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PREFACE

This book presents some of the main ideas of game theory. It is designed to serve as a textbook for a one-semester 
graduate course consisting of about 28 meetings each of 90 minutes.

The topics that we cover are those that we personally would include in such a one-semester course. We do not 
pretend to provide a complete reference book on game theory and do not necessarily regard the topics that we 
exclude as unimportant. Our selection inevitably reflects our own preferences and interests. (Were we to start 
writing the book now we would probably add two chapters, one on experimental game theory and one on learning 
and evolution.)

We emphasize the foundations of the theory and the interpretation of f the main concepts. Our style is to give 
precise definitions and full proofs of results, sacrificing generality and limiting the scope of the material when 
necessary to most easily achieve these goals.

We have made a serious effort to give credit for an the concepts, results, examples, and exercises (see the "Notes" 
at the end of each chapter). We regret any errors and encourage you to draw our attention to them.

Structure of the Book

The book consists of four parts; in each part we study a group of related models. The chart on the next page 
summarizes the interactions among the chapters. A basic course could consist of Chapters 2, 3, 6, 11, 12, and 13.
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The main interactions between the chapters. The areas of the boxes in  
which the names of the chapters appear are proportional to the lengths  
of the chapters. A solid arrow connecting two boxes indicates that one  

chapter depends on the other; a dotted arrow indicates that only the main  
ideas of one chapter are used in the other. A basic course could consist  

of the six chapters in heavy boxes.
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Exercises

Many of the exercises are challenging; we often use exercises to state subsidiary results. Instructors will probably 
want to assign additional straightforward problems and adjust (by giving hints) the level of our exercises to make it 
appropriate for their students. Solutions are available to instructors on the web site for the book (see page xv).

Disagreements Between the Authors

We see no reason why a jointly authored book should reflect a uniform view. At several points, as in the following 
note, we briefly discuss issues about which we disagree.

A Note on Personal Pronouns

We disagree about how to handle English third-person singular pronouns.

AR argues that we should use a ''neutral" pronoun and agrees to the use of "he", with the understanding that this 
refers to both men and women. Continuous reminders of the he/she issue simply divert the reader's attention from 
the main issues. Language is extremely important in shaping our thinking, but in academic material it is not useful 
to wave it as a flag, as is common in some circles.

MJO argues that no language is "neutral". In particular, there is a wealth of evidence, both from experiments and 
from analyses of language use, that "he" is not generally perceived to encompass both females and males. To quote 
the American Heritage Dictionary (third edition, page 831), "Thus he is not really a gender-neutral pronoun; rather 
it refers to a male who is to be taken as the representative member of the group referred to by its antecedent. The 
traditional usage, then, is not simply a grammatical convention; it also suggests a particular pattern of thought." 
Further, the use of "he" to refer to an individual of unspecified sex did not even arise naturally, but was imposed as 
a rule by (male) prescriptive grammarians in the eighteenth and nineteenth centuries who were upset by the 
widespread use of "they" as a singular pronoun and decided that, since in their opinion men were more important 
than women, "he" should be used. The use of "he" to refer to a generic individual thus both has its origins in sexist 
attitudes and promotes such attitudes. There is no neat solution to the problem, especially in a book such as this in 
which there are so many references
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to generic individuals. "They" has many merits as a singular pronoun, although its use can lead to ambiguities (and 
complaints from editors). My preference is to use "she" for all individuals. Obviously this usage is not gender-
neutral, but its use for a few decades, after a couple of centuries in which "he" has dominated, seems likely only to 
help to eliminate sexist ways of thought. If such usage diverts some readers' attentions from the subjects discussed 
in this book and leads them to contemplate sexism in the use of language, which is surely an issue at least as 
significant as the minutiae of sequential equilibrium, then an increase in social welfare will have been achieved. 
(Whether or not this book qualifies as "academic material", I see no reason why its readers should be treated 
differently from those of any other material.)

To conclude, we both feel strongly on this issue; we both regard the compromise that we have reached as highly 
unsatisfactory. When referring to specific individuals, we sometimes use "he" and sometimes "she". For example, 
in two-player games we treat player 1 as female and player 2 as male. We use "he" for generic individuals.
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1 
Introduction

1.1 Game Theory

Game theory is a bag of analytical tools designed to help us understand the phenomena that we observe when 
decision-makers interact. The basic assumptions that underlie the theory are that decision-makers pursue well-
defined exogenous objectives (they are rational) and take into account their knowledge or expectations of other 
decision-makers' behavior (they reason strategically).

The models of game theory are highly abstract representations of classes of real-life situations. Their abstractness 
allows them to be used to study a wide range of phenomena. For example, the theory of Nash equilibrium (Chapter 
2) has been used to study oligopolistic and political competition. The theory of mixed strategy equilibrium 
(Chapter 3) has been used to explain the distributions of tongue length in bees and tube length in flowers. The 
theory of repeated games (Chapter 8) has been used to illuminate social phenomena like threats and promises. The 
theory of the core (Chapter 13) reveals a sense in which the outcome of trading under a price system is stable in an 
economy that contains many agents.

The boundary between pure and applied game theory is vague; some developments in the pure theory were 
motivated by issues that arose in applications. Nevertheless we believe that such a line can be drawn. Though we 
hope that this book appeals to those who are interested in applications, we stay almost entirely in the territory of 
"pure" theory. The art of applying an abstract model to a real-life situation should be the subject of another tome.

Game theory uses mathematics to express its ideas formally. However, the game theoretical ideas that we discuss 
are not inherently mathemat-
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ical; in principle a book could be written that had essentially the same content as this one and was devoid of 
mathematics. A mathematical formulation makes it easy to define concepts precisely, to verify the consistency of 
ideas, and to explore the implications of assumptions. Consequently our style is formal: we state definitions and 
results precisely, interspersing them with motivations and interpretations of the concepts.

The use of mathematical models creates independent mathematical interest. In this book, however, we treat game 
theory not as a branch of mathematics but as a social science whose aim is to understand the behavior of interacting 
decision-makers; we do not elaborate on points of mathematical interest. From our point of view the mathematical 
results are interesting only if they are confirmed by intuition.

1.2 Games and Solutions

A game is a description of strategic interaction that includes the constraints on the actions that the players can take 
and the players' interests, but does not specify the actions that the players do take. A solution is a systematic 
description of the outcomes that may emerge in a family of games. Game theory suggests reasonable solutions for 
classes of games and examines their properties.

We study four groups of game theoretic models, indicated by the titles of the four parts of the book: strategic 
games (Part I), extensive games with and without perfect information (Parts II and III), and coalitional games (Part 
IV). We now explain some of the dimensions on which this division is based.

Noncooperative and Cooperative Games

In all game theoretic models the basic entity is a player. A player may be interpreted as an individual or as a group 
of individuals making a decision. Once we define the set of players, we may distinguish between two types of 
models: those in which the sets of possible actions of individual players are primitives (Parts I, II, and III) and 
those in which the sets of possible joint actions of groups of players are primitives (Part IV). Sometimes models of 
the first type are referred to as "noncooperative", while those of the second type are referred to as 
"cooperative" (though these terms do not express well the differences between the models).

The numbers of pages that we devote to each of these branches of the theory reflect the fact that in recent years 
most research has been
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devoted to noncooperative games; it does not express our evaluation of the relative importance of the two branches. 
In particular, we do not share the view of some authors that noncooperative models are more "basic" than 
cooperative ones; in our opinion, neither group of models is more "basic" than the other.

Strategic Games and Extensive Games

In Part I we discuss the concept of a strategic game and in Parts II and III the concept of an extensive game. A 
strategic game is a model of a situation in which each player chooses his plan of action once and for all, and all 
players' decisions are made simultaneously (that is, when choosing a plan of action each player is not informed of 
the plan of action chosen by any other player). By contrast, the model of an extensive game specifies the possible 
orders of events; each player can consider his plan of action not only at the beginning of the game but also 
whenever he has to make a decision.

Games with Perfect and Imperfect Information

The third distinction that we make is between the models in Parts II and III. In the models in Part II the participants 
are fully informed about each others' moves, while in the models in Part III they may be imperfectly informed. The 
former models have firmer foundations. The latter were developed intensively only in the 1980s; we put leas 
emphasis on them not because they are less realistic or important but because they are less mature.

1.3 Game Theory and the Theory of Competitive Equilibrium

To clarify further the nature of game theory, we now contrast it with the theory of competitive equilibrium that is 
used in economics. Game theoretic reasoning takes into account the attempts by each decision-maker to obtain, 
prior to making his decision, information about the other players' behavior, while competitive reasoning assumes 
that each agent is interested only in some environmental parameters (such as prices), even though these parameters 
are determined by the actions of all agents.

To illustrate the difference between the theories, consider an environment in which the level of some activity (like 
fishing) of each agent depends on the level of pollution, which in turn depends on the levels of
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the agents' activities. In a competitive analysis of this situation we look for a level of pollution consistent with the 
actions that the agents take when each of them regards this level as given. By contrast, in a game theoretic analysis 
of the situation we require that each agent's action be optimal given the agent's expectation of the pollution created 
by the combination of his action and all the other agents' actions.

1.4 Rational Behavior

The models we study assume that each decision-maker is "rational" in the sense that he is aware of his alternatives, 
forms expectations about any unknowns, has clear preferences, and chooses his action deliberately after some 
process of optimization. In the absence of uncertainty the following elements constitute a model of rational choice.

• A set A of actions from which the decision-maker makes a choice.

• A set C of possible consequences of these actions.

• A consequence function  that associates a consequence with each action.

•A preference relation (a complete transitive reflexive binary relation)  on the set C.

Sometimes the decision-maker's preferences are specified by giving a utility function , which defines a 
preference relation  by the condition  if and only if .

Given any set  of actions that are feasible in some particular case, a rational decision-maker chooses an 
action a* that is feasible (belongs to B) and optimal in the sense that  for all ; alternatively he 
solves the problem . An assumption upon which the usefulness of this model of decision-making 
depends is that the individual uses the same preference relation when choosing from different sets B.

In the models we study, individuals often have to make decisions under conditions of uncertainty. The players may 
be

• uncertain about the objective parameters of the environment

• imperfectly informed about events that happen in the game

• uncertain about actions of the other players that are not deterministic

• uncertain about the reasoning of the other players.
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To model decision-making under uncertainty, almost all game theory uses the theories of von Neumann and 
Morgenstern (1944) and of Savage (1972). That is, if the consequence function is stochastic and known to the 
decision-maker (i.e. for each  the consequence g(a) is a lottery (probability distribution) on C) then the 
decision-maker is assumed to behave as if he maximizes the expected value of a (von Neumann-Morgenstern 
utility) function that attaches a number to each consequence. If the stochastic connection between actions and 
consequences is not given, the decision-maker is assumed to behave as if he has in mind a (subjective) probability 
distribution that determines the consequence of any action. In this case the decision-maker is assumed to behave as 
if he has in mind. a "state space" Ω, a probability measure over Ω, a function , and a utility function 

; he is assumed to choose an action a that maximizes the expected value of u(g(a,ω)) with respect to the 
probability measure.

We do not discuss the assumptions that underlie the theory of a rational decision-maker. However, we do point out 
that these assumptions are under perpetual attack by experimental psychologists, who constantly point out severe 
limits to its application.

1.5 The Steady State and Deductive Interpretations

There are two conflicting interpretations of solutions for strategic and extensive games. The steady state (or, as 
Binmore (1987/88) calls it, evolutive) interpretation is closely related to that which is standard in economics. Game 
theory, like other sciences, deals with regularities. As Carnap (1966, p. 3) writes, "The observations we make in 
everyday life as well as the more systematic observations of science reveal certain repetitions or regularities in the 
world .... The laws of science are nothing more than statements expressing these regularities as precisely as 
possible." The steady state interpretation treats a game as a model designed to explain some regularity observed in 
a family of similar situations. Each participant "knows" the equilibrium and tests the optimality of his behavior 
given this knowledge, which he has acquired from his long experience. The deductive (or, as Binmore calls it, 
eductive) interpretation, by contrast, treats a game in isolation, as a "one-shot" event, and attempts to infer the 
restrictions that rationality imposes on the outcome; it assumes that each player deduces how the other players will 
behave simply from principles of rationality. We try to avoid the confusion between the two interpretations that 
frequently arises in game theory.



   

Page 6

1.6 Bounded Rationality

When we talk in real life about games we often focus on the asymmetry between individuals in their abilities. For 
example, some players may have a clearer perception of a situation or have a greater ability to analyze it. These 
difference, which are so critical in life, are missing from game theory in its current form.

To illustrate the consequences of this fact, consider the game of chess. In an actual play of chess the players may 
differ in their knowledge of the legal moves and in their analytical abilities. In contrast, when chess is modeled 
using current game theory it is assumed that the players' knowledge of the rules of the game is perfect and their 
ability to analyze it is ideal. Results we prove in Chapters 2 and 6 (Propositions 22.2 and 99.2) imply that chess is a 
trivial game for "rational" players: an algorithm exists that can be used to "solve" the game. This algorithm defines 
a pair of strategies, one for each player, that leads to an "equilibrium" outcome with the property that a player who 
follows his strategy can be sure that the outcome will be at least as good as the equilibrium outcome no matter what 
strategy the other player uses. The existence of such strategies (first proved by Zermelo (1913)) suggests that chess 
is uninteresting because it has only one possible outcome. Nevertheless, chess remains a very popular and 
interesting game. Its equilibrium outcome is yet to be calculated; currently it is impossible to do so using the 
algorithm. Even if White, for example, is shown one day to have a winning strategy, it may not be possible for a 
human being to implement that strategy. Thus while the abstract model of chess allows us to deduce a significant 
fact about the game, at the same time it omits the most important determinant of the outcome of an actual play of 
chess: the players' "abilities".

Modeling asymmetries in abilities and in perceptions of a situation by different players is a fascinating challenge 
for future research, which models of "bounded rationality" have begun to tackle.

1.7 Terminology and Notation

We presume little familiarity with mathematical results, but throughout use deductive reasoning. Our notation and 
mathematical definitions are standard, but to avoid ambiguities we list some of them here.

We denote the set of real numbers by , the set of nonnegative real numbers by , the set of vectors of n real 
numbers by , and the set of
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vectors of n nonnegative real numbers by . For  and  we use  to mean . for i = 1,..., n and 
x > y to mean xi > yi for i = 1,...,n. We say that a function  is increasing if f (x) > f(y) whenever x > y and is 

nondecreasing if  whenever x > y. A function  is concave if 
 for all , all , and all . Given a function  we denote 

by arg  the set of maximizers of f; for any  we denote by f(Y) the set .

Throughout we use N to denote the set of players. We refer to a collection of values of some variable, one for each 
player, as a profile; we denote such a profile by , or, if the qualifier " " is clear, simply (xi). For any 

profile  and any  we let x-i be the list  of elements of the profile x for all players except i. 

Given a list  and an element xi we denote by (x-i, xi) the profile . If Xi is a set for each  
then we denote by X-i the set .

A binary relation .gif"> is convex; it is strictly quasi-concave if every such set is strictly convex.

Let X be a set. We denote by |X| the number of members of X. A partition of X is a collection of disjoint subsets of 
X whose union is X. Let N be a finite set and let  be a set. Then  is Pareto efficient if there is no 

 for which yi > xi for all  is strongly Pareto efficient if there is no  for which  for all 
 and yi > xi for some .

A probability measure µ on a finite (or countable) set X is an additive function that associates a nonnegative real 
number with every subset of X (that is,  whenever B and C are disjoint) and satisfies µ(X) = 
1. In some cases we work with probability measures over spaces that are not necessarily finite. If you are 
unfamiliar with such measures, little is lost by restricting attention to the finite case; for a definition of more 
general measures see, for example, Chung (1974, Ch. 2).
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Notes

Von Neumann and Morgenstern (1944) is the classic work in game theory. Luce and Raiffa (1957) is an early 
textbook; although now out-of-date, it contains superb discussions of the basic concepts in the theory. Schelling 
(1960) provides a verbal discussion of some of the main ideas of the theory.

A number of recent books cover much of the material in this book, at approximately the same level: Shubik (1982), 
Moulin (1986), Friedman (1990), Kreps (1990a, Part III), Fudenberg and Tirole (1991a), Myerson (1991), van 
Damme (1991), and Binmore (1992). Gibbons (1992) is a more elementary introduction to the subject.

Aumann (1985b) contains a discussion of the aims and achievements of game theory, and Aumann (1987b) is an 
account of game theory from a historical perspective. Binmore (1987/88) is a critical discussion of game theory 
that makes the distinction between the steady state and deductive interpretations. Kreps (1990b) is a reflective 
discussion of many issues in game theory.

For an exposition of the theory of rational choice see Kreps (1988).
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I  
STRATEGIC GAMES

In this part we study a model of strategic interaction known as a strategic game, or, in the terminology of yon 
Neumann and Morgenstern (1944), a ''game in normal form". This model specifies for each player a set of possible 
actions and a preference ordering over the set of possible action profiles.

In Chapter 2 we discuss Nash equilibrium, the most widely used solution concept for strategic games. In Chapter 3 
we consider the closely related solutions of mixed strategy equilibrium and correlated equilibrium, in which the 
players' actions are not necessarily deterministic. Nash equilibrium is a steady state solution concept in which each 
player's decision depends on knowledge of the equilibrium. In Chapter 4 we study the deductive solution concepts 
of rationalizability and iterated elimination of dominated actions, in which the players are not assumed to know the 
equilibrium. Chapter 5 describes a model of knowledge that allows us to examine formally the assumptions that 
underlie the solutions that we have defined.
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2 
Nash Equilibrium

Nash equilibrium is one of the most basic concepts in game theory. In this chapter we describe it in the context of a 
strategic game and in the related context of a Bayesian game.

2.1 Strategic Games

2.1.1 Definition

A strategic game is a model of interactive decision-making in which each decision-maker chooses his plan of 
action once and for all, and these choices are made simultaneously. The model consists of a finite set N of players 
and, for each player i, a set Ai of actions and a preference relation on the set of action profiles. We refer to an 

action profile  as an outcome, and denote the set  of outcomes by A. The requirement that the 
preferences of each player i be defined over A, rather than Ai, is the feature that distinguishes a strategic game from 
a decision problem: each player may care not only about his own action but also about the actions taken by the 
other players. To summarize, our definition is the following.

•Definition 11.1

A strategic game consists of

• a finite set N (the set of players)

•  for each player  a nonempty set Ai (the set of actions available to player i)

• for each player  a preference relation  on  (the preference relation of player i).

If the set Ai of actions of every player i is finite then the game is finite.
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The high level of abstraction of this model allows it to be applied to a wide variety of situations. A player may be 
an individual human being or any other decision-making entity like a government, a board of directors, the 
leadership of a revolutionary movement, or even a flower or an animal. The model places no restrictions on the set 
of actions available to a player, which may, for example, contain just a few elements or be a huge set containing 
complicated plans that cover a variety of contingencies. However, the range of application of the model is limited 
by the requirement that we associate with each player a preference relation. A player's preference relation may 
simply reflect the player's feelings about the possible outcomes or, in the case of an organism that does not act 
consciously, the chances of its reproductive success.

The fact that the model is so abstract is a merit to the extent that it allows applications in a wide range of situations, 
but is a drawback to the extent that the implications of the model cannot depend on any specific features of a 
situation. Indeed, very few conclusions can be reached about the outcome of a game at this level of abstraction; one 
needs to be much more specific to derive interesting results.

In some situations the players' preferences are most naturally defined not over action profiles but over their 
consequences. When modeling an oligopoly, for example, we may take the set of players to be a set of firms and 
the set of actions of each firm to be the set of prices; but we may wish to model the assumption that each firm cares 
only about its profit, not about the profile of prices that generates that profit. To do so we introduce a set C of 
consequence, a function  that associates consequences with action profiles, and a profile  of preference 
relations over C. Then the preference relation  of each player i in the strategic game is defined as follows:  
if and only if .

Sometimes we wish to model a situation in which the consequence of an action profile is affected by an exogenous 
random variable whose realization is not known to the players before they take their actions. We can model such a 
situation as a strategic game by introducing a set C of consequences, a probability space Ω, and a function 

 with the interpretation that g(a, ω) is the consequence when the action profile is  and the 
realization of the random variable is . A profile of actions induces a lottery on C; for each player i a 
preference relation  must be specified over the set of all such lotteries. Player i 's preference relation in the 
strategic game is defined as follows:  if and only if the lottery over C induced by g(a, ·) is at least as good 
according to  as the lottery induced by g(b, ·).
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Figure 13.1 
A convenient representation  

of a two-player strategic game  
in which each player has two actions.

Under a wide range of circumstances the preference relation  of player i in a strategic game can be represented 
by a payoff function  (also called a utility function), in the sense that  whenever . We 
refer to values of such a function as payoffs (or utilities). Frequently we specify a player's preference relation by 
giving a payoff function that represents it. In such a case we denote the game by  rather than 

.

A finite strategic game in which there are two players can be described conveniently in a table like that in Figure 
13.1. One player's actions are identified with the rows and the other player's with the columns. The two numbers in 
the box formed by row r and column c are the players' payoffs when the row player chooses r and the column 
player chooses c, the first component being the payoff of the row player. Thus in the game in Figure 13.1 the set of 
actions of the row player is {T, B} and that of the column player is {L, R}, and for example the row player's payoff 
from the outcome (T, L) is w1 and the column player's payoff is w2. If the players' names are "1" and "2" then the 
convention is that the row player is player 1 and the column player is player 2.

2.1.2 Comments on Interpretation

A common interpretation of a strategic game is that it is a model of an event that occurs only once; each player 
knows the details of the game and the fact that all the players are "rational" (see Section 1.4), and the players 
choose their actions simultaneously and independently. Under this interpretation each player is unaware, when 
choosing his action, of the choices being made by the other players; there is no information (except the primitives 
of the model) on which a player can base his expectation of the other players' behavior.

Another interpretation, which we adopt through most of this book, is that a player can form his expectation of the 
other players' behavior on
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the basis of information about the way that the game or a similar game was played in the past (see Section 1.5). A 
sequence of plays of the game can be modeled by a strategic game only if there are no strategic links between the 
plays. That is, an individual who plays the game many times must be concerned only with his instantaneous payoff 
and ignore the effects of his current action on the other players' future behavior. In this interpretation it is thus 
appropriate to model a situation as a strategic game only in the absence of an intertemporal strategic link between 
occurrences of the interaction. (The model of a repeated game discussed in Chapter 8 deals with series of strategic 
interactions in which such intertemporal links do exist.)

When referring to the actions of the players in a strategic game as "simultaneous" we do not necessarily mean that 
these actions are taken at the same point in time. One situation that can be modeled as a strategic game is the 
following. The players are at different locations, in front of terminals. First the players' possible actions and payoffs 
are described publicly (so that they are common knowledge among the players). Then each player chooses an 
action by sending a message to a central computer; the players are informed of their payoffs when all the messages 
have been received. However, the model of a strategic game is much more widely applicable than this example 
suggests. For a situation to be modeled as a strategic game it is important only that the players make decisions 
independently, no player being informed of the choice of any other player prior to making his own decision.

2.2 Nash Equilibrium

The most commonly used solution concept in game theory is that of Nash equilibrium. This notion captures a 
steady state of the play of a strategic game in which each player holds the correct expectation about the other 
players' behavior and acts rationally. It does not attempt to examine the process by which a steady state is reached.

• Definition 14.1

A Nash equilibrium of a strategic game , is a profile  of actions with the property that for 
every player  we have

Thus for a* to be a Nash equilibrium it must be that no player i has an action yielding an outcome that he prefers to 
that generated when
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he chooses , given that every other player j chooses his equilibrium action . Briefly, no player can profitably 
deviate, given the actions of the other players.

The following restatement of the definition is sometimes useful. For any  define Bi(a-i) to be the set of 
player i 's best actions given a-i:

We call the set-valued function Bi the best-response function of player i. A Nash equilibrium is a profile a* of 
actions for which

This alternative formulation of the definition points us to a (not necessarily efficient) method of finding Nash 
equilibria: first calculate the best response function of each player, then find a profile a* of actions for which 

 for all . If the functions Bi are singleton-valued then the second step entails solving |N| equations 

in the |N| unknowns 

2.3 Examples

The following classical games represent a variety of strategic situations. The games are very simple: in each game 
there are just two players and each player has only two possible actions. Nevertheless, each game captures the 
essence of a type of strategic interaction that is frequently present in more complex situations.

• Example 15.3

(Bach or Stravinsky? (BoS)) Two people wish to go out together to a concert of music by either Bach or Stravinsky. 
Their main concern is to go out together, but one person prefers Bach and the other person prefers Stravinsky. 
Representing the individuals' preferences by payoff functions, we have the game in Figure 16.1.

This game is often referred to as the "Battle of the Sexes"; for the standard story behind it see Luce and Raiffa 
(1957, pp. 90-91). For consistency with this nomenclature we call the game "BoS".

BoS models a situation in which players wish to coordinate their behavior, but have conflicting interests. The game 
has two Nash equilibria: (Bach, Bach) and (Stravinsky, Stravinsky). That is, there are two steady states: one in 
which both players always choose Bach and one in which they always choose Stravinsky.
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Figure 16.1 
Bach or Stravinsky? (BoS) (Example 15.3).

Figure 16.2 
A coordination game (Example 16.1).

• Example 16.1

(A coordination game) As in BoS, two people wish to go out together, but in this case they agree on the more 
desirable concert. A game that captures this situation is given in Figure 16.2.

Like BoS, the game has two Noah equilibria: (Mozart, Mozart) and (Mahler, Mahler). In contrast to BoS, the 
players have a mutual interest in reaching one of these equilibria, namely (Mozart, Mozart); however, the notion of 
Nash equilibrium does not rule out a steady state in which the outcome is the inferior equilibrium (Mahler, 
Mahler).

• Example 16.2

(The Prisoner's Dilemma) Two suspects in a crime are put into separate cells. If they both confess, each will be 
sentenced to three years in prison. If only one of them confesses, he will be freed and used as a witness against the 
other, who will receive a sentence of four years. If neither confesses, they will both be convicted of a minor offense 
and spend one year in prison. Choosing a convenient payoff representation for the preferences, we hare the game in 
Figure 17.1.

This is a game in which there are gains from cooperation—the best outcome for the players is that neither 
confesses—but each player has an incentive to be a "free rider". Whatever one player does, the other prefers 
Confess to Don't Confess, so that the game has a unique Noah equilibrium (Confess, Confess).

• Example 16.3

(Hawk-Dove) Two animals are fighting over some prey. Each can behave like a dove or like a hawk. The best 
outcome for
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Figure 17.1 
The Prisoner's Dilemma (Example 16.2)

Figure 17.2 
Hawk-Dove (Example 16.3).

each animal is that in which it acts like a hawk while the other acts like a dove; the worst outcome is that in which 
both animals act like hawks. Each animal prefers to be hawkish if its opponent is dovish and dovish if its opponent 
is hawkish. A game that captures this situation is shown in Figure 17.2. The game has two Nash equilibria, (Dove, 
Hawk) and (Hawk, Dove), corresponding to two different conventions about the player who yields.

• Example 17.1

(Matching Pennies) Each of two people chooses either Head or Tail. If the choices differ, person 1 pays person 2 a 
dollar; if they are the same, person 2-pays person 1 a dollar. Each person cares only about the amount of money 
that he receives. A game that models this situation is shown in Figure 17.3. Such a game, in which the interests of 
the players are diametrically opposed, is called "strictly competitive". The game Matching Pennies has no Nash 
equilibrium.

Figure 17.3 
Matching Pennies (Example 17.1).
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The notion of a strategic game encompasses situations much more complex than those described in the last five 
examples. The following are representatives of three families of games that have been studied extensively: 
auctions, games of timing, and location games.

• Example 18.1

(An auction) An object is to be assigned to a player in the set {1,..., n} in exchange for a payment. Player i 's 
valuation of the object is vi, and v1 > v2 > ... > vn > 0. The mechanism used to assign the object is a (sealed-bid) 
auction: the players simultaneously submit bids (nonnegative numbers), and the object is given to the player with 
the lowest index among those who submit the highest bid, in exchange for a payment.

In a first price auction the payment that the winner makes is the price that he bids.

• Exercise 18.2.

Formulate a first price auction as a strategic game and analyze its Nash equilibria. In particular, show that in all 
equilibria player I obtains the object.

In a second price auction the payment that the winner makes is the highest bid among those submitted by the 
players who do not win (so that if only one player submits the highest bid then the price paid is the second highest 
bid).

• Exercise 18.3

Show that in a second price auction the bid vi of any player i is a weakly dominant action: player i 's payoff when he 
bids vi is at least as high as his payoff when he submits any other bid, regardless of the actions of the other players. 
Show that nevertheless there are ("inefficient") equilibria in which the winner is not player 1.

• Example 18.4

(A war of attrition) Two players are involved in a dispute over an object. The value of the object to player i is vi > 
0. Time is modeled as a continuous variable that starts at 0 and runs indefinitely. Each player chooses when to 
concede the object to the other player; if the first player to concede does so at time t, the other player obtains the 
object at that time. If both players concede simultaneously, the object is split equally between them, player i 
receiving a payoff of vi/2. Time is valuable: until the first concession each player loses one unit of payoff per unit 
of time.

• Exercise 18.5

Formulate this situation as a strategic game and show that in all Nash equilibria one of the players concedes 
immediately.

• Example 18.6

(A location game) Each of n people chooses whether or not to become a political candidate, and if so which 
position to take.
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There is a continuum of citizens, each of whom has a favorite position; the distribution of favorite positions is 
given by a density function f on [0,1] with f(x) > 0 for all . A candidate attracts the votes of those citizens 
whose favorite positions are closer to his position than to the position of any other candidate; if k candidates choose 
the same position then each receives the fraction 1/k of the votes that the position attracts. The winner of the 
competition is the candidate who receives the most votes. Each person prefers to be the unique winning candidate 
than to tie for first place, prefers to tie for first place than to stay out of the competition, and prefers to stay out of 
the competition than to enter and lose.

• Exercise 19.1

Formulate this situation as a strategic game, find the set of Nash equilibria when n = 2, and show that there is no 
Nash equilibrium when n = 3.

2.4 Existence of a Nash Equilibrium

Not every strategic game has a Nash equilibrium, as the game Matching Pennies (Figure 17.3) shows. The 
conditions under which the set of Nash equilibria of a game is nonempty have been investigated extensively. We 
now present an existence result that is one of the simplest of the genre. (Nevertheless its mathematical level is more 
advanced than most of the rest of the hook, which does not depend on the details.)

An existence result has two purposes. First, if we have a game that satisfies the hypothesis of the result then we 
know that there is some hope that our efforts to find an equilibrium will meet with success. Second, and more 
important, the existence of an equilibrium shows that the game is consistent with a steady state solution. Further, 
the existence of equilibria for a family of games allows us to study properties of these equilibria (by using, for 
example, "comparative static" techniques) without finding them explicitly and without taking the risk that we are 
studying the empty set.

To show that a game has a Nash equilibrium it suffices to show that there is a profile a* of actions such that 

 for all  (see (15.2)). Define the set-valued function  by . Then 
(15.2) can be written in vector form simply as . Fixed point theorems give conditions on B under which 
there indeed exists a value of a8 for which . The fixed point theorem that we use is the following (due to 
Kakutani (1941)).
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• Lemma 20.1

(Kakutani's fixed point theorem) Let X be a compact convex subset of and let  be a set-valued function 
for which

•·for all  the set f(x) is nonempty and convex

•·the graph of f is closed (i.e. for all sequences {xn} and {yn} such that  for all , and , we 

have .

Then there exists  such that .

• Exercise 20.2

Show that each of the following four conditions is necessary for Kakutani's theorem. (i) X is compact. (ii ) X is 
convex. (iii ) f(x) is convex for each . (iv) f has a closed graph.

Define a preference relation  over A to be quasi-concave on Ai if for every  the set  
is convex.

• Proposition 20.3

The strategic game  has a Nash equilibrium if for all 

•·the set Ai of actions of player i is a nonempty compact convex subset of a Euclidian spaceand the preference 
relation  is

• continuous

•·quasi-concave on Ai.

Proof. Define  by  (where Bi is the best-response function of player i, defined in (15.1)). 

For every  the set Bi(a-i) is nonempty since  is continuous and Ai is compact, and is convex since  is 

quasi-concave on Ai; B has a closed graph since each  is continuous. Thus by Kakutani's theorem B has a fixed 
point; as we have noted any fixed point is a Nash equilibrium of the game.

Note that this result asserts that a strategic game satisfying certain conditions has at least one Nash equilibrium; as 
we have seen, a game can have more than one equilibrium. (Results that we do not discuss identify conditions 
under which a game has a unique Nash equilibrium.) Note also that Proposition 20.3 does not apply to any game in 
which some player has finitely many actions, since such a game violates the condition that the set of actions of 
every player be convex.

• Exercise 20.4

(Symmetric games) Consider a two-person strategic game that satisfies the conditions of Proposition 20.3. Let N = 
{1, 2} and assume that the game is symmetric: A1 = A2 and  if and only if  for all 

 and . Use Kakutani's
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theorem to prove that there is an action  such that  is a Nash equilibrium of the game. (Such an 
equilibrium is called a symmetric equilibrium.) Give an example of a finite symmetric game that has only 
asymmetric equilibria.

2.5 Strictly Competitive Games

We can say little about the set of Nash equilibria of an arbitrary strategic game; only in limited classes of games 
can we say something about the qualitative character of the equilibria. One such class of games is that in which 
there are two players, whose preferences are diametrically opposed. We assume for convenience in this section that 
the names of the players are ''1" and "2" (i.e. N = {1,2}).

•Definition 21.1

A strategic game  is strictly competitive if for any  and  we have  if and only if 
.

A strictly competitive game is sometimes called zerosum because if player 1's preference relation  is represented 
by the payoff function u1 then player 2's preference relation is represented by u2 with u1 + u2 = 0.

We say that player i maxminimizes if he chooses an action that is best for him on the assumption that whatever he 
does, player j will choose her action to hurt him as much as possible. We now show that for a strictly competitive 
game that possesses a Nash equilibrium, a pair of actions is a Nash equilibrium if and only if the action of each 
player is a maxminimizer. This result is striking because it provides a link between individual decision-making and 
the reasoning behind the notion of Nash equilibrium. In establishing the result we also prove the strong result that 
for strictly competitive games that possess Nash equilibria all equilibria yield the same payoffs. This property of 
Nash equilibria is rarely satisfied in games that are not strictly competitive.

•Definition 21.2

Let  be a strictly competitive strategic game. The action  is a maxminimizer for player 1 
if

Similarly, the action  is a maxminimizer for player 2 if
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In words, a maxminimizer for player i is an action that maximizes the payoff that player i can guarantee. A 
maxminimizer for player 1 solves the problem maxx miny u1(x, y) and a maxminimizer for player 2 solves the 
problem maxy minx = u2 (x, y).

In the sequel we assume for convenience that player 1's preference relation is represented by a payoff function u1 
and, without loss of generality, that u2 = -u1. The following result shows that the maxminimization of player 2's 
payoff is equivalent to the minmaximization of player 1's payoff.

• Lemma 22.1

Let  be a strictly competitive strategic game. Then 
. Further,  solves the problem  if 

and only if it solves the problem .

Proof.

For any function f we have minz(-f(z)) = -maxz f(z) and arg minz(-f(z)) = arg maxz f(z). It follows that for every 

 we have . Hence 
; in addition  is a 

solution of the problem  if and only if it is a solution of the problem .

The following result gives the connection between the Nash equilibria of a strictly competitive game and the set of 
pairs of maxminimizers.

• Proposition 22.2

Let  be a strictly competitive strategic game.

a. If (x*,y*) is a Nash equilibrium of G then x* is a maxminimizer for player 1 and y* is a maxminimizer for player 2.

b. If (x*,y*) is a Nash equilibrium of G then maxx miny u1(x, y) = miny maxx u1(x, y) = u1(x*,y*), and thus all Nash 
equilibria of G yield the same payoffs.

c. If maxx miny u1(x, y) = miny maxx u1(x, y) (and thus, in particular, if G has a Nash equilibrium (see part b)), x* is 
a maxminimizer for player 1, and y* is a maxminimizer for player 2, then (x*, y*) is a Nash equilibrium of G.

Proof.

We first prove parts (a) and (b). Let (x*,y*) be a Nash equilibrium of G. Then  for all  
or, since  for all . Hence . 
Similarly, 
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for all  and hence  for all , so that . Thus u1(x*,y*) = 
maxx miny u1(x, y) and x* is a maxminimizer for player 1.

An analogous argument for player 2 establishes that y* is a maxminimzer for player 2 and u2(x*,y*) = maxy minx u2

(x, y), so that u1(x*,y*) = miny maxx u1(x, y).

To prove part (c) let v* = maxx miny u1(x, y) = miny maxx u1(x, y). By Lemma 22.1 we have maxy minx u2(x, y) = -v*. 
Since x* is a maxminimizer for player 1 we have  for all ; since y* is a maxminimizer for 
player 2 we have  for all . Letting y = y* and x = x* in these two inequalities we obtain ul(x*,y*) 
= v* and, using the fact that u2 = -u1, we conclude that (x*,y*) is a Nash equilibrium of G.

Note that by part (c) a Nash equilibrium can be found by solving the problem maxx miny u1(x, y). This fact is 
sometimes useful when calculating the Nash equilibria of a game, especially when the players randomize (see for 
example Exercise 36.1).

Note also that it follows from parts (a) and (c) that Nash equilibria of a strictly competitive game are 
interchangeable: if (x, y) and (x', y') are equilibria then so are (x, y') and (x',y).

Part (b) shows that maxx miny u1(x,y) = miny maxx u1(x, y) for any strictly competitive game that has a Nash 
equilibrium. Note that the inequality  holds more generally: for any x' we have 

 for all y, so that . (If the maxim and minima are not well-
defined then max and rain should be replaced by sup and inf respectively.) Thus in any game (whether or not it is 
strictly competitive) the payoff that player I can guarantee herself is at most the amount that player 2 can hold her 
down to. The hypothesis that the game has a Nash equilibrium is essential in establishing the opposite inequality. 
To see this, consider the game Matching Pennies (Figure 17.3), in which maxx miny u1 (x, y) = -1 < miny maxx u1(x, 
y) = 1.

If maxx miny u1(x, y) = miny maxx u1(x, y) then we say that this payoff, the equilibrium payoff of player 1, is the 
value of the game. It follows from Proposition 22.2 that if v* is the value of a strictly competitive game then any 
equilibrium strategy of player 1 guarantees that her payoff is at least her equilibrium payoff v*, and any equilibrium 
strategy of player 2 guarantees that his payoff is at least his equilibrium payoff -v*, so that any such strategy of 
player 2 guarantees that
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player l's payoff is at most her equilibrium payoff. In a game that is not strictly competitive a player's equilibrium 
strategy does not in general have these properties (consider, for example, BoS (Figure 16.1)).

• Exercise 24.1

Let G be a strictly competitive game that has a Nash equilibrium.

a. Show that if some of player 1's payoffs in G are increased in such a way that the resulting game G' is strictly 
competitive then G' has no equilibrium in which player 1 is worse off than she was in an equilibrium of G. (Note 
that G' may have no equilibrium at all.)

b. Show that the game that results if player 1 is prohibited from using one of her actions in G does not have an 
equilibrium in which player l's payoff is higher than it is in an equilibrium of G.

c.Give examples to show that neither of the above properties necessarily holds for a game that is not strictly 
competitive.

2.6 Bayesian Games: Strategic Games with Imperfect Information

2.6.1 Definitions

We frequently wish to model situations in which some of the parties are not certain of the characteristics of some 
of the other parties. The model of a Bayesian game, which is closely related to that of a strategic game, is designed 
for this purpose.

As for a strategic game, two primitives of a Bayesian game are a set N of players and a profile (Ai) of sets of 
actions. We model the players' uncertainty about each other by introducing a set Ω of possible "states of nature", 
each of which is a description of all the players' relevant characteristics. For convenience we assume that Ω is 
finite. Each player i has a prior belief about the state of nature given by a probability measure pi on Ω. In any given 
play of the game some state of nature  is realized. We model the players' information about the state of 
nature by introducing a profile (τ i) of signal functions, τ i(ω) being the signal that player i observes, before choosing 
his action, when the state of nature is ω. Let Ti be the set of all possible values of τ i; we refer to Ti as the set of types 

of player i. We assume that  for all  (player i assigns positive prior probability to every member 
of Ti). If player i receives the signal  then he deduces that the state is in the set ; his posterior belief 
about the state that has been



   

Page 25

realized assigns to each state  the probability  if  and the probability zero otherwise 
(i.e. the probability of ω conditional on . As an example, if τ i(ω) = ω for all  then player i has full 
information about the state of nature. Alternatively, if  and for each player i the probability measure pi is 
a product measure on Ω and τ i(ω) = ωi then the players' signals are independent and player i does not learn from his 
signal anything about the other players' information.

As in a strategic game, each player cares about the action profile; in addition he may care about the state of nature. 
Now, even if he knows the action taken by every other player in every state of nature, a player may be uncertain 
about the pair (a, ω) that will be realized given any action that he takes, since he has imperfect information about 
the state of nature. Therefore we include in the model a profile  of preference relations over lotteries on A × Ω 
(where, as before, ). To summarize, we make the following definition.

•Definition 25.1

A Bayesian game consists of

• a finite set N (the set of players)

• a finite set Ω (the set of states)

and for each player 

•a set Ai (the set of actions available to player i)

•a finite set Ti (the set of signals that may be observed by player i) and a function  (the signal function of 
player i)

•a probability measure pi on Ω (the prior belief  of player i) for which  for all 

•a preference relation  on the set of probability measures over A × Ω (the preference relation of player i), where 
.

Note that this definition allows the players to have different prior beliefs. These beliefs may be related; commonly 
they are identical, coincident with an "objective" measure. Frequently the model is used in situations in which a 
state of nature is a profile of parameters of the players' preferences (for example, profiles of their valuations of an 
object). However, the model is much more general; in Section 2.6.3 we consider its use to capture situations in 
which each player is uncertain about what the others know.

Note also that sometimes a Bayesian game is described not in terms of an underlying state space Ω, but as a 
"reduced form" in which the
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basic primitive that relates to the players' information is the profile of the sets of possible types.

We now turn to a definition of equilibrium for a Bayesian game. In any given play of a game each player knows his 
type and does not need to plan what to do in the hypothetical event that he is of some other type. Consequently, one 
might think that an equilibrium should be defined for each state of nature in isolation. However, in any given state 
a player who wishes to determine his best action may need to hold a belief about what the other players would do 
in other states, since he may be imperfectly informed about the state. Further, the formation of such a belief may 
depend on the action that the player himself would choose in other states, since the other players may also be 
imperfectly informed.

Thus we are led to define a Nash equilibrium of a Bayesian game .gif"> is player i 's posterior belief that the state is 
ω when he receives the signal ti (a*(j, τ j(ω)) being the action of player (j,τ j(ω)) in the profile a*). Player (i, ti) in G* 
prefers the action profile a* to the action profile b* if and only if player i in the Bayesian game prefers the lottery Li

(a*, ti) to the lottery Li(b*, ti). To summarize, we have the following.

•Definition 26.1

A Nash equilibrium of a Bayesian game  is a Nash equilibrium of the strategic game 
defined as follows.

•  The set of players is the set of all pairs (i, ti) for  and .

•  The set of actions of each player (i, ti) is Ai.

•  The preference ordering  of each player (i, ti) is defined by

where Li(a*,ti) is the lottery over A × Ω that assigns probability  to  if  
zero otherwise.

In brief, in a Nash equilibrium of a Bayesian game each player chooses the best action available to him given the 
signal that he receives and his
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belief about the state and the other players' actions that he deduces from this signal. Note that to determine whether 
an action profile is a Nash equilibrium of a Bayesian game we need to know only how each player in the Bayesian 
game compares lotteries over A × Ω in which the distribution over Ω is the same: a player never needs to compare 
lotteries in which this distribution is different. Thus from the point of view of Nash equilibrium the specification of 
the players' preferences in a Bayesian game contains more information than is necessary. (This redundancy has an 
analog in a strategic game: to define a Nash equilibrium of a strategic game we need to know only how any player i 
compares any outcome (a-i, ai) with any other outcome (a-i, bi).)

2.6.2 Examples

• Example 27.1

(Second-price auction) Consider a variant of the second-price sealed-bid auction described in Example 18.1 in 
which each player i knows his own valuation vi but is uncertain of the other players' valuations. Specifically, 
suppose that the set of possible valuations is the finite set V and each player believes that every other player's 
valuation is drawn independently from the same distribution over V. We can model this situation as the Bayesian 
game in which

• the set N of players is {1,..., n}

• the set Ω of states is Vn (the set of profiles of valuations)

•  the set Ai of actions of each player i is 

•  the set Ti of signals that i can receive is V

•  the signal function τ i of i is defined by τ i(v1,..., vn) = vi

•·the prior belief pi of i is given by  for some probability distribution π over V

•  player i 's preference relation is represented by the expectation of the random variable whose value in state (v1,..., 

vn) is  if i is the player with the lowest index for whom  for all , and 0 otherwise.

This game has a Nash equilibrium a* in which a*(i, vi) = vi for all  and  (each player bids his 
valuation). In fact (as in Exercise 18.3) it is a weakly dominant action for each type of each player to bid his 
valuation.

• Exercise 27.2

Two players wish to go out together to a concert of music by either Bach or Stravinsky. As in BoS their main 
concern is
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to go out together; but neither player knows whether the other prefers Bach to Stravinsky, or the reverse. Each 
player's preferences are represented by the expectation of his payoff, the payoffs to pure outcomes being analogous 
to those given in Figure 16.1. Model this situation as a Bayesian game and find the Nash equilibria for all possible 
beliefs. Show in particular that there are equilibria in which there is a positive probability that the players do not go 
to the same concert.

• Exercise 28.1

(An exchange game) Each of two players receives a ticket on which there is a number in some finite subset S of the 
interval [0,1]. The number on a player's ticket is the size of a prize that he may receive. The two prizes are 
identically and independently distributed, with distribution function F. Each player is asked independently and 
simultaneously whether he wants to exchange his prize for the other player's prize. If both players agree then the 
prizes are exchanged; otherwise each player receives his own prize. Each player's objective is to maximize his 
expected payoff. Model this situation as a Bayesian game and show that in any Nash equilibrium the highest prize 
that either player is willing to exchange is the smallest possible prize.

• Exercise 28.2

Show that more information may hurt a player by constructing a two-player Bayesian game with the following 
features. Player 1 is fully informed while player 2 is not; the game has a unique Nash equilibrium, in which player 
2's payoff is higher than his payoff in the unique equilibrium of any of the related games in which he knows player 
1's type.

2.6.3 Comments on the Model of a Bayesian Game

The idea that a situation in which the players are unsure about each other's characteristics can be modeled as a 
Bayesian game, in which the players' uncertainty is captured by a probability measure over some set of "states", is 
due to Harsanyi (1967/68). Harsanyi assumes that the prior belief of every player is the same, arguing that all 
differences in the players' knowledge should be derived from an objective mechanism that assigns information to 
each player, not from differences in the players' initial beliefs. In Section 5.3 we show that the assumption of a 
common prior belief has strong implications for the relationship between the players' posterior beliefs. (For 
example, after a pair of players receive their signals it cannot be "common knowledge" between them that player 1 
believes the probability that the state of nature is in some given set to
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be α and that player 2 believes this probability to be , though it is possible that player 1 believes the 
probability to be α, player 2 believes it to be β, and one of them is unsure about the other's belief.)

A Bayesian game can be used to model not only situations in which each player is uncertain about the other 
players' payoffs, as in Example 27.1, but also situations in which each player is uncertain about the other players' 
knowledge.

Consider, for example, a Bayesian game in which the set of players is N = {1,2}, the set of states is Ω = {ω1,ω2,ω3}, 

the prior belief of each player assigns probability  to each state, the signal functions are defined by 
 and  , and player 1's preferences satisfy 

 for j = 1, 2 and  for some action profiles b and c, while player 2 is indifferent 
between all pairs (a,ω). In state ω1 in such a game player 2 knows that player 1 prefers b to c, while in state ω2 he 
does not know whether player 1 prefers b to c or c to b. Since in state ω1 player 1 does not know whether the state 
is ω1 orω2, she does not know in this case whether (i) player 2 knows that she prefers b to c, or (ii ) player 2 is not 
sure whether she prefers b to c or c to b.

Can every situation in which the players are uncertain about each other's knowledge be modeled as a Bayesian 
game? Assume that the players' payoffs depend only on a parameter . Denote the set of possible beliefs of 
each player i by Xi. Then a belief of any player j is a probability distribution over Θ × X-j. That is, the set of beliefs 
of any player has to be defined in terms of the sets of beliefs of all the other players. Thus the answer to the 
question we posed is not trivial and is equivalent to the question of whether we can find a collection  of 
sets with the property that for all  the set Xi is isomorphic to the set of probability distributions over Θ × X-i. If 

so, we can let  be the state space and use the model of a Bayesian game to capture any situation in 
which players are uncertain not only about each other's payoffs but also about each other's beliefs. A positive 
answer is given to the question by Mertens and Zamir (1985); we omit the argument.

Notes

The notion of an abstract strategic game has its origins in the work of Borel (1921) and yon Neumann (1928). The 
notion of Nash equilibrium was formalized in the context of such a game by Nash (1950a); the ba-
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sic idea behind it goes back at least to Cournot (1838). The idea of the proof of Proposition 20.3 originated with 
Nash (1950a, 1951) and Glicksberg (1952), though the results they prove are slightly different. As stated the result 
is similar to Theorem 3.1 of Nikaidô and Isoda (1955). The idea of maxminimization dates back at least to the early 
eighteenth century (see Kuhn (1968)). The main ideas of Proposition 22.2 are due to von Neumann (1928); the 
theory of strictly competitive games was developed by yon Neumann and Morgenstern (1944). Bayesian games 
were defined and studied by Harsanyi (1967/68).

The Prisoner's Dilemma appears to have first entered the literature in unpublished papers by Raiffa (in 1951) and 
Flood (in 1952, reporting joint work with Dresher); the standard interpretation of the game is due to Tucker (see 
Raiffa (1992, p. 173)). BoS is due to Luce and Raiffa (1957). Hawk-Dove is known also as "Chicken". Auctions 
(Examples 18.1 and 27.1) were first studied formally by Vickrey (1961). The war of attrition in Example 18.4 is 
due to Maynard Smith (1974), the location game in Example 18.6 is due to Hotelling (1929), and the game in 
Exercise 28.1 is due to Brims, Kilgour, and Davis (1993).
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3 
Mixed, Correlated, and Evolutionary Equilibrium

In this chapter we examine two concepts of equilibrium in which the players' actions are not deterministic: mixed 
strategy Nash equilibrium and correlated equilibrium. We also briefly study a variant of Nash equilibrium designed 
to model the outcome of an evolutionary process.

3.1 Mixed Strategy Nash Equilibrium

3.1.1 Definitions

The notion of mixed strategy Nash equilibrium is designed to model a steady state of a game in which the 
participants' choices are not deterministic but are regulated by probabilistic rules. We begin with formal 
definitions, then turn to their interpretation.

In the previous chapter we define a strategic game to be a triple  where the preference relation  of 
each player i is defined over the set  of action profiles (Definition 11.1). In this chapter we allow the 
players' choices to be nondeterministic and thus need to add to the primitives of the model a specification of each 
player's preference relation over lotteries on A. Following the current convention in game theory, we assume that 
the preference relation of each player i satisfies the assumptions of yon Neumann and Morgenstern, so that it can 
be represented by the expected value of some function  Thus our basic model of strategic interaction in 

this chapter is a triple  that differs from a strategic game as we previously defined it in that  
for each  is a function whose expected value represents player i 's preferences over the set of lotteries on A. 
Nevertheless, we refer to the model simply as a strategic game.
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Let  be such a strategic game. We denote by ∆(Ai) the set of probability distributions over Ai and 
refer to a member of ∆(Ai) as a mixed strategy of player i; we assume that the players' mixed strategies are 
independent randomizations. For clarity, we sometimes refer to a member of Ai as a pure strategy. For any finite 

set X and  we denote by δ(x) the probability that δ assigns to x ∈ X and define the support of δ to be the 
set of elements x ∈ X for which δ(x) > 0. A profile  of mixed strategies induces a probability distribution 
over the set A; if, for example, each Aj is finite then given the independence of the randomizations the probability 

of the action profile  is , so that player i 's evaluation of .

We now derive from G another strategic game, called the ''mixed extension" of G, in which the set of actions of 
each player i is the set ∆(Ai) of his mixed strategies in G.

•Definition 32.1

The mixed extension of the strategic game  is the strategic game  in which ∆(Ai) is the 
set of probability distributions over Ai, and  assigns to each  the expected value 

under ui of the lottery over A that is induced by α (so that  if A is finite).

Note that each of the functions Ui is linear in α. That is, for any two mixed strategy profiles α and β and any 
number  we have Ui(λα  + (1 - λ)β) = λUi(α) + (1-λ)Ui(β). Note also that in the case in which each Ai is 
finite we have

for any mixed strategy profile α, where e(ai) is the degenerate mixed strategy of player i that attaches probability 
one to .

We now define the main equilibrium notion we study in this chapter.

•Definition 32.3

A mixed strategy Nash equilibrium of a strategic game is a Nash equilibrium of its mixed extension.

Suppose that  is a mixed strategy Nash equilibrium of  in which each player i 's 
mixed strategy  is degenerate in the sense that it assigns probability one to a single member—say . Then, 
since Ai can be identified with a subset of ∆(Ai), the action profile a* is a Nash equilibrium of G. Conversely, 
suppose that a* is a Nash equilibrium of G. Then by the linearity of Ui in α i no
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probability distribution over actions in Ai yields player i a payoff higher than that generated by , and thus the 
profile  is a mixed strategy Nash equilibrium of G.

We have just argued that the set of Nash equilibria of a strategic game is a subset of its set of mixed strategy Nash 
equilibria. In Chapter 2 we saw that there are games for which the set of Nash equilibria is empty. There are also 
games for which the set of mixed strategy Nash equilibria is empty. However, every game in which each player has 
finitely many actions has at least one mixed strategy Nash equilibrium, as the following result shows.

• Proposition 33.1

Every finite strategic game has a mixed strategy Nash equilibrium.

Proof.

Let  be a strategic game, and for each player i let mi be the number of members of the set Ai. Then 

we can identify the set ∆(Ai) of player i 's mixed strategies with the set of vectors  for which  for 

all k and  (pk being the probability with which player i uses his kth pure strategy). This set is nonempty, 
convex, and compact. Since expected payoff is linear in the probabilities, each player's payoff function in the 
mixed extension of G is both quasi-concave in his own strategy and continuous. Thus the mixed extension of G 
satisfies all the requirements of Proposition 20.3.

Essential to this proof is the assumption that the set of actions of each player is finite. Glicksberg (1952) shows that 
a game in which each action set is a convex compact subset of a Euclidian space and each payoff function is 
continuous has a mixed strategy Nash equilibrium. (If each player's payoff function is also quasi-concave in his 
own action then Proposition 20.3 shows that such a game has a pure strategy Nash equilibrium.)

The following result gives an important property of mixed strategy Nash equilibria that is useful when calculating 
equilibria.

• Lemma 33.2

Let  be a finite strategic game. Then  is a mixed strategy Nash equilibrium of G if 
and only if for every player  every pure strategy in the support of  is a best response to .

Proof.

First suppose that there is an action ai in the support of  that is not a best response to . Then by linearity of Ui 
in α i (see (32.2)) player i can increase his payoff by transferring probability from ai to an action that is a best 
response; hence  is not a best response to .
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Second suppose that there is a mixed strategy  that gives a higher expected payoff than does  in response to 
. Then again by the linearity of Ui at least one action in the support of  must give a higher payoff than some 

action in the support of , so that not all actions in the support of  are best responses to .

It follows that every action in the support of any player's equilibrium mixed strategy yields that player the same 
payoff.

If the set of actions of some player is not finite the result needs to be modified. In this case, α* is a mixed strategy 
Nash equilibrium of G if and only if (i) for every player i no action in Ai yields, given , a payoff to player i that 
exceeds his equilibrium payoff, and (ii ) the set of actions that yield, given , a payoff less than his equilibrium 
payoff has  zero.

Note that the assumption that the players' preferences can be represented by expected payoff functions plays a key 
role in these characterizations of mixed strategy equilibrium. The results do not necessarily hold for other theories 
of decision-making under uncertainty.

3.1.2 Examples

The following example illustrates how one can find mixed strategy Nash equilibria of finite games.

• Example 34.1

(BoS) Consider the game BoS, reproduced in the top of Figure 35.1. In Chapter 2 we interpreted the payoffs of 
player i in this table as representing player i's preferences over the set of (pure) outcomes. Here, given our interest 
in mixed strategy equilibria, we interpret the payoffs as yon Neumann-Morgenstern utilities.

As we noted previously this game has two (pure) Nash equilibria, (B, B) and (S, S), where B = Bach and S = 
Stravinsky. Suppose that (α l, α2) is a mixed strategy Nash equilibrium. If α1(B) is zero or one, we obtain the two 
pure Nash equilibria. If 0 < α1(B) < 1 then, given α2, by Lemma 33.2 player 1's actions B and S must yield the same 

payoff, so that we must have 2α2(B) - α2(S) and thus . Since 0 < α2(B) < 1 it follows from the same result 

that player 2's actions B and S must yield the same payoff, so that α1(B) = 2α1(S), or . Thus the only 

nondegenerate mixed strategy Nash equilibrium of the game is .

It is illuminating to construct the players' best response functions in the mixed extension of this game. If 
 then player 1's
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Figure 35.1 
The strategic game BoS (top) and the players' best response  
functions in the mixed extension of this game (bottom). The  

best response function of player 1 is given by the dashed line; that  
of player 2 is given by the solid line. The small disks indicate the  

two pure strategy Nash equilibria and the mixed strategy  
Nash equilibrium.

unique best response α1 has α1(B) = 0; if  then her unique best response has α1(B) = 1; and if  
then, as we saw above, all of her mixed strategies are best responses. Making a similar computation for player 2 we 
obtain the functions shown at the bottom of Figure 35.1.

• Exercise 35.1

(Guess the average) Each of n people announces a number in the set {1,...,K}. A prize of $1 is split equally 
between all the people whose number is closest to  of the average number. Show that the game has a unique 
mixed strategy Nash equilibrium, in which each player's strategy is pure.

• Exercise 35.2

(An investment race) Two investors are involved in a competition with a prize of $1. Each investor can spend any 
amount in the interval [0,1]. The winner is the investor who spends the most; in the event of a tie each investor 
receives $0.50. Formulate this situation as a strategic game and find its mixed strategy Nash equilibria. (Note
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that the players' payoff functions are discontinuous, so that Glicksberg's result does not apply; nevertheless the 
game has a mixed strategy Nash equilibrium.)

In Section 2.5 we define and study the class of strictly competitive games. We show (Proposition 22.2) that in any 
strictly competitive strategic game that has a Nash equilibrium the set of equilibria coincides with the set of pairs of 
maxminimizers. This fact can be used to find the set of mixed strategy Nash equilibria of games whose mixed 
extensions are strictly competitive. (Note that the fact that a game is strictly competitive does not imply that its 
mixed extension strictly competitive. To see this, consider a game in which there are three possible outcomes a1, 
a2, and a3. Then we may have  and , so that the game is strictly competitive, while 
both players may prefer a2 to the lottery in which a1 and a3 occur with equal probabilities, so that its mixed 
extension is not strictly competitive.)

• Exercise 36.1

(Guessing right) Players 1 and 2 each choose a member of the set {1,...,K}. If the players choose the same number 
then player 2 pays $1 to player 1; otherwise no payment is made. Each player maximizes his expected monetary 
payoff. Find the mixed strategy Nash equilibria of this (strictly competitive) game.

• Exercise 36.2

(Air strike) Army A has a single plane with which it can strike one of three possible targets. Army B has one anti-
aircraft gun that can be assigned to one of the targets. The value of target k is vk, with v1 > v2 > v3 > 0. Army A can 
destroy a target only if the target is undefended and A attacks it. Army A wishes to maximize the expected value of 
the damage and army B wishes to minimize it. Formulate the situation as a (strictly competitive) strategic game and 
find its mixed strategy Nash equilibria.

• Exercise 36.3

Show the following mathematical result, which we use in Exercise 64.2. For any two compact convex subsets X 
and Y of  there exist  and  such that  for all  and . (You can prove 
this result either by appealing to the existence of a Nash equilibrium in a strategic game (Proposition 20.3), or by 
the following elementary argument (which avoids the implicit use of Kakutani's fixed point theorem). Let (xk) and 
(yk) be sequences dense in X and Y respectively, and for each positive integer n consider the strictly competitive 
game in which each player has n actions and the payoff function of player 1 is given by u1(i, j) = xi · yj; use 
Propositions 33.1 and 22.2.)
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3.2 Interpretations of Mixed Strategy Nash Equilibrium

In this section we discuss a number of interpretations of mixed strategy equilibrium. We disagree on some points; 
paragraphs that express the views of only one of us are preceded by that author's initials.

3.2.1 Mixed Strategies as Objects of Choice

Viewed naively, a mixed strategy entails a deliberate decision by a player to introduce randomness into his 
behavior: a player who chooses a mixed strategy commits himself to a random device that probabilistically selects 
members of his set of actions. After all the players have so committed themselves, the devices are operated and an 
action profile is realized. Thus each player i chooses a member of ∆(Ai) in the same way that he chooses a member 
of Ai in the strategic games discussed in Chapter 2.

There certainly are cases in which players introduce randomness into their behavior. For example, players 
randomly "bluff" in poker, governments randomly audit taxpayers, and some stores randomly offer discounts.

AR However, the notion of a mixed strategy equilibrium in a strategic game does not capture the players' 
motivation to introduce randomness into their behavior. Usually a player deliberately randomizes in order to 
influence the other players' behavior. Consider, for example, the children's version of Matching Pennies (Example 
17.1) in which the players choose to display an odd or even number of fingers. This game is classically used to 
motivate the notion of mixed strategy equilibrium, but randomization is a bizarre description of a player's 
deliberate strategy in the game. A player's action is a response to his guess about the other player's choice; guessing 
is a psychological operation that is very much deliberate and not random. Alternatively, consider another example 
often given to motivate mixed strategy equilibrium, namely the relationship between the tax authorities and a 
taxpayer. The authorities' aim is to deter the taxpayer from tax evasion; considerations of cost lead them to audit 
only randomly. They would like the taxpayer to know their strategy and are not indifferent between a strategy in 
which they audit the taxpayer and one in which they do not do so, as required in a mixed strategy equilibrium. The 
situation should be modeled as a game in which the authorities first choose the probability of auditing, and then, 
being informed of this probability, the taxpayer takes an action. In such a model the set of possible randomizations 
is the set of pure strategies.
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MJO The main problem with interpreting a player's equilibrium mixed strategy as a deliberate choice is the fact 
that in a mixed strategy equilibrium each player is indifferent between all mixed strategies whose supports are 
subsets of her equilibrium strategy: her equilibrium strategy is only one of many strategies that yield her the same 
expected payoff, given the other players' equilibrium behavior. However, this problem is not limited to mixed 
strategy equilibria. For example, it afflicts equilibria in many sequential games (including all repeated games), in 
which a player is indifferent between her equilibrium strategy and many non-equilibrium strategies. Further, in 
some games there may be other reasons to choose an equilibrium mixed strategy. In strictly competitive games, for 
example, we have seen that an equilibrium mixed strategy may strictly maximize the payoff that a player can 
guarantee. (This is so, for example, in Matching Pennies.) Finally, the ingenious argument of Harsanyi (1973) 
(considered below in Section 3.2.4) provides some relief from this feature of an equilibrium mixed strategy.

MJO It seems likely that the mixed strategy equilibrium of Matching Pennies provides a good description of the 
steady state behavior of players who play the game repeatedly against randomly selected opponents. In such a 
situation a player has no way of guessing the action of her opponent in any particular encounter, and it is 
reasonable for her to adopt the strategy that maximizes the payoff that she can guarantee. If two players interact 
repeatedly then the psychology of guessing may offer insights into their behavior, though even in this case the 
mixed strategy equilibrium of the game may provide a good description of their behavior. The tax auditing 
situation can equally well be modeled as a strategic game in which the choices of the players are simultaneous. The 
equilibrium audit probability chosen by the authorities is the same in this game as it is in the game in which the 
authorities move first; given the behavior of the taxpayer, the authorities are indifferent between auditing and not.

3.2.2 Mixed Strategy Nash Equilibrium as a Steady State

In Chapter 2 we interpreted a Nash equilibrium as a steady state of an environment in which players act repeatedly 
and ignore any strategic link that may exist between plays. We can interpret a mixed strategy Nash equilibrium 
similarly as a stochastic steady state. The players have information about the frequencies with which actions were 
taken in the past ("80% of the time a player in the role of player 1 in this game
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took the action a1 and 20% of the time such a player took the action b1"); each player uses these frequencies to form 
his belief about the future behavior of the other players, and hence formulate his action. In equilibrium these 
frequencies remain constant over time and are stable in the sense that any action taken with positive probability by 
a player is optimal given the steady state beliefs.

A mixed strategy equilibrium predicts that the outcome of a game is stochastic, so that for a single play of a game 
its prediction is less precise than that of a pure strategy equilibrium. But as we argued in Section 1.5, the role of the 
theory is to explain regularities; the notion of mixed strategy equilibrium captures stochastic regularity.

A variant of this interpretation is based on an interpretation of an n-player game as a model of the interaction of n 
large populations. Each occurrence of the game takes place after n players are randomly drawn, one from each 
population. The probabilities in player i 's equilibrium mixed strategy are interpreted as the steady state frequencies 
with which the members of Ai are used in the ith population. In this interpretation the game is a reduced form of a 
model in which the populations are described explicitly.

An assumption that underlies the steady state interpretation is that no player detects any correlation among the 
other players' actions or between the other players' actions and his own behavior. Removing this assumption leads 
to the notion of correlated equilibrium, which we discuss in Section 3.3.

3.2.3 Mixed Strategies as Pure Strategies in an Exended Game

Before selecting his action a player may receive random private information, inconsequential from the point of 
view of the other players, on which his action may depend. The player may not consciously choose the connection 
between his action and the realization of his private information; it may just happen that there is a correlation 
between the two that causes his action to appear to be "random" from the point of view of another player or outside 
observer. In modeling a player's behavior as random, a mixed strategy Nash equilibrium captures the dependence 
of behavior on factors that the players perceive as irrelevant. Alternatively, a player may be aware that external 
factors determine his opponents' behavior, but may find it impossible or very costly to determine the relationship. 
(For the same reason we model the outcome of a coin toss as random rather than describe it as the result of the 
interaction of its
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starting position and velocity, the wind speed, and other factors.) To summarize, a mixed strategy Nash 
equilibrium, viewed in this way, is a description of a steady state of the system that reflects elements missing from 
the original description of the game.

To be more concrete, consider the game BoS (Example 34.1). As we saw, this game has a mixed strategy Nash 
equilibrium  Now suppose that each player has three possible 'moods.gif", determined by factors he 
does not understand. Each player is in each of these moods one-third of the time, independently of the other 
player's mood; his mood has no effect on his payoff. Assume that player 1 chooses Bach whenever she is in moods 
1 or 2 and Stravinsky when she is in mood 3, and player 2 chooses Bach when he is in mood I and Stravinsky when 
he is in moods 2 or 3. Viewing the situation as a Bayesian game in which the three types of each player correspond 
to his possible moods, this behavior defines a pure strategy equilibrium corresponding exactly to the mixed strategy 
Nash equilibrium of the original game BoS. Note that this interpretation of the mixed strategy equilibrium does not 
depend on each player's having three equally likely and independent moods; we need the players' private 
information only to be rich enough that they can create the appropriate random variables. Nevertheless, the 
requirement that such an informational structure exist limits the interpretation.

AR There are three criticisms of this interpretation. First, it is hard to accept that the deliberate behavior of a player 
depends on factors that have no effect on his payoff. People usually give reasons for their choices; in any particular 
situation a modeler who wishes to apply the notion of mixed strategy equilibrium should point out the reasons that 
are payoff irrelevant and explain the required dependency between the player's private information and his choice.

MJO In a mixed strategy equilibrium each player is indifferent between all the actions in the support of her 
equilibrium strategy, so that it is not implausible that the action chosen depends upon factors regarded by the 
modeler as "irrelevant". When asked why they chose a certain action from a set whose members are equally 
attractive, people often give answers like "I don't know—I just felt like it".

AR Second, the behavior predicted by an equilibrium under this interpretation is very fragile. If a manager's 
behavior is determined by the type of breakfast he eats, then factors outside the model, such as a change in his diet 
or the price of eggs, may change the frequency with which he chooses his actions, thus inducing changes in the 
beliefs of the other players and causing instability.
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MJO For each structure of the random events there is a pattern of behavior that leads to the same equilibrium. For 
example, if, before an increase in the price of eggs, there was an equilibrium in which a manager offered a discount 
on days when she ate eggs for breakfast and got up before 7:30 A.M., then after the price increase there may be an 
equilibrium in which she offers the discount when she eats eggs and gets up before 8 A.M. After the price change her 
old pattern of behavior is no longer a best response to the other players' strategies; whether or not the system will 
adjust in a stable way to the new equilibrium depends on the process of adjustment. A mixed strategy Nash 
equilibrium is fragile in the sense that the players have no positive incentive to adhere to their equilibrium patterns 
of behavior (since the equilibrium strategies are not uniquely optimal); beyond this, an equilibrium under this 
interpretation is no more fragile than under any other interpretation. (And, once again, this is a problem that is 
addressed by Harsanyi's model, discussed in the next section.)

AR Third, in order to interpret an equilibrium of a particular problem in this way one needs to indicate the "real 
life" exogenous variables on which the players base their behavior. For example, to interpret a mixed strategy Nash 
equilibrium in a model of price competition one should both specify the unmodeled factors that serve as the basis 
for the firms' pricing policies and show that the information structure is rich enough to span the set of all mixed 
strategy Nash equilibria. Those who apply the notion of mixed strategy equilibrium rarely do so.

MJO A player in the world has access to a multitude of random variables on which her actions may depend: the 
time she wakes up in the morning, the "mood" she is in, the time her newspaper is delivered, .... The structure of 
these random variables is so rich that it is unnecessary to spell them out in every application of the theory. To 
interpret mixed strategies as pure strategies in a larger game nicely captures the idea that the action chosen by a 
player may depend on factors outside the model.

3.2.4 Mixed Strategies as Pure Strategies in a Perturbed Game

We now present a rationale for mixed strategy equilibrium due to Harsanyi (1973). A game is viewed as a 
frequently occurring situation in which the players' preferences are subject to small random variations. (Thus, as in 
the argument of the previous section, random factors are introduced, but here they are payoff-relevant.) In each 
occurrence of
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the situation each player knows his own preferences but not those of the other players. A mixed strategy 
equilibrium is a summary of the frequencies with which the players choose their actions over time.

Let .gif''>. (Note that each player has infinitely many types.)

Harsanyi's main result (1973, Theorems 2 and 7) is that for almost any game G and any collection  of random 
variables satisfying the conditions above, almost any mixed strategy Nash equilibrium of G is the mixed strategy 
profile associated with the limit, as the size γ of the perturbation vanishes, of a sequence of pure strategy equilibria 
of the Bayesian games  in each of which the action chosen by each type is strictly optimal. Further, the limit 
of any such convergent sequence is associated with a mixed strategy equilibrium of G (Harsanyi (1973, Theorem 
5)). That is, when the random variations in payoffs are small, almost any mixed equilibrium of the game G is close 
to a pure equilibrium of the associated Bayesian game and vice versa. We say that a mixed strategy equilibrium of 
G with this property is approachable under . (Because of the relative mathematical complexity of these results we 
do not include proofs.)

• Exercise 41.1

Consider two-player games in which each player i has two pure strategies, ai and bi. Let δi for i = 1, 2 be 
independent random variables, each uniformly distributed on [-1,1], and let the random variables  for i = 1, 2 
and  have the property that  for x = a2, b2 and  for x = a1, b1.

a. Show that all the equilibria of BoS (Example 15.3) are approachable under .
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b. For the game in which ui(a1, a2) = 1 for i = 1, 2 and all other payoffs are zero, show that only the pure strategy 
Nash equilibrium (a1,a2) is approachable under .

c. For the game in which ui(a) =  0 for i = 1, 2 and all , show that only the mixed strategy Nash equilibrium a 

in which  for i = 1, 2 is approachable under . (Other equilibria are approachable under other 
perturbations.)

Thus Harsanyi's rationale for a mixed strategy equilibrium is that even if no player makes any effort to use his pure 
strategies with the required probabilities, the random variations in the payoff functions induce each player to 
choose his pure strategies with the right frequencies. The equilibrium behavior of the other players is such that a 
player who chooses the uniquely optimal pure strategy for each realization of his payoff function chooses his 
actions with the frequencies required by his equilibrium mixed strategy.

MJO Harsanyi's result is an elegant response to the claim that a player has no reason to choose her equilibrium 
mixed strategy since she is indifferent between all strategies with the same support. I argued above that for some 
games, including strictly competitive games, this criticism is muted, since there are other reasons for players to 
choose their equilibrium mixed strategies. Harsanyi's result shows that in almost any game the force of the 
criticism is limited, since almost any mixed strategy Nash equilibrium is close to a strict pure strategy equilibrium 
of any perturbation of the game in which the players' payoffs are subject to small random variations.

3.2.5 Mixed Strategies as Beliefs

Under another interpretation, upon which we elaborate in Section 5.4, a mixed strategy Nash equilibrium is a 
profile β of beliefs, in which βi is the common belief of all the other players about player i's actions, with the 
property that for each player i each action in the support of βi is optimal given β-i. Under this interpretation each 
player chooses a single action rather than a mixed strategy. An equilibrium is a steady state of the players' beliefs, 
not their actions. These beliefs are required to satisfy two properties: they are common among all players and are 
consistent with the assumption that every player is an expected utility maximizer.

If we were to start from this idea, we would formulate the notion of equilibrium as follows.
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•Definition 44.1

A mixed strategy Nash equilibrium of a finite strategic game is a mixed strategy profile α* with the property that 
for every player i every action in the support of  is a best response to .

Lemma 33.2 shows that this definition is equivalent to our previous definition (32.3) and thus guarantees that the 
idea is indeed an interpretation of mixed strategy equilibrium.

Note, however, that when we interpret mixed strategy equilibrium in this way the predictive content of an 
equilibrium is small: it predicts only that each player uses an action that is a best response to the equilibrium 
beliefs. The set of such best responses includes any action in the support of a player's equilibrium mixed strategy 
and may even include actions outside the support of this strategy.

3.3 Correlated Equilibrium

In Section 3.2.3 we discuss an interpretation of a mixed strategy Nash equilibrium as a steady state in which each 
player's action depends on a signal that he receives from "nature". In this interpretation the signals are private and 
independent.

What happens if the signals are not private and independent? Suppose, for example, that in BoS (see Figure 35.1) 

both players observe a random variable that takes each of the two values x and y with probability . Then there is a 
new equilibrium, in which both players choose Bach if the realization is x and Stravinsky if the realization is y. 
Given each player's information, his action is optimal: if the realization is x then he knows that the other player 
chooses Bach, so that it is optimal for him to choose Bach, and symmetrically if the realization is y.

In this example the players observe the same random variable. More generally, their information may be leas than 
perfectly correlated. Suppose, for example, that there is a random variable that takes the three values x, y, and z, 
and player 1 knows only that the realization is either x or that it is a member of {y, z}, while player 2 knows only 
that it is either a member of {x, y} or that it is z. That is, player 1's information partition is {{ x}, { y, z}} and player 
2's is {{x, y}, { z}}. Under these assumptions a strategy of player I consists of two actions: one that she uses when 
she knows that the realization is x and one that she uses when she knows that the realization is a member of {y, z}. 
Similarly, a strategy of player 2 consists of two actions, one for {x, y} and one for z. A player's strategy is optimal 
if, given the strategy of the other player,
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for any realization of his information he can do no better by choosing an action different from that dictated by his 
strategy. To illustrate how a player uses his information in choosing an optimal action, suppose that the 
probabilities of y and z are η and ζ and player 2's strategy is to take the action a2 if he knows that the realization is 
in {x, y} and b2 if he knows that the realization is z. Then if player 1 is informed that either y or z has occurred he 
chooses an action that is optimal given that player 2 chooses a2 with probability η/(η+ ζ) (the probability of y 
conditional on {y,z}) and b2 with probability ζ/(η+ ζ).

These examples lead us to the following notion of equilibrium.

•Definition 45.1

A correlated equilibrium of a strategic game  consists of

• a finite probability space (Ω, π) (Ω is a set of states and π is a probability measure on Ω)

•·for each player  a partition  of Ω (player i 's information partition )

•  for each player  a function  with σi(ω) = σi(ω') whenever  and  for some  
(σiis player i 's strategy)

such that for every  and every function  for which τ i(ω) = τ i(ω') whenever  and  for 
some  (i.e. for every strategy of player i) we have

Note that the probability space and information partition are not exogenous but are part of the equilibrium. Note 
also that (45.2) is equivalent to the requirement that for every state ω that occurs with positive probability the 
action σi(ω) is optimal given the other players' strategies and player i 's knowledge about ω. (This equivalence 
depends on the assumption that the players' preferences obey expected utility theory.)

We begin by showing that the set of correlated equilibria contains the set of mixed strategy Nash equilibria.

• Proposition 45.3

For every mixed strategy Nash equilibrium α of a finite strategic game  there is a correlated 
equilibrium  in which for each player  the distribution on Ai induced by σi is α i.
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Proof.

Let  and define π by . For each  and  let  and 
let  consist of the |Ai| sets Pi(bi). Define σi by σi(a) = ai for each . Then  is a correlated 
equilibrium since (45.2) is satisfied for every strategy τ i: the left-hand side is player i 's payoff in the mixed strategy 
Nash equilibrium α and the right-hand side is his payoff when he uses the mixed strategy in which he chooses the 
action τ i(a) with probability α i(ai) and every other player j uses the mixed strategy α j. Further, the distribution on Ai 
induced by σi is α i.

The following example is a formal expression of the example with which we began this section.

• Example 46.1

The three mixed strategy Nash equilibrium payoff profiles in BoS (see Example 34.1) are (2,1), (1,2), and . In 
addition one of the correlated equilibria yields the payoff profile : let 

 and σi(y) = Stravinsky for i = 1, 2. One 
interpretation of this equilibrium is that the players observe the outcome of a public coin toss, which determines 
which of the two pure strategy Nash equilibria they play.

This example suggests the following result.

• Proposition 46.2

Let  be a strategic game. Any convex combination of correlated equilibrium payoff profiles of G is 
a correlated equilibrium payoff profile of G.

Proof.

Let u1,...,uK be correlated equilibrium payoff profiles and let  with  for all k and 
. For each value of k let  be a correlated equilibrium that generates the payoff profile 

uk; without loss of generality assume that the sets Ωk are disjoint. The following defines a correlated equilibrium for 

which the payoff profile is  Let , and for any  define π by π(ω) = λkπk(ω) where k is such 
that . For each  let  and define σi by  where k is such that .

We can interpret the correlated equilibrium constructed in this proof as follows: first a public random device 
determines which of the K correlated equilibria is to be played, and then the random variable corresponding to the 
kth correlated equilibrium is realized.

•Example 46.3

Consider the game in the left-hand side of Figure 47.1. The Nash equilibrium payoff profiles are (2, 7) and (7,2) 
(pure) and
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Figure 47.1 
An example of a correlated equilibrium. On the left is a strategic  
game. The table on the right gives the choices of the players as a  

function of the state in a correlated equilibrium of the game.

 (mixed). The following correlated equilibrium yields a payoff profile that is outside the convex hull of 

these three profiles. Let Ω = {x, y, z}, and ; let player 1's partition be {{x}, { y, z}} and player 
2's be {{x, y}, { z}}. Define the strategies as follows: σ1(x) = B and σ1(y) = σ1(z) = T; σ2(x) = σ>2(y) = L and σ2(z) = 
R. (The relation between the choices and the states is shown in the right-hand side of Figure 47.1.) Then player 1's 
behavior is optimal given player 2's: in state x, player 1 knows that player 2 plays L and thus it is optimal for her to 
play B; in states y and z she assigns equal probabilities to player 2 using L and R, so that it is optimal for her to play 
T. Symmetrically, player 2's behavior is optimal given player 1's, and hence we have a correlated equilibrium; the 
payoff profile is (5, 5).

This example, in which we can identify the set of states with the set of outcomes, suggests the following result.

• Proposition 47.1

Let  be a finite strategic game. Every probability distribution over outcomes that eau be obtained 
in a correlated equilibrium of G can be obtained in a correlated equilibrium in which the set of states is A and for 
each  player i's information partition consists of all sets of the form  for some action .

Proof.

Let  be a correlated equilibrium of G. Then  is also a correlated equilibrium, where 
Ω' = A,  for each  consists of sets of the type  for some  
and  is defined by .

This result allows us to confine attention, when calculating correlated equilibrium payoffs, to equilibria in which 
the set of states is the set of outcomes. Note however that such equilibria may have no natural interpretation.
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Figure 48.1 
A three-player game. Player 1 chooses one of the two rows, player 2 chooses  

one of the two columns, and player 3 chooses one of the three tables.

In the definition of a correlated equilibrium we assume that the players share a common belief about the 
probabilities with which the states occur. If there is a random variable about which the players hold different 
beliefs then additional equilibrium payoff profiles are possible. Suppose, for example, that player 1 is sure that 
team T1 will beat team T2 in some contest, while player 2 is sure that team T2 will win. Then there is an equilibrium 
of BoS (Example 34.1) in which the outcome is (Bach, Bach) if T1 wins and (Stravinsky, Stravinsky) if team T2 
wins, which gives each player an expected payoff of 2! (In Section 5.3 we show that it cannot be common 
knowledge between two players that their beliefs differ in the way we have just assumed if they have the same 
priors.)

• Exercise 48.1

Consider the three-player game with the payoffs given in Figure 48.1. (Player 1 chooses one of the two rows, 
player 2 chooses one of the two columns, and player 3 chooses one of the three tables.)

a. Show that the pure strategy equilibrium payoffs are (1,0,0), (0,1,0), and (0,0,0).

b. Show that there is a correlated equilibrium in which player 3 chooses B and players 1 and 2 play (T, L) and (B,R) 
with equal probabilities.

c. Explain the sense in which player 3 prefers not to have the information that players 1 and 2 use to coordinate 
their actions.

3.4 Evolutionary Equilibrium

In this section we describe the basic idea behind a variant of the notion of Nash equilibrium called evolutionary 
equilibrium. This notion is designed to model situations in which the players' actions are determined by the forces 
of evolution. We confine the discussion to a simple case in which the members of a single population of organisms 
(animals, human
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beings, plants, ...) interact with each other pairwise. In each match each organism takes an action from a set B. The 
organisms do not consciously choose actions; rather, they either inherit modes of behavior from their forebears or 
are assigned them by mutation. We assume that there is a function u that measures each organism's ability to 
survive: if an organism takes the action a when it faces the distribution β of actions in the population of its 
potential opponents, then its ability to survive is measured by the expectation of u(a, b) under β. This description 
corresponds to a two-player symmetric strategic game  where u1(a, b) = u(a, b) and u2(a, b) = u(b, 
a).

A candidate for an evolutionary equilibrium is an action in B. The notion of equilibrium is designed to capture a 
steady state in which all organisms take this action and no mutant can invade the population. More precisely, the 
idea is that for every possible action  the evolutionary process occasionally transforms a small fraction of the 
population into mutants who follow b. In an equilibrium any such mutant must obtain an expected payoff lower 
than that of the equilibrium action, so that it dies out. Now, if the fraction  of the population consists of 
mutants taking the action b while all other organisms take the action b*, then the average payoff of a mutant is 

 (since with probability  it encounters a non-mutant and with probability  it encounters 
another mutant), while the average payoff of a non-mutant is . Therefore for b* to be an 
evolutionary equilibrium we require

for all values of  sufficiently small. This inequality is satisfied if and only if for every  either u(b, b*) < u
(b*,b*), or u(b,b*) = u(b*,b*) and u(b, b) < u(b*, b), so that we can define an evolutionary equilibrium as follows.

•Definition 49.1

Let  be a symmetric strategic game, where ul(a, b) = u2(b, a) = u(a, b) for some function u. 
An evolutionarily stable strategy (ESS) of G is an action  for which (b*,b*) is a Nash equilibrium of G and u
(b, b) < u(b*,b) for every best response  to b* with .

In the following example, as in much of the literature, the set B is taken to be the set of mixed strategies over some 
finite set of actions.

• Example 49.2

(Hawk-Dove) From time to time pairs of animals in a population fight over a prey with value 1. Each animal can 
behave
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Figure 50.1 
A Hawk-Dove game.

Figure 50.2 
A game without an ESS. Each pure strategy  

yields a mutant a payoff higher than the  
unique symmetric equilibrium mixed strategy.

either like a dove (D) or like a hawk (H). If both animals in a match are dovish then they split the value of the prey; 
if they are both hawkish then the value of the prey is reduced by c and is split evenly; if one of them is hawkish and 
the other is dovish then the hawk gets 1 and the dove 0. The game is shown in Figure 50.1. (If c > 1, it has the same 
structure as that in Figure 17.2.) Let B be the set of all mixed strategies over {D, H}. If c > 1, the game has a 
unique symmetric mixed strategy Nash equilibrium, in which each player uses the strategy (1 - 1/c, 1/c); this 
strategy is the only ESS. (In particular, in this case a population exclusively of hawks is not evolutionarily stable.) 
If c < 1, the game has a unique mixed strategy Nash equilibrium in which each player uses the pure strategy H; this 
strategy is the only ESS.

It is immediate from Definition 49.1 that if (b*, b*) is a symmetric Nash equilibrium and no strategy other than b* is 
a best response to b* (i.e. (b*, b*) is a strict equilibrium) then b* is an ESS. A nonstrict equilibrium strategy may not 
be an ESS: consider the two-player symmetric game in which each player has two actions and u(a, b) = 1 for all 

. For a more interesting example of a nonstrict equilibrium strategy that is not an ESS, consider the 
game in Figure 50.2 in which B consists of all mixed strategies over a set containing three members and . 
This game has a unique symmetric mixed strategy Nash equilibrium
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in which each player's mixed strategy is ; in this equilibrium the expected payoff of each player is γ/3. A 
mutant who uses any of the three pure strategies obtains an expected payoff of γ/3 when it encounters a non-
mutant, but the higher payoff γ when it encounters another mutant. Hence the equilibrium mixed strategy is not an 
ESS (from which it follows that not every game that has a Nash equilibrium has an ESS).

• Exercise 51.1

Show that in every two-player symmetric strategic game in which each player has two pure strategies and the 
payoffs to the four strategy profiles are different there is a mixed strategy that is an ESS.

Notes

The modern formulation of a mixed strategy is due to Borel (1921; 1924, pp. 204-221; 1927), although the idea 
dates back at least to the early eighteenth century (see Guilbaud (1961) and Kuhn (1968)). Borel establishes the 
existence of a mixed strategy Nash equilibrium for some special strictly competitive games; von Neumann (1928) 
proves the existence of an equilibrium for all strictly competitive games. The existence result (Proposition 33.1) 
that we prove (which covers all finite strategic games) is due to Nash (1950a, 1951). The notion of a correlated 
equilibrium is due to Aumann (1974), whose paper is also the basis for the other material in Section 3.3. The idea 
of an evolutionarily stable strategy is due to Maynard Smith and Price (see Maynard Smith (1972) and Maynard 
Smith and Price (1973); see also Maynard Smith (1974, 1982)).

The large population model mentioned in Section 3.2.2 is due to Rosenthal (1979). The idea of interpreting mixed 
strategies as pure strategies in an extended game discussed in Section 3.2.3 is due to Harsanyi (1973), as is the 
content of Section 3.2.4. The interpretation of a mixed strategy Nash equilibrium given in Section 3.2.5 is 
discussed in Aumann (1987a). Some of the criticism of mixed strategy Nash equilibrium given in Section 3.2 is 
taken from Rubinstein (1991). The examples in Section 3.3 are due to Aumann (1974).

Our proof of Proposition 33.1, due to Nash (1950a), appeals to Proposition 20.3, the proof of which uses 
Kakutani's fixed point theorem. Nash (1951) presents an alternative proof of Proposition 33.1 that uses the more 
basic fixed point theorem of Brouwer, which applies to pointvalued functions.



   

Page 52

The game in Exercise 35.1 is taken from Moulin (1986, p. 72). Exercise 36.3 is taken from Arrow, Barankin, and 
Blackwell (1953).

For a discussion of mixed strategy Nash equilibrium when the players' preferences do not satisfy the assumptions 
necessary to be represented by expected utility functions see Crawford (1990). The notion of ESS that we discuss 
in Section 3.4 has been extended in various directions; see van Damme (1991, Chapter 9).

We have not addressed the question of whether there is any dynamic adjustment process that leads to an 
equilibrium. One such process, called fictitious play, is suggested by Brown (1951), and has recently been 
reconsidered. In this process each player always chooses a best response to the statistical frequency of the other 
players' past actions. Robinson (1951) shows that the process converges to a mixed strategy Nash equilibrium in 
any strictly competitive game; Shapley (1964, Section 5) shows that this is not necessarily so in games that are not 
strictly competitive. Recent research focuses on models that explicitly capture the forces of evolution and learning; 
see Battigalli, Gilli, and Molinari (1992) for an introduction to this work.
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4 
Rationalizability and Iterated Elimination of Dominated Actions

In this chapter we examine the consequences of requiring that a player's choice be optimal given a belief consistent 
with the view that every player is rational, every player thinks that every player is rational, every player thinks that 
every player thinks that every player is rational, and so on.

4.1 Rationalizability

In Chapters 2 and 3 we discuss solution concepts for strategic games in which each player's choice is required to be 
optimal given his belief about the other players' behavior, a belief that is required to be correct. That is, we assume 
that each player knows the other players' equilibrium behavior. If the players participate repeatedly in the situation 
that the game models then they can obtain this knowledge from the steady state behavior that they observe. 
However, if the game is a one-shot event in which all players choose their actions simultaneously then it is not 
clear how each player can know the other players' equilibrium actions; for this reason game theorists have 
developed solution concepts that do not entail this assumption.

In this chapter we study Some such solution concepts, in which the players' beliefs about each other's actions are 
not assumed to be correct, but are constrained by considerations of rationality: each player believes that the actions 
taken by every other player is a best response to Some belief, and, further, each player assumes that every other 
player reasons in this way and hence thinks that every other player believes that every other player's action is a best 
response to Some belief, and so on.

The solution concepts that we study are weaker than Nash equilibrium. In fact, in many games they do not exclude 
any action from being
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used. Nevertheless we find the approach interesting in that it explores the logical implications of assumptions about 
the players' knowledge that are weaker than those in the previous chapters.

Fix a strategic game .gif'', which we take to mean that player i thinks that whatever action player j chooses is a best 
response to player j 's belief about the actions of the players other than j.

If player i thinks that every other player j is rational then he must be able to rationalize his belief µi about the other 
players' actions as follows: every action of any other player j to which the belief µi assigns positive probability 
must be a best response to a belief of player j. If player i further thinks that every other player j thinks that every 
player  (including player i) is rational then he, player i, must also have a view about player j 's view about 
player h's beliefs. If player i's reasoning has unlimited depth, we are led to the following definition.

•Definition 54.1

An action  is rationalizable in the strategic game  if there exists

•a collection  of sets with  for all j and t,

•a belief  of player i whose support is a subset of , and

•for each , each , and each , a belief  of player j whose support is a subset of 

such that

•ai is a best response to the belief  of player i

•  and for each  the set  is the set of all  such that there is some a-i in the support of  

for which 

•for every player  and every  every action  is a best response to the belief  of player j
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•  for each  and each  the set  is the set of all  such that there is some player , some 

action ,and some a-k in the support of  for which .

Note that formally the second and fourth conditions in the second part of this definition are superfluous; we include 
them so that the definition corresponds more closely to the motivation we gave. Note also that we include the set 

 in the collection , even though it is required to be empty, merely to simplify the notation. If 

 then  is the only such superfluous set, while if |N|=2 there are many  for any odd t and, for  
for any even t).

The set  for  is interpreted to be the set of actions of player j that are assigned positive probability by 

the belief  of player i about the actions of the players other than i that justifies i choosing ai. For any  the 

interpretation of  is that it is the set of all actions aj of player j such that there exists at least one action  

of some player  that is justified by the belief  that assigns positive probability to aj.

To illustrate what the definition entails, suppose there are three players, each of whom has two possible actions, A 
and B. Assume that the action A of player 1 is rationalizable and that player l's belief  used in the rationalization 
assigns positive probability to the choices of players 2 and 3 being either (A, A) or (B, B). Then . 
The beliefs  and  of player 2 that justify his choices of A and B concern the actions of players 1 and 3; 

the beliefs  and  of player 3 concern players 1 and 2. These four beliefs do not have to induce the same 

beliefs about player 1 and do not have to assign positive probability to the action A. The set  consists of all the 

actions of player 1 that are assigned positive probability by either , , or .

This definition of rationalizability is equivalent to the following.

•Definition 55.1

An action  is rationalizable in the strategic game  if for each  there is a set  such 
that

•

•  every action  is a best response to a belief µj(aj) of player j whose support is a subset of Z-j.

Note that if  and  satisfy this definition then so does , so that the set of profiles of 

rationalizable actions is the largest set  for which  satisfies the definition.
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• Lemma 56.1

Definitions 54.1 and 55.1 are equivalent.

Proof.

If  is rationalizable according to Definition 54.1 then define  and  for each 

 If it is rationalizable according to Definition 55.1 then define  and  for each 

 and each integer . Then the sets  defined in the second and fourth parts of Definition 54.1 are 
subsets of Zj and satisfy the conditions in the first and third parts.

It is clear from Definition 55.1 that in a finite game any action that a player uses with positive probability in some 
mixed strategy Nash equilibrium is rationalizable (take Zj to be the support of player j 's mixed strategy). The 
following result shows that the same is true for actions used with positive probability in some correlated 
equilibrium.

• Lemma 56.2

Every action used with positive probability by some player in a correlated equilibrium of a finite strategic game is 
rationalizable.

Proof.

Denote the strategic game by ; choose a correlated equilibrium, and for each player  let Zi be the 
set of actions that player i uses with positive probability in the equilibrium. Then any  is a best response to 
the distribution over A-i generated by the strategies of the players other than i, conditional on player i choosing ai. 
The support of this distribution is a subset of Z-i and hence by Definition 55.1 ai is rationalizable.

In the Prisoner's Dilemma (Example 16.2) only the Nash equilibrium action Confess is rationalizable. In all the 
other games in Section 2.3 both actions of each player are rationalizable, since in each case both actions are used 
with positive probability in some mixed strategy Nash equilibrium. Thus rationalizability puts no restriction on the 
outcomes in these games. For many other games the restrictions that rationalizability imposes are weak. However, 
in some games rationalizability provides a sharp answer, as the following Exercises demonstrate.

• Exercise 56.3

Find the set of rationalizable actions of each player in the two-player game in Figure 57.1.

• Exercise 56.4

(Cournot duopoly) Consider the strategic game  in which Ai=[0,1] and ui(al, a2) = ai(1- al -a2) for 
i=1, 2. Show that each player's only rationalizable action is his unique Nash equilibrium action.

• Exercise 56.5

(Guess the average) In the game in Exercise 35.1 show that each player's equilibrium action is his unique 
rationalizable action.
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Figure 57.1 
The two-player game in Exercise 56.3.

• Exercise 57.1

Suppose that two players choose locations a1 and a2 in the unit interval; each wishes to be as close as possible to the 
other, the payoff of each player being -|al - a2|. Show that every action of each player is rationalizable, while the set 
of Nash equilibria is {(al, a2): al = a2}. Now assume that each player is informed of the distance to his opponent. 
Modify Definition 55.1 by adding the condition that the support of a belief that rationalizes a pair (ai, d) consisting 
of an action ai and a distance d be a subset of {aj - d, aj + d}. Show that for no d > 0 is there an action ai for which 
(ai, d) is rationalizable in this new sense, while (ai, 0) is rationalizable for every ai.

Note that in Definitions 54.1 and 55.1 we take a belief of player i to be a probability distribution on A-i, which 
allows each player to believe that his opponents' actions are correlated. In most of the literature, players are not 
allowed to entertain such beliefs: it is assumed that each player's belief is a product of independent probability 
distributions, one for each of the other players. (Such a restriction is obviously inconsequential in a two-player 
game.) This assumption is consistent with the motivation behind the notion of mixed strategy equilibrium. Our 
definition of rationalizability requires that at all levels of rationalization the players be rational; the alternative 
definition of rationalizability requires in addition that at all levels of rationalization the beliefs preserve the 
assumption of independence.

The two definitions have different implications, as the game in Figure 58.1 shows. In this game there are three 
players; player 1 chooses one of the two rows, player 2 chooses one of the two columns, and player 3 chooses one 
of the four tables. All three players obtain the same payoffs, given by the numbers in the boxes. We claim that the 
action M2
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Figure 58.1 
A three-player strategic game. Player 1 chooses one  

of the two rows, player 2 chooses one of the two  
columns, and player 3 chooses one of the four tables.  

All three players obtain the same payoffs, given  
by the numbers in the boxes.

of player 3 is rationalizable in the sense of Definitions 54.1 and 55.1, in which a player may believe that his 
opponent's actions are correlated, but is not rationalizable if players are restricted to beliefs that are products of 
independent probability distributions. To see this, note that the action U of player 1 is a best response to a belief 
that assigns probability one to (L, M2) and the action D is a best response to the belief that assigns probability one 
to (R, M2); similarly, both actions of player 2 are best responses to beliefs that assign positive probability only to U, 
D, and M2. Further, the action M2 of player 3 is a best response to the belief in which players 1 and 2 play (U, L) 
and (D, R) with equal probabilities. Thus M2 is rationalizable in the sense that we have defined (take Z1 = {U, D}, 
Z2 = {L, R}, and Z3 = {M2} in Definition 55.1). However, it is not a best response to any pair of (independent) 
mixed strategies and is thus not rationalizable under the modified definition in which each player's belief is 
restricted to be a product of independent beliefs. (In order for M2 to be a best response we need 

, where (p, 1 - p) and (q, 1 - q) are mixed strategies of players I 
and 2 respectively, an inequality that is not satisfied for any values of p and q.)

4.2 Iterated Elimination of Strictly Dominated Actions

Like the notion of rationalizability, the solution concept that we now study looks at a game from the point of view 
of a single player. Each player takes an action based on calculations that do not require knowledge of the actions 
taken by the other players. To define the solution we start by eliminating actions that a player should definitely not 
take. In a complicated game it is particularly attractive to assume that players,
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looking for ways to simplify the situation they confront, will adopt such a tack. We assume that players exclude 
from consideration actions that are not best responses whatever the other players do. A player who knows that the 
other players are rational can assume that they too will exclude such actions from consideration. Now consider the 
game G' obtained from the original game G by eliminating all such actions. Once again, a player who knows that 
the other players are rational should not choose an action that is not a best response whatever the other players do 
in G'. Further, a player who knows that the other players know that he is rational can argue that they too will not 
choose actions that are never best responses in G'. Continuing to argue in this way suggests that the outcome of G 
must survive an unlimited number of rounds of such elimination. We now formalize this idea and show that it is 
equivalent to the notion of rationalizability.

4.2.1 Never-Best Responses

•Definition 59.1

An action of player i in a strategic game is a never-best response if it is not a best response to any belief of player 
i.

Clearly any action that is a never-best response is not rationalizable. If an action ai of player i is a never-best 
response then for every belief of player i there is some action, which may depend on the belief, that is better for 
player i than ai. We now show that if ai is a never-best response in a finite game then there is a mixed strategy that, 
whatever belief player i holds, is better for player i than ai. This alternative property is defined precisely as follows.

•Definition 59.2

The action  of player i in the strategic game  is strictly dominated if there is a mixed strategy 
ai of player i such that Ui(a-i, ai) > ui(a-i, ai) for all , where Ui (a-i, ai) is the payoff of player i if he uses the 
mixed strategy ai and the other players' vector of actions is a-i.

In fact, we show that in a game in which the set of actions of each player is finite an action is a never-best response 
if and only if it is strictly dominated. Thus in such games the notion of strict domination has a decision-theoretic 
basis that does not involve mixed strategies. It follows that even if one rejects the idea that mixed strategies can be 
objects of choice, one can still argue that a player will not use an action that is strictly dominated.
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• Lemma 60.1

An action of a player in a finite strategic game is a never-best response if and only if it is strictly dominated.

Proof.

Let the strategic game be  and let . Consider the auxiliary strictly competitive game 
G' (see Definition 21.1) in which the set of actions of player 1 is , that of player 2 is A-i, and the preferences 

of player 1 are represented by the payoff function v1 given by . (Note that the 

argument (ai, a-i) of v1 is a pair of actions in G' while the arguments (a-i, ai) and  are action profiles in G.) 
For any given mixed strategy profile (m1, m2) in G' we denote by v1(m1, m2) the expected payoff of player 1.

The action  is a never-best response in G if and only if for any mixed strategy of player 2 in G' there is an action 
of player 1 that yields a positive payoff; that is, if and only if minm2 maxai, vl(ai, m2) > 0. This is so if and only if 
minm2 maxm1 v1(m1, m2) > 0 (by the linearity of vl in ml).

Now, by Proposition 33.1 the game G' has a mixed strategy Nash equilibrium, so from part (b) of Proposition 22.2 
applied to the mixed extension of G' we have minm2 maxm1 v1(m1, m2) > 0 if and only if maxml minm2 vl(ml, m2) > 0; 

that is, if and only if there exists a mixed strategy  of player i in G' for which  for all m2 (that is, 

for all beliefs on A-i). Since  is a probability measure on  it is a mixed strategy of player 1 in G; the 

condition  for all m2 is equivalent to  for all , which is 

equivalent to  being strictly dominated.

Note that the argument in this proof depends upon our assumption that the players' preferences over lotteries satisfy 
the assumptions of yon Neumann and Morgenstern; if the preferences do not satisfy these assumptions then the 
properties of being a never-best response and being strictly dominated are not equivalent in general.

4.2.2 Iterated Elimination of Strictly Dominated Actions

We now define formally the procedure that we described at the beginning of the section.

•Definition 60.2

The set  of outcomes of a finite strategic game  survives iterated elimination of strictly 

dominated actions if  and there is a collection  of sets that satisfies the following 
conditions for each .

•  and 
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Figure 61.1 
A two-player strategic game. The only  

rationalizable action of player 1 is M and the  
only rationalizable action of player 2 is R.

•  for each t = 0,...,T - 1.

•  For each t =0,..., T - 1 every action of player j in  is strictly dominated in the game , where 

 for each  is the function ui restricted to .

• No action in  is strictly dominated in the game .

• Example 61.1

In the game in Figure 61.1 the action B is dominated by the mixed strategy in which T and M are each used with 
probability  After B is eliminated from the game, L is dominated by R; after L is eliminated T is dominated by M. 
Thus (M, R) is the only outcome that survives iterated elimination of strictly dominated actions.

We now show that in a finite game a set of outcomes that survives iterated elimination of dominated actions exists 
and is the set of profiles of rationalizable actions.

• Proposition 61.2

If  survives iterated elimination of strictly dominated actions in a finite strategic game  

then Xj is the set of player j's rationalizable actions for each .

Proof.

Suppose that  is rationalizable and let  be the profile of sets in Definition 55.1 that supports ai. For 

any value of t we have  since each action in Zj is a best response to some belief over Z-j and hence is not 

strictly dominated in the game  (by Lemma 60.1). Hence .

We now show that for every  every member of Xj is rationalizable. By definition, no action in Xj is strictly 
dominated in the game in which the set of actions of each player i is Xi, so by Lemma 60.1 every action in Xj is a 
best response among the members of Xj to some belief on X-j. We need to show that every action in Xj is a best 

response among all the members of the set Aj to some belief on X-j. If 



   

Page 62

is not a best response among all the members of Aj then there is a value of t such that aj is a best response among 

the members of  to a belief µj on X-j, but is not a best response among the members of . Then there is an 

action  that is a best response among the members of  to µj, contradicting the fact that bj is 
eliminated at the tth stage of the procedure.

Note that the procedure in Definition 60.2 does not require that all strictly dominated strategies be eliminated at 
any stage. Thus the result shows that the order and speed of elimination have no effect on the set of outcomes that 
survive.

Lemma 60.1 and the equivalence of the notions of iterated elimination of strictly dominated actions and 
rationalizability fail if we modify the definition of rationalizability to require the players to believe that their 
opponents' actions are independent. To see this, consider the game in Figure 58.1. The action M2 is a best response 
to the belief of player 3 in which players 1 and 2 play (U, L) and (D, R) with equal probabilities and is thus not 
strictly dominated. However, as we saw before, it is not a best response to any pair of (independent) mixed 
strategies and is thus not rationalizable under the modified definition in which each player's belief is restricted to be 
a product of independent beliefs.

4.3 Iterated Elimination of Weakly Dominated Actions

We say that a player's action is weakly dominated if the player has another action at least as good no matter what 
the other players do and better for at least some vector of actions of the other players.

•Definition 62.1

The action  of player i in the strategic game  is weakly dominated if there is a mixed strategy 
ai of player i such that  for all  and Ui(a-i, ai > ui(a-i, ai)for some , where 
Ui(a-i,ai) is the payoff of player i if he uses the mixed strategy ai and the other players' vector of actions is a-i.

By Lemma 60.1 an action that is weakly dominated but not strictly dominated is a best response to some belief. 
This fact makes the argument against using a weakly dominated action weaker than that against using a strictly 
dominated action. Yet since there is no advantage to using a weakly dominated action, it seems very natural to 
eliminate such actions in the process of simplifying a complicated game.
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Figure 63.1 
A two-player game in which the set of  
actions that survive iterated elimination  
of weakly dominated actions depends on  
the order in which actions are eliminated.

The notion of weak domination leads to a procedure analogous to iterated elimination of strictly dominated actions 
(Definition 60.2). However, this procedure is less compelling since the set of actions that survive iterated 
elimination of weakly dominated actions may depend on the order in which actions are eliminated, as the two-
player game in Figure 63.1 shows. The sequence in which we first eliminate T (weakly dominated by M) and then 
L (weakly dominated by R) leads to an outcome in which player 2 chooses R and the payoff profile is (2,1). On the 
other hand, the sequence in which we first eliminate B (weakly dominated by M) and then R (weakly dominated by 
L) leads to an outcome in which player 2 chooses L and the payoff profile is (1,1). We discuss further the procedure 
of iterated elimination of weakly dominated actions in Section 6.6.

• Exercise 63.1

Consider a variant of the game in Example 18.6 in which there are two players, the distribution of the citizens' 
favorite positions is uniform, and each player is restricted to choose a position of the form l/m for some 

, where m is even. Show that the only outcome that survives iterated elimination of weakly 

dominated actions is that in which both players choose the position .

• Exercise 63.2

(Dominance solvability) A strategic game is dominance solvable if all players are indifferent between all outcomes 
that survive the iterative procedure in which all the weakly dominated actions of each player are eliminated at each 
stage. Give an example of a strategic game that is dominance solvable but for which it is not the case that all 
players are indifferent between an outcomes that survive iterated elimination of weakly dominated actions (a 
procedure in which not an weakly dominated actions may be eliminated at each stage).
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• Exercise 64.1

Each of two players announces a nonnegative integer equal to at most 100. If a1 + a2 < 100, where ai is the number 
announced by player i, then each player i receives payoff of ai. If al + a2 > 100 and ai < aj then player i receives ai 
and player j receives 100- ai; if al + a2 > 100 and ai = aj then each player receives 50. Show that the game is 
dominance solvable (see the previous Exercise) and find the set of surviving outcomes.

Lemma 60.1 shows that in a finite game an action that is not Strictly dominated is a best response to some belief. 
The following Exercise strengthens this conclusion for an action (or mixed strategy) that is not weakly dominated.

• Exercise 64.2

Show that in a finite strategic game any mixed strategy of a player that is not weakly dominated is a best response 
to a belief that assigns positive probability to every vector of actions of the other players. [Hint: Let  
be the game and let U be the set of all vectors of the form , where m1 ranges over the 

mixed strategies of player 1 and  is the set of all vectors of actions for the players other than player 1. 
Let  correspond to a mixed strategy of player 1 that is not weakly dominated. You need to show that there 
exists a positive vector p* with  for all . To do so, let u* = 0 without loss of generality, and for 

any  let  for all i and . Use the result of Exercise 36.3 for the sets  and 
U and let ; use also the fact that U is the convex hull of a finite number of vectors.]

Notes

The notion of rationalizability originated with Bernhelm (1984) and Pearce (1984) (both of whom restrict players 
to believe that the actions of their opponents are independent). (Spohn (1982) discusses the idea, but does not 
formalize it.) Versions of the procedure of iterated elimination of dominated strategies were first studied in detail 
by Gale (1953) and Luce and Raiffa (1957, pp. 108-109, 173); the formulation that we give is due to Moulin 
(1979). Lemma 60.1 is due to Pearce (1984); it is closely related to Lemma 3.2.1 of van Damme (1983). 
Proposition 61.2 is due to Pearce (1984, p. 1035).

The result in Exercise 56.4 is due to Gabay and Moulin (1980), Bernheim (1984), and Moulin (1984). Exercise 
56.5 is taken from Moulin (1986, p. 72). Exercise 57.1 is taken from Rubinstein and Wolin-
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sky (1994). The notion of dominance solvability in Exercise 63.2 is due to Moulin (1979); it is closely related to 
the notion of ''solvability in the complete weak sense" of Luce and Raiffa (1957, p. 109). Exercise 64.1 is due to 
Brims and Taylor (1994) and Exercise 64.2 is due to Arrow, Barankin, and Blackwell (1953).

For a family of games in which rationalizability gives a sharp answer see Vives (1990) and Milgrom and Roberts 
(1990).
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5 
Knowledge and Equilibrium

In this chapter we describe a model of knowledge and use it to formalize the idea that an event is "common 
knowledge", to ask if it is possible for people to "agree to disagree", and to express formally the assumptions on 
players' knowledge that lie behind the concepts of equilibrium and rationalizability.

5.1 A Model of Knowledge

A strategic game models interaction between players. Consequently we are interested not only in a player's 
knowledge of an exogenous parameter but also in his knowledge about the knowledge of another player. We begin 
by giving a brief introduction to a model of the knowledge of a single decision-maker.

At the basis of the model is a set Ω of states. The notion of a state is given two interpretations in the literature. At 
one extreme, a state is viewed as a description of the contingencies that the decision-maker perceives to be relevant 
in the context of a certain decision problem. This is the interpretation used in standard economic models of 
uncertainty. At the other extreme a state is viewed as a full description of the world, including not only the 
decision-maker's information and beliefs but also his actions.

5.1.1 The Information Function

One way to define the extent of a decision-maker's knowledge of the state is to specify an information function P 

that associates with every state  a nonempty subset P(ω) of Ω. The interpretation is that when the state is ω 
the decision-maker knows only that the state is in
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the set P(ω). That is, he considers it possible that the true state could be any state in P(ω) but not any state outside 
P(ω).

•Definition 68.1

An Information function for the set Ω of states is a function P that associates with every state  a nonempty 
subset P(ω) of Ω.

When we use an information function  to model a decision-maker's knowledge we usually assume that the pair 
 consisting of the set of states and the information function satisfies the following two conditions:

P1  for every 

P2 If  then P(ω') = P(ω).

P1 says that the decision-maker never excludes the true state from the set of states he regards as feasible: he is 
never certain that the state is different from the true state. P2 says that the decision-maker uses the consistency or 
inconsistency of states with his information to make inferences about the state. Suppose, contrary to P2, that 

 and there is a state  with . Then if the state is ω the decision-maker can argue that 

since ω" is inconsistent with his information the true state cannot be ω'. Similarly, if there is a state  with 

 then when the state is ω the decision-maker can argue that since ω.gif" is consistent with his 
information the true state cannot be ω'.

The following condition is equivalent to P1 and P2.

•Definition 68.2

An information function P for the set Ω of states is partitional  if there is a partition of Ω such that for any  
the set P(ω) is the element of the partition that contains ω.

• Lemma 68.3

An information function is partitional if and only if it satisfies P1 and P2.

Proof.

If P is partitional then it clearly satisfies P1 and P2. Now suppose that P satisfies P1 and P2. If P(ω) and P(ω) 
intersect and  then by P2 we have P(ω) = P(ω') = P(ω"); by P1 we have . Thus P is 
partitional.

Given this result, an information function that satisfies P1 and P2 may be specified by the information partition 
that it induces.

• Example 68.4

Let Ω = [0,1) and assume that the decision-maker observes only the first four digits of the decimal expansion of a 

number. Then for each  the set P(ω) is the set of all states  such that
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the first four digits of ω' are the same as those of ω. This information function is partitional.

• Exercise 69.1

Let Q be a set of questions to which the answer is either "Yes" or "No". A state is a list of answers to all the 
questions in Q. Suppose that the information function P has the property that for some state ω1 the set P(ωl) 
consists of all states in which the answers to the first two questions are the same as in ωl, while for some other state 
the set P(ω2) consists of all states in which the answers to the first three questions are the same as in ω2. Is P 
necessarily partitional?

• Exercise 69.2

A decision-maker is told an integer n but remembers only that the number is either n - 1, n, or n + 1. Model the 
decision-maker's knowledge by an information function and determine if the function is partitional.

5.1.2 The Knowledge Function

We refer to a set of states (a subset of Ω) as an event. Given our interpretation of an information function, a 

decision-maker for whom  knows, in the state ω, that some state in the event E has occurred. In this case 
we say that in the state ω the decision-maker knows E. Given P we now define the decision maker's knowledge 
function K by

For any event E the set K(E) is the set of all states in which the decision-maker knows E. The knowledge function 
K that is derived from any information function satisfies the following three properties.

This says that in all states the decision-maker knows that some state in Ω has occurred.

This says that if F occurs whenever E occurs and the decision-maker knows E then he knows F: if E implies F then 
knowledge of E implies knowledge of F.

The interpretation of this property is that if the decision-maker knows both E and F then he knows .



   

Page 70

If P satisfies P1 then the associated knowledge function K satisfies the following additional property.

K4 (Axiom of Knowledge) 

This says that whenever the decision-maker knows E then indeed some member of E is the true state: the decision-

maker does not know anything that is false. The axiom is derived from P1 as follows: if  then , 

so that by P1 we have .

If P is partitional (i.e. satisfies both P1 and P2) then K(E) is the union of all the members of the partition that are 
subsets of E. (If E does not contain any member of the partition then K(E) is empty.) In this case the knowledge 
function K satisfies the following two additional properties.

K5 (Axiom of Transparency) .

Given our interpretation of K(E) as the event in which the decision-maker knows E, we interpret K(K(E)) to be the 
event in which the decision-maker knows that he knows E. Thus K5 says that if the decision-maker knows E then 
he knows that he knows E. As we remarked above, if P satisfies P1 and P2 then the set K(E) is a union of members 
of the partition induced by P; K5 follows from the observation that if F is a union of members of the partition then 
K(F) = F.

K6 (Axiom of Wisdom) .

The interpretation of this axiom is that the decision-maker is aware of what he does not know: if he does not know 
E then he knows that he does not know E. Since P is partitional, K(E) is a union of members of the partition 
induced by P; thus Ω \ K(E) also is such a union, and K6 follows.

Note that given that K satisfies K4 the properties in K5 and K6 in fact hold with equality.

We have taken an information function as the primitive and derived from it a knowledge function. Alternatively we 
can start by defining a knowledge function for the set Ω to be a function K that associates a subset of Ω with each 

event . We can then derive from it an information function P as follows: for each state ω let

(If there is no event E for which  then we take the intersection to be Ω.)
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• Exercise 71.1

a. Given an information function P, let K be the knowledge function defined by (69.3) and let P' be the information 
function derived from K in (70.1). Show that P' = P.

b. Given a knowledge function K that satisfies K1, K2, and K3, let P be the information function defined by (70.1) 
and let K' be the knowledge function derived from P in (69.3). Show that K' = K.

• Exercise 71.2

Using the framework we have described, we can formulate an individual's decision problem as follows. Let A be a 
set of actions, Ω a set of states, P a partitional information function, π a probability measure on Ω, and 

 a function whose expected value represents the individual's preferences over lotteries on A. The 
individual's problem is to choose a function  (called an act) for which a(ω) = a(ω') whenever  
and  to solve maxa Eπu(a(ω),ω) (where E is the expectation operator). Define the partitional information 

function P' to be coarser than the information function P if  for all  (i.e. if each member of the 
partition induced by P' is a union of members of the partition induced by P). Show that if P' is coarser than P then 
the best act under the information function P' is no better than the best act under the information function P. 
Contrast this result with that of Exercise 28.2.

5.1.3 An Illustrative Example: The Puzzle of the Hats

The following puzzle, which "swept Europe" some time in the first half of the twentieth century (Littlewood (1953, 
p. 3)), illustrates the concepts that we have defined. Each of n "perfectly rational" individuals, seated around a 
table, is wearing a hat that is either white or black. Each individual can see the hats of the other n - 1 individuals, 
but not his own. An observer announces: "Each of you is wearing a hat that is either white or black; at least one of 
the hats is white. I will start to count slowly. After each number you will have the opportunity to raise a hand. You 
may do so only when you know the color of your hat." When, for the first time, will any individual raise his hand?

We can answer this question by using the formal model we have introduced, as follows. Initially, after the 
observer's announcement, the set of states is the set of all configurations c = (cl,...,cn) of colors for
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the hats, where each ci is either W or B and at least one ci is W. These 2n - 1 states constitute the set

The initial information function  of any individual i is given as follows: in any state c the set  consists of all 
the states that accord with i 's observations, and thus contains at most two states, which differ only in the color of i's 

hat. Precisely, if c is a state in which a player different from i has a white hat then  and if 

c is the state in which all the other hats are black then  (since not an the hats are black).

What does it mean for an individual i with information function Pi to "know the color ci of his hat"? It means either 
he knows that the event {c: ci = W} occurs or he knows that the event {c:ci=B} occurs. Thus the event "i knows the 
color of his hat" is

It is only in a state c in which there is exactly one individual i for whom ci = W that  for some j, and in 

this case , so that i raises his hand.

Now let F1 = {c:|{ i:ci = W}| = 1], the set of states for which someone raises a hand at the first stage. If nobody 
raises a hand at the first stage then all individuals obtain the additional information that the state is not in F1, and 

thus for all i and for all  we have . That is, in any such state every individual concludes that 

at least two individuals have white hats. We have  unless cj = W for exactly one 

individual , in which case  (and ). In other words, in any state 
c for which cj = W and ch = W for precisely two individuals j and h we have  and , and hence j 
and h each raises a hand at the second stage. Now let F2 = {c: |{i: ci= W}| = 2}, the set of states in which the 

process ends at the second stage. In states for which no hand is raised after the observer counts  all 

individuals conclude that at least three hats are white and the process continues with . It is easy to 
see that if k hats are white then no one raises a hand until the observer counts k, at which point the k individuals 
with white hats do so.
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5.2 Common Knowledge

We say that an event is "mutual knowledge" in some state if in that state each individual knows the event. We say 
that an event is "common knowledge" if not only is it mutual knowledge but also each individual knows that all 
other individuals know it, each individual knows that all other individuals know that all the individuals know it, 
and so on. Restricting for simplicity to the case of two individuals the notion of common knowledge is formalized 
in the following definition.

•Definition 73.1

Let K1 and K2 be the knowledge functions of individuals 1 and 2 for the set Ω of states. An event  is common 
knowledge between 1 and 2 in the state  if ω is a member of every set in the inquire sequence K1 (E), K2 
(E), K1 (K2 (E)), K2(K1(E)), ....

Another definition of common knowledge (which we show in Proposition 74.2 is equivalent) is stated in terms of 
the individuals' information functions.

•Definition 73.2

Let P1 and P2 be the information functions of individuals 1 and 2 for the set Ω of states. An event  is self-

evident between 1 and 2 if for all  we have  for i = 1, 2. An event  is common knowledge 

between 1 and 2 in the state  if there is a self-evident event F for which .

In words, an event E is self-evident between two individuals if whenever it occurs both individuals know that it 
occurs (i.e. whenever it occurs it is mutual knowledge between the individuals), and is common knowledge in the 
state ω if there is a self-evident event containing ω whose occurrence implies E.

• Example 73.3

Let Ω = {ω1,ω2,ω3,ω4,ω5,ω6}, let P1 and P2 be the partitional information functions of individuals 1 and 2, and let K1 
and K2 be the associated knowledge functions. Let the partitions induced by the information functions be

The event E = {ω1,ω2,ω3,ω4} does not contain any event that is self-evident between 1 and 2 and hence in no state is 
E common knowledge between 1 and 2 in the sense of the second definition (73.2). The event E is also not 
common knowledge in any state in the sense of the first
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definition (73.1) since , as the following calculation demonstrates:

The event F = {ω1,ω2,ω3,ω4,ω5} is self-evident between 1 and 2 and hence is common knowledge between 1 and 2 
in any state in F in the sense of the second definition. Since K1 (F) =K2 (F) = F the event F is also common 
knowledge between 1 and 2 at any state in F in the sense of the first definition.

Before showing that the two definitions of common knowledge are equivalent we establish the following.

• Lemma 74.1

Let P1 and P2 be the partitional information functions of individuals 1 and 2 for the set Ω of states, let K1 and K2 be 
the associated knowledge functions, and let E be an event. Then the following three conditions are equivalent.

a. Ki(E) = E for i = 1, 2.

b. E is self-evident between 1 and 2.

c. E is a union of members of the partition induced by Pi for i = 1, 2.

Proof.

Assume (a). Then for every  we have  for i = 1, 2, and hence (b) is satisfied. Assume (b). Then 
 for i = 1, 2, and thus E is a union of members of both partitions, so that (c) is satisfied. Finally (c) 

immediately implies (a).

We now show that Definitions 73.1 and 73.2 are equivalent.

• Proposition 74.2

Let Ω be a finite set of states, let P1 and P2 be the partitional information functions of individuals 1 and 2, and let 

K1 and K2 be the associated knowledge functions. Then an event  is common knowledge between 1 and 2 in 
the state  according to Definition 73.1 if and only if it is common knowledge between 1 and 2 in the state ω 
according to Definition 73.2.

Proof.

Assume that the event E is common knowledge between 1 and 2 in the state ω according to Definition 73.1. For 

each  and  we have  and ω is a member of all these 
sets, which are hence nonempty. Thus since Ω is finite there is a set Fi = Ki(Kj(Ki . . . Ki(E).. )) for which Kj(Fi) = Fi; 
since Pi is partitional, Ki satisfies K4 and K5, so that we have also
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Ki(Fi) = Fi. Thus by Lemma 74.1 the event Fi is serf-evident between 1 and 2, so that E is common knowledge in ω 
according to Definition 73.2.

Now assume that  is common knowledge between 1 and 2 in the state ω according to Definition 73.2. Then 
there is a self-evident event F with . By Lemma 74.1 every set of the type Ki(Kj(Ki... Ki(F)...)) 
coincides with F. It follows from K2 that ω is a member of every set of the type Ki (Kj (Ki... Ki (E)...)) and thus E is 
common knowledge in ω according to Definition 73.1.

5.3 Can People Agree to Disagree?

An interesting question that can be addressed within the framework we have described is the following. Can it be 
common knowledge between two individuals with the same prior belief that individual 1 assigns probability η1 to 
some event and individual 2 assigns probability  to the same event? It seems that the answer could be 
positive: the individuals might "agree to disagree.gif" in this Way when they possess different information. 
However, we now show that if the individuals' information functions are partitional then the answer is negative.

One of the contexts in which this result is of interest is that of a Bayesian game (Section 2.6). An assumption often 
made in the literature is that the players in such a game have identical prior beliefs. The result implies that under 
this assumption it cannot be common knowledge between the players that they assign different posterior 
probabilities to the same event. Thus if we want to model a situation in which such differences in beliefs are 
common knowledge, we must assume that the players' prior beliefs are different.

Let ρ be a probability measure on the set Ω of states, interpreted as the individuals' common prior belief, and let Pl 
and P2 be the individuals' information functions. If E is an event and ρ(E|Pi(ω)) =η i (where ρ(E|Pi(ω)) is the 
probability of E conditional on Pi(ω)) then, given his information in the state ω, individual i assigns the probability 

η i to the event E. Thus the event "individual i assigns the probability η i to E" is .

• Proposition 75.1

Suppose that the set Ω of states is finite and individuals 1 and 2 have the same prior belief. If each individual's 
information function is partitional and it is common knowledge between 1 and 2 in some state  that 
individual 1 assigns probability η1 to some event E and individual 2 assigns probability η2 to E then η1=η2.
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Proof.

If the assumptions are satisfied then there is a self-evident event  that is a subset of the intersection of 

 and , and hence a subset of each of these sets, where ρ is the 
common prior belief. By Lemma 74.1, for each individual i the event F is a union of members of i's information 
partition. Since Ω is finite, so is the number of sets in each union; let . Now, for any nonempty 

disjoint sets C and D with ρ(E|C) = η i and ρ(E|D) = η i we have  Thus, since for each k we have ρ
(E|Ak) = η1, it follows that ρ(E|F) = η1; similarly ρ(E|F) = η2. Hence η1 = η2.

• Exercise 76.1

Show that if two individuals with partitional information functions have the same prior then it can be common 
knowledge between them that they assign different probabilities to some event. Show, however, that it cannot be 
common knowledge that the probability assigned by individual 1 exceeds that assigned by individual 2.

• Exercise 76.2

Show that if two individuals with partitional information functions have the same prior then it cannot be common 
knowledge between them that individual 1 believes the expectation of some lottery to exceed some number η. 
while individual 2 believes this expectation to be less than η. Show by an example that this result depends on the 
assumption that the individuals' information functions are partitional.

5.4 Knowledge and Solution Concepts

In the previous chapters we discussed the concepts of Nash equilibrium and rationalizability. When motivating 
these concepts we appealed informally to assumptions about what the players know. In this section we use the 
model described above to examine formally assumptions about the players' knowledge that lie behind the solution 
concepts.

Throughout we fix attention on a given strategic game  (see Definition 11.1).

Let Ω be a set of states, each of which is a description of the environment relevant to the game: that is, a 
description of each player's knowledge, action, and belief. Formally, each state  consists of a specification for 
each player i of

• , which describes player i's knowledge in state ω (where Pi is a partitional information function)

• , the action chosen by player i in state ω
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•  µi(ω), a probability measure on , the belief of player i in state ω about the actions of the other 
players. (Note that this allows a player to believe that the other players' actions are correlated.)

Note that the notion of a state, since it consists of a specification of the knowledge, action, and belief of each 
player, may be self-referential: if in state ω1 some player does not know whether the state is ω1 or ω2 then the 
description of ωl refers to itself.

Our implicit assumnption in this definition of the set of states is that it is common knowledge among the players 
that the game is G. Thus we ignore the possibility, for example, that some player does not know his own action set 
or the action set of another player, or some player i does not know whether player j knows player i's preferences. 
This assumption is stronger than we need for some of the results. To formalize weaker assumptions about the 
players' knowledge of the game we would need to extend the definition of the set of states, requiring that each state 
include a specification of the game that is played.

We now isolate properties of a state that imply that the actions in that state are consistent with various solution 
concepts. Our first result is that if in some state each player is rational, knows the other players' actions, and has a 
belief consistent with his knowledge, then the profile of actions chosen in that state is a Nash equilibrium of the 
game.

• Proposition 77.1

Suppose that in the state  each player 

a. knows the other players' actions: ;

b. has a belief that is consistent with his knowledge: the support of µi(ω) is a subset of ;

c. is rational: ai(ω) is a best response of plaster i to µi(ω).

Then  is a Nash equilibrium of G.

Proof.

By (c) the action ai(ω) is a best response of player i to his belief, which by (b) assigns probability one to the set 

; by (a) this set is {a-i(ω)}.

The assumption that each player knows the actions of all the other players is very strong. We now show that in a 
two-player game we can replace it with the assumption that each player knows the belief of the other player if we 
strengthen (c) to require not only that each player be rational but also that each player know that the other player is 
rational. Since the result involves mixed strategies we now let the strategic game
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under consideration be , where for each  the expected value of the function at represents 
player i 's preferences over lotteries on A.

• Proposition 78.1

Suppose that |N| = 2 and that in the state  each player 

a. knows the other player's belief:  for ;

b. has a belief that is consistent with his knowledge: the support of µi(ω) is a subset of  for 
;

c. knows that the other is rational: for any  the action aj(ω') is a best response of player j to µj(ω') for 
.

Then the mixed strategy profile (al,a2): (µ2(ω), µl(ω)) is a mixed strategy Nash equilibrium of G.

Proof.

Let  be an action of player i that is in the support of ai = µj(ω). By (b) there is a state  such that 

. It follows from (c) that the action  is a best response of player i to µi(ω'), which by, (a) is equal to µi

(ω).

Note that neither proposition requires the players to derive their beliefs from some common prior on Ω. In 
particular, note that in (b) we require only that each player's belief be consistent with his knowledge. Note also that 
the assumption that the game is common knowledge can be weakened in both results: in Proposition 77.1 it is 
sufficient to assume each player knows his own action set and preferences, and in Proposition 78.1 it is sufficient to 
assume the game is mutual knowledge.

The following example demonstrates that Proposition 78.1 does not have an analog when there are more than two 
players. Consider the game at the top of Figure 79.1. (Note that player 3's payoff is always 0.) Let the set of states 
be  and let the players' action functions and information functions be those given in the table at 
the bottom of the figure; assume that the players' beliefs are derived from the same prior, which is given in the first 
row of the table.

Consider the state δ. We claim that the three conditions of the proposition are satisfied. Condition (b) is satisfied 
since each player's belief at δ is defined from the common prior. It remains to verify that in this state each player 
knows the beliefs of the other players and knows that the other players are rational. Consider player 1. She knows 
that the state is either δ or , so that she knows that player 2's information is either {γ, δ} or { , ξ}. In both cases 
player 2 believes that with prob-
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Figure 79.1 
At the top is a three-player game in which player 1 chooses  

one of the two rows, player 2 chooses one of the two columns,  
and player 3 chooses one of the two tables. At the bottom are  
action functions, information functions, and beliefs for the  

players in the game.

ability  the pair of actions chosen by players 1 and 3 is (D, A) and that with probability  it is (D, B). Given this 
belief, the action L that player 2 takes is optimal. Thus player 1 knows that player 2 is rational.

Similarly player 2 knows that player 1's information is either {β, γ} or { δ, }. In both cases player 1 believes 

that with probability  players 2 and 3 will choose (L, B) and that with probability  they will choose (L, A). Given 
this belief, the action D that she takes is optimal, so that player 2 knows that player 1 is rational.

Player 3 knows that player 1's information is {δ, } and that player 2's information is {γ,δ}. Thus, as argued 
above, player 3 knows that players 1 and 2 are rational.

In the three states γ, δ, and , player 3's belief is that the pair of actions of players 1 and 2 is (D, L), and thus in the 
state δ players 1 and 2 know player 3's belief. They also know she is rational since her payoffs are always zero.

However in the state δ the beliefs do not define a Nash equilibrium. In fact, the players' beliefs about each other's 

behavior do not even coincide: Player 1 believes that player 3 chooses A with probability 



   

Page 80

while player 2 believes that she does so with probability . Neither of these beliefs together with the actions D and 
L forms a mixed strategy Nash equilibrium of the game.

What makes this example work is that in state δ player 1 does not know that player 2 knows her belief: player 1 
thinks that the state might be ε, in which player 2 does not know whether player 1 believes that player 3 plays B or 

that player 3 plays B with probability  and A with probability 

Aumann and Brandenburger (1995) show that if all players share a common prior and in some state rationality is 
mutual knowledge and the players' beliefs are common knowledge then the beliefs at that state form a mixed 
strategy Nash equilibrium even if there are more than two players. The key point is that if the beliefs of players 1 
and 2 about player 3's action are common knowledge and if all the players share the same prior, then the beliefs 
must be the same (by an argument like that in the proof of Proposition 75.1).

The following result formalizes the arguments in Chapter 4 to the effect that the notion of rationalizability rests on 
weaker assumptions about the players' knowledge than that of Nash equilibrium, requiring only that it be common 
knowledge among the players that all players are rational. (The result does not depend essentially on the 
assumption that there are two players, though the statement is simpler in this case.)

•Proposition 80.1

Suppose that |N| = 2 and that in the state  it is common knowledge between the players that each player's 
belief is consistent with his knowledge and that each player is rational. That is, suppose that there is a self-evident 
event  such that for every  and each 

a. the support of µi(ω') is a subset of  for 

b. the action ai(ω') is a best response of player i to µi(ω').

Then for each  the action ai(ω) is rationalizable in G.

Proof.

For each  let . By (b) we know that for any  the action ai(ω') is a best response 

to µi(ω'), whose support, by (a), is a subset of . Since F is serf-evident we have , 

and thus . Hence (using Definition 55.1) ai(ω) is rationalizable.

The three results in this section derive implications for the players' actions or beliefs in a particular state from 
assumptions about their
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Figure 81.1 
The component games of the Electronic Mail game.  

The parameters satisfy L > M > 1 and .

knowledge in that state. The result in the following Exercise is based on an assumption of a different type—that in 
every state the players' rationality is common knowledge. If this assumption is satisfied and the players' beliefs are 
derived from a common prior then the distribution of the players' actions over Ω is a correlated equilibrium.

• Exercise 81.1

Suppose that for all  all players are rational (and hence their rationality is common knowledge in every state, 
since any fact that is true in all states is common knowledge in every state). Show that if each player's belief in 
every state is derived from a common prior ρ on Ω for which ρ(Pi(ω)) > 0 for all  and all , and ai(ω') 

=ai(ω) for each  and each , then , where  is the partition induced by Pi, is a 
correlated equilibrium of G. (The proof is very simple; the main task is to understand the content of the result.)

5.5 The Electronic Mail Game

In this section we study a game that illustrates the concepts introduced in this chapter. Each of two players has to 
choose one of the actions A or B. With probability  the game in which the players are involved is Gb; with 
probability 1- p it is Ga. In both Ga and Gb it is mutually beneficial for the players to choose the same action, but the 
action that is best depends on the game: in Ga the outcome (A, A) is best, while in game Gb the outcome (B,B) is 
best. The payoffs are shown in Figure 81.1, where L > M > 1. Note that even if a player is sure that the game is Gb, 
it is risky for him to choose B unless he is sufficiently confident that his partner is going to choose B as well.

Which is the true game is known initially only to player 1. Assume first that player 2 cannot obtain this 
information. Then we can model
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the situation as a Bayesian game (Definition 25.1) in which there are two states a and b and the information 
structures induced by the signal functions are {{a}, { b}} for player 1 and {{a, b}} for player 2. This game has a 
unique Nash equilibrium, in which both players always choose A; the expected payoff of each player is (1 - p)M.

Now assume that player I can communicate with player 2 in such a way that the game becomes common 
knowledge between the two players. In this case each player's information structure is {{a}, { b}} and the 
(degenerate) Bayesian game has a Nash equilibrium in which each player chooses A in state a and B in state b; the 
payoff of each player is M.

In the situation we study in this section, the players can communicate, but the means that is open to them does not 
allow the game to become common knowledge. Specifically, the players are restricted to communicate via 
computers under the following protocol. If the game is Gbb then player l's computer automatically sends a message 
to player 2's computer; if the game is Ga then no message is sent. If a computer receives a message then it 
automatically sends a confirmation; this is so not only for the original message but also for the confirmation, the 
confirmation of the confirmation, and so on. The protocol is designed to send confirmations because the 
technology has the property that there is a small probability  that any given message does not arrive at its 
intended destination. If a message does not arrive then the communication stops. At the end of the communication 
phase each player's screen displays the number of messages that his machine has sent.

To discuss the players' knowledge in this situation we need to specify a set of states and the players' information 
functions. Define the set of states to be Ω = {(Q1, Q2): Q1 =Q2 or Q1 = Q2 + 1}. In the state (q, q) player 1's 
computer sends q messages, all of which arrive at player 2's computer, and the qth message sent by player 2's 
computer goes astray. In the state (q + l, q) player 1's computer sends q+l messages, and all but the last arrive at 
player 2's computer. Player l's information function is defined by P1(q, q) = {(q, q), (q, q - 1)} if  and P1(0, 0) 
= {(0, 0)}; player 2's information function is defined by P2(q, q) = {(q, q), (q + 1, q)} for all q. Denote by G(Q1, Q2) 
the game that is played in the state (Q1, Q2); that is, G(0, 0) = Ga, and G(Q1, Q2) =Gb otherwise. ..Player 1 knows the 
game in all states. Player 2 knows the game in all states except (0, 0) and (1, 0). In each of the states (1, 0) and (1, 
1) player 1 knows that the game is Gb but does not know that player 2 knows it. Similarly in each of the states (1, 1) 
and (2, 1) player 2 knows that the game is Gb but does not know whether player 1 knows that player 2
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knows that the game is Gb. And so on. In any state (q, q) or (q + 1, q) the larger the value of q the more statements 
of the type ''player i knows that player j knows that player i knows that ... the game is Gb" are correct, but in no 
state is it common knowledge that the game is Gb

If  is small then with high probability each player sees a very high number on his screen. When player 1 sees "1" 
on her screen, she is not sure whether player 2 knows that the game is Gb, and consequently may hesitate to play B. 
But if the number on her screen is, for example, 17 then it seems to be "almost.gif" common knowledge that the 
game is Gb, and thus it may seem that she will adhere to the more desirable equilibrium (B, B) of the game Gb. Her 
decision will depend on her belief about what player 2 will do if the number on his screen is 16 or 17. In turn, 
player 2's decision depends on his belief about what player 1 will do if the number on her screen is 16. And so on. 
To study these considerations we now define the following Bayesian game, referred to as the electronic mail game.

•  The set of states is Ω = {(Q1, Q2): Q1 = Q2 or Q1 = Q2 + 1}

•  The signal function τ i of each player i is defined by τ i(Q1, Q2) = Qi.

•  Each player's belief on Ω is the same, derived from the technology (characterized by ) and the assumption that 

the game is Ga with probability 1 - p: pi(0, 0) =1 - p, , and  for 
any nonnegative integer q.

•·In each state (Q1, Q2) the payoffs are determined by the game G(Q1, Q2).

• Proposition 83.1

The electronic mail game has a unique Plash equilibrium, in which both players always choose A.

Proof.

In the state (0, 0) the action A is strictly dominant for player 1, so that in any Nash equilibrium player 1 chooses A 
when receiving the signal 0. If player 2 gets no message (i.e. his signal is 0) then he knows that either player 1 did 
not send a message (an event with probability 1- p) or the message that player I sent did not arrive (an event with 
probability ). If player 2 chooses A then, since player 1 chooses A in the state (0, 0), player 2's expected payoff is 
at least  whatever player I chooses in the state (1, 0); if player 2 chooses B then his payoff is 

at most . Therefore it is strictly optimal for player 2 to choose A when his signal is 0.

Assume now that we have shown that for all (Q1, Q2) with Q1 +Q2 < 2q players 1 and 2 both choose A in any 
equilibrium. Consider player l's
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decision when she sends q messages. In this case player 1 is uncertain whether Q2 = q or Q<2 = q - 1. Given that 
she did not receive a confirmation of her qth message, the probability that she assigns to 

. Thus she believes that it is more likely that her last message did not arrive 
than that player 2 got the message. (This is the key point in the argument.) If she chooses B then her expected 
payoff is at most z(-L) + (1 - z)M (since under the induction assumption, she knows that if Q2 = q - 1 then player 2 

chooses A). If she chooses A then her payoff is at least 0. Given that L > M and , her best action is thus A. By a 
similar argument, if players 1 and 2 both choose A in any equilibrium for all (Ql, Q2) with Q1 + Q2 < 2q + 1 then 
player 2 chooses A when his signal is q. Hence each player chooses A in response to every possible signal.

Thus even if both players know that the game is Gb and even if the noise in the network (the probability ) is 
arbitrarily small, the players act as if they had no information and play A, as they do in the absence of an electronic 
mail system!

What would you do if the number on your screen were 17? It is hard to imagine that when L slightly exceeds M and 
 is small a player who sees the number 17 on his screen will not choose B. The contrast between our intuition and 

the game theoretic analysis makes the equilibrium paradoxical. In this respect the example joins a long list of 
games (like the finitely repeated Prisoner's Dilemma (see Proposition 155.1), the chain-store game (see Section 
6.5.1), and the centipede game (see Section 6.5.2)) in which it seems that the source of the discrepancy between 
our intuition and the analysis lies in the fact that mathematical induction is not part of the reasoning process of 
human beings.

Notes

The basic model of knowledge described in Section 5.1 was formulated in the 1950s and 1960s; Hintikka (1962) is 
seminal. The concept of common knowledge is due to Lewis (1969) and Aumann (1976). Lewis gives an informal 
definition (and discusses the philosophical background for Sections 5.1 and 5.2); Aumann gives a formal definition 
and proves Proposition 75.1. Section 5.4 is based on Brandenburger (1992) and Auraann and Brandenburger 
(1995). (Spohn (1982) contains a result that is a precursor to Proposition 78.1.) The electronic mail game of 
Section 5.5 is studied by Rubinstein (1989); it is close in spirit to the
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"coordinated attack problem" studied by computer scientists (see, for example, Halpern (1986)).

The origin of the puzzle of the hats in Section 5.1.3 is unclear; see Littlewood (1953, p. 3). Exercise 76.2 is based 
on Milgrom and Stokey (1982) and Exercise 81.1 is based on Aumann (1987a),

For discussions of models of interactive knowledge in which the players' information functions are not partitional 
see Bacharach (1985) and Samet (1990). For surveys of the literature see Binmore and Brandenburger (1990) and 
Geanakoplos (1992, 1994).
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II  
EXTENSIVE GAMES WITH PERFECT INFORMATION

An extensive game is an explicit description of the sequential structure of the decision problems encountered by the 
players in a strategic situation. The model allows us to study solutions in which each player can consider his plan 
of action not only at the beginning of the game but also at any point of time at which he has to make a decision. By 
contrast, the model of a strategic game restricts us to solutions in which each player chooses his plan of action once 
and for all; this plan can cover unlimited contingencies, but the model of a strategic game does not allow a player 
to reconsider his plan of action after some events in the game have unfolded.

A general model of an extensive game allows each player, when making his choices, to be imperfectly informed 
about what has happened in the past. We study such a model in Part III. In this part we investigate a simpler model 
in which each player is perfectly informed about the players' previous actions at each point in the game. In Chapter 
6 we describe the basic model. In the next three chapters we study two interesting classes of extensive games with 
perfect information: bargaining games of alternating offers (Chapter 7) and repeated games (Chapters 8 and 9). In 
Chapter 10 we present some of the main results of implementation theory (using the models of both strategic and 
extensive games).
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6 
Extensive Games with Perfect Information

In this chapter we study the model of an extensive game with perfect information. We argue that the solution 
concept of Nash equilibrium is unsatisfactory in this model since it ignores the sequential structure of the decision 
problems. We define the alternative notion of subgame perfect equilibrium, in which a player is required to 
reassess his plans as play proceeds. At the end of the chapter we compare this solution concept with that of iterated 
elimination of weakly dominated actions.

6.1 Extensive Games with Perfect Information

6.1.1 Definition

An extensive game is a detailed description of the sequential structure of the decision problems encountered by the 
players in a strategic situation. There is perfect information in such a game if each player, when making any 
decision, is perfectly informed of all the events that have previously occurred. For simplicity we initially restrict 
attention to games in which no two players make decisions at the same time and all relevant moves are made by the 
players (no randomness ever intervenes). (We remove these two restrictions in Section 6.3.)

•Definition 89.1

An extensive game with perfect information has the following components.

• A Set N (the set of players).

• A set H of sequences (finite or infinite)that satisfies the following three properties.

• The empty sequence Ø is a member of H.
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•  (where K may be infinite) and L < K then .

•  If an infinite sequence  satisfies  satisfies  for every positive integer L then 
.

(Each member of H is a history; each component of a history is an action taken by a player.) A history 

 is terminal  if it is infinite or if there is no aK + 1 such that  The set of terminal 
histories is denoted Z.

•  A Function P that assigns to each nonterminal history (each member of H \ Z) a member of N (P is the player 
function, P(h being the player who takes an action after the history h.

• For each player  a preference relation on Z (the preference relation of player i.

Sometimes it is convenient to specify the structure of an extensive game without specifying the players' 
preferences. We refer to a triple  whose components satisfy the first three conditions in the definition as an 
extensive game form with perfect information.

If the set H of possible histories is finite then the game is finite. If the longest history is finite then the game has a 
finite horizon. Let h be a history of length k; we denote by (h, a) the history of length k + 1 consisting of h followed 
by a.

Throughout this chapter we refer to an extensive game with perfect information simply as an "extensive game". We 
interpret such a game as follows. After any nonterminal history h player P(h) chooses an action from the set

The empty history is the starting point of the game; we sometimes refer to it as the initial history. At this point 
player P(Ø) chooses a member of A(Ø). For each possible choice a0 from this set player P(a0) subsequently 
chooses a member of the set A(a0); this choice determines the next player to move, and so on. A history after which 
no more choices have to be made is terminal. Note that a history may be an infinite sequence of actions. Implicit in 
the definition of a history as a sequence (rather than as a more complex mathematical object, like a string of 
sequences) is the assumption that no action may be taken after any infinite history, so that each such history is 
terminal. As in the case of a strategic game we often specify the players' preferences over terminal histories by 
giving payoff functions that represent the preferences.
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Figure 91.1 
An extensive game that models the procedure for allocating two identical  

indivisible objects between two people described in Example 91.1.

• Example 91.1

Two people use the following procedure to share two desirable identical indivisible objects. One of them proposes 
an allocation, which the other then either accepts or rejects. In the event of rejection, neither person receives either 
of the objects. Each person cares only about the number of objects he obtains.

An extensive game that models the individuals' predicament is  where

• N = {1,2};

•  H consists of the ten histories Ø, (2, 0), (1, 1), (0, 2), ((2, 0), y), ((2, 0), n), ((1, 1), y), ((1, 1), n), ((0, 2), 1, y), ((0, 
2), n);

• P(Ø) = and P(h) = 2 for every nonterminal history h  .

•

A convenient representation of this game is shown in Figure 91.1. The small circle at the top of the diagram 
represents the initial history Ø (the starting point of the game). The 1 above this circle indicates that P(Ø) = 1 
(player 1 makes the first move). The three line segments that emanate from the circle correspond to the three 
members of A(Ø) (the possible actions of player 1 at the initial history); the labels beside these line segments are 
the names of the actions, (k, 2 - k) being the proposal to give k of the objects to player 1 and the remaining 2 - k to 
player 2. Each line segment leads to a small disk beside which is the label 2, indicating that player 2 takes an action 
after any history of length one. The labels beside the line segments that emanate from these disks are the names of 
player 2's actions, y meaning "accept" and n meaning 'reject". The numbers below the terminal histories are payoffs 
that represent the players' preferences. (The first number in each pair is the payoff of player 1 and the second 'is the 
payoff of player 2.)
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Figure 91.1 suggests an alternative definition of an extensive game in which the basic component is a tree (a 
connected graph with no cycles). In this formulation each node corresponds to a history and any pair of nodes that 
are connected corresponds to an action; the names of the actions are not part of the definition. This definition is 
more conventional, but we find Definition 89.1, which takes the players' actions as primitives, to be more natural.

6.1.2 Strategies

A strategy of a player in an extensive game is a plan that specifies the action chosen by the player for every history 
after which it is his turn to move.

• Definition92.1

A strategy of player  in an extensive game with perfect information  is a function that assigns 
an action in A(h) to each nonterminal history  for which P(h) = i.

Note that the notion of a strategy of a player in a game  depends only on the game form 

To illustrate the notion of a strategy consider the game in Figure 91.1. Player 1 takes an action only after the initial 
history Ø, so that we can identify each of her strategies with one of the three possible actions that she can take after 
this history: (2, 0), (1, 1), and (0, 2). Player 2 takes an action after each of the three histories (2, 0), (1, 1), and (0, 
2), and in each case he has two possible actions. Thus we can identify each of his strategies with a triple a2b2c2 
where a2, b2, and c2 are the actions that he chooses after the histories (2, 0), (1, 1), and (0, 2). The interpretation of 
player 2's strategy a2b2c2 is that it is a contingency plan: if player 1 chooses (2, 0) then player 2 will choose a2; if 
player 1 chooses (1, 1) then player 2 will choose b2; and if player 1 chooses (0,2) then player 2 will choose c2.

The game in Figure 93.1 illustrates an important point: a strategy specifies the action chosen by a player for every 
history after which it is his turn to move, even for histories that, if the strategy is followed, are never reached. In 
this game player 1 has four strategies AE, AF, BE, and BF. That is, her strategy specifies an action after the history 
(A, C) even if it specifies that she chooses B at the beginning of the game. In this sense a strategy differs from what 
we would naturally consider to be a plan of action; we return to this point in Section 6.4. As we shall see in a 
moment, for some purposes we can regard BE and
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Figure 93.1 
An extensive game in which player I moves  

both before and after player 2.

BF as the same strategy; however, in other cases it is important to keep them distinct.

For each strategy profile  in the extensive game  we define the outcome O(s) of s to be the 
terminal history that results when each player  follows the precepts of si That is, O(s) is the (possibly infinite) 

history  such that for  we have 

As in a strategic game we can define a mixed strategy to be a probability distribution over the set of (pure) 
strategies. In extensive games with perfect information little is added by considering such strategies. Thus we 
postpone discussing them until Chapter 11, where we study extensive games in which the players are not perfectly 
informed when taking actions; in such games the notion of a mixed strategy has more significance.

6.1.3 Nash Equilibrium

The first solution concept we define for an extensive game ignores the sequential structure of the game; it treats the 
strategies as choices that are made once and for all before play begins.

• Definition 93.1

A Nash equilibrium of an extensive game with perfect information  is a strategy profile s* such 
that for every player  we have

 for every strategy si of player i.

Alternatively, we can define a Nash equilibrium of an extensive game P as a Nash equilibrium of the strategic 
game derived from P defined as follows.
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• Definition 94.1

The strategic form of the extensive game with perfect information  is the strategic game 
 in which for each player 

•  SI is the set of strategies of player i in Γ

•  is defined by  if and only if  for every  and 

• Exercise 94.2

Let G be a two-player strategic game  in which each player has two actions:  for i =1, 
2 Show that G is the strategic form of an extensive game with perfect information if and only if either for some 

 we have  for i =1, 2 or for some  we have  for i =1, 2.

If Nash equilibrium were the only solution we defined for extensive games, we could define a strategy more 
restrictively than we have done so: we could require that a strategy specify a player's action only after histories that 
are not inconsistent with the actions that it specifies at earlier points in the game. This is so because the outcome O
(s) of the strategy profile s is not affected by the actions that the strategy si of any player i specifies after 
contingencies that are inconsistent with si Precisely, we can define a reduced strategy of player i to be a function fi 

whose domain is a subset of  and has the following properties: (i) it associates with every history h 
in the domain of fi an action in A(h) and (ii ) a history h with P(h) = i is in the domain of fi if and only if all the 
actions of player i in h are those dictated by fi (that is, if h = (ak) and h' = (ak)k = l,..., L is a subsequence of h with P(h') 
= i then fi(h')=aL+1) Each reduced strategy of player i corresponds to a set of strategies of player i; for each vector of 
strategies of the other players each strategy in this set yields the same outcome (that is, the strategies in the set are 
outcome-equivalent). The set of Nash equilibria of an extensive game corresponds to the Nash equilibria of the 
strategic game in which the set of actions of each player is the set of his reduced strategies. (The full definition of a 
strategy is needed for the concept of subgame perfect equilibrium, which we define in the next section.)

As an example of the set of reduced strategies of a player in an extensive game, consider the game in Figure 93.1. 
Player 1 has three reduced strategies: one defined by fi(Ø) = B (with domain {Ø}), one defined by fi(Ø) = A and fi

(A, C) = E (with domain {Ø, (A, C)}), and one defined by fi(Ø) = A and fi (A, C) = F (with domain {Ø, (A, C)}).

For some games some of a player's reduced strategies are equivalent in the sense that, regardless of the strategies of 
the other players, they
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generate the same payoffs for all players (though not the same outcome). That is, for some games there is a 
redundancy in the definition of a strategy, from the point of view of the players' payoffs, beyond that captured by 
the notion of a reduced strategy. For example, if a = b in the game in Figure 93.1 then player l's two reduced 
strategies in which she chooses A at the start of the game are equivalent from the point of view of payoffs. To 
capture this further redundancy, together with the redundancy captured by the notion of a reduced strategy, we can 
define the following variant of the strategic form.

• Definition95.1

Let  be an extensive game with perfect information and let  be its strategic form. For 
any  define the strategies  and  of player i to be equivalent if for each  we have 

 for all  The reduced strategic form of Γ is the strategic game  in which 

for each  each set  contains one member of each set of equivalent strategies in Si and  is the preference 

ordering over  induced by

(Note that this definition specifies the names of the actions in the reduced strategic form; every choice of such 
actions defines a different reduced strategic form. However, the names of the actions do not matter in any 
conventional game theoretic analysis, so that we refer to the reduced strategic form of a game.)

The strategic and reduced strategic forms of the game in Figure 93.1 are shown in Figure 96.1. If a = b then the 
strategies AE and AF of player 1 are equivalent, so that player 1 has only two actions in the reduced strategic form 
of the game.

The next example illustrates the notion of Nash equilibrium and points to an undesirable feature that equilibria may 
possess.

• Example 95.2

The game in Figure 96.2 has two Nash equilibria: (A, R) and (B, L), with payoff profiles (2, 1) and (1, 2). The 
strategy profile (B, L) is a Nash equilibrium because given that player 2 chooses L after the history A, it is optimal 
for player 1 to choose B at the start of the game (if she chooses A instead, then given player 2's choice she obtains 0 
rather than 1), and given player l's choice of B it is optimal for player 2 to choose L (since his choice makes no 
difference to the outcome).

Our interpretation of a nonterminal history as a point at which a player may reassess his plan of action leads to an 
argument that the Nash equilibrium (B, L) in this game lacks plausibility. If the history A



   

Page 96

Figure 96.1 
The strategic form (left) and reduced strategic  

form (right) of the extensive game in Figure 93.1

Figure 96.2 
An example of a two-player extensive game.

were to occur then player 2 would, it seems, choose R over L, since he obtains a higher payoff by doing so. The 
equilibrium (B, L) is sustained by the ''threat" of player 2 to choose L if player 1 chooses A. This threat is not 
credible since player 2 has no way of committing himself to this choice. Thus player 1 can be confident that if she 
chooses A then player 2 will choose R; since she prefers the outcome (A, R) to the Nash equilibrium outcome (B, 
L), she thus has an incentive to deviate from the equilibrium and choose A. In the next section we define a notion of 
equilibrium that captures these considerations.

• Example 96.1

The Nash equilibria of the game in Figure 91.1 are ((2, 0), yyy), ((2, 0), yyn), ((2, 0), yny), ((2, 0), ynn), ((1, 1), 
nyy), ((1, 1)', nyn), ((0, 2), nny), ((2, 0), nny), and ((2, 0), nnn). The first four result in the division (2, 0), the next 
two result in the division (1, 1), the next one results in the division (0, 2), and the last two result in the division (0, 
0). All of these equilibria except ((2, 0), yyy) and ((1, 1), nyy) involve an action of player 2 that is iraplausible after 
some history (since he rejects a proposal that gives him at least one of the objects); like the
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equilibrium (B, L) in Example 95.2, they are ruled out by the notion of equilibrium we now define.

6.2 Subgame Perfect Equilibrium

Motivated by the discussion at the end of the previous section we now define the notion of subgame perfect 
equilibrium. We begin by defining the notion of a subgame.

• Definition 97.1

The subgame of the extensive game with perfect information  that follows the history h is 

the extensive game  where H|h is the set of sequences h' of actions for which 

 is defined by  for each  and  is defined by  if and only if 
.

The notion of equilibrium we now define requires that the action prescribed by each player's strategy be optimal, 
given the other players' strategies, after every history. Given a strategy si of player i and a history h in the extensive 
game Γ, denote by si|h the strategy that si induces in the subgame Γ(h) (i.e. si|h(h')=i(h, h' for each  denote by Oh 
the outcome function of Γ(h).

• Definition 97.2

A subgame perfect equilibrium of an extensive game with perfect information  is a strategy profile s* 

such that for every player  and every nontermlnal history  for which P(h)
=i we have

for every strategy si of player i in the subgame F(h).

Equivalently, we can define a subgame perfect equilibrium to be a strategy profile s* in Γ for which for any history 
h the strategy profile s*|h is a Nash equilibrium of the subgame Γ(h).

The notion of subgame perfect equilibrium eliminates Nash equilibria in which the players' threats are not credible. 
For example, in the game in Figure 96.2 the only subgame perfect equilibrium is (A, R) and in the game in Figure 
91.1 the only subgame perfect equilibria are ((2, 0), yyy) and ((1, 1), nyy).

• Example 97.3

(Stackelberg games) A Stackelberg game is a two-player extensive game with perfect information in which a 
"leader" chooses an action from a set A1 and a "follower", informed of the leader's choice,
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chooses an action from a set A2. The solution usually applied to such games in economics is that of subgame 
perfect equilibrium (though this terminology is not always used). Some (but not all) subgame perfect equilibria of a 
Stackelberg game correspond to solutions of the maximization problem

where ui is a payoff function that represents player i 's preferences. If the set Ai of actions of each player i is 
compact and the payoff functions ui are continuous then this maximization problem has a solution.

• Exercise 98.1

Give an example of a subgame perfect equilibrium of a Stackelberg game that does not correspond to a solution of 
the maximization problem above.

To verify that a strategy profile s* is a subgame perfect equilibrium, Definition 97.2 requires us to check, for every 
player i and every subgame, that there is no strategy that leads to an outcome that player i prefers. The following 
result shows that in a game with a finite horizon we can restrict attention, for each player i and each subgame, to 
alternative strategies that differ from  in the actions they prescribe after just one history. Specifically, a strategy 
profile is a subgame perfect equilibrium if and only if for each subgame the player who makes the first move 

cannot obtain a better outcome by changing only his initial action. For an extensive game Γ denote by  the 

length of the longest history in Γ; we refer to  as the length of Γ.

• Lemma 98.2

(The one deviation property) Let  be a finite horizon extensive game with perfect information. 
The strategy profile s* is a subgame perfect equilibrium of Γ if and only if for every player  and every history 

 for which P(h) = i we have

for every strategy si of player i in the subgame Γ(h) that differs from only in the action it prescribes after the 
initial history of Γ(h).

Proof.

If s* is a perfect equilibrium of Γ then it satisfies the condition. Now suppose that s* is not a perfect equilibrium; 
suppose that player i can deviate profitably in the subgame Γ(h'). Then there exists a profitable deviant strategy si 

of player i in Γ(h') for which  for a number of histories h not larger than the length of Γ(h'); since Γ 
has a finite horizon this number is finite. From among
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all the profitable deviations of player i in Γ(h') choose a strategy si for which the number of histories h such that 

 is minimal. Let h* be the longest history h of Γ(h') for which .Then the initial 
history of Γ(h*) is the only history in Γ(h(SP*) at which the action prescribed by si differs from that prescribed by 

s* |h'. Further,  is a profitable deviation in Γ(h*), since otherwise there would be a profitable deviation in Γ(h') 
that differs from , after fewer histories than does si. Thus  is a profitable deviation in Γ(h*) that differs 
from  only in the action that it prescribes after the initial history of F(h*)

• Exercise 99.1

Give an example of an infinite horizon game for which the one deviation property does not hold.

We now prove that every finite extensive game with perfect information has a subgame perfect equilibrium. Our 
proof is constructive: for each of the longest nonterminal histories in the game we choose an optimal action for the 
player whose turn it is to move and replace each of these histories with a terminal history in which the payoff 
profile is that which results when the optimal action is chosen; then we repeat the procedure, working our way back 
to the start of the game. (The following result is known as Kuhn's theorem.)

• Proposition 99.2

Every finite extensive game with perfect information has a subgame perfect equilibrium.

Proof.

Let  be a finite extensive game with perfect information. We construct a subgame perfect 
equilibrium of P by induction on ; at the same time we define a function R that associates a terminal history 
with every history  and show that this history is a subgame perfect equilibrium outcome of the subgame Γ(h).

If  (i.e. h is a terminal history of Γ) define R(h)=h. Now suppose that R(h) is defined for all  with 
 for some  Let h* be a history for which  and let Γ(h*) = i. Since  

we have  for all . Define si(h* to be a  of R(h*, a) over , and 
define R(h*) = R(h*,si(h*)). By induction we have now defined a strategy profile s in Γ; by Lemma 98.2 this strategy 
profile is a subgame perfect equilibrium of Γ.

The procedure used in this proof is often referred to as backwards induction. In addition to being a means by which 
to prove the proposition, this procedure is an algorithm for calculating the set of subgame perfect
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equilibria of a finite game. Part of the appeal of the notion of subgame perfect equilibrium derives from the fact 
that the algorithm describes what appears to be a natural way for players to analyze such a game so long as the 
horizon is relatively short.

One conclusion we can draw from the result, coupled with the results on strictly competitive games in Section 2.5, 
is that each player in chess has a strategy that guarantees his equilibrium payoff (a result first proved by Zermelo 
(1913)). Since chess has finitely many possible histories (once a position is repeated three times the game is 
declared a draw), Proposition 99.2 implies that it has a subgame perfect equilibrium and thus also a Nash 
equilibrium; since it is strictly competitive, Proposition 22.2 implies that the equilibrium payoff is unique and that 
any Nash equilibrium strategy of a player guarantees the player his equilibrium payoff. Thus either White has a 
strategy that guarantees that it wins, or Black has a strategy that guarantees that it wins, or each player has a 
strategy that guarantees that the outcome of the game is either a win for it or a draw.

• Exercise 100.1

Show that the requirement in Kuhn's theorem (Proposition 99.2) that the game be finite cannot be replaced by the 
requirement that it have a finite horizon, nor by the requirement that after any history each player have finitely 
many possible actions.

Note that Kuhn's theorem makes no claim of uniqueness. Indeed, the game in Figure 91.1 has two subgame perfect 
equilibria ((2, 0), yyy) and ((1, 1), nny)) that are not equivalent in terms of either player's preferences. However, it 
is clear that a finite game in which no player is indifferent between any two outcomes has a unique subgame 
perfect equilibrium. Further, if all players are indifferent between any two outcomes whenever any one player is 
indifferent, then even though there may be more than one subgame perfect equilibrium, all players are indifferent 
between all subgame perfect equilibria. This result is demonstrated in the following Exercise.

• Exercise 100.2

Say that a finite extensive game with perfect information satisfies the no indifference condition if

 for all  whenever  for some ,

where z and z' are terminal histories. Show, using induction on the length of subgames, that every player is 
indifferent among all subgame perfect equilibrium outcomes of such a game. Show also that if s and s' are subgame 
perfect equilibria then so is s" where for each player i the
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stategy  is equal to either si or  (i.e. the equilibria of the game are interchangeable).

• Exercise 101.1

Show that a subgame perfect equilibrium of an extensive game Γ is also a subgame perfect equilibrium of the game 
obtained from Γ by deleting a subgame not reached in the equilibrium and assigning to the terminal history thus 
created the outcome of the equilibrium in the deleted subgame.

• Exercise 101.2

Let s be a strategy profile in an extensive game with perfect information Γ; suppose that P(h) = i, si(h) = a, and 

  with . Consider the game Γ ' obtained from Γ by deleting all histories of the form (h, a', h') for 
some sequence of actions h' and let s' be the strategy profile in Γ' that is induced by s. Show that if s is a subgame 
perfect equilibrium of Γ then s' is a subgame perfect equilibrium of Γ '.

• Exercise 101.3

Armies 1 and 2 are fighting over an island initially held by a battalion of army 2. Army 1 has K battalions and army 
2 has L. Whenever the island is occupied by one army the opposing army can launch an attack. The outcome of the 
attack is that the occupying battalion and one of the attacking battalions are destroyed; the attacking army wins 
and, so long as it has battalions left, occupies the island with one battalion. The commander of each army is 
interested in maximizing the number of surviving battalions but also regards the occupation of the island as worth 
more than one battalion but less than two. (If, after an attack, neither army has any battalions left, then the payoff 
of each commander is 0.) Analyze this situation as an extensive game and, using the notion of subgame perfect 
equilibrium, predict the winner as a function of K and L.

6.3 Two Extensions of the Definition of a Game

The model of an extensive game with perfect information, as given in Definition 89.1, can easily be extended in 
two directions.

6.3.1 Exogenous Uncertainty

First we extend the model to cover situations in which there is some exogenous uncertainty. An extensive game 
with perfect information and chance moves is a tuple  where, as before, N is a finite set of players 
and H is a set of histories, and
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•P is a function from the nonterminal histories in H to . (If P(h) = c then chance determines the action 
taken after the history h.)

•For each  with P(h) = c, fc(·|h) is a probability measure on A(h); each such probability measure is assumed 
to be independent of every other such measure. (fc(a|h) is the probability that a occurs after the history h.)

•For each player  is a preference relation on lotteries over the set of terminal histories.

A strategy for each player  is defined as before. The outcome of a strategy profile is a probability distribution 
over terminal histories. The definition of a subgame perfect equilibrium is the same as before (see Definition 97.2).

• Exercise 102.1

Show that both the one deviation property (Lemma 98.2) and Kuhn's theorem (Proposition 99.2) hold for an 
extensive game with perfect information and chance moves.

6.3.2 Simultaneous Moves

To model situations in which players move simultaneously after certain histories, each of them being fully 
informed of all past events when making his choice, we can modify the definition of an extensive game with 
perfect information (Definition 89.1) as follows. An extensive game with perfect information and simultaneous 

moves is a tuple  where N, H, and  for each  are the same as in Definition 89.1, P is a 
function that assigns to each nonterminal history a set of players, and H and P jointly satisfy the condition that for 

every nonterminal history h there is a collection  of sets for which 

A history in such a game is a sequence of vectors; the components of each vector ak are the actions taken by the 

players whose turn it is to move after the history . The set of actions among which each player  can 
choose after the history h is Ai(h); the interpretation is that the choices of the players in P(h) are made 
simultaneously.

A strategy of player  in such a game is a function that assigns an action in Ai(h) to every nonterminal history 

h for which  The definition of a subgame perfect equilibrium is the same as that in Definition 97.2 with 

the exception that "P(h) = i" is replaced by " .
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• Exercise 103.1

Suppose that three players share a pie by using the following procedure. First player 1 proposes a division, then 
players 2 and 3 simultaneously respond either "yes" or "no". If players 2 and 3 both say "yes" then the division is 
implemented; otherwise no player receives anything. Each player prefers more of the pie to less. Formulate this 
situation as an extensive game with simultaneous moves and find its subgame perfect equilibria.

• Exercise 103.2

Consider the following two-player game. First player 1 can choose either Stop or Continue. If she chooses Stop 
then the game ends with the pair of payoffs (1,1). If she chooses Continue then the players simultaneously 
announce nonnegative integers and each player's payoff is the product of the numbers. Formulate this situation as 
an extensive game with simultaneous moves and find its subgame perfect equilibria.

• Exercise 103.3

Show that the one deviation property (Lemma 98.2) holds for an extensive game with simultaneous moves but that 
Kuhn's theorem (Proposition 99.2) does not.

6.4 The Interpretation of a Strategy

As we have noted, the definition of a strategy (92.1) does not correspond to a plan of action since it requires a 
player to specify his actions after histories that are impossible if he carries out his plan. For example, as we saw 
before, a strategy of player 1 in the game in Figure 104.1 specifies both the action she takes at the beginning of the 
game and the action she takes after the history (A, C), even if the action she takes at the beginning of the game is B.

One interpretation for the components of a player's strategy corresponding to histories that are not possible if the 
strategy is followed is that they are the beliefs of the other players about what the player will do in the event he 
does not follow his plan. For example, in the game in Figure 104.1, player 1's action after the history (A, C) can be 
thought of as player 2's belief about the choice that player I will make after this history, a belief that player 2 needs 
to hold in order to rationally choose an action. If player I plans to choose A then player 2's belief coincides with 
player 1's planned action after the history (A, C). However, if player 1 plans to choose B then such a belief cannot 
be derived from player 1's plan of action. In this case player 1's strategy nevertheless supplies such a belief. Note 
that the belief of player 2 about player 1 is
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Figure 104.1 
An extensive game in which player 1  
moves both before and after player 2.

relevant to the analysis of the game even if player 1 plans to choose B, since to rationalize the choice of B player 1 
needs to form a belief about player 2's plan after the history A.

This interpretation has a number of implications. First, it becomes problematic to speak of the "choice of a 
strategy", since a player does not choose the other players' beliefs. Second, in any equilibrium of a game with more 
than two players there is an implicit assumption that all the players other than any given player i hold the same 
beliefs about player i 's behavior, not only if he follows his plan of action but also if he deviates from this plan. 
Third, one has to be careful if one imposes constraints on the strategies since one is then making assumptions not 
only about the players' plans of action, but also about their beliefs regarding each others' intentions when these 
plans of action are violated.

This interpretation of a strategy also diminishes the attraction of the notion of subgame perfect equilibrium. 
Consider again the game in Figure 104.1. There is no way, within the structure of the game, for player 2 to 
rationalize a choice of A by player 1 (since player 1 prefers the history B to every history that can result when she 
chooses A). Thus if she observes that player I chooses A, player 2 must give up a basic assumption about the game: 
she must believe either that player 1 is not rational, that player 1 perceives the game to differ from that in Figure 
104.1, or that player 1 chose A by "mistake" (although such mistakes are not envisaged in the specification of the 
game). Yet the notion of subgame perfect equilibrium requires that, whatever history he observes, player 2 
continue to maintain his original assumptions that player I is rational, knows the game, and does not make 
mistakes.
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Figure 105.1 
The structure of the players' choices in city k  

in the chain-store game. The first number in each  
pair is the chain-store's payoff and the second 

number is player k's payoff.

6.5 Two Notable Finite Horizon Games

In this section we demonstrate some of the strengths and weaknesses of the concept of subgame perfect equilibrium 
by examining two well-known games. It is convenient to describe each of these games by introducing a variable 
time that is discrete and starts at period 1. This variable is not an addition to the formal model of an extensive 
game; it is merely a device to simplify the description of the games and highlight their structures.

6.5.1 The Chain-Store Game

A chain-store (player CS) has branches in K cities, numbered 1,..., K. In each city k there is a single potential 
competitor, player k. In each period one of the potential competitors decides whether or not to compete with player 
CS; in period k it is player k's turn to do so. If player k decides to compete then the chain-store can either fight (F) 
or cooperate (C). The chain-store responds to player k's decision before player k + 1 makes its decision. Thus in 
period k the set of possible outcomes is Q = { Out, (In, c), (In, F)}. If challenged in any given city the chain-store 
prefers to cooperate rather than fight, but obtains the highest pay-off if there is no entry. Each potential competitor 
is better off staying out than entering and being fought, but obtains the highest payoff when it enters and the chain-
store is cooperative. The structure of the players' choices and their considerations in a single period are snmmarized 
in Figure 105.1.

Two assumptions complete the description of the game. First, at every point in the game all players know all the 
actions previously chosen. This allows us to model the situation as an extensive game with perfect
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information, in which the set of histories is , where Qk is the set of all sequences of k 
members of Q, and the player function is given by P(h) = k + 1 if  and P(h) = CS if 

 Second, the payoff of the chain-store in the game is the sum of its payoffs in the K 
cities.

The game has a multitude of Nash equilibria: every terminal history in which the outcome in any period is either 
Out or (In, C) is the outcome of a Nash equilibrium. (In any equilibrium in which player k chooses Out the chain-
store's strategy specifies that it will fight if player k enters.)

In contrast, the game has a unique subgame perfect equilibrium; in this equilibrium every challenger chooses In 
and the chain-store always chooses C'. (In city K the chain-store must choose C', regardless of the history, so that in 
city K - 1 it must do the same; continuing the argument one sees that the chain-store must always choose C'.)

For small values of K the Nash equilibria that are not subgame perfect are intuitively unappealing while the 
subgame perfect equilibrium is appealing. However, when K is large the subgame perfect equilibrium loses some 
of its appeal. The strategy of the chain-store in this equilibrium dictates that it cooperate with every entrant, 
regardless of its past behavior. Given our interpretation of a strategy (see the previous section), this means that 
even a challenger who has observed the chain-store fight with many entrants still believes that the chain-store will 
cooperate with it. Although the chain-store's unique subgame perfect equilibrium strategy does indeed specify that 
it cooperate with every entrant, it seems more reasonable for a competitor who has observed the chain-store fight 
repeatedly to believe that its entry will be met with an aggressive response, especially if there are many cities still 
to be contested. If a challenger enters then it is in the myopic interest of the chain-store to be cooperative, but 
intuition suggests that it may be in its long-term interest to build a reputation for aggressive behavior, in order to 
deter future entry. In Section 12.3.2 we study a perturbation of the chain-store game, in which the challengers are 
imperfectly informed about the motives of the chain-store, that attempts to capture this ides.

6.5.2 The Centipede Game

Two players are involved in a process that they alternately have the opportunity to stop. Each prefers the outcome 
when he stops the process in any period t to that in which the other player does so in period t + 1. However, better 
still is any outcome that can result if the process is not
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Figure 107.1 
A six-period version of the centipede game.

stopped in either of these periods. After T periods, where T is even, the process ends. For T =6 the game is shown 
in Figure 107.1. (The name ''centipede" comes from the shape of the diagram.)

Formally, the set of histories in the game consists of all sequences C(t) = (C,.., C) of length t, for  and all 
sequences S(t) = (C,..., C, S) consisting of t - 1 repetitions of C followed by a single S, for . The player 
function is defined by P(C(t))= 1 if t is even and  and P(C(t)) = 2 if t is odd. Player P(C(t)) prefers S(t + 
2) to S(t) to S(t+1) for , player I prefers C(T) to S(T - 1) to S(T), and player 2 prefers S(T) to C(T).

The game has a unique subgame perfect equilibrium; in this equilibrium each player chooses S in every period. The 
outcome of this equilibrium is the same as the outcome of every Nash equilibrium. To see this, first note that there 
is no equilibrium in which the outcome is C(T). Now assume that there is a Nash equilibrium that ends with player 
i choosing S in period t (i.e. after the history C(t - 1)). If  then player j can increase his payoff by choosing S in 
period t - 1. Hence in any equilibrium player 1 chooses S in the first period. In order for this to be optimal for 
player 1, player 2 must choose S in period 2. The notion of Nash equilibrium imposes no restriction on the players' 
choices in later periods: any pair of strategies in which player 1 chooses S in period 1 and player 2 chooses S in 
period 2 is a Nash equilibrium. (Note however that the reduced strategic form of the game has a unique Nash 
equilibrium.)

In the unique subgame perfect equilibrium of this game each player believes that the other player will stop the 
game at the next opportunity, even after a history in which that player has chosen to continue many times in the 
past. As in the subgame perfect equilibrium of the chain-store game such a belief is not intuitively appealing; 
unless T is very small it seems unlikely that player 1 would immediately choose S at the start of the game. The 
intuition in the centipede game is slightly different from that in the chain-store game in that after any long history
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both players have repeatedly violated the precepts of rationality enshrined in the notion of subgame perfect 
equilibrium. After a history in which both a player and his opponent have chosen to continue many times in the 
past, the basis on which the player should form a belief about his opponent's action in the next period is far from 
clear.

• Exercise 108.1

For any  define an  of a strategic game to be a profile of actions with the property that no player 
has an alternative action that increases his payoff by more than . Show that for any positive integer k and any 

 there is a horizon T long enough that the modification of the centipede game in which all payoffs are divided 
by T has an  in which the first player to stop the game does so in period k.

6.6 Iterated Elimination of Weakly Dominated Strategies

6.6.1 Relation with Subgame Perfect Equilibrium

In Section 4.3 we define the procedure of iterated elimination of weakly dominated actions for a strategic game and 
argue that though it is less appealing than the procedure of iterated elimination of strictly dominated actions (since 
a weakly dominated action is a best response to some belief), it is a natural method for a player to use to simplify a 
game. In the proof of Kuhn's theorem (Proposition 99.2) we define the procedure of backwards induction for finite 
extensive games with perfect information and show that it yields the set of subgame perfect equilibria of the game.

The two procedures are related. Let Γ be a finite extensive game with perfect information in which no player is 
indifferent between any two terminal histories. Then P has a unique subgame perfect equilibrium. We now define a 
sequence for eliminating weakly dominated actions in the strategic form G of Γ (weakly dominated strategies in Γ) 
with the property that all the action profiles of G that remain at the end of the procedure generate the unique 
subgame perfect equilibrium outcome of Γ.

Let h be a history of Γ with P(h) = i and  and let  be the unique action selected by the 
procedure of backwards induction for the history h. Backwards induction eliminates every strategy of player i that 
chooses an action different from  after the history h. Among these strategies, only those that are consistent with h 
(i.e. that choose the component of h that follows h'whenever h' is a subhistory of
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Figure 109.1 
An extensive game (left) and its strategic form (right). 
There is an order of elimination of weakly dominated  
actions in the strategic form that eliminates the unique  
subgame perfect equilibrium of the extensive game.

h with P(h') =i) are weakly dominated actions in G. In the sequence of eliminations that we define, all of these 
weakly dominated actions are eliminated from G at this stage. Having performed this elimination for each history h 

with , we turn to histories h with  and perform an analogous elimination; we continue back 
to the beginning of the game in this way. Every strategy of player i that remains at the end of this procedure 
chooses the action selected by backward induction after any history that is consistent with player i 's subgame 
perfect equilibrium strategy. Thus in particular the subgame perfect equilibrium remains and every strategy profile 
that remains generates the unique subgame perfect equilibrium outcome.

Note, however, that other orders of elimination may remove all sub-game perfect equilibria. In the game in Figure 
109.1, for example, the unique subgame perfect equilibrium is (BE, D), while if in the strategic form the weakly 
dominated action AE is eliminated then D is weakly dominated in the remaining game; if AF is eliminated after D 
then neither of the two remaining action profiles ((BE, C) and (BF, C)) are subgame perfect equilibria of the 
extensive game.

Note also that if some player is indifferent between two terminal histories then there may be (i) an order of 
elimination that eliminates a subgame perfect equilibrium outcome and (ii ) no order of elimination for which all 
surviving strategy profiles generate subgame perfect equilibrium outcomes. The game in Figure 110.1 
demonstrates (i): the strategies AC, AD, and BD of player 1 are all weakly dominated by BC; after they are 
eliminated no remaining pair of actions yields the subgame perfect equilibrium outcome (A, R). If the payoff (1, 2) 
is replaced by (2, 0)
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Figure 110.1 
An extensive game (left) and its strategic form (right).  
There is an order of elimination of weakly dominated  
actions in the strategic form that eliminates a subgame  

perfect equilibrium outcome of the extensive game.

then the modified game demonstrates (ii ): the outcome (A, L), which is not even a Nash equilibrium outcome, 
survives any order of elimination.

6.6.2 Forward Induction

We now present two exampies that show that the iterated elimination of weakly dominated strategies captures 
some interesting features of players' reasoning in extensive games.

• Example 110.1

(BoS with an outside option) Consider the extensive game with perfect information and simultaneous moves shown 
in Figure 111.1. In this game player I first decides whether to stay at home and read a book or to go to a concert. If 
she decides to read a book then the game ends; if she decides to go to a concert then she is engaged in the game 
BoS (Example 15.3) with player 2. (After the history Concert the players choose actions simultaneously.) Each 
player prefers to hear the music of his favorite composer in the company of the other player rather than either go to 
a concert alone or stay at home, but prefers to stay at home rather than either go out alone or hear the music of his 
less-preferred composer.

In the reduced strategic form of this game S is strictly dominated for player I by Book. If it is eliminated then S is 
weakly dominated for player 2 by B. Finally, Book is strictly dominated by B for player 1. The outcome that 
remains is (B, B).This sequence of eliminations corresponds to the following argument for the extensive game. If 
player 2 has to make a decision he knows that player 1 has not chosen Book. Such a choice makes sense for player 
1
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Figure 111.1 
BoS with an outside option (left; an extensive game with  

perfect information and simultaneous moves) and its reduced  
strategic form (right).

only if she plans to choose B. Thus player 2 should choose B also. The logic of such an argument is referred to in 
the literature as "forward induction".

In the following example the iterated elimination of weakly dominated strategies leads to a conclusion that is more 
striking.

• Example 111.1 (Burning money)

Consider the game at the top of Figure 112.1. Two individuals are going to play BoS with monetary payoffs as in 
the left-hand table in the figure. Before doing so player 1 can discard a dollar (take the action D) or refrain from 
doing so (take the action 0); her move is observed by player 2. Both players are risk-neutral. (Note that the two 
subgames that follow player 1's initial move are strategically identical.)

The reduced strategic form of the game is shown in the bottom of Figure 112.1. Weakly dominated actions can be 
eliminated iteratively as follows.

1. DS is weakly dominated for player 1 by 0B

2. SS is weakly dominated for player 2 by SB

3. BS is weakly dominated for player 2 by BB

4. 0S is strictly dominated for player 1 by DB

5. SB is weakly dominated for player 2 by BB

6. DB is strictly dominated for player 1 by 0B

The Single strategy pair that remains is (0B, BB): the fact that player 1 can throw away a dollar implies, under 
iterated elimination of weakly dominated actions, that the outcome is player 1's favorite.
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Figure 112.1 
An extensive game with perfect information and  

simultaneous moves in which player 1 can choose to  
destroy a dollar before playing the game BoS. The  
extensive form is given at the top and the reduced  

strategic form at the bottom.

An intuitive argument that corresponds to this sequence of eliminations is the following. Player 1 must anticipate 
that if she chooses 0 then she will obtain an expected payoff of at least , since for every belief about the behavior 
of player 2 she has an action that yields her at least this expected payoff. Thus if player 2 observes that player 1 
chooses D then he must expect that player 1 will subsequently choose B (since the choice of S cannot possibly 

yield player 1 a payoff in excess of ). Given this, player 2 should choose B if player 1 chooses D; player 1 knows 
this, so that she can expect to obtain a payoff of 2 if she chooses D. But now player 2 can rationalize the choice 0 
by player 1 only by believing that player 1 will choose B (since S can yield player 1 no more than 1), so that the 
best action of player 2 after observing 0 is B. This makes 0 the best action for player 1.

We now discuss these two examples in light of the distinction we made in Section 1.5 between the "steady state" 
and "deductive" approaches to game theory. From the point of view of the steady state interpretation
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the two examples share the same argument: the beliefs of player 2 in the equilibria in which the outcome is Book in 
the first example or (0, (S, S)) in the second example are both unreasonable in the sense that if player 1 deviates (to 
Concert or D) then the only sensible conclusion for player 2 to reach is that player 1 intends to play B 
subsequently, which means that player 2 should play B, making the deviation profitable for player 1. From the 
point of view of the deductive interpretation the two games differ, at least to the extent that the argument in the 
second example is more complex. In the first example player 1 has to reason about how player 2 will interpret an 
action (Concert) that she takes. In the second example player l's reasoning about player 2's interpretation of her 
intended action 0 involves her belief about how player 2 would rationalize an action (D) that she does not take.

The second example raises a question about how to specify a game that captures a given situation. The arguments 
we have made are obviously based on the supposition that the game in Figure 112.1 reflects the situation as 
perceived by the players. In particular, they presume that the players perceive the possibility of disposing of a 
dollar to be relevant to the play of BoS. We believe this to be an implausible presumption: no reasonable person 
would consider the possibility of disposing a dollar to be relevant to the choice of which concert to attend. Thus we 
argue that a game that models the situation should simply exclude the possibility of disposal. (AR argues this to be 
so even if the game, including the move in which player 1 can burn money, is presented explicitly to the players by 
a referee, since before a player analyzes a situation strategically he "edits" the description of the situation, 
eliminating "irrelevant" factors.) On what principles do we base the claim that the possibility of disposing of a 
dollar is irrelevant? The answer is far from clear; some ideas follow. (a) The disposal does not affect the players' 
payoffs in BoS. (b) If the disposal is informative about the rationality of player 1, a sensible conclusion might be 
that a player who destroys a dollar is simply irrational. (In contrast, spending money on advertising, for example, 
may signal useful information.) (c) The dissimilarity between the two parts of the game makes it unlikely that 
player 2 will try to deduce from player 1's behavior in the first stage how she will behave in the second stage.

One interpretation of the arguments in this section is that each player accompanies his actions by messages 
explaining his future intentions. Thus to investigate the arguments further it may seem natural to augment the 
games by adding moves that have such explicit meaning. However, if we do so then we face difficulties, as the 
following example shows.
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Figure 114.1 
The game relevant to Exercise 114.2.

Suppose that BoS is to be played and that player I is able, before BoS starts, to send a message (any string of 
symbols) to player 2. Assume further that each player cares only about the outcome of BoS, not about the content 
of any message that is sent or about the relationship between the action that he takes and the message. This 
extensive game has subgame perfect equilibrium outcomes in which both (B, B) and (S, S) are played in BoS; in 
particular, there is an equilibrium in which player 2 completely ignores player l's message. This is so because 
player 2 is not forced to interpret the message sent by player 1 as meaningful, even if the message is "I am about to 
play B". The fact that a message can be sent does not affect the outcome because the names of the actions do not 
play any role in the concept of Nash equilibrium. A reasonable conclusion appears to be that a modification of the 
model of an extensive game is required if we wish to model communication between players.

• Exercise 114.1

Examine the variant of the game at the top of Figure 112.1 in which player 1 first has the option of burning a 
dollar, then player 2, having observed player l's action, is also allowed to burn a dollar, and finally players 1 and 2 
engage in BoS. Find the set of outcomes that survive iterated elimination of weakly dominated actions and 
compare it with the outcome that does so in the game in Figure 112.1.

• Eexrcise 114.2

Consider the game that differs from that at the top of Figure 112.1 only in that the game in which the players 
engage after player 1 has the option to burn a dollar is that shown in Figure 114.1. Find the set of outcomes that 
survives iterated elimination of weakly dominated actions.

Notes

The notion of an extensive game originated with yon Neumann and Morgenstern (1944); Kuhn (1953) suggested 
the formulation we describe. The notion of subgame perfect equilibrium is due to Selten (1965).
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The one deviation property (Lemma 98.2) is closely related to a principle of dynamic programming. Proposition 
99.2 is due to Kuhn (1953). The idea of regarding games with simultaneous moves as games with perfect 
information is due to Dubey and Kaneko (1984). Some of our discussion of the interpretation of a strategy in 
Section 6.4 is based on Rubinstein (1991). The chain-store game studied in Section 6.5.1 is due to Selten (1978) 
and the centipede game studied in Section 6.5.2 is due to Rosenthal (1981). Some of the issues that these games 
raise are studied by Reny (1993). (See Section 12.3.2 for a variant of the chain-store game due to Kreps and Wilson 
(1982a) and Milgrom and Roberts (1982).) Moulin (1986) gives results that relate the procedure of iterated 
elimination of weakly dominated actions and the solution of subgame perfect equilibrium. The game in Figure 
109.1 is taken (with modification) from Reny (1992). The idea of forward induction (together with the game in 
Example 110.1) is due to Kohlberg; it is discussed in Kohlberg and Mertens (1986). The game in Example 111.1 is 
due to van Damme (1989); see also Ben-Porath and Dekel (1992) and Osborne (1990). (For more discussion of the 
issues that arise in this game see Rubinstein (1991).)

Exercise 103.2 is based on an idea of Kreps; Exercise 108.1 is due to Radner (1980) (see also Radner (1986)).
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7 
Bargaining Games

Groups of people often have to choose collectively an outcome in a situation in which unanimity about the best 
outcome is lacking. Here we study a model, based on an extensive game with perfect information, that captures 
some of the features of such a situation.

7.1 Bargaining and Game Theory

Game theory deals with situations in which people's interests conflict. The people involved may try to resolve the 
conflict by committing themselves voluntarily to a course of action that is beneficial to all of them. If there is more 
than one course of action more desirable than disagreement for all individuals and there is conflict over which 
course of action to pursue then some form of negotiation over how to resolve the conflict is necessary. The 
negotiation process may be modeled using the tools of game theory; the model in this chapter is an example of 
such an analysis.

Since the presence of a conflict of interest is central to game theoretic situations, the theory of bargaining is more 
than just an application of game theory; models of bargaining lie at the heart of the subject and have attracted a 
great deal of attention since its inception. Most of the early work uses the axiomatic approach initiated by John 
Nash, whose work we discuss in Chapter 15. In this chapter we use the model of an extensive game with perfect 
information to study some features of bargaining, in particular the influence of the participants' impatience and risk 
aversion on the outcome.
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7.2 A Bargaining Game of Alternating Offers

Consider a situation in which two bargainers have the opportunity to reach agreement on an outcome in some set X 
and perceive that if they fail to do so then the outcome will be some fixed event D. The set X may, for example, be 
the set of feasible divisions of a desirable pie and D may be the event in which neither party receives any of the pie. 
To model such a situation as an extensive game we have to specify the procedure that the parties follow when 
negotiating.

The procedure we study is one in which the players alternate offers. It can be described conveniently by 
introducing the variable ''time", the values of which are the nonnegative integers. The first move of the game 
occurs in period 0, when player 1 makes a proposal (a member of X), which player 2 then either accepts or rejects. 
Acceptance ends the game while rejection leads to period 1, in which player 2 makes a proposal, which player 1 
has to accept or reject. Again, acceptance ends the game; rejection leads to period 2, in which it is once again 
player l's turn to make a proposal. The game continues in this fashion: so long as no offer has been accepted, in 
every even period player I makes a proposal that player 2 must either accept or reject, and in every odd period 
player 2 makes a proposal that player I must either accept or reject. There is no bound on the number of rounds of 
negotiation: the game has an infinite horizon. (See Section 8.2 for a discussion of the choice between a finite and 
infinite horizon when modeling a situation as a game.) The fact that some offer is rejected places no restrictions on 
the offers that may subsequently be made. In particular, a player who rejects a proposal x may subsequently make a 
proposal that is worse for him than x. If no offer is ever accepted then the outcome is the disagreement event D.

We now give a formal description of the situation as an extensive game with perfect information (see Definition 
89.1). The set of players is N = {1,2}. Let X, the set of possible agreements, be a compact connected subset of a 
Euclidian space, and let T be the set of nonnegative integers. The set of histories H is the set of all sequences of one 

of the following types, where  for all s, A means "accept", and R means "reject.gif".

I. Ø (the initial history), or (x0, R, x1, R, ..., xt, R)

II. (x0, R, x1, R, ..., xt)

III. (x0, R, x1, R., ..., xt, A)

IV. (x0, R, x1, R, ...)



   

Page 119

It follows from this description of the histories that the player whose turn it is to move chooses a member of X after 
a history of type I and a member of {A, R} after a history of type II. Histories of type III and IV are terminal; those 
of type III are finite, while those of type IV are infinite. The player function is defined as follows: P(h) = 1 if h is of 
type I or type II and t is odd or if h is empty; P(h) = 2 if h is of type I or type II and t is even.

To complete the description of the game we need to specify the players' preferences over terminal histories. We 
assume that each player cares only about whether agreement is reached and the time and content of the agreement, 
not about the path of proposals that preceded the agreement. Precisely, the set of terminal histories is partitioned as 
follows: for each  and  the set of all histories of type III for which xt = x is a member of the partition, 
denoted by (x, t), and the set of all histories of type IV is a member of the partition, denoted by D. The preference 

relation of each player i over histories is induced from a preference relation  over the set  of 
members of this partition (that is, each player is indifferent between any two histories that lie in the same member 
of the partition). We assume that each player i's preference relation  satisfies the following conditions.

• No agreement is worse than disagreement:  for all .

•  Time is valuable:  for every period  and every agreement , with strict preference if 
.

•  Preferences are stationary:  if and only if , and  if and only if 
.

•  Preferences are continuous: if  and  for all n, {xn} converges to  {yn} converges to , and 

 for all n, then .

These assumptions imply that for any  there is a continuous function  such that the preference 
relation  is represented on X × T by the function δtui in the sense that  if and only if 

. (This follows from Fishburn and Rubinstein (1982, Theorems 1 and 2).) Note that if δtui(x) 

represents  then for any  the function  where vi is defined by  also 

represents . Thus if δtui(x) and  are representations of two preference relations and  then we cannot 
conclude that the first preference relation is more "patient.gif" than the second unless vi = ui.



   

Page 120

Figure 120.1 
A representation of the first two periods of a bargaining game of alternating offers.

We refer to the extensive game with perfect information  thus defined as the bargaining game of 
alternating offers .

The first two periods of such a game are illustrated in Figure 120.1. (Note that x0 is only one of the proposals 
available to player 1 at the start of the game, and x1 is only one of the proposals available to player 2 after he rejects 
x0.)

An important example of a bargaining game of alternating offers is the following.

• Example 120.1 (Split-the-pie)

The set of possible agreements X is the set of all divisions of a desirable pie:

The preference relation  of each player i over  has the properties that  if and only if 
 (pie is desirable) and D ~1 ((0,1),0) and D ~2 ((1,0),0) (in the event of disagreement both players receive 

nothing). Thus  can be represented on X × T by a function of the form  in which 0 < δi < 1 and wi is 
increasing and continuous, with wi(0) = 0.
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The set of Nash equilibria of a bargaining game of alternating offers is very large. In particular, for any  
there is a Nash equilibrium in which the players immediately agree on x* (i.e. player l's equilibrium strategy assigns 
x* to the initial history and player 2's strategy assigns A to the history x*). One such equilibrium is that in which 
both players always propose x* and always accept a proposal x if and only if x = x*. (Alternatively, each player i 

could accept a proposal x in period t if and only if  In addition, for many specifications of the 
players' preferences there are Nash equilibria in which an agreement is not reached immediately. For example, for 
any agreement x and period t in a split-the-pie game there is a Nash equilibrium for which the outcome is the 
acceptance of x in period t. One such equilibrium is that in which through period t - 1 each player demands the 
whole pie and rejects all proposals, and from period t on proposes x and accepts only x.

These Nash equilibria illustrate the point we made at the end of Section 6.1.3: the notion of Nash equilibrium does 
not exclude the use of "incredible threats". Consider the Nash equilibrium of a split-the-pie game in which both 

players always propose x* and player i accepts a proposal x in period t if and only if . If 

 then by the continuity of the players' preferences there is an agreement x in which x2 is slightly leas 

than  for which  and . In the equilibrium player 2's strategy dictates that in any 
period he reject such a proposal x; this "threat.gif" induces player 1 to propose x*. Player 2's threat is incredible, 
given player 1's strategy: the best outcome that can occur if player 2 carries out his threat to reject x is that there is 
agreement on x* in the next period, an outcome that player 2 likes leas than agreement on x in period 0, which he 
can achieve by accepting x. As we explained in the previous chapter, the notion of subgame perfect equilibrium is 
designed to isolate equilibria in which no player's strategy has this unattractive property.

7.3 Subgame Perfect Equilibrium

7.3.1 Characterization

We now show that under some additional assumptions a bargaining game of alternating offers has an essentially 
unique subgame perfect equilibrium, which we characterize. The first assumption is designed to avoid 
redundancies.
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A1 For no two agreements x and y is it the case that (x, 0) ~i (y, 0) for both i = 1 and i = 2.

The next assumption simplifies the analysis.

A2 (bi, 1) ~j (bi, 0) ~j D for i = 1, 2,  where bi is the best agreement for player i.

To state the next two assumptions we define the Pareto frontier of the set X of agreements to be the set of 
agreements x for which there is no agreement y with  for i = 1, 2. We refer to a member of the Pareto 
frontier as an efficient agreement.

A3 The Pareto frontier of X is strictly monotone: if an agreement x is efficient then there is no other agreement y 

such that  for both players i. 
A4 There is a unique pair (x*, y*) of agreements for which (x*, 1) ~1 (y*, 0), (y*, l) ~2 (x*, 0), and both x* and y* are 
efficient.

The most important of these assumptions is A4. In a split-the-pie game a sufficient condition for it to be satisfied is 
that each player's preference relation exhibit "increasing loss to delay": xi - fi(x) is an increasing function of xi for 
each player i, where f(x) is the agreement for which (f(x),0) ~i (x, 1). Another case in which assumption A4 is 

satisfied is that in which the Pareto frontier of the set X of agreements is the set  for some 
decreasing concave function g and the preference relation of each player i is represented by the function  for 
some 0 < δi < 1.

• Proposition 1221

A bargaining game of alternating offers  that satisfies A1 through A4 has a subgame perfect equilibrium. 
Let (x*, y*) be the unique pair of efficient agreements for which

In every subgame perfect equilibrium player I always proposes x*, accepts y* and any proposal x for which 
, and rejects any proposal x for which ; player 2 always proposes y*, accepts x* and 

any proposal x for which , and rejects any proposal x for which .

Proof.

First we verify that the pair of strategies defined in the proposition is a subgame perfect equilibrium. To do so we 
use the fact that the game has the "one deviation property": a pair of strategies is a subgame perfect equilibrium if 
and only if for every history h the player whose
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turn it is to move cannot deviate profitably by changing his action after h alone. This property holds for every game 
with a finite horizon, as Lemma 98.2 shows. The proof that it holds also for a bargaining game of alternating offers 
is left as an exercise.

• Exercise 123.1

Show that every bargaining game of alternating offers satisfies the one deviation property.

We now need to check the optimality only of the action of each player after any possible nonterminal history. The 
most interesting case is a history of type II. Suppose that it is player 2's turn to respond to a proposal xt in period t. 
If he accepts this proposal then the outcome is (xt, t) while if he rejects it the outcome is (y*, t+1). Since his 

preferences are stationary it follows from (122.2) that  if and only if  and thus his 
acceptance rule is optimal.

We now turn to the more difficult part of the proof: the argument that the subgame perfect equilibrium is 
essentially unique. (The only indeterminacy is in each player's response to a proposal that he regards as indifferent 
to the equilibrium proposal of the other player and the other player regards as worse; note that no such proposal is 
efficient.)

Given the stationarity of the players' preferences, for i = 1, 2 all subgames that begin with a proposal of player i are 
identical. Let Gi be such a subgame (G1 is the game itself). Choose  and for i = 1, 2, let  be such 

that δtui(x) represents  on X × T. Let Mi(Gi) be the supremum of the set of subgame perfect equilibrium (SPE) 
payoffs of player i in Gi:

Mi(Gi) = sup{δtui(x): there is a SPE of Gi with outcome (x, t)}.

Let mi(Gi) be the corresponding infimum.

Step 1.

M1(G1) = m1(G1) = u1(x*) and M2(G2) = m2(G2) = u2(y*). (That is, in every SPE of G1 the payoff of player 1 is u1(x*) 
and in every SPE of G2 the payoff of player 2 is u2(y*).)

Proof.

Describe the pairs of payoffs on the Pareto frontier of X by the function φ if x is efficient then u2(x) = φ(u1(x)). By 
the connectedness of X and the continuity of the preference relations the domain of φ is an interval and φ is 
continuous; by A3 it is one-to-one and decreasing.

We first show that
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If player 1 rejects a proposal of player 2 in the first period of G2 then her payoff is not more than δM1(G1). Hence in 
any SPE of G2 she must accept any proposal that gives her more than δM1(G1). Thus player 2's payoff is not less 
than φ(δM1(G1)) in any SPE of G2.

We now show that

In any SPE of G1 player 2's payoff is not less than δm2(G2) since player 2 can always reject the opening proposal of 
player 1. Thus the payoff that player 1 can obtain in any SPE of G1 does not exceed φ-1(δm2(G2)).

Finally, we argue that Ml(G1) = u1(x*). Since there is an SPE of G1 in which immediate agreement is reached on x* 

we have . We now show that our assumptions about the set of agreements and the uniqueness of 
the solution of (122.2) imply that 

By A2 we have δu2(b1) = u2(b1), so that u2(b1 = 0; by A3 and the definition of φ we have δφ(δu1(b1)) > 0 = u2(b1) = φ
(u1(b1). Since is decreasing we conclude that u1(b1) > φ-1(δφ(δu1(b1))). Now, by (123.2) and (124.1) we have .gif">.

Similarly we can show that m1(G1) = u1(x*), M2(G2 = u2(y*), and m2(G2) = u2(y*), completing the proof of this step.

Step 2.

In every SPE of G1 player l's initial proposal is x*, which player 2 immediately accepts.

Proof.

In every SPE of G1 player 1's payoff is u1(x*) (by Step 1) and player 2's payoff is at least δu2(y*) = u2(x*), since the 
rejection of player 1's proposal leads to the subgame G2, in which player 2's SPE payoff is u2(y*). Thus by A1 and 
the fact that x* is efficient, player 1's opening proposal is x*, which is accepted by player 2.

Step 3.

In every SPE of G1 player 2's strategy accepts any proposal x for which  and rejects any proposal x 

for which .

Proof.

A rejection by player 2 leads to G2, in which player 2's payoff is u2(y*) (by Step 1). Since u2(x*) = δu2(y*), player 2 
must accept
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any proposal x for which  and reject any x for which . (There is no restriction on 
player 2's response to a proposal  for which (x, 0) ~2 (x*, 0).)

Finally, arguments analogous to those in Steps 3 and 4 apply to player 2's proposals and player 1's acceptance rule 
in every SPE of G2.

Note that if all the members of the set X of agreements are efficient (as, for example, in a split-the-pie game) then a 
bargaining game of alternating offers has a unique (not just essentially unique) subgame perfect equilibrium. The 
following example is frequently used in applications.

•Example 125.1

Consider a split-the-pie game in which each player i 's preferences are represented by the function  for some 
. Then we have x* = (a*, 1 - a*) and y* = (1 -b*, b*), where a* and b* solve the pair of equations 1 - b* = 

δ1a* and 1- a* = δ2b*, so that a* = (1 - δ2)/(1 - δ1δ2) and b* = (1 - δ1)/(1 - δ1δ2).

An interesting case that is not covered by Proposition 122.1 is a variant of a split-the-pie game in which each 
player i incurs the cost ci > 0 for every period in which agreement is not reached (and there is no upper hound on 
the total of these costs that a player can incur). That is, player i 's payoff if the agreement x is concluded in period t 
is xi - cit. This case violates A2, since  for every agreement x. It also violates A4: if  then there 
is no pair of agreements satisfying the two conditions while if cl = c2 then there are many such pairs of agreements.

• Example 125.2

a. Show that if cl < c2 then the game described in the previous paragraph has a unique subgame perfect equilibrium, 
and that this equilibrium has the same structure as that in Proposition 122.1 with x* = (1,0) and y* = (1- c1, c1).

b. Show that if cl = c2 = c < 1 then the game has many subgame perfect equilibrium outcomes including, if , 
equilibria in which agreement is delayed.

7.3.2 Properties of Equilibrium

Efficiency

The structure of a bargaining game of alternating offers allows bargaining to continue for ever, but, under 
assumptions A1 through A4, in all subgame perfect equilibria agreement is reached immediately
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on an agreement on the Pareto frontier of X (so that the outcome of the game is efficient).

Stationarity of Strategies

The subgame perfect equilibrium strategies are stationary: for any history after which it is player i 's turn to propose 
an agreement he proposes the same agreement, and for any history after which it is his turn to respond to a proposal 
he uses the same criterion to choose his response. We have not restricted players to use stationary strategies; rather, 
such strategies emerge as a conclusion.

First Mover Advantage

Consider again Example 125.1. If δ1 = δ2 = δ then the amount of the pie that player 1 gets is . The 
only asymmetry in the game is that player 1 moves first; the fact that she obtains more than half of the pie indicates 
that there is an advantage to being the first to make a proposal. This first-mover advantage holds more generally: 

using A3 and the fact that x* and y* are efficient, we have  in any bargaining game of alternating 
offers that satisfies A1 through A4.

Comparative Statics of Impatience

The key feature of the players' preferences is that they exhibit impatience. It seems reasonable to expect that the 
more impatient a player the worse off he is in equilibrium. This is indeed so in the game in Example 125.1, since 
the values of a* and b* are increasing in δ1 and δ2 respectively. We now generalize this result to any bargaining 
game of alternating offers that satisfies A1 through A4.

Define  to be at least as impatient as  if both induce the same ordering on X × {0} and  
whenever (x, 1) ~i, (y, 0).

• Proposition 126.1

Let  and  be bargaining games of alternating offers that satisfy A I through A4 and suppose that 
 is at least as impatient as  and . Let x* be the agreement reached in every subgame perfect 

equilibrium of  and let x' be the agreement reached in every subgame perfect equilibrium of . 
Then .

Proof.

Assume not (so that, in particular, ). Consider the subset S of X × X consisting of all pairs (x, y) such that x 
and y are efficient and (y, 1) ~2 (x, 0). Let y' be the agreement for which . Since (x', l) ~'1 (y',0) (by 

(122.2)) it follows that  and hence  by A4. By A2 we have , and by the 
assumption that time is valuable and A4 we have . Since X is compact and connected, the Pareto 
frontier of X is compact and connected, so that there is an agreement  on the path on the Pareto
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frontier that connects x' and b1 such that  and . Since  and  
we have , contradicting A4.

7.4 Variations and Extensions

7.4.1 The Importance of the Procedure

To model bargaining as an extensive game we need to give an explicit description of the sequential structure of the 
decision problems encountered by the players: we need to specify a bargaining procedure. The variant of the model 
of a bargaining game of alternating offers considered in the next Exercise demonstrates that the structure of the 
bargaining procedure plays an important role in determining the outcome.

• Exercise 127.1

Assume that player I makes all the offers (rather than the players alternating offers). Show that under A1 through 
A3 the resulting game has an essentially unique subgame perfect equilibrium, in which regardless of the players' 
preferences the agreement reached is b1, the best possible agreement for player 1. 

In a bargaining game of alternating offers the procedure treats the players almost symmetrically. The fact that the 
player to make the first offer is better off than his opponent in such a game is a vestige of the extreme advantage 
that a player enjoys if he is the only one to make offers.

7.4.2 Variants that Eliminate a Key Feature of the Model

A key feature of the model of a bargaining game of alternating offers is the ability of one player to force the other 
to choose between an agreement now and a more desirable agreement later. To illustrate this point, consider first 
the game in which the players make proposals simultaneously in each period, agreement being reached only if the 
proposals in any given period are compatible. In this case neither player can force the other to choose between an 
agreement now and a better agreement later; every efficient agreement is a subgame perfect equilibrium outcome.

To illustrate the point further, consider the case in which the set X of agreements contains finitely many elements, 
so that a player's ability to offer an agreement today that is slightly better than the agreement that the responder 
expects tomorrow is limited. In this case the range
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of subgame perfect equilibrium payoffs depends on the richness of the set X. The following Exercise demonstrates 
this point in a specific case.

• Exercise 128.1

Consider a variant of a split-the-pie game in which the pie can be divided only into integral multiples of a basic 
indivisible unit  and the preferences of each player i are represented by the function δtxi. Denote this game by 

 and the game in which the pie is perfectly divisible by Γ(0).

a. Show that if δ is close enough to I then for every agreement  there is a subgame perfect equilibrium of 
 for which the outcome is (x, 0).

b. Show that if δ is close enough to 1 then for every outcome  there is a subgame perfect 
equilibrium of  in which the outcome is z (use the equilibrium strategies in part a for x = (1, 0) and x = (0,1) to 
deter deviations).

c. Show conversely that for every  and every η > 0 there exists  such that if  then for i = 1, 2 the 
difference between player i 's payoff in every subgame perfect equilibrium of  and his payoff in the unique 
subgame perfect equilibrium of Γ(0) is less than η and agreement is reached immediately.

7.4.3 Opting Out

An interesting class of extensions of the model of a bargaining game of alternating offers is obtained by allowing 
one or both players, at various points in the game, to ''opt out" (without requiring the approval of the other player) 
rather than continue bargaining. A simple case is that in which only one of the players, say player 2, can opt out, 
and can do so only when responding to an offer. Denote the outcome in which he does so in period t by (Out, t), 
and assume that (Out, t) ~1 D for all .

Suppose first that , where y* is the unique subgame perfect equilibrium proposal of player 2 in the 
standard bargaining game of alternating offers. Then the ability of player 2 to opt out has no effect on the outcome: 
although player 2 has an additional 'threat.gif", it is worthless since he prefers to continue bargaining and obtain the 
outcome y* with one period of delay.

Now suppose that . Then player 2's threat is not worthless. In this case (under A1 through A4), in 

any subgame perfect equilibrium player 1 always proposes the efficient agreement  for which , 
which player 2 accepts, and player 2 always proposes
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the efficient agreement  for which  which player 1 accepts. Thus in this case the ability of player 2 
to Exercise an outside option causes the outcome of bargaining to be equivalent for him to the outcome that results 
if he opts out.

• Exercise 129.1

Prove the result that we have just described for a split-the-pie game in which each player i 's preference relation 
over  is represented by ui where ui(x, t) = δtxi, ui(D) = 0, u1(Out, t) = 0 for all t, and u2

(Out, t) = δtb for some b < 1 and some .

This result is sometimes called the "outside option principle". It is not robust to the assumptions about the points at 
which the players can Exercise their outside options. For example, if one of the players can opt out at the end of 
any period, not just after he rejects an offer, then the game has a great multiplicity of subgame perfect equilibria 
(see Shaked (1994) and Osborne and Rubinstein (1990, Section 3.12)).

7.4.4 A Model in Which There Is a Risk of Breakdown

Finally, consider a modification of the model of a bargaining game of alternating offers in which at the end of each 
period a chance move ends the game with probability . (We consider this case again in Section 15.4.) 
Assume that the players do not care about the time at which agreement is reached; the pressure on each player to 
reach agreement is not the player's impatience but the risk that the negotiations will break down. In the extensive 
game (with perfect information and chance moves) that models this situation there are six types of history. Four of 
these types are analogs of types I through IV (see Section 7.2) in which each occurrence of R is replaced by (R, C), 
where C is the action of chance in which bargaining continues (rather than breaks down). A history of type V takes 
the form (x0, R, C, x1, R, C, ..., xt, R), after which it is the turn of chance to move, and a history of type VI is 
terminal and takes the form (x0, R, C, x1, R, C', ..., xt, R, B), where B stands for breakdown. We assume that the 
players are indifferent among all terminal histories in which no agreement is reached (i.e. among all histories of 
types IV and VI). Given the presence of chance moves, we need to specify the players' preferences over the set of 
lotteries over terminal histories. As before, we assume that these preferences depend only on the agreement finally 
reached (not on the path of rejected agreements). Further, we assume that the preference relation of each player i is 
represented by
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a von Neumann-Morgenstern utility function . (Since histories of type IV do not occur with 
positive probability, whatever strategies the players employ, the players' preference relations do not have to rank 

D.) Finally, we assume that ui(B) = 0,  for all , and there is a unique pair (x*, y*) of efficient 
agreements satisfying

(This is so, for example, if the players are splitting a pie, ui(xl, x2) = wi(xi) for some increasing concave function wi, 
and wi(0) = 0.)

• Exercise 130.2

Prove the analog of Proposition 122.1 for the variant of a bargaining game of alternating offers described in the 
previous paragraph.

7.4.5 More Than Two Players

Proposition 122.1 does not extend to the case in which there are more than two players, as the following three-
player variant of a split-the-pie game (Example 120.1) demonstrates. The set of possible agreements is

and each player i 's preferences are represented by ui(x, t) = δtxi for some 0 < δ < 1. The bargaining procedure is the 
following. Player 1 initially makes a proposal. A proposal x made by player j in period t is first considered by 
player j + 1 (mod 3), who may accept or reject it. If he accepts it, then player j + 2 (mod 3) may accept or reject it. 
If both accept it, then the game ends and x is implemented. Otherwise player j + 1 (mod 3) makes the next 
proposal, in period t + 1.

Let .gif"> guarantees that it is optimal for him to reject player i 's proposal. The main force holding this equilibrium
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together is that a player is rewarded for rejecting a deviant offer: after his rejection, he obtains all of the pie.

• Exercise 131.1

Show that if each player is restricted to use a stationary strategy (in which he makes the same proposal whenever 
he is the proposer, uses the same rule to accept proposals whenever he is the first responder, and uses the same rule 
to accept proposals whenever he is the second responder) then the unique subgame perfect equilibrium of the game 
described above assigns the fraction δk-1/(1 + δ + δ2) of the pie to player k for k = 1, 2, 3.

Notes

The model in this chapter is due to Rubinstein (1982), as is Proposition 122.1. For an exposition and analysis of the 
model and its applications see Osborne and Rubinstein (1990).

Two precursors of the model that effectively restrict attention to finite-horizon games are found in Stahl *  (1972) 
and Krelle (1976, pp. 607-632). For a discussion of time preferences see Fishburn and Rubinstein (1982). The 
proof of Proposition 122.1 is a modification of the original proof of Rubinstein (1982), following the ideas of 
Shaked and Sutton (1984a). The material in Section 7.4.2 is discussed in Muthoo (1991) and van Damme, Selten, 
and Winter (1990). The model in Section 7.4.3, in which a player can opt out, was suggested by Binmore, Shaked, 
and Sutton; see for example Shaked and Sutton (1984b) and Binmore (1985). The model in Section 7.4.4 is 
discussed in Binmore, Rubinstein, and Wolinsky (1986). The example discussed in Section 7.4.5 is due to Shaked; 
see Osborne and Rubinstein (1990, Section 3.13) for more detail. For another interpretation of the model of a 
bargaining game of alternating offers see Rubinstein (1995).
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8 
Repeated Games

The model of a repeated game is designed to examine the logic of long-term interaction. It captures the idea that a 
player will take into account the effect of his current behavior on the other players' future behavior, and aims to 
explain phenomena like cooperation, revenge, and threats.

8.1 The Basic Idea

The basic idea behind the theory is illustrated by the case in which two individuals repeatedly play the Prisoner's 
Dilemma (reproduced in Figure 134.1). Recall that this game has a unique Nash equilibrium, in which each player 
chooses D; further, for each player the action D strictly dominates the action C, so that the rationale behind the 
outcome (D, D) is very strong. Despite this, both players are better off if they "cooperate" and choose C. The main 
idea behind the theory of repeated games is that if the game is played repeatedly then the mutually desirable 
outcome in which (C, C) occurs in every period is stable if each player believes that a defection will terminate the 
cooperation, resulting in a subsequent loss for him that outweighs the short-term gain.

The primary achievement of the theory is to isolate types of strategies that support mutually desirable outcomes in 
any game. The theory gives us insights into the structure of behavior when individuals interact repeatedly, structure 
that may be interpreted in terms of a "social norm". The results that we describe show that the social norm needed 
to sustain mutually desirable outcomes involves each player's "punishing" any player whose behavior is 
undesirable. When we impose the requirement embedded in the notion of subgame perfect equilibrium that threats 
of punishment be credible, the social norm must also ensure that the punishers have an incentive to carry out the 
threats in circumstances
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Figure 134.1 
The Prisoner's Dilemma.

in which the social norm requires them to do so. In this case the precise nature of the punishment depends on how 
the players value future outcomes. Sometimes it is sufficient that a punishment phase last for a limited amount of 
time, after which the players return to pursue the mutually desirable outcome; sometimes the social norm must 
entail future rewards for players who ca out costly punishments.

Although we regard these results about the structure of the equilibrium strategies to be the main achievement of the 
theory, most of the results in the literature focus instead on the set of payoffs that can be sustained by equilibria, 
giving conditions under which this set consists of nearly all reasonable payoff profiles. These "folk theorems" have 
two sides. On the one hand they demonstrate that socially desirable outcomes that cannot be sustained if players are 
short-sighted can be sustained if the players have long-term objectives. On the other hand they show that the set of 
equilibrium outcomes of a repeated game is huge, so that the notion of equilibrium lacks predictive power. "Folk 
theorems" are the focus of much of the formal development in this chapter. Nevertheless, we stress that in our 
opinion the main contribution of the theory is the discovery of interesting stable social norms (strategies) that 
support mutually desirable payoff profiles, and not simply the demonstration that equilibria exist that generate such 
profiles.

8.2 Infinitely Repeated Games vs. Finitely Repeated Games

The model of a repeated game has two versions: the horizon may be finite or infinite. As we shall see, the results in 
the two cases are different. An extreme (and far from general) case of the difference is that in which the constituent 
game is the Prisoner's Dilemma. We shall see below that in any finite repetition of this game the only Nash 
equilibrium outcome is that in which the players choose (D, D) in every period; on the other hand, in the infinitely 
repeated game the set of subgame
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perfect equilibrium payoff profiles is huge. Thus in applying the model of a repeated game in specific situations we 
may need to determine whether a finite or infinite horizon is appropriate.

In our view a model should attempt to capture the features of reality that the players perceive; it should not 
necessarily aim to describe the reality that an outside observer perceives, though obviously there are links between 
the two perceptions. Thus the fact that a situation has a horizon that is in some physical sense finite (or infinite) 
does not necessarily imply that the best model of the situation has a finite (or infinite) horizon. A model with an 
infinite horizon is appropriate if after each period the players believe that the game will continue for an additional 
period, while a model with a finite horizon is appropriate if the players clearly perceive a well-defined final period. 
The fact that players have finite lives, for example, does not imply that one should always model their strategic 
interaction as a finitely repeated game. If they play a game so frequently that the horizon approaches only very 
slowly then they may ignore the existence of the horizon entirely until its arrival is imminent, and until this point 
their strategic thinking may be better captured by a game with an infinite horizon.

AR In a situation that is objectively finite, a key criterion that determines whether we should use a model with a 
finite or an infinite horizon is whether the last period enters explicitly into the players' strategic considerations. For 
this reason, even some situations that involve a small number of repetitions are better analyzed as infinitely 
repeated games. For example, when laboratory subjects are instructed to play the Prisoner's Dilemma twenty times 
with payoffs as in Figure 134.1 (interpreted as dollars), I believe that their lines of reasoning are better modeled by 
an infinitely repeated game than by a 20-period repeated game, since except very close to the end of the game they 
are likely to ignore the existence of the final period.

MJO The behavior of experimental subjects who play the Prisoner's Dilemma repeatedly a finite number of times 
is inconsistent with the unique subgame perfect equilibrium of the finitely repeated game. The fact that it may be 
consistent with some subgame perfect equilibrium of the infinitely repeated game is uninteresting since the range 
of outcomes that are so-consistent is vast. Certainly the subgame perfect equilibria of the infinitely repeated game 
give no insights about the dependence of the subjects' behavior on the magnitude of the payoffs and the length of 
the game. (For a summary of the evidence see Rapoport (1987).) The experimental results definitely indicate that 
the notion of subgame per-
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fect equilibrium in the finitely repeated Prisoner's Dilemma does not capture human behavior. However, this 
deficiency appears to have more to do with the backwards induction inherent in the notion of subgame perfect 
equilibrium than with the finiteness of the horizon per se. A model that will give us an understanding of the facts is 
likely to be a variant of the finitely repeated game; some characteristics of the equilibria of the infinitely repeated 
game may be suggestive, but this model itself appears unpromising as an explanatory tool. Moreover, in contexts in 
which the constituent game has multiple Nash equilibria, the equilibria of finitely repeated games correspond well 
with the casual observation that people act cooperatively when the horizon is distant and opportunistically when it 
is near; the equilibria of infinitely repeated games can give us no insight into such behavior. Finally, in situations in 
which people's discount factors decline to zero over time, even if they never become zero (i.e. no fixed finite 
horizon is perceived), the equilibrium outcomes have more in common with those of finitely repeated games than 
with those of infinitely repeated games.

AR In much of the existing literature the fact that the set of equilibria in a long finitely repeated game may be very 
different from the set of equilibria of an infinite repetition of the same constituent game is regarded as "disturbing". 
In contrast, I find it attractive: the two models capture a very realistic feature of life, namely the fact that the 
existence of a prespecified finite period may crucially affect people's behavior (consider the last few months of a 
presidency or the fact that religions attempt to persuade their believers that there is "life after death").

MJO First, for a large set of constituent games there is no discontinuity between the outcomes of the associated 
finitely and infinitely repeated games (see Section 8.10). Second, in some cases in which the discontinuity does 
exist it is indeed unappealing. If people who are faced with a known fixed distant horizon behave as if the horizon 
is infinite then this should be the prediction of a model with a fixed finite horizon; if it is not then doubts are raised 
about the plausibility of the notion of subgame perfect equilibrium in other contexts.

8.3 Infinitely Repeated Games: Definitions

The model of an infinitely repeated game captures a situation in which players repeatedly engage in a strategic 
game G, which we refer to as the constituent game. Throughout we restrict attention to games in which
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the action set of each player is compact and the preference relation of each player is continuous. There is no limit 
on the number of times that G is played; on each occasion the players choose their actions simultaneously. When 
taking an action, a player knows the actions previously chosen by all players. We model this situation as an 
extensive game with perfect information (and simultaneous moves) as follows.

• Definition 137.1

Let  be a strategic game; let . An infinitely repeated game of G is an extensive 

game with perfect information and simultaneous moves  in which

•   (where Ø is the initial history and  is the set of infinite sequences  of action 
profiles in G)

• P(h) = N for each nonterminal history 

•   is a preference relation on  that extends the preference relation  in the sense that it satisfies the 
following condition of weak separability: if  and  then 

 
for all values of t.

A history is terminal if and only if it is infinite. After any nonterminal history every player  chooses an action 
in Ai. Thus a strategy of player i is a function that assigns an action in Ai to every finite sequence of outcomes in G.

We now impose restrictions on the players' preference relations in addition to weak separability. We assume 
throughout that player i's preference relation  in the repeated game is based upon a payoff function ui that 

represents his preference relation  in G: we assume that whether  depends only on the relation 
between the corresponding sequences (ui(at)) and (ui(bt)) of payoffs in G.

We consider three forms of the preference relations, the first of which is defined as follows.

•  Discounting: There is some number  (the discount factor) such that the sequence  of real numbers is 

at least as good as the sequence  if and only if .

According to this criterion a player evaluates a sequence  of payoffs by  for some discount factor 
. (Since we have assumed that the values of the player's payoffs lie in a bounded set, this sum is well-

defined.) When the players' preferences take this form we
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refer to the profile  as the payoff profile in the repeated game associated with the sequence 

 of payoff profiles in the constituent game.

Preferences with discounting treat the periods differently: the value of a given gain diminishes with time. We now 
specify two alternative criteria that treat all periods symmetrically. In one criterion a player evaluates a sequence 

 of payoffs essentially by its limiting average . However, this limit does not always exist (the 
average payoff over t periods may continually oscillate as t increases); the criterion that we discuss is defined as 
follows. (It is convenient to define this criterion in terms of the strict preference relation.)

•  Limit of means: The sequence  of real numbers is preferred to the sequence  if and only if lim inf 

 (i.e. if and only if there exists  such that  for all but a finite number of 
periods T).

When the players' preferences take this form we refer to the profile , if it exists, as the payoff 

profile  in the repeated game associated with the sequence  of payoff profiles in the constituent game.

Note that if the sequence  is preferred to the sequence  according to the limit of means then there is a 

discount factor δ close enough to 1 such that  is preferred to  by the discounting criterion.

Under the discounting criterion a change in the payoff in a single period can matter, whereas under the limit of 
means criterion payoff differences in any finite number of periods do not matter. A player whose preferences 
satisfy the limit of means is ready to sacrifice any loss in the first finite number of periods in order to increase the 
stream of payoffs he eventually obtains. For example, the stream (0,..., 0, 2, 2,...) of payoffs is preferred by the 
limit of means criterion to the constant stream (1,1,...) independent of the index of the period in which the player 
first gets 2 in the first stream. At first sight this property may seem strange. However, it is not difficult to think of 
situations in which decision makers put overwhelming emphasis on the long run at the expense of the short run 
(think of nationalist struggles).

We now introduce a criterion that treats all periods symmetrically and puts emphasis on the long run but at the 
same time is sensitive to a change in payoff in a single period. (Again we define the criterion in terms of the strict 
preference relation.)
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• Overtaking: The sequence  is preferred to the sequence  if and only if lim inf .

The following examples illustrate some of the differences between the three criteria. The sequence (1, -1, 0, 0,...) is 
preferred for any  by the discounting criterion to the sequence (0, 0,...), but according to the other two 
criteria the two sequences are indifferent. The sequence (-1, 2, 0, 0, ...) is preferred to the sequence (0, 0, ...) 
according to the overtaking criterion, but the two sequences are indifferent according to the limit of means. The 
sequence (0, ..., 0, 1, 1, ...) in which M zeros are followed by a constant sequence of 1's is preferred by the limit of 
means to (1, 0, 0, ...) for every value of M, but for every there exists M* large enough that for all M > M* the latter 
is preferred to the former according to the discounting criterion for that value of δ.

Let  be a strategic game and for each  let ui be a payoff function that represents . We 

define the δ-discounted infinitely repeated game of  to be the infinitely repeated game for which the 
constituent game is G and the preference ordering  of each player  is derived from the payoff function ui 
using the discounting criterion with a discount factor of δ for each player. Similarly we define the limit of means 
infinitely repeated game of  and the overtaking infinitely repeated game of .

We denote by u(a) the profile . Define a vector  to be a payoff profile of  if there is 

an outcome  for which v = u(a). We refer to a vector  as a feasible payoff profile of  if 
it is a convex combination of payoff profiles of outcomes in A: that is, if  for some collection 

 of nonnegative rational numbers αa with . (In the literature the coefficients αa are allowed to 
be any real numbers, not necessarily rational, a generalization that complicates the argument while adding little 

substance.) Note that a feasible payoff profile of  is not necessarily a payoff profile of .

• Exercise 139.1

Consider an infinitely repeated game in which the players' preferences are derived from their payoffs in the 
constituent game using different discount factors. Show that a payoff profile in such a repeated game may not be a 
feasible payoff profile of the constituent game.
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8.4 Strategies as Machines

As we discussed in the introduction to this chapter, the main achievement of the theory of repeated games is to give 
us insights into the structure of behavior when individuals interact repeatedly. In this section we develop a 
language in which to describe conveniently the structure of the equilibria that we find. We begin by defining a 
machine, which is intended as an abstraction of the process by which a player implements a strategy in a repeated 
game. A machine (or automaton) for player i in an infinitely repeated game of  has the following 
components.

•A set Qi (the set of states).

•An element  (the initial state).

• A function  that assigns an action to every state (the output function).

•A function  that assigns a state to every pair consisting of a state and an action profile (the 
transition function ).

The set Qi is unrestricted. The names of the states do not of course have any significance (the fact that we call a 
state ''cooperative", for example, does not mean that the behavior associated with it matches its name). In the first 
period the state of the machine is  and the machine chooses the action . Whenever the machine is in some 
state qi, it chooses the action fi(qi) corresponding to that state. The transition function τ i specifies how the machine 
moves from one state to another: if the machine is in state qi and a is the action profile chosen then its state changes 
to τ i(q, a).

Note that the input of the transition function consists of the current state and the profile of all the players' current 
actions. It is more natural to take as the input the current state and the list of actions chosen by the other players. 
This fits the natural description of a "rule of behavior" or "strategy" as a plan of how to behave in all possible 
circumstances that are consistent with one's plans. However, since the game-theoretic definition requires that a 
strategy specify an action for all possible histories, including those that are inconsistent with the player's own 
strategy, we have to include as an input into the transition function the action of the player himself.

To illustrate the concept of a machine we now give four examples of machines for a player in the repeated 
Prisoner's Dilemma (Figure 134.1).
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Figure 141.1 
A machine that corresponds to the grim strategy in the Prisoner's Dilemma.

Figure 141.2 
The machine M1. This machine for player 1 in the Prisoner's Dilemma  

plays C as long as player 2 does so and punishes player 2 for choosing  
D by choosing D for three periods. (We use {(·, X)} to denote the set  

of all outcomes in which player 2's action is X.)

• Example 141.1

(A machine for the "grim" strategy) The machine  defined as follows is the simplest one that carries out 
the ("grim.gif") strategy that chooses C so long as both players have chosen C in every period in the past, and 
otherwise chooses D.

• .

•

•  and 

•  and  if 

This machine is illustrated in Figure 141.1. Each box corresponds to a state; inside each box is the name of the state 
followed (after the colon) by the action that the machine takes in that state. The box with the heavy boundary 
corresponds to the initial state. The arrows correspond to the transitions; adjacent to each arrow is the set of 
outcomes that induces the transition.

• Example 141.2

The machine M1 of player 1 shown in Figure 141.2 plays C as long as player 2 plays C; it plays D for three periods, 
and then reverts back to C, if player 2 plays D when he should play C. (We can think of the other player being 
"punished" for three periods for playing D, and then "forgiven".) Notice that a machine must have at least four 
states in order to carry out this strategy.

• Example 141.3

The machine M2 of player 2 shown in Figure 142.1 starts by playing C and continues to do so if the other player 
chooses D.
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Figure 142.1 
The machine M2. This machine for player 2 in the  

Prisoner's Dilemma starts by playing C but switches  
to D if player 1 chooses C, returning to C only if  

player 1 chooses D.

Figure 142.2 
The outcomes in the first six periods of the repeated Prisoner's  
Dilemma when player 1 uses the machine M1 in Figure 141.2  

and player 2 uses the machine M2 in Figure 142.1.

If the other player chooses C then it switches to D, which it continues to play until the other player again chooses 
D, when it reverts to playing C.

To illustrate the evolution of play in a repeated game when each player's strategy is carried out by a machine, 
suppose that player 1 uses the machine M1 and player 2 uses the machine M2 in the repeated Prisoner's Dilemma.

The machines start in the states P0 and R0 respectively. The outcome in the first period is (C, C) since the output 
function of M1 assigns the action C to state P0 and the output function of M2 assigns the action C to state R0. The 
states in the following period are determined by the transition functions. The transition function of M1 leaves the 
machine in state P0, since the outcome in the first period is (C, C), while the transition function of M2 moves the 
machine from R0 to R1 in response to this input. Thus the pair of states in period 2 is (P0, R1). The output functions 
determine the outcome in period 2 to be (C, D), so that M1 now moves from P0 to P1 while M2 stays in R1. Play 
continues through period 5 as in the table in Figure 142.2. In period 6 the pair of states is the same as it is in period 
1; subsequently the states and outcomes cycle, following the pattern in the first five periods. The fact that cycles 
are generated is not peculiar to this example: whenever each player
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uses a machine with finitely many states a cycle is eventually reached, though not necessarily in period 1. (This 
follows from the fact that each machine takes as its input only the actions in the previous period (i.e. it is 
"Markovian").)

• Exercise 143.1

Show that not every strategy in an infinitely repeated game can be executed by a machine with a finite number of 
states.

8.5 Trigger Strategies: Nash Folk Theorems

We now study the set of Nash equilibrium outcomes of an infinitely repeated game. We show that this set includes 
outcomes that are not repetitions of Nash equilibria of the constituent game. To support such an outcome, each 
player must be deterred from deviating by being "punished". Such punishment may take many forms. One 
possibility is that each player uses a "trigger strategy": any deviation causes him to carry out a punitive action that 
lasts forever. In the equilibria that we study in this section each player uses such a strategy.

Let  be a strategic game and for each  let ui be a payoff function that represents the preference 
ordering . Recall that we define a feasible payoff profile of  to be a convex combination 

 for which the coefficients αa are rational. Let  be such a profile and suppose that αa= 
βa/γ for each , where every βa is an integer and  Then the sequence of outcomes in the repeated 
game that consists of an indefinite repetition of a cycle of length γ in which each  is played for βa periods 
yields an average payoff profile over the cycle, and hence in the entire repeated game, of w.

Define player i's minmax payoff in G, henceforth denoted vi, to be the lowest payoff that the other players can 
force upon player i:

A payoff profile w for which  for all  is called enforceable; if wi > vi for all  then w is strictly 
enforceable.1 If  is an outcome of G for which u(a) is (strictly) enforceable in G then we refer to a as a 
(strictly) enforceable outcome of G. Denote by  one of the solutions of the minimization problem on the 
right-hand side of (143.2). For each action profile  let

1In much of the literature the term individually rational is used instead of "enforceable".
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 be an action of player i in G that is a best response to a-i (i.e. ). (Notice that p-i and the 
function bi depend only on the players' preferences over A, not on the payoff representations of these preferences.) 
The collection of actions p-i is the most severe "punishment.gif" that the other players can inflict upon player i in G. 
(Note that we restrict punishments to be deterministic. In some of the literature punishers are allowed to randomize, 
possibly correlating their actions over time; this changes the set of feasible payoff profiles and the enforceable 
payoffs but not the structure of the set of equilibria of the repeated game.)

In the next two results we show that the set of Nash equilibrium payoff profiles of an infinitely repeated game in 
which the players evaluate streams of payoffs by the limit of means is the set of all feasible enforceable payoff 
profiles of the constituent game. The third result shows that the same is approximately true when the players 
discount future payoffs using a discount factor close to 1.

• Proposition 144.1

Every Nash equilibrium payoff profile of the limit of means infinitely repeated game of  is an 
enforceable payoff profile of G. The same is true, for any , of every Nash equilibrium payoff profile of the 
δ-discounted infinitely repeated game of G.

Proof.

Suppose that w is a payoff profile of the limit of means infinitely repeated game of G that is not enforceable; 
suppose that wi <vi. Then w is not a Nash equilibrium payoff profile of the repeated game, because for any strategy 

profile s the strategy  of player i defined by  for each history h gives player i a payoff of at least 
vi in each period. The same argument applies to any δ-discounted infinitely repeated game of G.

The following Exercise asks you to express the strategy  of player i in this proof in the language of machines that 
we developed in Section 8.4.

• Exercise 144.2

Consider a two-player infinitely repeated game. For any given machine for player 2 construct a machine for player 
1 that yields her a payoff of at least v1.

• Proposition 144.3

(Nash folk theorem for the limit of means criterion) Every feasible enforceable payoff profile of  is 
a Nash equilibrium payoff profile of the limit of means infinitely repeated game of G.
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Proof.

Let  be a feasible enforceable payoff profile, where βa for each  is an integer and 
, and let (at) be the cycling sequence of action profiles for which the cycle (of length γ) contains βa 

repetitions of a for each . Let si be the strategy of player i in the repeated game that chooses  in each period t 
unless there was a previous period t' in which a single player other than i deviated from at', in which case it chooses 
(p-j)i, where j is the deviant in the first such period t'. The strategy profile s is a Nash equilibrium of the repeated 
game since a player j who deviates receives at most his minmax payoff vj in every subsequent period; the payoff 
profile generated by s is w.

• Exercise 145.1

Construct a machine that executes the equilibrium strategy si of player i in this proof.

The strategy si in this proof is a trigger strategy. Many other strategies can be used to prove the result (for example 
the strategy used in the proof of Proposition 146.2).

The following is an analog of Proposition 144.3 for an infinitely repeated game with discounting. The proof is 
similar to that of the previous result; we leave it to you.

•Proposition 145.2

(Nash folk theorem for the discounting criterion) Let w be a strictly enforceable feasible payoff profile of 
. For all  there exists  such that if  then the δ-discounted infinitely repeated game 

of G has a Nash equilibrium whose payoff profile w' satisfies .

To illuminate the character of equilibria in which each player uses a trigger strategy, consider two infinitely 
repeated games: one in which the constituent game is the Prisoner's Dilemma, which we denote G1 (see Figure 
134.1), and the other in which the constituent game is the game G2 shown in Figure 146.1. In both G1 and G2 each 
player's minmax payoff is 1 and by playing D each player holds the other's payoff to this level (p-1 = p-2 = D).

In both games the trigger strategies used in the proof of Proposition 144.3 involve each player switching to D for 
good in response to any deviation from the equilibrium path. In G1 the action D dominates the action C, so that it is 
a stable order for each player to choose D. Thus there is some rationale for a punisher who believes that a deviation 
signals the end of the current stable order to choose the action D in the future. By contrast, in G2 a constant 
repetition of (D, D) is not a stable
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Figure 146.1 
The game G2.

order since A strictly dominates D for player 1. Thus player 1 suffers from the punishment he inflicts on his 
opponent, making incredible his threat to punish a deviation and casting doubt on the plausibility of equilibria in 
which such trigger strategies are employed. We are led to study the notion of subgame perfect equilibrium, which 
rules out such strategies since it requires that each player's behavior after every history be optimal.

• Exercise 146.1

Consider the infinitely repeated game in which the players' preferences are represented by the discounting criterion, 
the common discount factor is , and the constituent game is the game G2 in Figure 146.1. Show that ((A, A), (A, 
A),...) is not a subgame perfect equilibrium outcome path.

8.6 Punishing for a Limited Length of Time: A Perfect Folk Theorem for the Limit of Means Criterion

The strategies used in the proof of Proposition 144.3 to generate an arbitrary enforceable payoff profile punish a 
deviant indefinitely. Such punishment is unnecessarily harsh: a deviant's payoff needs to be held down to the 
minmax level only for enough periods to wipe out his (one-period) gain from the deviation. If the players' 
preferences satisfy the limit of means criterion then a strategy that returns to the equilibrium path after the 
punishment has the advantage that it yields the same payoff for the punishers as does the equilibrium path itself, so 
that the players have no reason not to adopt it. Hence under the limit of means criterion the social norm of 
punishing for only a finite number of periods is a subgame perfect equilibrium of the infinitely repeated game.

• Proposition 146.2

(Perfect folk theorem for the limit of means criterion) Every feasible strictly enforceable payoff profile of 
 is a subgame perfect equilibrium payoff profile of the limit of means infinitely repeated game of 

G.
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Proof.

Let  be a feasible strictly enforceable payoff profile of G and let  be the sequence of 
action profiles that consists of βa repetitions of a for each .

We now construct a strategy profile that generates a sequence of action profiles in G consisting of an indefinite 
repetition of the cycle . Each player punishes any deviation for only a limited number of periods. It is 
convenient to specify the strategy of each player so that any punishment begins only in the period that follows the 
completion of a cycle. If a single player deviates in some period in which nobody deserves to be punished then that 
player, say i, is declared to deserve punishment; beginning in the first period of the next cycle the other players 
punish i by choosing p-i for enough periods to cancel out any possible gain for him. Subsequently the punishers 
return to the equilibrium, starting at the beginning of a cycle. (Simultaneous deviations by more than one player are 
ignored.) Given that the players' preferences satisfy the limit of means criterion, the payoff profile is w after every 
possible history.

To define the strategies precisely let g* be the maximal amount that any player can gain by deviating from any 
action profile in G. That is, let g* be the maximum of  over all ,  and . Since wi > 
vi there exists an integer  that is an integral multiple of γ such that  for all . The 
strategy of each player i punishes any deviant for m* periods and is given by the following machine.

•  Set of states: {(Normk, d):either k = 1 and d = 0 or  and  and . 
(The state (Normk, 0) means that we are in the kth period of the cycle and no player deserves punishment. The state 
(Normk, j) means that we are in the kth period of the cycle and player j deserves punishment. The state P(j, t) means 
that player j is being punished and there are t periods left in which he has to be punished.)

• Initial state: (Norm1, 0).

•  Output function: In (Normk, d) for any  choose ; in P(j, t) choose (p-j)i if  and bi(p-i) if i = j .

• Transition function:

• From (Normk, d) move to2 (Normk+1 (mod γ), d) unless:

2We define m (mod γ) to be the integer q with  satisfying  for some integer  (so that, in particular, γ (mod γ) 
= γ).
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• d = 0 and player j alone deviated from ak, in which case move to (Normk+l, j) if  and to P(j, m*) if k = γ

• , in which case move to (Normk+1, j) if  and to P(j, m*) if k = γ.

• From P(j, t) move to P(j, t-1) if , and to (Norm1, 0) if t = 1.

We leave it to you to verify that the strategy profile thus defined is a subgame perfect equilibrium.

The strategies that we define in this proof do not initiate punishment immediately after a deviation, but wait until 
the end of a cycle before doing so. We define the strategies in this way in order to calculate easily the length of 
punishment necessary to deter a deviation: if punishment were to begin immediately after a deviation then we 
would have to take into account, when we calculated the length of the required punishment, the possibility that a 
deviant's payoffs in the remainder of the cycle are low, so that he has an additional gain from terminating the cycle.

• Exercise 148.1

(A game with both long- and short-lived players) Consider an infinite horizon extensive game in which the 
strategic game G is played between player I and an infinite sequence of players, each of whom lives for only one 
period and is informed of the actions taken in every previous period. Player 1 evaluates sequences of payoffs by the 
limit of means, and each of the other players is interested only in the payoff that he gets in the single period in 
which he lives.

a. Find the set of subgame perfect equilibria of the game when G is the Prisoner's Dilemma (see Figure 134.1).

b. Show that when G is the modification of the Prisoner's Dilemma in which the payoff to player 2 of (C, D) is 0 
then for every rational number  there is a subgame perfect equilibrium in which player 1's average payoff 
is x.

Consider the infinitely repeated game for which the constituent game is given in Figure 146.1. In this game vl = v2 
= 1. Consider the strategy profile defined in the proof of Proposition 146.2 to support the sequence (at) of outcomes 
in which at = (A, A) for all t that takes the following form: each player chooses A in every period (the cycle is of 
length one) unless the other player deviated in the previous period, in which case he chooses D for m* = 2 periods 
and then reverts to A.

This strategy profile is not a subgame perfect equilibrium of the infinitely repeated game when the players' 
preferences are represented by
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either the overtaking criterion or the discounting criterion. After a deviation by player 2, each player is supposed to 
choose D for two periods before reverting to A. Player 1 would be better off choosing A than punishing player 2, 
since the sequence of payoffs (1,1, 2, 2,...) is preferred under both criteria to the sequence (0, 0, 2, 2,...). (The two 
sequences are indifferent under the limit of means criterion.) To support the path in which the outcome is (A, A) in 
every period as a subgame perfect equilibrium, player 2 has to punish player 1 if player 1 does not fulfill her 
obligations to punish player 2. Further, player 2 has to be punished if he does not punish player 1 for not punishing 
player 2, and so on. In the next two sections we use strategies with these features to prove perfect folk theorems 
when the players' preferences are represented by the overtaking and discounting criteria.

8.7 Punishing the Punisher: A Perfect Folk Theorem for the Overtaking Criterion

The next result is an analog of Proposition 146.2 for the overtaking criterion; it shows how strategies different from 
those used to prove the perfect folk theorem for the limit of means criterion can support desirable outcomes when 
the players' preferences are represented by the overtaking criterion. For simplicity we construct a strategy profile 
only for the case in which the equilibrium path consists of the repetition of a single (strictly enforceable) outcome.

• Proposition 149.1

(Perfect folk theorem for the overtaking criterion) For any strictly enforceable outcome a* of  
there is a subgame perfect equilibrium of the overtaking infinitely repeated game of G that generates the path (at) 
in which at = a* for all t.

Proof.

Let M be the maximum of ui(a) over all  and . Consider the strategy profile in which each player i uses 
the following machine.

•  Set of states:  and t is a positive integer}. (In the state P(j, t) player j deserves to be 
punished for t periods more.)

• Initial state: Norm.

•  Output function: In Norm choose . In P(j, t) choose (p-j)i if  and bi(p-i) if i = j .

• Transitions in response to an outcome :
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•  From Norm stay in Norm unless for some player j we have  and  (i.e. j is the only deviant from 
a*), in which case move to P(j, t), where t is the smallest integer such that M + tvj <  (t + 1)uj(a*).

• From P(j, t):

•  If a-j = p-j or  for at least two players  (i.e. all punishers punish or at least two do not do so) then move 
to P(j, t- 1) if  and to Norm if t = 1.

•  If  and  if  (i.e. j* is the only punisher who does not punish) then move to P(j*,T(j, t)), 
where T(j, t) is large enough that the sum of j*'s payoff in state P(j, t) and his payoff in the subsequent T(j, t) 
periods if he does not deviate is greater than his payoff in the deviation plus . (Such a number T(j, t) exists 
since after t periods the players were supposed to go back to the equilibrium outcome a* and 

Under this strategy profile any attempt by a player to increase his payoff by a unilateral deviation after any history, 
including one after which punishment is supposed to occur, is offset by the other players' subsequent punishment. 
Again we leave it to you to verify that the strategy profile is a subgame perfect equilibrium.

8.8 Rewarding Players Who Punish: A Perfect Folk Theorem for the Discounting Criterion

The strategy profile defined in the proof of Proposition 149.1, in which players are punished for failing to mete out 
the punishment that they are assigned, may fail to be a subgame perfect equilibrium when the players' preferences 
are represented by the discounting criterion. The reason is as follows. Under the strategy profile a player who fails 
to participate in a punishment that was supposed to last, say, t periods is himself punished for, say, t* periods, 
where t* may be much larger than t. Further deviations may require even longer punishments, with the result that 
the strategies should be designed to carry out punishments that are unboundedly long. However slight the 
discounting, there may thus be some punishment that results in losses that can never be recovered. Consequently, 
the strategy profile may not be a subgame perfect equilibrium if the players' preferences are represented by the 
discounting criterion.
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To establish an analog to Proposition 149.1 for the case that the players' preferences are represented by the 
discounting criterion, we construct a new strategy. In this strategy players who punish deviants as the strategy 
dictates are subsequently rewarded, making it worthwhile for them to complete their assignments. As in the 
previous section we construct a strategy profile only for the case in which the equilibrium path consists of the 
repetition of a single (strictly enforceable) outcome. The result requires a restriction on the set of games that is 
usually called full dimensionality.

• Proposition 151.1

(Perfect folk theorem for the discounting criterion) Let a* be a strictly enforceable outcome of . 
Assume that there is a collection  of strictly enforceable outcomes of G such that for every player  we 
have  and  for all . Then there exists  such that for all  there is a 
subgame perfect equilibrium of the δ-discounted infinitely repeated game of G that generates the path (at) in which 
at = a* for all t.

Proof.

The strategy profile in which each player uses the following machine is a subgame perfect equilibrium that 
supports the outcome a* in every period. The machine has three types of states. In state C(0) the action profile 
chosen by the players is a*. For each .gif''>.

To summarize, the machine of player i is defined as follows, where for convenience we write a(0) = a*; we specify 
L later.
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• Set of states: .

• Initial state: C(0).

•  Output function: In C(j) choose (a(j))i. In P(j, t) choose (p-j)i if  and bi(p-i) if i = j .

• Transitions in response to an outcome :

• From C(j) stay in C(j) unless a single player k deviated from a(j), in which case move to P(k, L).

• From P(j, t):

•  If a single player  deviated from p-j then move to P(k, L).

• Otherwise move to P(j, t - 1) if  and to C(j) it t = 1.

We now specify the values of  and L. As before, let M be the maximum of ui(a) over all  and . We 
choose L and  to be large enough that all possible deviations are deterred. To deter a deviation of any player in 
any state C(j) we take L large enough that M - ui(a(j)) < L(ui(a(j)) - vi) for all  and all  and choose δ 
> δ* where δ* is close enough to 1 that for all δ >δ* we have

(This condition is sufficient since ui(a(j)) > ui(a(i)) for .) If a player i deviates from P(j, t) for  then he 
obtains at most M in the period that he deviates followed by L periods of vi < ui(a(i)) and ui(a(i)) subsequently. If he 
does not deviate then he obtains ui(p-j, bj (p-j)) for between 1 and L periods and ui(a(j)) subsequently. Thus to deter a 
deviation it is sufficient to choose  close enough to one that for all  we have

(Such a value of  exists because of our assumption that ui(a(j)) > ui(a(i)) if .)

• Exercise 152.1

Consider the three-player symmetric infinitely repeated game in which each player's preferences are represented by 
the discounting criterion and the constituent game is  where for i = 1, 2, 3 we have Ai = [0, 1] and 
ui(a1,a2, a3) = a1a2a3 +  (1- al)(1- a2)(1 -a3) for all .
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a. Find the set of enforceable payoffs of the constituent game.

b. Show that for any discount factor  the payoff of any player in any subgame perfect equilibrium of the 
repeated game is at least .

c. Reconcile these results with Proposition 151.1.

8.9 The Structure of Subgame Perfect Equilibria Under the Discounting Criterion

The strategy of each player in the equilibrium constructed in the proof of Proposition 151.1, which concerns games 
in which the discount factor is close to 1, has the special feature that when any player deviates, the subsequent 
sequence of action profiles depends only on the identity of the deviant and not on the history that preceded the 
deviation. In this section we show that for any common discount factor a profile of such strategies can be found to 
support any subgame perfect equilibrium outcome.

We begin with two lemmas, the first of which extends the one deviation property proved for finite extensive games 
in Lemma 98.2 to infinitely repeated games with discounting.

• Lemma 153.1

A strategy profile is a subgame perfect equilibrium of the δ-discounted infinitely repeated game of G if and only if 
no player can gain by deviating in a single period after any history.

• Exercise 153.2

Prove this result.

The next result shows that under our assumptions the set of subgame perfect equilibrium payoff profiles of any δ-
discounted infinitely repeated game is closed.

Lemma 153.3

Let  be a sequence of subgame perfect equilibrium payoff profiles of the δ-discounted infinitely repeated 
game of G that converges to w*. Then w* is a subgame perfect equilibrium payoff profile of this repeated game.

Proof.

For each value of k let sk be a subgame perfect equilibrium of the repeated game that generates the payoff profile 
wk. We construct a strategy profile s that we show is a subgame perfect equilibrium and yields the payoff profile 
w*. We define, by induction on the length of the history h, an action profile s(h) of G and an auxiliary infinite 
subsequence (rk) of the sequence (sk) that has the property that the payoff profile generated by the members of the 
subsequence in the subgame following the history h has a limit and the action profile rk(h) converges
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to s(h). Assume we have done so for all histories of length T or less, and consider a history (h, a) of length T + 1, 
where h is a history of length T. Let (rk) be the sequence of strategy profiles that we chose for the history h and let s
(h) be the action profile we chose for that history. For a = s(h) select for (h, a) a subsequence (r 'k) of (rk) for which 
the sequence (r'k(h, a)) converges, and let the action profile to which r'k(h, a) converges be s(h, a). Obviously the 
limiting payoff profile of the subsequence that we have chosen is the same as that of (rk). For  choose for 
(h, a) a subsequence (r"k) of (r'k) for which the sequence of payoff profiles and the sequence (r"k(h, a)) both 
converge, and let the action profile to which r.gif"k(h, a) converges be s(h, a).

No player i can gain in deviating from si by changing his action after the history h and inducing some outcome a 
instead of s(h) since if this were so then for large enough k he could profitably deviate from , where (rk) is the 
sequence that we chose for the history (h, a). Further, the payoff profile of s is w*.

By this result the set of subgame perfect equilibrium payoffs of any player i in the repeated game is closed; since it 
is bounded it has a minimum, which we denote m(i). Let (a(i)t) be the outcome of a subgame perfect equilibrium in 
which player i 's payoff is m(i).

• Proposition 154.1

Let (at) be the outcome of a subgame perfect equilibrium of the δ-discounted infinitely repeated game of 
. Then the strategy profile in which each player i uses the following machine is a subgame 

perfect equilibrium with the same outcome (at).

• Set of states:  and t is a positive integer}.

• Initial state: Norm1.

• Output function: In state Normt play . In state P(j, t) play .

• Transition function:

• In state Normt move to Normt+1 unless exactly one player, say j', deviated from at, in which case move to P(j, 1).

•  In state P(j, t): Move to P(j, t + 1) unless exactly one player, say j', deviated from a(j)t, in which case move to P(j ', 
1).

Proof.

It is straightforward to verify, using Lemma 153.1, that this defines a subgame perfect equilibrium with the 
required property.
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8.10 Finitely Repeated Games

8.10.1 Definition

We now turn to a study of finitely repeated games. The formal description of a finitely repeated game is very 
similar to that of an infinitely repeated game: for any positive integer T a T-period finitely repeated game of the 
strategic game  is an extensive game with perfect information that satisfies the conditions in 
Definition 137.1 when the symbol  is replaced by T. We restrict attention to the case in which the preference 
relation  of each player i in the finitely repeated game is represented by the function , where ui is a 
payoff function that represents i 's preferences in the constituent game. We refer to this game as the T-period 
repeated game of .

8.10.2 Nash Equilibrium

The intuitive argument that drives the folk theorems for infinitely repeated games is that a mutually desirable 
outcome can be supported by a stable social arrangement in which a player is deterred from deviating by the threat 
that he will be "punished" if he does so. The same argument applies, with modifications, to a large class of finitely 
repeated games. The need for modification is rooted in the fact that the outcome in the last period of any Nash 
equilibrium of any finitely repeated game must be a Nash equilibrium of the constituent game, a fact that casts a 
shadow over the rest of the game. This shadow is longest in the special case in which every player's payoff in every 
Nash equilibrium of the constituent game is equal to his minmax payoff (as in the Prisoner's Dilemma). In this case 
the intuitive argument behind the folk theorems fails: the outcome in every period must be a Nash equilibrium of 
the constituent game, since if there were a period in which the outcome were not such an equilibrium then in the 
last such period some player could deviate with impunity. The following result formalizes this argument.

• Proposition 155.1

If the payoff profile in every Nash equilibrium of the strategic game G is the profile (vi) of minmax payoffs in G 
then for any value of T the outcome (a1,... ,aT) of every Nash equilibrium of the T-period repeated game of G has 
the property that at is a Nash equilibrium of G for all t = 1,..., T.

Proof.

Let  and let a = (a1,...,aT) be the outcome of a Nash equilibrium s of the T-period repeated game of 
G. Suppose
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that at is not a Nash equilibrium of G for some period t. Let  be the last period for which at is not a Nash 
equilibrium of G; suppose that . Consider the strategy  of player i that follows the precepts of si 
after every history of length at most t - 2 (i.e. through period t - 1), chooses ai in period t, and chooses an action that 
yields his minmax payoff, given the actions taken by the other players, in each subsequent period. The outcome of 
( ) is a terminal history â that is identical to a through period t - 1; player i prefers ât to at and is indifferent 
between âs and as for . Thus player i prefers â to a, contradicting our assumption that s is a Nash 
equilibrium of the repeated game.

This result applies to a very small set of games. If, contrary to the assumptions of the result, the constituent game 
has a Nash equilibrium a* in which some player's payoff exceeds his minmax payoff then that player can be 
punished for deviating in the penultimate period of the game whenever the outcome in the final period is a*. This 
punishment may not be enough to deter the deviation if the difference between the player's minmax payoff and his 
payoff in a* is small. However, there is always some integer L such that if the outcome is a* in the last L periods 
then any deviation by the player in any period before this sequence of L plays begins is deterred by the threat to 
impose upon the player his minmax payoff in the remaining periods. Further, the value of L is independent of the 
length T of the game, so that if for each player the constituent game has a Nash equilibrium in which that player's 
payoff exceeds his minmax payoff then for T large enough any feasible strictly enforceable payoff profile can be 
approximately achieved as the average payoff profile in a Nash equilibrium of the T-period repeated game. For 
simplicity we state and prove this result only for the case in which the constituent game has a single Nash 
equilibrium in which every player's payoff exceeds his minmax payoff; we also restrict attention to equilibrium 
paths that are repetitions of a single outcome of the constituent game.

• Proposition 156.1

(Nash folk theorem for finitely repeated games) If  has a Nash equilibrium â in which the payoff of 
every player i exceeds his minmax payoff vi then for any strictly enforceable outcome a* of G and any  there 
exists an integer T* such that if T > T* the T-period repeated game of G has a Nash equilibrium in which the payoff 
of each player i is within  of ui (a*).

Proof.

Consider the strategy of player i that is carried out by the following machine. The set of states consists of Normt for 
t = 1,..., T - L
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(L is determined later), Nash, and P(j) for each . Each player i chooses  in Normt for all values of t, âi in 
Nash, and punishes player j by choosing (p-j)i in P(j). If a single player j deviates in the state Normt then there is a 
transition to P(j); otherwise there is a transition to Normt+1 if t < T - L and to Nash if t = T - L. Once reached, the 
states P(j) and Nash are never left. The outcome is that a* is chosen in the first T - L periods and â is chosen in the 
last L periods. To summarize, player i 's machine is the following.

• Set of states: .

• Initial state: Norm1

•  Output function: In Normt choose , in P(j) choose (p-j)i, and in Nash choose âi.

•Transition function:

•  From Normt move to Normt+1 unless either t = T - L, in which case move to Nash, or exactly one player, say j, 
deviated from a*, in which case move to P(j).

• P(j) for any  and Nash are absorbing.

It remains to specify L. A profitable deviation is possible only in one of the states Normt. To deter such a deviation 
we require L to be large enough that  for all . Finally, in order to 

obtain a payoff profile within  of u(a*) we choose T* so that  for all .

• Exercise 157.1

Extend this result to the case in which the Nash equilibrium of G in which player i 's payoff exceeds vi may depend 
on i.

8.10.3 Subgame Perfect Equilibrium

In any subgame perfect equilibrium of a finitely repeated game the outcome in the last period after any history (not 
just after the history that occurs if every player adheres to his strategy) is a Nash equilibrium of the constituent 
game. Thus the punishment embedded in the strategies used to prove the Nash folk theorem (Proposition 156.1) is 
not consistent with a subgame perfect equilibrium; indeed, no punishment is possible if the constituent game has a 
unique Nash equilibrium payoff profile. Consequently we have the following result.

•Proposition 157.2

If the strategic game G has a unique Nash equilibrium payoff profile then for any value of T the action profile 
chosen after



   

Page 158

Figure 158.1 
A modified Prisoner's Dilemma.

any history in any subgame perfect equilibrium of the T-period repeated game of G is a Nash equilibrium of G.

Proof.

The outcome in any subgame that starts in period T of any sub-game perfect equilibrium of the repeated game is a 
Nash equilibrium of G. Thus each player's payoff in the last period of the game is independent of history. 
Consequently in any subgame that starts in period T - 1 the action profile is a Nash equilibrium of G. An inductive 
argument completes the proof.

If the constituent game has more than one Nash equilibrium payoff profile then punishment can be embedded in a 
subgame perfect equilibrium strategy profile: the players' payoffs in the final periods of the game can depend on 
their behavior in previous periods. The following example illustrates the equilibria that can arise in this case. We 
argue that in the T-period repeated game of the strategic game in Figure 158.1 there is a subgame perfect 
equilibrium for which the outcome is (C, C) in every period but the last three, in which it is (D, D), so that if T is 
large the average payoff profile is close to (3, 3). In the equilibrium each player uses the following strategy: choose 
C in every period through period T-3 unless one of the players chose D in some previous period, in which case 
choose E in every subsequent period, regardless of the subsequent outcomes; if the outcome is (C, C) in every 
period through T - 3 then choose D in the last three periods. A player who deviates to D in any period up to T - 3 
after a history in which the outcome was (C, C) in every previous period gains one unit of payoff in that period, but 
then subsequently loses at least 1.5 units, since the other player chooses E in every subsequent period. That is, the 
threat to play E subsequently is enough to deter any deviation; this punishment is credible since (E, E) is a Nash 
equilibrium of the constituent game. (Note that the same strategy profile is a subgame perfect equilibrium also if
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in the constituent game the payoff profile () is replaced by (0, 0), in which case the constituent game differs 
from the Prisoner's Dilemma only in that each player has an additional weakly dominated action.)

This example makes it clear that if there are two Nash equilibria of the constituent game G, one of which 
dominates the other, then any payoff profile in which every player obtains more than his payoff in the inferior Nash 
equilibrium of G can be achieved as the average payoff profile in a subgame perfect equilibrium of the T-period 
repeated game of G for T large enough. In fact a stronger result can be established: any strictly enforceable payoff 
profile can be achieved as the average payoff profile in a subgame perfect equilibrium of the repeated game. Such a 
payoff profile is supported by a strategy profile that, up until the final periods of the game, is akin to that 
constructed in the proof of the perfect folk theorem for the discounting criterion (Proposition 151.1).

The argument (which draws upon the ideas in the proofs of Propositions 151.1 and 156.1) is the following. Let a* 
be a strictly enforceable outcome of G. A strategy profile in the T-period repeated game that generates a sequence 
of outcomes for which the average payoff profile is close to u(a*) when T is large has the following form. There are 
three stages. Throughout the first two stages each player i chooses  so long as no player deviates. In the third 
stage the players adhere, in the absence of a deviation, to a sequence of Nash equilibria of the constituent game for 
which each player's average payoff exceeds his lowest Nash equilibrium payoff in the constituent game. Deviations 
are punished as follows. A deviation that occurs during the first stage is punished by the other players' using an 
action that holds the deviant to his minmax payoff for long enough to wipe out his gain. After this punishment is 
complete, a state of "reconciliation.gif" is entered for long enough to reward the players who took part in the 
punishment for completing their assignment (cf. the strategy in the proof of Proposition 151.1). A deviation by 
some player i that occurs during the second stage is ignored until the beginning of the third stage, during which the 
worst Nash equilibrium for player i is executed in every period. Deviations during the last stage do not need to be 
punished since the outcome in every period is a Nash equilibrium of the constituent game. The length of the second 
stage is chosen to be large enough that for a player who deviates in the last period of the first stage both the 
punishment and the subsequent reconciliation can be completed during the second stage. Given the length of the 
second stage, the length of the third stage is chosen to be large enough that a player who deviates in the first period 
of the second stage
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is worse off given his punishment, which begins in the first period of the third stage. The lower bounds on the 
lengths of the second and third stages are independent of T, so that for T large enough the average payoff profile 
induced by the strategy profile is close to u(a*).

In the following statement of the result we restrict attention to equilibrium paths that consist of the repetition of a 
single outcome of the constituent game (as we did in the discussion above). We omit a proof, which may be found 
in Krishna (1989), for example.

• Proposition 160.1

(Perfect folk theorem for finitely repeated games) Let a* be a strictly enforceable outcome of . 
Assume that (i) for each  there are two Nash equilibria of G that differ in the payoff of player i and (ii) there is 
a collection  of strictly enforceable outcomes of G such that for every player  we have  and 

 for all . Then for any  there exists an integer T* such that if T > T* the T-period repeated 
game of G has a subgame perfect equilibrium in which the payoff of each player i is within  of ui(a*).

Notes

Early discussions of the notion of a repeated game and the ideas behind the Nash folk theorem (Section 8.5) appear 
in Luce and Raiffa (1957, pp. 97-105 (especially p. 102) and Appendix 8), Shubik (1959b, Ch. 10 (especially p. 
226)), and Friedman (1971). Perfect folk theorems for the limit of means criterion were established by Aumann and 
Shapley and by Rubinstein in the mid 1970's; see Aumann and Shapley (1994) and Rubinstein (1994). The perfect 
folk theorem for the overtaking criterion (Proposition 149.1) is due to Rubinstein (1979). The perfect folk theorem 
for the discounting criterion (Proposition 151.1) is due to Fudenberg and Maskin (1986); the proof that we give is 
based on Abreu, Dutta, and Smith (1994). Section 8.9 is based on Abreu (1988). Proposition 155.1 and the Nash 
and perfect folk theorems for finitely repeated games (Propositions 156.1 and 160.1) are due to Benoît and Krishna 
(1985, 1987). (Luce and Raiffa (1957, Section 5.5) earlier argued that the conclusion of Proposition 155.1 holds for 
the Prisoner's Dilemma.)

For an early discussion of the difference between the models of finitely and infinitely repeated games (Section 8.2) 
see Aumann (1959, Section 6). For a detailed discussion of preference relations over streams of outcomes see, for 
example, Diamond (1965). For a presentation of
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some of the folk theorems in the language of machines see Ben-Porath and Peleg (1987). The example in Figure 
158.1 is taken from Benoit and Krishna (1985); Friedman (1985) contains a similar example. Exercise 148.1 is due 
to Fudenberg and Levine (1989). Exercise 152.1 is taken from Fudenberg and Maskin (1986).

For a discussion of the issues that arise when the players use mixed strategies see Fudenberg and Maskin (1991). 
As we have seen, the equilibria of a repeated game are not all efficient; further, the outcome generated by an 
equilibrium after a deviation occurs may not be efficient even if the outcome in the absence of any deviation is 
efficient. Pearce (1992, Section 4) discusses models that examine the consequences of allowing the set of players, 
after any history, to switch from their current strategy profile to one that is Pareto superior (i.e. to ''renegotiate"). If 
some or all of the players in a repeated game do not know the form of the constituent game then many new issues 
arise. Zamir (1992) and Forges (1992) are surveys of work in this area.

Krishna (1989), Sorin (1990, 1992), Fudenberg (1992), and Pearce (1992) are surveys that cover the material in 
this chapter and extensions of it.
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9 
Complexity Considerations in Repeated Games

In this chapter we investigate the structure of the equilibrium strategies in an infinitely repeated game in which 
each player is concerned about the complexity of his strategy.

9.1 Introduction

In the previous chapter we described representatives of a family of results known as "folk theorems", which 
establish, under a variety of assumptions about the players' preferences, that a very wide range of payoffs is 
compatible with Nash equilibrium and even subgame perfect equilibrium in an infinitely repeated game. A folk 
theorem entails the construction of some equilibria that generate the required outcomes. It does not demand that 
these equilibrium strategies be reasonable in any sense; our judgments about the nature of the equilibrium 
strategies used in the proofs are an informal. In this chapter we focus more closely on the structure of the 
equilibrium strategies rather than on the set of equilibrium payoffs, using the tool of a machine described in the 
previous chapter.

The basic assumption upon which the analysis is predicated is that players care about the complexity of their 
strategies. When choosing a strategy a player is confronted with a tradeoff: on the one hand he would like his 
strategy to serve his goals as well as possible, and on the other hand he would like it to be as simple as possible. 
There are many reasons why a player may value simplicity: a more complex plan of action is more likely to break 
down; it is more difficult to learn; it may require time to implement. We do not study these reasons here, but 
simply assume that complexity is costly and is under the control of the decision-maker.
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We explore the effect of this assumption on the equilibrium outcomes of an infinitely repeated game, asking, in 
particular, how the introduction of a cost of complexity affects the predictions of the model. Although we limit 
attention to repeated games, complexity considerations may be studied in the context of any model of choice. A 
model that includes such "procedural" aspects of decision-making is known as a model of "bounded rationality".

9.2 Complexity and the Machine Game

In this chapter we restrict attention, for simplicity, to an infinitely repeated game in which the players' preferences 
are represented by the discounting criterion: we study the players' behavior in the two-player δ-discounted 
infinitely repeated game of  (see Section 8.3). We study this behavior by analyzing a machine 
game, in which each player chooses a machine to play the infinitely repeated game. In this chapter we define a 
machine of player i to be a four-tuple  in which

•  Qi is a set of states

•  is the initial state

•  is the output function

•  (where ) is the transition function .

This definition differs from that given in the previous chapter (Section 8.4) in that a player's transition function 
describes how the state changes in response to the action of the other player, not in response to an outcome of the 
strategic game (i.e. a pair of actions). As defined in the previous chapter, a machine corresponds to the notion of a 
strategy in an extensive game, which requires that a player's action be specified for every history, including those 
that are precluded by the strategy itself (see Section 6.4). Here we want a machine to correspond to a plan of action 
as it is usually understood, and thus take as an input to a player's transition function only the action of the other 
player.

Every pair (M1, M2) of machines induces a sequence  of outcomes in G and a sequence 

 of pairs of states defined as follows: for i = 1, 2 and  we have

•

•

•  (where ).
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We restrict each player to choose a machine that has a finite number of states, and denote the set of all such 
machines for player i by . Thus the machine game is a two-player strategic game in which the set of actions of 
each player i is . To complete the description of this game we need to describe the players' preferences. If we 

assume that each player i cares only about his payoff  in the repeated 
game then we obtain the same conclusion as that of the Nash folk theorem (Proposition 145.2), since the trigger 
strategies that are used in the proof of this result can be implemented by finite machines. If, on the other hand, each 
player cares about both his payoff in the repeated game and the complexity of his strategy then, as we shall see, we 
obtain results that are very different from the folk theorem.

There are many ways of defining the complexity of a machine. We take a naïve approach: the complexity c(M) of 
the machine  is its number of states (i.e. the cardinality of Q). Our analysis is sensitive to the 
measure of complexity that we use. We view this measure as an additional piece of information about the strategic 
situation, which should reflect the relevant difficulties of the player in carrying out a strategy. From this 
perspective the sensitivity of the model to the complexity measure is desirable: in different circumstances different 
measures may be appropriate.

In the following definition we assume that each player's preferences in a machine game are positively sensitive to 
his payoff in the repeated game and negatively sensitive to the complexity of his machine.

• Definition 165.1

A machine game of the δ-discounted infinitely repeated game of  is a strategic game 
, in which for each player i

•  is the set of all finite machines for player i in the infinitely repeated game

•   is a preference ordering that is increasing in player i 's payoff in the repeated game and decreasing in the 
complexity of his machine:  whenever either  and , or 

 and .

A special case is that in which each player's preferences are additive:  is represented by  for 
some γ > 0, in which case γ can be interpreted as the cost of each state of the machine. Another special case is that 
in which the preferences are lexicographic:
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Figure 166.1 
The Prisoner's Dilemma.

Figure 166.2 
The machine M in Example 166.1 (a machine  

that carries out the grim strategy in the repeated  
Prisoner's Dilemma).

each player is concerned first with his payoff in the repeated game and second with the complexity of his machine. 
This case is especially interesting since lexicographic preferences are close to the preferences in the standard model 
of a repeated game in which complexity considerations are absent, a model that is the progenitor of the model of a 
machine game.

• Example 166.1

Suppose that the game G is the Prisoner's Dilemma, with the payoffs given in Figure 166.1. Consider the two-state 
machine M that implements the grim strategy (see Figure 166.2). If the players' common discount factor δ is large 
enough then this machine is a best response to itself in the δ-discounted repeated game of G. Even by using a more 
complex machine, player 1 cannot achieve a higher payoff in the repeated game. However, while there is no 
machine of player 1 that achieves a higher payoff in the repeated game than M does, given that player 2 uses M, 
there is a machine of player 1 that achieves the same payoff and is less complex: that in which there is one state, in 
which C is chosen. The state  in the machine M is designed to allow a player to threaten his opponent, but in 
equilibrium this threat is redundant since each player always chooses C. Thus either player can drop the state  
without affecting the outcome; hence (M, M) is not a Nash equilibrium of the machine game.

•Example 166.2

For the Prisoner's Dilemma (as in the previous example) let M be the machine in Figure 167.1. The behavior that 
this machine generates can be interpreted as beginning with a display of the
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Figure 167.1 
The machine M in Example 166.2.

ability to punish. After this display the player begins a cooperative phase in which he plays C, threatening to punish 
a deviant by moving back to the initial state. If both players use the machine M then the sequence of payoffs in the 
repeated game is (1, 1, 1) followed by an infinite sequence of 3's.

We claim that if the players' common discount factor δ is large enough then (M, M) is a Nash equilibrium of the 
machine game if the players' preferences do not give too much weight to complexity (as is the case if their 
preferences are either lexicographic or additive with a small cost of complexity). The argument is as follows. To 
increase his payoff in the repeated game, a player must choose D at least sometimes when his opponent's machine 
is in state R. Any such choice of D causes the other machine to choose D for at least three periods, so that when δ is 
close enough to 1 a player does not gain by such a maneuver (5+δ+δ2 +δ3 < 3 + 3δ + 3δ2 + 3δ3 for δ close enough 
to 1). Thus for δ large enough a player cannot increase his payoff in the repeated game by any machine, however 
complex.

We now show that a player cannot achieve the same payoff in the repeated game by using a less complex machine. 
To achieve the same payoff he must choose C at least once when the other player's machine is in state R. To do so 
his machine must have at least four states. To see this, consider the first period, say t, in which  and 

. We must have  and hence, in particular, . Further, 

 since  while . Similarly,  and 

In a machine game a player has to solve a problem in which he balances his desires to achieve a high payoff and to 
employ a simple machine. In some sense this problem is more complicated than that of finding an optimal strategy 
in the repeated game, since the player must consider the complexity of his rule of behavior; we do not impose any 
constraint on the player's ability to solve this problem.
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9.3 The Structure of the Equilibria of a Machine Game

We now characterize the structure of the Nash equilibria of a machine game. We first generalize an observation we 
made about Example 166.1: if the machine Mi of some player i has a state that is not used when M1 and M2 operate 
then (M1, M2) is not a Nash equilibrium, since the state can be eliminated without affecting the outcome, and player 
i prefers the machine in which the state is eliminated.

• Lemma 168.1

If  is a Nash equilibrium of a machine game then for every state qi of the machine  there exists a period 
t such that .

Our next result shows that in a Nash equilibrium each machine has the same number of states and that any Nash 
equilibrium of a machine game corresponds to a Nash equilibrium of the repeated game.

Lemma 168.2

If  is a Nash equilibrium of a machine game then

•

• the pair of strategies in the repeated game associated with  is a Nash equilibrium of the repeated game.

Proof.

For any strategy sj of player j in the repeated game and any machine Mi of player i, denote by  player j 's 
payoff in the repeated game when he uses sj and player i uses the strategy that corresponds to Mi. Since  is finite, 

player j 's problem  of finding a best response (ignoring complexity) to the machine  in the 
repeated game has a solution (see Derman (1970, Theorem 1 on p. 23)). Let  and for each 

 let , where  is the machine that differs from  only in that the initial state 
is q. For each  let Aj(q) be the set of solutions to the problem

Then in the repeated game a strategy of player j is a best response to the strategy corresponding to  if and only if 
the action it plays when player i's machine is in state q is a member of Aj(q). In particular, choosing  for 
each , there is a best response that is implemented by the following machine, which has  states.

•  The set of states is Qi.
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Figure 169.1 
Machines M1 for player 1 and M2 for player 2 for the infinitely  

repeated Prisoner's Dilemma. The pair (M1, M2) generates the path in  

which (D, D) occurs for k periods and then the sequence (C, C),  
(C, C), (C, D), (D, C) is repeated indefinitely.

• The initial state is .

•The output function fj is defined by .

•The transition function τ j is defined by τ j(q, x) = τ i(q, fj(q)) for any .

Since  is a Nash equilibrium of the machine game it follows that  and hence . 
Further, since player j can use a macline with  states to achieve a payoff in the repeated game equal to 

 it follows that the pair of strategies that is executed by  is a Nash equilibrium of the 
repeated game.

• Exercise 169.1

Give an example of a three-player game for which the associated machine game has a Nash equilibrium in which 
the numbers of states in the players' machines are not the same.

We now derive a result that has strong implications for the set of Nash equilibria of a machine game. To obtain 
some intuition for the result, consider the pair of machines for the infinitely repeated Prisoner's Dilemma that is 
shown in Figure 169.1. This pair of machines generates a path in which there are initially  periods in which 
the outcome is (D, D) (the players display their threats), after which a cycle of length four in which the outcomes 
are (C, C), (C, C), (C, D) and (D, C) is repeated indefinitely. Any deviation by a player from the prescribed 
behavior in the cycle causes his opponent's machine to go to its initial state, punishing the deviant for k periods. As 
you can check, the pair of machines is a Nash equilibrium of the repeated game when the discount factor δ is close 
enough to 1. However, it is not an equilibrium of the machine game. To see this, consider M1. In each of the three 
states Q1,
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Q2, and Q3 player 1 takes the same action; she uses the fact that there are three states only to know when to choose 
the action D. However, she could obtain this information by observing player 2's action, as follows. Suppose that 
she adopts the machine  in which the three states Q1, Q2, and Q3 are replaced by a single state Q in which she 
chooses C, the state remains Q so long as player 2 chooses C, the state switches to Q4 if player 2 chooses D, and the 
transition from the state Ik is to Q if player 2 chooses D. Then  generates the same sequence of outcomes of 
the Prisoner's Dilemma as does (M1, M2); thus in the machine game player 1 can profitably deviate to  since it 
has fewer states than M1.

Note that  does not monitor player 2's behavior when player 2's machine is in Q1 or Q2: if player 2 chooses D in 
either of these states then  does not return to the state I1 but moves to Q4. If player 1 uses the machine  then 
player 2 can exploit this feature by choosing C in state Q3.

The situation is similar to that in which a paratrooper has to jump after counting to 100 and another paratrooper has 
to jump after counting to 101. If the second paratrooper counts then he can monitor the first paratrooper, who is 
afraid of jumping. However, counting is costly in the tense environment of the plane, and the second paratrooper 
can avoid the burden of counting by simply watching his friend and jumping immediately after her. However, if the 
second paratrooper does not count then the first paratrooper can exploit this lack of monitoring and ... not jump.

In general we can show that if a Nash equilibrium pair of machines generates outcomes in which one of the players 
takes the same action in two different periods then the other player also takes the same action in these two periods 
(contrary to the behavior of the players in periods k + 2 and k + 3 of the example that we just discussed).

• Lemma 170.1

If  is a Nash equilibrium of a machine game then there is a one-to-one correspondence between the 

actions of player 1 and player 2 prescribed by  and : if  for some  then 

.

Proof.

Let  and for each  define Aj(qi) as in the proof of Lemma 168.2. By the second part of 
Lemma 168.2 the machine  executes a strategy in the repeated game that is a solution of the problem 

. Therefore  for all t. Thus if there are two periods t and s in
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which  and  then there exists an optimal policy a'j of player j for 

which . That is, player j uses the same action whenever player i's state is either 
 or . The following machine carries out the policy a'j and has  states, contradicting 

the first part of Lemma 168.2.

• The set of states is .

• The initial state is  if and is  otherwise.

•  The output function is defined by fj(q) = a'j(q).

•  The transition function is defined as follows. If  then  for all ; otherwise τ j(q, x) = 

τ i(q, fj(q)) for all  if  and

This completes the proof.

This result has a striking implication for the equilibrium outcome path in any game in which each player has two 
actions. For example, if in the repeated Prisoner's Dilemma two outcomes appear on the equilibrium path, then this 
pair of outcomes is either {(C, C), (D, D)} or {( C, D),(D, C)}.

We now turn to an exploration of the structure of the equilibrium machines. Since each player's machine is finite 

there is a minimal number t' such that for some t > t' we have  for both i = 1 and i = 2; let t* be the minimal 
such t. The sequence of pairs of states starting in period t' consists of cycles of length t* - t'. We refer to this stage 
as the cycling phase; the stage before period t' is the introductory phase.

We now show that the sets of states that a player uses in the cycling and introductory phases are disjoint. Further, 
in the introductory phase each state is entered only once and each of a player's states that is used in the cycling 
phase appears only once in each cycle. Thus in equilibrium there is a one-to-one correspondence between the states 
in the machines of players 1 and 2, a fact that may be interpreted to mean that in each period each machine 
"knows" the state that the other machine is in.

•Proposition 171.1

If  is an equilibrium of a machine game then there exists a period t* and an integer  such that for i 

= 1, 2, the states in the sequence  are distinct and 
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Proof.

Let t* be the first period in which one of the states of either of the two machines appears for the second time. That 

is, let t* be the minimal time for which there is a player i and a period ti < t* such that . We have  

and hence, by Lemma 170.1,  It follows that for all  we have , and thus, using Lemma 

168.1, . By the selection of player i all states of  through time t*-1 are distinct, so that the first part 

of Lemma 168.2 implies that there exists tj < t* such that . It remains to show that tj = ti. Assume to the 

contrary that, say, tj > ti. Then player j can obtain the same path of outcomes with a machine in which  is 

excluded by making a transition from  to , omitting . But this contradicts the optimality of .

A machine game is a strategic game, so that no considerations of the type modeled by the notion of subgame 
perfect equilibrium enter the analysis. To incorporate such considerations, we can modify the solution concept and 
require that after every history in the repeated game the pair of machines be an equilibrium of the machine game. 
Such a modification implies that the play of the machines does not have any introductory phase: a player who can 
change his machine in the course of play wants to omit any introductory states once the cycling phase is reached. It 
follows that the set of equilibrium paths is severely restricted by this modification of the solution, as Exercise 173.2 
illustrates.

9.4 The Case of Lexicographic Preferences

The results of the previous section significantly limit the set of equilibria of a machine game. To limit the set of 
equilibria further we need to specify the tradeoff in each player's preferences between his payoff in the repeated 
game and the complexity of his machine. In this section we assume that the players' preferences are lexicographic 
(complexity being a secondary consideration, after the payoff in the repeated game); we restrict attention to the 
case in which the component game is the Prisoner's Dilemma (with payoffs as in Figure 166.1).

As we noted above, Lemma 170.1 implies that the set of outcomes that occurs on an equilibrium path is either a 
subset of {(C, C), (D, D)} or a subset of {(C, D), (D, C)}. First consider equilibria of the former type. Let nC and nD 
be two nonnegative integers, at least one of which is positive. Then for δ close enough to 1 it can be shown that 
there is an equilibrium with a cycle of length nC + nD in which (C, C) appears
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Figure 173.1 
A machine M for either player in the infinitely repeated Prisoner's Dilemma

nC times and (D, D) appears nD times. For the case nC = nD =  1 there is a symmetric equilibrium in which each 
player uses the machine M in Figure 173.1. (For preferences that are not lexicographic the pair (M, M) is an 
equilibrium only if the players's preferences do not put too much weight on complexity.)

• Exercise 173.1

a. Show that if δ is close enough to I then the pair of machines (M, M) is a Nash equilibrium of the machine game.

b. Show that if the machine M is modified so that in R1 it plays C, in R2 it plays D, and the transitions in R1 and R2 
are reversed, then the new pair of machines is not a Nash equilibrium of the machine game.

In these equilibria the introductory phase is nonempty, and this is so for any equilibrium that supports a path in 
which (C, C) is an outcome.

• Exercise 173.2

Show that every equilibrium in which (C, C) is one of the outcomes has an introductory phase.

Now consider equilibria in which every outcome on the equilibrium path is either (C, D) or (D, C). Some such 
equilibria are cyclical, without any introductory phase. Precisely, for all positive integers n1 and n2 satisfying 5ni(n1 
+ n2) > 1 for i = 1 and i = 2 there exists δ large enough that there is an equilibrium of the machine game in which 
the cycle consists of n1 plays of (D, C) followed by n2 plays of (C, D), without any introductory phase. (The 
condition on n1 and n2 ensures that each player's average payoff exceeds his minmax payoff of 1.)

An equilibrium for the case n1 = n2 = 1 is shown in Figure 174.1. One interpretation of this equilibrium is that the 
players alternate being generous towards each other. One can think of (C, D) as the event in which player 1 gives a 
gift to player 2 and (D, C) as the event in which player 2 gives a gift to player 1. In the equilibrium a player does 
not care if his opponent does not accept the gift (i.e. chooses C when he could have chosen D and received the 
gift), but he insists that his opponent
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Figure 174.1 
Machines M1 for player 1 and M2 for player 2 for the  

infinitely repeated Prisoner's Dilemma. For δ large  
enough the pair (M1, M2) is an equilibrium of the  

machine game; it generates the path consisting of  
repetitions of the cycle ((D, C), (C, D)).

Figure 174.2 
The constituent game for the  

repeated game in Exercise 174.1.

give him a gift (play C) in periods in which he expects to get a gift: if he does not receive a gift then he does not 
move to the state in which he is generous.

In our analysis so far the constituent game is a strategic game. One can think also of the case in which the 
constituent game is an extensive game. While the analysis of the Nash equilibria of the repeated game is unchanged 
(though the set of subgame perfect equilibria may be somewhat different), the analysis of the Nash equilibria of the 
machine game is quite different in this case, as the following exercise demonstrates.

• Exercise 174.1

Consider the infinitely repeated game for which the constituent game is given in Figure 174.2.

a. Show that the set of paths associated with the Nash equilibria of the machine game contains only the outcomes 
(A, A) and (B, B).

b. Show that if the players' preferences in the machine game are lexicographic, then every finite sequence 
containing only the outcomes (A, A) and (B, B) is the cycling phase of the path associated with some Nash 
equilibrium of the machine game for δ large enough.
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c. Notice that the game is the strategic form of an extensive game with perfect information. Assume that the players 
engage in the infinitely repeated game in which the constituent game is this extensive game, learning at the end of 
each round the terminal history that occurs. Show that the machine game for this repeated game has a unique Nash 
equilibrium, in which the payoff profile is (2, 0) in every period. [Hint: When player 1 chooses B she cannot 
monitor whether player 2 plans to choose A or B if she chooses A.]

Notes

This chapter is based on Rubinstein (1986) and Abreu and Rubinstein (1988). The line of argument, and in 
particular the proof of Lemma 170.1, is a modification due to Piccione (1992) of the proof of Abreu and Rubinstein 
(1988). Exercise 174.1 is based on Piccione and Rubinstein (1993).

In a related strand of literature the complexity of the machines that a player can employ is taken to be exogenously 
bounded. The main aim of this line of research is to show that equilibrium outcomes that differ from repetitions of 
(D, D) can be supported in the finitely repeated Prisoner's Dilemma; see for example Neyman (1985) and Zemel 
(1989).
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10 
Implementation Theory

In this chapter we study the inverse of the problem considered in the previous chapters: rather than fix a game and 
look for the set of outcomes given by some solution concept, we fix a set of outcomes and look for a game that 
yields that set of outcomes as equilibria.

10.1 Introduction

The standard procedure in game theory is to formulate a model that captures a situation and to investigate the set of 
outcomes that are consistent with some solution concept. If we fix the structure of the game and vary the players' 
preferences then a solution concept induces a correspondence from preference profiles to the set of outcomes.

Our general approach in this book is that a game is not necessarily a description of some physical rules that exist: 
most strategic situations lack a clear structure, and even when one exists the players' perceptions of the situation do 
not necessarily coincide with an ''objective" description of that situation. By contrast, in this chapter a planner is 
assumed to set the rules of the interaction, and the individuals, when confronted with these rules, are assumed to 
take them literally. The planner can design the structure of the game but cannot control the players' preferences or 
actions. She starts with a description of the outcomes she wishes to associate with each possible preference profile 
and looks for a game that "implements" this correspondence. On finding such a game she can realize her objective 
by having the individuals play the game, assuming of course that their behavior conforms with the solution 
concept.

An assumption underlying this interpretation of an implementation problem is that the planner can force the 
individuals to play the game but cannot enforce the desirable outcome directly, possibly because she
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lacks information about some parameters of the situation, information that is known to all participants but is either 
too costly or impossible for her to obtain.

To illustrate the nature of an implementation problem, consider a planner who wishes to assign an object to one of 
two individuals. Suppose that she wants to give it to the individual who values it most, but does not know who this 
is. Her problem then is to design a game form with the property that, for every possible pair of valuations, the 
outcome according to some solution concept is that the object is given to the individual who values it most. 
Whether this is possible depends on the outcomes that the planner can impose on the individuals. For example, she 
may be allowed only to transfer money from one individual to another, or she may be allowed also to impose fines 
on the individuals.

As in other chapters, we focus on the conceptual aspects of the theory and present only a sample of the main ideas. 
We restrict attention to implementation problems in which the individuals are fully informed about the parameters 
of the situation; we do not touch upon the large literature that considers the case in which there is asymmetric 
information.

10.2 The Implementation Problem

Let N be a set of individuals, C a set of feasible outcomes, and  a set of preference profiles over C. We denote 
individual i 's preference relation by  and sometimes denote a preference profile  simply by . A choice 
rule is a function that assigns a subset of C to each profile in . We refer to a choice rule that is singleton-valued 
as a choice function. The objective of the planner is to design a game form whose outcomes, for each preference 

profile  in , coincide with , where f is the choice rule or the choice function. If f is not singleton-valued then 
the planner is concerned that each of the outcomes in  be possible. For instance, in the example discussed in 
the previous section the planner may wish to assign the object to the individual whose valuation is highest, without 
discriminating between the individuals if their valuations are the same. In a more general problem, the planner may 
wish to implement the choice rule that associates with each preference profile the set of efficient outcomes.

The planner controls the rules of the game, formalized as a game form. A strategic game form with consequences 
in C is a triple  where Ai, for each , is the set of actions available to player i, and 

 is an outcome function that
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associates an outcome with every action profile. A strategic game form and a preference profile  induce a 
strategic game  where  is defined by  if and only if  for each . An extensive 
game form (with perfect information) with consequences in C is a tuple  where H is a set of histories, 

 is a player function, and  is an outcome function (  being the set of terminal histories). 
(Cf. Definition 89.1 and the following definition of an extensive game form.) An extensive game form and a 
preference profile induce an extensive game.

The planner operates in an environment that consists of

• a finite set N of players, with 

• a set C of outcomes

• a set  of preference profiles over C

• a set  of (either strategic or extensive) game forms with consequences in C.

When designing a game form to implement her objectives the planner must take into account how the individuals 

will play any possible game. A solution concept for the environment  is a set-valued function  with 
domain . If the members of  are strategic game forms then  takes values in the set of action profiles, while 
if the members of  are extensive game forms then  takes values in the set of terminal histories.

The following definition is one formulation of the planner's problem.

• Definition 179.1

Let  be an environment and let  be a solution concept. The game form  with outcome function g 

is said to  the choice rule  if for every preference profile  we have . In 
this case we say the choice rule f is  in .

In other notions of implementation via a strategic game form the set of actions of each player is required to be the 
set of possible preference profiles (each player must announce a preference relation for every player) and 
announcing the true profile is required to be consistent with the solution concept. One such notion is the following.

• Definition 179.2

Let  be an environment in which  is a set of strategic game forms for which the set of actions of each 
player i is a set  of preference profiles, and let  be a solution concept. The strategic game form 

 truthfully   the choice rule  if for every preference profile  we 
have
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•   where  for each  (every player reporting the true preference profile is a solution of the 
game)

•  (the outcome if every player reports the true preference profile is a member of ).

In this case we say the choice rule f is truthfully   in 

This notion of implementation differs from the previously defined notion in three respects. First, and most 
important, it requires the set of actions of each player to be the set of preference profiles and "truth telling" to be a 
solution to every game that may arise. Second, it allows (non truth-telling) solutions of the game to yield outcomes 
that are inconsistent with the choice rule. Third, it allows there to be preference profiles for which not every 
outcome prescribed by the choice rule corresponds to a solution of the game.

Our discussion is organized according to the set of game forms under consideration and the solution concept used. 
We begin with strategic game forms and the solution of dominant strategy equilibrium; we then consider strategic 
game forms and the solution of Nash equilibrium; finally we consider extensive game forms and the solution of 
subgame perfect equilibrium.

We establish two types of results, one negative and one positive. The negative results give conditions under which 
only degenerate choice rules can be implemented. The positive ones give conditions under which every rule in a 
very large set can be (at least approximately) implemented. Results of the latter type are reminiscent of the "folk 
theorems" of Chapter 8. Like the folk theorems their main interest is not the fact that "anything is possible"; rather, 
the structures of the mechanisms that we use to prove the results are the most interesting aspects of the 
investigation. Some features of these structures sometimes correspond to mechanisms that we observe, giving us 
insight into the rationale for these mechanisms.

10.3 Implementation in Dominant Strategies

In this section we assume that the planner is restricted to use a strategic game form. We assume also that, desiring 
to avoid strategic complications, she aims to achieve her goals by designing the game so that the outcomes that she 
wishes to implement are consistent with the solution concept of dominant strategy equilibrium (DSE), defined as 
follows.
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•Definition 181.1

A dominant strategy equilibrium of a strategic game  is a profile  of actions with the 
property that for every player  we have  for all .

Thus the action of every player in a dominant strategy equilibrium is a best response to every collection of actions 
for the other players, not just the equilibrium actions of the other players as in a Nash equilibrium (Definition 
14.1). (Note that the fact that a* is a dominant strategy equilibrium does not imply that for any player i the action  
dominates (even weakly) all the other actions of player i: it could be that for some  we have 

 for all .) The notion of DSE-implementation is strong, since a dominant strategy is 
optimal no matter what the other players do. We now see that it is hard to DSE-implement a choice rule.

We say that a choice rule  is dictatorial if there is a player  such that for any preference profile 
 and outcome  we have  for all . The following result, known as the Gibbard-

Satterthwaite theorem, is a milestone in implementation theory.

•Proposition 181.2

Let  be an environment in which C contains at least three members,  is the set of all possible 
preference profiles, and  is the set of strategic game forms. Let  be a choice rule that is DSE-
implementable and satisfies the condition

Then f is dictatorial.

A proof of this result uses the following result.

•Lemma 181.4 (Revelation principle for DSE-implementation)

Let  be an environment in which  is the set of strategic game forms. If a choice rule  is DSE-
implementable then

a. f is truthfully DSE-implementable

b. there is a strategic game form  in which Ai is the set of all preference relations (rather than 

profiles) such that for all  the action profile  is a dominant strategy equilibrium of the strategic game 
 and 

Proof.

Let  be a game form that DSE-implements f. We first prove (b). The set of dominant actions for any 
player j depends only on , so that we can define  to be a dominant action for player j in any game 

. Define the outcome function g* of G* by
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. Since G DSF-implements f we have . Now suppose that there is a preference profile 
 for which  is not a dominant strategy for player j in G*. Then there is a preference profile  such that 

, so that  is not a best response in  to the collection of actions , a 
contradiction. Thus  is a dominant strategy equilibrium of .

It is immediate that  is a dominant strategy for every player in the game  in which the set of actions of each 
player is  and the outcome function is given by  (where  is a preference profile for each 

), so that f is truthfully DSE-implementable, proving (a).

From this lemma it follows that if a choice rule cannot be truthfully DSE-implemented then it cannot be DSE-
implemented. Thus for example if  contains only strict preference relations then the choice function that chooses 
the second ranked outcome in player l's preferences is not DSE-implementable: if it were, then by the lemma a 
dominant strategy in G* for player 1 would be to announce her true preference relation, but in fact in G* it is better 
for her to announce a preference relation in which her most preferred action is ranked second.

Notice that the game G* in the lemma does not necessarily DSE-implement the choice rule since, as we noted 
earlier, the notion of truthful DSE-implementation does not exclude the possibility that there are non-truthful 
dominant strategy profiles for which the outcome is different from any given by the choice rule. In brief, it does not 
follow from Lemma 181.4 that DSE-implementation is equivalent to truthful DSE-implementation.

•Exercise 182.1

Show that if the set  of preference profiles contains only strict preferences then a choice function is truthfully 
DSE-implementable if and only if it is DSE-implementable.

The main part of the proof of the Gibbard-Satterthwaite theorem (181.2) is the proof of the following result in 
social choice theory, which we omit. (The standard proof of this result relies on Arrow's impossibility theorem (for 
a proof of which see, for example, Sen (1986)).)

•Lemma 182.2

Let C be a set that contains at least three members and let  be the set of all possible preference profiles. If a 

choice function  satisfies (181.3) and for every preference profile  we have  

for every preference relation  then f is dictatorial.
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Proof of Proposition 181.2.

It follows from the proof of Lemma 181.4 that if the choice rule f is DSE-implementable, say by the game form G, 
then any selection g* of f (i.e.  for all ) has the property that for every preference profile  we 

have  for every preference relation . Since f satisfies (181.3), g* does also. 
Consequently by Lemma 182.2 g* is dictatorial, so that f is also.

• Exercise 183.1

Explain, without making reference to the Gibbard-Satterthwaite theorem (181.2), why the following choice 
function is not DSE-implementable in an environment  in which C contains at least three members,  is 
the set of all possible preference profiles, and  is the set of strategic game forms:

where a* is an arbitrary member of C.

The Gibbard-Satterthwaite theorem (181.2) applies to an environment .gif"> is the cost of the project.

Not all such choice functions are DSE-implementable. The next proposition and exercise establish that such a 
choice function f is truthfully DSE-implementable if and only if for each  there is a function hj such that 

 for all , where f(θ) = (x(θ),m(θ)). In the strategic game form used to 
implement f,
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each player j announces a number aj, interpreted as a declaration of his value of the project, and the project is 
executed if and only if the sum of these declarations is at least γ; the payment made by player j is equal to hj(a-j) 
(which is independent of his announcement), plus, if the project is carried out, an amount equal to the difference 
between the cost of the project and the sum of the announcements made by the other players. Formally, in this 
strategic game form  we have  and g(a) = (x(a), m(a)) for each  where

Such a game form is called a Groves mechanism.

•Proposition 184.2

Let  be an environment in which  and  is the set of profiles  in which 
each  is represented by a utility function of the form θix-mi for some , and  is the set of strategic game 
forms; identify  with RN. A choice function  with f(θ) = (x(θ),m(θ)) for which

• x(θ) = 1 if and only if 

•  for each  there is a function hj such that  for all 

is truthfully DSE-implemented by the Groves mechanism  defined in (184.1).

Proof.

Let  and let a-j be an arbitrary vector of actions of the players other than j. We argue that when the players 
other than j choose a-j, j 's payoff when he chooses aj = θj is at least as high as his payoff when he chooses any other 
action in Aj. There are three cases.

•  If x(a-j,θj) = x(a-j,a's) then mj(a-j, a'j) = m-j, θj) and hence g(a-j, a'j) = g(a-j, θj).

•  If x(a-j,θj) = 0 and x(a-j, a'j) = 1 then j 's payoff under (a-j, θj) is -mj(a-j,θj) = -hj(a-j), while his payoff under (a-j, a'j) is 

 since x(a-j, θj) = 0 implies that .

•  If x(a-j,θj) = 1 and x(a-j, a'j) = 0 then j 's payoff under (a-j, θj) is , 

while his payoff under (a-j,a'j) is , since x(a-j, θj) = 1 

implies that .
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Hence it is a dominant action for each player j to choose aj = θj. The outcome g(θ) is equal to f(θ), so that  
truthfully DSE-implements f.

Note that the Groves mechanism (184.1) does not Nash-implement a choice function f satisfying the conditions of 
the proposition: for example, if , |N| = 2 and θi = 1 for both players then the associated game has also, in 
addition to (1,1), an inefficient equilibrium (-2,-2).

• Exercise 185.1 

In an environment like that in the previous proposition, show that if a choice function f with f(θ) - (x(θ),m(θ)) and x

(θ) = 1 if and only if  is truthfully DSE-implementable then for each  there is a function hj such 

that  for all . [You need to show that whenever x(θ-j, θj) = 1 and x(θ-j, 

θ'j) = 0 then 

10.4 Nash Implementation

We now turn to the case in which the planner, as in the previous section, uses strategic game forms, but assumes 
that for any game form she designs and for any preference profile the outcome of the game may be any of its Nash 
equilibria.

The first result is a version of the revelation principle (see also Lemma 181.4). It shows that any Nash-
implementable choice rule is also truthfully Nash-implementable: there is a game form in which (i) each player has 
to announce a preference profile and (ii ) for any preference profile truth-telling is a Nash equilibrium. This result 
serves two purposes. First, it helps to determine the boundaries of the set of Nash-implementable choice rules. 
Second, it shows that a simple game can be used to achieve the objective of a planner who considers truthful Nash 
equilibrium to be natural and is not concerned about the outcome so long as it is in the set given by the choice rule.

•Lemma 185.2 (Revelation principle for Nash implementation)

Let  be an environment in which  is the set of strategic game forms. If a choice rule is Nash-
implementable then it is truthfully Nash-implementable.

Proof.

Let  be a game form that Nash-implements the choice rule  and for each  let  be 

a Nash equilibrium of the game . Define a new game form  in which  for each  
and g*(p) = g((ai(pi))) for each
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. (Note that each pi is a preference profile and p is a profile of preference profiles.) Clearly the profile 

p* in which  for each  is a Nash equilibrium of  and .

Note that it does not follow from this result that in an analysis of Nash implementation we can restrict attention to 
games in which each player announces a preference profile, since the game that truthfully Nash-implements the 
choice rule may have non-truthful Nash equilibria that generate outcomes different from that dictated by the choice 
rule. Note also that it is essential that the set of actions of each player be the set of preference profiles, not the 
(smaller) set of preference relations, as in part (b) of the revelation principle for DSE-implementation (Lemma 
181.4).

We now define a key condition in the analysis of Nash implementation.

•Definition 186.1

A choice rule  is monotonic if whenever  and  there is some player  and some 
outcome  such that  and .

That is, in order for an outcome c to be selected by a monotonic choice rule when the preference profile is  but not 

when it is  the ranking of c relative to some other alternative must be worse under  than under  for at least 
one individual.

An example of a monotonic choice rule f is that in which  is the set of weakly Pareto efficient outcomes: 
: there is no  such that  for all }. Another example is the rule f in which  consists 

of every outcome that is a favorite of at least one player: : there exists  such that  for all 
}.

•Proposition 186.2

Let  be an environment in which  is the set of strategic game forms. If a choice rule is Nash-
implementable then it is monotonic.

Proof.

Suppose that the choice rule  is Nash-implemented by a game form , and 
. Then there is an action profile a for which g(a) = c that is a Nash equilibrium of the game  but not 

of . That is, there is a player j and action  such that  and . Hence f is 
monotonic.

•Example 186.3 (Solomon's predicament)

The biblical story of the Judgment of Solomon illustrates some of the main ideas of implementation theory. Each of 
two women, 1 and 2, claims a baby; each of them knows
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who is the true mother, but neither can prove her motherhood. Solomon tries to educe the truth by threatening to 
cut the baby in two, relying on the fact that the false mother prefers this outcome to that in which the true mother 
obtains the baby while the true mother prefers to give the baby away than to see it cut in two. Solomon can give the 
baby to either of the mothers or order its execution.

Formally, let a be the outcome in which the baby is given to mother 1, b that in which the baby is given to mother 
2, and d that in which the baby is cut in two. Two preference profiles are possible:

Despite Solomon's alleged wisdom, the choice rule f defined by f(θ) = {a} and f(θ') = {b} is not Nash-
implementable, since it is not monotonic:  and  but there is no outcome y and player  such that 

 and . (In the biblical story Solomon succeeds in assigning the baby to the true mother: he gives it to the 
only woman to announce that she prefers that it be given to the other woman than be cut in two. Probably the 
women did not perceive Solomon's instructions as a strategic game form.)

The next result provides sufficient conditions for a choice rule to be Nash-implementable.

•Definition 187.1

A choice rule  has no veto power if  whenever for at least |N| = 1 players we have  for all 
.

•Proposition 187.2

Let  be an environment in which  is the set of strategic game forms. If  then any choice rule that 
is monotonic and has no veto power is Nash-implementable.

Proof.

Let  be a monotonic choice rule that has no veto power. We construct a game form  that 
Nash-implements f as follows. The set of actions Ai of each player i is the set of an triples (pi, ci, mi), where 

, and mi is a nonnegative integer. The values  of the outcome function are defined as 
follows.

• If for some  and some  with  we have  for all  then
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•  Otherwise g((pi, ci, mi)) = ck where k is such that  for all  (in the case of a tie the identity of k is 
immaterial).

This game form has three components. First, if all the players agree about the preference profile  and the outcome 
 to be implemented then the outcome is indeed c. Second, if there is almost agreement—all players but 

one agree—then the majority prevails unless the exceptional player announces an outcome that, under the 
preference relation announced by the majority, is not better for him than the outcome announced by the majority 
(which persuades the planner that the preference relation announced for him by the others is incorrect). Third, if 
there is significant disagreement then the law of the jungle applies: the player who ''shouts loudest.gif" chooses the 
outcome.

We now show that this game form Nash-implements f. Let  for some . Let  for each . 
Then (ai) is a Nash equilibrium of the game  with the outcome c: any deviation by any player j, say to 

, that affects the outcome has the property that the outcome is .

Now let  be a Nash equilibrium of the game  with the outcome c*. We show that .

There are three cases to consider. First suppose that  for all  and . If  then 
the monotonicity of f implies that there is a player  and  such that  and . But then the 
deviation by player i to the action  changes the action profile to one that yields his preferable outcome b. 

Hence .

Second suppose that  for all  and . If there is some  and outcome  such that 
 then player i can deviate to  for some m" > m', yielding the preferred outcome b. Thus c* is a 

favorite outcome of every player; since f has no veto power we have .

Third suppose that  for some players i and j. We show that for at least |N|-1 players c* is a favorite outcome, 
so that since f has no veto power we have . Since  there exists  is different from 
either  or , say . If there is an outcome b such that  for some  then k can profitably 
deviate by choosing  for some  for all . Thus for all  we have  for all 

. (Note that player i, unlike the other players, may not be able to achieve his favorite outcome by deviating 
since all the other players might be in agreement.)
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The interest of a result of this type, like that of the folk theorems in Chapter 8, depends on the reasonableness of 
the game form constructed in the proof. A natural component of the game form constructed here is that a complaint 
against a consensus is accepted only if the suggested alternative is worse for the complainant under the preference 
profile claimed by the other players. A less natural component is the "shouting" part of the game form, especially 
since shouting bears no cost here.

The strength of the result depends on the size of the set of choice rules that are monotonic and have no veto power. 
If there are at least three alternatives and  is the set of all preference profiles then no monotonic choice function 
has no veto power. (This follows from Muller and Satterthwaite (1977, Corollary on p. 417); note that a monotonic 
choice function satisfies Muller and Satterthwaite's condition SPA.) Thus the proposition is of interest only for 
either a nondegenerate choice rule or a choice function with a limited domain.

The game form in the proof of the proposition is designed to cover all possible choice rules. A specific choice rule 
may be implemented by a game form that is much simpler. Two examples follow.

•Example 189.1

Suppose that an object is to be assigned to a player in the set {1,...,n}. Assume first that for all possible preference 
profiles there is a single player who prefers to have the object than not to have it. The choice function that assigns 
the object to this player can be implemented by the game form in which the set of actions of each player is {Yes, 
No} and the outcome function assigns the object to the player with the lowest index who announces Yes if there is 
such a player, and to player n otherwise. It is easy to check that if player i is the one who prefers to have the object 
than not to have it then the only equilibrium outcome is that i gets the object.

Now assume that in each preference profile there are two ("privileged") players who prefer to have the object than 
to not have it, and that we want to implement the choice rule that assigns to each preference profile the two 
outcomes in which the object is assigned to one of these players. The game form just described does not work 
since, for example, for the profile in which these players are 1 and 2 there is no equilibrium in which player 2 gets 
the object. The following game form does implement the rule. Each player announces a name of a player and a 
number. If n - 1 players announce the same name, say i, then i obtains the object unless he names a different player, 
say j, in which case j obtains the object. In any other case the player who names the largest number gets the
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Figure 190.1 
A game form that implements the choice function  

considered in Example 190.1 in which the legitimate  
owner obtains the object. (Note that the entries in the  

boxes are outcomes, not payoffs.)

object. Any action profile in which all players announce the name of the same privileged player is an equilibrium. 
Any other action profile is not an equilibrium, since if at least n - 1 players agree on a player who is not privileged 
then that player can deviate profitably by announcing somebody else; if there is no set of n - 1 players who agree 
then there is at least one privileged player who can deviate profitably by announcing a larger number than anyone 
else.

• Example 190.1 (Solomon's predicament)

Consider again Solomon's predicament, described in Example 186.3. Assume that the object of dispute has 
monetary value to the two players and that Solomon may assign the object to one of the players, or to neither of 
them, and may also impose fines on them. The set of outcomes is then the set of triples (x, ml, m2) where either x = 
0 (the object is not given to either player) or  (the object is given to player x) and mi is a fine imposed on 
player i. Player i 's payoff if he gets the object is vH - mi if he is the legitimate owner of the object and vL - mi if he is 

not, where vH > vL > 0; it is -mi if he does not get the object. There are two possible preference profiles,  in which 
player 1 is the legitimate owner and  in which player 2 is.

King Solomon wishes to implement the choice function f for which  and . This 

function is monotonic: for example  and  Proposition 187.2 
does not apply since there are only two players. However, the following game form (which is simpler than that in 
the proof of the proposition) implements f: each player has three actions, and the outcome function is that given in 
Figure 190.1, where M = (vH + vL)/2 and  is small enough. (The action "Mine+.gif" can be interpreted
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Figure 191.1 
An extensive game form that implements the choice  

function given in Example 190.1. The vector near each  
terminal history is the outcome associated with that history.

as an impudent demand for the object, which is penalized if the other player does not dispute the ownership.)

Given our interest in the structure of the game forms that we construct, the fact that the game form in this example 
is simple and lacks a "shouting" component is attractive. In the next section (see Example 191.2) we show that the 
choice function in the example can be implemented by an even simpler scheme.

• Exercise 191.1

Consider the case in which there are two individuals. Let N = {1, 2} and C = {a, b, c}, and suppose that there are 
two possible preference profiles,  with  and  and  with  and . Show 
that the choice function f defined by  and  is monotonic but not Nash-implementable.

10.5 Subgame Perfect Equilibrium Implementation

Finally, we turn to the case in which the planner uses extensive game forms with perfect information and assumes 
that for any preference profile the outcome of the game may be any subgame perfect equilibrium (SPE). To 
motivate the possibilities for implementing choice rules in this case, consider Solomon's quandary once again.

•Example 191.2 (Solomon's predicament)

The choice function f given in the previous example (190.1) is SPE-implemented by the following game form. First 
player I is asked whether the object is hers. H she says "no" then the object is given to player 2. If she says "yes" 
then player 2 is asked if he is the owner. If he says "no" then the object is given to player 1, while if he says "yes'' 
then he obtains the object and must pay a fine of M satisfying vL < M < vH while player 1 has to pay a small fine 

. This game form is illustrated in Figure 191.1 (in which outcomes, not payoffs, are shown near the terminal 
histories).
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If player 1 is the legitimate owner (i.e. the preference profile ) then the game has a unique subgame perfect 
equilibrium, in which player 2 chooses "hers" and player 1 chooses "mine", achieving the desirable outcome 
(1,0,0). If player 2 is the real owner then the game has a unique subgame perfect equilibrium, in which he chooses 
''mine" and player 1 chooses "his.gif", yielding the outcome (2,0,0). Thus the game SPE-implements the choice 
function given in Example 190.1.

The key idea in the game form described in this example is that player 2 is confronted with a choice that leads him 
to choose truthfully. If he does so then player 1 is faced with a choice that leads her to choose truthfully also. The 
tricks used in the literature to construct game forms to SPE-implement choice functions in other contexts are in the 
same spirit. In the remainder of the chapter we present a result that demonstrates the richness of the possibilities for 
SPE-implementation.

Let C* be a set of deterministic consequences. We study the case in which the set C of outcomes has the form

If  then we interpret mi as a fine paid by player i. (Note that mi is not transferred to another player.)

We assume that for each player i there is a payoff function  such that player i's preference relation over C 
is represented by the function EL(ui(c*)) -mi; we identify a preference profile with a profile  of Such payoff 
functions and denote ELui(c*) simply by ui(L). We assume further that , where U is a finite set that excludes 
the constant function. The set  of game forms that we consider is the set of extensive game forms with perfect 
information with consequences in C.

The notion of implementation that we explore is weaker than those studied previously: we construct a game form 
 with the property that for any preference profile  the game  has a unique subgame perfect 

equilibrium in which the desired alternative is realized with very high probability, though not necessarily with 

certainty. More precisely, we say that a choice function  is virtually SPE-implementable if for any  
there is an extensive game form  such that for any preference profile  the extensive game  has a 
unique subgame perfect equilibrium, in which the outcome is f(u) with probability at least .
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• Proposition 193.1

Let C* be a set of deterministic consequences. Let  be an environment in which , C is given by 
(192.1), , where U is the (finite) set of payoff functions described above, and  is the set of extensive game 
forms with perfect information and consequences in C. Then every choice function  is virtually SPE-
implementable.

Proof.

First note that since for no payoff function in U are all outcomes indifferent, for any pair (v, v') of distinct payoff 
functions there is a pair (L(v, v'),L'(v, v')) of lotteries over C* such that v(L(v, v')) > v(L'(v, v')) and v'(L'(v, v')) > v'(L
(v, v')). (A player's choice between the lotteries L(v, v') and L'(v, v') thus indicates whether his payoff function is v 
or v'.) For any triple (u, v, v') of payoff functions let L*(u, v, v') be the member of the set {L(v, v'),L'(v, v')} that is 
preferred by u. Then for any pair (v, v') of payoff functions we have u(L*(u, v, v')) = max{ u(L(v, v')),u(L'(v, v'))}, so 
that  for any payoff function u'. Further, u(L*(u, u, u')) > u(L*(u', u, u')).

Now suppose that for some pair (v, v') a player who announces the payoff function u is given the lottery L*(u, v, v'). 
Let B be the minimum, over an pairs (u, u') of distinct payoff functions, of the average gain, over an pairs (v, v'), of 
any player with payoff function u from announcing u rather than u':

where W is the set of an pairs of distinct payoff functions and M = |U|(|U| - 1) (the number of members of W). By 
the argument above we have B > 0.

For every  we construct a game form that has K + 1 stages (K being defined below). Each stage consists of 
|N| substages. Let N = {1,...,n}. In substage i of each of the first K stages player i announces a preference profile (a 
member of UN); in substage i of stage K + 1 player i announces a payoff function (a member of U).

For any terminal history the outcome, which consists of a lottery and a profile of fines, is defined as follows. Each 
stage k for k = 1,..., K contributes to the lottery a consequence with probability . If in stage k an the players 
except possibly one announce the same preference profile, say (ui), then this consequence is f((ui)); otherwise it is 
some fixed consequence .
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Each substage of the last stage contributes the probability  to the lottery. This probability is split into M equal 
parts, each corresponding to a pair of payoff functions. The probability  that corresponds to 

 is assigned to the lottery L*(u'i, v, v'), where u'i is the payoff function that player i announces in 
stage K + 1.

As for the fines, a player has to pay δ > 0 if he is the last player in the first K stages to announce a preference 
profile different from the profile of announcements in stage K + 1. In addition, a player has to pay a fine of δ/K for 
each stage in the first K in which all the other players announce the same profile, different from the one that he 
announces. (In order for the odd player out to be well-defined we need at least three players.)

Finally, we choose δ so that  and K so that , where

We now show that for any .gif"> the net effect is that the best action for any player is to announce his true payoff 
function in the final period, whatever history precedes his decision.

We now show that in any subgame perfect equilibrium all players announce the true preference profile (ui) in each 
of the first K stages. Suppose to the contrary that some player does not do so; let player i in stage k be the last 
player not to do so. We argue that player i can increase his payoff by deviating and announcing the true preference 
profile (ui). There are two cases to consider.
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•  If no other player announces a profile different from (ui) in stage k then player i's deviation has no effect on the 
outcome; it reduces the fine he has to pay by δ/K, since he no longer announces a profile different from that 
announced by the other players, and may further reduce his fine by δ (if he is no longer the last player to announce 
a profile different from ((ui)).

•  If some other player announces a profile different from (ui) in stage k then the component of the final lottery 

attributable to stage k may change, reducing player i 's payoff by at most . In addition he may become the 
odd player out at stage k and be fined δ/K. At the same time he avoids the fine δ (since he is definitely not the last 
player to announce a profile different from (ui)). Since , the net effect is that the deviation is 
profitable.

We conclude that in every subgame perfect equilibrium every player, after every history at which he has to 
announce a preference profile, announces the true preference profile, so that the outcome of the game assigns 
probability of at least  to f((ui)).

The game form constructed in this proof is based on two ideas. Stage K + 1 is designed so that it is dominant for 
every player to announce his true payoff function. In the earlier stages a player may wish to announce a preference 
profile different from the true one, since by doing so he may affect the final outcome to his advantage; but no 
player wants to be the last to do so, with the consequence that no player ever does so.

Notes

The Gibbard-Satterthwaite theorem (181.2) appears in Gibbard (1973) and Satterthwaite (1975). For alternative 
proofs see Schmeidler and Sonnenschein (1978) and Barberá (1983). Proposition 184.2 is due to Groves and Loeb 
(1975); the result in Exercise 185.1 is due to Green and Laffont (1977). Maskin first proved Proposition 187.2 (see 
Maskin (1985)); the proof that we give is due to Repullo (1987). The discussion in Section 10.5 is based on Abreu 
and Matsushima (1992), who prove a result equivalent to Proposition 193.1 for implementation via iterated 
elimination of strictly dominated strategies in strategic game forms; the variant that we present is that of Glazer and 
Perry (1996). The analysis of Solomon's predicament in Examples 186.3, 190.1, and 191.2 first appeared in Glazer 
and Ma (1989).
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For a characterization of choice functions that are SPE-implementable see Moore and Repullo (1988).

In writing this chapter we benefited from Moore (1992) (a survey of the literature) and from unpublished lecture 
notes by Repullo.
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III  
EXTENSIVE GAMES WITH IMPERFECT INFORMATION

The model of an extensive game with imperfect information allows a player, when taking an action, to have only 
partial information about the actions taken previously. The model is rich; it encompasses not only situations in 
which a player is imperfectly informed about the other players' previous actions, but also, for example, situations in 
which during the course of the game a player forgets an action that he previously took and situations in which a 
player is uncertain about whether another player has acted.

We devote Chapter 11 to an exploration of the concept of an extensive game with imperfect information, leaving 
until Chapter 12 a study of the main solution concept for such games, namely the notion of sequential equilibrium.
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11 
Extensive Games with Imperfect Information

In this chapter we explore the concept of an extensive game with imperfect information, in which each player, 
when taking an action, may have only partial information about the actions taken previously.

11.1 Extensive Games with Imperfect Information

11.1.1 Introduction

In each of the models we studied previously there is a sense in which the players are not perfectly informed when 
making their choices. In a strategic game a player, when taking an action, does not know the actions that the other 
players take. In a Bayesian game a player knows neither the other players' private information nor the actions that 
they take. In an extensive game with perfect information a player does not know the future moves planned by the 
other players.

The model that we study here—an extensive game with imperfect information—differs in that the players may in 
addition be imperfectly informed about some (or all) of the choices that have already been made. We analyze the 
model by assuming, as we did previously, that each player, when choosing an action, forms an expectation about 
the unknowns. However, these expectations differ from those we considered before. Unlike those in strategic 
games, they are not derived solely from the players' equilibrium behavior, since the players may face situations 
inconsistent with that behavior. Unlike those in Bayesian games, they are not deduced solely from the equilibrium 
behavior and the exogenous information about the moves of chance. Finally, unlike those in extensive games with 
perfect information, they relate not only to the other players' future behavior but also to events that happened in the 
past.
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11.1.2 Definitions

The following definition generalizes that of an extensive game with perfect information (89.1) to allow players to 
be imperfectly informed about past events when taking actions. It also allows for exogenous uncertainty: some 
moves may be made by "chance" (see Section 6.3.1). It does not incorporate the other generalization of the 
definition of an extensive game with perfect information that we discussed in Section 6.3, in which more than one 
player may move after any history (see however the discussion after Example 202.1).

•Definition 200.1

An extensive game has the following components.

• A finite set N (the set of players).

• A set H of sequences (finite or infinite) that satisfies the following three properties.

• The empty sequence Ø is a member of H.

• If  (where K may be infinite) and L < K then 

•  If an infinite sequence (ak)k=l,... satisfies  for every positive integer L then .

(Each member of H is a history; each component of a history is an action taken by a player.) A history 

 is terminal  if it is infinite or if there is no aK+1 such that . The set of actions 

available after the nonterminal history h is denoted  and the set of terminal histories is 
denoted Z.

•  A function P that assigns to each nonterminal history (each member of H \ Z) a member of . (P is the 
player function, P(h) being the player who takes an action after the history h. If P(h) = c then chance determines 
the action taken after the history h.)

•  A function fc that associates with every history h for which P(h) = c a probability measure fc(·|h) on A(h), where 
each such probability measure is independent of every other such measure. (fc(a|h) is the probability that a occurs 
after the history h.)

•  For each player  a partition  of  with the property that A(h) = A(h') whenever h and h' 
are in the same member of the partition. For  we denote by A(I i) the set A(h) and by P(I i) the player P(h) for 
any . (  is the information partition  of player i; a set  is an information set of player i.)
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•  For each player  a preference relation  on lotteries over Z (the preference relation of player i) that can be 
represented as the expected value of a payoff function defined on Z.

We refer to a tuple  (which excludes the players' preferences) whose components satisfy the 
conditions in the definition as an extensive game form.

Relative to the definition of an extensive game with perfect information and chance moves (see Section 6.3.1), the 
new element is the collection  of information partitions. We interpret the histories in any given member of  
to be indistinguishable to player i. Thus the game models a situation in which after any history  player i is 
informed that some history in I i has occurred but is not informed that the history h has occurred. The condition that 
A(h) = A(h') whenever h and h' are in the same member of  captures the idea that if  then player i 
could deduce, when he faced A(h), that the history was not h', contrary to our interpretation of . (Note that 
Definition 200.1, unlike the standard definition of an extensive game, does not rule out the possibility that an 
information set contains two histories h and h' where h' = (h, a1,...,aK) for some sequence of actions (a1,...,aK)

Each player's information partition is a primitive of the game; a player can distinguish between histories in 
different members of his partition without having to make any inferences from the actions that he observes. As the 
game is played, a participant may be able, given his conjectures about the other players' behavior, to make 
inferences that refine this information. Suppose, for example, that the first move of a game is made by player 1, 
who chooses between a and b, and the second move is made by player 2, one of whose information sets is {a, b}. 
We interpret this game to model a situation in which player 2 does not observe the choice of player 1: when 
making his move, he is not informed whether player 1 chose a or b. Nevertheless, when making his move player 2 
may infer (from his knowledge of a steady state or from introspection about player 1) that the history is a, even 
though he does not observe the action chosen by player 1.

Each player's preference relation is defined over lotteries on the set of terminal histories, since even if the players' 
actions are deterministic the chance moves that the model allows induce such lotteries.

Note that Definition 200.1 extends our definition of an extensive game with perfect information (89.1) in the sense 
that if ,
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Figure 202.1 
An extensive game with imperfect information.

 is an extensive game and every member of the information partition of every player is a singleton then 
 is an extensive game with perfect information (and chance moves).

• Example 202.1

An example of an extensive game with imperfect information is shown in Figure 202.1. In this game player 1 
makes the first move, choosing between L and R. If she chooses R, the game ends. If. she chooses L, it is player 2's 
turn to move; he is informed that player 1 chose L and chooses A or B. In either case it is player 1's turn to move, 
and when doing so she is not informed whether player 2 chose A or B, a fact indicated in the figure by the dotted 
line connecting the ends of the histories after which player 1 has to move for the second time, choosing an action 
from the set . Formally, we have P(Ø) = P(L, A) = P(L, B) = 1, P(L) = 2, , and 

 (player 1 has two information sets and player 2 has one). The numbers under the terminal histories are 
the players' payoffs. (The first number in each pair is the payoff of player 1 and the second is the payoff of player 
2.)

In Definition 200.1 we do not allow more than one player to move after any history. However, there is a sense in 
which an extensive game as we have defined it can model such a situation. To see this, consider the example 
above. After player 1 chooses L, the situation in which players 1 and 2 are involved is essentially the same as that 
captured by a game with perfect information in which they choose actions simultaneously. (This is the reason that 
in much of the literature the definition of an extensive game with perfect information does not include the 
possibility of simultaneous moves.)

A player's strategy in an extensive game with perfect information is a function that specifies an action for every 
history after which the player chooses an action (Definition 92.1). The following definition is
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Figure 203.1 
Three one-player extensive games with imperfect recall.

an extension to a general extensive game; since we later consider the possibility that the players may randomize, 
we add the qualifier ''pure".

•Definition 203.1

A pure strategy of player  in an extensive game  is a function that assigns an action in A
(I i) to each information set .

As for an extensive game with perfect information, we can associate with any extensive game a strategic game; see 
the definitions of the strategic form (94.1) and reduced strategic form (95.1). (Note that the outcome of a strategy 
profile here may be a lottery over the terminal histories, since we allow moves of chance.)

11.1.3 Perfect and Imperfect Recall

The model of an extensive game is capable of capturing a wide range of informational environments. In particular, 
it can capture situations in which at some points players forget what they knew earlier. We refer to games in which 
at every point every player remembers whatever he knew in the past as games with perfect recall. To define such 
games formally, let  be an extensive game form and let Xi(h) be the record of player i 's experience 
along the history h: Xi(h) is the sequence consisting of the information sets that the player encounters in the history 
h and the actions that he takes at them, in the order that these events occur. In the game in Figure 202.1, for 
example, X1((L, A)) =  (Ø,L, {(L, A), (L, B)}).

• Exercise 203.2

Give a formal definition of Xi(h).

• Definition 203.3

An extensive game form has perfect recall if for each player i we have Xi(h) = Xi(h') whenever the histories h and 
h' are in the same information set of player i.

The game in Figure 202.1 has perfect recall, while the three (one-player) game forms in Figure 203.1 do not. In the 
left-hand game a player does not know if she has made a choice or not: when choosing an
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Figure 204.1 
Two distinct one-player extensive games that  

appear to model the same situation.

action she does not know whether she is at the beginning of the game or has already chosen her left-hand action. In 
the middle game the player forgets something that she previously knew: when making a choice at her last 
information set she is not informed of the action of chance, though she was so informed when she made her 
previous choice. In the right-hand game she does not remember the action she took in the past.

The literature on games with imperfect recall is very small. An example of a game theoretic treatment of a situation 
with imperfect recall is that of the machine games in Chapter 9. In the underlying repeated game that a machine 
game models, each player, when taking an action, is not informed of past events, including his own previous 
actions. The size of his memory depends on the structure of his machine. More memory requires more states; since 
states are costly, even in equilibrium a player still may imperfectly recall his own past actions.

11.2 Principles for the Equivalence of Extensive Games

Some extensive games appear to represent the same strategic situation as others. Consider, for example, the two 
one-player games in Figure 204.1. (In these games, as in the others in this section, we associate letters with 
terminal histories. If two terminal histories are assigned the same letter then the two histories represent the same 
event; in particular, all the players are indifferent between them.) Formally, the two games are different: in the left-
hand game player 1 makes two decisions, while in the right-hand game she makes only one. However, principles of 
rationality suggest that the two games model the same situation.

We now give further examples of pairs of games that arguably represent the same situation and discuss some 
principles that generalize these examples. We do not argue that these principles should be taken as axioms; we 
simply believe that studying them illuminates the meaning of an extensive game, especially one with imperfect 
information.
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Figue 205.1 
The game Γ1.

Figure 205.2 
The game Γ2, equivalent to Γ1 according to  

the inflation-deflation principle.

The four principles that we consider all preserve the reduced strategic form of the game: if one extensive game is 
equivalent to another according to the principles then the reduced strategic forms of the two games are the same. 
Thus a solution concept that does not depend solely on the reduced strategic form may assign different outcomes to 
games that are equivalent according to the principles; to justify such a solution concept one has to argue that at 
least one of the principles is inappropriate.

Let Γ1 be the game in Figure 205.1. The principles that we discuss claim that this game is equivalent to four other 
extensive games, as follows.

Inflation -Deflation

According to this principle Γ1 is equivalent to the game Γ2 in Figure 205.2. In Γ2 player 1 has imperfect recall: at 
her second information set she is not informed whether she chose r or  at the start of the game. That is, the three 
histories , and (r, r) are all in the same information set in Γ2, while in Γ1 the history  lies in one information 
set and the histories  and (r, r) lie in another. The interpretation that we have given to a game like Γ2 is that 
player 1, when acting at the end of the game, has forgotten the action she took at the beginning of the game. 
However, another interpretation of an information set is that it represents the information about history that is 
inherent in the structure of the game, information that may be refined
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Figure 206.1 
The game Γ3, equivalent to Γ1 according to the principle  

of addition of a superfluous move.

by inferences that the players may make. Under this interpretation a player always remembers what he knew and 
did in the past and may obtain information by making inferences from this knowledge. Indeed, the argument that Γ1 
and Γ2 are equivalent relies on the assumption that player 1 is capable of making such inferences. The fact that she 

is informed whether the history was  or a member of  is irrelevant to her strategic calculations, 
according to the argument, since in any case she can infer this information from her knowledge of her action at the 
start of the game. Under this interpretation it is inappropriate to refer to a game like that in Figure 205.2 as having 
'imperfect recall.gif": the information sets reflect imperfections in the information inherent in the situation that can 
be overridden by the players' abilities to remember their past experience.

Formally, according to the inflation-deflation principle the extensive game Γ is equivalent to the extensive game Γ' 
if Γ' differs from Γ only in that there is an information set of some player i in Γ that is a union of information sets 
of player i in Γ 'with the following property: any two histories h and h' in different members of the union have 
subhistories that are in the same information set of player i and player i 's action at this information set is different 
in h and h'. (To relate this to the examples above, let Γ = Γ2, Γ' = Γ1, and i = 1.)

Addition of a Superfluous Move

According to this principle Γ1 is equivalent to the game Γ3 in Figure 206.1. The argument is as follows. If in the 
game Γ3 player 1 chooses  at the start of the game then the action of player 2 is irrelevant, since it has no effect on 
the outcome (note the outcomes in the bottom left-hand part of the game). Thus in Γ3 whether player 2 is informed 
of player 1's choice at the start of the game should make no difference to his choice.

Formally the principle of addition of a superfluous move is the following. Let Γ be an extensive game, let P(h) = i, 
and let . Suppose
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Figure 207.1 
The game Γ4, equivalent to Γ1 according to the  

principle of coalescing of moves.

that for any sequence h' of actions (including the empty sequence) that follows the history (h, a) and for any 

 we have

•  if and only if , and (h, a, h') is terminal if and only if (h, b, h') is terminal

•  if both (h, a, h') and (h, b, h') are terminal then (h, a, h') ~i (h, b, h') for all 

• if both (h, a, h') and (h, b, h') are nonterminal then they are in the same information set.

Then Γ is equivalent to the game Γ ' that differs from Γ only in that (i) all histories of the form (h, c, h') for .gif">, 
and let a be one of the actions of player 2.)

Coalescing of moves

According to this principle, Γ1 is equivalent to the game Γ4 in Figure 207.1. In Γ1 player 1 first chooses between  
and r, then chooses between A and B in the event that she chooses . The idea is that this decision problem is 
equivalent to that of deciding between , and r, as in Γ4. The argument is that if player 1 is rational then her 
choice at the start of Γ1 requires her to compare the outcomes of choosing  and r; to determine the outcome of 
choosing  requires her to plan at the start of the game whether to choose A or B.

Formally the principle of coalescing of moves is the following. Let Γ be an extensive game and let P(h) = i, with 
. Let  and
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Figure 208.1 
The game Γ5, equivalent to Γ1 according to the  

principle of interchange of moves.

suppose that  is an information set of player i. Let Γ' be the game that differs from Γ only in that 
the information set I'i is deleted, for all  the history (h', a) is deleted and every history (h', a, b, h") where 

 is replaced by the history (h', ab, h") where ab is a new action (that is not a member of A(h')), and the 
information sets, player function, and players' preferences are changed accordingly. Then Γ and Γ' are equivalent. 
(In the example let Γ = Γ1, Γ ' = Γ4, h = Ø, i = 1, and .)

Interchange of moves

According to this principle Γ1 is equivalent to the game Γ5 in Figure 208.1. The idea is that the order of play is 
immaterial if one player does not have any information about the other player's action when making his choice.

Formally the principle of interchange of moves is the following (which allows transformations more general than 
that from Γ1 to Γ5). Let Γ be an extensive game and let .gif">

• Exercise 208.1

Formulate the principles of coalescing of moves and inflation-deflation for one-player extensive games and show 
that every
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one-player extensive game with imperfect information and no chance moves (but possibly with imperfect recall) in 
which no information set contains both a history h and a subhistory of h is equivalent to a decision problem with a 
single nonterminal history. (The result holds even for games with chance moves, which are excluded only for 
simplicity.)

Thompson (1952) shows that these four transformations preserve the reduced strategic form. He restricts attention 
to finite extensive games in which no information set contains both a history h and some subhistory of h and shows 
that if any two such games have the same reduced strategic form then one can be obtained from the other by a 
sequence of the four transformations. We are not aware of any elegant proof of this result. We simply give an 
example to illustrate the procedure: starting with the game at the top of Figure 210.1 the series of transformations 
shown in Figures 210.1 and 211.1 leads to the extensive game with perfect information and simultaneous moves at 
the bottom of Figure 211.1.

11.3 Framing Effects and the Equivalence of Extensive Games

The principles of equivalence between extensive games discussed in the previous section are based on a conception 
of rationality that ignores framing effects. This conception is inconsistent with the findings of psychologists that 
even minor variations in the framing of a problem may dramatically affect the participants' behavior (see for 
example Tversky and Kahneman (1986)).

To illustrate that games that are equivalent according to these principles may differ in their framing and lead to 
different behavior, consider the strictly competitive games in Figure 212.1. The middle game is obtained from the 
top one by adding a superfluous move; the bottom game is the strategic form of each extensive game.

A reasonable principle for behavior in these games is that of maxminimizing. However, this principle yields 
different outcomes in the games. In the bottom game player 1's maxminimizer is the pure strategy r while in the top 
game the logic of maxminimizing directs her towards using the mixed strategy  (since she is informed that 
chance played right).

This example was originally proposed as a demonstration of the difficulties with the principle of maxminimizing, 
but we view it as a part of a deeper problem: how to analyze game theoretic situations taking into account framing 
effects, an intriguing issue of current research.
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Figure 210.1 
The first three transformations in a series that converts the  
top game into an extensive game with perfect information  
and simultaneous moves. The transformations continue in  

Figure 211.1.
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Figure 211.1 
The last three transformations in a series that converts the top  

game in Figure 210.1 into the extensive game with perfect  
information and simultaneous moves in the bottom of this figure.
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Figure 212.1 
Three games. The middle game is obtained from the top  

game by adding a superfluous move. The bottom game is the  
strategic form of both the top and middle games.

11.4 Mixed and Behavioral Strategies

In Definition 203.1 we defined the notion of a pure strategy in an extensive game. There are two ways to model the 
possibility that a player's actions in such a game depend upon random factors.

• Definition 212.1

A mixed strategy of player i in an extensive game  is a probability measure over the set of 
player i 's pure strategies. A behavioral strategy of player i is a collection  of independent probability 
measures, where βi(I i) is a probability measure over A(I i).

For any history  and action  we denote by βi(h)(a) the probability βi(Γ i)(a) assigned by βi(I i) to the 
action a.

Thus, as in a strategic game, a mixed strategy of player i is a probability measure over player i's set of pure 
strategies. By contrast, a behavioral strategy specifies a probability measure over the actions available to player i at 
each of his information sets. The two notions reflect two different ways in which a player might randomize: he 
might randomly
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select a pure strategy, or he might plan a collection of randomizations, one for each of the points at which he has to 
take an action. The difference between the two notions can be appreciated by examining the game in Figure 202.1. 
In this game player I has two information sets, at each of which she has two possible actions. Thus she has four 
pure strategies, which assign to the information. sets {Ø} and {(L, A), (L, B)} respectively the actions L and , L 
and r, R and , and R and r. (If you are puzzled by the last two strategies, read (or reread) Section 6.1.2.) A mixed 
strategy of player 1 is a probability distribution over these four pure strategies. By contrast, a behavioral strategy of 
player 1 is a pair of probability distributions, one for each information set; the first is a distribution over {L, R} and 
the second is a distribution over .

In describing a mixed or behavioral strategy we have used the language of the naïve interpretation of actions that 
depend on random factors, according to which a player consciously chooses a random device (see Section 3.2). 
When discussing mixed strategies in Chapter 3, we describe some other interpretations, which have analogs here. 
For example, we may think of the mixed and behavioral strategies of player i as two ways of describing the other 
players' beliefs about player i 's behavior. The other players can organize their beliefs in two ways: they can form 
conjectures about player i 's pure strategy in the entire game (a mixed strategy), or they can form a collection of 
independent beliefs about player i 's actions for each history after which he has to act (a behavioral strategy).

For any profile .gif''> (where for k = 0 the history (a1,..., ak) is the initial history).
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Figure 214.1 
A one-player extensive game in  

which there is a behavioral strategy  
that is not outcome-equivalent to  

any mixed strategy.

Two (mixed or behavioral) strategies of any player are outcome-equivalent if for every collection of pure strategies 
of the other players the two strategies induce the same outcome. In the remainder of this section we examine the 
conditions under which for any mixed strategy there is an outcome-equivalent behavioral strategy and vice versa; 
we show, in particular, that this is so in any game with perfect recall.

We first argue that, in a set of games that includes all those with perfect recall, for any behavioral strategy there is 
an outcome-equivalent mixed strategy. Consider an extensive game in which no information set contains both 
some history h and a history of the form (h, h') for some .gif"> to a generates the outcomes (a, a), (a, b), and b with 
probabilities p2, p(l-p), and 1-p respectively, a distribution that cannot be duplicated by any mixed strategy.)

We now show that, in a game with perfect recall, for every mixed strategy there is an outcome-equivalent 
behavioral strategy.

• Proposition 214.1

For any mixed strategy of a player in a finite extensive game with perfect recall there is an outcome-equivalent 
behavioral strategy.



   

Page 215

Figure 215.1 
An extensive game in which mixed and  
behavioral strategies are not equivalent.

Proof.

Let σi be a mixed strategy of player i. As above, for any history h let πi(h) be the sum of the probabilities according 
to σi of all the pure strategies of player i that are consistent with h. Let h and h' be two histories in the same 
information set I i of player i, and let . Since the game has perfect recall, the sets of actions of player i in h 
and h' are the same. Thus πi(h) = πi(h'). Since in any pure strategy of player i the action a is taken after h if and only 
if it is taken after h', we also have πi(h, a) = πi(h', a). Thus we can define a behavioral strategy βi of player i by βi(I i)

(a) = πi(h, a)/ πi(h) for any  for which πi(h) > 0 (clearly ); how we define βi(I i)(a) if πi(h) = 
0 is immaterial.

We claim that βi is outcome-equivalent to σi. Let s-i be a collection of pure strategies for the players other than i. 
Let h be a terminal history. If h includes moves that are inconsistent with s-i then the probability of h is zero under 
both σi and βi. Now assume that all the moves of players other than i in h are consistent with s-i. If h includes a 
move after a subhistory  of h that is inconsistent with σi then α i(I i) assigns probability zero to this move, and 
thus the probability of h according to βi is zero. Finally, if h is consistent with σi then πi(h') > 0 for all subhistories 
h' of h and the probability of h according to βi is the product of πi(h', a)/πi(h') over all (h', a) that are subhistories of 
h; this product is πi(h), the probability of h according to σi.

In a game with imperfect recall there may be a mixed strategy for which there is no outcome-equivalent behavioral 
strategy, as the one-player game with imperfect recall in Figure 215.1 shows. Consider the mixed strategy in which 
player 1 chooses LL with probability  and RR with probability . The outcome of this strategy is the probability 
distribution  over the terminal histories. This outcome cannot be achieved by any behavioral strategy: the 
behavioral strategy ((p, 1 - p), (q, 1- q)) induces a distribution over the terminal histories in which
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Figure 216.1 
The extensive game form for Exercise 216.1.

LR has zero probability only if either p = 0 or q = 1, in which case the probability of either LL or RR is zero.

• Exercise 216.1

Consider the game form in Figure 216.1. Find the behavioral strategy of player 1 that is equivalent to her mixed 
strategy in which she plays (B, r) with probability 0.4,  with probability 0.1, and  with probability 0.5.

11.5 Nash Equilibrium

A Nash equilibrium in mixed strategies of an extensive game is (as before) a profile σ* of mixed strategies with 
the property that for every player  we have

 for every mixed strategy σi of player i.

For finite games an equivalent definition of a mixed strategy equilibrium is that every pure strategy in the support 
of each player's mixed strategy is a best response to the strategies of the other players (cf. Definition 44.1). A Nash 
equilibrium in behavioral strategies is defined analogously.

Given Proposition 214.1, the two definitions are equivalent for games with perfect recall. For games with imperfect 
recall they are not equivalent, as the game in Figure 214.1 shows. In this game the player is indifferent among all 
her mixed strategies, which yield her a payoff of 0, while the behavioral strategy that assigns probability p to a 

yields her a payoff of p · 0+p · (1-p) · 1 + (1 - p )2 · 0= p(1- p), so that the best behavioral strategy has , and 
yields her a payoff of .

In Chapter 6 we argue that the notion of Nash equilibrium is often unsatisfactory in extensive games with perfect 
information and we introduce the notion of subgame perfect equilibrium to deal with the problems. To extend the 
ideas behind this notion to general extensive games



   

Page 217

Figure 217.1 
The extensive game with imperfect information in Exercise 217.1.

is challenging, mainly because when making a choice at a non-singleton information set a player has to form an 
expectation about the history that occurred, an expectation that may not be uniquely determined by the equilibrium 
strategies. The next chapter is devoted to a discussion of this issue.

• Exercise 217.1

Consider the strictly competitive extensive game with imperfect recall in Figure 217.1. Show that player 1's best 
behavioral strategy assures her a payoff of 1 with probability , while there is a mixed strategy that assures her the 
payoff 1 with probability .

• Exercise 217.2

Let Γ2 be an extensive game with imperfect information in which there are no chance moves, and assume that the 
game Γ1 differs from Γ2 only in that one of the information sets of player 1 in Γ2 is split into two information sets in 
Γ1. Show that all Nash equilibria in pure strategies of Γ2 correspond to Nash equilibria of Γ1. Show that the 
requirement that there be no chance moves is essential for this result.

• Exercise 217.3

Formulate the following parlor game as an extensive game with imperfect information. First player 1 receives a 
card that is either H or L with equal probabilities. Player 2 does not see the card. Player 1 may announce that her 
card is L, in which case she must pay $1 to player 2, or may claim that her card is H, in which case player 2 may 
choose to concede or to insist on seeing player 1's card. If player 2 concedes then he must pay $1 to player 1. If he 
insists on seeing player 1's card then player 1 must pay him $4 if her card is L and he must pay her $4 if her card is 
H. Find the Nash equilibria of this game.

Notes

The model of an extensive game with imperfect information studied in this chapter is due to Kuhn (1953), as are 
the notions of perfect and imperfect recall. Section 11.2 is based on Thompson (1952); the example
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at the end of the section is based on one in Elmes and Reny (1994). The example in Section 11.3 is based on 
Aumann and Maschler (1972). Proposition 214.1 is due to Kuhn (1953). The game in Figure 214.1 is a variant of 
one due to Isbell (1957, p. 85).
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12 
Sequential Equilibrium

In this chapter we extend the notion of subgame perfect equilibrium to extensive games with imperfect 
information. We focus on the concept of sequential equilibrium and briefly discuss some of its refinements.

12.1 Strategies and Beliefs

Recall that a subgame perfect equilibrium of an extensive game with perfect information is a strategy profile for 
which every player's strategy is optimal (given the other players' strategies) at any history after which it is his turn 
to take an action, whether or not the history occurs if the players follow their strategies. The natural application of 
this idea to extensive games with imperfect information leads to the requirement that each player's strategy be 
optimal at each of his information sets.

For the game in Figure 219.1 this requirement is substantial. The pair of strategies (L, R) is a Nash equilibrium of 
this game. If player 1 adheres to this equilibrium then player 2's information set is not reached.

Figure 219.1 
An extensive game with imperfect information in which  
the requirement that each player's strategy be optimal at  

every information set eliminates a Nash equilibrium.
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Figure 220.1 
An extensive game with imperfect information that has a  

Nash equilibrium that is not ruled out by an implementation  
of the idea behind the notion of subgame perfect equilibrium.

However, if for some reason player 2's information set is reached then his action R is inferior to his action L 
whatever he thinks caused him to have to act (i.e. whether player 1, contrary to her plan, chose M or R). Thus for 
this game the natural extension of the idea of subgame perfect equilibrium is unproblematic: the equilibrium (L, R) 
does not satisfy the conditions of this extension (while the equilibrium (M, L) does). The games for which this is so 
are rare; a more common situation is that which arises in the game in Figure 220.1. In this game too the strategy 
profile (L, R) is a Nash equilibrium in which player 2's information set is not reached. But in this case player 2's 
optimal action in the event that his information set is reached depends on his belief about the history that has 

occurred. The action R is optimal if he assigns probability of at least  to the history M, while L is optimal if he 

assigns probability of at most  to this history. Thus his optimal action depends on his explanation of the cause of 
his having to act. His belief cannot be derived from the equilibrium strategy, since this strategy assigns probability 
zero to his information set being reached.

The solutions for extensive games that we have studied so far have a single component: a strategy profile. We now 
study a solution— sequential equilibrium—that consists of both a strategy profile and a belief system, where a 
belief system specifies, for each information set, the beliefs held by the players who have to move at that 
information set about the history that occurred. It is natural to include a belief system as part of the equilibrium, 
given our interpretation of the notion of subgame perfect equilibrium (see Section 6.4). When discussing this 
notion of equilibrium we argue that to describe fully the players' reasoning about a game we have to specify their 
expectations about the actions that will be taken after histories that will not occur if the
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players adhere to their plans, and that these expectations should be consistent with rationality. In particular, we 
interpret the components of a strategy that specify actions after histories that are not consistent with the strategy as 
beliefs about what will happen in these unexpected events. In games with imperfect information, beliefs about 
unexpected events must include beliefs not only about the future but also about the past.

To summarize, the basic idea behind the notion of sequential equilibrium is that an equilibrium should specify not 
only the players' strategies but also their beliefs at each information set about the history that occurred. We refer to 
such a pair as an assessment. That is, an assessment consists of (i) a profile of behavioral strategies and (ii ) a belief 
system consisting of a collection of probability measures, one for each information set. (Note that the notion of an 
assessment coincides with that of a strategy profile for an extensive game with perfect information since in such a 
game all information sets are singletons and hence there is only one possible (degenerate) belief system.)

The extension of the requirement in a subgame perfect equilibrium that each player's strategy be optimal after any 
history is the following, which we refer to as sequential rationality: for each information set of each player i the 
(behavioral) strategy of player i is a best response to the other players' strategies, given player i's beliefs at that 
information set.

So far we have imposed no restriction on the players' beliefs. Several classes of additional constraints are discussed 
in the literature, including the following.

Consistency with Strategies

In the spirit of Nash equilibrium we should require that the belief system be consistent with the strategy profile, in 
the sense that at any information set consistent with the players' strategies the belief about the history that has 
occurred should be derived from the strategies using Bayes' rule. For example in the game in Figure 220.1 we do 
not want (M, L) to be a solution supported by the belief of player 2 that the history that led to his information set is 
R. If player 1's strategy is consistent with her choosing either M or R (that is, her strategy assigns positive 
probability to at least one of these choices), then we want to require that player 2's belief that the history M has 
occurred be derived from player 1's strategy using Bayes' rule. That is, player 2 should assign probability β1(Ø)(M)/
(β1(Ø)(M) + β1(Ø)(R)) (where β1 is player 1's behavioral strategy) to this event.
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Structural Consistency

Even at an information set that is not reached if all players adhere to their strategies we may wish to require that a 
player's belief be derived from some (alternative) strategy profile using Bayes' rule. (This constraint on the beliefs 
is referred to as "structural" since it does not depend on the players' payoffs or on the equilibrium strategy.)

Common Beliefs

Game theoretic solution concepts require that all asymmetries be included in the description of the game; every 
player is assumed to analyze the situation in the same way. In the context of subgame perfect equilibrium this leads 
to the (implicit) requirement that all the players' beliefs about the plans of some player i in case an unexpected 
event occurs are the same. In the current context it leads to the requirement that all players share the same belief 
about the cause of any unexpected event.

For some families of games the formal expression of these three restrictions is not problematic, though the 
reasonableness of the restrictions is in dispute. One example is the family of games in which the first move, about 
which the players may be asymmetrically informed, is made by chance, and subsequently every player is informed 
of every other player's moves. However, for arbitrary games even the formalization of the restrictions presents 
difficulties, as we shall see. The most widely-used formulation is that of sequential equilibrium, which we define in 
the next section. This notion usually leaves many degrees of freedom and is frequently consistent with a large set 
of outcomes, a fact that has motivated game theorists to impose additional restrictions on beliefs. In later sections 
we briefly discuss some of these restrictions.

12.2 Sequential Equilibrium

We restrict attention throughout to games with perfect recall (see Definition 203.3) in which every information set 
contains a finite number of histories. As we discuss above, a candidate for a sequential equilibrium of such a game 
is an assessment, defined formally as follows.

• Definition 222.1

An assessment in an extensive game is a pair (β, µ), where β is a profile of behavioral strategies and µ is a 
function that assigns to every information set a probability measure on the set of histories in the information set.
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Let (β, µ) be an assessment in . The interpretation of µ, which we refer to as a belief 
system, is that µ(I)(h) is the probability that player P(I) assigns to the history , conditional on I being reached.

An assessment is sequentially rational if for every player i and every information set  the strategy of player i 
is a best response to the other players' strategies given i 's beliefs at I i. To state this condition more formally, define 
the outcome O(β, µ|I) of (β, µ) conditional on I to be the distribution over terminal histories determined by β and 
µ conditional on I being reached, as follows. Let h* = (a1,..., aK) be a terminal history. Then

• O(β,µ\I)(h*) = 0 if there is no subhistory of h* in I (i.e. the information that the game has reached I rules out h*)

•  if the subhistory h = (a1,..., aL) of h* is in I, where L < K.

(If I is the information set consisting of the initial history then O(β, µ|I) is just the outcome O(β) defined in Section 
11.4.) Note that the assumption of perfect recall implies that there is at most one subhistory of h* in I. Note also 
that the rationale for taking the product in the second case is that by perfect recall the histories (a1,... ,ak) for k = 
L,...,K - 1 lie in different information sets, and thus for k = L,...,K - 1 the events {ak+1 follows (a1,...,ak) conditional 
on (a1,...,ak) occurring} are independent.

While at first sight this definition of O(β, µ|I) is natural, it has undesirable features in a game in which there are 
two information sets I and I' and histories  and  with the property that a subhistory of h is in I' and a 
subhistory of h' is in I. The following example demonstrates this point.

• Example 223.1

Consider the game form shown in Figure 224.1. (Sometimes, as here, we represent the initial history by several 
small circles rather than a single circle. In this example the number adjacent to each such circle is the probability 
assigned by chance to one of its actions at the initial history.) In an assessment (β, µ) in which β1 = β3 = Out player 
2's information set is not reached; if he is called upon to move then an unexpected event must have occurred. 
Suppose that his belief at his information set, I, satisfies µ(I)(A, C) > 0 and µ(I)(B, C) > 0. In deciding the action to 
take in the event that I is reached, he must calculate O(β, µ|I). The definition of this distribution given above 
assumes
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Figure 224.1 
The game form in Example 223.1. (The game  
begins with a move of chance in which A and 

B are each selected with probability .)

that he continues to hold expectations about the moves of players I and 3 that are derived from β. However, any 
strategy profile that generates the belief µ(I) must differ from β: it must assign positive probability to both player 1 
and player 3 choosing C. That is, if his belief is derived from an alternative strategy profile, then his explanation of 
the past is inconsistent with his expectation of the future.

This example illustrates the complexity of defining a reasonable extension of the notion of subgame perfect 
equilibrium for games in which one information set can occur both before and after another. The definition of 
sequential equilibrium that we now present covers such games but, as the example indicates, can lack appeal in 
them. We begin with a formal definition of sequential rationality.

• Definition 224.1

Let  be an extensive game with perfect recall. The assessment (β, µ) is sequentially 
rational  if for every player  and every information set  we have

 for every strategy β'i of player i.

The following definition aims to capture some of the restrictions on beliefs discussed in the previous section. 
Define a behavioral strategy profile to be completely mixed if it assigns positive probability to every action at every 
information set.

• Definition 224.2

Let  be a finite extensive game with perfect recall. An assessment (β, µ) is consistent if 

there is a sequence  of assessments that converges to (β, µ) in Euclidian space and has the properties 
that each strategy profile βn is completely mixed and that each belief system µn is derived from βn using Bayes' 
rule.
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Figure 225.1 
The game in Example 225.2 (Selten's horse).

The idea behind this requirement is that the probability of events conditional on zero-probability events must 
approximate probabilities that are derived from strategies that assign positive probability to every action. We do 
not find this consistency requirement to be natural, since it is stated in terms of limits; it appears to be a rather 
opaque technical assumption. To quote Kreps (1990a, p. 430), ''[r]ather a lot of bodies are buried in this definition". 
The assumptions embodied in the definition are unclear to us, though we shall see that the definition does capture 
some appealing requirements that we may wish to impose on assessments.

• Definition 225.1

An assessment is a sequential equilibrium of a finite extensive game with perfect recall if it is sequentially 
rational and consistent.

We show later (Proposition 249.1) that every finite extensive game with perfect recall has a sequential equilibrium. 
It is clear that if (β, µ) is a sequential equilibrium then β is a Nash equilibrium. Further, in an extensive game with 
perfect information (β, µ) is a sequential equilibrium if and only if β is a subgame perfect equilibrium.

Consider again the game in Figure 220.1. The assessment (β, µ) in which β1 = L, β2 = R, and µ((M, R})( M) = α for 
any  is consistent since it is the limit as  of assessments  where 

, and  for every . For  this assessment is also 
sequentially rational, so that it is a sequential equilibrium.

• Example 225.2

(Selten's horse) The game in Figure 225.1 has two types of Nash equilibria: one in which β1(Ø)(D) = 1, 

, and β3(I)(L) = 1, and one in which β1(Ø)(C) = 1, β2(C)(c) = 1, and  (where I = 
{( D),(C, d)}, player 3's information set). A Nash equilibrium of the first type is not part of any sequential
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Figure 226.1 
The game in Exercise 226.1.

equilibrium since the choice of player 2 at his (singleton) information set is not sequentially rational. For every 

Nash equilibrium β of the second type there is a sequential equilibrium (β, µ) in which . (To verify 
consistency, consider the sequence  of strategy profiles in which , and 

.)

• Exercise 226.1

Find the set of sequential equilibria of the game in Figure 226.1.

The following example shows that the notion of sequential equilibrium is not invariant to the principle of 
coalescing of moves considered in Section 11.2, a principle that seems very reasonable.

• Example 226.2

Consider the games in Figure 227.1. The top game (Γ1) is obtained from the bottom one (Γ2) by coalescing the 
moves of player 1. In Γ1 the assessment (β, µ) in which β1 = L, β2 = L, and µ({ M, R])(R) = 0 is a sequential 

equilibrium. (To verify consistency, consider the sequence  in which  and 

.) This equilibrium yields the payoff profile (3, 3). On the other hand, in any sequential 
equilibrium of Γ2 player 1's action at her second information set is R, by sequential rationality (since R dominates 
L). Thus in any consistent assessment player 2's belief µ({( C, L), (C, R)}) assigns probability 1 to (C, R), in which 
case player 2 must choose R. Hence β1 = (C, R) is the only equilibrium strategy of player 1. Thus the only 
sequential equilibrium payoff profile in Γ2 is (5,1).

The significant difference between the two games is that player 2's belief in Γ2 is based on the assumption that the 
relative likelihood of the actions L and R at player 1's second information set is the outcome of a rational choice by 
player 1, whereas player 2's belief in Γ1 about the relative probabilities of M and R is not constrained by any choice 
of player 1. We argued in Section 6.4 that in some games a player's
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Figure 227.1 
Two similar game. The top game (Γ1) is obtained from  

the bottom game (Γ2) by coalescing the moves of player 1.

strategy is not only a plan of action but also a specification of the other players' beliefs about his actions in the 
event that he does not follow this plan. In Γ2 player 1's strategy has this role—it specifies player 2's belief about the 
relative probabilities of player I choosing L and R when she begins by choosing C—while in Γ1 player 1's strategy 
describes only her move, without giving any relative probabilities to the other choices.

The following Exercise gives an extension of the one deviation property for subgame perfect equilibria of 
extensive games with perfect information (Lemma 98.2) to sequential equilibria of extensive games with imperfect 
information.

• Exercise 227.1

(The one deviation property for sequential equilibrium) Let (β, µ) be a consistent assessment in a finite extensive 
game with perfect recall and let β'i be a strategy of player i; denote β' =  (β-i, β'i). Show that if I i and I'i are 
information sets of player i with the property that I'i contains histories that have subhistories in I i then O(β', µ|I i)(h) 
= O(β',µ|I 'i)(h) · Pr(β', µ|I i)(I'i) for any terminal history h that has a subhistory in I'i, where Pr(β', µ|I i)(I'i) is the 
probability (according to (β', µ)) that I'i is reached given that h is reached. Use this fact to show that (β, µ) is 
sequentially rational if and only if no player i has an information set I i at which a change in βi(I i) (holding the 
remainder of βi fixed) increases his expected payoff conditional on reaching I i.
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Figure 228.1 
An extensive game in which there is a sequential equilibrium  

for which the belief system is not structurally consistent.

In Section 12.1 we discuss three conditions that relate the beliefs and strategies in an assessment. One of these is 
structural consistency, which may be defined formally as follows.

• Definition 228.1

The belief system µ in an extensive game with perfect recall is structurally consistent if for each information set I 
there is a strategy profile β with the properties that I is reached with positive probability under β and µ(I) is derived 
from β using Bayes' rule.

(Note that different strategy profiles may justify the beliefs at different information sets.)

In many games, for any assessment (β, µ) that is consistent (in the sense of Definition 224.2) the belief system µ is 
structurally consistent. However, the following example shows that in some games there are consistent assessments 
(β, µ) (in fact, even sequential equilibria) in which µ is not structurally consistent: the beliefs cannot be derived 
from any alternative strategy profile.

• Example 228.2

The game in Figure 228.1 has a unique Nash equilibrium outcome, in which players 1 and 2 choose R. To see this, 
suppose to the contrary that player 3's information set is reached with positive probability. Let the strategy profile 
used be β and let βi(I i)(R) = α i for i = 1, 2, 3, where I i is the single information set of player i.

a. If  then L yields player 2 a payoff of , his payoff to R. Thus player 2 chooses 

R. But then µ(I3)((L, R)) = 1 and hence player 3 chooses R with probability 1, contradicting 

b. If  then L yields player 1 a payoff of , her payoff to R. Thus player 1 chooses 
R. Now if player 2 chooses L with positive probability then µ(I3)((R, L)) = 1, and hence player 3 chooses L with 

probability 1, contradicting . Thus
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Figure 229.1 
The game in Exercise 229.1.

player 2 chooses R with probability 1, contradicting our assumption that player 3's information set is reached with 
positive probability.

Thus in any Nash equilibrium α1 = α2 = 1; in addition we need , otherwise either player 1 or player 2 can 
profitably deviate. Let β be such an equilibrium. For an assessment (β, µ) to be sequentially rational, player 3's 
belief µ(I3) must assign equal probabilities to the histories (L, R) and (R, L), and thus must take the form (1-2γ, γ, 
γ); an assessment in which µ(I3) takes this form is consistent if and only if  (A sequence of strategy profiles 

that demonstrates consistency for  is  in which  and .) However, 

the belief  of player 3 violates structural consistency since any strategy profile that yields (L, L) with 
probability zero also yields either (L, R) or (R, L) with probability zero.

• Exercise 229.1

Consider the game in Figure 229.1. As in the game in Figure 224.1 the first move is made by chance, and the 
information sets are not ordered (player 1's information set comes either before or after player 3's information set, 
depending on the move of chance). Show that the game has three sequential equilibria in pure strategies, in one of 
which players 1 and 3 both choose S. Discuss the reasonableness of these sequential equilibria.

The next example further illustrates the relationship between consistency and structural consistency. It shows that a 
sequentially rational assessment (β, µ) in which µ is structurally consistent may not be consistent (and hence may 
not be a sequential equilibrium).

• Example 229.2

In the game in Figure 230.1 the assessment (β, µ) in which β is the pure strategy profile (R, S, R), player 2's belief 
assigns probability 1 to the history R, and player 3's belief assigns probability 1
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Figure 230.1 
An extensive game in which there is a sequentially  

rational assessment with structurally consistent beliefs  
that is not a sequential equilibrium.

to the history (L, C), is sequentially rational. Further, the belief µ is structurally consistent: in particular, player 3's 
belief is supported by the alternative pure strategy profile in which player 1 chooses L and player 2 chooses C. That 
is, if player 3 has to move then she believes that player 1, as well as player 2, deviated from her equilibrium 
strategy. To rationalize her having to move it is sufficient for her to believe that player 2 deviated, and in fact she 
knows that he did so. Thus structural consistency allows player 3 to revise her belief about player 1 even though the 
only evidence she has is that player 2 deviated, and this is enough to explain what has happened.

These structurally consistent beliefs are not consistent: every sequence of assessments that involves strategies that 
are completely mixed and converge to β generates beliefs of player 3 that converge to the belief that assigns 
probability 1 to the history (R, C) (while µ assigns probability 1 to (L, C)). Thus (β, µ) is not a sequential 
equilibrium. (In the only sequential equilibrium of the game the strategy profile is (R, C, L), the belief of player 2 
assigns probability 1 to R, and the belief of player 3 assigns probability 1 to (R, C).)

The next example illustrates how subtle the consistency requirement can be.

• Example 230.1

Consider a two-stage three-player game in which in the first stage players 1 and 2 simultaneously choose from the 
set {L, M, R}, and in the second stage player 3 finds out how many players chose R and how many chose L. In this 
game player 3 has six information sets (for example {(M, M)} —the case in which she is informed that two players 
chose M—and {(R, L), (L, R))—the case in which she is informed that one player chose R and one chose L).
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If the strategies of players 1 and 2 call for them to choose the same action, but if in fact they choose different 
actions, then player 3 has to form a belief about the action chosen by each of them. At first sight it may seem that 
the notion of sequential equilibrium does not constrain these beliefs. Consider for example an assessment (β, µ) in 
which all three beliefs µ({( M,L),(L,M)})( M,L), µ({( L,R),(R,L)})( L,R), and µ({( M,R),(R,M)})( R,M) are equal to . 
These beliefs are clearly structurally consistent (recall that a different strategy profile can support the belief at each 
information set). However, the fact that consistency requires the belief at each information set to be justified by the 
same sequence of strategy profiles implies that (β, µ) is not consistent, as the following argument shows.

For (β,µ) to be consistent there must be a sequence () for which the limits of 
, and  as  are all 2 (where  is an 

abbreviation for . But the product of these three ratios is 1, independent of , while the product of their 
limits is 8. Thus consistency rules out the belief system µ (regardless of β).

12.3 Games with Observable Actions: Perfect Bayesian Equilibrium

We now examine a family of games in which we can define a notion of equilibrium that is closely related to 
sequential equilibrium but is simpler. A Bayesian extensive game with observable actions models a situation in 
which every player observes the action of every other player; the only uncertainty is about an initial move of 
chance that distributes payoff-relevant personal information among the players in such a way that the information 
received by each player does not reveal any information about any of the other players. We say that chance selects 
types for the players and refer to player i after he receives the information θi as type θi. The formal definition 
follows.

• Definition 231.1

A Bayesian extensive game with observable actions is a tuple  where

•  is an extensive game form with perfect information and simultaneous moves

and for each player 

•  is a finite set (the set of possible types of player i); we write 
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•  pi is a probability measure on  for which pi(θi) > 0 for all , and the measures pi are stochastically 
independent (pi(θi) is the probability that player i is selected to be of type θi)

•  is a yon Neumann-Morgenstern utility function (ui(θ, h) is player i 's payoff when the profile of 
types is θ and the terminal history of Γ is h).

The situation that such a game models is one in which chance selects the types of the players, who are subsequently 
fully cognizant at all points of all moves taken previously. We can associate with any such game an extensive game 

(with imperfect information and simultaneous moves) in which the set of histories is  and each 

information set of each player i takes the form  for  and  (so that 
the number of histories in I(θi, h) is the number of members of ).

A candidate for an equilibrium of such a game is a pair , where each 
σi(θi) is a behavioral strategy of player i in Γ (the strategy used by type θi of player i) and each µi(h) is a probability 

measure on  (the common belief, after the history h, of all players other than i about player i 's type). Such a pair 
is closely related to an assessment. The profile (σi) rephrases the information in a profile of behavioral strategies in 
the associated extensive game; the profile (µi) summarizes the players' beliefs and is tailored to the assumption that 
each player is perfectly informed about the other players' previous moves and may be uncertain only about the 
other players' types.

Let s be a profile of behavioral strategies in Γ. Define Oh(s) to be the probability measure on the set of terminal 
histories of Γ generated by s given that the history h has occurred (see Section 6.2). Define O(σ-i, si,µ-i|h) to be the 
probability measure on the set of terminal histories of Γ given that player i uses the strategy si in Γ, each type θj of 
each player j uses the strategy σj(θj), the game has reached h, and the probability that i assigns to θ-i is derived from 

µ-i(h). That is, O(σ-i, si, µ-i|h) is the compound lottery in which the probability of the lottery  is 

 for each .

The solution concept that we define is the following.

•Definition 232.1

Let  be a Bayesian extensive game with observable actions, where . A pair 

 where σi(θi) is a behavioral strategy of player i in Γ and µi(h) is a 

probability measure on , is a
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perfect Bayesian equilibrium of the game if the following conditions are satisfied.

Sequential rationality For every nonterminal history , every player , and every  the 
probability measure O(σ-i,σi(θ-i), |h) is at least good for type θi as Oσ-io, siµ-i|h) for any strategy si of player i in Γ.

Correct initial beliefs  for each .

Action-determined beliefs If  and  then µi(h,a) = µi(h); if , and  
then µi(h,a) =µ(h, a')

Bayesian updating If  and at is in the support of σi(θi)(h) for some θi in the support of µi(h) then for any 

 we have

The conditions in this definition are easy to interpret. The first requires that the strategy σi(θi) of each type θi of 
each player i be optimal for type θi after every sequence of events. The second requires that initially the other 
players' beliefs about the type of each player i be given by pi

The condition of action-determined beliefs requires that only a player's actions influence the other players' beliefs 
about his type: (i) if player i does not have to move at the history h then the actions taken at h do not affect the 
other players' beliefs about player i 's type and (ii ) if player i is one of the players who takes an action at h then the 
other players' beliefs about player i 's type depend only on h and the action taken by player i, not on the other 
players' actions. This condition excludes the possibility that, for example, player j 's updating of his belief about 
player i is affected by a move made by some player . Thus the condition is consonant with the general 
approach that assumes independence between the players' strategies.

The condition of Bayesian updating relates to a case in which player i's action at the history h is consistent with the 
other players' beliefs about player i at h, given σi. In such a case the condition requires not only that the new belief 
depend only on player i 's action (as required by the condition of action-determined beliefs) but also that the players' 
beliefs be derived via Bayes' rule from their observation of player i 's actions. Thus the players update their beliefs 
about player i using Bayes' rule until his behavior contradicts his strategy σi, at which point they form a



   

Page 234

new conjecture about player i 's type that is the basis for future Bayesian updating until there is another conflict 
with σ.

We now show that every sequential equilibrium of the extensive game associated with a finite Bayesian extensive 
game with observable actions is equivalent to a perfect Bayesian equilibrium of the Bayesian extensive game, in 
the sense that it induces the same behavior and beliefs.

• Proposition 234.1

Let (β, µ) be a sequential equilibrium of the extensive game associated with the finite Bayesian extensive game 
with observable actions  For every , and , let σ(θi)(h) = βi(I(θi, h)). 

Then there is a collection , where µi(h) is a probability measure on , such that

 for all  and  and ((σi), (µi)) is a perfect Bayesian equilibrium of the 
Bayesian extensive game.

• Exercise 234.2

Prove the proposition. (The main difficulty is to confirm that the beliefs in the sequential equilibrium can be 
reproduced by a collection of common independent beliefs about the players' types.)

The concept of perfect Bayesian equilibrium is easier to work with than that of sequential equilibrium (since there 
is no need to mess with consistency) but applies to a significantly smaller set of situations. The following example 
shows that even in this restricted domain the two notions are not equivalent.

• Exercise 234.3

Consider a Bayesian extensive game with observable actions with the structure given in Figure 235.1. Player 1 has 
three equally likely possible types, x, y, and z, and player 2 has a single type. Consider a perfect Bayesian 
equilibrium ((σi),(µi)) in which σ1(x) = (Out, L), σ1(y) = (Out, M), σ1(z) =  (C,R),µ1C, L)(y) = 1, µ1(C, M)(x) =1, and 
µ1(C, R)(z) = 1. That is, player 2 believes that player 1 is certainly of type y if he observes the history (C, L), 
certainly of type z if he observes the history (C, M), and certainly of type x if he observes the history (C, R) (the 
only history that is consistent with σl).

We claim that ((σi), (µi)) may (depending on the payoffs) be a perfect Bayesian equilibrium of such a game, since it 
satisfies the conditions of action-determined beliefs and Bayesian updating. (Note that µ1 (C, L) and µ1 (C, M) are 
not constrained by the condition of Bayesian updating since the probabilities of the histories (C, L) and (C, M) are 
both zero, given σ1.) However, the associated assessment (β, µ) is not
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Figure 235.1 
The structure of the Bayesian extensive games with observable  

actions in Example 234.3. Such a game may have a perfect Bayesian  
equilibrium (in which player 1's actions are those indicated by the  
arrows and player 2's beliefs are indicated by [1]'s and [0]'s) that is  

not a sequential equilibrium of the associated extensive game.

consistent, and hence is not a sequential equilibrium of any associated extensive game, whatever the payoffs. To 
see this, let (βn,µn) be a sequence of assessments that converges to (β,µ), with the properties that each βn assigns 
positive probability to each choice at every information set and each µn is derived from βn using Bayes' rule. 
Denote by  the probability, according to , that player I chooses C after the history θ, and denote by  and  
the probabilities, according to , that she chooses L and M respectively after the history (θ, C). Let 

 for K = L, M, R, be the information set of player 2 that is reached if player 1 

chooses C and then K. Then by Bayes' rule we have  (using the fact that the 
three types of player I are equally likely), which converges (by assumption) to . Since 

 and  we conclude, dividing the numerator and denominator of 

 by , that . Performing a similar calculation for the belief at , we reach the 

contradictory conclusion that . Thus (β,µ) is not consistent.

This example reflects the fact that the notion of sequential equilibrium requires that the beliefs of player 2 at two 
information sets not reached in the equilibrium not be independent: they must be derived from the same sequence 
of perturbed strategies of player 1. The notion of perfect Bayesian equilibrium imposes no such restriction on 
beliefs.
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Figure 236.1 
The extensive game discussed in Example 236.1. In all sequential  
equilibria of this game player 2 believes at his first information set  

that chance chose r with certainty, but believes at his second  
information set that there is a positive probability that chance chose .

The notion of perfect Bayesian equilibrium may be refined by imposing additional constraints on players' beliefs 
after unexpected events. For example, one can require that if at some point the players other than i conclude that i 
is certainly not of type θi then they never subsequently reverse this conclusion. This requirement has been used in 
some of the literature (see for example Osborne and Rubinstein (1990, pp. 96-97)). The following example shows, 
however, that there are games in which no perfect Bayesian equilibrium satisfies it: in all perfect Bayesian 
equilibria of the game we describe, a player who at some point assigns probability zero to some history later 
assigns positive probability to this history.

• Example 236.1

In any sequential equilibrium of the game in Figure 236.1

• player 1 chooses C after the history r

• player 1 chooses X after the history (r, C, C)

• player 2 chooses C at his information set I1

•  player 2 chooses X with probability at least  at his information set I2 (otherwise player 1 chooses C after the 
histories  and ( ), so that player 2 assigns probability 1 to the history ( ) at his information set I2, 
making C inferior to X)

• player 1 chooses X after the history .

Thus player 2's belief at I1 assigns probability 1 to the history r while his belief at I2 assigns positive probability to 
chance having chosen  (otherwise C is better than X).



   

Page 237

• Exercise 237.1

Players 1 and 2 bargain over an item whose value for player 1 is 0 or 3, with equal probabilities. Player 1 knows 
the value of the object, while player 2 is informed of this value only after he purchases it. The value of the object to 
player 2 is its value to player 1 plus 2. The bargaining procedure is: player 1 makes an offer, which player 2 either 
accepts or rejects; in the event of rejection player 1 makes another offer, which player 2 either accepts or rejects. If 
no offer is accepted, player 1 is left with the object and obtains a payoff equal to its value; player 2's payoff is 0. 
Take the set of possible offers to be finite, including 2 and 5. Show that there is a sequential equilibrium in pure 
strategies in which there is no deal when player 1's valuation is 3, while the object is sold at the price of two in the 
first period when player 1's valuation is 0.

12.3.1 Signaling Games

A signaling game is a Bayesian extensive game with observable actions that has the following simple form. There 
are two players, a ''sender" and a "receiver". The sender is informed of the value of an uncertain parameter θl and 
then chooses an action m (referred to as a message, though it may be payoff-relevant). The receiver observes the 
message (but not the value of θl) and takes an action a. Each player's payoff depends upon the value of θ1, the 
message m sent by the sender, and the action a taken by the receiver.

Formally, a signaling game is a Bayesian extensive game with observable actions  in which F is a 
two-player game form in which first player 1 takes an action then player 2 takes an action, and  is a singleton.

The tension in such a game arises from the fact that the receiver controls the action while the sender controls the 
information. The receiver has an incentive to try to deduce the sender's type from the sender's message, and the 
sender may have an incentive to mislead the receiver.

A well-known simple example of a signaling game is the following, proposed by Spence (1974).

• Example 237.2

(Spence's model of education) A worker (the sender) knows her talent θ1 while her employer (the receiver) does 
not. The value of the worker to the employer is the expectation of θ1; we assume that the employer pays the worker 
a wage w that is equal to this expectation. (The economic story that underlies this assumption is that there are many 
employers who compete for the worker, so that her wage is driven up to the expectation of θ1.) To model this 
behavioral as-
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sumption we assume that the payoff of the employer is -(w - θ1)2 (the expectation of which is maximized when w = 
E(θ1)). The worker's message is the amount e of education that she obtains and her payoff is w - e/θ (reflecting the 
assumption that the larger is θ the easier it is for a worker to acquire education). Assume that the worker's talent is 

either  or , and denote the probabilities of these values by pL and pH. Restrict attention to pure strategy 
equilibria and denote the choices (messages) of the two types by eL and eH. This game has two types of perfect 
Bayesian equilibrium.

Pooling Equilibrium In one type of equilibrium both types choose the same level of education (eL = eH = e*) and the 

wage is . The possible values of e* are determined as follows. If a worker chooses a value of e 

different from e* then in an equilibrium the employer must pay her a wage w(e) for which  
for K = L, H. The easiest way to satisfy this inequality is by making the employer believe that every deviation 

originates from a type  worker, so that  for . The most profitable deviation for the worker is then 

to choose eL=0, so that we need , which is equivalent to .

Separating Equilibrium In another type of equilibrium the two types of worker choose different levels of education. 

In this case eL= 0 (since the wage paid to a type  worker is , independent of eL). For it to be unprofitable for 
either type to mimic the other we need

which are equivalent to . Since , a separating equilibrium thus always 

exists; the messages eL = 0 and  are supported as a part of an equilibrium in which 
any action other than eH leads the employer to conclude that the worker's type is .

• Exercise. 238.1

Verify that the perfect Bayesian equilibria that we have described are also sequential equilibria.

Example 246.1 in the next section shows how a refinement of the notion of sequential equilibrium excludes most of 
these equilibria.

12.3.2 Modeling Reputation

In Section 6.5 we study two finite horizon games that highlight the fact that in a subgame perfect equilibrium a 
player maintains the assump-
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tion that another player intends to adhere to his equilibrium strategy even after that player has deviated from this 
strategy many times. For example, in the unique subgame perfect equilibrium of the chain-store game (a finite 
horizon extensive game with perfect information) every challenger believes that the chain-store will acquiesce to 
its entry even after a history in which the chain-store has fought every one of a large number of entrants.

One way to capture the idea that after such a history a player may begin to entertain doubts about the intentions of 
his opponents is to study a model in which at the very beginning of the game there is a small chance that the 
opponents have motives different from those captured in the original extensive form. (The aberrant players that are 
thus included, with small probability, in the strategic calculations of their opponents are often referred to as "crazy" 
or "irrational", although their payoffs, not their strategic reasoning, diverge from the standard.) In such a 
"perturbed" game the regular types may find it advantageous to imitate the aberrant types at the beginning of the 
game: the shortterm loss from doing so may be more than outweighed by the long-term gain from maintaining their 
opponents' doubts about their motivations. Thus such a game can capture the idea that people may act as if they are 
"crazy" because doing so leads their opponents to respond in such a way that even according to their real, "sane'', 
preferences they are better off. The following example illustrates this approach.

• Example 239.1

(A perturbation of the chain-store game) Consider the variant of the chain-store game in which there is small 
probability, at the beginning of the game, that the chain-store prefers to fight than to accommodate entry. Precisely, 
consider the Bayesian extensive game with observable actions  in which Γ is the game form of the 
chain-store game (Section 6.5.1),  is a singleton for every potential competitor k =1,... 
,K, , , and the payoff functions ui are defined as follows. For any terminal history h of Γ, let 
hk be the sequence of actions in period k. The payoff of each challenger k is independent of the type of the chain-
store and is given by

where 0 < b < 1. The payoff ucs(θ, h) of the chain-store is the sum of



   

Page 240

its payoffs in the K periods, where its payoff in period k is given by

where a > 1. In other words, for both types of chain-store the best outcome in any period is that the challenger stays 
out; the regular chainstore prefers to accommodate an entrant than to fight (fighting is costly), while the tough 
chain-store prefers to fight than to accommodate.

We do not characterize all perfect Bayesian equilibria of the game but merely describe an equilibrium that differs 
radically from the unique subgame perfect equilibrium of the perfect information game. This equilibrium has the 
following features: so long as no challenger enters the challengers maintain their original belief that the chain-store 
is tough with probability ; entry that is accommodated leads the challengers to switch to believing that the chain-
store is definitely not tough; entry that is fought leads the challengers to maintain or increase the probability that 
they assign to the chain-store being tough. Consequently it is optimal for a regular chain-store, as well as a tough 
one, to threaten to fight any entry that occurs, at least until the horizon impends. This threat deters all entry until 
the horizon gets close, when the regular chain-store's threats become less firm: it cooperates with entrants with 
positive probability, behavior that is consistent with the entrants beginning to enter with positive probability. Once 
a challenger enters and the chain-store cooperates with it, the challengers switch to believing that the chain-store is 
certainly regular and henceforth always enter.

Precisely, the equilibrium is given as follows. The actions prescribed by the strategy σCS(R) of the regular chain-
store and by the strategy σk of each challenger k after any history depend on σCS(h)(T), the probability assigned by 
the challengers after the history h to the chain-store being tough. The chainstore has to move only after histories 
that end with entry by a challenger. For any such history h, denote by t(h) the number of challengers who have 
moved, so that σCS(R)(h) prescribes the response of the chain-store to challenger t(h). The strategy of a regular 
chain-store is then given by

if P(h) = CS, where  is the mixed strategy in which F is used
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with probability [(1-bK-t(h))µCS(h)(T)]/[(1-µCS(h)(T))bK-t(h.)] and C is used with the complementary probability; the strategy of a tough 

chain-store is given by

The strategy of challenger k is given by

if P(h) = k (so that t(h) = k - 1), where mk is the mixed strategy in which Out is used with probability 1/a and In is 

used with probability 1- 1/a. The challengers' beliefs are as follows: , and for any history h with P(h) 
= k we have µCS(h, In) = µCS(h) and the probability µCS(h, hk)(T) assigned by challenger k + 1 to the chain-store 
being tough is

To understand this equilibrium consider Figure 242.1, which shows, for each value of k, the belief of challenger k 
at the beginning of period k along the equilibrium path that the chain-store is tough. The number k* is the smallest 

value of k for which . Along the equilibrium path through period k* the challengers maintain their 
original belief that the chain-store is tough with probability ; all challengers through k* - 1 stay out. (If, contrary to 
its strategy, one of them enters then the regular chain-store, as well as the tough one, responds by fighting, after 
which the beliefs of subsequent challengers that the chain-store is tough are also maintained at .) Since 

, challenger k* enters. The regular chain-store responds by randomizing between fighting and 

cooperating (since . The probabilities it uses are such that after it fights, the probability 
(calculated using Bayes' rule) that it is tough is , the point on the graph of bK-k+1 for period k*+ 1. (This has the 
implication that the closer µCS(h)(T) is to the graph of bK-k+1, the higher is the probability that the regular chain-store 
fights in the event of entry.) If the chainstore cooperates (as the regular one does With positive probability) the 
probability that the challengers assign to the chain-store's being tough becomes zero.
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Figure 242.1 
The belief of the challengers at the beginning of each period that the  

chain-store is tough along an equilibrium path of the perfect Bayesian  
equilibrium for the perturbation of the chain-store game described in the  
text. Possible beliefs along the path are indicated by small disks. Possible  

transitions are indicated by dotted lines; the label adjacent to each dotted line  
indicates the sequence of actions that induces the transition. (Note that only  

transitions that can occur with positive probability along the equilibrium path  
are indicated; more are possible off the equilibrium path.)

If the chain-store fights the entrant in period k* then the probability that challenger k* + 1 assigns to the chain-
store's being tough rises to , so that challenger k* + 1 randomizes between entering and not. If challenger k* + 
1 does not enter then the belief that the chain-store is tough remains the same and challenger k* + 2 definitely 
enters. If challenger k* + 1 enters and the chain-store fights then the probability assigned to the chain-store's being 
tough again rises to the graph of bK-k+1. If challenger k* + 1 enters and the chain-store cooperates then the 
probability assigned to the chain-store's being tough falls to zero and challenger k* + 2 enters. The same pattern 
continues until the end of the game: in any period in which the challenger's belief lies below the graph the 
challenger enters; if the chain-store responds by fighting then the belief of the subsequent challenger rises to the 
graph. In any period in which the challenger's belief is on the graph the challenger randomizes; if it does not enter 
then the belief is unchanged, while if it enters and is fought then the belief again rises to the graph. In every case 
the result of the chain-store's cooperating is that the probability that the challengers assign to its being tough falls to 
zero.

Note that if the belief of any challenger k is given by a point on the graph then after a history h that ends with the 
decision by k to enter the probability that the chain-store fights is µCS(h)(R).·σCS(R)(h)(F)+ µCS(h)(T) · 1 = (1 - bK-

k+1)[(1 - bK-k) bK-k+1]/[(1-bK-k+1) bK-k]+
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bK-k+1 = b, making challenger k indifferent between entering and staying out. The probability with which the 
challenger chooses to enter makes the chain-store's expected payoff O regardless of its future actions. Similarly, if 
the belief of any challenger k is given by a point below (above) the graph then the probability that the chain-store 
fights is less (greater) than b, making it optimal for challenger k to enter (stay out).

The number of periods remaining after the first entry of a challenger (K - k* in the case just described) is 
independent of the length of the game. Thus the longer the game, the more periods in Which no challenger enters.

• Exercise 243.1

Complete the proof that the pair ((σi), (µ<Si)) described above is a perfect Bayesian equilibrium of the game.

Sometimes it is said that the regular chain-store "builds reputation" in this equilibrium. Note, however, that along 
the equilibrium path no reputation is built: no entry takes place until the final few periods, so that even though the 
regular chain-store would fight entry were it to occur, it does not get the opportunity to do so. This response of a 
regular chain-store to a deviation by a challenger at the beginning of the game is necessary in order to maintain the 
doubt that the challengers hold about the motivation of the chain-store, a doubt required to deter them from 
entering. The considerations of the regular chain-store after such (out-of-equilibrium) entry near the beginning of 
the game are like those of a player who wants to build, or at least maintain, a reputation.

12.4 Refinements of Sequential Equilibrium

The concept of sequential equilibrium permits great (though as we have seen not complete) freedom regarding the 
beliefs that players hold when they observe actions that are not consistent with the equilibrium strategies. An 
advantage of including beliefs as part of the specification of an equilibrium is that it allows us to discuss further 
restrictions on these beliefs. Many such restrictions have been proposed; the new solution concepts that arise are 
referred to in the literature as refinements of sequential equilibrium. We give only a very brief introduction to the 
subject.

The notion of sequential equilibrium essentially bases beliefs on the equilibrium strategies and imposes only 
"structural" restrictions on out-of-equilibrium beliefs. The refinements of sequential equilibrium intro-
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Figure 244.1 
This game has a sequential equilibrium with the outcome (),  

though player 2's belief in such an equilibrium has the undesirable feature  
that it assigns a positive probability to player l's having chosen the  

action M, which is strictly dominated by L.

duce new strategic considerations, as demonstrated by the following example.

• Example 244.1

The game in Figure 244.1 has a sequential equilibrium with the outcome (R, r). It also has a sequential equilibrium 
with the outcome ( ), in which player 2 believes, in the event that his information set is reached, that with high 
probability player 1 chose M. However, if player 2's information set is reached then a reasonable argument for him 
may be that since the action M for player 1 is strictly dominated by L it is not rational for player 1 to choose M and 
hence she must have chosen R. This argument excludes any belief that supports () as a sequential equilibrium 
outcome.

The next example further illustrates the strategic considerations introduced in the previous example.

• Example 244.2

(Beer or Quiche) Consider the game in Figure 245.1, a signaling game in which there are two types of player 1, 
strong and weak, the probabilities of these types are 0.9 and 0.1 respectively, the set of messages is {B, Q} (the 
consumption of beer or quiche for breakfast), and player 2 has two actions, F(ight) or N(ot). Player 1's payoff is the 
sum of two elements: she obtains two units if player 2 does not fight and one unit if she consumes her preferred 
breakfast (B if she is strong and Q if she is weak). Player 2's payoff does not depend on player 1's breakfast; it is 1 
if he fights the weak type or if he does not fight the strong type.

This game has two types of sequential equilibrium, as follows.

•  Both types of player 1 choose B, and player 2 fights if he observes Q and not if he observes B. If player 2 
observes Q then he assigns probability of at least 0.5 that player I is weak.
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Figure 245.1 
The game Beer or Quiche (Example 244.2).

•  Both types of player I choose Q, and player 2 fights if he observes B and not if he observes Q. If player 2 
observes B then he assigns probability of at least 0.5 that player 1 is weak.

The following argument suggests that an equilibrium of the second type is not reasonable. If player 2 observes that 
player 1 chose B then he should conclude that player 1 is strong, as follows. If player 1 is weak then she should 
realize that the choice of B is worse for her than following the equilibrium (in which she obtains the payoff 3), 
whatever the response of player 2. Further, if player 1 is strong and if player 2 concludes from player 1 choosing B 
that she is strong and consequently chooses N, then player 1 is indeed better off than she is in the equilibrium (in 
which she obtains 2). Thus it is reasonable for a strong type of player 1 to deviate from the equilibrium, 
anticipating that player 2 will reason that indeed she is strong, so that player 2's belief that player 1 is weak with 
positive probability when she observes B is not reasonable.

The argument in this example is weaker than that in the previous example. In the previous example the argument 
uses only the fact that the action M is dominated and thus is independent of the equilibrium that is eliminated. By 
contrast, in the game here the argument is relative to the equilibrium that is eliminated. Unless the supposition is 
that the players behave according to an equilibrium in which both types choose Q, there is no basis for the 
argument that the message B must come from a strong type. This raises a criticism: if the basis of the argument is 
that the situation in which both types of player 1 choose Q is an equilibrium then perhaps player 2 should conclude 
after observing a deviation simply
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that player 1 is not rational or does not understand the structure of the game, rather than assume that she is 
rationally trying to send him a strategic signal.

• Example 246.1

(Spence's model of education) We first argue that all the pooling equilibria of the game in Example 237.2 are 

eliminated by arguments like those in the previous example. Let e satisfy  and 

 (Such a value of e clearly exists.) If a worker of type  deviates and chooses e (which 

exceeds e*) then the firms should conclude that the deviation comes from type  since type  is worse off if she 

so deviates even if she persuades the firms that she is of type , while type  is better off if she so deviates. Thus 

the firms should respond to such a deviation by paying a wage of , which makes the deviation profitable for a 

worker of type .

Now consider separating equilibria. In such an equilibrium eL = 0 and  then a 
worker of type  can deviate by slightly reducing the value of e, arguing that she is not of type , who would 

lose from such a deviation whatever best response the firm used (that is, even if she were paid ). Thus in all 
sequential equilibria that survive this argument, the level eH of education of type  solves the equation 

.

• Exercise 246.2

(Pre-trial negotiation) Player 1 is involved in an accident with player 2. Player I knows whether she is negligent or 
not, but player 2 does not know; if the case comes to court the judge learns the truth. Player I sends a "take-it-or-
leave-it" pre-trial offer of compensation that must be either 3 or 5, which player 2 either accepts or rejects. If he 
accepts the offer the parties do not go to court. If he rejects it the parties go to court and player I has to pay 5 to 
player 2 if he is negligent and 0 otherwise; in either case player I has to pay the court expenses of 6. The payoffs 
are summarized in Figure 247.1. Formulate this situation as a signaling game and find its sequential equilibria. 
Suggest a criterion for ruling out unreasonable equilibria. (Consult Banks and Sobel (1987).)

12.5 Trembling Hand Perfect Equilibrium

The notions of subgame perfect equilibrium and sequential equilibrium treat the requirement of sequential 
rationality as part of the players' strategic reasoning; they invoke the assumption that the players are rational not 
only in selecting their actions on the equilibrium path but also



   

Page 247

Figure 247.1 
The payoffs in Exercise 246.2.

in forming beliefs about the other players' plans regarding events that do not occur in equilibrium. The solution 
concepts that we study in this section follow a different route: they treat the players' rationality with respect to out-
of-equilibrium events as the result of each player's taking into account that the other players could make 
uncorrelated mistakes (their hands may tremble) that lead to these unexpected events. The basic idea is that each 
player's actions be optimal not only given his equilibrium beliefs but also given a perturbed belief that allows for 
the possibility of slight mistakes. These mistakes are not modeled as part of the description of the game. Rather, a 
strategy profile is defined to be stable if it satisfies sequential rationality given some beliefs that are generated by a 
strategy profile that is a perturbation of the equilibrium strategy profile, embodying "small" mistakes. Note that the 
perturbed strategy profile is common to all players and the equilibrium strategy profile is required to be 
sequentially rational only with respect to a single such profile.

The requirement that a player's strategy be optimal not only against the other players' equilibrium strategies but 
also against a perturbation of these strategies that incorporates the possibility of small mistakes is powerful even in 
strategic games. We begin by studying such games; subsequently we turn back to extensive games with imperfect 
information.

12.5.1 Strategic Games

Recall that we say that a player's strategy in a strategic game is completely mixed if it assigns positive probability to 
each of the player's actions.



   

Page 248

Figure 248.1 
A strategic game in which there are Nash  
equilibria ((A,A) and (C, C)) that are not  

trembling hand perfect.

• Definition 248.1

A trembling hand perfect equilibrium  of a finite strategic game is a mixed strategy profile σ with the property 
that there exists a sequence  of completely mixed strategy profiles that converges to σ such that for each 

player i the strategy σi is a best response to  for all values of k.

Let σ be a trembling hand perfect equilibrium. Since each player's expected payoff is continuous in the vector of 
the other players' mixed strategies it follows that for each player i the strategy σi is a best response to σ-i, so that 
every trembling hand perfect equilibrium is a Nash equilibrium. Note that the definition requires only that each 
player's strategy be a best response to some sequence of perturbed strategy profiles in which the probabilities of 
mistakes converge to zero; all players' strategies must be best responses to the same sequence of strategy profiles, 
but they need not be best responses to all such sequences.

The game in Figure 248.1 shows that not all Nash equilibria are trembling hand perfect: (B, B) is the only 
trembling hand perfect equilibrium of the game.

In Section 4.3 we defined the notion of a weakly dominated action in a strategic game; a player has no reason to 
use such an action, although, depending on the other players' behavior, he may have no reason not to use such an 
action either. The notion of Nash equilibrium does not rule out the use of such actions (see, for example, the 
actions A and C in the game in Figure 248.1), but the notion of trembling hand perfect equilibrium does, since a 
weakly dominated strategy is not a best response to a vector of completely mixed strategies.

In a two-player game we have the following stronger result.

• Proposition 248.2

A strategy profile in a finite two-player strategic game is a trembling hand perfect equilibrium if and only if it is a 
mixed
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Figure 249.1 
A three-plover strategic game in which there is a Nash  
equilibrium (( )) that is not trembling hand perfect  

but in which every player's strategy is undominated.

strategy Nash equilibrium and the strategy of neither player is weakly dominated.

Proof.

It remains to show only that a mixed strategy Nash equilibrium in which the action of each player is not weakly 

dominated is trembling hand perfect. Let σ* be a mixed strategy Nash equilibrium in which the strategy  of 

neither player i is weakly dominated. By the result in Exercise 64.2, the strategy  of each player i is a best 
response to a completely mixed strategy, say  of player . For any  let . This 
strategy is completely mixed and converges to ; further,  is a best response to it. Thus σ* is a trembling hand 
perfect equilibrium.

That the same is not true for a game with more than two players is demonstrated by the three-player game in Figure 
249.1. In this game the Nash equilibrium ( ) is undominated but is not trembling hand perfect (player l's 
payoff to T exceeds her payoff to B whenever players 2 and 3 assign small enough positive probability to R and r 
respectively).

The following result shows that every strategic game has a trembling hand perfect equilibrium.

• Proposition 249.1 

Every finite strategic game has a trembling hand perfect equilibrium.

Proof.

Define a perturbation of the game by letting the set of actions of each player i be the set of mixed strategies of 

player i that assign probability of at least  to each action j of player i, for some collection () with  for each 
i and j. (That is, constrain each player to use each action available to him with some minimal probability.) Every 
such perturbed game has a Nash equilibrium by Proposition 20.3. Consider a sequence of such perturbed games in 

which  for all i and j; by the
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Figure 250.1 
An extensive game (left) whose strategic form (right)  

has a trembling hand perfect equilibrium (((A, a), L)) that  
is not a subgame perfect equilibrium.

compactness of the set of strategy profiles, some sequence of selections from the sets of Nash equilibria of the 
games in the sequence converges, say to σ*. It may be verified that σ* corresponds to a trembling hand perfect 
equilibrium of the game.

12.5.2 Extensive Games

We now extend the idea of trembling hand perfection to the model of an extensive game. The game in Figure 250.1 
shows that a straightforward generalization of Definition 248.1 has an unsatisfactory feature. This game has a 
unique subgame perfect equilibrium ((B,b),R). However, the strategy pair ((A, a), L) is a trembling hand perfect 
equilibrium of the strategic form of the game, since the strategy (A, a) of player 1 is a best response to any strategy 
of player 2 for which the probability of L is close enough to 1, and L is a best response to any strategy of player 1 
for which the probability of (A, a) is close enough to 1 and the probability of (B,a) is sufficiently high compared 
with the probability of (B,b). The point is that when evaluating the optimality of her strategy player 1 does not 
consider the possibility that she herself will make mistakes when carrying out this strategy. If she does allow for 
mistakes, and considers that in attempting to carry out her strategy she may choose B rather than A at the start of 
the game (in addition to considering that player 2 may make a mistake and choose R rather than L) then it is no 
longer optimal for her to choose a at her second information set.

These considerations lead us to study the trembling hand perfect equilibria not of the strategic form but of the 
agent strategic form of the game, in which there is one player for each information set in the exten-
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sive game: each player in the extensive game is split into a number of agents, one for each of his information sets, 
all agents of a given player having the same payoffs. (Note that any mixed strategy profile σ in the agent strategic 
form corresponds to the behavioral strategy profile β in which βi(I i) is the mixed strategy of player i's agent at the 
information set I i.) Thus we make the following definition.

• Definition 251.1

A trembling hand perfect equilibrium  of a finite extensive game is a behavioral strategy profile that corresponds 
to a trembling hand perfect equilibrium of the agent strategic form of the game.

The behavioral strategy profile ((A, a), L) is not a trembling hand perfect equilibrium of the extensive game in 
Figure 250.1 since for any pair of completely mixed strategies of player 1's first agent and player 2 the unique best 
response of player 1's second agent is the pure strategy b. More generally, we can show that every trembling hand 
perfect equilibrium of a finite extensive game with perfect recall corresponds to the behavioral strategy profile of a 
sequential equilibrium.

• Proposition 251.2

For every trembling hand perfect equilibrium β of a finite extensive game with perfect recall there is a belief 
system Is such that (β,µ) is a sequential equilibrium of the game.

Proof.

Let (βk) be the sequence of completely mixed behavioral strategy profiles that corresponds to the sequence of 
mixed strategy profiles in the agent strategic form of the game that is associated with the equilibrium β. At each 
information set I i of each player i in the game, define the belief µ(I i) to be the limit of the beliefs defined from βk 
using Bayes' rule; (β, µ) is then a consistent assessment. Since every agent's information set is reached with 
positive probability and every agent's strategy is a best response to every βk it follows from the one deviation 
property for sequential equilibrium (see Exercise 227.1) that every such strategy is also a best response to β when 
the beliefs at each information set are defined by µ. Thus (β,µ) is a sequential equilibrium.

The converse of this result does not hold since in a game with simultaneous moves every Nash equilibrium is the 
strategy profile of a sequential equilibrium, but only those Nash equilibria in which no player's strategy is weakly 
dominated can be trembling hand perfect. (In the simultaneous-move extensive game whose strategic form is given 
in Figure 248.1, for example, (A, A) and (C, C) are the strategy profiles of sequential equilibria but are not 
trembling hand perfect equilibria.) How-
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Figure 252.1 
The game Example 252.1 (Selten's horse).

ever, the converse is ''almost" true: for almost every game the strategy profile of almost every sequential 
equilibrium is a trembling hand perfect equilibrium (see Kreps and Wilson (1982b, Theorems I and 3)).

The next example illustrates the concept of trembling hand perfect equilibrium for the game that we studied in 
Example 225.2.

• Example 252.1

(Selten's horse) As we saw in Example 225.2, the game in Figure 252.1 (the same as that in Figure 225.1) has two 
types of Nash equilibrium. Equilibria of the first type, in which player 1 chooses D, player 2 chooses c with 

probability at least , and player 3 chooses L, do not correspond to sequential equilibria; they are not trembling 
hand perfect, since if player 1 chooses C with positive probability and player 3 chooses L with probability close to 
1 then the action d is better than c for player 2. Equilibria of the second type, in which player 1 chooses C, player 2 

chooses c, and player 3 chooses R with probability at least  correspond to sequential equilibria and are also 

trembling hand perfect: take , and .

The game in Figure 253.1 shows that the set of trembling hand perfect equilibria of an extensive game is not a 
subset of the set of trembling hand perfect equilibria of its strategic form, and that in a trembling hand perfect 
equilibrium of an extensive game a player may use a weakly dominated strategy. The strategy profile ((L, r), R) is a 
trembling hand perfect equilibrium of the game (take a sequence of strategy profiles in which player l's second 
agent trembles more than player 2 does), but it is not a trembling hand perfect equilibrium of the strategic form of 
the game (since player l's strategy (L,r) is weakly dominated by (R,r)).

• Exercise 252.2

Show that the notion of trembling hand perfect equilibrium of an extensive game (like the notion of sequential 
equilibrium) is not invariant to the coalescing of moves (one of the principles studied in Section 11.2). (Use the 
game in Figure 253.1.)
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Figure 253.1 
An extensive game (left) that has a trembling hand perfect equilibrium  

that does not correspond to any trembling hand perfect equilibrium  
of its strategic form (right).

The next exercise gives an extensive game in all of whose trembling hand perfect equilibria at least one player uses 
a weakly dominated strategy (so that no such equilibrium is a trembling hand perfect equilibrium of the strategic 
form).

• Exercise 253.1

Two people are engaged in the following game to select either a good outcome or a bad outcome. First each of 
them names either himself or the other person as the one who will make the choice. If they both name the same 
person then that person selects the outcome. If each of them chooses himself then chance selects each of them with 
equal probability to make the choice. If each of them chooses the other then the good outcome is automatically 
chosen. At no point in the procedure is either person informed of the person initially selected by the other person. 
Each person's payoff from the good outcome is 2, regardless of who chooses it; his payoff from the bad outcome is 
I if the other person chooses it and 0 if he himself chooses it. Show that the set of trembling hand perfect equilibria 
of this extensive game is disjoint from the set of behavioral strategy profiles associated with the trembling hand 
perfect equilibria of its strategic form; interpret the equilibria.

We conclude the chapter by noting that it follows from Proposition 249.1 that every finite extensive game with 
perfect recall has a trembling hand perfect equilibrium and hence, by Proposition 251.2, a sequential equilibrium.

• Corollary 253.2

Every finite extensive game with perfect recall has a trembling hand perfect equilibrium and thus also a sequential 
equilibrium.
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Notes

The main contributors to the extension of the notion of subgame perfect equilibrium to games with imperfect 
information are Kreps, Selten, and Wilson, who developed the two main solution concepts discussed in this 
chapter: trembling hand perfect equilibrium (Selten (1975)) and sequential equilibrium (Kreps and Wilson 
(1982b)).

Section 12.2 relies on ideas and examples that appear in Kreps and Wilson (1982b) and many subsequent papers. 
For a review of the concept of sequential equilibrium see Kreps (1990b). Example 223.1 and Exercise 229.1 are 
due to Kreps and Ramey (1987) and Battigalli (1988). Example 225.2 is due to Selten (1975), Exercise 226.1 to 
Kreps and Wilson (1982b), Example 226.2 to Kohlberg and Mertens (1986), Exercise 227.1 to Hendon, Jacobsen, 
and Sloth (1996), Example 228.2 to Kreps and Ramey (1987), Example 229.2 to Battigalli (1996), and Example 
230.1 to Kohlberg and Reny (1997).

The discussion of perfect Bayesian equilibrium in Section 12.3 is based on Fudenberg and Tirole (1991b), which 
contains Proposition 234.1 and Example 234.3. Example 236.1 is based on Madrigal, Tan, and Werlang (1987). 
Sections 12.3.1 and 12.4 are based on Cho and Kreps (1987). The model of reputation in Section 12.3.2 is based on 
Kreps and Wilson (1982a) (see also Milgrom and Roberts (1982)); Fudenberg and Maskin (1986, Section 5) show 
that the type of irrationality that is incorporated in the model may dictate the equilibrium outcome. Exercise 246.2 
is due to Banks and Sobel (1987).

Most of the material in Section 12.5, which discusses the notion of trembling hand perfect equilibrium, is taken 
from Selten (1975). Proposition 248.2 was discovered independently by Cave, Kohlberg, and van Damme. 
Proposition 251.2 is due to Kreps and Wilson (1982b). The game in Exercise 253.1 is taken from Mertens (1995).

Battigalli (1996) studies sequential equilibrium and perfect Bayesian equilibrium and gives an alternative 
characterization of consistency for a class of games. Kohlberg and Reny (1997) formulate an equivalent definition 
of sequential equilibrium using systems of "relative" probabilities. As we have mentioned, there are many 
refinements of the notion of sequential equilibrium; especially noteworthy is the work of Kohlberg and Mertens 
(1986). Myerson (1978) studies a variant of the notion of trembling hand perfect equilibrium called "proper 
equilibrium".

Kohlberg (1990) and van Damme (1992) are surveys of the literature on refinements of Nash equilibrium.
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IV  
COALITIONAL GAMES

The primitives of the models we study in Parts I, II, and III (often referred to as "noncooperative" games) are the 
players' sets of possible actions and their preferences over the possible outcomes, where an outcome is a profile of 
actions; each action is taken by a single player autonomously. In this part we study the model of a coalitional 
game. One primitive of this model is the collection of sets of joint actions that each group of players (coalition) can 
take independently of the remaining players. An outcome of a coalitional game is a specification of the coalition 
that forms and the joint action it takes. (More general models, in which many coalitions may form simultaneously, 
are discussed in the literature.) The other' primitive of the model of a coalitional game is the profile of the players' 
preferences over the set of all possible outcomes. Thus although actions are taken by coalitions, the theory is based 
(as are the theories in the other parts of the book) on the individuals' preferences.

A solution concept for coalitional games assigns to each game a set of outcomes. As before, each solution concept 
we study captures the consequences of a natural line of reasoning for the participants in a game; it defines a set of 
arrangements that are stable in some sense. In general the stability requirement is that the outcome be immune to 
deviations of a certain sort by groups of players; by contrast, most (though not all) solutions for noncooperative 
games require immunity to deviations by individual players. Many variants of the solution concepts we study are 
analyzed in the literature; we consider a sample designed to illustrate the main ideas.

A coalitional model is distinguished from a noncooperative model primarily by its focus on what groups of players 
can achieve rather than on
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what individual players can do and by the fact that it does not consider the details of how groups of players 
function internally. If we wish to model the possibility of coalition formation in a noncooperative game then we 
must specify how coalitions form and how their members choose joint actions. These details are absent from a 
coalitional game, so that the outcome of such a game does not depend on them.

To illustrate the differences between the two modeling approaches, consider the following situation. Each of a 
group of individuals owns a bundle of inputs and has access to a technology for producing a valuable single output. 
Each individual's inputs are unproductive in his own technology but productive in some other individual's 
technology. A noncooperative model of this situation specifies precisely the set of actions that is available to each 
individual: perhaps each individual can announce a price vector at which he is willing to trade inputs, or perhaps he 
can propose a distribution of inputs for the whole of the society. A coalitional model, by contrast, starts from the 
sets of payoff vectors that each group of individuals can jointly achieve. A coalition may use contracts, threats, or 
promises to achieve a high level of production; these institutions are not modeled explicitly in a coalitional game.

We do not view either of the two approaches as superior or more basic. Each of them reflects different kinds of 
strategic considerations and contributes to our understanding of strategic reasoning. The study of the 
interconnections between noncooperative and cooperative models can also be illuminating.
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13 The Core

The core is a solution concept for coalitional games that requires that no set of players be able to break away and 
take a joint action that makes all of them better off. After defining the concept and giving conditions for its 
nonemptiness, we explore its connection with the concept of a competitive equilibrium in a model of a market.

13.1 Coalitional Games with Transferable Payoff

We begin with a simple version of a coalitional game in which each group of players is associated with a single 
number, interpreted as the payoff that is available to the group; there are no restrictions on how this payoff may be 
divided among the members of the group.

• Definition 257.1

A coalitional game with transferable payoff consists of

• a finite set N (the set of players)

• a function v that associates with every nonempty subset S of N (a coalition) a real number v(S) (the Worth  of S).

For each coalition S the number v(S) is the total payoff that is available for division among the members. of S. That 
is, the set of joint actions that the coalition S can take consists of all possible divisions of v(S) among the members 
of S. (Later, in Section 13.5, we define a more general notion of a coalitional game in which each coalition is 
associated with a set of payoff vectors that is not necessarily the set of all possible divisions of some fixed amount.)

In many situations the payoff that a coalition can achieve depends on the actions taken by the other players. 
However, the interpretation of a
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coalitional game that best fits our discussion is that it models a situation in which the actions of the players who are 
not part of S do not influence v(S). In the literature other interpretations are given to a coalitional game; for 
example, v(S) is sometimes interpreted to be the most payoff that the coalition S can guarantee independently of the 
behavior of the coalition N \ S. These other interpretations alter the interpretation of the solutions concepts defined; 
we do not discuss them here.

Throughout this chapter and the next we assume that the coalitional games with transferable payoff that we study 
have the property that the worth of the coalition N of all players is at least as large as the sum of the worths of the 
members of any partition of N. This assumption ensures that it is optimal that the coalition N of all players form, as 
is required by our interpretations of the solution concepts we study (though the formal analysis is meaningful 
without the assumption).

• Definition 258.1

A coalitional game  with transferable payoff is cohesive if

 for every partition {S1,..., SK} of N.

(This is a special case of the condition of superadditivity, which requires that  for all 
coalitions S and T with ).

13.2 The Core

The idea behind the core is analogous to that behind a Nash equilibrium of a noncooperative game: an outcome is 
stable if no deviation is profitable. In the case of the core, an outcome is stable if no coalition can deviate and 
obtain an outcome better for all its members. For a coalitional game with transferable payoff the stability condition 
is that no coalition can obtain a payoff that exceeds the sum of its members' current payoffs. Given our assumption 
that the game is cohesive we confine ourselves to outcomes in which the coalition N of all players forms.

Let  be a coalitional game with transferable payoff. For any profile  of real numbers and any coalition 

S we let . A vector  of real numbers is an S-feasible payoff vector if x(S) = v(S). We refer to 
an N-feasible payoff vector as a feasible payoff profile.

• Definition 258.2

The core of the coalitional game with transferable payoff  is the set of feasible payoff profiles  for
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which there is no coalition S and S-feasible payoff vector  for which yi > xi for all .

A definition that is obviously equivalent is that the core is the set of feasible payoff profiles  for which 
 for every coalition S. Thus the core is the set of payoff profiles satisfying a system of weak linear 

inequalities and hence is closed and convex.

The following examples indicate the wide range of situations that may be modeled as coalitional games and 
illustrate the notion of the core.

• Example 259.1

(A three-player majority game) Suppose that three players can obtain one unit of payoff, any two of them can 

obtain  independently of the actions of the third, and each player alone can obtain nothing, independently 

of the actions of the remaining two players. We can model this situation as the coalitional game  in which N = 
{1,2,3}, v(N) =  1, v(S) - a whenever |S| = 2, and v({ i}) = 0 for all . The core of this game is the set of all 

nonnegative payoff profiles (x1,x2, x3) for which x(N) = 1 and  for every two-player coalition S. Hence the 

core is nonempty if and only if .

• Example 259.2

An expedition of n people has discovered treasure in the mountains; each pair of them can carry out one piece. A 

coalitional game that models this situation is , where

If  is even then the core consists of the single payoff profile ( ). If  is odd then the core is 
empty.

• Exercise 259.3

(A production economy) A capitalist owns a factory and each of w workers owns only his own labor power. 
Workers alone can produce nothing; together with the capitalist, any group of m workers can produce output worth 
f(m), where  is a concave nondecreasing function with f(0) = 0. A coalitional game that models this 
situation is  where  (player c being the capitalist and W the set of workers) and

Show that the core of this game is  for  and , where w = 
|w|, and interpret the members of this set. (See also Exercises 268.1, 289.1, and 295.2.)
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• Example 260.1

(A market for an indivisible good) In a market for an indivisible good the set of buyers is B and the set of sellers is 
L. Each seller holds one unit of the good and has a reservation price of 0; each buyer wishes to purchase one unit of 
the good and has a reservation price of 1.

We may model this market as a coalitional game with transferable payoff as follows:  and 
 for each coalition S. If |B| >|L| then the core consists of the single payoff profile in 

which every seller receives 1 and every buyer receives 0. To see this, suppose that the payoff profile z is in the 
core. Let b be a buyer whose payoff is minimal among the payoffs of all the buyers and let l be a seller whose 
payoff is minimal among the payoffs of all the sellers. Since x is in the core we have  and 

, which implies that xb = 0 and  and hence (using v(N) 

=|L| and the fact that  is the worst-off seller) xi = 1 for every seller i.

• Exercise 260.2

Calculate and interpret the core of this game when |B| = |L|.

• Example 260.3

(A majority game) A group of n players, where  is odd, has one unit to divide among its members. A 
coalition consisting of a majority of the players can divide the unit among its members as it wishes. This situation 
is modeled by the coalitional game  in which |N| = n and

This game has an empty core by the following argument. Assume that z is in the core. If |S| = n - 1 then v(S) = 1 so 

that . Since there are n coalitions of size n- 1 we thus have  n. On the other hand

a contradiction.

• Exercise 260.4

(Convex games) A coalitional game with transferable payoff  is convex if

for all coalitions S and T. Let  be such a game and define
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the payoff profile x by  for each , where Si = {1,..., i-1} (with S1 = Ø). Show that x is in 
the core of .

• Exercise 261.1

(Simple games) A coalitional game with transferable payoff  is simple if v(S) is either 0 or 1 for every 
coalition S, and v(N) = 1; a coalition S for which v(s) = 1 is called a winning coalition. A player who belongs to all 
winning coalitions is a veto player.

a. Show that if there is no veto player then the core is empty.

b. Show that if the set of veto players is nonempty then the core is the set of all nonnegative feasible payoff profiles 
that give zero to all other players.

• Exercise 261.2

(Zerosum games) A coalitional game with transferable payoff  is zerosum if v(S) + v(N\S) = v(N) for every 
coalition S; it is additive if  for all disjoint coalitions S and T. Show that a zerosum game that 
is not additive has an empty core.

We remarked earlier that when modeling as a coalitional game a situation in which the actions of any coalition 
affect its complement there may be several ways to define v(S), each entailing a different interpretation. The next 
Exercise asks you to define v(S) to be the highest payoff that S can guarantee independently of the behavior of N\S.

• Exercise 261.3

(Pollute the lake) Each of n factories draws water from a lake and discharges waste into the same lake. Each 
factory requires pure water. It costs any factory kc to purify its water supply, where k is the number of factories that 
do not treat their waste before discharging it into the lake; it costs any factory b to treat its waste. Assume that 

.

a. Model this situation as a coalitional game under the assumption that the worth v(S) of any coalition S is the 
highest payoff that S can guarantee (that is, v(S) is the highest payoff of S under the assumption that none of the 
other factories treats its waste).

b. Find the conditions under which the game has a nonempty core and the conditions under which the core is a 
singleton.

c. Discuss the interpretation of the core of this game, taking into account that the definition of v(S) makes 
assumptions about the behavior of the players outside S.
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13.3 Nonemptiness of the Core

We now derive a condition under which the core of a coalitional game is nonempty. Since the core is defined by a 
system of linear inequalities such a condition could be derived from the conditions for the existence of a solution to 
a general system of inequalities. However, since the system of inequalities that defines the core has a special 
structure we are able to derive a more specific condition.

Denote by  the set of all coalitions, for any coalition S denote by  the |S|-dimensional Euclidian space in which 
the dimensions are indexed by the members of S, and denote by  the characteristic vector of S given by

A collection  of numbers in [0,1] is a balanced collection of weights if for every player i the sum of λS over 
all the coalitions that contain i is . As an example, let |N| = 3. Then the collection (λS) in which 

 if |S| = 2 and λS = 0 otherwise is a balanced collection of weights; so too is the collection (γS) in which λS = 1 

if |S| = 1 and λS = 0 otherwise. A game  is balanced if  for every balanced collection of 
weights.

One interpretation of the notion of a balanced game is the following. Each player has one unit of time, which he 
must distribute among all the coalitions of which he is a member. In order for a coalition S to be active for the 
fraction of time λS, all its members must be active in S for this fraction of time, in which case the coalition yields 
the payoff λSv(S). In this interpretation the condition that the collection of weights be balanced is a feasibility 
condition on the players' allocation of time, and a game is balanced if there is no feasible allocation of time that 
yields the players more than v(N).

The following result is referred to as the Bondareva-Shapley theorem.

• Proposition 262.1

A coalitional game with transferable payoff has a nonempty core if and only if it is balanced.

Proof.

Let  be a coalitional game with transferable payoff. First let x be a payoff profile in the core of  and let 
 be a balanced collection of weights. Then

so that  is balanced.
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Now assume that  is balanced. Then there is no balanced collection  of weights for which 
. Therefore the convex set  is disjoint from the convex cone

since if not then , so that  is a balanced collection of weights and . Thus 
by the separating hyperplane theorem (see, for example, Rockafeller (1970, Theorem 11.3)) there is a nonzero 
vector  such that

for all y in the cone and all . Since (1N, v(N)) is in the cone, we have α < 0.

Now let x = αN/(-α). Since (1S, v(S)) is in the cone for all , we have  by the left-hand 
inequality in (263.1), and  from the right-hand inequality. Adding a vector of nonnegative 
numbers to x to get v(N) = x(N), we obtain a payoff profile that is in the core of .

• Exercise 263.2

Let N = {1,2,3,4}. Show that the game  in which

has an empty core, by using the fact that there exists a balanced collection  of weights in which λS = 0 for all 
coalitions S that are not equal to {1, 2}, {1, 3}, {1, 4}, or {2, 3, 4}.

13.4 Markets with Transferable Payoff

13.4.1 Definition

In this section we apply the concept of the core to a classical model of an economy. Each of the agents in the 
economy is endowed with a bundle of goods that can be used as inputs in a production process that the agent can 
operate. All production processes produce the same output, which can be transferred between the agents. Formally, 
a market with transferable payoff consists of

• a finite set N (the set of agents)
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• a positive integer  (the number of input goods)

• for each agent  a vector  (the endowment of agent i)

•  for each agent  a continuous, nondecreasing, and concave function  (the production function of 
agent i).

An input vector is a member of ; a profile  of input vectors for which  is an allocation.

In such a market the agents may gain by cooperating: if their endowments are complementary then in order to 
maximize total output they may need to exchange inputs. However, the agents' interests conflict as far as the 
distribution of the benefits of cooperation is concerned. Thus a game-theoretic analysis is called for.

We can model a market with transferable payoff  as a coalitional game with transferable payoff  
in which N is the set of agents and for each coalition S we have

That is, v(s) is the maximal total output that the members of S can produce by themselves. We define the core of a 
market to be the core of the associated coalitional game.

Note that our assumptions that all agents produce the same good and the production of any coalition S is 
independent of the behavior of N\S are essential.

13.4.2 Nonemptiness of the Core

We now use the Bondareva-Shapley theorem (262.1) to show that every market with transferable payoff has a 
nonempty core.

• Proposition 264.2

Every market with transferable payoff has a nonempty core.

Proof.

Let  be a market with transferable payoff and let  be the coalitional game defined in (264.1). By 
the Bondareva-Shapley theorem it suffices to show that  is balanced. Let  be a balanced collection of 
weights. We must show that . For each coalition S let  be a solution of the problem 
(264.1) defining v(S). For each  let . We have
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where the last equality follows from the fact that  is a balanced collection of weights. It follows from the 
definition of v(N) that ; the concavity of each function fi and the fact that the collection of 
weights is balanced implies that

completing the proof.

• Example 265.1

Consider the market with transferable payoff in which , there are two input goods  if 
, ωi = (0, 1) if , and f(a, b) = min{a, b} for every . Then . By Proposition 

264.2 the core is nonempty. If |K| < |M| then it consists of a single point, in which each agent in K receives the 
payoff of 1 and each agent in M receive the payoff of 0; the proof is identical to that for the market with an 
indivisible good in Example 260.1.

• Exercise 265.2

Consider the market with transferable payoff like that of the previous example in which there are five agents, ω1 = 
ω2 = (2, 0), and ω3 = ω4 = ω5 = (0,1).

a. Find the coalitional form of this market and calculate the core.

b. Suppose that agents 3, 4, and 5 form a syndicate: they enter coalitions only as a block, so that we have a 
three-player game. Does the core predict that the formation of the syndicate benefits its members? Interpret 
your answer.

15.4.3 The Core and the Competitive Equilibria

Classical economic theory defines the solution of ''competitive equilibrium" for a market. We now show that the 
core of a market contains its competitive equilibria.

We begin with the simple case in which all agents have the same production function f and there is only one input. 
Let , the average endowment. Given the concavity of f, the allocation in which each agent receives 
the amount ω* of the input maximizes the total output. Let p* be the slope of a tangent to the production function at 
ω* and let g be the aide function with slope p* for which g(ω*) = f(ω*) (see Figure 266.1). Then  is in the 
core since



   

Page 266

Figure 266.1 
The production function f of each agent and the  

function g in a market in which there is a single input.

 and 
.

The payoff profile  can be achieved by each agent trading input for output at the price p* (each unit of 
input costs p* units of output): if trade at this price is possible then agent i maximizes his payoff by choosing the 
amount z of input to solve maxz(f(z)-p*(z-ωi)), the solution of which is ω*. In terms of the next definition, the pair 

 where  for all  is a competitive equilibrium of the market.

We define a competitive equilibrium  of a market with transferable payoff as a pair  consisting of a 
vector  (the vector of input prices) and an allocation  such that for each agent i the vector  solves the 
problem

If  is a competitive equilibrium then we refer to , the value of the maximum in (266.1), 
as a competitive payoff of agent i. The idea is that the agents can trade inputs at fixed prices, which are expressed 
in terms of units of output. If after buying and selling inputs agent i holds the bundle zi then his net expenditure, in 
units of output, is p*(zi - ωi); he can produce fi(zi) units of output, so that his net payoff is fi(zi) - p*(zi - ωi). A price 
vector p* generates a competitive equilibrium if, when each agent chooses his trades to maximize his payoff, the 
resulting profile  of input vectors is feasible in the sense that it is an allocation.
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We now show that any profile of competitive payoffs in a market with transferable payoff is in the core.

• Proposition 267.1

Every profile of competitive payoffs in a market with transferable payoff is in the core of the market.

Proof.

Let  be a market with transferable payoff, let  be the associated coalitional game, let  
be a competitive equilibrium of the market, and assume contrary to the result that the profile of associated 
competitive payoffs is not in the core. Then there is a coalition S and a vector  such that  and 

. It follows that  and hence for at least 
one agent  we have , contradicting the fact that  is a solution of (266.1). Finally, 

 since for any  such that  we have 
.

Proposition 267.1 provides an alternative route to show that the core of a market with transferable payoff is 
nonempty, since every market with transferable payoff has a competitive equilibrium, as the following Exercise 
shows.

• Exercise 267.2

Let  be a market with transferable payoff in which every component of  is positive, let 
 for each , and let  be a solution of

Show that the coefficients of the hyperplane that separates  from  and 
 define competitive prices.

The notion of competitive equilibrium is intended to capture a world in which the bargaining power of each agent 
is small. In a market that contains only a few agents some may have strong bargaining positions, and the core may 
contain outcomes very different from the competitive equilibrium. However, in a large market, where each agent's 
action has only a small effect on the outcome, we might expect the core to contain only outcomes that are similar to 
the competitive equilibrium. The following Exercise illustrates this idea in a special case; in Section 13.6.2 we 
study the idea in a more general context.
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• Exercise 268.1

(A production economy) Let  be a market with transferable payoff in which 
 for , and fi = f for all , with f(0, m) = 0 for all m, f(1,0) = 0, 

and . Suppose that the input goods are indivisible. The associated coalitional game is the same 
as that in Exercise 259.3. Show that for all  there is an integer  such that for all  no member of the 
core gives player 1 a payoff less than . Give an economic interpretation of this result.

13.5 Coalitional Games without Transferable Payoff

In a coalitional game with transferable payoff each coalition S is characterized by a single number v(S), with the 
interpretation that v(S) is a payoff that may be distributed in any way among the members of S. We now study a 
more general concept, in which each coalition cannot necessarily achieve all distributions of some fixed payoff; 
rather, each coalition S is characterized by an arbitrary set V(S) of consequences.

• Definition 268.2

A coalitional game (without transferable payoff) consists of

• a finite set N (the set of players)

• a set X (the set of consequences)

• a function V that assigns to every nonempty subset S of N (a coalition) a set 

• for each player  a preference relation  on X.

Any coalitional game with transferable payoff  (Definition 257.1) can be associated with a general coalitional 
game  as follows:  and xj = 0 if  for each coalition 
S, and  if and only if . Under this association the set of coalitional games with transferable payoff is a 
subset of the set of all coalitional games.

The definition of the core of a general coalitional game is a natural extension of our definition for the core of a 
game with transferable payoff (Definition 258.2).

• Definition 268.3

The core of the coalitional game  is the set of all  for which there is no coalition S and 
 for which  for all .

Under conditions like that of balancedhess for a coalitional game with transferable payoff (see Section 13.3) the 
core of a general coalitional
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game is nonempty (see Scarf (1967), Billera (1970), and Shapley (1973)). We do not discuss these conditions here.

13.6 Exchange Economies

13.6.1 Definitions

A generalization of the notion of a market with transferable payoff is the following. An exchange economy 
consists of

• a finite set N (the set of agents)

• a positive integer  (the number of goods)

• for each agent  a vector  (the endowment of agent i) such that every component of  is positive

•  for each agent  a nondecreasing, continuous, and quasi-concave preference relation  over the set  of 
bundles of goods.

The interpretation is that ωi is the bundle of goods that agent i owns initially. The requirement that every 
component of  be positive means that there is a positive quantity of every good available in the economy. 
Goods may be transferred between the agents, but there is no payoff that is freely transferable.

An allocation is a distribution of the total endowment in the economy among the agents: that is, a profile  
with  for all  and . A competitive equilibrium  of an exchange economy is a pair 

 consisting of a vector  with  (the price vector) and an allocation  such that for each 
agent i we have  and

If  is a competitive equilibrium then  is a competitive allocation.

As in the case of a competitive equilibrium of a market with transferable payoff, the idea is that the agents can 
trade goods at fixed prices. Here there is no homogeneous output in terms of which the prices are expressed; rather, 
we can think of  as the "money" price of good j. Given any price vector p, each agent i chooses a bundle that is 
most desirable (according to his preferences) among all those that are affordable (i.e. satisfy ). Typically 
an agent chooses a bundle that contains more of some goods and leas of others than he initially own: he "demands" 
some goods and "supplies.gif'' others. The requirement in the
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Figure 270.1 
An Edgeworth box, illustrating an exchange economy in which there are  

two agents and two goods. A competitive equilibrium price ratio is given by  
the slope of the line through ω and x*; x* corresponds to a competitive  

allocation. The core is the set of all allocations that correspond to points  
on the line joining y' and y".

definition of competitive equilibrium that the profile of chosen bundles be an allocation means that for every good 
the sum of the individuals' demands is equal to the sum of their supplies.

A standard result in economic theory is that an exchange economy in which every agent's preference relation is 
increasing has a competitive equilibrium (see, for example, Arrow and Hahn (1971, Theorem 5 on p. 119)1). Note 
that an economy may possess many such equilibria.

An exchange economy that contains two agents (|N| = 2) and two goods  can be conveniently represented in a 
diagram like that in Figure 270.1, which is known as an Edgeworth box. Bundles of goods consumed by agent 1 are 
measured from the origin O1 in the bottom left, while bundles consumed by agent 2 are measured from the origin 
O2 in the top right. The width of the box formed by the two pairs of axes is the total endowment of good 1 in the 
economy and the height

1 Arrow and Hahn's result is for the more general notion of an economy with production. To apply it here, let the production set 
of each firm f be Yj = {0}. Note that if every agent's preference relation is increasing then every agent is resource related (in the 
sense of Arrow and Hahn) to every other agent.
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of the box is the total endowment of good 2. Thus each point x in the box corresponds to an allocation in which 
agent i receives the bundle x measured from Oi; the point labeled ω corresponds to the pair of endowments. The 
curved lines labeled I i and I'iare indifference curves of agent i: if x and y are points on one of these curves then 

. The straight line passing through ω and x* is (relative to Oi) the set of all bundles xi for which pxi = pωi. The 
point x* corresponds to a competitive allocation since the most preferred bundle of agent i in the set  
is x* when measured from origin Oi. The ratio of the competitive prices is the negative of the slope of the straight 
line through ω and x*.

An exchange economy is closely related to a market (as defined in Section 13.4). In a market, payoff can be 
directly transferred between agents, while in an exchange economy only goods can be directly transferred. Thus we 
model an exchange economy as a coalitional game without transferable payoff. Precisely, we associate the 
exchange economy  with the coalitional game  where

• ;

•   and xj = ωj for all  for each coalition S;

• each preference relation  is defined by  if and only if .

The third condition expresses the assumption that each agent cares only about his own consumption. We define the 
core of an exchange economy to be the core of the associated coalitional game.

15.6.2 The Core and the Competitive Equilibria

For the coalitional game  associated with the exchange economy  the set v(N) is the set 
of all allocations and for each  we have . Thus the core of a two-agent economy is the set of 
all allocations  such that  for each agent j and there is no allocation  such that  for both 
agents j. For example, in the Edgeworth box in Figure 270.1 the core corresponds to the locus of points in the area 
bounded by I'1 and I2 for which an indifference curve of agent I and an indifference curve of agent 2 share a 
common tangent (i.e. it is the curved line passing through y', x*, and y.gif"). In particular, the core contains the 
competitive allocation. We now show that this is a general property.
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• Proposition 272.1

Every competitive allocation in an exchange economy is in the core.

Proof.

Let  be an exchange economy, let  be a competitive equilibrium of E, and assume 
that  is not in the core of E. Then there is a coalition S and  with  such that  
for all ; using (269.1) we have p*yi > p*ωi for all . Hence , contradicting 

.

Note that it follows from this result that an economy that has a competitive equilibrium has a nonempty core.

By examining an Edgeworth box we can see that in a two-good two-agent economy the core may be large. 
However, we now show that as the number of agents increases, the core shrinks to the set of competitive 
allocations. That is, in a large enough economy the predictions of the competitive equilibrium—a concept that is 
based on agents who trade at fixed prices—are very close to those of the core—a concept that is based on the 
ability of a group of agents to improve its lot by forming an autonomous subeconomy, without reference to prices. 
Put differently, in a large enough economy the only outcomes that are immune to deviations by groups of agents 
are competitive equilibrium allocations.

To state the result precisely, let E be an exchange economy in which there are n agents. For any positive integer k 
let kE be the economy derived from E in which there are kn agents—k copies of each agent in E. We refer to an 
agent j in kE who is a copy of agent i in E as being of type i = ι (j). The comparison between the core of E and that 
of kE is facilitated by the following result.

• Lemma 272.2

(Equal treatment in the core) Let E be an exchange economy in which the preference relation of every agent is 
increasing and strictly quasi-concave, and let k be a positive integer. In any allocation in the core of kE all agents 
of the same type obtain the same bundle.

Proof.

Let  and let x be an allocation in the core of kE in which there are two agents of type t* whose 
bundles are different. We now show that there is a distribution of the endowment of the coalition consisting of the 
worst-off agent of each type that makes every member of the coalition better off than he is in x. Precisely, for each 
type t select one agent, i t, in kE who is least well off (according to ) in x among all agents of type t, and let S be 
the coalition (of size |N|) of these agents. For each type t let zt be the average bundle of the agents
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of type t in the allocation . Then we have

•

•   (otherwise,  whenever ι (j) = t, so that by the quasi-concavity of  we have , a 
contradiction);

•  (by the strict quasi-concavity of the preference relations).

That is, (i) it is feasible for the coalition S to assign to each agent  the bundle zι (j) (since 
), (ii ) for every agent  the bundle zι (j) is at least as desirable as xj, and (iii ) for 

the agent  of type t* the bundle zι (j) is preferable to xj.

Since each agent's preference relation is increasing we can modify the allocation  by reducing t* 's bundle by 
a small amount and distributing this amount equally among the other members of S so that we have a profile  
with  and  for all . This contradicts the fact that x is in the core of kE.

Given this result, for any positive integer k we can identify the core of kE with a profile of |N| bundles, one for each 
type. Under this identification it is clear that the core of kE is a subset of the core of E. We now show that the core 
of kE shrinks to the set of competitive allocations of E as k increases.

• Proposition 273.1

Let E be an exchange economy in which every agent's preference relation is increasing and strictly quasi-concave 
and every agent's endowment of every good is positive. Let z be an allocation in E. If for every positive integer k 
the allocation in kE in which every agent of each type t receives the bundle xt is in the core of kE then x is a 
competitive allocation of E.

Proof.

Let . Let

Under our assumptions on preferences Q is convex. We claim that . Suppose to the contrary that  
for some (α t) and (zt) with , and  for all t. Suppose that every α t is a rational 
number. If not, we need to do some approximation.) Choose an integer K large enough that Kα t is an integer for all 
t, let S be a coalition in KE that consists of Kα t agents of each type t, and let x'i = zι (i) + ωi for each . We have 
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 and  for all , contradicting the fact that x is in the core of KE.

Now by the separating hyperplane theorem (see, for example, Rockafeller (1970, Theorem 11.3)) there is a nonzero 
vector  such that  if . Since all the agents' preferences are increasing, each unit vector is in Q (take 
zt = xt - ωt + l{ m} and α t = 1/|N| for each t, where l{ m} is the mth unit vector in ). Thus .

We now argue that if  for some  then pyi > pωi, so that by (269.1) x is a competitive allocation of E. 
Suppose that . Then , so that by the choice of p we have . Furthermore,  for some 
θ < 1, so that  and hence ; also pwi > 0 since every component of ωi is positive. Thus pyi > pωi.

In any competitive equilibrium of kE all agents of the same type consume the same bundle, so that any such 
equilibrium is naturally associated with a competitive equilibrium of E. Thus the result shows a sense in which the 
larger k is, the closer are the core and the set of competitive allocations of kE.

• Exercise 274.1

Consider an exchange economy E in which there are two goods and two agents; agent 1's endowment is (1,0) and 
her preferences are represented by the utility function x1 + x2, while agent 2's endowment is (0,1) and his 
preferences are represented by the utility function min{x1, x2}. For each positive integer k find the core and set of 
competitive allocations of kE.

Notes

The notion of a coalitional game is due to von Neumann and Morgenstern (1944). In the early 1950s Gillies 
introduced the notion of the core as a tool to study stable sets (his work is published in Gillies (1959)); Shapley and 
Shubik developed it as a solution concept. Proposition 262.1 is due to Bondareva (1963) and Shapley (1967). The 
idea of modeling markets as coalitional games is due to yon Neumann and Morgenstern (1944, pp. 583-584); it was 
developed by Shapley and Shubik (see, for example, Shapley (1959) and Shubik (1959a)). Proposition 264.2 is due 
to Shapley and Shubik (1969a). The idea of generalizing a coalitional game to situations in which payoff is not 
transferable is due to Shapley and Shubik (1953) and Luce and Raiffa (1957, pp. 234-235); the formulation that we 
describe is due to Aumann and Peleg (1960).
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Scarf (1967), Billera (1970), and Shapley (1973) discuss the nonemptiness of the core of a coalitional game 
without transferable payoff. The relation between the core and the set of competitive equilibria of an economy was 
first noticed by Edgeworth (1881, pp. 35-39). The relation between Edgeworth's work and modem notions in game 
theory was recognized by Shubik (1959a). Proposition 273.1 is due to Debreu and Scarf (1963); for a diagrammatic 
proof for a two-agent two-good economy see Varian (1992, pp. 387-392).

Example 259.2 is due to Shapley (inspired by the 1948 movie The Treasure of the Sierra Madre). The game in 
Exercise 259.3 is analyzed by Shapley and Shubik (1967). The market in Example 260.1 is studied by Shapley 
(1959). Exercise 260.4 is taken from Shapley (1971/72), Exercise 261.3 from Shapley and Shubik (1969b), 
Exercise 265.2 from Postlewaite and Rosenthal (1974), and Exercise 268.1 from Owen (1982, Theorem IX.3.2).

Aumann (1989) contains an introduction to the theory of coalitional games. Other references include Owen (1982), 
Shubik (1982), Moulin (1986, 1988), Friedman (1990), and Myerson (1991).

Aumann (1964) provides an alternative formulation of Edgeworth's idea that the core converges to the set of 
competitive equilibria in a large economy: he studies a model in which there is a continuum of agents and shows 
that the core coincides with the set of competitive equilibria. Axiomatizations of the core are surveyed by Peleg 
(1992).
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14 
Stable Sets, the Bargaining Set, and the Shapley Value

In contrast to the core, the solution concepts we study in this chapter restrict the way that an objecting coalition 
may deviate, by requiring that each possible deviation either itself be a stable outcome or be balanced by a 
counterdeviation. These restrictions yield several solutions: stable sets, the bargaining set, the kernel, the nucleolus, 
and the Shapley value.

14.1 Two Approaches

The definition of the core does not restrict a coalition's credible deviations, beyond imposing a feasibility 
constraint. In particular it assumes that any deviation is the end of the story and ignores the fact that a deviation 
may trigger a reaction that leads to a different final outcome. The solution concepts we study in this chapter 
consider various restrictions on deviations that are motivated by these considerations.

In the first approach we study (in Section 14.2), an objection by a coalition to an outcome consists of an alternative 
outcome that is itself constrained to be stable. The idea is that a deviation by a coalition will lead via some 
sequence of events to a stable outcome and that a coalition should choose to deviate on the basis of the ultimate 
effect of its action, not the proximate effect. This stability condition is self-referential: a stable outcome has the 
property that no coalition can achieve some other stable outcome that improves the lot of all its members.

In the second approach (studied in Sections 14.3 and 14.4) the chain of events that a deviation unleashes is cut 
short after two stages: the stability condition is that for every objection to an outcome there is a balancing 
counterobjection. Different notions of objection and counter-objection give rise to a number of different solution 
concepts.
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The arguments captured by the solution concepts in this chapter are attractive. Nevertheless, it is our impression 
that there are few persuasive applications of the concepts. Consequently we simply describe the concepts, discuss 
their interpretations, and give simple examples. Throughout we restrict attention to coalitional games with 
transferable payoff.

14.2 The Stable Sets of yon Neumann and Morgenstern

The idea behind the first solution concept we study is that a coalition S that is unsatisfied with the current division 
of v(N) can credibly object by suggesting a stable division x of v(N) that is better for all the members of S and is 
backed up by a threat to implement  on its own (by dividing the worth v(S) among its members). The logic 
behind the requirement that an objection itself be stable is that otherwise the objection may unleash a process 
involving further objections by other coalitions, at the end of which some of members of the deviating coalition 
may be worse off.

This idea leads to a definition in which a set of stable outcomes satisfies two conditions: (i) for every outcome that 
is not stable some coalition has a credible objection and (ii ) no coalition has a credible objection to any stable 
outcome. Note that this definition is self-referential and admits the possibility that there be many stable sets.

We now turn to the formal definition. Let  be a coalitional game with transferable payoff. As in the previous 
chapter we assume that  is cohesive (see Definition 258.1). An imputation  of  is a feasible payoff profile 
x for which  for all ; let X be the set of all imputations of . We first define objections (which 
are not necessarily credible).

•  An imputation x is an objection of the coalition S to the imputation y if xi > yi for all  and , in which 
case we write .

(In the literature it is sometimes said that "x dominates y via S" if x is an objection of S to y.) Since  is 
cohesive we have  if and only if there is an S-feasible payoff vector  for which xi > yi for all . The 
core of the game  is the set of all imputations to which there is no objection: { : there is no coalition S 
and imputation x for which }. The solution concept we now study is defined as follows.



   

Page 279

• Definition 279.1

A subset Y of the set X of imputations of a coalitional game with transferable payoff  is a stable set if it 
satisfies the following two conditions.

Internal stability If  then for no  does there exist a coalition S for which .

External stability If  then there exists  such that  for some coalition S.

This definition can be written alternatively as follows. For any set Y of imputations let  be the set of 
imputations z for which there is a coalition S and an imputation  such that . Then internal and external 
stability are equivalent to the conditions  and , so that a set Y of imputations is a stable 
set if and only if .

While the core is a single set of imputations, a game may have more than one stable set (see the examples below) 
or none at all (as shown by the complex example in Lucas (1969)); each such set may contain many imputations. 
Von Neumann and Morgenstern (1944) interpret each stable set as corresponding to a standard of behavior, the 
idea being that all the imputations in any given stable set correspond to some mode of behavior while imputations 
in different stable sets correspond to different modes of behavior.

Some simple properties of stable sets are given in the following result.

• Proposition 279.2

a. The core is a subset of every stable set. b. No stable set is a proper subset of any other. c. If the core is a stable 
set then it is the only stable set.

Proof.

a. Every member of the core is an imputation and no member is dominated by an imputation, so the result follows 
from external stability. b. This follows from external stability. c. This follows from (a) and (b).

• Example 279.3

(The three-player majority game) Consider the game  in which v(S) = 1 if  and v(S) = 0 otherwise. 
One stable set of this game is

This corresponds to the "standard of behavior" in which some pair of players shares equally the single unit of 
payoff that is available. The internal stability of Y follows from the fact that for all x and y in Y only one player 
prefers x to y. To check external stability, let z be an imputation outside Y. Then there are two players i and j for 
whom
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 and , so that there is an imputation in Y that is an objection of {i, j} to z.

For any  and any  the set

is also a stable set of the game. This corresponds to a ''standard of behavior" in which one of the players is singled 
out and given a fixed payoff. The internal stability of Yi,c follows from the fact that for any x and y in the set there is 
only one player who prefers x to y. To show the external stability of Yi,c let i = 3 and let z be an imputation outside 
Y3,c. If z3 > c then zl + z2 < 1 - c and there exists  such that x1 > z1 and x2 > z2, so that . If z3 < c and, 
say,  then .

• Exercise 280.1

(Simple games) Let  be a simple game (see Exercise 261.1). Let T be a minimal winning coalition (a winning 
coalition that has no strict subset that is winning). Show that the set of imputations that assign 0 to all players not in 
T is a stable set.

• Exercise 280.2

(A market for an indivisible good) For the market described in Example 260.1 with  show that the set

is a stable set; interpret it.

• Exercise. 280.3

(Three-player games) For a three-player game the set of imputations can be represented geometrically as an 
equilateral triangle with height v(N) in which each point represents the imputation whose components are the 
distances to each edge. (Thus the comers correspond to the three imputations that assign v(N) to a single player.) 
Use such a diagram to find the general form of a stable set of the three-player game in which v({1, 2}) = β < 1, v
({1, 3}) = v({1, 2, 3}) = 1, and v(S) = 0 otherwise. We can interpret this game as a market in which player 1 is a 
seller and players 2 and 3 are buyers with reservation values β and 1 respectively. Interpret the stable sets of the 
game in terms of this market.

• Exercise 280.4

Player i is a dummy in  if  for every coalition S of which i is not a member. Show that 
if player i is a dummy in  then his payoff in any imputation in any stable set is v({ i}).

• Exercise 280.5

Let X be an arbitrary set (of outcomes) and let D be a binary relation on X, with the interpretation that if x D y then 
x is
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an objection of some coalition S to y. Generalize the definition of stable sets as follows. The set  of outcomes 
is stable if it satisfies the following two conditions.

Internal stability If  then there exists no  such that z D y.

External stability If  then there exists  such that y D z.

Consider an exchange economy (see Section 13.6) in which there are two goods and two agents. Let X be the set of 
all allocations x for which  for each agent i. Define the relation D by x D y if both agents prefer x to y. Show 
that the only (generalized) stable set is the core of the economy.

14.3 The Bargaining Set, Kernel, and Nucleolus

We now turn to the second approach that we described at the start of the chapter. That is, we regard an objection by 
a coalition to be convincing if no other coalition has a "balancing" counterobjection; we do not require the 
objection or counterobjection to be themselves stable in any sense. We study three solution concepts that differ in 
the nature of the objections and counterobjections.

14.3.1 The Bargaining Set

Let x be an imputation in a coalitional game with transferable payoff . Define objections and 
counterobjections as follows.

•  A pair (y, S), where S is a coalition and y is an S-feasible payoff vector, is an objection of i against j to x if S 
includes i but not j and yk > xk for all .

•  A pair (z, T), where T is a coalition and z is a T-feasible payoff vector, is a counterobjection to the objection (y, 
S) of i against j if T includes j but not i,  for all , and  for all .

Such an objection is an argument by one player against another. An objection of i against j to x specifies a coalition 
S that includes i but not j and a division y of v(S) that is preferred by all members of S to x. A counterobjection to 
(y, s) by j specifies an alternative coalition T that contains j but not i and a division of v(T) that is at least as good as 
y for all the members of T who are also in S and is at least as good as x for the other members of T. The solution 
concept that we study is defined as follows.
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• Definition 282.1

The bargaining set of a coalitional game with transferable payoff is the set of all imputations x with the property 
that for every objection (y, S) of any player i against any other player j to x there is a counterobjection to (y, S) by j.

The bargaining set models the stable arrangements in a society in which any argument that any player i makes 
against an imputation x takes the following form: "I get too little in the imputation x and j gets too much; I can 
form a coalition that excludes j in which everybody is better off than in x". Such an argument is ineffective as far as 
the bargaining set is concerned if player j can respond as follows: "Your demand is not justified; I can form a 
coalition that excludes you in which everybody is at least as well off as they are in x and the players who 
participate in your coalition obtain at least what you offer them."

The bargaining set, like the other solution concepts in this section, assumes that the argument underlying an 
objection for which there is no counterobjection undermines the stability of an outcome. This fact is taken as given, 
and is not derived from more primitive assumptions about the players' behavior. The appropriateness of the 
solution in a particular situation thus depends on the extent to which the participants in that situation regard the 
existence of an objection for which there is no counterobjection as a reason to change the outcome.

Note that an imputation is in the core if and only if no player has an objection against any other player; hence the 
core is a subset of the bargaining set. We show later (in Corollary 288.3) that the bargaining set of every game is 
nonempty.

• Example 282.2

(The three-player majority game) Consider the three-player majority game. The core of this game is empty (see 
Example 259.1) and the game has many stable sets (see Example 279.3). The bargaining set of the game is the 
singleton , by the following argument. Let x be an imputation and suppose that (y, S) is an objection of i 
against j to x. Then we must have S = { i, h}, where h is the third player and yh < 1 - xi (since yi > xi and y(S) = v(S) = 
1). For j to have a counterobjection to (y, S) we need . Thus for x to be in the bargaining set we require 
that for all players i, j, and h we have  whenever yh < 1- xi, which implies that  or  for 

all i and j, so that . Obviously this imputation is in the bargaining set.

• Example 282.3

(My aunt and I) Let  be a simple game (see Exercise 261.1) in which v(S) = 1 if and only if S contains 
one of
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the coalitions {2,3,4} or {1, i} for .gif">. (Note that by contrast the core is empty.)

We saw (Example 265.1) that the competition inherent in the core can drive to zero the payoff of players holding 
goods that are in excess supply. The following Exercise gives an example that shows how this intense competition 
is muted in the bargaining set.

• Exercise 283.1

(A market) Consider the coalitional game derived from the market with transferable payoff in Exercise 265.2. 
Show that the bargaining set of this game is  and 2α + 3β = 3}. Contrast this set with the 
core and give an interpretation.

14.3.2 The Kernel

We now describe another solution that, like the bargaining set, is defined by the condition that to every objection 
there is a counterobjection; it differs from the bargaining set in the nature of objections and counterobjections that 
are considered effective.

Let x be an imputation in a coalitional game with transferable payoff ; for any coalition S call e(S, x) = v(S) - x
(S) the excess of S. H the excess of the coalition S is positive then it measures the amount that S has to forgo in 
order for the imputation x to be implemented; it is the sacrifice that S makes to maintain the social order. If the 
excess of S is negative then its absolute value measures the amount over and above the worth of S that S obtains 
when the imputation x is implemented; it is S's surplus in the social order.

A player i objects to an imputation x by forming a coalition S that excludes some player j for whom xj > v({ j}) and 
pointing out that
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he is dissatisfied with the sacrifice or gain of this coalition. Player j counterobjects by pointing to the existence of a 
coalition that contains j but not i and sacrifices more (if e(S, x) > 0) or gains less (if e(S, x) < 0). More precisely, 
define objections and counterobjections as follows.

•  A coalition S is an objection of i against j to x if S includes i but not j and xj > v({ j}).

• A coalition T is counterobjection to the objection S of i against j if T includes j but not i and .

• Definition 284.1

The kernel of a coalitional game with transferable payoff is the set of all imputations x with the property that for 
every objection S of any player i against any other player j to x there is a counterobjection of j to S.

For any two players i and j and any imputation x define sij(x) to be the maximum excess of any coalition that 
contains i but not j:

Then we can alternatively define the kernel to be the set of imputations  such that for every pair (i, j) of 
players either  or 

The kernel models the stable arrangements in a society in which a player makes arguments of the following type 
against an imputation x: "Here is a coalition to which I belong that excludes player j and sacrifices too much (or 
gains too little)". Such an argument is ineffective as far as the kernel is concerned if player j can respond by saying 
"your demand is not justified; I can name a coalition to which I belong that excludes you and sacrifices even more 
(or gains even less) than the coalition that you name".

Note that the definitions of the core and the bargaining set do not require us to compare the payoffs of different 
players, while that of the kernel does. Thus the definitions of the former concepts can easily be extended to a 
general coalitional game  (see Definition 268.2). For example, as we saw in Section 13.5, the core is 
the set of all  for which there is no coalition S and  for which  for all . By contrast, the 
definition of the kernel cannot be so extended; it assumes that there is meaning to the statement that the excess of 
one coalition is larger than that of another. Thus the kernel is an appropriate solution concept only in situations in 
which the payoffs of different players can be meaningfully compared.
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We show later that the kernel is nonempty (see Corollary 288.3). Its relation with the bargaining set is as follows.

• Lemma 285.1

The kernel of a coalitional game with transferable payoff is a subset of the bargaining set.

Proof.

Let .gif">, so that (z, T) is a counterobjection to (y, s).

• Example 285.2

(The three-player majority game) It follows from our calculation of the bargaining set (Example 282.2), the 
previous lemma (285.1), and the nonemptiness of the kernel that the kernel of the three-player majority game is 

. To see this directly, assume that , with at least one strict inequality. Then s31(x) = 1 - x2 - x3 > 
1 - x2 - x1 = s13(x) and xl > 0 = v({1}), so that x is not in the kernel.

• Example 285.3

(My aunt and I) The kernel of the game in Example 282.3 is , by the following argument. Let x be in 
the kernel. By Lemma 285.1 and the calculation of the bargaining set of the game we have x = (1 - 3α, α, α, α) for 
some , so that s12(x) = 2α and s21(x) = 1 -3α. Since 1 - 3α > 0 we need , or 

; hence .

14.3.3 The Nucleolus

A solution that is closely related to the kernel is the nucleolus. Let x be an imputation in a coalitional game with 
transferable payoff. Define objections and counterobjections as follows.

• A pair (S, y) consisting of a coalition S and an imputation y is an objection to x if e(S, x) > e(S, y) (i.e. y(S) > x(S)).
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•  A coalition T is a counterobjection to the objection (S, y) if e(T, y) > e(T, x) (i.e. x(T) > y(T)) and 
.

• Definition 286.1

The nucleolus of a coalitional game with transferable payoff is the set of all imputations x with the property that 
for every objection (S, y) to x there is a counterobjection to (S, y).

As for the kernel the idea is that the excess of S is a measure of S's dissatisfaction with x: it is the price that S pays 
to tolerate x rather than secede from N. In the definition of the kernel an objection is made by a single player, while 
here an objection is made by a coalition. An objection (S, y) may be interpreted as a statement by S of the form 
"our excess is too large in x; we suggest the alternative imputation y in which it is smaller". The nucleolus models 
situations in which such objections cause outcomes to be unstable only if no coalition T can respond by saying 
"your demand is not justified since our excess under y is larger than it was under x and furthermore exceeds under y 
what yours was under x". Put differently, an imputation fails to be stable according to the nucleolus if the excess of 
some coalition S can be reduced without increasing the excess of some coalition to a level at least as large as that of 
the original excess of S.

This definition of the nucleolus, which is not standard, facilitates a comparison with the kernel and the bargaining 
set and is easier to interpret than the standard definition, to which we now show it is equivalent.

For any imputation x let  be an ordering of the coalitions for which  for 
 and let E(x) be the vector of excesses defined by  for all . Let B1

(x),..., BK(x) be the partition of the set of all coalitions in which S and S' are in the same cell if and only if e(S, x) = e
(S', x). For any  let e(S, x) = ek(x), so that e1(x) > e2(x) > . . . > eK(x).

We say that E(x) is lexicographically less than E(y) if  for the smallest  for which , or 
equivalently if there exists k* such that for all k < k* we have |Bk(x)| = |Bk(y)| and ek(x) = ek(y), and either (i) ek*(x) < 
ek*(y) or (ii ) ek*(x) = ek*(y) and |Bk*(x)| < |Bk*(y(|.

• Lemma 286.2

The nucleolus of a coalitional game with transferable payoff is the set of imputations x for which the vector E(x) is 
lexicographically minimal.
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Proof.

Let  be a coalitional game with transferable payoff and let x be an imputation for which E(x) is 
lexicographically minimal. To show that x is in the nucleolus, suppose that (S, y) is an objection to x, so that e(S, y) 
< e(S, x). Let k* be the maximal value of k such that ek(x) = ek(y) and Bk(x) = Bk(y) (not just |Bk(x)| = |Bk(y)| for all k < 
k*. Since E(y) is not lexicographically less than E(x) we have either (i) ek*(y) > ek*(x) or (ii ) ek*(x) = ek*(y) and 

. In either case there is a coalition  with ek*(y) = e(T, y) > e(T, x). We now argue that 

, so that T is a counterobjection to (S, y). Since e(S, y) < e(S, x) we have  and hence 
; since  we have .

Now assume that x is in the nucleolus and that E(y) is lexicographically less than E(x). Let k* be the smallest value 
of k for which Bk(x) = Bk(y) for all k < k* and either (i) ek*(y) < ek*(x) or (ii ) ek*(y) = ek*(x) and  (and 
hence . In either case there exists a coalition  for which e(IT>S , y) < e(S, x). Let 

 and let z(λ) = λx + (1 - λ)y; we have e(R, z(λ)) = λe(R, x) + (1- λ)e(R, y) for any coalition R. We claim 
that the pair (S, z(λ)) is an objection to x for which there is no counterobjection. It is an objection since e(S, z(λ)) < 
e(S, x). For T to be a counterobjection we need both e(T, z(λ)) > e(T, x) and . However, if e(T, z
(λ)) > e(T, x) then e(T, y) > e(T, x), which implies that  and hence e(S, x) > e(T, x). Also, since 

 we have . Thus e(S, x) > e(T, z(λ)). We conclude that there is no 
counterobjection to (S, z(λ)).

The nucleolus is related to the kernel as follows.

• Lemma 287.1

The nucleolus of a coalitional game with transferable payoff is a subset of the kernel.

Proof.

Let  be a coalitional game with transferable payoff and let x be an imputation that is not in the kernel of . 
We show that x is not in the nucleolus of . Since x is not in the kernel there are players i and j for which sij(x) > 
sji(x) and xj > v({ j}). Since xj > v({ j}) there exists  such that  is an imputation (where 1{ k} is 
the kth unit vector); choose  small enough that sij(y) > sji(y). Note that e(S, z) < e(S, y) if and only if S contains i but 
not j and e(S, x) > e(S, y) if and only if S contains j but not i. Let k* be the minimal value of k for which there is a 
coalition  with . Since sij(x) > sji(x) the set Bk*(x) contains
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at least one coalition that contains i but not j and no coalition that contains j but not i. Further, for all k < k* we have 
Bk(y) = Bk(x) and ek(y) = ek(x). Now, if Bk*(x) contains coalitions that contain both i and j or neither of them then ek*
(y) = ek*(x) and Bk*(y) is a strict subset of Bk*(x). If not, then since sij(y) > sji(y) we have ek*(y) < ek.(x). In both cases 
E(y) is lexicographically less than E(x) and hence x is not in the nucleolus of .

We now show that the nucleolus of any game is nonempty.

• Proposition 288.1

The nucleolus of any coalitional game with transferable payoff is nonempty.

Proof.

First we argue that for each value of k the function Ek is continuous. This follows from the fact that for any k we 
have

where  and  for  is the set of all collections of k coalitions. Since E1 is continuous the set 
 is nonempty and compact. Now, for each integer  define . By 

induction every such set is nonempty and compact; since  is the nucleolus the proof is complete.

This result immediately implies that the bargaining set and kernel of any game are nonempty.

• Corollary 288.3

The bargaining set and kernel of any coalitional game with transferable payoff are nonempty.

Proof.

This follows from the nonemptiness of the nucleolus (Proposition 288.1) and the facts that the nucleolus is a subset 
of the kernel (Lemma 287.1) and the kernel is a subset of the bargaining set (Lemma 285.1).

As we have seen above the bargaining set of a game may contain many imputations; the same is true of the kernel. 
However, the nucleolus is always a singleton, as the following result shows.

• Proposition 288.4

The nucleolus of any coalitional game with transferable payoff is a singleton.

Proof.

Let  be a coalitional game with transferable payoff. Suppose that the imputations x and y are both in the 
nucleolus, so that E(x) = E(y). We show that for any coalition S we have e(S, x) = e(S, y) and hence, in particular, 
for any player i we have e({ i}, x) = e({ i}, y), so



   

Page 289

that x = y. Assume there is at least one coalition e* with  and consider the imputation . 
Since Ek(x) = Ek(y) for all k we have ek(x) = ek(y) and |Bk(x)| = |Bk(y)| for all k. But since  there 
exists a minimal value k* of k for which . Now, if  then 

; if  then ek*(z) < ek*(x) = ek*(y). In both cases E(z) is 
lexicographically less than E(x), contradicting the fact that x is in the nucleolus.

• Exercise 289.1

(A production economy) Show that the single imputation in the nucleolus of the game in Exercise 259.3, which 
models a production economy with one capitalist and w workers, gives each worker . (Note that 
since the nucleolus is a singleton you need only to verify that the imputation is in the nucleolus.)

• Exercise 289.2

(Weighted majority games) A weighted majority game is a simple game  in which

for some  and , where  for any coalition S. An interpretation is that wi is the number of 
votes that player i has and q is the number of votes needed to win (the quota). A weighted majority game is 
homogeneous if w(S) = q for any minimal winning coalition S and is zerosum if for each coalition S either v(S) = 1 
or v(N\S) = 1, but not both. Consider a zerosum homogeneous weighted majority game  in which wi = 0 for 
every player i who does not belong to any minimal winning coalition. Show that the nucleolus of  consists of 
the imputation x defined by xi = wi/w(N) for all .

14.4 The Shapley Value

The last solution concept that we study in this chapter is the Shapley value. Following our approach in the previous 
section we begin by characterizing this solution in terms of objections and counterobjections. Then we turn to the 
standard (axiomatic) characterization.

14.4.1 A Definition in Terms of Objections and Counterobjections

The solution concepts for coalitional games that we have studied so far are defined with reference to single games 
in isolation. By contrast, the Shapley value of a given game is defined with reference to other
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games. It is an example of a value—a function that assigns a unique feasible payoff profile to every coalitional 
game with transferable payoff, a payoff profile being feasible if the sum of its components is v(N). (The 
requirement that the payoff profile assigned by the value be feasible is sometimes called efficiency.)

Our first presentation of the Shapley value, like our presentations of the solutions studied in the previous section, is 
in terms of certain types of objections and counterobjections. To define these objections and counterobjections, let 

 be a coalitional game with transferable payoff and for each coalition S define the subgame  of  to 
be the coalitional game with transferable payoff in which vS(T) = v(T) for any . Let ψ be a value. An objection 
of player i against player j to the division x of v(N) may take one of the following two forms.

•  ''Give me more since otherwise I will leave the game, causing you to obtain only ψ(N\{ i}, vN/{ i}) rather than the 
larger payoff xj, so that you will lose the positive amount xj - ψj(N\{ i}, vN\{ i})."

•"Give me more since otherwise I will persuade the other players to exclude you from the game, causing me to 
obtain ψi(N\{ j}, vN\{ j}) rather than the smaller payoff xi, so that I will gain the positive amount ψi(N\{ j}, vN\{ j}) - xi."

A counterobjection by player j to an objection of the first type is an assertion

•  "It is true that if you leave then I will lose, but if I leave then you will lose at least as much: 

..gif"

A counterobjection by player j to an objection of the second type is an assertion

•  "It is true that if you exclude me then you will gain, but if I exclude you then I will gain at least as much: 
..gif"

The Shapley value is required to satisfy the property that for every objection of any player i against any other 
player j there is a counterobjection of player j.

These objections and counterobjections differ from those used to define the bargaining set, kernel, and nucleolus in 
that they refer to the outcomes of smaller games. It is assumed that these outcomes are derived from the same logic 
as the payoff of the game itself: that is, the
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outcomes of the smaller games, like the outcome of the game itself, are given by the value. In this respect the 
definition of a value shares features with that of stable sets.

The requirement that a value assign to every game a payoff profile with the property that every objection is 
balanced by a counterobjection is equivalent to the following condition.

• Definition 291.1

A value ψ satisfies the balanced contributions property if for every coalitional game with transferable payoff 

 we have

whenever  and .

We now show that the unique value that satisfies this property is the Shapley value, defined as follows. First define 

the marginal contribution of player i to any coalition S with  in the game  to be

• Definition 291.2

The Shapley value ϕ is defined by the condition

where  is the set of all |N|! orderings of N and Si(R) is the set of players preceding i in the ordering R.

We can interpret the Shapley value as follows. Suppose that all the players are arranged in some order, all orders 
being equally likely. Then ϕ i(N, v) is the expected marginal contribution over all orders of player i to the set of 
players who precede him. Note that the sum of the marginal contributions of all players in any ordering is v(N), so 
that the Shapley value is indeed a value.

• Proposition 291.3

The unique value that satisfies the balanced contributions property is the Shapley value.

Proof.

First we show that there is at most one value that satisfies the property. Let ψ and ψ' be any two values that satisfy 
the condition. We prove by induction on the number of players that ψ and ψ' are identical. Suppose that they are 
identical for all games with less than n players and let  be a game with n players. Since 

 for any i, , we deduce from the balanced contributions property that 
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for all i, . Now fixing i and summing over , using the fact that , 
we conclude that  for all .

We now verify that the Shapley value ϕ satisfies the balanced contributions property. Fix a game . We show 

that ϕ i(N, v) - ϕ j(N, v) = ϕ i(N\{ j}, vN\{ j}) - ϕ j(N\{ i}, vN\{ i}) for all i, . The left-hand side of this equation is

where αS = |S|!(|N| - |S|- 1)!/|N|! and βS = (|S| + 1)!(|N|- |S|-2)!/|N|!, while the right-hand side is

where γS = |S|!(|N|- |S|- 2)!/(|N|- 1)!. The result follows from the facts that  and 
αS+β=γS

Note that the balanced contributions property links a game only with its subgames. Thus in the derivation of the 

Shapley value of a game  we could restrict attention to the subgames of , rather than work with the set 
of all possible games.

14.4.2 An Axiomatic Characterization

We now turn to an axiomatic characterization of the Shapley value. The derivation, unlike that in the previous 
section, restricts attention to the set of games with a given set of players. Throughout we fix this set to be N and 
denote a game simply by its worth function v.

To state the axioms we need the following definitions. Player i is a dummy in v if ∆i(S) = v({ i}) for every coalition 
S that excludes i. Players i and j are interchangeable in v if ∆i(S) =∆j(S) for every coalition S that contains neither i 

nor j (or, equivalently,  for every coalition S that includes i but not j). The axioms are the 
following.

SYM (Symmetry) If i and j are interchangeable in v then ψi(v) = ψj(v).

DUM (Dummy player) If i is a dummy in v then ψi(v) = v({ i}).

ADD (Additivity) For any two games v and w we have ψi(v + w) = ψi(v) + ψi(w) for all , where v + w is the 
game defined by (v + w)(S) = v(S) + w(S) for every coalition S.
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Note that the First two axioms impose conditions on single games, while the last axiom links the outcomes of 
different games. This last axiom is mathematically convenient but hard to motivate: the structure of v + w may 
induce behavior that is unrelated to that induced by v or w separately. Luce and Raiffa (1957, p. 248) write that the 
axiom "strikes us as a flaw in the concept of value"; for a less negative view see Myerson (1991, p. 437-438).

• Proposition 293.1

The Shapley value is the only value that satisfies SYM, DUM, and ADD.

Proof.

We first verify that the Shapley value satisfies the axioms.

SYM: Assume that i and j are interchangeable. For every ordering  let  differ from R only in that the 
positions of i and j are interchanged. If i precedes j in R then we have ∆i(Si(R)) = ∆j(Sj(R')).. If j precedes i then 

 where S = Si(R)\{ j}. Since i and j are interchangeable we have 

, so that ∆i(Si(R))=∆j(Sj(R')) in this case too. It follows that ϕ satisfies SYM.

DUM: It is immediate that ϕ satisfies this condition.

ADD: This follows from the fact that if u = v + w then

We now show that the Shapley value is the only value that satisfies the axioms. Let ψ be a value that satisfies the 
axioms. For any coalition T define the game vT by

Regard a game v as a collection of 2|N| - 1 numbers . We begin by showing that for any game v there is a 

unique collection  of real numbers such that . That is, we show that  is an algebraic 
basis for the space of games. Since the collection  of games contains 2|N|-1 members it suffices to show that 

these games are linearly independent. Suppose that ; we need to show that βS=0 for all S. Suppose to 

the contrary that there exists some coalition T with . Then we can choose such a coalition T for which βS = 0 

for all , in which case  a contradiction.

Now, by SYM and DUM the value of any game αvT for  is given uniquely by ψi = α/|T| if  and ψi(avT) = 

0 otherwise. We complete the proof by noting that if  then we have
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 so that by ADD the value of v is determined uniquely.

•Example 294.1

(Weighted majority games) Consider the weighted majority game v (see Exercise 289.2) with weights w = (1,1,1,2) 
and quota q = 3. In all orderings in which player 4 is first or last his marginal contribution is 0; in all other 

orderings his marginal contribution is 1. Thus  Note that we have v = v{1,4}+v{2,4}+v{3,4}+v{1,2,3} -- 

v{1,2,4} -- v{1,3,4} -- v{2,3,4}, from which we can alternatively deduce 

• Exercise 294.2

Show the following results, which establish that if any one of the three axioms SYM, DUM, and ADD is dropped 
then there is a value different from the Shapley value that satisfies the remaining two.

a. For any game v and any  let ψi(v) be the average marginal contribution of player i over all the (|N|- 1)! 
orderings of N in which player 1 is first. Then ψ satisfies DUM and ADD but not SYM.

b. For any game v let ψi(v) = v(N)/|N|. Then ψ satisfies SYM and ADD but not DUM.

c. For any game v let D(v) be the set of dummies in v and let 

Then ψ satisfies SYM and DUM but not ADD.

• Example 294.3

Consider the game  in which v(1,2,3) = v(1,2) = v(1,3) = 1 and v(S) = 0 otherwise. (This game can be 
interpreted as a model of a market in which there is a seller (player 1) who holds one unit of a good that she does 
not value and two potential buyers (players 2 and 3) who each value the good as worth one unit of payoff.) There 
are six possible orderings of the players. In the four in which player 1 is second or third her marginal contribution 
is 1 and the marginal contributions of the other two players are 0; in the ordering (1,2,3) player 2's marginal 
contribution is 1, and in (1,3,2) player 3's marginal contribution is 1. Thus the Shapley value of the game is 

. By contrast, the core of the game consists of the single payoff profile (1,0,0).

•Example. 294.4 (A market)

Consider the market for an indivisible good in Example 260.1, in which there are b buyers and  sellers, with .
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Consider replications of the market in which there are kb buyers and  sellers for some positive integer k. If k is 
very large then in most random orderings of the players the fraction of buyers in the set of players who precede any 
given player i is close to . In any such ordering the marginal contribution of player i is 1 if she is a seller, so 
that the Shapley value payoff of a seller is close to I (and that of a buyer is close to 0). Precisely, it can be shown 
that the limit as  of the Shapley value payoff of a seller is 1. This is the simplest example of a more general 
result due to Aumann (1975) that the Shapley value converges to the profile of competitive payoffs as the size of 
the market increases.

• Exercise 295.1

Find the core and the Shapley value of the game  in which v({1,2,3,4}) = 3, v(S) = 0 if S includes at most 
one of the players in {1, 2, 3}, and v(S) = 2 otherwise. Explain the source of the difference between the two 
solutions.

• Exercise 295.2 Exercise (A production economy)

Find the Shapley value of the game in Exercise 259.3 and contrast it with the core and the nucleolus (see Exercise 
289.1).

• Example 295.3 (A majority game)

Consider a parliament in which there is one party with m-1 seats and m parties each with one seat, and a majority is 
decisive (a generalization of My aunt and I). This situation can be modeled as a weighted majority game (see 
Exercise 289.2) in which N={1,... ,m+1}, w1 =m-1, wi = 1 for , and q = m. The marginal contribution of the 
large party is 1 in all but the 2m! orderings in which it is first or last. Hence the Shapley value of the game assigns 
to the large party the payoff [(m+ 1)!-2m!]/(m+ 1)!=(m- 1)/(m+ 1).

• Exercise 295.4

Consider a parliament in which there are n parties; two of them have  of the seats each and the other n-2 share the 
remaining seats equally. Model this situation as a weighted majority game (see Exercise 289.2).

a. Show that the limit as  of the Shapley value payoff of each of the large parties is .

b. Is it desirable according to the Shapley value for the n-2 small parties to form a single united party?

• Exercise 295.5

Show that in a convex game (see Exercise 260.4) the Shapley value is a member of the core.

The result in the following Exercise suggests an interpretation of the Shapley value that complements those 
discussed above.
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• Exercise 296.1

Consider the following variant of the bargaining game of alternating offers studied in Chapter 7. Let  be a 
coalitional game with transferable payoff in which  and  for every coalition S and 
player . In each period there is a set  of active players, initially N, one of whom, say player i, is 
chosen randomly to propose an S-feasible payoff vector xS,i. Then the remaining active players, in some fixed order, 
each either accepts or rejects xS,i. If every active player accepts xS,i then the game ends and each player  

receives the payoff.  If at least one rejects xS,i then we move to the next period, in which with probability 
 the set of active players remains S and with probability 1-ρ it becomes S\{ i} (i.e. player i is ejected from 

the game) and player i receives the payoff v({ i}). Players do not discount the future.

Suppose that there is a collection  of S-feasible payoff vectors such that  for all 
S, all  and all , where  for all S. Show that the game has a subgame perfect 
equilibrium in which each player  proposes xS,i whenever the set of active players is S. Show further that there 

is such a collection for which  for each , thus showing that the game has a subgame perfect 
equilibrium in which the expected payoff of each player i is his Shapley value payoff ϕ i(N, v). Note that if ρ is 

close to 1 in this case then every proposal xS,i is close to the Shapley value of the game . (Hart and Mas-Colell 
(1996) show that every subgame perfect equilibrium in which each player's strategy is independent of history has 
this property; Krishna and Serrano (1995) study non-stationary equilibria.)

14.4.3 Cost-Sharing

Let N be a set of players and for each coalition S let C(S) be the cost of providing some service to the members of 
S. How should C(N) be shared among the players? One possible answer is given by the Shapley value ϕ(C) of the 

game , where ϕ i(C) is the payment requested from player i. This method of cost-sharing is supported by the 
axioms presented above, which in the current context can be given the following interpretations. The feasibility 

requirement  says that the total payments requested from the players should equal C(N), the 
total cost of providing the service. The axioms DUM and SYM have interpretations as principles of "fairness.gif" 
when applied to the game. DUM says that a player for whom the marginal cost of providing the
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service is the same, no matter which group is currently receiving the service, should pay that cost. SYM says that 
two players for whom the marginal cost is the same, no matter which group is currently receiving the service, 
should pay the same. ADD is somewhat more attractive here than it is in the context of strategic interaction. It says 
that the payment of any player for two different services should be the sum of the payments for the two services 
separately.

Notes

Stable sets were first studied by von Neumann and Morgenstern (1944). The idea of the bargaining set is due to 
Aumann and Maschler (1964); the formulation that we give is that of Davis and Maschler (1963). The kernel and 
nucleolus are due respectively to Davis and Maschler (1965) and Schmeidler (1969). Proofs of the nonemptiness of 
the bargaining set (using direct arguments) were first given by Davis, Maschler, and Peleg (see Davis and Maschler 
(1963, 1967) and Peleg (1963b, 1967)). Our definition of the nucleolus in terms of objections and counterob-
jections appears to be new. The results in Section 14.3.3 (other than Lemma 286.2) are due to Schmeidler (1969). 
The Shapley value is due to Shapley (1953), who proved Proposition 293.1. The balanced contributions property 
(Definition 291.1) is due to Myerson (1977, 1980); see also Hart and Mas-Colell (1989).

The application of the Shapley value to the problem of cost-sharing was suggested by Shubik (1962); the theory 
has been developed by many authors, including Roth and Verrecchia (1979) and Billera, Heath, and Raanan 
(1978).

The game My aunt and I in Examples 282.3 and 285.3 is studied by Davis and Maschler (1965, Section 6). The 
result in Exercise 283.1 is due to Maschler (1976). Exercise 289.1 is taken from Moulin (1988, pp. 126-127; see 
also Exercise 5.3). Weighted majority games were first studied by yon Neumann and Morgenstern (1944); the 
result in Exercise 289.2 is due to Peleg (1968). The game in Exercise 295.1 is due to Zamir, quoted in Aumann 
(1986, p. 986). Exercise 295.2 is taken from Moulin (1988, p. 111). The result in Exercise 295.4 is due to Milnor 
and Shapley (1978), that in Exercise 295.5 to Shapley (1971/72), and that in Exercise 296.1 to Hart and Mas-Colell 
(1996).

Much of the material in this chapter draws on Aumann's (1989) lecture notes, though some of our interpretations of 
the solution concepts are different from his.
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The definitions of stable sets and the bargaining set can be extended straightforwardly to coalitional games without 
transferable payoff (see, for example, Aumann and Peleg (1960) and Peleg (1963a)). For extensions of the Shapley 
value to such games see Harsanyi (1963), Shapley (1969), Aumann (1985a), Hart (1985), and Maschler and Owen 
(1989, 1992).

Harsanyi (1974) studies an extensive game for which a class of subgame perfect equilibria correspond to stable 
sets. Harsanyi (1981), Gul (1989), and Hart and Mas-Colell (1996) study extensive games that have equilibria 
corresponding to the Shapley value.

The solution concepts that we study in this chapter can be interpreted as formalizing notions of "fairness"; for an 
analysis along these lines see Moulin (1988).

Lucas (1992) and Maschler (1992) are surveys that cover the models in Sections 14.2 and 14.3.
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15 
The Nash Solution

In this chapter we study two-person bargaining problems from the perspective of coalitional game theory. We give 
a definition of the Nash solution1 in terms of objections and counterobjections and characterize the solution 
axiomatically. In addition we explore the connection between the Nash solution and the subgame perfect 
equilibrium outcome of a bargaining game of alternating offers.

15.1 Bargaining Problems

In Chapter 7 we discuss two-person bargaining using the tools of the theory of extensive games. Here we do so 
using the approach of coalitional game theory. We define a bargaining problem to be a tuple  in 
which X is a set of possible consequences that the two players can jointly achieve,  is the event that occurs if 

the players fail to agree, and  and  are the players' preference relations over , the set of lotteries over X. 
We refer to X as the set of possible agreements and to D as the disagreement outcome. Note that such a tuple can 

be identified with a coalitional game without transferable payoff  in which V({1,2})= X and V
({ i})={ D} for i =1, 2 (see Definition 268.2).

The members of X should be thought of as deterministic. Note that we require the players' preference relations to 
be defined over the set of lotteries over X, rather than simply over X itself. That is, each preference relation 
includes information not only about the player's preferences over the set of possible joint actions but also about his 
attitude

1The only connection between the Nash solution and the notion of Nash equilibrium studied in Parts I, II, and Ill is John Nash.
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towards risk. We denote by  the lottery that gives x with probability p and y with probability 1 - p 
and by p · x the lottery 

Our basic definition of a bargaining problem contains some restrictions, as follows.

• Definition 300.1

A bargaining problem is a tuple , where

•X (the set of agreements) is a compact set (for example, in a Euclidian space)

•D (the disagreement outcome) is a member of X

•  and  are continuous preference relations on the set  of lotteries over X that satisfy the assumptions of 
von Neumann and Morgenstern

•  for all  for i=1, 2, and there exists  such that  and 

•(convexity) for any , and  there exists  such that  for i=1, 2

•(non-redundancy) if  then there is no  with  such that  for i=1, 2

•(unique best agreements) for each player i there is a unique agreement  with  for all 

•for each player i we have  D for .

The first three of these assumptions guarantee that each player's preference relation over  can be represented 
by the expectation of some continuous function over X (the player's yon Neumann-Morgenstern utility function). 
The fourth assumption says that disagreement is the worst possible outcome and that the problem is non-degenerate 
in the sense that there exists an agreement that is more attractive to both players than disagreement. The 
assumption of convexity requires that the set of agreements be rich enough that every lottery is equivalent for both 
players to some (deterministic) agreement. The last three assumptions are made for convenience. The assumption 
of non-redundancy says that we identify any two agreements between which both players are indifferent. The 
assumption of unique best agreements implies that the best agreement for each player is strongly Pareto efficient 
(i.e. there is no agreement that is better for one player and at least as good for the other). The last assumption says 
that each player is indifferent between
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disagreement and the outcome in which the other player obtains his favorite agreement.

Given our assumptions on the players' preferences we can associate with any bargaining problem .gif''> a 
bargaining problem contains more information than such a pair.

Our aim now is to construct reasonable systematic descriptions of the way that bargaining problems may be 
resolved. The notion of a bargaining solution is a formal expression of such a systematic description.

• Definition 301.1

A bargaining solution is a function that assigns to every bargaining problem  a unique member of X.

A bargaining solution describes the way in which the agreement (or disagreement) depends upon the parameters of 
the bargaining problem. The bargaining theory that we study focuses on the effect of the players' risk attitudes on 
the bargaining outcome. Alternative theories focus on other relevant factors (for example the players' time 
preferences or their ability to bargain), but such theories require that we change the primitives of the model.

15.2 The Nash Solution: Definition and Characterization

15.2.1 Definition

We now define the solution concept that we study in this chapter.

• Definition 301.2

The Nash solution is a bargaining solution that assigns to the bargaining problem  an agreement 

 for which
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This definition is equivalent to one whose structure is similar to those of the bargaining set, kernel, and nucleolus 
given in the previous chapter. To see this, define an objection of player i to the agreement  to be a pair (x, 
p) with  and  for which . The interpretation is that x is an alternative agreement that player i 
proposes and 1-p is the probability that the negotiations will break down if player i presses his objection. The 
agreement x and the probability p are chosen by player i; the probability p may be determined indirectly by the 
actions (like threats and intimidations) that player i takes when he presses his demand that the agreement be x. 
Thus player i makes an argument of the form "I demand the outcome x rather than x*; I back up this demand by 
threatening to take steps that will cause us to fail to agree with probability 1-p, a threat that is credible since if I 
carry it out and the outcome is x then I will be better off than I am now". Player j can counterobject to (x, p) if 

. The interpretation is that under the risky conditions that player i creates by his objection it is desirable 
for player j to insist on the original agreement x*. Thus player j 's argument is "If you take steps that will cause us to 
disagree with probability 1-p then it is still desirable for me to insist on x* rather than agreeing to x". Given these 
definitions of objection and counterobjection the Nash solution is the set of all agreements x* with the property that 
player j can counterobject to every objection of player i to x*.

15.2.2 Characterization

We now show that the Nash solution is well-defined and has a simple characterization: the Nash solution of the 
bargaining problem  is the agreement that maximizes the product u1(x)u2(x), where ui is a yon 

Neumann-Morgenstern utility function that represents  for i =  1, 2.

• Proposition 302.1

a. The agreement  is a Nash solution of the bargaining problem  if and only if

where ui is a yon Neumann-Morgenstern utility function that represents  and satisfies ui(D) =0 for i=1, 2.

b. The Nash solution is well-defined.
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Proof.

We first prove (a). Suppose that  for all . Then ui(x*) > 0 for i = 1, 2 (since X contains 

an agreement y for which ui(y) > 0 for i = 1, 2). Now, if pui(x) > ui(x*) for some  then 

 and hence puj(x*) > uj (since ui(x) > 0), or .

Now suppose that x* satisfies (301.3): if  for some  and  then . Let  be such 
that ui(x) > 0 for i = 1, 2 and ui(x) > ui(x*) for some i. (For any other value of x we obviously have 

 Then if p>ui(x*)/ui(x) for some  we have , so that, since uj(x) > 0, 

we have . Hence  and thus 

To prove (b), let  By (a), the agreement x* is a Nash solution of  if and only 
if (vl, v2) = (u1(x*), u2(x*)) maximizies v1v2 over U. Since U is compact this problem has a solution; since the 

function vlv2 is strictly quasi-concave on the interior of  and U is convex the solution is unique. Finally, by the 
assumption of non-redundancy there is a unique agreement  that yields the pair of maximizing utilities.

The simplicity of this characterization is attractive and accounts for the widespread application of the Nash 
solution. The characterization also allows us to illustrate the Nash solution geometrically, as in Figure 304.1. 
Although the maximization of a product of utilities is a simple mathematical operation it lacks a straightforward 
interpretation; we view it simply as a technical device. Originally Nash defined the solution in terms of this 
characterization; we find Definition 301.2 preferable since it has a natural interpretation.

15.2.3 Comparative Statics of Risk Aversion

A main goal of Nash's theory is to provide a relationship between the players' attitudes towards risk and the 
outcome of the bargaining. Thus a first test of the plausibility of the theory is whether this relationship accords with 
our intuition. We compare two bargaining problems that differ only in that one player's preference relation in one 
of the problems is more risk-averse than it is in the other; we verify that the outcome of the former problem is 
worse for the player than that of the latter.

Define the preference relation  to be at least as risk-averse as  if  and  agree on X and whenever x ~1 L 

for some  and
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Figure 304.1 
A geometric characterization of the Nash solution x*   

of the bargaining problem . For i=1, 2 the  
function ui is a yon Neumann-Morgenstern utility  

function that represents  and satisfies ui(D)=0.

 we have . (This definition is equivalent to the standard definition that is given in terms of utility 
representations.)

• Proposition 304.1

Let x and x' be the Nash solutions of the bargaining problems  and  respectively, where 

 is at least as risk-averse as . Then .

Proof.

Assume to the contrary that . By the convexity of the bargaining problems there exists an agreement 

 such that  for i = 1, 2. Let z* be a Pareto efficient agreement for which  for i = 1, 
2. By the characterization of the Nash solution (Proposition 302.1a), the agreements x and x' are Pareto efficient, so 
that  and . Now, since x is the Nash solution of  we have u1(x)u2(x) > ul 

(x')u2(x'), where ui is a yon Neumann-Morgenstern utility function with ui(D) = 0 that represents  for i = 1, 2. By 
the quasi-concavity of the function H(vl,v2) = v1v2 we have u1(z)u2(z)>u1(x')u2(x') and hence u1(z*)u2(z*) > ul(x')u2(x'). 

Since  it follows that 1>u1(z*)/u1(x')>u2(x')/u2(z*, so that there exists  such that u1(z*)/u1(x') > p > u2

(x')/u2(z*) and hence  and . Since the preference relation  is at least as risk-averse as  we 

also have , so that (z*,p) is an objection of player 2 to x' for which there is no counterobjection, 

contradicting the fact that x' is the Nash solution of 
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15.3 An Axiomatic Definition

15.3.1 Axioms

A beauty of the Nash solution is that it is uniquely characterized by three simple axioms (properties). In the 
following statements of these axioms F denotes an arbitrary bargaining solution.

PAR (Pareto efficiency) There is no agreement  such that  for i = 1, 2 with strict 
preference for at least one i.

The standard justification of PAR is that an inefficient outcome is not likely since it leaves room for renegotiation 
that makes both players better off. The fact that the Nash solution satisfies PAR follows immediately from 
Proposition 302.1a.

To state the next axiom we need first to define a symmetric bargaining problem. Informally, a bargaining problem 
is symmetric if there is a relabeling of the set of agreements that interchanges the players' preference relations: 
player 1's preference relation in the relabeled problem coincides with player 2's preference relation in the original 
problem, and vice versa. To state this definition differently, consider the language that consists of the names of the 
preference relations and the name of the disagreement point, but not the names of the agreements. A problem is 
symmetric if any definition of an agreement by means of a formula in this language defines the same agreement if 
we interchange the names of the players.

• Definition 305.1

A bargaining problem  is symmetric if there is a function  with φ(D) = D and φ(x) = y if and 

only if φ(y) = x, such that  if and only if  for  and for any lotteries L1 and L2 in , 
where φ(L) is the lottery in which each prize x in the support of L is replaced by the prize φ(x).

We refer to the function  in this definition as the symmetry function. An example of a symmetric 
bargaining problem is that in which two risk-neutral players split a pie, obtaining nothing if they disagree (consider 
the symmetry function given by φ(x1, x2) = (x2,xl)).

SYM (Symmetry) If  is symmetric with symmetry function φ then .

The justification of this axiom is that we seek a solution in which all asymmetries between the players are included 
in the description of the bargaining problem. Thus if players I and 2 are indistinguishable in a
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certain problem then the agreement assigned to that problem should not discriminate between them.

• Lemma 306.1

The Nash solution satisfies SYM.

Proof.

Let x* be the Nash solution of the symmetric bargaining problem  with symmetry function φ. Suppose 
that φ(x*) is not the Nash solution of the bargaining problem . Then some player i has an objection (x, 
p) to φ(x*) for which there is no counterobjection by player  and . But then 

 so that (φ(x),p) is an objection by player j to x* 
for which there is no counterobjection by player i, contradicting the fact that x* is the Nash solution

The final axiom is. the most problematic.

IIA ( Independence of irrelevant alternatives) Let , and let  be a preference relation that 

agrees with  on X and satisfies

•if  and p·x~i x* for some  and  then 

•if  and x ~i p·x* for some  and  then 

Then 

A player whose preference relation is  is more apprehensive than one whose preference relation is  about the 
risk of demanding alternatives that are better than x* but has the same attitudes to alternatives that are worse than 

x*. The axiom requires that the outcome when player i has the preference relation  is the same as that when 

player i has the preference relation . The idea is that if x* survives player i's objections originally then it should 
survive them also in a problem in which he is less eager to make them (i.e. fewer pairs (x, p) are objections of 
player i); it should continue also to survive player j's objections since player i 's ability to counterobject has not been 
changed.

Note that despite its name, the axiom involves a comparison of two problems in which the sets of alternatives are 
the same; it is the players' preferences that are different. (The name derives from the fact that the axiom is 
analogous to an axiom presented by Nash that does involve a comparison of two problems with different sets of 
agreements.) Note also that the axiom differs from PAR and SYM in that it involves a com-
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parison of bargaining problems, while PAR and SYM impose conditions on the solutions of single bargaining 
problems.

• Lemma 307.1

The Nash solution satisfies IIA.

Proof.

Let x* be the Nash solution of the bargaining problem  and let  be a preference relation that satisfies 
the hypotheses of IIA. Consider the bargaining problem  W4e show that for every objection of either i 
or j to x* in  there is a counterobjection, so that x* is the Nash solution of .

First suppose that player i has an objection to  for some  and . Then  and hence 

 (since  and . agree on X). Thus from the first part of IIA we have  (if  then there 

exists  such that q·x ~i x* and thus . so that  Since x* is the Nash solution of  we 
thus have 

Now suppose that player j has an objection to  for some  and . Since x* is Pareto 

efficient we have  and since x* is the Nash solution of  we have . Thus from the 

second part of IIA we have 

15.3.2 Characterization

The following result completes the characterization of the Nash solution in terms of the axioms PAR, SYM, and 
IIA discussed above.

• Proposition 307.2

The Nash solution is the only bargaining solution that satisfies PAR, SYM, and IIA.

Proof.

We have shown that the Nash solution satisfies the three axioms; we now show uniqueness.

Step 1. Let x* be the Nash solution of the bargaining problem  If x ~i·x* then 

Proof.

For each player i choose the yon Neumann-Morgenstern utility function ui that represents  and satisfies ui(x*) = 1 

and ui(D) = 0. We first argue that for every agreement  we have . To see this, suppose to 

the contrary that for some  we have  with . By the convexity of the bargaining 

problem, for every  there is an agreement  with ui(z(p))=pui(y)+(1-p)ui(x*)=pui(y)+1-p for i = 1, 2, 

so that .Thus for p close enough to 0 we have u1(z(p))u2(z(p))>1=u1

(x*)u2(x*), contradicting
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the fact that x* is the Nash solution of the problem. Now, if x ~i p·x* we have ui(x) =p and hence , so 

that .

Step 2. Any bargaining solution that satisfies PAR, SYM, and IIA is the Nash solution.

Proof.

Let x* be the Nash solution of the bargaining problem  and let F be a bargaining solution that satisfies 

PAR, SYM, and IIA. Let  and  be preference relations that coincide with  and  on X and satisfy the 
following conditions. For any Pareto efficient agreement  we have

•if  and x ~2 p·x* for some  then  and .

•if  and x ~1 p·x* for some  then  and 

(These conditions completely describe a pair of preference relations satisfying the assumptions of yon Neumann 

and Morgenstern since for every  and each player i there is some Pareto efficient agreement x' for which x ~i 

x'.) Let ui be the yon Neumann-Morgenstern utility function that represents  and satisfies ui(D) = 0 and ui(x*) = 1 

for i = 1, 2. Then u1(x) + u2(x) = 2 for all Pareto efficient agreements .

It is easy to verify that the problem .gif">

Now, the pair of problems  and  and the pair of problems  and  
satisfy the hypothesis of IIA since by Step 1 we have  if x ~i p·x*. Therefore 

As noted earlier, Nash defined a bargaining problem to be a pair , where  is a compact convex set (the 
set of pairs of payoffs to agreements) and  (the pair of payoffs in the event of disagreement). A bargaining 
solution in this context is a function that assigns
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a point in U to every bargaining problem . Nash showed that there is a unique bargaining solution that satisfies 
axioms similar to those considered above and that this solution assigns to the bargaining problem  the pair 
(vl,v2) of payoffs in U for which the product (vl- dl)(v2- d2) is highest. The following Exercise asks you to prove this 
result.

• Exercise 309.1

Show, following the line of the proof of the previous result, that in the standard Nash bargaining model (as 
presented in the previous paragraph) there is a unique bargaining solution that satisfies analogs of PAR and SYM 
and the following two axioms, in which f denotes a bargaining solution.

(Covariance with positive affine transformations) Let  be a bargaining problem, let α i >  0 and βi be real 
numbers, let

and let  for i=1, 2. Then fi(U', d') = aifi(U, d) + βi for i = 1, 2.

(Independence of irrelevant alternatives) If  and  then f(U' d)=f(U, d).

15.3.3 Is Any Axiom Superfluous?

We have shown that the axioms PAR, SYM, and IIA uniquely define the Nash solution; we now show that none of 
these axioms is superfluous. We do so by exhibiting, for each axiom, a bargaining solution that is different from 
Nash's and satisfies the remaining two axioms.

PAR: Consider the solution defined by . This satisfies SYM and IIA and differs from the Nash 
solution.

• Exercise 309.2

Show that there is a solution F different from the Nash solution that satisfies SYM, IIA, and  
D for i =  1, 2 (strict individual rationality). Roth (1977) shows that in the standard Nash bargaining model (as 
presented in the previous Exercise) the axioms SYM, IIA, and strict individual rationality are sufficient to 
characterize the Nash solution. Account for the difference.

SYM: For each  consider the solution (an asymmetric Plash solution) that assigns to  the 

agreement x* for which  for all , where u1 and u2 represent  and 

 and satisfy ui(D) = 0 for i = 1, 2.
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• Exercise 310.1

Show that any asymmetric Nash solution is well-defined (the agreement that it selects does not depend on the 

utility functions chosen to represent the preferences), satisfies PAR and IIA, and, for , differs from the Nash 
solution.

IIA: Let  be a bargaining problem and let ui be a utility function that represents  and satisfies ui(D) 

=  0 for i = 1, 2. The Kalai-Smorodinsky solution assigns to  the Pareto efficient agreement x for which 
u1(x)/u2(x)/u1(B1)/u2 (B2).

• Exercise 310.2

Show that the Kalai-Smorodinsky solution is well-defined, satisfies SYM and PAR, and differs from the Nash 
solution.

15.4 The Nash Solution and the Bargaining Game of Alternating Offers

We now show that there is a close relationship between the Nash solution and the subgame perfect equilibrium 
outcome of the bargaining game of alternating offers studied in Chapter 7, despite the different methods that are 
used to derive them.

Fix a bargaining problem  and consider the version of the bargaining game of alternating offers 
described in Section 7.4.4, in which the set of agreements is X, the preference relations of the players are  and 

, and the outcome that results if negotiations break down at the end of a period, an event with probability 

, is D. Under assumptions analogous to A1-A4 (Section 7.3.1) this game has a unique subgame perfect 
equilibrium outcome: player I proposes x*(α), which player 2 accepts, where (x* (α), y* (α)) is the pair of Pareto 
efficient agreements that satisfies (1-α)·x*(α) ~1y* and (1-α)·y*(α) ~2 x*(α) (see Exercise 130.2).

• Proposition 310.3

Let  be a bargaining problem. The agreements x*(α) and y*(α) proposed by the players in every 
subgame perfect equilibrium of the variant of the bargaining game of alternating offers associated with 

 in which there is a probability a of breakdown after any rejection both converge to the Nash solution 

of as

Proof.

Let ui represent the preference relation  and satisfy ui(D) = 0 for i = 1, 2. From the conditions defining x*(α) and 

y*(α) we have u1(x*(α))u2(x*(α)) = u1(y*(α))u2(y*)(α)). Since  for all  we have 

, where z* is the Nash
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Figure 311.1 
An illustration of the proof of Proposition 310.3.

solution of  (see Figure 311.1). For any sequence  converging to 0 we have 
 for i = 1, 2 by the definition of x*(αk) and y*(αk), so that ui(x*(αk)) and ui(y*(αk)) 

converge to ui(z*) for i = 1, 2 and thus x*(αk) and y*(αk) converge to z* (using non-redundancy).

15.5 An Exact Implementation of the Nash Solution

We now return to the implementation approach described in Chapter 10. A byproduct of the result in the previous 
section is that the bargaining game of alternating offers with risk of breakdown approximately SPE-implements the 
Nash solution. We now describe an extensive game with perfect information that exactly implements it. From the 
point of view of a planner this game has the advantage that it is simpler, in the sense that it involves a small 
number of stages. However, it has the disadvantage of being more remote from familiar bargaining procedures.

Fix a set X and an event D and assume the planner wants to implement the Nash solution for an pairs  for 

which  is a bargaining problem. Consider the extensive game form (with perfect information and 
chance moves) consisting of the following stages.

•Player 1 chooses .

•Player 2 chooses  and .

•With probability 1 - p the game ends, with the outcome D, and with probability p it continues.
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• Player 1 chooses either x or the lottery p·y; this choice is the outcome.

• Proposition 312.1

The game form described above SPE-implements the Nash solution.

• Exercise 312.2

Let x* be the Nash solution of . Show that x* is the unique subgame perfect equilibrium outcome of the 

game form when the players' preferences are .

Notes

The seminal paper on the topic of this chapter is Nash (1950b).

Our presentation follows Rubinstein, Safra, and Thomson (1992). Zeuthen (1930, Ch. IV) contains an early model 
in which negotiators bear in mind the risk of a breakdown when making demands. The connection between the 
Nash solution and the subgame perfect equilibrium outcome of a bargaining game of alternating offers was first 
pointed out by Binmore (1987) and was further investigated by Binmore, Rubinstein, and Wolinsky (1986). The 
exact implementation of the Nash solution in Section 15.5 is due to Howard (1992).

The comparative static result of Section 15.2.3 concerning the effect of the players' degree of risk aversion on the 
solution was first explored by Kihlstrom, Roth, and Schmeidler (1981). Harsanyi and Selten (1972) study the 
asymmetric Nash solutions described in Section 15.3.3 (axiomatizations appear in Kalai (1977) and Roth (1979, p. 
16)) and Kalai and Smorodinsky (1975) axiomatize the Kalai-Smorodinsky solution. Exercise 309.2 is based on 
Roth (1977).

Several other papers (e.g. Roemer (1988)) study models in which the set of physical agreements, rather than the 
resulting set of utility pairs (as in Nash's model), is a primitive. Roth (1979) and Kalai (1985) are surveys of the 
field of axiomatic bargaining theory.



   

Page 313

LIST OF RESULTS

This is a list of the main results in the book, stated informally. It is designed to give an overview of the properties 
of the solutions that we study. Not all conditions are included in the statements; refer to the complete statements in 
the text for details.

Strategic Games

Nash Equilibrium and Mixed Strategy Equilibrium

•  (Nash equilibrium existence) Every game in which the action set of each player is compact and convex and the 
preference relation of each player is continuous and quasi-concave has a Nash equilibrium 
Proposition 20.3

•  A symmetric game has a symmetric Nash equilibrium
Exercise 20.4

•  In a strictly competitive game that has a Nash equilibrium, a pair of actions is a Nash equilibrium if and only if 
each action is a maxminimizer 
Proposition 22.2

•  (Mixed strategy equilibrium existence) Every finite game has a mixed strategy Nash equilibrium
Proposition 33.1

•  A mixed strategy profile is a mixed strategy Nash equilibrium of a finite game if and only if every player is 
indifferent between all actions in the support of his equilibrium strategy 
Lemma 33.2

•  A strategy profile in a finite two-player strategic game is a trembling hand perfect equilibrium if and only if it is 
mixed strategy Nash equilibrium and the strategy of neither player is weakly dominated 
Proposition 248.2
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•  (Trembling hand perfect equilibrium existence) Every finite strategic game has a trembling hand perfect 
equilibrium 
Proposition 249.1

Correlated Equilibrium

•  Every mixed strategy Nash equilibrium corresponds to a correlated equilibrium 
 
Proposition 45.3

•  Every convex combination of correlated equilibrium payoff profiles is a correlated equilibrium payoff profile
Proposition 46.2

•  Every correlated equilibrium outcome is the outcome of a correlated equilibrium in which the set of states is the 
set of action profiles 
Proposition 47.1

Rationalizability

•  Every action used with positive probability in a correlated equilibrium is rationalizable
Lemma 56.2

•  An action is a never-best response if and only if it is strictly dominated
Lemma 60.1

•  An action that is not weakly dominated is a best response to a completely mixed belief
Exercise 64.2

•  Actions that survive iterated elimination of strictly dominated actions are rationalizable
Proposition 61.2

Knowledge

•  (Individuals cannot agree to disagree) If two individuals have the same prior and their posterior beliefs are 
common knowledge then these beliefs are the same  
Proposition 75.1

•  If each player is rational, knows the other players' actions, and has a belief consistent with his knowledge, then 
the action profile is a Nash equilibrium  
Proposition 77.1

•  If there are two players and each player knows that the other player is rational, knows the other player's belief, 
and has a belief consistent with his knowledge, then the pair of beliefs is a mixed strategy Nash equilibrium 
Proposition 78.1
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•  If it is common knowledge that each player is rational and that each players' belief is consistent with his 
knowledge then each player's action is rationalizable  
Proposition 80.1

•  If all players are rational in all states, every player's belief in every state is derived from a common prior, and 
each player's action is the same in all states in any given member of his information partition, then the information 
partitions and actions correspond to a correlated equilibrium 
Exercise 81.1

Extensive Games with Perfect Information

Basic Theory

•  A strategy profile is a subgame perfect equilibrium of a finite horizon game if and only if it has the one deviation 
property 
Lemma 98.2, Exercise 102.1, Exercise 103.3

•  (Subgame perfect equilibrium existence: Kuhn's theorem) Every finite game has a subgame perfect equilibrium
Proposition 99.2, Exercise 102.1

•  All players are indifferent among all subgame perfect equilibria of a finite game that satisfies the no indifference 
condition, and an equilibria are interchangeable  
Exercise 100.2

Bargaining Games

•  A bargaining game of alternating offers that satisfies A1-A4 has a unique subgame perfect equilibrium outcome
Proposition 122.1

•  In a subgame perfect equilibrium of a bargaining game of alternating offers, a player is worse off the more 
impatient he is 
Proposition 126.1

Infinitely Repeated Games

•  (Nash folk theorem for limit of means) Every feasible enforceable payoff profile of the constituent game is a Nash 
equilibrium payoff profile of the limit of means infinitely repeated game 
Proposition 144.3

•  (Nash folk theorem for discounting) Every feasible strictly enforceable payoff profile of the constituent game is 
close to a Nash equilibrium payoff profile of the discounting infinitely repeated game for a discount factor close 
enough to 1 
Proposition 145.2
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•  (Perfect folk theorem for limit of means) Every feasible strictly enforceable payoff profile of the constituent game 
is a subgame perfect equilibrium payoff profile of the limit of means infinitely repeated game 
Proposition 146.2

•  (Perfect folk theorem for overtaking) For every strictly enforceable outcome of the constituent game there is a 
subgame perfect equilibrium of the overtaking infinitely repeated game consisting of a repetition of the outcome 
Proposition 149.1

•  (Perfect folk theorem for discounting) For every feasible strictly enforceable outcome of a full-dimensional 
constituent game there is a discount factor close enough to 1 for which there is a subgame perfect equilibrium of 
the discounting infinitely repeated game consisting of a repetition of the outcome 
Proposition 151.1

•  A strategy profile is a subgame perfect equilibrium of a discounted infinitely repeated game if and only if it has 
the one deviation property 
Lemma 153.1

•  For any subgame perfect equilibrium outcome of a discounted infinitely repeated game there is a strategy profile 
that generates the same outcome in which the sequence of action profiles that follows a deviation depends only on 
the identity of the deviant (not on the history or on the nature of the deviation) 
Proposition 154.1

•  In every equilibrium of a machine game of a discounted infinitely repeated game there is a one-to-one 
correspondence between the actions chosen by the two machines in the repeated game 
Lemma 170.1

•  Every equilibrium of a machine game of a discounted infinitely repeated game consists of an introductory phase, 
in which all the states are distinct, followed by a cycling phase, in each cycle of which each state appears at most 
once 
Proposition 171.1

Finitely Repeated Games

If the payoff profile in every Nash equilibrium of the constituent game is the profile of minmax payoffs then every 
Nash equilibrium of the finitely repeated game generates a sequence of Nash equilibria of the constituent game 
Proposition 155.1

•  (Nash folk theorem for finitely repeated games) If the constituent game has a Nash equilibrium in which every 
player's payoff exceeds his min max payoff then for any strictly enforceable outcome there is a Nash
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equilibrium of the finitely repeated game in which each player's payoff is close to his payoff from the outcome
Proposition 156.1

•  If the constituent game has a unique Nash equilibrium payoff profile then every subgame perfect equilibrium of 
the finitely repeated game generates a sequence of Nash equilibria of the constituent game 
Proposition 157.2

•  (Perfect folk theorem for finitely repeated games) If the constituent game is full dimensional and for every player 
there are two Nash equilibria that yield different payoffs then for any strictly enforceable outcome a sufficiently 
long finitely repeated game has a subgame perfect equilibrium in which each player's payoff is close to his payoff 
from the outcome 
Proposition 160.1

Implementation Theory

•  (Gibbard-Satterthwaite theorem) In an environment in which there are at least three consequences and any 
preference ordering is possible, any choice rule that is DSE-implementable and satisfies the condition that for any 
consequence there is a preference profile for which the choice rule induces that consequence is dictatorial 
Proposition 181.2

•  (Revelation principle for DSE-implementation) If a choice rule is DSE-implementable then it is truthfully DSE-
implementable. 
Lemma 181.4

•  (Revelation principle for Nash-implementation) If a choice rule is Nash-implementable then it is truthfully Nash-
implementable. 
Lemma 185.2

•  If s choice rule is Nash-implementable then it is monotonic
Proposition 186.2

•  In an environment in which there are at least three players, a choice rule that is monotonic and has no veto power 
is Nash-implementable 
Proposition 187.2

•  In an environment in which there are at least three players, who can be required to pay monetary fines, every 
choice function is virtually SPE-implementable 
Proposition 193.1

Extensive Games with Imperfect Information

•  For any mixed strategy of a player in a finite extensive game with perfect recall there is an outcome-equivalent 
behavioral strategy 
Proposition 214.1
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•  Every sequential equilibrium of the extensive game associated with a finite Bayesian game with observable 
actions induces a perfect Bayesian equilibrium of the Bayesian game 
Proposition 234.1

•  Every trembling hand perfect equilibrium of a finite extensive game with perfect recall is associated with a 
sequential equilibrium 
Proposition 251.2

•  (Trembling hand perfect equilibrium and sequential equilibrium existence) Every finite extensive game with 
perfect recall has a trembling hand perfect equilibrium and hence a sequential equilibrium 
Corollary 253.2

Coalitional Games

Core

•  A coalitional game with transferable payoff has a nonempty core if and only if it is balanced
Proposition 262.1

•  Every market with transferable payoff has a nonempty core
Proposition 264.2

•  Every profile of competitive payoffs in a market with transferable payoff is in the core of the market
Proposition 267.1

•  Every competitive allocation in an exchange economy is in the core
Proposition 272.1

•  If every agent's preference relation is increasing and strictly quasi-concave and every agent's endowment of every 
good is positive, the core converges to the set of competitive allocations 
Proposition 273.1

Stable Sets

•  The core is a subset of every stable set; no stable set is a proper subset of any other; if the core is a stable set then 
it is the only stable set 
Proposition 279.2

Bargaining Set, Kernel, Nucleolus

•  In a coalitional game with transferable payoff the nucleolus is a member of the kernel, which is a subset of the 
bargaining set 
Lemmas 285.1 and 287.1

•  The nucleolus of any coalitional game with transferable payoff is a singleton
Proposition 288.4
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Shapley Value

•  The unique value that satisfies the balanced contributions property is the Shapley value
Proposition 291.3

•  The Shapley value is the only value that satisfies axioms of symmetry, dummy, and additivity
Proposition 293.1

Nash Solution

•  The definition of the Nash solution of a bargaining problem in terms of objections and counterobjections is 
equivalent to the definition of it as the agreement that maximizes the product of the players' yon Neumann-
Morgenstern utilities 
Proposition 302.1

•  In the Nash solution a player is worse off the more risk-averse he is
Proposition 304.1

•  The Nash solution is the only bargaining solution that satisfies axioms of Pareto efficiency, symmetry, and 
independence of irrelevant alternatives 
Proposition 307.2

•  The agreements proposed by the players in every subgame perfect equilibrium outcome of the variant of a 
bargaining game of alternating offers in which there is a risk of breakdown converge to the Nash solution 
Proposition 310.3
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Discounting (continued)

preferences, 137

repeated game, 139

structure of subgame perfect equilibria of repeated game, 153-154

Dominance solvable,  63.2

Dominant action,  18.3

Dominant strategy equilibrium of strategic game,  181.1

Dominated action, see weakly dominated action, strictly dominated action

Dove, see hawk

DSE (dominant strategy equilibrium),  181.1

DUM (Shapley value), 292

Dummy player in coalitional game,  280.4.

axiom of Shapley value, 292

Dynamic adjustment process, 52

E

Edgeworth box, 270

Education, Spence's model,  237.2

refinement of equilibria,  246.1

Eductive interpretation, 5

Efficiency in coalitional game, 290

Pareto (Nash solution), 305

Efficient agreement (bargaining), 122, 125

Electronic mail game, 81-84

Elimination of dominated actions, see iterated elimination

Endowment in market, 264

Enforceable payoff profile/outcome, 143

Environment (implementation theory), 179

-equilibrium,  108.1

Equal treatment in core,  272.2

Equilibrium, see solution



Equilibrium, competitive, 266

Equivalence of extensive games

coalescing of moves, 207

framing effects, 209

inflation-deflation, 205

interchange of moves, 208

one-player games,  208.1

superfluous moves, 206

Equivalence of mixed and behavioral strategies, 214

ESS (evolutionarily stable strategy), 50

Event, 69

serf-evident,  73.2

Evolutionarily stable strategy,  49.1

existence,  51.1

Evolutionary equilibrium, 48

Evolutive interpretation, 5

Excess of a coalition, 283

Exchange economy, 269

core, 271

Exchange game (Bayesian),  28.1

Existence

evolutionarily stable strategy,  51.1

mixed strategy equilibrium,  33.1, 33

Nash equilibrium,  20.3

sequential equilibrium,  253.2

subgame perfect equilibrium,  99.2

trembling hand perfect equilibrium,  249.1,  253.2

Exogenous uncertainty in extensive game

imperfect information, 200

perfect information, 101

Extensive game,  200.1



   

behavioral strategy,  212.1

chance moves, 101, 201

equivalence principles

addition of superfluous move, 206

coalescing of moves, 207

inflation-deflation, 205

interchange of moves, 208

exogenous uncertainty, 101, 200

imperfect information,  200.1

machine game,  174.1

mixed strategy,  212.1

outcome, 213, 223

perfect and imperfect recall,  203.3

perfect Bayesian equilibrium,  232.1

perfect information,  89.1

Nash equilibrium,  93.1

no indifference condition,  100.2

outcome, 93

reduced strategic form,  95.1

simultaneous moves, 102

strategic form,  94.1

strategy,  92.1

subgame,  97.1

subgame perfect equilibrium,  97.2

pure strategy,  203.1

sequential equilibrium, see sequential equilibrium

simultaneous moves, 202
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Extensive game (continued)

solutions, see solution

vs. strategic game, 3

trembling hand perfect equilibrium,  251.1

Extensive game form with perfect information, 90, 179

External stability in coalitional game  279.1

F

Feasible payoff profile

coalitional game, 258

strategic game, 139

Fictitious play, 52

Finite extensive game, 90

Finite horizon extensive game, 90

examples, 105

Finite strategic game, 11

Finitely repeated game, 155

Nash equilibrium, 155-157

Nash folk theorem,  156.1

perfect folk theorem,  160.1

subgame perfect equilibrium, 157-160

First mover advantage in bargaining game, 126

First price auction,  18.2

Fixed point theorem,  20.1

Folk theorem, see Nash folk theorem, perfect folk theorem

Forget, players who do so, 204

Forward induction, 110-114

Framing effects, 209

Full dimensionality in repeated game, 151

G

Game form

extensive, 201



extensive, with perfect information, 90

Game theory and competitive equilibrium, 3

Gibbard-Satterthwaite theorem,  181.2

Groves mechanism, 184

Guess the average,  35.1

rationalizability,  56.5

Guessing right,  36.1

H

Hats, puzzle of, 71

Hawk-Dove,  16.3,  49.2

History in extensive game

imperfect information,  200.1

perfect information,  89.1

Homogeneous weighted majority game,  289.2

I

IIA (Nash solution axiom), 306

Impatience in bargaining game, 126

Imperfect information

extensive game,  200.1

strategic game, 24

Imperfect information in game models, 199

Imperfect recall, 203

Implementable choice rule,  179.1

Implementation theory, 177-196

dominant strategy implementation, 180-185

Nash implementation, 185-191

and Nash solution, 311

subgame perfect equilibrium, 191-195

virtual SPE-implementation, 192

Imputation, 278



   

Increasing function, 7

Independence of irrelevant alternatives (Nash solution), 306,  309.1

Individually rational

see enforceable, 143

strict (Nash solution),  309.2

Indivisible good, market for

core,  260.1

Shapley value,  294.4

stable set,  280.2

Infinitely repeated game,  137.1

complexity, 164

Nash equilibrium, 143-146

subgame perfect equilibrium, 146-154

Inflation-deflation principle, 205

Information

more is better,  71.2

more may hurt,  28.2,  48.1

Information function,  68.1

partitional,  68.2

Information partition

correlated equilibrium,  45.1

extensive game with imperfect information,  200.1

Information set,  200.1

interpretation, 205
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Information set (continued)

nonordered,  223.1,  229.1

Initial history, 90

Interchange of moves

equivalence of extensive games, 208

Interchangeable equilibria

extensive game with perfect information,  100.2

strictly competitive game, 23

Interchangeable players in coalitional game, 292

Internal stability in coalitional game,  279.1

Interpretation

forward induction, 112

information set, 205

mixed strategy Nash equilibrium, 37-44

solutions, 5

state of the world, 67

strategic game, 13

strategy in extensive game, 103

Introductory phase of machine game, 171

Investment race,  35.2

Irrational players, 239

Irrelevant alternatives, independence of, 306

Iterated elimination

forward induction, 110-114

and rationalizable actions,  61.2

strictly dominated actions,  60.2

subgame perfect equilibrium, 108

weakly dotted actions, 62

and subgame perfect equilibrium, 108

J



Judgment of Solomon, see Solomon's predicament

K

Kakutani's fixed point theorem,  20.1

Kalai-Smorodinsky solution, 310

Kernel of coalitional game,  284.1

and bargaining set,  285.1

and nucleolus,  287.1

Knowledge

common,  73.1,  73.2

mutual, 73

Knowledge and solution concepts, 76-81

Knowledge function, 69, 70

Kuhn's theorem,  99.2

in game with chance moves,  102.1

in game with simultaneous moves,  103.3

L

Leader-follower game,  97.3

Learning, 52

Lexicographic minimality in nucleolus of coalitional game,  286.2

Lexicographic preferences in machine game, 165, 172-174

Limit of means

Nash folk theorem,  144.3

perfect folk theorem,  146.2

preferences, 138

repeated same, 139

Location game,  18.6

iterated elimination of dominated actions,  63.1

rationalizable actions,  57.1

Long- and short-lived players in infinite game,  148.1

M



   

Machine, 140, 164

complexity, 165

Machine game,  165.1

cycling/introductory phases, 171

extensive game and complexity,  174.1

lexicographic preferences, 165

structure of equilibria, 168-174

Majority game,  295.3,  295.4

bargaining set,  282.2

core,  259.1,  260.3

kernel,  285.2

stable set,  279.3

weighted,  289.2

nucleolus,  289.2

Shapley value,  294.1

Marginal contribution of player in coalitional game, 291

Market for indivisible good

core,  260.1

Shapley value,  294.4

stable set,  280.2
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Market with transferable payoff, 263

bargaining set,  283.1

core, 264

nonempty,  264.2

Markovian machine, 143

Matching pennies,  17.1

Maxminimizer,  21.2, 209

Mechanism design, see implementation theory

Memory, poor (extensive games that model), 204

Message

in Beer or Quiche game,  244.2

in signaling game, 237

Minmax payoff, 143

Mistakes, 247

Mixed extension

strategic game,  32.1

strictly competitive, 36

Mixed strategy

as belief, 43

extensive game

imperfect information,  212.1

perfect information, 93

naïve interpretation, 37

outcome equivalence with behavioral strategy, 214

as pure strategy in extended game, 39

strategic game, 32

Mixed strategy equilibrium

approachable, 42

and correlated equilibrium,  45.3

extensive game, 216

Harsanyi's model, 41-43



interpretation, 37-44

knowledge requirements,  78.1

as steady state, 38

strategic game,  32.3,  44.1

Monotonic choice rule,  186.1

Mutation, 49

Mutual knowledge, 73

My aunt and I (coalitional game)

bargaining set,  282.3

generalization,  295.3

kernel,  285.3

N

Naïve interpretation of mixed strategy, 37

Nash bargaining

and bargaining game of alternating offers, 310-311

comparative statics of risk aversion,  304.1

independence of irrelevant alternatives, 306

Pareto efficiency, 305

problem,  300.1

symmetry,  305.1

Nash equilibrium

Bayesian game,  26.1

behavioral strategies, 216

and correlated equilibrium,  45.3

existence for strategic game,  20.3

extensive game with perfect information,  93.1

finitely repeated game, 155-157

infinitely repeated game, 143-146

interchangeability, 23

knowledge requirements,  77.1

mixed strategy of extensive game, 216



   

mixed strategy of strategic game,  32.3, 43

strategic game,  14.1

and maxminimizers,  22.2

and trembling hand perfect equilibrium, 248

Nash folk theorem

discounting criterion,  145.2

finitely repeated game,  156.1

limit of means criterion,  144.3

Nash implementation, 185-191

revelation principle,  185.2

Nash solution,  301.2

axiomatic definition, 305-310

exact implementation, 311

Nature, moves of, see chance moves

Negotiation, see bargaining game of alternating offers, Nash bargaining

Never-best response,  59.1

No indifference condition,  100.2

No veto power,  187.1

Non-redundancy in Nash bargaining problem,  300.1

Noncooperative vs. coalitional games, 2, 255

Nondecreasing function, 7

Nonempty core

coalitional game, 262.1

market with transferable payoff,  264.2
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Nonordered information sets,  223.1,  229.1

Nontransferable payoff coalitional same,  268.2

Normal form game, see strategic game

Nucleolus of coalitional game,  286.1

and kernel,  287.1

O

Objection in coalitional game

bargaining set, 281

kernel, 284

Nash solution, 302

nucleolus, 285

Shapley value, 290

stable set, 278

One deviation property

sequential equilibrium,  227.1

subgame perfect equilibrium,  98.2

bargaining same,  123.1

game with chance moves,  102.1

game with simultaneous moves,  103.3

infinitely repeated game with discounting,  153.1

Opting out (bargaining), 128

Outcome

extensive game

imperfect information, 213, 223

perfect information, 93

implementation theory, 178

strategic game, 11

Outcome-equivalence of mixed and behavioral strategies, 214

Outcome-equivalent strategies, 94

Output function of machine, 140, 164



Outside option

in bargaining, 128

in BoS,  110.1

Outside option principle, 129

Overtaking

perfect folk theorem, 149.1

preferences, 139

repeated game, 139

P

PAR (Nash solution axiom), 305

Paradoxes in finite horizon games, 105

Paratroopers, 170

Pareto efficiency, 7

axiom of Nash solution, 305

Pareto frontier of agreement set, 122

Parliament, coalitional game model,  295.3,  295.4

Partition of a set, 7

Partitional information function,  68.2

Payoff function, 13

Payoff profile

repeated game

discounting, 138

limit of means, 138

strategic game, 139

Perfect Bayesian equilibrium,  232.1

and sequential equilibrium,  234.1

Perfect folk theorem

discounting criterion,  151.1

finitely repeated game,  160.1

limit of means criterion,  146.2

overtaking criterion,  149.1



   

Perfect information extensive game,  89.1

strategic form,  94.1

Perfect recall,  203.3

Perturbed game

chain-store,  239.1

mixed and pure strategies, 42

trembling hand perfect equilibrium, 247

Phases of equilibrium of machine game, 171

ϕ, see Shapley value

Plan of action vs. strategy, 103

Planner (implementation theory), 177

Player function in extensive game

imperfect information,  200.1

perfect information,  89.1

Pollute the lake,  261.3

Pooling equilibrium in Spence's model,  237.2

eliminated by refinement,  246.1

Pre-trial negotiation,  246.2

Preference relation, 7

repeated same, 137

Prior belief

in Bayesian same,  25.1

and posterior belief, 75

Prisoner's dilemma,  16.2

equilibria of machine game,  166.2, 169, 172
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Prisoner's dilemma (continued)

grim strategy in repeated game, • 141.1

complexity,  166.1

infinitely vs. finitely repeated game, 134

modified in finitely repeated game, 159

rationalizability, 56

Probability measure, 7

Production economy

core,  259.3

core convergence,  268.1

nucleolus,  289.1

Shapley value,  295.2

Production function, 264

Profile, 7

Proper equilibrium, 254

Punishment

limited length of time,  146.2

punishing the punisher,  149.1

rewarding players who punish, 150, 159

trigger strategies, 143

Pure strategy

extensive game,  203.1

strategic game, 32

Purification of mixed strategy equilibrium, 39

Puzzle of the hats, 71

Q

Quasi-concave preference relation, 7, 20

R

Rational choice, 4

Rational, individually, see enforceable, 143



Rationalizability, 53

independence vs. correlation in beliefs, 57

and iterated elimination of strictly dominated actions,  61.2

knowledge requirements,  80.1

Rationalizable action,  54.1,  55.1

Recall, 203

Reduced strategic form,  95.1

Reduced strategy, 94

Refinements of sequential equilibrium, 243-246

Relative probabilities, 254

Renegotiation, 161

Repeated game

constituent game, 136

finite, 155

finite vs. infinite, 134

forms of preference relation, 137-139

infinite,  137.1

see also finitely repeated game, infinitely repeated game

Reputation, 238-243

Restrictions on beliefs, 243-246

Revelation principle

DSE implementation,  181.4

Nash implementation,  185.2

Reversal of beliefs,  236.1

Risk of breakdown in bargaining, 129

and Nash solution,  310.3

Risk, comparative statics (Nash bargaining),  304.1

S

S, see coalition

S-feasible payoff vector, 258

Second price auction,  18.3



   

imperfect information,  27.1

Self-evident event,  73.2

Selten's horse

sequential equilibria,  225.2

trembling hand perfect equilibria,  252.1

Separating equilibrium,  237.2,  246.1

Sequential equilibrium,  225.1

assessment,  222.1

belief system, 223

coalescing of moves,  226.2

existence,  253.2

and perfect Bayesian equilibrium,  234.1

refinements, 243-246

restrictions on beliefs, 243-246

reversal of beliefs,  236.1

and structural consistency, 228-231

and trembling hand perfect equilibrium,  251.2

Sequential rationality, 221, 223,  224.1

Shapley value,  291.2

axiomatic characterization, 292

objections and counterobjections, 289

Short-lived players in infinite game,  148.1

Shouting game in implementation, 188, 189
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Signal function in Bayesian game,  25.1

Signaling game, 237

pooling equilibrium,  237.2

eliminated by refinement,  246.1

separating equilibrium,  237.2,  246.1

Simple coalitional game,  261.1

core,  261.1

stable sets,  280.1

Simultaneous moves in extensive game

imperfect information, 202

perfect information, 102

Solomon's predicament,  186.3,  190.1,  191.2

Solution

for coalitional games

bargaining set,  282.1

core (nontransferable payoff),  268.3

core (transferable payoff),  258.2

general idea, 255

kernel,  284.1

Nash solution,  301.2

nucleolus,  286.1

Shapley value, •  291.2

stable sets,  279.1

deductive interpretation, 5

for extensive games

perfect Bayesian equilibrium,  232.1

sequential equilibrium,  225.1

subgame perfect equilibrium,  97.2

trembling hand perfect equilibrium,  251.1



general idea, 2

implementation theory, 179

steady state interpretation, 5

for strategic games

correlated equilibrium,  45.1

dominant strategy equilibrium,  181.1

evolutionary equilibrium,  49.1

iterated elimination of strictly dominated actions,  60.2

mixed strategy equilibrium,  32.3

Nash equilibrium,  14.1

rationalizability,  54.1

trembling hand perfect equilibrium,  248.1

SPE, see subgame perfect equilibrium

Spence's model of education,  237.2

refinement of equilibria,  246.1

Split-the-pie game,  120.1

subgame perfect equilibrium,  125.1

Stable set of coalitional game,  279.1

and core,  279.2

generalized,  280.5

Stackelberg game,  97.3

Standard of behavior in coalitional game, 279

State of machine, 140, 164

State of the world, 67

Stationarity of strategies in bargaining game, 126

Steady state interpretation, 5, 14

Strategic form

agent strategic form, 250

extensive game with perfect information,  94.1

Strategic game,  11.1

Bayesian,  25.1



   

dominant strategy equilibrium,  181.1

examples, 15-19

existence of Nash equilibrium,  20.3

vs. extensive game, 3

form of extensive game,  94.1

imperfect information, 24

interpretation, 13

mixed extension,  32.1

as reduced strategic form,  95.1

solutions, see solution

strictly competitive,  21.1

symmetric,  20.4

tabular representation, 13

trembling hand perfect equilibrium,  248.1

Strategic game form, 178

Strategy

equilibrium structure in repeated game, 134, 163

extensive game

imperfect information,  203.1

interpretation, 103

perfect information,  92.1

perfect information and chance moves, 102

perfect information and simultaneous moves, 102

vs. plan of action, 103

as machine in repeated game, 140

stationarity in bargaining game, 126

Strict equilibrium, 50

Strict individual rationality

Nash bargaining,  309.2
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Strict individual rationality (strict enforceability), 143

Strictly competitive strategic game,  17.1,  21.1

value, 23

Strictly dominated action,  59.2

Strictly enforceable payoff profile/outcome, 143

Structural consistency, 222,  228.1

and sequential equilibrium, 228-231

Structure of equilibria of repeated game, 153-154

complexity, 163

cycling/introductory phases, 171

Subgame of extensive game with perfect information,  97.1

Subgame perfect equilibrium

extensive game with imperfect information, see sequential equilibrium

extensive game with perfect information,  97.2

finitely repeated game,  157.2,  160.1

implementation, 191

Nash solution, 311

infinitely repeated game, 146-154

discounting,  151.1,  154.1

limit of means,  146.2

overtaking,  149.1

interchangeability,  100.2

iterated elimination of weakly dominated actions, 108

virtual SPE-implementation, 192

Superadditivity of coalitional game, 258

Superfluous moves

equivalence of extensive games, 206

Support of probability distribution, 32

SYM (Nash solution axiom), 305

SYM (Shapley value axiom), 292

Symmetric bargaining problem,  305.1



Symmetric game,  20.4

evolutionary equilibrium,  51.1

Symmetry axiom

Nash solution, 305

Shapley value, 292

Symmetry function,  305.1

T

Terminal history in extensive game

imperfect information,  200.1

perfect information,  89.1

Three-player bargaining, 130

Three-player majority game

bargaining set,  282.2

core,  259.1

kernel,  285.2

stable set,  279.3

Transferable payoff

coalitional game,  257.1

coalitional game without,  268.2

core,  258.2

market, 263

Transition function of mace, 140, 164

Treasure in the mountains,  259.2

Trembling hand perfect equilibrium, 246-253.

extensive game,  251.1

existence,  253.2

and sequential equilibrium,  251.2

and weakly dominated strategy, 252

strategic game,  248.1

existence,  249.1



   

and Nash equilibrium, 248

and weakly dominated strategy,  248.2

Trigger strategy in repeated game, 143

Truthful implementation,  179.2

and DSE-implementation,  181.4

and Nash implementation,  185.2

via Groves mechanism, • 184.2

Type of agent in exchange economy, 272

Types of players, 24,  231.1

U

Uncertainty

in extensive game

imperfect information, 200

perfect information, 101

in model of rational choice, 4,  71.2

about others' characteristics, 24

about others' knowledge, 29

Unique best agreements in Nash bargaining problem,  300.1

Utility function, 4

see also payoff function, 13

V

Value

coalitional game, 290

strictly competitive game, 28
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Veto player in coalitional game,  261.1

Veto power,  187.1

Virtual SPE-implementation, 192

Von Neumann-Morgenstern utility function, 5

W

War of attrition,  18.4

Weak separability of preferences in repeated game,  137.1

Weakly dominant action,  18.3

Weakly dominated action,  62.1

and trembling hand perfect equilibrium,  248.2

Weighted majority game,  289.2

Shapley value,  294.1

Winning coalition,  261.1

Worth of a coalition,  257.1

Z

Zerosum coalitional game,  261.2

weighted majority game,  289.2

Zerosum strategic game, 21


