

NoSQL Distilled
A Brief Guide to the Emerging World of Polyglot

Persistence

Pramod J. Sadalage
Martin Fowler

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales, which may include
electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For
more information, please contact:

U.S. Corporate and Government Sales
(800) 382–3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Sadalage, Pramod J.
 NoSQL distilled : a brief guide to the emerging world of polyglot
persistence / Pramod J Sadalage, Martin Fowler.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-321-82662-6 (pbk. : alk. paper) -- ISBN 0-321-82662-0

(pbk. :
alk. paper) 1. Databases--Technological innovations. 2. Information
storage and retrieval systems. I. Fowler, Martin, 1963- II. Title.
 QA76.9.D32S228 2013
 005.74--dc23

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This
publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain
permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236–3290.

ISBN-13: 978-0-321-82662-6
ISBN-10: 0-321-82662-0
Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, August 2012

For my teachers Gajanan Chinchwadkar,
Dattatraya Mhaskar, and Arvind Parchure. You

inspired me the most, thank you.
—Pramod

For Cindy
—Martin

Contents

Preface

Part I: Understand

Chapter 1: Why NoSQL?
1.1 The Value of Relational Databases

1.1.1 Getting at Persistent Data
1.1.2 Concurrency
1.1.3 Integration
1.1.4 A (Mostly) Standard Model

1.2 Impedance Mismatch
1.3 Application and Integration Databases
1.4 Attack of the Clusters
1.5 The Emergence of NoSQL
1.6 Key Points

Chapter 2: Aggregate Data Models
2.1 Aggregates

2.1.1 Example of Relations and Aggregates
2.1.2 Consequences of Aggregate Orientation

2.2 Key-Value and Document Data Models
2.3 Column-Family Stores
2.4 Summarizing Aggregate-Oriented Databases
2.5 Further Reading
2.6 Key Points

Chapter 3: More Details on Data Models

3.1 Relationships
3.2 Graph Databases
3.3 Schemaless Databases
3.4 Materialized Views
3.5 Modeling for Data Access
3.6 Key Points

Chapter 4: Distribution Models
4.1 Single Server
4.2 Sharding
4.3 Master-Slave Replication
4.4 Peer-to-Peer Replication
4.5 Combining Sharding and Replication
4.6 Key Points

Chapter 5: Consistency
5.1 Update Consistency
5.2 Read Consistency
5.3 Relaxing Consistency

5.3.1 The CAP Theorem
5.4 Relaxing Durability
5.5 Quorums
5.6 Further Reading
5.7 Key Points

Chapter 6: Version Stamps
6.1 Business and System Transactions
6.2 Version Stamps on Multiple Nodes
6.3 Key Points

Chapter 7: Map-Reduce
7.1 Basic Map-Reduce
7.2 Partitioning and Combining
7.3 Composing Map-Reduce Calculations

7.3.1 A Two Stage Map-Reduce Example
7.3.2 Incremental Map-Reduce

7.4 Further Reading
7.5 Key Points

Part II: Implement

Chapter 8: Key-Value Databases
8.1 What Is a Key-Value Store
8.2 Key-Value Store Features

8.2.1 Consistency
8.2.2 Transactions
8.2.3 Query Features
8.2.4 Structure of Data
8.2.5 Scaling

8.3 Suitable Use Cases
8.3.1 Storing Session Information
8.3.2 User Profiles, Preferences
8.3.3 Shopping Cart Data

8.4 When Not to Use
8.4.1 Relationships among Data
8.4.2 Multioperation Transactions
8.4.3 Query by Data
8.4.4 Operations by Sets

Chapter 9: Document Databases
9.1 What Is a Document Database?
9.2 Features

9.2.1 Consistency
9.2.2 Transactions
9.2.3 Availability
9.2.4 Query Features
9.2.5 Scaling

9.3 Suitable Use Cases
9.3.1 Event Logging
9.3.2 Content Management Systems, Blogging Platforms
9.3.3 Web Analytics or Real-Time Analytics
9.3.4 E-Commerce Applications

9.4 When Not to Use
9.4.1 Complex Transactions Spanning Different Operations
9.4.2 Queries against Varying Aggregate Structure

Chapter 10: Column-Family Stores
10.1 What Is a Column-Family Data Store?
10.2 Features

10.2.1 Consistency
10.2.2 Transactions
10.2.3 Availability
10.2.4 Query Features
10.2.5 Scaling

10.3 Suitable Use Cases
10.3.1 Event Logging
10.3.2 Content Management Systems, Blogging Platforms

10.3.3 Counters
10.3.4 Expiring Usage

10.4 When Not to Use

Chapter 11: Graph Databases
11.1 What Is a Graph Database?
11.2 Features

11.2.1 Consistency
11.2.2 Transactions
11.2.3 Availability
11.2.4 Query Features
11.2.5 Scaling

11.3 Suitable Use Cases
11.3.1 Connected Data
11.3.2 Routing, Dispatch, and Location-Based Services
11.3.3 Recommendation Engines

11.4 When Not to Use

Chapter 12: Schema Migrations
12.1 Schema Changes
12.2 Schema Changes in RDBMS

12.2.1 Migrations for Green Field Projects
12.2.2 Migrations in Legacy Projects

12.3 Schema Changes in a NoSQL Data Store
12.3.1 Incremental Migration
12.3.2 Migrations in Graph Databases
12.3.3 Changing Aggregate Structure

12.4 Further Reading

12.5 Key Points

Chapter 13: Polyglot Persistence
13.1 Disparate Data Storage Needs
13.2 Polyglot Data Store Usage
13.3 Service Usage over Direct Data Store Usage
13.4 Expanding for Better Functionality
13.5 Choosing the Right Technology
13.6 Enterprise Concerns with Polyglot Persistence
13.7 Deployment Complexity
13.8 Key Points

Chapter 14: Beyond NoSQL
14.1 File Systems
14.2 Event Sourcing
14.3 Memory Image
14.4 Version Control
14.5 XML Databases
14.6 Object Databases
14.7 Key Points

Chapter 15: Choosing Your Database
15.1 Programmer Productivity
15.2 Data-Access Performance
15.3 Sticking with the Default
15.4 Hedging Your Bets
15.5 Key Points
15.6 Final Thoughts

Bibliography

Index

Preface

We’ve spent some twenty years in the world of enterprise computing.
We’ve seen many things change in languages, architectures, platforms,
and processes. But through all this time one thing has stayed constant—
relational databases store the data. There have been challengers, some
of which have had success in some niches, but on the whole the data
storage question for architects has been the question of which relational
database to use.

There is a lot of value in the stability of this reign. An organization’s
data lasts much longer that its programs (at least that’s what people tell
us—we’ve seen plenty of very old programs out there). It’s valuable to
have a stable data storage that’s well understood and accessible from
many application programming platforms.

Now, however, there’s a new challenger on the block under the
confrontational tag of NoSQL. It’s born out of a need to handle larger
data volumes which forced a fundamental shift to building large
hardware platforms through clusters of commodity servers. This need
has also raised long-running concerns about the difficulties of making
application code play well with the relational data model.

The term “NoSQL” is very ill-defined. It’s generally applied to a
number of recent nonrelational databases such as Cassandra, Mongo,
Neo4J, and Riak. They embrace schemaless data, run on clusters, and
have the ability to trade off traditional consistency for other useful
properties. Advocates of NoSQL databases claim that they can build
systems that are more performant, scale much better, and are easier to
program with.

Is this the first rattle of the death knell for relational databases, or yet
another pretender to the throne? Our answer to that is “neither.”
Relational databases are a powerful tool that we expect to be using for
many more decades, but we do see a profound change in that relational

databases won’t be the only databases in use. Our view is that we are
entering a world of Polyglot Persistence where enterprises, and even
individual applications, use multiple technologies for data management.
As a result, architects will need to be familiar with these technologies
and be able to evaluate which ones to use for differing needs. Had we
not thought that, we wouldn’t have spent the time and effort writing this
book.

This book seeks to give you enough information to answer the
question of whether NoSQL databases are worth serious consideration
for your future projects. Every project is different, and there’s no way
we can write a simple decision tree to choose the right data store.
Instead, what we are attempting here is to provide you with enough
background on how NoSQL databases work, so that you can make those
judgments yourself without having to trawl the whole web. We’ve
deliberately made this a small book, so you can get this overview pretty
quickly. It won’t answer your questions definitively, but it should
narrow down the range of options you have to consider and help you
understand what questions you need to ask.

Why Are NoSQL Databases Interesting?
We see two primary reasons why people consider using a NoSQL
database.

• Application development productivity. A lot of application
development effort is spent on mapping data between in-memory
data structures and a relational database. A NoSQL database may
provide a data model that better fits the application’s needs, thus
simplifying that interaction and resulting in less code to write,
debug, and evolve.

• Large-scale data. Organizations are finding it valuable to
capture more data and process it more quickly. They are finding it
expensive, if even possible, to do so with relational databases.
The primary reason is that a relational database is designed to run

on a single machine, but it is usually more economic to run large
data and computing loads on clusters of many smaller and cheaper
machines. Many NoSQL databases are designed explicitly to run
on clusters, so they make a better fit for big data scenarios.

What’s in the Book
We’ve broken this book up into two parts. The first part concentrates on
core concepts that we think you need to know in order to judge whether
NoSQL databases are relevant for you and how they differ. In the
second part we concentrate more on implementing systems with NoSQL
databases.

Chapter 1 begins by explaining why NoSQL has had such a rapid rise
—the need to process larger data volumes led to a shift, in large
systems, from scaling vertically to scaling horizontally on clusters. This
explains an important feature of the data model of many NoSQL
databases—the explicit storage of a rich structure of closely related
data that is accessed as a unit. In this book we call this kind of structure
an aggregate.

Chapter 2 describes how aggregates manifest themselves in three of
the main data models in NoSQL land: key-value (“Key-Value and
Document Data Models,” p. 20), document (“Key-Value and Document
Data Models,” p. 20), and column family (“Column-Family Stores,” p.
21) databases. Aggregates provide a natural unit of interaction for many
kinds of applications, which both improves running on a cluster and
makes it easier to program the data access. Chapter 3 shifts to the
downside of aggregates—the difficulty of handling relationships
(“Relationships,” p. 25) between entities in different aggregates. This
leads us naturally to graph databases (“Graph Databases,” p. 26), a
NoSQL data model that doesn’t fit into the aggregate-oriented camp.
We also look at the common characteristic of NoSQL databases that
operate without a schema (“Schemaless Databases,” p. 28)—a feature
that provides some greater flexibility, but not as much as you might first

think.
Having covered the data-modeling aspect of NoSQL, we move on to

distribution: Chapter 4 describes how databases distribute data to run
on clusters. This breaks down into sharding (“Sharding,” p. 38) and
replication, the latter being either master-slave (“Master-Slave
Replication,” p. 40) or peer-to-peer (“Peer-to-Peer Replication,” p.
42) replication. With the distribution models defined, we can then move
on to the issue of consistency. NoSQL databases provide a more varied
range of consistency options than relational databases—which is a
consequence of being friendly to clusters. So Chapter 5 talks about how
consistency changes for updates (“Update Consistency,” p. 47) and
reads (“Read Consistency,” p. 49), the role of quorums (“Quorums,” p.
57), and how even some durability (“Relaxing Durability,” p. 56) can
be traded off. If you’ve heard anything about NoSQL, you’ll almost
certainly have heard of the CAP theorem; the “The CAP Theorem”
section on p. 53 explains what it is and how it fits in.

While these chapters concentrate primarily on the principles of how
data gets distributed and kept consistent, the next two chapters talk
about a couple of important tools that make this work. Chapter 6
describes version stamps, which are for keeping track of changes and
detecting inconsistencies. Chapter 7 outlines map-reduce, which is a
particular way of organizing parallel computation that fits in well with
clusters and thus with NoSQL systems.

Once we’re done with concepts, we move to implementation issues
by looking at some example databases under the four key categories:
Chapter 8 uses Riak as an example of key-value databases, Chapter 9
takes MongoDB as an example for document databases, Chapter 10
chooses Cassandra to explore column-family databases, and finally
Chapter 11 plucks Neo4J as an example of graph databases. We must
stress that this is not a comprehensive study—there are too many out
there to write about, let alone for us to try. Nor does our choice of
examples imply any recommendations. Our aim here is to give you a

feel for the variety of stores that exist and for how different database
technologies use the concepts we outlined earlier. You’ll see what kind
of code you need to write to program against these systems and get a
glimpse of the mindset you’ll need to use them.

A common statement about NoSQL databases is that since they have
no schema, there is no difficulty in changing the structure of data during
the life of an application. We disagree—a schemaless database still has
an implicit schema that needs change discipline when you implement it,
so Chapter 12 explains how to do data migration both for strong
schemas and for schemaless systems.

All of this should make it clear that NoSQL is not a single thing, nor
is it something that will replace relational databases. Chapter 13 looks
at this future world of Polyglot Persistence, where multiple data-storage
worlds coexist, even within the same application. Chapter 14 then
expands our horizons beyond this book, considering other technologies
that we haven’t covered that may also be a part of this polyglot-
persistent world.

With all of this information, you are finally at a point where you can
make a choice of what data storage technologies to use, so our final
chapter (Chapter 15, “Choosing Your Database,” p. 147) offers some
advice on how to think about these choices. In our view, there are two
key factors—finding a productive programming model where the data
storage model is well aligned to your application, and ensuring that you
can get the data access performance and resilience you need. Since this
is early days in the NoSQL life story, we’re afraid that we don’t have a
well-defined procedure to follow, and you’ll need to test your options
in the context of your needs.

This is a brief overview—we’ve been very deliberate in limiting the
size of this book. We’ve selected the information we think is the most
important—so that you don’t have to. If you are going to seriously
investigate these technologies, you’ll need to go further than what we
cover here, but we hope this book provides a good context to start you

on your way.
We also need to stress that this is a very volatile field of the

computer industry. Important aspects of these stores are changing every
year—new features, new databases. We’ve made a strong effort to
focus on concepts, which we think will be valuable to understand even
as the underlying technology changes. We’re pretty confident that most
of what we say will have this longevity, but absolutely sure that not all
of it will.

Who Should Read This Book
Our target audience for this book is people who are considering using
some form of a NoSQL database. This may be for a new project, or
because they are hitting barriers that are suggesting a shift on an existing
project.

Our aim is to give you enough information to know whether NoSQL
technology makes sense for your needs, and if so which tool to explore
in more depth. Our primary imagined audience is an architect or
technical lead, but we think this book is also valuable for people
involved in software management who want to get an overview of this
new technology. We also think that if you’re a developer who wants an
overview of this technology, this book will be a good starting point.

We don’t go into the details of programming and deploying specific
databases here—we leave that for specialist books. We’ve also been
very firm on a page limit, to keep this book a brief introduction. This is
the kind of book we think you should be able to read on a plane flight: It
won’t answer all your questions but should give you a good set of
questions to ask.

If you’ve already delved into the world of NoSQL, this book
probably won’t commit any new items to your store of knowledge.
However, it may still be useful by helping you explain what you’ve
learned to others. Making sense of the issues around NoSQL is
important—particularly if you’re trying to persuade someone to

consider using NoSQL in a project.

What Are the Databases
In this book, we’ve followed a common approach of categorizing
NoSQL databases according to their data model. Here is a table of the
four data models and some of the databases that fit each model. This is
not a comprehensive list—it only mentions the more common databases
we’ve come across. At the time of writing, you can find more
comprehensive lists at http://nosql-database.org and
http://nosql.mypopescu.com/kb/nosql. For each category, we mark with
italics the database we use as an example in the relevant chapter.

Our goal is to pick a representative tool from each of the categories
of the databases. While we talk about specific examples, most of the
discussion should apply to the entire category, even though these
products are unique and cannot be generalized as such. We will pick
one database for each of the key-value, document, column family, and
graph databases; where appropriate, we will mention other products
that may fulfill a specific feature need.

This classification by data model is useful, but crude. The lines
between the different data models, such as the distinction between key-
value and document databases (“Key-Value and Document Data
Models,” p. 20), are often blurry. Many databases don’t fit cleanly into
categories; for example, OrientDB calls itself both a document database
and a graph database.

Acknowledgments

Our first thanks go to our colleagues at ThoughtWorks, many of whom
have been applying NoSQL to our delivery projects over the last couple
of years. Their experiences have been a primary source both of our
motivation in writing this book and of practical information on the value
of this technology. The positive experience we’ve had so far with
NoSQL data stores is the basis of our view that this is an important
technology and a significant shift in data storage.

We’d also like to thank various groups who have given public talks,
published articles, and blogs on their use of NoSQL. Much progress in
software development gets hidden when people don’t share with their
peers what they’ve learned. Particular thanks here go to Google and
Amazon whose papers on Bigtable and Dynamo were very influential in
getting the NoSQL movement going. We also thank companies that have
sponsored and contributed to the open-source development of NoSQL
databases. An interesting difference with previous shifts in data storage
is the degree to which the NoSQL movement is rooted in open-source
work.

Particular thanks go to ThoughtWorks for giving us the time to work
on this book. We joined ThoughtWorks at around the same time and
have been here for over a decade. ThoughtWorks continues to be a very
hospitable home for us, a source of knowledge and practice, and a
welcome environment of openly sharing what we learn—so different
from the traditional systems delivery organizations.

Bethany Anders-Beck, Ilias Bartolini, Tim Berglund, Duncan Craig,
Paul Duvall, Oren Eini, Perryn Fowler, Michael Hunger, Eric Kascic,
Joshua Kerievsky, Anand Krishnaswamy, Bobby Norton, Ade
Oshineye, Thiyagu Palanisamy, Prasanna Pendse, Dan Pritchett, David
Rice, Mike Roberts, Marko Rodriquez, Andrew Slocum, Toby Tripp,
Steve Vinoski, Dean Wampler, Jim Webber, and Wee Witthawaskul
reviewed early drafts of this book and helped us improve it with their
advice.

Additionally, Pramod would like to thank Schaumburg Library for

providing great service and quiet space for writing; Arhana and Arula,
my beautiful daughters, for their understanding that daddy would go to
the library and not take them along; Rupali, my beloved wife, for her
immense support and help in keeping me focused.

Part I: Understand

Chapter 1. Why NoSQL?

For almost as long as we’ve been in the software profession, relational
databases have been the default choice for serious data storage,
especially in the world of enterprise applications. If you’re an architect
starting a new project, your only choice is likely to be which relational
database to use. (And often not even that, if your company has a
dominant vendor.) There have been times when a database technology
threatened to take a piece of the action, such as object databases in the
1990’s, but these alternatives never got anywhere.

After such a long period of dominance, the current excitement about
NoSQL databases comes as a surprise. In this chapter we’ll explore
why relational databases became so dominant, and why we think the
current rise of NoSQL databases isn’t a flash in the pan.

1.1. The Value of Relational Databases
Relational databases have become such an embedded part of our
computing culture that it’s easy to take them for granted. It’s therefore
useful to revisit the benefits they provide.

1.1.1. Getting at Persistent Data
Probably the most obvious value of a database is keeping large amounts
of persistent data. Most computer architectures have the notion of two
areas of memory: a fast volatile “main memory” and a larger but slower
“backing store.” Main memory is both limited in space and loses all
data when you lose power or something bad happens to the operating
system. Therefore, to keep data around, we write it to a backing store,
commonly seen a disk (although these days that disk can be persistent
memory).

The backing store can be organized in all sorts of ways. For many
productivity applications (such as word processors), it’s a file in the

file system of the operating system. For most enterprise applications,
however, the backing store is a database. The database allows more
flexibility than a file system in storing large amounts of data in a way
that allows an application program to get at small bits of that
information quickly and easily.

1.1.2. Concurrency
Enterprise applications tend to have many people looking at the same
body of data at once, possibly modifying that data. Most of the time they
are working on different areas of that data, but occasionally they
operate on the same bit of data. As a result, we have to worry about
coordinating these interactions to avoid such things as double booking
of hotel rooms.

Concurrency is notoriously difficult to get right, with all sorts of
errors that can trap even the most careful programmers. Since enterprise
applications can have lots of users and other systems all working
concurrently, there’s a lot of room for bad things to happen. Relational
databases help handle this by controlling all access to their data through
transactions. While this isn’t a cure-all (you still have to handle a
transactional error when you try to book a room that’s just gone), the
transactional mechanism has worked well to contain the complexity of
concurrency.

Transactions also play a role in error handling. With transactions,
you can make a change, and if an error occurs during the processing of
the change you can roll back the transaction to clean things up.

1.1.3. Integration
Enterprise applications live in a rich ecosystem that requires multiple
applications, written by different teams, to collaborate in order to get
things done. This kind of inter-application collaboration is awkward
because it means pushing the human organizational boundaries.
Applications often need to use the same data and updates made through

one application have to be visible to others.
A common way to do this is shared database integration [Hohpe

and Woolf] where multiple applications store their data in a single
database. Using a single database allows all the applications to use
each others’ data easily, while the database’s concurrency control
handles multiple applications in the same way as it handles multiple
users in a single application.

1.1.4. A (Mostly) Standard Model
Relational databases have succeeded because they provide the core
benefits we outlined earlier in a (mostly) standard way. As a result,
developers and database professionals can learn the basic relational
model and apply it in many projects. Although there are differences
between different relational databases, the core mechanisms remain the
same: Different vendors’ SQL dialects are similar, transactions operate
in mostly the same way.

1.2. Impedance Mismatch
Relational databases provide many advantages, but they are by no
means perfect. Even from their early days, there have been lots of
frustrations with them.

For application developers, the biggest frustration has been what’s
commonly called the impedance mismatch: the difference between the
relational model and the in-memory data structures. The relational data
model organizes data into a structure of tables and rows, or more
properly, relations and tuples. In the relational model, a tuple is a set of
name-value pairs and a relation is a set of tuples. (The relational
definition of a tuple is slightly different from that in mathematics and
many programming languages with a tuple data type, where a tuple is a
sequence of values.) All operations in SQL consume and return
relations, which leads to the mathematically elegant relational algebra.

This foundation on relations provides a certain elegance and

simplicity, but it also introduces limitations. In particular, the values in
a relational tuple have to be simple—they cannot contain any structure,
such as a nested record or a list. This limitation isn’t true for in-memory
data structures, which can take on much richer structures than relations.
As a result, if you want to use a richer in-memory data structure, you
have to translate it to a relational representation to store it on disk.
Hence the impedance mismatch—two different representations that
require translation (see Figure 1.1).

Figure 1.1. An order, which looks like a single aggregate structure
in the UI, is split into many rows from many tables in a relational

database
The impedance mismatch is a major source of frustration to

application developers, and in the 1990s many people believed that it
would lead to relational databases being replaced with databases that
replicate the in-memory data structures to disk. That decade was
marked with the growth of object-oriented programming languages, and
with them came object-oriented databases—both looking to be the

dominant environment for software development in the new millennium.
However, while object-oriented languages succeeded in becoming

the major force in programming, object-oriented databases faded into
obscurity. Relational databases saw off the challenge by stressing their
role as an integration mechanism, supported by a mostly standard
language of data manipulation (SQL) and a growing professional divide
between application developers and database administrators.

Impedance mismatch has been made much easier to deal with by the
wide availability of object-relational mapping frameworks, such as
Hibernate and iBATIS that implement well-known mapping patterns
[Fowler PoEAA], but the mapping problem is still an issue. Object-
relational mapping frameworks remove a lot of grunt work, but can
become a problem of their own when people try too hard to ignore the
database and query performance suffers.

Relational databases continued to dominate the enterprise computing
world in the 2000s, but during that decade cracks began to open in their
dominance.

1.3. Application and Integration Databases
The exact reasons why relational databases triumphed over OO
databases are still the subject of an occasional pub debate for
developers of a certain age. But in our view, the primary factor was the
role of SQL as an integration mechanism between applications. In this
scenario, the database acts as an integration database—with multiple
applications, usually developed by separate teams, storing their data in
a common database. This improves communication because all the
applications are operating on a consistent set of persistent data.

There are downsides to shared database integration. A structure
that’s designed to integrate many applications ends up being more
complex—indeed, often dramatically more complex—than any single
application needs. Furthermore, should an application want to make
changes to its data storage, it needs to coordinate with all the other

applications using the database. Different applications have different
structural and performance needs, so an index required by one
application may cause a problematic hit on inserts for another. The fact
that each application is usually a separate team also means that the
database usually cannot trust applications to update the data in a way
that preserves database integrity and thus needs to take responsibility
for that within the database itself.

A different approach is to treat your database as an application
database—which is only directly accessed by a single application
codebase that’s looked after by a single team. With an application
database, only the team using the application needs to know about the
database structure, which makes it much easier to maintain and evolve
the schema. Since the application team controls both the database and
the application code, the responsibility for database integrity can be put
in the application code.

Interoperability concerns can now shift to the interfaces of the
application, allowing for better interaction protocols and providing
support for changing them. During the 2000s we saw a distinct shift to
web services [Daigneau], where applications would communicate over
HTTP. Web services enabled a new form of a widely used
communication mechanism—a challenger to using the SQL with shared
databases. (Much of this work was done under the banner of “Service-
Oriented Architecture”—a term most notable for its lack of a consistent
meaning.)

An interesting aspect of this shift to web services as an integration
mechanism was that it resulted in more flexibility for the structure of the
data that was being exchanged. If you communicate with SQL, the data
must be structured as relations. However, with a service, you are able
to use richer data structures with nested records and lists. These are
usually represented as documents in XML or, more recently, JSON. In
general, with remote communication you want to reduce the number of
round trips involved in the interaction, so it’s useful to be able to put a

rich structure of information into a single request or response.
If you are going to use services for integration, most of the time web

services—using text over HTTP—is the way to go. However, if you are
dealing with highly performance-sensitive interactions, you may need a
binary protocol. Only do this if you are sure you have the need, as text
protocols are easier to work with—consider the example of the
Internet.

Once you have made the decision to use an application database, you
get more freedom of choosing a database. Since there is a decoupling
between your internal database and the services with which you talk to
the outside world, the outside world doesn’t have to care how you store
your data, allowing you to consider nonrelational options. Furthermore,
there are many features of relational databases, such as security, that are
less useful to an application database because they can be done by the
enclosing application instead.

Despite this freedom, however, it wasn’t apparent that application
databases led to a big rush to alternative data stores. Most teams that
embraced the application database approach stuck with relational
databases. After all, using an application database yields many
advantages even ignoring the database flexibility (which is why we
generally recommend it). Relational databases are familiar and usually
work very well or, at least, well enough. Perhaps, given time, we might
have seen the shift to application databases to open a real crack in the
relational hegemony—but such cracks came from another source.

1.4. Attack of the Clusters
At the beginning of the new millennium the technology world was hit by
the busting of the 1990s dot-com bubble. While this saw many people
questioning the economic future of the Internet, the 2000s did see
several large web properties dramatically increase in scale.

This increase in scale was happening along many dimensions.
Websites started tracking activity and structure in a very detailed way.

Large sets of data appeared: links, social networks, activity in logs,
mapping data. With this growth in data came a growth in users—as the
biggest websites grew to be vast estates regularly serving huge numbers
of visitors.

Coping with the increase in data and traffic required more computing
resources. To handle this kind of increase, you have two choices: up or
out. Scaling up implies bigger machines, more processors, disk storage,
and memory. But bigger machines get more and more expensive, not to
mention that there are real limits as your size increases. The alternative
is to use lots of small machines in a cluster. A cluster of small machines
can use commodity hardware and ends up being cheaper at these kinds
of scales. It can also be more resilient—while individual machine
failures are common, the overall cluster can be built to keep going
despite such failures, providing high reliability.

As large properties moved towards clusters, that revealed a new
problem—relational databases are not designed to be run on clusters.
Clustered relational databases, such as the Oracle RAC or Microsoft
SQL Server, work on the concept of a shared disk subsystem. They use
a cluster-aware file system that writes to a highly available disk
subsystem—but this means the cluster still has the disk subsystem as a
single point of failure. Relational databases could also be run as
separate servers for different sets of data, effectively sharding
(“Sharding,” p. 38) the database. While this separates the load, all the
sharding has to be controlled by the application which has to keep track
of which database server to talk to for each bit of data. Also, we lose
any querying, referential integrity, transactions, or consistency controls
that cross shards. A phrase we often hear in this context from people
who’ve done this is “unnatural acts.”

These technical issues are exacerbated by licensing costs.
Commercial relational databases are usually priced on a single-server
assumption, so running on a cluster raised prices and led to frustrating
negotiations with purchasing departments.

This mismatch between relational databases and clusters led some
organization to consider an alternative route to data storage. Two
companies in particular—Google and Amazon—have been very
influential. Both were on the forefront of running large clusters of this
kind; furthermore, they were capturing huge amounts of data. These
things gave them the motive. Both were successful and growing
companies with strong technical components, which gave them the
means and opportunity. It was no wonder they had murder in mind for
their relational databases. As the 2000s drew on, both companies
produced brief but highly influential papers about their efforts:
BigTable from Google and Dynamo from Amazon.

It’s often said that Amazon and Google operate at scales far removed
from most organizations, so the solutions they needed may not be
relevant to an average organization. While it’s true that most software
projects don’t need that level of scale, it’s also true that more and more
organizations are beginning to explore what they can do by capturing
and processing more data—and to run into the same problems. So, as
more information leaked out about what Google and Amazon had done,
people began to explore making databases along similar lines—
explicitly designed to live in a world of clusters. While the earlier
menaces to relational dominance turned out to be phantoms, the threat
from clusters was serious.

1.5. The Emergence of NoSQL
It’s a wonderful irony that the term “NoSQL” first made its appearance
in the late 90s as the name of an open-source relational database
[Strozzi NoSQL]. Led by Carlo Strozzi, this database stores its tables
as ASCII files, each tuple represented by a line with fields separated by
tabs. The name comes from the fact that the database doesn’t use SQL
as a query language. Instead, the database is manipulated through shell
scripts that can be combined into the usual UNIX pipelines. Other than
the terminological coincidence, Strozzi’s NoSQL had no influence on

the databases we describe in this book.
The usage of “NoSQL” that we recognize today traces back to a

meetup on June 11, 2009 in San Francisco organized by Johan
Oskarsson, a software developer based in London. The example of
BigTable and Dynamo had inspired a bunch of projects experimenting
with alternative data storage, and discussions of these had become a
feature of the better software conferences around that time. Johan was
interested in finding out more about some of these new databases while
he was in San Francisco for a Hadoop summit. Since he had little time
there, he felt that it wouldn’t be feasible to visit them all, so he decided
to host a meetup where they could all come together and present their
work to whoever was interested.

Johan wanted a name for the meetup—something that would make a
good Twitter hashtag: short, memorable, and without too many Google
hits so that a search on the name would quickly find the meetup. He
asked for suggestions on the #cassandra IRC channel and got a few,
selecting the suggestion of “NoSQL” from Eric Evans (a developer at
Rackspace, no connection to the DDD Eric Evans). While it had the
disadvantage of being negative and not really describing these systems,
it did fit the hashtag criteria. At the time they were thinking of only
naming a single meeting and were not expecting it to catch on to name
this entire technology trend [Oskarsson].

The term “NoSQL” caught on like wildfire, but it’s never been a term
that’s had much in the way of a strong definition. The original call
[NoSQL Meetup] for the meetup asked for “open-source, distributed,
nonrelational databases.” The talks there [NoSQL Debrief] were from
Voldemort, Cassandra, Dynomite, HBase, Hypertable, CouchDB, and
MongoDB—but the term has never been confined to that original septet.
There’s no generally accepted definition, nor an authority to provide
one, so all we can do is discuss some common characteristics of the
databases that tend to be called “NoSQL.”

To begin with, there is the obvious point that NoSQL databases don’t

use SQL. Some of them do have query languages, and it makes sense for
them to be similar to SQL in order to make them easier to learn.
Cassandra’s CQL is like this—“exactly like SQL (except where it’s
not)” [CQL]. But so far none have implemented anything that would fit
even the rather flexible notion of standard SQL. It will be interesting to
see what happens if an established NoSQL database decides to
implement a reasonably standard SQL; the only predictable outcome for
such an eventuality is plenty of argument.

Another important characteristic of these databases is that they are
generally open-source projects. Although the term NoSQL is frequently
applied to closed-source systems, there’s a notion that NoSQL is an
open-source phenomenon.

Most NoSQL databases are driven by the need to run on clusters, and
this is certainly true of those that were talked about during the initial
meetup. This has an effect on their data model as well as their approach
to consistency. Relational databases use ACID transactions (p. 19) to
handle consistency across the whole database. This inherently clashes
with a cluster environment, so NoSQL databases offer a range of
options for consistency and distribution.

However, not all NoSQL databases are strongly oriented towards
running on clusters. Graph databases are one style of NoSQL databases
that uses a distribution model similar to relational databases but offers
a different data model that makes it better at handling data with complex
relationships.

NoSQL databases are generally based on the needs of the early 21st
century web estates, so usually only systems developed during that time
frame are called NoSQL—thus ruling out hoards of databases created
before the new millennium, let alone BC (Before Codd).

NoSQL databases operate without a schema, allowing you to freely
add fields to database records without having to define any changes in
structure first. This is particularly useful when dealing with nonuniform
data and custom fields which forced relational databases to use names

like customField6 or custom field tables that are awkward to process
and understand.

All of the above are common characteristics of things that we see
described as NoSQL databases. None of these are definitional, and
indeed it’s likely that there will never be a coherent definition of
“NoSQL” (sigh). However, this crude set of characteristics has been
our guide in writing this book. Our chief enthusiasm with this subject is
that the rise of NoSQL has opened up the range of options for data
storage. Consequently, this opening up shouldn’t be confined to what’s
usually classed as a NoSQL store. We hope that other data storage
options will become more acceptable, including many that predate the
NoSQL movement. There is a limit, however, to what we can usefully
discuss in this book, so we’ve decided to concentrate on this
noDefinition.

When you first hear “NoSQL,” an immediate question is what does it
stand for—a “no” to SQL? Most people who talk about NoSQL say that
it really means “Not Only SQL,” but this interpretation has a couple of
problems. Most people write “NoSQL” whereas “Not Only SQL”
would be written “NOSQL.” Also, there wouldn’t be much point in
calling something a NoSQL database under the “not only” meaning—
because then, Oracle or Postgres would fit that definition, we would
prove that black equals white and would all get run over on crosswalks.

To resolve this, we suggest that you don’t worry about what the term
stands for, but rather about what it means (which is recommended with
most acronyms). Thus, when “NoSQL” is applied to a database, it
refers to an ill-defined set of mostly open-source databases, mostly
developed in the early 21st century, and mostly not using SQL.

The “not-only” interpretation does have its value, as it describes the
ecosystem that many people think is the future of databases. This is in
fact what we consider to be the most important contribution of this way
of thinking—it’s better to think of NoSQL as a movement rather than a
technology. We don’t think that relational databases are going away—

they are still going to be the most common form of database in use.
Even though we’ve written this book, we still recommend relational
databases. Their familiarity, stability, feature set, and available support
are compelling arguments for most projects.

The change is that now we see relational databases as one option for
data storage. This point of view is often referred to as polyglot
persistence—using different data stores in different circumstances.
Instead of just picking a relational database because everyone does, we
need to understand the nature of the data we’re storing and how we
want to manipulate it. The result is that most organizations will have a
mix of data storage technologies for different circumstances.

In order to make this polyglot world work, our view is that
organizations also need to shift from integration databases to
application databases. Indeed, we assume in this book that you’ll be
using a NoSQL database as an application database; we don’t generally
consider NoSQL databases a good choice for integration databases. We
don’t see this as a disadvantage as we think that even if you don’t use
NoSQL, shifting to encapsulating data in services is a good direction to
take.

In our account of the history of NoSQL development, we’ve
concentrated on big data running on clusters. While we think this is the
key thing that drove the opening up of the database world, it isn’t the
only reason we see project teams considering NoSQL databases. An
equally important reason is the old frustration with the impedance
mismatch problem. The big data concerns have created an opportunity
for people to think freshly about their data storage needs, and some
development teams see that using a NoSQL database can help their
productivity by simplifying their database access even if they have no
need to scale beyond a single machine.

So, as you read the rest of this book, remember there are two primary
reasons for considering NoSQL. One is to handle data access with sizes
and performance that demand a cluster; the other is to improve the

productivity of application development by using a more convenient
data interaction style.

1.6. Key Points
• Relational databases have been a successful technology for

twenty years, providing persistence, concurrency control, and an
integration mechanism.

• Application developers have been frustrated with the impedance
mismatch between the relational model and the in-memory data
structures.

• There is a movement away from using databases as integration
points towards encapsulating databases within applications and
integrating through services.

• The vital factor for a change in data storage was the need to
support large volumes of data by running on clusters. Relational
databases are not designed to run efficiently on clusters.

• NoSQL is an accidental neologism. There is no prescriptive
definition—all you can make is an observation of common
characteristics.

• The common characteristics of NoSQL databases are
• Not using the relational model
• Running well on clusters
• Open-source
• Built for the 21st century web estates
• Schemaless

• The most important result of the rise of NoSQL is Polyglot
Persistence.

Chapter 2. Aggregate Data Models

A data model is the model through which we perceive and manipulate
our data. For people using a database, the data model describes how
we interact with the data in the database. This is distinct from a storage
model, which describes how the database stores and manipulates the
data internally. In an ideal world, we should be ignorant of the storage
model, but in practice we need at least some inkling of it—primarily to
achieve decent performance.

In conversation, the term “data model” often means the model of the
specific data in an application. A developer might point to an entity-
relationship diagram of their database and refer to that as their data
model containing customers, orders, products, and the like. However, in
this book we’ll mostly be using “data model” to refer to the model by
which the database organizes data—what might be more formally
called a metamodel.

The dominant data model of the last couple of decades is the
relational data model, which is best visualized as a set of tables, rather
like a page of a spreadsheet. Each table has rows, with each row
representing some entity of interest. We describe this entity through
columns, each having a single value. A column may refer to another row
in the same or different table, which constitutes a relationship between
those entities. (We’re using informal but common terminology when we
speak of tables and rows; the more formal terms would be relations and
tuples.)

One of the most obvious shifts with NoSQL is a move away from the
relational model. Each NoSQL solution has a different model that it
uses, which we put into four categories widely used in the NoSQL
ecosystem: key-value, document, column-family, and graph. Of these,
the first three share a common characteristic of their data models which
we will call aggregate orientation. In this chapter we’ll explain what

we mean by aggregate orientation and what it means for data models.

2.1. Aggregates
The relational model takes the information that we want to store and
divides it into tuples (rows). A tuple is a limited data structure: It
captures a set of values, so you cannot nest one tuple within another to
get nested records, nor can you put a list of values or tuples within
another. This simplicity underpins the relational model—it allows us to
think of all operations as operating on and returning tuples.

Aggregate orientation takes a different approach. It recognizes that
often, you want to operate on data in units that have a more complex
structure than a set of tuples. It can be handy to think in terms of a
complex record that allows lists and other record structures to be
nested inside it. As we’ll see, key-value, document, and column-family
databases all make use of this more complex record. However, there is
no common term for this complex record; in this book we use the term
“aggregate.”

Aggregate is a term that comes from Domain-Driven Design [Evans].
In Domain-Driven Design, an aggregate is a collection of related
objects that we wish to treat as a unit. In particular, it is a unit for data
manipulation and management of consistency. Typically, we like to
update aggregates with atomic operations and communicate with our
data storage in terms of aggregates. This definition matches really well
with how key-value, document, and column-family databases work.
Dealing in aggregates makes it much easier for these databases to
handle operating on a cluster, since the aggregate makes a natural unit
for replication and sharding. Aggregates are also often easier for
application programmers to work with, since they often manipulate data
through aggregate structures.

2.1.1. Example of Relations and Aggregates
At this point, an example may help explain what we’re talking about.

Let’s assume we have to build an e-commerce website; we are going to
be selling items directly to customers over the web, and we will have
to store information about users, our product catalog, orders, shipping
addresses, billing addresses, and payment data. We can use this
scenario to model the data using a relation data store as well as NoSQL
data stores and talk about their pros and cons. For a relational database,
we might start with a data model shown in Figure 2.1.

Figure 2.1. Data model oriented around a relational database (using
UML notation [Fowler UML])

Figure 2.2 presents some sample data for this model.

Figure 2.2. Typical data using RDBMS data model
As we’re good relational soldiers, everything is properly

normalized, so that no data is repeated in multiple tables. We also have
referential integrity. A realistic order system would naturally be more
involved than this, but this is the benefit of the rarefied air of a book.

Now let’s see how this model might look when we think in more
aggregate-oriented terms (Figure 2.3).

Figure 2.3. An aggregate data model
Again, we have some sample data, which we’ll show in JSON

format as that’s a common representation for data in NoSQL land.
Click here to view code image

// in customers
{
"id":1,
"name":"Martin",
"billingAddress":[{"city":"Chicago"}]
}

// in orders
{
"id":99,
"customerId":1,
"orderItems":[
 {
 "productId":27,
 "price": 32.45,
 "productName": "NoSQL Distilled"
 }
],

"shippingAddress":[{"city":"Chicago"}]
"orderPayment":[
 {
 "ccinfo":"1000-1000-1000-1000",
 "txnId":"abelif879rft",
 "billingAddress": {"city": "Chicago"}
 }
],
}

In this model, we have two main aggregates: customer and order.
We’ve used the black-diamond composition marker in UML to show
how data fits into the aggregation structure. The customer contains a list
of billing addresses; the order contains a list of order items, a shipping
address, and payments. The payment itself contains a billing address for
that payment.

A single logical address record appears three times in the example
data, but instead of using IDs it’s treated as a value and copied each
time. This fits the domain where we would not want the shipping
address, nor the payment’s billing address, to change. In a relational
database, we would ensure that the address rows aren’t updated for this
case, making a new row instead. With aggregates, we can copy the
whole address structure into the aggregate as we need to.

The link between the customer and the order isn’t within either
aggregate—it’s a relationship between aggregates. Similarly, the link
from an order item would cross into a separate aggregate structure for
products, which we haven’t gone into. We’ve shown the product name
as part of the order item here—this kind of denormalization is similar to
the tradeoffs with relational databases, but is more common with
aggregates because we want to minimize the number of aggregates we
access during a data interaction.

The important thing to notice here isn’t the particular way we’ve
drawn the aggregate boundary so much as the fact that you have to think
about accessing that data—and make that part of your thinking when

developing the application data model. Indeed we could draw our
aggregate boundaries differently, putting all the orders for a customer
into the customer aggregate (Figure 2.4).

Figure 2.4. Embed all the objects for customer and the customer’s
orders

Using the above data model, an example Customer and Order would
look like this:
Click here to view code image

// in customers
{
"customer": {
"id": 1,

"name": "Martin",
"billingAddress": [{"city": "Chicago"}],
"orders": [
 {
 "id":99,
 "customerId":1,
 "orderItems":[
 {
 "productId":27,
 "price": 32.45,
 "productName": "NoSQL Distilled"
 }
],
 "shippingAddress":[{"city":"Chicago"}]
 "orderPayment":[
 {
 "ccinfo":"1000-1000-1000-1000",
 "txnId":"abelif879rft",
 "billingAddress": {"city": "Chicago"}
 }],
 }]
}
}

Like most things in modeling, there’s no universal answer for how to
draw your aggregate boundaries. It depends entirely on how you tend to
manipulate your data. If you tend to access a customer together with all
of that customer’s orders at once, then you would prefer a single
aggregate. However, if you tend to focus on accessing a single order at
a time, then you should prefer having separate aggregates for each
order. Naturally, this is very context-specific; some applications will
prefer one or the other, even within a single system, which is exactly
why many people prefer aggregate ignorance.

2.1.2. Consequences of Aggregate Orientation
While the relational mapping captures the various data elements and
their relationships reasonably well, it does so without any notion of an
aggregate entity. In our domain language, we might say that an order

consists of order items, a shipping address, and a payment. This can be
expressed in the relational model in terms of foreign key relationships
—but there is nothing to distinguish relationships that represent
aggregations from those that don’t. As a result, the database can’t use a
knowledge of aggregate structure to help it store and distribute the data.

Various data modeling techniques have provided ways of marking
aggregate or composite structures. The problem, however, is that
modelers rarely provide any semantics for what makes an aggregate
relationship different from any other; where there are semantics, they
vary. When working with aggregate-oriented databases, we have a
clearer semantics to consider by focusing on the unit of interaction with
the data storage. It is, however, not a logical data property: It’s all
about how the data is being used by applications—a concern that is
often outside the bounds of data modeling.

Relational databases have no concept of aggregate within their data
model, so we call them aggregate-ignorant. In the NoSQL world,
graph databases are also aggregate-ignorant. Being aggregate-ignorant
is not a bad thing. It’s often difficult to draw aggregate boundaries well,
particularly if the same data is used in many different contexts. An order
makes a good aggregate when a customer is making and reviewing
orders, and when the retailer is processing orders. However, if a
retailer wants to analyze its product sales over the last few months, then
an order aggregate becomes a trouble. To get to product sales history,
you’ll have to dig into every aggregate in the database. So an aggregate
structure may help with some data interactions but be an obstacle for
others. An aggregate-ignorant model allows you to easily look at the
data in different ways, so it is a better choice when you don’t have a
primary structure for manipulating your data.

The clinching reason for aggregate orientation is that it helps greatly
with running on a cluster, which as you’ll remember is the killer
argument for the rise of NoSQL. If we’re running on a cluster, we need
to minimize how many nodes we need to query when we are gathering

data. By explicitly including aggregates, we give the database important
information about which bits of data will be manipulated together, and
thus should live on the same node.

Aggregates have an important consequence for transactions.
Relational databases allow you to manipulate any combination of rows
from any tables in a single transaction. Such transactions are called
ACID transactions: Atomic, Consistent, Isolated, and Durable. ACID
is a rather contrived acronym; the real point is the atomicity: Many
rows spanning many tables are updated as a single operation. This
operation either succeeds or fails in its entirety, and concurrent
operations are isolated from each other so they cannot see a partial
update.

It’s often said that NoSQL databases don’t support ACID
transactions and thus sacrifice consistency. This is a rather sweeping
simplification. In general, it’s true that aggregate-oriented databases
don’t have ACID transactions that span multiple aggregates. Instead,
they support atomic manipulation of a single aggregate at a time. This
means that if we need to manipulate multiple aggregates in an atomic
way, we have to manage that ourselves in the application code. In
practice, we find that most of the time we are able to keep our atomicity
needs to within a single aggregate; indeed, that’s part of the
consideration for deciding how to divide up our data into aggregates.
We should also remember that graph and other aggregate-ignorant
databases usually do support ACID transactions similar to relational
databases. Above all, the topic of consistency is much more involved
than whether a database is ACID or not, as we’ll explore in Chapter 5.

2.2. Key-Value and Document Data Models
We said earlier on that key-value and document databases were
strongly aggregate-oriented. What we meant by this was that we think of
these databases as primarily constructed through aggregates. Both of
these types of databases consist of lots of aggregates with each

aggregate having a key or ID that’s used to get at the data.
The two models differ in that in a key-value database, the aggregate

is opaque to the database—just some big blob of mostly meaningless
bits. In contrast, a document database is able to see a structure in the
aggregate. The advantage of opacity is that we can store whatever we
like in the aggregate. The database may impose some general size limit,
but other than that we have complete freedom. A document database
imposes limits on what we can place in it, defining allowable structures
and types. In return, however, we get more flexibility in access.

With a key-value store, we can only access an aggregate by lookup
based on its key. With a document database, we can submit queries to
the database based on the fields in the aggregate, we can retrieve part of
the aggregate rather than the whole thing, and database can create
indexes based on the contents of the aggregate.

In practice, the line between key-value and document gets a bit
blurry. People often put an ID field in a document database to do a key-
value style lookup. Databases classified as key-value databases may
allow you structures for data beyond just an opaque aggregate. For
example, Riak allows you to add metadata to aggregates for indexing
and interaggregate links, Redis allows you to break down the aggregate
into lists or sets. You can support querying by integrating search tools
such as Solr. As an example, Riak includes a search facility that uses
Solr-like searching on any aggregates that are stored as JSON or XML
structures.

Despite this blurriness, the general distinction still holds. With key-
value databases, we expect to mostly look up aggregates using a key.
With document databases, we mostly expect to submit some form of
query based on the internal structure of the document; this might be a
key, but it’s more likely to be something else.

2.3. Column-Family Stores
One of the early and influential NoSQL databases was Google’s

BigTable [Chang etc.]. Its name conjured up a tabular structure which it
realized with sparse columns and no schema. As you’ll soon see, it
doesn’t help to think of this structure as a table; rather, it is a two-level
map. But, however you think about the structure, it has been a model
that influenced later databases such as HBase and Cassandra.

These databases with a bigtable-style data model are often referred
to as column stores, but that name has been around for a while to
describe a different animal. Pre-NoSQL column stores, such as C-Store
[C-Store], were happy with SQL and the relational model. The thing
that made them different was the way in which they physically stored
data. Most databases have a row as a unit of storage which, in
particular, helps write performance. However, there are many
scenarios where writes are rare, but you often need to read a few
columns of many rows at once. In this situation, it’s better to store
groups of columns for all rows as the basic storage unit—which is why
these databases are called column stores.

Bigtable and its offspring follow this notion of storing groups of
columns (column families) together, but part company with C-Store and
friends by abandoning the relational model and SQL. In this book, we
refer to this class of databases as column-family databases.

Perhaps the best way to think of the column-family model is as a two-
level aggregate structure. As with key-value stores, the first key is often
described as a row identifier, picking up the aggregate of interest. The
difference with column-family structures is that this row aggregate is
itself formed of a map of more detailed values. These second-level
values are referred to as columns. As well as accessing the row as a
whole, operations also allow picking out a particular column, so to get
a particular customer’s name from Figure 2.5 you could do something
like get('1234', 'name').

Figure 2.5. Representing customer information in a column-family
structure

Column-family databases organize their columns into column
families. Each column has to be part of a single column family, and the
column acts as unit for access, with the assumption that data for a
particular column family will be usually accessed together.

This also gives you a couple of ways to think about how the data is
structured.

• Row-oriented: Each row is an aggregate (for example, customer
with the ID of 1234) with column families representing useful
chunks of data (profile, order history) within that aggregate.

• Column-oriented: Each column family defines a record type (e.g.,
customer profiles) with rows for each of the records. You then
think of a row as the join of records in all column families.

This latter aspect reflects the columnar nature of column-family
databases. Since the database knows about these common groupings of
data, it can use this information for its storage and access behavior.
Even though a document database declares some structure to the
database, each document is still seen as a single unit. Column families
give a two-dimensional quality to column-family databases.

This terminology is as established by Google Bigtable and HBase,
but Cassandra looks at things slightly differently. A row in Cassandra
only occurs in one column family, but that column family may contain
supercolumns—columns that contain nested columns. The supercolumns
in Cassandra are the best equivalent to the classic Bigtable column
families.

It can still be confusing to think of column-families as tables. You
can add any column to any row, and rows can have very different
column keys. While new columns are added to rows during regular
database access, defining new column families is much rarer and may
involve stopping the database for it to happen.

The example of Figure 2.5 illustrates another aspect of column-
family databases that may be unfamiliar for people used to relational
tables: the orders column family. Since columns can be added freely,
you can model a list of items by making each item a separate column.
This is very odd if you think of a column family as a table, but quite
natural if you think of a column-family row as an aggregate. Cassandra
uses the terms “wide” and “skinny.” Skinny rows have few columns
with the same columns used across the many different rows. In this
case, the column family defines a record type, each row is a record, and
each column is a field. A wide row has many columns (perhaps
thousands), with rows having very different columns. A wide column
family models a list, with each column being one element in that list.

A consequence of wide column families is that a column family may
define a sort order for its columns. This way we can access orders by
their order key and access ranges of orders by their keys. While this

might not be useful if we keyed orders by their IDs, it would be if we
made the key out of a concatenation of date and ID (e.g., 20111027-
1001).

Although it’s useful to distinguish column families by their wide or
skinny nature, there’s no technical reason why a column family cannot
contain both field-like columns and list-like columns—although doing
this would confuse the sort ordering.

2.4. Summarizing Aggregate-Oriented Databases
At this point, we’ve covered enough material to give you a reasonable
overview of the three different styles of aggregate-oriented data models
and how they differ.

What they all share is the notion of an aggregate indexed by a key that
you can use for lookup. This aggregate is central to running on a cluster,
as the database will ensure that all the data for an aggregate is stored
together on one node. The aggregate also acts as the atomic unit for
updates, providing a useful, if limited, amount of transactional control.

Within that notion of aggregate, we have some differences. The key-
value data model treats the aggregate as an opaque whole, which means
you can only do key lookup for the whole aggregate—you cannot run a
query nor retrieve a part of the aggregate.

The document model makes the aggregate transparent to the database
allowing you to do queries and partial retrievals. However, since the
document has no schema, the database cannot act much on the structure
of the document to optimize the storage and retrieval of parts of the
aggregate.

Column-family models divide the aggregate into column families,
allowing the database to treat them as units of data within the row
aggregate. This imposes some structure on the aggregate but allows the
database to take advantage of that structure to improve its accessibility.

2.5. Further Reading

For more on the general concept of aggregates, which are often used
with relational databases too, see [Evans]. The Domain-Driven Design
community is the best source for further information about aggregates—
recent information usually appears at http://domaindrivendesign.org.

2.6. Key Points
• An aggregate is a collection of data that we interact with as a unit.

Aggregates form the boundaries for ACID operations with the
database.

• Key-value, document, and column-family databases can all be
seen as forms of aggregate-oriented database.

• Aggregates make it easier for the database to manage data storage
over clusters.

• Aggregate-oriented databases work best when most data
interaction is done with the same aggregate; aggregate-ignorant
databases are better when interactions use data organized in many
different formations.

Chapter 3. More Details on Data Models

So far we’ve covered the key feature in most NoSQL databases: their
use of aggregates and how aggregate-oriented databases model
aggregates in different ways. While aggregates are a central part of the
NoSQL story, there is more to the data modeling side than that, and
we’ll explore these further concepts in this chapter.

3.1. Relationships
Aggregates are useful in that they put together data that is commonly
accessed together. But there are still lots of cases where data that’s
related is accessed differently. Consider the relationship between a
customer and all of his orders. Some applications will want to access
the order history whenever they access the customer; this fits in well
with combining the customer with his order history into a single
aggregate. Other applications, however, want to process orders
individually and thus model orders as independent aggregates.

In this case, you’ll want separate order and customer aggregates but
with some kind of relationship between them so that any work on an
order can look up customer data. The simplest way to provide such a
link is to embed the ID of the customer within the order’s aggregate
data. That way, if you need data from the customer record, you read the
order, ferret out the customer ID, and make another call to the database
to read the customer data. This will work, and will be just fine in many
scenarios—but the database will be ignorant of the relationship in the
data. This can be important because there are times when it’s useful for
the database to know about these links.

As a result, many databases—even key-value stores—provide ways
to make these relationships visible to the database. Document stores
make the content of the aggregate available to the database to form
indexes and queries. Riak, a key-value store, allows you to put link

information in metadata, supporting partial retrieval and link-walking
capability.

An important aspect of relationships between aggregates is how they
handle updates. Aggregate-oriented databases treat the aggregate as the
unit of data-retrieval. Consequently, atomicity is only supported within
the contents of a single aggregate. If you update multiple aggregates at
once, you have to deal yourself with a failure partway through.
Relational databases help you with this by allowing you to modify
multiple records in a single transaction, providing ACID guarantees
while altering many rows.

All of this means that aggregate-oriented databases become more
awkward as you need to operate across multiple aggregates. There are
various ways to deal with this, which we’ll explore later in this
chapter, but the fundamental awkwardness remains.

This may imply that if you have data based on lots of relationships,
you should prefer a relational database over a NoSQL store. While
that’s true for aggregate-oriented databases, it’s worth remembering that
relational databases aren’t all that stellar with complex relationships
either. While you can express queries involving joins in SQL, things
quickly get very hairy—both with SQL writing and with the resulting
performance—as the number of joins mounts up.

This makes it a good moment to introduce another category of
databases that’s often lumped into the NoSQL pile.

3.2. Graph Databases
Graph databases are an odd fish in the NoSQL pond. Most NoSQL
databases were inspired by the need to run on clusters, which led to
aggregate-oriented data models of large records with simple
connections. Graph databases are motivated by a different frustration
with relational databases and thus have an opposite model—small
records with complex interconnections, something like Figure 3.1.

Figure 3.1. An example graph structure
In this context, a graph isn’t a bar chart or histogram; instead, we

refer to a graph data structure of nodes connected by edges.
In Figure 3.1 we have a web of information whose nodes are very

small (nothing more than a name) but there is a rich structure of
interconnections between them. With this structure, we can ask
questions such as “find the books in the Databases category that are
written by someone whom a friend of mine likes.”

Graph databases specialize in capturing this sort of information—but
on a much larger scale than a readable diagram could capture. This is
ideal for capturing any data consisting of complex relationships such as
social networks, product preferences, or eligibility rules.

The fundamental data model of a graph database is very simple:

nodes connected by edges (also called arcs). Beyond this essential
characteristic there is a lot of variation in data models—in particular,
what mechanisms you have to store data in your nodes and edges. A
quick sample of some current capabilities illustrates this variety of
possibilities: FlockDB is simply nodes and edges with no mechanism
for additional attributes; Neo4J allows you to attach Java objects as
properties to nodes and edges in a schemaless fashion (“Features,” p.
113); Infinite Graph stores your Java objects, which are subclasses of
its built-in types, as nodes and edges.

Once you have built up a graph of nodes and edges, a graph database
allows you to query that network with query operations designed with
this kind of graph in mind. This is where the important differences
between graph and relational databases come in. Although relational
databases can implement relationships using foreign keys, the joins
required to navigate around can get quite expensive—which means
performance is often poor for highly connected data models. Graph
databases make traversal along the relationships very cheap. A large
part of this is because graph databases shift most of the work of
navigating relationships from query time to insert time. This naturally
pays off for situations where querying performance is more important
than insert speed.

Most of the time you find data by navigating through the network of
edges, with queries such as “tell me all the things that both Anna and
Barbara like.” You do need a starting place, however, so usually some
nodes can be indexed by an attribute such as ID. So you might start with
an ID lookup (i.e., look up the people named “Anna” and “Barbara”)
and then start using the edges. Still, graph databases expect most of your
query work to be navigating relationships.

The emphasis on relationships makes graph databases very different
from aggregate-oriented databases. This data model difference has
consequences in other aspects, too; you’ll find such databases are more
likely to run on a single server rather than distributed across clusters.

ACID transactions need to cover multiple nodes and edges to maintain
consistency. The only thing they have in common with aggregate-
oriented databases is their rejection of the relational model and an
upsurge in attention they received around the same time as the rest of the
NoSQL field.

3.3. Schemaless Databases
A common theme across all the forms of NoSQL databases is that they
are schemaless. When you want to store data in a relational database,
you first have to define a schema—a defined structure for the database
which says what tables exist, which columns exist, and what data types
each column can hold. Before you store some data, you have to have the
schema defined for it.

With NoSQL databases, storing data is much more casual. A key-
value store allows you to store any data you like under a key. A
document database effectively does the same thing, since it makes no
restrictions on the structure of the documents you store. Column-family
databases allow you to store any data under any column you like. Graph
databases allow you to freely add new edges and freely add properties
to nodes and edges as you wish.

Advocates of schemalessness rejoice in this freedom and flexibility.
With a schema, you have to figure out in advance what you need to
store, but that can be hard to do. Without a schema binding you, you can
easily store whatever you need. This allows you to easily change your
data storage as you learn more about your project. You can easily add
new things as you discover them. Furthermore, if you find you don’t
need some things anymore, you can just stop storing them, without
worrying about losing old data as you would if you delete columns in a
relational schema.

As well as handling changes, a schemaless store also makes it easier
to deal with nonuniform data: data where each record has a different
set of fields. A schema puts all rows of a table into a straightjacket,

which becomes awkward if you have different kinds of data in different
rows. You either end up with lots of columns that are usually null (a
sparse table), or you end up with meaningless columns like custom
column 4. Schemalessness avoids this, allowing each record to contain
just what it needs—no more, no less.

Schemalessness is appealing, and it certainly avoids many problems
that exist with fixed-schema databases, but it brings some problems of
its own. If all you are doing is storing some data and displaying it in a
report as a simple list of fieldName: value lines then a schema is
only going to get in the way. But usually we do with our data more than
this, and we do it with programs that need to know that the billing
address is called billingAddress and not addressForBilling and
that the quantify field is going to be an integer 5 and not five.

The vital, if sometimes inconvenient, fact is that whenever we write
a program that accesses data, that program almost always relies on
some form of implicit schema. Unless it just says something like
Click here to view code image

//pseudo code
foreach (Record r in records) {
 foreach (Field f in r.fields) {
 print (f.name, f.value)
 }
}

it will assume that certain field names are present and carry data with a
certain meaning, and assume something about the type of data stored
within that field. Programs are not humans; they cannot read “qty” and
infer that that must be the same as “quantity”—at least not unless we
specifically program them to do so. So, however schemaless our
database is, there is usually an implicit schema present. This implicit
schema is a set of assumptions about the data’s structure in the code
that manipulates the data.

Having the implicit schema in the application code results in some

problems. It means that in order to understand what data is present you
have to dig into the application code. If that code is well structured you
should be able to find a clear place from which to deduce the schema.
But there are no guarantees; it all depends on how clear the application
code is. Furthermore, the database remains ignorant of the schema—it
can’t use the schema to help it decide how to store and retrieve data
efficiently. It can’t apply its own validations upon that data to ensure
that different applications don’t manipulate data in an inconsistent way.

These are the reasons why relational databases have a fixed schema,
and indeed the reasons why most databases have had fixed schemas in
the past. Schemas have value, and the rejection of schemas by NoSQL
databases is indeed quite startling.

Essentially, a schemaless database shifts the schema into the
application code that accesses it. This becomes problematic if multiple
applications, developed by different people, access the same database.
These problems can be reduced with a couple of approaches. One is to
encapsulate all database interaction within a single application and
integrate it with other applications using web services. This fits in well
with many people’s current preference for using web services for
integration. Another approach is to clearly delineate different areas of
an aggregate for access by different applications. These could be
different sections in a document database or different column families
an a column-family database.

Although NoSQL fans often criticize relational schemas for having to
be defined up front and being inflexible, that’s not really true.
Relational schemas can be changed at any time with standard SQL
commands. If necessary, you can create new columns in an ad-hoc way
to store nonuniform data. We have only rarely seen this done, but it
worked reasonably well where we have. Most of the time, however,
nonuniformity in your data is a good reason to favor a schemaless
database.

Schemalessness does have a big impact on changes of a database’s

structure over time, particularly for more uniform data. Although it’s not
practiced as widely as it ought to be, changing a relational database’s
schema can be done in a controlled way. Similarly, you have to
exercise control when changing how you store data in a schemaless
database so that you can easily access both old and new data.
Furthermore, the flexibility that schemalessness gives you only applies
within an aggregate—if you need to change your aggregate boundaries,
the migration is every bit as complex as it is in the relational case.
We’ll talk more about database migration later (“Schema Migrations,”
p. 123).

3.4. Materialized Views
When we talked about aggregate-oriented data models, we stressed
their advantages. If you want to access orders, it’s useful to have all the
data for an order contained in a single aggregate that can be stored and
accessed as a unit. But aggregate-orientation has a corresponding
disadvantage: What happens if a product manager wants to know how
much a particular item has sold over the last couple of weeks? Now the
aggregate-orientation works against you, forcing you to potentially read
every order in the database to answer the question. You can reduce this
burden by building an index on the product, but you’re still working
against the aggregate structure.

Relational databases have an advantage here because their lack of
aggregate structure allows them to support accessing data in different
ways. Furthermore, they provide a convenient mechanism that allows
you to look at data differently from the way it’s stored—views. A view
is like a relational table (it is a relation) but it’s defined by computation
over the base tables. When you access a view, the database computes
the data in the view—a handy form of encapsulation.

Views provide a mechanism to hide from the client whether data is
derived data or base data—but can’t avoid the fact that some views are
expensive to compute. To cope with this, materialized views were

invented, which are views that are computed in advance and cached on
disk. Materialized views are effective for data that is read heavily but
can stand being somewhat stale.

Although NoSQL databases don’t have views, they may have
precomputed and cached queries, and they reuse the term “materialized
view” to describe them. It’s also much more of a central aspect for
aggregate-oriented databases than it is for relational systems, since
most applications will have to deal with some queries that don’t fit
well with the aggregate structure. (Often, NoSQL databases create
materialized views using a map-reduce computation, which we’ll talk
about in Chapter 7.)

There are two rough strategies to building a materialized view. The
first is the eager approach where you update the materialized view at
the same time you update the base data for it. In this case, adding an
order would also update the purchase history aggregates for each
product. This approach is good when you have more frequent reads of
the materialized view than you have writes and you want the
materialized views to be as fresh as possible. The application database
(p. 7) approach is valuable here as it makes it easier to ensure that any
updates to base data also update materialized views.

If you don’t want to pay that overhead on each update, you can run
batch jobs to update the materialized views at regular intervals. You’ll
need to understand your business requirements to assess how stale your
materialized views can be.

You can build materialized views outside of the database by reading
the data, computing the view, and saving it back to the database. More
often databases will support building materialized views themselves. In
this case, you provide the computation that needs to be done, and the
database executes the computation when needed according to some
parameters that you configure. This is particularly handy for eager
updates of views with incremental map-reduce (“Incremental Map-
Reduce,” p. 76).

Materialized views can be used within the same aggregate. An order
document might include an order summary element that provides
summary information about the order so that a query for an order
summary does not have to transfer the entire order document. Using
different column families for materialized views is a common feature of
column-family databases. An advantage of doing this is that it allows
you to update the materialized view within the same atomic operation.

3.5. Modeling for Data Access
As mentioned earlier, when modeling data aggregates we need to
consider how the data is going to be read as well as what are the side
effects on data related to those aggregates.

Let’s start with the model where all the data for the customer is
embedded using a key-value store (see Figure 3.2).

Figure 3.2. Embed all the objects for customer and their orders.
In this scenario, the application can read the customer’s information

and all the related data by using the key. If the requirements are to read
the orders or the products sold in each order, the whole object has to be
read and then parsed on the client side to build the results. When
references are needed, we could switch to document stores and then
query inside the documents, or even change the data for the key-value
store to split the value object into Customer and Order objects and
then maintain these objects’ references to each other.

With the references (see Figure 3.3), we can now find the orders
independently from the Customer, and with the orderId reference in
the Customer we can find all Orders for the Customer. Using
aggregates this way allows for read optimization, but we have to push

the orderId reference into Customer every time with a new Order.
Click here to view code image

Customer object
{
"customerId": 1,
"customer": {
 "name": "Martin",
 "billingAddress": [{"city": "Chicago"}],
 "payment": [{"type": "debit","ccinfo": "1000-1000-1000-1000"}],
 "orders":[{"orderId":99}]
 }
}

Order object
{
"customerId": 1,
"orderId": 99,
"order":{
 "orderDate":"Nov-20-2011",
 "orderItems":[{"productId":27, "price": 32.45}],
 "orderPayment":[{"ccinfo":"1000-1000-1000-1000",
 "txnId":"abelif879rft"}],
 "shippingAddress":{"city":"Chicago"}
 }
}

Figure 3.3. Customer is stored separately from Order.
Aggregates can also be used to obtain analytics; for example, an

aggregate update may fill in information on which Orders have a given
Product in them. This denormalization of the data allows for fast
access to the data we are interested in and is the basis for Real Time
BI or Real Time Analytics where enterprises don’t have to rely on
end-of-the-day batch runs to populate data warehouse tables and
generate analytics; now they can fill in this type of data, for multiple
types of requirements, when the order is placed by the customer.
Click here to view code image

{
"itemid":27,

"orders":{99,545,897,678}
}
{
"itemid":29,
"orders":{199,545,704,819}
}

In document stores, since we can query inside documents, removing
references to Orders from the Customer object is possible. This
change allows us to not update the Customer object when new orders
are placed by the Customer.
Click here to view code image

Customer object
{
"customerId": 1,
"name": "Martin",
"billingAddress": [{"city": "Chicago"}],
"payment": [
 {"type": "debit",
 "ccinfo": "1000-1000-1000-1000"}
]
}
Order object
{
"orderId": 99,
"customerId": 1,
"orderDate":"Nov-20-2011",
"orderItems":[{"productId":27, "price": 32.45}],
"orderPayment":[{"ccinfo":"1000-1000-1000-1000",
 "txnId":"abelif879rft"}],
"shippingAddress":{"city":"Chicago"}
}

Since document data stores allow you to query by attributes inside
the document, searches such as “find all orders that include the
Refactoring Databases product” are possible, but the decision to create
an aggregate of items and orders they belong to is not based on the
database’s query capability but on the read optimization desired by the
application.

When modeling for column-family stores, we have the benefit of the
columns being ordered, allowing us to name columns that are frequently
used so that they are fetched first. When using the column families to
model the data, it is important to remember to do it per your query
requirements and not for the purpose of writing; the general rule is to
make it easy to query and denormalize the data during write.

As you can imagine, there are multiple ways to model the data; one
way is to store the Customer and Order in different column-family
families (see Figure 3.4). Here, it is important to note the reference to
all the orders placed by the customer are in the Customer column
family. Similar other denormalizations are generally done so that query
(read) performance is improved.

Figure 3.4. Conceptual view into a column data store
When using graph databases to model the same data, we model all

objects as nodes and relations within them as relationships; these
relationships have types and directional significance.

Each node has independent relationships with other nodes. These

relationships have names like PURCHASED, PAID_WITH, or
BELONGS_TO (see Figure 3.5); these relationship names let you
traverse the graph. Let’s say you want to find all the Customers who
PURCHASED a product with the name Refactoring Database. All we
need to do is query for the product node Refactoring Databases and
look for all the Customers with the incoming PURCHASED
relationship.

Figure 3.5. Graph model of e-commerce data
This type of relationship traversal is very easy with graph databases.

It is especially convenient when you need to use the data to recommend
products to users or to find patterns in actions taken by users.

3.6. Key Points
• Aggregate-oriented databases make inter-aggregate relationships

more difficult to handle than intra-aggregate relationships.
• Graph databases organize data into node and edge graphs; they

work best for data that has complex relationship structures.
• Schemaless databases allow you to freely add fields to records,

but there is usually an implicit schema expected by users of the
data.

• Aggregate-oriented databases often compute materialized views
to provide data organized differently from their primary
aggregates. This is often done with map-reduce computations.

Chapter 4. Distribution Models

The primary driver of interest in NoSQL has been its ability to run
databases on a large cluster. As data volumes increase, it becomes
more difficult and expensive to scale up—buy a bigger server to run the
database on. A more appealing option is to scale out—run the database
on a cluster of servers. Aggregate orientation fits well with scaling out
because the aggregate is a natural unit to use for distribution.

Depending on your distribution model, you can get a data store that
will give you the ability to handle larger quantities of data, the ability to
process a greater read or write traffic, or more availability in the face
of network slowdowns or breakages. These are often important
benefits, but they come at a cost. Running over a cluster introduces
complexity—so it’s not something to do unless the benefits are
compelling.

Broadly, there are two paths to data distribution: replication and
sharding. Replication takes the same data and copies it over multiple
nodes. Sharding puts different data on different nodes. Replication and
sharding are orthogonal techniques: You can use either or both of them.
Replication comes into two forms: master-slave and peer-to-peer. We
will now discuss these techniques starting at the simplest and working
up to the more complex: first single-server, then master-slave
replication, then sharding, and finally peer-to-peer replication.

4.1. Single Server
The first and the simplest distribution option is the one we would most
often recommend—no distribution at all. Run the database on a single
machine that handles all the reads and writes to the data store. We
prefer this option because it eliminates all the complexities that the
other options introduce; it’s easy for operations people to manage and
easy for application developers to reason about.

Although a lot of NoSQL databases are designed around the idea of
running on a cluster, it can make sense to use NoSQL with a single-
server distribution model if the data model of the NoSQL store is more
suited to the application. Graph databases are the obvious category here
—these work best in a single-server configuration. If your data usage is
mostly about processing aggregates, then a single-server document or
key-value store may well be worthwhile because it’s easier on
application developers.

For the rest of this chapter we’ll be wading through the advantages
and complications of more sophisticated distribution schemes. Don’t let
the volume of words fool you into thinking that we would prefer these
options. If we can get away without distributing our data, we will
always choose a single-server approach.

4.2. Sharding
Often, a busy data store is busy because different people are accessing
different parts of the dataset. In these circumstances we can support
horizontal scalability by putting different parts of the data onto different
servers—a technique that’s called sharding (see Figure 4.1).

Figure 4.1. Sharding puts different data on separate nodes, each of
which does its own reads and writes.

In the ideal case, we have different users all talking to different
server nodes. Each user only has to talk to one server, so gets rapid
responses from that server. The load is balanced out nicely between
servers—for example, if we have ten servers, each one only has to
handle 10% of the load.

Of course the ideal case is a pretty rare beast. In order to get close to
it we have to ensure that data that’s accessed together is clumped
together on the same node and that these clumps are arranged on the
nodes to provide the best data access.

The first part of this question is how to clump the data up so that one
user mostly gets her data from a single server. This is where aggregate
orientation comes in really handy. The whole point of aggregates is that
we design them to combine data that’s commonly accessed together—so
aggregates leap out as an obvious unit of distribution.

When it comes to arranging the data on the nodes, there are several

factors that can help improve performance. If you know that most
accesses of certain aggregates are based on a physical location, you can
place the data close to where it’s being accessed. If you have orders for
someone who lives in Boston, you can place that data in your eastern
US data center.

Another factor is trying to keep the load even. This means that you
should try to arrange aggregates so they are evenly distributed across
the nodes which all get equal amounts of the load. This may vary over
time, for example if some data tends to be accessed on certain days of
the week—so there may be domain-specific rules you’d like to use.

In some cases, it’s useful to put aggregates together if you think they
may be read in sequence. The Bigtable paper [Chang etc.] described
keeping its rows in lexicographic order and sorting web addresses
based on reversed domain names (e.g., com.martinfowler). This way
data for multiple pages could be accessed together to improve
processing efficiency.

Historically most people have done sharding as part of application
logic. You might put all customers with surnames starting from A to D
on one shard and E to G on another. This complicates the programming
model, as application code needs to ensure that queries are distributed
across the various shards. Furthermore, rebalancing the sharding means
changing the application code and migrating the data. Many NoSQL
databases offer auto-sharding, where the database takes on the
responsibility of allocating data to shards and ensuring that data access
goes to the right shard. This can make it much easier to use sharding in
an application.

Sharding is particularly valuable for performance because it can
improve both read and write performance. Using replication,
particularly with caching, can greatly improve read performance but
does little for applications that have a lot of writes. Sharding provides
a way to horizontally scale writes.

Sharding does little to improve resilience when used alone. Although

the data is on different nodes, a node failure makes that shard’s data
unavailable just as surely as it does for a single-server solution. The
resilience benefit it does provide is that only the users of the data on
that shard will suffer; however, it’s not good to have a database with
part of its data missing. With a single server it’s easier to pay the effort
and cost to keep that server up and running; clusters usually try to use
less reliable machines, and you’re more likely to get a node failure. So
in practice, sharding alone is likely to decrease resilience.

Despite the fact that sharding is made much easier with aggregates,
it’s still not a step to be taken lightly. Some databases are intended from
the beginning to use sharding, in which case it’s wise to run them on a
cluster from the very beginning of development, and certainly in
production. Other databases use sharding as a deliberate step up from a
single-server configuration, in which case it’s best to start single-server
and only use sharding once your load projections clearly indicate that
you are running out of headroom.

In any case the step from a single node to sharding is going to be
tricky. We have heard tales of teams getting into trouble because they
left sharding to very late, so when they turned it on in production their
database became essentially unavailable because the sharding support
consumed all the database resources for moving the data onto new
shards. The lesson here is to use sharding well before you need to—
when you have enough headroom to carry out the sharding.

4.3. Master-Slave Replication
With master-slave distribution, you replicate data across multiple
nodes. One node is designated as the master, or primary. This master is
the authoritative source for the data and is usually responsible for
processing any updates to that data. The other nodes are slaves, or
secondaries. A replication process synchronizes the slaves with the
master (see Figure 4.2).

Figure 4.2. Data is replicated from master to slaves. The master
services all writes; reads may come from either master or slaves.
Master-slave replication is most helpful for scaling when you have a

read-intensive dataset. You can scale horizontally to handle more read
requests by adding more slave nodes and ensuring that all read requests
are routed to the slaves. You are still, however, limited by the ability of
the master to process updates and its ability to pass those updates on.
Consequently it isn’t such a good scheme for datasets with heavy write
traffic, although offloading the read traffic will help a bit with handling
the write load.

A second advantage of master-slave replication is read resilience:
Should the master fail, the slaves can still handle read requests. Again,
this is useful if most of your data access is reads. The failure of the

master does eliminate the ability to handle writes until either the master
is restored or a new master is appointed. However, having slaves as
replicates of the master does speed up recovery after a failure of the
master since a slave can be appointed a new master very quickly.

The ability to appoint a slave to replace a failed master means that
master-slave replication is useful even if you don’t need to scale out.
All read and write traffic can go to the master while the slave acts as a
hot backup. In this case it’s easiest to think of the system as a single-
server store with a hot backup. You get the convenience of the single-
server configuration but with greater resilience—which is particularly
handy if you want to be able to handle server failures gracefully.

Masters can be appointed manually or automatically. Manual
appointing typically means that when you configure your cluster, you
configure one node as the master. With automatic appointment, you
create a cluster of nodes and they elect one of themselves to be the
master. Apart from simpler configuration, automatic appointment means
that the cluster can automatically appoint a new master when a master
fails, reducing downtime.

In order to get read resilience, you need to ensure that the read and
write paths into your application are different, so that you can handle a
failure in the write path and still read. This includes such things as
putting the reads and writes through separate database connections—a
facility that is not often supported by database interaction libraries. As
with any feature, you cannot be sure you have read resilience without
good tests that disable the writes and check that reads still occur.

Replication comes with some alluring benefits, but it also comes
with an inevitable dark side—inconsistency. You have the danger that
different clients, reading different slaves, will see different values
because the changes haven’t all propagated to the slaves. In the worst
case, that can mean that a client cannot read a write it just made. Even if
you use master-slave replication just for hot backup this can be a
concern, because if the master fails, any updates not passed on to the

backup are lost. We’ll talk about how to deal with these issues later
(“Consistency,” p. 47).

4.4. Peer-to-Peer Replication
Master-slave replication helps with read scalability but doesn’t help
with scalability of writes. It provides resilience against failure of a
slave, but not of a master. Essentially, the master is still a bottleneck
and a single point of failure. Peer-to-peer replication (see Figure 4.3)
attacks these problems by not having a master. All the replicas have
equal weight, they can all accept writes, and the loss of any of them
doesn’t prevent access to the data store.

Figure 4.3. Peer-to-peer replication has all nodes applying reads
and writes to all the data.

The prospect here looks mighty fine. With a peer-to-peer replication
cluster, you can ride over node failures without losing access to data.
Furthermore, you can easily add nodes to improve your performance.
There’s much to like here—but there are complications.

The biggest complication is, again, consistency. When you can write
to two different places, you run the risk that two people will attempt to
update the same record at the same time—a write-write conflict.
Inconsistencies on read lead to problems but at least they are relatively
transient. Inconsistent writes are forever.

We’ll talk more about how to deal with write inconsistencies later
on, but for the moment we’ll note a couple of broad options. At one end,
we can ensure that whenever we write data, the replicas coordinate to
ensure we avoid a conflict. This can give us just as strong a guarantee
as a master, albeit at the cost of network traffic to coordinate the writes.
We don’t need all the replicas to agree on the write, just a majority, so
we can still survive losing a minority of the replica nodes.

At the other extreme, we can decide to cope with an inconsistent
write. There are contexts when we can come up with policy to merge
inconsistent writes. In this case we can get the full performance benefit
of writing to any replica.

These points are at the ends of a spectrum where we trade off
consistency for availability.

4.5. Combining Sharding and Replication
Replication and sharding are strategies that can be combined. If we use
both master-slave replication and sharding (see Figure 4.4), this means
that we have multiple masters, but each data item only has a single
master. Depending on your configuration, you may choose a node to be
a master for some data and slaves for others, or you may dedicate nodes
for master or slave duties.

Figure 4.4. Using master-slave replication together with sharding
Using peer-to-peer replication and sharding is a common strategy for

column-family databases. In a scenario like this you might have tens or
hundreds of nodes in a cluster with data sharded over them. A good
starting point for peer-to-peer replication is to have a replication factor
of 3, so each shard is present on three nodes. Should a node fail, then
the shards on that node will be built on the other nodes (see Figure 4.5).

Figure 4.5. Using peer-to-peer replication together with sharding

4.6. Key Points
• There are two styles of distributing data:

• Sharding distributes different data across multiple servers, so
each server acts as the single source for a subset of data.

• Replication copies data across multiple servers, so each bit of
data can be found in multiple places.

A system may use either or both techniques.
• Replication comes in two forms:

• Master-slave replication makes one node the authoritative copy
that handles writes while slaves synchronize with the master
and may handle reads.

• Peer-to-peer replication allows writes to any node; the nodes
coordinate to synchronize their copies of the data.

Master-slave replication reduces the chance of update conflicts
but peer-to-peer replication avoids loading all writes onto a
single point of failure.

Chapter 5. Consistency

One of the biggest changes from a centralized relational database to a
cluster-oriented NoSQL database is in how you think about consistency.
Relational databases try to exhibit strong consistency by avoiding all
the various inconsistencies that we’ll shortly be discussing. Once you
start looking at the NoSQL world, phrases such as “CAP theorem” and
“eventual consistency” appear, and as soon as you start building
something you have to think about what sort of consistency you need for
your system.

Consistency comes in various forms, and that one word covers a
myriad of ways errors can creep into your life. So we’re going to begin
by talking about the various shapes consistency can take. After that
we’ll discuss why you may want to relax consistency (and its big sister,
durability).

5.1. Update Consistency
We’ll begin by considering updating a telephone number.
Coincidentally, Martin and Pramod are looking at the company website
and notice that the phone number is out of date. Implausibly, they both
have update access, so they both go in at the same time to update the
number. To make the example interesting, we’ll assume they update it
slightly differently, because each uses a slightly different format. This
issue is called a write-write conflict: two people updating the same
data item at the same time.

When the writes reach the server, the server will serialize them—
decide to apply one, then the other. Let’s assume it uses alphabetical
order and picks Martin’s update first, then Pramod’s. Without any
concurrency control, Martin’s update would be applied and
immediately overwritten by Pramod’s. In this case Martin’s is a lost
update. Here the lost update is not a big problem, but often it is. We

see this as a failure of consistency because Pramod’s update was based
on the state before Martin’s update, yet was applied after it.

Approaches for maintaining consistency in the face of concurrency
are often described as pessimistic or optimistic. A pessimistic
approach works by preventing conflicts from occurring; an optimistic
approach lets conflicts occur, but detects them and takes action to sort
them out. For update conflicts, the most common pessimistic approach
is to have write locks, so that in order to change a value you need to
acquire a lock, and the system ensures that only one client can get a lock
at a time. So Martin and Pramod would both attempt to acquire the
write lock, but only Martin (the first one) would succeed. Pramod
would then see the result of Martin’s write before deciding whether to
make his own update.

A common optimistic approach is a conditional update where any
client that does an update tests the value just before updating it to see if
it’s changed since his last read. In this case, Martin’s update would
succeed but Pramod’s would fail. The error would let Pramod know
that he should look at the value again and decide whether to attempt a
further update.

Both the pessimistic and optimistic approaches that we’ve just
described rely on a consistent serialization of the updates. With a single
server, this is obvious—it has to choose one, then the other. But if
there’s more than one server, such as with peer-to-peer replication, then
two nodes might apply the updates in a different order, resulting in a
different value for the telephone number on each peer. Often, when
people talk about concurrency in distributed systems, they talk about
sequential consistency—ensuring that all nodes apply operations in the
same order.

There is another optimistic way to handle a write-write conflict—
save both updates and record that they are in conflict. This approach is
familiar to many programmers from version control systems,
particularly distributed version control systems that by their nature will

often have conflicting commits. The next step again follows from
version control: You have to merge the two updates somehow. Maybe
you show both values to the user and ask them to sort it out—this is
what happens if you update the same contact on your phone and your
computer. Alternatively, the computer may be able to perform the merge
itself; if it was a phone formatting issue, it may be able to realize that
and apply the new number with the standard format. Any automated
merge of write-write conflicts is highly domain-specific and needs to
be programmed for each particular case.

Often, when people first encounter these issues, their reaction is to
prefer pessimistic concurrency because they are determined to avoid
conflicts. While in some cases this is the right answer, there is always a
tradeoff. Concurrent programming involves a fundamental tradeoff
between safety (avoiding errors such as update conflicts) and liveness
(responding quickly to clients). Pessimistic approaches often severely
degrade the responsiveness of a system to the degree that it becomes
unfit for its purpose. This problem is made worse by the danger of
errors—pessimistic concurrency often leads to deadlocks, which are
hard to prevent and debug.

Replication makes it much more likely to run into write-write
conflicts. If different nodes have different copies of some data which
can be independently updated, then you’ll get conflicts unless you take
specific measures to avoid them. Using a single node as the target for
all writes for some data makes it much easier to maintain update
consistency. Of the distribution models we discussed earlier, all but
peer-to-peer replication do this.

5.2. Read Consistency
Having a data store that maintains update consistency is one thing, but it
doesn’t guarantee that readers of that data store will always get
consistent responses to their requests. Let’s imagine we have an order
with line items and a shipping charge. The shipping charge is calculated

based on the line items in the order. If we add a line item, we thus also
need to recalculate and update the shipping charge. In a relational
database, the shipping charge and line items will be in separate tables.
The danger of inconsistency is that Martin adds a line item to his order,
Pramod then reads the line items and shipping charge, and then Martin
updates the shipping charge. This is an inconsistent read or read-write
conflict: In Figure 5.1 Pramod has done a read in the middle of
Martin’s write.

Figure 5.1. A read-write conflict in logical consistency
We refer to this type of consistency as logical consistency: ensuring

that different data items make sense together. To avoid a logically
inconsistent read-write conflict, relational databases support the notion
of transactions. Providing Martin wraps his two writes in a transaction,
the system guarantees that Pramod will either read both data items
before the update or both after the update.

A common claim we hear is that NoSQL databases don’t support
transactions and thus can’t be consistent. Such claim is mostly wrong
because it glosses over lots of important details. Our first clarification
is that any statement about lack of transactions usually only applies to
some NoSQL databases, in particular the aggregate-oriented ones. In
contrast, graph databases tend to support ACID transactions just the
same as relational databases.

Secondly, aggregate-oriented databases do support atomic updates,
but only within a single aggregate. This means that you will have
logical consistency within an aggregate but not between aggregates. So
in the example, you could avoid running into that inconsistency if the
order, the delivery charge, and the line items are all part of a single
order aggregate.

Of course not all data can be put in the same aggregate, so any update
that affects multiple aggregates leaves open a time when clients could
perform an inconsistent read. The length of time an inconsistency is
present is called the inconsistency window. A NoSQL system may have
a quite short inconsistency window: As one data point, Amazon’s
documentation says that the inconsistency window for its SimpleDB
service is usually less than a second.

This example of a logically inconsistent read is the classic example
that you’ll see in any book that touches database programming. Once
you introduce replication, however, you get a whole new kind of
inconsistency. Let’s imagine there’s one last hotel room for a desirable
event. The hotel reservation system runs on many nodes. Martin and
Cindy are a couple considering this room, but they are discussing this
on the phone because Martin is in London and Cindy is in Boston.
Meanwhile Pramod, who is in Mumbai, goes and books that last room.
That updates the replicated room availability, but the update gets to
Boston quicker than it gets to London. When Martin and Cindy fire up
their browsers to see if the room is available, Cindy sees it booked and
Martin sees it free. This is another inconsistent read—but it’s a breach

of a different form of consistency we call replication consistency:
ensuring that the same data item has the same value when read from
different replicas (see Figure 5.2).

Figure 5.2. An example of replication inconsistency
Eventually, of course, the updates will propagate fully, and Martin

will see the room is fully booked. Therefore this situation is generally
referred to as eventually consistent, meaning that at any time nodes
may have replication inconsistencies but, if there are no further updates,
eventually all nodes will be updated to the same value. Data that is out
of date is generally referred to as stale, which reminds us that a cache
is another form of replication—essentially following the master-slave
distribution model.

Although replication consistency is independent from logical

consistency, replication can exacerbate a logical inconsistency by
lengthening its inconsistency window. Two different updates on the
master may be performed in rapid succession, leaving an inconsistency
window of milliseconds. But delays in networking could mean that the
same inconsistency window lasts for much longer on a slave.

Consistency guarantees aren’t something that’s global to an
application. You can usually specify the level of consistency you want
with individual requests. This allows you to use weak consistency most
of the time when it isn’t an issue, but request strong consistency when it
is.

The presence of an inconsistency window means that different people
will see different things at the same time. If Martin and Cindy are
looking at rooms while on a transatlantic call, it can cause confusion.
It’s more common for users to act independently, and then this is not a
problem. But inconsistency windows can be particularly problematic
when you get inconsistencies with yourself. Consider the example of
posting comments on a blog entry. Few people are going to worry about
inconsistency windows of even a few minutes while people are typing
in their latest thoughts. Often, systems handle the load of such sites by
running on a cluster and load-balancing incoming requests to different
nodes. Therein lies a danger: You may post a message using one node,
then refresh your browser, but the refresh goes to a different node which
hasn’t received your post yet—and it looks like your post was lost.

In situations like this, you can tolerate reasonably long inconsistency
windows, but you need read-your-writes consistency which means
that, once you’ve made an update, you’re guaranteed to continue seeing
that update. One way to get this in an otherwise eventually consistent
system is to provide session consistency: Within a user’s session there
is read-your-writes consistency. This does mean that the user may lose
that consistency should their session end for some reason or should the
user access the same system simultaneously from different computers,
but these cases are relatively rare.

There are a couple of techniques to provide session consistency. A
common way, and often the easiest way, is to have a sticky session: a
session that’s tied to one node (this is also called session affinity). A
sticky session allows you to ensure that as long as you keep read-your-
writes consistency on a node, you’ll get it for sessions too. The
downside is that sticky sessions reduce the ability of the load balancer
to do its job.

Another approach for session consistency is to use version stamps
(“Version Stamps,” p. 61) and ensure every interaction with the data
store includes the latest version stamp seen by a session. The server
node must then ensure that it has the updates that include that version
stamp before responding to a request.

Maintaining session consistency with sticky sessions and master-
slave replication can be awkward if you want to read from the slaves to
improve read performance but still need to write to the master. One
way of handling this is for writes to be sent the slave, who then takes
responsibility for forwarding them to the master while maintaining
session consistency for its client. Another approach is to switch the
session to the master temporarily when doing a write, just long enough
that reads are done from the master until the slaves have caught up with
the update.

We’re talking about replication consistency in the context of a data
store, but it’s also an important factor in overall application design.
Even a simple database system will have lots of occasions where data
is presented to a user, the user cogitates, and then updates that data. It’s
usually a bad idea to keep a transaction open during user interaction
because there’s a real danger of conflicts when the user tries to make
her update, which leads to such approaches as offline locks [Fowler
PoEAA].

5.3. Relaxing Consistency
Consistency is a Good Thing—but, sadly, sometimes we have to

sacrifice it. It is always possible to design a system to avoid
inconsistencies, but often impossible to do so without making
unbearable sacrifices in other characteristics of the system. As a result,
we often have to tradeoff consistency for something else. While some
architects see this as a disaster, we see it as part of the inevitable
tradeoffs involved in system design. Furthermore, different domains
have different tolerances for inconsistency, and we need to take this
tolerance into account as we make our decisions.

Trading off consistency is a familiar concept even in single-server
relational database systems. Here, our principal tool to enforce
consistency is the transaction, and transactions can provide strong
consistency guarantees. However, transaction systems usually come
with the ability to relax isolation levels, allowing queries to read data
that hasn’t been committed yet, and in practice we see most applications
relax consistency down from the highest isolation level (serialized) in
order to get effective performance. We most commonly see people
using the read-committed transaction level, which eliminates some
read-write conflicts but allows others.

Many systems forgo transactions entirely because the performance
impact of transactions is too high. We’ve seen this in a couple different
ways. On a small scale, we saw the popularity of MySQL during the
days when it didn’t support transactions. Many websites liked the high
speed of MySQL and were prepared to live without transactions. At the
other end of the scale, some very large websites, such as eBay
[Pritchett], have had to forgo transactions in order to perform
acceptably—this is particularly true when you need to introduce
sharding. Even without these constraints, many application builders
need to interact with remote systems that can’t be properly included
within a transaction boundary, so updating outside of transactions is a
quite common occurrence for enterprise applications.

5.3.1. The CAP Theorem

In the NoSQL world it’s common to refer to the CAP theorem as the
reason why you may need to relax consistency. It was originally
proposed by Eric Brewer in 2000 [Brewer] and given a formal proof
by Seth Gilbert and Nancy Lynch [Lynch and Gilbert] a couple of years
later. (You may also hear this referred to as Brewer’s Conjecture.)

The basic statement of the CAP theorem is that, given the three
properties of Consistency, Availability, and Partition tolerance, you can
only get two. Obviously this depends very much on how you define
these three properties, and differing opinions have led to several
debates on what the real consequences of the CAP theorem are.

Consistency is pretty much as we’ve defined it so far. Availability
has a particular meaning in the context of CAP—it means that if you can
talk to a node in the cluster, it can read and write data. That’s subtly
different from the usual meaning, which we’ll explore later. Partition
tolerance means that the cluster can survive communication breakages
in the cluster that separate the cluster into multiple partitions unable to
communicate with each other (situation known as a split brain, see
Figure 5.3).

Figure 5.3. With two breaks in the communication lines, the
network partitions into two groups.

A single-server system is the obvious example of a CA system—a
system that has Consistency and Availability but not Partition tolerance.
A single machine can’t partition, so it does not have to worry about
partition tolerance. There’s only one node—so if it’s up, it’s available.
Being up and keeping consistency is reasonable. This is the world that
most relational database systems live in.

It is theoretically possible to have a CA cluster. However, this
would mean that if a partition ever occurs in the cluster, all the nodes in
the cluster would go down so that no client can talk to a node. By the
usual definition of “available,” this would mean a lack of availability,
but this is where CAP’s special usage of “availability” gets confusing.
CAP defines “availability” to mean “every request received by a
nonfailing node in the system must result in a response” [Lynch and
Gilbert]. So a failed, unresponsive node doesn’t infer a lack of CAP

availability.
This does imply that you can build a CA cluster, but you have to

ensure it will only partition rarely and completely. This can be done, at
least within a data center, but it’s usually prohibitively expensive.
Remember that in order to bring down all the nodes in a cluster on a
partition, you also have to detect the partition in a timely manner—
which itself is no small feat.

So clusters have to be tolerant of network partitions. And here is the
real point of the CAP theorem. Although the CAP theorem is often
stated as “you can only get two out of three,” in practice what it’s
saying is that in a system that may suffer partitions, as distributed
system do, you have to trade off consistency versus availability. This
isn’t a binary decision; often, you can trade off a little consistency to get
some availability. The resulting system would be neither perfectly
consistent nor perfectly available—but would have a combination that
is reasonable for your particular needs.

An example should help illustrate this. Martin and Pramod are both
trying to book the last hotel room on a system that uses peer-to-peer
distribution with two nodes (London for Martin and Mumbai for
Pramod). If we want to ensure consistency, then when Martin tries to
book his room on the London node, that node must communicate with
the Mumbai node before confirming the booking. Essentially, both
nodes must agree on the serialization of their requests. This gives us
consistency—but should the network link break, then neither system can
book any hotel room, sacrificing availability.

One way to improve availability is to designate one node as the
master for a particular hotel and ensure all bookings are processed by
that master. Should that master be Mumbai, then Mumbai can still
process hotel bookings for that hotel and Pramod will get the last room.
If we use master-slave replication, London users can see the
inconsistent room information but cannot make a booking and thus cause
an update inconsistency. However, users expect that it could happen in

this situation—so, again, the compromise works for this particular use
case.

This improves the situation, but we still can’t book a room on the
London node for the hotel whose master is in Mumbai if the connection
goes down. In CAP terminology, this is a failure of availability in that
Martin can talk to the London node but the London node cannot update
the data. To gain more availability, we might allow both systems to
keep accepting hotel reservations even if the network link breaks down.
The danger here is that Martin and Pramod book the last hotel room.
However, depending on how this hotel operates, that may be fine.
Often, travel companies tolerate a certain amount of overbooking in
order to cope with no-shows. Conversely, some hotels always keep a
few rooms clear even when they are fully booked, in order to be able to
swap a guest out of a room with problems or to accommodate a high-
status late booking. Some might even cancel the booking with an
apology once they detected the conflict—reasoning that the cost of that
is less than the cost of losing bookings on network failures.

The classic example of allowing inconsistent writes is the shopping
cart, as discussed in Dynamo [Amazon’s Dynamo]. In this case you are
always allowed to write to your shopping cart, even if network failures
mean you end up with multiple shopping carts. The checkout process
can merge the two shopping carts by putting the union of the items from
the carts into a single cart and returning that. Almost always that’s the
correct answer—but if not, the user gets the opportunity to look at the
cart before completing the order.

The lesson here is that although most software developers treat
update consistency as The Way Things Must Be, there are cases where
you can deal gracefully with inconsistent answers to requests. These
situations are closely tied to the domain and require domain knowledge
to know how to resolve. Thus you can’t usually look to solve them
purely within the development team—you have to talk to domain
experts. If you can find a way to handle inconsistent updates, this gives

you more options to increase availability and performance. For a
shopping cart, it means that shoppers can always shop, and do so
quickly. And as Patriotic Americans, we know how vital it is to support
Our Retail Destiny.

A similar logic applies to read consistency. If you are trading
financial instruments over a computerized exchange, you may not be
able to tolerate any data that isn’t right up to date. However, if you are
posting a news item to a media website, you may be able to tolerate old
pages for minutes.

In these cases you need to know how tolerant you are of stale reads,
and how long the inconsistency window can be—often in terms of the
average length, worst case, and some measure of the distribution for the
lengths. Different data items may have different tolerances for staleness,
and thus may need different settings in your replication configuration.

Advocates of NoSQL often say that instead of following the ACID
properties of relational transactions, NoSQL systems follow the BASE
properties (Basically Available, Soft state, Eventual consistency)
[Brewer]. Although we feel we ought to mention the BASE acronym
here, we don’t think it’s very useful. The acronym is even more
contrived than ACID, and neither “basically available” nor “soft state”
have been well defined. We should also stress that when Brewer
introduced the notion of BASE, he saw the tradeoff between ACID and
BASE as a spectrum, not a binary choice.

We’ve included this discussion of the CAP theorem because it’s
often used (and abused) when talking about the tradeoffs involving
consistency in distributed databases. However, it’s usually better to
think not about the tradeoff between consistency and availability but
rather between consistency and latency. We can summarize much of the
discussion about consistency in distribution by saying that we can
improve consistency by getting more nodes involved in the interaction,
but each node we add increases the response time of that interaction.
We can then think of availability as the limit of latency that we’re

prepared to tolerate; once latency gets too high, we give up and treat the
data as unavailable—which neatly fits its definition in the context of
CAP.

5.4. Relaxing Durability
So far we’ve talked about consistency, which is most of what people
mean when they talk about the ACID properties of database
transactions. The key to Consistency is serializing requests by forming
Atomic, Isolated work units. But most people would scoff at relaxing
durability—after all, what is the point of a data store if it can lose
updates?

As it turns out, there are cases where you may want to trade off some
durability for higher performance. If a database can run mostly in
memory, apply updates to its in-memory representation, and
periodically flush changes to disk, then it may be able to provide
substantially higher responsiveness to requests. The cost is that, should
the server crash, any updates since the last flush will be lost.

One example of where this tradeoff may be worthwhile is storing
user-session state. A big website may have many users and keep
temporary information about what each user is doing in some kind of
session state. There’s a lot of activity on this state, creating lots of
demand, which affects the responsiveness of the website. The vital
point is that losing the session data isn’t too much of a tragedy—it will
create some annoyance, but maybe less than a slower website would
cause. This makes it a good candidate for nondurable writes. Often, you
can specify the durability needs on a call-by-call basis, so that more
important updates can force a flush to disk.

Another example of relaxing durability is capturing telemetric data
from physical devices. It may be that you’d rather capture data at a
faster rate, at the cost of missing the last updates should the server go
down.

Another class of durability tradeoffs comes up with replicated data.

A failure of replication durability occurs when a node processes an
update but fails before that update is replicated to the other nodes. A
simple case of this may happen if you have a master-slave distribution
model where the slaves appoint a new master automatically should the
existing master fail. If a master does fail, any writes not passed onto the
replicas will effectively become lost. Should the master come back
online, those updates will conflict with updates that have happened
since. We think of this as a durability problem because you think your
update has succeeded since the master acknowledged it, but a master
node failure caused it to be lost.

If you’re sufficiently confident in bringing the master back online
rapidly, this is a reason not to auto-failover to a slave. Otherwise, you
can improve replication durability by ensuring that the master waits for
some replicas to acknowledge the update before the master
acknowledges it to the client. Obviously, however, that will slow down
updates and make the cluster unavailable if slaves fail—so, again, we
have a tradeoff, depending upon how vital durability is. As with basic
durability, it’s useful for individual calls to indicate what level of
durability they need.

5.5. Quorums
When you’re trading off consistency or durability, it’s not an all or
nothing proposition. The more nodes you involve in a request, the
higher is the chance of avoiding an inconsistency. This naturally leads
to the question: How many nodes need to be involved to get strong
consistency?

Imagine some data replicated over three nodes. You don’t need all
nodes to acknowledge a write to ensure strong consistency; all you need
is two of them—a majority. If you have conflicting writes, only one can
get a majority. This is referred to as a write quorum and expressed in a
slightly pretentious inequality of W > N/2, meaning the number of nodes
participating in the write (W) must be more than the half the number of

nodes involved in replication (N). The number of replicas is often
called the replication factor.

Similarly to the write quorum, there is the notion of read quorum:
How many nodes you need to contact to be sure you have the most up-
to-date change. The read quorum is a bit more complicated because it
depends on how many nodes need to confirm a write.

Let’s consider a replication factor of 3. If all writes need two nodes
to confirm (W = 2) then we need to contact at least two nodes to be sure
we’ll get the latest data. If, however, writes are only confirmed by a
single node (W = 1) we need to talk to all three nodes to be sure we
have the latest updates. In this case, since we don’t have a write
quorum, we may have an update conflict, but by contacting enough
readers we can be sure to detect it. Thus we can get strongly consistent
reads even if we don’t have strong consistency on our writes.

This relationship between the number of nodes you need to contact
for a read (R), those confirming a write (W), and the replication factor
(N) can be captured in an inequality: You can have a strongly consistent
read if R + W > N.

These inequalities are written with a peer-to-peer distribution model
in mind. If you have a master-slave distribution, you only have to write
to the master to avoid write-write conflicts, and similarly only read
from the master to avoid read-write conflicts. With this notation, it is
common to confuse the number of nodes in the cluster with the
replication factor, but these are often different. I may have 100 nodes in
my cluster, but only have a replication factor of 3, with most of the
distribution occurring due to sharding.

Indeed most authorities suggest that a replication factor of 3 is
enough to have good resilience. This allows a single node to fail while
still maintaining quora for reads and writes. If you have automatic
rebalancing, it won’t take too long for the cluster to create a third
replica, so the chances of losing a second replica before a replacement
comes up are slight.

The number of nodes participating in an operation can vary with the
operation. When writing, we might require quorum for some types of
updates but not others, depending on how much we value consistency
and availability. Similarly, a read that needs speed but can tolerate
staleness should contact less nodes.

Often you may need to take both into account. If you need fast,
strongly consistent reads, you could require writes to be acknowledged
by all the nodes, thus allowing reads to contact only one (N = 3, W = 3,
R = 1). That would mean that your writes are slow, since they have to
contact all three nodes, and you would not be able to tolerate losing a
node. But in some circumstances that may be the tradeoff to make.

The point to all of this is that you have a range of options to work
with and can choose which combination of problems and advantages to
prefer. Some writers on NoSQL talk about a simple tradeoff between
consistency and availability; we hope you now realize that it’s more
flexible—and more complicated—than that.

5.6. Further Reading
There are all sorts of interesting blog posts and papers on the Internet
about consistency in distributed systems, but the most helpful source for
us was [Tanenbaum and Van Steen]. It does an excellent job of
organizing much of the fundamentals of distributed systems and is the
best place to go if you’d like to delve deeper than we have in this
chapter.

As we were finishing this book, IEEE Computer had a special issue
[IEEE Computer Feb 2012] on the growing influence of the CAP
theorem, which is a helpful source of further clarification for this topic.

5.7. Key Points
• Write-write conflicts occur when two clients try to write the same

data at the same time. Read-write conflicts occur when one client
reads inconsistent data in the middle of another client’s write.

• Pessimistic approaches lock data records to prevent conflicts.
Optimistic approaches detect conflicts and fix them.

• Distributed systems see read-write conflicts due to some nodes
having received updates while other nodes have not. Eventual
consistency means that at some point the system will become
consistent once all the writes have propagated to all the nodes.

• Clients usually want read-your-writes consistency, which means a
client can write and then immediately read the new value. This
can be difficult if the read and the write happen on different
nodes.

• To get good consistency, you need to involve many nodes in data
operations, but this increases latency. So you often have to trade
off consistency versus latency.

• The CAP theorem states that if you get a network partition, you
have to trade off availability of data versus consistency.

• Durability can also be traded off against latency, particularly if
you want to survive failures with replicated data.

• You do not need to contact all replicants to preserve strong
consistency with replication; you just need a large enough
quorum.

Chapter 6. Version Stamps

Many critics of NoSQL databases focus on the lack of support for
transactions. Transactions are a useful tool that helps programmers
support consistency. One reason why many NoSQL proponents worry
less about a lack of transactions is that aggregate-oriented NoSQL
databases do support atomic updates within an aggregate—and
aggregates are designed so that their data forms a natural unit of update.
That said, it’s true that transactional needs are something to take into
account when you decide what database to use.

As part of this, it’s important to remember that transactions have
limitations. Even within a transactional system we still have to deal
with updates that require human intervention and usually cannot be run
within transactions because they would involve holding a transaction
open for too long. We can cope with these using version stamps—
which turn out to be handy in other situations as well, particularly as we
move away from the single-server distribution model.

6.1. Business and System Transactions
The need to support update consistency without transactions is actually
a common feature of systems even when they are built on top of
transactional databases. When users think about transactions, they
usually mean business transactions. A business transaction may be
something like browsing a product catalog, choosing a bottle of
Talisker at a good price, filling in credit card information, and
confirming the order. Yet all of this usually won’t occur within the
system transaction provided by the database because this would mean
locking the database elements while the user is trying to find their credit
card and gets called off to lunch by their colleagues.

Usually applications only begin a system transaction at the end of the
interaction with the user, so that the locks are only held for a short

period of time. The problem, however, is that calculations and
decisions may have been made based on data that’s changed. The price
list may have updated the price of the Talisker, or someone may have
updated the customer’s address, changing the shipping charges.

The broad techniques for handling this are offline concurrency
[Fowler PoEAA], useful in NoSQL situations too. A particularly useful
approach is the Optimistic Offline Lock [Fowler PoEAA], a form of
conditional update where a client operation rereads any information that
the business transaction relies on and checks that it hasn’t changed since
it was originally read and displayed to the user. A good way of doing
this is to ensure that records in the database contain some form of
version stamp: a field that changes every time the underlying data in the
record changes. When you read the data you keep a note of the version
stamp, so that when you write data you can check to see if the version
has changed.

You may have come across this technique with updating resources
with HTTP [HTTP]. One way of doing this is to use etags. Whenever
you get a resource, the server responds with an etag in the header. This
etag is an opaque string that indicates the version of the resource. If you
then update that resource, you can use a conditional update by supplying
the etag that you got from your last GET. If the resource has changed on
the server, the etags won’t match and the server will refuse the update,
returning a 412 (Precondition Failed) response.

Some databases provide a similar mechanism of conditional update
that allows you to ensure updates won’t be based on stale data. You can
do this check yourself, although you then have to ensure no other thread
can run against the resource between your read and your update.
(Sometimes this is called a compare-and-set (CAS) operation, whose
name comes from the CAS operations done in processors. The
difference is that a processor CAS compares a value before setting it,
while a database conditional update compares a version stamp of the
value.)

There are various ways you can construct your version stamps. You
can use a counter, always incrementing it when you update the resource.
Counters are useful since they make it easy to tell if one version is more
recent than another. On the other hand, they require the server to
generate the counter value, and also need a single master to ensure the
counters aren’t duplicated.

Another approach is to create a GUID, a large random number that’s
guaranteed to be unique. These use some combination of dates,
hardware information, and whatever other sources of randomness they
can pick up. The nice thing about GUIDs is that they can be generated
by anyone and you’ll never get a duplicate; a disadvantage is that they
are large and can’t be compared directly for recentness.

A third approach is to make a hash of the contents of the resource.
With a big enough hash key size, a content hash can be globally unique
like a GUID and can also be generated by anyone; the advantage is that
they are deterministic—any node will generate the same content hash
for same resource data. However, like GUIDs they can’t be directly
compared for recentness, and they can be lengthy.

A fourth approach is to use the timestamp of the last update. Like
counters, they are reasonably short and can be directly compared for
recentness, yet have the advantage of not needing a single master.
Multiple machines can generate timestamps—but to work properly,
their clocks have to be kept in sync. One node with a bad clock can
cause all sorts of data corruptions. There’s also a danger that if the
timestamp is too granular you can get duplicates—it’s no good using
timestamps of a millisecond precision if you get many updates per
millisecond.

You can blend the advantages of these different version stamp
schemes by using more than one of them to create a composite stamp.
For example, CouchDB uses a combination of counter and content hash.
Most of the time this allows version stamps to be compared for
recentness, even when you use peer-to-peer replication. Should two

peers update at the same time, the combination of the same count and
different content hashes makes it easy to spot the conflict.

As well as helping to avoid update conflicts, version stamps are also
useful for providing session consistency (p. 52).

6.2. Version Stamps on Multiple Nodes
The basic version stamp works well when you have a single
authoritative source for data, such as a single server or master-slave
replication. In that case the version stamp is controlled by the master.
Any slaves follow the master’s stamps. But this system has to be
enhanced in a peer-to-peer distribution model because there’s no longer
a single place to set the version stamps.

If you’re asking two nodes for some data, you run into the chance that
they may give you different answers. If this happens, your reaction may
vary depending on the cause of that difference. It may be that an update
has only reached one node but not the other, in which case you can
accept the latest (assuming you can tell which one that is).
Alternatively, you may have run into an inconsistent update, in which
case you need to decide how to deal with that. In this situation, a simple
GUID or etag won’t suffice, since these don’t tell you enough about the
relationships.

The simplest form of version stamp is a counter. Each time a node
updates the data, it increments the counter and puts the value of the
counter into the version stamp. If you have blue and green slave
replicas of a single master, and the blue node answers with a version
stamp of 4 and the green node with 6, you know that the green’s answer
is more recent.

In multiple-master cases, we need something fancier. One approach,
used by distributed version control systems, is to ensure that all nodes
contain a history of version stamps. That way you can see if the blue
node’s answer is an ancestor of the green’s answer. This would either
require the clients to hold onto version stamp histories, or the server

nodes to keep version stamp histories and include them when asked for
data. This also detects an inconsistency, which we would see if we get
two version stamps and neither of them has the other in their histories.
Although version control systems keep these kinds of histories, they
aren’t found in NoSQL databases.

A simple but problematic approach is to use timestamps. The main
problem here is that it’s usually difficult to ensure that all the nodes
have a consistent notion of time, particularly if updates can happen
rapidly. Should a node’s clock get out of sync, it can cause all sorts of
trouble. In addition, you can’t detect write-write conflicts with
timestamps, so it would only work well for the single-master case—and
then a counter is usually better.

The most common approach used by peer-to-peer NoSQL systems is
a special form of version stamp which we call a vector stamp. In
essence, a vector stamp is a set of counters, one for each node. A
vector stamp for three nodes (blue, green, black) would look something
like [blue: 43, green: 54, black: 12]. Each time a node has an
internal update, it updates its own counter, so an update in the green
node would change the vector to [blue: 43, green: 55, black:
12]. Whenever two nodes communicate, they synchronize their vector
stamps. There are several variations of exactly how this
synchronization is done. We’re coining the term “vector stamp” as a
general term in this book; you’ll also come across vector clocks and
version vectors—these are specific forms of vector stamps that differ
in how they synchronize.

By using this scheme you can tell if one version stamp is newer than
another because the newer stamp will have all its counters greater than
or equal to those in the older stamp. So [blue: 1, green: 2,
black: 5] is newer than [blue:1, green: 1, black 5] since one
of its counters is greater. If both stamps have a counter greater than the
other, e.g. [blue: 1, green: 2, black: 5] and [blue: 2,
green: 1, black: 5], then you have a write-write conflict.

There may be missing values in the vector, in which case we use
treat the missing value as 0. So [blue: 6, black: 2] would be
treated as [blue: 6, green: 0, black: 2]. This allows you to
easily add new nodes without invalidating the existing vector stamps.

Vector stamps are a valuable tool that spots inconsistencies, but
doesn’t resolve them. Any conflict resolution will depend on the
domain you are working in. This is part of the consistency/latency
tradeoff. You either have to live with the fact that network partitions
may make your system unavailable, or you have to detect and deal with
inconsistencies.

6.3. Key Points
• Version stamps help you detect concurrency conflicts. When you

read data, then update it, you can check the version stamp to
ensure nobody updated the data between your read and write.

• Version stamps can be implemented using counters, GUIDs,
content hashes, timestamps, or a combination of these.

• With distributed systems, a vector of version stamps allows you
to detect when different nodes have conflicting updates.

Chapter 7. Map-Reduce

The rise of aggregate-oriented databases is in large part due to the
growth of clusters. Running on a cluster means you have to make your
tradeoffs in data storage differently than when running on a single
machine. Clusters don’t just change the rules for data storage—they also
change the rules for computation. If you store lots of data on a cluster,
processing that data efficiently means you have to think differently about
how you organize your processing.

With a centralized database, there are generally two ways you can
run the processing logic against it: either on the database server itself or
on a client machine. Running it on a client machine gives you more
flexibility in choosing a programming environment, which usually
makes for programs that are easier to create or extend. This comes at
the cost of having to shlep lots of data from the database server. If you
need to hit a lot of data, then it makes sense to do the processing on the
server, paying the price in programming convenience and increasing the
load on the database server.

When you have a cluster, there is good news immediately—you have
lots of machines to spread the computation over. However, you also
still need to try to reduce the amount of data that needs to be transferred
across the network by doing as much processing as you can on the same
node as the data it needs.

The map-reduce pattern (a form of Scatter-Gather [Hohpe and
Woolf]) is a way to organize processing in such a way as to take
advantage of multiple machines on a cluster while keeping as much
processing and the data it needs together on the same machine. It first
gained prominence with Google’s MapReduce framework [Dean and
Ghemawat]. A widely used open-source implementation is part of the
Hadoop project, although several databases include their own
implementations. As with most patterns, there are differences in detail

between these implementations, so we’ll concentrate on the general
concept. The name “map-reduce” reveals its inspiration from the map
and reduce operations on collections in functional programming
languages.

7.1. Basic Map-Reduce
To explain the basic idea, we’ll start from an example we’ve already
flogged to death—that of customers and orders. Let’s assume we have
chosen orders as our aggregate, with each order having line items. Each
line item has a product ID, quantity, and the price charged. This
aggregate makes a lot of sense as usually people want to see the whole
order in one access. We have lots of orders, so we’ve sharded the
dataset over many machines.

However, sales analysis people want to see a product and its total
revenue for the last seven days. This report doesn’t fit the aggregate
structure that we have—which is the downside of using aggregates. In
order to get the product revenue report, you’ll have to visit every
machine in the cluster and examine many records on each machine.

This is exactly the kind of situation that calls for map-reduce. The
first stage in a map-reduce job is the map. A map is a function whose
input is a single aggregate and whose output is a bunch of key-value
pairs. In this case, the input would be an order. The output would be
key-value pairs corresponding to the line items. Each one would have
the product ID as the key and an embedded map with the quantity and
price as the values (see Figure 7.1).

Figure 7.1. A map function reads records from the database and
emits key-value pairs.

Each application of the map function is independent of all the others.
This allows them to be safely parallelizable, so that a map-reduce
framework can create efficient map tasks on each node and freely
allocate each order to a map task. This yields a great deal of
parallelism and locality of data access. For this example, we are just
selecting a value out of the record, but there’s no reason why we can’t
carry out some arbitrarily complex function as part of the map—
providing it only depends on one aggregate’s worth of data.

A map operation only operates on a single record; the reduce
function takes multiple map outputs with the same key and combines
their values. So, a map function might yield 1000 line items from orders
for “Database Refactoring”; the reduce function would reduce down to
one, with the totals for the quantity and revenue. While the map function
is limited to working only on data from a single aggregate, the reduce
function can use all values emitted for a single key (see Figure 7.2).

Figure 7.2. A reduce function takes several key-value pairs with the
same key and aggregates them into one.

The map-reduce framework arranges for map tasks to be run on the
correct nodes to process all the documents and for data to be moved to
the reduce function. To make it easier to write the reduce function, the
framework collects all the values for a single pair and calls the reduce
function once with the key and the collection of all the values for that
key. So to run a map-reduce job, you just need to write these two
functions.

7.2. Partitioning and Combining
In the simplest form, we think of a map-reduce job as having a single
reduce function. The outputs from all the map tasks running on the
various nodes are concatenated together and sent into the reduce. While
this will work, there are things we can do to increase the parallelism
and to reduce the data transfer (see Figure 7.3).

Figure 7.3. Partitioning allows reduce functions to run in parallel on
different keys.

The first thing we can do is increase parallelism by partitioning the
output of the mappers. Each reduce function operates on the results of a
single key. This is a limitation—it means you can’t do anything in the
reduce that operates across keys—but it’s also a benefit in that it allows
you to run multiple reducers in parallel. To take advantage of this, the
results of the mapper are divided up based the key on each processing
node. Typically, multiple keys are grouped together into partitions. The
framework then takes the data from all the nodes for one partition,
combines it into a single group for that partition, and sends it off to a
reducer. Multiple reducers can then operate on the partitions in parallel,
with the final results merged together. (This step is also called
“shuffling,” and the partitions are sometimes referred to as “buckets” or
“regions.”)

The next problem we can deal with is the amount of data being
moved from node to node between the map and reduce stages. Much of
this data is repetitive, consisting of multiple key-value pairs for the
same key. A combiner function cuts this data down by combining all the
data for the same key into a single value (see Figure 7.4). A combiner
function is, in essence, a reducer function—indeed, in many cases the
same function can be used for combining as the final reduction. The
reduce function needs a special shape for this to work: Its output must
match its input. We call such a function a combinable reducer.

Figure 7.4. Combining reduces data before sending it across the
network.

Not all reduce functions are combinable. Consider a function that
counts the number of unique customers for a particular product. The
map function for such an operation would need to emit the product and
the customer. The reducer can then combine them and count how many
times each customer appears for a particular product, emitting the
product and the count (see Figure 7.5). But this reducer’s output is
different from its input, so it can’t be used as a combiner. You can still
run a combining function here: one that just eliminates duplicate
product-customer pairs, but it will be different from the final reducer.

Figure 7.5. This reduce function, which counts how many unique
customers order a particular tea, is not combinable.

When you have combining reducers, the map-reduce framework can
safely run not only in parallel (to reduce different partitions), but also in
series to reduce the same partition at different times and places. In
addition to allowing combining to occur on a node before data
transmission, you can also start combining before mappers have
finished. This provides a good bit of extra flexibility to the map-reduce
processing. Some map-reduce frameworks require all reducers to be
combining reducers, which maximizes this flexibility. If you need to do
a noncombining reducer with one of these frameworks, you’ll need to
separate the processing into pipelined map-reduce steps.

7.3. Composing Map-Reduce Calculations
The map-reduce approach is a way of thinking about concurrent
processing that trades off flexibility in how you structure your
computation for a relatively straightforward model for parallelizing the
computation over a cluster. Since it’s a tradeoff, there are constraints on
what you can do in your calculations. Within a map task, you can only
operate on a single aggregate. Within a reduce task, you can only
operate on a single key. This means you have to think differently about

structuring your programs so they work well within these constraints.
One simple limitation is that you have to structure your calculations

around operations that fit in well with the notion of a reduce operation.
A good example of this is calculating averages. Let’s consider the kind
of orders we’ve been looking at so far; suppose we want to know the
average ordered quantity of each product. An important property of
averages is that they are not composable—that is, if I take two groups
of orders, I can’t combine their averages alone. Instead, I need to take
total amount and the count of orders from each group, combine those,
and then calculate the average from the combined sum and count (see
Figure 7.6).

Figure 7.6. When calculating averages, the sum and count can be
combined in the reduce calculation, but the average must be

calculated from the combined sum and count.
This notion of looking for calculations that reduce neatly also affects

how we do counts. To make a count, the mapping function will emit
count fields with a value of 1, which can be summed to get a total count
(see Figure 7.7).

Figure 7.7. When making a count, each map emits 1, which can be
summed to get a total.

7.3.1. A Two Stage Map-Reduce Example
As map-reduce calculations get more complex, it’s useful to break them
down into stages using a pipes-and-filters approach, with the output of
one stage serving as input to the next, rather like the pipelines in UNIX.

Consider an example where we want to compare the sales of
products for each month in 2011 to the prior year. To do this, we’ll
break the calculations down into two stages. The first stage will
produce records showing the aggregate figures for a single product in a
single month of the year. The second stage then uses these as inputs and
produces the result for a single product by comparing one month’s
results with the same month in the prior year (see Figure 7.8).

Figure 7.8. A calculation broken down into two map-reduce steps,
which will be expanded in the next three figures

A first stage (Figure 7.9) would read the original order records and
output a series of key-value pairs for the sales of each product per
month.

Figure 7.9. Creating records for monthly sales of a product

This stage is similar to the map-reduce examples we’ve seen so far.
The only new feature is using a composite key so that we can reduce
records based on the values of multiple fields.

The second-stage mappers (Figure 7.10) process this output
depending on the year. A 2011 record populates the current year
quantity while a 2010 record populates a prior year quantity. Records
for earlier years (such as 2009) don’t result in any mapping output
being emitted.

Figure 7.10. The second stage mapper creates base records for
year-on-year comparisons.

The reduce in this case (Figure 7.11) is a merge of records, where
combining the values by summing allows two different year outputs to

be reduced to a single value (with a calculation based on the reduced
values thrown in for good measure).

Figure 7.11. The reduction step is a merge of incomplete records.
Decomposing this report into multiple map-reduce steps makes it

easier to write. Like many transformation examples, once you’ve found
a transformation framework that makes it easy to compose steps, it’s
usually easier to compose many small steps together than try to cram
heaps of logic into a single step.

Another advantage is that the intermediate output may be useful for
different outputs too, so you can get some reuse. This reuse is important
as it saves time both in programming and in execution. The intermediate
records can be saved in the data store, forming a materialized view
(“Materialized Views,” p. 30). Early stages of map-reduce operations
are particularly valuable to save since they often represent the heaviest
amount of data access, so building them once as a basis for many
downstream uses saves a lot of work. As with any reuse activity,
however, it’s important to build them out of experience with real
queries, as speculative reuse rarely fulfills its promise. So it’s
important to look at the forms of various queries as they are built and

factor out the common parts of the calculations into materialized views.
Map-reduce is a pattern that can be implemented in any programming

language. However, the constraints of the style make it a good fit for
languages specifically designed for map-reduce computations. Apache
Pig [Pig], an offshoot of the Hadoop [Hadoop] project, is a language
specifically built to make it easy to write map-reduce programs. It
certainly makes it much easier to work with Hadoop than the underlying
Java libraries. In a similar vein, if you want to specify map-reduce
programs using an SQL-like syntax, there is hive [Hive], another
Hadoop offshoot.

The map-reduce pattern is important to know about even outside of
the context of NoSQL databases. Google’s original map-reduce system
operated on files stored on a distributed file system—an approach
that’s used by the open-source Hadoop project. While it takes some
thought to get used to the constraints of structuring computations in map-
reduce steps, the result is a calculation that is inherently well-suited to
running on a cluster. When dealing with high volumes of data, you need
to take a cluster-oriented approach. Aggregate-oriented databases fit
well with this style of calculation. We think that in the next few years
many more organizations will be processing the volumes of data that
demand a cluster-oriented solution—and the map-reduce pattern will
see more and more use.

7.3.2. Incremental Map-Reduce
The examples we’ve discussed so far are complete map-reduce
computations, where we start with raw inputs and create a final output.
Many map-reduce computations take a while to perform, even with
clustered hardware, and new data keeps coming in which means we
need to rerun the computation to keep the output up to date. Starting
from scratch each time can take too long, so often it’s useful to structure
a map-reduce computation to allow incremental updates, so that only
the minimum computation needs to be done.

The map stages of a map-reduce are easy to handle incrementally—
only if the input data changes does the mapper need to be rerun. Since
maps are isolated from each other, incremental updates are
straightforward.

The more complex case is the reduce step, since it pulls together the
outputs from many maps and any change in the map outputs could trigger
a new reduction. This recomputation can be lessened depending on how
parallel the reduce step is. If we are partitioning the data for reduction,
then any partition that’s unchanged does not need to be re-reduced.
Similarly, if there’s a combiner step, it doesn’t need to be rerun if its
source data hasn’t changed.

If our reducer is combinable, there’s some more opportunities for
computation avoidance. If the changes are additive—that is, if we are
only adding new records but are not changing or deleting any old
records—then we can just run the reduce with the existing result and the
new additions. If there are destructive changes, that is updates and
deletes, then we can avoid some recomputation by breaking up the
reduce operation into steps and only recalculating those steps whose
inputs have changed—essentially, using a Dependency Network
[Fowler DSL] to organize the computation.

The map-reduce framework controls much of this, so you have to
understand how a specific framework supports incremental operation.

7.4. Further Reading
If you’re going to use map-reduce calculations, your first port of call
will be the documentation for the particular database you are using.
Each database has its own approach, vocabulary, and quirks, and that’s
what you’ll need to be familiar with. Beyond that, there is a need to
capture more general information on how to structure map-reduce jobs
to maximize maintainability and performance. We don’t have any
specific books to point to yet, but we suspect that a good though easily
overlooked source are books on Hadoop. Although Hadoop is not a

database, it’s a tool that uses map-reduce heavily, so writing an
effective map-reduce task with Hadoop is likely to be useful in other
contexts (subject to the changes in detail between Hadoop and whatever
systems you’re using).

7.5. Key Points
• Map-reduce is a pattern to allow computations to be parallelized

over a cluster.
• The map task reads data from an aggregate and boils it down to

relevant key-value pairs. Maps only read a single record at a time
and can thus be parallelized and run on the node that stores the
record.

• Reduce tasks take many values for a single key output from map
tasks and summarize them into a single output. Each reducer
operates on the result of a single key, so it can be parallelized by
key.

• Reducers that have the same form for input and output can be
combined into pipelines. This improves parallelism and reduces
the amount of data to be transferred.

• Map-reduce operations can be composed into pipelines where the
output of one reduce is the input to another operation’s map.

• If the result of a map-reduce computation is widely used, it can be
stored as a materialized view.

• Materialized views can be updated through incremental map-
reduce operations that only compute changes to the view instead
of recomputing everything from scratch.

Part II: Implement

Chapter 8. Key-Value Databases

A key-value store is a simple hash table, primarily used when all
access to the database is via primary key. Think of a table in a
traditional RDBMS with two columns, such as ID and NAME, the ID
column being the key and NAME column storing the value. In an RDBMS,
the NAME column is restricted to storing data of type String. The
application can provide an ID and VALUE and persist the pair; if the ID
already exists the current value is overwritten, otherwise a new entry is
created. Let’s look at how terminology compares in Oracle and Riak.

8.1. What Is a Key-Value Store
Key-value stores are the simplest NoSQL data stores to use from an
API perspective. The client can either get the value for the key, put a
value for a key, or delete a key from the data store. The value is a blob
that the data store just stores, without caring or knowing what’s inside;
it’s the responsibility of the application to understand what was stored.
Since key-value stores always use primary-key access, they generally
have great performance and can be easily scaled.

Some of the popular key-value databases are Riak [Riak], Redis
(often referred to as Data Structure server) [Redis], Memcached DB
and its flavors [Memcached], Berkeley DB [Berkeley DB], HamsterDB
(especially suited for embedded use) [HamsterDB], Amazon
DynamoDB [Amazon’s Dynamo] (not open-source), and Project

Voldemort [Project Voldemort] (an open-source implementation of
Amazon DynamoDB).

In some key-value stores, such as Redis, the aggregate being stored
does not have to be a domain object—it could be any data structure.
Redis supports storing lists, sets, hashes and can do range, diff,
union, and intersection operations. These features allow Redis to be
used in more different ways than a standard key-value store.

There are many more key-value databases and many new ones are
being worked on at this time. For the sake of keeping discussions in this
book easier we will focus mostly on Riak. Riak lets us store keys into
buckets, which are just a way to segment the keys—think of buckets as
flat namespaces for the keys.

If we wanted to store user session data, shopping cart information,
and user preferences in Riak, we could just store all of them in the same
bucket with a single key and single value for all of these objects. In this
scenario, we would have a single object that stores all the data and is
put into a single bucket (Figure 8.1).

Figure 8.1. Storing all the data in a single bucket
The downside of storing all the different objects (aggregates) in the

single bucket would be that one bucket would store different types of
aggregates, increasing the chance of key conflicts. An alternate
approach would be to append the name of the object to the key, such as
288790b8a421_userProfile, so that we can get to individual objects
as they are needed (Figure 8.2).

Figure 8.2. Change the key design to segment the data in a single
bucket.

We could also create buckets which store specific data. In Riak, they
are known as domain buckets allowing the serialization and
deserialization to be handled by the client driver.
Click here to view code image

Bucket bucket = client.fetchBucket(bucketName).execute();
DomainBucket<UserProfile> profileBucket =
DomainBucket.builder(bucket, UserProfile.class).build();

Using domain buckets or different buckets for different objects (such
as UserProfile and ShoppingCart) segments the data across different
buckets allowing you to read only the object you need without having to
change key design.

Key-value stores such as Redis also support storing random data
structures, which can be sets, hashes, strings, and so on. This feature
can be used to store lists of things, like states or addressTypes, or an
array of user’s visits.

8.2. Key-Value Store Features
While using any NoSQL data stores, there is an inevitable need to
understand how the features compare to the standard RDBMS data
stores that we are so used to. The primary reason is to understand what
features are missing and how does the application architecture need to
change to better use the features of a key-value data store. Some of the
features we will discuss for all the NoSQL data stores are consistency,
transactions, query features, structure of the data, and scaling.

8.2.1. Consistency
Consistency is applicable only for operations on a single key, since
these operations are either a get, put, or delete on a single key.
Optimistic writes can be performed, but are very expensive to

implement, because a change in value cannot be determined by the data
store.

In distributed key-value store implementations like Riak, the
eventually consistent (p. 50) model of consistency is implemented.
Since the value may have already been replicated to other nodes, Riak
has two ways of resolving update conflicts: either the newest write
wins and older writes loose, or both (all) values are returned allowing
the client to resolve the conflict.

In Riak, these options can be set up during the bucket creation.
Buckets are just a way to namespace keys so that key collisions can be
reduced—for example, all customer keys may reside in the customer
bucket. When creating a bucket, default values for consistency can be
provided, for example that a write is considered good only when the
data is consistent across all the nodes where the data is stored.
Click here to view code image

Bucket bucket = connection
 .createBucket(bucketName)
 .withRetrier(attempts(3))
 .allowSiblings(siblingsAllowed)
 .nVal(numberOfReplicasOfTheData)
 .w(numberOfNodesToRespondToWrite)
 .r(numberOfNodesToRespondToRead)
 .execute();

If we need data in every node to be consistent, we can increase the
numberOfNodesToRespondToWrite set by w to be the same as nVal.
Of course doing that will decrease the write performance of the cluster.
To improve on write or read conflicts, we can change the
allowSiblings flag during bucket creation: If it is set to false, we let
the last write to win and not create siblings.

8.2.2. Transactions
Different products of the key-value store kind have different
specifications of transactions. Generally speaking, there are no

guarantees on the writes. Many data stores do implement transactions in
different ways. Riak uses the concept of quorum (“Quorums,” p. 57)
implemented by using the W value—replication factor—during the write
API call.

Assume we have a Riak cluster with a replication factor of 5 and we
supply the W value of 3. When writing, the write is reported as
successful only when it is written and reported as a success on at least
three of the nodes. This allows Riak to have write tolerance; in our
example, with N equal to 5 and with a W value of 3, the cluster can
tolerate N - W = 2 nodes being down for write operations, though we
would still have lost some data on those nodes for read.

8.2.3. Query Features
All key-value stores can query by the key—and that’s about it. If you
have requirements to query by using some attribute of the value column,
it’s not possible to use the database: Your application needs to read the
value to figure out if the attribute meets the conditions.

Query by key also has an interesting side effect. What if we don’t
know the key, especially during ad-hoc querying during debugging?
Most of the data stores will not give you a list of all the primary keys;
even if they did, retrieving lists of keys and then querying for the value
would be very cumbersome. Some key-value databases get around this
by providing the ability to search inside the value, such as Riak Search
that allows you to query the data just like you would query it using
Lucene indexes.

While using key-value stores, lots of thought has to be given to the
design of the key. Can the key be generated using some algorithm? Can
the key be provided by the user (user ID, email, etc.)? Or derived from
timestamps or other data that can be derived outside of the database?

These query characteristics make key-value stores likely candidates
for storing session data (with the session ID as the key), shopping cart
data, user profiles, and so on. The expiry_secs property can be used

to expire keys after a certain time interval, especially for
session/shopping cart objects.
Click here to view code image

Bucket bucket = getBucket(bucketName);
IRiakObject riakObject = bucket.store(key, value).execute();

When writing to the Riak bucket using the store API, the object is
stored for the key provided. Similarly, we can get the value stored for
the key using the fetch API.
Click here to view code image

Bucket bucket = getBucket(bucketName);
IRiakObject riakObject = bucket.fetch(key).execute();
byte[] bytes = riakObject.getValue();
String value = new String(bytes);

Riak provides an HTTP-based interface, so that all operations can be
performed from the web browser or on the command line using curl.
Let’s save this data to Riak:
Click here to view code image

{
"lastVisit":1324669989288,
"user":{
 "customerId":"91cfdf5bcb7c",
 "name":"buyer",
 "countryCode":"US",
 "tzOffset":0
 }
}

Use the curl command to POST the data, storing the data in the
session bucket with the key of a7e618d9db25 (we have to provide
this key):
Click here to view code image

curl -v -X POST -d '
{ "lastVisit":1324669989288,

 "user":{"customerId":"91cfdf5bcb7c",
 "name":"buyer",
 "countryCode":"US",
 "tzOffset":0}
}'
-H "Content-Type: application/json"
http://localhost:8098/buckets/session/keys/a7e618d9db25

The data for the key a7e618d9db25 can be fetched by using the curl
command:
Click here to view code image

curl -i http://localhost:8098/buckets/session/keys/a7e618d9db25

8.2.4. Structure of Data
Key-value databases don’t care what is stored in the value part of the
key-value pair. The value can be a blob, text, JSON, XML, and so on.
In Riak, we can use the Content-Type in the POST request to specify
the data type.

8.2.5. Scaling
Many key-value stores scale by using sharding (“Sharding,” p. 38).
With sharding, the value of the key determines on which node the key is
stored. Let’s assume we are sharding by the first character of the key; if
the key is f4b19d79587d, which starts with an f, it will be sent to
different node than the key ad9c7a396542. This kind of sharding setup
can increase performance as more nodes are added to the cluster.

Sharding also introduces some problems. If the node used to store f
goes down, the data stored on that node becomes unavailable, nor can
new data be written with keys that start with f.

Data stores such as Riak allow you to control the aspects of the CAP
Theorem (“The CAP Theorem,” p. 53): N (number of nodes to store the
key-value replicas), R (number of nodes that have to have the data being
fetched before the read is considered successful), and W (the number of
nodes the write has to be written to before it is considered successful).

Let’s assume we have a 5-node Riak cluster. Setting N to 3 means that
all data is replicated to at least three nodes, setting R to 2 means any
two nodes must reply to a GET request for it to be considered
successful, and setting W to 2 ensures that the PUT request is written to
two nodes before the write is considered successful.

These settings allow us to fine-tune node failures for read or write
operations. Based on our need, we can change these values for better
read availability or write availability. Generally speaking choose a W
value to match your consistency needs; these values can be set as
defaults during bucket creation.

8.3. Suitable Use Cases
Let’s discuss some of the problems where key-value stores are a good
fit.

8.3.1. Storing Session Information
Generally, every web session is unique and is assigned a unique
sessionid value. Applications that store the sessionid on disk or in
an RDBMS will greatly benefit from moving to a key-value store, since
everything about the session can be stored by a single PUT request or
retrieved using GET. This single-request operation makes it very fast, as
everything about the session is stored in a single object. Solutions such
as Memcached are used by many web applications, and Riak can be
used when availability is important.

8.3.2. User Profiles, Preferences
Almost every user has a unique userId, username, or some other
attribute, as well as preferences such as language, color, timezone,
which products the user has access to, and so on. This can all be put
into an object, so getting preferences of a user takes a single GET
operation. Similarly, product profiles can be stored.

8.3.3. Shopping Cart Data

E-commerce websites have shopping carts tied to the user. As we want
the shopping carts to be available all the time, across browsers,
machines, and sessions, all the shopping information can be put into the
value where the key is the userid. A Riak cluster would be best suited
for these kinds of applications.

8.4. When Not to Use
There are problem spaces where key-value stores are not the best
solution.

8.4.1. Relationships among Data
If you need to have relationships between different sets of data, or
correlate the data between different sets of keys, key-value stores are
not the best solution to use, even though some key-value stores provide
link-walking features.

8.4.2. Multioperation Transactions
If you’re saving multiple keys and there is a failure to save any one of
them, and you want to revert or roll back the rest of the operations, key-
value stores are not the best solution to be used.

8.4.3. Query by Data
If you need to search the keys based on something found in the value
part of the key-value pairs, then key-value stores are not going to
perform well for you. There is no way to inspect the value on the
database side, with the exception of some products like Riak Search or
indexing engines like Lucene [Lucene] or Solr [Solr].

8.4.4. Operations by Sets
Since operations are limited to one key at a time, there is no way to
operate upon multiple keys at the same time. If you need to operate upon
multiple keys, you have to handle this from the client side.

Chapter 9. Document Databases

Documents are the main concept in document databases. The database
stores and retrieves documents, which can be XML, JSON, BSON, and
so on. These documents are self-describing, hierarchical tree data
structures which can consist of maps, collections, and scalar values.
The documents stored are similar to each other but do not have to be
exactly the same. Document databases store documents in the value part
of the key-value store; think about document databases as key-value
stores where the value is examinable. Let’s look at how terminology
compares in Oracle and MongoDB.

The _id is a special field that is found on all documents in Mongo,
just like ROWID in Oracle. In MongoDB, _id can be assigned by the
user, as long as it is unique.

9.1. What Is a Document Database?
Click here to view code image

{ "firstname": "Martin",
 "likes": ["Biking",
 "Photography"],
 "lastcity": "Boston",
 "lastVisited":

}

The above document can be considered a row in a traditional
RDBMS. Let’s look at another document:
Click here to view code image

{
 "firstname": "Pramod",
 "citiesvisited": ["Chicago", "London", "Pune", "Bangalore"],
 "addresses": [
 { "state": "AK",
 "city": "DILLINGHAM",
 "type": "R"
 },
 { "state": "MH",
 "city": "PUNE",
 "type": "R" }
],
 "lastcity": "Chicago"
}

Looking at the documents, we can see that they are similar, but have
differences in attribute names. This is allowed in document databases.
The schema of the data can differ across documents, but these
documents can still belong to the same collection—unlike an RDBMS
where every row in a table has to follow the same schema. We
represent a list of citiesvisited as an array, or a list of addresses
as list of documents embedded inside the main document. Embedding
child documents as subobjects inside documents provides for easy
access and better performance.

If you look at the documents, you will see that some of the attributes
are similar, such as firstname or city. At the same time, there are
attributes in the second document which do not exist in the first
document, such as addresses, while likes is in the first document but
not the second.

This different representation of data is not the same as in RDBMS
where every column has to be defined, and if it does not have data it is

marked as empty or set to null. In documents, there are no empty
attributes; if a given attribute is not found, we assume that it was not set
or not relevant to the document. Documents allow for new attributes to
be created without the need to define them or to change the existing
documents.

Some of the popular document databases we have seen are
MongoDB [MongoDB], CouchDB [CouchDB], Terrastore [Terrastore],
OrientDB [OrientDB], RavenDB [RavenDB], and of course the well-
known and often reviled Lotus Notes [Notes Storage Facility] that uses
document storage.

9.2. Features
While there are many specialized document databases, we will use
MongoDB as a representative of the feature set. Keep in mind that each
product has some features that may not be found in other document
databases.

Let’s take some time to understand how MongoDB works. Each
MongoDB instance has multiple databases, and each database can have
multiple collections. When we compare this with RDBMS, an RDBMS
instance is the same as MongoDB instance, the schemas in RDBMS are
similar to MongoDB databases, and the RDBMS tables are collections
in MongoDB. When we store a document, we have to choose which
database and collection this document belongs in—for example,
database.collection.insert(document), which is usually
represented as db.coll.insert(document).

9.2.1. Consistency
Consistency in MongoDB database is configured by using the replica
sets and choosing to wait for the writes to be replicated to all the
slaves or a given number of slaves. Every write can specify the number
of servers the write has to be propagated to before it returns as
successful.

A command like db.runCommand({ getlasterror : 1 , w :
"majority" }) tells the database how strong is the consistency you
want. For example, if you have one server and specify the w as
majority, the write will return immediately since there is only one
node. If you have three nodes in the replica set and specify w as
majority, the write will have to complete at a minimum of two nodes
before it is reported as a success. You can increase the w value for
stronger consistency but you will suffer on write performance, since
now the writes have to complete at more nodes. Replica sets also allow
you to increase the read performance by allowing reading from slaves
by setting slaveOk; this parameter can be set on the connection, or
database, or collection, or individually for each operation.
Click here to view code image

Mongo mongo = new Mongo("localhost:27017");
mongo.slaveOk();

Here we are setting slaveOk per operation, so that we can decide
which operations can work with data from the slave node.
Click here to view code image

DBCollection collection = getOrderCollection();
BasicDBObject query = new BasicDBObject();
query.put("name", "Martin");
DBCursor cursor = collection.find(query).slaveOk();

Similar to various options available for read, you can change the
settings to achieve strong write consistency, if desired. By default, a
write is reported successful once the database receives it; you can
change this so as to wait for the writes to be synced to disk or to
propagate to two or more slaves. This is known as WriteConcern: You
make sure that certain writes are written to the master and some slaves
by setting WriteConcern to REPLICAS_SAFE. Shown below is code
where we are setting the WriteConcern for all writes to a collection:
Click here to view code image

DBCollection shopping = database.getCollection("shopping");
shopping.setWriteConcern(REPLICAS_SAFE);

WriteConcern can also be set per operation by specifying it on the
save command:
Click here to view code image

WriteResult result = shopping.insert(order, REPLICAS_SAFE);

There is a tradeoff that you need to carefully think about, based on
your application needs and business requirements, to decide what
settings make sense for slaveOk during read or what safety level you
desire during write with WriteConcern.

9.2.2. Transactions
Transactions, in the traditional RDBMS sense, mean that you can start
modifying the database with insert, update, or delete commands
over different tables and then decide if you want to keep the changes or
not by using commit or rollback. These constructs are generally not
available in NoSQL solutions—a write either succeeds or fails.
Transactions at the single-document level are known as atomic
transactions. Transactions involving more than one operation are not
possible, although there are products such as RavenDB that do support
transactions across multiple operations.

By default, all writes are reported as successful. A finer control over
the write can be achieved by using WriteConcern parameter. We
ensure that order is written to more than one node before it’s reported
successful by using WriteConcern.REPLICAS_SAFE. Different levels
of WriteConcern let you choose the safety level during writes; for
example, when writing log entries, you can use lowest level of safety,
WriteConcern.NONE.
Click here to view code image

final Mongo mongo = new Mongo(mongoURI);
mongo.setWriteConcern(REPLICAS_SAFE);

DBCollection shopping = mongo.getDB(orderDatabase)
 .getCollection(shoppingCollection);
try {
 WriteResult result = shopping.insert(order, REPLICAS_SAFE);
//Writes made it to primary and at least one secondary
} catch (MongoException writeException) {
//Writes did not make it to minimum of two nodes including primary
 dealWithWriteFailure(order, writeException);
}

9.2.3. Availability
The CAP theorem (“The CAP Theorem,” p. 53) dictates that we can
have only two of Consistency, Availability, and Partition Tolerance.
Document databases try to improve on availability by replicating data
using the master-slave setup. The same data is available on multiple
nodes and the clients can get to the data even when the primary node is
down. Usually, the application code does not have to determine if the
primary node is available or not. MongoDB implements replication,
providing high availability using replica sets.

In a replica set, there are two or more nodes participating in an
asynchronous master-slave replication. The replica-set nodes elect the
master, or primary, among themselves. Assuming all the nodes have
equal voting rights, some nodes can be favored for being closer to the
other servers, for having more RAM, and so on; users can affect this by
assigning a priority—a number between 0 and 1000—to a node.

All requests go to the master node, and the data is replicated to the
slave nodes. If the master node goes down, the remaining nodes in the
replica set vote among themselves to elect a new master; all future
requests are routed to the new master, and the slave nodes start getting
data from the new master. When the node that failed comes back online,
it joins in as a slave and catches up with the rest of the nodes by pulling
all the data it needs to get current.

Figure 9.1 is an example configuration of replica sets. We have two
nodes, mongo A and mongo B, running the MongoDB database in the

primary data-center, and mongo C in the secondary datacenter. If we
want nodes in the primary datacenter to be elected as primary nodes,
we can assign them a higher priority than the other nodes. More nodes
can be added to the replica sets without having to take them offline.

Figure 9.1. Replica set configuration with higher priority assigned to
nodes in the same datacenter

The application writes or reads from the primary (master) node.
When connection is established, the application only needs to connect
to one node (primary or not, does not matter) in the replica set, and the
rest of the nodes are discovered automatically. When the primary node
goes down, the driver talks to the new primary elected by the replica
set. The application does not have to manage any of the communication
failures or node selection criteria. Using replica sets gives you the
ability to have a highly available document data store.

Replica sets are generally used for data redundancy, automated
failover, read scaling, server maintenance without downtime, and
disaster recovery. Similar availability setups can be achieved with

CouchDB, RavenDB, Terrastore, and other products.

9.2.4. Query Features
Document databases provide different query features. CouchDB allows
you to query via views—complex queries on documents which can be
either materialized (“Materialized Views,” p. 30) or dynamic (think of
them as RDBMS views which are either materialized or not). With
CouchDB, if you need to aggregate the number of reviews for a product
as well as the average rating, you could add a view implemented via
map-reduce (“Basic Map-Reduce,” p. 68) to return the count of reviews
and the average of their ratings.

When there are many requests, you don’t want to compute the count
and average for every request; instead you can add a materialized view
that precomputes the values and stores the results in the database. These
materialized views are updated when queried, if any data was changed
since the last update.

One of the good features of document databases, as compared to key-
value stores, is that we can query the data inside the document without
having to retrieve the whole document by its key and then introspect the
document. This feature brings these databases closer to the RDBMS
query model.

MongoDB has a query language which is expressed via JSON and
has constructs such as $query for the where clause, $orderby for
sorting the data, or $explain to show the execution plan of the query.
There are many more constructs like these that can be combined to
create a MongoDB query.

Let’s look at certain queries that we can do against MongoDB.
Suppose we want to return all the documents in an order collection (all
rows in the order table). The SQL for this would be:
SELECT * FROM order

The equivalent query in Mongo shell would be:

db.order.find()

Selecting the orders for a single customerId of 883c2c5b4e5b
would be:
Click here to view code image

SELECT * FROM order WHERE customerId = "883c2c5b4e5b"

The equivalent query in Mongo to get all orders for a single
customerId of 883c2c5b4e5b:
Click here to view code image

db.order.find({"customerId":"883c2c5b4e5b"})

Similarly, selecting orderId and orderDate for one customer in
SQL would be:
Click here to view code image

SELECT orderId,orderDate FROM order WHERE customerId = "883c2c5b4e5b"

and the equivalent in Mongo would be:
Click here to view code image

db.order.find({customerId:"883c2c5b4e5b"},{orderId:1,orderDate:1})

Similarly, queries to count, sum, and so on are all available. Since
the documents are aggregated objects, it is really easy to query for
documents that have to be matched using the fields with child objects.
Let’s say we want to query for all the orders where one of the items
ordered has a name like Refactoring. The SQL for this requirement
would be:
Click here to view code image

SELECT * FROM customerOrder, orderItem, product
WHERE
customerOrder.orderId = orderItem.customerOrderId
AND orderItem.productId = product.productId
AND product.name LIKE '%Refactoring%'

and the equivalent Mongo query would be:
Click here to view code image

db.orders.find({"items.product.name":/Refactoring/})

The query for MongoDB is simpler because the objects are
embedded inside a single document and you can query based on the
embedded child documents.

9.2.5. Scaling
The idea of scaling is to add nodes or change data storage without
simply migrating the database to a bigger box. We are not talking about
making application changes to handle more load; instead, we are
interested in what features are in the database so that it can handle more
load.

Scaling for heavy-read loads can be achieved by adding more read
slaves, so that all the reads can be directed to the slaves. Given a
heavy-read application, with our 3-node replica-set cluster, we can add
more read capacity to the cluster as the read load increases just by
adding more slave nodes to the replica set to execute reads with the
slaveOk flag (Figure 9.2). This is horizontal scaling for reads.

Figure 9.2. Adding a new node, mongo D, to an existing replica-set
cluster

Once the new node, mongo D, is started, it needs to be added to the
replica set.
rs.add("mongod:27017");

When a new node is added, it will sync up with the existing nodes,
join the replica set as secondary node, and start serving read requests.
An advantage of this setup is that we do not have to restart any other
nodes, and there is no downtime for the application either.

When we want to scale for write, we can start sharding (“Sharding,”
p. 38) the data. Sharding is similar to partitions in RDBMS where we
split data by value in a certain column, such as state or year. With
RDBMS, partitions are usually on the same node, so the client
application does not have to query a specific partition but can keep
querying the base table; the RDBMS takes care of finding the right
partition for the query and returns the data.

In sharding, the data is also split by certain field, but then moved to
different Mongo nodes. The data is dynamically moved between nodes
to ensure that shards are always balanced. We can add more nodes to
the cluster and increase the number of writable nodes, enabling
horizontal scaling for writes.
Click here to view code image

db.runCommand({ shardcollection : "ecommerce.customer",
 key : {firstname : 1} })

Splitting the data on the first name of the customer ensures that the
data is balanced across the shards for optimal write performance;
furthermore, each shard can be a replica set ensuring better read
performance within the shard (Figure 9.3). When we add a new shard to
this existing sharded cluster, the data will now be balanced across four
shards instead of three. As all this data movement and infrastructure

refactoring is happening, the application will not experience any
downtime, although the cluster may not perform optimally when large
amounts of data are being moved to rebalance the shards.

Figure 9.3. MongoDB sharded setup where each shard is a replica
set

The shard key plays an important role. You may want to place your
MongoDB database shards closer to their users, so sharding based on
user location may be a good idea. When sharding by customer location,
all user data for the East Coast of the USA is in the shards that are
served from the East Coast, and all user data for the West Coast is in
the shards that are on the West Coast.

9.3. Suitable Use Cases
9.3.1. Event Logging
Applications have different event logging needs; within the enterprise,
there are many different applications that want to log events. Document
databases can store all these different types of events and can act as a
central data store for event storage. This is especially true when the
type of data being captured by the events keeps changing. Events can be
sharded by the name of the application where the event originated or by

the type of event such as order_processed or customer_logged.

9.3.2. Content Management Systems, Blogging Platforms
Since document databases have no predefined schemas and usually
understand JSON documents, they work well in content management
systems or applications for publishing websites, managing user
comments, user registrations, profiles, web-facing documents.

9.3.3. Web Analytics or Real-Time Analytics
Document databases can store data for real-time analytics; since parts
of the document can be updated, it’s very easy to store page views or
unique visitors, and new metrics can be easily added without schema
changes.

9.3.4. E-Commerce Applications
E-commerce applications often need to have flexible schema for
products and orders, as well as the ability to evolve their data models
without expensive database refactoring or data migration (“Schema
Changes in a NoSQL Data Store,” p. 128).

9.4. When Not to Use
There are problem spaces where document databases are not the best
solution.

9.4.1. Complex Transactions Spanning Different Operations
If you need to have atomic cross-document operations, then document
databases may not be for you. However, there are some document
databases that do support these kinds of operations, such as RavenDB.

9.4.2. Queries against Varying Aggregate Structure
Flexible schema means that the database does not enforce any
restrictions on the schema. Data is saved in the form of application
entities. If you need to query these entities ad hoc, your queries will be

changing (in RDBMS terms, this would mean that as you join criteria
between tables, the tables to join keep changing). Since the data is
saved as an aggregate, if the design of the aggregate is constantly
changing, you need to save the aggregates at the lowest level of
granularity—basically, you need to normalize the data. In this scenario,
document databases may not work.

Chapter 10. Column-Family Stores

Column-family stores, such as Cassandra [Cassandra], HBase [Hbase],
Hypertable [Hypertable], and Amazon SimpleDB [Amazon SimpleDB],
allow you to store data with keys mapped to values and the values
grouped into multiple column families, each column family being a map
of data.

10.1. What Is a Column-Family Data Store?
There are many column-family databases. In this chapter, we will talk
about Cassandra but also reference other column-family databases to
discuss features that may be of interest in particular scenarios.

Column-family databases store data in column families as rows that
have many columns associated with a row key (Figure 10.1). Column
families are groups of related data that is often accessed together. For a
Customer, we would often access their Profile information at the
same time, but not their Orders.

Figure 10.1. Cassandra’s data model with column families
Cassandra is one of the popular column-family databases; there are

others, such as HBase, Hypertable, and Amazon DynamoDB [Amazon
DynamoDB]. Cassandra can be described as fast and easily scalable
with write operations spread across the cluster. The cluster does not
have a master node, so any read and write can be handled by any node
in the cluster.

10.2. Features
Let’s start by looking at how data is structured in Cassandra. The basic
unit of storage in Cassandra is a column. A Cassandra column consists
of a name-value pair where the name also behaves as the key. Each of
these key-value pairs is a single column and is always stored with a
timestamp value. The timestamp is used to expire data, resolve write
conflicts, deal with stale data, and do other things. Once the column
data is no longer used, the space can be reclaimed later during a
compaction phase.
Click here to view code image

{
 name: "fullName",
 value: "Martin Fowler",
 timestamp: 12345667890

}

The column has a key of firstName and the value of Martin and has
a timestamp attached to it. A row is a collection of columns attached or
linked to a key; a collection of similar rows makes a column family.
When the columns in a column family are simple columns, the column
family is known as standard column family.
Click here to view code image

//column family
{
//row
 "pramod-sadalage" : {
 firstName: "Pramod",
 lastName: "Sadalage",
 lastVisit: "2012/12/12"
 }
//row
 "martin-fowler" : {
 firstName: "Martin",
 lastName: "Fowler",
 location: "Boston"
 }
}

Each column family can be compared to a container of rows in an
RDBMS table where the key identifies the row and the row consists on
multiple columns. The difference is that various rows do not have to
have the same columns, and columns can be added to any row at any
time without having to add it to other rows. We have the pramod-
sadalage row and the martin-fowler row with different columns;
both rows are part of the column family.

When a column consists of a map of columns, then we have a super
column. A super column consists of a name and a value which is a map
of columns. Think of a super column as a container of columns.
Click here to view code image

{

 name: "book:978-0767905923",
 value: {
 author: "Mitch Albon",
 title: "Tuesdays with Morrie",
 isbn: "978-0767905923"
 }
}

When we use super columns to create a column family, we get a
super column family.
Click here to view code image

//super column family
{
//row
name: "billing:martin-fowler",
value: {
 address: {
 name: "address:default",
 value: {
 fullName: "Martin Fowler",
 street:"100 N. Main Street",
 zip: "20145"
 }
 },
 billing: {
 name: "billing:default",
 value: {
 creditcard: "8888-8888-8888-8888",
 expDate: "12/2016"
 }
 }
 }
//row
name: "billing:pramod-sadalage",
value: {
 address: {
 name: "address:default",
 value: {
 fullName: "Pramod Sadalage",
 street:"100 E. State Parkway",

 zip: "54130"
 }
 },
 billing: {
 name: "billing:default",
 value: {
 creditcard: "9999-8888-7777-4444",
 expDate: "01/2016"
 }
 }
 }
}

Super column families are good to keep related data together, but
when some of the columns are not needed most of the time, the columns
are still fetched and deserialized by Cassandra, which may not be
optimal.

Cassandra puts the standard and super column families into
keyspaces. A keyspace is similar to a database in RDBMS where all
column families related to the application are stored. Keyspaces have
to be created so that column families can be assigned to them:
create keyspace ecommerce

10.2.1. Consistency
When a write is received by Cassandra, the data is first recorded in a
commit log, then written to an in-memory structure known as memtable.
A write operation is considered successful once it’s written to the
commit log and the memtable. Writes are batched in memory and
periodically written out to structures known as SSTable. SSTables are
not written to again after they are flushed; if there are changes to the
data, a new SSTable is written. Unused SSTables are reclaimed by
compactation.

Let’s look at the read operation to see how consistency settings affect
it. If we have a consistency setting of ONE as the default for all read
operations, then when a read request is made, Cassandra returns the

data from the first replica, even if the data is stale. If the data is stale,
subsequent reads will get the latest (newest) data; this process is known
as read repair. The low consistency level is good to use when you do
not care if you get stale data and/or if you have high read performance
requirements.

Similarly, if you are doing writes, Cassandra would write to one
node’s commit log and return a response to the client. The consistency
of ONE is good if you have very high write performance requirements
and also do not mind if some writes are lost, which may happen if the
node goes down before the write is replicated to other nodes.
Click here to view code image

quorum = new ConfigurableConsistencyLevel();
quorum.setDefaultReadConsistencyLevel(HConsistencyLevel.QUORUM);
quorum.setDefaultWriteConsistencyLevel(HConsistencyLevel.QUORUM);

Using the QUORUM consistency setting for both read and write
operations ensures that majority of the nodes respond to the read and the
column with the newest timestamp is returned back to the client, while
the replicas that do not have the newest data are repaired via the read
repair operations. During write operations, the QUORUM consistency
setting means that the write has to propagate to the majority of the nodes
before it is considered successful and the client is notified.

Using ALL as consistency level means that all nodes will have to
respond to reads or writes, which will make the cluster not tolerant to
faults—even when one node is down, the write or read is blocked and
reported as a failure. It’s therefore upon the system designers to tune the
consistency levels as the application requirements change. Within the
same application, there may be different requirements of consistency;
they can also change based on each operation, for example showing
review comments for a product has different consistency requirements
compared to reading the status of the last order placed by the customer.

During keyspace creation, we can configure how many replicas of

the data we need to store. This number determines the replication factor
of the data. If you have a replication factor of 3, the data copied on to
three nodes. When writing and reading data with Cassandra, if you
specify the consistency values of 2, you get that R + W is greater than
the replication factor (2 + 2 > 3) which gives you better consistency
during writes and reads.

We can run the node repair command for the keyspace and force
Cassandra to compare every key it’s responsible for with the rest of the
replicas. As this operation is expensive, we can also just repair a
specific column family or a list of column families:
repair ecommerce

repair ecommerce customerInfo

While a node is down, the data that was supposed to be stored by that
node is handed off to other nodes. As the node comes back online, the
changes made to the data are handed back to the node. This technique is
known as hinted handoff. Hinted handoff allows for faster restore of
failed nodes.

10.2.2. Transactions
Cassandra does not have transactions in the traditional sense—where
we could start multiple writes and then decide if we want to commit the
changes or not. In Cassandra, a write is atomic at the row level, which
means inserting or updating columns for a given row key will be treated
as a single write and will either succeed or fail. Writes are first written
to commit logs and memtables, and are only considered good when the
write to commit log and memtable was successful. If a node goes down,
the commit log is used to apply changes to the node, just like the redo
log in Oracle.

You can use external transaction libraries, such as ZooKeeper
[ZooKeeper], to synchronize your writes and reads. There are also
libraries such as Cages [Cages] that allow you to wrap your

transactions over ZooKeeper.

10.2.3. Availability
Cassandra is by design highly available, since there is no master in the
cluster and every node is a peer in the cluster. The availability of a
cluster can be increased by reducing the consistency level of the
requests. Availability is governed by the (R + W) > N formula
(“Quorums,” p. 57) where W is the minimum number of nodes where the
write must be successfully written, R is the minimum number of nodes
that must respond successfully to a read, and N is the number of nodes
participating in the replication of data. You can tune the availability by
changing the R and W values for a fixed value of N.

In a 10-node Cassandra cluster with a replication factor for the
keyspace set to 3 (N = 3), if we set R = 2 and W = 2, then we have (2
+ 2) > 3. In this scenario, when one node goes down, availability is
not affected much, as the data can be retrieved from the other two
nodes. If W = 2 and R = 1, when two nodes are down the cluster is not
available for write but we can still read. Similarly, if R = 2 and W =
1, we can write but the cluster is not available for read. With the R + W
> N equation, you are making conscious decisions about consistency
tradeoffs.

You should set up your keyspaces and read/write operations based
on your needs—higher availability for write or higher availability for
read.

10.2.4. Query Features
When designing the data model in Cassandra, it is advised to make the
columns and column families optimized for reading the data, as it does
not have a rich query language; as data is inserted in the column
families, data in each row is sorted by column names. If we have a
column that is retrieved much more often than other columns, it’s better
performance-wise to use that value for the row key instead.

10.2.4.1. Basic Queries

Basic queries that can be run using a Cassandra client include the GET,
SET, and DEL. Before starting to query for data, we have to issue the
keyspace command use ecommerce;. This ensures that all of our
queries are run against the keyspace that we put our data into. Before
starting to use the column family in the keyspace, we have to define the
column family.
Click here to view code image

CREATE COLUMN FAMILY Customer
WITH comparator = UTF8Type
AND key_validation_class=UTF8Type
AND column_metadata = [
{column_name: city, validation_class: UTF8Type}
{column_name: name, validation_class: UTF8Type}
{column_name: web, validation_class: UTF8Type}
];

We have a column family named Customer with name, city, and
web columns, and we are inserting data in the column family with a
Cassandra client.
Click here to view code image

SET Customer['mfowler']['city']='Boston';
SET Customer['mfowler']['name']='Martin Fowler';
SET Customer['mfowler']['web']='www.martinfowler.com';

Using the Hector [Hector] Java client, we can insert the same data in
the column family.
Click here to view code image

ColumnFamilyTemplate<String, String> template =
 cassandra.getColumnFamilyTemplate();
ColumnFamilyUpdater<String, String> updater =
 template.createUpdater(key);
for (String name : values.keySet()) {
 updater.setString(name, values.get(name));
}

try {
 template.update(updater);
} catch (HectorException e) {
 handleException(e);
}

We can read the data back using the GET command. There are
multiple ways to get the data; we can get the whole column family.
GET Customer['mfowler'];

We can even get just the column we are interested in from the column
family.
GET Customer['mfowler']['web'];

Getting the specific column we need is more efficient, as only the
data we care about is returned—which saves lots of data movement,
especially when the column family has a large number of columns.
Updating the data is the same as using the SET command for the column
that needs to be set to the new value. Using DEL command, we can
delete either a column or the entire column family.
Click here to view code image

DEL Customer['mfowler']['city'];

DEL Customer['mfowler'];

10.2.4.2. Advanced Queries and Indexing

Cassandra allows you to index columns other than the keys for the
column family. We can define an index on the city column.
Click here to view code image

UPDATE COLUMN FAMILY Customer
WITH comparator = UTF8Type
AND column_metadata = [{column_name: city,
 validation_class: UTF8Type,
 index_type: KEYS}];

We can now query directly against the indexed column.
GET Customer WHERE city = 'Boston';

These indexes are implemented as bit-mapped indexes and perform
well for low-cardinality column values.
10.2.4.3. Cassandra Query Language (CQL)

Cassandra has a query language that supports SQL-like commands,
known as Cassandra Query Language (CQL). We can use the CQL
commands to create a column family.
Click here to view code image

CREATE COLUMNFAMILY Customer (
 KEY varchar PRIMARY KEY,
 name varchar,
 city varchar,
 web varchar);

We insert the same data using CQL.
Click here to view code image

INSERT INTO Customer (KEY,name,city,web)
 VALUES ('mfowler',
 'Martin Fowler',
 'Boston',
 'www.martinfowler.com');

We can read data using the SELECT command. Here we read all the
columns:
SELECT * FROM Customer

Or, we could just SELECT the columns we need.
SELECT name,web FROM Customer

Indexing columns are created using the CREATE INDEX command, and
then can be used to query the data.
Click here to view code image

SELECT name,web FROM Customer WHERE city='Boston'

CQL has many more features for querying data, but it does not have
all the features that SQL has. CQL does not allow joins or subqueries,
and its where clauses are typically simple.

10.2.5. Scaling
Scaling an existing Cassandra cluster is a matter of adding more nodes.
As no single node is a master, when we add nodes to the cluster we are
improving the capacity of the cluster to support more writes and reads.
This type of horizontal scaling allows you to have maximum uptime, as
the cluster keeps serving requests from the clients while new nodes are
being added to the cluster.

10.3. Suitable Use Cases
Let’s discuss some of the problems where column-family databases are
a good fit.

10.3.1. Event Logging
Column-family databases with their ability to store any data structures
are a great choice to store event information, such as application state
or errors encountered by the application. Within the enterprise, all
applications can write their events to Cassandra with their own
columns and the rowkey of the form appname:timestamp. Since we
can scale writes, Cassandra would work ideally for an event logging
system (Figure 10.2).

Figure 10.2. Event logging with Cassandra

10.3.2. Content Management Systems, Blogging Platforms

Using column families, you can store blog entries with tags, categories,
links, and trackbacks in different columns. Comments can be either
stored in the same row or moved to a different keyspace; similarly, blog
users and the actual blogs can be put into different column families.

10.3.3. Counters
Often, in web applications you need to count and categorize visitors of
a page to calculate analytics. You can use the CounterColumnType
during creation of a column family.
Click here to view code image

CREATE COLUMN FAMILY visit_counter
WITH default_validation_class=CounterColumnType
AND key_validation_class=UTF8Type AND comparator=UTF8Type;

Once a column family is created, you can have arbitrary columns for
each page visited within the web application for every user.
Click here to view code image

INCR visit_counter['mfowler'][home] BY 1;
INCR visit_counter['mfowler'][products] BY 1;
INCR visit_counter['mfowler'][contactus] BY 1;

Incrementing counters using CQL:
Click here to view code image

UPDATE visit_counter SET home = home + 1 WHERE KEY='mfowler'

10.3.4. Expiring Usage
You may provide demo access to users, or may want to show ad
banners on a website for a specific time. You can do this by using
expiring columns: Cassandra allows you to have columns which, after
a given time, are deleted automatically. This time is known as TTL
(Time To Live) and is defined in seconds. The column is deleted after
the TTL has elapsed; when the column does not exist, the access can be
revoked or the banner can be removed.

Click here to view code image

SET Customer['mfowler']['demo_access'] = 'allowed' WITH ttl=2592000;

10.4. When Not to Use
There are problems for which column-family databases are not the best
solutions, such as systems that require ACID transactions for writes and
reads. If you need the database to aggregate the data using queries (such
as SUM or AVG), you have to do this on the client side using data
retrieved by the client from all the rows.

Cassandra is not great for early prototypes or initial tech spikes:
During the early stages, we are not sure how the query patterns may
change, and as the query patterns change, we have to change the column
family design. This causes friction for the product innovation team and
slows down developer productivity. RDBMS impose high cost on
schema change, which is traded off for a low cost of query change; in
Cassandra, the cost may be higher for query change as compared to
schema change.

Chapter 11. Graph Databases

Graph databases allow you to store entities and relationships between
these entities. Entities are also known as nodes, which have properties.
Think of a node as an instance of an object in the application. Relations
are known as edges that can have properties. Edges have directional
significance; nodes are organized by relationships which allow you to
find interesting patterns between the nodes. The organization of the
graph lets the data to be stored once and then interpreted in different
ways based on relationships.

11.1. What Is a Graph Database?
In the example graph in Figure 11.1, we see a bunch of nodes related to
each other. Nodes are entities that have properties, such as name. The
node of Martin is actually a node that has property of name set to
Martin.

Figure 11.1. An example graph structure
We also see that edges have types, such as likes, author, and so

on. These properties let us organize the nodes; for example, the nodes
Martin and Pramod have an edge connecting them with a relationship
type of friend. Edges can have multiple properties. We can assign a
property of since on the friend relationship type between Martin and
Pramod. Relationship types have directional significance; the friend
relationship type is bidirectional but likes is not. When Dawn likes
NoSQL Distilled, it does not automatically mean NoSQL Distilled
likes Dawn.

Once we have a graph of these nodes and edges created, we can
query the graph in many ways, such as “get all nodes employed by Big
Co that like NoSQL Distilled.” A query on the graph is also known

as traversing the graph. An advantage of the graph databases is that we
can change the traversing requirements without having to change the
nodes or edges. If we want to “get all nodes that like NoSQL
Distilled,” we can do so without having to change the existing data or
the model of the database, because we can traverse the graph any way
we like.

Usually, when we store a graph-like structure in RDBMS, it’s for a
single type of relationship (“who is my manager” is a common
example). Adding another relationship to the mix usually means a lot of
schema changes and data movement, which is not the case when we are
using graph databases. Similarly, in relational databases we model the
graph beforehand based on the Traversal we want; if the Traversal
changes, the data will have to change.

In graph databases, traversing the joins or relationships is very fast.
The relationship between nodes is not calculated at query time but is
actually persisted as a relationship. Traversing persisted relationships
is faster than calculating them for every query.

Nodes can have different types of relationships between them,
allowing you to both represent relationships between the domain
entities and to have secondary relationships for things like category,
path, time-trees, quad-trees for spatial indexing, or linked lists for
sorted access. Since there is no limit to the number and kind of
relationships a node can have, all they can be represented in the same
graph database.

11.2. Features
There are many graph databases available, such as Neo4J [Neo4J],
Infinite Graph [Infinite Graph], OrientDB [OrientDB], or FlockDB
[FlockDB] (which is a special case: a graph database that only supports
single-depth relationships or adjacency lists, where you cannot traverse
more than one level deep for relationships). We will take Neo4J as a
representative of the graph database solutions to discuss how they work

and how they can be used to solve application problems.
In Neo4J, creating a graph is as simple as creating two nodes and

then creating a relationship. Let’s create two nodes, Martin and
Pramod:
Click here to view code image

Node martin = graphDb.createNode();
martin.setProperty("name", "Martin");

Node pramod = graphDb.createNode();
pramod.setProperty("name", "Pramod");

We have assigned the name property of the two nodes the values of
Martin and Pramod. Once we have more than one node, we can create
a relationship:
Click here to view code image

martin.createRelationshipTo(pramod, FRIEND);

pramod.createRelationshipTo(martin, FRIEND);

We have to create relationship between the nodes in both directions,
for the direction of the relationship matters: For example, a product
node can be liked by user but the product cannot like the user. This
directionality helps in designing a rich domain model (Figure 11.2).
Nodes know about INCOMING and OUTGOING relationships that are
traversable both ways.

Figure 11.2. Relationships with properties
Relationships are first-class citizens in graph databases; most of the

value of graph databases is derived from the relationships.
Relationships don’t only have a type, a start node, and an end node, but
can have properties of their own. Using these properties on the
relationships, we can add intelligence to the relationship—for example,
since when did they become friends, what is the distance between the
nodes, or what aspects are shared between the nodes. These properties
on the relationships can be used to query the graph.

Since most of the power from the graph databases comes from the

relationships and their properties, a lot of thought and design work is
needed to model the relationships in the domain that we are trying to
work with. Adding new relationship types is easy; changing existing
nodes and their relationships is similar to data migration (“Migrations
in Graph Databases,” p. 131), because these changes will have to be
done on each node and each relationship in the existing data.

11.2.1. Consistency
Since graph databases are operating on connected nodes, most graph
database solutions usually do not support distributing the nodes on
different servers. There are some solutions, however, that support node
distribution across a cluster of servers, such as Infinite Graph. Within a
single server, data is always consistent, especially in Neo4J which is
fully ACID-compliant. When running Neo4J in a cluster, a write to the
master is eventually synchronized to the slaves, while slaves are
always available for read. Writes to slaves are allowed and are
immediately synchronized to the master; other slaves will not be
synchronized immediately, though—they will have to wait for the data
to propagate from the master.

Graph databases ensure consistency through transactions. They do not
allow dangling relationships: The start node and end node always have
to exist, and nodes can only be deleted if they don’t have any
relationships attached to them.

11.2.2. Transactions
Neo4J is ACID-compliant. Before changing any nodes or adding any
relationships to existing nodes, we have to start a transaction. Without
wrapping operations in transactions, we will get a
NotInTransactionException. Read operations can be done without
initiating a transaction.
Click here to view code image

Transaction transaction = database.beginTx();

try {
 Node node = database.createNode();
 node.setProperty("name", "NoSQL Distilled");
 node.setProperty("published", "2012");
 transaction.success();
} finally {
 transaction.finish();
}

In the above code, we started a transaction on the database, then
created a node and set properties on it. We marked the transaction as
success and finally completed it by finish. A transaction has to be
marked as success, otherwise Neo4J assumes that it was a failure and
rolls it back when finish is issued. Setting success without issuing
finish also does not commit the data to the database. This way of
managing transactions has to be remembered when developing, as it
differs from the standard way of doing transactions in an RDBMS.

11.2.3. Availability
Neo4J, as of version 1.8, achieves high availability by providing for
replicated slaves. These slaves can also handle writes: When they are
written to, they synchronize the write to the current master, and the
write is committed first at the master and then at the slave. Other slaves
will eventually get the update. Other graph databases, such as Infinite
Graph and FlockDB, provide for distributed storage of the nodes.

Neo4J uses the Apache ZooKeeper [ZooKeeper] to keep track of the
last transaction IDs persisted on each slave node and the current master
node. Once a server starts up, it communicates with ZooKeeper and
finds out which server is the master. If the server is the first one to join
the cluster, it becomes the master; when a master goes down, the cluster
elects a master from the available nodes, thus providing high
availability.

11.2.4. Query Features
Graph databases are supported by query languages such as Gremlin

[Gremlin]. Gremlin is a domain-specific language for traversing graphs;
it can traverse all graph databases that implement the Blueprints
[Blueprints] property graph. Neo4J also has the Cypher [Cypher] query
language for querying the graph. Outside these query languages, Neo4J
allows you to query the graph for properties of the nodes, traverse the
graph, or navigate the nodes relationships using language bindings.

Properties of a node can be indexed using the indexing service.
Similarly, properties of relationships or edges can be indexed, so a
node or edge can be found by the value. Indexes should be queried to
find the starting node to begin a traversal. Let’s look at searching for the
node using node indexing.

If we have the graph shown in Figure 11.1, we can index the nodes as
they are added to the database, or we can index all the nodes later by
iterating over them. We first need to create an index for the nodes using
the IndexManager.
Click here to view code image

Index<Node> nodeIndex = graphDb.index().forNodes("nodes");

We are indexing the nodes for the name property. Neo4J uses Lucene
[Lucene] as its indexing service. We will see later that we can also use
the full-text search capability of Lucene. When new nodes are created,
they can be added to the index.
Click here to view code image

Transaction transaction = graphDb.beginTx();
try {
 Index<Node> nodeIndex = graphDb.index().forNodes("nodes");
 nodeIndex.add(martin, "name", martin.getProperty("name"));
 nodeIndex.add(pramod, "name", pramod.getProperty("name"));
 transaction.success();
} finally {
 transaction.finish();
}

Adding nodes to the index is done inside the context of a transaction.

Once the nodes are indexed, we can search them using the indexed
property. If we search for the node with the name of Barbara, we
would query the index for the property of name to have a value of
Barbara.
Click here to view code image

Node node = nodeIndex.get("name", "Barbara").getSingle();

We get the node whose name is Martin; given the node, we can get
all its relationships.
Click here to view code image

Node martin = nodeIndex.get("name", "Martin").getSingle();
allRelationships = martin.getRelationships();

We can get both INCOMING or OUTGOING relationships.
Click here to view code image

incomingRelations = martin.getRelationships(Direction.INCOMING);

We can also apply directional filters on the queries when querying
for a relationship. With the graph in Figure 11.1, if we want to find all
people who like NoSQL Distilled, we can find the NoSQL Distilled
node and then get its relationships with Direction.INCOMING. At this
point we can also add the type of relationship to the query filter, since
we are looking only for nodes that LIKE NoSQL Distilled.
Click here to view code image

Node nosqlDistilled = nodeIndex.get("name",
 "NoSQL Distilled").getSingle();
relationships = nosqlDistilled.getRelationships(INCOMING, LIKES);
for (Relationship relationship : relationships) {
likesNoSQLDistilled.add(relationship.getStartNode());
}

Finding nodes and their immediate relations is easy, but this can also
be achieved in RDBMS databases. Graph databases are really
powerful when you want to traverse the graphs at any depth and specify

a starting node for the traversal. This is especially useful when you are
trying to find nodes that are related to the starting node at more than one
level down. As the depth of the graph increases, it makes more sense to
traverse the relationships by using a Traverser where you can specify
that you are looking for INCOMING, OUTGOING, or BOTH types of
relationships. You can also make the traverser go top-down or
sideways on the graph by using Order values of BREADTH_FIRST or
DEPTH_FIRST. The traversal has to start at some node—in this example,
we try to find all the nodes at any depth that are related as a FRIEND
with Barbara:
Click here to view code image

Node barbara = nodeIndex.get("name", "Barbara").getSingle();

Traverser friendsTraverser = barbara.traverse(Order.BREADTH_FIRST,
 StopEvaluator.END_OF_GRAPH,
 ReturnableEvaluator.ALL_BUT_START_NODE,
 EdgeType.FRIEND,
 Direction.OUTGOING);

The friendsTraverser provides us a way to find all the nodes that
are related to Barbara where the relationship type is FRIEND. The
nodes can be at any depth—friend of a friend at any level—allowing
you to explore tree structures.

One of the good features of graph databases is finding paths between
two nodes—determining if there are multiple paths, finding all of the
paths or the shortest path. In the graph in Figure 11.1, we know that
Barbara is connected to Jill by two distinct paths; to find all these
paths and the distance between Barbara and Jill along those different
paths, we can use
Click here to view code image

Node barbara = nodeIndex.get("name", "Barbara").getSingle();
Node jill = nodeIndex.get("name", "Jill").getSingle();
PathFinder<Path> finder = GraphAlgoFactory.allPaths(
 Traversal.expanderForTypes(FRIEND,Direction.OUTGOING)

 ,MAX_DEPTH);
Iterable<Path> paths = finder.findAllPaths(barbara, jill);

This feature is used in social networks to show relationships
between any two nodes. To find all the paths and the distance between
the nodes for each path, we first get a list of distinct paths between the
two nodes. The length of each path is the number of hops on the graph
needed to reach the destination node from the start node. Often, you
need to get the shortest path between two nodes; of the two paths from
Barbara to Jill, the shortest path can be found by using
Click here to view code image

PathFinder<Path> finder = GraphAlgoFactory.shortestPath(
 Traversal.expanderForTypes(FRIEND, Direction.OUTGOING)
 , MAX_DEPTH);
Iterable<Path> paths = finder.findAllPaths(barbara, jill);

Many other graph algorithms can be applied to the graph at hand,
such as Dijkstra’s algorithm [Dijkstra’s] for finding the shortest or
cheapest path between nodes.
Click here to view code image

START beginingNode = (beginning node specification)
MATCH (relationship, pattern matches)
WHERE (filtering condition: on data in nodes and relationships)
RETURN (What to return: nodes, relationships, properties)
ORDER BY (properties to order by)
SKIP (nodes to skip from top)
LIMIT (limit results)

Neo4J also provides the Cypher query language to query the graph.
Cypher needs a node to START the query. The start node can be
identified by its node ID, a list of node IDs, or index lookups. Cypher
uses the MATCH keyword for matching patterns in relationships; the
WHERE keyword filters the properties on a node or relationship. The
RETURN keyword specifies what gets returned by the query—nodes,
relationships, or fields on the nodes or relationships.

Cypher also provides methods to ORDER, AGGREGATE, SKIP, and
LIMIT the data. In Figure 11.2, we find all nodes connected to Barbara,
either incoming or outgoing, by using the --.
Click here to view code image

START barbara = node:nodeIndex(name = "Barbara")
MATCH (barbara)--(connected_node)
RETURN connected_node

When interested in directional significance, we can use
MATCH (barbara)<--(connected_node)

for incoming relationships or
MATCH (barbara)-->(connected_node)

for outgoing relationships. Match can also be done on specific
relationships using the :RELATIONSHIP_TYPE convention and returning
the required fields or nodes.
Click here to view code image

START barbara = node:nodeIndex(name = "Barbara")
MATCH (barbara)-[:FRIEND]->(friend_node)
RETURN friend_node.name,friend_node.location

We start with Barbara, find all outgoing relationships with the type
of FRIEND, and return the friends’ names. The relationship type query
only works for the depth of one level; we can make it work for greater
depths and find out the depth of each of the result nodes.
Click here to view code image

START barbara=node:nodeIndex(name = "Barbara")
MATCH path = barbara-[:FRIEND*1..3]->end_node
RETURN barbara.name,end_node.name, length(path)

Similarly, we can query for relationships where a particular
relationship property exists. We can also filter on the properties of
relationships and query if a property exists or not.

Click here to view code image

START barbara = node:nodeIndex(name = "Barbara")
MATCH (barbara)-[relation]->(related_node)
WHERE type(relation) = 'FRIEND' AND relation.share
RETURN related_node.name, relation.since

There are many other query features in the Cypher language that can
be used to query database graphs.

11.2.5. Scaling
In NoSQL databases, one of the commonly used scaling techniques is
sharding, where data is split and distributed across different servers.
With graph databases, sharding is difficult, as graph databases are not
aggregate-oriented but relationship-oriented. Since any given node can
be related to any other node, storing related nodes on the same server is
better for graph traversal. Traversing a graph when the nodes are on
different machines is not good for performance. Knowing this limitation
of the graph databases, we can still scale them using some common
techniques described by Jim Webber [Webber Neo4J Scaling].

Generally speaking, there are three ways to scale graph databases.
Since machines now can come with lots of RAM, we can add enough
RAM to the server so that the working set of nodes and relationships is
held entirely in memory. This technique is only helpful if the dataset that
we are working with will fit in a realistic amount of RAM.

We can improve the read scaling of the database by adding more
slaves with read-only access to the data, with all the writes going to the
master. This pattern of writing once and reading from many servers is a
proven technique in MySQL clusters and is really useful when the
dataset is large enough to not fit in a single machine’s RAM, but small
enough to be replicated across multiple machines. Slaves can also
contribute to availability and read-scaling, as they can be configured to
never become a master, remaining always read-only.

When the dataset size makes replication impractical, we can shard

(see the “Sharding” section on p. 38) the data from the application side
using domain-specific knowledge. For example, nodes that relate to the
North America can be created on one server while the nodes that relate
to Asia on another. This application-level sharding needs to understand
that nodes are stored on physically different databases (Figure 11.3).

Figure 11.3. Application-level sharding of nodes

11.3. Suitable Use Cases
Let’s look at some suitable use cases for graph databases.

11.3.1. Connected Data
Social networks are where graph databases can be deployed and used
very effectively. These social graphs don’t have to be only of the friend
kind; for example, they can represent employees, their knowledge, and
where they worked with other employees on different projects. Any
link-rich domain is well suited for graph databases.

If you have relationships between domain entities from different

domains (such as social, spatial, commerce) in a single database, you
can make these relationships more valuable by providing the ability to
traverse across domains.

11.3.2. Routing, Dispatch, and Location-Based Services
Every location or address that has a delivery is a node, and all the
nodes where the delivery has to be made by the delivery person can be
modeled as a graph of nodes. Relationships between nodes can have the
property of distance, thus allowing you to deliver the goods in an
efficient manner. Distance and location properties can also be used in
graphs of places of interest, so that your application can provide
recommendations of good restaurants or entertainment options nearby.
You can also create nodes for your points of sales, such as bookstores
or restaurants, and notify the users when they are close to any of the
nodes to provide location-based services.

11.3.3. Recommendation Engines
As nodes and relationships are created in the system, they can be used
to make recommendations like “your friends also bought this product”
or “when invoicing this item, these other items are usually invoiced.”
Or, it can be used to make recommendations to travelers mentioning that
when other visitors come to Barcelona they usually visit Antonio
Gaudi’s creations.

An interesting side effect of using the graph databases for
recommendations is that as the data size grows, the number of nodes
and relationships available to make the recommendations quickly
increases. The same data can also be used to mine information—for
example, which products are always bought together, or which items
are always invoiced together; alerts can be raised when these
conditions are not met. Like other recommendation engines, graph
databases can be used to search for patterns in relationships to detect
fraud in transactions.

11.4. When Not to Use
In some situations, graph databases may not appropriate. When you
want to update all or a subset of entities—for example, in an analytics
solution where all entities may need to be updated with a changed
property—graph databases may not be optimal since changing a
property on all the nodes is not a straightforward operation. Even if the
data model works for the problem domain, some databases may be
unable to handle lots of data, especially in global graph operations
(those involving the whole graph).

Chapter 12. Schema Migrations

12.1. Schema Changes
The recent trend in discussing NoSQL databases is to highlight their
schemaless nature—it is a popular feature that allows developers to
concentrate on the domain design without worrying about schema
changes. It’s especially true with the rise of agile methods [Agile
Methods] where responding to changing requirements is important.

Discussions, iterations, and feedback loops involving domain experts
and product owners are important to derive the right understanding of
the data; these discussions must not be hampered by a database’s
schema complexity. With NoSQL data stores, changes to the schema can
be made with the least amount of friction, improving developer
productivity (“The Emergence of NoSQL,” p. 9). We have seen that
developing and maintaining an application in the brave new world of
schemaless databases requires careful attention to be given to schema
migration.

12.2. Schema Changes in RDBMS
While developing with standard RDBMS technologies, we develop
objects, their corresponding tables, and their relationships. Consider a
simple object model and data model that has Customer, Order, and
OrderItems. The ER model would look like Figure 12.1.

Figure 12.1. Data model of an e-commerce system
While this data model supports the current object model, life is good.

The first time there is a change in the object model, such as introducing
preferredShippingType on the Customer object, we have to change
the object and change the database table, because without changing the
table the application will be out of sync with the database. When we get
errors like ORA-00942: table or view does not exist or ORA-
00904: "PREFERRED_SHIPPING_TYPE": invalid identifier, we
know we have this problem.

Typically, a database schema migration has been a project in itself.
For deployment of the schema changes, database change scripts are
developed, using diff techniques, for all the changes in the development
database. This approach of creating migration scripts during the
deployment/release time is error-prone and does not support agile
development methods.

12.2.1. Migrations for Green Field Projects
Scripting the database schema changes during development is better,
since we can store these schema changes along with the data migration
scripts in the same script file. These script files should be named with
incrementing sequential numbers which reflect the database versions;
for example, the first change to the database could have script file
named as 001_Description_Of_Change.sql. Scripting changes this
way allows for the database migrations to be run preserving the order
of changes. Shown in Figure 12.2 is a folder of all the changes done to a
database so far.

Figure 12.2. Sequence of migrations applied to a database
Now, suppose we need to change the OrderItem table to store the

DiscountedPrice and the FullPrice of the item. This will need a
change to the OrderItem table and will be change number 007 in our
sequence of changes, as shown in Figure 12.3.

Figure 12.3. New change 007_DiscountedPrice.sql applied to the
database

We applied a new change to the database. This change’s script has
the code for adding a new column, renaming the existing column, and
migrating the data needed to make the new feature work. Shown below
is the script contained in the change 007_DiscountedPrice.sql:
Click here to view code image

ALTER TABLE orderitem ADD discountedprice NUMBER(18,2) NULL;

UPDATE orderitem SET discountedprice = price;
ALTER TABLE orderitem MODIFY discountedprice NOT NULL;
ALTER TABLE orderitem RENAME COLUMN price TO fullprice;
--//@UNDO
ALTER TABLE orderitem RENAME fullprice TO price;
ALTER TABLE orderitem DROP COLUMN discountedprice;

The change script shows the schema changes to the database as well
as the data migrations needed to be done. In the example shown, we are
using DBDeploy [DBDeploy] as the framework to manage the changes
to the database. DBDeploy maintains a table in the database, named
ChangeLog, where all the changes made to the database are stored. In
this table, Change_Number is what tells everyone which changes have
been applied to the database. This Change_Number, which is the
database version, is then used to find the corresponding numbered
script in the folder and apply the changes which have not been applied
yet. When we write a script with the change number 007 and apply it to
the database using DBDeploy, DBDeploy will check the ChangeLog
and pick up all the scripts from the folder that have not yet been
applied. Figure 12.4 is the screenshot of DBDeploy applying the change
to the database.

Figure 12.4. DBDeploy upgrading the database with change number
007

The best way to integrate with the rest of the developers is to use
your project’s version control repository to store all these change
scripts, so that you can keep track of the version of the software and the
database in the same place, eliminating possible mismatches between
the database and the application. There are many other tools for such
upgrades, including Liquibase [Liquibase], MyBatis Migrator [MyBatis
Migrator], DBMaintain [DBMaintain].

12.2.2. Migrations in Legacy Projects
Not every project is a green field. How to implement migrations when
an existing application is in production? We found that taking an
existing database and extracting its structure into scripts, along with all
the database code and any reference data, works as a baseline for the
project. This baseline should not contain transactional data. Once the
baseline is ready, further changes can be done using the migrations

technique described above (Figure 12.5).

Figure 12.5. Use of baseline scripts with a legacy database
One of the main aspects of migrations should be maintaining

backward compatibility of the database schema. In many enterprises
there are multiple applications using the database; when we change the
database for one application, this change should not break other
applications. We can achieve backward compatibility by maintaining a
transition phase for the change, as described in detail in Refactoring
Databases [Ambler and Sadalage].

During a transition phase, the old schema and the new schema are
maintained in parallel and are available for all the applications using
the database. For this, we have to introduce scaffolding code, such as
triggers, views, and virtual columns ensuring other applications can
access the database schema and the data they require without any code
changes.
Click here to view code image

ALTER TABLE customer ADD fullname VARCHAR2(60);
UPDATE customer SET fullname = fname;

CREATE OR REPLACE TRIGGER SyncCustomerFullName
BEFORE INSERT OR UPDATE
ON customer
REFERENCING OLD AS OLD NEW AS NEW
FOR EACH ROW
BEGIN
 IF :NEW.fname IS NULL THEN
 :NEW.fname := :NEW.fullname;
 END IF;
 IF :NEW.fullname IS NULL THEN
 :NEW.fullname := :NEW.fname
 END IF;
END;
/

--Drop Trigger and fname
--when all applications start using customer.fullname

In the example, we are trying to rename the customer.fname column
to customer.fullname as we want to avoid any ambiguity of fname
meaning either fullname or firstname. A direct rename of the fname
column and changing the application code we are responsible for may
just work, for our application—but will not for the other applications in
the enterprise that are accessing the same database.

Using the transition phase technique, we introduce the new column
fullname, copy the data over to fullname, but leave the old column
fname around. We also introduce a BEFORE UPDATE trigger to
synchronize data between the columns before they are committed to the
database.

Now, when applications read data from the table, they will read
either from fname or from fullname but will always get the right data.
We can drop the trigger and the fname column once all the applications
have moved on to using the new fullname column.

It’s very hard to do schema migrations on large datasets in RDBMS,
especially if we have to keep the database available to the applications,
as large data movements and structural changes usually create locks on

the database tables.

12.3. Schema Changes in a NoSQL Data Store
An RDBMS database has to be changed before the application is
changed. This is what the schema-free, or schemaless, approach tries to
avoid, aiming at flexibility of schema changes per entity. Frequent
changes to the schema are needed to react to frequent market changes
and product innovations.

When developing with NoSQL databases, in some cases the schema
does not have to be thought about beforehand. We still have to design
and think about other aspects, such as the types of relationships (with
graph databases), or the names of the column families, rows, columns,
order of columns (with column databases), or how are the keys
assigned and what is the structure of the data inside the value object
(with key-value stores). Even if we didn’t think about these up front, or
if we want to change our decisions, it is easy to do so.

The claim that NoSQL databases are entirely schemaless is
misleading; while they store the data without regard to the schema the
data adheres to, that schema has to be defined by the application,
because the data stream has to be parsed by the application when
reading the data from the database. Also, the application has to create
the data that would be saved in the database. If the application cannot
parse the data from the database, we have a schema mismatch even if,
instead of the RDBMS database throwing a error, this error is now
encountered by the application. Thus, even in schemaless databases, the
schema of the data has to be taken into consideration when refactoring
the application.

Schema changes especially matter when there is a deployed
application and existing production data. For the sake of simplicity,
assume we are using a document data store like MongoDB [MongoDB]
and we have the same data model as before: customer, order, and
orderItems.

Click here to view code image

{
"_id": "4BD8AE97C47016442AF4A580",
"customerid": 99999,
"name": "Foo Sushi Inc",
"since": "12/12/2012",
"order": {
 "orderid": "4821-UXWE-122012","orderdate": "12/12/2001",
 "orderItems": [{"product": "Fortune Cookies",
 "price": 19.99}]
 }
}

Application code to write this document structure to MongoDB:
Click here to view code image

BasicDBObject orderItem = new BasicDBObject();
orderItem.put("product", productName);
orderItem.put("price", price);
orderItems.add(orderItem);

Code to read the document back from the database:
Click here to view code image

BasicDBObject item = (BasicDBObject) orderItem;
String productName = item.getString("product");
Double price = item.getDouble("price");

Changing the objects to add preferredShippingType does not
require any change in the database, as the database does not care that
different documents do not follow the same schema. This allows for
faster development and easy deployments. All that needs to be deployed
is the application—no changes on the database side are needed. The
code has to make sure that documents that do not have the
preferredShippingType attribute can still be parsed—and that’s all.

Of course we are simplifying the schema change situation here. Let’s
look at the schema change we made before: introducing
discountedPrice and renaming price to fullPrice. To make this

change, we rename the price attribute to fullPrice and add
discountedPrice attribute. The changed document is
Click here to view code image

{
"_id": "5BD8AE97C47016442AF4A580",
"customerid": 66778,
"name": "India House",
"since": "12/12/2012",
"order": {
 "orderid": "4821-UXWE-222012",
 "orderdate": "12/12/2001",
 "orderItems": [{"product": "Chair Covers",
 "fullPrice": 29.99,
 "discountedPrice":26.99}]
 }
}

Once we deploy this change, new customers and their orders can be
saved and read back without problems, but for existing orders the price
of their product cannot be read, because now the code is looking for
fullPrice but the document has only price.

12.3.1. Incremental Migration
Schema mismatch trips many new converts to the NoSQL world. When
schema is changed on the application, we have to make sure to convert
all the existing data to the new schema (depending on data size, this
might be an expensive operation). Another option would be to make
sure that data, before the schema changed, can still be parsed by the
new code, and when it’s saved, it is saved back in the new schema.
This technique, known as incremental migration, will migrate data
over time; some data may never get migrated, because it was never
accessed. We are reading both price and fullPrice from the
document:
Click here to view code image

BasicDBObject item = (BasicDBObject) orderItem;

String productName = item.getString("product");
Double fullPrice = item.getDouble("price");
if (fullPrice == null) {
 fullPrice = item.getDouble("fullPrice");
}
Double discountedPrice = item.getDouble("discountedPrice");

When writing the document back, the old attribute price is not
saved:
Click here to view code image

BasicDBObject orderItem = new BasicDBObject();
orderItem.put("product", productName);
orderItem.put("fullPrice", price);
orderItem.put("discountedPrice", discountedPrice);
orderItems.add(orderItem);

When using incremental migration, there could be many versions of
the object on the application side that can translate the old schema to the
new schema; while saving the object back, it is saved using the new
object. This gradual migration of the data helps the application evolve
faster.

The incremental migration technique will complicate the object
design, especially as new changes are being introduced yet old changes
are not being taken out. This period between the change deployment and
the last object in the database migrating to the new schema is known as
the transition period (Figure 12.6). Keep it as short as possible and
focus it to the minimum possible scope—this will help you keep your
objects clean.

Figure 12.6. Transition period of schema changes
The incremental migration technique can also be implemented with a

schema_version field on the data, used by the application to choose
the correct code to parse the data into the objects. When saving, the data
is migrated to the latest version and the schema_version is updated to
reflect that.

Having a proper translation layer between your domain and the
database is important so that, as the schema changes, managing multiple
versions of the schema is restricted to the translation layer and does not
leak into the whole application.

Mobile apps create special requirements. Since we cannot enforce
the latest upgrades of the application, the application should be able to
handle almost all versions of the schema.

12.3.2. Migrations in Graph Databases
Graph databases have edges that have types and properties. If you

change the type of these edges in the codebase, you no longer can
traverse the database, rendering it unusable. To get around this, you can
traverse all the edges and change the type of each edge. This operation
can be expensive and requires you to write code to migrate all the
edges in the database.

If we need to maintain backward compatibility or do not want to
change the whole graph in one go, we can just create new edges
between the nodes; later when we are comfortable about the change, the
old edges can be dropped. We can use traversals with multiple edge
types to traverse the graph using the new and old edge types. This
technique may help a great deal with large databases, especially if we
want to maintain high availability.

If we have to change properties on all the nodes or edges, we have to
fetch all the nodes and change all the properties that need to be changed.
An example would be adding NodeCreatedBy and NodeCreatedOn to
all existing nodes to track the changes being made to each node.
Click here to view code image

for (Node node : database.getAllNodes()) {
 node.setProperty("NodeCreatedBy", getSystemUser());
 node.setProperty("NodeCreatedOn", getSystemTimeStamp());
}

We may have to change the data in the nodes. New data may be
derived from the existing node data, or it could be imported from some
other source. The migration can be done by fetching all nodes using an
index provided by the source of data and writing relevant data to each
node.

12.3.3. Changing Aggregate Structure
Sometimes you need to change the schema design, for example by
splitting large objects into smaller ones that are stored independently.
Suppose you have a customer aggregate that contains all the customers
orders, and you want to separate the customer and each of their orders

into different aggregate units.
You then have to ensure that the code can work with both versions of

the aggregates. If it does not find the old objects, it will look for the
new aggregates.

Code that runs in the background can read one aggregate at a time,
make the necessary change, and save the data back into different
aggregates. The advantage of operating on one aggregate at a time is that
this way, you’re not affecting data availability for the application.

12.4. Further Reading
For more on migrations with relational databases, see [Ambler and
Sadalage]. Although much of this content is specific to relational work,
the general principles in migration will also apply to other databases.

12.5. Key Points
• Databases with strong schemas, such as relational databases, can

be migrated by saving each schema change, plus its data
migration, in a version-controlled sequence.

• Schemaless databases still need careful migration due to the
implicit schema in any code that accesses the data.

• Schemaless databases can use the same migration techniques as
databases with strong schemas.

• Schemaless databases can also read data in a way that’s tolerant
to changes in the data’s implicit schema and use incremental
migration to update data.

Chapter 13. Polyglot Persistence

Different databases are designed to solve different problems. Using a
single database engine for all of the requirements usually leads to non-
performant solutions; storing transactional data, caching session
information, traversing graph of customers and the products their
friends bought are essentially different problems. Even in the RDBMS
space, the requirements of an OLAP and OLTP system are very
different—nonetheless, they are often forced into the same schema.

Let’s think of data relationships. RDBMS solutions are good at
enforcing that relationships exist. If we want to discover relationships,
or have to find data from different tables that belong to the same object,
then the use of RDBMS starts being difficult.

Database engines are designed to perform certain operations on
certain data structures and data amounts very well—such as operating
on sets of data or a store and retrieving keys and their values really fast,
or storing rich documents or complex graphs of information.

13.1. Disparate Data Storage Needs
Many enterprises tend to use the same database engine to store business
transactions, session management data, and for other storage needs such
as reporting, BI, data warehousing, or logging information (Figure
13.1).

Figure 13.1. Use of RDBMS for every aspect of storage for the
application

The session, shopping cart, or order data do not need the same
properties of availability, consistency, or backup requirements. Does
session management storage need the same rigorous backup/recovery
strategy as the e-commerce orders data? Does the session management
storage need more availability of an instance of database engine to
write/read session data?

In 2006, Neal Ford coined the term polyglot programming, to
express the idea that applications should be written in a mix of
languages to take advantage of the fact that different languages are
suitable for tackling different problems. Complex applications combine
different types of problems, so picking the right language for each job
may be more productive than trying to fit all aspects into a single
language.

Similarly, when working on an e-commerce business problem, using

a data store for the shopping cart which is highly available and can
scale is important, but the same data store cannot help you find products
bought by the customers’ friends—which is a totally different question.
We use the term polyglot persistence to define this hybrid approach to
persistence.

13.2. Polyglot Data Store Usage
Let’s take our e-commerce example and use the polyglot persistence
approach to see how some of these data stores can be applied (Figure
13.2). A key-value data store could be used to store the shopping cart
data before the order is confirmed by the customer and also store the
session data so that the RDBMS is not used for this transient data. Key-
value stores make sense here since the shopping cart is usually
accessed by user ID and, once confirmed and paid by the customer, can
be saved in the RDBMS. Similarly, session data is keyed by the session
ID.

Figure 13.2. Use of key-value stores to offload session and shopping

cart data storage
If we need to recommend products to customers when they place

products into their shopping carts—for example, “your friends also
bought these products” or “your friends bought these accessories for
this product”—then introducing a graph data store in the mix becomes
relevant (Figure 13.3).

Figure 13.3. Example implementation of polyglot persistence
It is not necessary for the application to use a single data store for all

of its needs, since different databases are built for different purposes
and not all problems can be elegantly solved by a singe database.

Even using specialized relational databases for different purposes,
such as data warehousing appliances or analytics appliances within the
same application, can be viewed as polyglot persistence.

13.3. Service Usage over Direct Data Store Usage
As we move towards multiple data stores in the application, there may
be other applications in the enterprise that could benefit from the use of
our data stores or the data stored in them. Using our example, the graph

data store can serve data to other applications that need to understand,
for example, which products are being bought by a certain segment of
the customer base.

Instead of each application talking independently to the graph
database, we can wrap the graph database into a service so that all
relationships between the nodes can be saved in one place and queried
by all the applications (Figure 13.4). The data ownership and the APIs
provided by the service are more useful than a single application
talking to multiple databases.

Figure 13.4. Example implementation of wrapping data stores into
services

The philosophy of service wrapping can be taken further: You could
wrap all databases into services, letting the application to only talk to a
bunch of services (Figure 13.5). This allows for the databases inside
the services to evolve without you having to change the dependent
applications.

Figure 13.5. Using services instead of talking to databases
Many NoSQL data store products, such as Riak [Riak] and Neo4J

[Neo4J], actually provide out-of-the-box REST API’s.

13.4. Expanding for Better Functionality
Often, we cannot really change the data storage for a specific usage to
something different, because of the existing legacy applications and
their dependency on existing data storage. We can, however, add
functionality such as caching for better performance, or use indexing
engines such as Solr [Solr] so that search can be more efficient (Figure
13.6). When technologies like this are introduced, we have to make sure
data is synchronized between the data storage for the application and
the cache or indexing engine.

Figure 13.6. Using supplemental storage to enhance legacy storage
While doing this, we need to update the indexed data as the data in

the application database changes. The process of updating the data can
be real-time or batch, as long as we ensure that the application can deal
with stale data in the index/search engine. The event sourcing (“Event
Sourcing,” p. 142) pattern can be used to update the index.

13.5. Choosing the Right Technology
There is a rich choice of data storage solutions. Initially, the pendulum
had shifted from speciality databases to a single RDBMS database
which allows all types of data models to be stored, although with some
abstraction. The trend is now shifting back to using the data storage that
supports the implementation of solutions natively.

If we want to recommend products to customers based on what’s in
their shopping carts and which other products were bought by

customers who bought those products, it can be implemented in any of
the data stores by persisting the data with the correct attributes to
answer our questions. The trick is to use the right technology, so that
when the questions change, they can still be asked with the same data
store without losing existing data or changing it into new formats.

Let’s go back to our new feature need. We can use RDBMS to solve
this using a hierarchal query and modeling the tables accordingly. When
we need to change the traversal, we will have to refactor the database,
migrate the data, and start persisting new data. Instead, if we had used a
data store that tracks relations between nodes, we could have just
programmed the new relations and keep using the same data store with
minimal changes.

13.6. Enterprise Concerns with Polyglot Persistence
Introduction of NoSQL data storage technologies will force the
enterprise DBAs to think about how to use the new storage. The
enterprise is used to having uniform RDBMS environments; whatever is
the database an enterprise starts using first, chances are that over the
years all its applications will be built around the same database. In this
new world of polyglot persistence, the DBA groups will have to
become more poly-skilled—to learn how some of these NoSQL
technologies work, how to monitor these systems, back them up, and
take data out of and put into these systems.

Once the enterprise decides to use any NoSQL technology, issues
such as licensing, support, tools, upgrades, drivers, auditing, and
security come up. Many NoSQL technologies are open-source and have
an active community of supporters; also, there are companies that
provide commercial support. There is not a rich ecosystem of tools, but
the tool vendors and the open-source community are catching up,
releasing tools such as MongoDB Monitoring Service [Monitoring],
Datastax Ops Center [OpsCenter], or Rekon browser for Riak [Rekon].

One other area that enterprises are concerned about is security of the

data—the ability to create users and assign privileges to see or not see
data at the database level. Most of the NoSQL databases do not have
very robust security features, but that’s because they are designed to
operate differently. In traditional RDBMS, data was served by the
database and we could get to the database using any query tools. With
the NoSQL databases, there are query tools as well but the idea is for
the application to own the data and serve it using services. With this
approach, the responsibility for the security lies with the application.
Having said that, there are NoSQL technologies that introduce security
features.

Enterprises often have data warehouse systems, BI, and analytics
systems that may need data from the polyglot data sources. Enterprises
will have to ensure that the ETL tools or any other mechanism they are
using to move data from source systems to the data warehouse can read
data from the NoSQL data store. The ETL tool vendors are coming out
with have the ability to talk to NoSQL databases; for example, Pentaho
[Pentaho] can talk to MongoDB and Cassandra.

Every enterprise runs analytics of some sort. As the sheer volume of
data that needs to be captured increases, enterprises are struggling to
scale their RDBMS systems to write all this data to the databases. A
huge number of writes and the need to scale for writes are a great use
case for NoSQL databases that allow you to write large volumes of
data.

13.7. Deployment Complexity
Once we start down the path of using polyglot persistence in the
application, deployment complexity needs careful consideration. The
application now needs all databases in production at the same time.
You will need to have these databases in your UAT, QA, and Dev
environments. As most of the NoSQL products are open-source, there
are few license cost ramifications. They also support automation of
installation and configuration. For example, to install a database, all

that needs to be done is download and unzip the archive, which can be
automated using curl and unzip commands. These products also have
sensible defaults and can be started with minimum configuration.

13.8. Key Points
• Polyglot persistence is about using different data storage

technologies to handle varying data storage needs.
• Polyglot persistence can apply across an enterprise or within a

single application.
• Encapsulating data access into services reduces the impact of data

storage choices on other parts of a system.
• Adding more data storage technologies increases complexity in

programming and operations, so the advantages of a good data
storage fit need to be weighed against this complexity.

Chapter 14. Beyond NoSQL

The appearance of NoSQL databases has done a great deal to shake up
and open up the world of databases, but we think the kind of NoSQL
databases we have discussed here is only part of the picture of polyglot
persistence. So it makes sense to spend some time discussing solutions
that don’t easily fit into the NoSQL bucket.

14.1. File Systems
Databases are very common, but file systems are almost ubiquitous. In
the last couple of decades they’ve been widely used for personal
productivity documents, but not for enterprise applications. They don’t
advertise any internal structure, so they are more like key-value stores
with a hierarchic key. They also provide little control over concurrency
other than simple file locking—which itself is similar to the way
NoSQL only provides locking within a single aggregate.

File systems have the advantage of being simple and widely
implemented. They cope well with very large entities, such as video
and audio. Often, databases are used to index media assets stored in
files. Files also work very well for sequential access, such as
streaming, which can be handy for data which is append-only.

Recent attention to clustered environments has seen a rise of
distributed file systems. Technologies like the Google File System and
Hadoop [Hadoop] provide support for replication of files. Much of the
discussion of map-reduce is about manipulating large files on cluster
systems, with tools for automatic splitting of large files into segments to
be processed on multiple nodes. Indeed a common entry path into
NoSQL is from organizations that have been using Hadoop.

File systems work best for a relatively small number of large files
that can be processed in big chunks, preferably in a streaming style.
Large numbers of small files generally perform badly—this is where a

data store becomes more efficient. Files also provide no support for
queries without additional indexing tools such as Solr [Solr].

14.2. Event Sourcing
Event sourcing is an approach to persistence that concentrates on
persisting all the changes to a persistent state, rather than persisting the
current application state itself. It’s an architectural pattern that works
quite well with most persistence technologies, including relational
databases. We mention it here because it also underpins some of the
more unusual ways of thinking about persistence.

Consider an example of a system that keeps a log of the location of
ships (Figure 14.1). It has a simple ship record that keeps the name of
the ship and its current location. In the usual way of thinking, when we
hear that the ship King Roy has arrived in San Francisco, we change the
value of King Roy’s location field to San Francisco. Later on, we
hear it’s departed, so we change it to at sea, changing it again once
we know it’s arrived in Hong Kong.

Figure 14.1. In a typical system, notice of a change causes an
update to the application’s state.

With an event-sourced system, the first step is to construct an event
object that captures the information about the change (Figure 14.2). This

event object is stored in a durable event log. Finally, we process the
event in order to update the application’s state.

Figure 14.2. With event sourcing, the system stores each event,
together with the derived application state.

As a consequence, in an event-sourced system we store every event
that’s caused a state change of the system in the event log, and the
application’s state is entirely derivable from this event log. At any time,
we can safely throw away the application state and rebuild it from the
event log.

In theory, event logs are all you need because you can always
recreate the application state whenever you need it by replaying the
event log. In practice, this may be too slow. As a result, it’s usually best
to provide the ability to store and recreate the application state in a
snapshot. A snapshot is designed to persist the memory image
optimized for rapid recovery of the state. It is an optimization aid, so it

should never take precedence over the event log for authority on the
data.

How frequently you take a snapshot depends on your uptime needs.
The snapshot doesn’t need to be completely up to date, as you can
rebuild memory by loading the latest snapshot and then replaying all
events processed since that snapshot was taken. An example approach
would be to take a snapshot every night; should the system go down
during the day, you’d reload last night’s snapshot followed by today’s
events. If you can do that quickly enough, all will be fine.

To get a full record of every change in your application state, you
need to keep the event log going back to the beginning of time for your
application. But in many cases such a long-lived record isn’t necessary,
as you can fold older events into a snapshot and only use the event log
after the date of the snapshot.

Using event sourcing has a number of advantages. You can broadcast
events to multiple systems, each of which can build a different
application state for different purposes (Figure 14.3). For read-
intensive systems, you can provide multiple read nodes, with
potentially different schemas, while concentrating the writes on a
different processing system (an approach broadly known as CQRS
[CQRS]).

Figure 14.3. Events can be broadcast to multiple display systems.
Event sourcing is also an effective platform for analyzing historic

information, since you can replicate any past state in the event log. You
can also easily investigate alternative scenarios by introducing
hypothetical events into an analysis processor.

Event sourcing does add some complexity—most notably, you have
to ensure that all state changes are captured and stored as events. Some
architectures and tools can make that inconvenient. Any collaboration
with external systems needs to take the event sourcing into account;
you’ll need to be careful of external side effects when replaying events
to rebuild an application state.

14.3. Memory Image
One the consequences of event sourcing is that the event log becomes
the definitive persistent record—but it is not necessary for the

application state to be persistent. This opens up the option of keeping
the application state in memory using only in-memory data structures.
Keeping all your working data in memory provides a performance
advantage, since there’s no disk I/O to deal with when an event is
processed. It also simplifies programming since there is no need to
perform mapping between disk and in-memory data structures.

The obvious limitation here is that you must be able to store all the
data you’ll need to access in memory. This is an increasingly viable
option—we can remember disk sizes that were considerably less than
the current memory sizes. You also need to ensure that you can recover
quickly enough from a system crash—either by reloading events from
the event log or by running a duplicate system and cutting over.

You’ll need some explicit mechanism to deal with concurrency. One
route is a transactional memory system, such as the one that comes with
the Clojure language. Another route is to do all input processing on a
single thread. Designed carefully, a single-threaded event processor can
achieve impressive throughput at low latency [Fowler lmax].

Breaking the separation between in-memory and persistent data also
affects how you handle errors. A common approach is to update a
model and roll back any changes should an error occur. With a memory
image, you’ll usually not have an automated rollback facility; you either
have to write your own (complicated) or ensure that you do thorough
validation before you begin to apply any changes.

14.4. Version Control
For most software developers, their most common experience of an
event-sourced system is a version control system. Version control
allows many people on a team to coordinate their modifications of a
complex interconnected system, with the ability to explore past states of
that system and alternative realities through branching.

When we think of data storage, we tend to think of a single-point-of-
time worldview, which is very limiting compared to the complexity

supported by a version control system. It’s therefore surprising that data
storage tools haven’t borrowed some of the ideas from version control
systems. After all, many situations require historic queries and support
for multiple views of the world.

Version control systems are built on top of file systems, and thus
have many of the same limitations for data storage as a file system.
They are not designed for application data storage, so are awkward to
use in that context. However, they are worth considering for scenarios
where their timeline capabilities are useful.

14.5. XML Databases
Around the turn of the millennium, people seemed to want to use XML
for everything, and there was a flurry of interest in databases
specifically designed to store and query XML documents. While that
flurry had as little impact on the relational dominance as previous
blusters, XML databases are still around.

We think of XML databases as document databases where the
documents are stored in a data model compatible with XML, and where
various XML technologies are used to manipulate the document. You
can use various forms of XML schema definitions (DTDs, XML
Schema, RelaxNG) to check document formats, run queries with XPath
and XQuery, and perform transformations with XSLT.

Relational databases took on XML and blended these XML
capabilities with relational ones, usually by embedding XML
documents as a column type and allowing some way to blend SQL and
XML query languages.

Of course there’s no reason why you can’t use XML as a structuring
mechanism within a key-value store. XML is less fashionable these
days than JSON, but is equally capable of storing complex aggregates,
and XML’s schema and query capabilities are greater than what you can
typically get for JSON. Using an XML database means that the database
itself is able to take advantage of the XML structure and not just treat

the value as a blob, but that advantage needs to be weighed with the
other database characteristics.

14.6. Object Databases
When object-oriented programming started its rise in popularity, there
was a flurry of interest in object-oriented databases. The focus here
was the complexity of mapping from in-memory data structures to
relational tables. The idea of an object-oriented database is that you
avoid this complexity—the database would automatically manage the
storage of in-memory structures onto disk. You could think of it as a
persistent virtual memory system, allowing you to program with
persistence yet without taking any notice of a database at all.

Object databases didn’t take off. One reason was that the benefit of
the close integration with the application meant you couldn’t easily
access data other than with that application. A shift from integration
databases to application databases could well make object databases
more viable in the future.

An important issue with object databases is how to deal with
migration as the data structures change. Here, the close linkage between
the persistent storage and in-memory structures can become a problem.
Some object databases include the ability to add migration functions to
object definitions.

14.7. Key Points
• NoSQL is just one set of data storage technologies. As they

increase comfort with polyglot persistence, we should consider
other data storage technologies whether or not they bear the
NoSQL label.

Chapter 15. Choosing Your Database

At this point in the book, we’ve covered a lot of the general issues you
need to be aware of to make decisions in the new world of polyglot
persistence. It’s now time to talk about choosing your databases for
future development work. Naturally, we don’t know your particular
circumstances, so we can’t give you your answer, nor can we reduce it
to a simple set of rules to follow. Furthermore, it’s still early days in
the production use of NoSQL systems, so even what we do know is
immature—in a couple of years we may well think differently.

We see two broad reasons to consider a NoSQL database:
programmer productivity and data access performance. In different
cases these forces may complement or contradict each other. Both of
them are difficult to assess early on in a project, which is awkward
since your choice of a data storage model is difficult to abstract so as to
allow you to change your mind later on.

15.1. Programmer Productivity
Talk to any developer of an enterprise application, and you’ll sense
frustration from working with relational databases. Information is
usually collected and displayed in terms of aggregates, but it has to be
transformed into relations in order to persist it. This chore is easier than
it used to be; during the 1990s many projects groaned under the effort of
building object-relational mapping layers. By the 2000s, we’ve seen
popular ORM frameworks such as Hibernate, iBATIS, and Rails
Active Record that reduce much of that burden. But this has not made
the problem go away. ORMs are a leaky abstraction, there are always
some cases that need more attention—particularly in order to get decent
performance.

In this situation aggregate-oriented databases can offer a tempting
deal. We can remove the ORM and persist aggregates naturally as we

use them. We’ve come across several projects that claim palpable
benefits from moving to an aggregate-oriented solution.

Graph databases offer a different simplification. Relational
databases do not do a good job with data that has a lot of relationships.
A graph database offers both a more natural storage API for this kind of
data and query capabilities designed around these kinds of structures.

All kinds of NoSQL systems are better suited to nonuniform data. If
you find yourself struggling with a strong schema in order to support ad-
hoc fields, then the schemaless NoSQL databases can offer
considerable relief.

These are the major reasons why the programming model of NoSQL
databases may improve the productivity of your development team. The
first step of assessing this for your circumstances is to look at what your
software will need to do. Run through the current features and see if and
how the data usage fits. As you do this, you may begin to see that a
particular data model seems like a good fit. That closeness of fit
suggests that using that model will lead to easier programming.

As you do this, remember that polyglot persistence is about using
multiple data storage solutions. It may be that you’ll see different data
storage models fit different parts of your data. This would suggest using
different databases for different aspects of your data. Using multiple
databases is inherently more complex than using a single store, but the
advantages of a good fit in each case may be better overall.

As you look at the data model fit, pay particular attention to cases
where there is a problem. You may see most of your features will work
well with an aggregate, but a few will not. Having a few features that
don’t fit the model well isn’t a reason to avoid the model—the
difficulties of the bad fit may not overwhelm the advantages of the good
fit—but it’s useful to spot and highlight these bad fit cases.

Going through your features and assessing your data needs should
lead you to one or more alternatives for how to handle your database

needs. This will give you a starting point, but the next step is to try
things out by actually building software. Take some initial features and
build them, while paying close attention to how straightforward it is to
use the technology you’re considering. In this situation, it may be
worthwhile to build the same features with a couple of different
databases in order to see which works best. People are often reluctant
to do this—no one likes to build software that will be discarded. Yet
this is an essential way to judge how effective a particular framework
is.

Sadly, there is no way to properly measure how productive different
designs are. We have no way of properly measuring output. Even if you
build exactly the same feature, you can’t truly compare the productivity
because knowledge of building it once makes it easier a second time,
and you can’t build them simultaneously with identical teams. What you
can do is ensure the people who did the work can give an opinion. Most
developers can sense when they are more productive in one
environment than another. Although this is a subjective judgment, and
you may well get disagreements between team members, this is the best
judgment you will get. In the end we believe the team doing the work
should decide.

When trying out a database to judge productivity, it’s important to
also try out some of the bad fit cases we mentioned earlier. That way
the team can get a feeling of both the happy path and the difficult one, to
gain an overall impression.

This approach has its flaws. Often you can’t get a full appreciation of
a technology without spending many months using it—and running an
assessment for that long is rarely cost-effective. But like many things in
life, we need to make the best assessment we can, knowing its flaws,
and go with that. The essential thing here is to base the decision on as
much real programming as you can. Even a mere week working with a
technology can tell you things you’d never learn from a hundred vendor
presentations.

15.2. Data-Access Performance
The concern that led to the growth of NoSQL databases was rapid
access to lots of data. As large websites emerged, they wanted to grow
horizontally and run on large clusters. They developed the early NoSQL
databases to help them run efficiently on such architectures. As other
data users follow their lead, again the focus is on accessing data
rapidly, often with large volumes involved.

There are many factors that can determine a database’s better
performance than the relational default in various circumstances. A
aggregate-oriented database may be very fast for reading or retrieving
aggregates compared to a relational database where data is spread over
many tables. Easier sharding and replication over clusters allows
horizontal scaling. A graph database can retrieve highly connected data
more quickly than using relational joins.

If you’re investigating NoSQL databases based on performance, the
most important thing you must do is to test their performance in the
scenarios that matter to you. Reasoning about how a database may
perform can help you build a short list, but the only way you can assess
performance properly is to build something, run it, and measure it.

When building a performance assessment, the hardest thing is often
getting a realistic set of performance tests. You can’t build your actual
system, so you need to build a representative subset. It’s important,
however, for this subset to be as faithful a representative as possible.
It’s no good taking a database that’s intended to serve hundreds of
concurrent users and assessing its performance with a single user. You
are going to need to build representative loads and data volumes.

Particularly if you are building a public website, it can be difficult to
build a high-load testbed. Here, a good argument can be made for using
cloud computing resources both to generate load and to build a test
cluster. The elastic nature of cloud provisioning is very helpful for
short-lived performance assessment work.

You’re not going to be able to test every way in which your
application will be used, so you need to build a representative subset.
Choose scenarios that are the most common, the most performance-
dependent, and those that don’t seem to fit your database model well.
The latter may alert you to any risks outside of your main use cases.

Coming up with volumes to test for can be tricky, especially early on
in a project when it’s not clear what your production volumes are likely
to be. You will have to come up with something to base your thinking
on, so be sure to make it explicit and to communicate it with all the
stakeholders. Making it explicit reduces the chance that different people
have varying ideas on what a “heavy read load” is. It also allows you to
spot problems more easily should your later discoveries wander off
your original assumptions. Without making your assumptions explicit,
it’s easier to drift away from them without realizing you need to redo
your testbed as you learn new information.

15.3. Sticking with the Default
Naturally we think that NoSQL is a viable option in many
circumstances—otherwise we wouldn’t have spent several months
writing this book. But we also realize that there are many cases, indeed
the majority of cases, where you’re better off sticking with the default
option of a relational database.

Relational databases are well known; you can easily find people
with the experience of using them. They are mature, so you are less
likely to run into the rough edges of new technology. There are lots of
tools that are built on relational technology that you can take advantage
of. You also don’t have to deal with the political issues of making an
unusual choice—picking a new technology will always introduce a risk
of problems should things run into difficulties.

So, on the whole, we tend to take a view that to choose a NoSQL
database you need to show a real advantage over relational databases
for your situation. There’s no shame in doing the assessments for

programmability and performance, finding no clear advantage, and
staying with the relational option. We think there are many cases where
it is advantageous to use NoSQL databases, but “many” does not mean
“all” or even “most.”

15.4. Hedging Your Bets
One of the greatest difficulties we have in giving advice on choosing a
data-storage option is that we don’t have that much data to go on. As we
write this, we are only seeing very early adopters discussing their
experiences with these technologies, so we don’t have a clear picture of
the actual pros and cons.

With the situation this uncertain, there’s more of an argument for
encapsulating your database choice—keeping all your database code in
a section of your codebase that is relatively easy to replace should you
decide to change your database choice later. The classic way to do this
is through an explicit data store layer in your application—using
patterns such as Data Mapper and Repository [Fowler PoEAA]. Such
an encapsulation layer does carry a cost, particularly when you are
unsure about using quite different models, such as key-value versus
graph data models. Worse still, we don’t have experience yet with
encapsulating data layers between these very different kinds of data
stores.

On the whole, our advice is to encapsulate as a default strategy, but
pay attention to the cost of insulating layer. If it’s getting too much of a
burden, for example by making it harder to use some helpful database
features, then it’s a good argument for using the database that has those
features. This information may be just what you need to make a
database choice and thus eliminate the encapsulation.

This is another argument for decomposing the database layer into
services that encapsulate data storage (“Service Usage over Direct
Data Store Usage,” p. 136). As well as reducing coupling between
various services, this has the additional advantage of making it easier to

replace a database should things not work out in the future. This is a
plausible approach even if you end up using the same database
everywhere—should things go badly, you can gradually swap it out,
focusing on the most problematic services first.

This design advice applies just as much if you prefer to stick with a
relational option. By encapsulating segments of your database into
services, you can replace parts of your data store with a NoSQL
technology as it matures and the advantages become clearer.

15.5. Key Points
• The two main reasons to use NoSQL technology are:

• To improve programmer productivity by using a database that
better matches an application’s needs.

• To improve data access performance via some combination of
handling larger data volumes, reducing latency, and improving
throughput.

• It’s essential to test your expectations about programmer
productivity and/or performance before committing to using a
NoSQL technology.

• Service encapsulation supports changing data storage
technologies as needs and technology evolve. Separating parts of
applications into services also allows you to introduce NoSQL
into an existing application.

• Most applications, particularly nonstrategic ones, should stick
with relational technology—at least until the NoSQL ecosystem
becomes more mature.

15.6. Final Thoughts
We hope you’ve found this book enlightening. When we started writing
it, we were frustrated by the lack of anything that would give us a broad
survey of the NoSQL world. In writing this book we had to make that

survey ourselves, and we’ve found it an enjoyable journey. We hope
your journey through this material is considerably quicker but no less
enjoyable.

At this point you may be considering making use of a NoSQL
technology. If so this book is only an early step in building your
understanding. We urge you to download some databases and work
with them, for we’re of the firm conviction that you can only understand
a technology properly by working with it—finding its strengths and the
inevitable gotchas that never make it into the documentation.

We expect that most people, including most readers of this book, will
not be using NoSQL for a while. It is a new technology and we are still
early in the process of understanding when to use it and how to use it
well. But as with anything in the software world, things are changing
more rapidly than we dare predict, so do keep an eye on what’s
happening in this field.

We hope you’ll also find other books and articles to help you. We
think the best material on NoSQL will be written after this book is
done, so we can’t point you to anywhere in particular as we write this.
We do have an active presence on the Web, so for our more up-to-date
thoughts on the NoSQL world take a look at www.sadalage.com and
http://martinfowler.com/nosql.html.

Bibliography

[Agile Methods] www.agilealliance.org.

[Amazon’s Dynamo]
www.allthingsdistributed.com/2007/10/amazons_dynamo.html.

[Amazon DynamoDB] http://aws.amazon.com/dynamodb.

[Amazon SimpleDB] http://aws.amazon.com/simpledb.

[Ambler and Sadalage] Ambler, Scott and Pramodkumar Sadalage.
Refactoring Databases: Evolutionary Database Design. Addison-
Wesley. 2006. ISBN 978-0321293534.

[Berkeley DB] www.oracle.com/us/products/database/berkeley-db.

[Blueprints] https://github.com/tinkerpop/blueprints/wiki.

[Brewer] Brewer, Eric. Towards Robust Distributed Systems.
www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf.

[Cages] http://code.google.com/p/cages.

[Cassandra] http://cassandra.apache.org.

[Chang etc.] Chang, Fay, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra,
Andrew Fikes, and Robert E. Gruber. Bigtable: A Distributed
Storage System for Structured Data.
http://research.google.com/archive/bigtable-osdi06.pdf.

[CouchDB] http://couchdb.apache.org.

[CQL] www.slideshare.net/jericevans/cql-sql-in-cassandra.

[CQRS] http://martinfowler.com/bliki/CQRS.html.

[C-Store] Stonebraker, Mike, Daniel Abadi, Adam Batkin, Xuedong
Chen, Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson
Lin, Sam Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga
Tran, and Stan Zdonik. C-Store: A Column-oriented DBMS.
http://db.csail.mit.edu/projects/cstore/vldb.pdf.

[Cypher] http://docs.neo4j.org/chunked/1.6.1/cypher-query-lang.html.

[Daigneau] Daigneau, Robert. Service Design Patterns. Addison-
Wesley. 2012. ISBN 032154420X.

[DBDeploy] http://dbdeploy.com.

[DBMaintain] www.dbmaintain.org.

[Dean and Ghemawat] Dean, Jeffrey and Sanjay Ghemawat.
MapReduce: Simplified Data Processing on Large Clusters.
http://static.usenix.org/event/osdi04/tech/full_papers/dean/dean.pdf

[Dijkstra’s] http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm.

[Evans] Evans, Eric. Domain-Driven Design. Addison-Wesley. 2004.
ISBN 0321125215.

[FlockDB] https://github.com/twitter/flockdb.

[Fowler DSL] Fowler, Martin. Domain-Specific Languages.
Addison-Wesley. 2010. ISBN 0321712943.

[Fowler lmax] Fowler, Martin. The LMAX Architecture.
http://martinfowler.com/articles/lmax.html.

[Fowler PoEAA] Fowler, Martin. Patterns of Enterprise Application
Architecture. Addison-Wesley. 2003. ISBN 0321127420.

[Fowler UML] Fowler, Martin. UML Distilled. Addison-Wesley.
2003. ISBN 0321193687.

[Gremlin] https://github.com/tinkerpop/gremlin/wiki.

[Hadoop] http://hadoop.apache.org/mapreduce.

[HamsterDB] http://hamsterdb.com.

[Hbase] http://hbase.apache.org.

[Hector] https://github.com/rantav/hector.

[Hive] http://hive.apache.org.

[Hohpe and Woolf] Hohpe, Gregor and Bobby Woolf. Enterprise
Integration Patterns. Addison-Wesley. 2003. ISBN 0321200683.

[HTTP] Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, and T. Berners-Lee. Hypertext Transfer Protocol—
HTTP/1.1. www.w3.org/Protocols/rfc2616/rfc2616.html.

[Hypertable] http://hypertable.org.

[Infinite Graph] www.infinitegraph.com.

[JSON] http://json.org.

[LevelDB] http://code.google.com/p/leveldb.

[Liquibase] www.liquibase.org.

[Lucene] http://lucene.apache.org.

[Lynch and Gilbert] Lynch, Nancy and Seth Gilbert. Brewer’s
conjecture and the feasibility of consistent, available, partition-
tolerant web services.
http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf.

[Memcached] http://memcached.org.

[MongoDB] www.mongodb.org.

[Monitoring]
www.mongodb.org/display/DOCS/MongoDB+Monitoring+Service

[MyBatis Migrator] http://mybatis.org.

[Neo4J] http://neo4j.org.

[NoSQL Debrief] http://blog.oskarsson.nu/post/22996140866/nosql-
debrief.

[NoSQL Meetup] http://nosql.eventbrite.com.

[Notes Storage Facility]
http://en.wikipedia.org/wiki/IBM_Lotus_Domino.

[OpsCenter] www.datastax.com/products/opscenter.

[OrientDB] www.orientdb.org.

[Oskarsson] Private Correspondence.

[Pentaho] www.pentaho.com.

[Pig] http://pig.apache.org.

[Pritchett] www.infoq.com/interviews/dan-pritchett-ebay-
architecture.

[Project Voldemort] http://project-voldemort.com.

[RavenDB] http://ravendb.net.

[Redis] http://redis.io.

[Rekon] https://github.com/basho/rekon.

[Riak] http://wiki.basho.com/Riak.html.

[Solr] http://lucene.apache.org/solr.

[Strozzi NoSQL] www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL.

[Tanenbaum and Van Steen] Tanenbaum, Andrew and Maarten Van
Steen. Distributed Systems. Prentice-Hall. 2007. ISBN
0132392275.

[Terrastore] http://code.google.com/p/terrastore.

[Vogels] Vogels, Werner. Eventually Consistent—Revisited.
www.allthingsdistributed.com/2008/12/eventually_consistent.html.

[Webber Neo4J Scaling]
http://jim.webber.name/2011/03/22/ef4748c3-6459-40b6-bcfa-
818960150e0f.aspx.

[ZooKeeper] http://zookeeper.apache.org.

Index

A
ACID (Atomic, Consistent, Isolated, and Durable) transactions, 19

in column-family databases, 109
in graph databases, 28, 50, 114–115
in relational databases, 10, 26
vs. BASE, 56

ad banners, 108–109
aggregate-oriented databases, 14, 19–23, 147

atomic updates in, 50, 61
disadvantages of, 30
no ACID transactions in, 50
performance of, 149
vs. graph databases, 28

aggregates, 14–23
changing structure of, 98, 132
modeling, 31
real-time analytics with, 33
updating, 26

agile methods, 123
Amazon, 9

See also DynamoDB, SimpleDB
analytics

counting website visitors for, 108
of historic information, 144
real-time, 33, 98

Apache Pig language, 76
Apache ZooKeeper library, 104, 115

application databases, 7, 146
updating materialized views in, 31

arcs (graph databases). See edges
atomic cross-document operations, 98
atomic rebalancing, 58
atomic transactions, 92, 104
atomic updates, 50, 61
automated failovers, 94
automated merges, 48
automated rollbacks, 145
auto-sharding, 39
availability, 53

in column-family databases, 104–105
in document databases, 93
in graph databases, 115
vs. consistency, 54
See also CAP theorem

averages, calculating, 72

B
backward compatibility, 126, 131
BASE (Basically Available, Soft state, Eventual consistency), 56
Berkeley DB, 81
BigTable DB, 9, 21–22
bit-mapped indexes, 106
blogging, 108
Blueprints property graph, 115
Brewer, Eric, 53
Brewer’s Conjecture. See CAP theorem
buckets (Riak), 82

default values for consistency for, 84
domain, 83
storing all data together in, 82

business transactions, 61

C
caching

performance of, 39, 137
stale data in, 50

Cages library, 104
CAP (Consistency, Availability, and Partition tolerance) theorem,
53–56

for document databases, 93
for Riak, 86

CAS (compare-and-set) operations, 62
Cassandra DB, 10, 21–22, 99–109

availability in, 104–105
column families in:

commands for, 105–106
standard, 101
super, 101–102

columns in, 100
expiring, 108–109
indexing, 106–107
reading, 107
super, 101

compaction in, 103
consistency in, 103–104
ETL tools for, 139
hinted handoff in, 104

keyspaces in, 102–104
memtables in, 103
queries in, 105–107
repairs in, 103–104
replication factor in, 103
scaling in, 107
SSTables in, 103
timestamps in, 100
transactions in, 104
wide/skinny rows in, 23

clients, processing on, 67
Clojure language, 145
cloud computing, 149
clumping, 39
clusters, 8–10, 67–72, 76, 149

in file systems, 8
in Riak, 87
resiliency of, 8

column-family databases, 21–23, 99–109
ACID transactions in, 109
columns for materialized views in, 31
combining peer-to-peer replication and sharding in, 43–44
consistency in, 103–104
modeling for, 34
performance in, 103
schemalessness of, 28
vs. key-value databases, 21
wide/skinny rows in, 23

combinable reducers, 70–71
compaction (Cassandra), 103

compatibility, backward, 126, 131
concurrency, 145

in file systems, 141
in relational databases, 4
offline, 62

conditional updates, 48, 62–63
conflicts

key, 82
read-write, 49–50
resolving, 64
write-write, 47–48, 64

consistency, 47–59
eventual, 50, 84
in column-family databases, 103–104
in graph databases, 114
in master-slave replication, 52
in MongoDB, 91
logical, 50
optimistic/pessimistic, 48
read, 49–52, 56
read-your-writes, 52
relaxing, 52–56
replication, 50
session, 52, 63
trading off, 57
update, 47, 56, 61
vs. availability, 54
write, 92
See also CAP theorem

content hashes, 62–63

content management systems, 98, 108
CouchDB, 10, 91

conditional updates in, 63
replica sets in, 94

counters, for version stamps, 62–63
CQL (Cassandra Query Language), 10, 106
CQRS (Command Query Responsibility Segregation), 143
cross-document operations, 98
C-Store DB, 21
Cypher language, 115–119

D
Data Mapper and Repository pattern, 151
data models, 13, 25

aggregate-oriented, 14–23, 30
document, 20
key-value, 20
relational, 13–14

data redundancy, 94
databases

choosing, 7, 147–152
deploying, 139
encapsulating in explicit layer, 151
NoSQL, definition of, 10–11
shared integration of, 4, 6

Datastax Ops Center, 139
DBDeploy framework, 125
DBMaintain tool, 126
deadlocks, 48
demo access, 108

Dependency Network pattern, 77
deployment complexity, 139
Dijkstra’s algorithm, 118
disaster recovery, 94
distributed file systems, 76, 141
distributed version control systems, 48

version stamps in, 64
distribution models, 37–43

See also replications, sharding, single server approach
document databases, 20, 23, 89–98

availability in, 93
embedding child documents into, 90
indexes in, 25
master-slave replication in, 93
performance in, 91
queries in, 25, 94–95
replica sets in, 94
scaling in, 95
schemalessness of, 28, 98
XML support in, 146

domain buckets (Riak), 83
Domain-Driven Design, 14
DTDs (Document Type Definitions), 146
durability, 56–57
DynamoDB, 9, 81, 100

shopping carts in, 55
Dynomite DB, 10

E
early prototypes, 109

e-commerce
data modeling for, 14
flexible schemas for, 98
polyglot persistence of, 133–138
shopping carts in, 55, 85, 87

edges (graph databases), 26, 111
eligibility rules, 26
enterprises

commercial support of NoSQL for, 138–139
concurrency in, 4
DB as backing store for, 4
event logging in, 97
integration in, 4
polyglot persistence in, 138–139
security of data in, 139

error handling, 4, 145
etags, 62
ETL tools, 139
Evans, Eric, 10
event logging, 97, 107–108
event sourcing, 138, 142, 144
eventual consistency, 50

in Riak, 84
expiring usage, 108–109

F
failovers, automated, 94
file systems, 141

as backing store for RDBMS, 3
cluster-aware, 8

concurrency in, 141
distributed, 76, 141
performance of, 141
queries in, 141

FlockDB, 113
data model of, 27
node distribution in, 115

G
Gilbert, Seth, 53
Google, 9

Google BigTable. See BigTable
Google File System, 141

graph databases, 26–28, 111–121, 148
ACID transactions in, 28, 50, 114–115
aggregate-ignorance of, 19
availability in, 115
consistency in, 114
creating, 113
edges (arcs) in, 26, 111
held entirely in memory, 119
master-slave replication in, 115
migrations in, 131
modeling for, 35
nodes in, 26, 111–117
performance of, 149
properties in, 111
queries in, 115–119
relationships in, 111–121
scaling in, 119

schemalessness of, 28
single server configuration of, 38
traversing, 111–117
vs. aggregate databases, 28
vs. relational databases, 27, 112
wrapping into service, 136

Gremlin language, 115
GUID (Globally Unique Identifier), 62

H
Hadoop project, 67, 76, 141
HamsterDB, 81
hash tables, 62–63, 81
HBase DB, 10, 21–22, 99–100
Hector client, 105
Hibernate framework, 5, 147
hinted handoff, 104
hive DB, 76
hot backup, 40, 42
hotel booking, 4, 55
HTTP (Hypertext Transfer Protocol), 7

interfaces based on, 85
updating with, 62

Hypertable DB, 10, 99–100

I
iBATIS, 5, 147
impedance mismatch, 5, 12
inconsistency

in shopping carts, 55

of reads, 49
of updates, 56
window of, 50–51, 56

indexes
bit-mapped, 106
in document databases, 25
stale data in, 138
updating, 138

Infinite Graph DB, 113
data model of, 27
node distribution in, 114–115

initial tech spikes, 109
integration databases, 6, 11
interoperability, 7

J
JSON (JavaScript Object Notation), 7, 94–95, 146

K
keys (key-value databases)

composite, 74
conflicts of, 82
designing, 85
expiring, 85
grouping into partitions, 70

keyspaces (Cassandra), 102–104
key-value databases, 20, 23, 81–88

consistency of, 83–84
modeling for, 31–33
no multiple key operations in, 88

schemalessness of, 28
sharding in, 86
structure of values in, 86
transactions in, 84, 88
vs. column-family databases, 21
XML support in, 146

L
Liquibase tool, 126
location-based services, 120
locks

dead, 48
offline, 52

lost updates, 47
Lotus DB, 91
Lucene library, 85, 88, 116
Lynch, Nancy, 53

M
MapReduce framework, 67
map-reduce pattern, 67–77

calculations with, 72
incremental, 31, 76–77
maps in, 68
materialized views in, 76
partitions in, 70
reusing intermediate outputs in, 76
stages for, 73–76

master-slave replication, 40–42
appointing masters in, 41, 57

combining with sharding, 43
consistency of, 52
in document databases, 93
in graph databases, 115
version stamps in, 63

materialized views, 30
in map-reduce, 76
updating, 31

Memcached DB, 81, 87
memory images, 144–145
memtables (Cassandra), 103
merges, automated, 48
Microsoft SQL Server, 8
migrations, 123–132

during development, 124, 126
in graph databases, 131
in legacy projects, 126–128
in object-oriented databases, 146
in schemaless databases, 128–132
incremental, 130
transition phase of, 126–128

mobile apps, 131
MongoDB, 10, 91–97

collections in, 91
consistency in, 91
databases in, 91
ETL tools for, 139
queries in, 94–95
replica sets in, 91, 93, 96
schema migrations in, 128–131

sharding in, 96
slaveOk parameter in, 91–92, 96
terminology in, 89
WriteConcern parameter in, 92

MongoDB Monitoring Service, 139
MyBatis Migrator tool, 126
MySQL DB, 53, 119

N
Neo4J DB, 113–118

ACID transactions in, 114–115
availability in, 115
creating graphs in, 113
data model of, 27
replicated slaves in, 115
service wrapping in, 136

nodes (graph databases), 26, 111
distributed storage for, 114
finding paths between, 117
indexing properties of, 115–116

nonuniform data, 10, 28, 30
NoSQL databases

advantages of, 12
definition of, 10–11
lack of support for transactions in, 10, 61
running of clusters, 10
schemalessness of, 10

O
object-oriented databases, 5, 146

migrations in, 146
vs. relational databases, 6

offline concurrency, 62
offline locks, 52
Optimistic Offline Lock, 62
Oracle DB

redo log in, 104
terminology in, 81, 89

Oracle RAC DB, 8
OrientDB, 91, 113
ORM (Object-Relational Mapping) frameworks, 5–6, 147
Oskarsson, Johan, 9

P
partition tolerance, 53–54

See also CAP theorem
partitioning, 69–70
peer-to-peer replication, 42–43

durability of, 58
inconsistency of, 43
version stamps in, 63–64

Pentaho tool, 139
performance

and sharding, 39
and transactions, 53
binary protocols for, 7
caching for, 39, 137
data-access, 149–150
in aggregate-oriented databases, 149
in column-family databases, 103

in document databases, 91
in graph databases, 149
responsiveness of, 48
tests for, 149

pipes-and-filters approach, 73
polyglot persistence, 11, 133–139, 148

and deployment complexity, 139
in enterprises, 138–139

polyglot programming, 133–134
processing, on clients/servers, 67
programmer productivity, 147–149
purchase orders, 25

Q
queries

against varying aggregate structure, 98
by data, 88, 94
by key, 84–86
for files, 141
in column-family databases, 105–107
in document databases, 25, 94–95
in graph databases, 115–119
precomputed and cached, 31
via views, 94

quorums, 57, 59
read, 58
write, 58, 84

R
Rails Active Record framework, 147

RavenDB, 91
atomic cross-document operations in, 98
replica sets in, 94
transactions in, 92

RDBMS. See relational databases
reads

consistency of, 49–52, 56, 58
horizontal scaling for, 94, 96
inconsistent, 49
multiple nodes for, 143
performance of, 52
quorums of, 58
repairs of, 103
resilience of, 40–41
separating from writes, 41
stale, 56

read-write conflicts, 49–50
read-your-writes consistency, 52
Real Time Analytics, 33
Real Time BI, 33
rebalancing, atomic, 58
recommendation engines, 26, 35, 121, 138
Redis DB, 81–83
redo log, 104
reduce functions, 69

combinable, 70–71
regions. See map-reduce pattern, partitions in
Rekon browser for Riak, 139
relational databases (RDBMS), 13, 17

advantages of, 3–5, 7–8, 150

aggregate-ignorance of, 19
backing store in, 3
clustered, 8
columns in, 13, 90
concurrency in, 4
defining schemas for, 28
impedance mismatch in, 5, 12
licensing costs of, 8
main memory in, 3
modifying multiple records at once in, 26
partitions in, 96
persistence in, 3
relations (tables) in, 5, 13
schemas for, 29–30, 123–128
security in, 7
sharding in, 8
simplicity of relationships in, 112
strong consistency of, 47
terminology in, 81, 89
transactions in, 4, 26, 92
tuples (rows) in, 5, 13–14
views in, 30
vs. graph databases, 27, 112
vs. object-oriented databases, 6
XML support in, 146

relationships, 25, 111–121
dangling, 114
direction of, 113, 116, 118
in RDBMS, 112
properties of, 113–115

traversing, 111–117
RelaxNG, 146
replica sets, 91, 93, 96
replication factor, 58

in column-family databases, 103
in Riak, 84

replications, 37
combining with sharding, 43
consistency of, 42, 50
durability of, 57
over clusters, 149
performance of, 39
version stamps in, 63–64
See also master-slave replication, peer-to-peer replication

resilience
and sharding, 39
read, 40–41

responsiveness, 48
Riak DB, 81–83

clusters in, 87
controlling CAP in, 86
eventual consistency in, 84
HTTP-based interface of, 85
link-walking in, 25
partial retrieval in, 25
replication factor in, 84
service wrapping in, 136
terminology in, 81
transactions in, 84
write tolerance of, 84

Riak Search, 85, 88
rich domain model, 113
rollbacks, automated, 145
routing, 120
rows (RDBMS). See tuples

S
scaffolding code, 126
scaling, 95

horizontal, 149
for reads, 94, 96
for writes, 96

in column-family databases, 107
in document databases, 95
in graph databases, 119
vertical, 8

Scatter-Gather pattern, 67
schemaless databases, 28–30, 148

implicit schema of, 29
schema changes in, 128–132

schemas
backward compatibility of, 126, 131
changing, 128–132
during development, 124, 126
implicit, 29
migrations of, 123–132

search engines, 138
security, 139
servers

maintenance of, 94

processing on, 67
service-oriented architecture, 7
services, 136

and security, 139
decomposing database layer into, 151
decoupling between databases and, 7
over HTTP, 7

sessions
affinity, 52
consistency of, 52, 63
expire keys for, 85
management of, 133
sticky, 52
storing, 57, 87

sharding, 37–38, 40, 149
and performance, 39
and resilience, 39
auto, 39
by customer location, 97
combining with replication, 43
in key-value databases, 86
in MongoDB, 96
in relational databases, 8

shared database integration, 4, 6
shopping carts

expire keys for, 85
inconsistency in, 55
persistence of, 133
storing, 87

shuffling, 70

SimpleDB, 99
inconsistency window of, 50

single server approach, 37–38
consistency of, 53
no partition tolerance in, 54
transactions in, 53
version stamps in, 63

single-threaded event processors, 145
snapshots, 142–143
social networks, 26, 120

relationships between nodes in, 117
Solr indexing engine, 88, 137, 141
split brain situation, 53
SQL (Structured Query Language), 5
SSTables (Cassandra), 103
stale data

in cache, 50
in indexes/search engines, 138
reading, 56

standard column families (Cassandra), 101
sticky sessions, 52
storage models, 13
Strozzi, Carlo, 9
super column families (Cassandra), 101–102
super columns (Cassandra), 101
system transactions, 61

T
tables. See relational databases, relations in
telemetric data from physical devices, 57

Terrastore DB, 91, 94
timestamps

consistent notion of time for, 64
in column-family databases, 100
of last update, 63

transactional memory systems, 145
transactions, 50

ACID, 10, 19, 26, 28, 50, 56, 109, 114–115
across multiple operations, 92
and performance, 53
atomic, 92, 104
business, 61
in graph databases, 28, 114–115
in key-value databases, 84, 88
in RDBMS, 4, 26, 92
in single server systems, 53
lack of support in NoSQL for, 10, 61
multioperation, 88
open during user interaction, 52
rolling back, 4
system, 61

tree structures, 117
triggers, 126
TTL (Time To Live), 108–109
tuples (RDBMS), 5, 13–14

U
updates

atomic, 50, 61
conditional, 48, 62–63

consistency of, 47, 56, 61
lost, 47
merging, 48
timestamps of, 63–64

user comments, 98
user preferences, 87
user profiles, 87, 98
user registrations, 98
user sessions, 57

V
vector clock, 64
version control systems, 126, 145

distributed, 48, 64
version stamps, 52, 61–64
version vector, 64
views, 126
virtual columns, 126
Voldemort DB, 10, 82

W
web services, 7
websites

distributing pages for, 39
on large clusters, 149
publishing, 98
visitor counters for, 108

word processors, 3
write tolerance, 84
writes, 64

atomic, 104
conflicts of, 47–48
consistency of, 92
horizontal scaling for, 96
performance of, 91
quorums of, 58
separating from reads, 41
serializing, 47

X
XML (Extensible Markup Language), 7, 146
XML databases, 145–146
XML Schema language, 146
XPath language, 146
XQuery language, 146
XSLT (Extensible Stylesheet Language Transformations), 146

Z
ZooKeeper. See Apache ZooKeeper

	Title Page
	Copyright Page
	Dedication Page
	Contents
	Preface
	Part I: Understand
	Chapter 1. Why NoSQL?
	Chapter 2. Aggregate Data Models
	Chapter 3. More Details on Data Models
	Chapter 4. Distribution Models
	Chapter 5. Consistency
	Chapter 6. Version Stamps
	Chapter 7. Map-Reduce

	Part II: Implement
	Chapter 8. Key-Value Databases
	Chapter 9. Document Databases
	Chapter 10. Column-Family Stores
	Chapter 11. Graph Databases
	Chapter 12. Schema Migrations
	Chapter 13. Polyglot Persistence
	Chapter 14. Beyond NoSQL
	Chapter 15. Choosing Your Database

	Bibliography
	Index

