
Week 2
Parallel Computing Models

Race Condition or Data Dependence

• A race condition exists when the result of an
execution depends on the timing of two or more
events.

• A data dependence is an ordering on a pair of
memory operations that must be preserved to
maintain correctness. (More on data dependences
in a subsequent lecture.)

• Synchronization is used to sequence control among
threads or to sequence accesses to data in parallel
code.

08/23/2012
2

CS4230

Simple Example (p. 4 of text)
• Compute n values and add them together.

• Serial solution:

• Parallel formulation?

3

Version 1: Computation Partitioning• Suppose each core computes a partial sum on n/t consecutive elements
(t is the number of threads or processors)

• Example: n = 24 and t = 8, threads are numbered from 0 to 7

4

1
{

t0 t1 t2 t3

int block_length_per_thread = n/t;

int start = id * block_length_per_thread;

for (i=start; i<start+block_length_per_thread; i++) {

x = Compute_next_value(…);

sum += x;

}

4 3

4

9

{
2 8

4

5

{

1 1

4

6

{

2 7 2

{

5 0

4

4

{

1 8

4

2

{

3 9

4

6

{

5 1

4

t4 t5 t6 t7

What Happened?
• Dependence on sum across iterations/threads

• But reordering ok since operations on sum are
associative

• Load/increment/store must be done atomically to
preserve sequential meaning

• Definitions:
• Atomicity: a set of operations is atomic if either they all

execute or none executes. Thus, there is no way to see
the results of a partial execution.

• Mutual exclusion: at most one thread can execute the
code at any time

5

Version 2: Add Locks
• Insert mutual exclusion (mutex) so that only one thread

at a time is loading/incrementing/storing count
atomically

6

int block_length_per_thread = n/t;

mutex m;

int start = id * block_length_per_thread;

for (i=start; i<start+block_length_per_thread; i++) {

my_x = Compute_next_value(…);

mutex_lock(m);

sum += my_x;

mutex_unlock(m);

}

Correct now. Done?

Version 3: Increase Granularity
• Version 3:

• Lock only to update final sum from private copy

7

int block_length_per_thread = n/t;

mutex m;

int my_sum;

int start = id * block_length_per_thread;

for (i=start; i<start+block_length_per_thread; i++) {

my_x = Compute_next_value(…);

my_sum += my_x;

}

mutex_lock(m);

sum += my_sum;

mutex_unlock(m);

Version 4: Eliminate lock
• Version 4 (bottom of page 4 in textbook):

• “Master” processor accumulates result

8

int block_length_per_thread = n/t;

mutex m;

shared my_sum[t];

int start = id * block_length_per_thread;

for (i=start; i<start+block_length_per_thread; i++) {

my_x = Compute_next_value(…);

my_sum[id] += my_x;

}

if (id == 0) { // master thread

sum = my_sum[0];

for (i=1; i<t; i++) sum += my_sum[i];

}

Correct? Why not?

More Synchronization: Barriers

• Incorrect if master thread begins accumulating final
result before other threads are done

• How can we force the master to wait until the threads
are ready?

• Definition:
• A barrier is used to block threads from proceeding beyond a

program point until all of the participating threads has reached
the barrier.

• Implementation of barriers?

9

Version 5: Eliminate lock, but add barrier
• Version 5 (bottom of page 4 in textbook):

• “Master” processor accumulates result

10

int block_length_per_thread = n/t;

mutex m;

shared my_sum[t];

int start = id * block_length_per_thread;

for (i=start; i<start+block_length_per_thread; i++) {

my_x = Compute_next_value(…);

my_sum[t] += x;

}

Synchronize_cores(); // barrier for all participating threads

if (id == 0) { // master thread

sum = my_sum[0];

for (i=1; i<t; i++) sum += my_sum[t];

}

Now it’s correct!

Version 6 (homework):
Multiple cores forming a global sum

11

Parallel Programming Models

Introduction to Parallel Computing 12

Parallel Programming Models

• Programming models are abstractions
• Can be used on various architectures

• Shared Memory Model
• Thread-based Model

• Process-based Model

• Global Address Space

• Message Passing Model

• Data Parallel Model

Introduction to Parallel Computing 13

Shared Memory Model

• A shared address space between
tasks

• Asynchronous read/write

• Separate mechanisms for
synchronization

• Locks, semaphores, flags

• No explicit “communication”
between processes

• Nobody owns the data

• Can be used over SMP, and NUMA
systems

• Emulated over distributed memory
systems (e.g., Numascale,
ScaleMP)

Introduction to Parallel Computing 14

Thread-based Model
• Single heavy-weight process is

divided into multiple threads
• All share the original address

space

• Subroutine/library and
compiler directives

• POSIX Threads (PThreads)

• OpenMP

Introduction to Parallel Computing 15

Shared

Memory

thread1
thread2

thread3

thread4

private private

private

private

Message Passing Model

• Multiple processes with separate
memory spaces

• May reside on separate node
across an “interconnection
network”

• Data communication is through
messages

• Sent from one process to another in
the group

• Synchronization is usually implicit
• Using communication-assisted

synchronization (e.g., barrier)
• As part of communication (e.g.,

Collectives, sendrecive)

• Message Passing Interface (MPI)

Introduction to Parallel Computing 16

Message Passing Interface (MPI)

Introduction to Parallel Computing 17

What is MPI?

• A message-passing library standard
• extended message-passing model

• not a language or compiler specification

• not a specific implementation or product

• For parallel computers, clusters, and heterogeneous
networks

• Full-featured, 3 standard versions (currently version 3)

• Designed to provide access to parallel hardware for
• end users

• library writers

• tool developers

Introduction to Parallel Computing 18

A Minimal MPI Program (C)

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf("Hello, world!\n");

MPI_Finalize();

return 0;

}

Introduction to Parallel Computing 19

A Minimal MPI Program (Fortran)

program main

use MPI

integer ierr

call MPI_INIT(ierr)

print *, 'Hello, world!'

call MPI_FINALIZE(ierr)

end

Introduction to Parallel Computing 20

Running MPI Programs

• The Standard does not specify how to run an MPI program.

• In general, starting an MPI program is dependent on the

implementation of MPI you are using, and might require

various scripts, program arguments, and/or environment

variables.

• mpiexec <args> or mpirun <args> is part of MPI-

2 and MPI-3, as a recommendation, but not a requirement

Introduction to Parallel Computing 21

$mpirun –host compute-0-0,compute-0-1 –n 32 ./calculate_pi 1500

Finding Out About the Environment

• Two important questions that arise early in a
parallel program are:

• How many processes are participating in this
computation?

• Which one am I?

• MPI provides functions to answer these questions:
• MPI_Comm_size reports the number of processes.

• MPI_Comm_rank reports the rank, a number between 0 and size-1,
identifying the calling process

Introduction to Parallel Computing 22

Better Hello (C)

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("I am %d of %d\n", rank, size);

MPI_Finalize();

return 0;

}

Introduction to Parallel Computing 23

Better Hello (Fortran)

program main

use MPI

integer ierr, rank, size

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

print *, 'I am ', rank, ' of ', size

call MPI_FINALIZE(ierr)

end

Introduction to Parallel Computing 24

Some Basic Concepts

• Processes can be collected into groups.

• Each message is sent in a context, and must be
received in the same context.

• A group and context together form a
communicator.

• A process is identified by its rank in the group
associated with a communicator.

• There is a default communicator whose group
contains all initial processes, called
MPI_COMM_WORLD.

Introduction to Parallel Computing 25

MPI Datatypes

• The data in a message to sent or received is described by a triple (address, count,
datatype), where

• An MPI datatype is recursively defined as:
• predefined, corresponding to a data type from the language (e.g., MPI_INT,

MPI_DOUBLE_PRECISION)

• a contiguous array of MPI datatypes

• a strided block of datatypes

• an indexed array of blocks of datatypes

• an arbitrary structure of datatypes

• There are MPI functions to construct custom datatypes, such an array of (int,
float) pairs, or a row of a matrix stored column-wise.

Introduction to Parallel Computing 26

MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:
• How will “data” be described?

• How will processes be identified?

• How will the receiver recognize/screen messages?

• What will it mean for these operations to complete?

Introduction to Parallel Computing 27

Process 0 Process
1

Send(data)

Receive(data)

What is message passing?
• Data transfer plus synchronization

Introduction to Parallel Computing 28

• Requires cooperation of sender and receiver

• Cooperation not always apparent in code

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time

MPI Tags

• Messages are sent with an accompanying user-defined integer tag, to
assist the receiving process in identifying the message.

• Messages can be screened at the receiving end by specifying a
specific tag, or not screened by specifying MPI_ANY_TAG as the tag
in a receive.

• Some non-MPI message-passing systems have called tags “message
types”. MPI calls them tags to avoid confusion with datatypes.

Introduction to Parallel Computing 29

MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest,

tag, comm)

• The message buffer is described by (start, count,
datatype).

• The target process is specified by dest, which is the rank of
the target process in the communicator specified by comm.

• When this function returns, the data has been delivered to the
system and the buffer can be reused. The message may not
have been received by the target process.

Introduction to Parallel Computing 30

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag,

comm, status)

• Waits until a matching (on source and tag) message is received

from the system, and the buffer can be used.

• source is rank in communicator specified by comm, or

MPI_ANY_SOURCE.

• status contains further information

• Receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.

Introduction to Parallel Computing 31

Retrieving Further Information

• Status is a data structure allocated in the user’s program.

• In C:
int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count(&status, datatype, &recvd_count);

• In Fortran:
integer recvd_tag, recvd_from, recvd_count

integer status(MPI_STATUS_SIZE)

call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)

tag_recvd = status(MPI_TAG)

recvd_from = status(MPI_SOURCE)

call MPI_GET_COUNT(status, datatype, recvd_count, ierr)

Introduction to Parallel Computing 32

Simple Fortran Example - 1
program main

use MPI

integer rank, size, to, from, tag, count, i, ierr

integer src, dest

integer st_source, st_tag, st_count

integer status(MPI_STATUS_SIZE)

double precision data(10)

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

print *, 'Process ', rank, ' of ', size, ' is alive'

dest = size - 1

src = 0

Introduction to Parallel Computing 33

Simple Fortran Example - 2

if (rank .eq. 0) then

do 10, i=1, 10

data(i) = i

10 continue

call MPI_SEND(data, 10, MPI_DOUBLE_PRECISION,

+ dest, 2001, MPI_COMM_WORLD, ierr)

else if (rank .eq. dest) then

tag = MPI_ANY_TAG

source = MPI_ANY_SOURCE

call MPI_RECV(data, 10, MPI_DOUBLE_PRECISION,

+ source, tag, MPI_COMM_WORLD,

+ status, ierr)

Introduction to Parallel Computing 34

Simple Fortran Example - 3

call MPI_GET_COUNT(status, MPI_DOUBLE_PRECISION,

st_count, ierr)

st_source = status(MPI_SOURCE)

st_tag = status(MPI_TAG)

print *, 'status info: source = ', st_source,

+ ' tag = ', st_tag, 'count = ', st_count

endif

call MPI_FINALIZE(ierr)

end

Introduction to Parallel Computing 35

MPI is Simple

• Many parallel programs can be written using just these six functions,
only two of which are non-trivial:

• MPI_INIT

• MPI_FINALIZE

• MPI_COMM_SIZE

• MPI_COMM_RANK

• MPI_SEND

• MPI_RECV

• Point-to-point (send/recv) isn’t the only way...

Introduction to Parallel Computing 36

Introduction to Collective
Operations in MPI

• Collective operations are called by all
processes in a communicator.

• MPI_BCAST distributes data from
one process (the root) to all others in
a communicator.

• MPI_REDUCE combines data from all
processes in communicator and
returns it to one process.

Introduction to Parallel Computing 37

Example: PI (π) in C -1

#include "mpi.h"

#include <math.h>

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done) {

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;

Introduction to Parallel Computing 38

Example: PI (π) in C - 2

h = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {
x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);
if (myid == 0)
printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));
}
MPI_Finalize();

return 0;

}

Introduction to Parallel Computing 39

Alternative set of 6 Functions for Simplified
MPI

• MPI_INIT

• MPI_FINALIZE

• MPI_COMM_SIZE

• MPI_COMM_RANK

• MPI_BCAST

• MPI_REDUCE

• What else is needed (and why)?

Introduction to Parallel Computing 40

Sources of Deadlocks

• Send a large message from process 0 to process 1
• If there is insufficient storage at the destination, the

send must wait for the user to provide the memory
space (through a receive)

• What happens with

Introduction to Parallel Computing 41

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This is called “unsafe” because it depends on the

availability of system buffers

Some Solutions to the “unsafe” Problem

• Order the operations more carefully:

Introduction to Parallel Computing 42

Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

• Use non-blocking operations:

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall

Toward a Portable MPI Environment

• In a wide variety of environments, one can do:

mpicc myprog.c –o myprog

mpirun –hostfile ./machines.list -np 10 myprog

to build, compile, run, and analyze performance.

Introduction to Parallel Computing 43

Extending the Message-Passing Interface

• Dynamic Process Management
• Dynamic process startup
• Dynamic establishment of connections

• One-sided communication
• Put/get
• Other operations

• Parallel I/O

• Other MPI-2 features
• Generalized requests
• Bindings for C++/ Fortran-90; interlanguage issues

• MPI-3 features
• Non-blocking and topological collectives

Introduction to Parallel Computing 44

When to use MPI

• Portability and Performance

• Irregular Data Structures

• Building Tools for Others
• Libraries

• Need to Manage memory on a per processor basis

Introduction to Parallel Computing 45

When not to use MPI

• Regular computation matches HPF
• But see PETSc/HPF comparison (ICASE 97-72)

• Solution (e.g., library) already exists
• http://www.mcs.anl.gov/mpi/libraries.html

• Require Fault Tolerance
• Sockets

• Distributed Computing
• CORBA, DCOM, etc.

Introduction to Parallel Computing 46

ftp://ftp.icase.edu/pub/techreports/97/97-72.ps
http://www.mcs.anl.gov/mpi/libraries.html

OpenMP Standard/Library

Introduction to Parallel Computing 47

OpenMP: Some syntax details to get us started

• Used for parallel programming in a shared-memory
space

• Most of the constructs in OpenMP are compiler
directives or pragmas.

– For C and C++, the pragmas take the form:
#pragma omp construct [clause [clause]…]

– For Fortran, the directives take one of the forms:
C$OMP construct [clause [clause]…]

!$OMP construct [clause [clause]…]

*$OMP construct [clause [clause]…]

• Include files
#include “omp.h”

Introduction to Parallel Computing 48

How is OpenMP typically used?
• OpenMP is usually used to parallelize loops:

• Find your most time consuming loops.

• Split them up between threads.

Introduction to Parallel Computing 49

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

for (i=0; i<N; i++) {

A[i] = B[i] + k*C[i]

}

}

Sequential Program
#include “omp.h”

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

#pragma omp parallel for

for (i=0; i<N; i++) {

A[i] = B[i] + k*C[i];

}

}

Parallel Program

How is OpenMP typically used?

$gcc ./my_omp_loop.c –o ./my_omp_loop -
fopenmp

Introduction to Parallel Computing 50

(Cont.)

Thread 0

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

lb = 0;

ub = 250;

for (i=lb;i<ub;i++) {

A[i] = B[i] + k*C[i];

}

}

Thread 1

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

lb = 250;

ub = 500;

for (i=lb;i<ub;i++) {

A[i] = B[i] + k*C[i];

}

}

Thread 2

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

lb = 500;

ub = 750;

for (i=lb;i<ub;i++) {

A[i] = B[i] + k*C[i];

}

}

Thread 3

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

lb = 750;

ub = 1000;

for (i=lb;i<ub;i++) {

A[i] = B[i] + k*C[i];

}

}

#include “omp.h”

void main()

{

int i, k, N=1000;

double A[N], B[N], C[N];

#pragma omp parallel for

for (i=0; i<N; i++) {

A[i] = B[i] + k*C[i];

}

}

OpenMP Fork-and-Join model

Introduction to Parallel Computing 51

printf(“program begin\n”);

N = 1000;

#pragma omp parallel for

for (i=0; i<N; i++)

A[i] = B[i] + C[i];

M = 500;

#pragma omp parallel for

for (j=0; j<M; j++)

p[j] = q[j] – r[j];

printf(“program done\n”); Serial

Serial

Parallel

Serial

Parallel

OpenMP Constructs

• Parallel Regions

• Worksharing (for/DO, sections, …)

• Data Environment (shared, private, …)

• Synchronization (barrier, flush, …)

• Critical sections (critical)

• Runtime functions/environment variables
(omp_get_num_threads(), …)

Introduction to Parallel Computing 52

Data Environment:
Default storage attributes

• Shared Memory programming model:
• Most variables are shared by default

• Global variables are SHARED among threads
• Fortran: COMMON blocks, SAVE variables, MODULE

variables
• C: File scope variables, static

• But not everything is shared...
• Stack variables in sub-programs called from parallel

regions are PRIVATE
• Automatic variables within a statement block are PRIVATE.

Introduction to Parallel Computing 53

OpenMP Parallel Regions

• Each thread executes the same
code redundantly.

Introduction to Parallel Computing 54

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID, A);

}

printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single

copy of A

is shared

between all

threads.

Threads wait here for all threads to

finish before proceeding (I.e. a barrier)

The OpenMP API
Combined parallel work-share

• OpenMP shortcut: Put the “parallel” and the work-
share on the same line

Introduction to Parallel Computing 55

int i;

double res[MAX];

#pragma omp parallel

{

#pragma omp for

for (i=0;i< MAX; i++) {

res[i] = huge();

}

}

int i;

double res[MAX];

#pragma omp parallel for

for (i=0;i< MAX; i++) {

res[i] = huge();

}

These are equivalent

Critical Construct

Introduction to Parallel Computing 56

sum = 0;

#pragma omp parallel private (lsum)

{

lsum = 0;

#pragma omp for

for (i=0; i<N; i++) {

lsum = lsum + A[i];

}

#pragma omp critical

{ sum += lsum; }

}

Threads wait their turn;

only one thread at a time

executes the critical section

Reduction Clause

sum = 0;

#pragma omp parallel for reduction (+:sum)

for (i=0; i<N; i++)

{

sum = sum + A[i];

}

Introduction to Parallel Computing 57

Shared variable

