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Preface

This book is written for scientists involved
in the analysis and interpretation of data. It is
written for a fairly general audience, though
some knowledge of calculus is assumed, as
also some familiarity with basic statistical
methods. There are occasional references to
linear algebra, which we hope will be useful
for some while not off-putting to others.

The book is organized into 3 sections. The
first section includes reviews of basic con-
cepts of probability, comparisons of Bayesian
and frequentist approaches to inference, and
an introduction to Bayesian computation. We
encourage those that might be inclined to
skip over this section to spend a moment
with Sections 1.1-1.3, the introductory mate-
rial in Chapter 2, and Section 3.4; these are
our sales pitch, briefly summarizing the philo-
sophical background and appeal of Bayesian
inference.

Both authors were initially attracted to
Bayesian statistics because of its usefulness,
and later became convinced of its simplicity
and beauty; we hope that this will be the
experience of our readers. Section 2 highlights
the ease with which posterior distributions
are used for inference, emphasizing the uni-
fied approach to inference for all unknown
quantities, be they parameters, summaries
of collections of parameters, missing values,

future observables, hypothetical replicates, or
even mathematical models.

Section 3 has a sampling of applications,
primarily based on our experience work-
ing with ecologists and wildlife biologists.
This section emphasizes the importance of
the ‘complete data likelihood’, describing ‘the
data we wish we had’ as the starting point
of hierarchical modeling. We regard the intro-
ductory material in Chapter 8 and Sections
8.1-8.2 as especially important in providing a
simple example of general interest to illustrate
the principles applied in this section.

The book includes several dozen ‘panels’ of
WinBUGS code. These and related data files
are available for download from our web-
site (www.maramatanga.com) along with a
list of errata. We have checked all of the
code repeatedly, and are optimistic that there
aren’t too many mistakes. We appreciate
your input and comments; these can be sent
to wlink@usgs.gov or rbarker@maths
.otago.ac.nz.

Use of trade, product, or firm names does
not imply endorsement by the U.S. Govern-
ment.

W.A. Link

R.J. Barker

15 May 2009
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C H A P T E R

1

Introduction to Bayesian Inference

O U T L I N E

1.1 Introduction 3
1.2 Thomas Bayes 4

1.2.1 The Doctrine of Chances 5

1.3 The Bayesian/Frequentist
Difference 7

1.4 Understanding the Basis of
Thomas Bayes’ System of
Inference 8
1.4.1 Conditional Probability 8
1.4.2 Bayes’ Theorem 9

1.1 INTRODUCTION

This book is about the Bayesian approach to statistics. We wrote it having worked for many
years with a cadre of topnotch ecologists and wildlife biologists. Our experience has been that
the most successful have been those that take a lively interest in the modeling and analysis
of their data. We wrote this book with such folks in mind. Although most of the examples
we present will be of special interest to biologists working in the fields of ecology, wildlife
management, and environmental studies, we are confident that the book’s theme will be of
interest to other scientists, researchers with the same enthusiasm for doing the best possible
job of analyzing their data.

The training of such researchers has traditionally included a course or two in statistics, pre-
senting the basic ideas of estimation and hypothesis testing under what is commonly known
as the “classical” or frequentist paradigm. There is much to be learned: estimation, with its
assortment of optimality criteria; hypothesis testing, with all of the complications of multiple
comparisons and model selection; linear models in their various incarnations (regression,
anova, ancova, etc.), nonparametric methods, experimental design, asymptotic theory. It is
natural that biologists, having acquired a large toolbox of frequentist statistical methods,

3Bayesian Inference with Ecological Applications Copyright © 2010 Elsevier Ltd.



4 1. INTRODUCTION TO BAYESIAN INFERENCE

should tend toward a skeptical view of Bayesian statistics. Doesn’t embracing the “new”
philosophy mean discarding the old and familiar tools, painstakingly acquired, and which
(after all) work well enough? Why bother with Bayesianism? Isn’t the approach philosophi-
cally flawed? Isn’t it true that “Bayesian methods constitute a radically different way of doing
science . . . [and that] Bayesians categorically reject various tenets of statistics and the scientific
method that are currently widely accepted in ecology and other sciences” (Dennis, 1996). Isn’t
the field of Bayesian inference an esoteric quagmire?

“No one after drinking old wine desires new; for he says, ‘The old is good.’ ”
(Luke 5:39, RSV)

Our answer is that the Bayesian approach is attractive because it is useful. Its usefulness
derives in large measure from its simplicity. Its simplicity allows the investigation of far more
complex models than can be handled by the tools in the classical toolbox.

There are interesting philosophical issues to discuss in comparing frequentist and Bayesian
approaches; some of these require more than a superficial understanding of mathematics and
probability theory. It is unfortunate that the philosophical discussion is often pushed to the fore,
its complexity scaring the classically trained researcher back into the fold, without perhaps
a fair exposure to Bayesian methods. The issues are worth addressing and are addressed in
this text. But our priority in writing this text is utilitarian. The authors were first attracted to
Bayesian inference because of its usefulness, and gradually became convinced of its beauty, as
well; we hope that this will be the experience of our readers.

1.2 THOMAS BAYES

Little is known of the man who first described the mathematical form of reasoning eponymi-
cally known as “Bayesian” inference.1 Thomas Bayes was born in 1701 (or 1702) in London,
England (or perhaps, Hertfordshire). He was admitted to the University of Edinburgh in
1719, where he studied logic and theology. Like his father, he was a nonconformist minister
(i.e., Protestant but not Anglican); he is included in a 1727 listing of “Approved Ministers of
the Presbyterian Denomination.”

Bayes was elected a Fellow of the Royal Society in 1742, having been recommended as
“a Gentleman of known merit, well skilled in Geometry and all parts of Mathematical and
Philosophical Learning.” It is thought that this nomination came in consequence of his “An
Introduction to the Doctrine of Fluxions, and a Defence of the Mathematicians Against the Objections
of the Author of the Analyst” (1736), in which he defended Isaac Newton against the Bishop
Berkeley, who had referred to Newton as an “infidel Mathematician.”

Apart from his defense of Newton and a well-received contribution to a debate on the
purpose of God in creation (“Divine Benevolence, or an Attempt to Prove That the Principal End of
the Divine Providence and Government is the Happiness of His Creatures”, 1731) no other works of
Bayes’ are known to have been published during his lifetime.

1. “Eponymous” is a good word, like supercalifragilisticexpialidocious – if you say it loud enough, you’ll always sound
precocious. Bayesian writers seem unable to resist it.

I. PROBABILITY AND INFERENCE



1.2 THOMAS BAYES 5

1.2.1 The Doctrine of Chances
The work which preserved Bayes’ place in history is “An Essay towards solving a Problem

in the Doctrine of Chances” published posthumously (1763) through the good offices of Bayes’
friend Richard Price. The essay begins as follows:

“Given the number of times in which an unknown event has happened and failed: Required the chance that
the probability of its happening in a single trial lies somewhere between any two degrees of probability that
can be named.”

Bayes’ “unknown event” is what we would today call a Bernoulli trial: a random event with
two possible outcomes, labeled “success” and “failure.” The flip of a coin, an attempt to guess
the correct answer on a multiple choice exam, whether a newly hatched chick survives to
fledging; each is a Bernoulli trial.

The “probability of the event happening in a single trial” is referred to as the success para-
meter of the Bernoulli trial, and denoted by p. Sometimes, the nature of the trial leads to
a specification of p. A coin is deemed “fair” if “Heads” is as likely as “Tails”, so that the
probability of getting “Heads” is p=1/2. On a multiple choice exam with five options per
question, we might assume that the probability of guessing correctly is p=1/3 if we could rule
out two of the options and were forced to guess among the remaining three. In both cases, the
nature of the event leads to a specification for p.

More frequently, however, there is no basis for knowing p. Indeed, even if we had a basis
for an educated guess, we might wish to put aside whatever prejudices we have, and allow
the data to speak for themselves. Suppose that having observed 10 newly hatched chicks, we
note that only four survive to fledging. Bayes’ essay seeks means to translate such data into
conclusions like “The probability that p is between 0.23 and 0.59 is 0.80.” Given “two degrees
of probability,” say a and b, the problem is to determine Pr(a≤p≤ b), i.e., the probability that
p is in the interval from a to b.

For those familiar with such things, it may sound as though Bayes were trying to construct
a confidence interval for p. Doubtless, Bayes’ goal was the same as that of the frequentist
statistician who computes a confidence interval: to quantify uncertainty about an unknown
quantity, using data and probabilities. As we shall see, however, Bayes’ way of accounting for
uncertainty about p is quite different from the frequentist approach, which developed later.
The difference lies in the Bayes’ use of the term “probability.” We illustrate with a simple
example.

The authors of this text have a deformed New Zealand 50 cent piece; it is convex, rather
than flat, with the Queen’s image on the side that bulges outward (see Fig. 1.1). Consider the
event that the coin lands, when flipped, with the Queen’s image facing upward (“Heads”);
the unknown quantity of interest is p = Pr(Heads).2 The convexity of the coin raises doubts
about whether p = 1/2.

2. There is an implicit ceteris paribus in defining the event, as also in Bayes’ essay: individual flips of the coin are replicates,
in the sense that conditions are assumed to be relatively constant with regard to the outcome. For instance, the authors have
observed that p appears to depend on the hardness of the surface on which the coin lands. Speaking entirely in terms of the
coin, and not in terms of a mathematical model, it seems impossible to explicitly define what we mean by “replicates,” and
whatever ambiguity remains in that definition is carried over into our definition of the probability p.

I. PROBABILITY AND INFERENCE



6 1. INTRODUCTION TO BAYESIAN INFERENCE

FIGURE 1.1 New Zealand coins including a deformed 50¢ piece.

What would the reader guess? Will “Heads” prevail (p > 1/2), will the coin tend to land,
saucer-like, with the Queen’s image down (p<1/2)? or is the coin fair, despite being bent? We
asked a class of 28 students: 15 said p<1/2, 6 said p = 1/2, and 7 said p>1/2. Guesses ranged
from 0.10 to 0.75, with mean of 0.46 and standard deviation of 0.16.

We flipped the coin 20 times, and observed 17 Heads. Given these data, we are inclined to
believe that p> 0.50, probably even greater than 0.70. The methods outlined in Bayes’ essay
lead us to quantify our uncertainty about p by the following statements:

“the odds are 30:1 in favor of p being at least 0.65”

or

“the probability that p is less than 0.5 is less than 0.001”

or

“there is a 95% chance that 0.660 ≤ p ≤ 0.959.”

Our impression is that most people feel comfortable with statements like these; their sense is
evident enough, even if one does not know the mathematics behind their computation.

Indeed, their flavor is so consistent with colloquial usage, that it takes some thought to
understand why they are rejected as nonsense under the frequentist paradigm. The frequentist
view is that p is a fixed quantity, and that consequently it makes no sense to make probability
statements about it. The value of p is either in the interval (0.660, 0.959), or it is not. It makes no
more sense, from the frequentist perspective, to assign a probability to the statement 0.660<

p<0.959, than it would for a primitive mathematician to say that Pr(3.0<π<3.2)=0.95, where

I. PROBABILITY AND INFERENCE



1.3 THE BAYESIAN/FREQUENTIST DIFFERENCE 7

π is the ratio of the circumference to the diameter of a circle. The unknown probability p, like
π, Avogadro’s number and the speed of light, is a fixed quantity: it is a fixed characteristic
of the bent coin; there is nothing random about it, and thus there is no sense in assigning
probabilities to whether or not it lies in some particular interval.

1.3 THE BAYESIAN/FREQUENTIST DIFFERENCE

The essential difference between Bayesian and frequentist philosophies is in the use of the
term “probability.” Frequentists restrict the application of the term probability to summaries
of hypothetical replicate data sets, whereas Bayesians use probability to describe all unknown
quantities. We will discuss the distinction in more detail subsequently, noting for now that there
is no “right” or “wrong” in the choice between the two paradigms: the distinction is purely a
matter of definitions. If there is any special virtue in Bayes’ usage of the term “probability,” it
is that it appears to be more consonant with informal use of the concept than the restrictive
sense required by frequentists, with the consequence that Bayesian statistics may be more
easily intelligible than corresponding frequentist statistics. For example, before presenting the
Bayesian summaries of our 20 coin flips, we wrote that the data indicate that p is “probably
even greater than 0.70” – a statement which makes no sense, for frequentists, but is completely
consistent with informal usage, and formalized in the Bayesian setting.

Bayes’ goal was to present methods for quantifying uncertainty about p. It is worth not-
ing that while a frequentist might not be satisfied with Bayes’ statement of the problem, or
the method of solution he proposed, the frequentist’s solution results in numbers quite sim-
ilar to those produced using Bayes’ approach. Without stopping now to describe its devel-
opment, the frequentist “exact 95% confidence interval” for p based on our data is [0.621,
0.968]. This interval is not created to address Bayes’ question, but as a statement of rea-
sonable bounds on the unknown value p. It is the product of statistical machinery that is
95% effective in similar circumstances. By this we mean that if our 20 flips of the bent coin
were replicated by a large number of statisticians, and each computed an exact 95% confi-
dence interval, then at least 95% of the intervals produced would include the true value of
p. As for the particular interval [0.621, 0.968], we cannot know whether p is included or not.
Our “confidence” in the interval arises from the typical performance of the machinery that
produced it.

Bayes’ method yields the interval [0.660, 0.959]; frequentist methods yield the interval
[0.621, 0.968]. Given the similarity of these intervals, wrangling over the differences of inter-
pretation might seem a tempest in a teapot. Indeed, for most simple problems, given adequate
data, Bayesians and frequentists reach similar conclusions. So why bother with Bayes?

Here’s why:

1. Simplicity: The approach Bayes developed extends in a straightforward fashion to analysis
of far more complex data and models, including cases where no frequentist method exists.
It is particularly appropriate for hierarchical models.

2. Exactness: Bayes’ approach provides mathematically sensible methods of analysis without
the need for asymptotic approximations, and a precise inferential system even when dealing
with small sample sizes and limited data.

I. PROBABILITY AND INFERENCE



8 1. INTRODUCTION TO BAYESIAN INFERENCE

3. Coherency: Bayesian inference is a self-consistent and qualitatively simple system of rea-
soning. All unknown quantities – be they parameters, latent variables, or predictions – are
treated as random variables. Existing knowledge about unknown quantities is summarized
and explicit mathematical expression by means of probability distributions is given. Conse-
quently, Bayesian inference provides a formal mechanism for incorporating and updating
prior knowledge, and a proper accounting for all sources of uncertainty.

1.4 UNDERSTANDING THE BASIS OF THOMAS BAYES’ SYSTEM
OF INFERENCE

Bayes’ essay on the Problem in the Doctrine of Chances is not the easiest reading for the
modern reader. Many of the refinements of modern mathematical notation and terminology
were not available prior to his death in 1761. In addition, Bayes put considerable effort into
computational aspects of the problem, a major obstacle in his time, but a triviality in the era
of fast computers. The most important part of his essay, however, is its contribution to the
problem of reasoning from data to causes, and here the concepts are readily intelligible.

The basic tool of Bayes’ inference is the theorem that bears his name. Bayes’ theorem is a
simple statement of facts about probability, so simple that one wonders how many contempo-
rary statisticians harbor a vague sense of having been cheated by fate: “if I’d only been born
several centuries earlier, it could have been ‘Smith’s Theorem.’ ” The theorem is not remark-
able in itself. The remarkable (and controversial) aspect of Bayes’ work was his application of
the theorem to what is now known as statistical inference.3

Thus, study of Bayesian inference begins with consideration of conditional probability and
Bayes’ Theorem, which we now describe.

1.4.1 Conditional Probability

Table 1.1 summarizes data on 238 fishing vessels trawling primarily for squid and shrimp off
the coast of New Zealand during the 1987/88 through 1995/96 fishing seasons. New Zealand
government officials present on these vessels reported accidental bycatch of 45 rare and endan-
gered New Zealand seal lions (Phocarctos hookeri), with 41 mortalities. Table 1.1 is a classification
of the vessels by nation of origin and the incidence of bycatch.4

Suppose that we have a listing of the 238 vessels, and that a record has been sam-
pled at random. The probability that the selected record corresponds to a Russian vessel is
0.517 =123/238. Fair odds for a wager would be in the ratio 123:115, that is, 1.07:1. If you were
betting on the vessel being Russian, fairness would require that you wager $1.07 against my
dollar.

3. Bayes might not have been the first to propose this application of the theorem. Stigler (1983) points out that David Hartley’s
Observations on Man (1749) includes a statement of the same problem as Bayes considered, with the same solution, attributed
to “an ingenious friend.” Stigler’s entertaining paper suggests that the ingenious friend was not Thomas Bayes.
4. Vessels’ nation of origin were associated with a variety of potential explanatory variables (see Manly et al., 1997, for a
detailed analysis).

I. PROBABILITY AND INFERENCE



1.4 UNDERSTANDING THE BASIS OF THOMAS BAYES’ SYSTEM OF INFERENCE 9

TABLE 1.1 Cross-classification of vessels fishing off the
coast of New Zealand, 1987/88 through 1995/96 seasons, by
country of origin and accidental sea lion bycatch.

Japan NZ Russia Total

No Bycatch 18 90 100 208

Bycatch 1 6 23 30

Total 19 96 123 238

Pr(Nation) 0.080 0.403 0.517

Pr(Bycatch|Nation) 0.053 0.063 0.187

Pr(Nation|Bycatch) 0.033 0.200 0.767

Odds Ratio 0.397 0.370 3.072

Now suppose that as the bet is being arranged, we are informed that the sampled record
was for a vessel that had accidental bycatch. We know that roughly 5% (1/19) of the Japanese
and 6% (6/96) of the New Zealand vessels had accidental bycatch, but that nearly 19% (23/123)
of the Russian vessels had accidental bycatch. The additional information about bycatch makes
the wager more appealing to you, enhancing the chance that the selected vessel is Russian.
Bayes’ theorem describes the way in which this additional information modifies the probabil-
ities for our wager.

The national bycatch rates are summarized in Table 1.1 by the row labeled “Pr(Bycatch|
Nation).” We write Pr(A|B) as shorthand for “the probability of A given B.” These numbers are
conditional probabilities, reflecting that they have been calculated subject to specified restrictions.
Thus, Pr(Bycatch|Russian)= 0.187 was calculated by restricting our attention entirely to the
123 Russian vessels, and paying no regard to the remaining 115 records.

Fairness dictates that the stakes of our wager be determined in light of the information
that the sampled vessel had accidental bycatch. The probability that the sampled vessel is
Russian, given that it had bycatch, is Pr(Russian|Bycatch) = 0.767 (23/30); fair odds are in the
proportion 23:7, or 3.29:1; you should wager $3.29 against my dollar. Note that Pr(Bycatch|
Russian) is an entirely different quantity than Pr(Russian|Bycatch).

The effect of the additional information (Bycatch) was to change the probability that the
vessel is Russian from 0.517 to 0.767, and the odds from 123/115 to 23/7. The effect is sum-
marized by an odds ratio (23/7)/(123/115)=3.07. This is the factor by which you must increase
your wager to maintain a fair bet, in light of the additional knowledge. Were you wagering
on the vessel being of Japanese rather than Russian origin, the odds ratio would be less than 1
(see Table 1.1 , final row); fairness would dictate that your wager be reduced by 60%, because
the additional information augurs against you.

1.4.2 Bayes’ Theorem

A joint probability is the probability that a list of events occurs. We write Pr(B,A) for the joint
probability of events B and A.

I. PROBABILITY AND INFERENCE



10 1. INTRODUCTION TO BAYESIAN INFERENCE

The relation between joint probabilities Pr(B,A) and conditional probabilities Pr(B|A) is the
basis of Bayes’ theorem. Consulting Table 1.1, we see that the probability a randomly selected
vessel is Russian and has bycatch is 23/238, while the probability the selected vessel is Russian
given that it has bycatch is 23/30. These stand in the ratio

Pr(Russian, Bycatch)

Pr(Russian|Bycatch)
=

23
238
23
30

= 30
238

;

not coincidentally, the ratio is the probability a randomly selected vessel has bycatch.
Rearranging terms, we have

Pr(Russian, Bycatch)=Pr(Russian|Bycatch)Pr(Bycatch).

This illustrates the basic relation

Pr(B,A)=Pr(B|A)Pr(A). (1.1)

Bayes’ theorem is easily established by fiddling around with Eq. (1.1). First, by simply switch-
ing the roles of A and B, we have

Pr(A,B)=Pr(A|B)Pr(B). (1.2)

Then, since Pr(B,A) is the same as Pr(A,B), we may substitute the right-hand side of Eq. (1.1)
in the left-hand side of Eq. (1.2), obtaining

Pr(B|A)Pr(A)= Pr(A|B)Pr(B);

finally, we divide both sides by Pr(A), obtaining

Pr(B|A)= Pr(A|B)Pr(B)

Pr(A)
. (1.3)

Now suppose that instead of a single event B, we have a set Bj, j =1,2, . . .,k of mutually exclusive
and exhaustive events: only one of them can happen at a time, and one or another of them must
happen. For the sea lion bycatch example, k =3 and Bj = Japan, New Zealand, or Russia, as
j =1,2, or 3. The events Bj being mutually exclusive and exhaustive, it follows from the basic
notions of probability and (1.2) that

Pr(A)=
∑

j
Pr(A,Bj)=

∑
j
Pr(A|Bj)Pr(Bj). (1.4)

Bayes’ theorem is established by substituting a specific event Bi for B in (1.3), and then substi-
tuting (1.4) in the denominator of the right-hand side of (1.3). Thus Bayes’ theorem is that

Pr(Bi|A)= Pr(A|Bi)Pr(Bi)∑
j Pr(A|Bj)Pr(Bj)

. (1.5)

Bayes’Theorem as a Formal Mechanism for Inference

It is worthwhile taking a step back from this imposing looking formula, having a good
squint at it, and considering how it can be used to formalize the process of inference.

The “mutually exclusive and exhaustive” set of events Bj, j=1,2, . . .,k can be thought of
as states of nature, alternative explanations of how things are. A is an event, the probability

I. PROBABILITY AND INFERENCE
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of which depends on the state of nature, quantified by Pr(A|Bj). The probability of state Bj,
assessed without knowledge of the event A is Pr(Bj).

Bayes’ theorem gives a recipe for calculating the probability of a particular state of nature,
Bi, in light of the observation A. One simply calculates the product

Pr(A|Bi)Pr(Bi)

and divides this product by the sum of corresponding products for all possible states of nature.
Consequently, Eq. (1.5) is often expressed as

Pr(Bi|A)∝Pr(A|Bi)Pr(Bi),

the symbol “∝” being read as “is proportional to.”
Consider once again the bent coin previously described. Suppose that somehow we knew

that p=Pr(Heads) was either 0.55 or 0.90. Imagine, for instance, that we had two coins manu-
factured to physical specifications guaranteeing these success rates, that one had been received,
without labeling, and to determine which coin we had received, we flipped the coin 20 times,
observing the event A= “heads on exactly 17 flips.”

Using standard probability calculations (discussed in more detail in Chapter 2), we find
Pr(A|p=0.55)=0.0040, and Pr(A|p=0.90)=0.1901, corresponding to the two possible states of
nature. Following are two applications of Bayes’ theorem for inferring which of the states of
nature prevails.

Scenario 1 On receipt of the coin, our uncertainty as to which we had received might well
be expressed by supposing that Pr(p=0.55)= 1

2 . There being no reason to suppose one coin
or the other was shipped earlier, or was transported more rapidly, we model the processes
determining which arrived first as equivalent to the flip of a fair coin. We then calculate the
values

Pr(A|p=0.55)Pr(p=0.55)=0.0040× 1
2

=0.0020,

and

Pr(A|p=0.90)Pr(p=0.90)=0.1901× 1
2

=0.0951;

and conclude by means of Eq. (1.5) that

Pr(p=0.55|A)= 0.0020
0.0020+0.0951

=0.0206.

Thus we could say that, given our observation of 17 heads in 20 flips, the odds were greater
than 47:1 in favor of this being the coin with p=0.90.

Scenario 2 Bayes’ theorem can be useful to evaluate perceptions of the probable state of
nature, whether we endorse them or not. Suppose that we contact the shipping clerk at the
company which manufactured our bent coin, who says “I’m 95% sure I sent the coin with
p=0.55.” Interpreting this as an assertion that Pr(p=0.55)=0.95, we calculate

Pr(p=0.55|A)= 0.0040(0.95)

0.1901(0.05)+0.0040(0.95)
=0.2859,

I. PROBABILITY AND INFERENCE



12 1. INTRODUCTION TO BAYESIAN INFERENCE

and respond, “Even so, given our observation, the odds would be better than 2.5:1 against this
being the coin with p=0.55.”

These calculations for the bent coin and the sea lion example illustrate the use of Bayes’
theorem as a tool for inference. We begin with a probabilistic statement of uncertainty about
states of nature (the nation of origin of a randomly selected fishing vessel, the success parameter
p=Pr(Heads) for the bent coin). Next, we describe the probabilities of outcomes (bycatch,
number of “heads” in n tosses) as determined by the various states of nature. Bayes’ theorem
is employed to revise our statement of uncertainty about the state of nature, as informed by
an observed outcome.

The examples given so far all involve the use of Bayes’ theorem in an inferential setting,
but only begin to give the flavor of what we would call a fully Bayesian analysis. To give the
full sense of what Bayesian analysis is, we need first to review the concepts of probability
distribution and likelihood. We do this in Chapter 2, establishing basic notions and notation.

I. PROBABILITY AND INFERENCE
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The field of statistics has its foundations in probability. Both endeavors have to do with
uncertainty: probability, with uncertain events; statistics, with uncertain mechanisms. Proba-
bility addresses questions like “given these conditions, what sort of outcomes are to be antic-
ipated?” Statistics works the opposite direction: “what sort of conditions existed in order
to produce these outcomes?” Thus, statistical inference was originally and aptly designated
“inverse probability.”1

The foundations of statistics in probability are explicitly evident in Bayesian applications,
arguably more so than in frequentist applications. Frequentism uses probability to develop
tools for statistical inference; Bayesianism uses probability itself as the tool for statistical infer-
ence. Indeed, Bayesian inference can be succinctly described as the process of assigning and
refining probability statements about unknown quantities.

Perhaps the greatest challenge to learning Bayesian methods is in learning to use probability
as a model of uncertainty for all unknown quantities. We feel comfortable enough thinking
about our data as realizations of random processes, perhaps consisting of stochastic ecological

1. Unfortunately, to use the phrase “inverse probability” for “statistics” nowadays is to risk confusion, because the meaning of
the phrase has evolved, being attached to specific and various statistical methods, rather than to the field generally. Historical
review (Dale, 1991) shows that it was applied in a general sense originally, then specifically to Bayes’ methods, both by
protagonists and antagonists, then later (by R.A. Fisher) of what are now known as “likelihood” methods.

13Bayesian Inference with Ecological Applications Copyright © 2010 Elsevier Ltd.
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signals contaminated by random noise related to sampling processes and measurement errors.
We feel comfortable describing our data using probabilities, even though in reality there is
nothing random about them at all: they are simply columns of numbers, as fixed as can be.

But it can be difficult to learn to use probability to describe other quantities, such as param-
eter values. These we have been taught to think of as fixed and unknown, period. To illustrate:
we assume that most readers do not know the millionth digit of π; call it X. There is nothing
random about X; it does not change from day to day, nor does it vary from north to south,
east to west or along any other gradient. Thus, many would be uncomfortable with saying
“there’s a 10% chance that X =5.” As a practical description of your uncertainty, however,
the probability statement is perfectly reasonable. Suppose that the correct value were to be
announced for the first time tomorrow, and that a friend with no inside knowledge offered
a bet on whether or not the digit were a 5. You would probably be willing to accept odds
greater than 9:1 against X =5, but unwilling to accept odds less than 9:1. Your decision would
be guided by comparisons of the situation to probability models involving a random event
with one chance in ten of success.2

The mathematical theory of probability provides a model for uncertainty. The model is a
rigorously developed mathematical entity, based on axioms reflecting commonsense descrip-
tions of uncertainty. Most practicing statisticians never need to make reference to the details
of sets, σ-algebras, and measures briefly described in Section 2.1. Our purpose in presenting
this material is to highlight the notion of probability as a mathematical model for uncertainty.
Bayesian thinking embraces this notion, using probability to describe any and all uncertainties,
thus attaining a pleasing philosophical simplicity.

Building from its axiomatic foundations, probability theory produces a few simple concepts
and tools which are needed for Bayesian inference. We briefly review these in Section 2.2,
and establish notational conventions to be used throughout the text. Anticipating that many
readers will already have some familiarity with these, we relegate further details to appendices:
probability concepts to Appendix A, probability distributions to Appendix B.

2.1 WHAT IS PROBABILITY?

We know what we mean when we say that “there’s a 70% chance of rain tomorrow” but
it is fairly difficult to provide a concrete definition. We need a mathematical model to point
to, one for which we can say “my uncertainty about whether or not it will rain tomorrow is
represented by that model.”

What do we mean when we say “there’s a 50% chance that the coin I am about to flip will
show ‘Heads’ ”? This question may seem easier than the first: we may say that there are two
equally likely outcomes, one of which is “Heads,” ergo, the probability of “Heads” is 0.50. But
this begs the question: what do we mean by “likely”? We might respond with reference to long
experience of flipping this and similar coins, but be interrupted by an annoying interlocutor
who refocuses our attention on the question, saying “I’m not asking about the coin’s past

2. As it turns out, the millionth digit of π is 1; this, at least, on the authority of several web pages. Would we say Pr(X =1)=
100%? Or might we allow that there could have been some error in calculation that the various websites have shared, and
operate as though Pr(X =1) is slightly less than one?

I. PROBABILITY AND INFERENCE
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history, but about the flip that is about to take place.” Again, what is needed is a mathematical
model, an abstraction representing our understanding and uncertainty about the process under
consideration.

Probability theory is the mathematical abstraction of uncertain events. By “uncertain
events,” we mean events which can occur in multiple, distinct ways; events which might not
have an inevitable outcome. Thus we distinguish events and outcomes. Tomorrow’s weather
is an event, rain and snow are outcomes. In probability theory, outcomes are formalized as ele-
ments ω in a universal set �, and events E (we drop the word “uncertain”) as sets of outcomes.

Probability is formally defined as a function P on a collection F of subsets of �. The collection
of subsets F must be a σ-algebra: it must be nonempty and closed under complementation and
countable unions. The function P is a probability measure, meaning that it has three basic
characteristics corresponding naturally with intuitive descriptions of chance. These are, that
for any set E∈ F,

0≤P(E)≤1, (2.1)

and

P(EC)=1−P(E), (2.2)

where EC =�\E is the complement of E (i.e., that event E did not occur); also, that if E1,E2,E3 . . .

are disjoint sets, and E∗ is their union, then

P(E∗)=
∑

i
P(Ei). (2.3)

Simply put, these require Eq. (2.1) that chances are between zero and one, Eq. (2.2) that the
chance that an event does not occur is 1 minus the chance that it does occur, and Eq. (2.3) that
chances of mutually exclusive events can be added, to determine the probability that one of
them occurs. The universal set �, the σ-algebra F, and the probability measure P make up a
probability space. A (real-valued) random variable is a function X on � with the property that
{ω : X(ω)≤ t} is in the set F, for all values t.

Example: A Probability Space and a Random Variable

Consider the following collection of subsets of �=[0,1]: F = {E1 =[0,0.50], E2 =(0.50,1],
E3 =[0,1], E4 =∅}, where ∅ is the empty set, with no elements. We can define a probability
function P on F as satisfying

P(E1)=0.5,P(E2)=0.5,P(�)=1, and P(∅)=0.

Define

X(ω)=
{

0, if ω≤0.5
1, otherwise .

The collection of sets F is a σ-algebra, and P is a probability measure satisfying (2.1)–(2.3),
so {�, F, P} is a probability space. The function X is a random variable taking values 0 and 1,
each with probability 1/2.

I. PROBABILITY AND INFERENCE
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Suppose that I am about to flip a coin, one which I perceive to be fair. I can describe my
uncertainty about the outcome by analogy to the probability space {�, F, P} just defined, with
E1 corresponding to “Heads,” E2 to “Tails,” E3 to “Either Heads or Tails,” and E4 to “Neither
Heads nor Tails” (e.g., the coin lands on its edge, or bursts into flame and disappears in mid-
air). Alternatively, we might associate “Heads” and “Tails” with the two values of the random
variable X.

The probability space {�, F, P} might seem an unnecessary abstraction, and we might
be inclined to think of probabilities, as frequentists do, as relating to long-term frequencies. A
frequentist explains the statement “Pr(Heads) = 1/2” as meaning that if we were to flip the coin
an arbitrarily large number of times, the observed relative frequency of “Heads” will converge
to 0.50. Two comments are worth making: first, that if we define the statement “Pr(Heads) =
1/2” by reference to an abstract probability space, the convergence of the long-term relative
frequency to 0.5 is a mathematical consequence.3 Thus, what is taken by some as a definition
of probability, is a feature of probability, if defined in terms of mathematical models.

The second comment is that the long-term frequency definition limits the application of
the term “probability.” It is difficult to conceive, for instance, of a large number of replicate
tomorrows, so as to define the statement that “there is a 70% chance of rain tomorrow.” It is
impossible to conceive of replicate values of π, each having a different millionth digit. This
limitation explains frequentist reluctance to use probability as a measure of uncertainty about
states of nature, or as a description of personal uncertainty.

One way or another, we seldom need to give too much thought to what we mean by proba-
bility. It would be a shame if, having planted a tree, we had to dig it up every day to examine its
roots. We will have no need to refer to probability spaces, σ-algebras, set functions or anything
of the sort subsequently. However, it will be useful to embrace the broader definition of prob-
ability allowed by these abstractions: that probability is a mathematical model of uncertainty,
a model which obeys three simple rules (Eqs. (2.1)–(2.3)) corresponding to our intuition about
how uncertainty works. This step beyond the long-term frequency definition of probability
provides the basis of Bayesian inference, enabling us to use probability to describe any sort of
uncertainty.

2.2 BASIC PROBABILITY CONCEPTS FOR BAYESIAN INFERENCE

To conduct Bayesian inference, we need some familiarity with a few basic concepts of prob-
ability. We need to know about probability distributions, and about moments and percentiles
as descriptions of them. We need to know about joint distributions for collections of random
variables, about conditional distributions, about marginal distributions. Bayesian modeling
consists of the specification of a joint distribution for data and unknown quantities; Bayesian
inference is based on conditional distributions of unknowns, given data.

Here, we give a brief overview of such concepts. Our purpose is primarily to introduce
notation to be used subsequently; further details are given in Appendix A.

3. This is the weak law of large numbers, proved by Jakob Bernoulli (1654–1705); for details, see Appendix A.
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2.2.1 Joint, Marginal, and Conditional Distributions

Distribution Functions

Suppose that X is some random quantity, possibly vector-valued. The probability distribution
function (pdf or simply distribution function) f (x) is that function which, when integrated or
summed, as appropriate, yields Pr(X ∈R) for regions R in the range of X . The support of X is
the set of values x such that f (x)>0.

For example, the function

fY,Z(y,z)= y
5z

,
{

0<y < z
z=1,2,3,4 (2.4)

is the distribution of a vector X =(Y,Z)′. The random variable Z takes values 1, 2, 3, or 4;
Y is continuous, with range limited by the corresponding value of Z. If we wish to find the
probability that X is in the region R defined by {Y ≤1.5,Z≤2}, we compute

2∑
z=1

∫ min{1.5,z}

0
fY,Z(y,z)dy

=
∫ 1

0
fY,Z(y,1)dy+

∫ 1.5

0
fY,Z(y,2)dy = 17

80
.

A distribution function for a vector-valued random variable is often referred to as the joint
distribution of its components. The distributions of individual components of the vector are
called marginal distributions; the name derives from tables with cross-classifications of joint
probabilities with probabilities for individual components along the margins, obtained by
summing along rows or columns.

Marginal Distribution Functions

For our sample joint distribution Eq. (2.4), suppose we wish to calculate the probability that
Z=z. This is the marginal distribution

fZ(z)=Pr(Z= z)=Pr(0<Y < z,Z= z)

=
∫ z

0
fY,Z(y,z)dy =

∫ z

0

y
5z

dy = z
10

, (2.5)

for z=1,2,3,4. The process of obtaining this marginal distribution is often described as “inte-
grating y out of the joint distribution” or “marginalizing” over y.

Conditional Distribution Functions

The conditional distribution of Y given Z is obtained by dividing the joint distribution by
the marginal for Z, viz.,

fY|Z(y|z)= fY,Z(y,z)
fZ(z)

= 2y
z2 , (2.6)

for 0<y < z.

I. PROBABILITY AND INFERENCE
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Note that the conditional distribution fY|Z(y|z) is regarded as a function of y, for fixed z.
If we regard the joint distribution fY,Z(y,z)=y/(5z) in the same way, we note that the two
are proportional: each has a single y in it, in the numerator. The only difference is the fixed
quantity which multiplies it, 1/(5z) for the joint distribution, 2/z2 for the conditional distri-
bution. Thus given the joint distribution we could immediately identify fY|Z(y|z)∝g(y)=y.
To fully specify the conditional distribution, we need only to scale g(y) so that the result
integrates to 1. The integral of g(y) for 0<y < z is z2/2, so the conditional distribution is
y/(z2/2)=2y/z2.

Bracket Notation

In Eqs. (2.4)–(2.6), we have used fairly standard, but somewhat elaborate notation. The
subscripts (Y,Z), Z, and (Y|Z) are included because otherwise we would be using the same f
in three different ways. One solution, of course, would be to use different letters for different
functions. But an even easier solution is to drop the letters altogether, and to use what is known
as bracket notation. Thus we write [Y,Z] for the joint distribution, [Y|Z] for the conditional
distribution of Y given Z, and [Z] for the marginal distribution of Z. Equation (2.6) is then
simply

[Y|Z]= [Y,Z]
[Z] ,

and our comment about the proportionality of the joint and conditional distribution becomes
[Y|Z]∝ [Y,Z], it being understood that we are treating Z as a fixed value.

We almost exclusively use bracket notation in this book. Our experience is that the
notation brings clarity to modeling, especially when we get to complex hierarchical models.
Suppose that X represents data, and that θ represents unknown quantities, including para-
meters. Bayesian inference is based on the conditional distribution of distribution of θ, given
the data, that is

[θ|X]∝ [X ,θ]= [X|θ][θ]. (2.7)

Not wanting to get too far ahead of ourselves at this point, we mention that the left-hand side
of Eq. (2.7) is called the posterior distribution of θ, and the two terms on the right-hand side are
(as functions of θ) the likelihood and the prior distribution. The Bayesian difference, outlined
in Section 2.1, is in using probability to describe all unknown quantities. Thus there are distri-
bution functions associated with θ; all Bayesian inference is based on posterior distributions
obtained from likelihood and prior. Philosophically, it’s all quite simple.

2.2.2 Percentiles, Moments, and Independence

Given that all of Bayesian inference is based on probability distributions, it is important
that we have some vocabulary to describe their features. The basic descriptors are percentiles
and moments. We briefly describe these, with more details in Appendix A.

I. PROBABILITY AND INFERENCE
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Percentiles

Let p be a number between 0 and 1. If X is a continuous random variable, then the 100pth
percentile of [X] is that number xp such that Pr(X ≤xp)=p and Pr(X ≥xp)=1−p. The 50th
percentile is called the median; the 25th and 75th percentiles are called the first and third
quartiles.

This definition of percentiles does not work so well for discrete random variables. For
example, the random variable Z with distribution function (2.5) has Pr(Z≤ z)=0.10,0.30,0.60,
and 1.00 for z=1,2,3, and 4. There is no number z0.50 such that Pr(Z≤ z0.50)=0.50. A more
flexible definition of percentiles is required:

A 100pth percentile of [X] is any number x such that
Pr(X <x)≤p and Pr(X >x)≥1−p.

We say “a” 100pth percentile rather than “the” 100pth percentile, because the number might
not be uniquely defined. For instance, any number between 2 and 3 is a 50th percentile of [Z],
given by Eq. (2.5). To make life a bit easier, noting that 2 and 3 are the 30th and 60th percentiles,
and that 50 is 2/3 of the way from 30 to 60, we might choose to go 2/3 of the way from 2 to 3, and
report 2.67 as “the” median. But the best solution is to simply say that the median is between
2 and 3.

Moments

Probability distributions are often summarized by typical values of quantities sampled from
them. Suppose X is a random variable, possibly vector-valued, with density function fX(x),
and that g(x) is a function. Then the expected value of g(X) is defined as

E(g(X))=
∫

g(x)fX(x)dx. (2.8)

Equation (2.8) uses somewhat informal notation which will be used throughout this book.
More formally, we would require multiple integrals for the continuous components of X, and
summations for discrete components; the ranges of all the variables would have to be indicated
as well. But the basic idea should be clear enough with this informal notation. As Mark Twain
put it “Plain clarity is better than ornate obscurity.”

For a univariate random variable X, the expected value of g(X)=Xk is referred to as the
kth moment of X. A number of useful summaries of [X] are based on moments. For univariate
random variables, we have

The mean: E(X)

The variance: Var(X)=σ2(X)=E(X2)−E(X)2

The standard deviation: SD(X)=σ(X)=√
Var(X).

For pairs of random variables (X,Y), we have

The covariance: Cov(X,Y)=E(XY)−E(X)E(Y)

The correlation: Corr(X,Y)=ρ(X,Y)= Cov(X,Y)

σ(X)σ(Y)
.
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Details on the variance as a measure of spread, and the correlation as a measure of linear
association, are deferred to Appendix A.

The reader might wish to verify that for the distribution (2.4), the mean values of Y and Z
are 2 and 3, that Var(X)=Var(Y)=1, and that ρ(X,Y)=2/3.

Independence

A pair of random variables (X,Y) are independent if their joint distribution factors as
[X,Y]=[X][Y]; a set of n random variables are mutually independent if [X1, . . . ,Xn]=[X1] · · · [Xn].
Mutual independence implies pairwise independence, but not the other way round; it is pos-
sible to have pairwise independence but not mutual independence.

In Bayesian modeling we will make frequent use of conditional independence: X and Y are
conditionally independent of Z if [X,Y|Z]=[X|Z][Y|Z]. Random samples from a common dis-
tribution with unknown parameter θ are often modeled as mutually independent, conditional
on the unknown parameter: [X1, . . . ,Xn|θ]=[X1|θ] · · · [Xn|θ]. Such random variables are often
described as “independent and identically distributed” (iid), but it is important to remember
that the independence is conditional on the unknown parameter. Conditional independence
is, for practical purposes, the same as “exchangeability” a term which is often used in Bayesian
applications, and which we will use in this text.4

2.2.3 Common Probability Distributions

Entire texts have been written cataloguing families of probability distributions (Johnson
et al., 2005; Kotz et al., 1994, 1995, 1997, 2000) and vast literatures exist on characterizing5

specific families of distributions, especially the normal and exponential distributions (e.g.,
Galambos and Kotz, 1978).

Fortunately, the vast majority of ecological models are based on only a few probability
distributions. The most important for ecological examples, by our reckoning, are those given
in Table 2.1; details on these and several others are given in Appendix B. Of special importance
are the multinomial distribution (for categorical data, including mark-recapture data), the
Poisson distribution (which serves as the basis for many analyses of count data), and the
exponential distribution (a starting point for continuous time survival analysis). The beta
and gamma distributions are primarily used as convenient prior distributions for unknown
parameters.

We draw the reader’s attention to the second column of the table, as providing convenient
notation that will be used throughout the book. For instance X ∼P(λ) will indicate that X has
a Poisson distribution with parameter λ.

2.2.4 Transforming Variables

A common problem in statistics is one where given a random variable X, with pdf fX(x),
we need to find the distribution of Y, where Y =g(X) for an invertible function g. Since g is

4. A sequence {Xi}, i=1,2, . . . is exchangeable if its joint distribution is not changed under permutation of any finite number of
its indices.
5. A characterization is an “if and only if” statement. For instance, suppose that X1,X2, . . . ,Xn are iid. Then if their distribution
is exponential, Pr(min{X1, . . . ,Xn}≤ t)= Pr(X1/n≤ t), for all t >0. But what is more, the only distributions with this property
are exponential; this condition characterizes exponential distributions.
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TABLE 2.1 Important probability distributions for ecological modeling.

Name Notation Parameters Mean Variance

Normal N(μ,σ2) −∞<μ<∞,σ>0 μ σ2

Binomial B(N,p) Integer N >0, 0≤p≤1 Np Np(1−p)

Multinomial Mk(N,π) Integers N,k >0, π= (π1, . . . ,πk)′, πi ≥0,
∑

πi =1 Nπ N{diag(π)− ππ′}
Poisson P(λ) λ>0 λ λ

Exponential E(λ) λ>0 1/λ 1/λ2

Gamma Ga(α,β) α,β>0 α/β α/β2

Uniform U(a,b) −∞< a< b<∞ a+b
2

(b−a)2

12

Beta Be(a,b) a,b>0
a

a+b
ab

(a+b)2(a+b+1)

invertible, we can write X =g−1(Y). If X is a discrete random variable, then Y is also discrete
and has as its pdf

Pr(Y =y)=Pr(X =g−1(y))

with the sample space of y, denoted by Sy, equal to the set of values {g(x1),g(x2), . . .} computed
for each x ∈Sx where Sx is the sample space of x.

We might think that for continuous variables we do exactly the same operation on the pdf
for X. Not quite; if X is continuous, and provided g(X) is also differentiable, then the pdf of Y
is given by

fY(y)= fX(g−1(y))×
∣∣∣∣∣dg−1(y)

dy

∣∣∣∣∣ ,
where dg−1(y)/dy is the derivative of the inverse transformation X =g−1(Y). The support of Y
is given by the range of the transformation g(X). This result is often referred to as the change
of variables theorem.

To illustrate, we derive the lognormal distribution, corresponding to a random variable
Y =eX , where X ∼N(μ,σ2). The inverse transformation is g−1(y)= ln(y) with derivative 1/y,
and so

fY(y)= 1√
2πσ

e− 1
2σ2 (ln(y)−μ)2 1

y
,

with support y >0.
The change of variables theorem has a multivariate extension. Suppose we have a contin-

uous random vector X =(X1, . . . ,Xp) and we are interested in the transformation to Y =g(X).
If g is invertible and differentiable, then

fY (y)= fX(g−1(y))|Jg−1(y)|,
where Jg−1(y) is the Jacobian determinant of the inverse transformation (i.e., the determinant
of the matrix of partial derivatives).
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A coin-flip, an attempt to guess the correct answer on a multiple choice exam, whether a
newly hatched chick survives to fledging: each is a binary event; each results in one of two
mutually exclusive outcomes. Such random binary events are generically termed as Bernoulli
trials with outcomes labeled “success” or “failure.” As simple as they are, Bernoulli trials are
of fundamental importance to mathematical modeling of ecological processes. They are also
completely satisfactory as a basis for comparing alternative approaches to statistical inference:
we take an observation about the rare and endangered roseate tern (Sterna dougallii) as our
text for this chapter. Shealer and Spendelow (2002) write that

“During 748 hours of observation from 1995 to 1998, we identified ten roseate terns that we considered to be
habitual kleptoparasites.1 Of these ten kleptoparasites, eight were females and two were males. The probability

1. Food thieves; “habitual” ones, at that. Some of the females would even – but no, the shameful depths to which these avian
sociopaths lower themselves cannot be mentioned without indelicacy or included in a statistics text which, we hope, will be
read around the family hearth.

23Bayesian Inference with Ecological Applications Copyright © 2010 Elsevier Ltd.
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of eight or more kleptoparasites out of ten being of the same sex by random chance alone is low (binomial test,
P=0.055).”

We will use these data to compare the fundamentals of frequentist and Bayesian approaches
to inference. The question at hand is whether habitual kleptoparasitism (K) is more associ-
ated with the female roseate tern than with the male roseate tern. That is, we wish to decide
whether

Pr(K|F)> Pr(K|M), (3.1)

where F and M denote female and male, respectively.
We address the question by imagining the genders of the 10 habitual parasites to be indepen-

dent Bernoulli trials, with “female” labeled as “success,” and unknown success parameter p.
This model serves as a starting point for analysis. Its use, regardless of statistical paradigm,
requires thought about possible violations of the independence assumption and about the
interpretation of the parameter p.

The first thing to note is that p is not Pr(K|F) but Pr(F|K).2 It is fairly easy to show that
Eq. (3.1) is equivalent to Pr(F|K)>Pr(F).3 Thus if Pr(F) were known, inference about Eq. (3.1)
could be based on the observations of gender among habitual kleptoparasites. Shealer and
Spendelow (2002) appear to assume that Pr(F) = 0.50 and to examine whether the data are
consistent with the assumption Pr(F|K)=Pr(F).

Another issue, perhaps even more fundamental, is whether p is, in fact, equal to Pr(F|K).
To be more precise, p = Pr(F|K,O), where O denotes “bird is observed.” If male habitual klep-
toparasites are better at hiding their larceny than their female counterparts, observers will tend
to see disproportionately many females. For p to be the same as Pr(F|K), we must assume that
O and F are conditionally independent, provided K is given. Then

p=Pr(F|K,O)= Pr(F,O|K)

Pr(O|K)

= Pr(F|K)Pr(O|K)

Pr(O|K)
=Pr(F|K).

The requisite assumption is that for K birds, gender and observation are independent. The issue
of the potential confounding of observation processes with the response of interest commonly
arises in ecology. It is a theme that we explore in the examples that we consider in detail later
in this book.

Consideration of these assumptions is a necessary part of the inferential process, whether
we choose a frequentist or Bayesian approach. We will put such considerations behind us
for now, and, assuming that we have an observation X = 8 of a random variable X ∼B(10,p),
consider the process of statistical inference for p. We are content to assume that the num-
ber X of females among the 10 kleptoparasitic terns was a random event that could have

2. Confusing Pr(A|B) and Pr(B|A) is quite common in inferential settings; the mistake is similar to the logical fallacy of
affirming the consequent: “I know that A implies B; B has occurred, therefore A must have occurred.”
3. Give it a try! The proof follows from the definition of conditional probability and the observations that Pr(M)=1−Pr(F)

and Pr(K)=Pr(K,M)+Pr(K,F).
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resulted in X =x, for any integer x ∈{0,1, . . . ,10}, and that the probabilities of these various
outcomes were

Pr(X =x)=B(x;10,p)=
(

10
x

)
px(1−p)10−x, (3.2)

determined by an unknown quantity p. Our goal is to learn about p, based on the observation
X =8.

3.1 LIKELIHOOD

The first use of the binomial distribution B(x; n, p) is for probability calculations. These
address the probability of specified events, given known values of parameters. Statistical infer-
ence turns the problem around: given observed events, what can we say about the unknown
values of parameters governing them? Consider the kleptoparasitism data. The process of
inference begins with inspection of Table 3.1, which displays the probabilities of outcomes
X =x, for a binomial random variable with n=10, for a range of values of p, calculated using
Eq. (3.2).

Our interest is drawn to the column for x =8, corresponding to our observation. We note
that the probability of observing x =8 is quite small for small values of p, then increases to a
maximum value of 0.302, for p=0.8, then decreases to 0 once again as p approaches 1.0. On
this basis, it seems reasonable to estimate the unknown value of p by 0.80. We write p̂=0.80,
the circumflex over the p indicating that this value is an estimate, rather than the true value of
the parameter.

It is worth looking closely at the process used in choosing this value for p̂. Probability
calculations use rows of Table 3.1 to find probabilities of outcomes x based on known values

TABLE 3.1 Binomial probabilities B(x;n,p).

x

p 0 1 2 3 4 5 6 7 8 9 10

0 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.1 0.349 0.387 0.194 0.057 0.011 0.001 0.000 0.000 0.000 0.000 0.000

0.2 0.107 0.268 0.302 0.201 0.088 0.026 0.006 0.001 0.000 0.000 0.000

0.3 0.028 0.121 0.233 0.267 0.200 0.103 0.037 0.009 0.001 0.000 0.000

0.4 0.006 0.040 0.121 0.215 0.251 0.201 0.111 0.042 0.011 0.002 0.000

0.5 0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001

0.6 0.000 0.002 0.011 0.042 0.111 0.201 0.251 0.215 0.121 0.040 0.006

0.7 0.000 0.000 0.001 0.009 0.037 0.103 0.200 0.267 0.233 0.121 0.028

0.8 0.000 0.000 0.000 0.001 0.006 0.026 0.088 0.201 0.302 0.268 0.107

0.9 0.000 0.000 0.000 0.000 0.000 0.001 0.011 0.057 0.194 0.387 0.349

1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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of p.4 For the purpose of statistical inference, we have used a column of Table 3.1. Our knowledge
of an outcome is used to make educated guesses at the value of the unknown value of p.

In considering a column, rather than a row of Table 3.1, we are regarding B(x;10,p) as a
function of p for fixed x, rather than as a function of x for fixed p. For probability calcula-
tions, B(x;10,p) is used as a function of x alone, with fixed p. For statistical inference, we are
considering B(x;10,p) as a function of p alone, with the outcome x fixed.

When we fix a value of x, and let p vary, B(x;10,p) is no longer a distribution function. The
numbers in the column for x =8 do not add up to one. Their only meaning, in this inferential
context, is relative to one another. For instance, consulting Table 3.1 one finds that the proba-
bility of observing X =8 is four times larger for p=0.5 than it is for p=0.4 (0.044 vs. 0.011). The
ratio of the probabilities, rather than the difference between them, is the basis of comparison;
one concludes that the data provide four times the support for p=0.5 than for p=0.4.

If we were to carry out the calculation longhand instead of consulting Table 3.1, we would
write

B(8;10,0.5)

B(8;10,0.4)
=
(10

8

)
0.58(1−0.5)10−8(10

8

)
0.48(1−0.4)10−8

= 0.58(1−0.5)10−8

0.48(1−0.4)10−8 =4.14,

and note along the way that it is unnecessary to calculate the combinatorial term, which cancels
from numerator and denominator, and depends only on the fixed value of x in B(x;10,p).
Thus, statisticians routinely omit multiplicative components of probability distributions that
are independent of the parameter of interest and define the likelihood function5 as

L(p)=px(1−p)n−x. (3.3)

We can verify analytically what we observe from Table 3.1 that with X =8 and n=10, the
maximum value of the likelihood occurs when p=0.8. First, we note that it is easier to maximize
the logarithm of the likelihood than the likelihood itself. Since the extrema of ln(L(p)) and L(p)

coincide, it suffices to maximize

l(p)= log(L(p))=x log(p)+(n−x) log(1−p)

by setting

l′(p)= dl(p)

d p
= x

p
− n−x

1−p
=0,

and solving for p. The solution is easily found and denoted by p̂=x/n. We note again that the
circumflex over the p indicates that this value is an estimate of the true but unknown value p;
this particular estimate is known as the maximum likelihood estimator (MLE).

4. Thus, Shealer and Spendelow’s “binomial test, P=0.055” is seen to be Pr(X ≥8) for X ∼B(10,0.50).
5. More precisely, we might say that Eq. (3.3) is “a version of the likelihood.” Statisticians typically substitute the symbol “∝”
meaning “proportional to” for the equals sign in Eq. (3.3), or write L(p)=C px(1−p)n−x , where C is an arbitrary constant. The
important thing is to understand that the likelihood values have no meaning per se but only as they stand in relation to other
values as ratios.
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Interval Estimates Needed

How well does the MLE work? How much trust should we put in our estimate that 80% of
kleptoparasitic roseate terns are female?

Consulting Table 3.1, we see that if p were 0.80, the most probable outcome would be X =8,
but that outcomes X =7 or X =9 would not be unexpected. There is probabilistic uncertainty
in the outcome; various outcomes in the row labeled p=0.80 are consistent with the single,
fixed parameter.

Similarly, focusing attention on a single column of Table 3.1, that headed with x =8, we note
that p is the most likely value (i.e., maximizes the likelihood) but that there are other values
with reasonably high likelihood. The observation X =8 is not inconsistent with p=0.70, or
even with p=0.60. There is statistical uncertainty about the parameter p.

Thus, it is unwise to limit our inference about p to the reporting of a maximum likelihood
estimator. Instead, we report a collection of p’s, an interval estimate, and all of the values we
deem consistent with the observed data. The method we use to decide on which collection of
p’s to report is determined by whether we follow the frequentist or Bayesian philosophy of
statistical inference. Before presenting these, we take a moment to describe interval estimation
based solely on the likelihood function.

Likelihood Intervals

Define the scaled likelihood as the likelihood divided by its maximum value, denoted by

L∗(p)= L(p)

L(p̂)
.

Note that the scaled likelihood takes values ranging from zero to one and that the scaled
likelihood of the MLE is one (Fig. 3.1). With n=10 and X =8, L∗(p)≥0.25 if and only if
0.549≤p≤0.950 (Fig. 3.1); values of p in the interval are at least 25% as likely as the MLE,
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FIGURE 3.1 Scaled likelihood
for observation X =8 based on
X ∼B(10,p). The scaled likelihood
exceeds 0.25 for 0.549≤p≤0.950.
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points outside the interval are less well supported. The interval consists of values p with
scaled likelihood within 75% of the maximum. The set (0.549, 0.950) is an interval estimate of
p, used rather than simply reporting a point estimate (such as the MLE) to quantify statistical
uncertainty. To distinguish this interval estimate from others developed subsequently, we des-
ignate

{
p∈[0,1]|L∗(p)≥α

}
as a 100(1−α)% scaled likelihood interval. The quantity α measures

the uncertainty associated with the interval; the smaller the value of α, the longer the interval.
It is interesting to note that if n=100 and X =80, the MLE is still 0.80, but the corresponding

interval estimate shrinks to (0.728, 0.861) (see Fig. 3.2). Many values of p that had reasonable
support with n=10 are not well supported with the larger sample size. For example, with
n=10 and p̂=0.80, the scaled likelihood at p=0.65 is 0.582, whereas with n=100 and p̂=0.80,
the scaled likelihood at p=0.65 is 0.004. The larger sample size has had the predictable effect
of reducing statistical uncertainty. The second interval is 33.1% as long as the first, a reduction
in length by a factor of approximately

√
10/100; the uncertainty associated with our estimate

has dropped by a factor approximately equal to the square root of the ratio of the sample sizes.
The inferential value of a data set often increases at a rate roughly proportional to the square
root of the sample size.

The interval estimates described so far have two deficiencies: first, they are by no means
easily calculated, and second, there was something arbitrary in the choice of the factor 0.25,
that is, in our choice of how well supported a value p must be to be included in the interval.
Some arbitrariness might be inevitable: a more conservative scientist might want to include
p’s with lower support than the minimum scaled likelihood of 0.25. More importantly, how-
ever, the meaning of the phrase “values of p that are at least one-fourth as likely as the
most likely value” is somewhat vague, and if interpreted in terms of the likelihood function,
tautologous.

How then should we construct interval estimates? We begin by considering the frequentist
approach, continuing with the example of inference for the binomial proportion p.
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FIGURE 3.2 Scaled likelihood
for observation X =80 based on
X ∼B(100,p). The scaled likeli-
hood exceeds 0.25 for 0.728≤p≤
0.861. Corresponding graphic for
X =8, n=10 in background, for
comparison.
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3.2 CONFIDENCE INTERVALS

The frequentist interval estimate is called a confidence interval (CI): it is an interval of the
form (lX ,uX) with endpoints determined by the observation X, defined with certain criteria
in mind. Before describing these criteria, we stress that the CI is itself a random variable, just
like the data X.

The concept of data as realizations of random variables is crucial to statistical inference.
There is a fixed set of stochastic processes by which data are produced; there is a fixed set of
parameters governing these processes. There is also an observed data set, a single realization of
these random processes. So, for instance, we flip a coin and observe the outcome “Heads.” We
distinguish a random process X, the coin flip, and a single outcome, “Heads.” For simplicity,
we may write X =“Heads,” but we maintain two concepts in our understanding: that of a
random process X, and that of a single realization, the data.

Again, suppose that we observe eight successes in 10 Bernoulli trials. We say that X ∼B(10,p)

and X =8. There is nothing random about the number eight, yet we are comfortable regarding
X as a random variable because we carry along a conception of a stochastic mechanism, which
could have produced X =5 or X =9, and so forth, but in the current case, happened to have
produced X =8.

These observations carry over to our understanding of CI’s. Given that we have observed
X =8, the CI will be (l8,u8), a fixed interval. This particular interval is a single outcome of a
stochastic process. The same random mechanisms could have resulted in X =5 and a “realized
value” of the CI of (l5,u5). The definition of CI is based on properties of the random interval
(lX ,uX), rather than those of particular realizations.

The concept of a random interval is just unfamiliar enough that we might take a moment
to consider a simple example. Suppose that we choose two numbers at random on the unit
interval (0, 1) and consider the interval extending from the smaller to the larger of the two
values. What can we say about this random interval? Its features are random: its length will
vary from 0 (if the two variables happen to coincide) to 1 (if the values are as far apart as
possible); on the average, the length of the interval will be 1/3. We might ask whether the
interval will include specific values, such as 0.6. The answer: sometimes it will, sometimes
it will not. If both endpoints are less than 0.6 (probability=0.62 =0.36) or if both endpoints
are above 0.6 (probability=0.42 =0.16) the interval will not include 0.6, but otherwise, it will.
Thus, the chance that the interval will include 0.6 is 0.48=1−0.36−0.16.

Imagine a computer program that generates random intervals, as just described. In the
long run, 48% of the intervals will include the value 0.6. Suppose the program has been
written, tested, is known to function properly, and is about to be used to create one final
interval. We can say in advance that we have 48% confidence that the interval will cover the
value 0.6.

Let us change the scenario somewhat. Suppose that there is a constant p, unknown to us,
and a program that produces random intervals, which include p with probability 0.48. The
program’s writer knows p and has verified that the program works correctly. In the long run,
48% of the intervals will include the value p. The program runs, and from across the room, the
sound of a laser printer warming up and paper being fed through rollers is heard.Asingle sheet
of paper appears in the print tray, containing two numbers, the lower and upper endpoints
of an interval. We have 48% confidence that p will be in the interval produced. We read the
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numbers: 0.328 and 0.832. It is tempting to say that there is a 48% chance that p is between
0.328 and 0.832, but from a frequentist perspective the statement would be incorrect: p is a
fixed quantity, and it either is in the interval or is not in the interval; there is no probability
involved with p itself. The only probabilities are those associated with generating the interval.
The interval (0.328, 0.832) is described as a 48% CI for p; the “confidence” is a description of
the mechanisms producing the interval rather than of the interval itself.

Here, then, is the definition of a CI for the binomial success rate, which we will use for
inference about the gender of kleptoparasitic terns.

CI for Binomial Success Rate

Suppose that X ∼B(n,p), an interval CX is said to be a 100(1−α)% CI for p if Pr(p∈CX|p)≥
1−α for all p.

Setting α=0.05 (the most commonly used value), the definition says that a 95% CI is a
random interval, defined in such a way as to ensure that no matter what the value of p may
be, the observed data X will lead to the creation of an interval CX , which includes p with
probability of at least 95%.6 As before, the quantity α measures the uncertainty associated
with the interval; the smaller the value of α, the longer the interval.

We describe techniques for creating such intervals in the following sections. For the moment,
we stress that the confidence one may have in a CI is with regard to the technique and not
in the particular outcome. Using techniques described below, a 90% CI for p based on eight
successes in 10 Bernoulli trials is (0.541, 0.931). It is not correct to say “there is a 90% chance
that p is between 0.541 and 0.931”; rather, one may say that the technique used works in 90%
of similar circumstances.

A final comment before moving on to particulars. Note that the definition of a CI involves
the conditional probability Pr(p∈CX|p). We have conditioned on p, that is, treated it as a fixed
quantity. The probability statement is about random variation associated with the data X
alone. We ask the reader’s indulgence if we belabor the point: our reason is that this most
elementary topic in statistics, this fundamental concept in the frequentist paradigm, is very
commonly misunderstood. Since other aspects of the frequentist paradigm (e.g., hypothesis
testing, estimator evaluation) have the same epistemological foundations, it is not surprising
that other aspects of this prevailing paradigm are also commonly and similarly misunderstood.

3.2.1 Approximate CI’s for Binomial Success Rate

We now describe the most common method of constructing a CI for the binomial success
parameter.

Using the normal approximation to the binomial distribution (see B.5), it follows that the
MLE p̂=X/n has a distribution that is approximately the same as that of a normal random
variable, with mean equal to the true value of p and standard deviation σ(p̂)=√

p(1−p)/n.
Consequently, letting zα/2 denote the upper (1−α/2) quartile of the standard normal

6. The reader might question why the definition requires probability of “at least 95%” rather than “exactly 95%.” The answer
is that it may be impossible to create an interval with exact 100(1−α)% probability, especially when dealing with discrete
data. The distinction is important and will be discussed subsequently.
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distribution, it follows that

1−α≈Pr
(

−zα/2 ≤ p̂−p
σ(p̂)

≤ zα/2

)
, (3.4)

which after simple rearrangement becomes

1−α≈Pr
(
p̂−zα/2 σ(p̂)≤p≤ p̂+zα/2 σ(p̂)

)
. (3.5)

For simplicity, the interval defined on the right-hand side of Eq. (3.5) is typically written as
p̂ ± zα/2 σ(p̂). Because σ(p̂) depends on the unknown value of p, we substitute p̂ in the formula
for σ(p̂), obtaining an estimator

σ̂(p̂)=
√

p̂(1− p̂)/n.

Substituting this estimator in Eq. (3.5), we obtain an approximate 100(1−α)% CI for p based
on the observation X, namely

IX = p̂±zα/2 σ̂(p̂).

The chance is approximately 100(1−α)% that the interval IX will include p. The approximation
is good if n is reasonably large and p is neither too close to 0 nor too close to 1. Note that the
length of the interval is inversely proportional to

√
n, so that, as we observed with the likeli-

hood interval, the length of the interval (an expression of statistical uncertainty) decreases at
a rate proportional to the square root of the sample size.

The interval IX is an approximate CI. It is natural to ask how close the approximation is to
reality. The definition of a CI requires that for each value of p, the probability of the set of X’s
which lead to interval estimates including p should be at least (1−α). Coverage rates of the
approximate 90% CI with n=100 are given in Fig. 3.3; note that for 0.10≤p≤0.90, the coverage
rate is reasonably close to 90%, although typically slightly too low.
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FIGURE 3.3 Coverage rates for app-
roximate 90% confidence interval IX ,
n=100.
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There is something decidedly odd about using an approximation which works pretty well
for many p’s, when the definition of CI requires its satisfactory performance for all p’s.

An alternative approximate CI with better coverage properties than those of IX can be
obtained by a more complicated rearrangement of Eq. (3.4), which avoids the need to substitute
σ̂(p̂) for σ(p̂).7 The resulting CI for p is

I∗
X = 2np̂+z2

α/2

2(n+z2
α/2)

± zα/2

2(n+z2
α/2)

√
4n p̂(1− p̂)+z2

α/2 .

A comparison of coverage rates for IX and I∗
X is given in Fig. 3.4. The CI I∗

X , although having
considerably better coverage properties than the simpler approximation IX , is seldom used,
probably because of its imposing looking formula. It should be noted that both methods are
approximate, and both fail to satisfy the defining criterion of CI’s, that the coverage probability
should be at least (1−α) for every value of p. Ideally, one would routinely use an exact CI, such
as we now describe.

3.2.2 Exact CI for Binomial Success Parameter

Let

FU(p)=
n∑

k=x

B(k;n,p) and FL(p)=
x∑

k=0

B(k;n,p);

these are the upper tail probability, Pr(X ≥x), and the lower tail probability, Pr(X ≤x), respectively,
for X ∼B(n,p). These are illustrated in Fig. 3.5 for the roseate tern data (n=10,x =8).
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FIGURE 3.4 Coverage rates for
nominal 90% confidence intervals,
I∗X(blue) and IX(black), n=100.

7. We must solve for the set of p’s satisfying
∣∣p̂−p

∣∣/√p(1−p)/n ≤ zα/2. This is done by squaring both sides of the inequality,
rearranging terms, and applying the quadratic formula.
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p
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1.0 FIGURE 3.5 FU(p)=Pr(X ≥8|p)

(red) and FL(p)=Pr(X ≤8|p) (blue) for
X ∼B(10,p). Figure shows construction
of exact 90% confidence interval for p.
Height of box (black line) is 0.05.

We can use the curves FU(p) and FL(p) to identify values of p that are inconsistent with the
observed data. Note that FU(p) (red curve) is an increasing function of p; thus, since FU(0.493)=
0.05, Pr(X ≥8)≤0.05 for any p≤0.493. The chance of having eight or more females among 10
randomly selected individuals is no more than 5%, if p≤0.493. Similarly, FL(p) (blue curve) is
a decreasing function of p, and because FL(0.963)=0.05, Pr(X ≤8)≤0.05 for any p≥0.963. For
these large values of p, the chance of observing eight or fewer females in a random sample of
10 birds is also no more than 5%.

A 90% exact CI for p is obtained by combining these two facts: the interval (0.493, 0.963)
consists of all the values remaining after ruling out those too large to account for an observation
of eight or less and those too small to account for an observation of eight or more. The formal
definition of such intervals follow the exact CI for binomial success rate.

Exact CI for Binomial Success Rate

Suppose that X ∼B(n,p). Set pL(0,α/2)=0, and for x =1,2, . . . ,n define

pL(x,α/2)=max
p

{
p : FU(p)≤α/2

}
.

Set pU(n,α/2)=1, and for x =0,1, . . . ,n−1 define

pU(x,α/2)=min
p

{
p : FL(p)≤α/2

}
.

Then the interval JX = (
pL(X,α/2),pU(X,α/2)

)
is an exact 100(1−α)% CI for p.

Although we have labeled this interval an “exact confidence interval,” it remains to be shown
that it has the requisite property that Pr(p∈ JX|p)≥1−α for all p. This requirement, combined
with the discreteness of the binomial distribution leads to the unpleasant consequence that
the coverage probability is substantially greater than 1−α for many values of p. Consider, for
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instance, the performance of the exact 70% CI for p based on sample size n=25. There are 26
possible outcomes for X, hence 26 possible CI’s as summarized in Table 3.2.

For any given value of p, it is a straightforward matter to calculate the coverage probability
of the exact CI. For instance, if p=0.3595, we see that the interval will include p if and only
if 7 ≤X ≤11. If p=0.3595, Pr(7 ≤X ≤11)=0.703, close to the desired level. However, if we
shift our attention slightly, to p=0.3591, we see that the interval will include p if and only
if 6≤X ≤11. For p=0.3591, Pr(6≤X ≤11)=0.792, considerably larger than the nominal 70%
coverage rate of the interval.

Figure 3.6 displays the true coverage rates as a function of p, for n=25, α=0.30.
While it is gratifying to see that the coverage rate is always at least as large as it ought to be,

it is somewhat disconcerting to note that for many values of p it is considerably larger than it
need be. This phenomenon is not merely associated with the case n=25,α=0.30 considered

TABLE 3.2 Exact 70% CI’s for p based on x successes in n =25
Bernoulli trials.

x Jx x Jx x Jx

0 [0.0000,0.0731] 9 [0.2502,0.4835] 18 [0.5985,0.8196]
1 [0.0065,0.1287] 10 [0.2863,0.5235] 19 [0.6407,0.8532]
2 [0.0275,0.1788] 11 [0.3230,0.5629] 20 [0.6839,0.8857]
3 [0.0540,0.2263] 12 [0.3604,0.6015] 21 [0.7281,0.9168]
4 [0.0832,0.2719] 13 [0.3985,0.6396] 22 [0.7737,0.9460]
5 [0.1143,0.3161] 14 [0.4371,0.6770] 23 [0.8212,0.9725]
6 [0.1468,0.3593] 15 [0.4765,0.7137] 24 [0.8713,0.9935]
7 [0.1804,0.4015] 16 [0.5164,0.7498] 25 [0.9269,1.0000]
8 [0.2149,0.4429] 17 [0.5571,0.7851]
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FIGURE 3.6 True coverage rates of exact 70% CI’s, n=25.
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here. It is an inevitable consequence, for discrete random variables, of the requirement that
confidence intervals have at least (1−α)100% coverage, for all values of the parameter.

3.2.3 Confidence Intervals – Summary

Like the scaled likelihood interval, CI’s provide an expression of the uncertainty inherent in
making statistical inference. They have somewhat greater appeal than the likelihood intervals,
in that their length is related to probability rather than relative likelihood, which is a coin of
unfamiliar currency.

CI’s have several complications which are not well-known among practitioners. First, many
familiar and simple forms such as p̂ ± zα/2

√
p̂(1− p̂) are based on approximations of question-

able value, even for fairly large sample sizes. Strictly speaking, these approximations do not
yield CI’s of specified confidence level, since it is required that the coverage probability of a
CI be at least (1−α) for all values of the parameter. Second, when coverage probability of at
least (1−α) is attained for all values of the parameter (as required by definition), the coverage
probabilities may far exceed (1−α) for most values of the parameter. Our impression is that
this phenomenon is not well-known among practitioners; while it is not an indictment of CI’s
per se, it is undoubtedly a factor mitigating the clarity of their interpretation.

Of the three intervals considered, only JX is a legitimate 95% CI, for only it has coverage
probability which is ≥95% for every value of p. The guaranteed minimal coverage of 95%
is obtained at a cost: greater coverage is attained by using a longer interval. We plot cov-
erage probabilities for all three intervals in Fig. 3.7, noting that the inadequacies revealed
occur despite reasonable sample size (n=100) and are more pronounced with smaller sample
sizes.

Figure 3.7 was produced using a grid of 1000 values of p, evenly spaced over the interval from
0 to 1; the coverage probabilities on this grid are summarized in Table 3.3. We suspect that many
practitioners would prefer the interval I∗

X as a representation of their intuitive concept of “90%
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FIGURE 3.7 Coverage rates for
exact 90% confidence interval JX
(green), and nominal 90% CI’s, I∗X
(black) and IX(blue), n=100.
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TABLE 3.3 Summary of coverage properties (mean, standard
deviation, percentiles, range) for two approximate 90% confidence
intervals (IX and I∗

X) and the exact confidence interval JX , across a
uniformly spaced grid of 1000 values on [0, 1].

Mean sd Min 2.5th 50th 97.5th Max

IX 0.881 0.038 0 0.707 0.891 0.912 0.914

I∗X 0.902 0.015 0.859 0.875 0.900 0.941 0.974

JX 0.926 0.016 0.902 0.906 0.923 0.976 0.990

confidence,” being willing to sacrifice “minimal 90% coverage” for “typical 90% coverage.”
However, under the frequentist paradigm, there is no accounting for “typical” behavior across
values of p but only a protection against worst-case scenarios. We turn our attention now to the
construction of Bayesian interval estimates, which are designed and interpreted with a view
to their typical behavior, and which we believe provide an intuitive and appealing portrayal
of uncertainty about parameter values.

3.3 BAYESIAN INTERVAL ESTIMATION

The frequentist and Bayesian inferential systems are distinguished, primarily, by their treat-
ment of unknown quantities. The distinction is often said to be that in frequentist thinking,
parameters are “fixed but unknown constants,” whereas in Bayesian thinking, parameters are
random variables.

This epitome is slightly too brief. The fact is that both paradigms treat parameters as fixed
and unknown. The frequentist view of parameters begins and ends thus. Nothing more is
said; no statement is made about whether any particular values are more to be expected than
others. No assessment of prior knowledge is made.

Under the Bayesian paradigm, parameters are fixed and unknown quantities, but are
regarded as realizations of random variables, samples from probability distributions that are
at least partially specified. These are called prior distributions, or simply priors. The prior dis-
tribution can be thought of as a summary of all that is known about the parameter of interest,
without reference to the data. In the absence of prior knowledge about the parameter, or if
we are interested in letting the data speak for themselves without the influence of our prior
knowledge, a uniform distribution is often chosen.

3.3.1 Basics of Bayesian Inference

The prior distribution (for parameter θ) and the data distribution (for data X, given param-
eters θ) are all the ingredients needed for a Bayesian analysis. Using the bracket notation of
Section 2.2.1, the data distribution is [X|θ], the prior distribution is [θ]. Bayes’ theorem combines
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these to produce the posterior distribution [θ|X]:

[θ|X]= [X|θ][θ]
[X] , (3.6)

where

[X]=
∫

[X|θ][θ]dθ. (3.7)

The posterior distribution summarizes all that is known about the parameter, combining prior
knowledge and information provided by the data. All Bayesian inference is based on the
posterior distribution: if a point estimate is desired, one generally uses the posterior mean (or
sometimes the mode, or the median). Interval estimates are constructed from percentiles of
the posterior distribution, as described subsequently.

These three distributions, the data distribution, the prior, and the posterior, are the primary
features of Bayesian analysis. The distribution [X] is the marginal distribution of the data; as
indicated by Eq. (3.7), it is the average value of the data distribution, averaged against the
prior. This distribution is sometimes used for model checking but need not be computed in
characterizing the posterior distribution of θ. That is, we may write Eq. (3.6) as

[θ|X]∝ [X|θ][θ]; (3.8)

knowing that [θ|X] is a distribution function, its integral with respect to θ must equal 1; it
follows that the proportionality constant in Eq. (3.8) is 1/[X].

In defining the posterior distribution, the right-hand side of Eq. (3.8) treats [X|θ] as a
function of θ, with X fixed, that is, as a version of the likelihood function, as discussed in
Section 3.1. Equation (3.8) says that the posterior distribution is proportional to the product
of the likelihood and the prior. Thus, the basis of inference is the product of information
provided by the data and by the prior, summarized by the mnemonic

Inferential Basis = Data + Prior Knowledge. (3.9)

3.3.2 Bayesian Inference for Binomial Success Rate

We return to our example, Shealer and Spendelow’s (2002) observation of eight females
among 10 kleptoparasitic roseate terns, to illustrate the basics of Bayesian inference. We
have modeled the data as an observation X of a binomial random variable with index
n=10 and unknown success rate p; the data distribution is [X|p ]=Pr(X =x|p)=B(x;n,p).8

Bayesian analysis of the data X =8 requires nothing more than specification of a prior
distribution [p ].

The choice of prior is, for some folks, the great Bayesian Bugaboo. The inferential basis
being determined not only by the data but also by the choice of prior, some would caricature
Bayesian inference as allowing a sort of intellectual anarchy: “choose your prior right, and you
can get any answer you want.”

8. Note that we no longer write Pr(X =x)=B(x;n,p), but, rather Pr(X =x|p)=B(x;n,p), in acknowledgment of the perspec-
tive that the data distribution B(x;n,p) depends on a random quantity, p.
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Indeed, there is great flexibility in the choice of prior: [p ] can be any distribution on [0, 1].
We see this as a strength, rather than a weakness of the Bayesian inferential system: Bayesian
inference includes a formal mechanism for updating prior knowledge. This is a virtue, rather
than a vice, when subject to the obvious proviso that one must report the prior as part of the
analysis, and that one should assess the sensitivity of the conclusions drawn to the choice of
prior. If one chooses a prior which expresses dead certainty about the value of the parameter,
then the data will be ignored; however, if the prior expresses uncertainty about the parameter,
then as sample size increases, the data will prevail in guiding inference.

For now, we will table the question of how one goes about choosing a prior distribution,
and discussion of the implications of the choice, except to make note of two considerations:
one practical and the other epistemological. The first of these is that certain families of prior
distributions are very naturally chosen, on the grounds of convenience and expositional clarity.
A good example is provided by the choice of a beta distribution

Be(p;a,b)= �(a+b)
�(a)�(b)

pa−1(1−p)b−1, 0<p<1 and a,b>0, (3.10)

as a prior for the binomial success parameter.9 From Eq. (3.8), we find that the resulting
posterior distribution is

[p |X]∝B(x;n,p)Be(p ;a,b)= �(a+b)
�(a)�(b)

pa−1(1−p)b−1
(

n
x

)
px(1−p)n−x

∝px+a−1(1−p)n−x+b−1. (3.11)

The last line can be written as pA−1(1−p)B−1, with A= a+x and B= b+n−x; we need only to
add on the appropriate proportionality factor to put this in the form of the beta distribution as
given in Eq. (3.10). The beta family of distributions is said to be conjugate for the binomial suc-
cess parameter: the prior and posterior distribution are in the same family. The beauty of this is
that the posterior from one study is ready made to serve as prior in the next. Also, the effect of
data on parameter values provides a heuristic for understanding the quantification of uncer-
tainty by the probability distributions: in the present example one may think of parameters a
and b as running totals of previous numbers of successes and failures. Thus, a Be(30,20) prior
can be thought of as roughly equivalent to the knowledge acquired from previous experience
of 30 successes and 20 failures in 50 previous trials. There is also a computational efficiency
associated with using a conjugate prior: the posterior being of known form, there is no need
to compute the integral in Eq. (3.7) which scales the posterior distribution defined by Eq. (3.6).
We will speak more about conjugate priors in Chapters 4 and 6.

The second consideration is that analysts often wish to let the data speak for itself, as
much as possible; they wish to substitute “0” for “Prior Knowledge” on the right-hand side of
Eq. (3.9), to obtain an “Objective Bayesian analysis” in which the data alone provide the basis
of inference. Technical difficulties in doing so are much trumpeted by non-Bayesian critics, and
no single solution has been settled upon by Bayesian apologists. We believe that the issues
are interesting but that their significance has been considerably overstated; we will return to
discuss them in later chapters.

9. For details on the beta distribution, see Appendix B.10.
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When an objective Bayesian analysis is desired for the binomial success rate p, a common
choice of prior is the uniform distribution on [0, 1]. A uniform prior on p says that we have no
more reason to believe it falls in any particular subinterval of [0, 1] than in any other of the
same length. Note also that the U(0,1) density is constant, hence the posterior distribution is
simply a scaled version of the likelihood; thus, the desideratum of substituting “0” for “Prior
Knowledge” on the right-hand side of Eq. (3.9) can be said to have been met.

The U(0,1) distribution is a member of the beta family of distributions; it is Be(a,b), with
a= b=1. From the observations following Eq. (3.11), we conclude that the corresponding pos-
terior distribution is Be(X +1,N −X +1).

What of the kleptoparasitic terns? The data consist of eight successes in 10 independent
Bernoulli trials. Thus given a uniform prior, the posterior distribution of p is Be(9,3), plotted
in Fig. 3.8. The mode of the distribution, from Appendix B.10, is 8/10, the same as the MLE as
calculated in Section 3.1. This is no coincidence, but a consequence of the choice of the uniform
prior on p, which leads to the posterior distribution being a scaled version of the likelihood. We
will discuss similarities between “flat prior” Bayesian and frequentist analysis in subsequent
chapters.

Of more immediate interest in the present context is the construction of Bayesian interval
estimates. Since the 5th and 95th percentiles of the Be(9,3) distribution are 0.530 and 0.921,
respectively, we conclude that

Pr
(
p∈ (0.530,0.921)|X =8

)=0.90.

Thus, under the Bayesian paradigm it is completely legitimate to say “there is a 90% chance that
p is in the interval (0.530, 0.921).” This stands in marked contrast to the frequentist statement,
based on the same data, that “the interval (0.493, 0.963) is an exact 90% confidence interval
for p.” The former has a simple and intuitive meaning, the latter is potentially misleading and
commonly misunderstood.

0.0 0.2 0.4 0.6 0.8 1.0
p

90%

FIGURE 3.8 Posterior distribution
for proportion females among klep-
toparasites. Interval (0.566, 0.944) is the
90% HPDI, the shortest 90% credible
interval.
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Alternative interval estimates can be obtained from the same posterior distribution. Because
the 10th and 90th percentiles of the Be(9,3) distribution are 0.585 and 0.895, we may also
conclude that

Pr
(
p∈ (0.585,1)|X =8

)=0.90

and

Pr
(
p∈ (0,0.895)|X =8

)=0.90.

We will refer to the intervals (0.530, 0.921), (0.585, 1), and (0, 0.895) as 90% credible intervals
for p. We state the following definition:

Definition: Credible Interval for Binomial Success Rate

Suppose that X|p∼B(n,p). Then any interval BX with the property that

Pr(p∈BX|X)=1−α

is a 100(1−α)% credible interval for p.

We encourage the reader to compare the definitions of credible intervals and CI’s. They
are similar in that both involve probabilities for the event p∈KX , where KX is an interval
calculated from the data X. The crucial difference is that the CI conditions on p, whereas
the credible interval conditions on X. Bayesian and frequentist analyses are distinguished by
whether one conditions on things unknown, or things known.

The three intervals presented may be distinguished as central, upper-tailed, and lower-
tailed credible intervals. The lengths of these intervals are 0.391, 0.415, and 0.895. One might
guess that the central credible interval would be the shortest possible, but in fact that dis-
tinction goes to the interval (0.566, 0.944), of length 0.378.10 Some authors reserve the term
“credible interval” for this particular interval, but since it is also distinguished as the highest
posterior density interval (HPDI), we will apply the term “credible interval” to any interval
containing 100(1−α)% of the posterior distribution’s mass. It is often the case that the central
credible interval is only marginally longer than the HPDI, and almost always the case that
computation of the HPDI is substantially more difficult.

In the introduction to this text, we said that Bayesian inference is appealing because of its
simplicity. The interpretation of interval estimates is a striking case in point. Consider once
again the data on habitually kleptoparasitic roseate terns:

1. Summary of Objective Bayesian analysis: “In the absence of data, we know nothing about p,
and suppose that it is equally likely to be anywhere in the interval [0, 1]. The data lead us
to believe that there is a 90% chance that 0.566≤p≤0.944.”

2. Summary of exact frequentist analysis: “We have 90% confidence that p lies in the interval
JX = (0.493,0.963). Our confidence lies in the methods used to construct the interval: these
methods succeed in producing an interval that includes p in at least (and possibly well
over) 90% of their applications, regardless of the value of p.”

10. See Fig. 3.8. This HPDI ranges from the 8th to 98th percentiles of the Be(9,3) distribution. If the posterior distribution
is symmetric and unimodal, the HPDI and the central credible interval coincide. The Be(9,3) distribution is unimodal,
but not symmetric; the distinction between central CI and HPDI is due to the skewness of the distribution.
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In practice, exact analyses are seldom used, and a frank assessment of results would go
something like this:

3. Summary of approximate frequentist analysis: “We have 90% confidence that p lies in the
interval IX = (0.592,1.008). Our confidence lies in the methods used to construct the inter-
val: these methods attempt to produce an interval that includes p in at least 90% of
their applications, regardless of the value of p. To be honest, we have some misgivings
about the procedures, because we’ve used large sample approximations along the way
in developing them, and it’s not at all clear how well they work in this small sample
setting.”

3.3.3 Incorporating Prior Knowledge in Interval Estimate for Binomial
Success Parameter

The U(0, 1) prior for p we have used so far is chosen to represent prior ignorance about p,
or to allow the data to speak without influence of prior knowledge. The Bayesian paradigm
also provides a formal mechanism for updating prior knowledge. In Fig. 3.9, we illustrate the
effect of prior on posterior distribution. The top panel displays a uniform prior distribution
and four beta priors; the bottom panel displays the corresponding posterior distributions
for the roseate tern kleptoparasite data, that is, an observation X =8 from X|p∼B(10,p). For
the purpose of illustration, we have chosen a prior mean of π= a/(a+b)=0.35 for the beta
distributions, a value in contradiction to the observed data. The concentration parameters
for the beta distributions are θ = a+b=2 (red), 6 (blue), 24 (brown), and 120 (green). Clearly,
the more specific the prior knowledge, the greater the influence of the prior on the posterior.
The prior with θ =120 can be thought of as equivalent to previous experience of a data set
consisting of 42 successes and 78 failures.11 In light of such prior data, we would surely be
inclined to discount the significance of eight successes in only 10 trials; the Bayesian calculus
provides a formal mechanism for doing so.

A remarkable feature of this analysis is that the posterior mean is a weighted average of
the prior mean and the maximum likelihood estimator. For p∼Be(a,b), E(p)= a/(a+b). Thus,
since the posterior distribution p |X is Be(a+X,b+n−X), the posterior mean is

E(p |X)= a+X
a+b+n

= θ

θ+n

(
a

a+b

)
+ n

θ+n

(
X
n

)
where θ = a+b. Regarding θ as a prior sample size, we can see the weights on prior mean and
data correspond to the relative sample sizes; if n is substantially larger than θ, the posterior
mean will be essentially the same as the MLE, p̂=X/n. If θ is much larger than n, the poste-
rior mean will be closer to the prior mean than to the MLE. The Bayes estimate θ̂B =E(p |X)

is often conceived as the result of moving a proportion θ/(θ+n) of the way from the MLE
along a line segment to the prior mean; this phenomenon of shrinkage is common in Bayesian
analysis.

11. To be precise, we might say Be(42,78) is the posterior resulting from a uniform prior based on previous experience of 41
successes and 77 failures, analyzed using a uniform Be(1,1) prior.
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FIGURE 3.9 Top panel: uniform prior (black) and beta priors with mean 0.35 and θ = a+b=2,6,24, and 120 (red,
blue, brown and green). Bottom panel: corresponding posteriors obtained from observation X =8, for X|p∼B(10,p).

3.4 SUMMARY AND COMPARISON OF INFERENTIAL SYSTEMS

Frequentist methods generally, and CI’s in particular, are defined with regard to hypothet-
ical replicate data produced by a fixed set of parameters. No attempt is made to describe
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prior knowledge about the parameter. CI’s are defined in terms of the worst-case scenario for
coverage probability over all values of the parameter.

By contrast, Bayesian methods describe uncertainty about parameters using probability
distributions. The prior distribution [θ] describes what is known or assumed about the param-
eter without regard to the data to be analyzed. The posterior distribution [θ|X] is obtained by
combining the prior and the data distribution [X|θ] through Bayes’ theorem, and is the basis
of all Bayesian inference. The prior distribution can be chosen either as reflecting prior knowl-
edge or with the goal of minimizing its influence on the analysis. Either way, all inference is
based on the posterior distribution, conditioning on a fixed set of data rather than hypothetical
replicate data sets.

We have focused on interval estimation, noting that Bayesian interval estimates are
described using Pr(θ ∈CX|X), whereas frequentist intervals are based on Pr(θ ∈CX|θ). More
generally, we may describe frequentist methods as based on the data distribution [X|θ], and
Bayesian methods as based on posterior distributions [θ|X].

Similar considerations govern the choice of point estimators. Frequentist estimation crite-
rion rely on the the conditional distribution of hypothetical data, given a fixed set of parameters.
Bayes estimates are based on the conditional distribution of parameters, given the observed
data.

3.4.1 Point Estimation

Frequentist Estimation Criterion: Unbiasedness

A standard frequentist optimality criterion for estimators is unbiasedness. Estimator θ̂(X)

is unbiased for parameter θ if

E
(
θ̂(X)|θ

)
= θ,

the expectation being taken over hypothetical replicate data sets X. At first glance, the criterion
appears reasonable: if over a lifetime of providing estimates, the statistician’s values average
out to the truth, everyone should be happy.

But a critic might say “I’m not interested in how you do over a lifetime of applica-
tion, but in how you do this time.” The critic desires a different optimality criterion, not
based on hypothetical replicates of the data set at hand, but only based on the present
data set.

Such a criticism might not be all that unreasonable. For instance, suppose that X is a
Poisson random variable with mean λ, and that an estimator of θ =exp(−2λ) is desired.
It can be shown that the unique unbiased estimator of θ is (−1)X . The estimator equals
±1, depending on whether X is even or odd. These values make no sense because
0<θ<1.

Many similar cases of “silly” unbiased estimators exist. Occasionally, an unbiased estimator
of a variance component returns a negative estimate. Analysts often truncate or discard such
estimates, not realizing that this practice effectively overthrows the basis of their selected
optimality criterion, which depends on all outcomes, reasonable or otherwise, to evaluate
typical performance.
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Maximum Likelihood Oddity

Even the highly regarded criterion of maximum likelihood can fail, and spectacularly at
that. Consider the following family of distributions:

f(x|θ)= 1/2√
θ+√

1−θ
× 1√|x−θ| , (3.12)

for 0<x <1, indexed by parameter θ ∈ (0,1). If you do the integration with respect to x, first
over x ∈ (0,θ), then over x ∈ (θ,1), you will see that these distributions integrate to one, as they
should.

However, the likelihood function is a mess, having an infinite spike at every observed value
xi. Figure 3.10 displays the likelihood function based on a sample x1 =0.250,x2 =0.333,x3 =
0.400, and x4 =0.500.

So we would conclude that maximum likelihood is not a good criterion to use, in estimating
θ. We would be forced to try something else. By contrast, Bayesian analysis always follows the
same process: integrate the likelihood against a prior to obtain a posterior distribution, and
base inference on the posterior distribution. Using a uniform prior on θ, the four observations
lead to a posterior distribution with median 0.357; the interval (0.182,0.560) is a 90% credible
interval.

Bayesian Estimation Criterion: Minimum MSE

Bayesians evaluate point estimators on the basis of their performance as measured by pos-
terior distributions. For instance, the mean-squared error of A= θ̂(X) (a function of data X) as
an estimator of parameter θ, computed relative to the posterior distribution of θ, is

E
(
(θ−A)2|X

)
.
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15 FIGURE 3.10 Likelihood function
based on Eq. (3.12) for observations
0.250, 0.333, 0.400, and 0.500.
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This MSE is minimized by setting A=E(θ|X), the posterior mean. If, instead, one wishes to
minimize the mean absolute deviation,

E( |θ−A| |X),

the appropriate choice is the posterior median.12 Either way, estimators are evaluated by their
performance relative to the posterior distribution [θ|X].

3.4.2 Conclusion (peroration)

It has been widely observed that many classically trained statisticians use frequentist meth-
ods, but interpret them as though they were Bayesian. Statistics teachers take fiendish pleasure
in catching their students out in thinking there’s a 95% chance that the parameter is in their
confidence interval, when the confidence is in the method, and is not a statement of probabil-
ities. Similarly, we often hear (or read) analysts saying that they have an “unbiased estimate”
of a quantity, when there is no such thing: unbiasedness is a property of estimators, of the
machinery that produces estimates, rather than of the estimates themselves. The reality is that
an unbiased estimator can produce really bad estimates.

The fact is, most folks are more naturally attracted to the Bayesian use of probability. We
are confident that many of our readers will look at Table 3.3 and conclude that intervals IX
and I∗

X worked pretty well. And they do, from a flat prior Bayesian perspective. But they
are dismal failures from a frequentist perspective. Looking again at Table 3.3, we imagine
our readers will see the performance of interval JX as rather unsatisfactory. And it is, from a
Bayesian perspective. But of the three intervals, it is the only one satisfying the requirements
for a frequentist CI.

The more one becomes aware of the complicated optimality criteria associated with fre-
quentist thinking and the failures of such fundamental and apparently laudable criteria as
unbiasedness, the more appealing the simplicity of the Bayesian way of thinking. The more
one considers the approximate nature of many frequentist computations and the associated
and unmeasured uncertainties, the more satisfactory the exact computation of posterior dis-
tributions becomes.

So then, our conclusion is this: if it is natural to look at things from a Bayesian perspective,
why not go the whole way and embrace the Bayesian paradigm, with probability the tool and
the basis for describing uncertainty? Subsequent chapters will highlight the simplicity of the
inferential system, and the complexity of models that can be addressed with mathematical
rigor, and without dubious distributional approximations.

12. See rules 16 and 17 in Appendix A.
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As outlined in Chapter 3, Bayesian inference is based on straightforward use of Bayes’
theorem. Inference about an unknown parameter θ is based on its posterior distribution,

[θ|Y]= [Y|θ][θ]
[Y] . (4.1)

In this setting, Eq. (4.1) is treated as having only one variable, θ. The data Y are fixed, and [Y|θ],
rather than being the data distribution of Y for fixed θ, is the likelihood for θ given fixed Y.

Given the likelihood and the prior distribution [θ], the posterior distribution [θ|Y] is
completely determined; it is the unique distribution function proportional to [Y|θ][θ]. The
only role of the denominator [Y] in defining the posterior is as a “normalizing constant,” a
scaling factor included so that the posterior distribution integrates to 1. Thus, Eq. (4.1) is often
simply written as

[θ|Y]∝ [Y|θ][θ]. (4.2)

As far as defining the posterior distribution is concerned, the normalizing constant is
irrelevant.
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Of course, it is not enough to define the posterior distribution, to say it is the unique
distribution function proportional to [Y|θ][θ]. We want more details. We want to be able to
report its mean, its variance, its percentiles; we may want to know specific probabilities, such
as Pr (θ>0|Y). While we do not need to know [Y] to define [θ|Y], we do need to know it if we
are to directly calculate these features. The normalizing constant is found by averaging the
data distribution [Y|θ] against the prior [θ], as

[Y]=
∫

[Y|θ][θ]dθ. (4.3)

Unfortunately, evaluating this integral is almost always difficult and frequently impossi-
ble. It is not stretching the matter too far to say that the calculation of [Y] is and has been
the primary obstacle to implementation of Bayesian methods. In this chapter, we describe
a variety of methods for getting around this difficulty, so that we may evaluate posterior
distributions.

We begin in Section 4.1 with the simplest solution. In special cases, the prior combines with
the likelihood to produce a posterior distribution of similar form to the prior: the prior is said
to be conjugate to the likelihood. If one can choose a conjugate prior, the form of the posterior
is known. Conjugacy completely solves the computational problem, but there are relatively
few cases where it applies.

When simple solutions based on conjugacy are not available, most Bayesian applications
examine posterior distributions by random sampling. If we can draw a sample of θ from
[θ|Y], we can use features of the sample as estimates of corresponding features of the pos-
terior distribution. The sample proportion of values θ>0 estimates Pr (θ>0|Y); the sample
mean value of θ estimates the posterior mean value of θ. These estimates can be made as
precise as we want by drawing large enough samples. Simulation methods for studying
probability distributions are known generally as Monte Carlo methods; we consider these in
Section 4.2.

Monte Carlo methods typically involve draws of independent samples from the distribu-
tion being studied. The most straightforward approach is through inversion of cumulative
distribution functions (Section 4.2.1) but for posterior distributions this requires that we be
able to compute the integral in Eq. (4.3). Another approach, which avoids this requirement, is
rejection sampling, which we describe in Section 4.2.2.

It is usually not a straightforward matter to draw independent samples from posterior dis-
tributions, even while using rejection sampling and similar techniques. Bayesian statistics has
been revolutionized by the development of techniques for drawing dependent samples from the
posterior distribution. These samples can be used in a similar fashion to independent samples.
A broad class of techniques, collectively referred to as Markov chain Monte Carlo (MCMC) has
been developed since the mid-twentieth century and is introduced in Section 4.3. We describe
the Metropolis–Hastings (MH) algorithm (Section 4.3.3) and Gibbs sampling (Section 4.3.4),
two of the most important techniques used in MCMC. A thorough knowledge of the math-
ematics behind them is beyond the scope of this text, but also beyond the scope of what is
needed by the practitioner. However, some skill is needed in using MCMC; a basic under-
standing of the process is crucial. There is a certain amount of art involved in the conduct
and evaluation of simulations. We conclude with some guidelines for evaluating results in
Section 4.3.5.
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4.1 CONJUGACY

Sometimes, identifying posterior distributions is a piece of cake. The best case is when we
can identify a family of distributions, which includes both the prior and posterior distributions.
Distributions in this “conjugate family” are identified by a hyperparameter ψ. We can sum-
marize what was known before data collection by a particular value ψ0, and what is known
afterwards, by a new value ψ1. The process of updating knowledge by data boils down to
updating ψ, and the transition from ψ0 to ψ1 involves simple summaries of the data.

The existence of a conjugate family depends on the form of the likelihood function. There
are not many cases where conjugate families exist, but some of them correspond to com-
mon and useful models.1 We present three examples, first involving the binomial likelihood
(Section 4.1.1), second involving the Poisson likelihood (Section 4.1.2), and third involv-
ing the normal likelihood (Section 4.1.3). The first two of these are straightforward; the
third illustrates the additional complexities of posterior analysis associated with multivariate
parameters.2

4.1.1 Hautapu Trout

In 1988, the Wellington Fish and Game Council carried out a study to estimate the propor-
tion of fish counted in drift dive counts of brown trout in the Hautapu River. Divers floated
downstream in line-abreast, counting trout. In this study, 13 fish were tagged and released into
a section of river that had been netted off to prevent fish from moving in or out. During three
replicate dives 10, 7, and 8 of the 13 tagged fish were seen.

On each dive, each fish is either seen or not seen; we model these events as Bernoulli trials.
We will suppose that the probabilities of seeing fish are constant, varying neither among dives
nor among fish. If we assume further that the individual trials are independent, the data
distribution for the total number of sightings Y is binomial, Y ∼B(N,p), with N =3×13=39,
and Y =10+7+8=25, with p denoting the unknown sighting probability.

Suppose that our prior knowledge about p can be represented by a beta distribution with
parameters a0 and b0. Then,

[p|Y]∝ [Y|p]×[p]
∝p25(1−p)39−25 ×pa0−1(1−p)b0−1

=pa1−1(1−p)b1−1,

where a1 =25+a0 and b1 =39−25+b0. Thus, the posterior distribution is proportional to a
beta distribution, but with parameters a0 and b0 replaced by a1 =Y +a0 and b1 =N −Y +b0.
Since the posterior distribution must integrate to 1, it must actually be a beta distribution; thus,

1. All members of the exponential family of distributions, which includes most of the commonly used distributions, have a
conjugate prior distribution.
2. . . . and might be found disturbing by folks who do not like lots of Greek letters. If that is you, do not fuss the details; it is
the basic ideas that count.
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we deduce that

[p|Y =25]= �(a0 +b0 +39)

�(a0 +25)�(b0 +14)
pa0+25−1(1−p)b0+14−1.

Given the binomial likelihood, and a beta prior, we obtain a beta posterior: the beta family
of priors is conjugate for the binomial likelihood. The hyperparameter ψ ={a,b} is updated by
adding the number of successes to a0, and the number of failures to b0.

How do we choose values a0 and b0? In the absence of specific knowledge, the choice a0 =1
and b0 =1 may be reasonable, since it describes a uniform prior on p. The probability that p
lies within any subinterval of [0, 1] is the same for all equal-length subintervals; this choice
is often made when one wishes to let the data speak for themselves, in an attempt to express
complete lack of prior knowledge about p.

Given the uniform prior, we have a1 =26 and b1 =15. The posterior density, illustrated in
Fig. 4.1, has its mode at

a1 −1
a1 +b1 −2

=25/39=0.641.

It is noteworthy that the posterior mode is the same as the ordinary maximum likelihood
estimator, in consequence of the uniform prior on p.

The posterior distribution for p has 95% of its mass located between 0.488 and 0.777. Thus,
from an initial position of being unwilling to assign any particular range of values for p as
more likely than any other range of values we can now assert that there is a 95% probability
that p lies in the range 0.488 to 0.777. From this posterior density, we can also express the belief
that we are 96% certain that more than half the fish are seen on a dive.

The mean of the posterior density is a1/(a1 +b1)=26/41=0.634 and as discussed in
Section 3.3.3, can be found as a weighted average of the prior mean (0.5) and the sample
proportion of 25/39=0.641, with a weight of n/(a+b+n)=39/41=0.95 given to the sample
proportion. With n=39 and a Be(1,1) prior, the posterior is dominated by information from

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mode 5 0.641

FIGURE 4.1 Posterior density of p for the Hautapu trout study.
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the experiment – 95% weight is given to the sample proportion in the posterior mean, so there
is relatively little shrinkage toward the prior mean.

4.1.2 Fisher’s Tick Data

In a famous study analyzed by R. A. Fisher, data were collected on the numbers of ticks
found on 60 sheep. As the data are counts, a useful starting model is the Poisson distribution.

Let Y ={y1, . . . ,yn} denote the observed values in a random sample drawn from a Poisson
distribution with parameter λ, and suppose that the prior for λ is a gamma distribution with
parameters α0 and β0. We find that the posterior distribution [λ|Y] is given by

[λ|Y]∝
n∏

i=1

e−λλyi

yi! × β
α0
0

�(α0)
λα0−1e−β0λ

∝(
e−nλλnȳ)×(

λα0−1e−β0λ
)

=λα1−1e−β1λ, (4.4)

where α1 =nȳ+α0 and β1 =n+β0. Equation (4.4) is the kernel of a gamma distribution (i.e., all
but the normalizing constant that makes the function integrate to 1). Thus, we can deduce that
the posterior distribution is in the same family as the prior; both are gamma distributions. The
gamma family of priors is conjugate for the Poisson likelihood. The hyperparameter ψ ={α,β}
is updated by adding the total count to α0, and the sample size to β0.

For Fisher’s tick data, the observed mean number of ticks per sheep was 3.25. A vague
gamma prior, chosen to allow the data to speak for themselves and to specify little or no
prior knowledge of λ, is one where α0 and β0 are both small. Setting α0 =0.0001 and β0 =
0.0001, a 95% credible interval from the posterior distribution (Fig. 4.2) indicates a value for λ

somewhere in the range 2.81 to 3.72, with expected value 3.25.

2.3 2.8 3.3 3.8 4.3

FIGURE 4.2 Posterior distribution for the Poisson rate parameter λ for Fisher’s tick data. Also shown is a portion
of the gamma(0.0001, 0.0001) prior, multiplied 10,000-fold to allow comparison.
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With just one parameter, λ, the Poisson often provides a relatively poor fit to replicated count
data; typically one finds evidence of excess variation. Recall that for independent Poisson
random variables, the variance among replicates should equal the mean of the replicates. In
this example, it seems likely that the Poisson rate parameter should vary from sheep to sheep.
For example, larger sheep might be expected to carry more parasites than smaller sheep. Some
animals because of their habits may have higher exposure to parasitism than others. One way
to account for these missing covariates is to model the Poisson rate parameter as varying
among sheep, with λi for sheep i being sampled from a prior distribution, itself determined
by higher-level parameters.

Alternatively, we might specify λi as a parametric function of observed covariates (if these
are available). Either way, the analysis proceeds hierarchically, with new parameters governing
higher order relations. Model fitting becomes more complicated, but is easily handled under
the Bayesian paradigm. We revisit these data later, illustrating how to go about investigating
such relations.

4.1.3 A Multivariate Posterior Distribution

With more than one unknown, inference is based on a multivariate (joint) posterior distri-
bution. This distribution is of the same form as Eq. (4.1), but now the parameter θ is vector
valued, and [θ|Y] is a multivariate distribution.

Sometimes the multivariate characteristics of this joint distribution are of interest; one might
take interest in the posterior correlations among parameters as a measure of association among
estimates. More often, inference focuses on one parameter at a time. This is especially the case
in models where there are many nuisance parameters, that is, parameters that are needed in
order to correctly describe the sampling model but that are of little direct interest.

Models with large numbers of nuisance parameters are very common in ecological statistics.
For example, capture probabilities p are needed in mark-recapture models, but inference usu-
ally focuses on demographic parameters such as survival probabilities or population size. The
parameters p really are a nuisance: there may be nearly as many p’s as parameters of interest,
they may provide no insights into population features, and estimating them may introduce
substantial cost, both in terms of design and analysis. But without including them, estimates
of parameters of interest are likely to be biased.

For a vector-valued parameter θ = (θ1,θ2, . . . ,θk)
′, Eq. (4.2) becomes

[θ|Y]∝ [Y |θ][θ],
that is,

[θ1, . . . ,θk|Y]∝ [Y |θ1, . . . ,θk][θ1, . . . ,θk].
Typically, but not always, the joint prior distribution is the product of independent priors for
the individual θi.

To make inference about a single parameter, we examine the marginal posterior for the
parameter of interest. This is found by integrating the remaining parameters from the joint
posterior distribution. For example, the marginal posterior distribution for parameter θ1 is
found by,

[θ1|Y]=
∫

· · ·
∫

[θ1, . . . ,θk|Y]dθ2 . . .dθk .
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These integrals, like many encountered in Bayesian inference, are almost always analytically
intractable. So inference for a single parameter in a multiparameter setting involves two
potentially difficult calculations: first, of the joint posterior, second, of the marginal poste-
rior from the joint. Fortunately, these two tasks are easily accomplished by the simulation
techniques presented in this chapter.

There are cases where conjugate priors exist for multivariate parameters. This makes
the first task, of identifying the joint posterior, feasible. An interesting example is when
Y = (Y1,Y2, . . . ,Yn)′ is a sample of a normal distribution, Yi ∼N(μ,σ2). Suppose that we wish
to make inference about μ, and that the variance is an unknown. The parameter vector is
θ = (μ,τ)′, where τ =1/σ2 (the precision) is a nuisance parameter. Inference for the mean is to
be based on its marginal posterior distribution

[μ|Y]=
∫

[μ,τ|Y]dτ;

we must first calculate the joint posterior distribution [μ,τ|Y], then integrate over τ. For this
problem a conjugate family is defined in terms of a gamma distribution for τ and a normal
distribution for μ, given τ. That is,

[θ]= [μ,τ]= [μ|τ][τ],
where [μ|τ]=N(η,1/(κτ)) and [τ]=Ga(α,β). As before, we have a specified set of hyperpa-
rameters ψ = (α,β,η,κ)′ indexing the conjugate family of distributions.

Suppose that the prior distribution has parameter vector ψ0 = (α0,β0,η0,κ0)
′. Then the joint

posterior distribution is

[μ,τ|Y]∝ τn/2 exp

[
−τ

2

n∑
i=1

(Yi −μ)2

]

×(κ0τ)
1/2 exp

[
−κ0τ

2
(μ−η0)

2
]
×τα0−1 exp(−β0τ). (4.5)

After a bit of algebraic thrashing around, we can rewrite Eq. (4.5) as

[μ,τ|Y]∝ (κ1τ)
1/2 exp

[
−κ1τ

2
(μ−η1)

2
]
×τα1−1 exp(−β1τ), (4.6)

where

α1 =α0 +n/2,

β1 =β0 + (n−1)S2

2
+ nκ0(ȳ−η0)

2

2(n+κ0)
,

κ1 =κ0 +n,

and

η1 = n
n+κ0

ȳ+ κ0

n+κ0
η0;

here ȳ and S2 are the sample mean and variance. We have established that the normal-gamma
family of distributions, indexed by hyperparameter vector ψ = (α,β,η,κ) is conjugate for the
parameter vector θ = (μ,τ)′. Given a prior in the family, described by hyperparameter ψ0, the
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posterior distribution is also in the family, and its hyperparameter ψ1 is obtained by a simple
formula involving ψ0, the sample size n, and the sample mean and variance of the data.

It turns out that we can also integrate Eq. (4.6) as a function of τ to obtain the marginal pos-
terior distribution [μ|Y].3 Alternatively, we can use our knowledge of the conditional distribu-
tions [μ|τ,Y] and [τ|Y] to sample pairs from the joint posterior distribution. First, we sample
τ from a Ga(α1,β1) distribution. We then use the sampled τ in drawing μ from a N(η1,1/(κ1τ))

distribution. Taken alone, the μ are a sample of the marginal posterior distribution.

4.2 MONTE CARLO METHODS

Markov chain Monte Carlo (MCMC) has revolutionized data analysis, breaking down the
largest barrier to Bayesian analysis, that of computation. Describing all unknown quantities
using probability distributions, always working in accord with the basic laws of probability,
reasoning from prior to posterior distributions − all of these may be great ideas, but if the
calculations are prohibitively difficult, their appeal is lost. MCMC makes the process possible.

Although the basic techniques of MCMC were first developed in the early 1950’s, they were
paid scant attention among statisticians until the late 1980’s, and even less among wildlife and
ecological data analysts prior to 2000. Since then, the use of MCMC has burgeoned among
ecologists, largely due to the appeal of being able to fit complex hierarchical models.

Indeed, MCMC’s ubiquity, the marvelous analyses produced using it, and the availability
of free software and vast amounts of computational power are leading to a blackbox view
manifest by a common sloppy misuse of the phrase “MCMC analysis,” as in “I did an MCMC
analysis of the life history data.” This says nothing: MCMC is simply a tool for evaluating
probability distributions, like Newton–Raphson is a tool for numerical optimization of func-
tions, such as likelihoods. One would never say “I did a Newton–Raphson analysis of the
life history data,” at least, one would say “I used maximum likelihood . . .” although even
this would sound strange, without reference to the particular model involved. Care is needed
in using numerical optimization techniques, more perhaps than many users would realize,
because of problems with local extrema. But even more care is required in using MCMC: one
can easily be convinced that the procedure is working satisfactorily when it is not, or to believe
that approximations are more precise than they really are. Using MCMC well requires some
familiarity with how it works.

This chapter culminates with descriptions of various MCMC methods, and the caveats
needed in using them. We begin by describing ordinary Monte Carlo (simulation) methods,
useful in their own right, but also as stepping stones to understanding MCMC.

The basic idea of simulations is that we can study features of a probability distribution F
by examining corresponding features of a sample X1, X2, . . . , Xn from F. Suppose we want
to learn about the ratio of the largest lifespan to the average lifespan in samples of size 25,

3. The quantity
√

κ1α1/β1(μ−η1) has a t-distribution with α1 degrees of freedom. Taking limits as α0,β0,κ0, and η0 approach
zero, we obtain a (1−α)100% credible interval

ȳ±
√

n−1
n

tn,α/2
S√
n

,

somewhat reminiscent of the frequentist confidence interval. The frequentist interval, based on n−1 degrees of freedom and
without the multiplier

√
(n−1)/n, corresponds to a nonconjugate improper prior [μ,τ]∝1/τ.
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assuming exponential life lengths. We could attempt to do so analytically, based on the form
of the exponential distribution, but the calculations are difficult. Alternatively, we can repeat-
edly generate samples of size 25 and calculate the ratio in each sample. Doing so 10 mil-
lion times and summarizing the results takes less than 8 seconds on a 3.2 GHz laptop, and
is sufficient to guarantee two decimal place accuracy in the mean (3.82) and the standard
deviation (0.99).

Ordinary Monte Carlo methods are based on independent samples, making simple the
evaluation of precision in their summaries. For instance, independence of the 10 million ratios
leads to the conclusion that their mean has standard error σ/

√
n≈0.99/

√
10,000,000=0.001.

However, MCMC produces a dependent sequence of values. We discuss MCMC in detail, but
first we describe two methods of ordinary Monte Carlo simulation.

Readers tempted to hurry on to materials on MCMC might be tempted to skip Sections 4.2.1
and 4.2.2. However, this material is useful in its own right and provides important background.
Indeed, it would be worthwhile to try reproducing the examples we present. Generally, all
that will be needed is software capable of producing samples of a uniform random number
generator to produce U ∼U(0,1).

4.2.1 Cdf Inversion

Given a uniform random number generator, many probability distributions are easily
sampled.

For scalar (univariate) random variables, the easiest method is cdf inversion. Suppose that
X is a continuous random variable with cumulative distribution function (cdf ) F(t)=Pr(X ≤ t).
F(t) is monotone increasing, hence invertible: there exists a function F−1 such that F−1(F(t))=
F(F−1(t))= t.

Since Pr(X ≤ t)=F(t),

Pr(F(X)≤ t)=Pr(X ≤F−1(t))=F(F−1(t))= t,

for all t ∈ [0, 1]. So F(X) has the same distribution as a uniform random variable U ∼U(0,1),
from which it follows that F−1(U) has the same distribution as X.

Thus, if we want to obtain samples of a continuous random variable X, and we can calculate
the inverse of X’s cdf, F−1(t), all we need to do is calculate X =F−1(U), where U has a uniform
distribution on [0, 1].

For example, the exponential distribution with density λexp(−λx) has cdf F(x)=
1−exp(−λx). Solving U =F(X), we obtain X =− log(1−U)/λ. We can simplify matters a bit: if
U ∼U[0,1], then 1−U also has a U[0,1] distribution. Thus, X =− log(U)/λ has an exponential
distribution. Recalling that the mean of an exponential distribution is μ=1/λ, we conclude
that μ times the negative logarithm of U ∼U[0,1] is an exponential random variable with
mean μ.

In simulating the ratio of the maximum lifetime to the average lifetime, as described earlier,
we note that the mean μ cancels out in the ratio. Thus it does not matter which value of μ we
use, so we may as well use μ=1. We need only to compute Xi =− log(Ui) for i =1,2, . . . ,25,
then M =max(X1,X2, . . . ,X25), then X̄, then R=M/X̄, and repeat the process until we have a
sample which is as large as we deem necessary to consider the distribution of R. Moderately
large simulations, say 10,000 replications, can be carried out in a spreadsheet such as Excel.
R code is given in Panel 4.1.
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PANEL 4.1 R code simulating max/mean, in exponential sample of size 25.

reps=100000;n=25
U=matrix(runif(reps*n),reps,n)
y=-log(U)

biggest=apply(y,1,max)
average=apply(y,1,mean)

stat=biggest/average
c(mean(stat),sd(stat))

4.2.2 Rejection Sampling

Rejection sampling is a simple technique for changing a sample from a distribution c(x) into
a (smaller) sample from another distribution t(x). Imagine a histogram in marble of sampled
values from distribution c(x): rejection sampling chisels away at the marble, leaving behind a
histogram of sampled values from distribution t(x).

Rejection sampling has two uses. First, suppose that we have performed a simulation
based on samples from distribution c(x), and want to evaluate what simulation results would
have been like had we instead sampled from t(x). Rather than conducting an entirely new
simulation based on t(x), we might be able to use rejection sampling to obtain a subset of
the results based on c(x), a subset which can be treated as based on a sample from t(x).
For example, after sampling a collection of X’s, we may decide that we are interested in
the expected value of X|X >0. Rather than drawing a new sample from the conditional
distribution of X|X >0, we simply discard the sampled X’s ≤0 and compute the mean of the
remaining values. In Section 5.5.2, we show how that, given a prior, data, and a sample of
the posterior distribution, rejection sampling can be used to sample a posterior distribution
resulting from the same data but a different prior.

A second use of rejection sampling is when it is easy to directly sample from c(x) but
difficult to directly sample t(x). In this case, we use rejection sampling as an indirect method
of drawing samples from t(x). We refer to c(x) as the candidate distribution and t(x) as the
target distribution. In this setting, the candidate distribution is of no interest per se, except as
a means to the end of obtaining samples from the target distribution t(x).

Here is how it is done: First, we choose an easily sampled candidate distribution c(x),
ensuring that there is a number M <∞ such that over the entire range of t(x), t(x)≤Mc(x).
(We will explain why subsequently.)

Next, we draw a sample X ∼ c(x) and calculate w(X)= t(X)/(Mc(X)). Note that 0≤w(X)≤1.
We conduct a Bernoulli trial with success probability w(X); if the trial is successful, the value
X is accepted as an observation from t(x), otherwise, the value is discarded. The collection of
all X sampled from c(x) is the original block of marble, the values accepted are the finished
sculpture after chipping away the rejects. Simulation efficiency dictates that our choice of c(x)

should be guided by a desire to maintain high acceptance probabilities across the range of t(x).
To illustrate, we will generate a sample of standard normal random variables from a sam-

ple of random variables having a triangular distribution. Triangular distributions are easily
sampled: the sum of two independent, identically distributed uniform random variables has a
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24 422 20

FIGURE 4.3 Scaled candidate distribution Mc(x) (blue) and target normal distribution t(x) (red).

triangular distribution. So, provided we have access to a uniform random number generator,
we can easily sample from a triangular distribution and use these values to generate standard
normal variates. To make things easy, we will cheat a little bit and restrict the range of the
normal distribution to (−3.49,3.49).4

Now, let U1 and U2 be sampled from a U(−7/4,7/4) distribution; then X =U1 +U2 has a
triangular distribution on [−3.5,3.5]. The density function for X is

c(x)= (2/7)−4|x|/49,

for |x|≤3.5. It can be verified that if M =15/(4
√

2π), then

t(x)= 1√
2π

exp(−x2/2)≤Mc(x)

for |x|≤3.49 (see Fig. 4.3). Thus, we sample X from the triangular distribution, rejecting
immediately any of the few values |x|>3.49 and accepting the remainder with probability
w(x)= t(x)/(Mc(x)). The acceptance probability ranges from a low of about 6.5% at ±3.2 to
a high of about 97.6% at ±0.3. In total, the acceptance rate is about 2/3, so that a sample of
9000 X’s yields approximately 6000 standard normal observations.5

It is fairly easy to see why rejection sampling works. A sample from the triangular distribu-
tion can be portrayed as a histogram, with bars having heights approximating a triangle, as in
Fig. 4.4. Think of each bar as a bin, into which we pour grains of sand, each grain representing

4. This bit of cheating is made necessary by the requirement that Mc(x)≥ t(x) for all x, and by our desire to use a triangular
distribution as a starting point. The normal density function never quite reaches zero, but any triangular density does, so that
there inevitably will be x’s with c(x)=0< t(x). For such values, we simply can not cook up a big enough M. The Procrustean
solution of truncating the normal distribution at ±3.49 is not entirely satisfactory; however, less than 1 in 2000 values of a
standard normal random variable fall outside of this range.
5. Of course, this is not the most efficient way of generating standard normal random variables; we include it as a simple
illustration. A far better means of generating standard normal from uniform random variables is based on the Box–Muller
transformation, given in Appendix B.3 (Eqs. B.3 and B.4).
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FIGURE 4.4 Mc(x) and t(x), with approximating histograms. The height ratio for histogram blocks centered at x
is w(x), the acceptance probability.
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FIGURE 4.5 Density function t(x)=Csin(exp(x)), 0<x < log(π).

a sampled value. Random sampling from c(x) ensures that the bins will fill up according to
the shape of the candidate distribution. The lowest 100 w(x)% of the bar at each x represents
accepted values. The proportion w(x) is chosen to ensure that the histogram of accepted values
conforms to the shape of the target distribution t(x).

Here’s one for the reader to try: let t(x)=Csin(exp(x)), 0<x < log(π), as plotted in Fig. 4.5.
Try using rejection sampling to draw samples, to estimate the mean and the 90th percentile of
the distribution. In working through the example, it will become apparent that one does not
need to know the value of C (≈1.104) to implement rejection sampling. All that we need to
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know is that t(x) is a legitimate density function, that is, that it is nonnegative and integrates
to one. A solution is given in the footnote.6

4.3 MARKOV CHAIN MONTE CARLO

MCMC is a simulation technique for examining probability distributions. Devised in the
early 1950’s (Metropolis et al., 1953), MCMC received little attention in statistical applications
until the 1980’s with the publication of important applications to image processing by Geman
and Geman (1984) and Besag (1986). While it is tempting to speculate on the role of Besag’s
intriguingly titled “statistical analysis of dirty pictures” as contributing to the subsequent
explosion of interest in the topic, the real explanation lies elsewhere: MCMC has taken the
world by storm because of its usefulness and its relatively easy implementation.

4.3.1 Markov Chains and Stationary Distributions

Ak-th order Markov chain is a sequence of random variables X1, X2, X3, . . . , with the property
that, given all of the previous values, the probability distribution of the next value depends
only on the last k values. That is,

[Xt|Xt−1,Xt−2, . . . ,X1]= [Xt|Xt−1,Xt−2, . . . ,Xt−k].
Many Markov chains describe natural processes evolving through time, hence the index t is
often referred to as “time,” and the values of Xt are referred to as “states” (of nature).

Think of a gambler entering a casino with a stake of X1 dollars and making a series of dollar
bets at roulette. The roulette wheel has 38 equally likely outcomes, 18 of which win the gambler
a dollar, 20 of which lose a dollar. The gambler’s stake after t gambles is Xt. If the gambles
are independent, then Xt, t =1,2, . . . is a first-order Markov chain. Xt is either Xt−1 +1 (with
probability p=18/38) or Xt−1 −1 (with probability 1−p=20/38) regardless of the preceding
history (X1, X2, X3, . . . , Xt−2).

Suppose that the gambler’s original stake is X1 =20, and that she will gamble until she
doubles her money or goes broke. Her stake Xt is always in the set S={0,1,2,3, . . . ,40}, referred
to as the state space. States 0 and 40 are called absorbing states: if Xt =0, then Xt+k =0 for
k =1,2, . . .; if Xt =40, then Xt+k =40 for k =1,2, . . ..

If after t−1 bets, the gambler’s stake is Xt−1 =$5, then Xt =$4 or $6, with probabilities
20/38 and 18/38, regardless of the sequence of outcomes leading up to Xt−1. We might be
intrigued by the knowledge that she has lost 20 bets in a row, and watched her stake dwindle
from $25, or that she has narrowly avoided going broke and won four in a row, but the
additional information provides no insights into the probability she wins her next bet. Similarly,
if Xt−1 =0, then Xt =0, or if Xt−1 =40, then Xt =40; these are true regardless of the preceding

6. Let k = log(π) denote the upper endpoint of the range of t(x). We will use a U(0,k) density as the candidate distribution;
this density is c(x)≡1/k. The maximum value of sin(t(x)) is 1, hence the maximum value of t(x) is C. Thus, Mc(x)≥C
ensures that Mc(x)≥ t(x). Mc(x)≥C means M(1/k)≥C; we would like the smallest M possible (why?), so set M = kC. Then,
w(x)= t(x)/(Mc(x))=C sin(exp(x))/(kC(1/k))= sin(exp(x)). A quick simulation yielded 7.9 million accepted values out of 10
million; their 90th percentile was 0.888, and their mean was 0.489.
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history. Her stake at time t depends on (X1, X2, X3, . . . , Xt−1) only through Xt−1. The sequence
Xt is a first order Markov chain.

Some Markov chains have stationary distributions, probability distributions satisfying

π(A)=Pr(Xt ∈A),

for each subset A of the sample space. The important feature of this probability distribution is
that it is “stationary” with respect to time; the probability that Xt is in a particular state or set
of states does not depend on t.

Not all Markov chains have stationary distributions. Our gambler’s chain, for example,
does not. Consider Pr(Xt =19). At time t =2, the only possible states are X2 =X1 ±1=19 or
21, depending on whether she won her first gamble, thus Pr(X2 =19)=20/38. Eventually her
chain will either reach 0 or 40, and remain there, so that Pr(Xt =19) approaches zero as t gets
large. The existence of a stationary distribution would require that Pr(Xt =19) not change
through time.7

Stationary distributions of Markov chains are the basis of MCMC. Suppose that we would
like to sample distribution f , but that standard methods for producing independent samples,
such as cdf inversion (Section 4.2.1) or rejection sampling (Section 4.2.2), are not feasible. In
such situations, we might nonetheless be able to construct a Markov chain Xt, with stationary
distribution f . The sampled values will not be independent, but they will still be a sample of
the distribution we wish to investigate.

Users of MCMC should be aware of the ergodicity theorem, which says that a positive
recurrent and aperiodic Markov chain has a stationary distribution π(A) satisfying

π(A)= lim
n→∞Pr(Xn ∈A|X1),

for subsets A of the sample space. We define the terms positive recurrent and aperiodic sub-
sequently, noting first the implications of the theorem. It not only guarantees the existence of
a stationary distribution, but also states that the starting value X1 does not affect the asymp-
totic behavior of the chain. Regardless of the starting value of the chain, it eventually settles
into a pattern of visiting A with specified probability, π(A). This is a useful observation for
implementation of MCMC; in practice, we must specify starting values. The ergodicity theo-
rem ensures that these do not matter too much. In practice, we typically discard some of the
early observations from our chain, “burn-in values,” which might not be representative of the
stationary distribution.

We noted that our gambler’s chain does not have a stationary distribution. In the first place,
it is not aperiodic: it has a period of 2. The gambler can only return to a stake 0< i <40 in an
even number of gambles (why?). The period of a state is defined, somewhat obscurely, as the
greatest common divisor of the possible return times. If the period of a state is 1, the state is
said to be aperiodic. A Markov chain is aperiodic if all of its states are aperiodic.

Our gambler’s Markov chain is also not recurrent. Suppose that X1 = i, and let Ti =min{n>

1 : Xn = i}; Ti is the time of first return to state i. State i is said to be recurrent if Pr(Ti <∞)=1,

7. Despite the odds being close to even on each bet, the chance that the gambler will go broke before reaching $40 is 89.2%.
At the outset, her expected gain is thus 0.892×(−$20)+0.108×$20=−$15.68. If she had started with $50, the chance of going
broke before doubling her money would be 99.5%, and her expected gain −$49.49. If you’ve got to gamble, make sure you
own the casino.
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and positive recurrent if E(Ti)<∞. Thus, a state is recurrent if one can be certain that it will be
revisited, and positive recurrent if it will not take too long. These descriptions are applied to
the entire chain if applicable to every state. Loosely speaking, a positive recurrent chain moves
efficiently through the state space, visiting all states with reasonable frequency. The gambler’s
chain is not recurrent because of the existence of absorbing states 0 and 40. From any state
0< i <40, there is always a chance of reaching the absorbing state before returning to state i,
so Pr(Ti <∞)<1.

In applying MCMC, periodic behavior is rarely an issue but nonrecurrence can be. We turn
to some examples.

4.3.2 Example: Standard Normal Stationary Distribution

Here is a simple example of a Markov chain that can be used with a uniform random number
generator to produce samples of a standard normal distribution. The chain is defined with a
tuning parameter A: any value A>0 will work, but some will work better than others.

Algorithm 1

Let X0 =0. Then for t =1,2, . . ., generate Xt according to the following rules:
Step 1: Generate two independent U(0,1) random variables, say u1 and u2.
Step 2: Calculate a candidate value, Xcand =Xt−1 +2A(u1 −1/2).
Step 3: Calculate

r =
exp

(
− 1

2 X2
cand

)
exp

(
− 1

2 X2
t−1

)
Step 4: If u2 < r, set Xt =Xcand, otherwise set Xt =Xt−1.

At each time step, the chain either remains at its current value or moves incrementally to a
randomly generated candidate value. The increment in Step 2 has a U(−A,A) distribution, so
the candidate value is sampled uniformly over an interval centered at the current value, that
is, Xcand|Xt−1 ∼U(Xt−1 −A,Xt−1 +A). The values Xt are clearly a first-order Markov chain: the
distribution of Xt given all of the previous values Xt−1, Xt−2, . . . , X1 depends only on the the
most recent value Xt−1.

Note that Step 4 involves a Bernoulli trial, with success probability =min(r,1), where r is
the ratio of the (target) standard normal density evaluated at the candidate and current values
of the chain. This success parameter is referred to as the acceptance or movement probability.

Algorithm 1 is an instance of the Metropolis–Hastings method, about which we will have
more to say later. For now, we suggest it as a simple example to experiment with in order to
gain insights about operational considerations for MCMC.

Effect of Tuning Parameter and Starting Value

The history plot for Markov chain Xt is obtained by plotting Xt against t. Figure 4.6 gives
history plots for the first 1000 values of four Markov chains generated according toAlgorithm 1,
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FIGURE 4.6 Plots of Xt against t, for Markov chains with standard normal stationary distribution. Reading
clockwise from top left, these have tuning parameter A=0.5,1.0,3.7, and 15.

three of which start with X0 =0 and one starting with X0 =20. Clockwise from top left, the
chains have A=0.5,1.0,3.7, and 15, respectively.

All four chains have a standard normal stationary distribution, but their history plots reveal
obvious differences. The chains with A=0.5 and 1.0 move slowly over the range of the standard
normal distribution, taking many small steps. The chain with A=1.0 and starting value X0 =20
moves slowly but deliberately down into the range of typical values of a standard normal
random variable. Its first 100 values would typically be discarded as a “burn-in,” values not
representative of the stationary distribution. The chain with A=15 takes occasional large
steps but stalls frequently; for example, it stopped at a value of approximately 1 for t from
700 to 750.

These differences are reflected in the strength of association among values of Xt. For h=
1,2, . . ., the correlation ρ(Xt, Xt+h) between Xt and Xt+h is called the autocorrelation at lag h, and
R(h)=ρ(Xt,Xt+h) is called the autocorrelation function (ACF). Figure 4.7 gives the autocorrelation
functions for three of the chains.

With A=3.7, the autocorrelation drops off quickly, falling below 0.01 by lag 9; one could
treat every ninth observation as nearly independent. The same is true for A=15 at lag 35. The
chain with A=0.5 is highly autocorrelated, with the same value at lag 50 as the A=3.7 chain
at lag 3.

The consequence of high autocorrelation is diminished accuracy and precision in estimating
features of the target distribution. The ergodicity theorem guarantees that sample features of
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FIGURE 4.7 Autocorrelation functions for Markov chains with standard normal stationary distribution, and
tuning parameter A=0.5,3.7, and 15.

the three Markov chains will approximate corresponding features of the normal distribution
as chain length, n, gets larger. The sample mean will approach zero, the sample standard
deviation will approach 1, and the sample 95th percentile will approach 1.960. For finite n,
however, the sample features are only estimates of the features of the stationary distribution
and may be biased or imprecise. The bias and precision of the various chains depends on the
choice of A.

Not surprisingly (given Fig. 4.7), the chain with A=3.7 is much more efficient in producing
estimates of these quantities because its sampled values are less highly correlated than those
of the other two chains. Table 4.1 reports an evaluation of Algorithm 1 using chains of length
1000, with A=0.5,3.7, and 15. For comparison, we include similar evaluations of independent
samples of size 1000. So, for instance, the 97.5th percentile of the standard normal distribution
is 1.960. Chains of length 1000 with A=3.7 produced estimates that averaged 1.964, with a
standard deviation of 0.158.

Chains with greater autocorrelation (A=0.5 and 15) have substantially less precision in
their estimates. Furthermore, there is a “small-sample” bias associated with the estimates
of standard deviation and the 97.5th percentile: chain length of 1000 is insufficient to over-
come this bias when A=0.5 or 15. It is noteworthy that even with independent samples,
n=1000 is insufficient for high precision or accuracy. One would wish to use much larger
samples.8

One would also wish to use methods that produce chains with as little autocorrelation
as possible or to compensate for high autocorrelation by using longer chains. In Table 4.1,
the standard deviations of the estimated parameters stand in ratios of approximately 6:2:4:1
for A=0.5, 3.7, 15, and independent samples. Working on the principle that standard errors

8. We note a tendency in summaries of analyses using MCMC to report far more decimal places than justified. See Flegal et al.
(2008) for comments and recommendations.
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TABLE 4.1 Estimates of features of standard normal distri-
bution, based on Markov chains of length 1000 according
to algorithm 1 (for A =0.5,3.7, and 15) and on indepen-
dent samples of 1000 values. Values reported in the last two
columns are summaries over 100,000 replicates.

A Mean SD

Mean (=0) 0.5 0.000 0.234

3.7 0.000 0.060

15 0.000 0.118

Independent samples 0.000 0.032

SD (=1) 0.5 0.966 0.118

3.7 0.998 0.045

15 0.990 0.093

Independent samples 1.000 0.022

Median (=0) 0.5 0.000 0.239

3.7 0.000 0.080

15 0.000 0.170

Independent samples 0.000 0.039

97.5th (=1.960) 0.5 1.892 0.389

3.7 1.964 0.158

15 1.937 0.292

Independent samples 1.967 0.085

tend to be proportional to the square root of sample size, one might regard the chains with
A=0.5, 3.7, and 15 as producing chains worth 1/36, 1/4, and 1/16 the value of independent
samples.

We identified the value A=3.7 as reasonable by comparing its lag 1 autocorrelation with
those of chains with other values of A. Figure 4.8 plots lag 1 autocorrelations and movement
probabilities of chains produced with values of A ranging from 0 to 15. Small values of A
result in small increments for the candidate values and high acceptance probabilities because
nearby values have nearly identical probability; hence, r is close to 1. The chain moves slowly,
and there is high autocorrelation. Large values of A lead to larger increments for the can-
didate values and lower acceptance probabilities. The lag 1 autocorrelation drops off as A
increases, until a point where the acceptance rate is low enough that frequently Xt =Xt−1,
once again resulting in high autocorrelation. The autocorrelation of the chains is minimized
for A near 3.7, where the acceptance probability is approximately 0.42 and the lag 1 autocorre-
lation is about 0.56. Conventional wisdom is that acceptance rates in the range 30–50% are near
optimal.

In working through this example, we have had a bit of a look under the hood. We imagine
that many of our readers will just want to drive the car, and may find these details daunting.
We wish to allay fears: readers should be aware of the availability of high quality software like
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FIGURE 4.8 Lag 1 autocorrelation (dashed line) and movement probability (solid line) as function of tuning
parameter A.

program WinBUGS, which can be used to implement MCMC for many models.9 However,
even using such software, some skill is required; familiarity with the autocorrelation function
and other diagnostic tools (Section 4.3.5) is necessary for evaluating results.

We encourage readers to try writing their own MCMC code, beginning with simple models.
Writing one’s own code is a great way for developing intuition about MCMC performance
and is occasionally a necessity, for analysis of complex models.

The primary tool for conducting MCMC is the Metropolis–Hastings (MH) algorithm, which
we describe in Section 4.3.3. The MH algorithm is omnibus and easily implemented, but can
require substantial tuning (tweaking, similar to the selection of A in the foregoing discussion)
especially in application to multivariate distributions.

Gibbs sampling (Section 4.3.4) is a refinement of the MH algorithm for multivariate distri-
butions. It can be remarkably efficient.

4.3.3 Metropolis–Hastings Algorithm

Algorithm 1, used to draw samples of the standard normal distribution, is a specific instance
of the Metropolis–Hastings (MH) algorithm, which we now present.

Metropolis–Hastings Algorithm

Suppose that we wish to draw samples from target distribution f (x). Let j(x|y) be candidate
generating distributions, describing probabilities for candidate values x, given current value y.

9. We will use BUGS as a generic term for either WinBUGS or the open-source version OpenBUGS. These programs are avail-
able for free download from http://www.mrc-bsu.cam.ac.uk/bugs/ and http://mathstat.helsinki.fi/openbugs/, respec-
tively. The main practical difference between the two is that script files (for batch execution) are written differently. Almost
all of the BUGS code presented in this text will run under OpenBUGS 3.0.3 or WinBUGS 1.4; exceptions are noted in the text.
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Fix a value X0. Then for t =1,2, . . ., generate Xt according to the following rules:

Step 1: Generate a candidate value, Xcand by sampling from j(x|Xt−1).
Step 2: Calculate

r = f (Xcand)j(Xt−1|Xcand)

f (Xt−1)j(Xcand|Xt−1)
(4.7)

Step 3: Generate U ∼U(0,1)

Step 4: If U < r, set Xt =Xcand, otherwise set Xt =Xt−1.

The first thing to notice about the MH algorithm is that the target distribution is only
involved in calculating r, and that it occurs in both the numerator and denominator. Think
of what this means for Bayesians: if f is a posterior distribution (Eq. 4.1) that cursed [Y], the
normalizing constant that caused so many headaches for earlier generations of Bayesians,
cancels out!

Notice that the MH algorithm allows great latitude in selection of the candidate generating
distribution. Limitations on j(x|y) relate to the requirement that Markov chains be positive
recurrent in order to have stationary distributions: every state must be reachable from every
other state. Beyond this minimal requirement, there is the practical requirement that the chain
move freely enough to have reasonably low autocorrelation.

We draw attention to two features of Algorithm 1 considered in Section 4.3.2. First, the can-
didate generating distribution is symmetric in its arguments. A uniform distribution centered
at y and of length 2A has density function

j(x|y)= I(|x−y|<A)

2A
,

where I(·) is the indicator function. Clearly j(x|y)= j(y|x), so that r in Step 2 simplifies to

r = f (Xcand)

f (Xt−1)
.

The use of a symmetric candidate generator simplifies calculations and saves computation
time.

We also draw attention to the tuning parameter A inAlgorithm 1. Selection of an appropriate
value can be done on the fly as the chain is generated. Starting with A=1, we multiply A by
(say) 1.01 each time a candidate value is accepted, and divide by 1.01 each time a candidate
value is rejected. After (say) 5000 steps, we fix the value of A at the present value, discarding
the previously sampled values. This process aims at an acceptance rate of about 50%; a lower
acceptance rate is attained by multiplying by 1.01 following acceptance, and dividing by a
smaller value (say, 1.007) following rejection. Following this approach, we settle on A=3.48
and acceptance probability 0.44, close to the optimal value of 3.7.10

10. The value 1.007 was chosen with the goal of obtaining an acceptance rate near the optimal 42%, and is the solution of

p×c+(1−p)/d =1 ,

with p=0.42 and c =1.01. The tuning process could be further refined by using a sequence of values c which gradually
decrease to 1, and corresponding values d = (1−p)/(1−pc).
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4.3.4 Gibbs Sampling

Gibbs sampling is designed for multivariate posterior distributions. Let θ = (θ1,θ2, . . . ,θk)
′

represent unknown quantities, and X represent data. The goal is to draw a sample from [θ|X].
Let θ(−j) denote the vector of length k −1 made up of all the elements of θ, but omitting θj.

The full conditional distribution for θj is

[θj|θ(−j),X];
this is the distribution of the jth component of θ, having fixed the values of all the other
components, and having been informed by the data. Like the posterior distribution [θ|X], it is
proportional to [X|θ][θ], the difference being that the normalizing constant is [θ(−j), X] rather
than [X].

It turns out that full conditionals [θj|θ(−j),X] are often easily identified by inspection of
[X|θ][θ], when marginal posterior distributions [θj|X] or joint posterior distributions [θ|X] are
not. This convenience, and the ability to sample one component of the parameter vector at a
time, make Gibbs sampling attractive.

Gibbs Sampling Algorithm

Suppose that we wish to draw samples from a joint posterior distribution [θ|X].
Fix a value θ(0) =

(
θ
(0)
1 ,θ(0)

2 , . . . ,θ(0)

k

)′
. Then for t =1,2, . . ., generate θ(t) according to the fol-

lowing rules:

Step 1: Sample θ
(t)
1 from the full conditional

[
θ1
∣∣θ(t−1)

(−1)
,X

]
.

Step 2: Sample θ
(t)
2 from the full conditional

[
θ2
∣∣θ(t−1)

(−2)
,X

]
.

· · ·
Step k: Sample θ

(t)
k from the full conditional

[
θk
∣∣θ(t−1)

(−k)
,X

]
.

Step k +1: Set θ(t) =
(
θ
(t)
1 ,θ(t)

2 , . . . ,θ(t)
k

)′
.

Note: It is also acceptable to sequentially update θ(t) after each step in the preceding algorithm,
and to use the partially updated θ(t) in sampling subsequent full conditionals. For instance,
θ
(t)
3 could be sampled from the full conditional distribution[

θ3|θ(t)
1 ,θ(t)

2 ,θ(t−1)
4 , . . . ,θ(t−1)

k , X
]

,

rather than [
θ3|θ(t−1)

1 ,θ(t−1)
2 ,θ(t−1)

4 , . . . ,θ(t−1)

k , X
]

.

Example

Suppose that we observe a sample Y = (6,7,9,9,12,13,14,15,17,18)′ of n=10 binomial ran-
dom variables with index N =25 and success rates sampled from a logit-normal distribution
with mean μ and precision τ. We write φi = logit(pi); inference will be based on a posterior
distribution [θ|Y], where θ = (μ,τ,φ1,φ2, . . . ,φ10)

′.
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To complete the model specification, we require a prior on the hyperparameters μ and τ. For
reasons that will become apparent subsequently, we choose the normal-gamma prior discussed
in Section 4.1.3: that is, we specify priors [μ|τ]=N(η0,1/(κ0τ)) and [τ]=Ga(α0,β0).

The posterior distribution [θ|Y]∝ [Y |θ][θ] is

∝
n∏

i=1

{
expit(φi)

Yi
[
1−expit(φi)

]25−Yi × τ1/2 exp
[−τ

2
(φi −μ)2

]}
× τ1/2 exp

[−κ0τ

2
(μ−η0)

2
]
×τα0−1 exp(−β0τ); (4.8)

here “expit” is the inverse of the logit transformation, so expit(φi)=pi.
Calculation of this joint posterior distribution or of any of the marginal posterior distribu-

tions is out of the question; [θ|Y] is a mess. Gibbs sampling, however, is fairly straightforward.
We need to identify full conditional distributional distributions for μ, τ, and the φi’s. All of
these are proportional to Eq. (4.8).

For example, the full conditional for τ will be proportional to all of the terms in Eq. (4.8)
involving τ’s. Using a handy notation for full conditionals, we have

[τ| · ]∝ τn/2+1/2+α0−1 exp

{[
−1

2

n∑
i=1

(φi −μ)2 − κ0

2
(μ−η0)

2 −β0

]
τ

}
;

that is, the full conditional distribution [τ| · ]=Ga(α1,β1), with α1 = (n+1)/2+α0, and

β1 =β0 + 1
2

n∑
i=1

(φi −μ)2 + κ0

2
(μ−η0)

2.

Similarly, the full conditional for μ will be proportional to all of the terms in Eq. (4.8)
involving μ. We have

[μ| · ]∝exp

{
−τ

2

[ n∑
i=1

(μ−φi)
2 +κ0(μ−η0)

2

]}
,

which can be wrestled into the form

[μ| · ]∝exp
{
−κ1τ

2
(μ−η1)

2
}

,

with κ1 =κ0 +n and

η1 = n
n+κ0

φ̄+ κ0

n+κ0
η0.

Thus, the full conditional for μ is N(η1,1/(κ1τ)).
Note that the prior and full conditional distributions for the pair (μ,τ)′ are both of the

normal-gamma form, [μ|τ]=N(η,1/(κτ)), [τ]=Ga(α,β). The normal-gamma distribution is not
conjugate: conjugacy requires the prior and posterior distributions to be of the same family.
However, our knowledge of conjugate forms has led to a choice of prior for which the full con-
ditional distributions are easily identified. As a general rule, Gibbs sampling can be expedited
through the use of conjugate families.
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All that remains is to identify full conditional distributions [φi| · ]. Once again, we harvest
the relevant terms from Eq. (4.8), obtaining

[φi| · ]∝expit(φi)
Yi [1−expit(φi)]25−Yi exp

[−τ

2
(φi −μ)2

]
. (4.9)

We ignore all of the other bits of Eq. (4.8), which do not involve φi; regarding Eq. (4.8) as a
function of φi, they are merely constants, absorbed in the normalizing constant. Unfortunately,
what’s left as Eq. (4.9) does not correspond to any easily sampled, well-known distribution.
The full conditionals for μ and τ are identified, and easily sampled, but [φi| · ] is not.

But we can still implement Gibbs sampling. We just need to figure out some way of sampling
from the distribution shown in Eq. (4.9). One possibility is to use rejection sampling. Using the
change of variables theorem (Section 2.2.4) we note that if p∼Be(Y,25−Y), then φ= logit(p)

has density

j(φ)∝expit(φ)Y(1−expit(φ))25−Y . (4.10)

The only difference between Eqs. (4.10) and (4.9) is the term exp[−τ
2 (φi −μ)2], which is bounded

above by 1. Hence, we can implement rejection sampling by drawing candidate values p∼
Be(Yi,25−Yi), calculating φ= logit(p), and accepting with probability r =exp[−τ

2 (φ−μ)2].
The rejection sampling scheme for sampling [φi| · ] has one failing, illustrated in our analysis

of the sample of size 10: occasionally, the values of μ and τ are such that the acceptance
probability is very low. 34% of the time a single candidate was enough; 49% of the time the
first or second candidate was accepted, but in about 1 in 300 cases over 1000 candidates were
required. The result was a mean of 25.6 candidates, and long computation time.

A useful alternative is to use the M-H algorithm to sample [φi| · ], within the context of Gibbs
sampling. Generating candidate values φcand using Eq. (4.10) and setting Eq. (4.9) as the target
distribution, the MH acceptance probability (Eq. 4.7) is simply

r =exp
[−τ

2

[
(φcand −μ)2 −(φcurr −μ)2

]]
.

One might anticipate that this Metropolis within Gibbs algorithm generates chains that are
inferior to those based on rejection sampling within Gibbs sampling, just as MH samples
are inferior to independent samples. This is confirmed in Fig. 4.9, where autocorrelations
function for σ =1/

√
τ are displayed for the sample data. The ACF using Metropolis within

Gibbs (dashed line, top) tails off much more slowly than the ACF using rejection within Gibbs
(solid line, middle). However, the computation time for rejection within Gibbs was about 16
times greater. Thus, a more relevant comparison is to produce a chain 16 times longer using
Metropolis within Gibbs, and to “thin” the chain by a factor of 16, discarding all but every
16th observation. The autocorrelation for the thinned chain is substantially less than for the
chain produced using rejection within Gibbs.11

11. There is a common misconception that MCMC output should be routinely thinned. Why would one throw out data, even
if simulated? We recommend the practice only when it is necessitated by memory or storage limitations, or for comparison
of methods, as in this section. One might also consider thinning chains to the point where values can be treated as nearly
independent in order to obtain a rough and conservative estimate of the precision with which features of the target distribution
are estimated.
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FIGURE 4.9 Autocorrelation functions for parameter σ =1/
√

τ based on rejection sampling within Gibbs (solid
line), Metropolis within Gibbs (dashed line), and Metropolis within Gibbs thinned by factor of 16 (dots and dashes).

PANEL 4.2 BUGS code for the logit normal model.

model{
# Likelihood

for (i in 1:10){
x[i] ˜ dbin(p[i],25)
logit(p[i]) <- logitp[i]
logitp[i] ˜ dnorm(mu,tau)

}
# Priors

mu ˜ dnorm(0,tau.mu)
tau.mu <- 0.001*tau
tau ˜ dgamma(0.001,0.001)
sd <- 1/sqrt(tau)

}

Having worked through the details of this section, we anticipate that many a reader will be
pleased to note the simplicity of BUGS code required for analysis of the sample data (Panel
4.2). Compared with what is required to write one’s own MCMC code, it seems almost pre-
sumptions to refer to this as “code”; all of the heavy lifting is done automatically. BUGS “code”
is more like a whiteboard on which we sketch out notes describing a model, with no thoughts
to specific MCMC methods.

4.3.5 MCMC Diagnostics

All numerical methods are subject to failure. Consider the Newton–Raphson algorithm
for numerical maximization, which is often used for finding maximum likelihood estimators
(MLE’s). To maximize a function f of one variable, we start with a value x1, then for n=1,2, . . . ,
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calculate

xn+1 =xn − f ′(xn)

f ′′(xn)
;

here f ′ and f ′′ are the first and second derivatives of f . If all is well, the sequence {xn} con-
verges to the maximizer of f . For instance, applying the method to the density function of
X ∼N(μ,σ2), {xn} should converge to the mode μ. And so it does, provided that we are fortu-
nate enough to have chosen a starting value x1 that is within (

√
2/2)σ of μ. If x1 =μ+(

√
2/2)σ,

the sequence bounces back and forth between μ±(
√

2/2)σ forever; if x1 >μ+(
√

2/2)σ, the
sequence wanders off to ±∞.

Fortunately, such failings of the Newton–Raphson technique are usually obvious.12 MCMC
can fail too, and the dangerous part is that one might not notice it.

At the very least, one should have a look at history plots for the chains. If they look “grassy”
like the first panel of Fig. 4.10, they are probably, but not certainly, working well. If they look
like the second panel of Fig. 4.10, something is wrong. Generally, the first thing to check is
whether the model has been correctly specified, looking to see whether there are redundant
parameters. It may be that you have not properly tuned your Markov chain generator, or if
you are using canned software, that the problem you are attempting is beyond its capability.
It may be that you have chosen bad starting values for the chains; this is especially likely
when using canned software that generates initial values automatically, and if you are using
diffuse priors. Sometimes it pays to do a preliminary run using fairly informative priors, and
to use a sampled value from the resultant chain as a reasonable starting value in the desired
noninformative analysis.

Even grassy histories like the left-hand panel of Fig. 4.10 are not a guarantee that all is
well. The authors once wrote a long and complicated piece of code that took hours to run and
produced lovely grassy history plots. The only problem was that when we re-ran the code,
the results were slightly different; the discrepancies were not huge, but were too large to be
swept under the carpet. After several frustrating days of poring over our code, we found the
problem: it turned out that a stray keystroke in our code had commented out the updating
of a nuisance parameter, one for which we had assigned a random starting value. Thus, the
nuisance parameter was fixed at a different value in each run; it being one of many nuisance
parameters, we had not bothered to look at the samples from its posterior distribution.

We had, however, accidentally carried out good MCMC practice. It is a good idea to run
multiple chains with distinct and diffuse starting values, and to compare the results. The
Brooks–Gelman–Rubin diagnostic (Brooks and Gelman, 1998) implemented in BUGS provides
one such comparison. Central 100(1−α)% credible intervals are computed using data from
individual chains and compared to intervals created using data pooled from multiple chains.
The degree of agreement between the results is taken as a measure of convergence of the
chains to their stationary distribution; sequential evaluation provides guidelines for choosing
an adequate burn-in period.

It is always a good idea to produce long Markov chains, the longer the better. This is
because features of the chains more closely approximate features of the posterior distribution

12. But not always: Newton–Raphson can get stuck at local maxima, when we’re looking for global maxima. It is also perfectly
satisfied to wind up at minima if such exist.
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FIGURE 4.10 History plots, Xt against t, for two Markov chains.

as chain length increases.13 While there are no simple rules for evaluating the precision of the
approximations, a couple of simple options may provide insights. First, if the ACF tails off
quickly enough that observations at lag k are essentially independent, a chain {Xi} of length
N can be thinned to a chain of length N/k for which the variance of the sample mean is
approximated by σ2/(N/k)= kσ2/N, where σ2 =Var(Xi), providing a conservative measure of
precision for the mean of the entire chain.

13. While it is technically correct to describe MCMC as “estimating” features of posterior distributions, we prefer to use the
term “approximating,” because estimation implies finite resources, such as a given data set or sample size. Approximation,
however, is only limited by our time and patience.
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Another approach is to approximate the ACF by a geometric curve. If the autocorrelation
at lag t is ρt, then the variance of the sample mean approximates(

1+ρ

1−ρ

)
σ2

N
, (4.11)

with σ2 consistently estimated by the sample variance of the chain.
Yet another approach to estimating the precision with which a Markov chain’s mean has

been approximated is through the use of “batch means” (Roberts, 1996), implemented in
BUGS). Suppose that {Xi} is such that the average of n consecutive values has mean μ and
variance v/n; suppose further that our chain of length N can be broken into K batches of length
n, with nearly independent batch means μ̂k . Then the sample standard deviation among the
K values μ̂k is a consistent estimator of v/n as K →∞. Thus, we may estimate v by

v̂ = n
k −1

K∑
k=1

(μ̂k − μ̄)2,

where μ̄ is the sample mean for the entire chain. We may then estimate Var(μ̄) by V̂/N. The
square root of this quantity is reported as “MC Error” in BUGS.14

Illustration

Haramis et al. (2007), in a study of the dietary importance of horseshoe crab Limulus polyphe-
mus eggs for migrating shorebirds, fit a nonlinear model relating stable isotope (SI) ratios
y = δ15N to body mass (x) of captured birds. Measured values were assumed to follow the
relation

yi =A
[
1−b exp(−c xi)

]+εi,

where εi are independent mean zero normal random variables with variance σ2
i =αexp(−βxi).

Assuming A,b,c and β>0, the model posits SI ratios which increase toward an asymptote A as
body mass increases, and that the variability among individuals decreases as the asymptote
is reached.

We generated a Markov chain of length 1.025 million to sample the posterior distribution of
the asymptote A, discarding the first 25,000 values as a burn-in; the process took slightly less
than half an hour running BUGS on a 2.4 GHz processor. Owing to the complexity of the model,
it is not surprising that the chain is highly autocorrelated. Its autocorrelation function to lag 250
is displayed in Fig. 4.11 (solid curve) along with an approximating geometric curve f (t)=ρt,
with ρ=0.9856, obtained by regressing the log of the ACF on the lag. Using Eq. (4.11), we have
Var(μ̄)≈137.6σ2/N; substituting the sample variance 0.0431 of the one million values, we
obtain Var(μ̄)≈0.00242, and conclude that our estimate μ̄=14.3495 is accurate to two decimal
places. We report the posterior mean of A to be 14.35.

We note that BUGS reports “MC error” = 0.0029. The value based on batch means appears to
be sensitive to the size of the batches. Using batches of size 100, 1000, and 5000, we obtain values

14. Note that we have used v rather than σ2 in describing the batch means technique. We use σ2 for the variance of individual
Xi’s in the chain; σ2 is consistently estimated by the sample variance of the Xi’s, regardless of the autocorrelation. The quantity
v is different: in Eq. (4.11), v = (1+ρ)/(1−ρ)σ2.
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FIGURE 4.11 ACF (solid line) and approximating geometric curve (dashed).

0.0016, 0.0029, and 0.0034, respectively. It is important to recognize that these values are really
only indices to precision. All indicate considerably less precision than we would incorrectly
conclude by treating the sampled values as independent, and calculating s/

√
N =0.0002. The

value (1+ρ)/(1−ρ)≈137.6 allows a somewhat more honest appraisal of the value of our
original chain of length one million: it allows comparable precision to an independent sample
of size 1e6/137.6 ≈ 7300. Looked at this way, the chain length of 1e6 seems considerably less
extravagant.
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78 5. BAYESIAN PREDICTION

5.1 THE BAYESIAN MĀRAMATANGA

Our approach in writing this book is to stress the usefulness of the Bayesian way of looking
at things, but we cannot help but mention its beauty, as well.

“Way of looking at things” seems a fairly lame way of saying what we want to say. But
our teeth are set on edge and our stomach churns when we hear the word “paradigm”; we
have been negatively conditioned by the faddish and vacuous overuse of a perfectly service-
able word, meaning “a conceptual model underlying the theories and practice of a scientific
subject” (OED).

We need a new word, and suggest the term “māramatanga,” which is about as close as
we could come in Maori, and sounds great. The Bayesian māramatanga is not only use-
ful, but simple, exact, and coherent, as described in Chapter 1, and hence beautiful. In
this chapter, we focus on one aspect of its simplicity, namely that there are only two types
of quantities in Bayesian inference, the observed and the unobserved. Observed quantities are
data; these are the same whether one is frequentist or Bayesian. The difference comes when
we turn our attention to unobserved quantities: these include parameters, missing data,
future observations, even hypothetical outcomes which may have occurred in the past, or
may yet occur in the future; all are treated equivalently, no distinction is made. Thus in
the Bayesian setting there is no difference between estimating a parameter, and predicting
a future observation. We do not need a whole raft of different techniques for predicting
future observations, for dealing with missing data, for estimation; all are done in essen-
tially the same way. The word prediction is used to describe all inference about unobserved
quantities.

The examples presented in this chapter have to do with two types of unobserved quantities:
functions of parameters (derived parameters) and hypothetical replicates.

5.1.1 Derived Parameters

As practicing statisticians consulting with quantitative biologists, we are frequently asked
questions like the following: “How do I compute the variance of − log(θ̂)?” The better
informed will sometimes indicate knowledge of a commonly used technique, and phrase
the question as “What’s the δ-method approximation to the variance of − log(θ̂)?”

The quick answer is that, under certain conditions, if θ̂ is unbiased for θ and has variance V,
and if ψ =g(θ), then the variance of ψ̂ =g(θ̂) is approximately V ×[g′(θ)]2. This is the answer
we give if we are in a hurry, or if we do not like the client.

A better response is to ask why the variance of g(θ̂) is desired, and perhaps to steer the client
in another direction. Typically, the reason is that a confidence interval of the form

ψ̂ ± z

√
V(ψ̂)

n
(5.1)

is to be calculated, using a standard normal multiplier z. In this case, it seems only fair to
point out that the client is going to estimate an approximate variance, and use it in approximate
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interval estimate . . . and to point out, by the way, that the δ-method might not work all
that well.1

Biologists routinely need to estimate functions of parameters. To take a simple example,
suppose that monthly survival is p, and can be modeled as independent of age and other
effects. We may then estimate residual lifetime as a geometric random variable with param-
eter p, so that Pr(X =x|p)= (1−p)px, for x =0,1,2, . . .. Then the expected residual lifetime is
p/(1−p); an estimator of p may need to be converted to an estimate of mean lifetime via
this transformation. We work through this specific example in Section 5.2.

Parameters calculated as functions of other parameters are often referred to as derived param-
eters. Frequentist attempts at assessing the uncertainty associated with derived parameters are
often ad hoc and approximate. The delta method can be especially problematic; generally,
if [θ̂L, θ̂U] is an interval estimate for θ, and ψ =g(θ) is a strictly increasing function of θ, the
interval estimate [

g
(
θ̂L

)
, g

(
θ̂U

)]
(5.2)

is more reliable than applying δ-method approximations to (5.1).2 But an altogether better
approach, to our mind, is to adopt the Bayesian māramatanga.

Bayesian inference is ideally suited to dealing with derived parameters. Given the pos-
terior distribution for θ, the posterior distribution for g(θ) is completely specified. If we
are using a sampling-based assessment of the posterior distribution, such as MCMC, mat-
ters are made quite simple. Given a sample θ1,θ2,θ3, . . . ,θM from the posterior distribution
[θ|X], and supposing that ψ =g(θ), we need only calculate ψ1 =g(θ1),ψ2 =g(θ2),ψ3 =
g(θ3), . . . ,ψM =g(θM) to obtain a sample from the posterior distribution [ψ|X]. There is no
approximation involved, except such as results from the sampling-based assessment, and this
sample size is not limited by the available data.

We illustrate the ease with which analysis of derived parameters can be conducted by means
of examples in Sections 5.2–5.5. First, however, we complete our introduction to Bayesian
prediction by describing the posterior predictive distribution, which is used for describing
unobserved replicate data.

5.1.2 The Posterior Predictive Distribution

It is often useful to think about what new data would look like, if generated according
to the same model as we are using to describe existing data. If we have a lot of faith in the
model, the new data could be used to describe missing values in the historical record, or to
anticipate future values. If we have doubts about the validity of the model, we could compare
existing data with the new data to see whether there are inconsistencies between the model
and existing data.

1. Suppose that X ∼U(0,θ). Then a natural estimator of θ is θ̂ =2X; the corresponding estimator of − log(θ) is − log(2X). By
direct calculation, it can be shown that the variance of − log(2X) is identically 1, independent of θ. As it turns out, the δ-method
approximation is also independent of θ, but equals 1/3.
2. If g(θ) is strictly decreasing, the transformed interval estimate is

[
g
(
θ̂U

)
, g

(
θ̂L

)]
.
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All Bayesian inference is based on posterior distributions, including predictions of hypo-
thetical data. It is useful to take a moment to consider how one would predict a new observation
based on a model, and existing data.

Suppose that existing data X are modeled as having been sampled from a distribution [X|θ],
governed by parameter θ, itself sampled from prior distribution [θ]. To make predictions about
a new observation Xnew, we assume that it is a replicate of X, having the same distribution,
and the same parameter θ. It will usually be appropriate to suppose that, except for having
shared parameter θ, the new observation is independent of X.

We proceed as usual, using the posterior distribution of all unobserved quantities as the
basis of inference. Bayes’ theorem yields[

Unobserved quantities|Observed quantities
] ∝[

Observed quantities|Unobserved quantities
][

Unobserved quantities
]

,

i.e., [
θ,Xnew∣∣X]∝ [

X
∣∣θ,Xnew]×[

θ,Xnew] . (5.3)

Note that the first term on the right-hand side of (5.3) can be simplified, because X and Xnew

are conditionally independent, and that the second term can be factored, yielding[
θ,Xnew∣∣X]∝ [

X
∣∣θ]×[

Xnew∣∣θ]× [θ] . (5.4)

Now the first and last terms on the right-hand side of (5.4), taken together, are proportional to
the posterior distribution [θ|X]. Hence, we may express (5.4) as[

θ,Xnew∣∣X]∝ [
Xnew∣∣θ]×[

θ
∣∣X]

;

this is the joint posterior distribution of θ and Xnew. If we are only interested in inference about
Xnew, we may find its marginal posterior distribution by integrating out θ, obtaining[

Xnew∣∣X]=∫ [
Xnew∣∣θ]×[

θ
∣∣X]

dθ. (5.5)

Equation (5.5) defines the posterior predictive distribution. There is really nothing out of the
ordinary about the distribution defined by Eq. (5.5). It is the posterior distribution of a particular
type of unobserved quantity, viz., a hypothetical replicate Xnew generated under the same
conditions as produced X. But the distinctive nature and usefulness of this particular posterior
distribution are such as to justify its being distinguished with a special name, the posterior
predictive distribution.

Examining Eq. (5.5), one notes that the posterior predictive distribution is obtained by
integrating the data distribution for a new observation against the posterior distribution of
the unknown parameter. In other words, the posterior predictive is the average value of the
data distribution, averaged against draws θ sampled from the posterior distribution. If we
are using a sampling-based assessment of the posterior distribution, such as MCMC, this
means that we need merely to calculate the data distribution of Xnew over values θ from the
posterior distribution and to average these distributions. The approach is very similar to what
is attempted using the parametric bootstrap in frequentist analysis, but without reliance on
asymptotic approximations.
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The posterior predictive distribution is a very handy tool, a further instance of the appeal of
the Bayesian māramatanga. Draws from it represent our best attempt to generate data accord-
ing to the model for X, properly accounting for the uncertainty due to imperfect knowledge
of the parameter θ. We illustrate its use for “out of sample” inference in Section 5.4 and for
model checking in Section 5.6.

5.2 ESTIMATING MEAN RESIDUAL LIFETIME

We begin with a very simple example of a derived parameter, the mean residual lifetime
for a population with homogeneous survival rates. Suppose that we observe 20 individuals
over a 12-month period, that 17 of the individuals are alive at the end of the study, and that
the other 3 individuals survive for 7, 11, and 11 months, respectively.

A simple model is that monthly survival is p, varying neither among individuals nor
with age. The data can then be summarized as 236 Bernoulli trials, with 17×12+11+
11+7 =233 successes (monthly survivals) and three failures, so that the likelihood func-
tion is L(p)∝p233(1−p)3. The MLE of p is p̂=233/236=0.9873, with approximate standard
error

√
p̂(1− p̂)/236=0.0073. The usual approximate 95% confidence interval is 0.9873±

1.96(0.0073)= (0.9730,1.0016).
We think of individual lifetimes X as geometric random variables with parameter p, so

that Pr(X =x|p)= (1−p)px, for x =0,1,2, . . .. Then the mean residual lifetime is E(X − t|X ≥ t)=
p/(1−p), independent of t. The geometric distribution is the discrete data analog of the
exponential distribution, with its “lack of aging” condition; no matter how old you are, you
still have the same expectation of future survival. This expectation is a function of the model
parameter, a simple case of a derived parameter. We represent the mean residual lifetime by
ψ =g(p), where g(p)=p/(1−p).

5.2.1 Frequentist Analysis of Derived Parameter ψ

The MLE of ψ is ψ̂ =g(p̂)=77.7. The δ-method estimate of the standard error is f ′(p̂)×
0.0073=45.1, leading to a confidence interval using (5.1) of 77.7±1.96×45.1= (−10.8,166.1).
This interval does not inspire confidence.

For one thing, we know on a priori grounds that the mean lifetime is going to be larger
than zero; indeed, the mean residual lifetime for the 20 individuals in the data set is at least
233/20=11.7. For another thing, it seems clear that values of p quite close to 1 cannot be ruled
out, and these suggest a very long mean residual lifetime, possibly much greater than 166. It
is as though the δ-method confidence interval has got its mass in all the wrong places.

If one could trust the original interval estimate for p, truncated to (0.9730, 1.0), one could
trust an interval obtained by applying g(p) to its endpoints, using Eq. (5.2). This results in an
interval estimate for the mean residual lifetime of (36.0, ∞). This is intuitively more satisfying
than the δ-method interval, but our confidence in it rests upon our confidence in the original
interval estimate; the observations in Chapter 3 suggest that this interval is not terribly reliable,
and probably does not attain nominal coverage rates.

The exact 95% confidence interval for p (described in Section 3.2.2) is (0.9633, 0.9974). This
interval is conservative: it uses a technique that is guaranteed, regardless of the value of p, to
have at least 95% probability of successfully including p; for many values of p, the interval is
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longer than necessary. Applying g(p) to its endpoints, once again using Eq. (5.2), one obtains
an interval estimate of (26.2, 383.6). This interval is a legitimate frequentist 95% confidence
interval.

The approach used to create this interval has several drawbacks. First, it does not easily
generalize: defining exact confidence regions is a challenging problem, with solutions having
to be derived on a case by case basis. Second the computations involved in obtaining the exact
confidence interval are not easily performed, even for the simple problem of a single binomial
success parameter. Third, there is the matter of its interpretation, as with confidence intervals
generally, as discussed in Chapter 3.

5.2.2 Posterior for ψ via Change of Variables Theorem

If we specify a Be(1,1) (uniform) prior for p, then by conjugacy, the posterior distribution
of p is [p|Data]=Be(1+233,1+3). Because ψ =g(p), the posterior distribution of p determines
the posterior distribution of ψ. The only challenge to be faced is how to evaluate this posterior
distribution, and for this there are several options.

First, we can directly calculate the posterior distribution of ψ by analytical means. The
change of variables theorem (Section 2.2.4) says that if random variable ψ is defined as a
function of random variable p by ψ =g(p), then the distribution of ψ is

fψ(ψ)= fp
(

g−1(ψ)
)∣∣∣Jg−1(ψ)

∣∣∣ (5.6)

Here, g−1 is the inverse of the transformation g and J denotes the Jacobian determinant of the
transformation (the derivative, in the univariate case). For the problem at hand, fp(p) denotes
the Be(234,4) density. Solving ψ =g(p) for p, we have p=g−1(ψ)=ψ/(1+ψ). Consequently,
the Jacobian of g−1 is 1/(1+ψ)2. Thus using (5.6) we find that the posterior distribution of ψ is

fψ(ψ)= �(238)

�(234)�(4)

{
ψ

1+ψ

}234−1{ 1
1+ψ

}4−1{ 1
1+ψ

}2

=512616780
ψ233

(1+ψ)238 , 0≤ψ<∞. (5.7)

This density function is displayed in Fig. 5.1; all inference about ψ is based on this density.
The implications of model, prior knowledge and data about ψ can all be examined by math-
ematical analysis of Eq. (5.7). For example, if we wished to summarize this distribution by
a single point, we might choose the posterior mode. Setting the first derivative of log

(
f (ψ)

)
equal to zero and solving for ψ, the mode is found to be at ψ̂ =233/(238−233)=46.6.3

5.2.3 Posterior Features for ψ based on Posterior of p

The calculations involved in computing the posterior distributions of derived parameters
and in evaluating these posterior distributions can be quite difficult. But knowledge of the
posterior distributions of the original parameters suffices; we need not actually compute
[ψ|Data] if we know [p|Data].

3. The posterior mode for ψ is not the same as the MLE, because in assigning a uniform prior on p, a nonuniform prior is
implicitly chosen for ψ. We return to this point in Section 5.2.5.
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FIGURE 5.1 Posterior distribution of mean residual lifetime.

For example, the 95% highest posterior density interval (HPDI, i.e., shortest interval con-
taining 95% mass) for p based on the Be(234,4) distribution is (0.9668, 0.9969). This means
that

Pr(0.9668≤p≤0.9969 |Data)=0.95,

and because ψ =g(p) is a monotone increasing function of p, that

Pr(g(0.9668)≤g(p)≤g(0.9969) |Data)=0.95.

Thus,
(
g(0.9668),g(0.9969)

)= (29.1,326.3) is a 95% credible interval for the mean residual
lifetime, very much like the exact frequentist interval, though somewhat shorter.

Many analysts would not bother with exact calculations using the beta distributions, but
instead use software like BUGS to produce a sample from the posterior for p, using the 2.5th to
97.5th percentiles as a 95% credible interval. The sample values would approximate the true
2.5th and 97.5th percentiles, yielding the interval (0.9635, 0.9954) for p, which on transformation
as before yields a 95% credible interval of (26.4, 216.4) for ψ.

This latter interval is in fact shorter than the interval obtained by transforming the endpoints
of the HPDI. Both are legitimate 95% credible intervals. Neither is the “right” answer, and
neither the “wrong” answer; the posterior probability that ψ is in either interval is 95%. The
second interval might be more appealing, however, because it is shorter. It is natural to ask
whether it is possible to make an even shorter 95% credible interval.

Suppose that using BUGS or some other software we have a sample of a million values
pi from the Be(234,4) distribution. Then ψi =g(pi), i=1,2, . . . ,1,000,000 is a sample from the
posterior distribution of the mean residual lifetime. If we sort the million ψi, the interval
from the ith to the (950,000+ i)th approximates a 95% credible interval. There are 50,000
such intervals, the shortest of which approximates the actual HPDI for ψ, namely (18.4,
173.8). This approach for finding the HPDI works provided that the posterior distribution is
unimodal.
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TABLE 5.1 Interval estimates of mean residual lifetime.

Interval

Frequentist δ-method (−10.8,166.1)

transformed endpoints of approx CI for p (36.0, ∞)

transformed endpoints of exact CI for p (26.2, 383.6)

Bayesian transformed endpoints of HPDI for p (29.1, 326.3)

[p]=U(0,1) (2.5th,97.5th) percentiles of ψ (26.4, 216.4)

HPDI for ψ (18.4, 173.8)

5.2.4 Comparison of Methods

We have summarized the various interval estimates discussed in Table 5.1. The first two
frequentist intervals are approximate, and self-evidently unsatisfactory. The third, based on the
rarely used “exact” confidence procedure is conservative, and longer than the first of the three
Bayesian credible intervals. All three of the Bayesian credible intervals have 95% posterior
probability associated with them. The first was chosen for comparison to the exact frequentist
interval, the second because it is the easiest to compute from simulation output, and the third
because it is the shortest possible.

Of course, the best Bayesian summary of the information available about mean residual
lifetime is the entire posterior distribution (Fig. 5.1), rather than one point estimate, or an
individual interval estimate. Interval and point estimates are summaries of the density func-
tion (5.7), hence represent some loss of information.

The procedure for inference about a transformed parameter ψ =g(p) is straightforward:
knowledge about the posterior distribution of p translates directly into knowledge of the
posterior distribution of ψ. This can be done directly, using the change of variables theorem
(Section 2.2.4), or indirectly, by transforming sampled values of p, one by one, into sampled
values of ψ. The latter approach is simple . . . what’s not to like?

5.2.5 Prior Sensitivity

What’s not to like? Well . . . there is always the matter of choosing priors. A uniform U(0,1)

prior might seem reasonable enough for studying parameter p, but consider the implications
for studying parameter ψ. If p has a U(0,1) distribution, then for 0≤ t ≤1, Pr(p≤ t)= t, hence

Pr(ψ ≤x)=Pr
(

p
1−p

≤x
)

=Pr
(

p≤ x
1+x

)
= x

1+x
.

Taking the derivative with respect to x yields the prior density for ψ, namely 1/(1+x)2 for
x >0. This distribution has infinite expectation, but still would seem to favor smaller values of
ψ: its mode is at zero, and x =24,49,99, and 999 are its 96th, 98th, 99th, and 99.9th percentiles.
This choice of prior for ψ might seem unappealing.
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Then, try another prior! Suppose that we wish to have a uniform prior on ψ, say [ψ]=
U(0,M) for a large value M. It can be shown that this uniform prior results from having a prior
[p]∝1/(1−p)2 on (0,M/(M+1)). We have two options for analysis.

First, we could use the likelihood L(p)∝p233(1−p)3 in combination with the prior [p]∝
1/(1−p)2 on (0,M/(M+1)). At first glance, this prior might appear difficult to sample; it is
not one that will appear in a listing of commonly used priors in software such as BUGS. The
solution is to specify ψ as having the U(0,M) distribution and then convert ψ’s to p’s by
p=ψ/(1+ψ). The resulting p have the desired prior distribution.

Alternatively, we may reparameterize the likelihood in terms of ψ, as

L(ψ)∝
(

ψ

1+ψ

)233 (
1

1+ψ

)3

,

again specifying ψ as having the U(0,M) distribution. Done this way, we treat p as the derived
parameter. It is not difficult to see that the two options are identical.

For M =10,000, the resulting HPDI for ψ is (22.1, 667.1). The HPDI is not changed by setting
M =1,000,000. This interval is similar to those previously obtained (Table 5.1), but the upper
bound is higher; this observation is completely consistent with the foregoing comments on
the prior for ψ induced by a uniform prior on p.

So then, which prior ought we to use? Should we place a uniform prior on p or on ψ? In
either case, the induced prior on the other parameter is informative, and perhaps not to our
liking. Although there is no absolute “right” answer, the Bayesian calculus is absolutely right,
given the choice. The choice, if choice must be made, should be guided by prior knowledge. If,
for instance, the U(0,10,000) distribution were an appropriate expression of our uncertainty
about the mean residual lifetime, then a 12-month study of monthly survival rates would
probably not have been considered in the first place. The choice of a uniform distribution as an
expression of prior uncertainty is generally most appropriate for the basic parameterization
which guided model development and data collection protocols. Furthermore, we are not
limited to these two choices; we are free to investigate the choice of various priors, and to see
precisely what their effect is on inference. Despite differences in the inferred upper bounds
for ψ, the inferred lower bounds are similar for the two priors considered here. We are free to
evaluate as many priors as we might wish; honesty binds us to not choose a single “prior” on
the basis of the resulting posterior, and to report the prior as part of the analysis.

In concluding this evaluation of the derived parameter ψ we reiterate our primary point:
that derived parameters are naturally and consistently handled using posterior distributions.

5.3 DERIVED PARAMETERS IN SUMMARY ANALYSES: BBS
CASE STUDY

Attend an ecological or wildlife meeting in North America, and you are likely to hear
presentations drawing data from the North American Breeding Bird Survey (BBS); attend an
ornithological meeting and the likelihood becomes near certainty.

The BBS has been conducted every summer since 1966, with the goal of monitoring bird
population at large geographic scales. Data are collected for over 400 species of birds on
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more than 3500 roadside survey routes in the continental United States, southern Canada, and
northern Mexico. A competent observer conducts 3-minute counts of birds seen or heard at
each of 50 stops located at half-mile intervals along the route. The counts are carried out in
accordance with protocols intended to reduce irrelevant sources of variation (Robbins et al.,
1986). Observers typically serve for 3 or 4 years, though some serve for far longer; on the other
hand, roughly 25% only serve for a single year.

The BBS thus provides a vast collection of parameter estimates, a happy hunting ground
in which to search for patterns and associations among parameters. Such investigations typi-
cally involve summaries of parameter values, summaries that are derived parameters. In this
section, we focus on summaries of temporal trend parameters βi, for species i =1, 2, …, K.
By “trend” we mean the geometric mean rate of change over a specified time interval. We
include this example as an appealing illustration of the Bayesian approach to derived param-
eters. Anticipating that some readers might have reservations about the quality of BBS data,
we begin with a digression on the usefulness of count survey data.

5.3.1 Digression: When Are Count Surveys of Value?

The usefulness of BBS data for drawing inference is continually questioned, with legitimate
concerns raised about how reliably variation in its counts can be associated with variation
in population sizes. Can changes in bird populations sampled along roadsides be taken as
representative of population changes in all of their habitats? After all, roadside habitats might
be peripheral, low-quality habitats and hence indicate greater volatility in population sizes
than exists in entire populations. Furthermore, features of roadside sites change through time as
urbanization increases, and these changes might not be representative of the entire landscape.

BBS data also reflect variation among observers. There is strong evidence of trend in BBS
counts associated entirely with changes in the pool of observers through time; new observers
appear to be better than the observers they replace. Furthermore, there is strong evidence of
temporal change in counts by individual observers, change that is unrelated to population
change. It is thought that such change may be due to increasing familiarity with their routes
and to changes in their ability to hear and to identify birds.

All of these questions about BBS data quality relate to the fact that count surveys only
provide an index to population size: not all of the birds present along a survey route are
counted. A useful though imperfect description of count data is that count C can be expressed
as C =Np, where N is the size of the population studied and p is the proportion of individuals
counted.4 The problem with indices is that variation in C does not only reflect variation in
N, but also variation in p. It can be shown that indices correlate well with population sizes if
the coefficient of variation in detection rates is small, or if variation in detection rates can be
explained through modeled effects of covariates.

The value of count survey data thus inevitably depends on our ability to determine and
measure relevant explanatory variables, and on the validity of the models used to describe their
effects. Many, many techniques have been developed for dealing with imperfect detection; for
a review and critical commentary, see Johnson (2008). Despite its failings, the BBS and related
surveys remain the only large scale source of data on population change for many species. It

4. The description is imperfect because it is unlikely that there ever is a closed population associated with a count.
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is unreasonable to completely dismiss such data: better to make appropriately labeled weak
inference than no inference at all.

5.3.2 Derived Parameters and the BBS

Suppose that we have a collection of trend estimates, β̂i, i =1,2, . . . ,K, such as presented in
Table 5.2. What is the first thing we do when we look at the list? Most folks instinctively look

TABLE 5.2 BBS survey-wide estimates of 1966–99 trend for
28 grassland species.

Species name Trend SE N site

1 Upland Sandpiper 0.76 0.39 582

2 Long-billed Curlew −0.77 1.01 222

3 Mountain Plover −1.05 2.24 37

4 Greater Prairie-Chicken −2.54 2.33 33

5 Sharp-tailed Grouse −0.92 1.43 128

6 Ring-necked Pheasant −1.06 0.32 1239

7 Northern Harrier −0.80 0.40 935

8 Ferruginous Hawk 3.52 1.31 200

9 Common Barn Owl −2.00 2.14 32

10 Short-eared Owl −6.23 4.55 140

11 Burrowing Owl 1.00 2.74 278

12 Horned Lark −1.89 0.22 1864

13 Bobolink −1.25 0.31 1168

14 Eastern Meadowlark −2.69 0.17 1984

15 Western Meadowlark −0.75 0.17 1534

16 Chestnut-col. Longspur −1.36 0.68 144

17 McCown’s Longspur −9.29 8.27 59

18 Vesper Sparrow −0.61 0.24 1547

19 Savannah Sparrow −0.34 0.29 1582

20 Baird’s Sparrow −2.04 1.48 120

21 Grasshopper Sparrow −3.73 0.47 1443

22 Henslow’s Sparrow −4.82 2.50 149

23 LeConte’s Sparrow 0.91 0.95 190

24 Cassin’s Sparrow −2.10 0.51 225

25 Dickcissel −1.46 0.28 829

26 Lark Bunting −3.74 2.30 339

27 Sprague’s Pipit −5.62 1.34 121

28 Sedge Wren 3.18 0.73 340

Species with trend estimate more than 1.96 standard errors away
from zero in bold.

II. THE BAYESIAN MĀRAMATANGA
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for the extreme values: “dang, wonder what is happening to those McCown’s longspurs?”
Next thing we do is to start making up stories to explain the extreme values. We get bit once
or twice by the bug, but then get more cautious: “hang on, that trend for McCown’s longspur
is pretty badly estimated … it’s not even significant.”

Another stare at Table 5.2, and we get to noticing that there are a lot of negative trend
estimates, 23 of the 28, in all. But then we reflect that only 12 of the 23 are significantly different
from zero. Should we report that 12 of the species have significant declining trends? or perhaps,
that of the 13 significant trends, 12 are negative? But then we get to thinking that reporting
“significance” is more a statement about the quality of the data than it is about the parameters
themselves, what is more, that our choice of α=0.05 was arbitrary, and we hesitate: perhaps
we ought not to pass the parameter estimates through the filter of significance testing. Still,
the nearly identical trend estimates for Western meadowlark (−0.75, SE=0.17) and Long-
billed curlew (−0.77, SE=1.01) provide quite different support to the assertion that “grassland
species are declining.”

A related question occurs to us: “I wonder how many of these species have stable pop-
ulations?” (Sauer and Link, 2002). To answer this, we must first define what we mean by a
stable population; perhaps that the long-term trend is between −1% and +1%. But again we
find ourselves caught in the muddle of statistical significance. Sharp-tailed grouse have trend
estimate of −0.92, but standard error of 1.43; the actual trend may well be less than −1; for
that matter, it might be greater than +1. Are we to count them as having a stable population,
or not?

Such easy questions that we would like to ask of the data, but classical training leaves us
with no clear means of addressing them!

Each of the questions raised can be expressed in terms of simple functions of the
parameters βi.5 Let I(statement) be the indicator function, equalling 1 if statement is true,
equalling 0 if statement is false. Then I(βi <0) tells us whether species i is declining or
not, and

D≡D(β1,β2, . . . ,βK)=
K∑

i=1

I(βi <0)

is the total number of declining species. Similarly, I(βi ≥βj) tell us whether the trend for species
i is as large or larger than that for species j, and

Ri ≡Ri(β1,β2, . . . ,βK)=
K∑

j=1

I(βi ≥βj)

gives the rank of species i in the group. The species with the most extreme decline is species
m, defined as

m=
K∑

i=1

i×I(Ri =1);

5. Functions of the parameters, not of the estimates.
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the species with the largest trend is species M,

M =
K∑

i=1

i×I(Ri =K).

Finally, our criterion for population stability of species i is that I(|βi|<1)=1; the number of
stable species among the K is simply

S≡S(β1,β2, . . . ,βK)=
K∑

i=1

I(|βi|<1).

Each of these quantities is a derived parameter, and a sample of its posterior distribution
is easily obtained: letting θj denote the jth in a sample of the joint posterior distribution of
all unknown quantities, we simply compute D(θj), Ri(θj), etc., to obtain samples from the
posterior distributions of the derived parameters, then make inference using these posterior
distributions.

5.3.3 BBS Trend Summaries for Grassland Birds

We treat the estimates β̂i in Table 5.2 as conditionally independent unbiased estimates,
normally distributed with precision τ(β̂i). We treat the estimated standard errors as mutu-
ally independent, and independent of the trend estimates, with distribution such that SE2

i ∼
Ga(n/2,(n/2) τ(β̂i)), where n is the number of routes on which the species occurred; consulting
Appendix B.9, it can be shown that this is equivalent to the familiar formulation

n SE2

σ2
i

∼χ2
n,

where σ2
i =1/τ(β̂i).

We chose to treat the parameters βi as a sample from a normal distribution with mean μ

and precision τ(β). This imposition of group structure is important in ranking trends, because
extreme trend estimates are likely artifacts of imprecise estimation.6 We used a vague normal
prior for μ, and vague gamma priors for all of the precision parameters. BUGS code is given in
Panel 5.1. Subsequent summaries were based on Markov chains of length 106 after discarding
a burn-in of length 105.

The posterior distribution of derived parameter D, the number of declining species, is
given in Fig. 5.2. The posterior mode is at 23; the closest interval to a 95% HPDI is [20,25], with
Pr(20≤D≤25 |Data)=0.968. It happens that the number of negative trend estimates β̂i is also
23, coinciding with the posterior mode for D. Although this is not entirely coincidental, it is
not inevitable; what is more, a simple count of negative trend estimates provides no measure
of the associated uncertainty.

Posterior modes, HPDI’s and their coverage probabilities follow: For the number of stable
species (|βi|<1) we predict S=10, with Pr(7 ≤S≤14 |Data)=0.942. We predict 15 unstable

6. The rank correlation between |β̂i| and SEi is 0.51.
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PANEL 5.1 BUGS code for summary of BBS grassland bird trends.

list(delta=1,
betahat=c(0.76,-0.77,-1.05,-2.54,-0.92, -1.06,-0.80, 3.52,
-2.00,-6.23,1.00,-1.89,-1.25,-2.69,-0.75,-1.36,-9.29,-0.61,
-0.34,-2.04,-3.73,-4.82,0.91,-2.10,-1.46,-3.74,-5.62,3.18),
varhat=c(0.1521,1.0201,5.0176,5.4289,2.0449,0.1024,0.1600,
1.7161,4.5796,20.7025,7.5076,0.0484,0.0961,0.0289,0.0289,
0.4624,68.3929,0.0576,0.0841,2.1904,0.2209,6.2500,0.9025,
0.2601,0.0784,5.2900,1.7956,0.5329),
n=c(582,222,37,33,128,1239,935,200,32,140,278,1864,1168,1984,
1534,144,59,1547,1582,120,1443,149,190,225,829,339,121,340))

model{
for(s in 1:28) {

varhat[s] ˜ dgamma(p[s],lam[s])
p[s] <- n[s] / 2
lam[s] <- p[s] * tau.betahat[s]
tau.betahat[s] ˜ dgamma(0.001,0.001)
sd.betahat[s] <- 1/sqrt(tau.betahat[s])
betahat[s] ˜ dnorm(beta[s],tau.betahat[s])
beta[s] ˜ dnorm(mu,tau.beta)
ranking[s] <- rank(beta[],s)
rank.is.1[s]<- equals(ranking[s],1)
rank.is.28[s]<- equals(ranking[s],28)
stable[s] <- step(delta-abs(beta[s]))
unstable[s] <- 1-stable[s]
pos[s] <- step(beta[s])
neg[s] <- 1-pos[s]
speciesnum[s] <- s

}
numpos <- sum(pos[])
numstable <- sum(stable[])
unstabledown <- inprod(neg[],unstable[])
unstableup <- inprod(pos[],unstable[])
mu ˜ dnorm( 0.0,1.0E-6)
tau.beta ˜ dgamma(0.001,0.001)
sd.beta <- 1/sqrt(tau.beta)
m <- inprod(rank.is.1[],speciesnum[])
M <- inprod(rank.is.28[],speciesnum[])
another.beta ˜ dnorm(mu,tau.beta)

}

and declining species (95.1%CI =[12,19]) and we predict two unstable and increasing species
(95.2%CI =[1,4]).

Note that we have 10+15+2=27 species in our summary, but there were 28 species in the
study. Where has the extra species gone? Is this some sort of Bayesian deviltry, a tax collected
by the authors of BUGS, or what? The “missing” species is an artifact of using posterior modes
as point estimates. The posterior means were 10.21, 15.27, and 2.52, which add up to the desired
28, though we might scratch our heads and wonder what 0.21 species means; integer-valued
estimates of integer-valued quantities are somewhat more appealing.

II. THE BAYESIAN MĀRAMATANGA
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FIGURE 5.2 Posterior distribution of D, the number of grassland bird species with βi <0.

Our estimates of the number of stable species, etc., do not identify which species fall into the
particular categories. Instead, our analysis provides posterior probabilities of stability for the
individual species, namely Pr(|βi|<1|Data). The distinction of being the most likely species
to have a stable population goes to species 19, the savannah sparrow, for which we conclude
Pr(|β19|<1|Data)=0.987. On the other hand, the data are almost perfectly ambiguous with
regard to whether species 11, the burrowing owl, is stable or not: we have Pr(|β11|<1|Data)=
0.480.

We return to our original observation of an apparently extreme trend for species 17,
McCown’s longspur. Our conclusions are based on two pieces of information about its trend:
there is, on the one hand, the data (β̂17 =−9.29,SE=8.27), and on the other, the model, which
says that β17 is sampled from the same distribution as the other βi. Consider first the latter
piece of information. In the BUGS code (Panel 5.1) we included a node another.beta, for a
trend sampled from the same distribution, but not informed by data. This hypothetical value
β tells us what the model says about trends; its posterior mean is −1.15, its standard deviation
is 1.73. Thus, the model casts strong doubts on the point estimate β̂17 =−9.29; trends sampled
from the modeled distribution are extremely unlikely to be of such magnitude. For instance,
the modeled probability of a β<−6 is less than 1/200. Given that the variance associated with
the data (SE2) is nearly 33 times larger than the variance associated with the model, it is not
surprising that the posterior mean for β17 is 96% of the way from β̂17 to the estimated group
mean of −1.15, at −1.47, and that the posterior standard deviation for β17 (1.69) is nearly as
large as the group standard deviation (1.73).

So where do we place McCown’s longspur in a listing of Grassland species, sorted by trend?
If we rank the species by the posterior mean values of β, McCown’s longspur comes in 11th of
28. But to do so is to misleadingly portray the species as highly representative of the guild; its
posterior mean is most highly adjusted toward the overall mean, simply because of the large
SE associated with β̂17. The fact of the matter is that there really is no way of saying where this
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species ranks relative to the rest of the guild, as evidenced by the posterior distribution of its
rank R17, illustrated in Fig. 5.3.

Indeed, none of the species has clear title to the greatest decline in the group. The highest
posterior probabilities are Pr(m= j |Data) = 0.413, 0.243, 0.084, and 0.061 for j =27, 21, 22, and
10. The posterior distribution for R27 (rank of trend for Sprague’s pipit) is plotted in Fig. 5.4;
we note in particular that Pr(R27 ≤3)=0.750, so that we are 75% sure that the Sprague’s pipit
trend is one of the 3 worst. The largest trend most likely corresponds to the sedge wren
(Pr(M =28 |Data)=0.691) or the ferruginous hawk (Pr(M =8 |Data)=0.247); for the remaining
26 species, Pr(M = j |Data) <0.02.
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FIGURE 5.3 Posterior distribution of R17, the rank of McCown’s longspur (species 17) among the Grassland birds.
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FIGURE 5.4 Posterior distribution of R27, the rank of Spragues’s pipit (species 27) among the Grassland birds.
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5.3.4 Conclusion

Collections of parameter estimates such as Table 5.2 lend themselves to summary: we sort
and rank the estimates, and make comparisons among them. Our intention, of course, is to sort,
rank, and compare the latent parameter values themselves rather than the estimates. We have
illustrated in this section that these comparisons are naturally expressed in terms of derived
parameters, and easily handled in the Bayesian framework.

Analysts should give careful thought to the implications of the latent group structure
imposed in the sort of analysis presented here. We noted that the posterior distribution for
McCown’s longspur trend, β17 is essentially uninformed by the data β̂17 and SE17. Our con-
clusions about this species are, more than anything, a reflection of a model assumption, that
McCown’s longspur trend can be viewed as sampled from the same distribution as the other
Grassland species. It should be noted that the summary analyses presented here do not require
the assumption of the latent group structure. Instead of assuming that for all i, βi ∼ N(μ,τ(β)),
we could assign independent vague priors to the βi. The result is that the β̂i become the poste-
rior means (there is no shrinkage), the posterior median ranks more closely approximate the
ranks of the raw estimates, and the credible intervals for individual rankings become slightly
shorter. Either way, the approach outlined in this section provides legitimate summary anal-
yses, properly accounting for all sources of variation in the data.

5.4 DERIVED PARAMETERS AND OUT OF SAMPLE INFERENCE
IN A DOSE–RESPONSE STUDY

In this section, we describe a dose–response study investigating the effect on mallard drakes
(Anas platyrhynchos) of exposures to sodium metavanadate (NaVO3). The study was motivated
by a die-off of Canada geese (Branta canadensis). A sample of the dead geese had unusually
high levels of vanadium in liver and kidneys. Acknowledging the limitations of using mal-
lards as surrogates for Canada geese, we might still reasonably inquire what sort of exposure
levels, measured in terms of their lethality, would be associated with tissue concentrations
observed in the geese. The analysis is of interest, first of all, in involving several derived
parameters, and secondly, in using the posterior predictive distribution for out of sample
inference.

5.4.1 Background

In January 2003, the Delaware Department of Natural Resources and Environmental Control
(DDNREC) received a report of dead and dying Canada geese (Branta canadensis) at a petroleum
refinery fly ash pond. The incident occurred during a period of extreme cold when most fresh
water sources were frozen. The geese were apparently attracted to the fly ash pond because it
was not completely frozen over.

The pond had been used for about 20 years as a basin for fly ash recovered from air scrub-
bers of the refinery’s power plant and was found to have extremely high concentrations of
vanadium. The DDNREC reported that composite samples of liver and kidney from two
geese contained 57.3 and 226 parts per million (ppm) dry weight of vanadium, respectively,
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whereas values of other candidate toxicants (arsenic, cadmium, chromium, lead, mercury,
nickel, selenium, and thallium) were low, and generally < 0.5 ppm dry weight. Vanadium
concentrations in liver and kidney rarely exceed 5 ppm dry weight in wild birds (Rattner et al.,
2006).

Some of the dead geese were examined by staff of the USGS National Wildlife Health
Center, and found to be “in good flesh, with abundant body fat reserves [and without] lesions
suggesting trauma”; healthy, except for congestion of lung, liver, and kidney tissues (Rattner
et al., 2006). The suspected cause of death was intestinal lesions and accompanying dehydration
associated with vanadium toxicity.

5.4.2 Laboratory Dose–Response Study

Vanadium toxicity had been observed in human beings and studied in lab mammals, but
little was known about toxic effects in birds and other wildlife. Thus, a dose–response study
was conducted at the USGS Patuxent Wildlife Research Center, using adult mallard drakes
(Anas platyrhynchos) as subjects. Subjects were administered sodium metavanadate (NaVO3)
in concentrations of 10, 18, 34, 62, 113, 208, 382, or 700 ppm body weight, and observed for 7
days. There were four subjects per dose level, and four controls (individuals sham-dosed with
empty capsules). None of the control animals died; there were 0, 0, 0, 1, 4, 4, 3, and 4 deaths at
the eight dose levels.

Vanadium concentrations were measured in the livers and kidneys of 15 of the 32 mal-
lards in the dose–response study, to evaluate the relationship between exposure and tissue
concentrations such as measured for the dead geese which motivated the study.

The data thus have two components: a binary response observed for all of the individuals,
and a bivariate continuous response, observed for 15 individuals.

Such dose–response studies are a standard of toxicity studies. Mathematical models used
to analyze dose–response data posit that animal i has a maximum tolerance level Ti, and that
the animal exhibits a specific binary response (e.g. death) in response to exposure D if and only
if D>Ti.7 Toxicity is evaluated in terms of the population distribution of T. For example, the
median tolerance is the dose D50 such that Pr(T ≤D50)=0.50. The dose level D50 is generally
referred to as the EC50 (EC = “effective concentration”); when the response is death, it is
referred to as the LD50 (LD = “lethal dose”).

Let di = log(Di), and let d∗ denote the mean value of the di’s. We modeled the death Ri of
animal i, exposed to dose Di, as a Bernoulli trial with parameter pi, assuming that

logit(pi)=αR +βR(di −d∗).

Liver and kidney concentrations for individual animals are likely associated, being depen-
dent on shared covariates. The obvious shared covariate is dose level, but other factors such
as the animal’s condition and unique genetic features might be expected to play a role. Thus
we model liver concentrations Li and kidney concentrations Ki for individual i by a bivariate
regression on dose level, with correlated residuals. Specifically, we suppose that

log(Li)=αL +βL(di −d∗)+εi

7. This statement is calm, nicely clinical and scientific; clearly not written by a duck.
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and

log(Ki)=αK +βK(di −d∗)+νi;

where (εi,νi) has a bivariate normal distribution with zero mean vector and variance
matrix �.

We assign vague normal priors to the regression coefficients, and a standard vague prior
for �, namely the inverse-Wishart distribution with 2 degrees of freedom, and scale matrix
equal to the identity. Data analysis is straightforward; BUGS data and code are in Panels 5.2
and 5.3.

5.4.3 Derived Parameters

Our analysis includes several derived parameters. There are σL, σK, and ρ, the residual
standard deviations of liver and kidney measurements, and their correlation; these are all
functions of the variance matrix �. Another derived parameter is the LD50, found by solving
p(D)=50%, i.e.,

logit(p(D))=αR +βR(log(D)−d∗)= logit(0.50)=0

for D. The result is

D50 =exp(d∗ −αR/βR).

In general, the xth percentile of the distribution of tolerances, the LDx, can be treated as a
derived parameter, calculated as

Dx =exp
(
d∗ +(logit(x/100)−αR)/βR

)
.

5.4.4 Out of Sample Prediction

Recall that the liver and kidney measurements for geese recovered at the power plant were
57.3 and 226 μg/g. We might ask, “suppose that a duck in the lab study had liver and kidney
levels of L=57.3 and K =226, and had died (R=1), but that somehow we were unaware of its

PANEL 5.2 BUGS data for mallard NaVO3 dose–response study.

dose = c(34,34,34,62,62,62,113,113,113,208,208,208,382,
382,382,10,10,10,10,18,18,18,18,34,62,113,208,
382,700,700,700,700),

resp = c(0,0,0,1,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,
1,1,1,0,1,1,1),

log.liver = c(0.642,0.833,1.163,2.617,1.065,1.569,1.960,2.041,
2.809,2.272,2.303,2.493,3.068,3.153,3.740,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA),

log.kidney = c(1.281,0.588,0.742,3.754,1.065,1.030,2.815,
3.550,4.359,3.450,3.996,3.453,5.094,4.970,5.687,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA),

R=structure(.Data=c(1,0,0,1),.Dim=c(2,2))
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PANEL 5.3 BUGS code for mallard NaVO3 dose–response study.

model{
####### Data Transformations ######
mean.log.dose <- mean(log.dose[1:32])
for (i in 1:32){

log.dose[i] <- log(dose[i])
deve.dose[i] <- log.dose[i] - mean.log.dose }

####### Survival Model ######
for (i in 1:32){

logitp[i] <- alpha.resp+beta.resp*deve.dose[i]
logit(p[i]) <- logitp[i]
resp[i] ˜ dbern(p[i]) }

####### Tissue Model ######
for (i in 1:15){

mu[i,1] <- alpha.liver+beta.liver*deve.dose[i]
mu[i,2] <- alpha.kidney+beta.kidney*deve.dose[i]
log.levels[i,1] <- log.liver[i]
log.levels[i,2] <- log.kidney[i]
log.levels[i,1:2] ˜ dmnorm(mu[i,1:2],tau[1:2,1:2]) }

####### Priors ######
alpha.resp ˜ dnorm(0.0,1.0E-6)
beta.resp ˜ dnorm(0.0,1.0E-6)
alpha.liver ˜ dnorm(0.0,1.0E-6)
beta.liver ˜ dnorm(0.0,1.0E-6)
alpha.kidney ˜ dnorm(0.0,1.0E-6)
beta.kidney ˜ dnorm(0.0,1.0E-6)
tau[1:2,1:2] ˜ dwish(R[1:2,1:2],2)

####### Derived Parameters ######
var[1:2,1:2] <- inverse(tau[,])
rho <- var[1,2]/sqrt(var[1,1]*var[2,2])
sd.liver <- 1/sqrt(var[1,1])
sd.kidney <- 1/sqrt(var[2,2])
LD50 <- exp(mean.log.dose-alpha.resp/beta.resp)

}

exposure to NaVO3. In terms of its lethality, i.e., the value LDx, what level would we guess
the duck had been exposed to?”

The solution is to assign a prior distribution for the hypothetical dose DH, and to analyze
hypothetical data XH = (

LH,KH,RH)′ using the posterior predictive distribution. This, as it
turns out, is much more easily done than said.

Here is the formal description of things: Let X denote the complete set of observed data,
and θ represent the unknown parameters, θ = (αR, βR, αL, βL, αK, βK, �)′. Assuming that XH

is conditionally independent of X (i.e., given θ and DH), and that the priors on θ and DH are
independent, it can be shown that[

DH,θ
∣∣X ,XH

]
∝
[
XH∣∣DH,θ

][
θ
∣∣X][

DH
]

. (5.8)
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Integrating both sides of Eq. (5.8) with respect to θ, we obtain the conditional distribution[
DH

∣∣X ,XNew]. By inspection of the right-hand side of Eq. (5.8), this is seen to be proportional
to the posterior predictive distribution

[
XH|DH,X

]
, weighted by the prior distribution

[
DH].

All of this is accomplished easily using BUGS, simply by appending the code in Panel
5.4 to the code in Panel 5.3. Nodes of the form θ.H defined using the “cut()” command are
assigned the current value of θ, but are not allowed to influence the calculation of the posterior
distribution of θ; thus nodes, whether stochastic (like log.level.H) or logical (like P.H) are
drawn from the posterior predictive distribution.

The necessity of using the posterior predictive distribution arises, in this case, because
the observations XH = (

LH, KH, RH)′ are hypothetical; there was no duck in the lab study
associated with these values. To treat them as observations would improperly influence the
posterior distribution [XH|DH,θ].

A hypothetical observation with LH =57.3,KH =226, and RH =1 leads to a posterior predic-
tive distribution forP.Hwith mean of 0.976; its 5th percentile was 0.889. Thus, we can conclude
that the Canada geese measurements were consistent with an exposure to the LD97.6 in the lab
study; furthermore, that had we observed such measurements in a mallard drake in the lab
study, we would have 90% confidence that the duck’s exposure was at least as toxic as the
LD88.9.

We find this a very satisfying analysis, for the usual reasons: there are no data limited
approximations involved in the calculations, there is no resting on dubious asymptotics.

PANEL 5.4 BUGS posterior prediction code for NaVO3 study.

####### Posterior Predictive Elements ######
alpha.resp.H <- cut(alpha.resp)
beta.resp.H <- cut(beta.resp)
alpha.liver.H <- cut(alpha.liver)
beta.liver.H <- cut(beta.liver)
alpha.kidney.H <- cut(alpha.kidney)
beta.kidney.H <- cut(beta.kidney)
tau.H[1,1] <- cut(tau[1,1])
tau.H[1,2] <- cut(tau[1,2])
tau.H[2,1] <- cut(tau[2,1])
tau.H[2,2] <- cut(tau[2,2])

Dose.H ˜ dunif(0,10000)
log.Dose.H <- log(Dose.H)
deve.Dose.H <- log.Dose.H-mean.log.dose
logitP.H <- alpha.resp.H+beta.resp.H*deve.Dose.H
logit(P.H) <- logitP.H
Resp.H <- 1
Resp.H ˜ dbern(P.H)

mu.H[1] <- alpha.liver.H+beta.liver.H*deve.Dose.H
mu.H[2] <- alpha.kidney.H+beta.kidney.H*deve.Dose.H
log.Levels.H[1] <- log(57.3)
log.Levels.H[2] <- log(226)
log.Levels.H[1:2] ˜ dmnorm(mu.H[1:2],tau.H[1:2,1:2])
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Inference is based on clearly articulated premises and follows the overarching principle that
all conclusions should be based on summaries of posterior distributions. Subject to the obvi-
ous limitations of comparing ducks and geese, the answers provided are as good as they
could be.

5.5 PRODUCT BINOMIAL REPRESENTATION OF THE CJS MODEL

In this section, we demonstrate the use of derived parameters as a means of simplifying
otherwise complex calculations. Our interest is not so much in the transformed parameters
per se, but in their use in simplifying the description of a model.

The Cormack–Jolly–Seber (CJS) model is of enormous importance in wildlife studies; its
development by Cormack (1964) and later extensions by Jolly (1965) and Seber (1965) are
important milestones in the advancement of statistical methodology for estimating demo-
graphic parameters. The CJS model is covered in greater detail in Chapter 11; here, our interest
is in computational efficiencies for Bayesian analysis based on the use of derived parameters.

The model applies when attempts are made on t sampling occasions to observe individual
animals. The ability to identify individual animals is usually ensured by capturing them,
placing permanent and uniquely distinctive marks on them, and releasing them to the general
population.

The CJS model describes an open population: animals can become associated with the study
area at any time during the course of the study (whether by birth or by immigration) and can
leave the study area (by death or by emigration). In the simplest cases it is assumed that there
is no temporary emigration.

The model describes events associated with animals as Bernoulli trials, which are referred
to as survival, capture, and release events. Between sampling occasions an animal may die or
permanently emigrate or survive and remain in the study area. For simplicity, the event that
the animal survives and remains in the study area is referred to as survival. The probability
that an animal alive at sampling occasion i survives until sampling occasion i+1 is designated
φi. It is assumed that this probability is constant among marked animals, and for inference,
that survival of marked and unmarked animals are the same. Marked animals available for
capture at time i are recaptured with probability pi.

The CJS model conditions on the numbers Ri, the total number of animals (previously
marked or unmarked) that are released at occasion i. Identifiable parameters are summari-
zed as

θ ={
p2,p3, . . . ,pt−1;φ1,φ2, . . . ,φt−2,λt−1

}
,

where λt−1 =φt−1pt. Cormack (1964) expressed the likelihood as

t−1∏
i=1

φ
vi
i pai+1

i+1
(
1−pi+1

)vi−ai+1 χ
ci
i ;

here, vi, ai, and ci are statistics, χi is a function of survival and capture parameters. Specifically,
vi is the number of animals first released on a sampling occasion prior to i and recaptured at a
sampling occasion j, i ≤ j ≤ t; ai is the number of animals first released on a sampling occasion
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prior to i and recaptured at sampling occasion i; and ci is the number of animals released on
sampling occasion i and never again recaptured at a sampling occasion ≤ t. Parameters χi are
defined recursively, with χt =1 and

χi = (1−φi)+φi(1−pi+1)χi+1,

for i = t−1, t−2, . . . ,2,1.
The complicated form of the likelihood prevents analytic calculation of posterior distribu-

tions for φi and pi; Bayesian analysis must proceed using MCMC.8 Gibbs sampling is not an
option, because full conditional distributions are also not available. Thus, posterior distribu-
tions must be examined using the Metropolis–Hastings algorithm. For example, one might
place independent U(0,1) priors on the components of θ and generate candidate values by
adding N

(
0,σ2) to the logit of current parameter values. Some tuning of the algorithm is

required (choosing appropriate values of σ2), but the results will be satisfactory.
Here, we show how computational efficiencies may be gained through a reparameterization

of the likelihood and the use of derived parameters.
Sufficient statistics for θ are summarized as

S={r1,r2, . . . ,rt−1;m2,m3, . . . ,mt} ;

where ri is the number of animals marked and released at i and subsequently recaptured on a
sampling occasion ≤ t, and mi is the number of marked animals captured on sampling occasion
i. It is convenient to define T2 = r1, and to recursively calculate

Ti+1 =Ti −mi +ri,

for i =2,3, . . . , t−1. Ti is the number of animals marked and released prior to i that are subse-
quently recaptured at some sampling occasion j, i ≤ j ≤ t.

Burnham (1991) showed that the rather complicated CJS likelihood can be rewritten in terms
of sufficient statistics and derived parameters, as

t−1∏
i=1

B(ri;Ri,λi)

t−1∏
i=2

B(Ti;mi,τi); (5.9)

here, the λi and τi are functions of the parameters φi and pi. The λi and τi are calculated
recursively from the φi and pi, starting with λt =0, then calculating

λi =φipi+1 +φi(1−pi+1)λi+1, (5.10)

for i = t−1, t−2, . . . ,1. Note that λi =1−χi. Simultaneously, we calculate

τi =φi−1pi/λi−1, (5.11)

for i = t−1, t−2, . . . ,2. We will write

ψ =g (θ)={λ1,λ2, . . . ,λt−1;τ2,τ3, . . . ,τt−1}
for the alternative parameterization.

8. In Section 11.3, we adopt a different form of the likelihood which leads to a Gibbs sampler based on simple full conditional
distributions.
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The point we emphasize for now is the simplicity of (5.9); if we were interested in the
parameters λi and τi themselves, and could place independent beta priors on them, the poste-
rior distributions would be obtained by inspection, using conjugacy. If, for instance, λi ∼Be(a,b)
then the posterior distribution would be [λi |Data]∼Be(a+ri,b+Ri −ri). This observation and
the ease with which derived parameters are handled under the Bayesian approach form the
basis of two alternative means for analysis of the CJS model.

5.5.1 CJS with Uniform Prior on λ and τ

Typically, we would choose to place priors on the parameters φi and pi; these are, after all, the
basic and most relevant quantities in the model, and provide the most natural descriptions of
the phenomena being studied. The derived parameter λi is seen from (5.9) to be the probability
that an animal released at occasion i is recaptured after occasion i; parameter τi is the probability
that an animal released prior to occasion i is recaptured on or after occasion i; both depend in
rather complicated ways on capture and survival probabilities. We would probably have little
basis for placing priors on λi and τi; further, it is not at all clear what the choice means in terms
of priors on φi and pi.9

However, it is often the case that “the data overwhelm the prior”: given sufficient data, the
choice of prior does not wind up having that much of an effect on the posterior. So then, if
we choose to conduct our analysis using independent uniform priors on λi and τi, it follows
immediately from (5.9) that the posterior distributions are independent, with

[λi|Data]=Be(ri +1,Ri −ri +1) (5.12)

and

[τi|Data]=Be(Ti +1,mi −Ti +1). (5.13)

Given readily available software, we can generate samples from these distributions. Then we
can invert the calculations (5.10) and (5.11) to convert the sampled λi and τi to φi and pi.

It can be shown that (5.10) and (5.11) imply

φi =
(
λi/λi+1

)(
1−τi+1(1−λi+1)

)
, (5.14)

for i =1,2, . . . , t−2, and that

pi = (τiλi)/(1−τi(1−λi)) , (5.15)

for i =2,3, . . . , t−1. Applying (5.14) and (5.15) to λi and τi sampled according to (5.12)
and (5.13), we obtain samples from posterior distributions of φi and pi, given uniform
priors on ψ.

Assigning uniform priors to the transformed parameters ψ is not the same as assigning
uniform priors to θ. Because each set of parameters can be calculated from the other, we may
think of uniform priors for ψ as inducing (nonuniform) priors on θ. We can then use rejection
sampling to convert the sample of φi and pi obtained according to this induced prior on θ to a
sample obtained using uniform priors on θ, as we now describe.

9. It should be noted that 0≤ τi ≤1 and 0≤λi ≤1, for all i, is not sufficient to guarantee that 0≤φi ≤1 and 0≤pi ≤1 for all
i. Thus, the uniform prior on τ and φ does not rule out parameter values that are inadmissible according to the biological
model. Such inadmissible values can simply be rejected; we discuss this matter further in Section 5.5.2.
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5.5.2 CJS with Uniform Prior on p and φ

Recall that rejection sampling (Section 4.2.2) is used to obtain samples from distribution t(x)

by first sampling from distribution c(x) (think t for target, and c for candidate). Typically, c(x) is
easily sampled, but t(x) is not. The requisite condition for rejection sampling is that there is a
number M such that t(x)≤Mc(x) over the support of t(x); thus w(x)= t(x)/Mc(x)≤1. Rejection
sampling works by making a draw X =x from c(x), then accepting or rejecting the observation
as representative of t(x) on the basis of a Bernoulli trial with success probability w(x).

Now suppose that ft(β|X) and fc(β|X) are posterior distributions for a parameter β, based
on two distinct priors, [β]t and [β]c and data X. Then

ft(β|X)

fc(β|X)
∝ [x|β][β]t

[x|β][β]c
= [β]t

[β]c
. (5.16)

From Eq. (5.16), we see that if prior [β]t can be sampled by rejection sampling of prior [β]c
using

w(β)= [β]t

M[β]c
, (5.17)

then ft(β|X) can be sampled by rejection sampling of fc(β|X), using the same w(x). Note that
M has been chosen so that w(β)≤1 over the support of [β]t. It may be possible to improve on
the efficiency of the rejection sampler for ft(β|X) by only requiring M to be large enough to
guarantee w(β)≤1 over (most of) the support of ft(β|X); this results in a smaller value of M
and higher acceptance probabilities.

For the CJS model with uniform priors on θ (i.e., the survival probabilities φ and detection
rates p), the posterior distribution desired is ft(θ|X) with [θ]t ≡1; the candidate generating
distribution is the easily sampled fc(θ|X), corresponding to the prior [θ]c induced by placing
uniform priors on ψ, as described in Section 5.5.1. It can be shown (Link and Barker, 2008) that

[θ]c ∝ λt−1

λ1

t−2∏
i=1

φi, (5.18)

which is easily calculated.
We apply these techniques to a famous set of data, the moth (Gonodontis bidentata) data

reported on by Bishop et al. (1978), and subsequently analyzed by various authors (Crosbie,
1979; Crosbie and Manly, 1985; Link and Barker, 2005). The data consist of records for 689 male
Gonodontis bidentata that were captured, marked, and released daily over 17 days at Cressington
Park in northwest England. These moths were nonmelanic; demographic parameters were
estimated as part of a larger study looking at comparative fitness of distinct color morphs.
Sufficient statistics for the CJS model are given in Table 5.3.

An interesting feature of the Burnham parameterization (5.9) is that not all combinations
of τi and λi correspond to admissible values of φi and pi. That is, when we translate the
parameters τ and λ into φi and pi, we may wind up with values φi >1. A related problem
in frequentist analysis occurs when a maximum likelihood estimator is inadmissible. In such
cases, it helps to realize that the likelihood “knows” nothing about the biology of the problem,
and is simply treating the parameters as symbols, measuring fit without regard to meaning;
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TABLE 5.3 Sufficient statistics for CJS model of Gonodontis data.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ui 15 44 37 45 14 71 45 55 32 71 12 69 69 42 40 28 0

ri 10 22 14 15 13 12 16 17 12 12 3 25 17 14 7 4 –

Ri 15 52 54 62 29 84 51 74 43 85 15 81 93 59 60 37 8

mi – 8 17 17 15 13 6 19 11 14 3 12 24 17 20 9 8

0.2 0.4 0.6 0.8 1.0

FIGURE 5.5 Posterior distribution of φ1 for Gonodontis.

it may happen that the best fit occurs for parameter values that are biologically inadmissible
though mathematically feasible.

In this case, it really makes sense to have informative priors, ones which rule out inad-
missible φ or p (and the corresponding τ and λ). If we are to use the approach described in
Section 5.5.1, of placing uniform priors on τ and λ, then converting to φ or p, we may simply
reject any sampled sets with inadmissible φ or p. In effect, we have replaced the uniform priors
over the unit intervals (for τ and λ) with uniform priors over an admissible range.

As it turns out, the posterior distributions for survival rates φi, under uniform priors, are
fairly diffuse. An example is given in Fig. 5.5, for the first daily survival rate, φ1. The posterior
mode is at about 0.83, the 2.5th and 97.5th percentiles are 0.502 and 0.988; there is considerable
mass near 1.0. It is not surprising that many sampled sets of τ and λ lead to inadmissible
φ; indeed, we reject 94.5% of the sampled sets. So great is the gain in efficiency from direct
sampling of the posterior distribution, that this “waste” still leads to a much more efficient
sampling scheme than random walk Metropolis–Hastings.

For the Gonodontis data of Table 5.3, we generated τ and λ according to the β distributions
(5.12) and (5.13) until we had 2,001,676 sets of admissible φ and p. These samples allow us to
consider the “ψ-uniform” posterior distribution. Rejection sampling, described subsequently,
reduced these to a sample of 302,424 from the “θ-uniform” posterior distribution. The compu-
tation time for the whole process was 1222 seconds on a 3.2 Ghz Pentium 4 system.
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For time comparisons, we also generated a sample of size 302,424 from the θ-uniform pos-
terior using program BUGS. The time for this sample, including a burn-in of length 10,000,
was 2944 seconds, more than 2.4 times as long. What’s more, the values generated by BUGS
are autocorrelated, whereas the samples generated by rejection sampling were independent,
meaning that the effective sample size from BUGS is smaller.

Posterior means and standard deviations of the survival estimates are given in Table 5.4.
There is near perfect agreement between the values for the “θ-uniform” posteriors, whether
obtained by rejection sampling or using BUGS (as one would expect). Furthermore, the
results for the θ-uniform posterior are nearly identical (φ tend to be slightly larger, p slightly
smaller). Use of this approximation allows a further 6-fold reduction in computation time
(2,001,676/302,424=6.6).

We conclude this example by describing the rejection sampling scheme used to convert the
sample of the ψ-uniform posterior into a sample from the θ-uniform posterior. Substituting
(5.18) in (5.17), we have

w(θ)∝ λ1

λt−1
∏t−2

i=1 φi
. (5.19)

Note that we are considering w(θ) as a function of θ ={φ,p}, and that Eq. (5.19) is expressed
in terms of λ simply for notational simplicity. We calculated the right-hand side of Eq. (5.19)
for the sample of 2,001,676 values from the ψ-uniform posterior. The distribution of these is
very highly skewed, with a few values much larger than the others. The largest value was

TABLE 5.4 Posterior mean and standard deviations for “ψ-uniform”
posterior (Columns 1 and 2), “θ-uniform” posterior by rejection sampling
(Columns 3 and 4), and “θ-uniform” posterior as implemented using
BUGS (Columns 5 and 6).

i 1 2 3 4 5 6

φ1 0.791 0.131 0.788 0.131 0.789 0.131

φ2 0.752 0.132 0.741 0.135 0.741 0.135

φ3 0.472 0.131 0.455 0.129 0.455 0.129

φ4 0.345 0.090 0.335 0.088 0.335 0.088

φ5 0.796 0.139 0.781 0.144 0.781 0.144

φ6 0.404 0.123 0.386 0.120 0.386 0.119

φ7 0.617 0.153 0.608 0.152 0.608 0.152

φ8 0.621 0.156 0.607 0.156 0.606 0.156

φ9 0.786 0.143 0.778 0.146 0.777 0.146

φ10 0.602 0.185 0.595 0.186 0.596 0.186

φ11 0.543 0.177 0.534 0.177 0.533 0.177

φ12 0.731 0.141 0.724 0.142 0.723 0.142

φ13 0.476 0.134 0.465 0.133 0.465 0.132

φ14 0.627 0.177 0.614 0.178 0.613 0.178

φ15 0.456 0.197 0.430 0.194 0.431 0.194
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nearly four times as large as the 99.9th percentile. Scaling the right-hand side of (5.19) would
be safest, but would result in an acceptance rate one fourth as large as scaling by the 99.9th
percentile. Scaling by the 99.9th percentile has only the slightest effect on our evaluation of the
posterior distribution.

5.5.3 CJS Model: Summary

The CJS model and its many extensions play an important role in the study of marked
animal populations. Here, we have used alternative parameterizations of the CJS model to
illustrate an appealing feature of Bayesian inference, especially when implemented using
sampling-based investigations of posterior distributions (like MCMC): this is the ease with
which one may make inference about functions of parameters. Given the posterior distri-
bution of parameter α, the posterior distribution of parameter β=g(α) is easily obtained.
If the posterior distribution of α is of known mathematical form, as fα(α), the poste-
rior distribution of β is obtained analytically through the change of variables theorem
(as in Section 5.2.2). More commonly, we may find ourselves examining the posterior dis-
tribution of α through simulation, and in this setting, if α1,α2, . . . ,αB is a sample of fα(α), then
β1 =g(α1),β2 =g(α2), . . . ,βB =g(αB) is a sample of fβ(β). It’s as simple as that.

Our example shows that straightforward use of derived parameters can lead to substantial
computation efficiencies. Coupled with rejection sampling, so as to exactly reproduce the
desired posterior distribution, the example documents a 59% reduction in computation time;
using the posterior distribution based on a slightly different prior, the example documents a
94% reduction in computation time.

5.6 POSTERIOR PREDICTIVE MODEL CHECKING

G.E.P. Box famously said “all models are wrong, but some are useful.” This fine bit of rhetoric
reminds us that some models might not be useful; that failures of model assumptions might
lead to poor inference. It is often said, and truly, that “statisticians, like artists, ought not to
fall in love with their models.” We need to evaluate whether our data are consistent with our
models, and if not, whether the inconsistency is liable to prejudice our inference.10

The posterior predictive distribution is a handy tool for examining whether our data are
consistent with our model. Suppose that we have data X , and a model M under which the
data distribution of X is specified, except for an unknown parameter θ. It might be that we can
describe some feature that is characteristic of M, a feature that is reflected in a statistic f (X).
We can calculate the statistic for our data, draw hypothetical replicate data sets XNew from
the posterior predictive distribution

[
XNew

∣∣X]
, and see how our value f (X) matches up with

hypothetical replicate values f
(
XNew).

10. On the other hand, Box’s dictum that “all models are wrong”, while catchy, is either tautologous or overstated. If one
defines a model as an inexact approximation to reality, then there can be no quarrel with the statement, by definition.
However, if one defines a model as a mathematical description of phenomena, then the possibility of the description being
exact cannot be dismissed. We have heard Box’s statement misused to trivially dismiss model-based inference; sometimes,
to favor nonparametric analyses on the mistaken grounds that they “require no assumptions”; other times, to argue against
the value of parsimony.
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PANEL 5.5 BUGS code for posterior predictive analysis of Fisher’s tick data.

list(x=c(0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,
2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,
5,5,5,5,6,6,6,6,7,7,7,9,10,10))

model{
for(i in 1:60){

x[i] ˜ dpois(lambda)
x.new[i] ˜ dpois(lambda)

}
lambda ˜ dgamma(0.001,0.001)
stat.x <- pow(sd(x[ ]),2)/mean(x[ ])
stat.x.new <- pow(sd(x.new[ ]),2)/mean(x.new[ ])
pvalue <- step(stat.x.new-stat.x)

}

A concrete example helps. In Section 4.1.2, we discussed Fisher’s tick data, consisting of
the number of parasites on each of 60 sheep. The data being counts, it is natural to consider
the Poisson distribution as a starting point for analysis. The data and BUGS code are given
in Panel 5.5. The Ga(0.001,0.001) prior for the rate parameter λ approximates the Jeffreys
prior (Section 6.2.3).

We have calculated the ratio of variance to mean in the data as stat.x. Poisson random
variables have variance and mean equal. Fisher’s tick data have sample variance that is 1.89
times larger than the sample mean, suggesting a failure of the Poisson model. On the other
hand, we recognize that the sample mean and variance are random variables, and thus would
not have expected that stat.x should be exactly equal to 1. We need to determine whether
the discrepancy might be within the bounds of natural variation.

Making this assessment is challenging. The data distribution of f (X) depends on the
unknown parameter λ, and is analytically intractable. So, we might fix a value of λ

(using, say, the MLE), and approximate the data distribution through simulation. This
“parametric bootstrap” seems reasonable enough, but does not account for our uncertainty
about λ. Laird and Louis (1987) proposed bootstrap solutions to this inadequacy of the para-
metric bootstrap.

A Bayesian approach is to allow λ to vary in accordance with credible values; that is, by
sampling values λ from the posterior distribution [λ|X]. Thus our draws XNew are not from a
distribution

[
XNew

∣∣λ] for fixed λ, but from the average value of this distribution against the
posterior distribution. This is[

XNew ∣∣X]
=
∫ [

XNew ∣∣λ] [λ|X
]

dλ,

the posterior predictive distribution.
Once again, the sampling is easier done than said. Consider the code of Panel 5.5. For each

value λ in the Markov chain sample of [λ|X], the code samples a new data set XNew. The
collection of all such data sets is thus a sample from the posterior predictive

[
XNew

∣∣X]
. For

each sampled value XNew, we compute the sample variance/mean ratio, and an indicator
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(the node pvalue) for whether the sampled data have larger variance/mean ratio than the
original data.11

The nodepvalue is so named because of a similarity between it and the frequentist p-value.
Its mean value is Pr

{
f
(
XNew)≥ f (X) |X

}
, the probability of observing a variance/mean ratio

as large or larger than the one in our data set. For Fisher’s tick data, this Bayesian p-value (see
Section 5.6.1 below) has a value less than 1 in 4000: all but 215 of 1 million sampled vari-
ance/mean ratios were smaller than the observed value of 1.82.12 There are strong indications
that the Poisson model is not justified.

Given that the variance/mean ratio is too large, the Poisson model will predict too many
large or small values. Keeping track of the million hypothetical values x.new[1], we find
that 4.0% were zeros, and only 1.9% were bigger than 7. These probabilities are the ones we
would use to make predictions about tick burdens of sheep not yet observed. However, these
values are inconsistent with the rates of 11.7% and 5.0% observed in our data set. The Poisson
model contradicts the plain testimony of the data.

5.6.1 Bayesian and Frequentist p-Values

Bayesian p-values are used with the same purpose as frequentist p-values, to assess the
adequacy of a model M for describing data X . The idea, in both cases, is to compare the value
of a relevant statistic f (X) with the value of hypothetical replicate values generated under M.
The statistic f (X) is chosen as reflecting a specific characteristic feature of M, one which is not
shared by alternative models.

In the case of the Poisson distribution, we considered the variance/mean ratio as an
appropriate statistic, because the Poisson mean and variance are the same. However, Poisson
distributions are not the only ones with this feature. The discrete uniform distribution on
{0, 1, 2, . . ., T} has mean of T/2, and variance T(T +2)/12. These are equal when T =4. The
point is that we must exercise some care in our choice of statistic, and recognize that not find-
ing evidence against a model is not the same as establishing the adequacy of the model. Model
building and assessment cannot be reduced to an automatic and unthinking process.

Another difficulty to be faced is how we are to evaluate hypothetical replicates under the
model, especially if (as is often the case) their probability distributions depend on unknown
parameters of the model. The frequentist solution is to require that probability assessments
for hypothetical replicates be true for all values of the unknown parameter.13 For instance, if
we can say that

Pr
(

f (X)> f
(

XNew
)∣∣ θ) ≤ 0.023,

for all values θ, then 0.023 is a legitimate frequentist p-value.

11. Readers might wonder why it is not necessary to use the cut() command here, as in the example of Panel 5.4. There
would be no harm in so doing, writing x.new[i]∼ dpois(lambda.new), with lambda.new <- cut(lambda). But this
is not necessary. The node x.new[i] is not an observed value and is independent of the data which define the likelihood,
thus sampled values x.new[i] have no effect on the posterior distribution [λ|X].
12. Note also that the gamma prior on λ is conjugate for the Poisson distribution, with the result that BUGS can draw
independent samples of the posterior distribution. Consequently the 1 million sampled values are independent, and we can
use asymptotic theory to justify our statement that the p-value is less than 1 in 4000.
13. This requirement is the guiding principle. In practice, as with confidence intervals (Section 3.2), p-values are often based
on approximations.
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Bayesians, on the other hand, prefer to average across the uncertainty associated with the
unknown parameter. Ideally, this means using the marginal distribution[

XNew
]
=
∫ [

XNew∣∣θ] [θ]dθ (5.20)

for model criticism and evaluation. This works well with informative priors, but objective
analyses based on vague priors might lead to excessively diffuse marginal distributions of
data, with little discriminatory power.

Use of the posterior predictive distribution
[
XNew

∣∣X
]

amounts to using [θ |X] in place of
[θ] in Eq. (5.20). Instead of weighting by our uncertainty about θ prior to data collection, we are
weighting by the uncertainty remaining after observing X , and assuming M is true. There is
something somewhat incestuous in this approach, perhaps prejudicing our inference in favor
of M, and leading to excessively favorable evaluations of M. Recognizing this possibility, the
posterior predictive remains a useful tool for screening unacceptable models: if a Bayesian
p-value suggests model inadequacy, its testimony is to be trusted. Examples that illustrate use
of the Bayesian p-value are in Sections 8.5.3 and 9.3.2.
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The philosophical appeal of Bayesian inference – its coherent use of probability to quantify
all uncertainty, its simplicity, and exactness – all of this is set at nought for some by the neces-
sity of specifying priors for unknown parameters. The aroma of subjectivity associated with
choosing priors is the biggest barrier to the widespread use of Bayesian inference methods by
scientists today.

To complicate matters, many Bayesian theorists insist that there is no such thing as “objec-
tive” probability, no Kilogram Standard, as it were, to serve as the basis of definition. All that
matters is coherency: you have your probabilities, I have mine, and what matters is that we
agree on the rules for manipulating them. Such theorists embrace the term “subjective proba-
bility,” questioning whether there is or needs to be a “physical” or “material” reality associated
with probability.1 Thus, the word “subjective” has come to be linked with Bayesian analysis,
though in a technical sense, and without the antiscientific shadings of dishonesty.

1. For readers inclined toward such philosophical musings, we recommend I. I. Good’s entertaining collection of essays
(Good, 1983).
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Given that we have to choose prior distributions, how should we proceed to avoid the
taint of subjectivity, in its nontechnical sense? We begin our discussion with the following
observations:

Observation 1) The mnemonic

Inferential Basis = Data + Prior Knowledge (6.1)

describes all inference, Bayesian or otherwise. Prior knowledge is inevitably used, if
only to provide a context in which “Data” is more than a list of numbers or symbols.
Legitimate inference always acknowledges and ponders its assumptions, thus reducing
the chance of self-deceit as well as the appearance of biased advocacy. Under the Bayesian
paradigm, prior distributions for parameters are assumptions; analysts can avoid even
the semblance of dishonesty by reporting prior choice.

Observation 2) Thus, it should be recognized and acknowledged, without embarrassment,
that Bayesian inference is not merely data analysis, but analysis of data and priors. The
effects of priors on inference can be evaluated easily enough, simply by trying several
of them.

Observation 3) Provided that prior distributions do not categorically rule out particular
parameter values, data tend to “overwhelm” priors as sample size increases. If you have
decent data, the choice of prior should not matter all that much. Having said that, we
acknowledge that scientists are often interested in insights at the limits of what their data
can support. If they have a lot of data, they will tend to fit complicated models and in
such cases priors may still have some influence on inference. On the other hand, there
is no such thing as a free lunch: all methods of statistical inference have shortcomings
when we have few data.

Sometimes, Bayesian analysis is desirable precisely because the prior distribution may have
an effect on inference. Prior knowledge of a parameter, whether from previous studies or
informed common sense, might be quantified in terms of a probability distribution. This dis-
tribution is described as an “informative” prior. Posterior inference is the formal mechanism
for incorporating prior knowledge with the information provided by data. We present an
example in Section 6.1.

More often than not, however, analysts wish to let the data speak for themselves and to
choose “noninformative” priors. Their desire is to minimize, as much as possible, the contri-
bution of Prior Knowledge on the right-hand side of (6.1) and to produce an “objective Bayesian
analysis.”

Perhaps surprisingly, there is no automatic, simple, universally agreed-upon method of
doing so: defining a prior distribution describing ignorance is more challenging than one
might think. We explain why and describe general principles for objective Bayesian analysis
in Section 6.2.

6.1 AN EXAMPLE WHERE PRIORS MATTER

The Dusky seaside sparrow (Ammodramus maritimus nigrescens) (Fig. 6.1) lived in salt
marshes along the south central coast of Florida until it was driven to extinction by marsh
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FIGURE 6.1 Dusky seaside sparrow. Photo credit P.W. Sykes, USFWS.

management practices conducted to control mosquito populations at the Kennedy Space Cen-
ter. The pathetic story of events leading up to its extinction in 1987 is told by Walters (1992).

In 1979, attempts were made to capture the six remaining individuals, with the goal of
captive propagation. Only five were captured; all were male. What, we might ask, is the
probability that the one bird that escaped was female?

Given the small sample size involved, one would anticipate considerable sensitivity to the
choice of priors on model parameters. Conducting posterior inference forces a careful state-
ment of prior assumptions and their logical consequences. We begin by describing Bayesian
inference for the hypergeometric distribution, which we will use as a model for the data at
hand.

6.1.1 Hypergeometric Distribution

Consider n draws, without replacement, from a box containing a known number (N) of
balls. There are m red balls in our sample of n; we wish to make inference about M, the total
number of red balls in the box. The data distribution of m is hypergeometric, with pdf

f (m|M,N,n)=
(

M
m

)(
N−M
n−m

)
(

N
n

) . (6.2)
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Inference will be based on a posterior distribution

π(M|m,N,n)∝ f (m|M,N,n)g(M|N,n). (6.3)

Note that we require a prior distribution g(M|N,n); this will probably not depend on n, but
will most likely depend on N, so we will designate the prior as g(M|N).

Given no prior information about M, we would likely choose a discrete uniform prior
g(M|N) = 1/(N +1) for M =0,1,2, . . . ,N. Then, the posterior distribution required is

π(M|m,N,n)=

(
M
m

)(
N−M
n−m

)
(

N
n

) 1
N+1

∑N
H=0

(
H
m

)(
N−H
n−m

)
(

N
n

) 1
N+1

=
(

M
m

)(
N−M
n−m

)
∑N−(n−m)

H=m

(
H
m

)(
N−H
n−m

). (6.4)

Note that the terms
(

N
n

)
and 1

N+1 cancel; these are constants with regard to the distribution of

M. Also, note that once simplified the summation begins at H =m, because
(

H
m

)
=0 for H <m.

This reflects the fact that f (m|M,N,n)=0 for m>M: we couldn’t have drawn out more red
balls than there were in the first place. By the same token, the summation ends at N −(n−m):
we know there are at least n−m nonred balls.

A sample calculation is given in Table 6.1. Suppose the box has N =30 balls in it, we draw
n=20 and count m=18 red ones. Before drawing from the box, we had no knowledge of

TABLE 6.1 Calculation of posterior for M based on m =18,
n =20, and N =30, using Eq. (6.4).

M
(

M
m

) (
N−M
n−m

) (
M
m

) (
N−M
n−m

)
π(M|m,N ,n)

18 1 66 66 0.0000

19 19 55 1,045 0.0000

20 190 45 8,550 0.0002

21 1,330 36 47,880 0.0011

22 7,315 28 204,820 0.0046

23 33,649 21 706,629 0.0159

24 134,596 15 2,018,940 0.0455

25 480,700 10 4,807,000 0.1084

26 1,562,275 6 9,373,650 0.2113

27 4,686,825 3 14,060,475 0.3170

28 13,123,110 1 13,123,110 0.2959

Total 44,352,165 1.0000
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the number of red balls, and assigned equal probabilities to N =0,1,2, . . . ,30. Removing 20
of the balls and noting 18 red ones, we are certain that there are no fewer than 18 red, nor
more than 28. Using the posterior distribution, we conclude with 99.4% certainty that there
are at least 5 red balls among the 10 remaining in the box, since Pr(#Red remaining ≥5) =
Pr(M−m≥5)=Pr(M ≥23)=1−0.6%.

6.1.2 Dusky Seaside Sparrow

Assuming equal capture probabilities for the final 6 Dusky seaside sparrows, we can model
the number of male birds captured as a hypergeometric random variable m with pdf given by
Eq. (6.2), with n=5 and N =6. Using the discrete uniform prior on the number of males M,
Eq. (6.4) yields π(M|m=5,N =6,n=5)=1/7 for M =5, and 6/7, for M =6. Given our choice
of prior, we conclude that the odds are 6:1 in favor of the remaining bird being male.

In this case, an alternative prior on M might be reasonable: as Fisher (1935) said in describing
nonparametric models, “an erroneous assumption of ignorance is not innocuous; it often leads

to manifest absurdities.” For instance, a binomial prior g(M|N)=
(

N
M

)
(1/2)M(1−1/2)N−M =(

N
M

)
(1/2)N might more realistically portray expectations of a balanced sex ratio. Using this

prior in Eq. (6.3) the posterior distribution is2

π(M|m,N,n)∝
(

M
m

)(
N −M
n−m

)(
N
M

)
. (6.5)

Substituting m=n=5 and N =6, the right-hand side of Eq. (6.5) equals 6 for both M =5 and
M =6. Since these are the only possible values, the posterior probabilities for M =5 and M =6
are the same, i.e., 50%. The chance that the escaped bird was female increases from 1/7 in the
original analysis to 1/2, by the choice of this alternative prior.

The difference between the two posterior probabilities makes perfect sense, on some
thought. Each prior on M can be thought of as the consequence of treating gender as an
independent Bernoulli trial with common success parameter p= Pr(Male) for each of the N
birds. If we were to treat p as unknown, with our absence of knowledge modeled by supposing
p is sampled from a uniform distribution on [0,1], then M would have distribution

g(M|N)=
∫ 1

0

(
N
M

)
pM(1−p)N−Mdp

=
(

N
M

)
�(M+1)�(N −M+1)

�(N +2)
= 1

N +1
,

for M =0,1,2, . . . ,N. This is the prior used in the first analysis.3 In the second analysis, p=0.50
for all birds; each has a 50% chance of being male.

2. The terms
(

N
n

)
and (1/2)N are constants with regard to the variable M, hence absorbed into the proportionality constant.

3. The integral is easily calculated by “integrating like a statistician”: we recognize the integrand as nearly identical in form
to a known density function, in this case the beta density, and multiply in the appropriate constant so as to make the integral
evaluate to one.
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This implicit difference in priors on p explains the difference in posterior probabilities that
the missing sparrow was female. Let Y be the indicator variable for the event that the escaped
bird was female. Then,

Pr(Y =1)=E
(
Pr(Y =1 |p)

)=E
(
1−p

)=1−E(p).

The genders of the 5 captured sparrows update a Be(1,1) prior to a Be(1+5,1+0) posterior for p.
The mean of the Be(6,1) distribution is E(p)=6/7, hence the posterior probability that Y =1 is
1/7, as under the first analysis. In the second analysis, the value p is the same for all birds, cap-
tured or not; the genders of the 5 captured sparrows provide no information about the one that
was not caught. Hence, the posterior probability that Y =1 under the second analysis was 1/2.

But which answer is correct, Pr(Female)=1/2 or 1/7? The answer is “neither” and “both.”
Neither, in the sense that additional knowledge would lead to a different assessment of the prior
probabilities for the missing bird and different conclusions, and Both, in the sense that each is
obtained using a mathematically sound and transparent calculation. One might quibble with
the assumptions made in obtaining either value, but there can be no objection to the results as
mathematical evaluations of clearly articulated premises. Our view in the present case is that
the value 1/7 seems more reasonable, as there is no reason to assume that a population under
severe stress should have a stable population sex ratio.

We can examine the effect of the assumption of equal catchability, as follows: Specify
[M|N,φ]=B(N,φ) (with known φ=1/2, or with φ∼U(0,1) as before), and suppose [m|M]=
B(M,πM) and [f |F]=B(F,πF) (where F =N −M). The data are m=5, f =0. The previous anal-
ysis assumed that πM =πF and made use of the fact that [m|n=m+ f ,M] is a hypergeometric
distribution. Instead, we might assign independent uniform priors to πF and πM. Results of
the two previous and two new analyses are summarized in Table 6.2.

How are we to understand the differences among the inferences? Note first that the data sug-
gest φ=Pr(Male)≥5/6, arguing against the missing bird being female. Hence, setting φ=0.50
increases the posterior probability that the missing bird is female. The data also suggest that
πM =Pr(Captured|Male)≥5/6. Supposing πM =πF, the indication is of a fairly high proba-
bility of capture for females. Thus, relaxing the constraint πM =πF allows for lower capture
probability of females and hence increases the posterior probability that the missing bird is
female.

Four such disparate answers as given in Table 6.2 could be distressing, especially when
it is realized that the data provide scant basis for modeling decisions.4 On the other hand,

TABLE 6.2 Posterior probability for F=
1 under four different models.

πM =πF πM,πF ∼U(0,1)

φ∼U(0,1) 1/7 =0.14 7/19=0.37

φ= 1
2 1/2=0.50 7/9=0.78

4. We might consider Table 6.2 as summarizing results for four “models” but can also distinguish them as four prior speci-
fications. Models with φ=1/2 have a degenerate prior (a point mass distribution for φ), as do models with πM =πF (a joint
distribution on the unit square, concentrated on the line y =x).

II. THE BAYESIAN MĀRAMATANGA
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each of the calculations is an exact summary of the data and assumptions; no ambiguity has
been built in through the use of dubious analytical approximations. The differences among
the results highlight the limitations of the data and force us to think about the validity of the
various model assumptions. Some will throw up their hands and say that no conclusions can
be drawn; others will be content with multiple answers. Others might informally combine the
various results, assigning weights to the various answers: “I’ll assign 70% weight to 1/7, 15%
to 7/19, 10% to 1/2, and 5% to 7/9, and come up with a composite value of roughly 1/4.”
More formal approaches to weighted inference are discussed in Chapter 7.

One way or another, the analysis makes clear that the conclusions we draw about the
escaped sparrow are largely a reflection of prior convictions. We now turn our attention to the
question of objective Bayesian inference, asking how we might minimize the effects of prior
knowledge on the conclusions we draw.

6.2 OBJECTIVE BAYESIAN INFERENCE

The posterior distribution of parameter θ, given data X , is

[θ|X]∝ [X|θ] [θ]; (6.6)

it is proportional to the product of likelihood and prior. It is easy to see how we might maximize
the effect of our prior convictions: we choose a likelihood, and then choose a prior for θ with a
very limited range. Suppose we choose a prior distribution for θ that is uniform on an interval
[θ0 −ε,θ0 +ε], for some value ε>0. Since the RHS of (6.6) is zero outside of the interval, the
posterior distribution [θ|X] is restricted to the same interval. By choosing a very small value
for ε, we can restrict the posterior distribution to values very close to θ0, regardless of the data
X . If our prior knowledge amounts to certainty, the data wind up being ignored.

It is conceivable that prior knowledge of some quantities could be so unassailable to suggest
that we ignore the data’s indications, but usually we want to allow the data to inform us.
Indeed, if we were to move toward an imbalance in the effects of prior knowledge and data,
the more desirable extreme would typically be to minimize the effect of prior knowledge. How
do we do it? How do we conduct an “objective” Bayesian analysis, where prior knowledge
contributes very little to the final inference? How do we define a noninformative prior?

A first step is to agree that “prior knowledge” should be limited, as much as possible, to the
form of the likelihood [X|θ]. Next, suppose that instead of a very restrictive uniform prior on θ,
we choose a uniform prior over a large range. If our model’s parameter space has finite range
(e.g., 0<p<1 , for the success parameter p of Bernoulli trials, or 0<ψ<2π for an angular mea-
surement ψ), a uniform prior over the entire range can be specified. This seems a reasonable
specification of ignorance about θ: we are saying that no single value seems any more likely
than any other. Thomas Bayes (1763) used a uniform prior distribution as an expression of
prior ignorance in the original treatise on inverse probability, and hence the appropriateness
of the choice is known as “Bayes postulate.” Note that since the uniform prior has distribution
[θ]= c, for some constant c, it follows from Eq. (6.6) that the posterior distribution will be pro-
portional to the likelihood. In particular, the posterior mode will be the maximum likelihood
estimator.
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Uniform priors thus seem an appealing basis for objective Bayesian analysis, but a few
small defects need to be noted. First, a uniform prior for θ almost always implies a nonuniform
prior for a transformed parameter ψ =g(θ). Thus if you and I analyze the same data under
different parameterizations of the same model, we may get different answers. My expression
of ignorance about θ amounts to an informative prior about your parameter ψ. So uniform
priors lack “transformation invariance.” The problem is usually not as bad as it sounds; we
illustrate this in Section 6.2.1.

Another problem for using uniform priors as noninformative is that the range of θ may be
infinite (e.g., −∞<μ<∞ , for the mean μ of a normal distribution). A uniform distribution
over an infinite range is not possible, because the integral of a nonzero constant function over
an infinite range is ∞, not 1; the “prior” [θ]∝ c is said to be “improper.” Use of this improper
prior amounts to treating

fX(θ)= [X|θ]∫ [X|θ]dθ

as a posterior distribution, an approach that, though not strictly justifiable, nevertheless often
yields sensible results.5 Results based on fX(θ) usually coincide with the results obtained using
proper priors with very large but finite ranges. We discuss improper priors in Section 6.2.2.

Much effort has been expended in attempting to prescribe methods for constructing non-
informative priors (Kass and Wasserman, 1996). Bernardo (1979) defined reference priors as
those that maximize the expected Kullback–Lieblier divergence of the posterior from the prior;
other authors (e.g. Kass and Wasserman, 1996) use the term in a nonspecific sense. Bernardo’s
reference priors can be mathematically complex; however, under conditions that guarantee
asymptotic normality of the posterior distribution, they coincide with the Jeffreys prior, which
we describe in Section 6.2.3. Jeffreys priors, unlike uniform priors, have the property of trans-
formation invariance.

6.2.1 Uniform Priors and Transformation Invariance

Suppose that our data model is binomial, X|p∼B(N,p), for some 0<p<1. A uniform prior
[p]=U(0,1)=Be(1,1) seems a reasonable candidate for a noninformative prior on p: we assert
that all possible values of p are equally likely. Fine. But suppose we are asked about parameter
ψ =p2. Parameter ψ also takes values between 0 and 1, but if [p]=U(0,1), then

Pr(ψ ≤ t)=Pr(p2 ≤ t)=Pr(p≤√
t)=√

t;

thus, the density function of ψ is

f (t)= d
√

t
dt

= 1

2
√

t
, 0< t <1,

displayed in Fig. 6.2. The distribution of ψ is not uniform; it is Be(1/2,1). There is a 50%
chance that ψ ≤0.25, and the expected value of ψ is 1/3. Thus if “noninformative” is defined

5. We have used notation fX (θ) rather than f (θ|X) to emphasize that this function, though defined in terms of the data X , and
though possibly a distribution function, is not a posterior distribution, there being no proper prior associated with it.
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FIGURE 6.2 Density function for ψ =p2, assuming p∼U(0,1).

as “uniform,” a noninformative prior for p results in an informative prior for p2. There’s
something unsettling about saying “I know nothing about p, but I know something about p2.”

The foregoing illustrates that uniformity of priors is not transformation invariant.6 We do
not regard this as a terribly serious problem. Suppose that we were to choose a U(0,1) prior for
ψ =p2. Reasoning as before, this choice can be demonstrated to induce a Be(2,1) prior on p. The
resulting posterior distribution is [p|X]=Be(X +2,N −X +1) rather than Be(X +1,N −X +1).
The two posterior distributions are plotted for X =15,N =30 in Fig. 6.3; 95% HPDI’s are (0.33,
0.67) from the uniform prior and (0.35, 0.68) from the Be(2,1) prior. Thus, even with a fairly
small data set, inference is reasonably insensitive to the choice of prior.

6.2.2 Improper Priors

Uniform priors seem reasonable when the parameter has a finite range because no value
is favored over any other. It would be nice to extend this idea to parameters with infinite
range, but a uniform prior with infinite prior is impossible. We need to introduce the idea of
an improper prior.

Given a data distribution p(X|θ) and a prior distribution π(θ), the posterior distribution is

f (θ|X)= p(X|θ)π(θ)∫
p(X|θ)π(θ)dθ

. (6.7)

Occasionally, it makes sense to substitute a nonnegative function g(θ) for π(θ) in Eq. (6.7),
despite the fact that g(θ) has an infinite integral and cannot be scaled to be a probability
distribution. The function g(θ) is referred to as an improper prior. It can happen that even

6. The frequentist criterion of unbiasedness also lacks transformation invariance. For instance, the unbiasedness of s2 as
an estimator of σ2 guarantees that s is biased as an estimator of σ. The proof is straightforward: 0<Var(s)=E(s2)−E(s)2 =
σ2 −E(s)2, hence E(s)2 <σ2, so E(s)<σ.
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FIGURE 6.3 Distributions Be(17,16) (black) and Be(16,16) (red).

though
∫

g(θ)dθ =∞, the integral
∫

p(X|θ)g(θ)dθ is finite, with the consequence that

fX(θ)= p(X|θ)g(θ)∫
p(X|θ)g(θ)dθ

(6.8)

defines a perfectly legitimate probability distribution, which we use as though it were a poste-
rior distribution. We have already mentioned one example, the uniform prior over an infinite
range. Other examples arise in the context of conjugate priors.

Improper Priors in Conjugate Families: Binomial Success Rate

A family of distributions [θ]=g(θ|ψ) is said to be conjugate for a likelihood [X|θ] if priors
in the family combine with the likelihood to produce posteriors in the same family (Chapter
4). The prior has hyperparameter ψ0, and the posterior has hyperparameter ψ1. Typically,
ψ1 is easily calculated from ψ0 and the data X . For example, given a binomial likelihood
proportional to pX(1−p)N−X , the beta family of priors is conjugate, with hyperparameter
ψ = (α,β). The updating formula is

α1 =α0 +X, β1 =β0 +(N −X). (6.9)

We discussed conjugacy in Chapter 4 as a computational efficiency. Conjugacy is also useful
in that the updating formula may suggest a form for a noninformative prior. For example, the α

and β parameters of the beta distribution are updated as running totals of successes and failures
[Eq. (6.9)]. The uniform prior for p is obtained by setting α0 =β0 =1; we might interpret this
as prior knowledge equivalent to one success in two trials. Why not enforce an even greater
standard of ignorance and set α0 =β0 =0 in the prior; zero successes in zero trials. This Be(0,0)

prior was suggested by Haldane (1931).
The only problem is that there’s no such thing as a Be(0,0) distribution. The hyperparameters

α and β must both be strictly positive. If there were such a thing as a Be(0,0) density, it would be
proportional to g(p)=p−1(1−p)−1 and would integrate to 1 over the interval [0,1]. However,
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6.2 OBJECTIVE BAYESIAN INFERENCE 119

the function g(p) becomes infinite as p→1 or p→0 and does so rapidly, with the consequence
that ∫ 1

0
g(p)dp=∞.

Consequently, there is no constant c, by which we might scale g(p) to make it integrate to 1;
g(p), like a uniform distribution over an infinite range, is an improper prior.

Nonetheless, we may treat g(p) as though it were a proper prior, as in Eq. (6.8). Provided
that X �=0 or N, fX(θ) is a legitimate distribution function; an improper prior leads to what
may be treated as a proper posterior distribution. This “posterior” is also in the beta family,
with updating of hyperparameters following the rule given by Eq. (6.9): α1 =0+X =X and
β1 =0+N −X =N −X.

It is best to think of the improper prior as a limit of proper priors, Be(0,0)= lim
ε→0

Be(ε,ε), and

the resulting “posterior” as the limit of the corresponding sequence of posteriors, Be(X,N −
X)= lim

ε→0
Be(X +ε,N −X +ε).7 Lest this seem like an excessive attention to detail, consider what

happens when X =0. The posterior probability of p>0 approaches zero as ε gets smaller. If
we use the improper prior and observe X =0, our posterior indicates absolute certainty that
p=0, even with N =1.

The foregoing demonstrates that improper priors might lead to improper posteriors. This
problem is not inevitable, however, and improper priors can be quite useful. An example is the
problem of estimating a normal mean based on a random sample.

Improper Priors in Conjugate Families: Normal Mean

Given [X̄|μ]=N(μ,σ2/n), with σ known, the family of normal distributions is conjugate
for μ. Thus, if [μ]=N(μ0,v0), the posterior distribution [μ|X̄]=N(μ1,v1), with

μ1 =
(

σ2/n
v0 +σ2/n

)
μ0 +

(
v0

v0 +σ2/n

)
X̄ (6.10)

and

v1 = v0 σ2/n
v0 +σ2/n

. (6.11)

The improper prior with infinite variance seems a very reasonable description of prior igno-
rance. This prior is the limit of proper priors, with v0 →∞. Inspection of (6.10) and (6.11)
reveals that the improper prior N(μ0,∞) leads to a proper posterior N(X̄,σ2/n), from which
we calculate the (1−α)100% credible interval

X̄ ±zα/2
σ√
n

.

7. This view of improper priors is enforced in software BUGS by the requirement that hyperparameters α and β must both
be strictly positive. One may choose α=β=0.001, but not α=β=0. However, if an improper prior leads to an improper
posterior, a nearly improper prior does not let you off the hook – the resulting posterior will be nearly improper and result
in poor inference.
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This interval is the numerical equivalent of the standard frequentist confidence interval. The
numerical coincidence of the two intervals should not obscure the difference in paradigms.
The Bayesian interpretation is expressed in terms of probability for the parameter; the frequen-
tist in terms of probability for the method.

6.2.3 Jeffreys Priors

We have considered uniform priors as candidates for the title of being noninformative.
Given a uniform prior, the posterior distribution is simply a scaled version of the likelihood;
no prior knowledge is brought to bear on inference other than the form of the likelihood.
Uniform priors make perfect sense when the range of the parameter is finite, and the idea
extends naturally enough when the range of the parameter is infinite, through the use of
improper priors.

But what of the problem of transformation invariance? The material of Section 6.2.1 shows
that if we equate “noninformativeness” with uniform distributions, then a noninformative
prior for parameter θ implies an informative prior for a transformed parameter g(θ). Thus,
reparameterizations of the same model could lead to distinct inferences about the same param-
eter. The differences might be slight, given decent data, but the problem is there nonetheless;
it would be nice if we could define the quality of “noninformativeness” so as to avoid such
unpleasantness.

Jeffreys (1946) suggested a clever solution, leading to a prior specification which bears his
name. To understand his solution, we need to recall the change of variables theorem (Section
2.2.4), and the definition and properties of the Fisher information.

Fisher Information

Let L(θ|X)∝[X|θ] be the likelihood function for θ based on an observation X and define the
score function to be the derivative of log L(θ|X) with respect to θ, i.e.,

S(θ|X)= d log L(θ|X)

dθ
= dL(θ|X)/dθ

L(θ|X)
. (6.12)

The Fisher information, I(θ), can be defined as the expected value of the squared score function,
taken over values of X with θ fixed.8 That is,

I(θ)=EX

(
S(θ|X)2

)
. (6.13)

Suppose that we were to consider a reparameterization of the model in terms of ψ. We would
need to be able to calculate ψ’s from θ’s, and vice versa, so we can write ψ =ψ(θ) and θ = θ(ψ).
To calculate the loglikelihood function for ψ, we need only substitute θ = θ(ψ) in the loglikeli-
hood for θ. Thus, the score function for ψ is

S(ψ|X)= d log L(θ(ψ)|X)

dψ
= d log L(θ(ψ)|X)

dθ

dθ

dψ
=S(θ|X)

dθ

dψ
,

8. Fisher (1925b) defined the information as minus the expected second derivative of the data distribution with respect to the
parameter, that is, −E(d2f (X|θ)/dθ2). The two definitions coincide under mild regularity conditions.
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in consequence of the chain rule. Using Eq. (6.13) and recognizing that dθ/dψ is a constant
with respect to the data X , it follows that

I(ψ)= I(θ)
(

dθ

dψ

)2

. (6.14)

So, why is I(θ) referred to as “information?” Note from Eq. (6.12) that for fixed X , the score
function is a proportional rate of change in the likelihood as θ varies. Under mild mathemat-
ical conditions, the expected value of this rate of change (over data sets X) is zero, so the
Fisher information is the variance of the score function. As such, it measures the potential of
observations to effect change in the likelihood.

Jeffreys Prior

Jeffreys (1946) suggested that a prior distribution for θ be defined as [θ]∝√
I(θ). It follows

as an immediate consequence of Eq. (6.14) and the change of variables theorem that a repa-
rameterization ψ =ψ(θ) will have prior distribution [ψ]∝√

I(ψ). Jeffreys prior is therefore
transformation invariant.

A likelihood function L(θ|X) is said to be data-translated if it can be expressed in the form
L(θ|X)∝g(ψ(θ)−s(X)).9 For a data-translated likelihood, the data influence the position but
not the shape of the likelihood. Box and Tiao (1973) argue that it is therefore appropriate to
impose a uniform prior on the parameter ψ(θ). Using Jeffreys prior is equivalent to choosing
a parameterization under which it is appropriate to assign a uniform prior; if the likelihood is
data-translated, the approaches coincide.

Jeffreys Prior for Binomial Success Rate

We calculate Jeffreys prior for the binomial success rate as follows. First, the likelihood is
L(p|X)∝pX(1−p)n−X ; hence, the loglikelihood is a constant plus X log(p)+(n−X) log(1−p),
and the score function is

S(p |X)= X
p

− n−X
1−p

= X −np
p(1−p)

.

Given that E(X)=np, it is clear that I(p)=Var(X)/(p(1−p))2 =n/(p(1−p)); hence Jeffreys prior
is [p]∝1/

√
p(1−p)=p−1/2(1−p)−1/2. This prior is readily recognized as the Be(1/2,1/2) dis-

tribution.10

It is worth considering, for a moment, exactly what we mean by “transformation invari-
ance.” Suppose that instead of parameterizing our binomial distribution in terms of the success
rate p, we decide that we would rather make inference in terms of the natural logarithm of the
odds of a success, η= logit(p). We could effect inference by taking a random sample from the
posterior distribution [p|X], then converting each sampled p to an η. The resulting posterior for
η corresponds to a particular prior induced by the prior for p. Depending on our definition of
“noninformativeness,” a noninformative prior for p might not induce a noninformative prior

9. To illustrate, consider a sample of n normal random variables with mean zero, and unknown variance σ2. The likelihood
for σ2 is data-translated with g(t)=exp(−nx−e−x),ψ(σ2)=− log(σ), and s(X)=√

�X2.
10. Also known as the arcsine distribution, since its cumulative distribution is 1/2+(1/π)sin−1(2t−1) for 0≤ t ≤1.
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for η. If we take Jeffreys prior as our definition of noninformativeness, no such problem arises.
If we have used Jeffreys prior for p, drawing a sample of p’s and transforming them to η’s
yields a posterior sample for η based on a Jeffreys prior for η.

Jeffreys Prior for Multivariate Parameters

Most of the time, our models involve multiple parameters: we have a vector-valued param-
eter θ=(θ1,θ2, . . . ,θk)

′. Jeffreys suggested two possibilities. First, we might obtain priors for each
component θi according to his recommended approach in the univariate case, treating θj, j �= i
as known. We obtain a joint prior on θ as the product of (independent) priors. This approach
might be sensible in the case of normal data with unknown mean and variance but is not in the
case of multinomial data with unknown cell probabilities, since these must sum to one (and
therefore cannot be independent).

If we wish to retain transformation invariance, Jeffreys prior for θ is proportional to the
square root of the determinant of the Fisher information matrix, this being the matrix with {i, j}
element

−E

(
∂2L(θ|X)

∂θi∂θj

)
.

Although the use of Jeffreys prior for single parameter problems is widely accepted as appro-
priate, some controversy remains about the multivariate Jeffreys prior (Kass and Wasserman,
1996).

6.2.4 Summary

We have mentioned uniform priors, priors based on conjugacy, and Jeffreys priors as possi-
ble noninformative priors. These and many other solutions have been offered to the question
of how one is to produce an objective Bayesian analysis, one which removes the taint of sub-
jectivity or arbitrariness from the process of inference. In the case of the binomial success
parameter, the three approaches considered result in Be(1,1), Be(0,0) and Be(1/2,1/2) priors.
With all but small sizes, the results are practically indistinguishable. For example, in Chapter 3,
we discussed the observation of Shealer et al. that 8 of 10 kleptoparasitic roseate terns were
female. Posterior distributions based on the three choices of prior are given in Fig. 6.4. Even
with the very small sample size, the results are quite similar. The 95% HPDI’s for the success
rate are (0.52, 0.96), (0.54, 0.98), and (0.57, 0.99); posterior probabilities for p≤1/2 are 0.033,
0.026, and 0.020 (results for uniform, Jeffreys and Haldane priors, respectively).

Jeffreys prior is sometimes improper but its performance is described as “somewhat magi-
cal” in that it “almost always yields a proper posterior distribution” (Yang and Berger, 1996).
Its form is generally quite simple. For example, a location-scale distribution is one with the
property that the density function satisfies

f (t|μ,σ)= 1
σ

g
(

t−μ

σ

)
where g(·) is a baseline pdf ; −∞≤μ≤∞ and σ>0 are known as the location and scale param-
eter, respectively. The normal distribution provides a canonical example, with the mean in the
role of location parameter, and the standard deviation as the scale. Provided that the range
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FIGURE 6.4 X =8 females among 10 klep-
toparasitic roseate terns, modeled as X ∼
B(10,p). Posterior distributions for p based
on uniform Be(1,1) prior (blue), Jeffreys
Be(1/2,1/2) prior (black), and Haldane Be(0,0)

prior (red).

of f (t|μ,σ) does not depend on unknown parameters and that the Fisher information exists,
Jeffreys prior for the location parameter is uniform, and Jeffreys prior for the scale parameter
is proportional to σ−1.

An interesting feature of Jeffreys priors is that they are also, at least approximately, “proba-
bility matching” priors. A probability matching prior is one that produces a credible interval
that is identical to a corresponding frequentist confidence interval (Kass and Wasserman,
1996). A simple illustration is Bayesian inference for μ using a random sample y = (y1, . . . ,yn)′
from a N(μ,σ2) distribution when both parameters are unknown. If we adopt as our “prior”
the improper [μ,σ]∝1/σ, the resulting posterior distribution for μ has the property that√

n(μ− ȳ)/s has a t-distribution with n−1 degrees of freedom. Thus, the HPDI for posterior
inference about μ exactly matches the usual frequentist confidence interval for this problem.11

In this particular example, the prior [μ,σ]∝1/σ corresponds to the product of Jeffreys prior
for μ when σ is known and Jeffreys prior for σ computed when μ is known, and is the prior
Jeffreys recommended himself (Kass and Wasserman, 1996).

6.3 AFTERWORD

Little (2006), while describing the strengths and weaknesses of Bayesian inference, com-
plained that “the frequentist paradigm does not provide enough exact answers; [but that]
with Bayes, there is an embarrassment of riches, because once the likelihood is nailed
down, every prior distribution leads to a different answer!” We might add, “all of them
correct.”

11. There is much appeal in the idea that a Bayesian credible interval is well-calibrated against long-run frequencies in the
sense that 95%, say, of our 95% credible intervals will contain the true value of the parameter in the long-run, no matter
what value the parameter takes in that application. Unfortunately, the subset of cases where a Bayesian credible interval
can be shown to be well-calibrated is small and frequency calibration remains a limited criterion for use in the search for
noninformative priors.
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Generally, two solutions exist to the problem of choosing priors. The first, embraced by
subjective Bayesians, is to choose a prior by elicitation of informed opinion and to rejoice in
the elegance of the process of updating this prior to a corresponding posterior. The alternative,
favored by those who would wish to remove subjective judgments from the process, is to
choose reasonable default priors expressing limited information in an effort to allow data to
speak for themselves in context of a specified likelihood. Uniform priors for parameters with
finite ranges, improper uniform priors for location parameters, and priors [θ]∝1/θ for scale
parameters, all merit consideration when we desire an objective prior specification. Parameters
with range θ>0 might be assigned “vague” uniform priors, i.e., U(0,L), where L is “large”;
alternatively, we might consider a Ga(ε,ε) prior, for a small value of ε as an approximation
to the improper prior with [θ]∝1/θ. Regression coefficients and other parameters with range
extending over the entire real line might be assigned mean zero normal priors, with large
variance.

We caution, however, against unthinking reliance on default choices for priors. A proper
prior always leads to a proper posterior; frequently an improper prior also leads to a proper
posterior. However, an improper prior might lead to an improper posterior, which is a seri-
ous problem. In such a case, a proper approximation to the improper prior is no solution,
because the resulting proper posterior may also approximate the improper posterior, lead-
ing to unstable inference. This instability may not be obvious in posterior inference based on
simulations.

Gelman (2006) discusses the problem of inference about variance parameters in hierarchical
models, a simple example being

yij ∼N(μ+αj,σ2
y) i =1, . . . ,nj; j =1, . . . J

αj ∼N(0,σ2
α),∼ j =1, . . . , J, (6.15)

where we easily have enough data for inference about μ and σ2
y . If we could have observed

α1, . . . ,αJ , then we could use the conjugate inverse-gamma IG(α,β) prior for σ2
α. In this case the

noninformative IG(0,0) “prior” would lead to a proper posterior. It is thus tempting to use the
IG(ε,ε) prior for σ2

α in the hierarchical model (6.15), with ε set to a small value to represent vague
prior knowledge. However, Gelman (2006) shows that the IG(ε,ε) prior does not lead to any
proper limiting posterior distribution for σ2

α in the limit ε→∞ for this hierarchical model. That
is, the improper IG(0,0) prior will lead to improper proper posterior which an IG(ε,ε) prior will
approximate, leading to unstable inference. For such problems, Gelman (2006) recommends
a uniform U(0,A) prior for σ and some large A. This prior yields a limiting proper posterior
density as A→∞ as long as J ≥3.

In the context of this hierarchical model problem, Gelman (2006) discusses the concept
of “weakly informative priors”: priors that are chosen so that the information they contain
deliberately understates the prior information that is actually available. Thus, Gelman (2006)
offers an alternative to the search for uninformative priors; instead, he advocates use of families
of subjective but weakly informative priors.

There is much literature on the selection of priors with a particularly useful review given by
Kass and Wasserman (1996). We agree with their conclusion that, “...the problems raised by the
research on priors chosen by formal rules are serious and may not be dismissed lightly: When
sample sizes are small (relative to the number of parameters being estimated), it is dangerous
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to put faith in any ‘default’ solution; but when asymptotics take over Jeffreys’s rules and their
variants remain reasonable choices.”

Whether the goal is to conduct a subjective or objective Bayesian analysis, the solution to
the “problem” of choosing priors is to be found in the observations with which we began
this chapter. One ought always to report the prior as part of the analysis; one ought always
to conduct sensitivity analyses to examine the influence of prior choice. Having done these
things, further worrying about priors may simply be a straining at gnats.
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Inference about ecological processes is almost inevitably model based. No matter how much
planning has gone into our investigation prior to collecting data, no matter how carefully we
have designed our study, no matter how familiar we are with the system we are studying,
there comes a point where we must describe our observations using a mathematical model.
The model will have components related to the processes we are studying, and components
related to the acquisition of data. Some of these components will be structural, amenable
to computation given knowledge of covariates and parameters, other components will be
stochastic, describable only as random noise. The model is fully specified, except for unknown
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127Bayesian Inference with Ecological Applications Copyright © 2010 Elsevier Ltd.



128 7. MULTIMODEL INFERENCE

The process of inference often goes no further than estimating unknown parameters. There is
no acknowledgment of model uncertainty, save perhaps a “goodness of fit” test to see whether
our observations are consistent with the model.1 Although we might not always be careful to
mention it, we know that our inference is conditional on the model chosen, and might have
been different had we posited a different model.

In practice there are usually several, even many plausible models that we could consider
for our data. Each has distinct structural features and stochastic components. We are uncertain
about which components are necessary. Inference based on the selection of a single model may
sweep this uncertainty under the carpet.

The choice of a model is particularly important when candidate models involve compli-
cated structure, and many parameters. We distinguish “parameters of interest” and “nuisance
parameters,” the former being the objects of our inquiry, the latter being required only so as
to avoid a distorted view of the parameters of interest. We do not wish to waste inferential
resources by including unnecessary nuisance parameters, nor do we wish to risk being misled
by neglecting necessary ones. We also wish to choose the “right” set of parameters of interest,
and not some that merely happen to be correlated with the right set.

Instead of conditioning our inference on the choice of a single model, we might wish to
include model uncertainty as part of the inferential process. The goal is to produce a com-
posite inference reflecting the uncertainties within and between models. To give a concrete
example, suppose that we have analyzed a single data set under K distinct models, obtain-
ing estimated survival rates φ̂k and associated standard errors s(φ̂k). Suppose further that
we can quantify our relative confidence in the models, so as to produce model weights
wk ≥0 satisfying

∑
wk =1. Buckland et al. (1997) suggested combining model specific estimates

using

φ̃=
K∑

k=1

wkφ̂k (7.1)

and a composite measure of uncertainty

s(φ̃)=
K∑

k=1

wk

√
s(φ̂k)

2 +(φ̂k − φ̃)2.

Estimates (and standard errors) 0.74(0.13), 0.70(0.12), 0.76(0.10), and 0.65(0.08) with weights
0.4, 0.3, 0.2, and 0.1 are thus combined to φ̃=0.72 and s(φ̃)=0.12. The idea is that φ̃ is an estimate
based on all of the models, and that s(φ̃) incorporates uncertainties within and between models.

The two problems of multimodel inference are thus model selection, and model weighting.
Model selection is an attempt to choose a best model from a set of candidates; inference is then
conditioned on that selection. Model weighting attempts to combine model specific inferences
in a way which acknowledges the relative degree of trust we place in models, as well as the
uncertainties associated with model specific inferences.

1. Goodness of fit tests are usually conducted with fingers crossed and in fervent hope that the p-value will come out larger
than 0.05. In which case, the null hypothesis of model adequacy is treated as having been established – in flat contradiction
to the philosophy of hypothesis testing.
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Unfortunately, there is currently no consensus on how one ought to acknowledge and
account for such uncertainty . . . and there probably never will be.2 There are many competing
ideas and methods in the literature, enough to leave the practitioner boggled, astounded, and
disheartened. The Bayesian approach to multimodel inference does not, alas, finally settle all
of the complicated issues surrounding the topic. In some measure, multimodel inference must
remain at the intersection of art and science.

However, Bayesian multimodel inference (BMI) has a strong philosophical appeal; like
Bayesian inference generally, it retains the features of simplicity, exactness, and coherency
described in Chapter 1. Indeed, BMI is a very natural extension of the basic Bayesian technique:
one makes inference about unknown quantities (in this case, models) based on their posterior
distributions, given data. Posterior model probabilities are used for combining model-specific
estimates in the spirit of Eq. (7.1), and to combine model-specific inferences. And as for model
selection, if a single model is desired, posterior model probabilities provide an objective basis
for choice.

In this chapter we provide an overview of BMI, with comments on model weights, Bayes
factors, the Bayesian information criterion (BIC), and the deviance information criterion (DIC).
We also discuss computational issues, describing reversible jump Markov chain Monte Carlo
(RJMCMC) and simple implementations of BMI in program BUGS.

One of the challenges for BMI, perhaps the most serious, is the selection of vague priors for
parameters. When dealing with a single model, given adequate data the choice of vague prior
has little influence on inference. Unfortunately this is not the case in the multimodel setting.
We describe the problems and some possible solutions.

In recent years, Akaike’s information criterion (AIC) has been heavily promoted among
wildlife statisticians (Burnham and Anderson, 2002) as a basis for model selection and model
weighting. AIC has taken the field by storm, and has been uncritically accepted by many
practitioners. Its performance is reasonably evaluated in a Bayesian context; we do so in
Sections 7.4.1 and 7.4.3.

7.1 THE BMI MODEL

BMI is really no different than any other sort of Bayesian inference: all quantities are treated
as random, the only distinction being between quantities that are known or unknown. Infer-
ence is made using posterior distributions of unknown quantities given known quantities.

Thus BMI begins by considering a random variable Model, drawn from some collection
called the model set. We might conceive of Nature blindfolded, making a single draw from a
bucket containing K models (Fig. 7.1). If the selected model is fully specified (i.e., there are no
unknown parameters in the model specification), Nature generates Data according to Model;
if there are unknown parameters, Nature draws parameters for the particular model from a
prior distribution specific to Model, and then generates Data.

Much of statistical inference is done pretending that we know with certainty which model
Nature has drawn. Multimodel inference acknowledges model uncertainty, supposing that
Model could have been any one in the model set.

2. Nor perhaps should there be, for reasons to be explained at the end of this chapter.
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FIGURE 7.1 A bucket of models.

More formally, we conceive of Model as a multinomial random variable with index 1
and cell probabilities π1,π2, . . . ,πK . If we have no a priori reason for favoring one model
over another, we might set π1 =π2 =·· ·=πK =1/K; otherwise, we may choose prior model
probabilities reflecting prior beliefs. These beliefs may reflect specific knowledge about the
system studied and might also reflect convictions about desirable model features, such as
parsimony.

Objections!

We anticipate two objections. First “that’s not how things work! Nature drawing from a
bucket?” But the multinomial draw is merely a model of our uncertainty; a mathematical
convenience rather than an exact depiction of reality. The BMI framework is a meta-model, a
model about models. Thus like all models, it need not be an exact depiction of reality, merely
one that is useful. Subsequently, we describe the process of updating prior model probabilities
to posterior model probabilities, based on information provided by data. The usefulness of this
meta-model lies in its providing a mathematically formal and coherent system of assessing
the support provided by data to various competing models.

Another objection: “But Truth isn’t in your bucket!” Much unnecessary ink has been
spilled on this topic, with declamations about Science and Truth and Knowledge that can
leave our head spinning: is there such a thing as Truth? is it even possible for a Model to
be Truth? But entertaining as such philosophical ramblings might be, they have no bear-
ing on the issue at hand: it does not matter whether Truth is in the model set, or not,
or whether there even is such a thing as Truth. Rather, BMI is conditional inference: we
merely condition on Truth being in the model set, without any philosophical baggage. It
is completely legitimate to say “I don’t believe Truth is in that model set, but if you ask
me to pretend it is, I can assign such and such probability to Truth being this particular
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model, or that particular model.”3 Model probabilities are never unconditional, but always
conditional on the Model Set. So though we may write πi =Pr(Model i), what we really
mean is

πi =Pr(Model i|Model 1 or Model 2 or · · · or Model K).

The bottom line? The bucket of models is itself a model, and no more dubious than any
other model. It is merely a mathematical convenience to describe our uncertainty.

7.1.1 Example: BMI for Two Fully Specified Models

A geometric random variable has pdf g(y)=p(1−p)y and mean value (1−p)/p; a Poisson
random variable has pdf f (x)= e−λλy/y! and mean λ. Both take values y =0,1,2, . . ..

Suppose that we have a sample Y = {Y1,Y2, . . . ,Y5} of values which either come from a
geometric distribution (M =M1) or a Poisson distribution (M =M2). Here, M is a categorical
random variable describing Nature’s multinomial choice of model. Then the probability of the
data is either

Pr(Y |M1,p)=
5∏

i=1

g(Yi)=p5(1−p)5Ȳ. (7.2)

or

Pr(Y |M2,λ)=
5∏

i=1

f (Yi)= exp(−5λ)λ5Ȳ∏5
i=1 Yi!

. (7.3)

Strictly speaking, we should write the probabilities as conditional on M =Mi, as for example
Pr(Y |M =M1, p), emphasizing that we are treating M as a random variable, with M1 being an
outcome; ease of notation and convention favor the simpler notation.

To make things easy, suppose that we know the population mean is 3 (i.e., either λ=3
if the data come from a Poisson distribution, or p=1/4, if the data come from a geometric
distribution). The two densities are displayed in Fig. 7.2. Substituting λ=3 and p=1/4 in (7.2)
and (7.3), we obtain Pr(Y |Mi) for i =1,2. Note that the models are fully specified, hence we do
not need to include p or λ in the conditional description.

Given prior probability π = Pr(M1), straightforward application of Bayes’ theorem yields
posterior probabilities

Pr(M1|Y)= π Pr(Y |M1)
π Pr(Y |M1)+(1−π)Pr(Y |M2)

. (7.4)

Consider the data set Y = {0, 1, 2, 3, 8}. The sample mean is 2.8, consistent with both models,
but the sample variance is s2 =9.7. Given that the Poisson mean and variance are equal, the
data would seem to favor the geometric model, which allows for greater variability relative
to the mean (compare Fig. 7.2.) If we had no a priori reason to favor the Poisson over the
geometric model, we would probably set π=0.5 in Eq. (7.4) and obtain posterior probability

3. To illustrate: imagine an urn with 99,999,997 red marbles, 2 blue marbles, and 1 white marble. If I were to draw a marble
at random, and report that it was not red, you might not believe me, but could still assign odds to whether it were blue or
white, conditional on my claim.
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FIGURE 7.2 Poisson (blue) and geometric (red) densities, means = 3.

of 0.852 on the geometric model: the data have shifted the odds from being even (0.5:0.5) or
(1:1) to odds of (0.852:0.148) or (5.75:1) in favor of the geometric model.

This change in odds is a very useful summary in BMI. Note that Eq. (7.4) implies

Pr(M2|Y)= (1−π)Pr(Y |M2)
π Pr(Y |M1)+(1−π)Pr(Y |M2)

. (7.5)

Thus, the ratio of the left-hand sides of Eqs. (7.4) and (7.5) equals the ratio of their right-hand
sides, namely

Pr(M1|Y)

Pr(M2|Y)
=
(

π

1−π

)
× Pr(Y |M1)

Pr(Y |M2)
. (7.6)

Equation (7.6) relates the posterior model odds (left-hand side) to the prior model odds
π/(1−π). Prior model odds are scaled by the relative probabilities of the data, under the
two models.

As a mathematical expression, Pr(Y |M) is a function of the data, Y , and of the model, M.
Restricting our attention to a fixed set of data, Pr(Y |M) is a function of M alone, the likelihood
function for the model. The ratio of model likelihoods in Eq. (7.6) is called the Bayes factor. We
may thus put Eq. (7.6) into words:

Posterior model odds=Prior model odds × Bayes factor.

For the example considered, prior odds of 1:1 were converted to posterior odds of 5.75:1, hence
the Bayes factor is 5.75.

7.1.2 Example: BMI with Unknown Parameters

Suppose that instead of comparing a geometric distribution with known p=1/4 to a Poisson
distribution with known λ=3, the choice was between an unknown geometric distribution
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and an unknown Poisson distribution. To calculate the model likelihoods, we would need
prior distributions for p and λ.

That is, instead of substituting specific values of p and λ in Eqs. (7.2) and (7.3), we must
calculate the average probability of the data under each model, weighted by the prior distri-
butions.

Given a prior distribution g(p) for the parameter p of the geometric distribution, we would
calculate

Pr(Y |M1)=
∫

Pr(Y |M1,p)g(p)dp=
∫

p5(1−p)5Ȳg(p)dp; (7.7)

given a prior distribution h(λ) for the mean λ of the Poisson distribution, we would calculate

Pr(Y |M2)=
∫

Pr(Y |M2,λ)h(λ)dλ=
∫

exp(−5λ)λ5Ȳ∏5
i=1 Yi!

h(λ)dλ. (7.8)

Choice of prior distributions for parameters in BMI is a ticklish business, which we discuss
subsequently. Suppose that we choose a U(0,T) prior for the mean λ of the Poisson distribution.
It seems reasonable then to choose a prior on p for the geometric distribution such that the
mean (1−p)/p also has a U(0,T) distribution. It can be shown using the change of variables
theorem (2.2.4) that we require a prior

g(p)= 1
Tp2 ,

for 1/(T +1)<p<1.
For the data set Y = {0, 1, 2, 3, 8}, it can be shown that as T →∞, the resulting Bayes factors

in favor of the geometric model approach 13.84. It is natural to ask why the evidence in favor
of the geometric model appears so much stronger when the mean is unknown, than in our
previous analysis when the mean was known (mean = 3 implies BF favoring geometric model
is 5.75).

Some intuition is gained by considering Fig. 7.3. It turns out that if the mean value is known,
the evidence favoring the geometric model over the Poisson model is minimized when the
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FIGURE 7.3 Bayes factors favoring geo-
metric model over Poisson data as a func-
tion of known mean, for data Y ={0,1,2,3,8}.
Dashed line at 13.84 is Bayes factor for analy-
sis with vague prior on mean.
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true mean and the sample mean coincide, at Ȳ =2.80. There, BF = 5.61, favoring the geometric
model. If the mean were known to be a very small or very large value, the data would provide
very strong evidence favoring the geometric model over the Poisson. Incorporating prior
uncertainty about the mean essentially averages the evidence favoring the geometric model
over values of the mean consistent with the observed data.

7.2 BAYES FACTORS

The Bayes factor provides a way of comparing pairs of competing models. The models
need not be nested; neither need be a special case of the other, as seen in the example of
Section 7.1.2. In this section, we describe some features of Bayes factors.

7.2.1 Bayes Factors and Likelihood Ratio Statistics

The Bayes factor is a likelihood ratio for models. Suppose that we have models Mk with
unknown parameters θk , for i =1,2, . . . ,K. Using the bracket notation described in Section 2.2.1,
we have data distributions [Y |Mk ,θk] for data and prior distributions [θk|Mk] for parameters.
For a fixed data set Y , [Y |M,θ] is a joint likelihood for model and parameter. We obtain a
marginal likelihood for M by integrating the joint likelihood against the prior for the parameter.
That is,

[Y |M]=
∫

[Y ,θ|M]dθ =
∫

[Y |θ,M][θ|M]dθ. (7.9)

The Bayes factor for comparing Mi to Mj is calculated as the ratio of marginal likelihoods,
averaged across the parameters:

BFi,j = [Y |Mi]
[Y |Mj] .

As such, the Bayes factor is a Bayesian analog of the frequentist likelihood ratio test statistic.
The difference is that the likelihood ratio test statistic is the ratio of maximum likelihoods. That
is, instead of averaging against a distribution for the unknown parameter [as in Eq. (7.9)], one
substitutes a specific value, the MLE θ̂M:

LRij =
[Y |θ̂i,Mi]
[Y |θ̂j,Mj]

.

If the models are nested (i.e., model Mi is a special case of model Mj), and if Mi is true, −2
times the natural logarithm of the likelihood ratio statistic can often be treated as having an
asymptotic chi-squared distribution.
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7.2.2 Bayes Factors are Multipliers of Odds

Given a set of K models, prior model probabilities πk , k =1,2, . . . ,K, and data Y , Bayes’
theorem yields

Pr(Mi|Y)= [Y |Mi]πi∑K
k=1 [Y |Mk]πk

(7.10)

from which it follows that

Pr(Mi |Y)

Pr(Mj |Y)
= [Y |Mi]

[Y |Mj]
×
(

πi

πj

)
=BFi,j ×

(
πi

πj

)
,

generalizing Eq. (7.6). That is, the Bayes factor is simply a multiplier for changing prior odds
into posterior odds. In the special case of prior odds equal to 1, the Bayes factor itself is the
posterior odds.

Bayes factors do not depend on the prior model probabilities; they also do not depend on
the model set, being nothing more than pairwise comparisons of models. There is, however, a
relation among Bayes factors within a model set. It is clear from their definition that

BF1,3 =BF1,2BF2,3. (7.11)

Similarly, if we know the Bayes factor for model 1 against model 2, BF1,2, the Bayes factor for
model 2 against model 1 is BF2,1 =1/BF1,2.

Equation (7.10) is sometimes rewritten in terms of Bayes factors. Dividing the numerator
and denominator of the right-hand side by [Y |M1], we obtain

Pr(Mi|Y)= BFi,1 πi∑K
k=1 BFk,1 πk

. (7.12)

7.2.3 Updating Bayes Factors

A very appealing feature of Bayes factors is that they update naturally as more data are
collected. Let BFi,j(Y1) denote the Bayes factor based on data set Y1, and let BFi,j(Y2|Y1) denote
the Bayes factor based on Y2 having used Y1 to inform priors on unknown parameters.

Thus,

BFi,j(Y1)= [Y1|Mi]
[Y1|Mj] =

∫ [Y1|Mi,θ] [θ|Mi]dθ∫ [Y1|Mj,θ] [θ|Mj]dθ
,

and

BFi,j(Y2|Y1)= [Y2|Y1,Mi]
[Y2|Y1,Mj] =

∫ [Y2|Y1,Mi,θ] [θ|Y1,Mi]dθ∫ [Y2|Y1,Mj,θ] [θ|Y1,Mj]dθ
.

Note that the priors on θ change from the first to the second of these calculations: in the second
case, they have been informed by the data Y1.
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Consequently

BFi,j(Y1,Y2)≡ [Y2,Y1|Mi]
[Y2,Y1|Mj]

= [Y2|Y1,Mi]
[Y2|Y1,Mj]

× [Y1|Mi]
[Y1|Mj]

=BFi,j(Y2|Y1)×BFi,j(Y1).

It makes sense that there should be a simple mechanism for describing the accumulation
of evidence in favor of one model over another, as new data are obtained. This feature is
conspicuously absent from sequences of hypothesis tests under the frequentist paradigm,
though various ad hoc mechanisms have been proposed.

7.2.4 Bayes Factors as Measures of Relative Support

The larger the value of BFi,j, the greater the support provided by the data to Model Mi
relative to Model Mj. But how ought we to interpret the numbers? What does BFi,j =5 mean?
On what scale are we operating?

We can get some idea of how to interpret Bayes factors by evaluating their effect on prior
model weights in producing posterior model weights. Suppose that the model set consists of
two models. From Eq. (7.4) it follows that

Pr(M1|Y)= BF1,2 π

BF1,2 π+(1−π)
, (7.13)

and consequently that

Pr(M1|Y)≥p0 if and only if π≥ p0

p0 +BF1,2(1−p0)
.

Thus for example, if BF = 50, any prior probability π≥0.16 will produce a posterior model
weight of at least 90%.

Equation (7.13) is plotted for various values of BF in Fig. 7.4. The larger the Bayes factor, the
closer the posterior model probability is to 1; if the Bayes factor is large enough, the posterior
probability must be nearly 1 unless the prior probability is nearly zero.

Bayes factors are treated as quantitative measures of the strength of evidence in favor of
one model relative to another. In this regard, they stand in marked contrast to frequentist
hypothesis tests, which measure only the evidence against a model. Harold Jeffreys (Jeffreys,
1961) suggested that the strength of evidence can be categorized according to the classification
in Table 7.1. Alternative but similar classifications have been proposed by various authors (for
example, Kass and Raftery, 1995). We tend to evaluate Bayes factors using Eq. (7.13), with
π=0.50. Given that M =M1 or M =M2, the posterior probability of model M1 is

Pr(M1|M1 orM2,Y)= BF1,2

1+BF1,2
;

this probability, or the description as odds multiplier [Eq. (7.11)] is better than an arbitrary
cut-off in the spirit of frequentist α levels. As Kass and Raftery point out, “the interpretation
may depend on the context.” “Overwhelming evidence” for the superiority of one laundry
detergent over another might not suffice in a criminal trial.
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FIGURE 7.4 Posterior model probabilities
(y-axis) as a function of prior model probabil-
ities (x-axis) for Bayes factors 1, 5, 25, 125, and
625 (green, red, purple, blue, black).

TABLE 7.1 Bayes factors as weights of evidence.

Result Interpretation

1<B1,2 <3 There is little support for M1 over M2

3<B1,2 <12 There is some support for M1 over M2

12<B1,2 <150 M1 is strongly supported over M2

B1,2 >150 The support for M1 is overwhelming

7.2.5 Problems with Vague Priors on Parameters

Bayesian analyses often use vague priors on parameters to let the data speak for themselves.
For example, if [X|μ]=N(μ,1), the prior distribution [μ]=N(μ0,σ2) results in posterior dis-
tribution

[μ|X]=N

(
1

1+σ2 μ0 + σ2

1+σ2 X ,
σ2

1+σ2

)
,

which approximates the likelihood function for μ as σ →∞. Thus if we use a large enough
value of σ in the prior, representing very limited prior knowledge about μ, inference will be
based essentially on the likelihood alone, on the information provided by data rather than
prior.

The “prior” with σ =∞ is improper: it is not a true distribution function. However, we can
use proper priors based on large but finite values of σ, increasingly vague in their specification
of prior knowledge, and with diminishing effects on estimation. For instance, suppose X =1;
setting μ0 =0, inference based on priors with σ =100 and σ =106 will yield nearly identical
results, and both approximate the result based on σ =∞.

Thus it is often the case that for the purpose of single model inference (estimation), the
choice among vague priors and even of improper priors is of little consequence. Unfortu-
nately this boon does not extend to multimodel inference, particularly when the number of
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parameters varies among models. Continuing with the same example, suppose that we wish
to compare two models under which X is a sample from a normal distribution with variance
equal to 1. Under Model 1, μ=0; under Model 2, μ is unknown. Model 1 has no unknown
parameters, so the marginal distribution is [X|M =1]=N(0,1). For Model 2 we choose the
prior [μ]=N(μ0,σ2), obtaining marginal distribution [X|M =2]=N(μ0,1+σ2). Thus the Bayes
factor is

BF1,2 =
1√
2π

exp
(−1

2 X2
)

1√
2π(1+σ2)

exp
( −1

2(1+σ2)
(X −μ0)2

)
=
√

1+σ2 exp

(
−1

2

{
X2σ2 +2Xμ0 −μ2

0
1+σ2

})
.

For any fixed X and μ0, BF1,2 acts like σ exp
(
− 1

2 X2
)

for large values of the prior variance σ2;
that is, BF1,2 →∞ as σ →∞, regardless of the value X. The vaguer the prior, the greater the
prejudice in favor of the simpler model; with the improper prior (σ =∞) on μ, we need not
even collect data, as the matter will be decided in advance, in favor of Model 1.

Aitkin (1991) suggested comparing models using the ratio of posterior mean likelihoods, a
quantity which he named the Posterior Bayes factor (PBF). Recall that the marginal distribu-
tion used in computing Bayes factors is the average value of the likelihood against the prior
[θM|M], viz.,

[Y |M]=E[θM |M]([Y |M,θM])=
∫

[Y |M,θM][θM|M]dθM;

Aitkin’s proposal was to replace the prior [θM|M] by the posterior [θM|M,Y] in the calculation,
using ratios of

E[θM |M,Y]([Y |M,θM])=
∫

[Y |M,θM][θM|M,Y]dθM.

The PBF thus avoids problems with vague priors on parameters by using an informative prior,
one that has been informed by the data.4

The PBF has been roundly criticized by Bayesian statisticians on the grounds that it amounts
to double dipping, using the data twice, once to estimate parameters (i.e., to obtain the posterior
distribution of the parameters) and then again to compute model weights (see Discussion
following (Aitkin, 1991; Berger and Pericchi, 1996). Using the posterior, the argument goes,
is to overstate the fit of the model to the data, by suggesting that unknown parameters take
values consistent with the data. Although the essence of the criticism is legitimate, the PBF
may be a useful tool for comparing models, developed in the spirit of BMI, but avoiding
problems associated with vague priors.5 Aitkin ably addresses the criticisms of the PBF both
in the concluding comments of his paper, and after the subsequent discussion.

4. The BIC, discussed subsequently in Section 7.3.3, makes implicit use of a similar default prior, though one that is intended
to be minimally informative.
5. The PBF can be understood and justified as a measure of fit based on the posterior predictive distribution; see Section 5.1.2.

II. THE BAYESIAN MĀRAMATANGA
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Another suggestion, offered in the discussion of Aitkin’s paper, is to split off some of the
data into a training sample, and to use the posterior distributions arising from the training
samples as informative priors for analysis of the remaining data; Berger and Pericchi (1996)
develop the idea further, describing an “intrinsic Bayes factor” based on priors trained by the
smallest sample sizes needed for estimation.

We conclude with this summary: the choice of priors on parameters matters in multimodel
inference. There is no easy or automatic choice available. Our view is that priors on parameters
should be chosen with the goal of avoiding a priori preference for one model over another;
that such preference (e.g., for parsimonious modeling) should be reflected in the prior weights
on models. We illustrate this perspective in our multimodel analysis of return rates for tagged
trout, Section 7.4.3.

7.3 MULTIMODEL COMPUTATION

BMI can present serious computational challenges. In addition to the usual problem of
computing posterior distributions for quantities of interest under each model, we must also
be able to compute Bayes factors for comparing models and computing model weights.

Ideally, we would compute marginal likelihoods [Y |M] for each model M, and use these to
compute Bayes factors directly. Unfortunately, this approach is rarely feasible.

In this section we review two alternative approaches. The first approach is to use Gibbs
sampling with Model treated as an unobserved quantity. Bayes factors are then computed as
the ratio of (observed) posterior model odds to (specified) prior model odds. We illustrate
this in Section 7.3.1 with two examples using program BUGS. In Section 7.3.2, we describe a
special implementation of MCMC designed for multimodel inference, reversible jump MCMC
(RJMCMC). It is possible, in some cases, to implement RJMCMC in BUGS. Programming and
tuning RJMCMC can be challenging, but the basic ideas are fairly straightforward.

The second approach is to approximate [Y |M] using the BIC, which we review in
Section 7.3.3.

7.3.1 Multimodel Inference in BUGS

BMI can sometimes be implemented using program BUGS, with Model treated as a cate-
gorical random variable. Considerable care is required; analysts should be on the lookout for
long autocorrelations in Model. We illustrate the general approach with two examples.

An Example with Nonnested Models

In Section 7.1.2, we compared the fit of geometric and Poisson models to a data set consisting
of five observations. There, we calculated the integrals in (7.7) and (7.8) exactly, obtaining
BF1,2 =13.84 for the given data set.

The analysis can be carried out using Gibbs sampling, with the BUGS code given in
Panel 7.1. Several features of this code require comment. First, note that Model is a cate-
gorical random variable, taking the values 1 or 2, for the geometric and Poisson models,
respectively. We have assigned prior probabilities of 0.10 and 0.90 to the two models, and
compute the Bayes factor as the ratio of posterior odds to prior odds. We generated a chain of
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PANEL 7.1 BUGS code for comparison of geometric and Poisson models, data of Section 7.1.2.

Data: list(Y=c(0,1,2,3,8),pi=c(0.10,0.90))
Inits: list(Model=2)
model{

Model ˜ dcat(pi[1:2])
mu ˜ dunif(0,1000)
lambda <- mu
p <- 1/(1+mu)

for (i in 1:5){
GeomProb[i] <- p*pow(1-p,Y[i])
PoisProb[i] <- exp(-lambda+Y[i]*log(lambda)-logfact(Y[i]))

b[i] <- pow(GeomProb[i],equals(Model,1))
+ pow(PoisProb[i],equals(Model,2)) - 1

B[i] <- 1
B[i] ˜ dbern(b[i])
}

}

length 1 million, observing Model =1,2 in the proportions 605858:394142. Thus, the Bayes
factor in favor of Model 1 is approximated as

BF1,2 ≈
(

605858
394142

)/(
0.1
0.9

)
=13.83.

It can be shown that the Bayes factor is most precisely estimated when the posterior model
probabilities are nearly equal. It is therefore useful to run a Markov chain sampler several times,
adjusting the prior model weights so as to achieve nearly equal posterior model weights. This
is not cheating since the Bayes factor does not depend on the prior model weights.

We have used what is known as the “1’s” trick in this code: we introduced Bernoulli random
variables Bi with success probability bi, and supposed that all Bi =1. The observation Bi =1
makes the same contribution to the likelihood as an observation of a random variable Yi =yi
with Pr(Yi =yi)= bi. The “1’s” trick is useful when we wish to model a probability distribution
not included in the BUGS suite. In the present case, our observations are either from a geo-
metric distribution (if Model = 1) or a Poisson distribution (if Model = 2). Our code is written
so that

bi =Pr(Yi =yi|Model)=
{

p(1−p)yi , if Model = 1
e−λλyi/yi!, if Model = 2

.

Our analysis links the prior distributions for the parameters of the two models. We specify
a uniform prior distribution for the mean μ=E(Y|M), which we assume to be independent of
the model. The Poisson parameter λ is its mean, so we set λ=μ; the geometric distribution’s
parameter p is related to its mean by μ= (1−p)/p, hence p=1/(1+μ).

The mean value of our Markov chain sample of values μ was 4.22. This Markov chain
is actually a 0.606:0.394 mix of samples from two posterior distributions, the first for the
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FIGURE 7.5 Posterior distributions of μ=E(Y)

under geometric model (black), Poisson model
(blue), and their 0.606:0.394 mixture (red).

geometric model, the second for the Poisson model. The two posterior distributions of μ are
quite different (Fig. 7.5). In particular, the posterior means are 5.01 and 3.00, respectively; the
overall mean of 4.22 is a weighted average:

4.22=0.606×5.0+0.394×3.0.

Thus 4.22 is a model averaged estimate of the mean, assuming prior model weights of 0.1
and 0.9. Credible intervals taken from the mixed posterior average over the two models.
95% CI’s for Models 1 and 2 are (1.41, 14.7) and (1.68, 4.70); the 95% Model averaged CI is
(1.51, 12.4).

Suppose that we wish to assign equal prior model weights to the two models. The Bayes
factor is invariant to the choice of prior weights; we know it is 13.83. Thus posterior odds in
favor of model 1 are (BF× prior odds) = 13.83, from which it follows that the posterior prob-
ability of model 1 is 0.933 = 13.83/(13.83 + 1). We can compute the model averaged estimate
of μ as

4.88=0.933×5.0+0.067×3.0.

To compute credible intervals based on MCMC output, we need samples of the two posterior
distributions, in the ratio 0.933:0.067. One option is to generate two new Markov chain samples,
one under each model. Chains of length 933,000 and 67,000 could be combined to produce a
sample from the mixed distribution. An easier option is based on the chain we have already
produced: we had 605,858 samples from Model 1, and 394,142 from Model 2. If we discard all
but 43,507 of the samples from Model 2, the remaining 649,365 = 605,858 + 43,507 values will
stand in the desired proportions: (605,858/649,365) = 0.933.6

An Example with Nested Models

Another example of BMI in BUGS is given in Panel 7.2. Here, the models are band recovery
models (described in more detail in Section 11.2) with three years of data. We thus have Xij

6. This procedure can be formally viewed as an example of rejection sampling as described in Section 4.2.2.
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PANEL 7.2 BUGS code for comparison of Brownie models.

Data: list(
X = structure(.Data = c(

50,22,14,314,
NA,28,21,351,
NA,NA,25,375),.Dim = c(3,4)),

pi=c(0.25,0.25,0.25,0.25))
Inits: list(Model=1,xS=c(0.5,0.5),xf=c(0.05,0.05,0.05))

model{
for (i in 1:3){

xf[i] ˜ dunif(0,1)
f[i] <- pow(xf[1],constF)*pow(xf[i],1-constF)
p[i,4] <- 1-sum(p[i,i:3])
X[i,i:4] ˜ dmulti(p[i,i:4],400)

}
for (i in 1:2){

xS[i] ˜ dunif(0,1)
S[i] <- pow(xS[1],constS)*pow(xS[i],1-constS)

}
Model ˜ dcat(pi[1:4])
constF <- equals(Model,2)+equals(Model,4)
constS <- equals(Model,3)+equals(Model,4)
p[1,1]<-f[1]
p[1,2]<-S[1]*f[2]
p[1,3]<-S[1]*S[2]*f[3]
p[2,2]<-f[2]
p[2,3]<-S[2]*f[3]
p[3,3]<-f[3]

}

recoveries in year j of bands released in year i, for i =1,2,3 and j = i, i+1, . . . ,3; we let Xi,4
denote the number of bands released in year i but never recovered.

The data are independent multinomial vectors, X i = (Xi,i,Xi,i+1, . . . ,Xi,4)
′, i =1,2,3. These

have cell probabilities governed by recovery rates fi, i =1,2,3, and survival rates Si, i =1,2.
We consider four models. Model 1 places no constraints on the five parameters. Model

2 assumes no variation in recovery rates through time and Model 3 assumes no variation in
survival rates through time. Model 4 incorporates both assumptions, having constant recovery
and survival rates.

Coding this analysis in BUGS is easy (Panel 7.2). Model is treated as a categorical variable.
Indicator (0/1) variablesconstF andconstSdetermine whether modeled rates are allowed
to vary through time. For example, the modeled rate fi ≡xf[1] if constF=1; otherwise
fi =xf[i]. It is important to note that the code in Panel 7.2 sets up model-specific priors as
follows:

Model 1: fi ∼U(0,1) for i =1,2,3 and Si ∼U(0,1) for i =1,2
Model 2: f1 = f2 = f3 ≡ f. ∼U(0,1) and Si ∼U(0,1) for i =1,2
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Model 3: fi ∼U(0,1) for i =1,2,3 and S1 =S2 =S3 ≡S. ∼U(0,1)

Model 4: f1 = f2 = f3 ≡ f. ∼U(0,1) and S1 =S2 =S3 ≡S. ∼U(0,1).

This example (Panel 7.2) differs from the previous (Panel 7.1) in two important ways. First
of all, models 2, 3, and 4 are “nested” within Model 1: each is a special case of Model 1. This
suggests a generic approach to model description, with a set of derived parameters corre-
sponding to the fullest model (the f and S in Panel 7.2), calculated from a palette of parameters
(xf[i]’s and xS[i]’s in Panel 7.2) subject to the constraints imposed by the categorical
variable Model. The notion of a “palette of parameters” is key to understanding RJMCMC,
and will be discussed more subsequently.

The second important difference is that the number of parameters varies among models.
Varying numbers of parameters among models can cause no end of frustration in BMI com-
putation. Suppose that parameter θj is in model Mj, but not in Model Mi, for i �= j. Parameter θj
must be sampled when its turn comes up in the Gibbs sampling algorithm, even if the current
value of Model is Mi, for some i �= j. Model Mi provides no information about θj, so θj winds
up being sampled from its prior. If the prior for θj is vague and has a large range, the Markov
chain for θj can go wandering off into regions of low likelihood. Then, the next time the Gibbs
sampler considers switching models, model Mj looks very unappealing; the chain for Model
will not visit Mj. The phenomenon is illustrated for node f[2] in Fig. 7.6. A history plot of
length 25,000 for f[2] has black points plotted when Model = 2 or 4 (models which do not
include f2) and red points plotted when Model = 1 or 3 (models which include f2). Note the
long sequence of observations, indices from 7522 to 11,618, where Models 1 and 3 were not
visited; during this period f[2] was sampled from the uniform prior, and only rarely would
a value consistent with Models 2 or 4 be sampled. The result is rather poor mixing,7 and the
necessity of a long MCMC run.

0.0

0.2

0.4

0.6

0.8

1.0

Sequence number
0 5000 10,000 15,000 20,000 25,000

FIGURE 7.6 History plot for node
f[2]. Red dots indicate samples when
Model = 2 or 4, black dots indicate Model
= 1 or 3.

7. In MCMC, Markov chains are described as mixing well if they produce representative samples of the stationary distri-
bution, without excessive autocorrelation.

II. THE BAYESIAN MĀRAMATANGA
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In a chain of length 10 million, the transitions between models were summarized by the
matrix

T =

⎡⎢⎢⎣
744,865 1442 431,151 1819

1472 1,347,519 1618 866,074
431,101 1653 1,689,340 3984

1838 866,069 3970 3,606,084

⎤⎥⎥⎦ .

For example T1,4 =1819 means that there were 1819 transitions from Model 1 to Model 4. All
told, there was only a 26% chance of moving from one model to another. Inspecting matrix T
also shows that most transitions were between Models 1 and 3, or 2 and 4. The posterior model
probabilities were (0.12, 0.22, 0.21, 0.45)8; if Model were sampled independently according to
these probabilities, we would have expected T to look like⎡⎢⎢⎣

144,000 264,000 252,000 540,000
264,000 484,000 462,000 990,000
252,000 462,000 441,000 945,000
540,000 990,000 945,000 2,025,000

⎤⎥⎥⎦ .

In particular, there would have been a 69% chance of moving from one model to another, rather
than the 26% realized.

Thus having parameters specific to individual models, with vague priors, leads to poor
mixing for the nodeModel. Multiply these problems by a large number of parameters specific
to individual models, throw in a large model set, and you have a recipe for frustration: the
Markov chain will mix very poorly, and require huge run times.

In such cases, a special McMC algorithm is required, which we now describe.

7.3.2 Reversible Jump Markov Chain Monte Carlo

Reversible jump Markov chain Monte Carlo (RJMCMC) Green (1995) is an implementation
of MCMC designed for efficient multimodel analysis. RJMCMC is nothing more than Gibbs
sampling with alternating updates of model M and a “palette of parameters” ψ. The distinctive
feature of RJMCMC is its use of the palette to simultaneously govern the parameters of all the
models in the model set.

The palette ψ is a vector of dimension d greater than or equal to the dimension of the most
complex model in the model set. It is defined in terms of mappings gM(ψ)= (θ(M),u(M))≡
�(M). Thus applying gM(·) to ψ, we obtain the parameter θ(M) of model M, and supplemental
variables u(M). We might consider u(M) as flotsam and jetsam; its sole purpose is to match
dimensions of ψ and gM(ψ); both are of dimension d. This matching is necessary in order that
the mappings can be bijections, mapping each value in the domain to a value in the range,
with each value in the range reached from a unique value in the domain. In particular, the
functions gM(·) are invertible, meaning that given values of θ(M) and u(M), we can determine
the unique corresponding value of ψ by g−1

M (�(M))=ψ.

8. Despite the length of the chain, rather poor mixing limits the accuracy of these summaries to two significant digits.
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This all seems rather mysterious until one looks at a specific example. The BUGS code of
the previous section (Panel 7.2) is an implementation of RJMCMC. There, the palette was
(xf[1], xf[2], xf[3], xS[1], xS[2]) and the bijections were defined by map-
ping xf[i] to f[i] in models with nonconstant fi, and mapping xf[1] to all of the f[i]
in models with f1 = f2 = f3; xS[i] were handled similarly. Thus model 2 (constant fi and
nonconstant Si) has parameter vector θ(2) = (f· ,S1,S2)

′ and u(2) = (u1,u2)
′ defined by

g2(ψ)=g2

⎛⎜⎜⎜⎜⎝
xf[1]
xf[2]
xf[3]
xS[1]
xS[2]

⎞⎟⎟⎟⎟⎠=�(2) =
(
θ(2)

u(2)

)
=

⎛⎜⎜⎜⎜⎝
f·
S1
S2
u1
u2

⎞⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎝
xf[1]
xS[1]
xS[2]
xf[2]
xf[3]

⎞⎟⎟⎟⎟⎠.

Similarly, model 4 (constant fi and constant Si) has

g4(ψ)=g4

⎛⎜⎜⎜⎜⎝
xf[1]
xf[2]
xf[3]
xS[1]
xS[2]

⎞⎟⎟⎟⎟⎠=�(4) =
(
θ(4)

u(4)

)
=

⎛⎜⎜⎜⎜⎝
f·
S·
u1
u2
u3

⎞⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎝
xf[1]
xS[1]
xf[2]
xf[3]
xS[2]

⎞⎟⎟⎟⎟⎠.

It is useful to think of fi, Si, f·, S·, and ui as derived parameters: the BMI model is described in
terms of a global parameter vector, the palette ψ.

Why go to all of this trouble? There are two reasons. First, the palette can be seen as a
device for reducing the dimension of the problem. At worst, we could have started out by
specifying completely distinct parameters under the four models, resulting in a 5+3+4+2=
14 dimensional prior. Regardless of which model was currently being sampled, there would
be at least 9 (=14−5) parameters being sampled from their priors. The problems of poor
mixing indicated in Fig. 7.6 would be very much in evidence. Given the nature of the models
under consideration we might not have started with 14 dimensions; a more natural choice
would have included priors for three fi, two Si, f·, and S· , for a total of seven dimensions. The
palette reduced the dimension to the lowest possible, namely 5. The second reason for using
the palette is that exploiting similarities among parameters of itself improves the mixing of
the Markov chain simulation. Given that the Markov chain is currently in a constant recovery
model, the chance of moving to a nonconstant recovery model is enhanced by associating f·
and f1 through xf[1].

The astute reader will no doubt ask why we did not associate f· with the mean f̄ = ( f1 + f2 +
f3)/3. Reasoning that f· in Models 2 and 4 should be well-approximated by f̄ in the others, we
might anticipate better mixing will result from changing the line

f[i]<−pow(xf[1],constF)∗pow(xf[i],1−constF)

in Panel 7.2 to

f[i]<−pow((xf[1]+xf[2]+xf[3])/3,constF)∗pow(xf[i],1−constF).

This change could indeed be made in defining bijections if we were coding our own RJMCMC.
However, in the BUGS code this change induces a prior on f· in Models 2 and 4 that is differ-
ent from the uniform U(0,1) prior we intended. Instead, the prior on f· is the distribution
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that results from averaging three independent U(0,1) random variables (which is closely
approximated by a normal distribution with mean 1/2 and standard deviation of 1/6, hence
not at all uniform).

Therein lies the challenge of RJMCMC. The problem is to specify model-specific priors
on the palette, [ψ|M], in accord with the priors we desire for the model-specific parameters
[θ(M)|M]. This is accomplished by specifying a joint distribution fM(�(M))=[θ(M),u(M)|M] and
using the multivariate version of the change of variables theorem (Section 2.2.4), calculate

[ψ|M]= fM
(
gM(ψ)

) ∣∣∣JgM
(ψ)

∣∣∣ ;

here, JgM
(ψ) is the Jacobian determinant of the transformation gM(ψ). The simplest choice for

[θ(M),u(M)|M] is also the most natural: given that u(M) is irrelevant to model M, we may as
well assume prior independence, [θ(M),u(M)|M]= [θ(M)|M]×[u(M)|M]. The choice of prior on
u(M) under model M will have no bearing on inference.

Gibbs Sampling

It is possible to become overwhelmed with the welter of details, so let us review the fun-
damentals. We have model set M and model weights [M]; we have model-specific data dis-
tributions [Y |M,θ(M)]. We have a palette of parameters ψ and bijections gM(·) from which
we can obtain the model-specific parameters θ(M); thus we may write the data distributions
as [Y |M,θ(M)]= [Y |M,ψ]. Having specified priors [θ(M)|M] and [u(M)|M], we obtain model-
specific priors on the palette, [ψ|M].

Gibbs sampling will consist of cyclical sampling of full conditional distributions, alternating
between [ψ|M,Y] and [M|ψ,Y]. These full conditional distributions are proportional to

[Y ,ψ,M]= [Y |ψ,M][ψ|M][M].
For a fixed model, we update ψ by drawing from the full-conditional

[ψ| · ]∝ [Y |ψ,M][ψ|M].

This may be more easily done by drawing a sample for θ(M) from the full-conditional

[θ(M)| · ]∝ [Y |θ(M),M][θ(M)|M],

and a sample u(M) from [u(M)|M], then using the inverse-transformation ψ =g−1
M

(
(θ(M),u(M))′

)
to obtain a sample for ψ. The two approaches are exactly equivalent.

Sampling the full conditional for M is done using the Metropolis–Hastings algorithm. Given
the current value is M, a candidate value M∗ is selected at random, with probability J(M∗|M).
Our sample from the full conditional [M| · ] is either M∗ or the current value M, on the basis of
a Bernoulli trial. The candidate value is selected with probability min{r,1}, where

r = [Y |ψ,M∗][ψ|M∗]
[Y |ψ,M][ψ|M] × [M∗]J(M|M∗)

[M]J(M∗|M)
. (7.14)
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RJMCMC for Comparing Two Binomial Models

It is best to illustrate the process with an example. Suppose that we have independent
binomial random variables Yi ∼B(Ni,pi), i =1,2; we write Y = (Y1,Y2)

′. Under Model 1 we
place no restrictions on the values pi; under Model 2 we assume p1 =p2 ≡π.

The unknown quantities in our multimodel inference are a categorical variable M (for
model) and a two-dimensional parameter ψ which determines the values of p1, p2, and π

under the two models. For the example at hand, the two bijections are the identity mapping
g1(ψ)=ψ = (p1,p2)

′, and

g2(ψ)=
(

ψ1 +ψ2

2
, ψ2

)′
= (π,u)′.

Note that u has no role in the likelihood when M =2; it is merely there as a placeholder, to
match the dimensions of g2(ψ) and ψ.

For our sample problem, under Model 1 we choose independent Be(ai,bi) priors for pi,
i =1,2. Under Model 2, we choose a Be(aπ,bπ) prior for π. As mentioned earlier, the choice of
prior for u is irrelevant for inference, though the choice may influence the performance of the
RJMCMC sampler. We choose a Be(au,bu) prior for u, independent of the prior for π.

Consider the update of ψ for fixed M. For M =1, likelihood and prior combine to produce
independent beta full conditional distributions for ψi; we sample ψi ∼Be(Yi +ai,Ni −Yi +bi),
for i =1,2.

For M =2, we sample π from Be(Y1 +Y2 +aπ,N1 +N2 −Y1 −Y2 +bπ) and u from Be(au,bu).
Parameter π has been informed by both Y1 and Y2 under Model 2; u has been informed by
neither, and is sampled from its prior. The sampled �(2) = (π,u)′ determines a sampled value
for ψ = (ψ1,ψ2)

′ drawn from [ψ|M2], by ψ =g−1
2 (�(2)). That is, we set ψ1 =2π−u, and ψ2 =u.

Now consider the sampling of M for fixed ψ. Equation (7.14) can be simplified by makings
some judicious choices. First, if we specify equal prior model weights, the terms [M1] and [M2]
cancel from numerator and denominator. Further, if we never consider the current state as a
possible candidate, J(M1|M2)= J(M2|M1)=1, so the numerator and denominator in this term
cancel as well. The form of [Y |ψ,M] being known from the model specification, it only remains
to calculate formulas for [ψ|M].

For M =1, we have g1(ψ)=ψ = (p1,p2)
′. The Jacobian of transformation is the 2×2 identity

matrix, with determinant equal to one, hence from Eq. (7.14) we conclude that

[ψ|M1]=
2∏

i=1

�(ai +bi)

�(ai)�(bi)
ψ

ai−1
i (1−ψi)

bi−1 I(ψi ∈ (0,1)). (7.15)

For M =2, we have g2(ψ)= (π,u)′. The Jacobian of transformation is(
1/2 1/2
0 1

)
with determinant equal to one half. From Eq. (7.14) we conclude that

[ψ|M1 ] = �(aπ +bπ)

2�(aπ)�(bπ)
ψ̄aπ−1(1− ψ̄)bπ−1 ×I(ψ̄ ∈ (0,1)) I(ψ2 ∈ (0,1)), (7.16)
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where ψ̄ = (ψ1 +ψ2)/2. Note that in Eqs. (7.15) and (7.16) we have been careful to retain the
normalizing constants, because these do not cancel in the acceptance ratio [Eq. (7.14)].

Let’s consider a specific data set. Suppose that Y1 =8,Y2 =16,N1 =20, N2 =30, and all of
the beta hyperparameters are ones, for uniform priors.

First, consider updates of ψ. If M =1, we sample ψ1 ∼Be(9,13) and ψ2 ∼Be(17,15); if M =2,
we sample π∼Be(25,27) and u∼Be(1,1), converting these to ψ1 =2π−u and ψ2 =u.

Given ψ, the chain moves from Model 1 to Model 2 with probability min{r,1}, where

r =
ψ̄24 (1− ψ̄)26

(
1
2

)
I(ψ̄ ∈ (0,1)) I(ψ2 ∈ (0,1))

ψ8
1 (1−ψ1)12 ψ16

2 (1−ψ2)14 I(ψ1 ∈ (0,1)) I(ψ2 ∈ (0,1))
. (7.17)

The probability of moving from Model 2 to Model 1 is min{1/r,1}.
The indicator functions in Eq. (7.17) deserve some attention. It is possible, when in Model

2, for ψ̄ and ψ2 both to fall in the interval (0,1), but for ψ1 to be negative. In this case, 1/r = 0,
so it is impossible to move from Model 2 to Model 1. The situation can arise, for instance, if
ψ̄ =0.2 and ψ2 =0.9; these imply ψ1 =−0.5.

The frequency with which this occurs will depend on the choice of prior for u under Model
2. Regardless of the choice, the Markov chain will eventually provide stable estimates of pos-
terior probabilities. However, judicious choice of prior for u will reduce autocorrelation in the
chain for M.

A chain of length 107 generated using this Gibbs sampler took approximately 3 minutes to
run on a 2.6 GHz dual-core processor and approximated the posterior probability of model
2 as 65.81%. The autocorrelation tailed off rapidly, being essentially zero by lag 5. Treating
the values as equivalent to 107/5 independent observations the estimate has standard error of
0.03%. For this problem we can also compute an analytical solution because under model 1,
the marginal distribution of the data, [Y|M], is the product of two independent beta-binomial
distributions and under model 2 it is a single beta-binomial distribution. The calculated value
is 65.80%.

7.3.3 Bayesian Information Criterion

In Sections 7.3.1 and 7.3.2, we have considered MCMC techniques for computing Bayes fac-
tors. We shift gears now, considering an approximation to the Bayes factor based on maximum
likelihood estimation.

Recall that the Bayes factor is the ratio of marginal model likelihoods [Y |M], calculated as
the average value of [Y |M,θM] against the prior [θM|M], viz.,

[Y |M]=
∫

[Y |M,θM][θM|M]dθM.

If we could compute this integral for all of the models under consideration, then we could
compute all of the Bayes factors we need, and Bayesian multimodel computation would be no
problem. However, cases where this integral can be computed analytically are rare. We need
to look for ways of computing or approximating [Y |M].
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The BIC (Schwarz, 1978) is an approximation to −2log([Y |M]). Let us assume that

1. The data vector Y consists of n observations, conditionally independent given model M
and its k-dimensional parameter θM.

2. The posterior distribution [θM|M,Y] is closely approximated by a multivariate normal dis-
tribution. This assumption is often reasonable for analyses based on relatively large data
sets, a result known as the “Bayesian Central Limit Theorem.”

3. The prior for θM of model M is closely approximated by a multivariate normal distribution
known as the “unit information prior.” This prior, discussed by Weakliem (1999) and Raftery
(1999) has mean equal to the MLE θ̂M, and variance matrix such that the prior “contains the
same amount of information as a single, typical observation” (Raftery, 1999). It is a weakly
informative prior, not strongly contradicted by the data.9

Then

BICM =−2log([Y |θ̂M,M])+k log(n)≈−2log([Y |M]). (7.18)

We will return to discuss information criteria subsequently; here, we present BIC because it
serves as the basis of a large-sample approximation to a Bayes factor. Note that we say a Bayes
factor, rather than the Bayes factor, in acknowledgment that Bayes factors reflect the choice of
priors on parameters. For the choice of priors on parameters implicitly assumed by the BIC
approximation, we may approximate the Bayes factor BFi,j by

B̃Fi,j =exp
(

−1
2

(BICi −BICj)

)
.

This approximation is useful in that it allows us to fit one model at a time rather than having
to deal with problems arising in applying BMI to the bucket of models, whether using program
BUGS as in Section 7.3.1, or RJMCMC as in 7.3.2. It should be remembered, however, that this
approach involves an implicit default choice of priors on parameters, and that the resulting
multimodel inference might not correspond with that which would result from our particular
choice of priors, especially if our choice involves informative priors.

7.4 INDICES OF MODEL ACCEPTABILITY: AIC AND DIC

Given data and a set of models, we are faced with decisions. Which model best describes the
data? for that matter, what do we mean by “best”? Will we choose one model and subsequently
ignore the rest? or will we somehow combine inferences across models?

Multimodel inference often boils down to the calculation of a simple numerical summary
of candidate models in light of the data, an index of model acceptability. Many exist, including
the PBF described in Section 7.2.5, and the BIC (Section 7.3.3). We regard the model likelihood
as the ideal index of model acceptability. BMI posits the “bucket of models” meta-model of
Section 7.1, with prior model weights reflecting knowledge available in the absence of the data,

9. Of course, a prior distribution cannot be based on the MLE; you can’t choose your priors on the basis of the data. The BIC
is an approximation, most nearly justified under the conditions described.
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and chosen to favor model having features we deem important. Ratios of model likelihoods
are Bayes factors, which convert prior model probabilities into posterior model probabilities,
which can then be used either to select or weight models.

We regard the use of the BMI model as the gold-standard of multimodel inference. We
have seen however that there are difficulties associated with it, some computational, some
operational. Given these difficulties, analysts might be content with alternative, approx-
imate, simpler indices of model acceptability. Many exist, including the posterior mean
likelihood used in computing the PBF (Section 7.2.5), and the BIC (Section 7.3.3), which
is based on approximations of the model likelihood, and implicitly selected vague priors.
These two are loosely associated with Bayes factors, and lead naturally enough to weighting
schemes.

We anticipate that readers of this book may have some familiarity with AIC and the DIC
which has been proposed as a Bayesian analog of AIC. These two are also used to compute ad
hoc model weights, though their connection to BMI is weaker. In this section we describe AIC,
noting its tendency to favor highly parameterized models. We also provide a brief introduction
to the DIC. Finally, we compare AIC, DIC, and Bayes factors in an analysis of return rates from
a study of brown trout (Salmo trutta) spawning in a tributary of Lake Brunner, located in the
West Coast region, South Island, New Zealand.

7.4.1 Akaike’s Information Criterion

AIC has been popularized in the ecological literature by David Anderson and Ken Burn-
ham (Burnham and Anderson, 2002). AIC estimates an index to the Kullback–Leibler (K-L)
divergence of a candidate model from the true model. The K-L divergence of a function g(y)

from a function f (y) is

K( f ,g)=
∫

f (y) log
{

f (y)

g(y)

}
dy.10

Let f and g be distribution functions, f determined by the unknown true model, and g which we
consider as an approximation to f . The K-L divergence is the difference between the expected
values of the true loglikelihood and the approximating loglikelihood, the expectation being
taken over f :

K( f ,g)=Ef
{

log f (y)− log g(y)
}

=Ef
{

log f (y)
}−Ef

{
log g(y)

}
. (7.19)

The first term in (7.19) is a constant, in comparisons of candidate models; it cancels out in
calculating K( f ,g1)−K( f ,g2). Thus for comparing candidate models, the second term in (7.19)
is a suitable index for comparing candidate models. We cannot compute Ef

{
log g(y)

}
, not

knowing f . However, we do have a sample from f , the data, and can use this to estimate an
approximation to Ef

{
log g(y)

}
.

10. K(f ,g) is sometimes referred to as “K-L distance” but the term is incorrect, because K(f ,g) �=K(g, f ). Rather K(f ,g) should
be considered as a discrepancy of g from f , measured by f .
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Suppose that we have a model M described by an unknown k-dimensional parameter θ and
distribution functions g(y|θM). Letting θ̂M denote the MLE based on data Y , Akaike derived
−2log gM(Y |θ̂M)+2k as an estimator of the minimum value of the index to K-L divergence
consistent with model M. Expressed in bracket notation,

AIC=−2log( [Y |θ̂M M])+2k.

An alternative, preferred for small sample sizes, is

AICc =AIC+ 2k(k +1)

n−k −1
.

Small values of AIC or AICc are taken as evidence of small K-L divergences, hence good
model fit.

These indices, the BIC, the PBF, and Bayes factors are all based on likelihoods L(M,θM)=
[Y |M,θM], which depend on the models M and parameters θM. We wish to compare models
M; the difficulty is that values θM must be specified to make the comparison. Which value
should be used? Bayes factors and the PBF use all possible values of the parameter: model
comparisons are based on the average value of L(M,θM), against distributions representing
our uncertainty about the parameters. The BIC can be interpreted similarly, with the prior
having been chosen implicitly.

Alternatively, BIC (and AIC, and AICc) can be thought of as based on penalized maximum
likelihoods. Instead of averaging L(M,θM) over values of the parameter, we simply choose
the best value of θM for each model (the MLE, θ̂M) and compute maximum values L(M, θ̂M).
Recognizing the tendency for maximum likelihoods to increase with model complexity, we
compensate by comparing scaled versions of the maximum likelihood, the scaling being heav-
iest for models with larger numbers of parameters. On the log scale, this translates to creating
indices of the form

C(M)= log
(
L(M, θ̂M)

)
−g(kM),

where g(k) is an increasing function of k, and kM is the number of parameters in model M.
AIC and BIC are of the form −2C(M), with g(k)= k and (k/2) log(n), respectively. Multiplying
by −2 (as compare the likelihood ratio statistic, Section 7.2.1) has no effect on the use of the
indices, except to reverse the ordering: the best models are the ones with smallest AIC or BIC
values.

Observe that the complexity penalty for BIC depends on the sample size as well as the num-
ber of parameters in the model. This seems sensible, as relating to the tendency for L(M, θ̂M)

to increase with model complexity: the phenomenon is most evident with larger sample sizes.
The penalty for model complexity based on BIC exceeds that for AIC if (k/2) log(n)> k, i.e., if
n≥8. Thus AIC will tend to favor more highly parameterized models than BIC.

Given prior model weights πi we can make use of BIC values and Eqs. (7.12) and (7.18) to
compute approximate model weights, provided the dimension of the model is known, as

[Mi|Y ]≈
exp

(
− 1

2 BICi

)
πi∑

j exp
(
− 1

2 BICj

)
πj

. (7.20)

II. THE BAYESIAN MĀRAMATANGA
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Setting

πi = exp
(
ki ln(n)/2−ki

)∑
j exp

(
kj ln(n)/2−kj

) , (7.21)

and substituting this into the right-hand side of (7.20), one obtains

wi =
exp

(
− 1

2 AICi

)
∑

j exp
(
− 1

2 AICj

) .

These AIC weights (Burnham and Anderson, 2002) are widely used. Burnham and Ander-
son (2004) suggest that (7.20) and (7.21) provide a Bayesian justification for AIC weights. We
question this observation on two grounds: first, that it requires the BIC approximation, which
is itself not strictly Bayesian; second, and more importantly, it involves what is at best an
unconventional set of prior model weights [Eq. (7.21), which Burnham and Anderson (2004)
refer to as a “savvy prior”]. Priors describe what is known in the absence of data; they can be
specified before data are collected. Equation (7.21) says that our prior knowledge depends on
the sample size we will collect.

Nevertheless, Eqs. (7.20) and (7.21) provide a useful basis for evaluating the performance
of AIC or similarly defined AICc weights.11 For instance, if model ki > kj for all j �= i, πi →1 as
n→∞; all of the prior mass is on model i. In Fig. 7.7, we display AICc-based “savvy” prior
model weights for a set of five models having 1, 2, 2, 3, and 4 parameters, based on sample
sizes ranging from 10 to 200. These model dimensions correspond to the trout return data to
be analyzed in Section 7.4.3; note that with n=200, more than 93% of the prior mass is placed
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FIGURE 7.7 AICc-based “savvy” prior weights on a set of five models.

11. AICc results from using πi ∝exp[ki ln(n)/2−nki/(n−ki −1)] in Eq. (7.20).
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on the two most complex models. The trout return data actually consist of 1961 records, for
which the “savvy” prior weights corresponding to AICc are 0.0002, 0.0036, 0.0036, 0.0575, and
0.9351; if these were our prior convictions, there would be little reason to even consider the
three simplest models.

7.4.2 Deviance Information Criteria

One criticism of the AIC is that it is unclear how it should be calculated for mixed-
effects models. In particular, how should one calculate the effective number of parameters k?
A solution that has been proposed for a linear mixed-effects model with just one random effect
and a large sample size by Burnham and Anderson (2002) corrects the parameter count using
linear model theory. Conditional AIC has also been recently proposed for mixed-effects mod-
els (Vaida and Blanchard, 2005) and leads to a calculation similar to the proposal of Burnham
and Anderson (2002) for the case of a model with one random effect. However, as pointed
out by Burnham and Anderson (2002): “A general approach to K-L model selection when the
models include random effects remains elusive.”

The DIC is an information criterion for Bayesian modeling introduced by Spiegelhalter et al.
(2002). The development of DIC was motivated by a desire for an information criterion useful
in a Bayesian setting where prior information was not negligible (cf. BIC), where the model
was not fitted by maximum-likelihood (cf. AIC), and where models are nonnested and data
not independent, such as under hierarchical or time-series models. We have used −2 times
the loglikelihood in describing AIC and BIC; call this the “deviance,” D(θ)=−2log[Y |M,θM].
The DIC is defined as the posterior mean value of the deviance, plus a measure pD of model
complexity:

DIC= D̄(θM)+pD,

where

pD = D̄(θM)−D(θ̄M).

Here D̄(θM) is the average value of the deviance, averaged across the posterior distribution of
the parameters, and D(θ̄M) is the deviance computed at the posterior means of the parameters
for the model.12

7.4.3 Example: Trout Return Rates

We conclude this section by evaluating the performance of AIC, BIC, and DIC with a fully
Bayesian analysis of a sample data set (Link and Barker, 2006). The data are return rates for
brown trout (Salmo trutta) in a spawning tributary of Lake Brunner, on the West Coast of the
South Island, New Zealand. In 1987, 1961 trout were tagged and released. The following year,

12. Although D(θ̄M) is usually computed using the posterior mean, it is sometimes computed using another measure of
central tendency for the posterior distribution such as the posterior mode or median. The quantity pD is usually greater than
zero and is interpreted as the effective number of parameters in the model (Spiegelhalter et al., 2002). Given vague priors,
Gelman et al. (2004) suggest replacing pD with pV =Var(D(θ)|Y)/2, i.e., one half the posterior variance of the deviance. The
latter is much easier to compute, is always nonnegative, is invariant to model reparameterization, and does not require an
arbitrary choice among mean, median and other measures of central tendency.
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TABLE 7.2 Candidate models for trout return
data.

Model 1: logit(πi)=β1

Model 2: logit(πi)=β1 +β2Si

Model 3: logit(πi)=β1 +β3Li

Model 4: logit(πi)=β1 +β2Si +β3Li

Model 5: logit(πi)=β1 +β2Si +β3Li +β4SiLi

94 of the fish were recaptured. Investigators were interested in whether the return probability
was sex- or length-dependent.

Anatural model for the analysis is that the return indicator Yi is a Bernoulli random variable
with probability πi. Letting Si be an indicator of the event that the ith fish is female, and Li be its
length, we consider five candidate models (Table 7.2) for the return rate data: We standardize
the values Si, Li, and SiLi, subtracting their means and dividing by their standard deviations.

Recall that the logit link function maps the interval (0,1) to the entire real line via the trans-
formation logit(π) = log(π/(1−π)). We thus chose mean-zero normal priors for the parameters
βk . The precision of these priors we governed through specification of a global parameter T.
Letting Kj denote the number of βk’s in Model j, we set

Precision(βk|Model j)=
{

KjT,
T,

βk in Model j
otherwise

. (7.22)

This choice requires some explanation!
First, we note the sensitivity of Bayes factors to differing levels of variability in marginal

distributions (cf. Section 7.2.5). To assign equal prior variances to all parameters, independent
of model, would be to prejudice our analysis in favor of less complex models. Some writers
take this as a virtue of BMI, an “automatic” penalty against model complexity. We are skeptical
of automatic procedures, the effects of which may not be readily quantified or consistent across
applications. Penalties for model complexity should be chosen by the analyst and explicitly
incorporated in the choice of prior model weights. Bayes factors, which convert the prior model
weights to posterior model weights, should be as free as possible from prejudices.

Next, note that Eq. (7.22) implies that conditional on Model j, the variances of βk in Model
j are identical, and sum to 1/T, and that this total level of prior variability is constant among
models. Using standardized regressors and with prior mean zero for all βk , we may think of
the prior distribution of a typical value of logit(πi) as approximately normal with mean zero
and precision T, independent of the model. For an objective analysis, it seems reasonable to
choose T =0.40, or (perhaps better) T ∼Ga(3.29,7.80), as these produce prior distributions for
logit(πi) such that πi is approximately uniform on (0,1).

Finally, note that Eq. (7.22) defines prior distributions for βk even when βk is not in Model j.
This specification has no influence on inference, but is needed for MCMC analyses, and can
have an operational effect. For Gibbs sampling, if βk is not in the present model, it must be

II. THE BAYESIAN MĀRAMATANGA
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sampled from its prior; our choice here was intended to encourage reasonably high transition
probabilities between models.

We fit this model by maximum likelihood to calculate AIC and BIC values. Next, we fit the
models, one at a time, using MCMC to compute DIC statistics13 and posterior mean values of
the likelihood used in computing Aitkin’s PBF; chains were of length 100,000 after trimming
10,000.14 Finally we conducted BMI using BUGS reproduced in Panel 7.3; once again, chains
were of length 100,000 after trimming 10,000.

Several features of the BUGS code in Panel 7.3 require comment. First, note that Ind.Arg is an
indicator variable based on the categorical variable Model. Thus for instance Ind.Sex = 1
if and only if Model = 2, 4, or 5. The specification of logit(π) thus includes or excludes (zeros
out) parameter values as appropriate for the present model.

PANEL 7.3 BUGS code for BMI of Trout return data.

model{
for (i in 1:1961){

Returned[i] ˜ dbern(pi[i])
logit(pi[i]) <- constant + Ind.Sex*sex*S[i]

+Ind.Length*length*L[i]
+Ind.SexbyLength*sex.length*SL[i]

}
####################################
T ˜ dgamma(3.29,7.80)
tau.constant <- T*num.par[1,Model]
tau.sex <- T*num.par[2,Model]
tau.length <- T*num.par[3,Model]
tau.sex.length <- T*num.par[4,Model]
constant ˜ dnorm(0,tau.constant)
sex ˜ dnorm(0,tau.sex)
length ˜ dnorm(0,tau.length)
sex.length ˜ dnorm(0,tau.sex.length)
####################################
Model ˜ dcat(p.model[1:5])
for (i in 1:5){

Ind.Model[i] <- equals(Model,i)
}
Ind.Sex <- equals(Model,2)+equals(Model,4)+equals(Model,5)
Ind.Length <- equals(Model,3)+equals(Model,4)+equals(Model,5)
Ind.SexbyLength <- equals(Model,5)

}

13. We computed DIC using pD and Gelman et al. pV; there was very little difference in the results, though (as previously
noted) pV is much more easily computed.
14. The likelihood is proportional to

∏1961
i=1 π

yi
i (1−πi)

1−yi , the product of 1961 numbers 0<πi <1, hence a very small number.

To avoid round off and domain errors, we multiply by
(

1961
94

)
=exp(374.11); we chose this multiplier because there were 94

returns among the 1961 fish. Thus the likelihood was calculated as exp
(
374.11+∑

yi log(πi)+(1−yi) log(1−πi)
)
.
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A 4×5 matrix of values num.par is referenced in the BUGS code of Panel 7.3. This matrix,
entered in the BUGS data statement, is

num.par=

⎡⎢⎢⎣
1 2 2 3 4
1 2 1 3 4
1 1 2 3 4
1 1 1 1 4

⎤⎥⎥⎦ .

Its rows correspond to the four βi, its columns to the five models. Thus num.par[1, 3] =
num.par[3, 3] = 2, because the constant term (parameter β1, row 1) and the length effect (β3,
row 3) are the two parameters of Model 3. This matrix encodes the prior specification given at
Eq. (7.22), which is conditional on Model.

Results of our analyses are summarized in Table 7.3. PBF, AIC, and DIC have implicitly
chosen prior model weights. The PBF, BIC, and BF weights are based on uniform prior model
weights of 20% on each of the five models.

Note that Bayes factors are estimated from MCMC output as

B̂Fi,j =
(

MCMC Frequency Model= i
MCMC Frequency Model= j

)/(
Prior Probability Model= i
Prior Probability Model= j

)
.

As noted previously, the precision of this estimate is greatest when the prior model proba-
bilities have been specified so as to nearly equalize the sampled frequencies for the various
models. One can accomplish this, at least approximately, by several preliminary MCMC runs,
decreasing prior probabilities on models visited too frequently, and increasing prior probabil-
ities on models visited too rarely. We used prior probabilities {0.0015, 0.0653, 0.0267, 0.4226,
0.4839}, and observed Model frequencies {20,088, 19,903, 21,285, 21,739, 16,985} in a Markov
chain of length 100,000. Thus

B̂F1,3 =
(

20,088
21,285

)/(
0.0015
0.0267

)
=16.80.

This is the same as the ratio of BF weights (0.9185/0.0547) from Table 7.3, because those weights
were based on uniform prior model weights.

TABLE 7.3 Model weights for Lake Brunner trout
return-rate data, calculated based on Aitkin’s PBF, AIC,
DIC, and BIC weights, and Bayes factors obtained by mul-
timodel Markov chain simulation (BF).

Model weights

Model PBF AIC DIC BIC BF

1. Constant 0.07 0.25 0.25 0.9197 0.9185

2. Sex 0.05 0.10 0.09 0.0217 0.0209

3. Length 0.14 0.26 0.26 0.0571 0.0547

4. Sex + length 0.10 0.09 0.09 0.0013 0.0035

5. Sex × length 0.62 0.30 0.31 0.0002 0.0024

II. THE BAYESIAN MĀRAMATANGA
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TABLE 7.4 Model (j), BF1,j = Bayes factor for comparing models 1 and j, four
prior model weights (KL corresponding to AIC, Comp = “complexity” weights
∝ exp(k) favoring complex models, Const = uniform prior model weights, Ock =
“Ockham” with weights ∝ exp(−k) favoring parsimony), and resulting posteriors
(priors weighted by BF1,j).

Prior weights Posterior weights

j BF1,j KL Comp Const Ock KL Comp Const Ock

1 1.00 0.000 0.030 0.200 0.521 0.068 0.767 0.918 0.970

2 43.94 0.004 0.080 0.200 0.191 0.025 0.047 0.021 0.008

3 16.80 0.004 0.080 0.200 0.191 0.066 0.124 0.055 0.021

4 260.34 0.057 0.218 0.200 0.071 0.069 0.022 0.004 0.001

5 381.54 0.935 0.592 0.200 0.026 0.772 0.040 0.002 0.000

Several features of Table 7.3 are noteworthy. First, that AIC and DIC weights nearly coincide,
as do BIC and BF weights. Thus if maximum likelihood estimation is difficult, DIC provides
an MCMC-based alternative that produces similar results. On the other hand, if maximum
likelihood estimation is easily implemented, and the priors on parameters are vague, use of
the BIC provides a simple alternative to the computational challenges associated with Bayes
factors, and similar results. The difference between AIC and DIC, on the one hand, and BIC
and BF on the other, can be explained in terms of the implicit K-L priors [Eq. (7.21)] described
in Section 7.4.1: AIC favors more highly parameterized models, and more emphatically so as
sample size increases. The PBF favors more highly parameterized models, but for a different
reason, namely its use of a highly informative “prior” on parameters.

Our view is that if model complexity is to be taken into account, it should be done explic-
itly in the selection of prior model weights. In Link and Barker (2006), we suggested prior
model weights proportional to exp(k) as favoring complex models and exp(−k) as favoring
parsimony. We compare these and the K-L weights ∝exp

(
k log(n)/2−k

)
in Table 7.4, using

Bayes factors to compute posterior model weights. The Bayes factors are such that, even with
the Complexity weight prior, Model 1 has the greatest posterior probability. It is only with the
extremely prejudicial K-L prior that the most highly parameterized model is favored.

7.5 AFTERWORD

MMI is Difficult

When we first set out to write this book, we were inclined to duck the issue of multimodel
inference entirely, thinking it to be an intellectual morass, a tar-baby we were not inclined to
embrace. We are not the only ones to feel some reluctance on the topic. Consulting the first
edition of the text by Gelman et al. (1995) on Bayesian methods, one finds in the index “model
selection: why we do not do it.” But that position is not sustainable. Consulting the second
edition (Gelman et al., 2004), one finds “model selection, why we avoid it”.
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Multimodel inference is difficult, no matter whether one is Bayesian or frequentist. And
why shouldn’t it be? Choosing among models is central to science and it would be naive to
think that the process could be automated, that all we need to do is collect data, gobs of it, and
let our information criteria sort through it.

Use and Abuse

Model selection techniques and model averaging are well-suited to cases where there are a
small number of distinct and carefully thought out model choices available. We regard model
selection as appropriate for identification of parsimonious models when there are large num-
bers of possible nuisance parameters (e.g., in mark-recapture modeling) and less appropriate
for making inference about large numbers of alternative biological processes.

Model selection and model averaging techniques are not well-suited to cases where there
may be hundreds or thousands of models to choose from. Model selection from a very large
class of potential models has an obvious flaw, the heavy dilution of data. The more parameters
there are to estimate, the more data that is needed, period.

An important issue in multimodel inference is the need to account correctly for model uncer-
tainty. Where a model has been selected as part of data analysis, estimation and predictions
should be less precise, since part of the evidence is “spent” specifying the model (Leamer,
1978 and Chatfield, 1995). If one selects a single model, it is important to at least note when
inference is conditional on that model; it is better to use model averaging to account for this
uncertainty, and mathematically cleanest to do so in the BMI framework.

Repeat Analyses

It is important to distinguish the evaluation of hypotheses from the generation of hypothe-
ses. Given a treasured data set, it is tempting to milk it for all it’s worth. Although there is
nothing virtuous in not having a good look for patterns in our data, we really must distinguish
evaluation of patterns posited a priori from patterns that seem to emerge after the fact. To do
otherwise is to risk reporting ephemera as facts.

Good science requires the replication of studies in time and space. When we see data that
are in accord with predictions we gain confidence in our models. Newtonian gravitational
theory is widely accepted not because of its beautiful calculus, but because its predictions are
consistent with everyday observation; high school physics students around the world daily
corroborate its usefulness.15 Unfortunately, many ecological studies involving model selection
are never repeated to see whether predictions are borne out. If a study is not worth repeating
it might not be worth doing.

Model Averaging

A good historical treatment of model averaging, and Bayesian model averaging in particu-
lar, is given in Hoeting et al. (1999). BMI provides a formal justification for the sort of model
averaging attempted by Buckland et al. (1997) [Eq. (7.1)] without the need to resort to adhock-
eries in evaluating the precision of such estimates. Where there is a parameter (or, better,

15. On the other hand, cosmologists routinely account for inadequacies in Newton’s theory.
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a prediction) � common to all models, one may simply compute its marginal distribution
across models, as

[�|Y]=
K∑

k=1

[�|Mk ,Y][Mk|Y],

where [�|Mk ,Y] is the posterior distribution of � under model k, and [Mk|Y] is the posterior
model weight for model Mk . Thus, inferences are averaged across the model set so as to ensure
that each model contributes in proportion to its relative support by the data. As a case in
point, we refer to the calculations of posterior means under the Poisson/geometric analysis in
Section 7.3.1.

When considering model averaging, it is important to decide whether averaging actu-
ally makes sense for the quantities of interest. For example, if a model set includes an
unbounded exponential growth model, and a Gompertz model with a finite carrying capacity,
and these have posterior probabilities of 0.001 and 0.999, it makes no sense to estimate carrying
capacity as

0.001×∞+0.999×(whatever).

While nobody would do that (we hope), we have come across model averaged estimates of
regression coefficients, which can have entirely different meanings under distinct models.
Scale also matters: the average of φ1 =0.65 and φ2 =0.95 is 0.80 but the average of logit(0.65)

and logit(0.95) is 1.78 which is logit(0.86).

Complexity and AIC’s Prejudice

How should the varying complexity of our models influence the choice of prior model
weights? This is a philosophical issue, rather than a mathematical one. Ockham’s razor is
usually paraphrased as “we should use the simplest model that fits the facts.” But does this
mean that we should favor simple models a priori? No: we cannot forget the requirement that
the model fit the facts. Similarly, we should not favor complexity a priori, because the addition
of irrelevant parameters to a model automatically increases complexity. Fisher (1925a) argued
that we should adopt an initial position that favors simple models and only increase the
complexity of a model when there is strong support from the data for increased complexity.
Whatever the position one adopts on the virtue of simplicity, we believe that this position
should be represented by explicit model priors. Thus, we would argue against the automatic
use of AIC weights on the basis of their implicit use of the K-L prior [Eq. (7.21)]. Although the
K-L prior might serve a useful purpose in guiding choice of prior model weights, the scientist
ought at least to work out the values in advance, and see whether they appear reasonable. Their
dependence on n and the tendency to highly favor model complexity are, to us, disconcerting
features. The weighted BIC [Eq. (7.20)] is no more difficult to calculate thanAIC or DIC weights,
and has the benefit of forcing the scientist to specify prior model weights, rather than to accept
default (and perhaps unreasonable) weights associated with AIC and DIC.
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One of the most appealing features of Bayesian analysis is the ease with which hierarchical
models are handled.

Hierarchical models are richly structured, with multiple levels of stochasticity. Stochastic
modeling extends beyond description of data as sampled from fixed distributions, to descrip-
tions of the parameters governing those distributions. Thus, conventional modeling might use
data to estimate a set of time-indexed parameters θ1,θ2, . . . ,θT ; hierarchical modeling allows
the investigation of stochastic structure among the θt. We need not impose a deterministic rela-
tion among the parameters, such as θt = a+bt. We need not estimate θt as though they were
unrelated quantities, and then seek to uncover pattern among the estimates θ̂t, struggling
to distinguish between variation among the parameters θt and scientifically irrelevant sam-
pling variation of their estimates θ̂t. Rather, hierarchical modeling allows us to posit stochastic
structure among parameters, for example, θt = a+bt+εt, where εt are iid N(0,σ2) random
variables, and to investigate that structure directly from observed data.

Hierarchical models arise in a variety of contexts and have many uses. They can be
used as a device for introducing parsimony when there are many nuisance parameters in
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a regression model; they can be used in studies with multiple levels of variation (e.g., a split-
plot experimental design); they can be used when a response variable is not fully observed;
they can be used to describe latent variables.

In this chapter, we investigate “hidden data models” – hierarchical models which begin
with descriptions of an ideal data set, which (borrowing a phrase from Draper, 1995) con-
sists of “the data we wish we had.” We then go on to describe the processes by which
those data are corrupted into the data we actually observe. Our focus is on computational
and inferential benefits associated with identifying this structure. We begin by comparing
complete data likelihoods (CDL’s) with observed data likelihoods (ODL’s) typically used in
frequentist analyses. CDL’s are based on the “the data we wish we had”; they are much
more easily specified than ODL’s but result in the same inference as the conventional ODL’s.
“Data augmentation” is the process of specifying a CDL consistent with a particular ODL,
a process that can have substantial computational benefits. These matters are introduced
in Section 8.1.

Next, we consider a randomized response data set, investigating the misdeeds of a sample
of our ecological colleagues (Section 8.2). These data have several features common to
ecological data and provide a simple illustration of the use of CDL’s rather than ODL’s.

In Sections 8.3–8.5, we describe occupancy models, distance sampling models, and finite
population sample survey models. These models, typically viewed as completely distinct, will
be seen to share remarkably similar structure among themselves, and with the randomized
response data. Each involves corrupted or hidden data; in each case, modeling begins with
a description of ‘the data we wish we had’; in each case, Bayesian analysis based on a CDL
is a simple matter.

8.1 COMPLETE DATA LIKELIHOOD

Generally speaking, statistical inference begins with specification of a data distribution
[Y |θ] describing the probability of data Y in terms of unknown parameters θ. Viewed as a data
distribution, [Y |θ] is a function of variable Y and θ is a fixed quantity. Given data, we may
wish to treat [Y |θ] as a function of varying θ with Y fixed; we compare values of [Y |θ] for
different θ to measure the relative support provided by the data to each θ. In this context, we
write

L(θ|Y )= k [Y |θ],

with k an arbitrary constant, and refer to L(θ|Y ) as a likelihood function (see Section 3.1 for
more details).

It is often the case that the data we get to see are a subset of the data we wish we had. That
is, we can partition Y as Y ={Yobs,Ymis}, where superscripts obs and mis denote ‘observed’
and ‘missing,’ respectively. Many classical statistical methods begin with specifying models
for the complete data Y , computing the implied data distribution for the observed portion of
the data, and using this as the basis of an ODL. The process involves integrating or summing
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over possible values of the unobserved data to obtain an observed data distribution

[Yobs|θ]=
∫

[Yobs,Ymis|θ]dYmis. (8.1)

The resulting likelihood L(θ|Yobs)= k [Yobs|θ] is the ODL.
An alternative approach is to treat the unobserved Ymis in [Yobs,Ymis|θ] exactly as we treat

parameters θ. That is, we can treat Yobs as fixed, and compare the support for various values
of Ymis and θ. Thus, we define a CDL as

L(θ,Ymis|Yobs) ∝ [Yobs,Ymis|θ].
There are a number of benefits to using CDL’s rather than ODL’s. First, the ODL can be a much
more complicated function of parameters than the CDL. Second, use of the CDL provides a
natural framework for prediction of unobserved quantities; describing missing data in terms
of CDL’s also tends to clarify assumptions required for predictions. CDL’s are sometimes used
in frequentist analyses (e.g., the EM algorithm, Dempster et al., 1977). However, they are much
more naturally and easily handled under the Bayesian paradigm, in which all unobserved
quantities – be they parameters, predictions, missing values, whatever − all are treated equally
(Section 5.1).

Before presenting examples, we take a moment to mention data augmentation, a concept
closely related to that of CDL’s, and one which users of Bayesian methods are likely to
encounter. Data augmentation consists of expanding a model for observed data in terms of
unobserved structures, usually with the goal of creating computational efficiencies. The aug-
mented model includes a data distribution for observed data and the unobserved structures;
integrating over values of the augmenting variables produces the ODL, as in Eq. (8.1). An
example of data augmentation is found in Section 8.4.

8.2 RANDOMIZED RESPONSE DATA

One of our favorite demonstrations of the difference between ODLs and CDLs involves
data from a randomized response survey. Randomized response surveys are used to estimate
population rates of stigmatized behaviors, without requiring specific information about indi-
viduals surveyed. Such surveys were first described by Warner (1965), who begins thus:

“For reasons of modesty, fear of being thought bigoted, or merely a reluctance to confide secrets to strangers,
many individuals attempt to evade certain questions put to them by interviewers . . . either refusing outright
to be surveyed, or consenting to be surveyed but purposely providing wrong answers . . . The questions that
people tend to evade are the questions which demand answers that are too revealing.”

Warner (1965) provided a clever solution. His technique has been applied in studies of
alcohol use and abuse, smoking, abortion, academic cheating, criminal recidivism, sexual
habits, and regulatory compliance (ranging from payment of taxes to obedience to fishing
regulations). Brewer (1981) reports on its use by the Australian Bureau of Statistics, acting
on behalf of the South Australian Royal Commission, in an investigation of marijuana use in
Canberra.
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Teaching a workshop for some of our colleagues − details of time and place suppressed,
to protect the innocent − we wondered whether any of them might have ever engaged in
Behavior X.1 So we gathered some data.

We could not directly ask the question of interest because our colleagues may have
been reluctant to own up to Behavior X. Instead, participants were asked to first toss a coin,
without informing us of the outcome. They were asked to respond “Yes” if they had X’ed or if
their coin came up heads. Those whose coin came up tails and who had not X’ed were asked
to respond “No.”

In this survey design, the data are deliberately confounded with the outcome of the coin toss
in order to ensure that it is impossible to tell whether a person answering “Yes,” responded
positively because they had X’ed or whether it was because they obtained “Heads” on the
coin flip. Despite this confounding, we can still make inference about the rate of Behavior X in
the population and in our study group, modeling the confounding process using a binomial
distribution.

It is easy to see how the probability of Behavior X can be estimated by considering a 2×2
table for the possible outcomes. Letting p denote the probability of Behavior X, and π denote
the probability associated with the randomizing mechanism, and assuming the two events
are independent, we calculate probabilities of four outcomes in Table 8.1.2 In our randomized
response data, three of the four outcomes (Heads and Behavior X, Tails and Behavior X, and
Heads and no Behavior X) are all subsumed into the one response “Yes.” The probability that
a person answers “Yes” is θ =π+(1−π)p ; the probability of “No” is (1−π)(1−p).

We can solve θ for p , obtaining p= (θ−π)/(1−π). Letting x denote the number respond-
ing “Yes” in a sample of n individuals, the maximum likelihood estimator (MLE) of θ is
θ̂ =x/n. Thus, given that θ̂ ≥π, it follows from the invariance property of maximum likelihood

TABLE 8.1 Cell and margin probabilities
for the 2×2 table of possible outcomes in the
randomized-response to the Behavior X question.

Behavior X

Yes No

Heads πp π(1−p) π

Tails (1−π)p (1−π)(1−p) 1−π

p (1−p)

Parameter π is the probability that the coin comes
up Heads and p is the probability of Behavior X.
Shaded cells correspond to response “Yes” in
randomized-response survey, and have total
probability θ =π+(1−π)p.

1. We can’t say what it was. Readers are asked to use their imagination.
2. We shall assume the coins flipped to be fair, hence π=1/2. Randomization schemes could use alternative mechanisms,
leading to alternative values of π; the important feature is that π is known.
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estimation that the MLE of p is

p̂= θ̂−π

1−π
= x−nπ

n(1−π)
.

If θ̂ <π, that is, if there are fewer positive responses than attributable to the randomizing event,
the MLE of p is 0.3

From a modeling point of view it is instructive to think of how we would simulate the data.
First, we would need to assign each subject a Behavior X status, using an indicator variable Di
for individual i. The next step would be to simulate the outcome of the individual’s coin flip,
with indicator variable Ci for the outcome “Heads.” Because of the randomized response both
Di and Ci are latent variables, meaning they are potentially unobservable. What we always
observe, however, is a variable Yi which equals 0 if person i obtained tails and had never X’ed.
Otherwise, Yi is 1. We can write Yi as a function of Di and Ci, namely

Yi =1−(1−Di)(1−Ci). (8.2)

If our n individuals can be regarded as a random sample from a large population, a reason-
able way to simulate a value for Di is to generate a Bernoulli random variable with success
parameter p. Having simulated values for Di, we next draw values Ci from a Bernoulli distri-
bution with success parameter π. The observed variables Yi are then constructed from Di and
Ci as in Eq. (8.2).

We represent this process using the directed acyclic graph (DAG) in Fig. 8.1. DAG’s are an
intuitive means for depicting relationships among quantities in hierarchical models. Single
arrows denote stochastic dependencies (e.g., Bernoulli trials D have probability distributions
depending on success parameters p) while double arrows denote deterministic relationships
(e.g., Y is exactly calculated from D and C). The independence of D and C is indicated by the
absence of shared stochastic dependencies. The DAG is directed: we write p →D because our
model will describe the relation between p and D in terms of [D|p ] rather than the other way
around. The DAG is acyclic in that we avoid model specifications of the form X →Y →Z→X
which cycle back on themselves, and might wind up describing models that do not make
sense.4

Y

D C

p � FIGURE 8.1 Directed acyclic graph (DAG) representation of the complete data likelihood
for the Behavior X example.

3. The MLE is biased because of the truncation. Warner (1965) describes the estimator as unbiased, but the result requires the
acceptance of negative estimates.
4. For example, [X|Y]=N(Y,1) and [Y|X]=N(X,1) might seem a reasonable model specification, but there is no joint prob-
ability distribution on {X,Y}, which yields these conditional distributions.
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In this particular problem, the variables C and D are partially observed through Y. For cases
where Yi =0, we know that Ci =Di =0. If we use the superscript obs to denote observed values
and mis to denote missing values, we can write the CDL as:

L(p,Cmis,Dmis|Y)∝[Y ,C,D|p ]

=
n∏

i=1

I(Yi,Ci,Di)×[C ] [D|p ]

=
n∏

i=1

I(Yi,Ci,Di)×πCi(1−π)1−Ci ×pDi(1−p)1−Di .

Here, I(Yi,Ci,Di) is an indicator for the defining relationship given in Eq. (8.2). Thus,
I(Yi,Ci,Di)=1 if either (1) Yi =1 and {Ci,Di} �= {0,0} or (2) Yi =0, Ci =0, and Di =0. Other-
wise I(Yi,Ci,Di)=0. The role of this indicator function is to enforce constraints that the data
impose on allowable values for Ci and Di, and in particular that we cannot have Yi =1, Ci =0,
and Di =0. This constraint defines the role of the observed data (Y) in providing information
about p in the CDL.

As a problem in Bayesian inference, we require the posterior distributions of all unknown
quantities. This is proportional to the CDL multiplied by the joint prior on unknown parame-
ters. If we also use a Be(α,β) prior for p , then

[
p ,Cmis,Dmis∣∣Y] ∝

{ n∏
i=1

{
I(Yi,Ci,Di)

}{
πCi(1−π)1−Ci

}{
pDi(1−p)1−Di

}}
× pα−1(1−p)β−1.

(8.3)

8.2.1 Calculating Posterior Distributions

For inference about p, we can proceed in a number of ways. One approach is to try to find
an explicit expression for the density [p |Y]. Formally, we integrate (in this case sum) over the
possible values for the latent variables Ci and Di in Eq. (8.3). We spare the reader the ugly
details, noting only that the result is the same as obtained by first computing the ODL based
on Table 8.1, then multiplying by the prior for p .

We will follow that easier course. The values Yi are exchangeable (conditionally inde-
pendent) Bernoulli trials. Examining Table 8.1, we see that θ ≡Pr(Yi =1)=π+(1−π)p ; thus,
X =∑n

i=1 Yi is a binomial random variable with index n and success rate θ. The ODL is thus
L(p|Y )∝ θX(1−θ)(n−X). Multiplying by the prior for p, we have

[p |Y] ∝ (π+(1−π)p)X((1−π)(1−p))n−X ×pα−1(1−p)β−1. (8.4)

The posterior density for p does not exist in closed-form for arbitrary α and β. While it is
possible to find the required normalizing constant using software like R, an easier solution is
desirable. Nevertheless, we have done so for two priors, graphing the densities in Fig. 8.2.

Analysis of the Behavior X data is made much easier through Markov chain Monte Carlo
(MCMC). We present three different approaches, based on the CDL, the ODL, and a partially
integrated version of the CDL.
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p

Be (1, 1)

Be (1/2, 1/2)

FIGURE 8.2 Posterior density for p in
the Behavior X example for X =22 and
n=23, with a Be(1,1) (solid line) and
Be(1/2,1/2) prior on p.

MCMC Based on CDL Using BUGS

For posterior summary, it is easy to fit the model in BUGS, using the code in Panel 8.1. An
interesting feature of the code is that we have modeled Yi as a Bernoulli random variable with
parameter alpha[i]=1-(1-D[i])(1-C[i]). Given that Yi is a deterministic function
of Ci and Di (as indicated in Fig. 8.1) this coding is perhaps counterintuitive. Given also
that alpha[i] is always either 0 or 1, so that Yi ≡ alpha[i], the coding might seem
unnecessarily complicated. However, specification of Yi as stochastic in the BUGS code ensures
that the likelihood is a function of the observed variable Yi through the indicator function
I(Yi,Ci,Di).5

We generated a Markov chain posterior sample of size one million, using program BUGS
and the code in Panel 8.1. Discarding the first 10,000 values as a burn-in, we conclude that
there is a 95% chance that the parameter p lies between 0.58 and 0.98. This result was obtained
using a Be(1,1) prior. Using Jeffrey’s prior, the Be(1/2,1/2) distribution, the interval is (0.62,
0.99). These results agree with analytical calculations summarized in Fig. 8.2.

As is evident in Fig. 8.2, there is some sensitivity to the choice of prior. The explanation is
that the observed value X =22 suggests a value of p close to 1. Inference about a parameter
that lies near the boundary of its allowable range is a difficult statistical problem. In frequen-
tist inference, estimation of parameters near boundaries requires very large sample sizes for
asymptotic results to apply.

For estimation of the binomial success rate θ =π+(1−π)p , it is commonly said that asymp-
totic results based on the standard normal distribution can be trusted provided that nθ =E[X]
and n(1−θ)=E[n−X] both exceed 5. Without endorsing this claim, we note that n−X =1

5. To have instead written Y[i] <- 1-(1-D[i])*(1-C[i]) would have generated an error message, stating that Y[i]
were defined twice, that is, once in the data statement, and once as functions of independently generated D[i] and C[i].
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PANEL 8.1 BUGS code for the randomized-response model of Behavior X data, based on complete data
likelihood.

model{
for(i in 1:23){

D[i] ˜ dbern(p)
C[i] ˜ dbern(pi)
alpha[i] <- 1-(1-D[i])*(1-C[i])
Y[i] ˜ dbern(alpha[i])

}
p ˜ dbeta(1,1)
pi <- 1/2
Xers <- sum(D[1:23])

}

Data
list(C=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,0), D=c(NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0),
Y=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0))

suggests that n(1−θ) is well below 5, so that we should not trust asymptotic results. In fact,
if we calculate the usual asymptotic confidence interval (CI) θ̂ ±zSE(θ̂), we obtain the 95% CI
(0.87,1.04) which is not satisfactory as it extends beyond the boundary of 1. As an alternative
frequentist procedure, we could compute an “exact” 95% CI obtaining (0.78, 1.00) leading to
a CI for p of (0.56, 1.00). However, this CI has the unsatisfactory property of being conserva-
tive, in the sense that its coverage rate can be well above 95% depending on the true value
for p.6

The Bayesian analysis of these data does not rely on asymptotic approximations. However,
to conduct Bayesian inference we need to specify a prior for p, and due to the small sample
size there is some sensitivity to the choice.

A useful feature of modeling using the CDL is that posterior prediction is straightforward.
For example, we can predict whether a person responding “Yes” had ever X’ed by monitoring
corresponding values Di. We can similarly predict the outcome of their coin toss, although this
is not of any particular interest.

Using the Be(1,1) prior for p, 909348 of the million values for D1 were 1; the posterior
probability that individual 1 had engaged in Behavior X is 0.91 under this prior. Since there
are no covariates, this posterior probability is the same for any person who responded “Yes”
in the randomized experiment. Similarly, 545293 of the million values for C1 were 1, so the
posterior probability that an individual flipped “Heads” on their coin toss given that they
responded “Yes” is just 0.55. For Jeffrey’s prior, these probabilities were only slightly changed
to 0.93 and 0.54.

The parameter p describes a hypothetical infinite population from which our 23 individuals
were sampled. Alternatively, we might interpret p as an a priori probability of Behavior X, the

6. For details on exact frequentist CI, see Section 3.2.
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FIGURE 8.3 Posterior probabilities for∑23
i=1 Di in Behavior X data.

value we would use to describe a 24th individual who was absent from the room, when the data
were collected. As such, it is to be distinguished from the proportion of individuals among the
23 who had X’ed. This latter quantity,

∑23
i=1 Di/23, could be used as an estimate of p but is not

p itself. However, we might be interested in the number of individuals among our 23 that had
X’ed. Use of the CDL makes inference about

∑23
i=1 Di a trivially simple matter. In our BUGS

code (Panel 8.1), we simply defined a derived parameter for the sum; we obtain a sample
of its posterior distribution with no additional effort. Posterior probabilities are plotted in
Fig. 8.3; in particular, we conclude with 98% confidence that at least 15 of the 23 had engaged
in Behavior X. However, the posterior probability on 23 is 0; our experimental design allowed
us to conclude with certainty that one person had not X’ed.7

MCMC Based on ODL Using BUGS

The foregoing analyses in BUGS were based on the CDL. For this particular problem, the
analysis could just as easily have been based on the ODL (Eq. 8.4), and coded for BUGS as in
Panel 8.2.

Here the terms gamma[1] and gamma[2] are used for computing the posterior densities
for the probability that a person has engaged in Behavior X, given that they responded “Yes”
(γ1) and for the probability that they obtained heads given that they reported obtaining heads
(γ2). By inspection of Table 8.1, it is clear that γ1 =p/θ, and that γ2 =π/θ. These are functions
of p, derived parameters, hence samples of their posterior distributions are readily obtained
from posterior samples for p.

7. That is, provided that the individual reporting “No,” was honest. The odds of Behavior X are doubled by a positive
response in the randomized experiment; it is conceivable that a participant might have intuited (or calculated) this
change in odds and been inclined to dishonestly respond “No”. However, it occurred to us subsequently that given the
crowd we were sampling, there might have been a stigma associated with a negative response. Both responses could
be randomized by asking participants to flip a coin twice, responding “Yes” if they flipped heads twice, “No” if they
flipped tails twice, and honestly otherwise.
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PANEL 8.2 BUGS code for the randomized-response model of Behavior X data, based on observed data
likelihood.

model{
X ˜ dbin(theta,n)
theta <- pi+p*(1-pi)
p ˜ dbeta(1,1)
gamma[1] <- p/theta
gamma[2] <- pi/theta
pi <- 1/2

}

Data
list(n=23, X=22)

Note that our analysis based on the ODLdoes not include nodes Di for individual Behavior X
status. However, we can make use of the posterior samples generated to calculate the posterior
predictive distribution for Di, and thus calculate Pr(Di =1|Yi =1). We have

Pr(Di =1|Yi =1)=
∫

γ1

Pr(Di =1|Yi =1,γ1)×[γ1|Data]dγ1

=
∫

γ1

γ1 ×[γ1|Data]dγ1

=E [γ1|Data].

Similarly,

Pr(Ci =1|Yi =1)=E [γ2|Data].

These probabilities are calculated as the means of the Markov chains generated for γ1 and γ2.

MCMC Based on Partially Integrated CDL Using BUGS

Another approach is to model in terms of a partially integrated CDL in which latent variables
that are a nuisance aspect to the model (in this case Ci) are integrated out. This leads to the
BUGS code in Panel 8.3.

Here Yi is modeled stochastically, as alpha[i] either takes the value 1 if the person has
X’ed or π=0.5 if they have not. Formally, we are obtaining Pr(Report “Yes” |D) by summing
across the possible outcomes for the coin toss:

Pr(Yi =1|Di)=Pr(Yi =1|Di,Ci =0)Pr(Ci =0)

+Pr(Yi =1|Di,Ci =1)Pr(Ci =1),

which can be shown to equal π if D=0, and 1 if D=1, hence in general is π(1−D)+D.
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PANEL 8.3 BUGS code for the randomized-response model of Behavior X data, with Di (but not Ci) included
as a latent variable.

model{
for(i in 1:23){

D[i] ˜ dbern(p)
alpha[i] <- D[i]+pi*(1-D[i])
Y[i] ˜ dbern(alpha[i])

}
pi <- 1/2
p ˜ dbeta(1,1)

}

Data
list(D=c(NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0),
Y=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0))

Coding a Gibbs Sampler

We have, so far, described four different analyses of the Behavior X data. First, one could
describe the posterior distribution for p as proportional to the product of the ODL L(p|Y)

and the prior [p ], calculating the normalizing constant necessary for inference by numerical
integration. Next, we suggested use of MCMC based on the CDL, using BUGS code given
in Panel 8.1. Our third and fourth analyses used MCMC based on the ODL (Panel 8.2) and
MCMC based on a partially integrated CDL (Panel 8.3).

In this section, we present one final approach to analysis of the data, based on explicit
formulation of a Gibbs sampling scheme using the CDL. We include this section to highlight
the equivalence, under the Bayesian māramatanga, of latent variables and parameters; also,
to encourage our readers in understanding the Gibbs sampler. While the use of BUGS makes
fitting Bayesian models easy, there is nothing like writing one’s own code to build intuition for
MCMC. The present analysis is a good simple example, and easily implemented in a program
like R.8

Recall (Section 4.3.4) that Gibbs sampling is cyclical sampling of full conditional distri-
butions. Given a set of unknowns θ = (θ1,θ2, . . . ,θk)

′ and data X , the full conditional for θi
is the distribution proportional to [X|θ] [θ] with fixed values of θj for all j �= i; it is denoted
[θi|· ]. Gibbs sampling consists of sequentially updating values θi by sampling from their full
conditionals.

The complete data for the Behavior X study consist of three vectors of length n=23, namely
Y , C, and D. Components of the vectors are Ci, an indicator that the ith individual flipped
“Heads”; Di, an indicator that the individual had X’ed; and Yi =1−(1−Ci)(1−Di), the indi-
cator of response “Yes” in our randomized-response survey. All of the values Yi are observed,
but none of the Ci or Di are directly observed. We can deduce C23 =D23 =0 because Y23 =0,
but Yi =1 for i �=23, hence the corresponding values Ci and Di are unknown. We must include
such Ci and Di in our Gibbs sampler.

8. Program R has the benefits of being free, widely used, and well-documented on the web.
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The requisite full conditional distributions of Ci and Di are readily obtained by inspection
of Table 8.1. Calculation of [Ci|· ] conditions on all of the values Y , C, and D except Ci. Because
of independence assumptions, none of these matter except Di and Yi. We have

Pr(Ci = c |Di =1,Yi =1,π)=πc(1−π)(1−c)

and Pr(Ci = c |Di =0,Yi =1,π)= c,

for c =0,1. These can be summarized by saying that the full conditional distribution of Ci is
Bernoulli, with rate parameter Di π+(1−Di).

Similarly, the full conditional distribution [Di|· ] depends only on Ci, Yi, and p. We have

Pr(Di =d |Ci =1,Yi =1,p)=pd(1−p)(1−d )

and Pr(Di =d |Ci =0,Yi =1,p)=d,

for d =0,1. These are summarized by saying that the full conditional distribution of Di is
Bernoulli, with rate parameter Ci p+(1−Ci).

Finally, the full conditional distribution [p |· ] is determined by the collection of values Di,
and the Be(α,β) prior for p. Because the values Di are Bernoulli trials, their sum is a binomial
random variable and conjugate to the beta prior. Thus the full conditional distribution [p |· ] is
Be
(
α+∑n

i=1 Di,β+n−∑n
i=1 Di

)
.

We may thus describe a Gibbs sampler as follows:

Step 1: Initialize C(1)
i =0 and D(1)

i =1 for i =1,2, . . . ,22. (These 22 are the unknown values,
with Yi =1; the choice of initial values is arbitrary but must be consistent with Yi =1).
Initialize p(1) ∈ (0,1). Superscripts ( j) will denote sequence number in the Markov chain
of values produced.

Step 2: For i =1,2, . . . ,22, generate C( j)
i as Bernoulli trials with success parameters D( j−1)

i π+
(1−D( j−1)).

Step 3: For i =1,2, . . . ,22, generate D( j)
i as Bernoulli trials with success parameters C( j)

i p( j−1) +
(1−C( j)).

Step 4: Generate p( j) ∼Be
(
α+∑n

i=1 D( j)
i ,β+n−∑n

i=1 D( j)
i

)
.

Step 5: Repeat Steps 2 to 4 for j =1,2, . . .

We encourage readers to try coding this Gibbs sampling algorithm in R, or some other
programming language. Alternatively BUGS can be used as a simulator, and the analysis con-
ducted using full conditional distributions, as in Panel 8.4. Having specified the full conditional
distributions, there is no data statement; the observed data Y are there only implicitly, having
been used in defining the full conditionals, in combination with a Be(1,1) prior for p.

8.2.2 Remarks

In this example, the confounding of responses is a deliberate data collection device. Through
the coin toss, the data of interest, the Di have been “corrupted” into the Yi. Thus, the Di are now
latent. Our judicious choice of data corruption mechanism allows us to make inference about
the probability p despite not observing the Di. In many ways, the randomized-response survey
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PANEL 8.4 BUGS code for the randomized-response model of Behavior X data, based on full conditional
distributions from complete data likelihood.

model{
for (i in 1:22){

success.c[i] <- D[i]*pi+(1-D[i])
success.d[i] <- C[i]*p+(1-C[i])
C[i] ˜ dbern(success.c[i])
D[i] ˜ dbern(success.d[i])

}
Xers <- sum(D[1:22])
alpha.fc <- 1+Xers
beta.fc <- 1+23-Xers
p ˜ dbeta(alpha.fc,beta.fc)
pi <- 1/2

}

Y

D C

p �

Z � FIGURE 8.4 Directed acyclic graph (DAG) representation of the complete data like-
lihood for the Behavior X example where the probability of prior Behavior X is modeled
using a logistic regression on covariates Z.

serves as a canonical example of a corrupted data problem in which inference is facilitated,
though expressing the problem in terms of a hierarchical model.

Biological data often have a similar element of confounding. The difference, however, is
that with field data the confounding mechanism has been chosen by nature rather than the
researcher. As a consequence, careful thought must be given to the processes that gave rise to
the data. Hierarchical models facilitate this thinking by clearly separating processes involved
in generating the latent variable of interest from processes that lead to corruption of the data.
Having identified a data corruption model, researchers are free to concentrate on modeling
the latent variable. This approach we refer to as “modeling the data you wish you had.” That
is, we model in terms of latent variables of interest.

For example, suppose we had a covariate vector, Zi, recorded for each person that we
believe might be relevant in determining whether or not they have engaged in behavior X.
Covariates might include age, sex, music preferences, and so forth. If we had such informa-
tion it would be natural to model Di using logistic regression on Zi. Although the Di are
latent, it is straightforward to extend the model so that instead of Di being modeled as a
Bernoulli random variable with parameter p, we model it as Bernoulli with individual specific
parameter pi, where logit(pi)=Z′

iβ, where parameter vector β consists of regression coefficients
(Fig. 8.4). The additional model structure would require only slight modifications to the BUGS
code in Panel 8.1.
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8.3 OCCUPANCY MODELS AS HIERARCHICAL LOGISTIC
REGRESSIONS

The occupancy models considered by MacKenzie et al. (2002) address a class of corrupted
data problems of special interest to ecologists. The basic problem is to model presence or
absence of one or more species in an area, when detection methods are imperfect.

We begin by considering data for a single species. Let Xi be the indicator of the event that
site i is “occupied” (the species is present), and let Yij =1 be an indicator for the event that the
species is detected at site i during visit j. It is assumed that there are no false detections: Yij
cannot equal 1 unless Xi =1.

The Xi are partially observed, in that if Yij =1 for any j, then we know that Xi =1. However,
if we fail to detect the species during all of the visits, then either Xi =0, or Xi =1 and we failed
to detect the species even though it was present. That is, we know we can have false negatives.
The problem is really nothing more than an extension of the randomized response problem
considered in Section 8.2:

• “Sites” correspond to “individuals.”
• “Occupancy” corresponds to the state of never having engaged in Behavior X.
• “Not Detected” corresponds to response of “Yes” – an ambiguous response. Could have

never X’ed, but might have; similarly, a nondetect might mean a site is not occupied but
could occur for occupied sites. In both cases the true status is veiled by a Bernoulli trial (the
coin flip, on one hand; the attempt at successful observation on the other).

• “Detected” corresponds to a response of “No” – an unambiguous response. The “No”
response allows certainty of no Behavior X just as species detection allows certainty of
occupancy.

The only difference with occupancy data is that we obtain multiple responses for a site, as
though we had repeatedly asked about Behavior X, with independent coin flips each time,
keeping track of each individual’s answers. Having multiple responses allows for estimation
of the detection probability; for the Behavior X problem this was not necessary, since π=1/2
was known.

Modeling site occupancy as a Bernoulli random variable with parameter ψi = Pr(Site i is
occupied) and detection probability

pij =Pr(Detected at site i,on sampling occasion j | Site i is occupied),

MacKenzie et al. (2002) described the model in terms of the ODL, which has contribution

ψi

t∏
j=1

p
Yij
ij (1−pij)

(1−Yij)

for the sites where Yij =1 for at least one j, and

1−ψi +ψi

t∏
j=1

(1−pij)
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for the sites where Yij =0 for all j. For identifiability, constraints must be imposed on the pij
and ψi, for example, constraining the probabilities to be the same across sites, or modeling
them using observed covariates.

A useful way to think of these models is as regression models for partially observed, or
corrupted, data. Let Y i denote a vector (Yi1,Yi2, . . . ,Yit)

′ of detection indicators on t sampling
occasions at site i, with j indexing sampling occasion. Let pi = (pi1,pi2, . . . ,pit)

′, supposing that
these are determined by a vector of covariates W i and a vector-valued parameter γ . Further-
more, suppose that the occupancy probability, ψi, is determined by a vector of covariates Zi
and a parameter vector β. Finally, let Y (without subscript) denote the collection of Y i’s; define
W , Z, p, ψ, and X , similarly. Then a CDL representation of the model is given by

[Y |X ,γ ,W ] [X|β,Z]. (8.5)

The term [X|β,Z]describes (for instance) a logistic regression for the partially observed random
occupancy variables Xi, and the term [Y |X ,γ ,W ] describes data corruption mechanisms.

As a problem in Bayesian inference, the CDL representation Eq. (8.5) offers a number of
advantages including:

(i) It helps focus inference on the appropriate level of interest to the biologist, namely the
model [X|β,Z].

(ii) It serves as the basis for inference about unobserved Xi, based on their posterior predictive
distributions (5.1.2).

(iii) It facilitates construction of an MCMC sampler in terms of explicit full-conditional dis-
tributions.

Of these three, (i) and (ii) are by far the most important for the process of scientific inference.
But these boons require our capacity to fit the model in question. So, we illustrate the third
point, constructing a Gibbs sampler.

Gibbs Sampler for Occupancy Model {pt,ψ}
We describe full-conditional distributions under the model {pt,ψ}, that is, assuming ψ is

constant across sites and detection depends on sampling occasion but not site. Set Yij =NA if
site i was not visited on occasion j. Then,

(i) Assigning a Be(αj,βj) prior for pj, the full-conditional distribution [pj| · ] is Be(aj,bj) with

aj =αj +
∑

i:Yij �=NA

Yij

bj =βj +
∑

i:Yij �=NA

Xi(1−Yij).

The summation used in defining aj gives the number of sites visited on sample occasion j
at which detections occurred; the summation used in defining bj gives the corresponding
number of sites without detection.

(ii) Assigning a Be(αψ,βψ) prior to ψ, the full conditional distribution [ψ|·] is Be(aψ,bψ), with
aψ =αψ +∑

i Xi and bψ =βψ +n−∑
i Xi.
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(iii) For the sites with no detections registered, Xi is unknown. Implementing Gibbs sampling
will require sampling from its full-conditional distribution, a Bernoulli distribution with
parameter

πi =
ψ
∏

j qij

1−ψ+ψ
∏

j qij
;

here qij = (1−pj)
I(Yij �=na). Note that πi is the probability that site i is occupied given that

no detections were made and given the history of visits.

We now present a sample data set to which this Gibbs sampler can be applied.

8.3.1 American Toads in Maryland

MacKenzie et al. (2002) report the results from a study of American toads (Bufo americanus)
at 29 wetland sites in Maryland, USA, on 82 sampling occasions (days) between 9 March and
30 May 2000. Table 8.2 gives a reduced version of the data, with observations summarized for
five 14-day periods, and a final period of 12 days.

Analysis of these data is challenging, and results are likely to be sensitive to model choice.
Maximum likelihood estimates and asymptotic standard errors (ASE) under model {pt,ψ} are
given in Table 8.3. Note that one estimate is on the edge of the parameter space (p̂2 =1) and that

TABLE 8.2 American toad data, based on MacKenzie et al. (2002).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. 0 . 0 . . 1 0 0 0 . . . 0 0

0 1 0 1 0 1 1 0 0 1 . 0 0 0 0

. . . 0 0 . 1 0 0 . . 0 0 0 0

0 0 0 0 0 0 1 0 . 0 1 0 . 0 0

0 . 0 0 0 . 1 0 0 0 0 0 . 0 0

0 0 0 0 . 0 1 0 0 . 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 0 0 . 0 0 0 . 0 0 0 . . .

. 0 0 0 1 1 0 0 0 1 0 0 0 1

. 0 . . . . 0 0 0 0 0 0 . 1

0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 . 0 0 0 0 . 0 . . . 0

. . 0 0 0 0 0 0 0 0 . 0 . 0

29 columns represent sites; six rows correspond to sampling occasions. Dots
are missing values. Thus site 29 was visited on all but the first occasion, and
frogs were detected on the second, third and fourth occasions.
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TABLE 8.3 Maximum likelihood estimates and
asymptotic standard errors.

MLE ASE 95% CI 95% PLI

p1 0.139 0.129 (−0.114,0.392) (0.008, 0.487)

p2 1.000 – . (0.737, 1.000)

p3 0.500 0.250 (0.010, 0.990) (0.107, 0.893)

p4 0.392 0.154 (0.090, 0.694) (0.142, 0.693)

p5 0.122 0.114 (−0.101,0.345) (0.007, 0.439)

p6 0.111 0.105 (−0.095,0.317) (0.007, 0.406)

ψ 0.352 0.090 (0.176, 0.528) (0.194, 0.535)

Maximum likelihood estimates, asymptotic standard
errors, and 95% confidence intervals for the parame-
ters p1,p2, . . . ,p6 and ψ for the model {pt,ψ} fitted to
the American toad data of MacKenzie et al. (2002). CI is
MLE ± 1.96 ASE; PLI is a profile likelihood interval.

conventional asymptotic CI’s θ̂± 1.96 ASE(θ̂) for p1,p5, and p6 extend well below 0; the interval
for p3 comes close to covering the entire possible range of the parameter. Profile likelihood
intervals given in Table 8.3 at least have the virtue of being consistent with the range of the
parameters, but coverage rates for these also rely on asymptotic approximations.

One approach to dealing with the limited precision associated with detection probabilities
is to fit model {p,ψ}, without temporal variation in pt. The estimate of ψ increases to 0.43 (SE =
0.12). If p2 is estimated as 1, with p1 =p3 =·· ·=p6, the MLE of ψ is unchanged, to three decimal
place accuracy, at 0.352.

Abetter course of action, followed by MacKenzie et al. (2002), is to describe detection parame-
ters as functions of relevant covariates. Site- and site∗sample-specific covariates were collected
for the American toad study. Site-specific covariates allow examination of factors influencing
site occupancy, the focus of the study. The site∗sample covariates allow more complex models
to be fitted to detectability, perhaps better dealing with these nuisance parameters.

Our view is that all of these analyses are best performed in a Bayesian context, where there
is no need to rely on questionable asymptotic results. Granted, there may be discussion about
which priors to use on model parameters, but at least given a choice, the mathematics leading
to the posterior distributions is exact. If we must use MCMC to evaluate posterior distribu-
tions, the results can be made arbitrarily precise by sampling longer chains. Furthermore,
modifications to BUGS code required for extending the model are simple.

Bayesian inference for model {pt,ψ} can be conducted using the Gibbs sampler described
at the beginning of this section. However, BUGS code for the occupancy problem is almost
startlingly simple (Panel 8.5). The data statement (not included) is the matrix of values Yij; Xi
need not be included because our knowledge that certain Xi equal 1 comes from observations
yij =1, for which the model requires Xi =1. Unknown Xi are treated the same as all other
unknown quantities; we wind up with samples from their posterior distributions. The same
happens for detection events Yij, when sites were not visited: we could predict whether an
animal would have been detected, had the visit been made.
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PANEL 8.5 BUGS code for American toad data.

model{
for (i in 1:29){

x[i] ˜ dbern(psi)
for (j in 1:6){

pi[i,j] <- x[i]*p[j]
y[i,j] ˜ dbern(pi[i,j])

}
}
for (j in 1:6){

p[j] ˜ dbeta(0.5,0.5)
}

psi ˜ dbeta(0.5,0.5)
}

Notice also that our interest may well be in the number of occupied sites among those in our
sample rather than in a hypothetical infinite population rateψ. The MLE under model {pt,ψ}was
35.2%, not terribly different from the proportion of sites at which toads were detected. A naive
analyst might scoff at the effort that went into finding this estimate, noting that frogs were
detected at 10 sites, and 10/29=34.5%. To our mind, one of the most appealing products of the
modeling process is one that is most easily obtained under the Bayesian framework: we are able
to assign probabilities of occupancy to the 29 sites, and to do so coherently, without dubious
mathematical approximations. For 18 of the 19 sites of unknown status, this probability was
between 0.9 and 2.7%; for site 16, it was 19.4%.9 We are also able to conclude that the number
of occupied sites without detection was 0, 1, or 2 with probability 0.671, 0.252, and 0.052,
respectively; there is only a 2.5% chance that the total was 3 or larger.

8.3.2 More Complex Occupancy Models

From a biological perspective, occupancy studies focus on the term [X|β,Z] in the CDL.
Distinguishing this feature of the model from biologically irrelevant sampling features is facil-
itated by a graphical representation of the model as in Fig. 8.5.

So far, we have considered occupancy models in which Xi is a scalar-valued random vari-
able. A much richer class of models can be considered. For example, we may suppose that
Xi is a two-dimensional array with one dimension being species and the other dimension
being time (or season). The models we have considered so far assume that occupancy status
does not change during the sampling period; we refer to such Xi as describing 1 species ×
1 time.

The case where Xi is a 1 species × k times array leads to the single-species multiple season
model of MacKenzie et al. (2002) in which occupancy of site i by the study species changes
between seasons. In terms of the graphical representation of the model, the only change is in
the definition of the node beta, which now includes elements for modeling extinction and

9. Site 16 was only visited three times, and not on the second sampling occasion, when detection probabilities were high.
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FIGURE 8.5 Directed acyclic graph (DAG) for occupancy model with
detection and occupancy probabilities modeled as functions of covariates.

colonization events, and X , which now is a summary of vector-valued observations at each site.
Another extension of the model is to let Xi be an s species × 1 time array, describing multiple-
species single season models, with β including elements for describing species interactions
among sites. The most general case is when Xi is an s species × k times array leading to
multiple species-multiple season models.

In a multiple species and multiple season model, Xi can be represented as a 2×s×k cross-
classification, with potential for a large number of parameters especially if covariates influence
the cross-classification. In addition, modeling the data corruption process can lead to a very
large number of models and parameters for [Y |X ,γ ,W ], where γ represents nuisance param-
eters. The challenge is identification of a set of models that capture the essential features of
interest from the point of view of research hypotheses without the nuisance components lead-
ing to an intractably large set of models.

The situation with the occupancy models mirrors that of the mark-recapture models where
many of the parameters and parameter sets describe nuisance aspects of sampling. For the
occupancy models, we see potential for the application of loglinear modeling methods to
the analysis of cross-classified data in which constraints on between-species and between-
times interactions can reduce the number of parameters needed in the model to represent
relatively complex relationships. We advocate the use of loglinear models for describing occu-
pancy dynamics and relationships among species, and to use hierarchical models for nuisance
parameters as a strategy for dimension reduction on the nuisance aspects of the model.

8.4 DISTANCE SAMPLING

In the occupancy model, inference about detection probabilities is made possible through
repeated sampling of sites; in this regard, occupancy models are closely related to the mark-
recapture models discussed in Chapter 9. We now turn our attention to distance sampling, in
which detection probabilities are estimated by entirely different means.

Distance sampling models emphasize the importance of one very specific covariate: the dis-
tance between the objects searched for and a reference location. For line transects, distances are
measured from the transect centerline; for circular plot sampling and trapping webs, distances
are measured from the plot center. By making assumptions about the functional relationship
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between detection probability and distance, and assumptions about the spatial distribution of
objects, these models allow inference about the numbers of objects missed.

Enshrined in the name “distance sampling” is the perspective that the basic data to be
modeled are a set of distances, x. A collection of n distances is regarded as a sample from a
known probability distribution π(x), typically (but not necessarily) a uniform distribution. The
value n is unknown, and not all of the distances are observed. The goal is to make inference
about n, or about a population of size N, of which the n are a subset.

Inference is made possible by assuming that associated with distance xi is a detection prob-
ability gθ(xi), where gθ(·) is a known function, except for unknown parameters θ. The vector
x is partitioned as (xobs,xmis)′; conventional modeling is based on a calculated probability
distribution for the observed portion xobs. The first step, then, is to compute a distribution for
the observed distances, namely

f (x|Object is detected)= Pr(Object is detected|Distance=x)π(x)

Pr(Object is detected)

= gθ(x)π(x)∫
gθ(x)π(x)dx

. (8.6)

Inference is based on the ODL

L(θ;xobs)∝
∏

f (xobs
i |Object is detected).

Equation 8.6 should look familiar: it is the computation of [x|D=1] via Bayes theorem,
relating distances x to detections D, based on “prior” π(x) on distances, and Bernoulli data
distribution

Pr(D|x)=gθ(x)D (
1−gθ(x)

)(1−D) .

We believe that a more natural approach is to consider a hierarchical model for line-transect
sampling, treating the detections as the data to be modeled and the distances as covariates.
Distance sampling is really object sampling; the distances are of no intrinsic biological interest.
The sole function of the distances is to help deal with a nuisance aspect of the model, one which
describes our inability to detect all the objects. As well as being in the spirit of “modeling the
data you wish you had,” the object-centered approach puts distance sampling into the same
hierarchical framework as closed-population mark-recapture modeling and the occupancy
models of Section 8.3.

A Line-Transect Survey

In this section, we consider line-transect sampling, noting that the ideas discussed here
readily generalize to other forms of distance sampling. We consider a single line transect of
width 2w and length L, randomly placed in a region of size A. The area covered by the line
transect (the “quadrat”) is thus of size a=2wL. We will refer to the objects as “animals” although
line-transect sampling can be applied to a variety of subjects.10 We consider a population of
unknown size N.

10. Methodological evaluations have involved searches for wooden stakes, bricks in Lake Huron, and polystyrene tortoises.
Also beer cans, an ingenious incentive for student participation in field work.
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There are two ways an animal can be missed by the survey. These define two parts of a
hierarchical model. First, the animal might not be located within the sampled quadrat. We
will let n denote the number of individuals in the quadrat; N −n animals are missed simply
because they are not in our limited sampling area. Second, it is almost inevitably the case that
not all of the n animals within the quadrat will be observed. Our goal, is to describe the survey
in terms of “the data we wish we had,” using a CDL that relates n to the unknown N and
relates the data obtained within the quadrat to the unknown n.

If the probability of finding an animal at any one point is the same for all points in the
population area, and if the presence of one individual does not influence the presence of
another, then the number n of individuals that appear in a quadrat of size a from a total
population of size N in an area of size A can be modeled as a binomial random variable (Seber,
1982, 22):

[n|N]=
(

N
n

)
pn

c (1−pc)
N−n (8.7)

where pc = a
A .

Conditional on presence within the area defined by the quadrat, detections of animals
are independent Bernoulli random variables, with success parameters determined by their
distance from the centerline. For animal i at distance xi, this Bernoulli trial is labeled Di; its
success parameter is

gθ(xi)=Pr(Detection|Distance=xi);

here θ represents unknown parameters governing the detection process. Let D=
(D1,D2, . . . ,Dn)′, and let x= (x1,x2, . . . ,xn)′.

To make inference about population size we must assume that gθ(0) is known. It is usually
assumed that every animal is detected on the centerline, that is, that gθ(0)=1.

We model the data for animals within the quadrat as

[D, x|n,θ,γ]= [D|x,n,θ] [x|n,γ], (8.8)

where

[D|x,n,θ]=
(

n
m

) n∏
i=1

gθ(xi)
Di(1−gθ(xi))

1−Di .

Here, m is the number of animals detected, and [x|n,γ]=∏n
i=1[xi|γ] describes a model for the

joint distribution of animal locations. The model for x is required because distances are not
observed for the animals that we have missed within the quadrat. As noted above, the usual
assumption is that [xi|n,γ] is a uniform U(0,w) density function, although any other model
could be considered.

Putting the two components together, we obtain the CDL for the hierarchical line-transect
model as

[D,x,n|N,θ,γ]= [D|x,θ,n]×[x|n,γ]×[n|N], (8.9)

with DAG representation in Fig. 8.6. The portion of the DAG to the right of center, correspond-
ing to [n|N], is the model for the data we wish we had, that is, the number of animals that were
located within our quadrat(s). If we have multiple surveys, this portion of the model can be
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D

�

p

x

� n

pc N FIGURE 8.6 Directed acyclic graph (DAG) representation of the
complete data likelihood for the line-transect model.

extended to allow for higher-level modeling, for example, to smooth abundance over time or
space. The other components of Fig. 8.6 model nuisance aspects of the model, not of interest
per se, but essential for reliable inference.

The CDL is readily used in Bayesian analyses. Frequentist analyses use an ODL, obtained
from the CDL by integrating out the missing components, xmis. Substituting Eqs. (8.7) and
(8.8) in Eq. (8.9) with π(x) representing the density of distances, and integrating over xmis, we
obtain (

N
m

)
(1−pcEx[gθ(x)])N−m

m∏
i=1

gθ

(
xobs

i

)
π
(

xobs
i

)
.

the likelihood given by Borchers et al. (2002).

Example

Buckland et al. (1993) (Section 8.3) discuss the analysis of data from a line-transect study of a
population of 150 wooden stakes in which one transect through the study area was repeatedly
sampled by 11 observers. Here, we analyze the data for the first observer, using a simple half-
normal model for the detection function p(x,σ2)=exp(−x2/2σ2), for 0<x <w =20, the width
of the transect. Full-conditional distributions for N and σ2 can be obtained easily enough, to
code one’s own software. Fitting the CDL is straightforward using software BUGS and the
code provided in Panel 8.6 or 8.7.

We begin, in Panel 8.6, with prediction of the number n of stakes occurring within the
transect. An interesting feature of the BUGS code in Panel 8.6 is the use of data augmentation
to model n. Population size n is unknown, thus must be treated as random. The number of
unobserved quantities is, thus, also a random variable. For instance, if n=m=72, there are
no unobserved distances xi, but if n=172, there are 100 unobserved xi for which posterior
distributions must be sampled. The situation is similar to that of implementing multimodel
inference using reversible jump MCMC: we require a palette of parameters of dimension at
least equal to the highest dimension of the models in our model set (Section 7.3.2).

We have chosen a discrete uniform DU({1,2, . . . ,200}) prior for n, which we implement by
modeling [n|ψ]=B(200,ψ), with [ψ]=U(0,1). It is easily shown that the result is a discrete
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PANEL 8.6 BUGS code for the line-transect model, using half-normal detection function.

list(w=20,M=200,

x=c(0.13,0.26,0.39,0.53,0.66,0.79,0.92,1.06,1.19,1.46,1.59,
1.72,1.85,1.98,2.12,2.25,2.38,2.52,2.65,2.78,2.91,3.05,3.18,3.31,
3.58,3.71,3.84,3.97,4.24,4.77,4.90,5.03,5.17,5.43,5.56,5.82,5.96,
6.22,6.36,6.49,6.62,6.75,7.15,7.41,7.68,7.95,8.08,8.34,8.61,8.87,
9.27,10.20,10.33,10.46,10.73,10.86,11.92,12.05,12.98,13.51,13.77,
14.03,14.17,14.96,15.90,16.02,16.29,16.95,17.21,18.14,18.67,19.34,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA),

D=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0),

I=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA))

model{
# Likelihood
for(i in 1:M){

I[i] ˜ dbern(psi)
x[i] ˜ dunif(0,w)
p[i] <-exp(-tau/2*pow(x[i],2))
pi[i] <- I[i]*p[i]
D[i] ˜ dbern(pi[i])

}
n <- sum(I[])

# Priors
tau ˜ dunif(0,10)
psi ˜ dbeta(1,1)

}
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uniform prior for n on {0,1, . . . ,200}. Data statements in Panel 8.6 include 128 (=200−m)
missing values for nodes I[i] and x[i], and 128 zeros for corresponding Di.

One can think of the analysis as describing 200 wooden stakes in the quadrat, some of
them real, others imaginary, and that I[i] is an indicator for the event that the ith modeled
stake is real. We have I[1] = I[2] = … = I[72] = 1; these correspond to the observed
stakes, which we know are real. Note that D[73] = D[74] = … = D[200] = 0; some of
these correspond to real stakes which were not detected, while others to imaginary stakes
which could not be detected. The node n <- sum(I[1:200]) is the total of “real stakes”
in the quadrat, the quantity we desire to estimate.

If n could be much larger than m, it will be necessary to include many “imaginary” nodes
in the BUGS code, and the run time will increase substantially. A good course of action is to try
various upper bounds M on n, seeing how large a value could possibly be supported by the
data. We originally set M =1500 in the present case, but found that in a Markov chain of length
100,000, the maximum observed value of n was 198, and that less than one half of 1% of sampled
values exceeded 167. Changing the prior on n from DU({1,2, . . . ,1500}) to DU({1,2, . . . ,200}),
therefore, seemed reasonable; the choice has no effect on inference, but reduced run time by
approximately 90%.

The BUGS code of Panel 8.6, like that for the Behavior X data (Panel 8.1), and the frog
occupancy data (Panel 8.5), is easily modified for alternative models. For instance, inclusion of
covariates explaining detection requires only simple modifications of the definition of p[i],
though note that models for distributions of covariates become necessary because of unob-
served values. The BUGS code is also easily modified for data from multiple surveys, or to
predict population size N for a known region extending beyond the quadrat.

Panel 8.7 incorporates two changes to Panel 8.6. First, we distinguish nodes by extensions
.obs and.mis. This allows specification of data values within loops for observed values, and
avoids the need for all those NA’s in the data statement. The other change is the specification of
two indicator variables, I.N for inclusion in the population of size N, and I.n for inclusion
in the quadrat. For this analysis, we assume that the quadrat covered 80% of the region in
which the stakes were located, so that pc =0.80. The important thing is that although x’s, I’s,
and D’s are distinguished in the two “for” loops, the parameters governing their distributions
are not: it is the same psi and tau in both parts. Note also that the observed D’s are all 1, the
unobserved D’s are all 0, and the observed I’s are 1; unobserved I’s could be 0 or 1.

8.5 FINITE POPULATION SAMPLING

One of the most basic sources of data is the sample survey, in which data are collected for
part of a population, with the goal of making inference about the entire population. While it is
always better to sample more data than less, the gains associated with larger sample sizes are
even greater when sampling from a finite population. For example, a simple random sample
of size m from an infinite population with mean μ and variance σ2 produces an estimator x̄
with standard error σ/

√
m, but if the population is finite, of size M, the standard error is

SE(x̄)= σ√
m

×
√

M−m
M−1

. (8.10)
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PANEL 8.7 Alternative version of BUGS code from Panel 8.6.

list(w=20, pc=0.80,

x.obs=c(0.13,0.26,0.39,0.53,0.66,0.79,0.92,1.06,1.19,1.46,1.59,
1.72,1.85,1.98,2.12,2.25,2.38,2.52,2.65,2.78,2.91,3.05,3.18,3.31,
3.58,3.71,3.84,3.97,4.24,4.77,4.90,5.03,5.17,5.43,5.56,5.82,5.96,
6.22,6.36,6.49,6.62,6.75,7.15,7.41,7.68,7.95,8.08,8.34,8.61,8.87,
9.27,10.20,10.33,10.46,10.73,10.86,11.92,12.05,12.98,13.51,13.77,
14.03,14.17,14.96,15.90,16.02,16.29,16.95,17.21,18.14,18.67,19.34))

model{
# Likelihood
for(i in 1:72){

I.N.obs[i] <- 1
I.N.obs[i] ˜ dbern(psi)
I.n.obs[i] <- 1
I.n.obs[i] ˜ dbern(pc)
x.obs[i] ˜ dunif(0,w)
p[i] <- exp(-tau/2*pow(x.obs[i],2))
pi[i] <- I.N.obs[i]*I.n.obs[i]*p[i]
D.obs[i] <- 1
D.obs[i] ˜ dbern(pi[i])

}
for(i in 73:300){

I.N.mis[i] ˜ dbern(psi)
I.n.mis[i] ˜ dbern(pc)
x.mis[i] ˜ dunif(0,w)
p[i] <- exp(-tau/2*pow(x.mis[i],2))
pi[i] <- I.N.mis[i]*I.n.mis[i]*p[i]
D.mis[i] <- 0
D.mis[i] ˜ dbern(pi[i])

}
N <- sum(I.N.obs[1:72])+sum(I.N.mis[73:300])
n <- inprod(I.N.obs[1:72], I.n.obs[1:72])

+inprod(I.N.mis[73:300], I.n.mis[73:300])
# Priors
tau ˜ dunif(0,10)
psi ˜ dbeta(1,1)

}

The second term on the right-hand side of Eq. (8.10) is referred to as a finite population
correction; for sample size m>1, it is always less than 1.

An appealing feature of Bayesian inference is the straightforward way in which finite pop-
ulation inference is carried out; there is an automatic adjustment of uncertainty for the fraction
of the population sampled. This benefit extends to hierarchical sampling designs, for which
the adjustments are a challenging problem under frequentist analyses.

The Bayesian approach to finite population modeling, pioneered by Rubin (1976), is to
treat the problem as one of missing data (for a detailed discussion, see Gelman et al., 2004).
Thus, we conclude the present chapter on hidden data with several examples of Bayesian finite
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population sampling. Once again, use of the CDL will be seen to greatly simplify the modeling
process.

8.5.1 Muskrats: A Simple Sample Survey

Williams et al. (2002) describe a study in which the abundance of muskrat Ondatra zibethi-
cus houses in a 100-ha marsh was estimated using air boat searches. The study marsh was
divided into 50 2-ha square plots, of which 10 were selected at random for a complete search
(Table 8.4).

Williams et al. (2002) provide the standard frequentist solution to estimate the number
of muskrat houses denoted N. Letting M denote the number of plots and m the number of
samples, N is estimated by

N̂ =Mȳ =50×12.1=605,

with estimated standard error

ŜE(N̂) =
√

Vâr(N̂) =
√

M2
s2

y

m

(
1− m

M

)
= 48.28. (8.11)

Note that the infinite population estimator for the variance has been scaled down by a factor
equal to the sampling fraction m/M.

CDL, DAG, and Bayesian Model for Muskrat Data

We describe finite population sampling using a set y ={y1,y2, . . . ,yM} of population values,
and a set I ={I1, I2, . . . , IM} of inclusion variables; Ij is an indicator of the event that yj is in
our sample of size m. We, thus, define yobs ={yj|Ij =1} and ymis ={yj|Ij =0}. We wish to make
inference about some quantity f (y) based on observation of I and yobs. For the muskrat house
survey, f (y)=∑M

j=1 yj ≡N.
A probability model for finite population sampling requires a joint distribution for y and

I. The DAG in Fig. 8.7 presents a general formulation, with parameter vector θ governing a
probability distribution of which y is regarded as a sample, and parameter vector φ governing
the sampling mechanisms that determine I and consequently yobs. Note that we have included
a single arrow from y to I, acknowledging the possibility, at least, that the probability a sam-
ple unit is included has something to do with the value of the unit. Double arrows indicate
deterministic relations: given y, f (y) is fixed; given y and I, yobs is also known.

A CDL for ymis,θ,φ is thus of the form

L(ymis,θ,φ|yobs,I)∝[I,y|θ,φ]
= [I|y,φ] [y|θ].

TABLE 8.4 Numbers of muskrat houses counted in a simple random sample of
10 fixed-area plots (from Williams et al., 2002).

Plot i 1 2 3 4 5 6 7 8 9 10 ȳ Sy

Count yi 13 18 10 6 16 13 12 13 9 11 12.10 3.41
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FIGURE 8.7 Directed acyclic graph (DAG) for the complete data in a sample survey.
In the muskrat house survey, f (y)=∑

yi =N.

Under simple random sampling, [I|y,φ] does not depend on y (as it does, say, in length-biased
sampling). What is more, there are no parameters of this sampling distribution to be estimated;
[I]= c is a uniform distribution over the collections of sets {I1, I2, . . . , IM} having all Ij =0 or 1,
and

∑M
j=1 Ij =m, the fixed sample size. In this design, the missing data are said to be missing

“completely at random” (Gelman et al., 2004). The result is that the CDL is proportional to the
population data distribution [y|θ].

To complete the model, we must specify the distribution [y|θ]. Since the counts are discrete,
natural candidates are the Poisson or negative binomial distributions. Given that the sam-
ple mean and variance are nearly identical, a Poisson distribution seems reasonable. In the
analysis of Williams et al. (2002), no distribution is specified for y and inference is based on
an assumption of asymptotic normality. While not having to specify a distribution may seem
appealing, this approach has no basis for probability-based inference, and must rely on asymp-
totic frequency calculations; we comment further on the matter of distributional assumptions
at the end of this section.

Bayesian Analysis of the Muskrat House Data

Bayesian analysis is based on the CDL and a prior for θ. BUGS code for this problem is given
in Panel 8.8 for a Poisson data model with a vague gamma prior on the Poisson mean μ.

The posterior distribution for N suggests that there are about 603 muskrat houses11 with
a 95% CI of [513, 705]. This compares with the estimate of 605 by Williams et al. (2002) and
an approximate 95% CI of [510, 700]. From Panel 8.8, it is easy to see how Bayesian inference
automatically accounts for finite population sampling. In predicting N, the total for the sam-
pled plots sum(y.obs[1:m]) is known. The only uncertainty in N is due to the unknown
numbers on the plots that were not sampled. If there are relatively few plots that were not
sampled, sum(y.obs[1:m]) is a large fraction of N and the uncertainty in the prediction
of N is small.

Finite- versus Infinite-Population Inference

Often researchers are interested in the finite population mean Ȳ = 1
M
∑M

i=1 yi = N
M .12 In the

muskrat sample, this is the average number of muskrat houses in the 50 plots. From a posterior

11. Posterior median =603, posterior mean =605.
12. We write Ȳ = 1

M
∑M

i=1 yi to distinguish this quantity from ȳ = 1
m
∑m

i=1 yi , the mean for the observed sites.

III. APPLICATIONS



190 8. HIDDEN DATA MODELS

PANEL 8.8 BUGS code for estimating the number of muskrat houses using simple random sampling.

list(m=10,M=50,y.obs=c(13,18,10,6,16,13,12,13,9,11))

model{
for(i in 1:m){

y.obs[i] ˜ dpois(mu)
}
for(i in m+1:M){

y.mis[i] ˜ dpois(mu)
}
mu ˜ dgamma(0.001,0.001)
N <- sum(y.obs[1:m])+sum(y.mis[m+1:M])

}

9 10 11 12 13 14 15 16

FIGURE 8.8 Posterior distribution
of finite population mean Ȳ = 1

M
∑M

i=1 yi
(black) and infinite-population mean
μ (red), for muskrat house data of
Williams et al. (2002).

sample for N, we simply divide each value by M to obtain a posterior sample for Ȳ. The
posterior distribution of Ȳ for the muskrat data is given in Fig. 8.8 along with the posterior
density for μ.

The distinction between Ȳ and μ is important. The parameter μ represents the mean number
of muskrat houses in a theoretical infinite population of 2-ha fixed-area plots, but Ȳ represents
the realized value of the mean number of muskrat houses treating the 50 plots as the population
of interest. Given that we know exactly how many houses there were in 10 of these plots, it
makes sense that we should have better information about Ȳ than about μ. This is reflected
in the two posterior samples summarized in Fig. 8.8; the means are nearly identical, but the
standard deviation for Ȳ is approximately 10% smaller. This is in agreement with the finite
population correction factor of

√
1−m/M =√

0.8.
Another context in which a similar issue of finite- versus infinite-population inference

arises is in the occupancy model discussed in Section 8.3. In this context, the parameter ψ,
which is the probability that a site is occupied, is an infinite-population summary. Researchers
may well be interested in a particular set of sites and wish to know how many of these are
occupied, or equivalently, what fraction are occupied. Adopting a CDL approach, as outlined
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in Section 8.3, finite-population inference about the actual number of sites that were occupied
can be accomplished using MCMC simply by summing up each sample value of the vector X
that has element i equal to 1 if site i is occupied and 0 otherwise (for more information and an
example see MacKenzie et al., 2006).

Asymptotic Normality

Looking at the code of Panel 8.8, we note that the only use of the unobserved values
y.mis[] is through their total. Simply as a matter of efficiency, we might choose to model
their sum, rather than the individual values. The sum of independent Poisson random vari-
ables has a Poisson distribution, with mean equal to the sum of the means, so we can replace
the second “for” loop with two lines,

Mu.mis.total <- (M-m)*mu

y.mis.total ∼ dpois(Mu.mis.total)

Generating a single value for the missing total of observations, rather than M−m=40 values
leads to a 40% reduction in run time.

This gain in computational efficiency depends on our knowledge of the distribution of the
sum of observations. Although we do not have such knowledge for every possible choice of
distribution, we can sometimes rely on the Central Limit Theorem for an asymptotic approxi-
mation. Given that the number of unobserved values is reasonably large, and their variance is
not too large, the distribution of their sum can be approximated as normal with mean (M−m)μ,
and variance (M−m)σ2, where μ and σ2 are the population mean and variance.

If the population distribution is itself normal, the N
(
(M−m)μ,(M−m)σ2) distribution for

the sum of the missing values is not approximate, but exact. In this case, we can also summarize
the observed data by sufficient statistics ȳ and s2. We do so in Panel 8.9, in analysis of counts

PANEL 8.9 BUGS code for estimating the number of cottontail rabbits using simple random sampling and
assuming a normal distribution for the numbers of rabbits counted on each 1-ha plot.

list(M=1000,m=100,ybar=16,ss=40)

model{
ybar ˜ dnorm(mu,tau.ybar)
tau.ybar <- m*tau
ss ˜ dgamma(a,b)
a <- (m-1)/2
b <- a*tau

y.mis.total ˜ dnorm(Mu.mis.total,Tau.mis.total)
Mu.mis.total <-(M-m)*mu
Tau.mis.total <- tau/(M-m)
N <- m*ybar+y.mis.total

mu ˜ dnorm(0,1.0E-6)
tau ˜ dgamma(0.001,0.001)

}
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of cottontail rabbits from a simple random sample of m=100 1-ha plots sampled from a 1000-
ha study area (Williams et al., 2002); the sample mean ȳ was 16, and the sample variance was
s2 =40. The BUGS code makes use of the fact that ȳ and s2 are independent with ȳ ∼N(μ,σ2/m)

and (m−1)s2/σ2 ∼χ2
m−1.13

Using the BUGS code in Panel 8.9, we obtain a posterior 95% prediction interval of
(14810,17190), in close agreement with the 95% CI of (14824,17176) reported by Williams et al.
(2002). We do not commend the frequentist analysis on its own merits, but as an illustration of
a general feature of frequentist finite sample population methods relying on asymptotic nor-
mality. These tend to agree with fully model-based Bayesian methods when m and M−m are
large, or when the population distribution is assumed to be normal. More typically, finite pop-
ulation sampling data involve smaller sample sizes, and asymptotic approximations should
be avoided.

8.5.2 Stratification

Two common alternatives to simple random sampling are stratified sampling and cluster
sampling. Bayesian analysis of data obtained using these approaches is a reasonably straight-
forward extension of the simple random sampling problem. In the case of stratified sampling,
the study population is divided into subpopulations (strata), all of which are sampled, although
possibly with varying intensity. Inference is conducted at the stratum level and summarized
to the population level. Parameters can be defined at the stratum level, shared across strata,
or treated as random effects across strata. Stratification is often used as a strategy for efficient
estimation, when the population can be divided into homogeneous subgroups.

To illustrate Bayesian inference for a stratified sampling design, we use an example from
Siniff and Skoog (1964) who used a stratified random sample and aerial counts to estimate
the size of an Alaskan caribou population. Sampling effort was allocated proportionally to
anticipated population density. It is a simple matter to extend the code of Panel 8.9 to account
for the stratification in the caribou data; we simply change the statistics and parameters to
vectors with one element for each stratum (see Panel 8.10).

The overall total number of caribou can be found by summing up the predicted values
for each stratum. Doing this, we obtain a 95% posterior predictive interval of (42840,66150),
with median of 54500, in close agreement with the estimate of (43050,65943) found using the
standard estimator as in Williams et al. (2002).

Note that in the BUGS code of Panel 8.10 we have specified priors of the form

[μi,τi]= [μi|τi] [τi]
where [τi] is Ga(a,b) and [μi|τi] is N(ψ,κτ). This is a conjugate prior for the vector parameter
θ = (μ,τ)′. We have set ψ =0 and chosen small values for a, b, and κ, in the interest of having
a noninformative prior. Given that we are using a small value for κ, it might seem a matter
of little consequence whether we relate the prior precision of μ to τ, or not. The effect of the
choice is more substantial than one might think: for one thing, the scaled inverse chi-squared

13. In Panel 8.9, the distribution of s2 is written as

s2 ∼Ga
(

m−1
2

,
m−1
2σ2

)
;

this alternative representation is based on the definition of chi-squared random variables as gamma random variables, and
on properties of gamma random variables. For details, see Appendix B.9.
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Stratum M m ȳ s2

A 400 98 24.1 5575

B 30 10 25.6 4064

C 61 37 267.6 347,560

D 18 6 179.0 22,798

E 70 39 293.7 123,580

F 120 21 33.2 9795

Total 699 211

PANEL 8.10 BUGS code for estimating the number of caribou from Alaskan aerial surveys using stratified
random sampling.

list(Strata=6,M=c(400,30,61,18,70,120),m=c(98,10,37,6,39,21),
ybar=c(24.1,25.6,267.6,179,293.7,33.2),
ss=c(5575,4064,347556,22798,123578,9795))

model{
for(i in 1:Strata){

ybar[i] ˜ dnorm(mu[i],tau.ybar[i])
tau.ybar[i] <- m[i]*tau[i]
ss[i] ˜ dgamma(a[i],b[i])
a[i] <- (m[i]-1)/2
b[i] <- a[i]*tau[i]

y.mis.total[i] ˜ dnorm(Mu.mis.total[i],Tau.mis.total[i])
Mu.mis.total[i] <-(M[i]-m[i])*mu[i]
Tau.mis.total[i] <- tau[i]/(M[i]-m[i])
N[i] <- m[i]*ybar[i]+y.mis.total[i]

mu[i] ˜ dnorm(0,tau.mu[i])
tau.mu[i]<-1.0E-6*tau[i]
tau[i] ˜ dgamma(0.001,0.001)

}
ybar_st <- Total/sum(M[])
Total <- sum(N[])

}

full conditional for τ gains a degree of freedom. In practical terms, as discussed by Gelman
et al. (2004), having the prior variance for the means tied to the prior precision ensures that the
prior for the means is calibrated to the scale of measurement of the observations. Because of
the very large sample variances in strata C and E, prior precisions even as small as 10−6 would
still result in mildly informative priors on μ for these strata.

Given the large sample sizes, the asymptotic approximations used in these analyses seem
reasonable. Bayesian and frequentist results roughly coincide. We note, however, that 95%
predictive intervals for strata B and F extend below 0,14 suggesting some inadequacy in the

14. These are (−275,1811) and (−791,8764), with predictions of 768 and 3983, respectively.
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approximations. A model-based analysis, such as used for the muskrat house data in the
previous section would seem preferable. However, given that the variances so greatly exceed
the means, the Poisson model (Panel 8.8) is surely inadequate. A better course of action would
be to specify a model such as the negative binomial, which is consistent with the data as
nonnegative and highly variable counts, and to analyze the raw data rather than summary
statistics.

Siniff and Skoog (1964) report that the caribou census required “135 man-days of effort,
exclusive of pre-census planning . . . costs, excluding salaries, were approximately $8600”
[roughly $60,000 in 2009 dollars ]. Given the expense associated with gathering good data,
and given the computational capacity presently available, it seems irresponsible to apply
1950’s technologies and approximations to such data today.

8.5.3 Cluster Sampling

Finite population studies often involve multistage samples. The simplest example is cluster
sampling, in which data are collected in two stages. First, a collection of subgroups (clusters)
is sampled; next, data are collected for individuals within clusters. The data reflect varia-
tion between clusters and variation within clusters; both components of variation must be
accounted for in making inference about the entire population. Cluster sampling models are
naturally hierarchical, with models required for each level of the hierarchy.

To illustrate Bayesian inference of cluster sampling data, we consider a survey that was used
to determine the number of breeding shearwater pairs on a small (15-ha) island. Fifty 10 m
× 10 m quadrats were placed using simple random sampling, and the number of shearwater
burrows were counted. Each burrow was inspected for evidence of current occupancy by
breeding birds using a burrowscope. The goal of the study was to estimate the total number
of occupied burrows and hence, by implication, the number of breeding pairs.

The survey data reflect two levels of variation. First, there is variation associated with ran-
dom sampling of m=50 quadrats (the clusters) from a finite population of M =1500 quadrats.
The response variable at this level is the number of burrows. We let yi denote the number of
burrows in quadrat i. Second, there is variation associated with the data within quadrats. The
occupancy status of each burrow is a Bernoulli random variable. Assuming that the proba-
bility of occupancy is the same for each burrow and that burrows are independent (at least
conditional on the quadrat), the number of occupied burrows xi in quadrat i is modeled as a
binomial random variable with index yi and success rate pi; pi is the probability of occupancy
for burrows in quadrat i.

We consider two models. The first assumes that the occupancy probability is the same
for each quadrat. We fitted this model using the BUGS code in Panel 8.11. Notice that the
hierarchical nature of the model means that prediction of the total number of occupied burrows
also occurs in two stages. In the first stage, we predict the numbers of burrows in the unsampled
quadrats, and at the second stage, we predict the the numbers of these burrows that are actually
occupied.15

15. Some versions of BUGS do not allow an index of 0 in the binomial distribution; an error message is generated when
x ∼ dbin(p,n) if n= 0. A workaround is to define a <- equals(n,0), pp <- (1-a)*p, nn <- n+a, and to generate
x ∼ dbin(pp,nn). If n = 0, x is a single Bernoulli trial with success rate 0, hence x = 0. If n > 0, then nn = n, and pp = p.
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PANEL 8.11 BUGS code for estimating the number of occupied shearwater burrows using a simple random
sample of quadrats and counting the proportion of occupied burrows.

list(M=1500,m=50,burrows=c(3,3,7,2,5,3,1,3,6,7,8,4,
4,4,3,0,5,2,3,4,5,3,3,3,2,4,4,7,5,7,4,3,2,4,1,
6,4,4,3,5,1,1,1,7,3,10,2,4,3,4),occupied=c(2,3,1,2,
2,3,1,0,3,7,2,3,3,3,3,0,2,2,3,3,0,2,1,1,1,4,2,6,4,
7,3,2,2,2,1,5,3,1,3,5,1,1,1,7,0,3,1,3,1,3))

model{
for(i in 1:m){

burrows[i] ˜ dpois(lambda)
occupied[i] ˜ dbin(p,burrows[i])

}
for(i in 1:M-m){

burrows_mis[i] ˜ dpois(lambda)
occupied_mis[i] ˜ dbin(p,burrows_mis[i])

}

N.Occupied <- sum(occupied[])+sum(occupied_mis[])
p ˜ dbeta(1,1)
lambda ˜ dgamma(0.001,0.001)
}

Under this model, a 95% prediction interval indicates that the number of occupied burrows
is in the range [3109, 4371]; the posterior median is 3704. To assess the assumptions of the
model, we carried out two-stage posterior predictive assessment as outlined in Section 5.6.
The first stage assessed the assumption that the occupancy probability was the same for each
burrow. We carried this out by posterior predictive assessment conditional on the numbers of
burrows in the quadrats, using as a test statistic

T obs =
50∑

i=1

(xi −yip)2

yip
.

A value of T obs was computed for each iteration of the Markov chain and compared to the
value computed for data generated under the model:

T rep =
50∑

i=1

(xrep
i −yip)2

yip

where x rep
i ∼B(yi,p) represents the replicated data. To test the Poisson assumption for the

numbers of burrows, we computed similar sets of test statistics, this time computed as:

T obs =
50∑

i=1

(yi −λ)2

λ
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and

T rep =
50∑

i=1

(y rep
i −λ)2

λ

for y rep
i |λ∼P(λ).

Plots of observed versus replicated test statistics indicate a lack of fit of the binomial part
of the model but good fit for the Poisson part (Fig. 8.9).16

A likely reason for violation of the binomial assumption within the quadrats is that some
quadrats are located in habitat that is currently preferred by shearwaters, and hence has a
higher occupancy probability. Ideally, covariates would be available with which to model
habitat preferences. We could allow the occupancy probabilities to be distinct among the
quadrats, but this would give us no basis for predicting the numbers of occupied quadrats in
the plots not sampled. Another approach would be to model the differences between quadrats
using a random effects model.
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FIGURE 8.9 Scatterplot of predictive T rep versus observed T obs values of the discrepancy statistic for the shear-
water burrow occupancy model. The plot on the left assesses the assumed binomial distribution for the numbers
of occupied burrows conditional on the number present in each quadrat. The Bayesian p-value is the proportion of
points above the 45◦ line and has a value of 0.038. The plot on the right assesses the assumed Poisson distribution for
the numbers of burrows in each quadrat, and has a Bayesian p-value of 0.34.

16. In Figure 8.9, values of Tobs appear to cut off at a minimum value. The explanation of this phenomenon is that, for a
fixed set of yi’s , Tobs is a chi-squared statistic, minimized by a specific choice of parameter value, known as the minimum
chi-squared estimator (MCE). The MCE is sometimes considered as an alternative to the maximum likelihood estimator. For
the Poisson parameter λ, the MCE is the root mean square value of the data (4.34 in this example); the MLE is the sample
mean (3.84).
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In our second analysis, we refitted the model but this time allowed the occupancy prob-
ability to vary among quadrats, including those not sampled, but assumed that the logits of
the occupancy probabilities are normal random variables that are exchangeable among the
quadrats. That is, [

logit(p)|μp,σ2
p

]
=

1500∏
i=1

φ
(

logit(pi);μp,σ2
p

)
,

where μp is the mean occupancy probability on the logit-scale, and σ2
p is the variance.

These changes are incorporated in the BUGS code of Panel 8.11 by replacing p’s with p[i]’s
defined within loops as

logit(p[i]) <- logitp[i]
logitp[i] ∼ dnorm(mu.p,tau.p),

with priors

mu.p ∼ dnorm(0,1.0E-6)
sd.p ∼ dunif(0,100)

tau.p <- 1/pow(sd.p,2).

Under this model, a 95% posterior prediction interval suggests that there are between 2625
and 4508 occupied burrows; the posterior median is 3539. The posterior median is lower than
in the original analysis (3711), and the prediction interval is almost 50% longer. However, the
fit of the binomial part of the model is much improved (Fig. 8.10).

8.5.4 Auxiliary Variables

In the shearwaters example, random effects were used to fit a model that has the flexibility
of plot-specific parameters but that still allows prediction of missing values on the plots that
were not sampled. An obvious improvement to this approach would be to include plot-level
covariates that provide information on the missing values. There are two possible cases: (1)
where covariates are measured only on the plots sampled and (2) where covariates are available
for the sampled plots as well as other plots, possibly all of them.

If covariates are only available on the sampled plots then the random-effects approach used
in the second shearwater analysis can be extended by adding a model for the plot covariates.
Provided the plots can be regarded as exchangeable, then the model for the covariates can be
used to predict the values for the missing covariates. A variation on this arises when summary
information is available such as the sum of the covariate across all the plots, or its average
value. This information can be exploited using methods such as ratio or regression estimation
(Scheaffer et al., 1996).

Returning to the muskrat house problem discussed in Section 8.5.1, Williams et al. (2002)
reported results from a second survey in which the plot sizes differed. Now, each plot has its
own Poisson mean μi, with

μi =λai

where ai is the area of plot i. Although the exact area of the plots is known only for the plots
that were sampled, it is known that the total area covered by all the plots was 100-ha. This
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FIGURE 8.10 Scatterplot of predictive T rep versus observed T obs values of the discrepancy statistic for the shear-
water burrow occupancy model. The plot on the left assesses the assumed binomial distribution for the numbers of
occupied burrows conditional on the number present in each quadrat in which the logits of the occupancy proba-

bilities are modeled as exchangeable N
(
μp,σ2

p

)
random variables. The Bayesian p-value is the proportion of points

above the 45◦ line and has a value of 0.58. The plot on the right assesses the assumed Poisson distribution for the
numbers of burrows in each quadrat, and has a Bayesian p-value of 0.34.

allows us to model the observed number of muskrat houses in terms of the plot area, and
then make use of the Poisson assumption and the total area of the missing plots to predict the
number of muskrat houses on the plots that were not sampled.

Fitting this model using the BUGS code in Panel 8.12 leads to the posterior distribution for
N displayed in Fig. 8.11, which includes a posterior predictive assessment of the model. Based
on this analysis, there are around 533 muskrats with a 95% credible interval of (430, 654). The
model appears to fit well. Williams et al. (2002) used a ratio estimator and relied on asymptotic
normality to obtain a point estimate of 536 muskrats with a 95% CI of (458, 614). In this study,
it appears that asymptotic normality approximations lead to a considerable overstatement of
precision.

Ideally, covariates are measured on all the plots, including the ones that were excluded
from the sample. Even if it is impracticable to measure the covariates on all the plots, there are
still advantages if the covariates can be measured on the sampled plots and others. Double-
sampling is a special case where a single covariate is selected to provide auxiliary information
and chosen because it is relatively easy to measure. A sample of plots is drawn on which the
covariate is measured, and a subsample of these is drawn on which the variable of interest is
measured. This approach is commonly used in aerial surveys, where counts from aircraft on
plots are supplemented with complete counts or abundance estimates made on a subsample of
plots. When estimation is used on the subunits instead of complete censusing, the predictions
must also account for uncertainty of estimation on the subunits (Barker, 2008).
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PANEL 8.12 BUGS code for estimating the number of muskrat houses, making use of the area of each plot
sampled and the fact that 14-ha were sampled from the 100-ha available.

model{
for(i in 1:m){

y[i] ˜ dpois(mu[i])
mu[i] <- lambda*a[i]

}

lambda ˜ dgamma(0.001,0.001)

lam_mis <- lambda*Area_mis
sum_ymis ˜ dpois(lam_mis)
N <- sum(y[])+sum_ymis

}

list(m=10, y=c(15,8,6,8,7,3,3,3,9,13),
a=c(2,1,1,1,2,1,1,1,2,2), Area_mis=86)
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FIGURE 8.11 Posterior distribution for
N, the number of muskrat houses in the
variable-area plot example from Williams
et al. (2002), analyzed using plot area as a
covariate of the expected count.

8.6 AFTERWORD

In Chapter 1, we described Bayesian inference as “attractive because it is useful” and sug-
gested that its usefulness “derives in large measure from its simplicity.” The examples in this
chapter surely support this perspective. In each case modeling begins with a description of
“the data we wish we had,” the latent data of Table 8.5. The latent data are treated as a sample
from an infinite population; inference can be made either about the infinite population, or
about the sampled values.

In each case, observed data are a corrupted or incomplete version of the data we wish we
had. Modeling requires a statement of data corruption mechanisms, in terms of conditional
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TABLE 8.5 Summary of examples, Chapter 8.

Latent data Data corruption

Behavior X Di = Use status Randomized response

i =1,2, . . . ,M (known) Yi =1−(1−Ci)(1−Di)

Occupancy Xi = Occupancy status Incomplete detection

(frogs) i =1,2, . . . ,M (known) [Yij|Xi]=B(Xi ,pj)

Line transect Di = Detection status Missing data

(stakes) i =1,2, . . . ,N (unknown) (Di =0 not observed)

Finite populations Yi = Count on plot Missing data

(muskrat houses) i =1,2, . . . ,M (known) (SRS of m observed)

distributions [Observed Data|Latent Data]. Frequentist analyses are usually based on the
ODL, obtained by integrating these against prior distributions for the latent data. The ODL
is generally much more difficult to work with than the CDL, which is based on the joint
distribution of latent and observed data. Bayesian methods are readily based on CDLs. Under
the Bayesian māramatanga all unknown quantities, be they latent variables, parameters, or
missing values, all are treated equally. Thus, the analyses presented in this chapter reconstruct
latent data – the data we wish we had – by sampling from posterior distributions.
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9.1 INTRODUCTION

Mark-recapture, occupancy and distance sampling all involve models for missing data.
In each the mechanism by which data are missing is presumed to depend on the values of
unknown parameters, such as the population size or the catchability of the animals.1 For
problems of this nature, the mechanism by which the data went missing must play a dominant
role in any model if reasonable inference is to result.

We begin by describing mark-recapture models in the context of missing data, an idea that
we pursue further in Chapter 11 for open population models. Mark-recapture modeling has a

1. Such missing-data mechanisms are said to be nonignorable (Gelman et al., 2004).

201Bayesian Inference with Ecological Applications Copyright © 2010 Elsevier Ltd.
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vast literature including Seber (1982) and subsequent reviews, and is also covered in detail in
Williams et al. (2002). It is not our intention to show the Bayesian equivalent for each analysis
but rather to emphasize some of the possibilities that result from the use of hierarchical models
and Bayesian inference.

In this chapter, we highlight the usefulness of the complete data likelihood (CDL), discussed
in Section 8.1, for mark-recapture modeling. We also show the use of data augmentation
for abundance and hierarchical modeling for multimodel inference. In both cases, we can
implement the required models in BUGS without the need for customized code based on
reversible jump Markov chain Monte Carlo, despite the potential difficulties due to varying
model dimensions.

9.2 MARK-RECAPTURE MODELS AND MISSING DATA

The usual way to summarize mark-recapture data is through a matrix of indicators Xi,j,
with Xi,j =1 if animal i was caught in sample j and 0 otherwise. We will refer to this matrix as
Xobs, the observed capture history matrix. This matrix has u. rows and k columns, where u.
is the total number of animals caught at least once during the study, and k is the number of
samples. The notation u. is derived from u.=u1 +·· ·+uk , where uj is the number of unmarked
animals caught in sample j.

We also refer to a matrix of missing capture histories, Xmis, which has (N −u.) rows and k
columns. The population size N denotes the total number of animals that were ever available
for capture during the study. All the elements of the matrix Xmis are 0; the only thing that is
unknown is the number of rows. Thus, we can write

X =
(

Xobs

Xmis

)
=
(

Xobs

0

)
,

where 0 represents an (N −u.)× t matrix of zeros.
In carrying out a Bayesian analysis of mark-recapture data, the main issues are the same

as for frequentist inference and relate to the choice of appropriate models for describing the
data collection process in terms of demographic parameters. Once these models have been
selected, issues surrounding choice of priors and method of describing or sketching posterior
distributions are the same as for any Bayesian analysis.

9.2.1 Completing the Data

As discussed in Chapter 8, there are advantages to working with the CDL. In a closed pop-
ulation mark-recapture study, the complete data can be represented by the set

{
Xmis,Xobs,I

}
,

where I is an N-dimension inclusion vector with ith element 1 if animal i was ever caught
during the study and 0 otherwise (i =1, . . .N). Notice that I is a deterministic function of Xobs

and Xmis. Each animal that appears in Xobs has a 1 in the corresponding row of I and each
animal that appears in Xmis has a 0 in the corresponding row of I. The inclusion vector I in the
mark-recapture model fulfills the same function as the inclusion vector I in the simple random
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sample survey model of Section 8.5.1 and the vector Ix in the CDL for the line-transect model
in Section 8.4.

In the CDL, the dimension N of the inclusion vector I,Xobs, and Xmis is a parameter. Condi-
tional on N we can then treat I (and hence Xmis) as though it were fully observed. Once N and
u. are specified there is no further information in I or Xmis. Thus, the complete data likelihood
can be written as

[Xobs,Xmis,I|θ,N]∝ [Xobs,u.|θ,N]
= [Xobs|u.,θobs][u.|θ,N] (9.1)

where θ is a matrix of parameters which is partitioned into a set θobs corresponding to the
animals in Xobs and a set θmis corresponding to the animals in θmis.

Normally to go from the CDL to the observed data likelihood (ODL), we need to integrate
out the missing data (Section 8.1). Conditioning on N, the matrix Xmis becomes a matrix of zeros
of known dimension, and is omitted from the likelihood. Thus, the ODL is also proportional
to the right-hand side of Eq. (9.1).

The formulation of the model as in Eq. (9.1) is completely general. In practice, constraints
will need to be made on θ in order for models to be identifiable. Different models, such as
those in specific closed-population families, can be constructed by specifying different forms
for the terms [Xobs|u.,θobs] and [u.|θ,N], and by the constraints on the elements of θ.

In closed-population studies, a series of samples is drawn from a population over a period
of time during which the population is closed to additions (births and/or immigration) and
deletions (deaths and/or emigration). The general parameter matrix is given by θ ={

pobs,pmis},
and comprises the set of capture probabilities pij, i =1, . . . ,N; j =1, . . . ,k. Given θ, we assume
that capture events are independent,2 and a convenient form of the CDL that we will use for
subsequent developments is:

[X|N,pobs,pmis]∝
(

N
u.

) N∏
i=1

k∏
j=1

p
xij
ij (1−pij)

1−xij . (9.2)

In almost all closed-population mark-recapture studies, the focus of interest is on N, and θ can
usually be regarded as a nuisance parameter: of little interest in its own right but necessary
for reliable inference about N.

We distinguish two classes of models. The first class, time and behavior models, comprises
models in which groups of animals have parameters in common. All animals, whether caught
or not, can be assigned to these groups without ambiguity. Parameters may vary among sam-
pling occasions and may also change in relation to the capture history (behavior dependency)
and may depend on observed covariates. In the second class of models, the heterogeneity mod-
els, parameters also differ among individuals, but there is insufficient information either to
unambiguously allocate them to known classes in which capture probabilities are the same for
members of the class, or to express capture probabilities as functions of observed covariates.

2. Here, dependencies between individual captures caused by behavioral changes are expressed through p.
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9.3 TIME AND BEHAVIOR MODELS

In the time and behavior models, the observed and missing animals are assumed to share
parameters. That is, we assume that elements of pmis equal elements of pobs in a way that is
completely determined. The capture probabilities in pobs can vary with the sample (time) and
can also depend on whether or not the animals have yet appeared in a sample (behavior). Using
combinations of time or behavior constraints, we can derive the standard closed-population
mark-recapture models, such as M0, Mt, Mb, and Mtb of Otis et al. (1978).

Model M0 specifies that pij = pkl ≡ p for all i, j, k, and l. That is, the capture probability is
the same for all individuals and for all samples. Model Mt specifies the constraints p1j = . . . =
pNj ≡ pj. Thus, there are distinct capture probabilities corresponding to each sample that are
the same for all individuals.

Model Mb posits detection probabilities that are constant among individuals and through
time, up until the time of first capture. The model description includes a vector y, the ith
element of which is the index for the sample in which the ith captured animal was first caught.
Vector y can be obtained by inspection of Xobs. The matrix pobs is constrained so that each
individual has probability p of capture up until the time of first capture and probability c for
all subsequent samples. We can then factor [Xobs|u.,pobs] as:

[Xobs|u.,pobs]= [Xobs|y,u.,c][y|u.,p].
Under Mb, if the initial capture probability is greater than the recapture probability (p> c),
animals are said to become trap-shy. If p< c, animals are said to become trap-happy. Model
Mtb, in which the behavior effect can depend on the sample, is constructed similarly except
that the single value of p is replaced by the set

{
p1, . . .pk

}
and the single value of c is replaced

by the set {c2, . . .ck}, where pj and cj are indexed by the sample j.

9.3.1 A Gibbs Sampler for Model Mt

It is instructive to consider how we can build a Gibbs sampler for model Mt. Starting with
the CDL (Eq. 9.2) and the constraint p1j = . . .=pNj ≡ pj, we can group terms with common pj
to obtain

[X|N,θ]∝
(

N
u.

) k∏
j=1

p
nj
j (1−pj)

N−nj , (9.3)

where θ = (p1, . . . ,pk)
′, and nj is the number of animals caught in sample j.

Useful priors for pj are independent Be(αp,βp) distributions. Provided the prior for N does
not depend on any of the pj’s, this leads to the full-conditional distribution

[pj|·]∝p
nj+αp−1
j (1−pj)

N−nj+βp−1

and so the full-conditional [pj|·] is a Be(nj +αp,N −nj +βp) distribution.
A natural prior for N is a negative-binomial NB(αN ,βN) distribution, arising as a Poisson

distribution with its mean drawn from a Ga(αN ,βN) distribution (Appendix B.12). As a prior
for N, the Poisson distribution might be considered too restrictive because of the property that
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its mean and variance are the same. The negative-binomial can be thought of as a generalization
of a Poisson distribution allowing the variance to take any value greater than the mean.

To derive the full-conditional distribution for N, we start with the model (9.3) and multiply
it by our NB(α,β) prior to obtain,

[N|·]∝ [X|N,θ][N|α,β]

∝
(

N
u.

) k∏
j=1

p
nj
j (1−pj)

N−nj × �(N +α)

�(N +1)�(α)

(
β

1+β

)α( 1
1+β

)N

.

Now, we can make the substitution N =u.+U, where U is the number of unmarked animals in
the population at the end of the experiment. By the change of variables theorem (Section 2.2.4),
and ignoring terms that do not involve U (remembering that in the full-conditional for N, pj,
α, and β are all known), we obtain the full-conditional distribution for [U|·]:

[U|·]∝ (u.+U)!
U!

k∏
j=1

(1−pj)
u.+U × �(u.+U +α)

�(u.+U +1)

(
1

1+β

)u.+U

∝ �(u.+U +α)

�(U +1)

(
π0

1+β

)U

, (9.4)

where

π0 =
k∏

j=1

(1−pj).

With a little more effort, we can show that Eq. (9.4) is the kernel of a NB(a,b) distribution for
U with

a=u.+αN

and

b= 1+βN −π0

π0
.

Therefore, we can simulate a draw from the full-conditional [N|·] by drawing a variate U from
a NB(a,b) distribution, and then transforming it to N by N =u.+U.

Gibbs sampling now proceeds as follows:

Step 1: Beginning with a set of starting values, {p(0)
j } (anything in the range (0, 1) will do) draw

a value U(1) from a NB(a,b) distribution with a=u.+αN and b= 1+βN−π0
π0

. Set N(1) =u.+
U(1). Note that we can do this in two parts: first draw λ∼Ga(a,b), followed by U ∼P(λ).

Step 2: Draw values for p(1)
j by sampling from Be(nj +αp,N(1) −nj +βp) distributions.

Step 3: Repeat steps 1 and 2 a large number of times drawing values for N(h) conditional
on p(h−1) and values for p(h) conditional on N(h), where h indexes the elements of the
Markov chain.

To implement this Gibbs sampler we need to decide on values for αp, βp, αN , and βN that
characterize our prior knowledge about p and N, respectively. With an objective analysis
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in mind, we can set αp =βp =1 (uniform prior) or αp =βp =1/2 (Jeffreys prior, if all other
parameters are fixed). Jeffreys prior for N, when all other parameters are fixed, is given by
[N]∝1/N and is obtained by setting αN =βN =0 and the uniform prior by setting αN =1,
βN =0. Although both priors are improper, they lead to proper posterior distributions and so
are good candidates for noninformative prior distributions. We can motivate the uniform prior
by considering a proper discrete uniform distribution in which f (N)=1/ν for N =1, . . . ,ν. For
ν, large relative to N, the full conditional for N is closely approximated by the above negative
binomial distribution with α=1 and β=0. We can make this approximation as close as we like
simply by increasing ν.

9.3.2 Example: Adult Female Meadow Voles

Williams et al. (2002) describe the analysis of data from a study on meadow voles (Microtus
pennsylvanicus) at the Patuxent Wildlife Research Center. In this study, u.=52 different animals
were caught during five consecutive days of trapping with capture vector n= (27,23,26,22,23)′
(the full set of data is given as Table 14.9 of Williams et al., 2002). The Gibbs sampling algorithm
in Section 9.3.1 was used to generate Markov chains of 100,000 samples with two sets of starting
values: p(0)

j =0.9 for each j and p(0)
j =0.3 for each j. For priors, we used the improper Jeffreys

prior for N, with αN =βN =0, and independent Be(0.5,0.5) priors for each pj. The resulting
chains appear well-mixed, even with as few as 100 iterations (Fig. 9.1).

As a burn-in, we have discarded the first 1000 values to generate the posterior distributions
summarized in Figs. 9.2 and 9.3. Posterior summaries indicate that there were around 55
females in the population with a little under half caught in each sample. There appears to be
close agreement with standard frequentist results (Figs. 9.2 and 9.3).

Goodness of Fit

Because of the sensitivity of inference to model assumptions, it is important to assess how
well the mark-recapture model fits the data.Assuming multinomial sampling, a frequentist test
is given by Seber (1982) which uses an asymptotic chi-square distribution for the discrepancy
statistic

T =
∑
ω∈�

(xω − êω)2

êω

,

where xω is the number of animals with history ω, êω is the expected number of animals with
that history computed at the parameter estimates, and � denotes the complete set of histories
excluding the null history 00 . . .0.

A common problem with tests of this nature is that expected counts eω, estimated by ê,
need to be reasonably large for the asymptotic approximation to be valid. A simple solu-
tion to this problem is to use posterior predictive assessment, discussed in Section 5.6. In
this approach, the expected value eω is computed for each set of parameters drawn in the
Markov chain. If we use e(h)

ω to denote the hth such draw (h=1, . . . ,M) for a chain of length M,
the values Tobs

1 , . . . ,Tobs
M , that are obtained using

Tobs
h =

∑
ω∈�

(xω −e(h)
ω )2

e(h)
ω
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FIGURE 9.1 The first 100 values of the Markov chains generated using Gibbs sampling for the meadow vole
example starting each chain at pj =0.9 for all j or at pj =0.3 for all j.

Median 5 55, 97% Cl 5 [52, 59]
MLE 5 54
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FIGURE 9.2 Posterior distribution
for N in the meadow vole example
with Be(1/2,1/2) priors for each pj and
an improper negative binomial NB(0,0)

prior on N.
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0.7 FIGURE 9.3 Posterior summaries for the
capture probabilities pj in the meadow vole
example with Be(1/2,1/2) priors for each pj and
an improper negative binomial NB(0,0) prior
on N. The closed circles are the posterior medi-
ans and the lines denote 95% credible inter-
vals. The open circles denote the MLE’s and the
associated lines asymptotic 95% confidence
intervals.
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FIGURE 9.4 Scatterplot of predictive
Trep versus observed Tobs values of the dis-
crepancy statistic for the female meadow
vole data fitted to model Mt. The Bayesian
p-value is estimated by the proportion of
points above the 45◦ line and has a value
of 0.002.

are compared to a similar set Trep
h , . . . obtained using

Trep
h =

∑
ω∈�

(x(rep)

hω
−e(h)

ω )2

e(h)
ω

,

where x(rep)

hω
is the hth draw from the posterior predictive distribution for xω. In this way, the

observed data can be compared to data generated under the model.
To implement a posterior predictive goodness of fit assessment, we generate replicated data

for each set of p generated by MCMC. For the female meadow vole data a plot of Trep versus
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Tobs indicates that the model fits poorly (Fig. 9.4), with a Bayesian p-value of 0.002 indicating
that the observed data are considerably more dispersed than would be expected under the
model, after averaging across parameters.

9.4 INDIVIDUAL HETEROGENEITY MODELS

In heterogeneity models, individuals may have distinct capture probabilities, and these may
vary among samples. The CDL (Eq. 9.2) describes a model with time- and individual-specific
heterogeneity, but it has more parameters (capture probabilities and N) than observations
and so cannot be used for inference about N without adding constraints. To make inference
possible, the various heterogeneity models introduce assumptions about how the capture
probabilities of the individuals that we did not catch are related to the ones that we did catch.
These assumptions are expressed through a model [pobs,pmis|θ,N] or [pobs,pmis|θ,N,z], where
z denotes covariates. Because covariates are (usually) unobserved for the animals that are not
captured, complete specification of the CDL also requires a model [z|γ] for covariates if these
are to be included (Fig. 9.5).

Model Mh of Otis et al. (1978) introduces the constraint pi1 =pi2 = . . .=pik ≡pi. That is, each
individual has its own capture probability assumed to be constant throughout the experi-
ment. Even with this constraint, there are still too many parameters to allow useful infer-
ence for N. Huggins (2002), and also Dorazio and Royle (2003), considered a random effects
parameterization of Mh, in which the pi’s are modeled as exchangeable beta random variables.
Huggins (2002) developed empirical Bayes estimation procedures, in which estimates of the
beta parameters were obtained by method of moments and population size estimated using a
Horwitz–Thompson-type estimator. For a model such as this, frequentist inference can also be
carried out using an ODL of the form: L(N,α,β|u.,Xobs), obtained by integrating out the pi’s,
now random effects, from the CDL represented graphically in Fig. 9.5. This is the approach
taken by Dorazio and Royle (2003).

Instead of integrating out random effects to obtain an ODL, we can make use of the CDL
(Eq. 9.2) to fit the model in BUGS. Fitting model Mh in BUGS is straightforward but for one
minor exception: because N is updated each iteration, the dimension of p varies, but BUGS

X

p

z N�

� FIGURE 9.5 Directed acyclic graph
(DAG) representation of the complete
data likelihood for closed popula-
tion mark-recapture with heteroge-
neous capture probabilities where the
relationship between pobs and pmis

expressed through a model [p|θ,N,z]
where p= (pobs,pmis)′ and z denotes
covariates.
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does not allow a loop index to be stochastic. A way around this is to use data augmentation
in which N is modeled as the sum of M Bernoulli random variables each with probability ψ,
as suggested by Royle et al. (2007). Adopting a uniform prior for ψ induces a discrete uniform
DU({0,1, . . . ,M}) prior on N. In this approach, we explicitly model the inclusion indicator I of
Eq. (9.1). Also, each element of the vector p, which is of dimension M, is updated regardless of
whether or not the animal is included in the population in the current iteration of the Markov
chain.

The data augmentation algorithm suggested by Royle et al. (2007) is equivalent to a reversible
jump algorithm, as described in Section 7.3.2, with a discrete uniform prior for N. Here, the
‘palette’ of parameters corresponds to the full set of probabilities in the node p[] and defined
for all M animals in the augmented population. The bijection matching parameters on the
palette to capture probabilities in the population is defined in terms of the indicator variables
in the node w, which corresponds to the inclusion variable I in Eq. (9.1).

Using the BUGS code in Panel 9.1, we fit the beta-binomial model that was considered by
Huggins (2002) and Dorazio and Royle (2003) to the snowshoe hare data in Agresti (1994).
Specification of the data in BUGS requires the following:

• A value for M, which is data, and represents the upper limit of the discrete-uniform prior
on N.

• A value for k (the number of sampling occasions); in this case k =6.
• A data vector x of length M, with ith element, the number of times that individual i was

caught during the study (i =1, . . . ,M). This is set to 0 for the N −u. animals that were not
caught. For the snowshoe hare data x can be constructed from the model Mh sufficient
statistics f = (25,22,13,5,1,2)′, where fj is the number of animals caught exactly j times
(j =1, . . . ,k).

• A data vector w with element i is assigned the value 1 if individual i was caught and NA
otherwise (i =1, . . . ,M).

PANEL 9.1 BUGS code for model Mh fitted using data augmentation for N, modeled as a latent random variable
sampled from a binomial B(M,φ).

model{
mu˜dunif(0,1)
t˜dt(0,1,2)
theta<-abs(t)
alpha<-mu*theta
beta<-(1-mu)*theta
psi˜dunif(0,1)
for(i in 1:M){

w[i]˜dbern(psi)
p[i]˜dbeta(alpha,beta)
wp[i]<-p[i]*w[i]
x[i]˜dbin(wp[i],k)

}
N<-sum(w[])

}
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The prior used in our BUGS code warrants some explanation. The beta model is some-
times better parameterized using μ=α/(α+β) (0<μ<1) and θ =α+β (θ>0) (Appendix B.10).
These parameters are more easily interpretable and naturally assigned independent priors.
Also, their use can lead to Markov chain Monte Carlo (MCMC) with better mixing3 of the
chains than if we assign independent priors to α and β.

A natural reference prior to use for μ is a U(0,1) distribution. Identifying an appropriate
reference prior to use for θ is more difficult, as variance-type parameters in hierarchical models
need to be chosen carefully to ensure that the posterior distribution is proper. This issue has
been discussed by Gelman (2006) and Gelman and Hill (2007) who recommend the use of the
folded t-distribution. Note that if X has a t-distribution then Y =|X|, the absolute value of X,
is said to have a folded t-distribution.

In the BUGS code in Panel 9.1, we have used a folded t-distribution with two degrees
of freedom4 as a prior for θ that gives moderate support for values near zero without the
impropriety issues identified by Gelman (2006) and Gelman and Hill (2007) associated with
the Ga(ε,ε) prior, when ε is small. With the back-transformation α=μθ and β= (1−μ)θ, the
prior distribution that is induced for α is the same as the prior induced for β and has a mean
of 0.71 and SD of approximately 2.5, with 69% of probability mass on both α and β below 1
(U-shaped beta distributions), 88% mass on both less than 2, and 98% mass on both less than 5.

To assess prior sensitivity, we also considered a folded t-distribution with scale param-
eter equal to 5, obtained by replacing the line specifying θ in the above code by
theta<-abs(t*5). The prior distribution that is induced for α and β has a mean of 3.5, an
SD of approximately 3.5, with 19% of mass on both α and β below 1, 36% mass on both less
than 2, and 69% mass on both less than 5. The results from fitting these two priors suggests
there is quite a bit of sensitivity to the choice of prior (Figs. 9.6 and 9.7). This sensitivity reflects
the limited information in a data set consisting of only 6 observations.

9.4.1 Constrained Capture Probability Models, Including Covariates

In addition to model Mh, we can also use BUGS to fit models Mt and Mb and M0 by applying
the appropriate constraints on p. In these cases, the code can also be simplified, if we wish, by
removing the data augmentation step for N because the dimension of p does not change.

It is also easy to fit models with individual covariates, including the special case of model
Mh considered by Huggins (1989, 1991). A difficulty with this version of Mh is that the
covariates are unobserved for the N −u. animals that were never caught. However, pro-
vided a suitable model for these covariates exists, we can still include the covariates in the
model.

Here we consider the deer mice (Peromyscus maniculatus) data of V. Reid (Otis et al.,
1978) modeled by Huggins (1991), where it is assumed that the detection probabilities are
a deterministic function of covariates describing sex, age, and weight of each animal. To fit
this model, we need to predict the missing sex, age, and weight of the N −u. uncaught ani-

3. In MCMC, Markov chains are described as mixing well if they produce representative samples of the stationary distribution,
without excessive autocorrelation.
4. BUGS does not allow draws from a t-distribution with 1 degree of freedom; however, we could have induced such a draw
by creating a random variable Y =Z1/Z2, where Z1 and Z2 are independent standard normal variates.

III. APPLICATIONS



212 9. CLOSED-POPULATION MARK-RECAPTURE MODELS

0.1 0.2 0.3 0.4
�

Scale 5 1

Scale 5 5

0.0 0.5

1.5 2.0 2.5 3.0 3.5
�

Scale 5 1

Scale 5 5

4.0

FIGURE 9.6 Posterior density for μ

and θ in the snowshoe hare example
using a U(0,1) prior for μ and folded t-
distributions for θ with scale of 1 or 5.
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Scale � 1 FIGURE 9.7 Posterior density for N in the
snowshoe hare example using a U(0,1) prior
for μ and folded t-distributions for θ with scale
of 1 or 5.

mals. If we use z to denote covariates, we do this by adding a term [z|γ] to the model, with z
partitioned into observed and missing components. For this example, we model standardized
weight as a normal random variable with different means for each distinct age and sex class.
To model age and sex, we treat them as exchangeable Bernoulli random variables. BUGS code
for fitting this model is given in Panel 9.2 with a representation of the data in Panel 9.3.

The posterior distribution for N is given in Fig. 9.8. A reasonable point estimate for N
is 39 (the posterior mode; note also that Pr(N ≤39|Data)=0.48 and Pr(N ≤40|Data)=0.69).
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PANEL 9.2 BUGS code for model Mh including covariates for the the probability of detection. The model is
fitted using data augmentation for N, modeled as a latent random variable sampled from a B(M,ψ) distribution.

model{
for(i in 1:M){

w[i]˜dbern(psi)
logit(p[i])<-b[1]+b[2]*sex[i]+b[3]*age[i]+b[4]*weight[i]
mu[i]<-g[1]+g[2]*sex[i]+g[3]*age[i]
weight[i]˜dnorm(mu[i],tau)
sex[i]˜dbern(pie[1])
age[i]˜dbern(pie[2])
wp[i]<-p[i]*w[i]
x[i]˜dbin(wp[i],T)

}
N<-sum(w[])

psi˜dunif(0,1)
for(i in 1:4){

b[i]˜dnorm(0,0.1)
g[i]˜dnorm(0,0.1)

}
tau˜dgamma(0.001,0.001)
pie[1]˜dunif(0,1)
pie[2]˜dunif(0,1)

}

PANEL 9.3 BUGS data for model Mh including covariates for the probability of detection.M specifies the upper
limit on population size and must equal the dimension of the data vectors x, w, sex, age, and weight.

list(M=100,T=6,
x=c(6,4,4,5,6,5,5,4,6,5,5,5,6,4,2,2,3,2,3,3,3,2,3,1,4,3,4,1,2,1,3,2,1,1,1,1,
1,1,0,...,0),
w=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,NA,...,NA),
sex=c(0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,1,1,0,0,0,1,1,0,1,1,1,1,1,1,1,0,1,0,1,0,
0,0,1,NA,...,NA),
age=c(0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,1,1,1,0,0,0,1,
0,1,0,NA,...,NA)
weight=c(-0.522,0.098,0.098,0.098,-0.316,1.339,-0.729,0.098,-0.109,-0.109,
-0.316,1.545,-0.109,-0.729,-0.936,1.752,-1.556,-1.349,0.925,-0.316,-1.970,
1.132,-0.522,-1.763,1.545,-0.936,-0.109,0.925,0.925,1.132,0.305,-0.729,
-0.109,-0.729,1.959,-1.143,0.305,0.925,NA,...,NA))

The interval [38,43] has posterior probability of 0.95, hence is the 95% highest posterior
density interval for N.5 This is somewhat shorter than the approximate interval of (38.3,45.6)

obtained using the Horwitz–Thompson-type estimator by Huggins (1991). There is something

5. Percentile summaries in BUGS are based on methods for continuous data, and should be used with caution in summarizing
discrete distributions. In the present case, posterior percentiles 2.5, 50, and 97.5 of N are reported as 38, 40, and 45. In reality
Pr(N ≤x|Data) = 0.210, 0.687, and 0.984 for x = 38, 40, and 45.
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FIGURE 9.8 Posterior density for N, the number of
deer mice in the example used by Huggins (1991).

unsettling about the approximate interval and its fractional endpoints: are we to round off these
numbers? If so, what is the effect on confidence level?

The need to model the missing covariates highlights an important feature of the model-
ing approach adopted by Huggins (1989, 1991): the assumption that encounter histories are
independent given the covariates that were measured. This assumption is rather strong and is
untestable. In principle, we can extend the BUGS code of Panel 9.2 to include a random effect
to account for unmeasured influences on detectability but, as with all models in the Mh family,
we expect that this approach will require a lot of data to be useful.

9.4.2 Issues with Model Mh

As shown above, inference using model Mh may be influenced by the choice of prior param-
eters for the distribution governing the variation in p between individuals. This is not the only
issue; inference under model Mh is also sensitive to the choice of family of distributions for
modeling p. In fact, model Mh is not actually identifiable, in the sense that different choices
of distribution for p lead to data distributions that are identical or are nearly identical, while
indicating vastly different values of N (Link, 2003).

The nonidentifiability, or near nonidentifiability, of model Mh means that different choices
for N and [p|θ] lead to an identical, or near identical likelihood, and we cannot discriminate
among models solely on the basis of the data. Choice of the model [p|θ] must be guided by
knowledge of the population being studied and the way in which the mark-recapture data
were obtained. However, in many studies there will not be a lot of information on which to
base model choices. In such cases, we recommend that researchers consider a variety of models
and caution against the routine application of default methods. We offer further thoughts on
this issue at the end of this chapter (Section 9.6).

Faced with closed-population mark-recapture data in which heterogeneity is suspected,
there are a number of approaches that can be adopted. The approach discussed above used
a continuous distribution to model p. Models based on dividing the population into discrete
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classes according to their catchability have also been proposed (Agresti, 1994; Norris and
Pollock, 1996; Coull and Agresti, 1999; Pledger, 2000). These so-called latent-class or finite-
mixture models can be fitted with relatively minor modification to the BUGS code. The finite-
mixtures approach is quite general and can be extended to allow specific versions of the
general model Mtbh in which time, behavior, and individual effects are all present (Pledger,
2000). Similar models for continuous mixtures have also been proposed by King and Brooks
(2008) who also describe a reversible-jump algorithm for assessing the relative support for
different models.

9.4.3 Loglinear Representation

A very general representation of mark-recapture models makes use of incomplete contin-
gency table models to describe dependencies between the different samples (Agresti, 1994;
Cormack, 1989; Fienberg, 1972). This approach also allows assessment of a variety of models
with different assumptions about time, behavior, and individual effects on catchability. These
models are also appropriate for multiple-list studies where there is no time ordering of the
samples, as in the example discussed in Section 9.5.

Contingency tables are used for cross-classified data, and in most applications are used to
assess the types of dependencies that exist between multivariate categorical data. Bayesian
inference methods for general contingency table problems are well-developed (Albert, 2007;
Gelman et al., 2004), and inference typically focuses on the selection of appropriate mod-
els, with different models expressing different forms of dependence between variables.
In a mark-recapture setting, inference focuses on N, which can be written as a function
of table parameters. However, model-selection remains useful if a parsimonious model is
desired.

Data from a k-sample mark-recapture study can be represented in the form of a 2k con-
tingency table with one structural zero corresponding to the cell for individuals that were
available for capture during the study but never caught. The contingency table is constructed
from a cross-classification of all individuals according to whether or not they were caught in
each sample. Associated with each cell is the number of animals that have the corresponding
capture history. For example, in a two-sample study, we obtain the incomplete 2×2 contin-
gency as shown in Table 9.1. Note that xhl in Table 9.1 is the number of animals with history
Xi1 =h and Xi2 = l.

TABLE 9.1 Example of an incomplete 2×2 contingency
table for a two-sample mark-recapture study.

Not caught Caught in
in Sample 2 Sample 2 Total

Not caught in sample 1 − x01 N −n1

Caught in sample 1 x10 x11 n1

Total N −n2 n2 N
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One approach to modeling contingency tables is by loglinear models, with cell frequencies
modeled as independent Poisson random variables.6 For our two-way table, the observed cell
counts under model Mt can be modeled as P(μhl) random variables, where μhl =E[xhl] is the
expected cell count in row h+1 and column l+1 of the table. The natural logarithm of the
expected cell count is modeled using a linear predictor. For the data in Table 9.1, the linear
predictor can be written as:

ηhl = ln(μhl)=

⎧⎪⎪⎨⎪⎪⎩
β0 h=0, l=0
β0 +β2 h=0, l=1
β0 +β1 h=1, l=0
β0 +β1 +β2 h=1, l=1

.

To see the relationship between the loglinear model parameters and the more usual capture
probability formulation, we can compare them in terms of the cell probabilities of the contin-
gency table (Table 9.1). For the cell corresponding to the count x11, the expected value using
the loglinear formulation is eβ0+β1+β2 and for the usual capture probability formulation of the
model it is Np1p2. For the cell corresponding to the count x01, the expected value using the
loglinear formulation is eβ0+β2 and for the usual capture probability formulation of the model
it is N(1−p1)p2. It follows then that the expected number of animals caught in sample 2 is

Np2 =E[x11 +x01|β]= eβ0+β2(1+eβ1).

Thus,

Np1p2

Np2
=p1 = eβ0+β1+β2

eβ0+β2(1+eβ1)
= eβ1

1+eβ1

from which it follows that β1 is the logit of the capture probability p1. With a similar argument,
we can show that β2 is the logit of p2.

With three observations x11,x10,x01, and three parameters β0,β1,β2, the model is saturated.
Fitting model Mt has used up all the information in the data under the loglinear model. If we
could observe the missing cell x00, this would allow us to generalize the model to allow for a
dependency between capture in sample 1 and capture in sample 2.

In the context of the loglinear model, any dependencies between the two samples are mod-
eled using an interaction parameter. For our 2×2 example, we can write the linear predictor
corresponding to the count x11 as:

η11 =β0 +β1 +β2 +β12.

Here, we can interpret the interaction parameter β12 as the amount that the logit of p2 is
changed by as a result of the animal having been caught in sample 1. In this context, it would
be natural to think of β12 as an index of behavioral response to capture (i.e., trap-happiness
or trap-shyness). However, −β12 indexes the effect of capture in sample 2 on the probability
of capture in sample 1; the two interpretations are equivalent. The best way to interpret the
interaction is simply as a measure of dependence between samples. This might be caused

6. This approach is reasonable because collections of independent Poisson random variables, conditional on their totals, are
multinomial random variables (see Appendix B.7).
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by a behavioral response, but it could also be caused by individual heterogeneity in capture
probabilities, a point we will discuss later.

With observed data the absence of the count x00 means that we must assume a value for
β12. Usually, we assume that the two samples are independent, given N, which is the same
as assuming β12 =0. This assumption is forced on us by the missing cell and is untestable. If
we knew how many individuals had been missed, we would be able to test the hypothesis of
independence, or more interestingly, we could estimate β12.

As discussed above, the loglinear parameter β1 corresponds to logit(p1) and β2 corresponds
to logit(p1). The third parameter β0 also has a simple interpretation:

β0 = ln(E[x00]).
Thus, a useful way to fit model Mt to two-sample data is to use a loglinear model to estimate
the parameters β0, β1, and β2. To estimate population size, we need a prediction for x00, the
number of animals in the missing cell. Given a posterior sample for β0, or an explicit posterior
distribution, we could carry out posterior prediction for x00 by modeling it as a Poisson random
variable with mean eβ0 .

The loglinear model formulation generalizes to 2k tables (k >2) in which case terms for
interactions between samples can be included up to the order of k −1. For example, with
three samples the second-order interactions β12,β13,β23 are identifiable but not the three-way
interaction β123.

The loglinear modeling approach to mark recapture is very flexible and includes the stan-
dard time and behavior models as special cases. For example, if we include just the main
effects β1, . . . ,βk and set all interactions to zero, we obtain model Mt of Otis et al. (1978). To fit
model Mb, we include k −1 sample-specific indicators for whether the animal has previously
appeared in a sample and then fit the model with no time effects on either the main effects or
the effect of previous capture.

9.4.4 The Rasch Model and Mh

Loglinear models for incomplete contingency tables can also be used to model hetero-
geneity (Agresti, 1994). Intuitively, heterogeneity in sighting probabilities induces dependence
between samples and so should lead to nonzero interaction terms. In a study where the same
method was used to catch animals in all samples, we might expect that an animal that is easy to
catch in one sample, would be easy to catch in all of them, assuming that we have no behavior
effects. Thus, knowing that an animal was caught in the first sample tells us that we are more
likely to see it in later samples than one not caught in the first sample.

This connection between interactions in contingency tables and model Mh can be illustrated
using the Rasch (1961) model, originally developed in the context of item-response modeling
in psychometrics (Agresti, 2002). In the Rasch model each animal has its own probabilities of
detection, which are modeled as:

logit(pij)=αi +γj , (9.5)

αi ∼N(0,σ2)

where i (i =1, . . .N) indexes animal and j (j =1, . . . ,k) indexes the sampling occasion (Agresti,
1994). The detection probabilities depend on the individual-specific parameter αi, assumed
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to have been drawn from a normal distribution with mean 0 and variance σ2, and an
additive effect (on the logit scale) as determined by the parameter γj. Thus, the logits
of the detection probability are individual-specific and vary among animals in a parallel
manner.

There is an interesting connection between the Rasch model and loglinear models for contin-
gency tables. Let ω denote a capture history, that is, a vector of capture indicators ωj (j =1, . . . ,k).
Let xω be the number of animals with the capture history, ω. It can be shown that if we average
across the animal population (i.e., take expectations over the {αi}), the expected numbers of
animals with history ω is given by:

μω =β0 +β1ω1 +·· ·+βkωk +λ(fω) (9.6)

where λ(fω) is a parameter indexed by the number of times an animal with the history ω

is caught (Agresti, 1994). Tjur (1982) showed that maximum likelihood estimates of the β

parameters in Eq. (9.6) are conditional maximum-likelihood estimates in the Rasch model
Eq. (9.6), where the conditioning is on the number of times each animal was caught (i.e., the
individual contributions to the capture frequencies, fω). These numbers represent the sufficient
statistics for the parameters αi in Eq. (9.6). Agresti (1994) refers to this as a model for “quasi-
symmetry.” “Symmetry” corresponds to the case where all main effects are equal and also
all sets of interactions are equal; “quasi-symmetry” corresponds to the case where all sets of
interactions are equal but the main effects differ.

We can fit this loglinear model using standard statistical software, by specifying xω as a Pois-
son random variable with explanatory variables ω and a factor equal to

∑k
j=1 ωj. Unfortunately,

this model is over-parameterized and as a consequence it is not possible to estimate the param-
eter β0 and hence the population size N. Although no reliable inference for N is possible, it can
still be useful to fit this model for goodness-of-fit testing purposes. Coull and Agresti (1999)
provide interesting discussion of this model and its connection with finite mixture models as
considered by Pledger (2000).

If all three-way and higher order interactions are set equal to 0, and the two-way inter-
actions set equal (but not 0), then we obtain the model labeled as two-factor quasi-symmetric
by Agresti (1994). The quasi-symmetry model is a special case of Mth in which capture
probabilities vary between animals and over time. The parameter β0 is identifiable in this
model, and so we can estimate abundance. If we also constrain the main effects to be equal,
then we obtain a version of model Mh corresponding to β1 = . . .=βk in the Rasch model
Eq. (9.6).

9.5 EXAMPLE: KOALAS

The data in Table 9.2 are based on an Australian study, in which three different observers
traversed a study forest and mapped the locations of koalas that they saw. This mapping was
used to form a three-list mark-recapture study with sighting histories summarized using a
three-way cross-classification of koala sightings.
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TABLE 9.2 Counts of koalas by three observers represented by a
2×2×2 cross-classification of koala sightings.

C = 0 C=1

B = 0 B = 1 B = 0 B = 1

A= 0 NA 7 6 7

A= 1 8 14 12 43

A, B and C, are indicators for sightings by the three observers.

To illustrate the flexibility of the loglinear approach, and also to provide another exam-
ple illustrating the use of Bayesian multimodel inference, we fit 10 models, each of which
describes a different set of dependencies among observers. The first eight models include dis-
tinct main effects and various combinations of two-way interactions. Another model is the
version of model Mh obtained by setting the main effects to be equal and also setting the two-
way interactions to be equal. The final model represents model M0, and is obtained by setting
the main effects to be equal and all interactions to zero. The BUGS data input file is given
in Panel 9.4 and the BUGS code in Panel 9.5. A summary of model fitting output is given in
Table 9.3.

The data statement includes structures X, Xmod, and PIM that together are used to set
up the loglinear model and the different constraints considered for multimodel inference.7

The structure X is used to define the linear predictor for each of the cells in the table, and
corresponds to the design matrix Z in the matrix-based formulation of the model η=Zβ.
Rows ofX correspond to cells in the contingency table and columns correspond to parameters,
ordered β0,β1,β2,β3,β12,β13,β23. For example, the first row corresponds to the cell for koalas
seen by all three observers (A = 1, B = 1, C = 1). For this cell, all parameters appear, hence the
row of 1’s. The second row corresponds to the cell for koalas seen by observers A and B but
not C. For this cell, the linear predictor is given by

β0 +β1 +β2 +β12,

hence the row values 1 1 1 0 1 0 0.
Models are defined in the BUGS code in terms of the nodes that contribute to the likelihood

function. In the BUGS code of Panel 9.5, this is accomplished through Xmod and PIM. The
structure Xmod defines which parameters of a particular model are constrained to zero and
which are not. Rows of Xmod correspond to models and columns to parameters, with the
column orderings the same as for the X-matrix. For example, model Mt is defined by nonzero
values for the parameters β0, β1, . . . ,β3 and all interactions constrained to equal 0. Model Mt
corresponds to the first row of Xmod, which equals 1 1 1 1 0 0 0.

To allow constraints of the form βh =βl, we use the structure PIM. The BUGS code is set
up so that each of the seven nodes defined by beta is updated in every iteration. In the

7. Readers familiar with program MARK (White and Burnham, 1999) will recognize the strucure PIM as a parameter index
matrix.
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PANEL 9.4 BUGS data input file for fitting loglinear models to the koala data model including a stochastic
model indicator for carrying out Bayesian multimodel inference.

list(K=10, Ncells=8, pi=c(0.016656, 0.052853, 0.045682, 0.087367,
0.091975, 0.221741, 0.19819, 0.284835, 0.0003505,0.0003505),

count=c(43,14,12,8,7,7,6,NA),

X=structure(.Data=c(
1,1,1,1,1,1,1,
1,1,1,0,1,0,0,
1,1,0,1,0,1,0,
1,1,0,0,0,0,0,
1,0,1,1,0,0,1,
1,0,1,0,0,0,0,
1,0,0,1,0,0,0,
1,0,0,0,0,0,0),.Dim=c(8,7)),

Xmod=structure(.Data=c(1,1,1,1,0,0,0,
1,1,1,1,1,0,0,
1,1,1,1,0,1,0,
1,1,1,1,0,0,1,
1,1,1,1,1,1,0,
1,1,1,1,1,0,1,
1,1,1,1,0,1,1,
1,1,1,1,1,1,1,
1,1,1,1,1,1,1,
1,1,1,1,0,0,0),.Dim=c(10,7)),

PIM=structure(.Data=c(1,2,3,4,5,6,7,
1,2,3,4,5,6,7,
1,2,3,4,5,6,7,
1,2,3,4,5,6,7,
1,2,3,4,5,6,7,
1,2,3,4,5,6,7,
1,2,3,4,5,6,7,
1,2,3,4,5,6,7,
1,2,2,2,5,5,5,
1,2,2,2,5,6,7),.Dim=c(10,7)))

#K = no. models, Ncells = no. cells in the table

terminology of Section 7.3.2, the “palette” of parameters is represented by the elements of the
node beta. The bijection from the palette to the parameters in a particular model is defined
in terms of the rows of PIM and Xmod.

The structure PIM assigns a particular element of beta to the node b, which is the same
dimension as β. Each element of b is then multiplied by the appropriate element of Xmod,
which indicates whether or not it is constrained to zero. If we look at the ninth row of PIM,
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PANEL 9.5 BUGS code for fitting loglinear models to the koala data model including a stochastic model
indicator for carrying out Bayesian multimodel inference.

model{
Model˜dcat(pi[])
for(i in 1:K){

MI[i]<-equals(Model,i)
}
for(i in 1:Ncells){

count[i]˜dpois(lam[i])
log(lam[i])<-X[i,1]*b[1]+X[i,2]*b[2]+X[i,3]*b[3]
+X[i,4]*b[4]+X[i,5]*b[5]+X[i,6]*b[6]+X[i,7]*b[7]

}
for(i in 1:Ncells-1){

beta[i]˜dnorm(0,0.1)
b[i]<-Xmod[Model,i]*beta[PIM[Model,i]]

}
N<-sum(count[])

}

TABLE 9.3 Bayes factors (BF, scaled to model 1) and posterior model probabilities Pr(Mi|Y)

for 10 loglinear models fitted to the koala data.

Pr(Mi|Y)

Model Interpretation k BF Ock Const Comp

1. β0 +β1 +β2 +β3 Mt 4 1.000 0.002 0.012 0.039

2. β0 +β1 +β2 +β3 +β12 {A,B}{C} 5 0.299 0.000 0.004 0.032

3. β0 +β1 +β2 +β3 +β13 {A,C},{B} 5 0.337 0.000 0.004 0.036

4. β0 +β1 +β2 +β3 +β23 {B,C},{A} 5 0.191 0.000 0.002 0.020

5. β0 +β1 +β2 +β3 +β12 +β13 {A,B},{B,C} 6 0.164 0.000 0.002 0.047

6. β0 +β1 +β2 +β3 +β12 +β23 {A,C}{B,C} 6 0.071 0.000 0.001 0.020

7. β0 +β1 +β2 +β3 +β13 +β23 {A,B}{A,C} 6 0.079 0.000 0.001 0.023

8. β0 +β1 +β2 +β3 +β12 +β13 +β23 {A,B,C} 7 0.052 0.000 0.001 0.041

9. β0 +β.+β.+β.+β..+β..+β.. Mh 3 36.341 0.242 0.453 0.522

10. β0 +β.+β.+β. M0 2 41.626 0.754 0.519 0.220

Three prior model weights were used (Ock = “Ockham” with weights ∝exp(−k) favoring parsi-
mony, Const = uniform prior model weights, and Comp =“Complexity” weights ∝exp(k) favoring
complex models). The notation {A,B}{C} indicates that sightings are dependent between observers
A and B but independent of C. The notation {A,B},{A,C} indicates that sightings by B and C are only
related through the common association with A. The “dot” notation indicates a single parameter
constrained across the subscript(s).
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we see that beta[1] is assigned to the intercept parameter b[1]; beta[2] is assigned to
the three main-effects parameters b[2], b[3] and b[4]; and beta[5] is assigned to the
three interaction parameters b[5], b[6] and b[7]. Since the ninth row of Xmod is all 1’s,
we see that in the likelihood none of the parameters is constrained to 0, but the main effects
are constrained to be equal, as are the interactions.

To fit the different models and to calculate the Bayes factors, we use the method outlined
in Section 7.3 in which BUGS is first run to find an approximation to the Bayes factor. These
approximations are then used to define model priors that lead to approximately equal posterior
model weights. These prior model weights are the ones shown in Panel 9.4. The second set of
prior and posterior model probabilities are then solved to get a better approximation to the
Bayes factors.

For the koala data, most of the posterior support is for the last two models, regardless
of which model prior was used, although the complexity prior spreads about 26% support
roughly evenly among the other eight models (Table 9.3). For inference about the numbers of
koalas, we can look at density summaries under each model (Fig. 9.9) and also average across
models.

To obtain a posterior sample for N averaged over the different models, we made use of the
posterior sample generated in the second run that was designed to have each model sampled
a similar number of times. It is relatively straightforward to use R, or any similar computer
package, to sample from each model with replacement, with the number of samples drawn in
proportion to Pr(Mi|Y). From the model-averaged densities (Fig. 9.10), there is relatively little
difference between the model-average posterior density estimates for N under the “Constant”
and “Complexity” priors due to the relatively high weight placed on the heterogeneity model.
In contrast, the “Ockham” prior places a lot more weight on the two-parameter model M0,
hence the shorter credible interval for N.

Model
1 2 3 4 5 6 7 8 9 10
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140 FIGURE 9.9 Posterior summaries for N
under the 10 different models. The filled
points indicate the median and the vertical
lines span the 95% credible intervals.
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Ockham Constant Complexity
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140 FIGURE 9.10 Posterior summaries for N averaging across
the 10 different models under the three priors (“Ockham” with
weights ∝exp(k) favoring parsimony, “Constant” = uniform
prior model weights, and “Complexity” weights ∝exp(k) favor-
ing complex models). The filled points indicate the median and
the vertical lines span the 95% credible intervals.

9.6 AFTERWORD

For many years, the standard approach to analyzing closed population mark-recapture
data has been to fit the suite of models outlined in Otis et al. (1978). Having fitted these
models, model-selection methods are then used to choose among the various models. As
we have demonstrated in this chapter, it is easy to write BUGS code for the CDL (Eq. 9.2),
making use of a data-augmentation step to allow updating of the abundance parameter N. The
model fitting problem then becomes one of specifying the relevant constraints for the model of
interest.

Recent work on closed population mark recapture (e.g., Agresti, 1994; Huggins, 1991;
Pledger, 2000; Royle et al., 2007) has emphasized the development of better models to account
for heterogeneity. The best hope for such modeling lies in the identification of measurable
covariates affecting detection. The only alternative is to select models from the family Mh: one
might choose to describe individual detection probabilities as draws from a beta distribution,
a logit normal distribution, or any other distribution on [0, 1]. The problem is that the family
Mh is not identifiable (Link, 2003), so that inference will be based on arbitrary and untestable
assumptions.

Link (2006) illustrates with the following simple example. Suppose that we capture individ-
uals on four sampling occasions, letting fi denote the number of individuals captured i times.
We might model individual heterogeneity by a two-point mixture (Pledger, 2000), suppos-
ing that p=p1 with probability w, or p=p2 with probability (1−w). If p1 =1/4,p2 =3/4, and
w =3/4 then the fi occur in proportions 28:18:12:7. These are the exact same proportions as
would occur under a β(1/2,3/2) model. However, the two models make vastly different pre-
dictions for N: the expected number of individuals detected is 0.508N under the beta model,
and 0.762N under the two-point mixture model. Thus, the beta model indicates a population
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size, which is 50% larger than the two-point mixture model, and the data provide no basis for
model selection.

We thus caution against the use of default models for Mh.
A better solution to the model identification problem is to obtain qualitatively different data

that allows better discrimination among choices, or that shifts the focus to different parameters.
In our view, closed-population mark-recapture studies that focus on N at a single point in time
are of limited value. Of greater interest is the dynamics of population change. In Chapter 11,
we discuss extensions of mark-recapture methods to open population. In these models, the
focus of inference moves away from abundance onto survival probabilities, birth rates, and
movement probabilities.
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It is often the case that the only observations available are corrupted or incomplete views of
the processes which, ideally, would be the basis of scientific inference. The Bayesian paradigm
is well suited to modeling such latent processes, and Markov chain Monte Carlo can be an
invaluable tool for analysis.

In this chapter, we describe a Gibbs sampling approach for the analysis of frequency data
arising as summaries of latent multinomial random variables. The approach we outline has
broad applicability in mark-recapture analysis, being appropriate whenever observed cap-
ture histories are composite events. For instance, suppose that capture histories are recorded
for T sampling occasions. A capture history ending with “not observed after occasion T −1”
could mean that death occurred in the interval between occasions T −1 and T, or that the
individual survived beyond occasion T without being detected at T. The observed frequen-
cies of histories ending with “not observed after occasion T −1” are thus sums of latent
frequencies.

The methods developed here are appropriate when “the data you wish you had” (Chapter 8)
is a latent multinomial, of which the observed data are a summary. The methods we
develop are suitable even when some of the latent categories contribute to multiple observed
categories.

We consider a misidentification model, appropriate for capture–recapture data when indi-
vidual identities are imperfectly determined using genetic material. The methods presented
here extend the work of Lukacs and Burnham (2005) and Yoshizaki (2007). As background,
and to establish notation, we once again consider Model Mt (Darroch, 1958; Otis et al., 1978,
also Section 9.3.1) .
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10.1 MODEL Mt

Suppose that we wish to estimate the number N of individuals in a closed population.
The animals are individually identifiable, perhaps by natural markings, perhaps by the marks
placed by investigators. We assume that each animal has probability pt of being observed
(“captured”) on occasion t, for t =1,2, . . . ,T, and that these events are independent among
individuals and through time. These assumptions constitute Model Mt.

The sequence of events associated with each animal is referred to as a capture history, and
represented by a binary series of length T. For instance, an animal captured on the first and
third of T =4 sampling occasions and not captured on the second or fourth, is represented by
the sequence ω= (ω1,ω2, . . . ,ωT)={1,0,1,0}, or simply 1010. It will be convenient to uniquely
identify the capture histories on the basis of the values

j ≡ j(ω)=1+
T∑

t=1

ωt2t−1. (10.1)

For ease of notation, we simply write j; thus history 1010 has j =6.
There are 2T distinct capture histories. Let fj denote the number of individuals with capture

history j, and let f = ( f1, f2, . . . , f2T )′. Under Model Mt, the vector f is a multinomial random
variable with index N and cell probabilities

πj =
T∏

t=1

p
ωj,t
t (1−pt)

1−ωj,t ,

where wj,t is the tth entry in history j.
The vector f is not completely observed. We observe fj for j >1, but f1 (the number of

individuals never seen, i.e., with constant zero capture histories) is unknown. We know n=
N − f1, but N is unknown.

Statistical analysis is straightforward. Conditioning on n, the observed vector f + =
( f2, f3, . . . , f2T ) is multinomial with cell probabilities

π+
j = πj

1−π1
.

The number of individuals observed, n, has a binomial distribution, n∼B(N,1−π1). We thus
decompose the multinomial distribution f as

[ f ]∝ [ f+|n][n],
i.e., as the product of a multinomial and a binomial with unknown index. The observed
frequencies f+ provides information about the parameters pi, hence also π1; using this infor-
mation, the binomial distribution for n provides information about N. BUGS code is given in
Panel 10.1.

10.2 MODEL Mt,α

Implicit to Model Mt is the assumption that animals are correctly identified. This assump-
tion can be violated because of observer error or due to loss or modification of marks. Here
we consider a specific misidentification problem, and build its possibility into the model.
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PANEL 10.1 BUGS code for model Mt .

Data
list(T=2,Cells=4,f=c(NA,22,363,174),

omegas=structure(.Data=c(0,0,
1,0,
0,1,
1,1),.Dim=c(4,2)))

model{
for (t in 1:T){ p[t] ˜ dunif(0,1) }
for (j in 1:Cells){

for (t in 1:T){
c[j,t] <- pow(p[t],omegas[j,t])

*pow(1-p[t],1-omegas[j,t])
}
pi[j] <- prod(c[j,1:T])

}
for (j in 2:Cells){

pi.obs[j] <- pi[j]/(1-pi[1])
}
n <- sum(f[2:Cells])
f[2:Cells] ˜ dmulti(pi.obs[2:Cells],n)
pn <- 1-pi[1]
n ˜ dbin(pn,N)
cN ˜ dunif(n,10000)
N <- round(cN)

}

Suppose that individuals are identified on the basis of genotypic information such as
obtained from fur or scat samples. It is possible that genetic material obtained from an indi-
vidual will be misidentified. A “ghost” record, of an animal that does not exist, enters the data
set. Working under the assumptions of Model Mt, the (apparent) number of distinct animals
encountered is inflated, and population size will be overestimated.

Model Mt,α generalizes Model Mt by taking into account the possibility of ghost records.
Since it is unlikely that the same misidentification will occur twice, it is assumed that ghosts
are not resighted.

There are, then, three possible events for each animal on sampling occasion t. It might
not be detected (ω̃t =0), it might be detected and correctly identified (ω̃t =1) or it might be
detected but incorrectly identified (ω̃t =2). Model Mt,α states that these events occur with
probabilities 1−pt, αpt and (1−α)pt. As under Mt, the samples are assumed to be independent,
and the parameters to be constant among individuals. Parameter α, the correct identification
probability, is treated as fixed through time.

Under Model Mt,α, there are 3T latent histories {ω̃1, ω̃2, . . . , ω̃T}. These are uniquely identi-
fied by indices

i =1+
T∑

t=1

ω̃t3t−1.
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The challenge of Model Mt,α is that frequencies of these 3T types of latent histories are
confusingly summarized by 2T −1 types of records. For instance, an individual with latent
history 12021 is recorded as 3 distinct individuals, with histories 10001, 01000, and 00010. We
thus distinguish latent histories (with generic index i) from these recorded histories, for which
we use generic index j, and follow the numbering system at Eq. (10.1).

Data for Model Mt,α consist of the frequencies for recorded histories j =2,3, . . . ,2T . These
data are a badly mangled and incomplete summary of the latent frequencies. For instance,
recorded history 01000 not only includes individuals correctly identified on the second sam-
pling occasion and otherwise never observed, but also all individuals with latent histories
{ω̃1,2, ω̃3, ω̃4, ω̃5} and all individuals with latent histories {ω̃1,1, ω̃3, ω̃4, ω̃5} with ω̃t �=1 for t �=2
and at least one ω̃t =2.

Analysis of Model Mt,α begins by describing the recorded frequency vector f + =
( f2, f3, . . . , f2T ) as an affine transformation of latent history frequencies X = (x1,x2, . . . ,x3T ).
That is, we may write the recorded frequency vector as

f + = A′X , (10.2)

where A is a 3T ×(2T −1) matrix. This feature of the model becomes clear by looking at an
example.

A complete list of latent and recorded histories, and of recorded histories resulting from
the latent histories is given, for T =3, in Table 10.1. For example, latent history 23 is 112;
individuals with this history produce recorded histories 110 and 001, recorded histories 4
and 5, respectively.

Table 10.1 shows how the matrix A in Eq. (10.2) is constructed. Matrix A is 3T ×(2T −1) with
a 1 in the entry at row i, column j−1 if latent history i gives rise to recorded history j; all of the
other entries in A are zeros. To visualize this matrix for the case T =3, simply replace all of the
dots (.) in the center column of Table 10.1 with zeros, and all of the nonzero entries with ones.

Armed with knowledge of matrix A, we can use Eq. (10.2) to define a likelihood function.
Since the probability structure for model Mt,α is expressed in terms of latent vectors X , and
the observation is f +, the likelihood is

L
(
p1,p2, . . . ,pT ,α| f +)= ∑

X:A’X=f+
Pr(X|p1,p2, . . . ,pT ,α),

the summation being over the set of all latent frequencies consistent with the recorded data.
This looks great, but as soon as one gives some thought to computing the likelihood, some of
the luster is lost.

For one thing, how does one enumerate the feasible set {X : A′X = f +} of latent frequency
vectors consistent with the recorded frequencies?1 And even if one were able to identify the set,
one would soon realize that numerous complicated summations are needed for even a single
calculation of the likelihood, and many such calculations are required for maximization. MLE
seems far from straightforward, but a full Bayesian analysis can be implemented using MCMC,
an analysis which is elegant in its simplicity.

1. The reader might consider constructing the feasible set of vectors x consistent with f2 = f3 = . . .= f7 =2, for T =3. It is clear
that x1 can be any nonnegative integer, and that for 2≤ i ≤27, xi =0,1, or 2. There are over 1300 feasible combinations of
{x2,x3, . . . ,x27}.
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TABLE 10.1 Latent histories (i) and recorded (j) histories under
model Mt,α, with T =3.

Latent Contributed Recorded
i history records, j from i j history

1 0 0 0 . . . . . . . 1 0 0 0

2 1 0 0 2 . . . . . . 2 1 0 0

3 2 0 0 2 . . . . . . 3 0 1 0

4 0 1 0 . 3 . . . . . 4 1 1 0

5 1 1 0 . . 4 . . . . 5 0 0 1

6 2 1 0 2 3 . . . . . 6 1 0 1

7 0 2 0 . 3 . . . . . 7 0 1 1

8 1 2 0 2 3 . . . . . 8 1 1 1

9 2 2 0 2 3 . . . . .

10 0 0 1 . . . 5 . . .

11 1 0 1 . . . . 6 . .

12 2 0 1 2 . . 5 . . .

13 0 1 1 . . . . . 7 .

14 1 1 1 . . . . . . 8

15 2 1 1 2 . . . . 7 .

16 0 2 1 . 3 . 5 . . .

17 1 2 1 . 3 . . 6 . .

18 2 2 1 2 3 . 5 . . .

19 0 0 2 . . . 5 . . .

20 1 0 2 2 . . 5 . . .

21 2 0 2 2 . . 5 . . .

22 0 1 2 . 3 . 5 . . .

23 1 1 2 . . 4 5 . . .

24 2 1 2 2 3 . 5 . . .

25 0 2 2 . 3 . 5 . . .

26 1 2 2 2 3 . 5 . . .

27 2 2 2 2 3 . 5 . . .

Center column shows the recorded histories arising from specific
latent histories. For example, latent history 16, 021, gives rise to
recorded histories 010 and 001 for which j =3 and 5.

The idea will be to use Gibbs sampling, treating the latent frequencies as unobserved quan-
tities just like the the pt and α. For given values of the latent frequencies, uniform (or other
beta) priors on the pt and α will induce corresponding beta full conditionals, which are easily
sampled. The challenge for implementing MCMC is in sampling latent frequencies from the
feasible set. Not only must the Markov chain be able to move around within the feasible set,
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but we must be able to guarantee that all points in the feasible set can be reached. This is a
challenge, but not insurmountable.

First, however, we will need a brief digression into linear algebra.

Digression: Some Linear Algebra

Real numbers are nice. Think about the number 5, for instance. We know that if

5x =5y,

then x =y. The only exception to the rule ax = ay implies x =y is when a=0. With matrices,
things aren’t so nice. A nonzero matrix B can multiply vectors x and y with the result that

Bx=By

without it being the case that x=y; indeed, most matrices B “misbehave” like this. If the
number of columns of B is greater than the number of rows of B, such behavior is inevitable.
In particular, the matrix A′ relating latent histories to recorded histories under Model Mt,α
has this property: distinct latent history frequencies lead to the same recorded history
frequencies.

Every matrix B has an associated set of vectors v, called its null space, denoted null(B). The
null space consists of all vectors v which B maps to the zero vector. That is, v∈null(B) if and
only if Bv=0. Thus, while Bx=By does not imply x=y, it does imply B(x−y)=0, which is
to say that x−y is in the null space of B. In other words, Bx=By if and only if

x=y+v, for some v∈null(B).

Thus in Model Mt,α, if we can find a single vector of latent frequencies X0 satisfying
A′X0 = f +, then we can describe the feasible set {X : A′X = f +} of latent frequencies as the
set of vectors

{X : X =X0 +v,v ∈null(A′)}. (10.3)

One such vector is readily available: if α=1, latent frequencies of histories with 2’s are
zeros, and the remaining frequencies match up with recorded histories. For the case T =3
displayed in Table 10.1, we set x2 = f2, x4 = f3, x5 = f4, x10 = f5, x11 = f6, x13 = f7, and x14 = f8.
All other values xi, 2≤ i ≤27 would be set equal to zero, and x1 can be any nonnegative
integer.

The null space of a matrix B is spanned by r linearly independent basis vectors,
b1,b2, . . . ,br. These vectors are the building blocks for null(B): any vector v∈null(B) can be
written as

v=
r∑

k=1

akbk ,

where a1,a2, . . . ,ar are constants. Thus, given X0 satisfying A’X0 = f + and given the set of basis
vectors bk , we have a complete description of the feasible set at Eq. (10.3).

Computation of the set of basis vectors of a null space is a straightforward but tedious job,
best left to software. The process is illustrated in the next section. As it turns out (for readers
who might want to skip the details), null(A′) required for fitting Model Mt,α is spanned by
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TABLE 10.2 Basis vectors for null space of matrix A′ relat-
ing frequencies of latent and recorded histories under model
Mt,α, when T =3.

1 (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)′

2 (0,1,−1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)′

3 (0,1,0,1,0,−1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)′

4 (0,0,0,1,0,0,−1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)′

5 (0,1,0,1,0,0,0,−1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)′

6 (0,1,0,1,0,0,0,0,−1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)′

7 (0,1,0,0,0,0,0,0,0,1,0,−1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)′

8 (0,1,0,0,0,0,0,0,0,0,0,0,1,0,−1,0,0,0,0,0,0,0,0,0,0,0,0)′

9 (0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,−1,0,0,0,0,0,0,0,0,0,0,0)′

10 (0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,−1,0,0,0,0,0,0,0,0,0,0)′

11 (0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,−1,0,0,0,0,0,0,0,0,0)′

12 (0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,−1,0,0,0,0,0,0,0,0)′

13 (0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,−1,0,0,0,0,0,0,0)′

14 (0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,0,0,0)′

15 (0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,0,0)′

16 (0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,0)′

17 (0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0)′

18 (0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0)′

19 (0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0)′

20 (0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−1)′

r =3T −2T +1 vectors, each of which consists of nothing other than 0’s, 1’s, and (−1)′s. The 20
basis vectors corresponding to the case T =3 are given in Table 10.2.

Sample Calculation of Null Space Basis Vectors

Here, we illustrate the computation of basis vectors for the null space of matrix A′.
To keep things simple, we consider the case T =2. The 3T ×(2T −1) (i.e., 9×3) matrix A
relating latent frequencies to recorded frequencies is constructed as previously described.
We have

A′ =
⎡⎣0 1 1 0 0 1 0 1 1

0 0 0 1 0 1 1 1 1
0 0 0 0 1 0 0 0 0

⎤⎦.

This matrix is in reduced echelon form, meaning that the first nonzero entry in each row is
a 1, and that the first such nonzero entry is farther to the right in each of the successive rows.
This feature of matrix A′ is a consequence of the numbering system we used for the latent and
recorded histories. Generally, one must first attain reduced echelon form through elementary
row operations.
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Suppose that x= (x1,x2, . . . ,x9)
′ is in the null space of A′. Then A′x=0 implies

x2 +x3 +x6 +x8 +x9 = 0
x4 +x6 +x7 +x8 +x9 = 0

x5 = 0.

We treat these three equations as constraining x2, x4, and x5, leaving the remaining six values
xi arbitrary. We conclude that vectors x in null(A′) are of the general form

x=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8
x9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
−x3 −x6 −x8 −x9

x3
−x6 −x7 −x8 −x9

0
x6
x7
x8
x9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=x1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1

1
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+x6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1

0
−1

0
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+x7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−1
0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+x8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1

0
−1

0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+x9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1

0
−1

0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The 6(=3T −2T +1) column vectors form a basis for the null space of A′; every vector x satis-
fying A′x=0 is a unique linear combination of them.

10.3 GIBBS SAMPLING FOR MODEL Mt,α

Under Model Mt,α, the probability an individual will have latent history ωi is

πi =
T∏

t=1

pI(ωi,t>0)

t (1−pt)
I(ωi,t=0)αI(ωi,t=1)(1−α)I(ωi,t=2), (10.4)

for i =1,2, . . . ,3T . Conditioning on there being N individuals in the population, the probability
of a vector X = (x1,x2, . . . ,x3T )′ of latent frequencies is

[X|N,p1, . . . ,pT ,α]=
{

N!∏
xi!

∏
π

xi
i

}
I
(∑

xi =N
)

. (10.5)

the sum and products being over indices i =1,2, . . . ,3T .
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The probability of the recorded data f +, conditional on the latent frequencies, is

[ f +|X ,N,p1, . . . ,pT ,α]= I
(

f + =A′X
)
. (10.6)

Completing the specification of a Bayesian model requires priors on pt, α, and on N. We will
assign independent priors, with the result that full conditional distributions will be propor-
tional to the product

[ f +|X ,N,p1, . . . ,pT ,α][X|N,p1, . . . ,pT ,α][N][p1][pt] · · · [pT][α]. (10.7)

Priors and Full Conditionals for pt and α

The beta family of distributions provides natural choices for priors for pt and α; the uniform
distribution reflects vague prior knowledge within this family. We let Be(at

0,bt
0) denote the

prior on pt and Be(aα
0 ,bα

0) denote the prior on α.
From Eqs. (10.4) through (10.7), it follows that these priors lead to beta full-conditional

distributions pt ∼Be(at,bt) and α∼Be(aα,bα), where

at = at
0 +

∑
i

xiI(ωi,t > 0),

bt = bt
0 +

∑
i

xiI(ωi,t = 0),

aα = aα
0 +

∑
i

∑
t

xiI(ωi,t = 1),

and

bα = bα
0 +

∑
i

∑
t

xiI(ωi,t = 2);

the summations are over the indices i =1,2, . . . ,3T , and t =1,2,3, . . . ,T.

Prior and Full Conditional for X and N

It is possible to sample a new vector X for a fixed N, but it is not possible to sample a
new value N for a fixed X ; the value of N cannot change without changing X . The posterior
distributions are inextricably linked. Thus, we treat the pair (X ,N) as a single entity in a Gibbs
sampling scheme. The joint full-conditional distribution is

[X ,N| · ]∝
{

N!∏
xi!

∏
π

xi
i

}
I
(
A′X = f +)I

(∑
xi =N

)
g (N) , (10.8)

where g(N) is a prior on N.
In the absence of prior knowledge regarding N, a discrete uniform prior on {1,2, . . . ,M}, for

some large value M may be reasonable. If one wishes a prior with infinite range, [N]∝1/N,
while improper, nonetheless leads to a proper posterior distribution. As usual, we recommend
that analysts evaluate the sensitivity of analytical results to choice of alternative vague priors.

The distribution (10.8) will be sampled using a Metropolis–Hastings approach. That is, we
will generate candidate values (Xcand , Ncand) to be compared with current values (Xcurr,
Ncurr). The Markov chain sampled will either move to the candidate value (Xnext =Xcand,
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Nnext =Ncand) or remain at the present value (Xnext =Xcurr, Nnext =Ncurr) based on the outcome
of a Bernoulli trial, described subsequently.

The real challenge for the Metropolis–Hastings sampler is producing candidate values sat-
isfying the requirement A′Xcand = f +. Here, our foray into linear algebra stands us in good
stead. Given that Xcurr is in the feasible set, so also must be the candidate value:

Xcand =Xcurr +ckbk ,

where bk is a basis vector for the null space of A′, and ck is a real number. We will sample
ck from discrete uniform distributions centered on (but not including) zero. We need only
consider integer values for ck , since frequency counts are integer valued. By cycling through
the entire set of 3T −2T +1 basis vectors, we ensure that any integer-valued feasible solution
can be reached by our sampler. The candidate generating distribution is symmetric in its
arguments, simplifying calculation of the Metropolis–Hastings ratio. Sampled values Xcand
with negative frequencies are immediately rejected.

Gibbs Sampling

Gibbs sampling proceeds as follows:

Step 1: Initialize X from the feasible set of latent frequencies. Call this value Xcurr.
Step 2: Calculate values aα and bα, and values at and bt for t =1,2, . . . ,T based on the value

Xcurr.
Step 3: Sample pt’s and α from their full conditional distributions.
Step 4: Set k =0.
Step 5: Increment k by 1. Sample ck from a discrete uniform distribution on the integers

{−Dk , . . . ,Dk}\0, and generate a candidate latent frequency

Xcand =Xcurr +ckbk

where bk is the kth basis vector of null(A′). Note that the candidate value remains in the
feasible set, because bk is a basis vector of null(A). The values Dk are tuning parameters,
chosen by the analyst.

Step 6: Calculate r =min
{

[Xcand| · ]
[Xcurr| · ]

,1
}

using Eq. (10.8).2

Accept the candidate value (i.e., set Xcurr =Xcand) with probability r.
Step 7: Repeat steps 5 and 6 for all of the 3T −2T +1 basis vectors of null(A′).
Step 8: Repeat steps 2 through 7 a large number of times.

10.4 AN IMPLEMENTATION OF MODEL Mt,α

Here, we report an implementation of Model Mt,α for T =5 using recorded frequencies
f + ={17, 25, 3, 30, 6, 8, 3, 41, 7, 11, 4, 17, 6, 9, 4, 54, 11, 17, 7, 24, 9, 15, 5, 35, 13, 20, 8, 29, 11, 17,6}.

2. The nature of the candidate generation renders this calculation easy. One need only keep track of incremental changes in
the xi , at, bt, aα, and bα.
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These frequencies arise from N =400 latent histories with frequencies approximating those
expected with p1 =0.3, p2 =0.4, p3 =0.5, p4 =0.6, p5 =0.7, and α=0.90.

Given these parameter values, we would expect
∑

pi =2.5 sightings per individual, with
10% misidentifications. The recorded data should then suggest 0.25 ghosts per individual, so
that population size estimation might be anticipated to be inflated by roughly 25%, from 400
to 500. Indeed, fitting Model Mt with flat priors on pt’s and N, the posterior median for N was
511, and the 95% HPDI was [495, 525].

We generated a chain of length 110,000, and discarded the first 10,000 values as a burn-in.
This calculation took just over a half hour on a 3.8 GHz Pentium processor. The long com-
putation time is necessitated by the number (35 =243) of latent histories consistent with the
recorded (2T −1=31) frequencies. The null space of A′ has dimension 243−31+1=212, so
there are 212 basis vectors, directions in which to increment the latent history vector.

We used the first 5000 values of the chain to tune the candidate generating distributions.
During this tuning period, we adjusted the values Dk in step (5) as follows. Beginning with
δk =1, we multiplied δk by 0.95 whenever a move in the direction of the kth null basis vector
was rejected and divided by 0.95 when such a move was accepted. We set Dk in step (5) equal
to the least integer greater than or equal to δk . The effect of this tuning is to allow larger or
smaller increments in X as appropriate for the various basis vectors.

Posterior summaries are given in Table 10.3; the results are gratifying.
We note that the Markov chains produced have fairly long autocorrelations (Fig. 10.1). If we

were analyzing a “real” data set, gathered at a cost of thousands of dollars and hundreds of
hours of work, we would gladly multiply the computation time by 100 and leave the computer
running over a weekend, thinning the chains as storage requirements dictated, and more
precisely approximating the posterior distributions.

The long autocorrelation is likely due to a low movement rate for the Metropolis–Hastings
sampler; 205 of the Dk were set equal to 1, five were set to equal to 2, one to 3, and one
to 12 (this last being for the unique basis vector incrementing the constant zero latent his-
tory). In turn, the low movement rates are due to low frequencies for many of the latent
histories: of the 243 latent histories, 145 had zero frequency, and 215 had frequencies less
than or equal to three. Posterior percentiles 2.5, 50, and 97.5 are plotted for the remaining

TABLE 10.3 Posterior summaries for sample data of Section 10.4.

Percentiles

Parameter Mean SD 2.5th 50th 97.5th

α 0.910 0.016 0.879 0.910 0.940

p1 0.302 0.026 0.254 0.301 0.354

p2 0.407 0.029 0.350 0.406 0.465

p3 0.499 0.032 0.437 0.499 0.562

p4 0.596 0.034 0.530 0.596 0.663

p5 0.704 0.036 0.632 0.704 0.773

N 399.4 16.03 370 399 432
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28 histories along with the actual latent frequencies (known, because this was a simulation)
in Fig. 10.2.

10.5 EXTENSIONS

Most mark-recapture data can be described in terms of event histories, which are sequences
of Bernoulli trials. In cases where complete event histories are observed, Gibbs sampling of
model parameters is usually straightforward, since the probabilities of event histories are
simply products of conditional probabilities.

However, most mark-recapture data consist of capture histories rather than event histories.
Capture histories are composites of possible event histories; many of the basic events are not
observed. In the Brownie models, and in the CJS model and its extensions, a typical composite
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event is “not seen again.” These composite events lead to likelihood functions based on sums
of probabilities of event histories, hence sums of products, which are not easily worked with.

The latent multinomial approach described in this chapter can be adapted for many
such cases. We can conceive of latent multinomial random variables X describing possibly
unobservable event histories, summarized to frequency vectors f (capture histories) by means
of a known transformation f =A′X , where A is a matrix of zeros and ones. The Gibbs sam-
pling scheme developed here for model Mt,α can then be adapted to many capture–recapture
models.

An important difference between model Mt,α and other capture–recapture models is that
the number of ones in a row of A sometimes exceeds one; that is, single latent histories spawn
multiple observed frequencies. It can be shown that if f =A′X , and X is multinomial, then the
conditional distribution of f given its total is also multinomial, if and only if none of the row
totals of A exceeds 1. Thus, while most capture–recapture data are summarized by multinomial
vectors f , the data of model Mt,α are not. Acknowledgment of the latent multinomial structure
is therefore a necessity in analyzing model Mt,α. For other capture–recapture models, recog-
nition of this structure is not essential, but provides conceptual simplicity and an omnibus
framework for analysis.
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In Chapters 9 and 10, we considered a variety of models appropriate for making inference
about abundance in closed animal populations. In this chapter, we consider open population
models in which animals may enter or leave the population during the study. We begin with
survival models and then progress to mark-recapture models for both survival and abundance.

Closed population models describe a fixed population of size N; N is a fixed parameter
to be estimated. Open population models, on the other hand, describe dynamic populations;
there is no single N, but a vector = (N1,N2, . . . ,Nk)

′ of population sizes, with Nj describing
the population at the jth sampling occasion. The values Nj can be thought of as a sequence of
random variables, rather than parameters, and our interest is in the process generating these
random variables and the parameters that govern this process.
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In the spirit of “modeling the data you wish you had” it is instructive to consider what the
ideal data would be for a study of population dynamics. The best we could ask for would
be a complete description of the times of birth, death, immigration, and emigration, for all
individuals in the study population between times t1 and tk that define the start and end times
of the study. Failing a complete description for each member of the population, we would
want a complete description for a random sample of individuals from that population.

With ecological data, we rarely know the exact times of birth or death. Some animals will
have been born before the start of the study at time t1; their data is said to be left censored at t1.
Other animals will survive beyond the completion of the study at time tk ; their data is said to
be right censored at tk . Because times of birth and death are known only partially a key part of
modeling involves completing the data (i.e., formulating the CDL). For now we will ignore
animal movement and discuss open population modeling assuming that the population is
closed geographically.

11.1 CONTINUOUS-TIME SURVIVAL MODELS

A common statistical problem is to fit a lifetime distribution to a sample of subjects all alive
at a starting time t0.1 Models used for such data are known as “survival models.” Ideally, we
observe lifetimes T1,T2, . . . ,Tn for a sample of n individuals. These are then modeled assuming a
suitable lifetime distribution with probability distribution function (pdf ) denoted f (t). Survival
distributions are sometimes defined in terms of the hazard function h(t) instead of the pdf, with
the relationship between h(t) and f (t) given by

h(t)= f (t)
1−F(t)

,

where F(t) is the cumulative distribution function F(t)= ∫ t
0 f (s)ds. The hazard rate h(t) can

be interpreted as the instantaneous risk of dying or failure at time t, given survival up until
time t.

A simple example is the exponential survival model in which f (t)=λe−λt and h(t)≡λ is a
constant for all values of t.2 This model rarely provides an adequate fit to lifetime data because
of the restrictive assumption of a constant hazard rate. The “force of mortality” (another name
for the hazard function) can be expected to vary with the individual’s age, and in associa-
tion with seasons and temporal effects. Furthermore, hazard rates vary among individuals,
in association with gender, size, and many other factors.3 The constant hazard exponential
model has been modified in a variety of ways. Weibull models allow monotone increasing

1. Continuous-time models are typically indexed to starting time t0 rather than t1. If the focus of the study is individual
survival, rather than population change, the starting time is often the time of an individual’s birth, rather than the beginning
of the study.
2. See Appendix B.8 for more details on hazard functions and exponential distributions.
3. Grimly fascinating evidence of variation in human hazard rates can be found in extensive tables of mortality provided by
the US National Center for Health Statistics (www.cdc.gov/nchs/datawh/statab/unpubd/mortabs.htm). There, one finds
evidence for variation by age, gender, and race, and can uncover such arcana as that far more deaths occur on Wednesdays
and Saturdays than other days of the week.
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or decreasing hazard functions. Frailty models assign individual specific random effects to
hazard rates. Other models describe variation in hazard functions through use of covariates.

The most widely-used covariate model is Cox’s proportional hazard model (Cox, 1972), in
which it is assumed that the hazard function for individual i can be written as:

hi(t)=λ0(t)ez′
iβ

for a set of covariates zi and a parameter vector β. The term λ0(t) is a continuous function
of time and defines the baseline hazard rate which we can interpret as the hazard function
for an individual (possibly hypothetical) whose covariate values are all zero. In Cox’s (1972)
formulation the baseline hazard is allowed to take arbitrary values and in this sense the model
is regarded as nonparametric. The standard frequentist approach is to fit the model using
a partial likelihood (Cox, 1975), i.e., by retaining factors of a full likelihood that depend on
the parameters of interest (in this case β) and discarding factors in which the parameter of
interest is inextricably entangled with nuisance parameters (in this case parameters in the
function λ0(t)). A fully Bayesian approach to fitting this model is given by Chen et al. (2006).
An example can be found in the BUGS help file for a set of data on leukemia remission times,
from McCullagh and Nelder (1989).

Survival models must accommodate censoring. We have mentioned left- and right-
censoring; another possibility is interval censoring. Observations are taken at discrete times.
If we index the sample times by i, an individual observed alive at time ti but dead at time
ti+1 is known to have died in the interval [ti, ti+1) but the exact time of death is unknown. In
many applications the intervals are small relative to the study period and the discrete nature
of the data is ignored, other than it introduces a complication due to the presence of tied
times of death. For the moment we will ignore left- and interval-censoring and concentrate
on right censoring. Right-censored observations are modeled as Y =min{T,C}, where T is the
true survival time and C is the time of censoring.

11.1.1 Right Censoring and the CDL

Censored data are an example of nonignorable missing data (Gelman et al., 2004), because
whether Ti was observed or not is related to its magnitude: individuals with longer lifetimes
are more likely to be subject to right censoring than individuals with short lifetimes. We cannot
simply ignore the missing data without biasing our inference.

Instead, we describe the model in terms of a complete data likelihood (CDL). The complete
data consist of T ={Tobs,Tmis} (vectors of fully observed and censored lifetimes, respectively),
C (the vector of censoring times), and D, a vector of indicators Di for whether corresponding
observations Ti are censored. Letting θ denote a vector of parameters governing the distribu-
tions of the Ti, the CDL is

L(Tmis,θ|C,Tobs,D)∝[T ,C,D|θ] (11.1)

=[D|T ,C,θ][T |C,θ][C|θ] (11.2)

∝[D|T ,C][T |θ]. (11.3)

Equations (11.1) through (11.3) require some comment. In passing from Eq. (11.1) to Eq. (11.2),
we have simply made use of the laws of conditional probability. In passing from Eq. (11.2)
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to Eq. (11.3), we have assumed that survival times and censoring times are independent, so
that [T |C,θ]≡ [T |θ ]. This is a standard assumption, and generally necessary for inference,
which we discuss subsequently. We have also assumed that the distribution of C does not
depend on the parameters governing the distribution of T, so that [C |θ]≡ [C ]. Because we
have omitted Cmis from the CDL, we may simply absorb [C ] into the proportionality constant:
it has no bearing on the variables Tmis or θ. Finally, in passing from Eq. (11.2) to Eq. (11.3),
we made use of the fact that D is completely determined by T and C, so that we need not
condition on θ.

Consider the first term on the right-hand side of Eq. (11.3). Each Di is an indicator of the
event that Ti ≤Ci. Conditional on Ti and Ci, we can think of Di as a Bernoulli trial with success
parameter equal to 0 or 1, based on whether Ti ≤Ci; thus [Di|Ti,Ci]=B(1,I(Ti ≤Ci)). The CDL
is simply the product of the likelihood for these Bernoulli trials and the likelihood for the Ti,
observed or missing.

The simplicity of the CDL approach is evident if we consider what is required in writing
BUGS code. We have illustrated the approach in Panel 11.1, with a sample of size 30 from an
exponential distribution, with Ci ≡20. Only the slightest modifications would be necessary
for more general applications; we would need to replace T[i]∼dexp(theta) with what-
ever alternative distribution were desired, and to replace delta[i]<-step(T[i]-20)with
delta[i]<-step(T[i]-C[i]), with vector C[] of censoring times supplied as data.4

In contrast, the usual method of fitting this model is through use of the observed data
likelihood (ODL) which is given by

ODL∝[Tobs,d | θ,C]
=
∫

Tmis
[Tmis,Tobs,d | θ,C]dTmis

PANEL 11.1 BUGS code for fitting an exponential survival model to 30 survival times censored at t =20. The
variable y contains the survival times with censored values indicated by “NA,” meaning that for these cases y>20.
The variable d contains the censoring indicators.

model{
for(i in 1:n){

T[i] ˜ dexp(theta)
delta[i] <- step(T[i]-20)
d[i] ˜ dbern(delta[i])

}
theta ˜ dunif(0,10)

}

Data
list(T=c(1.84,0.61,1.65,3.36,7.37,NA,16.73,0.27,4.98,8.97,

7.73,12.51,17,7.78,NA,1.12,4.51,5.97,1.64,10.46,14.39,
4.42,7.04,18.13,NA,NA,7.19,14.92,0.66,9.62),d=c(0,0,0,
0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0))

4. One would set C[i]=K, with K a very large number, for uncensored observations.

III. APPLICATIONS



11.1 CONTINUOUS-TIME SURVIVAL MODELS 243

and for a random sample of survival times:

[yobs,d | θ,Ci]=
n∏

i=1

f (yi)
1−di(1−F(Ci))

di

where f (y) is the pdf and F(y) the cdf.
For the exponential distribution, as in the example of Panel 11.1, computation of the cdf is

not difficult, but in many cases the cdf cannot be calculated in closed form.
In formulating the model given earlier, we treated the censoring times Ci as independent

of the survival times. In many wildlife studies, censoring results from causes that are beyond
the control of the researcher. For instance, studies that use radio-telemetry to obtain survival
data may have censored data due to the failure of radio transmitters. In such cases it is often
reasonable to assume that the censoring events are “uninformative,” that the event of cen-
soring carries no prognosis for future survival, and that the censored observations carry no
information other than that the animal was alive up until time Ci.

If censoring is connected with the fate of the animal, for example if radio-failure results
from a predator destroying the radio while dining on the subject of our study, then we must
account for this additional information in our modeling.

11.1.2 Interval Censoring, Staggered Entry, and Known Fates

Survival models have been popular for analyzing animal survival data obtained by radio-
telemetry. Two common features of this type of data are that times of death are interval censored
and that animals often enter the study at different times. This entry of animals into the study
at different times is referred to as “staggered entry.”

Interval censoring results from having discrete sampling periods. If the times between
sampling periods are short relative to the study period, for example if death is recorded to
the nearest day in a study extending over many months, continuous time models can be
fitted as a reasonable approximation. Otherwise, modeling should be based on multinomial
distributions, as we now describe.

We will begin by ruling out staggered entries, as well as left- and right-censoring. Suppose
that we have a sample of n independent lifetimes Ti, all beginning at time t0. We are able to
determine whether each individual is alive at each of k sampling occasions, t1, t2, . . . , tk , but the
exact times of death are unknown. Thus every observation is interval-censored.

Let Xj denote the number of individuals that died in time interval [tj −1, tj), for j =
1,2, . . . ,k,k +1; here we set tk+1 =∞, to that Xk+1 is the number of individuals surviving
beyond the last sampling period. Our data can be summarized by a multinomial vector
X = (X1,X2, . . . ,Xk+1)

′, and cell probabilities πj, j =1,2, . . . ,k +1, summarized by a vector π.
Our model is X ∼Mk+1(n,π).

This formulation is very general, and nonparametric in the sense that we can make infer-
ence about the parameters πj without having to assume any model for the lifetime distribution
of Ti. If we wish, we can constrain the lifetime distribution by modeling πi as

πi =
∫ ti

ti−1

fθ(s)ds
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assuming that we are willing to specify a family of distributions fθ(·). This sort of con-
straint, while not essential for inference about πj, would be expected to lead to improved
estimation.

Now let us suppose that instead of following all n individuals from time t0, we sample
nj staggered entries at sampling occasion tj, j =0,1, . . . ,k −1. The foregoing model is easily
adapted. Let Xj,h denote the number of individuals sampled at time tj which die in the inter-
val [th, th+1), for h= j, j+1, . . . ,k. Because the staggered entries at time tj are known to have
survived at least to time tj, the probability of death in interval [th, th+1) is πj,h =πh/(1−πj).
Letting πj = (πj,j,πj,j+1 . . . ,πj,k)

′, we describe the staggered entry data by k multinomials
X j = (Xj,j,Xj,j+1 . . . ,Xj,k)

′ ∼Mk+1−j(nj,πj), for j =0,1, . . . ,k −1.
This combination of interval-censored data and staggered entry is referred to in the wildlife

literature as the “known fate” model (White and Burnham, 1999). The key features of this
design are that new animals can be introduced to the study population for monitoring at
any sampling occasion (staggered entry) and that the interval of death (or “failure” event) is
known exactly. In wildlife studies this information is usually obtained by some sort of remote
telemetry, say through use of radio-tagging. A conceptually simple variation on this is that, by
chance, we fail to determine the fate of some animals at a sampling occasion. This variation
leads to the Cormack–Jolly–Seber (CJS) model (Cormack, 1964; Jolly, 1965; Seber, 1965) and
the band recovery models of Seber (1970) and Brownie et al. (1985).

11.2 OPEN POPULATION MARK-RECAPTURE – BAND-RECOVERY
MODELS

We turn our attention to mark-recapture models, and their Bayesian analysis, considering
a model for band-recovery data. Not only are band-recovery models of interest as a popular
means of making inference about animal survival, they are also useful for demonstrating the
role that data augmentation can play in simplifying MCMC.

As an example we revisit the study considered in Section 7.3.1, a simple 3-year band-
ing study in which 400 birds were released at the beginning of each year. Data for this
type of study are often summarized in a dead recovery array (Table 11.1), a data sum-
mary that is appropriate when there are no individual covariates. The bold entries in the
table indicate the values for statistics rij which are the number of birds in release cohort

TABLE 11.1 Dead recovery array for a bird-banding study with 400 birds
released each year for 3 years and recoveries recorded for 3 years.

Year found dead j

Year released i No. released 1 2 3 Never seen again

1 400 50 22 14 314

2 400 28 21 351

3 400 25 375
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TABLE 11.2 Complete data array for a bird-banding study with three
release cohorts followed for three complete years.

Dies and recovered Dies and not recovered

i 1 2 3 1 2 3 Survives study

1 r11 r12 r13 r̄11 r̄12 r̄13 w1

2 r22 r23 r̄22 r̄23 w2

3 r33 r̄33 w3

i that were found dead between the start of year j and the start of year j+1. The size
of each cohort is denoted by Ri, which in this case is 400 for each i. Thus Table 11.1
tells us that of the 400 birds released at the start of year 1, 50 birds were recovered
before the start of year 2, 22 were recovered in the second year, and 14 were recovered in
year 3.

For each bird that contributes to an rij the interval of death is known exactly. A complication
is that the interval of death, if indeed the bird died, is unknown for each of the birds that were
never seen again. The numbers of birds in this category are indicated by the entries in italics
in Table 11.1 with one such entry for each release cohort.

To model the data we wish we had, we need to complete the information about the fate
of each bird as in Table 11.2. Here we use the notation r̄ij to denote the number of birds from
release cohort i that died in the interval (j, j+1] but were not recovered. These numbers, and
wj, the numbers that survived the study, are not observed. All we know is that wi +∑

j r̄ij is
equal to the numbers never seen again in each release cohort, and these numbers are known.
If we could complete this table then inference about survival probabilities and recovery rates
would be straightforward.

A Reparameterization

For ease of calculation we reparameterize in terms of the reporting rate λj instead of the
recovery rate fj, with the relationship

fj = (1−Sj)λj (11.4)

for 0<λj <1. The reporting rate λj is defined to be the probability that an animal is reported
dead given that it died in the interval [ j, j+1). An advantage of this parameterization is that
the λj parameters are functionally distinct from the survival probabilities. Equation (11.4)
makes it clear that the recovery rate and the survival rate probabilities are not function-
ally distinct: If we fix λj, high values for Sj are associated with low values for fj and vice
versa.

As in the analysis of the observed data we treat each release cohort as a multinomial experi-
ment. The cell probabilities associated with the multinomial data in Table 11.2 are given in
Table 11.3 with S′

j =1−Sj and λ′
j =1−λj.
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TABLE 11.3 Cell probabilities for a 3-year banding study.

Dies and recovered Dies and not recovered

i 1 2 3 1 2 3 Survives study

1 S′
1λ1 S1S′

2λ2 S1S2S′
3λ3 S′

1λ′
1 S1S′

2λ′
2 S1S2S′

3λ′
3 S1S2S3

2 S′
2λ2 S2S′

3λ3 S′
2λ′

2 S2S′
3λ′

3 S2S3

3 S′
3λ3 S′

3λ′
3 S3

Full Conditional Distributions for Latent Variables

From the statistics in Table 11.2 we can identify all those marked animals that died in
the interval [j, j+1) regardless of whether they were recovered. If we denote this statistic by
dj then

dj =
j∑

i=1

rij + r̄ij.

Of these dj animals, the number that were recovered is rij and, conditional on dj, rij is a bino-
mial random variable with index dj and probability λj. This result follows from the multi-
nomial distribution of {rij, r̄ij} within each cohort and the multinomial factorization theorem
(Appendix B.7).

Now consider all those animals alive at the start of year j. This number, which we denote
by Aj, is given by

Aj =
j∑

i=1

(
wi +

k∑
h=j

rih + r̄ih

)
,

where k is the number of years in the study. We can also define Aj recursively as:

Aj =
{

R1 j =1
Aj−1 −dj−1 +Rj j =2, . . . ,k .

As an example, A2 is calculated by summing up the statistics from Table 11.2 that are shown
in the following table, with the bold entries indicating the contributions to d2, the number of
birds that died in year 2. The statistics in this table correspond to all the birds that were know
for sure were marked and alive immediately following the release of the year 2 cohort.

r12 r13 r̄12 r̄13 w1
r22 r23 r̄22 r̄23 w2

With a little effort we can show that given Aj,dj is a binomial random variable with para-
meter 1−Sj and index Aj. If we knew the values for r̄ij and wj it would then be straight-
forward to carry out posterior sampling for inference about Sj and λj. For example, if we
adopt a Be(αS,βS) prior for Sj then the posterior for Sj is a Be(αS +Aj −dj,βS +dj) distribu-
tion. Similarly, if we adopt a Be(αλ,βλ) prior for λj, then the posterior distribution for λj is a
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Be(αλ +∑j
i=1 rij,βλ +∑j

i=1 r̄ij) distribution. These densities would exactly describe the respec-
tive posterior distributions if we observed the complete data.

Even though r̄ij and wj are unobserved we can take advantage of these results in developing
a Gibbs sampler for the bird-banding model provided we are able to sample the latent variables
from their full-conditional distributions. We show how this can be done, using as an example
the birds in our first release cohort. Given r11,r12,r13, and R1, and also given the parameters,
the distribution of the vector of unknowns (r̄11, r̄12, r̄13,w1)

′ is multinomial with index equal
to their total, which is the number from cohort 1 that were never seen after release. The cell
probabilities for this multinomial distribution are the corresponding cell probabilities in Table
11.3 scaled to sum to 1. That is, S′

1λ
′
1/ψ1 for r̄11, S1S′

2λ
′
2/ψ1 for r̄12, S1S2S′

3λ
′
3/ψ1 for r̄13, and

S1S2S3/ψ1 for w1, where ψ1 =S′
1λ

′
1 +S1S′

2λ
′
2 +S1S2S′

3λ
′
3 +S1S2S3. With similar arguments we

can identify the required multinomial distributions for the other cohorts.
We construct a Gibbs sampler as follows:

Step 1: Initialize the complete array (Table 11.2) by allocating the numbers never seen again
in each cohort to r̄ij and wj (any starting allocation will do).

Step 2: Draw samples from the full-conditional distributions for Sj by sampling from Be(αS +
Aj −dj,βS +dj) distributions.

Step 3: Draw samples from the full-conditional distributions for λj by sampling from Be(αλ +∑j
i=1 rij,βλ +∑j

i=1 r̄ij) distributions.
Step 4: Draw samples for all r̄ij and wj by sampling from the appropriate multinomial distri-

butions conditioning on the values for Sj and λj sampled at the previous steps.
Step 5: Repeat steps 2 to 4 a large number of times.

Constrained Models

A nice feature of this Gibbs sampler is that it is easy to incorporate constraints such as S1 =
S2 =S3 ≡S. (constant survival rate) or λ1 =λ2 =λ3 ≡λ. (constant reporting rate). For example,
if we wish to fit a constant reporting rate model we simply make use of the fact that under this
constraint, the full conditional distribution for the total number of animals recovered dead
during the study, which is given by r..=∑

i
∑

j rij is binomial with probability λ. and index∑
j dj, the total number of animals that died during the study.
Instead of drawing from separate beta distribution for λj, under the constant reporting rate

model we draw a value for λ. from a Be(αλ +r..,βλ + r̄..) distribution and set λj =λ. for each j.All
other aspects of the Gibbs sampler remain the same. Note that here we have used the notation
r̄..=∑

i
∑

j r̄ij. Similarly, if we wish to fit a constant survival model the only modification needed
is to replace the separate draws for Sj with a single draw for S. taken from a Be(αS +∑

j dj,βS +∑
j Aj −dj) distribution.

11.3 OPEN POPULATION MARK-RECAPTURE – THE CJS MODEL

The CJS model (discussed in Section 5.5) is closely related to the band-recovery model
of Section 11.2. In fact, although the types of data to which the two models are applied
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are quite distinct it is easy to show that their likelihood functions are algebraically
equivalent.5

The CJS model is suitable when a population is studied by tagging and releasing animals
at a series of discrete sampling occasions and then recording subsequent recaptures at later
sampling occasions. An important feature of the CJS model, and one that distinguishes it from
the Jolly-Seber (JS) model discussed later in Section 11.4, is that we condition on the releases
and make no attempt to model the first capture of each animal; we only model recaptures. The
focus in the CJS model is on survival of animals.

Because not all animals are caught in each sample there is a partial confounding of survival
and recapture processes in the CJS model. We can see this by noting that when we fail to catch
an animal in a sample we cannot tell whether the animal was alive at the time of that sample and
we did not catch it, or it was dead. Although a subsequent recapture will tell us that the animal
must have been alive, we obtain no recaptures from dead animals. The fact that we never saw
an animal again could mean that it is dead but it could also mean that it has successfully
avoided recapture. The challenge is to disentangle the survival and recapture processes.

The basic structure of the data is the same as for closed mark-recapture models in that we
summarize the results of the experiment in an array Xobs of capture indicators, with rows
corresponding to individual animals and columns corresponding to sampling occasions. An
important difference between the closed models and the CJS model is that we condition on
the first release of each animal and, where applicable, on any losses on capture. Therefore, the
Xmis component discussed in Section 9.2 is not included in the model.

Losses on capture are a complication that can arise in mark-recapture studies either because
animals die in traps or because their tags are removed, and they are released unmarked.
Provided that:

(i) loss on capture in sample j is unrelated to earlier events, other than survival, and
(ii) loss on capture parameters are distinct from other parameters in the model

the term for losses on capture factors out of the CJS model and need not be considered in
making inference about survival or capture probabilities.

An Observed Data Likelihood

If we let y denote a vector indicating time of first capture for each individual, with one ele-
ment yi for each distinct animal caught in the study, then the ODL based on all the information
in Xobs, conditional on first capture, can be written as:

L(φ,p,ν|Xobs, y)∝[Xobs |φ,p,ν,y]
= [Xobs |R,r,m]×[R |n,ν]×[r |R,φ,p][m |T ,φ,p] (11.5)

with parameters and statistics defined in Table 11.4.

5. Data obtained under the CJS model can be summarized in what is known as an mij −array, which is of the same form as
the band-recovery matrix (Table 11.1). The CJS likelihood is obtained through a judicious reparameterization of the banding
model.

III. APPLICATIONS



11.3 OPEN POPULATION MARK-RECAPTURE – THE CJS MODEL 249

TABLE 11.4 Parameters and statistics used in the CJS model.

Parameters
φj The probability that an animal alive and in the population at the time of sample j,

is alive and in the population at the time of sample j+1, ( j =1, . . . ,k −1).
pj The probability an animal that is available for recapture at the time of sample j is

caught in sample j, ( j =2, . . . ,k).
νj The probability that an animal caught in sample j is released (i.e., not lost on capture),

( j =1, . . . ,k).

Statistics
nj The number of animals caught in sample j, ( j =1, . . . ,k).
Rj The number of animals caught in sample j and released with a mark, ( j =1, . . . ,k).
rj The number of animals marked and released in sample j that were ever caught

again, ( j =1, . . . ,k −1).
mj The number of marked animals caught in sample j, ( j =2, . . . ,k).
Tj The number of marked animals in the population immediately before sample j that

were caught in sample j or later, ( j =2, . . . ,k).

Note that the survival probability is now denoted by φj instead of the Sj used earlier for
the bird-banding model. The parameter φj is in fact an “apparent” survival. If animals can
permanently move away from the study site then this movement is indistinguishable from
death.6

Of the four terms in Eq. (11.5), [R |n,ν] deals with losses on captures and is the least inter-
esting: this term models the number released in sample i conditional on the number caught
and depending only on the nuisance parameter νi.

The third and the fourth terms correspond to the ODL for the CJS model expressed in terms
of the minimal sufficient statistics. Somewhat remarkably, the CJS model can be expressed as
the product of binomial distributions:

[r |R,φ,p]=
k−1∏
j=1

B(rj;Rj,λj)

and

[m |T ,φ,p]=
k∏

j=2

B(mj;Tj,τj)

with λj and τj defined in Section 5.4. A description of a Gibbs sampler for this formulation of
the CJS model is also given in Section 5.4.

An interesting observation is that the first term [Xobs |R,r,m] in the ODL (11.5) is free of
the parameters ν, φ, and p. In fact, this term can be expressed as the product of multiple

6. The CJS likelihood is valid under alternative permanent emigration or random temporary emigration assumptions; these
ideas are explored further by Burnham (1993).
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hypergeometric distributions, so that [Xobs |R,r,m] can be used to develop goodness of fit
tests based on contingency tables (for examples, see Pollock et al., 1990).

As discussed in Section 5.4, the complicated form of the ODL means that known full con-
ditional distributions for φ and p are unavailable if this formulation of the model is used.
However, a useful alternative formulation is to complete the data with a latent vector d, which
has one element for each distinct animal caught in the study. If animal i dies between the time
of samples h and h+1 (h< k) then di =h. If animal i is still alive at the time of sample k then
di = k.

If we use the vector v, with the same dimension as y, to indicate any times of loss on capture,
then we can write a complete data model, conditional on times of first release and losses on
capture, as

[Xobs,d |y,v,φ,p]= [Xobs |d,y,v,φ,p]×[d |y,v,φ,p]
= [Xobs |d,y,v,p]×[d |y,v,φ].

This formulation leads to a Gibbs sampler which is based on known full-conditional distri-
butions for the unknown and censored elements of d provided that conjugate priors are used
for φ and p (Dupuis, 1995; Schofield, 2007).

11.3.1 A Gibbs Sampling Algorithm for the CJS Model

Using a Be(αφ,βφ) prior for φj the full-conditional distribution is also a beta distribution

[φj | ·]=Be(M+
j −Dj +αφ,Dj +βφ)

where M+
j is the number of marked animals in the population immediately following sample

j and Dj is the number of these that died between samples j and j+1. Note that any animals
lost on capture are not regarded as having died in the interval between samples j and j+1;
these are not counted in computing the statistics M+

j and Dj.
Using a Be(αp,βp) prior for pj, the full-conditional distribution is

[pj | ·]=Be(mj +αp,Mj −mj +βp)

where Mj is the number of marked animals in the population immediately before the sample
at time j and mj is the number of these that were caught.

The full-conditional distributions for unknown and censored elements of {dj} are derived
from the model [d|y,φ]. For individual i, [di|yi,φ] is a categorical distribution with sample
space {yi,yi +1, . . . ,k} and parameter vector {ξyi ,yi ,ξyi ,yi+1, . . . ,ξyi ,k} that depends on the survival
probabilities

ξij =
⎧⎨⎩

1−φi i = j
φk−1 i = k −1; j = k
ξi+1,jφi i =1, . . . ,k −1; j =2, . . . ,k

for i =1, . . . ,k −1. As an example, values of ξij are given in Table 11.5 for a study with k =
4 sampling occasions. Updating the latent vector d then proceeds according to one of the
following:
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TABLE 11.5 Values of ξij for a CJS model with k =4.

j =1 2 3 4

h=1 1−φ1 φ1(1−φ2) φ1φ2(1−φ3) φ1φ2φ3

2 – 1−φ2 φ2(1−φ3) φ2φ3

3 – – 1−φ3 φ3

Here h indexes the sample in which the animal was first caught
and j indexes the sample that marks the beginning of the interval
in which the animal died.

(i) If the animal was caught in sample k, di is set equal to k because we know death occurred
after sample k.

(ii) For an animal last caught in sample li, di is censored at li. Thus, we draw a value for di
from a categorical distribution with sample space {li, li +1, . . . ,k} and parameter vector
(ξli ,li ,ξli ,li+1, . . . ,ξli ,k)

′.
(iii) If the animal was lost on capture in sample li then we can, if we wish, draw a value for di

as under option (ii). We can regard this as the predicted time of death for animal i had it
remained in the study. Note that updating di for these animals is not essential; inference
about all other unknowns is valid regardless.

An efficient Gibbs sampler based on the above mentioned full-conditional distributions can
be readily programmed using a language such as R. However, the CJS model including latent
times of death can be also be easily implemented in BUGS (Schofield et al., 2008) as shown in
Panel 11.2.

Features of this BUGS code are:

• first[i] is data and indexes the first sample in which animal i was caught and released.

• AvailUntil[i] is data and indicates the last sample in which the animal was known to
have been available for capture. This is assigned the value h if animal i was removed in
sample h, or is set to k if the animal was never removed. Capture probabilities for occa-
sions after this time are set to zero. In the CDL analysis a death time is imputed for these
animals and is interpreted as the predicted time of death had the animal remained in
the study.

• The node a[i,j], which is a latent variable, has the value 1 if animal i is available for
capture in sample j and 0 otherwise. Note that a[i,first[i]] is data and is assigned the
value 1.

• The nodes asuse[],sv[],apuse[], and pcap[] are used to ensure that animals that
have not yet been marked or that have died do not contribute to the likelihood.

• The nodeavail[] keeps track of whether the animal is available for recapture (i.e., marked
and not removed from the population).

The CDL specified in Panel 11.2 is written in terms of Bernoulli distributions and probabil-
ities that depend on whether or not the animal has survived and thus is available for capture.
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PANEL 11.2 BUGS code for the CJS model fitted using data augmentation for the unknown times of death.

model{
for (i in 1:udot) {

for (j in first[i]+1:k){
asuse[i,j] <- a[i,j-1] + 1
apuse[i,j] <- a[i,j] + 1
a[i,j] ˜ dbern(sv[asuse[i,j],i,j-1])
avail[i,j]<-a[i,j]*step(AvailUntil[i]-j)

}
for (j in first[i]+1:AvailUntil[i]){

X[i,j] ˜ dbern(pcap[apuse[i,j],i,j])
}
for(j in first[i]:k-1){

sv[1,i,j] <- 0
sv[2,i,j] <- S[j]
pcap[1,i,j+1] <- 0
pcap[2,i,j+1] <- p[j+1]

}
}

for(j in 1:k-1){
S[j] ˜ dbeta(1,1)
p[j+1] ˜ dbeta(1,1)

}
}

Although this code does not explicitly include the latent vector d of animals’ death times, the
vector can be easily derived from the matrix a[].

The main benefits of writing out the CJS model in terms of the CDL, including latent times
of death, are computational convenience and faster mixing in MCMC. The latent times of
death can also be used to form a prediction for the number of marked animals remaining in
the population but this will rarely be of interest.

The CJS model does not include population sizes or birth rates; it is limited in
this regard by conditioning on the numbers of animals released at sampling occasions.
To make inference about abundance and birth, we must use a likelihood for the full
capture–recapture data set, and in particular, we must include a model for the first
captures.

11.4 FULL OPEN POPULATION MODELING FORMALITIES

In a closed population experiment, the population is described by a single population size,
which does not change during the experimental period. Descriptions of open populations are
move complicated, reflecting the dynamic nature of populations. Despite these differences,
models for closed and open populations can be described in the same general way, the main
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difference being the many different summaries that we can use to characterize changes in the
population during the experiment.

The quantity of interest in a closed population experiment is the population size. An ana-
logue in open population experiments is the number of distinct animals ever alive during
the study. It is tempting to refer to the totality of these animals as “the population” under
consideration, but a difficulty presents itself. Some animals are born and die between sam-
pling periods, hence are invisible to the experiment. Including such animals in models would
require untestable assumptions. It seems advisable to exclude them from consideration; judi-
cious choice of sampling periods may render their numbers negligible. Thus we will use the
phrase “the population” to describe all individuals alive and available for capture on at least
one of the sampling occasions.7

Using � to denote the number of animals ever available for capture in the population, the
CDL can be represented by

CDL∝[Xobs,Xmiss,I | θobs,θmiss,�].
This is essentially the same general representation that we used for closed populations except
now the inclusion indicator is a �× t matrix with Iij =1 if animal i was available for capture
and caught in sample j and zero otherwise. Also, because the population is open, the parameter
vector θ now includes components used to model entry and exit of animals from the population
as well as capture probabilities.

An animal is available for capture at j if it entered the population before sample j and left the
population after sample j. Thus, we can summarize the information in the inclusion indicator I
using the �×1 vectors b and d, where elements bi and di indicate the birth and death intervals
for individual i.

As discussed at the beginning of this chapter, all birth and death times are censored in mark-
recapture studies. Birth times b for individuals present at the start of the study are left-censored;
all we know is that their time of birth was before t1. Times of death d of those individuals alive
at the end of the study are right-censored; all we know is that death occurred (or will occur)
after tk . Even the birth and death times that occur during the study are interval-censored.

Open population models focus on birth and death times bi, and di, and relationships among
them. Using the CDL allows investigation of derived quantities of interest, such as Nj, the
number of animals available for capture in sample j, and Bj, the number born between samples
j and j+1 which survive at least until j+1.

Figure 11.1 depicts the lifespans of 18 animals in relation to a four-period study. Sixteen
were alive during the study period, but only 13 are taken account of in the matrix X ; three that
were born and died between consecutive sampling occasions are excluded from the model.
Each of the �=13 animals can be described by when they were born, either (i) before t1, (ii)
between t1 and t2, (iii) between t2 and t3, or (iv) between t3 and t4. Denoting the number born
before t1 by B0, we have B0 =1, B1 =5, B2 =4, and B3 =3 in Fig. 11.1. We can also count N1 =1,
N2 =6, N3 =7, and N4 =8.

7. Like “supermodel,” the term “superpopulation” used by Schwarz and Arneson (1996), is ambiguous; to us it suggests
something hypothetical. We prefer the term “population” as it describes a real collection of individuals.
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t1 t2 t3 t4

FIGURE 11.1 Lifetimes for 18 hypothetical individ-
uals, 16 of which were alive during a mark-recapture
experiment carried out from time t1 to t4. The open circles
indicate the time of birth and the closed circles the time of
death. The light-gray lines correspond to individuals that
are excluded from inference either because they did not
live during the study period or because they were born
and died between consecutive samples.

Jolly–Seber Model

The first full open population model was the Jolly–Seber (JS) model (Jolly, 1965; Seber,
1965) in which the model [Xobs |φ,p,ν,y] of Section 11.3 is augmented by a model for the
first captures [y |p,U], where the vector U = (U1, . . . ,Uk)

′ with Uj defined as the number
of unmarked animals in the population at the time of sample j. Remarkably, Jolly and
Seber proposed the same model independently and published side-by-side in Biometrika
in 1965.

In the JS model, the information contained in y on when animals are first caught is summa-
rized by the vector u= (u1, . . . ,uk)

′, with element uj the number of unmarked animals caught
in sample j. The model for first captures is then expressed as:

[y |p,U]∝
k∏

j=1

[uj |pj,Uj]

where [uj |pj,Uj] is a binomial distribution with index Uj and parameter pj.
Notice that the value of Ui cannot be deduced from Fig. 11.1 as each Ui includes not only

the Bi−1 animals newly born at the time of sample i, and hence unmarked, but animals born
before ti−1 that are as yet uncaught. Because of this confounding of birth and capture processes
the parameters U are not really of any particular biological interest. However, they do have
value in that given estimators for Uj and other parameters in the model, it is possible to find
estimators for Nj and Bj. A drawback of parameterizing the likelihood in terms of U is that
it makes hierarchical extensions of the model difficult; it is hard to conceive of a reasonable
process prior for this parameter because U’s reflect a complicated interaction of the population
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with the experiment. Process priors are of interest because we would like to be able to model
the more biologically meaningful quantities Nj and Bj.

11.5 CMSA MODEL AND EXTENSIONS

An important variation on the JS model is one developed initially by Crosbie and Manly
(1985) and then extended by Schwarz and Arneson (1996). We refer to this model as the CMSA
parameterization of the JS model, or the CMSA model for short. An advantage of this for-
mulation is that it is amenable to hierarchical extension, as discussed by Link and Barker
(2005).

The CMSA model is parameterized in terms of � and the vector β= (β0, . . . ,βk−1)
′, where

βj is the probability that an animal ever available for capture enters the population between
samples j and j+1. Under the assumption that birth events are independent, and that the
vector β is the same for each animal, the vector B of birth frequencies can be modeled as a
multinomial random variable B|�,β∼Mk(�,β).

This is the basis of the CMSA as an ODL extension of the CJS.
A detailed description of the ODL for the CMSA model is given by Link and Barker (2005)

along with discussion of the relationship between this model and the model used by Pradel
(1996). Here, we base inference on a CDL that is expressed in terms of the latent times of birth
b and latent times of death d. With this approach, inference about summaries such as Ni or
Bi is straightforward, because these appear as simple functions of b and d. Working with the
CDL can also lead to more efficient Gibbs sampling, and is relatively easy to implement in
BUGS as we show in code appearing subsequently.

11.5.1 Complete Data Likelihood

The CDL for the CMSA model is proportional to

[X ,b,d |�,β,p,φ]= [X |p,�,b,d][d |φ,b,�][b |β,�],
where X is the complete (�×k) X-matrix (

Xobs

0

)
.

For simplicity, we have ignored losses on capture.
The term [X |p,�,b,d] is similar to the term [X|p,N] for a closed capture model, except

that each animal has capture probability 0 prior to birth and after death. Similarly, the term
[d |φ,b,�] is the same as the equivalent term in the CJS model, except we condition on when
the animal was born, not when it first entered the study.

To model births in the CDL we use

[b |β,�]=
�∏

i=1

[bi |β]
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where [bi |β] is a categorical distribution with sample space {1, . . . ,k} and parameter vector β.
Here, bi =h indicates that the animal was born between samples h−1 and h (h=2, . . . ,k), with
the special case of bi =1 indicating birth before sample 1. We model the times of death di in the
same way that we did for the CJS model except that now we condition on the time of birth, not
the time at which the animal first entered the study, and we model the times of death for all �

animals. That is, we model di (i =1, . . . ,�) by specifying [di|φ,bi] as a categorical distribution
with sample space {bi,bi +1, . . . ,k} and parameter vector (ξbibi ,ξbi ,bi+1, . . . ,ξbi ,k)

′. The elements
ξij are defined in Section 11.3.1.

As in the CJS model the times of death are partially observed: we know that death must
have occurred after the last time we caught the animal, if we caught it. Similarly the times
of birth are also partially observed: we know that the time of birth occurred before the first
occasion on which we caught the animal.

It is relatively straightforward to extend the BUGS code in Panel 11.2 in order to fit the
CMSA model. We do this by

1. Adding a data-augmentation step to account for the dimension change associated with
updating �.

2. Adding a censored multinomial term to account for the time of birth.
3. Adapting the model for d by taking the possible times of death from when the animal was

born rather than from when it first entered the study.

We also add a (�×1) vector (birthCT) to the data containing the censored times of birth,
with entries set to k for the animals that were never captured. We include a partially observed
(�×k) data matrix (notyetdead) to indicate whether a member of the superpopulation has
yet died. This is assigned the value 1 for all animals at the start of the study and has element
ij set to 1 for all samples between the first and last sighting of animal i and set to NA for all
samples after the last occasion on which it was caught.

Using this code (Panel 11.3) it is also easy to construct predictions for Ni and Bi as these
are simple functions of the matrices avail[] and a[] (BUGS code in Panel 11.4). However,
simply estimating values for the parameters φ,β and making predictions about N or B is
unlikely to satisfy most researchers. Of more interest is modeling these quantities either as a
device for obtaining higher-level summaries or to answer biologically interesting questions.

11.5.2 Example: Nonmelanic Gonodontis

Bishop et al. (1978) reported results from a study in which 689 nonmelanic male Gonodon-
tis bidentata were captured, marked and released daily at Cressington Park near Liverpool in
England. Gonodontis come in two forms, melanic and nonmelanic, with an increasing dom-
inance of the melanic form due to industrial pollution being one of the classic instructional
tools for teaching about natural selection.

In Section 5.5.2 we fitted a CJS model to the Gonodontis data. Here we fit the CMSA model
to the Gonodontis data using the BUGS code in Panel 11.3 with posterior summaries in Fig. 11.2
for the daily abundances, births, and survival probabilities.

A feature of Bayesian inference is the ease with which we can express inference using
different parameterizations as discussed in Section 5.2. Instead of describing population
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PANEL 11.3 BUGS code for the CMSA model fitted using data augmentation for the unknown times of birth
and death and for the superpopulation size �.

model{
for(i in 1:M){

w[i]˜dbern(psi)
b[i]˜dcat(beta[])I(,birthCT[i])

}
Lambda<-sum(w[])

for (i in 1:M) {
a[i,1]<-w[i]*(1-notyetborn[i,1])
avail[i,1]<-a[i,1]*step(AvailUntil[i]-1)
for (j in 1:k){

notyetborn[i,j]<-step(b[i]-j-1)
}
for (j in 1:AvailUntil[i]){

pcap[i,j]<-a[i,j]*p[j]
X[i,j] ˜ dbern(pcap[i,j])

}
for (j in 2:k){

a[i,j]<-w[i]*(1-notyetborn[i,j])*notyetdead[i,j]
avail[i,j]<-a[i,j]*step(AvailUntil[i]-j)
asuse[i,j] <- notyetdead[i,j-1] + 1
notyetdead[i,j] ˜ dbern(sv[asuse[i,j],i,j-1])

}
for(j in 1:k-1){

sv[1,i,j] <- 0
sv[2,i,j] <- notyetborn[i,j]+(1-notyetborn[i,j])*S[j]

}
}

for(j in 1:k){
p[j]˜dbeta(1,1)

}
for(j in 1:k-1){

S[j]˜dbeta(1,1)
}
beta[1:k]˜ddirch(alpha[])
psi˜dbeta(1,1)

}

demographics in terms of N and B we can construct posterior densities for quantities such
as per capita birth rate f (note that this is not the same as the recovery rate parameter used
earlier in the bird-banding model) or population growth rate λ using the relationships given
in Link and Barker (2005). The reparameterization is accomplished by noting that

fj =
βj

dj
j =1, . . . ,k −1,
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FIGURE 11.2 Posterior summaries for the parameters N (abundance), φ (survival), and B (births) for the Crosbie–
Manly–Schwarz–Arnason model fitted to the Gonodontis data of Bishop et al. (1978).

PANEL 11.4 BUGS code for predicting values for N (abundance) and B (births).

for(j in 1:k){
N[j]<-sum(avail[1:M,j])

}

for(j in 1:k-1){
B[j]<-sum(bij[1:M,j])

}

for(i in 1:M){
for(j in 1:k-1){

bij[i,j]<-equals(a[i,j],0)*equals(a[i,j+1],1)
}

}
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where

dj =
{
β0 j =1
dj−1Sj−1 +βj−1 j =2, . . . ,k −1,

and

λj =Sj + fj j =1, . . . ,k −1.

To generate samples from the posterior densities for f and λ, we simply translate the Markov
chain for S and β into a Markov chain for f and λ using the above functional relationships.
Posterior summaries for f and λ for the Gonodontis analysis are shown in Fig. 11.3.

On the basis of the posterior densities for the daily population growth rates, the male
nonmelanic Gonodontis population at Cressington Park appears to have been mostly increasing
through this study with some reduction in the population evident toward the end. Although
a similar conclusion is evident from looking at the numbers of moths born (Bj) and the abun-
dances (Nj), an advantage of the CMSA parameterization is that we can readily adapt the
model to include random effects on parameters such as λj as a device for summarizing the
behavior of the population in terms of mean growth rate and also to introduce some parsimony.

A further advantage, one we have stressed several times in this book, is that Bayesian
hierarchical modeling can greatly extend the types of questions addressed by researchers.
One example is the ability to model relationships between sets of parameters. Reasoning that
survival probabilities and per capita birth rates may well be related, possibly due to a common
environmental influence, Link and Barker (2005) placed a multivariate normal random effects
model on the parameters φ and f using the stochastic constraint(

logit(φj), ln( fj)
)′ ∼MVN(μj,�)

where the elements of μj are the expected value of logit(φj)=μ1j and the expected value of
ln( fj)=μ2j. The parameter � is the variance–covariance matrix that represents the covariation
in the joint distribution of the parameters.
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FIGURE 11.3 Posterior summaries for the
parameters f (per capita recruitment rate) and
λ (population growth rate) for the Crosbie–
Manly–Schwarz–Arnason model fitted to the
Gonodontis data of Bishop et al. (1978).
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Prior

df 5 2, V 5 diag (1, 1)
df 5 2, V 5 diag (2.5, 1.25)
df 5 3, V 5 diag (1, 1)
df 5 3, V 5 diag (5, 2.5)

20.521.0 0.0 0.5 1.0

FIGURE 11.4 Posterior density for the
parameter ρ which measures the strength of
linear association between logit(φ) and log( f )

in the model (logit(φ), log( f ))′ ∼MVN(μ,�)

for the Gonodontis data under four different pri-
ors for �. From Link and Barker (2005).

This “process covariance” describes biologically relevant association between the demo-
graphic parameters and is not to be confused with biologically irrelevant sampling covariance
that between-parameter estimates, which results from the process of estimation.

To fit this model we can adapt the BUGS code in Panel 11.3 by reparameterizing the model
in terms of f instead of β and then adding a multivariate normal prior for the joint distribution
of φ and f . Link and Barker (2005) used vague normal prior distributions for the elements of
μ, and for [�] they used an inverse-Wishart IW2(V,df ) distribution.

Because of the hierarchical relationship this code is slow to mix. Being impatient, Link
and Barker (2005) instead made use of a partial likelihood derived by conditioning on u.,
the number of animals that were ever caught during the study, a device also used by Pradel
(1996). By conditioning on u., which is data, it appears that important information has been
discarded from the model. However, Link and Barker (2005) showed that u. is effectively ancil-
lary, meaning that it includes almost no useable information for inference about the identifiable
parameters in the model. After including the hierarchical model relating φ and f , Link and
Barker (2005) found some evidence of a positive association between the two sets of parameters
(Fig. 11.4).

A possible explanation for the apparent association between φ and f is density dependence,
with both sets of parameters depending on the abundance of moths. Because the CDL can be
used to predict the abundances Nj it is also possible to include the abundances as predictors
for the survival probability and per capita birth rate, an approach described by Schofield et al.
(2008) for this same set of data.

11.6 MULTIPLE GROUPS

It is common for study populations to be grouped into fixed strata, for example male vs.
female, with no movement between strata, as for sex, or deterministic movement between
strata, as for age. We can regard group membership as a categorical covariate. In the case
of the CJS model where we condition on first release, this categorical covariate will usually
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PANEL 11.5 Modification to the BUGS code for fitting the CMSA model (Panel 11.3) to allow for multiple
groups.

for(i in 1:M){
w[i]˜dbern(psi)
b[i]˜dcat(beta[])I(,birthCT[i])
grp[i]˜dcat(pi_grps[b[i],])

}

for(i in 1:k){
pi_grps[i,1:ngroups]˜ddirch(alpha_grp[i,])

}

be completely known as it can be measured for each animal that appears in the experiment.
In the case of the full open population models, where entry of animals into the study population
is modeled, group classification is unknown for the animals that were never caught and so
must be modeled.

Fortunately, modeling the unknown group for animals that were never caught involves a
simple extension of the data augmentation technique used to model the unknown number
of animals in the population. All we require is the addition of a group variable to the data
statement, with values set as NA for the M−u. animals that were never caught. Group is then
modeled as a categorical random variable with the number of categories equal to the number
of groups. Parameters are indexed by group as appropriate.

To illustrate we use an example from Nichols (2005) of a study on male and female meadow
voles at the Patuxent Wildlife Research Center. The model we fitted was a two-group CMSA
model using the BUGS code in Panel 11.3, but with the modification to the data augmenta-
tion step for abundance shown in Panel 11.5 along with the specification of the prior for the
interval-specific allocation of new individuals to groups. Results from fitting this model to the
meadow vole data are illustrated in Fig. 11.5 for sex-specific abundance, births, and survival
probabilities. Modifications for groups are made to related models, such as the robust design
model discussed in the next section, in exactly the same way.

11.7 ROBUST DESIGN

The CMSA model provides a convenient starting point for a model for Pollock’s robust
design (Pollock, 1982). In the robust design, the population is regarded as closed between some
capture occasions and open between others. During the closed intervals, closed population
models such as Mt or Mh may be used for inference about abundance, with encounters across
the open periods providing information on survival probabilities.

A simple modification of the CMSA model is to restrict the survival probabilities φj to 1 and
the entry probabilities βj to 0 for each of the closed periods. This leads to the equivalent of
model Mt being applied during each closed period, with simple time dependence on survival
probabilities and birth rates for the open periods. For fitting in BUGS it is more efficient to mod-
ify the code in Panel 11.3 by adding to the data list a variable K, the number of primary periods,
and a vector Prim, a k-dimensioned vector with element j the index of the primary period that
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FIGURE 11.5 Posterior density summaries for abundance (N), births (B), and survival rates from fitting a sex-
specific CMSA model to the male and female meadow vole data of Nichols (2005). The closed circles are for males
and the open circles for females.

the sampling occasion belongs to. Recall that here, k is the total number of sampling occasions.
The amended code is given in Panel 11.6.

11.7.1 Example: Meadow Voles

Williams et al. (2002) describe a study of adult male meadow voles (Microtus pennsylvanicus,
in which there were six primary periods (K =6) at half-yearly intervals, with each primary
period comprising five secondary occasions. Thus k =30. A further feature of this study is that
a small number of voles were lost on capture. Because a racoon disrupted the traps during
the last 2 days of primary period two, Williams et al. (2002) analyzed the data using just the
first 3 days in primary period two. Using conventional closed-capture modeling they found it
necessary to model heterogeneity in detection in each of the primary occasions.

To carry out a similar analysis, we fitted a model in which

logit(pij)=γj +εi

where εi is an individual-specific random effect modeled as a normal random variable with
mean zero and variance σ2. In this model, which we label as p(primary+individual), the
capture probabilities are allowed to vary between primary occasions and between individ-
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PANEL 11.6 BUGS code for the robust design model fitted using data augmentation for the unknown times of
birth and death and for the superpopulation size �.

model{
for(i in 1:M){

w[i]˜dbern(psi)
b[i]˜dcat(beta[])I(,birthCT[i])

}
Lambda<-sum(z[])
for (i in 1:M) {
for(j in 1:AvailUntil[i]){

aCap[i,j]<-a[i,Prim[j]]
pcap[i,j]<-aCap[i,j]*p[j]
X[i,j] ˜ dbern(pcap[i,j])

}

a[i,1]<-w[i]*(1-notyetborn[i,1])
avail[i,1]<-a[i,1]*step(Prim[AvailUntil[i]]-1)

for (j in 1:K){
notyetborn[i,j]<-step(b[i]-j-1)

}
for (j in 2:K){

a[i,j]<-w[i]*(1-notyetborn[i,j])*notyetdead[i,j]
avail[i,j]<-a[i,j]*step(Prim[AvailUntil[i]]-j)
asuse[i,j] <- notyetdead[i,j-1] + 1
notyetdead[i,j] ˜ dbern(sv[asuse[i,j],i,j-1])

}
for(j in 1:K-1){

sv[1,i,j] <- 0
sv[2,i,j] <- notyetborn[i,j]+(1-notyetborn[i,j])*S[j]
}

}
# prior distributions for S and p
for(j in 1:k){

p[j]˜dbeta(1,1)
}

for(j in 1:K-1){
S[j]˜dbeta(1,1)

}

beta[1:K]˜ddirch(alpha[])
psi˜dbeta(1,1)

}

uals but the effects are additive. Within a primary occasion, the individual-specific capture
probability is fixed. BUGS code for this prior is shown in Panel 11.7.

Posterior summaries from fitting this model are provided in Fig. 11.6 for N , S, and B, and
in Fig. 11.7 for the per capita birth rate f and population growth rate λ.
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PANEL 11.7 BUGS code for the prior on the capture probabilities pij for the model p(primary+individual).

for(i in 1:M){
eps[i]˜dnorm(0,tau)
for(j in 1:k){

logit(p[i,j])<-gam[Prim[j]]+eps[i]
}

}
for(j in 1:K){

gam[j]˜dnorm(0,0.01)
}
sdP˜dunif(0,10)
tau<-1/pow(sdP,2)
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FIGURE 11.6 Posterior summaries for the parameters N (abundance), S (survival), and B (births) for the robust
design and meadow vole data of Williams et al. (2002) with the model p(primary+individual) for capture probabilities
in which there are additive effects of primary occasion and individual on logit(piij).

11.7.2 Temporary Emigration

A common feature of mark-recapture studies based on fixed trapping sites is that the area
traversed by animals may not coincide exactly with the area sampled (Williams et al., 2002). The
models described earlier can be adapted to allow for temporary unavailability of animals and
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FIGURE 11.7 Posterior summaries for the
parameters f (per capita recruitment) and λ

(population growth rate) for the robust design
model p(primary+individual) in which there
are additive effects of primary occasion and
individual on logit(piij) fitted to the meadow
vole data of Williams et al. (2002).

to disentangle the confounding of mortality and movement. Kendall and Nichols (1995) and
Kendall et al. (1997) show how to include temporary emigration in the robust design, but their
likelihood conditions on first captures. In this approach the availability of animals is modeled
as a first-order Markov chain with two states: “available for capture” and “unavailable for
capture.” All animals start out in the available state the first time they are released and are
also known to be in this state when they are caught. Transitions between the states between
samples j and j+1 are governed by the transition matrix �j, which in the notation of Kendall
and Nichols (1995) is given by

�j =
(

1−γ ′′
j γ ′′

j
1−γ ′

j γ ′
j

)

where γ ′′
j is the probability that an animal available for capture in sample j−1 is unavailable for

capture in sample j and γ ′
j is the probability that an animal unavailable for capture in sample

j−1 is still unavailable for capture in sample j+1.
To include a model for the first capture in the robust design we need to introduce parameters

governing the allocation of new animals to the states “available for capture” and “unavailable
for capture.” If δj is used to denote the probability that an animal born between samples j−1
and j is available for capture at j, then we can write the availability model in terms of a partially
observed Markov chain. Letting Zij denote the state of the chain for individual i alive at the
time of sample j, with state 1 denoting “available for capture” and state 2 “unavailable for
capture,” and letting bi index the interval of birth and di the interval of death, then the Markov
chain {Zi,bi , . . . ,Zi,di} has probabilities,

Pr(Zi,bi = s|bi)=
{
δbi s=1
1−δbi s=2
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and

Pr(Zi,j = s |Zi,j−1 = r,bi,di)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1−γ ′′

j r =1,s=1
γ ′′

j r =1,s=2
1−γ ′

j r =2,s=1
γ ′

j r =2,s=2

for j = bi +1, . . . ,di.
To illustrate, probabilities for various Markov chains describing the availability of individ-

uals for capture in a study with four primary periods (K =4) are given in Table 11.6.

Example: Meadow Vole Robust Design with Heterogeneity and Temporary
Emigration

To fit the temporary emigration robust design model in BUGS, we need to add an individual
covariate Zij indicating the status of animal i (available or unavailable) in sample j, for each
of the samples following when it was born and before it died. We fitted this model to the
meadow vole data, constraining the parameters δ, γ ′′, and γ ′ to be constant over time. Fitting
this model by maximum-likelihood usually requires some sort of time-constraints as discussed
in Kendall et al. (1997). We also modeled heterogeneity in capture probabilities fitting the model
p(primary+heterogeneity) for capture probabilities that was discussed in Section 11.7.1.

Because animals cannot be seen in the “unavailable” state, not all of the parameters are
identifiable, including �, the abundances Nj, and the numbers born Bj. However, we can
estimate the portion of the population that is at risk of capture, which we denote by N′.
Also, the birth rate parameters are identifiable and so provided the assumption that the birth
and survival rates are the same for the two components of the population (“available” and
“unavailable”) we can make valid inference about survival and birth rate.

Posterior summaries for the temporary emigration analysis with heterogeneity are given in
Fig. 11.8 for N′

j , the numbers of animals available for capture in sample j, and Sj the survival
probability from primary occasion j to primary occasion j+1. Observant readers may notice
that the values for N′

j are smaller than the equivalent values for Nj in Fig. 11.6. This is because

TABLE 11.6 Some Markov chains describing animal availability for capture, and their
associated probabilities, conditional on time of birth and death, for a study with four primary
periods. State 1 = “available,” state 2 = “unavailable,” and a value of “NA” is used to represent
states that are unassigned, either because the animal is not yet born or because it has died.

Chain bi di Pr(Zi,j|bi,di)

{1,1,2,1} 1 4 δ1(1−γ ′′
1 )γ ′′

2 (1−γ ′
3)

{2,1,2,2} 1 4 (1−δ1)(1−γ ′
1)γ ′′

2 γ ′
3

{NA,1,2,1} 2 4 1×δ2γ ′′
2 (1−γ ′

3)

{NA,2,2,2} 2 4 1×(1−δ2)γ ′
2γ ′

3

{NA,1,1,NA} 2 3 1×δ2(1−γ ′′
2 )×1

{NA,2,2,NA} 2 3 1×(1−δ2)γ ′
2 ×1
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FIGURE 11.8 Posterior summaries for
the parameters N′ (abundance of animals
available for capture) and S (survival) for
the temporary emigration robust design and
meadow vole data of Williams et al. (2002)
with the model p(primary+individual) for
capture probabilities in which there are addi-
tive effects of primary occasion and individual
on logit(pij).
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FIGURE 11.9 Posterior summaries for the parameters γ ′′ (probability of moving from the available state), γ ′
(probability of remaining in the unavailable state), and σp (standard deviation of logit(pij)) for the temporary emigra-
tion robust design and meadow vole data of Williams et al. (2002) with the model p(primary+individual) for capture
probabilities in which there are additive effects of primary occasion and individual on logit(pij).

the abundances in Fig. 11.8 are only for the animals available for capture, whereas the abun-
dances in Fig. 11.6 are for all animals alive in the population at the time of sample j, regardless
of whether they are available for capture.

Summaries for γ ′′, γ ′, and σp are in Fig. 11.9. The posterior density for γ ′′ has most of its
mass well below 0.10 indicating a relatively small amount of temporary emigration from the

III. APPLICATIONS



268 11. OPEN POPULATION MODELS

“available for capture” to “unavailable for capture” state. The posterior density for γ ′ indicates
that the data do not provide a lot of information on this parameter. This is unsurprising given
the small amount of movement out of the population at risk of capture. Even when there is a
lot of movement, inference about γ ′ still tends to be imprecise because we never have animals
in any sample j where we know for certain that they were alive but unavailable for capture at
the time of sample j−1.

11.8 MULTISTATE MODELS AND OTHER EXTENSIONS OF THE
CJS MODEL

The last example had animals in one of two states, either “available” or “unavailable” for
capture. Studies of animal populations often require modeling the changing state of individ-
uals, whether these relate to geographical location, breeding or health condition, size class,
etc. These states may be of interest in themselves, or as explaining demographic parameters
or detection rates.

The most widely used multistate model has been the Arnason–Schwarz model (Arnason,
1972; Brownie et al., 1993; Schwarz et al., 1993) which is a multistate extension of the CJS model.
Two important features of the Arnason–Schwarz model are that (i) it conditions on the first
release of the animal, and (ii) states are observed at each capture. However, because the state
of the animal is unobserved when we do not catch it, “state” can be considered as a partially-
observed categorical covariate. The model of Kendall et al. (1997) that extended the robust
design to include the unavailable state, can also be considered as a multistate model with two
partially observed states: “available for capture” and “unavailable for capture.” In this model
animals in the “unavailable for capture” state can never be observed.

Afully Bayesian treatment of the Arnason–Schwarz model was given by Dupuis (1995) who
developed a Gibbs sampling algorithm that uses data-augmentation to predict values for the
state occupied by animals when they are not caught. A similar approach was used by King
and Brooks (2002), who also described a reversible jump MCMC algorithm to allow for model
discrimination. The procedure used by Dupuis (1995) and King and Brooks (2002) updates
Zmis

ij , the unknown state of individual i at time j, by sampling from the full conditional distri-

bution [Zmis
ij | ·]. This procedure was implemented by Schofield et al. (2008) who also provide

BUGS code.
More recently, Dupuis and Schwarz (2007) extended the multistate model to model the

births using the Crosbie–Manly–Schwarz–Arnason formulation of the JS model. To fit a mul-
tistate model in BUGS it is easy to modify our code for either the CMSA model (Panel 11.3),
or the robust-design extension of it (Panel 11.6), to include an individual covariate Zij for
the state of animal i in sample8 j, as discussed in Section 11.7.1 for modeling temporary
emigration.

8. Primary sample j if it is a robust design model.
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Dupuis and Schwarz (2007) also provide important theoretical results on the ergodicity
of the MCMC procedure, meaning its propensity to converge to the required distribution. In
particular, Dupuis (1995) showed that when the Zmis

ij are updated one at a time, the resulting
chain should converge to the target density provided that the transition probabilities for the
movement of animals between states do not include zeros. As we are often interested in cases
where movement is restricted it may be possible that the resulting chain is non-ergodic. Dupuis
and Schwarz (2007) outline a Gibbs sampling algorithm that ensures that this potential prob-
lem does not arise. Their algorithm makes use of block updating in which groups of miss-
ing covariates Zmis

ij are updated using multinomial sampling that is carried out conditional
on � and sufficient statistics that are multistate analogs of the JS sufficient statistics R, r,
and m.

An interesting extension of the multistate model is to the case where there is uncertainty
about the observed states but where this uncertainty is informed by covariates. An example
of state uncertainty is given by Nichols et al. (2004) for a study of roseate terns (Sterna dou-
galii) where the sex of the animal can be predicted using behavioral observations but often not
definitively. Cases where the predictor variables for the missing state are also categorical cor-
respond to the multievent model of Pradel (2005); however, the model provided by Schofield
et al. (2008) allows these covariates to be continuous. The states themselves can also be con-
sidered as categorical covariates for survival and capture probabilities. Bonner and Schwarz
(2006) extended the CJS model to allow for partially observed continuous covariates, and this
model and code are also provided by Schofield et al. (2008).

11.9 AFTERWORD

The censoring models, known-fate models, and open population mark-recapture models
with imperfect detection all share a common feature: the data we get to see are not quite the
data we wish we had. The analyses presented here have been based on CDL’s. The benefit
of CDL’s is two-fold. First, they lead to more intuitive and efficient computer code for fitting
models. Implementation of MCMC via Gibbs sampling is generally very easy, especially in
contrast to likelihood-based methods relying on ODL’s, involving complicated integrals and
sums.

Second, the use of CDL’s concentrates inference on aspects of our models that are of bio-
logical interest. Much of the “data we wish we had” describes demographic phenomena of
primary interest, and about which we wish to make inference. The use of CDL’s in a Bayesian
setting makes predictions of these quantities a routine feature of analysis.

Likelihood functions that have appeared in the literature are almost exclusively ODL’s and
the complexities of the confounding between birth, death, and capture processes can make
these models difficult to understand. Also, many of the standard parameterizations of mark-
recapture models, particularly those that model births and abundance such as the JS model,
are not amenable to hierarchical extensions. It is these hierarchical extensions that give us the
ability to model latent variables that form the data that we wish we had been able to collect.
This additional structure is easily accommodated in Bayesian analysis.
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We have shown that it is relatively straightforward to extend the CDL for basic models
such as the CJS model to include births, group dependencies, multiple-strata and covariates
that change over time, and to include robust design aspects. Although not discussed in this
chapter, it is also straightforward to extend the CDL to include auxiliary data such as may be
provided by resightings or dead recoveries between sampling occasions, as in the models of
Burnham (1993), Barker (1997), and Barker et al. (2004). These ideas are explored further by
Schofield et al. (2008).
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A population’s fitness is its capacity to persist. It is a summary of potentialities, rather than a
summary of outcomes. We can imagine a perfectly “fit” population (however defined) becom-
ing extinct through extraordinary events, such as an asteroid strike. We understand that even
in stable environmental circumstances, a population’s persistence is subject to stochasticity.
But fitness is a feature of the population that exists before the outcomes. Thus in discussing
fitness, we require a mathematical model of population change. Fitness is a latent feature of
the population and is defined as a function of model parameters.

For a geographically closed population, persistence depends on individual survival and on
recruitment of new individuals. We naturally conceive of survival and recruitment rates as
ratios of numbers of individuals: if X individuals from a population of size N survive from one
time period to the next, the period survival rate is X/N; if Y new individuals have been born
and survived into the population, the recruitment rate is Y/N. But these rates do not define
fitness, since they have to do with realizations of events rather than a priori capacities. Given
that no asteroids have struck, these rates might be used to estimate parameters of mathematical
models, with fitness being a function of the parameters.

The distinction between realization and capacity, between estimates and parameters, is one
that matters, if only in keeping our thinking straight. For example, we might begin by treating
X as a binomial random variable with index N, and success parameter P, and Y as a Poisson
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random variable with mean F×N. But, then we realize that this model is an oversimplification
of reality, that (for instance) there is likely to be age-specific variation among individuals in
the population, so we extend our model description using age-class-specific parameters, Fi
and Pi.

Population fitness is described in terms of Fi and Pi, as described in Section 12.1. One might
question whether realized survival and recruitment rates depend on factors other than age
class. Temporal events, even those less dramatic than asteroid strikes, may influence realized
rates; we might require a mathematical model for temporal variation, and to modify our
definition of fitness accordingly. Furthermore, it is usually to be expected that there will be
individual heterogeneity in factors affecting survival and recruitment.

In this chapter, we consider individual fitness, defined by analogy to population fit-
ness, in terms of individual-specific survival and reproductive parameters, determined at
birth. In this context, the distinction between realization and capacity is especially impor-
tant since individuals only live once. Individual fitness is a derived parameter, one that is
best evaluated in context of a hierarchical model, and naturally evaluated under the Bayesian
māramatanga.

12.1 POPULATION FITNESS

For a geographically closed, age-structured population with maximum lifetime T, with
ni(t) individuals in age class i at time t, the change in population structure through time is
represented by the matrix equation⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 F3 · · · FT−1 FT

P1 0 0 · · · 0 0

0 P2 0 · · · 0 0

0 0 P3 · · · 0 0

0 0 · · · . . . 0 0

0 0 0 · · · PT−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
n1(t)

n2(t)

n3(t)

· · ·
nT(t)

⎤⎥⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎣
n1(t+1)

n2(t+1)

n3(t+1)

· · ·
nT(t+1)

⎤⎥⎥⎥⎥⎥⎥⎦,

(12.1)

compactly expressed as M n(t) = n(t+1).
In considering the matrix M, it will be useful to define cumulative survival probabilities

S1 =1, and Si =Pi−1Si−1 for i =2,3, . . . ,T. Matrix M has a unique positive eigenvalue pro-
vided that at least one of the terms SiFi is positive. This value is the unique positive solution
in x of

T∑
i=1

(SiFi)xT−i =xT . (12.2)

We will write {SF} for the element by element product of vectors S = (S1,S2, . . . ,ST)′ and F =
(F1,F2, . . . ,FT)′. Using this notation, we denote the solution of Eq. (12.2) as λ({SF}).

An eigenvalue λ and an eigenvector x of a matrix A have the property that A x =λ x. Thus,
if the population vector n(t) is an eigenvector of M, so will be the population vector n(t+1) at
the next time period. The two vectors will be proportional, elements of the latter having been
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PANEL 12.1 R code for calculation of fitness.

Lambda=function(S,F){
SF=S*F
T=length(SF)
h=function(x){

sum(SF*(xˆseq(T-1,0,-1)))-xˆT
}
if (max(SF)==0) 0
else uniroot(h,c(1E-10,30))$root

}

S=c(1.0000,0.8000,0.6400,0.5120,0.4096)
F=c(0,1,2,3,2)
Lambda(S,F)

scaled by a factor λ({SF}). The population is said to be in a stable age distribution, and λ({SF})
is the growth rate.

Regardless of whether the population is in stable age distribution, the quantity λ({SF}) is
a convenient and widely accepted scalar-valued summary of vectors S and F. Values greater
than 1 suggest a growing population, values less than 1 suggest a declining population.1 Thus,
λ({SF}) is considered a reasonable measure of a population’s fitness, reflecting the combined
effects of survival and reproduction on population change.2 Calculation of λ({SF}) is straight-
forward using standard math packages; R code is given in Panel 12.1. For a comprehensive
discussion of matrix models of population change, we refer the reader to the authoritative text
of Caswell (2001).

12.2 INDIVIDUAL FITNESS

In genetic terms, fitness is the capacity of a genotype to be propagated into future gen-
erations. Given a population of genetically identical individuals described by rates S and F,
the value of λ({SF}) could be taken as a measure of the genotype’s fitness. If λ({SF})>1, the
genotype would tend to be successfully propagated into future generations; if λ({SF})<1, the
genotype would tend to disappear.

It is more natural, however, to conceive of genotypic fitness in terms of individuals; genet-
ically identical populations are the exception rather than the rule. It makes sense to think of
individual-specific fecundity rates and survival rates, latent features associated entirely with
an individual’s genetic make-up.

Thus, we imagine that individual j is born with a set of parameters governing survival
and a set of parameters governing breeding success. The event of survival from age class i

1. It should be noted that λ({SF})>1 does not guarantee an increasing population; the growth rate interpretation depends
on the population being in (or at least near) stable age distribution. Even then, the parameter describes an expected rate of
change, rather than an actual change.
2. The eigenvalue definition of λ({SF}) assumes at least one of the values SiFi >0. If all values SiFi =0, individuals all die
before breeding; in this case λ({SF}) is defined to be zero.
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to i+1 is a Bernoulli trial with success parameter P(j)
i . The number of young produced in

age class i is a random variable f (j)
i with expected value F(j)

i . As before, we define cumulative

survival probabilities S(j)
i =S(j)

i−1P(j)
i−1, with S(j)

1 =1, and summarize the collections of parameters
by vectors S(j) and F(j).

The important feature of all these parameters is that they are individual specific and com-
pletely determined at birth; F(j)

i and P(j)
i exist even if the animal does not survive to age class

i. The parameters are consequences of the genotype. It is natural, then, to define individual
fitness in analogy to population fitness as λ(j) =λ({S(j)F(j)}). Individual fitness is thus a latent
quantity, a summary of latent features associated with the genotype.

To make the notation a bit easier, we drop the superscript (j) in the remainder of this chapter,
except where it is necessary for clarity; unless otherwise indicated, it is to be understood that
the quantities discussed are individual-specific.

It is natural to ask whether individual fitness is a measurable quantity, or whether it only
exists as a theoretical construct. After all, individual fitness is determined by parameters gov-
erning a single life history, without any hope of replication.3 Nevertheless, the answer is “yes”:
individual fitness can be estimated, given the information in a single life history. The reason is
that individual fitness is a function of the products SiFi, and these values are estimable. Letting
Ii be an indicator variable for whether the individual is alive in age class i, the quantity Iifi
is an unbiased estimator of SiFi.4 One might then simply substitute the estimates of SiFi in
Eq. (12.2), solve for the eigenvalue, and use the result as the estimate of individual fitness.

McGraw and Caswell (1996) took essentially this approach in defining individual fitness
as the eigenvalue of individual-specific Leslie matrices similar to M in Eq. (12.1), but with 1
and fi replacing Si and Fi in years survived, and 0 replacing Si in the year of death. Suppose
that an individual survives into age class X, then dies. Writing 1X for a vector of X ones
followed by T −X zeros, and writing f for the vector consisting of F1,F2, . . . ,Fx followed by
T −X zeros, McGraw and Caswell’s measure of individual fitness can be written using the
notation established above, as λ

({
1Xf

})
.

McGraw and Caswell did not emphasize the distinction between latent individual fitness,
and an estimate of the quantity. For reasons soon to become apparent, we believe the distinc-
tion is important, and describe λ({1Xf }) as the “realized individual fitness” to distinguish it
from the latent quantity λ({SF}). The important difference between these quantities is that
an individual’s latent fitness is fixed at birth, but the individual’s realized fitness is a ran-
dom outcome yet to occur. Realized fitness is a random variable with distribution determined
by latent parameters; latent fitness is a deterministic function of the latent parameters.

12.3 REALIZED INDIVIDUAL FITNESS

Realized fitness λ({1Xf }) is a quantity of interest in its own right, and is clearly related to
latent individual fitness λ({SF}), but realized fitness is not a very good estimator of latent

3. One exception is when the individual can be cloned, or is naturally part of an identifiable clone. Individual life histories
within the clone could then be treated as replicates, and one could do a pretty good job of estimating ‘individual’ fitness,
given enough replicates. But this circumstance is rare, and the ‘solution’ essentially consists in defining away the problem!
4. This is a bit sneaky, of course. The random variable fi is not observed after the individual dies, but at that point Ii =0, so
we can still calculate Iifi =0. It should be noted that Iifi is an estimator of SiFi , not of Fi .
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TABLE 12.1 Distribution of realized
fitness.

X 1X λ({1X f }) Pr(X)

1 (1,0,0,0,0)′ 0 0.2000

2 (1,1,0,0,0)′ 1.0000 0.1600

3 (1,1,1,0,0)′ 1.5214 0.1280

4 (1,1,1,1,0)′ 1.7614 0.1024

5 (1,1,1,1,1)′ 1.8241 0.4096

individual fitness. It is easy to construct examples of latent parameter vectors leading to equal
latent fitnesses, but producing quite different realized fitnesses. That is, two genotypes having
the same latent fitness could result in quite different life histories, with realized fitnesses that
were not at all similar, even on the average. In such a case, realized individual fitness would
do a poor job of representing the latent fitness associated with the genotypes.

Here is an example. Suppose that T =5, and that latent annual survival rates are 80%, so that
S = (1.0000, 0.8000, 0.6400, 0.5120, 0.4096)′. For simplicity, suppose that f is not random, but
deterministic, with f = F = (0, 1, 2, 3, 2)′. The latent fitness is 1.567, calculated using the R code
of Panel 12.1. Realized fitness takes one of five distinct values, as summarized in Table 12.1;
its mean value is 1.282 and its standard deviation is 0.702.

This bias might not be so bad, especially if it were close to constant for a fixed level of latent
fitness. But it is possible to construct another pair of vectors S and F leading to the same latent
fitness, but having a quite different distribution of realized fitness. To do so, we halve the first
year’s survival rate, and double subsequent fecundities. Thus, S = {1, 0.4000, 0.3200, 0.2560,
0.2048} and F = {0, 2, 4, 6, 4}.

The latent fitness is unchanged because {SF} is the same in both cases. However in the
second case, the probabilities in the final column of Table 12.1 are changed to 0.6000, 0.0800,
0.0640, 0.0512, and 0.2048, so that the mean and standard deviation of realized fitness become
0.833 and 1.032, respectively. Repeating the process twice more, the average realized fitness
drops first to 0.54, then to 0.35. Thus realized fitness is an unreliable index to latent fitness.

12.4 INDIVIDUAL FITNESS IN GROUP CONTEXT

The problem with realized individual fitness is that it is an estimate based on a sample of
size 1, the single realization of an individual’s life history. Fortunately, we need not operate
this way, but rather may (and in our view, ought to) consider individuals in a group context,
seeing individual-specific parameters as stochastically related.

Suppose that we can model P(j)
i and F(j)

i in context of a group of individuals. We could then
posit a hierarchical model and perform a Bayesian analysis, obtaining posterior distributions
for P(j)

i and F(j)
i informed not only by the data for individual j, but by data for all of the

individuals in the group. The analysis would be a compromise between extremes: on one
hand, of treating all individuals as distinct and unrelated (as when using realized fitness),
on the other, of treating all individuals as identical (when computing population fitness).
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Individual fitness could then be treated as a derived parameter, and samples of its posterior
distribution calculated from posterior samples of P(j)

i and F(j)
i . These quantities are far better

estimated in the group context than otherwise, with the result that we also do a much better job
of examining individual fitness in the group context than by simply using realized fitnesses,
which ignore any such structure. We illustrate this subsequently with analysis of a simple
data set.

Cam et al. (2002) presented an analysis of survival and breeding for kittiwakes (Rissa
trydactyla) with individual effects. Because individuals produced either zero or one offspring,
the reproductive event f (j)

i was modeled as a Bernoulli trial, with success parameter F(j)
i .

Cam et al.’s model specified that logit
(
P(j)

i

) =α
(j)
p +xi,j

′βp, and that logit
(
F(j)

i

) =α
(j)
f +yi,j

′βf ,
where xi,j and yi,j are individual-specific covariates, with effects modeled at the group level;

individual effects α
(j)
p and α

(j)
f were modeled as sampled from a bivariate normal distribu-

tion. Parameter vectors, βp and βf , described models for year effects and effects of senescent
decline. The posterior distribution for the correlation parameter of individual effects had mean
of 0.67, with 95% credible interval (0.28 0.98), strong evidence that birds with higher survival
probabilities also had higher conditional probabilities of breeding, given survival. There was
substantial variation among individuals in survival and breeding rates; in a subsequent reanal-
ysis of the data, Link et al. (2002) examined the effects of this variation on individual fitness.

Our reason for including this example is to emphasize the point that given the posterior
distribution of all unknown quantities, [θ| Data], the problem of estimating fitness for indi-
vidual j is transparently easy. Given a value of θ, then we have all the information needed to
calculate vectors S(j) and F(j) for individual j, hence to calculate individual fitness λ({S(j)F(j)}).
Indeed, it is appropriate to write

λ(j) ≡ λ(j)(θ)= λ({S(j)F(j)});
that is, that individual j fitness is a known function of the unknown parameters comprising θ.

Thus, given a sample from [θ| Data], say a Markov chain of values θ1, θ2, . . . ,θB, one may
calculate λ

(j)
1 =λ(j)(θ1), λ

(j)
2 =λ(j)(θ2), . . . ,λ

(j)
B =λ(j)(θB); these values are a sample from the pos-

terior distribution [λ(j)| Data], thus providing the basis for Bayesian inference about individual
fitness. Because the posterior distributions of λ(j) tend to be skewed, we recommend the pos-
terior median as a point estimator.5 The posterior distribution provides a natural description
of the uncertainty associated with an individual’s fitness.

12.5 ANALYSIS OF INDIVIDUAL FITNESS: AN EXAMPLE

Table 12.2 gives 25 simulated life histories over a 15-year period. These data were generated
in accordance with the kittiwake model of Cam et al. (2002) described in Section 12.4 but
without year effects or effects describing senescent decline. Individuals do not breed in their
first year, then produce zero or one offspring in subsequent years until age 15, after which
breeding ceases. Missing values “ · ” in the table indicate that the individual had died. For

5. That is, if a point estimator is really needed. As usual, a single point is a rather limited summary of a posterior distribution.
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TABLE 12.2 Simulated life history data. Rows are individuals, columns are
years. Zeros and ones indicate number of young produced if alive; “ · ” indicates
the individual did not survive to that year.

Year

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 . . . . . . . . . . . . . .

2 0 . . . . . . . . . . . . . .

3 0 0 . . . . . . . . . . . . .

4 0 0 . . . . . . . . . . . . .

5 0 0 0 . . . . . . . . . . . .

6 0 0 0 1 . . . . . . . . . . .

7 0 0 0 0 0 . . . . . . . . . .

8 0 0 0 0 0 0 . . . . . . . . .

9 0 0 0 0 0 0 0 0 . . . . . . .

10 0 0 0 0 1 0 1 0 0 0 . . . . .

11 0 0 0 0 0 0 1 0 0 0 0 . . . .

12 0 1 0 1 0 0 1 0 0 0 0 1 . . .

13 0 0 0 0 0 0 0 0 0 0 0 0 0 . .

14 0 0 0 0 0 0 0 0 0 0 0 0 0 . .

15 0 0 0 0 0 0 0 0 0 0 0 0 0 . .

16 0 1 0 0 0 1 0 0 0 0 0 0 0 . .

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

20 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

23 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

24 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

25 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1

example, individual no. 6 survived into age class 4 without producing offspring, produced
one that year, and died without reaching age class 5.

We generated the data with individual-specific parameters logit
(
P(j)

i

)≡α
(j)
p and

logit
(
F(j)

i

)≡α
(j)
f , the pair of individual effects having been sampled from a bivariate normal

distribution with means μp =3 and μf =−2, standard deviations σp =σf =0.50, and correlation
ρ=0.50.

For analysis, we used vague normal priors (mean = 0, standard deviation =1000) for μp
and μf . We assigned U(0,5) priors to σp and σf , and a uniform prior U(−1,1) for ρ.
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Given real data (in particular, a larger sample), we would typically include temporal
effects, some relating to observed covariates (e.g., weather features), others in the form of
time-stationary random effects when analyzing data. These temporal effects might be regarded
as irrelevant to consideration of individual fitness (this being a summary of latent features prior
to the realization of the life history) and set to zero in calculation of individual fitness. Alter-
natively, one might consider individual fitness given the particular realization of temporal
effects, or even averaged over random replicates of the temporal effects, although this latter
would entail considerably complex computations. One might also model effects of aging on
survival and breeding, although to distinguish these from irrelevant temporal effects, data
from multiple cohorts would be required.

The example considered here is included for its simplicity, to illustrate inference with a
derived parameter. We leave to the reader the question of how one would carry out such
analyses using frequentist methods. In considering the question, one should keep track of the
number of approximations required and the associated uncertainties.

The model we are considering posits the existence of two random variables associated with
each of the 25 individuals in Table 12.2. Because survival rates are not age-specific, individual
j’s lifespan sj is a geometric random variable with parameter P(j); similarly, the total number of
offspring produced by individual j is a binomial random variable with index n(j) =min{sj,14}.6

BUGS code for the analysis is given in Panel 12.2. Note that we made use of the handy fact
that if Xp and Xf are independent, standard, normal random variables, then

αp =μp +σpXp

and

αf =μf +σp

(
ρXp +

√
1−ρ2Xf

)
have a bivariate normal distribution with means μp and μf , standard deviations σp and σf ,
and correlation ρ.

Note also that binomial likelihoods have been used for geometric random variables. Indi-
viduals j =1,2, . . . ,16 survived sj times, then died, hence have the same likelihood as a binomial
random variable with index sj +1 and observed value sj. Individuals j =17,18, . . . ,25 survived
sj times and did not die; their geometric likelihood is the same as a binomial random variable
with index sj and observed value sj. Individuals j =1,2 died before the possibility of breeding,
hence provide no information about breeding rates.

We used BUGS to produce Markov chains of length 20,000 after a burn-in of length 1000.
We then calculated sets of 20,000 values λ({S(j)F(j)}), one for each individual.7 The posterior
distributions of latent fitness for three individuals (Cases #1, #18, and #25) are plotted in
Fig. 12.1.

Referring back to Table 12.2, we note that individual #1 died as a juvenile without breeding,
that individual #18 survived through to the maximum breeding age but never produced young,
and that individual #25 survived to the maximum breeding age and produced the most young.

6. 14, because no breeding occurs in age class zero or beyond age class 15.
7. Posterior samples of S(j) and F(j) were exported using BUGS’ coda facility and values of λ were computed using other
software. See, for example, Panel 12.1.
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PANEL 12.2 BUGS code for individual fitness data.

s=c(0,0,1,1,2,3,4,5,7,9,10,11,12,12,12,12,14,14,14,14,14,14,14,
14,14)

f=c(NA,NA,0,0,0,1,0,0,0,2,1,4,0,0,0,2,0,0,1,1,1,2,2,3,7)

####### Data ######
for (j in 1:16){

ns[j] <- s[j]+1
s[j] ˜ dbin(P[j],ns[j])

}
for (j in 17:25){

s[j] ˜ dbin(P[j],s[j])
}
for (j in 3:25){

f[j] ˜ dbin(F[j],s[j])
}

####### Parameters ######
for (j in 1:25){

x[j] ˜ dnorm(0,1)
y[j] ˜ dnorm(0,1)
logit(P[j]) <- mu.p + sigma.p*x[j]
logit(F[j]) <- mu.f + sigma.f*(rho*x[j]+sqrt(1-rho*rho)*y[j])

}

####### Priors ######
mu.p ˜ dnorm(0,1.0E-6)
mu.f ˜ dnorm(0,1.0E-6)
sigma.p ˜ dunif(0,5)
sigma.f ˜ dunif(0,5)
rho.f ˜ dunif(-1,1)

0.0 0.5 1.0 1.5

Fitness

FIGURE 12.1 Posterior distribution of
individual fitness. Cases 1 (black), 18 (red),
and 25 (blue).
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TABLE 12.3 Simulated life history summary. Parameters used in simulation (P, F,
and resulting latent fitness λSF =λ({SF})), data summaries (s, Y =∑

fi, and realized fit-
ness λ1f =λ({1X f }) calculated with X = s+1), and summaries of posterior distributions
(2.5th, 50th, and 97.5th percentiles).

Parameters Data Posterior

Case P F λSF s Y λ1f 2.5 50 97.5

1 0.947 0.129 1.028 0 0 0 0.323 0.894 1.264

2 0.954 0.085 0.980 0 0 0 0.323 0.894 1.264

3 0.948 0.073 0.956 1 0 0 0.454 0.893 1.204

4 0.949 0.131 1.032 1 0 0 0.454 0.893 1.204

5 0.900 0.080 0.924 2 0 0 0.516 0.888 1.173

6 0.979 0.182 1.112 3 1 1 0.686 1.002 1.305

7 0.880 0.043 0.844 4 0 0 0.577 0.885 1.128

8 0.918 0.096 0.962 5 0 0 0.590 0.884 1.119

9 0.905 0.098 0.952 7 0 0 0.615 0.880 1.092

10 0.925 0.093 0.965 9 2 1.124 0.828 1.025 1.235

11 0.979 0.157 1.088 10 1 1 0.747 0.952 1.149

12 0.955 0.105 1.007 11 4 1.350 0.930 1.124 1.327

13 0.919 0.048 0.886 12 0 0 0.639 0.872 1.062

14 0.908 0.044 0.870 12 0 0 0.639 0.872 1.062

15 0.924 0.064 0.921 12 0 0 0.639 0.872 1.062

16 0.957 0.143 1.053 12 2 1.211 0.825 1.006 1.197

17 0.947 0.070 0.951 14 0 0 0.669 0.889 1.074

18 0.981 0.238 1.163 14 0 0 0.669 0.889 1.074

19 0.988 0.076 0.997 14 1 1 0.776 0.956 1.136

20 0.926 0.072 0.935 14 1 1 0.776 0.956 1.136

21 0.943 0.136 1.032 14 1 1 0.776 0.956 1.136

22 0.957 0.120 1.028 14 2 1.085 0.845 1.013 1.191

23 0.975 0.149 1.076 14 2 1.162 0.845 1.012 1.191

24 0.954 0.211 1.114 14 3 1.146 0.903 1.064 1.248

25 0.954 0.162 1.069 14 7 1.282 1.041 1.237 1.412

The overlap in these marginal posterior distributions can be somewhat misleading. There
is very strong evidence that λ(25) >λ(18), and reasonably strong evidence that λ(25) >λ(1). To
evaluate the evidence, we consider some additional derived parameters, namely λ(25) −λ(18)

and λ(25) −λ(1). We find that Pr(λ(25) −λ(18) ≥0|Data)=Pr(λ(25) ≥λ(18)|Data)=0.993, and
similarly, that Pr(λ(25) ≥λ(1)|Data)=0.954.

Another derived parameter of interest is the rank of an individual’s fitness relative to the
rest of the individuals. Thus, to examine the magnitude of λ(25) relative to other λ(j), we simply
compute the rank of λ(25) among the λ(j) (for each of the 20,000 values in our Markov chain
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FIGURE 12.2 Estimates of individual fit-
ness. True latent fitness (sorted, black), Bayes
estimates (posterior medians, red), and real-
ized fitnesses (blue).

Monte Carlo sample). We find that

Pr
(
λ(25) =max{λ(j) : j =1,2, . . . ,25} | Data

)=0.616,

and that Pr(Rank(λ(25))≥22|Data)=0.948.
We compare Bayesian estimates with realized fitness in Table 12.3 and Fig. 12.2. Both corre-

late reasonably well with the true values (which were known, since the data were simulated):
the correlation between true latent fitness and realized fitness is 0.51, between true latent fitness
and its posterior median is 0.48. However the root mean squared error for the Bayes estimates
is 0.098, versus 0.701 for the realized fitness. The Bayes estimate is closer to the true value in
21 of the 25 cases.

12.6 POPULATION SUMMARIES OF FITNESS

We have considered individual fitness in context of a population model for individual
heterogeneity, focusing on individual values. In this section, we broaden our scope, looking
at the collection of individual fitnesses, and at the overall population fitness implied by the
model of individual heterogeneity.

Known Parameters

Given a model for individual heterogeneity in demographic parameters, and known popu-
lation hyperparameters β, there is an implied distribution of individual fitnesses. For example,
we might ask what proportion of individuals have fitness less than 1.0; we might ask what are
the mean, standard deviation, and various percentiles of individual fitness. These questions all
have to do with the population distribution of individual fitness, namely �β(t)= Pr(λ≤ t|β).

The distribution cannot be calculated analytically, since the eigenvalue function λ(·) is only
defined implicitly, as the solution to Eq. (12.2). However, we can obtain arbitrarily precise
evaluations of the distribution through simulation.

Using the data generating model and parameters for the example in Section 12.5, we gener-
ated a population of 100,000 pairs {S(j), F(j)}, and corresponding values λ(j). One might think
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of each pair as corresponding to a hypothetical individual in a large population, a population
having identical patterns of variation to those underlying the sample of 25 we have consid-
ered. The difference is that for these 100,000 individuals, we know the latent fitness. From
these, we conclude that the population of individual fitnesses has mean =1.021, standard
deviation =0.075, and 5th and 95th percentiles =0.900 and 1.148; the large sample size allows
us to estimate these quantities to three decimal place precision.8

Note that �β(t) is entirely determined by the hyperparameter β; thus, we may think of the
population distribution of individual fitness, and its features (mean, percentiles, and so forth)
as derived parameters. The importance of this observation is that it indicates how Bayesian
analysis of these quantities is conducted: given a sample from the posterior distribution β,
we need only calculate the corresponding values of the derived parameter to obtain a sample
from its posterior distribution. The simulation needed to examine �β(t) is best regarded as a
calculation, albeit approximate. Viewed thus, the Bayesian approach to inference about �β(t)
falls naturally into the category of derived parameters considered in Section 5.1.1. We illustrate
the process using the example of Section 12.5, below.

First, however, we make reference to another derived parameter of interest, the overall
population fitness. Population fitness is λ({SF}), calculated using S and F, the population
mean values of S(j) and F(j). It is typically larger than the average individual fitness, even
substantially so, in consequence of the nonlinear nature of the function λ(·). That is,

λ
({

SF
})=λ

({
E
(
S(j))E(F(j))})>E

(
λ
{
S(j)F(j)}). (12.3)

Using the 100,000 pairs {S(j), F(j)} described earlier, we calculated the mean values of S(j) and
F(j), then found the population fitness to be λ({SF})=1.533. The large discrepancy between
individual fitness values and the overall population fitness suggests a need for caution in
interpreting individual fitness values: their main value is comparative.

12.6.1 Estimating the Population Distribution of Individual Fitness

How does one go about estimating the population distribution of individual fitness?
At first, one might think the solution is to estimate individual fitnesses (using realized

fitnesses, or posterior medians as in Table 12.3), then to summarize features of the collection of
estimates, such as percentiles and means, perhaps drawing a histogram to estimate a density
function. The flaw in this approach is that the results estimate the sample distribution of fitness
estimates, not the population distribution of fitness parameters.

Abetter approach is to calculate the population distribution of individual fitness using point
estimates of the hyperparameters β, say β̂; that is, we estimate �β(t) by �β̂(t). For the example
of Section 12.5, the posterior medians of the hyperparameters were μ̂p =2.72, μ̂f =−2.52, σ̂p =
0.64, σ̂f =1.22, and ρ̂=0.26.

So once again we sampled 100,000 pairs {logit(P(j)), logit(F(j))} from bivariate normal distri-
butions, this time with mean vector (μ̂p, μ̂f ), standard deviations σ̂p and σ̂f , and correlation ρ̂,
and computed associated fitness values λ(j). A smoothed histogram of the 100,000 λ(j) values is
given in Fig. 12.3. We have included for comparison a normal distribution with mean =0.958

8. For example, the standard error of the mean is 0.075/
√

100,000=0.0002.
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FIGURE 12.3 Estimated population distribution
of individual fitness (black), based on point estimates
of population distribution parameters. Red curve is
approximating normal distribution.

and standard deviation =0.147; these were the values calculated for the 100,000 hypothetical
individuals. Comparison of the two curves in Fig. 12.3 shows that the model and the estimated
parameter values we have used indicate a population distribution of individual fitness that
is approximated by a normal distribution, although perhaps slightly skewed to the right. The
5th and 95th percentiles of �β̂(t) were approximated as 0.745 and 1.230.

The foregoing calculations of mean, standard deviation, and percentiles, and the density in
Fig. 12.3 correspond to the estimated distribution of population fitness, �β̂(t). There are two
sources of uncertainty in these as estimates of features of the true distribution of population
fitness �β(t). Take, for instance, the mean of 0.958. There is some imprecision in this estimate,
based merely on the fact of simulation approximation. This imprecision is negligible since the
standard error of the mean is σ/

√
n=0.147/

√
100,000=0.0005. The more important source of

uncertainty has to do with β̂ as an estimator of β.
Here, the ease (conceptual ease, anyway) of Bayesian inference comes into play. Although

we might never know the actual value of the hyperparameter β, we do have a Markov chain
of sampled values, a sample of the posterior distribution [β|Data] described in Section 12.5.
Instead of hanging all our hopes and placing all our confidence on a single estimate β̂, we can
carry out the same calculations 20,000 times, each time replacing μp, μf , σp, σf , and ρ with one
set of values sampled from the posterior distribution. We will have obtained a sample of size
20,000 from the posterior distribution of �β(t); we will have posterior samples of size 20,000
of the corresponding mean, standard deviations, and percentiles of individual fitness and the
means to evaluate the variation in the estimates.

The obvious problem with this is the size of the computational burden. Generating 100,000
individuals, and calculating λ(j) for each, took almost 4.8 minutes on a 3.2 GHz Pentium sys-
tem; repeating the process 20,000 times would take roughly 1600 hours, about nine and a half
weeks.

A solution is to sacrifice some of the precision in the simulations. To do so, we first got a
rough estimate of the amount of variation “within” simulations (i.e., for a fixed set of pop-
ulation parameters, one drawn from the Markov chain) relative to the variation “among”
simulations (i.e., the variation in mean individual fitnesses). We did this by sampling 10 sets
of parameters from the Markov chain and sampling 10,000 individuals per set of parameters.
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TABLE 12.4 Population fitness distribution features and estimates.

Mean SD 5th 95th

Truth: �β(t) 1.022 0.075 0.900 1.148

Sampled λ(j) 0.998 0.081 0.852 1.092

Realized fitness 0.534 0.574 0 1.329

Bayes estimate fitness 0.952 0.092 0.871 1.203

Estimated: �β̂(t) 0.959 0.147 0.710 1.290

Bayes estimate of �β(t) 0.955 0.155 0.728 1.215

95% CI (0.83,1.05) (0.06,0.27) (0.46,0.87) (1.09,1.40)

Sample statistics indicated a typical standard deviation of 0.17 “within” simulations, and a
standard deviation of 0.06 “among” means. The indicated ratio of variance within to among
is thus about (0.17/0.06)2 ≈8, suggesting that a good allocation of computational effort puts
the number of β and the number of simulations per β in a ratio of 1:8.

We settled on choosing 399 sets of parameters (sampled randomly from the Markov chain
of 20,000) and 2999 individuals per set of parameters. We chose these numbers because 399 ×
2999 ≈ 1/1600 × 20,000 × 100,000, so that the computation would take about an hour.9 Each
of the 399 mean individual fitnesses was estimated with a standard error less than 0.0057;
the average value was 0.950, and 95% fell in the range (0.832, 1.049). The standard deviation
of these mean values was 0.054. We conclude that the posterior mean of the mean individual
fitnesses is 0.950, plus or minus approximately 0.054/

√
399=0.003.10 The interval (0.832, 1.049)

approximates a 95% credible interval for the mean population fitness. It includes the true value,
previously calculated as 1.021.

The standard deviation and 5th and 95th percentiles of individual fitness were similarly
evaluated. The results, and a summary of the various analyses described in this section are
given in Table 12.4.

The first two rows of Table 12.4 present information that usually would not be available,
the first row being based on the hyperparameter values used in generating the data, the sec-
ond being summaries of the latent features of the sampled individuals. The next two rows
summarize the collections of 25 estimates available from the data set.

The second through fourth rows of Table 12.4 summarize samples of size 25. Since the
ith order statistic in a sample of size n estimates percentile 100× i/(n+1), the smallest value
of each estimates the 100×1/26=3.84th percentile, and the second smallest value estimates
the 7.68th percentile. Since 5% is 30% of the way from 3.84 to 7.68%, we estimated the 5th
percentile as 0.7 times the smallest, plus 0.3 times the second smallest of the 25 values for these

9. But why not 400 sets of 3000? The reason is that the ith order statistic in a sample of size n estimates the 100 i/(n+1)th
percentile. Thus, the 5th percentile is estimated by the value with rank 150 among 2999, and so forth.
10. Strictly speaking, the formula SE(X̄)=σ/

√
n applies only for independent samples, and the values we consider are samples

from a Markov chain, hence not independent. Given the length of the chain, its low autocorrelation at long lags, and the fact
that we have only taken 399 of 20,000 values, the approximation seems reasonable.
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two summaries. Similarly, the 95th percentile was estimated by 0.7 times the largest plus 0.3
times the second largest value.

The collection of realized fitnesses performs dismally in estimating features of �β(t). As
indicated at the end of Section 12.5, realized fitnesses correlated reasonably well with the
latent values, but their mean and variance are poorly related to the population values.

Typically, we would not encourage the use of collections of Bayes estimates for estimation of
population features of corresponding collections of parameters. Individually, Bayes estimates
are not unbiased; collectively they typically underestimate the variation in the set of parame-
ters. Nevertheless, the sample mean and standard deviation, and 5th and 95th percentiles do
a reasonable job of estimating the population parameters, in this case.

The estimates based on posterior medians of the hyperparameters, �β̂(t) agrees reason-
ably well with the Bayes estimate. However, none of the estimates except the Bayes estimate
provides a measure of estimation uncertainty. The final row of Table 12.4 gives 95% credible
intervals for the features of �β(t); three of the four include the true values of the quantities
estimated.

12.6.2 Estimating the Population Fitness

We conclude our analysis of the data in Section 12.5, and our discussion of derived param-
eters relating to individual fitness, by considering population fitness as defined in context of
individual heterogeneity at Eq. (12.3).

The procedure is the same as for all derived parameters. Since λ({SF}) is determined by
S=E(S(j)) and F =E(F(j)), and since these quantities are determined by the hyperparame-
ters β, λ({SF}) is a function of β, say ψ(β). Given the true value of β, the true value of
λ({SF}) is obtained by a calculation. Applying the same calculation to values β sampled
from the posterior distribution [β|Data], we obtain a sample from the posterior distribution
[λ({SF}) |Data].

As with estimating features of the population distribution of individual fitness, the calcu-
lation ψ(β) is difficult, requiring approximation through simulation.11 Our only concern in
performing these approximate calculations is with regard to their precision, and this we can
control by our choice of simulation size.

In calculating the population fitness under the data-generating model of Section 12.5, we
generated 100,000 pairs {S(j), F(j)}, calculated the mean values of S(j) and F(j), then found the
population fitness to be λ({SF})=1.533. This simulation took about 1/5th of a second. We
repeated it 20 times, and noted a standard deviation of less than 0.0001. Reducing the number
of simulations to 10,000 reduced the computation time by a factor of 10, while only boosting
the standard deviation to 0.0004, an acceptable level of precision.

We thus calculated population fitness values corresponding to all 20,000 values in our
Markov chain of values β, using 10,000 simulations per value. The calculation took 10 min-
utes, rather than the hour and a half that would have yielded unnecessarily precise results.

11. Philosophically, this should not be all that troubling. Most commonly used functions cannot be exactly calculated. Whether
we are aware of it or not, trigonometric functions, exponential functions, many statistical functions, even simple square root
functions return approximate rather than exact answers.
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FIGURE 12.4 Posterior distribution of popu-
lation individual fitness (black), based on point
estimates of population distribution parameters.
Red curve is approximating normal distribution
(included to indicate skew in posterior); posterior
mode at 1.508 indicated by dashed line.

The posterior median value was 1.498, with 95% credible interval (1.393, 1.551). A smoothed
histogram of the 20,000 values is given in Fig. 12.4.

12.7 AFTERWORD

Estimation of individual fitness is most appropriately conducted in the context of a hierar-
chical model, if for no other reason than that individual lifetimes can only be observed once.
While it is remarkable that SF can be estimated based on a sample of size one (by 1X f ), it is not
at all surprising that realized fitness λ(1X f ) is an unreliable estimator of λ(SF). Hierarchical
structure is a necessity for reliable investigation of individual fitness.

Our evaluation of the data in Table 12.2 has included investigations of individual fitness
values, differences between individual fitness values, and their ranks; we have investigated
features of the population distribution of individual fitness and have estimated population
fitness. All of these quantities are derived parameters; the Bayesian framework provides a
conceptually simple, mathematically clean and relatively straightforward basis for inference.
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Hierarchical modeling allows us to simultaneously evaluate patterns in data and patterns
in parameters, describing parameters as signal plus noise. The process allows for a formal
evaluation of latent processes of scientific interest; furthermore, the richer model structure
increases precision in individual parameter estimates.

How do we go about choosing a model for pattern in parameters? If the parameter values
are indexed by time, we might consider a linear regression of parameter on year. Or, we might
examine whether a simple change in levels of the parameter had occurred, with early years
represented by one value and later years by another. We might fit a “broken-stick” (piecewise
linear) regression model, if we had reason to believe that a trend in early years had been
replaced with a new trend. We might consider a Fourier model, if we anticipated cyclical
fluctuations among the parameters. Ideally, the pattern modeled will have a scientific basis.
As part of the prior specification, it represents knowledge the analyst brings to bear on the
inferential process, and its effect may be profound.

The choice among models for pattern in parameters may be very difficult, and it is frequently
the case that the data provide scant basis for evaluating the choice. There are two principle
reasons for this. First, even fairly large data sets may be described by relatively few parameters;
thus, even if we knew the exact values of the parameters, it would be difficult to select a model
for variation among them. To take a case in point, the data set to be considered in this section
consists of banding data for 14,087 doves, with 410 recoveries over a 9-year period. Measured
by the sample sizes, or by the effort involved in collecting the data, this is a substantial data set.
Yet when we come to consider the parameters of interest (survival rates, indexed by year) we
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have a sample of size 8. In terms of the information available for examining annual variation
in survival rates, the data set is actually quite small, and our ability to legitimately evaluate
pattern is limited.

A second difficulty in choosing models for variation in parameters is that we never actually
get to see their true values. If we could observe, without error, the true values of the 8 survival
rates, we might be able to evaluate whether a linear regression of rate on year were appropriate.
But instead, we are attempting to evaluate pattern among 8 quantities, all of which are latent,
unobserved.

There are times when we anticipate the existence of a pattern or signal in parameters, but not
be sure which form to specify, having no a priori reason for the choice. We might anticipate that
parameter values in one year are more similar to rates in adjacent years than in more distant
years, but not be comfortable constraining our analysis by the choice of a specific pattern. We
might desire an analysis that produces a smoothly varying though nonlinear pattern of change.
This desire could be motivated by needs for efficient estimation, allowing information about
individual parameter to be enhanced by considering them in the context of related parameters,
or it may simply be that a smooth pattern of change in parameters is better for descriptive
purposes.

A number of different techniques exist for modeling smooth patterns of change among
parameters. Here we describe one of the simplest approaches, based on an autoregressive
model. The model describes changes in parameter values (rather than parameter values them-
selves) as independent random variables. This model may possibly be of interest in its own
right, on a priori grounds, as for instance if applied to data on population change. Here how-
ever, we present the model for its operational properties: it produces nicely smoothed esti-
mates of collections of parameters, and may provide a reasonable basis for postulating specific
patterns of variation among parameters.

13.1 DOVE DATA AND PRELIMINARY ANALYSES

Table 13.1 presents band recovery data for mourning doves (Zenaida macroura) banded and
released in Oklahoma, USA in 1968 through 1973, along with the numbers of individuals
recovered in 1968 through 1976 (?).

TABLE 13.1 Numbers of mourning doves banded, Mi, in Oklahoma (years
i+1967) and reported recoveries (1968–1976).

i Mi 1968 1969 1970 1971 1972 1973 1974 1975 1976

1 2219 43 12 8 6 3 1 0 0 0

2 2143 . 23 19 11 4 3 3 2 0

3 3110 . . 40 29 4 7 3 1 1

4 1360 . . . 13 12 3 4 0 2

5 3015 . . . . 46 27 9 2 1

6 2240 . . . . . 52 11 4 1
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Analysis of these data begins with a standard bird-banding model (see Section 11.2), in
which recovery year ( j =1,2, . . . ,9) is treated as an independent multinomial random variable
for each release year cohort (i =1,2, . . . ,6). Let Mi denote the number of individuals in cohort i,
and let Xij denote the number of these individuals recovered in year j. Then the likelihood
function is

6∏
i=1

9∏
j=i

πij
Xij ×

6∏
i=1

(
1−

9∑
k=i

πij

)Mi−
∑j

k=i Xij

,

with πij being the probability that a bird released in year i is recovered and reported in year j.
Cell probabilities πij are modeled in terms of recovery probabilities fj = Pr(Bird recovered in
year j | Bird alive in year j) and annual survival probabilities Sj = Pr(Bird alive in year j+1 |
Bird alive in year j), with πii = fi and

πij = fj ×
j−1∏
k=i

Sk , (13.1)

for j = i+1, i+2, . . . ,9.
Our goal in this analysis is to examine temporal pattern in the survival rates. As a first

step, we might simply inspect the maximum likelihood estimates of the estimable parameters
(Table 13.2). We note at the outset that S1,S2, . . . ,S5 are rather poorly estimated, with asymptotic
standard errors (ASE) roughly equivalent to what one would obtain in analysis of roughly 25
Bernoulli trials.1

Note that our lack of knowledge about parameters f7, f8, and f9 prevents us from esti-
mating the survival rates S6, S7, and S8. One expedient is to set f7 = f8 = f9 = f̄ , the mean
value of fi, i =1,2, . . . ,6. Then, the MLE’s (and ASE’s) of Si are 0.438 (0.089), 0.300 (0.114), and

TABLE 13.2 Maximum likelihood estimates (MLE) and ASE of
estimable parameters under model 13.1.

Parameter MLE ASE Parameter MLE ASE

f1 0.0194 0.0029 S1 0.4457 0.0974

f2 0.0112 0.0020 S2 0.7009 0.1264

f3 0.0126 0.0018 S3 0.5881 0.1262

f4 0.0132 0.0025 S4 0.4196 0.0939

f5 0.0141 0.0019 S5 0.4643 0.0843

f6 0.0206 0.0027 ( f7/f6) S6 0.3226 0.0677

( f8/f7) S7 0.3000 0.1140

( f9/f8) S8 0.5556 0.3099

1. Based on a sample of size n, the squared standard error of an estimated Bernoulli rate p̂ is SE2 =p(1−p)/n. Thus it is
reasonable to describe the precision of these estimated survival rates in terms of equivalent sample sizes, n≈ Ŝ(1− Ŝ)/ASE2;
the five values are 26, 13, 15, 28, and 35.

III. APPLICATIONS



290 13. AUTOREGRESSIVE SMOOTHING

0.556 (0.310), suggesting a declining pattern in the survival rates. However, the estimated sur-
vival rates are sensitive to the choice of recovery rates: it could be that f7 =0.00943, f8 =0.00357,
and f9 =0.00218, so that we would estimate S6 =0.70,S7 =0.80, and S9 =0.90. But of course
these values of f7, f8, and f9 are much lower than for the previous years, and perhaps not rea-
sonable. The point is, that some prior knowledge is necessary for S6, S7, and S8 to be estimated.

Rather than assume that f7 = f8 = f9 = f̄ , we make a weaker assumption, that the fi are a
sample from a common distribution. We will treat the set of logit( fi) as a sample from a normal
distribution with mean μf and variance σ2

f . Our analyses will use a vague normal prior for the

mean μf , and a vague uniform prior for the precision τf =1/σ2
f .

We conducted a preliminary analysis in which we imposed no structure or pattern on
the survival rates, instead using independent U(0,1) priors. BUGS code for this preliminary
analysis is given in Panel 13.1.

Two comments on the code: first, that for j > i the cell probabilities πij could be defined
recursively and compactly, on the basis of the relation

πi,j =
(

Sj−1 fj
fj−1

)
πi,j−1.

Indeed this formulation might appear more efficient than the coding in Panel 13.1, requiring
fewer multiplications. However, the resulting code makes it more difficult for BUGS to choose
an efficient MCMC algorithm, and more than doubles the run time; the efficiency loss would
be even greater if there were more years of data, and a more highly parameterized model.
Our experience in using BUGS is that recursive descriptions of parameter values should be
avoided. Second, note that the indexing of values πij is for j = i, i+1, . . . ,9. There is no need to

PANEL 13.1 BUGS code for preliminary analysis of dove data.

for (i in 1:6){
x[i,i:10] ˜ dmulti(pi[i,i:10],n[i])
pi[i,10] <- 1-sum(pi[i,i:9])

}
for (i in 1:9){

pi[i,i] <- f[i]
for (j in i+1:9){

pi[i,j] <- prod(S[i:j-1])*f[j]
}

}
for (i in 1:8){

S[i] ˜ dunif(0,1)
}
for (i in 1:9){

logitf[i] ˜ dnorm(mu.f,tau.f)
logit(f[i]) <- logitf[i]

}
mu.f ˜ dnorm(0.0,1.0E-6)
tau.f ˜ dunif(0,1000)
sd.f <- 1/sqrt(tau.f)
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1.0 FIGURE 13.1 Posterior medians (black), quartiles
(red), 5th and 95th percentiles (blue) of annual survival
rates for dove data.

begin array indices at 1, nor to define array values that are not used in the model description,
such as π3,1 or π4,3.

Posterior medians for the survival rates are plotted against year, along with 50% and 90%
credible intervals, in Fig. 13.1. Would we say that the rates were declining? There is an apparent
abrupt increase in the last year, but S8 is poorly estimated. The apparent increase between years
4 and 5 could also be an artifact of estimation. Examining the Markov chain output, we find
that the posterior probability of S4 >S5 is 24%; similarly, the posterior probability of S7 >S8 is
25%. On the other hand, it appears fairly certain that S1 is less than S2: the posterior probability
of S1 <S2 is 94%. It may be that the rates increased at the outset, then declined over the years
of the study.

It would be useful to have a model allowing for gradual changes in parameter values,
without imposing a specific pattern a priori. One approach is to treat the parameter value as
varying according to a random walk, as we now describe.

13.2 MODELING DIFFERENCES IN PARAMETER VALUES

Neither absolute change nor proportional change is particularly handy for describing vari-
ation in rates. A survival rate of 50% can change by 10% in absolute terms (to 40% or 60%)
or in relative terms (to 45% or 55%). However, a survival rate of 95% cannot increase by 10%,
either in absolute or relative terms; both result in rates greater than 100%. Changes in rates
are more naturally described as consequences of changes in a transformed parameter. Here,
we use the log odds transformation, also known as the logit: the logit survival rate for year j is
θj = logit(Sj)= log(Sj/(1−Sj)).

The first differences in logit survival rates are

�j = θj −θj−1, j =2,3, . . . ,n. (13.2)

Suppose that we model the first differences as independent and identically distributed (iid)
mean zero random variables, independent of all previous values θi. Then the logit survival
rates start with θ1, and vary through time as a cumulative sum of changes of comparable

III. APPLICATIONS



292 13. AUTOREGRESSIVE SMOOTHING

PANEL 13.2 Changes to BUGS code of Panel 13.1 needed for first difference model.

tau.theta.eps <- 0.0001*tau.theta
theta[1] ˜ dnorm(0,tau.theta.eps)
logit(S[1]) <- theta[1]
for (i in 2:8){

theta[i] ˜ dunif(theta[i-1],tau.S)
logit(S[i]) <- theta[i]

}
tau.theta ˜ dgamma(0.001,0.001)

magnitude. The difference between θj and θk , for j > k, is

θj −θk =�k+1 +·· ·+�j,

the sum of j−k iid random variables. Thus writing σ2
� for the variance of one of the changes,

the variance of θj −θk is (j−k)σ2
�. For moderate values of σ2

�, the model constrains adjacent
survival rates to be similar, allowing for large differences to accumulate as time progresses.

The model implies that [θj|θj−1]=N(θj−1,τθ), for j =2,3, . . . ,8. The distributions of θj are
defined recursively after starting at θ1. We implemented the model in BUGS, replacing the
uniform prior specifications on Si in Panel 13.1 with the code provided in Panel 13.2.

Note that θ1 is given a vague prior distribution, N(0,0.0001τθ). It is natural to ask why
we have used 0.0001τθ as the precision for θ1, rather than simply 0.0001. After all, one might
reasonably say, one anticipates (correctly) that τθ will not be too large, and that consequently
0.0001τθ will also be small; there should not be much difference in the priors, nor consequently
in the resulting posteriors. The reason for including τθ is somewhat technical, but nonetheless
intelligible: the slight difference is necessary for the joint prior distribution on θ1 and τθ to be
of the conjugate form. Choosing noninformative priors can be a tricky business, but the choice
is often made easier when working in a conjugate family. In practical terms the difference
between the two priors is the same as the difference between using n and n−1 as the divisor
in estimating a variance: for small n (e.g., the 8 years in the present case) the difference is
noticeable, for large n it is not.

13.3 RESULTS FOR DOVE ANALYSIS

We plot the posterior medians and 90% credible intervals for dove survival rates against
year in Fig. 13.2, along with the raw estimates from our nonhierarchical preliminary model.
Two features are apparent: first, that the pattern of variation has been substantially smoothed,
second that the credible intervals have been made much shorter.

Both features reflect the limitations of the information provided by the data about the sur-
vival rates. Given noisy data, Bayesian inference is more heavily influenced by the prior spec-
ification. Here, we have noisy information about survival rates; the posterior means are close
together, emphasizing the similarity of values indicated by the prior; they exhibit Bayesian
shrinkage, having been shrunken toward each other. The effect of information content on such
shrinkage is revealed in Fig. 13.3, where in addition to the raw estimates (red) and the posterior
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1.0 FIGURE 13.2 Posterior medians, 5th and 95th per-
centiles for dove annual survival plotted against year
index. Blue curves are for preliminary analysis with
independent U(0,1) priors on survival rates. Black curves
are for analysis based on first difference model.
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0.7 FIGURE 13.3 Shrinkage comparisons. Red curve
gives posterior mean estimates of dove survival against
year from unstructured analysis. Black, green, and blue
curves are same, from first difference model with data of
Table 13.1 frequencies multiplied by 1, 3, and 10.

means from our first difference model (black), we have included posterior means based on
hypothetical data sets 3 and 10 times larger than given in Table 13.1, but with the same relative
cell frequencies. The better the information provided by the data, the less the influence of
the prior.

13.4 HIGHER ORDER DIFFERENCES

So if we can model the differences as mean zero random variables, and achieve some level
of smoothing, why not model the difference of first differences as means zero random variables,
and see what happens?

The second differences are defined using Eq. (13.2) as

�2
j =�j −�j−1 = (θj −θj−1)−(θj−1 −θj−2)= (θj −2θj−1 +θj−2), (13.3)

for j =3,4, . . . ,n. If we assume that the second differences are iid mean zero normal random
variables with precision τ, independent of θk for k < j−1, then the distribution of θj given θk ,
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PANEL 13.3 Changes to BUGS code of Panel 13.1 needed for first difference model.

tau.theta.eps <- 0.0001*tau.theta
for (i in 1:2){

theta[i] ˜ dnorm(0,tau.theta.eps)
logit(S[i]) <- theta[i]

}
for (i in 3:8){

theta[i] ˜ dnorm(2*theta[i-1]-theta[i-2],tau.S)
logit(S[i]) <- theta[i]

}
tau.theta ˜ dgamma(0.001,0.001)

k < j is normal with mean 2θj−1 −θj−2 and variance τ. The BUGS code of Panel 13.1 is modified
using Panel 13.3 instead of Panel 13.2. Notice that instead of a vague prior on θ1 alone, we
must now have vague priors on θ1 and θ2. ? smoothed breast cancer rates in Iceland by year
of birth by treating second differences as iid random variables.

But why stop at second differences? We may calculate third differences using Eq. (13.3);
then fourth differences, and fifth, and so on. A general pattern emerges: assuming the mth
differences are iid normal, with mean 0 and precision τ, and that these are independent of θk
for k < j−m+1, then the conditional distribution of θj given θk , k < j is normal with mean

m∑
k=1

(
m
k

)
(−1)k+1θj−k (13.4)

and precision τ, for j =m+1, m+2, . . . ,n; we would place vague priors on the first m θi’s. We
could model the data this way, but does it make sense?

First, an observation about the mean (13.4). Suppose we were to construct a polynomial of
degree m−1, passing through the points (1, θj−1), (2, θj−2), . . . , (m, θj−m); call the polynomial
fj(x).2 The polynomial does a great job of fitting the values θj−k , for k =1,2, . . . ,m. Indeed, for
such k, fj(k)= θj−k . Extrapolating a bit, we might guess that fj(0) should do a reasonable job of
fitting θj−0, i.e., θj. It turns out that f (0) is exactly the same as (13.4). Thus assuming the mth
difference model is equivalent to assuming that each next θj is equal to the extrapolation of
an interpolating polynomial through the previous m values, plus noise. The first difference
model can be thought of as a linear smoother, the second as a quadratic smoother, etc.

High-order polynomial interpolation and extrapolation is notoriously unstable. For exam-
ple, the 6th degree polynomial passing through (1,7), (2,2), (3,6), (4,1), (5,5), (6,4), (7,3) is shown
in Fig. 13.4. It oscillates fairly wildly between some of the 7 points, and shoots off to infinity
as x moves beyond the interval [0,8]. Given the 7 data points alone, what would the reader

2. There is only one polynomial of degree ≤m−1 passing through points (x1,y1), (x2,y2), . . . , (xm,ym). Known as the Lagrange
polynomial, its exact form is

f (x)=
m∑

k=1

⎛⎝ m∏
i=1,i �=k

x−xi

xk −xi

⎞⎠yk .
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FIGURE 13.4 Sixth degree interpolating polynomial.

predict for an eighth value? Extrapolating to zero, the polynomial says 262. At x =8,9, and 10
the polynomial evaluates to 196, 1255, and 4738.

So, in addition to the obvious difficulty of interpretation, models based on high-order dif-
ferences might be anticipated to be unstable in their estimates. Our experience is that MCMC
performance in BUGS, implemented as described in this section, is rather poor, with very high
autocorrelation requiring long runs.

We display results of two sets of four analyses in Fig. 13.5. Each set of four consists of an
unstructured analysis of survival rates (i.e., iid U(0,1) priors for survival rates), and analyses
of first, second, and third difference models. For each set of analyses we plot posterior means
(top row) and 95% credible intervals (bottom row). The left column gives results for the dove
data of Table 13.1.As noted at the outset, the survival rates are rather poorly estimated, based on
the data alone; as would be anticipated, the point estimates are rather substantially affected
by the addition of the prior knowledge specified in the difference models, and the interval
estimates are shortened. The right column gives results for a data set made by multiplying
the original data frequencies by 10. Note that the point estimates are less affected by the
prior information and the interval estimates are scarcely shortened, except for the very poorly
estimated quantities S6, S7, and S8.

13.5 AFTERWORD

The choice of a model for the signal in a collection of parameters needs to be made cautiously,
and the implications of the choice reported advisedly.

The familiar mnemonic for posterior inference

Inferential basis = Data + Prior knowledge

applies in hierarchical modeling of process and signal in parameters. Here, the sense is (1) that
given good data, estimates of parameters will be unaffected by the choice of modeled signal
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FIGURE 13.5 Posterior mean survival rates (top row) and 95% credible intervals (bottom row) for dove data set
(Table 13.1) (left column) and for ten times the data of Table 13.1 (right column). Black curves for unstructured analysis
(iid uniform priors on survival); red, blue and green curves for first, second and third difference models.

(a component of the prior) and (2) that given weaker data, the estimates of parameters will
be influenced by the modeled signal. In using this mnemonic, it must be understood that the
effect of the signal on estimates of individual parameters varies inversely to the strength of the
modeled signal. For instance, if we insist that the parameters conform precisely to a specified
pattern, or nearly so (through an informative prior on the variance of the noise component),
then the effect of the prior will be more substantial.

Examining pattern in parameters is more challenging than examining pattern in data. There
are fewer parameters than data, and parameters are imperfectly known. As a result, our hier-
archical model may rest on essentially untestable assumptions, assumptions which have a
strong inferential effect.

What happens if we get the pattern wrong? For example, what happens if we assume that
parameter values change according to some particular pattern, when in fact some other pattern
is correct, or no pattern prevails?

Consider a hierarchical model, with data X governed by parameters θ1, θ2, . . ., θn. Suppose
that we have really good data, and the likelihood function [X|θ1, θ2, . . ., θn] is such that all
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of the parameters θi are precisely estimated, except (say) for θ5. We specify a pattern among
the parameters, that θi = a+b i+εi, with values εi sampled independently from a mean zero
normal distribution with variance σ2. If n is reasonably large, we obtain precise estimates of
the regression coefficients for the least squares line through the θi and a precise estimate of
a residual variance. The posterior distribution for θ5, being barely informed by the data, is
strongly influenced by the prior specification, which in this case includes the linear model for
the θi. Predictions for θ5 will essentially amount to reading off a value from the least squares
line through the other θi. If in reality the pattern of linear change were incorrect, we would
have false confidence in our prediction for θ5; it would probably be better to base our inference
on whatever limited information the data actually provide for the parameter.

Misspecification of the signal may not matter too much, for those parameters which are
strongly informed by the data. For such, lack of fit in the parameters to a misspecified model will
be taken up as noise: the posterior distributions of individual parameters will be more or less
correct. The difficulty with misspecification of signal will be in prediction of new parameters,
or of parameters poorly informed by the data.

These caveats obviously apply when fitting straight lines, piecewise linear regressions,
Fourier series, and in short to the entire ensemble of “parametric” models of signal and noise
in parameters. They also apply when smoothing is the goal: it is important to have a clear notion
of how strongly the data inform inference. For the dove data, under the first difference model,
the posterior distribution of S2 has mean of 0.527, and 95% credible interval (0.461, 0.623);
this contrasts sharply with the posterior distribution obtained assuming iid uniform priors
with mean of 0.702, and 95% credible interval (0.489, 0.940); the point estimate is substantially
lower, and the interval estimate substantially shorter. The difference is the prior: it is what we
assume, rather than what the data tell us.

III. APPLICATIONS
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In this appendix, we present 18 simple rules describing expected values of random vari-
ables. We include Chebyshev’s inequality and the weak law of larger numbers as simple but
interesting consequences of basic ideas.

None of the rules requires specific distributional assumptions; they are completely generic.
The only assumptions required are that the moments under discussion exist.1 We use μ for
means, σ for standard deviations, and ρ for correlations, adding subscripts when necessary.

A.1 PROPERTIES OF MOMENTS

Let X and Y be random variables, and let a be a constant. Then the following rules are
immediate consequences of the definition of expected values.

1) E(aX)= aE(X).
2) E(X +Y)=E(X)+E(Y).

1. Not all random variables have finite moments. f (x)=1/x2 is a legitimate density function for x ≥1, but its mean is∫∞
1 xf (x)dx =∞. The t-distribution with one degree of freedom, also known as the Cauchy distribution, has no finite moments.

Remarkably, the sample mean of n observations from the Cauchy distribution has the same distribution as a single observation.
This example dramatically demonstrates the necessity of finite variance for the convergence of sample means to population
means (rule 9) and the Central Limit Theorem (rule 10).
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3) Var(X +Y)=Var(X)+Var(Y)+Cov(X,Y).

4) Var(aX)= a2Var(X).

5) If X and Y are independent, Cov(X,Y)=0.2

Let X1,X2, . . . ,Xn be independent and identically distributed with mean μ and variance σ2,
and let X̄ denote the sample mean. For rules 7, 9, and 10 we assume σ2 <∞. It follows from 1)
and 2) that

6) E(X̄)=μ,

and from 3) to 5) that

7) Var(X̄)= σ2

n .

Suppose that X has mean μ and variance σ2 <∞, and let k >0. Then

8) Pr
(|X −μ|≥ kσ

)≤ 1
k2 .

Rule 8, known as Chebyshev’s inequality,3 shows the appropriateness of the standard devia-
tion, σ, as a measure of the spread of a distribution. Its proof is remarkably simple:

Pr
(|X −μ|≥ kσ

)=E
{
I
(|X −μ|≥ kσ

)}≤E

{
(X −μ)2

k2σ2

}
= 1

k2σ2 E(X −μ)2 = 1
k2 .

Note that the function I(·) is the indicator function, equaling 1 if its argument is true, equaling
0 otherwise. The indicator of an event is a Bernoulli trial, hence its expected value is the
probability of the event.

Chebyshev’s inequality can be used along with rules 6) and 7) to prove the weak law of
large numbers, that sample means “converge in probability” to population means:

9) For any ε>0, Pr
(|X̄ −μ|≥ ε

)→0, as n→∞.

The proof: Replace X with X̄ in rule 8, and set k = ε/σ(X̄). Then

Pr
(|X̄ −μ|≥ ε

)≤ σ2(X̄)

ε2 = σ2

nε2 →0 as n→∞.

Rule 9 says that if we choose a tolerance ε>0, be it ever so small, the probability that the sample
mean will be more than ε away from the true mean goes to zero as sample size increases.

The Central Limit Theorem gives a more precise statement of the discrepancy between X̄
and μ:

10) Pr
(

X̄−μ

σ/
√

n
≤ z

)
→�(z) as n→∞.

2. But not the other way round. Suppose X takes values −2,−1,1, and 2 with equal probabilities, and let Y =X2. Then
E(XY)=E(X3)=0 and E(X)=0, hence Cov(X,Y)=0, but X and Y are clearly not independent. More generally, any random
variable X symmetrically distributed about zero will have E(X3)=E(X)=0 (provided the third moment exists) and thus will
satisfy Cov(X,X2)=0.
3. This inequality is named for Russian mathematician Pafnuty L. Chebyshev (1821–1894).
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Here, �(z) is the cumulative distribution function of a standard normal random variable (see
Appendix 15 for details on the normal distribution).

A.2 CONDITIONAL EXPECTATIONS

Here, we present the “double expectation theorems,” which relate features of conditional
and marginal distributions, along with basic rules for manipulating conditional expectations.

A.2.1 Basic Rules for Conditional Expectations

The preceding rules can all be extended to describe conditional distributions and conditional
expectations. Thus for instance, rule 2 becomes “E(X +Y|Z)=E(X|Z)+E(Y|Z)”; and rule 5
becomes “If X and Y are conditionally independent given Z, Cov(X,Y|Z)=0.” Furthermore

11) E(h(X,Y)|X =x0)=E(h(x0,Y)|X =x0)

and

12) E(h(X)g(X,Y)|X)=h(X)E(g(X,Y)|X).

Rule 11 is called the “substitution rule”: values conditioned upon can be substituted into the
expressions on the left-hand side of the solidus.

A.2.2 Double Expectation Theorems

The conditional distribution of Y given X =x, denoted fY|X(y|x), is a specific probability
distribution, defined in terms of a fixed value x; its features depend on x. For instance, suppose
that given X =x, Y is a Poisson random variable with parameter x. Then

fY|X(y|x)= exp(−x)xy

y! , y =0,1, . . . ,∞.

The mean and variance of this distribution are denoted by E(Y|X =x) and Var(Y|X =x);
because the conditional distribution is Poisson, both of these quantities are equal to the param-
eter x.

If asked “how large do we expect Y to be?,” a perfectly legitimate answer would be “Well,
that depends on the value of X.” In so doing, we think of the mean and variance of Y as random
variables, E(Y|X)=Var(Y|X)=X.

Alternatively, we might choose to answer the question about Y without reference to X,
basing our response on the marginal distribution of Y. Suppose that X is an exponential
random variable with parameter λ. Then the joint distribution of Y and X is

fY,X(y,x)= fY|X(y|x)fX(x)= exp(−x)xy

y! λexp(−λx),

from which it follows that the marginal distribution of Y is

fY(y)=
∫ ∞

0
fY,X(y,x)dx =

(
λ

λ+1

)(
1

λ+1

)y

. (A.1)
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Thus, the expected value of Y is

E(Y)=
∞∑

y=0

y fY(y)= 1
λ

,

and the variance of Y is

Var(Y)=
∞∑

y=0

(y−E(Y))2 fY(y)= 1+λ

λ2 .

So, we have a second answer to the question “how large do we expect Y to be?” The first,
that E(Y|X)=X, is a statement about the conditional distribution; the second, that E(Y)=1/λ,
is based on the marginal distribution. The first is the conditional expectation, and the second
is the marginal expectation.

As it turns out, we need not have computed the marginal distribution (A.1) in order to obtain
the marginal mean and variance. The conditional and marginal expectations are related by the
“Double expectation theorems,” which we add to our list of simple rules:

13) E(Y)=E{E(Y|X)}.
14) Var(Y)=E{Var(Y|X)}+Var{E(Y|X)}.

So, given that E(Y|X)=X, and that X was exponential with mean 1/λ, it follows as an immedi-
ate consequence of rule 13 that E(Y)=1/λ; the mean of the conditional means is the marginal
mean. Rule 14 is applied as follows:

Var(Y)=E{Var(Y|X)}+Var{E(Y|X)}
=E{X}+Var {X}
= 1

λ
+ 1

λ2 ;

note here that we have used the fact that the variance of an exponential random variable is the
square of its mean.

Another double expectation theorem, for covariances, is as follows:

15) Cov(X,Y)=E{Cov(X,Y|Z)}+Cov{E(X|Z),E(Y|Z)}.

A.3 INDEPENDENCE AND CORRELATION

A.3.1 Independence and Prediction

Informally, independence can be understood in terms of information: Y is independent of
X means that knowledge of X provides no insights into the value of Y. Whether or not it will
snow or not on January 30th in Buffalo, New York is independent of the outcome of a coin
flip on June 5th in Sao Paulo, Brazil; if you were trying to set odds on whether it will snow
in Buffalo, a phone call from a coin-flipping friend in Brazil might be welcome on personal
grounds, but would be worthless on inferential grounds.
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In terms of probability distributions, independence is expressed by whether or not a
joint distribution factors into marginal distributions, that is, [Y,X]= [Y][X]. It is always true
that [Y,X]= [Y|X][X], hence independence means that [Y|X]= [Y], and consequently that
E(Y|X)=E(Y).

If X and Y are not independent, knowledge of X should help in predicting Y.

16) E((Y −a)2|X) is minimized by setting a=E(Y|X).

17) E(|Y −a| |X) is minimized when a is a median of [Y|X].
Rule 16 says that if we wish to predict Y using X, the mean squared error (MSE) of our
prediction is minimized by predicting Y =E(Y|X); rule 17 says that the median minimizes the
mean absolute deviation.

A.3.2 Correlation

Correlation is a measure of linear association. Here’s why: suppose that we wish to approx-
imate Y by a linear function of X, a+bX; the problem is to choose the values a and b so as to
make a good approximation. One way to do so is to minimize the average squared difference
between Y and a+bX. Using rules 1) to 4), and a bit of calculus, it can be demonstrated that

18) E
([

Y −(
a+bX

)]2
)

is minimized by setting b= ρσY
σX

and a=μY −bμX ; the MSE of the

best linear approximation is (1−ρ2)σ2
Y .

This result does not rely on any specific distributional assumptions, such as normality; the
only assumption is that the variances in question are finite. Thus, the equation

y =
(

μY − ρσY

σX
μX

)
+ ρσY

σX
x

=μY + ρσy

σx
(x−μX), (A.2)

is the least squares line. Note that the sign of ρ determines whether the least squares line is
increasing or decreasing; also, the minimum MSE is a decreasing function of |ρ|. Thus, the
magnitude of the correlation determines the strength of the linear relation.

If the joint distribution of (X,Y)′ is bivariate normal, then the conditional distribution of Y
given X is univariate normal, with mean given by the least squares line (A.2), and variance
equal to the MSE, (1−ρ2)σ2

Y .
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In this appendix, we list a number of the most widely used probability distributions. We
summarize characteristics of the distributions, including moments, alternative parameteriza-
tions, relations to other distributions, and methods of generating samples.

B.1 UNIFORM DISTRIBUTION

We say that X has a uniform distribution on the interval [a,b], and write X ∼U(a,b), if X
has a constant density function f (t)=1/(b−a) on [a,b]. The support of X is the interval [a,b],
meaning that f (t)=0 for t /∈[a,b].

The mean and variance of the uniform distribution are

μ= a+b
2

and

σ2 = (b−a)2

12
.
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Most simple random number generators produce data that, while not truly random, cannot
be easily distinguished from the samples of the uniform distribution on [0,1]. These can be
transformed into samples from other distributions. In particular, if X ∼U(0,1), and b> a, then
Y = a+(b−a)X ∼U(a,b).

B.2 DISCRETE UNIFORM DISTRIBUTION

Suppose that S = {s1, s2, . . ., sn} is a finite set and that Pr(X = si) = 1/n, for i =1,2, . . . ,n. Then
X is said to have a discrete uniform distribution on the set S, denoted X ∼ DU(S). One might
think of X as a draw from a well-mixed urn of balls, indistinguishable except for labels s1, s2,
. . . , sn, which cannot be read while the balls are in the urn.

The discrete uniform distribution on the integers x = a,a+1, . . . ,b has mean (a+b)/2 and
variance

(b−a+1)2 −1
12

.

For integers a< b, one can sample X ∼DU({a,a+1, . . . ,b}) as X =�Y� where Y ∼U(a−1,b) and
�·� is the “least integer greater than” function: X is obtained by rounding Y upward.

B.3 NORMAL DISTRIBUTION

The normal distribution is probably the most familiar of probability distributions. X is a
normal (or Gaussian1) random variable if it has density function

φ(x;μ,σ2)= 1√
2πσ

exp
{
− 1

2σ2 (x−μ)2
}

, −∞<x <∞. (B.1)

The parameters μ∈ (−∞,∞) and σ2 >0 are the mean and variance of the distribution; we
write X ∼N(μ,σ2). The median and mode of the normal distribution are also equal to μ. It is
sometimes convenient to parameterize the normal distribution using the precision τ =1/σ2.

The standard normal distribution is the version of (B.1) with μ=0 and σ =1 (Fig. B.1).
The capital letter Z is often used to designate a random variable with the standard normal
distribution. The cdf of Z is usually designated by �(z) = Pr(Z≤ z).

If Z∼N(0,1) and X =μ+σZ, then X ∼N(μ,σ2). Consequently,

Pr(X ≤x)=�

(
x−μ

σ

)
. (B.2)

Given U1 and U2, a pair of independent U(0,1) random variables, the Box–Muller transforma-
tion produces independent standard normal random variables X1 and X2 as

X1 = cos(2πU2)
√−2ln(U1) (B.3)

1. For Karl Friedrich Gauss (1777–1855), possibly the greatest mathematician of all time.
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FIGURE B.1 The standard normal density, φ(x;0,1).

and

X2 = sin(2πU2)
√−2ln(U1). (B.4)

B.4 MULTIVARIATE NORMAL DISTRIBUTION

A vector X = (X1,X2, . . . ,Xk)
′ has a multivariate normal (MVN) distribution if its joint dis-

tribution function is

φk(x;μ,�)= 1
(2π)(k/2)|�|(1/2)

exp
(

−1
2
(x−μ)′�−1(x−μ)

)
;

we write X ∼Nk (μ,�). Here, � is a k ×k symmetric matrix of rank q≤ k, the variance–
covariance matrix of X ; μ is the vector of means, with ith component equal to E(Xi). The
bivariate normal distribution is the MVN with k =2 (Fig. B.2).

Suppose X ∼Nk (μ,�), and � is of full rank. Let A denote a p×k matrix of constants, of rank
p≤ k, and let c be a p×1 vector of constants. Then,

Y =AX +c ∼Np
(
Aμ+c,A�A′) .

This says that linear combinations of MVN random variables have a MVN distribution. In
particular, if X1 ∼N(μ1,σ2

1) is independent of X2 ∼N(μ2,σ2
2), and Y = aX1 +bX2, where a and

b are constants, then

Y ∼N
(

aμ1 +bμ2, a2σ2
1 +b2σ2

2

)
.

Suppose that (X,Y) has a bivariate normal distribution, with means μX and μY , variances
σ2

X and σ2
Y , and correlation ρ. Then, the conditional distribution of Y given X =x is normal
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FIGURE B.2 Two views of the bivariate normal distribution with standard normal marginal distributions and
correlation ρ=0.8.
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FIGURE B.3 Conditional distributions of Y given X =−2,−1,0,1, and 2, given that X and Y have marginal stan-
dard normal distributions and correlation ρ=0.5.

with mean

μY|X=x = E(Y|X =x) = μY + ρσY

σX
(x−μX), (B.5)

and variance

σ2
Y|X=x = Var(Y|X =x) = (1−ρ2) σ2

Y .

An example is presented in Fig. B.3. It can be seen from (B.5) and material presented in
Appendix A.3.2 that the conditional expectation of Y given X is the least squares line.
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B.5 BERNOULLI TRIALS AND THE BINOMIAL DISTRIBUTION

A random variable with two categorical outcomes is called a Bernoulli trial. One
of the outcomes is generically labeled “success”; the probability of success is usually
designated as p .

Let X denote the total number of successes in a fixed number n of independent Bernoulli
trials with common success parameter p∈[0,1]. Then X has a binomial distribution with index
n and success parameter p ; the distribution of X is

Pr(X = k)=
(

n
k

)
pk(1−p)n−k , (B.6)

k =0,1,2, . . . ,n, where (
n
k

)
= n!

k!(n−k)! .

We use B(k;n,p) as a shorthand for the probability mass function (B.6), and write X ∼ B(n,p).
The mean and variance of the binomial distribution are μ = np and σ2 =np(1−p), respectively.
The mode of X is the greatest integer less than or equal to (n+1)p. If m= (n+1)p is an integer,
then both m−1 and m are modes.

Calculation of binomial probabilities could be a headache. For example, the probability of
exactly 50 “Heads” in 100 independent tosses of a fair coin is

B(50;100,p)= 100!
50!50! ×

(
1
2

)100

;

100!=93326215443944152681699238856266700490715968264381621468592963895217599993229
915608941463976156518286253697920827223758251185210916864000000000000000000000000,
not the sort of number amenable to back-of-the-envelope computations. Calculation of the
cumulative binomial distribution would be even worse: to compute Pr(X ≤47), for instance,
we would need to calculate B(k;100,p) for all values k =0,1, . . . ,47, and then add them up.

Instead, we may approximate the cumulative distribution of a binomial random variable
using �(·), the standard normal cdf. Substituting μ = np and σ2 =np(1−p) in (B.2), we have

Pr(X ≤ k)≈�

(
k −np√

np(1−p)

)
. (B.7)

This approximation can be improved upon, by adding a “continuity correction.” Binomial
random variables are integer valued, whereas the normal distribution is continuous. It seems
reasonable, therefore, to associate all values in the interval (k −1/2,k +1/2) with the outcome
X = k, and to use k +1/2 in the right-hand side of (B.7), namely,

Pr(X ≤ k)≈�

(
k + 1

2 −np√
np(1−p)

)
. (B.8)

The performance of this normal approximation with continuity correction is typically deemed
satisfactory if np and n(1−p) are both greater than 5.
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For example, the probability of exactly 50 “Heads” in 100 independent tosses of a fair coin
is B(50;100,p) = 0.07959. Using (B.8), we have

Pr(X =50)=Pr(X ≤50)−Pr(X ≤49)

≈�

(
50.5−50

5

)
−�

(
49.5−50

5

)
=0.07966,

an error of less than 0.1%. The probability of 47 or fewer “Heads” in 100 flips of a fair coin is,
to five decimal place accuracy, 0.30865. Using (B.8), we obtain an estimate of 0.30854, an error
of less than 0.04%.

B.6 POISSON DISTRIBUTION

The Poisson distribution is one of the most important distributions in statistics. It is derived
as a limit of binomial distributions and is useful for describing many types of count data.

Anonnegative integer-valued random variable X has a Poisson distribution with parameter
λ>0 if

Pr(X = k)= exp(−λ)λk

k! (B.9)

for k =0,1,2, . . . ; we write X ∼P(λ) . The parameter λ is referred to as the rate parameter, for
reasons that will become clear subsequently. The mean and variance of the Poisson distribution
are equal: E(X) = Var(X)=λ. The mode of X is the greatest integer less than or equal to λ; if λ

is an integer, then both λ−1 and λ are modes.
The Poisson distribution is related to the binomial as follows: define λ = np, and substitute

p=λ/n in (B.6). On rearrangement, we have

Pr(X = k)= n!
k!(n−k)!

(
p

1−p

)k

(1−p)n

= 1
k!

n!
(n−k)!

(
λ

n−λ

)k (
1− λ

n

)n

= 1
k!
[

n!
(n−k)! (n−λ)k

]
λk

(
1− λ

n

)n

. (B.10)

As n→∞, the term in square brackets approaches 1, and (1−λ/n)n →exp(−λ). Thus, (B.10)
approaches (B.9) as n→∞.

This means that if X ∼B(n,p) with n large and p small, then the distribution of X is almost
the same as the distribution of a Poisson random variable with rate parameter λ=np. This
approximation is illustrated in Table B.1. Note that since np = 2, the normal approximation to
the binomial would not be deemed satisfactory.

The Poisson approximation to the binomial distributions leads to the description of Poisson
random variables as frequencies of rare events. The Poisson property of having equal mean
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TABLE B.1 Binomial probability with np=2 converges to
P(2) probability as n →∞.

k B(5, 0.4) B(10, 0.2) B(40, 0.05) B(100, 0.02) P(2)

0 0.078 0.107 0.129 0.133 0.135

1 0.259 0.268 0.271 0.271 0.271

2 0.346 0.302 0.278 0.273 0.271

3 0.230 0.201 0.185 0.182 0.180

4 0.077 0.088 0.090 0.090 0.090

5 0.010 0.026 0.034 0.035 0.036

6 0 0.006 0.010 0.011 0.012

7 0 0.001 0.003 0.003 0.003

8 0 0.000 0.001 0.001 0.001

and variance is seen as a consequence of the approximation: if np→λ, and n→∞, p must go
to zero, 1−p to 1, and the binomial variance np(1−p)→λ. The approximation gives sense to
another characteristic of Poisson random variables, that if X ∼ P(λ) is independent of Y ∼ P(μ),
then Z=X +Y ∼P(λ+μ): random variable Z can be thought of as the total number of two sorts
of rare events. Finally, this concept provides the background for understanding the Poisson
process, a time-indexed stochastic process {N(t); t > 0} with the property that increments over
disjoint time intervals are independent Poisson random variables, with rates proportional to
the lengths of the intervals.

It would be a mistake to think that the Poisson distribution is only useful as a description
of the frequencies of rare events, or to think that its usefulness was limited by the equality of
mean and variance. Poisson distributions are useful for modeling counts; they are the starting
point of loglinear modeling, and consequently are as important to discrete data analysis as nor-
mal distributions are to traditional linear models. Random effects loglinear models allowing
the variance to exceed the mean are increasingly commonplace and easily fit using Bayesian
methods.

B.7 MULTINOMIAL DISTRIBUTION

The binomial distribution describes events with two possible outcomes; events with k ≥2
possible outcomes are described by multinomial distributions. These distributions are impor-
tant in ecological applications, having a central role in band-recovery and other mark-recapture
models. In most mark-recapture models, animals are caught, marked, and released at discrete
sampling occasions. Each animal in the study has associated with it an encounter history that
summarizes capture and recovery events, and there are a finite number of such histories possi-
ble during the study. The vector describing the numbers of animals with each distinct history
can often be modeled as a multinomial random variable with the parameter vector as a func-
tion of demographic parameters of interest and nuisance parameters governing the capture
and recovery process.

IV. APPENDICES



314 B. PROBABILITY DISTRIBUTIONS

Suppose that e1,e2, . . . ,ek are mutually exclusive and exhaustive outcomes for a random
variable Y, and that Pr(Y = ej)=πj ; the values πj are nonnegative and sum to 1. The random
variable Y is said to have a categorical distribution. A sample Y1,Y2, . . . ,YN can be summarized
by a vector X = (X1,X2, . . . ,Xk)

′, with Xj being the count of Yi = j.
We say then that X has a k-cell multinomial distribution with index N and parameter

vector π= (π1,π2, . . . ,πk)
′, and write X ∼Mk(N,π). The probability of an outcome X =x =

(x1,x2, . . . ,xk)
′ is

Pr(X =x)= N!∏k
j=1 xj!

k∏
j=1

π
xj
j .

The mean value of X is, not surprisingly, Nπ. The variance–covariance matrix for X has
−Nπiπj in row i, column j, for i �= j, and Nπi(1−πi) as its ith diagonal element.

Multinomial modeling involves specification of a parametric model for π in terms of
observed covariates z; we assume that π=π(θ;z).

Multinomial random variables have an important association with Poisson random vari-
ables. Suppose that vector A= (A1,A2, . . . ,An)′ is made up of independent Poisson random
variables, the ith of which has mean μi. Conditioning on their sum T =∑

i Ai, the vector A has
a multinomial distribution, A|T ∼Mn(T,π), with

πi = μi∑
j μj

. (B.11)

In particular, suppose that μi =λq(θ;zi); here, λ is a baseline rate, and q(θ;z) is a function
describing the effects of covariates on the rate. Index counts of animal populations are often
described this way, with λ reflecting baseline abundance and detection rates, q(θ;z) describing
population trend and observer effects. Conditioning on the total has the effect of removing
parameter λ from the model: it cancels out of the numerator and denominator of the right-hand
side of Eq. (B.11).

Multinomial Factorization Theorem

Suppose that of the outcomes e1, . . . ,ek , our interest is restricted to a subset S ={ej}j∈K where
K⊆{1,2, . . . ,k}. Let XS denote the corresponding subset of X . The joint probability of the
elements of XS , conditional on their total, is also multinomial:

Pr(XS =xS |NS)= NS !∏
j∈K xj!

∏
j∈K

γ
xj
j ,

where

NS =
∑
j∈K

Xj

and

γj =
πj∑

h∈K πh
, j ∈K.
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Example

Suppose we have observations of a categorical random variable; with outcomes {1,2,3,4,5}
and outcome probabilities π1, . . . ,π5, which we roll N times. If we restrict our interest only
to those outcomes that were less than 4, the joint probability for XS = (X1,X2,X3)

′, given
X1 +X2 +X3 =T, is

Pr(XS = (x1,x2,x3)
′ |T)= T!

x1!x2!x3!
3∏

j=1

(
πj

π1 +π2 +π3

)xj

.

B.8 EXPONENTIAL DISTRIBUTION

We say that X is exponential with parameter λ>0, and write X ∼E(λ), if X has density
function

f (t)=λexp(−λt), t >0. (B.12)

The mean and variance of the distribution are 1/λ and 1/λ2, respectively. The mode of an
exponential random variable X is 0 and the median is ln(2)/λ.

The exponential distribution is often described as the waiting time between the rare events
of a Poisson process. Suppose that {N(t); t > 0} is a Poisson process with rate λ, so that N(t)∼
P(λt). Letting X denote the time until the first event, and F(t) denote the cdf of X,

Pr(X > t)=1−F(t)=Pr(N(t)=0)= (λt)0 exp(−λt)
0! = exp(−λt)

so that

F(t)=1−exp(−λt). (B.13)

Differentiating both sides of (B.13) with respect to t yields (B.12).
Exponential random variables are easily generated, given a uniform random number gen-

erator: if U ∼ U(0,1), then X =− log(U)/λ∼E(λ).
The minimum of several independent exponential random variables itself is an exponential

random variable. Suppose that Xi ∼E(λi), i =1,2, . . . ,n are independent. Then,

Y =min{X1,X2, . . . ,Xn} ∼ E(λ1 +λ2 +·· ·+λn).

Furthermore, Pr (Xi =min {X1,X2, . . . ,Xn})=λi /
∑

j λj .

Lack of Aging Property

The exponential distribution plays a key role in survival analysis, having a number of
remarkable distinguishing features, chief of which is the lack of aging property. Let t and h be
any nonnegative numbers, and suppose that X is a random variable with the property that

Pr(X > t+h|X > t)=Pr(X >h). (B.14)

The probability of surviving an additional h units of time, given survival through time t, is the
same as the probability of surviving the initial h units of time. If human lifetimes followed an
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exponential distribution, the proportion of 50 year olds surviving to age 55, the proportion of
10 year olds surviving to age 15, and the proportion of newborns surviving to age 5 would all
be the same.

It is easily demonstrated that (B.14) is true if and only if X ∼E(λ). In terms of the survival
function S(t)=1 – F(t), (B.14) can be written as

S(t+h)

S(t)
=S(h). (B.15)

Multiplying both sides of (B.15) by S(t), then subtracting S(t) from both sides, then dividing
by h, we have

S(t+h)−S(t)
h

=S(t)
(

S(h)−1
h

)
. (B.16)

For a nonnegative random variable S(0)=1, so we replace the 1 on the right-hand side of (B.16)
with S(0). Then, taking the limits as h approaches zero on both sides of the equation, we obtain

S′(t)=S(t)S′(0). (B.17)

S′(0) is a constant; call it λ. Thus, (B.17) is seen as a simple differential equation, the unique
solution of which is

S(t) = exp(−λt).

Thus, the lack of aging property (B.14) corresponds exclusively to the exponential distribution.

Hazard Functions

The lack of aging property is often described in terms of the hazard function or force of
mortality function. Consider the probability that an individual, having survived to age t, dies
in the next brief interval (t, t+h] . Assuming that survival is a continuous random variable,
the probability of death in the interval (t, t+h] approaches zero as h→0; however, we may
scale the probability by the length of the interval to obtain an instantaneous rate, which may
vary as a function of t. Thus, the hazard function is defined as

λ(t)= lim
h→0

1
h

Pr
(
X ∈ (t, t+h]|X > t

)
= lim

h→0

F(t+h)−F(t)
h S(t)

= f (t)
S(t)

.

For the exponential distribution, and the exponential distribution alone, the hazard func-
tion is constant, λ(t)≡λ : the lack of aging property is equivalent to a constant force of
mortality.

The hazard function can be computed from the distribution function and vice versa. Since
the hazard function is defined as λ(t)= f (t)/S(t),∫ x

0
λ(t)dt =

∫ x

0

f (t)dt
S(t)

=− log(S(x)).
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FIGURE B.4 A hazard function.

Thus,

S(x)=exp(−x�(x)) ,

where

�(x)= 1
x

∫ x

0
λ(t)dt

is the interval averaged hazard function. The one-to-one correspondence of hazard func-
tions and distribution functions means that characteristics of the survival distribution may
be expressed in terms of the hazard function and vice versa. The exponential distribution,
with its constant hazard function, is thus a natural baseline for investigating patterns of sur-
vival. For instance, human survival is often described as having a “bathtub shaped” hazard
function (Fig. B.4): the force of mortality is highest for newborns and elderly, declining in
childhood, and increasing in old age.

Weibull Distribution

If X ∼E(λ) and α> 0 is a constant, then Y =X1/α has a Weibull distribution, Y ∼W(λ,α). The
hazard function of the Weibull distribution is λW(t)= (αλ)t(α−1), a strictly decreasing function
for α<1, and a strictly increasing function for α>1.

B.9 GAMMA DISTRIBUTION

We say that X has a gamma distribution with parameters α and β and write X ∼Ga(α,β), if
X has density function

g(x;α,β)= βα

�(α)
xα−1 exp(−βx), x >0,
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FIGURE B.5 Gamma distributions with mean = 2. Shape parameters α=20 (red), α=6 (green), α=1 (black;
exponential distribution), α=0.5 (blue).

for values α,β>0. Here, �(z) is the gamma function, defined for z> 0 by

�(z)=
∫ ∞

0
tz−1 exp(−t)dt.

Parameter α is referred to as the shape parameter, and β as the scale parameter. The mean and
variance of a gamma distribution are α/β and α/β2, respectively. The mode is (α−1)/β for
α≥1, and zero for α<1; the median does not have a simple closed form expression.

If X ∼Ga(α,β), then E(X)=α/β and Var(X)=α/β2. Several gamma distributions are
illustrated in Fig. B.5.

For positive integer k, the distribution obtained setting α= k/2 and β=1/2 is referred to
as the chi-squared distribution with k degrees of freedom (df ), denoted χ2

k . If Z1,Z2, . . . ,Zk
are independent and identically distributed (iid) standard normal random variables,
then

k∑
i=1

Z2
i ∼χ2

k . (B.18)

The exponential distributions are members of the gamma family, obtained by setting α=1. In
particular, the exponential distribution with mean 2 is the same as the chi-squared distribution
with 2 df.

Suppose that X ∼Ga(α,β) is independent of Y ∼Ga(γ ,β), and a>0. Then,

1. if Z= aX, then Z∼Ga(α,β/a);

2. if Z=X +Y, then Z∼Ga(α+γ ,β).
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The gamma family of distributions is seldom used to model biological data per se. Its
primary importance (under the Bayesian paradigm) is as an expression of uncertainty about
unknown parameters.

The gamma distribution is also of interest as the distribution of the sample variance. Suppose
that X1,X2, . . . ,Xn are random variables. The sample mean is defined as

X̄ = 1
n

n∑
i=1

Xi,

and the sample variance as

S2 = 1
n−1

n∑
i=1

(Xi − X̄)2.

If the Xi are iid with a N(μ,σ2) distribution, then (n−1)S2/σ2 ∼χ2
n−1; this is equivalent to

saying that S2 ∼Ga
(

n−1
2 , n−1

2σ2

)
.

Wishart Distribution

Equation (B.18), identifying the chi-squared distribution as that of the sum of squared
standard normal random variables, has a multivariate extension. Suppose that X i, i =1,2, . . . ,k
are iid p-dimensional multivariate normal random variables, X i ∼Np(0,�). Then,

W =
k∑

i=1

X iX ′
i

has a Wishart distribution with k degrees of freedom and scale matrix �. The p-dimensional
Wishart distribution has support on the set of p dimensional positive definite matrices, for
p=1,2, . . .. The expected value of W is k �, the mode of W is (k −p−1)�, and the density
function is

f (W)∝|W |(k−p−1)/2 exp
(

−1
2

Tr(�−1W)

)
,

where Tr(A) is the trace operator, returning the sum of the diagonal elements of its argument.

B.10 BETA DISTRIBUTION

We say that X has a beta distribution with parameters a,b>0 and write X ∼Be(a,b), if X has
density function

Be(x;a,b)= �(a+b)
�(a)�(b)

xa−1 (1−x)b−1, (B.19)

0<x <1. The mean and variance of the beta distribution are

μ= a
a+b

,
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FIGURE B.6 Beta distributions: left panel has θ =5,μ=0.1,0.2,0.3,0.4, and 0.5 (red, black, green, blue, yellow);
right panel has μ=0.4,θ =3,10,25,100 (green, black, red, blue).

and

σ2 = ab
(a+b)2(a+b+1)

= μ(1−μ)

θ+1
,

where θ = a+b. The mode of a beta distribution with α,β≥1 is

α−1
α+β−2

.

If α<1 there is a mode at 0, and if β<1 there is a mode at 1.
The beta density is usually parameterized as in Eq. (B.19), but the (μ,θ) parameterization is

often easier to work with. Note that the variance is a function of the mean; the concentration
parameter θ provides a more natural measure of the relative spread in the distribution. The
greater the value of θ> 0, the greater the concentration of mass around the mean (Fig. B.6).

The uniform distribution on [0,1] is a member of the beta family, namely β(1,1).
Beta random variables can be obtained from gamma random variables: if X ∼Ga(p,λ) is

independent of Y ∼Ga(q,λ), then Z=X/(X +Y)∼Be(p,q).

B.11 t-DISTRIBUTION

The Student t-distribution with k degrees of freedom (df ) is defined as the distribution of
the ratio

T = Z√
V/k

,

where Z∼N(0,1) and V ∼χ2
k are independent. Its density function is

f (t)= �((k +1)/2)√
kπ�(k/2)

(1+ t2/k)−(k+1)/2, −∞< t <∞.
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24 22 0 42

FIGURE B.7 t-distributions with k =1,2, and 10 degrees of freedom (blue, green, red) and standard normal dis-
tribution (black).

The t-distribution has mode and median at zero; its mean is zero if k >1 and undefined other-
wise. Its variance is k/(k −2) for k >2, and infinite otherwise. As evident from Fig. B.7, the
t-distribution approximates the standard normal for large values of k; for k >30 they are vir-
tually indistinguishable.

The t-distribution is best known for its role in frequentist analysis, in constructing hypothesis
tests, and in interval estimates for the mean of a normal distribution with unknown variance.
Given a sample Xi, i =1,2, . . . ,n with Xi ∼N(μ,σ2),

t = X̄ −μ

s/
√

n

has a t-distribution with n−1 df.
In Bayesian analysis, the t-distribution is the posterior distribution of the mean assuming

flat normal and vague gamma priors on μ and σ2. Although there is usually no a priori reason
for choosing a t-distribution in modeling ecological data, it may sometimes be useful as a
heavy-tailed alternative to the normal.

B.12 NEGATIVE BINOMIAL DISTRIBUTION

We have noted that the Poisson distribution is often chosen as a starting point for the
analysis of count data. The usefulness of the Poisson distribution is limited by the fact that
if X ∼P(λ) then E(X)=Var(X). Count data are typically overdispersed relative to the Poisson
distribution: their variance is larger than their mean.

Asolution is to model the mean λ of the Poisson distribution as a random variable. It follows
from the double expectation theorems (AppendixA.2.2) that if [X|λ]∼P(λ) and Var(λ)>0, then
Var(X)>E(X).
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The negative binomial distribution is a useful alternative to the Poisson distribution,
obtained by supposing that [X|λ]∼P(λ) with λ∼Ga(α,β). We have

Pr(X = k)=
∫

[X|λ] [λ]dλ

=
∫

e−λλk

k! × βα

�(α)
λα−1 e−βλ dλ

= βα

k!�(α)

∫
λk+α−1 e−(β+1)λ dλ, (B.20)

for k =0,1, . . . , α>0; and β>0.
Now we “integrate like a statistician.” Noting that a= k +α>0 and that b=β+1>0, we

see that the integrand is nearly in the form of a gamma density function; the only problem is
that the normalizing constant is missing. So, we multiply inside the integral by the necessary
normalizing constant and outside by its inverse. Thus,

Pr(X = k)= βα

k!�(α)

�(a)
ba

∫
λ

ba

�(a)
λa−1 e−bλdλ

= βα

k!�(α)

�(a)
ba ×1.

Substituting k +α for a and 1+β for b, we obtain the negative binomial distribution function:

Pr(X = k)= �(k +α)

k!�(α)

(
β

1+β

)α( 1
1+β

)k

, (B.21)

for k =0,1, . . ..
The negative binomial distribution has mean E(X)=α/β and variance

Var(X)= α(1+β)

β2 .

If α≤1 the mode is 0. Otherwise, the mode of X is the greatest integer less than or equal to

m= α−1
β

.

If m is an integer, then both m−1 and m are modes. The median does not have a closed form
expression.

The negative binomial distribution also arises in describing sequences of Bernoulli trials. Let
α be an integer, and let p=β/(1+β)∈ (0,1). Then, the probability of X failures before success
number α is given by Eq. (B.21). The geometric distribution is obtained by setting α=1.
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