 = 1× 25 + 1× 24 + 1× 23 + 0× 22 + 1× 21 + 0× 20 is encoded as

0 0 1 1 1 0 1 0

For negative integers, most computers use the two’s-complement representation. The systemworks like an ideal odometer. If
the odometer reads 000000 and the car backs up 1mile, the odometer reads 999999. In binary with p = 8, zero is 00000000,
so −1 becomes 11111111. Continuing in this fashion, −2 becomes 11111110, −3 is 11111101, and so forth. This might
appear strange, but it is really very effective and simple. If this representation of−1 is to make sense, there must be a logical
way to take the negative of 1 and obtain this representation for −1. Invert all the bits (0→ 1, 1→ 0) and add 1.

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00008-9
Copyright © 2015 Elsevier Inc. All rights reserved. 145



146 Numerical Linear Algebra with Applications

−1→ invert (00000001)+ 1 = 11111110+ 1 = 11111111. (8.1)

The inversion of bits is called the 1s-complement, which we indicate by 1comp(n), so we can write Equation 8.1 as

−1→ 1comp(0000001)+ 1.

1 1 1 1 1 1 1 1

The negative of 3 should be 11111101. To verify this, compute

−3→ 1comp(00000011)+ 1 = 11111100+ 1 = 11111101.

1 1 1 1 1 1 0 1

Negation works both ways. For instance, −(−2) = 2.

− (−2) = 1comp(11111110)+ 1 = 00000001+ 1 = 00000010.

0 0 0 0 0 0 1 0

Definition 8.1. We denote the process of taking the one’s complement and adding 1 with the notation 2comp(n). Thus,
the negative of a two’s complement number n is 2comp(n) = 1comp(n)+ 1.

Remark 8.1. The leftmost bit is called the sign bit. It is always 0 when the integer is positive and 1 when it is negative.

We still have not discussed how to add or subtract two’s-complement numbers. If we add the representations for -1 and 1
together, we should get 0. Thus, form the sum using ordinary binary arithmetic:

11111111 + 00000001 = 1|00000000,

where the underlined bit is the carry. Discard the carry, retaining 8 bits, and we have a result of 00000000, or zero. One
more example will suggest a formula for addition of two’s complement numbers.

Example 8.1. Form the sum of 95 and −43.
95→ 01011111

43→ 00101011, and − 43→ 11010100+ 1 = 11010101

95+ (−43)→ 01011111+ 11010101 = 1|00110100
Discard the carry, and the result is 00110100→ 52.

0 0 1 1 0 1 0 0 �

Remark 8.2. The following rules show how to perform addition or subtraction of two’s-complement numbers.

● Given two p-bit integers m and n, form m+ n by performing binary addition and discarding the carry.
● The subtraction m− n is performed adding (−n) to m, so m− n = m+ 2comp(n).

The largest positive integer is 0 111 . . .111︸ ︷︷ ︸ = 2p−1 − 1. Finding the most negative integer is more interesting. The
representation of −1 is
1 1 1 1 1 1 1 1 ,

and the representation of−2 is
1 1 1 1 1 1 1 0

Continuing in this way, we eventually arrive at

1 0 0 0 0 0 0 0



Floating Point Arithmetic Chapter| 8 147

Going from 1111111 to 10000001 comprises 127 = 27 = 2p−1 − 1 integers, and the range is −1 ≥ n ≥ −127. We
get one more negative integer, namely, 1 000 . . .000︸ ︷︷ ︸

p−1
that represents −2p−1, so the range of integers we can represent is

−2p−1 ≤ n ≤ 2p−1 − 1.

Example 8.2. You have heard of 32-bit and 64-bit operating systems. In a 32-bit system, p = 32, so the range of integers
that can be represented is

−231 ≤ n ≤ 231 − 1 or −2, 147, 483, 648≤ n ≤ 2, 147, 483, 647.

In a 64-bit system, p = 64, and the range of an integer is

−18, 446, 744, 073, 709, 551, 616≤ n ≤ 18, 446, 744, 073, 709, 551, 615. �

Integer arithmetic can cause overflowwhen the range of a positive or negative integer is exceeded. For instance, let’s assume
p = 8 and add 120 and 88. Then

0 1 1 1 1 0 0 0 + 0 1 0 1 1 0 0 0 = 1 1 0 1 0 0 0 0

which is the value −48.

Remark 8.3. When the sign of the result is the opposite of what it should be, overflow has occurred.

Example 8.3. Compute−18+ (−112) = 11101110+ 10010000 = 1|01111110, so −18+ (−112) = 126. This results
is an overflow. �

During integer operations, all results must lie within the interval −2p−1 ≤ n ≤ 2p−1 − 1. This is a significant limitation.
If large integer arithmetic must be performed, software is required, often called a BigInteger package. For example, data
encryption usually requires operations with very large integers.

8.2 FLOATING-POINT REPRESENTATION

For given integers b, p, emin, and emax, we define the nonzero floating-point numbers as real numbers of the form

± (0.d1d2 . . . dp
)× bn

with d1 �= 0, 0 ≤ di ≤ b − 1, and −emin ≤ n ≤ emax. We denote by F the (finite) set of all floating-point numbers. In this
notation,

a. b is the base. The most common bases are b = 2 (binary base), b = 10 (decimal base), and b = 16 (hexadecimal base).
b. −emin ≤ n ≤ emax is the exponent that defines the order of magnitude of the number to be encoded.
c. The integers 0 ≤ di ≤ b − 1 are called the digits and p is the number of significant digits. The mantissa is the integer

m = d1d2 . . . dp. Note that(
0.d1d2 . . . dp

) × bn =
(
d1 × b−1 + d2b

−2 + · · · + dpb
−p) bn = bn

p∑
k=1

dkb
−k. (8.2)

The following bounds hold for floating-point numbers

fmin ≤ |f | ≤ fmax for every f ∈ F,
where fmin = b−(emin+1) is the smallest positive real number. We can see this by setting n = −emin, d1 = 1, d2 = d3 =
· · · = dp = 0 and applying Equation 8.2. The largest floating point number fmax is found by applying Equation 8.2 with
di =(b− 1) , 1 ≤ i ≤ p and exponent n = emax. Using the formula for the sum of a geometric series

fmax = bemax (b− 1)
(
b−1 + b−2 + · · · + b−p

)
= bemax (b− 1)

⎛⎜⎝1−
(
1
b

)p
b− 1

⎞⎟⎠
= bemax

(
1−

(
1

b

)p)
= bemax

(
1− b−p

)
.



148 Numerical Linear Algebra with Applications

Summary

fmin = b−(emin+1)

fmax = bemax
(
1− b−p

)
Smaller numbers produce an underflow and larger ones an overflow.

Computers use base b = 2 and usually support single precision (representation with p = 32) and double precision
(representation with p = 64). In our single-precision representation, we use 1 bit for the sign (0 means positive, 1 means
negative), 8 bits for the exponent, and 23 bits for the mantissa (for a total of 32 bits). In our double-precision representation,
we use 1 bit for the sign, 11 bits for the exponent, and 52 bits for the mantissa (for a total of 64 bits). For example, represent
81.625 in single precision.

81.625 = (1) 26 + (0) 25 + (1) 24 + (0) 23 + (0) 22 + (0)21 + (1) 20 + (1) 2−1 + (0) 2−2 + (1) 2−3

=
(
(1) 2−1 + (0) 2−2 + (1) 2−3 + (0) 2−4 + (0) 2−5 + (0) 2−6 + (1) 2−7 + (1) 2−8 + (0) 2−9 + (1) 2−10

)
27

Note that the leading digit is d1 = 1, as required, and the exponent is properly adjusted. To avoid dealing with a negative
exponent, encode it as an unsigned integer by adding to it a “bias" (127 is the usual bias in single precision). For our
example of 81.625, the exponent will be stored as 7+ 127 = 134 using bias 127. To obtain the actual exponent, compute
134−127 = 7. If the exponent is−57, it is stored as−57+127 = 70. A stored exponent of 0 reflects an actual exponent of
−127. Here is the internal representation for 81.625, where sign = 0, exponent = 134 in a field of 8 bits, and the mantissa
follows the exponent in a field of 23 bits.

0|10000110|10100011010000000000000

There still remains the issue of x = 0.0. Represent it by filling both the exponent and mantissa with zeros. The sign bit
can still be 0 (+) or 1 (−), so you will sometimes see output like −0.0000. Note that this situation does not occur with the
two’s-complement integer representation.

Example 8.4. Let x = 1
6 , and assume that b = 2 and p = 8. The binary representation of 1/6 is the infinite repeating

pattern

0.00101010101010101010101010101010 . . .

We only have eight binary digits to work with, so when 1/6 is entered into computer memory, the binary sequence is either
rounded or truncated. When using rounding, the approximation is 0.00101011, but with truncation the approximation is
0.00101010. �

To indicate the error in converting a floating number, x, to its computer representation, we use the notation fl (x).

Definition 8.2. Let fl (x) be the floating-point number associated with the real number x. For instance, in Example 8.4,
the number x = 1

6 was approximated using rounding, so

fl (x) = 0.00101011.

8.2.1 Mapping from Real Numbers to Floating-Point Numbers

The most widely used standard for floating-point computation is the IEEE Standard for Floating-Point Arithmetic. The
most frequently used IEEE formats are single and double precision. In each case, a nonzero number is assumed to have a
hidden 1 prior to the first digit. As a result, single precision uses 24 binary digits, and double precision 53. Table 8.1 lists
the attributes of the two formats.

TABLE 8.1 IEEE Formats

Name Base Digits emin emax Approximate Decimal Range

Single precision 2 23+1 --126 +127 1.18×10−38 to 3.4×1038

Double precision 2 52+1 --1022 +1023 2.23×10−308to 1.80×10308



Floating Point Arithmetic Chapter| 8 149

Floating point numbers are granular, which means there are gaps between numbers. The granularity is caused by the
fact that a finite number of bits are used to represent a floating point number.We represented 81.625 perfectly because 0.625
is 1

2 + 1
8 , but most real numbers must be approximated because there is no exact conversion into binary (Example 8.4).

The distance from 1.0 to the next largest double-precision number is 2−52 in IEEE double precision. If a number smaller
than 2−52 is added to 1, the result will be 1. The floating point numbers between 1.0 and 2.0 are equally spaced:{

1, 1+ 2−52, 1+ 2× 2−52, 1+ 3× 2−52, . . . , 2
}
.

The gap increases as the length of intervals become larger by a factor of 2. The numbers between 2.0 and 4.0 are separated
by a gap of 2−51.

2
{
1, 1+ 2−52, 1+ 2× 2−52, 1+ 3× 2−52, . . . , 2

}
.

In general, an interval from 2k to 2k+1 has a gap between values of 2k
(
2−52

)
. As k increases, the gap relative to 2k remains

2−52. In single precision, the relative gap between numbers is 2−23. There is a name associated with this gap. It is called the
machine precision, or eps, and it plays a significant role in analysis of floating point operations. Remember that the value
of eps varies with the precision.

There is a formula for eps for any b and p, and let’s intuitively determine it. Let b = 10 and p = 4, and assume we
round to p digits. Let x = 1. Then, fl (1+ 0.0001) = 1, fl (1+ 0.0003) = 1, fl (1+ 0.0004) = 1, fl (1+ 0.0005) = 1.0001.
If we repeat the experiment with b = 10, p = 5, we will find that fl (1+ 0.00005) = 1.00001. Let b = 2, p = 3 and
again assume rounding. Let x = 1. Now, fl

(
1+ 2−5

) = fl (1 + 0.00001) = 1, fl
(
1+ 2−4

) = fl (1+ 0.0001) = 1,
fl
(
1+ 2−3

) = fl (1+ 0.001) = 1, fl(1+ 2−2) = fl(1.01) = 1.01. This is enough information for us to define eps.

Definition 8.3. Assume b is the base of the number system, p is the number of significant digits, and that rounding is
used. The machine precision, eps = 1

2b
1−p, is the distance from 1.0 to the next largest floating point number.

For IEEE double-precision floating-point, we specified the eps = 2−52. Applying the formula with b = 2 and p = 52,
we have eps = 1

22
1−52 = 2−52. In single precision, eps = 1

22
1−23 = 2−23. Figure 8.1 shows the distribution of a floating-

point number system with b = 2, p = 3, emin = −3, emax = 3, so eps = 1
22
−2 = 1

8 . Notice how the gaps between numbers
grow, but remember the gap remains constant relative to the number size. The nonnegative floating point numbers shown
in Figure 8.1 are:

0.0000 0.0625 0.078125 0.09375 0.109375

0.125 0.15625 0.1875 0.21875

0.25 0.3125 0.375 0.4375

0.5 0.625 0.75 0.875

1.0000 1.2500 1.5000 1.7500

2.0000 2.5000 3.0000 3.5000

4.0000 5.0000 6.0000 7.0000

The conversion of real numbers to floating-point numbers is called floating-point representation or rounding, and the error
between the true value and the floating-point value is called round-off error. We expect (fl (x)− x)/x = ε not to exceed eps
in magnitude. The following formula holds for all real numbers fmin ≤ x ≤ fmax:

fl (x) = x (1+ ε) (8.3)

with |ε| ≤ eps.

Remark 8.4. For single-precision IEEE floating point representation, eps = 2−23 ≈ 1.192 × 10−7, and for double
precision, eps = 2−52 ≈ 2.22 × 10−16. These numbers explain the maximum accuracy of 7 or 16 significant digits for
single or double-precision arithmetic. Figure 8.2 shows a map of double-precision IEEE floating-point numbers. Figures 8.1
and 8.2 together provide a good picture of a floating-point number system.

0 0.25 0.5 1.0 1.25 1.50 1.75 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0

FIGURE 8.1 Floating-point number system.



150 Numerical Linear Algebra with Applications

Negative floating-point
numbers

ZeroNegative
overflow

< −21023 < 2−1022> −2−1022 > 21023

Positive
overflow

Negative
underflow

Positive
underflow

Positive floating-point
numbers

FIGURE 8.2 Map of IEEE double-precision floating-point.

8.3 FLOATING-POINT ARITHMETIC

Consider the operation+. The sum of two floating-point numbers is usually an approximation to the actual sum. We denote
by ⊕ the computer result of the addition.

Definition 8.4. For real numbers x and y,

x⊕ y = fl (fl (x)+ fl (y)) . (8.4)

Overflow occurs if the addition produces a number that is too large, |x⊕ y| > fmax, and underflow occurs if it produces a
number that is too small, |x⊕ y| < fmin. Similar notation applies for the other operations: �,⊗, and �.

Example 8.5. Assume b = 10, p = 4, and that the true values of x and y are 0.34578×101 and 0.56891×101, respectively,
fl (x) = 0.3458× 101, fl (y) = 0.5689× 101,

and

x⊕ y = 0.9147× 101. �

When performing floating point operations on values with different exponents, a realignment must take place. For
instance, let b = 10, p = 5, x = 0.10002× 102 and y = 0.99982× 101. Now compute x� y.

0 . 1 0 0 0 2 0 × 102

−
0 . 0 9 9 9 8 2 × 102

=
0 . 3 8 0 0 0 × 10−2

Without adding the extra 0 in x and sticking with 5 digits throughout the calculation, we will get

1 0 . 0 0 2
−

9 . 9 9 8
=

0 . 0 0 4 0

an incorrect result. The additional zero is called a guard digit.Most computers use guard digits, so we will assume that all
calculations are done using them.

Remark 8.5. Floating point numbers have a fixed range so, as is the case with integers, dealing with floating point numbers
with many significant digits and large exponents requires software.

8.3.1 Relative Error

There are two ways to measure error, using absolute error or relative error.

Absolute error = |fl (x)− x|
Relative error = |fl (x)− x|

|x| , x �= 0



Floating Point Arithmetic Chapter| 8 151

Example 8.6.

a. In Example 8.5, b= 10 and p= 4. The value of eps for this representation is eps= 0.0005=5 × 10−4. The value
x= 0.34578 × 101 converts to floating point as fl (x) = 0.3458 × 101. According to Equation 8.3, fl

(
0.34578× 101

)
= 0.3458× 101= 0.34578 × 101 (1+ ε) , so ε= ((0.3458× 101)/(0.34578× 101)) − 1= 0.5784× 10−4 < eps, as
expected. Also, |fl (x)− x| = 0.0002, as opposed to (|fl (x)− x|)/|x| = 0.5784× 10−4.

b. Consider x=1.6553 × 105, fl (x) = 1.6552 × 105. The absolute error is |fl (x)− x| = 10, while the relative error is
(|fl (x)− x|)/|x| = 6.04× 10−5. With large numbers, relative error is generally more meaningful, as we see here. This
same type of example applies to small values.

c. Relative error gives an indication of how good a measurement is relative to the size of the thing being mea-
sured. Let’s say that two students measure the distance to different objects using triangulation. One student obtains
a value of d1= 28.635m, and the true distance is d1= 28.634m. The other student determines the distance is
d2= 67.986m, and the true distance is d2= 67.987m. In each case, the absolute error is 0.001. The relative errors
are (|28.634− 28.635|)/|28.634|= 3.49× 10−5 and (|67.987− 67.986|)/|67.987|= 1.47× 10−5. The relative error of
measurement d2 is about 237% better than that of measurement d1, even though the amount of absolute error is the same
in each case. �

Relative error provides a much better measure of change for almost any purpose. For instance, estimate the sum of the series

∞∑
i=1

1

i2 +√i .

Compute the sequence of partial sums sn = ∑n
i=1 1/(i2 +

√
i). until a given error tolerance, tol, is attained. The actual

sum of the series is not known, so a comparison of the partial sum with the actual sum cannot be computed. There are two
approaches commonly used:

a. Compute partial sums until |sn+1 − sn| < tol.
b. Compute partial sums until |sn+1−sn||sn| < tol.

Method 2 is preferable because it tells us how the new partial sum is changing relative to the previous sum.

Remark 8.6. Most computer implementations of addition (including thewidely used IEEE arithmetic) satisfy the property
that the relative error is less than the machine precision:

∣∣∣∣ (x⊕ y)− (x + y)

x+ y

∣∣∣∣ ≤ eps

assuming x+ y �= 0.

The relative error for one operation is very small, but this is not always the case when a computation involves a sequence
of many operations.

8.3.2 Rounding Error Bounds

It is important to understand how floating point errors propagate, since this leads to means of controlling them. We will do a
mathematical analysis of rounding error for the addition of floating point numbers, but will not do so for�,⊗, or�, or error
propagation of vector and matrix operations. We will state results, and the interested reader can consult Refs. [9, 16, 17]
for a rigorous analysis. In all cases, we will assume that the approximation of x by fl (x) is done by rounding rather than
truncation.

Remark 8.7. IEEE 754 requires that arithmetic operations produce results that are exactly rounded, i.e., the same as if the
values were computed to infinite precision prior to rounding.



152 Numerical Linear Algebra with Applications

We will assume that once floating point numbers x and y are in computer memory that the basic arithmetic operations
satisfy the following:

For all floating point numbers x, y in a
computer:

x⊕ y = (x+ y) (1+ ε) ,

x� y = (x− y) (1+ ε) ,

x⊗ y = (x× y) (1+ ε) ,

x� y = (x/y) (1+ ε) , (8.5)

where |ε| ≤ eps.

If the reader is not interested in the technical details, the results for addition and multiplication of floating point numbers
can be summarized as follows:

When adding n floating point numbers, the result is the exact sum of the n numbers, each perturbed by a small relative
error. The errors are bounded by (n− 1) eps, where eps is the unit roundoff error.

The relative error in computing the product of n floating point numbers is at most 1.06 (n− 1) eps, assuming that
(n− 1) eps < 0.1.

There are error bounds for matrix operations that depend on eps and the magnitude of the true values.

Addition
Lemma 8.1. Let x1, x2, . . . , xn be positive floating point numbers in a computer. Then,

x1 ⊕ x2 ⊕ x3 ⊕ · · · ⊕ xn = x1 (1+ ε1) (1+ ε2) . . . (1+ εn−1)
+x2 (1+ ε1) (1+ ε2) . . . (1+ εn−1)
+x3 (1+ ε2) (1+ ε3) . . . (1+ εn−1)
...

+xn−1 (1+ εn−2) (1+ εn−1)
+xn (1+ εn−1) ,

where |εi| ≤ eps, 1 ≤ i ≤ n− 1.

Proof. Assume the computation proceeds as follows:

s2 = x1 ⊕ x2, s3 = s2 ⊕ x3, . . . , sn = sn−1 ⊕ xn.

From Equation 8.5,

s2 = fl (x1 + x2) = (x1 + x2) (1+ ε1) = x1 (1+ ε1)+ x2 (1+ ε1) ,

where |ε1| ≤ eps. Now,

s3 = fl (s2 + x3) = (s2 + x3) (1+ ε2)

= s2 (1+ ε2)+ x3 (1+ ε2)

= x1 (1 + ε1) (1+ ε2)

+x2 (1 + ε1) (1+ ε2) (8.6)

+x3 (1 + ε2) .



Floating Point Arithmetic Chapter| 8 153

Equation 8.6 defines a pattern, and we have

sn = x1 (1+ ε1) (1+ ε2) . . . (1+ εn−1)
+x2 (1+ ε1) (1+ ε2) . . . (1+ εn−1)
+x3 (1+ ε2) (1+ ε3) . . . (1+ εn−1)
... (8.7)

+xn−1 (1+ εn−2) (1+ εn−1)
+xn (1+ εn−1)

where |εi| ≤ eps, 1 ≤ i ≤ n− 1.

Following the analysis in Ref. [17, pp. 132-134], define

1+ η1 = (1+ ε1) (1+ ε2) . . . (1+ εn−1) ,
1+ η2 = (1+ ε1) (1+ ε2) . . . (1+ εn−1) ,
1+ η3 = (1+ ε2) (1+ ε3) . . . (1+ εn−1) ,

...

1+ ηn−1 = (1+ εn−2) (1+ εn−1) ,
1+ ηn = (1+ εn−1) .

We can now write Equation 8.7 as

sn = x1 (1+ η1)+ x2 (1+ η2)+ x3 (1+ η3)+ · · · +
xn−1 (1+ ηn−1)+ xn (1+ ηn) . (8.8)

In order for Equation 8.8 to be useful, we need bounds for the ηi. From 1+ηn = (1+ εn−1), it follows that |ηn| = |εn| ≤ eps.
Now consider the term 1+ ηn−1:

1+ ηn−1 = 1+ εn−1 + εn−2 + εn−1εn−2,

so

ηn−1 = εn−1 + εn−2 + εn−1εn−2,

and

|ηn−1| ≤ |εn−1 + εn−2| + |εn−1εn−2| ≤ |εn−1| + |εn−2| + |εn−1εn−2| .
The term |εn−1εn−2| is bounded by 2eps2. If we are using double-precision arithmetic, eps = 2−52, so 2eps2 = 2−103 and
we can consider |εn−1εn−2| negligible compared to |εn−1| + |εn−2|. Thus,

|ηn−1| ≤ |εn−1| + |εn−2| ≤ 2 eps.

Continuing in this fashion, we will obtain

|η1| ≤ (n− 1) eps,

|ηi| ≤ (n− i+ 1) eps, 2 ≤ i ≤ n. (8.9)

Equations 8.8 and 8.9 can be summarized as follows:

When adding n floating point numbers, the result is the exact sum of the n numbers, each perturbed by a small relative
error. The errors are bounded by (n− 1) eps, where eps is the unit roundoff error.

It is useful to derive a bound for the relative error. Let

s =
n∑
i=1

xi (8.10)



154 Numerical Linear Algebra with Applications

Subtract Equation 8.10 from Equation 8.7 to obtain

sn − s = x1η1 + x2η2 + · · · + xnηn. (8.11)

Equation 8.9 implies that

|ηi| ≤ (n− 1) eps, 1 ≤ i ≤ n. (8.12)

Taking the absolute value of both sides of Equation 8.11 and applying 8.12, we have

|sn − s| ≤ (|x1| + |x2| + · · · + |xn|) (n− 1) eps,

This result leads to Theorem 8.1.

Theorem 8.1. If n floating point numbers, xi, are added,

|sn − s|
|x1 + x2 + · · · + xn| ≤ K (n− 1) eps,

where

K = (|x1| + |x2| + · · · + |xn|)
|x1 + x2 + · · · + xn| .

Multiplication
Theorem 8.2. The relative error in computing the product of n floating point numbers is at most 1.06 (n− 1) eps,
assuming that (n− 1) eps < 0.1.

Matrix Operations
Theorem 8.3. For an m×n matrix M, define |M| = (∣∣mij∣∣); that is |M| is the matrix whose entries are the absolute value
of those from M. Let A and B be two floating point matrices and let c be a floating point number. Then

fl (cA) = cA+ E, |E| ≤ eps |cA|
fl (A+ B) = (A+ B)+ E, |E| ≤ eps |A+ B| .

If the product of A and B is defined, then

fl (AB) = AB+ |E| , |E| ≤ n eps |A| |B| + Keps2,

where K is a constant.

Example 8.7. Assume b = 10 and p = 5. This example will test the error bound asserted for addition in Theorem 8.1.
With this representation, eps = 0.00005. Table 8.2 gives the numbers, xi, before they are entered into the computer and the
floating point approximations fl (xi) = xi.

TABLE 8.2 Floating-Point Addition

x 0.562937 × 100 0.129873 × 101 0.453219 × 101 0.765100 × 100 0.120055 × 101

x 0.56294 × 100 0.12987 × 101 0.45322 × 101 0.76510 × 100 0.12006 × 101

s =
5∑
i=1

xi = 0.835954× 101

s2 = fl (x1 + x2) = 0.18616× 101, s3 = fl
(
0.18616× 101 + x3

)
= 0.63938× 101.

s4 = fl
(
0.63938× 101 + x4

)
= 0.71589× 101, s5 = fl

(
0.71589× 101 + x5

)
= 0.83595× 101.



Floating Point Arithmetic Chapter| 8 155

Now,

|s5 − s|
|s| =

∣∣0.83640× 101 − 0.835954× 101
∣∣∣∣0.835954× 101

∣∣ = .40000× 10−4

0.835954× 101
= 0.47850× 10−5.

The value of K in Theorem 8.1

K = |x1| + |x2| + |x3| + |x4| + |x5||x1 + x2 + x3 + x4 + x5| = 1,

and

K (n− 1) eps = (1) (4) (.00005) = 2.0000× 10−4,

validating the error bound of Theorem 8.1.
�

8.4 MINIMIZING ERRORS

The subject of error minimization is complex and sometimes involves clever tricks, but there are some general principles
to follow. The article, What Every Computer Scientist Should Know About Floating Point Arithmetic [18], is an excellent
summation of earlier sections of this chapter and contains a discussion of some techniques for minimizing errors.

8.4.1 Avoid Adding a Huge Number to a Small Number

Adding a very large number to a small number may eliminate any contribution of the small number to the final result.

Example 8.8. Assume b = 10, p = 4. Let x = 0.267365× 103 and y = 0.45539× 10−3. Then,

fl (x) = 0.2674× 103, fl (y) = 0.4554× 10−2,

and

fl (fl (x)+ fl (y)) = 0.2674× 103. �

Overflow can result from including very large numbers in calculations, and can sometimes be avoided by just modifying
the order in which you do the computation. For instance, suppose you need to compute the Euclidean norm of a vector x:

‖x‖2 =
√
x21 + x22 + · · · + x2n

If some xi are very large, overflow can occur. There is a way to avoid this. Compute m = max (|x2| , |x2| , . . . , |xn|), divide
each xi by m (called normalizing the vector), and then sum the squares of the normalized vector components and multiply
by m. Overflow will be avoided. Here are the steps:

a. m = max (|x2| , |x2| , . . . , |xn|).
b. yi = xi/m, 1 ≤ i ≤ n

(
y2i ≤ 1

)
.

c. ‖x‖2 = m
√
y21 + y22 + · · · + y2n.

8.4.2 Avoid Subtracting Numbers That Are Close

Solving the quadratic equation

ax2 + bx+ c = 0, a �= 0

is a classic example where subtracting numbers that are close can be disastrous. We call this cancellation error. The usual
way to finds its two roots is by using the quadratic formula:

x1 = −b+√b2 − 4ac

2a
, x2 = −b−

√
b2 − 4ac

2a
.

If the product 4ac is small, then
√
b2 − 4ac ∼= b, and when computing one of x1 or x2 we will be subtracting two nearly

equal numbers. This can be a serious problem, since we know a computer maintains only a fixed number of significant
digits.



156 Numerical Linear Algebra with Applications

Example 8.9. Consider solving ax2 + bx + c = 0 with a = 1, b = 68.50, c = 0.1 with the quadratic equation. Use
rounded base-10 arithmetic with 4 significant digits. Now, b2 − 4ac = 4692− 0.4000 = 4692, and

x1 = −68.50+√4692
2

= −68.50+ 68.50

2
= 0,

x2 = −68.50−√4692
2

= −68.50− 68.50

2
= −68.50.

The correct roots are

x1 = −0.001460,
x2 = −68.50.

The relative error in computing x1 is (|−0.001460− 0.0000|)/|−0.0001460| = 1.0000, which is quite awful; however,
x2 is correct. There are two causes of the problem. First, the contribution of −4ac was lost during the subtraction from a
much larger number, followed by the cancellation error. Cancellation can be avoided by writing the quadratic formula in a
different way.

Multiply the two solutions:(
−b+√b2 − 4ac

2a

)(
−b−√b2 − 4ac

2a

)
= b2 − (

b2 − 4ac
)

4a2
= 4ac

4a2
= c

a
.

Thus, x1x2 = c/a. Pick the one of the two solutions that does not cause subtraction and call it x1.

x1 = −
(
b + sign (b)

√
b2 − 4ac

2a

)
,

where sign (b) is +1 if b > 0 and −1 if b < 0. Then compute x2 using

x2 = c

ax1
.

Cancellation is avoided. For our example,

x1 = −
(
68.5+ 68.5

2

)
= −68.5,

x2 = 0.1

(1) (−68.5) = −0.001460. �

There are other classic examples where cancellation error causes serious problems, and some are included in the
problems. See Ref. [19, pp. 42-44] for some interesting examples.

We will conclude this section by saying that underflow and overflow are not the only errors produced by a floating-
point representation. The MATLAB constant inf returns the IEEE arithmetic representation for positive infinity, and in
some situations its use is valid. Infinity is also produced by operations like dividing by zero (1.0/0.0), or from overflow
(exp(750)). NaN is the IEEE arithmetic representation for Not-a-Number. A NaN results from mathematically undefined
operations such as 0.0/0.0 and inf-inf. In practice, obtaining a NaN or an unexpected inf is a clear indication that
something is wrong!

8.5 CHAPTER SUMMARY

Representation of Integers

Integers are represented using two’s-complement notation. If the hardware uses n bits to store an integer, then the left-most
bit is the sign bit, and is 0 if the integer is nonnegative and 1 if it is negative. The system functions like an ideal odometer.
The representation 000 . . .00 is the integer 0, and 111 . . .11 represents −1. The two’s-complement of a number is

2comp (k) = 1comp (k)+ 1,



Floating Point Arithmetic Chapter| 8 157

where 1comp (n) reverses the bits in n, and any remainder is discarded. It negates its argument. For instance,

2comp(1) = 1comp

⎛⎝00 . . . 001︸ ︷︷ ︸
n bits

⎞⎠+ 1 =

11 . . . 110︸ ︷︷ ︸
n bits

+1 = 11 . . . 111︸ ︷︷ ︸
n bits

= −1

The range of integers that can be represented is

−2n−1 ≤ k ≤ 2n−1 − 1.

As an example, if an integer is stored using 32 bits, the range of integers is 2, 147, 483, 648 ≤ k ≤ 2, 147, 483, 647.
To add, just perform binary addition using all n bits and discard any remainder. To subtract b from a, compute a +

2comp (b). Addition or subtraction can overflow, meaning that the result cannot be represented using n bits. When this
happens, the answer has the wrong sign.

Floating Point Format

A binary floating point number as described in this book has the form

± (0.d1d2 . . . dp
)× bn

with d1 �= 0, di = 0, 1,−emin ≤ n ≤ emax is the exponent range, and p is the number of significant bits. Using this notation,
the largest magnitude for a floating point number is fmax = 2emax

(
1− 2−p

)
, and smallest nonzero floating point number in

magnitude is fmin = 2−(emin+1).
Internally, the sign bit is the left-most bit, and 0 means nonnegative and 1 means negative. The exponent follows using

e bits. To avoid having to represent negative exponents a bias of 2e−1 − 1 is added to the true exponent. For instance, if 8
bits are used for the exponent, the bias is 127. If the true exponent is−18, then the stored exponent is −18+ 127 = 109 =
011011012. The true exponent of zero is stored as 127 = 01111111. The first binary digit d1 = 1, and is the coefficient of
2−1 = 1

2 . The remaining digits can be 0 or 1, and represent coefficients of 2
−2, 2−3, . . ..

Since numbers like 1
7 = 0.001001001001001001001001001001 . . .2 cannot be represented exactly using p digits, we

round to p digits, and denote the stored number as fl (x). Doing this causes roundoff error, and this affects the accuracy of
computations, sometimes causing serious problems.

Floating point numbers are granular, which means there are gaps between numbers. The gap is measured using the
machine precision, eps, which is the distance between 1.0 and the next floating point number. In general, an interval from
2k to 2k+1 has a gap between numbers of 2k × eps, and the gap relative to 2k remains eps. If p binary digits are used, the
value of eps is 1

2 × 21−p.
IEEE single- and double-precision floating point arithmetic guarantees that

fl (x) = x (1+ ε) , |ε| ≤ eps.

This is a fundamental formula when analyzing errors in floating point arithmetic.

Floating Point Arithmetic

Represent floating point addition of the true numbers a and b as a⊕ b. After computation, what we actually get is

a⊕ b = fl (fl (a)+ fl (b)) ,

and normally roundoff error is present.

Measurement of Error
There are two ways to measure error, using absolute error or relative error:

Absolute error = |fl (x)− x| ,
Relative error = |fl (x)− x|

|x| , x �= 0.



158 Numerical Linear Algebra with Applications

Relative error is the most meaningful, as some examples in this chapter indicate. These types of error measurement apply
to any calculation, not just measuring floating point error.

The analysis of roundoff error is complex, and we only do it for addition, presented in Theorem 8.1. Error bounds, as
should be expected, involve eps.

Overflow and Underflow
Integer arithmetic can overflow, and the same is true for floating point arithmetic when the magnitude of a result exceeds
the maximum allowable floating point number. In addition, underflow can occur, which means the magnitude of the result
lies in the gap between 0 and the smallest floating point number.

Minimizing the Effects of Floating Point Error

Some computations are prone to floating point error, and should be replaced by an alternative. This chapter shows how to
prevent overflow when computing

‖x‖2 =
√
x21 + x22 + · · · + x2n.

Another type of error is caused by cancellation. A classic example is evaluation of the quadratic formula. We will encounter
more situations where we must be careful how we perform a computation.

8.6 PROBLEMS

8.1 Find the base 10 representation for each number.
a. 1101101101 (base 2)
b. 33671 (base 8)
c. 8FB2 (base 16)
d. 221341 (base 5)

8.2 Write each unsigned decimal number in binary, octal (base 8), and hexadecimal (base 16).
a. 45
b. 167
c. 273
d. 32763

8.3 Perform unsigned binary addition. Do not discard the carry.
a. b. c. d.

11011 11110101 001111 10101010
+ + + +

11101 10001001 011111 10101010

8.4 Perform unsigned binary subtraction. Use borrowing.
a. b. c. d.

11110 11110101 001110 11101110
− − − −

11101 10001001 001101 10101011

8.5 Using b = 2 and p = 8, find the two’s-complement integer representation for
a. 25
b. 127
c. −1
d. −127
e. −37
f. −101

8.6 If b = 2 and p = 6, indicate which two’s-complement sums will cause overflow and compute the result in binary.
a. −9+ 30
b. 28+ 5
c. −25− 7
d. −32+ 23



Floating Point Arithmetic Chapter| 8 159

8.7 Assume a two’s-complement integer representation using 10 binary bits.
a. What is the range of integers that can be represented?
b. For each addition, determine if overflow occurs.

i. 188+ 265
ii. 490+ 25
iii. −400+ (−16)
iv. −450+ (−70)

8.8 What is the range of two’s complement numbers if b = 8 and p = 15?
8.9 A computer that uses two’s-complement arithmetic for integers has a subtract machine instruction. However, when

the instruction executes the CPU does not have to perform the subtraction by borrowing or even worry about signs.
Why?

8.10 Another integer representation system is one’s-complement. If an integer is stored using p bits, the positive integers
are ordinary binary values with the left-most bit set to 0. For instance, if p = 8, then 65 is stored as

0 1 0 0 0 0 0 1

Obtain the negative of a number by inverting bits; for instance, −65 is stored as
1 0 1 1 1 1 1 0

a. Show how 1, −1, 25, 15, −21, 101, −120 are stored in a one’s-complement system with b = 2, p = 8.
b. Show that there are two representations for 0 in a one’s-complement system.
c. Using base b = 2 and p digits, what is the range of one’s-complement numbers?

8.11 Find the 32-bit single-precision representation for each number. Assume the format ±0.d1d2 . . . d23 × 2e, where
d1 �= 0 unless the number is zero.
a. 12.0625
b. −18.1875
c. 2.7
Note: In binary 0.7 = 0.101100110011001100110011001100 . . .

8.12 Assume you are performing decimal arithmetic with p = 4 significant digits. Using rounding, perform the following
calculations:
a. 26.8756+ 15.67883
b. 1.2567 ∗ 14.77653
c. 12.98752× 103 ∗ 23.47× 104

8.13 Using four significant digits, compute the absolute and relative error for the following conversion to floating point
form.
a. x1 = 2.3566, fl(x1) = 2.357
b. x2 = 7.1434, fl(x2) = 7.143

8.14 Verify the error bounds for addition and multiplication. Use b = 10, p = 5.
a. 23.6643+ 45.6729+ 100.123
b. 8.25678∗1.45729∗5.35535

8.15 Assume we are using IEEE double-precision arithmetic.
a. What is the error bound in computing the sum of 20 positive floating point numbers?
b. What is the error bound in computing the product of 20 floating point numbers?

8.16 If b = 2, p = 12, emin = 5, emax = 8, find fmin and fmax.
8.17 By constructing a counterexample, verify that floating-point addition and multiplication, ⊕ and ⊗, do not obey the

distributive law a⊗ (b⊕ c) = a⊗ b+ a⊗ c.
8.18 Show that, unlike the operation +, the operation ⊕ is not associative. In other words (x⊕ y) ⊕ z �= x ⊕ (y⊕ z) in

general.
8.19 Let b = 10 and p = 10. Compute fl

(
A2
)
, where

A =
⎡⎣ 1 0 10−5

0 1 0
10−5 0 1

⎤⎦ .

Repeat your calculations with p = 12. Compare the results.



160 Numerical Linear Algebra with Applications

8.20 Assume you are using floating point arithmetic with b = 10, p = 5, and a maximum exponent of 8. Let x be the

vector x =

⎡⎢⎢⎣
2500
6000
1000
8553

⎤⎥⎥⎦.
a. What is fmax?

b. Directly compute‖x‖ = √25002 + 60002 + 10002 + 85532.

c. Compute ‖x‖ using the method discussed in Section 8.4.1 that is designed to prevent overflow.
8.21 For parts (a) and (b), use b = 10, p = 4.

a. What is the truncation error when approximating cos (0.5) by the first two terms of its McLaurin series?
b. Answer part (a) for tan (0.5).

8.22 There are problems evaluating f (x) = √x− 1 −√x under some conditions. Give an example. Propose a means of
accurately computing f (x).

8.23 Using b = 10, p = 4, verify the bound

fl (cA) = cA+ E, |E| ≤ eps |cA|
for c = 5.6797 and

A =
⎡⎣ 2.34719 −1.56219 5.89531
−0.98431 23.764 102.35
−77.543 −0.87542 5.26743

⎤⎦ .

8.24 Find eps
a. for b = 10, p = 8.
b. for b = 2, p = 128.

8.25 Using floating point arithmetic, is it true that a+ b = a implies that b = 0? Justify your answer.
8.26 For parts (a) and (b), propose a method of computing each expression for small x. For part (c), propose a method for

computing the expression for large x.
a. cos (x)− 1

b.
sin x− x

x

c.
1

x+ 1
− 1

x
8.27 Assume we have a floating point number system with base b = 2, p significant digits, minimum exponent emin and

maximum exponent emax. A nonnegative number is either zero or of the form 0.1d1d2 . . . dp−1×2e. Develop a formula
for the number of nonnegative floating point values.

8.6.1 MATLAB Problems

8.28 Taking a double value x and developing MATLAB code that precisely rounds it to m significant digits is somewhat
difficult. Consider the function

function y = roundtom(x,m)

%ROUNDTOM round to m significant decimal digits

%

% Input: floating point number x.

% number of decimal digits desirede

% Output: x rounded to m decimal digits

pos = floor(log10(abs(x)))-m+1;
y = round(x/10^pos)*10^pos;

Explain how the code works and test it with several double values. It often works perfectly but can leave some
trailing nonzero digits. For instance

>> n = 23.567927;

>> roundtom(n,5)

ans =

23.568000000000001

Explain why this occurs.



Floating Point Arithmetic Chapter| 8 161

8.29 It is possible to write a function, say fmex, in the programming language C in such a way that the function can
be called from MATLAB. The function fmex must written so it conforms with what is termed the MEX interface
and must be compiled using the MATLAB command mex (see Ref. [20]). This interface provides access to the input
and output parameters when the function is called from MATLAB. The book software distribution contains the C
program outputdouble.c in the subdirectory outputdouble of the software distribution as well as compiled versions.
Since machine code is system dependent, there are multiple versions. The following table lists the names of the
available compiled code for Windows, OS X, and Linux systems.

Windows 64-bit OS X 64-bit Linux-64 bit
outputdouble.mexw64 outputdouble.mexmaci64 outputdouble.mexa64

If you are using a 32-bit system, execute “mex outputdouble.c”, and MATLAB should generate 32-bit code. On
any system, the calling format is

>> oututdouble(x)

where x is a double variable or a constant. It prints the 64 binary bits of x in IEEE double format, marking the
location of the sign bit, the exponent, and the mantissa. The binary bits represent a floating point number of the form
±1.d1d2d3 . . . d52 × 2e. The leading 1 is hidden; in other words it is considered present but is not stored, giving 53
bits for the mantissa. The exponent uses excess 1023 format.
a. Find the binary representation for each number, determine the exponent in decimal, and the mantissa in binary.

i. 33
ii. −35
iii. −101
iv. 0.000677
v. 0

b. The MATLAB named constants realmax and realmin are the largest and smallest double values. Using
outputdouble, determine each number in binary and then determine what each number is in
decimal.

8.30 The infinite series
∑∞

n=1 (−1)n+1/n converges to ln (2). MATLAB performs computations using IEEE double-
precision floating point arithmetic. Sum the first 100,000 terms of the series using MATLAB and determine the
truncation error by accepting as correct the MATLAB value log(2). Explain your result.

8.31 Type the command “format hex” inMATLAB to see the hexadecimal representation of any number. For 64-bit double-
precision floating-point numbers, the first three hexadecimal digits correspond to the sign bit followed by the 11
exponent bits. The mantissa is represented by the next 13 hexadecimal digits. We have seen that as the numbers grow
larger, the gaps between numbers grows as well.
a. Find 275 in hexadecimal.
b. Investigate the gap between 275 and the next floating-point number by finding the first number of the form
u = 275 + 2i that has a different hexadecimal representation.

c. What is the result of the following MATLAB statements x = 2^75; y = x + 2^(i-1); x == y. i is the power found
in part (b). Explain the result.

d. For b = 2, p = 3, emin = −2, emax = 3, draw the distribution of floating-point numbers as in Figure 8.1.
8.32 The matrix exponential eA is defined by the McLaurin series

eA = I + A

1!
+ A2

2!
+ A3

3!
+ · · · + An

n!
+ · · ·

This computation can be quite difficult, as this problem illustrates.
a. Enter the function

function E = matexp(A)

% MATEXP Taylor series for exp(A)

E = zeros(size(A));
F = eye(size(A));
k = 1;

while norm(E+F-E,1) > 0

E = E + F;

F = A*F/k;

k = k+1;

end

that estimates eA using the McLaurin series.



162 Numerical Linear Algebra with Applications

b. Apply matexp to the matrix

A =
[
99 −100
137 −138

]
to obtain the matrix A_McLaurin.

c. A_McLaurin is far from the correct result. Compute the true value of eA using the MATLAB function expm as
follows:

>> A_true = expm(A);

The function uses the Padé approximation [21].
d. Explain why the result in part (b) is so far from the correct result. Use MATLAB help by typing

>> showdemo expmdemo

Remark 8.8. The text by Laub [22, pp. 6-7] has a very interesting example dealing with the matrix exponential.

8.33 Write a MATLAB code segment that approximates eps. Start with epsest = 1.0 and halve epsest while 1.0+epsest >
1.0. Run it, and compare the result with the MATLAB’s eps.

8.34 This problem was developed from material on MATLAB Central (http://www.mathworks.com/matlabcentral/), and
is due to Loren Shure.
a. Describe the action of the MATLAB function fix.
b. Enter and run the following code
c. format short

for ind = 0:.1:1

f = fix(10*ind)/10;
if ind ~= f

disp(ind - f);

end
end

d. Explain why there is output when, theoretically, there should be none.
8.35 This problem experiments with cancellation errors when solving the quadratic equation (Section 8.4.2). The equation

for the problem is
0.0001x2 + 10000x− 0.0001 = 0.

a. Find the smallest root in magnitude of the polynomial using the quadratic equation.
b. Use the MATLAB function roots to determine the same root.
c. Which value is most correct?

8.36 Using double-precision arithmetic, determine the largest value of x for which ex does not overflow. Compute
|ex − realmax| and (|ex − realmax|)/realmax. Is your result acceptable? Why?

8.37 Enter and run the following MATLAB code.

x = 0.0;

y = exp(-x);
k = 0;

while y ~= 0.0

x = x + 0.01;

y = exp(-x);
k = k + 1;

if mod(k,500) == 0

fprintf(’x = %g  y = %.16e\n’, x, y);

end
end

Execute theMATLABcommand realmin that determines the smallest positive normalized floating-point number.
Does your output appear to contradict the value of realmin? If it does, use the MATLAB documentation to explain
the results. Hint: What is an unnormalized floating point number?



Chapter 9

Algorithms

You should be familiar with

● The inner product
● The Euclidean vector norm
● The Frobenius matrix norm
● Matrix multiplication
● Truncation error
● Upper- and lower-triangular matrices
● Tridiagonal matrices

We have introduced some methods for solving problems in linear algebra; for instance, Gaussian elimination and the
computation of eigenvalues using the characteristic equation. Each computation consisted of a series of steps leading to
a solution of the problem. Such a series of steps is termed an algorithm. We will present algorithms of varying complexity
throughout the remainder of this book.

Definition 9.1. Starting with input, if any, an algorithm is a set of instructions that describe a computation. When
executed, the instructions eventually halt and may produce output.

To this point, our presentation of algorithms was done informally and supported by examples. Now we are beginning a
rigorous presentation of algorithms in numerical linear algebra, and we need a more precise mechanism for describing how
they work. A formal presentation will aid in understanding an algorithm and in implementing it in a programming language.
In this book, you will use the MATLAB programming language or something similar, such as Octave, and perhaps you have
also used C/C++, Java, or any of many other programming languages. Presenting an algorithm in MATLAB requires that
we adhere to the strict syntax of the MATLAB programming language. We should be able to describe the instructions in a
simple, less formal way, so they can be converted to statements in the MATLAB or any other programming language. We
use pseudocode for this purpose. Pseudocode is a language for describing algorithms. It allows the algorithm designer to
focus on the logic of the algorithm without being distracted by details of programming language syntax, such as variable
declarations, the correct placement of semicolons and braces, and so forth. We provide pseudocode for all major algorithms
and, in each case, there is a MATLAB implementation in the book software.

9.1 PSEUDOCODE EXAMPLES

Our pseudocode will use statements very similar to those of MATLAB such as

for i = 1:n do

<statements>

end for

and

if abserr < tol

<statements>

end if

Other pseudocode constructs include assignment statements, the while loop, a function, and so forth.

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00009-0
Copyright © 2015 Elsevier Inc. All rights reserved. 163



164 Numerical Linear Algebra with Applications

9.1.1 Inner Product of Two Vectors

As our first example, we present an algorithm for the computation of the inner product of n× 1 vectors. A for loop forms
the sum of the product of corresponding entries

Algorithm 9.1 Inner Product of Two Vectors

function INNERPROD(u,v)

% Input: column vectors u and v

% Output: 〈u, v〉
inprod = 0.0

for i = 1:n do
inprod = inprod+ u (i) v (i)

end for
return inprod

end function

9.1.2 Computing the Frobenius Norm

The algorithm for the computation of the inner product involves a single loop. The Frobenius norm requires that we cycle
through all matrix entries, add their squares, and then take the square root. This involves an outer loop to traverse the rows
and an inner loop that forms the sum of the squares of the entries of a row.

Algorithm 9.2 Frobenius Norm

function FROBENIUS(A)

% Input: m × n matrix A.

% Output: the Frobenius norm

√∑m
i=1

∑n
k=1 a2ik.

fro = 0.0

for i = 1:m do
for j = 1:n do

fro = fro + a2ij
end for

end for
return fro

end function

9.1.3 Matrix Multiplication

Matrix multiplication presents a more significant challenge. If A is an m× p matrix and B is a p× n matrix, the product is
an m× n matrix whose elements are

cij =
p∑

k=1
aikbkj.

Start with i = 1 and apply the formula for j = 1, 2, . . . n. This gives the first row of the product. Follow this by letting
i = 2 and applying the formula for j = 1, 2, . . . n to obtain the second row of the product. Continue in this fashion until
computing the last row of AB. This requires three nested loops. The outer loop traverses the m rows of A. For each row
i, another loop must cycle through the n columns of B. For each column, form the sum of the products of corresponding
elements from row i of A and column j of B. (Figure 9.1).



Algorithms Chapter| 9 165

FIGURE 9.1 Matrix multiplication.

Algorithm 9.3 Product of Two Matrices

function MATMUL(A,B)

% Input: m × p matrix A and p× m matrix B

% Output A× B

% for each row of A

for i = 1:m do
% for each column of B

for j = 1:n do
c (i, j) = 0

% form the sum of the product of corresponding elements from row

% i of A and column j of B

for k = 1:p do
c (i, j) = c (i,j)+ aikbkj

end for
end for

end for

return C

end function

9.1.4 Block Matrices

A block matrix is formed from sets of submatrices, and we briefly introduce the concept. In general, these matrices are
useful for proving theorems and speeding up algorithms. We will use the idea only a few times in this book and refer the
reader to Refs. [1, 2, 23] for an in-depth discussion.

We will confine the discussion to block matrices of order 2× 2. Let

p1 p2

A = m1
m2

[
A11 A12
A21 A22

]
m = m1 + m2 p = p1 + p2

The submatrix block A11 has dimension m1 × p1. In general Aij has dimension mi × pj.
Addition and scalar multiplication work as expected. If α is a scalar,

αA =

[
αA11 αA12
αA21 αA22

]
and if C =

[
C11 C12
C21 C22

]
has the same dimensions as A,

A+ C =
[
A11 + C11 A12 + C12
A21 + C21 A22 + C22

]
.



166 Numerical Linear Algebra with Applications

Now we will discuss block matrix multiplication. Form matrix B as follows:

n1 n2

B = p1
p2

[
B11 B12
B21 B22

]
p = p1 + p2 n = n1 + n2

To compute an ordinary matrix product AB, the number of columns of Amust equal the number of rows in B. For block
matrix multiplication, the number of columns of A is p, and the number of rows of B is p. Let’s treat the blocks as individual
scalar elements in an ordinary 2× 2 matrix. Then,

AB =
[
A11 A12
A21 A22

][
B11 B12
B21 B22

]
=
[
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

]
.

Although we will not prove it, this is the product AB.

Example 9.1. An example will clarify block matrix multiplication. Let

1 4 6 −1
A = −1 3 1 4

5 2 −3 1

3 2 3
B = 1 6 1

4 1 3
2 0 −1

.

For these matrices m1 = 2, m2 = 1, p1 = 2, p2 = 2, n1 = 2, and n2 = 1, and

A11 =
[

1 4
−1 3

]
, A12 =

[
6 −1
1 4

]
, A21 =

[
5 2

]
, A22 =

[ −3 1
]

B11 =
[
3 2
1 6

]
, B12 =

[
3
1

]
, B21 =

[
4 1
2 0

]
, B22 =

[
3
−1

]
.

Now,

AB =

⎡⎢⎢⎣
[

1 4
−1 3

] [
3 2
1 6

]
+
[
6 −1
1 4

][
4 1
2 0

] [
1 4
−1 3

][
3
1

]
+
[
6 −1
1 4

][
3
−1

]
[
5 2

] [ 3 2
1 6

]
+ [ −3 1

] [ 4 1
2 0

] [
5 2

] [ 3
1

]
+ [ −3 1

] [ 3
−1

]
⎤⎥⎥⎦

=
⎡⎣ [

29 32
12 17

] [
26
−1

]
[
7 19

]
7

⎤⎦
If we ignore the blocks and consider A and B to have dimensions 3 × 4 and 4 × 3, respectively, the product is the 3 × 3
matrix ⎡⎣ 29 32 26

12 17 −1
7 19 7

⎤⎦ . �

9.2 ALGORITHM EFFICIENCY

We all know that some algorithms take longer than others. Clearly, multiplying two n × n matrices takes longer than
multiplying an n× 1 column vector by a constant. If you have two algorithms that solve the same problem, one algorithm
might be better than another under your current circumstances. For instance, consider the problemof computing eigenvalues.
There are a number of algorithms; for instance, finding the roots of the characteristic polynomial, and using the power
method (to be discussed later). What we need is a means of measuring the computational effort an algorithm requires. There
are many factors that come into play, the number of floating-point arithmetic operations required, the amount of memory



Algorithms Chapter| 9 167

needed, the overhead of array subscripting, the maintenance of control variables in for loops, and so forth. Floating-point
operations are slow compared to many other operations, so counting them exactly or approximately helps us compare
algorithms.

Definition 9.2. A flop is a floating-point operation⊕, �, ⊗, and�. The number of flops required to execute an algorithm
is termed the flop count of the algorithm.

It is convenient to have a notation that gives us an idea of how much work the algorithm must perform, and we will use
“Oh”, or “Big-O” notation. For a floating point computation, we want to measure the number of flops required. Given an
expression for the number of flops, we say the algorithm is O

(
nk
)
if the dominant term in the flop count is Cnk, where C is

a constant. We are saying that for large n, the other terms are negligible in comparison to nk.

Example 9.2. If an algorithm requires 4
3n

3 + 9n2 + 8n + 6 flops, it is an O
(
n3
)
algorithm. When n = 100, the actual

value of the expression is

V = 4

3
(100)3 + 9 (100)2 + 8 (100)+ 6 = 1.424139× 106.

Discarding the lower order terms,

T = 4

3
(100)3 = 1.333333× 106,

and T/V = 0.9362, so 4
3n

3 contributes 93% of the expression’s value. �

Suppose we want to form the sum of the components in a 3× 1 vector. Use a variable sum, initialize sum to have value
zero, and use a for loop as follows:
sum = 0

for i = 1:3 do
sum = sum + x(i)

end for

The algorithm begins by adding x (1) to sum = 0, so it executes three additions. However, looking at the sum abstractly as

x (1)+ x (2)+ x (3) ,

there are two additions. When counting flops, we will ignore the extra addition.

Example 9.3. Given two n×1 vectors u and v, the inner product 〈u, v〉 = u1v1+u2v2+· · ·+unvn requires nmultiplications
and n− 1 additions, a total of n+ (n− 1) = 2n− 1 flops. Computing the inner product is an O (n) or a linear algorithm.�

Example 9.4. Computing the Frobenius norm requires one flop for each square (a2ij), and there aremn squares to compute,
for a total of mn flops. The addition of the squares requires mn − 1 flops, so the flop count for the algorithm is 2mn − 1,
and computing the Frobenius norm is an O (mn) algorithm. If the matrix A is square, the flop count is O

(
n2
)
. We call this

a quadratic algorithm. �

Example 9.5. You should consult Algorithm 9.3 as you read this flop count analysis. Consider the multiplication of an
m× p matrix A by a p× n matrix B. The inner loop performs one multiplication and an addition, for a total of 2p flops per
execution of the loop. This inner loop executes mn times, so the flop count is

2mnp. (9.1)

This flop count is very useful. It tells you that matrix multiplication is an expensive operation; for instance, if m = 10,
n = 8, p = 12, the multiplication requires 10 (16) 12 = 1920 flops. Most of the matrices engineers and scientists deal with
are n × n, and matrix multiplication costs 2n3 flops. We say that square matrix multiplication is a cubic algorithm,
or is O

(
n3
)
. �

Throughout this book, we will do a detailed flop count analysis if it is instructional. In other cases, the flop count will
be stated without proof.



168 Numerical Linear Algebra with Applications

9.2.1 Smaller Flop Count Is Not Always Better

In Chapter 14, wewill introduce theQR decomposition of amatrix, which states thatA = QR, whereR is an upper-triangular
matrix and Q has orthonormal columns. The decomposition is obtained using what is termed the Gram-Schmidt process.
Chapter 17 presents two additional algorithms for finding the QR decomposition, using Givens rotations or Householder
reflections. Although Gram-Schmidt has a lower flop count, both are preferable to Gram-Schmidt for a number of reasons
that will be explained later. The flop count using Householder reflections for computing theQR decomposition of an m× n
matrix, m ≥ n, is

4

(
m2n−mn2 + n3

3

)
+ 2n2

(
m− n

3

)
,

and the flop count using Givens rotations is

1

2
(5+ 6n+ 6n)

(
2mn− n2 − n

)
.

On the average, the Householder reflection method is superior in terms of flop count, but the Givens rotation method lends
itself very well to parallelization. If you are using a machine with many cores, for instance, the Givens rotation method will
likely be superior.

Another aspect that must be taken into account is memory requirements. An algorithmmay have a smaller flop count but
requiremuchmorememory. Depending on howmuchmemory is on the system, an algorithmwith a larger flop count but less
memory use may run faster. There are many other things that influence speed. For instance, a better written implementation
of algorithm A may run faster than algorithm B even if algorithm A has a larger flop count. For example, algorithm B may
not reuse variables already allocated in memory, slowing it down.

Remark 9.1. We will use flop count as the primary means for comparing algorithms; in other words, we will ignore
the evaluation of square roots, sine, cosine, etc. Different systems may implement these functions in different ways, some
perhaps more efficient than others. However, the flop count will remain the same.

9.2.2 Measuring Truncation Error

When approximating a value using a finite sum of terms from a series, truncation error occurs.

Example 9.6. The McLaurin series for ex is ex =∑∞
n=0 xn/n!. If x is small and we approximate ex by

1+ x+ x2

2
,

we are leaving off x
3

3! + x4
4! + · · · , of which the largest term is x3

3! , and we say the truncation error is O
(
x3
)
. �

If you have studied numerical integration, you are familiar with fourth-order Runge-Kutta methods for estimating∫ b
a f (x) dx. If we divide an interval a ≤ x ≤ b into n subintervals of length h = (b− a)/n and apply a fourth-order
Runge-Kutta method, the error is O

(
h4
)
.

9.3 THE SOLUTION TO UPPER AND LOWER TRIANGULAR SYSTEMS

This section presents algorithms for solving upper- and lower-triangular systems of equations. In addition to providing
additional algorithms for study, we will need to use both these algorithms throughout this book.

An upper-triangular matrix is an n× n matrix whose only nonzero entries are below the main diagonal; in other words

aij = 0, j < i, 1 ≤ i, j ≤ n.

IfU is an n×n upper-triangular matrix, we know how to solve the linear systemUx = b using back substitution. In fact, this
is the final step in the Gaussian elimination algorithm that we discussed in Chapter 2. Compute the value of xn = bn/unn,
and then insert this value into equation (n− 1) to solve for xn−1. Continue until you have found x1. Algorithm 9.4 presents
back substitution in pseudocode.



Algorithms Chapter| 9 169

Algorithm 9.4 Solving an Upper Triangular System

function BACKSOLVE(U,b)

% Find the solution to Ux = b, where U is an n× n upper-triangular matrix.

xn = bn/unn
for i = n-1:-1:1 do

sum = 0.0

for j = i+1:n do
sum = sum + uijxj

end for
x (i) = (b (i)− sum) /uii

end for
return x

end function

NLALIB: The function backsolve implements Algorithm 9.4.
A lower-triangular matrix is a matrix all of whose elements above the main diagonal are 0; in other words

aij = 0, j > i, 1 ≤ i, j ≤ n.

A lower-triangular system is one with a lower-triangular coefficient matrix.⎡⎢⎢⎢⎢⎢⎣
a11 0 0 . . . 0
a21 a22 0 . . . 0
a31 a32 a33 . . . 0

. . . . . . . . .
. . . 0

an1 an2 . . . an,n−1 ann

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x1
x2
x3
...
xn

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
b1
b2
b3
...
bn

⎤⎥⎥⎥⎥⎥⎦
The solution to a lower-triangular system is just the reverse of the algorithm for solving an upper-triangular system—use

forward substitution. Solve the first equation for x1 = b1
a11

, and insert this value into the second equation to find x2, and so
forth.

Example 9.7. Solve ⎡⎣ 2 0 0
3 1 0
1 4 5

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =
⎡⎣ 2
−1
8

⎤⎦
x1 = 2/2 = 1

3 (1)+ x2 = −1, x2 = −4
1 (1)+ 4 (−4)+ 5x3 = 8, x3 = 23/5

SOLUTION: x = [
1 −4 23/5

]T. �

Algorithm 9.5 Solving a Lower Triangular System

function FORSOLVE(L,b)

% Find the solution to the system Lx = b, where L is an n× n lower-triangular matrix.

x1 = b1/l11
for i = 2:n do

sum = 0.0

for j = 1:i-1 do
sum = sum + lijxj

end for
x (i) = (b (i)− sum) /lii

end for
return x

end function



170 Numerical Linear Algebra with Applications

NLALIB: The function forsolve implements Algorithm 9.5.

Example 9.8. Solve the systems ⎡⎣ 1 −1 3
0 2 9
0 0 1

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =
⎡⎣ 1

9
−2

⎤⎦
and ⎡⎣ 1 0 0

−1 2 0
3 4 5

⎤⎦⎡⎣ y1
y2
y3

⎤⎦ =
⎡⎣ 1

9
−2

⎤⎦ .

>> U = [1 -1 3;0 2 9;0 0 1];

>> L = [1 0 0;-1 2 0;3 4 5];

>> b = [1 9 -2]’;

>> x = backsolve(U,b)

x =

20.5000

13.5000

-2.0000

>> U\b

ans =

20.5000

13.5000

-2.0000

>> y = forsolve(L,b)

y =

1

5

-5

>> L\b

ans =

1

5

-5

�

9.3.1 Efficiency Analysis

Algorithm 9.4 executes 1 division and then begins an outer loop having n−1 iterations. The inner loop executes n−(i+ 1)+
1 = n − i times, and each loop iteration performs 1 addition and 1 multiplication, for a total of 2 (n− i) flops. After the
inner loop finishes, 1 subtraction and 1 division execute. The total number of flops required is

1+
n−1∑
i=1

[2 (n− i)+ 2] = 1+ 2 (n− 1)+ 2
n−1∑
i=1

(n− i)

= 1+ 2 (n− 1)+ 2 [(n− 1)+ (n− 2)+ · · · + 1]

= 1+ 2 (n− 1)+ 2

(
n (n− 1)

2

)
= n2 + n− 1

Thus, back substitution is an O
(
n2
)
(quadratic) algorithm. It is left as an exercise to show that Algorithm 9.5 has exactly

the same flop count.



Algorithms Chapter| 9 171

9.4 THE THOMAS ALGORITHM

A tridiagonal matrix is square, and the only nonzero elements are those on the main diagonal, the first subdiagonal, and the
first superdiagonal, as shown:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1 0 . . . 0 . . . 0
a1 b2 c2 0

0 a2 b3 c3 . . .
...

...
. . .

. . .
. . .

...

0
. . .

. . . cn−2 0
... an−2 bn−1 cn−1
0 . . . 0 . . . 0 an−1 bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A tridiagonal matrix is said to be sparse, since n2 − [n+ 2 (n− 1)] = n2 − 3n + 2 entries are zero. Tridiagonal matrices
are extremely important in applications; for instance, they occur in finite difference solutions to differential equations and
in the computation of cubic splines.

A tridiagonal system Ax = rhs can be solved by storing and using only the entries on the three diagonals

a = [
a1 a2 . . . an−1

]T
,

b = [
b1 b2 . . . bn−1 bn

]T ,
c = [

c1 c2 . . . cn−1
]T .

The algorithm is similar to Gaussian elimination, in which the matrix is converted to upper-triangular form and then solved
using back substitution, but the algorithm is much more efficient. For the purpose of explanation, we will display matrices.
The first action is to divide the row 1 by b1 to make the pivot in the first row and first column pivot 1. This gives

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 c′1 0 0 . . . . . . 0
a1 b2 c2
0 a2 b3 c3
... a3

. . .
. . .

...
...

...
. . .

. . .
. . .

0 an−2 bn−1 cn−1
0 0 0 . . . 0 an−1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rhs′1
rhs2
rhs3
...
...

rhsn−1
rhsn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where c′1 = c1/b1 and rhs′1 = rhs1/b1.
Multiply row 1 by a1 and subtract from row 2:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 c′1 0 0 . . . . . . 0

0 b′2 c2 0 . . . . . .

0 a2 b3 c3
... a3

. . .
. . .

...
...

...
. . .

. . .
. . .

0 an−2 bn−1 cn−1
0 0 0 . . . 0 an−1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rhs′1
rhs′2
rhs3
...
...

rhsn−1
rhsn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where b′2 = b2 − a1c′1 and rhs
′
2 = rhs2 − a1rhs′1.



172 Numerical Linear Algebra with Applications

The steps we have performed define a process that will end in an upper-triangular matrix. To see this, continue by
dividing row 2 by b′2, multiplying row 2 by a2 and subtracting from row 3 to eliminate a2 in row 3:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 c′1 0 0 . . . . . . 0

0 1 c′2 0 . . . . . .

0 0 b′3 c3

... a3
. . .

. . .

...
...

...
. . .

. . .
. . .

0 an−2 bn−1 cn−1
0 0 0 . . . 0 an−1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rhs′1
rhs′′2
rhs′3
...
...

rhsn−1
rhsn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

c′2 = c2/b′2 = c2/
(
b2 − a1c′1

)
,

rhs′′2 = rhs′2/b′2 =
(
rhs2 − a1rhs

′
1

)
/
(
b2 − a1c

′
1

)
,

and

b′3 = b3 − a2c
′
2,

rhs′3 = rhs3 − a2rhs
′′
2

Note that b′3 and rhs
′
3 will be used to compute c

′
3 and rhs

′′
3 in the next elimination step. Continue the process row by row

until the matrix is in upper-triangular form with ones on its diagonal:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 c′1 0 0 . . . . . . 0

0 1 c′2 0 . . . . . .

0 0 1 c′3
... 0

. . .
. . .

...
...

...
. . .

. . .
. . .

0 0 1 c′n−1
0 0 0 . . . 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rhs′1
rhs′′2
rhs′′3
...
...

rhs′′n−1
rhs′′n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The resulting matrix is an upper bidiagonal matrix. It has nonzero entries only on the main diagonal and the one above.
Back substitution is very fast for such a matrix, since the determination of xi requires using only the computed value of
xi+1and rhsi. Back substitution gives

xn = rhs′′n ,

xn−1 = rhs′′n−1 − c′n−1xn,

...

x1 = rhs′1 − c′1x2.

Algorithm 9.5 formalizes the process.
The algorithm does involve division, so the Thomas algorithm can fail as a result of division by zero. A condition called

diagonal dominance will guarantee that the algorithm will never encounter a zero divisor.



Algorithms Chapter| 9 173

Algorithm 9.6 The Thomas Algorithm

1: function THOMAS(a,b,c,rhs)

2: % The function solves a tridiagonal system of linear equations Ax = rhs

3: % using the linear Thomas algorithm. a is the lower diagonal, b the

4: % diagonal, and c the upper diagonal.

5:

6: % Begin elimination steps, resulting in a bidiagonal matrix

7: % with 1s on its diagonal.

8: c1 = c1/b1
9: rhs1 = rhs1/b1
10: for i = 2:n-1 do
11: ci = ci/ (bi − ai−1ci−1)
12: rhsi = (rhsi − ai−1rhsi−1) / (bi − ai−1ci−1)
13: end for
14: rhsn = (rhsn − an−1rhsn−1) / (bn − an−1cn−1)
15: % Now perform back substitution

16: xn = rhsn
17: for i = n-1:-1:1 do
18: xi = rhsi − cixi+1
19: end for
20: return x

21: end function

NLALIB: The function thomas implements Algorithm 9.6.

Definition 9.3. A square matrix is diagonally dominant if the absolute value of each diagonal element is greater than the
sum of the absolute values of the other elements in its row, or

|aii| >
n∑

j = 1
j �= i

∣∣aij∣∣ .

For instance, the tridiagonal matrix

A =

⎡⎢⎢⎣
2 −1 0 0
1 3 −1 0
0 5 −7 1
0 0 3 8

⎤⎥⎥⎦
is diagonally dominant. This condition is easy to check and often occurs in problems.

Theorem 9.1. If A is a diagonally dominant tridiagonal matrix with diagonals a, b, and c, the Thomas algorithm never
encounters a division by zero.

Remark 9.2. If a matrix is not diagonally dominant, the Thomas algorithm may work. Diagonal dominance is only a
sufficient condition.

9.4.1 Efficiency Analysis

To determine the flop count for the Thomas algorithm, note that lines 8 and 9 account for two divisions. The for loop
beginning at line 10 executes n−2 times, and each execution involves 2 divisions, 3 subtractions, and 3 multiplications, for
a total of 8 (n− 2) flops. The statement at line 14 involves 2 subtractions, 1 division, and 2 multiplications, a total of 5 flops.
The for loop beginning at line 17 executes n− 1 times, and each execution performs 1 subtraction and 1 multiplication, for
a total of 2 (n − 1) flops. The total flop count is then

2+ 8 (n− 2)+ 5+ 2 (n− 1) = 10n− 11.



174 Numerical Linear Algebra with Applications

The Thomas algorithm is linear (O (n)). As we will see in Chapter 11, the Gaussian elimination algorithm for a general n×n
matrix requires approximately 2

3n
3 flops. It is not uncommonwhen using finite differencemethods for the solution of partial

differential equations that tridiagonal systems of order 500× 500 or higher must be solved. Standard Gaussian elimination
will not take advantage of the sparsity of the tridiagonal system and will require approximately 2

3 (500)3 = 83333333 flops.
Using the Thomas algorithm requires 10 (500)− 11 = 4989 flops, quite a savings!

Example 9.9. Diagonals a4999×1, b5000×1, c4999×1, and right-hand side rhs5000×1 are generated randomly, and the example
times the execution of function thomas when solving the 5000× 5000 tridiagonal system formed from these vectors. The
function trid in this book software distribution builds an n× n tridiagonal matrix from diagonals a, b, and c. The example
computes the time required to solve the system using theMATLAB ’\’ operator. Again, we see the advantages of designing
an algorithm that takes advantage of matrix structure.

>> a = randn(4999,1);
>> b =randn(5000,1);
>> c = randn(4999,1);
>> rhs = randn(5000,1);
>> tic;x1 = thomas(a,b,c,rhs);toc;
Elapsed time is 0.032754 seconds.

>> T = trid(a,b,c);

>> tic;x2 = T\rhs;toc;
Elapsed time is 0.386797 seconds. �

9.5 CHAPTER SUMMARY

Stating an Algorithm Using Pseudocode

Starting with input, if any, an algorithm is a set of instructions that describe a computation. When executed, the instructions
eventually halt andmay produce output. This chapter begins a rigorous presentation of algorithms in numerical linear algebra
using pseudocode. Pseudocode is a language for describing algorithms that allows the algorithm designer to focus on the
logic of the algorithm without being distracted by details of programming language syntax. We provide pseudocode for all
major algorithms and, in each case, there is a MATLAB implementation in the book software.

Algorithms are presented for computing the inner product, the Frobenius norm, and matrix multiplication. We also
discuss block matrix formulation and operations with block matrices including multiplication. Using block matrices often
simplifies the discussion of an algorithm.

Algorithm Efficiency

Wemeasure the efficiency of an algorithmby explicitly counting or estimating the number of flops (floating point operations)
it requires. Suppose an algorithm requires n3 + n2 + 6n+ 8 flops. Using Big-O notation, we say it is an O

(
n3
)
algorithm,

meaning that the dominant term is n3. As n increases, the n3 term accounts for almost all the value; for instance, if n = 250,
n2+6n+8 = 64, 008, and n3 = 1.5625×107. There is a mathematical description of this and similar notation for expression
algorithm efficiency (see Ref. [24, pp. 52-61]). As examples, the inner product is an O (n) algorithm, and computing the
Frobenius norm is O

(
n2
)
. Matrix multiplication is an interesting example. Multiplying an m× p by a p× nmatrix requires

2mnp flops. If the matrix is n × n, then the product requires 2n3 flops, and is an O
(
n3
)
algorithm. If two matrices are

500 × 500, their product requires 2.5 × 108 flops. Fortunately, when matrices in applications become that large, they are
usually sparse, meaning there is a low percentage of nonzero entries. There are algorithms for rapid multiplication of sparse
matrices, and we will deal with sparse matrices in Chapters 21 and 22.

It is possible that a lower flop count may not be better. This can occur when an algorithm with a higher flop count can be
parallelized, but one with a lower flop count cannot. An algorithm with a lower flop count may require excessive amounts
of memory and, as a result, perform more slowly.

We will have occasion to approximate a function by terms of a series. For instance, the McLaurin series for sin x is

sin x = x− x3

3!
+ x5

5!
− x7

7!
+ · · ·

For small x, if we use x−x3/3! as an approximation, then the truncation error isO
(
x5
)
. In order to approximate the solution

to differential equations, we will use finite difference equations. If h is small, then



Algorithms Chapter| 9 175

d2f

dx2
≈ f (x+ h)− 2f (x)+ f (x− h)

h2

has a truncation error O
(
h2
)
.

Solving Upper- and Lower-Triangular Systems

We have studied back substitution that solves a matrix equation of the form⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . . . . a1n
0 a22 . . . . . . a2n

0 0
. . .

...
...

. . .
. . .

0 0 . . . 0 ann

⎤⎥⎥⎥⎥⎥⎥⎦ x = b.

This is an O
(
n2
)
algorithm. If the matrix is in lower-triangular form, we use forward substitution, and it requires the same

number of flops.

The Thomas Algorithm for Solving a Tridiagonal Linear System

Tridiagonal systems of equations occur often. When we approximate the solution to the one-dimensional heat equation in
Chapter 12 and develop cubic splines in the same chapter, the solution involves solving a tridiagonal system. The Thomas
algorithm is based on a clever use of Gaussian elimination and yields a solution in O (n) flops. Solving a general linear
system using Gaussian elimination requires approximately 2

3n
3 flops, so the savings in using the Thomas algorithm is huge!

9.6 PROBLEMS

Whenever a problem asks for the development of an algorithm, do a flop count.

9.1 What is the flop count for each code segment?
a. sum = 0.0;

for i = 1:n

sum = sum + n2;

end

b. x = 0.0:.01:2*pi;

n = length(x);

sum = 0.0;

for i = 1:length

sum = sum + 1/(x(i)2 + x(i) + 1);

end

c. A = rand(5,8);

B = rand(8,6);

C = rand(6,12);

D = A*B*C;

d. x = rand(10,1);

y = rand((10,1);

z = x*y’;

9.2 Give the flop count for each matrix operation.
a. Multiplication of m× n matrix A by an n× 1 vector x.
b. The product xyT if x is an m× 1 vector and y is a p× 1 vector.
c. If u and v are n× 1 vectors, the computation of

(〈v, u〉/‖u‖2) u.
d. ‖A‖∞ for m× n matrix A.



176 Numerical Linear Algebra with Applications

e. ‖A‖1 for m× n matrix A.
f. trace (A), where A is an n× n matrix.

9.3 What is the action of the following algorithm?
function PROBLEM(u,v)

sum1 = 0.0

sum2 = 0.0

for i = 1:n do
sum1 = sum1 + uivi
sum2 = sum2 + u2i

end for
k = sum1/sum2

for i = 1:n do
ui = kui

end for
return u

end function

9.4 Determine the action of the following algorithm, and find the number of comparisons if the algorithm returns true.
There is a name attached to this type of matrix. Determine what it is.
function ASYM(A)

for i = 1:n do
for j = i+1:n do

if aij �= −aji then
return false

end if
end for

end for
return true

end function

9.5 Let u be anm×1 column vector [ u1 u2 . . . um
]T and v be a 1×n row vector

[
v1 v2 . . . vn

]
. The tensor product

of u and v, written u⊗ v, is the m× n matrix

⎡⎢⎢⎣
u1v1 u1v2 . . . u1vn
u2v1 u2v2 . . . u2vn
. . . . . . . . . . . .

umv1 umv2 . . . umvn

⎤⎥⎥⎦

Write an algorithm, tensorprod, for the computation of u⊗ v.
9.6 Show that matrix multiplication can be implemented using tensor products as defined in Problem 9.5, and write an

algorithm that does it.
9.7 What is the action of the following algorithm? Determine its flop count.

function PROBLEM(A,B)

for i = 1:n do
for j = i:n do

sum = 0.0;

for k = i:j do
sum = sum + a (i,k) b (k, j)

end for
P (i, j) = sum

end for
end for
return P

end function

Hint: To help determine its action, trace the algorithm using 3 × 3 matrices. These formulas are useful when
determining the flop count:



Algorithms Chapter| 9 177

n∑
i=1

i = n (n+ 1)

2
,

n∑
i=1

i2 = n (n+ 1) (2n+ 1)

6
.

9.8 Assume that the operation A. ∗ B, where A and B are n× n matrices multiplies corresponding entries to form a new
matrix. For instance, [

1 2
3 5

]
. ∗
[

4 3
−1 2

]
=
[

4 6
−3 10

]
.

Write an algorithm to form A. ∗ B.
9.9 Definition 6.4 within the problems of Chapter 6 defines the cross product of two vectors. Develop pseudocode for a

function crossprod that computes the cross product of vectors u and v.
9.10 Write an efficient algorithm, addsym, that forms the sum of two n× n symmetric matrices.
9.11 Section 9.4 defined a tridiagonal matrix. Develop an algorithm trimul that forms the product of two n× n tridiagonal

matrices.
9.12 An upper bidiagonal matrix is a matrix with a main diagonal and one upper diagonal:⎡⎢⎢⎢⎢⎢⎣

a11 a12 0
a22 a23

. . .
. . .

an−1,n−1 an−1,n
0 ann

⎤⎥⎥⎥⎥⎥⎦
Develop an algorithm, bisolve, to solve a system of equations Ax = b that uses only the nonzero elements.

9.13 Develop an algorithm lowtrimul that forms the product of two lower triangular matrices.
9.14 Show that the flop count for Algorithm 9.5 is n2 + n− 1.
9.15 Compute the product of the two block matrices.

A =

⎡⎢⎢⎢⎢⎣
⎡⎣ 1
2
1

⎤⎦ ⎡⎣ 1 0 1
5 −1 3
2 7 5

⎤⎦
[

3
−1

] [
1 1 0
2 1 −1

]
⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
[
1 5

] [ −1 5 7
]⎡⎣ 1 −1

0 2
1 1

⎤⎦ ⎡⎣ 1 0 2
1 1 1
4 0 −1

⎤⎦
⎤⎥⎥⎥⎦ .

9.6.1 MATLAB Problems

9.16
a. Implement the function matmul specified by Algorithm 9.3.
b. Run the following code, and explain the results by listing all the factors you can think of that determine the speed

of matrix multiplication.

>> A = rand(1000,1000);
>> B = rand(1000,1000);
>> tic;C = A*B;toc;
>> tic;C = matmul(A,B);toc;

When a problem requires you to write a MATLAB function, always thoroughly test it with a variety of data. Some
problems prescribe test data.

9.17 Implement Problem 9.4 in the MATLAB function asym, test it on the following matrices, and create one test case of
your own.

A =

⎡⎢⎢⎢⎢⎣
1 −2 5 8 9
2 −3 12 4 16
−5 −12 5 −18 2
−8 −4 18 7 1
−9 −16 −2 −1 2

⎤⎥⎥⎥⎥⎦ ,



178 Numerical Linear Algebra with Applications

B =

⎡⎢⎢⎣
1 2 3 −9
−2 3 1 6
−3 −1 −2 4
9 6 −4 5

⎤⎥⎥⎦ .

9.18 Implement Problem 9.9 with a MATLAB function crossprod. After implementation, create vectors u and v, and
compute u× v, v× u, 〈u× v, u〉, and 〈v× u, v〉.

9.19 This problem deals with both upper- and lower-triangular matrix multiplication.
a. Write the algorithm in Problem 9.7 as a MATLAB function, updtrimul and test it with random matrices of size
3×3, 8×8, and 25×25. For your test, compute

∥∥updtrimul (A, B)− A ∗ B∥∥2. NOTE: The following statements
generate a random, integer, upper-triangular matrix whose entries are in the range −100 ≤ aij ≤ 100:

>> n = value;

>> A = randi([-100 100],n,n);

>> A = triu(A);

b. Implement the function lowtrimul from Problem 9.13 and test it as in part (a).
9.20 Write a MATLAB function, addsym, that implements the algorithm of Problem 9.10 and test it with matrices

A = rand(8,8);
A = A + A’;

B = rand(8,8);
B = B + B’;

9.21 Write a MATLAB function bisolve that implements the algorithm of Problem 9.12. The following statements
generate a random 5 × 5 bidiagonal matrix and a random right-hand side. Use these statements as your first test
of bisolve. Modify the statements and test your function with a 25× 25 bidiagonal matrix.

>> d = rand(5,1);
>> ud = rand(4,1);
>> A = diag(d) + diag(ud,1);
>> b = rand(5,1);

9.22 Problem 9.5 defines the tensor product of two vectors. Implement a function, tensorprod, that computes the tensor
product of an m× 1 column vector, u, with a 1× n row vector, v.

9.23 Write a function, tenmatprd, that implements the multiplication of matrices using the tensor product.
9.24 Write a function, trimul, that computes the product of two tridiagonal matrices. Test your function using the

following statements:

>> n = value;

>> a = rand(n-1,1);
>> b = rand(n,1);
>> c = rand(n-1,1);
>> A = trid(a,b,c)

9.25 For n odd, consider the “X-matrix”

where the diagonals contain no zero values.



Algorithms Chapter| 9 179

a. The center element is ak = bk. Find a formula for k.
b. Develop a function x = xmatsolve(a,b,rhs) that solves the system Cx = b. The function must only use the

nonzero values {ai} , {bi}. Output an error message and terminate under the following conditions:
● n is even.
● a and b do not both have n elements.
● The diagonals do not share a common center.

c. Develop a function X = buildxmat(a,b) that builds an X-matrix. Let n = length (a). Generate an error message
if n is even or length (b) �= n.

d. Develop a function testxmatsolve(a,b,rhs) that times the execution of x = xmatsolve(a,b,rhs), builds
the matrix X = buildxmat(a,b), and times the execution of the MATLAB command X\rhs.

e. Let a = randn(5001,1); b = randn(5001,1); and call buildxmat. Comment on the results.
9.26 Develop a MATLAB function

C = blockmul(A,B,m1,m2,p1,p2,n1,n2)

that computes the product of the block matrices A and B and returns the result into block matrix C. The scalars m1,
m2, p1, p2, n1, and n2 are as described in Section 9.1.4. Test your function using the block matrices of Example 9.1
and Problem 9.15.



This page intentionally left blank



Chapter 10

Conditioning of Problems and
Stability of Algorithms

You should be familiar with

● Solution of a linear system Ax = b using Gaussian elimination
● Matrix inverse
● Vector and matrix norms
● Eigenvalues
● Singular values

This chapter begins with the question “Why do we need numerical linear algebra?” and answers it by presenting six
examples, and there will be more later in this book. Some algorithms can be very sensitive to their input, meaning that
the algorithm can produce poor results with perfectly good data. These algorithms are unstable. On the other hand, a stable
algorithm can have input that cause the output to be poor. Such input is termed ill-conditioned. The chapter presents concrete
examples of these issues and develops tools that are useful in detecting and dealing with them.

10.1 WHY DO WE NEED NUMERICAL LINEAR ALGEBRA?

We have studied fundamental concepts in linear algebra. We know how to solve linear systems using Gaussian elimination,
how to find eigenvalues and eigenvectors, and that orthogonal matrices are important. We are familiar with subspaces, linear
independence, and matrix rank. So why is it necessary for us to study numerical linear algebra, and what is it? This chapter
provides some answers. It is not adequate to run an algorithm and accept the results, and we know this from our study
of floating point arithmetic in Chapter 8. A computer does not perform exact floating point arithmetic, and this can cause
even a time-honored algorithm to produce bad results. A good example is using the quadratic equation in its standard form
and suffering very serious cancellation errors. Chapter 9 introduces the concept of an algorithm and algorithm efficiency.
Suppose you have a problem to solve that involves matrices, and a computer must be used to obtain a solution. You may be
faced with a choice from among a number of competing algorithms. In this case, you must consider efficiency, one aspect
of which is flop count. Understanding issues of algorithm efficiency is one aspect of numerical linear algebra that sets it
aside from theoretical linear algebra. We will see that certain algorithms are more prone to bad behavior from roundoff error
than others, and we must avoid using them. Also, an algorithm that normally is very effective may not give good results
for certain data, and this leads to the subject of conditioning, particularly as involves matrices. In short, numerical linear
algebra is the study of how to accurately and efficiently solve linear algebra problems on a computer. Here are some classic
examples that illustrate the issues.

a. Using Gaussian elimination to solve a nonsingular n × n system Ax = b. Chapter 2 discusses Gaussian elimination.
During the process, if a 0 is encountered in the pivot position, a row exchange solved the problem. As we will see in
Chapter 11, Gaussian elimination can perform very poorly unless we incorporate row exchange into the algorithm so
that the pivot aii is the element of largest absolute value among the elements {aki} , k ≤ i ≤ n.

b. Dealing with m× n systems, m �= n. A theoretical linear algebra course shows that systems Ax = b, where x is an n× 1
vector and b is m × 1, have an infinite number of solutions or none. This is done by transforming A to what is called
reduced row echelon form. In numerical linear algebra, systems such as these arise in least-squares problems. Under the
right conditions, there is a unique solution satisfying the requirement that ‖b− Ax‖2 is a minimum. Very seldom does
Ax = b.

c. Solving a linear algebraic system using Cramer’s Rule. We presented Cramer’s Rule in Theorem 4.6 and mentioned
that is was intended primarily for theoretical purposes. In practice, it is frequently necessary to solve square systems of

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00010-7
Copyright © 2015 Elsevier Inc. All rights reserved. 181



182 Numerical Linear Algebra with Applications

size greater than or equal to 50× 50. Using Cramer’s Rule for a 50× 50 matrix involves computing 51 determinants of
50× 50 matrices. If we use expansion by minors for each determinant, it will require evaluating 51 (50!) � 1.6× 1066

permutations to solve the system. Each permutation requires 49 multiplications. Assume a supercomputer can execute
1015 flops/s. The number of seconds required to do the multiplications is

51 (50!) 49

1015
s � 2.4× 1045

years!
d. Computing the solution to a linear system Ax = b by first finding A−1 and then computing x = A−1b. Computing A−1

takes more operations than using Gaussian elimination if you are solving one system Ax = b. But, is it effective to
find A−1 if the solution to multiple systems Axi = bi,1≤ i ≤ k is required? The solutions are xi = A−1bi, so only k
matrix-vector products need be computed. It can be shown that computing A−1 to solve the problem requires four (4)
times as many flops as using Gaussian elimination to factor A into a product of a lower- and an upper-triangular matrix
and then using forward and back substitution for each of the k systems. It is also the case that some inverses are very
hard to compute accurately, and using A−1 gives very poor results.

e. Computing the eigenvalues of a matrix by finding the roots of its characteristic polynomial. There are long-standing
algorithms for finding the roots of a polynomial, but remember that the coefficients of the characteristic polynomial
will likely be corrupted by roundoff error. Section 10.3.1 demonstrates that even a slight change to one or more
coefficients of a polynomial can cause large changes in its roots. If such a polynomial is the characteristic polynomial
for the matrix, the eigenvalue computation can be disastrous. This method for computing eigenvalues should not
be used.

f. Finding the singular values of a matrix A by computing the eigenvalues of ATA. In computing the singular values
by finding the eigenvalues of ATA, errors introduced by matrix multiplication, followed by errors in computing the
eigenvalues may be significant. We will show in Chapter 15 that the rank of a matrix is equal to the number of its
nonzero singular values. Consider the example in Ref. [25]

A =
⎡⎣ 1 1

μ 0
0 μ

⎤⎦ ,

where μ <
√
eps, so 1 + μ2 < 1 + eps, and thus fl

(
1+ μ2

) = 1. As a result,

fl
(
ATA

) = [
1 1
1 1

]
,

its singular values are σ1 =
√
2, σ2 = 0, and the computed rank of A is 1. Using exact arithmetic,

ATA =
[
1+ μ2 1

1 1+ μ2

]
,

and the singular values of A are

σ1 =
√
2+ μ2, σ2 = |μ| .

The true rank of A is 2. By computing ATA, the term μ2 entered the computations, giving rise to the roundoff error
fl
(
1+ μ2

) = 1.MATLAB does floating point arithmetic using 64-bits.The followingMATLAB statements demonstrate
the problem.

>> mu = sqrt(eps);
>> A = [1 1;mu 0;0 mu];

>> rank(A)
ans =

2



Conditioning of Problems and Stability of Algorithms Chapter| 10 183

>> B = A’*A;

>> eig(B)

ans =

0.000000000000000

2.000000000000000

>> rank(B)

ans =

1

10.2 COMPUTATION ERROR

Our aim is to define criteria that help us decide what algorithm to use for a particular problem, or when the data for
a problem may cause computational problems. In order to do this, we need to understand the two types of errors,
forward error and backward error. Consider the problem to be solved by an algorithm as a function f mapping the
input data x to the solution y = f (x). However, due to inaccuracies during floating point computation, the computed
result is ŷ = f̂ (x). Before defining the types of errors and providing examples, it is necessary to introduce a new
notation.

Definition 10.1. If A is an m× n matrix, |A| = (∣∣aij∣∣); in other words, |A| is the matrix consisting of the absolute values
of aij, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Example 10.1.
a. If

A =
⎡⎣ −1 2 1.8
−0.45 1.23 14.5
−1.89 0.0 −12.45

⎤⎦ ,

|A| =
⎡⎣ 1 2 1.8
0.45 1.23 14.5
1.89 0.0 12.45

⎤⎦ .

b. Let x =
⎡⎣ −13
−4

⎤⎦ , y =
⎡⎣ −8−1

2

⎤⎦. Then,

|x|T |y| = [
1 3 4

] ⎡⎣ 8
1
2

⎤⎦ = 19.

�

10.2.1 Forward Error

Forward error deals with rounding errors in the solution of a problem.

Definition 10.2. The forward error in computing f (x) is
∣∣∣f̂ (x)− f (x)

∣∣∣. This measures errors in computation for input x.
The forward error is a natural quantity to measure but, in general, we do not know the true value f (x) so we can only

get an upper bound on this error.



184 Numerical Linear Algebra with Applications

Example 10.2. The outer product of vectors x and y in Rn is the n× n matrix

A = xyT =

⎡⎢⎢⎢⎣
x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn
...

...
...

...
xny1 xny2 . . . xnyn

⎤⎥⎥⎥⎦ . (10.1)

Each entry of the computed result, âij = xiyj satisfies

âij = xiyj
(
1+ εij

)
,

∣∣εij∣∣ ≤ eps,

and so

Â = fl
(
xyT

) = xyT +�,

where

� =

⎡⎢⎢⎢⎣
x1y1ε11 x1y2ε12 x1ynε1n
x2y1ε21 x2y2ε22 x2ynε2n

...
...

...
...

xny1εn1 xny2εn2 . . . xnynεnn

⎤⎥⎥⎥⎦ .

Since
∣∣εij∣∣ ≤ eps, it follows that

|�| ≤ eps
∣∣xyT∣∣ .

This tells us that we can compute the outer product with forward error �, and that the error is bounded by eps
∣∣xyT∣∣. �

As another example, consider the important problem of computing the inner product of vectors, u, v.

Example 10.3. If x and y are n× 1 vectors and n× eps ≤ 0.01, then,∣∣fl (xTy)− xTy
∣∣ ≤ 1.01 n eps |x|T |y| .

The result shows that the forward error for the inner product is small. For a proof see Ref. [2, p. 99]. �

10.2.2 Backward Error

Backward error relates the rounding errors in the computation to the errors in the data rather than its solution. Generally, a
backward error analysis is preferable to a forward analysis for this reason.

Consider the addition of n floating point numbers. In Section 8.3.2, we determined that

sn = x1 (1+ η1)+ x2 (1+ η2)+ x3 (1+ η3)+ · · · + xn−1 (1+ ηn−1)+ xn (1+ ηn) . (10.2)

This says that sn is the exact sum of the data perturbed by small errors, ηi. In other words, the result shows how errors
in the data affect errors in the result.

Definition 10.3. Roundoff or other errors in the data have produced the result ŷ. The backward error is the smallest �x
for which ŷ = f (x+�x); in other words, backward error tells us what problem we actually solved.

Figure 10.1 is an adaptation of Figure 1.1 from Ref. [16, p. 7] and illustrates the concepts of forward and backward error.

Backward error

x y = f (x)

y = f(x+ Δx)

Forward error

x+ Δx

ˆ

FIGURE 10.1 Forward and backward errors.



Conditioning of Problems and Stability of Algorithms Chapter| 10 185

Example 10.4. The McLaurin series for f (x) = 1/(1− x) is

1

1− x
= 1+ x+ x2 + · · · =

∞∑
n=0

xn, |x| < 1.

For x = 0.57000, approximate f (x) by

f̂ (x) = 1+ x + x2 + · · · + x7.

Then,

f (0.57000) = 2.3256, f̂ (0.5700) = 2.2997.

The forward error is |2.2997− 2.3256| = 0.025900. To find the backward error, we must find x̂ such that

1

1− x̂
= 2.2997.

Solving for x̂, we obtain x̂ = 0.56516, and the backward error is
∣∣x̂− x

∣∣ = 0.0048400. �

For another example of a backward error analysis, consider the computation of 〈u, v〉, where u and v are n× 1 vectors.
A proof of the following theorem can be found in Ref. [16, pp. 62-63].

Theorem 10.1. In the computation of the inner product, 〈u, v〉, where u and v are n× 1 vectors,

fl (〈u, v〉) = x1y1 (1+ ηn)+ x2y2
(
1 + η′n

)+ x3y3 (1+ ηn−1)+ · · · + xnyn (1+ η2) ,

where |ηi| ≤ n eps
1−n eps is very small.

This backward error result has an interpretation as follows:

The computed inner product is the exact inner product for a perturbed set of data x1, x2, . . . , xn, y1 (1 + ηn) ,
y2
(
1+ η′n

)
, . . . , yn (1+ η2).

10.3 ALGORITHM STABILITY

Now that we are familiar with backward and forward error analysis, we are in a position to define algorithm stability.
Intuitively, an algorithm is stable if it performswell in general, and an algorithm is unstable if it performs badly in significant
cases. In particular, an algorithm should not be unduly sensitive to errors in its input or errors during its execution. In
Section 8.4.2, we saw that using the quadratic equation in its classical form

x = −b±√b2 − 4ac

2a

can produce poor results when
√
b2 − 4ac ≈ b. This is an unstable algorithm. Section 8.4.2 provided another algorithm

that produces satisfactory results with the same values of a, b, and c. We will see in Chapter 11 that Gaussian elimination as
we know it is unstable, but when a technique known as partial pivoting is added, the algorithm is stable in all but pathological
cases. Given the same data, an unstable algorithm may produce poor results, while another, stable, algorithm produces good
results. There are two types of stable algorithms, backward stable and forward stable.

Definition 10.4. An algorithm is backward stable if for any x, it computes f̂ (x) with small backward error, �x. In other
words, it computes the exact solution to a nearby problem,

f (x+�x) = f̂ (x) ,

so that the solution is not sensitive to small perturbations in x.

By virtue of Equation 10.2, the addition of floating point numbers is backward stable, and by Example 10.3 so is the
inner product of two vectors.



186 Numerical Linear Algebra with Applications

We use the process of back substitution as the final step of Gaussian elimination, so we need to know its stability
properties. A proof that back substitution is backward stable can be found in Ref. [26, pp. 122-127].

Theorem 10.2. Let back substitution be applied to the system, whose entries are floating point numbers. For any matrix
norm, the computed solution x̂ satisfies

(R+ δR) x̂ = b

for some upper-triangular matrix δR with

‖δR‖
‖R‖ = O (eps) .

Specifically, for each i, j, ∣∣δrij∣∣∣∣rij∣∣ ≤ n eps+ O
(
eps2

)
.

Definition 10.5. An algorithm is forward stable if whenever f (x) is the true solution, the difference between the computed
and true solutions is small. In other words, ∣∣∣f̂ (x)− f (x)

∣∣∣
is small.

We have seen that the inner and outer product of two vectors is forward stable.
We know from our discussion in Chapter 8 that floating-point arithmetic does not follow the laws of real arithmetic.

This can make forward error analysis difficult. In backward error analysis, however, real arithmetic is employed, since it is
assumed that the computed result is the exact solution to a nearby problem. This is one reason why backward error analysis
is often preferred, so we will refer to stability to mean backward stability. We have seen that floating point addition and
inner product are stable, but we should provide examples of unstable algorithms.

10.3.1 Examples of Unstable Algorithms

The matrix xyT has rank 1 (see Problem 10.3). For the computation of the outer product to be backward stable,

Â = (x+�x) (y+�y)T ,

must have rank 1. However,

Â = xyT +�,

and � in general does not have rank 1. The outer product is not backward stable, leading to the remark 10.1.

Remark 10.1. It is possible for an algorithm to be forward stable but not backward stable. In other words, it is possible
for

∣∣∣f̂ (x)− f (x)
∣∣∣ to be small but the perturbation in the data, �x, may be large.

We commented that one should not compute eigenvalues by finding the roots of the characteristic equation. Another
example of an unstable algorithm is polynomial root finding.

Example 10.5. The matrix

A =
⎡⎣ 2 5 0

0 2 0
−1 3 2

⎤⎦
has characteristic polynomial

p (λ) = λ3 − 6λ2 + 12λ− 8 = (λ− 2)3

with three equal roots. Suppose roundoff error causes the coefficient of λ2 to become 5.99999, a perturbation of 10−5.
The roots of the characteristic equation are now



Conditioning of Problems and Stability of Algorithms Chapter| 10 187

Wilkinson polynomial (x -1)(x-2)(x-3)...(x -19)(x-20)x 10
12

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−1

−2

−3

−4

−5

FIGURE 10.2 The Wilkinson polynomial.

2.016901481104199 + 0.029955270323774i

2.016901481104199 - 0.029955270323774i

1.966187037791599 �

Equal roots or roots very close together normally make the root finding problem unstable. The problem is actually more
serious. If the roots are not close together, the root finding problem can still be unstable. A very clever example of this is
theWilkinson polynomial

p (x) = (x− 1) (x− 2) (x− 3) . . . (x− 20) .

Of course, all the roots are distinct and separated by 1. Expanded, p (x) is

x20 − 210x19 + 20, 615x18 − 1, 256, 850x17+ 53, 327, 946x16− 1, 672, 280, 820x15

+ · · · − 8, 752, 948, 036, 761, 600, 000x+ 2, 432, 902, 008, 176, 640, 000.

Figure 10.2 shows a graph of the Wilkinson polynomial. Wilkinson found that when −210, the coefficient of x19, was
perturbed to −210 − 2−23 the roots at x = 16 and x = 17 became approximately 16.73 ± 2.81i, quite a change for a
perturbation of 2−23 ≈ 1.192× 10−7!

This discussion definitely verifies that computing eigenvalues by finding the roots of the characteristic equation is a
bad idea. Round-off errors when computing the coefficients of the characteristic polynomial may cause large errors in the
determination of the roots.

10.4 CONDITIONING OF A PROBLEM

Even when using a stable algorithm to solve a problem, the problem may be sensitive to small changes (perturbations) in
the data. The perturbations can come from roundoff error, small measurement errors when collecting experimental data,
noise that is not filtered out of a signal, or truncation error when approximating the sum of an infinite series. If a problem
falls in this category, we say it is ill-conditioned.

Definition 10.6. A problem is ill-conditioned if a small relative change in its data can cause a large relative error in its
computed solution, regardless of the algorithm used to solve the problem. If small perturbations in problem data lead to
small relative errors in the solution, a problem is said to be well-conditioned.



188 Numerical Linear Algebra with Applications

Solution to Cauchy Problems
x � (t ) = x(t ) −t , t >0, x(0) = 1 and x (0) = 1+e, e= 10−10

x1(t ) = t +1
x2(t ) = eet+ t +1

10

15

20

25

30

35

5

0
0 5 10 15 20 25

x2(t )

x1(t )

FIGURE 10.3 Ill-conditioned Cauchy problem.

Example 10.6. The initial-value problem

dx

dt
= x (t)− t, t > 0, x (0) = 1

is an example of a Cauchy problem. The unique solution to this problem is

x1 (t) = t + 1.

Now perturb the initial condition by a small amount ε, to obtain the Cauchy problem

dx

dt
= x (t)− t, t > 0, x (0) = 1+ ε.

The unique solution to this problem is

x2 (t) = εet + t + 1,

as is easily verified. Figure 10.3 is a graph of both solutions over the interval 0 ≤ t ≤ 25 with ε = 10−10. A very small
change in the initial condition created a very different solution for x > 20. This Cauchy problem is ill-conditioned. The L2

function norm will give us the relative error over the interval:

√√√√∫ 25
0 (x1 (t) − x2 (t))2 dt∫ 25

0 x1 (t)2 dt
=
√
3

2

(
10−10

)2 ( e50 − 1

263 − 1

)
= 0.06652,

a very poor result. �

It is easy to confuse the concepts of stability and conditioning. Remark 10.2 provides a summary of the differences.



Conditioning of Problems and Stability of Algorithms Chapter| 10 189

Well-conditioned

y1
x1

f (x1)

f (x2)

f (x1)

f (x2)

x2

x1
x2

y1

y2

y2

ill-conditioned

FIGURE 10.4 Conditioning of a problem.

Remark 10.2. Summary

● Stable or unstable refers to an algorithm.
● Well or ill-conditioned refers to the particular problem, not the algorithm used.

Clearly, mixing roundoff error with an unstable algorithm is asking for disaster.
As mentioned in the introduction this section, a stable algorithm for the solution of a problem can produce poor results

if the data are ill-conditioned. Assume that f (x) represent an algorithm that takes data x and produces a solution f (x). Here
are some examples:

● In Example 10.6, f is an initial-value problem solver, and x (0) is the initial condition.
● f is Gaussian elimination applied to solve a linear algebraic system Ax = b. The data are A and b.
● f is a function that takes a real number x and returns a real number y.

We can define ill and well-conditioning in terms of f (x). Use the notation ‖·‖ to indicate a measure of size, such as the
absolute value of a real number or a vector or matrix norm.

Definition 10.7. Let x and x be the original and slightly perturbed data, and let f (x) and f (x̄) be the respective solutions.
Then,

The problem is well-conditioned with respect to x if whenever |x − x| is small, |f (x)− f (x)| is small.
The problem is ill-conditioned with respect to x if whenever |x− x| is small, |f (x)− f (x)| can be large (Figure 10.4).

The sensitivity of a problem to data perturbations is measured by defining the condition number. The larger the condition
number, the more sensitive a problem is to changes in data. For a particular x, assume there is a small error in the data so
that the input to the problem is x = x +�x, and the computed value is f (x) instead of f (x). Form the relative error of the
result divided by the relative error of the input: |f (x)− f (x)|

|f (x)|
|x− x|
|x|

(10.3)

The ratio measures how sensitive a function is to changes or errors in the input.

Remark 10.3. In mathematics, the supremum (sup) of a subset S of an ordered set X is the least element of X that is greater
than or equal to all elements of S. It differs from the maximum, in that it does not have to be a member of subset S.

This leads us to a mathematical definition of the condition number for a problem f .

Definition 10.8. The condition number of problem f with input x is

Cf (x) = lim
ε→0+

sup
‖δx‖≤ε

‖f (x + δx)− f (x)‖
‖f (x)‖
‖δx‖
‖x‖

.



190 Numerical Linear Algebra with Applications

It is sufficient to think of the condition number as the limiting behavior of Equation 10.3 as the error δx becomes small.
As a first example of computing a condition number, let f (x) be a function from R to R. The question is whether

evaluating the function is well-conditioned. The function f (x) = x2 is clearly well-conditioned, but f (x) = (1/(1− x)) has
serious problems near x = 1. In the general case, assume that f is differentiable so that the mean value theorem, proved in
any calculus text, applies to f .

Theorem 10.3. (Mean value theorem) If a function f (x) is continuous on the closed interval a ≤ x ≤ b and differentiable
on the open interval a < x < b, then there exists a point ξ in a < x < b such that

f ′ (ξ) = f (b)− f (a)

b− a
.

Fix x and let x = x+ δx. Applying the mean value theorem

|f (x)−f (x+δx)|
|f (x)|
|δx|
|x|

= |x|
|δx|

|f (x)− f (x+ δx)|
|f (x)| = |x|

|f (x)|
|f (x)− f (x+ δx)|

|δx| = |x|
∣∣f ′ (ξ)

∣∣
|f (x)| ,

where ξ is between x and x+ δx. As a result, Cf (x) = |x|
∣∣f ′ (x)∣∣/|f (x)|.

Example 10.7. The example finds the condition number for three functions

a. f (x) = x2, Cf (x) = |x| |2x|/
∣∣x2∣∣ = 2, so f is well-conditioned.

b. f (x) = 1/(1− x), Cf (x) = |x| ∣∣1/(1− x)2
∣∣/|1/(1− x)| = |x/(1− x)|. f (x) is ill-conditioned near x = 1 and well-

conditioned everywhere else.
c. f (x) = ex, Cf (x) = |x| |ex/ex| = |x|. f (x) is ill-conditioned large x.

Parts (b) and (c) indicate that whenever x is within a certain range, a small relative error in x can cause a large relative error
in the computation of f (x). �

10.5 PERTURBATION ANALYSIS FOR SOLVING A LINEAR SYSTEM

For A =
[
1.0001 1

1 1

]
, the problem Ax = b is ill-conditioned. A good reason to suspect this is that det (A) = 0.0001, so

the matrix is almost singular. You will note that the exact solution to the following system is x1 = 1 and x2 = 1.[
1.0001 1

1 1

][
x1
x2

]
=
[
2.0001

2

]
Now replace the right-hand side value 2.0001 by 2, and solve the system[

1.0001 1
1 1

][
x1
x2

]
=
[
2
2

]
.

The result is x1 = 0.0000, x2 = 2.0000. A very small change in the right-hand side caused a very large change in the
solution.

In the remainder of this section, we will study the effect on the solution x if the elements of the linear system Ax = b
are slightly perturbed. This can occur in three ways:

a. One or more elements of b are perturbed, but the elements of A are exact.
b. One or more entries in A are perturbed, but the elements of b are exact.
c. There are perturbations in both A and b.

Theorem 10.4 specifies bounds for the errors involved in each case. If the reader does not desire to read through the proof,
carefully look at Equations 10.4–10.6, and note the presence of the factor ‖A‖ ∥∥A−1∥∥. Our definition of the very important
matrix condition is motivated by these results.

Remark 10.4. Recall that if ‖·‖ is a subordinate matrix norm, then ‖Ax‖ ≤ ‖A‖ ‖x‖ (Equation 7.9)

Theorem 10.4. Assume A is a nonsingular matrix, b �= 0 is a vector, x is the solution to the system Ax = b, and ‖·‖ is a
subordinate norm.



Conditioning of Problems and Stability of Algorithms Chapter| 10 191

1. If x+ δx is the solution to the perturbed system A (x + δx) = b+ δb, then

‖δx‖
‖x‖ ≤ ‖A‖

∥∥∥A−1∥∥∥ ‖δb‖‖b‖ . (10.4)

2. If x+ δx is the solution to the perturbed system (A+ δA) (x+ δx) = b, then

‖δx‖
‖x+ δx‖ ≤ ‖A‖

∥∥∥A−1∥∥∥ ‖δA‖‖A‖ . (10.5)

3. If x+ δx is the solution to the perturbed system (A+ δA) (x+ δx) = b+ δb, then

‖δx‖
‖x‖ ≤ ‖A‖

∥∥∥A−1∥∥∥(‖δA‖‖A‖ +
‖δb‖

‖A‖ ‖x+ δx‖
)
. (10.6)

Proof. To prove part 1, note that A (x+ δx) = Ax+ A (δx) = b+ A (δx) = b+ δb, so

A (δx) = δb.

It follows that δx = A−1 (δb), so

‖δx‖ ≤
∥∥∥A−1∥∥∥ ‖δb‖ . (10.7)

Ax = b, and thus

‖b‖ ≤ ‖A‖ ‖x‖ . (10.8)

Multiply inequalities 10.7 and 10.8 together, and ‖δx‖ ‖b‖ ≤ ‖A‖ ∥∥A−1∥∥ ‖δb‖ ‖x‖, from which we obtain the result

‖δx‖
‖x‖ ≤ ‖A‖

∥∥∥A−1∥∥∥ ‖δb‖‖b‖ .

For part 2, (A+ δA) (x+ δx) = Ax + A (δx)+ δA (x+ δx) = b, and b = Ax, so

A (δx)+ δA (x+ δx) = 0. (10.9)

Now, multiply Equation 10.9 by A−1 to obtain

δx = −A−1δA (x+ δx) ,

and so ‖δx‖ ≤ ∥∥A−1∥∥ ‖δA‖ ‖x + δx‖, and
‖δx‖

‖x+ δx‖ ≤
∥∥∥A−1∥∥∥ ‖δA‖ . (10.10)

Multiply the right-hand side of Equation 10.10 by ‖A‖/‖A‖ to obtain
‖δx‖

‖x+ δx‖ ≤ ‖A‖
∥∥∥A−1∥∥∥(‖δA‖‖A‖

)
.

For part 3, since Ax = b and (A+ δA) (x+ δx) = b + δb it follows that

A (δx)+ δA (x+ δx) = δb. (10.11)

Multiply Equation 10.11 by A−1 to get

δx = A−1 (δb− δA (x+ δx)) ,

so

‖δx‖ ≤
∥∥∥A−1∥∥∥ ‖δb− δA (x+ δx)‖ . (10.12)

Apply the triangle inequality as well as Equation 7.9 to ‖δb− δA (x+ δx)‖, and Equation 10.12 becomes
‖δx‖ ≤

∥∥∥A−1∥∥∥ (‖δb‖ + ‖δA‖ ‖x+ δx‖) . (10.13)



192 Numerical Linear Algebra with Applications

Divide both sides of Equation 10.13 by ‖x+ δx‖ and multiply the right-hand side by ‖A‖/‖A‖, and we obtain the
required result

‖δx‖
‖x+ δx‖ ≤ ‖A‖

∥∥∥A−1∥∥∥(‖δA‖‖A‖ +
‖δb‖

‖A‖ ‖x+ δx‖
)
.

A question that naturally arises is whether these bounds are realistic. Is the upper bound far larger than any possible
value for the actual relative error? As it turns out, the three inequalities are what is termed optimal.

Definition 10.9. An upper bound in an inequality is optimal if there exist parameters for the inequality that attain the
upper bound. In other words, if expr depends on a number of parameters and expr ≤ upperBound, then there are parameters
such that expr = upperBound.

It can be shown that each of the inequalities Equations 10.4–10.6 is optimal [27, pp. 80-81]. For instance, for any matrix
A, there exists a perturbation δA, a right-hand side b and a vector x such that ‖δx‖/‖x+ δx‖ = ‖A‖ ∥∥A−1∥∥ ‖δA‖/‖A‖.
Remark 10.5. Even though the inequalities in Theorem 10.2 are optimal, they are pessimistic. This means that under most
circumstances the upper bound is considerably larger than the relative error [27, p. 82].

Notice that Equations 10.4–10.6 involve the factor ‖A‖ ∥∥A−1∥∥, which has particular significance. It is the condition number
of matrix A.

Definition 10.10. The number ‖A‖ ∥∥A−1∥∥ is called the condition number of A and we denote it by κ (A).

Theorem 10.4 says that relative change in the solution is bounded above by the product of κ (A) and another factor that will
be small if ‖δA‖ and ‖δb‖ are small. If κ (A) is small, the relative change in the solution will be small, but if κ (A) is large,
then even small changes in A or b might drastically change the solution.

Remark 10.6. Any matrix norm can be used to compute a condition number. We will assume that κ (A) refers to the
condition number relative to the 2-norm. The notation κ∞ (A), κ1 (A), and κF (A) refer to the∞-, 1-, and Frobenius-norms,
respectively.

In the following examples, ‖·‖ will refer to the 2-norm.

Example 10.8. Let A =
⎡⎣ 1 3 8
−1 2 6
2 −1 7

⎤⎦, b =
⎡⎣ 1
1
1

⎤⎦. The solution to Ax = b is x =
⎡⎣ −0.1320755
−0.075471698113208
0.169811320754717

⎤⎦. Let
δb=

⎡⎣ 0.0001
−0.0001
0.0005

⎤⎦, so b+ δb =
⎡⎣ 1.0001
0.9999
1.0005

⎤⎦. The solution to the perturbed system is x+ δx =
⎡⎣ −0.131964150943396−0.075550943396226

0.169839622641509

⎤⎦.
The relative perturbation is ‖δb‖/‖b‖ = 3.0000×10−4, which is quite small. The relative error of the solution is ‖δx‖/‖x‖ =
6.1209× 10−4. The condition number of the matrix A is 9.6978, so good behavior should be expected.

Verify inequality 10.4:

‖δx‖
‖x‖ = 6.1209× 10−4 ≤ ‖A‖

∥∥∥A−1∥∥∥ ‖δb‖‖b‖ = 9.6978
(
3.0000× 10−4

)
= 2.9093× 10−3 �

Example 10.9. Let A be the matrix obtained in MATLAB using the command A = gallery(3).

A =
⎡⎣ −149 −50 −154537 180 546
−27 −9 −25

⎤⎦



Conditioning of Problems and Stability of Algorithms Chapter| 10 193

If b =
⎡⎣ 1
2
3

⎤⎦, the solution is x =
⎡⎣ 324.3333
−1035.8333
22.5000

⎤⎦. Perturb A by δA =
⎡⎣ 0.00001 0 −0.00001

0 0 0
0 0.00003 0

⎤⎦ so that A+δA =
⎡⎣ −148.99999 −50 −154.00001

537 180 546
−27 −8.99997 −25

⎤⎦. The solution to the perturbed system is

x + δx =
⎡⎣ 326.31236
−1042.17016
22.64266

⎤⎦ ,

which is very different from the solution to the unperturbed system relative to the small change in A. This is not surprising,
since κ (A) = 275848.6.

Verify inequality 10.5:

‖δx‖
‖x+ δx‖ =

6.64020

1085.65605
= 0.0061163 ≤ ‖A‖

∥∥∥A−1∥∥∥ ‖δA‖‖A‖ = 275848.64261
(
3.66856× 10−8

)
= 0.010120. �

Example 10.10. If A =
⎡⎣ −3 1

2
1
3−36 8 6

30 −7.5 −6

⎤⎦ and b =
⎡⎣ 3
3
3

⎤⎦, the solution is x =
⎡⎣ −6.5000
−66.0000
49.5000

⎤⎦. Perturb A by δA =
⎡⎣ 0.0005 0 0.00001

0 0.0003 0
0 0 −0.0007

⎤⎦ and b by δb =
⎡⎣ −0.0001

0.0005
−0.00002

⎤⎦, so A + δA =
⎡⎣ −2.99950 0.50000 0.33334
−36.00000 8.00030 6.00000
30.00000 −7.50000 −6.00070

⎤⎦ and

b + δb =
⎡⎣ 2.99990
3.00050
2.99998

⎤⎦ . The solution to the perturbed system x + δx =
⎡⎣ −6.48637
−65.72708
49.22128

⎤⎦, so δx =
⎡⎣ 0.013630

0.272920
−0.27872

⎤⎦. The
relative error is

‖δx‖
‖x‖ = 0.0047166.

Considering that ‖δA‖/‖A‖ = 1.43018× 10−5 and ‖δb‖/‖b‖ = 9.82061× 10−5, this relative error is poor, indicating
the A is ill-conditioned. Indeed, κ (A) = 2.39661× 103.

Verify inequality 10.6:

‖δx‖
‖x‖ = 0.0047166 ≤ ‖A‖

∥∥∥A−1∥∥∥(‖δA‖‖A‖ +
‖δb‖

‖A‖ ‖x+ δx‖
)

= 2.39661× 103
(
1.43018× 10−5 + 5.10294× 10−4

48.95519 (82.37024)

)
= 0.034579 �

Definition 10.11. If the condition number of matrix A is large, we say A is ill-conditioned; otherwise, A is well-
conditioned.

The term “large" is vague. Condition numbers in the range of 104 or more definitely indicate ill-conditioning. For some
matrices, a smaller condition number can indicate ill-conditioning, so determining ill-conditioning is not an exact science.

10.6 PROPERTIES OF THE MATRIX CONDITION NUMBER

The matrix condition number has importance in various applications and in proving some highly useful results. This section
develops properties of the condition number and provides examples that illustrate its properties.

Theorem 10.5. Let A be a nonsingular matrix.

1. κp (A) ≥ 1 for any p-norm.
2. κG (αA) = κG (A), where α �= 0 is a constant. Here κG (A) refers to any matrix norm.



194 Numerical Linear Algebra with Applications

3. Let A be an orthogonal matrix. Then, κ (A) = 1 if and only if ATA = αI, where α �= 0.
4. κ

(
ATA

) = (κ (A))2.
5. κ (A) = κ

(
AT
)
; κ1 (A) = κ∞

(
AT
)
.

6. For any matrix norm, κ (AB) ≤ κ (A) κ (B).
7. κ (A) = σmax/σmin where σmax and σmin are, respectively, the largest and smallest singular values of A.

We will prove properties (2), (4), and (7). The remaining properties are left as exercises.

Proof. To prove (2), note that since (αA)
(
1
α
A−1

)
= I, 1

α
A−1 must be the inverse of αA, and so

κG (αA) = ‖αA‖
∥∥∥(αA)−1

∥∥∥ = |α| ‖A‖ ∥∥∥∥ 1αA−1
∥∥∥∥ = ‖A‖ ∥∥∥A−1∥∥∥ = κG (A) .

To prove (4), the condition number of ATA is κ
(
ATA

) = ∥∥ATA∥∥2 ∥∥∥(ATA)−1∥∥∥2, so we have to deal with the two factors∥∥ATA∥∥2 and ∥∥∥(ATA)−1∥∥∥2. In Theorem 7.9, part (4) we proved that∥∥ATA∥∥2 = ‖A‖22 . (10.14)

Recall the property
(
AT
)−1 = (

A−1
)T

from Theorem 1.6, part (5), so∥∥∥(ATA)−1∥∥∥
2
=
∥∥∥A−1 (AT)−1∥∥∥

2
=
∥∥∥∥A−1 (A−1)T∥∥∥∥

2
=
∥∥∥A−1∥∥∥2

2
. (10.15)

From Equations 10.14 and 10.15, we have

κ
(
ATA

) = ‖A‖22 ∥∥∥A−1∥∥∥22 = (
‖A‖2

∥∥∥A−1∥∥∥
2

)2 = (κ (A))2 .

Now consider property 7. By Theorem 7.7, ‖A‖2 =
√

λmax, where λmax is the largest eigenvalue of ATA. From Theorem 7.9,
part (5),

∥∥A−1∥∥2 = 1/
√

λmin, where λmin is the smallest eigenvalue of ATA. Then,

‖A‖2
∥∥∥A−1∥∥∥

2
=
√

λmax√
λmin

= σmax

σmin
.

Lemma 7.1 states that all norms on the vector space Rn are equivalent. That is, given any two norms ‖·‖a and ‖·‖b, there
exist constants Cl and Ch such that

Cl ‖x‖a ≤ ‖x‖b ≤ Ch ‖x‖a .
This same type of result also applies to the condition number of matrix norms. It answers the question “Can a condition
number based on one norm be large and a condition number based on another norm be small?” The answer is “No." We
state without proof the following relationships among norms [2, p. 88].

Theorem 10.6. If A is an n × n matrix, any two condition numbers κα (A) and κβ (A) are equivalent in that there are
constants c1 and c2 such that

c1κ (A) ≤ κβ (A) ≤ c2κ (A) .

For Rn×n,
1

n
κ2 (A) ≤ κ1 (A) ≤ nκ2 (A) ,

1

n
κ∞ (A) ≤ κ2 (A) ≤ nκ∞ (A) ,

1

n2
κ1 (A) ≤ κ∞ (A) ≤ n2κ1 (A) .

Thus, if a matrix is ill-conditioned in one norm, it is ill-conditioned in another, taking into account the constants c1 and c2.



Conditioning of Problems and Stability of Algorithms Chapter| 10 195

We stated in Section 6.3 that orthogonal matrices are the most beautiful of all matrices. Now we can add another reason
for supporting this claim.

Lemma 10.1. In the 2-norm, an orthogonal matrix, P, is perfectly conditioned, in that κ (P) = 1.

Proof. By Theorem 10.5, part 7, κ (P) = σmax/σmin = 1, since the singular values of P are the square roots of the
eigenvalues of PTP = I.

10.7 MATLAB COMPUTATION OF A MATRIX CONDITION NUMBER

To determine the condition number of a matrix, use the function cond. Its arguments are the matrix and one of the following:

● None (default is the 2-norm)
● 1 (the 1-norm)
● 2 (the 2-norm)
● ‘inf’ (the∞-norm)
● ‘fro’ (the Frobenius-norm )

Here are the results when each of these norms are applied to the 10× 10 bidiagonal matrix A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 . . . 0
0 1 1 0 . . . 0

0
... 1 1 . . . 0

...
...
...
. . . . . . 0

...
...
... . . . 1 1

0 0 0 . . . . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
>> A = diag(ones(10,1)) + diag(ones(9,1),1);
>> cond(A)

ans =

13.2320

>> cond(A,’inf’)

ans =

20

>> cond(A,1)

ans =

20

>> cond(A, ’fro’)

ans =

32.3265

10.8 ESTIMATING THE CONDITION NUMBER

Since the condition number is so important, we must either compute its value or have a good approximation. To
compute κ (A) = ∥∥A−1∥∥2 ‖A‖2 requires that we compute the maximum and minimum singular values of A. Recall from
Theorem 10.6 that

1

n
κ2 (A) ≤ κ1 (A) ≤ nκ2 (A) ,

and so it is reasonable to use κ1 (A), since the matrix 1-norm is much easier to compute.

‖A‖1 = max
1≤k≤n

m∑
i=1
|aik| .



196 Numerical Linear Algebra with Applications

However, the problem of accounting for A−1 still remains. It can be shown that

κ1 (A) ≥ ‖A‖1
∥∥A−1w∥∥1
‖w‖1 (10.16)

for any nonzero w ∈ Rn [23, pp. 131-133]. If we choose w so that
∥∥A−1w∥∥1/‖w‖1 is close to its maximum, Equation 10.16

will give a sharp lower bound for κ1 (A). The Hager algorithm is most frequently used to estimatew (see Refs. [1, pp. 50-54],
[19, pp. 141-143], and [28]).

Example 10.11. The MATLAB function condest(A) estimates the condition number of a square matrix.

>> H = hilb(35); % the Hilbert matrices are notoriously ill-conditioned

>> condest(H)
ans =

4.7538e+019

>> A = [1 2 3;3 4 5;6 7 8.00001];

>> condest(A)
ans =

1.6e+007

>> cond(A)
ans =

1.0991e+007 �

10.9 INTRODUCTION TO PERTURBATION ANALYSIS OF EIGENVALUE PROBLEMS

The 10× 10 bidiagonal matrix in Section 10.7 is well-conditioned, since its condition number is 13.232. As it turns out, a
matrix can be well-conditioned and yet its eigenvalues are sensitive to perturbations. As a result, the conditioning problem
for eigenvalues must be considered separately from matrix conditioning. Perturbation analysis of eigenvalue problems will
be discussed in Chapter 18, but at this point it is instructive to present some examples.

Example 10.12. The bidiagonal matrix, A, of Section 10.7 is an upper-triangular matrix, so its eigenvalues lie on the
diagonal, and are all 1. After computing the eigenvalues of A, perturb A (5, 1) by 10−10 and compute the eigenvalues.

>> A = diag(ones(10,1)) + diag(ones(9,1),1);
>> eig(A)
ans =

1

1

...

1

>> A(5,1) = 1.0e-10;

>> eig(A)
ans =

0.9919 + 0.0059i

0.9919 - 0.0059i

1.0031 + 0.0095i

1.0031 - 0.0095i

1.0100

1.0000

1.0000

1.0000

1.0000

1.0000

A perturbation of 10−10 in one entry caused four of the eigenvalues to become complex. �



Conditioning of Problems and Stability of Algorithms Chapter| 10 197

10.10 CHAPTER SUMMARY

Reasons Why the Study of Numerical Linear Algebra Is Necessary

Floating point roundoff and truncation error cause many problems. We have learned how to perform Gaussian elimination
in order to row reduce a matrix to upper-triangular form. Unfortunately, if the pivot element is small, this can lead to
serious errors in the solution. We will solve this problem in Chapter 11 by using partial pivoting. Sometimes an algorithm
is simply far too slow, and Cramer’s Rule is an excellent example. It is useful for theoretical purposes but, as a method
of solving a linear system, should not be used for systems greater than 2 × 2. Solving Ax = b by finding A−1 and then
computing x = A−1b is a poor approach. If the solution to a single system is required, one step of Gaussian elimination,
properly performed, requires far fewer flops and results in less roundoff error. Even if the solution is required for many
right-hand sides, we will show in Chapter 11 that first factoring A into a product of a lower- and an upper-triangular matrix
and then performing forward and back substitution is much more effective. A classical mistake is to compute eigenvalues by
finding the roots of the characteristic polynomial. Polynomial root finding can be very sensitive to roundoff error and give
extraordinarily poor results. There are excellent algorithms for computing eigenvalues that we will study in Chapters 18
and 19. Singular values should not be found by computing the eigenvalues of ATA. There are excellent algorithms for that
purpose that are not subject to as much roundoff error. Lastly, if m �= n a theoretical linear algebra course deals with the
system using a reduction to what is called reduced row echelon form. This will tell you whether the system has infinitely
many solutions or no solution. These types of systems occur in least-squares problems, and we want a single meaningful
solution. We will find one by requiring that x be such that ‖b− Ax‖2 is minimum.

Forward and Backward Error Analysis

Forward error deals with rounding errors in the solution of the problem. If the input is x, the solution is f (x), and the result
obtained is f̂ (x), the forward error is

∣∣∣f (x)− f̂ (x)
∣∣∣. Normally we do not know the true solution f (x), so we must resort to

bounding the forward error. For instance, the forward error for the computation of the outer product of vectors x and y, xyT,
is bounded by eps× ∣∣xyT∣∣, where |.| returns the matrix with each entry replaced by its absolute value.

Backward error relates the rounding errors in the computation to the errors in the data rather than its solution. Generally,
a backward error analysis is preferable to a forward analysis for this reason. Roundoff or other errors in the data have
produced the result ŷ. The backward error is the smallest �x for which ŷ = f (x+�x); in other words, backward error tells
us what problem we actually solved. For instance, it can be shown that the inner product, 〈x, y〉, is the exact inner product
for a perturbed set of data, where the perturbations are very small.

Algorithm Stability

Intuitively, an algorithm is stable if it performswell in general, and an algorithm is unstable if it performs badly in significant
cases. In particular, an algorithm should not be unduly sensitive to errors in its input or errors during its execution. We saw
in Chapter 8 that using the quadratic equation in its natural form is subject to serious cancellation error. There are two types
of stable algorithms, backward stable, and forward stable.

An algorithm is backward stable if for any x, it computes f (x)with small backward error,�x. In other words, it computes
the exact solution to a nearby problem,

f (x +�x) = f̂ (x)

so that the solution is not sensitive to small perturbations in x. The addition of floating point numbers is backward stable,
as is the computation of the inner product, and back substitution.

An algorithm is forward stable if whenever f (x) is the true solution, the difference between the computed and true
solutions is small. In other words, ∣∣∣ f̂ (x)− f (x)

∣∣∣
is small. The computation of the inner and outer product of two vectors is forward stable. We know from our discussion in
Chapter 8 that floating-point arithmetic does not follow the laws of real arithmetic. This can make forward error analysis
difficult. In backward error analysis, however, real arithmetic is employed, since it is assumed that the computed result is
the exact solution to a nearby problem. This is one reason why backward error analysis is often preferred, so we will refer
to stability to mean backward stability. We have seen that floating point addition and inner product are stable.



198 Numerical Linear Algebra with Applications

Computing the outer product is not backward stable. The root finding problem can be unstable, particularly in the
presence of multiple roots. The Wilkinson polynomial is an example where all the roots are distinct, but their computation
is unstable.

Conditioning of a Problem

A problem is ill-conditioned if a small relative change in its data can cause a large relative error in its computed solution,
regardless of the algorithm used to solve the problem. If small perturbations in problem data lead to small relative errors in
the solution, a problem is said to be well-conditioned. Let x and x be the original and slightly perturbed data, and let f (x)
and f (x̄) be the respective solutions. Then,

● The problem is well-conditioned with respect to x if whenever |x − x| is small, |f (x)− f (x)| is small.
● The problem is ill-conditioned with respect to x if whenever |x − x| is small, |f (x)− f (x)| can be large.
The condition number defines the degree of conditioning for a particular problem. The chapter gives a mathematical
definition of the condition number as the limiting ratio of the relative rate of change of the function divided by the relative
change in the input. The larger the condition number, the more sensitive the problem is to errors.

Remark 10.7.

● Stable or unstable refers to an algorithm.
● Well or ill-conditioned refers to the particular problem, not the algorithm used.

Perturbation Analysis for Solving a Linear System

When solving a linear system, there are three situations we must consider, errors in the right-hand side, errors in the
coefficient matrix, and errors in both. The text discusses each of these cases and, in each case, the expression

‖A‖
∥∥∥A−1∥∥∥

appears, where ‖.‖ is any subordinate norm. This value is called the condition number of the matrix and is denoted by κ (A).
If the condition number is large, solving a linear system accurately is difficult.

Properties of the Matrix Condition Number

There are a number of important properties of the 2-norm matrix condition number. We list some of the most useful:

● If P is orthogonal, κ (A) = 1.
● κ (A) = σmax/σrmin

Using MATLAB to Compute the Matrix Condition Number

In MATLAB, compute the condition number using the function cond in one of the forms

cond(A) 2-norm
cond(A,1) 1-norm
cond(A,’inf’) ∞-norm
cond(A,’fro’) Frobenius-norm

Approximating the Matrix Condition Number

The MATLAB function condest approximates the condition number of a matrix using the matrix 1-norm. We normally
use this approximation with large sparse matrices, since the computation of the condition number is too costly.



Conditioning of Problems and Stability of Algorithms Chapter| 10 199

Perturbation Analysis of Eigenvalue Problems

A matrix can be well-conditioned and yet its eigenvalues can be sensitive to perturbations. As a result, the conditioning
problem for eigenvalues must be considered separately from matrix conditioning. Perturbation analysis of eigenvalue
problems will be discussed in Chapter 18,

10.11 PROBLEMS

10.1 Show that the floating point multiplication of two numbers is backward stable.
10.2 Prove that a small residual for the solution of Ax = b implies backward stability.
10.3 Prove that if x and y are in Rn, the n× n matrix xyT has rank 1.
10.4 If A and B are matrices and α is a floating point number, prove the following forward error results.

a. fl (αA) = αA+ E, |E| ≤ eps |αA| .
b. fl (A+ B) = (A+ B)+ E, |E| ≤ eps |A+ B| .

10.5 Show that the roots of the polynomial x3 − 12x2 + 48x− 64 are ill-conditioned and explain why.
10.6 Let f (x) = ln x.

a. Show that the condition number of f at x is c (x) = 1/|ln x|.
b. Using the above result, show that ln x is ill-conditioned near x = 1.

10.7 Show that computing
√
x for x > 0 is well-conditioned.

10.8 What is the condition number for f (x) = x/(x − 1) at x? Where is it ill-conditioned?
10.9 Let A be a nonsingular square matrix.

a. Prove that if A is a scalar multiple of an orthogonal matrix, then κ2 (A) = 1.
b. Prove that if κ2 (A) = 1, then A is a scalar multiple of an orthogonal matrix. You may assume the singular value

decomposition that says

A = U�VT,

where U and V are orthogonal and � is a diagonal matrix of singular values.
10.10 If A is an m× n matrix, and x is an n× 1 vector, then the linear transformation y = Ax maps R

n to R
m, so the linear

transformation should have a condition number, condAx (x). Assume that ‖·‖ is a subordinate norm.
a. Show that we can define condAx (x) = ‖A‖ ‖x‖/‖Ax‖ for every x �= 0.
b. Find the condition number of the linear transformation at x = [

1 −1 2
]T
using the∞-norm.

T =
⎡⎣ 1 7 −1
3 2 1
5 −9 3

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ .

c. Show that condAx (x) ≤ ‖A‖ ∥∥A−1∥∥ for all x.
d. Verify the result of part (c) for the matrix and vector of part (b).

10.11 Prove the following properties of the condition number.
a. κp (A) ≥ 1 for any p-norm.
b. κ2 (A) = κ2

(
AT
)
; κ1 (A) = κ∞

(
AT
)
.

c. For any sub-multiplicative matrix norm, κ (AB) ≤ κ (A) κ (B).

10.12 Let A =
[
1 a
a 1

]
. For what values of a is A ill-conditioned? What happens as a→∞.

10.13 Prove that for any orthogonal matrix P, κ (PA) = κ(AP) = κ (A) for any n× n matrix A.
10.14 There is an equivalent definition of κ (A) [27, pp. 84-85].

The condition number κ (A) of a nonsingular matrix A is

1

κ (A)
= min

B∈Sn

{‖A− B‖2
‖A‖2

}
,

where Sn is the set of singular n× n matrices.

a. If A is ill-conditioned, what does this say about the relative distance of A from the subset of n×n singular matrices
b. If A is a well-conditioned matrix, answer the question of part (a).



200 Numerical Linear Algebra with Applications

10.11.1 MATLAB Problems

10.15
a. Write a MATLAB function that builds the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n n− 1 n− 2 . . . 3 2 1
n− 1 n− 1 n− 2 . . . 3 2 1

0 n− 2 n− 2
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . 2
...

... 2 2 1
0 . . . . . . . . . 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

b. For n = 5, 10, 15, 20:
i. Compute the vector of eigenvalues and assign it to the variable E1.
ii. Perturb A (1, n− 1) by 10−8 and assign the eigenvalues of the perturbed matrix to the variable E2.
iii. Compute ‖E1− E2‖2.

c. Which eigenvalues appear to be perturbed the most?
d. The function eigcond in the software distribution with calling format

[c lambda] = eigcond(A)

computes the condition number ci of eigenvalue λi. We will develop the function code in Section 18.11. Run
eigcond for each of the matrices in part (b). Do the results confirm your conclusions of part (c)?

10.16 a. Let x = [
1 3 5 7 9 11 13 15

]
and execute

A = gallery(’sampling’, x)

Is A ill-conditioned?
b. Execute the following code:

>> E = 0.0001*rand(8);
>> B = A+E;

>> eig(A)
>> eig(B)

c. What do you conclude from the code? Justify your answer using eigcond introduced in Problem 10.15.
10.17 Let A = gallery(3).

a. Is A ill-conditioned?
b. Find the eigenvalues of A. Perturb A by a random matrix E whose values do not exceed 10−5. Does it appear the

eigenvalues of A are ill-conditioned?
c. Find eigenvectors for A using the command [V E] = eig(A). Perturb the elements of A by 0.0001*rand(3,3)
and compute the eigenvectors. What conclusion can you make?

10.18 Let A = gallery(5). Answer questions (a)-(c) in Problem 10.17 for this matrix.
10.19 Amagic square of order n is an n×nmatrix with entries 1 . . . n2, such that the n numbers in all rows, all columns, and

both diagonals sum to the same constant. MATLABwill create a magic square with the command A = magic(n).
a. What is the largest eigenvalue of magic(n) for n = 5, 8, 15? In general, what is the largest eigenvalue of a
magic square of order n? Prove it. Hint: Look at the Perron-Frobenius theorem, Theorem 5.6 in this book.

b. What is the largest singular value of magic(n) for n = 5, 8, 15? In general, what is the largest singular value of
a magic square of order n?

10.20 The symmetric Pei matrix is defined by
alpha*eye(n) + ones(n)

Enter the anonymous function
p = @(alpha,n) alpha*eye(n) + ones(n);

of two variables that creates a Pei matrix.
Fix n= 25, and draw a graph of alpha = 0.5:-.01:.01 vs. cond(p(alpha(i),25)). What do you

conclude?



Conditioning of Problems and Stability of Algorithms Chapter| 10 201

10.21 The Wilkinson bidiagonal matrix has the general form

A =

⎡⎢⎢⎢⎢⎢⎣
n n
n− 1 n

. . .
. . .
2 n

1

⎤⎥⎥⎥⎥⎥⎦ ,

and is often used for testing purposes.
a. Create an anonymous function using diag that builds an n× nWilkinson bidiagonal matrix.
b. Graph the condition number of the Wilkinson bidiagonal matrices of orders 1 through 15. What are your

conclusions?
c. Eigenvalues are tricky to compute accurately. The 20 × 20 Wilkinson-bidiagonal matrix, A, has eigenvalues

λ = 20, 19, . . . , 1. This matrix illustrates that even though the eigenvalues of a matrix are not equal or even close
to each other, an eigenvalue problem can be ill-conditioned. Compute the eigenvalues of A, perturb A (20, 1) by
10−10 and compute the eigenvalues. Comment on the results.

10.22 The symmetric rosser matrix is particularly nasty, intentionally. Investigate the conditioning of the matrix and its
eigenvalues. If the eigenvalues appear well-conditioned, run an experiment that demonstrates this. Generate the
Rosser matrix with the command

A = rosser;

10.23 The n× n Hilbert matrices have elements hij = 1/(i+ j− 1) and are notoriously ill-conditioned.
a. Create A = hilb(8). Perturb A(1,8) by 10−5, and call the perturbed matrix B. Let b = rand(8,1). Compute

x = A\b, y = B\b, and follow by computing ‖x− y‖ and ‖x− y‖/‖x‖. Is ill-conditioning evident?
b. Compute the condition number of hilb(8) using the MATLAB command cond(A) and then use it to compute

the theoretical upper bound given in Theorem 10.4, part (2). Do your calculations verify the inequality?
10.24 Let x be a known value, such as ones(n,1) and compute b = Ax. Theoretically, x = A\b should be the known

solution x. However, due to the nature of floating point computation the relative error ‖x− x‖/‖x‖ is not expected to
be 0, but it should be small if A is not ill-conditioned. The idea for this problem is to observe ill-conditioning using
the matrix A = gallery(’lotkin’, n). Perform the steps presented in the following algorithm and comment on
the results. The notation 〈. . .〉 in a print statement indicates the value to print. For instance,

print
(′The condition number of A is′, 〈condition numberwith 8 significant digits〉)

procedure ERRORTEST

for n = 2:11 do
A = gallery(’lotkin’,n)

x = [
1 1 . . . 1 1

]T
b = Ax

x̂ = A\b
Print"Theconditionnumberof A is 〈η (A) with15 significantdigits〉"
Print"Therelativeerroris

〈 ‖x−x‖
‖x‖ with15 significantdigits

〉
"

end for
end procedure

10.25 The goal of this exercise is to observe the behavior of κ (Hn) as n goes to∞, where Hn is the n× n Hilbert matrix,
defined by (Hn)ij = 1/(i+ j− 1). In MATLAB, generate Hn using the command H = hilb(n). Let n vary from
2 to 500, and make a plot of n versus log10 (η (Hn)). Draw conclusions about the experimental behavior. Hint: Use
the MATLAB plotting function semilogy.

Problems 10.26 and 10.27 deal with non-square systems.
The technique of linear least-squares solves a system Ax = b by minimizing the residual ‖b− Ax‖2. Chapter 12

introduces the topic and Chapter 16 discusses it in depth. Least-squares problems usually involve dealing with m × n
systems, m �= n. Since solutions are obtained using floating point arithmetic, they are subject to errors, and it certainly is
reasonable to ask the questions

“Is there a definition of ill-conditioning for non-square systems?”.

“Can perturbations in entries of an m× n system, m �= n cause large fluctuations in the solution?”



202 Numerical Linear Algebra with Applications

The answer to both of these questions is “yes.” Define the condition number of an m × n matrix as σ1/σk, where σ1 is
the largest and σk the smallest nonzero singular values of A. Of course if A is square, this is η (A). As we have noted, never
compute singular values by finding the eigenvalues of ATA. The MATLAB command

S = svd(A)

returns a vector S containing the singular values of A:

σ1 = S (1) ≥ σ2 = S (2) ≥ . . . σk = S (k) .

10.26 For each matrix, use svd to compute the condition number and verify your result by using MATLAB’s cond. Note
that you must find the smallest nonzero singular value, since is possible that there will be zero singular values.
Explain the differences between κ (A) , κ (B) and κ (C).

a. A =

⎡⎢⎢⎢⎢⎣
1 3 −1
8 −4 12
1 9 0
−1 7 −8
5 6 1

⎤⎥⎥⎥⎥⎦

b. B =

⎡⎢⎢⎣
1 9 0 1 −1 15 7
1 −5 3 −2 1 −18 0
27 1 7 −1 1 9 −2
1 5 −6 20 33 55 98

⎤⎥⎥⎦

c. C =

⎡⎢⎢⎢⎢⎣
1 2 8 19
5 −1 29 62
−1 3 −3 −4
3 5 23 54
1 6 12 31

⎤⎥⎥⎥⎥⎦
10.27 The QR decomposition of an m× n matrix is a decomposition of a matrix A into a product A = QR, where Q is an

orthogonalmatrix and R is an upper-triangularmatrix.We will extensively discuss this decomposition in Chapters 14
and 17. There are two types of QR decomposition, the full and the reduced:

Full Am×n = Qm×mRm×n
Reduced Am×n = Qm×nRn×n

For m > n, the reduced decomposition saves space. To obtain a reduced QR decomposition, use the MATLAB
function qr as follows:

[Q R] = qr(A,0).

For reasons we will explain in Chapter 16, if m > n, and rank (A) = n, one method of solving a least-squares
problem is to follow these steps:

procedure SOLVELQ(A,b)

Compute the reduced QR decomposition of A

c = QTb

Solve the upper-triangular system Rx = c.

return x

end procedure

a. Implement solveq as a MATLAB function. Use backsolve from Chapter 9 to solve the upper-triangular system
Rx = c.

b. Solve the system

⎡⎢⎢⎢⎢⎣
2 7 1
−1 6 2
0 1 8
5 9 10
4 3 5

⎤⎥⎥⎥⎥⎦
⎡⎣ x1
x2
x3

⎤⎦ =
⎡⎢⎢⎢⎢⎣

3
8
0
−1
5

⎤⎥⎥⎥⎥⎦.



Conditioning of Problems and Stability of Algorithms Chapter| 10 203

10.28 A Toeplitz matrix is a matrix whose entries are constant along each diagonal. The MATLAB command

T = toeplitz(c,r)

returns a Toeplitz matrix T having c as its first column and r as its first row. If the first elements of c and r are
different, a message is printed and the column element is used.
a. Build the 100× 100 pentadiagonal matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −4 1 0 . . . 0
−4 6 −4 1 . . . 0

1 −4 6 −4 . . .
...

0 1 −4 . . .
. . . 1

...
...

. . . −4 6 −4
0 0 . . . 1 −4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

b. Verify that the matrix is ill-conditioned.
c. Run the following experiment to observe the behavior of the eigenvalues of A as it is slightly perturbed. The
MATLAB program computes the eigenvalues of a randomly perturbed A and outputs the norm of the difference
between the eigenvalues of A and those of the perturbed matrix. The perturbations to the elements of A are in the
range 0 < aij < 10−8.
E1 = eig(T);

E1 = sort(E1);

for i = 1:3

deltaT = 1.0e-8*rand(100,100);

B = T + deltaT;

E2 = eig(B);

E2 = sort(E2);

norm(E1-E2)

end

d. Are the eigenvalues of A ill-conditioned? For more information about this problem, see Ref. [29].
10.29 Use MATLAB’s function condest to estimate the condition number of the 12 × 12 Hilbert matrix. Find the true

1-norm condition number and compare the results. Explain the warning message you receive when computing the
true 1-norm condition number.

10.30 The MATLAB statement A = rand(1000,1000) creates a 1000 × 1000 random matrix. In order to observe the
computational time difference between finding the condition number of A and estimating the condition number,
execute

>> A = rand(1000,1000);
>> tic;cond(A);toc
>> tic;condest(A);toc

Comment on the results.

10.31 The n× (m+ 1) Vandermonde matrix V =

⎡⎢⎢⎢⎣
1 t1 . . . tm1
1 t2 . . . tm2
...

...
. . .

...
1 tn . . . tmn

⎤⎥⎥⎥⎦ is created from the vector t = [
t1 t2 . . . tn−1 tn

]T
and integer m. It has uses in polynomial approximation and other areas, and we will formally introduce it in
Chapter 12. The function vandermonde(t,m) in the software distribution constructs the Vandermonde matrix,
which is square if m = n− 1.
a. Construct the 11× 11 Vandermonde matrix using t = 1.0 : 0.1 : 2.0. Compute cond(A) and condest(A).
b. Construct the 21× 21 Vandermonde matrix using t = 1.0 : .05 : 2.0. Compute cond(A) and condest(A).
c. Are these matrices ill-conditioned? Is it safe to use these matrices in an application involving Gaussian
elimination?



204 Numerical Linear Algebra with Applications

10.32 This problem deals with the instability of polynomial root finding. First, note how MATLAB handles polynomial
operations by doing some simple computations. A polynomial, p, in MATLAB is an n+1-dimensional vector, where
p (1) is the coefficient of xn, p (2) is the coefficient of xn−2 , . . ., p (n+ 1) is the coefficient of x0.
a. Show how to represent the polynomial p (x) = x4 − x3 + x − 1 in MATLAB.
b. To multiply two polynomials, use the MATLAB function conv. For instance, to compute the coefficients of(

x2 + 1
)
(x+ 3), proceed as follows:

>> factor1 = [1 0 1];

>> factor2 = [1 3];

>> p = conv(factor1,factor2)

p =

1 3 1 3

% analytical result is x^3 + 3x^2 + x + 3

Using conv find the coefficients of (x− 1)4 (x − 2) (x+ 1) and assign them to the vector p.
c. Using the MATLAB function roots, compute the roots of (x− 1)4 (x− 2) (x+ 1). Explain the results.

Let ai be the coefficient of xi in polynomial p (x) and r be a simple root of p. Suppose roundoff error perturbs ai by an
amount δai, so the root now becomes r+ δr. Does a small δai result in a small δr? We can answer that question if we have
a formula for the condition number,

Cai (r), for the computation. By applying Theorem 2.1 in Ref. [30],

Cai (r) =
∣∣airi−1∣∣
|p′ (r)| .

Use this result in Problems 10.33 and 10.34.

10.33 If p is the MATLAB representation of a polynomial, the function polyder computes the derivative of p.
a. Using polyder, compute the derivative of the function in part (b) of Problem 10.32.
b. Compute the condition number for the roots x2 = 2 and x3 = −1 of the polynomial in part (b) of Problem 10.32

at the coefficient of x5. Do your results confirm your explanation in part (c) of Problem 10.32?
10.34 The function wilkpoly in the software distribution computes the MATLAB representation of the Wilkinson

polynomial

p (x) = (x− 1) (x− 2) (x− 3) . . . (x − 19) (x− 20) .

a. Compute the roots of the polynomial after a perturbation of −2−23 in the coefficient of x19.
b. Using the definition of Cai (xk), compute the sensitivity of each root xk = k, 1 ≤ k ≤ 20 relative to a change

in the coefficient of x19. Use the function polyder discussed in Problem 10.33. Do your results agree with the
errors in the roots you computed in part (a)?



Chapter 11

Gaussian Elimination and the LU
Decomposition

You should be familiar with

● Matrix arithmetic
● Elementary row operations
● Gaussian elimination using an augmented matrix
● Upper- and lower-triangular matrices

In Chapter 2, we presented the process of solving a nonsingular linear system Ax = b using Gaussian elimination. We
formed the augmented matrix A |b and applied the elementary row operations

1. Multiplying a row by a scalar.
2. Subtracting a multiple of one row from another
3. Exchanging two rows

to reduce A to upper-triangular form. Following this step, back substitution computed the solution. In many applications
where linear systems appear, one needs to solve Ax = b for many different vectors b. For instance, suppose a truss must be
analyzed under several different loads. The matrix remains the same, but the right-hand side changes with each new load.
Most of the work in Gaussian elimination is applying row operations to arrive at the upper-triangular matrix. If we need to
solve several different systems with the same A, then we would like to avoid repeating the steps of Gaussian elimination on
A for every different b. This can be accomplished by the LU decomposition, which in effect records the steps of Gaussian
elimination.

Since Gaussian elimination is used so often, the algorithm must be stable. Unfortunately, this is not true, and we must
add an operation termed partial pivoting. There are very rare cases when even the enhanced algorithm is still not stable. The
solution to a linear system is actually much more difficult and interesting than it appeared to be in earlier chapters.

While the results of Gaussian elimination are normally very good, it is possible that a simple technique termed iterative
improvement can help produce even better results.

11.1 LU DECOMPOSITION

The main idea of the LU decomposition is to record the steps used in Gaussian elimination with A in the places that would
normally become zero. Consider the matrix:

A =
⎡⎣ 1 −1 3
2 −3 1
3 2 1

⎤⎦ .

The first step of Gaussian elimination is to use a11 = 1 as the pivot and subtract 2 times the first row from the second and 3
times the first row from the third. Record these actions by placing the multipliers 2 and 3 into the entries they made zero. In
order to make it clear that we are recording multipliers and not elements of A, put the entries in parentheses. This leads to:⎡⎣ 1 −1 3

(2) −1 −5
(3) 5 −8

⎤⎦ .

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00011-9
Copyright © 2015 Elsevier Inc. All rights reserved. 205



206 Numerical Linear Algebra with Applications

FIGURE 11.1 LU decomposition of a matrix.

To zero-out the element in the third row, second column, the pivot is −1, and we need to subtract −5 times the second
row from the third row. Record the−5 in the spot made zero.⎡⎣ 1 −1 3

(2) −1 −5
(3) (−5) −33

⎤⎦ .

Let U be the upper-triangular matrix produced by Gaussian elimination and L be the lower-triangular matrix with the
multipliers and ones on the diagonal, i.e.,

L =
⎡⎣ 1 0 0
2 1 0
3 −5 1

⎤⎦ , U =
⎡⎣ 1 −1 3
0 −1 −5
0 0 −33

⎤⎦ .

Now form the product of L and U:

LU =
⎡⎣ 1 0 0
2 1 0
3 −5 1

⎤⎦⎡⎣ 1 −1 3
0 −1 −5
0 0 −33

⎤⎦ = A.

Thus, we see that A is the product of the lower triangular L and the upper triangular U. When a matrix can be written as a
product of simpler matrices, we call that a decomposition and this one we call the LU decomposition (Figure 11.1). We will
explain why this works in Section 11.4.

Remark 11.1. As the elimination process continues, the pivots are on the diagonal of U.

11.2 USING LU TO SOLVE EQUATIONS

Factor A into the product of L and U:

Ax = b,

(LU) x = b,

L (Ux) = b.

First solve Ly = b. This finds y = Ux. Now solve Ux = y to find x. Each of these solution steps is simple. First, the system
Ly is lower triangular. ⎡⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
l21 1 . . . 0
...

... . . . 0
...

... 1 0
ln1 ln2 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
y1
y2
...

yn−1
yn

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

b1
b2
...

bn−1
bn

⎤⎥⎥⎥⎥⎥⎦ .

Solve for y using forward substitution.

yi = 1

lii

⎛⎝bi − i−1∑
j=1

lijyj

⎞⎠ .



Gaussian Elimination and the LU Decomposition Chapter| 11 207

Next, the system Ux = y is upper triangular.⎡⎢⎢⎢⎢⎢⎣
u11 u12 . . . u1,n−1 u1n
0 u22 . . . u2,n−1 u2n
...

...
. . .

...
...

0 0 · · · un−1,n−1 un−1,n
0 0 . . . 0 unn

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x1
x2
...

xn−1
xn

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

y1
y2
...

yn−1
yn

⎤⎥⎥⎥⎥⎥⎦ .

Solve for x using back substitution.

xi = 1

uii

⎛⎝yi − n∑
j=i+1

uijxj

⎞⎠ .

Example 11.1. Let A be the matrix A =
⎡⎣ 1 −1 3
2 −3 1
3 2 1

⎤⎦ of Section 11.1, with b =
⎡⎣ 1
3
1

⎤⎦. We determined that A = LU,

where

L =
⎡⎣ 1 0 0
2 1 0
3 −5 1

⎤⎦ , U =
⎡⎣ 1 −1 3
0 −1 −5
0 0 −33

⎤⎦ .

Execute forward substitution to solve Ly = b:

(1) y1 = 1, y1 = 1,

2 (1)+ (1) y2 = 3, y2 = 1,

(3) (1)− 5 (1)+ (1) y3 = 1, y3 = 3.

Execute back substitution to solve Ux = y:

−33x3 = 3, x3 = −1/11,
−x2 − 5 (−1/11) = 1, x2 = −6/11,

x1 − (−6/11)+ 3 (−1/11) = 1, x1 = 8/11.

Solution: x1 = 8/11, x2 = −6/11, x3 = −1/11 �

Example 11.2. Solve

⎡⎣ 1 2 −1
2 3 2
5 1 4

⎤⎦ x =
⎡⎣ 1
−1
2

⎤⎦. First factor A into the product LU.

⎡⎣ 1 2 −1
2 3 2
5 1 4

⎤⎦−−−−−−−−−−−−→R2 = R2 − (2)R1
R3 = R3 − (5)R1

⎡⎣ 1 2 −1
(2) −1 4
(5) −9 9

⎤⎦−−−−−−−−−−−−→R3 = R3 − (9)R2

⎡⎣ 1 2 −1
(2) −1 4
(5) (9) −27

⎤⎦
L =

⎡⎣ 1 0 0
2 1 0
5 9 1

⎤⎦ , U =
⎡⎣ 1 2 −1
0 −1 4
0 0 −27

⎤⎦
Forward substitution:

y1 = 1,

y2 = −1− 2 (1) = −3,
y3 = 2− 5 (1)− 9 (−3) = 24.

Back substitution:

x3 = −24/27 = −8/9,
x2 = 3− 4 (8/9) = −5/9,
x1 = 1− 2 (−5/9)− 8/9 = 11/9. �



208 Numerical Linear Algebra with Applications

11.3 ELEMENTARY ROW MATRICES

Sections 11.1 and 11.2 describe the LU decomposition using examples. If a mathematical analysis of why the LU
decomposition works is not required, the reader can skip this section and most of Section 11.4. However, it is recommended
that Example 11.8 and Sections 11.4.1–11.4.3 be read.

The elementary row matrices are an important class of nonsingular matrices. Multiplication by one of these matrices
performs an elementary row operation, and these matrices help us understand why the LU decomposition works.

Definition 11.1. To each of the three elementary row operations, there corresponds an elementary row matrix Eij, Ei,
and Eij (t):

a. Eij, i �= j, is obtained from the identity matrix I by exchanging rows i and j.
b. Ei (t) , t �= 0 is obtained by multiplying the ith row of I by t.
c. Eij (t) i �= j, is obtained from I by subtracting t times the jth row of I from the ith row of I.

Example 11.3. E23 =
⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ , E2 (−1) =
⎡⎣ 1 0 0
0 −1 0
0 0 1

⎤⎦ , E23 (−2) =
⎡⎣ 1 0 0
0 1 2
0 0 1

⎤⎦ �

The elementary row matrices have the following property, and it is this property that will allow us to explain why the
LU decomposition works.

Theorem 11.1. If an n× n matrix is premultiplied by an n× n elementary row matrix, the resulting n × n matrix is the
one obtained by performing the corresponding elementary row-operation on A.

Proof. We will prove that forming C = EijA is equivalent to interchanging rows i and j of A. The remaining properties of
the elementary row matrices is left to the exercises.

By the definition of matrix multiplication, row i of C has components

cip =
n∑

k=1
eikakp, 1 ≤ p ≤ n.

Among the elements {ei1, ei2, . . . , ein} only eij = 1 is nonzero. Thus, cip = eijajp = ajp, 1 ≤ p ≤ n, and elements of row i
are those of row j. Similarly, the elements of row j are those of row i, and the other rows are unaffected.

Example 11.4.

E23

⎡⎣ a b
c d
e f

⎤⎦ =
⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦⎡⎣ a b
c d
e f

⎤⎦ =
⎡⎣ a b
e f
c d

⎤⎦ . �

Theorem 11.1 implies that premultiplying a matrix by a sequence of elementary row matrices gives the same result as
performing the sequence of elementary row operations to A.

Example 11.5. Let A =

⎡⎢⎢⎣
1 2 8 2
3 9 −1 2
−1 2 6 3
1 5 3 2

⎤⎥⎥⎦. Multiply A first by E24 and then by E43 (−3).

E43 (−3)E24A =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 3 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

1 2 8 2
3 9 −1 2
−1 2 6 3
1 5 3 2

⎤⎥⎥⎦

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 3 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 2 8 2
1 5 3 2
−1 2 6 3
3 9 −1 2

⎤⎥⎥⎦



Gaussian Elimination and the LU Decomposition Chapter| 11 209

⎡⎢⎢⎣
1 2 8 2
1 5 3 2
−1 2 6 3
0 15 17 11

⎤⎥⎥⎦ .

Verify that if you perform elementary row operations by interchanging rows 2 and 4 and then subtracting −3 times row 3
from row 4 you obtain the same result. �

Theorem 11.2. Elementary row matrices are nonsingular; in fact

a. E−1ij = Eij
b. (Ei (t))−1 = Ei

(
t−1

)
, t �= 0

c.
(
Eij (t)

)−1 = Eij (−t)

Proof. EijEij = I. Swapping rows i and j of I and then swapping again gives I.
Ei (t)Ei (1/t) = I, if t �= 0.
Eij (−t)Eij (t) = I. Multiply row j by t and subtract from row i, then reverse the operation by multiplying row j by −t and
subtracting from row i.

Example 11.6. Find the 3 × 3 matrix A = E3 (5)E23 (2)E12 and then find A−1.

A = E3 (5)E23 (2)E12

=
⎡⎣ 1 0 0
0 1 0
0 0 5

⎤⎦⎡⎣ 1 0 0
0 1 −2
0 0 1

⎤⎦⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦
=

⎡⎣ 0 1 0
1 0 −2
0 0 5

⎤⎦ ,

A−1 = (E3 (5)E23 (2)E12)−1 = E−112 (E23 (2))−1 (E3 (5))−1

=
⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 2
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 0 1

5

⎤⎦
=
⎡⎣ 0 1 2

5
1 0 0
0 0 1

5

⎤⎦ . �

If B is row equivalent to A, it seems reasonable that we can invert row operations and row reduce B to A.

Theorem 11.3. If B is row-equivalent to A, then A is row equivalent to B.

Proof. If B = EkEk−1 . . .E2E1A, then

A = (EkEk−1 . . .E2E1)−1 B.

Since

E = EkEk−1 . . .E2E1

is nonsingular by Theorem 11.2, A = E−1B. Now, E−1 = E−11 E−12 . . .E−1k−1E
−1
k is a product of elementary row matrices,

so forming E−1B is equivalent to performing elementary row operations on B to obtain A.

Theorems 11.4 and 11.5 tell us how elementary row matrices and nonsingular matrices are related.

Theorem 11.4. Let A be a nonsingular n× n matrix. Then

a. A is row-equivalent to I.
b. A is a product of elementary row matrices.



210 Numerical Linear Algebra with Applications

Proof. A sequence of elementary row operations will reduce A to I; otherwise, the system Ax = 0 would have a non-trivial
solution.

AssumeEk, Ek−1, . . .E2, E1 is the sequence of elementary rowoperations that reducesA to I so thatEkEk−1 . . .E2E1A =
I. It follows that A = E−11 E−12 · · · E−1k−1E−1k is a product of elementary row matrices.

Theorem 11.5. Let A be an n× n matrix and suppose that A is row-equivalent to I. Then A is nonsingular, and A−1 can
be found by performing the same sequence of elementary row operations on I as were used to convert A to I.

Proof. Suppose that EkEk−1 . . .E2E1A = I. Thus BA = I, where B = EkEk−1 . . .E2E1 is nonsingular, and A−1 = B =
(EkEk−1 . . .E2E1) I, which shows that A−1 is obtained by performing the same sequence of elementary row operations on
I that were used to transform A to I.

Remark 11.2. Theorems 11.4 and 11.5 together imply that A is nonsingular if and only if it is row equivalent to I. This
means that a singular matrix is row-equivalent to a matrix that has a zero row.

Example 11.7. Theorem 11.5 justifies the method we used in Chapter 2 for the computation of A−1. If A =
[

1 2
−1 3

]
,

find A−1 and express A as a product of elementary row matrices.
Attach I to A as a series of augmented columns, and apply a sequence of elementary row operations to A that reduce it to I.
The attached matrix is A−1.[

1 2
−1 3

]∣∣∣∣ 1 0
0 1

]−−−−−−−−−−−−−→
R2 = R2 − (−1)R1

[
1 2
0 5

]∣∣∣∣ 1 0
1 1

]−−−−−−−−−−→
R1 = R1 − 2

5
R2[

1 0
0 5

]∣∣∣∣ 3/5 −2/5
1 1

]−−−−−−→
R2 = 1

5
R2

[
1 0
0 1

]∣∣∣∣ 3/5 −2/5
1/5 1/5

]
A is row-equivalent to I, so A is nonsingular, and

A−1 =
[
3/5 −2/5
1/5 1/5

]
.

The sequence of elementary row matrices that correspond to the row reduction from A to A−1 is

E2

(
1

5

)
E12

(
2

5

)
E21 (−1) .

Thus,

A−1 = E2

(
1

5

)
E12

(
2

5

)
E21 (−1) ,

so

A = E21 (1)E12

(
−2

5

)
E2 (5) =

[
1 0
−1 1

][
1 2/5
0 1

][
1 0
0 5

]
=
[

1 2
−1 3

]
. �

11.4 DERIVATION OF THE LU DECOMPOSITION

We can use the elementary row matrices to explain the LU decomposition. For now we will assume there are no row
exchanges, but will add row exchanges later when we discuss Gaussian elimination with partial pivoting. We will also
assume no multiplication of a row by a scalar, so all we will use is the elementary row matrix Eij (t) that adds a multiple of
row j to row i.

As we perform row operations, matrix elements change, but we will not use a notation for it, such as aij and simply
maintain the notation aij. Let’s look at the row reduction to an upper-triangular matrix column by column. First, start with
column 1, multiply row 1 by a21/a11, and subtract from row 2. This eliminates the element in row 2, column 1:



Gaussian Elimination and the LU Decomposition Chapter| 11 211

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . . . . a1n
a21 a22 . . . . . . a2n

a31
...

. . .
...

...
...

...
...

. . .
...

an1 an2 . . . . . . ann

⎤⎥⎥⎥⎥⎥⎥⎦
−−−−−−−−−−−−−−−→
R2 = R2−

(
a21
a11

)
R1

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . . . . a1n
0 a22 . . . . . . a2n

a31
...

. . .
...

...
...

...
...

. . .
...

an1 an2 . . . . . . ann

⎤⎥⎥⎥⎥⎥⎥⎦ .

Recall that a11 is called the pivot element. Now, multiply row 1 by a31/a11 and subtract from row 3, eliminating the element
in row 3, column 1: ⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . . . . a1n
0 a22 . . . . . . a2n

a31
...

. . .
...

...
...

...
...

. . .
...

an1 an2 . . . . . . ann

⎤⎥⎥⎥⎥⎥⎥⎦
−−−−−−−−−−−−−−−→
R3 = R3−

(
a31
a11

)
R1

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . . . . a1n
0 a22 . . . . . . a2n

0
...

. . .
...

...
...

...
...

. . .
...

an1 an2 . . . . . . ann

⎤⎥⎥⎥⎥⎥⎥⎦ .

Continue in this way until subtracting the multiple an1/a11 of row 1 from row n. These actions correspond to multiplication
on the left by the series of elementary matrices

En1

(
an1
a11

)
. . .E31

(
a31
a11

)
E21

(
a21
a11

)
,

resulting in the row reduced matrix

En1

(
an1
a11

)
. . .E31

(
a31
a11

)
E21

(
a21
a11

)
A =

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . . . . a1n
0 a22 . . . . . . a2n

0 a32
. . .

...
...

...
...

...
. . .

...
0 an2 . . . . . . ann

⎤⎥⎥⎥⎥⎥⎥⎦ .

Continue this same process in column 2 with pivot element a22 to obtain[
En2

(
an2
a22

)
. . .E42

(
a42
a22

)
E32

(
a32
a22

)][
En1

(
an1
a11

)
. . .E31

(
a31
a11

)
E21

(
a21
a11

)]
A

=

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . . . . a1n
0 a22 . . . . . . a2n

0 0 a33
...

...
...

...
...

. . .
...

0 0 an3 . . . ann

⎤⎥⎥⎥⎥⎥⎥⎦ .

In general, elimination in column i corresponds to the elementary matrix product

Eni

(
ani
aii

)
. . .Ei+2,i

(
ai+2, i
aii

)
Ei+1,i

(
ai+1, i
aii

)
.

Putting this all together, we have

En,n−1
(

an,n−1
an−1, n−1

)
× · · · × Eni

(
ani
aii

)
. . .Ei+2,i

(
ai+2, i
aii

)
Ei+1,i

(
ai+1, i
aii

)
× · · · × En2

(
an2
a22

)
. . .E42

(
a42
a22

)
E32

(
a32
a22

)
×En1

(
an1
a11

)
. . .E31

(
a31
a11

)
E21

(
a21
a11

)
A = U.



212 Numerical Linear Algebra with Applications

We can simplify this expression by combining factors. Let Ei be the product of the elementary row matrices that perform
row elimination in column i:

Ei = Eni

(
ani
aii

)
. . .Ei+2,i

(
ai+2, i
aii

)
Ei+1,i

(
ai+1, i
aii

)
.

If A is a 3× 3 matrix ⎡⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦ ,

E1 = E31

(
a31
a11

)
E21

(
a21
a11

)

=
⎡⎢⎣ 1 0 0

0 1 0

−a31
a11

0 1

⎤⎥⎦
⎡⎢⎣ 1 0 0

−a21
a11

1 0

0 0 1

⎤⎥⎦ , (11.1)

=

⎡⎢⎢⎣
1 0 0

−a21
a11

1 0

−a31
a11

0 1

⎤⎥⎥⎦ .

In general,

Ei =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0

0 0
. . .

...
...

... · · · 0
0 0 0 . . . . . . 0

1 0 . . . . . . 0
...
... −ai+1, i

aii
1 . . . . . . 0

−ai+2, i
aii

0
. . . . . . 0

... . . . . . .
. . .

...

0 0 −ani
aii

0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.2)

We now have En−1En−2 . . .E2E1A = U, and

A = (En−1En−2 . . .E2E1)−1 U =
(
E−11 E−12 E−13 . . .E−1n−2E

−1
n−1

)
U.

In the case of a 3× 3 matrix, from Equation 11.1 we see that

E−11 =
[
E21

(
a21
a11

)]−1 [
E31

(
a31
a11

)]−1
= E21

(
−a21
a11

)
E31

(
−a31
a11

)
⎡⎢⎣ 1 0 0
a21
a11

1 0

0 0 1

⎤⎥⎦
⎡⎢⎣ 1 0 0

0 1 0
a31
a11

0 1

⎤⎥⎦

=

⎡⎢⎢⎢⎣
1 0 0
a21
a11

1 0

a31
a11

0 1

⎤⎥⎥⎥⎦



Gaussian Elimination and the LU Decomposition Chapter| 11 213

In general,

E−1i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0

0 0
. . .

...
...

... . . . 0
0 0 0 . . . . . . 0

1 0 . . . . . . 0
...
...

ai+1, i
aii

1 . . . . . . 0

ai+2, i
aii

0
. . . . . . 0

... . . . . . .
. . .

...

0 0
ani
aii

0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.3)

The product of the lower-triangular matrices L = E−11 E−12 E−13 . . .E−1n−2E
−1
n−1 in Equation 11.3 is a lower-triangular matrix.

From Equation 11.3, in the case of a 3× 3 matrix,

L = E−11 E−12

=

⎡⎢⎢⎣
1 0 0
a21
a11

1 0
a31
a11

0 1

⎤⎥⎥⎦
⎡⎢⎣ 1 0 0
0 1 0

0
a32
a22

1

⎤⎥⎦

=

⎡⎢⎢⎣
1 0 0
a21
a11

1 0
a31
a11

a32
a22

1

⎤⎥⎥⎦
For the n × n problem, L = E−11 E−12 E−13 . . .E−1n−2E

−1
n−1 is a lower-diagonal matrix with ones on the main diagonal. Below

each 1 are the multipliers used to perform row elimination. This is precisely what we described in Section 11.1, and we
have shown that if the pivot is never zero, we can factor A as A = LU.

Remark 11.3. For our decomposition algorithm to work, aii cannot equal 0. If during elimination aii = 0, requiring a row
exchange, the LU decomposition as we have developed fails.

Example 11.8. A =
⎡⎣ 2 1 1
2 1 3
4 −1 1

⎤⎦. Let’s carry out the LU decomposition.

⎡⎣ 2 1 1
2 1 3
4 −1 1

⎤⎦−−−−−−−−−−−−−→R2 = R2− (1)R1
R3 = R3− (2)R1

⎡⎣ 2 1 1
(1) 0 2
(2) −3 −1

⎤⎦
−−−−−→
R2↔ R3

⎡⎣ 2 1 1
(2) −3 −1
(1) 0 2

⎤⎦−−−−−−−−−−−→R3 = R3 − (0)R2

⎡⎣ 2 1 1
(2) −3 −1
(1) (0) 2

⎤⎦
L =

⎡⎣ 1 0 0
2 1 0
1 0 1

⎤⎦ , U =
⎡⎣ 2 1 1
0 −3 −1
0 0 2

⎤⎦
and

LU =
⎡⎣ 2 1 1
4 −1 1
2 1 3

⎤⎦ .



214 Numerical Linear Algebra with Applications

The result is the original matrix with rows two and three swapped. Somehow, we need to account for the fact that we
swapped rows two and three during row reduction. �

The process we have described results in A = LU. Perhaps we could have done the decomposition differently and arrived
at another L and U; in other words, how do we know that there are no other LU factorizations of an n× n matrix A?

Theorem 11.6. The LU decomposition of a nonsingular matrix A is unique.

Proof. Assume there are two factorizations L1U1 = L2U2 = A. We need to show that L1 = L2 and U1 = U2. Since
L1U1 = L2U2,

U1U
−1
2 = L−11 L2. (11.4)

In Equation 11.4,U1U
−1
2 is an upper-triangular matrix, and L−11 L2 is a lower-triangular matrix with 1s on its diagonal. Here

is what we must have:

U1U
−1
2 =

⎡⎢⎢⎢⎣
a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...
0 0 . . . ann

⎤⎥⎥⎥⎦ = L−11 L2 =

⎡⎢⎢⎢⎣
1 0 . . . 0
b21 1 . . . 0
...

...
. . .

...
bn1 bn2 . . . 1

⎤⎥⎥⎥⎦ .

The diagonals of both matrices must be equal, so aii = bii = 1. Since U1U
−1
2 is an upper-triangular matrix it must have 0s

below the diagonal, and since L−11 L2 is a lower-triangular matrix it must have 0s above the diagonal. Thus, both matrices
must be the identity, and U1U

−1
2 = I, so U1 = U2. Likewise, L1 = L2.

With the exception of forming L, the algorithm for the LU decomposition is a straightforward expression of what we did by
hand in Chapter 2. To maintain L, after performing a row elimination step, store the multiplier in the entry of A that becomes
zero. We can now describe the algorithm simply:

Beginning with row 1:

Multiply row 1 by
aj1
a11

and subtract from row j, 2 ≤ j ≤ n, in order to eliminate all the elements in
column 1 below a11. For each j, store

a1j
a11

in location (j, 1).
Multiply row 2 by

aj2
a22

and subtract from row j, 3 ≤ j ≤ n, in order to eliminate all the elements in

column 2 below a22. For each j, store
aj2
a22

in location (j, 2).

. . .

Multiply row n-1 by an, n−1
an−1, n−1 and subtract from row n, in order to eliminate the element in row n,

column n-1. Store an, n−1
an−1, n−1 in location (n, n− 1).

For the sake of clarity and brevity, we will begin using the colon notation in algorithms. It is the same format as the
corresponding notation in MATLAB.

11.4.1 Colon Notation

When our pseudocode deals with an individual element in row i, column j, of an m × n matrix A, we use the notation aij.
We adopt the MATLAB colon notation that allows us to access blocks of elements from matrices and perform operations.
The notation A(:, j) references column j of A:

A (:, j) =

⎡⎢⎢⎢⎢⎢⎣
a1j
a2j
...

am−1,j
amj

⎤⎥⎥⎥⎥⎥⎦ .



Gaussian Elimination and the LU Decomposition Chapter| 11 215

a11

a21

ak1

an1

a12

a22

ak2

an2

a1k

a2k

akk

ank

a1n

a2n

akn

ann

FIGURE 11.2 k × k submatrix.

For row i, the notation is A(i, :):

A (i, :) = [
ai1 ai2 . . . ai,n−1 ain

]
.

If A is an n× n matrix and we want to multiply row i by 3, use the following statement:

A (i, :) = 3 ∗ A(i, :).

If we need to multiply row i by 7 and subtract it from row j, we can write

A(j, :) = A (j, :)− 7 ∗ A(i, :).

The colon notation can reference both rows and columns. For instance, if A is an n× n matrix, A (1 : k, 1 : k) is the k × k
submatrix beginning in the upper left-hand corner of A (Figure 11.2).

The following statement replaces the upper k × k submatrix by the k× k matrix B:

A (1 : k, 1 : k) = B.

The next statement subtracts the elements in row i, columns i through n from the same portion of each row below row i:

A (i+ 1 : n, i : n) = A (i+ 1 : n, i : n)−
⎡⎢⎣ 1

...
1

⎤⎥⎦
(n−i)×1

A (i, i : n) .

For instance, if A =
⎡⎣ 1 2 5
8 3 7
1 1 4

⎤⎦ ,

A (2 : 3, 1 : 3) = A (2 : 3, 1 : 3)−
[
1
1

]
A (1, 1 : 3)

=
[
8 3 7
1 1 4

]
−
[
1
1

] [
1 2 5

]
=

[
8 3 7
1 1 4

]
−
[
1 2 5
1 2 5

]
=

[
7 1 2
0 −1 −1

]
,

and

A =
⎡⎣ 1 2 5
7 1 2
0 −1 −1

⎤⎦ .

Remark 11.4. Using the colon notation frees us to think at the vector and matrix level and concentrate on more important
computational issues.



216 Numerical Linear Algebra with Applications

11.4.2 The LU Decomposition Algorithm

Algorithm 11.1 describes the LU factorization, assuming the pivot element is nonzero. The algorithm makes use of the
colon notation and includes use of the functions triu and tril. A call to triu(A) returns the upper-triangular portion of
A, and tril(A,-1) returns the portion of A below the main diagonal.

Algorithm 11.1 LU Decomposition Without a Zero on the Diagonal

function LUGAUSS(A)

% Input: n× n matrix A.

% Output: lower-triangular matrix L and upper-triangular matrix U such that A = LU.

for i = 1:n-1 do
if aii = 0 then

print ’The algorithm has encountered a zero pivot.’

exit

end if
% Replace the elements in column i, rows i+1 to n by the multipliers

aji
aii

A (i+ 1 : n, i) = A (i+ 1 : n, i) /aii
% Modify the elements in rows i+1 to n, columns i+1 to n by subtracting

% the multiplier for the row times the elements in row i.

A (i+ 1 : n, i+ 1 : n) = A (i+ 1 : n, i+ 1 : n)− A (i+ 1 : n, i) A (i, i+ 1 : n)

end for
% Assign U the upper-triangular portion of A.

U = triu(A)

% Initialize L as the identity matrix.

L = I % Add into L the portion of A below the main diagonal.

L = L + tril(A,-1);

return
[
L, U

]
end function

NLALIB: The function lugauss implements Algorithm 11.1.

Example 11.9. In this example, we use the function lugauss to factor a 4× 4 matrix.

A =

1 -3 5 2

1 0 1 -1

6 1 -9 2

1 0 -6 3

>> [L, U] = lugauss(A)

L =

1 0 0 0

1 1 0 0

6 6.3333 1 0

1 1 0.5122 1

U =

1 -3 5 2

0 3 -4 -3

0 0 -13.667 9

0 0 0 -0.60976

>> L*U

ans =

1 -3 5 2

1 0 1 -1

6 1 -9 2

1 0 -6 3 �



Gaussian Elimination and the LU Decomposition Chapter| 11 217

11.4.3 LU Decomposition Flop Count

Gaussian elimination is a relatively slow algorithm. Developing a flop count will tell how much work is actually involved
in computing L and U. We will count first for i = 1, then i = 2, and so forth until i = n− 1 and form the sum of the counts.
The annotated Figure 11.3 will aid in understanding the computation.

Flop Count

i = 1:

The n − 1 quotients a21/a11, a31/a11, . . . , an1/a11 are the row multipliers. The elements at indices
(2, 1) , (3, 1) , . . . , (n, 1) are replaced by the multipliers, so row elimination operations occur in the (n− 1) ×
(n− 1) submatrix A (2 : n, 2 : n). There are (n− 1)2 elements that must be modified. To modify an element
requires a multiplication and a subtraction, or 2 flops. The total flops required for row elimination is 2 (n− 1)2 .
For i = 1, the flop count is (n− 1)+ 2 (n− 1)2.

i = 2:

The n−2 quotients a32/a22, a42/a22, . . . , an2/a22 are the row multipliers. There are (n− 2)2 elements that
must be modified in rows 3 through n, and the total flops required for the modification is 2 (n− 2)2 . For i = 2,
the flop count is (n− 2)+ 2 (n− 2)2.

· · ·
i = n− 1:

Compute 1 quotient an,n−1
an−1,n−1 and execute 1 multiplication and 1 subtraction, for a total of 1+ 2 (1) flops.

The total count is
n−1∑
i=1

(n− i)+
n−1∑
i=1

2 (n− i)2 =
n−1∑
i=1

i+ 2
n−1∑
i=1

i2. (11.5)

To evaluate Equation 11.5, we need two summation formulas:∑k
i=1 i = k(k+1)

2∑k
i=1 i2 = k(k+1)(2k+1)

6

By applying these formulas to Equation 11.5, we have

n−1∑
i=1

i+ 2
n−1∑
i=1

i2 = n (n− 1)
2

+ 2
(n− 1) n (2n− 1)

6
,

and after combining terms the flop count is

2

3
n3 − 1

2
n2 − 1

6
n. (11.6)

The dominant term in Equation 11.6 is 2
3n

3, so the flop count is 2
3n

3 +O
(
n2
)
, and LU decomposition is a cubic algorithm.

A good reason for computing L andU is that the cubic LU decomposition algorithm allows us to repeatedly solve Ax = b
for many b′s without having to recompute either L or U, as we will show in Section 11.6.

a11 a22

aii ain

a1n

ani

ai,i+1

ai+1,i

ai,i+2

n-i

n-i

0

0

0 *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

FIGURE 11.3 Gaussian elimination flop count.



218 Numerical Linear Algebra with Applications

11.5 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

Gaussian elimination can produce extremely bad results under certain circumstances; in fact, the results can be completely
wrong. Consider the matrix

A =
[
0.00001 3

2 1

]
,

and use three-digit arithmetic. There is only one step required to produce the LU decomposition.Use themultiplier 2
0.00001 =

2× 105. In exact arithmetic, the elimination step gives[
0.00001 1

1 1

]
→

[
0.00001 3

0 1− 3
(

2
0.00001

) ] = [
0.00001 3

0 −599999
]
,

and the LU decomposition is L =
[

1 0
200000 1

]
, U =

[
0.00001 3

0 −599999
]
.

In our three-digit arithmetic, the 1 is lost, and the result is

L =
[

1 0
200000 1

]
, U =

[
0.00001 3

0 −600000
]

Now compute LU to get [
0.00001 3

2 0

]
,

which is disastrously different from A! The problem arose when we divided by a small pivot element and obtained a large
multiplier. The large multiplier resulted in the addition of a very large number to a much smaller number. The result was
loss of any contribution from the small number. There is a good solution to this problem. When choosing the pivot element
on the diagonal at position aii, locate the element in column i at or below the diagonal that is largest in magnitude, say
aji, i ≤ j ≤ n. If j �= i, interchange row j with row i, and then the multipliers,

aji
aii
, satisfy

∣∣∣ ajiaii ∣∣∣ ≤ 1 , i+ 1 ≤ j ≤ n, and we
avoid multiplying a row by a large number and losing precision. We call this Gaussian elimination with partial pivoting
(GEPP). Apply this strategy to our matrix, rounding to three-digit precision.[

0.00001 3
2 1

]−−−−−−−→
R1 ←→ R2 =

[
2 1

0.00001 3

]−−−−−−−−−−−−−−−→
R2 = R2 − 0.00001

2
R1

[
2 1
0 3

]
We now have

L =
[

1 0
0.00001

2 1

]
, U =

[
2 1
0 3

]
, and

LU =
[

2 1
0.00001 3

]
.

Of course, this is not the original matrix A, but A with its two rows swapped (permuted). If we use GEPP, then an LU
decomposition for A consists of three matrices P, L, and U such that

PA = LU.

P is a permutation matrix, also called the pivot matrix. Start with P = I, and swap rows i and j of the permutation matrix
whenever rows i and j are swapped during GEPP. For instance,

P =
⎛⎝ 1 0 0
0 0 1
0 1 0

⎞⎠
would be the permutation matrix if the second and third rows of A are interchanged during pivoting.

Example 11.10. Factor the matrix A =
⎡⎣ 3 8 1
5 2 0
6 1 12

⎤⎦.



Gaussian Elimination and the LU Decomposition Chapter| 11 219

L =
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , P =
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , A =
⎡⎣ 3 8 1
5 2 0
6 1 12

⎤⎦ .

Pivot row = 1. Swap rows 1 and 3, and permute P. Do not interchange rows of L until arriving at the pivot in row 2, column
2 (Remark 11.5).

L =
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , P =
⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ , A =
⎡⎣ 6 1 12
5 2 0
3 8 1

⎤⎦ .

Apply the pivot element, and add multipliers to L.

L =
⎡⎣ 1 0 0
5/6 1 0
1/2 0 1

⎤⎦ , P =
⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ , A =
⎡⎣ 6 1 12
0 7/6 −10
0 15/2 −5

⎤⎦ .

Pivot row = 2. Swap rows 2 and 3. Permute P and L.

L =
⎡⎣ 1 0 0
1/2 1 0
5/6 0 1

⎤⎦ , P =
⎡⎣ 0 0 1
1 0 0
0 1 0

⎤⎦ , A =
⎡⎣ 6 1 12
0 15/2 −5
0 7/6 −10

⎤⎦ .

Apply the pivot element and update L.

L =
⎡⎣ 1 0 0
1/2 1 0
5/6 7/45 1

⎤⎦ , P =
⎡⎣ 0 0 1
1 0 0
0 1 0

⎤⎦ , A =
⎡⎣ 6 1 12
0 15/2 −5
0 0 −83/9

⎤⎦ .

The final results are

L =
⎡⎣ 1 0 0
1/2 1 0
5/6 7/45 1

⎤⎦ ,

U =
⎡⎣ 6 1 12
0 15/2 −5
0 0 −83/9

⎤⎦ ,

P =
⎡⎣ 0 0 1
1 0 0
0 1 0

⎤⎦ .

You should verify that PA = LU. �

Remark 11.5. Even if a row interchange occurs when dealing with column 1, do not interchange the corresponding rows
of L until moving to column 2. Think of it this way. The matrix A after a row swap defines the starting configuration. The
elements in the first column of L correspond to the multipliers after the row interchange involving pivot position (1, 1),
if any.

Summary
At step i of Gaussian elimination, the pivot element is aii. To eliminate each element aji, i+ 1 ≤ j ≤ n, multiply row i
by aji/aii and subtract from row j. These multipliers should not be large or precision can be lost. Find the largest of the
elements

{|aii| , ∣∣ai+1,i∣∣ , ∣∣ai+2,i∣∣ , . . . , |ani|}. If the row index of the largest absolute value is j �= i, exchange rows i and
j. Now all the multipliers aji/aii have absolute value less than or equal to 1.

11.5.1 Derivation of PA=LU

For a reader primarily interested in applications, this subsection may be skipped; however, it is important to read
Section 11.5.2.

For the explanation, we will assume that Pi is the permutationmatrix corresponding a possible interchange when dealing
with column i. The matrix Ei (Equation 11.2) is the product of the elementary row matrices that perform row elimination



220 Numerical Linear Algebra with Applications

in column i. In the sequence of steps that follow, “exchange rows” means multiply by a permutation matrix or the identity
if no row exchanges are required.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x . . . x x x
x x x . . . x x x
x x x . . . x x x
...
...
...
. . .

...
...
...

x x x . . . x x x
x x x . . . x x x
x x x . . . x x x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Exchange rows, then perform elimination in column 1.

i = 1 : E1P1A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x . . . x x x
0 x x . . . x x x
0 x x . . . x x x
...
...
...
. . .

...
...
...

0 x x . . . x x x
0 x x . . . x x x
0 x x . . . x x x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Beginning with the matrix after step 1, exchange rows, then perform elimination in column 2.

i = 2 : E2P2E1P1A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x . . . x x x
0 x x . . . x x x
0 0 x . . . x x x
...
...
...
. . .

...
...
...

0 0 x . . . x x x
0 0 x . . . x x x
0 0 x . . . x x x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Beginning with the matrix after step 2, exchange rows, then perform elimination in column 3.

i = 3 : E3P3E2P2E1P1A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x . . . x x x
0 x x . . . x x x
0 0 x . . . x x x
...
... 0

. . .
...
...
...

0 0
... . . . x x x

0 0 0 . . . x x x
0 0 0 . . . x x x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Beginning with the matrix after step n− 2, exchange rows, then eliminate the element in row n, column n− 1.

i = n− 1 : En−1Pn−1 . . .E3P3E2P2E1P1A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x . . . x x x
0 x x . . . x x x
0 0 x . . . x x x
...
... 0

. . .
...
...
...

0 0
... . . . x x x

0 0 0 . . . 0 x x
0 0 0 . . . 0 0 x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= U

The product En−1Pn−1 . . .E3P3E2P2E1P1 must be rewritten in order to isolate the permutation matrices in the order
Pn−1Pn−2 . . .P2P1. First, note that if Pi is a permutation matrix, then P2i = I, since PiPi permutes I and then permutes the
permutation back to I. Equivalently, P−1i = Pi. Let’s look at a 3× 3 example:

U = E2P2E1P1A = E2
(
P2E1P

−1
2

)
(P2P1)A.



Gaussian Elimination and the LU Decomposition Chapter| 11 221

P2P1 is the product of permutation matrices, and so is a permutation matrix. Now, E2 is an elementary matrix obtained
by subtracting a multiple of row 2(

[
0 1 0

]
) from row 3 (

[
0 0 1

]
) of I, and so it is a lower-triangular matrix. The

factor P2E1P
−1
2 is interesting. P2E1 permutes rows of E1, and E1 is a lower-triangular matrix. Multiplying on the right

by a permutation matrix exchanges columns (Problem 11.5). Thus, P2E1P
−1
2 is a lower-triangular matrix, and is E1 with

its subdiagonal elements permuted. The product of lower-triangular matrices is lower triangular, and LPA = U, where
L = E2

(
P2E1P

−1
2

)
is a lower-triangular matrix. Since it is built from permutations of elementary matrices, it is invertible,

and PA = (
L
)−1

U = LU, where L = (
L
)−1

. The inverse of a lower-triangular matrix is lower triangular, so L is lower
triangular. As was the case without pivoting, L has ones on its diagonal.

Now consider a 4× 4 example:

U = E3P3E2P2E1P1 = E3
(
P3E2P

−1
3

)(
P3P2E1P

−1
2 P−13

)
(P3P2P1)A.

Each of {E1, E2, E3} is a lower-triangular matrix, and the permutation matrices are arranged such that each factor remains
a lower-triangular matrix.

This manipulation can be carried out for any n×nmatrix. Each factor before the final (Pn−1Pn−2 . . .P2P1) is an invertible
lower-triangular matrix, say T̂i, so we have

U = T̂n−1T̂n−2 . . . T̂2T̂1 (Pn−1Pn−2 . . .P2P1)A,

and

(Pn−1Pn−2 . . .P2P1)A =
(
T̂n−1T̂n−2 . . . T̂2T̂1

)−1
U,

or PA = LU.

Example 11.11. Let A =

⎡⎢⎢⎣
−1 −1 0 1
−1 1 1 0
1 1 1 1
2 0 1 0

⎤⎥⎥⎦. This example illustrates the process just described that derives GEPP.

Start: L =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , P =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
i = 1: Exchange rows 1 and 4. Eliminate entries at indices (2, 1)− (4, 1):

E1 = E41
(
− 1

2

)
E31

(
1
2

)
E21

(
− 1

2

)
=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0.5 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
−0.5 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0.5 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

1 0 0 0
0.5 1 0 0
−0.5 0 1 0
0.5 0 0 1

⎤⎥⎥⎦

P1 =

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤⎥⎥⎦

E1P1A =

⎡⎢⎢⎣
2 0 1 0
0 1 1.5 0
0 1 0.5 1
0 −1 0.5 1

⎤⎥⎥⎦



222 Numerical Linear Algebra with Applications

i = 2: A row exchange is not necessary. Eliminate the entries at indices (3, 2) and (4, 2).

E2 = E42 (−1)E32 (1) =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 −1 1 0
0 1 0 1

⎤⎥⎥⎦

P2 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

E2P2E1P1A =

⎡⎢⎢⎣
2 0 1 0
0 1 1.5 0
0 0 −1 1
0 0 2 1

⎤⎥⎥⎦
i = 3: Interchange rows 3 and 4. Eliminate the entry at (4, 3).

E3 = E43
(
− 1

2

)
=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0.5 1

⎤⎥⎥⎦

P3 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦

E3P3E2P2E1P1A =

⎡⎢⎢⎣
2 0 1 0
0 1 1.5 0
0 0 2 1
0 0 0 1.5

⎤⎥⎥⎦ = U

Form

E3 (P3E2P3) (P3P2E1P2P3) (P3P2P1)A

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0.5 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 1 1 0
0 −1 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
.5 1 0 0
.5 0 1 0
−.5 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
−1 −1 0 1
−1 1 1 0
1 1 1 1
2 0 1 0

⎤⎥⎥⎦ = U

P =

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎤⎥⎥⎦ , L =

⎛⎜⎜⎝
⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0.5 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 1 1 0
0 −1 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0.5 1 0 0
0.5 0 1 0
−0.5 0 0 1

⎤⎥⎥⎦
⎞⎟⎟⎠
−1

=

⎡⎢⎢⎣
1 0 0 0
−0.5 1 0 0
−0.5 −1 1 0
0.5 1 −0.5 1

⎤⎥⎥⎦

Now,

PA =

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
−1 −1 0 1
−1 1 1 0
1 1 1 1
2 0 1 0

⎤⎥⎥⎦ =
⎡⎢⎢⎣

2 0 1 0
−1 1 1 0
−1 −1 0 1
1 1 1 1

⎤⎥⎥⎦

LU =

⎡⎢⎢⎣
1 0 0 0
−0.5 1 0 0
−0.5 −1 1 0
0.5 1 −0.5 1

⎤⎥⎥⎦
⎡⎢⎢⎣
2 0 1 0
0 1 1.5 0
0 0 2 1
0 0 0 1.5

⎤⎥⎥⎦ =
⎡⎢⎢⎣

2 0 1 0
−1 1 1 0
−1 −1 0 1
1 1 1 1

⎤⎥⎥⎦ �



Gaussian Elimination and the LU Decomposition Chapter| 11 223

11.5.2 Algorithm for Gaussian Elimination with Partial Pivoting

Algorithm 11.2 specifies GEPP, making use of submatrix operations.

Algorithm 11.2 Gaussian Elimination with Partial Pivoting

function LUDECOMP(A)

% LU decomposition using Gaussian elimination with partial pivoting.

% [P U P interchanges] = ludecomp(A) factors a square

% matrix so that PA = LU. U is an upper-triangular matrix,

% L is a lower-triangular matrix, and P is a permutation

% matrix that reflects the row exchanges required by

% partial pivoting used to reduce round-off error.

% In the event that is useful, interchanges is the number

% of row interchanges required.

L = I

P = I

for i = 1:n-1 do
k = index of largest matrix entry in column i, rows i through n

pivotindex= i+ k− 1

if pivotindex �= i then
% Exchange rows i and k, ignoring columns 1 through i-1 in each row.

tmp = A(i,i:n)

A(i,i:n) = A(pivotindex,i:n)

A(pivotindex,i:n) = tmp

% Swap whole rows in P.

tmp = P(i,1:n)

P(i,1:n) = A(pivotindex,1:n)

P(pivotindex,1:n) = tmp

% Swap rows of L also, but only in columns 1 through i-1.

tmp = L(i,1:i-1)

L(i,1:i-1) = A(pivotindex,1:i-1)

P(pivotindex,1:i-1) = tmp

end if
% Compute the multipliers.

multipliers = A(i+1:n,i)/A(i,i)

% Use submatrix calculations instead of a loop to perform

% the row operations on the submatrix A(i+1:n, i+1:n)

A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - multipliers*A(i,i+1:n);

% Set entries in column i, rows i+1:n to 0.

A (i+ 1 : n, i) = [
0 0 . . . 0 0

]T
L(i+1:n,i) = multipliers

end for
U = A

return
[
L, U, P

]
end function

NLALIB: The function ludecomp implements Algorithm 11.2.



224 Numerical Linear Algebra with Applications

Example 11.12.
Factor the 4× 4 matrix of Example 11.11 using ludecomp.

>> [L, U, P] = ludecomp(A)

L =

1.0000 0 0 0

-0.5000 1.0000 0 0

-0.5000 -1.0000 1.0000 0

0.5000 1.0000 -0.5000 1.0000

U =

2.0000 0 1.0000 0

0 1.0000 1.5000 0

0 0 2.0000 1.0000

0 0 0 1.5000

P =

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

During the execution of ludecomp, if entries aki, i ≤ k ≤ n are all less than or equal to eps, the algorithm simply
moves to the next pivot location (i+ 1, i+ 1). As a result, GEPP applies to any matrix, even one that is singular. Factor the
singular matrix

A =

⎡⎢⎢⎣
2 1 3 5
1 6 −1 2
3 7 2 7
5 19 0 11

⎤⎥⎥⎦ .

>> [L, U, P] = ludecomp(A)

L =

1.0000 0 0 0

0.4000 1.0000 0 0

0.6000 0.6667 1.0000 0

0.2000 -0.3333 0 1.0000

U =

5.0000 19.0000 0 11.0000

0 -6.6000 3.0000 0.6000

0 0 0 0.0000

0 0 -0.0000 -0.0000

P =

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

>> P*A

ans =

5 19 0 11

2 1 3 5

3 7 2 7

1 6 -1 2



Gaussian Elimination and the LU Decomposition Chapter| 11 225

>> L*U

ans =

5 19 0 11

2 1 3 5

3 7 2 7

1 6 -1 2

>> P’*L*U

ans =

2 1 3 5

1 6 -1 2

3 7 2 7

5 19 0 11 �

11.6 USING THE LU DECOMPOSITION TO SOLVE Axi = bi, 1 ≤ i ≤ k

To use this decomposition to solve a single system Ax = b, first multiply both sides by the permutation matrix:

PAx = Pb.

Let p = Pb, and substitute LU for PA:

LUx = b.

Execute forward and back substitution:

Ly = b

and

Ux = y.

Remark 11.6. The MATLAB function lu also has a calling sequence [L U P] = lu(A). The LU decomposition
functions ludecomp and lu produce the same results, but lu is faster because it is implemented in machine code.

Example 11.13. Let A =
⎡⎣ 1 4 9
−1 5 1
3 1 5

⎤⎦ , b =
⎡⎣ 1
6
2

⎤⎦. We use the functions forsolve(L,b) and backsolve(U,b) from

the book software that perform forward and back substitution, respectively.

>> [L,U,P] = ludecomp(A);y = forsolve(L,P*b);x = backsolve(U,y);

>> norm(b-A*x)
ans = 1.2561e-15 �

Solving systems Ax = b for many b′s only requires that A be factored once, at a cost of O
(
n3
)
flops. The combined steps

of forward and back substitution require O
(
n2
)
flops. If there are k right-hand sides, the flop count is O

(
n3
)+ kO

(
n2
)
. It

would be extremely inefficient to perform Gaussian elimination for each right-hand side, since that would require kO
(
n3
)

flops. Algorithm lusolve takes the decomposition of A, a matrix of right-hand sides, B, and computes a matrix of solutions X.



226 Numerical Linear Algebra with Applications

Algorithm 11.3 Solve Ax = b for Multiple Right-Hand Sides

function LUSOLVE(L,U,P,B)

% Solve multiple equations Ax = b using

% the result of the LU factorization.

% X = lusolve(L,U,P,B), where B is an n× k matrix containing

% k right-hand sides for which a solution to the linear system

% Ax = b is required. L, U, P are the result of the LU factorization

% P*A = L*U. The solutions are in the k columns of X.

pb = P*B

for i = 1:k do
yi = forsolve (L, pb (:, i))

xi = backsolve (U, yi)
X (:, i) = xi

end for
return X

end function

NLALIB: The function lusolve implements Algorithm 11.3.
We now use ludecomp to factor a 5× 5 randomly generated matrix A, and follow this by using lusolve to solve Ax = b
for three randomly generated right-hand sides. For each solution, the code outputs the 2-norm of the residual.

Example 11.14.

>> A = rand(5,5);
>> [L, U, P] = ludecomp(A);

>> B = [rand(5,1) rand(5,1) rand(5,1)];
X = zeros(5,3);
X = lusolve(L, U, P, B);

% check the results

for i=1:3

norm(A*X(:,i)-B(:,i))
end

ans =

3.5975e-016

ans =

1.5701e-016

ans =

2.0015e-016 �

Remark 11.7. There is an algorithm termed Gaussian elimination with complete pivoting (GECP), in which the pivoting
strategy exchanges both rows and columns. Note that column exchanges require renumbering the unknowns. Complete
pivoting is more complex and is not often used in practice, since GEPP gives good results with less computational
effort.

11.7 FINDING A--1

As stated earlier, it is considerably expensive to compute the inverse of a general nonsingular matrix A, and its computation
should be avoided whenever possible. We have previously mentioned that solving Ax = b using b = A−1b is a poor
choice.

In Chapter 18, will present an algorithm, called the inverse power method, for finding the smallest eigenvalue and a
corresponding eigenvector of a real nonsingular matrix A. Under the correct circumstances, the iteration xi+1 = A−1xi
converges to the largest eigenvector of A−1. To avoid computing A−1, just repeatedly solve Axi+1 = xi after factoring A.



Gaussian Elimination and the LU Decomposition Chapter| 11 227

If A−1must be computed, Section 2.5 and Theorem 11.5 say that to find it we solve the systems Axi = ei, 1 ≤ i ≤ n,
where ei is the vector with a 1 in component i and zeros in all other entries. We are prepared for this computation. Use
Algorithm 11.3 with B = I.

Example 11.15. Find the inverse of the matrix A =
⎡⎣ −9 1 3

1 5 2
−6 12 3

⎤⎦.
>> A = [-9 1 3;1 5 2;-6 12 3]

>> [L U P] = ludecomp(A);

>> A_inverse = lusolve(L, U, P, eye(3))
A_inverse =

-0.0469 0.1719 -0.0677

-0.0781 -0.0469 0.1094

0.2187 0.5313 -0.2396

>> norm(A_inverse - inv(A))

ans =

2.9394e-017 �

Remark 11.8. The flop count for finding the inverse is found by forming the flop count for the LU factorization plus n
instances of forward and backward substitution, so we have

2
3n

3 − 1
2n

2 − 1
6n + n

[
2
(
n2 + n

)] = 8
3n

3 + 3
2n

2 − 1
6n ≈ 8

3n
3. Suppose we simply solve n equations Axi = ei without

using the LU decomposition. Each solution will cost O
(
n3
)
flops, so our efforts will take O

(
n4
)
flops. Of course, nobody

would compute the inverse this way.

11.8 STABILITY AND EFFICIENCY OF GAUSSIAN ELIMINATION

Gaussian elimination without partial pivoting is not stable in general, as we showed by using the matrixA =
[
0.00001 3

2 1

]
.

It is theoretically possible for Gaussian elimination with partial pivoting to be explosively unstable [31] on certain “cooked-
up” matrices; however, if we consider performance in practice, it is stable. The unusual matrices that produce poor results
have never been encountered in applications.

Theorem 11.7 provides a criteria for stability, and its proof can be found in Ref. [26, pp. 163-165]. Prior to stating the
theorem, we need to define the growth factor of a matrix. During the LU factorization, the norm of the matrix L has an upper
bound we can compute for the norms we use (Problem 11.8). However, the elements of U can grow very large relative to
those of A. If this happens, we expect Gaussian elimination to produce poor results.

Definition 11.2. Apply the LU factorization to matrix A. During the elimination steps, we have matrices
A = A(0),A(1),A(2),A(k), . . . ,A(n−1) = U. The growth factor is the ratio

ρ =
maxi, j, k

∣∣∣a(k)
ij

∣∣∣
maxij

∣∣aij∣∣ ;

in other words, find the ratio of the largest element in magnitude during Gaussian elimination to the largest element of A in
magnitude.

Example 11.16. Compute the growth factor for

A =
[
0.0001 3
−1 1

]
.

Without partial pivoting: [
0.0001 3
−1 1

]−−−−−−−−−−−−−−−−−→
R2 = R2−

( −1
0.0001

)
R1

[
0.0001 3

0 30001

]
,

and the growth factor is ρ = 30,001
3 = 10000.33.



228 Numerical Linear Algebra with Applications

With partial pivoting:

[
0.0001 3
−1 1

]−−−−−→
R1⇔ R2

[ −1 1
0.0001 3

]−−−−−−−−−−−−−−−−−→
R2 = R2− (−0.0001)R1

[ −1 1
0 3.0001

]
,

and ρ = 3.0001
3 = 1.0000. Partial pivoting, as expected, improves the growth factor. In this example, the improvement

was huge. �

Theorem 11.7. Let the factorization PA = LU of amatrix A be computed usingGaussian elimination with partial pivoting
on a computer that satisfies Equations 8.3 and 8.5. Then the computed matrices L̃, Ũ, and P̃ satisfy

L̃Ũ = P̃A+ δA,
‖δA‖2
‖A‖ = O (ρ eps)

for some n × n matrix δA, where ρ is the growth factor for A. If
∣∣lij∣∣ < 1 for each i > j, implying there are no ties in the

selection of pivots in exact arithmetic, then P̃ = P for all sufficiently small eps.

Theorem 11.7 [26, pp. 163–165] says that GEPP is backward stable if the size of ρ does not vary with n for all n × n
matrices. Using O notation, this means that ρ is O (1) for all such matrices. Unfortunately, there are matrices for which ρ

gets large (Problem 11.36).
We showed in Section 11.4.3 that Gaussian elimination without pivoting requires O

(
n2
)
comparisons. At step i, partial

pivoting requires a search of elements A (i : n, i) to locate the pivot element, and this requires (n− 1)+ (n− 2)+· · ·+ 2+
1 = n (n− 1)/2 comparisons, so Gaussian elimination with pivoting also requires 2

3n
3 + O

(
n2
)
flops. When performing

complete pivoting, step i requires a search of the submatrix A (i : n, i : n) and may perform column interchanges. It requires
2
3n

3 + O
(
n2
)
flops, but requires O

(
n3
)
comparisons, so is a slower algorithm. Incidentally, complete pivoting creates

a factorization of the form PAQ = LU, where both P and Q are permutation matrices. See Refs. [2, pp. 131-133] and
[19, pp. 104-109] for an explanation of complete pivoting.

11.9 ITERATIVE REFINEMENT

If a solution to Ax = b is not accurate enough, it is possible to improve the solution using iterative refinement. Let x be the
computed solution of the system Ax = b. If x = x + δx is the exact solution, then Ax = A (x+ δx) = Ax + A (δx) = b,
and A (δx) = b − Ax = r, the residual. If we solve the system A (δx) = r for δx, then Ax = Ax + A (δx) = Ax + r =
Ax + b − Ax = b. It is unlikely that we will obtain an exact solution to A (δx) = r; however, x + δx might be better
approximation to the true solution than x. For this to be true, it is necessary to compute the residual r using twice the
precision of the original computations; for instance, if the computation of x was done using 32-bit floating point precision,
then the residual should be computed using 64-bit precision. This process provides a basis for an iteration that continues
until we reach a desired relative accuracy or fail to do so. Unless the matrix is very poorly conditioned, the computed
solution x is already close to the true solution, so only a few iterations are required. If the matrix has a large condition
number, it is not reasonable to expect huge improvements. Algorithm 11.4 describes the iterative improvement algorithm.
Note that the algorithm returns the number of iterations performed in an attempt to reach the tolerance or −1 if it is not
attained.



Gaussian Elimination and the LU Decomposition Chapter| 11 229

Algorithm 11.4 Iterative Improvement

function ITERIMP(A,L,U,P,b,x1,tol,numiter)

% Perform iterative improvement of a solution x1
% to Ax = b, where L, U, P is the LU factorization of A.

% tol is the error tolerance, and numiter the maximum number

% of iterations to perform.

% Returns the improved solution and the number of iterations

% required, or -1 if the tolerance is not obtained.

for k = 1:numiter do
iter = k % Compute the residual.

r = b− Axk
% Compute the correction.

δx = lusolve (L, U, P, r)

% Add the correction to form a new approximate solution.

xk+1 = xk + δx

if
‖xk+1 − xk‖

‖xk‖ < tol then

x = xk+1
return

[
x iter

]
end if

end for
% Tolerance not obtained.

x = xk+1
iter = -1

end function

NLALIB: The function iterimp implements Algorithm 11.4.

Example 11.17.

A =
⎡⎣ 1 −6 3
2 4 1
3 −9 0

⎤⎦ , b =
⎡⎣ 1
2
5

⎤⎦ .

The solution accurate to four decimal places is x =
⎡⎣ 1.3636
−0.1010
−0.3232

⎤⎦. Assume we have computed a solution x =
⎡⎣ 1

0
−0.5

⎤⎦,
so let x1 =

⎡⎣ 1
0
−0.5

⎤⎦.
k = 1:

r1 = b− Ax1 =
⎡⎣ 1.5000
0.5000
2.000

⎤⎦ .

The solution of A (δx) = r1 is

δx1 =
⎡⎣ 0.3636
−0.1010
0.1768

⎤⎦
and then

x2 = x1 + δx1 =
⎡⎣ 1

0
−0.5

⎤⎦+
⎡⎣ 0.3636
−0.1010
0.1768

⎤⎦ =
⎡⎣ 1.3636
−0.1010
−0.3232

⎤⎦ .



230 Numerical Linear Algebra with Applications

We obtained the answer correct to four places in one iteration. Note that κ (A) = 4.6357, so A is well-conditioned. �

The flop count for Algorithm 11.4 isO
(
n2
)
, since each solution of the equation Aδx = rk using lusolve has flop count

O
(
n2
)
and there a bounded number of iterations.

Example 11.18. Solve the 15 × 15 pentadiagonal system

⎡⎢⎢⎢⎢⎢⎢⎢⎣

6 −4 1

−4 6 −4 . . .

1 −4 . . .
. . . 1

. . .
. . . 6 −4
1 −4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x1
x2
...
x14
x15

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1
1
...
1
1

⎤⎥⎥⎥⎥⎥⎦ and perform

iterative improvement. Assume the solution obtained using the LU factorization is
x1 =

[
20.00 52.49 91.00 130.00 165.00 192.51 210.00 216.00 210.00 192.51 165.00 130.00 91.00 52.49 20.00

]T ,
whereas the true solution correct to two decimal places is

x = [
20.00 52.50 91.00 130.00 165.00 192.50 210.00 216.00 210.00 192.50 165.00 130.00 91.00 52.50 20.00

]T .
The true residual is ‖b− Ax‖2 = 0, and residual for the approximate solution is ‖b− Ax1‖2 = 0.166. Apply iterative

improvement using x1, tol = 1× 10−5 and numiter = 2.

>> [xnew, iter] = iterimp(A,L,U,P,b,x1,1.0e-5,5);

>> norm(b - A*xnew)

ans =

3.2132e-13

The matrix has a condition number of approximately 2611, so with an ill-conditioned matrix we obtained
improvement. �

11.10 CHAPTER SUMMARY

The LU Decomposition

Without doing row exchanges, the actions involved in factoring a square matrix A into a product of a lower-triangular
matrix, L, and an upper-triangular matrix, U, is simple. Assign L to be the identity matrix. Perform Gaussian elimination
on A in order to reduce it to upper-triangular form. Assume we are ready to eliminate elements below the pivot element
aii, 1 ≤ i ≤ n− 1. The multipliers used are

ai+1,i
aii

,
ai+2,i
aii

, . . . ,
ani
aii

.

Place these multipliers in L at locations (i+ 1, i) , (i+ 2, i) , . . . , (n, i). When the row reduction is complete, A is matrix U,
and A = LU.

Using the LU to Solve Equations

After performing the decomposition A = LU, consider solving the system Ax = b. Substitute LU for A to obtain

LUx = b,

L (Ux) = b.

Consider y = Ux to be the unknown and solve

Ly = b

using forward substitution. Now solve

Ux = y

using back substitution.



Gaussian Elimination and the LU Decomposition Chapter| 11 231

Elementary Row Matrices

Let A be an n× n matrix. An elementary row matrix, E, is an alteration of the identity matrix such that EA performs one of
the three elementary row operations. For instance, if

E31 (2) =
⎡⎣ 1 0 0

0 1 0
−2 0 1

⎤⎦
thenE31A subtracts (2) times row 1 from row 3. The primary purpose of thesematrices is to showwhy the LU decomposition
works.

Derivation of the LU Decomposition

Use products of elementary row matrices to row reduce A to upper-triangular form to arrive at a product

EkEk−1 . . .E2E1A = U,

and so

A = (EkEk−1 . . .E2)
−1 U.

(EkEk−1 . . .E2)−1 is precisely the matrix L.
An analysis shows that the flop count for the LU decomposition is ≈ 2

3n
3, so it is an expensive process.

Gaussian Elimination with Partial Pivoting

We use the pivot to eliminate elements ai+1,i, ai+2,i, . . . , ani. If the pivot, aii, is small the multipliers ak,i/aii, i+ 1 ≤ k ≤ n,
will likely be large. As we saw in Chapter 8, adding or subtracting large numbers from smaller ones can cause loss of any
contribution from the smaller numbers. For this reason, begin find the maximum element in absolute value from the set
aii, ai+1,i, ai+2,i, . . . , ani and swap rows so the largest magnitude element is at position (i, i). Proceed with elimination in
column i. The end result is a decomposition of the form PA = LU, where P is a permutation matrix that accounts for any
row exchanges that occurred. This can be justified by an analysis using elementary row matrices.

Computing the LU Decomposition Once and Solving Axi =bi, 1≤ i≤ k

A great advantage of performing the LU decomposition is that if the system must be solved for multiple right-hand sides,
the O

(
n3
)
LU decomposition need only be performed once, as follows:

Ax = bi, 1 ≤ i ≤ k,

PAx = Pbi,

LUx = Pbi,

L (Ux) = Pbi.

Now solve L (Uxi) = Pbi, 1 ≤ i ≤ k using forward and back substitution. The cost of the decomposition is O
(
n3
)
, and the

cost of the solutions using forward and back substitution is O
(
kn2

)
. If we solved each system using Gaussian elimination,

the cost would be O
(
kn3

)
.

Computing A--1

Conceptually, computingA−1 is simple. Apply the LU decomposition to obtain PA = LU, and use it to solve systems having
as right-hand sides the standard basis vectors

e1 =
[
1 0 . . . 0 0

]T , e2 = [
0 1 . . . 0 0

]T , . . . , [ 0 0 . . . 0 1
]T .

The solutions form the columns of A−1. It should be emphasized that computing A−1 is expensive and roundoff error
builds up.



232 Numerical Linear Algebra with Applications

Stability and Efficiency of Gaussian Elimination

There are instances where GEPP fails (see Problem 11.36), but these examples are pathological. None of these situations has
occurred in 50 years of computation using GEPP. There is a method known as complete pivoting that involves exchanging
both rows and columns. It is more expensive than GEPP and is not used often.

Iterative Refinement

If a solution to Ax = b is not accurate enough, it is possible to improve the solution using iterative refinement. Let x be
the computed solution of the system Ax = b. If x = x + δx is the exact solution, then Ax = Ax + A (δx) = b, and
A (δx) = b−Ax = r, the residual. If we solve the systemA (δx) = r for δx, thenAx = Ax+A (δx) = Ax+r = Ax+b−Ax = b.
It is unlikely that we will obtain an exact solution to A (δx) = r; however, x + δx might be better approximation to the
true solution than x. For this to be true, it is necessary to compute the residual r using twice the precision of the original
computations; for instance, if the computation of x was done using 32-bit floating point precision, then the residual should
be computed using 64-bit precision. This process provides a basis for an iteration that continues until we reach a desired
relative accuracy or fail to do so. Unless the matrix is very poorly conditioned, the computed solution x is already close to
the true solution, so only a few iterations are required. If the matrix has a large condition number, it is not reasonable to
expect huge improvement

11.11 PROBLEMS

Note: The term “step-by-step” can involve computational assistance. For instance, suppose you want to subtract a multiple,
t, of row i from row j of matrix A. The following statement will do this for you.

>> A(j,:) = A(j,:) - t*A(i,:)

This type of computation is essentially “by pencil and paper,” except you do not have to perform the row elimination by
hand or with a calculator.

11.1 Given A =
⎡⎣ 1 2 3
2 5 4
3 5 4

⎤⎦, find the LU factorization of A step-by-step without pivoting.

11.2 Show that A =
[

6 1
−6 2

]
is nonsingular, find A−1 and express A as a product of elementary row matrices.

11.3 What two elementary row matrices E21 (t1) and E32 (t2) put A =
⎡⎣ 2 1 0
6 4 2
0 3 5

⎤⎦ into upper-triangular form

E21 (t2)E32 (t1)A = U? Multiply by E−121 (t2)E
−1
32 (t1) = L to factor A into LU = E−121 (t1)E

−1
32 (t2)U.

11.4 Find the 3× 3 matrix A = E2 (5)E31 (2)E13? Also find A−1.
11.5 Prove that multiplying a matrix A on the right by Eij exchanges columns i and j of A.
11.6 This problem is taken from [8, p. 106]. Using matrix A, suppose you eliminate upwards (almost unheard of). Use

the last row to produce zeros in the last column (the pivot is 1). Then use the second row to produce zero above the
second pivot. Find the factors in the unusual order A = UL.

A =
⎡⎣ 5 3 1
3 3 1
1 1 1

⎤⎦ .

11.7 If A is singular, and PA = LU is the LU factorization, prove there must be at least one zero on the diagonal of U.
11.8 In the LU factorization of a square matrix, show that

‖L‖F ≤ n (n+ 1)

2
, ‖L‖∞ ≤ n,

‖L‖1 ≤ n and ‖L‖2 ≤ n.

11.9 Prove Theorem 11.1 for the elementary row matrices Eij (t) and Ei (t).



Gaussian Elimination and the LU Decomposition Chapter| 11 233

11.10 Show that during GECP, search for the new pivot element requiresO
(
n3
)
comparisons. After the new pivot element

is selected, explain why it may be necessary to exchange both rows and columns.
11.11 Solve the system ⎡⎣ 0.00005 1 1

2 −1 1
1 2 4

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =
⎡⎣ 2
3
3

⎤⎦
step-by-step with and without partial pivoting using 4 decimal place accuracy. Compare the results.

An alternative algorithm for LU factorization is Crout’s Method. There is a variation of the algorithm with pivoting, but
we will not include it here. The elements of L and U are determined using formulas that are easily programmed. In Crout’s
method,U is the matrix with ones on the diagonal, as indicated in Equation 11.7. Problems 11.12–11.15 develop themethod.⎡⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤⎥⎥⎦ =
⎡⎢⎢⎣
L11 0 0 0
L21 L22 0 0
L31 L32 L33 0
L41 L42 L43 L44

⎤⎥⎥⎦
⎡⎢⎢⎣
1 U12 U13 U14
0 1 U23 U24
0 0 1 U34
0 0 0 1

⎤⎥⎥⎦ . (11.7)

11.12 Form the product of the two matrices on the right-hand side of Equation 11.7.
11.13 The entries of the matrices L and U can be determined by equating the two sides of the result from Problem 11.12

and computing the Lij and Uij entries row by row; for instance, L11 = a11. Once L11 is known, the values of U12,
U13, and U14 are calculated by

U12 = a12
L11

, U13 = a13
L11

, U14 = a14
L11

.

Continue and as far as necessary until you can state a general formula for the elements of L and U for an n × n
matrix A.

11.14 Using Crout’s Method, factor the following 3× 3 matrix step-by-step.

a. A =
⎡⎣ 1 −2 −1
2 0 3
1 5 0

⎤⎦
b. Use the factorization from part to solve the system Ax =

⎡⎣ 1
1
0

⎤⎦.
11.15 In this problem, you will use the results of Problem 11.13 to develop an algorithm for the Crout Method. The

algorithm involves four steps. Fill-in the missing elements of each step.
function CROUT(A)

Calculate the first column of L.

Place 1s on the diagonal of U.

for i = 1:n do

end for
Calculate the elements in the first row of U. U11 already calculated.

for j = 2:n do

end for
Calculate the rest of the elements row after row.

The entries of L are calculated first because they are used for

calculating the elements of U.

for i = 2:n do
for j = 2:i do

end for
for j = i+1:n do



234 Numerical Linear Algebra with Applications

end for
end for
return

[
L U

]
end function

11.16 It is possible to determine that a matrix is singular during GEPP. Specify a condition that occurs while executing the
algorithm that will indicate the matrix is singular.

11.17 There are situations where the LU decomposition must be done using pivoting.

a. For the matrix

⎡⎣ 1 7 1
9 −1 2
3 5 1

⎤⎦, compute the determinant of the submatrices [ 1 ], [ 1 7
9 −1

]
, and the whole matrix.

Can you do an LU factorization without pivoting?

b. Perform part (a) with the matrix

⎡⎣ 1 3 1
−1 −3 5
6 3 9

⎤⎦.
c. For the matrix

⎡⎢⎢⎣
1 2 −1 1
3 2 −7 2
1 8 5 3
1 −9 2 5

⎤⎥⎥⎦, calculate all determinants of submatrices with upper left-hand corner at a11.
Can you do an LU decomposition without pivoting?

d. Propose a theorem that specifies when an LU decomposition without pivoting is possible. You do not have to
prove it.

11.18 Prove that a permutation matrix is orthogonal.
11.19 If A is an n× n matrix whose LU decomposition is PA = LU, prove that

det (A) = (−1)r u11u22 . . . unn,

where r is the number of row interchanges performed during row reduction, and uii are the diagonal elements of U.
11.20 A is strictly column diagonally dominant if |aii| > ∑n

k=1, k �=i |aki|. This problem investigates the LU decomposition
of such a matrix.
a. Determine which matrices are strictly column diagonally dominant:

i.

⎡⎣ 3 2 2
−2 6 2
1 −1 5

⎤⎦

ii.

⎡⎢⎢⎣
−1 1 7 −0.05
0.3 2.5 −1 −0.7
0.2 0.75 −9 0.04
0.4 0.70 0.9 0.8

⎤⎥⎥⎦

iii.

⎡⎢⎢⎢⎢⎢⎣
2 0.5
0.5 2 0.5

. . .
0.5 2 0.5

0.5 2

⎤⎥⎥⎥⎥⎥⎦
b. The matrix A =

⎡⎣ 3 3 1
1 5 2
1 1 −4

⎤⎦ is strictly column diagonally dominant. Using pencil and paper, form the LU

decomposition with partial pivoting to show that no row interchanges are necessary.
c. Prove that if A is strictly column diagonally dominant, the LU decomposition with partial pivoting requires no
row interchanges. Hint: Argue that row elimination in column 1 requires no row exchanges. Now consider the
matrix A(1) that results from action with column 1. Show it is strictly column diagonally dominant by using the
diagonal dominance of A. The result follows by induction.

11.21 The LDU decomposition is a variation of the LU decomposition. L is a lower diagonal matrix all of whose diagonal
entries are 1, D is a diagonal matrix whose elements are the pivots, and U is a unit upper-triangular matrix. Without



Gaussian Elimination and the LU Decomposition Chapter| 11 235

pivoting, A = LDU, and with pivoting PA = LDU. In this problem, assume that the LU decomposition uses no
pivoting.
a. Show that the LDU decomposition exists when A is nonsingular.
b. Show that if A is symmetric and nonsingular, then A = LDU, where L = UT and U = LT.
c. Is (b) true for the standard LU decomposition?

11.22 There are some matrices whose inverses can be computed easily.
a. Prove that the inverse of a diagonal matrix,D, with nonzero diagonal entries d1, d2, . . ., dn is the diagonal matrix
whose diagonal elements are 1/d1, 1/d2, . . . , 1/dn.

b. We will have occasion to use Householder reflections later in the text when we discuss efficient algorithms for
computing the QR decomposition. A Householder reflection is formed from a nonzero vector u as follows:

Hu = I − 2uuT

uTu
, u �= 0.

Show that H2
u = I

c. An atomic lower-triangular matrix is a special form of a unit lower-triangular matrix, also called a Gauss
transformation matrix. All of the off-diagonal entries are zero, except for the entries in a single column. It has
the form

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0
. . .

0 1
0 1

li+1, i 1
... li+2, i

. . .
... 1

0 . . . 0 lni 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Show that

L−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0
. . .

0 1
0 1

−li+1, i 1
... −li+2, i . . .

... 1
0 . . . 0 −lni 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

11.23 Consider the system ⎡⎣ 1 1 3
2 1 2
3 1 5

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =
⎡⎣ −14

2

⎤⎦ .

Assuming an initial approximation x =
⎡⎣ 2

0
−3

⎤⎦, perform one iterative improvement iteration using step-by-step,

retaining four significant digits. Compare your result to the actual solution.

11.24 Let A =
⎡⎣ 1 7 −1
2 4 5
1 2 −1

⎤⎦ , b =
⎡⎣ 1
2
3

⎤⎦. Compute the solution x using MATLAB. Let x =
⎡⎣ 3
−1
−1

⎤⎦. Perform one step

of iterative improvement with four significant digits, obtain approximate solution x, and compare it to x.
11.25 If in the LU decomposition,

∣∣lij∣∣ < 1 for each i > j, show there are no ties in the selection of pivots in exact
arithmetic.



236 Numerical Linear Algebra with Applications

11.26 Compute the growth factor for A =
[
0.0006 −8

1 1

]
with and without partial pivoting.

11.27 When using GEPP, show that ρ ≤ 2n−1, where ρ is the growth factor.

11.11.1 MATLAB Problems

11.28 Let A =
⎡⎣ 1 0 1
−1 1 1
−1 −1 1

⎤⎦.
a. Find the decomposition PA = LU for the matrix.
b. Solve the system Ax = [

1 1 1
]T

using the results of part (a).

c. Find the decomposition PA = LU for the matrix B =
⎡⎢⎣ 1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

⎤⎥⎦.
d. Solve the system Bx = [

1 1 1
]T using the results of part (c).

11.29 Using GEPP, factor each matrix as PA = LU.

a. A =
⎡⎣ 1 2 −1
2 1 3
5 8 2

⎤⎦

b. A =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
2 3 4 5

⎤⎥⎥⎦
11.30 Use ludecomp and lusolve to find the solution to the following three systems. Compute ‖B− A ∗ X‖2, where B

is the matrix of right-hand sides, and the solutions are the columns of X.

A =

⎡⎢⎢⎣
1 6 2 1
2 2 8 9
12 5 1 9
−1 −7 1 5

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦ = bi, where b1 =

⎡⎢⎢⎣
1
8
0
−1

⎤⎥⎥⎦, b2 =
⎡⎢⎢⎣

5
12
1
−12

⎤⎥⎥⎦, and b3 =
⎡⎢⎢⎣

5
88
15
3

⎤⎥⎥⎦
11.31 When a matrix T is tridiagonal, its L andU factors have only two nonzero diagonals. Factor eachmatrix into A = LU

without pivoting.

a.

⎡⎣ 1 1 0
1 2 1
0 1 2

⎤⎦
b.

⎡⎣ 1 −1 0
2 3 1
0 4 5

⎤⎦

c.

⎡⎢⎢⎣
1 2 0 0
2 3 1 0
0 1 2 3
0 0 3 4

⎤⎥⎥⎦
11.32 Write MATLAB functions to create the elementary row matrices, Eij, Ei (t), and Eij (t). Use the functions to verify

your results for Problem 11.4.
11.33 a. Write a MATLAB function

function [L U] = crout(A)

that implements Crout’s method developed in Problem 11.15.



Gaussian Elimination and the LU Decomposition Chapter| 11 237

b. Factor the matrix in Example 11.9. Apply your function to random 3× 3, 5× 5, and 25× 25 matrices. Test the
result in each case by computing ‖A− LU‖2.

11.34 a. Write

function x = gauss(A,b)

that uses Gaussian elimination without pivoting to solve the n × n system Ax = b. Note that the function does
not perform the LU decomposition but just applies straightforward row operations as explained in Chapter 2. If
a pivot element is zero, print an error message and exit.

b. Use your function to solve three random systems of size 3× 3, 4× 4, and 10× 10.
11.35 Make a copy of the function ludecomp, name it matgr, and make modifications so it computes the growth factor of

a square matrix using partial pivoting. Test it with the matrix in Problem 11.26 and the matrix

W =

⎡⎢⎢⎢⎢⎣
1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

⎤⎥⎥⎥⎥⎦ .

11.36 We have stated that Gaussian elimination with partial pivoting is stable in practice, but that contrived examples can
cause it to become unstable. This problem uses a matrix pattern devised byWilkinson in his definitive work [9].
a. Write a MATLAB function function W = wilkpivot(n) that returns an n× n matrix of the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
−1 1 1
−1 −1 1 1
...

...
...

. . .
...

−1 −1 −1 . . . 1 1
−1 −1 −1 . . . −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Your function requires no more than four MATLAB commands.

b. Will any row interchanges occur when solving a system with this coefficient matrix?
c. Using your function wilkpivot, show that a Wilkinson 5× 5 matrix has the LU decomposition⎡⎢⎢⎢⎢⎣

1 1
−1 1 1
−1 −1 1 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

1
−1 1
−1 −1 1
−1 −1 −1 1
−1 −1 −1 −1 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
1 1
1 2
1 4
1 8
16

⎤⎥⎥⎥⎥⎦ .

d. What is the value of U (50, 50) in the LU decomposition of a 50× 50 Wilkinson matrix, W50?
e. Using the matrix from part (d), form the vector b = [1:25 -1:-1:-25]’ and compute x = A\b. Perturb b

slightly using the statements

b(25) = b(25) - 0.00001;

b(30) = b(30) + 0.00001

and compute xbar = A\b.
f. Evaluate ‖x− x‖∞/‖x‖∞
g. What is the matrix growth factor? Explain the result of part (f) by considering the matrix growth factor.

11.37 Using row elimination with partial pivoting, write and test a MATLAB function determinant(A) that computes
the determinant of matrix A and test it with matrices up to size 20× 20.

11.38 Problem 11.20(c) required a proof that a strictly column diagonally dominant matrix requires no row interchanges
during the LU decomposition. Use the MATLAB function trid in the software distribution to build the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣

1 −0.25
−0.25 1 −0.25

−0.25 . . .
. . .

. . . 1 −0.25
−0.25 1

⎤⎥⎥⎥⎥⎥⎥⎦



238 Numerical Linear Algebra with Applications

for n = 5, 10, 25, 100. For each n, demonstrate that no row interchanges are necessary when forming the LU
decomposition. The function ludecomp returns the number of interchanges required as well as L and U:

[L, U, P, interchanges] = ludecomp(A)

11.39 Write and test a MATLAB function ldu(A) that computes the LDU decomposition of A as described in
Problem 11.21.

11.40 Write and test the function inverse(A) that computes A−1 using the LU decomposition with partial pivoting.
Include hilb(10), the 10× 10 Hilbert matrix, in your tests.

11.41 A band matrix is a sparse matrix whose nonzero entries are confined to a diagonal band, consisting of the main
diagonal and zero or more diagonals on either side. A tri- or bidiagonal matrix is a band matrix. Band matrices
occur in applications, particularly when finding approximate solutions to partial differential equations. In many
such applications, the banded system to be solved is very large. As we have emphasized earlier, it pays to take
advantage of matrix structure, particularly when dealing with very large matrices. We will see in Chapter 13 that the
LU decomposition of a tridiagonal matrix, T, requires O (n) flops, where L is unit lower bidiagonal, and U is upper
bidiagonal with its superdiagonal the same as that of T. Since T−1 = U−1L−1, and there are efficient algorithms
for the inverse of a bidiagonal matrix (see Refs. [32, pp. 151-152] and [39, pp.248-249]), it would seem to be more
efficient to computeU−1L−1 rather than executing a straightforward evaluation ofA−1. Althoughwe will not discuss
it here, there are formulas for the direct calculation of T−1 [39, 40].

The book software contains a function tridiagLU you call as follows:

% a, b, c are the subdiagonal, diagonal, and superdigonal of a tridiagonal matrix.

% L is the lower diagonal of the unit bidiagonal matrix, and U is the diagonal of the

upper bidiagonal matrix.

[L,U] = tridiagLU(a,b,c);

a. Let a, b, c be the subdiagonal, diagonal, and superdiagonal of the matrix in Problem 11.38 with n = 5. Use
tridiagLU to compute L and U. Verify that tridiagLU returned the proper diagonals.

b. The book software distribution contains functions upbinv and lobinv that compute the inverse of an upper
bidiagonal and a unit lower bidiagonal matrix, respectively. Scan through the source code and determine how
to call the functions. Write a function, trinv, with arguments a, b, c that computes the inverse of a tridiagonal
matrix using upbinv and lbinv. Test it thoroughly.

c. Build vectors

>> a = randn(499,1);
>> b = randn(500,1);
>> c = randn(499,1);

and execute the statements

>> A = trid(a,b,c);

>> tic;P1 = inv(A);toc;
>> tic;P2 = trinv(a,b,c);toc;

Why is inv faster than trinv?
d. Using the function inverse developed in Problem 11.40, execute the statements

tic;P1 = inverse(A);toc;
tic;P2 = trinv(a,b,c);toc;

Explain the results.



Gaussian Elimination and the LU Decomposition Chapter| 11 239

11.42 The MATLAB function single(A) converts each element of the array A from 64-bit to 32-bit precision. Create the
following 20× 20 pentadiagonal system

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −4 1 0

−4 6 −4 1
. . .

1 −4 6 −4 1
. . .

...
. . .

. . .
. . . 1 −4 6 −4 1
...

. . .
0 . . . 1 −4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎣
x1
x2
...
x19
x20

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
1
1
...
1
1

⎤⎥⎥⎥⎥⎥⎦

using the function pentd in the book software distribution. Run the following MATLAB program. Explain what the
program does and the results.

[L,U,P] = lu(T);
b1 = ones(20,1);

x = lusolve(L,U,P,b1);

C = single(T);

b2 = single(b1);

[L1,U1,P] = lu(C);
x1 = lusolve(L1,U1,P,b2);

fprintf(’norm(x - single precision solution)/norm(x) = %g\n’,...
norm(x-x1)/norm(x));

[x2,iter] = iterimp(T,double(L1),double(U1),P,b1,...

double(x1),1.0e-12,10);

fprintf(’norm(x - refined solution)/norm(x) = %g, requiring %d iterations\n’,...
norm(x-x2)/norm(x),iter);

11.43
a. Write a function, makebidiag, that takes a vector a with n elements and a vector b with n − 1 elements and
builds an upper bidiagonal matrix.

b. Build a random 5× 5 bidiagonal matrix with no zeros on either diagonal. Compute its singular values in vector
S using the MATLAB function svd. Show that the singular values are unique using the MATLAB command
“numunique = length(unique(S));.” Repeat this experiment for random 10 × 10, 25 × 25, and 50 × 50
bidiagonal matrices. Formally state a theorem that describes the behavior.

c. It is true that a symmetric tridiagonal matrix for which ai, i+1 = ai, i−1 �= 0 has n distinct eigenvalues. Using this
fact, prove the theorem you stated in part (b).



This page intentionally left blank



Chapter 12

Linear System Applications

You should be familiar with

● Trigonometric functions and infinite series (Section 12.1)
● Evaluating an integral (Section 12.1)
● Derivatives of a function of one variable
● Partial derivatives (Sections 12.2 and 12.3)
● Acquaintance with finite difference equations (Section 12.2)
● Computing a local minima or maxima (Section 12.3)

We have discussed bases, dimensions, inner products, norms, and the LU decomposition with and without partial pivoting
for the solution of n × n linear algebraic systems of equations. Linear algebra is used in almost all applied engineering
and science applications. In many cases, its use is hidden from direct view, but is a critical component of an algorithm.
Until this point, we have presented problems involving the solution to a truss, an electrical circuit, data encryption, as
well as other applications. In this chapter, we discuss four additional applications that make use of linear algebra, Fourier
series, finite difference techniques for solving partial differential equations, an introduction to least squares, and cubic spline
interpolation.

12.1 FOURIER SERIES

To this point, we have dealt with finite-dimensional vector spaces, but there are many applications for vector spaces with
infinitely many dimensions. A particularly important example is Fourier series. When we introduced the inner product of
vectors in Chapter 6, we also presented the L2 inner product of functions. If f and g are functions over the interval a ≤ x ≤ b,
then

〈f , g〉 =
∫ b

a
f (x) g (x) dx, and ‖f‖2L2 =

∫ b

a
f 2 (x) dx.

Consider the infinite sequence of trigonometric functions{
1√
2π

,
cos x√

π
,

sin x√
π
,

cos 2x√
π

,
sin 2x√

π
, . . . ,

cos nx√
π

,
sin nx√

π
, . . .

}
A straightforward computation shows that this is an orthonormal sequence over the interval −π ≤ x ≤ π .〈

cos ix√
π

,
cos jx√

π

〉
= 1

π

∫ π

−π

cos ix cos jx dx = 0, i �= j,〈
sin ix√

π
,

sin jx√
π

〉
= 1

π

∫ π

−π

sin ix sin jx dx = 0, i �= j,〈
cos ix√

π
,

sin jx√
π

〉
= 1

π

∫ π

−π

cos ix sin jx dx = 0, i �= j,

and 〈
cos ix√

π
,

cos ix√
π

〉
= 1

π

∫ π

−π

cos ix cos ix dx = 1

π

∫ π

−π

cos2 (ix) dx = 1,〈
sin ix√

π
,

sin ix√
π

〉
= 1

π

∫ π

−π

sin2 (ix) dx = 1.

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00012-0
Copyright © 2015 Elsevier Inc. All rights reserved. 241



242 Numerical Linear Algebra with Applications

We now consider this infinite sequence to be an orthonormal basis for what we term a function space, a set of linear
combinations of the basis functions.

f (x) = a0

(
1√
2π

)
+ a1

(
cos x√

π

)
+ b1

(
sin x√

π

)
+ a2

(
cos 2x√

π

)
+ b2

(
sin 2x√

π

)
+ · · · =

a0

(
1√
2π

)
+ 1√

π

∞∑
i=1

(ai cos ix+ bi sin ix) (12.1)

In general, such a linear combination is an infinite series. Not all functions belong to this function space; for instance, let
ai = 1, bi = 0, i ≥ 0. In this case, the series is

f (x) = 1√
2π
+ 1√

π
(cos x + cos 2x+ cos 3x+ · · · ) .

If x = 0, then f (0) = 1√
2π
+ 1√

π
(1+ 1+ 1+ · · · ) is infinite. For f to belong to the function space, we require that ‖f‖2L2

be finite. Since {
1√
2π

,
cos x√

π
,

sin x√
π
,

cos 2x√
π

,
sin 2x√

π
, . . . ,

cos nx√
π

,
sin nx√

π
, . . .

}
is an orthonormal sequence

〈f , f 〉 =
∫ π

−π

f 2 (x) dx = a20 + a21 + b21 + a22 + b22 + · · · + a2n + b2n + · · · . (12.2)

Thus, a function is in this function space if the series 12.2 converges, and we call it the Fourier series for f . Since the function
is composed of periodic functions, f is periodic. It can be shown that this function space obeys the rules for a vector space,
and the Cauchy-Schwarz inequality, 〈f , g〉 ≤ ‖f‖L2 ‖g‖L2 holds. This function space is an example of a Hilbert space, a
mathematical concept that has many applications in such areas as electrical engineering, vibration analysis, optics, acoustics,
signal and image processing, econometrics, and quantum mechanics.

The ai, bi in Equation 12.1 are called the Fourier coefficients for f . So far, we have said that if the series 12.2 converges,
the function it defines is in the function space. Assume for the moment that the function f has a Fourier series. How do
we compute the Fourier coefficients? The answer lies in the fact that the basis is orthonormal relative to the inner product.
We’ll compute the coefficients of the terms cos ix, 0 ≤ i < ∞. Start with

f (x) = a0

(
1√
2π

)
+ 1√

π

∞∑
i=1

(ai cos ix + bi sin ix) . (12.3)

Multiply both sides of Equation 12.3 by cos kx for any k ≥ 1 and integrate from−π to π .∫ π

−π

f (x) cos kx = a0

(
1√
2π

)∫ π

−π

cos kx dx+ 1√
π

∫ π

−π

( ∞∑
i=1

(ai cos kx cos ix+ bi cos kx sin ix )

)
dx

= 0+ 1√
π

∞∑
i=1

(∫ π

−π

(ai cos kx cos ix) dx+
∫ π

−π

(bi sin kx sin ix) dx

)
= ak

1√
π

∫ π

−π

cos2 kx = √πak,

and so

ak = 1√
π

∫ π

−π

f (x) cos kx, k ≥ 1.

In a similar fashion,

bk = 1√
π

∫ π

−π

f (x) sin kx, k ≥ 1.

It only remains to compute a0:∫ π

−π

f (x) dx = a0

(
1√
2π

)∫ π

−π

dx+ 1√
π

∞∑
i=1

(∫ π

−π

(ai cos ix) dx+
∫ π

−π

(bi sin ix) dx

)
= √2πa0 + 0 = √2πa0.



Linear System Applications Chapter| 12 243

Thus,

a0 = 1√
2π

∫ π

−π

f (x) dx.

Summary: The Fourier coefficients for the function f , −π ≤ x ≤ π , are

a0 = 1√
2π

∫ π

−π

f (x) dx.

ak = 1√
π

∫ π

−π

f (x) cos kx dx, k ≥ 1.

bk = 1

π

∫ π

−π

f (x) sin kx dx, k ≥ 1.

Now, if we have a periodic function f , is there a Fourier series that converges to f ? The following theorem can be found in
the literature on Fourier series.

Theorem 12.1. Assume that f has period 2π and is piecewise continuously differentiable on −π ≤ x ≤ π . Then the
Fourier series

a0

(
1√
2π

)
+ 1√

π

∞∑
i=1

(ai cos ix+ bi sin ix)

converges at every point at which f is continuous and otherwise to

f (x+)+ f (x−)

2
,

where

f (l+) = lim
x→l+ f (x)

and

f (l−) = lim
x→l− f (x)

are the right and left-side limits of f at x.

Remark 12.1. Our discussion of Fourier series deals with functions having period 2π . If the function is periodic over
another interval, −L ≤ x ≤ L, let t = πx/L and

g (t) = f (x) = f

(
Lt

π

)
.

g has period 2π , and x = −L, x = L correspond to t = −π , t = π , respectively. Find the Fourier series for g (t) and, using
substitution, find the Fourier series for f (x).

12.1.1 The Square Wave

The square wave is a very useful function in many engineering applications. It is periodic and, in this example, has period
2π , and is +1 in one-half the period and −1 in the other half (Figure 12.1). The Fourier series for the square wave is not
difficult to compute. All the cosine terms in its Fourier series are 0, since the function is odd (f (−x) = −f (x)). The series is

4

π

[
sin x

1
+ sin 3x

3
+ sin 5x

5
+ · · ·

]
.

It is interesting to see how the series converges (Figure 12.2). As n→∞, the partial sums of sine terms “wiggle less and
less” and converge to the line segments comprising the wave. The book software contains the sound file square.mp3. Play
it to hear this waveform.



244 Numerical Linear Algebra with Applications

FIGURE 12.1 Square wave with period 2π .

FIGURE 12.2 Fourier series converging to a square wave.

12.2 FINITE DIFFERENCE APPROXIMATIONS

Differential equations are at the heart of many engineering problems. They appear in fluid mechanics, thermodynamics,
vibration analysis, and many other areas. For most of the problems that appear in practice, we cannot find an analytical
solution and must rely on numerical techniques. Applications of linear algebra appear particularly in what are termed



Linear System Applications Chapter| 12 245

initial-boundary value problems. In problems like these, an initial condition is known at t = 0, and the value of the solution is
known on the boundary of an object.Wemust use these known values to approximate the solution in the interior of the object.

12.2.1 Steady-State Heat and Diffusion

Suppose a thin rod is given an initial temperature distribution, then insulated on the sides. The ends of the rod are kept at
the same fixed temperature; e.g., suppose at the start of the experiment, both ends are immediately plunged into ice water.
We are interested in how the temperature along the rod varies with time. Suppose that the rod has a length L (in meters),
and we establish a coordinate system along the rod as illustrated in Figure 12.3. Let u (x, t) represent the temperature at the
point x meters along the rod at time t (in seconds). We start with an initial temperature distribution u (x, 0) = f (x). This
problem is modeled using a partial differential equation called the heat equation:

∂u

∂t
= c

∂2u

∂x2
, 0 ≤ x ≤ L, 0 ≤ t ≤ T,

u (0, t) = u (L, t) = 0,

u (x, 0) = f (x) .

The constant c is the thermal diffusivity. For most functions f (x), we cannot obtain an exact solution to the problem,
so we must resort to numerical methods. So where does linear algebra come in? We divide the space interval 0 ≤ x ≤ L
into small subintervals of length h = L/m, and the time interval into small subintervals of length k = T/n, where m and
n are integers (Figure 12.4). We wish to approximate u (x, t) at the grid points

(
xi, tj

)
, where (x1, x2, x3, . . . ,xm, xm+1) =

(0, h, 2h, . . . , L− h, L) and (t1, t2, t3, . . . ,tn, tn+1) = (0, k, 2k, . . . , T − k, T). We denote this approximate solution by

uij ≈ u(xi, tj).

FIGURE 12.3 The heat equation: a thin rod insulated on its sides.

FIGURE 12.4 Numerical solution of the heat equation: subdivisions of the x and t axes.



246 Numerical Linear Algebra with Applications

If m and n are large, the values of h and k are small, and we can approximate each derivative at a point
(
xi, tj

)
using

finite difference equations as follows:

∂u

∂t

(
xi, tj+1

) ≈ ui, j+1 − uij
k

, 1 ≤ j ≤ n, (12.4)

∂2u

∂x2
(
xi, tj+1

) ≈ 1

h2
(
ui−1, j+1 − 2ui, j+1 + ui+1, j+1

)
, 2 ≤ i ≤ m. (12.5)

These approximations are developed using Taylor series for a function of two variables, and the interested reader can refer
to Ref. [33, Chapter 6], for an explanation. By equating these approximations, we have

ui, j+1 − uij
k

= c

h2
(
ui−1, j+1 − 2ui, j+1 + ui+1, j+1

)
.

All but one term in the finite difference formula involves j+ 1, so isolate it to obtain

ui,j = −rui−1,j+1 + (1+ 2r) ui,j+1 − rui+1,j+1, 2 ≤ i ≤ m, 1 ≤ j ≤ n, (12.6)

where r = ck/h2. Notice that Equations 12.4 and 12.5 specify relationships between points in the grid pattern of Figure 12.5.
Figure 12.6 provides a view of the entire grid. In Figure 12.6, the black circles represent boundary and initial values and the
open circles represent a general pattern of the four points used in each difference equation.

Using matrix notation, Equation 12.6 becomes

uj = Buj+1 − rbj+1, (12.7)

j +1

j
i i +1i −1

FIGURE 12.5 Numerical solution of the heat equation:locally related points in the grid.

x1

t1

t2

t3

x2 x3 x4 xi−1

ti+1
ti

tn

xm−1 xm xm +1 = L

tn +1 = T

xi +1xi

FIGURE 12.6 Grid for the numerical solution of the heat equation.



Linear System Applications Chapter| 12 247

FIGURE 12.7 Graph of the solution for the heat equation problem.

where

B =

⎡⎢⎢⎢⎢⎢⎢⎣

1+ 2r −r 0 . . . 0
−r 1+ 2r −r . . . 0

0
. . .

. . .
. . .

...
...

... −r 1+ 2r −r
0 0 0 −r 1+ 2r

⎤⎥⎥⎥⎥⎥⎥⎦
and bj+1 accounts for the boundary or initial conditions. Now, we can write Equation 12.7 as

Buj+1 = uj + rbj+1. (12.8)

This is a linear algebraic system to solve for uj+1. Most of the elements of B are 0, so it is a sparse matrix; furthermore, it is
tridiagonal. The Thomas algorithm presented in Section 9.4 takes advantage of the tridiagonal structure and solves system
12.7 in O (n) flops as opposed to O

(
n3
)
. Think of Equation 12.8 this way. Values of uj and rbj+1 give us values for uj+1,

and we work our way up the grid. This is not a “chicken and an egg” problem, since the right-hand side of Equation 12.8 is
known at time t = 0. We now give an example of our finite difference equations in action by approximating and graphing
the solution to the heat flow problem

∂u

∂t
= 0.875

∂2u

∂x2
, 0 ≤ x ≤ 5.0, 0 ≤ t ≤ 1.0,

u (0, t) = u (5, t) = 0,

u (x, 0) = exsin (πx) . (12.9)

The required MATLAB code, heateq.m, is located in the software distribution. We present a graph of the approximate
solution obtained in Figure 12.7.

Wewill deal with more problems like this in Chapters 20 and 21, wherewe discuss the Poisson and biharmonic equations.

12.3 LEAST-SQUARES POLYNOMIAL FITTING

We now consider a problem in data analysis. Assume that during an experiment, we collect m measurements of a quantity
y that depends on a parameter t; in other words, we have the set of experimental points (t1, y1) , (t2, y2) , . . . , (tm, ym). We
want to use those m measurements to approximate other y values inside and outside the range t1 to tm, processes called



248 Numerical Linear Algebra with Applications

interpolation and extrapolation, respectively. One approach to the problem is to fit a polynomial to the data in the “least-
squares” sense. Assume the polynomial is

p (x) = anxn + an−1xn−1 + · · · + a2x2 + a1x+ a0.

Fit the polynomial by minimizing the sum of the squares of the deviation of each data point from the corresponding
polynomial value; in other words, find the polynomial that will minimize the residual

E =
m∑
i=1

(
yi −

(
a0 + a1ti + a2t2i + · · · + antni

))2
.

We know from multivariable calculus that we do this by requiring the partial derivatives of E with respect to a0, a1, . . . , an
be 0, or

∂E

∂ai
= 0, 0 ≤ i ≤ n.

The partial derivatives are

∂E
∂a0

= −2∑m
i=1

(
yi − a0 − a1ti − a2t2i − · · · − antni

)
∂E
∂a1

= −2∑m
i=1 ti

(
yi − a0 − a1ti − a2t2i − · · · − antni

)
∂E
∂a2

= −2∑m
i=1 t2i

(
yi − a0 − a1ti − a2t2i − · · · − antni

)
...

∂E
∂am

= −2∑m
i=1 tni

(
yi − a0 − a1ti − a2t2i − · · · − antni

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Setting these equations to zero, we have

a0m+ a1

m∑
i=1

ti + a2

m∑
i=1

t2i + · · · + an

m∑
i=1

tni =
m∑
i=1

yi

a0

m∑
i=1

ti + a1

m∑
i=1

t2i + · · · + an

m∑
i=1

tn+1i =
m∑
i=1

tiyi

a0

m∑
i=1

t2i + a1

m∑
i=1

t3i + · · · + an

m∑
i=1

tn+2i =
m∑
i=1

t2i yi

...

a0

m∑
i=1

tni + a1

m∑
i=1

tn+1i + · · · + an

m∑
i=1

t2ni =
m∑
i=1

tni yi (12.10)

Let Sk =∑m
i=1 tki , k = 0, 1, . . . , 2n, bk =∑m

i=1 tki yi, k = 0, 1, . . . , n, and write Equation 12.10 as a matrix equation.⎡⎢⎢⎢⎢⎢⎣
S0 S1 . . . Sn
S1 S2 . . . Sn+1
S2 S3 . . . Sn+2
...

...
. . .

...
Sn Sn+1 . . . S2n

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a0
a1
a2
...
an

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
b0
b1
b2
...
bn

⎤⎥⎥⎥⎥⎥⎦ . (12.11)

(Note that S0 = m.) This is a system of (n+ 1) equations in n+ 1 unknowns a0, a1, . . . , an.
We can write system 12.11 in a different form. Define the m× (n+ 1) Vandermonde matrix and the vector y

V =

⎡⎢⎢⎢⎣
1 t1 . . . tn1
1 t2 . . . tn2
...

...
. . .

...
1 tm . . . tnm

⎤⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎣
y1
y2
...
ym

⎤⎥⎥⎥⎦ .



Linear System Applications Chapter| 12 249

Using Equation 12.11, it follows that VTy = b:

VTy =

⎡⎢⎢⎢⎢⎣
1 1 . . . 1
t1 t2 . . . tm
...

...
. . .

...

tn1 tn2 . . . tnm

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
y1
y2
...
ym

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

∑m
i=1 yi∑m
i=1 tiyi
...∑m

i=1 tni yi

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
b0
b1
b2
...
bn

⎤⎥⎥⎥⎥⎥⎦ = b.

Now note that VTVa = b:

VTVa =

⎡⎢⎢⎢⎢⎣
1 1 . . . 1
t1 t2 . . . tm

...
...

. . .
...

tn1 tn2 . . . tnm

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 t1 . . . tn1
1 t2 . . . tn2
...

...
. . .

...

1 tm . . . tnm

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a0
a1
...
an

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
S0 S1 . . . Sn
S1 S2 . . . Sn+1
...

...
. . .

...
Sn Sn+1 . . . S2n

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a0
a1
...
an

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
b0
b1
...
bn

⎤⎥⎥⎥⎦ = b

by referencing Equation 12.11. Thus,

VTVa = VTy = b.

A system of equations of this form is called the normal equations.

12.3.1 Normal Equations

Definition 12.1. Let A ∈ Rm×n. The system of n equations and n unknowns

ATAx = ATy

is called the normal equations.

Normal equations will become very important when we discuss linear least-squares problems in Chapter 16. Usually in
these types of problems, either m > n (overdetermined system) or m < n (underdetermined system). If we have 25 data
points and want to fit a straight line in the least-squares sense, we have m = 25 and n = 2.
To solve our least-squares problem, compute VTy to obtain b. Then compute VTV and solve the square system

(
VTV

)
a = b.

Example 12.1. The following eight data points show the relationship between the number of fishermen and the amount
of fish (in thousand pounds) they can catch a day.

Number of Fishermen Fish Caught

4 7

5 8

9 9

10 12

12 15

14 20

18 26

22 35



250 Numerical Linear Algebra with Applications

0 5
0

X X

X

X

X

X

X

X

5

10

10

15

15

20

20

25

25

30

35

FIGURE 12.8 Linear least-squares approximation.

Case 1: First, we will fit a straight line (n = 1) to the data. The Vandermonde matrix V is of dimension 8 × 2, and its
transpose has dimension 2× 8, so VTV is a 2× 2 matrix. Compute

VTy = b =
[
1 1 1 1 1 1 1 1
4 5 9 10 12 14 18 22

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7
8
9
12
15
20
26
35

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[

132
1967

]
.

Now solve VTVa =
[

132
1967

]
to obtain the linear least-squares solution

a0 = −1.9105, a1 = 1.5669.

Thus, the line that fits the data in the least-squares sense is y = 1.5669x − 1.9105. Figure 12.8 shows the data and the
least-squares line (often called the regression line).

To estimate the value for 16 fishermen, compute 1.5669 (16)− 1.9105 = 23.1591.
Case 2: We will do a quadratic fit (n = 2).

VTy =
⎡⎣ 132

1967
33, 685

⎤⎦ = b

Now solve VTVa =
⎡⎣ 132

1967
33, 685

⎤⎦ to obtain a =
⎡⎣ 5.2060

0.1539
0.0554

⎤⎦. The best quadratic polynomial in the least-squares sense is
5.2060+ 0.1539x+ 0.0554x2. Figure 12.9 shows the data and the least-squares quadratic polynomial.

To estimate the value for 16 fishermen, compute 5.2060+ 0.1539 (16)+ 0.0554(16)2 = 21.8485. �

Remark 12.2. In Example 12.1, the quadratic polynomial appears to be more accurate; however, using a higher degree
polynomial does not guarantee better results. As the dimensions of the Vandermonde matrices get larger, they become
ill-conditioned.

Example 12.2. Estimating absolute zero.
Charles’s Law for ideal gas states that at constant volume a linear relationship exists between the pressure p and

the temperature t. An experiment takes gas in a sealed container that is initially submerged in ice water (t = 0 ◦C). The
temperature is increased in 10◦ increments with the pressure measured each 10◦.



Linear System Applications Chapter| 12 251

0 5
5

10

10

15

15

20

20

25

25

30

35

40

X

X

X

X

XX
X

X

FIGURE 12.9 Quadratic least-squares approximation.

t 0 10 20 30 40 50 60 70 80 90 100

p 0.94 0.96 1.00 1.05 1.07 1.09 1.14 1.17 1.21 1.24 1.28

After finding a linear least-squares estimate, extrapolate the function to determine absolute zero, i.e., the temperature
where the pressure is 0.

VTy =
[
1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.94
0.96
1.00
1.05
1.07
1.09
1.14
1.17
1.21
1.24
1.28

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[

12.1500
645.1000

]
.

Solve VTVa =
[
12.1500
645.100

]
to obtain the regression line p = 0.0034t+ 0.9336. The temperature when p = 0 is tabs zero =

− 0.9336
0.0034 = −273.1383. The true value of absolute zero in Celsius is −273.15 ◦C.
The function vandermonde(t,m) in the software distribution constructs the Vandermonde matrix. The following

MATLAB program finds the least-squares approximation to absolute zero and draws a graph (Figure 12.10) showing the
regression line and the data points.

>> t = 0:10:100;

>> V = vandermonde(t,1);

>> p = [.94 .96 1 1.05 1.07 1.09 1.14 1.17 1.21 1.24 1.28]’;

>> b = V’*p;

>> a = (V’*V)\b

a =

0.9336

0.0034

>> abszero_approx = -a(1)/a(2)

abszero_approx =

-273.1383

>> temp = [-300 100];

>> plot(t, p, ’o’, temp, a(2)*temp + a(1));



252 Numerical Linear Algebra with Applications

Temperature (°C)

Extrapolation of regression line to estimate absolute zero

P
re

ss
ur

e 
(a

tm
)

−300 −250 −200 −150 −100 −50 0 50 100

0

−0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

FIGURE 12.10 Estimating absolute zero.

>> xlabel(’temperature (C)’);
>> ylabel(’pressure (atm)’);
>> title(’Extrapolation of Regression Line to Estimate Absolute Zero’); �

An alternative to using least-squares is Lagrange interpolation. This process takes n distinct data points and finds the
unique polynomial of degree n− 1 that passes through the points. Lagrange interpolation is discussed in the problems.

Both least-squares and Lagrange interpolation fit one polynomial to the data. An alternative is to fit a piecewise
polynomial, and a premier method that uses this approach is cubic splines.

12.4 CUBIC SPLINE INTERPOLATION

Least squares can be used for either interpolation or extrapolation. Example 12.2 used extrapolation. When applying
interpolation in a range a ≤ t ≤ b, estimates can be computed only for values in that range. Most engineers and scientists
are familiar with linear interpolation (also called linear splines), in which the data points are joined by line segments, and
a value between two data points is estimated using a point on the line segment.

Example 12.3. An experiment yields measurements

{(1.3, 2.8) , (1.7, 3.2) , (1.9, 3.1) , (2.3, 3.5) , (2.7, 4.8) , (3.1, 4.2) , (3.6, 5.3) , (4.0, 4.8)} .
Given any value t in the range ti ≤ t ≤ ti+1

f (t) = yi + (t − ti)

(ti+1 − ti)
(yi+1 − yi) (12.12)

is a piecewise linear function defined for all points in the data set. For instance, approximate the measurement at t = 2.5.
The value of t lies between t4 = 2.3 and t5 = 2.7. Using Equation 12.12, the approximate value is f (2.5) = 3.5 +
(2.5−2.3)
(2.7−2.3) (4.8− 3.5) = 4.15 (Figure 12.11) �

Cubic splines use the same idea, but in a more sophisticated fashion. Instead of using a line segment between two points,
the algorithm uses a cubic polynomial (Figure 12.12) to form a piecewise cubic function. The data points ti−1, ti where two
polynomials from adjacent intervals meet are called knots. Following the development of cubic splines in Ref. [34] with
assistance from Ref. [35], assume the data points are

{(t1, y1) , (t2, y2) , (t3, y3) , . . . , (tn, yn) , (tn+1, yn+1)} ,



Linear System Applications Chapter| 12 253

2

f (2.5)=4.15

1 1.5 2.5
t

y

2.5

3

3.5

4

5

4.5

5.5

3 3.5 4

Linear interpolation

FIGURE 12.11 Linear interpolation.

t1

y1

p1(u) =a1+b1u+c1u
2+d1u

3

p2(u) =a2+b2u+c2u
2+d2u

3
pi(u) =ai+biu+ ciu

2+diu
3

pn(u) =an+bnu+cnu
2+dnu

3

pi −1(u) =ai −1+bi−1u+ci −1u
2+di−1u

3

y

y2 y3

t2 t3 ti

yi

tn

yn

ti+1

yi+1

tn+1

yn+1

tti−1

yi−1

FIGURE 12.12 Cubic splines.

and that the cubic polynomial pi, 1 ≤ i ≤ n between ti and ti+1 is parameterized by u

pi (u) = ai + biu+ ciu
2 + diu

3, 0 ≤ u ≤ 1. (12.13)

As it turns out, we will never need to deal directly with the ti. The algorithm deals with them implicitly. The polynomials
must agree at the points ti, 2 ≤ i ≤ n, which leads to

pi (0) = ai = yi, (12.14)

pi (1) = ai + bi + ci + di = yi+1. (12.15)

These conditions make the piecewise polynomial continuous. Let Di, 1 ≤ i ≤ n + 1, be the value of the first derivative
of the pi at the knots, and require that at the interior points the first derivatives must agree. This assures that the function
defined by the piecewise polynomials is continuous and differentiable. Thus, for i = 2, . . . , n

p′i (0) = bi = Di, (12.16)

p′i (1) = bi + 2ci + 3di = Di+1. (12.17)

Solve Equations 12.14–12.17 for ai, bi, ci, and di to obtain

ai = yi, (12.18)

bi = Di, (12.19)

ci = 3 (yi+1 − yi)− 2Di − Di+1, (12.20)

di = 2 (yi − yi+1)+ Di +Di+1. (12.21)



254 Numerical Linear Algebra with Applications

Using Equations 12.18–12.21, the ai, bi, ci, and di follow from the Di and yi.
Now require that the second derivatives match at the n− 1 interior points {t2, t3, . . . , tn}, so

p′′i−1 (1) = p′′i (0) ,

and

2ci−1 + 6di−1 = 2ci, 2 ≤ i ≤ n. (12.22)

Also require that p1 (0) = y1 and pn (1) = yn+1, which gives

a1 = y1, (12.23)

an + bn + cn + dn = yn+1. (12.24)

Each cubic polynomial pi, 1 ≤ i ≤ n has four unknown coefficients {ai, bi, ci, di}, so there are a total of 4n unknowns.
Here are the equations we have:

● Equating the polynomial values at the interior points: 2 (n− 1) equations
● Equating the first derivatives at the interior points: (n− 1) equations (substitute 12.14 into 12.15 to obtain only one

equation)
● Equating the second derivatives at the interior points: (n− 1) equations
● Require that p1 (0) = y1 and pn (1) = yn+1: 2 equations

TOTAL = 4n− 2 equations.

We still require two more equations. The choice of the two additional equations determines the type of cubic spline. Require

p′′1 (0) = 0,

p′′n (1) = 0, (12.25)

which implies

c1 = 0, (12.26)

2cn + 6dn = 0. (12.27)

With some manipulation, we can reduce the problem to the solution of an (n + 1) × (n+ 1) system of equations that
we can solve much faster. Using Equations 12.20 and 12.22, we have

2ci−1 + 6di−1 = 2
[
3 (yi+1 − yi)− 2Di − Di+1

]
.

From Equations 12.20 and 12.21, it follows that

ci−1 = 3 (yi − yi−1)− 2Di−1 − Di
di−1 = 2 (yi−1 − yi)+ Di−1 + Di,

so

2
[
3 (yi − yi−1)− 2Di−1 − Di

]+ 6
[
2 (yi−1 − yi)+ Di−1 + Di

] = 2
[
3 (yi+1 − yi)− 2Di − Di+1

]
(12.28)

Simplify Equation 12.28 andmove the unknowns to the left-hand side, andwe have the n−1 equations in n+1 unknowns.
Di+1 + 4Di + Di−1 = 3 (yi+1 − yi−1) , 2 ≤ i ≤ n. (12.29)

We must add two more equations to Equation 12.29. From Equation 12.20, c1 = 3 (y2 − y1)− 2D1 −D2, and by using
Equation 12.26

2D1 + D2 = 3 (y2 − y1) . (12.30)

From Equation 12.27 cn = −3dn, and by substituting it into Equation 12.24, there results
an + bn − 2dn = yn+1. (12.31)

Apply Equations 12.18, 12.19, and 12.21 with i = n in Equation 12.31, and perform some algebra, to obtain

Dn + 2Dn+1 = 3 (yn+1 − yn) . (12.32)



Linear System Applications Chapter| 12 255

After adding Equations 12.30 and 12.32 to Equation 12.29, we have the symmetric tridiagonal system⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1
1 4 1

1 4 1
1 4 1

...
. . .

. . .
. . .

. . .
. . .

...
1 4 1

1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1
D2
D3
D4
...
Dn
Dn+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 (y2 − y1)
3 (y3 − y1)
3 (y4 − y2)

...
3 (yn − yn−2)
3 (yn+1 − yn−1)
3 (yn+1 − yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12.33)

Solve this (n+ 1)× (n+ 1) tridiagonal system using the linear [O (n)] Thomas algorithm presented in Section 9.4, and
apply Equations 12.18–12.21 to determine the {ai, bi, ci, di}.

We have defined natural cubic splines. There are other ways to obtain the two additional equations. The not-a-knot
condition requires that the third derivatives are continuous at t2, and tn. In a clamped cubic spline, the first derivative of
the spline is specified at the end points, so that p′1 (0) = f ′ (0) and p′n (1) = f ′ (xn+1). This requires that the derivatives are
known or can be estimated at the endpoints.

Algorithm 12.1 builds natural cubic splines. It also graphs the data and the spline approximation, but it does not perform
interpolation at a specified point or points. That is left to the exercises.

Algorithm 12.1 Cubic Spline Approximation

function CUBICSPLINEB(t,y)

% CUBSPLINEB Natural cubic spline interpolation

% CUBSPLINEB(t,y) computes a natural cubic spline approximation

% to the data t, y. It then plots the data and the cubic spline.

% Input: n+ 1 data points (t1yi).

% Output: n× 4 matrix. Row 1 is the cubic polynomial fit to

% t1 ≤ t ≤ t2, . . ., Row n is the cubic polynomial fit to

% tn ≤ t ≤ tn+1. The function makes a plot of the data

% and the cubic spline approximation.

b1 = 2

bn+1 = 2

% build the right-hand side of the system.

rhs1 = 3 (y2 − y1)

rhsn+1 = 3 (yn+1 − yn)

for i = 2:n do
rhsi = 3 (yi+1 − yi−1)

end for
% solve the system using the linear Thomas algorithm.

D = thomas (a,b, c,rhs)

% construct the cubic polynomials in the rows of S.

for i = 1:n do
Si1 = 2 (yi − yi+1)+ Di + Di+1
Si2 = 3 (y+1 − yi)− 2Di − Di+1
Si3 = Di
Si4 = yi

end for
% plot the data and the cubic spline approximation.

for i = 1:n do
pi = spline Si
plot pi over the interval ti ≤ t ≤ ti+1

end for
plot (t,y), marking each point with ’*’

end function

NLALIB: The function cubicsplineb implements Algorithm 12.1.



256 Numerical Linear Algebra with Applications

t

y

1 1.5 2 2.5
2.5

3

3

3.5

3.5

4

4.5

5.5
Natural cubic spline approximation for seven data points

6

4

FIGURE 12.13 Cubic spline approximation.

Example 12.4. Using the data from Example 12.3, fit the data using cubic spline interpolation and graph the results
(Figure 12.13). Approximate the value at tval = 2.5.

>> S = cubicsplineb(t,y);

>> p = S(4,:);

>> tval = 2.5;

>> % compute value of parameter u by interpolation;
>> u = (tval - t(4))/(t(5) - t(4));

>> polyval(p, u)

ans =

4.2868 �

12.5 CHAPTER SUMMARY

Fourier Series

A Fourier series is an infinite series of trigonometric functions that, under the correct conditions, converges to a periodic
function. Fourier series expose frequencies in waves and can serve as an exact solution to some partial differential equations.
Computing Fourier series for square, sawtooth, and triangle waves is useful in the analysis of musical sounds.

Finite Difference Approximations

A finite difference approximation is an expression involving the function at various points that approximates an ordinary or
a partial derivative. To approximate the solution to an ordinary or partial differential equation, approximate the derivatives
at a series of grid points, normally close together. Using boundary and initial conditions that determine the right-hand
side, create a linear system of equations. The solution provides approximations to the actual solution at the grid points.
In this chapter, we use finite differences to approximate the solution to the one-dimensional heat equation with initial
and boundary conditions. This requires solving a large tridiagonal system, for which we use the Thomas algorithm from
Section 9.4.



Linear System Applications Chapter| 12 257

Least-Squares Polynomial Fitting

Given experimental data points (t1, y1) , (t2, y2) , . . . (tm, ym), find a unique polynomial p (t) = antn + an−1tn−1 + · · · +
a2t2 + a1t + a0 such that

E =
m∑
i=1

(
yi −

(
a0 + a1ti + a2t2i · · · + antni

))2
is a minimum. The minimum occurs when

∂E

∂a0
= 0,

∂E

∂a1
= 0, . . . ,

∂E

∂an
= 0.

After some manipulation, we determine that this results in an (n+ 1) × (n+ 1) system of equations. If we define the
m× (n+ 1) Vandermonde matrix as

V =

⎡⎢⎢⎢⎣
1 t1 . . . tn1
1 t2 . . . tn2
...

...
. . .

...
1 tm . . . tnm

⎤⎥⎥⎥⎦ ,

then it follows that the system of equations we have to solve is

VTV

⎡⎢⎢⎢⎣
a0
a1
...
an

⎤⎥⎥⎥⎦ = VT

⎡⎢⎢⎢⎣
y1
y2
...
ym

⎤⎥⎥⎥⎦ .

This is an example of the normal equations, the primary equations for linear least-squares problems that we will study in
Chapter 16.

Cubic Spline Interpolation

A polynomial least-squares approximation can be used for interpolation or extrapolation. If high-accuracy interpolation is
required, cubic splines are a superior choice. Given the experimental data points

{(t1, y1) , (t2, y2) , (t3, y3) , . . . , (tn, yn) , (tn+1, yn+1)} ,
fit a cubic polynomial pi, 1 ≤ i ≤ n between ti and ti+1 parameterized by u

pi (u) = ai + biu+ ciu
2 + diu

3, 0 ≤ u ≤ 1.

Require that the cubics agree with the y-data at t1, t2, . . . , tn+1; in addition, require that the first and second derivatives of
the splines match at the interior points

(t2, y2) , (t3, y3) , . . . , (tn, yn) ,

and that the second derivative of p1 is zero at t1, and the second derivative of pn is zero at tn+1. After some manipulation,
there results an (n+ 1)×(n+ 1) tridiagonal system of equations that must be solved. This is quickly done using the Thomas
algorithm.

Cubic splines have many applications, including computer graphics, image interpolation and digital filtering, and
modeling airplane drag as a function of mach number, the speed of the airplane with respect to the free stream airflow [36].

12.6 PROBLEMS

12.1 The following function S is called a sawtooth wave and has period 2π :

S (t) =
{

t −π < t < π

S (t + 2πk) = S (t) −∞ < t < ∞, k ∈ Z

The file sawtooth.mp3 in the book software distribution plays the sawtooth wave sound. Figure 12.14 is a graph of
the function over the interval −4π ≤ t ≤ 4π . Find its Fourier series. Hint: The sawtooth wave is an odd function.



258 Numerical Linear Algebra with Applications

−15 −10 −5 0 5 10 15
−4

−3

−2

−1

0

1

2

3

4

Time (t)

A
m

pl
it
ud

e

Sawtooth wave with period 2p 

FIGURE 12.14 Sawtooth wave with period 2π .

12.2 Find the Fourier series for the triangle wave defined by

f (t) =
{

π
2 + t, −π ≤ t ≤ 0
π
2 − t, 0 < t ≤ π

.

12.3 Find the Fourier series for the function

f (t) =

⎧⎪⎨⎪⎩
−1, −π ≤ t ≤ −π

2

0, −π
2 < t ≤ π

2

1, π
2 < t ≤ π

.

12.4 Orthogonal functions play an important role in mathematics, science, and engineering, and the Fourier series is an
example. Another example is the Chebyshev polynomials that play an important role in proving the convergence
of the conjugate gradient method for solving large, sparse, linear systems, among other uses. We will discuss this
method in Chapter 21. One approach to define the Chebyshev polynomials is through the use of trigonometric
functions.
a. By using the trigonometric identities

cos (α + β) = cos α cos β − sin α sin β,

sin (α + β) = sin (α) cos (β)+ cos (α) sin (β) ,

cos2 (θ)+ sin2 (θ) = 1,

show that

cos ((n+ 1) θ) = 2 cos θ cos nθ − cos ((n − 1) θ) . (12.34)

b. The Chebyshev polynomial, Tn (x) of degree n is a polynomial with integer coefficients such that

cos nθ = Tn (cos θ) ;

in other words there is a polynomial

Tn (x) = anx
n + an−1xn−1 + · · · + a2x

2 + a1x+ a0

such that

cos nθ = an cosn θ + an−1 cosn−1 θ + · · · + a2 cos2 θ + a1 cos θ + a0. (12.35)



Linear System Applications Chapter| 12 259

i. Show that Equation 12.35 is true for n = 0 and n = 1.
ii. By applying Equation 12.34, use mathematical induction to prove Equation 12.35 for all n.
iii. Let x = cos θ so that θ

Tn (x) = cos
(
n cos−1 (x)

)
, −1 ≤ x ≤ 1.

iv. Show that

max−1≤x≤1Tn (x) = 1.

v. Prove that the n roots of Tn (x) are

xi = cos

(
(2i− 1) π

2n

)
.

vi. Prove that the Chebyshev polynomials satisfy the recurrence relation

Tn+1 (x) = 2xTn (x)− Tn−1 (x) . (12.36)

vii. Using Equation 12.36, find the first five Chebyshev polynomials.
c. If f and g are continuous functions over the interval a ≤ x ≤ b, then f and g are orthogonal with respect to the
weight function w if ∫ b

a
f (x) g (x)w (x) dx = 0.

Show that the Chebyshev polynomials are orthogonal over−1 ≤ x ≤ 1 with respect to the weight function

1√
1− x2

.

by proceeding as follows.
i. Investigate the possible values of ∫ π

0
cosmθ cos nθ dθ .

ii. Make a change of variable x = cos θ and show that∫ 1

−1
Tm (x) Tn (x)

dx√
1− x2

= 0, m �= n

12.5 Finite difference methods are also used to approximate the solution to ordinary differential equations. Consider the
boundary value problem for the general second-order equation with constant coefficients

d2y

dx2
+ p

dy

dx
+ qy = r (x) , a ≤ x ≤ b,

y(a) = YA, y(b) = YB.

Let the interval a ≤ x ≤ b be divided into n subintervals of width h = (b− a)/n. Using the central difference
approximations

d2y

dx2
≈ yi+1 − 2yi + yi−1

h2
,

dy

dx
≈ yi+1 − yi−1

2h
,

find the linear system that must be solved to approximate y2, y3, . . . , yn.
12.6 Although not used as often as cubic splines, quadratic splines use a quadratic equation pi (x) = aix2 + bix + ci

between knots. Assume that the data points are

(x1, y1) , (x2, y2) , . . . , (xn, yn) , (xn+1, yn+1)

and that the piecewise quadratic function is continuous and differentiable. Determine the set of linear equations that
determine the coefficients ai, bi, and ci. You will need one additional equation so that the system is square. Do this
by assuming that

p′′1 (x1) = 0.



260 Numerical Linear Algebra with Applications

12.6.1 MATLAB Problems

12.7 Recall Figure 12.2 in which partial sums of the Fourier series for the square wave were graphed on the same set of
axes, demonstrating convergence.Write aMATLAB program that graphs the sawtooth wave defined in Problem 12.1
over −2π ≤ t ≤ 2π , along with the partial sums for n = 3, 7, 10, 12.

12.8 Repeat Problem 12.7 for the triangle wave defined in Problem 12.2.
12.9 Repeat Problem 12.7 for the periodic function defined in Problem 12.3.

12.10 TheGibbs phenomenon is the oddway in which the Fourier series of a piecewise continuously differentiable periodic
function behaves at a jump discontinuity, such as that in a square or triangle wave [37]. The nth partial sum of the
Fourier series exhibits large oscillations near the jump, which might cause the partial sum’s value to rise above the
function value. The overshoot does not die out as the number of terms in the partial sum increases, but approaches a
finite limit. Experiment with the sawtooth wave defined in Problem 12.1 and present evidence of the phenomenon.

12.11 Use heateq.m to approximate and graph the solution of the following heat conduction problem:

∂u

∂t
= 1.25

∂2u

∂x2
, 0 ≤ x ≤ 5.0, 0 ≤ t ≤ 1.0,

u (0, t) = u (L, t) = 0,

u (x, 0) = x sin x.

12.12
a. Write a function

[x,y] = ode2ndconst(a,b,n,YA,YB,p,q,r)

% The function solves a general second order linear ODE of the form:

% d2y/dx2 + p(dy/dx) + qy = r(x)

% using the finite difference method.

% The boundary conditions are assumed to be of the form:

% y(a) = YA and y(b) = YB

% Second order central differences are used.

%Input arguments:

% a First value of x (first point in the domain).

% b Last value of x (last point in the domain).

% n Number of subintervals.

% YA Boundary condition at x=a.

% YB Boundary condition at x=b.

% p The constant p.

% q The constant q.

% r Right-hand side function r(x).

%Output arguments:

% x A vector with the x coordinate of the solution points.

% y A vector with the y coordinate of the solution points.

that uses the result of Problem 12.5 to solve a boundary value problem for a general linear ordinary differential
equation with constant coefficients.

b. Graph the solution to the problem

d2y

dx2
+ 8

dy

dx
+ 5y = sin (x) , 0 ≤ x ≤ 2,

y (0) = 1, y (2) = 2.

12.13 a. Modify your function in Problem 12.12 to approximate the solution of a boundary value problem for a linear
ordinary differential equation of the form

dy2

dx2
+ p (x)

dy

dx
+ q (x) y = r (x) , a ≤ x ≤ b

y (a) = YA, y (b) = YB

Name your function ode2nd.



Linear System Applications Chapter| 12 261

b. Plot the solution to each boundary value problem.
i. d2y

dx2
+
(

1
1+x2

)
dy
dx +

(
x2 − 1

)
y = 1, y (1) = 1, y (5) = 2

ii. d2y
dx2
+ x sin (x) dy

dx + x2y = coth (x) , y (−1) = −1, y (6) = −2
12.14

a. Plot the data, the linear regression line, and the quadratic least-squares curve on the same set of axes.

t y
1.3 −12.3
1.8 −8.5
2.3 −5.6
3.6 −2.3
4.9 −0.5
5.3 1.3
6.5 1.5

b. Compute both linear and quadratic least-squares estimates for t = 2.0 and t = 6.8.
12.15 The data in the table give the approximate population of the United States for selected years from 1845 until 2000.

Year 1845 1871 1915 1954 2000

Populations (millions) 20 30 100 160 280

Assume that the population growth can be modeled with an exponential function p = bemx, where x is the
year and p is the population in millions. Use linear least squares to determine the constants b and m for which the
function best fits the data. Use the equation to estimate the population in the year 1970. Hint: Take the logarithm of
the function.

12.16
a. Develop a MATLAB function

function p = lq(t, y, n)

that finds the least-squares fit for the data (t, y). The return value is the polynomial in MATLAB format; in other
words, if the polynomial is

ant
n + an−1tn−1 + · · · + a2t

2 + a1t + a0,

then p = [
an an−1 . . . a2 a1 a0

]T
.

b.
Use your function to verify your calculations in Problem 12.14. Also, fit a cubic polynomial and compare the
results with the lower-order approximations.

12.17 Find out how MATLAB performs least-squares fitting, and solve Problem 12.14.
12.18 Lagrange interpolation is an alternative to least squares. Given n points

{(t1, y1) , (t2, y2) , . . . , (tn, yn)} ,
there is a unique polynomial of degree n−1 that passes through all n points. One approach is to find the polynomial

p (t) = an−1tn−1 + an−2tn−2 + · · · + a2t2 + a1t + a0

by solving the system of equations

an−1tn−11 + an−2tn−21 + · · · + a2t21 + a1t1 + a0 = y1

an−1tn−12 + an−2tn−22 + · · · + a2t
2
2 + a1t2 + a0 = y2

...

an−1tn−1n + an−2tn−2n + · · · + a2t
2
n + a1tn + a0 = yn

To approximate a value y at t between t1 and tn, compute y = p
(
t
)
.

a. Write a function p = lagrange1(t,y) that returns the interpolating polynomial for the data (t, y).



262 Numerical Linear Algebra with Applications

b. Find the fourth-order interpolating polynomial for the points {(1, 2) , (1.5, 2.5) , (2.3, 3.5) , (2.9, 4.5) , (3.3, 5.0)}
and graph the points and the polynomial on the same set of axes.

c. Graph the points and the seventh-order polynomial that passes through
t = (0:7)’, y = [0 2 0 2 0 2 0 2]’.

d. Graph the points and the cubic spline approximation.
e. Comment on the results.

12.19 Sometimes it is not necessary to employ linear algebra to solve a problem. It may be more efficient to approach
the problem a different way. This problem presents an alternate approach to Lagrange interpolation as presented in
Problem 12.18. Given n points

{(t1, y1) , (t2, y2) , . . . , (tn, yn)} ,
there is a unique polynomial p (t) of degree n− 1 that passes through all n points.
a. Show that

p (t) =
(
t − t2

) (
t− t3

)
. . . (t − tn)(

t1 − t2
) (
t1 − t3

)
. . .

(
t1 − tn

) y1 + (
t − t1

) (
t − t3

)
. . . (t − tn)(

t2 − t1
) (
t2 − t3

)
. . .

(
t2 − tn

) y2 + · · · + (
t − t1

) (
t − t2

)
. . .

(
t − tn−1

)(
tn − t1

) (
tn − t2

)
. . .

(
tn − tn−1

) yn .
b. Repeat Problem 12.18, part (b), by developing a function p = lagrange2(t,y) that uses the polynomial of

part (a). You will find the MATLAB function conv useful in constructing the product of polynomial factors.
12.20 There is a famous example, known as Runge’s phenomenon, showing that a Lagrange polynomial (discussed

in Problems 12.18 and 12.19) may oscillate at the edges of an interval when using Lagrange interpolation with
polynomials of high degree. Let

f (x) = 1

1+ 25x2
,

and consider interpolation at the points (xi, f (xi)), where

xi = −1+ 2 (i− 1)
n

, 1 ≤ i ≤ n+ 1.

Plot f (x) and the Lagrange interpolate for n = {5, 10, 15, 20} on the same axes. Comment on the results.
12.21 Write a function lininterp(t,y,tval) that performs linear interpolation to approximate the data value at tval.

Test it with the data from Example 12.3.
12.22

a. Remove the plotting code from cubsplineb and name the function cubspline. It returns only the matrix of
cubic polynomials.

b. Write a function ival = cubsplineinterp(S, t, tval).
S is the matrix of cubic polynomials that defines a cubic spline.
t is the vector of independent variables.
tval is the value at which to interpolate.
ival is the interpolated value at tval.

c. Using the data from Example 12.3, approximate the values at t = 1.5, 1.85, 2.55, 3.0, 3.8.
12.23 Determine how MATLAB performs not-a-knot cubic spline interpolation and use MATLAB to solve Prob-

lem 12.22(c).



Chapter 13

Important Special Systems

You should be familiar with

● Tridiagonal matrices
● Gaussian elimination
● Pivoting
● Symmetric matrices
● Eigenvalues
● Expansion by minors

In Chapter 12, we used finite difference methods to approximate the solution to the heat equation

∂u

∂t
= c

∂2u

∂x2
, 0 ≤ x ≤ L, 0 ≤ t ≤ T ,

u (0, t) = u (L, t) = 0,

u (x, 0) = f (x) .

The technique involved successively solving a system of equations with the following matrix:

B =

⎡⎢⎢⎢⎢⎢⎢⎣

1+ 2r −r 0 . . . 0
−r 1+ 2r −r . . . 0

0
. . .

. . .
. . .

...
...

... −r 1+ 2r −r
0 0 0 −r 1+ 2r

⎤⎥⎥⎥⎥⎥⎥⎦ .

There are three things we should notice about the matrix:

● It is symmetric
● It is tridiagonal
● It is diagonally dominant; in other words, each diagonal element aii has larger absolute value than the sum of the other

entries in its row (|aii| > ∑
j=1,...,n, j �=i

∣∣aij∣∣).
When discussing cubic splines in Chapter 12, we encountered another symmetric, diagonally dominant, tridiagonal
coefficient matrix: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1
1 4 1

1 4 1
1 4 1

...
. . .

. . .
. . .

. . .
. . .

...
1 4 1

1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Both of these matrices have yet another feature in common; they are positive definite. Matrices with these special features
frequently occur in engineering and science applications, and it is appropriate that we devote a chapter to them.

13.1 TRIDIAGONAL SYSTEMS

When a matrix T is tridiagonal and nonsingular, its LU decomposition without pivoting yields bidiagonal matrices L and
U. L has 1’s on the main diagonal as usual, but the superdiagonal entries of U are the same as those of T.

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00013-2
Copyright © 2015 Elsevier Inc. All rights reserved. 263



264 Numerical Linear Algebra with Applications

Example 13.1. Let A =

⎡⎢⎢⎣
1 4 0 0
−1 5 1 0
0 2 −1 −9
0 0 3 7

⎤⎥⎥⎦. The function lugauss developed in Chapter 11 performs the LU

decomposition without partial pivoting, and the MATLAB segment factors A using lugauss.

>> [L U] = lugauss(A)

L =

1.0000 0 0 0

-1.0000 1.0000 0 0

0 0.2222 1.0000 0

0 0 -2.4545 1.0000

U =

1.0000 4.0000 0 0

0 9.0000 1.0000 0

0 0 -1.2222 -9.0000

0 0 0 -15.0909 �

We will investigate the general problem using a 4 × 4 matrix. Doing this will make it clear how to factor a general
tridiagonal matrix. Consider the equation⎡⎢⎢⎢⎣

b1 c1 0 0
a1 b2 c2 0

0 a2 b3 c3
0 0 a3 b4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 0 0
l1 1 0 0

0 l2 1 0

0 0 l3 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
u1 c1 0 0
0 u2 c2 0

0 0 u3 c3
0 0 0 u4

⎤⎥⎥⎥⎦ (13.1)

=

⎡⎢⎢⎢⎣
u1 c1 0 0
l1u1 l1c1 + u2 c2 0

0 l2u2 l2c2 + u3 c3
0 0 l3u3 l3c3 + u4

⎤⎥⎥⎥⎦ .

Equate both sides of Equation 13.1 to obtain

u1 = b1, l1u1 = a1, l1c1 + u2 = b2,

l2u2 = a2, l2c2 + u3 = b3, l3u3 = a3,

l3c3 + u4 = b4,

from which follows

u1 = b1, l1 = a1/u1, u2 = b2 − l1c1, (13.2)

l2 = a2/u2, u3 = b3 − l2c2, l3 = a3/u3, (13.3)

u4 = b4 − l3c3. (13.4)

Since u1 = b1, we can compute l1 = a1/u1. Knowing l1, we have u2 = b2 − l1c1. Similarly, we can compute l2, l3 and
u3, u4. Using the 4× 4 case as a model (Equation 13.3), the li and ui are computed as follows:

u1 = b1,

li = ai/ui, 1 ≤ i ≤ n− 1,

ui+1 = bi+1 − lici, 1 ≤ i ≤ n− 1.



Important Special Systems Chapter| 13 265

Algorithm 13.1 Computing the LU Decomposition of a Tridiagonal Matrix

function TRIDIAGLU(a,b,c)

% Factor the tridiagonal matrix defined by subdiagonal a,

% main diagonal b and superdiagonal c

% into a product of two bidiagonal matrices

% Input: vectors a, b, c.

% Output: L is the subdiagonal of the left bidiagonal factor.

% U is the diagonal of the right bidiagonal factor.

U1 = b1
for i =1:n-1 do

Li = ai/Ui
Ui+1 = bi+1 − Lici

end for
end function

NLALIB: The function tridiagLU implements Algorithm 13.1.

Remark 13.1.

● After running Algorithm 13.1, the bidiagonal systems must be solved in the order (i) Ly = b and (ii) Ux = y.
● For efficiency, Algorithm 13.1 accepts the three vector diagonals and returns the two vectors that must be computed by

the decomposition.
● It should be noted that this algorithm does not work if any ui = 0, but this occurs very seldom in practice. Unfortunately,

the stability of the algorithm cannot be guaranteed.

This is an O (n) algorithm and thus very fast compared to the general LU decomposition. The for loop executes n−1 times,
each execution involves one division, one subtraction, and one multiplication, so the flop count for the decomposition is
3 (n− 1). Forward substitution requires 2 (n− 1) flops (verify), and back substitution requires 1+ 3 (n− 1) (verify) flops.
The total number of flops to solve a system Tx = b is thus 3 (n− 1)+2 (n− 1)+3 (n− 1)+1 = 8n−7 flops. The Thomas
algorithm presented in Chapter 9 requires 10n − 3 flops, so decomposition followed by forward and back substitution is
more efficient. Furthermore, if multiple systems Txi = bi, 1 ≤ i ≤ k need to be solved, the Thomas algorithm will cost
k (10n− 3), but the cost of the decomposition approach is 3 (n− 1)+ k (5n− 4) flops, a significant improvement.

Example 13.2. Factor the matrix A =
⎡⎣ 1 2 0
5 7 1
0 1 3

⎤⎦
u1 = 1

i = 1:

l1 = a1
u1
= 5

1 = 5; u = b2 − l1c1 = 7− (5) (2) = −3
i = 2:

l2 = a2
u2
= 1

−3 = − 1
3 u3 = b3 − l2c2 = 3−

(
− 1

3

)
(1) = 10

3

The factorization is

L =
⎡⎣ 1 0 0
5 1 0
0 − 1

3 1

⎤⎦ , U =
⎡⎣ 1 2 0
0 −3 1
0 0 10

3

⎤⎦ . �

Algorithm 13.2 solves Tx = LUx = b. Since the superdiagonal of U is the same as T, the superdiagonal will need to be
passed as an argument to trisolve.

NLALIB: The function trisolve implements Algorithm 13.2.



266 Numerical Linear Algebra with Applications

Algorithm 13.2 Solve a Factored Tridiagonal System

function TRISOLVE(L,U,c,rhs)

% Solve the equation Tx = b, where T is a tridiagonal matrix.

% T has been factored into a unit lower-bidiagonal matrix and an upper

% bidiagonal matrix.

% Input: L is the subdiagonal of the lower diagonal matrix, U is the diagonal

% of the upper diagonal matrix, c is the superdiagonal

% of the original tridiagonal matrix,

% and rhs is the right-hand side of the system Tx = rhs.

% Output: The solution x.

% forward substitution

y1 = rhs1
for i = 2:n do

yi = rhsi − Li−1yi−1
end for
% back substitution

xn = yn/Un
for i = n-1:-1:1 do

xi = (yi − cixi+1) /Ui
end for

end function

Example 13.3. Let

T =

⎡⎢⎢⎢⎢⎢⎣
1 15 0 0 0

2 −1 3 0 0

0 −8 5 7 0
0 0 4 6 12
0 0 0 −18 7

⎤⎥⎥⎥⎥⎥⎦ ,

and solve

Tx = [
1 −1 5 0 3

]T
.

The MATLAB code factors T using trifactLU and then solves the system Tx = b using trisolve. The results are
verified by performing the calculation using the MATLAB operator “\”.

>> a = [2 -8 4 -18]’;

>> b = [1 -1 5 6 7]’;

>> c = [15 3 7 12]’;

>> rhs = [1 -1 5 0 3]’;

>> [L U] = tridiagLU(a,b,c);

>> x = trisolve(L,U,c,rhs)

x =

-3.2789

0.2853

1.9477

-0.3509

-0.4738

>> A = trid(a,b,c);

>> A\rhs



Important Special Systems Chapter| 13 267

ans =

-3.2789

0.2853

1.9477

-0.3509

-0.4738 �

13.2 SYMMETRIC POSITIVE DEFINITE MATRICES

Let A =
[
1 0
0 1

]
and form xTAx:

xTAx = [
x1 x2

] [ 1 0
0 1

] [
x1
x2

]
= x21 + x22.

Note that xTAx > 0 for all x =
[
x1
x2

]
�=
[
0
0

]
. This expression is an example of a symmetric positive definite matrix, and

xTAx is a quadratic form.

Definition 13.1. A symmetric matrix A is positive definite if for every nonzero vector x =

⎡⎢⎢⎢⎢⎢⎣
x1
x2
x3
...
xn

⎤⎥⎥⎥⎥⎥⎦, xTAx > 0. The

expression xTAx = ∑n
i=1

∑n
j=1 aijxixj is called the quadratic form associated with A. If xTAx ≥ 0 for all x �=0, then the

symmetric matrix A is called positive semidefinite.

Remark 13.2. In this book, all positive definite matrices will also be symmetric, so we simply use the term positive
definite. It is possible for a nonsymmetric matrix to satisfy

xTAx > 0, x �= 0

(Problem 13.3), but there is no general agreement on what positive definite means for nonsymmetric matrices.

Positive definite matrices are important in a wide variety of applications. Many large matrices used in finite difference
approximations to the solution of partial differential equations are positive definite, and positive definite matrices are
important in electrical engineering problems, optimization algorithms, and least squares.

Example 13.4. a. Show that the symmetric matrix A =
[

2 −1
−1 2

]
is positive definite.

[
x1 x2

] [ 2 −1
−1 2

] [
x1
x2

]
= [

2x1 − x2 −x1 + 2x2
] [ x1

x2

]
=

2x21 − 2x1x2 + 2x22 = x21 + (x1 − x2)2 + x22 > 0,

[
x1
x2

]
�= 0

b. Suppose we try using the definition to show the matrix C =
⎡⎣ 1 1 1
1 2 1
1 1 3

⎤⎦ is positive definite. Compute xTAx to obtain

x1 (x1 + x2 + x3)+ x2 (x1 + 2x2 + x3)+ x3 (x1 + x2 + 3x3) .

Showing that this expression is greater than zero for all x > 0 is messy. Imagine the problem with a 50 × 50 matrix.
There must be a better way than using the definition. Theorem 13.1 begins to address this issue. �

Wewill prove properties 1 and 3 of Theorem 13.1 and leave the proofs of 4 and 5 to the exercises. For a proof of property
2, see Ref. [38].



268 Numerical Linear Algebra with Applications

Theorem 13.1. 1. A symmetric n× n matrix A is positive definite if and only if all its eigenvalues are positive.
2. A symmetric matrix A is positive definite if and only if all its leading principle minors are positive; that is det A (1 : i, 1 : i) >

0, 1 ≤ i ≤ n. This called Sylvester’s criterion.
3. If A = (

aij
)
is positive definite, then aii> 0 for all i.

4. If A = (
aij
)
is positive definite, then the largest element in magnitude of all matrix entries must lie on the diagonal.

5. The sum of two positive definite matrices is positive definite.

Proof. In Chapter 19 we will prove that any n × n real symmetric matrix has orthonormal eigenvectors that form a basis
for Rn. To prove (1), assume that xi is an eigenvector of A with corresponding eigenvalue λi, so Axi = λxi. Let x �= 0 be a
vector in Rn. Then, x = c1x1 + c2x2 + · · · + cnxn, and

xTAx = (c1x1 + c2x2 + · · · + cnxn)T A (c1x1 + c2x2 + · · · + cnxn) (13.5)

= (c1x1 + c2x2 + · · · + cnxn)T (c1λ1x1 + c2λ2x2 + · · · + cnλnxn) (13.6)

= c21λ1 ‖x1‖22 + c22λ2 ‖x2‖22 + · · · + c2nλn ‖xn‖22 > 0 (13.7)

If all {λi} are positive, Equation 13.7 guarantees that A is positive definite. Now assume that A is positive definite and
that x is an eigenvector of A corresponding to eigenvalue λ. Then,

xTAx = xTλx = λ ‖x‖22 > 0, x �= 0

so λ > 0.
To prove (3), let ei be the ith standard basis vector ei =

[
0 0 . . . 1 0 . . . 0

]T
. Then,

eTi Aei = aii > 0.

Remark 13.3. To show that a matrix is positive definite, one can compute its eigenvalues and verify that they are all
positive, although we know that computing eigenvalues is a tricky process. Sylvester’s criterion can be made practical
(Problem 13.29), although it requires some care. Note that items 3 and 4 are necessary conditions only; in other words, if a
matrix A does not satisfy either item 3 or 4, then it cannot be positive definite. You can use the items only to show that A is
not positive definite.

Remark 13.4. A matrix is negative definite if xTAx < 0 for all x �= 0. In this case, −A is positive definite. A matrix is
symmetric indefinite if it has both positive and negative eigenvalues or, put another way, if xTAx assumes both positive and
negative values.

Example 13.5.
a. The matrices

A =

⎡⎢⎢⎢⎢⎣
1 4 0 3 9
23 8 1 −1 4
0 4 7 −8 7
2 −13 12 0 5
1 4 2 8 1

⎤⎥⎥⎥⎥⎦, B =

⎡⎢⎢⎣
1 −1 0 9
8 45 3 19
0 15 16 35
3 −55 2 22

⎤⎥⎥⎦
cannot be positive definite because A has a diagonal element of 0, and the largest element in magnitude (−55) is not on
the diagonal of B.

b. The eigenvalues of C =
⎡⎣ 1 1 1
1 2 1
1 1 3

⎤⎦ are λ1 = 0.3249, λ2 = 1.4608, λ3 = 4.2143, all positive, so C is positive definite.
�

Tridiagonal matrices appear so frequently in engineering and science applications that we state Theorem 13.2 without
proof, since it provides a simple way to test if a tridiagonal matrix is positive definite.



Important Special Systems Chapter| 13 269

Theorem 13.2.

Suppose that a real symmetric tridiagonal matrix A =

⎡⎢⎢⎢⎢⎢⎢⎣

b1 a1
a1 b2 a2

a2
. . .

. . .
. . . bn−1 an−1

an−1 bn

⎤⎥⎥⎥⎥⎥⎥⎦ with diagonal entries all positive is

strictly diagonally dominant, i.e., bi > |ai−1| + |ai| , 1≤ i ≤ n. Then A is positive definite.

13.2.1 Applications

In Section 12.3.1, we defined the normal equations, ATAx = ATy, and observed their connection with least-squares
polynomial approximation. It is important to note that if A is nonsingular

xT
(
ATA

)
x = (Ax)T (Ax) = 〈Ax, Ax〉 > 0, x �= 0,

so ATA is positive definite.
Positive definite matrices frequently occur when using finite difference or finite element methods to approximate the

solution to partial differential equations. For instance, in Section 12.2.1, we used a finite difference technique to approximate
the solution to the heat equation and needed to solve a tridiagonal system with the coefficient matrix

B =

⎡⎢⎢⎢⎢⎢⎢⎣

1+ 2r −r 0 . . . 0
−r 1+ 2r −r . . . 0

0
. . .

. . .
. . .

...
...

... −r 1+ 2r −r
0 0 0 −r 1+ 2r

⎤⎥⎥⎥⎥⎥⎥⎦ .

The matrix B satisfies the conditions of Theorem 13.2, so it is positive definite.
The topic of Section 12.4 is cubic splines. In order to compute a cubic spline for n data points, a system with the matrix

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1
1 4 1

1 4 1
1 4 1

...
. . .

. . .
. . .

. . .
. . .

...
1 4 1

1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
must be solved. By Theorem 13.2, S is positive definite.

Positive definite matrices play a role in electrical engineering. As an example, consider the circuit in Figure 13.1. The
matrix equation for the determination of V1 and V2 is⎡⎣ (

1
R1
+ 1

R2
+ 1

R3

)
− 1
R3

− 1
R3

(
1
R3
+ 1

R4

) ⎤⎦[ V1
V2

]
=
[ VS

R1
0

]
.

Note that the coefficient matrix is symmetric. Now, det
(

1
R1
+ 1

R2
+ 1

R3

)
= 1

R1
+ 1

R2
+ 1

R3
> 0, and∣∣∣∣∣∣

(
1
R1
+ 1

R2
+ 1

R3

)
− 1
R3

− 1
R3

(
1
R3
+ 1

R4

) ∣∣∣∣∣∣ = 1

R1R3
+ 1

R1R4
+ 1

R2R3
+ 1

R2R4
+ 1

R3R4
> 0.

By property 2 in Theorem 13.1, the matrix is positive definite.

13.3 THE CHOLESKY DECOMPOSITION

Determining whether a symmetric matrix is positive definite by showing its eigenvalues are positive is computationally
intensive. Showing that all its leading principle minors are positive (Theorem 13.2, part 1) can be made to work, but is tricky.



270 Numerical Linear Algebra with Applications

R4VS
R3

R1 R2
V1 V2

FIGURE 13.1 Conductance matrix.

The French engineer Andre-Louis Cholesky discovered the Cholesky decomposition, a result very important in computation
with a positive definite matrix and in demonstrating that a matrix is positive definite.

The Cholesky decomposition is based on following theorem, and we will prove existence of the decomposition by
showing how to construct the upper-triangular factor R. A proof that the decomposition is unique can be found in Ref. [26,
Lecture 23].

Theorem 13.3. Let A be a real positive definite n× n matrix. Then there is exactly one upper-triangular matrix R = (
rij
)

with rii > 0, 1≤ i ≤ n such that

A = RTR. (13.8)

13.3.1 Computing the Cholesky Decomposition

We will find the matrix R by equating both sides of Equation 13.8 and demonstrating how to compute the entries of R. It
is sufficient to develop the algorithm by considering the 3 × 3 case. The general case follows precisely the same pattern.
Require⎡⎢⎣ a11 a12 a13

a12 a22 a23
a13 a23 a33

⎤⎥⎦ =
⎡⎢⎣ r11 0 0

r12 r22 0

r13 r23 r33

⎤⎥⎦
⎡⎢⎣ r11 r12 r13

0 r22 r23
0 0 r33

⎤⎥⎦ =
⎡⎢⎣ r211 r11r12 r11r13

r11r12 r212 + r222 r12r13 + r22r23

r13r11 r13r12 + r23r22 r213 + r223 + r233

⎤⎥⎦
A = RT R

1. Find the first column of R by equating the elements in the first column of A with those in the first column of RTR:

a11 = r211 =⇒ r11 = √a11, (13.9)

a12 = r11r12 =⇒ r12 = a12
r11

, (13.10)

a13 = r13r11 =⇒ r13 = a13
r11

. (13.11)

2. Find the second column of R. We already know r11 and r12, so we only need to equate the second and third entries of
the second column of both sides.

a22 = r212 + r222 =⇒ r22 =
√
a22 − r212, (13.12)

a23 = r13r12 + r23r22 =⇒ r23 = a23 − r12r13
r22

.

3. Find the third column of R. We have computed all entries of R except r33. Equate the third entry of the third column of
both sides.

a33 = r213 + r223 + r233 =⇒ r33 =
√
a33 − r213 − r223 (13.13)

Before formally giving the algorithm, we will investigate how the Cholesky decomposition can not only factor A but also
tell us if A is positive definite. The discussion assumes that the diagonal entries of A are greater than zero, as required by
Theorem 13.1, part 3. Equations 13.9–13.13 are in agreement. However, even with all the diagonal entries of A greater



Important Special Systems Chapter| 13 271

than 0, Equations 13.12 and 13.13 must not involve the square root of a negative number. During the algorithm, if the
argument of a square root is negative, the matrix is not positive definite. This is a much less computationally intensive
method than using either property 1 or 2 stated in Theorem 3.1.

Algorithm 13.3 The Cholesky Decomposition

function CHOLESKY(A)

% Factor the positive definite matrix A

% using the Cholesky decomposition algorithm.

% If the algorithm fails, A is not positive definite.

% Output an error message and return and empty array R.

for i =1:n do
tmp=aii −∑i−1

j=1 r2ji
if tmp ≤ 0 then

Output error message.

% Return an empty array.

return []

end if
rii = √tmp
for j = i+1:n do

rij = aij−∑i−1
k=1 rkirkj
rii

end for
end for

end function

NLALIB: The function cholesky implements Algorithm 13.3.

Example 13.6. The MATLAB code finds the Cholesky decomposition of A =

⎡⎢⎢⎣
1 1 4 −1
1 5 0 −1
4 0 21 −4
−1 −1 −4 10

⎤⎥⎥⎦ and shows that

B =
⎡⎣ 1 5 6
−7 12 5
2 1 10

⎤⎦ is not positive definite.

>> R1 = cholesky(A)

R1 =

1 1 4 -1

0 2 -2 0

0 0 1 0

0 0 0 3

>> R1’*R1

ans =

1 1 4 -1

1 5 0 -1

4 0 21 -4

-1 -1 -4 10

>> R2 = cholesky(B);

The matrix is not positive definite

�

Remark 13.5. The MATLAB function chol computes the Cholesky decomposition.



272 Numerical Linear Algebra with Applications

13.3.2 Efficiency

The computation tmp = aii −∑i−1
j=1 r2ji requires 1+ 2 (i− 1) flops. Most of the work takes place in the inner loop,

for j = i+1:n do

rij = aij−∑i−1
k=1 hkihkj
rii

end for

It requires (n− i) (2+ 2 (i− 1)) = 2i (n− i) flops, so the total flop count for iteration i is 1 + 2 (i− 1) + 2i (n− i).
Now, the algorithm flop count is

∑n
i=1 [1+ 2 (i− 1)+ 2i (n− i)]. Using the formulas

∑n
i=1 i = n (n+ 1)/2 and

∑n
i=1 i2 =

(n (n+ 1) (2n+ 1))/6 along with some simplification, the flop count for the algorithm is

n3

3
+ n2 + 5n

3
.

Like the LU decomposition, Cholesky decomposition is O
(
n3
)
, but the leading term of the LU decomposition flop

count is 2n3/3. Cholesky decomposition requires computing n square roots, but the flop count for those computations is not
significant compared to n3/3 flops. Thus, Cholesky decomposition is approximately twice as fast as the LU decomposition
for a positive definite matrix.

13.3.3 Solving Ax = b If A Is Positive Definite

If a matrix A is positive definite, it is very straightforward to solve Ax = b.

a. Use the Cholesky decomposition to obtain A = RTR.
b. Solve the lower-triangular system RTy = b.
c. Solve the upper-triangular system Rx = y.

This a very efficient means of solving Ax = b. Recall that we showed in Section 9.3.1 that each of forward and back
substitution requires approximately n2 flops, so the solution to Ax = b using the Cholesky decomposition requires
approximately (n3/3)+ 2n2 flops. The standard LU decomposition requires (2n3/3)+ 2n2 flops. Because of its increased
speed, Cholesky decomposition is preferred for a large positive definite matrix.

The MATLAB function cholsolve in the software distribution solves the linear system Ax = b, where A is a positive
definite matrix.

Example 13.7.

Let A =
⎡⎣ 1 3 7
−1 −1 3
5 4 2

⎤⎦ and compute B = ATA. Show that B is positive definite, and solve Bx = [
25 3 35

]T using
cholsolve.

>> B = A’*A

B =

27 24 14

24 26 26

14 26 62

>> R = cholesky(B); % no complaint. R is positive definite

>> b = [25 3 35]’;

>> cholsolve(R,b)

ans =

15.0455

-18.8409

5.0682

>> B\b

ans =

15.0455

-18.8409

5.0682 �



Important Special Systems Chapter| 13 273

Remark 13.6. If matrix A is tridiagonal and positive definite, it is more efficient to use the algorithm tridiagLU to factor
the matrix.

13.3.4 Stability

Theorem 13.4 shows that the Cholesky algorithm is backward stable [26, pp. 176-177].

Theorem 13.4. Let A be a positive definite matrix. Compute a Cholesky decomposition of A on a computer satisfying
Equations 8.3 and 8.7. For all sufficiently small eps, this process is guaranteed to run to completion (no square roots of a
negative number) generating a computed factor R̂ that satisfies

R̂TR̂ = A+ δA

with
‖δA‖2
‖A‖2 = O (eps)

for some δA ∈ Rn×n.

In the discussion following the theorem, Trefethen and Bau [26] make a very good point. A forward error analysis
would involve κ (A), and if A is ill-conditioned the forward error bound would look unfavorable. However, a backward
error analysis looks at R̂TR̂, and the errors in the two factors interact to remove error, or as stated in Ref. [26], the errors
in R̂T and R̂ must be “diabolically correlated.” It can also be shown that solving Ax = b when A is positive definite is also
backward stable and that pivoting is not necessary for stability.

13.4 CHAPTER SUMMARY

Factoring a Tridiagonal Matrix

A tridiagonal matrix, T, can be factored into the product of two bidiagonal matrices, L and U. L has ones on its diagonal,
and the superdiagonal entries ofU are the same as T. To solve Tx = b, once T is factored, solve the lower-bidiagonal system

Ly = b,

followed by the upper-bidiagonal system

Ux = y.

The flop count for the decomposition is 3 (n− 1), forward substitution requires 2 (n− 1) flops, and back substitution costs
1+ 3 (n− 1) flops, for a total of

8n− 7

flops. The Thomas algorithm presented in Chapter 9 requires 10n − 3 flops, so decomposition followed by forward and
back substitution is more efficient. Furthermore, if multiple systems Txi = bi, 1 ≤ i ≤ k need to be solved, the Thomas
algorithm will cost k (10n− 3), but the cost of the decomposition approach is 3 (n− 1) + k (5n− 4) flops, a significant
improvement.

Symmetric Positive Definite Matrices

Symmetric positive definite matrices occur frequently in engineering and science applications. For instance, the coefficient
matrix for the solution of the heat equation in Section 12.2 is symmetric positive definite. We will see other important
matrices of this type, including the Poisson and biharmonic matrices used in many applications.

A symmetric matrix is positive definite if xTAx > 0 for all n × 1 vectors x �= 0. This is nearly impossible to verify for
most matrices, so there are other criteria that assures a matrix is positive definite.

● A is positive definite if and only if its eigenvalues are all greater than zero.
● AsymmetricmatrixA is positive definite if and only if all its leading principleminors are positive; that is det A (1 : i, 1 : i) >

0, 1 ≤ i ≤ n. This called Sylvester’s criterion.



274 Numerical Linear Algebra with Applications

There are criteria that allow us to reject a matrix as positive definite.

● If aii ≤ 0, 1 ≤ i ≤ n, A is not positive definite.
● If the largest element in magnitude is not on the diagonal, A is not positive definite.

It is important to note that ATA is positive definite for any n× n nonsingular matrix A.

The Cholesky Decomposition

Let A be a real positive definite matrix n × n matrix. Then there is exactly one upper-triangular matrix R = (
rij
)
with

rii > 0, 1≤ i ≤ n such that A = RTR. This is called the Cholesky decomposition of A. The flop count for the algorithm is

n3

3
+ n2 + 5n

3
.

Like the LU decomposition, Cholesky decomposition is O
(
n3
)
, but the leading term of the LU decomposition flop count is

2n3/3. The Cholesky decomposition requires computing n square roots, but the flop count for those computations are not
significant compared to n3/3 flops. Thus, Cholesky decomposition is approximately twice as fast as the LU decomposition
for a positive definite matrix.

Unless the matrix is tridiagonal, it is faster to solve a large positive definite system by first applying the Cholesky
decomposition. Execute the following steps:

a. Solve RTy = b using forward substitution.
b. Solve Rx = y using back substitution.

Checking for positive eigenvalues or that all leading principle minors are positive is very time consuming. The standard
technique is to apply the Cholesky decomposition and see if it fails due to an attempt to take the square root of a negative
number. If not, then the matrix is positive definite.

Note that the Cholesky algorithm is backward stable. It can also be shown that solving Ax = bwhen A is positive definite
is also backward stable and that pivoting is not necessary for stability.

13.5 PROBLEMS

13.1 Using pencil and paper, find the LU decomposition of the tridiagonal matrix

A =
⎡⎣ 1 1 0
2 1 5
0 3 4

⎤⎦ .

13.2 Show that A =
[
1 0
0 2

]
is positive definite by verifying that xTAx > 0 for all vectors x =

[
x1
x2

]
.

13.3 We have only dealt with symmetric positive define matrices. It is possible for a matrix to be positive definite and not

symmetric. Show this is the case for A =
[

1 1
−1 1

]
.

13.4 In Example 13.5(b), we showed that the matrix C =
⎡⎣ 1 1 1
1 2 1
1 1 3

⎤⎦ is positive definite because all its eigenvalues are

positive. Show it is positive definite by computing all its principle minors and showing that they are all positive.
13.5 By inspection, which matrices cannot be positive definite? For the remaining matrices, determine if each is positive

definite.

a.

⎡⎣ 2 1 0
2 5 1
−1 1 −1

⎤⎦
b.

⎡⎣ 2 1 1
1 2 1
1 1 2

⎤⎦



Important Special Systems Chapter| 13 275

c.

⎡⎣ 2 −1 −9
3 3 1
1 −1 8

⎤⎦

d.

⎡⎢⎢⎣
1 0 0 0
1 2 0 0
−5 3 −6 0
1 7 1 3

⎤⎥⎥⎦

e.

⎡⎢⎢⎣
1 1 1 1
1 2 1 2
1 1 3 1
1 2 1 4

⎤⎥⎥⎦
13.6 Using pencil and paper, find the Cholesky decomposition of A =

⎡⎣ 25 15 −5
15 18 0
−5 0 11

⎤⎦.
13.7 Prove that if A is positive definite so is A−1. Hint: Note property 1 in Theorem 13.1.
13.8 Show that if A is positive definite, then κ (A) = (κ (R))2, where R is the Cholesky factor. Hint: See Theorem 7.9,

part 4.
13.9 Let R be the Cholesky factor for a positive definite matrix A, and T = RT. Prove that

i∑
k=1

t2ik = aii.

13.10 Without performing any computation whatsoever, state why A =
⎡⎣ 3 −1 0
−1 5 1.7
0 1.7 2

⎤⎦ is positive definite.

13.11 Explain why the following MATLAB statement determines if matrixM is positive definite.

all(all(M == M’)) & min(eig( M )) > 0

13.12 Assume M, N, andM − N are positive definite matrices.
a. Show that N−1 −M−1 = M−1 (M − N)M−1 +M−1 (M − N)N−1 (M − N)M−1.
b. Show that N−1 −M−1 is positive definite.

13.13 Using the following steps, prove that if A = (
aij
)
is positive definite, then the largest element in magnitude lies on

the diagonal.
a. Recall that if A is symmetric, then Equation 7.12 follows; in other words, 〈Au, v〉 = 〈u, Av〉. Assume that A is
positive definite and u, v are n×1 vectors. Show that 〈u, v〉A = 〈Au, v〉 = 〈u, Av〉 is an inner product by verifying
the following properties.
i. 〈u+ v, w〉A = 〈u, w〉A + 〈v, w〉A
ii. 〈αu, v〉A = α 〈u, v〉A
iii. 〈u, v〉A = 〈v, u〉
iv. 〈u, u〉A > 0 if and only if u �= 0.

This inner product defines the A-norm or the energy norm, and it will become very important when we
present the conjugate gradient method in Chapter 21.

b. Prove 2aij < aii + ajj, i �= j Hint: If ei and ej are standard basis vectors
〈
ei − ej, ei − ej

〉
A > 0.

c. Let i and j be distinct indices and define a vector w such that

wk =
{
0 k �= i and k �= j
1 k = i or k = j

, 1 ≤ k ≤ n

Use the fact that 0 < 〈w, w〉A to complete the proof that the element of largest magnitude lies on the diagonal
of A.

13.14 Prove that the sum of two positive definite matrices is positive definite.
13.15 Prove that a positive definite matrix is nonsingular.



276 Numerical Linear Algebra with Applications

Remark 13.7. There is a modification to the Cholesky decomposition so it applies to a positive semidefinite matrix
[15, pp. 438-442].

13.16 The square root of a real number y ≥ 0 is a real number x such that y = x2, and we write x = √y. The square root
is not unique since (−x)2 = y as well; however, we refer to x ≥ 0 as the square root of y. There is an analogous
definition in matrix theory.

If A is a positive semidefinite matrix, there exists a matrix X such that A = X2, where X is positive semidefinite.

We will discuss the singular value decomposition in Chapter 15. A special case states that if A is an n×nmatrix,
then A = U�VT, where U and V are n × n orthogonal matrices, and � is an n × n diagonal matrix containing
the singular values of A. Let A = RTR be the Cholesky decomposition of A, R = U�VT be the singular value
decomposition of R, and define X = V�VT.
a. Show that X is positive semidefinite.
b. Show that A = X2.
It can be shown that X is unique.

13.17 The inverse of an upper-bidiagonal matrix can be computed using a simple formula. Assume

U =

⎡⎢⎢⎢⎢⎢⎣
u1 c1

u2 c2
. . .

. . .
un−1 cn−1

un

⎤⎥⎥⎥⎥⎥⎦ ui �= 0, 1 ≤ i ≤ n.

a. Let βi =
[

β1i β2i . . . βn−1, i βni
]T

be column i of U−1. By letting

U
[

β1 β2 . . . βn−1 βn
] = I,

develop the equations

βij = 0, i > j

βii = 1

ui

βij = −ciβi+1, j
ui

, i < j

b. From part (a), show that

βij =
{

0, i > j
1
uj

∏j−1
k=i

(
− ck
uk

)
, i ≤ j

, (13.14)

where
∏0

k=i = 1.
c. Show that the elements, αij, of the inverse for a bidiagonal matrix

L =

⎡⎢⎢⎢⎢⎢⎢⎣

1
l1 1

l2
. . .
. . . 1

ln−1 1

⎤⎥⎥⎥⎥⎥⎥⎦
are given by

αij =
{

0, i < j∏i−1
k=j (−lk) , i ≥ j

. (13.15)

Remark 13.8. These results imply that the inverse of an upper-bidiagonal matrix is upper triangular and that the
inverse of a unit lower-bidiagonal matrix is lower triangular. The article by Higham [32] discusses these results and
then continues to develop very efficient algorithms for computing the condition number of a tridiagonal matrix.



Important Special Systems Chapter| 13 277

13.5.1 MATLAB Problems

13.18 Let A =

⎡⎢⎢⎢⎢⎢⎢⎣

5 −2 0 . . . 0
−2 5 −2 . . . 0

0
. . .

. . .
. . .

...
...

... −2 5 −2
0 0 0 −2 5

⎤⎥⎥⎥⎥⎥⎥⎦
be a 15× 15 matrix. Factor A into a unit lower-bidiagonal matrix L and an upper-bidiagonal matrix U. Then solve
the equation

Ax =

⎡⎢⎢⎢⎢⎢⎣
0.1
0.2
0.3
...
1.5

⎤⎥⎥⎥⎥⎥⎦
13.19 Matrix A =

⎡⎣ 1 1 1
1 2 1
1 1 3

⎤⎦ is positive definite.

Factor A using
a. Gaussian elimination without pivoting
b. The Cholesky algorithm
c. For each case, solve the system Ax = b, where

b =
⎡⎣ −13

4

⎤⎦
13.20 Show that the matrix

A =

⎡⎢⎢⎣
1.0000 0.2500 0.0625 0.0156
0.2500 1.0000 0.2500 0.0625
0.0625 0.2500 1.0000 0.2500
0.0156 0.0625 0.2500 1.0000

⎤⎥⎥⎦
is positive definite
a. by showing all its eigenvalues are > 0
b. by showing that all the principle minors are > 0
c. using the Cholesky decomposition

13.21 TheMATLAB commandhilb(n) creates theHilbertmatrix of order n. Compute cholesky(A),A = {hilb (5) , hilb (6) ,
hilb (7) , . . .} until the decomposition fails. All Hilbert matrices are symmetric positive definite. Explain why failure
occurred.

13.22 Find the Cholesky decomposition RTR for

A =

⎡⎢⎢⎣
0.2090 0.0488 −0.0642 −0.0219
0.0488 0.1859 −0.0921 −0.0475
−0.0642 −0.0921 0.4257 0.0364
−0.0219 −0.0475 0.0364 0.1973

⎤⎥⎥⎦ .

Compute the residual
∥∥A− RTR

∥∥
2.

13.23 Write a function choldet that uses the Cholesky decomposition to compute the determinant of a positive definite
matrix. Test your function with random positive definite matrices of orders 3× 3, 5 × 5, 10× 10, and 50× 50. In
each case compute the relative error

|det (A)− choldet (A)|
|det (A)| .

Here, we assume that the MATLAB det computes the correct value. Why is relative error a better measure of error
for this problem?



278 Numerical Linear Algebra with Applications

Here is one way to generate a random positive definite matrix:

A = randn(n,n);
while rank(A) ~= n

A = randn(n,n);
end
A = A’*A;

13.24 The Hilbert matrices, Hn, are symmetric positive definite.
a. Compute the condition number of the Hilbert matrices of orders 5, 25, 50, and 100.
b. Repeat part (a), except compute the 1-norm and the 2-norm of each Hilbert matrix.
c. Give a formula for ‖Hn‖1. What can you say about limn→∞ ‖Hn‖1? Why does limn→∞ ‖Hn‖2 behave in the
same way?

13.25 Recall that in Section 11.5, we showed that with three-digit arithmetic when Gaussian elimination is applied to the

matrix A =
[
0.00001 3

2 1

]
without a row exchange, the factors L and U are

L =
[

1 0
200000 1

]
, U =

[
0.00001 3

0 −599999
]
.

Large entries appear in L and U, and LU is very far from A. Gaussian elimination without pivoting is not a stable
algorithm. However, if a matrix is positive definite, it can be shown that Gaussian elimination without pivoting is
stable [9].

a. Let A =
[
0.0006 0.01
0.01 0.50

]
. Find the LU decomposition without pivoting and note that the entries of L and U are

not large.
b. Construct three random positive definite matrices (see Problem 13.23). Perform the LU decomposition without

pivoting to three matrices and observe that the entries in L and U do not grow to be large relative to the entries
of A.

13.26 a. Let A be a positive definite matrix. Develop an algorithm for computing the lower-triangular matrix H such that
A = HHT.

b. Develop a function cholH that finds H and prints an error message if A is not positive definite.
c. Test your function using the matrices A and B from Example 13.6.

13.27 Perform the following numerical experiment and explain the results.

>> R = triu(randi([-10 10],5,5));

>> A = R’*R;

>> while rank(A) ~= 5

R = triu(randi([-10 10],5,5));

A = R’*R;

end
>> Rhat = cholesky(A);

>> norm(Rhat - R)/norm(R)
>> norm(A - Rhat’*Rhat)

13.28 This problem examines the properties of a positive definite matrix. The MATLAB statement

A = gallery(’gcdmat’,n);

creates an n × n positive definite matrix, where aij = gcd (i, j). The function gcd computes the greatest common
divisor of i and j, the largest integer that divides both i and j. For instance,

gcd (540, 252) = 36

a. Create a 4× 4 gcd matrix. Verify that the principle minors are all positive by computing
det(A(1,1)), det(A(1:2,1:2)), det(A(1:3,1:3)), det(A)

b. Verify that all the eigenvalues of A are positive.
i. The function lugauss in the software distribution performs the LU decompositionwithout pivoting.Modify

lugauss so it returns [L, U, pivot], where pivot is an n× 1 vector containing the n− 1 pivots. Name



Important Special Systems Chapter| 13 279

the function lupiv. Run lupiv on a gcd matrix of dimensions 4, 10, 15, 25, and 50. In each case execute
min(pivot) > 0

ii. If there is a pattern to your experiment, state a theorem. You need not prove it.
13.29 Sylvester’s criterion can be used to check the positive definiteness of any symmetric matrix A without using

expansion by minors. Row reduce A to an upper-triangular matrix using Gaussian elimination without pivoting.
Check Sylvester’s criterion each time a leading principle submatrix is in upper-triangular form by forming the
product of its diagonal elements. If the criterion is true for all the leading principle submatrices, then the matrix
is positive definite. Write a function

isposdef = sylvester(A)

that determines if A is positive definite. Test your function with matrices of dimension 3 × 3, 5 × 5, 10 × 10, and
25× 25. For each dimension, use two matrices, one positive definite, and the other not. Note: This algorithm can be
done using pivoting, but we elect not to consider it here.

13.30 This problem develops a means for computing the inverse of a tridiagonal matrix

A =

⎡⎢⎢⎢⎢⎢⎣
b1 c1
a1 b2 c2

. . .
. . .

. . .
an−12 bn−1 cn−1

an−1 bn

⎤⎥⎥⎥⎥⎥⎦ .

Write a function trinv with the calling format

C = trinv(a,b,c)

that uses the function tridiagLU from the book software distribution to compute the inverse of A. Create a 500×500
tridiagonal matrix with a, b, and c consisting of random numbers. Time the execution using trinv and theMATLAB
inv function.

Remark 13.9. We have stated that computing the inverse is generally not a good idea; however, tridiagonal
matrices have many applications in the numerical solution of boundary value problems, in the solution of second
order difference equations, and so forth, so a reliable means for computing the inverse can be useful. There are a
number of papers on the subject [39–43].

13.31 We know a tridiagonal matrix, A, can be factored into a product of a unit lower-bidiagonal matrix, L, and an upper-
triangular matrix, U. For the purpose of this problem, assume that A, L, and U have the following form:

A =

⎡⎢⎢⎢⎢⎢⎣
b1 c1
a2 b2 c2

. . .
. . .

. . .
an−1 bn−1 cn−1

an bn

⎤⎥⎥⎥⎥⎥⎦ , L =

⎡⎢⎢⎢⎢⎢⎢⎣

1
γ2 1

γ3
. . .
. . . 1

γn 1

⎤⎥⎥⎥⎥⎥⎥⎦ , U =

⎡⎢⎢⎢⎢⎢⎣
α1 c1

α2 c2
. . .

. . .
αn−1 cn−1

αn

⎤⎥⎥⎥⎥⎥⎦ .

We also assume that αi �= 0, 1 ≤ i ≤ n. Equations 13.14 and 13.15 given in Problem 13.17 are put together in
Ref. [39] to develop an explicit formula for the inverse of a general tridiagonal matrix with the αi �= 0 restriction.
Let τi = ci

αi
, 1 ≤ i ≤ n − 1 and cij, 1 ≤ i, j ≤ n be the entries of the inverse. The following is the algorithm for

computing A−1.
function TRIDIAGINV(a,b,c)

% Find the inverse of the tridiagonal matrix whose diagonals are a, b, c.

% Compute the LU decomposition.

α1 = b1
for i = 2:n do

τi−1 = ci−1
αi−1

αi = bi − aiτi−1
γi = ai

αi−1
end for



280 Numerical Linear Algebra with Applications

% Perform error checking.

if αi = 0 for some i then
if αn = 0 then

Output that A is singular and terminate.

else
Output that some αi is zero and terminate.

end if
end if

% Compute the main diagonal entries.

cnn = 1
αn

for i = n-1:-1:1 do
cii = 1

αi
+ τiγi+1ci+1, i+1

end for

% Compute the ith row elements cij, j < i.

for i = n:-1:2 do
for j = i-1:-1:1 do

cij = −γj+1ci, j+1
end for

end for

% Compute the ith column elements cji, j < i.

for i = n:-1:2 do
for j = i-1:-1:1 do

cji = −τjcj+1, i
end for

end for

return C

end function

The computational cost of this algorithm is shown in Ref. [39] to be O
(
n2
)
.

a. In general, explain why this algorithm is superior to directly computing A−1.
b. Write a function, tridiaginv, that implements the algorithm. Test your function on the following matrices:

i. 5× 5 tridiagonal matrix with a = [
0 1 1 1 1

]T
, b = [

3 3 3 3 3
]T
, and c = [

5 5 5 5
]T
.

ii. 500 × 500 tridiagonal matrix with a, b, and c consisting of random numbers. Time the execution using
tridiaginv and the MATLAB inv function. Also include trinv if you did Problem 13.30 or have access
to the source code. Note that inv is compiled into machine code. Can you beat MATLAB?



Chapter 14

Gram-Schmidt Orthonormalization

You should be familiar with

● The inner product
● Orthogonal vectors and matrices
● Rank
● Algorithm stability
● The determinant

Orthogonal vectors andmatrices are of great importance in many fields of science and engineering; for instance, they play an
important role in least-squares problems, analysis of waves, the finite element method for the numerical solution of partial
differential equations, financial engineering, and quantummechanics. We determined in Chapter 7 that orthogonal matrices
preserve length, a property called orthogonal invariance; for example, in computer graphics, orthogonal matrices are used
to rotate an image without altering its size. Also, an orthogonal matrix is used in a change of basis, such as constructing a
basis for spherical or cylindrical coordinates. Many problems in dynamics involve a change of basis. We begin this chapter
by reviewing some of properties of orthogonal vectors and matrices.

● If x1, x2, . . ., xk are orthogonal, they are linearly independent.
● If A is a real symmetric matrix, then any two eigenvectors corresponding to different eigenvalues are orthogonal.
● If P is an orthogonal matrix, then P−1 = PT.
● If P is an orthogonal matrix, then ‖Px‖2 = ‖x‖2.
● Let P be a n × n real matrix. Then P is an orthogonal matrix if and only if the columns of P are orthogonal and have

unit length.
● For any orthogonal matrices U and V, ‖UAV‖2 = ‖A‖2 .
If we have a basis v1, v2, . . . , vn for a subspace, it would be valuable to have the means of constructing an orthonormal
basis e1, e2, . . . , en that spans the same subspace. We can then use the orthonormal basis to build an orthogonal matrix. The
Gram-Schmidt process does exactly that, and leads to the QR decomposition of a general real m× n matrix.

14.1 THE GRAM-SCHMIDT PROCESS

The Gram-Schmidt process takes a set of linearly independent vectors S = {v1, v2, . . . , vn} ∈ Rm, and transforms them into
a set of orthonormal vectors S′ = {e1, e2, . . . , en}. The orthonormal set S′ = {e1e2, . . . , en} spans the same n-dimensional
subspace as S. It follows that m ≥ n or the vectors would be linearly dependent.

Remark 14.1. Although we will deal with the inner product of vectors, vi, 1 ≤ i ≤ n, we can just as well have a set of
functions that we transform into an orthonormal set relative to the L2 norm

〈vi, vj〉 =
∫ b

a
vi (t) vj (t) dt.

The Gram-Schmidt process works by successively subtracting orthogonal projections from vectors. The projection
operator we now define is one of the most important uses of the inner product.

Definition 14.1. The orthogonal projection of vector v onto vector u is done by the projection operator proju (v) =(〈v, u〉/‖u‖22) u. Figure 14.1 depicts the projection.
Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00014-4
Copyright © 2015 Elsevier Inc. All rights reserved. 281



282 Numerical Linear Algebra with Applications

v

q

u
Projection of v onto u

FIGURE 14.1 Vector orthogonal projection.

v

v-proju (v )

proju (v)

u

FIGURE 14.2 Removing the orthogonal projection.

The use of some geometry will help understand the projection operator. The length of the projection, d, of v onto u has the
value

d = ‖v‖2 cos θ ,

which can be negative if θ > π/2. The inner product of v and u is 〈v, u〉 = 〈v, u〉 = ‖v‖2 ‖u‖2 cosθ . As a result

d = 〈v, u〉
‖u‖2 .

Now create a vector with magnitude |d| by multiplying the unit vector u/‖u‖ by d to obtain the vector

proju (v) =
( 〈v, u〉
‖u‖2

)
u

‖u‖2 =
(
〈v, u〉
‖u‖22

)
u.

Now comes the most critical point. If we remove the orthogonal projection of v onto u from v by computing v − proju (v)
we obtain a vector orthogonal to u, as depicted in Figure 14.2. We can verify this algebraically as follows:

uT
(
v− proju (v)

) = uTv−
(
uTv

‖u‖22

)
uTu = uTv− uTv = 0

TheGram-Schmidt process works by successively removing the orthogonal projection of vi from the orthonormal vectors
e1, e2, . . . , ei−1 already built from v1, v2, . . . , vi−1. This will produce a vector orthogonal to {e1, e2, . . . , ei−1} (verify).
Step 1: Begin by taking the first vector, v1, normalize it to obtain a vector e1, and define r11 = ‖v1‖2. As our description of
the process progresses, wewill define a set,

{
rij, 1 ≤ i, j ≤ n, j ≥ i

}
.While not strictly necessary for building an orthonormal

basis from v1, v2, · · · , vk, we will use these values to form an upper triangularmatrix when we discuss theQR decomposition
later in this chapter. Let u1 = v1, and then

e1 = v1
‖v1‖2

= v1
r11

, r11 = ‖v1‖2 .



Gram-Schmidt Orthonormalization Chapter| 14 283

Step 3Step 2

e3 perpendicular
to the e1, e2 plane

proje1
(v2)

e3

u1

v2u2

u2

e1

e2

u2 = v2 - proje1
(v2)

e2

e1

=

FIGURE 14.3 Result of the first three steps of Gram-Schmidt.

Step 2: Let r12 = 〈v2, e1〉. Define vector, u2, normal to e1, by removing the orthogonal projection of v2 onto e1. Then
normalize it to obtain e2.

u2 = v2 − proje1 (v2) = v2 − 〈v2, e1〉‖e1‖22
e1 = v2 − 〈v2, e1〉 e1 = v2 − r12e1.

Normalize the vector u2, let r22 = ‖u‖2 and define
e2 = u2

‖u2‖2
= u2
r22

.

Step 3:Now obtain a vector u3 normal to both e1 and e2 by removing the orthogonal projections of v3 onto e1 and e2. Define
r13 = 〈v3, e1〉 and r23 = 〈v3, e2〉.

u3 = v3 − proje1 (v3)− proje2 (v3) = v3−〈v3, e1〉 e1−〈v3, e2〉e2 = v3 − r13e1 − r23e2.

Normalize u3, and let r33 = ‖u3‖2 to obtain
e3 = u3

‖u3‖2 =
u3
r33

.

See Figure 14.3 showing the results of steps 1-3.
Continue in this fashion until all the vectors up to en are determined. The formula for computing a general vector, ei, is:

Step i: Find

ui = vi −
i−1∑
j=1

rjiej, 1 ≤ i ≤ n, (14.1)

where

rji =
〈
vi, ej

〉
.

Let rii = ‖ui‖2. Normalize ui to obtain
ei = ui

‖ui‖2 =
ui
rii
.

The sequence e1, . . . , ek is the required set of orthonormal vectors, and the process is known as Gram-Schmidt orthonor-
malization.

This process can be explained geometrically. The vectors e1 and e2 are orthogonal (Figure 14.3). The vector u3 is
orthogonal to e1 and e2, since it is formed by removing their orthogonal projections from v3. Continuing in this fashion,
vector ei is orthogonal to the vectors e1, e2, . . . , ei−1; furthermore, the vectors e1, e2, . . . , ei span the same subspace as
v1, v2, . . . , vi. To see this, let vector x be a linear combination of the vectors v1, v2, . . . , vi.

x = c1v1 + c2v2 + c3v3 + · · · + civi.

Each vector vi = ui +∑i−1
j=1 projej (vi). Now, each projej (vi) is a scalar multiple of ej, and ui = ‖ui‖ ei, so x can be written

as a linear combination of e1, e2, . . . , ei. Since ei, e2, . . . , ei are orthonormal, they are linearly independent and form a basis
for the same subspace as v1, v2, . . . , vi.



284 Numerical Linear Algebra with Applications

If the Gram-Schmidt process is applied to a linearly dependent sequence, then at least one vi is a linear combination of
the remaining vectors,

vi = c1v1 + c2v2 + · · · + ci−1vi−1 + ci+1vi+1 + · · · + ckvk.

In this situation, on the ith step the result is ui = 0. Discard ui and vi and continue the computation. If this happens again,
do the same. The number of vectors output by the process will then be the dimension of the space spanned by the original
vectors, less the dependent vectors. For the sake of simplicity, we will assume throughout this chapter that all the vectors
we deal with are linearly independent.

Example 14.1. Consider the following set of three linearly independent vectors in R
3.

S =
⎧⎨⎩v1 =

⎡⎣ 1
−1
3

⎤⎦ , v2 =
⎡⎣ 3
1
4

⎤⎦ , v3 =
⎡⎣ 3
2
5

⎤⎦⎫⎬⎭
Execute Gram-Schmidt to obtain an orthonormal set of vectors.

r11 =
√
11 = 3.3166, e1 =

⎡⎣ 1
−1
3

⎤⎦
r11

=
⎡⎣ 0.30151
−0.30151
0.90453

⎤⎦ ,

r12 = 〈v2, e1〉 = 4.2212, u2 = v2 − r12e1 =
⎡⎣ 1.7273

2.2727
0.18182

⎤⎦ , e2 = u2
‖u2‖2 =

⎡⎣ 0.60386
0.79455
0.063564

⎤⎦ ,

r22 = ‖u2‖ = 2.8604,

r13 = 〈v3, e1〉 = 4.8242, r23 = 〈v3, e2〉 = 3.7185, u3 = v3 − r13e1 − r23e2 =
⎡⎣ −0.70.5

0.4

⎤⎦ ,

e3 = u3
‖u3‖ =

⎡⎣ −0.7378610.52705
0.42164

⎤⎦ , r33 = ‖u3‖ = 0.94868.

Summary

e1 =
⎡⎣ 0.30151
−0.30151
0.90453

⎤⎦ , e2 =
⎡⎣ 0.60386

0.79455
0.063564

⎤⎦ , e3 =
⎡⎣ −0.7378610.52705

0.42164

⎤⎦ ,

R =
⎡⎣ r11 r12 r13

0 r22 r23
0 0 r33

⎤⎦ =
⎡⎣ 3.3166 4.2212 4.8242

0 2.8604 3.7185
0 0 0.94868

⎤⎦ . �

Algorithm 14.1 describes the Gram-Schmidt process. The algorithm name, clgrsch, reflects the fact that the process we have
described is called classical Gram-Schmidt. As we will see in Section 14.2, classical Gram-Schmidt has numerical stability
problems, and we normally use a simple modification of the classical process.

Remark 14.2. The function clgrsch in Algorithm 14.1 takes an m × n matrix as input. It is important to understand that
there are n vectors to be orthonormalized, and the dimension of each vector is m; however, the function does not compute
the values rij. We will use them when developing the QR decomposition of a matrix.

NLALIB: The function clgrsch implements Algorithm 14.1.

14.2 NUMERICAL STABILITY OF THE GRAM-SCHMIDT PROCESS

During the execution of the Gram-Schmidt process, the vectors ui are often not quite orthogonal, due to rounding errors. For
the classical Gram-Schmidt process we have described, this loss of orthogonality is particularly bad. The computation also



Gram-Schmidt Orthonormalization Chapter| 14 285

Algorithm 14.1 Classical Gram-Schmidt

function CLGRSCH(V)

% Converts a set of linearly independent vectors to a set

% of orthonormal vectors spanning the same subspace

% Input: An m × n matrix V whose columns are the vectors to be normalized.

% Output: An m × n matrix E whose columns are an orthonormal set of

% vectors spanning the same subspace as the columns of V.

for i = 1:n do
sumproj = 0

for j = 1:i-1 do
sumproj = sumproj+ E (:, j)T V (:, i)E (:, j)

end for
E (:, i) = V (:, i)− sumproj

E (:, i) = E (:,i) / ‖E (:, i)‖2
end for
return E

end function

yields poor results when some of the vectors are almost linearly dependent. For these reasons, it is said that the classical
Gram-Schmidt process is numerically unstable.

The Gram-Schmidt process can be improved by a small modification. The computation of ui using the formula

ui = vi −
i−1∑
j=1

rjiej

removes the projections all at once. Split the computation into smaller parts by removing the projections one at
a time.

u(1)
i = vi − 〈vi, e1〉 e1 remove the projection of vi onto e1.
u(2)
i = u(1)

i − 〈vi, e2〉 e2 remove the projection of vi onto e2.
u(3)
i = u(2)

i − 〈vi, e3〉 e3 remove the projection of vi onto e3.
...

ui−1i = u(i−2)
i − 〈vi, ei−2〉 ei−2 remove the projection of vi onto ei−2

ui = u(i−1)
i − 〈vi, ei−1〉 ei−1 remove the projection of vi onto ei−1.

This approach (sometimes referred to as modified Gram-Schmidt (MGS) process) gives the same result as the original
formula in exact arithmetic, but it introduces smaller roundoff errors when executed on a computer.

The following algorithm implements the MGS process. The input and output format is the same as for clgrsch.

NLALIB: The function modgrsch implements Algorithm 14.2.

Remark 14.3. The orthonormal basis obtained by modgrsch are the columns of the output matrix E, so E is an orthogonal
matrix.

Example 14.2. Apply the function modgrsch to the vectors of Example 14.1, obtain an orthonormal basis. Verify that
the columns in matrix E are orthonormal by computing ETE. �

>> E = modgrsch(V)

E =

0.30151 0.60386 -0.73786

-0.30151 0.79455 0.52705



286 Numerical Linear Algebra with Applications

Algorithm 14.2 Modified Gram-Schmidt

function MODGRSCH(V)

% Modified Gram-Schmidt process for converting a set of linearly independent vectors to a

set

% of orthonormal vectors spanning the same subspace

% Input: An m × n matrix V whose columns are the vectors to be normalized.

% Output: An m × n matrix E whose columns are an orthonormal set of

% vectors spanning the same subspace as the columns of V

for i = 1:n do
E(:,i) = V(:,i)

for j = 1:i-1 do
E (:, i) = E (:, i)− E (:, j)T E (:, i) E (:, j)

end for
E (:, i) = E (:, i) / ‖E (:, i)‖2

end for
return E

end function

0.90453 0.063564 0.42164

>> E’*E

ans =

1 -1.3878e-017 -4.996e-016

-1.3878e-017 1 8.6736e-016

-4.996e-016 8.6736e-016 1

The difference in results between the classical and MGS methods can be startling. For Example 14.3, the author is
indebted to an example found on the MIT OpenCourseWare site for the course [44] 18.335J, Introduction to Numerical
Methods.

Example 14.3. Choose ε = 10−8, and form the 4× 3 matrix A =

⎡⎢⎢⎣
1 1 1
ε 0 0
0 ε 0
0 0 ε

⎤⎥⎥⎦. Apply the classical and MGS methods to

A and test for the orthogonality of columns.

>> epsilon = 1.0e-8;

>> A = [1 1 1;epsilon 0 0;0 epsilon 0;0 0 epsilon];

>> E1 = clgrsch(A);

>> E2 = modgrsch(A);

>> E1(:,2)’*E1(:,3)

ans =

0.500000000000000

>> E2(:,2)’*E2(:,3)

ans =

1.1102e-016

The huge difference between the results is caused by the fact that the columns are almost equal, and cancellation errors
occur when using the classical method. �

The concept of rank is very important in linear algebra. The best situation is when an m× n matrix has full rank.



Gram-Schmidt Orthonormalization Chapter| 14 287

Definition 14.2. The m × n real matrix is said to have full rank if rank = min (m, n). If A ∈ Rm×n and m > n then to
have full rank the n columns of Amust be linearly independent. Ifm < n, then to be of full rank, them rows must be linearly
independent.

If m> n, the application of the Gram-Schmidt process to the column vectors of an m×n full rank matrix A while recording
the values rij yields the QR decomposition, one of the major achievements in linear algebra. TheQR decomposition is very
important in the accurate, efficient, computation of eigenvalues and is very useful in least-squares problems.

14.3 THE QR DECOMPOSITION

Assume A = [
v1 v2 . . . vn−1 vn

]
is an m × n matrix with columns v1, v2, . . ., vn. The Gram-Schmidt process can be

used to factor A into a product A = QR, where Qm×n has orthonormal columns, and Rn×n is an upper-triangular matrix.
The decomposition comes directly from the Gram-Schmidt process by using the rij values we defined in the description of
Gram-Schmidt. Arrange Equation 14.1 so the vi are on the left-hand side.

Equation 1: v1 = e1r11

Equation 2: v2 = u2 + r12e1. Note that e2 = u2/‖u2‖2, so u2 = e2 ‖u2‖2 = e2 r22, and we have

v2 = e1r12 + e2r22.

Equation 3: v3 = u3 + r13e1 + r23e2. We have e3 = u3/‖u3‖2, so u3 = r33 e3, and then

v3 = e1r13 + e2r23 + e3r33.

The general formula for the vk is

vk =
k−1∑
j=1

rjkej + ekrkk, k = 1, 2, . . . , n. (14.2)

Let Q = [
e1 e2 . . . en−1 en

]
, the matrix whose columns are the orthonormal vectors

e1 =

⎡⎢⎢⎢⎢⎢⎣
e11
e21
...

em−1,1
em1

⎤⎥⎥⎥⎥⎥⎦ , e2 =

⎡⎢⎢⎢⎢⎢⎣
e12
e22
...

em−1,2
em2

⎤⎥⎥⎥⎥⎥⎦ , . . . , en =

⎡⎢⎢⎢⎢⎢⎣
e1n
e2n
...

em−1,n
emn

⎤⎥⎥⎥⎥⎥⎦
. . .

and

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13 r14 . . . r1n
0 r22 r23 r24 . . . r2n
0 0 r33 r34 . . . r3n

0 0 0
. . . . . .

...
...

...
...

...
. . .

...
0 0 0 0 . . . rnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is sufficient to show that A = QR for a general 3× 3 matrix. Let A be the 3× 3 matrix

A =
⎡⎣ v11 v12 v13
v21 v22 v23
v31 v32 v33

⎤⎦ ,

and

v1 =
⎡⎣ v11
v21
v31

⎤⎦ , v2 =
⎡⎣ v12
v22
v32

⎤⎦ , v3 =
⎡⎣ v13
v23
v33

⎤⎦ .



288 Numerical Linear Algebra with Applications

Then, ⎡⎣ e11 e12 e13
e21 e22 e23
e31 e32 e33

⎤⎦⎡⎣ r11 r12 r13
0 r22 r23
0 0 r33

⎤⎦ =
⎡⎣ r11e11 r12e11 + r22e12 r13e11 + r23e12 + r33e13
r11e21 r12e21 + r22e22 r13e21 + r23e22 + r33e23
r11e31 r12e31 + r22e32 r13e31 + r23e32 + r33e33

⎤⎦ . (14.3)

From Equation 14.2,

v1 = r11e1, v2 = r12e1 + r22e2, v3 = r13e1 + r23e2 + r33e3. (14.4)

Comparing Equations 14.3 and 14.4, we see that

A = QR,

where

Q =
⎡⎣ e11 e12 e13
e21 e22 e23
e31 e32 e33

⎤⎦ , R =
⎡⎣ r11 r12 r13

0 r22 r23
0 0 r33

⎤⎦ .

Theorem 14.1. (QR Decomposition) If A is a full rank m × n matrix, m ≥ n, then there exists an m × n matrix Q with
orthonormal columns and an n× n upper-triangular matrix R such that A = QR.

Remark 14.4. The decomposition is unique (Problem 14.10).

The MATLAB function clqrgrsch in the software distribution executes the classical Gram-Schmidt QR decomposition
process. The application of the classical Gram-Schmidt process for finding the QR decomposition has the same problems
as the classical Gram-Schmidt process for finding an orthonormal basis. Algorithm 14.3 specifies the MGS process to find
the QR decomposition. The implementation is that of the MGS process with the added maintenance of the rij, 1 ≤ i,
j ≤ n, j≥ i, rij = 0, j < i.

Algorithm 14.3 Modified Gram-Schmidt QR Decomposition

function MODQRGRSCH(A)

% Input: m × n matrix A.

% Output: the QR decomposition A = QR, where

% Q is an m × n matrix with orthonormal columns, and

% R is an n× n upper-triangular matrix.

for i = 1:n do
Q (:, i) = A (:, i)

for j = 1:i-1 do
R (j,i) = Q (:, j)T Q (:,i)

Q (:,i) = Q (:, i)− R (j,i)Q (:,j)

end for
R (i, i) = ‖Q (:, i)‖
Q (:, i) = Q (:, i)

R (i,i)
end for
return [Q, R]

end function

NLALIB: The function modqrgrsch implements Algorithm 14.3.



Gram-Schmidt Orthonormalization Chapter| 14 289

Example 14.4. Use MGS to compute the QR decomposition of the matrix

A =
⎡⎣ 1 6 −1 4 7
−7 0 12 −8 2

14 4 5 3 35

⎤⎦ .

Check the results by computing ‖A− QR‖2 .
>> [Q R] = modqrgrsch(A)

Q =

0.0638 0.9531 -0.2960 -0.3841 0.2643

-0.4463 0.2925 0.8457 0.5121 -0.7362

0.8926 0.0782 0.4440 0.7682 0.6230

R =

15.6844 3.9530 -0.9564 6.5033 30.7950

0 6.0311 2.9481 1.7066 9.9929

0 0 12.6647 -6.6178 15.1595

0 0 0 0.0000 0.0000

0 0 0 0 0.0000

>> norm(A - Q*R)

ans =

9.9301e-016

�

Remark 14.5. The Gram-Schmidt QR algorithm produces an m × n matrix Q and an n × n matrix R. This is termed
the reduced QR decomposition. MATLAB has a function qr that computes the QR decomposition of an m × n matrix.
Normally, qr factors A into the product of an m × m orthogonal matrix Q and an m × n upper-triangular matrix R,
called the full QR decomposition, and we will discuss this decomposition in Chapter 17. This decomposition gives useful
information not provided by the reduced version. The term “reduced” derives from the fact that if m > n, the resulting
matrices are smaller in the reduced decomposition. The MATLAB statement [Q R] = qr(A,0) gives the reduced QR
decomposition.

14.3.1 Efficiency

We will determine the flop count for MGS. This analysis is somewhat more involved than earlier ones, so it is suggested
that the reader refer to the steps in Algorithm 14.3 while reading the analysis.

The outer loop executes n times (i = 1 : n), and for each execution of the outer loop, an inner loop executes i− 1 times.
Let’s count the number of flops in the inner loop.

i = 1: inner loop executes (n-1) times

i = 2: inner loop executes (n-2) times

...

i = n-1: inner loop executes 1 time

i = n: inner loop does not execute

The statements in the inner loop thus execute (n− 1) + (n − 2) + · · · + 1 = n (n− 1)/2 times. The inner loop
computes an inner product, requiring 2m flops, followed by an expression that performs a scalar multiplication and a vector
subtraction. This expression requires 2m flops. After the inner loop, a 2-norm is computed, which costs 2m flops. Following
the computation of the 2-norm, a vector is normalized, requiring m divisions. Now add this all up:



290 Numerical Linear Algebra with Applications

Inner loop: n(n−1)2 (2m+ 2m) = n(n−1)
2 (4m)

Statements after the inner loop: n (2m+ m) = n (3m) flops

TOTAL: n (3m)+ n(n−1)
2 (4m) = 2mn2 + mn flops.

Assume the term 2mn2 will dominate mn, and we obtain an approximation of 2mn2 flops.

14.3.2 Stability

Before we can discuss the stability of the Gram-Schmidt QR decomposition, we need a definition of for the condition
number of a general an m× n matrix. For a nonsingular square matrix, we know that

κ2 (A) = ‖A‖2
∥∥∥A−1∥∥∥

2
= σ1

σn
,

where σ1 and σn are the largest and smallest singular values of A. A non-square matrix has no inverse, but it does have a
largest and a smallest nonzero singular value, leading to the following definition.

Definition 14.3. If A is an m× n matrix, the 2-norm condition number of A is

κ2 (A) = σ1

σr
,

where σ1 and σr are the largest and smallest nonzero singular values of A.

The Gram-Schmidt process for computing the reducedQR decomposition is conceptually simpler than methods we will
discuss in Chapter 17, but it is not as stable as those methods. The stability of the algorithm is linked to the condition number
of the matrix, as we see in Theorem 14.2, whose proof can be found in Ref. [16, pp. 372-373]. This is not the case with other
algorithms we will discuss for computing the QR decomposition. In reading the theorem, note that if Q is an m× n matrix
with orthonormal columns, m > n, QTQ is the n× n identity matrix (Problem 14.4).

Theorem 14.2. Suppose the MGS process is applied to the m × n matrix A = [
a1 a2 . . . an−1 an

]
having rank n,

yielding an m× n matrix Q̂ and n× n matrix R̂. Then there are constants ci, i = 1, 2, 3, depending on m and n, such that

A+�A1 = Q̂R̂, ‖�A1‖2 ≤ c1 eps ‖A‖2 ,∥∥∥Q̂TQ̂− I
∥∥∥
2
≤ c2 eps κ2 (A)+ O

((
eps κ2 (A)

)2) ,
and there exists a matrix Q with orthonormal columns such that

A+�A2 = QR̂, ‖�A2 (:, j)‖2 ≤ c3 eps
∥∥aj∥∥2 , 1 ≤ j ≤ n.

There are three observations we can obtain from Theorem 14.2.

a. The residual A− Q̂R̂ is small.
b. How close Q̂ is to having orthonormal columns depends on the condition number of A. If A is well conditioned, then Q̂

has close to orthonormal columns.
c. R̂ is the exact upper-triangular factor of a matrix near to A.

14.4 APPLICATIONS OF THE QR DECOMPOSITION

There are numerous applications for the QR decomposition. Chapters 18 and 19 discuss the use of the QR decomposition
to find eigenvalues and eigenvectors, a problem we know should never be done by finding the roots of the characteristic
polynomial. We discussed polynomial fitting using least squares in Section 12.3. The general linear least-squares problem
involves finding a vector x ∈ Rn that minimizes ‖Ax− b‖2, where A is an m × n matrix, and b an m × 1 vector. The QR
decomposition can be effectively used to solve such problems, as you will see in Chapter 16. In this section, we discuss two
useful but simpler applications, computing the determinant, and finding the range of a matrix.



Gram-Schmidt Orthonormalization Chapter| 14 291

14.4.1 Computing the Determinant

We can use the QR decomposition to find the absolute value of the determinant of a square matrix A. We will assume that
the columns of A are linearly independent. Since Q has orthonormal columns,

QTQ = I, and det
(
QTQ

) = det
(
QT
)

det (Q) = (det (Q))2=1 ,

so |det (Q)| = 1. It follows that

|det (A)| = |det (QR)| = |det (Q)| |det (R)| = |r11r22r33 . . . rnn| ,

since the determinant of an upper-triangular matrix is the product of its diagonal elements.

Example 14.5. Find the absolute value of the determinant of the matrix A =

⎡⎢⎢⎣
8.0 2.6 4.0 9.8
4.2 6.3 −1.2 5.0
−2.0 0.0 9.1 8.5
18.7 25.0 −1.0 23.5

⎤⎥⎥⎦.
>> [Q R] = modqrgrsch(A);

>> abs(prod(diag(R)))

ans =

519.8238

>> det(A)

ans =

-519.8238

�

14.4.2 Finding an Orthonormal Basis for the Range of a Matrix

Recall that the range, R (A), of an m× n matrix A is defined by

R (A) = {
y ∈ R

m | Ax = y for some vector x ∈ R
n} .

In other words, the range of A is the set of all vectors y for which the equation Ax = y has a solution. If m ≥ n, A has
rank n, and vi, 1 ≤ i ≤ n are the columns of A, then

Ax = x1v1 + x2v2 + · · · + xn−1vn−1 + xnvn,

so the vi are a basis for the range of A. Another way of putting this is that R (A) is the column space of A. Now suppose
that A = QR is a reduced decomposition of A, m ≥ n, and the diagonal entries rii of R are nonzero. We do not
make the assumption that the decomposition was found using the Gram-Schmidt algorithm; in fact, we will discuss two
other algorithms for computing the reduced decomposition. It is reasonable to require rii �= 0, since we know the QR
decomposition can be done using Gram-Schmidt with rii > 0. The following theorem connects Q and R (A).

Theorem 14.3. If A is a full rank m × n matrix, m ≥ n, and A = QR is a reduced QR decomposition of A with rii �= 0,
the columns of Q are an orthonormal basis for the range of A.

Proof. If x ∈ Rn, then Ax = Q (Rx). Rx is a vector in Rn, so range (A) ⊆ range (Q). If we can show that range (Q) ⊆
range (A), then range (A) = range (Q), and the columns of Q are an orthonormal basis for the range of A. Since R is upper
diagonal with nonzero diagonal entries, it is invertible, and AR−1 = Q. Then, Qx = A

(
R−1x

)
, and range (Q) ⊆ range (A),

completing the proof.



292 Numerical Linear Algebra with Applications

14.5 CHAPTER SUMMARY

The Gram-Schmidt Process

The Gram-Schmidt process takes a set of k linearly independent vectors, vi, 1 ≤ i ≤ k, and builds an orthonormal basis that
spans the same subspace. Compute the projection of vector v onto vector u using

proju (v) =
(
〈v, u〉
‖u‖22

)
u.

The vector v−proju (v) is orthogonal to u, and this forms the basis for the Gram-Schmidt process. Begin with the first vector,
v1, normalize it, name it e1, and form u2 = e1 − proje1 (v2), and let e2 = u2/‖u‖2. Continue this process by subtracting all
projections of vi onto ej, 1 ≤ j ≤ i− 1 to obtain a vector ui orthogonal to the ej and normalize it to obtain ei. Continue until
you have an orthonormal set e1, e2, . . . , ek. To prepare for constructing theQR decomposition, maintain the upper-triangular
matrix entries rji =

〈
vi, ej

〉
, 1 ≤ j ≤ i− 1 and rii = ‖ui‖2.

Numerical Stability of the Gram-Schmidt Process

During the execution of the Gram-Schmidt process, the vectors ui are often not quite orthogonal, due to rounding errors.
For the classical Gram-Schmidt process just described, this loss of orthogonality is particularly bad. The computation also
yields poor results when some of the vectors are almost linearly dependent. For these reasons, it is said that the classical
Gram-Schmidt process is numerically unstable.

Subtracting the projections of vi onto the ej all at once causes the problem. Split the computation into smaller parts by
removing the projections one at a time. This approach (referred to as MGS process) gives the same result as the original
formula in exact arithmetic, but it introduces smaller roundoff errors when executed on a computer.

The QR Decomposition

An m× n real matrix A is said to have full rank if rank (A) = min (m, n). If A ∈ Rm×n and m > n, then to have full rank the
n columns of A must be linearly independent. If m < n, then to be of full rank, the m rows must be linearly independent. If
m ≥ n, the application of the Gram-Schmidt process to the column vectors of an m× n full rank matrix A while recording
the values rij yields the QR decomposition, A = QR, where Q has orthonormal columns and R is an n× n upper-triangular
matrix.

The decomposition requires approximately 2mn2 flops, which is better than other methods we will discuss. However, the
algorithm is not as stable. Unlike the other methods, how close the computed Q is to having orthonormal columns depends
on the condition number of A.

Applications of the QR Decomposition

We will see in Chapter 16 that the QR decomposition can be very effectively used to solve linear least-squares problems.
In Chapters 18 and 19, we will see that the QR decomposition is very important in the accurate, efficient, computation of
eigenvalues. This chapter presents two simpler applications.

The QR decomposition can be used to determine the absolute value of a determinant, namely,

|detA| = |r11r22 . . . rnn| .
The matrix R computed by Gram-Schmidt has positive diagonal elements, and Theorem 14.3 tells us that the columns

of Q are an orthonormal basis for the range of A.

14.6 PROBLEMS

14.1 The vectors
[
1 −1 5

]T and [ −1 − 3
5

2
25

]T
are orthogonal. Divide them by their norms to produce orthonormal

vectors e1 and e2. Create a matrix Q with e1 and e2 as its columns and calculate QTQ and QQT. Explain the results.
14.2 Compute the projection of v onto u and verify that v− proju (v) is orthogonal to u.

a. v = [
1 2 3 4

]T ,u = [ −1 3 −1 7
]T

b. v = [ −1 6 2 0 1
]T , u = [

0 6 −1 −1 1
]T



Gram-Schmidt Orthonormalization Chapter| 14 293

14.3 Find an orthonormal basis e1, e2 for the subspace spanned by v =
[
1 −1 2 3

]T and w = [
2 0 1 6

]T.
14.4 If Q is an m× n matrix with orthonormal columns, prove that QTQ is the n× n identity matrix.

For Problems 14.5 and 14.6, assume that A = QR is the QR decomposition of an n× n matrix A.
14.5 Show that ATA = RTR.
14.6 Show that det

(
ATA

) = (r11r22 . . . rnn)2.

14.7 a. Let A =
[
a b
c d

]
, with detA = ad − bc > 0. Find the QR decomposition of A.

b. Gram-Schmidt breaks down if the column vectors are linearly dependent. Using the result of part (a), show how
the breakdown occurs.

14.8 Assume A is an m× n matrix, m < n, and rank (A) = m. prove that A can be written in the form A = LQ, where L
is a m× m lower-triangular matrix and Q is an m× n matrix with orthonormal rows.

14.9 This problem takes another approach to developing the QR decomposition.
a. Show that ATA = RTR, where R is upper triangular with rii > 0, 1 ≤ i ≤ n.
b. Show that R nonsingular so we can define Q = AR−1, and thus A = QR.
c. Show that QTQ = I, so Q has orthonormal columns.

14.10 This problem is a proof that the reduced decomposition is unique.
a. Assume that A = Q̂R̂ is another QR decomposition of A. Show that ATA = R̂TR̂.
b. Using the fact that the Cholesky decomposition of a positive definite matrix is unique, show that Q̂ = Q and
R̂ = R.

14.11 Assume that A = QR is theQR decomposition of them× nmatrix A. In the proof of Theorem 14.3, we showed that
R (A) ⊆ R (Q). This problem provides an alternative approach to developing this subset relationship. Let C = QR.
Show that each element cki, 1 ≤ k ≤ m, in column i of C has the value

cki =
i∑

p=1
qkprpi.

Now show that

ci =
i∑

p=1
qprpi,

where ci is column i of QR and qp is column p of Q. Explain why this shows that R (A) ⊆ R (Q).

14.6.1 MATLAB Problems

14.12

a. Show that the vectors

⎡⎣ 1
5
−1

⎤⎦ ,

⎡⎣ 2
3
8

⎤⎦ ,

⎡⎣ 0
1
3

⎤⎦ are linearly independent by showing that

det

⎡⎣ 1 2 0
5 3 1
−1 8 3

⎤⎦ �= 0

b. Using modqrgrsch, find the QR decomposition of A =
⎡⎣ 1 2 0

5 3 1
−1 8 3

⎤⎦.
14.13

a. Find an orthonormal basis for the subspace spanned by the columns of A =

⎡⎢⎢⎣
1 4 7
−1 2 3
9 1 0
4 1 8

⎤⎥⎥⎦ .

b. Find an orthonormal basis for the subspace spanned by the rows of B =
⎡⎣ 5 −1 3 6
0 5 −7 1
1 2 −1 0

⎤⎦.



294 Numerical Linear Algebra with Applications

c. Our implementation of Gram-Schmidt assumes that the columns of the matrix are linearly independent. Will
modgrsch apply to the columns of B in part (b)? Why or why not?

14.14 Find an orthonormal basis for the column space of A.

A =

⎡⎢⎢⎣
1 −2
1 0
1 1
1 3

⎤⎥⎥⎦
14.15 Use modgrsch to find an orthonormal basis for the columns of the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 9 0 5 3 2
−6 3 8 2 −8 0
3 15 23 2 1 7
3 57 35 1 7 9
3 5 6 15 55 2
33 7 5 3 5 7

⎤⎥⎥⎥⎥⎥⎥⎦
14.16 The QR decomposition using Gram-Schmidt gives a result if rank (A) �= min (m, n).

a. Demonstrate this for the matrices

i. A =

⎡⎢⎢⎢⎢⎣
1 −1 3 4
2 1 4 9
0 3 2 5
1 5 −1 6
4 −8 6 6

⎤⎥⎥⎥⎥⎦
ii. B =

⎡⎣ 1 8 −1 3 2
5 7 −9 1 4
13 71 −17 25 20

⎤⎦
b. Explain why the results of part (a) are actually not QR decompositions.
c. Use the MATLAB function qr with the two matrices in part (a). Are these actually QR decompositions? Why?

14.17 Compute the absolute value of the determinant of the matrix in Problem 14.15 using modqrgrsch. Compare the
computed value to that obtained from the MATLAB function det.

14.18 TheQR decomposition can be used to solve a linear system. Let A be an n×nmatrix, with A = QR. Then, the linear
system Ax = b can be written as

QRx = b.

The process goes as follows:
Solve Qy = b for y.
Solve Rx = y for x.
a. It is very easy to solve for y without using Gaussian elimination. Why?
b. The solution to Rx = y can be done quickly why?
c. Develop a function qrsolve that solves an n × n system using the MATLAB reduced QR decomposition. If
the matrix is singular, the QR decomposition will complete with no error. Make the return values [x, resid],
where resid is the residual ‖Ax− b‖2. A large residual will indicate that the matrix is singular or ill-conditioned.

d. Apply the function to solve each system.

i.

⎡⎣ 1 −1 0
2 4 5
−7 1 3

⎤⎦ x =
⎡⎣ 1
−1
8

⎤⎦

ii.

⎡⎢⎢⎣
21 3 −4 8
1 3 59 0
1 2 −22 35
3 78 100 3

⎤⎥⎥⎦ x =
⎡⎢⎢⎣

1
−1
1
2

⎤⎥⎥⎦
iii. The rosser matrix A = rosser.



Gram-Schmidt Orthonormalization Chapter| 14 295

We have three methods available for computing the QR decomposition of a matrix:
a. [Q, R] = clqrgrsch(A);

b. [Q, R] = modqrgrsch(A);

c. [Q, R] = qr(A);

Problems 14.19 and 14.20 involve running numerical experiments using these functions.

14.19 A Hilbert matrix is square and has entries H(i, j) = 1/(i+ j− 1), 1 ≤ i, j ≤ n. Hilbert matrices are notoriously ill-
conditioned. An interesting fact about a Hilbert matrix is that every Hilbert matrix has an inverse consisting entirely
of large integers. For n ≤ 15, the MATLAB command H = invhilb(n) returns the exact inverse of the n × n
Hilbert matrix. Use methods 1-3 for QR decomposition to produce Q1R1, Q2R2, and Q3R3 for the inverse Hilbert
matrix of order 12. Each Qi should be orthogonal. Test this by computing ‖Qi‖2 and

∥∥QT
i Qi − I

∥∥ for each method.
Explain your results.

14.20 Let A =
⎡⎣ −1 2 7
−1 2 5
1 −1 3

⎤⎦, and perform the following numerical experiment.

>> for i = 1:10

[Q R] = modqrgrsch(A);

A = R*Q;

end

Examine R, and determine what it tells you about the original matrix A.
14.21 This problem tests the performanceofMGS. Recall that Theorem14.2 links the performance ofMGS to the condition

number of A.
a. Let A be the Rosser matrix by executing A = rosser. A is an 8 × 8 symmetric matrix with some very bad
properties.

b. Find the condition number of A.
c. The function hqr in the software distribution computes the QR decomposition of an m× nmatrix using what are
termed Householder reflections. We will develop hqr in Chapter 17. Execute the following statements

>> [Q1, R1] = modqrgrsch(A);

>> [Q2, R2] = hqr(A);

>> norm(Q1’*Q1 - eye(8))
>> norm(Q2’*Q2 - eye(8))

and comment on the results.
d. We defined the Vandermonde matrix in Section 12.3, and it is implemented by the function vandermonde in

the software distribution. Given a vector x ∈ R
n and an integer m, the Vandermonde matrix is of dimension

m× (n+ 1). Normally, m is much larger than n. Explain the output of the following code:

>> x = rand(100,1);
>> V = vandermonde(x,25);

>> [Q1 R1] = modqrgrsch(V);

>> [Q2 R2] = qr(V,0);
>> norm(Q1’*Q1 - eye(26))
>> norm(Q2’*Q2 - eye(26))

14.22 Determining the rank of a matrix is a difficult problem, as will become evident in subsequent chapters. The QR
decomposition can be used to determine the exact or approximate rank of a matrix. Column pivoting can be used in
performing the QR decomposition, and the process is termed rank revealing QR decomposition [2, pp. 248-250]. A
discussion of this method is beyond the scope of this book, but it is useful to know that it exists and to experiment
with it. In MATLAB, there is a version of the function qr that has the calling sequence

[Q,R,E] = qr(A,0)

It produces a matrix Q with orthonormal columns, upper triangular R, and a permutation matrix E so that AE =
QR. The rank of A is determined by counting the number of nonzero values on the diagonal of R. What is a nonzero
value? Since roundoff error occurs, it is likely that an entry that should be exactly zero is small instead. We will
assign a tolerance, tol, and any value less than or equal to tol will be considered zero. Portions of the following
questions are taken from Ref. [23, Exercise 4.2.21, pp. 271-272].



296 Numerical Linear Algebra with Applications

a. The Kahan matrix Kn (θ) is an n × n upper triangular matrix whose entries are a function of θ . It provides an
interesting problem in rank determination. Generate the 90×90 Kahan matrix with θ = 1.2 using the MATLAB
statement

K = gallery(’kahan’,90,1.2,0);

b. Enter

>> [Q R E] = qr(K,0);
>> tol = 1.0e-14;

>> rdiag = diag(R);
>> sum(rdiag > tol);

>> rank(K)

Is rank determination using the QR decomposition correct?
c. To ensure that the QR factorization with column pivoting does not interchange columns in the presence of
rounding errors, the diagonal is perturbed by pert*eps*diag([n:-1:1]). Obtain a slightly perturbed version
of K using the statement

>> K25 = gallery(’kahan’,90,1.2,25);

Enter the same sequence of statements as in part (b), replacing K by K25. Does the QR decomposition with
column pivoting give the correct rank?

14.23 Example 14.3 provided evidence that the classical Gram-Schmidt method was error-prone. In this problem, you will
repeat an expanded version of Example 14.3. Define ε = 0.5× 10−7 and build the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1 1
ε 0 0 0 0
0 ε 0 0 0
0 0 ε 0 0
0 0 0 ε 0
0 0 0 0 ε

⎤⎥⎥⎥⎥⎥⎥⎦ .

Execute the following MATLAB command sequence. The function givensqr is in the software distribution and
will be developed in Chapter 17.

>> [Q1 R1] = clqrgrsch(A);

>> [Q2 R2] = modqrgrsch(A);

>> [Q3 R3] = qr(A);
>> [Q4 R4] = givensqr(A);

For each decomposition, compute
∥∥QT

i Qi − I
∥∥. Comment on the results.

14.24 This problem investigates what happens when the matrix A given as an argument to modqrgrsch is complex. The
two primary components in the implementation of MGS are the inner product 〈u, v〉 and the 2-norm ‖u‖2 . The
remaining operations are arithmetic.
a. Enter the complex vectors

x = [
1− i 2+ i 3− 2i

]T , y = [
8+ i i 5+ 4i

]T
and compute the expression

∑3
i=1 xiyi. MATLAB will compute the inner product using the function dot(x,y).

Use dot with x and y. Do you obtain the same results?
b. Compute

∑3
i=1 xiyi, where xi is the complex conjugate of xi. Use the MATLAB function conj to compute the

complex conjugate. Does your result agree with dot(x,y)?
c. Based upon the your answers in parts (a) and (b), what is the definition for the inner product of two vectors
x, y ∈ C

n?
d. Define the norm of a vector x ∈ Cn. Use your definition to find the norm of x and compare the result with the

MATLAB statement norm(x).
e. Run modqrgrsch with a 3× 3 and a 5× 3 complex matrix of your choosing. In each case, compare your result
with that of the reduced QR decomposition computed using MATLAB’s qr. If the results are very close, explain
why, and if not explain why modqrgrsch fails with complex matrices.

14.25 We will see in Chapters 21 and 22 that there are important algorithms which are subject to problems when the
vectors they are generating begin to lose orthogonality. A standard solution is to perform reorthogonalization. At



Gram-Schmidt Orthonormalization Chapter| 14 297

point i in the algorithm, assume it has generated vectors v1, v2, . . ., vi that should be orthogonal if exact arithmetic
were used. Reorthogonalization performs operations on the vectors to improve orthogonality. This can be done with
both the classical and MGS methods. In Ref. [45, p. 1071], the classical and MGS methods are discussed with and
without reorthogonalization. Also see Ref. [23, pp. 231-233]. In this problem, we will only discuss the classical
Gram-Schmidt method. The following listing is from the classical Gram-Schmidt method modified to compute the
QR decomposition.

1: for i = 1:n do
2: Q(:,i) = A(:,i)

3: sumproj = 0

4: for j = 1:i-1 do
5: R (j, i) = Q (:, j)T Q (:, i)

6: sumproj = sumproj+ R (j, i)Q (:,j)

7: end for
8: Q (:, i) = Q (:, i)− sumproj

9: R (i, i) = ‖Q (:, i)‖2
10: Q (:, i) = Q (:, i) /R (i, i)

11: end for

After steps 3-8, in exact arithmetic Q (:, i) is orthogonal to Q (:, 1 : i); however with roundoff and cancellation
error present, it likely is not. We need to start with the already computed Q (:, i) and repeat steps 3-8, hopefully
improving orthogonality. The inner loop computed the terms R (j, i) = Q (:, j)TQ (:, i) . When starting with
Q (:, i) and repeating steps 3-8, the values of Q (:, j)TQ (:, i) will be small and serve as corrections to the original
values of R. They must be assigned to another matrix, S, and then added to R. The following statements perform
reorthogonalization when placed between statements 8 and 9.
sumproj = 0

for j = 1:i-1 do
S (j, i) = Q (:, j)T Q (:, i)

sumproj = sumproj+ S (j, i)Q (:,j)

end for
Q (:, i) = Q (:, i)− sumproj

R (1 : i− 1, i) = R (1 : i− 1, i)+ S (1 : i − 1, i)

a. Modify clqrgrsch so it selectively performs reorthogonalization. Its calling format should be
[Q,R] = clqrgrsch(A,reorthog). When reorthog = 1, perform reorthogonalization; otherwise, don’t. If the
argument is omitted, the default value should be 1. If you don’t know how to deal with variable input arguments,
use MATLAB help for nargin.

b. The matrix west0167 in the software distribution has dimension 167× 167 and a condition number of 4.7852×
1010. It was involved in a chemical process simulation problem. Apply clqrgrsch to west0167 with and without
reorthogonalization. In each case, compute ‖Q‖2 and

∥∥QTQ− I
∥∥
2. Explain the results.

c. Modify your clqrgrsch so it returns an array of values orthog = ∥∥Q (:, 1 : i)TQ (:, 1 : i)− Ii×i
∥∥
2, 1 ≤ i ≤ n,

in addition toQ and R. The array records howwell orthogonality is maintained. Take the function modqrgrsch in
the software distribution and do the same. Apply classical Gram-Schmidt, with and without reorthogonalization,
and modqrgrsch to west0167. On the same set of axes, draw a semilogy graph of m = 1, 2, . . . , 167 against
orthog for each algorithm. Comment on the results.



This page intentionally left blank



Chapter 15

The Singular Value Decomposition

You should be familiar with

● Eigenvalues and eigenvectors
● Singular values
● Orthogonal matrices
● Matrix column space, row space, and null space
● The matrix 2-norm and Frobenius norm
● The matrix inverse

Matrix decompositions play a critical role in numerical linear algebra, and we have already see the QR decomposition,
one of the great accomplishments in the field. The singular value decomposition (SVD) is also among the greatest results
in linear algebra. Just like the QR decomposition, the SVD is a matrix decomposition that applies to any matrix, real, or
complex. The SVD is a powerful tool for many matrix computations because it reveals a great deal about the structure of a
matrix. A number of its many applications are listed in Section 15.7.2.

This chapter proves the SVD theorem but does not develop a useable algorithm for its computation. We will use the
SVD from this point forward in the book and will see some of its powerful applications. Unfortunately, computing the SVD
efficiently is quite difficult, and we will present two methods for its computation in Chapter 23. In the meantime, we will
use the built-in MATLAB command svd to compute it.

15.1 THE SVD THEOREM

Recall that if A is an m× nmatrix, then ATA is an n× n symmetric matrix with nonnegative eigenvalues (Lemma 7.4). The
singular values of an m× n matrix are the square roots of the eigenvalues of ATA, and the 2-norm of a matrix is the largest
singular value. The SVD factors A into a product of two orthogonal matrices and a diagonal matrix of its singular values.

Theorem 15.1. Let A ∈ Rm×n be a matrix having r positive singular values, m ≥ n. Then there exist orthogonal matrices
U ∈ Rm×m,V ∈ Rn×n, and a diagonal matrix �̃ ∈ Rm×nsuch that

A = U�̃VT

�̃ =
[

� 0
0 0

]
,

where � = diag (σ1, σ2, . . . , σr), and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the positive singular values of A.

Overview:

The proof is by construction. Build the m×n matrix �̃ =
[

� 0
0 0

]
by placing the positive singular values on the diagonal of�, so

� =

⎡⎢⎢⎢⎢⎣
σ1

σ2

. . .

σr

⎤⎥⎥⎥⎥⎦ .

Find an orthonormal basis vi, 1 ≤ i ≤ n of eigenvectors of ATA. This can be done because ATA is symmetric (Theorem 7.6, the
spectral theorem). Then, V = [

v1 v2 . . . vn
]
. Build the orthogonal matrix U using A, vi, and σi.

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00015-6
Copyright © 2015 Elsevier Inc. All rights reserved. 299



300 Numerical Linear Algebra with Applications

Proof. The matrix ATA is symmetric and by Lemma 7.4, its eigenvalues are real and nonnegative. Listing the eigenvalues
in descending order we obtain

σ 2
1 ≥ σ 2

2 ≥ · · · ≥ σ 2
r ≥ σ 2

r+1 ≥ · · · ≥ σ 2
n ≥ 0.

Assume that the first r eigenvalues are positive, and the eigenvalues σ 2
r+1 = σ 2

r+2 = · · · σ 2
n = 0. Let

�̃ =
[

� 0
0 0

]
,

where � = diag (σ1, σ2, . . . , σr) is a diagonal matrix of singular values. The spectral theorem (Theorem 7.6) guarantees
that ATA has an orthonormal basis for Rn of eigenvectors. Let

V = [
v1 v2 . . . vn−1 vn

]
,

and it turns out this is the matrix we are looking for. We now need to find U. The matrix U must be orthogonal, so its
columns will form a basis for R

m. Let

ui = Avi
σi

, 1 ≤ i ≤ r.

These vectors are orthonormal since〈
ui, uj

〉 = (Avi)T
(
Avj

)
σiσj

= (σivi)T
(
σjvj

)
σiσj

= vTi vj =
〈
vi, vj

〉 = {
0 i �= j
1 i = j

.

If r < m, we still need m − r additional vectors
{
ur+1 ur+1 . . . um−1 um

}
so that

{
u1 u2 . . . um−1 um

}
forms an

orthonormal set. Beginning with

u1, u2, . . . ur−1, ur
use a Gram-Schmidt algorithm step to add the standard basis vector er+1 to the set to obtain the orthonormal set

u1, u2, . . . ur−1, ur, ur+1 .

Continue by adding in the same fashion er+2, er+3, . . ., em to obtain the basis

u1, u2, . . . um−1, um
for Rm and the matrix U = [

u1 u2 . . . um−1 um
]
. Now we need to show that A = U�̃VT, or UTAV = �̃. Before we

begin, note two things:

a. The vectors v1, v2, . . . , vr are the nonzero eigenvectors of ATA, so ATAvi = 0, r+ 1 ≤ i ≤ n. Multiply by vTi to get

vTi A
TAvi = 0,

so

(Avi)
T (Avi) = ‖Avi‖22 = 0,

and Avi = 0, r + 1 ≤ i ≤ n.

b. Write UT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
...
ur
ur+1
...
um

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where each ui is a row of UT. Since u1, u2, . . . , ur are an orthonormal set, it follows that

UTui=ei, 1 ≤ i ≤ r, and so σiUTui = σiei, 1 ≤ i ≤ r.

Now continue.

UTAV = UTA
[
v1 v2 . . . vn−1 vn

] = UT [ Av1 Av2 . . . Avn−1 Avn
] = (15.1)

UT [ σ1u1 σ2u2 . . . σrur Avr+1 . . . Avn
] = (15.2)



The Singular Value Decomposition Chapter| 15 301

UT [ σ1u1 σ2u2 . . . σrur 0 . . . 0
] = (15.3)[

σ1UTu1 σ2UTu2 . . . σrUTur 0 . . . 0
] = (15.4)[

σ1e1 σ2e2 . . . σrer 0 . . . 0
] = �̃ (15.5)

Remark 15.1.

a. There is no loss of generality in assuming that m ≥ n, for if m < n, find the SVD for AT and transpose back. We have

AT = U�̃VT

so

A = V�̃UT,

and we have an SVD for A.

The columns ofU and V are called the left and right singular vectors, respectively. The largest and smallest singular values
are denoted, respectively, as σmax and σmin.

Example 15.1. The matrix A =
[

2 2
−1 1

]
has SVD[

2 2
−1 1

]
=
[
1 0
0 1

][
2
√
2 0

0
√
2

][
1/
√
2 1/

√
2

−1/√2 1/
√
2

]
We see that the columns of U and V have unit length since U = I, and(

1√
2

)2
+
(

1√
2

)2

= 1.

A simple calculation of inner products will show the columns of U and V are mutually orthogonal. �

Example 15.2. Let A =
⎡⎣ 1 −1 3
1 0 1
1 2 0

⎤⎦ and B =
⎡⎣ 1 1 −1
1 0 2
2 1 1

⎤⎦. Here are SVDs for each matrix:
A =

⎡⎣ −0.9348 0.0194 0.3546
0.3465 −0.2684 −0.8988
0.0778 −0.9631 0.2577

⎤⎦⎡⎣ 3.5449 0 0
0 2.3019 0
0 0 0.3676

⎤⎦⎡⎣ −0.3395 0.3076 −0.8889
−0.5266 −0.8452 −0.0913
−0.7794 0.4371 0.4489

⎤⎦ ,

r = 3, σ1 = 3.5449, σ2 = 2.3019, σ3 = 0.3676

B =
⎡⎣ −0.1355 0.8052 −0.5774
−0.6295 −0.5199 −0.5774
−0.7651 0.2852 0.5774

⎤⎦⎡⎣ 3.1058 0 0
0 2.0867 0
0 0 0.0000

⎤⎦⎡⎣ −0.7390 −0.2900 −0.60810.4101 0.5226 −0.7475
0.5345 −0.8018 −0.2673

⎤⎦ ,

r = 2, σ1 = 3.1058, σ2 = 2.0867

Note: The rank of A is 3, and the rank of B is 2. �

Example 15.3. Consider the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
0 0 0 0 0
−1 −1 −1 −1 −1
0 0 0 0 0
1 1 1 1 1
−1 −1 −1 −1 −1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦



302 Numerical Linear Algebra with Applications

An SVD is

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5000 −0.8660 0 0.0000 0 0.0000 0
0.0000 0.0000 1 0.0000 0 0.0000 0
0.5000 −0.2887 0 0.8165 0 0.0000 0
0.0000 0.0000 0 0.0000 −1 0.0000 0
−0.5000 0.2887 0 0.4082 0 0.7071 0
0.5000 −0.2887 0 −0.4082 0 0.7071 0
0.0000 0.0000 0 0.0000 0 0.0000 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

�̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.4721 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

V =

⎡⎢⎢⎢⎢⎣
−.4472 −0.3651 −0.6712 0.4614 0.0581
−.4472 −0.3651 −0.0671 −0.8074 −0.1016
−.4472 0.5477 0.0000 −0.0883 0.7016
−.4472 −0.3651 0.7383 0.3460 0.0435
−.4472 0.5477 0.0000 0.0883 −0.7016

⎤⎥⎥⎥⎥⎦
� = [

4.4721
]
, σ1 = 4.4721, r = 1

Note: The rank of A is 1. �

If the singular values of A are placed in descending order in �̃, then �̃ is unique; however, U and V are not in general. In
the proof of Theorem 15.1, we extended the orthonormal basis{

u1 u2 . . . ur−1 ur
}

to an orthonormal basis for Rm. This can be done in many ways. For the matrix of Example 15.3, the matrices

U=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5000 0.8660 0.0000 0 0.0000 0.0000 0
0.0000 0.0000 −1.0000 0 0.0000 0.0000 0
0.5000 0.2887 0.0000 0 0.5774 −0.5774 0
0.0000 0.0000 0.0000 1 0.0000 0.0000 0

−0.5000 −0.2887 0.0000 0 0.7887 0.2113 0
0.5000 0.2887 0.0000 0 0.2113 0.7887 0
0.0000 0.0000 0.0000 0 0.0000 0.0000 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, V=

⎡⎢⎢⎢⎢⎣
−0.4472 0.3651 0.0000 −0.5774 −0.5774
−0.4472 0.3651 0.0000 −0.2113 −0.7887
−0.4472 −0.5477 0.7071 0.0000 0.0000
−0.4472 0.3651 0.0000 0.7887 −0.2113
−0.4472 −0.5477 −0.7071 0.0000 0.0000

⎤⎥⎥⎥⎥⎦
also produce a valid SVD.

Remark 15.2. If A is square and the σi are distinct, then ui and vi are uniquely determined except for sign.

15.2 USING THE SVD TO DETERMINE PROPERTIES OF A MATRIX

The rank of a matrix is the number of linearly independent columns or rows. Notice that in Example 15.2, the matrix A has
three nonzero singular values, and the matrix B has two. The matrix of Example 15.3 has only one nonzero singular value.
The rank of the matrices is 3, 2, and 1, respectively. This is not an accident. The rank of a matrix is the number of nonzero
singular values in �̃.

We now present a theorem dealing with rank that we have not needed until now. The result will allow us to show the
relationship between the rank of a matrix and its singular values.

Theorem 15.2. If A is an m×n matrix, X is an invertible m×mmatrix, and Y is an invertible n×n matrix, then rank (XAY)

= rank (A).



The Singular Value Decomposition Chapter| 15 303

Proof. Since X is invertible, it can be written as a product of elementary row matrices, so X = E(X)
k E(X)

k−1 . . .E(X)
2 E(X)

1 .

Similarly, Y is a product of elementary row matrices, Y = E(Y)
p E(Y)

p−1 . . .E(Y)
2 E(Y)

1 , and so

XAY = E(X)
k E(X)

k−1 . . .E(X)
2 E(X)

1 AE(Y)
p E(Y)

p−1 . . .E(Y)
2 E(Y)

1 .

The product of the elementary row matrices on the left performs elementary row operations on A, and this does not change
the rank of A. The product of elementary rowmatrices on the left perform elementary column operations, which also do not
alter rank. Thus, rank (XAY) = rank (A).

Theorem 15.3. The rank of a matrix A is the number of nonzero singular values.

Proof. Let A = U�̃VT be the SVD of A. Orthogonal matrices are invertible, so by Theorem 1.2,

rank (A) = rank
(
U�̃VT

) = rank
(
�̃
)
.

The rank of �̃ is r, since[
σ1 0 0 . . . 0

]T
,

[
0 σ2 0 . . . 0

]T
,

[
0 0 σ3 . . . 0

]T
,

[
0 0 . . . σr 0 . . . 0

]T
is a basis for the column space of �̃.

From the components of the SVD, we can determine other properties of the original matrix. Recall that the null space of
a matrix A, written null (A), is the set of vectors x for which Ax = 0, and the range of A is the set all linear combinations
of the columns of A (the column space of A). Let ui, 1 ≤ i ≤ m and vi , 1 ≤ i ≤ n be the column vectors of U and V,
respectively. Then

Avi = U�̃VTvi.

ThematrixVT can be written as

⎡⎢⎢⎢⎢⎢⎢⎣

vT1
...
vTi
...
vTn

⎤⎥⎥⎥⎥⎥⎥⎦, where the vi are the orthonormal columns ofV. The productV
Tvi =

⎡⎢⎢⎢⎢⎢⎢⎣

vT1
...
vTi
...
vTn

⎤⎥⎥⎥⎥⎥⎥⎦ vi= ei,

where ei =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
1
0
...
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is the ith standard basis vector in R

n. Now,

�̃ei =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 · · · 0 · · · 0 0 0
0 σ2 · · · 0 · · · 0 0 0

0 0 · · · σi · · ·
... · · · ...

0 0 · · · 0
. . .

... · · · ...
...

...
...

... · · · σr · · · 0
...

...
...

... · · · ...
. . .

...
0 0 · · · 0 · · · 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ei =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
σi
0
...
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i ≤ r,



304 Numerical Linear Algebra with Applications

and

U

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
...
σi
...
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11 u12 · · · u1r · · · u1m
u21 u22 · · · u2r · · · u2m
...

...
. . .

... · · · ...
...

... · · · urr · · · urm
...

... · · · ...
. . .

...
um1 um2 · · · umr · · · umm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
σi
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= σiui, 1 ≤ i ≤ r.

For vi, r + 1 ≤ i ≤ m, we have

Avi= U�̃ei =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11 · · · u1i · · · u1m
u21 · · · u2i · · · u2m
...

. . .
... · · · ...

... · · · uii · · · uim

... · · · ... · · · ...

... · · · ...
. . .

...
...

...
...

...
...

um1 · · · umi · · · umm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 · · · 0 · · · · · · 0 · · · 0
...

. . .
... · · · ... · · · · · · ...

0 · · · σr
. . .

... · · · · · · 0
...

...
... 0 · · · · · · · · · ...

...
...

...
...

. . .
... · · · ...

0 · · · 0 0 0 0 · · · ...
... · · · ...

...
...

...
. . .

...
0 · · · 0 0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
...
0
...
1
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

and Avi = 0, r + 1 ≤ i ≤ m.
In summary, we have

Avi = σiui, σi �= 0, 1 ≤ i ≤ r

Avi = 0, r + 1 ≤ i ≤ n

Since U and V are orthogonal matrices, all ui and vi are linearly independent. For 1 ≤ i ≤ r, Avi = σiui, σi �= 0,
and ui, 1 ≤ i ≤ r is in the range of A. Since by Theorem 15.2 the rank of A is r, the ui are a basis for the range
of A. For r + 1 ≤ i ≤ n, Avi = 0, so vi is in null (A). Since rank (A) + nullity (A) = n, nullity (A) = n − r.
There are n − (r + 1) + 1 = n − r orthogonal vectors vi, so the vi, r + 1 ≤ i ≤ n, are a basis for the null
space of A.

Example 15.4. Let B =
⎡⎣ 1 1 −1
1 0 2
2 1 1

⎤⎦ be the matrix in Example 15.2. From the SVD, the vectors

⎡⎣ −0.1355−0.6295
−0.7651

⎤⎦ and⎡⎣ 0.8052
−0.5199
0.2852

⎤⎦ are a basis for the range of B, and the vector

⎡⎣ 0.5345
−0.8018
−0.2673

⎤⎦ is a basis for the null space of B. Remember when

looking at the decomposition of B, VT appears, not V. �

15.2.1 The Four Fundamental Subspaces of a Matrix

There are four fundamental subspaces associated with an m×nmatrix. We have seen two, the range and the null space, and
have determined how compute a basis for each using the SVD. The other two subspaces are the range and the null space of



The Singular Value Decomposition Chapter| 15 305

m −r

n −r

null(A)

range(AT)

null(AT)

range(A)
r

r

n

{v1,..,vr}

{vr+1,...,vn} {ur+1,...,um}

{u1,..,ur}

m

FIGURE 15.1 The four fundamental subspaces of a matrix.

AT. If we take the transpose of the SVD for A, the result is

AT = V�̃UT. (15.6)

Applying the same procedure that we used to determine an orthonormal basis for the range of A to Equation 15.6, it follows
that vi, 1 ≤ i ≤ r is a basis for the range of AT. Note that the range of AT is the row space of A. We already know that
vi, r+1 ≤ i ≤ n, is a basis for null (A). Since all the vi are orthogonal, it follows that the vectors in range

(
AT
)
are orthogonal

to the vectors in null (A). Again using Equation 15.6, we see that ui, r + 1 ≤ i ≤ m is an orthonormal basis for null
(
AT
)
.

We have shown that ui, 1 ≤ i ≤ r is a basis for range (A). Thus, range (A) is orthogonal to null
(
AT
)
. Table 15.1 summarizes

the four fundamental subspaces, and Figure 15.1 provides a graphical depiction. In the figure, the symbol � indicates the
subspaces are orthogonal.

We have stated a number of times that the dimension of the column space and row space are equal, and now we can
prove it.

Theorem 15.4. The dimension of the column space and the dimension of the row space of a matrix are equal and is called
the rank of the matrix.

Proof. Our discussion of the SVD has shown that if r is the number of nonzero singular values, ui, 1 ≤ i ≤ r is a basis for
the range of A, and vi, 1 ≤ i ≤ r is a basis for the range of AT, which is the row space of A.

Example 15.5. Let A =

⎡⎢⎢⎢⎢⎣
1 4 2
−1 0 2
5 −1 −11
0 2 2
1 1 −1

⎤⎥⎥⎥⎥⎦. The SVD of A is

TABLE 15.1 The Four Fundamental
Subspaces of a Matrix

Range Null Space

A ui, 1 ≤ i ≤ r vi , r+ 1 ≤ i ≤ n

AT vi, 1 ≤ i ≤ r ui, r + 1 ≤ i ≤ m



306 Numerical Linear Algebra with Applications

A =

⎡⎢⎢⎢⎢⎣
−0.1590 −0.8589 −0.3950 0.1461 0.2443
−0.1740 0.0738 0.4983 0.6089 0.5876
0.9532 −0.1726 0.0759 0.2364 −0.0054
−0.1665 −0.3926 0.5709 0.1858 −0.6766
0.0907 −0.2701 0.5139 −0.7194 0.3705

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
12.6906 0 0

0 4.7905 0
0 0 0.0000
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎣ 0.3839 −0.1443 −0.9120
−0.4312 −0.9014 −0.0389
0.8165 −0.4082 0.4082

⎤⎦ ,

so r = 2. Using Table 15.1, the four fundamental subspaces have orthonormal bases as follows:

range (A) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
−0.1590
−0.1740
0.9532
−0.1665
0.0907

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
−0.8589
0.0738
−0.1726
−0.3926
−0.2701

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , null(AT) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
−0.3950
0.4983
0.0759
0.5709
0.5139

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
0.1461
0.6089
0.2364
0.1858
−0.7194

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
0.2443
0.5876
−0.0054
−0.6766
0.3705

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

range(AT) =
⎧⎨⎩
⎡⎣ 0.3839
−0.1443
−0.9120

⎤⎦ ,

⎡⎣ −0.4312−0.9014
−0.0389

⎤⎦⎫⎬⎭ , null (A) =
⎧⎨⎩
⎡⎣ 0.8165
−0.4082
0.4082

⎤⎦⎫⎬⎭
�

15.3 SVD AND MATRIX NORMS

The SVD provides a means of computing the 2-norm of a matrix, since ‖A‖2 = √σ1. If A is invertible, then
∥∥A−1∥∥2 = √

1
σn
.

The SVD can be computed accurately, so using it is an effective way to find the 2-norm. The SVD also provides a means
of computing the Frobenius norm.

Remark 15.3. IfM is a general matrix (Problem 7.12),

‖A‖2F = trace
(
ATA

) = trace
(
AAT

)
.

There is means of computing the Frobenius norm using the singular values of matrix A. Before developing the formula, we
need to prove the invariance of the Frobenius norm under multiplication by orthogonal matrices.

Lemma 15.1. If U is an m×m orthogonal matrix, and V is an n× n orthogonal matrix, then‖UAV‖2F = ‖A‖2F.

Proof.

‖UA‖2F = trace
(
(UA)T (UA)

) = trace
((
ATUT) (UA)

) = trace
(
ATIA

) = trace
(
ATA

) = ‖A‖2F ,
showing that the Frobenius norm is invariant under left multiplication by an orthogonal matrix. Now,

‖AV‖2F = trace
(
(AV) (AV)T

) = trace
(
(AV)

(
VTAT

)) = trace
(
AAT

) = ‖A‖2F ,
so the Frobenius norm is invariant under right multiplication by an orthogonal matrix. Now form the complete product.

‖UAV‖2F = ‖U (AV)‖2F = ‖AV‖2F = ‖A‖2F .

Theorem 15.5. ‖A‖F =
(∑r

i=1 σ 2
i

) 1
2

Proof. By the SVD, there exist orthogonal matrices U and V such that A = U�̃VT. Then, ‖A‖F =
∥∥U�̃VT

∥∥
F =

∥∥�̃∥∥F by
Lemma 15.1. The only nonzero entries in �̃ are the singular values σ1, σ2, . . . , σr, so ‖A‖F =

(∑r
i=1 σ 2

i

) 1
2 .



The Singular Value Decomposition Chapter| 15 307

15.4 GEOMETRIC INTERPRETATION OF THE SVD

Multiplying a vector x by amatrixA stretches or contracts the vector. The singular values ofA significantly add to a geometric

understanding of the linear transformation Ax. For x =
⎡⎢⎣ x1

...
xm

⎤⎥⎦ ∈ Rm, the m-dimensional unit sphere is defined by

m∑
i=1

x2i = 1

If A is an m × n matrix, the product Ax takes a vector x ∈ Rn and produces a vector in Rm. In particular, we will look
at the subset of vectors y = Ax in Rm as x varies over the unit sphere, ‖x‖2 = 1. The matrix A has n singular values
σ1 ≥ σ2 ≥ · · · ≥ σr > 0, σi = 0, r + 1 ≤ i ≤ n and A = U�̃VT, so we will investigate

Ax = U�̃VTx,
m∑
i=1

x2i = 1.

If K is an n× n orthogonal matrix and x is on the unit sphere, then

〈Kx, Kx〉 = (Kx)T Kx = xTKTKx = xTIx = xTx = 1

Thus, the orthogonal linear transformation Kx maps x to another vector on the unit sphere. Now choose any x ∈ Rn on the
unit sphere. Since the columns ki, 1 ≤ i ≤ n, of K are an orthonormal basis for R

n,

x = c1k1 + c2k2 + · · · + cpkp = K

⎡⎢⎣ c1
...
cp

⎤⎥⎦ .

Then, ‖x‖22 =
∑p

i=1 c2i = 1, so

⎡⎢⎣ c1
...
cp

⎤⎥⎦ is on the unit sphere. Thus, Kx maps out the unit sphere, ‖x‖2 = 1, in R
p.

Assume ‖x‖2 = 1. Since the n× n matrix VT in the SVD of A is an orthogonal matrix, y = VTx is on the unit sphere in
Rn, and

�̃y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0
. . .

σr
0

. . .
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ y1

...
yn

⎤⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1y1
...

σryr
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x′1
...
x′r
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Now, (

x′1
σ1

)2
+
(
x′2
σ2

)2

+ · · · +
(
x′r
σr

)2
= 1,

which is an r-dimensional ellipsoid in Rm with semiaxes of length σi, 1 ≤ i ≤ r. For instance, if m = 3 and r = 2, then
we have a circle in 3-dimensional space. If m = 3 and r = 3, then the surface is an ellipsoid. We still have to account for
multiplication by U. Since U is an orthogonal matrix, U causes a change of orthonormal basis, or a rotation.
Summary If A is an m × n matrix, then Ax applied to the unit sphere ‖x‖2 ≤ 1 in Rn is a rotated ellipsoid in Rm with
semiaxes σi, 1≤ i ≤ r, where the σi are the nonzero singular values of A.

Example 15.6. We will illustrate the geometric interpretation of the SVD with a MATLAB function svdgeom in the
software distribution that draws the unit circle, x21 + x22 = 1, in the plane, computes Ax for values of x, and draws the
resulting ellipse. The function then outputs the SVD.

The linear transformation used for the example is A =
[

1.50 0.75
−0.50 −1.00

][
x
y

]
. Note that the semiaxes of the ellipse

are 1.9294 and 0.5831 (Figure 15.2).



308 Numerical Linear Algebra with Applications

−1.5

−1

−0.5

0y

0.5

1

−1 −0.5

Action of a linear transformation on the unit circle

0
x

0.5 1 1.5

FIGURE 15.2 SVD rotation and distortion.

>> svdgeom(A)

The singular value decomposition for A is

U =

-0.8550 0.5187

0.5187 0.8550

S =

1.9294 0

0 0.5831

V =

-0.7991 0.6012

-0.6012 -0.7991 �

15.5 COMPUTING THE SVD USING MATLAB

Although it is possible to compute the SVD by using the construction in Theorem 15.1, this is far too slow and prone to
roundoff error, so it should not be used. The MATLAB function svd computes the SVD:

a. [U S V] = svd(A)

b. S = svd(A)

Form 2 returns only the singular values in descending order in the vector S.

Example 15.7. Find the SVD for the matrix of Example 15.5. Notice that σ3 = 4.8021× 10−16 and yet the rank is 2. In
this case, the true value is 0, but roundoff error caused svd to return a very small singular value. MATLAB computes the
rank using the SVD, so rank decided that σ3 is actually 0.

>> [U,S,V] = svd(A)

U =

0.15897 0.8589 -0.2112 -0.3642 -0.24447

0.17398 -0.073783 -0.9063 0.22223 0.30581

-0.95316 0.17263 -0.18552 0.14793 -0.073387

0.16648 0.39256 0.21339 0.87898 -0.0063535

-0.090746 0.27006 0.23251 -0.15324 0.91722



The Singular Value Decomposition Chapter| 15 309

S =

12.691 0 0

0 4.7905 0

0 0 4.8021e-16

0 0 0

0 0 0

V =

-0.38387 0.43125 0.8165

0.1443 0.90139 -0.40825

0.91204 0.038895 0.40825

>> rank(A)

ans =

2 �

The function svd applies equally well to a matrix of dimension m× n, m < n. Of course, in this case the rank does not
exceed m.

Example 15.8. Let A =
⎡⎣ 7 9 −5 10 10 −8

9 3 1 −7 0 −2
−8 8 10 10 6 9

⎤⎦
>> [U S V] = svd(A)

U =

-0.42586 -0.89303 -0.14539

0.26225 -0.27562 0.9248

-0.86595 0.35571 0.35157

S =

22.577 0 0 0 0 0

0 20.176 0 0 0 0

0 0 9.5513 0 0 0

V =

0.27935 -0.57383 0.4704 0.60332 0.008204 0.085659

-0.44176 -0.2983 0.44795 -0.37549 -0.51939 -0.32318

-0.27763 0.38396 0.54102 0.10972 0.60466 -0.32426

-0.65349 -0.1707 -0.46191 0.53138 0.0076852 -0.21915

-0.41876 -0.33684 0.068636 -0.28352 0.38297 0.6924

-0.21753 0.5401 0.2594 0.34673 -0.46673 0.5056

>> rank(A)

ans =

3

Since m = 3 and the rank is 3, A has full rank. �

15.6 COMPUTING A--1

We know that the inverse is often difficult to compute accurately and that, under most circumstances, its computation should
be avoided. When it is necessary to compute A−1, the SVD can be used. Since A is invertible, the matrix �̃ cannot have a
0 on its diagonal (rank would be < n), so �̃ = �. From A = U�VT, A−1 = (

VT
)−1

�−1U−1, where all the matrices have
dimension n× n. U and V are orthogonal, so

A−1 = V

⎡⎢⎢⎢⎢⎢⎢⎣

1
σ1

0
1
σ2

. . .
1

σn−1
0 1

σn

⎤⎥⎥⎥⎥⎥⎥⎦U
T.



310 Numerical Linear Algebra with Applications

Example 15.9. Let A =
⎡⎣ 1 −1 3
4 2 3
5 1 −1

⎤⎦.
>> A = [1 -1 3;4 2 3;5 1 -1];

>> [U S V] = svd(A);
>> Ainv = V*diag(1./diag(S))*U’

Ainv =

0.1190 -0.0476 0.2143

-0.4524 0.3810 -0.2143

0.1429 0.1429 -0.1429

>> inv(A)

ans =

0.1190 -0.0476 0.2143

-0.4524 0.3810 -0.2143

0.1429 0.1429 -0.1429 �

15.7 IMAGE COMPRESSION USING THE SVD

Suppose you are given a fairly large image, at least 256×256 pixels. In any large image, some pixels will not be noticed by
the human eye. By applying the SVD to a matrix representing the image, we can take advantage of this. The idea involves
using only portions of the SVD that involve the larger singular values, since the smaller singular values do not contribute
much to the image. Assume matrix A contains the image in some format. Then,

A = U�̃VT =

⎡⎢⎢⎢⎢⎢⎢⎣

u11 u12 · · · · · · u1m
u21 u22 · · · · · · u2m
...

. . .
...

...
. . .

...
um1 · · · · · · · · · umm

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

σ1
. . . 0

σr

0
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

v11 v21 · · · · · · vn1
v12 v22 · · · · · · vn2
...

. . .
...

. . .
v1n · · · · · · vnn

⎤⎥⎥⎥⎥⎥⎥⎦ .

Definition 15.1. A rank 1 matrix is a matrix with only one linearly independent column or row.

The primary idea in using the SVD for image compression is that we can write a matrix A as a sum of rank 1 matrices.

Lemma 15.2. After applying the SVD to an m× n matrix A, we can write A as follows:

A = σ1u1vT1 + σ2u2vT2 + · · · + σrurvTr =
r∑
i=1

σiuivTi ,

where each term in the sum is a rank 1 matrix.

Proof. For 1 ≤ i ≤ r, let �i be the m× n matrix

�i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

. . .
0

σi

. . .
0

0

. . .
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

r
.

Then

�̃ = �1 +�2 + · · · + �r,



The Singular Value Decomposition Chapter| 15 311

and

A = U�1V
T + U�2V

T + · · · +U�rV
T = σ1u1v

T
1 + σ2u2v

T
2 + · · · + σrurv

T
r .

Each product σiuivTi has dimension (m× 1) (1× n) = m× n, so the sum is an m× n matrix. Each portion of the sum,
uivTi has the form

σi

⎡⎢⎢⎢⎢⎢⎣
u1i
u2i
u3i
...
umi

⎤⎥⎥⎥⎥⎥⎦
[
v1i v2i v3i · · · vni

] = σi

⎡⎢⎢⎢⎢⎢⎣
u1iv1i u1iv2i u1iv3i · · · u1ivni
u2iv1i u2iv2i u2iv3i · · · u2ivni
u3iv1i u31iv2i u31iv3i · · · u3ivni
...

...
...

...
...

umiv1i um1iv2i um1iv3i · · · umivni

⎤⎥⎥⎥⎥⎥⎦ . (15.7)

Each column in Equation 15.7 is a multiple of the vector

⎡⎢⎢⎢⎢⎢⎣
u1i
u2i
u3i
...
umi

⎤⎥⎥⎥⎥⎥⎦, so each matrix σiuivTi has rank 1.

Each term σiuivTi is called a mode, so we can view an image as a sum of modes. Because the singular values σi are
ordered σ1 ≥ σ2 ≥ · · · ≥ σr > 0, significant compression of the image is possible if the set of singular values has only
a few large modes. Form the sum of those modes, and it will be indistinguishable from the original image. For instance if
the rank of the matrix containing the image is 350, it is possible that only modes 1-25 are necessary to cleanly represent the
image. If the first k modes are summed, the rank of the matrix will be k, since the first k singular values are in the sum. In
other words, if A =∑k

i=1 σiuivTi , then rank(A) = k. If the first k modes dominate the set of r modes, then A will be a good
approximation to A.

15.7.1 Image Compression Using MATLAB

Image processing with MATLAB is somewhat complex, so we will confine ourselves to simple operations with gray scale
images. In order to use the SVD for working with images, you must input the file using the command imread.

>> A = imread(’filename.ext’);

The extension “ext” can be one of many possibilities, including “tif/tiff,” “bmp,” “gif,” “jpg,” and so forth. Display the
image with the commands

>> imagesc(A);
>> colormap(gray);

The first function “imagesc” scales the image so it uses the full colormap and displays it. A color map is a matrix that
may have any number of rows, but it must have exactly 3 columns. Each row is interpreted as a color, with the first element
specifying the intensity of red light, the second green, and the third blue (RGB). For gray scale, the MATLAB colormap is
gray. After reading the file into the array A, the data type of its elements must be converted from uint8 (unsigned 8-bit
integers) to double.

>> A = double(A);

At this point, the SVD can be applied to the array A.

>> [U S V] = svd(A);

Compute the sum of the first k modes using the following statement:

>> Aapprox = U(:,1:k)*S(1:k,1:k)*V(:,1:k)’;

Now display the approximation using

>> imagesc(Aapprox);



312 Numerical Linear Algebra with Applications

(a) (b)

FIGURE 15.3 (a) jaguar (640× 1024) and (b) jaguar using 35 modes.

FIGURE 15.4 Jaguar using 145 modes.

The following MATLAB sequence reads a picture of a jaguar, displays it, and then displays the image using 35 of the
640 modes (Figure 15.3). The 640 × 1024 image is in JPG format within the software distribution. Notice that the use of
35 modes is somewhat blurry but very distinguishable.

>> JAGUAR = imread(’jaguar.jpg’);

>> JAGUAR = double(JAGUAR);

>> imagesc(JAGUAR); colormap(gray);
>> [U S V] = svd(JAGUAR);
>> rank(JAGUAR)

ans = 640

>> figure(2);
>> JAGUAR35 = U(:,1:35)*S(1:35,1:35)*V(:,1:35)’;

>> imagesc(JAGUAR35);colormap(gray);

Now let us use 145 modes and see the result in Figure 15.4.

>> JAGUAR145 = U(:,1:145)*S(1:145,1:145)*V(:,1:145)’;

>> imagesc(JAGUAR145);colormap(gray);



The Singular Value Decomposition Chapter| 15 313

FIGURE 15.5 Singular value graph of jaguar.

Figure 15.5 is a graph of the 640 singular value numbers versus the singular values. Note that the initial singular values
are very large, and modes larger than number 145 contribute almost nothing to the image.

In general, if an image is stored in an m × n matrix, we need to retain m × n numbers. Suppose that after converting
the image to a matrix, we perform the SVD on this matrix and discover that only the largest k singular values capture the
“important” information. Instead of keeping m× n numbers, we keep the k singular values, plus the k vectors u1, u2, . . . , uk
of dimension m, plus vectors v1, v2, . . . , vk of dimension n, for a total of k + km + kn numbers. For jaguar using k = 145,
the ratio of the compressed image to the original image is 0.3684.

In addition to jaguar.jpg, the software distribution provides the files

black-hole.tif, horsehead-nebula.tif, planets.tif, saturn.tif, and whirlpool.tif

in the subdirectory SVD_compress. For each file, there is a corresponding file with the same name and extension “.mat.”
Each file name is in uppercase and contains the image converted to array format. By using the load command, you directly
obtain the array in double format; for example,

>> load SATURN;

The software distribution contains a function svdimage that allows you to start with any mode of an image, add one
mode per mouse click, and watch the image improve. Input to the function is the image in matrix format, the starting mode
number, and the colormap, which should be gray. Here is an example using the image of Saturn with a starting mode of 50
(Figure 15.6). Be sure to terminate the function by typing “q,” or you will receive a MATLAB error message.

>> load SATURN;

>> svdimage(SATURN, 50, gray);

15.7.2 Additional Uses

The SVD has many applications:

● Most accurate way to determine the rank of a matrix and the four fundamental subspaces.
● Determining the condition number of a matrix.
● Solve least-squares problems. Least-squares problems are discussed in Chapter 16.
● Used in computer graphics because its factors provide geometric information about the original matrix.
● Principal components analysis approximating a high-dimensional data set with a lower-dimensional subspace. Used in

statistics.
● Image compression



314 Numerical Linear Algebra with Applications

Type q to quit 

328-by-438 image 75 terms in approximation

Click mouse for next image

FIGURE 15.6 SVD image capture.

● Image restoration, in which “noise” has caused an image to become blurry. The noises are caused by small singular
values, and the SVD can be used to remove them.

● Applications in digital signal processing. For example, as a method for noise reduction. Let a matrix A represents the
noisy signal, compute the SVD, and then discard small singular values ofA. The small singular values primarily represent
the noise, and thus a rank-k matrix, k < rank (A), represents a filtered signal with less noise.

15.8 FINAL COMMENTS

The SVD of a matrix is a powerful technique for matrix computations. Despite its power, however, there are some
disadvantages. The SVD is computationally expensive. Many real world problems involve very large matrices. In these
cases, applying simpler techniques, such as the QR decomposition or another of a number of matrix decompositions may
be indicated. The SVD operates on a fixed matrix, and hence it is not useful in problems that require adaptive procedures.
An adaptive procedure is a procedure that changes its behavior based on the information available. A good example is
adaptive quadrature, a very accurate method for approximating

∫ b
a f (x) dx. As an adaptive method runs, it estimates error,

isolates regions where the error tolerance has not been met, and deals with those regions separately. Adaptive quadrature is
particularly effective when f (x) behaves badly near a point in the interval a ≤ x ≤ b.

15.9 CHAPTER SUMMARY

The SVD Theorem

The SDV theorem states that there exist orthogonal matrices U ∈ Rm×m, V ∈ Rn×n, m ≥ n, and a diagonal matrix
�̃ ∈ Rm×nsuch that

A = U�̃VT

�̃ =
[

� 0
0 0

]
,

where � = diag (σ1, σ2, . . . , σr), and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the positive singular values of A. The proof of the
theorem is by construction. The columns of V = [

v1 v2 . . . vn−1 vn
]
are the eigenvalues of ATA, and U is constructed

from Avi and the use of Gram-Schmidt to fill out the matrix, if necessary. If m < n, then find the SVD of



The Singular Value Decomposition Chapter| 15 315

AT = U�̃VT,

and form

A = V ˜�UT.

Determining Matrix Properties Using the SVD

The SVD reveals substantial information about A:
The rank of A is the number of nonzero singular values, r. The following table lists the bases of four subspaces

immediately available from the SVD:

A = U�̃VT

Range Null Space
A ui, 1 ≤ i ≤ r vi , r + 1 ≤ i ≤ n
AT vi, 1 ≤ i ≤ r ui, r+ 1 ≤ i ≤ m

Note that the column space and the row space both have dimension r, proving that the row and column space of a matrix
have the same dimension.

The SVD and Matrix Norms

The SVD provides a means of computing the 2-norm of a matrix, since ‖A‖2 = √σ1. If A is invertible, then
∥∥A−1∥∥2 = √

1
σr
.

The SVD can be computed accurately, so using it is an effective way to find the 2-norm. The SVD also provides a means

of computing the Frobenius norm, namely, ‖A‖F =
(∑r

i=1 σ 2
i

) 1
2 .

Geometric Interpretation of the SVD

If A is an m× n matrix, the SVD tells us that Ax applied to the unit sphere ‖x‖2 ≤ 1 in Rn is a rotated ellipsoid in Rm with
semiaxes σi, 1≤ i ≤ r, where the σi are the nonzero singular values of A. In R2, the image is a rotated ellipse centered at
the origin and in R

3, the image is a rotated ellipsoid centered at the origin.

Computation of the SVD Using MATLAB

In MATLAB, compute just the singular values with the statement

S = svd(S);

and the full SVD with

[U,S,V] = svd(A);

Using the SVD to Compute A−1

Normally, we do not compute A−1, but if it is required we can proceed as follows:

A = U�VT

A−1 = V�−1UT

A−1 = V

⎡⎢⎢⎢⎢⎢⎢⎣

1
σ1

0
1
σ2

. . .
1

σn−1
0 1

σn

⎤⎥⎥⎥⎥⎥⎥⎦U
T.

Since A is invertible, all the singular values are nonzero.



316 Numerical Linear Algebra with Applications

Image Compression Using the SVD

After applying the SVD to an m× n matrix A, we can write A as follows:

A = σ1u1vT1 + σ2u2vT2 + · · · + σrurvTr =
r∑
i=1

σiuivTi ,

where each term in the sum is a rank 1 matrix. To use the SVD for image compression, convert the image to a matrix and
discard the terms involving small singular values. For instance, if the first k singular values dominate the remaining ones
the approximation is

Ã =
k∑
i=1

σiuivTi .

After applying the MATLAB function svd and obtaining U, S, and V, the approximation can be written using colon
notation as

U(:,1:k)*S(1:k,1:k)*V(:,1:k)’.

The reader should follow Section 15.7 and use the compression technique on the images supplied in the subdirectory
SVD_compress with the book software distribution.

15.10 PROBLEMS

15.1 Prove that for all rank-one matrices, σ 2
1 =

∑m
i=1

∑n
j=1 a2ij. Hint: Use Theorem 15.5.

15.2 Suppose u1, u2, ..., un and v1, v2, ..., vn are orthonormal bases for Rn. Construct the matrix A that transforms each
vi into ui to give Av1 = u1, Av2 = u2, ..., Avn = un.

15.3 Let A =
[
a11 a12
0 a22

]
. Determine value(s) for the aij so that A has distinct singular values.

15.4 Prove that rank
(
ATA

) = rank
(
AAT

)
.

15.5 Find the SVD of
a. ATA.
b.
(
ATA

)−1
15.6 If S is a subspace of Rn, the orthogonal complement of S, written S⊥, is the set of all vectors x orthogonal to S; in

other words

S
⊥ = {

x ∈ R
n | xTy =< x, y >= 0 for all y ∈ S} .

Prove that S⊥ is a subspace. Find orthogonal complements among the four fundamental subspaces.
15.7 Let A ∈ Rn be a rank-one matrix. Show that there exist two vectors u and v such that A = uvT.
15.8 If B = kA, where k is a positive integer, what is the SVD of B?
15.9 Find an SVD of a column vector and a row vector.

15.10
a. What is the SVD for AT?
b. What is the SVD for A−1?

15.11 Suppose P is an orthogonal matrix, and B is an n × n matrix. Show that A = P−1BP has the same singular values
as B.

15.12 Prove that if A is nonsingular, all its singular values are greater than zero.
15.13 Prove that the null space of ATA and A are equal.
15.14 Show that if A is an n× n matrix and A = U�̃VT is its SVD, then∥∥∥A2∥∥∥

2
= ∥∥�̃VTU�̃

∥∥
2 .

15.15
a. Prove that the matrices ATA and AAT have the same eigenvalues{

σ 2
1 σ 2

2 . . . σ 2
r 0 . . . 0

}
.



The Singular Value Decomposition Chapter| 15 317

b. Prove that the orthonormal column vectors of V are orthonormal eigenvectors of ATA and that the column vectors
of U are the orthonormal eigenvectors of AAT.

c. Using the results of (a) and (b), describe an algorithm for the computation of the SVD.

d. Using your algorithm, compute the SVD for the matrix A =
[
1 4
2 3

]
. Do the computations with pencil and paper.

15.16 Assume A is nonsingular with SVD

A = U�VT.

a. Prove that

σn ‖x‖2 ≤ ‖Ax‖2 ≤ σ1 ‖x‖2 .
Hint: To prove the left half of the inequality, use A−1.

b. Show that ‖Ax‖2‖x‖2 attains its maximum value σ1 at x = v1.

c. Show that
∥∥A−1x∥∥2‖x‖2 attains its maximum value 1

σn
at x = un.

15.17 An n× n matrix X is said to be the square root of A if A = X2.
a. Show that if A is positive definite and not diagonal, then the Cholesky factor R is not a square root.
b. Let A be positive definite and A = STS be the Cholesky decomposition of A. Let S = U�VT be the SVD for
S, and define X = V�VT. Show that X is positive definite and X2 = A, so that a positive definite matrix has a
positive definite square root.

15.10.1 MATLAB Problems

15.18 a. Find the SVD for the singular matrix

A =
[
2 2
1 1

]
.

b. Find a basis for its range and null space.
15.19 a. Find the SVD for the matrix

A =
[

2 2
−1 1

]
.

b. What is its rank and the dimension of its null space?
15.20 Find the SVD for the matrices

a.
[

2 5 −1 −7
−4 1 5 0

]

b.

⎡⎣ −1 1 2 3 5
1 2 3 4 5
−4 −3 −2 −1 0

⎤⎦
In each case, find an orthonormal basis for the range, null space, row space, and the null space of its transpose.

15.21 a. Execute the MATLAB function svdgeom with the matrix

[
6 1
−7 3

]
.

b. Do part (a) using the matrix
[
0.092091 −0.0043853
0.035082 0.052623

]
.

15.22 Develop a method for building a 2× 2 matrix with specified singular values σ1, σ2. Use your method to construct
matrix A with singular values σ1 = 55.63, σ2 = 25.7, and matrix B with singular values σ1 = .2, σ2 = .1. In each
case, use the function svdgeom to show how the linear transformation transforms the unit circle.

15.23 The software distribution contains a graphics file “black-hole.tif.” Use MATLAB to read the image, convert
it to a matrix, and use the SVD to display the graphic using only large modes. Compute the percentage of image
storage you save.

15.24 The software distribution contains the files SATURN.mat and WHIRLPOOL.mat. Each of these is an image matrix
stored in MATLAB format. Input each one using the load command and experiment with it using the SVD to



318 Numerical Linear Algebra with Applications

compress the images. In each case, draw a graph of the singular value number vs. the singular value similar to
Figure 15.5.

Remark 15.4. There is another image, HORSEHEAD.mat, with which you might want to experiment.

15.25 The Hilbert matrices Hij = 1
i+j−1 , 1 ≤ i, j ≤ n have notoriously bad properties. It can be shown that any Hilbert

matrix is nonsingular and, as such, has rank n. MATLAB constructs a Hilbert matrix with the command H =

hilb(n).
a. Use MATLAB to verify that the rank of the 8× 8 Hilbert matrix H is 8.
b. Find the SVD of H.
c. Comment on the singular values.
d. Compute σ1

σ8
, the condition number of H.

15.26
a. Construct A = rand(m,n) for m = 5, n = 4. Find the eigenvalues and eigenvectors for ATA and AAT. Do the
experiment again with m = 3, n = 5.

b. If you see a pattern of behavior, state a theorem a prove it.
The following problem is adapted from material in Ref. [46, Section 10.7].

15.27 This problem is adapted from the material in Ref. [46], Section 10.7.
a. MATLAB provides a matrix, gallery(5), for eigenvalue testing. Use the MATLAB poly function to determine
the characteristic polynomial of A. Is the matrix singular? Would computation of the eigenvalues of A be ill-
conditioned? Explain.

The remainder of the problem deals with the singular values of gallery(5).
b.

i. Show that �̃ + δ�̃ = UT (A+ δA)V.
ii. Using (b), part (i) show that ‖δA‖2 =

∥∥δ�̃∥∥2. This says that the size of the errors in computing the singular
values is the same as the errors involved in forming A. This type of perturbation result is ideal.

iii. The result of (b), part (ii) deals with all elements of the singular value problem. There can be very large and
very small singular values, and the primary problem is with the small singular values. If A is singular, one
or more singular values will be zero, but may not actually be reported as zero due to rounding errors. It is
hard to distinguish between a very small singular value and one that is actually 0. gallery (5) will help in
understanding the problems with small singular values. Execute the statements

A = gallery(5);
format long e;

svd(A)

Comment on the distribution of singular values. In Ref. [46], it is stated that the small singular values that
should be 0 lie somewhere between eps and ‖A‖2 eps. Is this the case here?

iv. Compute the SVD of a randomly perturbedmatrix by running the following code. The function randn(5,5)
creates a random 5 × 5 matrix, and randn(5,5).*A multiplies each entry aij by rij. The sum A+eps*

randn(5,5).*A perturbs gallery(5) by a small amount. Run

format long e

clc

for i = 1:5

svd(A + eps*randn(5,5).*A)
fprintf(’----------------------------------’);

end
fprintf(’\n’);

The MATLAB output is in the format digit.d1d3d3 . . . d15e± e1e2e3. Write down one line of svd output; for
example,

1.010353607103610e+005

1.679457384066240e+000

1.462838728085211e+000



The Singular Value Decomposition Chapter| 15 319

1.080169069985495e+000

4.288402425161663e-014

Analyze the output of the for statement and place a star (‘*’) at every digit position in your written line of output
that changes. The asterisks show the digits that change as as a result of random perturbations. Comment on the
results.

15.28
a. Write a function, buildtaumat, that builds the matrix

T =
[

0 �n
�n 0

]
,

where �n is an n× n submatrix of ones, and 0 represents an n× n zero submatrix. Thus, T is a 2n× 2n matrix.

For instance, T =

⎡⎢⎢⎣
0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎤⎥⎥⎦.
b. Construct the matrix for n = 2, 4, 8, and 16. In each case, compute the eigenvalues and the singular values.

Propose a theorem that explains what you observe. Prove it.
15.29 If A is nonsingular, the SVD can be used to solve a linear system Ax = b.

a. Explain why �̃ in the SVD of A is invertible. What is its inverse?
b. Show that

x = V�̃−1UTb.

c. Develop a one line MATLAB command to compute �̃−1 that only uses the function diag.
d. Solve ⎡⎣ 1 −1 0

8 4 1
−9 0 3

⎤⎦ x =
⎡⎣ 1
2
3

⎤⎦
and ⎡⎢⎢⎣

1 3 0 1
1 5 −3 8
12 5 7 0
6 77 15 35

⎤⎥⎥⎦ x =
⎡⎢⎢⎣
−1
0
1
2

⎤⎥⎥⎦
using the results of parts (a)-(c).

e. Does using the SVD seems like a practical means of solving Ax = b? Explain your answer.
15.30 There is a geometric interpretation of the condition number. You are given the matrix sequence{[

1 2
1 1

]
,

[
1 2
1 1.5

]
,

[
1 2
1 1.9

]
,

[
1 2
1 1.99

]
,

[
1 2
1 1.999

]}
.

a. Remove textual output from the function svdgeom introduced in Section 9.4 so it only plots a graph, and name
the function svdgeom1.

b. For each matrix in the sequence, do the following

(a) Compute the condition number.
(b) Call the function svdgeom1 and observe the graph.

c. Do you see a relationship between the condition number of a matrix and its action as a linear transformation?
15.31 In discussing image compression using the SVD, we approximated the graphical representation by using the first

k singular values and discarding the rest. The image looked just as good as the original if we included sufficient
singular values. This process is known as computing a rank k approximation. There is theoretical justification for
this technique. A proof of the following theorem can be found in Refs. [1, pp. 110-113] and [47, pp. 83-84]. It says
that using the SVD we obtain the optimal rank k approximation to a matrix.



320 Numerical Linear Algebra with Applications

Theorem. Assume that the m × n matrix A, m ≥ n, has the SVD A = U�̃VT. If k < rank (A), a matrix of rank k closest
to A as measured by the 2-norm is Ak = ∑k

i=1 σiuivTi , and ‖A− Ak‖2 = σk+1. Ak can also be written as Ak = U�̃kVT,
where �̃k = diag (σ1, σ2, . . . , σ , 0, . . . , 0). Another way of putting this is

σk+1 = min
B∈Rm×n, rank(B)=k

‖A− B‖2 = ‖A− Ak‖2 .

Run the following MATLAB program and explain the output.

load(’HORSEHEAD.mat’);
[U,S,V] = svd(HORSEHEAD);
HORSEHEAD250 = U(:,1:250)*S(1:250,1:250)*V(:,1:250)’;

figure(2);
imagesc(HORSEHEAD250);
colormap(gray);
fprintf(’sigma251 = %.12f\n\n’, S(251,251));

deltaS = 0.1:-.005:0;

for i = 1:length(deltaS)
B = HORSEHEAD;

B = B + deltaS(i)*ones(566,500);

B = makerank(B,250);

fprintf(’%.12f\n’, abs(norm(HORSEHEAD - B)-S(251,251)));

end

15.32 The polar decomposition of an n× n matrix A is

A = UP,

where U is orthogonal and P is symmetric positive semidefinite (xTPx ≥ 0 for all x �= 0). Intuitively, the polar
decomposition factors A into a component P that stretches Ax along a set of orthogonal axes followed by a rotation
U. This is analogous to the polar form of a complex number z = reiθ . P plays the role of r, and U plays the role of
eiθ . Applications of the polar decomposition include factor analysis and aerospace computations [48].
a. If A = U�VT is the SVD for A, show that A = (

UVT
) (
V�VT

)
is a polar decomposition for A.

b. For what class of matrices can we guarantee that P is positive definite?
c. Write a function [U P] = polardecomp(A) that computes a polar decomposition for the square matrix A. Test
your function with matrices of dimensions 3× 3, 5× 5, 10× 10, and 50× 50.

15.33 a. Using the result of Problem 15.17, write a function sqrroot that computes the square root of a positive definite
matrix.

b. For n = 5, 10, 25, and 50, test your function using the matrices

gallery(’moler’,n)

15.34 Generate a random 2 × 2 matrix A = rand(2,2). Then type eigshow(A) at the MATLAB prompt. A window will
open. Click on the svd button on the right side of the window. Your matrix A will appear (in MATLAB notation) in
the menu bar above the graph. Underneath the graph the statement “Make A∗x perpendicular to A∗y” should appear.
The graph shows a pair of orthogonal unit vectors x and y, together with the image vectors Ax and Ay. Move the pointer
onto the vector x, and then make the pair of vectors x, y go around in a circle. The transformed vectors Ax and Ay then
move around an ellipse, as we expect from the discussion in Section 15.4. Generally Ax will not be perpendicular
to Ay. Keep moving vector x until you find a position where Ax is perpendicular to Ay. When this happens, then the
singular values σ1 and σ2 of A are the lengths of the vectors Ax and Ay. Estimate the lengths from the graph. Take
note of the fact that ‖x‖2 = ‖y‖2 = 1. Confirm your estimates by using MATLAB’s svd command.



Chapter 16

Least-Squares Problems

You should be familiar with

● Rank
● Proof by contradiction
● Cholesky decomposition
● QR decomposition
● SVD
● Residual
● Block matrix notation

We introduced the concept of least squares in Section 12.3 by developing the least-squares algorithm for fitting a polynomial
to data. Even in that case, we found the unique polynomial by solving a square system of equations Ax = b, where A was
nonsingular. In many areas such as curve fitting, statistics, and geodetic modeling, A is either singular or has dimension
m × n, m �= n. If m > n, there are more equations than unknowns, and the system is said to be overdetermined. In most
cases, overdetermined systems have no solution. In the case m < n, there are more unknowns than equations, and we say
such systems are underdetermined. In this situation, there are usually an infinite number of solutions. It is clear that the
Gaussian elimination techniques we have studied will not be useful in these cases.

Since singular, over- and underdetermined systems do not give us a solution in the exact sense, the solution is to
find a vector x such that Ax is as close as possible to b. A way of doing this is to find a vector x such that the residual

r (x) = ‖Ax− b‖2 is a minimum. Recall that the Euclidean norm, ‖·‖2 , of a vector in Rn is
√
x21 + x22 + · · · + x2n, so if

we want to minimize ‖Ax− b‖2, we call x a least-squares solution. Finding a least-squares solution to Ax = b is known
as the linear least-squares problem. We need to formally define the problem so we can develop rigorous techniques for
solving it.

Definition 16.1 (The least-squares problem). Given a real m× n matrix A and a real vector b, find a real vector x ∈ Rn

such that the function r (x) = ‖Ax− b‖2 is minimized. It is possible that the solution x will not be unique.

Assume that m > n. Since x ∈ Rn, and A is an m× nmatrix, Ax is a linear transformation from Rn to Rm, and the range
of the transformation, R (A), is a subspace of R

m. Given any y ∈ R (A), there is an x ∈ Rn such that Ax = y. If b ∈ R
m is in

R (A), we have a solution. If b is not in R (A), consider the vector Ax − b that joins the endpoints of the vectors Ax and b.
Since b is not in R (A), project b onto the plane R (A) to obtain a vector u ∈ R (A). There must be a vector x ∈ Rn such that
Ax = u. The distance between the two points is ‖Ax− b‖2 is as small as possible, so x is the solution we want (Figure 16.1).

The vector b − Ax is orthogonal to R (A), and since every vector in R (A) is a linear combination of the columns of A
(vectors in Rm), it must be the case that b − Ax is orthogonal to the every column of A. Mathematically this says that the
inner product of b− Ax with each column of A must be zero. If

ai =

⎡⎢⎢⎢⎢⎢⎣
a1i
a2i
...

am−1, i
ami

⎤⎥⎥⎥⎥⎥⎦
is column i, then 〈ai, b− Ax〉 = aTi (b− Ax) = 0, 1 ≤ i ≤ n, and

AT (b− Ax) = 0,

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00016-8
Copyright © 2015 Elsevier Inc. All rights reserved. 321



322 Numerical Linear Algebra with Applications

b

b−Ax

R(A)
u = Ax

2
b−Ax is the minimum distance

to the plane R(A)

FIGURE 16.1 Geometric interpretation of the least-squares solution.

m m > n

x

bA

n

=

FIGURE 16.2 An overdetermined system.

and

ATAx = ATb.

These are the normal equations specified in Definition 12.1.

16.1 EXISTENCE AND UNIQUENESS OF LEAST-SQUARES SOLUTIONS

The geometric argument we presented is not an mathematical proof. We should give some mathematical justification that if
m > n, a solution exists and satisfies the normal equations. Figure 16.2 graphically represents an overdetermined system.

16.1.1 Existence and Uniqueness Theorem

In order to prove the existence and uniqueness to the solution of the least-squares problem, we first consider the casem ≥ n.
Let A be an m× n matrix. Then, each of the n columns has m components and is a member of R

m, and each of m rows
has n components and is a member of Rn. The columns of A span a subspace of Rm, and the rows of A span a subspace of
Rn. The column rank of A is the number of linearly independent columns of A, and the row rank of A is the number of linear
independent rows of A. Theorem 15.3 proves that the column rank and row rank of A are equal.

Definition 16.2. An m× n matrix A has full rank if rank (A) = min (m, n).

If m ≥ n, and A has full rank, then rank(A) = n, and the columns of A are linearly independent.

Lemma 16.1. Let A be an m× n matrix, m ≥ n. A has full rank if and only if the n× n matrix ATA is nonsingular.

Proof. Use proof by contradiction. Assume A has full rank, but ATA is singular. In this case, the n×n homogeneous system
ATAx = 0 has a nonzero solution x. As a result, xTATAx = 0, which says that 〈Ax, Ax〉 = ‖Ax‖22 = 0, so Ax = 0, and A
cannot have full rank.

Again, use proof by contradiction. Assume ATA is nonsingular, but A does not have full rank. Since A is rank deficient,
there is a nonzero vector x such that Ax = 0. As a result, ATAx = 0, x �= 0, so ATA is singular.



Least-Squares Problems Chapter| 16 323

Theorem 16.1 establishes the link between a least-squares solution and the normal equations and tells us the solution is
unique if the matrix has full rank. The proof is somewhat technical and can be omitted if desired, but the results are very
important to remember.

Theorem 16.1. a. Given an m× n matrix A with m ≥ n and an m× 1 column vector b, an n× 1 column vector x exists
such that x is a least-squares solution to Ax = b if and only if x satisfies the normal equations

ATAx = ATb.

b. The least-squares solution x is unique if and only if A has full rank.

Proof. To prove part (1), assume that ATAx = ATb, so that x is a solution of the normal equations. Now, if x is any vector
in Rn,

‖Ax− b‖22 = ‖Ax− Ax+ Ax− b‖22 = 〈[(Ax− b)+ A (x− x)] , [(Ax − b)+ A (x − x)]〉
= ‖Ax− b‖22 + 2 〈A (x− x) , (Ax− b)〉 + ‖A (x− x)‖22
= ‖Ax− b‖22 + 2 (A (x − x̄))T (Ax− b)+ ‖A (x− x)‖22
= ‖Ax− b‖22 + 2 (x− x)T

(
ATAx− ATb

)+ ‖A (x− x)‖22
= ‖Ax− b‖22 + ‖A (x− x)‖22
≥ ‖Ax− b‖22 ,

and x is a solution to the least-squares problem.
Now assume that x ∈ Rn is a solution to the least-squares problem, so that ‖Ax− b‖2 is minimum. Thus, ‖b− Ax‖22 ≤‖b− Ay‖22 for any y ∈ Rn. Given any vector z ∈ Rn, let y = x + tz, where t is a scalar. Then,

‖b− Ax‖22 ≤ ‖b− A (x+ tz)‖22 = ([b− Ax]− tAz)T ([b− Ax]− tAz)

= ‖b− Ax‖22 − 2t (b− Ax)T Az+ t2 ‖Az‖22 .
Thus,

0 ≤ −2t (b− Ax)T Az+ t2 ‖Az‖22 .
If t > 0,

0 ≤ −2 (b− Ax)T Az+ t ‖Az‖22 ,
and

2 (b− Ax̄)T Az ≤ t ‖Az‖22 .
If t < 0,

0 ≤ 2 (b− Ax)T Az+ |t| ‖Az‖22 .
As t→ 0+ or t→ 0−, we have 2 (b− Ax̄)T Az ≤ 0 and 0 ≤ 2 (b− Ax)T Az, so

(b− Ax)T Az = 0

for all z ∈ R
n. Thus,

(b− Ax)T Az = (Az)T (b− Ax) = zTAT (b− Ax) = zT
(
ATb− ATAx

)
= 0

for all z ∈ Rn. Choose z = (
ATb− ATAx

)
, so

∥∥ATb− ATAx
∥∥2
2 = 0 and ATAx = ATb.

For part (2), if x is the unique solution to ATAx = ATb, then ATA is nonsingular so A must have full rank according to
Lemma 16.1. If A has full rank, ATA is nonsingular by Lemma 16.1, and ATAx = ATb has a unique solution.



324 Numerical Linear Algebra with Applications

16.1.2 Normal Equations and Least-Squares Solutions

The least-squares residual equation r = b−Ax is what we defined as the residual for the solution of an ordinary n×n linear
system. If we multiply the residual equation by AT, the result is

ATr = ATb− ATAx,

which says that we do not expect r to be 0. We want ATr to be zero.

Theorem 16.2 (Least-squares residual equation). Let r = b − Ax. Then ATr = 0 if and only if x is a least-squares
solution.

Proof. If x is a least-squares solution, then it satisfies the normal equations by Theorem 16.1. Then ATAx = ATb and
ATb− ATAx = AT (b− Ax) = ATr = 0.

When ATr = 0, AT (b− Ax) = 0, and ATAx = ATb, so by Theorem 16.1, x is a least-squares solution.

Example 16.1. Let A =

⎡⎢⎢⎣
1 3
2 4
3 8
2 9

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
1
3
5
8

⎤⎥⎥⎦, which is a system of four equations in two unknowns. The rank of A is 2,

so we know there is a unique least-squares solution. Formulate and solve the normal equations.

ATA =
[
18 53
53 170

]
and ATb =

[
38
127

]
. Solve

[
18 53
53 170

]
x =

[
38
127

]
to obtain the solution

x =
[ −1.0797

1.0837

]
. �

16.1.3 The Pseudoinverse,m ≥ n

Assume that A is a full rank m× n matrix, m ≥ n. By Lemma 16.1, ATA is invertible, so the matrix product
(
ATA

)−1
AT is

defined. From Theorem 16.1, if A has full rank and x is a solution to the least-squares problem, then ATAx = ATb, and so

x = (
ATA

)−1
ATb.

Definition 16.3. The matrix

A† = (
ATA

)−1
AT

is called the pseudoinverse or the Moore-Penrose generalized inverse. The solution to the full-rank overdetermined least-
squares problem Ax = b is x = A†b.

Remark 16.1. There is an equivalent definition for the pseudoinverse that uses components from the singular value
decomposition (SVD). This form can be used for rank-deficient matrices, and we will present the definition in Section 16.4.

Example 16.2. A =

⎡⎢⎢⎢⎢⎣
1 6 −1
4 2 1
0 3 5
2 6 9
−1 5 −8

⎤⎥⎥⎥⎥⎦ , b =
⎡⎣ 2
12
5

⎤⎦. The rank of A is 3, so A has full rank. Solve the system Ax = b.

x = A†b =
[(
ATA

)−1
AT
]
b =

⎡⎣ 0.0691 −0.0109 −0.0101
−0.0109 0.0111 0.0002
−0.0101 0.0002 0.0075

⎤⎦⎡⎣ 1 4 0 2 −1
6 2 3 6 5
−1 1 5 9 −8

⎤⎦ b
=

⎡⎣ 0.0138 0.2447 −0.0831 −0.0178 −0.0431
0.0556 −0.0212 0.0345 0.0469 0.0647
−0.0162 0.0324 0.038 0.0485 −0.0487

⎤⎦⎡⎣ 2
12
5

⎤⎦ =
⎡⎣ 2.5662
−0.0174
−0.2790

⎤⎦



Least-Squares Problems Chapter| 16 325

The pseudoinverse, A† generalizes the definition of the inverse of a square matrix. In particular, when A is a nonsingular
n× n matrix

A‡ = (
ATA

)−1
AT = A−1

(
AT
)−1

AT = A−1I = A−1 �

Recall that if B is a nonsingular matrix, κ (B) = ‖B‖2
∥∥B−1∥∥2. Given that A† = A−1 for a nonsingular matrix, the

following definition makes good sense for a full-rank matrix.

Definition 16.4. If A is a full rank m× n matrix, then the condition number of A is

κ (A) = ∥∥A†
∥∥ ‖A‖ . (16.1)

Definition 14.3 specifies the condition number of a generalmatrix. For a full rankmatrix,m ≥ n, Definition 16.4 is equivalent
(Problem 16.4).

Example 16.3. If A is the 4× 2 matrix in Example 16.1, then

‖A‖ ∥∥A†
∥∥ = 13.6622

∥∥∥(ATA)−1 AT∥∥∥ = 13.662184

∥∥∥∥∥
[
18 53
53 170

]−1 [ 1 2 3 2
3 4 8 9

]∥∥∥∥∥
= 13.6621841 (0.8623494) = 11.7815762

A is a well-conditioned matrix. On the other hand, let V be the 6 × 4 Vandermonde matrix formed from x =[
1.1 1.8 2.3 2.7 3.3 3.5

]T
, m = 4. The function cond in MATLAB computes the condition number of a nonsquare

matrix, as you can see.

>> V = vandermonde(x,4);

>> norm(inv(V’*V)*V’)*norm(V)

ans =

3.0888e+004

>> cond(V)

ans =

3.0888e+004

Clearly, V is an ill-conditioned matrix. �

16.1.4 The Pseudoinverse, m<n

If m < n and rank (A) = m, then AT is of dimension n ×m, n > m, and the pseudoinverse is defined for AT. We have(
AT
)† = ((

AT
)T
AT
)−1 (

AT
)T = (

AAT
)−1

A

Now take the transpose to obtain

A† = AT
[(
AAT

)−1]T = AT
(
AAT

)−1
.

Note that AAT is an m× m matrix, and is nonsingular because A has full rank. This leads us to the definition.

Definition 16.5. Assume that A is an m × n matrix, m < n and has full rank. The pseudoinverse is the well-defined
product

A† = AT
(
AAT

)−1
16.2 SOLVING OVERDETERMINED LEAST-SQUARES PROBLEMS

There are three basic methods for solving overdetermined least-squares problems. The first of these, using the normal
equations, was the standard method for many years. However, using the QR decomposition or the SVD gives much better
results in most cases.



326 Numerical Linear Algebra with Applications

16.2.1 Using the Normal Equations

ATA is a symmetric matrix. Consider the product xTATAx = (Ax)T (Ax) = ‖Ax‖22. If we assume that A has full rank, Ax �= 0
for any x �= 0, and so ATA is positive definite. As a result, the Cholesky decomposition applies (Section 13.3). Recall that
the Cholesky decomposition of a positive definite matrixM is of the formM = RTR, where R is an upper triangular matrix.
To solve the normal equations, proceed as follows:

Solve the Normal Equations Using the Cholesky Decomposition

a. Find the Cholesky decomposition ATA = RTR.
b. Solve the system RTy = ATb using forward substitution.
c. Solve the system Rx = y using back substitution.

Example 16.4. There are three mountains m1,m2,m3 that from one site have been measured as 2474 ft., 3882 ft., and
4834 ft. But from m1, m2 looks 1422 ft. taller and m3 looks 2354 ft. taller, and from m2, m3 looks 950 ft. taller. This data
gives rise to an overdetermined set of linear equations for the height of each mountain.

m1 = 2474
m2 = 3882

m3 = 4834
−m1 +m2 = 1422
−m1 +m3 = 2354

−m2 +m3 = 950

In matrix form, the least-squares problem is⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
−1 1 0
−1 0 1
0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣ m1
m2
m3

⎤⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
2474
3882
4834
1422
2354
950

⎤⎥⎥⎥⎥⎥⎥⎦ .

ATA =
⎡⎣ 3 −1 −1
−1 3 −1
−1 −1 3

⎤⎦ has the Cholesky decomposition

⎡⎣ 3 −1 −1
−1 3 −1
−1 −1 3

⎤⎦ =
⎡⎣ 1.7321 0 0
−0.5774 1.6330 0
−0.5774 −0.8165 1.4142

⎤⎦⎡⎣ 1.7321 −0.5774 −0.5774
0 1.6330 −0.8165
0 0 1.4142

⎤⎦
Solve

⎡⎣ 1.7321 0 0
−0.5774 1.6330 0
−0.5774 −0.8165 1.4142

⎤⎦ y = AT

⎡⎢⎢⎢⎢⎢⎢⎣
2474
3882
4834
1422
2354
950

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎣ −13024354

8138

⎤⎦ , y =
⎡⎣ −751.72400.5

6833.5

⎤⎦
Solve⎡⎣ 1.7321 −0.5774 −0.5774

0 1.6330 −0.8165
0 0 1.4142

⎤⎦ x = y

m =
⎡⎣ 2472.0
3886.0
4832.0

⎤⎦ �



Least-Squares Problems Chapter| 16 327

Algorithm 16.1 uses the normal equations to solve the least-squares problem.

Algorithm 16.1 Least-Squares Solution Using the Normal Equations

function NORMALSOLVE(A,b)

% Solve the overdetermined least-squares problem using the normal equations.

% Input: m × n full-rank matrix A, m≥n and an m × 1 column vector b.

% Output: the unique least-squares solution to Ax = b and the residual

c = ATb

Use the Cholesky decomposition to obtain ATA = RTR

Solve the lower triangular system RTy = c

Solve the upper triangular system Rx = y

return
[
x ‖b− Ax‖2

]
end function

NLALIB: The function normalsolve implements Algorithm 16.1 by using the functions cholesky and cholsolve.

Efficiency
The efficiency analysis is straightforward.

● c = ATb : 2nm flops
● Form ATA : 2mn2 flops
● Cholesky decomposition of ATA : n

3

3 + n2 + 5n
3 flops

● Forward and back substitution: 2
(
n2 + n− 1

)
flops

The total is n2
(
2m+ n

3

)+ 2mn+ 3n2 + 11
3 n− 2 � n2

(
2m+ n

3

)
flops.

Computational Note

It must be noted that, although relatively easy to understand and implement, it has serious problems in some cases.

● There may be some loss of significant digits when computing ATA. It may even be singular to working precision.
● We will see in Section 16.3 that the accuracy of the solution using the normal equations depends on the square of

condition number of the matrix. If κ (A) is large, the results can be seriously in error.

16.2.2 Using the QR Decomposition

The QR decomposition can be used very effectively to solve the least-squares problem Ax = b, m ≥ n, when A has full
rank. Our implementation of the QR decomposition using Gram-Schmidt required A to have full rank, but the algorithm is
not as stable as others. In Chapter 17, we will develop two better algorithms for computing the QR decomposition. In this
chapter, we will use the MATLAB function qr to compute a unique solution to the full-rank least-squares problem.

Using the reduced QR decomposition, A = Qm×nRn×n, we have

ATA = (QR)TQR = RTQTQR = RTIR = RTR,

so the normal equations become

RTRx = ATb = (QR)T b = RTQTb. (16.2)

Note that in reduced QR decomposition R is an n × n matrix. We can simplify Equation 16.2 by using an important
property of the reduced QR decomposition.

Lemma 16.2. If ATA = QR is the reduced decomposition of ATA, then rii > 0, 1 ≤ i ≤ n, where the rii are the diagonal
entries of R.



328 Numerical Linear Algebra with Applications

Proof. ATA = (QR)T (QR) = RTQTQR = RTR. ATA is positive definite, and by Theorem 13.3, RT has positive diagonal
entries.

By Lemma 16.2, the diagonal entries of RT are positive, so RT is invertible, and from Equation 16.2 we have

Rx = QTb (16.3)

Since R is an upper triangular, system 16.3 can be solved simply by back substitution. This leads to Algorithm 16.2.

Algorithm 16.2 Solving the Least-Squares Problem Using the QR Decomposition

function QRLSTSQ(A,b)

% Solve the least-squares problem using QR decomposition.

% Input: m × n matrix A of full rank and m × 1 column vector b.

% Output: The solution to the least-squares problem Ax=b and the residual

Compute the reduced QR decomposition of A: A=QR

c = QTb

Solve the upper triangular system Rx=c

return
[
x ‖b− Ax‖2

]
end function

NLALIB: The function qrlstsq implements Algorithm 16.2.

Example 16.5. The table shows the length-weight relation for a species of salmon. Find a power function W = αLβ

which best fits the data.

L 0.5 1.0 2.0
W 1.77 10 56.6

Take the natural logarithm of the power function to obtain ln (W) = β ln (L)+ ln (α). In problems of this type, it is often
necessary or convenient to perform a change of variable. Let y = ln (W), x = ln (L), and b = ln (α), and m = β. Create a
table containing the logarithms of L andW.

x −0.6931 0.0000 0.6931
y 0.5710 2.3026 4.0360

Wewant the line y = mx+bwhich best fits the data, sowemust find b andm such that
−0.6931m + b = 0.5710

0m + b = 2.3026
0.6931m + b = 4.0360

,

an overdetermined system.

We must solve the least-squares problem

⎡⎣ −0.6931 1
0 1

0.6931 1

⎤⎦[ m
b

]
=
⎡⎣ 0.5710
2.3026
4.0360

⎤⎦ for b and m. The following MATLAB

code does this for us.

>> A = [-0.6931 1;0 1;0.6931 1];

>> b = [0.5710 2.3026 4.0360]’;

>> x = qrlstsq(A,b)

x =

2.4996

2.3032

The least-squares line is y = 2.4996x+ 2.3032. Now we need to find the corresponding power function.

W = ey = e2.4996x+2.3032 = e2.3032 (ex)2.4996 = e2.3032
(
eln(L)

)2.4996 = e2.3032L2.4996. The power function that best fits
this data is (Figure 16.3)

W = 10.0062L2.4996 �



Least-Squares Problems Chapter| 16 329

FIGURE 16.3 Least-squares estimate for the power function.

Efficiency
The decomposition is normally computed by the use of Householder reflections (Sections 17.8 and 17.9), and the cost of
this algorithm is approximately 2n2

(
m− n

3

)
flops. The product QTb requires 2mn, and back substitution costs n2 + n − 1

flops, so the total cost of Algorithm 16.2 is

2mn2 − 2n3

3
+ 2mn+ n2 + n+ 1.

The cost of 16.2 is dominated by computing the reduced QR factorization, so we ignore 2mn+ n2 + n+ 1 and say that the
QR solution to the full-rank least-squares problem, m ≥ n costs approximately

2mn2 − 2n3

3

flops.

16.2.3 Using the SVD

Just like the QR decomposition, there is a reduced SVD, and it has the form (Figure 16.4)

Am×n = Um×n�n×n (Vn×n)T .
In MATLAB, use the command [U S V] = svd(A,0). The reduced SVD is also a powerful tool for computing full-

rank least-squares solutions, m ≥ n. The following manipulations show how to use it.
Apply the reduced SVD to A and obtain A = U�VT, where U ∈ Rm×n has orthonormal columns, and V ∈ Rn×n is

orthogonal, and � = diag (σ1, σ2, . . . , σn) ∈ Rn×n, σi > 0, 1 ≤ i ≤ n. Form the normal equations.

ATA = (
U�VT

)T
U�VT

and so

ATA = (V�) �VT.

Now, ATb = (V�)UTb, and so the normal equations become

(V�) �VTx = (V�)UTb



330 Numerical Linear Algebra with Applications

0A

A

m � n Orthogonal
m � m

Full SVD

Reduced SVD

Orthonormal columns

Orthogonal

Orthogonal
n � n

m � n
m � n

m ≥ n

n � n
n � n

m � n

U1

U
VT

VT
0

sn

s1

sn

s1

FIGURE 16.4 The reduced SVD for a full rank matrix.

SinceV is orthogonal and� is a diagonalmatrix with positive entries,V� is invertible, and after multiplying the previous
equation by (V�)−1 we have

�VTx = UTb.

First solve �y = UTb, followed by VTx = y. Since � is a diagonal matrix, the solution to �y = UTb is simple. Let

UTb =

⎡⎢⎢⎢⎢⎢⎣
c1
c2
...

cn−1
cn

⎤⎥⎥⎥⎥⎥⎦. Then,
⎡⎢⎢⎢⎣

σ1 0
σ2 0

0
. . .

0 σn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
y1
y2
...
yn

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
c1
c2
...
cn

⎤⎥⎥⎥⎦ ,

and yi = ci
σi
, 1 ≤ i ≤ n. The solution to VTx = y is x = Vy. We summarize these steps in Algorithm 16.3.

Algorithm 16.3 Solving the Least-Squares Problem Using the SVD

function SVDLSTSQ(A,b)

% Use the SVD to solve the least-squares problem.

% Input: An m × n full-rank matrix A, m ≥ n, and an m × 1 vector b.

% Output: The solution to the least-squares problem Ax=b and the residual

Compute the reduced SVD of A: A = U�VT

c = UTb

% Solve the system �y = c

for i=1:n do
yi = ci/σi

end for
x = Vy

return
[
x ‖b− Ax‖2

]
end function



Least-Squares Problems Chapter| 16 331

NLALIB: The function svdlstsq implements Algorithm 16.3. The implementation uses svd(A,0) to compute the
reduced SVD for A, and computes y using

y = c./diag(S),

where S is the diagonal matrix.

Example 16.6. The velocity of an enzymatic reaction with Michaelis-Menton kinetics is given by

v (s) = αs

1+ βs
(16.4)

Find the Michaelis-Menton equation which best fits the data:

s 1 4 6 16
v 4 10 12 16

Inverting Equation 16.4 gives the Lineweaver-Burke equation:

1

v
= 1

α

1

s
+ β

α
(16.5)

Perform the following change of variable: y = 1
v and x = 1

s . Let m = 1
α
and b = β

α
. Equation 16.5 then becomes

y = mx+ b

Recompute the table to reflect the change of variables.

x 1.0000 0.2500 0.1667 0.0625
y 0.2500 0.1000 0.0833 0.0625

Find the least-squares fit for y = mx+ b by solving the following 4× 2 set of equations

1.0000m + b = 0.2500
0.2500m + b = 0.1000
0.1667m + b = 0.0833
0.0625m + b = 0.0625

that correspond to the matrix equation ⎡⎢⎢⎣
1.0000 1
0.2500 1
0.1667 1
0.0625 1

⎤⎥⎥⎦[ mb
]
=

⎡⎢⎢⎣
0.2500
0.1000
0.0833
0.0625

⎤⎥⎥⎦ .

The following MATLAB code solves for m and b and then computes α, β.

>> A = [1.0000 1.0000;0.2500 1.0000;0.1667 1.0000;0.0625 1.0000];

>> b = [0.2500 0.1000 0.0833 0.0625]’;

>> x = svdlstsq(A,b);

>> m = x(1);

>> b = x(2);

>> alpha = 1/m

alpha =

4.9996

>> beta = alpha*b

beta =

0.2499

The least-squares approximation is (Figure 16.5)

v (s) = 4.9996s

1+ 0.2499s
�



332 Numerical Linear Algebra with Applications

FIGURE 16.5 Velocity of an enzymatic reaction.

Efficiency
Algorithms for the computation of the SVD are complex, and we will develop two in Chapter 21. We will use the estimate
given in Ref. [2, p. 493] of approximately 14mn2 + 8n3 flops. Generally, using QR is faster for full rank least-squares
problems. As we will see in Section 16.4, the SVD should be used for rank deficient problems.

16.2.4 Remark on Curve Fitting

To fit a polynomial of degree n to a set of points(xi, yi), you can avoid using the normal equations by computing the
vandermonde matrix V (x, n) and solving the least-squares problem Vx = y using the QR or SVD approach.

16.3 CONDITIONING OF LEAST-SQUARES PROBLEMS

A perturbation analysis of least-squares problems is quite complex. This section will present a theorem without proof and
provide some examples to illustrate what the theorem tells us. As you might expect, the perturbation result depends of the
condition number for an m × n matrix, m ≥ n. We will see that least-squares problems are more sensitive to perturbations
than the solution of linear systems using Gaussian elimination. A sketch of the proof and a discussion of its consequences
can be found in Ref. [1, pp. 117-118].

Theorem 16.3. Assume that δA and δb are perturbations of the full-rank matrix A ∈ R
m×n(m ≥ n) and the vector

b ∈ Rm, respectively. Assume that x is the unique solution to the least-squares problem Ax = b and that x̂ is a solution to
the least-squares problem (A+�A) x̂ = b+�b. Let r be the residual r = b− Ax, and assume that

ε = max

(‖δA‖2
‖A‖2

,
‖δb‖2
‖b‖2

)
<

1

κ (A)
.

Then, ∥∥x̂− x
∥∥
2

‖x‖2
≤ ε

(
2κ2 (A)

cos θ
+ tan θ (κ2 (A))2

)
+ O

(
ε2
)
,

where sin θ = ‖r‖2‖b‖2 . In other words, θ , 0 < θ < π
2 , is the angle between the vectors b and Ax (Figure 16.1).

There are a number of important consequences of Theorem 16.3.



Least-Squares Problems Chapter| 16 333

a. If θ is small, the residual is small (Figure 16.1), and the sensitivity to perturbations depends on κ (A).
b. If θ is not close to π

2 , but κ (A) is large, then the sensitivity depends on(κ (A))2.
c. If θ is near π

2 , the solution is nearly zero, but the solution to the least-squares problem, x̂, produced by perturbations in

A and b will not be zero, and ‖x̂−x‖2‖x‖2 will be very large.

Example 16.7. In Ref. [49], Golub refers to the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1 1
ε 0 0 0 0
0 ε 0 0 0
0 0 ε 0 0
0 0 0 ε 0
0 0 0 0 ε

⎤⎥⎥⎥⎥⎥⎥⎦ .

Choose ε = 0.01. The following MATLAB script solves the least-squares problem Ax = b with b = [
1 1 1 1 1 1

]T
using the function svdlstsq. Then, the nonzero elements of A are each perturbed by the same random value in the range
0 < δaij < 0.00001, the elements of b perturbed by random values in the range 0 < δbi < 0.001, and svdlstsq finds
the solution to the perturbed problem. Then, the code computes the norm of the difference between the two solutions. The
result is interesting.

>> B = .00001*rand*A + A;

>> c = b + .001*rand(6,1);
>> x = svdlstsq(A,b);

>> y = svdlstsq(B,c);

>> norm(x-y)

ans =

0.038215669993397

There is a very good reason for this. The condition number κ (A) = ‖A‖2
∥∥A‡

∥∥ = 223.609. That does not seem too
bad, but remember Theorem 16.3 says that the relative error can be bounded by the square of the condition number, and
(223.609)2 = 50001. �

16.3.1 Sensitivity when using the Normal Equations

[19], p. 118, states the following result that is an alternative to the bound in Theorem 16.3:

‖x̃− x‖2
‖x‖2

≤ εκ2 (A)

1− εκ2 (A)

(
2+ (κ2 (A)+ 1)

‖r‖2
‖A‖2 ‖x‖2

)
,

where r is the residual r = ‖b− Ax‖2. Using the normal equations requires solving ATAx = ATb, and so the accuracy
depends on the condition number κ2

(
ATA

)
. From Theorem 10.5, part (4)

κ2

(
ATA

)
= κ22 (A) .

Thus the relative error, ‖x̃−x‖2‖x‖2 , is always bounded by κ22 (A) rather than κ2 (A). As a result, use of the normal equations
can lose twice as many digits of accuracy compared to the use of the QR or SVD method. Using the normal equations
is only acceptable when the condition number of A is small, and in this case it is faster than either the QR or SVD
approaches.

16.4 RANK-DEFICIENT LEAST-SQUARES PROBLEMS

To this point, we have dealt with least-squares problems Ax = b, m ≥ n and A having full rank. What happens if m ≥ n
and rank (A) < n? Such problems are termed rank deficient, and arise in areas of science and engineering such as acoustics,



334 Numerical Linear Algebra with Applications

tomography, electromagnetic scattering, image restoration, remote sensing, and the study of atmospheres, so there has to
be a means of handling them.

Recall that a solution using the reduced QR decomposition requires solving Rx = QTb. In a rank-deficient problem, the
reduced QR decomposition gives an upper triangular matrix R that is singular, and there will be infinitely many solutions to
the least-squares problem; in other words there are infinitely many vectors x that minimize ‖b− Ax‖2 for x ∈ Rn.

It is also possible that a problem is “almost rank deficient.”

Example 16.8. Let A =
⎡⎣ 1.0000 −0.3499
−2.0000 0.6998
8.0000 −2.8001

⎤⎦. In the reduced QR decomposition,

R =
[
8.3066 −2.9072
0 0.0002

]
,

and R is very close to singular and is singular to 3-digit accuracy. Using the QR method for computing the unique least-
squares solution in situations like this will be highly sensitive to perturbations or will be impossible if R is singular. �

The solution to rank-deficient or nearly rank-deficient problems is to make a wise choice among the solutions, and the
choice is to pick the solution with the smallest 2-norm, the minimum norm solution. There are two approaches to solving
such a problem, using the QR method with column pivoting [2, pp. 288-298], or using the SVD. We will choose the latter.

Let A ∈ Rm×n have rank r. The full SVD has the following form:

A = U

[
�r 0
0 0

]
VT

r m− r r n− r

U = [Ur, Um−r], V = [Vr Vn−r]

where Ur is the submatrix consisting of the first r columns, and so forth. The SVD is a very revealing orthogonal
decomposition, as we saw in Section 15.2.1 when we discussed the four fundamental subspaces of a matrix. The SVD
can be used to determine a formula for the minimum norm least-squares solution xLS as well as the norm of the minimum
residual rLS. Theorem 16.4 shows how to compute xLS and rLS:

xLS =
r∑
i=1

(
uTi b

σi

)
vi,

and the corresponding residual

rLS =
√√√√ m∑

i=r+1

(
uTi b

)2
.

Computing the rank is a nontrivial problem. After computing the SVD, MATLAB determines the rank as follows:

tol=max(size(A))*eps(max(sigma))

r=sum(sigma > tol)

In the computation of tol, max(size(A)) is the largest dimension ofA, and eps(max(sigma)) is the distance between
σ1 and the next largest floating point number in double precision arithmetic. To estimate the rank, r, find the number of
singular values larger than tol. Theorem 16.4 provides a proof that xLS and rLS are correct, and can be omitted if desired.

Theorem 16.4. Let A = U�̃VT be the SVD of Am×n, with r = rank (A). If U = [
u1 . . . um

]
and V = [

v1 . . . vn
]

are the columns of U and V, and b ∈ Rm, then

xLS =
r∑
i=1

(
uTi b

σi

)
vi

minimizes ‖Ax− b‖2 and has the smallest 2-norm of all minimizers. In addition,

r2LS = ‖b− AxLS‖22 =
m∑

i=r+1

(
uTi b

)2
.



Least-Squares Problems Chapter| 16 335

Proof. Multiplication by an orthogonal matrix does not change the 2-norm, so

‖b− Ax‖22 =
∥∥UT (b− Ax)

∥∥2
2 . (16.6)

Using the fact that UTAV = �̃, Equation 16.6 gives

‖b− Ax‖22 =
∥∥UTb− (

UTAx
)∥∥2

2 =
∥∥UTb− (

UTAV
) (
VTx

)∥∥2
2 =

∥∥UTb− �̃α
∥∥2
2 , (16.7)

where α = VTx = [
α1 . . . αn

]T. Now,
r m− r

�̃α =
[

�r 0
0 0

]
α = [

σ1α1 . . . σrαr 0 . . . 0
]T
.

Write UT as

⎡⎢⎣ u1
...
um

⎤⎥⎦, where ui are the rows of UT, and then note that row i of the product UTb is the inner product of ui

and b, which is uTi b, so we obtain

UTb =
⎡⎢⎣ u1

...
um

⎤⎥⎦ b =
⎡⎢⎣ uT1b

...
uTmb

⎤⎥⎦ . (16.8)

Use Equations 16.8 and 16.9 in Equation 16.7, to obtain

‖b− Ax‖22 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

uT1b− σ1α1
...

uTr b− σrαr
uTr+1b
...

uTmb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

,

from which we get

‖b− Ax‖22 =
r∑
i=1

(
uTi b− σiαi

)2 + m∑
i=r+1

(
uTi b

)2
. (16.9)

Notice that the term
∑m

i=r+1
(
uTi b

)2
in Equation 16.9 is independent of x, so the minimum value of ‖Ax− b‖22 occurs when

αi = uTi b

σi
, 1 ≤ i ≤ r. (16.10)

Since α = VTx, x = Vα, from Equation 16.10, we have

x =
r∑
i=1

(
uTi b

σi

)
vi +

n∑
i=r+1

αivi (16.11)

If we choose x such that αi = 0, r + 1 ≤ i ≤ n, and then x will have the smallest possible 2-norm, and the minimum
residual is

rLS =
√√√√ m∑

i=r+1

(
uTi b

)2
. (16.12)

Remark 16.2. If m ≥ n and rank (A) = n, then the term
∑n

i=r+1 αivi is not present in Equation 16.11, and the solution is
unique. If A is rank deficient, then r < n, and there are infinitely manyways to choose αi, r+1 ≤ i ≤ n, so the rank-deficient



336 Numerical Linear Algebra with Applications

least-squares problem has infinitely many solutions. However, there is only one solution xLS with minimum norm; that is,
when we choose αi = 0, r + 1 ≤ i ≤ n so that

xLS =
r∑
i=1

(
uTi b

σi

)
vi. (16.13)

Example 16.9. Let A =

⎡⎢⎢⎣
2 1 1 2
1 2 1 2
1 1 2 2
2 2 2 3

⎤⎥⎥⎦, b =
⎡⎢⎢⎣
−1
5
3
2

⎤⎥⎥⎦. The rank of A is 3, so A is rank deficient and we will apply the

results of Theorem 16.4. First, compute the SVD:

A =

⎡⎢⎢⎣
−0.4364 0.8165 0 −0.3780
−0.4364 −0.4082 0.7071 −0.3780
−0.4364 −0.4082 0.7071 −0.3780
−0.6547 0 0 0.7559

⎤⎥⎥⎦
⎡⎢⎢⎣
7 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
−0.4364 −0.4364 −0.4364 −0.6547
0.8165 −0.4082 −0.4082 0

0 0.7071 −0.7071 0
−0.3780 −0.3780 −0.3780 0.7559

⎤⎥⎥⎦
Equation 16.13 gives the minimum norm solution.

xLS =
3∑
i=1

(
uTi b

σi

)
vi

=
[ −0.4364 −0.4364 −0.4364 −0.6547 ] [ −1 5 3 2

]T
7

⎡⎢⎢⎣
−0.4364
−0.4364
−0.4364
−0.6547

⎤⎥⎥⎦+ · · · =
⎡⎢⎢⎣
−3.0612
2.9388
0.9388
0.4082

⎤⎥⎥⎦
�

Algorithm 16.4 finds the minimum norm solution to the rank-deficient least-squares problem, but it will work for a
full-rank problem; however, with full-rank problems, use either svdlstsq or qrlstsq.

Algorithm 16.4 Minimum Norm Solution to the Least-Squares Problem

function RDLSTSQ(A,b)

% Compute the minimum norm solution to the

% linear least-squares problem using the SVD.

% Input: m × n matrix A and m × 1 vector b.

% Output: Solution x and the residual[
U �̃ V

] = svd (A)

σ = diag
(
�̃
)

% Compute the rank of A.

tol = max (size (A)) eps (max (σ ))

r =∑
(elementsof σ > tol)

x = 0

for i=1:r do
x = x+

(
U(:, i)Tb

σ (i)

)
V (:, i)

end for
residual = 0

for i=r+1:m do
residual= residual+ (

bTU (:, i)
)2

end for
return

[
x
√
residual

]
end function



Least-Squares Problems Chapter| 16 337

NLALIB: The function rdlstsq implements Algorithm 16.4.

Example 16.10. Let

A =

⎡⎢⎢⎢⎢⎢⎢⎣
7 1 8
−1 5 0
−1 6 9
0 2 9
1 2 3
3 5 7

⎤⎥⎥⎥⎥⎥⎥⎦ , b1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and

B =

⎡⎢⎢⎣
1 1 1
1 1 1
1 1 1
1 1 1

⎤⎥⎥⎦ , b2 =

⎡⎢⎢⎣
1
2
3
4

⎤⎥⎥⎦ .

The rank of A is 3, so it is not rank deficient, and qrlstsq applies. However, the rank of B is 1 and we must use rdlstsq.

>> x1 = qrlstsq(A,b1)

x1 =

0.0618

0.1548

0.0454

>> x = rdlstsq(B,b2)

x =

0.8333

0.8333

0.8333 �

It is now appropriate to introduce an equivalent definition for the pseudoinverse that is a helpful theoretical tool.

Definition 16.6. Let A be an m× n matrix, m ≥ n, having rank r ≤ n, with SVD A = U�̃VT. The pseudoinverse is

A† = V�+UT,

where

�+ = diag

(
1

σ1
,
1

σ2
, . . . ,

1

σr
, 0, 0, . . . , 0

)
is an n× m diagonal matrix. If A has full rank, this definition is equivalent to Definition 16.3 (Problem 16.11).

This definition enables us to reformulate the results of Theorem 16.4 using the pseudoinverse, namely, that xLS = A†b.
Let ui, 1 ≤ i ≤ m, be the columns of U, and vi, 1 ≤ i ≤ n, be the columns of V. Begin by computing UTb, which we can
write as

UTb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
...
ur
ur+1
...
um

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈u1, b〉
〈u2, b〉

...
〈ur, b〉
〈ur+1, b〉

...
〈um, b〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,



338 Numerical Linear Algebra with Applications

and then

�+UTb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
σ1
〈u1, b〉

1
σ2
〈u2, b〉
...

1
σr
〈ur, b〉
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To finish up,

V�+UTb =

⎡⎢⎢⎢⎣
v11 v12 . . . v1n
v21 v22 . . . v2n
...

...
. . .

vn1 vn2 . . . vnn

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
σ1
〈u1, b〉

1
σ2
〈u2, b〉
...

1
σr
〈ur, b〉
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
1
σ1
〈u1, b〉 v11 + 1

σ2
〈u2, b〉 v12 + · · · + 1

σr
〈ur, b〉 v1r

1
σ1
〈u1, b〉 v21 + 1

σ2
〈u2, b〉 v22 + · · · + 1

σr
〈ur, b〉 v2r

...
1
σ1
〈u1, b〉 vn1 + 1

σ2
〈u2, b〉 vn2 + · · · + 1

σr
〈ur, b〉 vnr

⎤⎥⎥⎥⎥⎥⎦
= 1

σ1
〈u1, b〉 v1 + 1

σ2
〈u1, b〉 v2 + · · · 1

σr
〈u1, b〉 vr

=
r∑
i=1

(
1

σi
uTi b

)
vi = xLS

It is also the case that

‖b− AxLS‖2 =
∥∥(Im×m − AA†) b∥∥2 (16.14)

(Problem 16.12). The algorithm rdlstsq is more efficiently stated as is, rather than using the pseudoinverse. However, the
pseudoinverse plays an important role in developing theorems dealing with least squares.

16.4.1 Efficiency

The full SVD computation requires approximately 4m2n + 8mn2 + 9n3 flops [2, p. 493]. Once the SVD computation is
complete, the rank computation requires negligible effort. The for loop executes r times. Each execution requires 1 division,
1 addition, 2m flops for computing U (:, i)T b, and n multiplications, so the cost of the for loop is r (2m+ n+ 2). This is
negligible, so the cost of rdlstsq is ≈ 4m2n+ 8mn2 + 9n3.

Remark 16.3. If a matrix is almost rank deficient (has one or more small singular values), an SVD approach should be
used. The algorithm rdlstsq is a good choice, but svdlstsq can also be used.

16.5 UNDERDETERMINED LINEAR SYSTEMS

Consider the least-squares problem Ax = b, where A is an m× n matrix, m < n, and b is an m× 1 vector, and the solution
x is has dimension n× 1. Such a system is called underdetermined (Figure 16.6).



Least-Squares Problems Chapter| 16 339

m

A

n

m < n

x

=

b

FIGURE 16.6 Underdetermined system.

If A has full rank (rank (A) = m), then the matrix AT with dimension n×m, n > m has full rank. TheQR decomposition
can be used to obtain a solution to a full-rank underdetermined system by applying it to AT. Compute the full QR
decomposition AT = QR, where Q is n× n and R is n× m. Then, using block matrix notation

m

QTAT = R = m
n− m

[
R1
0

]

where R1 is an m × m upper triangular matrix. Now, A = RTQT, so Ax = b can be written as RT
(
QTx

) = b. Again using
block matrix notation the equation becomes

m n− m
m

[
RT1 0

]
⎡⎢⎣ y1

...
yn

⎤⎥⎦ =
⎡⎢⎣ b1

...
bm

⎤⎥⎦ ,

where y = QTx. Solve RT1

⎡⎢⎣ y1
...
ym

⎤⎥⎦ = b, and let y = [
y1 . . . ym 0 . . . 0

]T. We must now compute x = Qy to obtain the

solution. There is no need to perform the entire (n× n) (n× 1) product due to the presence of the n−m zeros in y. We have

Qy =

⎡⎢⎢⎢⎢⎢⎢⎣

q11 . . . q1m q1,m+1 . . . q1n
q21 . . . q2m q2,m+1 . . . q2n
...

. . .
...

...
...

...
...

...
...

...
...

...
qn1 . . . qnm qn,m+1 . . . qnn

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
...
ym
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣ Q1

q1,m+1 . . . q1n
q2,m+1 . . . q2n

...
...

...
...

...
...

qn,m+1 . . . qnn

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
...
ym
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Qn×m1

⎡⎢⎣ y1
...
ym

⎤⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
...
...

xn−1
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Algorithm 16.5 implements this process.



340 Numerical Linear Algebra with Applications

Algorithm 16.5 Solution of Full-Rank Underdetermined System Using QR Decomposition

function UQRLSTSQ(A,b)

% Solve the m × n full rank underdetermined system Ax=b

% using the QR decomposition

% Input: m × n matrix A, m < n, and m × 1 vector b.

% Output: minimum norm solution n× 1 vector x and the residual[
Q R

] = qr
(
AT
)

R1 = R (1 : m, 1 : m)

Solve the m × m lower triangular system RT1y = b

Q1 = Q (1 : n,1 : m)

x = Q1y

return
[
x ‖b− Ax‖2

]
end function

NLALIB: The function uqrlstsq implements Algorithm 16.5.

Example 16.11. Find the minimum norm solution to the full-rank system Ax = b, where

A =
⎡⎣ 1 3 5 7 9
−1 −2 −3 −4 −5
6 12 8 9 10

⎤⎦
and

b = [
1 5 8

]T
.

>> rank(A)

ans =

3

>> uqrlstsq(A,b)

ans =

-18.4286

13.6000

-7.5143

-2.0571

3.4000 �

The results of Theorem 16.4 apply to the underdetermined rank deficient problems as well. By changing a32 from 12 to
7, the matrix A has rank 2, and we must use the algorithm implemented by the function rdlstsq.

Example 16.12. A =
⎡⎣ 1 3 5 7 9
−1 −2 −3 −4 −5
6 7 8 9 10

⎤⎦ and b = [
1 5 8

]T
.

>> x = rdlstsq(A,b)

x =

1.1741

0.7361

0.2980

-0.1401

-0.5782 �

Remark 16.4. The MATLAB function pinv computes the pseudoinverse and can be used for overdetermined, underde-
termined, or rank-deficient problems in the following way:

x = pinv(A)*b



Least-Squares Problems Chapter| 16 341

16.5.1 Efficiency

The QR decomposition requires approximately 4
(
n2m− nm2 + m3

3

)
flops when Q is required. The solution of the m× m

lower triangular system requires m2 + m − 1 flops, and forming the product Q1y costs 2mn flops. The QR decomposition
dominates, so the cost is approximately 4

(
n2m− nm2 + m3

3

)
flops.

16.6 CHAPTER SUMMARY

The Least-Squares Problem

If A is an m× nmatrix, a least-squares solution to the problem Ax = b, b ∈ Rm, x ∈ Rn is a value of x for which ‖b− Ax‖2
is minimum. Figure 16.1 shows that the residual vector, b− Ax must be orthogonal to the range of A, a subset of R

m. This
leads to the fact that the normal equations ATAx = ATb must be satisfied by any least-squares solution.

Existence, Uniqueness, and the Normal Equations

If A is an m × n matrix, m ≥ n, a vector x ∈ Rn is a least-squares solution if and only if x satisfies the normal equations;
furthermore, x is unique if and only if A has full rank.

The Pseudoinverse

The pseudoinverse, A† = (
ATA

)−1
AT, is a generalization of the square matrix inverse; in fact, if A is square and

nonsingular, A† = A−1. The pseudoinverse allows the definition of the condition number for a general m × n matrix as
κ (A) = ∥∥A†

∥∥
2 ‖A‖2.

Overdetermined Problems

A least-squares problem is overdetermined if A has dimension m× n, m > n; in other words, there are more equations than
unknowns. This is the most common type of least-squares problem.

Solving Overdetermined Problems Using the Normal Equations

If A has full rank, solving the normal equations ATAx = ATb by applying the Cholesky decomposition to the symmetric
positive definite matrix ATA yields a unique least-squares solution. Despite its simplicity, this approach is almost never used,
since

● There may be some loss of significant digits when computing ATA. It may even be singular to working precision.
● The accuracy of the solution using the normal equations depends on the square of condition number of the matrix. If

κ (A) is large, the results can be seriously in error.

Solving Overdetermined Problems Using the QR Decomposition

This is a time-honored technique for solving full-rank overdetermined least-squares problems. Find the reduced QR
decomposition of A, and the solution is Rx = QTb, easily obtained using back substitution. The primary cost is the
computation of the QR decomposition.

Solving overdetermined Problems Using the SVD

By first computing the reduced SVD of A, A = U�VT, the solution to the full-rank overdetermined least-squares problem
is found by first solving �y = UTb, followed by computing x = Vy.



342 Numerical Linear Algebra with Applications

Conditioning of Least-Squares Problems

Perturbation analysis for least-squares problems is complex. If θ is the angle between b and the range of Ax, then

a. if θ is small, the residual is small (Figure 16.1), and the sensitivity to perturbations depends on κ (A).
b. if θ is not close to π

2 , but κ (A) is large, then the sensitivity depends on(κ (A))2.
c. if θ is near π

2 , the solution is nearly zero, but the solution to the least-squares problem, x̂, produced by perturbations in

A and b will not be zero, and ‖x̂−x‖2‖x‖2 will be very large.

Thus, assuming that b is not almost orthogonal to R (A), relative errors depend at best on κ (A) and at worst on (κ (A))2 .

Rank Deficient Problems

An overdetermined problem is rank deficient if rank (A) < n. Such systems have infinitely many solutions, so the strategy
is to determine the unique solution x̂ with minimum norm among the solutions. After computing the SVD of A, there is a
simple formula for the minimum norm solution. The section also develops an alternative but equivalent definition of the
pseudoinverse. This formulation is primarily a theoretical tool.

Underdetermined Problems

A problem is underdetermined when A has dimension m × n, m < n. The matrix AT is of full rank, and a solution can be
obtained using the QR decomposition and submatrix operations that avoid computations dealing with blocks of zeros.

16.7 PROBLEMS

16.1 Three variables x, y, and z are required to satisfy the equations

3x− y+ 7z = 0

2x− y+ 4z = 1/2

x− y+ z = 1

6x− 4y+ 10z = 3

Is there a solution in the normal sense, not a least-squares solution? If so, is it unique, or are there infinitely many
solutions?

16.2 If A is an invertible matrix and assuming exact arithmetic, are the solutions using Gaussian elimination and least
squares identical? Prove your assertion.

16.3 If A is an m× n matrix, m ≥ n, and b is an m× 1 vector, show that if ATb = 0, b is orthogonal to the range of A.
16.4 If A is an m× n full-rank matrix, m ≥ n, show that

κ (A) = ∥∥A‡
∥∥
2 ‖A‖2 =

σ1

σn
,

where σ1 and σn are the largest and smallest singular values of A, respectively.
16.5

a. What is the Moore-Penrose inverse of a nonzero column vector?
b. Answer the same question for a row vector.

16.6
a. If A is a full rank m× n matrix, with m < n, show that

x = AT
(
AAT

)−1
b+

(
I − AT

(
AAT

)−1
A
)
y

satisfies the normal equations, where y is any n × 1 vector. If y = 0, x = AT
(
AAT

)−1
b is the minimum norm

solution.
b. Show how to evaluate x without computing

(
AAT

)−1
.

c. Is using this formula a reliable way to compute x? Explain your answer.
16.7 There are many identities involving the pseudoinverse. Let A ∈ Rm×n. Show that

a. A†AA† = A†



Least-Squares Problems Chapter| 16 343

b.
(
A†A

)T = I
c. AA†A = A
d.
(
AA†

)T = AA†

16.8 Show that if A ∈ Rm×n,
a.
(
I − AA†

)
A = 0

b. A
(
I − A†A

) = 0
16.9 Show that if A has orthonormal columns, then A† = AT.

16.10 If A ∈ R
m×n, then Bn×m is a right inverse of A if AB = Im×m. Cn×m is a left inverse of A if CA = In×n.

a. Prove that if rank (A) = n, A† is a left inverse of A.
b. Prove that if rank (A) = m, A† is a right inverse of A.

16.11 If Am×n, m ≥ n, is of full rank, show that Definitions 16.3 and 16.6 for A† are equivalent.
16.12 Show that ‖b− AxLS‖2 =

∥∥(I − AA†
)
b
∥∥
2.

16.13 Prove that all solutions x̂ of minx∈Rn ‖Ax− b‖2 are of the form x̂ = A†b+ η, where η ∈ null (A).
16.14 If some components of Ax− b are more important than others, a weight wi > 0 can be attached to each component.

By forming the diagonal matrix W =
⎡⎢⎣ w1 0

. . .
0 wm

⎤⎥⎦, the problem becomes one of minimizing the norm of

W (Ax− b). This called a weighted least-squares problem. The approach is to define an inner product and minimize
the norm of Ax− b relative to this inner product. Of course, this inner product must use W in some way.
a. If S is a symmetric positive definite matrix, define 〈x, y〉S = xTSy, and verify it is an inner product by
showing that
i. 〈x, y+ z〉S = 〈x, y〉S + 〈x, z〉S
ii. 〈cx, y〉S = 〈x, cy〉S = c 〈x, y〉S, where c is a scalar
iii. 〈x, y〉S = 〈y, x〉S
iv. 〈x, 0〉S = 0
v. If 〈x, x〉S = 0, then x = 0.

b. Show that the weight matrixW is positive definite.
c. Using an argument similar to the one used to derive the normal equations ATAx = ATb, derive, ATWAx = ATWb,
the normal equations for the weighted least-squares problem.

d. Let W
1
2 = diag

(√
w1,
√
w2, . . . ,

√
wm

)
, so that

(
W

1
2

)2 = W. Rewrite the normal equations in part (c) so that

the problem becomes an ordinary least-squares problem with the rescaled matrix W
1
2A.

e. Develop an algorithm to solve the weighted least-squares problem, m ≥ n, using the QR decomposition.
16.15 In Ref. [2, pp. 288-291], there is a discussion of rank deficient least-squares problem that includes some sensitivity

issues, which are more complex than those for full-rank problems. It is stated that small changes in A and b can
cause large changes to the solution, xLS = A†b. The sensitivity is related to the behavior of the pseudoinverse. Using

the example in Ref. [2], let A =
⎡⎣ 1 0
0 0
0 0

⎤⎦ and δA =
⎡⎣ 0 0
0 ε

0 0

⎤⎦.
a. Show that ∥∥A† − (A+ δA)†

∥∥
2 =

1

ε
.

b. What does this say about

lim
δA→0

∥∥A† − (A+ δA)†
∥∥
F?

16.7.1 MATLAB Problems

16.16 To facilitate printing vectors, implement a function

printvec(msg,x)

that outputs the string msg, followed by the elements of x, eight per line. Place the file printvec.m in a directory
of your choice, and add the directory to the MATLAB search path.



344 Numerical Linear Algebra with Applications

16.17 Using least squares, fit a line and a parabola to the data. Plot the two curves on the same set of axes.

x 0 2 3 5 8 11 12 15
y 50 56 60 72 85 100 110 125

Compute the condition number of the associated Vandermonde matrix in each case.
16.18 Let

A =
⎡⎣ 1 1
2 3
0 1

⎤⎦ , b =
⎡⎣ 0
5
1

⎤⎦ .

In parts (a)–(d), find the unique least-squares solution x using
a. x = A†b
b. The normal equations
c. The QR method
d. The SVD method
e. Find κ (A).

16.19 The data in the table give the approximate population of the United States every decade from 1900 to 1990.

Year 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
Populations (millions) 76.1 92.4 106.5 123.1 132.1 152.3 180.7 205.1 227.2 249.4

Assume that the population growth can be modeled with an exponential function p = bemx, where x is the year and
p is the population in millions. Use least squares to determine the constants b and m for which the function best
fits the data, and graph the data and the exponential curve on the same set of axes. Use the equation to estimate the
population in the years 1998, 2010, and 2030.

16.20 Consider the following data:

x 1.0 1.4 1.9 2.2 2.8 3.0
y 0.26667 0.23529 0.20513 0.19048 0.16667 0.16

Determine the coefficients α and β in the function y = 1
αx+β

that best fits the data using least squares, and graph

the data and the curve 1
αx+β

on the same set of axes.
16.21 The following are values of a function of the form y = x

α+βx . Using least squares, estimate α and β and approximate
y at x = {

25.0 33.8 36.0
}
. Graph the data and the curve x

αx+β
on the same set of axes.

x 20 21.3 21.9 30.6 32.0 33.3
y 1.0152 1.027 1.032 1.0859 1.0922 1.0976

16.22 Radium-226 decays exponentially. The data shows the amount, y, of radium-226 in grams after t years. Find an
exponential function y = Aert which best fits the data. Estimate the half-life of radium-226. Graph the data and the
curve y = Aert on the same set of axes.

t 0 100 350 500 1000 1800 2000
y 10 9.5734 8.5847 8.0413 6.4662 4.5621 4.1811

16.23 The table shows the length-weight relation for Pacific halibut. Find a power function W = αLβ which best fits the
data. Graph the data and the curveW = αLβ on the same set of axes.

L 0.5 1.0 1.5 2.0 2.5
W 1.3 10.4 35 82 163



Least-Squares Problems Chapter| 16 345

16.24 The equation for a stretched beam is

y = l+ Fs,

where l is the original length, F is the force applied, and s is the inverse coefficient of stiffness. The following
measurements were taken:

F 20 25 27 30 33
y 22.3 22.8 23.2 23.5 25.5

Estimate the initial length and the inverse coefficient of stiffness.
16.25 A resistor in an electric circuit satisfies the equation V = RI, where V is the voltage and I is the current. The

following measurements of voltage and current were taken:

I 2.00 1.90 1.85 2.06 1.95
V 4.95 5.05 5.10 4.92 5.02

Estimate the resistance.
16.26 The equation z = Ax + By + D represents a plane, and the points in the table are on or close to a plane. Use least

squares to determine the plane, and graph the data points and the plane on the same set of xyz-axes.

x −1.5 −1.0 −1.9 0.0 0.5 1.0 1.3 1.95
y 1.0 1.6 1.5 −1.4 −1.3 −1.6 −1.8 1.9
z 1.0 1.4 −0.3 6.4 7.3 8.6 9.4 7.0

The following MATLAB statements plot the data points:

% plot the data points in black circles

H=plot3(x,y,z,’ko’);
% double the circle size

set(H,’Markersize’,2*get(H,’Markersize’));
% fill the circles with black

set(H,’Markerfacecolor’,’k’);
hold on;

To plot the plane, use the functions meshgrid and surf. After calling surf, the statement alpha(0.5) will
assure that the plane will not obscure portions of the circles.

16.27 Graph the following data, and then fit and graph polynomials of degree 1, 2, and 3. All graphs must be on the same
set of axes. Which fit seems best?

x −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y 1.9047 1.3 0.63281 0.1375 0.048437 0.6 2.0266 4.5625 8.4422 13.9

16.28 TheMATLAB command pinv(A) computesA†, the pseudoinverse. TheMATLAB statement pinv(A)*b computes
the solution to a least-squares problem. For each part, you are given a least-squares problem. Solve each problem
two ways, using one of the functions developed in this chapter and by using pinv.

a.

⎡⎢⎢⎣
1 −1 2
3 0 1
4 2 −8
5 2 7

⎤⎥⎥⎦ x =
⎡⎢⎢⎣

1
−1
3
7

⎤⎥⎥⎦

b.

⎡⎢⎢⎣
2 3 1
−1 2 3
3 1 −2
6 9 3

⎤⎥⎥⎦ x =
⎡⎢⎢⎣
−1
3
5
0

⎤⎥⎥⎦



346 Numerical Linear Algebra with Applications

c.

⎡⎣ 2 5 6 8
−1 3 7 1
5 1 6 2

⎤⎦ x =
⎡⎣ 1
−1
10

⎤⎦

d.

⎡⎣ 1 −6 2 −4
3 −18 6 −12
9 0 12 0

⎤⎦ x =
⎡⎣ −28

12

⎤⎦

16.29 Let A =
⎡⎣ 1 3 −1
2 1 8
7 6 23

⎤⎦.
a. If b = [

1 1 3
]T
, use Gaussian elimination to determine if there is a unique solution, infinitely many solutions,

or no solution to Ax = b.
b. If your answer to part (a) is infinitely many or no solutions, can you find a minimum norm solution?
c. For b = [

3 11 36
]T
, find the infinitely many solutions using Gaussian elimination.

d. Find the least-squares minimum norm solution to the rank deficient problem (c), and verify that the minimum
norm solution is one of the infinitely many solutions obtained in part (c).

16.30 Let

A =

⎡⎢⎢⎢⎢⎣
1 −1 3
8 8 1
4 6 −12
6 −9 0
3 4 4

⎤⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎢⎣
1
3
−1
6
15

⎤⎥⎥⎥⎥⎦ .

a. Show that there is a unique solution.
b. Find the solution in the following ways:

i. Using the normal equations
ii. Using the QR method
iii. Using the SVD method

16.31 Let A =

⎡⎢⎢⎣
1 4 10
−2 6 −6
5 −7 23
3 3 21

⎤⎥⎥⎦ and b =

⎡⎢⎢⎣
1
12
−1
2

⎤⎥⎥⎦.
a. Try to solve the least-squares problem Ax = b using the QR decomposition.
b. Try to solve the least-squares problem Ax = b using the SVD.
c. Explain the results of parts (a) and (b).
d. Try to find a solution using rdlstsq. Explain your result.

16.32 The 50× 40 matrix RD.mat in the software distribution is a rank deficient. Let b = rand(50,1).
a. Find the minimum norm solution to RD*x = b.
b. Find two different solutions that produce the same residual, and show that their norms are greater than that of the

minimum norm solution.
16.33 Build the matrix

A =

⎡⎢⎢⎣
−7 −3 1
−6 −2 2
−5 −1 3
−4 0 4

⎤⎥⎥⎦
and vectors

b1 =
[ −5 2 9 15

]T , b2 =
[
7 1 3 6

]T .
The rank of A is 2, so A is rank deficient. Find the minimal norm solution to the problems



Least-Squares Problems Chapter| 16 347

min
x∈R3

‖Ax− b1‖ and min
x∈R3

‖Ax− b2‖ ,
and compute ‖Axi − bi‖ , i = 1, 2. Explain the results.

16.34
a. Show that the 50× 35 matrix, ARD, in the software distribution is “almost rank deficient.”
b. Let b = [

1 1 . . . 1 1
]T and solve the least-squares problem ARDx = b using normalsolve, qrlstsq,

svdlstsq, and rdlstsq. In each case, also compute the residual. Compare the results by filling-in the
table.

Method Residual
normalsolve
qrlstsq
svdlstsq
rdlstsq

16.35 Build the matrix A and vector b using the following statements:

A = rosser; A(9:10,:) = ones(2,8); b = ones(10,1).

a. Compute x = pinv(A)*b, and accept x as the correct solution.
b. Solve the least-squares problem Ax = b using the normal equations to obtain solution x1.
c. Do part (a), except use the QR decomposition algorithm to obtain solution x2.
d. Do part (a), except use the SVD decomposition algorithm to obtain solution x3.
e. Compute ‖x−xi‖2‖x‖2 , i = 1, 2, 3.
f. Explain the results, taking Remark 16.2 into account.

16.36 Build the Lauchli matrix A = gallery(’lauchli’,50), and let b = (1:51)’.
a. Does A have full rank?
b. Compute the condition number of A.
c. Compute the least-squares solution, x1, using qrlstsq.
d. Obtain solution x2 by using the normal equations.
e. Comment on the results.

16.37 Solve the underdetermined system and give the residual.

⎡⎢⎣ 2 −4 4 0.077

0 −2 2 −0.056
2 −2 0 0

⎤⎥⎦
⎡⎢⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎥⎦ =
⎡⎢⎣ 3.86

−3.47
0

⎤⎥⎦

16.38 Build a 9× 25 system using the following MATLAB code, find the minimum norm solution and the residual.

>> x = 1:25;

>> V = vandermonde(x,8);

>> V = V’;

>> b = (1:9)’;

16.39 Find the rank of the matrix. ⎡⎢⎢⎢⎣
1 3 6 2 1

3 −7 9 2 1

5 −9 51 14 7

−16 36 −66 −16 −8

⎤⎥⎥⎥⎦ x =
⎡⎢⎢⎢⎣

1

−1
3

5

⎤⎥⎥⎥⎦ .

Will uqrlstsq work? If it does, use it, and if not find the minimum norm solution using rdlstsq.
16.40 A Toeplitz matrix is a matrix in which each diagonal from left to right is constant. For instance,



348 Numerical Linear Algebra with Applications

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 4 3.001 2 1 1 2 3
6 5 4 3.001 2 1 1 2
7 6 5 4 3.001 2 1 1
8 7 6 5 4 3.001 2 1
9 8 7 6 5 4 3.001 2
10 9 8 7 6 5 4 3.001
11 10 9 8 7 6 5 4
12 11 10 9 8 7 6 5
13 12 11 10 9 8 7 6
14 13 12 11 10 9 8 7
15 14 13 12 11 10 9 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a Toeplitz matrix. This interesting matrix was

found in Ref. [50]. We will use this matrix to investigate the conditioning ofm×n least-squares problems,m > n.
a. Build T and vectors b and bp as follows:

>> r = [5 4 3.001 2 1 1 2 3];

>> c = [5 6 7 8 9 10 11 12 13 14 15];

>> T = toeplitz(c,r);
>> b = [21.001 24.001 29.001 36.001 44.001 52.001 60.0 68.0...

76.0 84.0 92.0]’;

>> bp = [21.001 24.0002 29.0001 36.0003 44.00 52.0003 59.999...

68.0001 75.9999 84.0001 91.9999]’;

b. Compute ‖b−bp‖2‖b‖2 .

c. Use the function svdlstsq to solve the two problems

Tx = b, T (xp) = bp,

d. Compute

‖x− xp‖2
‖x‖2 .

e. Discuss your results.
16.41

a. Using the results of Problem 16.14, write a function

function [x, r] = wlstsq(A,b,w)

that solves the weighted least-squares problem. The argument w is a vector of weights, not a diagonal matrix.

b. Given weights
[
2 4 5 1 6

]T
, solve the weighted least-squares problem using wlstsq.

x1 + 2x2 + x3 − x4 = 1

2x1 + 5x2 − x3 + x4 = 2

4x1 + x2 − 3x3 − x4 = −1
−x1 + x2 + 3x3 + 7x4 = 0

5x1 − x2 + x3 − 8x4 = 3

16.42 Section 11.9 discussed iterative improvement for the solution of a linear system. Iterative improvement can also be
done for least-squares solutions. Consider the following algorithm outline for the full-rank overdetermined problem:

function LSTSQIMP(A,b,x,numsteps)

% Iterative refinement for least squares.

% Execute numsteps of improvement.

% Normally numsteps is small.

for i=1:numsteps do
r = b− Ax

correction=qrlstsq(A,r)

x=x+correction



Least-Squares Problems Chapter| 16 349

end for
return [x,b-Ax]

end function

a. Implement the function lstsqimp in MATLAB.
b. Add iterative refinement to the following code, and see if you can improve the result.

A = gallery(’lauchli’,50);
b = (1:51)’;

[x,r] = normalsolve(A,b);

fprintf(’The residual using the normal equations = %g\n’,r);

Remark 16.5. Thismethod is helpful onlywhen the initial residual is small. The algorithm actually used in practice
is described in Ref. [2, pp. 268-269].



This page intentionally left blank



Chapter 17

Implementing the QR Decomposition

You should be familiar with

● Rank, orthonormal basis
● Orthogonal matrices
● QR decomposition using Gram-Schmidt
● Computation with submatrices

In Chapter 14, we developed the QR decomposition of an arbitrary m× n matrix, m ≥ n, into a product of an m× n matrix
Q with orthonormal columns and an n× n upper triangular matrix R such that A = QR. We constructed the decomposition
using the Gram-Schmidt classical and modified algorithms. Chapter 16 discussed the solution of least-squares problems
using the QR decomposition, and the decomposition plays a very important role in eigenvalue computation. We must be
able to compute it accurately. There are other approaches to the QR decomposition that are numerically superior to Gram-
Schmidt, Givens method and Householder’s Method, and this chapter presents both methods.

17.1 REVIEW OF THE QR DECOMPOSITION USING GRAM-SCHMIDT

We begin this section with a formal statement of the QR decomposition theorem from Chapter 14.

Theorem 17.1. If A is an m × n matrix, m ≥ n, with linearly independent columns, then A can be factored as A = QR
where Q is an m× n matrix with orthonormal columns and R is an n× n upper triangular matrix.

In Chapter 14, we built the matricesQ and R by using the Gram-Schmidt process, and developed algorithms for both the
classical (clqrgrsch) and modified Gram-Schmidt process (modqrgrsch). The modified Gram-Schmidt algorithm avoided
possibly costly cancelation errors and is always to be preferred. For the sake of brevity, we will use the acronym MGS to
refer to the algorithm.Wementioned in the introduction that theQR decomposition usingMGSwas not as good numerically
compared to the Givens or Householder methods. The columns ofQ tend to lose orthogonality in proportion to the κ (A) [51,
52], and MGS can have problems when the matrix A is ill-conditioned. Example 17.1 clearly demonstrates this.

Example 17.1.

>> H = hilb(5);
>> [Q,R] = modqrgrsch(H);

>> norm(eye(5)-Q’*Q)
ans =

1.1154e-011

>> [Q,R] = clqrgrsch(H);

>> norm(eye(5)-Q’*Q)
ans =

5.7917e-008

>> H = hilb(15);
>> [Q,R] = modqrgrsch(H);

>> norm(eye(15)-Q’*Q)

ans =

0.9817 % indicates severe effects from ill-conditioned H

The reason the MGS was so poor with the 15× 15 Hilbert matrix H is that Cond2 (H) = 2.5699× 1017. �

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00017-X
Copyright © 2015 Elsevier Inc. All rights reserved. 351



352 Numerical Linear Algebra with Applications

Remark 17.1. The use of Gram-Schmidt can be improved by a process known as reorthogonalization. See Problem 14.25.
This issue of losing orthogonality will become a major concern in Chapters 21 and 22 when we discuss methods for solving
systems and computing eigenvalues for large sparse matrices.

Gram-Schmidt requires 2mn2 flops to find both Q and R. As we will see, this flop count is better than those for the
Givens or Householder methods when bothQ and R are desired. However, its possible instability usually dictates the use of
other methods. This does not mean that Gram-Schmidt is unimportant. In fact, using it to orthonormalize a set of vectors is
a basis for the Arnoldi and Lanczos methods we will study in conjunction with large sparse matrix problems in Chapters 21
and 22.

17.2 GIVENS ROTATIONS

Recall we developed the LU decomposition in Chapter 11 by applying a sequence of elementary matrices to the left side of
A. In the resulting decomposition LU, L is the product of the elementary matrices and U is an upper triangular matrix. We
will employ this same idea to the transformation of A into the product QR by applying on the left a sequence of orthogonal
matrices called Givens matrices that transform A into an upper triangular matrix R. Each Givens matrix product zeros out a
matrix element in the creation of R. Here is the idea:

Apply n− 1 Givens matrices, Ji1, 2 ≤ i ≤ n, on the left of A so that a21, a31, . . . , an1 are zeroed out, and

(
Jn1Jn−1,1, . . . J31J21

)
A→

⎡⎢⎢⎢⎢⎢⎣
X X . . . X
0 X · · · X
0 X . . . X
.
.
.

.

.

.
.
.
.

.

.

.
0 X . . . X

⎤⎥⎥⎥⎥⎥⎦ .

Now use n− 2 Givens matrices to zero out the elements at indices (3, 2) , (4, 2) , . . . , (n, 2), and we have

(
Jn2, . . . J42J32

) (
Jn1Jn−1,1, . . . J31J21

)
A→

⎡⎢⎢⎢⎢⎢⎣
X X . . . X
0 X · · · X
0 0 . . . X
.
.
.

.

.

.
.
.
.

.

.

.
0 0 . . . X

⎤⎥⎥⎥⎥⎥⎦ .

Let Ji be the product of Givens matrices acting on column i. Continue this process n − 3 more times until we have

(
Jn−1Jn−2 . . . J2J1

)
A→

⎡⎢⎢⎢⎢⎢⎣
X X . . . X X
0 X . . . X X
0 0 X . . . X
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 . . . X

⎤⎥⎥⎥⎥⎥⎦ = R,

and

A = (
Jn−1Jn−2 . . . J2J1

)T R = QR.

Q is a product of orthogonal matrices, and so it is orthogonal.

We start with the definition of the general n× n Givens matrix.

Definition 17.1. Amatrix of the form (Figure 17.1) is a Givens matrix. The value c is on the diagonal at indices (i, i) and
(j, j) , i < j. The value −s is at index (j, i), and s is at index (i, j). The remaining diagonal entries are 1, and all off-diagonal
elements at indices other than (j, i) and (i, j) are zero.

We want a Givens matrix to be orthogonal (J (i, j, c, s)T J (i, j, c, s) = I), and clearly the columns in the definition are
orthogonal; however, each columnmust have unit length. This requires that c2+s2 = 1. For clarity, Example 17.2 illustrates
the form of J (i, j, c, s)T J (i, j, c, s) for a 3× 3 matrix.

Example 17.2. Let J (1, 3, c, s) =
⎡⎣ c 0 s

0 1 0
−s 0 c

⎤⎦. Then,



Implementing the QR Decomposition Chapter| 17 353

0

Rows

Columns

0

0

0

0

0

0

0

0

1

0 0 ...

.. .

. . .

...

...

...
...

...

...
...

...

...

. . .

. . .

. . .

. . . . . . . . .

. . .

. . .

. . .. . .

. . . . . .

0

0

00

0

0

0 1

1

J (i,j,c,s) = 
c

ith ith

ith

jthc

s

−s

FIGURE 17.1 Givens matrix.

J (1, 3, c, s)T J (1, 3, c, s) =
⎡⎣ c 0 −s
0 1 0
s 0 c

⎤⎦⎡⎣ c 0 s
0 1 0
−s 0 c

⎤⎦ =
⎡⎣ c2 + s2 0 0

0 1 0
0 0 c2 + s2

⎤⎦ ,

so if c2 + s2 = 1, J (1, 3, c, s) is orthogonal. �

In the n× n case,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . . . . . . . . 0
. . .

c −s
...

. . .
...

s . . . c
...
. . .

0 0 . . . . . . . . . . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . . . . . . . . 0
. . .

c s
...

. . .
...

−s . . . c
...
. . .

0 0 . . . . . . . . . . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . . . . . . . . 0
. . .

c2 + s2 0
...

. . .
...

0 . . . c2 + s2
...
. . .

0 0 . . . . . . . . . . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Require that c2 + s2 = 1 and recall the identity sin2 θ + cos2 θ = 1. For instance, the matrix

J (4, 6, c, s) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 cos

(
π
6

)
0 sin

(
π
6

)
0 0 0 0 1 0
0 0 0 − sin

(
π
6

)
0 cos

(
π
6

)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where i = 4, j = 6, c = cos
(

π
6

)
, s = sin

(
π
6

)
is orthogonal since cos2

(
π
6

) + sin2
(

π
6

) = 1. In general, we can choose any
angle θ , let c = cos (θ), s = sin (θ) and always obtain a Givens matrix. When we make such a choice, we will use the
notation J (i, j, θ). Such a matrix is actually a rotation matrix that rotates a pair of coordinate axes through an angle θ in the

(i, j) plane, so it is also known as a Givens rotation. In R
2, the Givens matrix J (1, 2, θ) is

[
cos θ sin θ

− sin θ cos θ

]
, and you will

recognize this as a rotation matrix, a topic we discussed in Chapter 1. It rotates a vector clockwise through the angle θ .

Remark 17.2. Operations with Givens matrices can be done implicitly; in other words, it is not necessary to actually build
the Givens matrix. However, to reinforce understanding of exactly how these matrices operate, we will explicitly build them
until Section 17.4.

17.2.1 Zeroing a Particular Entry in a Vector

The Givens QR decomposition algorithm relies on being able to place zeros at specified locations in a matrix. Let
x = [

x1 x2 . . . xn−1 xn
]T, and form the product J (i, j, c, s) x.



354 Numerical Linear Algebra with Applications

J (i, j, c, s) x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . . . . . . . . . . 0
0 1 0 . . . . . . . . . . . . 0
...
...
...

...
0 0 0 . . . c . . . s · · · 0
...
...
...

...
0 0 0 . . . −s . . . c · · · 0
...
...
... . . .

...
0 0 0 . . . . . . . . . 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
...
xi
...
xj

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
...

cxi + sxj
...

−sxi + cxj
...

xn−1
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note that the product changes only the components i and j of x.

Example 17.3. Let J (2, 4, c, s) =

⎡⎢⎢⎣
1 0 0 0
0 c 0 s
0 0 1 0
0 −s 0 c

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦ =
⎡⎢⎢⎣

x1
cx2 + sx4

x3
−sx2 + cx4

⎤⎥⎥⎦ �

Assume we have a vector x ∈ Rn and want to zero out xj, j > 1, as illustrated in Equation 17.1.

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
...
xj
...
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, J (i, j, c, s) x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
X
...
0
...
X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17.1)

We must determine the values of i, j, c, and s to use, and then form the Givens rotation by creating the identity matrix,
inserting c in locations (i, i) and (j, j), −s in location (j, i), and s into position (i, j). Since multiplication by a Givens matrix
only affects components i and j of the vector, we can reduce finding c and s to a two-dimensional problem. Create a Givens

matrix

[
cos θ sin θ

− sin θ cos θ

]
that rotates vector

[
x
y

]
in R2 onto the x-axis. In that way, we zero out the y-coordinate. From

Figure 17.2, we have cos θ = x√
x2+y2 , sin θ = y√

x2+y2 , so[
cos θ sin θ

− sin θ cos θ

][
x
y

]
=
⎡⎣ x√

x2+y2
y√
x2+y2

− y√
x2+y2

x√
x2+y2

⎤⎦[ x
y

]
=
[ √

x2 + y2

0

]
.

By looking at Figure 17.2, this is exactly what we should get. The vector

[
x
y

]
after rotation will have an x-coordinate of√

x2 + y2 and a y-coordinate of 0.

c =cosq= s =sinq= 

q

x y

x 2 +  y 2 x 2 +  y 2

x 2 +  y 2 ,0�            �

�x, y �

FIGURE 17.2 Givens rotation.



Implementing the QR Decomposition Chapter| 17 355

Summary

To zero out entry j of vector x, choose index i < j and compute the values

c = xi√
x2i + x2j

, s = xj√
x2i + x2j

.

Let J (i, j, c, s) = I, followed by

J (i, i, c, s) = J (j, j, c, s) = c

J (j, i, c, s) = −s
J (i, j, c, s) = s

and compute J (i, j, c, s) x.

Example 17.4. Suppose we want to zero out component 2 of the 3× 1 vector x =
⎡⎣ −12

3

⎤⎦.
Choose i = 1, j = 2 and compute c = −1√

5
, s = 2√

5
. The Givens rotation matrix is

J (1, 2, c, s) =
⎡⎣ c s 0
−s c 0
0 0 1

⎤⎦ =
⎡⎢⎣

−1√
5

2√
5
0

− 2√
5

−1√
5
0

0 0 1

⎤⎥⎦ .

Now form the product J (1, 2, c, s) x to obtain⎡⎢⎣ −
1√
5

2√
5

0

− 2√
5
− 1√

5
0

0 0 1

⎤⎥⎦
⎡⎣ −12

3

⎤⎦ =
⎡⎣ √50

3

⎤⎦ .

Let us look at a more complex example.
We want to zero out component 3 of the 4× 1 vector x = [

3 −7 −1 5
]T
. Choose i = 1, j = 3, and then

c = 3√
10

, s = −1√
10
,

and form

J (1, 3, c, s) x =

⎡⎢⎢⎢⎣
3√
10

0 −1√
10

0

0 1 0 0
1√
10

0 3√
10

0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

3
−7
−1
5

⎤⎥⎥⎦ =
⎡⎢⎢⎣
√
10
−7
0
5

⎤⎥⎥⎦
It is necessary to choose i < j, and any index i < j can be used. Choose i = 2 and j = 3, form J (2, 3, c, s), and verify that
J (2, 3, c, s) x zeros out x3. �

17.3 CREATING A SEQUENCE OF ZEROS IN A VECTOR USING GIVENS ROTATIONS

Given a vector x = [
x1 x2 . . . xn

]T, we can use a product of Givensmatrices to zero out the n−i elements of x below entry
xi. To zero out xi+1, compute J (i, i+ 1, ci+1, si+1) x = xi+1. To zero out xi+2, compute J (i, i+ 2, ci+2, si+2) xi+1 = xi+2,
and continue the process until computing J (i, n, cn, sn) xn−1 = xn. In summary, the product

J (i, n, cn, sn) . . . J (i, i+ 2, ci+2, si+2) J (i, i+ 1, ci+1, si+1) x

transforms x into a vector of the form
[
x1 x2 . . . xi−1 ∗ 0 . . . 0

]T.



356 Numerical Linear Algebra with Applications

Example 17.5. Let x =
⎡⎣ 5
−1
3

⎤⎦ and zero out the second and third components of x using Givens rotations.

x2 = J (1, 2, c2, s2) x =

⎡⎢⎢⎣
5√
26
− 1√

26
0

1√
26

5√
26

0

0 0 1

⎤⎥⎥⎦
⎡⎣ 5
−1
3

⎤⎦ =
⎡⎣ √260

3

⎤⎦ ,

x3 = J (1, 3, c3, s3) x2 =

⎡⎢⎢⎢⎣
√
26√
35

0 3√
35

0 1 0

− 3√
35

0
√
26√
35

⎤⎥⎥⎥⎦
⎡⎣ √260

3

⎤⎦ =
⎡⎣ √350

0

⎤⎦ �

17.4 PRODUCT OF A GIVENS MATRIX WITH A GENERAL MATRIX

If A is an m × n matrix, a huge advantage when dealing with Givens matrices is the fact that you can compute a product
J (i, j, c, s)A without ever constructing J (i, j, c, s).

Example 17.6. If A =

⎡⎢⎢⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

⎤⎥⎥⎦, then

J (1, 3, c, s)A =

⎡⎢⎢⎣
c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

⎤⎥⎥⎦ =
⎡⎢⎢⎣
ca11 + sa31 ca12 + sa32 ca13 + sa33

a21 a22 a23
ca31 − sa11 ca32 − sa12 ca33 − sa13

a41 a42 a43

⎤⎥⎥⎦
The product only affects rows 1 and 3. �

In the general case where J (i, j, c, s) is m × m and A is m × n the product J (i, j, c, s)A only affects rows i and j. Using
Example 17.6 as a guide, convince yourself that rows i and j, i < j, have the following form:

Row i : cai1 + saj1, cai2 + saj2, . . . , cain + sajn, (17.2)

Row j : caj1 − sai1, caj2 − sai2, . . . , cajn − sain. (17.3)

This makes the product J (i, j, c, s)A very efficient to compute, requiring only 6n flops. Just change rows i and j according
to Equations 17.2 and 17.3.

Algorithm 17.1 Product of a Givens Matrix J with a General Matrix A

function GIVENSMUL(A,i,j,c,s)

% Multiplication by a Givens matrix.

% Input: An m × n matrix A, matrix indices i, j,

% and Givens parameters c, s.

% Output: The m × n matrix J(i,j,c,s)A.

a = A(i,:)

b = A(j,:)

A(i,:)=ca+sb

A(:,j)=-sa+cb

end function

NLALIB: The function givensmul implements Algorithm 17.1.



Implementing the QR Decomposition Chapter| 17 357

17.5 ZEROING-OUT COLUMN ENTRIES IN A MATRIX USING GIVENS ROTATIONS

We know how to zero out all the entries of a vector x below an entry xi, and we know how to very simply form the product
of a Givens matrix with another matrix. Now we will learn how to zero out all the entries in column i below a matrix entry
A (i, i). This is what we must do to create an upper triangular matrix.

First, consider the problem of computing the product J(i, j, c, s)A, j > i, so that the result will have a zero at index (j, i)
and only rows i and j of A will change. Think of column i,

[
a1i a2i . . . aii . . . aji . . . ami

]T
, as a vector and find c and

s using aii and aji so the product will zero out aji. Using givensmul, implicitly form a Givens matrix with c at indices (i, i)
and (j, j), −s at index (j, i) and s at index (i, j) and compute J (i, j, c, s)A using givensmul. Entries in both rows i and j will
change. This makes no difference, since we are only interested in zeroing out aji.

i j i j i j

1 0 . . . . . . . . . 0 a11 a1i . . . . . . . . . a1n a11 . . . ai1 . . . a1j . . . a1n
.
.
.

. . . . . .

.

.

.
.
.
.

. . .
... . . . . . . . . .

.

.

.
.
.
.

i c . . . s 0 i ai1 aii aij . . . ain i ai1 . . . X . . . X . . . ain
.
.
.

. . .
.
.
.

...
. . . =

.

.

.
.
.
.

. . .
.
.
.

.

.

.

j -s c 0 j aj1 aji ajj . . . ajn j aj1 0 . . . X . . . ajn
.
.
.

.

.

.
.
.
.

...
. . .

.

.

.
.
.
.

.

.

.

0 1 am1 ami amn am1 . . . ami . . . amj . . . amn

J (i, j, c, s)m×m Am×n

To zero out every element in column i below aii, compute the sequence

Ai+1 = J (i, i+ 1, ci+1, si+1)A,Ai+2 = J (i, i+ 2, ci+2, si+2)Ai+1, . . . ,Am = J (i,m, cm, dm)Am−1.

Example 17.7. Let A =

⎡⎢⎢⎣
1 3 −6 −1
4 8 7 3
2 3 4 5
−9 6 3 2

⎤⎥⎥⎦
Zero out all entries in column 1 below a11. To form A2, implicitly multiply by

J (1, 2, c2, s2) =

⎡⎢⎢⎣
0.2425 0.9701 0 0
−0.9701 0.2425 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

A2 = J (1, 2, c2, s2)A

=

⎡⎢⎢⎢⎣
0.2425 (1)+ 0.9701 (4) 0.2425 (3)+ 0.9701 (8) 0.2425 (−6)+ 0.9701 (7) 0.2425 (−1)+ 0.9701 (3)

−0.9701 (1)+ 0.2425 (4) −0.9701 (3)+ 0.2425 (8) (−0.9701) (−6)+ 0.2425 (7) (−0.9701) (−1)+ 0.2425 (3)

2 3 4 5

−9 6 3 2

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎣
4.1231 8.4887 5.3358 2.6679

0 −0.9701 7.5186 1.6977
2 3 4 5
−9 6 3 2

⎤⎥⎥⎦
Implicitly multiply by

J (1, 3, c3, c4) =

⎡⎢⎢⎣
0.8997 0 0.4364 0

0 1 0 0
−0.4364 0 0.8997 0

0 0 0 1

⎤⎥⎥⎦



358 Numerical Linear Algebra with Applications

A3 = J (1, 3, c3, s3)A2

=

⎡⎢⎢⎣
4.5826 8.9469 6.5465 4.5826

0 −0.9701 7.5186 1.6977
0 −1.0056 1.2702 3.3343
−9 6 3 2

⎤⎥⎥⎦
Implicitly multiply by

J (1, 4, c4, s4) =

⎡⎢⎢⎣
−0.4537 0 0 0.8911

0 1 0 0
0 0 1 0

−0.8911 0 0 −0.4537

⎤⎥⎥⎦
A4 = J (1, 4, c4, s4)A3

=

⎡⎢⎢⎣
−10.0995 1.2872 −0.2970 −0.2970

0 −0.9701 7.5186 1.6977
0 −1.0056 1.2702 3.3343
0 −10.6954 −7.1951 −4.9912

⎤⎥⎥⎦
Form

P = J (1, 4, c4, s4) J (1, 3, c3, s3) J (1, 2, c2, s2) =

⎡⎢⎢⎣
−0.0990 −0.3961 −0.1980 0.8911
−0.9701 0.2425 0 0
−0.1059 −0.4234 0.8997 0
−0.1945 −0.7778 −0.3889 −0.4537

⎤⎥⎥⎦ ,

and PA = A4. �

The matrix P in Example 17.7 is the product of orthogonal matrices, and so P is orthogonal, as proved in Lemma 17.1.

Lemma 17.1. If matrix P = PkPk−1 . . .P2P1, where each matrix Pi is orthogonal, so is P.

Proof. P−1 = P−11 P−12 . . .P−1k−1P
−1
k = PT1P

T
2 . . .PTk−1P

T
k = (PkPk−1 . . .P2P1)T, so P−1 = PT, and P is orthogonal.

Note that we can continue with A4 in Example 17.8 and use Givens rotations to zero out the elements in column 2 below
A4(2, 2). By zeroing out the element at index (4, 3), we will have an upper triangular matrix.

It is critical that c and s be computed as accurately as possible when implicitly multiplying by J (i, j, c, s). As it turns
out, this is not a simple matter.

17.6 ACCURATE COMPUTATION OF THE GIVENS PARAMETERS

The computation of c and s can have problemswith overflow or underflow.We saw in Sections 8.4.1 and 8.4.2 that in order to
minimize computation errors, it may be necessary to rearrange the way we perform a computation. The following algorithm
provides improvement in overall accuracy [19, pp. 195-196] by cleverly employing the normalization procedure described
in Section 8.4.1. The algorithm takes care of the case where xj = 0 by assigning c = 1 and s = 0 so that the Givens rotation
is the identity matrix. The signs of c and s may be different from those obtained from c = xi√

x2i+x2j
, s = xj√

x2i +x2j
, but that

does not change the rotation’s effect.
NLALIB: The function givensparms implements Algorithm 17.2.
Algorithm 17.2 requires five flops and a square root.



Implementing the QR Decomposition Chapter| 17 359

Algorithm 17.2 Computing the Givens Parameters

function GIVENSPARMS(xi, xj)

% Input: value xi at index i and xj at index j>i of a vector x.

% Output: the Givens parameters for x.

if xj = 0 then
c=1

s=0

else if
∣∣xj∣∣ > |xi| then

t= xi/xj
s = 1√

1+t2
c =st

else
t= xj/xi
c = 1√

1+t2
s =ct;

end if
return

[
c, s

]
end function

17.7 THE GIVENS ALGORITHM FOR THE QR DECOMPOSITION

All the necessary tools are now in place to construct Q and R using Givens rotations. First, we formalize our understanding
of the term upper triangular matrix A.

Definition 17.2. An m × n matrix A = [
aij
]
is upper triangular if aij = 0 for i > j. Another way of putting it is that all

entries below aii are 0.

Example 17.8. The matrices A and B are upper triangular.

A =

⎡⎢⎢⎢⎢⎣
1 −1 7 12 1 3
0 2 8 2 4 1
0 0 3 −9 10 6
0 0 0 4 2 1
0 0 0 0 5 18

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 6 −1
0 4 −2 8
0 0 −1 −9
0 0 0 −4
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ �

The decomposition algorithm uses Givens rotations to zero out elements below the diagonal element until arriving at
an upper triangular matrix. The question is “How many steps, k, should we execute?” This depends on the dimension of A.
Clearly, if A is an n× nmatrix, we need to execute the process k = n− 1 times. Now consider two examples where m �= n.

m > n: Look at a 5× 3 matrix A1 =

⎡⎢⎢⎢⎢⎣
X X X
X X X
X X X
X X X
X X X

⎤⎥⎥⎥⎥⎦. Here are the transformations that occur to A1.

A1 =

⎡⎢⎢⎢⎢⎣
X X X
X X X
X X X
X X X
X X X

⎤⎥⎥⎥⎥⎦ =⇒
⎡⎢⎢⎢⎢⎣
X X X
0 X X
0 X X
0 X X
0 X X

⎤⎥⎥⎥⎥⎦ =⇒
⎡⎢⎢⎢⎢⎣
X X X
0 X X
0 0 X
0 0 X
0 0 X

⎤⎥⎥⎥⎥⎦ =⇒
⎡⎢⎢⎢⎢⎣
X X X
0 X X
0 0 X
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎦ .

We executed three steps until we could not continue to zero out elements below the diagonal, so k = 3 = n.



360 Numerical Linear Algebra with Applications

m < n: Look at a 4× 6 matrix

A2 =

⎡⎢⎢⎣
X X X X X X
X X X X X X
X X X X X X
X X X X X X

⎤⎥⎥⎦ =⇒
⎡⎢⎢⎣
X X X X X X
0 X X X X X
0 X X X X X
0 X X X X X

⎤⎥⎥⎦ =⇒
⎡⎢⎢⎣
X X X X X X
0 X X X X X
0 0 X X X X
0 0 X X X X

⎤⎥⎥⎦

=⇒

⎡⎢⎢⎣
X X X X X X
0 X X X X X
0 0 X X X X
0 0 0 X X X

⎤⎥⎥⎦ .

We executed three steps until we could not continue to zero out elements below the diagonal, so k = 3 = m− 1.

From these examples, we see that the sequence of steps in the GivensQR decomposition algorithm is k = min (m− 1, n).
We are now ready to provide the algorithm for the Givens QR decomposition. To compute Q, start with Q = I. As the
algorithm progresses, build Q by successive uses of givensmul. Note also that when the rotations have producedR,QA = R,
and so A = QTR. Thus, the Q returned is the transpose of the one built during the construction of R.

Algorithm 17.3 Givens QR Decomposition

function GIVENSQR(A)

% Computes the QR decomposition of A

% Input: m × n matrix A

% Output: m × n orthogonal matrix Q

% and m × n upper triangular matrix R

Q = I

for i=1:min(m-1,n) do
for j=i+1:m do

[c s]=givensparms(aii, aji)

A=givensmul(A,i,j,c,s)

Q=givensmul(Q,i,j,c,s)

end for
end for

R=A;

Q= QT

end function

NLALIB: The function givensqr implements Algorithm 17.3.
The construction we developed that is realized in Algorithm 17.3 proves the following theorem.

Theorem 17.2 (QR decomposition). If A is an m × n matrix, it can be expressed in the form A = QR, where Q is an
m× m orthogonal matrix and R is an m× n upper triangular matrix.

Now let us do Example 17.1 again, this time using the Givens QR decomposition. Compare the results to those of
produced by the modified Gram-Schmidt algorithm.

Example 17.9. >> H = hilb(5);
>> [Q R] = givensqr(H);

>> norm(eye(5) - Q’*Q)

ans =



Implementing the QR Decomposition Chapter| 17 361

5.6595e-016

>> H = hilb(15);
>> [Q R] = givensqr(H);

>> norm(eye(15) - Q’*Q)

ans =

1.0601e-015

The columns of the matrix Q in the Givens algorithm do not lose orthogonality like the columns of Q do when
using MGS. �

17.7.1 The Reduced QR Decomposition

Gram-Schmidt produces the reducedQR decomposition. Without knowledge of Gram-Schmidt, we can prove the existence
of this decomposition using Theorem 17.2 and, at the same time, determine how to compute it using Givens rotations.

If A is has full rank,m ≥ n, let Am×n = Qm×mRm×n be the fullQR decomposition of A. Let the columns ofQ be denoted
by qi, 1 ≤ i ≤ m so that we can write

Q =
[
q1 q2 . . . qn︸ ︷︷ ︸ qn+1 qn+2 . . . qm︸ ︷︷ ︸

]
.

Let qi, 1 ≤ i ≤ n form the matrix Q1, and qi, n+ 1 ≤ i ≤ m form Q2 so that

Q =
[
Qm×n1 Qm×(m−n)

2

]
The upper triangular matrix

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 . . . r1,n
0 r22 . . . r2,n
...

. . .
. . .

0 rn,n
0 0
...

...
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
can be written as

R =
[

Rn×n1
0(m−n)×n

]
,

and so

A =
[
Qm×n1 Qm×(m−n)

2

] [ Rn×n1
0(m−n)×n

]
.

This implies that A = Q1R1.
It is actually not necessary that A have full rank. We will still have A = Q1R1, and the matrix R1 has the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 . . . . . . r1n
0 r22 . . . . . . r2n

0 0
. . .

...
...

... 0 rkk rk,k+1 . . . rkn
...

...
...

... 0
...

0 0 . . . 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Remark 17.3. If m is much larger than n, the reduced QR decomposition saves significant memory.



362 Numerical Linear Algebra with Applications

17.7.2 Efficiency

We will assume m ≥ n. If m > n, the outer loop executes n times, and if m = n, it executes n − 1 times. Since m > n is
the more general case, assume the outer loop executes n times. Each call to givensparms requires five flops, and the call to
givensmul(A,i,j,c,s) requires 6n flops. The matrix Q is of size m × m, so givensmul(Q,i,j,c,s) executes 6m flops. The total
flop count is

(5+ 6n+ 6m)

n∑
i=1

(m− i) . (17.4)

After some work, Equation 17.4 expands to

3n
(
mn+ 2m2 − n2

)
+ lower order terms.

Disregarding the lower-order terms, we have

Flop count ∼= 3n
(
mn+ 2m2 − n2

)
. (17.5)

If m = n, Equation 17.5 gives 6n3 flops, so in this case the algorithm is O
(
n3
)
.

The Givens QR algorithm is stable [16, pp. 365-368].

17.8 HOUSEHOLDER REFLECTIONS

The use of Householder reflections is an alternative to Givens rotations for computing the QR decomposition of a matrix.
A Givens rotation zeros out one element at a time, and a sequence of rotations is required to transform the matrix into
upper triangular form. The Householder algorithm for the QR decomposition requires about two-thirds the flop count of
the Givens algorithm because it zeros out all the elements under a diagonal element aii in one multiplication. However, it
should be noted that Givens rotations lend themselves to parallelization. Also, if a matrix has a particular structure, it may
be efficient to zero out one element at a time, as we will see in Chapters 18, 19, and 21. Givens rotations are perfect for that
purpose.

A Householder reflection is an n× n orthogonal matrix formed from a vector in R
n.

Definition 17.3. A Householder reflection (or Householder transformation) Hu is a transformation that takes a vector u
and reflects it about a plane in R

n. The transformation has the form

Hu = I − 2uuT

uTu
, u �= 0.

Clearly, Hu is an n× n matrix, since uuT is a matrix of dimension n× n. The Householder transformation has a geometric
interpretation (Figure 17.3).

A Householder reflection applied to u gives −u. As a result, Hu (cu) = −cu, where c is a scalar. For all other vectors
w, let v = w − proju (w). We know from our work with Gram-Schmidt that v is orthogonal to u. The vector w is a linear
combination of the vectors u and v (Figure 17.4).

w = c1u+ c2v

c1 = 〈w, v〉 / ‖v‖22
c2 = 〈w, v〉 / ‖v‖22

Hu (w) is a reflection of w in the plane through 0 perpendicular to u. We will show that these claims are true.

Hu (u) =
(
I − 2uuT

uTu

)
u = u− 2uuTu

uTu
= u− 2u ‖u‖22

‖u‖22
= u− 2u = −u.

Now,

Hu (c1u + c2v) =
(
I − 2

uuT

uTu

)
(c1u+ c2v)

= c1u+ c2v− 2

(
uuT

uTu

)
(c1u+ c2v) = c1u+ c2v − 2c1u− 2c2

(
uuT

uTu

)
v



Implementing the QR Decomposition Chapter| 17 363

-c1u = c1Huu Huu = -u u

v

w =c1u +c2v

c1u

c2vHuw

FIGURE 17.3 Householder reflection.

c2v 

w = c2u + c2v 

c1u
u

uv

w

FIGURE 17.4 Linear combination associated with Householder reflection.

= −c1u+ c2v− 2c2
( u

uTu

)
〈u, v〉 = −c1u+ c2v.

The Householder transformation also has a number of other interesting and useful properties.

Theorem 17.3. Let Hu be a Householder reflection with vector u ∈ Rn. Then

1. Hu is symmetric.
2. Hu is orthogonal.
3. H2

u = I
4. Huv = v if 〈v, u〉 = 0.

Proof. 1. HT
u =

(
I − 2uuT

uTu

)T = I −
(
2uuT

uTu

)T = I − 2uuT

uTu
= Hu.

2. This is the most important property of Hu. Let β = 2
uTu

= 2
‖u‖22

. Now, HT
u Hu = HuHu =

(
I − βuuT

) (
I − βuuT

)
, since

Hu is symmetric.(
I − βuuT

) (
I − βuuT

) = I − 2βuuT + β2 (uuTuuT) = I − 2βuuT + β2 ‖u‖22 uuT = I − 2

(
2

‖u‖22

)
uuT

+
(

2

‖u‖22

)2

‖u‖22 uuT = I,

so Hu is orthogonal.
The proofs of properties 3 and 4 are left to the problems.



364 Numerical Linear Algebra with Applications

Example 17.10. Let u = [
3 −1 2

]T.
Hu = I − 2

uuT

uTu
=
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦− 2

32 + (−1)2 + 22

⎡⎣ 3
−1
2

⎤⎦[ 3 −1 2
]

=
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦− 1

7

⎡⎣ 9 −3 6
−3 1 −2
6 −2 4

⎤⎦ =
⎡⎣ −0.2857 0.4286 −0.8571

0.4286 0.8571 0.2857
−0.8571 0.2857 0.4286

⎤⎦
Note that Hu is symmetric. Other properties of Hu are easier to illustrate using MATLAB.

>> u = [3 -1 2]’;

>> Hu = eye(3) - 2*(u*u’)/(u’*u);

Hu*u % Hu*u = -u

ans =

-3.0000

1.0000

-2.0000

>> w = [-1 5 2]’;

>> v = w - ((w’*u)/(u’*u))*u;

v’*u % v orthogonal to u

ans =

-8.8818e-16

>> c1 = (w’*u)/(u’*u);

>> c2 = (w’*v)/(v’*v);

>> norm((c1*u + c2*v)-w) % w = c1*u + c2*v

ans =

2.2204e-16

>> Hu*w % should be -c1*u + c2*v

ans =

0.7143

4.4286

3.1429

>> -c1*u + c2*v

ans =

0.7143

4.4286

3.1429

>> Hu’*Hu % Hu is orthogonal

ans =

1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

>> Hu^2 % Hu*Hu = I

ans =

1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

>> z = [-1 -1 1]’;

z’*u % z is orthogonal to u



Implementing the QR Decomposition Chapter| 17 365

ans =

0

>> Hu*z % should be z

ans =

-1.0000

-1.0000

1.0000 �

17.8.1 Matrix Column Zeroing Using Householder Reflections

A single Householder reflection can zero out all the elements ai+1,iai+2,i, . . . , ami below a diagonal element aii. By applying
a sequence of Householder reflections, we can transform a matrix A into an upper triangular matrix. For simplicity, we will
begin by developing a Householder matrix Hu that will zero out the elements a21, a31, . . . , am1 below a11. Thus, our goal is
to transform

A =

⎡⎢⎢⎢⎢⎢⎣
X X X X X X X · · · X
X X X X X X X · · · X
...

...
...

...
...

...
... · · · ...

X X X X X X X · · · X
X X X X X X X · · · X

⎤⎥⎥⎥⎥⎥⎦
into the form

HuA =

⎡⎢⎢⎢⎢⎢⎣
X X X X X X X · · · X
0 X X X X X X · · · X
...

...
...

...
...

...
... · · · ...

0 X X X X X X · · · X
0 X X X X X X · · · X

⎤⎥⎥⎥⎥⎥⎦ .

Let x be the first column of A. Then, Hux will be the first column of HuA (Equation 2.3). If x �= ke1 =
[
k 0 . . . 0

]T,
we want to choose u so that Hux has zeros everywhere in column 1 except at location (1, 1). Elements in the remaining
columns will also be affected, but that is of no importance.

The process of choosing u can be viewed geometrically. We know that Hux reflects x through the plane perpendicular
to u, and that ‖Hux‖2 = ‖x‖ because Hu is an orthogonal matrix. We want to determine u in such a way that Hux reflects x
to a vector ±‖x‖2 e1, i.e., Hux = ±‖x‖2 e1. Figure 17.5 helps in developing an approach. Reflect x through a hyperplane
that bisects the angle between x and e1. This can be done by choosing u = x − ‖x‖2 e1, as Figure 17.5 indicates. A direct
computation verifies the result. Begin with

Hux =
(
I − 2

uuT

uTu

)
x = x− 2

(x− ‖x‖2 e1)
(
xT − ‖x‖2 eT1

)
x

‖u‖22
. (17.6)

‖u‖22 = ‖x− ‖x‖2 e1‖22 = 2 ‖x‖2
(‖x‖2 − xTe1

) = 2 ‖x‖2 (‖x‖2 − x1) (17.7)

Evaluating the numerator of Equation 17.6 using the results xeT1 x = x1x and e1eT1x = x1e1, we have

(x − ‖x‖2 e1)
(
xT − ‖x‖2 eT1

)
x = ‖x‖2

[
(‖x‖2 − x1) x− ‖x‖2 (‖x‖2 − x1) e1

]
. (17.8)

Using Equations 17.6–17.8, there results

Hux = x− 2 ‖x‖2
[
(‖x‖2 − x1) x− ‖x‖2 (‖x‖2 − x1) e1

]
2 ‖x‖2 (‖x‖2 − x1)

= x− (x− ‖x‖2 e1) = ‖x‖2 e1.

A similar calculation shows that if u = x + ‖x‖2 e1, Hux = −‖x‖2 e1. Thus Hux will eliminate all entries of x except
that at index 1 by choosing either u = x − ‖x‖2 e1 or u = x+ ‖x‖2 e1.

The sign in u = x± ‖x‖2 e1 must be chosen carefully to avoid cancelation error. Now,[
x1 x2 . . . xm−1 xm

]T ± ‖x‖2 e1 = [
x1 ± ‖x‖2 x2 . . . xm−1 xm

]T



366 Numerical Linear Algebra with Applications

12x e

12x x e−x

FIGURE 17.5 Householder reflection to a multiple of e1.

so the only component different from x is the first component of u. To avoid subtraction and possible cancelation error,
choose the sign to be that of x1 so an addition is done instead of a subtraction.

u =
⎧⎨⎩
x+ ‖x‖2 e1, x1 > 0
x− ‖x‖2 e1, x1 < 0
x+ ‖x‖2 e1, x1 = 0

. (17.9)

Another possible problem is overflow or underflow when computing ‖x‖2. Section 8.4.1 presents a strategy to avoid
overflow during the calculation.

1. colmax = max (|x2| , |x2| , . . . , |xm|).
2. x = x/colmax.
3. ‖x‖2 = colmax ‖x‖2
One of the components of x will have absolute value 1, and the remaining components will have absolute value less than or
equal to 1, so there is no possibility of overflow. For computing u from Equation 17.9, we only execute steps 1 and 2. Then,
1 ≤ ‖x‖ ≤ √m, and there can be no overflow or underflow in computing x. Let

u =
( x

colmax

)
+
∥∥∥ x

colmax

∥∥∥
2
e1

and use theHouseholder reflectionHu. It follows that u =
(

1
colmax

)
u (Problem 17.4), and as Lemma 17.2 shows,multiplying

u by a constant does not change the value of Hu.

Lemma 17.2. If Hu is a Householder reflection and k is a constant, then Hku = Hu.

Proof.

Hku =
(
I − 2 (ku) (ku)T

‖ku‖22

)

= I −
(
2k2uuT

k2 ‖u‖22

)
= Hu

Example 17.11. For A =
⎡⎣ 1 2 0
−1 4 1
−3 1 2

⎤⎦, find and apply a Householder reflection to zero out entries a21 and a31. We will

do this in four steps, retaining four decimal places.

1. Determine x. The maximum element in magnitude in column 1 is −3, so

x = 1

3

[
1 −1 −3 ] = [

0.3333 −0.3333 −1.0000 ]T .



Implementing the QR Decomposition Chapter| 17 367

2. Compute u and β . Let

u = x± ‖x‖2 e1 =
⎡⎣ 0.3333
−0.3333
−1.0000

⎤⎦±
∥∥∥∥∥∥

0.3333
−0.3333
−1.0000

∥∥∥∥∥∥
⎡⎣ 1
0
0

⎤⎦ =
⎡⎣ 0.3333
−0.3333
−1.0000

⎤⎦± 1.1055

⎡⎣ 1
0
0

⎤⎦ .

Choose the sign + because x1 = 0.3333 ≥ 0, and

u =
⎡⎣ 0.3333
−0.3333
−1.0000

⎤⎦+
⎡⎣ 1.1055

0
0

⎤⎦ =
⎡⎣ 1.4388
−0.3333
−1.0000

⎤⎦ , β = 2

uTu
= 0.6287.

3. The Householder reflection is

Hu =
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦− β

⎡⎣ 1.4388
−0.3333
−1.0000

⎤⎦⎡⎣ 1.4388
−0.3333
−1.0000

⎤⎦T

=
⎡⎣ −0.3015 0.3015 0.9045

0.3015 0.9301 −0.2095
0.9045 −0.2095 0.3713

⎤⎦ .

4. Form

HuA =
⎡⎣ 1 2 0
−1 4 1
−3 1 2

⎤⎦− βuuT

⎡⎣ 1 2 0
−1 4 1
−3 1 2

⎤⎦ =
⎡⎣ −3.3166 1.5076 2.1106

0.0000 4.1141 0.5111
0.0000 1.3422 0.5332

⎤⎦ . �

17.8.2 Implicit Computation with Householder Reflections

As was the case with Givens rotations, multiplication by a Householder reflection Hu does not require construction of the
matrix. If Hu is an m×m Householder matrix, x is a vector in Rm, and A is an m× nmatrix, then the productsHux andHuA
can be computed by a simple formula. If Hu is an n× n matrix, then the same is true for AHu.

Let β = 2
uTu

.

Huv =
(
I − βuuT

)
v = v− βu

(
uTv

)
(17.10)

HuA =
(
I − βuuT

)
A = A− βuuTA (17.11)

AHu = A
(
I − βuuT

) = A− βAuuT (17.12)

We are now prepared to formally state the algorithm, hzero1, for zeroing out all elements below a11 using a Householder
reflection. The function returns the vector u because it will be needed to form Q during the HouseholderQR decomposition
algorithm.



368 Numerical Linear Algebra with Applications

Algorithm 17.4 Zero Out Entries in the First Column of a Matrix using a Householder Reflection

function HZERO1(A)

% Zero out all elements a21 . . . am1 in the

% m × n matrix A using a Householder reflection Hu
% [A u] - hzero1(A) returns u and a new matrix A implicitly

% premultiplied by the Householder matrix Hu.

x=A(:,1)

colmax=max
([ |x1| , |x2| , . . . , |xm−1| , |xm|

])
x=x/colmax

colnorm= ‖x‖2
u=x

if u1 ≥ 0 then
u1 = u1 + colnorm

else
u1 = u1 − colnorm

end if

% implicitly form HuA.

unorm = ‖u‖2
if unorm �= 0 then

β = 2/unorm

else
β = 0

end if
A = A− (βu)

(
uTA

)
return

[
A, u

]
end function

NLALIB: The function hzero1 implements Algorithm 17.4.

17.9 COMPUTING THE QR DECOMPOSITION USING HOUSEHOLDER REFLECTIONS

To transform an m × n matrix into upper triangular form, we must zero out all the elements below the diagonal entries
a11, a22, . . . , akk, where k = min (m− 1, n). We know how to do this for a11 (Algorithm 17.4), and nowwewill demonstrate
how to zero out the elements below the remaining diagonal entries. This is done by implicitly creating a sequence of
Householder matrices that deal with submatrix blocks, as illustrated in Figure 17.6.

Zeroing out all the elements below a11 using a Householder matrix gives matrix A1. Now we must deal with the
submatrices having a diagonal element in their upper left-hand corner. Assume we have zeroed out all the elements below
diagonal indices (1, 1) through (i− 1, i− 1) (Figure 17.7) by computing a sequence of matrices A1,A2, . . . ,Ai−1. We
must find a Householder reflection that zeros out ai+1.i, . . . , ami and only modifies elements in the submatrix denoted
in Figure 17.7. Consider this (m− i+ 1) × (n− i+ 1) matrix as the matrix whose first column must be transformed
to
[
X 0 . . . 0

]T by using hzero1. The vector x used for the formation of Hu is
[
aii ai+1,i . . . ami

]T. Imagine we
build the matrix in Figure 17.8, say H̃u, and compute H̃uAi−1. H̃u is orthogonal and is structured so it only affects the
elements of the submatrix shown in Figure 17.7. To compute R we only have to carry out the calculations that modify the
(m− i+ 1)× (n− i+ 1) matrix. Do this using Equation 17.13.

[
A (i : m, i : n) u

] = hzero1(A(i : m, i : n)). (17.13)

The application of Equation 17.13 for i = 1, 2, k = min (m− 1, n) determines R in a highly efficient fashion, since it
only deals with the submatrices that must be modified, and the submatrices become smaller with each step.



Implementing the QR Decomposition Chapter| 17 369

FIGURE 17.6 Transforming an m× n matrix to upper triangular form using householder reflections.

0

0

0

...

...

... ...

...

...

...

...

...

...

...

... ... ...

... ... ... ......

...

...

00

0

X X

Ai+1 = 

X X

X

X

X

X

aii ai,i+1

am,i+1
am,i+2

ai,i+2

ai+1,i ai+1,i+1

ai+2,i+1 ai+2,i+2 ai+2,n

ai+1,nai+1,i+2

ai+2,i

ami amn

ain

X

X

XX

X

X X

XX

X

X X X X X

0

FIGURE 17.7 Householder reflections and submatrices.

1 0
1

1

0 1

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

O

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

0 ( ) ( )1 1
uH of size

m i m i− + × − +

1i −

1i −

FIGURE 17.8 Householder reflection for a submatrix.



370 Numerical Linear Algebra with Applications

Example 17.12. Let A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 −1 8 3
−1 4 12 6 −9
0 3 16 −1 −6
8 1 4 9 −2
1 2 7 8 0
15 22 17 −1 5

23 −7 1 7 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. After zeroing out elements below the entries at indices (1,1) and

(2,2), we have the matrix

Hu2Hu1A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.2458 −6.2820 −10.6097 −7.9573 −9.7023
0 −1.4375 −17.4780 1.4939 2.3462
0 0 12.7841 −1.5443 −4.8219
0 0 3.5983 5.0658 −6.2295
0 0 4.9398 7.1680 0.2076
0 0 −5.3266 −12.0282 4.9730
0 0 10.4307 −2.5192 −7.0378

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= A2.

The task is to zero out all the elements in column 3 below 12.7841. Start with

x =

⎡⎢⎢⎢⎢⎣
12.7841
3.5983
4.9398
−5.3266
10.4307

⎤⎥⎥⎥⎥⎦
and apply the steps we have described.

x = x/12.7841 =

⎡⎢⎢⎢⎢⎣
1.0000
0.2815
0.3864
−0.4167
0.8159

⎤⎥⎥⎥⎥⎦ , u = x+ ‖x‖

⎡⎢⎢⎢⎢⎣
1
0
0
0
0

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

2.4380
0.2815
0.3864
−0.4167
0.8159

⎤⎥⎥⎥⎥⎦
β = 2

uTu
= 0.2852, A3 (3 : 7, 3 : 5) = A2 (3 : 7, 3 : 5)− βuuTA2 (3 : 7, 3 : 5) ,

A3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.2458 −6.2820 −10.6097 −7.9573 −9.7023
0 −1.4375 −17.4780 1.4939 2.3462
0 0 −1.4380 −3.8995 9.9508
0 0 0 4.7939 −4.5240
0 0 0 6.7947 2.5490
0 0 0 −11.6257 2.4483
0 0 0 −3.3074 −2.0939

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
We can now develop the QR decomposition using Householder reflections. It may be that we are only interested in

computing R. For instance,

ATA = (QR)T (QR) = RTQTQR = RTR,

and R is the factor in the Cholesky decomposition of ATA. Not forming Q saves computing time. If we require Q, it will be
necessary to implicitly compute the H̃i (Figure 17.8) as we transform A into the upper triangular matrix R. Then we have



Implementing the QR Decomposition Chapter| 17 371

H̃kH̃k−1H̃k−2 . . . H̃2H̃1A = R

A =
(
H̃kH̃k−1H̃k−2 . . . H̃2H̃1

)T
R

=
(
H̃1H̃2H̃3 . . . H̃k−1H̃k

)
R

and

Q = H̃1H̃2H̃3 . . . H̃k−1H̃k.

Start with the m × m identity matrix Q = I. Implicitly compute Q (1 : m, 1 : m) = IHu1 , which changes entries in all
rows and columns of I. Now compute Q (1 : m, 2 : m) = Q (1 : m, 2 : m)Hu2 , which only affects columns 2 through m.
Continue this k times. Algorithm 17.5 implements the full QR decomposition of an m× n matrix.

Algorithm 17.5 Computation of QR Decomposition Using Householder Reflections

function HQR(A)

% Compute the QR decomposition of matrix A using Householder reflections.

% Input: m × n matrix A. There are no restrictions on the values of m and n.

% Output: m × m matrix Q and m × n upper triangular matrix R

% such that A=QR.

R=A

Q=I

k = min (m − 1, n)

for i=1:k do[
R (i : m, i : n) , u

] = hzero1 (R (i : m, i : n))

Q (1 : m, i : m) = Q (1 : m, i : m)− (
2/ ‖u‖22

)
Q (1 : m, i : m)

(
uuT

)
end for

end function

NLALIB: The function hqr implements Algorithm 17.5.
This is generally the preferredmethod for computing theQR decomposition, since it is faster than using Givens rotations.

However, as we have stated, the QR decomposition using Givens rotations can be parallelized, and this is a advantage in an
era of multicore processors and GPU computing. In addition, we will require the use of Givens rotations when computing
eigenvalues and the singular value decomposition (SVD).

Example 17.13.
Let x be the vector of values beginning at−1.0 and ending at 1.0 in steps of 0.01. Use x to build a Vandermonde matrix,

V, using m = 20, and apply both hqr and qr to V.

>> x = -1.0:0.01:1.0;

>> V = vandermonde(x,20);

>> cond(V)

ans =

1.7067e+007

>> [Q R] = hqr(V);

>> [QM RM] = qr(V);
>> norm(V - Q*R)

ans =

5.9967e-014

>> norm(V - QM*RM)

ans =

9.5622e-015



372 Numerical Linear Algebra with Applications

>> norm(Q’*Q - eye(201))

ans =

2.6553e-015

>> norm(QM’*QM - eye(201))

ans =

1.7922e-015 �

17.9.1 Efficiency and Stability

Our analysis will not include the computation of Q. Including this calculation more than doubles the flop count. Assume
m > n so k = n. If we determine the flop count flopR (i) for the statement

[
R (i : m, i : n) u

] = hzero1 (R (i : m, i : n))

then
∑n

i=1 flopR (i) is the flop count for building R.
Before determining the flop count, we need to consider the computation A − βuuTA, since the order of evaluation

drastically effects its flop count (Problem 17.5). We will assume that the expression is computed in the following order:

1. v = βuT: (m− i+ 1) flops
2. v = vA : (1× (m− i+ 1)) matrix times (m− i+ 1)× (n− i+ 1) matrix requires 2 (m− i+ 1) (n− i+ 1) flops.
3. A − uv : A is an (m− i+ 1) × (n− i+ 1) and uv is an (m− i+ 1) × (n− i+ 1) matrix. Using nested loops,

this calculation can be done in 2 (m− i+ 1) × (n− i+ 1) flops, so we can compute A − βuuTA in (m− i+ 1) +
4 (m− i+ 1) (n− i+ 1) flops.

Each instance of Algorithm 17.4 works with a matrix A of dimension (m− i+ 1) × (n− i+ 1) . For each i, list the
computations required, the flop count for each, and then form the total sum, flopR (i).

Expression Flop Count
x = x/colmax m− i+ 1
colnorm = ‖x‖2 2 (m− i + 1)
u1 ± colnorm 1
unorm = ‖u‖2 2(m− i+ 1)
β = 2/unorm2 2
A− u

((
βuT

)
A
)

(m− i+ 1)+ 4 (m− i+ 1) (n− i+ 1)

flopR (i) = 6 (m− i+ 1)+ 4 (m− i+ 1) (n− i+ 1)+ 3

The total flop count for computing R is

n∑
i=1

[6 (m− i+ 1)+ 4 (m− i+ 1) (n− i+ 1)+ 3]

Discard
∑n

i=1 [6 (m− i+ 1)+ 3], since it contributes only low-order terms. Using standard summation formulas and
some algebra, we obtain

4
n∑
i=1

(m− i+ 1) (n− i+ 1) = 2

3
n (n+ 1) (3m− n+ 1)

= 2

(
mn2 − n3

3

)
+ 2mn+ 2

3
n

Again, exclude low-order terms, and we have

flop count ≈ 2

(
mn2 − n3

3

)
.



Implementing the QR Decomposition Chapter| 17 373

For the Givens algorithm, we computed the flop count for determining both R and Q. If we do the analysis and exclude
Q, we have

Givens flop count = (5+ 6n)
n∑
i=1

(m− i) ≈ 3n2 (2m− n)

If we consider an n× nmatrix, the Givens algorithm is approximately twice as costly as the Householder algorithm. Of
course, this is because hqr zeros out all the elements in column i below aii in one reflection, whereas the Givens algorithm
requires (m− i) rotations.

The Householder algorithm for computing the QR decomposition is stable [16, pp. 357-360].

17.10 CHAPTER SUMMARY

Gram-Schmidt QR Decomposition

The modified Gram-Schmidt process (never use classical Gram-Schmidt unless you perform reorthogonalization) gives
a reduced QR decomposition, and its algorithm for orthonormalization of set of linearly independent vectors has other
applications. Its flop count of 2mn2 is superior to the Givens and Householder when both Q and R are required. However,
its stability depends on the condition number of the matrix, so it is not as stable as the other methods.

Givens QR Decomposition

Assume A is an m × n matrix. If c and s are constants, an m × m Givens matrix J (i, j, c, s) i < j, also called a Givens
rotation, places c at indices (i, i) and (j, j), −s at (j, i), and s at (i, j) in the identify matrix. J (i, j, c, s) is orthogonal, and by
a careful choice of constants (Algorithm 17.2), J (i, j, c, s)A affects only rows i and j of A and zeros out aji. The product is
performed implicitly by changing just rows i and j, so it is rarely necessary to build a Givens matrix. By zeroing out all the
elements below themain diagonal, theGivensQR algorithm produces the upper triangularmatrix R in the decomposition. By
maintaining a product of Givens matrices,Q can also be found. The algorithm is stable, and its perturbation analysis does not
involve the condition number of A. While the Givens QR decomposition is efficient and stable, Householder reflections are
normally used for the QR decomposition. However, because premultiplication by a Givens matrix can zero out a particular
element, these matrices are very useful when A has a structure that lends itself to zeroing out one element at a time (Problem
17.12).

Householder Decomposition

The use of Householder matrices, also termed a Householder reflections, is the most commonly used method for performing
the QR decomposition. If u is an m× 1 vector, the Householder matrix defined by

Hu = I −
(

2

uTu

)
uuT

is orthogonal and symmetric. Products Huv, HuA, and AHu, where A is an m × n matrix and v is an m × 1 vector can be
computed implicitly without the need to build Hu. By a proper choice of u (Equation 17.9), HuA zeros out all the elements
below a diagonal element aii, and so it is an ideal tool for the QR decomposition. The Householder QR decomposition is
stable and, like the GivensQR process, its perturbation analysis does not depend on the condition number of A. It is this “all
at once” feature of Householder matrices that makes them so useful for matrix decompositions. They will be very important
in our study of eigenvalue computation in Chapters 18 and 19.

17.11 PROBLEMS

17.1 Using pencil and paper, compute the QR decomposition of A =
[

1 −1
−2 3

]
using a Givens rotation that you

explicitly build.

17.2 Using pencil and paper, compute the QR decomposition of A =
[

1 −1
−2 3

]
using a Householder reflection that

you explicitly build.



374 Numerical Linear Algebra with Applications

17.3 Show that in the full QR decomposition of the full rank m × n matrix A,m ≥ n, the vectors qn+1, . . . , qm are an
orthonormal basis for the null space of AT. Hint: Using block matrix notation, write

Q =
[
Qm×n1 Q(m−n)×n

2

]
,

where Q1 consists of the first n columns of Q, and the columns of Q2 are the remaining m− n columns. Write R in
block matrix notation also.

17.4 If u = x+ ‖x‖2 e1, show that if u = kx+ ‖kx‖2 e1, where k ≥ 0 is a constant, then u = ku.
17.5 If A is an m× nmatrix, and u ∈ Rm, v ∈ Rm, the amount of work to evaluate A− uvTA depends dramatically on the

order in which the operations are performed.
a. How many flops are required to compute it in the order

T1 = uvT

T2 = T1A

T3 = A− T2

b. Show that computing A− (uvT)A can be done in approximately 2m2n+2mn flops. Hint: Determine the structure
of each row of uvT, and consider each row of

(
uvT

)
A as the inner product of a row of uvTwith all columns of A.

c. Show that the A− uvTA can be done in 4mn flops by first computing vTA and then A− u
(
vTA

)
.

17.6 The QR decomposition can be used to solve an n× n linear system Ax = b using the following steps:

Find the QR decomposition of A: A = QR.
Form b′ = QTb.
Solve Rx = b′.

Assume that a full QR decomposition of an n × n matrix requires 4
(
m2n−mn2 + n3

3

)
using Householder

reflections.
a. Determine the flop count for the solution.
b. Compare your flop count with that of Gaussian elimination. Which method is generally preferable?

17.7 Prove these properties of Householder matrices
a. H2

u = I
b. Huv = v if 〈v, u〉 = 0.

17.8 Prove that if u is chosen to be parallel to vector x − y, where x �= y but ‖x‖2 = ‖y‖2, then Hux = y. Hint: Let
u = k (x− y), where k is a constant, and note that

x = 1

2
(x+ y)+ 1

2
(x− y) .

Compute Hx and apply the relation Hu (u) = −u. Show that 〈x+ y, x− y〉 = 0 and apply Theorem 17.3, part 4.
17.9 Let A ∈ Rm×n,m ≥ n, have reduced QR decomposition A = QR. Show that ‖A‖2 = ‖R‖2.

17.10 If u and v are n× 1 vectors, the n× n matrix uvT has rank 1 (Problem 10.3). If A is an n× nmatrix, we say that the
matrix B = A+ uvT is a rank 1 update of A. Let A = QR be the QR decomposition of A. Show that

A+ uvT = Q
(
R+ wvT

)
,

where w = QTu.

17.11 Problem 17.10 defines a rank 1 update of a matrix. A Householder reflection, Hu = I −
(

2
‖u‖22

)
uuT, is a rank

1 update of the identity matrix. We know a Householder matrix is symmetric, orthogonal, and is its own inverse
(H2

u = I). This problem investigates a more general rank 1 update of the identity,

R1 = I − uvT.

a. Prove that R1 is nonsingular if and only if 〈v, u〉 �= 1.
b. If R1 is nonsingular, show that R−11 = I − βuvT. Do this by finding a formula for β .

17.12 In this problem, you will investigate a special type of square matrix called an upper Hessenberg matrix. Such a
matrix has the property aij = 0, i > j+ 1, and is often called almost upper triangular.



Implementing the QR Decomposition Chapter| 17 375

a. Give an example of a 4× 4 and a 5× 5 upper Hessenberg matrix.
b. Develop an algorithm for computing the QR decomposition of an upper Hessenberg matrix. Hint: Use Givens

rotations. How many will be necessary?
c. Show that the flop count is O

(
n2
)
.

17.13 Suppose that A ∈ Rm×n has full column rank. Prove that the reduced decomposition

A = QR

is unique where Q ∈ Rm×n has orthonormal columns and Rn×n is upper triangular with positive diagonal entries.
Do this in steps.
a. Show that ATA = RTR.
b. Prove that ATA is symmetric positive definite, and apply Theorem 13.3 to show that R is the unique Cholesky

factor of ATA.
c. Show that Q must be unique.
d. Give an example to show that there is no guarantee of uniqueness if A does not have full column rank.

17.14 We have studied the LU, QR, and the SVDs. There are many more, and the book will construct additional ones in
later chapters. This problem develops two variants of the QR decomposition, the QL and the RQ.

An m×m matrix of the form

Km =

⎡⎢⎢⎢⎢⎢⎣
1

1
. . .

1
1

⎤⎥⎥⎥⎥⎥⎦ =
[
kij
]
,

where ki,m−i+1 = 1, 1 ≤ i ≤ m, and all other entries are zero is termed a reversal matrix and sometimes the reverse
identity matrix.
a. Show that K2

m = I (a very handy feature).
b. If A is an m× n matrix, m ≥ n, what is the action of KmA? What about AKn?
c. If R is upper triangular n× n matrix, what is the form of the product KnRKn?
d. Let AKn = Q̂R̂ be the reduced QR decomposition of AKn, m ≥ n. Show that A =

(
Q̂Kn

) (
KnR̂Kn

)
, and from

that deduce the decomposition

A = QL,

whereQ is an m×n matrix with orthogonal columns, and L is an n×n lower triangular matrix. This is a reduced
QL decomposition.

e. If m < n, show to form an RQ decomposition, A = RQ, where R is m×m and Q is m× n.
17.15 If A ∈ R

m×n, there exists an m× n lower triangular matrix and an n× n orthogonal matrix Q such that A = LQ.
a. Given the 1 × 2 vector

[
x y

]
, show there is a Givens rotation, J, such that

[
x y

]
J = [ ∗ 0

]
. This type of

rotation eliminates elements from columns.
b. Develop an algorithm using Givens rotations that computes an LQ decomposition of A for any m × n matrix.

Hint: Write a function givensmulpost(A,i,j,c,s) that affects only columns i and j and zeros out A(i,j) in row i. The
function givensparms does not change.

17.16 In a series of steps, this problem develops the result:

Assume J (i, j, c, s) is a Givens rotation, A is a symmetric matrix, and define B = JT (i, j, c, s)AJ (i, j, c, s). Then,

n∑
i=1

n∑
j=1

b2ij =
n∑
i=1

n∑
j=1

a2ij.

Recall the following relationships:

● ‖X‖2F =
∑n

i=1
∑n

j=1 x2ij = trace
(
XTX

)
● trace (XY) = trace (YX)



376 Numerical Linear Algebra with Applications

a. Show that ‖B‖2F = trace
(
JT (i, j, c, s)ATAJ (i, j, c, s)

)
.

b. Show that trace
(
JT (i, j, c, s)ATAJ (i, j, c, s)

) = trace
(
AAT

)
c. Conclude that

∑n
i=1

∑n
j=1 b2ij =

∑n
i=1

∑n
j=1 a2ij.

17.17 Find the eigenvalues of a Householder reflection. Hint: Run some numerical experiments to look for a pattern. If
Hu is a Householder reflection, Huu = −u. Starting with u, build a basis u, v1, v2, . . . , vn, and take note of part 4 in
Theorem 17.3.

17.11.1 MATLAB Problems

17.18 Given v = [ −1 3 7
]T, build the Givens matrix J (1, 2, c, s) such that the second component of J (1, 2, c, s) v is

zero. Build the Givens matrix J (1, 3, c, s) such that J (1, 3) J (1, 2, c, s) v has the form
[ ∗ 0 0

]T. Use a sequence
like the following to explicitly build a Givens matrix.

>> [c s] = givensparms(xi,xj);

>> J = eye(n);
>> J(i,i) = c;

>> J(j,j) = c;

>> J(j,i) = -s;

>> J(i,j) = s;

17.19 Explicitly build theGivens rotations that transformA to upper triangular form.Use the product of theGivensmatrices
to computeQ. Youmightwant to use theMATLAB statements given in Problem 17.18.Verify that the decomposition
is correct by computing ‖A −QR‖2. Also compute the decomposition using qr.

A =

⎡⎢⎢⎣
1 −1 2
9 3 4
3 −8 1
12 10 5

⎤⎥⎥⎦
17.20 To reinforce your understanding of using Householder reflections to find the QR decomposition, it is helpful to

execute the algorithm step-by-step. Here are MATLAB statements that explicitly perform the QR decomposition of
the matrix

M =

⎡⎢⎢⎣
1 −1 1
2 1 0
3 −1 1
4 5 3

⎤⎥⎥⎦ .

The function houseparms in the book software distribution computes u and β for the Householder reflectionHu (x)
that zeros out all the elements of x except x (1).

A = [1 -1 1;2 1 0;3 -1 1;4 5 3];

R = A;

[m,n] = size(A);

Q = eye(m);

[u, beta] = houseparms(R(:,1));

Hu1 = eye(m) - beta*u*u’;
R = Hu1*R;

Q(1:m,1:m) = Q(1:m,1:m) - beta*Q(1:m,1:m)*(u*u’);

[u,beta] = houseparms(R(2:m,2));

Hu2 = eye(m-1) - beta*u*u’;
R(2:m,2:n) = Hu2*R(2:m,2:n);

Q(1:m,2:m) = Q(1:m,2:m) - beta*Q(1:m,2:m)*(u*u’);

[u,beta] = houseparms(R(3:m,3));

Hu3 = eye(m-2) - beta*u*u’;
R(3:m,3:n) = Hu3*R(3:m,3:n);

Q(1:m,3:m) = Q(1:m,3:m) - beta*Q(1:m,3:m)*(u*u’);



Implementing the QR Decomposition Chapter| 17 377

Study the code, and the explicitly construct the QR decomposition of the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 4 6 2 −1
3 6 1 9 10
−6 7 8 1 0
3 −4 1 −1 2
9 12 15 1 5
35 1 2 3 4

⎤⎥⎥⎥⎥⎥⎥⎦ .

Compute ‖A− QR‖2.
17.21 Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 1 6
9 10 −8
−8 10 −2
9 −7 9
3 10 6
−8 10 10
−5 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
have QR decomposition A = QR. Note Problem 17.3 and Theorem 14.3.
a. Use the QR decomposition to find the rank of A, and verify that rank (A) = n. Find an orthonormal basis for the
range of A.

b. Find an orthonormal basis for the null space of AT.
17.22 Find the QR decomposition of each matrix using the modified Gram-Schmidt process, Givens rotations, and

Householder reflections. In each case compute
∥∥QTQ− I

∥∥
2.

a. A =

⎡⎢⎢⎣
3 2 1 −1
1 3 1 −1
4 1 3 1
−1 1 1 3

⎤⎥⎥⎦

b. B =

⎡⎢⎢⎣
0 1 0 1
1 0 1 0
0 1 0 1
−1 0 1 0

⎤⎥⎥⎦. Explain the results.
c. The Frank matrix of order 5 using the statement “C = gallery(’frank’, 5);”. Explain the results.
d. The 30 × 20 Chebyshev Vandermonde matrix using the statement “D = gallery(’chebvand’,30,20);”.

Explain the results.
17.23 Given the four vectors

[
1 −1 4 3 8

]T , [ 9 −1 3 0 12
]T , [ 2 1 −1 3 5

]T , and[
0 6 7 −1 5

]T
, find an orthonormal basis that spans the same subspace using the Givens QR decomposition.

17.24 Develop a MATLAB function

function [Q R] = myhqr(A)

using Householder reflections that returns one of a set of possibilities according to the format of the calling sequence.

%MYHQR Executes the full or reduced QR decomposition to return

%both Q and R or, optionally, just R.

%

% Full decomposition:

% [Q, R] = myhqr(A) returns an orthogonal m x m matrix Q

% and an upper triangular m x n matrix R such that A = QR.

%

% Reduced decomposition

% If m > n, [Q, R] = myhqr(A,0) returns an m x n matrix Q with

% orthonormal columns and an upper triangular n x n matrix R

% such that A = QR. If m <= n, returns the full QR decomposition.

%

% R = myhqr(A) returns the m x n upper triangular matrix



378 Numerical Linear Algebra with Applications

% from the full QR decomposition.

%

% R = myhqr(A,0) returns the n x n upper triangular matrix

% from the reduced QR decomposition as long as m > n; otherwise,

% it returns the m x n upper triangular matrix of the full

% QR decomposition

%

% myhqr(A) returns the m x n upper triangular matrix

% from the full QR decomposition.

%

% myhqr(A,0) returns the n x n upper triangular matrix

% from the reduced QR decomposition as long as m > n; otherwise,

% it returns the m x n upper triangular matrix of the full

% QR decomposition

Use the MATLAB constructs

varargout, nargout, varargin, nargin.

If you are not familiar with these, consult the MATLAB documentation. Test your function by constructing a
3× 2 and a 2× 3 matrix and using all the options on each.

17.25 Problem 17.14 presented the QL decomposition of an m×nmatrix A,m ≥ n. Implement the algorithm in a function
ql and test it on at two matrices of different sizes. Hint: If I is the m× m identity matrix,

rot90(I)

gives the reversal matrix Km by rotating I 90◦ counterclockwise.
17.26 Use the result of Problem 17.15 to develop a function lq that performs the LQ decomposition and test it with random

matrices of sizes 10× 7 and 50× 75.
17.27 In this problem, we will use computation to motivate a theoretical result.

a. Build a series of Givens rotations, and find the eigenvalues and corresponding eigenvectors for each. A pattern
emerges.

b. Propose a formula for the eigenvalues and corresponding eigenvectors of a Givens rotation, and prove you are
correct.



Chapter 18

The Algebraic Eigenvalue Problem

You should be familiar with

● Ordinary differential equations for Sections 18.1.1 and 18.1.3.
● Eigenvalues, eigenvectors, and their basic properties covered in Chapter 5.
● Vector and matrix norms and the matrix condition number κ (A).
● QR decomposition, both full and reduced.
● Householder reflections and Givens rotations.
● Reduction to upper triangular form using orthogonal matrices.

This chapter discusses the computation of eigenvalues and eigenvectors of nonsymmetric matrices. As we discussed in
Chapter 10, finding the roots of the characteristic polynomial is not acceptable, since the problem of finding roots of
polynomials is unstable. Since the eigenvalue problem is extremely important in areas such as engineering, physics,
chemistry, statistics, and economics, we need to know how to solve the problem accurately. The chapter provides three
examples where the eigenvalue problem arises, vibration analysis, the Leslie model for population ecology, and buckling
of a column.

Some applications only need the largest or smallest eigenvalue of a matrix, so the iterative power and inverse power
methods are often used.

Application of theQR decomposition is the most commonly used method for computing eigenvalues. Multiple versions
of the QR algorithm are discussed. The basic QR algorithm for computing eigenvalues and eigenvectors is very simple to
implement; however, is not efficient. Recall that similar matrices have the same eigenvalues. The basicQR algorithm can be
greatly improved by first reducing the matrix to what is termed upper Hessenberg form using a transformationH = PTAP,
where H is upper Hessenberg and P is orthogonal. The application of the basic algorithm finds the eigenvalues of H, which
are the same as those of A (Theorem 5.1). In practice, the basic QR algorithm is improved by shifting the problem to
computing the eigenvalue of a nearby matrix and, as a result, better isolate an eigenvalue from nearby eigenvalues.

For computing the eigenvalues and eigenvectors of a small matrix (n < 1000), the algorithm of choice for many years
has been the implicit QR iteration, often called the Francis algorithm. This method involves a transformation to upper
Hessenberg form, followed by a series of transformations that reduce the Hessenberg matrix to upper triangular form using
what are termed single and double shifts. These shifts are done implicitly to save significant computation. In this chapter,
we will present the algorithm that uses the double shift to compute the eigenvalues for a general matrix. The double shift
is necessary to find complex conjugate eigenvalues. Chapter 19 discusses the algorithm for a symmetric matrix, in which
only single shifts are used.

It may be that a particular eigenvalue is known and a corresponding eigenvector is required. In this case, the Hessenberg
inverse iteration can be used to compute the eigenvector. In Section 18.10, we build a general eigenvalue/eigenvector solver
that uses transformation to upper Hessenberg form, followed by the Francis algorithm to compute the eigenvalues, and the
Hessenberg inverse iteration to compute corresponding eigenvectors.

We discussed perturbation theory for solving the linear system Ax = b, and there are similar results for the computation
of eigenvalues. In particular, we can define a condition number for a particular eigenvalue and use it to estimate the difficulty
of computing the eigenvalue.

18.1 APPLICATIONS OF THE EIGENVALUE PROBLEM

The applications of the eigenvalue problem in engineering and science are vast, including such areas as the theory of
vibration, analysis of buckling beams, principle component analysis in statistics, economic models, and quantum physics.
In this section, we will present three applications.

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00018-1
Copyright © 2015 Elsevier Inc. All rights reserved. 379



380 Numerical Linear Algebra with Applications

FIGURE 18.1 Tacoma Narrows Bridge collapse. Source: University of Washington Libraries, Special Collections, UW 21422.

m m

x1
x2

k k

F0cosw 0t

k

FIGURE 18.2 Mass-spring system.

18.1.1 Vibrations and Resonance

One application of eigenvalues and eigenvectors is in the analysis of vibration problems. You have probably heard of the
collapse of the Tacoma Narrows Bridge (Figure 18.1) in the state of Washington. For a period of time, the bridge would
move in small waves and became a tourist attraction. One day, the wind was approximately 40miles/hr, and the oscillations
of the bridge increased to the point where the bridge tore apart and crashed into the water. There is still debate as to the
cause of the collapse, but one explanation is that the frequency of the wind was close to the fundamental frequency of the
bridge. The fundamental frequency of the bridge is the magnitude of the smallest eigenvalue of a system that mathematically
models the bridge. The lowest frequency is the most dangerous for a structure or machine because that mode corresponds
to the largest displacement.

Consider the vibration of two objects of mass m attached to each other and the walls by three springs with spring
constant k. There is no damping, and the springs cannot move vertically. A driving force F0 cos (βt) acts on the left mass
(Figure 18.2). The equations of motion for the displacement of the masses are:

m
d2x1
dt2

= −2kx1 + kx2 + F0 cos ω0t

m
d2x2
dt2

= kx1 − 2kx2

In matrix form, we have

d2x

dt2
= 1

m
Kx+ F

m
, (18.1)

where

K =
[ −2k k

k −2k
]
, F =

[
F0 cos ω0t

0

]
.



The Algebraic Eigenvalue Problem Chapter| 18 381

where K is the stiffness matrix and F is the force vector. The general solution to Equation 18.1 is a linear combination of
the solution to the homogeneous system

d2x

dt2
− K

m
x = 0 (18.2)

and a particular solution to Equation 18.1. Try a solution to the homogeneous equation of the form x = veωt, where ω is a
frequency. Substituting x = veωt into Equation 18.2 gives

ω2veωt = K

m
veωt ,

and we have the eigenvalue problem

Kv =
(
mω2

)
v. (18.3)

The coefficient matrix is symmetric, so it has real eigenvalues and corresponding real linearly independent eigenvectors
(Lemma 7.3 and Theorem 7.6). The characteristic equation is

λ2 + 4kλ+ 3k2 = (λ+ 3k) (λ+ k) = 0.

The eigenvalues and corresponding normalized eigenvectors are

λ1 = −3k v1 = 1√
2

[ −1
1

]
λ2 = −k v2 = 1√

2

[
1
1

]
Now, using Equation 18.3,

ω2
1 = −3

k

m
, ω2

2 = −
k

m
,

and

ω1 = i

√
3k

m
, ω2 = i

√
k

m
.

The corresponding solutions are

v1e
i
√

3k
m t, v2e

i
√

k
m t.

Applying Euler’s formula (Equation A.2) and taking the real and imaginary parts, the general solution to the
homogeneous equation is

xh (t) = 1√
2

[ −1
1

](
c1 cos

√
3k

m
t + c2 sin

√
3k

m
t

)
+ 1√

2

[
1
1

](
c3 cos

√
k

m
t+ c4 sin

√
k

m
t

)
.

The frequencies
√

3k
m and

√
k
m are known as the natural frequencies of the system. Without a driving force, the system

vibrates with these frequencies.
We now determine a particular solution, xp (t), by using complex variables and replacing the driving force F =[
F0 cos ω0t

0

]
by

[
F0
0

]
eiω0t. After finding a imaginary particular solution, the real part is the particular solution we are

looking for.
Using the method of undetermined coefficients, the trial solution is xp (t) = Deiω0t. Substitute it into Equation 18.1 to

obtain (
K

m
+ ω2

0I

)
D = − 1

m

[
F0
0

]
.

If
(K
m + ω2

0I
)
is invertible

D = − 1

m

(
K

m
+ ω2

0I

)−1 [
F0
0

]
,



382 Numerical Linear Algebra with Applications

and

xp (t) = D cos ω0t,

giving the general solution x (t) = xh (t) + xp (t).

Now, let det
(K
m + ω2

0I
) = 0.

det

(
K

m
+ ω2

0I

)
= det

([
ω2
0 − 2k

m
k
m

k
m ω2

0 − 2k
m

])
=

(
ω2
0 −

3k

m

)(
ω2
0 −

k

m

)
.

When

ω0 =
√
k

m
, ω0 =

√
3k

m
,

(K
m + ω2

0I
)
is not invertible. Thus, as ω0 approaches either natural frequency

√
k
m or

√
3k
m , D

(K
m + ω2

0I
)
is close to singular.

Example 18.1 investigates what happens when ω0 approaches these frequencies.

Example 18.1. The initial conditions determine the constants ci, 1 ≤ i ≤ 4. Assume at time t = 0 the spring system is at
rest, so that x (0) = x′ (0) = 0, and that the driving force starts motion. We will leave ω0 as a variable and investigate what
happens as ω0 varies. The constants are determined by solving the system of equations⎡⎢⎢⎢⎢⎢⎢⎣

− 1√
2

0 1√
2

0
1√
2

0 1√
2

0

0 −
√

k
2m 0

√
3k
2m

0
√

k
2m 0

√
3k
2m

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
c1
c2
c3
c4

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−d1
−d2
0
0

⎤⎥⎥⎦ ,

where d1 and d2 are the components of D. The solution x (t) = xh (t) + xp (t) can be computed when we have values for
m, k, and F0, and we assume m = 1, k = 1, and F0 = 5. Figure 18.3 shows the behavior of x1 (t) , x2 (t), 0 ≤ t ≤ 20 for
ω0 = 2.0 and ω0 =

√
3−0.001. Note the large oscillations for the latter value of ω0. This caused by the fact that ω0 is close

to the natural frequency
√

3k
m , and the system approaches resonance. Resonance is the tendency of a system to oscillate at a

greater amplitude at some frequencies than at others. Note that resonance occurs in our example when the frequency of the

driving force approaches
√

3k
m , one of the natural frequencies of the system. �

0
(a) Normal displacement

5 10 15 20 25 30 35
−8

−6

−4

−2

0

2

4

6

t

D
is
pl

ac
em

en
ts

Two mass, three spring system, w 0 = 2

 

 
x1
x2

0
(b) Resonance

5 10 15 20 25 30 35
−25

−20

−15

−10

−5

0

5

10

15

20

25

t

D
is
pl

ac
em

en
ts

Two mass, three spring system, w 0 = 1.7311

 

 
x1
x2

FIGURE 18.3 Solution to a system of ordinary differential equations.



The Algebraic Eigenvalue Problem Chapter| 18 383

18.1.2 The Leslie Model in Population Ecology

Themodel of Leslie is a heavily used tool in population ecology. It is a model of an age-structured population which predicts
how distinct populations change over time. The model runs for n units of time, beginning at 0. For simplicity of modeling,
we sort individuals into discrete age classes, denoted ni (t). We further simplify our model by assuming that there is an
approximately 50:50 male to female ratio, and that the number of offspring per year depends primarily on the number of
females. Therefore, we only consider the females present in the population. There are m age classes, 1, . . . ,m, where m is
the maximum reproductive age of an individual. The model uses the following parameters for the groups:

pi probability of surviving from age i to i+ 1
fi average number of offspring surviving to age 1 in class i (fertility function)
ni (t) number of females of age i at time t (the number of i-year olds at time t)

In specifying fi, the mortality rate of offspring and parents is included.
The number of individuals in age class i at time t + 1 depends on the number of individuals surviving from age class

i−1 at time t. The age class i = 1 at time t consists of new borns. First, consider howmany individuals in age class i survive
from t to t + 1, and do not consider births. This is given by the equation

ni (t + 1) = pi−1ni−1 (t) , 2 ≤ i ≤ m

Now consider age class 1, the newly born individuals. The number individuals in age class 1 at time t+ 1 is the number
of offspring born to existing individuals in the population at time t:

n1 (t + 1) =
m∑
i=1

fini (t)

Now place all of the ni (t) values into a column vector N (t) of dimension m and build the m × m Leslie matrix L as
follows:

The first row of L consists of the fertility values fi, 1 ≤ i ≤ m, and the subdiagonal contains the probabilities of survival. The
remaining entries are zero.

L =

⎡⎢⎢⎢⎢⎢⎢⎣
f1 f2 . . . fm−1 fm
p1 0 0 . . . 0
0 p2 0 . . . 0
...

...
. . .

...
...

0 0 pm−1 0

⎤⎥⎥⎥⎥⎥⎥⎦
The product of L and N (t) is

L (N (t)) =

⎡⎢⎢⎢⎢⎢⎣
f1 f2 . . . fm−1 fm
p1 0 0 . . . 0
0 p2 0 . . . 0
...

...
. . .

...
...

0 0 pm−1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
n1 (t)
n2 (t)
...

nm−1 (t)
nm (t)

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

∑m
i=1 fini (t)
p1n1 (t)
p2n2 (t)

...
pm−1nm−1 (t)

⎤⎥⎥⎥⎥⎥⎦ = N (t + 1) ,

so

N (t + 1) = L (N (t)) .
Thus,

N (t+ 2) = L (N (t + 1)) = L2N (t) ,
and in general for each time t + k



384 Numerical Linear Algebra with Applications

N (t + k) = LkN (t) . (18.4)

Equation 18.4 says that we can project into the future by computing matrix powers.
The digraph produced by L is strongly connected, so L is irreducible. By Theorem 5.6, L has an eigenvector with strictly

positive entries. Thus, we can assume that v is an eigenvector of L, with v1 �= 0. Divide by v1 so that

v =

⎡⎢⎢⎢⎢⎢⎣
1
v2
...

vm−1
vm

⎤⎥⎥⎥⎥⎥⎦ .

Our aim is to determine the characteristic equation for L, from which we will obtain valuable information. Let Lv = λv
to obtain ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1 + f2v2 + · · · + fmvm
p1
p2v2
...
...

pm−1vm−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ

λv2
λv3
...

λvm−1
λvm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (18.5)

Equate entries 2 through m to get

p1 = λv2
p2v2 = λv3

...

pm−1vm−1 = λvm.

From these equations, we have v2 =
(
1
λ

)
p1 and v3 =

(
1
λ

)
p2v2, so v3 =

(
1
λ

)2
p1p2. In general,

vk =
(
1

λ

)k−1
p1p2 . . . pk−1, 2 ≤ k ≤ m.

The first components of Equation 18.5 must be equal, so

f1 + f2v2 + · · · + fmvm = λ,

and

f1 + f2

[(
1

λ

)
p1

]
+ f3

[(
1

λ

)2
p1p2

]
+ · · · + fk

[(
1

λ

)k
p1p2 . . . pk

]
+ · · · + fm

[(
1

λ

)m−1
p1p2 . . . pm−1

]
= λ.

Divide by λ to obtain(
1

λ

)
f1+f2

[(
1

λ

)2
p1

]
+f3

[(
1

λ

)3
p1p2

]
+· · ·+fk

[(
1

λ

)k+1
p1p2 . . . pk

]
+· · ·+fm

[(
1

λ

)m
p1p2 . . . pm−1

]
= 1. (18.6)

Let l1 = 1 and for k = 2, 3, . . . ,m, define lk = p1p2 . . . pk−1. Then Equation 18.6 becomes

f1l1λ−1 + f2l2λ−2 + f3l3λ−3 + · · · + λ−mfmlm = 1.

Using summation notation, we have
m∑
k=1

fklkλ
−k − 1 = 0, (18.7)



The Algebraic Eigenvalue Problem Chapter| 18 385

which is known as theEuler-Lotka equation. The value lk is the fraction of 1-year olds that survive to age k. The characteristic
equation can be derived by evaluating det (L− λI) using expansion byminors or the elementary rowoperation ofmultiplying
a row by a constant and subtracting from another row, and the result is

λm
(
1−

[
f1l1
λ
+ f2l2

λ2
+ . . .+ fmlm

λm

])
= 0, λ �= 0.

Both the Euler-Lotka equation and the characteristic equation have the same roots. Let

f (λ) =
m∑
k=1

fklkλ
−k − 1 = f1l1

λ
+ f2l2

λ2
+ . . .+ fmlm

λm
− 1,

and we have

f ′ (λ) = − f1l1
λ2
− 2f2l2

λ3
− . . .− mfmlm

λm+1
< 0, λ > 0.

The function f is decreasing for λ > 0, and we know there is a value of λ such that f (λ) = 0. The second derivative

f ′′ (λ) = 2f1l1
λ3

+ 6f2l2
λ4

+ . . .+ m (m+ 1) fmlm
λm+2

> 0, λ > 0,

so f is concave upward, and there is one positive real root, λ1, the dominant eigenvalue.All the other eigenvalues are negative
or imaginary.

If we assume that L has m distinct eigenvalues, then there is a basis of eigenvectors u1, u2, . . . , um such that

L = UDU−1,

where U = (u1, u2, . . . , um) and D =

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λm

⎤⎥⎥⎥⎦ is the matrix of eigenvalues. As a result (Section 5.3.1),

Lk = U

⎡⎢⎢⎢⎣
λk1 0 . . . 0
0 λk2 . . . 0
...

...
. . .

...
0 0 . . . λkn

⎤⎥⎥⎥⎦U−1

From Equation 18.4,

N (t+ k) = U

⎡⎢⎢⎢⎣
λk1 0 . . . 0
0 λk2 . . . 0
...

...
. . .

...
0 0 . . . λkn

⎤⎥⎥⎥⎦U−1N (t) .

If we let U−1N (t) = c (t), then

N (t+ k) = U

⎡⎢⎢⎢⎣
λk1 0 . . . 0
0 λk2 . . . 0
...

...
. . .

...
0 0 . . . λkm

⎤⎥⎥⎥⎦ c (t) ,

and

N (t + k) = c1 (t) λk1u1 + c2 (t) λk2u2 + · · · + cm (t) λkmum.

Since λ1 is the largest eigenvalue in magnitude,

N (t + k) ≈ c1 (t) λk1u1.

This means that as time increases, the age distribution vector tends to a scalar multiple of the eigenvector associated with
the largest eigenvalue of the Leslie matrix. In other words, at equilibrium the proportion of individuals belonging to each
age class will remain constant, and the number of individuals will increase by λ1 times each period. Divide the eigenvector,
u1, with all positive entries, associated with λ1 by the sum of its components

(
u1 =

(
1∑m

i=1 u1i

)
u1
)
. The components of the

new vector have the same relative proportions as those in the original eigenvector, and they determine the percentage of
females in each age class after an extended period of time.



386 Numerical Linear Algebra with Applications

Example 18.2. Suppose a population has four age classes, and that the following table specifies the data for the population.

Age Class ni (0) fi pi
1 8 0 0.60
2 10 6 0.45
3 12 3 0.25
4 7 2

The Leslie matrix for this population is

L =

⎡⎢⎢⎣
0 6 3 2

0.60 0 0 0
0 0.45 0 0
0 0 0.25 0

⎤⎥⎥⎦
Using MATLAB, find the eigenvalues and eigenvectors of L.

>> [U D] = eig(L);
>> diag(D)

ans =

2.0091

-1.7857

-0.11171 + 0.15858i

-0.11171 - 0.15858i

>> u1 = U(:,1);

>> u1 = (u1/sum(u1))*100

u1 =

72.788

21.737

4.8687

0.60582

The dominant eigenvalue is 2.0091, so the number of individuals at equilibriumwill increase by 2.0091 each time period.
The percentage of females in each age class after an extended period of time is given by the components of u1. Now, we
will look at the situation graphically. Let n0 =

[
8 10 12 7

]T
, and compute the age distribution vector over a 10-year

period. Store the initial distribution in column 1 of a 4× 11 matrix N, and use Equation 18.5 to compute vectors of the age
distribution for years 1-10. The vectors grow exponentially, so graph the results for each class using a logarithmic scale of
the vertical (population) axis (Figure 18.4).

>> format shortg

>> n0 =[8 10 12 7]’;

>> N = zeros(4,11);
>> N(:,1) = n0;

>> for k = 2:11

N(:,k) = L*N(:,k-1);

end
>> t = 0:10;

>> semilogy(t,N);
>> xlabel(’Time’);
>> ylabel(’log_{10}(population)’);
>> legend(’Age class 1’, ’Age class 2’, ’Age class 3’, ’Age class 4’,...

’Location’,’NorthWest’); �

18.1.3 Buckling of a Column

This example shows that eigenvalues can be associated with functions as well as matrices.



The Algebraic Eigenvalue Problem Chapter| 18 387

0 2 4 6 8 10
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

Time

lo
g 10

(p
op

ul
at

io
n)

 

 
Age class 1
Age class 2
Age class 3
Age class 4

FIGURE 18.4 Populations using the Leslie matrix.

x = L

x = 0

x

y

FIGURE 18.5 Column buckling.

Apply a compressive axial force, or load, P, to the top of a vertical thin elastic column of uniform cross-section having
length L (Figure 18.5). The column will buckle, and the deflection y (x) satisfies the differential equation

EI
d2y

dx2
= −Py,

where E is Young’s modulus of elasticity and I is the area moment of inertia of column cross-section. Assume that the
column is hinged at both ends so that y (0) = y (L) = 0, and we have the boundary value problem

EI
d2y

dx2
+ Py = 0, y (0) = 0, y (L) = 0.

Note that y = 0 is a solution to the problem, and this corresponds to the situation where the load P is not large enough
to cause deflection. We wish to determine values of P that cause the column to buckle; in other words, for what values of P
does the boundary value problem have nontrivial solutions?

Let λ = P
EI , and we have the problem

d2y

dx2
+ λy = 0, y (0) = 0, y (L) = 0.



388 Numerical Linear Algebra with Applications

Let λ = β2, β > 0. The equation is homogeneous, so try a solution of the form y = epx. After substitution into the
equation, we have

p2 + β2 = 0,

and p = ±βi, yielding complex solutions e±βix. These give rise to the real solutions y = c1 cos βx + c2 sin βx. Apply the
boundary conditions:

y (0) = c1 = 0,

y (L) = c2 sin βL = 0.

If sin βL = 0, we can choose c2 to be any nonzero value, so let c2 = 1. We have sin βL = 0 when βL = nπ ,
n = 1, 2, 3, . . ., and so our values of β must be

βn = nπ

L
, n = 1, 2, 3, . . . .

Since λ = β2, it follows that:

λ1 = π2

L2
, λ2 = 4π2

L2
, λ3 = 9π2

L2
, . . . , λn = n2π2

L2
, . . .

and the sequence of functions

yn (x) = k sin
(nπ
L
x
)
, n = 1, 2, 3, . . .

where k is a constant are nontrivial solutions to the boundary value problem. These functions are called eigenfunctionswith

corresponding eigenvalues λn. For our column buckling equation, we have eigenvalues λn = Pn
EI = n2π2

L2
, n = 1, 2, 3, . . .,

and loads

Pn = EIπ2n2

L2
, n = 1, 2, 3, . . .

The column will buckle only when the compressive force is one of these values. This sequence of forces are called
critical loads. The deflection function corresponding to the smallest critical load P1 = EIπ2

L2
is termed the first buckling

mode.

Example 18.3. For a thin 2.13m column of aluminum, E = 69 × 109 N/m2, and I = 3.26 × 10−4 m4. Compute the
critical loads and graph the deflection curves for n = 1, 2, 3 (Figure 18.6).

The first buckling mode = 4.89336e+07

The second critical load = 1.95734e+08

The third critical load = 4.40402e+08

If the column has a physical restraint on it at x = L/2, then the smallest critical load will be P2 = 1.69 × 107and the
deflection curve is sin

(
2πx
L

)
. If restraints are placed on the column at x = L/3 and at 2L/3, then the column will not buckle

until the column is subjected to the critical load P3 = 3.81× 107, and the deflection curve is sin
(
3πx
L

)
[53, pp. 167-169].

�

Remark 18.1. See Problem 18.43 for another approach to the buckling problem.

18.2 COMPUTATION OF SELECTED EIGENVALUES AND EIGENVECTORS

In some applications, it is only necessary to compute a few of the largest or the smallest eigenvalues and their corresponding
eigenvectors. Examples include:



The Algebraic Eigenvalue Problem Chapter| 18 389

sin�     �πx
L sin�      �2πx

L sin�      �3πx
L

FIGURE 18.6 Deflection curves for critical loads P1, P2, and P3.

● The Leslie matrix.
● The buckling problem. The most important eigenvalue is the smallest.
● Vibration of structures. The most important eigenvalues are a few of the smallest ones.
● Statistical applications. Only the first few of the largest eigenvalues need to be computed.

The power and inverse power methods compute the largest and smallest eigenvector, respectively. If v is an eigenvector of
A, then Av = λv, so 〈Av, v〉 = λ 〈v, v〉, and

λ = vT (Av)

vTv
. (18.8)

Equation 18.8 is called the Rayleigh quotient. Given any eigenvector of A, Equation 18.8 computes the corresponding
eigenvalue. This will be useful to us, since the power and inverse power methods compute an eigenvector, and the Rayleigh
quotient finds the corresponding eigenvalue.

If the eigenvalues of an n× n matrix A are such that

|λ1| > |λ2| ≥ |λ3| > · · · ≥ |λn| , (18.9)

the eigenvalue λ1 is said to be the dominant eigenvalue of A. Thus, if we know that vd is an eigenvector of the dominant

eigenvalue, the eigenvalue is λ1 = vTd (Avd)

vTd vd
. Not all matrices have a dominant eigenvalue. For instance, let A =

[
1 0
0 −1

]
.

Its eigenvalues are λ1 = 1 and λ2 = −1. The matrix B =
⎡⎣ 2 0 0
0 2 0
0 0 1

⎤⎦ has eigenvalues λ1 = λ2 = 2, λ3 = 1.

18.2.1 Additional Property of a Diagonalizable Matrix

Theorem5.3 states that if the n×nmatrixA has n linearly independent eigenvectors v1, v2, . . . , vn, then A can be diagonalized
by the matrix the eigenvector matrix X = (v1v2 . . . vn). The converse of Theorem 5.3 is also true; that is, if a matrix can
be diagonalized, it must have n linearly independent eigenvectors. We need this result for the purposes of developing the
power method in Section 18.2.2.

Theorem 18.1. If A is a real n× n matrix that is diagonalizable, it must have n linearly independent eigenvectors.



390 Numerical Linear Algebra with Applications

Proof. We know there is an invertible matrix V such that V−1AV = D, whereD =

⎡⎢⎢⎢⎣
λ1

λ2
. . .

λn

⎤⎥⎥⎥⎦ is a diagonal matrix,

and let v1, v2, . . . , vn be the columns of V. Since V is invertible, the vi are linearly independent. The relationship V−1AV = D
gives AV = VD, and using matrix column notation we have

A
[
v1 v2 . . . vn

] = [
v1 v2 . . . vn

]
⎡⎢⎢⎢⎣

λ1
λ2

. . .
λn

⎤⎥⎥⎥⎦ .

Column i of A
[
v1 v2 . . . vn

]
is Avi, and column i of

[
v1 v2 . . . vn

]
⎡⎢⎢⎢⎣

λ1
λ2

. . .
λn

⎤⎥⎥⎥⎦ is λivi, so Avi = λivi.

Thus, the linearly independent set v1, v2, . . . , vn are eigenvectors of A corresponding to eigenvalues λ1, λ2, . . . , λn.

18.2.2 The Power Method for Computing the Dominant Eigenvalue

We now develop the power method, a simple iteration, for computing the dominant eigenvalue of a matrix, if it has one.
Make an initial guess for the eigenvector, usually v0 =

[
1 . . . 1

]T
, and normalize it by assigning v0 = v0‖v0‖2 . Compute

v1 = Av0, and then normalize v1. Repeat this process until satisfying a convergence criterion. Example 18.4 demonstrates
this algorithm.

Example 18.4. Let A =
⎡⎣ 1 3 0

2 5 1
−1 2 3

⎤⎦ , x0 =
⎡⎣ 1
1
1

⎤⎦ .

k = 1

x1 = Ax0 =
⎡⎣ 4
8
4

⎤⎦ , x1 = x1/ ‖x1‖2 =
⎡⎣ 0.4082
0.8165
0.4082

⎤⎦
k = 2

x2 = Ax1 =
⎡⎣ 2.8577
5.3072
2.4495

⎤⎦ , x2 = x2/ ‖x2‖2 =
⎡⎣ 0.4392
0.8157
0.3765

⎤⎦
k = 3

x3 = Ax2 =
⎡⎣ 2.8863
5.3334
2.3216

⎤⎦ , x3 = x3/ ‖x3‖2 =
⎡⎣ 0.4445
0.8213
0.3575

⎤⎦
k = 4

x4 = Ax3 =
⎡⎣ 2.9085
5.3532
2.2708

⎤⎦ , x4 = x4/ ‖x4‖2 =
⎡⎣ 0.4473
0.8233
0.3493

⎤⎦

λ1 = (Ax4) · x4
x4 · x4 = 6.5036

The eigenvalues of A are 6.5050, −0.4217, 2.9166, so the relative error in computing the largest eigenvalue is
2.1856× 10−4. �



The Algebraic Eigenvalue Problem Chapter| 18 391

In Algorithm 18.1 (the power method), we assume that the real matrix A is diagonalizable. Theorem 18.1 guarantees
there exists a basis of eigenvectors for Rn. This assumption will allow us to prove the power method converges under
condition 18.9. The convergence test is to compute the Rayleigh quotient after normalization (λk = xTk (Axk)) at each
iteration and determine if ‖Axk − λxk‖2 < tol; in other words, is λxk sufficiently close to Axk?

Algorithm 18.1 The Power Method

function LARGEEIG(A,x0,tol,numiter)

% Use the power method to find the dominant eigenvalue and

% the corresponding eigenvector of real diagonalizable matrix A.

% [lambda x iter] = largeeig(A,x0,n,tol) computes the largest eigenvalue

% lambda in magnitude and corresponding eigenvector x of real matrix A.

% x0 is the initial approximation, tol is the desired error tolerance,

% and maxiter is the maximum number of iterations to perform.

% If the algorithm converges, iter contains the number of iterations required.

% If the method does not converge, iter=-1.

x0 = x0/ ‖x0‖2
for k=1:numiter do

xk = Axk−1
xk = xk/ ‖xk‖2
λ = xTkAxk
error=‖Axk − λxk‖2
if error<tol then

x = xk
iter=k

return
[

λ, x, iter
]

end if
end for
x=xk
iter=-1

return
[

λ, x, iter
]

end function

NLALIB: The function largeeig implements Algorithm 18.1.
Theorem 18.2 specifies conditions under which the power iteration is guaranteed to converge.

Theorem 18.2. Assume that A is diagonalizable, with real eigenvalues λ1, λ2, . . . , λn and associated real eigenvectors
v1, v2, . . . , vn, and that λ1 is a simple eigenvalue with the largest magnitude, i.e.,

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| . (18.10)

Then, the power method converges to a normalized eigenvector corresponding to eigenvalue λ1.

Proof. Let x0 be the initial approximation. By Theorem 18.1, the eigenvectors are linearly independent, and so x0 = c1v1+
c2v2 + · · · + cnvn. We can assume that c1 �= 0, or otherwise rearrange the linear combination so it is. Now,

x1 = Ax0, x1 = Ax0
‖Ax0‖2

x2 = A

(
Ax0
‖Ax0‖2

)
= A2x0
‖Ax0‖2 , x2 = A2x0

‖Ax0‖2

(
‖Ax0‖2∥∥A2x0∥∥2

)
= A2x0∥∥A2x0∥∥2

xk = Akx0∥∥Akx0∥∥2 , . . . (18.11)



392 Numerical Linear Algebra with Applications

Since x0 = c1v1 + c2v2 + · · · + cnvn,

Akx0 = Ak (c1v1 + c2v2 + · · · + cnvn) = c1λk1v1 + c2λk2v2 + · · · + cnλknvn

= λk1

(
c1v1 + c2

(
λ2

λ1

)k
v2 + c3

(
λ3

λ1

)k
v3 + · · · + cn

(
λn

λ1

)k
vn

)
. (18.12)

By substituting Equation 18.12 into Equation 18.11, we obtain

xk =
λk1

(
c1v1 + c2

(
λ2
λ1

)k
v2 + c3

(
λ3
λ1

)k
v3 + · · · + cn

(
λn
λ1

)k
vn

)
.∥∥∥∥λk1 (c1v1 + c2

(
λ2
λ1

)k
v2 + c3

(
λ3
λ1

)k
v3 + · · · + cn

(
λn
λ1

)k
vn

)∥∥∥∥
2

=

±

(
c1v1 + c2

(
λ2
λ1

)k
v2 + c3

(
λ3
λ1

)k
v3 + · · · + cn

(
λn
λ1

)k
vn

)
.∥∥∥∥(c1v1 + c2

(
λ2
λ1

)k
v2 + c3

(
λ3
λ1

)k
v3 + · · · + cn

(
λn
λ1

)k
vn

)∥∥∥∥
2

. (18.13)

Because c1 �= 0, the denominator in Equation 18.13 is never 0. Since |λ1| > |λi| , i ≥ 2,

lim
k→∞ xk = ± v1

‖v1‖2 ,
a normalized eigenvector of A corresponding to the largest eigenvalue λ1.

Remark 18.2.

a. If we assume that |λ1| > |λ2| > |λ3| > · · · > |λn|, then Theorem 5.2 guarantees that there are n linearly independent
eigenvectors. Our assumption that A is diagonalizable allows us to require only condition 18.9.

b. The assumption that c1 �= 0 is critical to the proof. A randomly chosen x0 will normally guarantee this with high
probability.

c. From the proof of Theorem 18.2, we see that the rate of convergence is determined by the ratio
∣∣∣λ2λ1

∣∣∣, where λ2 is the

second largest eigenvalue in magnitude. The power method will converge quickly if
∣∣∣ λ2λ1

∣∣∣ is small and slowly if ∣∣∣λ2λ1

∣∣∣ is
close to 1.

Example 18.5.

a. Estimate the largest eigenvalue and the corresponding eigenvector for the Leslie matrix L =

⎡⎢⎢⎣
0 6 3 2

0.60 0 0 0
0 0.45 0 0
0 0 0.25 0

⎤⎥⎥⎦.
The MATLAB code runs largeeig twice with an error tolerance of 1.0 × 10−10. The first call uses maxiter = 100,
and the iteration failed to attain the tolerance. With maxiter = 300 for the second call, the tolerance was attained in
200 iterations. The two largest eigenvalues of L in magnitude are 2.0091 and 1.7857, and the ratio λ2

λ1
= 0.88879, so we

expect slow convergence.

>> x0 = ones(4,1);

>> [lambda x iter] = largeeig(L,x0,1.0e-10,100)

lambda =

2.0091

x =

0.95619

0.28556

0.063958

0.0079585

iter =

-1



The Algebraic Eigenvalue Problem Chapter| 18 393

>> [lambda x iter] = largeeig(L,x0,1.0e-10,300)

lambda =

2.0091

x =

0.95619

0.28555

0.063958

0.0079584

iter =

200

b. Let

A =

⎡⎢⎢⎣
10.995 −1.6348 1.2323 3.055
2.2256 5.4029 1.3355 5.4342
1.5794 1.1108 2.2963 −0.46759
−3.7347 −2.447 −1.3122 −2.6939

⎤⎥⎥⎦ .

The eigenvalues of A to eight significant figures are

{10.000373, 3.0000000, 2.0000200, 0.99991723} ,
and the ratio λ2

λ1
= 0.29998782, so the power method should converge reasonably quickly. In fact, after 27 iterations,

the approximate eigenvalue is 10.000373. �

18.2.3 Computing the Smallest Eigenvalue and Corresponding Eigenvector

Assume that A is nonsingular and has eigenvalue λ with corresponding eigenvector v. If Av = λv, then A−1v = 1
λ
v and 1

λ

is an eigenvalue of A−1 with corresponding eigenvector v. (Recall that an invertible matrix cannot have a zero eigenvalue.)
Thus, the eigenvalues of A−1 are the reciprocals of those for A, but the eigenvectors are the same. If we assume that

|λ1| ≥ |λ2| ≥ |λ3| > · · · ≥ |λn−1| > |λn| ,
the smallest eigenvalue of A is the largest eigenvalue of A−1. The power method applied to A−1 will yield the smallest
eigenvalue of A and is termed the inverse power method.

As we have discussed, computingA−1 is fraughtwith problems, so we should avoid the iteration xk = A−1xk−1; however,
this is equivalent to solving Axk = xk−1. Use Gaussian elimination to compute PA = LU and solve the linear systems
Axk = xk−1 using forward and backward substitution. As the iteration progresses, xk approaches a normalized eigenvector
corresponding to eigenvalue 1

λn
, so A−1xk ≈

(
1
λn

)
xk. Therefore, Axk ≈ λnxk and xk are approximate eigenvectors

for the smallest eigenvalue, λn, of A. If we keep track of the Rayleigh quotient λk = xTk Axk, then we can apply the
convergence test ‖Axk − λkxk‖2 < tol, at each step and the algorithm is the same as the power method with xk = Axk−1
replaced by xk = lusolve (L,U,P, xk−1). The function smalleig in the software distribution implements the inverse power
method.

Example 18.6. This problem constructs a matrix with known eigenvalues by generating a random integer matrix, zeroing
out all the elements from the diagonal and below using triu, and then adding a diagonal matrix containing the eigenvalues.
There is an eigenvalue, 9, of largest magnitude with multiplicity three, and a smallest eigenvalue in magnitude, −1, well
separated from the others. As expected, the power method fails, and the inverse power method is successful.

>> A = randi([-100,100],10,10);

>> A = triu(A,1);
>> d = [-1 3 5 9 9 9 6 2 -7 4]’;

>> A = A + diag(d);
>> iterations = [50 100 1000 10000];

>> for i = 1:length(iterations)
[lambda,v,iter] = largeeig(A,ones(10,1),1.0e-10,iterations(i));

lambda



394 Numerical Linear Algebra with Applications

iter

end

lambda =

9.471799775358845

iter =

-1

lambda =

9.204649150708208

iter =

-1

lambda =

9.018221954378124

iter =

-1

lambda =

9.001802197342364

iter =

-1

>> [lambda,v,iter] = smalleig(A,rand(10,1),1.0e-14,75);
>> lambda

lambda =

-1.000000000000044

>> iter

iter =

52 �

18.3 THE BASIC QR ITERATION

The QR method in its various forms is the most-used algorithm for computing all the eigenvalues of a matrix. We will
consider a real matrix A whose eigenvalues satisfy

|λ1| > |λ2| > |λ3| > · · · > |λn| > 0 (18.14)

Such a matrix cannot have imaginary eigenvalues, since each member of a complex conjugate pair has the same modulus.
For in-depth coverage of the general eigenvalue problem, including matrices with entries having a nonzero imaginary part
the interested reader should see Refs. [2, 9]. A real matrix satisfying Equation 18.14 is invertible, since Theorem 5.2 implies
the eigenvectors are linearly independent. In addition, Theorem 5.4 guarantees that A is diagonalizable.

We will first discuss what is termed the basic QR iteration for computing all the eigenvalues of a matrix satisfying
Equation 18.14. This algorithm should be viewed as a starting point, and we will discuss techniques to enhance its
performance in later sections. The basicQR iteration is very simple to perform. Let A0 = A, apply the QR decomposition to
A0 and obtain A0 = Q1R1, and form A1 = R1Q1. Now compute A1 = Q2R2 and let A2 = R2Q2. Continuing in this fashion,
we obtain Ak−1 = QkRk and Ak = RkQk. Under the correct conditions, the sequence approaches an upper triangular matrix.
What is on the diagonal of this upper triangular matrix? Since A = A0 = Q1R1 andA1 = R1Q1, it follows thatA1 = QT

1AQ1.
Now, A1 = Q2R2 and A2 = R2Q2, so A2 = QT

2A1Q2 = QT
2Q

T
1AQ1Q2. If we continue this process k times, we have

Ak = QT
k Q

T
k−1 . . .QT

2Q
T
1AQ1Q2 . . .Qk−1Qk

= (Q1Q2 . . .Qk−1Qk)T A (Q1Q2 . . .Qk−1Qk)
= Q

T
k AQk,



The Algebraic Eigenvalue Problem Chapter| 18 395

where Qk = Q1Q2 . . .Qk is an orthogonal matrix. A and Ak are similar matrices, and by Theorem 5.1 have the same
eigenvalues. Since Ak is approximately an upper triangular matrix, estimates for its eigenvalues lie on the diagonal. Here is
an outline of the basic QR algorithm.

Outline of the Basic QR Iteration

A0 = A

for k = 1, 2, . . . do
Ak−1 = QkRk
Ak = RkQk

end for

● Compute the QR decomposition, multiply the factors Q and R together in the reverse order RQ, and repeat.
● Under suitable conditions, this simple process converges to an upper triangular matrix, so if k is sufficiently

large,

Ak ≈

⎡⎢⎢⎢⎢⎢⎢⎣

r11 r12 . . . r1,n−1 r1n
r22 . . . r2,n−1 r2n

. . .
. . .

...

rn−1,n−1
...
rnn

⎤⎥⎥⎥⎥⎥⎥⎦ .

● The eigenvalues of A are approximately r11, r22, . . ., rnn.

Remark 18.3. It can be shown that the eigenvalues occur on the diagonal in decreasing order of magnitude, so in the
outline of the basic QR iteration λ1 = r11, λ2 = r22, . . . , λn = rnn.

Example 18.7. Let A =
⎡⎣ 5 1 4
−1 3 1
3 −1 2

⎤⎦ . Run the following MATLAB script.

>> B = A;

>> for i = 1:15

[Q R] = qr(A);
A = R*Q;

end
>> A

>> eig(B)

Note that A is transformed into an upper triangular matrix with the eigenvalues of A on its diagonal in descending order of
magnitude. �

A proof of the following result can be found in Ref. [27, pp. 209-212]. Recall when reading the theorem that a real
matrix satisfying Equation 18.14 can be diagonalized. Also, it is assumed that the LU decomposition can be done without
row exchanges.

Theorem 18.3. Let A be a real matrix satisfying Equation 18.14. Assume also that P−1 has an LU decomposition, where
P is the matrix of eigenvectors of A, i.e., A = Pdiag (λ1, λ2, . . . , λn)P−1. Then the sequence {Ak} , k ≥ 1, generated by the
basic QR iteration, converges to an upper triangular matrix whose diagonal entries are the eigenvalues of A.

The implementation of the basic QR iteration is in the function eigqrbasic of the software distribution.

18.4 TRANSFORMATION TO UPPER HESSENBERG FORM

Prior to presenting a more effective approach to eigenvalue computation than the basic QR iteration, we need two
definitions.



396 Numerical Linear Algebra with Applications

Definition 18.1. An orthogonal similarity transformation is a decomposition of form B = PTAP, where P is an
orthogonal matrix. Since PT = P−1, matrices A and B are similar and thus have the same eigenvalues.

We will have many occasions to use Hessenberg matrices in this and the remaining chapters because they have a simpler
form than a general matrix.

Definition 18.2. A square matrixH is upper Hessenberg if hij = 0 for all i > j+1. The transpose of an upper Hessenberg
matrix is a lower Hessenbergmatrix (hij = 0 for all j > i+1). The upper and lower Hessenberg matrices are termed “almost
triangular.” For instance, the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 3 7 3 −1
2 4 8 1 2 3
0 5 −1 6 4 9
0 0 9 3 1 −1
0 0 0 4 1 3
0 0 0 0 5 2

⎤⎥⎥⎥⎥⎥⎥⎦
is upper Hessenberg, and

B =

⎡⎢⎢⎣
1 8 0 0
2 9 1 0
3 5 −1 7
4 1 3 4

⎤⎥⎥⎦
is lower Hessenberg.

The basic QR iteration is not practical for large matrices. It requires O
(
n3
)
flops for each QR decomposition, so k

iterations cost kO
(
n3
)
flops. If k = n, the algorithm becomesO

(
n4
)
. Our approach is to split the problem into two parts:

a. Transform A into an upper Hessenberg matrix using orthogonal similarity transformations.
b. Make use of the simpler form of an upper Hessenberg matrix to quickly and accurately compute the eigenvalues.

We will develop an algorithm, hhess, that creates the orthogonal similarity transformation H = PTAP, where H is an
upper Hessenberg matrix. Theorem 5.1 guarantees that H will have the same eigenvalues as A. We will then convert
the upper Hessenberg matrix into upper triangular form using Givens rotations, and the eigenvalues of A will be on the
diagonal.

The transformation to upper Hessenberg form uses Householder reflections. The idea is similar to the use of
Householder reflections to perform the QR decomposition, but we must leave a diagonal below the main diagonal
(a subdiagonal), and a similarity transformation must be used to maintain the same eigenvalues; in other words, we must use
a transformation Ak = HukAk−1HT

uk rather than Ak = HukAk−1. Assuming a 5 × 5 matrix, the process proceeds as
follows:

A = A0 =

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎦ ,A1 = Hu1AH
T
u1 =

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎦

A2 = Hu2A1H
T
u2 =

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗

⎤⎥⎥⎥⎥⎦ ,A3 = Hu3A2H
T
u3 =

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

⎤⎥⎥⎥⎥⎦



The Algebraic Eigenvalue Problem Chapter| 18 397

In each case, HuiAi−1 zeroes out the elements at indices (i+ 2, i) , (i+ 3, i) , . . . , (n, i) of Ai−1. After k − 1 steps,

Ak−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ . . . ∗ ∗ ∗
∗ ∗ ∗ ∗ · · · ∗ ∗ ∗
0 ∗ . . . ∗ . . . ∗ ∗ ∗
0 0

. . . ak−1,k−1 ∗ . . . ∗ ∗
...

...
. . . ak,k−1 akk . . . ∗ ∗

0 0
. . . 0 ak+1,k . . . ∗ ∗

...
... · · · ... ak+2,k . . . ∗ ∗

0 0 . . . 0
... . . . ∗ ∗

0 0 . . . 0 ank . . . ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To find the next Householder matrix, let y =

⎡⎢⎢⎢⎣
ak+1,k
ak+2,k
...
ank

⎤⎥⎥⎥⎦. Determine the (n− k) × (n− k) Householder matrix H̃uk so

that H̃uky =

⎡⎢⎢⎢⎣
âk+1, k
0
...
0

⎤⎥⎥⎥⎦ by using the techniques of Section 17.8.1. We must develop a matrix Huk containing the submatrix

H̃uk such that when forming HukAk−1 the elements

⎡⎢⎢⎢⎣
ak+1,k
ak+2,k
...
ank

⎤⎥⎥⎥⎦become
⎡⎢⎢⎢⎣
âk+1, k
0
...
0

⎤⎥⎥⎥⎦ without destroying any work we have

already done. We choose Householder matrices Hukof the form

Huk =
[
Ik 0
0 H̃uk

]
, (18.15)

where Ik is the k × k identity matrix, and H̃uk is the n − k Householder matrix. The submatrix

[
Ik
0

]
protects the entries

already having their final value, while

[
0
H̃kj

]
makes the required modifications. For instance, suppose one elimination step

has executed. The matrix A1 has the form ⎡⎢⎢⎢⎢⎣
X X X X X
X X X X X
0 X X X X
0 X X X X
0 X X X X

⎤⎥⎥⎥⎥⎦ ,

and we need to zero out the elements at indices (4, 2) and (5, 2). Let

Hu2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 h(11)
u2 h(12)

u2 h(13)
u2

0 0 h(21)
u2 h(22)

u2 h(23)
u2

0 0 h(31)
u2 h(32)

u2 h(33)
u2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,



398 Numerical Linear Algebra with Applications

and

Hu2A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 h(11)
u2 h(12)

u2 h(13)
u2

0 0 h(21)
u2 h(22)

u2 h(23)
u2

0 0 h(31)
u2 h(32)

u2 h(33)
u2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
X X X X X
X X X X X
0 X X X X
0 X X X X
0 X X X X

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
X X X X X
X X X X X
0 Y Y Y Y
0 0 Y Y Y
0 0 Y Y Y

⎤⎥⎥⎥⎥⎦ ,

Verify that forming the productHu2A1H
T
u2 maintains the zeros created byHu2A1. Example 18.6 illustrates the process in

detail for a 5× 5 matrix.

Example 18.8. Let A =

⎡⎢⎢⎢⎢⎣
9 5 1 2 1
9 7 10 5 8
1 7 2 4 3
4 3 2 10 5
6 5 4 10 6

⎤⎥⎥⎥⎥⎦ and let A0 = A.

Step 1: Compute H̃u1 so that H̃u1

⎡⎢⎢⎣
9
1
4
6

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−11.5758

0
0
0

⎤⎥⎥⎦. Using Equation 18.15,

Hu1 =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 −0.7775 −0.0864 −0.3455 −0.5183
0 −0.0864 0.9958 −0.0168 −0.0252
0 −0.3455 −0.0168 0.9328 −0.1008
0 −0.5183 −0.0252 −0.1008 0.8489

⎤⎥⎥⎥⎥⎦ ,

and

Hu1A0 =

⎡⎢⎢⎢⎢⎣
9.0000 5.0000 1.0000 2.0000 1.0000
−11.5758 −9.6753 −10.7120 −12.8716 −11.3167

0 6.1896 0.9934 3.1314 2.0612
0 −0.2417 −2.0265 6.5257 1.2448
0 0.1374 −2.0397 4.7886 0.3672

⎤⎥⎥⎥⎥⎦

A1 = Hu1A0H
T
u1 =

⎡⎢⎢⎢⎢⎣
9.0000 −5.1832 0.5051 0.0204 −1.9695
−11.5758 18.7612 −9.3299 −7.3435 −3.0245

0 −7.0485 0.3500 0.5579 −1.7991
0 −2.5371 −2.1380 6.0795 0.5754
0 −1.7756 −2.1327 4.4167 −0.1907

⎤⎥⎥⎥⎥⎦ .

Note that Hu1A0 affected rows 2:5 and columns 1:5, and multiplying on the right byH
T
u1 affected rows 1:5, columns 2:5;

in other words, the first column ofHu1A0 was not modified, so the work done to zero out the elements at indices (3, 1) , (4, 1),
and (5, 1) was not modified.

Step 2: Using the vector

⎡⎣ −7.0485−2.5371
−1.7756

⎤⎦, form

Hu2 =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 −0.9155 −0.3296 −0.2306
0 0 −0.3296 0.9433 −0.0397
0 0 −0.2306 −0.0397 0.9722

⎤⎥⎥⎥⎥⎦



The Algebraic Eigenvalue Problem Chapter| 18 399

from which we obtain

Hu2A1 =

⎡⎢⎢⎢⎢⎢⎣
9.0000 −5.1832 0.5051 0.0204 −1.9695
−11.5758 18.7612 −9.3299 −7.3435 −3.0245

0 7.6988 0.8760 −3.5329 1.5015
0 0 −2.0475 5.3757 1.1433

0 0 −2.0693 3.9241 0.2067

⎤⎥⎥⎥⎥⎥⎦ ,

A2 = Hu2A1H
T
u2 =

⎡⎢⎢⎢⎢⎢⎣
9.0000 −5.1832 −0.0149 −0.0691 −2.0321
−11.5758 18.7612 11.6595 −3.7325 −0.4973

0 7.6988 0.0160 −3.6809 1.3979
0 0 −0.1607 5.7003 1.3704

0 0 0.5537 4.3754 0.5225

⎤⎥⎥⎥⎥⎥⎦ .

Hu2A1 affected rows 3:5 and columns 2:5, and multiplying on the right by H
T
u2 affected rows 1:5, columns 3:5.

Step 3: Compute Hu3 using the vector

[ −0.1607
0.5537

]
, from which there results

Hu3A2 =

⎡⎢⎢⎢⎢⎢⎣
9.0000 −5.1832 −0.0149 −0.0691 −2.0321
−11.5758 18.7612 11.6595 −3.7325 −0.4973

0 7.6988 0.0160 −3.6809 1.3979
0 0 0.5765 2.6136 0.1200
0 0 0 6.6938 1.4618

⎤⎥⎥⎥⎥⎥⎦ ,

A3 = Hu3A2H
T
u3 =

⎡⎢⎢⎢⎢⎢⎣
9.0000 −5.1832 −0.0149 −1.9323 −0.6326
−11.5758 18.7612 11.6595 0.5625 −3.7232

0 7.6988 0.0160 2.3683 −3.1455
0 0 0.5765 −0.6131 2.5435
0 0 0 −0.4614 6.8360

⎤⎥⎥⎥⎥⎥⎦ .

Hu3A2 affected rows 4:5 and columns 3:5, and multiplying on the right byH
T
u3 altered rows 1:5, columns 4:5.

The eigenvalues of both A and A3 are
{
25.8275 −4.9555 −0.1586 6.4304 6.8562

}
. �

In practice, the Householder matrices Huk are often not determined explicitly, and Example 18.7 builds them to assist
with understanding the process. In practice, use Equations 17.11 and 17.12,

HuA = A− βuuTA
AHu = A− βAuuT

to compute the product HukAk−1HT
uk with submatrix operations. From Example 18.6, we see that HukAk−1 affects rows

k + 1 : n, columns k : n, and post multiplying by HT
uk modifies rows 1 : n, columns k + 1 : n, so we can use the following

statements:

H (k + 1 : n, k : n) = H (k + 1 : n, k : n)− β
(
uuT

)
H (k+ 1 : n, k : n)

H (1 : n, k + 1 : n) = H (1 : n, k + 1 : n)− βH (1 : n, k + 1 : n)
(
uuT

)
.

In order to compute eigenvectors from their corresponding eigenvalues using the Hessenberg inverse iteration in
Section 18.8.1, we need to compute the orthogonal matrix P such that A = PHPT. Begin with P = I and continue post
multiplying P by the current Householder reflection.

Algorithm 18.2 specifies the transformation to upper Hessenberg form. It uses a function
[
u β

] = house (A, i, j) that
computes the vector u and the scalar β required to form a Householder reflection that will zero out
A (i+ 1 : n, j).



400 Numerical Linear Algebra with Applications

Algorithm 18.2 Transformation to Upper Hessenberg Form

function HHESS(A)

% Given the n× n matrix A,

% [P H]=hhess(A) returns an upper Hessenberg matrix H and

% orthogonal matrix P such that A = PHPT using Householder reflections.

% H and A have the same eigenvalues.

H=A

P=I

for k=1:n-2 do
[ u β ] = house(H, k+ 1, k)

H(k+ 1 : n, k : n) = H(k+ 1 : n, k : n)− β(uuT)H(k+ 1 : n, k : n)

H(1 : n, k+ 1 : n) = H(1 : n, k+ 1 : n)− βH(1 : n, k+ 1 : n)(uuT)

P(1 : n, k+ 1 : n) = P(1 : n, k+ 1 : n)− βP(1 : n, k+ 1 : n)(uuT)

H(k+ 2 : n, k) = zeros(n− k− 1, 1)

end for
return [H]

end function

NLALIB: The function hhess implements Algorithm 18.2.

Example 18.9. Let A be the matrix of Example 18.8. The MATLAB commands use hhess to transform A to upper
Hessenberg form and then verify that PAPT = H within expected roundoff error.

>> [P H] = hhess(A);

>> H

H =

9 -5.1832 -0.014905 -1.9323 -0.63263

-11.576 18.761 11.659 0.5625 -3.7232

0 7.6988 0.01596 2.3683 -3.1455

0 0 0.57652 -0.61311 2.5435

0 0 0 -0.46141 6.836

>> norm(P*H*P’ - A)

ans =

2.1495e-014 �

18.4.1 Efficiency and Stability

Algorithm 18.2 requires 10
3 n

3 flops for the computation ofH. To build the orthogonal matrix P requires an additional 4n3/3
flops.

The stability of this algorithm is very satisfactory. The computed upperHessenbergmatrix Ĥ satisfies Ĥ = QT (A+ E)Q,
were Q is orthogonal and ‖E‖F ≤ cn2 eps ‖A‖F , where c is a small constant [9, pp. 350-351].

18.5 THE UNSHIFTED HESSENBERG QR ITERATION

After transforming matrix A into an upper Hessenberg matrix H having the same eigenvalues as A, we can apply the basic
QR iteration and transform H into an upper triangular matrix with the eigenvalues of A on its diagonal. Before presenting
the transformation of an upper Hessenberg matrix to upper triangular form, we need the concept of an unreduced upper
Hessenberg matrix.

Definition 18.3. An upper Hessenberg matrix whose subdiagonal entries hi+1,i, 1 ≤ i ≤ n− 1 are all nonzero is said to
be unreduced or proper.



The Algebraic Eigenvalue Problem Chapter| 18 401

hi+1, i + 1 hi+1, n

hn, n-1 hnn

(n-i) × (n-i)

i × i

hi+2, i + 1

0

0

o

hii

h21

 H = 

h11

Ô

Ô

Ô

Ô

Ô Ô

Ô

Ô

Ô

FIGURE 18.7 Reduced Hessenberg matrix.

Figure 18.7 shows a reduced Hessenberg matrix, H.
View the matrix in the form [

H11 H12
0 H22

]
,

where H11 is i× i, H22 is (n− i)× (n− i), and both are upper Hessenberg. The eigenvalues of H are those of H11 and H22
(Problem 18.8). If either of these submatrices has a zero on its subdiagonal, split it into two submatrices, and so forth. As a
result, we only need to consider unreduced matrices.

Remark 18.4. For the sake of simplicity, we will only deal with unreduced upper Hessenberg matrices in the book.

During the QR iteration, we want the intermediate matrices Ai = Ri−1Qi−1 to remain upper Hessenberg, and
Theorem 18.7 guarantees this.

Theorem 18.4. If the n× n unreduced upper Hessenberg matrix Hk has full column rank and Hk = QkRk is its reduced
QR decomposition, then Hk+1 = RkQk is also an upper Hessenberg matrix.

Proof. Apply n− 1 Givens rotations to transform Hk into upper triangular matrix Rk:

Jn−1 (n− 1, n, cn−1, sn−1) Jn−2 (n− 2, n− 1, cn−2, sn−2) . . . J2 (2, 3, c2, s2) J1 (1, 2, c1, s1)Hk = Rk.

Thus, Hk = QkRk, where

Qk = J1 (1, 2, c1, s1)
T J2 (2, 3, c2, s2)

T . . . Jn−2 (n− 2, n− 1, cn−2, sn−2)T Jn−1 (n− 1, n, cn−1, sn−1)T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 −s1
s1 c1

1

. . .
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
c2 −s2
s2 c2

1

. . .
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. . .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

. . .
. . .

cn−1 −sn−1
sn−1 cn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and Qk is upper Hessenberg. By the results of Problem 17.13, Qk is unique. Now, since Rk is upper triangular and Qk is
upper Hessenberg, RkQk must be upper Hessenberg.

Theorem 18.4 shows us that each new matrix Hk+1 is upper Hessenberg and that the QR decomposition of an upper
Hessenberg matrix Hk is accomplished using n− 1 Givens rotations that eliminate the subdiagonal entries. The cost of the
decomposition is O

(
n2
)
(Problem 18.12), much better than the O

(
n3
)
flops required for a general square matrix.

In order to implement the algorithm, there must be a criterion for terminating the iteration. It can be shown that as the
iteration moves forward, the entry hn, n−1 converges to zero rapidly. As suggested in Ref. [2, p. 391], stop the iterations when∣∣hn,n−1∣∣ < tol

(∣∣hn−1, n−1∣∣+ |hnn|), accept hnn as the approximate eigenvalue, and set hn,n−1 to zero. The algorithm then
works with the (n− 1)× (n− 1) submatrix and repeats the process. The final matrix has dimension 2× 2, and its diagonal
contains the final two eigenvalues. This method is termed deflation, and the eigenvalues are on the diagonal of H.



402 Numerical Linear Algebra with Applications

We need to justify deflation by showing that it will yield the same eigenvalues we would obtain by dealing with the
whole matrix. Assume we have executed the QR iteration and have reduced the k× k submatrix, Tk, in the lower right-hand
corner to upper triangular form so we now have

H =
[
Hn−k X
0 Tk

]
.

H has the same eigenvalues as A, and the QR iteration is an orthogonal similarity transformation, so the eigenvalues of
H are the same as those of H. H is a reduced upper Hessenberg matrix, so its eigenvalues are those of Tk and Hn−k (see
Problem 18.8). Assuming that the Givens QR decomposition of an upper Hessenberg matrix is implemented in the function
givenshessqr, Algorithm 18.3 specifies the unshifted Hessenberg QR iteration.

Algorithm 18.3 Unshifted Hessenberg QR Iteration

function EIGQR(A,tol,maxiter)

% Hessenberg QR iteration for computing all the eigenvalues of

% a real matrix whose eigenvalues have distinct magnitudes.

% E=eigqr(A,tol,maxiter), where the tol is error tolerance

% desired, and maxiter is the maximum number of iterations for

% computing any single eigenvalue. Vector E contains the eigenvalues.

% If the desired tolerance is not obtained for any particular eigenvalue,

% a warning message is printed and computation continues

% for the remaining eigenvalues.

H=hhess(A)

for k=n:-1:2 do
iter=0

while |hk,k−1| ≥ tol (|hk−1,k−1| + |hkk|) do
iter=iter+1

if iter>maxiter then
print ’Failure of convergence.’

print ’Current eigenvalue approximation <value of hkk>’

break out of inner loop.

end if
[ Qk Rk ] = givenshessqr(H(1 : k, 1 : k))

H(1 : k, 1 : k) = RkQk
end while
Hk,k−1 = 0

end for
E=diag(H)

return E

end function

NLALIB: The function eigqr, supported by givenshessqr, implements Algorithm 18.3. If
∣∣hk−1, k−1∣∣+|hkk| = 0, the

algorithm fails. In the MATLAB implementation, additional code handles this case by changing the convergence criterion
to
∣∣hk, k−1∣∣ < tol ‖H‖F .

Example 18.10. This example demonstrates the behavior of eigqr for the matrix

A =

⎡⎢⎢⎣
8 6 10 10
9 1 10 5
1 3 1 8
10 6 10 1

⎤⎥⎥⎦ .

After reduction to upper Hessenberg form,

H =

⎡⎢⎢⎣
8 −12.156 −9.0829 2.3919

−13.491 8.0714 13.61 0.60082
0.0000 7.4288 −0.64678 −3.2612
0.0000 0.0000 0.66746 −4.4246

⎤⎥⎥⎦ .



The Algebraic Eigenvalue Problem Chapter| 18 403

The first QR iteration ends with the matrix⎡⎢⎢⎣
24.348 9.2602 −0.59021 −5.7314

1.0076e− 006 −7.5299 −4.1391 −2.705
0 0.0010417 −4.9789 −0.77024
0 0 0 −0.83907

⎤⎥⎥⎦ .

Now shift to the upper 3× 3 submatrix⎡⎣ 24.348 9.2602 −0.59021
1.0076e− 006 −7.5299 −4.1391

0 0.0010417 −4.9789

⎤⎦ .

The second QR iteration ends with ⎡⎣ 24.348 9.2604 −0.58643
0 −7.5282 −4.1402
0 0 −4.9806

⎤⎦ .

The last QR iteration begins with the 2× 2 submatrix[
24.348 9.2604

0 −7.5282
]
,

and finishes with [
24.348 9.2604

0 −7.5282
]

The algorithm finds the eigenvalues in the order {−0.83907,−4.9806,−7.5282, 24.348}. �

18.5.1 Efficiency

Reduction to upper Hessenberg form requires O
(
n3
)
flops. It can be shown that the QR iteration applied to an upper

Hessenberg matrix requiresO
(
n2
)
flops [5, p. 92]. First reducing A to upper Hessenberg form and applying theQR iteration

to the Hessenberg matrix costs O
(
n3
)+ O

(
n2
)
flops, clearly superior to the basic QR iteration.

18.6 THE SHIFTED HESSENBERG QR ITERATION

The rate at which the subdiagonal entries of the Hessenberg matrix converge to zero depends on the ratio
∣∣∣λ1λ2

∣∣∣p, where
λ1, λ2, |λ1| < |λ2| are the two smallest eigenvalues in the current k × k submatrix Hk. If λ2 is close in magnitude to λ1,
convergence will be slow. As a result, we employ a strategy that produces more accurate results. We transform the problem
of finding the eigenvalue to finding an eigenvalue of another matrix in which that eigenvalue is more isolated. A lemma that
will form the basis for our improved approach.

Lemma 18.1.

1. If σ is a real number, then the eigenvalues of A− σ I are (λi − σ) , 1 ≤ i ≤ n, and the eigenvector, vi, corresponding to
eigenvalue λi of A is also an eigenvector corresponding to the eigenvalue (λi − σ) of A− σ I.

2. If λi is an eigenvalue of A− σ I, then λi + σ is an eigenvalue of A.

Proof. For (1), pick any λi with eigenvector vi. Then

(A− σ I) vi = Avi − σvi = λivi − σvi = (λi − σ) vi,

and λi − σ is an eigenvalue of A− σ I with corresponding eigenvector vi.
For (b), if λi is an eigenvalue of A− σ I with corresponding eigenvector wi, then

(A− σ I)wi = λwi
Awi =

(
λ+ σ

)
wi,

and λi + σ is an eigenvalue of A.



404 Numerical Linear Algebra with Applications

A solution to the problem of nearly equal eigenvalues and to improve convergence in general is to perform what is
called a shift. There are two types of shifts, single and double. A single shift is used when computing a real eigenvalue, and
a double shift is used when computing a pair of complex conjugate eigenvalues or a pair of real eigenvalues.

18.6.1 A Single Shift

Use a single shift to create a new matrix Hk = Hk − σ1I, where σ1 is close to λ1. By Lemma 18.1, λ1 − σ1 and λ2 − σ1

are eigenvalues of Hk− σ1I. The rate of convergence to the smallest eigenvalue of Hk − σ1I then depends on
∣∣∣λ1−σ1
λ2−σ1

∣∣∣p. The
numerator λ1 − σ1 is small relative to λ2 − σ2, and the rate of convergence is improved. Also by Lemma 18.1, if λ is an
eigenvalue of Hk − σ1I then λ+ σ1 is an eigenvalue of Hk. Our strategy is to compute the QR decomposition of the matrix
Hk − σ1I = QkRk and let Hk+1 = RkQk + σ1I. The reasoning for this is as follows:

Hk+1 = RkQk + σ1I

= QTk (QkRk)Qk + σiI

= QTk (Hk − σ1I)Qk + σ1I

= QTk HkQk,

and Hk+1 is similar to Hk and to A. The problem is to choose an optimal σ1. It practice, the shift is often chosen as σ1 =
Hk (k, k), since Hkk converges to λ1. This is known as the Rayleigh quotient shift.

Example 18.11. Let A =
[

8 1
−1 5

]
, which is already in upper Hessenberg form. The example shows the detailed results

of three iterations of the single-shifted Hessenberg QR method.

σ1 = 5.0000,H1 = H1 −
[

8 1
−1 5

]
− σ1I =

[
3 1
−1 0

]
.

[
Q1, R1

] = [ [
0.9487 0.3162
−0.3162 0.9487

] [
3.1623 0.9487

0 0.3162

] ]
= qr

(
H1
)
,

H1 = R1Q1 + σ1I =
[

7.7000 1.9000
−0.1000 5.3000

]
σ1 = 5.3000,H1 = H1 − σ1I =

[
2.4000 1.9000
−0.1000 0

]
[
Q1, R1

] = [ [
0.9991 0.0416
−0.0416 0.9991

] [
2.4021 1.8984

0 0.0791

] ]
= qr

(
H1
)

H1 = R1Q1 + σ1I =
[

7.6210 1.9967
−0.0033 5.3790

]
One more iteration using σ1 = 5.3790 givesH1 =

[
7.6180 2.0000
0.0000 5.3820

]
. The eigenvalues accurate to four decimal places

are
{
7.6180, 5.3820

}
. �

Example 18.12. Let

A =

⎡⎢⎢⎢⎢⎣
−7 2 −1 7 −8
6 −5 −9 1 10
−4 3 −6 10 −10
1 4 9 −9 6
−7 5 −7 −1 7

⎤⎥⎥⎥⎥⎦ .

Use the algorithm hhess and transform A to the upper Hessenberg matrix

H =

⎡⎢⎢⎢⎢⎣
−7 −7.8222 −0.085538 −5.4477 5.2085
−10.1 −9.6569 1.0505 0.77123 3.0882
0 11.451 −1.3692 13.96 −5.7396
0 0 16.694 −2.5483 −4.2948
0 0 0 4.5531 0.57437

⎤⎥⎥⎥⎥⎦ .



The Algebraic Eigenvalue Problem Chapter| 18 405

Using the shift σ = 0.57437, initially apply the QR iteration to the matrix

H − σ I =

⎡⎢⎢⎢⎢⎣
−7.5744 −7.8222 −0.085538 −5.4477 5.2085
−10.1 −10.231 1.0505 0.77123 3.0882
0 11.451 −1.9435 13.96 −5.7396
0 0 16.694 −3.1227 −4.2948
0 0 0 4.5531 0

⎤⎥⎥⎥⎥⎦ .

After a total of five iterations that involve the additional shifts σ = {
1.6065 2.3777 2.3664 2.3663

}
, we obtain the

matrix ⎡⎢⎢⎢⎢⎣
−21.978 −3.1496 −2.8609 0.45197 5.5643
1.2298 −7.0975 6.9562 8.87 −0.39277

0 7.9804 10.4 −7.8376 −9.725
0 0 0.2591 −3.6907 0.67703
0 0 0 0 2.3663

⎤⎥⎥⎥⎥⎦ .

Now choose the shift σ = −3.6907, and continue with the submatrix

R2 =

⎡⎢⎢⎣
−21.978 −3.1496 −2.8609 0.45197
1.2298 −7.0975 6.9562 8.87

1.2842e− 016 7.9804 10.4 −7.8376
−4.6588e− 016 −1.5213e− 016 0.2591 −3.6907

⎤⎥⎥⎦ .

After a total of 14 iterations, we obtain the eigenvalue approximations λ5 = −21.746, λ4 = 13.035, λ3 = −9.856,
λ2 = −3.7993, and λ1 = 2.3663. �

The single-shift HessenbergQR iteration is implemented by the function eigqrshift in the software distribution. Each
iteration of a k × k submatrix during deflation terminates when∣∣hi,i−1∣∣ ≤ tol

(|hii| + ∣∣hi−1,i−1∣∣) ,
where tol is larger than the unit roundoff. The only difference between eigqr and eigqrshift is that the statements

[Q1, R1] = givenshessqr(H(1:k,1:k));

H(1:k,1:k) = R1*Q1;

are replaced by

sigma = H(k,k);

[Q1, R1] = givenshessqr(H(1:k,1:k) - sigma*I);

H(1:k,1:k) = R1*Q1 + sigma*I;

Remark 18.5. The function eigqrshift only applies to a real matrix with eigenvalues having distinct magnitudes. Also, it
cannot be used if the eigenvalues consist of complex conjugate pairs. We remedy these problems by developing the implicit
double-shift Francis algorithm in Section 18.8.

18.7 SCHUR’S TRIANGULARIZATION

We develop another matrix decomposition called Schur’s triangularization that involves orthogonal matrices. The decom-
position is very useful theoretically because any square matrix can be factored, including singular ones. It is also a good
lead-in to the Francis method in Section 18.8. We will restrict ourselves to real matrices with real eigenvalues. The proof
involves the use of mathematical induction, and the reader unfamiliar with this proof technique should consult Appendix B.

Theorem 18.5 (Schur’s triangularization). Every n × n real matrix A with real eigenvalues can be factored into
A = PTPT, where P is an orthogonal matrix, and T is an upper triangular matrix.

Summary:

If the result is true, then AP = PT. Proceeding like we did with the Cholesky decomposition, see what relationships must hold if
AP = PT for n×n orthogonal matrix P. When a pattern evolves, we use mathematical induction to verify the theorem. If the reader
chooses to skip the details of the proof, be sure to study Section 19.1, where Schur’s triangularization is used to very easily prove
the spectral theorem.



406 Numerical Linear Algebra with Applications

Proof. The proof uses construction and induction. If A = PTPT, then AP = PT. Let us investigate what we can conclude
from this. Equation 18.16 depicts the equation.⎡⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
t11 t12 · · · t1n
0 t22 · · · t2n
...

...
. . .

...
0 0 . . . tnn

⎤⎥⎥⎥⎦ (18.16)

From Equation 18.16, the first column of AP is

A

⎡⎢⎢⎢⎣
p11
p21
...
pn1

⎤⎥⎥⎥⎦ , (18.17)

and the first column of PT is ⎡⎢⎢⎢⎣
p11t11
p21t11
...

pn1t11

⎤⎥⎥⎥⎦ = t11

⎡⎢⎢⎢⎣
p11
p21
...
pn1

⎤⎥⎥⎥⎦ . (18.18)

If we let α =

⎡⎢⎢⎢⎣
p11
p21
...
pn1

⎤⎥⎥⎥⎦, then Equations 18.17 and 18.18 give
Aα = t11α, (18.19)

and t11 is an eigenvalue of A with associated normalized eigenvector α (P is orthogonal). The remaining (n− 1) columns
of P cannot be eigenvectors of A. Pick any other (n− 1) linearly independent vectors w2, . . . ,wn so that {α, w2, . . . , wn}
are a basis for Rn. Apply the Gram-Schmidt process to {α,w2, . . . ,wn} to obtain an orthonormal basis {v1, v2, . . . , vn}. The
Gram-Schmidt process will not change the first vector if it is already a unit vector, so v1 = α. Let P be the n × n matrix

P = [v1v2 . . . vn], where the vi are the columns ofP. PT can be written as

⎡⎢⎢⎢⎢⎢⎣
vT1

vT2
...

vTn

⎤⎥⎥⎥⎥⎥⎦, where the vTi are the rows of PT. Now form

PTAP =

⎡⎢⎢⎢⎢⎢⎣
vT1

vT2
...

vTn

⎤⎥⎥⎥⎥⎥⎦A
[
v1 v2 · · · vn

]
(18.20)

=

⎡⎢⎢⎢⎢⎢⎣
vT1

vT2
...

vTn

⎤⎥⎥⎥⎥⎥⎦
[
Av1 Av2 · · · Avn

]
(18.21)



The Algebraic Eigenvalue Problem Chapter| 18 407

=

⎡⎢⎢⎢⎢⎢⎢⎣

vT1Av1 vT1Av2 · · · vT1Avn
vT2Av1 vT2Av2 · · · vT2Avn
...

...
. . .

...

vTnAv1 vTnAv2 · · · vTnAvn

⎤⎥⎥⎥⎥⎥⎥⎦ (18.22)

=

⎡⎢⎢⎢⎢⎢⎢⎣
t11vT1 v1 vT1Av2 · · · vT1Avn
t11vT2 v1 vT2Av2 · · · vT2Avn

...
...

. . .
...

t11vTn v1 vTnAv2 · · · vTnAvn

⎤⎥⎥⎥⎥⎥⎥⎦ (18.23)

=

⎡⎢⎢⎢⎢⎢⎢⎣
vT1 t11v1 · · · · · ·

0 · · · · · ·
... · · · · · ·
0 · · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ . (18.24)

The first column of Equation 18.24 depends on the inner products 〈v1, v1〉1 , 〈v1, v2〉 , . . . , 〈v1, vn〉. Since v1, v2, . . . , vn
are orthonormal, the only nonzero inner product is 〈v1, v1〉 = 1. If we exclude row 1 and column 1, the remaining submatrix
has size (n− 1)× (n− 1), and we will designate it by A2. PTAP has the structure shown in Figure 18.8.

Now apply induction on n. If n = 1, the theorem is obviously true, since A = (1)A (1). Now assume that Schur’s
triangularization applies to any (n− 1)×(n− 1)matrix. It then applies to A2, so A2 = P2T2PT2 , where P2 is orthogonal and
T2 is upper triangular. We will show that this assumption implies that the theorem is true for an n×nmatrix. In Figure 18.9,
A2 has been replaced by its decomposition.

Now, we must take this representation of PTAP and produce the triangularization of A. Using block matrix notation, we
can write the matrix in Figure 18.9 as follows:

⎡⎢⎢⎢⎢⎢⎣
t11 · · · · · ·
0
0 P2T2PT2
...
0

⎤⎥⎥⎥⎥⎥⎦ =
[
1 0
0 P2

][
t11 · · ·
0 T2

] [
1 0
0 P2

]T
.

FIGURE 18.8 Inductive step in Schur’s triangularization.

FIGURE 18.9 Schur’s triangularization.



408 Numerical Linear Algebra with Applications

Let Q =
[
1 0
0 P2

]
and T =

[
t11 · · ·
0 T2

]
. This gives PTAP = QTQ

T
, so A = PQTQ

T
PT = (

PQ
)
T
(
PQ

)T
. If we show

that PQ is an orthogonal matrix, the proof is complete. Now,

Q
T
Q =

[
1 0
0 P2

]T [
1 0
0 P2

]
=
[
1 0
0 PT2

] [
1 0
0 P2

]
=
[
1 0
0 PT2P2

]
=
[
1 0
0 I

]
= I,

so Q is an orthogonal matrix. Then,
(
PQ

)T (
PQ

) = Q
T
PTPQ = Q

T
IQ = Q

T
Q = I, so PQ is an orthogonal matrix. If we

let Q = PQ, we have
A = QTQT,

and the proof is complete.

Example 18.13. Let A =
[

1 3
−1 5

]
. Build the Schur form by starting with Equation 18.19. Find an eigenvalue t11 and

normalized eigenvector v1 such that
Av1 = t11v1

and obtain t11 = 2, v1 =
[ −0.94868
−0.31623

]
. Now extend v1 to an orthonormal basis v1, v2 for R2. Let v2 =

[
1 1

]T
, which is

linearly independent of v1, and apply Gram-Schmidt to obtain the orthonormal basis[ −0.94868
−0.31623

]
,

[ −0.31623
0.94868

]
and matrix

P =
[ −0.94868 −0.31623
−0.31623 0.94868

]
.

Form

PTAP =
[
2 −4
0 4

]
,

as indicated in Figure 18.8. In Figure 18.8, P2 = 1, T2 = 4, and PT2 = 1. Follow the remainder of the proof, and you will

see that Q = I, T =
[
2 −4
0 4

]
, and the final value of the orthogonal matrix is P =

[ −0.94868 −0.31623
−0.31623 0.94868

]
. A Schur’s

triangularization for A is

A =
[ −0.94868 −0.31623
−0.31623 0.94868

][
2 −4
0 4

] [ −0.94868 −0.31623
−0.31623 0.94868

]
. �

Remark 18.6.

● Since t11 is any eigenvalue of A, and many choices are possible for performing the extension to an orthonormal basis
for Rn, there is no unique Schur’s triangularization (Problem 18.21).

● The MATLAB function [U, T] = schur(A) computes the Schur’s triangularization of the square matrix A.
● Our proof of Schur’s triangularization theorem involved knowing the eigenvalues of the matrix, so it will not help us to

compute eigenvalues. However, it gives us a reason to suspect that it is possible to reduce any matrix to upper triangular
form using orthogonality similarity transformations. We will see in Section 18.9 that the Francis iteration of degree one
or two does exactly that.

The theorem is actually true for any matrix A ∈ C
n×n. If A is complex, then P and T are complex. If A is real and has

complex eigenvalues, it is possible to find a real orthogonal matrix P if T is replaced by a real quasi-triangular matrix and
obtain what is termed the real Schur form. T is a block upper triangular matrix of the form

T =

⎡⎢⎢⎢⎢⎢⎣
T11 T12 T13 . . . T1k
0 T22 T23 . . . T2k
0 0 T33 . . . T3k
...

...
...

0 0 0 . . . Tkk

⎤⎥⎥⎥⎥⎥⎦ ,



The Algebraic Eigenvalue Problem Chapter| 18 409

where the diagonal blocks are of size 1 × 1 or 2 × 2. The 1 × 1 blocks contain the real eigenvalues of A, and the
eigenvalues of the 2 × 2 diagonal blocks contain complex conjugate eigenvalues or two real eigenvalues. For a proof,
see Ref. [2, pp. 376-377].

Example 18.14. Compute the real Schur form of a 7× 7 matrix and note the 2× 2 and 1× 1 diagonal blocks that contain
the eigenvalues.

[U,T] = schur(A);
>> T

T =

141.6 -86.367 -85.826 -91.634 -14.548 -57.656 -31.229

0 -167.75 12.805 12.646 -32.73 -14.815 74.447

0 0 54.834 -93.417 71.143 27.484 21.421

0 0 80.735 54.834 2.7022 144.71 -2.5564

0 0 0 0 -9.4734 -117.66 28.839

0 0 0 0 0 -67.023 130.67

0 0 0 0 0 -42.112 -67.023

>> eig(A)

ans =

141.6 + 0i

54.834 + 86.845i

54.834 - 86.845i

-167.75 + 0i

-9.4734 + 0i

-67.023 + 74.181i

-67.023 - 74.181i

The diagonal blocks are[ −67.023 130.67
−42.112 −67.023

]
,

[ −9.4734 ] , [
54.834 −93.417
80.735 54.834

]
,

[
141.6 −86.367
0 −167.75

]
.

Block

[ −67.023 130.67
−42.112 −67.023

]
gives eigenvalues −67.023 ± 74.181i, block

[
54.834 −93.417
80.735 54.834

]
gives eigenvalues

54.834 ± 86.845i, and block

[
141.6 −86.367
0 −167.75

]
returns the real eigenvalues 141.6 and −167.75. The 1 × 1 block[ −9.4734 ] produces eigenvalue−9.4734. �

18.8 THE FRANCIS ALGORITHM

The Francis algorithm, also known as the implicit QR algorithm, has been a staple in computing the eigenvalues and
eigenvectors of a small- to medium-size general matrix for many years [54, 55]. It begins by reducing A to upper Hessenberg
form so that QTAQ = H, where Q is an orthogonal matrix (Algorithm 18.2). Then the algorithm transforms H to upper
triangular form by using a succession of orthogonal similarity transformations rather than directly using shifts and the QR
decomposition, and this is the origin of the term implicit. There are two versions of the Francis algorithm, the single shift
and double shift. The single-shift version can be used to determine the eigenvalues of a real matrix whose eigenvalues
are real, and this includes symmetric matrices. Chapter 19 discusses eigenvalue computation of a symmetric matrix and
uses the single-shift algorithm. The double-shift version computes all eigenvalues, real or complex conjugate pairs, of a
nonsymmetric matrix without using complex arithmetic. The development of the double-shift version is complicated, and
can be omitted if desired, but the reader should study Section 18.8.1.

18.8.1 Francis Iteration of Degree One

The first step is to apply orthogonal similarity transformations that reduce the matrix A to upper Hessenberg form, H =
QTAQ. With the explicit shifted QR algorithm, we perform a series of QR factorizations onH− σ I, each of which requires



410 Numerical Linear Algebra with Applications

O
(
n2
)
flops. Instead, the Francis algorithm executes a sequence of orthogonal similarity transformations to form the QR

factorizations.
Recall that an explicit single shift requires executing the following two statements in succession:

H − σ I = Q1R1, H1 = R1Q1 + σ I,

so

QT
1H − σ1QT

1 = R1

H1QT
1 − σ1QT

1 = R1,

and

H1 = QT
1HQ1. (18.25)

See Section 18.6.1 for an alternative derivation of Equation 18.25. The trick is to formH1 without having to directly compute
Q1 from the QR decomposition. The approach is based upon the implicit Q theorem. For a proof see Ref. [2, p. 381].

Theorem 18.6 (The implicit Q theorem). Let Q = [
q1 q3 . . . qn−1 qn

]
and V = [

v1 v3 . . . vn−1 vn
]
be

orthogonal matrices with the property that both QTAQ = H and VTAV = K are unreduced upper Hessenberg, where
A ∈ Rn×n. If q1 = v1, then qi = ±vi and

∣∣hi, i−1∣∣ = ∣∣ki, i−1∣∣ for 2 ≤ i ≤ n. In other words, H and K are essentially the same
matrix.

The theorem applies because we are going to execute a series of steps

Hi+1 = QT
i HiQi.

in lieu of performing a QR decomposition, where Qi is a orthogonal matrix with an appropriately chosen first column.

Preparation for Understanding the Iteration
Suppose that

H =

⎡⎢⎢⎣
h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
0 0 h43 h44

⎤⎥⎥⎦
is upper Hessenberg, except for a nonzero entry at position (3, 1). It is important to understand that the element to be zeroed
out by J (i, j, c, s) does not have to be aji. Let c and s be determined by[

c, s
] = givensparms (h21, h31) ,

and consider the following:

J (2, 3, c, s)H =

⎡⎢⎢⎣
1 0 0 0
0 c s 0
0 −s c 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
0 0 h43 h44

⎤⎥⎥⎦

=

⎡⎢⎢⎣
h11 h12 h13 h14

ch21 + sX ch22 + sh32 ch23 + sh33 ch24 + sh34
−sh21 + ch31 −sh22 + ch32 −sh23 + ch33 −sh24 + ch34

0 0 h43 h44

⎤⎥⎥⎦

=

⎡⎢⎢⎣
h11 h12 h13 h14

ch21 + sX ch22 + sh32 ch23 + sh33 ch24 + sh34
0 −sh22 + ch32 −sh23 + ch33 −sh24 + ch34
0 0 h43 h44

⎤⎥⎥⎦



The Algebraic Eigenvalue Problem Chapter| 18 411

The action zeroed out position (3, 1). If we multiply by J (2, 3, c, s)T on the right, here is the form of the product:

J (2, 3, c, s)HJ (2, 3, c, s)T =

⎡⎢⎢⎣
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 X ∗ ∗

⎤⎥⎥⎦ .

By computing J (2, 3, c, s), we remove a nonzero item at position (3, 1), but introduce another at position (4, 2), and the
matrix is not upper Hessenberg. We have “chased” a nonzero element from (3, 1) to (4, 2) with an orthogonal similarity
transformation.

Demonstration of the Francis Iteration of Degree One
We use a 5× 5 matrix to illustrate a step of the Francis algorithm:

H =

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

⎤⎥⎥⎥⎥⎦ .

Step 1: Assume a real shift, σ , and form a Givens rotation

J1 = J (1, 2, c1, s1) =

⎡⎢⎢⎢⎢⎢⎣
c1 s1
−s1 c1

1
1

1

⎤⎥⎥⎥⎥⎥⎦ ,

where c and s are determined from the vector ⎡⎢⎢⎢⎢⎢⎢⎣
h11 − σ

h21
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that the computation of c and s using a vector with first element h11−σ is critical. It will be a important link to Theorem 18.5
that justifies the implicit approach to the single-shift algorithm. The product J1HJT1 and the resulting matrix have the form

H1 = J1HJ
T
1 =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
+ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

⎤⎥⎥⎥⎥⎥⎦ .

The product disturbs the upper Hessenberg form, leaving a nonzero element at (3, 1). The element at (3, 1) is called a bulge. Our
job is to chase the bulge down to the right and off the matrix, leaving the resulting matrix in upper Hessenberg form.

Step 2: Let c2 and s2 be formed from the elements H1 (2, 1) and H1 (3, 1). The rotation J2 =

⎡⎢⎢⎢⎢⎢⎣
1

c2 s2
−s2 c2

1
1

⎤⎥⎥⎥⎥⎥⎦ applied to H1

eliminates the bulge at (3, 1), but after postmultiplication by JT2 , another bulge appears at (4, 2):

H2 = J2J1HJ
T
1 J

T
2 =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 + ∗ ∗ ∗
0 0 0 ∗ ∗

⎤⎥⎥⎥⎥⎥⎦ .



412 Numerical Linear Algebra with Applications

Step 3: Let c3 and s3 be formed from the elements H2 (3, 2) and H2 (4, 2). The rotation J3 =

⎡⎢⎢⎢⎢⎢⎣
1

1
c3 s3
−s3 c3

1

⎤⎥⎥⎥⎥⎥⎦ applied to H2

eliminates the bulge at (4, 2), but after postmultiplication by JT3 another bulge appears at (5, 3).

H3 = J3J2J1H2J
T
1 J

T
2 J

T
3 =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 + ∗ ∗

⎤⎥⎥⎥⎥⎥⎦ ,

Step 4: Let c4 and s4 be formed from the elements H3 (4, 3) and H3 (5, 3). The rotation J4 =

⎡⎢⎢⎢⎢⎢⎣
1

1
1

c4 s4
−s4 c4

⎤⎥⎥⎥⎥⎥⎦ applied to H3

eliminates the bulge at (5, 3), and after postmultiplication by JT4 no more bulges remain, and the matrix has upper Hessenberg
form

H4 = J4J3J2J1 (H − σ I) JT1 J
T
2 J

T
3 J

T
4 =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

⎤⎥⎥⎥⎥⎥⎦
In general, each iteration chases the bulge through indices (3, 1), (4, 2), (5, 3), (6, 4), . . . , (n, n− 2).
If we let K be the orthogonal matrix

K = (
JT1 J

T
2 J

T
3 J

T
4

)T
,

then

KTHK =

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

⎤⎥⎥⎥⎥⎦
is an unreduced upper Hessenberg matrix, and a check will show that K has the form

K =

⎡⎢⎢⎢⎢⎣
c1 ∗ ∗ ∗ ∗
s1 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

⎤⎥⎥⎥⎥⎦ .

If Givens rotations are used to compute the QR decomposition of H − σ I, the first column of Q will be the same as that
of K. By the implicit Q theorem, the matrices K and the matrix Q are essentially the same matrix, and K can be used to
perform the single shift given by Equation 18.16. Except for signs, the matrix after the bulge chase is the matrix we would
obtain by doing an explicit shift. Algorithm 18.4 implements the bulge chase. It uses a function givensmult(H,i,j,c,s) that
computes HJ (i, j, c, s)T. An implementation of the function is in the book software distribution.



The Algebraic Eigenvalue Problem Chapter| 18 413

Algorithm 18.4 Single Shift Using the Francis Iteration of Degree One

function CHASE(H)

% Bulge chase in the Francis algorithm.

% [Q, H1]=chase(H) returns an orthogonal matrix Q such that QTHQ = H1,

% where H and H1 are upper Hessenberg matrices, and Q is an orthogonal matrix.

Q=I

% use hnn as the shift.

σ = hnn
% case (1,2), (2,1) using shift σ.

[c,s] = givensparms(h11− σ, h21)

H=givensmul(H,1,2,c,s)

H=givensmult(H,1,2,c,s)

Q=givensmul(Q,1,2,c,s)

% chase the bulge.

for i=1:n-2 do
[c, s] = givensparms(hi+1,i, hi+2, i)
H=givensmul(H,i+1,i+2,c,s)

H=givensmult(H,i+1,i+2,c,s)

hi+2, i = 0

Q=givensmul(Q,i+1,i+2,c,s)

end for
H1=H

return [Q,H1]

end function

NLALIB: The function chase implements Algorithm 18.4.
The single-shift strategy is only practical when we know that all eigenvalues are real, and this is true for a symmetric

matrix. Section 19.5 uses the implicit single shift to build a general symmetric matrix eigenvalue/eigenvector solver.

18.8.2 Francis Iteration of Degree Two

When computing a complex conjugate pair of eigenvalues, it is desirable to avoid complex arithmetic, since complex
arithmetic requires about four times as many flops. By performing a double shift, we can compute both eigenvalues using
only real arithmetic, and the double shift can also be used to approximate two real eigenvalues. The idea is to use the
eigenvalues of the 2× 2 lower right-hand corner submatrix as the shifts (Figure 18.10).

Let H be the upper Hessenberg matrix whose 2× 2 submatrix has eigenvalues σ1 and σ2. Shift first by σ1 to obtain

H − σ1I = Q1R1, H1 = R1Q1 + σ1I, (18.26)

and then shift H1 by σ2 and we have

H1 − σ2I = Q2R2, H2 = R2Q2 + σ2I. (18.27)

The initial matrix H is real, but if σ1 and σ2 = σ1 are complex conjugates, the double shift as given requires complex
arithmetic. By some clever operations, we can perform the shifts entirely with real arithmetic. When dealing with a complex
matrix, we use the Hermitian transpose, or the conjugate transpose, that is, the complex conjugate of the elements in the
transpose, indicated by A∗. For instance

0

FIGURE 18.10 Eigenvalues of a 2× 2 matrix as shifts.



414 Numerical Linear Algebra with Applications

[
1− i 2+ 3i
5− 2i 6+ 9i

]∗
=
[
1+ i 5+ 2i
2− 3i 6− 9i

]
.

From Equation 18.26, we have

Q∗1H − σ1Q∗1 = R1
H1Q

∗
1 − σ1Q

∗
1 = R1,

so

Q∗1HQ1 = H1. (18.28)

Similarly, Equation 18.27 gives

Q∗2H1Q2 = H2, (18.29)

and by substituting Equation 18.28 into Equation 18.29, we have

H2 = (Q1Q2)
∗H (Q1Q2) (18.30)

Thus, H and H2 are orthogonally similar and have the same eigenvalues. These relationships allow us to prove the
following lemma that leads to an algorithm for performing the double shift using real arithmetic.

Lemma 18.2. There exist orthogonal matrices Q1 and Q2 such that

a. Q1Q2 is real,
b. H2 is real

Proof. From Equations 18.26 and 18.27,

Q2R2 = H1 − σ2I = R1Q1 + (σ1 − σ2) I,

and

Q1Q2R2R1 = Q1 (R1Q1 + (σ1 − σ2) I)R1 (18.31)

= Q1R1Q1R1 + (σ1 − σ2)Q1R1 (18.32)

= (H − σ1I) (H − σ1I)+ (σ1 − σ2) (H − σ1I) (18.33)

= H2 − 2σ1H + σ 2
1 I + σ1H − σ 2

1 I − σ2H + (σ1σ2) I (18.34)

= H2 − (σ1 + σ2)H + σ1σ2I (18.35)

= (H − σ1I) (H − σ2I) = S (18.36)

If σ1 = a+ ib and σ2 = a− ib are complex conjugates, Equation 18.36 takes the form

H2 − 2Real (σ1)H + |σ1|2 I.
The matrix S is real, and S = (Q1Q2) (R2R1) is a QR decomposition of S, so both Q1Q2 and R1R2 can be chosen to be real.
By Equation 18.30, H2 is real.

Now let’s see how all this fits together to perform a double shift. The lower right-hand 2× 2 matrix is

M =
[
hn−1,n−1 hn−1,n
hn,n−1 hnn

]
,

whose eigenvalues are

λ =
(
hn−1, n−1 + hnn

)±√(
hn−1, n−1 + hnn

)2 − 4
(
hn−1, n−1hnn − hn,n−1hn−1, n

)
2

.

The matrix S of Equation 18.36 has the value (Problem 18.18)

S = H2 − (
hn−1, n−1 + hnn

)
H + (

hn−1, n−1hnn − hn,n−1hn−1, n
)
I (18.37)

= H2 − trace (M) + det (M) . (18.38)



The Algebraic Eigenvalue Problem Chapter| 18 415

Find the QR decomposition of S = QR = (Q1Q2) (R2R1) and compute

H2 = QTHQ.

In summary,

Computation of a Double Shift

1. Form the real matrix S = H2 − (
hn−1, n−1 + hnn

)
H + (

hn−1, n−1hnn − hn, n−1hn−1, n
)
I.

2. Find the QR decomposition S = QR.
3. Compute H2 = QTHQ.

It would appear we can simply use the double shift as we have developed it to find complex conjugate eigenvalues or
two real eigenvalues. We call this an explicit double shift. There is a serious problem! Each execution of step 2 costs O

(
n3
)

flops, so n applications of the double shift will cost O
(
n4
)
flops, and this is not at all satisfactory. We want to compute the

upper Hessenberg matrixH2 = (Q)TH (Q)without first performing aQR decomposition of S. By using an implicit process,
we can compute a double shift using only O

(
n2
)
flops. We will proceed like we did for the implicit single shift, except the

rotations used will be a little more complex.
Wewill findQ and thusH2 by using the implicitQ theorem.We know thatQTHQ = H2, whereQR = H2−(σ1 + σ2)H+

σ1σ2I. The implicit Q theorem now tells us that we essentially getH2 using any orthogonal similarity transformation ZTHZ
provided that ZTHZ is upper Hessenberg, and Q and Z have the same first column or Qe1 = Ze1.

A calculation shows that the first column of S is (Problem 18.19)

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(h11 − σ1) (h11 − σ2)+ h12h21
h21 ((h11 + h22)− (σ1 + σ2))

h21h32
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (18.39)

We will use a 7 × 7 matrix to illustrate the sequence of orthogonal transformations. Form Householder reflection Hu1
by letting Hu1 be the 3× 3 reflection that zeros out h21 ((h11 + h22)− (σ1 + σ2)) and h21h32 and adding the 4× 4 identity
matrix to form

Hu1 =
[
Hu1

I

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Recalling that a Householder reflection is symmetric, now compute

Hu1
HHu1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
+ ∗ ∗ ∗ ∗ ∗ ∗
+ + ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and obtain a upper Hessenberg matrix with the exception of a 2× 2 bulge. We must chase this bulge down to the right and
out. Create a 3× 3 Householder reflection Hu2 that is designed to zero out indices (3, 1) and (4, 1) and form the reflection



416 Numerical Linear Algebra with Applications

Hu2 =
⎡⎣ 1

Hu2
I

⎤⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A premultiplication by Hu2 zeroes out indices (3, 1) and (4, 1). Compute

Hu2Hu1HHu1Hu2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
+ ∗ ∗ ∗ ∗ ∗
+ + ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and we have chased the bulge down one row and one column to the right. Create a 3×3 reflectionHu3 that zeros out indices
(4, 2) and (5, 2), and form

Hu3 =

⎡⎢⎢⎣
1
1
Hu3

I

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The computation

Hu3Hu2Hu1HHu1Hu2Hu3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
+ ∗ ∗ ∗ ∗
+ + ∗ ∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

again moves the bulge down. Build a 3× 3 reflection Hu4 that zeros out indices (5, 3) and (6, 3), and form

Hu4 =

⎡⎢⎢⎢⎢⎣
1
1
1
Hu4

I

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and compute

Hu4Hu3Hu2Hu1HHu1Hu2Hu3Hu4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
+ ∗ ∗ ∗
+ + ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,



The Algebraic Eigenvalue Problem Chapter| 18 417

For the next step, build a 3× 3 reflection Hu5 that zeros out indices (6, 4) and (7, 4), and form

Hu5 =

⎡⎢⎢⎢⎢⎣
1
1
1
1
Hu5

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and then

Hu5Hu4Hu3Hu2Hu1HHu1Hu2Hu3Hu4Hu5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
+ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To complete the chase, construct a 2× 2 Householder reflection, Hu6 that zeros out index (7, 5), form

Hu6 =

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1
Hu6

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
∗ ∗
∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the final result is an upper Hessenberg matrix

Hu6Hu5Hu4Hu3Hu2Hu1HHu1Hu2Hu3Hu4Hu5Hu6 = QHQT

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Q = Hu6Hu5Hu4Hu3Hu2Hu1 .
The 7× 7 example motivates the general sequence of n− 1 Householder reflections:⎡⎣ I(i−1)×(i−1)

H
3×3
ui

I(n−i−2)×(n−i−2)

⎤⎦ , 1 ≤ i ≤ n− 2

[
I(n−2)×(n−2)

H
2×2
un−1

]
, i = n− 1,

which give rise to

QHQT = H,

where Q = Hun−1Hun−2 . . . Hu2Hu1 and H is an upper Hessenberg matrix. Now,

Qe1 =
(
Hun−1 . . . Hu3Hu2

)
Hu1e1.



418 Numerical Linear Algebra with Applications

The product
(
Hun−1 . . . Hu3Hu2

)
does not affect column 1 of Hu1e1, so

Qe1 = Hu1e1.

In forming theQR decomposition, S = ZR, using Householder reflections, the first column of Z isHu1e1. By the implicit
Q theorem, QT is a matrix such that

H2 =
(
QT)T H (Q)T ,

as desired.
The algorithm requires O (n) flops to apply each reflector, and n− 1 reflectors are required, so the cost of an iteration is

O
(
n2
)
flops.

Example 18.15. Let

H =
⎡⎣ 5 −1 1
6 1 2
0 3 4

⎤⎦ .

Form the 2× 2 matrix

[
1 2
3 4

]
, hn−1, n−1 + hnn = 5, hn−1, n−1hnn − hn, n−1hn−1, n = −2, so

S = H2 − 5H − 2I =
⎡⎣ −8 2 2

6 −6 6
18 0 0

⎤⎦ .

The QR decomposition of S gives

Q =
⎡⎣ −0.3885 0.1757 0.9045

0.2914 −0.9078 0.3015
0.8742 0.3807 0.3015

⎤⎦ ,

and

H2 = QTHQ =
⎡⎣ 4.2642 −1.6270 1.9328
1.6896 −0.9005 −4.1500

0 1.8719 6.6364

⎤⎦ .

Now we will perform the double shift using the implicit algorithm.

v1 =
⎡⎣ −86

18

⎤⎦ Hu1 =
⎡⎣ −0.3885 0.2914 0.8742

.2914 0.9389 −0.1834
0.8742 −0.1834 0.4497

⎤⎦
Hu1H =

⎡⎣ −0.1943 3.3024 3.6909
7.0900 0.0971 1.4353
3.2701 0.2914 2.3059

⎤⎦ Hu1HHu1 =
⎡⎣ 4.2642 2.3668 0.8840
−1.4716 1.8938 6.8254
0.8302 0.8034 3.8420

⎤⎦
v2 =

[ −1.4716
0.8302

]
Hu2 =

⎡⎣ 1 0 0
0 −0.8710 0.4913
0 0.4913 0.8710

⎤⎦
Hu2Hu1HHu1 =

⎡⎣ 4.2642 2.3668 0.8840
1.6896 −1.2547 −4.0570

0 1.6303 6.6998

⎤⎦ Hu2Hu1HHu1Hu2 =
⎡⎣ 4.2642 −1.6270 1.9328
1.6896 −0.9005 −4.1500

0 1.8719 6.6364

⎤⎦ = H2

Observe that the product Hu2Hu1HHu1Hu2 removed the bulge at (3, 1), and that the implicit computation produced the
same value for H2. Also, compute the orthogonal matrix

QT = Hu1Hu2 =
⎡⎣ −0.3885 0.1757 0.9045

0.2914 −0.9078 0.3015
0.8742 0.3807 0.3015

⎤⎦ ,

which is the same matrix obtained by the QR decomposition of S. �



The Algebraic Eigenvalue Problem Chapter| 18 419

Building an n× n Householder reflection like we did in Example 18.15 is not efficient. We should take advantage of the
identity and zero block matrices in Hu and do each computation HuHHuusing submatrix operations.

HuiH =
⎡⎣ I(i−1)×(i−1) 0(i−1)×3 0(i−1)×(n−i−2)

03×(i−1) H
3×3
ui 03×(n−i−2)

0(n−i−2)×(i−1) 0(n−i−2)×3 I(n−i−2)×(n−i−2)

⎤⎦
⎡⎢⎣ H(i−1)×(i−1)

1 H(i−1)×3
2 H(i−1)×(n−i−2)

3
H3×(i−1)
4 H3×3

5 H3×(n−i−2)
6

H(n−i−2)×(i−1)
7 H(n−i−2)×3

8 H(n−i−2)×(n−i−2)
9

⎤⎥⎦
=

⎡⎢⎣ H(i−1)×(i−1)
1 H(i−1)×3

2 H(i−1)×(n−i−2)
3

H
3×3
ui H3×(i−1)

4 H
3×3
ui H3×3

5 H
3×3
ui H3×(n−i−2)

6

H(n−i−2)×(i−1)
7 H(n−i−2)×3

8 H(n−i−2)×(n−i−2)
9

⎤⎥⎦
The only computation that need be done involves rows i : i + 2, and columns 1 : n. The same type of analysis shows

that the product
(
HuiH

)
Hui is done using rows 1 : n and columns i : i + 2. The final preproduct product using a 2 × 2

Householder reflection involves rows n−1 : n and columns 1 : n, followed by the postproduct using rows 1 : n and columns
n− 1 : n.

The following algorithm implements the implicit double-shift QR algorithm.

Algorithm 18.5 Implicit Double-Shift QR

function IMPDSQR(H)

% H is an n× n upper Hessenberg matrix.

% Apply one iteration of the double shift implicit QR algorithm,

% and return upper Hessenberg matrix H2 and orthogonal

% matrix Q such that H2 = QHQT.

Q = I

% trace of lower right-hand 2× 2 matrix.

trce = hn−1,n−1 + hnn
% determinant of lower right-hand 2× 2 matrix.

determ = hn−1,n−1hnn − hn,n−1hn−1,n
% first nonzero entries of column 1 of

x = h211 + h12h21 − h11 × trce+ determ

y = h11h21 + h21 (h22 − trce)

z = h21h32

for i=0:n-3 do[
u β

] = houseparms

([
x y z

]T)
lengu=length(u)

Hu = Ilengu×lengu − βuuT

H (i+ 1 : i+ 3,1 : n) = HuH (i+ 1 : i+ 3,1 : n)

H (1 : n,i+ 1 : i+ 3) = H (1 : n,i+ 1 : i+ 3) Hu
Q (i+ 1 : i+ 3,1 : n) = HuQ (i+ 1 : i+ 3,1 : n)

x = hi+2,i+1
y = hi+3,i+1
if i<n-3 then

z = hi+4,i+1
end if

end for[
u β

] = houseparms

([
x y

]T)
lengu=length(u)

Hu = Ilengu×lengu − βuuT

H (n− 1 : n,1 : n) = HuH (n− 1 : n,1 : n)

H (1 : n,n− 1 : n) = H (1 : n,n− 1 : n) Hu
H2 = H

return
[
Q, H2

]
end function



420 Numerical Linear Algebra with Applications

Now, how do we use impdsqr to compute all the eigenvalues, real and complex conjugates, of a nonsymmetric matrix?
The answer is to use deflation and apply the function impdsqr to the current k × k deflated matrix. The matrix we build is
precisely the quasitriangular matrix of the real Schur form presented in Section 18.7.

We need to know when to terminate the iteration and deflate again. To do this we must have a means of detecting what
type of blocks are on the diagonal. If the convergence is indicated by a value tol there are two criteria we must consider.
See Problem 18.41 for experiments that exhibit the criteria. If hk−1, k−2 < tol, there are two real eigenvalues or a complex
conjugate pair in the 2× 2 submatrix T (k − 1 : k, k − 1 : k).

. . .
. . .
∼ 0 hk−1,k−1 hk−1,k

[
λk1 λk2

] = eig (H (k − 1 : k, k − 1 : k))
hk,k−1 hkk

If hk,k−1 < tol, there is a real eigenvalue at T (k, k). This is similar to the criteria we used to determine convergence of
the shifted Hessenberg iteration in Section 18.6.1.

. . .
. . .

hk−1, k−1 hk−1, k
∼ 0 hkk λk = hkk

Remark 18.7. In Ref. [1], it is stated that on the average only two implicit QR iterations per eigenvalue are needed for
convergence for most matrices. However, it is possible for convergence to fail (Problem 18.27), and when this happens, a
special shift every 10 shifts is applied in production versions of the algorithm, such as the eig function in MATLAB. The
iterations may converge slowly (see Problem 18.27), but this is rare. If the iteration appears to be converging slowly, an
iteration with random shifts can be used to keep convergence on track.

A study of the mechanisms involved in the Francis algorithm can be found in Ref. [23, Chapter 6]. The analysis involves
integrating a study of the power method, similarity transformations, upper Hessenberg form, and Krylov subspaces. Krylov
subspaces are discussed in Chapter 21 when we develop iterative methods for large, sparse matrix problems.

Remark 18.8. The algorithm requires 10n3 flops if eigenvalues only are required. It is possible to calculate the
corresponding eigenvectors by accumulating transformations (see Ref. [23, pp. 387-389]). In this case, 27n3 flops are
required.

18.9 COMPUTING EIGENVECTORS

We have discussed ways to compute the eigenvalues of a real matrix, but have not discussed a general method of computing
the corresponding eigenvectors. To find an eigenvector corresponding to a given eigenvalue, we use the shifted inverse
iteration, a variation on the inverse power method for computing the smallest eigenvalue of a matrix. First, we need a
lemma that provides a tool needed to develop the inverse iteration algorithm.

Lemma 18.3. If (λi, vi) are the eigenvalue/eigenvector pairs of A, 1 ≤ i ≤ n, then (A− σ I)−1 has eigenvalue/eigenvector
pairs

(
1

λi−σ
, vi
)
.

Proof. If A is an n × n nonsingular matrix, the eigenvalues of A−1 are the reciprocals of those for A, and the eigenvectors
remain the same. Thus, the result follows immediately from Lemma 18.1.

If (λ, v) is an eigenvalue/eigenvector pair of A, and σ is an approximate eigenvalue, then (λ− σ)−1 is likely to be

much larger than
(
λ̂− σ

)−1
for any eigenvalue λ̂ �= λ. Thus, (λ− σ)−1 is the largest eigenvalue of (A− σ I)−1. Apply the

power method to (A− σ I)−1 to approximate eigenvector v. This is termed the inverse iteration for computing an eigenvector
corresponding to an approximate eigenvalue σ .

Just as in Algorithm 18.2, we compute xi+1 by solving the system (A− σ I) xi+1 = xi; however, there appears to be a
problem. If σ is very close to an eigenvalue λ, and v �= 0 is close to an eigenvector corresponding to λ, then (A− σ I) v is



The Algebraic Eigenvalue Problem Chapter| 18 421

close to zero, and (A− σ I) is close to being singular. As a result, there may be serious error in the computation of xi+1. As
it turns out, the near singularity of A− σ I is a good thing. The error at each iteration causes the approximate eigenvector to
move closer and closer to the direction of the actual eigenvector. See Ref. [23, pp. 324-325].

Example 18.16. Let A be the matrix of Example 18.7 that has an eigenvalue 2.2518. Choose σ = 2.2000, x0 =[
1 1 1

]T
, and execute three shifted inverse iterations. The norm of the difference between the computed and actual

result is approximately 0.0018431.

>> sigma = 2.2000;

>> x0 = ones(3,1);

>> [L U P] = lu(A - sigma*eye(3));
>> v = x0;

>> for i = 1:3

v = lusolve(L,U,P,v);

v = v/norm(v);
end

>> v’

ans =

0.25979 0.87965 -0.39841 �

Now that we have intuitively explained the algorithm and given an example, a proof that it works is in order.

Theorem 18.7. If the eigenvalues of A satisfy Equation 18.14, the sequence {xk} in the shifted inverse iteration converges
to an approximate eigenvector corresponding to the approximate eigenvalue σ .

Proof. The eigenvalues of (A− σ I)−1 are (λ1 − σ)−1 , (λ2 − σ)−1 , . . . , (λn − σ)−1, and the eigenvectors are the same
as A. Assume our approximate eigenvalue σ approximates λ1 and that λ1 corresponds to eigenvector v1, Just as in the proof
of Theorem 18.2, we have(

(A− σ I)−1
)k
x0 = c1

(λ1 − σ)k
v1 + c2

(λ2 − σ)k
v2 + . . .+ cn

(λn − σ)k
vn

= 1

(λ1 − σ)k

(
c1v1 + c2

(
λ1 − σ

λ2 − σ

)k
v2 + c3

(
λ1 − σ

λ3 − σ

)k
v3 + . . .+ cn

(
λ1 − σ

λn − σ

)k
vn

)
.

Since σ approximates λ1, 1
|λ1−σ | > 1

|λi−σ | , 2 ≤ i ≤ n, it follows that
∣∣∣λ1−σ

λi−σ

∣∣∣ < 1. The terms
(

λ1−σ
λi−σ

)k
, 2 ≤ i ≤ n become

small as k increases. If we normalize the sequence as in Equation 18.14,
(
(A− σ I)−1

)k
x0 converges to a multiple of v1.

A function inverseiter that implements inverse iteration is an easy modification of smalleig and is left to the
exercises.

Remark 18.9. Given an accurate approximation to an eigenvalue, the inverse iteration converges very quickly.

18.9.1 Hessenberg Inverse Iteration

If we have an isolated approximation to an eigenvalue σ , the shifted inverse iteration can be used to compute an approximate
eigenvector. However, if we use the Francis iteration to compute all the eigenvalues of an upper Hessenberg matrix H, we
should take advantage of the upper Hessenberg structure of the matrix to find the corresponding eigenvectors. H has the
same eigenvalues as A but not the same eigenvectors. However, we can use the orthogonal matrix P in the transformation
to upper Hessenberg form to compute an eigenvector of A.

Let u be an eigenvector of H = PTAP corresponding to eigenvalue λ of A. Then Hu = λu, so PTAPu = λu and A (Pu) = λ (Pu).
Thus, Pu is an eigenvector of A corresponding to eigenvalue λ.

Use shifted inverse iteration with matrix H to obtain eigenvector u, and then v = Pu is an eigenvector of A. Since
the inverse iteration requires repeatedly solving a linear system, we use the LU decomposition first. The normal LU
decomposition with partial pivoting requires O

(
n3
)
flops, but we can take advantage of the upper Hessenberg form of H to

perform the decomposition more efficiently. Begin by comparing |h11| and |h21| and exchange rows 1 and 2, if necessary,



422 Numerical Linear Algebra with Applications

to place the largest element in magnitude at h11. In general, compare |hii| and
∣∣hi+1, i∣∣ and swap rows if necessary. During

the process, maintain the lower triangular matrix

L =

⎡⎢⎢⎢⎢⎢⎢⎣

1
l21 1

l32
. . .
. . . 1

ln,n−1 1

⎤⎥⎥⎥⎥⎥⎥⎦
and the permutation matrix P. The algorithm requires (n− 1) divisions

(
hi+1,i
hii

)
and 2 [(n− 1)+ (n− 2)+ · · · + 1] =

n (n− 1) multiplications and subtractions, for a total of n2 − 1 flops. Since the algorithm is very similar to ludecomp
(Algorithm 11.2), we will not provide a formal specification. The MATLAB function luhess in the software distribution
implements the algorithm.

Example 18.17. The matrix EX18_17 is a 500 × 500 upper Hessenberg matrix. Time its LU decomposition using
ludecomp developed in Chapter 11, and then time its decomposition using luhess. The function ludecomp performs
general LU decomposition with pivoting, so it does not take advantage of the upper Hessenberg structure. The execution
time of luhess is approximately 13 times faster than that of ludecomp.

>> tic;[L1, U1, P1] = ludecomp(EX18_17);toc
Elapsed time is 0.421030 seconds.

>> tic;[L2, U2, P2] = luhess(EX18_17);toc;
Elapsed time is 0.032848 seconds. �

The algorithm eigvechess uses luhess with inverse iteration to compute an eigenvector of an upper Hessenberg matrix
with known eigenvalue σ .

Algorithm 18.6 Inverse Iteration to Find Eigenvector of an Upper Hessenberg Matrix

function EIGVECHESS(H,σ,x0,tol,maxiter)

% Computes an eigenvector corresponding to the approximate

% eigenvalue sigma of the upper Hessenberg matrix H

% using the inverse iteration.

% [x iter]=eigvechess(H,sigma,x0,tol,maxiter)

% sigma is the approximate eigenvalue,

% x0 is the initial approximation to the eigenvector,

% tol is the desired error tolerance, and maxiter is

% the maximum number of iterations allowed.

% iter=-1 if the method did not converge.

[L U P]=luhess(A− σI)

for i=1:maxiter do
xi =lusolve(L,U,P,xi−1)
xi = xi/ ‖xi‖2
if ‖(A− σI) xi‖2 < tol then

iter=i

v=xi
return [v,i]

end if
end for
iter=-1

v=xi
return [v,-1]

end function



The Algebraic Eigenvalue Problem Chapter| 18 423

NLALIB: The function eigvechess implements Algorithm 18.6. If A has a multiple eigenvalue σ , Hessenberg inverse
iteration can result in vector entries NaN or Inf. The next section discusses a method that attempts to solve this problem.

Remark 18.10. Although it involves complex arithmetic, eigvechess will compute a complex eigenvector when given
a complex eigenvalue σ . There is a way to perform inverse iteration with complex σ using real arithmetic (see Ref. [9, p.
630]).

18.10 COMPUTING BOTH EIGENVALUES AND THEIR
CORRESPONDING EIGENVECTORS

We have developed the implicit double-shift QR iteration for computing eigenvalues and the Hessenberg inverse iteration
for computing eigenvectors. It is now time to develop a function, eigb, that computes both. The function applies the Francis
iteration of degree two to compute the eigenvalues, followed by the use of the shifted inverse Hessenberg iteration to deter-
mine an eigenvector corresponding to each eigenvalue. Inverse iteration is economical because we do not have to accumulate
transformations during the Francis iteration. Inverse iteration deals with H − σ I using O

(
n2
)
flops, and normally one or

two iterations will produce a suitable eigenvector [2, pp. 394-395]. If A has a multiple eigenvalue, σ , Hessenberg inverse
iteration can result in vector entries NaN or Inf. The MATLAB implementation checks for this, perturbs σ slightly, and
executes eigvechess again with the perturbed eigenvalue. It is hoped this will produce another eigenvector corresponding
to σ . All the pieces are in place, so we will not state the formal algorithm that is implemented in the software distribution.
Note that it uses the MATLAB features of variable input arguments and variable output to make its use more flexible.

The function can be called in the following ways:

● [V D] = eigb(A,tol);

– Returns a diagonal matrix D of eigenvalues and a matrix V whose columns are the corresponding normalized
eigenvectors so that AV = VD. tol is the error tolerance for the computations.
∗ If tol is not present, the default is 1.0× 10−8.

● E = eigb(A,tol);

– Assigns E a column vector containing the eigenvalues. The default for tol is the same as for the previous calling
sequence.

● eigb(A,tol)

– Returns a vector of eigenvalues. The default value of tol is as before.

Example 18.18. Generate a 75×75 random real matrix that most certainly will have imaginary eigenvalues and use eigb
to compute its eigenvalues and eigenvectors. A function, checkeigb, in the software distribution computes the minimum
and maximum values of ‖Avi − λivi‖2 , 1 ≤ i ≤ n.

>> A = randn(75,75);
[V D] = eigb(A,1.0e-12);

[min max] = checkeigb(A,V,D)

min =

7.4402e-15

max =

4.3307e-12

>> E = diag(D);
E(1:6)

ans =

0.25436 + 0i

0.62739 + 0i

1.2352 + 1.8955i

1.2352 - 1.8955i

2.3356 + 0.90619i

2.3356 - 0.90619i

>> E(70:75)

ans =

6.8625 - 1.1636i



424 Numerical Linear Algebra with Applications

2.7378 + 7.5951i

2.7378 - 7.5951i

7.2777 + 5.6828i

7.2777 - 5.6828i

9.4579 + 0i �

18.11 SENSITIVITY OF EIGENVALUES TO PERTURBATIONS

The eigenvalues of matrix A are the roots of the characteristic equation p (λ) = det (A− λI). If A is the 2× 2 matrix

A =
[
a11 a12
a21 a22

]
,

the eigenvalues are roots of the polynomial

p (λ) = λ2 − (a11 + a22) λ+ (a11a22 − a12a21) .

We can view p as a continuous function of the four variables a11, a12, a21, a22, so the roots of the characteristic equation
depend continuously on the matrix coefficients. See Refs. [1, 9] for further discussion and proofs. Under the right conditions
this continuity means that if the perturbations of A and δA are small, we can control the perturbations in the eigenvalues.
The Bauer-Fike theorem [91] is a well-known result that deals with eigenvalue perturbations for diagonalizable matrices.
For a proof, see Ref. [23, pp. 472-473].

Theorem 18.8. Assume that A ∈ Rn is diagonalizable, so that there exists a nonsingular matrix X such that X−1AX = D,
where D = diag (λ1, λ2, . . . , λn). If δA is a matrix of perturbations, then for any eigenvalue λ̂i of A + δA, there is an
eigenvalue λi of A such that ∣∣∣λ̂i − λi

∣∣∣ ≤ κ (X) ‖δA‖2 ,
where X is a subordinate matrix norm.

Theorem 18.8 has consequences for the conditioning of the eigenproblem for A. If ‖X‖2
∥∥X−1∥∥2 = κ (X) is large,

then a computed eigenvalue λ̂i (an eigenvalue for A + δA) can be very different from the actual eigenvalue λi. The more
ill-conditioned X is, the more ill-conditioned the eigenproblem for A will be.

Example 18.19. Let A =
⎡⎣ 5.0000 0 0
2.0000 1.0000 −7.0000
3.0000 0 0.9900

⎤⎦. The eigenvalues of A are

λ1 = 5.000, λ2 = 1.0000, λ3 = 0.9900

so A is diagonalizable. The matrix X =
⎡⎣ 0 0 0.67198
1 1 −0.54379
0 0.0014286 0.50273

⎤⎦. The condition number of X is 1922.6, so there could

be a conditioning problem with the eigenvalues of A. If we let δA =
⎡⎣ 0 0 0
0 0 0
0 1.0× 10−5 0

⎤⎦, the eigenvalues of A+ δA are

λ1 = 5.0000, λ2 = 0.9950+ 0.0067082i, λ3 = 0.9950− 0.0067082i,

so the high condition number produces instability. But why were only the eigenvalues λ2 and λ3 affected? That question is
answered by considering the conditioning of individual eigenvalues. �

Theorem 18.8 gives one bound for all the eigenvalues, and Example 18.19 demonstrates that some eigenvalues are well
conditioned and some are not, so it makes sense to develop a criterion for the conditioning of an individual eigenvalue. To
do so requires the concept of a left eigenvector.

Definition 18.4. The vector y is a left eigenvector of A if

yTA = λyT.



The Algebraic Eigenvalue Problem Chapter| 18 425

Remark 18.11. Recall that the determinant of a matrix and its transpose are equal. As a result, the characteristic equations
det (A− λI) = 0 and det

(
AT − λI

) = 0 have the same roots, so A and AT have the same eigenvalues. Since yTA = λyT, it
follows that ATy = λy, and a left eigenvector of A is an eigenvector of AT corresponding to the eigenvalue λ of A.

Assume that all the eigenvalues are distinct, and that during computation an error is made in A causing perturbation δA.
The eigenvalue we actually compute, λ̂ = λ + δλ, is an eigenvalue of A + δA. Let f be the function mapping δA to λ̂; in
other words, as δA varies, f (δA) is the resulting eigenvalue λ̂. Since the eigenvalues are simple, it can be shown that they
depend continuously on the entries of the matrix. As a result, the function f is continuous and

lim
δA→0

f (δA) = λ.

This says that as a small error δA occurs, the eigenvalue of A+ δA will be close to λ. It also follows that if x+ δx is an
eigenvector corresponding to λ+ δλ, as δA becomes small, δx will have a small norm.

This reasoning leads to the following theorem.

Theorem 18.9. Assume λ is a simple eigenvalue of the n×n matrix A having associated right and left eigenvectors x and
y, respectively, with ‖x‖2 = 1 and ‖y‖2 = 1. Let λ+ δλ be the corresponding eigenvalue of A+ δA. Then,

|δλ| ≤ ‖δA‖2∣∣yTx∣∣ + O
(
‖δA‖22

)
.

Proof. We have the two equations

Ax = λx (18.40)

(A+ δA) (x+ δx) = (λ+ δλ) (x+ δx) (18.41)

Subtract Equation 18.40 from Equation 18.41 and obtain

A (δx)+ (δA) x+ (δA) (δx) = λ (δx)+ (δλ) x+ (δλ) (δx) .

Since we know that if ‖δA‖2 is small |δλ| and ‖δx‖2 will be small, we will ignore the terms (δA) (δx) and (δλ) (δx)
involving products of small factors to arrive at

A (δx)+ (δA) x ∼= λ (δx)+ (δλ) x (18.42)

Multiply both sides of Equation 18.42 by yTto obtain

yTA (δx)+ yT (δA) x ∼= λyT (δx)+ yT (δλ) x. (18.43)

Since y is a left eigenvector of A, yTA = λyT, and we have yTA (δx) = λyT (δx). The terms λyT (δx) cancel out in
Equation 18.43, leaving

yT (δA) x � (δλ) yTx,

and so

δλ � yT (δA) x

yTx
.

It follows that:

|δλ| ≤ ∥∥yT∥∥2 ‖δA‖2∣∣yTx∣∣ ‖x‖2 = (1)
‖δA‖2∣∣yTx∣∣ (1) = ‖δA‖2∣∣yTx∣∣ .

Throughout the proof, we have used the notation “�” to account for ignoring the terms (δA) (δx) and (δλ) (δx). δy and
δx depend on δA so

|δλ| ≤ ‖δA‖2∣∣yTx∣∣ + O
(
‖δA‖22

)
.

Theorem 18.7 indicates that the quantity 1|yYx| affects the accuracy of the computation of a particular eigenvalue λ,
leading us to the definition of the condition number for λ.



426 Numerical Linear Algebra with Applications

Definition 18.5. If λ is a simple eigenvalue of matrix A, and x, y are normalized right and left eigenvectors of λ,
respectively, then

κ (λ) = 1∣∣yTx∣∣
is called the condition number of the eigenvalue λ.

Now let us determine how to compute κ (λ). If A has n distinct eigenvectors, it can be diagonalized, so there is a matrix
X such that D = X−1AX, where X = [

v1 v2 . . . vn
]
and the vi are eigenvectors of A corresponding to eigenvalues

λi. Avi = λivi, and so xi = vi‖vi‖2 is a normalized right eigenvector of A. By Remark 18.11, if yi is a normalized right

eigenvector of AT corresponding to eigenvalue λi, yTi is a left eigenvector of A. Now, A = XDX−1, so AT = (
XT
)−1

DXT

and
((
XT
)−1)−1

AT
(
XT
)−1 = D. The proof of Theorem 18.1 shows that column i of

(
X−1

)T
is an eigenvector of AT

corresponding to λi.
Algorithm 18.7 shows how to compute the condition number of every eigenvalue of matrix A, assuming the eigenvalues

are distinct.

Algorithm 18.7 Compute the Condition Number of the Eigenvalues of a Matrix

function EIGCOND(A)

% Compute the condition number of the distinct eigenvalues

% of the n× n matrix A.

% [c λ]=eigcond(A) returns a vectors c and λ such that ci
% is the condition number of eigenvalue λi.[
X D

] = eig (A)

λ = diag (D)

invXT = X−1
for i=1:n do

x = X(:,i)
‖X(:,i)‖2

y = invXT(:,i)
‖invXT(:,i)‖2

ci = 1|yYx|
end for
return

[
c lambda

]
end function

NLALIB: The function eigcond implements Algorithm 18.7. The MATLAB function condeig also computes
eigenvalue condition numbers.

Example 18.20. In Example 18.19, we found that the eigenvalues λ2 = 1.0000 and λ3 = 0.9900 were sensitive to
perturbations. The use of eigcond shows why. The condition number of the eigenvalue 5.0000 is 1.4881, and it will not be
sensitive to perturbations.

>> [c lambda] = eigcond(A)

c =

874.7007

874.2160

1.4881

lambda =

1.0000

0.9900

5.0000 �



The Algebraic Eigenvalue Problem Chapter| 18 427

Example 18.21. The 25× 25 matrix EIGBTEST in the book software distribution has distinct integer eigenvalues and a
condition number of 4.7250× 108. The eigenvalues are sensitive to perturbations, as the output shows.

>> [V D] = eigb(EIGBTEST);

norm(EIGBTEST*V - V*D)

ans =

4.0684e-09

>> eigcond(EIGBTEST)

ans =

412.74

452.16

2120

2389.6

22744

33208

10269

4115.1

6047.9

283.35

4.2367e+05

8.313e+06

1.4719e+07

1.0591e+07

3.6274e+06

2.2256e+05

3557.7

2.0129e+06

2.0363e+06

1.623e+05

7.4567e+05

2.8465e+06

4.1147e+06

6.4555e+06

4.5237e+06

>> [min, max] = checkeigb(EIGBTEST,V,D)

min =

9.244e-14

max =

4.066e-09 �

Remark 18.12. If λ is a simple eigenvalue ofA, then a large condition number implies that A is near a matrix with multiple
eigenvalues. If λ is a repeated eigenvalue of a nonsymmetric matrix, the conditioning question is more complicated. The
interested reader should consult Ref. [9].

18.11.1 Sensitivity of Eigenvectors

Perturbation analysis for eigenvectors is significantly more complex than that for eigenvalues. The perturbation of a
particular eigenvector, vi, corresponding to eigenvalue, λi, is determined by the condition number of the eigenvectors
λk, k �= i and |λi − λk| , k �= i. See Refs. [19, pp. 319-320] and [23, pp. 477-481]. To put it more simply, if the eigenvalues
are well separated and well conditioned, then the eigenvectors will be well conditioned. However, if there is a multiple
eigenvalue or there is an eigenvalue close to another eigenvalue, then there will be some ill-conditioned eigenvectors.
Problem 18.22 deals with eigenvector sensitivity theoretically, and Problems 18.37 and 18.38 are numerical experiments
dealing with the problem.



428 Numerical Linear Algebra with Applications

18.12 CHAPTER SUMMARY

Applications of the Eigenvalue Problem

Resonance is the tendency of a system to oscillate at a greater amplitude at some frequencies than at others. With little or
no damping, if a periodic driving force matches a natural frequency of vibration, oscillations of large amplitude can occur.
The are many types of resonance, including mechanical resonance, acoustic resonance, electromagnetic resonance, and
nuclear magnetic resonance. The phenomenon is illustrated by a mass-spring system that is modeled by a system of second-
order ordinary differential equations. The solution to the system with no driving force (homogeneous system) depends on
eigenvalue and eigenvector computations, that give rise to the natural frequencies of vibration. After adding a driving force
and solving the nonhomogeneous system, resonance is illustrated by choosing the frequency of the driving force to be close
to a natural frequency.

The model of Leslie is a heavily used tool in population ecology. It models an age-structured population which predicts
how distinct populations change over time. The heart of the model is the Leslie matrix, which is irreducible and has
an eigenvector with strictly positive entries. Its characteristic function has exactly one real positive root, λ1, the largest
eigenvalue of the Leslie matrix in magnitude. All the other eigenvalues are negative or imaginary. By studying powers of
the Leslie matrix, we find that at equilibrium the proportion of individuals belonging to each age class will remain constant,
and the number of individuals will increase by λ1 times each period. The eigenvector with all positive entries can be used
to determine the percentage of females in each age class after an extended period of time.

The buckling of a elastic column is determined by solving a boundary value problem. The column will not buckle unless
subjected to a critical load, in which case the deflection curve is of the form k sin

( nπx
L

)
, where L is the length of the column

and k is a constant. The functions are termed eigenfunctions, and the corresponding eigenvalues are λn = n2π2

L2
. Associated

with the eigenvalues are the critical loads Pn = EIπ2n2

L2
, the only forces that will cause buckling.

Computation of Selected Eigenvalues and Eigenvectors

There are problems for which only selected eigenvalues and associated eigenvectors are needed. If a real matrix has a
simple eigenvalue of largest magnitude, the sequence xk = Axk−1 converges to the eigenvector corresponding to the largest
eigenvalue, where x0 is a normalized initial approximation, and all subsequent xk are normalized. This is known as the
power method. After k iterations, the corresponding eigenvalue is approximately λ1 = vTk (Avk).

Assume A has a simple eigenvalue of smallest magnitude. Since the eigenvalues of A−1 are the reciprocals of the
eigenvalues of A, the smallest eigenvalue of A is the largest eigenvalue of A−1, and we can compute it by applying the
power method to A−1. This is not done by using the iteration xk = A−1xk−1 but by solving the system Axk = xk−1 for
each k.

The Basic QR Iteration

The discovery of theQR iteration is one of the great accomplishments in numerical linear algebra.Under the right conditions,
the following sequence converges to an upper triangular matrix whose diagonal consists of the eigenvalues in decreasing
order of magnitude:

Ak−1 = QkRk
Ak = RkQk.

The execution of oneQR iteration requires O
(
n3
)
flops, so k iterations requiresO

(
kn3

)
flops. If k = n, this is an O

(
n4
)

algorithm, and this is not satisfactory. However, there are ways to greatly speed it up.

Transformation to Upper Hessenberg Form

Transformation to upper Hessenberg form is the initial step in most algorithms for the computation of eigenvalues. It is
accomplished by using orthogonal similarity transformations of the form Ak = HukAk−1HT

uk , where Huk is a Householder
reflection. The end result is an upper Hessenberg matrixH = PTAP, where P is an orthogonal matrix comprised of products
of Householder matrices. The eigenvalues of H are the same as those of A.



The Algebraic Eigenvalue Problem Chapter| 18 429

The Unshifted Hessenberg QR Iteration

The reduction of a matrix A to upper Hessenberg form requires approximately 10
3 n

3 flops for the computation of H. To
build the orthogonal matrix P requires an additional 4n3/3 flops. The reduction of H to upper triangular form using the
QR iteration with deflation requires only O

(
n2
)
flops. By an initial reduction to upper Hessenberg form followed by the

Hessenberg QR iteration, we can compute eigenvalues with O
(
n3
)+ O

(
n2
)
flops.

The Shifted Hessenberg QR Iteration

The QR iteration is more effective when it is applied to compute an eigenvalue isolated from other eigenvalues. Let H be
an upper Hessenberg matrix. Choose a shift σ close to λk, and form Hk − σ I that has eigenvalues λi − σ , 1 ≤ i ≤ n.
The eigenvalue λk − σ is smaller than all the other eigenvalues, and the QR iteration applied to Hk − σ I is very accurate.
Compute the QR decomposition of the matrix Hk − σ1I = QkRk and let Hk+1 = RkQk + σ1I. Repeat this process until∣∣hk,k−1∣∣ is sufficiently small. This technique significantly speeds up the computation of eigenvalues.
The Francis Algorithm

The Francis algorithm has for many years been the staple for eigenvalue computation. By using a double shift, it enables the
computation of complex conjugate pairs of eigenvalues without using complex arithmetic. The algorithm is also known as
the implicit QR iteration because it indirectly computes a single and a double shift in an upper Hessenberg matrix without
actually computing the QR decomposition. This is done using orthogonal similarity transformations that introduce bulges,
disturbing the upper Hessenberg form. By moving down the matrix, the transformations chase the bulge down and off the
Hessenberg matrix. The algorithm makes the computation of all the eigenvalues of a matrix run in O

(
n3
)
flops.

Computing Eigenvectors

If λk is an accurate eigenvalue of matrix A, apply the inverse power iteration to the matrix Hk − λkI to find a normalized
eigenvector vk, which is also an eigenvector of Hk. This means solving linear systems of the form Hxk = xk−1. Since H is
upper Hessenberg, a simple modification of the LU decomposition enables very rapid computation of PH = LU.

Computing Both Eigenvalues and Their Corresponding Eigenvectors

An eigenproblem solver, eigb, is easy to build using the algorithms developed in the book. First, reduce matrix A to upper
Hessenberg formH = PTAP and compute the eigenvalues by applying the Francis double-shiftQR iteration toH. Now find
corresponding eigenvectors of H using inverse iteration. For each eigenvector v of H, Pv is an eigenvector of A.

Sensitivity of Eigenvalues and Eigenvectors to Perturbations

Assume that A is diagonalizable so that X−1AX = D. The Bauer-Fike theorem says that if δA is a matrix of perturbations,
then for any eigenvalue λ̂i of A+ δA, there is an eigenvalue λi of A such that∣∣∣λ̂i − λi

∣∣∣ ≤ κ (X) ‖δA‖2

This is a global estimate, meaning it applies to all eigenvalues. If κ (X) is large, it is possible that one or more eigenvalues
are ill-conditioned.

The condition number of an individual eigenvalue λ is defined by κ (λ) = 1|yTx| , where x is a right and y is a left
normalized eigenvector, respectively. If λ is a simple eigenvalue of A, then a large condition number implies that A is near
a matrix with multiple eigenvalues.

If the eigenvalues are well separated and well conditioned, then the eigenvectors will be well conditioned. However, if
there is a multiple eigenvalue or there is an eigenvalue close to another eigenvalue, then there will be some ill-conditioned
eigenvectors.



430 Numerical Linear Algebra with Applications

18.13 PROBLEMS

18.1 Consider the coupled mass vibration problem consisting of springs having the same mass attached to each other and
fixed outer walls by springs of spring constants k1 and k2 (Figure 18.11).

The displacements x1 and x2 satisfy the system of second-order differential equations

m
d2x1
dt2

+ k1x1 − k2 (x2 − x1) = F0 sin ω0t

m
d2x2
dt2

+ k1x2 + k2 (x2 − x1) = 0

Leaving ω0 variable, solve the system given m = 1 kg, k1 = 1N/m, k2 = 2N/m, F0 = 2N, and initial
conditions x1 (0) = 3, x2 (0) = 1, x′1 (0) = x′2 (0) = 0. Demonstrate resonance by makingω0 near one of the natural
frequencies of the system and graphing x1 (t), x2 (t) for 0 ≤ x ≤ 5.

18.2 Using paper and pencil, execute the first three iterations of the power method for computing the largest eigenvalue

of A =
[
1 3
1 1

]
.

18.3 Using paper and pencil, execute the first three iterations of the inverse power method for computing the smallest
eigenvalue of the matrix in Problem 18.2.

18.4 Explain the slow rate of convergence of the power method for the matrices

a. A =
⎡⎣ 1 0 0
1 10 0
1 1 9.8

⎤⎦ .

b.

⎡⎣ 2.9910 1.2104 0.7912
−1.4082 0.5913 −2.8296
−0.1996 −0.3475 2.0678

⎤⎦ .

18.5 Explain what happens when the inverse power method is applied to the matrix

A =
⎡⎣ 0.7674 0.2136 3.3288
−0.7804 −0.9519 −0.4240
0.5086 −0.1812 2.1899

⎤⎦ .

18.6 a. Prove that the left eigenvectors of a symmetric matrix are eigenvectors.
b. Let λ and μ be two distinct eigenvalues of A. Show that all left eigenvectors associated with λ are orthogonal to

all right eigenvectors associated with μ.

18.7 Let A =
⎡⎣ 3.8865 0.29072 1.6121
−1.6988 2.6922 −4.3539
−0.50715 −0.04681 1.4712

⎤⎦. Use MATLAB to compute its eigenvalues. Do you think using the

shift strategy will enable more rapid computation of the eigenvalues? Explain.
18.8 If an upper Hessenberg matrix has a zero on the subdiagonal, the problemmust be split into two eigenvalue problems.

Assume a split has occurred and the matrix has the form[
A11 A12
0 A22

]
,

where A11 is i× i, A22 is (n− i)× (n− i), and both are upper Hessenberg. Show that the eigenvalues of H are those
of A11 and A22. For the sake of simplicity, assume that A11 and A22 have no common eigenvalues and that if λ is an
eigenvalue of A22 then the matrix A11 − I is nonsingular.

18.9 Let A be an n× n matrix.

m m

x1 x2

k1 k2 k1

FIGURE 18.11 Springs problem.



The Algebraic Eigenvalue Problem Chapter| 18 431

a. If λ is an eigenvalue of A and v = [
v1 v2 . . . vn

]T is an associated eigenvector, use Av = λv to show that

(λ− aii) vi =
n∑

j = 1
j �= i

aijvj, i = 1, 2, . . . , n.

b. Let vk be the largest component of v in absolute value. Using part (a), show that

|λ− akk| ≤
n∑

j = 1
j �= k

∣∣akj∣∣ .
c. Using part (b), show that each eigenvalue of A satisfies at least one of the inequalities

|λ− aii| ≤ ri, 1 ≤ i ≤ n,

where

ri =
n∑

j = 1
j �= i

∣∣aij∣∣ .
d. Argue this means that all the eigenvalues of A lie in the union of the disks {z | |z− aii| ≤ ri} , i = 1, 2, . . . , n

in the complex plane. This result is one of Gergorin’s disk theorems that are used in perturbation theory for
eigenvalues.

e. Let

A =
⎡⎣ 9 5 4
10 3 1
5 9 8

⎤⎦ .

Draw the three Gergorin disks and verify that the three eigenvalues lie in their union.
18.10 A square matrix is strictly row diagonally dominant if |aii| > ∑n

j = 1
j �= i

aij. Use Gergorin’s disk theorem developed

in Problem 18.9 to prove that a strictly row diagonally dominant matrix is nonsingular.
18.11 In this problem, you are to show that if Equation 18.14 holds, as the QR iterations progress, the elements of

Ak = Q
T
k−1AQk−1 at index (1, 1) converge to the largest eigenvalue λ1 by the power method.

a. Let Q(k) = Q1Q2 . . .Qk−1Qk, and show that AQ(k−1) = Q(k)Rk. Hint:

(Q1Q2 . . .Qk−1Qk)Rk = Q1Q2 . . .Qk−1 (QkRk)

= Q1Q2 . . .Qk−1Ak−1
= Q1Q2 . . .Qk−1 (Rk−1Qk−1) = · · ·

b. Q(k−1) has n orthonormal columns, so Q(k−1) =
[
q(k−1)
1 q(k−1)

2 . . . q(k−1)
n−1 q(k−1)

n

]
. Let r(k)11 be entry Rk (1, 1)

and equate the first columns on both sides of the result from part (a) to develop the relation

Aq(k−1)
1 = r(k)11 q

(k)
1 .

c. Argue that the result of part (b) shows that q(k)
1 converges by the power method to an eigenvector of A with

associated eigenvalue r(k)11 .
18.12 Show that the QR decomposition of an upper Hessenberg matrix using Givens rotations costs O

(
n2
)
flops.

18.13 Given A =
[
1 1
0 1+ ε

]
, find the eigenvector matrix S such that S−1AS is diagonal. Use the Bauer-Fike theorem to

show that the eigenvalues are ill-conditioned.
18.14 Show that an orthogonal similarity transformation maintains the condition number of an eigenvalue.

A real matrix is said to be normal if ATA = AAT. Problems 18.15-18.17 deal with properties of a normal matrix.



432 Numerical Linear Algebra with Applications

18.15 There are matrices that can be diagonalized, but are not normal. Let A =
[ −1 3

0 2

]
and P =

[
1 1√

2
0 1√

2

]
.

a. P has normalized columns. Is it orthogonal?
b. Show that A can be diagonalized using the matrix P.
c. Show that A is not normal.

18.16 Prove that
a. a symmetric matrix is normal.
b. an orthogonal matrix is normal.
c. if A is skew symmetric

(
AT = −A), then A is normal.

d. If there is a polynomial p such that AT = p (A), then A is normal.
18.17 Using the Bauer-Fike theorem, show that if A is normal, and λ is an eigenvalue of A+ δA, then

min
1≤i≤n

|λi − λ| ≤ ‖δA‖2 .
What does this say about the conditioning of the eigenvalues?

18.18 Show that Equation 18.37 is correct.
18.19 Show that Equation 18.39 is correct.
18.20 What are the condition numbers for the eigenvalues of a symmetric matrix?
18.21 Using the matrix of Example 18.13, show that the Schur’s triangularization is not unique.
18.22 In Watkins [23, p. 480], it is shown that if λk is a simple eigenvalue of A, then

max
1 ≤ i ≤ n
i �= k

|λi − λk|−1 = 1/ min
1≤i≤n
i �=k

|λi − λk|

is a lower bound for the condition number of an eigenvector corresponding to λk. Under what conditions will this
formula indicate that an eigenvector is ill-conditioned?

18.23 Given two matricesA andB, the generalized eigenvalue problem is to find nonzero vectors v and a number λ such that
Av = λBv. The matrix A−λB is called a matrix pencil, usually designated by (A, B). The characteristic equation for
the pencil (A, B) is det (A− λB) = 0, and the generalized eigenvalues are the roots of the characteristic polynomial.
See Ref. [19, Chapter 11] or [23, pp. 526-541] for a discussion of the problem.
a. How does this problem relate to the standard eigenvalue problem?
b. Show that the degree of the characteristic equation is less than or equal to n. Give an example where the degree

is less than n. In general, when is the degree guaranteed to be less than n?
c. Assume that B is nonsingular. Show that λ is an eigenvalue of (A, B) with associated eigenvector v if and only if

λ is an eigenvalue of B−1A with associated eigenvector v.
d. Show that the nonzero eigenvalues of (B, A) are the reciprocals of the nonzero eigenvalues of (A, B).
e. Find the generalized eigenvalues for (A, B) by hand. Using eig, find corresponding eigenvectors.

A =
[

1 2
−1 5

]
, B =

[
1 5
1 2

]

18.13.1 MATLAB Problems

18.24 Suppose a population has five age classes, and that the following table specifies the data for the population.

Age Class ni (0) fi pi
1 8 0 0.60
2 10 6 0.45
3 12 4 0.25
4 7 3 0.15
5 5 2

a. Find the Leslie matrix, L, for this population.
b. Find the eigenvalues and eigenvectors of L.
c. Find the rate of increase of the number of individuals at equilibrium for each time period.
d. Graph the age population for each age group over a 10-year period using a logarithmic scale on the vertical axis.



The Algebraic Eigenvalue Problem Chapter| 18 433

18.25 Compute the largest eigenvalue of the matrix

A =

⎡⎢⎢⎢⎢⎢⎣
−68 20 −10 65 −79
59 −48 −84 8 93
−38 31 −54 100 −100
6 38 83 −85 55
−67 50 −70 −12 64

⎤⎥⎥⎥⎥⎥⎦
using the power method.

18.26 In this problem, you will compare the execution time and accuracy of eigqrbasic, eigqr, eigqrshift, and
eigb.
a. Execute the following:

A = gallery(’gearmat’,35);
tic;E1 = eigqrbasic(A,5000);toc;
tic;E2 = eigqr(A,1.0e-10,1000);toc
tic;E3 = eigqrshift(A,1.0e-10,50);toc;
tic;E4 = eigb(A,1.0e-10,50);toc;

Comment on the results.
b. Using the MATLAB sort command, sort E1, E2, E3, E4, and compute E = sort(eig(A)). Compute the

accuracy of each of the four functions against that of eig by computing ‖E − Ei‖2 , i = 1, 2, 3, 4. Explain the
results.

18.27 a. Except for signs, no elements of the n× n matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1
1 0

1
. . .
. . . 0

1 0

⎤⎥⎥⎥⎥⎥⎥⎦
change for m < n executions of the Francis iteration of degree two [9]. If n is large, this creates a very slow
algorithm. When lack of convergence is detected, the situation can be resolved by replacing the Francis double
shift by an exceptional shift after 10-20 iterations [56]. Build a 25×25 version of this matrix, apply impdsqr 24
times, and then execute diag(A,-1) and A(1,25). Repeat the experiment by applying impdsqr 35 times and
100 times. Comment on the results.

b. The function eigb terminates if any 2×2 or 1×1 eigenvalue block fails to converge in a default of 1000 iterations.
In Ref. [57], it is noted that there are small sets of matrices where the Francis algorithm fails to converge in a
reasonable number of iterations. Let

A =

⎡⎢⎢⎣
0 1 0 0
1 0 h 0
0 −h 0 1
0 0 1 0

⎤⎥⎥⎦ ,

and apply eigb to A for h = 1.0× 10−6. Comment on the result. Does eig give results? If so, why?
18.28 The function trid in the book software distribution takes three vectors a(n−1)×1, bn×1, and c(n−1)×1 and builds a

tridiagonal matrix with subdiagonal a, diagonal b, and superdiagonal c. Use trid to construct the 200×200 matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0
−1 2 −1 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . −1

0 0 · · · −1 2

⎤⎥⎥⎥⎥⎥⎥⎦.

a. Is A symmetric?
b. Is A positive definite?



434 Numerical Linear Algebra with Applications

c. Does A have distinct eigenvalues?
d. Apply the power method and the inverse power method to estimate the largest and smallest eigenvalues of A.
e. Is A ill-conditioned?
f. Find the condition number for each eigenvalue of A. Explain the result.

18.29 For this problem, we will use the MATLAB command eig. The 20 × 20 Wilkinson upper bidiagonal matrix has
diagonal entries 20, 19, …, 1. The superdiagonal entries are all equal to 20. The aim of this problem is to compute
the condition number of the Wilkinson matrix and study the sensitivity of its eigenvalues by executing the series of
steps:
a. BuildW.
b. Compute κ (W).
c. Find the eigenvalues, λ1, λ2, . . . , λ20, and the matrix of eigenvectors X.
d. Compute κ (X).
e. Find c, the vector of eigenvalue condition numbers.
f. Let Ŵ be the matrix obtained from W by assigning w20,1 = 1.0 × 10−10 and recompute the eigenvalues

λ̂1, λ̂2, . . . , ˆλ20. Sort the eigenvalues in descending order.
g. For i = 1, 2, . . . , 20 print λi, λ̂i,

∣∣∣λi − λ̂i

∣∣∣, ci

h. Explain the results.
18.30

a. Write a MATLAB function wilkcondeig(n) that builds the upper Hessenberg matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n n− 1 . . . 2 1

n− 1 n− 1 n− 2
. . . 1

n− 2
. . .

. . .
. . . 2 1

1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

b. Compute the eigenvalue condition numbers of W = wilkcondeig(20).
c. Compute the eigenvalues ofW.
d. Let Ŵ be the matrix W with the value at index (20,1) set to 1.0× 10−10. Compute the eigenvalues of Ŵ . Do the

perturbations correspond to what you would expect from the condition numbers?
Problem 18.40 studies this matrix in more detail.

18.31 Let A be the matrix of Problem 18.7. Perform the following tests.
a. Execute the statements and explain the results.

>> E1 = eigqr(A,1.0e-10,10)

>> E2 = eigqrshift(A,1.0e-10,10)

>> eig(A)

b. Beginning with maxiter = 500, determine the smallest value of maxiter so that

>> E = eigqr(A,1.0e-10,maxiter)

terminates successfully.
c. Beginning with 1, find the smallest value of maxiter so that

>> E = eigqrshift(A,1.0e-10,maxiter)

terminates successfully.
d. Now execute

>> E = eigqrshift(A,1.0e-14,10);

>> EM = eig(A)
>> norm(E-EM)

e. Make a general statement about what you have learned from this problem.



The Algebraic Eigenvalue Problem Chapter| 18 435

18.32 Consider the matrix A =
⎡⎣ 8 3 0
0 7.9999 0
2 5 10

⎤⎦.
a. Diagonalize A to obtain the eigenvector matrix X and the diagonal matrix of eigenvalues, D. Now let

E = 10−6
⎡⎣ 0 0 0
0 0 1
0 0 0

⎤⎦, and find the eigenvalues of A+ E. What happens?

b. Compute κ (X) and κ (X) ‖E‖2. Why is the behavior in part (a) predicted by the Bauer-Fike theorem? Which
eigenvalues are actually ill-conditioned, and why?

18.33 Let

A =
⎡⎣ −3 1/2 1/3
−36 8 6
30 −15/2 −6

⎤⎦ , δA =
⎡⎣ 0.005 0 0

0 0.005 0.005
0 0.005 0

⎤⎦ , and b =
⎡⎣ 1
1
1

⎤⎦ .

a. Compute the eigenvalues of A and the solution to Ax = b.
b. Let Â = A+ δA. Compute the eigenvalues of Â and the solution of Âx = b.
c. Explain the results.

18.34 Use MATLAB to compute the left eigenvectors of the matrix

A =

⎡⎢⎢⎣
1 −2 −2 −2
−4 0 −2 −4
1 2 4 2
3 1 1 5

⎤⎥⎥⎦ .

18.35 A = gallery(’clement’,50) returns a nonsymmetric 50×50 tridiagonal matrix with zeros on its main diagonal.
The eigenvalues are ±49, ±47, ±45,…,±3, ±1. Since |λ1| = |λ2| > |λ3| = |λ4| > · · · > |λ49| = |λ50|, the basic
and the unshifted Hessenberg QR iterations may not converge. Fill-in the table and, if a method does not converge,
indicate this in the last column. Sort the eigenvalues using sort prior to computing ‖E − Ei‖2 , i = 1, 2, 3, 4.Discuss
the results.

Number Function Time ‖E − Ei‖2
E = eig(A);

1 E1 = eigqrbasic(A,1000);
2 E2 = eigqr(A,1.0e-12,500);

3 E3 = eigqrshift(A,1.0e-12,500);

4 E4 = eigb(A,1.0e-12,500);

18.36 Implement the shifted inverse iteration with a function

[x, iter] = inverseiter(A, sigma, x0, tol, maxiter)

where A is any real matrix with distinct eigenvalues. Use it to find eigenvectors corresponding to the given
eigenvalues.

a. A =
⎡⎣ 1 7 8
3 1 5
0 −1 −8

⎤⎦ , λ = 5.1942, λ2 = −3.5521.

b. A =

⎡⎢⎢⎣
−1 3 5 3
22 −1 8 2
9 12 3 7
25 33 55 35

⎤⎥⎥⎦ ,

λ = 50.7622, λ2 = 0.8774, λ3 = −6.7865, λ4 = −8.8531

c. A =

⎡⎢⎢⎢⎢⎣
2 7 5 9 2
8 3 1 6 10
4 7 3 10 1
6 7 10 1 8
2 8 2 5 9

⎤⎥⎥⎥⎥⎦ , λ1 = −9.4497, λ2 = −1.8123.



436 Numerical Linear Algebra with Applications

18.37 Input the 8× 8 matrix EIGVECTST.mat in the software distribution. Perform these actions in the order given:
a. Compute the eigenvector matrix V1 and the eigenvalue matrix D1 for EIGVECTST.
b. Output the eigenvalues of EIGVECTST.
c. Create a matrix perturbation as follows:

deltaEIGVECTST = ones(8,8);

for i = 1:8

for j = 1:8

deltaEIGVECTST(i,j) = rand*1.e-6*deltaEIGVECTST(i,j);
end

end

Perturb EIGVECTST by computing EIGVECTST_hat = EIGVECTST + deltaEIGVECTST;

Compute ‖EIGVECTST − EIGVECTST_hat‖2 .
Find the eigenvector matrix V2 and the eigenvalue matrix D2 for EIGVECTST_hat.
Output the eigenvalues of EIGVECTST_hat.
Output ‖V1− V2‖2.

Explain the results.

18.38 Let A =
[
1 0
0 1+ ε

]
. A is symmetric and has two nearly equal eigenvalues if ε is small.

a. For ε = 10−3, 10−5, 10−8, do the following:
i. Compute the eigenvalues and eigenvectors of A.
ii. Let δA = 10−8 randn (2), where randn(2) is a 2×2 matrix of random entries drawn from the standard normal

distribution. Compute the eigenvalues and eigenvectors of A+ δA.

b. Perform the same numerical experiment as in part (a) using the matrix A =
⎡⎣ 1+ ε 0 0

0 1− ε 0
0 0 2

⎤⎦.
c. Make a general statement about the conditioning of eigenvalues and eigenvectors of a symmetric matrix.

18.39 This problem assumes access to the MATLAB Symbolic Math Toolbox. Let

A =
[
3+ ε 5
0 3

]
.

a. Show that the condition number of both eigenvalues of A is

c1 = c2 =
√
25

ε2
+ 1

by executing the following statements

>> syms A epsilon X invX x y c

>> A = sym([3+epsilon 5;0 3])

>> [X D] = eig(A)
>> invX = inv(X)
>> x = X(:,1)/norm(X(:,1))
>> y = invX(:,1)/norm(invX(:,1))
>> c1 = 1/abs(y’*x)
>> x = X(:,2)/norm(X(:,2))
>> y = invX(:,2)/norm(invX(:,2))
>> c2 = 1/abs(y’*x)

b. Using the formula, compute the condition number of the eigenvalues for ε = 1.0× 10−6.
c. By entering

B =
[
3+ ε 5
0 3

]
,

compute the condition number of the eigenvalues using floating point arithmetic.
d. Explain why the matrix A has ill-conditioned eigenvalues.



The Algebraic Eigenvalue Problem Chapter| 18 437

18.40 This problem is motivated by a discussion in the classic book by Wilkinson [9, pp. 92-93]. Consider the class of
matrices

Bn =

⎡⎢⎢⎢⎢⎢⎢⎣
n (n− 1) (n− 2) . . . 3 2 1

(n− 1) (n− 1) (n− 2) . . . 3 2 1
(n− 2) (n− 2) . . . 3 2 1

. . .

2 2 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

a. If you have not done Problem 18.30, write a MATLAB function, wilkcondeig, that builds Bn.
b. Using MATLAB, let n = 20 and show that the largest eigenvalues of B20 are well-conditioned, while the smallest

ones are quite ill-conditioned.
c. Show that the determinant of Bn is one for all n.
d. If we assign Bn (1, n) = 1+ ε, the determinate becomes

1± (n− 1)!ε.

Let n = 20, B (1, 20) = 1+ 1.0× 10−10, and compute the determinant.
e. Prove that the determinant of a matrix is equal to the product of its eigenvalues.
f. Explain why there must be large eigenvalues in the perturbed Bn?

18.41 This problem illustrates convergence of the double shift implicitQR iteration to a single real or a complex conjugate
pair of eigenvalues.
a. Create the upper Hessenberg Toeplitz matrix ⎡⎢⎢⎢⎢⎣

1 2 3 4 5
1 1 2 3 4
0 1 1 2 3
0 0 1 1 2
0 0 0 1 1

⎤⎥⎥⎥⎥⎦
as follows:

>> H = toeplitz([1 1 0 0 0], [1 2 3 4 5]);

b. Compute its eigenvalues using eig.
c. Execute

>> [~, H] = impdsqr(H)

six times and observe what happens in the lower right-hand corner of H. Comment.
d. Execute

>> [~, H(1:4,1:4)] = impdsqr(H(1:4,1:4))

six times and then apply the statement

eig(H(3:4,3:4))

Comment.
18.42 The execution of the MATLAB command help gallery contains the following entry

“gallery(5) is an interesting eigenvalue problem. Try to find its EXACT eigenvalues and eigenvectors.”

Let

A = gallery (5) =

⎡⎢⎢⎢⎢⎣
−9 11 −21 63 −252
70 −69 141 −421 1684
−575 575 −1149 3451 −13801
3891 −3891 7782 −23345 93365
1024 −1024 2048 −6144 24572

⎤⎥⎥⎥⎥⎦ ,

and request double precision output using format long.
a. Execute eig(A), and compute ‖Avi − λivi‖2, 1 ≤ i ≤ 5.



438 Numerical Linear Algebra with Applications

b. Compute det(A) and rank(A). Why does the output of both commands conflict with the results of (a)?
c. Approximate the characteristic polynomial of A using p = poly(A). What do you believe is the actual
characteristic polynomial, p?

d. The Cayley-Hamilton theorem states that every matrix satisfies its characteristic equation. Compute p (A), where
p is the assumed characteristic polynomial from part (c). Is the result close to zero?

e. Explain why this matrix causes so much trouble for eigenvalue solvers.
18.43 This problem takes another approach to the column buckling application in Section 18.1.3.

a. If the beam is hinged at both ends, we obtain the boundary value problem

EI
d2y

dx2
+ Py = 0, y (0) = 0, y (L) = 0,

whose terms are defined in Section 18.1.3. Approach the problem using finite differences, as we did for the heat
equation in Section 12.2. Divide the interval 0 ≤ x ≤ L into n subintervals of length h = L

n with points of division
x1 = 0, x2 = h, x3 = 2h,…, xn = L− h, and xn+1 = L. Use the central finite difference approximation

d2y

dx2
(xi) ≈ yi+1 − 2yi + yi−1

h2
, 2 ≤ i ≤ n

along with the boundary conditions, to show that the result is a matrix eigenvalue problem of the form

Ay = λy,

where A is a symmetric tridiagonal matrix. What is the relationship between λ and the critical loads?
b. For copper, E = 117 × 109 N/m2. Assume I = .0052m4 and that L = 1.52m. Using h = 1.52/25 find the

smallest three values of λ, compute the critical loads, and graph (xi, yi) for each value of λ on the same axes.
Relate the results to the discussion in Section 18.1.3.
Note: Suppose that EV is a 26× 3 matrix containing the eigenvectors corresponding to λ1, λ2, and λ3 as well as
the zero values at the endpoints. Each row has the format

[
0 y2 y3 . . . y24 y25 0

]T
. To create a good looking

graph place these statements in your program.

minval = min(min(EV));
maxval = max(max(EV));
axis equal;

axis([0 L minval maxval]);

hold on;

graph each displacement using different line styles

add a legend
hold off;

18.44 Problem 18.23 introduced the generalized eigenvalue problem.MATLAB can solve these problems using eig(A,B)
that finds matrices V and D such that

AV = BVD.

The diagonal of D contains the generalized eigenvectors and the columns of V are the associated eigenvectors.
a. Solve the following generalized eigenvalue problem and verify that AV = BVD.⎡⎣ 1 −7 3

0 1 5
3 7 8

⎤⎦ v = λ

⎡⎣ 1 3 7
−1 −8 1
4 3 1

⎤⎦ .

b. The basis for the computing the generalized eigenvalues and eigenvectors is the QZ iteration that is analogous to
the QR iteration for eigenvalues. Look up the function qz in the MATLAB documentation and use it to solve the
problem in part (a).



Chapter 19

The Symmetric Eigenvalue Problem

You should be familiar with

● Properties of a symmetric matrix
● QR decomposition
● Givens rotations
● Orthogonal similarity transformations
● Householder reflections
● Deflation during transformations
● Using a shift during eigenvalue computation

Symmetric matrices appear naturally in many applications that include the numerical solution to ordinary and partial
differential equations, the theory of quadratic forms, rotation of axes, matrix representation of undirected graphs, and
principal component analysis in statistics. Symmetry allows the development of algorithms for solving certain problems
more efficiently than the same problem can be solved for a general matrix. For instance, the computation of eigenvalues
and their associated eigenvectors can be done accurately and with a lower flop count than their determination for a general
matrix. We have invoked the spectral theorem many times in the book. It guarantees that every n× n symmetric matrix has
n linearly independent eigenvectors, even in the presence of eigenvalues of multiplicity greater than 1. We have not proved
the theorem, and we do so in this chapter by using Schur’s triangularization, developed in Section 18.7.

We will discuss the Jacobi, the symmetricQR iteration, the Francis algorithm, and the bisection algorithm for computing
the eigenvectors and eigenvalues of a real symmetric matrix. The Jacobi algorithm uses a modification of Givens rotations
to create orthogonal similarity transformations that reduce the symmetric matrix into a diagonal matrix containing the
eigenvalues, all the while computing the corresponding eigenvectors. The algorithm does not require that the matrix first be
brought into upper Hessenberg form. The symmetric QR algorithm is an adaptation of the implicit single shift QR iteration
for a general matrix, except that the shift is chosen to take advantage of the matrix symmetry. Note that a symmetric upper
Hessenberg matrix is tridiagonal, and that a reduction to upper triangular form creates a diagonal matrix of eigenvalues.
As a result, the symmetric QR iteration is faster than the iteration for a general matrix. The Francis algorithm is usually
the method of choice for the computation of eigenvalues. First, the matrix is reduced to a tridiagonal matrix. Rather than
using theQR decomposition, the Francis algorithm performs orthogonal similarity transformations to reduce the tridiagonal
matrix to a diagonal matrix of eigenvalues. As the algorithm progresses, an eigenvector can be computed right along with
its eigenvalue. The bisection algorithm for computing eigenvalues of a symmetric tridiagonal matrix is very different from
the previous methods. By applying the bisection method for computing the roots of a nonlinear function along with some
amazing facts about the eigenvalues and characteristic polynomials of a symmetric matrix, the algorithm can accurately
compute one particular eigenvalue, all the eigenvalues in an interval, and so forth.

The chapter concludeswith a summary ofCuppen’s divide-and-conquer algorithm [58]. It ismore than twice as fast as the
QR algorithm if both eigenvalues and eigenvectors of a symmetric tridiagonal matrix are required. However, the algorithm
is difficult to implement so that it is stable. In fact, it was 11 years before a proper implementation was discovered [59, 60].

19.1 THE SPECTRAL THEOREM AND PROPERTIES OF A SYMMETRIC MATRIX

We have used the spectral theorem a number of times in the book to develop important results, but have never presented a
proof. Schur’s triangularization allows to easily prove the spectral theorem.

Theorem 19.1 (Spectral theorem). If A is a real n×n symmetric matrix, then it can be factored in the form A = PDPT,
where P is an orthogonal matrix containing n orthonormal eigenvectors of A, and D is a diagonal matrix containing the
corresponding eigenvalues.

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00019-3
Copyright © 2015 Elsevier Inc. All rights reserved. 439



440 Numerical Linear Algebra with Applications

Proof. Since A is real and symmetric, it has real eigenvalues (Lemma 7.3), and applying Schur’s triangularization A =
PTPT, where T is an upper triangular matrix. We have T = PTAP, so TT = PTATP = PTAP and T is symmetric. Since T is
upper triangular, tij = 0, i > j. The symmetry of T means that the elements tji = 0, j < i, and D = T is a diagonal matrix.
Since A = PDPT, A and D are similar matrices, and by Theorem 5.1 they have the same eigenvalues. The eigenvalues of D
are the elements on its diagonal and thus are eigenvalues of A. Now, if P = [

v1 v2 . . . vn−1 vn
]
, then

AP = [
Av1 Av2 . . . Avn−1 Avn

] = [
λ1v1 . . . λn−1vn−1 λnvn

] = [
v1 . . . vn−1 vn

]
diag (λ1, λ2, . . . , λn−1, λn)

so Avi = λivi, 1 ≤ i ≤ n, and the columns of P are orthonormal eigenvectors of A.

Remark 19.1. Since a real symmetric matrix has n orthonormal eigenvectors, we see from the proof of Theorem 19.1 that
we can arrange P so its columns contain eigenvectors that correspond to the eigenvalues in decreasing order of magnitude;

in other words, D will have the form

⎡⎢⎢⎢⎣
λ1 0

λ2
. . .

0 λn

⎤⎥⎥⎥⎦, where |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

19.1.1 Properties of a Symmetric Matrix

We begin by listing some properties of a symmetric matrix we already know and then developing a new result.

● The eigenvalues of a symmetric matrix are real, and the eigenvectors can be assumed to be real (Lemma 7.3).
● If A is symmetric and x, y are n× 1 vectors, then 〈Ax, y〉 = 〈x,Ay〉.
● If A is a symmetric matrix, ‖A‖2 = ρ (A), where ρ (A) is the spectral radius of A.
● A symmetric n× n matrix A is positive definite if and only if all its eigenvalues are positive.
● If A is a real symmetric matrix, then any two eigenvectors corresponding to distinct eigenvalues are orthogonal

(Theorem 6.4).
● A symmetric matrix can be diagonalized with an orthogonal matrix (Theorem 19.1—the spectral theorem). Thus,

even if there are multiple eigenvalues, there is always an orthonormal basis of n eigenvectors.

Another special property of a real symmetric matrix is that the eigenvalues are well conditioned. Thus, by using a good
algorithm we can compute eigenvalues with assurance that the errors will be small.

Theorem 19.2. The eigenvalues of a real symmetric matrix are well conditioned.

Proof. We know by the spectral theorem that any real symmetric matrix can be diagonalized. If x is a normalized right
eigenvector of A corresponding to eigenvalue λ, then Ax = λx. We have xTAT = xTA = λxT, so x is also a left eigenvector
of A. The condition number, κ , of λ is

κ (λ) = 1

xTx
= 1,

and λ is perfectly conditioned.

Since this chapter concerns the accurate computation of eigenvalues for a symmetric matrix, this is good news.
Unfortunately, the same is not true for the eigenvectors of a symmetricmatrix. They can be ill-conditioned (see Example 19.2
and Problem 19.21). The sensitivity of the eigenvalues of a symmetric matrix depends on the separation of the eigenvalues. If
a matrix has an eigenvalue ofmultiplicity greater than 1, or if there is a cluster of closely spaced eigenvalues, the eigenvectors
will be ill-conditioned.

19.2 THE JACOBI METHOD

As we have indicated, special algorithms that exploit symmetry have been developed for finding the eigenvalues and
eigenvectors of a symmetric matrix. We will confine ourselves to real symmetric matrices and begin with the Jacobi method.
The Jacobi method does not first transform the matrix A to upper Hessenberg form, but transforms A directly to a diagonal
matrix using orthogonal similarity transformations. The strategy used in the Jacobi algorithm is to develop an iteration that
will make the sum of the squares of the entries off the diagonal converge to 0, thus obtaining a diagonalmatrix of eigenvalues.



The Symmetric Eigenvalue Problem Chapter| 19 441

In practical terms, the algorithm continues until
√∑n

i=1
∑n

j=1, j�=i a2ij is sufficiently small. Recall that ‖A‖2F =
∑n

i=1
∑n

j=1 a2ij
is the square of the Frobenius norm, and so we can define the function off(A) as follows.

Definition 19.1. off(A) =
√∑n

i=1
∑n

j=1, j �=i a2ij =
√
‖A‖2F −

∑n
i=1 a2ii

The algorithm creates orthogonal matrices J0, J1, . . . Jk−1 such that

lim
k−→∞ off(Ak) = 0,

where {
A0 = A
Ak = JTk−1Ak−1Jk−1

Since A = A0 is symmetric and
(
JTk−1Ak−1Jk−1

)T = JTk−1ATk−1Jk−1 = JTk−1Ak−1Jk−1, Ak is symmetric. Each orthogonal
matrix Jk is a Givens rotation, slightly different from the rotations used in Section 17.2. Those Givens rotations were of
the form

i j
1 0 0 . . . . . . . . . 0
...

. . . . . . . . . . . .
...

i c . . . s . . . 0
...

. . .
j -s c 0

...
. . .

0 1
J (i, j, c, s)

,

where the numbers c and s were chosen such that the product J (i, j, c, s)A caused entry aji to become 0. For the Jacobi
method, we choose c and s so that J (i, j, c, s)T AJ (i, j, c, s) zeros out the pair of nonzero elements aij and aji.

Suppose we are at step k of the iteration, Ak = JTk−1Ak−1Jk−1, and want to zero out nonzero entries a(k−1)
ij

and a(k−1)
ji of Ak−1. To determine how we should choose c and s, look at the product A = JT (i, j, c, s)AJ (i, j, c, s).

i j i j i j

1 . . . 0 . . . 0 . . . 0 a11 . . . . . . . . . a1n 1 . . . 0 . . . 0 . . . 0

.

.

.
. . .

.

.

.
. . .

.

.

.
. . .

i 0 c . . . -s 0 i aii . . . aij i 0 c . . . s 0

.

.

.
. . .

.

.

.
. . .

.

.

.
. . .

j 0 s c 0 j aji ajj j 0 -s c 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .

0 0 0 1 a1n 0 0 ann 0 0 0 1

JT (i, j, c, s) A J (i, j, c, s)

In forming the product A = J (i, j, c, s)T AJ (i, j, c, s), patterns emerge, and are displayed in the following table.

TABLE 19.1 Jacobi Iteration Formulas

akl = akl , k, l �= i, j

aik = aki = caik − sajk , k �= i, j

ajk = akj = saik + cajk , k �= i, j

aij = aji =
(
c2 − s2

)
aij + cs

(
aii − ajj

)
aii = c2aii − 2csaij + s2ajj

ajj = s2aii + 2csaij + c2ajj



442 Numerical Linear Algebra with Applications

We want aij = aji = 0, so let (
c2 − s2

)
aij + cs

(
aii − ajj

) = 0. (19.1)

If aij = 0, let c = 1, and s = 0. This satisfies Equation 19.1. Otherwise, we must find c and s. Rewrite Equation 19.1 as

c2 − s2

cs
= ajj − aii

aij
(19.2)

Note that we have assumed aij �= 0. Since J (i, j, c, s) is orthogonal, we must have c2 + s2 = 1, and c = cos θ , s = sin θ

for some θ . Substitute these relations into Equation 19.2 to obtain

cos2 θ − sin2 θ

sin θ cos θ
= ajj − aii

aij
(19.3)

Noting that cos 2θ = cos2 θ − sin2 θ , and sin 2θ = 2 sin θ cos θ , Equation 19.3 can be written as

cot 2θ = 1

2

(
ajj − aii
aij

)
. (19.4)

We need the following trigonometric identity:

tan2 θ + 2 tan θ cot 2θ − 1 = 0. (19.5)

Equation 19.5 is verified as follows:

tan2 θ + 2 tan θ cot 2θ − 1 = sin2 θ

cos2 θ
+ 2

sin θ

cos θ

cos 2θ

sin 2θ
− 1

= sin2 θ

cos2 θ
+ 2

sin θ

cos θ

(
cos2 θ − sin2 θ

)
2 sin θ cos θ

− 1

= sin2 θ

cos2 θ
+ cos2 θ − sin2 θ

cos2 θ
− 1 = 0.

Noting that tan θ = s

c
, we now use the identity 19.5 with Equations 19.2 and 19.4 to obtain

s2

c2
+ 2

s

c

1

2

(
ajj − aii
aij

)
− 1 = s2

c2
+ s

c

(
c2 − s2

cs

)
− 1 = 1− 1 = 0. (19.6)

Let t = s
c , and we can write Equation 19.6 as

t2 + 2τ t − 1 = 0, (19.7)

where τ = 1
2

(
ajj − aii
aij

)
. An application of the quadratic equation to Equation 19.7 produces two roots:

t = −τ ±
√

τ 2 + 1.

The solutions for t can be rewritten as follows:

t1 =
(
−τ +

√
τ 2 + 1

) (−τ −√τ 2 + 1
)

(
−τ −√τ 2 + 1

) = −1
−τ −√τ 2 + 1

= 1

τ +√τ 2 + 1
,

t2 =
(
−τ −

√
τ 2 + 1

) (−τ +√τ 2 + 1
)

(
−τ +√τ 2 + 1

) = −1
−τ +√τ 2 + 1

.

When τ < 0, choose t2, and when τ > 0, choose t1. This choice means we are adding two positive numbers in the
denominator, and so there is no cancelation error. Using t, we nowmust find values for c and s. When we find an appropriate
value for c,

s = ct.



The Symmetric Eigenvalue Problem Chapter| 19 443

Now, 1+ tan2 θ = 1+ t2 = sec2 θ = 1
cos2 θ

= 1
c2
, so

c = 1√
1+ t2

.

The following is a summary of our results to this point.

TABLE 19.2 Computation of c
and s for the Jacobi Method

τ = ajj−aii
2aij

t =

⎧⎪⎪⎨⎪⎪⎩
1

τ +√τ 2 + 1
τ ≥ 0

−1
−τ +√τ 2 + 1

τ < 0

⎞⎟⎟⎠
c = 1√

1+ t2

s = ct

The question now is the issue of convergence. We will investigate this question by looking at the off-diagonal entries as
the iteration progresses. Before proceeding, we need to note the following:

● trace (AB) = trace (BA) for any n× n matrices A and B (Theorem 1.2).
● If A is symmetric, trace

(
A2
) =∑n

i=1
∑n

j=1 a2ij (Problem 19.2).
● If P is an orthogonal matrix, then

∥∥PTAP∥∥F = ‖A‖F , which follows from Lemma 15.1.

A technical lemma is necessary before we can prove convergence of the Jacobi method. It says that off(Ak) ≤ off
(
Ak−1

)
(off(Ai) is monotonically decreasing).

Lemma 19.1. If A = J(i, j, c, s)TAJ(i, j, c, s), then

off(A)2 = off(A)2 − 2a2ij.

Proof. By looking at Table 19.1, it is evident that all the entries on the diagonal of A except aii and ajj are the same as those
of A. The elements at indices (i, i) and (j, j) on the diagonal must satisfy the following relation:[

cos θ − sin θ

sin θ cos θ

][
aii aij
aij ajj

][
cos θ sin θ

− sin θ cos θ

]
=
[
aii 0
0 ajj

]
,

and so ∥∥∥∥[ aii 0
0 ajj

]∥∥∥∥2
F
=
∥∥∥∥[ cos θ − sin θ

sin θ cos θ

] [
aii aij
aij ajj

][
cos θ sin θ

− sin θ cos θ

]∥∥∥∥2
F
,

By Lemma 15.1,

a2ii + a2jj = a2ii + a2jj + 2a2ij.

Since all the other diagonal entries of A are identical to those of A, we have
n∑
i=1

a2ii =
n∑
i=1

a2ii + 2a2ij. (19.8)

Since A and A are orthogonally similar, ‖A‖2F = ‖A‖2F by Lemma 15.1. This and Equation 19.8 imply

off(A)2 = ‖A‖2F −
n∑

k=1
a2ii = ‖A‖2F −

n∑
i=1

a2ii − 2a2ij = off(A)2 − 2a2ij.

Theorem 19.3. At each iteration, choose for aij the off-diagonal element largest in magnitude. With this strategy, the
Jacobi method converges.



444 Numerical Linear Algebra with Applications

Proof. Consider Ak = JTk−1Ak−1Jk−1. There are n2 − n entries off the diagonal, and since aij is largest in magnitude,

(off (Ak−1))2 ≤ n (n− 1) a2ij.

Write the equation in the form

a2ij ≥
(off (Ak−1))2

n (n− 1)
.

By Lemma 19.1, off (Ak)2 = off (Ak−1)2 − 2a2ij, and so

off(Ak)
2 ≤ off (Ak−1)2 − 2

(off (Ak−1))2

n (n− 1)
=
(
1− 1

N

)
off (Ak−1)2 (19.9)

where N = n(n−1)
2 . Equation 19.9 shows that after k Jacobi iteration steps,

off(Ak) ≤
(√

1− 1

N

)k
off (A) ,

which shows that the Jacobi iteration converges.

The term off (Ak) decreases at a rate of

√(
1− 1

N

)
. This rate of convergence is considered linear. However, it can be

shown that the average rate of convergence (asymptotic rate) is quadratic [2, pp. 479-480].

Remark 19.2. Each iteration of the Jacobi algorithm makes aij and aji zero, and the computation to do this can destroy
pairs of zeros already created. However, as the iteration progresses, off (Ak) decreases, leaving approximations to the
eigenvalues on the diagonal. There is a function in the software distribution, eigsymjdemo, that allows you to see this
behavior happening.

19.2.1 Computing Eigenvectors Using the Jacobi Iteration

Our preceding discussion did not include the computation of eigenvectors, and it is easy to do. The iteration computes

JTk J
T
k−1 . . . JT2 J

T
1AJ1J2 . . . Jk−1Jk = (J1J2 . . . Jk−1Jk)T A (J1J2 . . . Jk−1Jk) ≈ D,

where D is a diagonal matrix of eigenvalues, and each Ji is a Givens rotation. Thus, the matrix

J = J1J2 . . . Jk−1Jk
is an orthogonal matrix of eigenvectors. Starting with J0 = I, maintain this product.

19.2.2 The Cyclic-by-Row Jacobi Algorithm

The algorithm we have presented is called the classical Jacobi method. The product A1 = J (i, j, c, s)T Ak−1 affects only
rows i and j of Ak−1, and A2 = A1J (i, j, c, s) affects only columns i and j of A1. Thus, each Jacobi iteration costsO (n) flops.
To find the largest entry in magnitude requires searching n(n−1)

2 entries, so it is necessary to executeO
(
n2
)
comparisons for

one Jacobi iteration. This is simply too expensive, so it is almost never used in practice.
There is a modification of the Jacobi algorithm that is designed to speed it up. It is known as the cyclic-by-row

Jacobi algorithm. Compute off(A) by cycling through the N = n(n−1)
2 entries above the diagonal by rows left-to-right as

follows:

(1, 2) , (1, 3) , . . . , (1, n) , (2, 3) , (2, 4) , . . . , (2, n) , . . . , (n− 1, n) .

One cycle of N Jacobi rotations is termed a sweep, and sweeps are performed until off(Ak) is sufficiently small. This
algorithm has the same convergence properties as the classical Jacobi algorithm [9, pp. 270-271].

We are now ready to specify Algorithm 19.1, eigsymj, that computes the eigenvalues and corresponding eigenvectors of
a real symmetric matrix. We assume the following functions are available:

● jacobics: computes c and s for the Jacobi rotation defined in Table 19.2.
● jacobimul: computes the Jacobi rotation J (i, j, c, s)T AJ (i, j, c, s) for an iteration of the Jacobi algorithm as defined in

Table 19.1.



The Symmetric Eigenvalue Problem Chapter| 19 445

● givensmulp: computes AJ (i, j, c, s).

● off: computes off (A) =
√∑n

k=1
∑n

p=1,k �=p a2kp.

NLALIB: The function eigsymj implements Algorithm 19.1. The supporting functions jacobics, jacobimul,
givensmulp, and off are in the book software distribution.

Remark 19.3. The MATLAB implementation uses variable input and output arguments to make eigsymj as flexible as
possible. Here are the possible calling formats:

● eigsymj(A): returns a column vector of eigenvalues.
● E = eigsymj(A): assigns E a column vector containing the eigenvalues.
● [V, D] = eigsymj(A): assigns the columns of V the eigenvectors corresponding to the eigenvalues on the diagonal

matrix D.
● [V, D, numsweeps] = eigsymj(A): adds the number of sweeps required to the output.

Algorithm 19.1 Jacobi Method for Computing All Eigenvalues of a Real Symmetric Matrix

function EIGSYMJ(A,tol,maxsweeps)

% executes the cyclic-by-row Jacobi method to approximate the eigenvalues

% and eigenvectors of a real symmetric matrix A.

% [V D numsweeps]=eigsymj(A,tol,maxsweeps) returns an orthogonal

% matrix V and diagonal matrix D of eigenvalues such that

% VTAV = D. The algorithm returns when tol < off (Ak).

% If the desired tolerance is not obtained within maxsweeps sweeps,

% a value of -1 is returned for numsweeps.

Print error message and return if A is not symmetric.

desiredAccuracy=false

numsweeps=1

V=I

while (numsweeps ≤ maxsweeps) and (notdesiredAccuracy) do
% execute a cycle of n(n-1)/2 Jacobi rotations.

for i=1:n-1 do
for j=i+1:n do

% compute c and s so that aij = aji = 0.[
c s

] = jacobics (A,i, j)

% compute A = J (i,j,c, s)T AJ (i, j,c, s)

A=jacobimul(A,i,j,c,s)

% multiply V on the right by the Givens rotation J(i,j,c,s).

V=givensmulp(V,i,j,c,s);

end for
end for
if off(A)<tol then

desiredAccuracy=true

end if
numsweeps=numsweeps+1

end while

if desiredAccuracy=false then
numsweeps=-1

end if
D=diag(diag(A))

return
[
V D numsweeps

]
end function



446 Numerical Linear Algebra with Applications

Example 19.1. Let A =
⎡⎣ 1 5 2
5 −1 3
2 3 4

⎤⎦. Two sweeps of the Jacobi algorithm produces the following sequence of matrices,

with the data rounded to four decimal places.⎡⎣ 5.0990 0.0000 3.4487
0.0000 −5.0990 1.0520
3.4487 1.0520 4.0000

⎤⎦ ,

⎡⎣ 8.0417 0.6829 0.0000
0.6829 −5.0990 0.8003
0.0000 0.8003 1.0574

⎤⎦ ,

⎡⎣ 8.0417 0.6774 0.0866
0.6774 −5.2014 0.0000
0.0866 0.0000 1.1597

⎤⎦ ,

⎡⎣ 8.0762 0.0000 0.0865
0.0000 −5.2359 −0.0044
0.0865 −0.0044 1.1597

⎤⎦ ,

⎡⎣ 8.0773 −0.0001 0.0000
−0.0001 −5.2359 −0.0044
0.0000 −0.0044 1.1586

⎤⎦ ,

⎡⎣ 8.0773 −0.0001 0.0000
−0.0001 −5.2359 0.0000
0.0000 0.0000 1.1586

⎤⎦ .

Notice that the first rotation made a12 = a21 = 0, but the second rotationmade a13 = a31 = 0, while a12 and a21 became
0.6829. On the third rotation the entries a31 and a13 become 0.0866when a32 and a23 become 0. Despite this behavior, off(A)
for the final matrix is 7.80332×10−5. The values on the diagonal of the final matrix are eigenvalues correct to four decimal
places. �

Example 19.2. This example demonstrates that a symmetric matrix can have ill-conditioned eigenvectors. The symmetric
matrix EIGVECSYMCOND from the software distribution has a condition number of 70.867. The following MATLAB
statements clearly demonstrate that the eigenvectors are ill-conditioned.

>> [V1,D1] = eigsymj(EIGVECSYMCOND,1.0e-14,20);

>> E = 1.0e-10*rand(25,1);
>> E = diag(E);
>> EIGVECSYMCONDP = EIGVECSYMCOND;

>> EIGVECSYMCONDP = EIGVECSYMCONDP + E;

>> [V2,D2] = eigsymj(EIGVECSYMCONDP,1.0e-14,20);

>> norm(D1-D2)

ans =

1.091393642127514e-10

>> norm(V1-V2)

ans =

0.962315272737213 �

19.3 THE SYMMETRIC QR ITERATION METHOD

In this section, we will develop the symmetricQR iteration method for computing the eigenvalues and eigenvectors of a real
symmetric matrix. The method takes advantage of concepts we have already developed, namely, the orthogonal reduction
of a matrix to upper Hessenberg form and the shifted Hessenberg QR iteration. However, adjustments are made to take
advantage of matrix symmetry. A symmetric upper Hessenberg matrix is tridiagonal, so our first task is to develop an
efficient way to take advantage of symmetry when reducing A to a tridiagonal matrix. We will use Householder matrices
for the orthogonal similarity transformations.

We motivate the process using a general symmetric 3× 3 matrix.

A =
⎡⎣ a b c
b d e
c e f

⎤⎦ .

Recall that a Householder matrix is orthogonal and symmetric. Using the vector x1 =
[
b
c

]
, create a 2×2 Householder

matrix Hu1 =
[
h11 h12
h12 h22

]
that zeros out c. Then,



The Symmetric Eigenvalue Problem Chapter| 19 447

Hu1

[
b
c

]
=
[
h11b+ h12c
h12b+ h22c

]
=
[
h11b+ h12c

0

]
.

Embed Hu1 in the 3× 3 identity matrix as the lower 2× 2 submatrix to form

H1 =
⎡⎣ 1 0 0
0 h11 h12
0 h12 h22

⎤⎦ .

Form the product

H1A =
⎡⎣ 1 0 0
0 h11 h12
0 h12 h22

⎤⎦⎡⎣ a b c
b d e
c e f

⎤⎦ =
⎡⎣ a b c
h11b+ h12c h11d + h12e h11e+ h12f
h12b+ h22c h12d + h22e h12e+ h22f

⎤⎦
=

⎡⎣ a b c
h11b+ h12c h11d + h12e h11e+ h12f

0 h12d + h22e h12e+ h22f

⎤⎦ .

Now multiply on the right by H1 to obtain

H1AH1 =
⎡⎢⎣ a bh11 + ch12 0

h11b+ ch12 h11 (h11d + h12c)+ h12 (h11e+ h12f ) h12 (h11d + h12e)+ h22 (h11e+ h12f )

0 h12 (h11d + h12e)+ h22 (h11e+ h12f ) h12 (h12e+ h22f )

⎤⎥⎦ .

The product is symmetric and tridiagonal.
The algorithm for an n×n symmetric matrix is a generalization of this 3×3 example, and results in the Algorithm 19.2,

trireduce. If the details are not required, the reader can skip to Example 19.4 that demonstrates the use of trireduce.
For an n × n symmetric matrix, construct a Householder matrix that will zero out all the elements below a21. For this,

choose the vector x1 =

⎡⎢⎢⎢⎣
a21
a31
...
an1

⎤⎥⎥⎥⎦ and form the (n− 1)×(n − 1)Householder matrixH(n−1)
u1 . Insert it into the identity matrix

to create matrix H1 so that

H1A =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 . . . 0
0
0 H(n−1)

u1
...
0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a11 a12 a13 . . . a1n
a21
a31
...
an1

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
a11 a12 a13 . . . a1n
v1
0 X
...
0

⎤⎥⎥⎥⎥⎥⎦
The value v1 = ±‖x1‖2 (Section 17.8.1). The product zeros out all the entries in column 1 in the index range (3, 1)−

(n, 1), alters a21, but leaves the first row ofA unchanged.Noting thatHT
1 = H1, form the orthogonal similarity transformation

A(1) = H1AH1 =

⎡⎢⎢⎢⎢⎢⎣
a11 v1 0 . . . 0
v1 a(1)

22
0 X
...
0

⎤⎥⎥⎥⎥⎥⎦
that maintains symmetry and zeros out the elements at indices (1, 3)-(1, n).



448 Numerical Linear Algebra with Applications

The next step is to zero out the elements in A(1) at indices (4, 2)-(n, 2) using the vector x2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
32

a(1)
42

a(1)
52
...

a(1)
n2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
to construct the

Householder (n− 2)× (n− 2) Householder matrix

H2 =

1 0 0 . . . 0
0 1 0 . . . 0
0 0
...

... H(n−2)
u2

0 0

.

The identity matrix in the upper left corner maintains the tridiagonal structure already built. Now form A2 = H2A1H2
to create the matrix

a11 v1 0 . . . 0
v1 a(1)

22 v2 . . . 0
0 v2
...

... X
0 0

,

where v2 = ±‖x2‖2. Continue by formingH3A2H3, . . . ,Hn−2An−3Hn−2 to arrive at a symmetric tridiagonal matrix T. The
product P = Hn−2Hn−3 . . .H2H1 is an orthogonal matrix such that T = PAP.

An example using a 5× 5 matrix will help in understanding the process. The example uses the MATLAB function

H = hsym(A,i)

in the software distribution. It builds the n × n Householder matrix with the embedded (n− i) × (n− i) Householder
submatrix used to zero out elements (i+ 2, i) , . . . , (n, i).

Example 19.3. Let

A =

⎡⎢⎢⎢⎢⎣
1 2 −1 3 5
2 −1 −2 1 0
−1 −2 1 −7 2
3 1 −7 2 −1
5 0 2 −1 1

⎤⎥⎥⎥⎥⎦ .

>> H1 = hsym(A,1)

H1 =

1 0 0 0 0

0 -0.32026 0.16013 -0.48038 -0.80064

0 0.16013 0.98058 0.058264 0.097106

0 -0.48038 0.058264 0.82521 -0.29132

0 -0.80064 0.097106 -0.29132 0.51447

>> H1*A

ans =

1 2 -1 3 5

-6.245 -0.48038 2.5621 -1.6013 0

0 -2.063 0.44669 -6.6845 2

0 1.1891 -5.3401 1.0535 -1

0 0.31511 4.7666 -2.5775 1

>> A1 = H1*A*H1



The Symmetric Eigenvalue Problem Chapter| 19 449

A1 =

1 -6.245 0 0 0

-6.245 1.3333 2.3421 -0.94135 1.0999

0 2.3421 -0.087586 -5.0817 4.6714

0 -0.94135 -5.0817 0.27834 -2.2919

0 1.0999 4.6714 -2.2919 1.4759

>> H2 = hsym(A1,2)

H2 =

1 0 0 0 0

0 1 0 0 0

0 0 -0.85061 0.34189 -0.39947

0 0 0.34189 0.93684 0.073798

0 0 -0.39947 0.073798 0.91377

>> A2 = H2*A1*H2

...

A3 =

1 -6.245 0 0 0

-6.245 1.3333 -2.7534 0 0

0 -2.7534 6.9609 -4.5858 0

0 0 -4.5858 -3.9358 0.32451

0 0 0 0.32451 -1.3584

>> P = H3*H2*H1;

>> P*A*P’

ans =

1 -6.245 0 0 0

-6.245 1.3333 -2.7534 0 0

0 -2.7534 6.9609 -4.5858 0

0 0 -4.5858 -3.9358 0.32451

0 0 0 0.32451 -1.3584 �

19.3.1 Tridiagonal Reduction of a Symmetric Matrix

While the explanation provided shows how the algorithm works, the computation is not efficient. In particular, it should not
be necessary to construct the entire matrix, Hi having the i × i identity matrix in the upper left-hand corner. The product
HiAi−1Hi should be done implicitly and take advantage of symmetry. Recall that a Householder matrix is of the form
Hu = I − βuuT, where β = 2

uTu
. Since Hu is symmetric, HuAHT

u = HuAHu, and

HuAHu =
(
I − βuuT

)
A
(
I − βuuT

)
= A− βAuuT − uβuTA+ βuuTβAuuT

Define p = βAu, so

HuAHu = A− puT − upT + βuuTpuT.

Noting that uTp is a real number, define K = βuTp
2 so that

HuAHu = A− puT − upT + 2KuuT = A− (p− Ku) uT − u
(
pT − KuT

)
.

Define q = p− Ku, and we have the final result

p = βAu (19.10)

K = βuTp

2
, (19.11)

q = p− Ku (19.12)

HuAHu = A− quT − uqT, (19.13)



450 Numerical Linear Algebra with Applications

Equation 19.13 enables a faster computation for the transformation.
Our algorithm for reduction to a tridiagonal matrix replaces A by the tridiagonal matrix, so the remaining discussion

will assume we are dealing with matrix A as it changes. As i varies from 1 to n− 2, we know that after the product HiAHi

● the entries at indices (i+ 2, i) . . . (n, i) and (i, i+ 2) . . . (i, n) have value 0.
● ai+1,i = ai,i+1 = ±

∥∥∥[ ai+1,i ai+2,i . . . an−1,i ani
]T∥∥∥

2
.

Looking at Example 19.3, we see that each iteration HiAHi affects only the submatrix A (i+ 1 : n, i+ 1 : n), so there is no
need to deal with any other portion of the matrix. Our strategy is to assign the values ai+1,i, ai,i+1 and then perform the
product

A (i+ 1 : n, i+ 1 : n) = A (i+ 1 : n, i+ 1 : n)− uqT − quT

using Equation 19.13. After completion of the n − 2 iterations, the algorithm places zeros above and below the three
diagonals to eliminate small entries remaining due to roundoff error. If the orthogonal transforming matrix P is required,
compute P = Hn−2Hn−3 . . .H2H1I using the formula

P (2 : n, i+ 1 : n) = P (2 : n, i+ 1 : n)− βP (2 : n, i+ 1 : n) uuT

that affects only the portion of P that changes with each iteration. We put all this together in Algorithm 19.2.

Algorithm 19.2 Orthogonal Reduction of a Symmetric Matrix to Tridiagonal Form

function TRIREDUCE(A)

% Compute a tridiagonal matrix orthogonally similar to the

% symmetric matrix A.

% T=trireduce(A) - assigns to T a symmetric tridiagonal matrix

% orthogonally similar to A.

% [P T]=trireduce(A) - assigns to T a symmetric tridiagonal

% matrix orthogonally similar to A and an orthogonal matrix

% P such that PTAP = T.

if P required then
P=I

end if
for i=1:n-2 do[

u β
] = houseparms(A (i+ 1 : n, i))

p = βA (i+ 1 : n,i+ 1 : n) u

K = βuTp
2

q = p− Ku

ai+1,i = ±‖A (i+ 1 : n,i)‖2
ai,i+1 = ai+1,i
A (i+ 1 : n,i+ 1 : n) = A (i+ 1 : n,i+ 1 : n)− uqT − quT

if P required then
P (2 : n, i+ 1 : n) = P (2 : n,i+ 1 : n)− βP (2 : n,i + 1 : n) uuT

end if
end for
Clear all elements above and below the diagonals.

if P required then
return

[
P A

]
else

return A

end if
end function

NLALIB: The function trireduce implements Algorithm 19.2.



The Symmetric Eigenvalue Problem Chapter| 19 451

Example 19.4. Example 19.2 dealt with the matrix EIGVECSYMCOND. In this example, we apply trireduce to that
matrix and compute

∥∥PTPT − EIGVECSYMCOND
∥∥
2. In addition, MATLAB code compares the eigenvalues obtained from

A and T.

>> [P T] = trireduce(EIGVECSYMCOND);

>> norm(P*T*P’-EIGVECSYMCOND)

ans =

1.955492905735752e-10

>> EA = sort(eigsymj(EIGVECSYMCOND,1.0e-10,20));
>> ET = sort(eigsymj(T,1.0e-10,20));
>> norm(EA - ET)

ans =

5.799990492988926e-10 �

Efficiency
The reduction to tridiagonal form requires 4

3n
3 flops, and the algorithm is stable [2, pp. 458-459].

19.3.2 Orthogonal Transformation to a Diagonal Matrix

The final step of the symmetric shiftedQR iteration is the orthogonal reduction of the tridiagonal matrix to a diagonal matrix
of eigenvalues. In Section 18.6.1, we discussed a shift strategy that involves computing the QR decomposition of the matrix
Tk − σ I = QkRk and then forming Tk+1 = RkQk + σ I. We need to show that RkQk is tridiagonal and symmetric.

T = T0 is initially symmetric and tridiagonal. Now,

Tk − σ I = QkRk,

so

QT
k (Tk − σ I)Qk = RkQk.

RkQk is upper Hessenberg by Theorem 18.4, and thus is tridiagonal. We have

(RkQk)T = (
QT
k (Tk − σ I)Qk

)T
= QT

k (Tk − σ I)T Qk
= QT

k (Tk − σ I)Qk
= RkQk,

and therefore Tk+1 is symmetric.
As discussed in Section 18.6.1, σ = hkk , the Rayleigh quotient shift, is often used with a nonsymmetric matrix. For a

symmetric matrix, σ is usually chosen using theWilkinson shift, which is a properly chosen eigenvalue of the 2× 2 lower
right submatrix,

Wk =
[
tk−1, k−1 tk, k−1
tk, k−1 tkk

]
.

The eigenvalues ofWk are the roots of the characteristic polynomial(
tk−1,k−1 − λ

)
(tkk − λ)− t2k,k−1.

Using the quadratic formula, we have

λ =
(
tk−1,k−1 + tkk

)±√(
tk−1,k−1 + tkk

)2 − 4
(
tk−1,k−1tkk − t2k,k−1

)
2

=
(
tk−1,k−1 + tkk

)±√(
tk−1,k−1 − tkk

)2 + 4t2k,k−1
2



452 Numerical Linear Algebra with Applications

=
2tkk +

(
tk−1,k−1 − tkk

)± 2

√(
tk−1,k−1−tkk

2

)2 + t2k,k−1
2

= tkk +
(
tk−1,k−1 − tkk

2

)
±
√(

tk−1,k−1 − tkk
2

)2
+ t2k,k−1

= tkk + r ±
√
r2 + t2k,k−1,

where r = tk−1,k−1 − tkk
2

. We want to choose the eigenvalue closest to tkk as the shift, so if r < 0, choose “+”, and if r > 0,

choose “−”. If r = 0, choose “−”. Using the function

sign (x) =
⎧⎨⎩
1, x > 0
0, x = 0
−1, x < 0

,

the shift is ⎧⎨⎩ σ = tkk + r − sign (r)
√
r2 + t2k, k−1, r �= 0

σ = tkk −
√
t2k,k−1, r = 0

(19.14)

The reason for using the Wilkinson shift has to do with the guarantee of convergence. The choice of σ = tkk can lead
to divergence of the iteration, but convergence when the using the Wilkinson shift is guaranteed to be at least linear, but in
most cases is cubic [61].

TheMATLAB function eigsymqr computes the eigenvalues and, optionally, the eigenvectors of a real symmetricmatrix.
After applying trireduce, the eigenvalue computation in eigsymqrmethod is identical to that for a nonsymmetric matrix,
except that the shift is given by Equation 19.14. The eigenvector computation is done bymaintaining the orthogonalmatrices
involved in the transformations.

Example 19.5. The matrix SYMEIGTST in the book software distribution is a 21× 21 symmetric matrix. The matrix is
orthogonally similar to the famous symmetric tridiagonal 21×21Wilkinsonmatrix used for testing eigenvalue computation.
TheMATLAB documentation for wilkinson(21) specifies that this matrix is a symmetric with pairs of nearly, but not exactly,
equal eigenvalues. Its two largest eigenvalues are both about 10.746; they agree to 14, but not to 15, decimal places. The
example uses eigsymqr to compute the eigenvalues.

>> load SYMEIGTST

eigsymqr(SYMEIGTST,1.0e-14,50)

ans =

-1.125441522119974

0.253805817096685

0.947534367529301

...

5.000244425001915

6.000234031584169

6.000217522257100

...

10.746194182903356

10.746194182903350 �

19.4 THE SYMMETRIC FRANCIS ALGORITHM

As noted in Section 18.8.1, the Francis algorithm has been a staple in eigenvalue computation for many years. The double-
shift version will compute all the eigenvalues and eigenvectors of a general real matrix, and will find all the complex
eigenvalues without using complex arithmetic. Since the eigenvalues of a symmetric matrix are real, the double-shift version
is not necessary. We will present the single-shift version, called the Francis iteration of degree one.



The Symmetric Eigenvalue Problem Chapter| 19 453

The first step is to apply orthogonal similarity transformations that reduce the matrix A to a symmetric tridiagonal matrix,
T = QTAQ. The algorithm now executes the single-shift bulge chase discussed in Section 18.8.1. After k iterations, the
sequence approximates a diagonal matrix.

(JkJk−1 . . . J2J1) T
(
JT1 J

T
2 . . . JTk

) = D. (19.15)

If we let P = JkJk−1 . . . J2J1 in Equation 19.15 and use the fact that T = QTAQ there results

PQTAQPT = D.

The orthogonal matrix PQT approximates the matrix of eigenvectors, and D approximates the corresponding eigenvalues.
The MATLAB function eigsymb finds the eigenvalues and, optionally, the eigenvectors of a symmetric matrix. The

function chase(T) discussed in Section 18.8.1 performs the bulge chase. Like eigsymqr, eigsymb uses deflation so it
only works on submatrices. The function just replaces the explicit single shift by the implicit single shift, so we will not
present the algorithm.

Example 19.6. The Poisson matrix is a symmetric block tridiagonal sparse matrix of order n2 resulting from discretizing
Poisson’s equation with the 5-point central difference approximation on an n-by-n mesh. We will discuss the equation
in Section 20.5. This examples computes the 100 × 100 Poisson matrix, computes its eigenvalues and corresponding
eigenvectors using eigsymb, and checks the result.

>> P = gallery(‘poisson’,10);
>> P = full(P); % convert from sparse to full matrix format

>> [V,D] = eigsymb(P,1.0e-14,100);

>> norm(V’*P*V-D)

ans =

8.127291292857505e-14 �

19.4.1 Theoretical Overview and Efficiency

The flop count for the Francis algorithm is the sum of the counts for reduction to tridiagonal form and reduction to a diagonal
matrix. These counts are as follows [2, pp. 458-464]:

● The cost of computing just the eigenvalues of A is approximately 4
3n

3 flops.
● Finding all the eigenvalues and eigenvectors costs approximately 9n3 flops.

This is the same order of magnitude as the simpler-shifted Hessenberg QR iteration in presented in Section 18.7. However,
eigenvectors are readily found, and the number of multiplications needed is smaller.

19.5 THE BISECTION METHOD

After a symmetric matrix has been reduced to tridiagonal form, T, the bisection method can be used to compute a subset of
the eigenvalues; for instance, eigenvalue i of n, the largest 15% of the eigenvalues or the smallest 5. If important eigenvalues
lie in an interval a ≤ λ ≤ b, the algorithm can find all of them. If needed, inverse iteration will compute the corresponding
eigenvector(s).

The bisection algorithm for computing roots of a nonlinear function is a standard topic in any numerical analysis or
numerical methods course (see Ref. [33, pp. 61-64]). If f is a continuous real-valued function on an interval left ≤ x ≤ right
with f (left) and f (right) having opposite signs (f (left) f (right) < 0), then there must be a value r in the interval such that
f (r) = 0. r is a root of f . Let mid = left+right

2 be the middle point of the interval. After evaluating v = f (left) f (mid),
either you have found a root or know in which of the intervals (left, mid) or (mid, right) of length right−left

2 the root lies



454 Numerical Linear Algebra with Applications

Root in (left,mid)

f (left) f (mid)<0 f (left) f (mid)<0

Left

LeftMid MidRight
Right

Root in (mid, right)

y y

x x

FIGURE 19.1 Bisection.

-0.5

-0.5

-0.5

-0.5

-1

-1

-1

-1

0

0

0

0

0.5

0.5

0.5

0.5

1

1

1

1

1.5

1.5

1.5

1.5

2

2

2

2

2.5

2.5

2.5

2.5

l1
(4)

l1
(3)

l1
(2)

l2
(4)

l2
(3)

l1
(1)

l2
(2)

l3
(3)

l3
(4) l4

(4)

FIGURE 19.2 Interlacing.

(Figure 19.1).Move to the new interval and repeat the process until finding a root or isolating the root in a very small interval.

Outline of the Bisection Method

a. v = 0: mid is a root.
b. v > 0: root is in the interval mid < r < right.
c. v < 0: root is in the interval left < r < mid.

For any n×nmatrix with real distinct eigenvalues, let f (μ) = det(A−μI), and find two values μl = left and μr = right
for which

f (left) f (right) < 0,

and apply the bisection algorithm until approximating a root. Of course, the root is an eigenvalue of A. This does not
violate the fact that polynomial root finding is unstable, since the algorithm deals only with the polynomial value and never
computes any coefficients. There are no problems like evaluation of the quadratic formula (see Section 8.4.2) or perturbing
a particular coefficient of a polynomial (see Section 10.3.1). A determinant of an arbitrary matrix can be computed stably
using Gaussian elimination with partial pivoting (PA = LU ⇒ A = PTLU ⇒ det (A) = (−1)r u11u22 . . . unn, where r is the
number of row exchanges). What makes the use of bisection extremely effective when applied to a symmetric tridiagonal
matrix is some extraordinary properties of its eigenvalues and f (μ).

Let T be an unreduced symmetric tridiagonal matrix (no lower diagonal element is zero). At the end of the section, we
will discuss the method for a matrix with a zero on its lower diagonal. Assume

T =

⎡⎢⎢⎢⎢⎢⎢⎣

a1 b1
b1 a2 b2

b2 a3
. . .

. . .
. . . bn−1
bn−1 an

⎤⎥⎥⎥⎥⎥⎥⎦ , bi �= 0.



The Symmetric Eigenvalue Problem Chapter| 19 455

Let T(1) be the 1 × 1 matrix [a1], T(2) be the 2 × 2 matrix

[
a1 b1
b1 a2

]
and, in general, T(k) = T (1 : k, 1 : k) be the

upper-left k × k submatrix of T, 1 ≤ k ≤ n. The eigenvalues of T(k) are distinct (Problem 19.1), and assume they are

λ
(k)
1 < λ

(k)
2 < · · · < λ

(k)
k . The essence of the bisection algorithm is that the eigenvalues of two successive matrices T(k) and

T(k+1) strictly interlace [9, pp. 103-104]. This means that

λ
(k+1)
i < λ

(k)
i < λ

(k+1)
i+1

for k = 1, 2, . . . , n−1 and i = 1, 2, . . . , k−1. This remarkable property enables us to know the precise number of eigenvalues
in any interval on the real line.

Example 19.7. Let T =

⎡⎢⎢⎣
3
2 1 0 0
1 1

2 1 0
0 1 1

2 1
0 0 1 3

2

⎤⎥⎥⎦ . Figure 19.2 shows the position of eigenvalues for T(1), T(2), T(3), and T(4) = T.

Note the strict interlacing. �

In addition to depending on the interlacing property of T(k), the bisection algorithm requires the computation of the
characteristic polynomials, pk(μ), of T(k) for a specified μ. The characteristic polynomial of T(1) is p1(μ) = a1 − μ, and
define p0(μ) = 1. Assume we know pi(μ), 1 ≤ i ≤ k − 1 and want to compute

pk (μ) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 − μ b1
b1 a2 − μ b2

b2 a3 − μ
. . .

. . .
. . .

. . .
. . . ak−1 − μ bk−1

bk−1 ak − μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Expand by minors across row k to obtain

pk (μ) = (−1)k+(k−1) bk−1 det
(
T(k−2) − μI

)
+ (−1)2k (ak − μ) det

(
T(k−1) − μI

)
= (ak − μ) pk−1 (μ)− b2k−1pk−2 (μ) .

If you are unsure of the result, draw a 5× 5 matrix and verify the equation. Putting things together, we have the three
term recurrence relation

pk (μ) =
⎧⎨⎩
1 k = 0
a1 − μ k = 1
(ak − μ) pk−1 (μ)− b2k−1pk−2 (μ) k ≥ 2

(19.16)

This recurrence relation is known as a Sturm sequence and enables the computation of pk (μ) without using Gaussian
elimination. The interlacing of eigenvalues gives rise to the following extraordinary result [27, pp. 203-208].

Theorem 19.4. The number, d (μ), of disagreements in sign between consecutive numbers of the sequence {p0 (μ) , p1 (μ) ,
p2 (μ) , . . . , pn (μ)} is equal to the number of eigenvalues smaller than μ.

Remark 19.4. If pk (μ) = 0, define the sign of pk (μ) to be the opposite of that for pk−1 (μ). There cannot be two
consecutive zero values in the sequence (Problem 19.13).

Example 19.8. Let T be the matrix of Example 19.7. Its characteristic polynomials are

p0 (μ) p1 (μ) p2 (μ) p3 (μ) p4 (μ)

1 3
2 − μ μ2 − 2μ− 1

4 −μ3 + 5
2μ

2 + 1
4μ− 13

8 μ4 − 4μ3 + 5
2μ

2 + 4μ− 35
16



456 Numerical Linear Algebra with Applications

Mid
k or more

k(mid)³k

RightLeft

FIGURE 19.3 Bisection method: λk located to the left.

1. Let μ = 0, and the sequence is
{
1 3

2 − 1
4 − 13

8 − 35
16

}
, with 1 sign change.

2. Let μ = 1, and the sequence is
{
1 1

2 − 5
4

1
8

21
16

}
with 2 sign changes.

3. Let μ = 3. The sequence is
{
1 − 3

2
11
4 − 43

8
85
16

}
with 4 sign changes.

From (1), we see there is one negative eigenvalue, (2) tells us there is an eigenvalue in the range 0 ≤ μ < 1, and from
(3) we conclude that there must be 2 eigenvalues in the interval 1 ≤ μ < 3.

In fact the eigenvalues are
{

1
2 −

√
2 1

2
1
2 +

√
2 5

2

}
. �

Assume that the symmetric tridiagonal matrix T has eigenvalues λ1 ≤ λ2 ≤ · · · λn and that we wish to compute
eigenvalue λi. The eigenvaluemust be isolated in an interval (a, b) before generating a series of smaller and smaller intervals
enclosing λi. The following lemma gives us starting values for a and b.

Lemma 19.2. If ‖·‖ is a subordinate norm and A �= 0, ρ (A) ≤ ‖A‖.

Proof. Let λi be an eigenvalue of A with associated eigenvector vi. Since Avi = λivi,

‖Avi‖ = ‖λivi‖ = |λi| ‖vi‖ ,
and

‖Avi‖ ≤ ‖A‖ ‖vi‖ ,
so

|λi| ‖vi‖ ≤ ‖A‖ ‖vi‖ .
Since ‖vi‖ �= 0, we have |λi| ≤ ‖A‖ for all λi, and

max
1≤i≤n

|λi| = ρ (A) ≤ ‖A‖ .

Since the infinity norm can be computed quickly, Lemma 19.2 gives us starting values a = −‖A‖∞, b = ‖A‖∞. We
can now outline the bisection method for computing a particular λk, 1 ≤ k ≤ n.

a. Let left = −‖A‖∞, right = ‖A‖∞.
b. Compute mid = left+right

2 .

c. Compute d (mid), the number of disagreements in sign between consecutive numbers in the sequence

p0 (mid) , p1 (mid) , p2 (mid) , . . . , pn (mid) ,

properly handling a case where pk (mid) = 0.
d. If d (mid) ≥ k, then λk is in the interval [left, mid]. Let right =mid (Figure 19.3).

else

λk is in the interval
[
mid, right

]
. Let left =mid (Figure 19.4).

e. Repeat steps 2-4 until (right− left) < tol, where tol is an acceptable length for an interval enclosing the root.

We will not give the algorithm using pseudocode. The MATLAB function bisection with calling format bisec-
tion(T,k,tol) in the book software distribution implements the method. If tol is not given, it defaults to 1.0× 10−12.



The Symmetric Eigenvalue Problem Chapter| 19 457

Mid Right
k or more

k(mid)<k

Left

FIGURE 19.4 Bisection method: λk located to the right.

Example 19.9. Let A be the matrix of Example 19.7 and perform seven iterations of the bisection method to approximate
λ2 = 1

2 .

Iteration Left Right Mid d (mid) Action
1 −2.5 2.5 0 1 left = 0
2 0 2.5 1.25 2 right = 1.725
3 0 1.25 0.625 2 right = 0.625
4 0 0.625 0.3125 1 left = 0.3125
5 0.3125 0.625 0.46875 1 left = 0.46875
6 0.46875 0.625 0.546875 2 right = 0.546875
7 0.46875 0.546875 0.507813 2 right = 0.507813

After seven iterations, the eigenvalue is isolated in the interval 0.46875 < λ2 < 0.507813. If the process completes a
total of 16 iterations, 0.499954 < λ2 < 0.500031, and the approximation for λ2 is

0.499954+ 0.500031

2
= 0.49999. �

Example 19.10. This example uses the bisection method to compute the two largest eigenvalues of the Wilkinson
symmetric 21× 21 tridiagonal matrix.

>> W = wilkinson(21);
>> lambda20 = bisection(W,20,1.0e-14)

lambda20 =

10.746194182903317

>> lambda21 = bisection(W,21,1.0e-14)

lambda21 =

10.746194182903395 �

19.5.1 Efficiency

Each evaluation of {p0 (mid) , p1 (mid) , p2 (λmid) , . . . , pn (mid)} costs O (n) flops. If tol is the desired size of the
subinterval containing the eigenvalue, since each iteration halves the search interval, the number of iterations, k, required is
determined by

|right− left|
2k

< tol.

Thus,

k ≈ log2 |right− left| − log2 tol

and the algorithm requires O (kn) flops. If only a few eigenvalues are required, the bisection method is faster than finding
all the eigenvalues using orthogonal similarity reduction to a diagonal matrix.

19.5.2 Matrix A Is Not Unreduced

If λ is an eigenvalue of multiplicity m > 1, the bisection algorithm for computing a root will find one occurrence of λ

if m is odd (point of inflection) and will fail to find λ if m is even (tangent to horizontal axis) (Figure 19.5). This is not
a problem, since the bisection method requires that A be unreduced, and a symmetric unreduced tridiagonal matrix has
distinct eigenvalues (Problem 19.1). What happens if there are one or more zeros on the subdiagonal of A? We split the



458 Numerical Linear Algebra with Applications

Odd multiply—sign change
Even multiply—no sign change

det(T−lI)det(T−lI)

p (l) p (l)

l lr r

FIGURE 19.5 Bisection and multiple eigenvalues.

problem into finding eigenvalues of the unreduced matrices between the pairs of zeros. Lemma 19.3 shows how to handle
the case when the subdiagonal contains one zero.

Lemma 19.3. Suppose a tridiagonal matrix has the form

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1
b1 a2 b2

b2
. . .

. . .
. . . ai−1 bi−1

bi−1 ai 0
0 ai+1 bi+1

bi+1
. . .
. . . bn−1

bn−1 an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,

det
(
T − λIn×n

) = det
(
T (1 : i, 1 : i)− λIi×i

)
det

(
T (i+ 1 : n, i+ 1 : n)− λI(n−i)×(n−i)) .

The proof is left to the problems.
With one zero on the subdiagonal, Lemma 19.3 says to apply bisection to the unreduced i × i and (n− i) × (n− i)

submatrices and form the union of the eigenvalues.

19.6 THE DIVIDE-AND-CONQUER METHOD

This presentation is a summary of the divide-and-conquer method. For more in-depth coverage of this algorithm, see
Refs. [1, pp. 216-228], [19, pp. 359-363], and [26, pp. 229-232].

The recursive algorithm divides a symmetric tridiagonal matrix into submatrices and then applies the same algorithm to
the submatrices. We will illustrate the method of splitting the problem into smaller submatrix problems using a 5×5 matrix

T =

⎡⎢⎢⎢⎢⎣
a1 b1 0 0 0
b1 a2 b2 0 0
0 b2 a3 b3 0
0 0 b3 a4 b4
0 0 0 b4 a5

⎤⎥⎥⎥⎥⎦ .

Write A as a sum of two matrices as follows:

T =

⎡⎢⎢⎢⎢⎣
a1 b1 0 0 0
b1 a2 − b2 0 0 0
0 0 a3 − b2 b3 0
0 0 b3 a4 b4
0 0 0 b4 a5

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 b2 b2 0 0
0 b2 b2 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ .



The Symmetric Eigenvalue Problem Chapter| 19 459

If we let

T1 =
[
a1 b1
b1 a2 − b2

]
, T2 =

⎡⎣ a3 − b2 b3 0
b3 a4 b4
0 b4 a5

⎤⎦ ,

and

H =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 b2 b2 0 0
0 b2 b2 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

then

T =
[
T1

T2

]
+ H.

T2×21 and T3×32 are symmetric tridiagonal matrices, and H5×5 has rank one. The rank-one matrix can be written more
simply as H = b2vvT, where

v =

⎡⎢⎢⎢⎢⎣
0
1
1
0
0

⎤⎥⎥⎥⎥⎦ .

In the n× n case, write T as the sum of a 2 × 2 block symmetric tridiagonal matrix and a rank one matrix, known as a
rank-one correction.

T = + t k tk

tk tkT (n k ) (n− − k )
2

�

T k k
1

�

Note that T1 (k, k) = ak − bk and T2 (1, 1) = ak+1 − bk, and the rank-one correction matrix can be written as tkvvT,
where

v = [
0 0 . . . 1 1 0 . . . 0

]T
.

The two entries of 1 are at indices k and k + 1.
Suppose the divide-and-conquer algorithm is named dconquer and returns the eigenvalues and eigenvectors of a

symmetric tridiagonal matrix using the format
[V, D] = dconquer(T).

The algorithm dconquer must be able to take any symmetric tridiagonal matrix T, split it into the sum of a 2× 2 block
symmetric tridiagonal matrix and a rank-one correction matrix and return the eigenvalues and eigenvectors of T. Here is
how dconquer must function. Choose k = ⌊ n

2

⌋
and form

T =
[
T1

T2

]
+ tkvvT.

Now compute [
V1, D1

] = dconquer (T1) ,
[
V2, D2

] = dconquer (T2) ,

and put
[
V1, D1

]
,
[
V2, D2

]
, and tkvvT together to obtain the matrices V andD. Each of the recursive calls dconquer (T1)

and dconquer (T2) must divide their respective matrix as described and compute eigenvalues and eigenvectors for them.
Continue this process until arriving at a set of 1×1 eigenvalue problems, each having a rank-one correction. This is called the
stopping condition. These are easily solved, and a series of function returns solves all the problems encountered on the way
to the stopping condition. Returning from the first recursive call gives the eigenvalues and eigenvectors of the initial matrix.



460 Numerical Linear Algebra with Applications

How do we find the eigenvalues of T from T1, T2 and the rank-one correction? By the spectral theorem,

T1 = P1D1P
T
1 , T2 = P2D2P

T
2 ,

where P1, P2 are orthogonal matrices of eigenvectors, and D1, D2 are diagonal matrices of corresponding eigenvalues.
Then,

T =
[
T1 0
0 T2

]
+ tkvvT =

[
P1D1PT1 0

0 P2D2PT2

]
+ tkvvT.

Let D =
[
D1 0
0 D2

]
, u =

[
PT1 0
0 PT2

]
v and form[

P1 0
0 P2

]([
D1 0
0 D2

]
+ tkuuT

)[
PT1 0
0 PT2

]
=
[
P1 0
0 P2

][
D1 0
0 D2

][
PT1 0
0 PT2

]
+tk

[
P1 0
0 P2

] [
PT1 0
0 PT2

]
vvT

[
P1 0
0 P2

][
PT1 0
0 PT2

]

=
[
P1D1PT1 0

0 P2D2PT2

]
+ tkvvT = T

We have shown that T is similar to the matrix

D+ tkuuT,

and so it has the same eigenvalues as T. It can be shown [1, p. 218] that its eigenvalues are roots of the function

f (λ) = 1+ tk

n∑
i=1

u2i
di − λ

. (19.17)

The equation f (λ) = 0 is known as the secular equation, and finding the roots of f accurately is not an easy problem.
Figure 19.6 is a graph of f for particular values of tk, u, and d, where d = diag (D). It would seem reasonable to use Newton’s
method [33, pp. 66-71] to compute the roots, which lie between the singularities λ = di, called the poles. It is possible that
the first iteration of Newton’s method will take an initial approximation λ0 and produce a very large value λ1. Using the
classical Newton’s method can cause the algorithm to become unstable (Problem 19.28). The solution is to approximate

−1 0 1 2 3 4 5 6 7 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

l

f(
l)

Secular equation with poles at 2, 3, 4, 5 

FIGURE 19.6 Secular equation.



The Symmetric Eigenvalue Problem Chapter| 19 461

f (λ) , di < λ < di+1 by another function h (λ) that makes the root computation stable. The interested reader should see
Ref. [1, pp. 221-223] for the details.

The algorithm can compute an eigenvector from its associated eigenvalue using only O (n) flops, The computation of
eigenvectors for the divide-and-conquer algorithm will not be discussed. See Ref. [1, pp. 224-226] for the technique used.

The cost of finding the eigenvalues is O
(
n2
)
, the same as for the Francis algorithm. The computation of an eigenvector

using the Francis method costs O
(
n2
)
flops, as opposed to O (n) flops for divide-and-conquer.We stated in the introduction

to this chapter that this algorithm is more than twice as fast as the QR algorithm if both eigenvalues and eigenvectors of a
symmetric tridiagonal matrix are required.

19.6.1 Using dconquer

Implementing dconquer using a MATLAB function is difficult. It is possible to write a function, say myMEX, in the
programming languageC in such away that the function can be called fromMATLAB. The functionmyMEX mustwritten so
it conformswith what is termed theMEX interface andmust be compiled using theMATLAB command mex (see Ref. [20]).
This interface provides access to the input and output parameters when the function is called from MATLAB. Normally,
the function serves an interface to a Fortran or C machine code library. For instance, LAPACK [62] is a set of functions
written in Fortran that provide methods for solving systems of linear equations, least-squares solutions of linear systems of
equations, eigenvalue problems, and executing various factorizations. One of the LAPACK functions, dsyevd, transforms
A to a symmetric tridiagonal matrix, and then applies the divide-and-conquer algorithm to compute the eigenvalues and
corresponding eigenvectors. It will compute the eigenvalues only, but if we want only eigenvalues there is no advantage to
the divide-and-conquer algorithm.

Change into the directory “divide-and-conquer” and then into a subdirectory for your computer architecture, “windows”
or “OSX_linux.” There you will find a function, dconquer.c, that uses the MEX interface to call dsyevd. Open the file
reame.pdf for instructions concerning compiling dconquer.c. Applying mex produces a file of the form “dconquer.mexw64”
if the operating system is 64-bit Windows, or “dconquer.mexmaci64” for 64-bit OS X. Call dconquer using the
format

[V, D] = dconquer(A);

Example 19.11. The following MATLAB sequence builds a 1000 × 1000 symmetric matrix, computes its eigenvalues
and eigenvectors using dconqer, and times its execution. As evidence of accuracy, the code computes

∥∥VDVT − A
∥∥
2 and∥∥VTV − I

∥∥
2.

>> A = randi([-1000000 1000000],1000,1000);

>> A = A + A’;

>> tic;[Vdconquer Ddconquer] = dconquer(A);toc;
Elapsed time is 0.272290 seconds.

>> norm(Vdconquer*Ddconquer*Vdconquer’-A)

ans =

3.0434e-07

>> norm(Vdconquer’*Vdconquer - eye(1000))

ans =

8.7754e-15 �

Remark 19.5. In general, MEX is complicated and should be used sparingly. We applied it here to call a specific method
whose complexity made it difficult to implement in an m-file.

19.7 CHAPTER SUMMARY

The Spectral Theorem and Properties of a Symmetric Matrix

At this point in the book, we have a great deal of machinery in place and have discussed the accurate computation of
eigenvalues. We also are familiar with the Schur’s triangularization theorem from Section 18.7, which says that any n × n
matrix A, even a singular one, can be factored as A = PTPT, where P is an orthogonal matrix, and T is upper triangular.
We use it to prove the spectral theorem for symmetric matrices, a result we have used without proof until this chapter.



462 Numerical Linear Algebra with Applications

This section also reviews some fundamental facts about real symmetric matrices and shows that the condition number of
each eigenvalue is 1 (perfect). Unfortunately, this is not true for eigenvectors. It is possible for a symmetric matrix to have
ill-conditioned eigenvectors.

The Jacobi Method

The Jacobi method directly reduces a symmetric matrix to diagonal form without an initial conversion to tridiagonal form.

It works by zeroing out pairs of equal entries, aij, aji off the diagonal until the off (A) =
√
‖A‖2F −

∑n
i=1 a2ii is sufficiently

small. We prove that the rate of convergence is linear. However, it can be shown that the average rate of convergence
(asymptotic rate) is quadratic.

The Symmetric QR Iteration Method

The first step of this algorithm is the orthogonal similarity transformation of A to tridiagonal matrix T using Householder
reflections. The algorithm presented takes advantage of matrix symmetry. The final step is the application of theQR iteration
with the Wilkinson shift that reduces T to a diagonal matrix. As with a nonsymmetric matrix, Givens rotations are used to
find the QR decomposition of each shifted matrix. This is an O

(
n3
)
algorithm.

The Symmetric Francis Algorithm

The single-shift Francis algorithm is the method of choice for computing the eigenvalues and associated eigenvectors of
a symmetric matrix. The first phase is reduction to tridiagonal form, as with the symmetric QR iteration. The reduction
to diagonal form uses orthogonal similarity transformations produced by Givens rotations applied to a Wilkinson-shifted
matrix, and the QR algorithm is not used directly. Using deflation, iterations chase a bulge from the top off the bottom of
the matrix until the current diagonal entry is sufficiently close to an eigenvalue. The method is still O

(
n3
)
but generally

performs better than the symmetric QR iteration.

The Bisection Method

This algorithm is very different from the other algorithms we have discussed. Finding the roots of a nonlinear function is
covered in a numerical analysis or numerical methods course. One of the methods, bisection, can be applied to compute the
eigenvalues of a matrix, which are roots of the nonlinear function p (λ) = det (A− λI), the characteristic polynomial of A.
Using Gaussian elimination with partial pivoting, p (λ) can be computed in a stable fashion. For a general matrix A ∈ Rn×n,
this method of computing eigenvalues cannot competewith themethodswe discussed in Chapter 18. For a symmetricmatrix,
upper Hessenberg form is a symmetric tridiagonal matrix. After transforming A to such a matrix T, let T(k) be the submatrix
T (1 : k, 1 : k) of T, and {p0, p1, p2, . . . , pn} be the characteristic polynomials of T(k), p0 (λ) = 1. The characteristic
polynomials are evaluated by a simple recurrence relation. The eigenvalues of T(k) and T(k+1) strictly interlace, which
means that λ

(k+1)
i < λ

(k)
i < λ

(k+1)
i+1 . In turn, this property can be used to prove that the number of sign changes between

consecutive numbers of the sequence {p0 (λ) , p1 (λ) , p2 (λ) , . . . , pn (λ)} is equal to the number of eigenvalues smaller
than λ. This remarkable property enables accurate evaluation of the eigenvalues using the bisection technique.

The Divide-and-Conquer Method

The recursive divide-and-conquer is the fastest algorithm for computing both eigenvalues and eigenvectors of a symmetric
matrix A. Like the QR algorithm, it first transforms the A into a tridiagonal matrix T. The computation then proceeds by
writing T in the form

T =
[
T1

T2

]
+ tkvvT.

T is the sum of a 2× 2 block symmetric tridiagonal matrix and a rank-one correction. Using recursion, the algorithm finds

the eigenvalues and eigenvectors of T. During the computation, the secular equation f (λ) = 1 + tk
∑n

i=1
u2i
di−λ

must be
solved. This secular function has singularities (poles) at the diagonal entries, di, of T. Rather than using Newton’s method,
the best approach to finding the eigenvalues located between poles is to find the roots of a function that approximates f .



The Symmetric Eigenvalue Problem Chapter| 19 463

19.8 PROBLEMS

In these problems, the term “by hand” means that you must show your work step by step. You can use MATLAB. For
instance, if you are required to form J (1, 2, c, s)AJ (1, 2, c, s)T with a 4× 4 matrix do this:

[c, s] = givensparms(A(1,1),A(2,1));

J = eye(4);
J(1,1) = c, J(2,2) = c;

J(2,1) = -s, J(1,2) = s;

A1 = J*A*J’;

19.1 Let A be an n×n symmetric tridiagonal matrix with its sub- and superdiagonals nonzero. Prove that the eigenvalues
of A are distinct by answering parts (a)-(e).

a. If λ is an eigenvalue, show that the rank of E = A− λI is at most n − 1.
b. Consider the upper triangular (n− 1)× n submatrix E (2 : n, 1 : n). Show that E has rank n− 1.
c. Show that rank (E) = rank (A− λI) = n− 1.
d. Show that the null space of E is spanned by an eigenvector corresponding to λ.
e. Prove that the symmetry of A implies that λ must be distinct.

19.2 If A is symmetric, show that trace
(
A2
) =∑n

i=1
∑n

j=1 a2ij.
19.3 The QR iteration with the Wilkinson shift and the symmetric Francis algorithm both begin by zeroing out T (2, 1)

using an orthogonal similarity transformation. Show that the first column is the same for both algorithms.

19.4 For the matrix T =
⎡⎣ 1 3 0
3 1 4
0 4 2

⎤⎦, execute the QR iteration three times using the Wilkinson shift to estimate the

eigenvalue 6.3548. Just show the values of σ and T = RQ+ σ I for each iteration.

19.5 For the matrix T =

⎡⎢⎢⎣
−2 4 0 0
4 −6 4 0
0 4 4 1
0 0 1 −6

⎤⎥⎥⎦, execute one bulge chase by hand assuming σ = 0.

19.6 Let A =
⎡⎣ 2 1 0
1 2 1
0 1 6

⎤⎦. Perform four iterations of the bisection method by hand to estimate the eigenvalue between 2

and 3.
For Problems 19.7–19.9, you will find it useful to write a MATLAB function

sign_changes = d(T,lambda)

that computes d(λ).

19.7 Let A =

⎡⎢⎢⎣
1 −1 0 0
−1 1 2 0
0 2 2 −1
0 0 −1 1

⎤⎥⎥⎦ .

a. Show that there must be an eigenvalue greater than or equal to 2 and an eigenvalue less than zero.
b. Show there are two eigenvalues between 0.12 and 2.

19.8 Let A =
⎡⎣ 3 −1 0
−1 1 −1
0 −1 1

⎤⎦.
a. Show there must be one negative eigenvalue.
b. Show there must be one eigenvalue in the range 0 ≤ λ < 2.
c. Show there is one eigenvalue greater than or equal to 2.



464 Numerical Linear Algebra with Applications

19.9 How many eigenvalues of A =

⎡⎢⎢⎣
1 −1 0 0
−1 1 −1 0
0 −1 1 −1
0 0 −1 1

⎤⎥⎥⎦ lie in the interval 0 < λ < 2?

19.10 Let

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1

b1 a2
. . .

. . .
. . . bn−2

bn−2
. . . 0

0 an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ai �= 0, 1 ≤ i ≤ n, bi �= 0, 1 ≤ i ≤ n− 2.

a. Show that an is an eigenvalue of T with associated eigenvector en =
[
0 0 . . . 0 1

]T
.

b. Explain how this result relates to our choice of convergence criteria for the QR and Francis methods.

19.11 Outline an algorithm for finding the eigenvalues of a reduced symmetric tridiagonal matrix (the subdiagonal contains
one or more zeros).

19.12 Let A =
[
0 1
1 0

]
. Show that the QR algorithm with shift σ = tk,k fails, but the Wilkinson shift succeeds.

19.13 Let p0 (μ), p1 (μ), . . ., pi−1 (μ), pi (μ), . . ., pn (μ) be the Sturm sequence used by the bisection method, with bi �= 0,
1 ≤ i ≤ n. Show it is not possible that pi−1 (μ) = 0 and pi (μ) = 0; in other words, there cannot be two consecutive
zero values in the sequence. Hint: What does Equation 19.16 say about pi−2 (μ)?

19.14 Prove Lemma 19.3. Hint: Look at it as a problem involving block matrices.
19.15 Let A be a positive definite matrix and A = RTR be the Cholesky decomposition. Using the singular value

decomposition of R, show how to compute the eigenvalues and associated eigenvectors of A.
19.16 If A is positive definite, the Cholesky decomposition can be used to determine the eigenvalues of A. Here is an outline

of the algorithm:

A = RTR

A1 = RRT

for i = 1:maxiter do
Ai = RTiRi
Ai+1 = RiR

T
i

end for
return Amaxiter

It can be shown that the sequence converges to a diagonal matrix of eigenvalues.

a. Prove that if A is positive definite, then any matrix similar to A is also positive definite. Hint: What can you say
about the eigenvalues of a positive definite matrix?

b. Show that each matrix, Ai, is similar to A so that upon termination of the algorithm, A and Amaxiter have the same
eigenvalues.

19.17 We know that if v is an eigenvector of A, v
TAv
vTv

is called the Rayleigh quotient and that the corresponding eigenvalue

λ = vTAv
vTv

. Now, suppose v is an approximation to an eigenvector. How well does the Rayleigh quotient approximate
λ? We can answer that question when A is symmetric.
a. Without loss of generality, assume that v is a good approximation to eigenvector v1 of the symmetric matrix A.
Argue that v = c1v1+ c2v2+ · · · + cnvn, where the vi are an orthonormal set of eigenvectors of A corresponding
to eigenvalues λi.

b. Show that

σ = vTAv

vTv
= λ1c21 + λ2c22 + · · · λnc2n

c21 + c22 + · · · + c2n
.



The Symmetric Eigenvalue Problem Chapter| 19 465

c. Using the result of part (b), show that

σ = λ1

⎡⎢⎣1+
(

λ2
λ1

) (
c2
c1

)2 + · · · + (
λn
λ1

)(
cn
c1

)2
1+

(
c2
c1

)2 + · · · + (
cn
c1

)2
⎤⎥⎦ ,

and argue that σ is a close approximation to λ1.
19.18 We have not discussed another approach to the symmetric eigenvalue problem, the Rayleigh quotient iteration.

Basically, it is inverse iteration using the Rayleigh quotient as the shift. From Problem 19.17, we know that if v

is a good approximation to an eigenvector of the symmetric matrix A, then the Rayleigh quotient
vTAv

vTv
is a good

approximation to the corresponding eigenvalue. Start with an initial approximation, v0, to an eigenvector, compute
the Rayleigh quotient, and begin inverse iteration. Unlike the inverse iteration algorithm discussed in Section 18.9,
the shift changes at each iteration to the Rayleigh quotient determined by the next approximate eigenvector. A linear
system must be solved for each iteration. The Rayleigh quotient iteration computes both an eigenvector and an
eigenvalue, and convergence is almost always cubic [1, pp. 214-216]. This convergence rate is very unusual and
means that the number of correct digits triples for every iteration.

function RQITER(A,v0,tol,maxiter)

v0 = v0‖v0‖2
σ0 = vT0Av0

vT0v0
iter=0

i=0

while (‖Avi − σivi‖2 ≥ tol) and (iter ≤ maxiter) do
i=i+1

vi = (A − σi−1I)−1 vi−1
vi = vi‖vi‖2
σi = vTiAvi

vTivi
iter=iter+1

end while

if iter>maxiter then
iter=-1

end if
return

[
vi, σi, iter

]
end function

Let

A =
⎡⎣ 4 6 7
6 12 11
7 11 4

⎤⎦ .

a. Let v0 =
[
0.9 −0.8 0.4

]T, and perform two iterations of rqiter by hand.

b. To obtain the starting approximation, perform two iterations of the power method starting with v0 =
[
1 1 1

]T
.

Using the new v0, perform one Rayleigh quotient iteration by hand. Start a second and comment on what happens.
What eigenvalue did you approximate, and why?

19.8.1 MATLAB Problems

19.19
a. Implement the classical Jacobi method by modifying eigsymj to create a function cjacobi(A,tol,maxiter).
You will need to implement a function jacobifind that finds the largest off-diagonal entry in magnitude in the
symmetric matrix. The calling format should be the same as eigsymj, except return the number of iterations
required to attain the tolerance rather than the number of sweeps. The function eigsymj executes n(n−1)

2 Jacobi
rotations per sweep, so for the classical Jacobi method the maxiter will be much larger than maxsweeps.



466 Numerical Linear Algebra with Applications

b. Create a random 100 × 100 symmetric matrix and time the execution of cjacobi and eigsymj. Compute∥∥VDVT − A
∥∥
2 for each method. Compare the results.

19.20 Find all the eigenvalues of the following symmetric matrices using both the Jacobi method and the Francis algorithm.
For each method, compute ‖Emat− E‖2, where Emat is the MATLAB result, and E is the result from the method.
Sort the eigenvalues before computing the norms.

a. A =
⎡⎣ −12 6 1

6 3 2
1 2 15

⎤⎦
b. A =

⎡⎢⎢⎣
−8 16 23 −13
16 9 2 3
23 2 1 −23
−13 3 −23 −7

⎤⎥⎥⎦
19.21 The MATLAB command

A = gallery(’pei’,n,alpha),

where alpha is a scalar, returns the symmetric matrix alpha eye(n) + ones(n). The default for alpha is 1, and
the matrix is singular for alpha equal to 0. The eigenvalues are

λ1 = λ2 = · · · = λn−1 = alpha, λn = n+ alpha.

For parts (a) and (b), use (1) eigsymj, (2) eigsymqr, (3) eigsymb, and (4) dconquer, to compute the
eigenvalues. In each case, compute ‖E − Ei‖2, where E are the exact eigenvalues. Do these methods handle the
eigenvalues of multiplicity n− 1 properly?
a. n = 25, alpha = 5
b. n = 50, alpha = 0
c. Let A = gallery(’pei’,5,3), and compute the eigenvector matrix V1 and the corresponding diagonal matrix

D1 of eigenvalues. Perturb A(5,1) by 1.0× 10−8 and find matrices V2 and D2. Compute ‖D1− D2‖2, and list
the eigenvectors V1 and V2. Explain the results.

19.22 Use the function eigsymj to compute all the eigenvalues of the 50 × 50 Hilbert matrix. Use tol = 1.0 × 10−10.
Compute the norm of difference between that solution and the one obtained using theMATLAB function eig. Given
that the Hilbert matrices are very ill-conditioned, explain your result.

19.23 Problem 19.16 presents the basics for a method to compute the eigenvalues of a positive definite matrix.
a. Implement a function choleig that takes a positive definite matrix A and executes maxiter iterations. After
each iteration, use the MATLAB function spy to show the location of the nonzero entries as follows:

A(abs(A)<1.e-7)=0;
spy(A);
pause;

This will allow you to “watch” convergence to a diagonal matrix of eigenvalues. The function should verify that
A is positive definite.

b. Test choleig with the matrix

A = gallery(’gcdmat’,4);

c. Create a 3× 3 positive definite matrix using the code provided, and then run choleig with maxiter = 75 and
watch convergence. Depending on the matrix, it may or may not graphically show as a diagonal matrix. In any
case, check the results against eig (A).

A = diag(randi([1 10],3,1));

B = randn(3,3);

[Q,R] = qr(B);

A = Q’*A*Q;

19.24 The term eigenvector localization applies to an eigenvector where the majority of its length is contributed by a
small number of entries. This means that majority of its entries are zero or close to zero. This phenomenon is well
known in several scientific applications such as quantum mechanics, DNA data, and astronomy. If the eigenvector



The Symmetric Eigenvalue Problem Chapter| 19 467

is normalized, one measure of this property is the inverse participation ratio (IPR) that is defined as

IPR (v) =
n∑
i=1

v4i .

The larger the value of IPR, the more localized the eigenvector.
a. If the eigenvector values are equally distributed throughout its indices, show that the IPR is 1

n .
b. Show that if the eigenvector has only one nonzero entry, its IPR is 1.
c. If n is an integer, the following statements generate a random symmetric tridiagonal matrix. Create a 200× 200
random symmetric tridiagonal matrix and plot the eigenvector number against IPR (vi). What do you observe?

d = randn(n,1);

sd = randn(n-1,1);

A = trid(sd,d,sd);

d. Do part (c) with the 200× 200 matrix B =

⎡⎢⎢⎢⎢⎢⎢⎣

1+ 2r −r 0 · · · 0
−r 1 + 2r −r · · · 0

0
. . .

. . .
. . .

...
...

... −r 1+ 2r −r
0 0 0 −r 1+ 2r

⎤⎥⎥⎥⎥⎥⎥⎦ used in the solution to the

heat equation in Section 12.2. Let r = 0.5.

19.25 Modify the function bisection so it computes all the eigenvalues in an interval a < λ < b. Name function
bisectinterval having the declaration

lambda = bisectinterval(T,a,b,tol)

Test it using a random symmetric tridiagonal matrix and wilkinson(21).
19.26 This problem shows how shifts help when computing eigenvalues. Create functions that are simple modifications of

eigsymqr and eigsymb as follows:

● eigsymqr0: Remove the shift from the code.
● eigsymqrr: Replace the Wilkinson shift by σ = tk,k, the value we used for a general matrix.
● eigsymb0, chase0: Remove the shift from the chase code.
● eigsymbr, chaser: Replace the Wilkinson shift by σ = tk,k.

In the functions eigsymqr0 and eigsymb0, perform the following code replacement so termination occurs the first
time the iteration does not converge to an eigenvalue within the allotted iterations.

Replace

if iter > maxiter

fprintf(’Failure of convergence. ’);
fprintf(’Current eigenvalue approximation %g\n’,T(k,k));
break;

end

by

if iter > maxiter

fprintf(’Failure of convergence. ’);
varargout{1} = {};

varargout{2} = {};

return;
end

Generate a random 400 × 400 symmetric matrix (A = randn(400,400), A = A + A’). Time the use of
the original functions eigsymqr and eigsymb to compute the eigenvalues and eigenvectors of A. Now do
the same for each of the modified functions, and discuss the results. For the methods that converge, compute∥∥VDVT − A

∥∥
2.



468 Numerical Linear Algebra with Applications

19.27
a. Implement the Rayleigh quotient iteration described in Problem 19.18 in the MATLAB function rqiter.
b. Using a random v0, test rqiter with randommatrices of dimensions 5× 5 and 25× 25. Use tol = 1.0× 10−12,

maxiter = 25.
19.28

a. Implement Newton’s method with a MATLAB function having calling syntax
root = newton(f,df,x0,tol,maxiter);

The argument f is the function, df is f ′ (x), x0 is the initial approximation, tol is the required relative error

bound
( |xi+1−xi|

|xi| < tol
)
, and maxiter is the maximum number of iterations to perform.

b. Graph f (λ) = 1 + 1
1−λ

+ 1
2−λ

+ 1
3−λ

and use newton to estimate all roots of the f . How well did Newton’s
method do?

c. Now graph g (λ) = 1+ 0.005
1−λ

+ 0.005
2−λ

+ 0.005
3−λ

over the interval 0.95 < λ < 1.05. Describe the shape of the graph
for all points except those very close to the pole at λ = 1.

d. Plot g (λ) of the interval 1.004 < λ < 1.006. Is there a root in the interval?
e. Try to compute the root using Newton’s method with x0 = 1.01. Explain the results.



Chapter 20

Basic Iterative Methods

You should be familiar with

● Eigenvalues and the spectral radius
● Matrix norms
● Finite difference methods for approximating derivatives
● Block matrices

When using finite difference methods for the solution of partial differential equations, the matrix may be extremely large,
possibly 1000×1000or larger. Themain source of largematrix problems is the discretization of partial differential equations,
but large linear systems also arise in other applications such as the design and computer analysis of circuits, and chemical
engineering processes. Often thesematrices are sparse, whichmeans that most of thematrix entries are 0. Standard Gaussian
elimination turns zeros into nonzeros, reducing the sparsity. For large, sparse matrices, the preferred method of solution is
to use an iterative method. An iterative method generates a sequence that converges to the solution, and the iteration is
continued until a desired error tolerance is satisfied. Unlike Gaussian elimination, iterative methods do not alter the matrix,
but use only a small set of vectors obtained from the matrix, so they use far less storage than working directly with the
matrix. This chapter presents three classical iterative methods, the Jacobi, Gauss-Seidel, and the successive overrelaxation
(SOR) iterations. These methods are relatively slow, but they provide an introduction to the idea of using iteration to solve
systems and form a basis for more sophisticated methods such as multigrid. The main idea of multigrid is to accelerate the
convergence of a basic iterative method by solving a coarse problem. It takes an n× n grid and uses every other point on an
n/2×n/2 grid to estimate values on the larger grid using interpolation. Points on an n/4×n/4 grid are used to approximate
values on the n/2 grid, and so forth, forming a recursive algorithm. These methods are beyond the scope of this book. The
interested reader can consult Refs. [1, 63] for detailed information about these iterative methods.

20.1 JACOBI METHOD

For the Jacobi method, write each unknown in terms of the other unknowns. We illustrate this process using a 4×4 system.

a11x1 + a12x2 + a13x3 + a14x4 = b1 =⇒ x1 = [b1 − (a12x2 + a13x3 + a14x4)] /a11
a21x1 + a22x2 + a23x3 + a24x4 = b2 =⇒ x2 = [b2 − (a21x1 + a23x3 + a24x4)] /a22
a31x1 + a32x2 + a33x3 + a34x4 = b3 =⇒ x3 = [b3 − (a31x1 + a32x2 + a34x4)] /a33
a41x1 + a42x2 + a43x3 + a44x4 = b4 =⇒ x4 = [b4 − (a41x1 + a42x2 + a43x3)] /a44

Assume initial values for x1, x2, x3, and x4, insert them in the right-hand side of the equations and compute a second set
of approximate values for the unknowns. These new values are then substituted into the right-hand side of the equations to
obtain a third set of approximate solutions, and so forth, until the iterations produce a relative error estimate that is small
enough. For the general case of n unknowns, the iteration is defined by

xi = 1

aii

⎡⎣bi −
⎛⎝ n∑
j=1, j�=i

aijxj

⎞⎠⎤⎦ , 1 ≤ i ≤ n (20.1)

Definition 20.1. Let x be a vector obtained during an iteration. In order to clearly distinguish the number of the iteration
and a component of the vector, we use the notation x(k)i , where k refers to the iteration number and i refers to the ith
component of x(k).

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00020-X
Copyright © 2015 Elsevier Inc. All rights reserved. 469



470 Numerical Linear Algebra with Applications

If a good initial approximation for the solution x(0) is known, use x(0)1 , x(0)2 , . . . , x(0)n to begin the iteration. If there is no
estimate for the initial value x(0), use x(0) = 0. The second approximation for the solution, x(1)1 , x(1)2 , . . . , x(1)n is calculated
by substituting the first estimate into the right-hand side of Equation 20.1:

x(1)i = 1

aii

⎡⎣bi −
⎛⎝ n∑
j=1,j �=i

aijx
(0)
j

⎞⎠⎤⎦ , 1 ≤ i ≤ n

In general, the estimate x(k) for the solution is calculated from the estimate xk−1 by

x(k)i = 1

aii

⎡⎣bi −
⎛⎝ n∑
j=1,j �=i

aijx
(k−1)
j

⎞⎠⎤⎦ , 1 ≤ i ≤ n (20.2)

The iterations continue until the error tolerance tol is satisfied. What criterion do we use to determine that the algorithm
has met the required tolerance? An obvious choice is ‖Axi − b‖2 < tol. However, note that

A (x− xi) = Ax − Axi = b− Axi,

so

‖x− xi‖2 =
∥∥∥A−1 (b− Axi)

∥∥∥
2
≤
∥∥∥A−1∥∥∥

2
‖b− Axi‖2 ≤

∥∥∥A−1∥∥∥
2
tol.

If
∥∥A−1∥∥2 is large, ‖x− xi‖ can be large. The best alternative is to apply a relative error estimate and terminate when

‖b− Axi‖2
‖b‖ ≤ tol.

Thus, terminate the iteration when the current residual relative to b is sufficiently small [16, pp. 335-336]. We will call
‖b−Axi‖2‖b‖ , the relative residual.

Example 20.1. Consider the system Ax = b, where A =
⎡⎣ 5 −1 2
−1 4 1
1 6 −7

⎤⎦ and b =
⎡⎣ 1
−2
5

⎤⎦. We start with x(0) = 0,

execute the first two iterations in detail, continue for a total of 12 iterations, and compute the relative residual.

x(1)1 = 1

5
(1) = 0.2000, x(1)2 = 1

4
(−2) = −0.5000, x(1)3 = −0.7143

x(2)1 = 1

5

(
1− 1

2
+ 10

7

)
= 0.3857, x(2)2 = 1

4

(
−2+ 1

5
+ 5

7

)
= −0.2714, x(2)3 = −1

7

(
5− 1

5
− 6

(
−1

2

))
= −1.1143

...

x(12)1 = 0.4838, x(12)2 = −0.1795, x(12)3 = −0.7998∥∥∥b− Ax(12)
∥∥∥
2

‖b‖2 = 1.1116 × 10−3 �

20.2 THE GAUSS-SEIDEL ITERATIVE METHOD

In the Gauss-Seidel method, start with approximate values x(0)2 , . . . , x(0)n if known; otherwise choose x(0) = 0. Use these
values to calculate x(1)1 . Use x(1)1 and x(0)3 , . . . , x(0)n to calculate x(1)2 , and so forth. At each step, we are applying new vector
component values as soon as we compute them. The hope is that this strategy will improve the convergence rate. Applying
this method with Equation 20.1, we have the iteration formula:

x(k)1 = 1

a11

⎡⎣b1 −
⎛⎝ n∑
j=2

a1jx
(k−1)
j

⎞⎠⎤⎦ (20.3)



Basic Iterative Methods Chapter| 20 471

x(k)i = 1

aii

⎡⎣bi −
⎛⎝ i−1∑
j=1

aijx
(k)
j +

n∑
j=i+1

aijx
(k−1)
j

⎞⎠⎤⎦ , i = 2, 3, . . . , n− 1 (20.4)

x(k)n = 1

ann

⎡⎣bn − n−1∑
j=1

anjx
(k)
j

⎤⎦ (20.5)

Example 20.2. Use the matrix of Example 20.1 and apply the Gauss-Seidel method, with the iteration defined by
Equations 20.3–20.5. Begin with x(0) = 0, execute the first two iterations in detail, continue for a total of 12 iterations,
and compute the relative residual.

x(1)1 = 1

5
(1) = 0.2000, x(1)2 = 1

4

[
−2−

(
−1

5
+ (1) 0

)]
= −0.4500, x(1)3 = −1

7

[
5−

(
(1)

1

5
+ 6

(
− 9

20

))]
= −1.0714

x(2)1 = 1

5

[
1−

(
(−1)

(
− 9

20

)
+ 2

(
−15

14

))]
= 0.5386, x(2)2 = 1

4

[
−2−

(
(−1) 377

700
+ (1)

(
−15

14

))]
= −0.0975,

x(3)3 = −1

7

[
5−

(
(1)

(
377

700

)
+ 6

(
− 39

400

))]
= −0.7209

...

x(12)1 = 0.4837, x(12)2 = −0.1794, x(12)3 = −0.7989∥∥b− Ax(12)
∥∥
2

‖b‖2 = 2.8183× 10−7

If you compare this result with that of Example 20.1, it is clear that the Gauss-Seidel iteration obtained higher accuracy
in the same number of iterations. �

20.3 THE SOR ITERATION

The SORmethod was developed to accelerate the convergence of the Gauss-Seidel method. The idea is to successively form
a weighted average between the previously computed value x(k−1)i and the new value

x(k)i = 1

aii

⎡⎣bi −
⎛⎝ i−1∑
j=1

aijx
(k)
j +

n∑
j=i+1

aijx
(k−1)
j

⎞⎠⎤⎦ , i = 1, 2, . . . , n.

Weight the newly computed value by ω and the previous value by (1− ω). By assuming that
∑i−1

j=1 aijx
(k)
j and∑n

j=i+1 aijx
(k−1)
j are ignored when i = 1 and n, respectively, we have

x(k)i = ω

aii

⎡⎣bi −
⎛⎝ i−1∑
j=1

aijx
(k)
j +

n∑
j=i+1

aijx
(k−1)
j

⎞⎠⎤⎦+ (1− ω) x(k−1)i , i = 1, 2, . . . , n (20.6)

For this method to provide an improvement over the Gauss-Seidel method, ω must be chosen carefully. It is called the
relaxation parameter. If ω = 1, the SOR method and the Gauss-Seidel method are identical. If ω > 1, we are said to be
using overrelaxation and if ω < 1 we are using underrelaxation.

Example 20.3. Consider the systemwith A =
⎡⎣ 1 1 1
1 2 1
1 1 3

⎤⎦ and b = [ −1 5 7
]T
, whose exact solution is

[ −11 6 4
]T
.

Apply SOR with ω = 1.1 in detail for two iterations, continue for a total of 15 iterations, and compute the relative residual.
Also show the result of applying the Jacobi and Gauss-Seidel methods for 15 iterations.



472 Numerical Linear Algebra with Applications

x(1)1 = 1.1 (−1) = −1.1, x(1)2 = 1.1

2
[5+ 1.1] = 3.3550, x(1)3 = 1.1

3
[7+ 1.1− 3.3550] = 1.7398

x(2)1 = 1.1 [−1− 3.3550− 1.7398]+ (−0.1) (−1.1) = −6.5943
x(2)2 = 1.1

2
[5− (−6.5943)− 1.7398]+ (−0.1) (3.3550) = 5.0845

x(2)3 = 1.1

3
[7− (−6.5943)− 5.0845]+ (−0.10) (1.7398) = 2.9463

...

x(15)1 = −11.0000, x(15)2 = 6.0000, x(15)3 = 4.0000∥∥b− Ax(15)
∥∥
2

‖b‖2 = 8.18045× 10−7

After 15 iterations of Gauss-Seidel, the relative residual is 4.72× 10−5. It is interesting to note that the Jacobi iteration
yields a relative residual of 3.8521; in fact, it diverges. In Section 20.4, we will see why. �

The choice of ω = 1.1 in Example 20.3 gives a relative residual of 8.18045× 10−7, but with ω = 1.2 the residual is
1.4144× 10−6. Clearly the accuracy of SOR depends on ω. Later on in this chapter, we will discuss when it is possible to
make an optimal choice for ω.

Algorithm 20.1 presents the SOR iteration algorithm. Implementation of the Jacobi and Gauss-Seidel iterations are
included in the book software in the functions jacobi and gausseidel.

Algorithm 20.1 SOR Iteration

function SOR(A,b,x0,ω,tol,maxiter)

%
[
x, iter, relresid

]
= sor(A,b,x0,omega,tol,maxiter) computes

% the solution of Ax=b using the SOR iteration.

% x0 is the initial approximation, ω is the relaxation parameter,

% tol is the error tolerance, and maxiter is the maximum number of iterations.

% x is the approximate solution, and iter is the number of iterations required.

% iter=-1 if the tolerance was not achieved.

% relresid is the relative residual obtained by the iteration.

k=1

x = x0
while k≤maxiter do

x1 =
(

ω
a11

)
(b1 − A (1, 2 : n))+ (1− ω)x1

for i=2:n-1 do
xi =

(
ω
aii

)
(bi − A (i,1 : i− 1)x (1 : i− 1)− · · ·

−A (i,i+ 1 : n)x (i+ 1 : n) )+ (1− ω) xi
end for
xn =

(
ω
ann

)
(bn − A (n, 1 : n − 1) x (1 : n− 1))+ (1 − ω)xn

relesid =‖b− Ax‖2 / ‖b‖2
if relresid <tol then

iter=k

return[x,iter,relresid]

end if
k=k+1

end while
iter=-1

return[x,iter,relresid]

end function

NLALIB: The function sor implements Algorithm 20.1.



Basic Iterative Methods Chapter| 20 473

20.4 CONVERGENCE OF THE BASIC ITERATIVE METHODS

The examples may provide the impression that the Jacobi, Gauss-Seidel, and SOR iterations always converge and that
Gauss-Seidel always converges faster than Jacobi. Unfortunately, general statements like this are not true, and we must
investigate conditions that will guarantee convergence and enable us to compare convergence rates. For this purpose, we
express the iterations in the matrix form

x(k) = Bx(k−1) + c,

where B is called the iteration matrix. In this way, we will have the tools of matrix theory available to us.

20.4.1 Matrix Form of the Jacobi Iteration

In the case of the Jacobi iteration, write the coefficient matrix A as a sum of three matrices, a diagonal matrix, and an upper
and lower triangular matrix

D =

⎡⎢⎢⎢⎣
a11 0

a22
. . .

0 ann

⎤⎥⎥⎥⎦ , L =

⎡⎢⎢⎢⎣
0 0 · · · 0
a21 0
...

. . .
an1 · · · an,n−1 0

⎤⎥⎥⎥⎦ , U =

⎡⎢⎢⎢⎣
0 a12 · · · a1n
0 0 . . . a2n
...

. . .
0 0 · · · 0

⎤⎥⎥⎥⎦ , (20.7)

A = D+ L+ U allows us to write the problem Ax = b in the form

Dx+ Lx+ Ux = b.

If we assume that A has no zero entries on its diagonal, then

D−1 =

⎡⎢⎢⎢⎢⎣
1
a11

0
1
a22

. . .
0 1

ann

⎤⎥⎥⎥⎥⎦
and

x = D−1b− D−1 (L+ U) x.

The Jacobi iterations 20.2 can be written in matrix form as

x(k) = BJx(
k−1) + cJ,

where

BJ = −D−1 (L+ U) , cJ = D−1b
(20.8)

20.4.2 Matrix Form of the Gauss-Seidel Iteration

Formulating the Gauss-Seidel iteration as a matrix problem is more challenging. By assuming that
∑i−1

j=1 aijx
(k)
j and∑n

j=i+1 aijx
(k−1)
j are ignored when i = 1 and n, respectively, we can write the Gauss-Seidel iteration as

x(k)i = 1

aii

⎡⎣bi −
⎛⎝ i−1∑
j=1

aijx
(k)
j +

n∑
j=i+1

aijx
(k−1)
j

⎞⎠⎤⎦ , i = 1, 2, 3, . . . , n.

Rearrange the equation by multiplying both sides by aii and placing all the (k) terms are on the left-hand side to obtain

aiix
(k)
i +

i−1∑
j=1

aijx
(k)
j = bi −

n∑
j=i+1

aijx
(k−1)
j , i = 1, 2, . . . , n. (20.9)



474 Numerical Linear Algebra with Applications

The left-hand side of Equation 20.9 can be expressed by the matrix Dx(k)+Lx(k), and the right-hand side by b−Ux(k−1)
using the matrix definitions in Equation 20.7. We now have the matrix equation

(L+ D) x(k) = −Ux(k−1) + b. (20.10)

If we solve the left-hand side of Equation 20.10 for x, we obtain x(k) = − (L+ D)−1 Ux(k−1) + (L +D)−1 b, giving us
the matrix form

x(k) = BGSx(
k−1) + cGS

where

BGS = − (L+ D)−1 U, cGS = (L+ D)−1 b (20.11)

20.4.3 Matrix Form for SOR

The SOR iteration 20.6 is

x(k)i = ω

aii

⎡⎣bi −
⎛⎝ i−1∑
j=1

aijx
(k)
j +

n∑
j=i+1

aijx
(k−1)
j

⎞⎠⎤⎦+ (1− ω) x(k−1)i , i = 1, 2, 3, . . . , n. (20.12)

Rearrange Equation 20.12 by multiplying both sides by aii and placing all the k terms on the left-hand side to obtain

aiix
(k)
i + ω

i−1∑
j=1

aijx
(k)
j = ωbi − ω

n∑
j=i+1

aijx
(k−1)
j + (1− ω) aiix

(k−1)
i , i = 1, 2, . . . , n. (20.13)

Using the matrix definitions in Equation 20.7, we can now express Equation 20.13 in the matrix form

(D+ ωL) x(k) = ((1− ω)D− ωU) x(k−1) + ωb, (20.14)

leading us to the specification of the SOR matrix.

x(k) = BSORx(k−1) + cSOR

where

BSOR = (D+ ωL)−1 ((1− ω)D− ωU) , cSOR = ω (D+ ωL)−1 b (20.15)

20.4.4 Conditions Guaranteeing Convergence

You may try an initial value, say x(0) = 0 and find that your chosen iterative method diverges. Thus, it is helpful to be
aware of conditions you know will guarantee convergence for any initial approximation. These conditions are dependent on
properties of B in the matrix formulation of the iteration, particularly, the norms and the spectral radius of B. The following
theorem provides a simple test for convergence of any iteration with matrix form x(k) = Bx(k−1) + c.

Theorem 20.1. If the matrix B in the iteration x(k) = Bx(k−1) + c has the property that ‖B‖ < 1 for some subordinate
norm, then the iteration converges for any choice of x(0).

Proof. Assume that ‖B‖ < 1 for some subordinate norm. Then
∥∥Bk∥∥ ≤ ‖B‖k → 0 as k→∞, and so Bk → 0 as k→∞.

Now consider the iteration

x(k) = Bx(k−1) + c. (20.16)

If x is the true solution,

x = Bx+ c, (20.17)



Basic Iterative Methods Chapter| 20 475

by subtracting Equation 20.16 from Equation 20.17, we get x− x(k) = (Bx+ c)− (
Bx(k−1) + c

)
, and

x− x(k) = B(x− x(k−1)). (20.18)

If we let e(k) = x − x(k) be the error at the kth step of the iteration, then Equation 20.18 gives the relation

e(k) = Be(k−1). (20.19)

Applying Equation 20.18 repeatedly, e(1) = Be(0), e(2) = Be(1) = B2e(0), e(3) = Be(2) = B3e(0), and by induction
e(k) = Bke(0). Since Bk → 0 as k→∞, it follows that limk→∞ e(k) = 0, and the iteration converges.

Example 20.4. For the matrix in Examples 20.1 and 20.2

D =
⎡⎣ 5 0 0
0 4 0
0 0 −7

⎤⎦ , L =
⎡⎣ 0 0 0
−1 0 0
1 6 0

⎤⎦ , U =
⎡⎣ 0 −1 2
0 0 1
0 0 0

⎤⎦ .

Using ω = 1.2 for SOR, Table 20.1 lists matrix B for each method along with its subordinate norms. In each case, one of
the norms is less than 1, so convergence is guaranteed. Note that for the SOR iteration, ‖B‖∞ = 0.9255. You might suspect
that the iteration converges slowly.

TABLE 20.1 Convergence of Iterative Methods

Method B ||B||1 ||B||∞ ||B||2

Jacobi

⎡⎢⎢⎢⎣
0 0.2000 −0.4000

0.2500 0 −0.2500
0.1429 0.8571 0

⎤⎥⎥⎥⎦ 1.0571 1.0000 0.8997

Gauss-Seidel

⎡⎢⎢⎢⎣
0 0.2000 −0.4000
0 0.0500 −0.3500
0 0.0714 −0.3571

⎤⎥⎥⎥⎦ 1.1071 0.6000 0.6692

SOR

⎡⎢⎢⎢⎣
−0.2000 0.2400 −0.4800
−0.0600 −0.1280 −0.4440
−0.0690 −0.0905 −0.7390

⎤⎥⎥⎥⎦ 1.6630 0.9255 1.0063

�

The condition ‖B‖ < 1 for some subordinate matrix norm guarantees convergence. However, it is possible for the
iteration to converge even if ‖B‖ ≥ 1 for the Jacobi and Gauss-Seidel iterations (Problem 20.6). As a first check to determine
if an iteration converges, compute the subordinate norms of B and determine if one has value less than 1. If so, you can
proceed; however, if the subordinate norms are all greater than or equal to 1, the iteration may still converge. Recall that the
spectral radius of an n× n square matrix B, ρ (B), is defined by ρ (B) = max1≤i≤n |λi|, where λi are the eigenvalues of B.
Find the spectral radius, ρ (B) , and verify that ρ (B) < 1; in other words, ρ (B) < 1 guarantees convergence. It is also the
case that if an iteration converges, then ρ (B) < 1, so if ρ (B) ≥ 1, the iterative method will not converge.

Theorem 20.2. The iteration x(k+1) = Bx(k) + c converges if and only if ρ (B) < 1.

Proof. Assume that the iteration converges. If e(k) = x(k) − x, as in the proof of Theorem 20.1, e(k) = Bke0. Since
limk→∞ e(k) = 0, it follows that limk→∞ Bk → 0. As a result, limk→∞

∥∥Bkx∥∥2 ≤ limk→∞
∥∥Bk∥∥2 ‖x‖2,andlimk→∞ Bkx=0

for all vectors x ∈ Rn. If we assume that ρ (B) ≥ 1, there must be an eigenvector u corresponding to eigenvalue λ with



476 Numerical Linear Algebra with Applications

|λ| ≥ 1. Since Bu = λu, B2u = λ2u,B3u = λ3u, . . . ,Bku = λku, and it is not true that limk→∞ Bku = 0. By contradiction,
ρ (B) < 1.

Proving that if ρ (B) < 1, then x(k+1) = Bx(k)+c converges will be omitted. For a proof, see Refs. [1, p. 280], [2, p. 614],
and [27, pp. 143-145].

Example 20.5. In Example 20.3, the Jacobi iteration failed, but the Gauss-Seidel and SOR methods succeeded. The
spectral radius of each iteration matrix is

ρ (BGS) = 0.5

ρ (BSOR) = 0.3687

ρ (BJ) = 1.1372,

so these are the results expected. �

Example 20.6. For thematrix A =
⎡⎣ 1 4 −1
2 −1 5
1 0 3

⎤⎦,BGS =
⎡⎣ 0.0000 −4.0000 1.0000
0.0000 −8.0000 7.0000
0.0000 1.3333 −0.3333

⎤⎦, and ρ (BGS) = 9.0685. The

Gauss-Seidel iteration will not converge. The same is true for the Jacobi iteration. Verify that
ρ (BJ) = 2.9825. �

20.4.5 The Spectral Radius and Rate of Convergence

Intuitively, there should be a link between the spectral radius of the iteration matrix B and the rate of convergence. Suppose
that B has n linearly independent eigenvectors, v1, v2, . . ., vn and associated eigenvalues λ1, λ2, . . ., λn. Use the notation of
Theorems 20.1 and 20.2 for the error e(k). Since the eigenvectors are a basis,

e(0) =
n∑
i=1

civi.

It follows that:

e(1) = Be(0) =
n∑
i=1

ciBvi =
n∑
i=1

ciλivi

e(2) = Be(1) =
n∑
i=1

ciλiBvi =
n∑
i=1

ciλ
2
i vi.

By continuing in this fashion, there results

e(k) =
n∑
i=1

ciλ
k
i vi.

Let ρ (B) = λ1 and suppose that |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ λn so that

e(k) = c1λk1v1 +
n∑
i=2

ciλki vi

= λk1

(
c1v1 +

n∑
i=2

ci

(
λi

λ1

)k
vi

)
.

As k becomes large,
(

λi
λ1

)k
, 2 ≤ i ≤ n becomes small and we have

e(k) ≈ λk1c1v1.

This says that the error varies with the kth power of the spectral radius and that the spectral radius is a good indicator
for the rate of convergence.



Basic Iterative Methods Chapter| 20 477

20.4.6 Convergence of the Jacobi and Gauss-Seidel Methods for Diagonally
Dominant Matrices

A matrix is strictly row diagonally dominant if the absolute value of the diagonal element is greater than the sum of the
absolute values of the off-diagonal elements in its row.

|aii| >
n∑

j=1, j �=i

∣∣aij∣∣ , i = 1, 2, . . . , n (20.20)

We will prove that when A is strictly row diagonally dominant, the Jacobi iteration will converge. The reverse is not
true. There are matrices that are not strictly row diagonally dominant for which the iteration converges. The matrix of
Examples 21.1 and 21.2 is an example.

Theorem 20.3. If A is strictly row diagonally dominant, then the Jacobi iteration converges for any choice of the initial
approximation x(0).

Proof. Recall that the matrix for the Jacobi iterative method is BJ = −D−1 (L+ U). Then

BJ = −D−1 (L+ U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

a11
0

− 1

a22
. . .

0 − 1

ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
0 a12 . . . a1n
a21 0 . . . a2n
...

...
. . .

...
an1 an2 · · · 0

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −a12
a11

. . . . . . −a1n
a11

−a21
a22

0 −a23
a22

· · · −a2n
a22

...
. . .

. . .
. . .

...
...

. . .
. . . − an−1,n

an−1,n−1
−an1
ann

. . . . . . −an,n−1
ann

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Recall that for any square matrix G,

‖G‖∞ = max
1≤i≤n

n∑
j=1

∣∣gij∣∣ .
For any row i of BJ,

n∑
j=1, j�=i

∣∣∣∣−aijaii
∣∣∣∣ = 1

|aii|
n∑

j=1, j �=i

∣∣aij∣∣ < 1

by Equation 20.20. Thus, ‖BJ‖∞ < 1, and by Theorem 20.1, the Jacobi method converges.
If A is strictly row diagonally dominant, the Gauss-Seidel iteration converges for any choice of the initial approximation

x(0). For a proof, see Ref. [1, pp. 286-288]. In Ref. [2, pp. 615-616], you will find the proof of another result concerning
the Gauss-Seidel method. It is particularly useful, since many engineering problems involve symmetric positive definite
matrices.

Theorem 20.4. Let A be a symmetric positive definite matrix. For any arbitrary choice of initial approximation x(0), the
Gauss-Seidel method converges.

It should be noted that for matrices that are not row diagonally dominant, there are examples where the Jacobi iteration
converges and the Gauss-Seidel iteration diverges. Similarly, there are examples of matrices for which the Gauss-Seidel
method converges and the Jacobi method diverges (see Ref. [11]).



478 Numerical Linear Algebra with Applications

20.4.7 Choosing ω for SOR

We have seen that poor choice of the relaxation parameter ω can lead to poor convergence rates. On the other hand, a good
choice of ω can lead to very fast convergence compared to the Jacobi or Gauss-Seidel methods. The spectral radius of BSOR
is the eigenvalue of BSOR with maximummagnitude, and we want to chooseω so that |ρ (BSOR (ω))| is a minimum. Finding
the optimal value of ω is very difficult in general, and the optimal value is known only for special types of matrices. It is
known, however, that ω must satisfy 0 < ω < 2 [1, p. 290].

Theorem 20.5. If the SOR iteration converges for every initial approximation x(0), then 0 < ω < 2.

This result says that you never choose a relaxation parameter ω outside the range (0, 2). Normally, the choice is
overrelaxation (ω > 1) to put the greatest weight on the newly computed values. If ‖BSOR‖ < 1 for some subordinate
norm or ρ (BSOR) < 1, the SOR iteration converges. The following theorem [1, p. 290], which we state without proof,
provides another criterion that guarantees convergence.

Theorem 20.6. If A is a symmetric positive definite matrix and 0 < ω < 2, the SOR and Gauss-Seidel iterations converge
for any choice of x(0).

Example 20.7. Let A be the 10× 10 pentadiagonal matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −2 −1
−2 6 −2 −1
−1 −2 6

. . .
. . .

−1 . . .
. . .

. . . −1
. . . −2 6 −2

−1 −2 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
that can be built using the function pentd in the software distribution. The function optomega in the book software
distribution approximates the optimal ω for a matrix and graphs ρ (BSOR (ω)) as a function of ω, 0 < ω < 2. It should
be noted that the function optomega is provided for demonstration purposes only, and is not intended for use with a large
matrix. The following code estimates the optimal ω for A and then applies the SOR iteration to solve the system Ax = b,
where b is

[
1 1 . . . 1 1

]T. It prints the number of iterations required to attain a error tolerance of 1.0× 10−14 and the
relative residual. Figure 20.1 is the graph produced by optomega.

>> woptimal = optomega(A)

woptimal =

1.4600

>> [x,iter,relresid] = sor(A,rhs,x0,woptimal,1.0e-14,100);

>> iter

iter =

54

>> relresid

ans =

9.2334e-015

Try another value of ω such as 1.3 and observe a slower convergence rate. �

20.5 APPLICATION: POISSON’S EQUATION

Poisson’s equation is one of the most important equations in applied mathematics and has applications in such fields as
astronomy, heat flow, fluid dynamics, and electromagnetism. Let R be a bounded region in the plane with boundary ∂R
(Figure 20.2), g (x, y) be defined on ∂R, and f (x, y) be a function defined in R. Find a function u (x, y) such that



Basic Iterative Methods Chapter| 20 479

0 0.5 1 1.5 2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Spectral radius as a function of omega

Omega

Sp
ec

tr
al

 r
ad

iu
s

FIGURE 20.1 SOR spectral radius.

R

∂R

0 x

y

FIGURE 20.2 Region in the plane.

−∂2u

∂x2
− ∂2u

∂y2
= f (x, y) ,

u (x, y) = g (x, y) on ∂R

Rarely is an analytical solution known, so approximation techniques must be used. We will use the finite difference
method to obtain a numerical solution and assume for simplicity that the region R is the unit square 0 ≤ x ≤ 1, 0 ≤
y ≤ 1. Divide the square into a grid of small squares having sides of length h = 1

n (Figure 20.3). In Section 12.2,
we studied the heat equation in one spacial variable and approximated the second partial derivative by a difference
equation

∂2u

∂x2
(
xi, tj

) ≈ 1

h2
(
ui−1, j−2ui,j+ui+1, j

)
,

where h is the equal spacing between points. We will do the same thing here for the two partial derivatives to obtain the
difference approximation

1

h2
(−ui−1, j+2ui,j−ui+1, j) + 1

h2
(−ui, j−1+2ui,j−ui, j+1) = f

(
xi, yj

)
If we multiply by h2 and collect terms, the result is the set of equations

−ui−1, j − ui+1, j + 4uij − ui, j−1 − ui, j+1 = h2f
(
xi, yj

)
, 1 ≤ i, j ≤ n− 1 (20.21)



480 Numerical Linear Algebra with Applications

x0

yj−1

yn−1

yn

yj

yj+1

y2

…

y1

y0

xi−1 xn−1 xnxi xi+1x2x1

1
(u i

,j
−

1 
− 

2u
i,

j 
+ 

u i
,j

 +
 1
)

h2
∂2

u
≈

∂y
2

1 (ui−1, j − 2ui, j + ui+1, j)
h2

∂2u
≈

∂x2

ui j

ui, j+1

ui,+1j

ui,  j−1

ui−1, j

FIGURE 20.3 Five-point stencil.

Each equation contains five values at grid points and forms what is called a five-point central difference approximation,
also called a five-point stencil (Figure 20.3).

When one or two of the four points around the center touch the boundary, the boundary condition must be used. For
instance, if i = 1, then the equation centered at (1, 1) is

−u0, 1 − u2, 1 + 4u11 − u1, 0 − u1, 2 = h2f (x1, y1)

or

−u2, 1 + 4u11 − u1, 2 = h2f (x1, y1)+ g (0, y1)+ g (x1, 0) (20.22)

Execute the SOR iteration by solving for uij using Equation 20.21 to obtain

uij = ω

(
ui−1, j + ui+1, j + ui, j−1 + ui, j+1 + h2f (xi, yi)

4

)
+ (1− ω) uij. (20.23)

In Ref. [23, p. 564], it is stated that the optimal value of ω is

ωopt = 2

1+ sin πh
. (20.24)

We have not specified thematrix formof the finite difference approximation, but will do so in Section 21.11. Thematrix is
symmetric and positive definite, so we know the SOR iteration will converge by Theorem 20.6. The function sorpoisson
in the software distribution assigns the boundary values, assigns values of f (x, y) in the interior, and executes the SOR
iteration.

%SORPOISSON Numerically approximates the solution of the Poisson

%equation on the square 0 <= x,y <= 1

%

% [x y u] = sorpoisson(n,f,g,omega,numiter) computes the solution.

% n is the number of subintervals, f is the right-hand side, g is

% the boundary condition on the square, omega is the relaxation parameter,

% and numiter is the number of SOR iterations to execute. x and y are

% the grid of points on the x and y axes, and u is the matrix containing



Basic Iterative Methods Chapter| 20 481

% the numerical solution. Upon building x, y, and u, sorpoisson draws a

% surface plot of the solution.

%

Example 20.8. Consider the Poisson equation

−∂2u

∂x2
− ∂2u

∂y2
= 20π2 sin (2πx) sin (4πy)

u (x, y) = sin (2πx) sin (4πy) on ∂R

whose exact solution is u (x, y) = sin (2πx) sin (4πy). Apply the SOR iteration 20.23 with n = 100 and numiter = 125.
Using Equation 20.24, assign ω = 1.9196. Figure 20.4 is a graph of the solution obtained from the SOR iteration, and
Figure 20.5 shows the actual solution. �

Problems 20.9–20.14 deal with the Jacobi and Gauss-Seidel iterations for the one-dimensional Poisson equation. These
problems deal with the coefficient matrix and its relation to the convergence of the iterations.

20.6 CHAPTER SUMMARY

The Jacobi Iteration

The Jacobi iteration is the simplest of the classical iterative methods and, generally, the slowest. However, it forms a basis
for the understanding of other methods, such as Gauss-Seidel and SOR. Starting with an initial approximation, x(0), to the
solution of Ax = b, use the first equation to compute x(1)1 in terms of x(0)2 , x(0)3 , . . . , x(0)n . Now use the second equation to
compute x(1)2 in terms of x(0)1 , x(0)3 , . . . , x(0)n . In general, the equation for the computation is

x(k)i = 1

aii

⎡⎣bi −
⎛⎝ n∑
j=1, j�=i

aijx
(k−1)
j

⎞⎠⎤⎦ , 1 ≤ i ≤ n.

FIGURE 20.4 Poisson’s equation. (a) Approximate solution and (b) analytical solution.
Continued



482 Numerical Linear Algebra with Applications

FIGURE 20.4 , CONT’D

The Jacobi method does not make use of new components of the approximate solution as they are computed. This
requires storing both the previous and the current approximations. If A is strictly row diagonally dominant, then the Jacobi
iteration converges for any choice of the initial approximation x(0). However, the Jacobi iteration may converge for a matrix
that is not strictly row diagonally dominant.

The Gauss-Seidel Iteration

In general, the Gauss-Seidel iteration is an improvement over the Jacobi iteration because it uses the approximation to a
component of the solution as soon as it is available. For instance, after computing x(1)1 , it is used in the computation of x(1)2 .
The general formula for the iteration is

x(k)1 = 1

a11

⎡⎣b1 −
⎛⎝ n∑
j=2

a1jx
(k−1)
j

⎞⎠⎤⎦
x(k)i = 1

aii

⎡⎣bi −
⎛⎝ i−1∑
j=1

aijx
(k)
j +

n∑
j=i+1

aijx
(k−1)
j

⎞⎠⎤⎦ , i = 2, 3, . . . , n− 1

x(k)n = 1

ann

⎡⎣bn − n−1∑
j=1

anjx
(k)
j

⎤⎦
Unlike the Jacobi method, this method requires storing only one vector rather than two. The Gauss-Seidel iteration is

guaranteed to converge for any initial approximation if A is strictly diagonally dominant and when A is symmetric and
positive definite.

The SOR Iteration

This iteration computes x(k)i by forming a weighted average between the previous value x(k−1)i and the value computed by
the Gauss-Seidel iteration, and the formula is



Basic Iterative Methods Chapter| 20 483

x(k)i = ω

aii

⎡⎣bi −
⎛⎝ i−1∑
j=1

aijx
(k)
j +

n∑
j=i+1

aijx
(k−1)
j

⎞⎠⎤⎦+ (1− ω) x(k−1)i , i = 1, 2, . . . , n.

The idea is to choose a value of ω that will accelerate the rate of convergence of the iteration. It is known that unless
0 < ω < 2, the method will not converge. There is no general formula for an optimal ω. Usually ω > 1, but ω < 1
(underrelaxation) sometimes gives better results. SOR converges for any ω if A is positive definite, and positive definite
matrices appear in many engineering problems.

Convergence of the Basic Iterative Methods

Analysis of convergence criteria for the basic iterations is based upon writing the equations defining the iteration in the
matrix form

x(k) = Bx(k−1) + c. (20.25)

If ‖B‖ < 1 for any subordinate norm, then any iteration 20.25 converges. The matrices BJ, BGS, and BSOR for the
Jacobi, Gauss-Seidel, and SORmethods, respectively, are determined in Sections 20.4.1–20.4.3.Note that this is a sufficient
condition only. It is possible for the iteration 20.25 to converge if ‖B‖ ≥ 1. A necessary and sufficient condition for an
iteration to converge is that the spectral radius of B (ρ (B)) is less than 1. While this result is of significant theoretical
importance, computing the spectral radius is computationally costly. It is appropriate to first check to see if ‖B‖ < 1. Also,
the Jacobi and Gauss-Seidel methods converge if A is strictly diagonally dominant, and the Gauss-Seidel iteration converges
if A is positive definite. Convergence of the SOR iteration is guaranteed if 0 < ω < 2 and A is positive definite.

The Poisson Equation

Poisson’s equation is very important in many areas of application. Section 20.5 develops a five-point central difference
approximation for the two-dimensional Poisson equation. The coefficient matrix is positive definite, so the SOR iteration
applies. This is one of the rare cases where the optimal choice for ω is known, and a function sorpoisson in the book
software distribution uses the SOR iteration to numerically approximate and make a surface plot of the solution to the
Poisson equation on the unit square 0 ≤ x, y ≤ 1.

20.7 PROBLEMS

20.1 Perform three iterations of the Jacobi method using pencil and paper. Use x(0) = 0.[
3 1
2 5

][
x1
x2

]
=
[ −1

1

]
20.2 Do Problem 21.2 using the Gauss-Seidel iteration.
20.3 Do Problem 21.1 using SOR with ω = 1.2.

20.4 Let A =
⎡⎢⎣

1
6 0 1

8

0 1
3

1
7

1
5 0 1

4

⎤⎥⎦. What can you say about the convergence of the Jacobi and Gauss-Seidel iterations?

20.5 Let A be the general 2× 2 matrix A =
[
a11 a12
a21 a22

]
.

a. Compute exact formulas for BJ defined by Equation 20.8 and BGS defined by Equation 20.11. Consider using the
MATLAB Symbolic Math Toolbox.

b. Determine analytic formulas for the eigenvalues of BJ and BGS.
c. Using the result of (b), determine if either or both of the Jacobi and Gauss-Seidel iterations converge for A =[

3 −4
4 5

]
.

d. Answer part (c) for the matrix A =
[
2 2
1 3

]
.

e. Is it possible for one of Jacobi and Gauss-Seidel to converge and the other diverge for a 2× 2 matrix?



484 Numerical Linear Algebra with Applications

20.6 Let A =
[
2 2
1 3

]
.

a. Show that the Jacobi and Gauss-Seidel iterations converge, but that the iteration matrices BJ and BGS have one-,
two-, and infinity norms greater than or equal to 1.

b. The matrix

BSOR (ω) =
[

1− ω −ω
ω(2ω−2)

6
ω2

3 − ω + 1

]
Let ω range from 0.01 in steps of 0.01-1.99, and graph ω vs. ρ (BSOR (ω)).

c. Do part (b), except graph ω vs. ‖BSOR (ω)‖2.
d. Comment on the results of parts (a)-(c).

20.7 Show that

a. The Jacobi iteration converges for A1 =
⎡⎣ 2 1 −2
1 1 1
3 2 1

⎤⎦ but the Gauss-Seidel iteration does not converge.

b. The Gauss-Seidel iterations converges for A2 =
⎡⎣ 2 1 3
1 2 1
1 1 3

⎤⎦ but the Jacobi iteration does not.

20.8 If ‖·‖ is a subordinate matrix norm, prove that
ρ (A) < ‖A‖ .

Assume the result of Theorem 20.2, and provide an alternate proof of Theorem 20.1.

Problems 20.9–20.14 deal with the one-dimensional Poisson equation,

−d2u

dx2
= f (x) , 0 ≤ x ≤ 1, u (0) = u (1) = 0 (20.26)

In most cases, it is not possible to find an analytical solution, so an approximation techniquemust be used. Divide
the interval into n subintervals of width h = 1

n , giving n+ 1 points

{x1 = 0, x2 = h, . . . , xi = (i− 1) h, . . . , xn = (n− 1) h, xn+1 = 1} .
20.9 Using Taylor series, it can be shown that d2u

dx2
(xi) ≈ u(xi+1)−2u(xi)+u(xi−1)

h2
. Use the notation ui = u (xi) and show

that after using the approximation for the second derivative in the differential equation, the result is the system of
equations (Figure 20.5)

−ui+1 + 2ui − ui−1 = h2f (xi) , 2 ≤ i ≤ n.

20.10
a. Noting that u1 = 0, un+1 = 0, show that the system of equations in Problem 21.11 can be written in matrix form
Ax = b, where

A = 1

h2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . 0

−1 2 −1 ...

0
. . .

. . .
. . . 0

... −1 2 −1
0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎣
f (x2)
f (x3)
...

f (xn−1)
f (xn)

⎤⎥⎥⎥⎥⎥⎦ .

d2u

dx2
�xi� ª

ui−1 – 2ui + ui+1

h2

x20 = x1 x3 x4 xixi−1 xn−2 xn−1 xn+1 = 1xnxi+1

FIGURE 20.5 One-dimensional Poisson equation grid.



Basic Iterative Methods Chapter| 20 485

b. Show that A is positive definite by proving that xTAx > 0 for all x �= 0. Hint: Show that xTAx = 〈Ax, x〉. Multiply
this out and look for terms of the form (xi+1 − xi)2.

20.11 In this problem, you will find the eigenvalues of matrix A in Problem 20.10.

a. Matrix A has dimension (n− 1)× (n− 1). Let v =

⎡⎢⎢⎢⎢⎢⎣
v1
v2
...

vn−2
vn−1

⎤⎥⎥⎥⎥⎥⎦ be an eigenvector of A. Letting h = 1
n , show that

−vi−1 +
(
2− λh2

)
vi − vi+1 = 0, 1 ≤ i ≤ n− 1,

where v0 = vn = 0.
b. Try solutions of the form vj = sin (ωj) , 0 ≤ j ≤ n and show that

λj = 4

h2
sin2

(
π j

2n

)
, 1 ≤ j ≤ n− 1

are distinct eigenvalues of A. Hint: Use trigonometric identities including 1− cos (ω) = 2 sin2
(

ω
2

)
.

c. We know that A is positive definite. Are its eigenvalues consistent with that?
d. Find the condition number of A, and show that the matrix is ill-conditioned for large n.

Remark 20.1. With homogeneous boundary conditions u (0) = u (1) = 0, it can be shown due to the form of
the right-hand side b that ∥∥δu(n)

∥∥
2∥∥u(n)

∥∥
2

≤ C

∥∥δb(n)
∥∥
2∥∥b(n)

∥∥
2

,

whereC is a constant independent of n. In short, the systemAx = b can be solved reliably (see Ref. [27, pp. 87-88]).

20.12 To solve the problem Ax = b using the Jacobi iteration, the spectral radius of the matrix BJ must be less than one.
a. Using the result of Problem 20.11(b), show that the eigenvalues of BJ are

μj = 1− λj

2n2
,

where λj are the eigenvalues of A. Hint: Show that BJ = I − D−1A, and let v be an eigenvector of BJ with
corresponding eigenvalue μ.

b. Show that the spectral radius of BJ is

ρ (BJ) = cos
(π

n

)
,

and that ρ (BJ) < 1. Thus, the Jacobi method converges. Hint: Use the half-angle formula sin2
(

θ
2

) =
1
2 (1− cos θ).

c. Using the McLaurin series for cos π
n , show that

ρ (BJ) = 1− π2

2n2
+O

(
h4
)
.

20.13
a. It can be shown that the spectral radius of the iteration matrix BGS for the Gauss-Seidel iteration is ρ (BGS) =

cos2
(

π
n

)
< 1 [27, p. 155]. Show that

ρ (BGS) = 1− π2

n2
+ O

(
h4
)
.

b. Explain why for large values of n, the Gauss-Seidel method converges faster.
20.14 There is a means of handling the Gauss-Seidel iteration for the one-dimensional Poisson equation that involves

coloring half the unknown values red and half black. This method allows parallelism, whereas the iteration 20.4



486 Numerical Linear Algebra with Applications

FIGURE 20.6 One-dimensional red-black GS.

does not, and the modification leads to best case convergence results that depend on it [1, pp. 282-283, 285-294].
Color x2 light gray (represents red), x3 black, and so forth, as shown in Figure 20.6.
a. If a grid point is red, what are the colors of its neighbors? If a grid point is black, what is the color of its neighbors?
b. To apply Gauss-Seidel, begin with x2 and apply the difference formula to all red points. Now start at x3 and

apply the difference formula to all the black points. Sketch an algorithm that uses this coloring to implement the
Gauss-Seidel iteration.

c. Explain why this ordering allows the iteration to be parallelized.
20.15 In finding a numerical solution to the two-dimensional Poisson equation, we used row ordering to define the finite

difference equations. There is a better way, called red-black ordering. Think of the grid as a chessboard. Begin in
the lower left corner of the grid of unknowns and color (1, 1) red. Now alter red and black until you have colored
(n− 1, n− 1).
a. Draw the board corresponding to n = 7, and color the interior grid points.
b. In the five-point central difference scheme, if (i, j) is red, what color are its four neighbors? What color are the

neighbors of a black grid point?
c. In terms of indices i, j, when is uij red, and when is it black?
d. To apply Gauss-Seidel, begin with red grid point (1, 1) and apply the difference formula to all the red points. Now

start with the black grid point (2, 1) and apply the difference formula to the black points. Sketch an algorithm
that implements this version of Gauss-Seidel.

e. Explain why this ordering allows the iteration to be parallelized.

20.7.1 MATLAB Problems

20.16 Using the Jacobi and Gauss-Seidel methods, solve the system with tol = 0.5 × 10−14 and numiter = 50. In each
case, print the number of iterations required and the relative residual ‖b− Ax‖2 /b.⎡⎢⎢⎣

6 −1 2 1
1 6 1 −1
0 1 3 1
1 −2 1 5

⎤⎥⎥⎦
⎡⎢⎢⎣

3
2
−6
1

⎤⎥⎥⎦ .

20.17 This problem investigates convergence properties. The matrix A =
⎡⎣ 2 −1 0
−1 2 −1
0 −1 2

⎤⎦ is positive definite (Problem

20.10(b)).
a. Is matrix A strictly row diagonally dominant?
b. Is the Jacobi method guaranteed to converge? What about the Gauss-Seidel and SOR iterations?

c. If the Gauss-Seidel method converges, solve Ax =
⎡⎣ 1
3
7

⎤⎦.
d. If the SOR iteration converges, use optomega to estimate an optimal ω, and demonstrate that sor improves the

convergence rate relative to Gauss-Seidel using tol = 1.0× 10−10 and maxiter = 100.

20.18 Let A =
⎡⎣ 0.1000 0.5000 −0.1000
0.4000 0.2000 0.6000
0.2000 −0.3000 0.4000

⎤⎦. The matrix A is not diagonally dominant.

a. Compute ‖BJ‖1, ‖BJ‖∞,‖BJ‖2 and ‖BGS‖1, ‖BGS‖∞,‖BGS‖2.
b. Compute the spectral radius of BJ and BGS.
c. Does either method converge? Demonstrate your answer by using a random b and x0 = 0.

20.19 In Chapter 12, we used finite difference methods to approximate the solution of the heat equation in one spacial
variable. We needed to solve a tridiagonal linear system with coefficient matrix



Basic Iterative Methods Chapter| 20 487

B =

⎡⎢⎢⎢⎢⎢⎢⎣

1+ 2r −r 0 · · · 0
−r 1+ 2r −r · · · 0

0
. . .

. . .
. . .

...
...

... −r 1+ 2r −r
0 0 0 −r 1 + 2r

⎤⎥⎥⎥⎥⎥⎥⎦ .

This matrix is strictly row diagonally dominant, and so both the Jacobi and Gauss-Seidel iterations will
converge.
a. Let r = 0.25 and solve the 100 × 100 linear system Bu = c, with c = [

1 1 . . . 1 1
]T using the Jacobi

iteration with tol = 0.5× 10−14 , numiter = 100, and x0 = 0.
b. Do part (a) using the Gauss-Seidel iteration.
c. Do part (a) using SOR with ω = {1.1, 1.2, 1.3, 1.5, 1.9}. Which value of ω works best?
d. Solve the system using the MATLAB function thomas introduced in Section 9.4.
e. Solve the system using the MATLAB command “B\c.”
f. Compare the results of parts (a)-(e).

20.20
a. Show that the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −2 0 0 0 0 0
−2 4 −2 0 0 0 0
0 −2 4 −2 0 0 0
0 0 −2 4 −2 0 0
0 0 0 −2 4 −2 0
0 0 0 0 −2 4 −2
0 0 0 0 0 −2 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
is positive definite.

b. Compute ρ (BJ), ρ (BGS), and ρ (BSOR (1.2)). Project a ranking for the number of iterations required by the
methods.

c. Generate a random 7× 1 vector rhs and solve Ax = rhs using all three methods. Are your projections in part (b)
correct?

d. For the matrix A =

⎡⎢⎢⎣
−1 3 4 0
5 7 12 −1
1 1 5 2
5 −1 −1 2

⎤⎥⎥⎦, compute the spectral radius of BJ, BGS, and BSOR. Will any of the

iterative methods converge. Try one and see what happens.
20.21

a. Write a function x = poisson1dj(f, n, numiter) that uses the Jacobi iterations to numerically approxi-
mate the solution to the one-dimensional Poisson equation 20.26, where f is the right-hand side, n is the number
of subintervals of 0 ≤ x ≤ 1, and numiter is the number of iterations.

b. Do part (a) using the Gauss-Seidel iteration bywriting a function poisson1dgs. If you have done Problem 20.14,
use red-black ordering.

c. The exact solution to the Poisson equation

d2u

dx2
= −x (x− 1) , u (0) = u (1) = 0

is

u (x) = x4

12
− x3

6
+ x

12
.

Using n = 25 and numiter = 700 (Jacobi), numiter = 350 (GS) compute the solution using poisson1dj and
poisson1dgs. Compare the results to the true solution.

20.22 Let R be the unit square, 0 ≤ x, y ≤ 1. Consider the two-dimensional Laplace equation



488 Numerical Linear Algebra with Applications

∂2u

∂x2
+ ∂2u

∂y2
= 0, 0 < x, y < 1, (20.27)

u = g (x, y) on ∂R. (20.28)

a. Write a MATLAB function [x y u] = laplacej(g,n,maxiter) that uses the Jacobi iteration to approx-
imate the solution to Equation 20.27 and creates a surface plot.

b. The exact solution with

g (x, y) =

⎧⎪⎪⎨⎪⎪⎩
0 y = 0
sin (πx) y = 1
0 x = 0
0 x = 1

is

ut (x, y) = 1

sinh (π)
sin (πx) sinh (πy) .

Plot the solution using the MATLAB function ezsurf.
c. Plot the solution by applying laplacej with n = 25 and numiter = 100.

20.23
a. Write function jacobiConverge(A) that returns true if the Jacobi iteration converges for a system with
coefficient matrix A and false if it does not converge

b. Do part (a) for the Gauss-Seidel method by writing a function gsConverge(A).
c. For each matrix, use your functions to determine if the Jacobi or Gauss-Seidel iterations converge.

A =
⎡⎣ 3 1 1
2 5 2
1 5 7

⎤⎦ , B =
⎡⎣ 5 −1 4
1 3 1
2 3 4

⎤⎦ , C =
⎡⎣ 6 1 2
1 1 8
1 2 5

⎤⎦ , D =
⎡⎣ 2 1 1

3 −4 1
−1 3 4

⎤⎦

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2
1 2 3 3 3 3 3 3
1 2 3 4 4 4 4 4
1 2 3 4 5 5 5 5
1 2 3 4 5 6 6 6
1 2 3 4 5 6 7 7
1 2 3 4 5 6 7 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
20.24

a. Write a function diagDom(A) that determines if A is strictly row diagonally dominant by returning true or false.
b. Apply your function to the matrices

i. A =
⎡⎣ 3 −1 1

2 5 2
−8 3 12

⎤⎦

ii. A =

⎡⎢⎢⎢⎢⎣
1.0 0.3 0.4 0.1 0.1
0.00 2.8 2.00 0.10 0.40
.30 −0.10 0.70 0.20 0.05
0.00 0.60 1.20 4.25 2.40
0.50 6.80 1.40 2.30 −10.6

⎤⎥⎥⎥⎥⎦
iii. A =

⎡⎢⎢⎣
3.0 1.0 1.0 0.90
2.0 8.0 1.0 −4.0
5.0 1.0 7.0 0.80
1.0 1.0 −3.0 5.0

⎤⎥⎥⎦
c. The MATLAB function call gallery(’neumann’,25) returns a sparse 25 × 25 matrix that results from
discretizing a partial differential using a five-point finite difference operator on a regular mesh. Execute diagDom
using the matrix

A = full(gallery(’neumann’, 25)) + diag(0.1*ones(25,1));



Basic Iterative Methods Chapter| 20 489

iii. A =

⎡⎢⎢⎣
3.0 1.0 1.0 0.90
2.0 8.0 1.0 −4.0
5.0 1.0 7.0 0.80
1.0 1.0 −3.0 5.0

⎤⎥⎥⎦
c. The MATLAB function call gallery(’neumann’,25) returns a sparse 25 × 25 matrix that results from
discretizing a partial differential using a five-point finite difference operator on a regular mesh. Execute diagDom
using the matrix

A = full(gallery(’neumann’, 25)) + diag(0.1*ones(25,1));

20.25
a. If A is a sparse matrix of the form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 d1 e1
b1 c2 d2 e2

a1 b2 c3 d3
. . .

a2 b3
. . .

. . . en−3
. . .

. . .
. . . dn−2 en−2

an−3 bn−2 cn−1 dn−1
an−2 bn−1 cn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

what is the maximum number of nonzero elements it contains? What is the density, where density =
number of nonzero elements

n . Such a matrix is termed pentadiagonal.
b. Code a function

[x,iter] = pentsolve(a,b,c,d,e,x0,rhs,tol,maxiter)

that applies the Gauss-Seidel iteration to solve a system Ax = rhs. Your iteration must use only the elements on
the five diagonals. Apply the termination criteria

‖xnew− xprev‖2
‖xprev‖2

< tol.

c. Test your function by solving the 1000× 1000 problem⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 −4 −1 0 0 · · · 0
−4 11 −4 −1 0 · · · 0
−1 −4 11 −4 −1 · · · 0

0 −1 −4 11 −4 . . . 0

0 0 −1 −4 11
. . .

...
. . .

. . .
. . . −1

...
...

...
. . .

. . .
. . . −4

0 0 0 · · · −1 −4 11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x = rhs,

where rhs is a random matrix generated with the MATLAB command rhs = 100*rand(1000,1). Time the
computation. Create the matrix in part (b) using MATLAB, and solve the system using xmat = A\rhs and
compare the two solutions and the time required.

20.26
a. Develop a MATLAB function findomega that plots the number of iterations of the SOR method required as a
function of the relaxation parameter ω for the system Ax = b, b = rand (n, 1). For the purpose of graphing, let
ω range from 0.01 to 1.99 in steps of 0.005. Use tol = 1.0 × 10−12 and maxiter = 1000. Estimate the optimal
value of ω by determining the ω corresponding to the minimum number of iterations required to satisfy the error
tolerance. Be sure to exclude values of −1 (iteration failure) in the search for the minimum.

b. Apply findomega to the matrix E of Problem 20.23(c).



490 Numerical Linear Algebra with Applications

20.27
a. Develop a numerical solution to the two-dimensional Poisson problem using the red-black scheme of Problem
20.15. Name the function poisson2dgs.

b. Apply poisson2dgs to the problem of Example 20.8.
c. A thin membrane is stretched over a wire bent in the shape of a triangle. The resulting structure satisfies Laplace’s
equation. Consider the specific problem

∂2u

∂x2
+ ∂2u

∂y2
= 0,

u (x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, 0 ≤ x ≤ 1

2 , y = 0
1− x, 1

2 ≤ x ≤ 1, y = 0
0, 0 ≤ x ≤ 1, y = 1
0, x = 0, 0 ≤ y ≤ 1
0, x = 1, 0 ≤ y ≤ 1

whose exact solution is

u (x, y) = 4

π2

∞∑
n=0

(−1)n sin ((2n+ 1) πx) sinh ((2n+ 1) π (1− y))

(2n+ 1)2 sinh ((2n+ 1) π)
.

i. Graph u (x, y) , 1 ≤ x, y ≤ 1, by summing the series until the relative error of the partial sums is less than
10−8.

ii. Apply poisson2dgs and graph the approximate solution.



Chapter 21

Krylov Subspace Methods

You should be familiar with

● Symmetric matrices and their properties
● Inner product
● Vector and matrix norms
● Matrix condition number
● Gradient of a function of n variables
● Cholesky decomposition
● Gram-Schmidt process
● Overdetermined least squares
● LU decomposition
● Poisson’s equation and five-point finite difference approximation

Chapter 20 discussed the classical iterative methods, Jacobi, Gauss-Seidel, and successive overrelaxation (SOR) for solving
linear systems. This chapter introduces more sophisticated methods for solving systems with a sparse coefficient matrix.
After discussing the storage of sparse matrices, we introduce one of the most amazing algorithms ever developed in the field
of numerical linear algebra, the conjugate gradient (CG) method. Many matrices used in the approximation of the solution
to partial differential equations are symmetric positive definite. We saw an example of this situation when we discussed
the heat equation in Chapter 12 and the Poisson equation in Chapter 20. The CG method is extremely effective for positive
definite matrices. Rather than applying the same iteration scheme over and over, CG makes a decision at each step in order
to obtain an optimal result. It uses matrix multiplication, which can be done very efficiently by taking advantage of the
sparse structure of the matrices involved.

The CG method is an example of a Krylov subspace method, which is a class of algorithms that project the problem
into a lower-dimensional subspace formed by powers of a matrix. We will discuss two additional Krylov subspace methods,
minimum residual (MINRES) method that solves symmetric indefinite systems, and the general minimal residual (GMRES)
method that applies to general sparse matrices.

In applications, the linear system is frequently ill-conditioned. It is possible usingmultiplication by an appropriatematrix
to transform a system into one with a smaller condition number. This technique is termed preconditioning, and can yield
very accurate results for a system with a poorly conditioned coefficient matrix. We will develop preconditioning techniques
for CG and GMRES.

The chapter concludes with a discussion of the two-dimensional biharmonic equation, a fourth-order partial differential
equation whose positive definite finite-difference matrix is ill-conditioned. Preconditioned CG gives good results for this
somewhat difficult problem.

21.1 LARGE, SPARSE MATRICES

The primary use of iterative methods is for computing the solution to large, sparse systems and for finding a few
eigenvalues of a large sparse matrix. Along with other problems, such systems occur in the numerical solution of
partial differential equations. A good example is our discussion of a finite difference approach to the heat equation
in Chapter 12. In that problem, it is necessary to solve a large tridiagonal system of equations, and we were able
to use a modification of Gaussian elimination known as the Thomas algorithm. In many cases, matrices have four
or more diagonals, are block structured, where nonzero elements exists in blocks throughout the matrix, or have
little organized structure. The three types of large, sparse matrices are positive definite, symmetric indefinite, and
nonsymmetric. The sparsity pattern of a matrix is a plot that shows the presence of nonzeros. Figure 21.1 shows the
sparsity pattern of an actual problem for each type. An annotation specifies the computational area for which the matrix
was used.

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00021-1
Copyright © 2015 Elsevier Inc. All rights reserved. 491



492 Numerical Linear Algebra with Applications

(a) (b)

(c)

FIGURE 21.1 Examples of sparse matrices. (a) Positive definite: structural problem, (b) symmetric indefinite: quantum chemistry problem, and
(c) nonsymmetric: computational fluid dynamics problem.

Algorithms for dealing with large, sparse matrices are an active area of research. The choice of a suitable method for
handling a given problem depends on many factors, including the matrix size, structure, and what type of computer is used.
Algorithms are different for vector computers and parallel computers. These problems can be very difficult, often requiring
much experimentation before finding a suitable method of solution. The text by Saad [64] is an excellent reference for
advanced material in this area.

Remark 21.1. The matrices in Figure 21.1 were obtained from the University of Florida Sparse Matrix Collection,
maintained by Tim Davis, University of Florida, and Yifan Hu of AT&T Research [90]. It is located at http://www.cise.
ufl.edu/research/sparse/matrices/. Matrices can be downloaded from the Web site or accessed by obtaining the UFgui Java
interface and running the application on your system.

21.1.1 Storage of Sparse Matrices

There are a number of formats used to store sparse matrices. In each case, only the nonzero elements are recorded. We will
look at the compressed row storage (CRS) format that stores the nonzero elements by rows. Assumewe have a nonsymmetric



Krylov Subspace Methods Chapter| 21 493

sparse matrix. Create three vectors: one for floating point numbers (AV) and the other two for integers (AI, AI). The AV
vector stores the values of the nonzero elements of the matrix as they are traversed in a row-wise manner. The AJ vector
stores the column indices of the elements in the AV vector; for instance, if AV(j) = v, then v is in column AJ(j). The AI
vector stores the locations in the AV vector that begin a row; that is, if AI(i) = k, then AV(k) is the first nonzero element in
row i. The remaining elements in row i are the elements in AV up to but not including AI (i+ 1), so the number of nonzero
elements in the ith row is equal to AI (i+ 1)− AI (i). In order that this relationship will hold for the last row of the matrix,
an additional entry, nnz+1 is added to the end of A, where nnz is the number of nonzero entries in the matrix. The vector AI
must have an entry for every row. If all the elements in row k are zeros, then AI (k) must have a value such as−1 to indicate
row k has no nonzero elements.

TheCRS format saves a significant amount of storage. Instead of storing n2 elements, we need only storage locations for n
elements inAI, nnz elements in bothAV andAJ, and one additional entry nnz+1 in AI. If we assume that a machine has 8 byte
floating point numbers and 4 byte integers, then the requirement for CRS storage is 8nnz+ 4nnz+ 4 (n+ 1). For instance,
without using sparse matrix storage a 1000× 1000 matrix of double values requires 8× 106 = 8, 000, 000bytes of storage.
If the matrix has only nnz = 12, 300 nonzero elements, we need storage for only 8 (12, 300)+ 4 (12, 300) + 4 (1001) =
151, 604bytes, which is 151, 604/8, 000, 000, or approximately 1.90% of the space required to store the entire matrix. If
the matrix is symmetric, we only need to store the nonzero values on and above the diagonal, saving even more space.

The CRS storage format is very general. It makes no assumptions about the sparsity structure of the matrix. On the
other hand, this scheme is not efficient for accessing matrices one element at a time. Inserting or removing a nonzero entry
may require extensive data reorganization. However, element-by-element manipulation is rare when dealing with sparse
matrices. As we will see, iterative algorithms for the solution of sparse linear systems avoid direct indexing and use matrix
operations such as multiplication and addition for which there are algorithms that efficiently use the sparse matrix storage
structure. There has been a significant amount of research in the area of sparse matrices, and the interested reader can consult
Refs. [64–66].

Example 21.1. Consider the nonsymmetric matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 2 0 0
0 0 −1 0 0 1 0
0 5 0 2 6 0 0
0 0 0 0 0 0 0
7 0 0 0 12 0 0
0 0 0 3 0 0 0
0 0 1 0 0 8 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The CRS format for this matrix is then specified by the arrays {AV, AJ, AI} as follows:
AV 3 2 −1 1 5 2 6 7 12 3 1 8 3
AJ 1 5 3 6 2 4 5 1 5 4 3 6 7

AI 1 3 5 −1 8 10 11 14

Consider row 5. AI (5) = 8, AJ (8) = 1, and AV (8) = 7. The first element in row 5 is in column 1 and has value 7. There
are AI (7)− AI (6) = 2 elements in row 5. The remaining element in row 5 is AV (9) = 12 in column AJ (9) = 5. �

21.2 THE CG METHOD

The CG iteration is one of the most important methods in scientific computation, and is the algorithm of choice for solving
positive definite systems. We used the SOR iteration for solving a Poisson equation in Section 20.5. The SOR iteration
depends on a good choice of the relaxation parameter ω. A poor choice leads to slow convergence or divergence. The
CG method does not have this problem. There are a number of approaches to developing CG. We take the approach of
minimizing a quadratic function formed from the n × n matrix A. A quadratic function mapping Rn to R is a function
of n variables x1, x2, . . . , xn where each term involves the product of at most two variables. This approach allows us to
incorporate illustrations that help with understanding this important algorithm.

21.2.1 The Method of Steepest Descent

To develop CG we start with the method of steepest descent for solving a positive definite system and then make
modifications that improve the convergence rate, leading to CG. To solve the system Ax = b, where A is positive definite,
we find the minimum of a quadratic function whose minimum is the solution to the system Ax = b. Let



494 Numerical Linear Algebra with Applications

φ (x) = 1

2
xTAx− xTb, (21.1)

where A ∈ Rn×n and x ∈ Rn. To minimize φ (x), set each partial derivative
∂φ

∂xi
= 0, 1 ≤ i ≤ n, and solve for x. The

gradient of φ is the vector ∇φ =
[

∂φ

∂x1

∂φ

∂x2
· · · ∂φ

∂xn−1
∂φ

∂xn

]T
, so x is a minimum if ∇φ (x) = 0. Some manipulations

(Problem 21.2) will show that

∇φ (x) = 1

2
ATx + 1

2
Ax− b.

Since A is symmetric,

∇φ (x) = Ax− b, (21.2)

and the minimum value of φ (x) occurs when Ax = b. Thus, finding the minimum value of φ (x) is equivalent to solving
Ax = b. Since A is positive definite, it is nonsingular, and xmin = A−1b. Thus,

∇φ (xmin) = 1

2
xTminAA

−1b− xTminb = −
1

2
xTminb.

Equation 21.1 also shows us the type of surface generated by φ (x). By the spectral theorem, there is an orthogonalmatrix
P such that A = PDPT, where D is a diagonal matrix containing the eigenvalues of A. We have seen that an orthogonal
matrix can be used to effect a change of coordinates (Section 7.1.2). Let u = PT (x − xmin), so x = Pu+ xmin. Substituting
this into Equation 21.1, after some matrix algebra and noting that D = PTAP we obtain

φ̃ (u) = 1

2
(Pu)T A (Pu)− 1

2
xTminAx =

1

2
uTDu− 1

2
xTminAxmin

=
n∑
i=1

λiu2i −
1

2
xTminb

Since A is positive definite, λi > 0, 1 ≤ i ≤ n. For n = 2, φ̃ (u) = λ1u21+λ2u22− 1
2x

T
minb and is a paraboloid. In general,

the orthogonal transformation u = PT (x− x) maintains lengths and angles, so φ (x) is a paraboloid in Rn.

Example 21.2. If Ax = b, where A =
[
5 1
1 4

]
and b =

[
1
1

]
, the eigenvalues of the coefficient matrix are 3.3820 and

5.6180, so A is positive definite. Figure 21.2(a) is a graph of the paraboloid φ (x) = 5
2x

2 + 2y2 + xy− x − y. The solution

to the system is
[
0.1579 0.2105

]T, and we know the global minimum value is

−1

2

[
0.1579 0.2105

] [
1 1

]T = −0.1842. �

Before continuing to develop the method of steepest descent, we need to define some concepts. A level set of a real-
valued function of n variables is a curve along which the function has a constant value. For a function of two variables, level
sets are often called contour lines. They are formed when a plane parallel to the xy-plane passes through the surface and
the curve formed is projected onto the xy-plane. Since φ (x) is a paraboloid, its contour lines are ellipses. Figure 21.2(b) is
a graph that shows contour lines for our example function φ (x) = 5

2x
2 + 2y2 + xy − x − y. These contour lines picture

movement downward to the minimum of φ (x) located near the middle of the figure. Contour lines and the gradient are
related. For a given point x, the gradient always points in the direction of greatest increase of φ (x), so −∇φ (x) points
in the direction of greatest decrease. In addition, the gradient is always orthogonal to the contour line at the point x
(Figure 21.2(b)).

In steepest descent, the minimum value φ (xmin) is found by starting at an initial point and descending toward xmin (the
solution ofAx = b). Assume the current point is xi, andwewant tomove from it to the point xmin. Since the quadratic function
φ decreases most rapidly in the direction of the negative gradient, Equation 21.2 specifies that −∇φ (xi) = b− Axi. Let

ri = b− Axi

be the residual at point xi. The residual itself is pointing in the direction of most rapid decrease from xi, and is called a
direction vector. If the residual is zero, we are done. If the residual is nonzero, move along a line specified by the direction
vector, so let xi+1 = xi + αiri, where αi is a scalar. We must find αi so that we minimize φ for each step. Let



Krylov Subspace Methods Chapter| 21 495

(a) (b)

FIGURE 21.2 Steepest descent. (a) Quadratic function in steepest descent and (b) gradient and contour lines.

(a) (b)

FIGURE 21.3 Steepest descent. (a) Deepest descent zigzag and (b) gradient contour lines.

f (αi) = φ (xi + αiri) .

Using the symmetry of A and the commutativity of the inner product we have,

f (αi) = 1

2
(xi + αiri)T A (xi + αiri)− (xi + αiri)T b

= 1

2
xTi Axi +

α2i

2
rTi Ari + αix

T
i Ari − xTi b− αir

T
i b.

The minimum occurs when f ′ (αi) = 0, and

f ′ (αi) = αir
T
i Ari + xTi Ari − rTi b

= αir
T
i Ari + rTi Axi − rTi b

= αir
T
i Ari + rTi (Axi − b)

= αir
T
i Ari − rTi ri.

Thus, the minimum occurs when

αi = rTi ri
rTi Ari

. (21.3)



496 Numerical Linear Algebra with Applications

Step from xi to xi+1 = xi+αiri, and then use xi+1 and ri+1 to compute xi+2 = xi+1+αi+1ri+1, the next point downward
toward the minimum.

Our discussion gives rise to the steepest descent algorithm.
NLALIB: The function steepestDescent implements Algorithm 21.1.
It can be shown that [2, pp. 625-627](

φ (xi)+ 1

2
bTA−1b

)
≤
(
1− 1

κ (A)

)(
φ (xi−1)+ 1

2
bTA−1b

)
,

Algorithm 21.1 Steepest Descent

function STEEPESTDESCENT(A,b,x0,tol,maxiter)

% Solve Ax=b using the steepest descent method.

% Input: Matrix A, right-hand side b, initial approximation x0,

% error tolerance tol, and maximum number of iterations maxiter.

% Output: Approximate solution x, norm of the residual ‖b − Ax‖2,
% and the number of iterations required.

% If the method does not converge, iter=-1.

r0 = b - Ax0
iter=1

i=0

while do (‖ri‖2 ≥ tol) and (iter ≤ maxiter)

αi = rTiri

rTiAri
xi+1 = xi + αiri
ri+1 = b − Axi+1
i=i+1

iter=iter+1

end while
iter=iter-1

if iter ≥ numiter then iter=-1

end if
end function

which says that the algorithm converges no matter what initial value we choose. If κ (A) is large, then
(
1− 1

κ(A)

)
is close

to 1, and convergence will be slow. We can see this geometrically. For any n × n matrix, successive search directions, ri,
are orthogonal, as we can verify by a calculation. Noting that Axi = b − ri,

rTi ri+1 = rTi (b− Axi+1) = rTi [b− A (xi + αiri)] =
rTi b− rTi (Axi + αiAri) =

rTi b− rTi [(b− ri)+ αiAri] =
rTi b− rTi b+ rTi ri − αirTi Ari =

rTi ri − αirTi Ari.

From Equation 21.3

rTi ri − αir
T
i Ari = 0,

so rTi ri+1 = 0. If we are at xi in the descent to the minimum, the negative of the gradient vector is orthogonal to the contour
line φ (xi) = ki. The next search direction ri+1 is orthogonal to ri and orthogonal to the contour line φ (xi+1) = ki+1. As
illustrated in Figure 21.3(a), for n = 2 the approach to the minimum follows a zigzag pattern. Steepest descent always
makes a turn of 90◦ as it moves toward the minimum, and it could very well be that a different turn is optimal. In R2, if the
eigenvalues of A are λ1 = λ2, the contour lines are circles; otherwise, they are ellipses. The eigenvalues of a positive definite
matrix are the same as its singular values (Problem 21.8), so the shape of the ellipses depends on the ratio of the largest
to the smallest eigenvalue, which is the condition number. If the condition number of A is small, the ellipses are close to



Krylov Subspace Methods Chapter| 21 497

circles, and the steepest descent algorithm steps from contour to contour, quickly moving toward the center. However, as the
condition number gets larger, the ellipses become long and narrow. The paraboloid φ (x) has a steep, narrow canyon near the
minimum, and the values of xi move back and forth across the walls of the canyon, moving down very slowly, and requiring

a great many iterations to converge to the minimum. This is illustrated in Figure 21.3(b) for the matrix A =
[
5 3
3 4

]
. Note

that the contour lines are more eccentric ellipses than those for the matrix A =
[
5 1
1 4

]
of Example 21.2.

Example 21.3. The MATLAB function steepestDescent in the software distribution returns the approximate so-

lution and the number of iterations required. Apply the method to the matrices A =
[
5 1
1 4

]
, κ (A) = 1.6612 and

B =
[

7 6.99
6.99 7

]
, κ (B) = 1399. In both cases, b = [

46.463 17.499
]T

and x0 =
[
5 5

]T
. For matrix A, 21 iterations

were required to attain an error tolerance of 1.0 × 10−12; however, matrix B required 8462 iterations for the same error
tolerance. �

21.2.2 From Steepest Descent to CG

The method of steepest descent does a line search based on the gradient by computing xi+1 = xi+αiri, where the ri are the
residual vectors. The CG method computes

xi+1 = xi + αipi,

where the direction vectors {pi} are chosen so {xi} much more accurately and rapidly descends toward the minimum of
φ (x) = 1

2x
TAx− xTb. Repeat the calculations that lead to Equation 21.3, replacing ri by pi, to obtain

αi = pTi ri
pTi Api

. (21.4)

Before showing how to choose {pi}, we must introduce the A-norm.

Definition 21.1. If A is an n × n positive definite matrix and x, y ∈ Rn, then 〈x, y〉A = xTAy is an inner product, and if
〈x, y〉A = 0, x and y are said to be A-conjugate. The corresponding norm, ‖x‖A =

√
xTAx is called the A-norm or the energy

norm.

Remark 21.2. We leave the fact that 〈·, ·〉A is an inner product to Problem 21.3. We use the term energy norm because the
term 1

2x
TAx = 1

2 ‖x‖2A represents physical energy in many problems.

The function φ (x) = 1
2x

TAx− xTb can be written using the A-norm as follows:

φ (x) = 1

2
‖x‖2A − 〈x, b〉 ,

where 〈x, b〉 is the Euclidean inner product. If x is the approximation to the minimum of φ (x) and e = x − x is the error,
then completing the square gives (Problem 21.4)

φ (x) = 1

2
eTAe− 1

2
‖x‖2A =

1

2
‖e‖2A −

1

2
‖x‖2A .

Thus, to minimize φ, we must minimize the A-norm of the error. The steepest descent algorithm minimizes the 2-norm
of the error along a gradient line at each step. This is one-dimensional minimization. The CGmethod uses information from
past steps so that it can minimize over higher-dimensional subspaces. As we move from xi−1 to xi, the algorithm minimizes
over an i-dimensional subspace. Another way of putting it is that instead of minimizing over a line we minimize over a
plane (n = 2) or a hyperplane (n > 2). The approximations xi+1 = xi + αipi do not zigzag toward the minimum of φ (x),
but follow a much better path. In the following figure, from point A the thin line represents the zigzag of steepest descent
and requires four steps. The CG iteration requires only one step (Figure 21.4).



498 Numerical Linear Algebra with Applications

A

X0

FIGURE 21.4 2-Norm and A-norm convergence.

For the steepest descent method, successive search directions ri are orthogonal. Recall that the Gram-Schmidt process
takes a set of linearly independent vectors and produces a set of mutually orthogonal unit vectors relative to the 2-norm that
span the same subspace as the original set. To find {pi}, we apply the Gram-Schmidt process to the residual vectors {ri} but
use the energy inner product and norm. Start with r0 = b − Ax0 just like we did with steepest descent. The set of vectors
{pi} must be A-conjugate (pTi Apj = 0, i �= j), but it is not necessary that they be unit vectors. If we skip the normalization
step of Gram-Schmidt at step i we have

pi = ri −
i−1∑
j=1

cj,ipj, (21.5)

where

cji = rTi Apj
pTj Apj

.

The purpose of Equation 21.5 is to determine the next search direction from the current residual and the previous search
directions, thus doing far better than steepest descent that uses only the last search direction.

The computation of αi defined in Equation 21.4 can be simplified by building some additional machinery. The following
technical lemmas contains some formulas we will need.

Lemma 21.1. Let x be the true solution to Ax = b, and the error at step i defined by ei = x− xi. Then,

1. ri+1 = ri − αiApi
2. Aei+1 = ri+1
3. ei+1 = ei − αipi.

Proof. Note that ri+1 = b− Axi+1 = b− A (xi + αipi) = ri − αiApi, and we have property 1.
Aei+1 = A (x− xi+1) = A (x)− Axi+1 = b− Axi+1 = ri+1, which proves property 2.
For the proof of property 3, note that ei+1 = x− xi+1 = x− (xi + αipi) = ei − αipi.

Using Lemma 21.1, we can develop a result that will further aid in simplifying the computation of αi. It says that the
error at step i+1 is A-conjuate to the previous direction vector pi.

Lemma 21.2. 〈ei+1, pi〉A = 0.

Proof. From property 1 of Lemma 21.1, rTi+1pi = rTi pi− αi (Api)T pi = rTi pi− αi
(
pTi Api

) = 0 by substituting the value of
αi. Now, multiply the equation in property 2 by pTi on the left to obtain

pTi Aei+1 = 〈ei+1, pi〉A = pTi ri+1 = rTi+1pi = 0.



Krylov Subspace Methods Chapter| 21 499

We are now in a position to simplify the values of αi. The algorithm begins with the assignment p0 = r0 = b − Ax0
and the computation of x1. Lemma 21.2 says that 〈e1, p0〉A = 0. In the next step, the Gram-Schmidt process creates p1
so that 〈p1, p0〉A = 0, determining x2. Again, from Lemma 21.2, 〈e2, p1〉A = 0. At this point we have 〈e1, p0〉A = 0 and
〈e2, p1〉A = 0. Noting that 〈p1, p0〉 = 0, apply property 3 of Lemma 21.1 to obtain

〈e2, p0〉A = 〈e1 − α1p1, p0〉A = 〈e1, p0〉A − α1 〈p1, p0〉A = 0.

Thus, e2 is A-orthogonal to both p0 and p1. Continuing in this fashion, we see that ei is A-orthogonal to
{p0, p1, . . . , pi−1}, or 〈

ei, pj
〉
A = 0, j < i. (21.6)

Now, 〈
ei , pj

〉
A = pTj Aei = pTj (Ax − Axi) = pTj (b− Axi) =

〈
ri, pj

〉
and from Equation 21.6 it follows that: 〈

ri, pj
〉 = 0, j < i. (21.7)

We can obtain two useful properties from Equation 21.7. Using Equation 21.5, take the inner product of pj and ri, j < i,
and

rTi pj = rTi rj −
j−1∑
k=1

ckjr
T
i pk = rTi rj = 0.

Thus,

rTi rj = 0, j < i. (21.8)

and all residuals are orthogonal to the previous ones. Similarly

〈pi, ri〉 = ‖ri‖22 −
i−1∑
j=1

cji
〈
ri, pj

〉 = ‖ri‖22 (21.9)

from Equation 21.7. Using Equation 21.9 in Equation 21.4 gives us the final value for αi.

αi = ‖ri‖22
〈Api, pi〉 (21.10)

The evaluation of formula 21.5 seems expensive, and it appears that we must retain all the previous search directions.
Here is where the CG algorithm is remarkable. We get the benefit of a combination of search directions in Equation 21.5 by
computing only ci−1, i, the coefficient of the last direction pi−1! Take the inner product of ri and the relationship in property
1 of Lemma 21.1 to obtain rTi rj+1 = rTi rj − αjrTi Apj, and so

αjr
T
i Apj = rTi rj − rTi rj+1. (21.11)

Equations 21.8 and 21.11 give us the results

rTi Apj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

αi
rTi ri j = i

− 1

αi−1
rTi ri j = i− 1

0 j < i− 1

(21.12)

Recall that the Gram-Schmidt constants are cji = rTi Apj
pTj Apj

. Using Equations 21.10 and 21.12,

ci−1,i = rTi Api−1
pTi−1Api−1

= − 1

αi−1
rTi ri

pTi−1Api−1
= −〈Api−1, pi−1〉‖ri−1‖22

rTi ri
〈Api−1, pi−1〉 = −

‖ri‖22
‖ri−1‖22

.



500 Numerical Linear Algebra with Applications

From Equation 21.12, cj, i = 0, j < i − 1. Thus, all the coefficients
{
cji
}
in Equation 21.5 are zero except ci−1, i. By

defining

βi = ‖ri‖22
‖ri−1‖22

,

we see that

pi = ri + βipi−1. (21.13)

We can now give the CG algorithm.

Algorithm 21.2 Conjugate Gradient

function CG(A,b,x1,tol,numiter)

r0 = b− Ax1
p0 = r0
for i=1:numiter do

αi−1 =
(
rTi−1ri−1

)
/
(
pTi−1Api−1

)
xi = xi−1 + αi−1pi−1
ri = ri−1 − αi−1Api−1
if ‖ri‖2 < tol then

iter=i

return[xi, iter]

end if
βi =

(
rTiri

)
/
(
rTi−1ri−1

)
pi = ri + βipi−1

end for
iter=-1 return

[
xnumiter, iter

]
end function

NLALIB: The function cg implements Algorithm 21.2.

Example 21.4. Let A =
⎡⎣ 5 1 1
1 4 1
1 1 6

⎤⎦, b = [
1 2 3

]T
, x0 =

[
0 0 0

]T
, trace two iterations of Algorithm 21.2, then

apply the function cg to compute the solution. Note that only one more iteration is required to obtain a very accurate result:

r0 = p0 = b− Ax0 =
[
1 2 3

]T
i = 1 :

α0 =
(
rT0 r0

)
/
(
pT0Ap0

) = 0.1443 x1 = x0 + α0p0 =
[
0.1443 0.2887 0.4330

]T
r1 = r0 − α0Ap0 =

[ −0.4433 0.2680 −0.0309 ] β1 =
(
rT1 r1

)
/
(
rT0 r0

) = 0.0192

p1 = r1 + β1p0 =
[ −0.4241 0.3065 0.0268

]T
i = 2 :

α1 =
(
rT1 r1

)
/
(
pT1Ap1

) = 0.2659 x2 = x1 + α1p1 =
[
0.0316 0.3702 0.4401

]T
>> [x r iter] = cg(A,b,x0,1.0e-15,10)

x =

0.0374

0.3832

0.4299



Krylov Subspace Methods Chapter| 21 501

r =

1.0839e-016

iter =

3 �

21.2.3 Convergence

Wewill not prove convergence of the CGmethod, but will state convergence theorems. For proofs, see Refs. [23, Chapter 8]
and [27, Chapter 9].

Theorem 21.1. If exact arithmetic is performed, the CG algorithm applied to an n × n positive definite system Ax = b
converges in n steps or less.

CG converges after n iterations, so why should we care about convergence analysis? CG is commonly used for problems
so large it is not feasible to run even n iterations. In practice, floating point errors accumulate and cause the residual
to gradually lose accuracy and the search vectors to lose A-orthogonality, so it is not realistic to think about an exact
algorithm.

Theorem 21.2 indicates how fast the CG method converges. For a proof, see Ref. [1, pp. 312-314]. The proof uses
Chebyshev polynomials, which are defined and discussed in Appendix C.

Theorem 21.2. Let the CGmethod be applied to a symmetric positive definite system Ax = b, where the condition number
of A is κ . Then the A-norms of the errors satisfy

‖ek‖A
‖e0‖A ≤ 2

(√
κ − 1√
κ + 1

)k
.

The term
√

κ−1√
κ+1 can be written as 1 − 2√

κ+1 . If
√

κ is reasonably small, the algorithm will converge quickly, but if√
κ is large, convergence slows down. Since κ depends on the largest and smallest eigenvalue of A, if the eigenvalues are

clustered closely together, convergence will be good. If the eigenvalues of A are widely separated, CG convergence will be
slower. Each iteration of the CG method requires O

(
n2
)
flops, so n iterations will cost O

(
n3
)
flops, which is the same as

the Cholesky decomposition. However, practice has shown that convergence using floating point arithmetic often occurs in
less than n iterations.

We conclude this section with a comparison of the convergence rates of steepest descent and CG. Of course, we expect
CG to outperform steepest descent.

Example 21.5. The software distribution contains a sparse 300× 300 symmetric positive definite matrix CGDES in the
file CGDES.mat. It has a condition number of 30.0. Figure 21.5(a) is a density plot showing the location of its 858 nonzeros.
If b is a random column vector, and x0 =

[
1 1 . . . 1 1

]T
, Figure 21.5(b) is a graph of the log of the residual norms for

the steepest descent and CG algorithms after n = 5, 6, . . . , 50 iterations. Note the superiority of CG. After 50 iterations,
CG has attained a residual of approximately 10−7, but steepest descent is still moving very slowly downward toward a more
accurate solution. �

21.3 PRECONDITIONING

Since the convergence of an iterative method depends on the condition number of the coefficient matrix, it is often
advantageous to use a preconditioner matrix M that transforms the system Ax = b to one having the same solution but
that can solved more rapidly and accurately. The idea is to chooseM so that

● M is not too expensive to construct.
● M is easy to invert.
● M approximates A so that the product of A andM−1 “is close” to I (η (I) = 1).
● the preconditioned system is more easily solved with higher accuracy.



502 Numerical Linear Algebra with Applications

(a) (b)

FIGURE 21.5 CG vs. steepest descent. (a) Density plot for symmetric positive definite sparse matrix CGDES and (b) residuals of CG and steepest descent.

If M is a nonsingular matrix, then the system

M−1Ax = M−1b (21.14)

has the same solution as Ax = b. The solution to the system 21.14 depends on the coefficient matrix M−1A instead of A,
and we hope that κ

(
M−1A

)
is much smaller than κ (A).

The computation ofM−1A is rarely done. The product may be a dense matrix, and we lose all the advantages of sparsity.
Also, there is the expense and potential inaccuracy of computing M−1A. We can form the product M−1Ax indirectly as
follows:

a. Let z = M−1Ax, and compute w = Ax.
b. To find z, solveMz = w.

Compute the right-hand side of Equation 21.14 by letting y = M−1b and solving My = b. Such a matrix M is called a left
preconditioner.

A matrix M can also be a right preconditioner by computing AM−1 in hope that its condition number is much smaller
than that of A. In this case, form the equivalent system(

AM−1
)
Mx = b,

and let u = Mx, so we need to solve

AM−1u = b.

IfM is of the factored formM = MLMR, then we can use a split preconditioner. First write the system as

M−1L A
(
M−1R MR

)
x = M−1L b,

and then solve the system

M−1L AM−1R u = M−1L b,

where u = MRx.

Remark 21.3. Note that

M−1A = M−1A
(
M−1M

)
= M−1

(
AM−1

)
M

M−1R M−1L AM−1R MR = (MLMR)
−1 A = M−1A,



Krylov Subspace Methods Chapter| 21 503

and all the matrices for preconditioning are similar, so they have the same eigenvalues. If the eigenvalues of one of these
matrices, say Mat, are close to 1 and ‖Mat− I‖2 is small, then the preconditioned system will converge quickly. If a
preconditioner does not satisfy this criterion, its distribution of eigenvalues may be favorable to fast convergence.

21.4 PRECONDITIONING FOR CG

Wewill discuss twomethods of finding a preconditioner for CG. In each case, we apply the CGmethod to the preconditioned
system in the hope that the CG iteration will converge faster. Of course, in addition to wanting a system with a smaller
condition number, M must be chosen so that the preconditioned system is positive definite. The two methods we will
present are the incomplete Cholesky decomposition and the construction of an SSOR preconditioner.

21.4.1 Incomplete Cholesky Decomposition

For the moment, assume we have a positive definite left preconditioner matrix M. M has a Cholesky decomposition M =
RTR. We will use this decomposition to obtain an equivalent system Ax = b, where A is positive definite so the CG method
applies.

M−1Ax = M−1b(
RTR

)−1
Ax = (

RTR
)−1

b

R−1
(
RT
)−1

Ax = R−1
(
RT
)−1

b(
RT
)−1

A
(
R−1R

)
x = (

RT
)−1

b((
RT
)−1

AR−1
)
Rx = (

RT
)−1

b

System 21.15 is equivalent to the original system Ax = b.

Ax = b, where A =
(
R−1

)T
AR−1, x = Rx, b =

(
R−1

)T
b (21.15)

The fact that A is symmetric is left to the exercises. Note that R−1x = 0 only if x = 0. Thus, A is positive definite because

xT
(
R−1

)T
AR−1x =

(
R−1x

)T
A
(
R−1x

)
> 0, x �= 0.

Use the CG method to solve Ax = b. After obtaining x, find x by solving Rx = x.
The incomplete Cholesky decomposition is frequently used for preconditioning the CG method. As stated in the

introduction, iterative methods are applied primarily to large, sparse systems. However, the Cholesky factor R used in
system 21.15 is usually less sparse thanM. Figure 21.6(a) shows the distribution of nonzero entries in a 685× 685 positive
definite sparse matrix, POWERMAT.mat, used in a power network problem, and Figure 21.6(b) shows the distribution in its
Cholesky factor. Note the significant loss of zeros in the Cholesky factor.

The incomplete Cholesky decomposition is a modification of the original Cholesky algorithm. If an element aij off
the diagonal of A is zero, the corresponding element rij is set to zero. The factor returned, R, has the same distribution of
nonzeros as A above the diagonal. Form M = RTR from a modified Cholesky factor of A with the hope that the condition
number of M−1A is considerably smaller than that of A. The function icholesky in the software distribution implements
it with the calling sequence R = icholesky(A). Implementation involves replacing the body of the inner for loop with

if A(i,j) == 0

R(i,j) = 0;

else
R(i,j) = (A(i,j) - sum(R(1:i-1,i).*R(1:i-1,j)))/R(i,i);

end

We can directly apply CG to system 21.15 by implementing the following statements.
Initialize

r0 = b− Ax1
p0 = r0



504 Numerical Linear Algebra with Applications

0 100 200 300 400 500 600

0

(a)

100

200

300

400

500

600

nz = 3249
 Distribution of nonzero entries  in POWERMAT

0 100 200 300 400 500 600

0

(b)

100

200

300

400

500

600

nz = 17,003
Distribution of nonzero entries in the Cholesky factor

FIGURE 21.6 Cholesky decomposition of a sparse symmetric positive definite matrix.

Loop

αi−1 = (ri−1Tri−1)/(pi−1TApi−1)
xi = xi−1 + αi−1pi−1
ri = ri−1 − αi−1Api−1
βi = (ri

Tri)/(ri−1Tri−1)
pi = ri + βipi−1

Upon completion, solve the upper triangular system Rx = x. However, this is not an efficient implementation. Improvement
can be made by determining relationships between the transformed variables and the original ones.

We can express the residual, ri, in terms of the original residual, ri, by

ri =
(
R−1

)T
ri (21.16)

using the steps

ri = b− Axi

=
(
R−1

)T
b −

[(
R−1

)T
AR−1

]
Rxi

=
(
R−1

)T
b −

(
R−1

)T
Axi

=
(
R−1

)T
(b− Axi)

=
(
R−1

)T
ri.

Make a change of variable by letting pi = Rpi. This leads to〈
pi, pj

〉
A =

〈
pi, pj

〉
A (21.17)

as follows: 〈
pi, pj

〉
A = 〈

Api, pj
〉

=
〈(
R−1

)T
AR−1Rpi,Rpj

〉



Krylov Subspace Methods Chapter| 21 505

=
〈(
R−1

)T
Api,Rpj

〉
= pTi AR

−1Rpj
= pTi Apj

= 〈
pi, pj

〉
A .

By applying Equations 21.16 and 21.17, it follows that (Problem 21.11):

αi−1 =
rTi−1M−1ri−1
pTi−1Api−1

(21.18)

βi = rTi M
−1ri

rTi−1M−1ri−1
(21.19)

Applying the identities to the CG algorithm for the computation of x, gives the preconditioned CG algorithm 21.3. Note
that the algorithm requires the computation of the incomplete Cholesky factor R and then the solution of systemsMzi = ri,
which can be done using the incomplete Cholesky factor (Section 13.3.3). It is never necessary to computeM orM−1.

Algorithm 21.3 Preconditioned Conjugate Gradient

function PRECG(A,b,x1,tol,numiter)

R=icholesky(A)

r1 = b− Ax1
z1 = cholsolve (R, r1)

p1 = z1
for i= 1:numiter do

αi = zT
i ri

pTiApi
xi+1 = xi + αipi
ri+1 = ri − αiApi
if ‖ri+1‖2 < tol then

iter=i

return
[
xi+1, iter

]
end if
zi+1 = cholsolve (R, ri+1)
βi = rTi+1zi+1

rTizi

pi+1 = zi+1 + βipi
end for
iter=-1 return

[
xnumiter+1, iter

]
end function

For a particularly difficult matrix, it is possible that the incomplete Cholesky decomposition will break down due to
cancelation error. One of the more sophisticated techniques used to improve the algorithm is the drop tolerance-based
incomplete Cholesky decomposition. This method keeps the off-diagonal element rij computed by the Cholesky algorithm if
a condition applies and retains the original value aij otherwise. For instance, in Ref. [67], the following criterion is suggested:

rij =
{

aij−∑i−1
k=1 rkirkj
rii

a2ij > tol2aii bjj
aij otherwise

As the drop tolerance decreases, the incomplete Cholesky factor becomes more dense (Problem 21.25). Even with more
advanced techniques, it still can be difficult to find an incomplete Cholesky preconditioner that works. The sophisticated
MATLAB function ichol computes the incomplete Cholesky decomposition (see the documentation for ichol). The
function precg in the software distribution uses ichol with selective drop tolerances.



506 Numerical Linear Algebra with Applications

FIGURE 21.7 CG vs. PRECG.

Example 21.6. The MATLAB function call

R = sprandsym(n,n,density,rc,1)

generates a sparse random symmetric positive definite matrix of size n× n, where density is the fraction of nonzeros,
and the reciprocal of rc is the exact condition number. The number 1 as the last argument instructs the function to make
the matrix positive definite. In the software distribution demos directory is a program cg_vs_precg that uses sprandsym
to generate symmetric positive definite matrix of size 800× 800 with density 0.05 and condition numbers varying from 10
to 200. The program applies CG and preconditioned CG to each problem and graphs (Figure 21.7) the number of iterations
required to attain a minimum error tolerance of 1.0× 10−6. �

21.4.2 SSOR Preconditioner

The SOR method can be used as a basis for building a CG preconditioner that normally one uses if incomplete Cholesky
preconditioning is not effective or fails. Assume the diagonal elements of A are nonzero. The formula

(D+ ωL) x(k+1) = ((1 − ω)D− ωU) x(k) + ωb

specifies the SOR iteration in matrix form (see Equation 20.15). Using the equationU = A−L−D along with some matrix
algebra, it follows that (Problem 21.12):

x(k+1) = x(k) +
(
D

ω
+ L

)−1 (
b− Ax(k)

)
= x(k) +

(
D

ω
+ L

)−1
r(k) (21.20)

The matrixM = (D
ω
+ L

)
can serve as a preconditioner. Assume that M ≈ A. Then,

x(k+1) ≈ x(k) +M−1b− x(k) = M−1b.

Unfortunately, an SOR preconditioner is not symmetric and cannot be used for a symmetric positive definite matrix.
As a result, we will use Equation 21.20 to construct a symmetric positive definite matrix termed the SSOR preconditioning



Krylov Subspace Methods Chapter| 21 507

matrix. Starting with the approximation x(k), designate x

(
k+ 1

2

)
as the result of a forward SOR sweep. Now perform a

backward sweep by reversing the iteration direction to obtain x(k+1). The reader can verify that in the backward sweep, the
roles of U and L are swapped, so we have the two equations

x

(
k+ 1

2

)
= x(k) +

(
D

ω
+ L

)−1
r(k)

x(k+1) = x

(
k+ 1

2

)
+
(
D

ω
+ U

)−1
r

(
k+ 1

2

)
, (21.21)

where r(k), r(k+1) are residuals. Eliminating x
(
k+ 1

2

)
from Equation 21.21 gives the SSOR preconditioning matrix. The

somewhat involved computations follow:

x

(
k+ 1

2

)
− x(k) = (D

ω
+ L

)−1
r(k) = (D

ω
+ L

)−1 (
b− Ax(k)

)
r

(
k+ 1

2

)
= b− Ax

(
k+ 1

2

)
= b− Ax(k) + Ax(k) − Ax

(
k+ 1

2

)
= r(k) − A

(
x

(
k+ 1

2

)
− x(k)

)
=

(
L+ 1

ω
D− A

)(
x

(
k+ 1

2

)
− x(k)

)
=
((

1
ω
− 1

)
D− U

) (D
ω
+ L

)−1
r(k)

x(k+1) − x

(
k+ 1

2

)
= (D

ω
+ U

)−1
r

(
k+ 1

2

)
= (D

ω
+ U

)−1 (( 1
ω
− 1

)
D− U

) (D
ω
+ L

)−1
r(k)

x(k+1) − x(k) = (D
ω
+ L

)−1
r(k) + (D

ω
+ U

)−1 (( 1
ω
− 1

)
D− U

) (D
ω
+ L

)−1
r(k) =(

I + (D
ω
+ U

)−1 (( 1
ω
− 1

)
D− U

)) (D
ω
+ L

)−1
r(k) =((D

ω
+ U

)−1 (D
ω
+ U

)+ (D
ω
+ U

)−1 (( 1
ω
− 1

)
D− U

)) (D
ω
+ L

)−1
r(k) =(D

ω
+ U

)−1 ((D
ω
+ U

)+ ((
1
ω
− 1

)
D− U

)) (D
ω
+ L

)−1
r(k) = (D

ω
+ U

)−1 ( 2
ω
− 1

)
D
(D

ω
+ L

)−1
r(k)

Thus,

M−1SSOR =
(
U + 1

ω
D

)−1 ( 2

ω
− 1

)
D

(
L+ 1

ω
D

)−1
and

MSSOR = ω

2− ω

(
L+ 1

ω
D

)
D−1

(
U + 1

ω
D

)
. (21.22)

The reader should verify thatMSSOR is symmetric positive definite (Problem 21.9). Using ω = 1 in Equation 21.22 gives

MPGS = (D+ L)D−1 (D+ U) .

The matrix MPGS corresponds to the Gauss-Seidel method. The value of ω is not as critical as the choice of ω for the
SOR iteration, and ω = 1 can be quite effective in many cases. Solve MPGS z = r, or (D+ L)D−1 (D+ U) z = r in two
stages.

a. Solve (D+ L) y1 = r for y1.
b. Solve (D+U) z = Dy1 for z.

Remark 21.4. In MATLAB, compute z as follows:

z = (U+D)\(D*((L+D)\r));

The function precg in the book software distribution implements Algorithm 21.3 and adds the option of using the SSOR
preconditionerMPGS. Its calling format is

function [x residual iter] =

precg(A,b,x0,tol,maxiter,method,droptol)



508 Numerical Linear Algebra with Applications

where method = ’incomplete Cholesky’ or ’SSOR’ and droptol is the drop tolerance. The drop tolerance is only
applicable when method is ’incomplete Cholesky’. If method is omitted, incomplete Cholesky is assumed with zero-
fill. If method is specified and droptol is not, droptol defaults to 1.0e−4.

There is an extensive literature concerning preconditioning that includes the CG method as well as other iterations. We
will present a preconditioner for the GMRES method in Section 21.7.1. For a general discussion of preconditioning, see
Refs. [2, pp. 650-669], [64, pp. 283-351], and the book by Ref. [68].

Example 21.7. The matrix PRECGTEST in the software distribution is a 10000 × 10000 block pentadiagonal matrix
having an approximate condition number of 8.4311 × 106. The following table shows four attempts to solve the system
with b = [

1 1 . . . 1 1
]T
, x0 = 0, tol = 1.0 × 10−6, and maxiter = 2000. The incomplete Cholesky decomposition

failed with zero-fill and also with a drop tolerance of 1.0 × 10−2 and 1.0 × 10−3. Using a drop tolerance of 1.0 ×
10−4 it succeeded very quickly. The SSOR preconditioned system required 1159 iterations and gave a slightly better
result.

Method droptol Iterations Residual Time

Preconditioned Cholesky Nofill – Fail –
Preconditioned Cholesky 1.0× 10−2 – Fail –
Preconditioned Cholesky 1.0× 10−3 – Fail –
Preconditioned Cholesky 1.0× 10−4 59 9.7353 × 10−7 0.324 s
SSOR – 1159 9.4987 × 10−7 2.594 s �

21.5 KRYLOV SUBSPACES

If the coefficient matrix is large, sparse, and positive definite, the method of choice is normally CG. However, in applications
it is often the case that the coefficient matrix is symmetric but not positive definite or may not even be symmetric. There
are sophisticated iterations for these problems, most of which are based on the concept of a Krylov subspace. A Krylov
subspace-based method does not access the elements of the matrix directly, but rather performsmatrix-vector multiplication
to obtain vectors that are projections into a lower-dimensional Krylov subspace, where a corresponding problem is solved.
The solution is then converted into a solution of the original problem. These methods can give a good result after a relatively
small number of iterations.

Definition 21.2. Assume A ∈ Rn×n, u ∈ Rn, and k is an integer, the Krylov sequence is the set of vectors

u, Au, A2u, . . . ,Ak−1u

The Krylov subspace Kn(A, u) generated by A and u is

span
{
u, Au, A2u, . . . ,Ak−1u

}
.

It is of dimension k if the vectors are linearly independent.
Although we approached the CG method using an optimization approach, CG is also a Krylov subspace method.

Theorem 21.3 shows the connection.

Theorem 21.3. Assume A is nonsingular. With an initial guess x0 = 0, after i iterations of the CG method,

span {x1, x2, . . . , xi} = span {p0, p1, . . . , pi} = span {r0, r2, . . . , ri}
= Ki(A, p0) = span

{
p0, Ap0, . . . , Ai−1p0

}
= span

{
r0, Ar0, . . . , Ai−1r0

}
Proof. Let

Si = span {p0, p1, . . . , pi−1} .
Now, xi = xi−1 + αi−1pi−1, and so x1 = 0+ α0p0, x2 = x1 + α1p1 = α0p0 + α1p1. In general, xi =∑i−1

k=0 αkpk, and

span {x1, x2, . . . , xi} = Si.

We have r0 = p0 and from Equation 21.13 ri = pi − βipi−1, so

span {r0, r1, . . . , ri−1} = Si.



Krylov Subspace Methods Chapter| 21 509

From property 1 of Lemma 21.1

ri = ri−1 − αi−1Api−1.

Since ri and ri−1 are in Si,

Api−1 ∈ Si.
As a result,

Si = Ki(A, p0) = span
{
p0, Ap0, . . . , Ai−1p0

}
= Ki(A, r0) = span

{
r0, Ar0, . . . , Ai−1r0

}
.

The pi are A-orthogonal, the ri are orthogonal, and so both sequences are linearly independent. Since A is nonsingular,
the vectors in Ki(A, p0) and Ki(A, r0) are linearly independent.

There are a number of highly successful iterative methods based on Krylov subspaces that work with the full range of
matrix types. We will discuss the GMRES algorithm that applies to general matrices. We will also develop the MINRES
method for symmetric nonpositive definite problems, since it can be effective and its derivation is very similar to the GMRES
method. Other methods include the biconjugate gradient (Bi-CG) method, and the quasi-minimal residual (QMR) method
for nonsymmetric matrices. The reader will find a presentation of these Krylov subspace methods in Refs. [2, pp. 639-647],
[26, pp. 303-312], and [69, Chapters 7 and 9].

21.6 THE ARNOLDI METHOD

Our aim is to develop a method of solving a large, sparse system Ax = b, where An×n is a general nonsymmetric matrix. We
approximate the solution by projecting the problem into a Krylov subspace Km(A, r0) =

{
r0, Ar0, . . . , Am−1r0

}
, where m

is much smaller than n (m� n). Obtaining the solution to a related problem will be practical in this much smaller subspace
Rm ⊂ Rn. We then convert the solution to the problem in Rm to the solution we want in Rn (Figure 21.8).

Our approach is to develop the Arnoldi decomposition of A and use it to solve a problem in Rm that, in turn, will be used
to approximate the solution x to Ax = b in R

n. The decomposition creates an n × (m+ 1) matrix Qm+1 with orthonormal
columns and an (m+ 1)× m upper Hessenberg matrix Hm such that

AQm = Qm+1Hm,

where Qm = Qm+1 (:, 1 : m). We build the decomposition by using a Krylov subspace

Km+1(A, x1) =
{
x1, Ax1, . . . , Amx1

}
,

where x1 is an initial vector. Generally, the set of vectors
{
x1, Ax1, . . . , Ai−1x1

}
is not a well-conditioned basis forKi(A, x1)

since, as we showed in Chapter 18 when presenting the power method, the sequence approaches the dominant eigenvector
of A. Thus the last few vectors in the sequence may be very close to pointing in the same direction. In order to fix this
problem, we compute an orthonormal basis for Ki(A, x1) using the modified Gram-Schmidt process. After i steps of the
Gram-Schmidt process we have vectors q1, q2, . . . , qi and do not retain the original set

{
x1, Ax1, . . . , Ai−1x1

}
. If we had

Aix1, we could apply Gram-Schmidt to extend the orthonormal sequence to q1, q2, . . . , qi, qi+1. Wemust find an alternative
for the determination of qi+1. We do not have Ai, but we do have A, so we compute Aqi and apply Gram-Schmidt to extend
the orthonormal sequence by 1. It can be shown [23, pp. 439-441] that even though we used Aqi as the next vector rather

FIGURE 21.8 Arnoldi projection from R
n into R

m, m� n.



510 Numerical Linear Algebra with Applications

than Aix1,

span
{
x1, Ax1, . . . ,Aix1

}
= span {q1, q2, . . . , qi+1} .

The first step is to normalize the initial vector x1 by computing

q1 = x1
‖x1‖2

.

For 1 ≤ i ≤ m,

qi+1 = Aqi −
i∑

j=1
qjhji,

where hji is the Gram-Schmidt coefficient

hji =
〈
qj, Aqi

〉 = qTj Aqi, j ≤ i

Assign hi+1, i = ‖qi+1‖2, and normalize qi+1 to obtain
qi+1 = qi+1

hi+1, i
.

The Gram-Schmidt coefficients are computed as follows:

h11, h21
h12, h22, h32
h13, h23, h33, h43
...

h1m, h2m, . . . hm+1,m
and form the (m+ 1)×m upper Hessenberg matrix

Hm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 . . . . . . h1,m
h21 h22 . . . . . . h2,m

0 h32
. . . . . .

...
...

...
. . . hm−1,m−1

...
...

...
. . . hm,m−1 hm,m

0 0 . . . 0 hm+1,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

From the two equations

qi+1 = Aqi −
i∑

j=1
qjhji

qi+1 = qi+1
hi+1, i

,

we have

Aqi =
i∑

j=1
qjhji + qi+1 =

i∑
j=1

qjhji + hi+1,iqi+1 =
i+1∑
j=1

qjhji. (21.23)

Form the n × m matrix Qm =
[
q1 q2 . . . qm

]
and the n × (m+ 1) matrix Qm+1 =

[
q1 q2 . . . qm qm+1

]
from

the column vectors {qi}. Matrix equation 21.24 follows directly from Equation 21.23:

AQm = Qm+1Hm (21.24)

Figure 21.9 depicts the decomposition. Algorithm 21.4 specifies the Arnoldi process that generates an orthonormal basis
{q1, q2, . . . , qm+1} for the subspace spanned by Km+1(A, x1) and builds the matrix Hm.



Krylov Subspace Methods Chapter| 21 511

n ´ n

A Qm Qm + 1 Hm

n ´ m n ´ (m + 1) (m + 1) ´ m

=
0
−

FIGURE 21.9 Arnoldi decomposition form 1.

Algorithm 21.4 Arnoldi Process

function ARNOLDI(A, x1, m)

% Input: n× n matrix A, n× 1 column vector x1, and integer m

% Output: m+1 orthogonal vectors q1, q2, . . . , qm+1
% and an (m + 1)× m matrix H

q1 = x1/ ‖x1‖2
for k=1:m do

w = Aqk
for j=1:k do

hjk = qTjw

w = w − hjkqj
end for
hk+1,k = ‖w‖2
if hk+1,k = 0 then

return
[
Q = [

qi
]
, H = [

hij
]]

end if
qk+1 = w/hk+1,k

end for
return

[
Q = [

qi
]
, H = [

hij
]]

end function

NLALIB: The function arnoldi implements Algorithm 21.4.

Efficiency
Since the Arnoldi method uses Gram-Schmidt, the approximate number of flops for the algorithm is 2m2n.

Notice that when hk+1,k = 0, the Arnoldi algorithm stops. Clearly we cannot compute qk+1 due to division by zero, but
there is a more to it than that, as indicated in Definition 21.3.

Definition 21.3. Let T be a linear transformation mapping a vector space V to V . A subspace W ⊆ V is said to be an
invariant subspace of T if for every x ∈ W, Tx ∈ W.

If hi+1, i = ‖qi+1‖2 = 0, then the subspace span {q1, q2, . . . , qi} is an invariant subspace of A, and further iterations
produce nothing, and so the algorithm terminates. This means that a method for solving Ax = b based on projecting onto
the subspace K(A, j) will be exact. This is what is termed a “lucky breakdown” [64, pp. 154-156].

21.6.1 An Alternative Formulation of the Arnoldi Decomposition

Equation 21.24 can be written as (Problem 21.6)

AQm − QmHm = hm+1,m

⎡⎢⎢⎢⎣
0 0 . . . 0 q1m
0 0 . . . 0 q2m
...
...

...
...

...
0 0 . . . 0 qnm

⎤⎥⎥⎥⎦ ,



512 Numerical Linear Algebra with Applications

n ´ n

A Qm Qm Hm

n ´ m n ´ m

n ´ m
+ fmeT

m
    

m ´ m

=
0

FIGURE 21.10 Arnoldi decomposition form 2.

or

AQm = QmHm + hm+1,mqm+1eTm, (21.25)

where Hm is Hm with the last row removed, fm = hm+1,mqm+1, and eTm = [
0 0 . . . 0 1

]
. Figure 21.10 depicts the

decomposition. This form of the Arnoldi decomposition will be very useful in Chapter 22 when we discuss the computation
of eigenvalues of sparse matrices.

21.7 GMRES

Assume A is a real n× n matrix, b is an n× 1 vector, and we want to solve the system Ax = b. Assume that x0 is an initial
guess for the solution, and r0 = b − Ax0 is the corresponding residual. The GMRES method looks for a solution of the
form xm = x0 + Qmym, ym ∈ Rm where the columns of Qm are an n-dimensional orthogonal basis for the Krylov subspace
Km(A, r0) =

{
r0, Ar0, . . . , Am−1r0

}
. The vector ym is chosen so the residual

‖rm‖2 = ‖b− A (x0 + Qmym)‖2 = ‖r0 − AQmym‖2
has minimal norm over Km(A, r0). This is a least-squares problem. We must find a vector ym that minimizes the residual
specified in Equation 21.26,

‖rm‖2 = ‖r0 − AQmym‖2 . (21.26)

Let β = ‖r0‖2. The first Arnoldi vector is q1 = r0‖r0‖ , so r0 = βq1. By using Equations 21.24–21.26

‖rm‖2 =
∥∥βq1 − Qm+1Hmym

∥∥
2 . (21.27)

The Arnoldi vector q1 is the first column of Qm+1, so q1 = Qm+1
[
1 0 . . . 0

]T = Qm+1e1, and from Equation 21.27

‖rm‖2 =
∥∥Qm+1 (βe1 − Hmym

)∥∥
2 .

Since the columns of Qm+1 are orthonormal, we must minimize∥∥βe1 − Hmym
∥∥
2 .

This means that after solving the (m+ 1)× m least-squares problem

Hmym = βe1, (21.28)

the approximate solution to Ax = b is

xm = x0 + Qmym.

Use the QR decomposition approach to solving overdetermined least-squares problems (Section 16.2.2). Since Hm in
Equation 21.28 is an upper Hessenberg matrix, the system can be solved in O

(
m2
)
flops. In the practical implementation of

GMRES, one estimate xm is often not sufficient to obtain the error tolerance desired. Use xm as an improved initial vector
and repeat the process until satisfying the error tolerance. Algorithm 21.5 presents the GMRES method.



Krylov Subspace Methods Chapter| 21 513

Algorithm 21.5 GMRES

function GMRESB(A,b,x0,m,tol,maxiter)

% Solve Ax = b using the GMRES method

% Input: n× n matrix A, n× 1 vector b,

% initial approximation x0, integer m < n,

% error tolerance tol, and the maximum number of iterations, maxiter.

% Output: Approximate solution xm, associated residual r,

% and iter, the number of iterations required.

% iter = −1 if the tolerance was not satisfied.

iter = 1

while iter ≤ maxiter do
r = b− Ax0[
Qm+1 Hm

] = arnoldi (A, r, m)

β = ‖r‖2
Solve the (m + 1)× m least-squares problem Hmym = βe1
using Givens rotations that take advantage of the upper

Hessenberg structure of Hm
xm = x0 + Qmym
r = ‖b− Axm‖2
if r < tol then

return [xm,r,iter]

end if
x0 = xm
iter = iter + 1

end while
iter = −1
return [xm, r, iter]

end function

NLALIB: The function gmresb implements Algorithm 21.5. The function hesslqsolve in the software distribution
implements theQR decomposition of an upperHessenbergmatrix. The implementation simply calls givenshess to perform
the QR decomposition rather than qr. The name contains the trailing “b” because MATLAB supplies the function gmres
that implements the GMRES method.

The choice of m is experimental. Try a small value and see if the desired residual norm can be attained. If not, increase
m until obtaining convergence or finding that GMRES simply does not work. Of course, as you increase m, memory and
computational effort increase. It may happen that the problem is not tractable using GMRES. In that case, there are other
methods such as Bi-CG and QMR that may work [64, pp. 217-244].

Example 21.8. A Toeplitz matrix is a matrix in which each diagonal from left to right is constant. For instance,⎡⎢⎢⎣
1 2 8 −1
3 1 2 8
8 3 1 2
7 8 3 1

⎤⎥⎥⎦
is a Toeplitz matrix. The following MATLAB statements create a 1000 × 1000 pentadiagonal sparse Toeplitz matrix with
a small condition number. As you can see, gmresb works quite well with m = 50, tol = 1.0× 10−14 and a maximum of 25
iterations. The method actually required 11 iterations and obtained a residual of 9.6893× 10−15.

>> P = gallery(’toeppen’,1000);
>> condest(P)

ans =

23.0495

>> b = rand(1000,1);



514 Numerical Linear Algebra with Applications

>> x0 = ones(1000,1);

>> [x r iter] = gmresb(P,b,x0,50,1.0e-14,25);

>> r

r =

9.6893e-015

>> iter

iter =

11 �

Convergence
If A is positive definite, then GMRES converges for anym ≥ 1 [64, p. 205]. There is no other simple result for convergence.
A theorem that specifies some conditions under which convergence will occur can be found in Ref. [64, p. 206].

21.7.1 Preconditioned GMRES

In the same way that we used incomplete Cholesky decomposition to precondition Awhen A is positive definite, we can use
the incomplete LU decomposition to precondition a general matrix. Compute factors L and U so that if element aij �= 0 then
the element at index (i, j) of A− LU is zero. To do this, compute the entries of L and U at location (i, j) only if aij �= 0. It is
hoped that if M = LU, then M−1A will have a smaller condition number than A. Algorithm 21.6 describes the incomplete
LU decomposition. Rather than using vectorization, it is convenient for the algorithm to use a triply nested loop. For more
details see Ref. [64, pp. 287-296].

Algorithm 21.6 Incomplete LU Decomposition

function ILUB(A)

% Compute an incomplete LU decomposition

% Input: n× n matrix A

% Output: lower triangular matrix L and upper triangular matrix U.

for i=2:n do
for j=1:i-1 do

if aij �= 0 then
aij = aij/ajj
for k = j+1:n do

if aik �= 0 then
aik = aik − aijajk

end if
end for

end if
end for

end for
U=upper triangular portion of A

L=portion of A below the main diagonal

for i=1:n do
lii = 1

end for
end function

NLALIB: The function ilub implements Algorithm 21.6.
Proceeding as we did with incomplete Cholesky, there results

(LU)−1 Ax = (LU)−1 b(
L−1AU−1

)
(Ux) = L−1b



Krylov Subspace Methods Chapter| 21 515

and

Ax = b,

where

A = L−1AU−1

b = L−1b (21.29)

x = Ux

The function pregmres in the software distribution approximates the solution to Ax = b using Equation 21.29.

Remark 21.5. Algorithm 21.6 will fail if there is a zero on the diagonal of U. In this case, it is necessary to use Gaussian
elimination with partial pivoting. We will not discuss this, but the interested reader will find a presentation in Ref. [64,
pp. 287-320]. The software distribution contains a function mpregmres that computes the incomplete LU decomposition
with partial pivoting by using the MATLAB function ilu. It returns a decomposition such that PA = LU, so A = PTLU. It
is recommended that, in practice, mpregmres be used rather than pregmres.

Example 21.9. The 903 × 903 nonsymmetric matrix, DK01R, in Figure 21.11 was used to solve a computational fluid
dynamics problem. DK01R was obtained from the University of Florida Sparse Matrix Collection. A right-hand side,
b_DK01R, and an approximate solution, x_DK01R, were supplied with the matrix. The approximate condition number of
the matrix is 2.78 × 108, so it is ill-conditioned. Using x0 =

[
0 . . . 0

]T, m = 300, and tol = 1.0× 10−15, niter = 20,
the solution was obtained using gmresb and mpregmres. Table 21.1 gives the results of comparing the solutions from
mpregmres and gmresb to x_DK01R.

TABLE 21.1 Comparing gmresb and mpregmres

iter r Time ‖x_DK01R− x‖2
Solution supplied – 6.29× 10−16 – –

gmresb −1(failure) 5.39× 10−10 6.63 9.93× 10−11

mpregmres 1 1.04× 10−15 0.91 5.20× 10−17

In a second experiment, the function gmresb required 13.56 s and 41 iterations to attain a residual of 8.10 × 10−16.
Clearly, preconditioning GMRES is superior to normal GMRES for this problem. �

FIGURE 21.11 Large nonsymmetric matrix.



516 Numerical Linear Algebra with Applications

21.8 THE SYMMETRIC LANCZOS METHOD

The Lanczos method is the Arnoldi method applied to a symmetric matrix. For reasons that will become evident, replace
the matrix name H by T. Like the Arnoldi decomposition, the Lanczos decomposition can be written in two ways

ATm = Qm+1Tm
AQm = QmTm + tm+1,mqm+1eTm

Figure 21.12 depicts the two formulations. Now, noting that the columns of Qm are orthogonal to qm+1,

QT
mAQm = QT

mQmTm + tm+1,m
(
QT
mqm+1eTm

) = Tm + 0 = Tm,

and

TTm =
(
QT
mAQm

)T = QT
mA

TQm = QT
mAQm = Tm.

Thus, Tm is symmetric, and a symmetric upper Hessenberg matrix must be tridiagonal, so Tm and Tm have the form

Tm =

⎡⎢⎢⎢⎢⎢⎢⎣

α1 β1
β1 α2 β2

β2
. . .

. . .
. . . αm−1 βm−1

βm−1 αm

⎤⎥⎥⎥⎥⎥⎥⎦ , Tm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1
β1 α2 β2

β2
. . .

. . .
. . . αm−1 βm−1

βm−1 αm
0 0 . . . 0 tm+1,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The interior loop of the Arnoldi iteration uses the array entries hjm, 1 ≤ j ≤ m. From the tridiagonal structure of Tm,

the only entries in column k from rows 1 through k are βk−1 in row k− 1 and αk in row k. Trace the inner Arnoldi loop for
j = k − 1 and j = k. You will determine that the Arnoldi inner loop can be replaced by two statements:

αk = qTk Aqk
w = w− βk−1qk−1 − αkqk,

so the computation of Tm is much faster than for the Arnoldi process. Algorithm 21.7 defines the Lanczos process.
NLALIB: The function lanczos implements Algorithm 21.7.

21.8.1 Loss of Orthogonality with the Lanczos Process

Using the Lanczos process is not as simple as it may seem. Poor convergence can result from a bad choice of the
starting vector, so a random vector is a good choice. Using exact arithmetic, the vectors q1, q2, . . . qm, qm+1 are mutually

Qm

Qm
Tm

Tm

0

0

QmA

n  ´  n

n  ´  n

n  ´  m n  ´ (m+1) (m+1) ´ m

n  ´  m n  ´  m

n  ´  m

m ´  m

A

+ fmeT
m

=

=

Q(:,1:m)

FIGURE 21.12 Lanczos decomposition.



Krylov Subspace Methods Chapter| 21 517

orthogonal.When implemented in finite precision arithmetic, the Lanczos algorithm does not behave as expected. Roundoff
error can cause lack or orthogonality among the Lanczos vectors with serious consequences. We will outline why this
happens in Chapter 22 when we discuss computing a few eigenvalues of a large sparse symmetric matrix. One approach
to fix this problem is to reorthogonalize as each new Lanczos vector is computed; in other words, we orthogonalize twice.

Algorithm 21.7 Lanczos Method

function LANCZOS(A, x0, m)

q0 = 0

β0 = 0

q1 = x0/ ‖x0‖2
for k=1:m do

w = Aqk
αk = qTkw

w = w − βk−1qk−1 − αkqk
βk = ‖w‖2
qk+1 = w/βk

end for
T(1:m,1:m)=diag(β(1:m-1),-1)+diag(α)+diag(β(1:m-1),1);

T(m+1,m)=β(m);

return
[
Q, T

]
end function

This is termed full reorthogonalization and is time-consuming but, as we will see in Example 21.10, can be of great benefit.
Do the reorthogonalization by following

αk = qTk Aqk
w = w− βk−1qk−1 − αkqk

with

for i=1:k-1 do
h = qTiw

w = w − qih

end for

In the software distribution, the function lanczos will perform full reorthogonalization by adding a fourth parameter of 1.
If speed is critical, try the algorithmwithout full reorthogonalization and add it if the results are not satisfactory. It is possible
to perform selective reorthogonalization. For a discussion of these issues, see Refs. [1, pp. 366-383] and [2, pp. 565-566].

Example 21.10. Ref. [70, pp. 498-499], a numerical example using a matrix introduced by Strakoŝ [71] demonstrates lack
of orthogonality of the Lanczos vectors. Recall that the eigenvalues of a diagonal matrix are its diagonal elements. Define
a diagonal matrix by the eigenvalues

λi = λ1 +
(
i− 1

n− 1

)
(λn − λ1)ρ

n−i, 1 ≤ i ≤ n.

The parameter ρ controls the distribution of the eigenvalueswithin the interval
[

λ1 λn
]
. Create the matrix with n = 30,

λ1 = 0.1, λn = 100, and ρ = 0.8, that has well-separated large eigenvalues. Execute m = n steps of the Lanczos process
and compute qTi qj, 1 ≤ i, j ≤ n. Using exact arithmetic, the Lanczos vectors comprising Q should form an orthonormal
set, so

∥∥qTi qj∥∥2 = 0, i �= j and
∥∥qTi qi∥∥2 = 1. Figure 21.13(a) is a plot of

∥∥qTi qj∥∥2 over the grid 1 ≤ i, j ≤ n without
reorthogonalization, and Figure 21.13(b) plots the same data with reorthogonalization. Note the large difference between
the two plots. Clearly, Figure 21.3(a) shows that the Lanczos vectors lost orthogonality. As further evidence, if we name the
variable Q in the first plot Q1 and name Q in the second plot Q2, we have

norm(Q1)=1.41843
norm(Q2)=1.00000

Problem 21.36 asks you to reproduce these results. �



518 Numerical Linear Algebra with Applications

(a)

(b)

FIGURE 21.13 Lanczos processwith andwithout reorthogonalization. (a) Lanczoswithout reorthogonalization and (b) Lanczoswith reorthogonalization.



Krylov Subspace Methods Chapter| 21 519

21.9 THE MINRES METHOD

If a symmetric matrix is indefinite, the CGmethod does not apply. The minimum residual method (MINRES) is designed to
apply in this case. In the same fashion as we developed the GMRES algorithm using the Arnoldi iteration, Algorithm 21.8
implements the MINRES method using the Lanczos iteration. In the resulting least-squares problem, the coefficient matrix
is tridiagonal, and we compute the QR decomposition using Givens rotations.

Algorithm 21.8 MINRES

function MINRESB(A,b,x0,m,tol,maxiter)

% Solve Ax = b using the MINRES method

% Input: n× n matrix A, n× 1 vector b,

% initial approximation x0, integer m < n,

% error tolerance tol, and the maximum number of iterations, maxiter.

% Output: Approximate solution xm, associated residual r,

% and iter, the number of iterations required.

% iter = −1 if the tolerance was not satisfied.

iter = 1

while iter ≤ maxiter do
r = b− Ax0[
Qm+1 Tm

] = lanczos (A, r, m)

β = ‖r‖2
Solve the (m + 1)× m least-squares problem Tmym = βe1
using Givens rotations that take advantage of the tridiagonal

structure of Tm
xm = x0 + Qmym
r = ‖b− Axm‖2
if r < tol then

return [xm,r,iter]

end if
x0 = xm
iter = iter + 1

end while
iter = −1
return [xm, r, iter]

end function

NLALIB: The function minresb implements Algorithm 21.8. The Lanczos process uses full reorthogonalization.
MINRES does well when a symmetric matrix is well conditioned. The tridiagonal structure of Tk makes MINRES

vulnerable to rounding errors [69, pp. 84-86], [72]. It has been shown that the rounding errors propagate to the approximate
solution as the square of κ (A). For GMRES, the errors propagate as a function of the κ (A). Thus, if A is badly conditioned,
try mpregmres.

Example 21.11. The MINRES method was applied to three systems whose matrices are shown in Figure 21.14. In each
case, x0 = 0, and b was a matrix with random integer values. Matrix (a) has a small condition number. Using m = 50
and tol = 1.0 × 10−6, one iteration gave a residual of 3.5 × 10−10. Matrix (b) has a condition number of approximately
772, but with the same parameters, MINRES yielded a residual of 2.5 × 10−8 in three iterations. Matrix (c) is another
story. It has an approximate condition number of 2.3 × 104 and so is ill-conditioned. Using the parameters m = 1000
and tol = 1.0 × 10−6, MINRES gave a residual of 8.79 × 10−7 using 42 iterations. On the author’s system, this required
approximately 4min, 13 s of computation. In this situation, it is appropriate to try preconditioned GMRES. Using m = 50
and tol = 1.0 × 10−6, mpregmres produced a residual of 2.75 × 10−12 in one iteration requiring approximately 1.8 s of
computation. �



520 Numerical Linear Algebra with Applications

(a) (b)

(c)

FIGURE 21.14 Large sparse symmetric matrices.

Convergence
Like GMRES, there is no simple set of properties that guarantee convergence. A theorem that specifies some conditions
under which convergence will occur can be found in Ref. [73, pp. 50-51].

Remark 21.6. If A is positive definite, one normally uses CG or preconditioned CG. If A is symmetric indefinite and
ill-conditioned, it is not safe to use a symmetric preconditioner K with MINRES if K−1A is not symmetric. Finding a
preconditioner for a symmetric indefinite matrix is difficult, and in this case the use of GMRES is recommended.

21.10 COMPARISON OF ITERATIVE METHODS

We have developed three iterative methods for large, sparse matrices, CG, GMRES, and MINRES. In the case of CG and
GMRES, algorithms using preconditioning were presented. Given the tools we have developed, the following decision tree
suggests (Figure 21.15) an approach for choosing an iterative algorithm. Note that sometimes sparse matrix problems will



Krylov Subspace Methods Chapter| 21 521

Is A symmetric?

Is A wellconditioned?

Is A wellconditioned?

Use GMRES Use mpregmres Use MINRES Use precg Use cg

Is A positive definite?

Is A wellconditioned?Yes

Yes

Yes

Yes

Yes

No

No

NoNo

No

FIGURE 21.15 Iterative method decision tree.

defy proper solution using these techniques, and either other methods should be tried or the user must develop a custom
preconditioner.

21.11 POISSON’S EQUATION REVISITED

In Section 20.5, we discussed the numerical solution of the two-dimensional Poisson equation

−∂2u

∂x2
− ∂2u

∂y2
= f (x, y)

u (x, y) = g (x, y) on ∂R, where R = [0, 1]× [0, 1]

using finite difference equations

−ui−1, j − ui+1, j + 4uij − ui, j−1 − ui, j+1 = h2f
(
xi, yj

)
, 1 ≤ i, j ≤ n− 1. (21.30)

The resulting system was solved using the SOR iteration. In this section, we will solve the system of equations using
preconditioned CG. There are (n− 1)2 unknown values inside the grid, so we must solve a system Au = b of dimension
(n− 1)2×(n− 1)2. We need to determine the structure of A and b. The matrix A is sparse, since each unknown is connected
only to its four closest neighbors. We let n = 4, explicitly draw the grid (Figure 21.16) and, from that, determine the form
of A and b. The form for larger values of n follows the same pattern.

(4,0)

(1,1)

(0,0)

(0,1)

(3,0)(2,0)(1,0)

(1,2)
(0,2)

(4,1)
(3,1)(2,1)

(0,3)

(4,2)
(3,2)(2,2)

(0,4)

(4,3)
(3,3)(2,3)(1,3)

(3,4)(2,4)(1,4)
(4,4)

(0,0)

FIGURE 21.16 Poisson’s equation grid for n = 4.



522 Numerical Linear Algebra with Applications

We adopt the notation f
(
xi, yj

) = fij. Cycle through the grid by rows, applying Equation 21.30, and obtain nine equations

in the nine unknowns
[
u11 u21 u31 . . . u13 u23 u33

]T:
4u11 − u21 − u12 = h2f11 + g (0, y1)+ g (x1, 0)

−u11 + 4u2, 1 − u31 − u22 = h2f21 + g (x2, 0)

−u2, 1 + 4u3, 1 − u3, 2 = h2f31 + g (x3, 0)+ g (x4, y1)

−u11 + 4u12 − u22 − u1, 3 = h2f12 + g (0, y2)

−u21 − u12 + 4u22 − u32 − u2, 3 = h2f22

−u31 − u22 + 4u32 − u33 = h2f32 + g (x4, y2)

−u12 + 4u13 − u23 = h2f13 + g (0, y3)+ g (x1, y4)

−u22 − u13 + 4u23 − u33 = h2f23 + g (x2, y4)

−u32 − u23 + 4u33 = h2f33 + g (x4, y3)+ g (x3, y4)

In matrix form, the set of equations is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 −4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11
u21
u31
u12
u22
u32
u13
u23
u33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h2f11 + g (0, y1)+ g (x1, 0)
h2f21 + g (x2, 0)
h2f31 + g (x3, 0)+ g (x4, y1)
h2f12 + g (0, y2)
h2f22
h2f32 + g (x4, y2)
h2f13 + g (0, y3)+ g (x1, y4)
h2f23 + g (x2, y4)
h2f33 + g (x4, y3)+ g (x3, y4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The coefficient matrix has a definite pattern. It is called a block tridiagonal matrix. Let

T =
⎡⎣ 4 −1 0
−1 4 −1
0 −1 4

⎤⎦ .

If I is the 3× 3 identity matrix, we can write the coefficient matrix using block matrix notation as⎡⎣ T −I 0
−I T −I
0 −I T

⎤⎦ .

In general, if h = 1
n , the (n− 1)2 × (n− 1)2 matrix for the numerical solution of Poisson’s equation has the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

T −I
−I T −I

−I T −I
. . .
−I T −I

−I T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (21.31)

where I is the (n− 1)× (n− 1) identity matrix and T is the (n− 1)× (n− 1) tridiagonal matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4 −1
−1 4 −1

−1 4 −1
. . .
−1 4 −1

−1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.



Krylov Subspace Methods Chapter| 21 523

This matrix can grow very large. For instance, if n = 50, the problem requires solving 492 = 2401 equations. If we
double n, there are approximately four times as many equations to solve. Standard Gaussian elimination will destroy the
structure of the matrix, so iterative methods are normally used for this positive definite, ill-conditioned matrix. Problem
21.31 presents an interesting situation involving the Poisson equation.

21.12 THE BIHARMONIC EQUATION

The biharmonic equation is a fourth-order partial differential equation that is important in applied mechanics. It has
applications in the theory of elasticity, mechanics of elastic plates, and the slow flow of viscous fluids [74]. The two-
dimensional equation takes the form

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+ ∂4u

∂y4
= f (x, y) , (21.32)

with specified boundary conditions on a bounded domain. For our purposes, we assume the domain is the square R =
[0, 1]× [0, 1] and that

u (x, y) = 0 and
∂u

∂n
= 0 on ∂R.

The notation ∂u
∂n refers to the normal derivative, or 〈∇u, n〉, where n is a unit vector orthogonal to the surface. In our case,

this becomes

∂u

∂n
=
{

∂u
∂x = 0, x = 0, x = 1
∂u
∂y = 0, y = 0, y = 1

.

The square can be partitioned into an (n+ 1) × (n+ 1) grid with equal steps, h = 1
n , in the x and y directions. Use a

13-point central difference formula

[ 20uij − 8
(
ui−1, j + ui+1, j + ui, j−1 + ui, j+1

)
+2 (ui−1, j + ui−1, j+1 + ui+1, j−1 + ui+1, j+1

)
+ (ui−2, j + ui+2, j + ui, j−2 + ui, j+2

)
] /h4

to approximate ∂4u
∂x4
+ 2 ∂4u

∂x2∂y2
+ ∂4u

∂y4
, and approximate the normal derivative on each side of the square by reflecting the first

interior set of grid points across the boundary (Figure 21.17).
This results in an ill-conditioned positive definite (n− 1)2×(n− 1)2 block pentadiagonal coefficient matrix of the form

A = 1

h4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

D C B C D
. . .

. . .
. . .

. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

y=0

FIGURE 21.17 Estimating the normal derivative.



524 Numerical Linear Algebra with Applications

0

0

5

5

10

10

15

15

20

20

25

25

30

30

35

35

FIGURE 21.18 36 × 36 biharmonic matrix density plot.

Each block is of size (n− 1) × (n− 1). Block D is the identity matrix, C has the pattern
[
2 −8 2

]
, and B has the

pattern
[
1 −8 21 −8 1

]
. For n = 7, the blocks are

D =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎢⎢⎣
−8 2 0 0 0 0
2 −8 2 0 0 0
0 2 −8 2 0 0
0 0 2 −8 2 0
0 0 0 2 −8 2
0 0 0 0 2 −8

⎤⎥⎥⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎢⎢⎣
21 −8 1 0 0 0
−8 20 −8 1 0 0
1 −8 20 −8 1 0
0 1 −8 20 −8 1
0 0 1 −8 20 −8
0 0 0 1 −8 21

⎤⎥⎥⎥⎥⎥⎥⎦
In the first and last occurrence of B, each diagonal element is incremented by 1. You can see the sparsity pattern in

Figure 21.18, a density plot of the 36× 36 biharmonic matrix.
In the software distribution, the functions biharmonic_op and biharmonic build the biharmonic coefficient matrix and

use the preconditioned CG method to approximate the solution, respectively. Ref. [75, p. 385] provides an exact solution,
u (x, y) = 2350x4 (x − 1)2 y4 (y− 1)2 to Equation 21.32 when

f (x, y) = 56, 400
(
1− 10x+ 15x2

)
(1− y)2 y4 + 18, 800x2

(
6− 20x+ 15x2

)
y2
(
6− 20y+ 15y2

)
+56, 400 (1− x)2 x4

(
1− 10y+ 15y2

)
Figure 21.19(a) and (b) shows a surface plot of the approximate and exact solutions, respectively. MATLAB code for this
problem is in the directory “Text Examples/Chapter 21/biharmonicprob.m”.

For more information about the biharmonic equation, see Refs. [29, 74].

21.13 CHAPTER SUMMARY

Large, Sparse Matrices

The primary use of iterative methods is for computing the solution to large, sparse systems. Along with other problems,
such systems occur in the numerical solution of partial differential equations. There are a number of formats used to store



Krylov Subspace Methods Chapter| 21 525

(a)

(b)

FIGURE 21.19 The biharmonic equation. (a) Biharmonic equation numerical solution and (b) biharmonic equation true solution.



526 Numerical Linear Algebra with Applications

sparse matrices. In each case, only the nonzero elements are recorded. We look at the CRS format that stores the nonzero
elements by rows. The algorithm uses three vectors that specify the row, column, and value of each nonzero matrix entry.

The CG Method

TheCGmethod approximates the solution toAx = b, whereA is symmetric positive definite. TheCGmethod is an extremely
clever improvement of the method of steepest descent. The minimum of the quadratic function φ (x) = 1

2x
TAx − xTb is

the solution to Ax = b. The negative of the gradient, −∇φ, points in the direction of greatest decrease of φ. In addition,
the gradient is always orthogonal to the contour line at each point. The method of steepest descent takes a step toward the
solution by moving in the direction of the gradient line using xi+1 = xi+αiri, where αi is a scalar chosen to minimize φ for
each step, and ri is the residual for the current step. Successive residuals are orthogonal, which creates a “zigzag” toward
the minimum of φ (x). The CG method uses an iteration of the same form, xi+1 = xi + piri, but determines the next search
direction from the current residual and the previous search directions. Successive approximations are orthogonal relative to
the A norm, ‖x‖A =

√
xTAx, do not “zigzag,” and move much faster to the minimum of φ (x) than steepest descent.

Preconditioning

Iterative methods can converge very slowly if the coefficient matrix is ill-conditioned. Preconditioning involves finding
a matrix, M, that approximates A. In this case, M−1A will have a lower condition number than A, and we can solve
the equivalent system M−1Ax = M−1b, which is termed left-preconditioning. Other approaches are right- and split-
preconditioning. Determination of a good matrixM can be difficult.

Preconditioning for CG

Any preconditioner for CGmust be symmetric positive definite.We discuss twomethods for preconditioning, the incomplete
Cholesky decomposition and the SSOR preconditioner. The Cholesky approach can suffer from roundoff error problems,
requiring the use of a drop tolerance, which decreases the sparsity of M. The SSOR preconditioner is inexpensive to
compute and does not suffer from roundoff error to the same extent. However, incomplete Cholesky normally results in
faster convergence.

Krylov Subspace Methods

The Krylov subspace Km generated by A and u is span
{
u Au A2u . . . Am−1u

}
. It is of dimension m if the vectors are

linearly independent. The Krylov subspace methods project the solution to the n × n problem, Ax = b, into a Krylov
subspace Km = span

{
r Ar A2r . . . Am−1r

}
, where r is the residual and m < n.

Two Krylov subspace methods are discussed, the GMRES for the solution of any system and the MINRES for the
solution of a symmetric indefinite system. The Arnoldi and Lanczos factorizations are required for the development of
GMRES and MINRES, respectively. The solution to a least-squares problem in the Krylov subspace yields the solution to
the n x n problem.; If the symmetric matrix is positive definite, CG or preconditioned CG is normally used. In the case of
GMRES, the incomplete LU decomposition preconditioner is developed.

Comparison of Iterative Methods

Solving a large, sparse system can be very difficult, and there are many methods available. In the book, we have presented
some of the most frequently used methods. Figure 21.15 is a diagram of possible paths that can be used for solving a
particular problem.

The Biharmonic Equation

The biharmonic equation is a fourth-order partial differential equation that is important in applied mechanics. A 13-point
central finite difference approximation results in a block pentadiagonal matrix that is symmetric positive definite and ill-
conditioned. Preconditioned CG is effective in computing a solution to the biharmonic equation. A problem with a known
solution is solved for the boundary conditions u (x, y) = 0 and ∂u

∂n = 0 on ∂R.

21.14 PROBLEMS

21.1 Fill-in the table by describing the characteristics of each iterative method. Briefly note when convergence is
guaranteed and its speed relative to the other methods.



Krylov Subspace Methods Chapter| 21 527

Method Properties

Jacobi
Gauss-Seidel
SOR
CG

GMRES

MINRES

21.2 If A ∈ Rn×n, x ∈ Rn, and φ (x) = 1
2x

TAx− xTb, show that the gradient of φ,

∇φ =
[

∂φ
∂x1

∂φ
∂x2

· · · ∂φ
∂xn−1

∂φ
∂xn

]T
,

is
∇φ (x) = 1

2
ATx + 1

2
Ax− b.

21.3
a. Show that 〈x, y〉A = xTAy is an inner product, where A is a positive definite matrix.
b. If A is symmetric, there is an orthonormal basis, vi, 1 ≤ i ≤ n, of eigenvectors. Show that any two distinct basis

vectors are A-orthogonal.
21.4 The technique of completing the square is another way to show that the solution, x, to Ax = b minimizes φ

(Equation 21.1).
a. Show that for arbitrary vectors x, y, and symmetric matrix A, xTAy = (Ay)T x = yTAx.
b. From part (a), we know that xTAx = xTAx, where x is the solution to Ax = b. By completing the square show

that

φ (x) = 1

2
(x− x)T A (x− x)− 1

2
xTAx.

c. Assume A is positive definite. Using the result of part (b), argue that the minimum for φ (x) occurs when x = x.
21.5 Show that if A = RTR is the Cholesky decomposition of the positive definite matrix A, then A = (

R−1
)T
AR−1 is

symmetric.
21.6 Verify Equation 21.25, AQm = QmHm + hm+1.mqm+1eTm, for the Arnoldi iteration.
21.7 The diagonal preconditioner, also called the Jacobi preconditioner, is one of the simplest means for reducing the

condition number of the coefficient matrix. The method is particularly effective for a diagonally dominant matrix
or a matrix with widely different diagonal elements but, of course, the method does not always help.
a. LetM be the diagonal of A and use M−1 as the preconditioner. Develop a formula for the method that does not
involve computingM−1.

b. Let A =
[

20 20.01
9.99 10

]
. Compute the condition number of the coefficient matrix before and after using

diagonal preconditioning.

c. What happens if all elements of the diagonal are constant?
21.8 Show that the eigenvalues of a positive definite matrix are the same as its singular values.
21.9 Show that the SSOR preconditioning matrix MSSOR (ω) (Equation 21.22) is symmetric positive definite.

21.10 SSOR can be used as a preconditioner for GMRES. If we choose ω = 1, the matrixMPGS = (D+ L)D−1 (D+ U)

serves as a preconditioner. Using the development of pregmres as a guide, develop equations for the preconditioned
matrix, A, the right-hand side, b, and the solution, x. HINT: The matrix expression

D (D+ L)−1 A (D+ U)−1

can be evaluated without computing an inverse using the matrix operators \ and / as follows:

(I + L/D) \ (A/ (D+ U)) .

The definition of the operators is:
x = A\b

solves
Ax = b,

and

x = b/A



528 Numerical Linear Algebra with Applications

solves

xA = b.

In each case, x and b can be matrices. The book has not discussed the solution to a system of the form xA = b, since
this type of system is rarely seen. A look at the 2× 2 or 3 × 3 case for A and b will reveal a method of solution.

21.11 Verify Equations 21.18 and 21.19.
21.12 Develop Equation 21.20.
21.13 Two bases V = {

v1 . . . vm
}
andW = {

w1 . . . wm
}
are biorthogonal if〈

vi, wj
〉 = {

0 i �= j
1 i = j

.

Show that if the m×m matrices P and Q have columns formed from the vectors in V andW, respectively, then
PTQ = I. Biorthogonality is a primary component in the Bi-CG iteration for general sparse matrices. See Problem
21.34.

21.14.1 MATLAB Problems

21.14 Load the positive definite 100× 100 sparse matrix ACG from the software distribution. Let b be a random 100× 1
vector, x0 = 0, and use cg to approximate the solution to ACGx = b. Using the same tolerance and maximum
number of iterations, approximate the solution using precg. Compute the residual for each iteration.

21.15 When a nonsymmetric matrix is well conditioned and it is feasible to compute AT, then CG can be applied to the
normal equations.
a. Write a MATLAB function [x r iter] = normalsolve(A,b,x0,tol,numiter) that uses the normal
equation approach to solving Ax = b.

b. The MATLAB command R = sprandn(m,n,density,rc) generates a random sparse matrix of size m×n,
where density is the fraction of nonzeros and the reciprocal of rc is the approximate condition number.
Generate b randomly, and set x0 = ones(size,1). Using an error tolerance of 1.0 × 10−10 and maximum
number of iterations set to 500, compute the residual and number of iterations required by normalsolve for
each sparse system.
i. R1 = sprandn(1000,1000,0.03,0.10)
ii. R2 = sprandn(1500,1500,0.05,0.01)
iii. R3 = sprandn(2000,2000,0.2,0.001)

c. Add the normal equation approach to the appropriate locations in Figure 21.15.
21.16 The MATLAB function sprandsym generates a random symmetric matrix and will additionally make the matrix

positive definite. The statement

R = sprandsym(n,density,rc,1);

generates a sparse random symmetric positive definite matrix of size n × n, where density is the fraction of
nonzeros, and the reciprocal of rc is the exact condition number. Using spransym, generate a sparse symmetric
positive definite matrix of dimension 500 × 500, with 3% zeros, and condition number of 50. Execute CG and
preconditioned CG using random b, random x0, tol = 1.0 × 10−12, and numiter = 100. For preconditioned CG,
use incomplete Cholesky with droptol = 1.0× 10−4. Compare the time required and the resulting residual.

For the remaining problems, unless stated otherwise, use x0 = 0 and let b be a random n × 1 vector.
21.17 Load the 1138× 1138 matrix HB1138 used in the solution of a power network problem.

a. Verify it is positive definite, and approximate its condition number.
b. Apply CG with tol = 1.0× 10−10 and maxiter = {500, 1000, 3000, 5000, 10000}.
c. Apply preconditioned CG with 500 iterations.
d. Apply SSOR preconditioning. You will need to experiment with the maximum number of iterations required.

21.18 Using m = 3, compute the Arnoldi decomposition for the matrix

A =

⎡⎢⎢⎢⎢⎣
1 3 −1 7 2
5 −8 25 3 12
0 −1 0 3 7
8 −3 23 6 9
56 13 8 −9 1

⎤⎥⎥⎥⎥⎦ .



Krylov Subspace Methods Chapter| 21 529

21.19 Using m = 3, compute the Lanczos decomposition for the symmetric matrix

A =

⎡⎢⎢⎢⎢⎣
1 5 3 −1 6
5 1 7 −8 2
3 7 12 −1 3
−1 −8 −1 9 4
6 2 3 4 1

⎤⎥⎥⎥⎥⎦ .

21.20 Load the 2500× 2500 matrix SYM2500.
a. Verify it is symmetric but not positive definite, and approximate its condition number.
b. Apply minresb with tol = 1.0 × 10−6, niter = 10, and m = {50, 100, 150, 200, 250}. Time each execution,

and comment on the result
21.21 Load the 1024× 1024 matrix DIMACS10 used in an undirected graph problem.

a. Verify it is symmetric but not positive definite, and approximate its condition number.
b. Apply minresb with tol = 1.0× 10−6, maxiter = 50, and m = {50, 100, 250, 350}. Using m = 50 with all the

other parameters the same, estimate the solution using mpregmres. Time each execution, and comment on the
results.

21.22 Load the 1080× 1080 matrix SHERMAN2 used in a computational fluid dynamics problem.
a. Verify it is not symmetric, and approximate its condition number.
b. Apply gmresb with tol = 1.0× 10−6, maxiter = 10, and m = {500, 800}. Time each execution.
c. Apply mpregmres with tol = 1.0 × 10−6, niter = 10, and m = 500. Time the execution, and comment on the
result and those of part (b).

21.23 The software distribution contains a MATLAB sparse matrix file for each of three matrices:
a. ACG.mat b. Si.mat c. west0479.mat
Solve each system as best you can without preconditioning. Then solve each system using preconditioning.

21.24
a. Using the statement A = sprandsym(2000,0.05,.01), create a 2000 × 2000 symmetric indefinite matrix
with a condition number of 100. Solve the system using minresb.

b. Using A = sprandsym(2000,0.05,.001), create a symmetric indefinite matrix with a condition number of
1000. Solve the system using both minresb and mpregmres. Use m = 500 and tol = 1.0× 10−6.

21.25 As the drop tolerance decreases when using Cholesky preconditioning, the matrix R becomes more dense.
a. Using spy, graph the complete Cholesky factor for the matrix ROOF in the software distribution.
b. Computing an incomplete Cholesky factorization of ROOF is particularly difficult. Try icholesky and then

ichol with no drop tolerance.
c. Using a drop tolerance will make ichol successful. Using spy, demonstrate the increase in density using the
MATLAB function ichol with drop tolerances of 1.0× 10−4 and 1.0× 10−5.

d. What happens when you try drop tolerances of 1.0× 10−2 and 1.0× 10−3?
21.26 The function spdiags extracts and creates sparse band and diagonal matrices and is a generalization of the

MATLAB function diag. Wewill only use one of its various forms. To create a pentadiagonalmatrix, create vectors
that specify the diagonals. We will call these diagonals d1, d2, d3, d4, d5, where d1, d2 are the subdiagonals and
d4, d5 are the superdiagonals. For an n× n matrix, each vector must have length n. To create the matrix, execute

>> A = spdiags([d1 d2 d3 d4 d5], -2:2, n, n);

The parameter -2:2 specifies that the diagonals are located at offsets −2, −1, 0, 1, and 2 from the main
diagonal.
a. Create a 10, 000× 10, 000 pentadiagonal matrix with sub- and superdiagonals

[ −1 −1 . . . −1 −1 ]T and
diagonal

[
4 4 . . . 4 4

]T. Show the matrix is positive definite, with an approximate condition number of
2.0006× 107.

b. Using x0 = 0 and a random b, apply cg using tol = 1.0 × 10−14 and maxiter = [10 100 1000 10000 20000].
In each case, output the residual.

c. Use precg with the same tolerance and niter = 100. Output the residual.
21.27 The biharmonic matrix is ill-conditioned. Verify this for matrices with n = [10 50 100 500] over the interval

0 ≤ x, y ≤ 1.
21.28 We will investigate the one-dimensional version of the biharmonic equation:

d4u

dx4
= f (x) . (21.33)



530 Numerical Linear Algebra with Applications

Assuming the boundary conditions

u (0) = u (1) = d2u

dx2
(0) = d2u

dx2
= 0, 0 ≤ x ≤ 1

and using a five-point central finite-difference approximation over 0 ≤ x ≤ 1 with uniform step size h = 1/n,
gives rise to the following pentadiagonal (n− 1)× (n− 1) matrix [29]:

A = 1

h4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 −4 1 0

−4 6 −4 1
. . .

1 −4 6 −4 1
. . .

...
. . .

. . .
. . . 1 −4 6 −4 1
...

. . .
0 · · · 1 −4 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A is symmetric positive definite and ill-conditioned, so the preconditioned CG method should be used.

a. Write a function [x, y, u, residual, iter] = biharmonic1D(n, f, tol,maxiter) that uses pre-
conditioned CG with n subintervals, specified tolerance and maximum number of iterations to approximate a
solution to Equation 21.33 and graph it.

b. Consider the specific problem

d4u

dx4
= x, 0 ≤ x ≤ 1,

u (0) = u (1) = d2u

dx2
(0) = d2u

dx2
(1) = 0,

whose exact solution is u (x) = 1
120x

5− 1
36x

3+ 7
360x. Use h = 1

100 , that requires solving a 99×99 pentadiagonal
system having 489 diagonal entries, so the density of nonzero entries is 4.99%.

21.29
a. The Jacobi diagonal preconditioner (Problem 21.7) performs best when the coefficient matrix is strictly diag-
onally dominant and has widely varying diagonal entries. Write a function jacobipregmres that implements
Jacobi preconditioning for the GMRES method. Return with a message if the preconditioned matrix does not
have a condition number that is at most 80% of the condition number for A.

b. Build the 1000× 1000 matrix, T, with seven diagonals:

ai = −1, bi = 2, ci = 4, di = 20+ 100 (i− 1) , ei = 4, fi = 2, gi = −1, 1 ≤ i ≤ 1000.

Compute the condition number of T. Using rhs = [
1 1 . . . 1 1

]T, tol = 1.0 × 10−6, and m = 100,
compute the solution using both gmresb and jacobipregmres. Display the residuals.

21.30 Example 21.7 applies precg to the matrix PRECGTEST in the software distribution. Modify precg and create the
function precgomega with the following calling sequence:

% If method = ’incomplete Cholesky’, parm is the drop tolerance.

% If method = ’SSOR’, parm is omega.

[x, residual, iter] = precgomega(A,b,x0,tol,maxiter,method,parm);

Rather than assuming ω = 1 in Equation 21.22, maintain the equation as a function of ω. Apply precgomega
with the SSOR preconditioner to PRECGTEST using different values of ω and see if you can improve upon the
result in Example 21.7.

21.31 The ill-conditioned Poisson matrix 21.11 developed for the five-point central finite difference approximation to the
solution of Poisson’s equation is positive definite, so the preconditioned CG method applies. To use CG, we will
need to construct the block tridiagonal matrix. Fortunately, MATLAB builds the sparse n2 × n2 matrix with the
command

P = gallery(’poisson’, n);

a. Modify the Poisson equation solver sorpoisson referenced in Section 20.5 to use the preconditioned CG
method, where ∂R = {0 ≤ x, y ≤ 1}. The function declaration should be function [x y u] = cgpois-
son(n,f,g,numiter).



Krylov Subspace Methods Chapter| 21 531

b. Test cgpoisson using the following problem with n = 75, maxiter = 100, and tol = 1.0× 10−10.

−∂2u

∂x2
− ∂2u

∂y2
= xy, u (x, y) = 0 on ∂R = [0, 1]× [0, 1 ]

c. The following Poisson problem describes the electrostatic potential field induced by charges in space, where u
is a potential field and ρ is a charge density function.

−∂2u

∂x2
− ∂2u

∂y2
= 4πρ

u (x, y) = g (x, y) on ∂R.

Assume that the electrostatic potential fields are induced by approximately 15 randomly placed point charges
with strength 1 (ρ = 1). The edges are grounded, so u (x, y) = 0 on ∂R = {0 ≤ x, y ≤ 1}. Note that the
right-hand side function 4πρ affects only the points inside the boundary. Solve the problem using n = 100, and
draw a surface plot and a contour plot of the result (Figure 21.20 shows sample plots). One way of coding the
right-hand side is

function r = rho(~,~)

%r = rho(x,y) generates a point charge at random points.

%

% generate a point charge of strength 1 at approximately

% 3/2000 points (x,y) in the plane. this causes a point charge

% of approximately 1/15 of the points in the plot of the voltage

% produced by ’potentialsolve.m’.

p = randi([1 2000],1,1);

if p == 500 || p == 250 || p == 750

r = 4 * pi;
else

r = 0;

end

21.32
a. Using the results of Problem 21.10, develop function [x, r, iter] = ssorpregmres(A,b,x0,m,tol,

maxiter) that uses SSOR as a preconditioner for GMRES.
b. Ref. [64, p. 97] discusses the nonsymmetric matrix ORSIIR_1 with dimension 1030× 1030 that arises from a

reservoir engineering problem. Let x0 = 0, b = [
1 1 . . . 1 1

]
, m = 150, and tol = 1.0× 10−6. Solve the

system ORSII_1x = b using the functions gmresb, mpregmres, and ssorpregmres.
c. The positive definite matrix ROOF presented in Problem 21.25 required experimenting with a drop toler-
ance when preconditioning using the incomplete Cholesky decomposition. Using b = [

1 1 . . . 1 1
]T ,

x0 = 0, solve ROOFx = b using ssorpregmres with tol = 1.0× 10−6,m = 100, and maxiter = 15.
21.33 MATLAB provides various solvers for large, sparse problems.

a. The MATLAB function gmres implements the GMRES algorithm. Look it up using the help system and apply
it to the nonsymmetric matrix DK01R from the software distribution, using the right-hand side b_DK01R. You
will need to precondition the matrix using a drop tolerance with the statement

[L,U] = ilu(DK01R,struct(’type’,’ilutp’,’droptol’,droptol));

b. The MATLAB function minres implements the MINRES algorithm. Use it with the matrix bcsstm10 from
the software distribution with b = [

1 1 . . . 1 1
]T , x0 = 0. Use sufficiently many iterations so it succeeds

with an error tolerance of 1.0× 10−6.
c. The MATLAB function symmlq is a general sparse symmetric matrix solver based upon solving a symmetric
tridiagonal system.Use it with thematrix bcsstm10 from the software distributionwith b = [

1 1 . . . 1 1
]T ,

x0 = 0. Use sufficiently many iterations so it succeeds with an error tolerance of 1.0× 10−6.
21.34 MATLAB provides functions we have not discussed in the book that implement sparse system solvers for general

matrices. In this problem, you will investigate two such algorithms.
a. The bi-CG method is a CG-type method. The bi-CG method generates two sets of residual sequences, {ri} and
{ri}, which are biorthogonal (Problem 2.13). Two sets of direction vectors, {pi} and {pi} are computed from the



532 Numerical Linear Algebra with Applications

(a)

(b)
FIGURE 21.20 (a) Electrostatic potential fields induced by approximately 15 randomly placed point charges (b) contour plot of randomly placed point
charges.

residuals. The function bicg implements the algorithm. Try it with the matrix TOLS1090 from the software
distribution. Preconditioning is necessary.

b. TheQMRmethod applies to general matrices and functions by workingwith a nonsymmetric tridiagonalmatrix.
Repeat part (a) using qmr.

21.35 Let R = [0, 1]× [0, 1], and graph the approximate solution to the biharmonic equation

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+ ∂4u

∂y4
= sin (πx) sin (πy) ,

u (x, y) = 0 on ∂R
∂u

∂n
= 0 on ∂R

21.36 Reproduce Figures 21.13(a), (b), and console output for Example 21.10.



Chapter 22

Large Sparse Eigenvalue Problems

You should be familiar with

● Methods for computing eigenvalues of nonsparse matrices, both symmetric and nonsymmetric
● Arnoldi method
● Lanczos method

Chapters 18 and 19 present direct methods for computing eigenvalues of real matrices. These methods require O
(
n3
)
flops,

and for large n it is unrealistic to use them. For instance, suppose a sparse matrix A is of dimension 500 × 500. It has
500 eigenvalues, accounting for multiplicities. Often in applications only certain eigenvalues and associated eigenvectors
are required, so what we really need is a means of computing just those eigenvalues and eigenvectors. After studying this
chapter, the interested reader will be prepared for more extensive discussions in such works as [3–5].

We begin our discussion with the power (Algorithm 18.1) method to compute the largest eigenvalue in magnitude.
This method generates a Krylov sequence x0, Ax0, A2x0, . . . ,Ak−1x0, and Krylov subspace methods form the basis for our
iterative approach. To find a small collection of eigenvalues, we will make use of two methods presented in Chapter 21,
the Arnoldi and Lanczos methods, both of which find an orthogonal basis for a Krylov subspace. The Arnoldi method
provides a means for estimating a few eigenvalues and eigenvectors for a large sparse nonsymmetric matrix. There are two
approaches, explicit and implicit Arnoldi. In practice, the implicit method is used, but it is necessary to first understand
explicit methods. For symmetric matrices, the Lanczos decomposition is the tool of choice. The algorithms are similar to
those for nonsymmetric matrices, but symmetry provides a much clearer picture of convergence properties.

22.1 THE POWER METHOD

The power method computes the largest eigenvalue in magnitude and an associated eigenvector. Recall that the statements

xk = Axk−1,
xk = xk/ ‖xk‖2

are computed in a loop, so all that is required is matrix-vector multiplication and normalization. The initial guess should be
randomly generated, and the convergence rate depends on the ratio

∣∣∣ λ2λ1

∣∣∣, where |λ1| > |λ2| are two largest eigenvalues in
magnitude.

Example 22.1. The matrix rdb200 in the book software is a 200× 200 nonsymmetric sparse matrix obtained fromMatrix
Market (Figure 22.1). The “rdb” refers to the reaction-diffusion Brusselator model used in chemical engineering. The
MATLAB function eigs computes a few eigenvalues and associated eigenvectors of a large, sparse, matrix; in particular,
E = eigs(A) returns a vector containing the six largest eigenvalues of A in magnitude. Apply eigs to rdb200 and find the
two largest eigenvalues. After computing the ratio

∣∣∣λ2λ1

∣∣∣, use the function largeeig from the book software distribution to

estimate the largest eigenvalue and compare the result with that of eigs. The ratio
∣∣∣λ2λ1

∣∣∣ is 0.9720 and is not very favorable,
but an error tolerance of 1.0× 10−6 was obtained in 520 iterations, requiring 0.029465 s on the author’s computer. �

>> v = eigs(rdb200);

>> v(1:2)

ans =

-33.3867 -32.4503

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00022-3
Copyright © 2015 Elsevier Inc. All rights reserved. 533



534 Numerical Linear Algebra with Applications

0 20 40 60 80 100 120 140 160 180 200

0

40

60

80

100

120

140

160

180

200

nz = 1120

FIGURE 22.1 Nonsymmetric sparse matrix used in a chemical engineering model

>> abs(v(2)/v(1))
ans =

0.9720

>> [lambda x iter] = largeeig (rdb200,rand(200,1),1.0 e-6,600);

>> lambda

lambda =

-33.3867

>> abs(lambda - v(1))

ans =

1.1795e-12

Starting with x0, the power method generates the Krylov sequence x0 Ax0 A2x0 . . . Ak−2x0 Ak−1x0. Of these vectors,
we only use Ak−1x0 as our approximate eigenvector. It seems reasonable that we can do better by choosing our approximate
eigenvector as a linear combination y =∑k−1

i=0 ci
(
Aix0

)
of vectors from the Krylov sequence. This is indeed the case as we

will see in subsequent sections when discussing the use of the Arnoldi and Lanczos methods.

22.2 EIGENVALUE COMPUTATION USING THE ARNOLDI PROCESS

Recall from Chapter 21 that the Arnoldi process applied to an n × n matrix A produces a decomposition of the form
(Equation 21.25)

AQm = QmHm + hm+1,m qm+1eTm, (22.1)

whereH ism×m upper Hessenbergmatrix. The n×mmatrixQm =
[
q1 q2 . . . qm−1 qm

]
is formed from column vectors

{qi}, and {q1, q2, . . . , qm} form an orthogonal basis for the subspace spanned by Km+1(A, x1) = {x1, Ax1, . . . , Amx1}. The
additional vector, qm+1, is orthogonal to {qi} , 1 ≤ i ≤ m. We used the Arnoldi process to develop the general minimal
residual (GMRES)method (Algorithm 21.5) for approximating the solution to a large sparse systemAx = b. To approximate
the solution we chose m to be smaller than n and project the problem into a Krylov subspace of dimension m. If m = n,
hm+1,m = 0, and the Arnoldi process gives a Schur decomposition (Theorem 18.5)

QTAQ = H,



Large Sparse Eigenvalue Problems Chapter| 22 535

where Q is an n× n orthogonal matrix of Schur vectors, and H is n× n quasi-upper-triangular matrix with the eigenvalues
of A on its diagonal. For large n, finding the Schur decomposition is impractical. Might it make sense to try the same type
of approach as that of GMRES and approximate the eigenvalues of Hm in a Krylov subspace of dimension m < n? The
question then becomes can we use the eigenvalues of Hm in Equation 22.1 to approximate the eigenvalues of A? If we can,
then we will be able to compute a maximum of m eigenvalues and their associated eigenvectors. In reality, only a few of
those m eigenvalues will lead to good approximations to the eigenvalues of A, and those eigenvalues tend to be the largest
and the smallest eigenvalues of Hm.

Adopt the notation that λ(m)
i is eigenvalue i of Hm, and u

(m)
i is the corresponding eigenvector. We call λ(m)

i a Ritz value,
the vector v(m)

i = Qmu
(m)
i a Ritz eigenvector, and the pair (λi, vi) a Ritz pair. Now, from Equation 22.1

AQmu
(m)
i = QmHmu

(m)
i + hm+1,m qm+1eTmu

(m)
i

AQmu
(m)
i = Qmλ

(m)
i u(m)

i + hm+1,m qm+1eTmu
(m)
i

Av(m)
i = λ

(m)
i v(m)

i + hm+1,m qm+1eTmu
(m)
i . (22.2)

Define the residual

r(m)
i =

(
A− λ

(m)
i I

)
v(m)
i .

Noting that ‖qm+1‖2 = 1, hm+1,n ≥ 0, and eTmu
(m)
i is a real number, Equation 22.2 gives∥∥∥r(m)
i

∥∥∥
2
= hm+1,m

∣∣∣(u(m)
i

)
m

∣∣∣ , (22.3)

where
∣∣∣(u(m)

i

)
m

∣∣∣ is componentm of u(m)
i . If hm+1,m or

∣∣∣(u(m)
i

)
m

∣∣∣ is small, Equation 22.3 gives us a means of estimating the
error of using the Ritz pair

(
λ

(m)
i , v(m)

i

)
as an eigenpair of A.

We can nowbegin to develop an algorithm for computing a few eigenvalues ofA. Ifm is small,We had not such guarantee
for a nonsymmetric matrix. then we can quickly compute the eigenvalues and associated eigenvectors of Hm and compute
the value

∥∥∥r(m)
i

∥∥∥
2
= hm+1,m

∣∣∣(u(m)
i

)
m

∣∣∣ for all eigenvectors u(m)
i . If any of the residuals is small, then we hope λ

(m)
i /v(m)

i is

a good approximation to an eigenpair of A. Computational experience has shown that some of the eigenvalues λ
(m)
i will be

good approximations to eigenvalues of A well before m gets close to n [23, p. 444]. In practice, we want to use the smallest
m possible.

Example 22.2. Recall that the function i, not 1 builds the biharmonic matrix discussed in Section 21.12. The reader should
consult theMATLAB documentation to determine the action of sprandn. Generate a 144×144 random sparse matrix using
the MATLAB statements

B = biharmonic_op(12,1,12,1);

A = sprandn(B);

The eigenvalues of A are complex. Apply the Arnoldi process to generate a matrix H35, and compute its eigenvalues,
the Ritz values. Then compute the eigenvalues of A using eig and plot them marked with a circle, followed by a plot on the
same axes of the Ritz values marked by “x”. Figure 22.2 displays the results. Note that the largest and smallest Ritz values
in magnitude are close to eigenvalues of A. This is typical behavior. �

22.2.1 Estimating Eigenvalues Without Restart or Deflation

The following algorithm outline chooses a random vector v0, and performs an Arnoldi decomposition. It then computes
eigenvalues (Ritz values) of the factor Hm, creating Ritz vectors v(m)

i = Qmu
(m)
i , sorts the Ritz pairs

(
λ

(m)
i , v(m)

i

)
in

descending order of eigenvalue magnitude, and cycles through the Ritz pairs retaining up to nev of those for which the
residual given by Equation 22.3 is sufficiently small. It is possible that none will be found.



536 Numerical Linear Algebra with Applications

FIGURE 22.2 Eigenvalues and Ritz values of a random sparse matrix.

Simple Use of Arnoldi to Approximate a Few Eigenpairs of a Large, Sparse Matrix

1. Compute the Arnoldi decomposition AQm = QmHm + hm+1,m qm+1eTm using initial vector v0.

2. Compute the eigenvectors
{
u(m)
1 , u(m)

2 , . . . , u(m)
m

}
and eigenvalues

{
λ

(m)
1 , λ

(m)
2 , . . . , λ

(m)
m

}
of Hm.

3. Sort the Ritz pairs in descending order of eigenvalue magnitude.
4. Loop through the sorted Ritz pairs

(
λ

(m)
i , v(m)

i = Qmu
(m)
i

)
finding up to nev of those such that hm+1,m

∣∣∣(u(m)
i

)
m

∣∣∣ <

tol.

With the GMRES and MINRES methods for solving sparse systems of equations, we found it necessary to restart the
Arnoldi or Lanczos process using the most recently estimated solution as the initial vector. Recall that our approach to the
eigenvalue problem for a dense matrix was to compute one eigenvalue at a time using deflation. After computing eigenvalue
λk, we “deflated” the problem to computing an eigenvalue in the (k − 1)× (k − 1) submatrix. Both restart and deflation are
components of production quality algorithms for computing a few eigenpairs of a sparse matrix.

22.2.2 Estimating Eigenvalues Using Restart

Assume nev eigenvalues are required. If k < nev of the current Ritz pairs are sufficiently accurate, we can retain those and
then restart Arnoldi with an improved initial vector in hopes of estimating the remaining eigenvalues. Such an algorithm
is said to use explicit restart. In the next section, we will discuss more sophisticated restart strategies. For now, we use the
simple strategy of restarting with the current Ritz vector.The following outline summarizes this algorithm.

Outline of Explicit Arnoldi with Restart

1. Compute the initial starting vector v0, and let k = 1.
2. Using initial vector v0, compute the Arnoldi decomposition AQm = QmHm + hm+1,m qm+1eTm.
3. Compute the eigenvectors

{
u(m)
1 , u(m)

2 , . . . , u(m)
m

}
and eigenvalues

{
λ

(m)
1 , λ

(m)
2 , . . . , λ

(m)
m

}
of Hm.

4. Sort the eigenvalues and associated eigenvectors in descending order of eigenvalue magnitude.
5. See if Ritz pair k satisfies the error tolerance hm+1,m

∣∣∣(u(m)
k

)
m

∣∣∣ < tol. If so, increase k and return if k ≥ nev.

6. Let v0 be the normalized current Ritz vector,
Qmuk‖Qmuk‖2 , and go to step 2, unless somemaximum number of iterations

are exceeded.

The success of this algorithm depends on the matrix and the initial approximation v0. The implementation of this method
is left to the problems.



Large Sparse Eigenvalue Problems Chapter| 22 537

22.2.3 A Restart Method Using Deflation

We assume that we want a few of the largest eigenvalues in magnitude and that those eigenvalues are real. We will
deal with complex eigenvalues in Section 22.3. Suppose we have found k − 1 approximate unit eigenvectors of A,{
v1 v2 . . . vk−2 vk−1

}
and an additional unit eigenvector, vk, orthogonal to the k − 1 vectors. Since hm+1,m

∣∣∣(u(m)
k

)
m

∣∣∣
is small, the vectors

{
v1 v2 . . . vk−2 vk−1 vk

}
satisfy

Hm (1 : k, 1 : k) � QTm (:, 1 : k)AQm (:, 1 : k) . (22.4)

In other words, span
{
v1 v2 . . . vk−2 vk−1 vk

}
is approximately an invariant subspace of A. We need this result in the

following algorithm development.
Deflation was a primary tool in computing eigenvalues for dense matrices (see Sections 18.5 and 18.6). It allowed us

to gradually reduce the size of the problem, saving computing time, and yielding higher accuracy. Assume that Arnoldi is
started using the initial vector, v0, to obtain the decomposition AQm = QmHm + hm+1,m qm+1eTm. Compute the eigenvalues
and eigenvectors of Hm, and choose the pair

(
λ

(m)
1 , u(m)

1

)
with the largest eigenvalue in magnitude. Then compute the

corresponding Ritz pair
(
λ

(m)
1 , v(m)

1 = Qmu
(m)
1

)
, normalize v(m)

1 and compute the residual∥∥∥r(m)
1

∥∥∥
2
= hm+1,m

∣∣∣(u(m)
1

)
m

∣∣∣ .
If
∥∥∥r(m)

1

∥∥∥
2
≥ tol, restart the Arnoldi process, and continue until

∥∥∥r(m)
1

∥∥∥
2

< tol. At this point, we have an approximate

eigenpair
(
λ

(m)
1 , v(m)

1

)
, and are ready to compute the next pair

(
λ

(m)
2 , v(m)

2

)
. Apply Equation 22.4 and obtain

Hm (1 : 1, 1 : 1) = Qm (:, 1 : 1)T AQm (:, 1 : 1) ,

so that Hm (1 : 1 , 1 : 1) is a 1× 1 matrix containing the estimated eigenvalue λ
(m)
1 . H has the approximate form

X X X . . . X X
0 X X . . . X X
0 X X X . . . X

0 0 X X
. . .

...
...

...
. . .

. . . X
0 0 0 . . . X X

k = 1

where h11 is the estimated eigenvalue. The Ritz pair
(
λ

(m)
1 , v(m)

1

)
is said to be locked, since no more operations will affect

column 1 of Hm. Execute the Arnoldi iteration beginning with k = 2, compute the eigenvalues and eigenvectors of Hm,
and sort them. Select the pair

(
λ

(m)
2 , u(m)

2

)
and compute v(m)

2 = Qmu
(m)
2 . It is essential that each new vector be orthogonal

to all the previous ones, so make the vector v(m)
2 be orthogonal to v(m)

1 by using the Gram-Schmidt process. Determine if(
λ

(m)
2 , v(m)

2

)
satisfies

hm+1,m
∣∣∣(u(m)

2

)
m

∣∣∣ < tol.

If not, restart and repeat the process until it does. At that point, apply Equation 22.4,

Hm (1 : 2, 1 : 2) = Qm (:, 1 : 2)T AQm (:, 1 : 2) ,

and Hm has the approximate form
X X X . . . X X
0 X X . . . X X
0 0 X X . . . X

0 0 X X
. . .

...
...

...
. . .

. . . X
0 0 0 . . . X X

k = 2



538 Numerical Linear Algebra with Applications

Now lock
(
λ

(m)
1 , v(m)

1

)
and

(
λ

(m)
2 , v(m)

2

)
by leaving columns 1 and 2 of Hm alone, increase k to 3, and continue until the

error tolerance is satisfied. After executing

Hm (1 : 3, 1 : 3) = Qm (:, 1 : 3)T AQm (:, 1 : 3) ,

Hm approximately has the form (Table 22.1)

TABLE 22.1 Restart Method Using Deflation

0

0 0

0 0

X
X
X

X
X

XX
k = 3

X

X
X

X

X

X
X
XX

0 0 0

0

Our ultimate aim is to reduce the upper nev × nev submatrix of Hm to an upper-triangular matrix with the estimated
eigenvalues of A on its diagonal.

X X X . . . X X . . . X
X . . . X X X . . . X

nev
. . .

... . . . X . . . X
X . . . X X X

nev X X . . . X
X X X X

X . . . X
X X

X

Using the preceding discussion, we are now in a position to outline an algorithm for estimating nev eigenpairs ofmatrixA.

Outline of Arnoldi with Deflation and Explicit Restart

1. Select a starting vector v0 with ‖v0‖2 = 1. Use a random vector if a good starting value is not known. Let k = 1.
2. Loop

a. Execute the Arnoldi iteration

% k−1 columns are good. Start with column k.

for j = k:m do
. . .

end for

b. Compute the eigenvalues and eigenvectors ofHm and sort them. Pick the eigenpair
(
λ

(m)
k , u(m)

k

)
, and let ṽ(m)

k =
Vmu

(m)
k .

c. Othogonalize ṽ(m)
k against all the previous Ritz vectors

{
v(m)
1 , v(m)

2 , . . . , v(m)
k−1

}
and let v(m)

k = ṽ(m)
k /

∥∥∥ṽ(m)
k

∥∥∥
2
.

d. Compute ek = hm+1,m
∣∣∣(u(m)

k

)
m

∣∣∣ .
e. If ek < tol,

i Compute Hm (1 : k, 1 : k) = Qm (:, 1 : k)T AQ (:, 1 : k).
ii Let k = k + 1 (deflate)
iii If k ≥ nev, then return else go to 2 (restart).

f. Go to 2 (restart)

The function eigsbexplicit in the book software distribution implements Algorithm 22.3. Type help eigsbex-

plicit to determine the calling sequence.



Large Sparse Eigenvalue Problems Chapter| 22 539

Remark 22.1. Recall from Section 21.8.1 that the Lanczos vectors can lose orthogonality due to roundoff error. To a
lesser extent, this is also true of the Arnoldi process. For that reason, the NLALIB function arnoldi has a fourth parameter,
reorthog. When reorthog = 1, reorthogonalization is performed.

Example 22.3. We test eigsbexplicit first with the 2233 × 2233 symmetric matrix lshp2233.mat, followed by
using eigsbexplicit with the 1030 × 1030 nonsymmetric matrix ORSIIR_1.mat. This matrix presents a much greater
challenge, and we are able to adequately compute only three eigenvalues. The function residchk in the software
distribution takes arguments A, V, D and for each eigenvalue D(i,i) with associated eigenvector V(:,i), and prints
‖AV (:, i)− D (i, i)V (:, i)‖2 , 1 ≤ i ≤ size (D, 1). In addition, it returns the average of the residuals. This examples
suppresses the output of the average. �

>> x0 = rand(2233,1);
>> nev = 6;

>> m = 50;

>> tol = 1.0e-6;

>> maxiter = 100;

>> reorthog = 1;

[V,D] = eigsbexplicit(lshp2233, x0, nev, m, tol, maxiter, reorthog);

diag(D)

ans =

6.9860

6.9717

6.9547

6.9533

6.9331

6.9238

>> residchk(lshp2233,V,D)

Eigenpair 1 residual = 9.51284e-08

Eigenpair 2 residual = 6.16388e-08

Eigenpair 3 residual = 8.59643e-07

Eigenpair 4 residual = 5.34262e-07

Eigenpair 5 residual = 1.53693e-07

Eigenpair 6 residual = 3.43595e-08

>> norm(V’*lshp2233*V-D)
ans =

2.6078e-07

>> x0 = rand(1030,1);
>> nev = 6;

>> m = 20;

>> [V,D] = eigsbexplicit(ORSIIR_1, x0, nev, m, tol, maxiter, reorthog);

>> residchk(ORSIIR_1,V,D)

Eigenpair 1 residual = 1.62177e-10

Eigenpair 2 residual = 6.45912e-09

Eigenpair 3 residual = 1.96075e-05

Eigenpair 4 residual = 9597.58

Eigenpair 5 residual = 9586.87

Eigenpair 6 residual = 9588.03

>> norm(V’*ORSIIR_1*V - D)

ans =

9.597579997195124e+03

22.2.4 Restart Strategies

In our discussion so far, we have restarted with the current Ritz eigenvector v(m)
k . We now discuss better strategies for

the Arnoldi restart. Clearly, our best strategy is to select a vector v such that Hm (i+ 1, i) = 0. In this case, Q (:, 1 : i)
is in an invariant subspace of dimension i. The Arnoldi iteration stops at iteration i, and the i eigenvalues are exact [3,



540 Numerical Linear Algebra with Applications

p. 126, 99]. Therefore, a reasonable strategy is to select a vector close to being in an invariant subspace of dimension
less than or equal to m. One approach is to choose to restart with a vector that is a linear combination of the current
Ritz vectors

ṽ(m)
k =

m∑
i=1

civ
(m)
k .

This is a special case of the approach we will take that involves constructing a polynomial which, when applied to A, can
improve the current Ritz vector prior to restarting Arnoldi. To understand how we choose such a polynomial, suppose that
matrix A has n linearly independent eigenvectors v1, v2, . . . , vn that form a basis for Rn. If we choose any vector w ∈ Rn,
then there are constants ci such that

w =
n∑
i=1

civi.

We are interested in approximating k of these eigenvectors, so write the sum as

w =
k∑
i=1

civi +
n∑

i=k+1
civi.

Let pr be a polynomial, compute pr (A), apply it to w and obtain

pr (A)w =
k∑
i=1

cipr (A) vi +
n∑

i=k+1
cipr (A) vi.

This can be written as (Problem 22.2)

pr (A)w =
k∑
i=1

cipr (λi) vi +
n∑

i=k+1
cipr (λi) vi. (22.5)

If we build pr so that pr (λi) , k + 1 ≤ i ≤ n, are small relative to pr (λi) , 1 ≤ i ≤ k, then pr (A)w will be dominated by the
eigenvalues in which we are interested. This is termed a filtering polynomial. There are a number of choices for the filtering
polynomial. Saad [3, pp. 165-169] and Stewart [5, pp. 321-325] discuss some choices. Consider the polynomial

pr (A) =
(
A− λ

(m)
nev+1I

)(
A− λ

(m)
nev+2I

)
. . .

(
A− λ(m)

m I
)
, (22.6)

where the {λ(m)
i }, nev + 1 ≤ i ≤ m are the Ritz values we do not want. This has the effect of making pr (A)w dominated

by a linear combination of the eigenvectors we care about (Equation 22.5). However, its computation is too costly because
we include all the unwanted eigenvalues

{
λ

(m)
i

}
, nev+ 1 ≤ i ≤ m. Consider the factors (A − λ

(m)
i I), nev+ 1 ≤ i ≤ m as

shifts away from the eigenvalues we do not want, as opposed to shifts closer to eigenvalues we do want. It turns out that
Equation 22.6 can be evaluated quickly by using the implicit QR iteration described in Section 18.8, and this is the basis for
the implicitly restarted Arnoldi method discussed in Section 22.3. Another approach is to use Chebyshev polynomial filters
(see Ref. [3, pp. 169-178]).

22.3 THE IMPLICITLY RESTARTED ARNOLDI METHOD

In practice, the implicitly restarted Arnoldi method is used to find some eigenvalues/eigenvectors of a large sparse
nonsymmetric matrix. The MATLAB function eigs uses a version of this algorithm. We will discuss the method, provide
a simplified algorithm, and a MATLAB implementation. This implementation gives good results in many cases, but in no
way competes with eigs.

In Section 22.2, we saw that an effective approach to estimating a few eigenpairs involves both restarting and deflation.
A filter polynomial enhances convergence, and by using the Francis algorithm (implicitly shifted QR), the filtering



Large Sparse Eigenvalue Problems Chapter| 22 541

polynomial 22.6 can be evaluated in only O
(
m2
)
flops. The following presentation derives from Saad [3, pp. 166-169].

We begin with an outline of the algorithm, and follow it with some of the details.

Outline of the Implicitly Restarted Arnoldi Method

Assume we are interested in nev eigenvalues, leaving p = m− nev eigenvalues in which we are not interested. Begin
with a unit vector v.

a. Compute the m step Arnoldi decomposition, AQm = QmHm + hm+1,mqm+1eTm.
b. Loop until computing nev eigenvalues or exceeding a maximum number of iterations

Find the m eigenpairs
(
λi, v

(m)
i

)
of Hm.

Compute the implicit QR decomposition using the m − nev unwanted eigenvalues as the shifts. This evaluates the
filter polynomial p (A) v(m)

k = (A − λnev+1I) (A− λnev+2I) . . . (A− λmI) v
(m)
k = ṽ(m)

k that enhances the approximate
eigenvector v(m)

k , and at the same time builds an nev step Arnoldi decomposition. This decomposition is said to be
compressed.

c. If the eigenvalue λk corresponding to the eigenvector ṽ
(m)
k has converged, lock it. If convergence has not occurred

or if eigenvalues remain to be found, extend the factorization to an m step factorization by applying m − nev
additional Arnoldi steps.

Assume that we have computed the Arnoldi decomposition

AVm = VmHm + hm+1,m vm+1eTm. (22.7)

Using Equation 22.7, we have(
A− λ(m)

u1 I
)
Vm = AVm − λ(m)

u1 Vm (22.8)

= VmHm + hm+1,m vm+1eTm − λ(m)
u1 Vm

= Vm
(
Hm − λ(m)

u1 I
)
+ hm+1,m vm+1eTm.

Compute the implicit QR decomposition of Hm with shift λ(m)
u1

Hm − λ(m)
u1 I = Q1R1.

Using it in Equation 22.8 results in(
A− λ(m)

u1 I
)
Vm = VmQ1R1 + hm+1,m vm+1eTm (22.9)(

A− λ(m)
u1 I

)
(VmQ1) = (VmQ1)R1Q1 + hm+1,m vm+1eTmQ1 (22.10)

A (VmQ1) = (VmQ1)

(
R1Q1 + λ(m)

u1 I
)
+ hm+1,m vm+1eTmQ1 (22.11)

Let

H(1)
m = R1Q1 + λ(m)

u1 I,(
b(1)
m+1

)T = eTmQ1,

V(1)
m = VmQ1.

Using these definitions in Equation 22.11, we have

AV(1)
m = V(1)

m H(1)
m + hm+1,m vm+1

(
b(1)
m+1

)T
. (22.12)

We now make some observations about Equation 22.12:

● H(1)
m = R1Q1 + λ

(m)
u1 I is the matrix that results from a step of the standard QR algorithm applied to Hm with shift λ(m)

u1 .



542 Numerical Linear Algebra with Applications

● H(1)
m is an upper Hessenberg matrix.

● Equation 22.12 is essentially an Arnoldi decomposition with eTm replaced by
(
b(1)
m+1

)T
.

● The first column of V(1)
m is a multiple of

(
A− λ

(m)
u1 I

)
v(m)
1 , where v(m)

1 is the first column of Vm. We determine this as
follows:
● Multiply Equation 22.9 by e1:(

A− λ(m)
u1 I

)
Vme1 = (VmQ1)R1e1 + hm+1,m vm+1eTme1.

Vme1 = v1, and R1 is upper triangular, so

(
A− λ(m)

u1 I
)
v1 = V(1)

m

⎡⎢⎢⎢⎣
r11
0
...
0

⎤⎥⎥⎥⎦+ 0 = r11v
(m)
1 ,

and the first column of V(m)
1 , v(m)

1 , is a multiple, 1
r11
, of

(
A− λ

(m)
u1 I

)
v1.

● The columns of Vm are orthonormal, and Q1 is an orthogonal matrix, so the columns of V(1)
m are orthonormal

(Problem 22.1).

Now apply the second shift to Equation 22.12 in the same fashion as we did in Equation 22.8:

(
A− λ(m)

u2

)
V(1)
m = V(1)

m

(
H(1)
m − λ(m)

u2 I
)
+ hm+1,m vm+1

(
b(1)
m+1

)T
. (22.13)

Now, apply the implicit QR decomposition and obtain

H(1)
m − λ(m)

u2 I = Q2R2,

and multiply Equation 22.13 by Q2 on the right. This gives (Problem 22.3)

AV(2)
m = V(2)

m H(2)
m + hm+1,m vm+1

(
b(2)
m+1

)T
, (22.14)

where H(2)
m = R2Q2 + λ

(m)
u2 I and V

(2)
m = V(1)

m Q2. Continuing the argument presented in Ref. [3, pp. 167-168], there results
a decomposition of the form

AV̂m−2 = V̂m−2Ĥm−2 + ĥm+1,mv̂m−1eTm.

This decomposition is exactly the one that would be obtained by executing (m− 2) steps of the Arnoldi process to the
unit vector obtained from

(
A− λ

(m)
u1 I

) (
A− λ

(m)
u2 I

)
v1. At this point, we can accept an eigenvalue or perform two more

Arnoldi steps to obtain an m step Arnoldi decomposition.
The process we have described applies to a filter of degree 2. If a filter of degree m − nev > 2 is required, the

algorithm results in an nev step Arnoldi decomposition. If necessary, apply m− nevmore Arnoldi steps to obtain an m step
decomposition. Algorithm 22.1 specifies the implicit Arnoldi process. It features a version of the Arnoldi decomposition
that returns V , H, and f such that AVm = VmHm+ f eTm. The algorithm either begins with a decomposition extendingm steps
or continues from a partial decomposition.

Remark 22.2. If an eigenvalue is real, perform a single shift during the implicit QR decomposition; otherwise, perform
a double shift to obtain a complex conjugate pair of eigenvalues.



Large Sparse Eigenvalue Problems Chapter| 22 543

Algorithm 22.1 The Implicitly Restarted Arnoldi Process

function EIGSB(A,nev,m,tol,maxiter)

k=1

Allocate matrices Vn×m and Hm×m
f=rand(n,1)

f = f/ ‖f‖2
% perform an m step Arnoldi decomposition of A.

[V, H, f]=arnoldif(A,V,H,f,k,m)

iter=0

while true do
iter=iter+1

% find the eigenvalues and eigenvectors of H[
UH, DH

] = eig (H)

sigma=diag(UH)

sort the eigenvalues from largest to smallest in magnitude

Q = Im×m
% use sigma(nev+1), ..., sigma(m) as the shifts

j=m

while j ≥ nev+ 1 do
lambda=sigma(j)

alpha=imag(lambda)

if |alpha| > 0 then
% the eigenvalue is complex. use a double shift.

beta=real(lambda)[
Qj, Rj

]
= implicit double shift QR (beta,alpha)

j=j-2

else
% the eigenvalue is real. use a single shift.

[Qj, Rj] = implicit single shift QR (lambda)

j=j-1

end if
H = QjT ∗ H ∗ Qj
Q = Q ∗ Qj

end while
% compute the residual norm for the kth eigenpair.

u=UH(:,k)

residnorm = ‖f‖2 |u (m)|
% lock vk if the tolerance is obtained

if residnorm < tol then
if k<nev then

k=k+1

else
return

[
Vm (:,1 : nev) , diag (sigma (1 : nev))

]
end if

end if
% build an m step decomposition from the nev step one.

betak=H(nev+1,nev)

sigmak=Q(m,nev)

fk=V(:,nev+1)*betak+f*sigmak

V(:,1:nev)=V(:,1:m)*Q(:,1:nev)

[V, H, f]=arnoldif(A,V(:,1:nev),H(1:nev,1:nev),fk,nev+1,m)

if iter ≥ maxiter then
print(Error: could not compute nev eigenvalues within specified number of iterations.)

terminate

end if
end while

end function



544 Numerical Linear Algebra with Applications

NLALIB: The function eigsb implements Algorithm 22.1. It is supported by the function arnoldif that computes
the Arnoldi decomposition in the form given by Equation 22.1. eigsb returns a vector of nev eigenvalues or the
eigenvectors in a matrix V and a diagonal matrix D with the nev corresponding eigenvalues. Recall that the function
avgresid = residchk(A,V,D) prints the residuals ‖AV (:, i)− D (i, i)V (:, i)‖2 , 1 ≤ i ≤ size (D, 1), and returns the average of
the residuals.

Example 22.4. The following table lists four nonsymmetric matrices from actual applications. eigsbwas applied to each
matrix using the defaults, tol = 1.0× 10−6, maxiter = 100, nevs = 6. Experimentation was required to determine a value
of m that resulted in the average residual given in the table.

Matrix Dimensions Application Area
rotor2 791× 791 Large helicopter rotor model
qh882 961× 961 Power systems simulations
dw256A 317× 317 Square dielectric waveguide
TOLS1090 1090× 1090 Aeroelasticity

Matrix rotor2 qh882 dw256A TOLS1090
m 35 40 35 16
Average residual 1.1125e−11 1.3725e−08 6.8321e−14 6.8211e−7 �

22.3.1 Convergence of the Arnoldi Iteration

Convergence analysis of the Arnoldi iteration is complex. See Saad [3, pp. 151-159].

22.4 EIGENVALUE COMPUTATION USING THE LANCZOS PROCESS

As expected, a sparse symmetric matrix A has properties that will enable us to compute eigenvalues and eigenvectors
more efficiently than we are able to do with a nonsymmetric sparse matrix. Also, much more is known about convergence
properties for the eigenvalue computations. We begin with the following lemma and then use it to investigate approximate
eigenpairs of A.

Lemma 22.1. Let A be an n× n symmetric matrix. Let θ be a real number and x be an arbitrary vector in Rn with x �= 0.
Let μ = ‖(A− θ I) x‖2 / ‖x‖2. Then there is an eigenvalue of A in the interval θ − μ ≤ λ ≤ θ + μ.

Proof. Let

A = PDPT =
n∑
i=1

λipip
T
i

be the spectral decomposition of A (Theorem 19.1). It follows that:

(A− θ I) x = (
PDPT − θPPT

)
x =

n∑
i=1

(
λipip

T
i − θpip

T
i

)
x

=
n∑
i=1

(
λi
(
pTi x

)
pi − θ

(
pTi x

)
pi
)

=
n∑
i=1

(λi − θ)
(
pTi x

)
pi

Taking the norm of the equality and noting that the {pi} are orthonormal, we obtain

‖(A− θ I) x‖22 =
n∑
i=1

(λi − θ)2
(
pTi x

)2
.



Large Sparse Eigenvalue Problems Chapter| 22 545

Note that
∑n

i=1 pipTi = I (Problem 22.4). Let λk be the eigenvalue closest to θ , i.e., |λk − θ | ≤ |λi − θ | for all i, and
we have

‖(A− θ I) x‖22 ≥ (λk − θ)2
n∑
i=1

(
pTi x

)2
= (λk − θ)2

n∑
i=1

(
pTi xp

T
i x
) = (λk − θ)2

n∑
i=1

(
xTpip

T
i x
)

= (λk − θ)2 xT
(

n∑
i=1

pip
T
i

)
x = (λk − θ)2 xTIx

= (λk − θ)2 ‖x‖22
This implies that

μ = ‖(A− θ I) x‖2 / ‖x‖2 ≥ |λk − θ | ,
and so there is an eigenvalue λk in the interval θ − μ ≤ λ ≤ θ + μ.

Recall that the Lanczos process for a symmetric matrix discussed in Section 21.8 is the Arnoldi process for a symmetric
matrix and takes the form

AQm = QmTm + hm+1,mqm+1eTm,

where

Tm =

a1 b1
b1

b2

b2a2
. . .

. . .

. .
.
am−1

ambm−1

bm−1

,

is symmetric tridiagonal, and Qm is orthogonal. We will proceed like we did for nonsymmetric matrices and use Ritz pairs
of Tm to approximate eigenpairs of A. Let μ = λ

(m)
i be a Ritz value and u(m)

i be a corresponding eigenvector obtained from
Tm so that Tmu

(m)
i = λ

(m)
i u(m)

i , and let v(m)
i = Qmu

(m)
i be the Ritz vector. Applying the same operations we used to derive

Equation 22.3, we obtain ∥∥∥(A− λ
(m)
i I

)
v(m)
i

∥∥∥
2
= hm+1,m

∣∣∣(u(m)
i

)
m

∣∣∣ .
Since v(m)

i = Qmu
(m)
i ,

∥∥∥u(m)
i

∥∥∥
2
= 1, and Qm is orthogonal, we have

∥∥∥v(m)
i

∥∥∥
2
= 1, and so

μ =
∥∥∥(A− λ

(m)
i I

)
v(m)
i

∥∥∥ /

∥∥∥v(m)
i

∥∥∥ = hm+1,m
∣∣∣(u(m)

i

)
m

∣∣∣ .
It follows from Lemma 22.1 that there is an eigenvalue λ such that

λ
(m)
i − μ ≤ λ ≤ λ

(m)
i + μ,

so

−μ ≤ λ− λ
(m)
i ≤ μ,

and

∣∣∣λ− λ
(m)
i

∣∣∣ ≤ hm+1,m
∣∣∣(u(m)

i

)
m

∣∣∣ . (22.15)



546 Numerical Linear Algebra with Applications

Equation 22.15 indicates we will have a good approximation to an eigenpair of A as long as hm+1,m
∣∣∣(u(m)

i

)
m

∣∣∣ is small.
We had not such a guarantee for a nonsymmetric matrix.

Poor convergence can result from a bad choice of the starting vector, so a random vector is a good choice. Multiple
eigenvalues or eigenvalues that are very close to each other particularly cause problems. As discussed in Section 21.8.1,
roundoff error can cause lack or orthogonality among the Lanczos vectors, and this happens as soon as Ritz vectors have
converged accurately enough to eigenvectors [2, p. 565]. The loss of orthogonality can cause simple eigenvalues to appear as
multiple eigenvalues, and these are called ghost eigenvalues [2, p. 566] (Problems 22.6 and 22.14). In our implementation of
the implicitly restarted Lanczos process, we will perform full reorthogonalization. The function eigssymb in the software
distribution implements the implicitly restarted Lanczos process. The only real differences between this function and eigsb
is the use of the Lanczos decomposition instead of Arnoldi and the fact that only a single shift is necessary since the matrix
has real eigenvalues.

Example 22.5. The very ill-conditioned (approximate condition number 2.5538×1017) symmetric 60000×60000matrix
Andrews obtained from the Florida sparse matrix collection was used in a computer graphics/vision problem. As we know,
even though the matrix is ill-conditioned, its eigenvalues are well conditioned (Theorem 19.2). The MATLAB statements
time the approximation of the six largest eigenvalues and corresponding eigenvectors using eigsymb. A call to residchk
outputs the residuals.

>> tic;[V, D] = eigssymb(Andrews, 6, 50);toc;
Elapsed time is 5.494509 seconds.

>> residchk(Andrews,V,D)

Eigenpair 1 residual = 3.59008e-08

Eigenpair 2 residual = 1.86217e-08

Eigenpair 3 residual = 2.31836e-08

Eigenpair 4 residual = 7.68169e-08

Eigenpair 5 residual = 4.10453e-08

Eigenpair 6 residual = 6.04127e-07

ans =

1.332825500776470e-07 �

22.4.1 Mathematically Provable Properties

This section presents some theoretical properties that shed light on the use and convergence properties of the Lanczos
method.

In Ref. [76, p. 245], Scott proves the following theorem:

Theorem 22.1. Let A be a symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn, δA = mink �=i |λi − λk|. Then there
exists a starting vector v0 such that for the exact Lanczos algorithm applied to A with v0, at any step j < n the residual
norm

‖Avi − λivi‖2
of any Ritz pair (λi, vi) will be larger than δA/4.

This theorem says that if the spectrum of A is such that δA/4 is larger than some given convergence tolerance, then there
exist poor starting vectors which delay convergence until the nth step. Thus, the starting vector is a critical component in the
performance of the algorithm. If a good starting vector is not known, then use a random vector. We have used this approach
in our implementation of eigssymb.

The expository paper by Meurant and Stratkos [70, Theorem 4.3, p. 504] supports the conclusion that orthogonality can
be lost only in the direction of converged Ritz vectors. This result allows the development of sophisticated methods for
maintaining orthogonality such as selective reorthogonalization [2, pp. 565-566], [6, pp. 116-123].

There are significant results concerning the rate of convergence of the Lanczos algorithm.Kaniel [77] began investigating
these problems. Subsequently, the finite precision behavior of the Lanczos algorithm was analyzed in great depth by Chris
Paige in his Ph.D. thesis [78]; see also Paige [79–81]. He described the effects of rounding errors in the Lanczos algorithm
using rigorous and elegant mathematical theory. The results are beyond the scope of this book, so we will assume exact
arithmetic in the following result concerning convergence proved in Saad [3, pp. 147-150].



Large Sparse Eigenvalue Problems Chapter| 22 547

Theorem 22.2. Let A be an n-by-n symmetric matrix. The difference between the ith exact and approximate eigenvalues
λi and λ

(m)
i satisfies the double inequality

0 ≤ λi − λ
(m)
i ≤ (λ1 − λn)

(
κ

(m)
i tan θ 〈v1, ui〉
Cm−i (1+ 2γi)

)2
,

where

Cm−i (x)

is the Chebyshev polynomial of degree m − i,

γi = λi − λi+1
λi+1 − λn

,

κ
(m)
i is given by

κ
(m)
1 = 1, κ

(m)
i =

i−1∏
j=1

λ
(m)
j − λn

λ
(m)
j − λi

, i > 1,

and θ is the angle defined in Ref. [3, p. 147].

Remark 22.3. Error bounds indicate that for many matrices and for relatively small m, several of the largest or smallest
of the eigenvalues of A are well approximated by eigenvalues of the corresponding Lanczos matrices. In practice, it is not
always the case that both ends of the spectrum of a symmetric matrix are approximated accurately. However, it is generally
true that at least one end of the spectrum is approximated well.

22.5 CHAPTER SUMMARY

The Power Method

The power method generates the Krylov subspace Km (A, x0) = span
{
x0 Ax0 A2x0 . . . Ak−2x0 Ak−1x0

}
, where

Ak−1x0 is the approximate eigenvector corresponding to the largest eigenvalue. This method can be effective in some cases;
however, its main importance is that it leads to ideas that use a combination of vectors from the Krylov subspace.

Eigenvalue Computation Using the Arnoldi Process

Given a nonsymmetric matrix A, the basic idea is simple:

Perform an Arnoldi decomposition, AVm = VmHm + hm+1,m vm+1eTm, and use some eigenvalues
{
λ

(m)
1 , λ

(m)
2 , . . . , λ

(m)
k

}
of Hm

as approximations to the eigenvalues of A. The corresponding eigenvectors are Vmu
(m)
i , where u(m)

i is the eigenvector of Hm
corresponding to λ

(m)
i .

However, the implementation is not simple. The section discusses three approaches:

● Compute a few eigenvalues of Hm, sort them in descending order, and estimate the error of each using Equation 22.3.
Accept the eigenvalues and optionally the corresponding eigenvectors that satisfy an error tolerance. Basically, “You get
what you get.”

● Accept eigenvalues satisfying the error tolerance and otherwise restart Arnoldi with the current Ritz vector or some
improvement of it.

● Restart until computing eigenvalue λ1, deflate the matrix and search for λ2, and continue until computing the desired
eigenvalues.

The Implicitly Restarted Arnoldi Method

To approximate nev eigenvalues and corresponding eigenvectors, use deflation and a filter polynomial such as pr (A) v(m)
k =(

A− λ
(m)
nev+1I

)(
A− λ

(m)
nev+2I

)
. . .

(
A− λ

(m)
m I

)
v(m)
k to provide a better restart vector. Evaluate this polynomial using the



548 Numerical Linear Algebra with Applications

implicitly shifted QR algorithm, which requires only O
(
m2
)
flops. This is the most commonly used method for computing

a few eigenvalues of a large sparse matrix.

Eigenvalue Computation Using the Lanczos Process

This section discusses the implicitly shifted QR algorithm for computing a few eigenvalues of a large sparse symmetric
matrix using the Lanczos decomposition. The Lanczos matrix is symmetric tridiagonal, and its columns tend to lose
orthogonality during the Lanczos iteration, resulting in inaccurate eigenvalues. Full reorthogonalization of each new vector
against the already computed ones is computationally expensive but solves the problem. Other methods such as partial
reorthogonalization can be used to speed up the algorithm and retain accuracy.

Matrix symmetry has led to extensive results about the algorithm performance. For instance, the choice of the starting
vector is critical, and orthogonality can be lost only in the direction of converged Ritz vectors. Also, there are results that
specify convergence properties of the method.

22.6 PROBLEMS

22.1 Assume that the columns of matrix V are orthonormal and Q is an orthogonal matrix. Prove that the columns of VQ
are orthonormal.

22.2 Develop Equation 22.5.
22.3 Develop Equation 22.14.
22.4 Show that

∑n
i=1 uiuTi = I if {ui} is an orthonormal basis for Rn. Proceed in stages.

Let v be an arbitrary vector in Rn and consider the product
(∑n

j=1 uiuTi
)
v. There exist constants

{
cj
}
so that

v =∑n
j=1 cjuj.

a. Show that
(∑n

i=1 uiuTi
)
v = v.

b. Argue that (a) implies
∑
uiuTi = I.

22.5 This is a restatement of Exercise 6.4.36 in Ref. [23].
a. Assume that λ is an approximate eigenvalue for Awith corresponding approximate eigenvector v, ‖v‖2 = 1. Form
the residual r = Av− λv, let ε = ‖r‖2 and E = −rvT. Show that (λ, v) is an eigenpair of A+ E and ‖E‖2 = ε.

b. Argue that (λ, v) is an exact eigenpair of a matrix that is close to A.
c. Is (λ, v) is a good approximate eigenpair of A in the sense of backward error?

22.6 If a symmetric tridiagonal matrix is unreduced (no zeros on the subdiagonal and thus none on the superdiagonal), it
must have distinct real eigenvalues (Problem 19.1). When testing for ghost eigenvalues, why is knowing this result
important?

22.6.1 MATLAB Problems

22.7 Using the function biharmonic_op in the software distribution, build a block pentadiagonalmatrix of size 10, 000×
10, 000. Use eigs to compute the six largest eigenvalues in magnitude, and then apply the power method in an
attempt to compute the largest eigenvalue. Explain why you have great difficulty or fail to compute an accurate
result.

22.8 Carry out the numerical experiment described in Example 22.2 and construct a plot like that in Figure 22.2.
22.9 Implement a function, eigsimple, following the outline in Section 22.2.1. It should return just approximate

eigenvalues or eigenvectors and a diagonal matrix of eigenvalues, depending on the number of output arguments.
Test it on the nonsymmetric matrices qh882 and TOLS340 by estimating up to six eigenpairs and checking them
with residchk. Hint: For qh882, use m = 200, and for TOLS1090, use m = 350.

22.10 Implement a function, eigsrestart, following the outline in Section 22.2.2. Test it on the nonsymmetric matrices
bfwa398 and west2021 by estimating maximum of six eigenpairs and checking them with residchk. Use
m = 100.

22.11 Test the function eigsbexplicit on the nonsymmetric matrices steam2, ORSIIR_1, and the symmetric matrix
DIMACS10. You will need to determine appropriate values of m for each matrix. Try to estimate six eigenpairs
and check them with residchk. You might not be able to find six.

22.12 Look at the code for eigssymb and lanczosf and determine how to turn off reorthogonalization.Run yourmodified
code with the symmetric matrix lshp2233 and test the results using residchk. Turn reorthogonalization back on
and execute the same steps. Explain the results.



Large Sparse Eigenvalue Problems Chapter| 22 549

22.13 This problem investigates ghost eigenvalues.
a. The matrix ghosttest in the book software distribution is a 100× 100 diagonal matrix with ghosttest(1,1)

= 100 and ghosttest(100,100) = 10. The remaining diagonal elements are in the range (0, 1). The function
lanczosfplot produces a plot of the Lanczos iteration number vs. the eigenvalues of T. Run it with m = 35 and
reorthog = 0 and see if you can identify ghost eigenvalues. Run it again with reorthog = 1 and compare
the results.

b. Create the diagonalmatrix defined in Example 21.10 using n = 50, lambda_1= 100, lambda_n= 0.2, andρ = 0.9.
Repeat part (a) for this matrix using m = 50.

22.14 Modify eigssymb so it computes either the nev largest or the nev smallest eigenvalues of a large sparse
symmetric matrix by adding a parameter, direction, that has values “L” or “S.” Name the function eigssymb2.
Test your implementation by finding the six largest and the six smallest eigenvalues of the symmetric matrices
SHERMAN1.mat and Andrews.mat in the software distribution. You will need to experiment with m and maxiter
to obtain satisfactory results.



This page intentionally left blank



Chapter 23

Computing the Singular Value
Decomposition

You should be familiar with

● The SVD theorem
● Jacobi rotations

In Chapter 15, we proved the singular value decomposition (SVD) by construction, discussed some information it provides
about a matrix and showed how to use the SVD in image compression. In subsequent chapters, we applied the SVD to
least squares and other problems. However, a significant issue remains. How do we efficiently compute the SVD? The
chapter develops two algorithms for its computation. We begin with the one-sided Jacobi method, since it is based upon the
use of Jacobi rotations, very similar to those we used in Chapter 19 in the computation of the eigenvalues of a symmetric
matrix. We will then discuss the Demmel and Kahan Zero-shift QR Downward Sweep algorithm. This method involves
using Householder reflections to transform any m× n matrix to a bidiagonal matrix. The bidiagonal matrix is then reduced
to a diagonal matrix containing the singular values using bulge chasing, a technique presented in Section 18.8.

23.1 DEVELOPMENT OF THE ONE-SIDED JACOBI METHOD
FOR COMPUTING THE REDUCED SVD

The SVD can be computed in the following way:

Find the singular values of A by computing the eigenvalues and orthonormal eigenvectors for ATA. Place the square roots of the
positive eigenvalues on the diagonal of the matrix �̃ in order from greatest to least and fill all the other entries with zeros. These
normalized eigenvectors form V. Find orthonormal eigenvectors of AAT. These form the columns of U.

This is a slow and potentially inaccurate means of finding the SVD. Roundoff errors can be introduced into the
computation of ATA that alter the correct eigenvalues. Here is an example.

Example 23.1. Let A =
[
3.0556 3.0550
3.0550 3.0556

]
. The singular values of A are 6.1106 and 0.0006. Now compute ATA using

six-digit arithmetic and obtain

ATA =
[
18.6697 18.6697
18.6697 18.6697

]
.

The eigenvalues of ATA are 6.1106 and 0.0000, as opposed to 6.1106 and 0.0006. �

In this section, we will develop an algorithm for the reduced SVD based on Jacobi rotations, since we are already
familiar with this approach to compute the eigenvalues of a symmetric matrix. The algorithm, known as the one-sided
Jacobi algorithm, will generally give good results.

We need to avoid having to compute ATA so we take an approach that will indirectly perform computations on ATA
while actually working with a sequence of seemingly different problems. We use a sequence of Jacobi rotations that will
make columns i, j, i < j of AJ (i, j, c, s) orthogonal. The presence of J (i, j, c, s) to the right of A is the reason the algorithm
is called one-sided Jacobi. Consider the product

Numerical Linear Algebra with Applications. http://dx.doi.org/10.1016/B978-0-12-394435-1.00023-5
Copyright © 2015 Elsevier Inc. All rights reserved. 551



552 Numerical Linear Algebra with Applications

i j

a11 a1i . . . a1j . . . a1n
...

. . .
... . . .

... . . .
...

i aii aij . . . ain
...

...
. . .

...
j aji ajj ajn

...
...

...
. . .

an1 ani anj · · · ann
A

i
*

j

i j

1 0 0 . . . . . . . . . 0
...

. . . . . . . . . . . .
...

i 0 c · · · s . . . 0
...

. . .
j 0 −s c 0

...
. . .

0 1
J (i, j, c, s)

which yields the matrix

i j

a11 ca1i − sa1j . . . sa1i + ca1j . . . a1n
...

. . .
... . . .

... . . .
...

i ai1 caii − saij saii + caij . . . ain
...

...
. . .

...
...

j aj1 caji − saji saji + cajj ajn
...

...
...

. . .
...

an1 cani − sanj sani + sanj · · · ann
A

Require that the vectors in columns i and j be orthogonal.

〈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ca1i − sa1j
...

caii − saij
...

caji − saji
...

cani − sanj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sa1i + ca1j
...

saii + caij
...

saji + cajj
...

sani + canj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

〉
= 0. (23.1)

Form the inner product in Equation 23.1 to obtain(
ca1i − sa1j

) (
sa1i + ca1j

)+ · · · + (
caii − saij

) (
saii + caij

)+ · · · + (
caji − saji

) (
saji + cajj

)+ · · · (23.2)

+ (
cani − sanj

) (
sani + canj

) = 0. (23.3)

After some algebra, Equation 23.3 transforms to(
c2 − s2

) n∑
k=1

akiakj + cs

[
n∑

k=1
a2ki −

n∑
k=1

a2kj

]
= 0,

and so

c2 − s2

cs
=
∑n

k=1 a2kj −
∑n

k=1 a2ki∑n
k=1 akiakj

. (23.4)

Proceed like we did with Equation 19.2, except that the right-hand side is different. The result is

t2 + 2τ t − 1 = 0,

where

τ = 1

2

∑n
k=1 a2kj −

∑n
k=1 a2ki∑n

k=1 akiakj
,

and s = ct. Table 23.1 provides a summary of the required computations.



Computing the Singular Value Decomposition Chapter| 23 553

TABLE 23.1 Computation
of c and s for the Jacobi
One-Sided Method

τ = 1
2

∑n
k=1 a2kj −

∑n
k=1 a2ki∑n

k=1 akiakj

t =

⎧⎪⎪⎨⎪⎪⎩
1

τ+√τ2+1 , τ ≥ 0

−1
−τ+√τ2+1 , τ < 0

⎞⎟⎟⎠
c = 1√

1+t2

s = ct

Now, what does this computation have to do with ATA? Require that the rotation J (i, j, c, s)T ATAJ (i, j, c, s) zero-out the
off diagonal entries at indices (i, j) and (j, i) of the symmetric matrix ATA. The entries of ATA at indices (i, i) , (i, j) , (j, i),
and (j, j) are shown in the following matrix:

i j

ATA =
i

j

⎡⎢⎢⎢⎢⎣
. . . . . . . . .∑n
k=1 a2ki

∑n
k=1 akiakj

. . . . . . . . .∑n
k=1 akiakj

∑n
k=1 a2kj

. . .

⎤⎥⎥⎥⎥⎦
To zero-out

(
ATA

)
ji and

(
ATA

)
ij by forming J (i, j, c, s)T ATAJ (i, j, c, s), proceed just as we did in Section 19.1, substituting∑n

k=1 a2ki for aii,
∑n

k=1 a2kj for ajj, and
∑n

k=1 akiakj for aji and aij, and apply the results in Table 19.2. The values obtained
are the same as those in Table 23.1. Choosing c and s so that columns i and j of AJ (i, j, c, s) are orthogonal zeros-out the
entries at indices (i, j) and (j, i) of ATA.

The algorithm now proceeds as follows. Start with A, and apply a sequence of right Jacobi rotations until the result is a
matrix U with “nearly orthogonal” columns

AJ1J2J3 . . . Jk = U. (23.5)

Performing the Jacobi rotations given in Equation 23.5 is actually performing orthogonal similarity transformations on ATA,
producing a matrix with the eigenvalues of ATA on its diagonal.

JTk . . . JT2 J
T
1A

TAJ1J2 . . . Jk ≈ �2, (23.6)

� =

⎡⎢⎢⎢⎣
σ1 0

σ2
. . .

0 σn

⎤⎥⎥⎥⎦ ,

where the σi, 1 ≤ i ≤ n, are the singular values of A. Let V be the orthogonal matrix V = J1J2J3 . . . Jk, so Equation 23.5
can be written as

AV = U, (23.7)

and

A = UVT. (23.8)

From Equation 23.8, AT = VU
T
. Use this result in Equation 23.6 to obtain

JTk . . . JT2 J
T
1VU

T
AJ1J2 . . . Jk ≈ �2.



554 Numerical Linear Algebra with Applications

Now, AJ1J2 . . . Jk = AV = U from Equation 23.7, so

JTk . . . JT2 J
T
1VU

T
U ≈ �2

Since V = J1J2J3 . . . Jk, we have

JTk . . . JT2 J
T
1 J1J2J3 . . . JkU

T
U ≈ �2

and

U
T
U = �2. (23.9)

Assuming that the columns of U are orthogonal, write it in the form (u1u2 . . . un), where the ui are orthogonal, and
Equation 23.9 can be written as follows:

⎡⎢⎢⎢⎣
‖u1‖22 0

‖u2‖22
. . .

0 ‖un‖22

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

σ 2
1 0

σ 2
2

. . .
σ 2
n

⎤⎥⎥⎥⎦ . (23.10)

Keep in mind that the columns ofU are actually nearly orthogonal, so there will most likely be small entries off the diagonal.
Equation 23.10 says that the 2-norm of the columns of U is approximately the singular values of A. Since ui

σi
is a unit vector,

U =
(
u1
σ1

u2
σ2
· · · un

σn

)
is an orthogonal matrix, and U = U�. Note that U = U�, and by using this in Equation 23.8, we

have

A = U�VT,

the SVD of A.
We know that the Jacobi method applied to the symmetric matrix ATA converges to a diagonal matrix containing

its eigenvalues (Theorem 19.3). We stated to continue the Jacobi algorithm for the SVD until AJ1J2J3 . . . Jk is “nearly
orthogonal.” What test do we use to measure the extent of orthogonality, and will this test guarantee that the eigenvalues of
ATA are computed accurately? Let ui and uj be column vectors of U. The error tolerance test is that the maximum value of
expression 23.11 for all i, j in the current sweep is less than a prescribed tolerance.∣∣∣∣∣

〈
ui
‖ui‖2 ,

uj∥∥uj∥∥2
〉∣∣∣∣∣ . (23.11)

This says that the inner product of the normalized columns of U should be small. A proof that this criterion leads to
convergence can be found in the paper Jacobi’s method is more accurate than QR, by Demmel and Veselić [82] and in a
1989 report by the same authors that can be found at http://www.netlib.org/lapack/lawnspdf/lawn15.pdf. This paper shows
that Jacobi can compute small singular values with better relative accuracy than other commonly used methods.

23.1.1 Stability of Singular Value Computation

We have seen that the computation of the eigenvalues of a nonsymmetric matrixA can be ill-conditioned. A natural question
to ask is whether the same is true for the computation of singular values.ATA is symmetric, and so we know that the condition
numbers of the eigenvalues of ATA are one. However, theoretically we have to deal with a product of two matrices, and
roundoff error will be present. Assuming that U and V have orthonormal columns, suppose we introduce errors δA into A,
resulting in errors δ� in �. Then, A+ δA = U (� + δ�) VT, and�+ δ� = UT (A+ δA)V. Orthogonal matrices preserve
norms, so ‖� + δ�‖2 = ‖A+ δA‖2, and perturbations in A cause perturbations of roughly the same size in its singular
values, so the computation of singular values is well conditioned. To this effect, see Ref. [19, pp. 366-367], where a proof
of the following theorem is provided.

Theorem 23.1. Let A and A+E be m×n matrices, m ≥ n. Let σ1 ≥ σ2 ≥ · · · ≥ σn and σ̃1 ≥ σ̃2 ≥ · · · σ̃n be, respectively,
the singular values of A and A+ E. Then |σi − σ̃i| ≤ ‖E‖2 for each i.



Computing the Singular Value Decomposition Chapter| 23 555

Of course for Theorem 23.1 to be useful, E must be small. In addition, there are issues with small singular values. For a
discussion of problems with small singular values and other singular value perturbation results, see Ref. [83].

23.2 THE ONE-SIDED JACOBI ALGORITHM

Algorithm 23.1 implements the one-sided Jacobi method for computing the reduced SVD. There are some notes you will
need before reading the algorithm.

● Like the Jacobi algorithm for finding the eigenvalues of a real symmetric matrix, Algorithm 23.1 uses the cyclic-by-row
method.

● Before performing an orthogonalization step, the norms of columns i and j of U are compared. If the norm of column i
is less than that of column j, the two columns are switched. This necessitates swapping the same columns of V as well.
This action assures that the singular values in S appear in decreasing order.

● The norms of the final columns of U are the approximation to the singular values. If a norm is less than the machine
precision eps, it is assumed that the singular value is zero.

● If the matrix A has a row or column of zeros, the algorithm produces a decomposition A = U�VT, but U is not
orthogonal, since it will have a row or column of zeros.

Algorithm 23.1 One-Sided Jacobi Algorithm

function JACOBISVD(A,tol,maxsweeps)

% One-sided Jacobi method for computing the reduced SVD of

% an m × n matrix.

% Input: Matrix A, error tolerance tol, and the

% maximum number of sweeps, maxsweeps.

% Output: m × n orthogonal matrix U, n× n diagonal matrix �

% containing the singular values of A in decreasing order, an

% n× n orthogonal matrix V, and numsweeps, the number of sweeps required.

% If the error tolerance is not obtained in maxsweeps, numsweeps = -1.

U = A

V = I

singvals = 0

tmp = [
1 1 . . . 1 1

]T
errormeasure = tol + 1

numsweeps = 0

while (errormeasure≥ tol) and (numsweeps≤ maxsweeps) do
numsweeps = numsweeps + 1

for i = 1:n-1 do
errormeasure = 0

for j = i+1:n do
normcoli = ‖U(:, i)‖2
normcolj = ‖U(:, j)‖2
if normcoli < normcolj then

% Assure the singular values will appear in decreasing order in S.

swap columns i and j of U and V

end if
α =∑m

k=1 u2ki
β =∑m

k=1 u2kj
γ =∑m

k=1 ukiukj
if αβ �= 0 then

errormeasure= max

(
errormeasure,

|γ |√
αβ

)
end if
% compute Jacobi rotation that makes columns i and j of U

% orthogonal and also zeros-out
(
ATA

)
ij

and
(
ATA

)
ji



556 Numerical Linear Algebra with Applications

if γ �= 0 then
ζ = β−α

2γ
if ζ ≥ 0 then

t = 1

|ζ |+
√

1+ζ 2

else
t = − 1

|ζ |+
√

1+ζ 2

end if
c = 1√

1+t2 s = ct

else
c = 1

s = 0

end if
% update columns i and j of U.

t = U(:,i)

U(:,i) = ct - s*U(:,j)

U(:,j) = st + c*U(:,j)

% update matrix V of right singular vectors.

t = V(:,i)

V(:,i) = ct - sV(:,j)

V(:,j) = st + cV(:,j)

end for
end for

end while
% The singular values are the norms of the columns of U.

% The left singular vectors are the normalized columns of U.

for j = 1:n do
singvalsj = ‖U(:, j)‖2
if singvalsj > eps then

U(:, j) = U(:, j)/singvalsj
end if

end for
� = diag(singvals)

if errormeasure ≥ tol then
numsweeps = -1

end if
end function

NLALIB: The function jacobisvd implements Algorithm 23.1. Its return values can be one of three forms:

a. [U, S, V, maxsweeps] = jacobisvd(A,tol,maxsweeps)

b. S = jacobisvd(A,tol,maxsweeps)

c. jacobisvd(A,tol,maxsweeps)

The default values of tol and maxsweeps are 1.0× 10−10 and 10, respectively.

Example 23.2. The first part of the example finds the SVD for the Hanowa matrix of order 500. This matrix is often
used as a test matrix for eigenvalue algorithms because all its eigenvalues lie on a line in the complex plane. We will apply
jacobisvd to the matrix and compute

∥∥A− USVT
∥∥
2.

>> A = gallery(’hanowa’, 500);

[U S V] = jacobisvd(A, 1.0e-14);

norm(A - U*S*V’)

ans =

1.110223024625157e-16



Computing the Singular Value Decomposition Chapter| 23 557

For the second part, load the 20× 20 matrix SMLSINGVAL.mat from the software distribution. It has singular values
σi, 1 ≤ i ≤ 15 that range from 5.0 down to 1.0. The last five singular values are

σ16 = 1.0× 10−12, σ17 = 1.0× 10−13, σ18 = 1.0× 10−14, σ19 = 1.0× 10−15, σ20 = 0.5× 10−15.

Compute the singular values of SMLSINGVAL and output the smallest six with 16 significant digits.

>> S = jacobisvd(SMLSINGVAL,1.0e-15);

>> for i = 15:20

fprintf(’S(%d) = %.16g\f’,i,S(i));
end

S(15) = 1.1000000000000001

S(16) = 0.0000000000010000

S(17) = 0.0000000000001000

S(18) = 0.0000000000000100

S(19) = 0.0000000000000010

S(20) = 0.0000000000000005 �

23.2.1 Faster and More Accurate Jacobi Algorithm

A variant of the one-sided Jacobi algorithm described in Refs. [84, 85] provides higher accuracy and speed than the
algorithm we have described. The algorithm uses rank-revealingQR with column pivoting [2, pp. 276-280] that generates a
decomposition AP = QR, where P is a permutation matrix. The algorithm described in the two papers delivers outstanding
performance, and very rapidly computes the SVD of a dense matrix with high relative accuracy. The speed of the algorithm
is comparable to the classical methods. The algorithm is said to be a preconditioned Jacobi SVD algorithm. Computation of
singular values is well conditioned; however, there are some classes of matrices for which the computation of singular values
appears ill-conditioned [84, p. 1323]. This is termed artificial ill-conditioning, and the algorithm handles this phenomenon
correctly, while bidiagonalization-basedmethods do not. This algorithm is too complex for presentation in the text, but there
are some interesting facets of the algorithm we can present.

After computing the QR decomposition of m × n matrix A with partial pivoting m ≥ n, the SVD of A and the upper-
triangular matrix R have the same singular values. Let

AP = QR, (23.12)

and then

ATA = (
QRPT

)T (
QRPT

) =
PRTQTQRPT = P

(
RTR

)
PT.

P is an orthogonal matrix, so ATA and RTR have the same eigenvalues. As we will see, the only SVD computation is for the
upper n× n submatrix of R.

The algorithm deals with two cases, rank (A) = n, and rank (A) = rA < n. If rank (A) = n, we can compute the SVD
of A using the following steps:

a. Compute AP = QR using column pivoting.
b. Let U = Im×m and V = In×n
c. Compute the SVD of RT (1 : n, 1 : n) using the enhanced Jacobi method:[

V̂, �̂, U (1 : n, 1 : n)
] = enhanced Jacobi

(
R (1 : n, 1 : n)T

)
d. Form U = QU and V = PV̂.
e. Let � be the m× n zero matrix with �̂ placed in its upper left-hand corner.

To see that this works, note that

R (1 : n, 1 : n)T = V̂�̂U (1 : n, 1 : n)T ,

R (1 : n, 1 : n) = U (1 : n, 1 : n) �̂V̂T,

U (1 : n, 1 : n)T R (1 : n, 1 : n) = �̂V̂T.



558 Numerical Linear Algebra with Applications

Form

U�VT = Q

⎡⎢⎢⎢⎣
U (1 : n, 1 : n) 0 . . . 0

0 1
...

. . .
0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

�̃

0
...
0

⎤⎥⎥⎥⎦ V̂TPT

= Q

⎡⎢⎢⎢⎣
U (1 : n, 1 : n) 0 . . . 0

0 1
...

. . .
0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

�̂V̂T

0
...
0

⎤⎥⎥⎥⎦PT

= Q

⎡⎢⎢⎢⎣
R (1 : n, 1 : n)

0
...
0

⎤⎥⎥⎥⎦PT = A.

The case where rank (A) = rA < n is somewhat more involved. Problem 23.9 asks you to implement a simplified version
of this algorithm, using jacobisvd to compute the required decomposition for a submatrix of R. The problem provides the
code to handle the rank-deficient case.

23.3 TRANSFORMING A MATRIX TO UPPER-BIDIAGONAL FORM

The Demmel and Kahan Zero-shift QR Downward Sweep algorithm for computing the SVD first reduces A to a bidiagonal
matrix. The outline of an algorithm for transforming an m × n matrix to upper-bidiagonal form is easy to understand
graphically. Let k = min (m− 1, n). First, use premultiplication by a Householder matrix to zero-out a21, a31, . . . , am1.
Now zero-out elements a13, a14, . . . , a1n of A using postmultiplication by a Householder matrix.

A =

⎡⎢⎢⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎦
−−→
Hu1A

⎡⎢⎢⎢⎢⎢⎢⎣
X ∗ ∗ ∗ ∗ ∗
0 X ∗ ∗ ∗ ∗
0 ∗ X ∗ ∗ ∗
0 ∗ ∗ X ∗ ∗
0 ∗ ∗ ∗ X ∗
0 ∗ ∗ ∗ ∗ X

⎤⎥⎥⎥⎥⎥⎥⎦
−−−−−→
Hu1AHv1

⎡⎢⎢⎢⎢⎢⎢⎣
X X 0 0 0 0
0 X ∗ ∗ ∗ ∗
0 ∗ X ∗ ∗ ∗
0 ∗ ∗ X ∗ ∗
0 ∗ ∗ ∗ X ∗
0 ∗ ∗ ∗ ∗ X

⎤⎥⎥⎥⎥⎥⎥⎦ = A1.

Repeat the process by using Householder matrices to zero-out elements a32, a42, . . . , am2 and a24, a25, . . . , a2n.

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X 0 0 0 0

0 X ∗ ∗ ∗ ∗
0 ∗ X ∗ ∗ ∗
0 ∗ ∗ X ∗ ∗
0 ∗ ∗ ∗ X ∗
0 ∗ ∗ ∗ ∗ X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
−−−−−−−−→
Hu2Hu1AHv1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X 0 0 0 0

0 X ∗ ∗ ∗ ∗
0 0 X ∗ ∗ ∗
0 0 ∗ X ∗ ∗
0 0 ∗ ∗ X ∗
0 0 ∗ ∗ ∗ X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
−−−−−−−−−−→
Hu2Hu1AHv1Hv2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X 0 0 0 0

0 X X 0 0 0

0 0 X ∗ ∗ ∗
0 0 ∗ X ∗ ∗
0 0 ∗ ∗ X ∗
0 0 ∗ ∗ ∗ X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= A2.

Execute the pre- and postmultiplication k − 1 times, and finish with one more premultiplication. Through the series of
Householder reflections, we have formed the upper-bidiagonal matrix B as follows:

B = HukHuk−1 . . .Hu1AHv1Hv2 . . .Hvk−1 .

Since the Householder matrices are orthogonal, the singular values of B are the same as those of A.
Generating the postproduct by Hvi requires an explanation. If we compute A

T, then ai, i+1, ai, i+2, ai, i+3, . . . , ai,n are in
column i, and we can compute a Householder reflection that zeros them out. By again taking the transpose, the required
elements of row i are zero. Taking the transpose is inefficient, so we proceed as follows:

Let B = AT.
Compute Householder reflection Hvi that zeros-out bi+2, i , bi+3, i , . . ., bn, i and form HviB = HviA

T. Recalling that HT
vi = Hvi , take

the transpose of HviA
T, and we have AHvi , a matrix in which the elements ai, i+2, ai, i+3, . . . , ai,k are zero. Compute AHvi implicitly

using Equation 17.12.



Computing the Singular Value Decomposition Chapter| 23 559

Example 23.3. This example illustrates the conversion to bidiagonal form step by step for the matrix A =
⎡⎣ 1 5 3
1 0 −7
3 8 9

⎤⎦ .

Of course, the Householder matrices are not actually formed.

Hu1 Hu1A Hv1⎡⎢⎣ −0.3015 −0.3015 −0.9045−0.3015 0.9302 −0.2095
−0.9045 −0.2095 0.3714

⎤⎥⎦
⎡⎢⎣ −3.3166 −8.7438 −6.93480 −3.1839 −9.3015

0 −1.5518 2.0955

⎤⎥⎦
⎡⎢⎣ 1.0000 0 0

0 −0.7835 −0.6214
0 −0.6214 0.7835

⎤⎥⎦
Hu1AHv1 Hu2 B = Hu2Hu1AHv1⎡⎢⎣ −3.3166 11.1600 0

0 8.2745 −5.3092
0 −0.0863 2.6061

⎤⎥⎦
⎡⎢⎣ 1 0 0

0 −0.9999 0.0104

0 0.0104 0.9999

⎤⎥⎦
⎡⎢⎣ −3.3166 11.1600 0

0 −8.2750 5.3361

0 0 2.5506

⎤⎥⎦
�

Algorithm 23.2 describes the reduction to upper-bidiagonal form. Note that the function[
A, u

] = hzero2 (A, i, j, row)

zeros-out the required column elements if row = 0 and the required row elements if row = 1. Its implementation is in the
book software distribution.

Algorithm 23.2 Reduction of a Matrix to Upper-bidiagonal Form

function BIDIAG(A)

% Reduces the m × n matrix A to bidiagonal form.

% Input: matrix A

% Output: matrix B in upper-bidiagonal form.

k = min (m − 1, n)

for i = 1:k do
A = hzero2(A,i,i)

if i ≤ k then
A = hzero2 (A, i, i+ 1, 1)

end if
end for
return A

end function

NLALIB: The function bidiag implements Algorithm 23.2.

Remark 23.1. The book software distribution contains a function bidiagdemo that illustrates the algorithm. A press of
the space bar graphically shows the location of the nonzero elements. NLALIB contains a 4× 4 matrix SVALSDEMO that
serves well for this purpose.

23.4 DEMMEL AND KAHAN ZERO-SHIFT QR DOWNWARD SWEEP ALGORITHM

We presented the one-sided Jacobi algorithm because it is based on ideas we have discussed previously and because research
has proven it is capable of high accuracy. For the one-sided Jacobi method, our MATLAB implementation returned U, S,
and V or a vector containing the singular values.



560 Numerical Linear Algebra with Applications

For many years, the Golub-Kahan-Reinsch algorithm has been the standard for SVD computation [25, 86]. It involves
working implicitly with ATA. We will not discuss this algorithm but, instead, present the Demmel and Kahan zero-shift
QR downward sweep algorithm, since it has excellent performance, and it reinforces our understanding of bulge chasing
introduced in Section 18.8 [87]. A paper describing the algorithm can be accessed from the Internet at http://www.netlib.
org/lapack/lawnspdf/lawn03.pdf. We will develop the algorithm to return only a vector of singular values. The algorithm
executes in two stages. The first stage transforms anm×nmatrix,m ≥ n, into an upper-bidiagonalmatrix using Householder
reflections, and then this matrix is transformed into a diagonal matrix of singular values, again using products of orthogonal
matrices.

Stage 1 A⇒ B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 0
b22 b23

. . .
. . .
. . .

. . .

. . . bn−1,n
0 bnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Stage 2 B =⇒ �̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0
. . .

σr
0

. . .
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Phase 2 is similar to the implicit QR algorithm bulge chasing, and its ultimate aim is to eliminate the superdiagonal

entries at indices (1, 2) , (2, 3) , (3, 4) , . . . , (n− 1, n), leaving the singular values on the diagonal. In each pass, a rotation
is applied on the right to zero-out an element of the superdiagonal. In the process, a nonzero element is introduced in a
location where we don’t want it (the bulge), but another element is zeroed-out as a side effect. The algorithm then applies a
rotation on the left to remove the nonzero element created from the previous rotation but creates nonzeros in two other
locations. After the last pass, the matrix remains in upper-bidiagonal form. By repeating the k − 1 passes repeatedly,
convergence to a diagonal matrix of singular values occurs. We will not attempt to explain why this algorithm works, but
will just demonstrate the process. The interested reader should refer to http://www.netlib.org/lapack/lawnspdf/lawn03.pdf.

Actions in a Pass

Step i = 1:

Zero-out the entry at (1, 2) by multiplying on the right by a rotation matrix. This action introduces a non-zero value at (2, 1)
immediately below the diagonal.
Multiply by a rotation on the left to zero-out (2, 1). This introduces nonzeros at indices(1, 2) and (1, 3).

Steps i = 2 through (k − 2):

Multiply by a rotation on the right that zeros-out (i, i+ 1) and, as a side effect, (i− 1, i+ 1). This leaves a nonzero value
at index (i+ 1, i).
Zero-out (i+ 1, i). This leaves nonzeros at indices (i, i+ 1) and (i, i+ 2).

Step i = k − 1:

Multiply by a rotation on the right that zeros-out (i, i+ 1) and, as a side effect, (i− 1, i+ 1). This leaves a nonzero value
at index (i+ 1, i).
Zero-out (i+ 1, i). The matrix remains in upper-bidiagonal form.

We use a 5× 5 matrix to illustrate one pass of the algorithm.

A =

⎡⎢⎢⎢⎢⎣
∗ ∗ 0 0 0
0 ∗ ∗ 0 0
0 0 ∗ ∗ 0
0 0 0 ∗ ∗
0 0 0 0 ∗

⎤⎥⎥⎥⎥⎦ .



Computing the Singular Value Decomposition Chapter| 23 561

Step 1: Develop a Givens rotation, Jr1 , that zeros-out (1, 2) but generates a nonzero value at index (2, 1).

A =

⎡⎢⎢⎢⎢⎢⎣
∗ 0 0 0 0
X ∗ ∗ 0 0
0 0 ∗ ∗ 0
0 0 0 ∗ ∗
0 0 0 0 ∗

⎤⎥⎥⎥⎥⎥⎦ .

Develop a rotation, Jl1 , that zeros-out (2, 1). It introduces nonzeros at (1, 2) and (1, 3).

A =

⎡⎢⎢⎢⎢⎢⎣
∗ X X 0 0
0 ∗ ∗ 0 0
0 0 ∗ ∗ 0
0 0 0 ∗ ∗
0 0 0 0 ∗

⎤⎥⎥⎥⎥⎥⎦ .

Step 2: Create a rotation, Jr2 , that zeros-out (2, 3). It leaves a nonzero at (3, 1) but zeros out (1, 3).

A =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ 0 0 0
0 ∗ 0 0 0
X 0 ∗ ∗ 0
0 0 0 ∗ ∗
0 0 0 0 ∗

⎤⎥⎥⎥⎥⎥⎦ .

Develop a rotation, Jl2 , that zeros-out (3, 1) and leaves nonzeros at (2, 3) and (2, 4)

A =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ 0 0 0
0 ∗ X X 0
0 0 ∗ ∗ 0
0 0 0 ∗ ∗
0 0 0 0 ∗

⎤⎥⎥⎥⎥⎥⎦ .

Step 3: Compute a rotation Jr3 to zero-out (3, 4) that leaves a nonzero at (4, 3) but zeros-out (2, 4).

A =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ 0 0 0
0 ∗ ∗ 0 0
0 0 ∗ 0 0
0 0 X ∗ ∗
0 0 0 0 ∗

⎤⎥⎥⎥⎥⎥⎦ ,

Develop a rotation, Jl3 , that zeros-out (4, 3), leaving nonzeros at (3, 4) and (3, 5).

A =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ 0 0 0
0 ∗ ∗ 0 0
0 0 ∗ X X
0 0 0 ∗ ∗
0 0 0 0 ∗

⎤⎥⎥⎥⎥⎥⎦ .

Step 4: Multiply by a rotation Jr4 that zeros-out (4, 5), leaves a nonzero at (5, 4), and zeros-out (3, 5).

A =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ 0 0 0
0 ∗ ∗ 0 0
0 0 ∗ ∗ 0
0 0 0 ∗ 0
0 0 0 X ∗

⎤⎥⎥⎥⎥⎥⎦ .

As the final operation, multiply by a rotation Jl4 that zeros-out (5, 4) and places a nonzero value at (4, 5).

A =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ 0 0 0
0 ∗ ∗ 0 0
0 0 ∗ ∗ 0
0 0 0 ∗ ∗
0 0 0 0 ∗

⎤⎥⎥⎥⎥⎥⎦ .

A pictorial view of a downward sweep is useful, and Figure 23.1 depicts each step graphically using a 4 × 4
matrix.



562 Numerical Linear Algebra with Applications

FIGURE 23.1 Demmel and Kahan zero-shift QR downward sweep.
Continued



Computing the Singular Value Decomposition Chapter| 23 563

FIGURE 23.1, CONT’D

The algorithm as described in Ref. [87] is of production quality. It describes very fast rotations to speed up the algorithm,
switches between downward and upward sweeps depending on conditions, applies sophisticated convergence criteria, and
so forth. A basic version of the algorithm is not difficult to understand, and we present it in Algorithm 23.3. Note that it
uses deflation for efficiency and accuracy and features a function givensmulpsvd that performs the right-hand side product
with a rotation matrix.

Algorithm 23.3 Demmel and Kahan Zero-Shift QR Downward Sweep.

function SINGVALS(A, tol)

% Computes the singular values of an m × n matrix.

% Input: real matrix A and error tolerance tol.

% Output: a vector S of the singular values of A ordered

% largest to smallest.

if m < n then A = AT

tmp = m

m = n

n = tmp

end if

A = bidiag(A)

k = min (m, n)

while k ≥ 2 do
% convergence test

if |ak−1,k| < tol (|ak−1, k−1| + |akk|) then
ak−1, k = 0

k = k-1

else
for i = 1:k-1 do % Compute the Givens parameters for a rotation

% that will zero-out A(i,i+1) and A(i-1,i+1),

% but makes A(i+1,i) non-zero.[
c, s

] = givensparms(aii, ai, i+1)
% Apply the rotation by performing a postproduct.

A(1:k,1:k) = givensmulpsvd(A(1:k,1:k),i,i+1,c,s)

% Compute the Givens parameters for a rotation



564 Numerical Linear Algebra with Applications

% that will zero-out ai+1, i to correct the result

% of the previous rotation. The rotation makes

% ai, i+2 and A(i,i+1) non-zero.[
c, s

] = givensparms(aii, ai+1,i)
% Apply the rotation as a preproduct.

A(1:k,1:k) = givensmul(A(1:k,1:k),i,i+1,c,s)

end for
end if

end while
return S = diag(A)

end function

NLALIB: The function singvals implements Algorithm 23.3.

Remark 23.2. The book software distribution contains a function singvalsdemo(A) that demonstrates convergence to
the diagonal matrix of singular values. Initially, a graphic showing the bidiagonal matrix appears. A press of the space
bar creates graphics like those in Figure 23.1. Continue pressing the space bar and see convergence taking place. At the
conclusion, the function returns the computed singular values. NLALIB contains a 4× 4 matrix SVALSDEMO that serves
well with singvalsdemo.

Example 23.4. The matrix

A = gallery (5) =

⎡⎢⎢⎢⎢⎣
−9 11 −21 63 −252
70 −69 141 −421 1684
−575 575 −1149 3451 −13, 801
3891 −3891 7782 −23, 345 93, 365
1024 −1025 2048 −6144 24, 572

⎤⎥⎥⎥⎥⎦
is particularly interesting. Apply the function eigb to A:

>> A = gallery(5);
>> eigb(A)

ans =

0.021860170045529 + 0.015660137292070i

0.021860170045529 - 0.015660137292070i

-0.008136735236891 + 0.025992813783568i

-0.008136735236891 - 0.025992813783568i

-0.027446869619491 + 0.000000000000000i

All the eigenvalues but one are complex; however, the characteristic equation of A is p (λ) = λ5, so in fact all its
eigenvalues are 0. To explain the results, compute the condition numbers of the eigenvalues.

>> eigcond(A)

ans =

1.0e+10 *

2.196851076143216

2.146816343479836

2.146816260054680

2.068763020180955

2.068762702670772

All the eigenvalues of A are ill-conditioned, so the failure of eigb is not unexpected. The MATLAB function eig fails
as well.

MATLAB finds the rank of a matrix by computing the SVD and determining the number of singular values larger
than the default tolerance max(size(A))*eps(norm(A)). As we have shown, the computation of singular values is well
conditioned. The following sequence computes the singular values using singvals. Since all the eigenvalues of A are 0,
A is not invertible, so it must have at least one zero singular value, and the last computed singular value is approximately
8.713× 10−14.



Computing the Singular Value Decomposition Chapter| 23 565

>> A = gallery(5);
>> rank(A)

ans =

4

>> S = singvals(A,1.0e-15);

>> S(5)

ans =

8.713452466443371e-14

>> max(size(A))*eps(norm(A))

ans =

7.275957614183426e-11

Because S(5) is less than max(size(A))*eps(norm(A)), the rank is determined to be four. �

23.5 CHAPTER SUMMARY

The One-Sided Jacobi Method for Computing the SVD

The use of Jacobi rotations is one of the first methods for computing the SVD but was replaced by the Golub-Kahan-Reinsch
and Demmel-Kahan algorithms. Recently, the one-sided Jacobi method, with proper stopping conditions, was shown to
compute small singular values with high relative accuracy. The method uses a sequence of postproducts of Jacobi rotation
matrices that cause AJ1J2 . . . Jk to have approximately orthogonal columns. The norms of the columns of this matrix are
the singular values. It turns out that the sequence of one-sided products implicitly reduces ATA to a diagonal matrix using
orthogonal similarity transformations, where the diagonal entries are the eigenvalues of ATA. Thus, it is never necessary to
compute ATA and deal with the computational time and rounding errors this will cause.

Transforming a Matrix to Upper-Bidiagonal Form

The first step in the standard algorithms for computing the SVD first reduce the matrix to upper-bidiagonal form using a
sequence of Householder matrices. A left multiplication by a Householder matrix zeros-out elements below the diagonal,
and a right multiplication zeros-out elements (i, i+ 2) through (i, n) of row i.

The Demmel and Kahan Zero-Shift QR Downward Sweep Algorithm

The first step of this algorithm is reducing the matrix to upper-bidiagonal form. The algorithm then continues by bulge
chasing that converges to a diagonal matrix of singular values. In the book software, the function singvals estimates
singular values by continually chasing the bulge downward. In the production quality algorithm, chasing varies from
downward to upward as convergence conditions change.

23.6 PROBLEMS

23.1 Let A =
⎡⎣ 1 1
0.000001 0

0 0.000001

⎤⎦. Find the singular values of A using exact arithmetic and show that A has rank 2

but is close to a matrix of rank 1. Use the Symbolic Toolbox if available.

23.2 Let A =
⎡⎣ 1 2 −1

3 0 4
−1 5 6

⎤⎦.
a. Use bidiag and convert A to an upper-bidiagonal matrix.
b. Carry out one downward sweep of the Demmel-Kahan algorithm.

23.3 The computation of singular values is well conditioned, but the same is not true of singular vectors. Singular vectors
corresponding to close singular values are ill-conditioned. This exercise derives from an example in Ref. [83].



566 Numerical Linear Algebra with Applications

Let

A =
[
1 0
0 1 + ε

]
,

and show that the right singular vectors of A are

V =
[
1 0
0 1

]
.

Let

Â =
[
1 ε

ε 1

]
be a perturbation of A. Show that the right singular vectors of Â are

V̂ = 1√
2

[
1 1
1 −1

]
.

23.4 Develop an algorithm that takes a tridiagonal matrix A and transforms it to an upper bidiagonal matrix B using
orthogonal matrices U and V such that UAV = B. HINT: Use Givens rotations with bulge chasing. First, eliminate
(2, 1) and locate the bulge. Remove it with a column rotation, and look for the next bulge. Eliminate it with a row
rotation, and so forth. To determine the pattern of rotations, experiment with a 4× 4 matrix.

23.5
a. Let A be an upper-bidiagonal matrix having a multiple singular value. Prove that Amust have a zero on either its
diagonal or superdiagonal.

b. Is part (a) true for a lower-bidiagonal matrix.
c. Assume that the diagonal and superdiagonal of a bidiagonal matrix are nonzero. Show that the singular values of
the matrix are distinct.

23.6 The NLA implementation of the Demmel and Kahan zero-shift QR downward sweep algorithm does not compute
U and V of the SVD.
a. Upon convergence of the singular values, some will be negative. Recall that each columnV (:, i) is an eigenvector
of ATA corresponding to singular value σ 2

i , so that A
TA (V (:, i)) = σ 2

i V (:, i). If σi < 0, show that it is necessary
to negate V (; , i).

b. Show how to modify the algorithm so it computes the full SVD for A, m ≥ n. You will need to maintain the
products of the right and left Householder reflections used to bidiagonalize A. During bulge sweeping, maintain
the products of the left and right Givens rotations.

23.6.1 MATLAB Problems

23.7 Randomly generate a matrix A of order 16× 4 by using the MATLAB command rand(16,4). Then verify using
the MATLAB command rank that rank(A) = 4. Now run the following MATLAB commands:

[U S V] = svd(A);
S(4,4) = 0;

B = U*S*V’;

What is the rank of B? Explain.
23.8 The execution of A = gallery(’kahan’,n,theta) returns an n× n upper-triangular matrix that has interesting

properties regarding estimation of condition number and rank.The default value of theta is 1.2.
Let n = 90, and compute singvals(A). What is the smallest singular value? Verify that this is correct to five

significant digits using svd. Try to compute the inverse of A. What is the true rank of A? What is the result of
computing the rank using MATLAB? If there is a difference, explain.

23.9 This problem asks for a simplified implementation the modified Jacobi SVD algorithm presented in Section 23.2.1.
When an SVD is required, use jacobisvd. The QR factorization used is rank revealing, so compute the rank of A as
follows:



Computing the Singular Value Decomposition Chapter| 23 567

[Q,R,P] = qr(A);
rA = 0 ;

for i = 1 : n

if abs(R(i,i)) > max(size(A))*eps(norm(A))
rA = rA + 1 ;

end
end

Section 23.2.1 presented the algorithm for the case of full rank. Use the following code when rA < n:

[Q1,R1] = qr(R(1:rA,1:n)’) ;

[U(1:rA,1:rA),S,V(1:rA,1:rA)] = jacobisvd(R1(1:rA,1:rA)’,tol,maxsweeps);

U = Q * U;

V = P*Q1*V;

Name the function svdj, and test it using the matrices wilkinson(21), gallery(5), a 10× 6 matrix with full rank,
and a 10× 6 rank deficient matrix.

23.10
a. Implement the algorithm described in Problem 23.4 as the function tritobidiag.
b. In a loop that executes five times, generate a random 100× 100 tridiagonal matrix A as indicated, and compute

its singular values using S1 = svd(A). Use tritobidiag to transform A to a matrix B in upper-bidiagonal form.
Compute its singular values using S2 = svd(B). Check the result by computing ‖S1− S2‖2.
>> a = randn(99,1);

>> b = randn(100,1);

>> c = randn(99,1);

>> A = trid(a,b,c);

23.11 Using your results from Problem 23.6, modify singvals so it optionally returns the full SVD A = U�̃VT. Name
the function svd0shift, and test it with gallery(5), the rosser matrix, and a random 50× 30 matrix.



This page intentionally left blank



Appendix A

Complex Numbers

Complex numbers are very important in engineering and science. Engineers use complex numbers in analyzing stresses and
strains on beams and in studying resonance phenomena in structures as different as tall buildings and suspension bridges.
There are many other applications of complex numbers, including control theory, signal analysis, quantum mechanics,
relativity, and fluid dynamics.

You have probably dealt with complex numbers before. If so this appendix will serve as a review; otherwise, there
is sufficient material here for you to understand complex numbers when they arise in the book. Vectors and matrices of
complex numbers are not dealt with in a formal fashion. Occasionally they will arise as eigenvectors or eigenvalues. You
will encounter complex roots of polynomials when dealing with eigenvalues and a small number of proofs that involve
complex numbers.

A.1 CONSTRUCTING THE COMPLEX NUMBERS

It is clear that the equation x2 = −1 has no real solution, so mathematics defines i = √−1, and i2 = −1. The solutions to
x2 = −1 are then x = i and x = −i. The complex number i forms the basis for the set of complex numbers we call C.

Definition A.1. A complex number has the form z = x + iy, where x and y are real numbers and i = √−1. We can
express a real number x as a complex number z = x+ i0.

When z = x+ iy, we call x the real part of z and y the imaginary part..
Two complex numbers are equal if they have the same real and imaginary parts:

x1+iy1=x2+iy2 ⇒ x1=x2 and y1=y2,
where x1, x2, y1, y2 are real numbers.

The sum of two complex numbers is a complex number:

(x1+iy1)+ (x2+iy2) = (x1+x2)+i(y1+y2)
The product of two complex numbers is a complex number.

(x1+iy1) (x2+iy2)= (x1x2−y1y2)+i(x1y2+y1x2)
The easy way to perform this calculation is to proceed just like you are computing (a+b)(c+d) = ac + ad + bc + bd, except
that i2 = -1.

(x1+iy1) (x2+iy2)=x1x2+ix1y2+ix2y1+i2y1y2=x1x2+ix1y2+ix2y1−y1y2 = (x1x2−y1y2)+i(x1y2+y1x2)
A useful identity satisfied by complex numbers is

(x+ iy) (x − iy) = x2 + y2.

569



570 Appendix| A Complex Numbers

This leads to a method of computing the quotient of two complex numbers.

x1+iy1
x2+iy2=

(x1+iy1)(x2−iy2)
(x2+iy2)(x2−iy2)

= (x1x2+y1y2)+i(−x1y2+y1x2)
x22+y22

.

The process is known as rationalization of the denominator.

A.2 CALCULATING WITH COMPLEX NUMBERS

We can now do all the standard linear algebra calculations with complex numbers - find the upper triangular form of a matrix
whose elements are complex numbers, solve systems of linear equations, find inverses and calculate determinants.

For example, solve the system

(1+i)z+(2−i)w= 2+ 7i

7z+(8− 2i)w= 4− 9i.

The coefficient determinant is∣∣∣∣ 1+i 2−i
7 8− 2i

∣∣∣∣= (1+i)(8 − 2i)− 7(2−i)= (8− 2i)+i(8− 2i)− 14+ 7i = = −4+ 13i �= 0.

Hence by Cramer’s rule, there is a unique solution:

z =

∣∣∣∣ 2+ 7i 2−i
4− 9i 8− 2i

∣∣∣∣
−4+ 13i

= (2+ 7i)(8− 2i)− (4− 9i)(2−i)
−4+ 13i

=

= 2(8− 2i)+ (7i)(8− 2i)−{(4(2−i)− 9i(2−i)}
−4 + 13i

= 16− 4i+56i−14i2−{8− 4i−18i+9i2}
−4+ 13i

=

31+ 74i

−4+ 13i
= (31+74i)(−4− 13i)

(−4)2+132 = 838− 699i

(−4)2+132=
838

185
−699

185
i.

Similarly w=−698185 + 229
185 i.

A property enjoyed by complex numbers is that every complex number has a square root.

Theorem A.1. If w is a non-zero complex number, then the equation z2=w has a solution z ∈ C.

Proof. Let w=a+ib, a, b ∈ R.

Case 1. Suppose b= 0. Then if a>0, z=√a is a solution, while if a<0, i
√−a is a solution.

Case 2. Suppose b �= 0. Let z=x+iy, x, y ∈ R. Then the equation z2=w becomes

(x+iy)2=x2−y2+2xyi=a+ib,
so equating real and imaginary parts gives

x2−y2=a and 2xy=b.
Hence x �= 0 and y=b/(2x). Consequently

x2−
(
b

2x

)2

=a,



Complex Numbers Appendix| A 571

so 4x4−4ax2−b2= 0 and 4(x2)2−4a(x2)−b2= 0. By the quadratic equation,

x2=4a±√16a2+16b2
8

=a±
√
a2+b2
2

.

However x2>0, so we must take the + sign, since a−√a2+b2<0. Then x2= a+
√
a2+b2
2 , and the solutions are

x= ±
√
a+√a2+b2

2
, y=b/(2x). (A.1)

Example A.1. Find the solutions z = x + iy to the equation z2= 1+i using equation A.1.
For our problem, w = 1+ i, so a = 1 and b = 1, and x = ±

√
1+√2
2 , y = ± 1√

2
√

1+√2
. The solution is

z= ±
⎛⎝√1+√2

2
+ i√

2
√
1+√2

⎞⎠ . �

Example A.2. Find the cube roots of 1.

We have to solve the equation z3= 1, or z3−1 = 0. Now

z3−1 = (z−1)(z2+z+1). So z3−1 = 0⇒ z−1 = 0 or z2+z+1 = 0.

But

z2+z+1 = 0⇒ z=−1±
√
12−4

2
=−1±

√
3i

2
.

So there are 3 cube roots of 1, namely 1 and (−1±√3i)/2. �

A.3 GEOMETRIC REPRESENTATION OF C

Complex numbers can be represented as points in the plane, using the correspondence x+iy ↔ (x, y). The representation
is known as the Argand diagram or complex plane. The real parts lie on the x-axis, which is then called the real axis, while
the imaginary parts lie on the y-axis, which is known as the imaginary axis. The complex numbers with positive imaginary
part lie in the upper half plane, while those with negative imaginary part lie in the lower half plane.

Because of the equation

(x1+iy1)+ (x2+iy2) = (x1+x2)+i(y1+y2),
complex numbers add vectorially, using the parallelogram law. Similarly, the complex number z1−z2 can be represented by
the vector from (x2, y2) to (x1, y1), where z1=x1+iy1 and z2=x2+iy2 (Figure A.1).

The geometric representation of complex numbers can be very useful when complex number methods are used to
investigate properties of triangles and circles. It is useful in the branch of calculus known as Complex Function theory,
where geometric methods play an important role.

A.4 COMPLEX CONJUGATE

Definition A.2. (Complex conjugate) If z=x+iy, the complex conjugate of z is the complex number defined by z=x−iy.
Geometrically, the complex conjugate of z is obtained by reflecting z across the real axis (Figure A.2).

The following properties of the complex conjugate are easy to verify:

a. z1 + z2 = z1 + z2;
b. −z = −z;
c. z1 − z2 = z1 − z2;
d. z1z2 = z1 z2;
e. 1/z=1/z;



572 Appendix| A Complex Numbers

z1+z2

z1

z2

z2-z1

FIGURE A.1 Complex addition and subtraction.

z

y

x

z

FIGURE A.2 Complex conjugate.

f. z1/z2=z1/z2;
g. z is real if and only if z=z;
h. With the standard convention that the real and imaginary parts are denoted by Re z and Im z, we have Re z = z+z

2 , Im
z = z−z

2 ;
i. if z = x+ iy,then zz=x2+y2.

The following is an interesting and useful result concerning the roots of polynomials.

Theorem A.2. Let f (z) = anzn + an−1zn−1 + · · · + a1z + a0 = 0, where an, . . . , a0 are real. The complex roots occur
in complex-conjugate pairs, i.e. if f (z) = 0, then f (z) = 0.

Proof. If f (z) =0, then 0 =0=f (z)=anzn+an−1zn−1+· · · +a1z+a0
=anzn+an−1zn−1+ · · ·+a1 z+a0 =anzn+an−1zn−1+ · · ·+a1z+a0 =f (z).

The computation of the roots of a polynomial play an important role in applications. Some applications include

● Representing Geometric Figures
● Modeling of Steel Corrosion
● Electrical Circuits
● Depth of Flow in Rivers
● Numerical Integration

The computation of polynomial roots is a complex process for polynomials of degree greater than or equal to 3 and is
normally done using carefully crafted computer algorithms. Roots of polynomials are also important in theory. Eigenvalues



Complex Numbers Appendix| A 573

of a square matrix are defined in terms of polynomial roots, but eigenvalues are seldom computed by directly finding the
roots.

A real matrix has a transpose, and a real matrix A such that AT = A is said to be symmetric. There are equivalents of
these concepts for a complex matrix.

Definition A.3. The conjugate transpose of a complex matrix A, written A∗, is obtained from A by taking the transpose
and then taking the complex conjugate of each entry. The conjugate transpose is the equivalent of the transpose of a real
matrix.

Example A.3. Let

A =
⎡⎣ 1− i 1

2 + 2i 3− 5i
6+ i 7+ 5i 1+ i
−1+ 8i i −i

⎤⎦ .

Then,

A∗ =
⎡⎣ 1+ i 6− i −1− 8i

1
2 − 2i 7− 5i −i
3+ 5i 1− i i

⎤⎦ . �

Recall that if A and B are real matrices, then (AB)T = BTAT . If A and B are complex matrices, then (AB)∗ = B∗A∗.

Definition A.4. A complex matrix A is said to be Hermitian if A∗ = A, or if aij = aij for 1 ≤ i, j ≤ n. If i = j, then
aii = aii, so the diagonal entries of Hermitian matrix are real. A Hermitian matrix is the equivalent of a real symmetric
matrix.

Example A.4. The matrix

A =
⎡⎣ 1 i 6− 2i

−i 2 4+ i
6+ 2i 4− i 3

⎤⎦
is Hermitian. �

A.5 COMPLEX NUMBERS IN MATLAB

MATLAB implements the full range of calculations with complex numbers. For instance, you can assign a complex number
to a variable as follows:

>> z = 3 + 2i

z =

3 + 2i

Alternatively, you can use the function complex.

z = complex(5,7)

z =

5 + 7i

You can use any function that accepts a complex variable, and can create and solve complex systems of equations.

>> z1 = 4 -i;

>> z2 = 1 +i;



574 Appendix| A Complex Numbers

>> z3 = i;

>> z1^2 + 7*z2 - 8*z3

ans =

22.0000 - 9.0000i

>> sin(i*pi)
ans =

0 + 11.549i

>> exp(i*pi)

ans =

-1.0000 + 0.0000i

>> A = [1-i 2+3i -7;-1+i 16+4i i;3+8i -1 7+5i]

A =

1.0000 - 1.0000i 2.0000 + 3.0000i -7.0000

-1.0000 + 1.0000i 16.0000 + 4.0000i 0 + 1.0000i

3.0000 + 8.0000i -1.0000 7.0000 + 5.0000i

>> b = [12+2i -1-9i -i]’

b =

12.0000 - 2.0000i

-1.0000 + 9.0000i

0 + 1.0000i

>> z = A\b

z =

1.6294 - 1.0376i

0.1008 + 0.4836i

-1.8082 + 0.0861i

>> A*z

ans =

12.0000 - 2.0000i

-1.0000 + 9.0000i

-0.0000 + 1.0000i

>> E = eig(A)

E =

0.7504 + 7.7000i

7.6887 - 3.7542i

15.5609 + 4.0542i

When the matrix is real, complex eigenvalues occur in conjugate pairs. For a complex matrix, this is not true.
Recall that a real symmetric matrix has real eigenvalues. The same is true for a Hermitian matrix (Problem A.10).

>> A = [1 i 6-2i;-i 2 4+i;6+2i 4-i 3]

A =

1 0 + 1i 6 - 2i

0 - 1i 2 4 + 1i

6 + 2i 4 - 1i 3

>> eig(A)

ans =

-5.7809

2.2035

9.5774



Complex Numbers Appendix| A 575

A.6 EULER’S FORMULA

If ω is a real constant, what is eiω? Let’s make mathematical sense out of it. It is well known that the McLaurin series for
ex for any real number −∞ < x < ∞ is

ex = 1+ x

1!
+ x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ x6

6!
· · · =

∞∑
i=0

xn

n!

Now let’s apply this same result to a complex number z = ix, where x is any real number. Note that
i2k = (−1)k , k ≥ 1 and i2k+1 = i (−1)k , k ≥ 1. Now,

eix = 1+ (ix)

1!
+ (ix)2

2!
+ (ix)3

3!
+ (ix)4

4!
+ (ix)5

5!
+ (ix)6

6!
· · · =

(
1− x2

2!
+ x4

4!
− x6

6!
+ · · ·

)
+
(
x

1!
− x3

3!
+ x5

5!
+ · · ·

)
i

Recall that the McLaurin series for cos x and sin x, −∞ < x < ∞ are

cos x = 1− x2

2!
+ x4

4!
− x6

6!
+ · · ·

sin x = x

1!
− x3

3!
+ x5

5!
+ · · ·

We how have Euler’s formula

eix = cos x+ i sin x (A.2)

Remark A.1. The equation

eix = cos x+ i sin x

is Euler’s formula. Now let x = π to obtain the very famous Euler’s identity.

eiπ = −1

A poll of readers that was conducted by Physics World magazine in 2004 chose Euler’s Identity as the “greatest equation
ever”, in a dead heat with the four Maxwell’s equations of electromagnetism.

Richard Feynman called Euler’s formula “our jewel” and “one of the most remarkable, almost astounding, formulas in
all of mathematics.”

After proving Euler’s Identity during a lecture, Benjamin Peirce, a noted American 19th-century philosopher/
mathematician and a professor at Harvard University, stated that “It is absolutely paradoxical; we cannot understand it,
and we don’t know what it means, but we have proved it, and therefore we know it must be the truth.”

The Stanford University mathematics professor, Dr. Keith Devlin, said, “Like a Shakespearean sonnet that captures the
very essence of love, or a painting that brings out the beauty of the human form that is far more than just skin deep, Euler’s
Equation reaches down into the very depths of existence.”

A.7 PROBLEMS

A.1 Evaluate the following expressions.
a. (−3+i)(14− 2i)

i.
2+ 3i

1− 4i

ii.
(1+ 2i)2

1−i
A.2 Find the roots of 8z2 + 2z+ 1.
A.3 x = 2 is a real root of the polynomial x3 − x2 − x− 2. Find the remaining two roots.

A.4 Verify that −
√
2
2 +

√
2
2 i and

√
2
2 +

√
2
2 i are roots of the polynomial x

4 + 1. Find the other two roots.



576 Appendix| A Complex Numbers

A.5 Express 1+ (1+ i)+ (1+ i)2 + (1+ i)3 + . . .+ (1+ i)99in the form x+ iy.
A.6 Solve the system Ax = b, where

A =
⎡⎣ 3+i −1+ 2i 2
1+i −1+i 1
1+ 2i −2+i 1+i

⎤⎦ , b =
⎡⎣ 2+ 3i

1− i
4+ 3i

⎤⎦ .

A.7 Find the inverse of the matrix

A =
[
4 − 6i 1+ i
12− 7i −i

]
.

A.8 Find the conjugate transpose of each matrix.

a.

⎡⎣ 2+i −1+ 2i 2
1+i −1+i 1
1+ 2i −2+i 1+i

⎤⎦

b.

⎡⎢⎢⎢⎢⎣
−3+ i 2+ i 6− 8i
5+ 0i 9− i 16+ 3i
−6+ 12i 14− 0i 6+ 5i
4− i 8+ 2i 1+ i
18+ 3i 7− i 1+ i

⎤⎥⎥⎥⎥⎦
A.9 If A is a real m× nmatrix, then ATA is an n× n symmetric matrix. Prove that if A is an m× n complex matrix, then

A∗A is Hermitian.
A.10 Prove that the eigenvalues of a Hermitian matrix are real. HINT: If Av = λv, where λ is an eigenvalue with

corresponding eigenvector v, then v∗Av = λv∗v. What type of matrices are v∗Av and v∗v?
A.11

a. Prove that x∗x ≥ 0 for any n× 1 vector x.
i. Prove that A∗A is positive definite.
ii. Prove that the eigenvalues of A∗A are nonnegative.

A.7.1 MATLAB Problems

A.12 Using MATLAB, compute
a. (2+ 3i) (−2+ i)

b.
6+ i

2+ 5i
c. e2+i

d. (1− 2i) 5i

A.13 A unitary matrix is the complex equivalent of an orthogonal matrix. A complex matrix is unitary if A∗A = AA∗ = I.
The QR decomposition applies to a complex matrix, and the matrix Q is unitary. Let

A =

⎡⎢⎢⎣
1− i −i 3+ i 0
2+ 3i −1+ 2i i 3i
5− 6i 1+ 7i 3 5+ i
12 4+ 9i 1− 4i i

⎤⎥⎥⎦
Compute the QR decomposition of A and verify that Q is unitary.

A.14 A complex matrix has a singular value decomposition A = U�̃V∗, where U and V are unitary.
a. Using the MATLAB command [U S V] = svd, find the SVD of the matrix in part (b) of Problem A.8. Verify
that U and V are unitary.

b. Explain why a complex matrix has real, nonnegative singular values.
A.15 One of the most famous functions in all of mathematics is the Riemann zeta function

ζ (z) =
∞∑
n=1

1

nz
.



Complex Numbers Appendix| A 577

−30 −20 −10 0 10 20 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
Re(1/2+ ix)  Im(1/2+ ix)

 

 
Real part
Imag part

FIGURE A.3 Riemann zeta function.

The Riemann hypothesis states that all non-trivial zeros of the Riemann zeta function have real part 1/2. The trivial
zeros are −2+ 0i, −4+ 0i, . . .. Proving the Riemann hypothesis has been an open problem for a very long time.
The MATLAB function zeta(s) computes the Riemann zeta function for a complex variable s. Figure A.3 is a
MATLAB-generated graph of Re

(
1
2 + ix

)
and Im

(
1
2 + ix

)
for ζ

(
1
2 + ix

)
. Recreate the graph.

Note that the first few zeros with the imaginary part 12 rounded to an integer are:
1

2
± 14i,

1

2
± 21i,

1

2
± 25i



This page intentionally left blank



Appendix B

Mathematical Induction

This appendix is a brief disussion of the topic, and is intended to be sufficient for the times in the book that a proof uses
mathematical induction.

Suppose you are given a statement, S, that depends on a variable n; for instance,

1+ 22 + . . .+ n2 = n (n+ 1) (2n+ 1)

6
, n ≥ 1

Let n0 be the first value of n for which S applies, and prove the statement true. This is called the basis step. For our example,
n0 = 1. Now, assume S is true for any n≥ n0 and prove that this implies S is true for n+ 1. This is called the inductive step.
Then,

● S is true for n0, so S is true for n1 = n0 + 1.
● S is true for n1, so S is true for n2 = n1 + 1.
● S is true for n2, so S is true for n2 = n2 + 1.
● . . .

This sequence can be continued indefinitely, so S is true for all n ≥ n0.

Example B.1. Prove that for n ≥ 1, 12 + 22 + . . .+ n2 = n(n+1)(2n+1)
6 .

Basis step: For n0 = 1, 1(2)(3)6 = 12.

Inductive step: Assume that 12 + 22 + . . .+ n2 = n(n+1)(2n+1)
6 . We need to show that

12 + 22 + . . .+ n2 + (n+ 1)2 = (n+ 1) ((n+ 1)+ 1) (2 (n+ 1)+ 1)
6

= (n+ 1) (n+ 2) (2n+ 3)
6

. (B.1)

Now,

12 + 22 + . . .+ n2 + (n+ 1)2 =
[
12 + 22 + . . .+ n2

]
+ (n+ 1)2 =

[
n (n+ 1) (2n+ 1)

6

]
+ (n+ 1)2

by the induction assumption. Then,[
n (n+ 1) (2n+ 1)

6

]
+ (n+ 1)2 = n+ 1

6

(
2n2 + n+ 6 (n+ 1)

)
= (n+ 1) (n+ 2) (2n+ 3)

6
,

and the proof is complete. �

Suppose you have an eigenvalue/eigenvector pair, λ/u, so that Au = λu, and you need a way to compute powers Anu. Do
some experimenting:

A2u = A (Au) = A (λu) = λAu = λ (λu) = λ2u,

A3u = A
(
A2u

)
= A

(
λ2u

)
= λ2Au = λ3u

579



580 Appendix| B Mathematical Induction

There is a clear pattern:

Anu = λnu.

When some experimentation yields a pattern, mathematical induction is often the easiest way to prove a result.

Example B.2. Prove that if A is an n× n matrix, and λ is an eigenvalue with corresponding eigenvector u, then

Anu = λnu, n ≥ 1.

Basis step: A1u = Au = λu = λ1u.
Inductive step: Assume that Anu = λnu. Then,

An+1u = A
(
Anu

) = A
(
λnu

) = λnAu = λn (λu) = λn+1u,

and the statement is true for n+ 1. �

A geometric series is a series with a constant ratio between successive terms. Since geometric series have important
applications in science and engineering, the formula for the sum of a geometric series is a very useful result.

Example B.3. If a and r are numbers, r �= 1, then

a+ ar + ar2 + arn−1 = a− arn

1− r
.

Basis step:
a− ar1

1− r
= a, so the statement if true for n = 1.

Inductive step: Assume that

a+ ar + ar2 + arn−1 = a− arn

1− r
.

Thus,

a+ ar + ar2 + arn−1 + arn =
[
a− arn

1− r

]
+ arn =

a− arn + (1− r) arn

1− r
=

a− arn

1− r
,

and the proof is complete. �

Strong Induction

It is sometimes necessary to use a variant of mathematical induction called strong induction. The basis case is as before

Let n0 be the first value of n for which S applies, and prove the statement true.

The inductive step is

Assume that S is true for all n0 ≤ k ≤ n. Prove it is true for n+ 1.

Use this form of induction when the assumed truth for n is not enough. This occurs when several instances of the inductive
hypothesis are required to prove the statment true for n+ 1.

Example B.4. Prove that any positive integer n ≥ 2 is either prime or a product of primes.
Basis: n = 2 is prime.
Inductive step: Assume that for all 2 ≤ k ≤ n, k is either prime or a product of primes. Consider n + 1. If it is prime,

we are done; otherwise, it must be a composite number n+ 1 = ab, where both a and b are in the range 2 ≤ k ≤ n. By the
inductive hypothesis, a and b are either prime or a product of primes, and the proof is complete. �



Mathematical Induction Appendix| B 581

B.1 PROBLEMS

B.1 Prove that

13 + 23 + 33 + . . .+ n3 = n2 (n+ 1)2

4
.

B.2 Assume A is an n× n matrix, X is an invertible matrix, and D is a diagonal matrix such that

X−1AX = D.

Prove that

An = XDnX−1, n ≥ 1.

B.3 Assume that any n× n matrixM can be factored into the product of an n× n orthogonal matrix Q, and an n× n upper
triangular matrix R so thatM = QR. Let A be an n×n matrix. Prove that there exist orthogonal matrices Qi, 1 ≤ i ≤ k
and an upper triangular matrix Rk such that

(Q0Q1 . . .Qk)
T A (Q0Q1 . . .Qk) = RkQk,

for any k ≥ 0.
B.4 Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps. HINT:

First show that 12, 13, 14, and 15 cents can be formed using 4-cent and 5-cent stamps.



This page intentionally left blank



Appendix C

Chebyshev Polynomials

Chebyshev polynomials have important uses in developing convergence results for algorithms; for instance, the analysis for
the convergence of the conjugate gradient method in Chapter 21 can be done using these polynomials (see Ref. [1, pp. 312-
316]). They also play a large role in convergence results for methods that compute eigenvalues of large sparse matrices (see
Ref. [3, pp. 151-159]). There are additional applications to least-squares and interpolation. The book does not actually use
Chebyshev polynomials in proofs, but the statement of certain theorems involve Chebyshev polynomials, and so we will
give a brief overview of their definition and properties.

C.1 DEFINITION

The definition begins with the form of these polynomials on the interval −1 ≤ t ≤ 1, and then their definition is extended
to all real numbers.

Definition C.1. On the interval −1 ≤ x ≤ 1, the Chebyshev polynomial of degree n ≥ 1 is defined as Tn (x) = cos (nθ),
where θ ∈ [ 0, π

]
and cos (θ) = x. More compactly, Tn (x) = cos

(
n cos−1 (x)

)
.

Looking at the definition, it is not clear that Tn (x) is a polynomial. From the definition, T0 (x) = 1 and T1 (x) = x, and
we can use some trigonometry to find Tn (x) , n ≥ 2.

Recall that

cos (α ± β) = cos (α) cos (β)∓ sin (α) sin (β)

Now,

Tn+1 (x) = cos [(n+ 1) θ ] = cos (nθ) cos (θ)− sin (nθ) sin (θ)

Tn−1 (x) = cos [(n− 1) θ ] = cos (nθ) cos (θ)+ sin (nθ) sin (θ)

Add the two equations and obtain

Tn+1 (x)+ Tn−1 (x) = 2xTn (x) ,

and after rearrangement

Tn+1 (x) = 2xTn (x)− Tn−1 (x) , n ≥ 1,

T0 (x) = 1, T1 (x) = x (C.1)

Using Equation C.1, we can extend Tn (x) for all x ∈ R, and by application of the recurrence relation we can determine a
Chebyshev polynomial of any degree. For instance,

T2 (x) = 2xT1 (x)− T0 (x) = 2x2 − 1

T3 (x) = 2x
(
2x2 − 1

)
− x = 4x3 − 3x

T4 (x) = 2x
(
4x3 − 3x

)
−
(
2x2 − 1

)
= 8x4 − 8x2 + 1 (C.2)

583



584 Appendix| C Chebyshev Polynomials

1

1

Chebyshev polynomials

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0

0

y

x

-0.2

-0.2

-0.4

-0.4

-0.6

-0.6

T0(x) T1(x) T2(x) T3(x) T4(x)

-0.8

-0.8
-1

-1

FIGURE C.1 The first five Chebyshev polynomials.

C.2 PROPERTIES

There are many interesting and useful properties of the Chebyshev polynomials, and we mention just a few.

● Since Tn (x) = cos (nθ), it follows that

|Tn (x)| ≤ 1, −1 ≤ x ≤ 1, n ≥ 0.

● We can discern a pattern by looking at Equations C.2. For n = 2, 3, 4, the Chebyshev polynomials have the form

Tn (x) = 2n−1xn + O
(
xn−1

)
(C.3)

This is actually true for all n ≥ 1 (Problem C.2). As a result of Equation C.3, the Chebyshev polynomials grow very
quickly with increasing n.

● The roots of Tn (t) are

xi = cos ((2i− 1) π/ (2n)) , for i = 1, 2, . . . , n.

A polynomial whose highest degree term has a coefficient of 1 is called a monic polynomial. If we define T̂n (x) =(
1

2n−1
)
Tn (x), then T̂n (x) is a monic polynomial. By application of these and other properties, we have following theorem

(see [88], Chapter 3, Theorem 3.3)

Theorem C.1. Consider all possible monic polynomials of degree n. Of all these, the monic polynomial T̂n (x) has the
smallest maximum over −1 ≤ x ≤ 1, and its maximum is 1

2n−1 .

C.3 PROBLEMS

C.1 Using the recurrence relation C.1,find the Chebyshev polynomials T5 (x) and T6 (x).
C.2 Using the recurrence relation C.1 and mathematical induction, prove relationship C.3.



Chebyshev Polynomials Appendix| C 585

C.3.1 MATLAB Problems

C.3
a. Write a function, chebyshev, that takes the degree n as an argument and returns the MATLAB form of the
polynomial.

b. Use your function to graph T5 (x) and T6 (x).
c. We have said the Chebyshev polynomials grow quickly as n increases. Let x = 1+ε, ε = {

10−6, 10−5, 10−4,
}
.

For each ε, evaluate Tn (x), n = {
5 10 50 75

}
.

C.4
a. Let p (x) = x3 + 0.00001x2 − 0.00001x. Graph p (x) and T3 (x) /4 over

[ −1, 1
]
.

b. Compute the maximum of p (x) and T3 (x) /4.



This page intentionally left blank



Glossary

Absolute error The absolute value of the difference between the true value and the approximate value; for instance, |x− fl (x)|.
Adaptive algorithm An algorithm that changes its behavior based on the resources available.
Adjoint The transpose of the matrix of cofactors.
Algorithm A sequence of steps that solve a problem in a finite amount of time.
Argand diagram The plane in which the real part of a complex number lies on the real axis, while the imaginary part lies on the imaginary axis.
Arnoldi method A matrix decomposition of the form AQm = Qm+1Hm, where A is n × n, Qm is n × m, Qm+1 is n × (m+ 1), and Hm is an

(m+ 1) × m upper Hessenberg matrix. Qm is orthogonal, and Qm+1 has orthonormal columns. The Arnoldi method is used as a portion of
the GMRES algorithm. It is also used in the computation of eigenvalues and their corresponding eigenvectors for a large sparse matrix.

Augmented matrix When solving Ax = b using Gaussian elimination, the matrix formed by attaching the right-hand side vector b as column
n+ 1.

Back substitution Solve an upper-triangular system in reverse order from xn to x1.
Backward error Roundoff or other errors in the data have produced the result ŷ. The backward error is the smallest�x for which ŷ = f (x+�x);

in other words, backward error tells us what problem we actually solved.
Banded matrix A sparse matrix whose nonzero entries appear in a diagonal band, consisting of the main diagonal and zero or more diagonals

on either side.
Basic QR iteration A straightforward method of finding all the eigenvalues of a real matrix whose eigenvalues satisfy the relation |λ1| > |λ2| >

· · · > |λn|. There are much better, but more complex, methods of computing the eigenvalues.
Basis A collection of linearly independent vectors. The set of all linear combinations of the basis vectors generates the subspace spanned by the

basis. The dimension of the subspace is the number of vectors in the basis.
Bidiagonal matrix A matrix with nonzero entries along the main diagonal and either the diagonal above or the diagonal below.
Big-O A notation that provides an upper bound on the growth rate of a function; for instance, f (x) = x3 + x2+ 5x+ 1 is O

(
x3
)
and also O

(
x4
)
,

but not O
(
x2
)
.

Biharmonic equation The two-dimensional equation takes the form

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+ ∂4u

∂y4
= f (x, y) ,

with specified boundary conditions on a bounded domain. The equation has applications in the theory of elasticity, mechanics of elastic plates
and the slow flow of viscous fluids.

Boundary value problem An ordinary or partial differential equation or system of equations with prescribed values on a boundary; for instance
(d2y/dx2)+ 5(dy/dx)+ x = 0, y (0) = 1, y (2π) = 3 is a boundary value problem.

Cancellation error An error in floating point arithmetic that occurs when two unequal numbers are close enough together that their difference
is 0.

Cauchy-Schwartz inequality An important result in numerical linear algebra: |〈x, y〉| ≤ ‖x‖2 ‖y‖2 .
Characteristic equation The equation that defines the eigenvalues of a matrix A: det (A− λI) = 0.
Characteristic polynomial The polynomial whose roots are the eigenvalues of the associated matrix A: p (λ) = det (A− λI).
Cholesky decomposition If A is a real positive definite n× n matrix, there is exactly one upper-triangular matrix R such that A = RTR.
Coefficient matrix The matrix of coefficients, A, for a linear algebraic system Ax = b.
Cofactor Cij = (−1)i+j Mij, where Mij is the minor for row i, column j of a square matrix. The 2-norm is commonly used.
Column rank The number of linear independent columns in an m× n matrix.
Column space The subspace generated by the columns of an m× n matrix.
Column vector An n× 1 matrix.
Complex conjugate If z = x+ iy, its conjugate is z = x− iy.
Complex plane The plane in which the real part of a complex number lies on the real axis, while the imaginary part lies on the imaginary axis.
Condition number For an n× n matrix A, the condition number is η (A) = ‖A‖ ∥∥A−1∥∥ and measures the sensitivity of errors in computing the

solutions to problems involving the matrix. The 2-norm is commonly used.
Conjugate gradient method The iterative method of choice for solving a large, sparse, system Ax = b, where A is symmetric positive

definite.

587



588 Glossary

Cramer’s rule A method of solving a square system Ax = b. Let Bj be the matrix obtained by replacing column j of A by vector b. Then
xj = det

(
Bj
)
/det (A). Cramer’s rule should not be used, except for very small systems.

Crank-Nicholson method A finite difference scheme for approximating the solution to a partial differential equation over a rectangular grid.

Cross product Given two vectors u, v in R
3, u× v = det

⎡⎣ i j k
u1 u2 u3
v1 v2 v3

⎤⎦, where i, j, k are the standard basis vectors. u× v is orthogonal to both

u and v.
Crout’s method An method of performing the LU decomposition of an n × n matrix. The elements of L and U are determined using formulas

that are easily programmed.
Cubic spline interpolation An algorithm that fits a cubic polynomial between every pair of adjacent points{[

a = x1, x2
]
,
[
x2, x3

]
, . . . ,

[
xn, xn+1 = b

]}
. The piecewise polynomial function is twice differentiable. The value of the piecewise

polynomial at any a ≤ x ≤ b provides accurate interpolation.
Data perturbations Small changes in data that may cause large changes in the solution of a problem using that data.
Demmel and Kahan zero-shiftQR downward sweep algorithm Finds the SVD of a matrix. The first step is transformation to upper bidiagonal

form, followed by bulge chasing to compute U, V, and the singular values.
Determinant A real number defined recursively using expansion by minors. Row elimination techniques provide a practical means of computing

a determinant. Note that

det (AB) = det (A) det (B) , det
(
AT
) = det (A) , and det

(
A−1

)
= 1/ det (A) .

Diagonal dominance The absolute value of the diagonal element in a square matrix is greater than the sum of the absolute values of the off-
diagonal elements. |aii| > ∑n

j=1,j �=i
∣∣aij∣∣ , 1 ≤ i ≤ n.

Diagonal matrix A matrix A whose only nonzero elements are on the diagonal: aij = 0, i �= j.
Diagonalization Amatrix A can be diagonalized if there exists an invertible matrix S such that D = S−1AS, where D is a diagonal matrix. A and

D are similar matrices.
Dimension of a subspace The number of elements in a basis for the subspace.
Digraph A set of vertices and directed edges, with or without weights.
Dominant eigenvalue The eigenvalue of a matrix that is largest in magnitude.
Dominant operations The most expensive operations performed during the execution of an algorithm.
Eigenpair A pair (λ, v), where v is an eigenvector of matrix A associated with eigenvalue λ.
Eigenproblem Finding the eigenvalues and associated eigenvectors of an n× n matrix.
Eigenvalue A real or complex number such that Ax = λx, where A is an n× n matrix and x is a vector in R

n.
Eigenvector A vector associated with an eigenvalue. If λ is an eigenvalue of A, then v is an eigenvector if Av = λv.
Elementary row matrix A matrix E such that if A is a square matrix EA performs an elementary row operation.
Elementary row operations In a matrix, adding a multiple of one row to another, multiplying a row by a scalar, and exchanging two rows.
Encryption The process of transforming information using an algorithm to make it unreadable to anyone except those possessing a key.
Euler’s identity eiπ = −1.
Euler’s formula eix = cos (x) + i sin (x).
Expansion by minors Computing the value of a determinant by adding multiples of the cofactors in any row or column.
Exponent In a floating point representation ± (0.d1d2 · · ·dp)× bn, n is the exponent, and the di are the significant digits.
Extrapolation Taking data in an interval a ≤ x ≤ b and using them to approximate values outside that interval. Least-squares can be used for

this purpose.
Filtering polynomial A polynomial function designed for restarting the implicit Arnoldi or Lanczos methods for computing eigenvalues and

eigenvectors of large sparse matrices.
Finite difference A quotient that approximates a derivative by using a number of nearby points in a grid.
First-row Laplace expansion Evaluation of a determinant using expansion by minors across the first row.
fl The floating-point number associated with the real number x.
Floating point arithmetic Finite-precision arithmetic performed on a computer.
Flop count The number of floating point operations (⊕, �, ⊗, �) required by an algorithm.
Forward error The forward error in computing f (x) is

∣∣ f̂ (x) − f (x)
∣∣. This measures errors in computation for input x.

Forward substitution Solving a lower-triangular system, Lx = b, from x1 to xn.
Four fundamental subspaces Let U and V be the orthogonal matrices in the SVD, and r the number of the smallest singular value. The table

specifies an orthogonal basis for the range and null space of A and AT.

A = U�̃VT

Range Null space

A ui, 1 ≤ i ≤ r vi, r+ 1 ≤ i ≤ n

AT vi, 1 ≤ i ≤ r ui, r + 1 ≤ i ≤ m

Fourier coefficients The coefficients of the trigonometric functions in a Fourier series expansion of a function.



Glossary 589

Fourier series An expansion of a periodic function in terms of an infinite sum of sines and cosines, f (x) = a0
(
1/
√
2π
)
+ (1/

√
π)
∑∞

i=1
(ai cos ix+ bi sin ix)

Francis algorithm Often called the implicit QR iteration. Using orthogonal similarity transformations, produce an upper Hessenberg matrix
with the same eigenvalues as matrix A. Using bulge chasing, implicitly perform a single or double shift QR step using Givens rotations and
Householder reflections, respectively. The end result is an upper triangular matrix whose diagonal contains the eigenvalues of A.

Frobenius norm A matrix norm defined by ‖A‖F =
√
trace

(
ATA

) = (∑m
i=1

∑
j=1n

∣∣∣a2ij∣∣∣)1/2. It is not induced by any vector norm.
Function condition number The limiting behavior of

|f (x)−f (x)|
|f (x)|
|x−x|
|x|

as δx becomes small.

Gauss-Seidel iterative method An iterative method for solving a linear system. Starting with an initial approximation x0, the iteration produces
a new value at each step by using the most recently computed values and the remaining previous values.

Gaussian elimination Use of row elimination operations to solve a linear system or perform some other matrix operation.
Gaussian elimination with partial pivoting During Gaussian elimination, the diagonal element is made largest in magnitude by exchanging

rows, if necessary. It is done to help minimize round off error.
Gaussian elimination with complete pivoting In Gaussian elimination, the pivoting strategy exchanges both rows and columns.
Geometric interpretation of the SVD If A is an m × n matrix, then Ax applied to the unit sphere ‖x‖2 ≤ 1 in Rn is a rotated ellipsoid in Rm

with semiaxes σ i, 1≤ i ≤ r, where the σi are the nonzero singular values of A.
Givens matrix (rotation) An orthogonal matrix, J (i, j, c, s) , designed to zero-out aji when it multiplies another matrix on the left or on the

right. c and s must be chosen properly.
GMRES The general minimum residual method for computing the solution to a system Ax = b, where A is an n × n large, sparse, matrix. The

method applies to any sparse matrix, but should not be used when A is symmetric positive definite.
Gram-Schmidt algorithm An algorithm that takes a set of n linearly independent column vectors and produces an orthonormal basis for the

subspace spanned by the vectors. It also gives rise to a reduced QR decomposition of the matrix formed by the column vectors.
Heat equation A partial differential equation describing heat flow. In one space dimension, the problem is to solve

∂u

∂t
= c

∂2u

∂x2
, 0 ≤ x ≤ L, u (0, t) = g1 (t) , u (L, t) = g2 (t) , u (x, 0) = f (x) .

Hessenberg inverse iteration An algorithm to find an eigenvector of matrix A corresponding to eigenvalue λ. Use an orthogonal similarity
transformation to reduce matrix A to upper Hessenberg form, H. Find an eigenvector u of H = QTAQ corresponding to eigenvalue λ of A
using the inverse iteration. Then Qu is an eigenvector of A corresponding to eigenvalue λ.

Hessenberg matrix A square matrix is upper Hessenberg if aij = 0 for i > j + 1. The transpose of an upper Hessenberg matrix is a lower
Hessenberg matrix (aij = 0 for j > i+ 1). A Hessenberg matrix is “almost triangular.”

Hilbert matrices Notoriously ill-conditioned matrices defined by H (i, j) = 1/(i + j− 1), 1 ≤ i, j, ≤ n.
Homogeneous linear system An n× n system of the form Ax = 0.The system has a unique solution x = 0 if an only if A is nonsingular.
Householder matrix (reflection) A symmetric orthogonal matrix,Hu, that takes a vector u and reflects it about a plane inRn. The transformation

has the form

Hu = I − 2uuT

uTu
, u �= 0.

Householder matrices are used to compute the QR decomposition, reduction to an upper Hessenberg matrix, and many other things.
Identity matrix An n× n diagonal matrix whose diagonal consists entirely of ones. If A is an n× n matrix, AI = IA = A.
IEEE arithmetic The standard for 32- and 64-bit hardware-implemented floating point representations.
Ill-conditioned matrix A matrix with a large condition number.
Ill-conditioned problem A problem where small errors in the data may produce large errors in the solution.
Implicit Q theorem If QTAQ = Hand ZTAZ = G are both unreduced Hessenberg matrices where Q and Z have the same first column, then Q

and Z are essentially the same up to signs.
Implicit QR iteration (see the Francis method).
Implicitly Restarted Arnoldi Method A method for computing eigenvalues and eigenvectors of a large sparse nonsymmetric matrix using the

Arnoldi decomposition. Implicit shifts are used to evaluate a filter function that enhances convergence.
Implicitly Restarted Lanczos Method A method for computing eigenvalues and eigenvectors of a large sparse symmetric matrix using the

Lanczos decomposition. Implicit shifts are used to evaluate a filter function that enhances convergence.
Inf The MATLAB constant inf returns the IEEE arithmetic representation for positive infinity, and in some situations its use is valid. Infinity is

also produced by operations like dividing by zero (1.0/0.0), or from overflow (exp(750)).
Infinity norm A vector norm defined by ‖x‖∞ = max1≤i≤n |xi|. It induces the matrix infinity norm

‖A‖∞ = max
1≤k≤m

n∑
j=1

∣∣akj∣∣ .
Inner product Given two vectors x =

⎡⎢⎢⎣
x1
...
xn

⎤⎥⎥⎦and
⎡⎢⎢⎣
y1
...
yn

⎤⎥⎥⎦ in Rn, we define the inner product of x and y, written 〈x, y〉, to be the real number

〈x, y〉 = x1y1 + x2y2+ · · ·+ xnyn =∑n
i=1 xiyi. If f and g are functions defined on a ≤ x ≤ b, the L2 inner product is 〈f , g〉 = ∫ b

a f (x)g(x)dx.



590 Glossary

Interpolation A method of estimating new data points within the range of a discrete set of known data points.
Inverse Iteration An algorithm to compute an eigenvector from its eigenvalue.
Inverse matrix The unique matrix B such that BA = AB = I, where A is a square matrix, and I is the identity matrix. It is normally written as

A−1.
Inverse power method A method for computing the smallest eigenvalue in magnitude and an associated eigenvector.
Irreducible matrix Beginning at any vertex of the directed graph formed from the nonzero entries of a matrix, edges can be followed to any

other vertex.
Iterative refinement An iteration designed to enhance the values obtained from Gaussian elimination.
Jacobi iterative method An iterative method for solving a linear system. Starting with an initial approximation x0, the iteration produces a new

value at each step by using the previous value.
Jacobi method for computing the eigenvalues of a symmetric matrix Using Jacobi rotations to perform similarity transformations,

systematically eliminate aijand aji at each step. Even though some zeros may be destroyed, the method converges to a diagonal matrix
of eigenvalues.

Jacobi rotation A form of Givens rotation, J (i, j, c, s), such that J (i, j, c, s)T AJ (i, j, c, s) zeros-out aij and aji, i �= j. c and s must be chosen
properly.

Kirchhoff’s rules Rules governing an electrical circuit which state that
a. At any junction point in a circuit where the current can divide, the sum of the currents into the junction must equal the sum of the currents

out of the junction.
b. When any closed loop in the circuit is traversed, the sum of the changes in voltage must equal zero.

Krylov subspace methods The Krylov subspace K\ generated by A and u is span
{
u Au A2u . . . Ak−1u

}
. It is of dimension k if the vectors

are linearly independent. CG is a Krylov subspace method, as are GMRES and MINRES. For GMRES and MINRES, the idea is to find the
solution to Ax = b by solving a least-squares problem in a k-dimensional Krylov subspace, where k < n. Hopefully k is much smaller than n.

norm (1-norm) A vector norm defined by ‖x‖1 =
∑n

i=1 |xi|. It induces the matrix 1-norm ‖A‖1 = max1≤k≤n
∑m

i=1 |aik |.
norm (2-norm) The vector norm defined by ‖x‖2 =

√
x21 + x22 + · · · + x2n. It induces the matrix 2-norm ‖A‖2 , that is the square root of the

largest eigenvalue of ATA.
Lagrange’s identity If u and v are vectors in R

3, then ‖u× v‖22 = ‖u‖22 ‖v‖22 − 〈u, v〉2..
Least-squares Given a real m× n matrix A of rank k ≤ min (m, n) and a real vector b, find a real vector x ∈ R

n such that the residual function
r (x) = ‖Ax − b‖2 is minimized. Among other applications, the method can be used to fit a polynomial of a specified degree to data.

Lanczos method The Arnoldi method applied to a symmetric matrix. The result is

AQm = QmTm + tm+1,mqm+1eTm,

where An×n, Qn×mm , Tm×mm , and tm+1,mqm+1eTm is an n× m matrix. Tm is symmetric tridiagonal, and Qm is orthogonal. The Lanczos method
is used as a portion of the MINRES algorithm. It is also used to compute some eigenvalues and eigenvectors of a large sparse symmetric
matrix.

Left eigenvector If λ is an eigenvalue of matrix A, a left eigenvector associated with λ is a vector x such that xTA = λxT.
Leslie model A heavily used model in population ecology. It is a model of an age-structured population which predicts how distinct populations

change over time.
Linear combination Given a collection of k vectors v1, v2, . . . , vk, a linear combination is the set of all vectors of the form c1v1+c2v2+· · ·+ckvk,

where the ci are scalars.
Linear transformation If A is an m× n matrix and x is an n× 1 vector, Ax is a linear transformation from R

n to R
m.

Linearly dependent A set of vectors is linearly dependent if one vector can be written as a linear combination of the others.
Linearly independent A set of vectors is linearly independent if no vector can be written as a linear combination of the others. Equivalently,

v1, v2, . . . , vk are linearly independent when c1v1 + c2v2 + · · · + ckvk = 0 if and only if c1 = c2 = · · · = ck =0.
Lower-triangular matrix An n× n matrix having zeros above its diagonal; in other words, aij = 0, j ≥ i.
LU decomposition Using Gaussian elimination to find a lower-triangular matrix, L, an upper-triangular matrix, U, and a permutation matrix, P,

such that PA = LU.
Machine precision The expression eps = 1

2b
1−p, where b is the base of the number system used, and p is the number of significant digits. It is

the distance from 1 to the next largest floating point number.
Mantissa In a floating point representation ± (0.d1d2 . . . dp

)× bn, m = .d1d2 . . . dp is the mantissa.
Matrix A rectangular array of rows and columns.
Matrix diagonalization The process of taking a square matrix, A, and finding an invertible matrix, X, such that D = X−1AX. Diagonalizing a

matrix is also equivalent to finding the eigenvalues and eigenvectors of A. The eigenvalues are on the diagonal of D, and the corresponding
eigenvectors are the columns of X.

Matrix inverse The unique matrix B such that BA = AB = I, where A is a square matrix. It is normally written as A−1.
Matrix norm A function ‖·‖:Rm x n→ R is a matrix norm provided:

● ‖A‖ ≥ 0 for all A ∈ Rm x n, and ‖A‖ = 0 if and only if A = 0;
● ‖αA‖ = |α| ‖A‖ for all scalars α.
● ‖A+ B‖ ≤ ‖ A ‖ + ‖B‖ for all A, B ∈ R

m x n.



Glossary 591

Matrix product If A is an m× k matrix, and B is an k× n matrix, then the product C = AB is the m× n matrix such that

cij=
n∑

k=1
aikbkj=ai1b1j+ · · ·+ainbnj.

In general, matrix multiplication is not commutative.
Minor The minor Mij(A) of an n × n matrix A is the determinant of the (n−1)× (n−1) submatrix of A formed by deleting the ith row and jth

column of A.
MINRES The minimum residual method for computing the solution to a system Ax = b, where A is an n× n large, sparse, symmetric, matrix.

The method applies to any symmetric matrix, but should not be used when A is symmetric positive definite.
Modified Gram-Schmidt A modification of the Gram-Schmidt method that helps minimize round-off errors.
ModifiedGram-Schmidt forQR decomposition Amodification of the Gram-SchmidtQR decomposition method that helps minimize round-off

errors.
Modulus The absolute value of real number and the magnitude |z| = |x+ iy| = √

x2 + y2 of a complex number.
NaN Stands for “not a number.” Occurs when an illegal operation such as 0/0 occurs during floating point computation. It is a sure sign that

something is wrong with the algorithm.
Nonsingular matrix Amatrix having an inverse. An n×nmatrix whose rank is n is nonsingular. A nonsingular matrix cannot have an eigenvalue

λ = 0.
Normal equations If A is an m× n matrix, the n × n system ATAx = ATx.
Normal matrix A real matrix A is normal if ATA = AAT. All symmetric matrices are normal, and any normal matrix can be diagonalized.
Null space The set of all vectors for which Ax = 0. If A is nonsingular, the null space is empty.
One norm A vector norm defined by ‖x‖1 =

∑n
i=1 |xi| It induces the matrix 1-norm

‖A‖1 = max
1≤k≤m

m∑
i=1
|aik| .

One-sided Jacobi iteration An algorithm involving Jacobi rotations that computes the singular value decomposition of a matrix.
Orthogonal invariance For any orthogonal matrices U and V, ‖UAV‖2 = ‖A‖2.
Orthogonal matrix A square matrix P such that PPT = PTP = I. The columns of P are an orthonormal basis for R

n.

Orthogonal projection An orthogonal projection of v onto u is defined by proju (v) =
(
〈v, u〉
‖u‖22

)
u. See Figure 14.1 for a graphical depiction.

Orthogonal vectors Two vectors u and v for which 〈u, v〉 = uTv = vTu = 0.
Orthonormal A set of vectors v1, v2, . . . , vk are orthonormal if they are orthogonal and each has unit length.
Orthonormal basis A basis for a subspace in which the basis vectors are orthonormal.
Orthonormalization The process of converting a set of linearly independent vectors into an orthonormal basis for the same subspace.
Overdetermined system An m × n linear system in which m > n; in other words, there are more equations than unknowns. Overdetermined

systems occur in least-squares problems.
Overflow Occurs when a computer operation generates a number having a magnitude too large to represent; for instance, integer overflow occurs

when two positive integers m and n are added and the result is negative. Floating point overflow occurs when an operation produces a result
that cannot be represented by the fixed number of bits used to represent a floating point number.

p-norm ‖x‖p = (|x1|p + |x2|p + · · · + |xn|p)1/p =
(∑n

i=1 |xi|p
)1/p

. The most commonly used p-norms are p = 2 and p = 1. The infinity norm
‖x‖∞ = max1≤i≤n |xi| is also considered a p-norm with p = ∞.

Pentadiagonal matrix A matrix with five diagonals, all other entries being zero. There are two sub-subdiagonals, the main diagonal, and two
super diagonals. These matrices often appear in finite difference methods for the solution of partial differential equations.

Permutation matrix A matrix whose rows are permutations of the identity matrix. If A is an n× n matrix PA permutes rows of A.
Perturbation analysis A mathematical study of how small changes in the data of a problem affect the solution.
Pivot The element in row i, column i that is used during Gaussian elimination to zero-out all the elements in column i, rows i+ 1 to n.
Poisson’s equation One of the most important equations in applied mathematics with applications in such fields as astronomy, heat flow, fluid

dynamics, and electromagnetism. In two dimensions, let R be a bounded region in the plane with boundary ∂R, f (x, y) be a function defined
in R, and g (x, y) be defined on ∂R. Find a function u (x, y) such that

− ∂2u

∂x2
− ∂2u

∂y2
= f (x, y) ,

u (x, y) = g (x, y) on ∂R.

The equation can be defined similarly in n-dimensions.
Positive definite An n × n symmetric matrix A such that xTAx > 0 for all x �= 0. If A is a positive definite matrix, then there exists an upper-

triangular matrix R such that A = RTR, rii > 0, (the Cholesky decomposition), and all the eigenvalues of A are real and greater than zero.
Positive semidefinite An n × n matrix A such that xTAx ≥ 0 for all x �= 0.
Power method An algorithm for computing the largest eigenvalue in magnitude and an associated eigenvector by computing successive matrix

powers.



592 Glossary

Preconditioning A technique designed to solve a linear system whose matrix is ill-conditioned. Choose a preconditioner, P, whose inverse is
close enough to A−1so that the system

P−1Ax = P−1b

is not as ill-conditioned. Preconditioning can be used effectively with the conjugate gradient and GMRES methods.
Pseudocode An informal language for describing algorithms.
Pseudoinverse If A is an m × n matrix, the pseudoinverse A‡ = (

ATA
)−1

AT. The pseudoinverse generalizes the concept of an inverse. When
m = n, A‡ = A−1.

QR decomposition A matrix decomposition of an m× n matrix A such that A = QR, where Q is an m×m orthogonal matrix and R is an m× n
upper-triangular matrix.

QR iteration An iterative algorithm that computes the eigenvalues of a real matrix A with distinct eigenvalues using the QR decomposition. If
Ai is the current matrix in the iteration, compute Ai = QiRi, and then set Ai+1 = RiQi. The sequence of matrices converges to an upper-
triangular matrix with all the eigenvalues of A on the diagonal. Convergence tends to be slow, so a shift, σi, is normally applied as follows:
Ai − σiI = QiRi and Ai+1 = RiQi + σiI. Choose σi to better isolate eigenvalue λi.

Quadratic form An expression in real variables x and y of the form ax2+2hxy+by2. If X =
[
x
y

]
, the expression can be written as

ax2+2hxy+by2= [ x y
] [ a h

h b

][
x
y

]
=XTAX.

There is a more general definition of a quadratic form, but general quadratic forms are not discussed in the book.
Rank deficient An m× n matrix that has a zero singular value. Equivalently, the rank is less than min (m, n).
Rank 1 matrix A matrix with only one linearly independent column or row.
Rayleigh quotient Given an eigenvector v of matrix A, the Rayleigh quotient (Av)T v/‖v‖22 is the eigenvalue corresponding to v.
Reduced QR decomposition If m ≥ n, a reduced QR decomposition of matrix A can be performed. In this decomposition A = QR, where

Am×n = Qm×nRn×n. If m is quite a bit larger than n, this computation is considerably faster, and uses less memory.
Reduced SVD The singular value decomposition, A = U ˜�VT, where U is m× n, �̃ is n × n, and V is n × n. If m is quite a bit larger than n,

this computation is considerably faster, and uses less memory. See “Singular value decomposition” for more information.
Regression line A straight line fit to a set of data points using least squares.
Relative error In floating point conversion, the relative error in converting x is |fl (x)− x|/|x|, x �= 0. In an iteration, the relative error is∣∣xnew − xprev

∣∣/∣∣xprev∣∣. Relative error is used in many other situations.
Residual r = b − Ax, where A is m× n, x is n× 1, and b is m × 1. The residual measures error in an iterative method for solving Ax = b, and

in least squares the residual is minimized.
Resonance The tendency of a system to oscillate at a greater amplitude at some frequencies than at others. These are known as the system’s

resonant frequencies. At these frequencies, even small periodic driving forces can produce oscillations of large amplitude.
Rosser matrix Symmetric eigenvalue test matrix. It has eigenvalues with particular properties that challenge a symmetric eigenvalue solver.

Rotation matrix A linear transformation that performs a rotation of an object. P =
[

cos θ − sin θ

sin θ cos θ

]
is a 2× 2 rotation matrix.

Round-off error The error introduced when a real number, x, is approximated using finite-precision computer arithmetic and when floating
point operations are performed.

Row-equivalent matrices Matrix B is row-equivalent to matrix A if B can be obtained from A using elementary row operations.
Scalar multiple Multiplying a vector or a row of a matrix by a scalar.
Schur’s Triangularization Every n × n real matrix A with real eigenvalues can be factored into A = PTPT, where P is an orthogonal matrix,

and T is an upper-triangular matrix.
Sensitivity of eigenvalues A measure of how small changes in matrix entries affect the ability to accurately compute an eigenvalue. If λ is an

eigenvalue and x, y are right and left eigenvectors corresponding to λ, then the condition number of λ is 1/yTx. The condition numbers for
the eigenvalues of a symmetric matrix are one.

Similar matrices Matrices A and B are similar if there exists a nonsingular matrix X such B = X−1AX.
Singular value decomposition If A ∈ R

m×n , then there exist orthogonal matrices U ∈ R
m×m and V ∈ R

n×n such that A = U�̃VT,
where �̃ is an m × n diagonal matrix. The diagonal entries of �̃ are all nonnegative and are arranged as follows: σ1 ≥ σ2 ≥ · · · ≥ σr > 0,
with σr+1 = · · · = σn = 0.

Singular values The square root of the eigenvalues of ATA for any matrix A. The singular values are the entries on the diagonal of the matrix �̃

in the singular value decomposition.
Sparse matrix A matrix most of whose entries are 0.
Spectral radius If A is an n × n matrix, the spectral radius of A, written ρ (A), is the maximum eigenvalue in magnitude; in other words,

ρ (A) = max1≤i≤n |λi| .
Spectral theorem If A is a real symmetric matrix, there exists an orthogonal matrix P such that D = PTAP, where D is a diagonal matrix

containing the eigenvalues of A, and the columns of P are an orthonormal set of eigenvalues that form a basis for R
n.



Glossary 593

Stable algorithm An algorithm is stable if it performs well in general, and an algorithm is unstable if it performs badly in significant cases. In
particular, an algorithm should not be unduly sensitive to errors in its input or errors during its execution.

Sub-multiplicative norm A matrix norm is sub-multiplicative if ‖AB‖ ≤ ‖A‖ ‖B‖. The induced matrix norms and the Frobenius norm are
sub-multiplicative.

Successive overrelaxation (SOR) An iterative method for solving the linear system Ax = b. A relaxation parameter, ω, 0 < ω < 2,
provides a weighted average of the newest value, x(k)i , and the previous one, x(k)i−1, 1 ≤ i ≤ n, k = 1, 2, 3, . . ., until meeting an error
tolerance.

SVD See “Singular value decomposition.”
Symmetric matrix A square matrix such that aij = aji, i �= j. In other words, AT = A.
Symmetric matrix eigenvalue problem The eigenvectors and eigenvalues of a real symmetric matrix are real and can be computed more

efficiently than those of a general matrix. The Jacobi iteration, the symmetric QR iteration, the Francis algorithm, bisection, and divide-and-
conquer algorithms are discussed in the book.

Symmetric QR iteration Using orthogonal similarity transformation, create a tridiagonal matrix with the same eigenvalues as A. Using the QR
iteration with the Wilkinson shift, transform a symmetric matrix to a diagonal matrix of eigenvalues.

Thomas algorithm An algorithm for solving an n× n tridiagonal system of equations Ax = b with flop count O (n).
Transpose of a matrix If A is an m× n matrix, then AT is the n×m matrix obtained by exchanging the rows and columns of A; in other words,

aTij = aji, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Triangle inequality If ‖·‖ is a vector or matrix norm, then ‖x+ y‖ ≤ ‖x‖ + ‖y‖.
Tridiagonal matrix A banded matrix whose only nonzero entries are on the main diagonal, the lower diagonal, and the super diagonal. A

tridiagonal matrix is both a lower and an upper Hessenberg matrix, and a tridiagonal matrix can be factored into a product of two bidiagonal
matrices.

Truncation Convert to finite precision by dropping all digits past the last valid digit without rounding.
Truncation error The error introduced when an operation, like summing a series, is cut off.
Truss A structure normally containing triangular units constructed of straight members with ends connected at joints referred to as pins. Trusses

are the primary structural component of many bridges.
Underdetermined system An m× n linear system for which n > m; in other words, there are more unknowns than equations. These are a type

of least-squares problems.
Underflow Occurs when a floating point operation produces a result too small for the precision of the computer.
Upper bidiagonal form A matrix having the main diagonal and the super diagonal, with all other entries equal to zero. An orthogonal

transformation to upper bidiagonal form is the first step of the Demmel and Kahan zero-shift QR downward sweep algorithm for computing
the SVD.

Upper-triangular matrix A linear systemwhose coefficient matrix has zeros below themain diagonal; in other words, aij = 0, j < i, 1≤ i, j,≤ n.
Vandermonde matrix An m× n matrix of the form:

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t1 t21 . . . tn−11

1 t2 t22 . . . tn−12

1 t3 t23 . . . tn−13

...
...

...
. . .

1 tm t2m . . . tn−1m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. The elements of V are represented by the formula vij = t j−1i . The Vandermonde matrix plays a role in

least-squares problems. Note also that if

p (x) = an−1xn−1 + an−2xn−2 + · · · + a2x2 + a1x+ a0, then V

⎡⎢⎢⎢⎢⎢⎢⎣
a0
a1
a3
...

an−1

⎤⎥⎥⎥⎥⎥⎥⎦ evaluates p (x) at the points t1, t2, . . . , tm.

Vector norm ‖·‖ : R
n → R is a vector norm provided:

● ‖x‖ ≥ 0 for all x ∈ R
n. ‖x‖ = 0 if and only if x = 0;

● ‖αx‖ = |α| ‖x‖ for all α ∈ R;

● ‖x+ y‖ ≤ ‖ x ‖ + ‖y‖ for all x, y ∈ R
n.

Well-conditioned problem If small perturbations in problem data lead to small relative errors in the solution, a problem is said to be well-
conditioned.

Wilkinson bidiagonal matrix The Wilkinson-bidiagonal matrix is A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

20 20 0 · · · 0
0 19 20 · · · 0
...

... 18 · · · 0
...

...
...

. . . 20
0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. This matrix illustrates that even though the

eigenvalues of a matrix are not equal or even close to each other, an eigenvalue problem can very ill-conditioned.



594 Glossary

Wilkinson shift A shift used in the computation of the eigenvalues of a symmetric matrix. The shift is the eigenvalue closest to hkk of the 2× 2
matrix [

hk−1, k−1 hk, k−1
hk, k−1 hkk

]
,

where the entries are from the lower right-hand corner of the tridiagonal matrix being reduced to a diagonal matrix.
Wilkinson test matrices These are symmetric and tridiagonal, with pairs of nearly, but not exactly, equal eigenvalues. The most frequently used

case is wilkinson(21). Its two largest eigenvalues are both about 10.746; they agree to 14, but not to 15, decimal places.
Zero matrix An m× n matrix all of whose entries are 0.



Bibliography

1. J.W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadel-
phia, 1997.

2. G.H. Golub, C.F. VanLoan, MatrixComputations, fourth ed.,The Johns
Hopkins University Press, Baltimore, 2013.

3. Y. Saad, Numerical Methods for Large Eigenvalue Problems, Revised
ed., SIAM, Philadelphia, 2011.

4. D.S. Watkins, The Matrix Eigenvalue Problem, GR and Krylov
Subspace Methods, SIAM, Philadelphia, 2007.

5. G.W. Stewart, Matrix Algorithms, Volume II: Eigensystems, SIAM,
Philadelphia, 2001.

6. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst (Eds.), Tem-
plates for the Solution of Algebraic Eigenvalue Problems: A Practical
Guide, SIAM, Philadelphia, 2000.

7. N. Magnenat-Thalman, D. Thalmann, State of the Art in Computer
Animation, Animation 2 (1989) 82–90.

8. G. Strang, Introduction to Linear Algebra, fourth ed., Wellesley-
Cambridge Press, Wellesley, MA, 2009.

9. J.H.Wilkinson, The Algebraic Eigenvalue Problem, Oxford University
Press, New York, 1965.

10. W.E. Boyce, R.C. DiPrima, Elementary Differential Equations, ninth
ed., Wiley, Hoboken, NJ, 2009.

11. R.S. Varga, Matrix IterativeAnalysis, Prentice-Hall, Englewood Cliffs,
NJ, 1962.

12. J.P. Keener, The Perron-Frobenius theorem and the ranking of football
teams, SIAM Rev. 35 (1) (1993) 80–93.

13. S. Brin, L. Page, The anatomy of a large-scale hypertextual web search
engine, Comput. Netw. ISDN Syst. 30 (1998) 107–117.

14. T.H. Wei, The Algebraic Foundations of Ranking Theory, Cambridge
University Press, University of Cambridge, 1952.

15. R. Horn, C. Johnson, Matrix Analysis, second ed., Cambridge
University Press, New York, 2013.

16. N.J. Higham, Accuracy and Stability of Numerical Algorithms, second
ed., SIAM, Philadelphia, 2002.

17. G.W. Stewart, Matrix Algorithms, Volume I: Basic Decompositions,
SIAM, Philadelphia, 1998.

18. D. Goldberg, What every computer scientist should know about
floating-point arithmetic, Comput. Surv. 23(1) (1991) 5–48.

19. B.N. Datta, Numerical Linear Algebra and Applications, second ed.,
SIAM, Philadelphia, 2010.

20. Mathworks, Create MEX-files, http://www.mathworks.com/help/
matlab/create-mex-files.html.

21. G.A. Baker, Jr., P. Graves-Morris, Padé Approximants, Cambridge
University Press, New York, 1996.

22. A.J. Laub, Computational Matrix Analysis, SIAM, Philadelphia, 2012.
23. D.S. Watkins, Fundamentals of Matrix Computations, third ed., Wiley,

Hoboken, NJ, 2010.
24. A. Levitin, Introduction to the Design and Analysis of Algorithms,

third ed., Pearson, Upper Saddle River, NJ, 2012.

25. G.H. Golub, C. Reinsch, Singular value decomposition and least
squares solutions, Numer. Math. 14 (1970) 403–420.

26. L. Trefethen, David Bau, III, Numerical Linear Algebra, SIAM,
Philadelphia, 1997.

27. G. Allaire, S.M. Kaber, Numerical Linear Algebra (Texts in Applied
Mathematics), Springer, New York, 2007.

28. W.W. Hager, Condition estimators, SIAM J. Sci. Stat. Comput. 5 (2)
(1984) 311–316.

29. G. Rodrigue, R. Varga, Convergence rate estimates for iterative
solutions to the biharmonic equation, J. Comput. Appl. Math. 24 (1988)
129–146.

30. J.R. Winkler, Condition numbers of a nearly singular simple root of a
polynomial, Appl. Numer. Math. 38 (3) (2001) 275–285.

31. L.V. Foster, Gaussian elimination with partial pivoting can fail in
practice, SIAM J. Matrix Anal. Appl. 15 (1994) 1354–1362.

32. N.J. Higham, Efficient algorithms for computing the condition num-
ber of a tridiagonal matrix, SIAM J. Sci. Stat. Comput. 7 (1986)
150–165.

33. A. Gilat, V. Subramaniam, Numerical Methods for Engineers and
Scientists: An Introduction with Applications UsingMATLAB, second
ed., Wiley, Hoboken, NJ, 2011.

34. R.H. Bartels, J.C. Beatty, B.A. Barsky, An Introduction to Splines
for Use in Computer Graphics and Geometric Modelling, Morgan
Kaufmann, San Francisco, 1995.

35. E.W. Weisstein, Cubic spline, http://mathworld.wolfram.com/
CubicSpline.html.

36. T.A. Grandine, The extensive use of splines at Boeing, SIAM News 38
(4) (2005) 1–3.

37. A.J. Jerri, The Gibbs Phenomenon in Fourier Analysis, Splines and
Wavelet Approximations, Springer, New York, 1998.

38. G.T. Gilbert, Positive definite matrices and Sylvester’s criterion, Am.
Math. Mon. 98 (1) (1991) 44–46.

39. R.s. Ran, T.z. Huang, X.p. Liu, T.x. Gu, An inversion algorithm for
general tridiagonal matrix, Appl. Math. Mech. Engl. Ed. 30 (2009)
247–253.

40. J.W. Lewis, Inversion of tridiagonal matrices, Numer. Math. 38 (1982)
333–345.

41. Q. Al-Hassan, An algorithm for computing inverses of tridiago-
nal matrices with applications, Soochow J. Math. 31 (3) (2005)
449–466.

42. E. Kiliç, Explicit formula for the inverse of a tridiagonal matrix
by backward continued fractions, Appl. Math. Comput. 197 (2008)
345–357.

43. M. El-Mikkawy, A. Karawia, Inversion of general tridiagonal matrices,
Appl. Math. Lett. 19 (8) (2006) 712–720.

44. MIT course 18.335J, Difference in results between the classical
and modified Gram-Schmidt methods, http://ocw.mit.edu/courses/
mathematics/.

595



596 Bibliography

45. L. Giraud, J. Langou, M. Rozloznik, The loss of orthogonality in the
Gram-Schmidt orthogonalization process, Comput. Math. Appl. 50
(2005) 1069–1075.

46. C.B. Moler, Numerical Computing with MATLAB, SIAM, Philadel-
phia, 2004.

47. I. Ipsen, Numerical Matrix Analysis—Linear Systems and Least
Squares, SIAM, Philadelphia, 2009.

48. N.J. Higham, Computing the polar decomposition with applications,
SIAM J. Sci. Stat. Comput. 7 (1986) 1160–1174.

49. G.H. Golub, Numerical methods for solving linear least squares
problems, Numer. Math. 7 (1965) 206–216.

50. K.A. Gallivan, S. Thirumalai, P. Van Dooren, V. Vermaut, High per-
formance algorithms for Toeplitz and block Toeplitz matrices, Linear
Algebra Appl. 241 (1996) 343–388.

51. A. Björck, Numerical Methods for Least Squares Problems, SIAM,
Philadelphia, 1996.

52. A. Björck, Solving linear least-squares by Gram-Schmidt orthogonal-
ization, BIT 7 (1967) 1–21.

53. D.G. Zill, W.S. Wright, Advanced Engineering Mathematics, fifth ed.,
Jones & Bartlett Learning, Burlington, MA, 2014.

54. J.G.F. Francis, The QR transformation, part I. Comput. J. 4 (1961)
265–272.

55. J.G.F. Francis, The QR transformation, part II, Comput. J. 4 (1961)
332–345.

56. R.S. Martin, G. Peters, J.H. Wilkinson, The QR algorithm for real
Hessenberg matrices, Numer. Math. 14 (1970) 219–231.

57. D. Day, How the QR algorithm fails to converge and how to fix it,
Technical report 96–0913J, Sandia National Laboratory, Albuquerque,
NM, April 1996.

58. J.J.M. Cuppen, A divide and conquer method for the symmetric
tridiagonal eigenproblem, Numer. Math. 36 (1981) 177–195.

59. M.Gu, S.C. Eisenstat, A divide-and-conquer algorithm for the symmet-
ric tridiagonal eigenproblem, SIAM J. Matrix Anal. Appl. 16 (1995)
172–191.

60. M. Gu, S.C. Eisenstat, A stable algorithm for the rank-1 modification
of the symmetric eigenproblem, Computer Science Department report
YALEU/DCS/RR-916, Yale University, 1992.

61. B.E. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia,
1997.

62. University of Tennessee, Berkeley University of California, University
of Colorado Denver, and NAG Ltd., LAPACK documentation, http://
www.netlib.org/lapack/.

63. W.L. Briggs, V.E. Henson, S.F. McCormick, A Multigrid Tutorial,
second ed., SIAM, Philadelphia, 2000.

64. Y. Saad, Iterative Methods for Sparse Linear Systems, second ed.,
SIAM, Philadelphia, 2003.

65. Z. Zlatev, Computational Methods for General Sparse Matrices,
Springer, New York, 1991.

66. I.S. Duff, A.M. Erisman, J.K. Reid, Direct Methods for Sparse
Matrices, Oxford University Press, New York, 1989.

67. N. Munksgaard, Solving sparse symmetric sets of linear equations by
preconditioned conjugate gradients, ACMTrans.Math. Softw. 6 (1980)
206–219.

68. K. Chen, Matrix Preconditioning Techniques and Applications, Cam-
bridge University Press, Cambridge, 2005.

69. H.A. van der Vorst, IterativeKrylovMethods for Large Linear Systems,
Cambridge University Press, New York, 2009.

70. G.Meurant, Z. Strakos, The Lanczos and conjugate gradient algorithms
in finite precision arithmetic, Acta Numer. 15 (2006) 471-542.

71. Z. Strakos, On the real convergence rate of the conjugate gradient
method, Linear Algebra Appl. 154–156 (1991) 535–549.

72. G.L.G. Sleijpen, H.A. van der Votst, J. Modersitzki, Differences in the
effects of rounding errors in Krylov solvers for symmetric indefinite
linear systems, SIAM J. Matrix Anal. Appl. 22 (3) (2000) 726–751.

73. A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM,
Philadelphia, 1997.

74. A.P.S. Selvadurai, Partial Differential Equations in Mechanics 2: The
Biharmonic Equation, Poisson’s Equation, Springer, Berlin, 2000.

75. M. Arad, A. Yakhot, G. Ben-Dor, Highly accurate numerical solution
of a biharmonic equation, Num.Meth. Partial Diff. Equations 13 (1997)
375–391.

76. D.S. Scott, How tomake the Lanczos algorithm converge slowly, Math.
Comp. 33 (1979) 239–247.

77. S. Kaniel, Estimates for some computational techniques in linear
algebra, Math. Comp. 20 (1966) 369–378.

78. C.C. Paige, The computation of eigenvalues and eigenvectors of very
large sparse matrices (Ph.D. thesis), University of London, 1971.

79. C.C. Paige, Computational variants of the Lanczos method for the
eigenproblem, J. Inst. Math. Appl. 10 (1972) 373–381.

80. C.C. Paige, Error analysis of the Lanczos algorithm for tridiagonalizing
a symmetric matrix, J. Inst. Math. Appl. 18 (1976) 341–349.

81. C.C. Paige, Accuracy and effectiveness of the Lanczos algorithm
for the symmetric eigenproblem, Linear Algebra Appl. 34 (1980)
235–258.

82. J. Demmel, K. Veselic, Jacobi’s method is more accurate than QR,
SIAM J. Matrix Anal. Appl. 13 (1992) 1204–1245.

83. G.W. Stewart, Perturbation theory for the singular value decomposition,
in: R.J. Vaccaro (Ed.), SVD and Signal Processing, II: Algorithms,
Analysis and Applications, Elsevier, Amsterdam, 1990, pp. 99–109.

84. Z. Drmac̆, K. Veselic, New fast and accurate Jacobi SVD algorithm: I,
SIAM J. Matrix Anal. Appl. 29 (2008) 1322–1342.

85. Z. Drmac̆, K. Veselic, New fast and accurate Jacobi SVD algorithm: II,
SIAM J. Matrix Anal. Appl. 29 (2008) 1343–1362.

86. G.H. Golub, W. Kahan, Calculating the singular values and pseudo-
inverse of a matrix, SIAM J. Numer. Anal. 2 (1965) 205–224.

87. J. Demmel,W. Kahan, Accurate singular values of bidiagonal matrices,
SIAM J. Sci. Stat. Comput. 11 (1990) 873–912.

88. A. Gil, J. Segura, N.M. Temme, Numerical Methods for Special
Functions, SIAM, Philadelphia, 2007.

89. Haag, Michael, Justin Romberg, Stephen Kruzick, Dan Calderon, and
Catherine Elder “Cauchy-Schwarz Inequality.” OpenStax-CNX. 2013.
http://cnx.org/content/m10757/2.8/.

90. T.A. Davis, Y. Hu, ACM transactions on mathematical software, The
University of Florida sparse matrix collection, 38 (2011) 1:1–1:25.

91. F.L. Bauer, C.T. Fike, Norms and exclusion theorems, Numer. Math.
(1960) 137–141.



Index

1s-complement, 146

A
A-conjugate, 497
A-norm, 275, 497
absolute error, 150
adaptive procedure, 314
adjacency matrix, 13
adjoint, 63, 71
algorithm, 163
backward stable, 185
Big-O notation, 167
Cholesky decomposition, 271
colon notation, 214
computing the Givens parameters, 358
cubic, 167
forward stable, 186
Frobenius norm, 164
Givens QR decomposition, 360
Gram-Schmidt, 282
implicit QR, 409
inner product, 164
inner product of two vectors, 164
iterative improvement, 229
linear, 167
LU decomposition, 214
LU decomposition of a tridiagonal matrix,

264
LU decomposition without a zero on the

diagonal, 216
modified Gram-Schmidt, 285
product of a Givens matrix with a general

matrix, 356
product of two matrices, 164
pseudocode, 163
quadratic, 167
recursion stopping condition, 459
solve AX = B using LU factorization, 225
solve Ax = bi , 1 ≤ i ≤ k, 225
solving a lower-triangular system, 170
solving an upper-triangular system, 169
solving the least-squares problem using the

QR decomposition, 328
solving the least-squares problem using the

SVD, 330
stability, 186
steepest descent, 496
the power method, 391
unstable, 185

angle between vectors, 107
applications
biharmonic equation, 523

conductance matrix, 269
counting paths in graphs, 12
cubic splines, 252
electric circuit with inductors, 89
electrical circuit, 39
encryption, 71
finite difference approximations, 244
Fourier series, 241
image compression using the SVD, 310
instability of the Cauchy problem, 188
least-squares fitting, 247
least-squares to fit a power function, 328
Leslie model, 383
Poisson’s equation, 478
signal comparison, 112
team ranking, 94
truss, 37
velocity of an enzymatic reaction, 331
vibrating masses on springs, 380

Argand diagram, 571
Arnoldi decomposition, 509
Arnoldi process, 534
augmented matrix, 27

B
back substitution, 29, 168, 207
backward
error, 184, 587
stable, 185

band matrix, 238
basic QR iteration, 394
basis, 50
local, 125
orthonormal, 122

Bauer-Fike theorem, 424
bi-conjugate gradient method, 531
bidiagonal matrix, 44, 263
Big-O notation, 167
biharmonic equation, 523
biorthogonal bases, 528
bit, 145
block
pentadiagonal matrix, 523
tridiagonal matrix, 522

bulge, 411

C
cancellation error, 155
carry, 146
Cauchy problem, 188

Cauchy-Schwarz inequality, 111,
121, 242

matched filter, 112
characteristic
equation, 79
polynomial, 79, 182

Chebyshev
polynomial, 258, 583

Cholesky
decomposition, 270
incomplete decomposition, 503

Chris Paige, 546
clamped cubic spline, 255
classical
Gram-Schmidt, 284
Jacobi method, 444, 465

coefficient matrix, 4, 27
cofactor, 62
colon notation, 214
column
rank, 322
space, 48
vector, 7

compatible norms, 141
complex numbers, 569
Argand diagram, 571
complex plane, 571
conjugate, 571
imaginary part, 569
rationalization of the denominator,

570
real part, 569
square root, 570

complex plane, 571
imaginary axis, 571
lower half, 571
real axis, 571
upper half, 571

compressed row storage format, 492
condition number, 143, 189, 192
estimate, 195

conjugate gradient method, 493
conjugate transpose, 117
contour lines, 494
Cramer’s rule, 69, 182
critical loads, 388
cross product, 115, 177
Crout’s Method, 233
CRS format, 492
cubic algorithm, 167
cubic spline, 252
clamped, 255

597



598 Index

cubic spline (Continued)
natural, 255
not-a-knot condition, 255

cyclic-by-row Jacobi algorithm, 444

D
deflation, 401
determinant, 15
and the matrix inverse, 67
Cramer’s rule, 69
diagonal matrix, 61
first-row Laplace expansion, 60
general expansion by minors, 62
lower triangular matrix, 61
matrix with row of zeros, 61
properties for evaluation, 64
upper triangular matrix, 61
using QR decomposition, 291

Devlin, Keith, 575
diagonal
dominance, 172, 477
matrix, 61

diagonalizable matrix, 84
diagonally dominant matrix, 263
digraph, 92
strongly connected, 93

dimension of a subspace, 51
directed line segments, 103
direction vector, 494
distance between points, 103
dominant eigenvalue, 389
dot product, 105
drop tolerance, 505

E
eigenfunctions, 388
eigenspace, 83
eigenvalue
and vibrations, 380
Bauer-Fike theorem, 424
characteristic
equation, 79
polynomial, 79, 182

classical Jacobi method, 444, 465
condition number, 426
cyclic-by-row Jacobi algorithm, 444
definition, 79
deflation, 401
deflation using the implicit double

shift, 420
dominant eigenvalue, 389
eig function, 95
eigb function, 423
eigenspace, 83
eigqr function, 402
eigqrshift function, 405
eigsb function, 542
eigssymb function, 546
explicit
double shift, 415
restart for large sparse problem, 536

filtering polynomial, 540
Francis algorithm, 409
Francis iteration of degree one, 409

generalized problem, 432
ghost, 546, 549
implicit double shift, 415
implicit Q theorem, 410
implicitly restarted Arnoldi

method, 540
inverse power method, 393
Jacobi method, 440
of a symmetric matrix, 134
power method, 390, 428, 533
convergence, 391

QR iteration, 394
rate of convergence of power

method, 392
Rayleigh
quotient, 389
quotient iteration, 465
quotient shift, 404

sensitivity of perturbations, 424
shift, 404
single shift QR algorithm, 404
strictly interlacing, 455

eigenvector
computing
from eigenvalue, 420
the largest, 391
the smallest, 393

definition, 80
eigenspace, 83
left, 425
localization, 466
matrix, 86, 389
sensitivity, 427
shifted inverse iteration, 421

electric circuit
Kirchhoff’s current law, 39
Kirchhoff’s voltage law, 39

elementary
row matrix, 208
row operations, 27

ellipsoid, 307
encryption, 71
example, 72

energy norm, 275, 497
eps, 149
error
absolute, 150
backward, 184, 587
cancellation, 155
forward, 183
relative, 150
round-off, 117, 145
truncation, 145

Euclidean norm, 120
Euler’s
formula, 575
identity, 575

Euler-Lotka equation, 385
expansion by minors, 60, 62
explicit
restart, 536
shift, 415

extrapolation, 248

F
Feynman, Richard, 575
Fibonacci
matrix, 12
sequence, 12

filtering polynomial, 540
finite difference equations, 246
first buckling mode, 388
five-point
difference approximation, 480
stencil, 480

fl, 148
floating point, 147
absolute error, 150
arithmetic, 150
avoiding error, 155
base, 147
bias, 148
granularity, 149
IEEE arithmetic, 151
mantissa, 147
normalization, 155
overflow, 148
relative error, 150
round-off error, 151
rounding, 149, 151
rounding error in matrix multiplication, 154
rounding error in scalar multiplication, 154
truncation, 151
underflow, 148

flop, 167
count, 167

force vector, 381
forward
error, 183
stable, 186
substitution, 169, 206

Fourier
coefficients, 242

Fourier series, 241
Gibbs phenomenon, 260
sawtooth wave, 257
square wave, 243
triangle wave, 258

Francis algorithm, 409
degree one, 409, 452
degree two, 413
double shift, 409
single shift, 409

Frobenius norm, 127, 128
full reorthogonalization, 517
fundamental frequency, 380

G
Gauss transformation matrix, 235
Gauss-Seidel
iteration, 470
matrix form, 473

Gaussian elimination, 26, 29
procedure, 29
stability, 227
with complete pivoting, 226
with partial pivoting, 218

GECP, 226



Index 599

generalized eigenvalue problem, 432
geometric series, 580
GEPP, 218
Gergorin’s disk theorem, 431
ghost eigenvalues, 546, 549
Gibbs phenomenon, 260
Givens
matrix, 352
method, 351
parameters, 358
QR decomposition algorithm, 360
rotation, 353

GMRES, 512
golden ratio, 88
gradient of a function, 494
Gram-Schmidt
orthonormalization, 283
process, 281, 282
QR decomposition, 288, 351

granularity of floating point numbers, 149
graph, 12
adjacency matrix, 13
edges, 12
number of paths between two vertices, 13
path, 12
vertices, 12

growth factor, 227
guard digit, 150

H
Hanowa matrix, 101
heat equation, 245
Hermitian
matrix, 117, 573
transpose, 413

Hessenberg
lower, 396
upper, 396

Hilbert
matrices, 22, 77
space, 242

Hilbert-Schmidt norm, 127
homogeneous system, 15, 36
nontrivial solution, 36
trivial solution, 36

Householder
method, 351
reflection, 362

I
identity matrix, 11
IEEE
arithmetic, 151
floating point standard, 148

ill-conditioned
matrix, 119
problem, 187

imaginary part of complex number, 569
implicit
double shift, 415
Q theorem, 410
QR algorithm, 409
single shift, 409

implicitly restarted Arnoldi method, 540

incomplete
Cholesky decomposition, 503
LU decomposition, 514

inconsistent system of linear equations, 25, 31
induced matrix norm, 127
induction
basis step, 579
inductive step, 579

initial-boundary value problems, 245
inner product, 104, 589
geometric interpretation, 105
properties, 105

integer, 7
largest positive, 146
most negative, 147
overflow, 147
representation, 145

interpolation, 248
inverse
computation, 34
computation using the adjoint, 63
iteration, 420
of a matrix product, 14
participation ratio, 467
power method, 393

invertible matrix, 13
irrational number, 7
irreducible matrix, 92
iterative methods, 469
conjugate gradient, 497
drop tolerance, 505
Gauss-Seidel, 470
GMRES, 512
implicitly restarted Arnoldi, 540
implicitly restarted Lanczos, 544
Jacobi, 469
MINRES, 519
power method, 390, 533
SOR, 471
steepest descent, 493

iterative refinement, 228

J
Jacobi
iteration, 469
matrix form of iterative method, 473
method for computing eigenvalues, 440
preconditioner, 527
sweep, 444

K
Kirchhoff’s rules, 39
knot, 252
Krylov
sequence, 508
subspace, 508

L
L2

inner product, 110
norm, 281

Lagrange interpolation, 252
Lanczos method, 516

least-squares, 248, 321
geometric interpretation, 321
linear, 321
normal equations, 249, 322
overdetermined system, 249
rank deficient, 333
regression line, 250
residual, 248
residual equation, 324
solution using normal equations, 326
underdetermined system, 249
use of Cholesky decomposition, 326
using QR decomposition, 327
using the SVD, 329
weighted, 343

left
eigenvector, 425
nullspace, 57
preconditioner, 502
singular vectors, 301

Leslie
matrix, 383
model, 383

level set, 494
linear
algorithm, 167
combination, 48
equation, 25
interpolation, 252
splines, 252
transformation, 7
translation, 9

linear system
consistent, 25
homogeneous, 15
inconsistent, 25, 31
trivial solution, 15

linearly
dependent, 49
independent, 49

local basis, 125
lower-triangular matrix, 169
LU
decomposition, 205, 206
decomposition algorithm, 214

M
machine precision, 149
mantissa, 147
MATLAB function
chol, 271
cond, 195, 325
condest, 196
det, 62
eig, 95
fix, 162
gallery, 192
gmres, 513
help, 162
ichol, 505
ilu, 515
inv, 15
lu, 225
minres, 531



600 Index

MATLAB function (Continued)
norm, 121
qr, 289
rand, 57
rank, 53
realmin, 162
schur, 408
svd, 308
symmlq, 531
trace, 6
transpose, 17
vectorization, 6
wilkinson, 452
zeta, 577

matrix, 1
1-norm, 131
2-norm, 132
addition, 2
adjoint, 63
and orthogonal vectors, 108
and system of equations, 4
back substitution, 29, 207
band, 238
bidiagonal, 44, 263
block
pentadiagonal, 523
structured, 101
tridiagonal, 522

Cholesky decomposition, 270
coefficient matrix, 4
cofactor, 62
column rank, 322
computational expense, 3
computing the inverse, 34
condition number, 143, 192
conjugate transpose, 117
Crout ’s Method, 233
decomposition, 206
diagonal dominance, 172
diagonalizable, 84
diagonally dominant, 263
elementary row, 208
equality of matrices, 2
factoring a tridiagonal matrix, 264
factorization, 43
forward substitution, 206
Frobenius norm, 128
full rank, 287
Gauss transformation, 235
Gaussian elimination with partial pivoting,

218
Givens, 352
rotation, 353

growth factor, 227
Hanowa, 101
Hermetian transpose, 413
Hermitian, 117, 573
identity, 11
ill-conditioned, 22, 119
inverse, 13
of a product, 14

invertible, 13
irreducible, 92
laws of arithmetic, 3

left
nullspace, 57
preconditioner, 502

lower triangular, 169
LU decomposition, 205, 206
negative of a matrix, 2
nonnegative, 93
nonsingular, 13
normal, 431
null space, 47
null space using SVD, 303
off diagonal entries of a square matrix, 20
orthogonal
and conditioning, 195
invariance, 136

overdetermined system, 321
partial pivoting, 218
pencil, 432
pentadiagonal, 489
permutation, 218
Perron-Frobenius theorem, 93
pivot, 218
positive definite, 44, 267
positive semidefinite, 267
power, 11
preconditioner, 501
product, 2
proper
Hessenberg, 400
orthogonal, 109

properties of the condition number, 193
pseudoinverse, 324
QR decomposition, 351
quasi-triangular, 408
range, 57
range using SVD, 303
rank, 51, 322
deficient, 57
revealing QR decomposition, 296
using SVD, 302

rank 1, 310
real Schur form, 408
reduced QL decomposition, 375
reducible, 92
reversal matrix, 375
reverse identity, 375
right preconditioner, 502
rotation, 7, 8, 10
row
rank, 322
space, 48

row-equivalent matrices, 28
scalar multiple of a matrix, 2
Schur’s triangularization, 405
similar, 84
simple eigenvector, 93
singular, 13
singular value decomposition, 53, 299
singular values, 133, 135, 182, 307
sparse, 38, 171, 247, 469
sparsity pattern, 491
spectral theorem, 136
split preconditioner, 502
square matrix diagonal, 20

square root, 317
SSOR preconditioner, 506
stiffness, 381
strictly column diagonally dominant, 234
strictly row diagonally dominant, 477
subordinate norm, 127
subtraction of matrices, 2
superdiagonal entries, 263
SVD, 53, 299
symmetric, 17
the zero matrix, 2
Toeplitz, 203, 513
trace, 5
transpose, 16
tridiagonal, 20, 44, 171, 236, 247, 263
underdetermined system, 321, 338
unitary, 576
unreduced Hessenberg, 400
upper
bidiagonal, 172
triangular, 29, 168, 359

upper triangular, 72
Vandermonde, 67, 203, 248
well-conditioned, 440

McLaurin series, 575
MGS, 288
Millennium Bridge, 79
minimum residual method (MINRES), 519
minor, 60
mode of an image, 311
modified Gram-Schmidt
process, 285
QR decomposition and ill-conditioned

matrices, 351
monic polynomial, 584
Moore-Penrose generalized inverse, 324

N
natural
cubic splines, 255
frequency, 381

nonnegative matrix, 93
norm
1-norm, 120
A-norm, 275, 497
energy norm, 275, 497
Frobenius, 127, 128
Hilbert-Schmidt, 127
induced matrix norm, 127
infinity norm, 120
p-norm, 120
Schatten p-norm, 141
sub-multiplicative, 131

normal
derivative, 523
equation of a plane, 115
equations, 249, 322
matrix, 431

not-a-knot condition, 255
null space, 47

O
one’s-complement, 159
one-sided Jacobi algorithm, 551



Index 601

optimal upper bound, 192
orthogonal
complement, 316
invariance, 121, 136
matrix, 195
projection, 282
similarity transformation, 396
vectors, 107, 281

orthonormal
basis, 122
vectors, 108

outer product, 116, 184
overdetermined system, 249, 321
overflow, 147, 148

P
p-norms, 120
PageRank process, 94
parallelogram law, 103
partial pivoting, 218
Peirce, Benjamin, 575
permutation matrix, 116, 218
perpendicular vectors, 107
Perron-Frobenius theorem, 93
pessimistic upper bound, 192
pivot, 211
matrix, 218

Poisson’s equation, 478
polar decomposition, 320
poles in divide-and-conquer, 460
position vector, 103
positive definite matrix, 44, 267
positive semidefinite matrix, 267
positivity, 120, 126
power method, 390, 428, 533
convergence, 391
inverse, 393
rate of convergence, 392

power of a matrix, 11
preconditioned
CG, 503
GMRES, 514

preconditioner, 501
CG
incomplete Cholesky, 503
SSOR, 506

GMRES
incomplete LU decomposition, 514

Jacobi, 527
preconditioning, 501
projection operator, 281
proper
Hessenberg, 400
orthogonal matrix, 109

pseudocode, 163
pseudoinverse, 324
Pythagorean Theorem, 121, 141

Q
QMR method, 532
QR decomposition, 287, 351
full, 289
Givens method for computing, 351

Gram-Schmidt method for
computing, 287

Householder’s method for
computing, 351

iteration for computing
eigenvalues, 394

reduced, 289
theorem, 351

quadratic
algorithm, 167
form, 22, 267
formula, 155
function, 493

quadratic spline, 259
quasi-triangular matrix, 408

R
rank, 51
1 correction, 459
1 matrix, 310
1 update, 374
deficient matrix, 57
revealing QR

decomposition, 296
rational number, 7
Rayleigh
quotient, 389
quotient iteration, 465
quotient shift, 404

real part of complex number, 569
real Schur form, 408
recursive definition, 60
red-black ordering, 486
reduced
QL decomposition, 375
QR decomposition, 289
SVD, 329

reducible matrix, 92
regression line, 250
relative
error, 150
residual, 470

relaxation parameter, 471
reorthogonalization, 297
full, 517

residual, 248
resonance, 382
reversal matrix, 375
reverse identity matrix, 375
Riemann
hypothesis, 577
zeta function, 576

right
preconditioner, 502
singular vectors, 301

Ritz
eigenvector, 535
locked pair, 537
pair, 535
value, 535

root, 453
rotation matrix, 7, 8, 10
round-off error, 117, 145, 149
rounding, 148, 149, 151

row
equivalent matrices, 28
rank, 322
space, 48

Runge’s phenomenon, 262

S
sawtooth wave, 257
scaling, 120, 126
Schatten p-norm, 141
Schur’s triangularization, 405
secular equation, 460
shifted inverse iteration, 420
signal comparison, 112
significant digits, 147
similar matrices, 84
simple eigenvector, 93
single shift, 404
singular matrix, 13
singular value decomposition, 53
geometric interpretation, 307
left singular vectors, 301
right singular vectors, 301
theorem, 299

singular values, 133, 135, 182, 307
artificial ill-conditioning, 557
Demmel and Kahan zero-shift QR downward

sweep, 558
one-sided Jacobi algorithm, 551

SOR iteration, 471
sparse matrix, 38, 171, 247
Arnoldi decomposition, 509
CRS format, 492
GMRES, 512
Lanczos decomposition, 516
minimum residual method (MINRES), 519

sparsity pattern, 491
spectral
norm, 132
radius, 137
theorem, 136, 439

spline
cubic, 252
knot, 252
quadratic, 259

split preconditioner, 502
square root of a matrix, 317
square wave, 243
SSOR preconditioner, 506
for GMRES, 527

stability, 186
standard basis vectors, 49
steady state, 91
steepest descent, 493, 496
stiffness matrix, 381
stopping condition, 459
strictly
column diagonally dominant, 234
interlacing eigenvalues, 455

strong induction, 580
strongly connected digraph, 93
Sturm sequence, 455
sub-multiplicative norm, 131
subordinate matrix norm, 127



602 Index

subspace, 47
basis, 50
dimension, 51
Krylov, 508
orthogonal complement, 316
spanned by, 48

superdiagonal matrix entries, 263
supremum, 189
SVD, 53, See singular value decomposition, 299
Sylvester’s criterion, 267
symmetric matrix, 17
ATA, 133
biharmonic, 523
bisection method for computing eigenvalues,

453
divide-and-conquer method for computing

eigenvalues, 458
eigenvalues, 134
Francis method for computing eigenvalues,

452
has n linearly independent eigenvalues, 83
has real eigenvalues, 134
Hilbert, 201
indefinite, 268
Jacobi method for computing eigenvalues,

440
Lanczos decomposition of, 516
listing of important properties, 440
Poisson, 478
positive definite, 267
QR method for computing eigenvalues, 446
reduction to a tridiagonal matrix, 449
skew, 432
spectral theorem for, 439
Wilkinson 21× 21 matrix, 452

system of linear equations, 4, 25, 29
as a matrix equation, 4
augmented matrix, 27
coefficient matrix, 27

conjugate gradient method, 493
elementary row operations, 27
Gauss-Seidel iteration, 470
Gaussian elimination, 26, 29
GMRES method, 512
homogeneous, 36
Jacobi iteration, 469
LU decomposition, 205
MINRES method, 519
relative residual, 470
solution using the inverse, 15
SOR iteration, 471
vector of constants, 4
vector of unknowns, 4

T
Tacoma Narrows Bridge, 79
collapse, 380

tensor product, 116, 176
thermal diffusivity, 245
Toeplitz matrix, 203, 513
trace, 5
transient solution, 91
transpose of a matrix, 16
triangle inequality, 111, 120, 126
triangle wave, 258
tridiagonal matrix, 20, 44, 236, 247, 263
trivial solution, 15
truncation, 148, 151
error, 145

truss problem, 37
two’s-complement, 145

U
underdetermined system, 249, 321, 338
underflow, 148
unit
sphere, 307

sphere of a norm, 128
vector, 108

unitary matrix, 576
Univ. of Florida Sparse Matrix

Collection, 492
unreduced Hessenberg, 400
unstable algorithm, 185
upper
bidiagonal matrix, 172
triangular matrix, 29, 168, 359

V
Vandermonde matrix, 67, 203, 248
vector, 1
column, 7
cross product, 115
norm, 119
of constants, 4
of unknowns, 4
operations, 103
orthogonal vectors, 107, 281
orthonormal set of, 108
outer product, 116
parallel vectors, 107
perpendicular vectors, 107
unit, 108

vectorization, 6
vibration problem, 380

W
weighted least-squares, 343
well-conditioned problem, 187
Wilkinson
bidiagonal matrix, 201, 434
polynomial, 187
shift, 451
test matrices, 99

Wilkinson, J. H., 99, 237


	Front Cover
	Numerical Linear Algebra with Applications
	Copyright
	Dedication
	Contents
	List of Figures
	List of Algorithms
	Preface
	Matrices
	Matrix Arithmetic
	Matrix Product
	The Trace
	MATLAB Examples

	Linear Transformations
	Rotations

	Powers of Matrices
	Nonsingular Matrices
	The Matrix Transpose and Symmetric Matrices
	Chapter Summary
	Problems
	MATLAB Problems


	Linear Equations
	Introduction to Linear Equations
	Solving Square Linear Systems
	Gaussian Elimination
	Upper-Triangular Form

	Systematic Solution of Linear Systems
	Computing the Inverse
	Homogeneous Systems
	Application: A Truss
	Application: Electrical Circuit
	Chapter Summary
	Problems
	MATLAB Problems


	Subspaces
	Introduction
	Subspaces of Rn
	Linear Independence
	Basis of a Subspace
	The Rank of a Matrix
	Chapter Summary
	Problems
	MATLAB Problems


	Determinants
	Developing the Determinant of a 2bold0mu mumu section2 and a 3bold0mu mumu section3 Matrix
	Expansion by Minors
	Computing a Determinant Using Row Operations
	Application: Encryption
	Chapter Summary
	Problems
	MATLAB Problems


	Eigenvalues and Eigenvectors
	Definitions and Examples
	Selected Properties of Eigenvalues and Eigenvectors
	Diagonalization
	Powers of Matrices

	Applications
	Electric Circuit
	Irreducible Matrices
	Ranking of Teams Using Eigenvectors

	Computing Eigenvalues and Eigenvectors using MATLAB
	Chapter Summary
	Problems
	MATLAB Problems


	Orthogonal Vectors and Matrices
	Introduction
	The Inner Product
	Orthogonal Matrices
	Symmetric Matrices and Orthogonality
	The L2 Inner Product
	The Cauchy-Schwarz Inequality
	Signal Comparison
	Chapter Summary
	Problems
	MATLAB Problems


	Vector and Matrix Norms
	Vector Norms
	Properties of the 2-Norm
	Spherical Coordinates

	Matrix Norms
	The Frobenius Matrix Norm
	Induced Matrix Norms

	Submultiplicative Matrix Norms
	Computing the Matrix 2-Norm
	Properties of the Matrix 2-Norm
	Chapter Summary
	Problems
	MATLAB Problems


	Floating Point Arithmetic
	Integer Representation
	Floating-Point Representation
	Mapping from Real Numbers to Floating-Point Numbers

	Floating-Point Arithmetic
	Relative Error
	Rounding Error Bounds
	Addition
	Multiplication
	Matrix Operations


	Minimizing Errors
	Avoid Adding a Huge Number to a Small Number
	Avoid Subtracting Numbers That Are Close

	Chapter Summary
	Problems
	MATLAB Problems


	Algorithms
	Pseudocode Examples
	Inner Product of Two Vectors
	Computing the Frobenius Norm
	Matrix Multiplication
	Block Matrices

	Algorithm Efficiency
	Smaller Flop Count Is Not Always Better
	Measuring Truncation Error

	The Solution to Upper and Lower Triangular Systems
	Efficiency Analysis

	The Thomas Algorithm
	Efficiency Analysis

	Chapter Summary
	Problems
	MATLAB Problems


	Conditioning of Problems and Stability of Algorithms
	Why Do We Need Numerical Linear Algebra?
	Computation Error
	Forward Error
	Backward Error

	Algorithm Stability
	Examples of Unstable Algorithms

	Conditioning of a Problem
	Perturbation Analysis for Solving a Linear System
	Properties of the Matrix Condition Number
	MATLAB Computation of a Matrix Condition Number
	Estimating the Condition Number
	Introduction to Perturbation Analysis of Eigenvalue Problems
	Chapter Summary
	Problems
	MATLAB Problems


	Gaussian Elimination and the LU Decomposition
	LU Decomposition
	Using LU to Solve Equations
	Elementary Row Matrices
	Derivation of the LU Decomposition
	Colon Notation
	The LU Decomposition Algorithm
	LU Decomposition Flop Count

	Gaussian Elimination with Partial Pivoting
	Derivation of PA=LU
	Algorithm for Gaussian Elimination with Partial Pivoting

	Using the LU Decomposition to Solve Axi = bi, 1i k
	Finding A–1
	Stability and Efficiency of Gaussian Elimination
	Iterative Refinement
	Chapter Summary
	Problems
	MATLAB Problems


	Linear System Applications
	Fourier Series
	The Square Wave

	Finite Difference Approximations
	Steady-State Heat and Diffusion

	Least-Squares Polynomial Fitting
	Normal Equations

	Cubic Spline Interpolation
	Chapter Summary
	Problems
	MATLAB Problems


	Important Special Systems
	Tridiagonal Systems
	Symmetric Positive Definite Matrices
	Applications

	The Cholesky Decomposition
	Computing the Cholesky Decomposition
	Efficiency
	Solving Ax = b If A Is Positive Definite
	Stability

	Chapter Summary
	Problems
	MATLAB Problems


	Gram-Schmidt Orthonormalization
	The Gram-Schmidt Process
	Numerical Stability of the Gram-Schmidt Process
	The QR Decomposition
	Efficiency
	Stability

	Applications of the QR Decomposition
	Computing the Determinant
	Finding an Orthonormal Basis for the Range of a Matrix

	Chapter Summary
	Problems
	MATLAB Problems

	The Singular Value Decomposition
	The SVD Theorem
	Using the SVD to Determine Properties of a Matrix
	The Four Fundamental Subspaces of a Matrix

	SVD and Matrix Norms
	Geometric Interpretation of the SVD
	Computing the SVD Using MATLAB
	Computing A–1
	Image Compression Using the SVD
	Image Compression Using MATLAB
	Additional Uses

	Final Comments
	Chapter Summary
	Problems
	MATLAB Problems


	Least-Squares Problems
	Existence and Uniqueness of Least-Squares Solutions
	Existence and Uniqueness Theorem
	Normal Equations and Least-Squares Solutions
	The Pseudoinverse, m  n
	The Pseudoinverse, m<n

	Solving Overdetermined Least-Squares Problems
	Using the Normal Equations
	Efficiency
	Computational Note

	Using the QR Decomposition
	Efficiency

	Using the SVD
	Efficiency

	Remark on Curve Fitting

	Conditioning of Least-Squares Problems
	Sensitivity when using the Normal Equations

	Rank-Deficient Least-Squares Problems
	Efficiency

	Underdetermined Linear Systems
	Efficiency

	Chapter Summary
	Problems
	MATLAB Problems


	Implementing the QR Decomposition
	Review of the QR Decomposition Using Gram-Schmidt
	Givens Rotations
	Zeroing a Particular Entry in a Vector

	Creating a Sequence of Zeros in a Vector Using Givens Rotations
	Product of a Givens Matrix with a General Matrix
	Zeroing-Out Column Entries in a Matrix Using Givens Rotations
	Accurate Computation of the Givens Parameters
	The Givens Algorithm for the QR Decomposition
	The Reduced QR Decomposition
	Efficiency

	Householder Reflections
	Matrix Column Zeroing Using Householder Reflections
	Implicit Computation with Householder Reflections

	Computing the QR Decomposition Using Householder Reflections
	Efficiency and Stability

	Chapter Summary
	Problems
	MATLAB Problems


	The Algebraic Eigenvalue Problem
	Applications of the Eigenvalue Problem
	Vibrations and Resonance
	The Leslie Model in Population Ecology
	Buckling of a Column

	Computation of Selected Eigenvalues and Eigenvectors
	Additional Property of a Diagonalizable Matrix
	The Power Method for Computing the Dominant Eigenvalue
	Computing the Smallest Eigenvalue and Corresponding Eigenvector

	The Basic QR Iteration
	Transformation to Upper Hessenberg Form
	Efficiency and Stability

	The Unshifted Hessenberg QR Iteration
	Efficiency

	The Shifted Hessenberg QR Iteration
	A Single Shift

	Schur's Triangularization
	The Francis Algorithm
	Francis Iteration of Degree One
	Preparation for Understanding the Iteration
	Demonstration of the Francis Iteration of Degree One

	Francis Iteration of Degree Two

	Computing Eigenvectors
	Hessenberg Inverse Iteration

	Computing Both Eigenvalues and TheirCorresponding Eigenvectors
	Sensitivity of Eigenvalues to Perturbations
	Sensitivity of Eigenvectors

	Chapter Summary
	Problems
	MATLAB Problems


	The Symmetric Eigenvalue Problem
	The Spectral Theorem and Properties of a Symmetric Matrix
	Properties of a Symmetric Matrix

	The Jacobi Method
	Computing Eigenvectors Using the Jacobi Iteration
	The Cyclic-by-Row Jacobi Algorithm

	The Symmetric QR Iteration Method
	Tridiagonal Reduction of a Symmetric Matrix
	Efficiency

	Orthogonal Transformation to a Diagonal Matrix

	The Symmetric Francis Algorithm
	Theoretical Overview and Efficiency

	The Bisection Method
	Efficiency
	Matrix A Is Not Unreduced

	The Divide-and-Conquer Method
	Using dconquer

	Chapter Summary
	Problems
	MATLAB Problems


	Basic Iterative Methods
	Jacobi Method
	The Gauss-Seidel Iterative Method
	The SOR Iteration
	Convergence of the Basic Iterative Methods
	Matrix Form of the Jacobi Iteration
	Matrix Form of the Gauss-Seidel Iteration
	Matrix Form for SOR
	Conditions Guaranteeing Convergence
	The Spectral Radius and Rate of Convergence
	Convergence of the Jacobi and Gauss-Seidel Methods for Diagonally Dominant Matrices
	Choosing  for SOR

	Application: Poisson's Equation
	Chapter Summary
	Problems
	MATLAB Problems


	Krylov Subspace Methods
	Large, Sparse Matrices
	Storage of Sparse Matrices

	The CG Method
	The Method of Steepest Descent
	From Steepest Descent to CG
	Convergence

	Preconditioning
	Preconditioning for CG
	Incomplete Cholesky Decomposition
	SSOR Preconditioner

	Krylov Subspaces
	The Arnoldi Method
	Efficiency
	An Alternative Formulation of the Arnoldi Decomposition

	GMRES
	Convergence
	Preconditioned GMRES

	The Symmetric Lanczos Method
	Loss of Orthogonality with the Lanczos Process

	The MINRES Method
	Convergence

	Comparison of Iterative Methods
	Poisson's Equation Revisited
	The Biharmonic Equation
	Chapter Summary
	Problems
	MATLAB Problems


	Large Sparse Eigenvalue Problems
	The Power Method
	Eigenvalue Computation Using the Arnoldi Process
	Estimating Eigenvalues Without Restart or Deflation
	Estimating Eigenvalues Using Restart
	A Restart Method Using Deflation
	Restart Strategies

	The Implicitly Restarted Arnoldi Method
	Convergence of the Arnoldi Iteration

	Eigenvalue Computation Using the Lanczos Process
	Mathematically Provable Properties

	Chapter Summary
	Problems
	MATLAB Problems


	Computing the Singular Value Decomposition
	Development of the One-Sided Jacobi Methodfor Computing the Reduced SVD
	Stability of Singular Value Computation

	The One-Sided Jacobi Algorithm
	Faster and More Accurate Jacobi Algorithm

	Transforming a Matrix to Upper-Bidiagonal Form
	Demmel and Kahan Zero-Shift QR Downward Sweep Algorithm
	Chapter Summary
	Problems
	MATLAB Problems


	Complex Numbers
	Constructing the Complex Numbers
	Calculating with Complex Numbers
	Geometric Representation of C
	Complex Conjugate
	Complex Numbers in MATLAB
	Euler's Formula
	Problems
	MATLAB Problems


	Mathematical Induction
	Problems

	Chebyshev Polynomials
	Definition
	Properties
	Problems
	MATLAB Problems


	Glossary
	Bibliography
	Index

