Solutions Chapter 5

SECTION 5.1

5.1.4

Throughout this exercise we will use the fact that strong duality holds for convex quadratic

problems with linear constraints (cf. Section 3.4).

The problem of finding the minimum distance from the origin to a line is written as
1
min —||x||2
2Nzl
subject to Ax = b

where A is a 2 x 3 matrix with full rank, and b € %2. Let f* be the optimal value and consider

the dual function
1
q(\) = min{§||av|2 + N(Ax — b)} .

Let V* be the supremum over all distances of the origin from planes that contain the line
{z | Az = b}. Clearly, we have V* < f*, since the distance to the line {x | Az = b} cannot be

smaller that the distance to the plane that contains the line.

We now note that any plane of the form {z | p’ Az = p’b}, where p € R2, contains the line
{z | Az = b}, so we have for all p € R2,

1
V(p) = min §||:r||2 < V.

p' Az=p’zx

On the other hand, by duality in the minimization of the preceding equation, we have
1
U7 =min{lel? + 10 As o)} V). VpeRyeR
Combining the preceding relations, it follows that

sup g(\) =supU(p,7) <supU(p,1) <supV(p) < V* < f*.
A DY p P

Since by duality in the original problem, we have sup, g(A) = f*, it follows that equality holds

throughout above. Hence V* = f*, which was to be proved.



5.1.7

(a) Let
{ 1 if the ith object is included in the subset,
T; =

0 otherwise.

Then the total weight and value of objects included is ), wiz; and ), vix;, respectively, and the

problem can be written as
n
maximize f(z)= E ViT;
=1

subject to Zwixi <A, z€{0,1}, i=1,...,n.
i=1
(b) Let f(z) = —f(z) and consider the equivalent problem of minimizing f(z) subject to the

constraints given above. Then

Lz, p) = —zn:vixi +u (i wiT; — A) ,
i=1 i=1

and

q(p) = inf i —vi)Ti — pA .
q(n) xielr{lm{zww vi)w u}

i=1
Note that the minimization above is a separable problem, and the infimum is attained at
0 if > v;/w;,
Fi(p) = 1 if < wv;/wi,
Oor1l if u=wv/w.

Without loss of generality, assume that the objects are ordered such that ;’)—11 < s <. < By
When p € (

otherwise, and

v

=l U—J} for some j with 1 < j < m, then Z;(u) = 1 for all i > j and Z;(u) = 0

Wj—17 Wy

n n
00 = (Y- a) -3
=7 1=y
n

From this relation, we see that, as p increases, the slope of G(p) decreases from )" ; w; — A to
—A. Therefore, if >, w; — A > 0, ¢(p) is maximized when the slope of the curve goes from

’L)i*

where 7* is

positive to negative. In this case, the dual optimal value ¢* is attained at p* = _—,

the largest 7 such that
wi + ... +wy, > A

If ", w; — A <0, then the dual optimal value ¢* is attained at u* = 0.
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(¢) Consider a relaxed version of the problem of minimizing f:
n
minimize fgr(z)=— Z Vi Tq
i=1

n
subject to szxz < A, z; €[0,1], i=1,...,n.
i1

Let fy, and ¢j be the optimal values of the relaxed problem and its dual, respectively. In the
relaxed problem, the cost function is convex over R (in fact it is linear), and the constraint set
is polyhedral. Thus, according to Prop. 5.2.1, there is no duality gap, and f;, = ¢5. The dual
function of the relaxed problem is

qr(p) = inf {i(uwl — i)z — uA—i—} .

z;€[0,1] =
Again, qr(p) is separable and the infimum is attained at
0 if g > v /w;,
xi(p) =41 if < vi/w;,
anything in [0,1] if g = v;/w;.
Thus the solution is the same as the {0,1} constrained problem for all ¢ with u # v; /w;. For ¢

with u = v;/w;, the value of z; is irrelevant to the dual function value. Therefore, ¢(1) = qr(p)

for all p, and thus ¢* = gF.

Following Example 5.1.2, it can be seen that the optimal primal and dual solution pair

(z*, u*) of the relaxed problem satisfies
wrw; =wv, if 0 <l <1,

wrw; > v, if af =0,

2

wrw; <wvg,  ifxl =1,

In fact, it is straightforward to show that there is an optimal solution of the relaxed problem
such that at most one z} satisfies 0 < 7 < 1. Consider a solution Z equivalent to this optimal
solution with the exception that z; = 0 if 0 < x7 < 1. This solution is clearly feasible for the

{0,1} constrained problem, so that we have
fr < f(z) < fh ;.
Jo < J@) < i+ max v
Combining with earlier results,
fx < o* L G y
f*<qp+ 1rgzagxn v = §* + 121%)(71 Vi
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Since f* = —f* and §* = —¢*, we have the desired result.

(d) Since the object weights and values remain the same we have from (c) that 0 < ¢*(k)— f*(k) <
maxi<;<n ¥;. By including in the subset each replica of an object assembled in the optimal
solution to the original problem, we see that f*(k) > kf*. It then follows that

i 4 (k)

)= S
e R

5.1.8

We have
nggg{f(ﬂfHﬁ’(g(w)*ﬂ)},
f=if{f(=)+ i (9() —a)},

from which

T=F = {f@)+ 7 (g(e) ~0)} = inf {f(2) + ¥ (g(e) ~ W)} + (@~ )
> (@),
where the last inequality holds because 7 is a dual-optimal solution of the problem
minimize f(z)
subject to x € X, g(z) <7,

so that it maximizes over p > 0 the dual value infzex {f(z) + 1/ (9(x) — @) }.

This proves the left-hand side of the desired inequality. Interchanging the roles of f, u, i,
and f , U, fi, shows the desired right-hand side.

5.1.9 (Hoffman’s Bound)

(a) Since the feasible set is closed, the projection problem given in the exercise has an optimal
solution. Therefore by Proposition 3.4.2, there exists an optimal primal solution and geometric
multiplier pair (z*(y, z), p*(y, 2)) for each y € Y,z € . By the optimality condition, for u to
be a geometric multiplier, it suffices that

z—x*
—m— Z HiQi,

i€l(x*(y,z)

where I(z*(y, z)) is the set of indexes corresponding to the active constraints at z*(y, z), and a;

is the ith column vector of A’. Since the vector in the left-hand-side of the equation has norm
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1, we can pick p*(y,z) to be the minimum norm solution for this linear equation. Since there
are only a finite number of such equations, the set {u*(y) | y € Y} is bounded. Finally, by the

optimality of a geometric multiplier, we have

[y, 2) <llz — 2| + p*(y, 2) (A2 = b —y) < pu*(y,2)'(Az —b—y)+.

(b) Using the last inequality in part (a), we have
Fy2) <> iy 2)l(Az—b—y)t, WyeY,zeZ,
i
and
[ (y,2) <maxpi(y,2) [[(Az —b—y)*[l, VyeY,zeRm

Let ¢ be a constant such that ¢ > {u*(y) | y € Y}. By the boundedness of {u*(y) | y € Y} shown
in part (a), we can choose ¢ so that the bound f*(y, z) < ¢||(Ax — b — y)*|| holds.

5.1.10

(This problem is numbered 5.1.9 in the first printing of the book.) We consider the subset of
§Rr+1
A= {(z,w) | there exists z € X such that g(z) <z, f(z) <w},

and its convex hull Conv(A). The vectors (g(zr), f(zr)) and (g(z1), f(xr)) belong to A. In
addition, the vector (0, f), where

f= inf{w | (z,w) € Conv(4), z < 0},

is in the closure of Conv(A). Let us now show that ¢* < f, as indicated by Fig. 1.

Indeed, for each (z,w) € Conv(A), there exist & > 0 and & > 0 with & + & = 1, and
r1 € X, x2 € X such that

§ug(z1) + &2g(22) < 2,
&f(@1) + &af(x2) S w.
Furthermore, by the definition of the dual function ¢, we have for all u € R,

q(p) < f(z1) + p'g(z1),

q(pn) < f(22) + Wg(z2).
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Combining the preceding four inequalities, we obtain
q(p) <w+ 'z, V (z,w) € Conv(A4), pn>0.

The above inequality holds also for all (z,w) that are in the closure of Conv(A), and in particular,

for (z,w) = (0, f). It follows that

alp) < f,  Yp>0,

from which, by taking the maximum over p > 0, we obtain ¢* < f

Let v be any nonnegative scalar such that g(x;) < —yg(xr), and consider the vector

A= —vg(zr)—g(zr).

Since A > 0, it follows that the vector

(=vg(zr), f(z1)) = (9(xr) + A, f(21))

also belongs to the set A. Thus the three vectors

(9(zp), f(xr)), (0,f), (=vg(zr), f(z1))

belong to the closure of Conv(A), and form a triangle in the plane spanned by the “vertical”

vector (0,1) and the “horizontal” vector (g(zr),0).

Let (0, f ) be the intersection of the vertical axis with the line segment connecting the vectors
(9(zr), f(zr)) and (—yg(zr), f(x1)) (there is a point of intersection because v > 0). We have
by Euclidean triangle geometry (cf. Fig. 1)

f—f(xz) _ 7
flep) = flzr) 41

(1)

Since the vectors (g(zr), f(zr)) and (—vg(zr), f(z1)) both belong to Conv(A), we also have
(0, f) € Conv(A). By the definition of f, we obtain f < f, and since ¢* < f, as shown earlier,
from Eq. (1) we have

q* — f(zr) ]?*f(iﬂl) Y
Fler) — far) = flar) — fen) — 741

Taking the infimum over v > 0, the desired error bound follows.




A ={z,w) | there is an x in X such that g(x) £ z, {(x) £ w}

{e(),.fix)) I x EX}
(g (Xp) ,f(xp))

N Y

17
(g(xp.fxp)

Figure for Exercise 5.1.10 Geometrical interpretation of the bound of Exercise

5.1.10 in the case where there is only one constraint. We consider the convex hull

of the subset A of #2 given by

A= {(z,w) | there exists z € X such that g(z) <z, f(z) < w}.

Let f be the point of intersection of the vertical axis of R? with the line segment

connecting the vectors (g(xp), f(xp)) and (g(m;), f(fEI)) The vector (0, f) be-

longs to Conv(A). Also, by Euclidean geometry, we have

f—f@) g(zr)

f@p) = fler)  g(zr) —glzr)’

and by the definition of ¢* we have
¢ <f</,

where

f= inf{w | (z,w) € Conv(A), z < 0}.

Combining these two relations, the bound follows.

5.1.11 of 2nd printing

Let f* be the (common) optimal value of the two problems

and

where

minimize f(x)

subject to z € X, gi(x) <0, j=1,...

minimize f(z)

subject to z € X, gi(x) <0, jeJ,

X={zeX|gjx)<0,jeJ}.
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Since {u} | j € J} is a geometric multiplier of problem (1.2), we have
fr=inf { f@)+ > migix) o (1.3)
reX ;
jeJ
Since the problem

jedJ

minimize < f(z)+ Z 1 9; (x)}
< 07

subject to = € X, g;(x) jed,

has no duality gap, we have

inf O f(2)+ ) u5gi@) o= sup inf § (@) +D pigi(e) + Y pigi(w) oo (15)
zeX jeJ (>0, 5T © jeJ jeT

Combining Egs. (1.3) and (1.5), we have

fr=swp _inf F@)+Y mwgi(@) + > migi(@) ¢,
(>0, T * jeJ jeJ

which can be written as

fr=suwp q({ujlie Ty lieT}),
1j>0, j€T

where ¢ is the dual function of problem (1.1). It follows that problem (1.1) has no duality gap.

If{u;lje J} is a geometric multiplier for problem (1.4), we have
inf ¢ fla)+ D pw5g5(e) p = inf §F(@)+ ) pig(a) + Y p50i(e) ¢
veX j€J jed jeT
which together with Eq. (1.3), implies that
fr=inf ¢ fl0)+ D (@) + D migi() o
JjeJ jeJ

or that {u} [ j =1,...,7} is a geometric multiplier for the original problem (1.1).

5.1.12 of 2nd printing (Extended Representation)

(a) Consider the problems

minimize f(x)
(1.6)
subject to = € X, gi(x) <0, j=1,...,r



and

minimize f(x)

subject to = € X, gi(x) <0, j=1,...,r gi(x) <0, j=1,...,7

where
X=Xn{z|gx) <0,j=1,....7},
and let f* be their (common) optimal value.

If problem (1.7) has no duality gap, we have

r T
fr= supnt @)+ ni0s@)+ Y fsd (@)
©n>0, 1>0 zeX = =
r 7
= oo in F@)+ > nagi(@) + 3 i)
p>0,i>0  weX - -
35 (2)<0,j=1,...,7 J j

= sup inf f(x)+Zujgj($)+Zﬁj§j($)

©>0,i>0 v€X

< su inf ) + iqi(x
o, 5>0966X f(x) Z_:NJQJ()

= sup inf )+
s 160+ St

= sup q(p),
n=>0

where ¢ is the dual function of problem (1.6). Therefore, problem (1.6) has no duality gap.

(b) If p* ={p; | j=1,...;r}, and i* = {uj | j = 1,...,7}, are geometric multipliers for
problem (1.7), we have

fr=inf  fla)+ > pigi) + Y jig,(x)
j=1 j=1
< f Fa)+ whgi(a) + > g (x)
= - j=1 =1

f
= inf {f +Zujgj )+ > ig;(x)
Jj=1

IN

inf ¢ o)+ Z wigi(x)

= inf § f(@)+ Z #;95(x)



It follows that p* is a geometric multiplier for problem (1.6).

SECTION 5.2

5.2.2

Without loss of generality, we may assume that there are no equality constraints, so that the

problem is
minimize f(x)

subject to = € X, a;:c—bj <0,j=1,...,m
Let X = C' N P, and let the polyhedron P be described in terms of linear inequalities as
P={zeRn|ax—b;<0, j=r+1,...,p},
where p is an integer with p > r. By applying Lemma 5.2.2 with
S={zeR|ax—-b;<0, j=1,...,p},

and F(z) = f(x) — f*, we have that there exist scalars y; >0, j = 1,...,p, such that
P
fr<f@)+ > pilda—by),  Vazel.
j=1

For any x € X we have pj(atz —b;) < 0 for all j = r+1,...,p, so the above relation implies

that
f*Sf(x)"‘Z,U/j(a;-l‘_bj), VaoelX,
=1

or equivalently

fr < inf {f(=) + > pidiz —b)} = q(p) < g
=1

By using the weak duality theorem (Prop. 5.1.3), it follows that p is a Lagrange multiplier and
that there is no duality gap.

In Example 5.2.1, we can set C = {z € R2 | z > 0} and P = {x € %2 | 1 > 0}. Then
evidently X = C and f is convex over C. However, ri(C) = int(C) = {x € R2 | x > 0}, while
every feasible point z must have 1 = 0. Hence no feasible point belongs to the relative interior

of C, and as seen in Example 5.2.1, there is a duality gap.
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SECTION 5.3

5.3.1

Assume that there exists an T € X such that g;(Z) < 0 for all j. By Prop. 5.3.1, the set of
Lagrange multipliers is nonempty. Let u be any Lagrange multiplier. By assumption, —oo < f*,

and we have

—oo < fr < L(Z,p) = +Zﬂjg]
or
— > uigi(®) < f(z) - f*
j=1
‘We have

_min {~gi(0)} < —~g;(@), V)

graay

so by combining the last two relations, we obtain

Zm min {~gi(®)} < f(3) - f*.
Since Z satisfies g;(Z) < 0 for all j, we have

f(@) = f*
Z S i g @)

Hence the set of Lagrange multlphers is bounded.

Conversely, let the set of Lagrange multipliers be nonempty and bounded. Consider the set
B = {z | there exists 2 € X such that g(z) < z}.

Assume, to arrive at a contradiction, that there is no Z € X such that g(Z) < 0. Then the origin
is not an interior point of B, and similar to the proof of Prop. 5.3.1, we can show that B is

convex, and that there exists a hyperplane whose normal ~ satisfies v # 0, v > 0, and
v g(x) >0, VaoelX. (1)
Let now p be a Lagrange multiplier. Using Eq. (1), we have for all 8 > 0

*= inf L < inf L < inf L < inf — fx
fr=inf L(z,p) < inf (w,u+ﬁv)_wex}lgl($)§0 (w7u+ﬂ7)_wexfg($)gof(x) f

where the last inequality holds because p + B > 0, and hence (u + 87v)'g(z) < 0 if g(x) < 0.
Hence, equality holds throughout in the above relation, so p + (7 is a Lagrange multiplier for all

B > 0. Since v # 0, it follows that the set of Lagrange multipliers is unbounded — a contradiction.
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5.3.2

(a) Since the constraint set X = {z |z € X, g;(z) <0, j=1,...,r} is convex, and z* is a local
minimum, we have
Vf(z*)(z—ax*) >0, VeeX
(see Prop. 2.1.2 of Chapter 2). Hence z* is a local minimum of the problem
minimize V f(z*)'z
subject to x € X, g;(z) <0, j=1,...,r W
he Assumption 5.3.1 holds for problem (1), so that we can apply Prop. 5.3.1. Thus we have that

there is no duality gap, and there exists a Lagrange multiplier p* > 0 for problem (1), i.e.

supg(ss) = a(u) = fnf V(@) + ; wigi(x) p = Vf(z)a.

From Prop. 5.1.1, we also obtain
pigi(z*) =0, V.

The last two relations imply that

z* € argmin ¢ Vf(z*)'z + > wigiz) o (2)
j=1

(b) We use Prop. 3.3.12 to assert that there exist w; >0, =1,...,r, such that ,ujgj(x*) =0
for all j and
Vo L(z*, u*) (z — x*) > 0, VaoelX.

The last relation implies that

x* = argmin Vg L(z*, p*)'x.

zeX
5.3.3
For simplicity and without loss of generality, assume that A(z*) = {1,...,r}, and denote

hj(z) = Vg;j(z*) (x — x*), Y j.
By Prop. 5.1.1, p € M~ if and only if z* is a global minimum of the convex problem
minimize V f(z*)'(z — z*)
subject to z € X, hj(z) <0, j=1,...,m
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while p is a Lagrange multiplier. The feasible directions of X at z* are the vectors of the form
d = x — x* where z € X. Hence the assumption that there exists a feasible direction d with the

property described is equivalent to the existence of an T € X such that h;(Z) < 0 for all j.

If there exists a feasible direction d with Vg;(x*)’d < 0 for all j, then by Prop. 3.3.12, the
set M* is nonempty. Applying the result of Exercise 5.3.1 to problem (1), we see that the set M*
is bounded. Conversely, if M* is nonempty and bounded, again applying the result of Exercise
5.3.1, we see that there exists T € X such that h;(Z) < 0 for all j, and hence also there exists a

feasible direction with the required property.

5.3.4

(a) Assume that z* is not a Pareto optimal solution. Then there is a vector T € X such that
either

[(@) < fr(z®),  fa(T) < fa(a*),
or

[i(@) < fi(z®),  fa(T) < fa(a*).

In either case, by using the facts A} > 0 and A5 > 0, we have
AL1(E) + A5 fa(T) < ALfi(2*) 4+ AS fa(a*),
yielding a contradiction. Therefore z* is a Pareto optimal solution.

(b) Let

A = {(z1,22) | there exists z € X such that fi(z) < z1, fao(x) < 22}.
We first show that A is convex. Indeed, let (a1, az2), (b1,b2) be elements of A, and let (¢1,c2) =
alar,a2)+ (1—a)(b1,b2), for any a € [0,1]. Then for some z, € X, 2, € X, we have fi(z,) < a1,
fo(xe) < ag, fi(zp) < b1, and fo(xp) < be. Let 2c = axq + (1 — a)xp. Since X is convex, 2. € X,

and since f; and f2 are convex, we have

fi(ze) < e, fa(ze) < ea.

Hence (c1,¢2) € A implying that A is convex.

Note that (fi(z*), f2(z*)) is not an interior point of A. [If this were not the case, then for
some T € X we would have f1(T) < fi(z*) and f2(T) < fa(z*), so that 2* would not be Pareto
optimal.] By supporting hyperplane theorem, there exist A¥ and A%, not both equal to 0, such
that

Niz1 + Mszo > AT fi(a*) + s fa(z*), V (21, 22) € A.
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Since z1 and 22 can be arbitrarily large, we must have A} > 0 and A5 > 0. Furthermore, by the

definition of the set A, from the above equation we obtain
Nifi(z) + N5 fa(z) > N fi(z*) + A5 fa(zr), VrelX,

implying that
min{A}f1(z) + M5 fa() } = M fu(®) + A3 o).

(c) Generalization of (a): If x* is a vector in X, and Aj,..., A, are positive scalars such that

m m
DX file*) = min {Z A:fﬁ(x)} :
i=1 i=1

then z* is a Pareto optimal solution.

Generalization of (b): Assume that X is convex and fi,..., fm are convex over X. If z* is a

Pareto optimal solution, then there exist non-negative scalars A}, ..., A\, not all zero, such that

;A?ﬁ(ﬂc*) = min {Z A;*fi(x)} :

5.3.5

Let
A ={(z,w) | there exists (z,u) € R*+s such that

h(z,u) =z, f(z,u) <w, ueU}.

Suppose that (0, f*) is an interior point of A. Then the point (0, f* — &) belongs to A for some
small enough ¢ > 0. By definition of the set A, we have that h(z,u) = 0 and f(z,u) < f*—§
for some z € " and u € U, which contradicts the fact that f* is the optimal value. Therefore
(0, f*) must be on the boundary of the set A. Furthermore, there is a supporting hyperplane of
the set A that passes through the point (0, f*). In other words, there exists a nonzero vector
(A, B) such that

Bf* < Nz + fw, V(z,w) € A. (1)

By assumption (2), we have that for z = 0 there are a vector u € U and a vector z € R»
such that h(z,u) = 0, which implies that (0, w) € A for all w with w > f(z,u) > f*. Then from
(1) we have

which holds only if 8 > 0. Suppose that 8 = 0. Then assumption (2) and Eq. (1) imply that
Nz >0, V z with ||z]] <,
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which is possible only if A = 0. But this contradicts the fact that (X, 3) # 0. Hence, we can take
8 =11in Eq. (1). From here and the definition of the set A, we obtain

f* < flz,u) + Nh(z,u), VexeRr, uel.
This, combined with weak duality, implies that

inf  {f(z,u) + Nh(z,u)} = f*. (2)

zeRM uelU

Suppose that (z*,u*) is an optimal solution. Then (z*,u*) must be feasible [i.e., it must

satisfy h(z*,u*) = 0], and

fr=Flaru) + Nh(z*, u) = {f (2, u) + Nh(z,u)},

inf
zeR? uelU
where the last equality follows from Eq. (2). Therefore we must have
u* = argmi[rjl{f(x*,u) + Nh(z*,u)}.
ue
Similarly, we can argue that

T* = arg m§i)%n {f(z,u*) + Nh(z,u*)}.
zER™

If f and h are continuously differentiable with respect to x for any v € U, the last relation implies
that
Vaf(x*,u*) + Vzh(xz*, u*)A = 0.

5.3.6
Similar to Exercise 5.3.5, we can show that there is a vector (—p*, 1) such that
f* < —p*z+w, YV (z,w) € A,

where p* € RN. This implies

=

Jrs r-E%iillfl N u€U; oo { (Pl folws, wa) + i, wi) = piyy'worn) +9N(“7N)}
N—

2

I
=

1

{QN (zn) + (uigg (P filwi, we) + gi(wi, i) } — pZ‘+1’$i+1> }

inf
2, €R, i=1,...,N —~
im

=q(p*) = q*.
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From here and the weak duality theorem (Prop. 5.1.3), it follows that p* is a Lagrange multiplier

and that there is no duality gap. Using the same argument as in Exercise 5.3.5, we can show that

uj = arg min H;(2*,u;, pl,,), 1=0,...,N—1,

ule 'L
where
Hi(2,wi, pis1) = Pl filws, wi) + gi(i, us).

Also, we have

N-1
T* = argminwieﬁ i=1,... {QN TN) + Z Dit1 fz (wi,uy) + gi(wi, uf) — Dit1 $z+1)}
=0

N—-1
=argming cp j—1.. N { Z (P fil@i, ul) + gi(wa,uf) — pi'es) + gy (zN) — p’j\,’xN} )
i=1
where x* = (27,...,2% ). By using the separable structure of the expression on the left hand-side

in the relation above, we obtain
xf = argfglg}le {pf+1’fi(xi,u;‘) + gi(xs, ul) — pf':z:i} , fori=1,...,N -1,
and
T = argwrlrvlienSce {gN(acN) —p*N':cN} .
Since the functions f; and g; are continuously differentiable with respect to x; for each u; € U,

the last two relations are equivalent to
Vo, Hi(x*,uf,pf,) =p;, fori=1,...,N—1

and
Van(zy) = PN,

respectively.

5.3.7 of First Printing

Let
Y={zeR|zeX, ejx—di=0,i=1,....,m, afx—b; <0, j=7+1,....r}

Note that Y is a convex subset of X and the functions f, g; are convex over Y. Since € Y, we
have that all conditions of Prop. 5.3.1 are satisfied. Therefore there exists a Lagrange multiplier

w* such that

f*=inf < f(z)+ Zujgj(x)
j=1

€Y
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Denote F(x) = f(x) + Z;;l 1}g; (), and consider the minimization problem
minimize F(z)
subject to x € Y.

This problem has optimal value f*. Moreover

(1) Y is the intersection of a convex set X and a polyhedron

P={zeRn|ejxr—di=0,i=1,....m, afx—b; <0, j=7+1,....,r}.

(2) F:R"+— R is convex over X.

(3) The point T is such that T € ri(X) and T € P.
According to Exercise 5.2.2, the conclusion of Prop. 5.2.1 holds. Hence there are Lagrange
multipliers A}, 1 <7 < m, and ,u}‘, 7+ 1 <7 <r such that
f*=inf < F(z)+ Z wi(ase —bj) + Z X (ejx — dy)
i=1

zeX —
Jj=r+1

By writing down F' explicitly, we obtain the desired result.

5.3.8

The dual function for the problem in the hint is

infoex 5 pigi(x) i3 p =1

yeR, zeX —00 if 22:1 pj # 1

gp) = _inf  Sy+> pi(gi(z) —y) ={
=1

The problem in the hint satisfies the interior point Assumption 5.3.1, so by Prop. 5.3.1 the dual

problem has an optimal solution p* and there is no duality gap.

Clearly the problem in the hint has an optimal value that is greater or equal to 0 if and

only if the system of inequalities
gj(z) <0, j=1,...r
has no solution within X. Since there is no duality gap, we have

max  q(p) >0
u20, Zj:l hj=1

if and only if the system of inequalities g;(z) < 0, j = 1,...,r, has no solution within X. This is

equivalent to the statement we want to prove.

17



5.3.9 (Duality Gap Example)

It can be seen that a vector (z1,x2) is feasible if and only if

Furthermore, all feasible points attain the optimal value, which is f* = 1.
Consider now the dual function
q(w) = inf {er2 + p(lle]l - 21)}. (1)
We will show that ¢(u) = 0 for all g > 0 by deriving the set of constraint-cost pairs
(] - 2r,e%2) | @ € %2},

Indeed, for u < 0 there is no x such that ||z|| — 1 = u. For uw = 0, the vectors = such that
|lz]| = x1 = u are of the form = = (x1,0), so the set of constraint-cost pairs with constraint value

equal to 0 is (0,1). For u > 0, for each z2, the equation ||z|| — 21 = u has a solution in x;:

2 g2
r5—u

xr1 =
2u

Thus, if u > 0, the set of constraint-cost pairs with constraint value equal to u is
{(u,w) | w > 0}.
Combining the preceding facts, we see that the set of constraint-cost pairs is
{(0,1)} U {(u,w) |u>0,w> O},

which based on the geometric constructions of Section 6.1, shows that ¢(u) = 0 for all x4 > 0 [this
can also be verified using the definition (1) of ¢]. Thus,

q* =supq(p) =0,
n=>0

and there is a duality gap, f* — ¢* = 1.

The difficulty here is that g is nonlinear and there is no T € X such that ¢(Z) < 0, so the

Slater condition (Assumption 5.3.1) is violated.

SECTION 5.4
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5.4.3

Define

and apply Fenchel duality. We have

g1(A) = sup{ Nz — f(2)},

zeX

g2(A) = inf 2/'A =

0 if =\ e C+,
zeC

—oco if =X ¢ CL.
Thus the Fenchel dual is

maximize —g(\)
subject to —\ € CL|

where g(\) = ¢g1(\). Assuming the original problem is feasible, conditions that guarantee that

there is no duality gap are that f is convex over X, plus any one of the following;:
(a) The relative interiors of X and C have nonempty intersection.

(b) The relative interior of C* and the relative interior of the set {A | g(\) > —oo} have

nonempty intersection. Furthermore, X and C' are closed.
(c¢) f is convex over £, and X and C are polyhedral.

(d) g is real-valued, X is closed, and C' is polyhedral.

5.4.5

(a) Let us apply Fenchel’s duality theorem to the functions

C

fl@) =gl fal) = =yt -a),

and the sets

X1 = Xo = Rn.

Using Prop. 5.4.1, we have

Pu(t) = min {22 +(t —2)} = max{g2(}) — (M)},
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where the corresponding conjugates g; and g2 are calculated as follows:

c 1
) = { I\ — — 2} — A %
1) = sup {A = Sllel2} = oI

g2(N) = wiengn{x’/\ +(t— x)}
=t'\+ wienggn{v(t —z)— (t—x)A}

=t'A— sup {w'\—(u)}
u€R"

=t'A—g(N).
Thus we have

1
Pt) = e {3 - 90 = o1z}

The function P.(-) is the pointwise maximum of a collection of linear functions, so it is
convex. To show that P(t) is differentiable, we view it as the primal function of a suitable
problem, and we use the fact that the subgradients of the primal function at 0 are the negatives
of the corresponding Lagrange multipliers (cf. Section 5.4.4). Consider the convex programming

problem
e c
minimize —||y||? + v(2)
2 (1)

subject to t —y — 2z =0,

whose primal function is

p(w) =, min {Zlyl2 +9()} = min {Slel2 +90 -2 -w)}.

We have

p(w) = Pe(t —w)
and the set of subgradients of P, at ¢ is the set of the negatives of the subgradients of p(w) at 0,
or equivalently (by the theory of Section 5.4.4), the set of dual optimal solutions of problem (1).

The dual function of problem (1) is

a() = min { Slyl12 +7(z) + X (t —y - 2)}

= min { Z[lyl]2 = ¥y} +min{y() + X (¢ - 2)}

1
—5o AP = max{(z — )X = 7(2)}
1
= —2—||)\||2 —max{z’A —y(z)} +t'A
c z
1
=t'A—g(A) — —|A|?
9 = 5l
Thus the optimal dual solution is the unique A attaining the maximum of ¢(\). As argued earlier,
this A must be equal to VP.(t).
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(b) The formulas and their derivation can be found in [Ber77] and [Ber82a], Section 3.3.

(¢) We have

P.(t) = in

i {y(t—w) + Slull?} <A(8).

Also, if d is a subgradient of v at t, we have for all u € R
c c . c 1
1t =) Sl > A(0) — dru+ &2 2 5(2) + min {—du ot a2} = 2(0) — -l
Thus we have for all ¢
1
106) — 5P < Pa(t) < (1)

which implies that lime—oo Pe(t) = 7y(t).
(d) From the Fenchel duality theorem we obtain, similar to part (a),

1
Po(t) = sup {w — g0 = 5-IIA —y|2} .
AERT c

5.4.6

(a) For all x € X and A € D, we have
00 > g(A) = ' = f(z),

so we have

flx) > a'A—g(N), VeeX,AeD.

hence

flx) > sup{x’k—g(/\)}:f(x), VaoelX.
xeD

(b) Proof of Hint 1: If every hyperplane containing C' in one of its halfspaces were vertical, we

would have
C =Nier{(z,w) | &z > Bi}
for a collection of nonzero vectors &;, ¢ € I, and scalars 3;, i € I. Then for every (z,w) € C, the
vertical line {(Z,w) | w € R} also belongs to C. It follows that if no vertical line belongs to C,
there exists a nonvertical hyperplane containing C'.
Proof of Hint 2: If (Z,w) ¢ C, then since C is closed, there exists a hyperplane strictly
separating (Z,w) from C. If this hyperplane is nonvertical, we are done, so assume otherwise.

Then we have a nonzero vector ¢ and a scalar ¢ such that
2> c>miz, Y (z,w) € C.
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Consider a nonvertical hyperplane containing C' in one of its subspaces, so that for some (&, ()
and 3, with ¢ # 0, we have
&z+Cw> 0, Y (z,w) € C.

By multiplying this relation with any € > 0 and adding it to the preceding relation, we obtain
(E4€€) 2+ eCw > c+ €f, V (z,w) € C.

Let € be small enough so that

c+ef > (E+ €)'z + e(w.

Then, we obtain
(E+€8) 2+ eCw >> (€ + €€)'Z + e(w, V (z,w) € C,

implying that there is nonvertical hyperplane with normal (£+ €&, €¢) that strictly separates (Z, )
from C.

We now use the second hint to prove part (b) of the exercise. Let C be the epigraph of
(f,X), let (x,~) belong to the epigraph of (f, X), i.e., z € X, v > f(z), and suppose that (z,~)
does not belong to C. Then by the second hint, there exists a nonvertical hyperplane (A, (),

where ¢ # 0, and a scalar ¢ such that
Nz+(w < c< Nz —(, Y (z,w) € C.
Since w can be made arbitrarily large, we have { < 0, and we can take ( = —1, so that
Nz—w<c< Nr—r, Y (z,w) € C.
Since v > f(x) and (2, f(2)) € C for all z € X, we obtain

Nz—f(z) <e< Nz — f(x), VzeX.

hence
sup{ Nz — f(2)} <c< N — f(x),
zeX
or
9(N) < Nz = f(x),
or

fl@) <N —g(N),

which contradicts the definition of f.
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5.4.7

(a) We have f* = p(0). Since p(u) is monotonically nonincreasing, its minimal value over u € 0
is obtained for u = 0. Hence, f* = p*, where p* = infucp, w>op(u), p is a Lagrange multiplier of
the original problem if p > 0 and
* — /
fr= it {f(@) +wg(@)}
_inf nf ,

inf {p(u) + pru}.

Since f* = p*, we see that p* is a Lagrange multiplier for the problem min, <o p(u).
(b) This part is proved by the preceding argument.

(¢c) From (b), we see that —g(—u) is the conjugate convex function of (p, P). Let us view the
dual problem as the minimization problem

minimize — g(—p)

| (1)

subject to p < 0.
Its dual problem is obtained by forming the conjugate convex function of its primal function,
which by Exercise 5.4.7 is (p, P). hence the dual of the dual problem (1) is

maximize — p(u)

subject to u <0

and the optimal solutions to this problem are the Lagrange multipliers to problem (1).

5.4.8

Define X = {z | ||z|| < 1}, and note that X is convex and compact set. Therefore, according to
Minimax Theorem, we have

min max z’y = maxmin x'y.
rzeX yey yeY zeX

For a fixed y € Y, the minimum of z’y over X is attained at a* = —y/||y|| if y # 0 and z* = 0 if
y = 0 [this can be verified by the first order necessary condition, which is here also sufficient by
convexity of z/y]. Thus we obtain
min max z’y = max (— = —min .
x 'y yeg( [lyl1) min [[y]]

zeX yey

Thus the original problem can be solved by projecting the origin on the set Y.
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5.4.12

To be added.

5.4.13

Let f(z) = (1/2)a’Qx. Since the problem has a unique optimal solution, we have that @ is
positive definite on the nullspace of the matrix A, implying that f(x)+ (1/2¢)||x — 2*||2 also has

a unique minimum subject to Az = b. Hence the algorithm
zk+l = arg min 1glc’Q::: + i||917 — xk||2
Az=b | 2 2c
is well defined. This algorithm can also be written as
2kt = arg min 1:E’Qx + i||glc — k|2 + zHA:U —b||2
Az=b | 2 2c 2

for any scalar . If « is sufficiently large, the quadratic function

S2Qe+ 2l Az —bjp

2 2

is positive definite by Lemma 3.2.1. For such ~, the above algorithm is equivalent to the proximal

minimization algorithm and it inherits the corresponding convergence properties.

5.4.14

Fix any = € R". Let

T € arg min {f(y) = > (i xi)Q} (1)

yeRN 2c =
and let

v, Viel
@—{ (2)

T, Vigl

We will show that
1
— — . _ _ ~ 2

v —arg wip {700 + 5ol - 312 )
T € arg min F.(y). (4)

{ylyi==;, i€l}
Indeed, from the definition of #, the vector Z minimizes not only f(y) 4+ o= > ,c;(yi — 2:)2 but

also &=

3¢ 2_igr(¥i — Ti)?, implying that T minimizes the sum, which is f(y) + +|ly — Z[|2. This

proves Eq. (3).
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To prove Eq. (4), note that for all vectors z € R" with z; = x; for all i € I, we have

Fe(z) = min, {f(y) + % > (yi—wi)? + % > (i - Zi)z}
icl i¢l
> min { (v) %;(yz‘ xz)Q}
= @) + 5 S i)
i€l
=f@+ % D @i — w2+ -y (@i —7)?
icl i¢l

> Fe(2),
where the last inequality follows from the definitions of Z and F,. This proves Eq. (4).
Conversely, suppose that T and Z satisfy (3) and (4). We will show that Egs. (1) and (2)
hold. Indeed, Eq. (4) implies that x; = &; for all ¢ € I, and that 0F.(Z)/dz; = 0 for all ¢ ¢ I,
so from Eq. (3) we have T; = Z; for all ¢ ¢ I. Thus Eq. (2) holds. To show Eq. (1), we argue by

contradiction. Suppose that for some z € " we have

F&) g S = wi)? < F(B) e SO — i)

icl il
Then the directional derivative of the function y — f(y) + 5= > .;c;(¥i — )% at T along the
direction z — T is negative. This directional derivative is equal to the directional derivative of the
function y — f(y) + 2 Yier (Wi — )2 + 5 > ig1(yi — Ti)? at T along the direction z — 7. The
latter directional derivative, however, is nonnegative in view of Egs. (2) and (3), arriving at a

contradiction. This proves Eq. (1).

(b) We have

Since the expression in the right-hand side of the second inequality is equal to Fe(z), we obtain

f(@) < Fe(x) < f(a).

Since, we also have F.(T) < f(T), the desired result follows.
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5.4.17

(a) Define
X =A{(z,u,t) [z € R, uj =Ajz+b;, t; =€z +d;, j=1,...,r},
C=A{(z,u,t) |z e R ||lu|| <tj, j=1,...,r}

It is easy to verify that X is convex and C is a cone. Therefore the modified problem has cone

constraints of the type described in Exercise 5.4.3.
(b) Let (A, z,w) € —CL (this is equivalent to —(\, z,w) € CL1). Then by the definition of the

polar cone C1, we have
r T
N + Zzéuj + Z'U)jtj >0, v (z,u,t) € C.
=1 =1

Since x is unconstrained, we must have A = 0 for otherwise the above inequality will be violated.
Furthermore, it can be seen that

—Ct =10, z,w) [lz]] <wj, j=1,....7}.

Let us calculate g(A, z,w) for (A, z,w) € —C+. We have

T T
900 = s 43St - e
(@utex | 55 e

T T
5219%) Zz;-(ij—Fbj)—Fij(e;m—i—dj) —cx
TERT | 5y =1

/
T

s
= sup Z(A}zj- +wjej) —c| x4+ Z(Z;-bj + wjd;)
TERT

j=1 j=1
3 { +0o0 if 351 (Afzs +wje;) # ¢
Yo (b +widy) if YT (A2 wjeg) = c.

By the duality theory of Exercise 5.4.3, the dual problem is given by

T
- . .
maximize — g (25b; +wjd;)
i=1

r
subject to Z(A;-Zj +wjej) =c¢, ||zl <wj, g=1,.00,r
j=1
If either there exists a feasible solution of the modified primal problem or a feasible solution of
its dual problem satisfying strictly all the inequality constraints, then according to Prop. 5.3.2,
there is no duality gap.
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5.4.18

Since each P; is symmetric and positive definite, we have

/ /
o' Pyt + 2¢lx + i = (P}/%) P25 49 (meqi) P2 4,

1/2

—|P} e+ P g2 + v — )P Mg,

for i =0,1,...,p. This allows us to write the original problem as

minimize ||P01/2:c + 13(3_1/2(]0||2 +r0—ap Py a0

1/2

subject to ||P; —1/2

c+ P g2+ - ¢ P g <0, i=1,...,p.

By introducing a new variable x,41, this problem can be formulated in ft»t1 as

minimize Zp41

subject to ||P01/2x + Po_l/2q0|| < Tpi1
1/2 —1/2 - 1/2 .
1P 2+ P Pl < (@P e —m) 7, i= 1.
The optimal values of this problem and the original problem are equal up to a constant and
a square root. The above problem is of the type described in Exercise 5.4.17. To see that define
A; = (Pil/2 | 0), b = Pi_1/2qi, e, =0,d; = (qui_lqi — ri)1/2 fori=1,...,p, Ag = (Pol/2 | 0),

bo = P(;l/qu, eo=(0,...,0,1),do =0, and ¢ = (0,...,0,1). Tts dual is given by

p
.. - _ 1/2 _
maximize — E (qui 1/2% + (qui Lgi — ri) / wi> — gy, 1/220
i=1

P
subject to Y P/%2i =0, [[zoll <1, |laill Swi, i=1,....p.

i=0
5.4.19
Consider the problem
P
minimize Z [|Fix + gil|
i=1
subject to x € Rn.
By introducing variables ¢1,...,%p, this problem can be expressed as a second-order cone pro-

gramming problem (see Exercise 5.4.17):

p
minimize Zti

i=1
subject to ||Fix + gi|| < ti, i=1,...,p.
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Define
X={(z,u,t) |z eR?, us=Fix+g, ti R, i=1,...,p},

C={(z,u,t) |z e R, [lus|]| <t;, i=1,...,p}

Then, similar to Exercise 5.4.17 [by applying the result of Exercise 5.4.3 with f(z,u,t) = >0_ t;,
and X, C defined above], we have

—CL ={(0,z,w) | ||z:]] S ws, 1=1,...,p},

and

p p p
g((),z,w) = sup { Z;ui + Zwiti — Ztl}
1 i=1 i=1

(zu,t)eX | 5=
P P
= sup {Z Zi(Fix +gi) + » (wi — l)tz}
zeRn teRr | =
p ! p p
= !y 1)t ”
S () o) { S Lo
D gz Y Y Flzi=0,wi=1i=1,...,p
a { +00 otherwise.
Hence the dual problem is given by
P
maximize — Z gz
i=1

p
subject to EF{'ZZ =0, ||all<1,i=1,...,p.
i=1

Now, consider the problem
minimize max ||Fjz + gl
1<i<p
subject to x € R,
By introducing a new variable x,+1, we obtain
minimize Tn+41
subject to ||Fix + gi|| < @ny1, i =1,...,p,
or equivalently
minimize €],
subject to [|Aix + gil| < e, 12, i=1,...,p,
where z € R+1, A; = (F;]0), and ept1 = (0,...,0,1) € ®ntl. Evidently, this is a second-order

cone programming problem. From Exercise 5.4.17 we have that its dual problem is given by

p
maximize — E gz

i=1
p F!

subject to Z 0' zi+entiwi | =ent1, |zl <wi, i=1,...,p,
i=1
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or equivalently
maximize — E 9izi
i=1

p P
subject to ZF’L/Z7’ =0, Zwi =1, ||zl <wi, i=1,...,p.
i=1 i=1

5.4.20

For v € CP we have

)

P P
ol = Juil =)
i=1

i=1

(’Re(vi) >
Zm(v;)

where Re(v;) and Zm(v;) denote real and imaginary parts of v;, respectively. Then the complex

(’Re(agx —b;) ) H
Im(aiz — b;) (1)

subject to x € Cn,

l1 approximation problem is equivalent to

where a is the i-th row of A (A is a p x n matrix). Note that

Re(alx — b;) Re(al) —Im(al) Re(z) Re(b;)
Im(alx — b;) B Im(a;) Re(a}) Im(x) Zm(b;).
By introducing new variables y = (Re(2’), Zm(z’))’, problem (1) can be rewritten as

P
minimize Z || Fiy + gil|
i=1

subject to y € R2n,

Re(al) —Iml(a’ Re(b;
m:( (@) <z>>’ gl_:_< <>>. o
Im(a;) Re(a) Im(b;)

According to Exercise 5.4.19, the dual problem is given by

where

maximize Z (Re(bi), Zm(bs)) 2

Re(a ) Im(al)
subject to Z 2z =0, lzil| <1, i=1,...,p,
Re(al)
where z; € 127 for all 7.
For v € CP we have
Re(vs)
[|v]|]o = max |v;| = max .
1<i<p 1<i<p Im(vi)
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Therefore the complex o approximation problem is equivalent to
Re(alx — b;)
Im(alz — b;)

By introducing new variables y = (Re(z’), Zm(x’))’, this problem can be rewritten as

minimize max
1<i<p

subject to x € C™,

.. . F )
minimize 1I£ia§Xp [|Fiy + gil|
subject to y € 2",

where F; and g; are given by Eq. (2). From Exercise 5.4.19, it follows that the dual problem is

P
maximize Z (Re(bi), Im(b;) ) 2
i=1
P [ Re(a)) —Im(a’ p
subjecttoZ( ( ZI) (I1)>zi:0, Zwizl, [lzil| < wsi, 1=1,...,p,
=1 \Im(a;) Re(a) i=1

where z; € R2 for all 4.

5.4.21
For a function h :  +— [—00, 00|, the domain of h is the set
dom(h) = {z | —00 < h(z) < 0}.

If h is lower semicontinuous over its domain, i.e., satisfies h(z) < liminfy_, o h(xy) for all z €
dom(h) and all sequences {x)} with z; — =z, it is called domain lower semicontinuous or DLSC
for short. Note that a convex DLSC function need not be closed, i.e., need not have a closed
epigraph.

Convex DLSC functions arise in the context of the constrained optimization problem

minimize f(x)

(1)

subject to g;(x) <0, j=1,...,r

where f : R — (—o0,00] and g; : R — (—o0,00] are some proper extended real-valued
functions. We denote by g the vector-valued function g = (g1, ..., gr), and we denote compactly

inequalities of the form g;(z) <0, j=1,...,r, as g(z) <0.

The primal function of the problem, defined by

p(w) = inf f(x).
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determines whether there is a duality gap. In particular, assuming that p is convex and that
p(0) < oo (i.e., that the problem is feasible), there is no duality gap if and only if p is lower
semicontinuous at u = 0. More generally, assuming that p is convex, there is no duality gap for
every feasible problem of the form

minimize f(x)

subject to g(x) < u,
if and only if p is a DLSC function.

The two most common approaches to ascertain that there is no duality gap in problem (1)

are:
(a) To show that p is closed, so that it is also lower semicontinuous at any u, including « = 0.

(b) To show that p is subdifferentiable at u = 0, so that it is also lower semicontinuous at u = 0.
This is guaranteed, in particular, under the assumption 0 € ri(dom(p)) or under some other

constraint qualification that guarantees the existence of a geometric multiplier for problem
(1).

Note, however, that there are some important special cases that are not covered by one of
the above two approaches. In these cases, p is a DLSC function but it is not necessarily closed

or subdifferentiable at 0. As an example, consider the one-dimensional problem where

% if z >0,
-

oo ifx <0,
and
gla) =e*
Then it can be seen that
0 ifu>0,
p(U){oo if u <0,

so p is a DLSC function but is not closed.

In the special case where the z is a scalar and the functions f and g; are convex, proper, and

DLSC, we can show that the function p is DLSC. This is consistent with the preceding example.

Proposition: If the functions f and g; map R into (—oo, oo] and are convex, proper, and DLSC,

then the primal function p is DLSC.

Proof: Without loss of generality, we assume that 0 € dom(p). It will be sufficient to show
that p is lower semicontinuous at w = 0. Let ¢* = lim,,_, o+ p(u). We will show that p(0) = ¢*,

which implies lower semicontinuity of p at 0, since p is monotonically nonincreasing. Let {x*}
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be a scalar sequence such that f(z%) — ¢* and max{0, g;(z¥)} — 0 for all j. We consider three

cases:

(a) {z*} has a subsequence that converges to a scalar Z. Without loss of generality, we assume
that the entire sequence {z¥} converges to Z. By the lower semicontinuity of f and g;, we
have f(Z) < ¢* and g¢;(Z) < 0 for all j. Hence T is feasible for the problem corresponding
to u = 0, and we have p(0) < f(Z) < ¢*. Since p is monotonically noninceasing, we also

have ¢* < p(0) and we obtain p(0) = ¢*.

(b) {z*} has a subsequence that tends to co. Without loss of generality, we assume that
x% — oo. Then the positive direction is a direction of recession of f and g; for all j. This
implies that inf,en f(x) = ¢*, and also that g(a*) < 0 for all sufficiently large k [otherwise
the problem corresponding to u = 0 would be infeasible, thereby violating the hypothesis
that 0 € dom(p)]. Thus p(0) = infzen f(z) = ¢*.

(¢) {z*¥} has a subsequence that tends to —oco. Without loss of generality, we assume that

axk — —o0o, and we proceed similar to case (b) above. Q.E.D.

The proposition implies that is no duality gap for the given problem, assuming that —oo <

f* < oo.

SECTION 5.5

5.5.3

Define d;(s) = fj(s) — fi(s—1) for s =1,...m; and j = 1,...,n. By the convexity of f;, we
have
2fi(s) < fils = 1) + fi(s + 1),
or equivalently
fi(s) = fi(s = 1) < fi(s + 1) = fj(s).
Therefore

di(1) <d;j(2) <---<dj(m;) j=1,...,n.

Consider the set D = {dj(s) | s = 1,...mj, j = 1,...,n}. At each iteration the algorithm

chooses the smallest element in the set D as long as that smallest element is negative and the
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constraint is not violated. Let 2* be a solution generated by the algorithm and D* be the set of
elements of D that the algorithm chooses. Define
\ {maxdj(s)eD* d;(s) if |D*|=A
0 if |D*| < A,
where | - | denotes the cardinality of a set. If |[D*| = A, then the algorithm chooses A smallest
elements in D, which are all negative, so that A < 0. If | D*| < A, then either 2* has components

x; = mj; or the set D has less then A negative elements. Consider the following function

> fila) =AY a (1)
j=1 j=1
‘We have .

J
By the definition of A\ and D*, we have

(fi(z;) — Azj) = Z (f5(0) + (d; (1) = A) + - + (dj () — N)) -

1

dj(s) — A <0if dj(s) € D,
dj(s) —A>0if dj(s) ¢ D=,

Therefore the function given by Eq. (1) is minimized at x = z*. Consequently, —\ > 0 is a
Lagrange multiplier for the original problem and there is no duality gap. By Prop. 5.1.5, we have

that z* is an optimal solution.

5.5.4

A detailed analysis appears in the paper

C. C. Wu and D. P. Bertsekas, “Distributed Power Control Algorithms for Wireless Networks,”
IEEE Trans. on Vehicular Technology, Vol. 50, pp. 504-514, 2001

which is available from the author’s www site

http://web.mit.edu/dimitrib/www /home.html

5.5.5

Suppose that E is totally unimodular. Let J be a subset of {1,...,n}. Define z by z; = 1 if

j € J, and z; = 0 otherwise. Also let w = Ez, d; = f; = %wi if w; is even, and d; = %(wZ +1),

fi= %(wl — 1) if w; is odd. Since FE is totally unimodular, the polyhedron

P={a|f<Ex<d 0<z<z}
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has integral extreme points and z ¢ P. Note that P # () because %z € P. Therefore there is a
vector € P such that 2; = 0 for j ¢ J, and 2; € {0,1} for j € J. We have z; — 2&; = +1 for
je€J. Define Ji={jeJ|z;—2¢;=1} and Jo={j € J | z; —2&; = —1}. We have

w; —w; =0 if w; is even
S ey Y ey =3 enles - 24y) = Bz — 2B = L o
JjE€N JEJ2 Jj€N Wi (wl * 1) =71 ifwidsodd.
Thus
Sei—Y eyt Vi=l...m. (1)
JjeJ1 jE€J2

Suppose that the matrix E is such that any J C {1,...,n} can be partitioned into two
subsets such that Eq. (1) holds. For J C {1,...,n} with J consisting of a single element, we
obtain from in Eq. (1) e;; € {—1,0,1} for all ¢ and j. The proof is by induction on the size of the
nonsingular submatrices of F using the hypothesis that the determinant of every (k—1) x (k—1)
submatrix of F equals —1,0, or 1. Let B be a k x k nonsingular submatrix of E. Our objective is

B*
— detB>

where b}; € {—1,0,1}. By the definition of B*, we have Bbj = (det B)e1, where bj is the first
column of B* and e; = (1,0,...0)".

to prove that | det B| = 1. By the induction hypothesis and Cramer’s rule, we have B—1 =

Let J ={i| b} #0} and J; = {i € J | bf; = 1}. Hence for i = 2,...,k, we have
(Bby)i =Y bij— > bi=0.
jeJ; JENT]

Thus the cardinality of the set {i € J | b*ij # 0} is even, so for any partition (J1,J2) of J, it
follows that . 7 b
partition (Ji,J2) of J such that ‘deJl i = D e, Vij

Zbij—ZbijZO, fori:2,...,k.

JjEJ1 Jj€J2

- dej bij is even for all ¢+ = 2,...,k. Now by assumption, there is a

Now consider the value o = ’Z —Dies blj’- If an = 0, define y € R* by y; = 1

J€J1
for i € Ji, y; = —1 for i € Jz, and y; = 0 otherwise. Since By = 0 and B is nonsingular, we have
y = 0, which contradicts J # (). Hence by hypothesis, we have a1 = 1 and By = +e;. However,
Bb; = (det B)ey. Since y and b are (0,%1) vectors, it follows that b7 = +y and |det B| = 1.

Therefore E is totally unimodular.

5.5.6

A correct statement of this exercise is as follows:
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Statement: Let E be a matrix with entries -1, 0, or 1, and at most two nonzero entries in each
of its columns. Show that A is totally unimodular if and only if the rows of A can be divided
into two subsets such that for each column with two nonzero entries, the following hold: if the
two nonzero entries in the column have the same sign, their rows are in different subsets, and if

they have the opposite sign, their rows are in the same subset.

Solution: Note that E is totally unimodular if and only if its transpose E’ is totally unimodular.

Hence according to Exercise 5.5.5, an m X n matrix F is totally unimodular if and only if every

I c{1,...,m} can be partitioned into two subsets I; and I such that
Zeij— Zeij <1, Vji=1,...,n.
ieh i€ls

Let E be an m x n matrix with entries e;; € {—1,0, 1}, and such that each of its columns
contains at most two nonzero entries. By assumption, the set {1,...,m} can be partitioned into

two subsets M; and M2 so that if a column has two nonzero entries, the following hold:

(1) If both nonzero entries have the same sign, then one is in a row contained in M; and the

other is in a row contained in Ms.

(2) If the two nonzero entries have opposite sign, then both are in rows contained in the same

subset.

It follows that

ZeijfZeij Sl, V]zl,,n (1)

i€M7 1€ Mo
Let I be any subset of {1,...,m}. Then I} = INM; and I, = I N M, constitute a partition

of I, which in view of Eq. (1) satisfies

Zeij—Zeij <1, Vjy=1,...,n.

i€l i€y

Hence F is totally unimodular.

5.5.7

Since F is totally unimodular if and only if its transpose F’ is totally unimodular, then according
to Exercise 5.5.5, E is totally unimodular if and only if every I C {1,...,m} can be partitioned
into two subsets I1 and Iz such that

Zeij—Zeij <1l, Vj=1,...,n.

i€l i€ly
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Define My = {i | i is odd} and Mz = {i | i is even}. Then
S-S eyt Vi=1l...n
i€ My i€ Mo

Let I be any subset of {1,...,m}. Then Iy = I N M; and I2 = I N M> constitute a partition of
I, which satisfies

ZeijfZeij <1l, Vj=1,...,n,

i€l i€ly

and therefore F is totally unimodular.

5.5.10

(a) We have for every p = (t1,...,u4r) >0

7l ..., i) = inf i9i
Q- pr) = inf f(w)+j§::lu4g($)

= inf F@)+ Y nigi()
j=1

x
951 ()0, gr (2) <0

\%
=
=,

flz) + Zujgj(a:)

g;_,'_l(z)SO »»»»» gr(x)<0

v

Inf ¢ f(2) + J;Mjgj(ﬂ?)
= q(,u“lw .. mu”‘)'

By taking the supremum of both sides over y > 0, we obtain g* > ¢*. The inequality g* < f*
holds by the Weak Duality Theorem.

(b) This is evident from the proof of part (a).

(c) Take any problem with two constraints that has a duality gap and has an optimal solution at
which one of the two constraints is inactive. For example, consider the following problem, which

is derived from Example 5.2.1:

minimize f(z)
subject to x1 =0, x1 <1, x € X ={x]|x >0},

where

f(z) = e~vo1z, VaoelX,
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and f(x) is arbitrarily defined for ¢ X.

Consider the problem obtained by keeping the inactive constraint explicit (the constraint
r1 < 1 in the above example), and by lumping the other constraint together with X to form X
(X = {2 |z > 0,21 = 0} in the above example). Then, we have ¢* < g* = f* (¢* = 0 and

" = f* =1 in the above example).
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