
Week 2
Parallel Computing Models



Race Condition or Data Dependence

• A race condition exists when the result of an 
execution depends on the timing of two or more 
events.

• A data dependence is an ordering on a pair of 
memory operations that must be preserved to 
maintain correctness. (More on data dependences 
in a subsequent lecture.)

• Synchronization is used to sequence control among 
threads or to sequence accesses to data in parallel 
code. 
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Simple Example (p. 4 of text)
• Compute n values and add them together.

• Serial solution:

• Parallel formulation?
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Version 1: Computation Partitioning• Suppose each core computes a partial sum on n/t consecutive elements 
(t is the number of threads or processors)

• Example: n = 24 and t = 8, threads are numbered from 0 to 7
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int block_length_per_thread = n/t;    

int start = id * block_length_per_thread;    

for (i=start; i<start+block_length_per_thread; i++)  {           

x = Compute_next_value(…);

sum += x;

}
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What Happened?
• Dependence on sum across iterations/threads

• But reordering ok since operations on sum are 
associative 

• Load/increment/store must be done atomically to 
preserve sequential meaning

• Definitions:
• Atomicity: a set of operations is atomic if either they all 

execute or none executes.  Thus, there is no way to see 
the results of a partial execution.

• Mutual exclusion: at most one thread can execute the 
code at any time
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Version 2: Add Locks
• Insert mutual exclusion (mutex) so that only one thread 

at a time is loading/incrementing/storing count 
atomically
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int block_length_per_thread = n/t;    

mutex m;

int start = id * block_length_per_thread;    

for (i=start; i<start+block_length_per_thread; i++)  {           

my_x = Compute_next_value(…);

mutex_lock(m);       

sum += my_x;

mutex_unlock(m);     

}

Correct now.   Done?



Version 3: Increase Granularity
• Version 3:

• Lock only to update final sum from private copy
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int block_length_per_thread = n/t;    

mutex m;

int my_sum; 

int start = id * block_length_per_thread;    

for (i=start; i<start+block_length_per_thread; i++)  {           

my_x = Compute_next_value(…);

my_sum += my_x;

}

mutex_lock(m);       

sum += my_sum;

mutex_unlock(m);     



Version 4: Eliminate lock 
• Version 4 (bottom of page 4 in textbook):

• “Master” processor accumulates result
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int block_length_per_thread = n/t;    

mutex m;

shared my_sum[t]; 

int start = id * block_length_per_thread;    

for (i=start; i<start+block_length_per_thread; i++)  {           

my_x = Compute_next_value(…);

my_sum[id] += my_x;

}

if (id == 0) { // master thread

sum = my_sum[0];

for (i=1; i<t; i++) sum += my_sum[i];

}

Correct? Why not?



More Synchronization: Barriers

• Incorrect if master thread begins accumulating final 
result before other threads are done

• How can we force the master to wait until the threads 
are ready?

• Definition:
• A barrier is used to block threads from proceeding  beyond a 

program point until all of the participating threads has reached 
the barrier.

• Implementation of barriers?
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Version 5: Eliminate lock, but add barrier
• Version 5 (bottom of page 4 in textbook):

• “Master” processor accumulates result
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int block_length_per_thread = n/t;    

mutex m;

shared my_sum[t]; 

int start = id * block_length_per_thread;    

for (i=start; i<start+block_length_per_thread; i++)  {           

my_x = Compute_next_value(…);

my_sum[t] += x;

}

Synchronize_cores(); // barrier for all participating threads

if (id == 0) { // master thread

sum = my_sum[0];

for (i=1; i<t; i++) sum += my_sum[t];

}

Now it’s correct!



Version 6 (homework): 
Multiple cores forming a global sum
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Parallel Programming Models

Introduction to Parallel Computing 12



Parallel Programming Models

• Programming models are abstractions
• Can be used on various architectures

• Shared Memory Model
• Thread-based Model

• Process-based Model

• Global Address Space

• Message Passing Model

• Data Parallel Model
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Shared Memory Model

• A shared address space between 
tasks

• Asynchronous read/write 

• Separate mechanisms for 
synchronization

• Locks, semaphores, flags

• No explicit “communication” 
between processes

• Nobody owns the data

• Can be used over SMP, and NUMA 
systems 

• Emulated over distributed memory 
systems (e.g., Numascale, 
ScaleMP)
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Thread-based Model
• Single heavy-weight process is 

divided into multiple threads
• All share the original address 

space

• Subroutine/library and 
compiler directives

• POSIX Threads (PThreads)

• OpenMP
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Message Passing Model

• Multiple processes with separate 
memory spaces

• May reside on separate node 
across an “interconnection 
network”

• Data communication is through 
messages

• Sent from one process to another in 
the group

• Synchronization is usually implicit
• Using communication-assisted 

synchronization (e.g., barrier)
• As part of communication (e.g., 

Collectives, sendrecive) 

• Message Passing Interface (MPI)
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Message Passing Interface (MPI)
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What is MPI?

• A message-passing library standard
• extended message-passing model

• not a language or compiler specification

• not a specific implementation or product

• For parallel computers, clusters, and heterogeneous 
networks

• Full-featured, 3 standard versions (currently version 3)

• Designed to provide access to parallel hardware for
• end users

• library writers

• tool developers
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A Minimal MPI Program (C)

#include "mpi.h"

#include <stdio.h>

int main( int argc, char *argv[] )

{

MPI_Init( &argc, &argv );

printf( "Hello, world!\n" );

MPI_Finalize();

return 0;

}
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A Minimal MPI Program (Fortran)

program main

use MPI

integer ierr

call MPI_INIT( ierr )

print *, 'Hello, world!'

call MPI_FINALIZE( ierr )

end
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Running MPI Programs

• The Standard does not specify how to run an MPI program.

• In general, starting an MPI program is dependent on the 

implementation of MPI you are using, and might require 

various scripts, program arguments, and/or environment 

variables.

• mpiexec <args> or mpirun <args> is part of MPI-

2 and MPI-3, as a recommendation, but not a requirement
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$mpirun –host compute-0-0,compute-0-1 –n 32 ./calculate_pi 1500



Finding Out About the Environment

• Two important questions that arise early in a 
parallel program are:

• How many processes are participating in this 
computation?

• Which one am I?

• MPI provides functions to answer these questions:
• MPI_Comm_size reports the number of processes.

• MPI_Comm_rank reports the rank, a number between 0 and size-1, 
identifying the calling process
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Better Hello (C)

#include "mpi.h"

#include <stdio.h>

int main( int argc, char *argv[] )

{

int rank, size;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &size );

printf( "I am %d of %d\n", rank, size );

MPI_Finalize();

return 0;

}

Introduction to Parallel Computing 23



Better Hello (Fortran)

program main

use MPI

integer ierr, rank, size

call MPI_INIT( ierr )

call MPI_COMM_RANK( MPI_COMM_WORLD, rank, ierr )

call MPI_COMM_SIZE( MPI_COMM_WORLD, size, ierr )

print *, 'I am ', rank, ' of ', size

call MPI_FINALIZE( ierr )

end
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Some Basic Concepts

• Processes can be collected into groups.

• Each message is sent in a context, and must be 
received in the same context.

• A group and context together form a 
communicator.

• A process is identified by its rank in the group 
associated with a communicator.

• There is a default communicator whose group 
contains all initial processes, called 
MPI_COMM_WORLD.
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MPI Datatypes

• The data in a message to sent or received is described by a triple (address, count, 
datatype), where

• An MPI datatype is recursively defined as:
• predefined, corresponding to a data type from the language (e.g., MPI_INT, 

MPI_DOUBLE_PRECISION)

• a contiguous array of MPI datatypes

• a strided block of datatypes

• an indexed array of blocks of datatypes

• an arbitrary structure of datatypes

• There are MPI functions to construct custom datatypes, such an array of (int, 
float) pairs, or a row of a matrix stored column-wise.
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MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:
• How will “data” be described?

• How will processes be identified?

• How will the receiver recognize/screen messages?

• What will it mean for these operations to complete?
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What is message passing?
• Data transfer plus synchronization
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• Requires cooperation of sender and receiver

• Cooperation not always apparent in code
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MPI Tags

• Messages are sent with an accompanying user-defined integer tag, to 
assist the receiving process in identifying the message.

• Messages can be screened at the receiving end by specifying a 
specific tag, or not screened by specifying MPI_ANY_TAG as the tag 
in a receive.

• Some non-MPI message-passing systems have called tags “message 
types”.  MPI calls them tags to avoid confusion with datatypes.
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MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, 

tag, comm)

• The message buffer is described by (start, count, 
datatype).

• The target process is specified by dest, which is the rank of 
the target process in the communicator specified by comm.

• When this function returns, the data has been delivered to the 
system and the buffer can be reused.  The message may not 
have been received by the target process.
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MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, 

comm, status)

• Waits until a matching (on source and tag) message is received 

from the system, and the buffer can be used.

• source is rank in communicator specified by comm, or 

MPI_ANY_SOURCE.

• status contains further information

• Receiving fewer than count occurrences of datatype is OK, but 

receiving more is an error.
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Retrieving Further Information

• Status is a data structure allocated in the user’s program.

• In C:
int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status )

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count( &status, datatype, &recvd_count );

• In Fortran:
integer recvd_tag, recvd_from, recvd_count

integer status(MPI_STATUS_SIZE)

call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)

tag_recvd = status(MPI_TAG)

recvd_from = status(MPI_SOURCE)

call MPI_GET_COUNT(status, datatype, recvd_count, ierr)
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Simple Fortran Example - 1
program main

use MPI

integer rank, size, to, from, tag, count, i, ierr

integer src, dest

integer st_source, st_tag, st_count

integer status(MPI_STATUS_SIZE)

double precision data(10) 

call MPI_INIT( ierr )

call MPI_COMM_RANK( MPI_COMM_WORLD, rank, ierr )

call MPI_COMM_SIZE( MPI_COMM_WORLD, size, ierr )

print *, 'Process ', rank, ' of ', size, ' is alive'

dest = size - 1

src = 0 
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Simple Fortran Example - 2

if (rank .eq. 0) then

do 10, i=1, 10

data(i) = i

10     continue

call MPI_SEND( data, 10, MPI_DOUBLE_PRECISION,

+                 dest, 2001, MPI_COMM_WORLD, ierr)

else if (rank .eq. dest) then

tag = MPI_ANY_TAG

source = MPI_ANY_SOURCE

call MPI_RECV( data, 10, MPI_DOUBLE_PRECISION,

+                 source, tag, MPI_COMM_WORLD,

+                 status, ierr)
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Simple Fortran Example - 3

call MPI_GET_COUNT( status, MPI_DOUBLE_PRECISION,

st_count, ierr )

st_source = status( MPI_SOURCE )

st_tag = status( MPI_TAG )

print *, 'status info: source = ', st_source,

+           ' tag = ', st_tag, 'count = ', st_count

endif

call MPI_FINALIZE( ierr )

end
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MPI is Simple

• Many parallel programs can be written using just these six functions, 
only two of which are non-trivial:

• MPI_INIT

• MPI_FINALIZE

• MPI_COMM_SIZE

• MPI_COMM_RANK

• MPI_SEND

• MPI_RECV

• Point-to-point (send/recv) isn’t the only way...
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Introduction to Collective 
Operations in MPI

• Collective operations are called by all 
processes in a communicator.

• MPI_BCAST distributes data from 
one process (the root) to all others in 
a communicator.

• MPI_REDUCE combines data from all 
processes in communicator and 
returns it to one process.
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Example:  PI (π) in C -1

#include "mpi.h"

#include <math.h>

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done)  {

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;
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Example:  PI (π) in C - 2

h   = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {
x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);
if (myid == 0)
printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));
}
MPI_Finalize();

return 0;

}
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Alternative set of 6 Functions for Simplified 
MPI

• MPI_INIT

• MPI_FINALIZE

• MPI_COMM_SIZE

• MPI_COMM_RANK

• MPI_BCAST

• MPI_REDUCE

• What else is needed (and why)?
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Sources of Deadlocks

• Send a large message from process 0 to process 1
• If there is insufficient storage at the destination, the 

send must wait for the user to provide the memory 
space (through a receive)

• What happens with
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Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This is called “unsafe” because it depends on the 

availability of system buffers



Some Solutions to the “unsafe” Problem

• Order the operations more carefully:
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Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

• Use non-blocking operations:

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall



Toward a Portable MPI Environment

• In a wide variety of environments, one can do:

mpicc myprog.c –o myprog

mpirun –hostfile ./machines.list -np 10 myprog

to build, compile, run, and analyze performance.
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Extending the Message-Passing Interface

• Dynamic Process Management
• Dynamic process startup
• Dynamic establishment of connections

• One-sided communication
• Put/get
• Other operations

• Parallel I/O

• Other MPI-2 features
• Generalized requests
• Bindings for C++/ Fortran-90; interlanguage issues

• MPI-3 features
• Non-blocking and topological collectives
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When to use MPI

• Portability and Performance

• Irregular Data Structures

• Building Tools for Others
• Libraries

• Need to Manage memory on a per processor basis
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When not to use MPI

• Regular computation matches HPF
• But see PETSc/HPF comparison (ICASE 97-72)

• Solution (e.g., library) already exists
• http://www.mcs.anl.gov/mpi/libraries.html

• Require Fault Tolerance
• Sockets

• Distributed Computing
• CORBA, DCOM, etc.
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OpenMP Standard/Library
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OpenMP: Some syntax details to get us started

• Used for parallel programming in a shared-memory 
space

• Most of the constructs in OpenMP are compiler
directives or pragmas.

– For C and C++, the pragmas take the form:
#pragma omp construct [clause [clause]…]

– For Fortran, the directives take one of the forms:
C$OMP construct [clause [clause]…]

!$OMP construct [clause [clause]…]

*$OMP construct [clause [clause]…]

• Include files
#include “omp.h”
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How is OpenMP typically used?
• OpenMP is usually used to parallelize loops:

• Find your most time consuming loops.

• Split them up between threads.

Introduction to Parallel Computing 49

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

for (i=0; i<N; i++) {

A[i] = B[i] + k*C[i]

}

}

Sequential Program
#include “omp.h”

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

#pragma omp parallel for

for (i=0; i<N; i++) {

A[i] = B[i] + k*C[i];

}

}

Parallel Program



How is OpenMP typically used?

$gcc ./my_omp_loop.c –o ./my_omp_loop -
fopenmp
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(Cont.)

Thread 0

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

lb = 0;

ub = 250;

for (i=lb;i<ub;i++) {

A[i] = B[i] + k*C[i];

}

}

Thread 1

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

lb = 250;

ub = 500;

for (i=lb;i<ub;i++) {

A[i] = B[i] + k*C[i];

}

}

Thread 2

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

lb = 500;

ub = 750;

for (i=lb;i<ub;i++) {

A[i] = B[i] + k*C[i];

}

}

Thread 3

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

lb = 750;

ub = 1000;

for (i=lb;i<ub;i++) {

A[i] = B[i] + k*C[i];

}

}

#include “omp.h”

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

#pragma omp parallel for

for (i=0; i<N; i++) {

A[i] = B[i] + k*C[i];

}

}



OpenMP Fork-and-Join model
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printf(“program begin\n”);

N = 1000;

#pragma omp parallel for

for (i=0; i<N; i++) 

A[i] = B[i] + C[i];

M = 500;

#pragma omp parallel for

for (j=0; j<M; j++) 

p[j] = q[j] – r[j];

printf(“program done\n”); Serial

Serial

Parallel

Serial

Parallel



OpenMP Constructs

• Parallel Regions

• Worksharing (for/DO, sections, …)

• Data Environment (shared, private, …)

• Synchronization (barrier, flush, …)

• Critical sections (critical)

• Runtime functions/environment variables
(omp_get_num_threads(), …)

Introduction to Parallel Computing 52



Data Environment:
Default storage attributes

• Shared Memory programming model: 
• Most variables are shared by default

• Global variables are SHARED among threads
• Fortran: COMMON blocks, SAVE variables, MODULE 

variables
• C: File scope variables, static

• But not everything is shared...
• Stack variables in sub-programs called from parallel 

regions are PRIVATE
• Automatic variables within a statement block are PRIVATE.
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OpenMP Parallel Regions

• Each thread executes the same 
code redundantly.

Introduction to Parallel Computing 54

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID, A);

}

printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single 

copy of A 

is shared 

between all 

threads.

Threads wait  here  for all threads to 

finish before proceeding (I.e. a barrier)



The OpenMP API
Combined parallel work-share

• OpenMP shortcut: Put the “parallel” and the work-
share on the same line
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int i;

double  res[MAX];  

#pragma omp parallel

{

#pragma omp for

for (i=0;i< MAX; i++) {

res[i] = huge();

} 

}

int i;

double  res[MAX];

#pragma omp parallel for

for (i=0;i< MAX; i++) {

res[i] = huge();

} 

These are equivalent



Critical Construct
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sum = 0;

#pragma omp parallel private (lsum)

{

lsum = 0;

#pragma omp for 

for (i=0; i<N; i++) {

lsum = lsum + A[i];

}

#pragma omp critical

{ sum += lsum; }

}

Threads wait their turn;

only one thread at a time 

executes the critical section



Reduction Clause

sum = 0;

#pragma omp parallel for reduction (+:sum)

for (i=0; i<N; i++)

{

sum = sum + A[i];

}
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Shared variable


