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Source: Formulas for Structural Dynamics: Tables, Graphs and Solutions

CHAPTER 1

TRANSVERSE VIBRATION
EQUATIONS

The different assumptions and corresponding theories of transverse vibrations of beams are
presented. The dispersive equation, its corresponding curve ‘propagation constant—
frequency’ and its comparison with the exact dispersive curve are presented for each
theory and discussed.

The exact dispersive curve corresponds to the first and second antisymmetrical Lamb’s

wave.

NOTATION

Ccp Velocity of longitudinal wave, ¢, = /E/p
¢ Velocity of shear wave, ¢, = «/G/p

D, Stiffness parameter, Dg = EL /(2pH)

E, v, p  Young’s modulus, Poisson’s ratio and density of the beam material
E,, G Longitudinal and shear modulus of elasticity, £, = £/(1 —v?), G = E/2(1 + V)
Shear force

H Height of the plate

s Moment of inertia of a cross-section

k Propagation constant

ky, Longitudinal propagation constant, k, = w/c,

k, Shear propagation constant, k, = w/c,

ko Bending wave number for Bernoulli-Euler rod, kf = w?/D}
M Bending moment

P q Correct multipliers

u,, u,  Longitudinal and transversal displacements

w, Y Average displacement and average slope

x, ),z  Cartesian coordinates

0. 0y, Longitudinal and shear stress

Uyy A Dimensionless parameters, u, = k,H, A = kH
w Natural frequency

d . i . .
()= o Differentiation with respect to space coordinate

() =— Differentiation with respect to time

1
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TRANSVERSE VIBRATION EQUATIONS

2 FORMULAS FOR STRUCTURAL DYNAMICS

1.1 AVERAGE VALUES AND RESOLVING
EQUATIONS

The different theories of dynamic behaviours of beams may be obtained from the equations
of the theory of elasticity, which are presented with respect to average values. The object
under study is a thin plate with rectangular cross-section (Figure 1.1).

1.1.1 Average values for deflections and internal forces

1. Average displacement and slope are

+H u,
+H

V= | Ty (12)
—H ‘z

where u, and u, are longitudinal and transverse displacements.
2. Shear force and bending moment are

+H

Fy= [oydy (13)
“H
+H

M= [yo.dy (1.4)
“H

where ¢, and o, are the normal and shear stresses that correspond to u, and u,.

Resolving the equations may be presented in terms of average values as follows
(Landau and Lifshitz, 1986)

1. Integrating the equilibrium equation of elasticity theory leads to

2pHW = F, (1.5)
pLy = M. — F, (1.6)
2. Integrating Hooke’s equation for the plane stress leads to
L w(H)
F,= 2HG[W +25 ] (1.7)
+H
M, = E{{LY/ + 2Hv[u,(H) — w]} = ELY' +v [ yo,, dy (1.7a)
“H
X
T Cross-section l

FIGURE 1.1. Thin rectangular plate, the boundary conditions are not shown.
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Equations (1.5)—(1.7a) are complete systems of equations of the theory of elasticity with
respect to average values w, Y, F, and M. These equations contain two redundant
unknowns u,(H) and u,(H). Thus, to resolve the above system of equations, additional
equations are required. These additional equations may be obtained from the assumptions
accepted in approximate theories.

The solution of the governing differential equation is

w = exp(ikx — iwt) (1.8)

where £ is a propagation constant of the wave and w is the frequency of vibration.

The degree of accuracy of the theory may be evaluated by a dispersive curve £ — w and
its comparison with the exact dispersive curve. We assume that the exact dispersive curve
is one that corresponds to the first and second antisymmetric Lamb’s wave. The closer the
dispersive curve for a specific theory to the exact dispersive curve, the better the theory
describes the vibration process (Artobolevsky et al. 1979).

1.2 FUNDAMENTAL THEORIES AND
APPROACHES

1.2.1 Bernoulli-Euler theory

The Bernoulli-Euler theory takes into account the inertia forces due to the transverse
translation and neglects the effect of shear deflection and rotary inertia.

Assumptions

1. The cross-sections remain plane and orthogonal to the neutral axis (y = —w/).
2. The longitudinal fibres do not compress each other (g,, = 0, > M, = ELY.
3. The rotational inertia is neglected (p[zlﬁ = 0). This assumption leads to

F, =M, =—ELw"

Substitution of the previous expression in Equation (1.5) leads to the differential equation
describing the transverse vibration of the beam

Fw 1 Fw . EL
— 4+ ——=0, Df=-—= 1.9
ax +Dg a2 0" 2pH (1.9)

Let us assume that displacement w is changed according to Equation (1.8). The dispersive
equation which establishes the relationship between k and « may be presented as

0)2

K=
Dj

=Ky
This equation has two roots for a forward-moving wave in a beam and two roots for a
backward-moving wave. Positive roots correspond to a forward-moving wave, while
negative roots correspond to a backward-moving wave.

The results of the dispersive relationships are shown in Figure 1.2. Here, bold curves 1
and 2 represent the exact results. Curves 1 and 2 correspond to the first and second
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Exact solution (ES)

. o 7
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Modified theory (BEM) N <

Rayleigh theory (R) N 5
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FIGURE 1.2. Transverse vibration of beams. Dispersive curves for different theories. 1, 2—Exact solution;
3, 4-Bernoulli-Euler theory; 5, 6-Rayleigh theory, 7, 8-Bernoulli-Euler modified theory.

antisymmetric Lamb’s wave, respectively. The second wave transfers from the imaginary
zone into the real one at k,H = n/2. Curves 3 and 4 are in accordance with the Bernoulli—
Euler theory. Dispersion obtained from this theory and dispersion obtained from the exact
theory give a close result when frequencies are close to zero. This elementary beam theory
is valid only when the height of the beam is small compared with its length (Artobolevsky
et al., 1979).

1.2.2 Rayleigh theory
This theory takes into account the effect of rotary inertia (Rayleigh, 1877).
Assumptions

1. The cross-sections remain plane and orthogonal to the neutral axis (y = —w/).
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2. The longitudinal fibres do not compress each other (g,, = 0, M, = ELY.

From Equation (1.6) the shear force F\, = M, — p[zt]).
Differential equation of transverse vibration of the beam

84w+ 1w 1 3w
ot " Dio  daver 0 ©

SAS)

(1.10)

o |

where ¢, is the velocity of longitudinal waves in the thin rod.

The last term on the left-hand side of the differential equation describes the effect of the
rotary inertia.

The dispersive equation may be presented as follows

2kt = ky £\ [k} + 4k}

where k, is the wave number for the Bernoulli-Euler rod, and %, is the longitudinal wave
number.
Curves 5 and 6 in Figure 1 reflect the effect of rotary inertia.

1.2.3 Bernoulli-Euler modified theory

This theory takes into account the effect of shear deformation; rotational inertia is
negligible (Bernoulli, 1735, Euler, 1744). In this case, the cross-sections remain plane,
but not orthogonal to the neutral axis, and the differential equation of the transverse
vibration is

*y 1y 1y

ot T Dior  daor

o
)

=1Q

(1.11)

where ¢, is the velocity of shear waves in the thin rod.
The dispersive equation may be presented as follows

2
U, =K+ K2+ 4k, =2
1,2 t t + t C,z

Curves 7 and 8 in Figure 1.2 reflect the effect of shear deformation.

The Bernoulli-Euler theory gives good results only for low frequencies; this dispersive
curve for the Bernoulli-Euler modified theory is closer to the dispersive curve for exact
theory than the dispersive curve for the Bernoulli-Euler theory; the Rayleigh theory gives
a worse result than the modified Bernoulli-Euler theory.

Curves 1 and 2 correspond to the first and second antisymmetric Lamb’s wave,
respectively. The second wave transfers from the imaginary domain into the real one at
kH =m/2.

1.2.4 Bress theory

This theory takes into account the rotational inertia, shear deformation and their combined
effect (Bress, 1859).
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Assumptions

1. The cross-sections remain plane.
2. The longitudinal fibres do not compress each other (g, = 0).

Differential equation of transverse vibration

=0 1.12
w292 et ort (1.12)

2

Fw 1 8w 1 i Fw 1 &w
S

o TDior \&

c

In this equation, the third and fourth terms reflect the rotational inertia and the shear
deformation, respectively. The last term describes their combined effect; this term leads to
the occurrence of a cut-off frequency of the model, which is a recently discovered
fundamental property of the system.

1.2.5 Volterra theory

This theory, as with the Bress theory, takes into account the rotational inertia, shear
deformation and their combined effect (Volterra, 1955).

Assumption

All displacements are linear functions of the transverse coordinates
u (X, 3, 1) = (e, 1), (x, p, 1) = wx, 1)

In this case the bending moment and shear force are

Mz = Ellzlp’ F:v = ZHG(W/ + l//)

Differential equation of transverse vibration

2 4 4
@ 1 =12 3w (1 1)8w lE)w:0 (1.13)

o T D a2 \@ ) aar 23 at
where c, is the velocity of a longitudinal wave in the thin plate, ¢2 = (E,/p), and E, is the

longitudinal modulus of elasticity, £, = (E/1 — v?).

Difference between Volterra and Bress theories. As is obvious from Equations (1.12)
and (1.13), the bending stiffness of the beam according to the Volterra model is
(1 —v?)"! times greater than that given by the Bress theory (real rod). This is because
transverse compressive and tensile stresses are not allowed in the Volterra model.

1.2.6 Ambartsumyan theory

The Ambartsumyan theory allows the distortion of the cross-section (Ambartsumyan,
1956).

Assumptions

1. The transverse displacements for all points in the cross-section are equal: du,/dy = 0.
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2. The shear stress is distributed according to function £{( y):
0o(X, . 1) = Golx, ) f(¥)
In this case, longitudinal and transverse displacements may be given as

ow(x, 1)
ox

Uy, ) = w(x ), g(0) = (Jff(é)di

u(x,y,1) = =y + o(x, Hg(y)

Differential equation of transverse vibration

Fw 11— Pw 1 1 Fw 1 &*w
Tw Iovow (1, 1) Tw Wy (1.14)
ox Dy o 2 ac?) oax*orr  acic ot
where
a=E 2 T pede 1= f e
_ZHIO’ 1_—H , O_—Hygyy

Difference between Ambartsumyan and Volterra theories. The Ambartsumyan’s differ-
ential equation differs from the Volterra equation by coefficient a at ¢?. This coefficient
depends on f{(y).

Special cases

1. Ambartsumyan and Volterra differential equations coincide if f(y) = 0.5.
2. If shear stresses are distributed by the law f(y) = 0.5(H? — 3?) then a = 5/6.

3. If shear stresses are distributed by the law f(y) = 0.5(H*' —y*"), then a =
(2n +3)/(2n + 4).

1.2.7 Vlasov theory

The cross-sections have a distortion, but after deformation the cross-sections remain
perpendicular to the surfaces y = £H (Vlasov, 1957).

Assumptions

1. The longitudinal and transversal displacements are

yz 0

YT oG
uy(x,y, 1) = wix, y, 1)

MX(X, Vs t) =

where ¢ = —(du,/dy) _, and ¥ is the shear stress at y = 0.

y=0 Xy

This assumption means that the change in shear stress by the quadratic law is

2
Y
Oy = 0'%,(1 - ﬁ)
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2. The cross-sections are curved but, after deflection, they remain perpendicular to the
surfaces at

y=H and y=-H

This assumption corresponds to expression

(E)ux) _o
ay y=+H

These assumptions of the Vlasov and Ambartsumyan differential equations coincide at
parameter a = 5/6. Coefficient a is the improved dispersion properties on the higher
bending frequencies.

1.2.8 Reissner, Goldenveizer and Ambartsumyan approaches

These approaches allow transverse deformation, so differential equations may be devel-
oped from the Bress equation if additional coefficient a is put before 2.

Assumptions

1. o, =0.
2. Oy = (x, 3,0 = Go(x, ) f(y).

These assumptions lead to the Bress equation (1.12) with coefficient @ instead of ¢?. The
structure of this equation coincides with the Timoshenko equation (Reissner, 1945;
Goldenveizer, 1961; Ambartsumyan, 1956).

1.2.9 Timoshenko theory

The Timoshenko theory takes into account the rotational inertia, shear deformation and
their combined effects (Timoshenko, 1921, 1922, 1953).

Assumptions
1. Normal stresses g,, = 0; this assumption leads to the expression for the bending
moment
0
M. =E Z—w
ax

2. The ratio u,(H)/H substitutes for angle ; this means that the cross-sections remain

plane. This assumption leads to the expression for shear force

aw
F,=2qHG| —
()

3. The fundamental assumption for the Timoshenko theory: arbitrary shear coefficient ¢
enters into the equation.
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Mechanical presentation of the Timoshenko beam. A beam can be substituted by the
set of rigid non-deformable plates that are connected to each other by elastic massless pads.

The complete set of the basic relationships

2pHW = F,
p[zlp = Mz/ - Fy
W
M, = EIZ&

ow
F,=2qHG|—
= (G )

To obtain the differential equation of vibration eliminate from the basic relationships all
variables except displacement.

Timoshenko differential equation of the transverse vibration of a beam

ot Dl e

2 2
cy  4qct

Fwo 1 Pw 1 1 *w 1 3w

( )82 st =5 = (1.15)

X292 gciet ot

The fundamental difference between the Rayleigh and Bress theories, on one hand, and the
Timoshenko theory, on the other, is that the correction factor in the Rayleigh and Bress
theories appears as a result of shear and rotary effects, whereas in the Timoshenko theory,
the correction factor is introduced in the initial equations. The arbitrary coefficient g is the
fundamental assumption in the Timoshenko theory.

Presenting the displacement in the form (1.8) leads to the dispersive equation

2 2 kt2 2 er ? 4
2k1,2:kb +;Zt kb_; +4k0

where k; , are propagation constants;

q is the shear coefficient;
ky is the wave number of the bending wave in the Bernoulli-Euler rod,

w? . EL

4

B=—"., D=
7Dy T 2pH

k;, and k, are the longitudinal and shear propagation constants, respectively.

2 2
B=2 =2
b — 2> t — 2

c c;

¢, and ¢, are the velocities of the longitudinal and shear waves
E , G

2
Cp=—, ¢ =—
"Tp T

Practical advantages of the Timoshenko model. Figure 1.3 shows a good agreement
between dispersive curves for both the Timoshenko model and the exact curve for high
frequencies. This means that the two-wave Timoshenko model describes the vibration of

short beams, or high modes of a thin beam, with high precision.
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T
q=0. 8, 751
L5 | S\ Vi I/4F
.x 2|/3 \ 2
9= o
| \\ 2 1'.."%

1 17
g=1Y12 ,.' _..-'://'Q\(BM) .
| N7 /1

. » 10
T Exact solution (ESy " /4 (BS)_ 8
; %
Iy L1 ’\
057 ; X1
.l 1 q=1[2/ 12
/4
/A
model

0.5im

FIGURE 1.3. Dispersive curves for the Timoshenko beam model. 1, 2—exact solution; 3, 4-Bress model;
5,6-q=n°/12;7,8-q=2/3;9, 10-q =1/2.

This type of problem is an important factor in choosing the shear coefficient (Mindlin,
1951; Mindlin and Deresiewicz, 1955).

Figure 1.3 shows the exact curves, 1 and 2, and the dispersive curves for different shear
coefficients: curves 3 and 4 correspond to ¢ =1 (Bress theory), curves 5 and 6 to
q =m?*/12, curves 7 and 8 to ¢ =2/3, curves 9 and 10 to ¢ = 1/2.

1.2.10 Love theory

The equation of the Love (1927) theory may be obtained from the Timoshenko equation as
a special case.
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(a) Truncated Love equation

& 1 1 o G
SrL T, 2= (1.16)
awt D} o gc? ax?or? 0
(b) Complete Love equation
w1 Pw 1 1 *w
At oiae \2t 2 aeen = (1.17)
ox* Dy ot ¢, qcy) ox°ot

1.2.11 Timoshenko modified theory
Assumption

More arbitrary coefficients are entered into the basic equations.

The bending moment and shear in the most general case are

9
M, = pEI. W

.—, F,=2HG qa—w—f—sw
ox 7

ax
where p, ¢, and s are arbitrary coefficients.

Differential equation of transverse vibration

2 4 4
@_{_(s)law_(l_*_l)aw_{_ 1 aw:O (1.18)

wt ' \pg) Dy or  \p " gct) a2 T pgcicl art

The dispersive equation may be written in the form

2R 2\’
o848 (8- 5) v 2

Pq

The dispersive properties of the beam (and the corresponding dispersive curve) is sensitive
to the change of parameters p, ¢ and s. Two additional relationships between parameters p,
g, s, such that

L
s=pq and K ==pg

define a differential equation with one optimal correct multiplier. The meaning of the
above-mentioned relationships was discussed by Artobolevsky et al. (1979). The special
case p = q was studied by Aalami and Atzori (1974).

Figure 1.4 presents the exact curves 1 and 2 and dispersive curves for different values
of coefficient p: p = 0.62, p = 0.72, p = n?/12, p = 0.94 and p = 1 (Timoshenko model).
The best approximation is p = n%/12 for k,H in the interval from 0 to 7.
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FIGURE 1.4. Dispersive curves for modified Timoshenko model. 1, 2—exact solution.
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Source: Formulas for Structural Dynamics: Tables, Graphs and Solutions

CHAPTER 2
ANALYSIS METHODS

Reciprocal theorems describe fundamental properties of elastic deformable systems. Dis-
placement computation techniques are presented in this chapter, and the different cal-
culation procedures for obtaining eigenvalues are discussed: among these are Lagrange’s
equations, Rayleigh, Rayleigh-Ritz and Bubnov—Galerkin’s methods, Grammel, Dunker-
ley and Hohenemser—Prager’s formulas, Bernstein and Smirnov’s estimations.

NOTATION

a, b, c, d e, f Specific ordinates of the bending moment diagrams

a; Inertial coefficients

Cik Elastic coefficients

E Young’s modulus of the beam material

EI Bending stiffness

g Gravitational acceleration

s Moment of inertia of a cross-section

k Stiffness coefficient

L L ha b Geometrical parameters

M Bending moment

my, kl-j Mass and stiffness coefficients

M, J Concentrated mass and moment of inertia of the mass

n Number of degrees of freedom

0 Generalized force

q, 9, 4 Generalized coordinate, generalized velocity and generalized acceleration

r Radius of gyration

i Unit reaction

UurT Potential and kinetic energy

X, 0z Cartesian coordinates

X(x) Mode shape

Ve Ordinate of the bending moment diagram in the unit state under centroid
of bending moment diagram in the actual state

O Unit displacement

Q Area of the bending moment diagram under actual conditions

15
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n_d . L .

O = o Differentiation with respect to space coordinate
d . . . .

()= @ Differentiation with respect to time

2.1 RECIPROCAL THEOREMS

Reciprocal theorems represent the fundamental and useful properties of arbitrary linear
elastic systems. The fundamental investigations were developed by Betti (1872), Helm-
holtz (1860), Maxwell (1864) and Rayleigh (1873, 1876).

2.1.1 Theorem of reciprocal works (Betti, 1872)

The work performed by the actions of state 1 along the deflections caused by the actions
corresponding to state 2 is equal to the work performed by the actions of state 2 along the
deflections due to the actions of state 1, e.g. 4, = 4,;.

2.1.2 Theorem of reciprocal displacements

If a harmonic force of given amplitude and period acts upon a system at point 4, the
resulting displacement at a second point B will be the same, both in amplitude and phase,
as it would be at point 4 were the force to act at point B. The statical reciprocal theorem is
the particular case in which the forces have an infinitely large period (Lord Rayleigh,
1873-1878).

Unit displacement J;;, indicates the displacement along the ith direction (linear or
angular) due to the unit load (force or moment) acting in the kth direction.

In any elastic system, the displacement along a load unity of state 1 caused by a load
unity of state 2 is equal to the displacement along the load unity of state 2 caused by a load
unity of the state 1, e.g. ;5 = 0,,-

Example. A simply supported beam carries a unit load P in the first condition and a unit
moment M in the second condition (Fig. 2.1).

In the first state, the displacement due to load unity P = 1 along the load of state 2 is
the angle of rotation

1 x L2
0=0u =457
P=1 =1
First state L Second state ‘/)
Ot o1z 02
L2 ’ 5

FIGURE 2.1. Theorem of reciprocal displacements.
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In the second state, the displacement due to load unity M = 1 along the load of state 1 is a
linear deflection

_ _1><L2
V=00 = umr

2.1.3 Theorem of the reciprocal of the reactions (Maxwell, 1864)

Unit reaction 7y, indicates the reaction (force or moment) induced in the ith support due to
unit displacement (linear or angular) of the kth constraint.

The reactive force r,,, due to a unit displacement of constraint m along the direction »
equals the reactive force r,,, induced by the unit displacement of constraint » along the
direction m, e.g. r,,, = -

Example. Calculate the unit reactions for the frame given in Fig. 2.2a.

Solution. The solution method is the slope-deflection method. The given system has one
rigid joint and allows one horizontal displacement. The primary system of the slope-deflec-
tion method is presented in Fig. 2.2(b). Restrictions 1 and 2 are additional ones that prevent
angular and linear displacements. For a more detailed discussion of the slope-deflection
method see Chapter 4.

State 1 presents the primary system under unit rotational angle Z, =1 and the
corresponding bending moment diagram; state 2 presents the primary system under unit
horizontal displacement Z, = 1 and the corresponding bending moment diagram.

EL. 1 |
‘Ell,h
a) b)

Z1=1 712
AEL/h 3 (‘%@I‘ i § o
3EL /I ‘—)l
é Z,=1
) L d)

c
2EIL /h 6EIL/h?

FIGURE 2.2. Theorem of the reciprocal of the reactions: (a) given system; (b) primary system of the slope
and deflection method; (c) bending moment diagram due to unit angular displacement of restriction 1;
(d) bending moment diagram due to unit linear displacement of restriction 2.
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Free-body diagrams for joint 1 in state 2 using Fig. 2.2(d), and for the cross-bar in state
1 using Fig. 2.2(c) are presented as follows.

A ) 6ELIR 6EI /h*

The equilibrium equation of the constraint 1 (XM = 0) leads to

6EI,
h 2

rp=-—
The equilibrium equation of the cross-bar 1-2 (ZF, = 0) leads to

| (4EI, 2EI, 6El,
== \—-— T \1=———
21 A\ h h h?

2.1.4 Theorem of the reciprocal of the displacements and reactions
(Maxwell, 1864)

The displacement in the jth direction due to a unit displacement of the kth constraint and
the reaction of the constraint k& due to a unit force acting in the jth direction are equal in
magnitude but opposite in sign, e.g. dy = —ry;.

Example. Find a vertical displacement at the point 4 due to a unit rotation of support B
(Fig. 2.3).

BA

FIGURE 2.3. Theorem of the reciprocal of the displacements and reactions.

Solution. Let us apply the unit force F = 1 in the direction J 5. The moment at the fixed
support due to force F' =1 equals rgy = —F(a + b).
Since F = 1, the vertical displacement 5,5 = a + b.
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2.2 DISPLACEMENT COMPUTATION
TECHNIQUES

2.2.1 Maxwell-Morh integral

Any displacement of the linear deformable system may be calculated by the formula

Z Ndex—l—ZfQ’Qk 2.1

where M, (x), N, (x) and Q,(x) represent the bending moment, axial and shear forces acting
over a cross-section situated a distance x from the coordinate origin; these internal
forces are due to the applied loads;
M;(x), N;(x) and Q;(x) represent the bending moment, axial and shear forces due to a
unit load that corresponds to the displacement A, ;
n is the non-dimensional shear factor that depends on the shape and size of the
cross-section. Detailed information about the shear factor is presented in Chapter 1.

For bending systems, the second and third terms may be neglected.

Example. Compute the angle of rotation of end point C of a uniformly loaded cantilever
beam.

Solution. The unit state—or the imaginary one—is a cantilever beam with a unit moment
that is applied at the point C; this moment corresponds to an unknown angle of rotation at
the same point C.

q
}I/\I/\I/\J/\lx\lxdxxl/\l/\lxdnlxc
I

.
— 7

The bending moments in the actual condition A and the unit state ; are

Actual condition

Unit state :

2
Mk(x):%, M, =1xx

The angle of rotation

MMkdx JIXXquzdx—qP

o 2EI " 6El

=2/
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Example. Compute the vertical and horizontal displacements at the point C of a
uniformly circular pinned-roller supported arch, due to unit loads P, = 1 and P, = 1.

Solution. The first state is the arch with a unit vertical load that is applied at point C; the
second state is the arch with a unit horizontal load, which is applied at the same point.

V=0.293 Vg=0.707

0.293R  0.707R T
\ \
\

\ _g_ Py=1 ~ \\ (-

Lo AN d()(\\ \ : o

\\ \\\\ i

“mndoe

H=1 < ____ﬁ2ﬁ:\f:\:‘\§lm‘}

V= 0,707T First state Va= 0.7& Second state

The unit displacements according to the first term of equation (2.1) are (Prokofiev et al.,
1948)

/4] . A 0.01925R3

5y = 6[ 77 (0-293R sino)*R do; + 6[ 7710.707(1 — cos o,)RPR doty = e
4 4 0.1604R>
6[ E(O'7O7R sine,)*R do, + 6[ E[R sina, — 0.707R(1 — cos ay))*R do, = 5

522

n/4 1
Spp=0y = | 770707 0.293R> sin® o, dot,
0
/4 1 R}

+ [ —[Rsino, — 0.707R(1 — cos 0,)] x 0.707R(1 — cos &;)R do, = 0.0530—
o EI EI

Graph multiplication method (Vereshchagin method). In the most common case, the
bending moment diagram is the actual condition bounded by any curve. The bending
moment diagram that corresponds to the unit condition is always bounded by a straight
line. This latter property allows us to present the Maxwell-Morh integral for bending
systems (Vereshchagin, 1925; Flugge, 1962; Darkov, 1989).

1

1
— | MM, =—Q 2.2
E[J "k dx EI Ve ( )
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The product of the multiplication of two graphs, at least one of which is bounded by a
straight line, equals the area Q bounded by the graph of an arbitrary outline multiplied by
the ordinate y, to the first graph measured along the vertical passing through the centroid
of the second one. The ordinate y, must be measured on the graph bounded by a straight
line (Fig. 2.4).

C - Gravity center of M} diagram
Q - Area of M diagram

a) ﬂmc My

\ 49}

y TN

FIGURE 2.4. Graph multiplication method: (a) bending moment diagram that corresponds to the actual
condition; (b) bending moment diagram that corresponds to the unit condition.

If a bending structure in the actual condition is under concentrated forces and/or
moments, then both of bending moment diagrams in actual and unit conditions are
bounded by straight lines (Fig. 2.4). In this case, the ordinate y, could be measured on
either of the two lines.

If both graphs are bounded by straight lines, then expression (2.2) may be presented in
terms of specific ordinates, as presented in Fig. 2.5. In this case, displacement as a result of
the multiplication of two graphs may be calculated by the following expressions.

Exact formula

/
O = —

= 2 2 2.
6EI( ab + 2cd + ad + bc) (2.3)

Approximate formula (Simpson—Kornoukhov’s rule)

. /
bik = @(Qb + Cd + 4€f) (24)

J TR,

[T
b M,

/]
/2 17
<>

FIGURE 2.5. Bending moment diagrams bounded by straight lines.
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Equation (2.3) is used if two bending moment graphs are bounded by straight lines
only. Equation (2.4) may be used for the calculation of displacements if the bending
moment diagram in the actual condition is bounded by a curved line. If the bending
moment diagram in the actual condition is bounded by the quadratic parabola, then the
result of the multiplication of two bending moment diagrams is exact. This case occurs if
the bending structure is carrying a uniformly distributed load.

Unit displacement is displacement due to a unit force or unit moment and may be
calculated by expressions (2.3) or (2.4).

Example. A cantilever beam is carrying a uniformly distributed load ¢g. Calculate the
vertical displacement at the free end.

Solution. The bending moment diagram due to the applied uniformly distributed force
(M,), unit condition and corresponding bending moment diagram M,_, are presented in
Fig. 2.6.

Actual

condition EL'l ) l
ql°/8
‘
i) ‘ gl 12
Q
‘¥ /4
P= JL !
|
Unit |
condition !
|
|
Mp—
11
1.2 ye

FIGURE 2.6. Actual state, unit condition and corresponding bending moment diagram.

The bending moment diagram in the actual condition is bounded by the quadratic
parabola. The vertical displacement at the free end, by using the exact and approximate
formulae, respectively, is

1 1 gl 3 ql*
A_ExngTXZIXl_@
Q V.

/ { ql? ql? l\ ql*

A=—10x0+"-x1IxI4+4x"—x1-01 ="+

TR R T T T Vo7
“ cd 4ef )

—

Example. Consider the portal frame shown in Fig. 2.7. Calculate the horizontal dis-
placement of the point B.
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P, E - P P -
Ph
El, EI h h
1 3
A B A B
L DENNEZENNN

FIGURE 2.7. Portal frame: actual condition and corresponding bending moment diagram.

Solution. The bending moment diagram, M, corresponding to the actual loading, P, is
presented in Fig. 2.7.

The unit loading consists of one horizontal load of unity acting at point B. The
corresponding bending moment diagram M, is given in Fig. 2.8.

VAl A

FIGURE 2.8. Unit condition and corresponding bending moment diagram.

The signs of the bending moment appearing in these graphs may be omitted if desired,
as these graphs are always drawn on the side of the tensile fibres. The displacement of the
point B will be obtained by multiplying the two bending moment diagrams. Using
Vereshchagin’s method and taking into account the different rigidities of the columns
and of the cross beam, we find

11 2 1 1 P PLR
Ap=—— X 2h X Phx “h ———x ~Phx L xh = — o — 21
BT T <t TN 3N T P2 T T3EL T 2L

T = T Ve
Ye

2.2.2 Displacement in indeterminate structures

The deflections of a redundant structure may be determined by using only one bending
moment diagram pertaining to the given structure—either that induced by the applied loads
or else that due to a load unity acting along the desired deflection. The second graph may
be traced for any simple structure derived from the given structure by the elimination of
redundant constraints.

Example. Calculate the angle of displacement of the point B of the frame shown in Fig.
2.9. The stiffnesses of all members are equal, and L = A.
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gl
1A B C)
[ |
L2 N
D
L L

FIGURE 2.9. Design diagram of the statically indeterminate structure.

Solution. The bending moment diagram in the actual condition and the corresponding
bending moment diagram in the unit condition are presented in Fig. 2.10.

1

FIGURE 2.10. Bending moment diagrams in the actual and unit conditions.

The angular displacement may be calculated by using Equation 2.3

T 88EI

h PL PL PL PL PI?
=—|2xIx—4+2x1x—+1x——1x—
Op 6E1< X ><22—|— X ><44+ ><44 ><22>

2.2.3 Influence coefficients

Influence coefficients (unit displacements) J,, are the displacement in the ith direction
caused by unit force acting in the kth direction (see Tables 2.1 and 2.2).

In Table 2.2 the influence coefficients at point 1 due to a unit force or moment being
applied at the same point 1 are:

J = vertical displacement due to unit vertical force;

J = angle of rotation due to unit vertical force or vertical displacement
due to unit moment;

y =angle of rotation due to unit moment.

Example. Calculate the matrix of the unit displacements for the symmetric beam shown
in Fig. 2.11
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TABLE 2.1 Influence coefficients for beams with classical boundary conditions (static Green
functions); EI = const.

Beam type on 01y =0y 05
b 2 2 2
< < P (1-a (g)z ab(? — a® — b?) B (b7 (b
T2 3ET\ 1 I 6IET 3E1 2\l
&a»l b &1 —a) b 2ab b2 — b)?
l—a—b+-— —_—
.—% 3BEI 2PEI 31 3BEI
b 3 2 3
<O [ “ L (1-b-9) G
—— 3E] 261 3 3EI
b 2 3 2 2 p) 3
<O (—aa ay @b [ B B2(I - b) b
— 1221 (4 1) igr | OEC =9 g (347

TABLE 2.2 Influence coefficients for beams with non-classical boundary
conditions; EI = const.

Beam type Influence coefficients

5= &Py + bk, &P n b’
N 2 32EI,  3PEL
El EL bk, —ak,  a3b ab’

L g — B
& % . _\ 5 = ks / 2 + 31ElI, 3PEIL
|

/ "
Y

|-AAN
=V

itk & N b
Toonr 3PEIL ° 3PEL

5 bk, + (a + b)’k, N ab? N b

M J a? 3EI, 3EIl
. bk +(a+bky,  ab | B

El ElL

K
1A
v

B N
%kz 5 - 1 P 3EI, ' 3EL

| Ltk a b
@ 3EI, * 3EL

I )\ 0O\ O\ I
I ) O O |

/4 ] 1/4 l/4‘ 1/4

FIGURE 2.11. Clamped—clamped beam with lumped masses.
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Solution. By using Table 2.1, case 2, the symmetric matrix of the unit displacements is

19 1 13

14096 384 12288

p! 1 P!

Op] = =1 — — |
[9a] EI, 192 384,
| 9

| 4096 |

2.2.4 Influence coefficients for clamped—free beam of non-uniform
cross-sectional area

The distributed mass and the second moment of inertia
m\ x x\"
m(x) = mo[l - (1 —m—(‘)> 7], EI(x) :EIO<1 —7) 2.5)

where my, I, are mass per unit length and moment of inertia at clamped support (x = 0),
m; is mass per unit length at free end (x = /),
n is any integer or decimal number.

The unit force applied at x = x,, and the position of any section x = s, are as shown.

| lel

The influence coefficient (Green’s function, see also Section 3.10) satisfies the Maxwell
theorem, or the symmetry property

G(x, 5) = G(s, x)
and may be presented in the form (Anan’ev, 1946)
13

O ) = T = e,
2—n 2 3—n 2
X[(I=s)y"x—5)+QC—-nxs—x—s———0 -5y "+——|forx>s
3—n 3—n
(2.6)
13
G, 5)=—
) = T e = mE
2—n 2 3—n 2
X[(1T=x)""s—x)+Q2—-nsx—s—x———1—x)"+—|forx<s
3—n 3—n
2.7)
where x = )%, s = 570 are non-dimensional parameters.

Expressions (2.6) and (2.7) have no singular points except # = 1, n = 2 and n = 3. For
n>2s#1,x#1.
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Special case. For a uniform cross-sectional area, the parameter n = 0, which yields the
result presented in Table 2.1, row 3.

2.3 ANALYSIS METHODS

2.3.1 Lagrange’s equation

Lagrange’s equation offers a uniform and fairly simple method for the formulation of the
vibration equations of a mechanical system
d /or oT U
—N=)——+7—=0,, =123, ..., 2.8
dt (8%) dg, " 9q; % " @9
where 7 and U are the kinetic energy and potential energy of the system;

q; and g, are generalized coordinates and generalized velocities;

t is time;

Q; is generalized force, which corresponds to generalized coordinate g;;

n is number of degrees of freedom of the system.

The generalized force Q;, which corresponds to the generalized coordinate g; is equal to
the coefficient at increment of generalized coordinate in the expression for virtual work. In
the case of ideal constraints, the right-hand parts of Lagrange’s equation include only
generalized active forces, and the unknown reactions of the constraints need not be
considered. An important advantage is that their form and number depend neither on the
number of bodies comprising the system nor on the manner in which they are moving. The
number of equations equals the number of degrees of freedom of the system.

The kinetic energy of the system is a quadratic function of the generalized velocities

J G o
T= 3 .kZ:laikqiqk Gk=1,2,...,n) (2.9)
Inertial coefficients satisfy the reciprocal property, a; = ay;.

The potential energy of the system is a quadratic function of the generalized
coordinates

1 »
U=3 Y cadigp (k=1.2,....n) (2.10)
i,k=1

The elastic coefficients satisfy the reciprocal property, c;; = ¢;;.
The differential equations of mechanical system are

allq:l + a12q:2 +oot alnq::n =—C1q1 —Cqr — — C1a4y
ayqy + apg; + -+ ayq, = —C3q) — Cpqr — - — Cpudy @2.11)
angy + apgs + - @Gy = —Cnqi — Cpq2 —  — Cundn

Lagrange’s equations can be used in the dynamic analysis of structures with complex
geometrical shapes and complex boundary conditions.
The system of differential equations (2.11) has the following solution

.= A;exp iwt (2.12)
4 i €Xp

where A; is amplitude and o is the frequency of vibration.
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By substituting Equations (2.12) into system (2.11), and reducing by exp iwt, we obtain
a homogeneous algebraic equation with respect to unknown amplitudes. The condition of
non-trivial solution leads to the frequency equation

Ialla)z_cll ‘112‘”2—012 alnwz_clnl
! a21w2 — O a22w2 —Cxn aznwz —Cop !
| 1=0 (2.13)
| |
I anl(’UZ —Cn1 anlwz —Cp annw2 — Cpy |

All roots of the frequency equation w? are real and positive.

The special forms of kinetic or potential energy lead to specific forms for the frequency
equation.

Direct form. Kinetic energy is presented as sum of squares of generalized velocities

1o,
T = B Zak‘ﬁ
=l (2.14)

1 n
U=3 > cpqiqr (G k=1,2,...,n)
2521

In this case, the differential equations of the mechanical system are solved with respect to
generalized accelerations

a1y = —Cnqr — €292 = " — Cinln
arqy = —C1q1 — Cqy — -+ — CopYy
anq“n = —Cnq1 — 42 — " — Cundn

Presenting the generalized coordinates in the form of Equation (2.12), and using the non-
triviality condition, leads to the frequency equation

2
Imyw” —r —712 —Fp |
| 2 |
— myw= — Ty - -1
I "1=0 (2.15)
| |
I —Fn1 2 e rﬂrl(’o2 — V|

where r;;, are unit reactions (force or moment) in the ith restriction, which prevents linear or
angular displacement due to unit displacement (linear or angular) of the kth restriction. The
unit reactions satisfy the property of reciprocal reactions, ry =ry (the theorem of
reciprocal reactions).

Inverted form. Potential energy is presented as sum of squares of generalized coordinates

1 & .. .
T:EZatk‘h% (G, k=1,2,...,n)
H=t (2.16)

1n
U=zYaqu (Gk=1,2,....n)
245
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The differential equations of a mechanical system solved with respect to generalized
coordinates are

G191 = —anq: — 42 — - — A1y
Coqr = —anqy —axpds — - — dydy
Cndn = —Anq1 — 9292 — " — Ay

Solution of these system in the form of Equation (2.12), and using the non-triviality
condition, leads to the frequency equation in terms of coefficients a and ¢

2 2 2
le, —a o —a1, 0 s —apo |
2 2 2 |
—ay 0 Cy — Ap®* -+ —ay,0
" I1=0 (2.17)
| |
| —a,0° —ap@? ey — a0

In terms of lumped masses m and unit displacements J,, the frequency equation becomes

2 2 S o2
I'T—md —My0 |, R
2 2 2 |
—m 0y @ 1 —mydpw -+ —m,d,,®
=0 (2.18)
| |
| —m, 3, w? —myd,,@* oo 1 —m,S,,0% |

where J; is displacement in the ith direction due to the unit inertial load which is acting in
the kth direction. The unit displacements satisfy the property of reciprocal displacements
0y = Oy; (the theorem of reciprocal displacements).

Example. Using Lagrange’s equation, derive the differential equation of motion of the
system shown in Fig. 2.12.

Solution. The system has two degrees of freedom. Generalized coordinates are ¢, = x;
and g, = x,. Lagrange’s equation must be re-written as

d /0T oT
N ) =0
dr \ 9g, 9q,

agry o,
dr 3q2 3‘]2_ 2

Fo sinw ¢
k k, SEP-Static equilibrium position
my my
> X
SEP
SEP——> X1 +—> X2

FIGURE 2.12. Mechanical system with two degrees of freedom.
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where O, and Q, are the generalized forces associated with generalized coordinates x; and
X,, of the system, respectively.

The kinetic energy, 7, of the system is equal to the sum of kinetic energies of the masses
m, and m,

1. |
T:Emlx%—f—imzx%

so kinetic energy, 7, depends only on the generalized velocities, and not on generalized
coordinates. By using the definition of the kinetic energy, one obtains

oT . d <8T> .. aT
= mpxy ] = mXxy :0

ax, dr \ax, o,
e 4y _ L T
a2 a\an) T e

For calculation of O, and O, we need to show all forces that act on the masses m; and m,
at positions x; and x, (Fig. 2.13).

The total elementary work 1, which could have been done on the increments of the
generalized coordinates dx; and Jx,, is

OW = 0,0q, + 0,09, = 0xi[—kyx; — ky(x; — x3) + Fy sinwt] + 0xyk(x) — x3)

The coefficient at Jx; is the generalized force Q,, and the coefficient at ox, is the
generalized force Q,.
So, generalized forces are

Ql = —klxl — kz(xl — Xz) =+ FO sin wt
0 = ky(x; —xp)

Substituting into Lagrange’s equation for ¢, and ¢, yields, respectively, the following two
differential equations

mxy + (k + k)x; — kyx, = Fysinot

myXy — kyx) + kyxy =0

Fysinw ¢
—>
k ISEP DP  ;  SEP DP
L N P I
b > X
X1 le X2 SX2

Elastic restoring force kjx; r-'-1 P
<—im=— ka(vi- x2)—1 my)
’ .
Fo sinw ¢

FIGURE 2.13. Real displacements x,, x, and virtual displacements dx,, dx,. SEP = Static equilibrium
position; DP = Displaced position.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

ANALYSIS METHODS

ANALYSIS METHODS 31

These equations describe forced vibration. The solution of this differential equation system
and its technical applications are discussed in detail by Den Hartog (1968), Weaver et al.

(1990).

Example. Using the direct form, derive the frequency equation of the system shown in
Fig. 2.14.

Solution

1. Let mass m; have unit displacement in the positive direction while mass m, is fixed

(Fig. 2.15(a)). The elastic restoring forces acting on mass m; are F; = k; from the left
side and F, = k, from the right side; the restoring force acting on mass m, is F, = k,.
Reactions that act on masses m; and m, are r;; and r,;, respectively. The dotted
reactions are shown in the positive direction. The equilibrium equation for mass m; and
mass m, is F,, = 0, which leads to

1 :k1+k2 and 7y :_k2

. Let mass m, have unit displacement in the positive direction; mass m, is fixed (Fig.

2.15(b)). The elastic restoring force acting on mass m; is F; = k, from the right side;
the restoring force acting on mass m, is F, = k,. The reactions that act on masses m,

k] k2
—>

X

FIGURE 2.14. Mechanical system with two degrees of freedom.

ki -k
2) m rml

H‘x
| N
Elastic restoring forceF1=k1r__I =k rd-
4—:.]’}11:4— —1 mz:
—— | S———
f—— ——
ri 721
ki ke
r—-i
b) M nol Lo,
| 4)x
1
P Restoring force p=m
LUK Fi=k F=k L,
.__) .__)
r12 2

FIGURE 2.15. (a) Calculation of coefficients 7|, and r,,. Direct form. (b) Calculation of coefficients r;,
and r,,. Direct form.
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and m, are r|, and r,,, respectively. The equilibrium equation for mass m,; and mass m,
is ZF, = 0, which leads to

rn=—ky, and ry =k

The frequency equation corresponding to the direct form (2.15) may be formed immedi-
ately

mlwz_kl_kz k2 ::0
k2 mZU)Z — k2 |

Example. Using the inverted form, derive the frequency equation of the system shown in
Fig. 2.14.

Solution

1. Let unit force F = 1 be applied to mass m, in the positive direction while mass m, has
no additional restriction (Fig. 2.16(a)). In this case, displacement of the mass m; is
0y = 1/k;; the displacement mass m, equals 0;;, since mass m, has no restriction.

2. Let unit force F' =1 be applied to mass m, in the positive direction. Thus mass m, is
under action of active force, while mass m; has no active force applied to it (Fig.
2.16(b)). In this case, the internal forces in both springs are equal, F = 1.

F=1
ky r==i k> r--i
2 MMM VAN | o
> X
811=1/k1 821:1/]{1
F=1
ki ] ky r=-i
b) I”J}/\N\NVV\ my o,
> X
012=1/kj Son=1/k+1/ky

FIGURE 2.16. (a) Calculation of coefficients ¢,, and J,,. (b) Calculation of coefficients d,, and J,,.
Inverted form.

The frequency equation may be formed immediately

| mp 5 my o I

1 ——L _2

T [ |
=0

- om 1 1
_ 1 1— 2( o
TR e (kﬁk)'

The frequency equations in the direct and inverted forms are equivalent.
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Example. The system shown in Fig. 2.17 consists of a clamped—free beam and a rigid

body of mass M and radius of gyration r with respect to centroid C. Derive the frequency
equation.

Solution. Generalized coordinates are the vertical displacement ¢; = f at the point 4 and

angular displacement g, = ¢ at the same point. The corresponding generalized forces are
concentrated force P, and moment M, which are applied at point A.
The kinetic energy of the system is

T = %M[(f +do) + r2¢2] - %M[ﬁ + (& + ) + 2df ¢

Kinetic energy may be presented in the canonical form (2.16)

1

T= 5 (01151% +2a15419, + 02251%)

where a;; are inertial coefficients.

Differential equations of motion in the inverted form are presented by Loitzjansky and
Lur’e (1934)

/= _éti"(allf + a12¢) - (Sf(p(alz.f + 02297’)

= ~0y (M] +Md{p) — &, [Md [ +M(* +d*)i]
¢ = _5wf(‘111f+ apd) — 5w<p(012f + ayd)

= _5wf(Mf +Md¢) - 5w</>[Mdf + M(’”z + dz)d’]

where 6, 67, S, 0, are the influence coefficients.

Calculation of influence coefficients. Bending moment due to generalized forces
M(x) = Pyx + M,

Potential energy

1 LM2(x) 17.,-° 2
U=- dx == | P2 =+ 2P M, — + M?1
2y EI 2[03+ oMoyt 0}

~< i

- 1 Je2d )

FIGURE 2.17. Cantilever beam with a rigid body at the free end.
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By using the Castigliano theorem

P P
=—=__P M,
/= BPO =3E 0 T og

WP I
=— =P +—M,
P =, 2Er 0 T EM

So, the influence coefficients are
B 2 /
O =3p1 O =% =5pr %o =7
The influence coefficients may be obtained from Table 2.1 immediately.

If the generalized coordinates change by the harmonic law, then the equations with
respect to f'and ¢ lead to the frequency equation

1 _lffwz lfw

V—ly? 1 =1,07 I

=0

where

ly = 0gan +0p,a1; Iy = Ogary + 9y,02
l(pf = 5f(/7a11 + 5(/)(pa12 l(/)zp = 5f(pa12 + 5(/1(/7“22

The parameters / in the explicit form are
. _EM AT L
7= 3Bl 21)° 7?7 3EI 2 1

, _bM 1.4\ l3M d+d2+r
o T Er\uT ) e 21 2

The roots of equation D = 0

2 2 2 2 2
@,=L1 3 3d ) +r)i\/[1+3d+73(d;r)} 3

2 Il 2 [ 7

where the dimensionless parameter

)31
T MPB w?

Special cases

1. A cantilever beam with rigid body at the free end; the rotational effect is neglected. In
this case » = 0. The frequency parameter
3d  3d?
Q=1 —
T I + 2
2. A cantilever beam with lumped mass M at the free end; the rotational effect is
neglected. In this case » = d = 0. The frequency parameter

3El

Q=1 2=
and o =B
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2.3.2 Rayleigh method

The Rayleigh method, based on the Rayleigh quotient, expresses the equality of the
maximum kinetic and strain energies for undamped free vibrations (Rayleigh, 1877). The
method can be used to determine the upper bound of the fundamental frequency vibration
of continuous systems.

The Rayleigh quotient and various types of Rayleigh method procedure are presented in
Table 2.3 (Birger et al., 1968). The vibrating object is a non-uniform beam with distributed
masses m(x), carrying a concentrated mass M that is placed at x = x,, and a concentrated
force P that acts at x = x; (version 4); the bending moment is M(x) (version 2); the bending
stiffness of the beam is E/(x).

TABLE 2.3 Rayleigh’s quotients

Version Formula Procedure
1 Rayleigh quotient
! " 1. Choose an assumed mode shape function
[EIGX] (] dx . P
, H X(x);
On =7 2. Calculate slope X’(x)

mE)X; ()dx + 30 M7 (x,)
0 s

2 L, 1. Choose an assumed mode shape
) g M7 (x)dx function X(x);
On =7 R R 2. Calculate a bending moment
[mE)X; (x)dx + 3° MX (x,) M(x) = EIX"(x)
0 s
3 fq (X (@)dx 1. %;ZOLS;;H expression for the distributed
_ 0
oy =7 2. Calculate X(x) by integrating.
[ m)X dx + 30 M (x,)
0 s
4 ! 1. Choose an expression for the distributed
[ 40X ()dx + 3 P, () ond oy
2 ___ 0 J
Wy =7 2. Calculate X(x) by integrating.
JmE)XF ()dx + 30 M X (x,)
0 s
5 ! 1. Use an expression that corresponds to
) 0[ mE)X (x)dx + ZMX ) the actual distributed load ¢ = gm(x)
Wp =87 2. Calculate X(x) by integrating.
[ mE)X? (x)dx + Z M.X2(x,)
0
Notes

1. The natural frequency vibration obtained by the Rayleigh quotient (method) is always

larger than the true value of frequency: @ > .
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2. The Rayleigh quotient gives exact results if:

(a) the chosen expressions for X coincide with the true eigenfunctions of vibration
(versions 1 and 2);

(b) the chosen expressions for g(x) are proportional to the true inertial forces (versions
3 and 4).

The assumed function expressions for beams with different boundary conditions are

presented in Appendix C.

3. In order to take into account the effect of rotary inertia of the beam it is necessary to add
to the denominator a term of the form

| mL)X () d
<1>

4. In order to take into account the effect of rotary inertia of the concentrated mass it is
necessary to add to the denominator a term of the form

JIX ()P

where J is a mass moment of inertia and x, is the ordinate of the attached mass.

5. The low bound of the fundamental frequency of vibration may be calculated by using
Dunkerley’s equation.

Example. Calculate the fundamental frequency of vibration of a cantilever beam
[X(I) = X'(I) = 0] using the Rayleigh method.
Solution. Version 1 (Rayleigh quotient). Choose an expression for the eigenfunction in a

form that satisfies the boundary condition at x =/

X

2
X(x) = (1 - 7)
/
Differentiating with respect to x
, 2
X ’ ()C) = ﬁ
The Rayleigh quotient terms become

i
[EIX")* dv = %
0
1 1 4 )i
2 4y — _x _m
()me dx_mg<1 1) dx 5

Substituting these expressions into the Rayleigh quotient leads to the fundamental
frequency vibration:

o (AED\ [(mi\ 2081 447 [E
AR 5) 7 mi’ T2 \Vm

3.5156 [EI
The exact eigenvalue is equal to w = —.
m

2
Version 2. Choose an expression for the bending moment in the form
2
M@ =(1- ;)
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The differential equation is
2
EIX"(x) = (1 - ’7‘)
Integrating twice
/ x\3
B =-5(1-7) +¢
EAC
2 x\4
EIX:E<1 —7) L COx+ G

Boundary conditions: X (/) = X’(I) = 0, so the arbitrary constants are C; = C, = 0.
The eigenfunction is

X(x) = 1211*1 (1 _§)4

The Rayleigh quotient is

1 4
1—=) dx
g J ( 1) 108E1
o = =
/ 2 i 47? S5mil*
EI (1-)
I m[12E1 ] ]
A frequency vibration equals
_ 465 [EI
T2 \m

Version 4. Choose an expression for eigenfunction X(x) in a form that coincides with an
elastic curve due to a concentrated force P applied at the free end

PP (¥ 3x

The Rayleigh quotient is

PP
> 3EI _ 140E1

- ! PP 2 X 3x 2 1mi
Y (R -2 2) ax
(J; m<6EI> <13 7T >

The fundamental frequency vibration equals

353 [EI
TP \m

Version 5. Choose an expression for eigenfunction X(x) in a form that coincides with an
elastic curve due to a uniformly distributed load ¢ = mg along the beam

_mglt (| A
X0 =3 (1 TR
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Calculate:
1 m2 g lS
X (x)dx =
JmX (e =207
1 13 352 19
[mxP(ydy = 8L
0 3240(EI)

The Rayleigh quotient is

!
mX (x)dx
J o

T Bl

wZ

= g 7
[ mX?(x)dx
0

The fundamental frequency of vibration equals

352 E
T2 \Vm

2.3.3 Rayleigh-Ritz Method

The Rayleigh—Ritz method (Rayleigh, 1877, Ritz, 1909) can be considered as an extension
of the Rayleigh method. The method can be used not only to obtain a more accurate value
of the fundamental natural frequency, but also to determine the higher frequencies and the
associated mode shapes.

Procedure

1. Assume that the shape of deformation of the beam is in the form
Yx) =1 Xy (x) + X (x) - = _Z;C,Xf(x) (2.19)

which satisfies the geometric boundary conditions.

2. The frequency equation may be presented in two different canonical forms
Form 1

Ikll_mllwz kl2_m12w2 -1
oy =m0y — myy? -.-:zo (2.20)
| e

The parameters of the frequency equation (2.20) are the mass and stiffness coefficients,
which are expressed in terms of shape mode X(x)

my = [ pAXX; dx 2.21)

)

=}

I
—

klj EI)(I-H.X}” dx

=}
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Form 2

by — Vo? myy — Vipo? :
|21 — Vyo? my — Ve - . 0 (2.22)
| . .

where m; is the mass stiffness coefficient (2.21). In the case of transverse vibration, the

parameter of the frequency equation (2.22) is

L MM, dx
A i i (2.23)
y Of El

where bending moments AM; and M, are caused by the loads mX; and mX;; m = pA. If
the assumed shape functions happen to be the exact eigenfunctions, the Rayleigh—Ritz

method yields the exact eigenvalues.

The frequency equations in the different forms for first and second approximations are

presented in Table 2.4.

TABLE 2.4 Rayleigh-Ritz frequency equations

Approximation Form 1 Form 2
First kiy —myj@* =0 my — Vyjo0? =0
| 2 2| | 2 21
Second Iku—mn“’ kiy =m0 -0 Imll_Vllw my — Vo 1=0
2 2 = 2 20 =
Vo = my 07 kyy —mpo® My — Va1 myy — Vo™,

Example. Calculate the first and second frequencies of a cantilever beam that has a

uniform cross-sectional area A; the beam is fixed at x = 0.

Solution
1. Assume that the shape of deformation of the beam is in the form

o= =)o)

where functions JX; satisfy the geometry boundary conditions at the fixed end.
2. Using the expressions for the assumed shape functions, the mass coefficients are

! Loey4 ml
my, = [mXt(x)dx = [m(=) dx = —
1 J ! J (1) 5
! L\S ml
myy =my = [ mX;(x)X,(x)dx = fm(;) dx = 3
0 0
! L x\6 ml
My, = [mX3x)dx = [m(=) dx=—
= = a3 "

where m = pA is the mass per unit length.
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3. Using the expressions for assumed shape functions the stiffness coefficients are

! L(2\? 4Bl
by = [ EIX{* (x)dx = fEI(—z) dr = —~
o o ! /
2 6x 6EI
ki, =ky = IEI "(X)X5 (x)dx = jE[ﬁlex =—
y 6x 12E1
kyy = fEIXzz(x)dx jEI( ) dr = ——
4. The frequency equation, using the first form, is
| 4 ml* mi* |
N 4 T 6ET |

First approximation. The frequency equation yields the linear equation with respect to
eigenvalue /

yl 4
4-to0, s=?™E
5 EI

The fundamental frequency of vibration is

44721 [EI
NETE N

Second approximation. The frequency equation yields the quadratic equation with
respect to eigenvalues A:

22— 12247415121 =0
The eigenvalues of the problem are
=12.4802, A, =1211.519

The fundamental and second frequencies of vibration are

3.5327 |EI 34.8068 |EI
Q=T Nw 2T R Am

The exact fundamental frequency of vibration is equal to

35156 [EI
o m

Comparing the results obtained in both approximations shows that the eigenvalues
differed widely. The second approximation yields a large dividend in accuracy for the
fundamental frequency of vibration. A significant improvement in the fundamental,
second and higher frequencies of vibration can be achieved by increasing the number of
terms in the expression for the mode shape of vibration.
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2.3.4 Bubnov-Galerkin Method

The Bubnov—Galerkin method can be used to determine the fundamental frequency and
several lower natural frequencies, both linear and nonlinear, of the continuous systems
(Galerkin, 1915).

Procedure

1. Choose a trial shape function, X(x), that satisfies the kinematic and dynamic boundary
conditions and presents the deformable shape in the form

M) = X (0) + ) = lec,-Xi(x) (2.24)

where ¢; are unknown coefficients.
2. Formulas for mass and stiffness coefficients are presented in Table 2.5.
3. Frequency equation (Common formula)

| |
|
|
| k21 — m21(,l)2 k22 — m22w2 : = 0 (225)
|

First approximation for the frequency of vibration
ki, —m*=0 (2.26)
Second approximation for the frequency of vibration

| 2 2|
kjy —my0° ki, —mpo

11 11 , 12 12 = 0 (2.27)
\k21 — my 0 kyy — My |

As may be seen from the Equation (2.21) and Table 2.5, the mass coefficients for the
Rayleigh—Ritz and Bubnov—Gakerkin methods coincide, while the stiffness coefficients
are different.

TABLE 2.5 Mass and stiffness coefficients for different types of vibration

Vibration Mass coefficient Stiffness coefficient
I /

Transversal my; = [pAX.X; dx ky = J(EIX)'X; dx
0 0
I !

Longitudinal my; = [pAX.X; dx ky = —[(EAX]) X; dx
0 0
I !

Torsional my; = [pAX.X; dx ky = —[(GLX])X; dx
0 0

Example. Calculate the fundamental frequency of vibration of the beam shown in Fig.
2.18 (beam thickness is equal to unity).
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pra l AN
T
b
X < A
Y < X
Lo, Ao, mo ]

vy
FIGURE 2.18. Cantilevered non-uniform beam.

Solution. The second moment of inertia, cross-sectional area and distributed mass at any
position x are

b)) =

1. The boundary conditions of the beam are

~I =

w=0, y(=0, EBH'(0)=0; EN"(0)=0
so the function y(x) for the transversal displacement may be chosen as
Wx) = CiXi(x) + X5 (x)
where the assumed functions are
2x

= G- =G0

First approximation. In this case we have to take into account only function X

2 32 12x
" . " o_ . 1IN

X =51 EIX =Elsos (EIX]) = Ely—=
The stiffness and mass coefficients are

{ N ! 12x (x*  2x EI
b = [y, ae = [on gt (= 1 ax =50
0 0
l Lox(x 2x : /
= (pAX? dv = [my (S =24 1) dx = my—
= [t o= o (=5 1) =

The frequency equation is k;; — m;;@? = 0.
The fundamental frequency of vibration is

301, 30EH? b |E
2 0 2
= ol or = 300 and (1):5.48[—2 5

Second approximation. In this case we have to take into account both functions X; and
X

6x 4 6x* 43 p 72x%  24x
X =p—p EX = E]0<ZT - l_5>; (ELX})" = EI, (,T - Ts)
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The stiffness and mass coefficients that correspond to the second assumed function are

22 245\ (¥ 222 2E]
kzz_j(EI 'YX, dr = jE10<7" J)("__L+)£>dx:_0

O AV 55
! ! 32w\’ /
= [pAXZ dv = [mo> (% -2 +2) dv = my—
e = | A% J”"’l(ﬁ PTT) T MR

BOR T 5

! ! X2 2x o2 x /
mIZ:JpAXIXZ ijl(lz 7 +1><l—3—l—2+7)dx:moﬁ

p 12x (¥ 2% «x 2E]
klz_j(EI 1%, d = jEIO 15< ——+7>dx:70

Frequency equation:

El ’
Ely _mol o) (2Bl _mol o\ _ (2l _mol 5\,
B30 58 280 561057

Fundamental frequency (Pratusevich, 1948)

:5.319 Ely or _53191) E
12 m 12

The exact fundamental frequency, obtained by using Bessel’s function is

b |E
—5315— |—

This is the result obtained by Kirchhoff (1879).

A comparison of the Bubnov—Galerkin method and the related ones is given in
Bolotin (1978).

The Bubnov—Galerkin method may be applied for deformable systems that are
described by partial nonlinear differential equations.

Example. Show the Bubnov—Galerkin procedure for solving the differential equation of
a nonlinear transverse vibration of a simply supported beam.

The type of nonlinearity is a physical one, the characteristics of hardening are hard
characteristics. This means that the ‘Stress—strain’ relationship is ¢ = Ee + f&3, f > 0,
where [ is a nonlinearity parameter (see Chapter 14).

Solution. The differential equation of the free transverse vibration is
oty &y (Py y\ oy &y
L(y,t)~E1284+6[fI4 <83>+ /f4< >8x4+m¥:0

where L(y, 1) is the nonlinear operator; and /, is the moment of inertia of order n of the
cross-section area

In:.[yndA
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For a rectangular section, b x h: I, = bh3 /12, I, = bh’ /80; for a circle section of diameter
d: I, = nd*/64, I, = nd®/512.
The bending moment of the beam equals

M = —/'[EL, + BL,()")’]

First approximation. A transverse displacement of a simply supported beam may be
presented in the form

Y&, 0) = fi(0)sin >

Using the Bubnov—Galerkin procedure
! . X
jL(x, f) s1n7dx =0

(2.28)
4

II[EIZ +6ﬁ1482y(8y) + ﬁ4(82y) 84y+ 82yi|smdx_0
) axt I

o3
This algorithm yields one nonlinear ordinary differential equation with respect to an
unknown function fi(#).

Second approximation. A transverse displacement may be presented in the form

Wx, 1) fl(t)sm g fz(t)sm—x

Using the Bubnov—Galerkin method

1
[Lex. 1) sin?dx —0
10 (2.29)
2
[L(x, 1) sin%dx =0
0

This algorithm yields two nonlinear ordinary differential equations with respect to
unknown functions f;(¢) and f,(?).

2.3.5 Grammel’s Formula

Grammel’s formula can be used to determine the fundamental natural frequency of
continuous systems, and it gives a more exact result than the Rayleigh method for the
same function X(x). Grammel’s quotients always lead to an approximate fundamental
frequency that is higher than the exact one. Grammel’s quotients for different types of
vibration are presented in Table 2.6.

In Table 2.6, M(x) denotes the bending moment along the beam, m is the distributed
mass, M; is the concentrated masses and X; is the ordinate of the mode shape at the point of
mass M;.
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TABLE 2.6 Grammel’s quotients

Type of vibration Square frequency

1
[mX*()dx + Y MX?
Longitudinal w? =2

N2 (x)dx
I =%4

1
[IX*(x)dx + Y I.X?
2 _0

Torsional w” =
L M7 (x)dx

1=a,

I
[m@)dx + 3 MX?
Transversal =

L M2 (x)dx
I =%

Example. Calculate the frequency of free vibration of a cantilever beam.

Solution

1. Choose the expression for X(x) in the form

4 x*
X(x)_ (1 _§+ﬁ>

2. Take the distributed load in the form

4y x*
q(x) = mX(x) = m<1 _§+ﬁ>

3. Define the bending moment M(x) by integrating the differential equation M”(x) = g(x)

twice
M) = xj 2x3 " x°
V=M 79 Toon

4. It follows that
1
[mX? dx = 0.2568ml
0

L M2 (x)dx m?P
= 0.02077 ——
I =% El

5. Substituting these expressions into the Grammel quotient, one obtains

3.51 |EI
=

T2 Vm
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2.3.6 Hohenemser-Prager Formula

The Hohenemser—Prager formula can be used for a rough evaluation of the fundamental
frequency of vibration of a deformable system (Hohenemser and Prager, 1932).

The Hohenemser—Prager quotients for different types of vibration are presented in
Table 2.7.

TABLE 2.7 Hohenemser—Prager’s quotients

Type of vibration Square of frequency vibration
1 1 N2
Longitudinal J—— (N) dr / N (dx
0 0
. (M ) dx /1 Mz(x)dx
Torsional
0
LM)? dx |1 M2 dx
Transversal j( ) (x)
0

Example. Calculate the first frequency of vibration of a cantilever beam that has a
uniform cross-sectional area.

Solution

1. Assume that elastic curve under vibration coincides with the elastic curve caused by
uniformly distributed inertial load ¢. In this case the bending moment M (x) = gx?/2. It
follows that

i 2
j(M”)z dx = Ll
0 m

1 MZ dx qzls
J EI  20EI

3. Substituting these expressions into the Hohenemser—Prager quotient, one obtains

, 20l 447
I - w=
ml4 2 Vm

2.3.7 Dunkerley Formula

The Dunkerley formula gives the lower bound of the fundamental frequency of vibration
(Dunkerley, 1894). The Dunkerley formula may be written in two forms. Form 1 is
presented in Table 2.8.

The influence coefficient (x, x) is linear (angular) deflection of the point with abscissa
x due to the unit force (moment) being applied at the same point. For pinned—pinned,
clamped—clamped, clamped—free and clamped—pinned beams, the linear influence coeffi-
cient d(x, x) is presented in Table 2.1.
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TABLE 2.8 Dunkerley first form

Type of vibration Square frequency vibration

!
Transversal and longitudinal w? =1 / [Ij'm(x)é(x, x)dx + Y M;o(x;, x,-)i|
0

Torsional o’ = 1/[}I(x)5(x, x)dx + Y L(x;, xi)]
0

Example. Calculate the fundamental frequency vibration of the cantilever uniform cross-

section beam carrying concentrated mass M at the free end (Fig. 2.19).

Solution

1. The influence function is

3

X
o(x, x) = 35
It follows that
I 4
J 00 ¥ = 177
3. Substituting these expressions into the Dunkerley quotient, one obtains
»? 1 12ET

T mlt MP M
(1442
oer 3 " ( + ml)

Special cases

2
1. If M = 0, then w:&‘/g.
2 m

1.875% |EI
For comparison, the exact value is o = 2 . (see Table 5.3).
2
2. If M = ml, then w = 1.244 ‘/g.
2 m
1.248% [EI
Exact value o = 2 +/— (from Table 7.7). See also Table 7.6.
m
Y
T m, El M
| O —«x
<x—>‘ /

>

FIGURE 2.19. Cantilever beam with a lumped mass at the free end.
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Dunkerley second formula. The Dunkerley formula gives the lower bound of the funda-
mental and second frequencies of vibration of a composite system in terms of the frequen-
cies of vibration of the system’s partial systems.

The partial systems are those that are obtained from a given system if all coordinates
except one are deleted. In the case of a deformable system with lumped masses and
neglecting a distributed mass, the partial systems have one degree of freedom. If a
distributed mass is also taken into account, then one of the partial systems is continuous.

The partial systems may be obtained from a given system by using a mathematical
model or design diagram. In the first case, the connections between generalized coordi-
nates must be deleted. In the second case, all masses except one must be equal to zero.

The relationship between the fundamental frequency of the actual system and partial
frequencies is

1 1 1 1
T T R 2.30
w%,<w§+w§+ o (2.30)
Since a partial frequency
w, = L (2.31)
"TNG,m '

then the square of the frequency of vibration of the given system is
2 1
> 5 5
1My + 0oy + -+ + Oy

(2.32)

where o, and ,, are fundamental and second frequencies of vibration of the given
system,;
oy, ..., w; are partial frequencies of vibration;
0,., are unit displacements of the structure at the point of attachment of mass m,.

Each term on the right-hand side of Equation (2.30) presents the contribution of each
mass in the absence of all other masses. The fundamental frequency given by Equation
(2.30) will always be smaller than the exact value.

The relationship between the second frequency of the actual system and parameters of
system is

Oyimy + 0oy + - + Sy,
:511’"1 01y : +eet : Op—1h—1Mi—1  Op_ 14y I
Oyymy Oy Ok k—1Mp—1 Oy

(2.33)

@3, N

Example. Calculate the fundamental frequency of vibration of the cantilever uniformly
massless beam carrying two lumped masses M| and M,, as shown in Fig. 2.20.

|

Ml Mz Ml
EI EI
i O O ’ x || O x
a
‘ ‘ / ‘ M,
| | EI

| © &

FIGURE 2.20. Deformable system with two degrees of freedom and two partial systems.
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Solution. The first and second partial frequencies according to Equation (2.31) are

2 1 a
N=rs, 0 O T 3R
1911
1 1 —b)’
2 _(-n

The fundamental frequency of vibration of the real system is

1
2
o}, N
Oy1my + 0yym;

The second frequency of vibration of the real system is

WOl A Oyymy + dppmy O11my + dpom,
2r

~ = 3
Loy m, 512”’2: d1mySxpmy — mymy07,

| Oy my Oy, \

b0 =35 (1-0-9)

Here, unit displacement J,, is taken from Table 2.1. This table may also be used for
calculation of the frequencies of vibration of a beam with different boundary conditions.

Example. Calculate the fundamental frequency of vibration of the cantilever uniform
beam carrying lumped mass M at the free end (Fig. 2.21).

Solution. The partial systems are a continuous beam with distributed masses m and a
one-degree-of-freedom system, which is a lumped mass on a massless beam.

1. The frequency of vibration for a cantilever beam by itself is

, 1875'El  3.515%El
o] = —= —_
# m “ m

2. The frequency of vibration for the concentrated mass by itself, attached to a weightless
cantilever beam, is

m, EI m, EI

\ EI

FIGURE 2.21. Continuous deformable system with lumped mass and two partial systems.
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3. The square of the frequency of vibration for the given system, according to Equation

(2.30), is
) w3 _ w? _3.5152EI 1
vy 2= 2T T 4 M
w7 + w3 on *om
l+w_% 1+4.1184ml

2.3.8 Approximate estimations (spectral function method)

The spectral function method is proficient at calculating the fundamental and second
frequencies of vibration. In particular, this method is effective for a system with a large
number of lumped masses.

Bernstein’s estimations (Bernstein, 1941). Bernstein’s first formula gives upper and
lower estimates of the fundamental frequency

1 2

2
—— <0 < Y (2.34)
VB, ' B +.2B, - B
Bernstein’s second formula gives a lower estimate of the second frequency of vibration
2
2
Wy > —————— (2.35)
"B —\2B,- B
where B, and B, are parameters
I
By = [ m(x)d(x, x)dx + ZMié(x,-, x;)
0 : (2.36)

B, = J{ J{ m(x)m(s)3(x, s)dx ds + > > MM, 6(x;, x;)
00 e

where 0 is the influence coefficient;
M is the lumped mass;
m is the distributed mass;
/ is the length of a beam.

The expressions for influence coefficient, J, for beams with a classical boundary condition
are presented in Table 2.1 and for a beam with elastic supports in Table 2.2.

Example. Find the lowest eigenvalue for a cantilever beam (Fig. 2.22)

Solution

1. Unit displacements for fixed—free beam are (Table 2.1, case 3)

3

X 1 3
5)“—@, (SXS—@(:;XZS—X)
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TI m, EI
|

Cx )
S
[ |
FIGURE 2.22. Cantilever uniform beam.

2. It follows that Bernstein’s parameters are

3 m 14
3E] ~ 12EI

fm(x)&(x x)dx = fm

2 218
1m?l
3)] deds = —2

1 1 1
= gbf m(x)m(s)o(x, s)dx ds = bem |:— (3x%s —x = W(E])z

6E1

3. Bernstein’s estimations give the upper and lower bounds to the fundamental frequency

EI EI 3.5153 |EI 3.516 [EI
12.360ml <ol <12. 3647 or B S < TE o,

The fundamental frequency of vibration is situated within narrow limits.

Bernstein—Smirnov’s estimation. The Bernstein—Smirnov’s estimation gives upper and
lower estimates of the fundamental frequency of vibration

<w; < 2.37
75 < < |5, (2.37)
In the case of lumped masses only, the distributed mass of the beam is neglected
Z oll i
(2.38)

=Y o5m} + 2y Spmm,

where J;;, 0, are principal and side displacements, respectively, in the system, due to unit

i

forces applied to concentrated masses m; and m; (Smirnov, 1947).
Example. Find the fundamental frequency vibration for a beam shown in Fig. 2.23.

Solution

1. Bending moment diagrams due to unit inertial forces that are applied to all masses are
shown in Fig. 2.23

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

ANALYSIS METHODS

52 FORMULAS FOR STRUCTURAL DYNAMICS
m m ny
El m
N SR SRR SR R P————
13 13 B 13 ,I
LF]ZI
21/9 F =1
Y
219
13
il W%\V F3=1

FIGURE 2.23. Pinned—pinned beam with an overhang carrying concentrated masses; M, M,, M; are
bending moment diagrams due to unit concentrated forces which are applied to masses m;, m,, and mjs,
respectively.

2. Displacements calculated using the unit bending moment diagrams by Vereshchagin’s

rule are
5”‘:ZIW(}X, Oy = O
51125222%; 512:521:%
613:631:_4886%? 52325322—422—1;; 33:%11;

3. Bernstein—Smirnov’s parameters

48P m
1 1111 + 01y + 03373 436E]
B, = 53ymi + 03ym3 + 633m3 + 2(51,mymy + Sy3myms + S1ymyms)

mi? 2
= 1620
(486EI>

4. The fundamental frequency lies in the following range:

(a) using the Bernstein—Smirnov estimation

1 EI B | EI
o, >—=73.48 — and o, < “1-370 —
,4/B2 ml B2 ml
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(b) using Bernstein’s first formula
1 EI
1< =3.52,/—
| mi3
B, (1 2B,

2
\jz B

The fundamental frequency of vibration is situated within narrow limits.

w

Example. Estimate the fundamental frequency of vibration for a symmetric three-hinged
frame with lumped masses, shown in Fig. 2.24(a); M, = M, = M, M, = M5 =2M,[l = h,
EI = constant; AS = axis of symmetry.

Solution. The given system has five degrees of freedom. The vibration of the sym-
metrical frame may be separated as symmetrical and antisymmetrical vibrations; the
corresponding half-frames are presented in Figs. 2.24(b) and Fig. 2.24(c).

Symmetrical vibration
1. The half-frame has two degrees of freedom. The frequency equation in inverted form is

_:Mléllwz—l My, :_0

D 2 2
| M1521a) M2(522w —1 |

where J;, are unit displacements.
Fundamental frequency of vibration

) 1
o= 2
2(81109p — 012)M M,

X |:M1511 + M09, — \/(M15|1 + My55)" — AM My (8,6, — 5%2)2:|

2. The bending moment diagram due to unit inertial forces is presented in Fig. 2.25.
3. Unit displacements obtained by multiplication of bending moment diagrams are

5P 4P 5 3P
Wy "2 T 192 T2 T UM T 192E]

FIGURE 2.24. (a) Symmetrical three-hinged frame; (b) and (c) corresponding half-frame for symmetrical
and antisymmetrical vibration.
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/4 :
P=1 Pr=1
AS /A — 45

FIGURE 2.25. Symmetrical vibration analysis. Bending moment diagrams due to unit forces P, = 1 and
P, =1.

4. Frequency vibration

o’ = !
26 x4—-3)x2x1
192E1
— 2 _ 32\ | 2221
><|:2><5+1><4 \/(2><5+1><4) 4x2x1(5x4 3)]MI3

| EI

Antisymmetrical vibration

1. The half-frame has three degrees of freedom (see Fig. 2.26).
2. Unit displacements obtained by multiplication of bending moment diagrams are

B . 5 803 Bo1928
O =5gm7 90 =50 = 2eqir’ B =507 =
384E] 24El — 384E] 2EI ~ 384El
B 3P
01y = 031 = 128E1 ~ 384EI
B 603
5 = 5 = =
137 930 7 64l — 384E1
S — 5 5P 1208
BT U2 T 6El T 384E1

3. Bernstein parameters

ME  466M

384EI = 384EI

By =Y 0;m=@2x1+1x80+2x192)

By =Y &im} +2Y S5mmy

B, =[(2% x 12 + 1% x 80% + 2% x 192%)
M2I° 211784M2[°

(384EI  (384EI)’

+22x1x324+2x2x62+1x2x120%)] x
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/8

P1=1¢ a

AS P=l1] g5

i

FIGURE 2.26. Antisymmetrical vibration analysis. Bending moment diagrams due to unit forces P; =1,
P,=1and Py =1.

4. Bernstein first formula

1 2
ﬁ < w% < m
1 , 2
MevaTsa ' qsemr (1 211784 1)
384El 384E] 466

So the fundamental frequency vibration satisfies the following condition

| EI | EI
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Source: Formulas for Structural Dynamics: Tables, Graphs and Solutions

CHAPTER 3

FUNDAMENTAL EQUATIONS
OF CLASSICAL BEAM
THEORY

This chapter covers the fundamental aspects of transverse vibrations of beams. Among the
aspects covered are mathematical models for different beam theories, boundary conditions,
compatibility conditions, energetic expressions, and properties of the eigenfunctions. The
assumptions for different beam theories were presented in Chapter 1.

NOTATION

A Cross-section area

D Rayleigh dissipation function

DS Deformable system

E, G Young’s modulus and modulus of rigidity
EI Bending stiffness

EV Shear force

g Gravitational acceleration
G(x, &, t, 1) Green function
H Heaviside function

L Moment of inertia of a cross-section

j Pure imaginary number, j> = —1

k Shear factor

ki, krot Stiftness coefficients of elastic supports

ky Flexural wave number

/ Length of the beam

MCD Mechanical chain diagram (Mechanical network)

m;, k] Mass and stiffness coefficients

M, J Concentrated mass and moment inertia of the mass

N, M Axial force, bending moment

P(1), P, Force and amplitude of a force

r Dimensionless radius of gyration, r?4* = I

Fies Trot Transversal and rotational stiffness of foundation
59
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R, Reaction of the foundation
s Dimensionless parameter, s>kAGI?> = EI
t Time
UrT Potential and kinetic energy
uv Real and imaginary parts of an impedance, Z = U + joV
VPD Vibroprotective device
W(x, &, p) Transfer function
X Spatial coordinate
X(x) Mode shape
X, 0z Cartesian coordinates
y Transverse deflection
Y; Krulov—Duncan functions
Zns Zps Zy Impedance of the mass, damper and stiffness
Z,Y Impedance and admittance, Z = P/v,Y = v/P
0 Dirac delta function
Oir Unit displacement
L Frequency parameter, JAEI = mPo?
uwp Damping coefficients
Dimensionless coordinate, ¢ = x/I
v Velocity
p, m Density of material and mass per unit length, m = p4/g
g, ¢ Stress and strain
@, N, B Linear operators of differential equations, boundary and initial conditions
W Bending slope
1) Natural frequency, ? = A*El/mi*
= % Differentiation with respect to space coordinate
d . - . .
()= @ Differentiation with respect to time

3.1 MATHEMATICAL MODELS OF
TRANSVERSAL VIBRATIONS OF UNIFORM
BEAMS

The differential equations of free transverse vibrations and the equations for the normal
functions of uniform beams according to different theories are listed in Table 3.1.

Different mathematical models take into account the following effects: the Bress—
Timoshenko theory—bending, shear deformation and rotary inertia and their joint
contribution; the Love theory—bending, individual contributions of shear deformation
and rotary inertia; the Rayleigh theory—bending and shear; and the Bernoulli-Euler
theory—bending only.

The natural frequency of vibration equals

2 [EI
w=—,/—
ENm
where 1 is the frequency parameter.
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Dimensionless parameters » and s are

b1 L E
TAR T T kAGP

where 7 is the dimensionless radius of gyration, G is the modulus of rigidity, and £ is the
shear factor, m = pA, [ is the length of the beam.

3.1.1 Bernoulli-Euler theory

Presented below are differential equations of the transverse vibration of non-uniformly thin
beams under different conditions. A mathematical model takes into account the effect of
longitudinal tensile or compressive force, and different types of elastic foundation.

1. Simplest Case. The design diagram of an elementary part of the Bernoulli-Euler
beam is presented in Fig. 3.1.

M(x,t) (\M(x, )+dM(x,1)
lV(x,t)ﬂz’ Vix,t)

2

y(x,t) Vix,t) ‘ in = pAdx?)T;

X _dx ‘
> >|

FIGURE 3.1. Notation and geometry of an element of the Bernoulli-Euler beam.

The differential equation of the transverse vibration of the thin beam is

N R
ﬁ[EI(x)ﬁ} Fpd¥ =0 G.1)

The slope, bending moment and shear force are

ay %y a %y
0=—, M = El—=, V=——[EIl(x)—
ax o2 ax ) a2

If a deformable system has certain specific conditions, such as a beam on an elastic
foundation, a beam under axial force, etc, then additional terms must be included in the
differential equation of vibration. Various effects and their corresponding differential
equations for Bernoulli-Euler beams are presented in Table 3.2. These data allow us to
take into account not only different effects but also to combine them to form differential
equations for different beam theories.

Example. Form the differential equation of a transverse vibration of a non-uniform
beam. The ends of the beam are shifted. Take into account the effect of axial force and
the one-parametrical Winkler foundation with viscous damping.
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Solution. The differential equation may be formed by the combination of different effects

2 2
332 [E o ] 8y Sk + il +pA(x) 8t2

Other models

1. Visco-elastic beam. External damping of the beam may be represented by distributed
viscous damping dashpots with a damping constant c(x) per unit length (Humar, 1990).
In addition, the material of the beam obeys the stress—strain relationship

0
= Ee¢ E—
’ et u ot

In this case, the differential equation of the transverse vibration of the beam may be
presented in the form

2

7 7
(B0 22) + 25 [0 2] + et pawr 33 = 0

2. Different models of transverse vibrations of beams are presented in Chapter 14.

3.2 BOUNDARY CONDITIONS

The classical boundary condition takes into account only the shape of the beam deflection
curve at the boundaries. The non-classical boundary conditions take into account the shape
deflection curve and the additional mass, the damper, as well as the translational and
rotational springs at the boundaries.

The classical boundary conditions for the transversal vibration of a beam are presented
in Table 3.3.

The non-classical boundary conditions for the transversal vibration of a beam are
presented in Table 3.4.

Example. Form the boundary condition at x = 0 for the transverse vibration of the beam
shown in Fig. 3.2(a). Parameters k;, and f3; are the stiffness and damper of the translational
spring, k5 and f3; are stiffness and damper of the rotational spring (dampers f; and f3; are
not shown); m and J are the mass and moment of inertia of the mass.

Solution. FElastic force R in the transversal spring, and elastic moment M in the rotational
spring are

% a0
R=k =, M=1Ikt —
W+ B o 30+ B3 o
where y and 0 = (dy/dx) are the linear deflection and slope at x = 0.
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TABLE 3.3 Classical boundary conditions for transverse vibration of beams

Boundary At left end (x = 0) At right end (x =)
conditions (the boundary conditions at the (the boundary conditions at the
right end are not shown) left end are not shown)

Clamped end
(v=0,0=0)

Pinned end
y=0,M=0)

Free end
V=0M=0)

Sliding end
V=0,0=0)

Notation

v and 0 are the transversal deflection and slope;
M and V are the bending moment and shear force.

Boundary conditions may be obtained by using Table 3.4:

Py %y
EI k =M—
8x< ax 2) e ﬁl az ar?

Py 8 y
El— — -
ox2 B 3 8x8t 8x8t2

Example. Form the boundary condition beam shown in Figs 3.2(b) and 3.2(c).

Solution
Case (b)

3
0, 1) = 0, —y(o, z) -0

—Elay(l t)—(J—|—Md2) (Z y)—|— (l 1) +k “’ta (l 1)

axor or?

El—(l =M (1 f)+ Md

o 82(l 1)
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TABLE 3.4 Non-classical boundary conditions for transverse vibration of beams

Boundary
conditions At left end (x = 0) At right end (x = /)

Sliding end | i : |—> X
with -
translational ki k>
2 7 P!
E =

spring

Pinned end
with
torsional
spring &
y d
El—<+4+k—=0,y=0
a2 Thg 7
Free end e - >y
with k %
translational 2
spring 0 @ @ 0 @ ?
y y Y Y
—(EI=) —ky=0; EI===0 —(EI= ) +ky =0, EI===0
3x< Bx2> v ox2 8x< 3x2> Ry ox
Sliding end k ks
with
torsional e X
spring 9 & & 9 8 & & 9
Y Y y y Y Y
—|El—= ) =0; El = —k—==0 —El— ) =0; El = +k,—==0
ox < 8x2> a2 ox ox < E)x2> a4
Elastic k3C ka
clamped end ¥ -
2h b
9 &y 9 &y
—\El—= | —ky=0; — | El— ky,y =0;
ox ( 3x2> W ox < Bx2> Ry
Fy W Fy W
El-5—k—=0 El—+k==0
w2 Cox o2 th ox
Concentrated
M M, Jp
mass ! g '_D X
Concentrated
damper B g
9 &y oy &y 9 &y ay Py
—\El—=|=p—; EI—==0 —\El—= )| =—-B=;E[—==0
ox ( sz) ot ox? Bx( 8x2) / o’ ox?

Parameters &, and k, are stiffnesses of translational springs; & and k, are the stiffnesses of rotational springs;
M and J are the lumped mass and the moment of inertia of the mass.
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ks B3
o C
ki, B
kro M J
b) ; X
i v 2d,
M,J
o | I

FIGURE 3.2. Nonclassical boundary condition. Beam with mass and with transitional and rotational
springs and dampers (a), Beam with a heavy tip body and with a rotational spring (b) and a translational

spring (c).

Case (c)

ad
0, 1) =0, lwn:o
&y 2
—EI (l t)—(J—!—Md)aaz(l t)+Md (Z 1)
EI—(l =M (l t)+Md882(l 1)+ k(1 1)

The frequency equations for cases (b) and (c) are presented in Sections 7.11.2 and 7.11.3,
respectively.

3.3 COMPATIBILITY CONDITIONS

Table 3.5 contains compatibility conditions between two beam segments.

Table 3.6 contains compatibility conditions between two elements of the frame with
immovable joints.

3.4 ENERGY EXPRESSIONS

Kinetic energy of a system. The total kinetic energy of a system is defined as

T=3T, (32)
i=1
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TABLE 3.5 Compatability conditions for two beam segments

Design diagram Compatibility condition
y yvo=y v =y
i e — (ED")_ = (EY"); (ED")_ = (ED"),

— X yo=y =0 yl=yl

(E]y”)f =7(E1y”)+; (E]y///)7 — (Elym)Jr R

%k o=y o=yl
(ED")_ = (ED") 5 (ED")_ = (ED"), + ky

yo=y,=0; yL=yl
(ED"). = (ED"), — ks (ED")_ = (ED") — R

—0— yo=yio oyl =yl

, v
M (ED")_ = (EB"),: (ER")_ = (El"), — Mory

_l_ yo=yo o yi =yl
M, (ED")_ = (EY"), +Jo?y's (") = (El"), — Mw?y
J

TABLE 3.6 Compatability conditions for frame elements

Type of joint Compatibility condition
p— — . o I
¥ element y»"_yr_o’ Ys=DXr
M, =M,
S element

Mr—l +MS‘ :Mv—l +Mr

S
s-1 V=Y, =Y =y =0 Yy =yi=y =Y,
S

The expressions for kinetic energy of the transversal and rotational displacements of a
beam and lumped masses are presented in Table 3.7(a).

Notation

v total transverse deflection;
p mass density of a beam material;
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TABLE 3.7(a) Kinetic energy of transverse vibration of a beam

Kinetic energy of distributed masses Kinetic energy of lumped masses
Transversal Rotational Linear Rotational
displacement displacement displacement displacement
1! M2 1! Py 9B\’ y 2
= [pA(x)( =) dx —[plX)|=—=———) dx =3 M =
2lr OC)(ar) 2l (x)<8xat ar) Z <8t> Z <8x8t>

TABLE 3.7(b) Potential energy of a beam

Potential energy caused by

Bending Shear deformation Two-parameter elastic foundation
82 8ﬂ 1 ! 2 klrfl krotf ! 3y :
dx = [ kGAp~dx dx =[{=]) dx
I (8x2 8x> 25[ b 2 Jy2 T J(i)x)
E modulus of elasticity;

A(x) cross-sectional area;

I(x) second moment of inertia of area;

moment of inertia of the concentrated mass;

v bending slope;

p shear angle; the relationships between y, f# and s are presented in Chapter 11.

Potential energy of a system. The total potential energy of a system is defined as

U=y (33)
i=1

The expressions for the potential energy of the beam according to the Timoshenko theory
(for more details see Chapter 11) are presented in Table 3.7(b).

Notation

G modulus of rigidity;

k shear coefficient;

kg, translational stiffnesses of elastic foundation;
oy Totational stiffnesses of elastic foundation.

The potential energy accumulated in the translational and rotational springs, which are
attached at x = 0, is calculated as

1 1 dy 2
k12 Ly
l JR—— “ l? - 3.4

tr 2 H’y ( ) rol 2 Tot (8 )X 0 ( )
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where k, and k., are the stiffnesses of the translational spring and the elastic clamped
support, respectively. The energy stored in the springs is always positive and does not

depend on the sign of either the force (moment) or the spring deflection (angle of rotation).

Work. Expressions for the work done by active forces are presented in Table 3.8.

TABLE 3.8 Work done by active forces

Transverse load Axial distributed Axial tensile load
load (for compressive load negative sign)
1 1! )2 N L/a\?
= dx = =) dx — (=) &
2X{ a0 2l ”(x)<ax> 2! (3x>

3.4.1 Rayleigh dissipative function

The real beam, transversal and rotational dampers dissipate the energy delivered to them.
The dissipation function of the beam is

1! 3 y\
Dpeam = P JﬁbE](x) (&@) dx (3.5)
where f3,, is the viscous coefficient of the beam material.
The dissipation functions of the transversal and rotational dampers, which are placed at
x =0, are

1 9(0) 1 9(0)
Dy=-f, 2" D =-
tr 2 ﬁtr at ’ Tot 2 ﬂrot 3x3t

where f,, and f, are coefficients of the energy dissipation in the transversal and rotational
springs.
The Lagrange equation (2.8), with consideration of the energy dissipation, is presented

(3.6)

as

d (oT\ 8T U oD
(aq) T o0, i=1,23...n 3.7)

ai\ag,) "o, "o, g,

3.5 PROPERTIES OF EIGENFUNCTIONS

The solution of the fourth-order partial differential equation (3.1) can be obtained by using
the technique of the separation of variables

y=X®T(@) (3.8)

where X(x) is a space-dependent function, and 7{(¢) is a function that depends only on time.
The function X(x) is called the eigenfunction.
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3.5.1 Theorems about eigenfunctions

1. Eigenfunctions depend on boundary conditions, the distributed mass and stiffness along
a beam and do not depend on initial conditions.

2. Eigenfunctions are defined with an accuracy to the arbitrary constant multiplier.
3. Normalizing eigenfunctions satisfies the condition

Jl' mE)X} dx =1 (3.9)
0

4. The number of a nodals (the number of sign changes) of an eigenfunction of order & is
equal to £ — 1. The fundamental shape vibration has no nodals.

5. Two neighbouring eigenfunctions X;(x) and X;_,(x) have alternating nodals.

3.5.2 Orthogonality conditions for Bernoulli-Euler beams

The property of the orthogonality of eigenfunctions can be used to obtain the solution of
the differential equation of vibration in a closed form. The important definitions, such as
the modal mass, modal stiffness, and modal damping coefficients may be obtained by
using the orthogonality conditions of eigenfunctions.

General expression for the orthogonality condition of eigenfunctions
I i
EIX)Y X,y — EIX/ X, + [ EIX/X} dx = o] [m()XX, dx j=1,2,3,... (3.10)
. . A 5 :

(a) Classical boundary conditions. For a beam with fixed ends, free ends, and simply
supported ends, the boundary conditions are, respectively

X(0) = X(I) = X'(0) = X'(I)
X//(O) — X//(l) — X///(O) _ X///(l)
X(0) = X(I) = X"(0) = X"(I)

In these cases the general expression for the orthogonality condition may be rewritten
as

1 1
b[EI(x)Xj” 7 dr = of i)[m(x)xj)(k dx (3.11)

Case j # k

1. Eigenfunctions are orthogonal over the interval (0, /) with respect to m(x) as the
weighting function

I
(J)' m(x)X;(x)X; (x)dx = 0
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If lumped masses M, on a beam have spatial coordinates x, then
I
Jm)X,(0)X(0)dx + 3 M (x)X;(x,) = 0
0 s

2. The second derivatives of eigenfunctions are orthogonal with respect to El(x) as a
weighting function

1
JEI)X) X dx = 0
0

3. Because J"é[EI (x)Xj”]”Xk dx = 0, then for a uniform beam, EI = constant, and eigen-
functions and their fourth derivatives are orthogonal

!
JX" X dx=0
0

Case j = k. The modal mass and modal stiffness coefficients are

!
m; = [ m(x)X] dx
01 (3.12)
b = JEIC)0)” d
The jth natural frequency w; is defined as
! 171\2
g JEOY &
W = m_f e — (3.13)
i

jl m(x)X? dx
0

Fundamental conclusion. A mechanical system with distributed parameters may be
considered as an infinite number of decoupled simple linear oscillators. The mathematical
models are second-order ordinary differential equations whose solutions can be presented
in a simple closed form.

Example. Derive the differential equation of a Bernoulli-Euler beam using Equation
3.7).

Solution. Transverse displacement is presented in the form of Equation (3.8)

k=00
x, 1) = k;)Xk(x)Tk(t)

The kinetic energy, according to Table 3.7(a), is

2

ljl A(x) 4 2dx—ljl' A(x) iO:X @7 ) dx
20p ot 720/] =t

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

FUNDAMENTAL EQUATIONS OF CLASSICAL BEAM THEORY

FUNDAMENTAL EQUATIONS OF CLASSICAL BEAM THEORY

73
Taking into account the orthogonality conditions, the kinetic energy may be rewritten in
the form

k=00 1 .
:% Y [pAGIXE()dx(T)
k=0 0

The potential energy, according to Table 3.7(b), is

82y 2 1 ! k=00 17" ’
U=3 JEI(X) <@) de=> gEI(x)< kgoXk (x)Tk(t)> dx

Taking into account the orthogonality properties, the potential energy may be rewritten in
the form

k=00l
g [EI@IX{ @) &TE ()

The dissipation function, according to Equation (3.5), is

1! 9 & By L koo
Duen =5 10 (315 i) = e (i) ax

Taking into account the orthogonality properties, the dissipation function may be rewritten
in the form

k=00

Bs

/
7] EI(x)[X; (x)] de ()
0 k=0

>~

Substituting expressions of U, T and D into Equation (3.7) leads to the following

.. ! / .
J PAC)XE (x)dxT (1) + J EIOWX{ (0P dxT (1) + B, 6[ EI@X @ T (1) = 0

which leads to the equation corresponding to the kth mode of vibration

T(0) + 2m, T(t) + &’ T(1) = 0

where the frequency of vibration and the damper coefficient are

J‘E](x) //2
o} =

o = ﬁbzwﬁ
fm(x)Xk dx
0

The expression for the square of the frequency of vibration is the Rayleigh quotient (Table
2.3); Equation (3.13).
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(b) Non-classical boundary conditions. Consider a beam with a lumped mass, trans-
versal and rotational springs at x =/ shown in Fig. 3.3.

N
m(x), EI(x) .
M,J . .
k- FIGURE 3.3. Non-classical boundary conditions at the
l right end x = /; boundary conditions at the left end have
> not been shown.

Case j # k. Orthogonality conditions over the interval (0, /) are presented in the form

1
J m()X;(x) X (x)dx + MX;(1DX, (1) = 0

(3.14)
l
JEIXX;! dx+ B XD + B X DX (D = 0
Case j = k. The modal mass and modal stiffness coefficients are as follows:
I
m; = [ mx)X}? dx + MXZ (1) + JX*(])
) : .
(3.15)
i
k= [EI)X)) dx + kX (D) + k(X)) (D)
0
The jth natural frequency w; is defined as
0 keXP(D) | KXP()
11\2
. JE[(x)( ) dx|:1 +t ot
wj=-2L= (3.16)
mj 1 ) MX}2 (l) ‘]/Yj/z (l)
Jm(x)X, dx| 1+ 7 + e

where the mass and stiffness of the beam corresponding to the jth eigenform are as follows:

1
M*= m(x)){}-2 dx
Ol (3.17)
§* = [EI(x)(X]) dx
0

Equation (3.16) is an extension of the Rayleigh quotient (Table 2.3) to the case of a non-
classical boundary condition, such as elastic supports and a mass with an inertial effect
under rotation.
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3.7 MECHANICAL MODELS OF ELASTIC
SYSTEMS

Mechanical chain diagrams (MCDs) are abstract models of deformable systems (DSs) with
vibroprotective devices (VPDs) and consist of passive elements, such as springs, masses
and dampers, which are interlinked in a definite way. The MCD and DS equivalency
resides in the fact that the dynamic processes, both in the source DS and its generalized
diagram, coincide. The MCDs for mechanical systems with concentrated parameters
(MSCP) have been extensively studied (Lenk, 1975; Harris, 1996).

A MCD allows one to perform a complete analysis of a DS by algebraic methods and to
take into account structural and parametrical changes in the DS and VPD. This analysis
allows one to determine amplitude—frequency and phase—frequency characteristics; and to
define the forces that arise in separate elements of the system, calculate dynamic
coefficients, and so on.

The fundamental characteristics of the mechanical systems are impedance ‘force/
velocity’ and admittance ‘velocity/force’. The transitional rules from a MSCP to a
mechanical chain diagram have been detailed in a number of publications (Harris,
1996). The amplitude—frequency and phase—frequency characteristics for a MSCP, which
are represented in the form of their equivalent MCDs, are well-known (Harris, 1996).

3.7.1 Input and transitional impedance and admittance

Figure 3.4 presents an arbitrary deformable system with distributed parameters (a beam, a
plate, etc) and peculiarities (holes, ribs, non-uniform stiffness, non-classical boundary
conditions, etc). The boundary condition is not shown. The system is supplied with
additional vibroprotective devices of the arbitrary structure such as mass m, stiffness & and
damper f with following impedances

Z,,(j) = joom
Z,(jo) = k/jo (3.18)
Zﬁ(jw) =p

or their combinations (vibro-isolators, vibro-absorbers, vibro-dampers). A concentrated
harmonic force affects the system in direction 1. The impedance of additional devices is
equal to Z = U + joV in direction 2.

Expressions for the input and transitional impedance and admittance are presented in
Table 3.10. (Karnovsky and Lebed, 1986; Karnovsky et al., 1994). The input character-
istics are related to the case when points 1 and 2 coincide; the transitional characteristics
mean that points 1 and 2 are not matches. These expressions take into account the

P=Pexp(jorx)

X

¢vl VZ¢

Ds>§

Z=U+j U)V FIGURE 3.4. Deformable system with additional device with
impedance Z = U + joV.
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TABLE 3.10 Input and transitional impedance and admittance for beams with additional devices

Transitional
Input (Points 1 and 2
(Points 1 and 2 coincide) not coincide) Comments
P P, D =60y *5%2
Impedance Zinp(P) = N Zim(p) = g p=jow, j=+v—1
_ PRonV +pinU+1 _1+jwdnZ
~ p*DV +p*DU +pdy, @iy
. v vy
Admittance Yip(P) =~ Zm(P) =5
p Py
_ p’DV +p*DU +pdy, _ Jwdy
PRV +pinU+1 T 1+ jwonZ

properties of an arbitrary deformable system and additional passive elements mounted on
the deformable system. The properties of a deformable system are represented by the unit
displacements 0, 5, 0,; and J,,. The calculations of unit displacements for bending
systems are presented in Section 2.2. The properties of passive elements are represented by
the real U and imaginary part ¥ of their impedance, Z = U + joV.

3.7.2 Mechanical two-pole terminals

‘Force—velocity’ and ‘velocity—force’ describes the dynamics of a DS in terms of the force
and velocity, which are measured at the same point or at different points. The networks for
characteristics Z and Y, which are presented in Table 3.10, are synthesized by the
techniques of Brune, Foster, Cauer (D’Azzo and Houpis, 1966; Karnovsky, 1989).

A mechanical two-pole terminal, which realizes the input impedance Z,,(p) of a DS
with an additional vibroprotective device of impedance Z = U + joV is presented in Fig.
3.5.

Mechanical two-pole terminal, which realizes the input admittance Y;,,(p) of a DS with
an additional vibroprotective device of impedance Z = U + joV, is presented in Fig. 3.6.

The structure of the MCD does not change for different DSs. The peculiarities of the
DS, such as boundary conditions, non-uniform stiffness, etc, display themselves only in the
parameters of the MCD. The presence of the additional devices on the DS, such as
concentrated or distributed masses, or vibroprotective devices (VPD) of any structure, is
represented by additional blocks on the MCD.

Regular connections
Parallel elements: Several passive elements with impedances Z;, Z,,... are
connected in parallel (Fig. 3.7(a)).

Theorem 1. The total mechanical impedance of the parallel combination of the
individual elements is equal to the sum of the partial impedances.
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k= 55 7 = ]Lz Deformable system
2= [
Ds, JO Vibroprotective device
VVW
| A BN /

In

| . 2 z
o ko 3 m:VBLZ2 ﬂzUaLz2
P(1) ko 0 g 31 LH
? Z"ﬂ:jim Z, = jom Zg=p

FIGURE 3.5. Network describing the input impedance Z,,(p) of a DS with an additional device of
impedance Z = U + joV.

k= [ y, - Jjo Deformable system
- D - k. Vibroprotective device
4 Y/
_EA 85 53
o o alE e e
Y, _J® v, :.L 7 , L [l
: ky Jjom 5=8

FIGURE 3.6. Network describing the input admittance Y;,,(p) of a DS with an additional device of
impedance Z = U + jo V.

—_z |
F
1z

3

P72 WH 2z H z >

a) b)

FIGURE 3.7. Regular connections: (a) parallel elements; (b) series elements.
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Series elements. Several ideal passive elements with impedances Z;, Z,,... are
connected in series (Fig. 3.7(b)).

Theorem 2. The total mechanical impedance of the passive elements connected in series
may be calculated from

1ol

V4

str

n
3 (3.19)
1
Theorem 3. The natural frequency of vibration of a deformable system with any
additional impedance device Zy,, = U + joV is

ImZ, =0 (3.20)

is the impedance of the total structure.

N

where Z,

3.7.3 Mechanical four-pole terminal

(F\ V| — F,V,) takes into account two forces and two transversal velocities at different
points 1 and 2 (Fig. 3.8).
The matrix of the condition may be presented in the form (Johnson, 1983)

sinh A cos A + cosh A sin 4 _ ol coshlcos A —1
Uy sin A + sinh A ! EI)? sinA+sinh A vy (3.21)
F | L EI? 2sinh Asin A sinh A cos A + cosh 4 siniJ F, .
joP? sin /. + sinh sin A + sinh 4

where F, V; are the shear force and linear velocity at the left end of the beam; and F,, V,
are at the right end. Admittances Y, and Y, may be presented in the form

B _EI)3sinh /. cos A+ cosh /sin A — sin /4 — sinh A
«=10B coshAcos A —1 (3.22)

_EI}® sin/. + sinh/
Y, =]

ol coshAcos 2 —1
The matrix equation may be easily presented in the following different forms (Karnovsky,

Ul A [

ELl

TFI Vi Fz VzT

FIGURE 3.8. Mechanical four-pole terminal.
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The relationships between the bending moment and shear force on the one hand and the
linear and angular velocities on the other at the any point x of the infinite beam are

-]
*x) 0(x)

2 2
{ E[% (1 —j)EI%—I { EI% a —j)EI%—l
[Z ] = k3 k2 ’ [ZL] = k3 k2
|_(1 e BT |_—(1 e Bt J
4 2%
K =w?t2 (3.23)

where Zy and Z; are the right- and left-wave impedance matrices respectively, k;, is the
flexural wave number; and y = jwy, 6 = —jw)’ are transversal and angular velocities. The
matrices Zp and Z; describe the process of propagation of the waves to the right and left,
respectively, from a sole point force excitation (Pan and Hansen, 1993).

3.7.4 Mechanical eight-pole terminal

This takes into account the bending moment, shear force, transversal and rotational
velocities at two different points (Fig. 3.9). The fundamental matrix equation of the
dynamical condition of the uniform beam is (Johnson, 1983)

A
lr cos 4+ cosh 4 —(sin A — sinh )»)7
F ' . . 1
lr 1 —I I (sin A + sinh 1) — cos A+ cosh 4
Myg_ 1 :
oy |2y . . jolP , jol?
. sin A — sinh 1) — cos A —cosh l)—
L 0, J B Ver Ve

|
. ]
L (cos A — cosh 1) ZI7 (sin 4 + sinh 4) 7

EI}? EI}?
—(sin A + sinh ) —/1 —(cos A —cosh 1) —A
jol? jol?

|
EL EL [
(cos A — cosh /l)ja)—lz —(sin 4 — sinh 1) jol : [Mz—l

1| b2
cos A+ cosh 4 —(sin A + sinh /1)£ 1 L 0, J
A
1
A
(sin A — sinh A)7 cos A+ cosh 4 J
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M, 6, M,

TR 5

fFl Vi / Fyw f

| “1

&

FIGURE 3.9. Notation of the beam for its presentation as a mechanical eight-pole terminal.
The dispersive relationship and frequency parameter are

K= %wz, A=k (3.24)

3.8 MODELS OF MATERIALS

Table 3.11 contains mechanical presentation and mathematical models of the visco-elastic
materials. Here ¢ and ¢ are normal stress and axial strain, £ is modulus of elasticity, and 5
is the visco-elasticity coefficient (Bland, 1960; Bolotin, Vol. 1, 1978).

The fundamental characteristics of several models are presented in Table 3.12.

Example. Derive the differential equation of the transverse vibration of the beam. The
properties of the material obey the Kelvin—Voigt model

e

a:Ea—{—nat

Solution. The strain of the beam may be presented as

where p is the radius of curvature, and z is the distance from the neutral axis to the studied
fibre of the beam.
The normal stress and bending moment are

Py
g = —EZy” — WZW

Py Fy
M= [ozdd=—E-21— I
o=l o’ Moae

where | = jA)zz dd.
Substituting the expression for distributed load under free vibration

82y
= —m—
1 or?
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TABLE 3.11 Mechanical presentation and mathematical models of visco-elastic materials

Model Diagram Equation
Maxwell Relaxation medium
1ds o &
E M Ea ' n ¥
—>
(;—-’\/V\-[I— >
Kelvin—Voigt Elastic-viscous medium P
E 0= (E +n &)9

Kelvin—Voigt E, E, n do
generalized linear - X VM — 1+ *2 o+ Ejg =Ee¢+ ey
model ° n Y
Kelvin E, E, n P 9 -1 o
generalized model c‘_lJ—\E/\ﬁ""mﬁ_g 2\ i +n; %) °=¢
n Mn
Maxwell E | n /19 1\ o
generalized model ml//g\—z_:%z— g = ‘; <EI& + E) o
< H
A
En nn
Three-element E 1080 i 1 e e
model of <~ Eor 0%
viscous-elasticity c n o c

TABLE 3.12 Time dependent characteristics of visco-elastic materials

Diagram ¢ — ¢

Diagram ¢ — ¢

Model (¢ = const) (o = const)
Maxwell o £
E
— AN
o (¢
—————> ¢ t
Kelvin—Voigt o e
E
R .
n —————> t
Kelvin—Voigt oA e

generalized linear model
g B
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into equation M” = —q yields the differential equation
aty >y &y
El —=+nl —— —=0
a2

The second term describes the dissipative properties of the beam material.

3.9 MECHANICAL IMPEDANCE OF BOUNDARY
CONDITIONS

The boundary bending moment and shear force are expressed as the product of the 2 x 2
impedance matrix Z and a column vector containing the linear and angular velocities of the

beam at the boundary
M| y Xy Zyg
[ F ] B [Z][O] A= [ Zry  Zpj (325

Table 3.13 presents the impedance ‘force-linear velocity’ Z; = Zg;, and ‘moment-angular
velocity’ Z, = Z,,; for several typical supports (Pan and Hansen, 1993). The cross terms
Zyy and Zp, of the impedance matrix are zero.

TABLE 3.13 Impedance Z; (force—linear velocity) and Z, (moment—angular velocity) for different
boundary conditions

Boundary condition Impedance
Left end condition at x = —0.5L Z, and Z,
Pinned y=0 Z, =00
y// =0 ZZ —
Fixed y=0 Z, =00
y =0 Z, =00
Free V'=0 Z, =0
yV'=0 Z,=0
Translational spring V' =0 ke
Zy=j—
)
EN" +kyy=0 Z,=0
Rotational spring y=0
Z, =00
EIy” - kr(»ly =0 ZZ = _.]&
w
Lumped mass V' =0 Z, = —joM
EY"+My=0 Z,=0
Dashpot V' =0 Zy=-n
ED" +ny=0 Z,=0
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3.10 FUNDAMENTAL FUNCTIONS OF THE
VIBRATING BEAMS

The mathematical model of transverse vibration may be presented in operation form.
The differential equation of transverse vibration of an elastic system is

Llyx, D] =f(x, 1), x€ D, t >, (3.26)
Initial conditions
N[y(x, )] =y(ty,x), x €D, t=1¢, 3.27)
Boundary conditions
Bly(x, )] = g(x, 1), x € D, t > (3.28)

where L = linear operator of differential equation;
N = linear operator of boundary conditions;
B = linear operator of initial conditions;
D = open region;
0D = boundary points.
A standardizing function, w(x, ), is a non-unique linear function of f(x), yy(x)
and g(x), which transforms the mathematical model (3.26)—(3.28) with non-homogeneous

initial and boundary conditions to the mathematical model with homogeneous initial and
boundary conditions

LIy(x, 0] = w(x, 1), x € D, t > 1,
N[y(x, )] =0, xe D, t=t,
Bly(x, )] =0, x € D, t > 1
Green's function (impulse transient function, influence function), G(x, &, ¢, 7), is a solution

of the differential equation in the standard form. Green’s function satisfies the system of
equations

LIG(x, & 1)) =0(x— &, t—1), x €D, t >t
N[G(x,&,t,7)] =0, xe D, t=t,
B[G(x,&,t,1)] =0, x€dD, t>t,
where x = point of application of disturbance force;
¢ = point of observation;
t = moment of application of disturbance force;
T = moment of observation.

Causality principle. The Green’s function
G, ¢,t,1) =0, xeD, fort <t

It means that any physical system cannot react to the disturbance before the moment this
disturbance is applied.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

FUNDAMENTAL EQUATIONS OF CLASSICAL BEAM THEORY

FUNDAMENTAL EQUATIONS OF CLASSICAL BEAM THEORY 85

The solution of system (3.26)—(3.28) is

Y, 1) = J{f G(x, &, t, D)w(E, 1)dé dt (3.29)
fo D

This formula allows us to find the response of any linear system due to arbitrary
standardizing function w, which takes into account the effect not only of internal forces
f(#), but also kinematic disturbance.

The transfer function is the Laplace transform of Green’s function

o0
Wx, & p)= [e?Gx ¢ ndt, peK (3:30)
0
where K is set of a complex numbers.

3.10.1 One-span uniform Bernoulli-Euler beams

The differential equation of the transverse vibration is

y(x, £) ta 84y(x 1)

= — f(x, 1) (3.31)
Initial conditions
a 0
56, 0) = 00, 200 =y (32)
Case 1. Boundary conditions
321(0, & 0
00— g0, 220D g
2 3
ELLEN) 3y(’ D g 0=x =1 a0 (333)

The standardizing function is a linear combination of the exciting force f(¢), initial
conditions y,(#) and y,(f) and kinematic actions g,(¢),i = 1, ..., 4 (Butkovskiy, 1982).

wx, 1) =[x, 1) +yo(x)d' (1) + 31 (x)3(2)
— a3 (0g1(0) + a0y (1) — a*0' (1 = )g3(1) — a*o)gy(r)  (3.34)

Green's function

S X0
Glx, &) = angl 2x2(0)

in ak’t (3.35)
where the eigenfunction
X,(x) = (sinh k,,/ — sink,/)(cosh k,x + cos k,x) — (cosh k,l — cos k,I)(sinh k,x + sin k,x)

and eigenvalue k, are non-negative roots of equation

coshklcos kl =1
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Transfer function

40 X,0X,6) 1

— 4iqk2 —
W(x, & p)= a’; X)) At p, = tjak,, n=1,2,... (3.36)
Case 2. Boundary conditions
(0, ¢
50,0 =800 ﬁ '~ 0
( 9 (3.37)
Wi, f) = WD o, 0<x<l a0

Standardizing function (Butkovskiy, 1982)
wlx, 1) = f(x, 1) + 3o ()9 (1) + y ()3(2)
—a*d"(0)gi (1) — a’8" (g (1) — a*" (I = X)g3(1) + a*3"(N)ga(r)  (3.38)

Green's function

X, (x)X
G, &, 1) = 23 MOX©) & o, (3.39)
a;= kX (OF
where
X, (x) = (sinh k,/ — sin k,[)(cosh k,x — cos k,x) — (cosh k,! — cos k,/)(sinh k,x — sin k,x)

k, are non-negative roots of the equation cosh k/cos k/ = 1.
Transfer function

4 2 X, (x)X,(&) 1

W =d4jak?, n=1,2,... 3.40
(x, ¢ p) = a,,; OF p +a2k3,pn jaky, n=1,2, (3.40)
Case 3. Boundary conditions
9 0 n_
500 =10, 200 = g0
(3.41)
y( 1)

Wl 1) = g(), =g, 0<x<l,a#0

Standardizing function (Carslaw and Jaeger, 1941; Butkovskiy, 1982)

wx, 1) =[x, 1) + 3o (0)8' (1) + 1 ()3(2)
+ 3" (g (1) + a*0 gy (1) + a*9" (1 = 0g3(1) + a* ()ga()  (3.42])

Green's function

nmnx nmnx an2 7132

21
Gx, ¢ 1) =— Z—sststin 2 t (3.43)
an? ;i n
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Transfer function
22 | nmx . nné 1
Wx,&p)=- ﬁ—
(x. ¢, p) an] ST / a*n*nt
A
1 [sing(l — &) sinh gxsinh g/ — sinh g(/ — &) sinh gx sin ql
We.&p) =753
¢ singl sinh g/
(3.44)
0<x=<¢<l
1 [sing(! — x) sinh ¢¢ sinh g/ — sinh g(/ — x) sinh ¢¢ sin g/
W(X 7}7) 72 )
¢ singl sinh g/
0=<¢<
2.2
where q= jB,pn:ﬂzjm,nzl,Z,...
V-a 2

3.10.2 Clamped-free beam of non-uniform cross-sectional area

The distributed mass and the second moment of inertia are changed accordingly Equation
2.5. In this case, Green function may be obtained using Equations 2.6 and 2.7. Green’s
functions for two-span uniform Bernoulli-Euler beams with classical boundary conditions
and intermediate elastic support are presented by Kukla (1991).

3.10.3 Two-span uniform beam with intermediate elastic support

The differential equation of the transverse vibration of a uniform beam with an
intermediate elastic support is

Bzy(x 1) y(x, 1)
Y + EI o

where ¢ is the Dirac delta function; £ is the stiffness coefficient of the translational spring
that is attached to the beam at the point x; (Fig. 3.10).

+ k(x)y(x, 1) = 0, k(x) = ko(x — x;) (3.45)

X
El m X
X éktr X
& xl 3|
«— —>|

FIGURE 3.10. Two-span uniform beam with intermediate elastic support; the boundary conditions are not
shown.
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The frequency equation

kP x A *
3 P _ e _ X1 4 P
20°g(4) Elf(cl,/l)—O, G=7 M= i (3.46)

Functions g(4) and (£, 4) for beams with different boundary conditions are presented in
Table 3.14 (Kukla, 1991).

TABLE 3.14 Functions g(/) and f(&; 1) for beams with different boundary conditions

Type beam g 1)

Pinned—pinned sin A sinh 4 sin Asinh A&, sinh A(1 — &) — sinh Asin A&, sin A(1 — &)
Sliding—sliding sin A sinh 4 sin Acosh A&, cos A(1 — &) + sinh Acos A&, cos &(1 — &)
Free—free 1 —cos Acosh sin 2 cosh A&, cosh A(1 — &)

—sinh Acos A¢; cosh A(1 — &) + sin A&, cosh A&,
—cos A&, sinh A& + sin A(1 — &) cosh A(1 — &)
—cos A1 —¢))sinh A(1 — &)

Special cases

1. The beam without intermediate support (k = 0). In this case, the frequency equation is
g(2)=0.

2. The beam with an intermediate rigid support (kK — 00). In this case, the frequency
equation is f(¢;, 1) = 0.

3.10.4 Static Green function for a beam with elastic support at x;

The parameters, which define the position of the elastic support, are
&=xi/l, zy =2 and 2y = (1 = &)
and the parameters, which define the position of any section along the beam, are
E=x/l, z=2fandZ = /(1 — &)

The Green function may be formed after solution of the frequency equation (3.46).

1. Pinned—pinned beam

. 1 (sinzjsinz sinhz|sinhz\
G(xl,f,A):—< L - L >7 <&

2,3\ sinZ sinh /
(3.47)

sin A sinh A

1
G(xl,i,i):ﬁ<

sinz'sinz;  sinhz’'sinhz,
- s> &
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2. Sliding—sliding beam

1 [coshz,coshz cos Z; cos z
P 1 1 P
Gsl—sl(xh <, /1) = , 6 < él

213 sinh A sin 4
/ (3.48)
1 (coshz coshz, cos Z cosz
Gy g(x. &) =— 1 L),
i 8 = (R A e g

3. Free—free beam

1 cos z coshz
) = < j. A -
Gl & 4) = G & ) 73 1<sin/1 sinhk)

1 cos Z  coshZ
—A — 3.49
+ 4377 ( sinA  sinh /l) (3.49)

where

A; = [(cos z; sinh A — coshz; sin A)(cos Asinh A — cosh Zsin )
+ (sin A + sinh A)(sin A cosh z; — cos z] sinh 1)]
x [sin Asinh A(1 = cos A cosh £)] !

A, = [(sin A cosh A + cos / sinh A)(cos Z| sinh /. — sin A coshz})
+ (sin 4 4 sinh A)(sin A cosh z; — cos z, sinh 4)]

x [sin Asinh A(1 — cos 4 cosh £)] ™!

3.10.5 One-span sliding-sliding uniform beam

The differential equation of the transverse vibration is
Fylx, 1) ¥y, 1)
El
L PR

where ¢ is the Dirac function.
Boundary conditions

3)’(071‘)_0 33)’(070_0 3)’(l»f)_0 Pyl 1)
x0T w3

= F()3(x — b) (3.50)

0 (3.51)

Case 1. Beam with uniformly distributed mass (Fig. 3.11). Green’s function G(x, b) is
displacement at any point x due to unit load P at the point x = b.

D: m, El iF

—

| i

/

FIGURE 3.11. Sliding-sliding uniform beam carrying
g concentrated load.
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Green’s function may be presented as (Rassudov and Mjadzel, 1987)

b
G(g S :7) = Yy~ PHE - )
/12

{[n(l)na )~ N - ﬁ)} ne (632
NE = B = HK( - ﬁ)]Ys(é)}

where H is the Heaviside function and Y;(i = 1,2, 3,4) are Krylov—Duncan functions
(Krylov, 1936; Duncan, 1943)

Y, (18 = %(cosh A€ + cos A&)

Y,(8) = 2—12 (sinh AE + sin /&)
1 (3.53)
V2(08) = - 5 (eosh i = cos if)

Y,(08) = ﬁ(sinh 2E — sin A8)

The properties of Krylov—Duncan functions will be discussed in Section 4.1.
The frequency equation and parameters 4 are presented in Table 5.4.

Special cases. Green’s functions G(&, f) for specific parameters & = x/I, f = b/l are
presented below.
Force F' = 1 applied at point f =0
G(0,0) = 0.5F(cosh Asin A + cos Asinh A)
G(1,0) = 0.5F(sin A + sinh 1)
G(&y,0) =0.5F[cos A(1 — &) sin A + cos A(1 — &) sinh 4]

1

where parameter F = — z———
A’ sinh A sin 4

Force F = 1 applied at point § = 1

G(0,1) = 0.5F(sin A + sinh 1)
G(1,1) = 0.5F(cosh Asin / + cos /A sinh A)

G(&y, 1) = 0.5F(cosh 2&; sin 4 + cos A&, sinh A)
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Force F = 1 applied at point § = ¢,

G(0, &) = 0.5F[cosh A(1 — &p) sin 2 + cos A(1 — ;) sinh 2]
G(1, &) = 0.5F(cosh A&, sin 4 + cos A&, sinh 1)
G(&p, &y) = 0.5F[cosh A(1 — &;) cosh A&, sin 4 + cos A(1 — &;) cos A&, cosh 4]

Case 2. Beam with distributed and lumped masses (Fig. 3.12). The mass of the system
may be presented as follows:
m(x) =m+ > mox — x;)

where m; is the lumped masses at x = x;; and ¢ is the Dirac function.

m m
I I
ox )
X
< / N FIGURE 3.12. Sliding-sliding uniform beam with lumped
L masses.

Green’s function

1 , -
G(&y, 0) = e [HyC + Am,(AC — BD)
X {H; + Hoal(my + in)A + iy E] + 22 [y iy (4 — B?)
+ (1) + my)ingAE — ing (i, C* + iy D))} ! (3.54)
where the dimensionless masses and parameters are
_ m _ m _ m
o= Mbe(t)lm = Mbelam = Mbezam
_G(0,00 o G(1,0)  GO,&) o G(L&) . G <)
=g B O b= E=Tp

C . 1
Hy =sinh/isind, F = ——5————
A’ sinh A sin A

A
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Source: Formulas for Structural Dynamics: Tables, Graphs and Solutions

CHAPTER 4

SPECIAL FUNCTIONS FOR
THE DYNAMICAL
CALCULATION OF BEAMS
AND FRAMES

Chapter 4 is devoted to special functions that are used for the dynamical calculation of
different kind of beams and frames. Analytical expressions, properties and fundamental
relationships, as well as tables of numerical values, are presented.

NOTATION

A Cross-sectional area

E Young’s modulus

EI Bending stiffness

I Moment of inertia of a cross-section

iZ: El]l Bending stiffness per unit length

2
k Frequency parameter, k = ,4/%

/ Length of a beam

Fix Unit reactions

S, T, U,V Krylov—Duncan functions

t Time

X(x) Mode shape

X Spatial coordinate

y Transversal displacement

p,m Density of material and mass per unit length
0; Displacement influence functions
& Dimensionless coordinate, & = x/!/
A Frequency parameter, A = k/

o(1), E(t) Harmonic angular and linear displacement

95
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¢(A), (1) Zal’tsberg functions
2 [El

w Natural frequency, v = —,/—
ENm

4.1 KRYLOV-DUNCAN FUNCTIONS

The transverse vibration of the uniform Bernoulli-Euler beam is described by the partial
differential equation

aty
ax*

Fy

EI
or?

+pA22 =0 4.1

where y = y(x, t) = transverse displacement of a beam;
p = mass density;
A = cross-sectional area;
E = modulus of elasticity;
I = moment of inertia of the cross-section about the neutral axis.

Solution
1. The travelling wave method. D Alembert’s solution. A solution of differential
equation (4.1) may be presented in the form

y(x, 1) = A cos (wt — kx)

where 4 = amplitude of vibration;
o = frequency of free vibration;
k = propagation constant;
t = time;

x = longitudinal coordinate of the beam.

Dispersion relationship
pA 5 2
— k" —w =0
T

Phase and group velocities are

w w pA
= /=, C=2./=where d* ==
c P , Where a® =

2. The standing wave method. Fouriers solution. A solution of differential equation
(4.1) may be presented in the form

WX, 1) = X()T(1) (4.2)

where X (x) = space-dependent function (shape function, mode shape function, eigen-
function);

T(t) = time-dependent function.
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A shape function X(x) depends on the boundary conditions only. After separation of
variables in (4.1) the function X(x) may be obtained from the equation

2
X" (x) — K*X(x) = 0, where k = 1 % 4.3)

Note that differentiation is with respect to x, but not with respect to ¢ = x/I, as presented in
Table 3.1.
The common solution of this equation is

X(x) = A cosh kx 4+ Bsinh kx 4+ C cos kx + D sin kx (4.4)

where 4, B, C and D may be calculated by using the boundary conditions (see Chapter
3.2).
The natural frequency  of a beam is defined by

[EI 2> [EI
w=K/—= Vo where 1 = kI 4.5)
m m

4.1.1 Definitions of Krylov—-Duncan functions

The common solution of differential equation (4.3) may be presented in the following
form, which significantly simplifies solution of the problems

X(h) = C,S(kx) + Cy T (ko) + C Ukx) + C, ¥ (kv)
S(kx) = 1 (cosh kx + cos kx)
T(kx) = 1 (sinh kx + sin kx) (4.6)
U(kx) = 1 (cosh kx — cos kx)
V (kx) = L (sinh kx — sin kx)

where X(kx) = general expression for mode shape;
S(kx), T(kx), U(kx), V(kx) = Krylov—Duncan functions (Krylov, 1936; Duncan,
1943; Babakov, 1965).
C; = constants, expressed in terms of initial parameters, as
follows

1 ! l 1" 1 "
€ =X(0). G =7X'(0). G =5X"(0). C3=5X"(0)

4.1.2 Properties of Krylov-Duncan functions

Matrix representation of Krylov—Duncan functions and their derivatives at x = 0
Krylov—Duncan functions and their derivatives result in the unit matrix at x = 0

SO0)=1 S§0)=0 S0 =0 5"0)=0
T0)=0 T'(0)=1 T'(0)=0 T"(0)=0
U@©)=0 U@©0)=0 U"0)=1 U"(0)=0
V)=0 V'(0)=0 V'0)=0 V"0)=1

4.7)
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Higher order derivatives of Krylov—Duncan functions. Krylov—Duncan functions and
their derivatives satisfy a circular relationship (see Table 4.1).

Integral relationships of Krylov—Duncan functions (Kiselev, 1980)

1 kx
[ S(kxydx = T T(hx);  [xS(kx)dx == T(kx) U( )
1
| T(kx)dx = % Ulk);  [xT(ko)dx == U(kx) V(kx)
4.8
1 S (kx) “8)
JU(kx)dx = % V(kx);  [xU(kx)dx =~ V(kx)
1 T(kx
[ V(kx)dx = %S(kx); [ xV (kx)dx = fS(kx) ( )
Combinations of Krylov—Duncan functions
ST —-UV = %(coshlcx sin kx + sinh kx cos kx)
TU — SV = 1 (cosh kx sin kx — sinh kx cos kx)
S§? — U?coshkxcos kx;  T? — V? =2(SU — V?) = sinh kx sin kx (4.9)
U2— —%(l—coshkxcos kx); SZ—TV:%(I—{—coshkxcos kx)
—SU=8SU-V?= smhkxsmkx 28U = T? 4+ 1?
Laplace transform of Krylov—Duncan functions (Strelkov, 1964)
3 2 2 3
p kp kp k
TABLE 4.1 Properties of Krylov—Duncan functions
S(x) First Second Third Fourth
Function derivative derivative derivative derivative
7(x) T(x) S(x) kV(x) KU (x) KT (x) k4S(x)
T(x) kS(x) KV (x) BU(®x) k4T (x)
U(x) kT(x) k2S(x) BV(x) KU (®x)
UG V(x) kU(x) kT (x) K S(x) KV (x)
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Krylov—Duncan functions as a series (Ivovich, 1981)

(k' ()* (k)"
Sty =1+ + 5+

(ko' (ko)
T(IOC):(IOC)|:1 +5'+9'+i|

(4.11)

1 (k' (ko)
27 6! o

U(lcx):(kx)2|:+++

sl Rt (ko
V (k) = (k) [6+7!+1“+--}

Krylov—Duncan functions are tabulated in Table 4.2 (Birger, Panovko, 1968).
To obtain a frequency equation using Krylov—Duncan functions, the following general
algorithm is recommended.

Step 1. Represent the mode shape in the form that satisfies boundary conditions at x = 0.
This expression will have only two Krylov—Duncan functions and, respectively,
two constants. The decision of what Krylov—Duncan functions to use is based on
Equations (4.7) and the boundary condition at x = 0.

Step 2. Determine constants using the boundary condition at x =/ and Table 4.1. Thus,
the system of two homogeneous algebraic equations is obtained.

Step 3. The non-trivial solution of this system represents the frequency equation.

Detailed examples for using this algorithm are given below.

Example 1. Calculate the frequencies of vibration and find the mode shape vibration for
a pinned—pinned beam. The beam has mass density p, length /, modulus of elasticity £, and
moment of inertia of cross-sectional area /.

Solution. Boundary conditions:

At the left end (x = 0): (1) X(0) = 0 (Deflection = 0);
(2) X”(0) = 0 (Bending moment = 0);
At the right end (x = I): (3) X(I) = 0 (Deflection = 0);
(4) X’(I) = 0 (Bending moment = 0).
At x = 0 the Krylov—Duncan functions and their second derivatives equal zero. According

to Equations (4.7) these are T(kx) and V(kx) functions. Thus, the expression for the mode
shape is

X(x) = CyT(kx) 4+ C,V (kx)
Constants C, and C, are calculated from boundary conditions at x =/

X() = CyT(kl) + C4,V(k) =0
X"(l) = K CyV (k) + C,T(kD)] = 0
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TABLE 4.2 Krylov—Duncan functions

fx S(kx) T(h) Uh) V()
0.00 1.00000 0.00000 0.00000 0.00000
0.01 1.00000 0.01000 0.00005 0.00000
0.02 1.00000 0.02000 0.00020 0.00000
0.03 1.00000 0.03000 0.00045 0.00000
0.04 1.00000 0.04000 0.00080 0.00001
0.05 1.00000 0.05000 0.00125 0.00002
0.06 1.00000 0.06000 0.00180 0.00004
0.07 1.00000 0.07000 0.00245 0.00006
0.08 1.00000 0.08000 0.00320 0.00009
0.09 1.00000 0.09000 0.00405 0.00012
0.10 1.00000 0.10000 0.00500 0.00017
0.20 1.00007 0.20000 0.02000 0.00133
0.30 1.00034 0.30002 0.04500 0.00450
0.40 1.00106 0.40008 0.07999 0.01062
0.50 1.00261 0.50026 0.12502 0.02084
0.60 1.00539 0.60064 0.18006 0.03606
0.70 1.01001 0.70190 0.24516 0.05718
0.80 1.01702 0.80273 0.32036 0.08537
0.90 1.02735 0.90492 0.40574 0.12159
1.00 1.04169 1.00833 0.50139 0.16686
1.10 1.06106 1.11343 0.60746 0.22222
1.20 1.08651 1.22075 0.72415 0.28871
1.30 1.11920 1.33097 0.85170 0.36691
1.40 1.16043 1.44487 0.99046 0.45942
1.50 1.21157 1.56338 1.14083 0.56589
1/2n 1.25409 1.65015 1.25409 0.65015
1.60 1.27413 1.68757 1.30333 0.63800
1.70 1.39974 1.81864 1.47832 0.82698
1.80 1.44013 1.95801 1.66823 0.98416
1.90 1.54722 2.10723 1.87551 1.16093
2.00 1.67277 2.26808 2.08917 1.35828
2.10 1.82973 2.44253 2.32458 1.57937
2.20 1.98970 2.63280 2.57820 1.82430
2.30 2.18547 2.84133 2.85175 2.09562
2.40 2.40978 3.07085 3.14717 2.39537
2.50 2.66557 3.32433 3.46671 2.72586
2.60 2.95606 3.60511 3.81295 3.08961
2.70 3.08470 3.91682 4.18872 3.48944
2.80 3.65520 426346 4.59747 3.92846
2.90 4.07181 4.64940 5.04277 441016
3.00 4.53883 5.07949 5.52882 4.93837
3.10 5.06118 5.55901 6.06032 5.51743
7 5.29597 5.77437 6.29597 5.77437
3.20 5.64418 6.09375 6.64247 6.15212
3.30 6.29364 6.69006 7.28112 6.84781
3.40 7.01592 7.35491 7.98277 7.61045
3.50 7.81818 8.09592 8.75464 8.44760
3.60 8.70801 8.92147 9.60477 9.36399
3.70 9.69345 9.84072 10.54205 10.37056
3.80 10.78540 10.86377 11.57637 11.47563
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TABLE 4.2 (Continued)

hx S(kx) T{(kx) Ulkx) V(kx)

39 11.99271 12.00167 12.71864 12.68943
4.0 13.32739 13.26656 13.98093 14.02336
4.1 14.80180 14.67179 15.37662 15.49007
42 16.43020 16.23204 16.92046 17.10362
43 18.27794 17.96347 18.62874 18.87964
44 20.21212 19.88385 20.51945 20.83545
45 22.40166 22.01274 22.61246 22.99027
4.6 24.81751 24.37172 24.92966 25.36541
4.7 27.48287 26.98456 27.49526 27.98448
3n/2 27.83169 27.32720 27.83169 28.32720
4.8 30.42341 29.87746 30.33591 30.87362
49 33.66756 33.07936 33.48105 34.06181
5.0 37.24680 36.62214 36.96314 37.58106
5.1 41.19599 40.54105 40.81801 41.46686
5.2 45.55370 44.87495 45.08518 45.75840
5.3 50.36263 49.66682 49.80826 50.49909
5.4 55.67008 54.96409 55.03539 55.73685
5.5 61.52834 60.81919 60.81967 61.52473
5.6 67.99531 67.29004 66.21974 67.92131
5.7 75.13504 74.44067 74.30033 74.99136
5.8 83.01840 82.34183 82.13288 82.80633
5.9 91.72379 91.07172 90.79631 91.44562
6.0 101.33790 100.71687 100.37773 100.99629
6.1 111.95664 111.37280 110.97337 111.55491
6.2 123.68604 123.19521 122.68950 123.22830
2n 134.37338 133.87245 133.37338 133.87245

6.3 136.64336 136.15092 135.64350 136.13411
6.4 150.96826 150.46912 149.97508 150.35257
6.5 166.77508 166.39259 165.79749 166.17747
6.6 184.24925 183.92922 183.29902 183.61768
6.7 203.55895 203.30357 202.64457 202.89872
6.8 224.89590 224.70860 224.02740 224.21449
6.9 248.47679 248.35764 247.66106 247.77920
7.0 274.53547 274.48655 273.78157 273.82956
7.1 303.33425 303.28381 302.64970 302.62707
7.2 335.16205 335.25434 334.55370 334.46067
7.3 370.33819 370.50003 369.81211 369.64954
7.4 409.21553 409.44531 408.77698 408.54660
7.5 452.18406 452.92446 451.73742 451.54146
7.6 499.67473 500.03281 499.42347 499.06489
7.7 552.16384 552.58097 552.01042 551.58780
7.8 610.17757 610.64966 610.12361 609.65112
5/2n 643.99272 644.49252 643.99272 643.49252
7.9 674.29767 674.81986 674.34367 673.82102
8.0 745.16683 745.73409 745.31233 744.74473
8.1 823.49532 823.95189 823.73886 823.28200
8.2 910.06807 910.70787 910.40722 909.76714
8.3 1005.75247 1006.41912 1006.18385 1005.51695
8.4 1111.50710 1112.19393 1112.02639 1111.33933
(continued)

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

SPECIAL FUNCTIONS FOR THE DYNAMICAL CALCULATION OF BEAMS AND FRAMES

102 FORMULAS FOR STRUCTURAL DYNAMICS

TABLE 4.2 (Continued)

fx S(hk) T(k) Uh) V)
8.5 1228.39125 1229.09140 1228.99326 1228.29291
8.6 1357.57558 1358.28205 1358.25430 1357.54765
8.7 1500.35377 1501.05950 1501.10242 1500.39658
8.8 1658.15549 1658.85342 1658.96658 1658.26850
8.9 1832.56070 1833.42607 1833.42614 1832.74284
9.0 2025.31545 2025.97701 2026.22658 2025.56489
9.1 2238.34934 2238.98270 2339.29706 2238.66360
9.2 2473.79487 2474.39373 2474.76971 2474.17079
9.3 2734.00871 2734.56071 2735.00094 2734.44255
9.4 3021.59536 3022.10755 3022.59505 3022.08297
3n 3097.41192 3097.91193 3098.41197 3097.91193
9.5 3339.43314 3339.89411 3340.43031 3359.96926
9.6 3690.70306 3691.11321 3691.68775 3691.27754
9.7 4078.92063 4079.26590 4079.88299 4079.53766
9.8 4508.47103 4508.25298 4508.90146 4508.61946
9.9 4982.14802 4982.35202 4983.03721 4982.32136
10.0 5596.19606 5506.34442 5507.03599 5506.88844

A non-trivial solution of the above system is the frequency equation

| T(kl) V(kl) | R R

Vy(kd) T = 0 — T*(kl) — V*(k) = 0

According to Equation (4.9), this leads to sink/ = 0. The roots of the equation are
K=mn2m,...

Thus, the frequencies of vibration are

o [F 3146 [E 62832 [EI
- m 'R m 2 R m'

Mode shape

X(x) = CyT(kx) + CyV(kx) = C, [T(k,«x) + % V(kix)]
2

Find the ratio C,/C,

X() = CyT (k) + C,V (k) =0
X"(1) = K CyV (k) + C,T(D)] =0

so the ratio C,;/C, from first and second equations is

C, Tkl  VkD
G Vkh Tk
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and the mode shape (eigenfunction) is

- i -
X(x) = CyT(kx) 4 CyV (hkx) = Cy | T(kix) — 5 E - z; V(kx)
or
X(x) = CU(kx) + CyV(kx) = Cy | T(kix) — ?E’;g V (k;x)

According to Table 4.2, the Krylov—Duncan functions
T(n) = V(n), T(2n) = V(2n), ...
so the mode shape is

X(x) = G[T(kx) — V(kx)]

Example 2. Calculate the frequencies of vibration and find the mode of shape vibration
for a clamped—free beam.

Solution. The boundary conditions are as follows:

At the left end (x = 0): (1) X(0) = 0 (Deflection = 0)
(2) X”(0) = 0 (Slope = 0)

At the right end (x = /): (3) X”(I) = 0 (Bending moment = 0)
(4) X”(I) = 0 (Shear force = 0)

At the left end (x = 0), the Krylov—Duncan functions and their first derivatives equal zero.
These are U(kx) and V(kx) functions. Thus, the expression for mode shape is

X(x) = CG3U(kx) + CyV (kx)
Constants C; and C, are calculated from boundary conditions at x = /:
X'(l) = K*[C3S(kD) 4+ C,T(k)] = 0
X"() = K*[CyV (k) + C,S(k)] = 0
A non-trivial solution of the above system is the frequency equation

VS(kl) T(k)!
Vykly Sk~

0 — S*(kl) — V(kDT(kl) = 0
According to Equation (4.9) this leads to
coshklcos kl+1=0

The roots of the frequency equation are

kl = 1.8754, 4.694, 7.855, 10.99%, ...
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Thus, the frequencies of vibration are

_ o B 1875 [El  4.694* [EI
= m,wl_ 2 m,wz_ 2 PRREE

Mode shape
X(x) = GU(kx) + CyV(kx) = G4 |:U(kix) + % V(k[x)]
3

The ratio C4/C; may be obtained using Equation 4.7

X' (I) = K*[C3S(kD) 4+ C,T(k)] = 0
X"(D) = KP[CV (k) + C,S(kD] = 0

so the ratio C;/C; from first and second equations is

C,  Stkh V(K
Gy Tl Sl

and the mode shape (eigenfunction) is

X0) = G + €y k) = G Utk — 070 V(o |
or
k.l
X() = CU(ke) + C,V (k) = Cy |:U(kix) - .IS/‘((kf 1)) V(k,«x):|

Appendix A contains eigenfunctions for one-span beams with different boundary con-
ditions. It is assumed that the eigenfunctions are normalized, i.e.

fxz(x)dx =1
0

Example. Find an expression for the mode shape of vibration for a uniform beam with
standard boundary conditions at x = 0.

Solution. According to the general algorithm, relationships (4.7) and the boundary
conditions (Table 3.3), the mode shape of vibration for a beam with standard boundary
conditions at x = 0 may be presented as follows:
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Type of support Boundary conditions Mode shape
at left end (x = 0) at left end X(kx)

y=0 C3U(kx) + C, V (kx)
(y=0,0=0) &
y=0 C,S(kx) + C, T(kx)
EI@ =0
(y=0,M=0) o
9 &y
—(EI=2) =0 C, T(kx) 4+ C;U (k)
o ox2
Free end P
(0 =0,M=0) EIYY—9
o2
2
() 2o C;S(kx) 4+ CyU (kx)
o o2 :
Sliding end .
= i 6=0 o
©=0,0=0) o

Two unknown constants C; are determined using boundary condition for x = I.

4.1.3 State equation (Strelkov, 1964; Babakov, 1965; Pilkey, 1994)

The relationship between states of two different points, for example at x =/ and x = 0 is

[ () —l [ »(0) —l

o | _ 51 000)

M =4 o) 4.12)
o) 0(0)

where y = transverse displacement of the beam;
0 = angle of rotation;
M = bending moment;
QO = shear force;

A = system matrix, which may be written in the form

1 1 1
[ SKD L THD s UK WV(H)—I
1 1
- : kV (kD) S(kl) ﬁT(kl) WU(I{I) : @13)
VEIRRUK)  EIKV (k) S(kI) %T(kl) |
EIRT() EIRUMK) — kV (k) S(kl)
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The state equation (4.12) and the system matrix (4.13) are the fundamental relationships in
the theory of the vibration of beams with a uniformly distributed mass (see the initial
parameter method, Chapter 5.1).

Example. Calculate the frequencies of vibration for a free—free beam.

Solution. The state equation (4.12) for the given system may be presented as two
systems
1
y() = S(kD)p(0) + + T(k1)0(0)
0(l) = kv (kl)y(0) + S(k1)0(0)

KU(kDY(0) + V(kD)0(0) = 0
KT(kD)y(0) + U(k)0(0) = 0

The relationship between amplitudes at x = 0 and x = / may be obtained from the first
system.
A non-trivial solution of the second system is the frequency equation

VUK V(KD 2 _
KTk UG = 0— U (kl) — V(DT (kl) =0
According to Equations (4.9) this leads to

1 —coshklcos kIl =0

The roots of the equation are

0, 3.9266, 7.0685, ...

Thus, the frequencies of vibration are

o 0. o, 39266 [EI 70685 [EI
R e L

The frequency of vibration @, = 0 corresponds to the rigid body mode.

Special cases

1. Stiffness matrix. A stiffness matrix for a massless beam may be obtained from the
system matrix (4.13). If a uniformly distributed mass approaches zero (m — 0) then,
according to Equation (4.3), parameter k approaches zero as well (k — 0). If the functions
sin, cos, sinh and cosh are approximated by polynomial series and only the first terms are
taken into account, then the stiffness matrix for a massless beam becomes

0 1 —I/EI P)2EI
0 0 1 /
Lo 0 0 1 J
2. Mass matrix. A mass matrix may be obtained from the system matrix (4.13) if the

length of a distributed mass approaches zero (/ — 0) and the distributed mass of a beam is
represented as single lumped mass (Im — M). If the functions sin, cos, sinh and cosh are

[1 —1 P2J2EI 13/6E1‘|
k= (4.14)
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approximated by polynomial series and only the first terms are taken into account, then the

mass matrix becomes
= ‘ ; l 4

_ 0
1]

SO = O
(=R ]

L M(Zuz

System matrix (4.13), stiffness matrix (4.14) and mass matrix (4.15) are called transfer
matrices. Detailed information concerning transfer matrices is presented by Ivovich
(1981), Pilkey (1994).

4.1.4 Relationship between frequency parameters \ for different frame
elements

In the general case, all elements of a frame have different parameters m, EI and length /.
This yields different frequency parameters k = /m?/EI for different elements. However,
for the system as a whole, the frequency vibration @ is determined by frequency
parameters k of each element as follows

Eqyly — i E\l,

0 =k}
my my

(4.16)

where m, El,, [, and k are the parameters of any element, which is conditionally referred
as the base element;

my, Ely;, [, and k; are the parameters of other elements of the frame.

Equation (4.16) leads to the relationship

4imy Egl,
ky = ky&;, wh = [———
1 0¢1, where &, mo By,

. f /
=kl :k()éllli: ;voifl

, 1y afmy Eyl,y
M=Ay+ | —— 4.17
! Aolo my Ey 1) ( )

Example. The frame with different parameters m, EI, and / is presented in Fig. 4.1.
Represent the frequency parameter 4, of the horizontal element in terms of frequency para-
meter 4, of the vertical element.

Frequency parameter

which leads to the relationship
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11=21o;m =4 my; EI=2El| A=2.37842 |

I [

a) b)

FIGURE 4.1. (a) Design diagram; (b) relationship between frequency parameters.

Solution. Let the vertical element be the base element. According to Equation (4.17) the
frequency parameter of the horizontal element in terms of the frequency parameter of the

vertical element is
4y = gL 4m ol
Iy \| mo 11

Substituting the given data of the system (Fig. 4.1(a)) in the equation above, obtains

Ay =19 X 2% 4 x1=23784),

Thus, the frequency parameter A; of the horizontal element is reduced to the frequency
parameter A, of vertical element.
The same algorithm is applicable for frames with any numbers of elements.

4.2 DYNAMICAL REACTIONS OF MASSLESS
ELEMENTS WITH ONE LUMPED MASS

For the solution of the eigenvalues problem for frames with elastic uniform massless
elements and a lumped mass, slope-deflection may be applicable. In this case, the
dynamical reactions of the one-span beams must be used. These reactions are presented
in Table 4.3. (Kiselev, 1969)

Dynamical reactions are reactions due to unit harmonic angular ¢(¢) and linear
displacements £(¢), respectively

o) =1 xsinbt, £(t) =1 x sin6¢ (4.18)

where 0 is the frequency of harmonic displacements.
For the cases presented in Table 4.3 the frequencies of free vibrations are

3PEI

Wy = s for cases 1-4 (4.19)
12PEl

Wy = Mo Ga + D) for cases 5—7 (4.20)
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TABLE 4.3 Dynamical reactions of massless elements with one lumped mass

M(Q© M My
® b -/) Bending Shear
00) [ : i A o moments forces
Y M(0) 0(0) Functions
4ET 6EI 3b
ge “oF _22F Fi=1-s(1422
0 {_ 1 i 1H 2 sH 1 +4a
L ~ @ ,
Fo=1 75(1+3a’;tb)
a
- 2ET 6EI 1
| —Fup 22 Fau Fy=14-0
) Vi 1 2 2
0] /
Fo=1+06—
s=1+05
i 6EI 12E1
]j“* —F F F,=F
(3) E '.-,-..* 1 2 M B TH 3 5
£o |’ b(3a + by
F,=1-— ({1 TR
f ; OFL . 12E1 ——
) | KH |f Ié ® 2 Tk B sk 4= %
) 3P
Fg=1+6"
s=1+o%0
1) 6E1 12E1 42
——F. —F FFel—a—
) ?IZ P ot p ek 9 a(3a + 4b)
AT = o 6g3a+2b
2= a? 3a+4b
6EI 12E1 212 3a+2b
| S— —-=-F — Fo=1-6=
© 1 l e ok Bk =m0
§(f)i| gg 3
Fiy=1 _5£ 3a+b
a3 3a+4b
6EI 12E1 2P
== —-—F ~==F Fy=1+6—"
o s T O T
- 63
Fyu=14+6——
14 =10 e+ 4b)

* Asterisk denotes the inflection point of the elastic curve.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

SPECIAL FUNCTIONS FOR THE DYNAMICAL CALCULATION OF BEAMS AND FRAMES

110 FORMULAS FOR STRUCTURAL DYNAMICS

Parameters u and o are as follows

Example. Find the eigenvalues of a symmetrical vibration for the frame shown in Fig.
4.2(a), assuming that all elements are massless.

Solution. The conjugate system of the frame, according to the slope and deflection
method, is given in Fig. 4.2(b). Restrictions 1 and 2 prevent angular displacements, and
restriction 3 prevents horizontal displacement of the frame. The basic unknowns, which
correspond to the symmetrical vibrations of the framed structure, are group rotation of
fixed joints 1 and 2 (Fig. 4.2(c)). The canonical equation of the slope-deflection method is

mZ+ Ry, =0

where 7;; = unit reaction in restriction 1 due to group rotation of fixed joint 1 through a
unit angle in a clockwise direction and joint 2 in the counter-clockwise
direction;

R, = reaction in the restriction 1 due to internal loads; R,, =0, since internal
loads are absent.

p

The square of the frequency of vibration of a massless clamped—clamped beam with one
lumped mass M according to Equation (4.19) is

,  3PEI
W =—
Ma*b?

Elastic curve

FIGURE 4.2. Design diagram and conjugate system of slope and deflection method. Z; and Z, are
principal unknowns for symmetrical vibration.
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If a = b = 0.5, then

, 1921
T MP

Vertical elements 1-5. 'The bending moment in restriction 1, according to Table 4.3, is

4ET
MvertZTFl:u
where
2 2
3 70 1
FIZI_E(I_FZXl)_l_Z_z nw= 7
==
[0}
thus

Horizontal elements 1-2. The bending moment in the additional joint 1 is

4ET 2EI 7 0%

Mhorlz_TFl,u_Tleu F] ZI_ZE

0 0? 2EI 0
F2:1+§:1+ﬁ Mhoriz:l<1_4w2>'u

Unit reaction (if / = h) is

AT _ (s, 70N 2Er( 0N B0
2 _Mven+Mhoriz_|:Z (1 4 w? + i 1 40)2 n= i 6 150)2 u

The frequency equation is

EI 0
o :l<6— 15w2>u=0

The square of the frequency of symmetrical vibration of the frame is

6 , 6 192E

2 __ 7 _
O =15 =15

4.3 DYNAMICAL REACTIONS OF BEAMS WITH
DISTRIBUTED MASSES

For the solution of the eigenvalue problem for frames with elastic uniform elements and
uniformly distributed masses along the length of elements, the slope-deflection method
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may be applicable (Kiselev, 1980). In this case, dynamical unit reactions of the one-span
beams must be used.

Dynamical reactions are unit reactions due to unit harmonic angular ¢(#) and linear £(7)
displacements according to Equation (4.18). In the case of free vibration, 6 = w, where ®
is the frequency of free vibration of a system (eigenvalue). The effects of the inertial forces
of distributed masses are taken into account by correction functions ¥,(4).

The exact expression of the dynamical reactions may be presented using correction
functions (Table 4.4) or Krylov—Duncan functions (Table 4.5). To avoid cumbersome
calculation, numerical values of correction functions are presented in Table 4.6.

Approximate expression of dynamical reactions (Bolotin’s functions) are presented in
Table 4.7 (Bolotin, 1964; Smirnov et al., 1984).

Tables 4.4-4.7 contain the following parameters:

). 4lw?m
A is frequency parameter, A =/ A

. . . . EI
i is bending stiffness per unit length, i = T

The equations of elastic curves of beams subjected to unit support displacement are
presented in Table 4.10, later.

Example. Find eigenvalues of symmetrical vibration for the frame shown in Fig. 4.3(a),
assuming that masses are distributed uniformly along the length of the elements. The
length of all the elements is /; E/ = const.

Solution. The primary system of the frame, corresponding to the slope-deflection

method is given in Fig. 4.3(b). The basic unknowns are the group of angular displacements
Z, and Z, (Fig. 4.3(c)). The canonical equation is

mZ + R, =0

where R,, = 0, since only free vibration is under investigation.
Reaction 7| is obtained from Table 4.4

"

5= 30 (2) + iy () + dithy () — 203(2)
or
ri =203y, (2) + 8Y,(4) — 2y5(A)]
The frequency equation is
=0
or

3 (A) + 8¢, () = 245(4) = 0

The roots of the transcendental equation are 4, = 3.34, 1, =4.25, 13, =4.73,....
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TABLE 4.4 Exact dynamical reactions of beams with uniformly distributed masses

Design diagram

and bending Bending
moment diagram moments Reactions Correction functions
A 2 sinh Asin A
1% . lpl (’1) = 5 : f
4 AL M, f 3 cosh Asin A — sinh Acos A
— Ve="()
My =3y, (7) V) _ﬁcosh)»sinxl—i—sinh/lcos A
! My=0 v _3i ; 47 3 cosh Lsin A — sinh A cos 4
" 5 =050
B < V() = e sinh A + sin 4
7 3 cosh Asin A — sinh Acos A4
A cosh Asin A — sinh A cos A
M,
Ty — 6i Valh) = 1 —coshZcos A
Ve="05(2)
/ M, = 4iy, (1) Vi) = ﬁ sinh A — sin A
d Ve My = 2ip5(1) v, = Q%Q) 3 21 —cosh/cos A
l
s . Mé ) () = 42 sinhAsin
:éggfcxgepomt o 5 6 1 —coshAcos A
A cosh A—cos A
Ye(A) =

— cosh Acos A

e

Zk|4
N
To s

i (i )_i 2cosh Acos A
Va= ﬁwg()") 8 3 cosh Asin A — sinh A cos A

3i
My =040

— My =0 Vs = %%(Z) Vo(2) = %cosh )?Zisnhjj sjr?}slj cos 4
B

F%f7p$ My = s w=inmwﬂ”‘Lmﬁ?ﬁ$xﬁf”
A{}@ — My =0 Va =%¢u(ﬂ) 22 1+ coshZcos A

V(A =

/ M. — X%(;) . 3 cosh Asin 4 — sinh A cos 4

Vs = 3bo(2)

=
s
E
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TABLE 4.5 Exact dynamical reactions of beams with uniformly distributed masses in terms of
Krylov—Duncan functions (Bezukhov et al., 1969)

Design diagram

4fma?
Reacti A= ——=kl
eactions ( i )

AN M VAE
(O]
B ~

o é@II IS /(])
T”22 %7”32
i ,4——\(1\)0
0] e N 0

_ EIK(SV — TU) _EIF*(SU — V%)
Ty M T Ty
VEIk EIK*U
T poy M T Ty
EII*(ST — UV) EIK*(V? — SU)
T oy T T oy
EIR*U EIK’T
Ep Ty e T Ty
EI(T? — V?) EI*(UV — ST)
r = T =
"= sr—1U 2 SV —TU
_ EIFPT _ |4
Tt ?T Tsv—1U

_EIRP(U* - §%) _EIFX(ST — UY)

=TT T T sy —tUu

_ EIPS Uk
m=w_rw *Tsv_—1U

EI3(SV — TU)

m= T2 — 12

1 =~y

KUV -ST) 4T

Po T2 _ )2 ¢ T2 _ )2

EI® UV, - S,T,)
TS u

0y = kT,Uy = S.Va)
s

Krylov—Duncan functions S, 7, U, V calculated at x = /; subscript a indicates that these functions are calculated

atx =a.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

SPECIAL FUNCTIONS FOR THE DYNAMICAL CALCULATION OF BEAMS AND FRAMES

SPECIAL FUNCTIONS FOR THE DYNAMICAL CALCULATION OF BEAMS AND FRAMES 115

(panuyuod)

YT8Y0'E—  96TSST  10V8F0—  LTYSL'E  0S99€L—  6609LT  SPE9TT  SLILSO  S88¥S0—  LTISI'T  L8ISS0  8€8%9°0 9T
LLT6ET—  TIVOP'T  1T6STO—  8009T'€  85800°9—  19€79°1  9¥ITTT  68LE90  T6LSTO—  TSTSI'T  LTO060  SSSOLO ST
0LEES'T—  P6LSST  S9T90°0—  00ES8'T  TEISSy—  98PISTT  9€S8I'T  €€569°0  8€890°0—  9LLTI'T  TT916'0  168SL0  +'T
879S€°I—  89TTET  L9801°0 €091S°T  18€98°€—  1TCTHT  9€PSI'T  TISPL'O  S89TI°0 9%901°'T  000€6'0  0TI0O80 €T
698Y6'0—  €899T'1  9¥LSTO 129€TC  LTITOE—  66VYE1  SLLTI'T  SISSL'0  YEELTO 61880'T  681¥6'0  8L9€8°0  TT
9Z109°0—  0T6ITT  6098€0 9vE00T  SYEOST—  ¥SOSTT  LOSOI'T  6IST80  TSSOV0 SSTLOT  01TS6'0 129980 1T
€650€°0—  OLSLI'T  €L96V°0 086081  T9E69'1—  SL9TTT  TLSSO'T  $6958°0 869150 TT6SO'T  €8096°0 881680 0T
065S0°0—  THPPI'T  €E165°0 L88Y9'T  ISLLTT—  6I8I'T  €£690°T  00¥S8'0  1L019°0 16LV0'T 978960 867160 61
89%ST1°0 LSSTT'T  S91L9°0 6VSTS'T  L6TVLO—  OLPYI'T  TSSSO'T 769060  0T689°0 8€8E0'T  SSPL6'0  090€60 ST
060€€°0 PP160'T  €E6€L°0 0PSOV’ T reLE0—  T6EIT'T  6EPO'T  S19T6°0  SSHSLO 6€0€0'T  €86L6°0  STSYP6O L'l
12LLY0 IPILOT  €8S6L°0 YOSTE'T  89LL0°0—  6S880°'T  €EVEO'T  €TTH6'0 658080 SLETO'T  TTY86'0  VELS6D 91
LSL6S 0 S6¥SOT  TSTHS0 WIYTT  0SOLI0 Y6L90°'T  €Y9TOT  LPSS6'0  68TSSO 87810l ¥8L86'0  €TL960 ST
6¥569°0 LSTYO'T  +9088°0 10Z81°'T  8€TLEO STISO'T  000Z0'T  LT996'0  T8888°0 YSEI0'T  6L066'0  STSLEO b1
TIVLLO €80€0°T  SEIT60 T9PEIT SPPESTO T6LEOT  €SYIOT  96VL60  TILI6O 9Z010'T  LI€66'0  L91S6'0 €1
0€9€8°0 YETTOT  695€6°0 €EL60'T  $9799°0 €VLTOT  SLOIO'T  ¥8186'0  ¥EOV60 YPLOO'T  P0S66'0  €L986'0  T'1
85¥88°0 SLSTOT  T9¥S6°0 0S890°'T  +1T9L°0 1€610°T  8SLO0'T  61L86°0  96LS6°0 STSO0'T  0S966'0  S90660  I'T
ST1T6°0 vLOTO'T  T0696°0 L99V0'T  TLLESO 9I€I0'T  LISOO'T 91660  €E1L60 8SE00'T  19L660  €9€660 O
LESY6'0 ¥0L00'T  896L6°0 LSOSO'T  19€68°0 798001  66£00°T  LTP66'0  1T186°0 SETO0'T  ¥H866'0  T8S660 60
6LL96°0 6€V00'T  TELY6'O 90610'T  T9EE6'0 LESOO'T  TT1Z00'T  TH966'0 878860 9pT00'T  TO666'0  6£L660 80
Z1186°0 LSTOO'T  LST66°0 9II10T 111960 SIE00'T  ¥TIOO'T 064660  +IE660 98000'1  €¥666'0  L¥8660 L0
186860 6€100'T 665660 709007  T06L6°0 0LT00'T  £9000'T  L88660  0€9660 9%000'T 696660 816660 90
605660 £9000'T  90866°0 06200'T  88686°0 78000'T  TEO00'T  S¥666'0 178660 TT000'T  S86660 096660 SO
66L66°0 LTO00'T  12666'0 61100'T  S8566°0 ¥E000'T  €1000'T  8L6660  LT6660 60000'T 66660  ¥86660 0
9€666°0 60000'T  SL6660 8€000'T 698660 110007 ¥0000'T  €6666°0  LL666°0 €0000T 866660  ¥66660 €0
£8666°0 70000 S6666'0 L0000'T  ¥L666°0 Z0000'T 100001 666660  S66660 100007 000001 666660 0
666660 00000'T 00000 00000'T 866660 00000'T 00000 000001 00000 00000'T 000007 000007 10
000001 00000'T 000001 00000'T 000001 00000'T  00000'T 000001 00000 00000'T 000007  00000'T 00

(AR (PR )" ()5 )3 W) @)° W) W) (AR W) (AR 14

(4861 7 12 AOUITWIS) SUONOUNJ UOTIOAIIOD JO San[eA [eduownN 9y J19V.L

Any use is subject to the Terms of Use as given at the website.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.


https://telegram.me/seismicisolation

SPECIAL FUNCTIONS FOR THE DYNAMICAL CALCULATION OF BEAMS AND FRAMES

FORMULAS FOR STRUCTURAL DYNAMICS

116

£€896L9— SY8T9S—  90LY'SY L1¥9°ee— PrISCI—  OLSYL'9— €CSTEC— €506'CC  S96hY'S 0€8Y'V1— 9LEVE'S  0TSYL'C 6%
SPoesE— P8SLTI—  T8Y'LIT  €L90VE—  €IES6'S— 66996'9— 8SL6'ES— 06£8°€ES  €66EV9 8CEEvE— 8YOE8I  SCIV6C 8V
LTE0T0— SSL'LLT [E€7'98C— G9¢0°SE—  TEBIYO weleL— 0€¥'0Cl  $LEOTI— SO8YS'L C8ET8L  LLYO'LE— TICLI'E LY
88L8¢E°E 6€60°09 SIT8L9— VITL9E—  TPSST8 CS6€E8'L— 6SCL'9C  TTO6V'9T— ¢€9L¥8'8 IVEL'LT  0SS99°L— €09s¥'E  9F
CEOLY'L 6€L8I¢ PSTL'8E—  6LTV 6€— L00L91 $9609'8— 1essyl €SSIvI—  €09%°01  0S€98°6  CICOL'€— 8SEC8E  S¥
[4844! 6788°0C yST6'9C—  8EEL'EV— 1980°LC 808LL'6— ¥9S6L'6  S68YT6— YLOO'TT  OLI8LO  89SEI'CT— 890€Ey v'¥
00Iz6l €260°S1 188€°0C—  ¥0S8°0S— 860C' 1Y IPSO'TI— T96LTL  LIS6S9— SEVL'SIT ITLYT'S  T0S6CTI— €LT60S  €F
LT6L 6T 0CSS'T1T 06S191—  PILL'E9— 1L9Y'€9 LT00'ST— 9TPEL'S  TTECO'Y— PP86°0C  €COVI'y  POOLL'O— TPE6E9 TV
90S0°IS 695816 LLST'€I— 98V Co— LYE801 P0SETC— 80969F  0889L°¢— 6v10°CE  ISI9Y'E  66017°0— SIOLI'6 I'y

190°LC1  TTLOS'L Sr68°01— L66°00C— ¥0T°69¢ 0C0°0S— €LSS6'E  LLIT6'C— CT68S'CL  08SL6C  800S1°0— 9L9¥61 0¥

YrL09€— L1S9T9 LyyiT6— 918°01¢ 180'V9L— 9L0'TEl  ¥8¥0V'E  YOELTT— 889°061— OI€I9C  08L¥0°0 €6SS°LY— 6'¢
6VYS9L— 9691¢°S 8SILYL— 8Y¥6°86 YOTCOl—  €LTTIT  €LIB6'C  T€09L'1— 0SP8'LE— TSEEET  [ILTOTO  €8E898— 8¢
9605 Ch— 8IVLSY SOSLY'9— 0¥66°0S 96LT 06— 8066°€l  VL8YO'C  0ESPET— 8908°61— 69CII'C  +69C’0  I8VIIV— L't
¥816'8C— 16186'¢ V8LOY'S— CTLS9TE I8LS'T9—  08€6C6 0918€C  T1CE00'T— 029LCI— T6ve6'l  SP8THO  0OSIVEC— 9¢
9y 1C— 0020S°€ L8LOYY— S060°€C 99€8°Sh—  991€8'9 96€91°C  LILIL'0— L6886'8—  6S68L'L [9CIS°0  9066€1— G'¢
90€991— 12801°€ 60L98'¢— 6V8T' L1 8YCL'SE—  0V6CE'S YP¥86'L  PESLY'0—  6S0€9°9—  T€699'1  CTCE8SO0  COSI8O— V¢
LSETEI— TLISL'C LYYTTe— yoer' el €609°€c—  919Cey P8YVEQ'T  8069CT0—  TLYOI'S—  LL89S'T 0090  L¥P8IVO— €€
6269°01— €L80SC 80%99°C— PPIL 01 I¥8T€C—  S6v19'¢ PI60L'T  L6160°0—  088€8'¢— POV8F'I  66€69°0  TSCEI'0— TE
6V60L'8—  L88LTT 09€LT'C—  TS8IL'8 9IvI'6I—  90680°¢ ¢8209°'T  06090°0 969¥6'C—  LITIV'T  TLLEL'O  9ST80°0 e
COLIT'L— STYB0'C YeevL'l—  ¥SS0TL 8T8 SI—  S6L89°C IPCIST  9¢€€61°0 LISYTT— 680SE'l  OPSLL'O  LE6VTO  O¢
€9¢I8°S—  1L8I6'1 01s9¢'1—  811¢€09 S80I'E€l—  ELVLET 0cser'l  ¥#80¢€°0 PS689'1—  ¥¥86C'1T  L6L08'0  SLIBED 6T
€96CLy—  EVLLL'1 L9TE0'T—  6LTOT'S €668°01— 995CI'C 9069¢'T  6580¥°0 66vETT—  OPESTT  819€8°0  +988%'0  8'C
96818°¢—  SS969°I 1SOPL'0—  1T8SEY VLY96'8— 6L¥C6'1 LTTIET  T8S6Y0 w098 0—  SOPITT  $9098°0  0I9LS0 LT

(Rl " ' ) W3 @) ) W W O ) (N

(panuyuo)) 9y I1GVL

Any use is subject to the Terms of Use as given at the website.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.


https://telegram.me/seismicisolation

SPECIAL FUNCTIONS FOR THE DYNAMICAL CALCULATION OF BEAMS AND FRAMES

SPECIAL FUNCTIONS FOR THE DYNAMICAL CALCULATION OF BEAMS AND FRAMES 117

LSS'168— €1S0'SE—  6179°€S— o I8TI—  IS'SLLI— SEL'S9T— 6EH80I— LOVEL'L— T8L'LET— 618¥9— 1SSTTO  SSE9TE— O'L
9LELLE— €T89°€E—  OF06'9h—  vHTTOP—  168TSL—  68S6'99— 09SEL'6— CTLOYO'S—  PhPTE6— 68YETY— TOE0S0  LEITII— 69
TEVEPT— S6VTOE—  TOOTTIY—  9T8'6LT—  0T9SSh— PIITTh— +6698'8— STI6GEH—  1100°9S— LPOT6'€E— OLSEL'O  8L896'S— 89
L6E08T— LIISLT— T8STIE—  100°L61—  STR6SE—  196€°6T— TSSSI'8— OSITEE—  LIPL'SE— 68699°€— 06SE6'0  006¥S'€E— L9
986'TI— $90€'ST—  IP06'TE—  €EHOSI—  9SI'S8T—  €€SL'TT— 9ETHY'L— LOLSET—  TS89'ST— +86LV'€— I1TTITT  ¥T9¥I'T— 99
SOLLIT— SITS'€T— LTI08T—  1LS0TI—  LOSPET— 0LOS'SI— ISIITL— 06SSST—  LOVO'TT— TO9EE'€— 960LT1  0THITI— S9
90€€'66—  SLLOTC—  LO6Y'VC— 800°001T— 666'L6T—  LO8S'ST— T8ELY9— 6L£080— 8E€8TLTI— OSIETE— LO69IY'T 9TL9S0— V¥'9
9980°S8—  7816'0T— 9S9TIT—  $860°S8— 0S$'69T1—  06SP'EI— ¥6S19°9— SOTTI'0—  9T89°CI— +8I9I'E— ITHSST  $8ILO0— €9
6LTYEL—  THOO'0T— 06LT'81— €188°€L— 6S99vI—  THIS'II— 806TF9— SE9ES0 1148°0I— ISHTI'S— 609891  OISIE0  T9
09Z1'v9—  160€61— €ISY'SI—  ¥LOTS9— 0L9'LTI— OVE90I— 9180E9— 6IVSI'T  06STS'S— €9811°€— 6LSIST  $9S€90 19
6850°9S— 9LIS'SI—  6LT8TI— 019€'8S— WS- TTL996—  THIST9— S0SSL'T  0106S'9—  L6VFI'S— ¥S9v6'T  $91060 09
1080'6F—  SYTS8I— T9LTOI—  €HL8'TS—  LESSL6— +0868'8—  1S09T9— 8STSET  €09€6h—  LO9OTE— 98180C  €O0EL'T  6'S
06V6'Th—  PSEF8I— TSISL'L—  €OSH'8h—  OPIES8—  10T8T8—  160vE9— €8196T  08S6V'E—  8990€'€— 9657CT  8SOEET  8°S
126V LE—  069S'S1— 8EE6T'S—  8LOSby—  SL8EHL—  LESSL'L— 91€0S9— €TI09€  610TCTT— SSYSHE— 0TH8ET  90IST LS
L6LSTE—  6196'ST— 698KLT—  96V8'Tv—  ObbS+H9—  T9S6EL—  TOSIL'9— SOS6TH  90TLOT— +6199°€— €6€9ST  SISLOT 96
SIII'ST—  LLLO6I— LVI9O0—  6THY'6E—  0T8S'SS—  LLSSO'L— 6SSSI'L— O0SLLOS  ¥1T20°0— O0E8¥6'€— 06SLL'T  ST6TST S
8900'vC—  8SC8'0T— TE€968°C €LOS LE— 86EC°LY— T1LLS8°9—  9TETL'L— ¢€¥T00'9 €LES60 6ESYEr— S89¢0°¢ $S9L6°1 a9
8L61°0Z—  0665TT— 89€EE9 TL86'SE—  T1189°6€—  TTI699—  TTTSS'S— 669SI'L  OL9LS'T  TOS06'h— 6SPLEE  990T1CT €S
1S29°91—  +I9€'ST—  $879°01 €LYSPE—  TSSPTE—  9S109°9—  90008'6— LETOL'S  9S99L°T  I€8EL°S— TLIVS'E  €TS9TT TS
9TETEI—  €LLS6T— 89SSOT  TILOVE—  18€9°ST—  IbbLS9—  996L 11— CTIL6OL  6€TY9E  6V6KO'L— ShbbSy  61vIvT 1S
88€6'6—  6ISO'SE—  8FE0°9T  1199°€€—  0vZ06I—  1€6199—  STOESI— 998L%1  L8STST  SSILE6— TISPL'S  1TTLST O
(AR (AR ) ()or )3 W) )2 @) (XL (AR ) (1 .

(ponunuod) 9y 37QVL

Any use is subject to the Terms of Use as given at the website.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.


https://telegram.me/seismicisolation

SPECIAL FUNCTIONS FOR THE DYNAMICAL CALCULATION OF BEAMS AND FRAMES

118 FORMULAS FOR STRUCTURAL DYNAMICS

VSl £~<&>I

4iya (M)

FIGURE 4.3. Design diagram, conjugate system, bending moment diagram due to a group of unit angular
displacements and the free-body diagram of the joint. Frequency parameter 4 = I*\/w?(m/EI).

The frequencies of symmetrical vibration are
(3.34)2 [EI
o, =—).—
/ m
o — (A25Y [EI
2T\ m
473\’ \/E'I
3 / m

Example. Find the frequencies of free vibration for the frame shown in Fig. 4.4(a),
assuming that bar masses are distributed uniformly along the length of the elements.

The length of all elements is /, and E/ = const.

Solution. The primary system of the frame, corresponding to the slope and deflection
method, as well as the bending moment diagram due to the unit angular displacements
Z,, are given in Fig. 4.4(b).

Elk(SV - TU)
U*-1v

EIK(SV - TU)
Ur-1v

b)

Elastic curve _ P~

FIGURE 4.4. Design diagram, conjugate system and bending moment diagram due to unit angular

displacement of joint 1.
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The canonical equation of the slope-deflection method is
”1121 + Rlp = 0

where R, = 0 since the external forces are not considered.
Reaction r; is obtained from Table 4.5

EIk(SV — TU)
Mo
Frequency equation is r|; = 0, which leads to the transcendental equation

tan k/ = tanh k/

The roots of the above equation are

kl =3.926, 7.0685, ...

The exact frequencies of vibration are
3.926 \/ﬁ 7.0685% [EI
W, = —, W, = — ...
2 m 2 m

4.3.2 Approximate formulas (Bolotin, 1964; Smirnov et al., 1984)

Approximate expressions for the reactions of elastic uniform beams with uniformly
distributed masses m due to unit angular and linear displacements of its ends, according
to Equation (4.18), are presented in Table 4.7. The first term is the exact elastic reaction,
due to statical unit displacement, the second term is the approximate reaction due to
distributed inertial forces mw?y(x); k = mw?*P, i = EI/I.

The first term in the expressions for bending moment and shear force is used in statical
calculation using the slope-deflection method.

Example. Determine the natural frequencies of vibration for the frame shown in Fig.
4.5(a), assuming that masses are distributed uniformly along the length of the elements.
The length of all elements is /, £/ = const.

Solution. The basic system of the frame, corresponding to the slope-deflection method,
and the bending moment diagram due to unit angular displacements Z; are given in Fig.

e
" 05

k
8 ——
105

B

FIGURE 4.5. Design diagram, conjugate system and bending moment diagram due to unit angular
displacement of joint 1.
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TABLE 4.7 Approximate dynamical reactions of beams with uniformly distributed masses.

Design diagram and bending

moment diagram Bending moment Reactions
3i 3k
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4.5(b). The canonical equation of the slope-deflection method is
mZ, + Rlp =0

where R, = 0, since free vibration is considered.
Reaction r; is obtained from Table 4.7

.k
ry = 2(41 —R)

The frequency equation is 7;; = 0, which leads to the algebraic equation
k
4i———=0
"7 105

The root of the above equation is
EI
k=4x105— = ma? P

The approximate fundamental frequency of vibration of the frame is
o — 4.5277 |EI
oo m

4.4 DYNAMICAL REACTIONS OF BEAMS WITH
UNIFORM DISTRIBUTED MASSES AND ONE
LUMPED MASS

For the solution of eigenvalue problems for frames with elastic uniform elements and
uniformly distributed masses along the length of elements and one lumped mass, the slope-
deflection method may be applicable. In this case, the dynamical reactions (Kiselev’s
functions) of one-span beams must be used. (Kiselev, 1969)

Dynamical unit reactions are reactions due to unit harmonic angular ¢(¢) and linear
displacements £(f), according to Equation (4.18). In the case of free vibration 0 = w,
where o is the frequency of free vibration of a deformable system. The effects of inertial
forces of distributed masses and one lumped mass are taken into account by correction
functions.

The exact expression of dynamical reactions for beams with different boundary
conditions may be presented in terms of Krylov—Duncan functions (Table 4.8).

Table 4.8 contains the following parameters and functions:

. 4jw?
A is frequency parameter, 1 =/ %g

A and A, are parameters that are calculated by the following formulas

m, 0
kK3EI
2

A=U>—-TV +

(U, UV, + U, UV, — U,U,V — TV, V]

4.21)
m, 0
K3EI

A =TU - SV + [TU,V, + UV,T, — SV,V, — T,U,V]
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TABLE 4.8 Exact dynamical reactions of beams with uniformly distributed masses and one lumped
mass

M(OC‘ " r)M(l
b Bending moment M(0) and shear force Q(0)
0(0 ] o
4
0] KEI m 0’
*Inﬂectionpoint M(O) A TU — SV+k3E][T UVb+TUb SV Vb TUbV]
- = i 2
Elastlc curve 20) = SU-T k3E1 [T u,u+Ssu,v,—-1,7V, — TU,U,]

KEI 0
M(0) = {V +27y, V,,}

@ ~ 3
k- N KBEI
; K2EI m, 0
0(0) = — [U +5-Us Vb}

() A k3E1
K2EI m, 0
7| _____ M(0) =~~~ [U+k3E]U,,Va
.
S~ _ 3
v |—'| KPEI m, 6
£() 0(0) = [T +3=U Ub}
KET| , m 6?
i M(O)_A{V SU+k3E[[S U,V + VYV, — S,UV, — SU,V,]
-
{ 40] 0 _RE ST — UV S, TV, + SU,U, — S,UU, — U, V¥,
Q()*T - +k3EI[ »+ b — S UU, — U, VVy]
KEI 5
M(O):Tl {T V24 k3E[[T TV, + T, TV, — T,T,V — VVaVb]}
5
_ KEI

{UV ST+ [U vV, + T,T,U — ST, VbTTbU]]
1

_KEI 0*
M(0) = [T MY g Va}

6] '-W—j A KEI

) 0(0) = k3EI|:S+k3§1TbUi|

K2EI
7
M(0) = {UV ST+ M7 e

A

T e
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S, T, U,V = Krylov—Duncan functions that must be calculated at x = /; subscripts «
and b indicate that these functions are calculated at x =a and x = b,
respectively.

Example. Determine the natural frequencies of antisymmetrical vibration for the frame
shown in Fig. 4.6(a), assuming that the masses are distributed uniformly along the
length of the elements and one concentrated mass M is attached at the middle of the hori-
zontal element.

m, El

Condition 1:
le 1

Condition 2:
Z,=1

F'=(ml+M)o?

r.;f’Z
[?—bit%-ﬂﬁ —prn

IIr2 ¥iolA) 12— 2 ‘:Vlo(l)
€) f

FIGURE 4.6. Design diagram, conjugate system and bending moment diagrams.

—>
6iys (A 6iys (AWl
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Solution. The basic system of the frame, corresponding to the slope-deflection method is
given in Fig. 4.6(b). The basic unknowns are a group of angular displacements Z,, both in
a clockwise direction, and linear displacement Z, (Fig. 4.6(c),(d)). The elastic curve and
inflection point are presented by a dotted line and asterisk. Canonical equations are

rmZy+ripZ, =0
rZy +rpZ, =0
The frequency equation is

| |
ATEREAY)

Ly 7 =0
21 T2

The equilibrium of joint 1 in the first and second conditions leads to
% = 40y (A) + 4ithy(4) + 25(2) — = 4[4, (1) + 3(A)]

r 6i , 12i ,
% = —Tlﬁs(ﬂ) —>Irp = —Tlﬁs(ﬂ)

The equilibrium of the horizontal element in the first and second conditions (Fig. 4.6(e),(f))
leads to

1 = —El//s(i)

JAEI(ml + M)

12 24i
T Urio(2) = (ml 4+ M) = T(2) - ==

Let M =0.2ml, | = 6m. In this case

24i it
22 :TZ‘/MO(X)*%’

The frequency equation becomes
14
4z2[4w2(A)+w3(A)][ o) - } (12’> VA =0

The root is 4 = 1.74 (Y, = 0.97834, 3 = 1.03263, 5 = 0.92076, y,, = 0.72026).
The first frequency of antisymmetric vibration is

L 742 EI EI
= / =0. 0841‘/

4.5 FREQUENCY FUNCTIONS
(HOHENEMSER-PRAGER’S FUNCTIONS)

For two-span beams with different classical and non-classical boundary conditions,
Krylov—Duncan functions (4.6) may be applicable for each span. Eight unknown constants
may be calculated using boundary conditions (Tables 3.3 and 3.4) and compatibility
conditions (Table 3.5 and Table 3.6 for frames). This leads to systems of homogeneous
algebraic equations with respect to unknown constants. A non-trivial solution of homo-
geneous equations is the frequency equation in the form of a determinant, which leads to a
transcendental frequency equation. A special combination of the Krylov—Duncan functions
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TABLE 4.9 Numerical values of Hohenemser—Prager functions

A A(Z) B(A) C(4) S1(A) D(2) E(2)
0.00 0.00000 0.00000 2.00000 0.00000 0.00000 2.00000
0.10 0.20000 0.00067 1.99997 0.02000 —0.00002 1.99998
0.20 0.39998 0.00533 1.99947 0.08000 —0.00027 1.99973
0.30 0.59984 0.01800 1.99730 0.17998 —0.00135 1.99865
0.40 0.79932 0.04266 1.99147 0.31991 —0.00427 1.99573
0.50 0.99792 0.08331 1.97917 0.49965 —0.01042 1.98958
0.60 1.19482 0.14391 1.95681 0.71896 —0.02159 1.97841
0.70 1.38880 0.22841 1.92001 0.97739 —0.03999 1.96001
0.80 1.57817 0.34067 1.86360 1.27418 —0.06820 1.93180
0.90 1.76067 0.48448 1.78164 1.60820 —0.10918 1.89082
1.00 1.93342 0.66349 1.66746 1.97780 —0.16627 1.83373
1.10 2.09284 0.88115 1.51367 2.38068 —0.24317 1.75683
1.20 2.23457 1.14064 1.31221 2.81375 —0.34389 1.65611
1.30 2.35341 1.44478 1.05443 3.27298 —0.47278 1.52722
1.40 2.44327 1.79593 0.73116 3.75319 —0.63442 1.36558
1.50 2.49714 2.19590 0.33281 4.24789 —0.83360 1.16640
1.60 2.50700 2.64573 —0.15052 4.74911 —1.07526 0.92474
1.70 2.46393 3.14556 —0.72883 5.24716 —1.36441 0.63559
1.80 2.35774 3.69467 —1.41205 5.73046 —1.70602 0.29398
1.875 0.000
1.90 2.17764 4.29076 —2.20983 6.18533 —2.10492 —0.10492
2.00 1.91165 4.93026 —3.15125 6.59579 —2.56563 —0.56563
2.10 1.54699 5.60783 —4.18448 6.94341 —3.09224 —1.09224
2.20 1.07013 6.31615 —5.37644 7.20711 —3.68822 —1.68822
2.30 0.46690 7.04566 —6.71236 7.36304 —4.35618 —2.35618
2.365 0.0000
2.40 —0.27725 7.78428 —8.19532 7.38447 —5.09765 —3.09766
2.50 —1.17708 8.51709 —9.82569 7.24176 —5.91284 —3.91284
2.60 —2.24721 9.22607  —11.60057 6.90229 —6.80028 —4.80028
2.70 —3.50179 9.88981 —13.51311 6.33058 —7.75655 —5.75655
2.80 —4.95404 10.48317  —15.55181 5.48339 —8.77591 —6.77591
2.90 —6.61580 10.97711 —17.69976 4.33499 —9.84988 —7.84988
3.00 —8.49687 11.33837  —19.93382 2.82745 —10.96691 —8.96691
3.10 —10.60443 11.52931 —22.22376 0.92113 —12.11188  —10.11183
3.20 —12.94222 11.50778  —24.53139 —1.42969  —13.26569  —11.26569
3.30 —1.50974 11.22702  —26.80960 —4.27108  —14.40480  —12.40480
3.40 —18.30128 10.63569  —29.00150 —7.64853 —15.50075  —13.50075
3.50 —21.30492 9.67799  —31.03947 —11.60575 —16.51973 —14.51973
3.60 —24.50142 8.29386  —32.84428 —16.18338  —17.42214  —15.42214
3.70 —27.86297 6.41942  —34.32433 —21.41734  —18.16216  —16.16216
3.80 —31.35198 3.98752  —35.37489 —27.33708  —18.68744  —16.68744
3.90 —34.91970 0.92844  —35.87753 —33.96341 —18.93876  —16.93876
3.926 0.0000
4.00 —38.50482 —2.82906  —35.69970 —41.30615  —18.84985 —16.84985
4.10 —42.03177 —7.35626  —34.69457 —49.36091 —18.34728  —16.34728
4.20 —45.41080 —12.72446  —32.70105 —58.10912 —17.35052  —15.35052
4.30 —48.53352 —19.00015  —29.54425 —67.50881 —15.77213 —13.77213
4.40 —51.27463 —26.24587  —25.03630 —77.49713  —13.51815 —11.51815

(Continued)
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TABLE 4.9 (Continued)

4 A(2) B(4) (4 S$1(4) D(2) E(2)
4.50 —53.48910 —34.51621 —18.97757 —87.98360  —10.48879 —8.48879
4.60 —55.01147 —43.85518  —11.15854 —98.84668 —6.57927 —4.57927
4.694 0.0000
4.70 —55.65491 —54.29292 —1.36221 —109.92964 —1.68111 0.31889
3m/2 0.0000
4.730 0.0000
4.80 —55.21063 —65.84195  —10.63276  —121.03618 4.31688 6.31638
4.90 —53.44768 —78.49300 25.04809  —131.92604 11.52405 13.52405
5.00 —50.11308 —92.21037 42.10111 —142.31052 20.05056 22.05056
5.10 —44.93220  —106.92652 61.99893  —151.84743 29.99947 31.99947
5.20 —37.61210  —122.53858 84.93165  —160.14093 41.46583 43.46683
5.30 —27.83957  —138.89839 111.06435  —166.72965 54.53218 56.53218
5.40 —15.28815  —155.81036 140.52794  —171.09153 69.26397 71.56397
5.498 0.0000
5.50 0.37999  —173.02289 173.40867  —172.63714 85.70434 87.70434
5.60 19.50856  —190.22206 209.73636 —170.70883 103.86818 105.86818
5.70 42.44092  —207.02472 249.47123  —164.58011 123.73562 125.73562
5.80 69.51236  —222.97166 292.48939  —153.45649 145.24469 147.24469

5.90 101.04091 —237.52093 33856692  —136.47797 168.28346 170.28346
6.00 137.31651 —250.04146 387.36272  —112.72356 192.68136 194.68136

6.10 178.58835  —259.80732 438.40008 —81.21816 218.20004 220.20004

6.20 225.05037  —265.99277 491.04719 —40.94205 244.52359 246.52359
2w 0.0000

6.30 276.82475  —267.66834 544.49676 9.15635 271.24838 273.24838

6.40 333.94326  —263.79851 597.74507 70.14437 297.87253 299.87253

6.50 396.32660  —253.24102 649.57056 143.08494 323.78528 325.78528
6.60 463.76158  —234.74857 698.51270 229.01214 348.25635 350.25635
6.70 535.87600  —206.97308 742.85132 328.90194 370.42566 372.42566
6.80 612.11205  —168.47317 780.58716 443.63778 389.29358 391.29358
6.90 691.69715  —117.72541 809.42422 573.97056 403.71211 405.71211
7.00 773.61370 —53.13982 826.75490 720.47268 412.37745 414.37745

is the Hohenemser—Prager functions (Hohenemser and Prager, 1933; Anan’ev, 1946).
These functions may be presented in terms of trigonometric and hyperbolic functions.
These functions are

A(2) = 2[S(A)T(2) — U(A)V(L)] = cosh A sin A + sinh A cos 4
B(%) = 2[T(A)U(%) — S(A)V(2)] = cosh Asin . — sinh 4 cos A
C(%) = 2 cosh /.cos A = 2[S*(A) — U*(/)] = 2 cosh L cos A
D(2) = 2[T(A)V (%) — U*(J)] = cosh Acos 4 — 1

S1(%) = 2[T*(2) — V*(2)] = 2sinh Asin A;

E(J) = 2[S*(1) — T(A)V(A)] = cosh icos A + 1

(4.22)

These functions occur in the frequency equations of the vibration of beams with classical
and non-classical boundary conditions and therefore they are called frequency functions.
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Hohenemser—Prager functions are tabulated in Table 4.9. Applications of Hohenemser—
Prager functions are presented in Chapter 6.

4.6 DISPLACEMENT INFLUENCE FUNCTIONS

Tables 4.3, 4.4, 4.5 contain reactions of the beam due to unit angular and linear
displacements of the support. The equations of elastic curves of beams subjected to unit
support displacement are presented in Table 4.10 (Weaver et al., 1990)

TABLE 4.10 Elastic curve functions of beams subjected to unit support displacement

Design diagram and unit Displacement functions
displacement of supports

@ 51(x)=1—§

1(b) 5o %

& f—te 135
2(b) Ygl é!___ x) i x 5,0 = x ? +)lc—j
X 04(x) = —XTZ +);—23
@ 51(x)=1—%+§
© Sy(0) = x — % +§

UL o _ 3 X
3©) Jl _______ - 1} . 05(x) = 2 P
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CHAPTER 5

BERNOULLI-EULER
UNIFORM BEAMS WITH
CLASSICAL BOUNDARY

CONDITIONS

This chapter focuses on Bernoulli-Euler uniform one-span beams with classical boundary
conditions. Classical methods of analysis are discussed. Frequency equations and funda-
mental characteristics such as eigenvalues, eigenfunctions and their nodal points, as well as
integrals of eigenfunctions and their derivatives, are presented.

The initial parameter method is convenient to use for the calculation of different types
of uniform beams: statically determinate and indeterminate beams, one span and multispan
beams, as well as beams with non-classical boundary conditions. Different cases are
considered.

The force method may be applied for calculation of non-uniform beams as well as
frames. Both cases are considered.

The slope-deflection method is convenient to apply for the calculation of frames with a
high degree of statical indeterminancy.

NOTATION
A Cross-sectional area
A,B,C,E,S, Hohenemser—Prager functions
E G Youngs’ modulus and modulus of rigidity
EI Bending stiffness
Si:ha Correction functions
g Acceleration due to gravity
I, Moment of inertia of a cross-section
k Shear factor
4 /mw?
k, Frequency parameter, &, = N7l

ot Translational and rotational stiffness coefficients
Length of the beam

~
<
>
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Bending moment

Lumped mass and moment of inertia of the mass
Shear force

Dimensionless radius of gyration, 24 = I
Dimensionless parameter, s°k4GI*> = EI
Krylov—Duncan functions

Time

Spatial coordinate

Cartesian coordinates

Mode shapes

Transversal displacement

Dimensionless parameter

Frequency parameter, A*EI = ml*w?
Dimensionless coordinate, £ = x//

Density of material and mass per unit length
Zal’tsberg functions

Rotation of the cross-section

Natural frequency, w? = A*EI/mi*

cxx
<

S Uw oy
=
S
<

=
<
N

/Iﬁ~
)
=
2

’

SRS IRAR A
<3

5.1 CLASSICAL METHODS OF ANALYSIS

5.1.1 Initial Parameters Method

The Initial Parameters Method is effective for dynamical calculation of beams with
different boundary conditions and arbitrary peculiarities, such as elastic supports,
lumped masses, etc. This method allows one to write expressions, in explicit form, for
the elastic curve, slope, bending moment and shear force.

The differential equation of the transverse vibration of a beam is

aty Py
El—+4+pA—=0 5.1
a0 G-
The solution of this equation may be represented using initial parameters.

Initial parameters represent transverse displacement y,, angle of rotation ¢,, bending
moment M, and shear force O, at x = 0 (Fig. 5.1).

Initial y “_.(x)

]:Itarameters o)

0 M(x)

Po

Mo X M, J, M 2

Qo ; _. . > X

T R 1 R2
X

FIGURE 5.1. Design diagram of a beam and its initial parameters. The dotted line at the very left end
indicates an arbitrary type of support.
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State parameters y(x), ¢(x), M(x), Q(x) at any position x may be presented in the
following forms (Bezukhov et al, 1969; Babakov, 1965; Ivovich, 1981)

kx kx kx
Y(x) = poShx) + T(k 4 + M, (ZZ(E]) + 0o [,;(E])

2
*em G RV TG = )] + 5 S My VTG — )] — 0 X i Ulk(x — xt)l)
(5.2)
ko Jox
P(x) = yoV (k)k + 9 S(hx) + M, %k) +0, lé 5k2)
11 o
T Elk (% R Uk = )]+ D MUK G = 3)] = 0 30,0, Tlk(x = x;)])
(5.3)

M(x) = yoU(kQ)EIK? + @,V (k) Elk + M S(kx) + O @

2
L DRIk — )]+ 2 S My Tk — )] — 02 S0 SThGe — )] (5.4)

0() = yo TOEIR + 9o U(k)EIR® + MV (koo)k + QS(hx)
+ 2 RSTh(x — x)] + 0? Yo MiSTk(x — x)] = ok 3 d;0,VTk(x —x)] - (5.5)

where M; =lumped masses (note: M, = bending moment at x = 0)
J; = moment of inertia of a lumped mass
R; = concentrated force (active or reactive)
x; = distance between origin and point of application R; or M;
Vi, ¢; = vertical displacement and slope at point where lumped
mass M, is located
S(x), T(x), U(x), V(x) = Krylov—Duncan functions (properties of these functions
are presented in Chapter 4)

k=4 %wz; kl:“/% =),

The application of lumped mass M at any point x = a causes inertial force F;, = Mw?)(a),
which acts on the beam at x = a.
If the beam is supported by a transversal spring with stiffness parameter k. at any point
X = a, then elastic force R = k, y(a) must be taken into account in the above equations.
If the beam is supported by a rotational spring with stiffness parameter &, at any point
x = a, then elastic moment M = k,,¢(a) must also be taken into account in the above
equations.

Parameter & is
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The first four terms of Equations (5.2)—(5.5) may be presented in matrix form (4.12)—
(4.13). The first four terms in the expression for displacement (5.2) may be presented as a
series (Sekhniashvili, 1960)

(p() (kx)4s+1 (kx)45+2 QQ (kx)45+3
W) = [ + Z (s )l} L+ E1k2 Z @12 TR S s 1)
(5.6)

The expression for slope, bending moment and shear force may be presented as a series
after taking higher derivatives of Equation (5.6).

In Sekhniashvili (1960), the Initial Parameters Method is modified and applied for non-
uniform beams as well as Timoshenko beams.

Example. Find the frequency of vibration for a pinned—clamped beam.
Solution. The initial parameters and kinematic conditions are shown in Fig. 5.2. The
unknown parameters ¢,, O, may be calculated using boundary conditions at x = /.

Using Equations (5.2) and (5.3) of the Initial Parameters Method, the deflection and
slope at x = / may be presented in the form

T; V;
l = —_ _— = 0
y() = @y i T me
U
D= ¢yS;+0Qy—==
() = @S+ O Eli2
Thus, the homogeneous system of equations is obtained. This system has a non-trivial

solution if and only if the following determinant, which represents the frequency equation,
is zero.

T, Y
| 3|

U
1S, —L1

Elk?

According to Equation (4.9), this leads to
T,U; — 8;V; = cosh ki sinkl — sinh kl cos kl = 0
or
tan k/ = tanh k/

The roots of this equation, as well as the eigenfunction, nodal points and asymptotic
eigenvalues are presented in Tables 3.9 and 5.3.

Initial TQ" Kinematical
parameters: i > conditionsat x=1:
Yo= 0, MJ= 0; | .\'(.I') =

®#0, Q=0 | ! e(=10

FIGURE 5.2. Design diagram of pinned—clamped beam.
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Example. Find the frequency of vibration for a pinned—pinned beam with one concen-
trated mass M (Fig. 5.3).

Initial TQ” M . El Conditions at x=1:
parameters: A B . _yh=0

%0=0,M=0; A I ﬂg_ T M) =
a b

20 Q=0

e

FIGURE 5.3. Design diagram of a pinned—pinned beam with one lumped mass.

Solution. The initial parameters and kinematic conditions are shown in Fig. 5.3.
Unknown slope ¢, and shear force Q, at x = 0 (point A) may be calculated using bound-
ary conditions at x = /.

Displacement at x = / (point B)

A g
y= 00t 4 0, T LM )iy = 0 @

Moment at x = [ (point B)
M, = oo V(DEIk + 0y 22 (A) a y(a)T(kb) —0 (b)

Displacement at x = a

W 0

Substituting Equation (c¢) into Equations (a) and (b), the following system of two
homogeneous algebraic equations with unknown initial parameters ¢, and Q, is obtained

. [% TELC) PP BT

Wa) = (©

(d)
o [V())E]k +— T(ka)T(kb)] + QO[ “ ) — V(k )T(kb):| =0
The trivial solution ¢, = Q, = 0 of the above system implies that there is no vibration. For
the non-trivial solution, the determinant of coefficients at ¢, and O, must be zero

{ ())+ nAV (kb) —2 T(k") IZ(E;JF AV (kb) :g’;)—l
LV(A)EIk—l— OM T %4‘*1/(/( )T(kb)J

or

T2(0) — VA(2) + niTO)V (ka)T(kb) + V (kb)T (ka)]
— V)T (ka)T(kb) + V(kb)V (ka)] = 0 ()
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In terms of elementary functions, the frequency equation (e) may be presented in closed
form

2shA sin 2 + nA(sin Ashé; Ashé, 4 — shasin & Asiné,4) = 0

where

b
s 52:7:1—51

=nik, n=—, ¢ =

K3EI — ml

*M M a
!

Special case. 1f {, =0 or & =0 (mass M is located at the support and does not
influence vibration), or M = 0, then the frequency equation becomes sin/ = 0 (Table

5.3, case 1).

Example. Derive the frequency equation for a uniform clamped—pinned—pinned beam
with uniformly distributed masses along the beam (Fig. 5.4).

Initial parameters: Conditions:
yvo=0, p=0; y(l)=0 ¥2h =0,
Mp=0, Q=0 M(2l)=0

FIGURE 5.4. Design diagram and notation for clamped—pinned—pinned beam.

Solution. The initial parameters and kinematic conditions are shown in Fig. 5.4.
Unknown parameters M, Q,, R(/) may be calculated by using boundary conditions at
x=1and x =2I.

Using the Initial Parameters Method (Equations (5.2)—(5.5)), leads to

U(l V(l
H0) =My 0+ 0y 1 = 0

3o ven 1
20) = M,
Y@ =My prr + Q0 T

MQI) = MySQD) + 0, @ + %R(Z)T(l) =0

ROV(I) =0

The non-trivial solution leads to the following frequency equation
Lol v

: EIK?  EIk? | Lkuy vy o !

uen veh v ' '
I —1=0 kUQRLD vEeh Vv, =0

| EIR?EIREIR | o : @) veh v :

TQh T() KSR TR2H T()

k ko1

|
0

: 520
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which can be written as

UVy Ty + ViSy — UVi Ty — Uy ViT; = 0

Subscripts / and 2/ in the Krylov—Duncan functions denote that these functions are
calculated at x =/ and x = 2/, respectively.

Example. Derive the frequency equation for a beam shown in Fig. 5.5.

R
Initial @ Conditions:
parameters: f(,,“ . :

(a) = k- v(a),
yo=0, =0,
M,=0, 4%- ke é" M) = ko ol1),
=0, ok a 1 b I=a+b

e
0+0 o€ ;

FIGURE 5.5. Design diagram of beam with elastic supports.

Solution. Initial parameters and kinematic conditions are shown in Fig. 5.5. Unknown
initial parameters M;, Q,, and R(a) may be calculated using boundary conditions at
x=1/and x =2.

Using the Initial Parameters Method (Equations (5.2)—(5.5)) leads to

(l)

M) = @oV(KDETk + Qg ——+ R( Tk — @)] = k()

O) = pUMEIR + 0yS() + ki W@)S(b) = 0

where
oD = oS + Oy g1 + k(@) 2
T (a) V(a)

@) = 0y =+ Qs

Substituting expressions ¢(/) and y(a) in formulas for M (/) and Q(/) leads to two algebraic
equations with respect to two unknowns ¢,, Qy. The non-trivial solution leads to a
frequency equation.

5.1.2 Force Method

Continuous beams. For dynamical calculation of multispan non-uniform beams with
different stiffness and mass distribution, Three-Moment Equations (Rogers, 1959) may
be used. A Three-Moment Equation establishes a relationship between moments
on three consecutive supports of a beam. The physical meaning of a Three-Moment Equa-
tion is that the mutual angle of rotation on the nth support is zero. The special numbering
of spans and supports is presented in Fig. 5.6.
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o EL.mi | ELm o ELoms 5
& 2 < <

A b L

FIGURE 5.6. Notation of multispan non-uniform beam.

The Three-Moment Equation may be written in canonical form

l l l /
" s (A)M, 2| £ P Gpd) | My + =2 (e WMy =0
6E1nfi(/Ln) n—1 + |:6E[nfi(/Ln) + 6E[n+1fi( n+1):| n + 6E1n+1 fé( n+1) n+1
(5.7)
where M, = moment on the nth support
n=numbering of a span that coincides with the numbering of a right
support (counted from left to right)
f1(A), /,(A) = dynamical functions
X 3 coshAsin/l —sinhAcos 4 3
@) = 2. sinh Asin A AL (5-72)
3sinh 4 —sind 3
N=r——————— =~ 5.7b
£ A sinh Asin A iw" (5.75)
¢, = cothZ —cot/ (5.7¢)
Y, =cscl—cschi (5.7d)
where ¢, ¥, = Zal’tsberg functions.

Note: in Rogers (1959) coefficients 3/24 and 3/4 (Equations (5.7a,b)) are included in
functions ¢,,, ,,.

Functions f}(4) and f,(1) are used for the determination of angle of rotation y’(0) and
shear force. The corresponding formulas are presented in Table 5.1.

The Three-Moment Equation (5.7), according to Table 5.1, may be presented in terms
of Zal’tsberg functions

El
% 1+ <&+¢.)n+l)Mn+wn+an+l =0, i = n

- n
n Iy Lyl

ln+1 ln

and Zal’tsberg functions may be presented in terms of Krylov—Duncan functions

V() _ TV =SV ()
20— 120y T ROy — 1))

Y, =2

Zal’tsberg functions are tabulated and presented in Table 5.2.
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TABLE 5.1. Simply supported beam: angle of rotation and shear force caused by harmonic moments

Design diagram Angle of rotation )/(0) Shear force O(0)
Msin6t
(Ao y(0) = My /i) UV 5T
A gy 3EI 0(0) = Mk—5—
(PR BN f())_S(TU—SV) =V
T TN -2 Mk cosh /.sin A + sinh A cos 4
o0 _ 3 coshAsin/ —sinh cos 2 N 2sinh Zsin A
2 /.sinh A sin A 4| mo*
k= ,/%, =K
Msing ¢ l T sinh 2 + sin Z

7z 2sinh Asin A

SUN o Y(0) = Mo ) 0(0) = Mk
/ £0) = (4 3 sinh A —sin 4
(1) =

AT —¥2) " ) sinhisin/

Applications of Zal’tsberg functions are presented in Sections 5.2, 9.3 and 9.6.
The frequency equation. After the application of Equation (5.7) to a multispan con-

tinuous beam, a system of homogeneous algebraic equations is obtained. For non-trivial
solutions, the determinant of coefficients in front of M,,_,, M, and M, must be zero.

TABLE 5.2. Zal’tsberg functions

7 ¢ v 7 ® v 7 ® v
0.01 0.01000 0.00000 1.60  1.11419  0.57948 320 —16.09946 —17.21375
0.10  0.06600 0.03400 1.70  1.19897  0.63043 3.30  —5.25706  —6.41301
020 0.13325 0.06675 1.80  1.28948  0.68697 3.40  —2.78113  —3.98010
0.30 020001 0.10002 1.90 138739  0.75077 3.50 —1.66783  —2.91124
040 026673 0.13335 2.00  1.49497  0.82403 3.60  —1.02449  —231447
0.50 033347 0.16679 2.10  1.61529  0.90983 3.70  —0.59945  —1.93684
0.60  0.40033 020032 220  1.75275  0.01250 3.80 —029173  —1.67912
0.70  0.44740 023401 230 191379  1.13845 3.90  —0.05466  —1.49447
0.80 0.53472 0.26801 2.40  2.10829  1.29653  4.00 0.13698  —1.35799
0.90 0.60251 030243 250 235222 1.50565 4.10 029808  —1.25523
1.00 0.67095 033748 2.60  2.67334  1.79049  4.20 043795  —1.17735
1.10  0.74025 037337 270  3.12445 220482 4.30 0.56290  —1.11864
120 081076 041043 2.80  3.82010  2.86309  4.40 0.67734  —1.07544
130 0.88284 044902 2.90 506442  4.06935 4.50 0.78460  —1.04521
140 095702 048964 3.00  8.02021  6.98635 4.60 0.88734  —1.02646
1.50  1.03387 0.53288 3.10 25.03341 23.95974 4.70 0.98778  —1.01827
057 1.09033 0.56986 0 o 1.5n 1.00016  —1.01797
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It is convenient to express frequency parameters A of any span # in terms of frequency
parameter /, of the very left-hand span. During the free vibration

CL)2 _ /17% E()[() _ ﬁ Enln
TR\ my B\ om,
3 = b mEody

" 0 IO my Enln

A

If one or both supports are not pinned but clamped, then additional spans /; or /; with
pinned supports must be added to replace the existing clamped support. After the Three-
Moment Equation (5.7) is applied to the modified system, the length of additional spans
must be considered as zero.

Special cases

1. If rigidity £/ and distributed mass m are constant throughout the length of a beam, then
frequency parameter A, = 4, = A

2. If , =4,y =4 and [; = constant, then the Three-Moment Equation in terms of
Krylov—Duncan functions is

M,V +2M,(TU — SV) 4+ M,V =0
Example. Derive the frequency equation for the following uniform beam.

0 1 2

ey < <

Solution. For the middle support, the Three-Moment Equation is

M,(0) |:cosh ki, sinkl; — sinh kI, cos ki, n cosh kI, sin kI, — sinh kI, cos klz] _0

2sinh &/, sinkl, 2 sinh kl, sin ki,

or
M (t)[coth kl; — cotkl; + cothkl, — cotkl,] =0
If [, =1, =1, then
M, (t)[coth kl — cotkl] =0
which means that such a beam has two types of vibrations.

1. The first type of vibration occurs if M,(¢) = 0.
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In this case, the behavior of each span is similar to the behavior of a one-span simply-
supported beam.
2. The second type of vibration occurs if

coth kl — cotkl =0

In this case, the behavior of each span is similar to the behavior of a one-span pinned—
clamped beam.

For both types of vibrations, the frequency equation, mode shape and nodal points are
presented in Tables 3.9, 5.3 and 5.4 respectively.

Example. A non-uniform beam with different lengths of spans, mass and rigidity is
shown in Fig. 5.7. Find the relationship m,/m,; which leads to the fundamental frequency
parameter

Solution. For support 1, the Three-Moment Equation in terms of Zal’tsberg functions is

EI EL
bM0+($+&)M1+&M2:O, =y =y
I I ) %) L

Since support moments M, = M, = 0, then the frequency equation may be rewritten in the
form

¢+ @, =0
or
coth 4; — cot A, + coth 4, —cotd, =0
Since 4, = n/,, then the frequency equation becomes
coth A, —cot A, + cothni; —cotnd; =0
Using Table 5.2, the frequency equation leads to
2.67334 + cothnld; —cotni; =0
The root of the above equation is
Ay =niy =2.6n =3.40968 — n = 13114

0 ml,Ell 1 my, E12:2E]1 2

£ £ b
11=l ‘ 12=211

FIGURE 5.7. Design diagram of a non-uniform beam.
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Thus, the required relationship is

4
m, n I

m L\ EL
I El,
Frames. For dynamical calculation of frames with » lumped masses m; (distributed

masses are neglected), represent the displacement of each mass m; in general canonical
form

yi= 5i1Xl + 5i2X2 —+ 4 51'1')([ +---+ 51'an + Aip (58)

where X, X, ..., X, ..., X, =inertial forces of the corresponding masses;
04 = unit displacements (Chapter 2.3);
A, =displacement in the direction of X; caused by external
vibrational loads. For the eigenvalue and eigenfunction
problems, the free terms of canonical form A, = 0.

In the case of harmonic free vibrations, displacement of mass m;, its acceleration and
inertial force are
— gsinot = 2 w3
y;=a;sinwt; y; =—aq,w"sinwt, X;=-—m;y;

Substituting the above expressions into Equation (5.8) yields

*
OnXi+0pX +--+9,X,=0
01 X) + 05X 4+ 4 05, X, =0 (5.9)

O Xy + 00Xy + -+ 07,X, =0

nn

where

1

0¥ =9, —
m;w?

u u

The non-trivial solution of Equations (5.9) with respect to a; yields the following frequency
(secular) equation

Loy my — 1/? 01y 01, I
(521m1 522m2 — 1/602 e (52,1mn : -0 (510)
I 0,1y 0,21y o d,m, —1/w?!

The unit displacements may be calculated according to Equations (2.2)—(2.4). Equation
(5.10) is very convenient for the solution of eigenvalue problems in the case of statically
determinate systems. If a system is statically indeterminate, then calculation of unit
displacements presents difficulties. In this case, the slope-deflection method is an efficient
one.

Equations (5.9) and the canonical equations of the Force Method for statical problems
are similar. However, there is a fundamental difference. The unknown JX; of system (5.9)
are not the reactions of the discarded constraints of a statically indeterminate system, but
amplitudes of inertial forces, which can be produced both in statically determinate and
indeterminate systems.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

BERNOULLI-EULER UNIFORM BEAMS WITH CLASSICAL BOUNDARY CONDITIONS

BERNOULLI-EULER UNIFORM BEAMS WITH CLASSICAL BOUNDARY CONDITIONS 141

5.1.3 Slope-Deflection Method

This method may be effectively applied for dynamic calculation of framed statically
indetermined systems with or without distributed and lumped masses.

In order to obtain a conjugate redundant system (basic, or primary system), the
additional introduced constraints must prevent rotation of all rigid joints as well as all
independent displacements of these joints. Canonical equations of the slope-deflection
method are:

mZy+rpZy+ -+ rZ, + Ry, =0
iy +rply + 12, + Ry, =0 (5.11)

rnlzl +rn222+"'+rnnzn +Rnp:0

The equations of the slope-deflection method negate the existence of reactive moments and
forces developed by imaginary constraints in conjugate systems.

The system of equation (5.11) contains amplitudes of vibrational displacements Z; for
unknown variables. Coefficients r;; with unknown Z; variables represent amplitude values
of reactions of introduced constraints i due to unit vibrational displacements of restriction
k. The free terms, R,,, are amplitudes of reactions of constraints due to vibrational load; in
the case of the free vibrations these free terms are zeros.

The amplitudes of vibrational displacements Z; take into account inertial forces of
concentrated and/or distributed masses of elements of a system, by means of correction
functions to the formulas representing static reactions.

The effects of inertial forces of distributed and/or lumped masses are taken into
account by correction functions, whose numerical values depend on a frequency parameter.
The simplest case for dynamical reactions of massless elements with one lumped mass is
presented in Table 4.3. Smirnov’s functions take into account the exact effects of inertial
forces of uniformly distributed masses. Their analytical expressions in different forms are
presented in Tables 4.4 and 4.5, and numerical values are presented in Table 4.6. Bolotin’s
functions take into account the approximate effects of inertial forces of uniformly
distributed masses, and their analytical expressions are presented in Table 4.7. Kiselev’s
functions take into account the exact effects of inertial forces of uniformly distributed
masses and one concentrated mass, and their analytical expressions are presented in Table
4.8.

In order to determine eigenvalues of the framed system, the determinant of coefficients
with unknown variables has to equal zero

:r” Fly ... rln:
Fol Py .. Ty
[ =0 (5.12)
Iy r ro
nl n2 nn

5.2 ONE-SPAN BEAMS

Frequency equations, eigenvalues, nodal points and asymptotical formulas for eigenvalues
for classical and special boundary conditions are presented in Tables 5.3 and 5.4. The
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TABLE 5.3. One-span beams with classical boundary conditions: frequency equation, frequencies para-
meters and nodal points

Nodal points ¢ = x/I of

No. Type of beam Frequency equation »n Eigenvalue 4, mode shape X
1 Pinned—pinned sink,/ =0 1 3.14159265 0; 1.0
v 2 6.28318531 0;0.5; 1.0
T m, EI 3 9.42477796 0; 0.333; 0.667; 1.0
4 125663706 0; 0.250; 0.500; 0.750; 1.0
/ 5 15.7079632 0; 0.2; 0.4; 0.6; 0.8; 1.0
e n nm
2 Clamped—clamped  cos k,/coshk, /=1 1 4.73004074 0; 1.0
| 2 7.85320462 0;0.5; 1.0
3 10.9956079 0; 0.359; 0.641; 1.0
4 14.1371655 0; 0.278; 0.50; 0.722; 1.0
5 17.2787597 0; 0.227; 0.409; 0.591; 0.773; 1.0
n 0.5wQ2n + 1)
3 Pinned—clamped  tank,/ —tanhk, /=0 1 3.92660231 0; 1.0
2 7.06858275 0; 0.440; 1.0
i 3 10.21017612 0; 0.308; 0.616; 1.0
4 13.35176878 0; 0.235; 0.471; 0.706; 1.0
5 16.49336143 0; 0.190; 0.381; 0.571; 0.762; 1.0
n 0.25m@4n 4 1)
4 Clamped-free cos k,lcoshk,/=—1 1 1.87510407 0
,_ 2 4.69409113 0; 0.774
3 7.85475744 0; 0.5001; 0.868
4 10.99554073 0; 0.356; 0.644; 0.906
5 14.13716839 0; 0.279; 0.500; 0.723; 0.926
n 0.5w(2n —1)
5  Free—free cos k,lcoshk,/i=1 1 0 Rigid-body mode
2 4.73004074 0.224; 0.776
3 7.85320462 0.132; 0.500; 0.868
4 10.9956078 0.094; 0.356; 0.644; 0.906
5 14.1371655 0.0734; 0.277; 0.500; 0.723; 0.927
6 17.2787597 0.060; 0.227; 0.409; 0.591; 0.774;
n 0.5wQ2n — 1)*  0.940* (Geradin, and Rixen, 1997)
6 Pinned—free tank,/ —tanhk,/ =0 1 0 Rigid-body mode
2 3.92660231 0; 0.736
-di 3 7.06858275 0; 0.446; 0.853
4 10.21017612 0; 0.308; 0.616; 0.898
5 13.35176878 0; 0.235; 0.471; 0.707; 0.922
6 16.49336143 0; 0.190; 0.381; 0.571; 0.763; 0.937
n 0.25w@n — 3)*
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corresponding eigenfunctions in forms 1 and 2 are presented in Table 5.5. These forms are
as follows.

Lx ) )
Form 1. X, (x) = cosh—"— / +co s l n(sinhﬂilx:tsinﬂilx) (5.13)

DX
—|—A,, cos — + B, s1nh A C, cosh 2nX (5.14)

F 2. X,(x)=
orm () = sm ] ] /

l

The ordinates of mode shape vibration for one-span and multispan beams with classical
boundary conditions are presented in Appendices A and B respectively.

5.2.1 Eigenvalues

1. Eigenvalues for beams with Classical Boundary Conditions are discussed in
(Rogers, 1959; Babakov, 1965; Blevins, 1979; Pilkey, 1994; Inman, 1996; Young,
1982).

2. Eigenvalues for beams with Special Boundary Conditions are discussed in
(Bezukhov et al., 1969; Pilkey, 1994; Geradin and Rixen, 1997).

TABLE 5.4. One-span beams with special boundary conditions: frequency equation and frequencies

parameters.
Type of beam Frequency Equation n Eigenvalue 4,
Free—guided tan A+ tanh A =0 1 0—Rigid body mode
El m 1 2 2.36502037
_H:” 3 5.49780392
4 8.63937983
5 11.78097245
6 14.92256510
n 0.257(4n — 5)
Guided—guided sind =0 1 0—Rigid body mode
“] [” 2 3.14159265
3 6.28318531
n 7(n — 1) (exact)
Guided-pinned cos AcoshA =0 1 1.5707963
| 2 4.71238898
[ & 3 7.85398163
n 0.57(2n — 1) (exact)
Clamped-—guided tan A + tanh A = 0 1 2.36502037
| 2 5.498780392
1 3 8.63937983
4 11.78097245
5 14.92256510
n 0.257(4n — 1)

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

BERNOULLI-EULER UNIFORM BEAMS WITH CLASSICAL BOUNDARY CONDITIONS

FORMULAS FOR STRUCTURAL DYNAMICS

144

0000'T u
$100000°1 0000'T — $100000°T — 0000'1 S

i S Tt S .
181860 00001 — L81860— $810°1 1y us = 1y 4soo X"y 500 — ¥y ys0d z
T09¢€T 0000'T — T09eT— I¥€L°0 I
0000'T u
98666660 0000'T — 98666660 — 0000'1 S
98666660 00001 — 98666660~ 0000'T [y uts — 7y qurs (x"y urs — x*y qurs)“o— 14

98666660 0000'T — 98666660 — 0000'T e € pouurd-padure])
98666660 0000'1 — 9866666'0— 00001 [74809 = 1744809 X"y 500 — ¥y 4s0d z
+€77666°0 £0000'T — +€TT666'0— 8000'1 I
000'T u
1000000°1 0000'T — 1000000'T — 66660 S
98666660 00001 — 98666660~ 0000'T [y uts — 7y qurs (x"y u1s — x*y qurs)“o— 14

$€£€0000'T 0000'T — $€€0000°T — 66660 505~ [y us0n € padurejo-padure)
€27666'0 0000'T — €77666'0— 8000'T "y 500 — X"y ysoo 4
8LIO'T 0000'T — 8LI10T— $786°0 I

i
0 0 0 0 suou 'y us pouurd—pauur g
o) q v Y0 10J an[eA pue B[NWIO] X)X u weaq Jo odAT
} onfea pue e q 3

(5961 ‘Aoxeqeq) (g wioy) adeys spojy

(9661 ‘ueuruy) (1 uog) odeys oo

uonelqia odeys opow :sUONIPuod AIEpunoq [eIISSE[d Yim sweaq ueds-ouQ  'G'G J1gV.L

Any use is subject to the Terms of Use as given at the website.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.


https://telegram.me/seismicisolation

145

‘] WLIOJ WOXj PAUIRIqo dIoM BIep UAAIS oYL,

BERNOULLI-EULER UNIFORM BEAMS WITH CLASSICAL BOUNDARY CONDITIONS

BERNOULLI-EULER UNIFORM BEAMS WITH CLASSICAL BOUNDARY CONDITIONS

0000°1 u
0000'T 0000'T — 0000'T — 0000°T s
00001 00001 — do0t—  oopgq  Lrsorywes  (CHETHRESET
0000'T 0000'T — 00001 — 0000'1 PYUS = 1A qus X'y 505 — x"y ys0d z Surpys—padure))
«SL10T £0000'1 — SL10'T— $786°0 I
0000'1 u
98666660 0000'T 98666660 — 0000°T 9
98666660 0000'T 98666660 — 0000'1 5
. . . . U, U, u
posh b0l et M0 e OO
: - . . 1"y s00 — 1"y ysod " "
+£72666'0 £0000'1 +E7T666°0 — 80001 X'y 500 + x"y ys0d z sa1y-pauung
- - - - I
0000°1 u
1000000°T — 0000'T 1000000°T — 66660 9
98666660 — 0000'T 98666660 — 0000°T s
et B R G e e 1
8L10'T — 0000'T 8L10°T — $786°0 I3 309 = Y4309 X'y 500 + x"y ys0d z
- - - - I
o) q vV “0 10J on[eA pue e[NULIO] ®)x u weaq Jjo adAL

(961 ‘Aoxeqeq) (g wioy) adeys spojy

(9661 ‘uewuy) (] woy) adeys apoy

( ponunuod)

'S'S 319vL

Any use is subject to the Terms of Use as given at the website.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.


https://telegram.me/seismicisolation

BERNOULLI-EULER UNIFORM BEAMS WITH CLASSICAL BOUNDARY CONDITIONS

146 FORMULAS FOR STRUCTURAL DYNAMICS
5.2.2 Eigenfunctions

Eigenfunctions for beams with guided support (Pilkey, 1994)

2n — )nx
21

nmx
/
Free—guided beam: X(x) = coshk,x + cos k,x — g,(sinh k,x + sin k,x)

Guided—pinned beam: X (x) = cos

Guided—guided beam: X (x) = cos

where

- — sinh k,/ — sink,/
"7 cosh k,l + cos k,I

5.3 ONE-SPAN BEAM WITH OVERHANG

5.3.1 Pinned-pinned one-span beam with overhang (Fig. 5.8)

Frequency equation (Morrow, 1908)

(cosh kI sin kI — sinh kI cos kl)(cosh kc sin ke — sinh kc cos kc)
— 2 sinh kI sin kI(1 4 cosh kc cos kc) = 0

The least root, A = ki, of the frequency equation according to parameter ¢/ is presented in
Table 5.6 (Pfeiffer, 1928; Filippov, 1970)

[EI  )* [EI
Frequency of vibration o = k%,/— == /=
m B\'m

m,El

L L ”‘ £ FIGURE 5.8. Pinned—pinned beam with one overhang.

TABLE 5.6. Pinned—pinned beam with overhang: the least root of a frequency equation

¢/l 1 3/4 12 13 14 15 1/6 1/7 1/8 19 1/10 0

Kl 1.8751 1.5059 1.9017 2.5189 2.9404 3.0588 3.0997 3.1175 3.1264 3.1314 3.1344 3.1364 n

Special cases

1. Case ¢/l = 0 corresponds a pinned—pinned beam without an overhang. The frequency
equation is sink/ = 0. Eigenvalues and nodal points for different mode shapes are
presented in Table 5.3.
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2. Case ¢/l = oo corresponds to a clamped—free beam with length ¢. The frequency
equation is 1 4 cosh kc cos kc = 0. Eigenvalues and nodal points of the mode shape are
presented in Table 5.3.

If ¢/I is small, then the approximate solution of the frequency equation is (Chree, 1914)

n
kl = n(l _zl_3>

If ¢/l < 0.5, then the error according to the Chree approximation is less than 1%.

Example. Calculate the frequency of vibration for a pinned—pinned beam with one over-
hang, if / = 8m, ¢ = 2m (Fig. 5.8).

Solution. Since the parameter ¢/l = 0.25, then A=kl =3.0588 (Table 5.1). The
frequency of vibration is:

w2 [EL_7 [EI_3.0588° [EI
- m_ 2Nm 8 m

The Chree formulae gives the following eigenvalue

1, 1,2

5.3.2 Beam with two equal overhangs

Design diagram and notation are presented in Fig. 5.9(a). Frequency of vibration is

22 [EI L
O=F\ =hty

Symmetric vibration. The frequency equation may be written in the following form
(Anan’ev, 1946)

CIA(1 — IEGI) — BOIAL( — IF)] = 0

where [* = [, /I is a dimensionless parameter, and 4, B, C and E are Hohenemser—Prager’s
functions.

The fundamental frequency corresponds to symmetrical shape vibration. The funda-
mental frequency parameter A in terms of /* is presented in Fig. 5.9(b).

Antisymmetric vibration. The frequency equation may be presented in the following
form

S, = F)EGI) — BIA(1 — I*)]BGIY) = 0 (5.15)

Example. Calculate the fundamental frequency of vibration for a beam with two equal
overhangs. if /;, = 1m, , = 8m (Fig. 5.9(a)).
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m,El
%) L b
b Jﬂ b Jﬂ [
P 21
A
24 N ]
2.2 r/
/ Ty
) L.
/ ) 1.875

1.8
/ Fundamental mode of symmetrical vibration

/

s . ;

0 0.2 0.4 0.6 0.8 I*

FIGURE 5.9. Beam with two equal overhangs. (a) Design diagram and notation; (b) frequency parameter
A for symmetric vibration.

Solution. The half-length of the beam / = /; + 0.5/, = 5m, so a non-dimensional para-
meter [* =1,/1 =0.2.
The frequency equation (5.14) leads to

C(0.82)E(0.27) — B(0.2)4(0.82) = 0

The least root is 4 = 1.95.
The frequency of vibration is

oo [EL_195 [EI
T RPVmo 52 Vm

5.3.3 Clamped-pinned beam with overhang

The design diagram and notation are presented in Fig. 5.10.
Frequency of vibration

A [
AR
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The frequency equation may be presented in the following form

S = 1%)]

APl (SOYV ) — TOYUQI)} + (SOYUQI) — VYV =0 (5.16)

where /* =1, /I, and S, T, U and V' are Krylov—Duncan functions.

Ji FIGURE 5.10. Design diagram of a clamped-pinned beam

> with overhang.

Special case. Case l,/l =1 corresponds to clamped—pinned beam without an overhang.
In this case /* = 1, S(0) = 1, T(0) = 0 and the frequency equation (5.16) becomes

SV (L) —T(AHUR) =0
which leads to

cosh Asin/ —sinh Acos A =0

Eigenvalues and nodal points for different mode shapes of vibration are presented in Tables
5.3 and 5.5.

5.4 FUNDAMENTAL INTEGRALS

Fundamental integrals are the additional characteristics of a system, which are used for
dynamic analysis of free vibration using approximate methods (see Chapter 2) as well as
for dynamic analysis of forced vibrations.

/
5.4.1 Integrals [X?2 dx for beams with classical boundary conditions
0

The solution of the differential equation of transverse vibration (5.1) can be presented in
the following form

WE D =Y X (E)(By cos wt + Cy sin wi) (5.17)
The differential equation of mode shape is
2 [El
XV —px=0 p=2 o=/ (5.18)
PN m

Constants B and C can be found from the initial conditions

W&, 0) x
at =0 WE0 =/, T =[O, E=3
The constants B, and C, take into account not only initial conditions, but boundary
conditions as well.
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Constants B, and C; are determined as follows

1
[ f(&)dé
Bk == 07,

1
J Xz (©de
0

I
[£(&)dé
G="—— (5.19)
o[ XF(&)de
0
I
Integrals jX,? dx depend only on types of supports. For beams with classical boundary

conditiong, these integrals are presented in Table 5.7 in terms of X and their derivatives at
x =0 (Form 1) and x =/ (Form 2).

TABLE 5.7. Beams with classical boundary condition: different presentations of

41
fundamental integral 7 | X2 dx
0

Boundary Condition

41
Integral 7 [ X?dx
0

x=0 x=1 Form 1 Form 2
Clamped Clamped [X"(0))?
Simple supported Clamped —2X'(0)X"(0) x’(P
Free Clamped X2(0)
Clamped Simple supported X" (01
Simple supported Simple supported 20X (0))? =2X'(HX" (1)
Free Simple supported X2(0)
Clamped Free [X"(0)]
Simple supported Free —2X'(0)X"(0) X2(I)
Free Free X2(0)

Note: X’ derivatives with respect to the argument of eigenfunction X, but not with respect to x.

!
Example. Calculate the integral [ X 2(x)dx for a pinned—pinned beam.
0

Solution.

For a simply supported beam eigenfunction, its derivatives with respect to the

argument are

k
X, = sing,

k
X (x)=— sin%,

k
X;(x) cos R

k
X/ (x) = —cos R

/

/

I
Integral [X?dx may be calculated by using Table 5.5.

0
Form 1 (using the boundary condition at the left-hand end)
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Form 2 (using the boundary condition at the right-hand end)

! kmx / / knl knl /
s 2 A _ _ty " __ " iy ARy 0
E)[sm 7 = 2X OX"() = 2cos 7 ( cos 7 ) =3

/
Numerical values of integrals sz(x)dx and related ones for beams with different

0
boundary conditions are presented in Table 5.8. Some useful integrals concerning the
eigenvalue problem are presented in Appendix C.

5.4.2 Integrals with one index

Numerical values of several fundamental integrals for beams with different boundary
conditions and numbers of mode vibration are presented in Tables 5.8 and 5.9 (Babakov,
1965).

The following integrals may be presented in analytical form in terms of eigenfunctions
and their derivatives (Weaver et al. 1990)

[‘ l / " I
@ [XPdv= Z[sz — 2" + (X)) (5.20)
0
1 ]
)  [X"X,dx= [(X])* dx (5.21)
0 0

TABLE 5.8. Beams with classical boundary condition: numerical values for some fundamental
integrals with one index

1 1 1 1

Type of beam k % [ X2 dx 1[(X)* dx P [ dx } [ X, dx

0 0 0 0

Pinned—pinned 1 0.5 4.9343 48.705 0.6366
2 0.5 19.739 779.28 0

m- 3 0.5 44.413 3945.1 0.2122
PR 4 0.5 78.955 12468 0

5 0.5 123.37 30440 0.1273

Clamped—clamped 1 1.0359 12.775 518.52 0.8445
; 2 0.9984 45.977 3797.1 0

fl " 3 1.0000 98.920 14619 0.3637
1= 4 1.0000 171.58 39940 0

5 1.0000 264.01 89138 0.2314

Clamped-pinned 1 0.4996 5.5724 118.80 0.6147

2 0.5010 21.451 1250.4 —0.0586

“ et 3 0.5000 47.017 5433.0 0.2364

i 4 0.5000 82.462 15892 —0.0310

5 0.5000 127.79 36998 0.1464

Clamped—free 1 1.8556 8.6299 22933 1.0667

2 0.9639 31.24 467.97 0.4252

i l 3 1.0014 77.763 3808.5 0.2549

4 1.0000 152.83 14619 0.1819

5 1.0000 205.521 39940 0.1415
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5.4.3

Integrals with two indexes

FORMULAS FOR STRUCTURAL DYNAMICS

Integrals with two indexes occur in the approximate calculation of frequencies of vibration
of deformable systems. These integrals satisfy the following relationship

1 1
le,,X,,dx — —le,-Xj”dx
0 0

(5.22)

where i and j are the number of modes of vibration. Numerical values of these integrals are

presented in Table 5.9 (Babakov, 1965).

TABLE 5.9. Beams with classical boundary condition: numerical values for some fundamental

integrals with two indexes

J
Type beam i 1 2 3 4 5
g | 4.9343 0 0 0 0
/ 2 0 19.739 0 0 0
L 5 5 0 0 44.413 0 0
4 0 0 0 78.955 0
5 0 0 0 0 123.37
J
i 1 2 3 4 5
1 12.755 0 ~9.9065 0 ~7.7511
2 0 45.977 0 —17.114 0
(PR SN 3 ~9.9065 0 98.920 0 —6.2833
4 0 —17.114 0 171.58 0
5 ~7.7511 0 —6.2833 0 246.01
J
i 1 2 3 4 5
1 5.5724 2.1424 ~1.9001 1.6426 —1.4291
) 2.1424 21.451 3.9098 ~3.8226 3.5832
! 3 ~1.9001 3.9098 47.017 5.5836 —5.6440
4 1.6426 —3.8226 5.5836 82.462 72171
5 —1.4291 3.5832 —5.6440 72171 127.79

5.5 LOVE AND BERNOULLI-EULER BEAMS,
FREQUENCY EQUATIONS AND NUMERICAL

RESULTS

Love equations take into account individual contributions of shear deformation and rotary

inertia but omit their joint contribution (Table 3.1).
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Complete Love equations may be presented as the following system of equations

Py 949 I EIy\ o
Y L_y_(v V) y

g oo gk G) a2 —
(5.23)
Ela4¢+gazlp V[ ELy\ &Y
ot g o g gkG o

where y=transverse displacement;
Yy = angle of rotation of the cross-section;
k = shear coefficient;
E =Young’s modulus;
G =modulus of rigidity.

Shear coefficient k for various types of cross-section are presented in Table 11.1.
Truncated Love equations are obtained from Equations (5.23) and are presented as the
following system of equations:

dy p48y EIy 3y
oy A ol
ot Ty g o ng8x28t2

4 2 \
L APy ELy Yy
ot g 0 gk Gox*or?

(5.24)

The special case of system (5.24), when shear deformation and rotary inertia are not
considered is given by Bernoulli-Euler theory (Chapter 1)

My 4
gy 148y
ot g o

=0 (5.25)

The general solution of the Love system of equations (5.23)

- X jot
y=ae (5.26)
l// = Yelot

Normalized equations for total transverse vibration mode and rotational vibrational mode
are

XV 404502+ DX =X =0

(5.27)
YL R+ DY - =0
where
214
= , m=pA
EI
I
2
T

»_ El _ L E
T KAGE kG

. . - . X
The prime denotes differentiation with respect to ¢ = 7
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The normal modes X and ¥ are general solutions of Equations (5.27), which may be
presented as the following expressions

X(&) = B, cosh(J2s, &) + B, sinh(2%s, &) + B cos (225,) + By sin(A%s,&)

¥(&) = C; cosh(2?s,&) + C, sinh(2%s, &) + C5 cos (A25,8) + Cy sin(i2s5,¢)

ey — W%
—— ——

e L= ———
| ; —~ ~ “';« —
08 Fundamental Q"“‘MHH""—-.______ 08 |— [Fund o 71--1‘\.“‘""“-
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FIGURE 5.11.  Frequency ratios w/w, versus parameter » = I /AI* for the first four modes of vibration 7.
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FIGURE 5.11. (Continued)
where

1) = e o2+ 52 42
(Sz)_«/z\/:F(2+S2)+ (r +5%) +ﬂ4

Frequency equations for uniform Love and Bernoulli-Euler beams with different
boundary conditions are presented in Table 5.8. In this table, the parameter

22
(%28
s34+ 52

Numerical results. 1f parameters r and b for a given beam are known, the frequencies of
vibration can be calculated from the appropriate frequency equation (Table 5.10). The solu-
tion in closed form may be found only for the simplest cases.

Frequency ratios w/w, for one-span beams under different boundary conditions in
terms of r = I/AL? and different modes of vibration (n = 1, 2, 3, 4) are presented in Fig.
5.11, where o is frequency of vibration based on the Love equation; o, is frequency of
vibration based on Bernoulli-Euler equation (Abramovich, Elishakoff, 1990).
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These are graphs constructed for

E/G=8/3, k=2/3, s=2r
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CHAPTER 6

BERNOULLI-EULER
UNIFORM ONE-SPAN
BEAMS WITH ELASTIC

SUPPORTS

This chapter is devoted to Bernoulli-Euler uniform one-span beams with elastic (transla-
tional and torsional) supports. Fundamental characteristics, such as frequency equations,
eigenvalues and eigenfunctions, are presented. For many cases, the frequency equation is
presented in the different forms that occur in the various scientific examples. Special cases
are discussed.

NOTATION
A Cross-sectional area
A,B,C,E,S, Hohenemser—Prager functions
E Young’s modulus
EI Bending stiffness
L Moment inertia of a cross-section
2
[mw
k, Frequency parameter, k, = * N L=k
ke Translational stiffness coefficients
ot Rotational stiffness coefficients
. . . . . kP
k¥ Dimensionless translational stifftness coefficients, £ = gl
o , . . kioy!
kE, Dimensionless rotational stiffness coefficients, k¥, = I

/ Length of the beam
m Mass per unit length, m = pA4

S, T,U,V Krylov—Duncan functions
X Spatial coordinate
X, 0,z Cartesian coordinates
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X(x) Mode shape
o,y Dimensionless auxiliary parameters
A Frequency parameter, A*El = ml*o>
. . . X
14 Dimensionless coordinate, & = 7 0<¢é¢<l1
o Density of material
2

A° |EI
w Natural frequency, ® = —/—

PYm

6.1 BEAMS WITH ELASTIC SUPPORTS AT
BOTH ENDS

Exact frequency equations and expressions for mode shape vibration for uniform beams
with uniformly distributed masses and elastic supports at both ends are presented in Table
6.1. (Anan’ev, 1946; Gorman, 1975). These equations may be also presented in terms of
Krylov—Duncan and Hohenemser—Prager functions. Frequency equations for special cases
are presented in Table 6.2.

6.1.1 Numerical results

Beam with two translational springs supports

Stiffnesses are equal (Fig. 6.1). In this case it is convenient to calculate a half-beam.
Design diagrams for symmetrical and antisymmetrical vibration and corresponding
frequency equations in terms of (1) Krylov—Duncan functions, (2) Hohenemser—Prager
functions, and (3) in explicit form are presented in Table 6.3.

Lo 2 [EI . ,
The frequency vibration is w = 2\ where / is a root of a frequency equation. The
m

roots of the frequency equation in terms of k* = kI*/EI for symmetrical vibration are
presented in Fig. 6.2. Design diagrams at the left and right of the graph present limiting
cases; corresponding frequency parameters are shown by a circle.

The roots of frequency equation in terms of k* = kI° /EI for antisymmetric vibration
are presented in Fig. 6.3.

Stiffnesses are different (Fig. 6.4). Frequency equation (case 1, Table 6.4) may be
rewritten as follows

L GE (P B + 4nD()S, ()
F=2A

218,(7) ©.1)

where B(1), D(Z), S|(2) are Hohenemser—Prager functions; and the dimensionless para-
meters are

k_k
ks k'

b
El’

o
EI

n= Ky = ks =

2 [EI
The natural frequency of vibration is w = 2\ where 4 is a root of frequency equation
m

(6.1). Frequency parameters A in terms of k% and parameter n are presented in Fig. 6.5.
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TABLE 6.2. Frequency equation for special cases

Beam type Related
(common case) Parameters Beam type Frequency equation*® tables
Elm, 1 kk=0k,=0 Free—free cosicoshi—1=0 5.3
& B ky = 00; ky = 0o Pinned—pinned sinl=0 5.3;6.4

? ki =05k, =00  Pinned—free sin Zcosh A — sinh Acos A =0 5.3; 6.4

Ko kot = 03k, =0  Pinned—free sin Zcosh A —sinhAcos 2 =0 5.3; 6.4
El m, | kyop = 00; ky, = 0o Clamped—pinned  sin A cosh 4 — sinh Zcos A =0 5.3; 6.4

kot = 0; ky = 0o Pinned—pinned sinZ =0 53;64

kot = 005 ky =0 Clamped—free 1+ cosAcoshA =0 53;64

ki=0k =0 Pinned—pinned sinZ =0 53;64

b Elml k ky = 00; ky = 00 Clamped—clamped 1 —cosAcoshA =0 5.3;6.5
ki =05k, =00  Pinned—clamped sinAcoshA —sinhAcosi=0 5.3;6.4

*Eigenfunctions, nodal points and several types of fundamental integrals for one-span uniform beams with
classical boundary conditions are presented in Chapter 5.

]
ELm !
|
Sk iAS kZ
‘ 2l | FIGURE 6.1. Beam with two translational springs supports, AS is axis of
< > symmetry.

TABLE 6.3. Symmetrical beams with elastic supports: frequency equation for symmetrical and
antisymmetrical vibrations

Type of vibration

and design Frequency equation in Special cases and
diagram different forms corresponding frequency equation
Symmetrical e SHTG) — URV(2) k = 0 (free—sliding half-beam)
| = PV AQ) = J.+tanh A = 0 (Table 5.4
l 7 A S0) = U0 (4) =0 or tan 4 + tanh 4 = 0 (Table 5.4)
El,m 3 7
i ‘ 2 M ﬁifl) k = 0o (pinned-sliding half-beam)
1, AS El ) C(A) = 0 or cos Acosh A = 0 (Table 5.4)
3 k> ;cosh Zsin A + sinh Zcos /
=4
EI 2 cosh Acos 4

Antisymmetrical re _ATOUG) = SOV () k = 0 (free—pinned half-beam)

B pW 7 AL 1) = ) — tanh J — )
i 20) — 720 B(A) =0 or tan 4 — tanh A = 0 (Table 5.4)
3
2. L = /135(3) k = oo (pinned—pinned half-beam)
El 1(4) $,(2) = 0 or sinZ = 0 (Table 5.4)
3 kP ﬁcosh/l sin / — sinh Z cos 4
"EI 2 sinh / sin 4
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A
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L1
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0<A<1.5708 |
0.5
025
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A2
(I‘ Asymptote at A=4.7124 J)
45 /
1
IR
A=
t 1
/ Second
3 symmetrical mode
| 2] | 2369<A<4.7124
2.5
| | | | | Pe
5 Asymptote at 1= 2.369 f

0 40 80, 120 160 180 [*

FIGURE 6.2. Symmetrical vibration. Parameters 4,, 4, as a function of k* = kI*/EI.

Beam with two torsional spring supports (Fig. 6.6). The frequency vibration equals

A |EI
w= 7 |—, where 1 is a root of the frequency equation
m
kil k)l k1 kyl 1
22’ tanitanh 2+ (- 4+ -2 )(tan 2 —tanh ) + -2 (1 —————) =0 (6.2
an st ’“+’“<E1+E1 (tan 2 = tanh 2) + 27 27 \ 1 ™ cos Zcosh (62)
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Asymptote at 1=3.1416

/-

l First
1.5 Antisymmetrical mode
I 0<A1<3.1416

0.5 l Free-free

OCI 2!
0

25 50 75 100 125 150 175 k*

FIGURE 6.3. Antisymmetrical vibration. Parameter /4 as a function of k* = k> /EI.

LI—A FIGURE 6.4. Design diagram.

A .
[ +— Third
o — | } mode vibration
6
/\ n=10] _— T —
| A o .
econ
4.7300 = //;/;’_;;' } mode vibration
A / — T =
o | ST T n=2 n=1
3 / Fundamental
= —_— mode vibration
5 % Asymptote at A=
n=co n =10 n=2 n=1
1
Free—free
0

0 10 20 30 40 50 60 70 80 90 k'

FIGURE 6.5. Fundamental, second and third modes of vibration. Parameters 4;, 4, and Z; as a function of
k¥ = ky I’ /EI and parameter n = k; /k,.
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l
L—" FIGURE 6.6. Design diagram and notation.

Special cases are presented in Table 6.4.

TABLE 6.4 One-span beams with torsional spring supports: frequency equation for limiting cases

Design diagram Frequency equation
Elastic kl o
clamped- :___1 ELm [ 2/.tan Atanh A + ﬁ(tan A—tanh /) =0
pinned beam K L
k=0
Elastic |
clamped- Ckl ELm —i(tan /. — tanh ) + <1/ (1 - ;) -0
clamped beam éz EI cos Acosh 4
ky = 00
Pinned-pinned __ELml _
beam X Ba sinA =0
ky =k, =00
Clamped— ElL m, 1 )
clamped beam _| cosicoshi—1=0
ky =k, =00
Clamped— EL m. 1
pinned beam ’ﬂ tan 4 —tanh A =0
ky =00,k =0

Frequency parameters 4 for beams with two different torsional spring supports at the
ends and for fundamental and higher mode vibrations are presented in Table 6.5.
Dimensionless parameters are

kil k!
r=-1 k=%
i i
The bold data present two limiting cases: (1) pinned—pinned beam and (2) Clamped—
clamped beam (Hibbeler, 1975).

6.2 BEAMS WITH A TRANSLATIONAL SPRING
AT THE FREE END

A beam with typical boundary conditions at the left-hand end and an elastic spring support
at the right-hand end is shown in Fig. 6.7.
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TABLE 6.5. One-span beams with two torsional spring supports:
numerical values of frequency parameters

Mode

ke K 1 2 3 4 5

ELm, [
0.00) 0.00 3.142 6.283 9.425 12.566 15.708 m
0.0 3.143 6.284 9.425 12.567 15.708
0.01 3.142 6.283 9.425 12.566 15.701
0.01 0.1 3.127 6.276 9.420 12.563 15.705
1.0 2.941 6.197 9.369 12.525 15.675
10 4.642 8.460 11.943 15.255 18.495
100 3.969 7.146 10.325 13.507 16.691
fe'e) 3.928 7.069 10.211 13.352 16.494

0.0 3.157  6.291 9.430 12570  15.711
0.01  3.156  6.290 9.430 12570  15.711
0.1 0.1 3.141  6.283 9.425  12.566  15.708
1.0 2957 6204 9374 12529  15.678
10 4.654 8466 11947 15258  18.498
100 3981 7.152 10330 13.511 16.694
0 3940 7.076 10215 13.356  16.496

0.0 3273 6.356 9.475  12.605  15.739
0.01 3272 6355 9.474  12.604  15.739
1.0 0.1 3.258 6.348 9.470  12.601 15.736
1.0 3.084  6.271 9.419 12563  15.706
10 4.763 8523 11985 15287  18.522
100 4.083  7.211 10.371 13.543  16.721
00 4.042  7.194 10257 13388  16.523

0.0 3.665  6.688 9.752 12840  15.942
0.01  3.663  6.687 9.751 12.839  15.942
10 0.1 3.651  6.680 9.747 12836  15.939
1.0 3.497  6.608 9.698 12800 15.910
10 5221 8857 12.245 15.503  18.708
100 4475 7.529  10.638  13.771 16.919
0 4430 7450 10522 13.614  16.720

0.0 3.8890 7.003 10.119 13.236  16.354
0.01 3.888 7.003 10.118  13.235 16.354
100 0.1 3876  6.996  10.114  13.232  16.351
1.0 3.727 6927 10.067 13.196  16.322
10 5569  9.260 12.662  15.928  19.136
100 4.735 7.866  11.020 14.177  17.339
0 4.685  7.781 10.898  14.015  17.134

ELm, 1
0@ oo 4730 7.853 1099 14.137  17.279 |L|

(1) and (2) denote pinned—pinned and clamped—clamped beams, respectively.

>:<Left end m, | EI

/

FIGURE 6.7. Design diagram; left end of the beam is free,
or pinned, or clamped.
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. A [El .
The frequency of vibration equals w = R m = pA, where A is a root of the
m

frequency equation. The exact solution of the eigenvalue and eigenfunction problem for

beams with different boundary conditions at the left-hand end and translational spring

support at the right-hand end are presented in Table 6.6 (Anan’ev, 1946; Gorman, 1975).
Dimensionless parameters are

kl?

k= ,
tr EI

TABLE 6.6. Frequency equation and mode shape of vibration for beams with translational spring support at
right end

Frequency equation
Trigonometric-hyperbolic functions

Left end Krylov—Duncan functions Mode shape X (&)

Parameter y

Free 1 — cosh Acos 4

sin A — sinh 4

* )3 o sinl . .. X cosh A — cos A
ke =4 cosh /sin Z — sinh 4 cos . sinhZ¢ + Smhzm &+ V[ cosh A¢
— hl— A )
k*:isUz—TV +coshlé+%sinhmij|
tr TU —sv sin|
. in A cosh A — cos Zsinh 4 . . sin A
Pinned j* — 35 AC0S sin A& + y sinh 4 .
ke =4 2 sin Asinh A - ¢ sinh /
TU — SV
_ 3
k=7 72
1+ cos Acosh A sin/ + sinh 4

Clampedk: L sinh A& — sin A& 4 y(cosh A¢ — cos AE)

sinh A cos 4 — sin Acosh 4 cos A + cosh 4
3 S2—VT

L _
ke =25 —sv

The frequency equations may also be presented in terms of Hohenemser—Prager functions
(Section 4.5).

TABLE 6.7. Frequency equation for special cases

Parameter
ktr

Left end (right end) Beam type Frequency equation Related tables
Free ke =0 Free—free cosicoshi—1=0 53

ky = 00 Free—pinned sin A cosh A — sinh Acos A = 0 5.3;6.4
Pinned ke =0 Pinned—free sin A cosh A — sinh A cos 2 =0 5.3; 64

ky = 00 Pinned—pinned sinl =0 5.3;6.4
Clamped ke =0 Clamped-free 1+ cosAcoshl =0 5.3; 6.5

ky = 00 Clamped—pinned sin A cosh A — sinh Acos 2 = 0 5.3;6.4

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

BERNOULLI-EULER UNIFORM ONE-SPAN BEAMS WITH ELASTIC SUPPORTS

168 FORMULAS FOR STRUCTURAL DYNAMICS

Numerical Results. Some numerical results for first and second frequencies of vibra-
tion are presented below (Anan’ev, 1946).

6.2.1 Beam free at one end and with translational spring support
at the other

Design diagram and frequency parameters 4, and 1, as a function of k* = kI*/EI are
presented in Figs. 6.8(a) and (b), respectively.

Special cases

1. Free—free beam (k = 0). Frequency equation is D(1) = 0 — cosh Acos 1 = 1.
2. Free—pinned beam (k = oo). Frequency equation is B(4) = 0 — tan A — tanh A = 0.

6.2.2 Beam pinned at one end, and with translational spring support
at the other

Design diagram and frequency parameters A, and A, as a function of k* = ki*/EI are
presented in Figs. 6.9(a) and (b), respectively.

Special cases

1. Pinned—pinned beam (k = 00). Frequency equation is S;(1) = 0 — sin A = 0 (see table
5.3).

2. Pinned—free beam (k = 0). Frequency equation is B(4) = 0 — tan/ — tanh A = 0 (see
table 5.3).

6.2.3 Beam clamped at one end and with a translational spring
at the other

Design diagram and frequency parameters 4, and 1, as a function of k* = kI*/EI are
presented in Figs. 6.10(a) and (b), respectively.
Table 6.8 presents parameters 4, and /, as a function of k* = kI3 /EI.

TABLE 6.8. First and second frequency parameter for cantilevered beams with transitional spring
support at the end

ko 0.00 2.5 5.0 7.5 100 150 20.0 25.0 30.0 40.0 50.0
—_

Ap 1875 2169 2367 2517 2.639 2827 2968 3.078 3.168 3.303 3.401

Jy 4694 4718 4.743 4768 4794 4.845 4897 4949 5.001 5103 5201

k* 60.0 70.0  80.0 100 125 150 200 300 400 500 oo?

A1 3474  3.530 3.575 3541 3.696 3.733 3781 3.830 3.854 3.869 3.9266

4y 5295 5383 5466 5616 5777 5914 6.128 6.404 6.566 6.668 7.0685
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ElL m
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< > ! FIGURE 6.8(a). Design diagram.
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Asymptote at A =3.9266
3.5 /
Free-pinned
3.0 (k= o0)

|/ o S

2.0 /
Fundamental mode vibration
L5 0<A<3.9266
1.0
Free-free
k=0
l
e —
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Az
Asymptote at A =7.0685
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6.5 —

I
// Free-pinned

] k=co
6.0 =
e :__5}
55 ;
' Aree-free | Second mode vibration
(k=0) | 47300<1<7.0685

5 -

ﬁ%f L)
4.5
0 50 100 150 200 250 300 350 k*

FIGURE 6.8(b). Parameters 4, and /J, as a function of k* = kI* /EI.
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ElL m
ey k3
. !
= 7 FIGURE 6.9(a). Design diagram.
A
35
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// Pinned-pinned /
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Fundamental mode vibration
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Pinned-free
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3.3 / # Pinned-pinned I
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5.0 //
‘%ff _,'%'
/
4.5 Pinned-free | Second mode vibration

k=0) 3.9266 < A < 6.2832

4.0 CO——1
% I
35
0 50 100 150 200 250 300 350 @ k*
FIGURE 6.9(b). Parameters A, and /, as a function of k* = ki3 /EI.
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£z
J

m, EI

/
< FIGURE 6.10(a). Design diagram.

111 O t + T t ’j
Asymptote at A= 3.926

35 —_L I (k = oo)/d

% !

3.0 / ;
/ Fundamental mode vibration

25 1.875 < 1 < 3.9266

/ Cantilever
2.0 ' (k=0)
15 Lf_,l

0 50 100 150 200 250 300 350 &k*

A
Asymptote at A =7.0685
7.0 O , ok ¢
6.5 ,/7‘

/ Clamped-pinned

6.0 7 (k=)
ZAaNLr!

55
Cantileve - Second mode vibration
4.694 < A < 7.0685

5.0 (/,I.U‘_:(”— | |

4.5

0 50 100 150 200 250 300 350 @ k*
FIGURE 6.10(b). Parameters /; and 1, as a function of k* = ki*/EI.

Special cases

1. Clamped—free beam (k = 0). Frequency equation is cosh Acos . = —1 (see table 5.3).
2. Clamped-pinned beam (k = 00). Frequency equation is tanh A = tan 4 (see table 5.3).
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6.2.4 Beam clamped at one end and with translational spring along
the span

The design diagram is presented in Fig. 6.11.

| EL m

| - %
PR 'EEN

. /
= ' FIGURE 6.11. Design diagram.

2 [EI
The frequency vibration equals w = Vo Here, A is a root of the frequency equation
m

S2(3) — TV (3) — ;%k*S[/l(l — ISV I = TYUGI)}
- %sk*m(l = IUSAUCL) = VAV (L)} = 0

where S(4), T(4), U(A) and V(1) are Krylov—Duncan functions.
3

I} )
Numerical results for specific values of /* :71 and k* = 7 are presented in Table
6.12.

Special cases

1. Clamped—pinned beam with overhang (k = 0o)

I ElLm
! <
PR SN

/

<
<

A

S -]

T — 17)] ISV I — TAYUQGI)} + {S(YUQAI) — V(AV (A} = 0

2. Cantilever beam with translational spring at the free end ([, =/; I* = 1)

= 3 S2(A) = V(WT(A) or k¥ = 2 coshAcos A+ 1
i SV () — T(ADU() r sinh / cos A — cosh A sin A

(see section 6.2.3)
3. Clamped-pinned beam without overhang (k = oo and /* = 1)

S(AV(A) = T(2)U(A) =0 or tan A —tanh A = 0 and A = 3.9266 (see table 5.3)
4. Cantilever beam (/* =0 or k = 0)

S*(A) — T(A)V (%) =0 orcoshicos 2+ 1 =0 and A = 1.875 (see table 5.3)
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Example. Calculate the stiffness parameter £*(/,/; and EI are given), which leads to
frequency parameter 4 = 3.0, if /* = 0.8.

Solution. Frequency of vibration may be rewritten in the following form with respect to
parameter k*

B PS2() = TV
TSI = )US(A)V () — TQYU M)} + TIA — S UL — V() ()

A table of Krylov—Duncan functions is presented in Section 4.1.
If 2 =3.0 and [* = 0.8, then

k*

33[4.538832 — 5.07919 x 4.93838]
~ 1.00540{4.53883 x 2.39539 — 5.07919 x 3.14717} + - - -
<-4 0.60074{4.53883 x 3.14717 — 4.93838 x 2.39539}
k* =33.013

k*

Some numerical results are presented below.

6.3 BEAMS WITH TRANSLATIONAL AND
TORSIONAL SPRINGS AT ONE END

A beam with typical boundary conditions at the left-hand end and elastic spring support at
the right-hand end is shown in Fig. 6.12.

I Leftend 5 | EI k,@
f >

X
% ] 3

FIGURE 6.12. Design diagram: the left end of the beam is free, or pinned, or clamped.

Natural frequency of vibration is

)2 [EI y
W=—,— m=
2Nm p

where /A is a root of the frequency equation.

The exact solution of the eigenvalue and eigenfunction problem (frequency equation
and mode shape vibration) for beams with a classical boundary condition at the left-hand
end and elastic supports at right-hand end are presented in Table 6.9 (Anan’ev, 1946;
Weaver et al, 1990; Gorman, 1975); Special cases are presented in Table 6.10. Non-
dimensional parameters, used for the exact solution are:

forl B
Bho=tm =t e=3 0sisi
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TABLE 6.10. Frequency equation for special cases

Stiffness
Left parameters Related
end at right end Beam type Frequency equation tables
Free 1.k =0 ke =0 Free—free cosAcoshi—1=0 53
2. kyyy = 00; ky = 00 Free—clamped 1 +cosicoshi=0 5.3;6.4; 6.5
3. ko =05k, =00 Free—pinned sin A cosh A — sinhAcos 2 =0 53;6.4
4. kyyy =00 ky =0 Free—sliding tan A+ tanh A =0 5.3;6.5
Pinned lky =0k, =0 Pinned—free sin Acosh A — sinh Acos 2 = 0 5.3;6.4
2. kyyy = 00; ky = 00 Pinned—clamped  sinAcosh A —sinhAcosA =0 53;6.4
3. kot =03k, =00 Pinned—pinned sinl =0 53;6.4
4. ko =00k, =0  Pinned-sliding coshAcosA =0 5.3
Clamped 1. ko =0;k, =0 Clamped-free 1+ cosAcoshl =0 5.3;6.5
2. kyoy = 005 ky = 00 Clamped-clamped 1 —cosicoshl =0 5.3;6.5
3. ko =05k, =00  Clamped—pinned  sinAcoshA —sinhAcosl =10 5.3;6.5
4. kyoy = 005k, =0 Clamped-sliding tan A+ tanh A =0 5.3;6.5

6.3.1 Beam free at one end and with translational and rotational spring
support at the other (Fig. 6.13)
22

Natural frequency vibration is @ :;—2 g, m = pA, where / is a root of the frequency
equation. m

The frequency equation may be presented in the following forms (Anan’ev, 1946;
Gorman, 1975).

Form 1

/1—: (sinh /. cos A — cosh Asin A) — 2 (sin A cosh A + cos A sinh A)
%2 * r
ktr + ktr

1 + coshAcos
+}4@1 — cosh Acos A _
" k*1 4+ cosh /cos

where dimensionless parameters are

> X
X > l ktr%
N
gl

A

FIGURE 6.13. Design diagram.
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Form 2

e PREAR) + AD()]
i kE(A) — AB(Z)
where 4, B, E and D are Hohenemser—Prager functions.
Mode shape
X(&) = sin A& + sinh A& + y(cos A& 4 cosh AE)

where

o 73(cos /. — cosh 2) + k¥(sin A 4 sinh 1) - x
" P(sin+sinh7) — ki(cos A4 coshi) T

l

Example. Calculate the stiffness of rotational spring support £%,, which leads to the
fundamental frequency parameter 1 = 1.5, if the stiffness of the translational spring

support is kf = 50.

Solution. The frequency equation may be rewritten in the following form with respect to
dimensionless stiffness parameter k¥, The table of Hohenemser—Prager functions is
presented in Chapter 4.

2*D(Q) + kEAB()  1.5* x (—0.83360) + 50 x 1.5 x 2.19590

*

1 + cosh A cos 4

= = =3.216
T RXE(L) — 2 A(D) 50 x 1.16640 — 1.5% x 2.49714
TABLE 6.11. Special cases
Stiffness
parameters Related
No. Beam type at right end Frequency equation Tables
1 Free-free kf=0and k=0 1 —coshAcos/i =0 53
1 —coshAcos 4 6.3
2 S k¥=0 K+ 2 =0
! Wt sinh A cos A — cosh Asin 4
1 — cosh Acos A
k= k=2 .
3 ) w=0 rot cosh Asin A + cos Asinh 4 63
4 2 kf=o0and k}=0 tan A —tanh 1 =0 53
5 — kf=0and kf= o0 tan A 4 tanh A = 0 53
6 —* ki = oo and k= oo 1+ coshAcosA =0 53
7 | K = 00 Kt = 73 sin).cosh)‘—l—ncos}.?inh/l 6.5
1+ cosAcosh A
g = 00 ke ) sinhZcos 2 —coshAsind 6.4
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6.3.2 Beam free at one end and with rotational spring support
at the other

The design diagram is presented in Fig. 6.14(a).
2 [El .
The natural frequency of vibration is w = Vo m = pA, where 1 is a root of the
m
frequency equation, which may be presented in the following forms (Anan’ev, 1946)

Ckd B D(A)
Form 1: = )T()V)
— U0
Form 2. ol _ _, TAV(2) = V()

El . SO)T(G) — U ()

kol coshAcosA —1

F : =—/
orm 3 EI cosh Asin A + sinh A cos A

Frequency parameters 4; and A, for first and second modes of vibration as a function of
k¥, = k. - [/EI are presented in Fig. 6.14(b).

rot
Special cases

1. Free—free beam (k,,; = 0). Frequency equation is D(1) =0 — coshAcosl =1 (see
Table 5.3).

2. Free-sliding beam (k,, = 00). Frequency equation is A(1) = 0 — tanhA+tan A =0
(Table 5.3).

6.3.3 Beam clamped at one end with translational and rotational springs
supported along the span

The design diagram is presented in Fig. 6.15.
The natural frequency of vibration is

2 [El
w:l—z P m = pA

where frequency parameters /, in terms of spacing of support #/, mode number, stiffness

k[ k.oil
parameters k; = g—[ and k, = g’]‘ are presented in Table 6.12 (Lau, 1984).
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EL m f) kor

A

(a) FIGURE 6.14(a). Design diagram.

2 2%5 ¢ oo

- — Free-guided

2.0 = (k=oo
/ _1', I

1.5
Fundamental mode vibration
0<A<2.3650

Free-free
0.5 (k=0)

0 5 10 15 20 25 k¥

A

5.4978 oS I N B o

54 ,"’— (k =o0) |

/| P
52
Second mode vibration
4.7300 < A< 5.4978
5.0 T
Free-free

4.8 c k=0
47300 | i |

4.6

0 20 40 60 80 100 k*

FIGURE 6.14(b). Parameters ; and 4, as a function of k*= k. //EI.

m EY *) o
5

ktr
ul \

<€ >

< >  FIGURE 6.15. Design diagram.
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TABLE 6.12. Frequency parameters for cantilever beams with translational and rotational spring
support along the span

ky
u  Mode Iy 0.00 1.0 10.0 100.0 1000.0 10000.0
0.00 1.87510 1.92466 2.12534 2.30140 2.33413 2.33769
1.00 1.87572 1.92516 2.12549 2.30142 2.33414 2.33769

0.2 1 10.00 1.88118 1.92955 2.12684 230154 2.33418 2.33773
100.0 1.92730 1.96721 2.13892 2.30271 2.33457 2.33806
1000.0 2.09381 2.10996 2.19522 2.30942 2.33691 2.34005
10000.0  2.19789 2.20449 2.24472 2.31787 2.34013 2.34282

0.00 4.69409 4.74374 5.03755 5.52582 5.65969 5.67532
1.00 4.69497 4.74457 5.03811 5.52604 5.65983 5.67546
2 10.00 4.70277 4.75195 5.04313 5.52796 5.66112 5.67668
100.0 4.77440 4.81966 5.08944 5.54591 5.67313 5.68806
1000.0 5.14801 5.17475 5.34033 5.64947 5.74398 5.75537
10000.0  5.52057 5.53253 5.61044 5.77779 5.83634 5.84369

0.00 7.85476 7.87435 8.01592 8.41615 8.59232 8.61586
1.00 7.85551 7.87511 8.01669 8.41692 8.59307 8.61661
3 10.00 7.86227 7.88190 8.02362 8.42381 8.59981 8.62332
100.0 7.92788 7.94773 8.09057 8.48997 8.66441 8.68767
1000.0 8.41088 8.43090 8.57181 8.94475 9.10085 9.12142
10000.0  9.22942 9.24388 9.34335 9.59102 9.68953 9.70233

0.00 1.87510 2.00933 2.48428 2.88536 2.96256 3.01037
1.00 1.88303 2.01557 2.48692 2.88642 2.96341 3.02267
0.4 1 10.00 1.94760 2.06706 2.50929 2.89554 2.97068 3.12542
100.0 2.27905 2.34774 2.64827 2.95500 3.01835 3.73808
1000.0 2.65388 2.68652 2.85005 3.05046 3.09608 4.54227
10000.0  2.73595 2.76267 2.90012 3.07611 3.11727 4.67264

0.00 4.69409 4.70350 4.75949 4.85329 4.87941 5.36239
1.00 4.69860 4.70804 4.76414 4.85807 4.88422 5.36413
2 10.00 4.73862 4.74826 4.80542 4.90046 4.92679 5.37994
100.0 5.08767 5.09893 5.16422 5.26793 5.29569 5.55120
1000.0 6.44373 6.46655 6.59724 6.79561 6.84595 6.88590
10000.0  7.04720 7.08148 7.28627 7.62957 7.72363 7.79768

0.00 7.85476 7.88730 8.08744 8.44155 8.54119 8.52902
1.00 7.85533 7.88786 8.08795 8.44198 8.54161 8.52938
3 10.00 7.86049 7.89292 8.09252 8.44589 8.54536 8.53262
100.0 7.91408 7.94554 8.13989 8.48624 8.58405 8.56615
1000.0 8.56849 8.59002 8.72795 8.99043 9.06710 9.00039
10000.0  10.39927 10.43306 10.66299 11.14374 11.27404  11.18555

0.00 1.87510 2.06655 2.60876 2.94992 3.00458 3.01037
1.00 1.90646 2.09119 2.62383 2.96251 3.01690 3.02267
0.6 1 10.00 2.13029 2.27625 2.74618 3.06734 3.11984 3.12542
100.0 2.93657 3.02369 3.37790 3.67938 3.73240 3.73808
1000.0 3.57232 3.65365 4.03322 4.44670 4.53275 4.54227
10000.0 3.67174 3.75239 4.13617 4.56947 4.66230 4.67264

0.00 4.69409 473154  4.94831 5.27292 5.35322 5.36239

1.00 4.69745 473476  4.95083 5.27478 5.35497 5.36413

2 10.00 472779 476380  4.97370 5.29173 537090  5.37994

100.0 5.02875 5.05468 5.21296 547466  5.54328 5.55120

1000.0 6.50096 5.51977 6.63418 6.82770  6.87985 6.88590

10000.0  7.16288 7.19107 7.36797 7.69284  7.78663 7.79768
(Continued )
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TABLE 6.12. (Continued)

ky
u  Mode ky 0.00 1.0 10.0 100.0 1000.0 10000.0
0.00 7.85476 7.88329 8.06553 8.41378 8.51683 8.52902
1.00 7.85522 7.88375 8.06595 8.41415 8.51719 8.52938

3 10.00 7.85941 7.88788 8.06978 8.41753 8.52044 8.53262
100.0 7.90312 7.93102 8.10963 8.45244 8.55412 8.56615
1000.0 8.47891 8.49948 8.63454 8.90724 8.99049 9.00039
10000.0  10.33018 10.36151  10.57627 11.03887  11.17078  11.18555

0.00 1.87510 2.07404 2.45029 2.59156 2.60974 2.61161
1.00 1.95026 2.13046 2.48409 2.61940 2.63687 2.63867
0.8 1 10.00 2.40287 2.50532 2.73864 2.83611 2.84894 2.85026
100.0 3.82712 3.84606 3.88307 3.89618 3.89781 3.89798
1000.0 4.67897 4.81699 5.30157 5.54922 5.57824 5.58115
10000.0  4.68230 4.82670 5.40219 5.81882 5.87974 5.88603

0.00 4.69409 4.85644 5.59037 6.25503 6.36381 6.37514
1.00 4.69414 4.85655 5.59075 6.25561 6.36442 6.37575
2 10.00 4.69459 4.85753 5.59420 6.26091 6.36996 6.38132
100.0 4.70206 4.87246 5.63557 6.31920 6.43036 6.44192
1000.0 6.20838 6.25650 6.62687 7.20711 7.30973 7.32023
10000.0  7.15257 7.21529 7.68878 8.78617 9.07182 9.09899

0.00 7.85476 7.90049 8.25443 9.24250 9.60592 9.65030
1.00 7.85508 7.90080 8.25463 9.24254 9.60593 9.65031
3 10.00 7.85798 7.90355 8.25640 9.24294 9.60608 9.65044
100.0 7.88786 7.93185 8.27455 9.24690 9.60755 9.65166
1000.0 8.24674 8.27293 8.49493 9.28874 9.62186 9.66352
10000.0  9.46537 9.46702 9.48155 9.58454 9.71318 9.73699

0.00 1.87510 2.05395 2.29117 2.35644 2.36415 2.36493
1.00 2.01000 2.14907 2.34704 2.40368 2.41042 241111
1.0 1 10.00 2.63892 2.66623 2.71468 2.73095 2.73297 2.73317
100.0 3.64054 3.68184 3.78882 3.84032 3.84749 3.84824
1000.0 3.89780 4.00421 4.35620 4.58450 4.62047 4.62427
10000.0  3.92374 4.03808 4.42292 4.67543 4.71512 4.71932

00 3.9266
0.00 4.69409 4.86860 5.28872 5.47087 5.49503 5.49753
1.00 4.70379 4.87680 5.29328 5.47404 5.49803 5.50051

2 10.00 4.79371 4.95203 5.33488 5.50295 5.52539 5.52770
100.0 5.61600 5.65171 5.75618 5.81301 5.82126 5.82212
1000.0 6.87629 6.91393 7.08432 7.25212 7.28464 7.28819
10000.0  7.05070 7.11325 7.41534 7.73343 7.79572 7.80252

00 7.0686
0.00 7.85476 7.96567 8.35306 8.59821 8.63508 8.63895
1.00 7.85682 7.96760 8.35436 8.59905 8.63587 8.63973

3 10.00 7.87565 7.98518 8.36607 8.60673 8.64295 8.64675
100.0 8.08409 8.17596 8.48887 8.68705 8.71725 8.72042
1000.0 9.55253 9.55375 9.55931 9.56499 9.56613 9.56625
10000.0  10.15498  10.19578 10.42747 10.76056  10.84018  10.84919
00 10.210

(1) Bold results are presented for a cantilever beam (k; =k, =0) and a clamped-pinned beam
(ky = 00, ky = 0).
(2) The shape mode expressions are presented in Lau (1984).
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6.4 BEAMS WITH A TORSIONAL SPRING AT
THE PINNED END

A beam with typical boundary conditions at the left-hand end and elastic spring support at
the right-hand end is shown in Fig. 6.16.

>:<Left end m, Z, EI kr!)t)
| &
X

X FIGURE 6.16. Design diagram: left-hand end of the beam

is free, or pinned, or clamped.

The natural frequency of vibration is

2* [l
w:l—z o m = pA

where A is a frequency parameter.

The exact solution of the eigenvalue and eigenfunction problem (frequency equation
and mode shape vibration) for beams with a classical boundary condition at the left-hand
end and elastic supports at right-hand end are presented in Table 6.13 (Anan’ev, 1946;

Weaver et al., 1990; Gorman, 1975); Special cases are presented in Table 6.14.
orl

. . x
Dimensionless parameters are k¥, = —= and ¢ = 7 0<¢é<l.

rot — EI

Example. The clamped—pinned beam has a rotational spring at the pinned support.
Calculate the frequency vibration and compile the expression for mode shape.

Solution. Let parameter

kel
K= g =308

The root of the frequency equation

sin A cosh 4 — sinh A cos A
cosAcoshZ — 1

k* =2

is 4 = 4.20.
The frequency of vibration

2 [EI 422 [EI y
W =——=—/—, m=pAd.
2N m 2 \N'm p

inh 4 — sin A
p(4.2) = LT 01052
cos A — cosh A

Parameter
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Expressions for mode shape vibration and slope may be presented in the form

X(&) = sin A& — sinh A& 4 y(cos AE — cosh AE), L = 4.2,y = —1.01052,
X'(&) = Acos A — cosh A&) + pA(—sin Af —sinh 2¢),0 < ¢ < 1

TABLE 6.14. Special cases

Parameter Beam type Frequency equation Related tables
kot =0 Free—pinned sinAcosh 4 —sinhAcosA =0 53
Pinned—pinned sinl =0 53
Clamped—pinned sin Zcosh 4 — sinh Acos 2 = 0 53
kot = 00 Free—clamped 1+cosicoshi =0 5.3;4.4;45
Pinned—clamped tanA —tanh A =0 5.3
Clamped—clamped 1 —cosAcoshi =0 53;44;45

6.4.1 Numerical results
Some numerical results are presented below (Anan’ev, 1946).

Beam free at one end and pinned with a rotational spring support at the other. The
design diagram and frequency parameters 4; and A, for the fundamental and second

kyorl
mode of vibration, as a function of k¥, = =L are presented in Figs. 6.17(a) and (b).

rot — E]

Special cases

1. Pinned—free beam (k,,, = 0): tan A — tanh 2 = 0 (see table 5.3).
2. Clamped—free beam (k,,, = 00): coshAcos A+ 1 =0 (see table 5.3).

Beam pinned at one end and pinned with a torsional spring support at the other. The
design diagram and frequency parameters 4, and 4, for the fundamental and second mode

of vibration, as a function of £* = rml, are presented in Figs. 6.18(a) and (b).

EI

Special cases

1. Pinned—pinned beam (k,,, = 0): Frequency equation is S;(4) =0 — sinA =0 (see
table 5.3).

2. Pinned—clamped beam (k = 00): Frequency equation is B(1) =0 — tani —
tanh 4 = 0 (see table 5.3).

Beam clamped at one end and pinned with a torsional spring support at the other. The
design diagram and frequency parameters A, and 4, for the fundamental and second mode

k.1
of vibration, as a function of k¥ = E_rl’ are presented in Figs. 6.19(a) and (b).

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

BERNOULLI-EULER UNIFORM ONE-SPAN BEAMS WITH ELASTIC SUPPORTS

3|
>

Y

184 FORMULAS FOR STRUCTURAL DYNAMICS
ELm k@
! |
1

FIGURE 6.17(a). Design diagram.

h

Asymptote at AL=1.875
175 . /

!
/ Cantilever

. k =00
/ .,
1.25
0.75 I

0.5

Fundamental mode vibration
0<A <1.8750

Free-pinned

0: 5 J}/ /_ﬂl‘iﬂm‘

0 5 10 15 20 25 30 35 k*

Ao (L Asymptote at A =4.694 J)
Y e

46 L —T ! -
/ Cantilever
44 k==)
L’—J

4.2

Free-pinned :

0 it 39
392660— | 1
0 L—%
0

30 60 920 120 150 180 k*
FIGURE 6.17(b). Parameters 4; and 4, as a function of k* = k,o.//EI.
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ElLm krD
. !
[<€ ql
(@) FIGURE 6.18(a). Design diagram.
A
3.9266 -
38
g
3.6
Fundamental mode
3.4 3.1416 <A<
3.2 k=0
3.1416 F@
3.0

0 10 20 30 40 50 k*

A
Y, Asymptote at A= 7.0685
70 (x - - e
1
6.8
6.6 Second mode
6/2832 < A < 7.0685
6.4 k=0
62 ¢ [ !

0 20 40 60 80 100 k*
FIGURE 6.18(b). Parameters A, and 4, as a function of k* = k,o//EI.
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Special cases

1. Clamped—pinned beam (k,,, = 0). Frequency equation is tan A — tanh A = 0 (see table
5.3).

2. Clamped—clamped beam (k,,; = c0). Frequency equation is cosh Acos A = 1 (see table
5.3).

6.5 BEAMS WITH SLIDING-SPRING SUPPORTS

Exact solutions of the eigenvalue problem for beams with sliding-spring supports are

presented in Table 6.15 (Anan’ev, 1946).

2 [EI
Frequency of vibration is w = ki pA, where / is a root of the frequency
. m
equation.
. kP kP
Stiffness parameters are k¥ = - Y= =z
EI EI

6.5.1 Numerical results

Some numerical results are presented below (Anan’ev, 1946).

Beam with a sliding spring support at one end and free at the other. The design
diagram and numerical results are presented in Fig. 6.20(a) and (b), respectively.

)2
L [EI .
The natural frequency of vibration is w = ;—2 —, m = pA, where / is a root of the
m

frequency equation, which may be presented in different forms.

Form 1 @ =) A—()“)
CE " EQ)
Form 2 @ _ 3 S(A)T(2) — UV (A)
" EI S2(A) = T(AV(A)
Form 3 @ _,3coshAsin A + sinh 4 cos 4
" EI cosh Acos 4 + 1

Special cases

1. Sliding—free beam (k = 0). Frequency equation is 4(4) = 0 — tan A 4 tanh 1 = 0 (see
table 5.3)

2. Clamped—free beam (k = 00). Frequency equation is E(1) = 0 — cos AcoshA+ 1 =0
(see table 5.3).

Example. Consider a beam free at one end with a sliding spring support at the other.
Calculate the stiffness parameter £* that leads to a fundamental frequency parameter
A=14.
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I
| Elm kr)
! 5
. ! |
<
(2) FIGURE 6.19(a). Design diagram.
Ay
I I s e
4.6
k = oo
44 // !
Fundamental mode
42 3 0%66< A< 47300
4.0 k=0
39266 A
38 | i

A
l P Asymptote at A =7.8532 J)
78 Q B - --
o /
76 || k= oo
/[ =
74
! Second mode
7.2 7.0685 < 1< 7.8532
— g k=0 T S
7.0685 A — I E 1
70 Q ) O

0 20 40 60 8O 100 120 140  k*

FIGURE 6.19(b). Parameters A; and 4, as a function of k* = k.o //EI.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

BERNOULLI-EULER UNIFORM ONE-SPAN BEAMS WITH ELASTIC SUPPORTS

FORMULAS FOR STRUCTURAL DYNAMICS

188

0 = (I + vs007 ysoo)ly—

(7 sooqurs + y ysod y uis) v (q) y
9 wm”m 0 =1+ Y Ysodysod sary—padurer) oco=ly .N 0=y — 9k 7 @® 7w ]
€S 0 = Y yue} + y uey Qo1—3uIpI|g 0="9"1 (24
oo =%
0 = yque) + yue padureo—SuIprs 0="y"¢
co=1y 0= (I — Y ysody s0d)Zyly +
= , , 4 Iy) v —
€ [ =7 ysooysod padurejo-padue[) 0o =1lyg (proayuus oy E@Nwm w Mm ME @ “ &l
9 ‘e 0="1 oS, +€_f Sy — (e ] W Tq
oo 0= yus Supys_Surpris 0=y 0= (/g <1+ Swi DY — v (@)
0 = (I — Y5007 ysod)iy— Ly
7’9 €S [ = 7 4s0oy s00 padurejo—padurer) 0=y (7 sooy yuis + v ysooy uis) v (q)
€s 0 =Y yue) + 7 uey Surpris—padurer) 0="71 0=0ai— vy @) 1w
S9[qe) PRy uonenba Aouanbarg 2dAy weag sIooWeIed suonouny Areyuowd[g (q) adA1, weag

sased [eroadg

suonouny 195e1d—Ieswaudyoy (&)
uonenba Aouanbaig

spoddns Suuds Supyys yim sweaq ueds-ouo 10y uonenbs Louonbal] *GL'9 I1gVL

Any use is subject to the Terms of Use as given at the website.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.


https://telegram.me/seismicisolation

BERNOULLI-EULER UNIFORM ONE-SPAN BEAMS WITH ELASTIC SUPPORTS

BERNOULLI-EULER UNIFORM ONE-SPAN BEAMS WITH ELASTIC SUPPORTS 189
| ElLm
I
k
le ! )
l¢ N
(@) FIGURE 6.20(2). Design diagram.
A& [ [ | |
T Asymptote at A =1.875 l
1.6

1.2 ak:_m

Fundamental mode vibration
0.8 0< A<1.875

0.4 Guided-free

II]I k=0

0 10 20 30 40 50 60 70 @ k*

A Asymptote at A =4.694 J)
4.5 f!
4.0 —
/ k= oo
3.5 // l_
/ Second mode vibration
3.0 2.365 < A <4.694
25 / Guided-free
2.365 (IL. Im—(ﬂ
2

0 25 50 75 100 125 150 175 k*
FIGURE 6.20(b). Parameters /, and 1, as a function of k* = kI* /EI.
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Solution. According to Table 6.15, case 3, the required parameter is

AG) _ | 244327

fx = — 1.
=4 E0) 1.36558

=4.909

Example. Consider a beam clamped at one end with a sliding spring support at the other.
Calculate the stiffness parameter £*, which leads to a fundamental frequency parameter
2 =2.0.

Solution. The stiffness parameter according to case 1, Table 4.4

3AG) s 1.91165

k= ) - kil
FTA Do) T 256563

is negative. So, for a given type of beam, the stiffness parameter 4 = 2.0 is impossible to
achieve. The minimum value of the parameter A is 2.38 when Hohenemser—Prager
functions 4 and D have the same sign. In this case

= 4@ _ 2.38% x —0.12634 0.348

k*
r D() —4.94345

6.6 BEAMS WITH TRANSLATIONAL AND
TORSIONAL SPRING SUPPORTS AT EACH END

The supports of the beam, which are shown in Fig. 6.21, are all elastic. The spring
constants are k; and k, for the translational springs and k5 and k, for the rotational springs.
This means that the amount of force (moment) present is proportional to the amount of
deflection (rotation):

Va = kly(o’ t) an Vb = ka(l’ t)
M, =ky'(0.1) My, = k(1. 1)

The frequency equation for the general case is presented below.
[ET 7% [EI
The natural frequency of vibration is w = k*,/— = R kI =7, where the
m m

frequency parameter, £, is a root of the frequency equation.

C k3 El,m k4 ’)

2l FIGURE 6.21. Beam with elastic supports.
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The frequency equation for the general case is given below (Rogers, 1959; Weaver et
al., 1990; Maurizi et al., 1991).

k k
73 s 3 s
{ k EI k EI
ks ks
T EI —k T EI k

I I

I |

| 1=0
k k k k

: i coskl—EiIsinkl & sinkl—E—zlcoskl i coshkl—ﬁsmkl s smhkl—ﬁcoshkl :

k. k. k.
L —ksinkl +—2coskI —kcoskl — —Lsinkl ksinhkl +—~coshkl kcoshkl + —smh kl
EI EI EI

Special cases are presented in Table 6.16.

TABLE 6.16. Special cases

Left End Right End
Stiffness Boundary conditions Stiffness Boundary conditions
ky=0,k5=0 Free end mm——— ky =0,ky =0 j——— Frec end

K =0,k =00 Guided |[—— Ky =0,k =00 —| Guided
1 1

ky = 00, k; = 0 Pinned _g———i ky = 00, ky = 0 ——_Pinned

ky =00, k3 =00 Clamped '—i ky = 00, ky = 00 ;—i Clamped

Example. Derive the frequency equation for a clamped—clamped beam (Fig. 6.22).

Solution. The frequency equation becomes

() 1 0 1!
I 0 1 o |
I'sinki coskl sinhkl coshkl!
lcoski —sinkl coshkl sinhkl!

=0

k3 = k4 =
I I
kl = k2 — 0
« l N o
< > FIGURE 6.22. Design diagram.
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We expand this determinant with respect to the first row to get

—1(sinh? kI — cosh? kI — sin kI cos kI + cos kI cosh k)
—1(cos kI cosh kI + sin kI sinh kI — sin® kI — cos® kI) = 0

Using the well-known trigonometric identities leads to the frequency equation

cosklcoshkl =1 (Table 5.3).

= mEn ks=0

ky =0 k=0

A

I FIGURE 6.23. Design diagram.

Example. Derive the frequency equation for a clamped—free beam (Fig. 6.23).

Solution. The frequency equation becomes

0 1 0 1|
Lo 0 1 0 I—o
| —coskl sinkl coshkl sinhkl! ™~
|

—sinkl —coskl sinhkl coshkl!

This determinant is expanded to yield the frequency equation cos k/ cosh Xl = —1 (Table
5.3).

Example. Derive the frequency equation for the free—free beam. All stiffnesses
ki,i=1,...,4 equal zero.

Solution. The frequency equation becomes

I -1 0 1 1
) -1 0 1
| —coski sinkI coshkl sinhkl! ™
| _sinkl —coskl sinhkl coshkl!

0

The frequency equation is the same as that for a clamped—clamped beam.

6.7 FREE-FREE BEAM WITH TRANSLATIONAL
SPRING SUPPORT AT THE MIDDLE SPAN

The design diagram is presented in Fig. 6.24(a).

22
A |EI

The natural frequency of vibration is w = R m = pA, where A is a root of the
m

frequency equation, which may be presented in different forms (Anan’ev, 1946).
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ElLm % k
P R BN
(a) FIGURE 6.24(a). Design diagram.
A & — ;

7

I

1.6

|
1
k = oo
Asymptote at A =1.875
12 1 )

Fundamental mode vibration

0.8 0< A<1.875
Free-free

0.4 (k=0)

0 Q/

0 10 20 30 40 50 60 70 @ k*

Ao (L Asymptote at A =4.694 ]
45 __k=ocop =]
)
4.0 — —
L
3.5 ,/
Second mode vibration
3.0 2.365 < A <4.694
25 Free-free

(k=0)
2.365 s
s | 2

(b) 0 25 50 75 100 125 150 175 k*

FIGURE 6.24(b). Symmetrical mode of vibration: parameters 2, and A, as a function of k* = k* /EI.
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Symmetrical vibration

K 5 A(L)
Form 1. E:A EG)
Form 2. K _ cosh /sin / + sinh A cos A
2EI coshAcos A+ 1
Form 3. K S (SAHTG) = UV ()

261 1 TS =TV ()

Frequency parameters A, and 4, for the fundamental and second mode of vibration as a
function of k* = kI*/2EI are shown in Fig. 6.24(b).

Antisymmetrical vibration. The frequency equation
B(2) =0 — cosh Asin/ —sinh Acos A =0
or
T(AHUQL) =SV (A) =0
Frequency parameters are 4; = 3.926, 4, = 7.0685.
Special cases

1. Free—clamped (k = 00). Frequency equation is £(1) = 0 — cosAcoshA+ 1 =0 (see
table 5.3).

2. Free—free beam length of 2/(k = 0). Frequency equation is A = 0, A(1) = 0 (see table
5.3).
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CHAPTER 7

BERNOULLI-EULER BEAMS
WITH LUMPED AND
ROTATIONAL MASSES

This chapter focuses on Bernoulli-Euler uniform one-span beams with lumped and
rotational masses. Beams with classic and non-classic boundary conditions, as well as
elastic translational and torsional supports, are presented. Fundamental characteristics such
as frequency equations, natural frequencies of vibration and mode shape vibrations are
presented. For many cases, the frequency equation is presented in the different forms that
occur in scientific problems. The chapter contains a vast amount of numerical results.

NOTATION
A Cross-sectional area
A,B,C,D,E,S, Hohenemser—Prager functions
E Young’s modulus
EI Bending stiffness
g Acceleration of gravity, g = 9.8 m/s?
L Moment of inertia of a cross-section
J Moment inertia of the lumped mass
J* Moment inertia ratio
2
k, Frequency parameter, &, = 4,/%, A=k
ks kot Translational and rotational stiffness coefficients
kE, KE, Dimensionless translational and rotational stiffness coefficients
/ Length of the beam
M Concentrated mass
q Uniformly distributed load
S, T,U,V Krylov—Duncan functions
X Spatial coordinate
X(x) Mode shape
X,y z Cartesian coordinates
o Mass ratio

195
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A Frequency parameter, A*El = ml*w?

£ Dimensionless coordinate, & = x/!/

p, m Density of material and mass per unit length
® Natural frequency, w? = 2*El /ml*

7.1 SIMPLY SUPPORTED BEAMS

7.1.1 Beam with lumped mass at the middle-span

The design diagram is presented in Fig. 7.1(a). 5
T A% |EI
Symmetric vibration (SV). The natural frequency of vibration is @ = Vo
m
m = pA, where 1 is a root of the frequency equation, which may be presented in terms
of Hohenemser—Prager’s functions or in explicit form (Anan’ev, 1946).

M C(A)
Form 2. M 1 2 cosh Acos 4 (7.12)

2ml ~ Jcosh Zsin /. — sinh  cos /

. . M . -
Frequency parameters as a function of mass ratio o = I is presented in Fig. 7.1(b).
m

Antisymmetric vibration (AsV). The frequency equation and the corresponding roots
of the equation are

$(A)=0, A=mn, A=2n I3=3m,... (7.2)

The band frequency spectrum for symmetric vibration and the discrete spectrum for
antisymmetric vibration are presented in Fig. 7.2.

7.1.2 Beam with lumped mass along the span

The design diagram is presented in Fig. 7.3(a).
12
EI
Natural frequency of vibration is w = L ———, where 4 is a root of the frequency
P\ m(l+e)

equation, which may be presented in the following form (Morrow, 1906; Filippov, 1970):
2sin Asinh 4 — aA(sin A& sin A&, sinh A — sinh A&, sinh A&, sin ) = 0 (7.3)
The dimensionless parameters are

d
5127; &H=1-¢
o 7M —q
= M e =
(L +eml’ gpA

Parameter 2* for fundamental mode of vibration is presented in Fig. 7.3(b).
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mEl M
DR AN P AN o
< > > FIGURE 7.1(a). Design diagram.
x ]
1.5 J? . I
\ Symmetrical vibration
1.25

Fundamental mode
0.75 0<A<0.57m

—

Asymptote at A =0
0 O O

0 5 10 15 20 25 30 35 40 45 o

Symmetrical vibration

A2

4.8

47124
4.6

44

First mode
4.2 3.9266 <A< 1.5
4.0

3.9266

38 b o Half-beam

3.6

0 2 4 6 8 10 12 14 16 18 o*

FIGURE 7.1(b). Beam with lumped mass at the middle span. Symmetrical mode of vibration. Parameters
A, and 7, are a function of mass ratio oo = M /2ml.

ov L -
AsvV 0 1.5707 ‘3.9266 4.7124 ‘

T 2n
FIGURE 7.2. Frequency spectrum for a pinned-pinned beam with lumped mass.
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R

O
&d M Z«,EI,_Z_

< ! > FIGURE 7.3(a). Design diagram.
7\'4
97.408 =0
” \\\
0.1
\
80 \ \ \ ——O 81216
N 0.2
70 \
\ \\Q 69.458
60 N 60.766
0.4
50 Q 53.935
~— 48502
40 0.5
30 1.0 O 32.247
Fundamental mode
20 | | |

0 01 02 03 04 ¢&=d/
FIGURE 7.3(b). Simply supported beam with lumped mass along the span. Frequency parameter Hisa

function of mass ratio « and spacing &;.

Special case. Lumped mass at the middle of the beam.
Symmetric vibration. The frequency equation is

A A ok A A A A
coshicos 2771 (coshi smE - smhicos 5) =0 (7.4)

Parameters A for the fundamental frequency of vibration are listed in Table 7.1.
Antisymmetric vibration. The frequency equation and corresponding roots of the
equation are

A
sinEZO, A=2nm, n=123,...
The expressions for mode shape vibration are presented in Section 7.6.
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TABLE 7.1. Simply supported uniform beam with lumped mass at middle of the span: Frequency
parameter A for fundamental symmetric vibration

o 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.75
A 3.142  3.068 3.002 2942 2887 2838 2792 2710 2639 2496

1.0 2.0 4.0 6.0 8.0 10 15 20 40 60
A 2383 2.09 1.809 1.649 1.542 1.463 1.327 1.237 1.044 0944

153

7.1.3 Beam with equal lumped masses

The design diagram of a symmetrical beam with lumped masses is presented in Fig. 7.4(a).
The natural frequency of vibration equals

N /E] (A,—n)z EI
i~ 12 2 m

where 4; are roots of the frequency equation.

Frequency equation. (Filippov, 1970)

v vm ,
cos? — — (cosh A + cos 4) cos — + cosh /.cos 4
n

D(J) = - L M (7.5)
A . . . . v 2mi,
3 [cosh Asin A — sinh A cos A + (sinh A — sin 1) cos —]
n

where 7 is a number of segments, 0 =1, 2, 3, ... are natural numbers. The curves D(4) for
n = 4 are presented in Fig. 7.4(b). Parameters A are the points of intersections of the line
n = M /2ml with curves D(A); the numbers i = 1, 2, 3, ... correspond to frequencies ;.

The relationship between number n of segments and number i of the frequencies is
presented in Table 7.2.

Example. Calculate the natural frequencies of vibration for the uniform symmetrical
simply supported beam with three equal point masses, shown in Fig. 7.5. Assume, that
mly =2M.

M
Solution. The number of segments n = 4. Parameter ol = 1.
mey
12 13
The horizontal line D(Z) = 1 intersects the curves D(A) for - Z; i 5, 1 at the
following values of frequency parameters A
i 1 2 3 4 5 6 7 8 9

A 0.60 1.19 1.76 3.48 4.10 4.69 6.62 7.21 7.73
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M M M M
O O O
7 7 A4
a) & :2 n = number of segments.
/ 1 ‘ / 1 Ji I

.

nly=1

rel

FIGURE 7.4(a). Simply supported beam with lumped masses.

D(4) I
/V/n=1 /4
3
il s
) - ) = o 1/2
=
. L-2/3
. ‘(\/ 3/4
Y \/(
0
-1 ]
0 4 5 6 2n A
FIGURE 7.4(b). Graph of D(Z) for different v/n. Two groups of curves for A < n, and © < 4 < 2n. Third
group for A > 251 is not shown; A = 1, 2, 3, ... are natural numbers.

TABLE 7.2. Simply supported symmetrical uniform beam with equal lumped masses: Additional
parameters for graph D(4)

Number n of

segments 2 3 4 5
Parameters v/n

of the curves 1/2 1/3,2/3 1/4,2/4=1/2,3/4 1/5,2/5,3/5,4/5
Number i of the

frequencies 3 6 9 12

FIGURE 7.5. Simply supported beam with
lumped masses.

]
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Natural frequencies of vibration are

0.6 [EI (0.6 x 4)?* [EI (1.19 x 4)
967 el M=

o = =7 = = ..
B Nm 2 m’ 2 m’

Example. Calculate the natural frequency of vibration for the uniform symmetrical beam
with one point mass, shown in Fig. 7.6. Assume, that ml; = M.

2L =1 J FIGURE 7.6. Simply supported beam with one
< ’\ point mass.

M
Solution. The number of segments n = 2. Parameter Il 1.
1

The horizontal line D(1) = 1 intersects the curves D(4) for - E at 1 =1.19, 4.10,
7.21.
Consequently, the frequencies of vibration are

(119 x 2 19 x 2) /E] 2. 382 EL _ (410 x2)? (7.21 x 2)
Wy = — = [
2 \m 2 m

Parameter A = 1.19 corresponds to symmetrical vibration with one half-wave;
Parameter A = 4.10 corresponds to antisymmetrical vibration with two half-waves;
Parameter A = 7.21 corresponds to symmetrical vibration with two half-waves.

7.1.4 Beam with the spring-mass at the middle of the span

The design diagram is presented in Fig. 7.7(a).
2

El
Natural frequency of vibration is w = 1—2‘/—, where A is a root of the frequency
equation. m

Frequency equation for symmetrical vibration. (Anan’ev, 1946), see Fig. 7.7(b)

o c)
F 1. ———= 7.6
om T i T T IBG) (7.6)
3k*
o 2 cos Acosh 4
F 2. = 7.6
o 1— 4% AsinZcosh 2 — sinh A cos 1) (7.63)
3k*
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m,El
Lo k % 2
M
L
< 21 < FIGURE 7.7(a). Design diagram.

where the dimensionless mass and stiffness parameters are

1.0

0.8

Q=

0.6

—
—
—

04

[/l
l
L

02 L

0 4 8 12 16 20 24 28 32 3

FIGURE 7.7(b). Simply supported beam with a spring mass at the middle of the span. Fundamental mode
of vibration. Frequency parameter 4 is a function of mass ratio o = M /2ml and stiffness ratio k* = kI> /6EI.

7.1.5 Beam with equal lumped masses on elastic supports

The design diagram of a symmetrical uniform beam with lumped masses on elastic
supports is presented in Fig. 7.8.
The natural frequencies of vibration are

7 [EI

w: = —
i~
L Vm
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M M M m,El
= % ¢ % rEE T
< I’ll 1= [ J
FIGURE 7.8. Design diagram.
M m,El
£ % nd
k
b
21 1=

1 FIGURE 7.9. Design diagram.

where A are roots of the frequency equation, which may be written in the form (Filippov,
1970)

2

T T
—— h / A — h / A
cos p, (cosh Z + cos 1) cos p + cosh / cos M 1 kB3

1
=7 (7.7)

A 7

3 [coshxl sin A — sinh A cos 4 + (sinh A — sin 1) cos %] 2mly )7 2EI

where n is the number of segments and v = 1,2, 3, ... are integers.
The relationship between the number of segments, # and the number, 7, of the frequency
of vibration is presented in Table 7.2.

TABLE 7.3. Simply supported uniform beam with one lumped mass on elastic support at the middle
of the span: Fundamental frequency parameter 4 for symmetrical vibration

k*

0.0 1.0 2.0 4.0 6.0 8.0 10.0 150 20.0 40.0 60.0
o m

m 1.571 1.192 1.048 0.904 0.825 0.771 0.731 0.663 0.619 0.522 0.472

50 1.822 1.386 1.219 1.052 0960 0.897 0.851 0.772 0.720 0.607 0.549
10.0  1.995 1.522 1339 1.156 1.054 0.985 0.935 0.848 0.791 0.667 0.603
250 2332 1.794 1579 1363 1.243 1.162 1.103 1.000 0.933 0.787 0.711
50.0  2.662 2.076 1.830 1.580 1.441 1.348 1.278 1.160 1.081 0912 0.825

100 3.027 2426 2.143 1.853 1.690 1.581 1.499 1360 1.268 1.070 0.968
200 3.37 2.839 2523 2186 1995 1.866 1.770 1.606 1.497 1263 1.142
400 3.623 3280 2.968 2.585 2362 2210 2.096 1902 1.774 1.496 1.353

(1) First row (Case o = 0) corresponds to the simply supported beam with the elastic support at the middle of the
span.

(2) First column (Case & = 0) corresponds to the simply supported beam with the lumped mass at the middle of
the span (see Equation (7.5)).
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Special case. Let [, = 0.5] (Fig. 7.9).
The number of segments n =2 and frequency equation for i =1 (fundamental
frequency of vibration) becomes

2 cosh /. cos A M 1 k3 (78)
AcoshAsin A —sinh Acos A~ 2ml, 2% EI ’
. ki3 M o
Parameters A, as a function of £* = 7 and o = o are listed in Table 7.3.
m
7.2 BEAMS WITH OVERHANGS
7.2.1 Beam with one overhang and a lumped mass at the end
L
O
& mEl M
L |
! > FIGURE 7.10. Design diagram.
The design diagram is presented in Fig. 7.10.
The natural frequency of vibration is
3 [ET 2% |EI
== |——=—-—= |—

I% my 12 my

where / is a root of the following frequency equation (Filippov, 1970)
(cosh /¢ sin A& — sinh AE cos A¢&)(cosh An sin Ay — sinh Ay cos A1)
— 2 sinh A¢ sin A&(1 4 cos Ay cosh An)
M . . y o s .
42— A[(cosh A& sin A& — sinh A& cos AE) sin Ay sinh Az =0 (79

m !
1 + sinh A& sin A&(cosh A sin Ay — sinh Ay cos An)]

Here, dimensionless parameters are

h
«/:7; :1—
c=75m ¢
m; =m(l +e), e=2
gm

Special cases

1. Pinned-pinned beam. In this case ¢ =1, and 5 = 0.

& 14
J
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The frequency equation is

sinhAsinZ =0 (see Table 5.3)
2. Clamped beam with a lumped mass at the end. In this case £ =0, and n = 1.

M

EX ©

T

The frequency equation is

M
1 4 cos Acosh A — —Z/l(sin Acosh A —cos Asinh ) =0 (see Table 7.6).
nm

3. Beam with one overhang (M = 0) (Morrow, 1908; Chree, 1914) (see Section 5.2).

& B

The frequency equation is

(cosh A& sin A& — sinh A& cos A&)(cosh Ay sin 2y — sinh A cos An)
— 2sinh A¢ sin 2&(1 + cos Ancosh i) =0

7.2.2 Beam with two overhangs and lumped masses at the ends

The design diagram is presented in Fig. 7.11(a). The natural frequency of vibration is given
2
- |E
by w = 2\ where / is the root of the frequency equation.
m
Symmetrical vibration. The frequency equation in terms of Hohenemser—Prager’s
functions (Anan’ev, 1946) is

M 1 CL( — [EGLF) — AL — [BOIY)

ml . CO(1 = [EBGIE) + AT = 1918, () (7.10)

where the dimensionless parameters are

1 1 M
=, 1;:2—21, 1:11+52, =

The frequency parameters / as a function of mass ratio « = M /ml and parameter /j* =/, /I
for the fundamental mode of vibration are shown in Fig. 7.11(b).
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m,El

le

Zl 12 ‘ Zl

2/

FIGURE 7.11(a). Design diagram.

A

N\
22 K

\\- 1,"=0.1

Nl

1.9 NG

_\.\ - //()3
1.6 ‘\ ";‘

N T~
1.3 Neo .\..;5-'§'~
. ST Vanad a= v —
1.0 . '"//‘-~... .
04 0.6

0.7

0 06 12 18 24 30 36 42 o=M/ml

FIGURE 7.11(b). Beam with two overhangs and lumped masses at the ends. Fundamental mode of
vibration. Frequency parameter A as a function of mass ratio o = M /ml and geometry ratio /f =1,/1.

Antisymmetric vibration. The frequency equation may be presented in the form

M _ 1 SiA(1 = IMIELF) — B — 11)]B(I})
ml - ABA(1 = I})] SilA1 = 1)) = S, (AF)

(7.11)

Example. Derive the frequency equation for the symmetrical vibration of a three-span
beam with pinned supports at both ends.

Solution. This case corresponds to a simply-supported beam with two overhangs and two
infinite lumped masses at the ends (M = oc0). The frequency equation is

LA = IMIBOLE) + CIAL — IDIS,(AF) = 0

7.3 CLAMPED BEAM WITH A LUMPED MASS
ALONG THE SPAN

Figure 7.12(a) shows a fixed—fixed beam with a uniformly distributed load ¢ and a
concentrated mass at an arbitrary location d from the left support.
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Y R R
O

o d_M

B [

(@) FIGURE 7.12(a). Design diagram.
) 72 EI q
The natural frequency of vibration of the beam is w = 7 m, e= ﬁ The
m e g

frequency parameters A are roots of the following frequency equation (Filippov, 1970).

LU+ UEV(E&) YO+ V&) |

\ ", (7.12)
(U'(D) +ad"UE)V(&) V(1) + ol V(ENV'(&)

where Krylov—Duncan functions and dimensionless parameters are

1 )
U = ﬁ(cosh A& —cos A&)

V) = 2%(sinhiﬁ —sin 4&)
d M
51:73 SH=1-¢; f:% azm

The frequency parameter A as a function of mass ratio o and the parameter &, for the
fundamental mode of vibration are shown in Fig. 7.12(b) (Morrow, 1906; Pfeiffer, 1928).

A
47300 (s
45 ~— T 0=0.1
\ 0.2 ~——
™~ — 4.266
4.0 0.5 T
\ ———— 3.848
1.0 £
35 \
Fundamental mode 0 3.438
3.0
0 0.1 0.2 0.3 0.4 € =dl

FIGURE 7.12(b). Clamped beam with a lumped mass along the span. Fundamental mode of vibration.
Frequency parameter 4 as a function of mass ratio « = M /ml and geometry ratio /§ =, /1.
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Special case. Let d = 0.5]. The frequency equation is DD, = 0, where
1 s , )
D, = <sin5cosh% — cos %sinh %)

A A A A ah A A
D, = [coshisini + sinhicos 3 + % <coshicos 5~ 1):|
Antisymmetric vibration (AsV). The frequency equation is D; = 0. In this case, point
¢ = 0.5 is the nodal point. In terms of Hohenemser—Prager functions, a frequency equation
and frequency parameter are

D, = B(0.54) =0 — 0.5/, = 3.92651

So, the equation D; = B(0.54) = 0 corresponds to clamped—pinned beam of length 0.5/
and mass M attached on the axis of symmetry. In this case, it is possible to assume that
M =0.

Symmetrical vibration (SV). The frequency equation is D, = 0. Parameter A, of the
fundamental frequency vibration (first mode of symmetric vibration) can be taken from
Table 7.4(a).

Parameter 45 of the third frequency of vibration (second mode of symmetric vibration)
is listed in Table 7.4(b).

TABLE 7.4(a). Clamped uniform beam with lumped mass at the middle of the span: Fundamental
frequency parameter A for symmetric vibration

o 0.0 0.05 0.10 0.15 0.20 0.25 0.50 0.75 1.0 1.5
A 4730 4592 4470 4362 4.266 4.180 3.848 3.014 3.438 3.182

o 2.0 4.0 6.0 8.0 10.0 15.0 20.0 25.0 30.0 00
A 3.000 2574 2342 2.188 2.074 1.880 1.752 1.658 1.586 0.0

TABLE 7.4(b). Clamped uniform beam with lumped mass at the middle of the span: Frequency
parameter for second mode of symmetric vibration

o 0.00 0.10 0.50 1.0 10.0 20.0 40.0 00

A 10.996 10.588 10.000 9.786 9.500 9.480 9.470 9.46

The first mode of antisymmetric vibration: 1, = 7.8532 (see Table 5.3).

Symmetric vibration has a band frequency spectrum, while antisymmetric vibration has
a discrete frequency spectrum (Fig. 7.13).

Expressions for the mode shape vibration are presented in Section 7.7.

SV | |

AsV 0 4.730 | 9.460 10.996
7.8532

FIGURE 7.13. Frequency spectrum.
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7.4 FREE-FREE BEAMS

209

7.41

Beam with a lumped mass at the middle of the span

Figure 7.14(a) shows a free—free beam with concentrated mass at the middle of the span.

The natural frequency of vibration is w =

roots of the frequency equation.

Symmetrical vibration.

M
F . —=
orm 2ml
Form 2.
M
F 3, —=-—
orm 2ml

Symmetrical vibration

AE()
M 1SATE) = URV(A)

2ml 4 S2(A) — TAV()
1 cosh Asin A + sinh A cos A

FIGURE 7.14(a).

coshAcos 4+ 1

Design diagram.

2 [EI i
Vo The frequency parameters A are the
b Vm

The frequency equation may be presented as follows.

(7.13)

A
2.365 Free-free (21) Fundamental mode
25—
20 b — —
1.8754) Asymptote at A=1.875
1.75
1.5
0 1.0 2.0 3.0 4.0 5.0 o
A
5.498 Free-free (21) Third tiiods
5.25 \ —
5.0 ~
4,75 —— E
429545 Asymptote at A=4.694
0 1.0 2.0 3.0 4.0 5.0 o

FIGURE 7.14(b).

Free—free beam with a lumped mass at the middle of the span. Fundamental and third
mode of vibration. Frequency parameter 4 as a function of mass ratio o« = M /ml.
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Frequency parameters 4, as a function of the mass ratio o« = M /2ml for symmetrical modes
of vibration (fundamental and third mode of vibration) are shown in Fig. 7.14(b) (Anan’ev,
1946).

Antisymmetric vibration. The frequency equation may be presented in a different
form, as follows

Form 1. B(A) =0
Form 2. T(A)UL)—SA)V(2) =0 (7.14)
Form 3. coshAsinA —sinhAcos A =0

The roots of the frequency equation are
Ay =3.92651; 1, =7.06848

The symmetric vibration has a band frequency spectrum and the antisymmetric vibration
has a discrete frequency spectrum (Fig. 7.15).

sV | | | | N
AsV 0 1875 2.365| 4694  5.498 |

3.0265 7.0685
FIGURE 7.15. Frequency spectrum.

The case A = 0 corresponds to the vibration of the beam without bending deformation
(vibration as a rigid body) (Table 5.3).

M
Example. Find the mass ratio parameter o = i’ which leads to frequency parameter
A=22. "

Solution. The frequency equation is

M 1AG)
2ml~ AE(A)
so parameter o = —%% = 0.288.

7.4.2 Beam with a translational spring and a lumped mass at the middle
of the span

Figure 7.16(a) shows a free—free beam carrying the lumped mass supported by one spring
at the middle of the span.
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m,El % k
‘ N ‘
/ | /
I 1 1
(a) FIGURE 7.16(a). Design diagram.

The natural frequencies of vibration are

2* [EI
0=—.—
2\N'm
The frequency parameter / is the root of the frequency equation.

Symmetrical vibration. The frequency equation may be presented as follows

v g4 3A()
Form 1. % oA _AE()»)
Form2. k¥ — ot = 132 (DT(4) — UA)V(2) (7.15)

S2(4) = T(DV(4)
Form3. k* — ait = 13 cosh /sin A + sinh A cos
coshdcos A+ 1

where dimensionless parameters are

M
T 2EI T 2ml

*

Frequency parameters 4 as a function of mass ratio « = M/2ml and stiffness ratio
k* = kI’ J2EI for the fundamental and third modes of vibration are shown in Fig.
7.16(b) (Anan’ev, 1946).

Special cases for symetrical vibration are presented in Table 7.5.

TABLE 7.5. Free-ended uniform beam with translational spring and lumped mass at the middle of
the span: Frequency equations

Design diagram Parameter Frequency equation Related formulas
1A
M. k=0 o= —j% Section 7.4

A(A) .
—_ * — )3
k % M=0 k* =2 EQ) Section 6.7

Antisymmetric vibration. The frequency equation may be presented as follows:

Form 1. B(1) =0
Form 2. T(A)UL) —SA)V(A) =0 (7.16)
Form 3. coshAsinA —sinhAcos A =0
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A -
i (J> Asvmptote at 4 = 1.875 S e S -}A)
== " o =T" -
p — L« = .- -
L« = * ) -- . —/
w— - -
= = |
- - _,...-"+-‘
\ — [
) |
— N
!
5 20 50
0 Fundamental mode
0 20 40 60 80 100 120 140 &

A
4.6944} CI)
4.0 =0 |y ..-—-—"":'_.'.:-—-'
/ 13 --_.—"— --___.--""'"--
4 — =T 1
-"’ L~ -"_,..c-'"-.
3.0 / ,-‘/z’ [ 2 5\...--—-"""
” L N - p—
/" ad 4 N — 11
4 ,'/’_,o _—___. [_1l=d4-9--
20 - !!-__-"""-—---""""' \ -
>0 \\
50
1.0
0
0 100 200 300 400 500 600 700 k'

FIGURE 7.16(b). Free—free beam supported by a spring with a lumped mass at the middle of the span.
Symmetrical vibration. Frequency parameter A as a function of mass ratio « = M /ml and stiffness ratio
k* = kI3 )2EI.
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The frequency parameters are 4; = 3.926, 1, = 7.0685.
The symmetrical vibration has a band frequency spectrum and the antisymmetric
vibration has a discrete frequency spectrum (Fig. 7.17).

sv | | | |
AsV g0 1875 2365 |4.694|

3.926 7.0685
FIGURE 7.17. Frequency spectrum.

Example. Calculate the dimensionless stiffness parameter k* which, together with mass
ratio o = 5.0, leads to the frequency parameter 4 = 1.6.

Solution. Stiffness parameter

A% _ 50x 1.6*+1.6 2.5070

K=ot + 23 =
TG 0.92474

=43.872

Example. For a free—free beam of length 2/, the parameters m, [ and EI are known. Is it
possible to find parameters for a translational spring and a lumped mass at the middle of
the span which leads to the eigenvalue 1 = 2.2?

Solution. From the frequency spectrum graph we can see that parameter 4 = 2.2 cannot
be realized.

7.5 BEAMS WITH DIFFERENT BOUNDARY
CONDITIONS AT ONE END AND A LUMPED
MASS AT THE FREE END

A beam with typical boundary conditions at the left-hand end and a lumped mass at the
right-hand end is shown in Fig. 7.18.
Dimensionless parameters are

The frequency of vibration is equal to

/2 [EI

Left end

0

1

1

H m 1 EI FIGURE 7.18. Design diagram of a beam; the left-hand
' Y end of the beam is free, or pinned or clamped.
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where /1 is a root of the frequency equation. The exact solution of the eigenvalue and
eigenfunction problem (frequency equation and mode shape vibration) for beams with
classical boundary condition at the left-hand end and a lumped mass at right-hand end are
presented in Table 7.6 (Anan’ev, 1946; Gorman, 1975).

TABLE 7.6. Eigenvalues and eigenfunction for beams with different boundary conditions (left-hand
end) with a lumped mass at the free end

Left end Frequency equation Mode shape X (&) Parameter y
Free 1 _; sinh Z cos 4 - cosh } sin 4 sin A¢ + sinh A2 sin iﬁ— sinh 4
o 1 —cos Acosh 4 cosh A — cos 4

+ y(cos A& 4 cosh A¢)
2 sin Asinh / sin A

Pinned = in A vsinh A
e 2~ “cos Zsinh/ — sin/cosh / sin e+ sinh 28 sinh A
Clamped ~ 1 — jSinAcosh Zsinhicos 2 ) 5e in e sin 2 + sinh 4
o 1 + cos Acosh 4 . T cos A+ cosh
+ y(cosh & — cos AE) oS £ + cos

Special cases. (Related formulas are presented in Table 5.3).
If M = 0, then the frequency equations for a beam with different boundary conditions
are:

Free—free beam: 1 —cos AcoshA =0
Pinned—free beam: cos Asinh 4 —sinAcoshA =0
Clamped—free beam: 14 cos AcoshZ =0

If M = oo, then the impedance of the mass is equal to infinity, which corresponds to a
pinned beam supported at the right-hand end, so the frequency equations for a beam with
different boundary conditions become:

Free—pinned beam: sinh Acos A —coshisindA =0
Pinned—pinned beam: sinl =0

Clamped—pinned beam: sinAcosh 1 —sinhAcos A =0

NUMERICAL RESULTS

7.5.1 Cantilever beam with a lumped mass at the end

Frequency parameter A, the fundamental frequency of vibration, and 4,, the second
frequency of vibration, as a function of mass ratio « = M /ml, are listed in Tables 7.7(a)
and 7.7(b), respectively. Bold data correspond to the limiting cases.

Frequency parameters 4, and A, as a function of mass ratio o« = M /ml for fundamental
and second modes of vibration are shown in Fig. 7.19 (Anan’ev, 1946).

The vibration has band frequency spectrum with mixed numbers of shape modes (Fig.
7.20). Point 4 = 0.00 corresponds to clamped—free beam with M = oo. It means that the
beam does not vibrate. Point A = 1.875 corresponds to a fundamental mode of the
clamped—free beam without M. Points 4 =3.926 and 1 =4.6941 correspond to the
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TABLE 7.7(a). Cantilever uniform beam with a lumped mass at the free end: Frequency parameter
for fundamental mode of vibration

o 0.0 0.05 0.10 0.15 0.20 0.25 0.50 0.75 1.0 1.5
A 1875 1791 1723 1.665 1.616 1574 1420 1320 1.248 1.146

o 2.0 4.0 6.0 8.0 10 15 20 25 30 40 00
1.076 0917 0.833 0.777 0.736 0.666 0.621 0.587 0.561 0.523 0.0

~

TABLE 7.7(b). Cantilever uniform beam with a lumped mass at the free end: Frequency parameter
for second mode of vibration

o 0.00 0.05 0.10 0.15 0.20 0.25 0.50 0.75 1.0
A 4.694 4513 4400 4323 4267 4225 4111 4.060  4.031

o 1.5 2.0 3.0 4.0 6.0 8.0 10 15 20 0
A 4.000 3983 3965 3956 3946  3.941 3938 3935 3933  3.926

A

I_ Fundamental
1 F? mode vibration

1.0 \

0.5 —

A
|_ Second
4.694 mode vibration

35
0 25 50 75 10 125 «

FIGURE 7.19. Cantilever beam with a lumped mass at the free end. Frequency parameters 4, and Z, as a
function of mass ratio o = M /ml.
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sv | | | |

AsV 00 1875 3.9266 4.6941
FIGURE 7.20. Frequency spectrum.

fundamental modes of vibration of a clamped—pinned beam and the second mode of
vibration of a clamped—free beam without M, respectively.

Example. Consider a clamped—free beam carrying a lumped mass M at the free end,
o =M/ml =0.5. Calculate the eigenvalue and eigenfunctions that correspond to the
fundamental mode of vibration.

Solution. From Table 7.7, the frequency parameter 1 = 1.420.
Parameter y according to Table 7.6 is

_ sini+sinhZ 0.98865 +1.94770

- _ = - = —1.255038
cos A+ cosh A 0.15023 + 2.18942

Mode shape of vibration

X(&) = sinh 1.420¢ — sin 1.420¢ — 1.255038(cosh 1.420¢ — cos 1.420¢)

Nodal point at & = 0.0.
The maximum velocity of the free end

[Umax| = AX (1) = 1.420 x [1.94770 — 0.98865 — 1.255038(2.18942 — 0.15023)]
=2.2723

7.5.2 Cantilever beam with a lumped mass along the span

Figure 7.21(a) shows a clamped—free beam carrying the uniformly distributed load and one
lumped mass along the span.
Natural frequencies of vibration are

A2 EI y
W=— [—— m=
2\ m(1 +e) p

VR ERZ
|
O
\ mELA M
PR TR
/ o o
> FIGURE 7.21(a). Design diagram.
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FIGURE 7.21(b). Cantilever beam with a lumped mass along the span. Fundamental mode of vibration.
Frequency parameter A, as a function of mass ratio o« = M /ml and spacing /* = [, /1.

The frequency parameters A are the roots of the frequency equation, which may be
presented in terms of Krylov—Duncan functions (Filippov, 1970)

S2(2) — TOYV () + ISP — PYUSCYV (AI*) — TOYU Q) + nT(1 — 1%)]
X (SOYUGI*) — VYV (AI*)} = 0 (7.17)

where dimensionless parameters are

M _4. m_h

"TUdem’ T gpd ]

Frequency parameters A as a function of mass ratio o = M /ml and mass position ratio
I* =1, /I for the fundamental mode of vibration, is shown in Fig. 7.21(b) (Anan’ev, 1946).
The beam has a band frequency spectrum, which is presented in Fig. 7.21(c).

0.0 1.8750  3.9265 4.694 7.0685  7.8547
FIGURE 7.21(c). Clamped—free beam with a lumped mass along the span. Frequency spectrum.

Special cases

1. If M =0 or [* = 0 (cantilever beam), then the frequency equation is

1+ cos AcoshA =0 (see Table 5.3)
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2. If [* =1 (cantilever beam with lumped mass at the free end), then the frequency
equation is

1 + cos Acosh A — nA(sin Acosh A — cos Asinh ) =0

(see Sections 7.2 and 7.5.3; Table 7.6).

7.5.3 Elastic cantilever beam with a lumped mass at the free end

Figure 7.22(a) shows a pinned—free beam carrying the lumped mass at the free end. A
rotational spring is attached at the pinned support of the beam. The restoring moment,
which arises in this spring, is M = k, 8—y

X

The natural frequency of vibration is

2 [El
=V e
Frequency parameters / are the roots of a frequency equation, which may be presented in
terms of Hohenemser—Prager functions (Anan’ev, 1946; Filippov, 1970)

k*
M B - BO) 018
ml ~ 28,(A) + k*B(2) ’
where the dimensionless parameters are

Mkl
n—=— = —

ml EI
For a fundamental mode of vibration frequency, parameters /A, as a function of mass ratio
and stiffness ratio, are shown in Fig. 7.22(b) (Anan’ev, 1946). For k* = 0, frequency
parameter 2 = 0. This case is presented by a horizontal line, which coincides with the o-
axis. It means that the beam rotates around pinned support as a solid body without any
bending deformation.

Frequency equations for special cases

1. Pinned—free beam with a lumped mass at the free end (k,,, = 0)

M B(A) M cosh Asin /4 — sinh A cos A
= - Table 7.
ml = 8,()  ml 2J.sin 4 sinh 2 (see Table 7.6)

2. Elastic cantilever beam (M = 0)

cosh Asin A — sinh A cos A
1+ cosh/sin 4

3. Clamped—free beam (k,,, = oo, and M = 0)

K*E()) — 2B()) = 0 — k* — )

=0 (see Table 6.11)

E(A)=0— 1+coshisinA =0 (see Table 5.3)
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FIGURE 7.22(a). Design diagram.
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FIGURE 7.22(b). Pinned—free beam with a rotational spring at the pinned end and a lumped mass at the
free end. Fundamental mode of vibration. Frequency parameter /4 as a function of mass ratio o = M /ml and
stiffness ratio k* = kI /EI.

4. Clamped—free beam with a lumped mass at the free end (k,,, = 00)

M EQX) N ml icosh Asin A — sinh Acos A (see Section 7.5.2)
ml~ AB(A) M 1 + cosh Asin A "

5. Pinned—free beam (k,,, = 0, and M = 0)
B(A) =0 — coshAsinA —sinhAcos A =0 (see Table 5.3).
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7.5.4 Beam with a sliding-spring support at one end and a lumped mass
at the other

Figure 7.23(a) shows a beam with the sliding-spring support at the left-hand end and free at
right-hand end. The beam is carrying the lumped mass at the free end; the restoring force,
which arises in the translational spring, is R = ky.

| EL m M
1

FIGURE 7.23(a). Design diagram.

J{I_ Fundamental
1.875 mode vibration
1.6 A

\ / 10

R / 2.0
1.0 ~ A
SoSN 74 1.0
N o P Tl —

0.8 D I R I Sy R iy E——
\.“. ...-‘.-'-._ -_-_-- Lr
0-6 .-"- ‘7-—_'—_ --.-“-:.
~. T —r——
S—
04 //"""/ Py — —
*: .
02 k*=0.1 0.
Rigid-body mode
0

(’\—..—..—... s s 5 s e s mm— e b me— s e
0

1 2 3 4 5 6 7T «

FIGURE 7.23(b). Elastic cantilever beam with a lumped mass at the free end. Fundamental mode of
vibration. Frequency parameter / as a function of mass ratio & = M /ml and stiffness ratio k* = ki* /EI.

The natural frequency of vibration is

2P [EI

=\ M=
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The frequency parameters A are the roots of the frequency equation, which may be
presented in terms of Hohenemser—Prager functions (Anan’ev, 1946)

k*
Z_E() — A(%)
Mz - ﬁ—k* (7.19)
M C0) + 5 B()
A

where dimensionless parameters are

M kB3
_ *
v=i M=

Eigenvalues / as a function of mass ratio « = M /ml and stiffness ratio k% = kI* /EI for the
fundamental mode of vibration are shown in Fig. 7.23(b). For kf = 0, frequency parameter
A = 0. This case is presented by the horizontal line, which coincides with the n-axis. It
means that the beam is in translation as a solid body without any bending deformation.

Frequency equations for special cases

1. Sliding—free beam (k = 0, M = 0). The frequency equation is

A(A) =0 — tan A +tanh A = 0 (see Table 5.4)

2. Cantilever beam with a lumped mass at the free end (kK = o0). The frequency equation
is
E(2)
o =-
AB(A)

(see Sections 7.5.2 and 7.5.3; Table 7.6)

7.5.5 Beam with a translational and torsional spring support at one end
and a lumped mass at the other

Figure 7.24 shows a beam with non-classical boundary conditions—a translation and
torsional spring support at the left-hand end and a lumped mass at the right-hand end. The
restoring force and the restoring moment that arise in the translational and rotational
ay
krot 37’
X

The natural frequency of vibration is

springs are R = k,y and M = respectively.

2@
AR

ko

ELLm

ktr

d
:

y

FIGURE 7.24. Beam with non-classical boundary conditions.
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The frequency parameters / are the roots of the frequency equation which may be written
as (Anan’ev, 1946)

’fi;* [k*E()) — JB(J) — ni*S,(%) — nk* JB(2)] — AD(%)
A
+ n)2B() — nik*C(2) — k*A(2) = 0 (7.20)

where 4, E, B, D and S, are Hohenemser—Prager functions.
The dimensionless parameters are

kP ki M
r e — ot =
El T E " T

*
k§ =

Frequency equations for special cases.
1. If M =0, k,,; = 0, then the frequency equation is

k¥B(l) = —/>D(J) (see Section 6.2.1)
2. If M =0, k, = 0, then the frequency equation is

AD(A) + kFA(A) =0 (see Table 6.6)

3. If M = 0, then the frequency equation is
k&

“SRFE() = 2BU)) = AD(G) ~ KA() = 0 (see Table 6.9)

7.6 BEAMS WITH DIFFERENT BOUNDARY
CONDITIONS AND LUMPED MASSES

Figure 7.25 shows a beam with arbitrary boundary conditions and lumped masses along
the span; the specific boundary conditions are not shown.

The lumped masses M, are reduced to ‘equivalent’ distributed mass m. The value of this
mass is defined by the mode shape X;. The adjustment mass method is conveniently used
for the cases of different masses that have different intervals between them.

0Ox

S m,El Mn
O
Ay

M, M,
O O
A4 A4
L ‘
> X
Ll

X2

Xn

[

gl

FIGURE 7.25. Design diagram of a beam with arbitrary boundary condition and different lumped masses.
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7.6.1 Method adjustment mass

The natural frequencies of vibrations may be calculated by the approximate formula

22 EI

In this method, the eigenvalues /1 depend only boundary conditions and take the values as
for uniform beams without lumped masses. Eigenvalues /; for one-span beams with
different boundary conditions are given in Table 5.1. The adjustment uniform mass m;
corresponding to the ith eigenform is (Korenev, 1970)

12 )
mp=mt s Y XREM, &= (7.22)
s=1

where expressions X?(¢,) are the adjustment coefficient of the sth mass to the uniform
mass m. The normalized eigenfunctions X;(¢,) for one-span and multispan beams with
different boundary conditions are given in Applications A and B.

It should be emphasized that the symmetry of the position of the lumped masses, the
small difference between them as well as between masses and one of the beams, leads to a
more accurate result.

Example. Determine the fundamental frequency of vibration of the cantilever beam with
lumped mass at the free end, if the mass ratio o = M /ml = 0.5.

Solution. The first eigenfunction at ¢ =x// =1 is X;(1) =2.0. The adjustment of
uniform mass m; corresponding to the first eigenform is

m, =m+ %(2)2(0.5ml) =3m

The fundamental frequency of vibration is

3 |ET 1.875% [EI  1.4246* [EI
) = — —_——= — —_—— —_
T m, 2 \i3m 2 m

The accuracy value is 4 = 1.4200, the error is +1%.

Example. Determine the first and second frequencies of vibration of the pinned—clamped
beam with lumped masses located as shown in Fig. 7.26. Let M| = 0.2ml; M, = 0.25ml,
M; = 0.3ml; M, = 0.25ml. The x-coordinates of the masses are x; = 0.2/; x, = 0.3/;
x; = 0.5; x, = 0.81.

Solution. For the pinned—clamped beam, the exact frequency parameters are A, = 3,927;
Ay = 7.069 (Table 5.3).

For a beam with the given boundary conditions, the ordinates X; and X, for the
specified x, are taken from Appendix A and presented in Table 7.8.
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M, M, M; m,El M, I
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FIGURE 7.26. Design diagram of a beam with lumped masses.

TABLE 7.8 Ordinates of first and second eigenvalues at x = x;

X; 0.2/ 0.3/ 0.5/ 0.8/
X, 1.0346 1.365 1.4449 0.4557
X, 1.3935 1.1988 —0.5703 —1.0774

Adjustment of the uniform masses, corresponding to the first and second eigenforms
are

14 1
my=m+ o S X2 (o) M, =m +7[1.03462 x 0.2 +1.3652
k=1

x 0.25 + 1.4449 x 0.3 4+ 0.4557% x 0.25]ml; m, = 2.3581m
14 1
- X3 ()M, =m +7[1.39352 x 0.2 4 1.1988>

m2:m+lk:1

x 0.25 4+ (—0.5703)* x 0.3 4 (—1.0774)* x 0.25]ml; m, = 2.1354m

The fundamental and second frequencies of vibration are

W M [EL_3927 [ EI
YU\ m, T 2 V23581m
w2 [EL_7069 [ EI
2T RVmy o P V2.1354m

Example. Calculate the fundamental frequency of vibration for a cantilever beam with
the attached body having mass M and moment of inertia J (Fig. 7.27). The location para-
meter is x; // = 0.6 from the free end.

M
Assume that = and J = M = rPaml.
m

Solution. For a cantilever beam, A, = 1.8751 (see Table 5.3). For a beam with given
boundary conditions, the ordinates of eigenfunction X; and its derivatives X for the speci-
fied x; are taken from Appendix A.1

X, = 04598 and X| =2.0452
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m,EI,l I-I |
‘ Uy,

X1
FIGURE 7.27. Design diagram.

Adjustment mass

mo=m +%[X2(5)M +X2(ET =m +%(O.45982 x oml + 2.04522 x r*oml)
my = m[1 + 0(0.4598” + 2.0452% x ?)]

The fundamental frequency of vibration

o — 187512 EI
T m[1 + 0(0.2114 + 4.1853r2)]

The adjustment mass method for multispan beams is presented in Section 9.7.2.

7.7 MODAL SHAPE VIBRATIONS FOR BEAMS
WITH CLASSICAL BOUNDARY CONDITIONS

Tables 7.9, 7.10 and 7.11 present the eigenfunctions for beams with different boundary
conditions and one lumped mass along the span (Anan’ev, 1946; Gorman, 1975). Notation

22 [EI x d c
= o m=pd. E=C p=Z v ="=1-—1p.
[0} 2 m’m pA, & l"u la/ i Iz

7.7.1 Clamped beams at the one end, classical boundary condition at the
other and with lumped mass along the span (Table 7.9)

Compatibility conditions

1. Compatibility of displacement

X Olemy = X1l

2. Compatibility of slope

@ Al
de . T ae !,

E=p &=y

3. Compatibility of bending moment

X, (9)! EX,(8)!
| = |
déz E=p diz é=y
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4. Compatibility of shear forces (dynamic equilibrium between motion of the lumped
mass and adjacent shear forces)

X, ()] X! M
@ a0 = T A

Frequency equation. The expressions for mode shape vibration and compatibility condi-
tions lead to the four linear homogeneous algebraic equations with respect to coefficients
A, A5, B, and B,. A non-trivial solution exists if the determinant of the coefficients of the
matrix of the constants appearing in the four equations is equal to zero.

7.7.2 Pinned beams at the one end, classical boundary condition at the
other and with lumped mass along the span (Table 7.10)

2 [El x d c
= —.,/— = A = — = — :7:1—
w0 =gy m=pd, 4 ;OR=T 7= Iz

Compatibility conditions
1. Compatibility of displacements

X1 Olemy = X1,

2. Compatibility of slopes

@l Al
de ' T ae |,

E=u =y

3. Compatibility of bending moments

X O !
déz |5=14 dfz I§=v

4. Compatibility of shear forces (dynamic equilibrium of moving lumped mass)

X9 Fx(0)!
d& lézu de? Iizv

M
=it WXI (W

7.7.3 Beams with overhang and with lumped mass along the span
(Table 7.11)

22 [EI x
a):l—2 ;’ m:pA’ 527, w=
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7.8 BEAMS WITH CLASSIC BOUNDARY
CONDITIONS AT ONE END AND A
TRANSLATIONAL SPRING SUPPORT AND
LUMPED MASS AT THE OTHER

A beam with pinned or clamped boundary conditions at the left-hand end and non-classical
boundary condition at the right-hand end is shown in Fig. 7.29.
The natural frequency of vibration is

2 [EI
=V M
Frequency parameters A are roots of a frequency equation. The exact solutions of the
eigenvalue and eigenfunction problem (frequency equation and mode shape of vibration)
for beams with classic boundary conditions at the left-hand end and a lumped mass with
elastic support at the right-hand end are presented in Table 7.12 (Anan’ev, 1946; Gorman,
1975). Dimensionless parameters are

- g K 2 [EI

_ml oot [EH
"=u T El o YTV m

Numerical results. Eigenvalues / as a function of mass ratio and stiffness ratio for the
fundamental mode of vibration are shown in Fig. 7.30 (left end is pinned) and Fig. 7.31
(left end is clamped) (Anan’ev, 1946).

Example. Beam clamped at the one end with a translational spring support and lumped

mass at other end. Calculate the mass parameter # which leads to the frequency parameter
kP

/.= 1.2 if the relative stiffness k* = Vi 10.

Solution. Hohenemser—Prager functions at A=1.2 are E(1.2)=1.65611, and
B(1.2) = 1.14064.

The algebraic equation with respect to parameter o is

1.23 x 1.65611 1.24
102 4+10x =2 "= —
X T 064 P
and the root of the frequency equation is o = 0.01657699.
The mass parameter is # = ak™ = 0.1657699 and the relative mass is

M 1
—=—=6.0324
ml  ok* 6.03

M
k %
/ ‘ FIGURE 7.29. Design diagram of a beam; the left-hand end
< > of the beam is pinned, or clamped.

Leftend j,ET
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A
Asymptote at A=3.1416
3.5
A L)
EL m 30 Q : =0

ks | /] \ -7

20 /

1.5 R4 \ _
A \
\ 0.5
1.0 5
A}
10 0<A<3.1416

50 100 150 200 250 &k°

FIGURE 7.30. Fundamental mode of vibration. Parameter / as a function of mass ratio M* = M /ml and
stiffness ratio k* = kI° /EI.

A
Asymptote at A = 3.9266\
4.0 z
s e —ye——— [y byl Ny
M*=05 | 10
35 \ e IO T &
- T -
= __1--
ELm M 3.0 LY L _ ]
/ .‘°. - = \ - ’
L -l
25 7 -1
! 4 = LR
44 I il \4 0<A<3.9266
20 [ f3! L=
A
7
15 2 - Lt
0 50 100 150 200 250 300 350 k'

FIGURE 7.31. Fundamental mode of vibration. Parameter / as a function of mass ratio M* = M /ml and
stiffness ratio k* = k* /EI.
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Example. Consider a beam pinned at one end with a translational spring support and
lumped mass at other end.

Derive the expression for stiffness parameter £* that leads to the frequency parameter 1
. . M
if the relative mass M* = —.

ml

Solution. The frequency equation leads to the following expression for the stiffness
parameter

3sin Acosh A — cos Asinh A

k* = 2AMx+ )
ta 2sin Asinh 4

7.9 BEAMS WITH ROTATIONAL MASS

7.9.1 Beams with rotational mass at the pinned end and classical
boundary condition at the other

The beam with classical boundary conditions at the left-hand end and a rotational mass (J
is the rotational moment of inertia of the mass) at the right-hand end is shown in Fig. 7.32.

Left end Jo
eft en m, . EI

—x

ey X

FIGURE 7.32. Design diagram of the beam and notation; the left-hand end of the beam is free, or pinned,
or clamped.

7.9.2 Frequency equation and mode shape of vibration for beams with
different boundary conditions (left-hand end) with a point rotational mass
of the pinned right-hand end

The natural frequency of vibration is

2 [EI

Frequency parameters A are the roots of a frequency equation. The exact solution of the
eigenvalue and eigenfunction problem (frequency equation and mode shape of vibration)
for beams with classical and non-classical boundary conditions at the left-hand end and a
rotational mass at one end are presented in Tables 7.13—7.15 (Anan’ev, 1946; Gorman,
1975).

Dimensionless parameters are

f:f J*:pAl3
1’ J()
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Example. Find the fundamental frequency of vibration and mode shape vibration for a
clamped—pinned beam with a rotational mass at the pinned end. Assume the parameter

_ pAP

0

J* = 34.767.
Solution. The minimal root of equation

Je 1 —cos Acosh 4

sin A cosh A — sinh A cos 24

is A =1.48.
The fundamental frequency of vibration is

oo [EL_148® L
“eVm o o2 Nwm’ =7
Parameter A according to Table 7.13 is calculated by

sinh A — sin A

7(1.48) = = —0.48962

cos A —coshi

Mode shape

X(&) = sin 1.48¢ — sinh 1.48¢ — 0.48962(cos 1.48¢ — cosh 1.48%), & = x/I

Frequency equation for special cases (Table 5.3)

1. JO = 0
Free—pinned beam sinh Zcos A —sinAcosh4 =0

Pinned-pinned beam  sinl =0
Clamped—pinned beam sinAcosh A — sinh Acos 4 =0

2. Jy =00 In this case, the pinned support at the right-hand end converts to a clamped

support
Free—pinned beam — Free—clamped beam: 1+ cos Acoshi =0
Pinned—pinned beam — Pinned—clamped beam: tan A —tanh A =0

Clamped —pinned beam — Clamped—clamped beam: 1 — cos Acosh4 =0

7.9.3 Beams with rotational mass at the pinned end and a non-classical
boundary condition at the other

Design diagrams and corresponding frequency equations and eigenfunctions are presented
in Table 7.14 (Anan’ev, 1946; Gorman, 1975). Dimensionless parameters are

3 3
*:ml *:ktrl N :krotl _x
4 J’k" El’k“" E]’f I
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7.9.4 Beams with a pinned rotational mass and torsional spring at the
left-hand end and classical boundary conditions at the right-hand end

Design diagrams and corresponding frequency equations and the expressions for eigen-
functions are presented in Table 7.15 (Anan’ev, 1946; Gorman, 1975). Dimensionless
parameters are

mi? kol J* 2
J* = — N * = 1’01 N = — N =
g e = g kx, & 24
k;kot _J*

7.10 BEAMS WITH ROTATIONAL AND LUMPED
MASSES

Design diagrams and the exact solution of the eigenvalue and eigenfunction problem are
presented in Tables 7.13-7.16 (Anan’ev, 1946; Gorman, 1975). The natural frequency of

Lo 22 [EI N ml? ml

vibration is w = —,/—, m = pA. Dimensionless parameters are J* = —, 5, = —,

PN m J M,

where J is the rotational moment of inertia of mass; M is a lumped mass. Frequency
parameters A are roots of a frequency equation.

Example. Consider a design beam with two lumped masses at the free ends (Table 7.16).
Find the ratio o = #,/n, = M, /M, for n, = mi/M, = 10 which leads to 1 = 4.

Solution. The frequency equation from Table 7.16, case 1, may be rewritten by using
Hohenemser—Prager functions in the form

M, n,AB(7) — D(%) 1
L e — =0, m=—=0.1
M, n32S,(2) + nyAB(%) 0,

M, 0.1 x 4.0 x (—2.82906) — (—18.84985)

M, ' 0.12 x 42 x (—41.30615) + 0.1 x 4.0 x (—2.82906) -
This equation leads to the following parameter
o=1n,/n =M /M, =2.28899

Numerical results for a beam having two lumped masses at the free ends with different
mass parameters o = M, /M, and n, = M,/ml are presented in Fig. 7.33.

7.11 BEAMS WITH ATTACHED BODY OF A
FINITE LENGTH

This section is devoted to the vibration of a clamped—free beam with a body at the free end.
The length of the body is taken into account. The motion of a structure may be restricted
by torsional or translational elastic spring supports, which are attached at the free end.
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FIGURE 7.33. Free—free beam with two different tip masses. Fundamental mode vibration. Parameter 4 as
a function of mass ratios «* and n,.

. I 2*[EI
The natural frequencies of vibration are w = RS m = pA. Frequency parameters A
m

are the roots of a frequency equation. (Table 7.16, case 1).

7.11.1 Beam with a heavy tip body

A cantilever beam with a body attached at the free end is presented in Fig. 7.34.

Side view

X Cross-section of the body
AF%’HH ¥
= = M ih x >Z
—~d%
P Yo
\K/ \\\J X/Centroid o]

z e 4
A

Ib")c

) / sle 2d

FIGURE 7.34. Design diagram.
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The parameters of a body are:

2d, b, h = length, width, and height
J = moment of the rotary inertia of the body with respect to the z-axis
passing through the centroid
p. = radius gyration of the body, pf =J/M
M = mass of the body

Displacements of a body at x =/

_ !
T x Ix:,

oyl
b0 o =y, ) + d§ | (7.23)

1

Differential equation of motion for mass M

o 2, Py Pyl Pyl
M—2=—0( 1), Mp?—2=0Qd—El— o, 1) = —E — (7.24)
2 Fr2 ! !
Boundary conditions at x =/
& 3 &
MY a2 o
a3 or? o2 dx
% Py 5y (7.25)
Eld— + El — + Mp? =0
oo T e T MRy

The normal function is
X(x) =CU(x)+ DV(x)

where U(x) and V(x) are Krylov—Duncan functions.
The frequency equation may be presented as follows (Filippov, 1970)

1
&(1 + cosh Acos A) — A(sin 4 cosh 2 — cos / sinh A) — 2¢4% sin /4 sinh A
— (3 4 €*)(sin Acosh A + cos Asinh 2)2* + adA*(1 —cos Acoshi) =0  (7.26)
where the dimensionless parameters are

M 0> d
0527; :—; &= —
pAl 2 I

Special cases

1. A cantilever beam with a lumped mass at the free end (¢ = 0, 6 = 0)
1
&(1 + cosh Acos 1) — A(sin Acosh 4 — cos Asinh 1) =0 (see Table 7.6)

2. A clamped—free beam (a2 = 0)

1 +coshicos A =0 (see Table 5.3)

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

BERNOULLI-EULER BEAMS WITH LUMPED AND ROTATIONAL MASSES

242 FORMULAS FOR STRUCTURAL DYNAMICS

7.11.2 Beam with a heavy tip body and rotational spring at the free end

A cantilever beam with an attached body and elastic rotational spring support at the free
end is presented in Fig. 7.35. The parameters of a body are described in Section 7.11.1.

Boundary conditions

at x=0: (0) =0, 8—y:0
ox
&y Py ddy ay

t x=1 —El— = (J + Md* M=—+K. ,—, 7.27
ar oz — VM) Sm T M e K (7.27)

Py Py Py

El—=M—+Md
a3 or? + axor?

The frequency equation may be presented as follows (Maurizi et al., 1990)

(J*M*)* — K% M*)(1 — cosh 4.cos 1) — {(J* + M*d*))3

K*
— Tm‘ }(sin Jcosh A + cos Asinh 1) — 2> M*d* sin /. sinh (7.28)

+ M*)(sinh A cos 4 — sin Acosh A) 4+ (1 + cos AcoshA) =0

where the dimensionless parameters are

d*:i, J* — J 2 * _ M i K;gOt:Krotl
/ Myeam! Myeam EI

Frequency equations for special cases
1. Cantilever beam (M =0,J =0,d =0, K, = 0) (see Table 5.3)
f—— 1+4cos Acoshi=0
2. Cantilever beam with lumped mass at the end (J/ = 0, d = 0, K,,, = 0) (see Table 7.6)

——o0 M*/(sinhZcos A —sinAcosh ) + (1 4+ cos Acosh ) =0

3. Cantilever beam with torsional spring at the free end (/ = 0, d = 0, M = 0) (see Tables
6.9 and 6.12)

K*
) —Tm‘(sin),coshxl + cos Asinh 4) + (1 4 cos Acosh 4) =0

4. Clamped—clamped beam (J =0, d = 0, K., — 00) (see Table 5.3)

—— 1 —coshicos i=0

| o

I M — > X

[ 2d Centroid O
FIGURE 7.35. Design diagram.
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7.11.3 Beam with a body and translational spring at the free end

A cantilever beam with an attached body and elastic translational spring support at the free
end is presented in Fig. 7.36. The parameters of the body are described in Section 7.11.1.

Boundary conditions

ay

at x=0: »0)=0, ==0
ox
Py Py Py
t x=1 —EIl— = (J + Md* Md—, 7.29

& 2 = VM) s+ Md s (7.29)

>y &y Py

El— =M—+Md K
oo~ Mg TMEge TR

The frequency equation may be presented as follows (Maurizi et al., 1990):

[EM*)* — (J* + M*d*)K,](1 — cosh A cos 1)
— (J* + M*d*?)3(sin Acosh /. + cos Asinh A) — 222M*d*sin Asinh A (7.30)

A

K*
+ (M*X - —;r)(sinh), cos A —sinAcosh 1) + (1 + cos Acosh ) =0
yi

where the dimensionless parameters are

3
a* = g J* = J M* = M K* — Kyl
I beaml2 ' Mbeam ’ " EI

Special cases

1. Cantilever beam (M =0,J =0, d =0, K, = 0) (see Table 5.3).

2. Cantilever beam with lumped mass at the free end (/ =0, d = 0, K,, = 0) (see Table
7.6).

3. Cantilever beam with spring at the end (J/ = 0, d = 0, M = 0) (see Table 6.6; Section
6.2.3).

K*
—%(sinh&cos A —cosh/sin/) 4 (1 +cos Acoshd) =0
A

4. Clamped—pinned beam (J =0, d = 0, K;;, — 00) (see Table 5.3).

m, ELLA

—>x

_ T —<

M -
ki % Centroid O

| / 24

FIGURE 7.36. Design diagram.
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7.12 PINNED-ELASTIC SUPPORT BEAM WITH
OVERHANG AND LUMPED MASSES

Figure 7.37 presents a beam with uniformly distributed load and lumped masses that are
attached at x|, x, =/, and x3 = /. The beam is pinned at x = 0 and elastic supported at
x=1 <l

The natural frequency of vibration is defined as

22 EI

e m(l + e)

The frequency parameters A are roots of a frequency equation; this equation may be
presented as follows (Filippov, 1970)

7102 =720, =0 (7.31)
. R oy ., . . . - 1/R . I
y; = sinh 4 + ?/L(smh /ny + sin An,) sinh A, — AV oy A )(sinh A, + sin Any) X (&,)
. o ., . Lo . 1/R . . .
0y = —sinl+ Tﬂv(smh Ay +sinAn)sin A&, — 2\ o, A | (sinh A, + sin Any)X5(E,)

¥, = cosh 4 + % /(cosh n; + cos An,)sinh A&,
1

R , s
-5 (F — ocM) (cosh Ay, + cos Any) X (&,)

+ oy [sinh A+ % J(sinh 1y, — sin ) sinh ¢,
1 (R . -

-1 (73 - J) (sinh 27, — sin mm}xl (&)

0y = —cos A+ O(2—1/l(cosh2n1 + cos An;)sin A&,

1/R ) ,
-3 (F — O(2A> (cosh A1, + cos Any)X5(&,)

+ Lot [sin A+ % A(sinh An; — sin An;) sin A&,

1

R
- (? - azi) (sinh /i, — sin iﬂz)Xz(fz)]

CTT TV I ey ey vy ey ”

O«

A4
& M, m, EILA kEMz M
¢ X1 5 r‘l
q

X2:ll

<€

< [

v

FIGURE 7.37. Design diagram.
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where the dimensionless parameters are

X B X

leTIQ €2=72; m=1-&%; m=1-4§

M, M. M.

alz—l; 0(2:—2; 9(3:—3

q q q

qo ktrl3

=(1 I =—; R=—+

g=(+oml e=2 -

The mode shapes of vibration are

X(&) = sinh 28, + %A[sinh M&y = &p) —sinA(&; — &) sinh ¢,
(7.32)
X5(&) =sind&, + %k[sinh (& — &) —sin (&, — &))]sin2&,

Special cases

1. Pinned—free beam (k, = 0, M| = M, = M; = 0) (see Table 5.3).

2. Pinned—free beam with lumped mass at the free end (k, = 0, M|, = M, = 0) (see Table
7.6).

3. Pinned—pinned beam with overhang (k, = oo, M| = M, = M; = 0) (see Section 5.3).
4. Pinned beam with elasic support M| = M, = M; = 0 (see Table 6.6).
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CHAPTER 8

BERNOULLI-EULER BEAMS

ON ELASTIC LINEAR
FOUNDATION

Chapter 8 describes the different mathematical models of an elastic foundation. A
mechanical model of the Winkler model is discussed and natural frequencies of vibration
of Bernoulli—Euler uniform and stepped one-span beams with different boundary condi-
tions on the elastic foundation are presented.

NOTATION
A Cross-sectional area of the beam
d Viscous damping coefficient of foundation
E, Elastic constant of the foundation material
E G Modulus of elasticity and shear modulus of the beam material
El Bending stiffness
G, Foundation modulus of rigidity (Pasternak model)
I Moment of inertia of a cross—sezctional area of the beam
k, Frequency parameter, k = 7me[ ko
k Shear factor
kgopes Do Elastic sloping stiffness of medium
il Elastic tilting (transverse rotating) stiffness of medium [Nm/m]
ki, ko Elastic transverse translatory stiffness of medium (Winkler foundation
modulus)
/ Length of the beam
M Lumped mass
p Foundation reaction
t Time
V; Puzyrevsky functions
X Spatial coordinate
X(x) Mode shape
X, ),z Cartesian coordinates

247
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V(x, 1), w Lateral displacement of the beam

o Frequency parameter, k4 —4q*

A Frequency parameter, > = k2/2

0 Slope

p,m Density of material and mass per unit length of beam, m = pA4
w Natural frequency of free transverse vibration

8.1 MODELS OF FOUNDATION

The differential equation of the transverse vibration of a beam on an elastic foundation is

EI oy —|— N + A— Py
o P25

where N is the axial force and p(y, t) is the reaction of the foundation.
The models of the foundation describe the relation between the reaction of the
foundation (or pressure) p, the deflection of the beam and the parameters of foundation.

+p(y, =0 (8.1)

8.8.1 Winkler foundation (Winkler, 1867)

The foundation may be presented as closely spaced independent linear springs. The
foundation reaction equals p = k;, y, where y is the vertical deflection of the foundation
surface (vertical deflection of the beam, plate), and k; is Winkler’s foundation modulus.
Shear interactions between the foundation spring elements are neglected. This type of
foundation is equivalent to a liquid base.

8.1.2 Viscoelastic Winkler foundation

The foundation reaction equals

3
p:k0y+d§ (8.2)

where second term takes into acount the viscoelastic properties of the Winkler foundation;
d is viscous damping coefficient of the foundation.
The governing equation is

*y &y &y By
EIQ+N—+,0A82 +k0y+d

=0 (8.3)
8.1.3 Hetenyi foundation (Hetenyi, 1946)
The relationship between load p and deflection y for the three-dimensional case is

p =k +DyV*V?y (8.4)

where the parameter D takes into acount the interaction of the spring elements.
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8.1.4 Viscoelastic Hetenyi foundation

3
p= k()y+d8—);+D0V2V2y (8.5)

The governing equation is
*y &%y v
El +Dy)—+N——= A—
(BT + 0) SRR RI o

In this model, the overall bending stiffness beam (E7) has been increased by the ‘bending
stiffness’ of the foundation (term D).

thyy+d= (8.6)

8.1.56 Pasternak foundation (Pasternak, 1954)

The load—deflection relation is

p =k — GV (8.7)

where the second term describes the effect of the shear interactions between the spring
elements; G, is the shear foundation.

8.1.6 Viscoelastic Pasternak foundation

The load—deflection relation

a
p= k0y+da—i— GyV2y (8.7a)
takes into acount the viscoelastic properties of the Pasternak foundation; d is the viscous
damping coefficient of the foundation.
The governing equation is

ay

Elai—}—(N Go)82 +k0y+d (8.8)

at2
In this model, the effect of the compressive static load (N) has been reduced by the
effective foundation shear (term Gy).

Some fundamental characteristics of the Pasternak foundation mathematical model are
discussed by Kerr (1964).

8.1.7 Different model beams on a Pasternak foundation
(Saito and Terasawa, 1980)

The governing equation of the rectangular beam, with shear deformation and rotatory
inertia being ignored, is

oty &y ay &y

l1+v
—Gh = +ph8t2+k0y+d81 Gosg

6 ox*
where /4 is height of the beam.

=0 (8.9)
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The governing equations of the rectangular beam, where shear deformation and rotatory
inertia are incorporated, are

l+v 530 ph’ 30
Gh’ — — Gkh 0)——%——=
6 ox? (8 * ) 12 o

" - (8.10)
Y
h Gkh(a2 3>+k0y+dat Gz =0

where 0 is the bending slope and £ is the shear coefficient.

8.1.8 ’‘Generalized’ foundation (Pasternak, 1954)

At the each point of the foundation the pressure p is proportional to the deflection y and the
moment m is proportional to the angle of rotation

dy
=k 11
14 (8.11)

where » is any direction at a point in the plane of the foundation surface; &, and k, are the
corresponding moduli of elasticity.

P =koy,

8.1.9 Reissner foundation (Reissner, 1958)

Assumptions

1. The in-plane stresses throughout the foundation layer are negligibly small.

2. The horizontal displacements at the upper and lower surfaces of the foundation layer are
zero.

The relationship between the reaction of the foundation p and deflection y is

y—eVy=p—2Vp ¢ (8.12)

1) “H’
where E; and G, are the elastic constants of the foundation material, and H is the thickness
of the foundation layer.

The case when Reissner’s and Pasternak’s models of foundation coincide, as well as the
Vlasov foundation model (Vlasov and Leontiev, 1966) have been discussed by Kerr
(1964).

8.2 UNIFORM BERNOULLI-EULER BEAMS ON
AN ELASTIC WINKLER FOUNDATION

The differential equation of the transverse vibration of the beam resting on an elastic
Winkler foundation without damping is

3ty 82
El — A = .1
P +p —|— ky =0 (8.13)
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Solution. Method of the separation of variables y(x, t) = X(x)T(¢), where X(x) is a
space-dependent function and 7'(¢) is a time-dependent function. A shape function X(x)
depends on the boundary conditions.

The space-dependent function X (x) can be obtained from

2 _
X)) —k'X(x) =0, k*= %Iko = —do (8.14)

The natural frequencies are defined by the formula (Weaver, Timoshenko and Yaung, 1990;

Hetenyi, 1958; Blevins, 1979)
22 [EI - kol 8.15)
W =—,— — .
PNm ELM*

Parameter A corresponds to beams with the same boundary conditions but without an
elastic foundation. The Winkler elastic foundation increases the frequency vibration.

Eigenfunction. The solutions of equation (6.2) may be presented in the following forms:
Case 1. The frequency parameter k* > 0.

The solutions of (8.2) are the same for k, =0 and k, # 0. So, the elastic Winkler
foundation has no effect on the mode shape vibration.

Case of long beams (Boitsov et al., 1982)
X(kx) = e ™ (Cy cos ox + C| sinox) 4+ ¢™(C, cos ax + C; sin ox) 8.4)
Case of short beams (especially for symmetric and antisymmetric forms)

X(kx) = C, coshox cos ox + C, cosh ox sin ox + C, sinh ax sin o0.x + C; sinh ox cos ox

(8.16)
Eigenfunction X (x) may be presented in the form of Puzyrevsky functions
X(kx) = CoVy(ox) + C V) (ox) + Gy V5 (ax) + C3V3(orx) (8.17)
1 . .
Vy = coshaxcos ox ¥} = —=(cosh ox sin oex + sinh ox cos ocx)
V2
) (8.18)
V, = sinhoaxsinax V3 = —=(cosh ox sin ax — sinh ox cos ax)
V2
8.2.1 Properties of Puzyrevsky functions
Puzyrevsky functions and their derivatives result in the diagonal matrix at x = 0.
Vo(0)=1 V3(0)=0 Vi) =0 Vy'(0) =0
MO =0 KO)=v2x V(©0)=0 V'0)=0 .

V,(00=0 Vi(0)=0 Vy(0) =202 VJ(0)=0
V50)=0 Vj(0)=0 VI0)=0  V§(0) =224
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Derivatives of Puzyrevsky Functions

V(o) = V20V (x); - Va(o) = /207 (ox)
Vi) = V2aVy(ox);  Vi(ox) = —v/2al3(owx)

Case 2. The frequency parameter k* < 0.
The solution of (8.2) is
X=4 sinﬁsinhﬁ +B sinﬁcoshE + Ccos Esinhﬁ + Dcos ﬁcoshE

V2TV V22 N/ V2T V2
(8.20)

which is different from expressions (8.4) and (8.5) (Wang, 1991).

8.2.2 Beams on linear inertial foundation

The beam length / and mass per unit m rest on an elastic foundation. A linear inertial
foundation is a two-way communication one. The model of the foundation represents
separate rods with parameters: modulus Er, cross-sectional area Ar = b x 1, and density
pr; the length of the rods is /, (Fig. 8.1) (Bondar’, 1971).

Reaction of the rods

oul
g0 = —EpAp—
oz IZ:IO

where u is the longitudinal displacement of the rod.

Differential equations

(a) Longitudinal vibration of the rods

FPu % u
—=a— 8.21
T ®.21)
E.A
where a> = 2L Adp=bx1 mp=ppdp
mg
y z
o ELlLm ,
X Cross-section beam
P E, 12, 14 m
l
Separate rods b
Er,Ar, pr ‘ ‘
Oy

FIGURE 8.1. Mechanical model of elastic foundation. System coordinates: for beam xOy; for rods O;z.
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(b) Transverse vibration of the beam

3ty %y ou |

z=ly

where the moment of inertia of the cross-sectional area of order n is

L= [2d4
)

where z is a distance from the neutral axis. For a rectangular cross-section, b x A:
I, =bh*/12, I, =bh/80

The differential equation for the mode shape of vibration is

XW+Qf%m9%—EwﬁX:o (8.23)
a a
where
C= EpAp . 2 _ M
EIL ElL

The frequency equation may be presented in the form

C?fﬂ%%m%%—ﬁwhzo (8.24)
or

nm\4 aby 2 Cy

(T) tany = ( 0 ) tany _I (8.24a)

E
Wherey:%lo,(u=y%=% p—F
\ pr

This equation takes into account the bending stiffness of the beam and the elastic
foundation. The fundamental natural frequency of vibration

ool [Er (8.25)
lo\ pr

where y is the minimal root of the frequency equation (8.24). For soil of average density
the length of the rods, /), approximately equals 5/. For the condition /, = 5/, displacement
of the bottom ends of the rods makes up 2.5% of the displacement of the beam. For more
details see Section 14.4.

Special cases
1. No-foundation condition. In this case, Ep =0, then C/a = 0 and the frequency
equation of the beam becomes

() -0
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The frequency of the transverse vibration of the beam is

o, = (?)2\/% n=1,2,3,..)

2. No-beam condition. In this case EI, = 0, then b = oo, C = 0o and the frequency
equation of the clamped—free rod becomes

in
tany = oo, y:z,

The frequency of the longitudinal vibration of the clamped—free rod is

in |E .
wcl_ﬁzz—l()/m—i, i=1,3,5,...

3. Beam is absolutely rigid. EI, = oo then b = 0, C = 0 and the frequency equation
becomes tany =0,y =in,i = 1, 2,3, .... The frequency of the longitudinal vibration of
the clamped—clamped rod is

n |E
el =17n “Ei=1,2,3,...
o\ Mg

For the fundamental mode (i = 1) the frequency of vibration w of the system’s ‘beam-
inertial foundation’ satisfies condition

i=1,3,5,...

WO = O = O

8.3 PINNED-PINNED BEAM UNDER
COMPRESSIVE LOAD

The design diagram of a pinned—pinned uniform beam on an elastic foundation with
compressive load N is presented in Fig. 8.2. The parameters of the elastic foundation are
kgope = Do, ke = ko and ky (Nielsen, 1991).

8.3.1 Bernoulli-Euler beam theory

Winkler foundation. The differential equation of the transverse vibration is

ENV + N 4+ ky+mp=0 (8.26)
Yy
X
£ =

ki
FIGURE 8.2. Beam on an elastic foundation.
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where y denotes the transverse displacement of the beam axis at position x and time . The
elastic foundation does not change the boundary condition.
Frequency of vibration

n*n? [El \/ NP2 kI
= =1y =1,2,... 8.27
2 \'m EInn? * Elnfnt " (8.27)

Pasternak foundation. The differential equation of the transverse vibration is

ER" + (N — kgope)y” + ke +mj =0 (8.28)

The natural frequency of vibration is

EI (N lope)l ktrl4
V \/ Ene Bl (8.29)

The elastic foundation leads to the increment of the eigenfrequencies, whereas the
compressive force leads to the decrement of the eigenfrequencies.

8.3.2 Rayleigh-Timoshenko beam theory

The differential equations of the transverse vibration for an undamped beam are

kGA(Y + ¢) = my + kyy + Ny

” , , 5 (8.30)
Eld) - kGA(y + d)) + kslopey = mr (/) + ktitld)

where y(x, f) and ¢(x, ) denote the transverse displacement of the beam axis and the
transverse rotation (tilting) of the beam cross-section at position x and time #; / and r are
the moment of inertia and the radius of gyration of the cross-section with respect to the z-
axis (Lunden and Akesson, 1983).

Solution
y=4, sin?exp(iwt), ¢ = A4, cos n—?xexp(iwz)

The eigenvalues of the pinned—pinned beam are

2
[(N - kGA)(?) + mo? — ky %GA? ]
=0 @3
nn 2 ko — (™
L ~(hGA — kyope) mro? — kGA — ky, EI( z) J
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The frequency equation may be presented in the form

kGA 42B
2 2 2
=—"|B +./B— 8.32
@n 2mr2|: ! 1 kGAi| (8.32)
o ke B+ Pk N\,  _nrn
Bi=1+ kGA +r(1 kGa )i Hn =

ki + Eluy N 22 2
B, = kn(l t—wa )T 1 - A (ke + E1 ), + (kope — Npty

It may occur that the minimum eigenfrequency does not correspond to the simplest mode
of vibration (n = 1).

8.4 A STEPPED BERNOULLI-EULER BEAM
SUBJECTED TO AN AXIAL FORCE AND
EMBEDDED IN A NON-HOMOGENEOUS
WINKLER FOUNDATION

A design diagram of a stepped beam is presented in Fig. 8.3. Boundary conditions are not
shown. The elastic foundation is non-uniform with translational stiffness coefficients k,
and k;. The exact fundamental eigenfrequencies for a beam with different boundary
conditions, beam parameters, load and foundation are presented in Tables 8.1 and 8.2. The
method of separation of variables is applied (Filipich et al., 1988).

X X
a)  EopoAdolo  Eip 41
N<———|—|—|'—>
; | N
X ko ‘ ki X
) Y L |
b X X
1 Eo Po A()I() E AT '
N<__|—|L§_,
X ko g x N
) L |
c) X X
v Eopodoly  Eoo 4T
4_|—|L;_>
N ! i
X kO k1:k0 X N
> L J

FIGURE 8.3. Stepped beam embedded in a non-homogeneous foundation.
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The dimensionless parameters of the system are

w% _ koL* 2 _ kL4 _ E\ I )= P14,
Eyl, Eyl, Epl, Podo
2 2
plzﬂ(z 0), &= i :h’ szsz4Po_Ao
Epl, Wo ko Epl,

8.4.1 The stepped beam is partially embedded in a Winkler foundation
(Fig. 8.3(b))

In this case k;, =0 and wy = ¢ =0. The fundamental eigenvalues, Q,, for o =0.5;
B=0.512; y = 0.8 and wj = 25 are presented in Table 8.1.

TABLE 8.1. One-span stepped beam partially embedded in a Winkler foundation: Fundamental
frequency vibration for beams with different boundary conditions and axial force

Force p*  Pinned-pinned  Clamped—clamped  Pinned—clamped  Clamped—pinned
Tensile 0 9.2874 20.0711 14.0381 14.0926
5 11.9450 21.7646 16.0357 16.4150
10 14.0977 23.3174 17.8034 18.4058
Compressive 2 7.9717 19.3454 13.1513 13.0287
3 7.2219 18.9705 12.6840 12.4577
5 5.4119 18.1941 11.6917 11.2168
10 — 16.0647 8.7171 7.1072
20 — 10.3917 — —
25 — 5.5051 — —

8.4.2 The stepped beam is completely embedded in a homogeneous
Winkler foundation (Fig. 8.3(c))

In this case ky, = k; and ¢ = 1. The fundamental eigenvalues, Q, for « = 0.5; f = 0.512;
y = 0.8 and w% = 25 are presented in Table 8.2.

TABLE 8.2. One-span stepped beam completely embedded in a Winkler foundation: Fundamental
frequency vibration for beams with different boundary conditions and axial force

Force p*  Pinned-pinned  Clamped—clamped  Pinned—clamped  Clamped—pinned
Tensile 0 10.1041 20.4739 14.4310 14.8147
5 12.5774 22.1324 16.3829 17.0245
10 14.6286 23.6578 18.1185 18.9401
Compressive 2 8.8187 19.7650 13.5689 13.8146
3 8.2607 19.3993 13.1159 13.2818
5 6.7499 18.6430 12.1576 12.1355
10 — 16.5784 9.3279 8.5241
20 — 11.1956 — —
25 — 6.9393 — —
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a b
Om (O (O]
k
FIGURE 8.4. (a) Infinite beam with lumped mass on elastic foundation (b) Corresponding frequency

spectrum.

8.5 INFINITE UNIFORM BERNOULLI-EULER
BEAM WITH A LUMPED MASS ON AN ELASTIC
WINKLER FOUNDATION

An infinite uniform Bernoulli-Euler beam with a distributed mass m and lumped mass M
on an elastic Winkler foundation with modulus elasticity & is presented in Fig. 8.4(a).

The spectrum of this system is mixed (discrete and continuous) and is presented in Fig.
8.4(b). The discrete frequency ), is a real root of the characteristics equation (Bolotin,
1978)

2 2\ /4
wM_(k mw) (833)

8EI AE

k
The distributed spectrum begins in the frequency w, = \/%
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CHAPTER 9

BERNOULLI-EULER
MULTISPAN BEAMS

This chapter contains analytical and numerical results for Bernoulli-Euler multispan
beams on rigid and/or the elastic supports.

NOTATION

A Cross-sectional area of the beam

E Modulus of elasticity of the beam material

EI Bending stiffness

i Bending stiffness per unit length, i = EI/]

1 Moment of inertia of a cross—sezctional area of the beam
k Frequency parameter, k* = %

I Length of the beam

M Bending moment, amplitude of harmonic moment
Tir Unit reaction of the slope-deflection method
S,T,U,V Krylov—Duncan functions

t Time

X Spatial coordinate

X,V z Cartesian coordinates

X(x) Mode shape

y(x, 1), w Lateral displacement of the beam

VA Unknown of the slope-deflection method

/. Frequency parameter, > = k22

p,m Density of material and mass per unit length of beam, m = pA4
¢(4), (L) Zal’tsberg functions

w Natural frequency of free transverse vibration

9.1 TWO-SPAN UNIFORM BEAMS

The eigenvalue problem for uniform multispan beams with a distributed mass and
with/without lumped masses may be studied by using different classical methods. The
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most effective among these methods are the slope-deflection method, which uses specific
functions (see Chapter 4), and the force method in the form of three moment equations.
These methods lead to a governing equation for eigenvalues in exact analytical form.

9.1.1 Beams with equal spans

Natural frequencies of vibration are

)2
A |EI
o = ©.1)
The first five frequency parameters A for two-span beams with classical boundary
conditions are presented in Table 9.1. One-span beams with overhangs are considered in
Chapter 7.2 and Table 7.11.
Exact values of the frequency parameter A for the fundamental mode of vibration of
two-span uniform beams with equal spans, are presented in Table 9.2 (Gorman, 1974;
Kameswara Rao, 1990).

9.1.2 Two-span beam with an elastic support at the middle span

The symmetrical beam with an elastic support is presented in Fig. 9.1(a). The frequency
equation may be presented in different forms.

Symmetric vibration (Anan’ev, 1946; Boitsov et al., 1982). In term of Hohenemser—
Prager functions

C(h)
= P 2
k B(A) ©2)
In term of Krylov functions
S2(A) — U*(4
w_ 3 (4) (4) 9.22)
T(AUL) — SV (L)
In explicit form
2 cosh Acos 4
=) 2
k cosh Asin A — sinh A cos 4 (9-20)
. . . kP
where the dimensionless stiffness parameter £* = —.
The natural frequency of vibration is 2E1
2 [EI

=N m
The roots of the frequency equation in terms of dimensionless parameter £* are shown in
Fig. 9.1(b).

Eigenfunctions for the given system and for the pinned—clamped beam are the same.

Antisymmetric vibration. The frequency equation is

SiA)=0, A =mn, A=2n, I3=3m,...

where S, is the Hohenemser—Prager function (Section 4.6).
Eigenfunctions for the given system and for the pinned—pinned beam are the same.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

BERNOULLI-EULER MULTISPAN BEAMS

BERNOULLI-EULER MULTISPAN BEAMS 263

TABLE 9.1. Two-span uniform beams with equal spans and classical boundary conditions:
frequency parameter A for different mode shapes

Type of beam i Mode shape Related materials
Pinned-pinned-pinned 1 3.142 Antisymmetric Table 5.3
2 3.927 Symmetric Fig. 9.2(a)
—g —g— 2?3— 3 6.283 Antisymmetric Table 9.3(a)
/ / 4 7.069
5 9.425
Clamped—pinned—pinned 1 3.393 Fig. 9.2(e)
2 4.463 Table 9.3(a)
| 2 e 3 6.545
4 7.591
5 9.685
Clamped—pinned—clamped 1 3.927 Antisymmetric Fig. 9.2(b)
2 4.730 Symmetric Table 9.3(b)
E 3 7.069 Antisymmetric Table 5.3
4 7.855
5 10.210

TABLE 9.2. Two-span uniform beams with equal spans: fundamental frequency parameter 4

Type of beam Parameter 1 Related materials

Clamped-pinned—guided ’T_H:” 4.0590 Tables 9.3(b), 9.5, Fig. 9.2(j)
Pinned—pinned—guided _m_—H:” 3.9266 Table 9.3(b), Fig. 9.2(i)
Guided—pinned—guided “:HTH:” 3.1416 Tables 9.3(b), 9.5, Fig. 9.2(d)

Clamped-pinned—free lT Table 9.3(b), Fig. 9.2(g)
Pinned—pinned—free 8 2 1.5059 Tables 5.6, 9.3(a), Fig. 9.2(f)

Guided—pinned—free “:HT— 2.3409 Tables 9.3(b), 9.5, Fig. 9.2(h)

Free—pinned—free 8 0.0 Rigid-body mode
Table 9.3(b), Fig. 9.2(c)
1.8751 Symmetrical vibration

Table 5.3, Figs. 5.9, 9.2(c)
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T T T T T T

O
Asymptote at = ..J
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/
3 o /
: .~ FIGURE #.1(a). Design diagram.
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Asymptote at A= 3.9266 7
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3.5 - /
I M // f = oo
3.0
2.5 II
I Fundamental mode
2.0 4 } 1 } }
1.5708 < A<3.9266
1.5
N k=0
£ &
10 LI ; 1
0 100 200 300 400 K

FIGURE 9.1(b). Parameter A as a function of k* = kI*/2EI for the fundamental mode of symmetric
vibration.

9.1.3 Beams with different spans

Tables 9.3(a), (b), (c) contain the frequency equations and mode-shape expressions for ten
types of two-span uniform beams with classical boundary conditions (Gorman, 1974;
Kameswara Rao, 1990). Dimensionless parameters are

h h
= —, V:7:1_
L L #
e _*
€1—llv & L

M, , = cos Jusinh Ap F sin Ap cosh Au
Ni, = cos Avsinh Av F sin Av cosh v

4 pALY
The frequency parameter is 4, = o ©w where /| +1, = L.
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TABLE 9.4. Transformation of two-span beams: limiting cases of the span length

No. Beam type L=0u=0,v=1) L=0(u=1,v=0)
1 Pinned—pinned—pinned Clamped—pinned Pinned—clamped
2 Pinned—pinned-free Clamped—free Pinned-pinned
3 Clamped—pinned—pinned Clamped—pinned Clamped—clamped
4 Clamped—pinned—clamped Clamped—clamped Clamped—clamped
5 Clamped—pinned—free Clamped—free Clamped—pinned
6 Free—pinned—free Pinned—free Free—pinned
7 Guided—pinned—free Clamped—free Guided—pinned
8 Guided—pinned—guided Clamped—guided Guided—clamped
9 Guided—pinned—pinned Clamped—pinned Guided—clamped

10 Guided—pinned—clamped Clamped—clamped Guided—clamped

Special cases. Two-span beams reduce to one-span beams in the two special cases.

1. ,=0(u=0,v=1).
2. L=0(u=1,v=0).
The types of the given beams and beams that correspond to special cases are presented in

Table 9.4.
The related data for special cases are contained in Tables 5.3 and 5.4.

9.1.4 Numerical results

Figures 9.2(a)—(j) give frequency parameter values, /, for the first three modes of vibration
as a function of intermediate support spacing, u, for two-span uniform beams with
different boundary conditions (Gorman, 1974; Kameswara Rao, 1990).

Guided-pinned-XX beam. A two-span uniform beam with intermediate support is
presented in Fig. 9.3. The beam has guided support at the left-hand end and specific
XX support at the right-hand end. The boundary condition, shown as XX, is a clamped
support, or guided, or pinned, or free end.

Values of fundamental parameters 4 for guided—pinned—XX beams for various values
of intermediate support spacing, it = /; /L, and end conditions, XX, are presented in Table
9.5. This table also presents the location of the intermediate support, which leads to the
maximum value of the frequency parameter.

The first row in the table may be used for determination of frequency parameters for
single-span beams with the following boundary conditions: clamped—free, clamped—
guided, clamped—pinned and clamped—clamped, respectively (see Tables 5.3 and 5.4).

The last row in Table 9.5 may be used for calculation of single-span guided—pinned and
guided—clamped beams.

9.2 NON-UNIFORM BEAMS

9.2.1 Exact methods

Two classical methods are presented.

Slope and deflection method. The slope and deflection method is used for calculation of
continuous beams and frames (Flugge, 1962; Darkov, 1989).
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FIGURE 9.2(b). Clamped—pinned—clamped beam.
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FIGURE 9.3. Design diagram of guided—pinned-XX beams. The XX boundary condition is a free, or
guided, or pinned, or clamped end.

Assumptions

1. The strains and displacements due to normal and shearing forces will be neglected.

2. The difference in length between the original member and the chord of the elastic line is
practically non-existent.

Unknowns. The unknowns of this method represent the deflection and angles of twist of
various joints induced by bending moments. The total number of unknowns is

n=nyz+n 9.3)

where 7, is a number of rigid joints of a frame;
ny, is a number of independent deflections of the joints of a frame.
The number of unknown angles of twist is equal to the number of the rigid joints of the
structure.

TABLE 9.5. Two-span uniform beams with different spans and one guided end: fundamental
frequency parameter 4

End condition XX

u=1/L Free Guided Pinned Clamped
0.00 18751 H— 23650 Ll 3.9266 = 47300 [
0.05 1.8813 23778 3.9608 47777

0.10 1.8990 24136 4.0504 4.8985

0.15 1.9276 2.4696 41817 5.0591

0.20 1.9664 2.5447 43441 5.2670

0.25 2.0153 2.6379 45107 5.4462

0.30 2.0739 2.7479 46716 I = 5.4800
0.35 2.1408 2.8705 Ty = 4.7000 52177

0.40 22132 2.9956 45197 4.8046

0.45 22842 3.0991 42254 4.4056

0.50 2.3409 o = 3.1416 3.9266 4.0590

0.55 Jo = 23650 3.0991 3.6582 3.7461

0.60 23416 2.9956 34247 3.5128

0.65 22725 2.8705 3.2229 3.2971

0.70 2.1741 2.7479 3.0482 3.1102

0.75 2.0631 2.6379 2.8960 2.9469

0.80 1.9510 2.5447 27627 2.8030

0.85 1.8438 2.4696 2.6453 2.6752

0.90 17444 24136 2.5411 2.5610

0.95 16534 23778 24482 24581
1.00 1.5708 o= 2.3650 I+ 2.3650 - 2.3650 1o+~
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The number of independent joint deflections is equal to the degree of instability of the
system obtained by the introduction of hinges at all of the rigid joints and supports of the
original structure.

Conjugate redundant system. In order to obtain the conjugate redundant system
(primary system), the additional constraints introduced must prevent the rotation of all
rigid joints as well as the independent deflections of these joints.

Canonical equation. The equations of the slope and deflection method negate the
existence of reactive moments and forces developed by the imaginary constraints of the
conjugate system of redundant beams. According to the reaction reciprocal theorem,
ryx = 1y, (Section 2.1).

The canonical equation may be written as

mZy+rpZy+-+r,Z,+ Ry, =0
rZy +rpZy+ -+ ry,Z, + Ry, =0 (9.4)

ranI+rn222+'”+rnnzn+Rnp:O

Coefficient r;;, is the amplitude of the dynamical reaction (moment or force) induced in the
imaginary support i due to harmonic deflection (angle or linear) of the kth constraint. In the
case of the eigenproblem, the free terms R;, = 0. So the frequency equation is

:”11 Figo oo Vln:

r 7 e

DZI 21 22 2n | = 0 (95)
| |
i Tma =0 Ty

Example. Statically indeterminant framed systems A, B and C are presented in Fig. 9.4.
The uniformly distributed masses are m; for the cross bar and m, for the vertical element.
Show the conjugate system (CS) and determine the coefficients of the unknowns in the
slope and deflection method for given systems 4, B and C.

Solution

Analysis of the structures. The systems 4, B and C have one rigid joint. Systems 4
and B do not have a linear deflection, whereas system C has a linear deflection in the hori-
zontal direction. Consequently, frames 4 and B have one unknown of the deflection-slope
method, namely the angle of the twist of the rigid joint; frame C has two unknowns,
namely the angle of the twist and deflection of the rigid joint.

Conjugate system. Conjugate system for systems 4 and B: additional constraint 1
opposes the rotation of the rigid joint included in the original system.

Conjugate system for systems C: additional constraints 1 and 2 oppose the rotation and
deflection of the joint included in the original system.

The free-body diagram for »|; and r, is the rigid joint; the free-body diagram for r,,
and r,, is the cross bar. The dynamic reactions at the ends of the members and forces
depend on the type of displacement (linear or angular), and on the mass distribution along
the frame element, such as distributed, or lumped masses. These cases are presented in
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FIGURE 9.4. Redundant frames, primary systems and free body diagrams.
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TABLE 9.6. Design diagrams of a single element of a frame

Massless elements Elements Elements with distributed
with one lumped mass with distributed mass and one lumped mass
M m=0 m,El M m,El
—— —— —_——
Functions, Krylov—Duncan: Section 4.1
related Table 4.3 Zal’tsberg: Section 9.5 Kiselev: Table 4.8
materials Smirnov: Table 4.6

Bolotin: Table 4.7
Hohenemser—Prager:
Table 4.9, Section 4.5

Table 9.6. The corresponding special functions are discussed in Chapter 4. We use
Smirnov’s functions. The unit reactions are

System A: r = 4o (4) + 4y, (4;)
System B: rip = 3ipy () + 4ixy,(4;)
System C: ry =3y (Ay) + 4y, (4y)

61 ,
Fp="ry = 721//5(@)
12i
T = Tzzl//lo()vz)

Note the indices with i and 1 denote the element (1 for a horizontal element and 2 for a
vertical one); the index with y denotes the number of functions according to Table 4.4.
The bending stiffness per unit length is

Let the base eigenvalue be

2
4fm I, a/m, EI,
=1 =), then J, = 22 |21
PN El 271\ m EL

The frequency equation should be written in the form of (9.5).

Table 9.6 presents different types of design diagram of the elements and the
corresponding functions that could be applied for dynamic calculation of a structure
with these elements.

Three-moment equation (Kiselev, 1980; Filippov, 1970). This method is convenient to
use for multispan beams with a different stiffness for each span. The three-moment equa-
tion establishes a relationship between the moments on the three series of beam supports.
The notation of the spans and supports is presented in Fig. 5.6. The canonical form of the
equations may be written in the form of (5.7) or (5.8).

The system of equations ((5.7) or (5.8)) has a non-trivial solution if and only if the
determinant obtained from the coefficients at the support moments is zero. This condition
leads to the frequency of vibration.
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0 1 2 3
/ 1= 4 12 =6 13 =/ 1

FIGURE 9.5. Design diagram of the uniform three-span symmetric beam.

Example. Derive the frequency equation of the symmetric vibration of the uniform three-
span beam shown in Fig. 9.5. Apply the three-moment equation.

Solution. The equation of the symmetrical vibration is

o My 2] G G+ ) M + g Ry =0
Because of symmetry M, = M,; M, =0, so
2] h )+ g ) M+ M =0
Since EI; = EI, = EI, so
2] 7 )+ 57 R M+ 3 P, =0
After reducing by 2/6EI the previous equation becomes
41 (4) + 6f1(42) +3/,(72) = 0
by
The relationship between 4, and 4, is % = 72 = 1.5. This leads to
14

41 (4) +6f1(1.54)) + 3/,(1.54) = 0

Consequently, the frequency equation in terms of 4, = 4 is (Kiselev, 1980)

4% E y cosh Asin A — sinh Asin 4 6 x E y cosh1.54sin1.54 — sinh 1.54sin 1.5/
2 Asinh Asin A 2 Asinh 1.54sin 1.5

sinh 1.54 —sin 1. 5)
Jsinh1.5Asin 1.5

+3x3x

If the uniform beam has uniform spacing, then a three-moment equation may be presented
in terms of Krylov—Duncan functions

VnMnfl +2(TnUn - Sn Vn)Mn + M n+1 — =0

9.2.2 Non-uniform two-span beams

Frequency equation for non-uniform two-span beams by using special functions (slope and
deflection method) are presented in Table 9.7.
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9.3 THREE-SPAN UNIFORM SYMMETRIC
BEAMS

9.3.1 Beam on rigid supports

A symmetric three-span continuous beam and its half-beam for symmetric and antisym-
metric vibration are shown in Figs. 9.6(a), 9.6(b), and 9.6(c), respectively.
The natural frequency of vibration is
h
where [ =/, +~.

22 [EI
W =—.—
PN m
2

The frequency equation for symmetric vibration in terms of Hohenemser—Prager
functions is (Anan’ev, 1946)

CLA(1 — I9)BOI*) + AL — I¥)]S,(A1%) = 0 (9.6)

. . /
where the dimensionless parameter /* = 71

The frequency parameter / for the fundamental mode of vibration is presented in Fig.
9.7(d).

The frequency equation for antisymmetric vibration in terms of the Hohenemser—
Prager functions is

BlA(1 — I9)]S,(A1%) + 8, [A(1 — ¥)]B(AI*) = 0 (9.7)
1S4
1 2 i m, EIl
O S S S
P - i >l< b,
« L eI
54 1S4
(b) m, EI () m, EI ;

%}C &)
%}Cll\)
b

1 1
&l il ; " O.SIil &l iI l ” O.SIil

FIGURE 9.6. Three-span uniform beam on rigid supports. S4 = axis of symmetry.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

BERNOULLI-EULER MULTISPAN BEAMS

284 FORMULAS FOR STRUCTURAL DYNAMICS
Symmetrical TN
4. vibration N
5 / \7
4 3.9266
3. '_H” —g .
5, —L—>iSA L ISA
2.5
2.365 Fundamental
0 2

0 0.2 0.4 0.6 0.8

FIGURE 9.7. Three-span uniform symmetric continuous beam: parameter 4 as a function of /* =1, /I for
fundamental mode of vibration.

Special cases. Limiting cases for /; = 0 and /, = 0 transfer the given system into a new
system (Table 9.8).

TABLE 9.8. Transformation of two-span beams: limiting cases of the span length and correspond-
ing frequency parameters

I, =0(=0.L) L=0(0=1)
Symmetric Clamped—guided Pinned—clamped
vibration A =2.3650; 5.49878; 9.63938 ... A =3.9266; 7.06858; 10.2101, ...
0.257(4n — 1) 0.25n(4n + 1)
Antisymmetric Clamped—pinned Pinned—clamped
vibration A =3.9266; 7.06858; 10.2101,. .. 4 =3.9266; 7.06858; 10.2101, . ..
0.25n(4n + 1) 0.257(4n + 1)

9.3.2 Beam with elastic end supports

A symmetric three-span continuous beam and its half-beam for symmetric and antisym-
metric vibrations are shown in Fig. 9.8(a).
The natural frequency of vibration is

vy
T2\ wm’

The frequency equation for symmetric vibration in terms of Hohenemser—Prager
functions is (Anan’ev, 1946)

where [ = [, +l§2.

K 5 CLA(L = PJEGU*) — A[A(L — [9)]B(I¥)
EL 7 CIA1 = P)BGI) + A[A(1 — 1%)]S,(A1*)

. . /
where the dimensionless geometry parameter [* = 71

(9.8)
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The frequency parameter, A, for the fundamental mode of vibration is presented in Fig.
9.8.

Special cases. Limiting cases for k = oo and k = 0 transfer the given system into a new
system (Table 9.9).

{54
(a) : m, EI
S E T L L
L Jo b b 3
1 : >1<
L >« L
1S4 | SA
()  m El © m, EI i

e
N:%m
;

0.

] L]

=05 T symptote at A= 3.9266 (k =o)

Asymptote at A= 3.42

Asymptote at A= 3.05

28 |/ = =03 ____________------P-}--%--{___‘___‘___

Asymptote at A= 2.765

Asymptote at A= 2.54

20 |t F=o01 ‘ ‘J___L—L —
- //”—’—_T_ﬁd Symmetric vibration

Fundamental mode

0 20 40 60 80 100 120 140 160 180 k
(d)

FIGURE 9.8. (a) Symmetrical three-span beam with elastic end supports; (b,c) Three-span uniform beam
on elastic end supports; (d) Parameter A as a function of /* = [, /I and k* = kI* /El for the fundamental mode
of vibration.
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TABLE 9.9. Transformation of three-span beams: limiting cases
of rigidity of elastic supports

Symmetric vibration Antisymmetric vibration

k=00 Pinned—pinned-guided Pinned—pinned-pinned

Fig. 9.2(i) Fig. 9.2(a)
k=0 Free—pinned—guided Free—pinned—pinned
Fig. 9.2(f) Fig. 9.2(b)

9.3.3 Beam with clamped supports

A symmetric three-span continuous beam and its half-beam for symmetric and antisym-
metric vibration are shown in Figs. 9.9(a), 9.9(b), and 9.9(c), respectively.
Analytical and numerical results for these cases are presented in Tables 9.3(c) and 9.5.

9.3.4 Beam with overhangs

A symmetric one-span beam with overhangs is presented in Fig. 9.10.
The analytical and numerical results for this case is presented in Chapter 4 and Tables
9.3(a) and 9.3(b).

1S4
(a) l : m, EI |

= X

PR 44 h E >!< I

< AR /
1S4 1S4

®) o B '[” © B i
! L

1S4
m, EI !
L 1 &
b Jo b PEN
< < : » <€
< L e L >

FIGURE 9.10. Design diagram.
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Symmetrical vibration. In this case, the design diagram of half-beam is a free—
pinned—guided beam (Table 9.3(b)).

Antisymmetric vibration. In this case, the design diagram of the half-beam is a free—
pinned—pinned beam (Table 9.3(a)).

9.4 UNIFORM MULTISPAN BEAMS WITH
EQUAL SPANS

The natural frequency of vibration of uniform multispan beams with equal spans is

2 [EI
TRV m
The frequency parameters, A, for uniform multispan beams with equal spans and different
boundary conditions are presented in Table 9.10 (Bolotin, 1978).
Eigenfunctions for prismatic multispan beams (number of spans, n = 2, 3, 4) with
equal spans are shown in Appendix B (Korenev, 1970). These functions satisfy orthogon-
ality conditions

w

1 1 r=k
[ ={g 12k

where ¢ = x/I; i is number of the spans, and k and » are numbers of the eigenfunctions.

The frequencies of vibrations of multispan beams with equal spans produce ‘ranges of
extension’. In each of these zones the number of frequencies is equal to the number of
spans, and the eigenvalues are closely spaced.

N
(9.9)

i=1

TABLE 9.10. Multispan uniform beams with equal spans: frequency parameters 4

Mode
Number

Type of beam of spans 1 2 3 4 5
I 2 3.142 3927 6.283 7.069 9.425
RO AN VAN 3 3.142 3550 4304 6.283 6.692
nl 4 3.142 3393 3.927 4461 6.283
5 3.142 3299 3707 4147 4555
10 3.142 3.205 3299 3487 3.707
2 3.927 4744 7069  7.855 10.210
! [—3—1 b —?5—1 ! 3 3550 4304 4744 6.692 7.446
N 4 3393 3927 4461 4744 6.535
nl 5 3299 3707 4147 4.555 4.744
10 3.205 3299 3487  3.707 3.927
' 2 3393 4.461 6.535 7.603 9.677
' ; -zf-, _g‘_ -%-1-3- 3 3.267 3.927 4587 6.409 7.069
D 4 3.205 3644 4210 4.650 6347
5 3.205 3487 3927 4367 4.681
10 3.142 3236 3456 3.582 3.801
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9.5 FREQUENCY EQUATIONS IN TERMS OF
ZAL'TSBERG FUNCTIONS

The Zal’tsberg functions arise from equations (5.7) or (5.8) and may be presented in the
form (Filippov, 1970)

h A, Ai—1

¢; = coth /; — cot 4; Y;=cscA;—csch A o, = 2%
sinh A; sin 4;

cosh Z; cos 4; + 1 ! ! (9.10)

; ———; V;=tanh/], +tan/;
sinh 4; sin 4; ! ! !

P =

where index i denotes the number of a span.
The natural frequency of vibration for a two-span beam with length of spans /; and /, is

EI _ 22 H I +1
J ‘/ ‘+2,z=h+5

If parameter 4, is a basic one (frequency parameters /; for all spans are presented in terms
of frequency parameter A, for first span), then the transfer to the basic parameter is

g:aﬁ.

9.5.1 Prismatic two-span beams with classic boundary conditions
Consider a pinned—pinned—pinned uniform beam with different lengths of the span (Fig.

9.11).
The frequency equation may be presented in the form

o +¢,=0 9.11)
or, in explicit form, as
coth 1, —cotA; + coth 1, —cotl, =0 (9.11a)

where the frequency parameter for the ith span is

AZ = w12
V EI

Change from parameters A, and 1, to parameter 4

cothad — cotad + cothnyd —cotnd =0 (9.11b)

/
whereoc:7l, n=1-—o.

m, EI

-
N

b > FIGURE 9.11. Design diagram.

&L L
DR
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If EI, # EI, then the frequency equation is

l [ )
E—lll(coth Ay —cotl;) +E—2[2(coth Ay —cotdy) =0

Example. Find the eigenvalues of the two-span symmetric beam (/; =/,) with a
uniformly distributed mass.

Solution. The frequency equation is

cothA; —cotd; +cothd, —cotd, =0 or cothi=coti

The minimal root is 4 = 3.927, which corresponds to symmetric vibration. As this takes
place, the mode shape of each span coincides with the mode shape for the pinned—clamped
beam. If, however, the beam vibrates according to the antisymmetric shape (in this case the
eigenvalues of the system under investigation and the simple-supported beam are equal),
then the bending moment at the middle support is zero. The frequency parameter values, 4,
for the first modes of vibration as a function of the intermediate support spacing, /,//, are
presented in Fig. 9.2(a).

Consider a pinned—pinned—clamped uniform beam with different lengths of the span
(Fig. 9.12).

The frequency equation may be presented in the form (Filippov, 1970)

A 1
o(41) _ 9.12)
a(d)  ¢(%y)
or, in explicit form as
sin 4, cosl'1 A= s.in}} AL cos A, . 1 — cosh ).2.cos").2 —0 (9.12a)
sinh 4, sin 4, sin 4, cosh 4, — sinh 4, cos 4,

The frequency of vibration equals

X [EI
T BVm

The first five frequency parameters, /,, as a function of ratio /, //, are presented in Table
9.11. The data presented in Table 9.11 also define the frequencies of the symmetric
vibrations for a four-span beam that is symmetric with respect to the middle support.

m, EI |
L '
e b \ -
i 7l FIGURE 9.12. Design diagram.

T

I,
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TABLE 9.11. Uniform pinned—pinned—clamped two-span beams with
different spans: frequency parameters 4

L/l i=1 i=2 i=3 i=4 i=5

0.00 3.9266 7.0685 10.2102 13.3518 16.4934
0.05 3.8804 6.9824 10.0985 13.2106 16.3253
0.10 3.8392 6.9920 10.0122 13.0850 16.2094
0.20 3.7693 6.8181 9.8832 12.9517 16.0016
0.30 3.7116 6.7363 9.7641 12.6663 14.4770
0.40 3.6627 6.6892 9.5168 11.0086 13.0935
0.50 3.6195 6.5607 8.5557 10.0275 12.8576
0.60 3.5796 63666 7.4931 9.8186 12.1594
0.70 3.5404 5.9246 6.9584 9.6259 10.8154
0.80 3.4992 5.3602 6.7670 9.0887 10.0668
0.90 3.4591 4.8632 6.6592 3.2827 9.8468
1.00 3.3932 4.4633 6.5454 7.5916 9.6865
1.10 33141 4.1561 6.3527 7.1069 9.3447
1.20 3.2063 3.9349 6.0306 6.8533 8.7561
1.30 3.0707 3.7868 5.6579 6.7265 8.1666
1.40 2.9200 3.6895 53043 6.6316 7.6554
1.50 2.7685 3.6212 4.9873 6.5186 7.2437
1.60 2.6234 3.5673 47077 6.3407 6.9594
1.70 2.4889 3.5193 4.4635 6.0886 6.7973
1.80 2.3663 3.4709 42524 5.8099 6.6965
1.90 2.2522 34173 4.0735 5.5387 6.6074
2.00 2.1487 3.3538 3.9266 5.2858 6.4952

9.5.2 Prismatic beams with special boundary conditions, El=constant,
m=constant

Two-span beams. Table 9.12 contains the design diagrams of uniform beams
(EI = const. m = const.) with specific boundary conditions and corresponding frequency
equations in terms of Zal’tsberg functions (Filippov, 1970).

In the limiting cases, the design diagrams are changed. For example, limiting case
I, = 0 transfers diagrams 3 and 6 into the pinned—clamped beam with frequency equation

tan A, =tanh A; (see Table 5.3)

The limiting case /, = 0 or /; = 0 transfers diagrams 1 and 4 into the clamped—clamped
beam with frequency equation

cosh/,cos 4, =1 (see Table 5.3).

The equations presented in Table 9.12 may be used for calculation of three- and four-
span symmetric beams.
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TABLE 9.12. Uniform two-span beams with different spans and special boundary conditions:
frequency equations in terms of Zal’tsberg functions

Beam type 1 2 3

= — il
b b il b bl
Frequency equation a0,

PR P

Beam type 4:_TH]| 5 P Sa— 6 ||]'|T_
l L b b | L L

01

¢_1_v2:0 b1 -

Frequency equation

by

Example. Derive the frequency equation of the symmetric vibration for the system
shown in Fig. 9.13(a).

Solution. One-half of the system, which corresponds to symmetric vibration, is shown in
Fig. 9.13(b).

In our case 1, = 1.54, (see Section 5.1.2).

The frequency equation is (Table 9.12, diagram 6)

9
'S

In an explicit form, the frequency equation is given by

Vi — =0

coshycos 4, + 1 _
sinh 1, sin ,(coth ; —cot ;)

tanh A, +tan/; —

The frequency equation in terms of 4, is

cosh 1.54, cos 1.54; + 1 .
sinh 1.5/, sin 1.54,(coth 4; — cot 4;)

tanh A 4+ tan4; —

SA |SA
(b) ,

|
(a) m, EI I
& i

L 2h=4 ) b=3

\ 7T

e

FIGURE 9.13. (a) Design diagram of the symmetrical system; (b) symmetrical vibration: one-half of the
system; AS is axis of symmetry.
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The natural frequency of vibration is

Y-
_l% m

Multispan beam with n different spans. Figure 9.14 shows the multispan beam with n
different spans.

The three-moments equations (5.7) for a continuous beam lead to the frequency
equation

|~ + ) b 0 |
D= ¥, —(¢; + ¢3) s ;=0 9.13)
|

| 0 s —(¢3 + ¢4)

where Hohenemser—Prager functions (see Table 5.2) are

¢, = coth 4, — cot A,
W, = cosech 4, — cosec 4,

The frequency parameter for each element is
Iy = o

my
EI,

n-1 n

=
>

0 1 2
S L b
h b l

FIGURE 9.14. Multispan beam.

ln-l

The index k points to the number of the span and its parameters.
The natural frequency of vibration is

12
o= [El
l/% my

9.6 BEAMS WITH LUMPED MASSES

9.6.1 Two-span uniform beams with equal spans and lumped masses

Figure 9.15(a) shows the symmetric two-span uniform beam with lumped masses.
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FIGURE 9.15. Design diagram and primary system of the slope-deflection method.

Antisymmetric vibration. The principal system of the slope and deflection method is
presented in Fig. 9.15(b).

The principal unknown is the angle of rotation Z,. The canonical equation is r; Z; = 0.
The reaction 7;; due to unit rotation of the support 1 equals (Table 4.8, case 5)

kET
11 :ZT{Tz— V2+
1

Mao?

g LTV + TV, = 1,1,V = VY, V,,]} (9.14)

where T and V are Krylov functions at x =1/; 7, and V, atx = a; T, and V), at x = b.
The frequency equation is

T2 — V2 4 ni[T, TV, + T,TV, — T,T,V — VV,V,] =0 (9.15)
or
2 sinh Asin A 4+ nA(sin Asinh &; A sinh ;4 — sinh Asin &, Asin&,4) = 0 (9.152)
M M b
where % =ni,n= pl ¢ = %, &= 7= 1 — ¢, (see section 5.2).

If a = b = 0.5/, then the frequency equation becomes

) pi /2 [EI
2sinh Asin / + nA( sin Zsinh®>Z — sinh Asin®= ) =0, o =>,/—
2 2 2N'm

The fundamental parameters, A, as a function of mass ratio, n, are given in Table 9.13.
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TABLE 9.13. Uniform symmetric two-span beam with two symmetrically located equal lumped
masses: Fundamental frequency parameters 4

n 0.0 025 050 1.0 2.0 5.0 100 200 50.0 100 500 1000
A 3142 2.838 2.639 2383 2.09 1720 1.463 1.273 0987 0.831 0.557 0.468

9.6.2 Uniform beams with equal spans and different lumped masses

Adjustment mass method. A multispan beam with arbitrary boundary conditions, equal
spans and different lumped masses is shown in Fig. 9.16; the boundary conditions are not
shown.

The natural frequency of vibration may be calculated by the formula

2 EI
(Dr:l—z mi’

The frequency parameter, 4,, for the rth mode of vibration of the beams with different
boundary conditions and without lumped masses is given in Table 9.10.
The adjustment uniform mass, m,, corresponding to the r-mode of vibration is

12 . X,
m=mt 5 Y XMy, &= (9.16)
k=1

Eigenfunctions X} (&), &, = )%, for multispan beams with different boundary conditions

are presented in Appendix B (Korenev, 1970).

Example. Calculate the fundamental frequency of vibration for a pinned—pinned—
clamped beam with two lumped masses M, and M, as shown in Fig. 9.17.

x MM M; M, M, X
o oy o ~ >
00— 0———0—
X x1,) <) ) T x ) %
X
! ! ’ N ! )

FIGURE 9.16. Multispan beam with different boundary conditions and lumped masses.

My=ml =
1=m m, EI M, 1.4ml|

&041\/ = OSZC l

[ [

< > ql

FIGURE 9.17. Multispan beam with distributed and lumped masses.
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Solution. Parameter 1 for a pinned—pinned—clamped beam equals 3.393 (Table 9.10).
The ordinates of the first eigenfunction at point x = 0.4/ in the first span and at
x = 0.5/ in the second span are 1.276 and 0.5435, respectively. So the uniform adjustment
mass

1
mo=m +7(1.2762 +0.5435% x 1.4)yml = m + 1.9236m = 2.9236m

The natural fundamental frequency of vibration is

3393 [ EI
P V2.9236m

The adjustment mass method for one-span beams is presented in Chapter 7.

9.7 SLOPE AND DEFLECTION METHOD

This method is convenient to use for frequency analysis of beams and frames with different
stiffness, length and mass density of elements.

Example. Derive the frequency equation for a three-span beam with different span
length, stiffness and mass density. The system is presented in Fig. 9.18(a).

Solution. This beam contains two rigid joints, 1 and 2; consequently, the number of inde-

pendent joint deflections is equal to two. In order to obtain the principal system of the

slope and deflection method, the additional constraints introduced must prevent the rota-

tion of all the rigid joints. The conjugate redundant system is presented in Fig. 9.18(b).
The canonical equations of the slope and deflection method are

rmZy+rpZ, + Ry, =0
1z +rpZ, + Ry, =0

where Ry, and R,, are the reactive moments developed by the additional constraints 1 and
2 under the action of loads P; in the case of free vibration R, = R,, = 0. The unit
coefficients 7|, and r,,; are the reactive moments developed by the additional constraints 1
and 2 (first index) due to the rotation of the fixed joint 1 (second index) through an angle
equal to unity. Unit coefficients r|, and r,, are the reactive moments developed by the
additional constraints 1 and 2 due to the rotation of the fixed joint 2 through an angle equal
to unity. The elastic curves due to the rotation of the fixed joints are shown as dashed lines,
and the corresponding bending moment diagrams are shown as solid lines. The reactive
moments at the ends of the each element may be calculated by using Smirnov functions
(Chapter 4).
Consider Fig. 9.18(c), unit reactions are

1511

4E]
ry = Pz()hl)'f‘ -

2E[
l//z(jhz) Iy = == ‘ﬁs(iz)

The indices of Y (/, and y,) denote the function number, i.e. a special type of function
(Table 4.4), while the indices of 4 (4, and 4,) denote the number of the span.
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0 EIL , EL=16E] EL=18El,
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FIGURE 9.18. Continuous three-span clamped—pinned non-uniform beam. (a) Design diagram of multi-
span beam; (b) conjugate reduntant system; (c) bending moment diagram due to Z; = 1; (d) bending
moment diagram due to Z, = 1.

Consider Fig. 9.18(d), unit reactions are

T = EIZ — Y, (4) + lﬁ (43); =7y

The frequency parameters are

2 2
4lmy , 4lmyw
A =1 5 Ay = S Ay =1
! ! E]l ’ 2 2 EIZ ’ 3 3

4m @?
El,

b afmy E1 Iy 4fmy EI
Jy=22 4’"2—1_1.09762; Jy=22 450 9y,
“1,\/my EL 1, \| my EI

The frequenFy equation is 7,75, — 73, = 0, where unit reactions in terms of the frequency
parameter, A, are

Let the base eigenvalue be 4, =/, =/, then

ri = 4iy(2) + 4 x 1.333i,(1.0976,2)
ry =2 x 1.333i5(1.09762); 71y = 1y
ry =4 x 1.333i,(1.09762) + 3 x 0.9y, (1.911)
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Smirnov’s functions, ¥, which are required for calculation of the frequency of vibration are

A 2sinh A sin A
Vi(h) = 3 cosh /sin 4 — sinh A cos 4
Acosh Asin A — sinh Acos A
Vald) = 4 1 —cosh Acos 4
A sinh A —sin A
V) = 21— cosh Acos 4
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CHAPTER 10

PRISMATIC BEAMS UNDER
COMPRESSIVE AND TENSILE
AXIAL LOADS

This chapter focuses on prismatic Bernoulli-Euler beams under compressive and tensile
loading. Analytic results for frequency equations and mode shape functions for beams with
classical boundary conditions are presented. Galef’s formula is discussed in detail. Upper
and lower values for the frequency of vibrations are evaluated.

NOTATION
A Cross-sectional area of the beam
E,v Modulus of elasticity and Poisson ratio of the beam material
E Bending stiffness
G Gauge factor
i Bending stiffness per unit length, i = EI/]
1 Moment of inertia of a cross-sectional area of the beam
2
k Frequency parameter, k* = me”
EI
/ Length of the beam
M,N Dimensionless frequency parameters
t Time
T Axial load
Tg First Euler critical load
T Critical buckling load corresponding to mode i.
U, U, Dimensionl vIt Tuil”
s Ui imensionless parameter, U = T YT
X Spatial coordinate
X, ),z Cartesian coordinates
X(x) Mode shape
y(x, 1), w Lateral displacement of the beam
p,m Density of material and mass per unit length of beam, m = p4
299
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A Frequency parameter, A2 = k212

w Circular natural frequency of the transverse vibration of a compressed beam
(relative natural frequency)

y; Circular natural frequency of transverse vibration of a beam with no axial
force in the ith mode of vibration

Q Dimensionless natural frequency parameter of a compressed beam (relative

natural frequency); Q = w/? /o, o> = EI/pA

Q" =Q/Q, Normalized natural frequency parameter

Qo Dimensionless natural frequency parameter of a beam with no axial force in
the ith mode of vibration; Q,; = wy;2/a,

10.1 BEAMS UNDER COMPRESSIVE LOAD

10.1.1 Principal equations

The notation for a beam without axial load and under compressive constant axial load 7 is
presented in Figs. 10.1(a) and (b), respectively; boundary conditions of the beam are not
shown. Parameter o> = EI/pA.

Notation

e o, and Q; = wy;/?/a are the circular natural frequency and dimensionless
natural frequency parameters of the beam with no axial force in the ith mode of
vibration;

e w and Q = w/?/u are the circular natural frequency and dimensionless natural
frequency parameters of the compressed beam (relative natural frequency);

o Q" = Q/Q; is the normalized natural frequency parameter.
Differential equation of vibration

84)/ 32y 82y
El —+T—=+4+pA—==0 10.1
axt + o2 p o2 (10.)

Solution

Y(x, 1) = X(x) cos wt

a)
oo Qoi=woi /o T o; Q=0/o T
X 4+— —>x

44)(_ —_— _x*)\
o
=

VS 2NN

T T
| |
| !
! g ! J

FIGURE 10.1. Notation of a beam (a) Beam without axial load; (b) Beam under axial compressed
load.
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Differential equation for modal displacement

d'x _dx 5
EIJ—}—T@—pAwX:O (10.2)
Modal displacement. Form 1
X(x) =X = C,sinhME+ CycoshME + CysinNE + Cycos NE (10.3)

where ¢ = x/I is a dimensionless beam coordinate;
Ci(i =1,2,3,4) are constants to be determined from the boundary conditions;
M and N are parameters, which may be written as

| 2
o)) - e
! >2+ (%)wz =m

V=t Ge) ) Ga

(10.3a)

U = TI?/2EI is a dimensionless compression parameter (the relative axial force);
Q = wl/a, o = EI/m is a dimensionless natural frequency of vibration.

Form 2 (Initial parameter form) (Nowacki, 1963)

X(&) = X(O)[H(E) + o F(O] + X' (O[G(E) + o E@©)] + X"(0)F (&) + X"(0)E(E) (10.4)

where X(0), X’(0), X”(0) and X””(0) are lateral displacement, slope, bending moment, and
shear force at x = 0

1 1 1
E() = NI <MsinhMcf — NsinNé)

1
F@©) = m(costh — cos N¢) (10.40)

G = m(M sinhM¢ + NsinN¢E)
H() = m(Mz cosh M¢& + N? cos N¢&)

Galef’s formula is a useful relationship between the frequency of vibration and the critical
load of the compressed beam. The existence of this relationship is obviously because the
frequency of vibration and the critical load are eigenvalues of the deformable system.

For bending vibration, it is worthwhile to cite Amba—Rao (1967) and Bokaian (1988) for
Galef’s formula:

The fundamental natural frequency of a compressed beam/natural frequency of
uncompressed beam = (1 — compressive load/Euler buckling load)’>.

Q* =/1-U*
(10.5)
Q*:Q:w, i=1 and U*:l
Qo Ty
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where T} is the Euler critical buckling load in the first mode and U* is the normalized
compression force parameter.

1. Galef’s formula for the fundamental mode of vibration is
(a) exact for pinned—pinned, sliding—pinned and sliding—sliding beams;

(b) approximate for sliding—free, clamped—free, clamped—pinned, clamped—clamped
and clamped-sliding beams;

(¢) not valid for pinned—free and free—free beams.

2. Galef’s formula is valid for the third and higher modes of vibrations for all types of
boundary conditions.

Example. Find the fundamental frequency of vibration of the pinned—pinned uniform
beam under compressive load, if 7/7,, = 0.2 (Fig. 10.2).

Solution.  According to Galef’s formula

Q w T
=41-U* Q"= —, i=1, U'=—
QOi wo; T,

so the fundamental frequency of vibration of a compressed beam equals

l T 3141592 El 2.971132 /EI
1—— «/ — ==

ElLp,m,l T
KN <«
S =

FIGURE 10.2. Pinned—pinned uniform beam under compressive axial load.

10.1.2 Frequency equations

Table 10.1. contains the frequency equation for compressed beams with classical boundary
conditions (Bokaian, 1988). Parameters M and N are presented in Section 10.1.1. The
relative natural frequency parameter and the frequency of vibration are

o, 22 |EI
Q—T—),i (,Oi—l—2 ‘[)7

Table 10.2 predicts eigenvalues for axial compressed beams. They include the critical load
and frequency of vibration for beams with different boundary conditions.
The critical buckling load parameter corresponding to the ith mode is U, = T, />/2EI.

10.1.3 Modal displacement and mode shape coefficients

The modal displacement may be written in the form
X(x)=X(&) = C,sinhME+ CycoshME+ CysinNE + Cycos NE (10.6)

The mode shape coefficients C, (n=1, 2, 3, 4) for a beam with different boundary
conditions are presented in Table 10.3 (Bokaian, 1988). Parameters M and N are listed in
Section 10.1.1, formulae (10.3a).
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TABLE 10.1. Uniform one-span beams with different boundary conditions under compressive axial load:
frequency equations

Boundary condition

Beam type Left end (x = 0) Right end (x =) Frequency equation
Free—free X"0)=0 X' (=0 Q*[1 — cosh M cos N] +
T T X"(0) + X"() + (4U% +3UQ%) sinhM sinN = 0
- < (T/EDX'(0)=0 (T/JEDX'(I) = 0
Sliding—free X' (0)=0 X" =0 M? cosh M sin N + N3 cos Nsinh M = 0
T T X7(0)=0 X"()+(T/EDX'(I) =0 or M3 tanN + N tanh M =0
— | —— -—
Clamped—free X0)=0 X'(H)=0 Q% — QU sinh M sin N+
T X'(0)=0 X"(I)+(T/EDNX'() = 0 202 4+ Q) coshM cos N = 0
r I 0 () +(T/EDX'( ( )
Pinned—free X0)=0 X' =0 N3 cosh M sinN — M3 sinh M cos N =0
T T X"(0)=0 X"()+(T/EDX'(I) =0 or N3tanN — M3 tanh M =0
g
Pinned—pinned X0)=0 X(H=0 sinN =0
T T X"(0)=0 X'"(H)=0
g — S
Clamped—pinned X0)=0 X(H=0 M cosh M sin N — NsinhM cos N =0
X'(0)=0 X"(H)=0 or MtanN — N tanh M = 0
T I X0 0
Clamped—clamped X0)=0 X(H=0 Q—UsinhMsinN —QcoshMcos N =0
X'(0)=0 X(H=0
r y 0) U]
Clamped-sliding X0)=0 X' (=0 N coshM sinN + M sinhM cos N =0
T T X' (0)=0 X" =0 or NtanN + M tanh M = 0
| f——iil—
Sliding—pinned X' (0)=0 X(H=0 cos N =0
X"0)=0 X'"()=0
I, I ©) U]
Sliding—sliding X'(0)=0 X(H=0 sinN =0
X!H 0 — 0 X/// l — 0
Lol X0 ®

Special case: If compressed load 7 =0,then U=V =0and M =N = /.

Example. Find the frequencies of vibration for the simply-supported compressed beam
shown in Fig. 10.2.

Solution. The frequency equation is sinN =0,so N =in, i =1,2, or

U+VU2+Q=in
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TABLE 10.2. Uniform one-span beams with different boundary conditions under compressive axial
load: frequency parameter and critical buckling load

Critical buckling Euler critical

load parameter buckling load Parameter Galef formula
Beam type Upi Ty Qy; for first mode
Free—free
T T 22 )2 T2El /12 (2i + 1)*n2 /4t Not valid
> —
Sliding—free
T T (2i — 1)*n2/8 T2El /A1 (4i — 1)*n2/16" Approximate
— | f— -—
Clamped—free
T T (2i — 1)*n2/8 T2EI /Al (2i — 1)*n2/4 Approximate
— I— -
Pinned—free
T T 222 n2El /12 (4i + 1°n2/16" Not valid
— -
PN
Pinned—pinned
T T 2n? /2 n?El/ 1 i2n? QF =/1-U*
— -
P —
Clamped—pinned
T T (i + 1)*n2/8 2.05m2El /12 (4i+ 1)*n2/16 Approximate
—> ﬁ -
Clamped—clamped
. 2.2 25712 ; 2.2 ;
T T @i+ 1)"n*/2 4n°El /] 2i+1)"n*/4 Approximate
> —<-
Clamped-sliding
2.2 25712 . 2 5 .
T T i“m” /2 n°El /] (4i —1)°’n/16 Approximate
— | [—tll—
Sliding—pinned
T T (2i —1)*n2/8 T2 El JAI2 (2i — 1)*n2/4 Q' =J1-U*
> —
Sliding—sliding
?n?/2 n?El /P 2n?t Q =J/1-U*

L —— i

 The asymptotic formulas are also presented in Table 5.1. The numerical results concerning variation of Q with U
for beams with classical boundary conditions are presented by Bokaian (1988).

2

Because U = —l and Q = ol?
2EI

the frequency of the system

i?n* [EI T
0=y =55
/ m Eli*m

12

[m . .
R the expression for N leads to the exact expression for
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TABLE 10.3. Uniform one-span beams with different boundary conditions under compressive axial
loads: mode shape coefficients

Beam type C, C, C; Cy
Free—free 1 N3(—coshM + cos N) N M?N(cos N — cosh M)
r T N3sinh M + M3 sin N M N3sinh M + M3 sinN
— —
Sliding—free 0 1 0 N sinh M
T T M sinN
> |— -
Clamped-free 1 M?sinh M + MN sinN M M?sinh M + MN sin N
T M2 2 N 2 2
r 4T_ M? coshM + N? cos N M? coshM + N2 cos N
Pinned—free 1 0 M?sinh M 0
T T N2 sinN
-
Pinned-pinned
T T 0 0 1 0
& 1%
—pi — M M
TClamped pmne; 1 tanh M -5 N tan N
— |—_i_<—
Clamped_clamped 1 M sinN — N sinh M % M sinN — N sinh M
T N(coshM —cos N N N(coshM — cos N
r I ( ) ( )
Clamped-sliding 1 M(coshM — cos N) M M(cosh M — cos N)
T T M sinh M + N sinN N M sinh M + N sin N
- f————ll-—
Sliding—pinned
T T 0 0 0 1
— lmﬂ -—
Sliding—sliding
T T 0 0 0 1
= | p———tlll —

Let i = 1 (fundamental mode) and 7'/T; = 0.3. In this case, the frequency of vibration is

n? [EI
D0 =TT\

o =wyv1—0.3=10.8366w,,

Calculate the following parameters

:@_

Q=0 /2 0. 2 [ g
OF |22 = 083360, |7 = 8.2569

T 03Tz 03 xm?El

2EI 2

2FEI

L —1.4804

\/U+ VU +0F = \/1.48044— V/1.48042 + 8.2569% = 3.1415
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The modal displacement is

X(x) = sin[(U +V U2 +Qz)‘/2ﬂ = sin3.1415)7‘

Example. Find the frequencies of vibration for a clamped—pinned compressed beam, if
T/T; =0.3.

Solution. The frequency equation is

M coshM sin N — N sinh M cos N =0

2

The first Euler critical force, 7y = SO parameter

0.7)%
TP 2
U=-——=03T;— = 3.0201
2EI EQEl

and the frequency equation becomes

—3.0201 4 v/3.02012 4+ Q? -
/ tan(\/3.0201 +V3.2012 +QZ)

V3.0201 + V3.02012 + @

- tanh<\/—3.0201 ++/3.02012 + QZ> =0

The root of this equation is Q = w/?, | % = 12.954, so the fundamental frequency of

vibration of a compressed clamped—pinned beam equals

o= 12.954 /g_ 3.5992 /g
TR m P2 m

2
If T =0, then w :w,/g.
2 m

Parameters

M= \/—3.0201 ++/3.02012 4+ Q* = 3.2064

N= \/3.0201 +V/3.02012 + Q> = 4.0399

The mode shape coefficients are

C,=1, C,=—tanhM = —0.9967

M M
Cy= = =—0.7937, Cy =7 tanN = 0.9968

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.


https://telegram.me/seismicisolation

PRISMATIC BEAMS UNDER COMPRESSIVE AND TENSILE AXIAL LOADS

PRISMATIC BEAMS UNDER COMPRESSIVE AND TENSILE AXIAL LOADS 307

The modal displacement and slope are

X(x) = X(I&) = sinh 3.2064¢ — 0.9967 cosh 3.2064¢ — 0.7937 sin4.0399¢
+ 0.9968 cos 4.0399¢

X'(1€) = 3.2064 cosh 3.2064¢ — 3.1958 sinh 3.2064¢ — 3.2065 cos 4.0399¢
—4.0273 sin4.0399¢

10.2 SIMPLY SUPPORTED BEAM WITH
CONSTRAINTS AT AN INTERMEDIATE POINT

The design diagram of the compressed simply supported uniform beam with translational
and rotational spring supports at an intermediate point, is presented in Fig. 10.3.
The differential equation for eigenfunctions in the ith mode is

XY+ k2Xx -2 X, =0, i=1,2 (10.7)
where
2 2% [EI
F=—=2U ===
El TRV

Boundary and compatibility conditions are

x=0 Xi=X"=0
x=l—c X,=Xy; X| =X}, KIX|+X] =XJ, X" — k%X, = X}’ (10.8)
x=1 X, =Xy =0

where the dimensionless parameters of rotational and translational spring supports are,

respectively

krotl ktr 13

-
El’ kE = EI

k=

The fundamental natural frequencies parameter / for a simply-supported beam with
axial compressive force and various restraint parameters and their spacing are presented in
Table 10.4 (Liu and Chen, 1989). The normalized compression force parameter and the

I
T ElL p, m ) krot T

—V% - % _2_4— —> X
l

y c |
l

FIGURE 10.3. Compressed beam with elasic restrictions at any point.
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FIGURE 10.4. Buckling coefficient B for a simply-supported compressed beam with elastic restrictions at
any point for various parameters k¥ = k. //EI, k¥ = k,I> /EI and spacing ratio u = c/I.

Euler critical buckling load in the first mode for a pinned—pinned beam without elastic
constraints are
T n?BEI
o = T— s o = 1—2

cr

The buckling coefficients B for a pinned—pinned beam with various values of k¥, k%, and
spacing ratio c¢/I are presented in Fig. 10.4.

10.3 BEAMS ON ELASTIC SUPPORTS AT
THE ENDS

A uniform one-span beam with ends elastically restrained against translation and rotation
and initially loaded with an axial constant compressive force T is presented in Fig. 10.5.

Differential equation of vibration

84y 82y 32y
El—+4+T—= A— =0 10.9
ox* * ox2 te or? ( )
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C | krotl krotZ |> T
Ty — “— —x
5y b m
ktrl % p ktr2
b : .
y

FIGURE 10.5. Compressed beam with elasic restrictions at both ends.

Boundary Conditions

t 230, ¢ P1(0, ¢ t
atx=0: Ky W00 _ 0.0 L oy0.0) K01 — 0.9
ox ox2 o3
(10.10)
] awv(l, 1) (1, £) Py, 1) av(l, t)
atx=10 Kp o —EI e EI a3 = wy(l, ) =T ™
Solution
Y(x, 1) = X(x) cos wt
The differential equation for modal displacement is
d'x _dx 5
Modal displacement
X(x)=X(1&) = CsinhME+ CycoshME+ CysinNE + Cycos NE
Ly T\ (p4
o) () (oo
2EI 2EI EI (10.11)

N=1I|(z= — VU2 +
Q 221) T \aEr Urvus

where U = TI?/2EI is the dimensionless compression parameter and Q = w/? /o is the
dimensionless natural frequency parameter of the compressed beam, o> = EI/pA.
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The frequency equation may be written as follows (Maurizi and Belles, 1991)

T, T,R,R,{(cos N coshM — D2M°N> + 4UM>N° — M°N*) — 8U> M3 N3]
+ sin N sinh M[(M*N® — MON*) — SUM*N* + 4U>(M*N? — M>N*)])
+ (R, T, Ty + R, T, T»){sin N cosh M[(M°N* + M*N®) — 2UM°N? + M*N*)]
+ cos N sinh M[(M*N> + MON3) + 2U(M>N°> + M*N?)])
+ T, T, sin N sinh M(M®N? + M2N® + 2M*N*)
+ (R R, Ty + R\ R, T){sin N cosh M[(M°N? + M>N*) + 2U(M>N? + MN*)]
— cos N sinh M[(M*N° + M*N3) + 2U(M*N? + M*N)]}
— (R, T, + R,T)) cos N cosh M[(M°N + MN?) + 8M>N3]
— (R, Ty + Ry T,)[(MN® + M°N) + 2M>N? cos N cosh M
+ 2U(MN? — M>N)(cos N coshM — 1)
— (M*N? — M>N* + 4U*M>N) sin N sinh M]
— (T} + T)[(M*N? + MN*)sin N cosh M + (M*N> + M*N) cos N sinh M]
— R\Ry(M* + N* + 2M*N?*)sin N sinh M — (M* — N?)sin N sinh M
— (R, + R)[(M? + MN?)sin N coshM — (N> + M>N) cos N sinh M]
+2M3N3(cos NcoshM — 1) =0

where the dimensionless stiffness parameters are

e _ Bl . _El . El . El
Y SV A 2TKL T KRB

To reduce the system presented in Fig. 10.5 to the system with classical boundary
conditions, the stiffnes coefficie ts in the above frequency equation must be changed
accordingly, data prese ted in Tab e 10.5.

TABLE 10.5. Special cases: compressed uniform beam with elastic
restrictions at both ends: stiffness parameters for limiting cases

Beam type R, T, R, T,
Free—free R, — o0 T, — o0 R, — o0 T, - o0
Sliding—free R =0 T, — oo R, — o0 T, - o0
Clamped—free R =0 7,=0 R, — o0 T, — o0
Pinned—free R, — o0 T, =0 R, — o0 T, - o0
Pinned—pinned Ry — o0 T, =0 Ry, — o0 7,=0
Clamped—pinned R =0 T,=0 R, - o0 T, =
Clamped—clamped R =0 T, =0 R, =0 T, =
Clamped-sliding R, = T, = R,=