
Information and Software Technology 52 (2010) 625–640
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Experience and challenges with UML-driven performance engineering
of a Distributed Real-Time System

Vahid Garousi
Software Quality Engineering Laboratory (SoftQual), Department of Electrical and Computer Engineering, Schulich School of Engineering,
University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
a r t i c l e i n f o
Article history:
Received 6 July 2009
Received in revised form 14 January 2010
Accepted 18 January 2010
Available online 1 February 2010

Keywords:
Software Performance Engineering
Performance tuning
Stress testing
Experiment
Distributed Real-Time Systems
UML
0950-5849/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.infsof.2010.01.003

E-mail address: vgarousi@ucalgary.ca
1 For reading convenience, a list of acronyms is prov
a b s t r a c t

Context: Performance-related failures of Distributed and Real-Time Software Systems (DRTS’s) can be
very costly, e.g., explosion of a nuclear reactor. We reported in a previous work a stress testing method-
ology to detect performance-related Real-Time (RT) faults in DRTS’s based on the design UML model of a
System Under Test (SUT). The stress methodology aimed at increasing the chances of RT failures (viola-
tions in RT constraints).
Objective: After stress testing a SUT and finding RT faults, an important immediate question is how to fix
(debug) those RT faults and prevent the same RT violations in the future and after deployment. If appro-
priate solutions to this challenge cannot be found, stress testing and its findings (detection of RT faults)
will be of no or little use to the quality assurance goals of the development team.
Method: To move towards systematically solving performance-related problems causing RT faults, we
develop a customized version of the standard Software Performance Engineering process and conduct
an experiment on a DRTS. The process is iteratively applied to a SUT, while results from stress testing
reveal that there are still scenarios in which RT constraints are violated.
Results: Application of the performance engineering paradigm in this context on a real DRTS enables sys-
tematic analysis of performance-related defects and their fixations.
Conclusion: The contributions of this work are an initial approach to software performance engineering
based on stress testing, and an analysis, based on experimentation, of the open issues that need to be
addressed in order to improve the approach.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Distributed Real-Time Systems (DRTS’s)1 are becoming more
important to our everyday life. Examples include command and con-
trol systems, aircraft aviation systems, robotics, and nuclear power
plant systems [1]. The development and testing of such a system is
difficult and takes more time than the development and testing of
a distributed system without Real-Time (RT) constraints or a central-
ized system running on a single computer [2].

Performance-related defects in software systems can be very
costly; e.g., the controller software of a nuclear reactor should send
appropriate control signals every two seconds or catastrophic
results might occur. Such defects can result in catastrophic and
life-threatening outcomes (e.g., explosion of a nuclear reactor),
damaged customer relations, cost and time overruns due to perfor-
mance tuning activities, and missed market windows.

Sources of performance failures in the United States Public
Switched Telephone Network (PSTN), as a large system, are inves-
ll rights reserved.

ided in the appendix.
tigated in [3]. It is reported that in the 1992–1994 time period,
although only 6% of the outages were overloads, they led to 44%
of the PSTN’s service downtime. In the system under study, over-
load was defined as the situation in which service demand exceeds
the designed system capacity. Hence, it is evident that although
overloads do not happen frequently, the failure resulting from
them can be quite expensive.

DRTS’s offer unique challenges for performance engineering due
to the complexity of interactions between different distributed
nodes, components and their concurrent nature. Therefore, utiliz-
ing SPE techniques to systematically locate, fix and prevent RT
faults in those systems is critically required. We (software engi-
neers) cannot afford to deploy safety-critical DRTS’s which have
the potential to cause catastrophic consequences due to perfor-
mance-related defects.

Furthermore, according to the literature on power distribution
systems implemented using distributed software systems (e.g.,
[4,5]), if RT constraints are not met in these systems, e.g., power
is not restored on time after a network failure in a part of a power
distribution grid, costly power blackouts are inevitable, e.g., the
Northeast North American blackout on August 2003 whose out-

http://dx.doi.org/10.1016/j.infsof.2010.01.003
mailto:vgarousi@ucalgary.ca
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

626 V. Garousi / Information and Software Technology 52 (2010) 625–640
age-related financial losses alone were estimated at $6 billion USD
[6].

We presented in [7] a stress test methodology aimed at increas-
ing the chances of discovering RT faults related to network traffic.
Two extended versions of the base methodology were also
presented in [8,9]. The technique in [7] uses the UML 2.0 [10] mod-
el of a distributed System Under Test (SUT), augmented with tim-
ing information, and is based on an analysis of the control flow in
UML sequence diagrams. It yields stress test requirements that are
constructed from specific control flow paths along with time val-
ues indicating when to trigger them.

The technique has been evaluated empirically in a number of
studies [11,12] on real and hypothetical DRTS’s and the results have
confirmed the robustness and effectiveness of the stress test tech-
nique in revealing RT faults. In one experimentation [7], we used
the specifications of a real-world power grid controller system to
design and implement a prototype system. We then derived, for that
particular system, the stress test suites and executed them using our
test methodology. The stress test results indicated that the method-
ology is significantly more effective at detecting RT faults when
compared to test cases based on an operational profile [13], in which
the system was tested under its expected workload.

After stress testing a SUT and finding RT faults, an important
immediate question is how to fix (debug) those RT faults and pre-
vent the same RT violations in the future and after deployment. If
appropriate solutions to this challenge are not provided, the stress
testing and its findings (detection of RT faults) will be of no or little
use to the organizations’ quality assurance goals. In our case study
[7], by a root cause analysis of faults, all RT faults were found to
have been caused by performance-related defects and thus the bot-
tom-line to eliminate RT faults is to correct the performance issues
which were the causes of those RT faults.

To experiment with systematically solving performance-related
problems which can lead to RT faults, we present in this paper a
performance engineering process for DRTS’s, referred to as Stress-
Test Performance Engineering (STPE), based on stress testing and
an experience report using that process when applied to a proto-
type DRTS. Although we are able to solve the performance-related
failures in our experiment (Section 5), the experiment raises sev-
eral important questions and practical challenges in UML-driven
performance engineering of DRTS’s as open issues (Section 6).

To design the STPE process, we customize and adapt a well-
know paradigm called Software Performance Engineering (SPE)
[14]. SPE is a paradigm for general software systems, so we have
adapted it for the context of DRTS’s, stress testing and UML-driven
development processes.

While the SPE literature is extensive (e.g., the list of references
in [15]), no existing work has studied performance engineering of
DRTS’s based on stress test results. Furthermore, no existing work
has provided performance tuning guidelines to help developers
cope with RT faults in UML-driven developments. Resolving this
need is one of the contributions of the current work. The other con-
tribution of our experience report is to highlight the practical ques-
tions and challenges in performance engineering of these types of
systems. For example, we find out that cost-effective performance
engineering, in this context, would require designing an intelligent
and systematic decision-support mechanism to support perfor-
mance engineering decisions. We identify the challenges in build-
ing such a mechanism, and aim at offering solutions to some of
those challenges.

The rest of this article is structured as follows. Related works
are discussed in Section 2. To better understand the proposed per-
formance engineering process and the experiment, some back-
ground information is presented in Section 3. Section 4 presents
the customized process. Section 5 reports the results of an experi-
ment in which the process is applied to a prototype DRTS. Section 6
evaluates our methodology by comparing it to a few related meth-
odologies and discusses the main research questions (open issues)
raised by this study to be addressed by future works. The appendix
provides a list of acronyms used in this article.
2. Related work

There have been many works in the Software Performance Engi-
neering (SPE) literature (e.g., the list of references in [15]), focusing
on different type of performance testing (e.g., stress and load test-
ing), different types of systems under test, and different types of
performance-related faults.

For space constraints, we limit our focus in this article to the
most relevant work which uses SPE practices in the context of
stress testing (e.g., [2,16]), and distributed real-time systems
(e.g., [17,18]). For a more comprehensive survey of related work,
readers are referred to [19].

Note that (system) performance engineering is more than just
Software Performance Engineering. Performance engineering deals
with tuning all computing (IT) resources (including both hardware
and software) to meet performance non-functional requirements
for a system [20]. For example in the current work, we test, mea-
sure and tune both hardware and software components to conduct
the performance engineering tasks.

The SPE literature can be classified into two broad categories
[21]: (1) model-based analysis and (2) monitoring (measure-
ment)-based approaches. The existing works in the first category
(e.g., [2]) build analytical performance models, e.g., Layered Queu-
ing Networks (LQN) [22], to analyze and tune performance. The
works in the second category apply performance testing tech-
niques, e.g., stress and load testing, to detect faults. Each category
has its own advantages and disadvantages, e.g., model-based tech-
niques can be used even before the system is developed, but the
executable system should be ready for applying testing-based
techniques. On the other hand, techniques of the 2nd category usu-
ally provide more realistic and robust results compared o the 1st
category as the real system is performance tested instead of a rep-
resentative model. Further comparisons on the above two groups
can be found in many SPE literature, e.g. [14].

The work in [2] reports upon the issues and the experiences
with performance testing of industrial software systems. The
authors reveal some interesting empirical insights with respect
to the locality of performance-related problems, e.g., they found
that 93% of the performance-related project-affecting issues in an
industrial software project were concentrated in the 30% of source
code sections that were deemed to be most problematic. This
observation confirmed the authors’ experience that projects that
are in ‘‘good shape” are very likely to recognize that addressing
performance issues is a necessary part of the architectural phase
of development.

During the industrial performance testing project in [2], the
authors were able to uncover and correct several software faults
that substantially compromised the performance behavior of the
SUT. They were also convinced that if the system had been de-
ployed without having identified and corrected these problems,
the system would have provided performance that would have
been viewed by their customers as being entirely unacceptable.
As a summary, the experience paper in [2] reveals useful and prac-
tical issues into the performance testing of industrial systems.
However, it does not present an iterative SPE process which can
provide performance tuning guidelines to help developers prevent
RT faults. Furthermore, similar to [16,2] does not discuss the no-
tions of RT constraints and violations in understanding and pre-
dicting performance, but rather discusses general types of
performance faults (e.g., unacceptable throughput).

V. Garousi / Information and Software Technology 52 (2010) 625–640 627
The work in [16] presents a methodology for understanding and
predicting the performance of component-based distributed sys-
tems both during development and after they have been deployed.
The presented methodology includes three parts: (1) monitoring,
(2) modeling and (3) performance prediction. Performance
predictions are based on UML models created dynamically by mon-
itoring and analyzing a live or under-development system. The sys-
tem is monitored using non-intrusive methods and runtime data is
collected. In addition, static data is obtained by analyzing the
deployment configuration of the target application. UML models
enhanced with performance indicators are created based on both
static and dynamic data, and are used by the methodology to pin-
point performance bottlenecks. Although the methodology in [16]
can be used for understanding and predicting the performance of
distributed systems under stress conditions, it does not deal with
RT constraints and their violations in understanding and predicting
performance.

There are a variety of approaches to applying SPE practices to
distributed real-time systems (e.g., [17,18]). The work in [17] pre-
sents a toolset for performance engineering of client–server sys-
tems. The presented toolset offers the possibility of early
performance evaluation of designs for several types of layered-ser-
vice systems, including client–server, distributed, and transaction
processing systems. The toolset was reported to be able to identify
the features that affect the performance of layered-service sys-
tems, e.g., the placement of modules in tasks, and the number of
clients. These features were modeled and formulated in an analyt-
ical performance model notation, referred to as ‘‘stochastic rendez-
vous networks”. To get the best performance configuration, this
model was solved by performance solvers through analytical solv-
ers and simulations. The two solution approaches are complemen-
tary: analytic techniques were used to explore alternatives, with
simulation techniques used to confirm the results in practice.

The paper in [23] provides interesting management-level in-
sights into the SPE of distributed systems by identifying two types
of performance management practices used in organizations: reac-
tive and proactive performance management. The authors believe
that reactive techniques are inappropriate for today’s distributed
systems, since if critical problems are detected late in develop-
ment, it may be difficult and expensive to correct them before
deployment, or even impossible to correct them without a major
re-design.

In summary, we have reviewed above some of the relevant SPE
practices which are applied in industry to date. However, no expe-
rience has been reported with regard to the study and integration of
all the three aspects of performance engineering (measurement,
evaluation, and tuning) for systems based on stress test results with
a focus on RT faults. Our stress test methodology reported in [7] be-
longs to testing-based SPE category since an actual SUT is perfor-
mance tested by the test cases generated using the methodology.

The novelty of the current work with respect to three of our rel-
evant earlier publications [7–9] is as follows. All those three earlier
contributions were only stress test techniques. After using any of
those three techniques to detect RT faults in a SUT, none of them
addressed the important question of how to fix (debug) those RT
faults. In other words, those works did not cover the performance
engineering aspect of dealing with RT faults, and that is the main
contribution of the current work. Any of our three previous tech-
niques [7–9] can be used in conjunction with the current STPE pro-
cess to complete the loop in performance engineering of DRTS’s:
detecting RT fault and taking measures to resolve (fix) them. The
relationships among our three earlier contributions [7–9] are as
follows.

The Time-Shifting Stress Test Methodology (TSSTM) [7] was our
first and base approach with two simplifying assumptions: (1) it
assumed that the timing information of messages in the SUT is pre-
dictable or precise (as specified in its UML models) and (2) TSSTM
is only applicable to DRTS’s without timing constraints (e.g., arrival
patterns) for RT tasks. The techniques reported in [8 and 9] which
were extended versions of TSSTM were developed to address the
above two simplifying assumptions of TSSTM, respectively.

In order to devise deterministic test requirements (from time
point of view) that yield a stress test scenario of network traffic
in a SUT, our TSSTM methodology [7] required that the timing
information of messages in SDs is available and as precise as pos-
sible. The determinism of a test requirement in this context corre-
sponds to the certainty by which executing test cases
corresponding to that test requirement will maximize traffic on a
given network. However in reality, the timing information of mes-
sages is not always available and/or precise (certain) before execu-
tion. Furthermore, such timing information can change across
different executions. In other words, TSSTM might generate impre-
cise and not necessarily maximum stressing test cases in the pres-
ence of such time uncertainty and, thus, it might not be very
effective in revealing RT faults. To address the above limitation of
TSSTM, we presented in [8] a modified testing methodology, re-
ferred to as Wait-Notify Stress Test Methodology (WNSTM), which
can be used to stress test systems in which the timing information
of messages is unpredictable or imprecise.

To take into account different types of event arrival patterns
(e.g., periodic arrival) common in DRTS’s while generating stress
test requirements, we reported a technique referred to as Genetic
Algorithm-based Stress Test Methodology (GASTM) in [9]. Such pat-
terns impose constraints on the time instant when interactions be-
tween distributed objects can take place. We made use of
specifically-tailored Genetic Algorithms to automatically generate
test requirements which comply with such timing constraints
and lead to high traffic-aware stress in a SUT. While, if the base ap-
proach (TSSTM) is applied to those SUTs, it will generate strenuous
but possibly invalid (illegal) test requirements that will possibly
violate the timing constraints of RT tasks.
3. Background

Since our SPE approach is based on RT constraints and their vio-
lations, a brief introduction to RT constraints in DRTS’s is presented
in Section 3.1. An overview of our stress test methodology [7], as
the background to this work, is provided in Section 3.2.
3.1. An overview of Real-Time constraints

Real-Time (RT) constraints are timing constraints on operations
in RT systems. There are usually two types of RT constraints: hard
and soft [1]. A hard RT constraint on an operation enforces that the
operation must complete within the specified time frame or the
operation is, by definition, incorrect, unacceptable, and usually
has no value.

On the other hand, in the case of a soft RT constraint for an oper-
ation, the value of the operation declines steadily after the deadline
expires. Tasks completed after their respective soft RT deadlines
are less important than those whose deadlines have not yet ex-
pired [1].

The Unified Modeling Language (UML) [10] is increasingly used
in the development of DRTS’s (e.g., [24]). Therefore, we assume
that RT constraints are specified in UML models of a SUT and are
provided to our stress test methodology. To model RT constraints
in UML models, the UML profile for Schedulability, Performance,
and Time (UML-SPT) [25] proposes comprehensive modeling con-
structs to model timing information. Although UML-SPT briefly
mentions soft and hard RT constraints (Section 2.2.3 of [25]), it

sd M

m1

r1

o1
{node = n1}

o2
{node = n2}

[condition]

[else]

alt

m3

o3
{node = n3}

m2

r2

«SRTaction»
{RTduration<(1300,'ms'),
RTmissProb<0.5}

Fig. 1. An example usage of the «SRTaction» stereotype in a UML sequence diagram.

628 V. Garousi / Information and Software Technology 52 (2010) 625–640
does not propose any specific stereotypes to distinguish between
them.

Note that the UML-SPT was the standard profile when this re-
search was conducted. As of this writing (January 2010), the Object
Management Group (OMG) has adopted a beta specification is
working on the finalization stage of a new improved profile, called
the UML Profile for Modeling and Analysis of Real-time and Embedded
Systems (MARTE) [26], which is expected to replace SPT in the near
future. From an objective standpoint, the framework reported in
this paper can easily be modified to be applicable with model
developed using MARTE as well since for the purpose of analysis
in this paper, only the format of the tagged-values in SPT and
MARTE are different. For example, to specify the deadline of
1300 ms for a RT message, the SPT [25] and MARTE [26] notations
are as follows, respectively: RT duration < (1300 ms), and
relDl = (1300 ms). relDl stands for relative deadline.

In order to distinguish hard and soft RT constraints, as the UML-
SPT profile [25] does not provide any stereotypes, we proposed in
[27] two extensions to the RTaction stereotype of the UML-SPT
referred to as HRTaction (hard RT action) and SRTaction (soft RT
action). As of this writing (January 2010), the adopted beta specifi-
cation of MARTE [26] also still has no defined stereotype to distin-
guish soft vs. hard RT constraints.

Furthermore, in order to model the statistical threshold proba-
bility up to which SRT constraints are allowed to be violated, we
defined a tagged-value referred to as RTmissProb for SRT con-
straints [26]. The extreme values for RTmissProb values denote
‘‘that no violation is allowed” (RTmissProb = 0) and ‘‘that all viola-
tion instances are allowed” (RTmissProb = 1). In the former case, a
SRT constraint turns into a HRT constraint since all violations are
interpreted as a RT fault. In the latter case, a SRT constraint is in
fact not a constraint since all of its violation instances are allowed
and not considered a RT fault.

Similarly, we presented a tagged-value referred to as RTcritical-
ity for HRT constraints, [0, . . ., 1], which indicates the degree to
which the consequences of missing a hard RT deadline are unac-
ceptable. The extreme values for RTcriticality values, i.e., 0 and 1,
denote ‘‘virtually no serious consequences” and ‘‘catastrophic re-
sults for violating” a HRT constraint, respectively. An example
usage of the SRTaction stereotype in a Sequence Diagram (SD) is
demonstrated in Fig. 1. The SRT constraint denotes that the execu-
tion duration of the message sequence hm1, m2, r2, r1i should not
exceed 1300 ms (ms). As the RTmissProb value specifies, this con-
straint may be violated across different executions up to a proba-
bility of 0.5.
RTmissProb and RTcriticality values are used in the performance
evaluation stage of our performance engineering methodology
(Section 4.2) to assess whether a SRT or a HRT constraint, respec-
tively, is violated when the SUT is executed for a large number of
times. Those values are usually provided by domain experts and
in consultation with the clients of the system [1].
3.2. An overview of our stress test methodology

An overview of the TSSTM stress test methodology [7] is pre-
sented using the UML activity diagram in Fig. 2. Only the steps with
a gray background are addressed in [7]. A UML model of a SUT, fol-
lowing specific but realistic requirements, is used as input. Note
that context diagrams in the input do not belong to the standard
UML 2.0, but they have been used in a many OO methodologies,
e.g., the Concurrent Object Modeling and Architectural Design
Method (COMET) framework [28].

A test model is built to facilitate subsequent automation steps.
As shown in Fig. 2, such a model includes, among other entities, the
control flow information of the set of all SDs in the SUT in the form
of control flow graphs. The test model and a set of stress test
parameters (e.g., the node or network to be under stress test) set
by the user are then used by an optimization algorithm to derive
stress test requirements. Test requirements can finally be used to
specify test cases to stress test a SUT.

The goal of the TSSTM methodology [7] was to choose the max-
imum number of sequence diagrams (to create maximum possible
traffic) which can realistically be executed concurrently (according
to the business logic of a SUT), and schedule them such that their
maximum traffic messages run concurrently.

TSSTM [7] was our base stress test methodology, which requires
the timing information of the messages in the system to be deter-
ministic. Also it was not applicable to RT systems in which mes-
sages could have arbitrary arrival patterns.

To address the above two limitations of TSSTM [7], we have
developed two additional stress test methodologies called:

� Wait-Notify Stress Test Methodology (WNSTM) [8] to address
the first above shortcoming.

� Genetic-Algorithm-based Stress Test Methodology (GASTM) [9]
to address the second above shortcoming.

The reader can refer to the above three papers for details on
TSSTM [7], WNSTM [8] and GASTM [9].
4. Stress test performance engineering

We use the ideas from the SPE paradigm [14] to devise the STPE
process specific to DRTS’s and stress testing. Similar to SPE [14],
our STPE process is an iterative process in which the SUT is
stress-tested until no performance-related defects (i.e., RT viola-
tions) are discovered. In each iteration (cycle), STPE uses stress test
results to evaluate the performance of a SUT, analyze missed RT
constraints, and provide performance engineers with guidelines
for enhancing performance.

Based on the above introduction, both SPE and our STPE process
are illustrated using the UML activity diagrams in Fig. 3, where
nodes with soft and hard edges correspond to activities (steps in
the process) and data, respectively [10]. For easier referencing,
activities of the STPE are numbered. Activities of the SPE are also
numbered in a way that the correspondences of STPE activities to
those of SPE are identified, e.g., the ‘‘Generate Stress Test Require-
ments” activity of the STPE corresponds to the ‘‘Construct Perfor-
mance Models” activity of the SPE.

Control Flow Model

Traffic Usage Pattern

Sequence Diagrams

Class Diagram Test Model (TM)

Stress Test
Requirements

Design UML Model

Modified Interaction
Overview Diagram Inter-SD Constraints

Test Model
Generator

Optimization
Algorithm

Modeler

Stress Test
Parameters

Test Cases

Test Oracles Test Driver

SUT

Tester

Network Interconnectivity
Tree

Context Diagram

Network Deployment
Diagram

Fig. 2. Overview of the TSSTM methodology [7].

V. Garousi / Information and Software Technology 52 (2010) 625–640 629
The activity nodes of SPE are quite self explanatory. For further
details, the reader is referred to [14]. We explain next our STPE
process and its relationship to SPE. Note the two main building
blocks of SPE and STPE (i.e., performance measurement and tuning)
are similar. The differences in some of the activities is due to the
fact that SPE was proposed for general software systems and was
intended to support both model-based analysis and monitoring
(testing)-based performance approaches, while our STPE is a more
specific monitoring-based approach based on a specific testing
technique and is targeted for SPE of DRTS’s, detecting and fixing
their RT violations. The similarity of our approach to SPE can be fol-
lowed by relating the activities between the two similar processes.

In STPE, the design-phase UML model of a SUT is provided as an
input, which is used to derive stress test requirements using either
our TSSTM [7] or WNSTM methodology [8], depending on whether
the timing information of messages in the SUT is predictable or not.
The cycle variable and the transition guards using the cycle variable
in Fig. 3 relate to the iterative nature of STPE. Recall from above
that a SUT is stress tested with STPE until no performance-related
defects are encountered. The cycle variable keeps track of the STPE
cycle (iteration) number.

We discuss next the activities of the STPE process in detail. The
activities are grouped into three high-level steps (shown as com-
plex activities in Fig. 3):

� Performance measurement.
� Performance evaluation.
� Performance tuning.
4.1. Performance measurement

Step 1. Generate Stress Test Requirements: The first step of perfor-
mance measurement in STPE is to use either the TSSTM
[7], WNSTM [8] or GASTM [9] to generate stress test
requirements which maximize the probability of reveal-
ing RT faults. The decision to use the right stress test
methodology is based on the properties of the SUT, i.e.,
if its timing information are precise and whether its tasks
have arrival patterns (refer to Section 3.2 for details). For
brevity reasons, and without loss of generality, we
assume in the remaining of this section that the TSSTM
[7] is used. Stress test requirements generated by TSSTM
are made of specific control flow paths along with timing
values indicating when to trigger them.

Step 2. Generate Stress Test Cases: TSSTM only generates stress test
requirements, while testers build stress test cases corre-
sponding to those test requirements. The steps 1 and 2
correspond to the ‘‘Construct Performance Models” step
of SPE (Fig. 3). Stress test requirements are made of spe-
cific control flow paths along with timing values indicat-
ing when to trigger them. To actually be able to trigger a
specific control flow path, appropriate set of input values
or conditions should be generated, e.g., in a boiler control
system, the boiler temperature should be 120 �C and the
all the control sensors should send their data concurrently.
There is a large body of knowledge to generate test input
data once test requirements are known (e.g., [29]).

Step 3. Run Stress Test Cases: The next step of performance mea-
surement in STPE is to run the stress test cases derived
in the previous step to assess the performance of the
SUT. By executing the stress test cases, we evaluate the
performance of the SUT under the most stressed condi-
tions and determine whether the SUT is prone to RT faults
under such conditions. Since the execution times in
DRTS’s can be indeterministic [1], due to, e.g., unexpected
network delay, jitter, etc., the engineers should execute
each test case for a large number of times (e.g., 500, or
1000) and then study the test results statistically.

Step 4. Extract RT constraints: Concurrently to generating and
running stress test cases, the RT constraints of the SUT
are extracted from its UML model to be used in perfor-
mance evaluation (Step 5), which serve as the perfor-
mance objectives (corresponding to Step 4 of the SPE
process in Fig. 3).
4.2. Performance evaluation

Step 5. Analyze Stress Test Results: At this stage, we have both
stress test results (measured durations of messages
bound by RT constraints) from Step 3, and the RT con-
straints (performance objectives) from Step 4. It is now
time to compare the actual test case results to the perfor-
mance objectives. In other words, the runtime duration of
the message(s) bounded by each RT constraint should be
compared to the deadline value of the corresponding RT
constraint.

Due to the nature of HRT and SRT constraints, STPE evaluates
those two constraints separately. For each HRT constraint, if the
corresponding measured duration of the HRT constraint is greater
than the specified duration, a HRT fault is said to have occurred
(i.e., the stress test case has revealed a failure).

On the other hand, for each SRT constraint, the ratio of the num-
ber of missed instances of the constraint over total number of runs
is calculated. For example, suppose a SRT constraint is violated 30
times in 100 executions of a test case. In this case, the above ratio
will be 30%. Only if the ratio is greater than the maximum miss

Identify Critical
Use Cases

Add Computer
Resource Requirements

Modify/Create
Scenarios

Verify and
Validate Models

Revise Performance
Objectives

Modify Product
Concept

Evaluate
Performance Models

Construct
Performance Models

Assess
Performance Risk

Establish Performance
Objectives

Add Software
Resource Requirements

Select Key
Performance Scenarios

[performance
acceptable]

[infeasible]

[feasible]

Original
Design

UMLModel

Generate Stress
Test Requirements

[cycle=1]

Stress
Test Requirements

Generate Stress
Test Cases

Stress
Test Cases

Run Stress
Test Cases

“Modified” UML
Model

Analyze Stress
Test Results

Stress
Test Results

Update UML Models
and Source Code

[cycle>1]

[at least one RT failure]

[no RT failure]

RT
constraints

Extract RT
constraints

Revise (Loosen)
System Performance

Requirements

Upgrade
Network

Resources

cycle++

Tune/Re-factor
Architecture or Design

1

2

3

4

5

678

9

Performance
Measurement

Performance
Evaluation

Modify/create
scenarios

Revise performance
objectives

InputPerformance
Engineer

cycle=1

WhichModelToUse

FinishSTPEOrNot

Performance Tuning

[cycle>1]

Can be automated

Can be automated

(b)-Stress-Test Performance Engineering Process(a)-The General SPE Process

Performance
Measurement

Performance
Tuning

1, 2

4

3, 5

7

6, 8, 9

6

Decision making

Fig. 3. The relationship of our Stress-Test Performance Engineering Process to the general SPE Process [14].

630 V. Garousi / Information and Software Technology 52 (2010) 625–640
probability (missProbability) of the SRT constraint (e.g., 15%), a SRT
fault is said to have occurred.

Root-cause analysis: In case of any RT failure, the root-cause(s)
for poor performance (causing that failure) are identified by this
step as follows which will be used as guidelines for corrections
in the next performance tuning steps. A RT failure means that
the particular stress test requirement generated by the stress test
methodology is entailing a traffic load on the network or the node
under test which it cannot handle on time. For example, assume
that the execution of a test requirement ends up a RT failure. Since
the network the or node under stress, the control flow paths and
also the specific messages inside each of those paths are known
(from the test requirement), we can use that information as guide-
lines for corrections in performance tuning steps (next).

4.3. Performance tuning

The performance tuning stage of STPE is undertaken if and only
if the performance evaluation in Step 5 reports that at least one RT
failure (HRT or SRT) has occurred. It is evident that, after finding
performance-related defects using our approach, a performance
engineer may have several alternatives to tune (fix) them.

Fig. 4. Three types of constraints in choosing an alternative to conduct performance
tuning.

V. Garousi / Information and Software Technology 52 (2010) 625–640 631
The performance tuning stage of STPE has been designed to be
an open activity, i.e., any suitable performance tuning activity may
be applied at this stage. By suitable, we mean those activities
which can eliminate the chances of RT failures. As a starting point,
we are proposing three such activities in this work: Steps 6–8.

Step 6. Tune/Re-factor Architecture or Implementation: According
to our stress testing experiments in [7], some RT faults
occur due to overloads in network traffic when
distributed nodes are communicating with each other.
Thus, if a system’s architecture is refactored such that
some of the messages exchanged across distributed nodes
are replaced by local messages (inside a node), the prob-
ability of RT faults associated with overload in network
traffic may decrease. Other architecture tuning practices
such as load balancing [30] and message prioritization
[31] may also be utilized to mitigate such performance-
related defects.

Step 7. Revise (weaken) System Performance Requirements: This
activity is an adaptation of the ‘‘Revise performance
objectives” stage of the SPE. As mentioned in the SPE, if
no feasible cost-effective alternative is found to satisfy a
set of performance objectives, we need to modify the per-
formance goals to reflect this reality. It may not seem rea-
sonable to change the performance objectives if we can’t
meet them (if we can’t hit the target, we redefine the tar-
get); however revising the performance objectives is not
wrong if it is done at the outset of the project and its busi-
ness objectives, as mentioned in the SPE and also followed
in software industry. For example, by discussing such a
performance limitation with all stakeholders of a indus-
trial robot controller project, it might be acceptable (e.g.,
safe) in the context of the project to increase a HRT con-
straint from 2 to 3 s, while making sure that the new con-
straint will be met in all worst-case scenarios.

Step 8. Upgrade Network Resources: Another way to reduce the
chances of RT faults due to network traffic is to increase
network resources and infrastructure. According to our
stress test experiments in [7], network resources (e.g.,
the bandwidth of a network) are often performance bot-
tlenecks leading to RT faults. Thus, if we can pinpoint
the bottleneck network resource(s), we can either
upgrade or replace the resource(s) with more capable
ones, e.g., increasing the bandwidth of a network from
10 to 100 megabits per second (Mbps).

4.4. Decision-support for cost-effective performance tuning

Although each of the above alternatives can be useful in solving
the performance-related defects, performance engineers are usu-
ally under technical, economic, and strategic constraints in choos-
ing an alternative to conduct the tuning step (Fig. 4). This is similar
in nature to the constraints engineers face when choosing to use
Commercial off-the-shelf (COTS) products in software develop-
ment [32]. The best solutions lie in the middle intersection of all
three types of constraints.

An example technical constraint in our context is that although
we desire to upgrade the network resources (e.g., to more than
100 Mbps), some of the specific-purpose hardware devices that
we currently have will no longer be operational with the ultra-
speed networks. As another example, if we want to refactor the
system architecture in particular way, that would not be allowed
by the middleware that we currently have in use (e.g., CORBA).

Economic constraints are usually wide-spread in software pro-
jects, e.g., if we decide to proceed with network resource upgrades
to satisfy the violated RT constraints, we would go beyond the pro-
ject budget. Strategic constraints in this context generally refer to
our contracts with our clients and information from the DRTS do-
main experts, especially in terms of the predefined RT constraint
values.

Choosing the best performance tuning alternative would re-
quire paying careful attention to all the above three types of con-
straints in the context of a given system. The decision-making
challenge is not trivial and ad hoc decisions cannot help much in
general, e.g., one might choose to increase the network bandwidth
(or other infrastructures) by a large arbitrary amount (which
means extra costs), while fixing the detected RT failure could have
been done by a minor change (refactoring) in the system code.
Thus, we need to have a decision-support mechanism in place to
help performance engineers choose the most cost-effective activity
(shown by a decision node before performance tuning in Fig. 3).
4.4.1. A decision-making heuristic
Based on the software-engineering decision-support body of

knowledge [33], we provide a simple rank-based heuristic to sup-
port performance engineers in choosing the most cost effective
tuning alternative. The current notion of cost-effective perfor-
mance tuning is similar in goals to two related subjects, namely va-
lue-based software engineering [34] and value-based management of
software testing [35]. We thus similarly refer to our heuristic as Va-
lue-Based Performance Engineering (VBPE). Note that this is a first
step in devising such a heuristic and further more sophistical ver-
sions are sought to be developed using the advances in software-
engineering decision-support body of knowledge [33].

For brevity, let us refer to the three tuning activities (steps) 6–8
as REF, RPR, and UNR, respectively. To compare cost-effectiveness
of each alternative, let cost(alternative) denote the estimated cost
of each alternative. We essentially need to incorporate the three
dimensions of constraints (Fig. 4) into one quantitative value,
which in general is a challenging task. In the state-of-the-art and
also – practice [33], the effort is usually spent to (try to) convert
the technical and strategic dimensions into the economic dimen-
sion as well. For example, in some cases, the stakeholder(s) might
agree to the RPR option but with a reduction in project’s payable
revenue since the quality of the system (as a whole) might be per-
ceived as been decreased. In some other cases, the RPR option
might not be feasible (acceptable) at all.

Also, a major technical limitation in performance tuning might
be solved by spending a large amount of cost (e.g., changing the
middleware of a DRTS from CORBA to another platform).

To calculate the rankings of the three alternatives: REF, RPR, and
UNR, we need to apply various techniques to estimate the dollar
expenditure values for each. Fortunately, the guidelines provided
by Step 5 (analyze stress test results) can partially help perfor-
mance engineers in this cost-estimation analysis in the following
ways:

632 V. Garousi / Information and Software Technology 52 (2010) 625–640
� Identifying the network(s) which need upgrade.
� Measuring the amount of upgrade needed in network resources.
� Identifying part(s) of the system architecture or implementation

for refactoring.
� Suggestions for types of refactoring.
� Suggestions for negotiating revisions to RT constraints with cli-

ents by identifying the RT constraints which have violations and
the severity of those violations (how much beyond each RT
deadline the executions are currently).

For example, as discussed in Section 4.2, a RT failure would
mean that the generated stress test requirement is entailing a traf-
fic load on the network under test which it cannot transmit on
time. According to TSSTM [7], the stress traffic amount (in KBs
for example) is known (as reported by the test methodology out-
put), and we know that the current bandwidth of the network un-
der test is not enough for that traffic load. Therefore, the amount of
bandwidth to be increased can be calculated and can thus be used
to estimate costs of UNR.

To estimate costs of REF, we need to analyze the code using the
sections of the code which have caused the RT failure (available in
the stress test results), assess different code complexity metrics
(e.g., cohesion, coupling) of code modules, use change-impact-
analysis techniques [36], and finally estimate (e.g., in man hours)
the effort needed to refactor the code or design in the proper
way to fix the fault.

To estimate costs of RPR, the stress test results can again be
used to assess how bad the RT failure is. For example, if the stress
load has caused a hard RT constraint of 2 s to be observed as 5 s,
this is too severe and the chances that the business logic of the sys-
tem and/or the stakeholder(s) would allow relaxing this constraint
deadline to be set to 5 s are very rare. This would mean a high va-
lue for cost(RPR) to not let RPR be selected. On the contrary, if the
hard RT constraint of 2 s was observed as 2.1 s, it is possible (and
perhaps a good idea) to try the RPR option. If the business logic
and the stakeholder(s) allow this slight change (2 vs. 2.1 s), the cost
of applying REF or UNR will be saved.

As another example, consider the following usage scenario of
the heuristic. If we want to apply UNR to upgrade our network
infrastructure, it would cost $50 K. On the other hand, due to enor-
mous complexity of a SUT and also since we do not have enough
design documentation, we predict that taking the REF path might
impose a higher cost with respect to refactoring (refactoring time
is money). Also, taking the RPR path is not free as performance
engineers will most probably need to negotiate the performance
requirements’ relaxation with the primary stakeholders (e.g., cli-
ents) of the SUT.
4.4.2. Further decisions need to be made
In choosing which alternative to employ, further questions

would also be raised. For example, if we choose to proceed with
REF, should the system architecture be refactored (e.g., network
Perfor

Re-factor Architecture or
Implementation

W

Architecture Implementation

Possibility 1 Possibility nPossibility 1 Possibility m... ...

Possibility
Deadline va

Fig. 5. A decision tree for Value-Based
clustering), or the source code (e.g., the way the distrusted com-
munication message is programmed)? Furthermore, if there are
several candidate source code locations for refactoring, which
one should be conducted? Answering to such questions would
need careful application of concepts such as change-impact-analy-
sis [36], and performance patterns [20]. Obviously, the above deci-
sion-making process is by no means trivial.

Also, if we want to conduct RPR on a SRT constraint, should its
deadline value be changed or its RTmissProb value? Answering to
this question would need consultation with different stakeholders,
especially the domain experts. Similarly, if we want to proceed
with the UNR alternative, and there are several network locations
to be upgraded, which location should be upgraded?

All the above decision-related questions lead to the formation of
a decision tree in this context, a typical example of which is shown
in Fig. 5. A more systematic heuristic would need to traverse each
path (from the root to a leaf node) in this tree and estimate its cost
given the information from the Step 5 of the STPE (stress test re-
sults), and also detailed source-code/network analysis.

We will discuss in Section 5 how we have analyzed some of the
choices we faced in our experiment using the above heuristic and
also the decision tree in Fig. 5.

4.4.3. Single vs. multiple fixes in each iteration
Adding to the complexity is the fact that, in general, more than

one performance tuning activity can be applied in each STPE itera-
tion with the hope of eliminating the chances for RT failures. How-
ever this can be complex and probably not very cost effective in
some cases. Imagine applying several major fixes while the failure
could have been fixed by only one of those changes.

To simplify the performance tuning stage and also the analysis
of improvements, the current version of the STPE applies only one
performance tuning activity at a time (in each iteration).

4.4.4. Iteration backtracking
The STPE process is flexible in the sense that, once an alterna-

tive tuning activity is applied and the resulting performance
behavior is not satisfactory as expected, the performance engineer
may backtrack in the changes, e.g., undo the last tuning activity,
and perform another one. Of course, the time and cost associated
with such try and errors should be carefully considered in the tun-
ing process.

Also backtracking in this context sometimes makes sense, and
sometimes it does not. For example, backtracking of source code
refactor is viable, e.g., a developer can just undo the code changes.
However, backtracking of a major network upgrade which has in-
curred several major purchases might not be possible (if the net-
work hardware cannot be returned to the vendor).

4.4.5. Greedy vs. long-term-looking/holistic approach
The final word of caution in conducting the tuning stage is that

the above heuristics in its current version is following a greedy ap-
mance Tuning options

Upgrade Network
Resources

eaken Performance
Requirements

1:
lue

Possibility 2:
RTmissProb value

Network 1 Network p...

Performance Engineering (VBPE).

V. Garousi / Information and Software Technology 52 (2010) 625–640 633
proach (as defined in optimizations literature). To better explain
this notion, suppose that there are several RT violations in a given
SUT. The rule-of-thumb in the SPE state-of the-art and -practice
[20] has been to follow the divide-an-conquer approach, in which
each RT violation (or a few which relate to the same system mod-
ule) is (are) handled separately.

In such a case, prioritization of which RT violation to fix be-
comes the next natural question. To solve this prioritization ques-
tion, engineers usually use the priority of HRT to SRT constraints,
and then the severity of constraints.

Focusing on each RT violation, the current version of the STPE
and the tuning heuristic are used to find the most cost-effective
option and then to apply it. Since the system/problem parameters
are used to solve one RT violation (or few similar ones) at a time,
thus the solution strategy is greedy. Solutions from this strategy
are usually not expected to be the most optimal ones overall when
all the RT violations are considered in a holistic approach based on
the notion of global optimization.

For example, consider a SUT with two HRT violations: HRT1 and
HRT2. Using our guidelines, the engineer decides to choose the HRT
violation with the highest severity (HRT1) and apply the 1st itera-
tion of the STPE. By conducting a comprehensive cost analysis, she
decides to apply the refactoring solution for the violation of HRT1,
since this is less-expensive than applying UNR or RPR for ‘‘this con-
straint”, in isolation. After retesting, HRT1 is not violated anymore.
She then moves forward with HRT2 and chooses UNR since it
proves to be the least expensive option. By applying UNR, she suc-
cessfully fixes the violation of HRT2. In a post-process analysis, she
finds out that if she had applied UNR in the first place for HRT1
(even if it was more expensive for HRT1 than REF), the overall cost
would have been less. We will see a real example of the above pit-
fall in our experiment (Section 5.3).

Thus, users of the STPE approach should be aware that since the
current version is based on a greedy approach, it can lead to short-
sighted (locally optimum) decisions. Global optimization tech-
niques to develop long-term-looking/holistic approaches in STPE
are needed in future works.
4.5. Synchronize model and code

Step 9. Update UML Models and Source Code: Based on the perfor-
mance tuning activities, the final step is performed to
synchronize the UML models and the source code with
the changes performed in the other performance tuning
stages to make sure that the next STPE cycle is performed
with the most up-to-date versions of the SUT’s design
models and implementation. This is since the stress test-
ing techniques (Section 4.1) used in the STPE are using the
UML models of a SUT as input artifacts.

The software industry has lately observed effective tools in this
area, e.g., IBM Rational Software Architect, Eclipse, Enterprise
Architect, SDE for Visual Studio, and Altova UModel. For example,
in our experiments (iteration 1 in Section 5.3), we used the IBM Ra-
tional Software Architect (RSA) which was able to successfully
achieve 100% automated synchronization (i.e., there was no need
for manual changes). If automated modeling tools are not used,
for smaller-scale changes (e.g., changing the parameter of a func-
tion call), manual synchronization of UML models with the system
source code should not be a major effort.
5. Experiment

We applied our STPE process to a case study SUT to demon-
strate its feasibility. Our case study system is described in Section
5.1. Section 5.2 reports the network and hardware configurations
of our case study. We report in Section 5.3 the results of applying
STPE to our case study system.

5.1. System under analysis

Our case study SUT is a prototype SCADA-based power distribu-
tion system: SCADA for Supervisory Control And Data Acquisition
[37]. The system is referred to as SCAPS (a SCAda-based Power
System) [38], and is a system to control the power distribution grid
across Canada consisting of several provinces. Each province has
several cities and regions. There is one central server in each prov-
ince which gathers the SCADA data from Tele-Control units (TCs)
from all over the province and sends them to the national server.

The national server performs the following RT data-intensive
safety-critical functions as part of the power application software:
(1) Overload monitoring and control, (2) Detection of separated
(disconnected) power grids, and (3) Power restoration after grid
failure. We designed SCAPS to be used in Canada. To simplify the
design and implementation of a prototype version of SCAPS, we
considered only two Canadian provinces in the system: Ontario
(ON) and Quebec (QC). The complete UML design model of SCAPS
and more details on its business logic are presented in [38].

To familiarize the reader with SCAPS’ functionality, a subset of
its UML models is shown in Figs. 6–8. The SD in Fig. 6a corresponds
to the Overload Monitoring (OM) control of the province of Ontario
(ON). The queryONData(dataType) SD (Fig. 7) queries the load and
grid connectivity data from TCs in the province of Ontario.

OC (Overload Control) SD (Fig. 8) checks if there is an overload
situation in any of the two provinces, and if yes, a new power dis-
tribution load policy is generated by an object of type ASA (Auto-
matic System Agent) and is sent to the respective provincial
controller using setNewLoadPolicy().

We do not show the SCAPS class diagram in this article due to
its large size, but it is presented in [38]. Parameter dataType in
Fig. 7, used in call messages queryONData, is an instance of class
LoadStatus. An instance of the LoadStatus class stores information
about the load levels of different parts of a power grid.

As we discussed in detail in [38], the RT constraints in these SDs
are based on realistic estimates of the duration times for critical
messages used in real SCADA-based power systems (e.g., [4,5]).

Based on the system business logic and a survey in the SCADA-
based power systems (e.g., [4,5]), we specified six RT constraints in
SCAPS using our extended UML stereotypes SRTaction and HRTac-
tion (Section 3). One of the six RT constraints (HRTC4, shown in
Fig. 8) is the most critical constraint in SCAPS since it had the high-
est RTcriticality value. The RT information of HRTC4 and SRTC1 are
explained next since they are discussed in our experiments (Sec-
tion 5.3). The RT properties for other four RT constraints in SCAPS
are discussed in [38].

HRTC4 in SD OC (Fig. 8): It is critical that all the load data stored
in the primary national server (SEV_CA1) should be backed up on
the backup national server (SEV_CA2) in less than 1500 ms. Thus,
a RTcriticality value of 0.95 was assigned to HRTC4, denoting a crit-
ical HRT constraint. According to the SCADA-based power systems
literature (e.g., [4,5]), backing up critical data in such systems is
very important. This is done so that, in case of a failure in the pri-
mary national server, the backup server can continue to control the
power system without service interruption.

SRTC1 in SD OC (Fig. 8): As soon as an overload situation is
observed in Ontario, the load balancing policy (i.e., preparing a
load balancing regime and sending the regime to the provincial
server) by the ASA should be executed in less than 1000 ms. A
RTduration value of 0.9 (a high constraint missing threshold)
was assigned to this constraint, meaning not a critical SRT
constraint.

sd OM_ON

analyzeOverload(:ASA.loadON)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

ref
queryONData(“load”)

(a)

queryONData(“load”)

loadON

sd OM_QC

analyzeOverload(:ASA.loadQC)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_QC}

(b)

ref
queryQCData(“load”)

queryQCData(“load”)

loadQC

Fig. 6. SDs OM_ON and OM_QC (overload monitoring).

sd queryONData(dataType)

:ProvController
{node = SEV_ON}

:TC
{node = TC_YOW1}

:TC
{node = TC_YOW2}

:TC
{node = TC_YOW3}

:TC
{node = TC_YYZ1}

:TC
{node = TC_YYZ2}

par

query(dataType)

YOW1
query(dataType)

query(dataType)

query(dataType)

query(dataType)

YOW2

YOW3

YYZ1

YYZ2

queryONData(dataType)

«HRTaction»
{RTduration<(500,'ms'),
RTcriticality=0.05}

HRTC1

Fig. 7. SD queryONData(dataType).

634 V. Garousi / Information and Software Technology 52 (2010) 625–640
5.2. Network and hardware configurations

To manage the deployment complexity of this SUT, six PCs were
used to play the roles of the 17 nodes in the SUT: SEV_CA1 (one PC),
SEV_CA2 (one PC), SEV_ON (one PC), SEV_QC (one PC), TC_YOWx and
TC_YYZx (one PC) and TC_YMXx and TC_YQBx (one PC). TC_YOWx
denotes all the three TCs in the city of Ottawa: TC_YOW1, TC_YOW2
and TC_YOW3. The decision of deploying all TCs from each province
on one PC was made to simplify the system’s deployment,
controllability as well as its observability (less nodes to control
and monitor at runtime).

The detailed network and hardware configurations of the ma-
chines used in our case study are available in [19]. The network
cards of SEV_CA1 and SEV_CA2 were wireless (IEEE 802.11 g) with
a speed of 19 Mbps. All others network cards were wired (Ether-
net) and had a speed of 100 Mbps.
5.3. Applying STPE

The results of applying the STPE process to our case study SUT
are discussed in this section. We continued applying STPE itera-
tions until all chances of RT violations were eliminated. As dis-
cussed next, we found out that after three STPE iterations, we
were able to eliminate all RT violations. For each of the three iter-
ations, the three phases of STPE (performance measurement, eval-
uation and tuning) are presented next.
5.3.1. First Iteration
5.3.1.1. Performance measurement. Similar to other safety-critical
control systems, SCAPS was designed such that its behavior is close
to deterministic with respect to time (i.e., it is a closed systems).
Since the system did not have a stochastic behavior, overlapping
stress test requirements generated by TSSTM [7] was not hard to
enforce repeatedly.

To measure and evaluate performance using STPE, we ran the
test case corresponding to the generated stress test requirement
for a large number of times (i.e., 500). Violations in one con-
straint (HRTC4) were observed in the first iteration. To show an
example of a SRT constraint and that it was not violated, we also dis-
cuss the durations of messages bounded by SRTC1 in our experiment.

The execution time distributions of durations of HRTC4 and
SRTC1 across all 500 runs for the three iterations of STPE are de-
picted in Fig. 9. The inter-quartile range boxes are shown. There
are a few outliers in each data set. The x-axis is the iteration num-
ber and the y-axis is the measured time duration of HRTC4 and
SRTC1.
5.3.1.2. Performance evaluation. Recall from Section 4.2 that, to
evaluate performance, we need to compare stress test results
(measured durations of RT constraints) with RT constraint
deadlines specified in the UML models. According to Fig. 8, the
RT deadline of HRTC4 and SRTC1 are 1500 and 800 ms, respectively
(illustrated as horizontal bold lines in Fig. 9).

:ProvController
{node = SEV_QC}

sd OC

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

par

[overloadIn(:ASA:loadON)]

[else]

alt

loadON=balanceLoadON(:ASA.loadON, :ASA.loadQC)

setNewLoadPolicy(loadON)

[overloadIn(:ASA:loadQC)]

[else]

alt

loadQC=balanceLoadQC(:ASA.loadON, :ASA.loadQC)

setNewLoadPolicy(loadQC)

keepOldLoadPolicy()

keepOldLoadPolicy()

«SRTaction»
{RTduration<(1000,'ms'),
RTmissProb=0.9}

«HRTaction»
{RTduration<(1500,'ms'),
RTcriticality=0.95}

SRTC1

HRTC4

:ASA
{node = SEV_CA2}

backupLoads(loadON, loadQC)

ok

Fig. 8. SD OC (overload control).

HRTC4 - Iteration 3HRTC4 - Iteration 2HRTC4 - Iteration 1

1600

1550

1500

1450

1400

T
im

e
(m

s)

Boxplot of HRTC4 values in iterations 1...3

SRTC1 - Iteration 3SRTC1 - Iteration 2SRTC1 - Iteration 1

850

800

750

700

650

600

T
im

e
(m

s)

Boxplot of SRTC1 values in iterations 1...3

Fig. 9. Execution time distributions of messages bounded by HRTC4 and SRTC1 across three iterations of STPE.

V. Garousi / Information and Software Technology 52 (2010) 625–640 635
Recall from Section 4.2 that if any of the measured HRT con-
straint durations are greater than its specified deadline, a HRT vio-
lation has occurred. For iteration 1, we can clearly see in Fig. 9 that
most of the 500 measured HRTC4 durations are greater than its
deadline (1500 ms). More precisely, by analyzing the distribution
data, we found out that 84.2% (421/500) of the measured durations
violated HRTC4. Thus, the outcome of the performance evaluation
in iteration 1 is that a HRT violation has occurred. The STPE process
thus suggests performing performance tuning.

For each SRT constraint, the ratio of the number of missed in-
stances of the constraint over total number of runs is calculated.
According to the data shown in Fig. 9, SRTC1 is violated in 14.8%
(74/500) of executions. Since this ratio is not greater than the max-
imum miss probability (missProbability) of the constraint (i.e., 90%),
no SRT violation has occurred.
5.3.1.3. Performance tuning. Violations in one constraint (HRTC4)
were observed in the first iteration. Thus, we need to follow the
performance tuning decision-support (VBPE) to choose the most
cost-effective tuning alternative. We estimate the cost associated
with each of the three possible tuning alternatives: REF, RPR, and
UNR. cost(REF) does not seem to be very high, since the design of
SCAPS is well documented and it is not very complex to be refac-
tored. Also, the test results of the first iteration help us in finding
the root cause of poor performance, i.e., the nation-wide network
cannot transmit on time the large amount of traffic entailed by
message backupLoads constrained by HRTC4 in Fig. 8. On the other
hand, cost(RPR) and cost(UNR) seem to be quite high. We assume
that the deadline values are enforced by the business logic of the
system (e.g., violating the set deadline can result in power black-
outs) and thus are not negotiable, i.e., option RPR is not feasible

:ProvController
{node = SEV_QC}

sd OC

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

par

[overloadIn(:ASA:loadON)]

[else]

alt

loadON=balanceLoadON(:ASA.loadON, :ASA.loadQC)

setNewLoadPolicy(loadON)

[overloadIn(:ASA:loadQC)]

[else]

alt

loadQC=balanceLoadQC(:ASA.loadON, :ASA.loadQC)

setNewLoadPolicy(loadQC)

keepOldLoadPolicy()

keepOldLoadPolicy()

«SRTaction»
{RTduration<(1000,'ms'),
RTmissProb=0.9}

«HRTaction»
{RTduration<(1500,'ms'),
RTcriticality=0.95}

SRTC1

HRTC4

:ASA
{node = SEV_CA2}

backupLoadON(loadON)

ok

[overloadIn(:ASA:loadON)]alt

backupLoadQC(loadQC)

ok

[overloadIn(:ASA:loadQC)]alt

Fig. 10. Modified SD OC (overload control) after refactoring.

636 V. Garousi / Information and Software Technology 52 (2010) 625–640
at all. UNR is also quite expensive as more modern network hard-
ware has to be installed.

We thus decide to follow the architecture/design refactoring op-
tion. By using the guidelines provided by STPE (test results), we
carefully inspect the design to find candidate design entities for
refactoring. The message backupLoads constrained by HRTC4 in
Fig. 8 is the root cause of failure, so we analyzed to see if this mes-
sage can be handled differently, and the answer was yes. Since this
message has two parameters: loadON and loadQC, we can send
them separately in two different messages instead of one, and
can thus reduce the chances of stressing the network in on huge
message traffic. Also, according to SD OC (Fig. 8), the message back-
upLoads was triggered even if none of the load parameters were
updated in the SD (i.e., unnecessary duplicate backup of the old
data). We thus refactored the SD by including UML alternative
(if) constructs to only send the load data to the backup server only
if needed. This would hopefully reduce the chances of stress traffic.
The modified SD OC is shown in Fig. 10.

To synchronize model with the code after code refactoring, the
IBM Rational Software Architect (RSA) was used which was able to
successfully do a 100% synchronization (i.e., there was no need for
manual changes).

5.3.2. Second Iteration (after refactoring design)
5.3.2.1. Performance measurement. Similar to the first STPE itera-
tion, we again used our stress test methodology to generate the
stress test requirement which maximizes the chances of revealing
RT faults.

We ran the test case corresponding to the stress test require-
ment generated by the test methodology for 500 times. The execu-
tion time distribution of messages bound of HRTC4 and SRTC1

across all 500 runs for the second iteration is depicted in Fig. 9.
5.3.2.2. Performance evaluation. To evaluate performance in the
second iteration, we again compared the measured durations of
HRTC4 with its RT deadline (1500 ms). We can clearly see in
Fig. 9 that still some of the measured HRTC4 durations are greater
than its deadline (1500 ms). More precisely, by analyzing the dis-
tribution data, we found out that 12.4% of the measured durations
were greater than HRTC4’s deadline. Thus, the outcome of the per-
formance evaluation in iteration 2 is that HRT violations still occur
after the performance tuning step of iteration 1, but the frequency
of RT violations has decreased. We found out that our refactoring
activity in iteration 1 was helpful, but was not enough to eliminate
the RT failure. The STPE process thus again suggests performance
tuning.
5.3.2.3. Performance tuning. Violations in HRTC4 are still observed.
Thus, we need to follow the performance tuning decision-support
(VBPE) to choose the most cost-effective tuning alternative. We
estimate the cost associated with each of the three possible tuning
alternatives (REF, RPR, and UNR). To consider REF, we looked for
candidate source code/architecture entities for refactoring, but
we were not able to find any entity for refactoring such that it re-
lates to the root cause of the failure, i.e., messages backupLoadON
and backupLoadQC.

The test results of the second iteration suggest that the network
connecting nodes SEV_CA1 and SEV_CA2 cannot transmit on time
the large amount of traffic entailed by the above two messages.
In upgrading resources for this particular network in SCAPS, we
can have several alternatives e.g., replacing the wireless network
card (speed: 19 Mbps) of SEV_CA1 or SEV_CA2 with wired network
cards (speed: 100 Mbps). cost(UNR) would equal to the cost of such
upgrades.

HRTC4 - Iteration 3HRTC4 - Iteration 2HRTC4 - Iteration 1

1600

1550

1500

1450

1400

T
im

e
(m

s)

Boxplot of HRTC4 values in iterations 1...3

Over-Engineering

Under-Engineering

Buffer zone

Fig. 11. Using stress test results to analyze instances of under- and over-engineering.

V. Garousi / Information and Software Technology 52 (2010) 625–640 637
Similar to iteration 1, we assume that the deadline values are
still hardly enforced by the business logic of the system and thus
are not negotiable. Thus option RPR is not feasible at all.

Therefore, the VBPE heuristic suggests that UNR is the most
cost-effective tuning alternative in this iteration. We chose to
apply an upgrade on SEV_CA1 as there was no preference to choose
SEV_CA1 over SEV_CA2 or vice versa. We acknowledge that our cri-
teria to select a network component to upgrade at this stage is not
systematic, and further decision-support mechanisms on this
selection problem is necessary in future works, which will possibly
need root-cause analysis as to determine which network compo-
nent needs upgrading first.

There was no update to UML models or the source code needed
in this iteration as only the hardware setting was changed.
5.3.3. Third Iteration (after upgrading network resources)
5.3.3.1. Performance measurement. We again executed the test case
generated by our test methodology based on the latest UML mod-
els of the SUT. The execution time distributions of durations of
HRTC4 and SRTC1 across all 500 runs for the third iteration are de-
picted in Fig. 9.
5.3.3.2. Performance evaluation. Similar to iterations 1 and 2, SRTC1

is not violated, although interestingly its duration has decreased.
This can be explained since the system has a wider overall
bandwidth to transmit data and thus the latency of message and
data transmission is reduced. Unlike iterations 1 and 2, HRTC4 is
now not violated anymore. This means a success for STPE in
that it helped us fix the RT failures in HRTC4. The outcome of
the performance evaluation in iteration 3 is that no violation of
HRTC4 has occurred, and thus, no more performance tuning is
needed.
5.3.4. Outcome
Note that we performed similar performance measurement and

evaluation steps on the other four RT constraints in SCAPS (i.e.,
HRTC1, HRTC2, HRTC3, and SRTC2) which due to space constraints
are not reported in this article. Based on the performance tuning
in iterations 1 and 2, the STPE process demonstrated that the other
four RT constraints are also not violated in the sense that none of
them were violated. We were thus able to make the SUT reliable
after three STPE iterations.
5.4. Under-, over-, and right-engineering

It is clear that the approach presented so far in this paper is
aimed at catching instances of under-engineering [39], that is,
when the software or network resources are unable to deliver
the required performance requirements. However, the general ap-
proach could also be applied to detect and correct instances of
over-engineering as well.

Let us illustrate the approach using the stress test results for RT
constraint HRTC4 (discussed above). Fig. 11 visualizes the idea of
under- and over-engineering analysis on this RT constraint. As dis-
cussed in Section 5.3, for meeting this RT constraint in the first iter-
ation of STPE, the SUT was under-engineered, i.e., it did not have
the capability to satisfy HRTC4 in all test executions. To solve the
problem, two iterations of STPE were conducted and, in the 3rd
iteration, the system was able to meet the HRTC4 constraint with
a relatively small buffer (safety) zone. The worst-case execution
time for the message bounded by this constraint in the 3rd itera-
tion was 1470 ms which is only 30 ms below the 1500 ms con-
straint deadline. In building real-world safety-critical systems,
engineers always allocate a buffer zone above the worst-case exe-
cution time to ensure that violations will never occur [1].

There is no systematic formula to calculate the amount of buffer
zone in systems performance engineering in the literature. In real
world, the decision stays at the discretion of the development team
in consultations with domain experts on what ratio of the con-
straint deadline should be allocated for the buffer zone. Once a buf-
fer zone interval is determined under the constraint deadline, to
build the system in a cost effective manner, the system resources
can be slightly revised so that the distance between the worst-case
execution times for all messages are as close as possible to their
buffer zone lines.

For the case of our example in Fig. 11, let us assume that the buf-
fer zone size has been decided to be 15 ms. In this case, the worst-
case execution time (1465 ms) for the message bounded by HRTC4 is
quite close to the buffer zone already and thus, qualitatively speak-
ing, the extent of over-engineering is not major in this case.

In the presence of multiple RT constraints, the analysis of un-
der- and over-engineering is unfortunately not as straightforward
as it might seem. Referring to Fig. 9 and Section 5.3, recall that
SRTC1 was not violated even in iteration 1, with the lowest amount
of system resources. Thus, adding more resources was only needed
to satisfy HRTC4, while those extra resources can be considered
over-engineering with respect to SRTC1, bringing its execution
times more and more under the deadline value.

638 V. Garousi / Information and Software Technology 52 (2010) 625–640
While the overall goal of performance engineering is to make
sure all RT constraints are met, however, to conduct an effective
VBPE, the issues of under- and over-engineering (necessity and suf-
ficiency) should be looked into carefully by shifting system’s re-
sources from the modules or subsystems which have been over-
engineered to the under-engineered ones.

For example, since SRTC1 was satisfied in iteration 2 by a rela-
tively large buffer zone, the corresponding over-engineering could
be addressed by moving the high-speed network resources to
where they were needed (i.e., the network infrastructure which af-
fect the duration of HRTC4). Thus, it seems that the systematic and
system-wide VBPE would require another decision-support mod-
ule to enable developers achieve right-engineering by moving the
resources from over-engineered areas of the system to the un-
der-engineered ones. This would need to analyze all the various
parameters and factors in the given problem. Complex coupling
and inter-connections among system modules, and their impact
on the runtime durations of RT constraints can make this a chal-
lenging optimization problem, which we leave to future work.

This discussion also seems to relate to the recent cloud and util-
ity computing paradigms [40]. In these paradigms, resources con-
sumers ‘‘consume resources as a service and pay only for resources
that they use” [40]. Resources are shifted from consumers with less
demand to those with higher demands dynamically and in an agile
fashion. However, most cloud and utility computing services so far
have been employed for enterprise IT systems (such as conven-
tional web services and application), and using such paradigms
for safety-critical and DRTS’s have not been discussed in the liter-
ature so far. Due to the nature of safety-critical systems, those sys-
tems have often their own dedicated resources which are not
shared by other system [1].

Further, note that since the entire approach is towards right-
engineering, gradual less-expensive fixes should be tried first,
and if they are not enough to solve a given RT violation problem,
we move to more expensive fixes. This was the case in iteration
2 as the fix (refactoring) in iteration 1 was not enough to solve
the problem with HRTC4 violation. Thus, the time spent on refactor-
ing the code (in iteration 1) was not actually wasted. It provided to
us the insight that refactoring by itself is not enough to solve the
problem, and further fixation (bringing additional cost) is needed.
These types of gradual steps, actual experimentations and analyzes
are usually needed to justify the need for larger costs in real
projects.
6. Evaluation of the methodology and open issues

6.1. Evaluation

Since the STPE methodology is a customization of SPE paradigm
[14], quantitative evaluation of STPE would require comparing its
efficiency, effectiveness, the results, and the guidelines it produces
to other SPE-based methodologies. However, to our knowledge,
there exists no SPE-based methodology which is specific to DRTS’s
and is using the information from stress testing.

Thus, we compare STPE to general measurement-based SPE ap-
proaches [21]. Recall from Section 2 that the SPE literature is clas-
sified into two broad categories: (1) model-based analysis (e.g.,
using Layered Queuing Networks) and (2) monitoring (measure-
ment)-based approaches. As we discussed earlier, the current tech-
nique falls in the second category.

According to a recent major SPE road-map paper [21], the state
of industrial performance measurement and testing techniques is
captured in a series of 14 articles by Scott Barber [41], and previ-
ously in a report by the Software Engineering Institute [42]. By crit-
ically comparing STPE with this series of articles and techniques
[41], we can summarize the advantages and novelty of STPE (com-
pared to approaches currently employed in industry) as follows.

6.1.1. Performance measurement
Although stress test generation is not a contribution of the cur-

rent paper, but three of our previous works [7–9], our stress testing
approach has been recognized as one of the two most notable test-
ing technique in the context of SPE by three pioneer SPE research-
ers, as reported in [21]. Most industrial SPE approaches rely on the
so-called ‘‘baseline/benchmark tests” (see part 2 of [41]) which are
less systematic, less predictable and less rigorous than our ap-
proach. Most of the papers on the topic suggest using load tests
based on expected operational profile of the system in the field
[13]. However, for DRTS’s for example, performance some serious
failures as shown by our experiments can occur only under
worst-case test scenarios (Section 4.1), not addressed by other
researchers/practitioners.

6.1.2. Performance evaluation
The series of articles in [41] focuses the application of SPE on

enterprise applications (e.g., web-based systems). Thus, consider-
ations of hard and soft RT constraints as performance requirements
are not discussed in [41]. For performance evaluation, SPE practi-
tioners rather use the less-formal notion of ‘‘user expectations”,
by asking questions such as: ‘‘Are user expectations being met at var-
ious user loads?”, and ‘‘Do all components perform as expected under
load?” [41]. As an industrial software performance engineer, Scott
Barber [41] mentions that, as per his experience, most users con-
sider response time under 3 s as ‘‘no delay or fast”, 3–5 s as typical
performance, 5–8 s as slow, 8–15 s as frustrating, and more than
15 s response time as unacceptable. It is obvious that the above
informal performance evaluation approach cannot be used to build
safety-critical DRTS’s. The novelty of STPE is that, instead of rule-
of-thumb ‘‘user expectations”, it proposes a formal systematic ap-
proach to model performance requirements in the UML models of
the SUT (Section 3.1) supporting both hard and soft RT constraints.
Our technique can even be used as a more rigorous approach (than
what is currently used) for enterprise applications (e.g., web-based
systems) since soft RT constraints are being taken into account in
more rigorous development of such systems.

6.1.3. Performance tuning
For tuning purposes, SPE practitioners aim at answering similar

questions to those we raised in this paper, e.g., ‘‘What components
need to be or can be tuned?”, ‘‘Is the network adequate?” [41,42]. Bar-
ber reports that practitioners aim at assessing ‘‘server hardware
adequacy”, analysis of bottlenecks, and network ‘‘cluster manage-
ment”. However, the report [41] does not seem to provide a sys-
tematic decision-support approach for cost-effective performance
tuning, in which the cost of each tuning alternative is compared
to the overall benefit to be gained from performance enhancement.
Our STEP approach at least proposes the idea of such a decision-
support approach, raises the main challenges in this regards (Sec-
tion 4.4) and provides partial solutions to such challenges.

From the perspective of right-engineering and efficiency of per-
formance-related design/deployment decisions, we can compare
STPE to a related requirements engineering approach [39], and re-
lated Agile development (lean software engineering) approaches
[43,44].

The work in [39] is by three engineers from Praxis Critical Sys-
tems, a UK-based firm which develops safety- critical systems for
railway, aerospace, defense, and nuclear domains. The authors use
strong (what they call ‘‘rich”) traceability features in requirements
engineering of such systems. Their experience shows that one
advantage of rich traceability is that the explicit justification makes
it easier to detect over- or under-engineering. Any over-engineering

V. Garousi / Information and Software Technology 52 (2010) 625–640 639
manifests itself, e.g., quantitative specifications that are more strin-
gent than required, such as unnecessarily quick performance. This
seems to align with our context, in which the STPE suggests to
weaken system performance requirements (RT constraints) as
seemed appropriate by the stakeholders. In other words, if a strin-
gent RT constraint of 1 s is not necessary for a task, and 3 s would
also be acceptable, the design can be relaxed accordingly. The
authors [39] further mention that any under-engineering means
that it is not possible to construct a valid justification (in the imple-
mentation level) for at least one statement of the requirements. The
paper reports successful results from applying the approach to the
development of a safety-critical protection system [39]. This is also
inline with our approach in that if the worst-case execution time of
a RT task is below its deadline value, under-engineering has
occurred.

Right-engineering of software performance requirements has
also been the focus of many engineers in the Agile community la-
tely [43,44]. The popular lean software development approach [44]
advocates tuning the software performance to the most realistic le-
vel by avoiding spending more effort and resource on the part of
the system which is unnecessarily.

In a recent talk by Stockdale in an Agile conference, the
speakers talked about an Agile approach toward performance
tuning (the talk video is available online at [43]).The speaker
compares and differentiates between the performance tuning
needs of various applications domains (safety-critical, banking,
and enterprise). He called performance tuning to be the art and
science of ‘‘optimizing use of finite resources”. He presents vari-
ous Agile-based performance patterns in various categories:
code-based patterns (e.g., using code profilers), architecture-
based patterns (e.g., using software-level caches), design-based
(e.g., putting expensive requests in queue). At the end, the speak-
er concludes that although ‘‘hardware doubles every 18 months”,
the software that we develop need to be performance tuned to
best utilize the hardware resources. Interestingly, one of the three
guidelines we have looked into (refactoring architecture or
design) closely matches with the above Agile approach toward
performance tuning [43].

6.2. Open issues

Overall, the current STPE approach and the experience report
provided some partial solutions to the sophistical challenge of
applying SPE to DRTS’s. The paper also brought forward the
following list of open questions to the research community in
the context of decision-support mechanisms in performance tun-
ing of DRTS’s, which would not have been possible without actual
experimentations:

1. The current version of the STPE process is currently providing a
rank-based decision-making heuristic to choose the best perfor-
mance tuning guideline to apply. The measurements are con-
ducted on a mixed qualitative/quantitative manner. More
development of the heuristic based on the software-engineer-
ing decision-support body of knowledge [33] is necessary.

2. To simplify the performance tuning stage and also the analysis
of improvements, the current version of the STPE applies only
one performance tuning activity at a time (in each iteration).
Extension of the approach to conduct multiple performance
tuning fixes in each iteration are needed. Recall that existence
of at least one RT violation in a SUT necessitates the need for
an STPE iteration.

3. Recall from Section 4.4 that the rule-of-thumb in the SPE state-
of the-art and -practice [20] has been to follow the divide-an-
conquer approach, in which each RT violation (or a few which
are under the same system module) is (are) handled separately.
Focusing on each RT violation, the current version of the STPE
and the tuning heuristic are used to find the most cost-effective
option and then to apply it. Since the system/problem parame-
ters are used to solve one RT violation (or few similar ones) at a
time, thus the solution strategy is greedy. Solutions from this
strategy are usually not expected to be the most optimal ones
overall when all the RT violations are considered in a holistic
approach using global optimization techniques. Thus, global
optimization techniques to develop long-term-looking/holistic
approaches in STPE are needed in future works. We saw a real
example of the above pitfall in our experiment.
Acknowledgements

This work was supported by the Discovery Grant No. 341511-07
from the Natural Sciences and Engineering Research Council of
Canada (NSERC) and also by the Alberta Ingenuity New Faculty
Award No. 200600673. The author would like to thank James Mill-
er for his helpful comments and suggestions on the early drafts of
this article.

Appendix A. List of abbreviations
ASA
 Automatic System Agent

CFP
 Control Flow Path

DRTS
 Distributed and REAL-RIME SYSTEM

GASTM
 Genetic Algorithm-Based Stress Test

Methodology

HRT
 Hard Real-Time

OM
 Overload Monitoring

REF
 Tune/Re-Factor Architecture or Design

RPR
 Revise (Weaken) System Performance

Requirements

RT
 Real-Time

SCADA
 Supervisory Control and Data Acquisition System

SCAPS
 A SCAda-Based Power System

SD
 Sequence Diagram

SPE
 Software Performance Engineering

SRT
 Soft Real-Time

STPE
 Stress-test Performance Engineering

SUT
 System Under Test

TC
 Tele-Control Unit

TSSTM
 Time-Shifting Stress Test Methodology

UML-SPT
 UML Profile for Schedulability, Performance, and

Time

UNR
 Upgrade Network Resources

VBPE
 Value-Based Performance Engineering

WNSTM
 Wait-Notify Stress Test Methodology
References

[1] J.J.P. Tsai, Y. Bi, S.J.H. Yang, R.A.W. Smith, Distributed Real-Time Systems:
Monitoring, Visualization, Debugging, and Analysis, John Wiley and Sons,
1996.

[2] E. Weyuker, F.I. Vokolos, Experience with performance testing of software
systems: issues, an approach and case study, IEEE Transactions on Software
Engineering 26 (12) (2000) 1147–1156.

[3] R. Kuhn, Sources of failure in the public switched telephone network, IEEE
Computer 30 (4) (1997) 31–36.

[4] E.-K. Chan, H. Ebenhoh, The implementation and evolution of a SCADA system
for a large distribution network, IEEE Transactions on Power Systems 7 (1)
(1992) 320–326.

[5] Y. Ebata, H. Hayashi, Y. Hasegawa, S. Komatsu, K. Suzuki, Development of the
intranet-based SCADA for power system, in: Proceeding of IEEE Power
Engineering Society Winter Meeting, 2000, pp. 1656–1661.

[6] M. Hirsh and D. Klaidman, Blackout 2003: What Went Wrong, Newsweek, 25
August, 2003.

640 V. Garousi / Information and Software Technology 52 (2010) 625–640
[7] V. Garousi, L. Briand, Y. Labiche, Traffic-aware stress testing of distributed
systems based on UML models, in: Proceedings of International Conference on
Software Engineering, 2006. pp. 391–400.

[8] V. Garousi, Traffic-aware stress testing of distributed real-time systems based
on UML models in the presence of time uncertainty, in: Proceedings of IEEE
International Conference on Software Testing, Verification and Validation,
2008, pp. 92–101.

[9] V. Garousi, L. Briand, Y. Labiche, Traffic-aware stress testing of distributed real-
time systems based on UML models using genetic algorithms, Elsevier Journal
of Systems and Software 81 (2) (2008) 161–185 (Special Issue on Model-Based
Software Testing).

[10] Object Management Group (OMG), UML 2.1.1 Superstructure specification,
2007.

[11] V. Garousi, Empirical analysis of a genetic algorithm-based stress test
technique for distributed real-time systems, in: Proceedings of the Genetic
and Evolutionary Computation Conference, Search-Based Software
Engineering (SBSE) track, 2008, pp. 1743–1750.

[12] V. Garousi, A genetic algorithm-based stress test requirements generator tool
and its empirical evaluation, IEEE Transactions on Software Engineering,
Special Issue on Search-Based Optimization, in press, doi:10.1109/TSE.2010.5.

[13] M.S. Gittens, The Extended Operational Profile Model for Usage-Based
Software Testing, Doctoral thesis, University of Western Ontario, 2004.

[14] C.U. Smith, Performance Engineering of Software Systems, Addison-Wesley,
1990.

[15] C.U. Smith, L.G. Williams, Software performance engineering, in: Encyclopedia
of Software Engineering, second ed., John Wiley and Sons, 2002.

[16] A. Mos, J. Murphy, Performance management in component-oriented systems
using a model driven architecture: the SPL trade approach, in: Proceedings of
International Enterprise Distributed Object Computing Conference, 2002, pp.
227–237.

[17] G. Franks, A. Hubbard, S. Majumdar, J.E. Neilson, D.C. Petriu, J.A. Rolia, C.M.
Woodside, A toolset for performance engineering and software design of
client-server systems, Journal of Performance Evaluation vol. 24 (1995) 117–
136.

[18] G. Franks, S. Majumdar, J. Neilsony, D. Petriu, J. Rolia, M. Woodside,
Performance analysis of distributed server systems, in: Proceedings of
International Conference on Software Quality, 1996, pp. 15–26.

[19] V. Garousi, Iterative stress-test performance engineering of distributed real-
time systems, Technical report, University of Calgary, SERG-2007-03, 2007,
<http://www.enel.ucalgary.ca/~vgarousi/downloads/papers/tr/SERG-2007-
03.pdf>.

[20] C.U. Smith, L.G. Williams, Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software, Addison-Wesley Professional, 2001.

[21] M. Woodside, G. Franks, D.C. Petriu, The future of software performance
engineering, in: International Conference on Software Engineering, Future of
Software Engineering, 2007, pp. 171–187.

[22] J.A. Rolia, K.C. Sevcik, The method of layers, IEEE Transactions on Software
Engineering 21 (8) (1995) 689–700.

[23] C.U. Smith, L.G. Williams, Will your new distributed system require
performance adjustments?, 2007, <http://www.perfeng.com/distrmgt.htm>.
(accessed: May).

[24] B. Douglass, Doing Hard Time, Developing Real-Time Systems with UML
Objects, Frameworks, and Patterns, Addison-Wesley, 1999.
[25] Object Management Group (OMG), UML Profile for Schedulability,
Performance, and Time (v1. 1), 2005.

[26] Object Management Group (OMG), UML profile for modeling and analysis of
real-time and embedded systems (MARTE), version 2.0 beta, 2008, <http://
www.omgmarte.org/Documents/Specifications/08-06-09.pdf>. (accessed
January 2010).

[27] V. Garousi, Measuring the cost effectiveness of stress test orders for
distributed real-time systems based on fault criticalities, Technical report,
University of Calgary, SERG-2007-01, 2007, <http://www.enel.ucalgary.ca/
~vgarousi/downloads/papers/tr/SERG-2007-01.pdf>.

[28] H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with
UML, Addison-Wesley, 2000.

[29] B. Korel, Automated software test data generation, IEEE Transactions on
Software Engineering 16 (8) (1990) 870–879.

[30] M.H. Willebeek-LeMair, A.P. Reeves, Strategies for dynamic load balancing on
highly parallel computers, EEE Transactions on Parallel and Distributed
Systems 4 (6) (1993) 979–993.

[31] P. Maheshwari, T.N. Kien, A. Erradi, QoS-based message-oriented middleware
for web services, in: Proceedings of Workshop on Web Information Systems,
2004, pp. 241–251.

[32] M. Motsko, T. Oberndorf, E.-J. Pairo, J. Smith, Rules of Thumb for the Use of
COTS Products, Technical report, Carnegie Mellon University, CMU/SEI-2002-
TR-032, 2002.

[33] G. Ruhe, Software engineering decision support: methodology and
applications, in: Tonfoni, Jain (Ed.), Innovations in Decision Support Systems,
International Series on Advanced Intelligence, vol. 3, 2003, pp. 143–174.

[34] B.S.A. Aurum, B.W. Boehm, H. Erdogmus, P. Grünbacher, Value-Based Software
Engineering, Springer Verlag, 2005.

[35] R. Ramler, P. Grünbacher, S. Biffl, Value-based management of software testing,
in: Value-Based Software Engineering, Springer Verlag, 2005, pp. 225–244.

[36] R.S. Arnold, Software Change Impact Analysis, IEEE Computer Society Press,
1996.

[37] A. Daneels, W. Salter, What is SCADA?, in: Proceeding of International
Conference on Accelerator and Large Experimental Physics Control Systems,
1999, pp. 39–343.

[38] V. Garousi, L. Briand, Y. Labiche, Traffic-Aware Stress Testing of Distributed
Systems Based on UML Models, Technical report SCE-05-13, Carleton
University, 2005, <http://www.sce.carleton.ca/squall/pubs/tech_report/
TR_SCE-05-13.pdf>.

[39] J. Hammond, R. Rawlings, A. Hall, Will it work?, in: Proceedings of IEEE
International Symposium on Requirements Engineering, 2001, pp. 102–109.

[40] B. Hayes, Cloud computing, Communications of the ACM 51 (7) (2008) 9–11.
[41] S. Barber, Beyond Performance Testing, parts 1–14, IBM developer works,

rational technical library, 2004, <www-128.ibm.com/developerworks/
rational/library/4169.html>. (accessed: Jan. 2010).

[42] M.H. Klein, State of the Practice Report: Problems in the Practice of
Performance Engineering, Technical report, Software Engineering Institute,
CMU/SEI-95-TR-020, 1996.

[43] M. Stockdale, Performance Tuning: an Agile Approach, in: Agile Vancouver
Conference Much Ado About Agile IV, talk video, 2009, <http://
www.vimeo.com/8091960>.

[44] M. Poppendieck, T. Poppendieck, Lean Software Development: An Agile
Toolkit, Addison-Wesley Professional, 2003.

http://dx.doi.org/10.1109/TSE.2010.5
http://www.enel.ucalgary.ca/~vgarousi/downloads/papers/tr/SERG-2007-03.pdf
http://www.enel.ucalgary.ca/~vgarousi/downloads/papers/tr/SERG-2007-03.pdf
http://www.perfeng.com/distrmgt.htm
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf
http://www.enel.ucalgary.ca/~vgarousi/downloads/papers/tr/SERG-2007-01.pdf
http://www.enel.ucalgary.ca/~vgarousi/downloads/papers/tr/SERG-2007-01.pdf
http://www.sce.carleton.ca/squall/pubs/tech_report/TR_SCE-05-13.pdf
http://www.sce.carleton.ca/squall/pubs/tech_report/TR_SCE-05-13.pdf
http://www-128.ibm.com/developerworks/rational/library/4169.html
http://www-128.ibm.com/developerworks/rational/library/4169.html
http://www.vimeo.com/8091960
http://www.vimeo.com/8091960

	Experience and challenges with UML-driven performance engineering of a Distributed Real-Time System
	Introduction
	Related work
	Background
	An overview of Real-Time constraints
	An overview of our stress test methodology

	Stress test performance engineering
	Performance measurement
	Performance evaluation
	Performance tuning
	Decision-support for cost-effective performance tuning
	A decision-making heuristic
	Further decisions need to be made
	Single vs. multiple fixes in each iteration
	Iteration backtracking
	Greedy vs. long-term-looking/holistic approach

	Synchronize model and code

	Experiment
	System under analysis
	Network and hardware configurations
	Applying STPE
	First Iteration
	Performance measurement
	Performance evaluation
	Performance tuning

	Second Iteration (after refactoring design)
	Performance measurement
	Performance evaluation
	Performance tuning

	Third Iteration (after upgrading network resources)
	Performance measurement
	Performance evaluation

	Outcome

	Under-, over-, and right-engineering

	Evaluation of the methodology and open issues
	Evaluation
	Performance measurement
	Performance evaluation
	Performance tuning

	Open issues

	Acknowledgements
	List of abbreviations
	References

