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PREFACE

This book presents some of the main ideas of game theory. It is designed to serve as a textboolsémnestere
graduate course consisting of about 28 meetings each of 90 n

The topics that we cover are those that we personally would include in suclsenoester course. We do not
pretend to provide a complete reference book on game theory and do not necessarily regard the topics that v
exclude as unimportant. Our selection inevitably reflects our own preferences and interests. (Were we to star
writing the book now we would probably add two chapters, one on experimental game theory and one on lea
and evolution

We emphasize the foundations of the theory and the interpretation of f the main concepts. Our style is to give
precise definitions and full proofs of results, sacrificing generality and limiting the scope of the material when
necessary to most easily achieve these ¢

We have made a serious effort to give credit for an the concepts, results, examples, and exercises (see the "
at the end of each chapter). We regret any errors and encourage you to draw our attentio

Structure of the Book

The book consists of four parts; in each part we study a group of related models. The chart on the next page
summarizes the interactions among the chapters. A basic course could consist of Chapters 2, 3, 6, 11,



Part I: Strategic games
3: Mixed equilibrium
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Part II1: Extensive games with imperfect information—

]
11: Extensive, imperfect info. +] 12: Sequential equilibrium

Port I'V: Coalitional games
_____ ¥ 14: Stable sets, barg, set

13: Cora v

[ 15: Nash barg. solution |

The main interactions between the chapters. The areas of the boxes in
which the names of the chapters appear are proportional to the lengths
of the chapters. A solid arrow connecting two boxes indicates that one
chapter depends on the other; a dotted arrow indicates that only the main
ideas of one chapter are used in the other. A basic course could consist
of the six chapters in heavy bo»
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Exercise:

Many of the exercises are challenging; we often use exercises to state subsidiary results. Instructors will prot
want to assign additional straightforward problems and adjust (by giving hints) the level of our exercises t
appropriate for their students. Solutions are available to instructors on the web site for the book (see

Disagreements Between the Autho

We see no reason why a jointly authored book should reflect a uniform view. At several points, as in the follo
note, we briefly discuss issues about which we dise

A Note on Personal Pronoun
We disagree about how to handle English -person singular pronoul

AR argues that we should use a "neutral" pronoun and agrees to the use of "he", with the understanding that
refers to both men and women. Continuous reminders of the he/she issue simply divert the reader's attention
the main issues. Language is extremely important in shaping our thinking, but in academic material it is not u
to wave it as a flag, as is common in some cit

MJO argues that no language is "neutral”. In particular, there is a wealth of evidence, both from experiments
from analyses of language use, that "he" is not generally perceived to encompass both females and male
the American Heritage Dictionar{third edition, page 831), "Thuneis not really a gendeareutral pronoun; rather

it refers to a male who is to be taken as the representative member of the group referred to by its antecedent
traditional usage, then, is not simply a grammatical convention; it also suggests a particular pattern of thougt
Further, the use of "he" to refer to an individual of unspecified sex did not even arise naturally, but was impos
a rule by (male) prescriptive grammarians in the eighteenth and nineteenth centuries who were upset by the
widespread use of "they" as a singular pronoun and decided that, since in their opinion men were more impo
than women, "he" should be used. The use of "he" to refer to a generic individual thus both has its origins in :
attitudes and promotes such attitudes. There is no neat solution to the problem, especially in a book such as
which there are so many referer
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to generic individuals. "They" has many merits as a singular pronoun, although its use can lead to ambiguitie
complaints from editors). My preference is to use "she" for all individuals. Obviously this usage is not gender
neutral, but its use for a few decades, after a couple of centuries in which "he" has dominated, seems likely c
help to eliminate sexist ways of thought. If such usage diverts some readers' attentions from the subjects dis
in this book and leads them to contemplate sexism in the use of language, which is surely an issue at least a
significant as the minutiae of sequential equilibrium, then an increase in social welfare will have been achieve
(Whether or not this book qualifies as "academic material”, | see no reason why its readers should be treated
differently from those of any other materi

To conclude, we both feel strongly on this issue; we both regard the compromise that we have reached as hi
unsatisfactory. When referring to specific individuals, we sometimes use "he" and sometimes "she". For exan
in twa-player games we treat player 1 as female and player 2 as male. We use "he" for generic ir

Acknowledgement:

This book is an outgrowth of courses we have taught and discussions we have had with many friends and
colleagues. Some of the material in Chapters 5, 8, and 9 is based on parts of a draft of a book on models of
bounded rationality by Al

MJO | had the privilege of being educated in game theory by Robert Aumann, Sergiu Hart, Mordecai Kurz, at
Robert Wilson at Stanford University. It is a great pleasure to acknowledge my debt to them. Discussions ove
years with Jeaiierre Benoit, Haruo Imai, Vijay Krishna, and Carolyn Pitchik have improved my understan
many topics. | completed my work on the book during a visit to the Department of Economics at the Universit
Canterbury, New Zealand; | am grateful to the members of the department for their generous hospitality. | an
grateful also to the Social Science and Humanities Research Council of Canada and the Natural Sciences ar
Engineering Research Council of Canada for financially supporting my research in game theory over the last
years

AR | have used parts of this book in courses at the London School of Economics (1987 and 1988), The Hebr
University (1989), Tel Aviv University (1990), and Princeton University (1992). The hospitality and collegi:
the London School of Economics, Princeton Univetr
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and Tel Aviv University are gratefully appreciated. Special thanks are due to my friend Asher Wolinsky fo
illuminating conversations. Part of my work on the book was supported by the United StéBinational
Science Foundation (grant number 1-341)

We are grateful to Pierpaolo Battigalli, Takako Fujiwara, Wulong Gu, Abhinay Muthoo, Michele Piccione, and
Doron Sonsino for making very detailed comments on drafts of the book, comments that led us to substantial
improve the accuracy and readability of the text. We are grateful also to Dilip AbretRide@nBenoit, Larry
Blume, InKoo Cho, Eddie Dekel, Faruk Gul, Vijay Krishna, Bart Lipman, Bentley MacLeod, Sylvain Sorin, Ra
Spiegler, and Arthur Sweetman for giving us advice and pointing out improvements. Finally, we thank Wulon
and Arthur Sweetman, who provided us with outstanding assistance in completing the book: Wulong worked
the exercises, correcting our solutions and providing many of his own, and Arthur constructed t

On the technical side we thank Ed Sznyter for cajoling the ever recalcifbata €xecute our numbering scheme.

It was a great pleasure to deal with Terry Vaughn of The MIT Press; Ms encouragement in the early stages ¢
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MARTIN J. OSBORNE

osborne@mcmaster.ca

DEPARTMENT OF ECONOMICS, MCMASTER UNIVERSITY
HAMILTON, CANADA, L8S 4M4

ARIEL RUBINSTEIN

rariel@ccsg.tau.ac.il

DEPARTMENT OF ECONOMICS, TEL AVIV UNIVERSITY

TEL AVIV, ISRAEL, 69978

DEPARTMENT OF ECONOMICS, PRINCETOON UNIVERSITY
PRINCETON, NJ 08540, US

We maintain a web site for the book. A link to this site is provide
The MIT Press page for the bo

http://mitpress mit. edu/boo-home.tcl?isbn=02626504

The URL of our site is current

http://www. socsci.mcmaster.Cecon/faculty/osborne/c




Page

1
Introduction

1.1 Game Theon

Game theory is a bag of analytical tools designed to help us understand the phenomena that we observe wh
decisioamakers interact. The basic assumptions that underlie the theory are that dweissra pursue well
defined exogenous objectives (they monal) and take into account their knowledge or expectationshalr
decisior-makers' behavior (thereason strategical).

The models of game theory are highly abstract representations of classedifef sgahtions. Their abstractness
allows them to be used to study a wide range of phenomena. For example, the theory of Nash equilibrium (C
2) has been used to study oligopolistic and political competition. The theory of mixed strategy equilibrium
(Chapter 3) has been used to explain the distributions of tongue length in bees and tube length in flowers. Tr
theory of repeated games (Chapter 8) has been used to illuminate social phenomena like threats and promis
theory of the core (Chapter 13) reveals a sense in which the outcome of trading under a price system is stabl
economy that contains many age

The boundary between pure and applied game theory is vague; some developments in the pure theory were
motivated by issues that arose in applications. Nevertheless we believe that such a line can be drawn. Thoug
hope that this book appeals to those who are interested in applications, we stay almost entirely in the territon
"pure" theory. The art of applying an abstract model to -life situation should be the subject of another t

Game theory uses mathematics to express its ideas formally. However, the game theoretical ideas that we di
are notinherently matheme-
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ical; in principle a book could be written that had essentially the same content as this one and was devoid of
mathematics. A mathematical formulation makes it easy to define concepts precisely, to verify the consistenc
ideas, and to explore the implications of assumptions. Consequently our style is formal: we state definitions &
results precisely, interspersing them with motivations and interpretations of the cc

The use of mathematical models creates independent mathematical interest. In this book, however, we treat
theory not as a branch of mathematics but as a social science whose aim is to understand the behavior o
decisionmakers; we do not elaborate on points of mathematical interest. From our point of view the mathema
results are interesting only if they are confirmed by intui

1.2 Games and Solutior

A game is a description of strategic interaction that includes the constraints on the actions that the players ce
and the players' interests, but does not specify the actions that the gtatgs. Asolutionis a systematic
description of the outcomes that may emerge in a family of games. Game theory suggests reasonable solutic
classes of games and examines their prope

We study four groups of game theoretic models, indicated by the titles of the four parts of the book: strategic
games (Part I), extensive games with and without perfect information (Parts Il and Ill), and coalitional games
V). We now explain some of the dimensions on which this division is t

Noncooperative and Cooperative Gar

In all game theoretic models the basic entity pdager. A player may be interpreted as an individual or as a grouj
of individuals making a decision. Once we define the set of players, we may distinguish between two types o
models: those in which the sets of possible actiomsdofidual players are primitives (Parts I, I, and IIl) and
those in which the sets of possible joint actiongrotipsof players are primitives (Part 1V). Sometimes models of
the first type are referred to as "noncooperative", while those of the second type are referred to as
"cooperative" (though these terms do not express well the differences between the

The numbers of pages that we devote to each of these branches of the theory reflect the fact that in recent y
most research has b
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devoted to noncooperative games; it does not express our evaluation of the relative importance of the tw
In particular, we do not share the view of some authors that noncooperative models are more "basic" than
cooperative ones; in our opinion, neither group of models is more "basic" than th

Strategic Games and Extensive Gar

In Part | we discuss the concept of a strategic game and in Parts Il and 11l the concept of an extensive game.
strategic game is a model of a situation in which each player chooses his plan of action once and for all, and
players' decisions are made simultaneously (that is, when choosing a plan of action each player is not inform
the plan of action chosen by any other player). By contrast, the model of an extensive game specifies the po:
orders of events; each player can consider his plan of action not only at the beginning of the game but also
whenever he has to make a decis

Games with Perfect and Imperfect Informatis

The third distinction that we make is between the models in Parts Il and lll. In the models in Part Il the pa
are fully informed about each others' moves, while in the models in Part Il they may be imperfectly informed.
former models have firmer foundations. The latter were developed intensively only in the 1980s; we put leas
emphasis on them not because they are less realistic or important but because they are I«

1.3 Game Theory and the Theory of Competitive Equilibriun

To clarify further the nature of game theory, we now contrast it with the theory of competitive equilibrium that
used in economics. Game theoretic reasoning takes into account the attempts by eacihnuda@sitnobtain,

prior to making his decision, information about the other players' behavior, while competitive reasoning assur
that each agent is interested only in some environmental parameters (such as prices), even though these pa
are determined by the actions of all age

To illustrate the difference between the theories, consider an environment in which the level of some activity
fishing) of each agent depends on the level of pollution, which in turn depends on the |
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the agents' activities. In a competitive analysis of this situation we look for a level of pollution consistent with
actions that the agents take when each of them regards this level as given. By contrast, in a game theoretic ¢
of the situation we require that each agent's action be optimal given the agent's expectation of the pollution ¢
by the combination of his action and all the other agents' ac

1.4 Rational Behavio

The models we study assume that each deem@ker is "rational” in the sense that he is aware of his alternative
forms expectations about any unknowns, has clear preferences, and chooses his action deliberately after sol
process of optimization. In the absence of uncertainty the following elements constitute a model of ratior

* A set A ofaction: from which the decisic-maker makes a choit

* A setC of possibleconsequenc: of these action

« A consequence functi 4 — € that associates a consequence with each ¢
*A preference relatio (a complete transitive reflexive binary relatié on the seC.

Sometimes the decisiemaker's preferences are specified by givingilay functionU: € — R, which defines a
preference relatio’ by the conditior® % ¥ if and only ifU(z) 2 U(y),

Given any seB € A of actions that are feasible in some particular castjanal decisioamaker choosean
actiona’ that is feasible (belongs B) and optimal in the sense tt9(a") X 9(a) for all a € B; alternatively he

solves the probler®m&%es Ulg(a)) An assumption upon which the usefulness of this model of degisiding
depends is that the individual uses the same preference relation when choosing from diffeB.

In the models we study, individuals often have to make decisions under conditions of uncertainty. The player
be

* uncertain about the objective parameters of the envirol
« imperfectly informed about events that happen in the
« uncertain about actions of the other players that are not detern

* uncertain about the reasoning of the other pla
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To model decisiommaking under uncertainty, almost all game theory uses the theories of von Neumann and
Morgenstern (1944) and of Savage (1972). That is, if the consequence function is stochastic and known to th
decisionmaker (i.e. for eaca € 4 the consequenaga) is a lottery (probability distribution) oB) then the
decisionmaker is assumed to behave as if he maximizes the expected valwveroNegmamnMorgenstern

utility) function that attaches a number to each consequence. If the stochastic connection between actions ar
consequences is not given, the decisitaker is assumed to behave as if he has in mind a (subjective) probabili
distribution that determines the consequence of any action. In this case the duaistons assumed to behave as
if he has in mind. a "state spad®!'a probability measure ov&, a functiong: 4 X @ — C| and a utility function

u:C' — R; he is assumed to choose an action a that maximizes the expected uédiie,©)) with respect to the
probability measur

We do not discuss the assumptions that underlie the theory of a rational de@kem However, we do point out
that these assumptions are under perpetual attack by experimental psychologists, who constantly point out s
limits to its applicatior

1.5 The Steady State and Deductive Interpretatiol

There are two conflicting interpretations of solutions for strategic and extensive gamsteallyestatéor, as
Binmore (1987/88) calls it, evolutive) interpretation is closely related to that which is standard in economic
theory, like other sciences, deals with regularities. As Carnap (1966, p. 3) writes, "The observations we make
everyday life as well as the more systematic observations of science reveal certain repetitions or regularities
world .... The laws of science are nothing more than statements expressing these regularities as precisely as
possible." The steady state interpretation treats a game as a model designed to explain some regularity obse
a family of similar situations. Each participant "knows" the equilibrium and tests the optimality of his behavior
given this knowledge, which he has acquired from his long experienceedbetive(or, as Binmore calls it,
eductive) interpretation, by contrast, treats a game in isolation, as-aHotieevent, and attempts to infer the
restrictions that rationality imposes on the outcome; it assumes that each player deduces how the other playz
behave simply from principles of rationality. We try to avoid the confusion between the two interpretations the
frequently arises in game thec
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1.6 Bounded Rationality

When we talk in real life about games we often focus on the asymmetry between individuals in their abilities.
example, some players may have a clearer perception of a situation or have a greater ability to analyze it. Th
difference, which are so critical in life, are missing from game theory in its curren

To illustrate the consequences of this fact, consider the game of chess. In an actual play of chess the player:
differ in their knowledge of the legal moves and in their analytical abilities. In contrast, when chess is modele:
using current game theory it is assumed that the players' knowledge of the rules of the game is perfect and tl
ability to analyze it is ideal. Results we prove in Chapters 2 and 6 (Propositions 22.2 and 99.2) imply that
trivial game for "rational" players: an algorithm exists that can be used to "solve" the game. This algorithm de
a pair of strategies, one for each player, that leads to an "equilibrium" outcome with the property that a playel
follows his strategy can be sure that the outcome will be at least as good as the equilibrium outcome no r
strategy the other player uses. The existence of such strategies (first proved by Zermelo (1913)) suggests th:
is uninteresting because it has only one possible outcome. Nevertheless, chess remains a very popular and
interesting game. Its equilibrium outcome is yet to be calculated; currently it is impossible to do so using the
algorithm. Even if White, for example, is shown one day to have a winning strategy, it may not be possible fo
human being to implement that strategy. Thus while the abstract model of chess allows us to deduce a signif
fact about the game, at the same time it omits the most important determinant of the outcome of an actual pl:
chess: the players' "abilitie

Modeling asymmetries in abilities and in perceptions of a situation by different players is a fascinating challer
for future research, which models of "bounded rationality" have begun to

1.7 Terminology and Notatior

We presume little familiarity with mathematical results, but throughout use deductive reasoning. Our notation
mathematical definitions are standard, but to avoid ambiguities we list some of the

We denote the set of real numbersRyyhe set of nonnegative real numbers®+ythe set of vectors of n real
numbers byR*, and the set «
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vectors ofn nonnegative real numbers B+ Forz € R* andv € R™ we usez 2 ¥ to mear® 2 . fori = 1,...,n anc
X >y to mearx >y fori = 1,...n. We say that a functicf:E — R isincreasing if f(x) > f(y) whenevex >y and is
nondecreasingf (%) 2 f(¥) whenevex >y. A functionf:R — R is concaveif

floz+(1-a)z’) 2 af(z)+(1-a)f(=') for allz € R, all 2’ € R, and all® € [0,1]. Given a functiorf: X = R we denote
by arg™®*zex f(Z) the set of maximizers f; for anyY € X we denote bf(Y) the se{f(z):z €Y}

Throughout we ushBl to denote the set of players. We refer to a collection of values of some variable, one for e
player, as @rofile; we denote such a profile I(-'fi]iEN, or, if the qualifier i € N" is clear, simplyX). For any

profile £ = (z3)jen and anyi € N we letx, be the lis{#s)semii} of elements of the profile for all players except
Given a listF= = (Z5)semts} and an elemen¢ we denote byx(, x) the profile(®iliex_ If X is a set for eaci € N
then we denote bY, the se®semuXs,

A binary relation .gif"> is convex; it istrictly quas-concave if evel such set is strictly conve

Let X be a set. We denote X} the number of members Xf A partition of X is a collection of disjoint subsets of
X whose union i¥. LetN be a finite set and IX € R¥ be a set. Thez € X is Pareto efficientf there is no

¥ € X for whichy, > x for all i € N; £ € X s strongly Pareto efficierif there is nc¥ € X for which% 2 i for all
i€ N andy > x for somei € N.

A probability measurgt on a finite (or countable) sKtis an additive function that associates a nonnegative real
number with every subset ¥f(that is, #(BUC) = u(B)+4(C) wheneveB andC are disjoint) and satisfiggX) =

1. In some cases we work with probability measures over spaces that are not necessarily finite. If you are
unfamiliar with such measures, little is lost by restricting attention to the finite case; for a definition of more
general measures see, for example, Chung (1974,
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Notes

Von Neumann and Morgenstern (1944) is the classic work in game theory. Luce and Raiffa (1957) is an early
textbook; although now owdf-date, it contains superb discussions of the basic concepts in the theory. Schellin
(1960) provides a verbal discussion of some of the main ideas of the

A number of recent books cover much of the material in this book, at approximately the same level: Shub
Moulin (1986), Friedman (1990), Kreps (1990a, Part Ill), Fudenberg and Tirole (1991a), Myerson (1991), van
Damme (1991), and Binmore (1992). Gibbons (1992) is a more elementary introduction to the

Aumann (1985b) contains a discussion of the aims and achievements of game theory, and Aumann (1987b)
account of game theory from a historical perspective. Binmore (1987/88) is a critical discussion of game thea
that makes the distinction between the steady state and deductive interpretations. Kreps (1990Db) is a reflecti
discussion of many issues in game the

For an exposition of the theory of rational choice see Kreps (:
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I
STRATEGIC GAMES

In this part we study a model of strategic interaction knownsastegic gameor, in the terminology of yon
Neumann and Morgenstern (1944), a "game in normal form". This model specifies for each player a set c
actions and a preference ordering over the set of possible action

In Chapter 2 we discuss Nash equilibrium, the most widely used solution concept for strategic games. In Che
we consider the closely related solutions of mixed strategy equilibrium and correlated equilibrium, in which th
players' actions are not necessarily deterministic. Nash equilibrium is a steady state solution concept in whicl
player's decision depends on knowledge of the equilibrium. In Chapter 4 we study the deductive solution con
of rationalizability and iterated elimination of dominated actions, in which the players are not assumed to kno
equilibrium. Chapter 5 describes a model of knowledge that allows us to examine formally the assumptions tt
underlie the solutions that we have defii



Page 1

2
Nash Equilibrium

Nash equilibrium is one of the most basic concepts in game theory. In this chapter we describe it in the c«
strategic game and in the related context of a Bayesian

2.1 Strategic Game
2.1.1 Definitior

A strategic game is a model of interactive decigimaking in which each decisiemaker chooses his plan of
action once and for all, and these choices are made simultaneously. The model consists of a\fivitelagtrs
and, for each player a setA of actionsand apreference relatioron the set of action profiles. We refer to an

action profile® = (e5)sen as aroutcomeand denote the s¥sen4s of outcomes by. The requirement that the
preferences of each playidoe defined oveA, rather thard, is the feature that distinguishes a strategic game fror

a decision problem: each player may care not only about his own action but also about the actions taken by t
other players. To summarize, our definition is the follow

*Definition 11.1
A strategic game consists ¢
« a finite seiN (the set oplayers)

« for each playei € N a nonempty séi (the set ohctionsavailable to playei)

« for each playei € N a preference relatick+ on 4 = Xsen4; (thepreference relatior of playeri).

If the setA of actions of every playeiis finite then the game faite.
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The high level of abstraction of this model allows it to be applied to a wide variety of situations. A player may
an individual human being or any other decisioaking entity like a government, a board of directors, the
leadership of a revolutionary movement, or even a flower or an animal. The model places no restrictions on t
of actions available to a player, which may, for example, contain just a few elements or be a huge set contair
complicated plans that cover a variety of contingencies. However, the range of application of the model is lim
by the requirement that we associate with each player a preference relation. A player's preference relation m
simply reflect the player's feelings about the possible outcomes or, in the case of an organism that does not
consciously, the chances of its reproductive suc

The fact that the model is so abstract is a merit to the extent that it allows applications in a wide range of

but is a drawback to the extent that the implications of the model cannot depend on any specific features of &
situation. Indeed, very few conclusions can be reached about the outcome of a game at this level of absti
needs to be much more specific to derive interesting re

In some situations the players' preferences are most naturally defined not over action profiles but over their
consequences. When modeling an oligopoly, for example, we may take the set of players to be a set of firms
the set of actions of each firm to be the set of prices; but we may wish to model the assumption that each
only about its profit, not about the profile of prices that generates that profit. To do so we introdiCef set
consequence functions: A = C that associates consequences with action profiles, and a (Ziilef preferenc
relations ovelC. Then the preference relati%« of each player in the strategic game is defined as follo® Zi b

if and only if 9(a) Zf ().

Sometimes we wish to model a situation in which the consequence of an action profile is affected by an exog
random variable whose realization is not known to the players before they take their actions. We can model <

situation as a strategic game by introducing &£s#tconsequences, a probability sp&;eand a function

g: A x Q= C \ith the interpretation thaj(a, w) is the consequence when the action profia € 4 and the
realization of the random variablew € 2, A profile of actions induces a lottery @y for each player a
preference relatioi must be specified over the set of all such lotteries. Playpreference relation in the
strategic game is defined as follov® i & if and only if the lottery ove€ induced byg(a, ) is at least as good
according tc=i as the lottery induced tg(b, ).
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L R

T|w,wy | 21,20

B| vy | 21,22

Figure 13.1
A convenient representation
of a twoplayer strategic game
in which each player has two actic

Under a wide range of circumstances the preference reiﬂtiohplayeri in a strategic game can be represented
by apayoff function ®:4 =R (also called autility function), in the sense thit(a) 2 (b} wheneveie Z: b. We
refer to values of such a function@esyoffs (or utilities). Frequently we specify a player's preference relation by

giving a payoff function that represents it. In such a case we denote the gtN:(4:, (%)) rather than
(N, (Aq), (Ze)),

A finite strategic game in which there are two players can be described conveniently in a table like that in Fig
13.1. One player's actions are identified with the rows and the other player's with the columns. The two numt
the box formed by row and columrct are the players' payoffs when the row player choosesl the column

player chooses, the first component being the payoff of the row player. Thus in the game in Figure 13.1 the s
actions of the row player isI{ B} and that of the column player i${ R}, and for example the row player's payoff
from the outcomeT, L) isw, and the column player's payoffvs. If the players' names are "1" and "2" then the
convention is that the row player is player 1 and the column player is pl

2.1.2 Comments on Interpretati

A common interpretation of a strategic game is that it is a model of an event that occurs only once; each play
knows the details of the game and the fact that all the players are "rational" (see Section 1.4), and the player:
choose their actions simultaneously and independently. Under this interpretation each player is unaware, wh
choosing his action, of the choices being made by the other players; there is no information (except the primi
of the model) on which a player can base his expectation of the other players' t

Another interpretation, which we adopt through most of this book, is that a player can form his expectation of
other players' behavior
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the basis of information about the way that the game or a similar game was played in the past (see Section 1
sequence of plays of the game can be modeled by a strategic game only if there are no strategic links betwe
plays. That is, an individual who plays the game many times must be concerned only with his instantaneous |
and ignore the effects of his current action on the other players' future behavior. In this interpretation it is thus
appropriate to model a situation as a strategic game only in the absence of an intertemporal strategic link bet
occurrences of the interaction. (The model of a repeated game discussed in Chapter 8 deals with series of st
interactions in which such intertemporal lirdo exist.’

When referring to the actions of the players in a strategic game as "simultaneous" we do not necessarily mee
these actions are taken at the same point in time. One situation that can be modeled as a strategic game is t
following. The players are at different locations, in front of terminals. First the players' possible actions an
are described publicly (so that they are common knowledge among the players). Then each player chooses :
action by sending a message to a central computer; the players are informed of their payoffs when all the me
have been received. However, the model of a strategic game is much more widely applicable than this exam
suggests. For a situation to be modeled as a strategic game it is important only that the players make decisic
independently, no player being informed of the choice of any other player prior to making his own

2.2 Nash Equilibrium

The most commonly used solution concept in game theory is that of Nash equilibrium. This notion captures a
steady statef the play of a strategic game in which each player holds the correct expectation about the other
players' behavior and acts rationally. It does not attempt to examine the process by which a steady state

* Definition 14.1

A Nash equilibrium of a strategic game{: (4, (X)) is a profilea® € 4 of actions with the property that for
every playei € N we hav

(a®;,a]) =i (0%, a) for all a; € A,

Thus fora® to be a Nash equilibrium it must be that no playeas an action yielding an outcome that he prefers t
that generated wh
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he choose®, given that every other playgechooses his equilibrium acti. Briefly, no player can profitably
deviate, given the actions of the other pla

The following restatement of the definition is sometimes useful. Foe-i € 4-i defineB,(a,) to be the set of
playeri's best actions gives:

Bi(a-:) = {ai € Ai: (a-i, %) i (a-iya) for all a; € A} (15.1)

We call the setalued functiorB, thebestresponse functionof playeri. A Nash equilibrium is a profila” of
actions for whic

a; € By(a®,;) forelli e N. (15.2)

This alternative formulation of the definition points us to a (not necessarily efficient) method of finding Nash
equilibria: first calculate the best response function of each player, then find agrofikections for which
af € Bi(aZy) for alli € N. If the functionsB, are singletorvalued then the second step entails solVijguations

in the N| unknowns(@i)ien

2.3 Example:

The following classical games represent a variety of strategic situations. The games are very simple: in each
there are just two players and each player has only two possible actions. Nevertheless, each game captures
essence of a type of strategic interaction that is frequently present in more complex s

* Example 15.:

(Bachor Stravinsk® (Bo) Two people wish to go out together to a concert of music by either Bach or Stra
Their main concern is to go out together, but one person prefers Bach and the other person prefers Stravinsk
Representing the individuals' preferences by payoff functions, we have the game in Fig

This game is often referred to as the "Battle of the Sexes"; for the standard story behind it see Luce and Raif
(1957, pp. 9-91). For consistency with this nomenclature we call the game "

BoS models a situation in which players wish to coordinate their behavior, but have conflicting interests. 7
has two Nash equilibriaB@ach, Bachand Stravinsky, StravinskyThat is, there are two steady states: one in
which both players always chocBacl and one in which they always cho(Stravinsk.
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Bach Stravinsky

Bach 2,1 0,0
Figure 16.1

Bach or Stravinsky? (BoS) (Example 1&
Mozart Mahler

Mozart 2,2 0,0

Mahler 0,0 1,1

Figure 16.2
A coordination game (Example 16

* Example 16.:

(A coordination gameAs in BoS, two people wish to go out together, but in this case they agree on the more
desirable concert. A game that captures this situation is given in Figur

Like BoS, the game has two Noah equilibridogart, Mozarf and Mahler, Mahlej). In contrast to BoS, the
players have a mutual interest in reaching one of these equilibria, néholsr{, Mozar);, however, the notion of
Nash equilibrium does not rule out a steady state in which the outcome is the inferior equiMahler,

Mabhler).

« Example 16.:

(ThePrisoner's DilemmpaTwo suspects in a crime are put into separate cells. If they both confess, each will bg
sentenced to three years in prison. If only one of them confesses, he will be freed and used as a witness aga
other, who will receive a sentence of four years. If neither confesses, they will both be convicted of a minc
and spend one year in prison. Choosing a convenient payoff representation for the preferences, we hare
Figure 17.1

This is a game in which there are gains from cooperattbe best outcome for the players is that neither
confesses-but each player has an incentive to be a "free rider". Whatever one player does, the other prefers
Confes to Don't Confes, so that the game has a unique Noah equilibrConfes, Confes).

* Example 16.:

(Hawk-Dove Two animals are fighting over some prey. Each can behave like a dove or like a hawk. The best
outcome fo
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Don't Confess Uonff.als

Don't confess 3,3 0,4
Confess 4,0 1,1
Figure 17.1

The Prisoner's Dilemma (Example 1t

Dove Hawk

Dove | 3,3 1,4

Hawk | 4,1 0,0

Figure 17.2
Hawk-Dove (Example 16.<

each animal is that in which it acts like a hawk while the other acts like a dove; the worst outcome is that in w
both animals act like hawks. Each animal prefers to be hawkish if its opponent is dovish and dovish if its oppt
is hawkish. A game that captures this situation is shown in Figure 17.2. The game has two Nash efualibria, (
Hawk) and Hawk, Dov), corresponding to two different conventions about the player who !

* Example 17.:

(Matching PennigsEach of two people chooses either Head or Tail. If the choices differ, person 1 pays persol
dollar; if they are the same, persopays person 1 a dollar. Each person cares only about the amount of mone\
that he receives. A game that models this situation is shown in Figure 17.3. Such a game, in which the intere
the players are diametrically opposed, is called "strictly competitive". The lgamching Penniefias no Nash
equilibrium

Head 1,-1]1-1, 1

Teil | =1, 1| 1,-1

Figure 17.3
Matching Pennies (Example 17
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The notion of a strategic game encompasses situations much more complex than those described in the last
examples. The following are representatives of three families of games that have been studied extensively:
auctions, games of timing, and location gal

* Example 18.:

(An auction) An object is to be assigned to a player in the set {i}.in, exchange for a payment. Play&r
valuation of the object ig, andv, > v, > ... > v_> 0. The mechanism used to assign the object is a (saded

auction: the players simultaneously submit bids (nonnegative numbers), and the object is given to the player
the lowest index among those who submit the highest bid, in exchange for a p

In a first price auction the payment that the winner makes is the price that h
» Exercise 18.z

Formulate a first price auction as a strategic game and analyze its Nash equilibria. In particular, show that in
equilibria player | obtains the obje

In asecond price auctiothe payment that the winner makes is the highest bid among those submitted by the
players who do not win (so that if only one player submits the highest bid then the price pasgi®tithighest
bid).

* Exercise 18..

Show that in a second price auction the\bif any player is aweakly dominanéction: playei's payoff when h
bidsv, is at least as high as his payoff when he submits any other bid, regardless of the actions of the other p
Show that nevertheless there are ("inefficient") equilibria in which the winner is not pl

* Example 18.¢

(A war of attritior) Two players are involved in a dispute over an object. The value of the oljpay¢oiisv, >

0. Time is modeled as a continuous variable that starts at O and runs indefinitely. Each player chooses when
concede the object to the other player; if the first player to concede does so at time t, the other player obtains
object at that time. If both players concede simultaneously, the object is split equally between them, player
receiving a payoff of/2. Time is valuable: until the first concession each player loses one unit of payoff per ur
of time.

* Exercise 18.!

Formulate this situation as a strategic game and show that in all Nash equilibria one of the players concedes
immediately

* Example 18.¢

(A location gamgEach ofn people chooses whether or not to become a political candidate, and if so which
position to take
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There is a continuum of citizens, each of whom has a favorite position; the distribution of favorite positions is
given by a density functiohon [0,1] withf(x) > O for all# € [0,1]. A candidate attracts the votes of those citizens
whose favorite positions are closer to his position than to the position of any other candkdzaditlates choo
the same position then each receives the fractloafxhe votes that the position attracts. The winner of the
competition is the candidate who receives the most votes. Each person prefers to be the unique winning can:
than to tie for first place, prefers to tie for first place than to stay out of the competition, and prefers to stay ou
the competition than to enter and I

* Exercise 19..

Formulate this situation as a strategic game, find the set of Nash equilibria wi&rand show that there is no
Nash equilibrium when = 3.

2.4 Existence of a Nash Equilibriur

Not every strategic game has a Nash equilibrium, as the Matching PenniegFigure 17.3) shows. The
conditions under which the set of Nash equilibria of a game is nonempty have been investigated extensively.
now present an existence result that is one of the simplest of the genre. (Nevertheless its mathematical le
advanced than most of the rest of the hook, which does not depend on the

An existence result has two purposes. First, if we have a game that satisfies the hypothesis of the result then
know that there is some hope that our efforts to find an equilibrium will meet with success. Second, and more
important, the existence of an equilibrium shows that the game is consistent with a steady state solution. Fur
the existence of equilibria for a family of games allows us to study properties of these equilibria (by using, for
example, "comparative static" techniques) without finding them explicitly and without taking the risk that we a
studying the empty s

To show that a game has a Nash equilibrium it suffices to show that there is agpmffietions such that
a; € Bi(aly) for alli € N (see (15.2)). Define the setlued functiorB: A — A by B(@) = xwenBile—s)  Then
(15.2) can be written in vector form simply@®_€ B(a*) Fixed point theoremgive conditions of8 under which

there indeed exists a valueasffor which * € B(a%). The fixed point theorem that we use is the following (due to
Kakutani (1941)
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e Lemma 20.]

(Kakutani's fixed point theorenbet X be a compact convex subseR™dnd letf:X — X pe a sewalued functio
for whicl

«for all z € X the set(x) is nonempty and conv

«-the graph of f is closed (i.e. for all sequenpe} and{y} such thai¥a € f(£a) for all #, T» = 2, and¥= = ¥, we
have ¥ € f(z)),

Then there exis #* € X such tha =" € f(z*),
* Exercise 20..

Show that each of the following four conditions is necessary for Kakutani's thegr&ns ¢ompact.i() X is
convex. iii) f(x) is convex for eacz € X. (iv) f has a closed graf

Define a preference relaticz+ overA to bequasiconcave on Af for everya® € A the se-{a € Ai: (a2, a:) Zi 0°}
IS convex

 Proposition 20.:

Thestrategic gam (M (4 (Z4)} has a Nash equilibrium if for i€ ¥

«.the set Aof actions of player i is a nonempty compact convex subset of a Euclidian spaceand the preference
relation i is

s continuou

e-quastconcave on A

Proof DefineB: A — A by Bla) = xienBi(a-1) (whereB. is the bestesponse function of playerdefined in (15.1)

For everyi € N the seB(a-i) is nonempty sinc®&4 is continuous and, is compact, and is convex sirmais

quastconcave orA\; B has a closed graph since e&ifis continuous. Thus by Kakutani's theorBrhas a fixed
point; as we have noted any fixed point is a Nash equilibrium of the

Note that this result asserts that a strategic game satisfying certain conditiat leastone Nash equilibrium; as
we have seen, a game can have more than one equilibrium. (Results that we do not discuss identify conditio
under which a game has a unique Nash equilibrium.) Note also that Proposition 20.3 does not apply to any g
which some player has finitely many actions, since such a game violates the condition that the set of actions
every player be conve

* Exercise 20.:

(Symmetric gamég<£onsider a twgperson strategic game that satisfies the conditions of Proposition 20\8=Let
{1, 2} and assume that the gamesjgsnmetric: A= A, and(a1,a2) Z1 (b1, ba) if and only if(a2:31) Za (b2, 81) for all
ac A andbe A, Use Kakutani
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theorem to prove that there is an ac%i € 41 such tha (41:91) is a Nash equilibrium of the game. (Such an
equilibrium is called aymmetric equilibriun) Give an example of a finite symmetric game that has only
asymmetric equilibri

2.5 Strictly Competitive Game:

We can say little about the set of Nash equilibria of an arbitrary strategic game; only in limited classes of gan
can we say something about the qualitative character of the equilibria. One such class of games is that in wh
there are two players, whose preferences are diametrically opposed. We assume for convenience in this

the names of the players are "1" and "2" N = {1,2}).

*Definition 21.1

A strategic gam {{1,2}: (4:), (Z4)) is strictly competitive if for anya € 4 andb € 4 we haves Z1 if and only if
bXaa

A strictly competitive game is sometimes calitiosunbecause if player 1's preference relaXaris represented
by the payoff functiom, then player 2's preference relation is represented With u, + u, = 0.

We say that playarmaxminimizesf he chooses an action that is best for him on the assumption that whatever
does, playey will choose her action to hurt him as much as possible. We now show that for a strictly competiti
game that possesses a Nash equilibrium, a pair of actions is a Nash equilibrium if and only if the action of ea
player is a maxminimizer. This result is striking because it provides a link between individual dexkiog anc
the reasoning behind the notion of Nash equilibrium. In establishing the result we also prove the strong resuls
for strictly competitive games that possess Nash equilibria all equilibria yield the same payoffs. This property
Nash equilibria is rarely satisfied in games that are not strictly compe

*Definition 21.2

Let {{1,2}, (4i), (%)) be a strictly competitive strategic game. The acz” € 41 is amaxminimizer for player 1
if

L) } .
Ef‘n:ul{:: W)= ‘:Illéi‘ﬂﬂll:t,y} for all z € A,

Similarly, the actior¥" € 4z is amaxminimizer for player 2 if

ﬂm{#*v'} = :gﬂ ug(z,y) for all y € Ay.
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In words, a maxminimizer for players an action that maximizes the payoff that playmnguarantee A
maxminimizer for player 1 solves the problem prain, u,(X, y) and a maxminimizer for player 2 solves the

problem maxmin, = u, (X, y).

In the sequel we assume for convenience that player 1's preference relation is represented by a payaff functi
and, without loss of generality, that=-u,. The following result shows that the maxminimization of player 2's
payoff is equivalent to the minmaximization of player 1's pa

e Lemma 22.]

Let ({1,2},(4:), (%)) pe a strictly competitive strategic game. Then
maXye 4, Milzeq, ¥2(2,y) = —minyea, maxzen, w2, ¥) Further, ¥ € 42 solves the proble™aXyed, Minzea, 2(2,Y) if
and only if it solves the proble ™PyeA, MaXzeA, w(z,y),

Proof.

For any functiorf we have mii{-f(z)) = -max f(z) and arg mir{-f(2)) = arg maxf(z). It follows that for every

y € Az we have— Mmibzea, va(z,y) = maxzea, (—ua(z,y)) = maxzeq, mi(2,9) Hence

mMAXyeAy mm:Eahu!{ihy:' = _m-inﬁ!q[‘mln:e.h H‘ll:ff, y]] =—min,e_4, maXze, ul{z,y]; in additiony € As is a
solution of the probler®aXye4s minzea, ¥2(2,¥) if and only if it is a solution of the proble™ifye, MaXzea, t1(Z,y),

The following result gives the connection between the Nash equilibria of a strictly competitive game and the ¢
pairs of maxminimizer

* Proposition 22.:

Let G = {{L, 2} (4:), (%)) pe a strictly competitive strategic ga.
a.If (x',y") is a Nash equilibrium of G ther" is a maxminimizer for player 1 an’ is a maxminimizer for playel.

b.1f (X',y) is a Nash equilibrium of G themax min, u,(x, y) = min, max u,(x, y) = u,(X',y’), and thus all Nash
equilibria of G yield the same payc

c. If max min, u,(x, y) = min, max u,(x, y) (and thus, in particular, if G has a Nash equilibrium (see part b} x
a maxminimizer for player 1, an is a maxminimizer for player 2, tF (x*, y*) is a Nash equilibrium of .

Proof.

We first prove parts (a) and (b). Lat,{) be a Nash equilibrium @®. Then %2(=*,¥") 2 ua(z*,4) for ally € Aa
or, sinceta = —u1, w1(z*,¥") < wi(z*,9) for aly € 42, Hence®(z*,y") = min, uy(z*,y) < max; min, us(z,y),

Similarly, #1(z*,%*) 2 w(z,y")
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for all € A1 and henc1(z*,¥") 2 min, ui(z,9) for all z € 41, so thata(z"¥") 2 maxe miny u1(2,v) Thyusu,(X'y") =
max min, u (X, y) andx' is a maxminimizer for player 1.

An analogous argument for player 2 establishesythiata maxminimzer for player 2 ang(X',y’) = max min, u,
(X, y), so thaw,(X',y’) = min, max u,(X, y).

To prove part (c) let” = max min, u,(, y) = min, max u,(x, y). By Lemma 22.1 we have mamin, u,(X, y) =-V.
Sincex' is a maxminimizer for player 1 we hat{*,%) = v* for all¥ € 4s2; sincey’ is a maxminimizer for
player 2 we havuz(z:¥") 2 =" for all z € Ax. Lettingy =y andx =X in these two inequalities we obtajix<",y’)
=V and, using the fact thaj = -u,, we conclude tha{,y") is a Nash equilibrium d&.

Note that by part (c) a Nash equilibrium can be found by solving the proble, min u,(x, y). This fact is

sometimes useful when calculating the Nash equilibria of a game, especially when the players randomize (se
example Exercise 36..

Note also that it follows from parts (a) and (c) that Nash equilibria of a strictly competitive ga
interchangeabl: if (x, y) and X, y') are equilibria then so arx, y) and x',y).

Part (b) shows that mamin u,(x,y) = min, max u,(x, y) for any strictly competitive game that has a Nash
equilibrium. Note that the inequalimaxs min, u;(z,y) < min, max; u1(z,¥) holds more generally: for angwe have

u(z,y) < maxzui(z,¥) for ally, so thafiny va(2',y) < min, mex, uy(2,4) (1f the maxim and minima are not well
defined then max and rain should be replaced by sup and inf respectively.) @ahygame (whether or not it is
strictly competitive) the payoff that player | can guarantee hersaifmostthe amount that player 2 can hold her
down to. The hypothesis that the game has a Nash equilibrium is essential in establishing the opposite inequ
To see this, consider the gaMatching PenniegFigure 17.3), in which maxmin, u, (X, ) =-1 < min, max u,(X,

y)=1

If max_min, u,(X, y) = min, max u,(X, y) then we say that this payoff, the equilibrium payoff of player 1, is the
value of the game. It follows from Proposition 22.2 that i§ the value of a strictly competitive game then any
equilibrium strategy of player 1 guarantees that her payoff is at least her equilibriumvpagoif any equilibriur
strategy of player 2 guarantees that his payoff is at least his equilibrium paysf that any such strategy of
player 2 guarantees tl
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player I's payoff is at most her equilibrium payoff. In a game that is not strictly competitive a player's equilibrit
strategy does not in general have these properties (consider, for example, BoS (Figu

« Exercise 24..
Let G be a strictly competitive game that has a Nash equilib

a. Show that if some of player 1's payoffSGrare increased in such a way that the resulting ganestrictly
competitive thers' hasno equilibrium in which player 1 is worse off than she was in an equilibriu@ @fote
thatG' may have no equilibrium at a

b. Show that the game that results if player 1 is prohibited from using one of her act®dséas not have an
equilibrium in which player I's payoff is higher than it is in an equilibriurG.

c.Give examples to show that neither of the above properties necessarily holds for a game that is not strictly
competitive

2.6 Bayesian Games: Strategic Games with Imperfect Informatic
2.6.1 Definition:

We frequently wish to model situations in which some of the parties are not certain of the characteristics of s
of the other parties. The model of a Bayesian game, which is closely related to that of a strategic game, is de
for this purpost

As for a strategic game, two primitives of a Bayesian game ard\ao$gtlayers and a profiled() of sets of
actions. We model the players' uncertainty about each other by introducin@ afggssible "states of nature”,
each of which is a description of all the players' relevant characteristics. For convenience we as$uise that
finite. Each player has gorior beliefabout the state of nature given by a probability megsameQ. In any giver
play of the game some state of nalw € { is realized. We model the players' information about the state of
nature by introducing a profile ) of signal functionst,(w) being the signal that playeobserves, before choosi
his action, when the state of naturevid et T, be the set of all possible valuestgiwe refer tor, as the set dypes

of playeri. We assume thi(mi *(t)) >0 for all t € Tk (playeri assigns positive prior probability to every member
of T). If playeri receives the sign:% € Tt then he deduces that the state is in th7 ' (); his posterior belief
about the state that has b
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realized assigns to each stw €  the probability?i(@)/p(r (&) if @ € 77 (4) and the probability zero otherwi
(i.e. the probability ofo conditional or® (). As an example, if (w) = w for allw € @ then playei has full
information about the state of nature. Alternativel¥? = Xi«exTi and for each playérthe probability measune is
a product measure dn andt,(w) = w then the players' signals are independent and plalges not learn from
signal anything about the other players' informa

As in a strategic game, each player cares about the action profile; in addition he may care about the state of
Now, even if he knows the action taken by every other player in every state of nature, a player may be

about the pairg, w) that will be realized given any action that he takes, since he has imperfect information abc
the state of nature. Therefore we include in the model a p{tihf preference relations oviatterieson A x Q
(where, as befordl = ”ieNAi). To summarize, we make the following definiti

*Definition 25.1

A Bayesian gam consists ¢

« a finite seiN (the set oplayers)
« a finite selQ (the set ostate)
and for each play¢i € N

*a setA (the set ohctionsavailable to playei)

«a finite sefT, (the set obignalsthat may be observed by playpand a functior?:ft = Ti (thesignal function of
playeri)

«a probability measung onQ (theprior belief of playeri) for which 27 (t)) > 0 for all t: € Ty

«a preference relatic%+ on the set of probability measures oder Q (thepreference relationof playeri), where
A= xjen4;

Note that this definition allows the players to have different prior beliefs. These beliefs may be related; cc
they are identical, coincident with an "objective" measure. Frequently the model is used in situations in which
state of nature is a profile of parameters of the players' preferences (for example, profiles of their valuations «
object). However, the model is much more general; in Section 2.6.3 we consider its use to capture situations
which each player is uncertain about what the otknow.

Note also that sometimes a Bayesian game is described not in terms of an underlying stQ, but as a
"reduced form" in which tr
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basic primitive that relates to the players' information is the profile of the sets of possibl

We now turn to a definition of equilibrium for a Bayesian game. In any given play of a game each player k
type and does not need to plan what to do in the hypothetical event that he is of some other type. Consec
might think that an equilibrium should be defined for each state of nature in isolation. However, in any given s
a player who wishes to determine his best action may need to hold a belief about what the other players wou
in other states, since he may be imperfectly informed about the state. Further, the formation of such a belief 1
depend on the action that the player himself would choose in other states, since the other players may also
imperfectly informec

Thus we are led to define a Nash equilibrium of a Bayesian game .gif"> is pdgyesterior belief that the state is
wwhen he receives the signala’(j, T,(w)) being the action of playej,{(w)) in the profilea’). Player {, t) in G’
prefers the action profil@® to the action profiléd” if and only if playel in the Bayesian game prefers the lottery
(&', t) to the lotternyL,(b", t). To summarize, we have the following.

*Definition 26.1

A Nash equilibrium of a Bayesian gamd¥: & (42, (Ti)s (), (p), (Z4)} is a Nash equilibrium of the strategic game
defined as follow:

« The set of players is the set of all pairg ) for i € N andt € Ti,

* The set of actions of each playert] is A.

* The preference orderirr;fw of each playeri(t) is defined by

a* Xl ¢ b" if and only if Ly(a®, &) X Li(3%, &),
whereL (&’ t) is the lottery oveA x Q that assigns probabilii Pw@)/pi(7 (t)) 1o (@* U 75(@))sem w) jf @ € 77} (k)
zero otherwist

In brief, in a Nash equilibrium of a Bayesian game each player chooses the best action available to him giver
signal that he receives and
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belief about the state and the other players' actions that he deduces from this signal. Note that to determine \
an action profile is a Nash equilibrium of a Bayesian game we need to know only how each player in the Bay

game compares lotteries oveex Q in which the distribution ove® is the same: a player never needs to compare
lotteries in which this distribution is different. Thus from the point of view of Nash equilibrium the specifice
the players' preferences in a Bayesian game contains more information than is necessary. (This redundancy
analog in a strategic game: to define a Nash equilibrium of a strategic game we need to know only how any
compares any outcoma,(a) with any other outcome(, b).)

2.6.2 Example
* Example 27.:

(Seconeprice auctior) Consider a variant of the secepdce sealeid auction described in Example 18.1 in
which each playerknows his own valuation but is uncertain of the other players' valuations. Specifically,

suppose that the set of possible valuations is the finiié @etl each player believes that every other player's
valuation is drawn independently from the same distribution \@vé/e can model this situation as the Bayesian
game in whic

* the seiN of players is {1,...n}
* the selQ of states V" (the set of profiles of valuatior
« the setA of actions of each playeis B+

* the sefT, of signals that can receive i¥/

« the signal functiom, of i is defined byt,(v,,..., V) =V,

« the prior belief, of i is given byPi(:««1¥a) =IH®(%) for some probability distributior overV

* playeri's preference relation is represented by the expectation of the random variable whose valu®,in.state |
v) is W—maXiem\{} 85 f j is the player with the lowest index for wh@ = @; for all € N, and 0 otherwise.

This game has a Nash equilibriwnin whicha’(i, v) = v, for all i € N and% € V = Ti (each player bids his
valuation). In fact (as in Exercise 18.3) it is a weakly dominant action for each type of each player to bid his
valuation

* Exercise 27..

Two players wish to go out together to a concert of music by either Bach or Stravinsky. As in BoS their main
concern i



Page 2

to go out together; but neither player knows whether the other prefers Bach to Stravinsky, or the reverse. Eac
player's preferences are represented by the expectation of his payoff, the payoffs to pure outcomes being

to those given in Figure 16.1. Model this situation as a Bayesian game and find the Nash equilibria for all pos
beliefs. Show in particular that there are equilibria in which there is a positive probability that the players ¢

to the same conce

* Exercise 28..

(An exchange gam&ach of two players receives a ticket on which there is a number in some finiteSsoftbet
interval [0,1]. The number on a player's ticket is the size of a prize that he may receive. The two prizes are
identically and independently distributed, with distribution funcioiach player is asked independently and
simultaneously whether he wants to exchange his prize for the other player's prize. If both players agree ther
prizes are exchanged; otherwise each player receives his own prize. Each player's objective is to maximize F
expected payoff. Model this situation as a Bayesian game and show that in any Nash equilibrium the highest
that either player is willing to exchange is the smallest possible

* Exercise 28..

Show that more information may hurt a player by constructing gptayer Bayesian game with the following
features. Player 1 is fully informed while player 2 is not; the game has a unique Nash equilibrium, in which pl
2's payoff is higher than his payoff in the unique equilibrium of any of the related games in which he knows pl
1's type

2.6.3 Comments on the Model of a Bayesian Gi

The idea that a situation in which the players are unsure about each other's characteristics can be modeled &
Bayesian game, in which the players' uncertainty is captured by a probability measure over some set of "stat
due to Harsanyi (1967/68). Harsanyi assumes that the prior belief of every player is the same, arguing that al
differences in the players' knowledge should be derived from an objective mechanism that assigns informatic
each player, not from differences in the players' initial beliefs. In Section 5.3 we show that the assumption of
common prior belief has strong implications for the relationship between the players' posterior beliefs. (For
example, after a pair of players receive their signals it cannot be "common knowledge" between them that pl:
believes the probability that the state of nature is in some giver
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bea and that player 2 believes this probability tc# # @, though itis possible that player 1 believes the
probability to bea, player 2 believes it to k3, and one of them is unsure about the other's b

A Bayesian game can be used to model not only situations in which each player is uncertain about the other
players' payoffs, as in Example 27.1, but also situations in which each player is uncertain about the other pla
knowledg.

Consider, for example, a Bayesian game in which the set of playe¢rs {$,2}, the set of states @ = {w,,w,,w,},

the prior belief of each player assigns probab%ity’ each state, the signal functions are defined by

ni{w1) = ni(wz) = &}, nlws) = ¢ gpgra(wr) = t; m(ws) = m{ws) =14 and player 1's preferences satisfy

(&ywj) =1 (ewy) forj = 1, 2 anc(&ws) =1 (bws) for some action profilels andc, while player 2 is indifferent
between all pairsa(w). In statew, in such a game player 2 knows that player 1 préféos, while in statew, he
does not know whether player 1 prefbit® c or c to b. Since in stateo, player 1 does not know whether the state
IS w, orw,, she does not know in this case whethepl@yer 2 knows that she preférso c, or (i) player 2 is not
sure whether she prefebtocorctob.

Can every situation in which the players are uncertain about each other's knowledge be modeled as a Bayes
game? Assume that the players' payoffs depend only on a par® € 8eDenote the set of possible beliefs of
each player by X. Then a belief of any playgis a probability distribution ove® x X .. That is, the set of beliefs

of any player has to be defined in terms of the sets of beliefs of all the other players. Thus the answer to the
guestion we posed is not trivial and is equivalent to the question of whether we can find a cdXstiemof

sets with the property that for if € N the seX is isomorphic to the set of probability distributions o®@ex X_. If

so, we can lef? =8 x (xienXi) pe the state space and use the model of a Bayesian game to capture any si

which players are uncertain not only about each other's payoffs but also about each other's beliefs. A positive
answer is given to the question by Mertens and Zamir (1985); we omit the ar

Notes

The notion of an abstract strategic game has its origins in the work of Borel (1921) and yon Neumann (1928)
notion of Nash equilibrium was formalized in the context of such a game by Nash (1950a-
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sic idea behind it goes back at least to Cournot (1838). The idea of the proof of Proposition 20.3 originated w
Nash (1950a, 1951) and Glicksberg (1952), though the results they prove are slightly different. As stated

is similar to Theorem 3.1 of Nika@cand Isoda (1955). The idea of maxminimization dates back at least to tf
eighteenth century (see Kuhn (1968)). The main ideas of Proposition 22.2 are due to von Neumann (1928); t
theory of strictly competitive games was developed by yon Neumann and Morgenstern (1944). Bayesian gan
were defined and studied by Harsanyi (1967

ThePrisoner's Dilemmappears to have first entered the literature in unpublished papers by Raiffa (in 1951) a
Flood (in 1952, reporting joint work with Dresher); the standard interpretation of the game is due to Tucker (s
Raiffa (1992, p. 173)). BoS is due to Luce and Raiffa (193&vk-Doveis known also as "Chicken". Auctions
(Examples 18.1 and 27.1) were first studied formally by Vickrey (1961). The war of attrition in Example 18.4 i
due to Maynard Smith (1974), the location game in Example 18.6 is due to Hotelling (1929), and the game in
Exercise 28.1 is due to Brims, Kilgour, and Davis (1¢
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3
Mixed, Correlated, and Evolutionary Equilibrium

In this chapter we examine two concepts of equilibrium in which the players' actions are not deterministic: mi
strategy Nash equilibrium and correlated equilibrium. We also briefly study a variant of Nash equilibrium ¢
to model the outcome of an evolutionary proc

3.1 Mixed Strategy Nash Equilibrium
3.1.1 Definition:

The notion of mixed strategy Nash equilibrium is designed to model a steady state of a game in which the
participants' choices are not deterministic but are regulated by probabilistic rules. We begin with formal
definitions, then turn to their interpretati

In the previous chapter we define a strategic game to be atls (4 (Zd)) where the preference relati%a of

each player is defined over the s4 = xien4: of action profiles (Definition 11.1). In this chapter we allow the
players' choices to be nondeterministic and thus need to add to the primitives of the model a specification of
player's preference relation ovetteriesonA. Following the current convention in game theory, we assume that
the preference relation of each playsatisfies the assumptions of yon Neumann and Morgenstern, so that it ca
be represented by the expected value of some furui: A — R Thus our basic model of strategic interaction in

this chapter is a tripl{f"ri (4i)y (w)) that differs from a strategic game as we previously defined it iruwi: A = R
for eachi € N is a function whose expected value represents pilayereferences over the setateriesonA.
Nevertheless, we refer to the model simply strategic game.
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Let G = (N,(4), (%)} be such a strategic game. We denotA(dy) the set of probability distributions ovArand

refer to a member di(A) as amixed strategy of playeri; we assume that the players' mixed strategies are
independent randomizations. For clarity, we sometimes refer to a menfasadpure strategy. For any finite

setX and® € A(X) we denote by(x) the probability thad assigns ta O X and define thsupportof 3 to be the

set of elements O X for which3(x) > 0. A profile (@)ien of mixed strategies induces a probability distribution
over the sef; if, for example, each is finite then given the independence of the randomizations the probability

of the action profiles = (8;)sen is Mienaj(ay), so that playei's evaluation ol@i)ien 8 Laea (Mienas(a;)) uila)

We now derive fronG another strategic game, called the "mixed extensio@®, of which the set of actions of
each player is the sef\(A) of his mixed strategies B.

*Definition 32.1

Themixed extensionof the strategic gam{®: (4i): (%)) is the strategic gan{™ (A(4:)), (T3} in whichA(A) is the
set of probability distributions ove, andli: XjenA(45) = R assigns to eac® € *jen&(4;) the expected value
underu, of the lottery oveA that is induced by (so thatia) = 2aea Mienas(as)) wla) if A s finite).

Note that each of the functioU, is linear ina. That is, for any two mixed strategy profiesand3 and any
number* € [0:1] we haveU,(A\a + (1- A)B) = AU,(a) + (1-A)U,(B). Note also that in the case in which eAcls
finite we haw

Ui(e) = Y aufa)Us(a—s,e(as)) (322)

=

for any mixed strategy profile, wheree(a) is the degenerate mixed strategy of playtbat attaches probability
one toas € 4;.

We now define the main equilibrium notion we study in this che
*Definition 32.3

A mixed strategy Nash equilibrium of a strategic gam is a Nash equilibrium of its mixed extens

Suppose the®" € *jen&(4;) is a mixed strategy Nash equilibrium@ = V(4 (%)) in which each playeits
mixed strateg'ai is degenerate in the sense that it assigns probability one to a single meaay®—of Ai. Then
sinceA can be identified with a subset&fA), the action profile&’ is a Nash equilibrium d&. Conversely,

suppose tha’ is a Nash equilibrium d&. Then by the linearity af, in o, no
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probability distribution over actions #y yields playei a payoff higher than that generatedf,{'f?:', and thus the
profile (e(af)) is a mixed strategy Nash equilibriumG.

We have just argued that the set of Nash equilibria of a strategic game is a subset of its set of mixed strateg
equilibria. In Chapter 2 we saw that there are games for which the set of Nash equilibria is empty. There are
games for which the set of mixed strategy Nash equilibria is empty. However, every game in which each
finitely many actions has at least one mixed strategy Nash equilibrium, as the following resu

* Proposition 33.
Every finite strategic game has a mixed strategy Nash equili.

Proof.

Let G = (N, (4), (%)) be a strategic game, and for each playerm be the number of members of the AefThen

we can identify the sé(A) of playeri's mixed strategies with the set of veclP1s: 1 Pm) for wiPk 2 0 for

all k and Zre: Pk = 1 (p, being the probability with which playeuses hikth pure strategy). This set is nonempty,
convex, and compact. Since expected payoff is linear in the probabilities, each player's payoff function in the

mixed extension o6 is both quastoncave in his own strategy and continuous. Thus the mixed extenston of
satisfies all the requirements of Proposition 2

Essential to this proof is the assumption that the set of actions of each player is finite. Glicksberg (1952) ¢

a game in which each action set is a convex compact subset of a Euclidian space and each payoff function is
continuous has a mixed strategy Nash equilibrium. (If each player's payoff function is alscogease in his

own action then Proposition 20.3 shows that such a game has a pure strategy Nash eq

The following result gives an important property of mixed strategy Nash equilibria that is useful when calculat
equilibria

e Lemma 33.C

Let G = (N, (A1), (w)) be a finite strategic game. The@™ € *ienA(4) js a mixed strategy Nash equilibrium of G if
and only if for every play i € N every pure strategy in the suppori®i is a best response aZ;,

Proof.

First suppose that there is an actipim the support 0@ that is not a best response@=i. Then by linearity ofJ
in a, (see (32.2)) playarcan increase his payoff by transferring probability flit® an action thas a best
response; henc® is not a best response@=;.
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Second suppose that there is a mixed stre®kgy  that gives a higher expected payoff 1% iind@sponse to
@i Then again by the linearity tf at least one action in the supporaifmust give a higher payoff than some

action in the support &, so that not all actions in the suppor® are best responses®=i.

It follows thatevery action in the support of any player's equilibrium mixed strategy yields that player the sam
payoft

If the set of actions of some player is not finite the result needs to be modified. In this' ¢Gasemixed strategy
Nash equilibrium oG if and only if {) for every playeri no action inA yields, giver®Z+, a payoff to player that

exceeds his equilibrium payoff, arit) the set of actions that yield, giv@=, a payoff less than his equilibrium
payoff hasi-measure zorq

Note that the assumption that the players' preferences can be represented by expected payoff functions
role in these characterizations of mixed strategy equilibrium. The results do not necessarily hold for other the
of decisior-making under uncertain

3.1.2 Example
The following example illustrates how one can find mixed strategy Nash equilibria of finite
* Example 34.:

(Bo9 Consider the game BoS, reproduced in the top of Figure 35.1. In Chapter 2 we interpreted the payoffs
playeri in this table as representing playsrpreferences over the set of (pure) outcomes. Here, given our intere
in mixec strategy equilibria, we interpret the payoffs as yon Neu-Morgenstern utilitie:

As we noted previously this game has two (pure) Nash equiliBii®) @nd &, $, whereB = BachandS =
Stravinsky Suppose that(, a,) is a mixed strategy Nash equilibriumolfB) is zero or one, we obtain the two

pure Nash equilibria. If O &,(B) < 1 then, give,, by Lemma 33.2 player 1's actioB&ndS must yield the san
payoff, so that we must have 2ZB) - a,(S) and thu@(B) = §_ Since 0 <0,(B) < 1 it follows from the same result
that player 2's actiorB andS must yield the same payoff, so tlea(B) = 20,(S), or®1(B) =} Thus the only
nondegenerate mixed strategy Nash equilibrium of the ga“%*'a"]rf%-%”.

Itis iIIuminating to construct the players' best response functions in the mixed extension of this game. If
0 < 0a(B) < § then player 1
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Bach Stravinsky

Bach 2,1 0,0
Stravinsky 0,0 1,2
r 1 —
az(H) |
|
By I
I
|
N I S |
3 Bl
1
i
i |
0 i 1
«(B) —
Figure 35.1

The strategic game BoS (top) and the players' best response
functions in the mixed extension of this game (bottom). The
best response function of player 1 is given by the dashed line; that
of player 2 is given by the solid line. The small disks indicate the
two pure strategy Nash equilibria and the mixed strategy
Nash equilibriurr

unique best response hasa,(B) = 0; if § < @a(B) < lihen her unique best response iigB) = 1; and if*? = 3
then, as we saw abowa| of her mixed strategies are best responses. Making a similar computation for pla
obtain the functions shown at the bottom of Figure

* Exercise 35..

(Guess the averay&ach of n people announces a number in the setK}, A,prize of $1 is split equally
between all the people whose number is close 3tabthe average number. Show that the game has a unique
mixed strategy Nash equilibrium, in which each player's strategy is

* Exercise 35.;

(An investment rageTwo investors are involved in a competition with a prize of $1. Each investor can spend a
amount in the interval [0,1]. The winner is the investor who spends the most; in the event of a tie each invest
receives $0.50. Formulate this situation as a strategic game and find its mixed strategy Nash equilil
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that the players' payoff functions are discontinuous, so that Glicksberg's result does not apply; nevertheless t
game has a mixed strategy Nash equilibri

In Section 2.5 we define and study the class of strictly competitive games. We show (Proposition 22.2) that ir
strictly competitive strategic game that has a Nash equilibrium the set of equilibria coincides with the set «
maxminimizers. This fact can be used to find the set of mixed strategy Nash equilibria of games whose mixet
extensions are strictly competitive. (Note that the fact that a game is strictly competitive does not imply that it
mixed extension strictly competitive. To see this, consider a game in which there are three possible atjtcome:
a2, anda®. Then we may hav ' =1 @® =1 ¢® anda® =2 @ =3 @', 50 that the game is strictly competitive, while
bothplayers may prefea? to the lottery in whicta! anda® occur with equal probabilities, so that its mixed
extension is not strictly competitiv

* Exercise 36..

(Guessing rightPlayers 1 and 2 each choose a member of the sekfll |f the players choose the same number
then player 2 pays $1 to player 1; otherwise no payment is made. Each player maximizes his expected mone
payoff. Find the mixed strategy Nash equilibria of this (strictly competitive)

* Exercise 36..

(Air strike) Army A has a single plane with which it can strike one of three possible targetsBArasyone arti
aircraft gun that can be assigned to one of the targets. The value oktangewith v, >v, >v, > 0. ArmyA can
destroy a target only if the target is undefendedAaattacks it. ArmyA wishes to maximize the expected value of
the damage and army B wishes to minimize it. Formulate the situation as a (strictly competitive) strategic
find its mixed strategy Nash equilibi

* Exercise 36..

Show the following mathematical result, which we use in Exercise 64.2. For any two compact convexXsubset:
andY of R* there exisz* € X and¥” € ¥ such tha® "¥<%" ¥ =<z-y" for all z€ X andv €Y. (You can prove

this result either by appealing to the existence of a Nash equilibrium in a strategic game (Proposition 20.3), o
the following elementary argument (which avoids the implicit use of Kakutani's fixed point theorent}) hatl(

(y¥) be sequences denseXmmandY respectively, and for each positive integaonsider the strictly competitive
game in which each player hasctions and the payoff function of player 1 is giverulfy j) =X - yi; use
Propositions 33.1 and 22.
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3.2 Interpretations of Mixed Strategy Nash Equilibrium

In this section we discuss a number of interpretations of mixed strategy equilibrium. We disagree on some pc
paragraphs that express the views of only one of us are preceded by that author

3.2.1 Mixed Strategies as Objects of Che

Viewed naively, a mixed strategy entails a deliberate decision by a player to introduce randomness into his
behavior: a player who chooses a mixed strategy commits himself to a random device that probabilistically se
members of his set of actions. After all the players have so committed themselves, the devices are operated
action profile is realized. Thus each playehooses a member &fA) in the same way that he chooses a membel
of A in the strategic games discussed in Chapter 2.

There certainly are cases in which players introduce randomness into their behavior. For example, players
randomly "bluff" in poker, governments randomly audit taxpayers, and some stores randomly offer ¢

AR However, the notion of a mixed strategy equilibrium in a strategic game does not capture the players'
motivation to introduce randomness into their behavior. Usually a player deliberately randomizes in order to
influence the other players' behavior. Consider, for example, the children's versiattbing Pennie$Example
17.1) in which the players choose to display an odd or even number of fingers. This game is classically used
motivate the notion of mixed strategy equilibrium, but randomization is a bizarre description of a player's
deliberate strategy in the game. A player's action is a response to his guess about the other player's choi

is a psychological operation that is very much deliberate and not random. Alternatively, consider another exa
often given to motivate mixed strategy equilibrium, namely the relationship between the tax authorities and a
taxpayer. The authorities' aim is to deter the taxpayer from tax evasion; considerations of cost lead them to a
only randomly. They would like the taxpayer to know their strategy and are not indifferent between a strategy
which they audit the taxpayer and one in which they do not do so, as required in a mixed strategy equilibrium
situation should be modeled as a game in which the authorities first choose the probability of auditing, and th
being informed of this probability, the taxpayer takes an action. In such a model the set of possible randomiz:
Is the set of pure strategi



Page 3

MJO The main problem with interpreting a player's equilibrium mixed strategy as a deliberate choice is the fa
that in a mixed strategy equilibrium each player is indifferent between all mixed strategies whose supports ar
subsets of her equilibrium strategy: her equilibrium strategy is only one of many strategies that yield her the <
expected payoff, given the other players' equilibrium behavior. However, this problem is not limited to mixed
strategy equilibria. For example, it afflicts equilibria in many sequential games (including all repeated games)
which a player is indifferent between her equilibrium strategy and mangaahbrium strategies. Further, in
some games there may be other reasons to choose an equilibrium mixed strategy. In strictly competitive gan
example, we have seen that an equilibrium mixed strategysimetyy maximize the payoff that a player can
guarantee. (This is so, for exampleMatching Pennie$ Finally, the ingenious argument of Harsanyi (1973)
(considered below in Section 3.2.4) provides some relief from this feature of an equilibrium mixed

MJO It seems likely that the mixed strategy equilibriunMatching Penniegprovides a good description of the
steady state behavior of players who play the game repeatedly against randomly selected opponents. In sucl
situation a player has no way of guessing the action of her opponent in any particular encounter, and it is
reasonable for her to adopt the strategy that maximizes the payoff that she can guarantee. If two players inte
repeatedly then the psychology of guessing may offer insights into their behavior, though even in this case th
mixed strategy equilibrium of the game may provide a good description of their behavior. The tax auditing
situation can equally well be modeled as a strategic game in which the choices of the players are simulta
equilibrium audit probability chosen by the authorities is the same in this game as it is in the game in which tt
authorities move first; given the behavior of the taxpayer, the authorities are indifferent between auditin

3.2.2 Mixed Strategy Nash Equilibrium as a Steady S

In Chapter 2 we interpreted a Nash equilibrium as a steady state of an environment in which players act repe
and ignore any strategic link that may exist between plays. We can interpret a mixed strategy Nash equilibriu
similarly as a stochastic steady state. The players have information about the frequencies with which actions
taken in the past ("80% of the time a player in the role of player 1 in this
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took the actiora, and 20% of the time such a player took the adijty each player uses these frequencies to

his belief about the future behavior of the other players, and hence formulate his action. In equilibrium these
frequencies remain constant over time and are stable in the sense that any action taken with positive probab
a player is optimal given the steady state be

A mixed strategy equilibrium predicts that the outcome of a game is stochastic, so that for a single play of a ¢
its prediction is less precise than that of a pure strategy equilibrium. But as we argued in Section 1.5, the
theory is to explain regularities; the notion of mixed strategy equilibrium captures stochastic re

A variant of this interpretation is based on an interpretation af@dayer game as a model of the interaction of
large populations. Each occurrence of the game takes place plégrers are randomly drawn, one from each
population. The probabilities in playeés equilibrium mixed strategy are interpreted as the steady state frequenc
with which the members @& are used in thegh population. In this interpretation the game is a reduced form of a
model in which the populations are described expli

An assumption that underlies the steady state interpretation is that no player detects any correlation among t
other players' actions or between the other players' actions and his own behavior. Removing this assumption
to the notion of correlated equilibrium, which we discuss in Sectio

3.2.3 Mixed Strategies as Pure Strategies in an Exended (

Before selecting his action a player may receive random private information, inconsequential from the point c
view of the other players, on which his action may depend. The player may not consciously choose the conn:
between his action and the realization of his private information; it may just happen that there is a correlation
between the two that causes his action to appear to be "random” from the point of view of another player
observer. In modeling a player's behavior as random, a mixed strategy Nash equilibrium captures the depent
of behavior on factors that the players perceive as irrelevant. Alternatively, a player may be aware that exterr
factors determine his opponents' behavior, but may find it impossible or very costly to determine the relations
(For the same reason we model the outcome of a coin toss as random rather than describe it as the result of
interaction of it
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starting position and velocity, the wind speed, and other factors.) To summarize, a mixed strategy Nash
equilibrium, viewed in this way, is a description of a steady state of the system that reflects elements missing
the original description of the gar

To be more concrete, consider the game BoS (Example 34.1). As we saw, this game has a mixed strategy N

equilibrium{3:3) 3+ 1)) Now suppose that each player has three possible 'moods.gif", determined by factors |
does not understand. Each player is in each of these moottsirohef the time, independently of the other
player's mood; his mood has no effect on his payoff. Assume that player 1 dBaocsedenever she is in moods
1 or 2 andStravinskywhen she is in mood 3, and player 2 cho®&ssshwhen he is in mood | arstravinskywhen

he is in moods 2 or 3. Viewing the situation as a Bayesian game in which the three types of each player corre
to his possible moods, this behavior defines a pure strategy equilibrium corresponding exactly to the mixe
Nash equilibrium of the original game BoS. Note that this interpretation of the mixed strategy equilibrium «
depend on each player's having three equally likely and independent moods; we need the players' private
information only to be rich enough that they can create the appropriate random variables. Nevertheless, the
requirement that such an informational structure exist limits the interpre

AR There are three criticisms of this interpretation. First, it is hard to accept that the deliberate behavior o
depends on factors that have no effect on his payoff. People usually give reasons for their choices; in any
situation a modeler who wishes to apply the notion of mixed strategy equilibrium should point out the reason:
are payoff irrelevant and explain the required dependency between the player's private information and

MJO In a mixed strategy equilibrium each player is indifferent between all the actions in the support of her
equilibrium strategy, so that it is not implausible that the action chosen depends upon factors regarded by the
modeler as "irrelevant”. When asked why they chose a certain action from a set whose members are equally
attractive, people often give answers like "l don't k—I just felt like it".

AR Second, the behavior predicted by an equilibrium under this interpretation is very fragile. If a manager's
behavior is determined by the type of breakfast he eats, then factors outside the model, such as a change in
or the price of eggs, may change the frequency with which he chooses his actions, thus inducing changes in
beliefs of the other players and causing instak
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MJO For each structure of the random events there is a pattern of behavior that leasizn@eheilibrium. For
example, if, before an increase in the price of eggs, there was an equilibrium in which a manager offered

on days when she ate eggs for breakfast and got up beforew/, 8@n after the price increase there may be an
equilibrium in which she offers the discount when she eats eggs and gets up bhefodt& the price change h

old pattern of behavior is no longer a best response to the other players' strategies; whether or not the syster
adjust in astableway to the new equilibrium depends on the process of adjustment. A mixed strategy Nash
equilibrium is fragile in the sense that the players have no positive incentive to adhere to their equilibrium pat
of behavior (since the equilibrium strategies areumquelyoptimal); beyond this, an equilibrium under this
interpretation is no more fragile than under any other interpretation. (And, once again, this is a problem that i
addressed by Harsanyi's model, discussed in the next se

AR Third, in order to interpret an equilibrium of a particular problem in this way one needs to indicate the "rec
life" exogenous variables on which the players base their behavior. For example, to interpret a mixed stra
equilibrium in a model of price competition one should both specify the unmodeled factors that serve as the &
for the firms' pricing policies and show that the information structure is rich enough to span the set of all mixe
strategy Nash equilibria. Those who apply the notion of mixed strategy equilibrium rarel

MJO A player in the world has access to a multitude of random variables on which her actions may depend:
time she wakes up in the morning, the "mood" she is in, the time her newspaper is delivered, .... The structur
these random variables is so rich that it is unnecessary to spell them out in every application of the theory. T
interpret mixed strategies as pure strategies in a larger game nicely captures the idea that the action chosen
player may depend on factors outside the m

3.2.4 Mixed Strategies as Pure Strategies in a Perturbed C

We now present a rationale for mixed strategy equilibrium due to Harsanyi (1973). A game is viewed as a
frequently occurring situation in which the players' preferences are subject to small random variations. (Thus.
the argument of the previous section, random factors are introduced, but here they aneleayoftf) In each
occurrence ¢
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the situation each player knows his own preferences but not those of the other players. A mixed strategy
equilibrium is a summary of the frequencies with which the players choose their actions o

Let .gif">. (Note that each player has infinitely many tyj

Harsanyi's main result (1973, Theorems 2 and 7) is that for almost anyGyanaany collectione* of random
variables satisfying the conditions above, almost any mixed strategy Nash equilibfuistbe mixed strategy
profile associated with the limit, as the syzef the perturbation vanishes, of a sequence of pure strategy equilibl

of the Bayesian gam@(7€") in each of which the action chosen by each typtristly optimal. Further, the limit
of any such convergent sequence is associated with a mixed strategy equilid@rlananyi (1973, Theorem
5)). That is, when the random variations in payoffs are small, almost any mixed equilibrium of the Fartaese
to a pure equilibrium of the associated Bayesian gameiaadersaWe say that a mixed strategy equilibrium of
G with this property ispproachableundere*. (Because of the relative mathematical complexity of these rest
do not include proofs

* Exercise 41..

Consider tweplayer games in which each playdras two pure strategies,andb. Letd fori =1, 2 be
independent random variables, each uniformly distributedloh][ and let the random variabl&(a) fori =1, 2
anda € A have the property th€1(a1,2) = €(81,2) = 81 o x = g b, and€2(®:02) — €(@,b2) = b2 for x = g ..

a. Show that all the equilibria Bo< (Example 15.3) are approachable ure.



Page 4

b. For the game in whicty(a,, a,) = 1 fori = 1, 2 and all other payoffs are zero, show that only the pure strategy
Nash equilibriuma,,a,) is approachable unda&r

c. For the game in whicha(a) = O fori = 1, 2 and ala € A, show that only the mixed strategy Nash equilibrium a

in which @i(a:) = alb:) = § forj = 1, 2 is approachable unce=r(Other equilibria are approachable under other
perturbations

Thus Harsanyi's rationale for a mixed strategy equilibrium is that even if no player makes any effort to use his
strategies with the required probabilities, the random variations in the payoff functions induce each player to

choose his pure strategies with the right frequencies. The equilibrium behavior of the other players is such th
player who chooses the uniquely optimal pure strategy for each realization of his payoff function chooses his
actions with the frequencies required by his equilibrium mixed str:

MJO Harsanyi's result is an elegant response to the claim that a player has no reason to choose her equilibri
mixed strategy since she is indifferent between all strategies with the same support. | argued above that for s
games, including strictly competitive games, this criticism is muted, since there are other reasons for players
choose their equilibrium mixed strategies. Harsanyi's result shows that in aljgstme the force of the

criticism is limited, since almost any mixed strategy Nash equilibrium is close to a strict pure strategy equilibr
of any perturbation of the game in which the players' payoffs are subject to small random ve

3.2.5 Mixed Strategies as Belit

Under another interpretation, upon which we elaborate in Section 5.4, a mixed strategy Nash equilibrium is a
profile B of beliefs in whichf3, is thecommorbelief of all theother players about playe's actions, with the
property that for each playeeach action in the support @fis optimal giverf3,. Under this interpretation each

player chooses a single action rather than a mixed strategy. An equilibrium is a steady state of the players' b
not their actions. These beliefs are required to satisfy two properties: they are common among all players ant
consistent with the assumption that every player is an expected utility max

If we were to start from this idea, we would formulate the notion of equilibrium as fc
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*Definition 44.1

A mixed strategy Nash equilibriuaf a finite strategic game is a mixed strategy prafilsvith the property that
for every playei every action in the support i is a best response @,

Lemma 33.2 shows that this definition is equivalent to our previous definition (32.3) and thus guarantees that
idea is indeed an interpretation of mixed strategy equilib

Note, however, that when we interpret mixed strategy equilibrium in this way the predictive conte

equilibrium is small: it predicts only that each player uses an action that is a best response to the equilibrium
beliefs. The set of such best responses includes any action in the support of a player's equilibrium mixed stre
and may even include actions outside the support of this st

3.3 Correlated Equilibrium

In Section 3.2.3 we discuss an interpretation of a mixed strategy Nash equilibrium as a steady state in which
player's action depends on a signal that he receives from "nature". In this interpretation the signals are privat
independen

What happens if the signals are not private and independent? Suppose, for example, that in BoS (see Figure

both players observe a random variable that takes each of the two xaloeg with probability‘}. Then there is a
new equilibrium, in which both players chodda&chif the realization i andStravinskyif the realization ig.
Given each player's information, his action is optimal: if the realizatiothisn he knows that the other player
chooseBact, so that it is optimal for him to chooBacl, and symmetrically if the realizationy.

In this example the players observe the same random variable. More generally, their information may be leas
perfectly correlated. Suppose, for example, that there is a random variable that takes the three/yvahdzs

and player 1 knows only that the realization is either that it is a member ofy/{ z}, while player 2 knows only

that it is either a member ok{y} or that it isz. That is, player 1'mformation partition is{{ x}, { y, Z} and player
2'sis {{x, ¥}, { Z}. Under these assumptions a strategy of player | consists of two actions: one that she uses w
she knows that the realizationxisind one that she uses when she knows that the realization is a menybe. of {
Similarly, a strategy of player 2 consists of two actions, onexortfand one forz. A player's strategy is optimal

if, given the strategy of the other pla
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for any realization of his information he can do no better by choosing an action different from that dictated by
strategy. To illustrate how a player uses his information in choosing an optimal action, suppose that the
probabilities ofy andz aren and{ and player 2's strategy is to take the acéighhe knows that the realization is

in {X, y} and b, if he knows that the realizationasThen if player 1 is informed that eitheor z has occurred he

chooses an action that is optimal given that player 2 chagseéth probabilityn/(n+ ¢) (the probability ofy
conditional on §,2) and b, with probability{/(n+ ).

These examples lead us to the following notion of equilibi

*Definition 45.1

A correlated equilibrium of a strategic game (N, (4, (u)) consists ¢
« a finite probability spaceQ, m) (Q is a set ostates andrtis a probability measure Q)
«-for each playei € N a partition'Pi of Q (playeri'sinformation partition )

« for each playei € N a functiones:® = Ai with o,(w) = 6,(w') whenevew € Fiandw' € F for someP: € P
(ais playeri's strategy)

such that for ever i € N and every functiom: 9 = 4; for whicht,(w) = 1,(w) whenevew € P andw’ € F; for
someFs € i (j.e. for every strategy of playi) we hav

> mlwhi(o-iw)ouw)) 2 ) mlwlm(e_iw)mw).  (45.2)

wel wel

Note that the probability space and information partition are not exogenous but are part of the equilibri
also that (45.2) is equivalent to the requirement that for everyusthig occurs with positive probability the
actiono,(w) is optimal given the other players' strategies and pl&y/knowledge aboub. (This equivalence
depends on the assumption that the players' preferences obey expected utility

We begin by showing that the set of correlated equilibria contains the set of mixed strategy Nash «

 Proposition 45.:

For every mixed strategy Nash equilibriia of a finite strategic gam'f!""  (A4), (w)) there is a correlated
equilibrium (%), (Ps(o4) in which for each playet € N the distribution on Ainduced byo, is a..
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Proof.

Let =4 (= xjen4;) and defingtby 7(@) = jenas(a;) For eacti € N and b € A let Pilbi) = {a € A:a; = b} anqg
let Ps consist of theA| setsP,(b). Definec, by o,(a) = a for eachs € 4. Then{(®7),(Pi) ()} is a correlated
equilibrium since (45.2) is satisfied for every strategthe lefthand side is playals payoff in the mixed strategy

Nash equilibriurra and the righthand side is his payoff when he uses the mixed strategy in which he chooses
actiont,(a) with probabilitya,(a) and every other playg¢uses the mixed strategy. Further, the distribution of,

induced byo; isa..
The following example is a formal expression of the example with which we began this

* Example 46.:

The three mixed strategy Nash equilibrium payoff profiles in BoS (see Example 34.1) are (2,1), (ﬁ:,%,]amj
addition one of the correlated equilibria yields the payoff prﬁ,-,%}: let
@ = {z,v}, 7(z) = 7ly) = § Pr = P2 = {{z}h {}}, ou() = Bach 5 (y) = Stravinskyfor i = 1, 2. One

interpretation of this equilibrium is that the players observe the outcome of a public coin toss, which determin
which of the two pure strategy Nash equilibria they |

This example suggests the following re:
* Proposition 46.:

Let@ = (I, (4:), () be a strategic game. Any convex combination of correlated equilibrium payoff profiles
a correlated equilibrium payoff profile of.

Proof.

Let ut,... 1 be correlated equilibrium payoff profiles and(,...,A¥) € R¥ yjth A* > 0 for all k and
Yie1 X =1 For each value dflet {8 7), (P, (@)} pe a correlated equilibrium that generates the payoff p
uk; without loss of generality assume that the S&tare disjoint. The following defines a correlated equilibriun
which the payoff profile it Zk=1 X*u* Let ® = Us* and for anw € @ definert by T(w) = Ari(w) wherek is suct
thatw € R*. For eacti € N let Ps = UsP¥ and defines by %(@) = of(@) wherek is such thaw € o* .

We can interpret the correlated equilibrium constructed in this proof as follows: first a public random device
determines which of thi€ correlated equilibria is to be played, and then the random variable corresponding to
kth correlated equilibrium is realiz¢

sExample 46.:

Consider the game in the léfand side of Figure 47.1. The Nash equilibrium payoff profiles are (2, 7) and (7,2)
(pure) an
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L R L R

T |6,6|27 T|y|=

B|7,2|00 B|lxz| -
Figure 47.1

An example of a correlated equilibrium. On the left is a strategic
game. The table on the right gives the choices of the players as a
function of the state in a correlated equilibrium of the g

(43,43) (mixed). The following correlated equilibrium yields a payoff profile that is outside the convex hull of
these three profiles. L& = {x, y, 3, and™@) = #@) = 7(2) = §. et player 1's partition be &, {y, Z}} and player
2's be {{x, y}, { Z}. Define the strategies as follows;(x) = B ando,(y) =0,(2) =T, 0,(X) =0>,(y) =L ando,(2) =

R. (The relation between the choices and the states is shown in thieanighside of Figure 47.1.) Then player 1's
behavior is optimal given player 2's: in stat@layer 1 knows that player 2 plalysnd thus it is optimal for her to
play B; in states/ andz she assigns equal probabilities to player 2 uksiagdR, so that it is optimal for her to pl

T. Symmetrically, player 2's behavior is optimal given player 1's, and hence we have a correlated equilibrium
payoff profile is (5, 5

This example, in which we can identify the set of states with the set of outcomes, suggests the follow

 Proposition 47..

Let G = (N, (A1), () pe a finite strategic game. Every probability distribution over outcomes that eau be obtair
in a correlated equilibrium of G can be obtained in a correlated equilibrium in which the set of states is A and

eacti € N player i's information partition consists of all sets of the 1 {2 € 4:@ =&} for some actio b € 4.
Proof.

Let {(m), (Pi), (e3)) pe a correlated equilibrium & Then{®:):(Pi: (e} is also a correlated equilibrium, whi
Q' = A, ™(6) = 7({w € Ro(w) = a}) for eachs € 4 Pi consists of sets of the ty {8 € 4:ai = b} for somebi € Ai
and®i is defined byoi(a) =ai,

This result allows us to confine attention, when calculating correlated equilibrium payoffs, to equilibria in whic
the set of states is the set of outcomes. Note however that such equilibria may have no natural inte
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L R L R’ L R

T|003|000| T|222|000| T]000]|o0,00

8| 1,0,0 | 0,0,0 B|0,0,0] 222 B | 0,1,0| 0,0,3

A B C

Figure 48.1
A threeplayer game. Player 1 chooses one of the two rows, player 2 chooses
one of the two columns, and player 3 chooses one of the three

In the definition of a correlated equilibrium we assume that the players share a common belief about the
probabilities with which the states occur. If there is a random variable about which the players hold different
beliefs then additional equilibrium payoff profiles are possible. Suppose, for example, that player 1 is sure the
teamT, will beat teanl, in some contest, while player 2 is sure that t&amill win. Then there is an equilibrium
of BoS (Example 34.1) in which the outcomeBsi¢h, Bachif T, wins and §travinsky, Stravinskyf teamT,

wins, which gives each player an expected payoff of 2! (In Section 5.3 we show that it cannot be common
knowledge between two players that their beliefs differ in the way we have just assumed if they have the san
priors.’

* Exercise 48..

Consider the threplayer game with the payoffs given in Figure 48.1. (Player 1 chooses one of the two rows,
player 2 chooses one of the two columns, and player 3 chooses one of the thre

a. Show that the pure strategy equilibrium payoffs are (1,0,0), (0,1,0), and

b. Show that there is a correlated equilibrium in which player 3 ch@aed players 1 and 2 play,(L) and B,R
with equal probabilitie:

c. Explain the sense in which player 3 prefers not to have the information that players 1 and 2 use to coordin:
their actions

3.4 Evolutionary Equilibrium

In this section we describe the basic idea behind a variant of the notion of Nash equilibriurevcdligdnary
equilibrium This notion is designed to model situations in which the players' actions are determined by the fo
of evolution. We confine the discussion to a simple case in which the members of a single population of orga
(animals, hume
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beings, plants, ...) interact with each other pairwise. In each match each organism takes an action B.ohine set
organisms do not consciously choose actions; rather, they either inherit modes of behavior from their forebee
are assigned them by mutation. We assume that there is a funtti@mnmeasures each organism's ability to

survive: if an organism takes the actewhen it faces the distributighof actions in the population of its
potential opponents, then its ability to survive is measured by the expectati@@funderf. This description
corresponds to a twplayer symmetric strategic gar{{,l* 2},(B, B), (u:)) whereu,(a, b) = u(a, b andu,(a, b = u(b,

a).

A candidate for an evolutionary equilibrium is an actioB.ifhe notion of equilibrium is designed to capture a
steady state in which all organisms take this action and no mutant can invade the population. More precisely.
idea is that for every possible actib € B the evolutionary process occasionally transforms a small fraction of th
population into mutants who follot In an equilibrium any such mutant must obtain an expected payoff lower
than that of the equilibrium action, so that it dies out. Now, if the frae >0 of the population consists of
mutants taking the actidmwhile all other organisms take the actlnthen the average payoff of a mutant is
(1—e€)u(b, b*)+eu(b,b) (since with probabiliyl - € it encounters a nemutant and with probabilite it encounters
another mutant), while the average payoff of a-marant is(1 = €u(®*,5*) + eu(6*,b) Therefore fob" to be an
evolutionary equilibrium we requi

(1 — €)u(b, b*) + eu(b,b) < (1 — e)u(d®,b*) + eu(b*, b)

for all values ofe sufficiently small. This inequality is satisfied if and only if for ev® # 8" eitheru(b, b) <u
(b",b%), oru(b,t’) = u(b’,b") andu(b, k) <u(b’, b), so that we can define an evolutionary equilibrium as foll

*Definition 49.1

Let G = {{1,2},(B, B), (%)) be a symmetric strategic game, whe(a, b) = u,(b, & = u(a, b) for some function.
An evolutionarily stable strategy (ESS)®fis an actiod* € B for which (",b") is a Nash equilibrium o andu
(b, b) < u(b*,b) for every best responb € B to b* with b # b*,

In the following example, as in much of the literature, thdgsttaken to be the set of mixed strategies over som
finite set of action:

« Example 49..

(Hawk-Dove From time to time pairs of animals in a population fight over a prey with value 1. Each animal ca
behav
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D H
b3 0,1
H 1,0 -0, -0
Figure 50.1

A Hawk-Dove game

Ty 11_1 _111

-L1| 77 | L,-1

11-_1 _lll Y

Figure 50.2
A game without an ESS. Each pure strategy
yields a mutant a payoff higher than the
unique symmetric equilibrium mixed strate

either like a doveld) or like a hawk ). If both animals in a match are dovish then they split the value of the

if they are both hawkish then the value of the prey is reducedby is split evenly; if one of them is hawkish

the other is dovish then the hawk gets 1 and the dove 0. The game is shown in Figurec59 1. i{lhas the sar
structure as that in Figure 17.2.) [Bebe the set of all mixed strategies over, H}. If ¢ > 1, the game has a

unique symmetric mixed strategy Nash equilibrium, in which each player uses the stratéfgy 1k); this

strategy is the only ESS. (In particular, in this case a population exclusively of hawks is not evolutionarily stal
If c< 1, the game has a unique mixed strategy Nash equilibrium in which each player uses the purklsthagegy
strategy is the only ES

It is immediate from Definition 49.1 that ib(, b") is a symmetric Nash equilibrium and no strategy otherhhéan

a best response o (i.e. ', b") is astrict equilibrium) therb® is an ESS. A nonstrict equilibrium strategy may

be an ESS: consider the tptayer symmetric game in which each player has two actiong(ant) = 1 for all

(a,b) € Bx B, For a more interesting example of a nonstrict equilibrium strategy that is not an ESS, consider tt
game in Figure 50.2 in whidB consists of all mixed strategies over a set containing three membd@ =7 =1

This game has a unique symmetric mixed strategy Nash equil
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in which each player's mixed strateg;[%r %-%}; in this equilibrium the expected payoff of each playgf3sA
mutant who uses any of the three pure strategies obtains an expected p@@oifieh it encounters a non

mutant, but the higher payoffwhen it encounters another mutant. Hence the equilibrium mixed strategy is not
ESS (from which it follows that not every game that has a Nash equilibrium has a

* Exercise 51..

Show that in every twplayer symmetric strategic game in which each player has two pure strategies and the
payoffs to the four strategy profiles are different there is a mixed strategy that is .

Notes

The modern formulation of a mixed strategy is due to Borel (1921; 1924, pR2204927), although the idea
dates back at least to the early eighteenth century (see Guilbaud (1961) and Kuhn (1968)). Borel establishes
existence of a mixed strategy Nash equilibrium for some special strictly competitive games; von Neumann (1
proves the existence of an equilibrium for all strictly competitive games. The existence result (Proposition 33.
that we prove (which covers all finite strategic games) is due to Nash (1950a, 1951). The notion of a correlat
equilibrium is due to Aumann (1974), whose paper is also the basis for the other material in Section 3.3. The
of an evolutionarily stable strategy is due to Maynard Smith and Price (see Maynard Smith (1972) and Mayn:
Smith and Price (1973); see also Maynard Smith (1974, 1

The large population model mentioned in Section 3.2.2 is due to Rosenthal (1979). The idea of interpreting n
strategies as pure strategies in an extended game discussed in Section 3.2.3 is due to Harsanyi (1973), as is
content of Section 3.2.4. The interpretation of a mixed strategy Nash equilibrium given in Section 3.2.5 is
discussed in Aumann (1987a). Some of the criticism of mixed strategy Nash equilibrium given in Section 3.2
taken from Rubinstein (1991). The examples in Section 3.3 are due to Aumann

Our proof of Proposition 33.1, due to Nash (1950a), appeals to Proposition 20.3, the proof of which uses
Kakutani's fixed point theorem. Nash (1951) presents an alternative proof of Proposition 33.1 that uses the nr
basic fixed point theorem of Brouwer, which applies to pointvalued func
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The game in Exercise 35.1 is taken from Moulin (1986, p. 72). Exercise 36.3 is taken from Arrow, Barankin, ¢
Blackwell (1953)

For a discussion of mixed strategy Nash equilibrium when the players' preferences do not satisfy the assumg
necessary to be represented by expected utility functions see Crawford (1990). The notion of ESS that we di:
in Section 3.4 has been extended in various directions; see van Damme (1991, CI

We have not addressed the question of whether there is any dynamic adjustment process that leads to an
equilibrium. One such process, calfeditious play is suggested by Brown (1951), and has recently been
reconsidered. In this process each player always chooses a best response to the statistical frequency of the
players' past actions. Robinson (1951) shows that the process converges to a mixed strategy Nash equilibriu
any strictly competitive game; Shapley (1964, Section 5) shows that this is not necessarily so in games that ¢
strictly competitive. Recent research focuses on models that explicitly capture the forces of evolution and lea
see Battigalli, Gilli, and Molinari (1992) for an introduction to this w
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4
Rationalizability and Iterated Elimination of Dominated Actions

In this chapter we examine the consequences of requiring that a player's choice be optimal given a belief cor
with the view that every player is rational, every player thinks that every player is rational, every player thinks
every player thinks that every player is rational, and <

4.1 Rationalizability

In Chapters 2 and 3 we discuss solution concepts for strategic games in which each player's choice is rec
optimal given his belief about the other players' behavior, a belief that is required to be correct. That is, we as
that each player knows the other players' equilibrium behavior. If the players participate repeatedly in the situ
that the game models then they can obtain this knowledge from the steady state behavior that they observe.
However, if the game is a orshot event in which all players choose their actions simultaneously then it is not
clear how each player can know the other players' equilibrium actions; for this reason game theorists have
developed solution concepts that do not entail this assun

In this chapter we study Some such solution concepts, in which the players' beliefs about each other's action
not assumed to be correct, but are constrained by considerations of rationality: each player believes that the
taken by every other player is a best response to Some belief, and, further, each player assumes that every «
player reasons in this way and hence thinks that every other player believes that every other player's acti
response to Some belief, and sc

The solution concepts that we study are weaker than Nash equilibrium. In fact, in many games they do not e
any action from beir
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used. Nevertheless we find the approach interesting in that it explores the logical implications of assumpt
the players' knowledge that are weaker than those in the previous c!

Fix a strategic game .gif", which we take to mean that playénks that whatever action playjecthooses is a best
response to playg's belief about the actions of the players other j.

If playeri thinks that every other playpis rational then he must be able to rationalize his bgli@bout the other

players' actions as follows: every action of any other plgigewhich the beliefi assigns positive probability
must be a best response to a belief of playiéplayeri further thinks that every other playehinks that every
playerh #3i (including playet) is rational then he, playermust also have a view about playstview about
playerh's beliefs. If playei's reasoning has unlimited depth, we are led to the following defil

*Definition 54.1
An action® €44 is rationalizable in the strategic garr (N, (4a), ()} if there exist
«a collection (X3iemE1 of sets witk X3 € 45 for allj andt,

«a belief™ of playeri whose support is a subset‘ﬂ-‘, anc

1
o t+1

.5 (ay) . :
N, eactt 2 1 and eacl% € Xj, a belief * ¥ of playerj whose support is a subset®~3

«for each? €

such the
1
*a, is a best response to the be*" fof playeri

X! =2 and for eacld € N\{i} the se'*7 is the set of al% €44 such that there is somaein the support o#
for which % =%

a - 1 t - t+1 g -
«for every playei € ¥ and evenyt 21 every actior™ €% is a best response to the bes @) of player;



Page 5

« for eacht 2 2 and eacti € N the seXj is the set of a% € 4i such that there is some plak € N\ {i} some
t

. . - . pplag B =
action® € X&' and soma, in the support o (o) for which % =% .

Note that formally the second and fourth conditions in the second part of this definition are superfluous; w
them so that the definition corresponds more closely to the motivation we gave. Note also that we include the

X! in the collectior,“xﬂiw}ﬁi, even though it is required to be empty, merely to simplify the notation. If

IN| 23 then®i is the only such superfluous set, whileNfH2 there are mar EX;‘- for any odd and, ford # 4 Xj
for any evert).

The sexx} for 4 € N\ {i} js interpreted to be the set of actions of playbat are assigned positive probability by
the beliet* of playeri about the actions of the players other thtrat justifies choosinga. For anyd € N the
interpretation oX7 is that it is the set of all actiomsof playerj such that there exists at least one ac% € Xj

pi(ax)

of some playe ¥ # J that is justified by the beli¢ that assigns positive probability ap

To illustrate what the definition entails, suppose there are three players, each of whom has two possibke actic
andB. Assume that the actiohof player 1 is rationalizable and that player I's be#lstised in the rationalization
assigns positive probability to the choices of players 2 and 3 being &tgrqr (B, B). Then X; = Xj = {A,B},
The belief<#43(4) and #3(B) of player 2 that justify his choices AfandB concern the actions of players 1 and 3;
the beliefs #3(4) and M(B) of player 3 concern players 1 and 2. These four beliefs do not have to induce t
beliefs about player 1 and do not have to assign positive probability to theAcliba se X1 consists of all the
actions of player 1 that are assigned positive probability by ¢#2(4) #3(4) 43(B) oy #3(A)

This definition of rationalizability is equivalent to the followi

*Definition 55.1

. . . . . . . jeEN .
An action @ € 4i s rationalizable in the strategic garr,{,N' (42 () if for each’ there is a seZf €44 such
thal

. B € Z;
« every actior % € Zj s a best response to a beligh) of playerj whose support is a subsetZgf

Note that if (Zi)sen and (Zisen satisfy this definition then so do(Zs U Zj)jen , SO that the set of profiles of
rationalizable actions is the largest *5eNZ5 tor which (Z9)ieN satisfies the definitio
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e Lemma 56.]
Definitions 54.1 and 55.1 are equival.

Proof.

If @ € Ai js rationalizable according to Definition 54.1 then deZ: = {a:} U (U1 X§) and % = (V21 X)) for each
i € N\ {i} |f it is rationalizable according to Definition 55.1 then de# = k(@) and#5(a5) = #i(a3) for each

€N and each integet = 2, Then the setj defined in the second and fourth parts of Definition 54.1 are
subsets oZ and satisfy the conditions in the first and third parts.

It is clear from Definition 55.1 that in a finite game any action that a player uses with positive probability in so
mixed strategy Nash equilibrium is rationalizable (tZk® be the support of playgs mixed strategy). The

following result shows that the same is true for actions used with positive probability in some correlated
equilibrium

e Lemma 56.2

Every action used with positive probability by some player in a correlated equilibrium of a finite strategic
rationalizable.

Proof.

Denote the strategic game (¥, (i), (%)); choose a correlated equilibrium, and for each plé € ¥ |et Z be the

set of actions that playeuses with positive probability in the equilibrium. Then @i € 2 IS a best response t
the distribution oveA, generated by the strategies of the players other tflcanditional on playerchoosinga.

The support of this distribution is a subseZotind hence by Definition 554l is rationalizable.

In the Prisoner's Dilemma (Example 16.2) only the Nash equilibrium actiafesss rationalizable. In all the

other games in Section 2.3 both actions of each player are rationalizable, since in each case both actions are
with positive probability in some mixed strategy Nash equilibrium. Thus rationalizability puts no restriction on
outcomes in these games. For many other games the restrictions that rationalizability imposes are weak. Hoy
in some games rationalizability provides a sharp answer, as the following Exercises den

» Exercise 56..
Find the set of rationalizable actions of each player in th-player game in Figure 57
 Exercise 56.-

(Cournot duopoly Consider the strategic gar{1;2}h (A, (%)) in whichA=[0,1] andu(a,, a,) = a(1- a -a,) for
i=1, 2. Show that each player's only rationalizable action is his unique Nash equilibriun

* Exercise 56.!

(Guess the averagén the game in Exercise 35.1 show that each player's equilibrium action is his unique
rationalizable actio
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by ba ba by

a | 0,7 2,B 7,0 0,1

az | 5,2 3,3 52 0,1

az 7,0 2,6 0,7 0,1

ag | 0,0 0,-2 0,0 | 10,-1

Figure 57.1
The twc-player game in Exercise 5€

* Exercise 57..

Suppose that two players choose locat@renda, in the unit interval; each wishes to be as close as possible
other, the payoff of each player bekjg - a,|. Show that every action of each player is rationalizable, while the s
of Nash equilibria is {4, a,): a8 = a}. Now assume that each player is informed of the distance to his opponent.
Modify Definition 55.1 by adding the condition that the support of a belief that rationalizes a,Biconsisting

of an actiorg and a distance be a subset of - d, g + d}. Show that for nal > 0 is there an actios for which

(a, d) is rationalizable in this new sense, whaeg Q) is rationalizable for evey.

Note that in Definitions 54.1 and 55.1 we take a belief of pli to be a probability distribution of,, which

allows each player to believe that his opponents' actions are correlated. In most of the literature, players are
allowed to entertain such beliefs: it is assumed that each player's belief is a product of independent probabilii
distributions, one for each of the other players. (Such a restriction is obviously inconsequentialjegewo
game.) This assumption is consistent with the motivation behind the notion of mixed strategy equilibrium. Ou
definition of rationalizability requires that at all levels of rationalization the players be rational; the alternative
definition of rationalizability requires in addition that at all levels of rationalization the beliefs preserve the
assumption of independen

The two definitions have different implications, as the game in Figure 58.1 shows. In this game there are thre
players; player 1 chooses one of the two rows, player 2 chooses one of the two columns, and player 3 choos
of the four tables. All three players obtain the same payoffs, given by the numbers in the boxes. We claim the
actionM,
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U180 4|0 0|0 313

DIO|O 0|4 0|8 313

M M; M M,
Figure 58.1

A threeplayer strategic game. Player 1 chooses one
of the two rows, player 2 chooses one of the two
columns, and player 3 chooses one of the four tables.
All three players obtain the same payoffs, given

by the numbers in the box

of player 3 is rationalizable in the sense of Definitions 54.1 and 55.1, in which a player may believe that his
opponent's actions are correlated, but is not rationalizable if players are restricted to beliefs that are products
independent probability distributions. To see this, note that the d¢tdiplayer 1 is a best response to a belief
that assigns probability one tb, (M,) and the actio® is a best response to the belief that assigns probability one

to (R, M); similarly, both actions of player 2 are best responses to beliefs that assign positive probabilitionly
D, andM,. Further, the actioM, of player 3 is a best response to the belief in which players 1 and 2Jplay (

and O, R) with equal probabilities. Thud, is rationalizable in the sense that we have defined BakdU, D},
Z,={L, R}, andZ, = {M,} in Definition 55.1). However, it is not a best response to any pair of (independent)
mixed strategies and is thus not rationalizable under the modified definition in which each player's belief is
restricted to be a product of independent beliefs. (In ordévfoo be a best response we need

4pg + 4(1 - p)(1 — q) 2 max{8pq,8(1 — p)(1 - 9),3} where p, 1- p) and @, 1- g) are mixed strategies of players |
and 2 respectively, an inequality that is not satisfied for any valip andqg.)

4.2 lterated Elimination of Strictly Dominated Actions

Like the notion of rationalizability, the solution concept that we now study looks at a game from the point of vi
of asingleplayer. Each player takes an action based on calculations that do not require knowledge of the acti
taken by the other players. To define the solution we start by eliminating actions that a player should definitel
take. In a complicated game it is particularly attractive to assume that
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looking for ways to simplify the situation they confront, will adopt such a tack. We assume that players excluc
from consideration actions that are not best respamsateverthe other players do. A player who knows that the
other players are rational can assume that they too will exclude such actions from consideration. Now consid
gameG' obtained from the original gan@&by eliminating all such actions. Once again, a player who knows that
the other players are rational should not choose an action that is not a best response whatever the other play
in G'. Further, a player who knows that the other players know that he is rational can argue that they too will r
choose actions that are never best respongg's @ontinuing to argue in this way suggests that the outcoi@e of
must survive an unlimited number of rounds of such elimination. We now formalize this idea and show that it
equivalent to the notion of rationalizabili

4.2.1 Neve-Best Respons
*Definition 59.1

An action of player in a strategic game isreever-best responsef it is not a best response to any belief of player
i

Clearly any action that is a neveest response is not rationalizable. If an acti@f playeri is a neveibest

response then for every belief of playénere issomeaction, which may depend on the belief, that is better for
playeri thana. We now show that i is a nevetbest response in a finite game then therenixadstrategy that,

whatever belief playearholds, is better for playerthana. This alternative property is defined precisely as follows
*Definition 59.2

The actior @ € 4 of playeri in the strategic gan (Vs (4 (%)} s strictly dominated if there is a mixed strategy
a of playeri such that)(a,, a) > u(a, a) for all -« € A~ whereU, (a,, a) is the payoff of playerif he uses the
mixed strategy, and the other players' vector of actiona,is

In fact, we show that in a game in which the set of actions of each player is finite an action isbeestenempons

if and only ifit is strictly dominated. Thus in such games the notion of strict domination has a ddwsimgtic

basis that does not involve mixed strategies. It follows that even if one rejects the idea that mixed strategies ¢
objects of choice, one can still argue that a player will not use an action that is strictly do
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e Lemma 60.]
An action of a player in a finite strategic game is a n-best response if and only if it is strictly dominz

Proof.

Let the strategic game |G = (Vi (A, ()} and le1ai € 4. Consider the auxiliary strictly competitive game

G' (see Definition 21.1) in which the set of actions of playerdi\{ai}, that of player 2 i&\, and the preferences
of player 1 are represented by the payoff functiogiven by”lf“i-““ﬂ = (@i, a:) —ui(a—i, 0f) (Note that the
argumentd, a,) of v, is a pair of actions iG' while the arguments(, a) and (@-:4}) are action profiles i®.)

For any given mixed strategy profile( m,) in G' we denote by,(m,, m,) the expected payoff of player 1.

The actior % is a nevetbest response i@ if and only if for any mixed strategy of player 2Ghthere is an action
of player 1 that yields a positive payoff; that is, if and only if gumax;, v,(a, m,) > 0. This is so if and only if
min_, max,, v,(m, m,) > 0 (by the linearity o, in m).

Now, by Proposition 33.1 the garG' has a mixed strategy Nash equilibrium, so from part (b) of Proposition 22.
applied to the mixed extension @f we have mip, max, v,(m, m,) > 0 if and only if may min,,v,(m, m,) > 0;

that is, if and only if there exists a mixed strat ™i/of playeri in G' for which n(mi,mz) >0 for | m, (that is,
for all beliefs oMA,). Since™i is a probability measure 4\ {a} it is a mixed strategy of player 1@ the
condition ¥1(mi,ma) > 0 for all m, is equivalent t(Vila-i,mi) = Ui(a-i,87) > 0 for g| 6 € A—s which is

equivalent (% being strictly dominate

Note that the argument in this proof depends upon our assumption that the players' preferences over lotte
the assumptions of yon Neumann and Morgenstern; if the preferences do not satisfy these assumptions then
properties of being a ne\-best response and being strictly dominated are not equivalent in ¢

4.2.2 Iterated Elimination of Strictly Dominated Actio
We now define formally the procedure that we described at the beginning of the
*Definition 60.2

The seiX € A of outcomes of a finite strategic gal AN, (4, () syrvives iterated elimination of strictly

dominated actionsif ¥ = *3e¥Xj and there is a collectic ((X3)ien)ico of sets that satisfies the following
conditions for eacj € N,

X =4

andx;r =X
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L R

T]30(0,1

M|o0,0|31

B|1,1|10

Figure 61.1
A two-player strategic game. The only
rationalizable action of player 1 is M and the
only rationalizable action of player 2 is

41 &
« X5 €A% for eacht = 0,...T-1.

e For eacht =0,...,T - 1 every action of playgrin XX s strictly dominated in the gan (N, (XD), {uE]}, where

ieN

. . . t
Y for each is the functioru, restricted tcXdenXy,

xT
« No action in”? is strictly dominated in the gan ™ (X7, (),
« Example 61.:

In the game in Figure 61.1 the actBrs dominated by the mixed strategy in whichndM are each used with

probability } After B is eliminated from the gamk,is dominated by; afterL is eliminatedTl is dominated by.
Thus M, R) is the only outcome that survives iterated elimination of strictly dominated a

We now show that in a finite game a set of outcomes that survives iterated elimination of dominated actions ¢
and is the set of profiles of rationalizable acti

 Proposition 61.-

If X = XsenX; survives iterated elimination of strictly dominated actions in a finite strategic M (), ()

then Xis the set of player j's rationalizable actions for e:f, € N.

Proof.

Suppose the% € 4i s rationalizable and Ic(Z)ien pe the profile of sets in Definition 55.1 that suppayt&or

any value of t we havZ € X3 since each action i is a best response to some belief &/eand hence is not
_ . | (N, (X}), (u}) € X
strictly dominated in the gan (by Lemma 60.1). Hen¢® € <4,

We now show that for eveld € N every member oX is rationalizable. By definition, no action Xis strictly
dominated in the game in which the set of actions of each plés/&; so by Lemma 60.1 every actionXpis a
best response among the members td some belief oiX,. We need to show that every actiorKjns a best

response among all the members of thestet some belief oiX,. If % € X;
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is not a best response among all the membestbén there is a value bbuch thag, is a best response among
t=1
the members %3 to a beliefy, onX,, but is not a best response among the memb«XJF f Then there is an
. ) t=1 . i1 - :
action % € X5~ \ X} that is a best response among the membeXi  fto W, contradicting the fact tha is
eliminated at thtth stage of the procedu

Note that the procedure in Definition 60.2 does not requireall strictly dominated strategies be eliminated at
any stage. Thus the result shows that the order and speed of elimination have no effect on the set of outcom:
survive

Lemma 60.1 and the equivalence of the notions of iterated elimination of strictly dominated actions and
rationalizability fail if we modify the definition of rationalizability to require the players to believe that their
opponents' actions are independent. To see this, consider the game in Figure 58.1. Tk iaciid®est response
to the belief of player 3 in which players 1 and 2 playl() and D, R) with equal probabilities and is thus not
strictly dominated. However, as we saw before, it is not a best response to any pair of (independent) mixed
strategies and is thus not rationalizable under the modified definition in which each player's belief is restri
a product of independent belie

4.3 lterated Elimination of Weakly Dominated Actions

We say that a player's action is weakly dominated if the player has another action at least as good no matter
the other players do and better for at least some vector of actions of the other

*Definition 62.1

The actior % € 4: of playeri in the strategic gamr (N, (4s), () s weakly dominatedif there is a mixed strate
a of playeri such tha Ui(a-iai) 2 w(a—s,a5) for all @i € 4-i andU (a, a > u(a,, a)for somes- € A—i where
U.(a,,a) is the payoff of playerif he uses the mixed strategyand the other players' vector of actiona,is

By Lemma 60.1 an action that is weakly dominated but not strictly dominated is a best response to some bell
This fact makes the argument against using a weakly dominated action weaker than that against using a stric
dominated action. Yet since there is no advantage to using a weakly dominated action, it seems very natural
eliminate such actions in the process of simplifying a complicated
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L R

T|1,1|00

M|1,1]21

B|0,0]21

Figure 63.1
A two-player game in which the set of
actions that survive iterated elimination
of weakly dominated actions depends on
the order in which actions are elimina:

The notion of weak domination leads to a procedure analogous to iterated elimination of strictly dominated ac
(Definition 60.2). However, this procedure is less compelling since the set of actions that survive iterated
elimination of weakly dominated actions may depend on the order in which actions are eliminated, as the twc
player game in Figure 63.1 shows. The sequence in which we first elimi@éakly dominated biyl) and then

L (weakly dominated bfR) leads to an outcome in which player 2 chod®asd the payoff profile is (2,1). On the
other hand, the sequence in which we first elimiBateeakly dominated bi) and therR (weakly dominated by

L) leads to an outcome in which player 2 chodsasd the payoff profile is (1,1). We discuss further the proc

of iterated elimination of weakly dominated actions in Sectior

* Exercise 63..

Consider a variant of the game in Example 18.6 in which there are two players, the distribution of the citizens
favorite positions is uniform, and each player is restricted to choose a position of thenféomsome

te {"*""”‘}, wherem s even. Show that the only outcome that survives iterated elimination of weakly
dominated actions is that in which both players choose the pc i.

* Exercise 63..

(Dominance solvabilifyA strategic game idominance solvabli all players are indifferent between all outcomes
that survive the iterative procedure in whadhthe weakly dominated actions of each player are eliminated at ea
stage. Give an example of a strategic game that is dominance solvable but for which it is not the case that all
players are indifferent between an outcomes that survive iterated elimination of weakly dominated actions (a
procedure in which not an weakly dominated actions may be eliminated at eacl
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* Exercise 64..

Each of two players announces a nonnegative integer equal to at most] 8, & 100, wherey, is the number
announced by playeythen each playemreceives payoff o&. If a +a,> 100 anda, < g then player receivesy
and playey receives 100a; if a +a, > 100 andy, = a then each player receives 50. Show that the game is
dominance solvable (see the previous Exercise) and find the set of surviving ot

Lemma 60.1 shows that in a finite game an action that is not Strictly dominated is a best response to some b
The following Exercise strengthens this conclusion for an action (or mixed strategy) theweakly dominatec

* Exercise 64..

Show that in a finite strategic game any mixed strategy of a player that is not weakly dominated is a best resj
to a belief that assigns positive probability to every vector of actions of the other players. [t (¥ (4d), (m))

be the game and let be the set of all vectors of the fo (w1(atim1)s...,ui(a%1,m1)) wherem, ranges over the
mixed strategies of player 1 afali,---168:} is the set of all vectors of actions for the players other than player
Let u* € U correspond to a mixed strategy of player 1 that is not weakly dominated. You need to show that th
exists a positive vectq’ with P**#* 2P"4 for all w € U. To do so, let = 0 without loss of generality, and for
any € > 0 Jet Ple) = {p € R*:pi > € for alli and Zi=1 P = 1}, Use the result of Exercise 36.3 for the :P(€) and

U and let® = @ use also the fact thU is the convex hull of a finite number of vectc

Notes

The notion of rationalizability originated with Bernhelm (1984) and Pearce (1984) (both of whom restrict playe
to believe that the actions of their opponents are independent). (Spohn (1982) discusses the idea, but does r
formalize it.) Versions of the procedure of iterated elimination of dominated strategies were first studied in de
by Gale (1953) and Luce and Raiffa (1957, pp.-108, 173); the formulation that we give is due to Moulin
(1979). Lemma 60.1 is due to Pearce (1984); it is closely related to Lemma 3.2.1 of van Damme (1983).
Proposition 61.2 is due to Pearce (1984, p. 1

The result in Exercise 56.4 is due to Gabay and Moulin (1980), Bernheim (1984), and Moulin (1984). Exercis
56.5 is taken from Moulin (1986, p. 72). Exercise 57.1 is taken from Rubinstein anc-
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sky (1994). The notion of dominance solvability in Exercise 63.2 is due to Moulin (1979); it is closely related t
the notion of "solvability in the complete weak sense" of Luce and Raiffa (1957, p. 109). Exercise 64.1 is due
Brims and Taylor (1994) and Exercise 64.2 is due to Arrow, Barankin, and Blackwell

For a family of games in which rationalizability gives a sharp answer see Vives (1990) and Milgrom and Robe
(1990)
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5
Knowledge and Equilibrium

In this chapter we describe a model of knowledge and use it to formalize the idea that an event is "common
knowledge", to ask if it is possible for people to "agree to disagree", and to express formally the assumptions
players' knowledge that lie behind the concepts of equilibrium and rationaliz

5.1 A Model of Knowledge

A strategic game models interaction between players. Consequently we are interested not only in a player's
knowledge of an exogenous parameter but also in his knowledge about the knowledge of another player. We
by giving a brief introduction to a model of the knowledge of a single de-maker

At the basis of the model is a $2f states The notion of a state is given two interpretations in the literature. At
one extreme, a state is viewed as a description of the contingencies that the-deghkgioperceives to be relevi

in the context of a certain decision problem. This is the interpretation used in standard economic models of
uncertainty. At the other extreme a state is viewed as a full description of the world, including not only the
decisior-maker's information and beliefs but also his act

5.1.1 The Information Functioi

One way to define the extent of a decisioaker's knowledge of the state is to specifyinformation function P

that associates with every st % € LLIPY nonempty subs@(w) of Q. The interpretation is that when the stateis
the decisio-maker knows only that the state i
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the sefP(w). That is, he considers it possible that the true state could be any @t lout not any state outside
P(w).

*Definition 68.1

An Information function for the s&? of states is a functioR that associates with every st% € 2 a nonempty
subset Fw) of Q.

When we use aimformation function to model a decisiemaker's knowledge we usually assume that the pair
{2, P) consisting of the set of states and the information function satisfies the following two cor

P1wE€PW) for everyw €N

o' € P(w)

P2 If thenP(w') = P(w).

P1 says that the decisiomaker never excludes the true state from the set of states he regards as feasible: he |
never certain that the state is different from the true state. P2 says that the -olealstonises the consistency or
inconsistency of states with his information to make inferences about the state. Suppose, contrary to P2, that

o' € P(w) and there is a sta¥" € PW) with v ¢ PW). Then if the state i® the decisiormaker can argue that
sincew" is inconsistent with his information the true state cannab'b8imilarly, if there is a stal" € Pw) with

" & P(W) then when the state dsthe decisiormaker can argue that sineggif" is consistent with his
information the true state cannotw'.

The following condition is equivalent to P1 and

*Definition 68.2

An information functiorP for the seQ of states ipartitional if there is a partition o such that for an € L
the selP(w) is the element of the partition that contecw.

* Lemma 68.:
An information function is partitional if and only if it satisfies P1 an..

Proof.

If P is partitional then it clearly satisfies P1 and P2. Now suppose that P satisfies P1 ai{B)2antP(w)

intersect an@” € Pw) N P(W) then by P2 we have(w) = P(w) = P(w"); by P1 we haviYweaP@) = ThusP is
partitional

Given this result, an information function that satisfies P1 and P2 may be specifiedrifgrthation partition
that it induce:

« Example 68.¢

Let Q =[0,1) and assume that the decisiaker observes only the first four digits of the decimal expansion of a
number. Then for eac® € f the seP(w) is the set of all statew’ € & sych the
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the first four digits ow' are the same as thosew. This information function is partition.
* Exercise 69..

Let Q be a set of questions to which the answer is either "Yes" or "No". A state is a list of answers to all the
questions irQ. Suppose that the information functiBrhas the property that for some statghe seP(w)

consists of all states in which the answers to the first two questions are the same\ahkila for some other sta

the selP(w,) consists of all states in which the answers to the first three questions are the samela®in
necessarily partitione

* Exercise 69..

A decisionmaker is told an integerbut remembers only that the number is eithel, n, orn + 1. Model the
decisior-maker's knowledge by an information function and determine if the function is part

5.1.2 The Knowledge Functic

We refer to a set of states (a subse@pés arevent Given our interpretation of an information function, a

decisionmaker for whonP(w) € E knows, in the stat®, that some state in the evéhhas occurred. In this case

we say that in the statethe decisiormakerknows E. GivenP we now define the decision makedtsowledge
function K by

K(E) = {w € % P(w) C E}. (69.3)

For any evenE the seK(E) is the set of all states in which the decismaker know<€. The knowledge function
K that is derived from any information function satisfies the following three prop

K1 K(Q)=10.
This says that in all states the deci-maker knows that some stateQ has occurre
K2 If E C F then K(E) C K(F).

This says that iF occurs whenevdE occurs and the decisianaker know<€ then he knows§: if E impliesF then
knowledge oE implies knowledge cF.

K3 K(E)nK(F)= K(ENF).

The interpretation of this property is that if the deci-maker knows botE andF then he know EnF



Page 7

If P satisfies P1 then the associated knowledge funK satisfies the following additional prope!

. K(E)C E.

J

K4 (Axiom of Knowledge

This says that whenever the decismaker knows then indeed some membertois the true state: the decision
w € K(E)
maker does not know anything that is false. The axiom is derived from Pl asfoll.. . thenPw)C E

so that by P1 we ha¥ € £,

If P is partitional (i.e. satisfies both P1 and P2) tKéE) is the union of all the members of the partition that are
subsets oE. (If E does not contain any member of the partition tkéf) is empty.) In this case the knowledge
functionK satisfies the following two additional propert

K5 (Axiom of TransparenC)H{E] € K(K(E) :

Given our interpretation df(E) as the event in which the decisioraker knowds, we interpreK(K(E)) to be the
event in which the decisiemaker knows that he knoviss Thus K5 says that if the decistomaker knowdE then

he knows that he knows As we remarked above,Rfsatisfies P1 and P2 then the ISEE) is a union of members
of the partition induced bly; K5 follows from the observation thathfis a union of members of the partition then
K(F) =F.

K6 (Axiom of Wisdom) 0\ K(E) € K(@\ K(E))

The interpretation of this axiom is that the decisiaker is aware of what he does not know: if he does not knov
E then he knows that he does not krewsinceP is partitional K(E) is a union of members of the partition

induced byP; thusQ \ K(E) also is such a union, and K6 follo
Note that given theK satisfies K4 the properties in K5 and K6 in fact hold with equ

We have taken an information function as the primitive and derived from it a knowledge function. Alternat
can start by defining lenowledge functionfor the sefQ to be a functiorK that associates a subsetbfvith each

event® € 2 \we can then derive from it an information function P as follows: for eactw let

P(w) =n{E C Q: K(E) 3 w}. (70.1)

(If there is no everE for which® € K(E) then we take the intersection toQ.)
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* Exercise 71..

a. Given an information functioR, letK be the knowledge function defined by (69.3) andPldte the informatio
function derived fronK in (70.1). Show theP' = P.

b. Given a knowledge functidi that satisfies K1, K2, and K3, |IBtbe the information function defined by (70.1)
and letK' be the knowledge function derived friP in (69.3). Show theK' = K.

* Exercise 71..

Using the framework we have described, we can formulate an individual's decision problem as follévie aet
set of actions{ a set of state®, a partitional information functiort a probability measure d@, and

u:AxQ — R 3 function whose expected value represents the individual's preferences over lot&ri€seon
individual's problem is to choose a funct®® — 4 (called aract) for whicha(w) = a(w) wheneve ¥ € P(w)
and«w’ € P(w) to solve maxEmu(a(w),w) (where E is the expectation operator). Define the partitional informatio

functionP' to becoarserthan the information functioR if @) € P'@) for )| w € © (i.e. if each member of the
partition induced by is a union of members of the partition inducedpyShow that ifP' is coarser thaR then
the best act under the information functins no better than the best act under the information funtion
Contrast this result with that of Exercise 2

5.1.3 An lllustrative Example: The Puzzle of the H

The following puzzle, which "swept Europe" some time in the first half of the twentieth century (Littlewood

p. 3)), illustrates the concepts that we have defined. Eachpafrfectly rational” individuals, seated around a
table, is wearing a hat that is either white or black. Each individual can see the hats of the binelividuals,

but not his own. An observer announces: "Each of you is wearing a hat that is either white or black; at least @
the hats is white. | will start to count slowly. After each number you will have the opportunity to raise a hand.
may do so only when you know the color of your hat." When, for the first time, will any individual raise hi

We can answer this question by using the formal model we have introduced, as follows. Initially, after the
observer's announcement, the set of states is the set of all configurati@ms.c,) of colors for
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the hats, where eachis eitherW or B and at least one is W. These 2- 1 states constitute the set

Q= {ce {B,W)™|{ize; = W}| 2 1}

The initial information functior® of any individual is given as follows: in any statehe sew,P’I (© consists of a
the states that accord with observations, and thus contains at most two states, which differ only in the ¢slor o

hat. Precisely, i€ is a state in which a player different frarhas a white hat theFi(e) = le-ix W)y (c-ir B)} and i
¢ is the state in which all the other hats are black (¢} = {c} (since not an the hats are bla

What does it mean for an individualith information functiorP, to "know the coloc of his hat"? It means either
he knows that the event:{c. = W} occurs or he knows that the evewtd=B} occurs. Thus the event knows the
color of his hat" i

E; = {c:Pi(c) C {c:cs = B} or Pi(c) C {ces =W}

It is only in a state in which there is exactly one individualor whomc, = W that P}(e) C B for somg, and in

Plc) CE;

this case , So thaii raises his han

Now letF! = {c:|{i:c, = W}| = 1], the set of states for which someone raises a hand at the first stage. If nobody
raises a hand at the first stage then all individuals obtain the additional information that the stateHs antin

thus for alli and for all¢ # F* we haveF(€) = BH\F* That s, in any such state every individual concludes that
at least two individuals have white hats. We h£(€) = Pi(e) = {(c-u W), (c-:. B)} ynjessc = W for exactly one
individual 7 # i in which casdt (-6 W) = {{c-x W)} (and Fi(e-5W) = {le-»WIh_ In other words, in any state

¢ for whichc =W andc, = W for precisely two individualsandh we haveF7 (©) € Bs and P2(e) S Ba_ and hence
andh each raises a hand at the second stage. Ndw tefc: [{i: c=W}| = 2}, the set of states in which the
process ends at the second stage. In states for which no hand is raised after the obser2 (e # F1UF?) o

individuals conclude that at least three hats are white and the process contin¥(e) = PH\F? ¢ js easy to
see that ik hats are white then no one raises a hand until the observer koainighich point thé individuals
with white hats do s
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5.2 Common Knowledg

We say that an event is "mutual knowledge" in some state if in that state each individual knows the event. Wi
that an event is "common knowledge" if not only is it mutual knowledge but also each individual knows that a
other individuals know it, each individual knows that all other individuals know that all the individuals know it,
and so on. Restricting for simplicity to the case of two individuals the notion of common knowledge is formali:
in the following definition

*Definition 73.1

Let K, andK, be the knowledge functions of individuals 1 and 2 for th€seft states. An everE € £ is commor

knowledge between 1 and 2 in the sta® € f if wis a member of every set in the inquire sequéndE), K,
(B), K, (K; (B)), KK (E)), ...

Another definition of common knowledge (which we show in Proposition 74.2 is equivalent) is stated in terms
the individuals' information functior

*Definition 73.2

Let P, and P be the information functions of individuals 1 and 2 for the(sef states. An everF S is self:

evident between 1 and ¥ for all @ € F we havePiw) € F forj =1, 2. An even® € iscommon knowledge

weN

between 1 and 2 in the sta: if there is a se-evident event F for whicwe FE E,

In words, an everf is selfevident between two individuals if whenever it occurs both individuals know that it
occurs (i.e. whenever it occurs it is mutual knowledge between the individuals), and is common knowledge ir

statew if there is a se-evident event containirw whose occurrence impliE.
* Example 73.:

Let Q = {w,w,w,w,w,,w}, let P, andP, be the partitional information functions of individuals 1 and 2, anid,let
andK, be the associated knowledge functions. Let the partitions induced by the information functions be

P1 = {{wy,un}, {ws,we,ws}, {ws}}
P = {{W]}t{mam!‘ﬁ}t{wﬁ}l{wﬁ}}*

The event = {w,,w,,w,,w,} does not contain any event that is sedent between 1 and 2 and hence in no st
E common knowledge between 1 and 2 in the sense of the second definition (73.2). TEe®at not
common knowledge in any state in the sense of th
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definition (73.1) sinc«Ki{Hg[K‘(E]]] = ﬂ, as the following calculation demonstra

K\(E) = {w,wa}y Ki(E) = E,
K3(Ky(E)) = {an}, K1 (K3(E)) = {wr,un},
K\ (Ka(K1(E))) = @, Ka(K1(K3(E))) = {wr}.

The evenf = {w,,w,,w,w, w.} is self-evident between 1 and 2 and hence is common knowledge between 1 an
in any state irF in the sense of the second definition. SikK¢céF) =K, (F) = F the evenfF is also common
knowledge between 1 and 2 at any stafF in the sense of the first definitic

Before showing that the two definitions of common knowledge are equivalent we establish the fc
e Lemma 74.]

Let F, and P, be the partitional information functions of individuals 1 and 2 for th&sef states, let Kand K be
the associated knowledge functions, and let E be an event. Then the following three conditions are .

a.K(E)=Efori=1, 2.
b. E is seltevident between 1 anu.
c. E is a union of members of the partition induced dpH = 1, 2.

Proof.

Assume (a). Then for evew € E we have @) S E forij = 1, 2, and hence (b) is satisfied. Assume (b). Then

E = UserPi(w) fori = 1, 2, and thuk is a union of members of both partitions, so that (c) is satisfied. Finally (c)
immediately implies (a

We now show that Definitions 73.1 and 73.2 are equivi

 Proposition 74.:

LetQ be a finite set of states, lef &d P, be the partitional information functions of individuals 1 and 2, and let

K, and K, be the associated knowledge functions. Then an £ &  is common knowledge between 1 and 2 in

the statew € 0 according to Definition 73.1 if and only if it is common knowledge between 1 and 2 in the state
according to Definition 73.

Proof.

Assume that the evektis common knowledge between 1 and 2 in the statecording to Definition 73.1. For

each® € {12} angd #1 we have £ 2 K(E) 2 K;(K(E)) 2 Ki(K5(Ki(E))) 2 .-+ andwis a member of all these

sets, which are hence nonempty. Thus sfade finite there is a sét = K(K(K . . . K(E)..)) for whichK(F) = F;;
sinceP, is partitional K, satisfies K4 and K5, so that we have also
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K.(F) =F,. Thus by Lemma 74.1 the evdntis serfevident between 1 and 2, so tkas common knowledge o
according to Definition 73.

Now assume th¢ £ € f is common knowledge between 1 and 2 in the statecording to Definition 73.2. Then
there is a selévident evenF with @ € F € E By | emma 74.1 every set of the tyléK,(K.... K/(F)...))
coincides withF. It follows from K2 thatw is a member of every set of the ty0eK, (K.... K (E)...)) and thus E is
common knowledge iw according to Definition 73.

5.3 Can People Agree to Disagre

An interesting question that can be addressed within the framework we have described is the following. Can
common knowledge between two individuals with the same prior belief that individual 1 assigns pratpaioility

some event and individual 2 assigns probal:",i!'z,j*‘E ™ to the same event? It seems that the answer could be
positive: the individuals might "agree to disagree.gif" in this Way when they possess different information.
However, we now show that if the individuals' information functions are partitional then the answer is 1

One of the contexts in which this result is of interest is that of a Bayesian game (Section 2.6). An assumption
made in the literature is that the players in such a game have identical prior beliefs. The result implies that ur
this assumption it cannot be common knowledge between the players that they assign different posterior
probabilities to the same event. Thus if we want to model a situation in which such differences in beliefs are
common knowledge, we must assume that the players' prior beliefs are d

Let p be a probability measure on the ©etf states, interpreted as the individuals' common prior belief, aRd let
andP, be the individuals' information functions.Hfis an event and(E|P,(w)) =n, (wherep(E|P,(w)) is the
probability ofE conditional orP,(w)) then, given his information in the stateindividuali assigns the probability

N, to the evenE. Thus the event "individualassigns the probability, to E" is {w € Q:p(B|\Pi(w)) = m}

 Proposition 75.

Suppose that the s@tof states is finite and individuals 1 and 2 have the same prior belief. If each individual's
information function is partitional and it is common knowledge between 1 and 2 in son®" € fathat
individual 1 assigns probability, to some event E and individual 2 assigns probahilityo E them,=n,,.
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Proof.

If the assumptions are satisfied then there is sesdient even ¥ 3 w” that is a subset of the intersection of

{w € 2 p(BIP(w)) = m} and{w € Xo(EIPW)) =m} and hence a subset of each of these sets, phietae
common prior belief. By Lemma 74.1, for each individutle evenf is a union of members 06 information
partition. SinceQ is finite, so is the number of sets in each unior# = Urdx =UxBx_ Now, for any nonempty

disjoint sets<C andD with p(E|C) =n. andp(E|D) = n, we haveP{EICUD) =m Thus, since for eadhwe havep
(EIA) =n,, it follows thatp(E|F) =n,; similarly p(E|F) =n,. Hencen, =n..

* Exercise 76..

Show that if two individuals with partitional information functions have the same prior then it can be common
knowledge between them that they assign different probabilities to some event. Show, however, tiwtie can
common knowledge that the probability assigned by individual 1 exceeds that assigned by ind

* Exercise 76..

Show that if two individuals with partitional information functions have the same prior tbannotbe common
knowledge between them that individual 1 believes the expectation of some lottery to exceed somg.number
while individual 2 believes this expectation to be less th&®how by an example that this result depends on the
assumption that the individuals' information functions are partit

5.4 Knowledge and Solution Concep

In the previous chapters we discussed the concepts of Nash equilibrium and rationalizability. When motivatin
these concepts we appealed informally to assumptions about what the players know. In this section we use t
model described above to examine formally assumptions about the players' knowledge that lie behind the so
concepts

, . : _ = - i
Throughout we fix attention on a given strategic ¢ G = (N, (A, (e (see Definition 11.1

Let Q be a set of states, each of which is a description of the environment relevant to the game: that is, a
description of each player's knowledge, action, and belief. Formally, eac% € 1 eonsists of a specification -
each playei of

« Pw) €0 \yhich describes playéis knowledge in stat (whereP, is a partitional information function)

. %@ €4 the action chosen by playi in statew
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* i (w), a probability measure (A— = Xgemiit 4y the belief of playerin statew about the actions of the other
players. (Note that this allows a player to believe that the other players' actions are co

Note that the notion of a state, since it consists of a specification of the knowledge, action, and belie
player, may be selfeferential: if in stateo, some player does not know whether the staie @& w, then the
description ofw refers to itself.

Our implicit assumnption in this definition of the set of states is that it is common knowledge among the playe
that the game i&. Thus we ignore the possibility, for example, that some player does not know his own action
or the action set of another player, or some plaglees not know whether playeknows player's preferences.
This assumption is stronger than we need for some of the results. To formalize weaker assumptions about th
players' knowledge of the game we would need to extend the definition of the set of states, requiring that
include a specification of the game that is pla

We now isolate properties of a state that imply that the actions in that state are consistent with various solutic
concepts. Our first result is that if in some state each player is rational, knows the other players' actions, and
belief consistent with his knowledge, then the profile of actions chosen in that state is a Nash equilibrium of tf
game

* Proposition 77.!

Suppose that in the st @ € ® each playe €N

F c W’ 1:a_ w,r =
a.knows the other players' actic: ) € 4 € a-i(@) = a()} :

b. has a belief that is consistent with his knowledge: the supppffudfis a subset {o-i() € Ago/ € R(W)}.

c.is rational: g(w) is a best response of plaster ipt@w).

Ther @{@)ien is 3 Nash equilibrium of .
Proof.

By (c) the actiora(w) is a best response of playdo his belief, which by (b) assigns probability one to the set
{a-i(w) € Az’ € R(W)}; py (a) this set isd,(w)}.

The assumption that each player knows the actions of all the other players is very strong. We now show that
two-player game we can replace it with the assumption that each player knows the belief of the other player i
strengthen (c) to require not only that each player be rational but also that each player know that the other pl
rational. Since the result involves mixed strategies we now let the strategi
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under consideration G = ¥, ':A*M“f:'}, where for eac® € N the expected value of the function at represents
playeri's preferences over lotteries A.

* Proposition 78.!

Suppose that || = 2and that in the sta w € @t each playe i € N

a.knows the other player's bet Rw) € o € ) = mlo)} ¢ 5 #1i

b. has a belief that is consistent with his knowledge: the supppjtugfis a subset clas(w) € 45:0 € Pi(w)}
i#

c. knows that the other is rational: for al‘,‘f € Piw) the action dw) is a best response of player jigw’) for
J#i,

Then the mixed strategy profifa,a,): (1,(w), K, (w)) is a mixedstrategy Nash equilibrium of.G

Proof.

Let 3 be an action of playerthat is in the support @ = (w). By (b) there is a sta@’ € Pjw) gych that
ai(w) =a i follows from (c) that the actio® is a best response of playeo K, (w'"), which by, (a) is equal o

().

Note that neither proposition requires the players to derive their beliefs from some common Q. In

particular, note that in (b) we require only that each player's belief be consistent with his knowledge. Note als
the assumption that the game is common knowledge can be weakened in both results: in Proposition 77.1 it
sufficient to assume each player knows his own action set and preferences, and in Proposition 78.1 it is <
assume the game is mutual knowle

The following example demonstrates that Proposition 78.1 does not have an analog when there are more the
players. Consider the game at the top of Figure 79.1. (Note that player 3's payoff is always 0.) Let the set of ¢
befl = {& 8,7 6,&£} and let the players' action functions and information functions be those given in the table
the bottom of the figure; assume that the players' beliefs are derived from the same prior, which is given in th
row of the table

Consider the stai® We claim that the three conditions of the proposition are satisfied. Condition (b) is satisfie
since each player's belief@ts defined from the common prior. It remains to verify that in this state each playel
knows the beliefs of the other players and knows that the other players are rational. Consider player 1. She k
that the state is eithérore, so that she knows that player 2's information is eithied}{or {{&£€}, €}. In both case
player 2 believes that with pr-
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L R L R

Ul230/|200 o000 0,20

D | 0,30]000 D 300|320

A B

State | « i "y b £ £

Probability =63 | 32 16 8 4 2 1

1'saction | U D D D D D

2% action | L L L L L L

J's action | A B A B A B

Uspartition | {a} (8 7} {6 ¢ {&)

Ppattition [{a B} {1 6} {e €
s partition | {a} {8} {1 (6} {3 (&}]

Figure 79.1
At the top is a threplayer game in which player 1 chooses
one of the two rows, player 2 chooses one of the two columns,
and player 3 chooses one of the two tables. At the bottom are
action functions, information functions, and beliefs for the
players in the gam

ability § the pair of actions chosen by players 1 and By andthat with probability} itis (D, B). Given this
belief, the actiolL that player 2 takes is optimal. Thus player 1 knows that player 2 is re

Similarly player 2 knows that player 1's information is eitt&ng or {9, {'5-‘}}. In both cases player 1 believes

that with probability§ players 2 and 3 will choosg,(B) and that with probabilit‘,i they will choosel(, A). Given
this belief, the actioD that she takes is optimal, so that player 2 knows that player 1 is r:

Player 3 knows that player 1's information és{f- ‘}} and that player 2's information iy,$}. Thus, as argued
above, player 3 knows that players 1 and 2 are rat

In the three stateg 6, ande, player 3's belief is that the pair of actions of players 1 and®, is)(and thus in the
stated players 1 and 2 know player 3's belief. They also know she is rational since her payoffs are alv

However in the stat® the beliefs do not define a Nash equilibrium. In fact, the players' beliefs about each othe
behavior do not even coincide: Player 1 believes that player 3 chooses A with proi
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while player 2 believes that she does so with probal,gliﬂydeither of these beliefs together with the actibrend
L forms a mixed strategy Nash equilibrium of the gi

What makes this example work is that in stafgayer 1 does not know that player 2 knows her belief: player 1
thinks that the state might lsgin WhICh player 2 does not know whether player 1 believes that player 3 plays B

that player 3 plays B with probabili 3 andA with probab|l|ty§

Aumann and Brandenburger (1995) show that if all players share a common prior and in some state rationali
mutual knowledge and the players' beliefs@m@mmon knowledgiaen the beliefs at that state form a mixed
strategy Nash equilibrium even if there are more than two players. The key point is that if the beliefs of playel

and 2 about player 3's action are common knowledge and if all the players share the same prior, then the bel
must be the same (by an argument like that in the proof of Propositior

The following result formalizes the arguments in Chapter 4 to the effect that the notion of rationalizability rest
weaker assumptions about the players' knowledge than that of Nash equilibrium, requiring only that it be comn
knowledge among the players that all players are rational. (The result does not depend essentially on the
assumption that there are two players, though the statement is simpler in th

*Proposition 80.]

Suppose that [N= 2and that in the statw € £ jt is common knowledge between the players that each player's
belief is consistent with his knowledge and that each player is rational. That is, suppose that therecideself

even F 3 w such that for eve «’ € F and eac i€ N

a. the support ofi,(w) is a subset c{a:(w") € 4;:w" € Pilw')} for j#1i
b. the action gw') is a best response of playeoip,(w).

Then for eacli € N the action dw) is rationalizable in G

Proof.

For eacti € N |et % = {ai(w') € A’ € F} By (b) we know that for anw’ € F the actiorg(w) is a best response
to p1(¥), whose support, by (a), is a subse{a; (") € 4;:w" € Pi(w)} SinceF is serfevident we havFil') € F.
and thus{ai(w") € As:w” € Pi(w)} € Z; Hence (using Definition 55.5)(w) is rationalizable.

The three results in this section derive implications for the players' actions or beliptriicalar state from
assumptions about th
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A B A B
Al MM |1,-L Al 0,0 | 1,-L
B|-L1| 0,0 B|-L1l|MM
G (probability 1 - p) G (probability p)
Figure 81.1

The component games of the Electronic Mail game.
The parameters satisfy L > M > 1 aP < 1.

knowledge in that state. The result in the following Exercise is based on an assumption of a differethiatyipe—
everystate the players' rationality is common knowledge. If this assumption is satisfied and the players' belief
derived from a common prior then the distribution of the players' actionQ is a correlated equilibriul

* Exercise 81..

Suppose that for a« € g|| players are rational (and hence their rationality is common knowledge in every st
since any fact that is true in all states is common knowledge in every state). Show that if each player's belief

every state is derived from a common pparn Q for whichp(P,(w)) > 0 for all * € N and allw € £, anda(w')

=a(w) for each? € ¥ and eacl¥’ € Filw), then {(®:2), (Pa):(a:)) \whereP: is the partition induced b, is a
correlated equilibrium cG. (The proof is very simple; the main task is to understand the content of the

5.5 The Electronic Mail Game

In this section we study a game that illustrates the concepts introduced in this chapter. Each of two players h
choose one of the actioAsor B. With probability? < ¥ the game in which the players are involve@jswith
probability E p itis G,. In bothG, andG, it is mutually beneficial for the players to choose the same action, |
action that is best depends on the gam&, ithe outcomeA, A is best, while in gam&, the outcomeRg,B) is

best. The payoffs are shown in Figure 81.1, whereVl > 1. Note that even if a player is sure that the gar@g, is

it is risky for him to choosB unless he is sufficiently confident that his partner is going to cIB as well

Which is the true game is known initially only to player 1. Assume first that player 2 cannot obtain this
information. Then we can mot



Page 8

the situation as a Bayesian game (Definition 25.1) in which there are twoastetes and the information
structures induced by the signal functions awa {{ b}} for player 1 and {{a, b}} for player 2. This game has a
unique Nash equilibrium, in which both players always chA; the expected payoff of each player is- p)M.

Now assume that player | can communicate with player 2 in such a way that the game becomes
knowledge between the two players. In this case each player's information structafe{ibf{and the
(degenerate) Bayesian game has a Nash equilibrium in which each player éhinostasea andB in stateb; the
payoff of each player iM.

In the situation we study in this section, the players can communicate, but the means that is open to them do
allow the game to become common knowledge. Specifically, the players are restricted to communicate via
computers under the following protocol. If the gam&,js then player I's computeutomaticallysends a message
to player 2's computer; if the gamedsthen no message is sent. If a computer receives a message then it
automaticallysends a confirmation; this is so not only for the original message but also for the confirmation, tt
confirmation of the confirmation, and so on. The protocol is designed to send confirmations because the
technology has the property that there is a small probae > 0' that any given message does not arrive at its
intended destination. If a message does not arrive then the communication stops. At the end of the communi
phase each player's screen displays the number of messages that his machin

To discuss the players' knowledge in this situation we need to specify a set of states and the players' informe
functions. Define the set of states tobe {(Q,, Q,): Q, =Q, orQ, = Q, + 1}. In the stated, ¢ player 1's

computer sendg messages, all of which arrive at player 2's computer, arglltheessage sent by player 2's
computer goes astray. In the staje-(, ) player 1's computer sengsl messages, and all but the last arrive at
player 2's computer. Player I's information function is defineB,fy, 9 = {(q, 9, (9, - 1)} if 221 andP,(0, 0)
={(0, 0)}; player 2's information function is defined ByY(q, 9 = {(q, 9), (g + 1,q)} for all g. Denote byG(Q,, Q,)

the game that is played in the sta@e, Q,); that is,G(0, 0) =G,, andG(Q,, Q,) =G, otherwise. ..Player 1 knows 1
game in all states. Player 2 knows the game in all states except (0, 0) and (1, 0). In each of the states (1, 0) ¢
1) player 1 knows that the game&dsbut does not know that player 2 knows it. Similarly in each of the states
and (2, 1) player 2 knows that the gam&jdut does not know whether player 1 knows that player 2
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knows that the game @,. And so on. In any state,(g) or (Q + 1,q) the larger the value @fthe more statements
of the type "player knows that playejrknows that playerknows that ... the game@" are correct, but in no
state is it common knowledge that the gam@,is

If € is small then with high probability each player sees a very high number on his screen. When player 1 see
on her screen, she is not sure whether player 2 knows that the gameand consequently may hesitate to fay

But if the number on her screen is, for example, 17 then it seems to be "almost.gif* common knowledge that:
game isG,, and thus it may seem that she will adhere to the more desirable equiliBrigjrof the gamés,. Her

decision will depend on her belief about what player 2 will do if the number on his screen is 16 or 17. In turn,
player 2's decision depends on his belief about what player 1 will do if the number on her screen is 16. And s
To study these considerations we now define the following Bayesian game, referred telectronic mail garr.

* The set of states @ = {(Q,,Q,): Q,=Q,0rQ, =Q, + 1}
* The signal functiom, of each playeris defined byt,(Q,, Q,) = Q.

« Each player's belief ofd is the same, derived from the technology (characteriz¢ce) Bpd the assumption that
- - 1

the game iS5, with probability 1- p: p(0, 0)=1- p, P{a+1.a) = pe(1 — ™ g pila+Lg+1)=pe(l = 4* ¢

any nonnegative integq.

«:In each state,, Q,) the payoffs are determined by the ga&{®,, Q,).
* Proposition 83.!
Theelectronic mail game has a unique Plash equilibrium, in which both players always ct.
Proof.

In the state (0, 0) the actidnis strictly dominant for player 1, so that in any Nash equilibrium player 1 chAoses
when receiving the signal O. If player 2 gets no message (i.e. his signal is 0) then he knows that either player
not send a message (an event with probabilify) br the message that player | sent did not arrive (an event with
probability pe). If player 2 chooseA then, since player 1 choos&én the state (0, 0), player 2's expected payoff is

at least(t = P)M/[(1 - p) +pe] whatever player | chooses in the state (1, 0); if player 2 ch@akes his payoff is
at mosil=E( —P) +peMI/[(1 = p) +Pel Therefore it is strictly optimal for player 2 to cho when his signal is

Assume now that we have shown that for @ll Q,) with Q, +Q, < 2q players 1 and 2 both choo&en any
equilibrium. Consider player
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decision when she sengsnessages. In this case player 1 is uncertain wh&leqg or Q<2 =q- 1. Given that
she did not receive a confirmation of lgygn message, the probability that she assigns to
Q@ =g-1isz=¢/le+(1-€)d > 3 Thus she believes that it is more likely that her last message did not arriv

than that player 2 got the message. (This is the key point in the argument.) If she Bltbesdser expected
payoff is at mosg(-L) + (1- 2M (since under the induction assumption, she knows tkatsfq - 1 then player 2

choosed\). If she chooseA then her payoff is at least 0. Given that M and® = %, her best action is th#s By &
similar argument, if players 1 and 2 both cho@se any equilibrium for allQ,, Q,) with Q, + Q, < 2q + 1 then

player 2 chooseA when his signal ig. Hence each player choo<A in response to every possible sig

Thus even if both players know that the gam@,iand even if the noise in the network (the probalke)tys
arbitrarily small, the players act as if they had no information andflag they do in the absence of an electronic
mail system

What wouldyoudo if the number on your screen were 177 It is hard to imagine thativghigitly exceed$ anc

e is small a player who sees the number 17 on his screen will not dhobise contrast between our intuition and
the game theoretic analysis makes the equilibrium paradoxical. In this respect the example joins a long list of
games (like the finitely repeated Prisoner's Dilemma (see Proposition 155.1), thetohagame (see Section
6.5.1), and the centipede game (see Section 6.5.2)) in which it seems that the source of the discrepancy bet\
our intuition and the analysis lies in the fact that mathematical induction is not part of the reasoning process ¢
human being

Notes

The basic model of knowledge described in Section 5.1 was formulated in the 1950s and 1960s; Hintikka (19
seminal. The concept of common knowledge is due to Lewis (1969) and Aumann (1976). Lewis gives an info
definition (and discusses the philosophical background for Sections 5.1 and 5.2); Aumann gives a formal
and proves Proposition 75.1. Section 5.4 is based on Brandenburger (1992) and Auraann and Brandenburge
(1995). (Spohn (1982) contains a result that is a precursor to Proposition 78.1.) The electronic mail game of
Section 5.5 is studied by Rubinstein (1989); it is close in spirit-
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"coordinated attack problem" studied by computer scientists (see, for example, Halpern

The origin of the puzzle of the hats in Section 5.1.3 is unclear; see Littlewood (1953, p. 3). Exercise 76.2 is b
on Milgrom and Stokey (1982) and Exercise 81.1 is based on Aumann (.

For discussions of models of interactive knowledge in which the players' information functions are not partitio
see Bacharach (1985) and Samet (1990). For surveys of the literature see Binmore and Brandenburger (199
Geanakoplos (1992, 199



Page 8

I
EXTENSIVE GAMES WITH PERFECT INFORMATION

An extensive gamis an explicit description of the sequential structure of the decision problems encountere
players in a strategic situation. The model allows us to study solutions in which each player can consider his
of action not only at the beginning of the game but also at any point of time at which he has to make a decisi
contrast, the model of a strategic game restricts us to solutions in which each player chooses his plan of
and for all; this plan can cover unlimited contingencies, but the model of a strategic game does not allow a pl
to reconsider his plan of action after some events in the game have ui

A general model of an extensive game allows each player, when making his choices, to be imperfectly inforn
about what has happened in the past. We study such a model in Part Ill. In this part we investigate a simpler
in which each player is perfectly informed about the players' previous actions at each point in the game. In C
6 we describe the basic model. In the next three chapters we study two interesting classes of extensive game
perfect information: bargaining games of alternating offers (Chapter 7) and repeated games (Chapters 8 and
Chapter 10 we present some of the main results of implementation theory (using the models of both strategic
extensive game:
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6
Extensive Games with Perfect Informatiol

In this chapter we study the model of an extensive game with perfect information. We argue that the solution
concept of Nash equilibrium is unsatisfactory in this model since it ignores the sequential structure of the dec
problems. We define the alternative notion of subgame perfect equilibrium, in which a player is required to
reassess his plans as play proceeds. At the end of the chapter we compare this solution concept with that of
elimination of weakly dominated actio

6.1 Extensive Games with Perfect Informatio
6.1.1 Definitior

An extensive game is a detailed description of the sequential structure of the decision problems encountered
players in a strategic situation. There is perfect information in such a game if each player, when making any
decision, is perfectly informed of all the events that have previously occurred. For simplicity we initially restric
attention to games in which no two players make decisions at the same time and all relevant moves are r
players (no randomness ever intervenes). (We remove these two restrictions in Sec

*Definition 89.1

An extensive game with perfect informatiol has the following componen

* A SetN (the set oplayers).

* A setH of sequences (finite or infinite)that satisfies the following three prop:

* The empty sequen is a member cH.
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k
o (@%)k=1,..x € H (where k may be infinite) and <K then (@ =tz € H

V(@) km1,...... € H

ek €H - oatisfie for every positive integdr then

k
« I an infinite sequenc (6221 satisfies (@ %=1

(Each member dfil is ahistory; each component of a history isaation taken by a player.) A history

k
(a*)i=1,...x € H isterminal if it is infinite or if there is n@X* ! such tha @ k=te-k+1 € H- oo oot of terminal

histories is denoteZ.

* A FunctionP that assigns to each nonterminal history (each memb&k @ a member oN (P is theplayer
function, P(h being the player who takes an action after the hih.

« For each playei € N a preference relation Z (the preference relatior of playeri.

Sometimes it is convenient to specify the structure of an extensive game without specifying the players'
preferences. We refer to a trif (¥ H: P} whose components satisfy the first three conditions in the definition
extensive game form with perfect informatiot.

If the setH of possible histories is finite then the gamérige. If the longest history is finite then the game has a
finite horizor. Leth be a history of lengtk; we denote byH, & the history of lengtlk + 1 consisting oh followed
by a.

Throughout this chapter we refer to an extensive game with perfect information simply as an "extensive g
interpret such a game as follows. After any nonterminal hih playerP(h) chooses an action from the

A(h) = {a:(h,a) € H}.

The empty history is the starting point of the game; we sometimes refer to itimsitidhbistory. At this point
playerP(d) chooses a member A{d). For each possible choieé from this set playelP(a®) subsequently

chooses a member of the 8€40); this choice determines the next player to move, and so on. A history aftel

no more choices have to be made is terminal. Note that a history may be an infinite sequence of actions. Img
the definition of a history as a sequence (rather than as a more complex mathematical object, like a string of
sequences) is the assumption that no action may be taken after any infinite history, so that each such history
terminal. As in the case of a strategic game we often specify the players' preferences over terminal histories
giving payoff functions that represent the preferei
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Figure 91.1
An extensive game that models the procedure for allocating two identical
indivisible objects between two people described in Example

* Example 91.:

Two people use the following procedure to share two desirable identical indivisible objects. One of them prog
an allocation, which the other then either accepts or rejects. In the event of rejection, neither person receives
of the objects. Each person cares only about the number of objects he

{N!H! Pil:hi]:'

An extensive game that models the individuals' predicam: where

*N={1,2};

* H consists of the ten historie (2, 0), (1, 1), (0, 2), ((2, 0y), ((2, 0),n), ((1, 1),y), ((1, 1),n), ((0, 2), 1), ((0,
2),n);

* P(@) = andP(h) = 2 for every nonterminal history k # &.

{{ﬂvn]:lf] =1 ((1,1),¥) =1 ((0,2),p) ~ {[i,ﬂ},ﬂ-] ~1 [[111}:“‘] ~1
({ulﬂlln} and {{012}:F] =2 ({1, 1),p) 2 {{2*{)}!#] ~z I:{ﬂ,ﬂ].ﬂ] ~z
. ({1: 1),n) ~2 ((2, 0)1- n).

A convenient representation of this game is shown in Figure 91.1. The small circle at the top of the diagram
represents the initial histo® (the starting point of the game). The 1 above this circle indicates BatR(

(player 1 makes the first move). The three line segments that emanate from the circle correspond to the three
members oA(D) (the possible actions of player 1 at the initial history); the labels beside these line segments :
the names of the actiong, @ - k) being the proposal to gikeof the objects to player 1 and the remainingk2o
player 2. Each line segment leads to a small disk beside which is the label 2, indicating that player 2 take
after any history of length one. The labels beside the line segments that emanate from these disks are the ne
player 2's actiong, meaning "accept" amimeaning 'reject". The numbers below the terminal histories are p
that represent the players' preferences. (The first number in each pair is the payoff of player 1 and the se
payoff of player 2
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Figure 91.1 suggests an alternative definition of an extensive game in which the basic component is a tree (¢
connected graph with no cycles). In this formulation each node corresponds to a history and any pair of node
are connected corresponds to an action; the names of the actions are not part of the definition. This definitior
more conventional, but we find Definition 89.1, which takes the players' actions as primitives, to be mor

6.1.2 Strategie

A strategy of a player in an extensive game is a plan that specifies the action chosen by the plagmhistory
after which it is his turn to mov

* Definition92.1

A strategy of playeri € N in an extensive game with perfect informat ¥ B P (Ze)} is a function that assigns
an action irA(h) to each nonterminal histo® € H\Z for whichP(h) = .

Note that the notion of a strategy of a player in a gt B, P,(Zi)} depends only on the game fotN: &, P)-

To illustrate the notion of a strategy consider the game in Figure 91.1. Player 1 takes an action only after the
historyd, so that we can identify each of her strategies with one of the three possible actions that she car
this history: (2, 0), (1, 1), and (0, 2). Player 2 takes an action after each of the three histories (2, 0), (1, 1), an
2), and in each case he has two possible actions. Thus we can identify each of his strategies wélba.triple
wherea,, b,, andc, are the actions that he chooses after the histories (2, 0), (1, 1), and (0, 2). The interpretatio
player 2's strategg,b,c, is that it is a contingency plaif:player 1 chooses (2, Benplayer 2 will choose,; if

player 1 chooses (1, fhenplayer 2 will choosé,; andif player 1 chooses (0,2) then player 2 will chogse

The game in Figure 93.1 illustrates an important point: a strategy specifies the action chosen by a plagrgr for
history after which it is his turn to moveyen for histories that, if the strategy is followed, are never rea¢hed
this game player 1 hdsur strategiefAE, AF, BE andBF. That is, her strategy specifies an action after the histor
(A, O even if it specifies that she choo&eat the beginning of the game. In this sense a strategy differs fron

we would naturally consider to be a plan of action; we return to this point in Section 6.4. As we shall see in a
moment, for some purposes we can reBE anc
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Figure 93.1
An extensive game in which player | moves
both before and after playel

BF as the same strategy; however, in other cases it is important to keep them

For each strategy profis = (si)ien in the extensive gan (N B (X)) we define theutcomeO(s) of s to be th
terminal history that results when each plei € N follows the precepts of That is,O(s) is the (possibly infinite)

history (@*,-+-,a¥) € Z gch that fo0 < k < K we have®P(et,..at)(@";- ., a%) = a**l.

As in a strategic game we can defamixed strategyo be a probability distribution over the set of (pure)
strategies. In extensive games with perfect information little is added by considering such strategies. Thus we
postpone discussing them until Chapter 11, where we study extensive games in which the players are not pe
informed when taking actions; in such games the notion of a mixed strategy has more sigt

6.1.3 Nash Equilibriun

The first solution concept we define for an extensive game ignores the sequential structure of the game; i
strategies as choices that are made once and for all before play

* Definition 93.1

A Nash equilibrium of an extensive game with perfect informatior ™ B P (Zad} s 5 strategy profile" such
that for every playe i € N we havi

) T
OfeZnn ) X Ol o) ¢ every strategyg of playeri.

Alternatively, we can define a Nash equilibrium of an extensive game P as a Nash equilibrium of the strategic
game derived from P defined as follo
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* Definition 94.1

Thestrategic form of the extensive game with perfect informatioll’ = (¥, H, P, (Z4)) is the strategic game
(N, (8, () in which for each playe € ¥

* S is the set of strategies of playen I

0(s) i O(s)

« Zi is defined by? % ¥ if and only if for every? € XienSi gngs’ € XienSi-

* Exercise 94..

Let G be a tweplayer strategic garr,{,{I'ﬂ}' (4, (Z)} in which each player has two actio 4 = {8 i} forj =1,
2 Show that is the strategic form of an extensive game with perfect information if and only if either for some

r ~ i ] ~ T .
a1 € A1 e have{nl'aﬂ « (a1, 2) fori =1, 2 or for som®2 € Az e have®1192) ~ (81,02) ¢ ¢ =1, 2
If Nash equilibrium were the only solution we defined for extensive games, we could define a strategy more
restrictively than we have done so: we could require that a strategy specify a player's action only after his
are not inconsistent with the actions that it specifies at earlier points in the game. This is so because th® outc
(9) of the strategy profilsis not affected by the actions that the stratggy any playei specifies after

contingencies that are inconsistent vgtRrecisely, we can definereduced strategef playeri to be a functior,

whose domain is a subset!® € #: F(h) =1} 54 has the following properties) it associates with every histony
in the domain of, an action inA(h) and (i) a history h withP(h) =i is in the domain of if and only if all the

=i thenf(h)=a ,,) Each reduced strategy of playeorresponds to a set of strategies of playfr each vector of
strategies of the other players each strategy in this set yields the same outcome (that is, the strategies in the
outcomeequivalen). The set of Nash equilibria of an extensive game corresponds to the Nash equilibria of the
strategic game in which the set of actions of each player is the seredinedstrategies. (The full definition of
strategy is needed for the concept of subgame perfect equilibrium, which we define in the next

As an example of the set of reduced strategies of a player in an extensive game, consider the game in Figure
Player 1 has three reduced strategies: one defingé@y B (with domain {J}), one defined by(3) = A andf,

(A, O =E (with domain &, (A, O}), and one defined bi(@) = A andf, (A, O =F (with domain {, (A, O}).

For some games some of a playsrtiucedstrategies are equivalent in the sense that, regardless of the stra
the other players, th
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generate the sanpayoffsfor all players (though not the same outcome). That is, for some games there is a
redundancy in the definition of a strategy, from the point of view of the players' payoffs, beyond that captured
the notion of a reduced strategy. For exampla 4t in the game in Figure 93.1 then player I's two reduced
strategies in which she choo#eat the start of the game are equivalent from the point of view of payoffs. To
capture this further redundancy, together with the redundancy captured by the notion of a reduced strategy, \
define the following variant of the strategic fo

* Definition95.1

Let T' = (N, H,P,(Z:)) be an extensive game with perfect information an{¥: (5, (Z3)} be its strategic form. F
any i € N define the strategie® € 5 and#: € Si of playeri to beequivalentf for each®=i € 5-i we have

(5-i:8:) ~5 (5-5:8) for a)| 5 € N. Thereduced strategic form ofT" is the strategic gar ¢V (5 X)) in which
for eachi € N each seSi contains one member of each set of equivalent strategiearid X7 is the preference
ordering ove*ie¥S; induced b X+

(Note that this definition specifies the names of the actions in the reduced strategic form; every choice of suc
actions defines a different reduced strategic form. However, the names of the actions do not matter in any
conventional game theoretic analysis, so that we rethe reduced strategic form of a gan

The strategic and reduced strategic forms of the game in Figure 93.1 are shown in Figura 8&1hén the
strategieAE andAF of player 1 are equivalent, so that player 1 has only two actions in the reduced strategic f
of the game

The next example illustrates the notion of Nash equilibrium and points to an undesirable feature that equi
posses:

* Example 95.:

The game in Figure 96.2 has two Nash equilibAaR) and 8, L), with payoff profiles (2, 1) and (1, 2). The
strategy profile B, L) is a Nash equilibrium becaug&enthat player 2 choosésafter the history, it is optimal
for player 1 to choosB at the start of the game (if she choo&asstead, then given player 2's choice she obte
rather than 1), angivenplayer I's choice dB it is optimal for player 2 to choo$e(since his choice makes no
difference to the outcom:

Our interpretation of a nonterminal history as a point at which a player may reassess his plan of action leads
argument that the Nash equilibriuB, L) in this game lacks plausibilitlf the historyA
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C D
C D

AE la | e
AE | a | e

AF | b | e
AF | b | e

BE | d|d
Bld|d

BF |d | d

Figure 96.1

The strategic form (left) and reduced strategic
form (right) of the extensive game in Figure ¢

0,0 2,1

Figure 96.2
An example of a tw-player extensive gan

were to occur then player 2 would, it seems, chébseerL, since he obtains a higher payoff by doing so. The
equilibrium @, L) is sustained by the "threat" of player 2 to chdoselayer 1 chooseA. This threat is not
credible since player 2 has no way of committing himself to this choice. Thus player 1 can be confident that i
chooses then player 2 will choosR; since she prefers the outcorde B to the Nash equilibrium outcomB(

L), she thus has an incentive to deviate from the equilibrium and chobsthe next section we define a notiol
equilibrium that captures these considerat

* Example 96.:

The Nash equilibria of the game in Figure 91.1 are ((3)\§), ((2, 0),yyn), ((2, 0),yny), ((2, 0),ynn), ((1, 1),

nyy), ((1, 1)',nyn), ((0, 2),nny), ((2, 0),nny), and ((2, 0)nnn). The first four result in the division (2, 0), the next
two result in the division (1, 1), the next one results in the division (0, 2), and the last two result in the divisior
0). All of these equilibria except ((2, Q)y) and ((1, 1)nyy) involve an action of player 2 that is iraplausible after
some history (since he rejects a proposal that gives him at least one of the objects
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equilibrium B, L) in Example 95.2, they are ruled out by the notion of equilibrium we now ¢

6.2 Subgame Perfect Equilibriun

Motivated by the discussion at the end of the previous section we now define the notion of subgame perfect
equilibrium. We begin by defining the notion of a subg:

* Definition 97.1

Thesubgame of the extensive game with perfect informaticT = (N, H, P, (Ze)} that follows the history h is

the extensive garnr I(h) = (N, Hln, Pln, (Kalp))s whereH|h is the set of sequendéf actions for which

¥ ¥ £F f }"- N
(h) € H, is defined by* € Hlrs for eachélh and ¥ Ziln b is defined b){h’h} % (B it and only if
h' € Hp);

The notion of equilibrium we now define requires that the action prescribed by each player's strategy be optir
given the other players' strategies, aftfeeryhistory. Given a strategy of playeri and a historh in the extensive

gamel’, denote bys|, the strategy that sduces in the subganigh) (i.e.s}.(N")=,, o eac T = (V> Hy P, (Ze))
the outcome function d (h).

denote by Oh

* Definition 97.2

A subgame perfect equilibrium of an extensive game with perfect informatioi. € N is a strategy profile’

such that for every playcIliL €H\Z gnq every nonterminal histo Or(&-ln:&ila) Zil, On(Z4ln:8) for which P(h)
=i we hav

Or(3Ziln, 57 n) Zily OnlsZsln, 5}

for every strategyg of playeri in the subgame R.

Equivalently, we can define a subgame perfect equilibrium to be a strategy grivfilefor which for any history
h the strategy profile’|h is a Nash equilibrium of the subgail (h).

The notion of subgame perfect equilibrium eliminates Nash equilibria in which the players' threats are not
For example, in the game in Figure 96.2 the only subgame perfect equilibridipRsafd in the game in Figure
91.1 the only subgame perfect equilibria are ((2yyy) and ((1, 1)nyy).

* Example 97.:

(Stackelberg gamg#\ Stackelberg game is a tvdayer extensive game with perfect information in which a
"leader" chooses an action from aAgaénd a "follower", informed of the leader's choice,
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chooses an action from a get The solution usually applied to such games in economics is that of subgame

perfect equilibrium (though this terminology is not always used). Some (but not all) subgame perfect equi
Stackelberg game correspond to solutions of the maximization pt

max ey lag, a subject to a E ATg max u ﬂ_‘l"
(m3,03)€4; XAy 1(a1, 62) J ? ﬂfEA: 2(a1,83),

whereu. is a payoff function that represents playgipreferences. If the s&tof actions of each players
compact and the payoff functionsare continuous then this maximization problem has a solution.

* Exercise 98..

Give an example of a subgame perfect equilibrium of a Stackelberg game that does not correspond to a solu
the maximization problem abo'

To verify that a strategy profil& is a subgame perfect equilibrium, Definition 97.2 requires us to check, for eve
playeri and every subgame, that there is no strategy that leads to an outcome thaigpédges. The following
result shows that in a game with a finite horizon we can restrict attention, for each plagerach subgame, to
alternative strategies that differ frc#|in the actions they prescribe after jasehistory. Specifically, a strategy
profile is a subgame perfect equilibrium if and only if for each subgame the player who makes the first move

cannot obtain a better outcome by changing only his initial action. For an extensivE danwte by €T the
length of the longest history I'; we refer tc €T as thelength ofl".

e Lemma 98.:

(The one deviation property et ['=(NHP(Z)) pe afinite horizon extensive game with perfect information.
The strategy profile*ss a subgame perfect equilibriumloff and only if for every playei € N and every history
h € H for which F(h) =i we haw

On(sZiln, 55 1n) Ziln On(sZiln, 54)

for every strategy, of player i in the subganig(h) that differs frorr,35|honly in the action it prescribes after the
initial history of " (h).

Proof.

If s is a perfect equilibrium df then it satisfies the condition. Now suppose ghé not a perfect equilibrium;
suppose that playercan deviate profitably in the subgam@’). Then there exists a profitable deviant strategy

of playeri in I'(h") for which 3i() # (s71w)(h) for a number of historids not larger than the length bfh'); sincel
has a finite horizon this number is finite. From arn
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all the profitable deviations of playem I'(h') choose a strategyfor which the number of historidssuch that
si(h) # (8In)(B) is minimal. Leth be the longest history h 6{h) for which &(h) # (8]ls}(). Then the initial
history ofl (h") is the only history i (h(SP*) at which the action prescribed $yliffers from that prescribed by
s|h'. Further,’fh' is a profitable deviation ih(h*), since otherwise there would be a profitable deviatidr(li)
that differs fromr 8w , after fewer histories than dogsThus slh s a profitable deviation I{h") that differs
from &iln only in the action that it prescribes after the initial history h”

« Exercise 99..
Give an example of an infinite horizon game for which the one deviation property does r

We now prove that every finite extensive game with perfect information has a subgame perfect equilibrium. C
proof is constructive: for each of the longest nonterminal histories in the game we choose an optimal action fi
player whose turn it is to move and replace each of these histories with a terminal history in which the payoff
profile is that which results when the optimal action is chosen; then we repeat the procedure, working our

to the start of the game. (The following result is known as Kuhn's the

* Proposition 99.2
Every finite extensive game with perfect information has a subgame perfect eqt.

Proof.

Let T' = {N,H,P,(Z)) pe a finite extensive game with perfect information. We construct a subgame perfect
equilibrium of P by induction o&(I'(A));; at the same time we define a funct®that associates a terminal history
with every historyh € H and show that this history is a subgame perfect equilibrium outcome of the su (h).

If &C'(R)) =0 (j.e.his a terminal history of) defineR(h)=h. Now suppose th&k(h) is defined for al® € H with
{r(h)) <k for somek 20. Let' be a history for whicllT(A*)) =k+1 and letr (") =i. Sincef(T'(h*)) = k+1
we have {T'(h*,a)) Sk for all @ € AR*)- Defines(h' to be ¢ R+maximizer of Rk ) over @ € A(A*) and
defineR(h") = R(h",s(h")). By induction we have now defined a strategy prcfilel"; by Lemma 98.2 this strate
profile is a subgame perfect equilibriuml".

The procedure used in this proof is often referreastbackwards inductionin addition to being a means by wh
to prove the proposition, this procedure is an algorithm for calculating the set of subgam
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equilibria of a finite game. Part of the appeal of the notion of subgame perfect equilibrium derives from the fa
that the algorithm describes what appears to be a natural way for players to analyze such a game so long as
horizon is relatively shol

One conclusion we can draw from the result, coupled with the results on strictly competitive games in Sectior
is that each player in chess has a strategy that guarantees his equilibrium payoff (a result first proved by Zert
(1913)). Since chess has finitely many possible histories (once a position is repeated three times the game is
declared a draw), Proposition 99.2 implies that it has a subgame perfect equilibrium and thus also a Nash
equilibrium; since it is strictly competitive, Proposition 22.2 implies that the equilibrium payoff is unique and tf
any Nash equilibrium strategy of a player guarantees the player his equilibrium payoff. Thus either White has
strategy that guarantees that it wins, or Black has a strategy that guarantees that it wins, or each player has
strategy that guarantees that the outcome of the game is either a win for it ot

* Exercise 100.

Show that the requirement in Kuhn's theorem (Proposition 99.2) that the game be finite cannot be replaced b
requirement that it have a finite horizon, nor by the requirement that after any history each player have finitely
many possible actior

Note that Kuhn's theorem makes no claim of uniqueness. Indeed, the game in Figure 91.1 has two subge
equilibria ((2, 0)yyy) and ((1, 1)nny)) that are not equivalent in terms of either player's preferences. However,
is clear that a finite game in which no player is indifferent between any two outcomes has a unique subgame
perfect equilibrium. Further, if all players are indifferent between any two outcomes whenever any one player
indifferent, then even though there may be more than one subgame perfect equilibrium, all players are indiffe
between all subgame perfect equilibria. This result is demonstrated in the following E

* Exercise 100.

Say that a finite extensive game with perfect information satisfieno indifference condition

z2~j % for all 1€ N wheneveiz ~ # for somei €N,

wherez andz are terminal histories. Show, using induction on the length of subgames, that every player is
indifferent among all subgame perfect equilibrium outcomes of such a game. Show alseahdsifre subgarnr
perfect equilibria then so " where for each playe the
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stategy’ir is equal to eithes or & (i.e. the equilibria of the game arterchangeable
* Exercise 101.

Show that a subgame perfect equilibrium of an extensive §amalso a subgame perfect equilibrium of the g

obtained fromT™ by deleting a subgame not reached in the equilibrium and assigning to the terminal history tht
created the outcome of the equilibrium in the deleted sub

* Exercise 101.

Let s be a strategy profile in an extensive game with perfect infornfgtguppose tha@(h) =i, s(h) = a, and

o' € A(h) with 9 # @ Consider the ganie obtained fronT™ by deleting all histories of the forrh,(a’, H) for
some sequence of actiomsand lets' be the strategy profile iR’ that is induced bg. Show that isis a subgame
perfect equilibrium ol thens'is a subgame perfect equilibrium[™.

* Exercise 101.

Armies 1 and 2 are fighting over an island initially held by a battalion of army 2. ArmyK Ibatsalions and arn

2 hasL. Whenever the island is occupied by one army the opposing army can launch an attack. The outcome
attack is that the occupying battalion and one of the attacking battalions are destroyed; the attacking army wi
and, so long as it has battalions left, occupies the island with one battalion. The commander of each army is
interested in maximizing the number of surviving battalions but also regards the occupation of the island as v
more than one battalion but less than two. (If, after an attack, neither army has any battalions left, then the pz
of each commander is 0.) Analyze this situation as an extensive game and, using the notion of subgame pert
equilibrium, predict the winner as a functionK andL.

6.3 Two Extensions of the Definition of a Gan

The model of an extensive game with perfect information, as given in Definition 89.1, can easily be extended
two directions

6.3.1 Exogenous Uncertain

First we extend the model to cover situations in which there is some exogenous uncertantgnéinve game

with perfect information and chance moves tuplet™ 2P, fe (Xa)} where, as befordy is a finite set of players
andH is a set of histories, a



Page 10

*P is a function from the nonterminal historieHrto ¥ Y {¢}-, (If P(h) = c thenchancedetermines the action
taken after the historh.)

*For eact h € H with P(h) = c, f(-|h) is a probability measure @{h); each such probability measure is assumed
to be independent of every other such measf(alh) is the probability that a occurs after the hisih.)

For each playei € N, Zi is a preference relation on lotteries over the set of terminal his

A strategy for each playd € N is defined as before. The outcome of a strategy profile is a probability distributi
over terminal histories. The definition of a subgame perfect equilibrium is the same as before (see Defini

* Exercise 102.

Show that both the one deviation property (Lemma 98.2) and Kuhn's theorem (Proposition 99.2) hold for an
extensive game with perfect information and chance m

6.3.2 Simultaneous Mo

To model situations in which players move simultaneously after certain histories, each of them being fully
informed of all past events when making his choice, we can modify the definition of an extensive game with
perfect information (Definition 89.1) as follows. Axtensive game with perfect information and simultaneous

movess a tuple{N'H'E D) whereN, H, and %é for eachi € N are the same as in Definition 89 Lis a
function that assigns to each nonterminal histasgtaf players, andH andP jointly satisfy the condition that for

every nonterminal historh there is a collectiol4®}iePt) of sets for whic4(®) = {a: (ha) € H} = Xiep) Ai(h).

A history in such a game is a sequence of vectors; the components of eacharettihe actions taken by the

k-1
players whose turn it is to move after the his@':“!hl'. The set of actions among which each pli# € P(h) can
choose after the histotyis A(h); the interpretation is that the choices of the playeR{ly are made
simultaneousl

A strategyof playeri € ¥ in such a game is a function that assigns an acti&yfhnto every nonterminal history
h for which * € P{&)- The definition of a subgame perfect equilibrium is the same as that in Definition 97.2 witl
the exception thaiP(h) =i" is replaced by “4 € P(h)".
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* Exercise 103.

Suppose that three players share a pie by using the following procedure. First player 1 proposes a division, tl
players 2 and 3 simultaneously respond either "yes" or "no". If players 2 and 3 both say "yes" then the divisio
implemented; otherwise no player receives anything. Each player prefers more of the pie to less. Formulate t
situation as an extensive game with simultaneous moves and find its subgame perfect ¢

* Exercise 103.

Consider the following twlayer game. First player 1 can choose ei8tepor Continue If she chooseStop

then the game ends with the pair of payoffs (1,1). If she ch@s#muethen the players simultaneously
announce nonnegative integers and each player's payoff is the product of the numbers. Formulate this situati
an extensive game with simultaneous moves and find its subgame perfect e«

* Exercise 103.

Show that the one deviation property (Lemma 98.2) holds for an extensive game with simultaneous moves b
Kuhn's theorem (Proposition 99.2) does

6.4 The Interpretation of a Strateg)

As we have noted, the definition of a strategy (92.1) does not correspond to a plan of action since it requires
player to specify his actions after histories that are impossible if he carries out his plan. For example, as we s
before, a strategy of player 1 in the game in Figure 104.1 specifies both the action she takes at the beginning
game and the action she takes after the hisA, C), even ilthe action she takes at the beginning of the gaB.

One interpretation for the components of a player's strategy corresponding to histories that are not possible i
strategy is followed is that they are thediefsof the other players about what the player will do in the event he
does not follow his plan. For example, in the game in Figure 104.1, player 1's action after theAisocaii be
thought of as player 2's belief about the choice that player | will make after this history, a belief that player 2 r
to hold in order to rationally choose an action. If player | plans to choose A then player 2's belief coincides wi
player 1's planned action after the histoky ©Q). However, if player 1 plans to chooB¢hen such a belief cannot
be derived from player 1's plan of action. In this case player 1's strategy nevertheless supplies such a belief.
that the belief of player 2 about player
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0,0 1,2

Figure 104.1
An extensive game in which player 1
moves both before and after playe

relevant to the analysis of the game even if player 1 plans to cBpsisee to rationalize the choiceBplayer 1
needs to form a belief about player 2's plan after the hiA.

This interpretation has a number of implications. First, it becomes problematic to speak of the "choice of a
strategy"”, since a player does not choose the other players' beliefs. Second, in any equilibrium of a game
than two players there is an implicit assumption that all the players other than any given lpdéy¢nesame

beliefs about playdts behavior, not only if he follows his plan of action but also if he deviates from this plan.
Third, one has to be careful if one imposes constraints on the strategies since one is then making assumptio
only about the players' plans of action, but also about their beliefs regarding each others' intentions when the
plans of action are violate

This interpretation of a strategy also diminishes the attraction of the notion of subgame perfect equilibrium.
Consider again the game in Figure 104.1. There is no way, within the structure of the game, for player 2 to
rationalize a choice @& by player 1 (since player 1 prefers the his®np everyhistory that can result when she
choosed\). Thus if she observes that player | chodsgslayer 2 must give up a basic assumption about the gam
she must believe either that player 1 is not rational, that player 1 perceives the game to differ from that in Fig
104.1, or that player 1 choseby "mistake” (although such mistakes are not envisaged in the specification of th
game). Yet the notion of subgame perfect equilibrium requires that, whatever history he observes, player 2
continue to maintain his original assumptions that player | is rational, knows the game, and does not make
mistakes
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0,0 2,2

Figure 105.1
The structure of the players' choices in city k
in the chairstore game. The first number in each
pair is the chairstore's payoff and the second
number is player k's payc

6.5 Two Notable Finite Horizon Game

In this section we demonstrate some of the strengths and weaknesses of the concept of subgame perfec

by examining two wetknown games. It is convenient to describe each of these games by introducing a variab
timethat is discrete and starts at period 1. This variable is not an addition to the formal model of an extensive
game; it is merely a device to simplify the description of the games and highlight their str

6.5.1 The Chai-Store Gam

A chainstore (playeCS has branches iK cities, numbered 1,.K. In each cityk there is a single potential
competitor, playek. In each period one of the potential competitors decides whether or not to compete with pl
CS in periodk it is playerk's turn to do so. If playdrdecides to compete then the chsiare can either figh)

or cooperate@). The chairstore responds to playks decision before play&r+ 1 makes its decision. Thus in
periodk the set of possible outcomesQs= { Out, (In, c), (In F)}. If challenged in any given city the chastore
prefers to cooperate rather than fight, but obtains the highestfpiyhere is no entry. Each potential competitor
is better off staying out than entering and being fought, but obtains the highest payoff when it enters and the
store is cooperative. The structure of the players' choices and their considerations in a single period are ¢

in Figure 105.7

Two assumptions complete the description of the game. First, at every point in the game all players know all
actions previously chosen. This allows us to model the situation as an extensive game wi
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information, in which the set of histories(=e@") U (U5 (@* x {InD), \yherek is the set of all sequenceskof
meml:;:ers ob), and the player function is given B¢h) =k + 1 if & € @* andP(h) = CSif

h e Q*x{In}, fork=0,...,K~1. 5econd, the payoff of the chaitore in the game is the sum of its payoffs inkhe
cities

The game has a multitude of Nash equilibria: every terminal history in which the outcome in any period is eitt
Outor (In, C) is the outcome of a Nash equilibrium. (In any equilibrium in which play&oose®utthe chair
store's strategy specifies that it will fight if plak enters.

In contrast, the game has a unique subgame perfect equilibrium; in this equilibrium every challengetrchooses
and the chakstore always choos&3. (In city K the chairstore must choos€', regardless of the history, so the
city K - 1 it must do the same; continuing the argument one sees that tr-store must always chooC'.)

For small values oK theNashequilibria that are not subgame perfect are intuitively unappealing while the
subgame perfect equilibrium is appealing. However, whenlarge the subgame perfect equilibrium loses some
of its appeal. The strategy of the chatore in this equilibrium dictates that it cooperate with every entrant,
regardless of its past behavior. Given our interpretation of a strategy (see the previous section), this means tl
even a challenger who has observed the estaire fight with many entrants still believes that the clséone will
cooperate with it. Although the chastore's unique subgame perfect equilibrium strategy does indeed specify tl
it cooperate with every entrant, it seems more reasonable for a competitor who has observedstwefigint
repeatedly to believe that its entry will be met with an aggressive response, especially if there are many cities
to be contested. If a challenger enters then it is in the myopic interest of thatchaito be cooperative, but
intuition suggests that it may be in its letggm interest to build a reputation for aggressive behavior, in order to
deter future entry. In Section 12.3.2 we study a perturbation of the stleagngame, in which the challengers are
imperfectly informed about the motives of the cl-store, that attempts to capture this i

6.5.2 The Centipede Gar

Two players are involved in a process that they alternately have the opportunity to stop. Each prefers the out
when he stops the process in any petitmithat in which the other player does so in petied.. However, better
still is any outcome that can result if the process i
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1,0 02 3,1 24 53 4,6

Figure 107.1
A six-period version of the centipede ga

stopped in either of these periods. Afigoeriods, wherd is even, the process ends. For6 the game is shown
in Figure 107.1. (The name "centipede" comes from the shape of the di

Formally, the set of histories in the game consists of all sequé}es(C,.., Q of lengtht, for .=t =T, and all
sequence§(t) = (C,..., C, $consisting of - 1 repetitions of followed by a singlés, for 1 £t = T. The player
function is defined byP(C(t))= 1 iftis even ant £T =2 andP(C(t)) = 2 ift is odd. PlayeP(C(t)) prefers(t +
2) to S(t) to S(t+1) for t < T =2, player | preferC(T) to (T - 1) toS(T), and player 2 prefeiS(T) to C(T).

The game has a unique subgame perfect equilibrium; in this equilibrium each player &8inesesy period. Th
outcome of this equilibrium is the same as the outcome of every Nash equilibrium. To see this, first note that
is no equilibrium in which the outcome@T). Now assume that there is a Nash equilibrium that ends with playze
i choosingSin periodt (i.e. after the historg(t - 1)). If 2 2 then player j can increase his payoff by chooSing
periodt - 1. Hence in any equilibrium player 1 chooSas the first period. In order for this to be optimal for
player 1, player 2 must chooSén period 2. The notion of Nash equilibrium imposes no restriction on the playel
choices in later periods: any pair of strategies in which player 1 ch8asg&riod 1 and player 2 choosem

period 2 is a Nash equilibrium. (Note however thatréticed strategiéorm of the game has a unique Nash
equilibrium.;

In the unique subgame perfect equilibrium of this game each player believes that the other player will stop th:
game at the next opportunity, even after a history in which that player has chosen to continue many times in
past. As in the subgame perfect equilibrium of the cBore game such a belief is not intuitively appealing;
unlessT is very small it seems unlikely that player 1 would immediately ch8asehe start of the game. The
intuition in the centipede game is slightly different from that in the -store game in that after any long his
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bothplayers have repeatedly violated the precepts of rationality enshrined in the notion of subgame perfect
equilibrium. After a history in which both a player and his opponent have chosen to continue many times in tt
past, the basis on which the player should form a belief about his opponent's action in the next period is far fr
clear

* Exercise 108.

For anye > 0 define ar e-equilibrium of g strategic game to be a profile of actions with the property that no play
has an alternative action that increases his payoff by more.tt&irow that for any positive integieand any

€ >0 there is a horizof long enough that the modification of the centipede game in which all payoffs are divid
by T has ar e-equilibrium jn which the first player to stop the game does so in pk.

6.6 Iterated Elimination of Weakly Dominated Strategie
6.6.1 Relation with Subgame Perfect Equilibrit

In Section 4.3 we define the procedure of iterated elimination of weakly dominated actions for a strategic
argue that though it is less appealing than the procedure of iterated elimination of strictly dominated actions (
a weakly dominated action is a best responseiaebelief), it is a natural method for a player to use to simplify a
game. In the proof of Kuhn's theorem (Proposition 99.2) we define the procedure of backwards induction for
extensive games with perfect information and show that it yields the set of subgame perfect equilibria of

The two procedures are related. Cdbe a finite extensive game with perfect information in which no player is
indifferent between any two terminal histories. Then P has a unique subgame perfect equilibrium. We no\
sequence for eliminating weakly dominated actions in the strategicGahh (weakly dominated strategieslii
with the property that all the action profiles@that remain at the end of the procedure generate the unique
subgame perfect equilibrium outcomer .

Let h be a history of with P(h) =i and (k) = 1 and letsi € 4(h) be the unique action selected by the
procedure of backwards induction for the histerfdackwards induction eliminates every strategy of playieat
chooses an action different frecahafter the historjh. Among these strategies, only those that are consistenk with
(i.e. that choose the componenth that followsh'whenevelh' is a subhistory ¢
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¢ D

AE | 2,0 | 1,1

AF |02 1,1

BE | 3,333

BF | 3,3|3,3

Figure 109.1
An extensive game (left) and its strategic form (right).
There is an order of elimination of weakly dominated
actions in the strategic form that eliminates the unique
subgame perfect equilibrium of the extensive g

h with P(h') =) are weakly dominated actions@ In the sequence of eliminations that we define, all of these
weakly dominated actions are eliminated fr@mat this stage. Having performed this elimination for each history

with 4T =1, we turn to historieh with #T'(A)) =2 and perform an analogous elimination; we continue back
to the beginning of the game in this way. Every strategy of plapet remains at the end of this procedure
chooses the action selected by backward induction after any history that is consistent wiitsgalggame

perfect equilibrium strategy. Thus in particular the subgame perfect equilibrium remains and every strategy p
that remains generates the unique subgame perfect equilibrium ot

Note, however, that other orders of elimination may remove e-game perfect equilibria. In the game in Figure
109.1, for example, the unique subgame perfect equilibriuBEs[D), while if in the strategic form the weakly
dominated actioE is eliminated thei is weakly dominated in the remaining game&\kfis eliminated afteD
then neither of the two remaining action profileBE( O and BF, O)) are subgame perfect equilibria of the
extensive gam

Note also that if some player is indifferent between two terminal histories then there ri) an order of
elimination that eliminates a subgame perfect equilibrium outcomdiama ©rder of elimination for which all
surviving strategy profiles generate subgame perfect equilibrium outcomes. The game in Figure 110.1
demonstrates) the strategieAC, AD andBD of player 1 are all weakly dominated BE; after they are
eliminated no remaining pair of actions yields the subgame perfect equilibrium outpR)el{ the payoff (1, 2)
is replaced by (2, !
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L R
1 AC | 0,0 1,2
A B

2 1 AD | 0,0 1,2

L R c D
BC | 1,1 1,1

0,0 1,2 1,1 0,0
BD | 0,0 0,0

Figure 110.1
An extensive game (left) and its strategic form (right).
There is an order of elimination of weakly dominated
actions in the strategic form that eliminates a subgame
perfect equilibrium outcome of the extensive gz

then the modified game demonstrates the outcomeA, L), which is not even a Nash equilibrium outcome,
survives any order of eliminatic

6.6.2 Forward Inductior

We now present two exampies that show that the iterated elimination of weakly dominated strategies capture
some interesting features of players' reasoning in extensive |

* Example 110.:

(BoS with an outside optipiConsider the extensive game with perfect information and simultaneous move:

in Figure 111.1. In this game player | first decides whether to stay at home and read a book or to go to a cont
she decides to read a book then the game ends; if she decides to go to a concert then she is engaged in the
BoS (Example 15.3) with player 2. (After the hist@gncertthe players choose actions simultaneously.) Each
player prefers to hear the music of his favorite composer in the company of the other player rather than eithe
a concert alone or stay at home, but prefers to stay at home rather than either go out alone or hear the music
less-preferred compose

In the reduced strategic form of this ga8is strictly dominated for player | Byook If it is eliminated therSis
weakly dominated for player 2 B Finally, Bookis strictly dominated b for player 1. The outcome that
remains isB, B).This sequence of eliminations corresponds to the following argument for the extensive game.
player 2 has to make a decision he knows that player AdtahoserBook Such a choice makes sense for player
1
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B 5
Book Concert
Beook | 2,2 ] 2,2

2,2 B )
: B|31]|0,0
B|31)|00
100113
510013
Figure 111.1

BoS with an outside option (left; an extensive game with
perfect information and simultaneous moves) and its reduced
strategic form (right

only if she plans to choo$& Thus player 2 should chooBealso. The logic of such an argument is referred to in
the literature as "forward inductiol

In the following example the iterated elimination of weakly dominated strategies leads to a conclusion that is
striking.

* Example 111.1 (Burning money

Consider the game at the top of Figure 112.1. Two individuals are going to play BoS with monetary payoffs a
the lefthand table in the figure. Before doing so player 1 can discard a dollar (take thd>aaraefrain from

doing so (take the action 0); her move is observed by player 2. Both players-aeutisk. (Note that the two
subgames that follow player 1's initial move are strategically iden

The reduced strategic form of the game is shown in the bottom of Figure 112.1. Weakly dominated actions c:
eliminated iteratively as follow

1. DSis weakly dominated for player 1 bB
2. S¢is weakly dominated for player 2 ISE
3. BSis weakly dominated for player 2 IBB
4. (Sis strictly dominated for player 1 (DB
5. SE is weakly dominated for player 2 BB
6. DB is strictly dominated for player 1 b'‘B

The Single strategy pair that remais$0B, BB): the fact that player 1 can throw away a dollar implies, under
iterated elimination of weakly dominated actions, that the outcome is player 1's f
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B 8 B 8
Bl 31 0,0 B 21 | =10
5| 0,0 1,3 §|-1,0]| 0,3

BB BS §SB 85§

oB| 31| 31| 00 | 00

0| 00 | 00 | 1,3 | 1,3

DB | 2,1 |-1,0] 2,1 | =10

ps|-1,0| 0,3 |-1,0| 0,3

Figure 112.1
An extensive game with perfect information and
simultaneous moves in which player 1 can choose to
destroy a dollar before playing the game BoS. The
extensive form is given at the top and the reduced
strategic form at the botto

An intuitive argument that corresponds to this sequence of eliminations is the following. Player 1 must anticip

that if she chooses 0 then she will obtain an expected payoff of &1 least , since for every belief about the bel
of player 2 she has an action that yields her at least this expected payoff. Thus if player 2 observes that play:e
choose® then he must expect that player 1 will subsequently cridg¢smce the choice & cannot possibly

yield player 1 a payoff in excess ajf Given this, player 2 should chod3éf player 1 chooseB; player 1 knows
this, so that she can expect to obtain a payoff of 2 if she chDo&ag now player 2 can rationalize the choice O
by player 1 only by believing that player 1 will cho@&ésinceS can yield player 1 no more than 1), so that the
best action of player 2 after observing B. This makes 0 the best action for play:t

We now discuss these two examples in light of the distinction we made in Section 1.5 between the "steady st
and "deductive" approaches to game theory. From the point of view of the steady state inte
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the two examples share the same argument: the beliefs of player 2 in the equilibria in which the outcome

the first example or (05 ) in the second example are both unreasonable in the sense that if player 1 deviate
Concertor D) then the only sensible conclusion for player 2 to reach is that player 1 intendsBo play
subsequently, which means that player 2 should Blayaking the deviation profitable for player 1. From the
point of view of the deductive interpretation the two games differ, at least to the extent that the argument in tt
second example is more complex. In the first example player 1 has to reason about how player 2 will interpre
action Concer) that she takes. In the second example player I's reasoning about player 2's interpretation of h
intended action 0 involves her belief about how player 2 would rationalize an D) that she doenot take

The second example raises a question about how to specify a game that captures a given situation. The argt
we have made are obviously based on the supposition that the game in Figure 112.1 reflects the situation as
perceived by the players. In particular, they presume that the players perceive the possibility of disposing of ¢
dollar to be relevant to the play of BoS. We believe this to be an implausible presumption: no reasonable per:
would consider the possibility of disposing a dollar to be relevant to the choice of which concert to attend.
argue that a game that models the situation should simply exclude the possibility of disposal. (AR argues this
so even if the game, including the move in which player 1 can burn money, is presented explicitly to the

a referee, since before a player analyzes a situation strategically he "edits" the description of the situation,
eliminating "irrelevant” factors.) On what principles do we base the claim that the possibility of disposing of a
dollar is irrelevant? The answer is far from clear; some ideas follow. (a) The disposal does not affect the play
payoffs in BoS. (b) If the disposal is informative about the rationality of player 1, a sensible conclusion might
that a player who destroys a dollar is simply irrational. (In contrast, spending money on advertising, for exam:
may signal useful information.) (c) The dissimilarity between the two parts of the game makes it unlikely that
player 2 will try to deduce from player 1's behavior in the first stage how she will behave in the secc

One interpretation of the arguments in this section is that each player accompanies his actions by messages
explaining his future intentions. Thus to investigate the arguments further it may seem natural to augment the
games by adding moves that have such explicit meaning. However, if we do so then we face difficulties, as tt
following example show
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Al22]00

B|oo0|1,1

Figure 114.1
The game relevant to Exercise 11

Suppose that BoS is to be played and that player | is able, before BoS starts, to send a message (any string
symbols) to player 2. Assume further that each player cares only about the outcome of BoS, not about the cc
of any message that is sent or about the relationship between the action that he takes and the message. This
extensive game has subgame perfect equilibrium outcomes in whictBhb&had S, S are played in BoS; in
particular, there is an equilibrium in which player 2 completely ignores player I's message. This is so because
player 2 is not forced to interpret the message sent by player 1 as meaningful, even if the message is "l am &
play B". The fact that a message can be sent does not affect the outcome because the names of the actions ¢
play any role in the concept of Nash equilibrium. A reasonable conclusion appears to be that a modification c
model of an extensive game is required if we wish to model communication between

* Exercise 114.

Examine the variant of the game at the top of Figure 112.1 in which player 1 first has the option of burning a
dollar, then player 2, having observed player I's action, is also allowed to burn a dollar, and finally players 1 a
engage in BoS. Find the set of outcomes that survive iterated elimination of weakly dominated actions and
compare it with the outcome that does so in the game in Figure

* Eexrcise 114.

Consider the game that differs from that at the top of Figure 112.1 only in that the game in which the players
engage after player 1 has the option to burn a dollar is that shown in Figure 114.1. Find the set of outcomes 1
survives iterated elimination of weakly dominated act

Notes

The notion of an extensive game originated with yon Neumann and Morgenstern (1944); Kuhn (1953) sugge:
the formulation we describe. The notion of subgame perfect equilibrium is due to Selter
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The one deviation property (Lemma 98.2) is closely related to a principle of dynamic programming. Propositic
99.2 is due to Kuhn (1953). The idea of regarding games with simultaneous moves as games with perfect
information is due to Dubey and Kaneko (1984). Some of our discussion of the interpretation of a strategy in
Section 6.4 is based on Rubinstein (1991). The e$taire game studied in Section 6.5.1 is due to Selten (1978)
and the centipede game studied in Section 6.5.2 is due to Rosenthal (1981). Some of the issues that these g
raise are studied by Reny (1993). (See Section 12.3.2 for a variant of thetonaigame due to Kreps and Wil
(1982a) and Milgrom and Roberts (1982).) Moulin (1986) gives results that relate the procedure of iterated
elimination of weakly dominated actions and the solution of subgame perfect equilibrium. The game in Figure
109.1 is taken (with modification) from Reny (1992). The idea of forward induction (together with the game in
Example 110.1) is due to Kohlberg; it is discussed in Kohlberg and Mertens (1986). The game in Example 11
due to van Damme (1989); see also HBemath and Dekel (1992) and Osborne (1990). (For more discussion of 1
iIssues that arise in this game see Rubinstein (1'

Exercise 103.2 is based on an idea of Kreps; Exercise 108.1 is due to Radner (1980) (see also Rad



Page 11

7
Bargaining Game:

Groups of people often have to choose collectively an outcome in a situation in which unanimity about the be
outcome is lacking. Here we study a model, based on an extensive game with perfect information, that captu
some of the features of such a situa

7.1 Bargaining and Game Theor

Game theory deals with situations in which people's interests conflict. The people involved may try to resolve
conflict by committingthemselvesoluntarily to a course of action that is beneficial to all of them. If there is mort
than one course of action more desirable than disagreement for all individuals and there is conflict over whicl
course of action to pursue then some form of negotiation over how to resolve the conflict is necessary. The
negotiation process may be modeled using the tools of game theory; the model in this chapter is an example
such an analys|

Since the presence of a conflict of interest is central to game theoretic situations, the theory of bargaining is r
than just an application of game theory; models of bargaining lie at the heart of the subject and have attracte
great deal of attention since its inception. Most of the early work uses the axiomatic approach initiated by Jot
Nash, whose work we discuss in Chapter 15. In this chapter we use the model of an extensive game w
information to study some features of bargaining, in particular the influence of the participants' impatience
aversion on the outcon
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7.2 A Bargaining Game of Alternating Offers

Consider a situation in which two bargainers have the opportunity to reach agreement on an outcome irxsom
and perceive that if they fail to do so then the outcome will be some fixed2véhe seX may, for example, be
the set of feasible divisions of a desirable pie Rrmday be the event in which neither party receives any of th

To model such a situation as an extensive game we have to specify the procedure that the parties follow whe
negotiating

The procedure we study is one in which the players alternate offers. It can be described conveniently by
introducing the variable "time", the values of which are the nonnegative integers. The first move of the game
occurs in period 0, when player 1 makes a proposal (a memKgnich player 2 then either accepts or rejects.
Acceptance ends the game while rejection leads to period 1, in which player 2 makes a proposal, which play:
has to accept or reject. Again, acceptance ends the game; rejection leads to period 2, in which it is once aga
player I's turn to make a proposal. The game continues in this fashion: so long as no offer has been acceptec
every even period player | makes a proposal that player 2 must either accept or reject, and in every odd peric
player 2 makes a proposal that player | must either accept or reject. There is no bound on the number of rout
negotiation: the game has an infinite horizon. (See Section 8.2 for a discussion of the choice between a finite
infinite horizon when modeling a situation as a game.) The fact that some offer is rejected places no restrictic
the offers that may subsequently be made. In particular, a player who rejects a prapsalbsequently make
proposal that is worse for him thx. If no offer is ever accepted then the outcome is the disagreemenD.

We now give a formal description of the situation as an extensive game with perfect information (see Definitic
89.1). The set of playersié= {1,2}. Let X, the set of possiblegreementsbe a compact connected subset of a
Euclidian space, and I&tbe the set of nonnegative integers. The set of histdrisghe set of all sequences of

of the following types, whert € Ts 2* € X' for all s, A means "accept”, arR means "reject.gif
l. @ (the initial history), orx°, R, », R, ...,x\, R)

. (x°, R, »™ R, ...,x)

. (X%, R, R, ..,X, A)

V. (X%, R, R, ...
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It follows from this description of the histories that the player whose turn it is to move chooses a mefrdfterof
a history of type | and a member & {R after a history of type II. Histories of type Il and IV are terminal; those
of type Il are finite, while those of type IV are infinite. The player function is defined as folRiWs= 1 if h is of
type | or type Il anc is odd or ith is empty;P(h) = 2 if h is of type | or type Il ant is ever

To complete the description of the game we need to specify the players' preferences over terminal histories.
assume that each player cares only about whether agreement is reached and the time and content of the ag
not about the path of proposals that preceded the agreement. Precisely, the set of terminal histories is partitic
follows: for eackz € X andt € T the set of all histories of type Il for which= x is a member of the partition,
denoted byX, 1), and the set of all histories of type 1V is a member of the partition, denot@dThe preference

relation of each playearover histories is induced from a preference rele%n over tHX x TYU{D} of
members of this partition (that is, each player is indifferent between any two histories that lie in the same met

of the partition). We assume that each pld's preference relatic%¢ satisfies the following conditior

. , >
* No agreement is worse than dlsagreerr{""t] 2D for all () €EX xT,

« Time is valuable (%) Zi (#:t+1) for every perioct € T and every agreeme® € & with strict preference if
(x,0) = D

« Preferences are stationa (## Zi (t+1) if and only if(@0) ¢ (1) and @t Z W8 if and only if
{zl u] ti {Fl l]}

« Preferences are continuouss € X and¥s € X for all n, {x} converges t € X {y} converges t¥ € X, and
(zn,t) 24 {Fﬂrs} for all n, thenfﬁ, f] hi I:ﬂ._.a}_

These assumptions imply that fomy 6€(0.1) there is a continuous functiws: X = R such that the preference

relation %+ is represented oXi x T by the functiordu, in the sense th: (%:£) Zi # ) if and only if
Stui(z) 2 8'wiv)_ (This follows from Fishburn and Rubinstein (1982, Theorems 1 and 2).) Note dtkjf
represent®+ then forany € € (0,1) the functior€%(®) wherev, is defined byv(®) = (ui(z))t= /(24

representZi. Thus if&'u (x) and€v(®) are representations of two preference relationsé > € then wecannot
conclude that the first preference relation is more "patient.gif" than the secondwnless

also
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Figure 120.1
A representation of the first two periods of a bargaining game of alternating

We refer to the extensive game with perfect informe{™, & P, (%)) thus defined as tHeargaining game of
alternating offers (%1 (X)),

The first two periods of such a game are illustrated in Figure 120.1. (Not€ ihainly one of the proposals
available to player 1 at the start of the game »amslonly one of the proposals available to player 2 after he r
x0.)

An important example of a bargaining game of alternating offers is the follc

« Example 120.1 (Spli-the-pie)

The set of possible agreemeX is the set of all divisions of a desirable

XE {{zllzﬂ‘}:zi Eﬂ fﬂri=1,iand $1+Ij = 1}‘-

The preference relaticZi of each player over (X xT)U{D} has the properties th{(®&8 Zi (1) if ang only if
%; 2 % (pie is desirable) and ~, ((0,1),0) and ~, ((1,0),0) (in the event of disagreement both players receive

nothing). Thus~¢ can be represented ¥ T by a function of the forr&®i(#:) in which 0 <& < 1 andw is
increasing and continuous, wity(0) = 0.
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The set of Nash equilibria of a bargaining game of alternating offers is very large. In particular,z* € Xiy
there is a Nash equilibrium in which the players immediately agree(ae. player I's equilibrium strategy assi
X" to the initial history and player 2's strategy assi@is the history’). One such equilibrium is that in which
both playersalwaysproposex' andalwaysaccept a proposalif and only ifx =x". (Alternatively, each player

could accept a proposain periodt if and only if () Ze (=48)) |y addition, for many specifications of the
players' preferences there are Nash equilibria in which an agreement is not reached immediately. For examp
any agreement and period in a splitthe-pie game there is a Nash equilibrium for which the outcome is the
acceptance of in periodt. One such equilibrium is that in which through petied each player demands the
whole pie and rejects all proposals, and from pet on proposex and accepts onix.

These Nash equilibria illustrate the point we made at the end of Section 6.1.3: the notion of Nash equilibrium
not exclude the use of "incredible threats". Consider the Nash equilibrium of-thejlie game in which both

players always proposeé and playei accepts a proposain periodt if and only if(@:8) Ka (2%48).) 5

(=*,0) »2 (2*,1) then by the continuity of the players' preferences there is an agreemevttichx, is slightly leas
than®2 for which (#0) =1 (£%,0) ang(=,0) 2 (=*1) |n the equilibrium player 2's strategy dictates that in any
period he reject such a propogathis "threat.gif" induces player 1 to proposePlayer 2's threat is incredible,
given player 1's strategy: the best outcome that can occur if player 2 carries out his threatxts risjatthere is
agreement oR' in the next period, an outcome that player 2 likes leas than agreemeint period 0, which he

can achieve by acceptixgAs we explained in the previous chapter, the notion of subgame perfect equilibrium
designed to isolate equilibria in which no player's strategy has this unattractive p

7.3 Subgame Perfect Equilibriun
7.3.1 Characterizatio

We now show that under some additional assumptions a bargaining game of alternating offers has an essent
unique subgame perfect equilibrium, which we characterize. The first assumption is designed to avoid
redundancie
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Al For no two agreemenksandy is it the case thak(0) ~ (y, 0) for bothi = 1 and = 2.
The next assumption simplifies the analy
A2 (b, 1) ~ (b, 0) ~Dfori=1,2J # % whereb, is the best agreement for player

To state the next two assumptions we defindPdreto frontierof the selX of agreements to be the set of

agreements for which there is no agreemenwith #90) =i (=.0) forj = 1, 2. We refer to a member of the Pareto
frontier as arefficien agreemen

A3 The Pareto frontier of is strictly monotone: if an agreemeqis efficient then there is no other agreement

such tha® 0 %4 (#0) tor hoth players.
A4 There is a unique paix’( y') of agreements for whiclx'( 1) ~ (v, 0), ¢, I) ~, (X', 0), and botlx" andy" are
efficient.

The most important of these assumptions is A4. In athi@ipie game a sufficient condition for it to be satisfie
that each player's preference relation exhibit "increasing loss to delaf(Xx) is an increasing function affor

each player, wheref(x) is the agreement for whick(X),0) ~ (x, 1). Another case in which assumption A4 is

satisfied is that in which the Pareto frontier of theXset agreements is the {z € R:z2 = g(z1)} for some
decreasing concave functigrand the preference relation of each playsrrepresented by the functi®=s for
some 0 D < 1.

 Proposition 122:

A bargaining game of alternating offi {%: (X4} that satisfies Al through A4 has a subgame perfect equilibrium
Let (X', y) be the unique pair of efficient agreements for w

(z*,1) ~1 (¥°,0)  and  (y",1) ~2 (z°,0). (122.2)

In every subgame perfect equilibrium player | always propc’, accepts yand any proposal x for which
(=,0) <1 (¥%,0) and rejects any proposal x for whi(20) >1 (¢,0); player 2 always proposes, accepts Xand
any proposal x for whic (#:0) =2 (2%.0) and rejects any proposal x for whi(®:0) <a (z*,0).

Proof.

First we verify that the pair of strategies defined in the proposition is a subgame perfect equilibrium. To do sc
use the fact that the game has the "one deviation property": a pair of strategies is a subgame perfect equilibr
and only if for every historh the player whos
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turn it is to move cannot deviate profitably by changing his actiontatiteme. This property holds for every ge
with a finite horizon, as Lemma 98.2 shows. The proof that it holds also for a bargaining game of alternati
is left as an exercis

» Exercise 123.
Show that every bargaining game of alternating offers satisfies the one deviation [

We now need to check the optimality only of the action of each player after any possible nonterminal history.
most interesting case is a history of type Il. Suppose that it is player 2's turn to respond to axjiapguesabdt.
If he accepts this proposal then the outcom#,ig) (while if he rejects it the outcome ig (t+1). Since his

preferences are stationary it follows from (122.2) (=48 Z2 0"t +1) 5 ang only if(=%,0) X2 (=%,0) and thus his
acceptance rule is optim

We now turn to the more difficult part of the proof: the argument that the subgame perfect equilibrium is
essentially unique. (The only indeterminacy is in each player's response to a proposal that he regards as indi
to the equilibrium proposal of the other player and the other player regards as worse; note that no such propc
efficient.)

Given the stationarity of the players' preferences, fot, 2 all subgames that begin with a proposal of plagesr
identical. LetG. be such a subgamé (is the game itself). Choo:# € (&1} and fori = 1, 2, letw:X — R pe suct

thatd'u,(x) representzt‘ onXx T. LetM,(G) be the supremum of the set of subgame perfect equilibrium (SPE)
payoffs of player in G;:

M.(G) = supf'u(x): there is a SPE @, with outcomeX, 1)}.
Let m(G)) be the corresponding infimum.
Step 1

M,(G,) =m(G)) =u,(X) andM,(G,) = m,(G,) = u,(Yy"). (That is, in every SPE @, the payoff of player 1 ig,(X")
and in every SPE @, the payoff of player 2 ig,(y").)

Proof.

Describe the pairs of payoffs on the Pareto frontief by the functionpif x is efficient theru,(x) = @(u,(x)). By

the connectedness ¥fand the continuity of the preference relations the domaman interval angis
continuous; by A3 it is or-to-one and decreasit

We first show th:

ma(Ga) = ¢(6My(G))- (123.2)
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If player 1 rejects a proposal of player 2 in the first perio@,dhen her payoff is not more tham,(G,). Hence ir
any SPE of5, she must accept any proposal that gives her moredMd(®,). Thus player 2's payoff is not less
than@(dM,(G,)) in any SPE 06..

We now show thi
My(Gy) £ ¢~ H(6ma(Ga)). (124.1)

In any SPE of5, player 2's payoff is not less tham,(G,) since player 2 can always reject the opening proposal c
player 1. Thus the payoff that player 1 can obtain in any SRE @ides not exceeg!(dm,(G,)).

Finally, we argue tha¥l,(G,) = u,(X). Since there is an SPE @f in which immediate agreement is reached'on

we haveMi(G1) 2 ¥1(=*) e now show that our assumptions about the set of agreements and the uniquenes:
the solution of (122.2) imply thiM1(G1) < u(=")

By A2 we havedu,(b') = u,(bY), so that,(b' = 0; by A3 and the definition af we haved@du,(b')) > 0 =u,(b") =@
(u,(bY). Since is decreasing we conclude théh) > @1(d@du,(bY))). Now, by (123.2) and (124.1) we have .gif">.

Similarly we can show tham, (G,) = u,(X’), M(G, = u,(y’), andm,(G,) = u,(y"), completing the proof of this step.
Step 2

In every SPE o6, player I's initial proposal ig’, which player 2 immediately accepts.

Proof.

In every SPE o6, player 1's payoff is,,(X") (by Step 1) and player 2's payoff is at l€asty’) = u,(X’), since the
rejection of player 1's proposal leads to the subgamim which player 2's SPE payoffugy’). Thus by Al and
the fact thax’ is efficient, player 1's opening proposax’, which is accepted by playel

Step 3

In every SPE 06, player 2's strategy accepts any propagal which(®0) >2 (2°,0) gnq rejects any proposal
for which (0} <a (z*,0),

Proof.

A rejection by player 2 leads @, in which player 2's payoff i8,(y') (by Step 1). Sinca,(X) = du,(y’), player 2
must accej
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any proposak for which (#:0) =2 (2*,0) and reject any for which (:9) <2 (z*,0)_(There is no restriction on
player 2's response to a propc® # Z* for which (x, 0) 5 (X, 0).)

Finally, arguments analogous to those in Steps 3 and 4 apply to player 2's proposals and player 1's acceptar
in every SPE 06,.

Note that if all the members of the X of agreements are efficient (as, for example, in a8m@ipie game) then
bargaining game of alternating offers has a unique (not just essentially unique) subgame perfect equilibrium.
following example is frequently used in applicatic

Example 125.:

Consider a splithe-pie game in which each playis preferences are represented by the fun &%i\for some
& € (0,1). Then we have’ = (@, 1- &) andy’ = (1-b", b"), wherea’ andb’ solve the pair of equations- b =
oa and ta =9, sothal’ = (1-d)/(1-9,0,) andb” = (1-9)/(1-d,0,).

An interesting case that is not covered by Proposition 122.1 is a variant ofthesplé game in which each
playeri incurs the cost, > O for every period in which agreement is not reached (and there is no upper hound ¢

the total of these costs that a player can incur). That is, playsyoff if the agreememtis concluded in periotd
IS X - ct. This case violates A2, sin (®0) >4 (1) fo; everyagreemeng. It also violates A4: ie1 # &2 then there
IS no pair of agreements satisfying the two conditions whidedtc, then there are many such pairs of agreements

* Example 125..

a. Show that iic, < c, then the game described in the previous paragraph has a unique subgame perfect ec
and that this equilibrium has the same structure as that in Proposition 122<1w{th0) andy’ = (1- c,, C)).

b. Show that iic, = c, = ¢ < 1 then the game has many subgame perfect equilibrium outcomes inclu‘if‘?é, if
equilibria in which agreement is delay

7.3.2 Properties of Equilibriur
Efficiency

The structure of a bargaining game of alternating offers allows bargaining to continue for ever, but, under
assumptions Al through A4, in all subgame perfect equilibria agreement is reached imn
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on an agreement on the Pareto frontieX (so that the outcome of the game is effici
Stationarity of Strategie

The subgame perfect equilibrium strategies are stationary: for any history after which it is'pkayerto propose
an agreement he proposes the same agreement, and for any history after which it is his turn to respond t
he uses the same criterion to choose his response. We hagstrictedplayers to use stationary strategies; ra
such strategies emerge as a conclu

First Mover Advantag

Consider again Example 125.15|f= 3, = 5 then the amount of the pie that player 1 ge®” = Y148 >3 The

only asymmetry in the game is that player 1 moves first; the fact that she obtains more than half of the pie
that there is an advantage to being the first to make a proposal. Thisdust advantage holds more generally:

using A3 and the fact that andy. are efficient, we hav(#*+0) =1 ¥":0) 5 any bargaining game of alternating
offers that satisfies Al through /£

Comparative Statics of Impatien

The key feature of the players' preferences is that they exhibit impatience. It seems reasonable to expect tha
more impatient a player the worse off he is in equilibrium. This is indeed so in the game in Example 125.1, si

the values o&" andb’ are increasing B, andd, respectively. We now generalize this result to any bargaining
game of alternating offers that satisfies Al througt

Define % to beat least as impatient ¢%+ if both induce the same ordering ¥ {0} and (1) 3i (#0)
whenever, 1) ~, (v, 0).

* Proposition 126.:

Let (X, (X)) and %, (X)) be bargaining games of alternating offers that satisfy A | through A4 and suppose th:
%1 is at least as impatient ¢t and %2 = %2 Let X be the agreement reached in every subgame perfect

equilibrium of ¢%:(Z)} and let x' be the agreement reached in every subgame perfect equilib (X, (Ze)} .
Ther {2'*(]] ::-1 (frﬂ}.

Proof.

Assume not (so that, in particuli® # #). Consider the subs8tof X x X consisting of all pairsx( y) such thak
andy are efficient andy( 1) ~, (x, 0). Lety be the agreement for whi{z'.¥’) € 8. Since , I) ~, (y,0) (by

(122.2)) it follows tha (#+1) Z1 (#,0) and hencd®>1) =1 (¢.0) by A4. By A2 we havi(b":8') € §| and by the

assumption that time is valuable and A4 we F(®',1) <1 (8,0), SinceX is compact and connected, the Pareto
frontier of X is compact and connected, so that there is an agre # on the path on the Par
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frontier that connecte andb! such tha (&8 € 8 and &1) ~1 9) gincel,0) =1 (2°,0) 5ng®"0) X1 (,0)
we havet # 2* contradicting A<

7.4 Variations and Extension
7.4.1 The Importance of the Procedt

To model bargaining as an extensive game we need to give an explicit description of the sequential structure
decision problems encountered by the players: we need to specify a bargaining procedure. The variant of

of a bargaining game of alternating offers considered in the next Exercise demonstrates that the structure of
bargaining procedure plays an important role in determining the ouw

* Exercise 127.

Assume that player | makes all the offers (rather than the players alternating offers). Show that under A
A3 the resulting game has an essentially uniqgue subgame perfect equilibrium, in which regardless of it
preferences the agreement reachdb?, the best possible agreement for play

In a bargaining game of alternating offers the procedure treats the players almost symmetrically. The fact tha
player to make the first offer is better off than his opponent in such a game is a vestige of the extreme advan
that a player enjoys if he is the only one to make o

7.4.2 Variants that Eliminate a Key Feature of the Mo

A key feature of the model of a bargaining game of alternating offers is the ability of one player to force the o
to choose between an agreement now and a more desirable agreement later. To illustrate this point, conside
the game in which the players make proposals simultaneously in each period, agreement being reached only
proposals in any given period are compatible. In this case neither player can force the other to choose betwe
agreement now and a better agreement leven efficient agreement is a subgame perfect equilibrium out:

To illustrate the point further, consider the case in which th¥ eéagreements contains finitely many elements,
so that a player's ability to offer an agreement today that is slightly better than the agreement that the respon
expects tomorrow is limited. In this case the r:
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of subgame perfect equilibrium payoffs depends on the richness of Xel$et following Exercise demonstrates
this point in a specific cas

* Exercise 128.

Consider a variant of a splite-pie game in which the pie can be divided only into integral multiples of a basic
indivisible unite > 0 and the preferences of each playare represented by the functi®r. Denote this game by

I'(¢) and the game in which the pie is perfectly divisiblel (0).

a. Show that i® is close enough to | then for every agreen® € X there is a subgame perfect equilibrium of
T'(€) for which the outcome i, 0).

b. Show that i® is close enough to 1 then for every outc® € (X xT)U{D} thereis a subgame perfect
equilibrium of(¢} in which the outcome is(use the equilibrium strategies in part axer (1, 0) andk = (0,1) to
deter deviations

c. Show conversely that for eve® € (0,1) and everyy > 0 there exist€ >0 such that it < then fori = 1, 2 the
difference between playés payoff in every subgame perfect equilibriunr{'ﬁlI and his payoff in the unique
subgame perfect equilibrium ' (0) is less than and agreement is reached immedia

7.4.3 Opting OL

An interesting class of extensions of the model of a bargaining game of alternating offers is obtained by allow
one or both players, at various points in the game, to "opt out" (without requiring the approval of the other pla
rather than continue bargaining. A simple case is that in which only one of the players, say player 2, can opt
and can do so only when responding to an offer. Denote the outcome in which he does sotitypédad 9,

and assume tha®(t, § ~ D for allteT.

Suppose first the(Out, 0) <a (y*,1) wherey” is the unique subgame perfect equilibrium proposal of player 2 in the
standard bargaining game of alternating offers. Then the ability of player 2 to opt out has no effect on the
although player 2 has an additional 'threat.gif", it is worthless since he prefers to continue bargaining and
outcomey” with one period of dela

Now suppose the (Out,0) =2 (¥*,1). Then player 2's threat is not worthless. In this case (under Al through A4),

any subgame perfect equilibrium player 1 always proposes the efficient agréement fc(#:0) ~a2 (Out,0)
which player 2 accepts, and player 2 always proj
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the efficient agreemer¥ for which (#9) ~1 (£:1) which player 1 accepts. Thus in this case the ability of player
to Exercise an outside option causes the outcome of bargaining to be equivalent for him to the outcome that
if he opts ou

* Exercise 129.

Prove the result that we have just described for athghpie game in which each playies preference relation
over (X x TYU{D}U({Out} xT) s represented by whereu (x, f) = &, u(D) = 0,u,(Out, § = O for allt, andu,
(Out, 1) = &b for someb < 1 and som ¢ € {0,1),

This result is sometimes called the "outside option principle”. It is not robust to the assumptions about the po
which the players can Exercise their outside options. For example, if one of the players can opt out at the ent
anyperiod, not just after he rejects an offer, then the game has a great multiplicity of subgame perfect equilib
(see Shaked (1994) and Osborne and Rubinstein (1990, Sectior

7.4.4 A Model in Which There Is a Risk of Breakdo

Finally, consider a modification of the model of a bargaining game of alternating offers in which at the end of
period a chance move ends the game with probae € (0,1), (We consider this case again in Section 15.4.)
Assume that the players do not care about the time at which agreement is reached; the pressure on each ple
reach agreement is not the player's impatience but the risk that the negotiations will break down. In the exten
game (with perfect information and chance moves) that models this situation there are six types of history. Fc
these types are analogs of types | through IV (see Section 7.2) in which each occurresaepiiced byR, O,
whereC is the action of chance in which bargaining continues (rather than breaks down). A history of type V't
the form ¢, R, C, X', R, C ..., X, R), after which it is the turn of chance to move, and a history of type VI is
terminal and takes the form°(R, C, X, R, C, ...,x,, R, B, whereB stands for breakdown. We assume that the
players are indifferent among all terminal histories in which no agreement is reached (i.e. among all histories
types IV and VI). Given the presence of chance moves, we need to specify the players' preferences over the
lotteries over terminal histories. As before, we assume that these preferences depend only on the agreement
reached (not on the path of rejected agreements). Further, we assume that the preference relation of each pl
represented |
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a von NeumarwMorgenstern utility functior%: X U{B} = R_(Since histories of type IV do not occur with
positive probability, whatever strategies the players employ, the players' preference relations do not have to |

D.) Finally, we assume tha{(B) = 0, w(z) 20 for gl z € X, and there is a unique pax'(y") of efficient
agreements satisfyi

n(y)=(01-a)u(z") and uy(z*)=(1-a)ui(y®). (130.1)

(This is so, for example, if the players are splitting ayp{®, x,) = w,(x) for some increasing concave functien
andw(0) = 0.)

* Exercise 130.

Prove the analog of Proposition 122.1 for the variant of a bargaining game of alternating offers described in t
previous paragrap

7.4.5 More Than Two Playe

Proposition 122.1 does not extend to the case in which there are more than two players, as the following thre
player variant of a sp-the-pie game (Example 120.1) demonstrates. The set of possible agree

X ={(z1,29,23): 24 2 0fori=1,2,3and 3 + 22 + 23 = 1}

and each playets preferences are representedifp; ) = d'x. for some 0 b < 1. The bargaining procedure is the
following. Player 1 initially makes a proposal. A propasatade by playerin periodt is first considered by
playerj + 1 (mod 3), who may accept or reject it. If he accepts it, then glay2(mod 3) may accept or reject it.
If both accept it, then the game ends am&limplemented. Otherwise playiet 1 (mod 3) makes the next
proposal, in periot + 1.

Let .gif"> guarantees that it is optimal for him to reject pld's proposal. The main force holding this equilibr
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together is that a player is rewarded for rejecting a deviant offer: after his rejection, he obtains all
* Exercise 131.

Show that if each player is restricted to use a stationary strategy (in which he makes the same proposal whel
he is the proposer, uses the same rule to accept proposals whenever he is the first responder, and uses

to accept proposals whenever he is the second responder) then the unique subgame perfect equilibrium
described above assigns the fracd<Y/(1 + 6 + &) of the pie to playek fork=1, 2, 3

Notes

The model in this chapter is due to Rubinstein (1982), as is Proposition 122.1. For an exposition and ana
model and its applications see Osborne and Rubinstein (

Two precursors of the model that effectively restrict attention to fimatezon games are found in Stah{1972)

and Krelle (1976, pp. 66832). For a discussion of time preferences see Fishburn and Rubinstein (1982). The
proof of Proposition 122.1 is a modification of the original proof of Rubinstein (1982), following the ideas of
Shaked and Sutton (1984a). The material in Section 7.4.2 is discussed in Muthoo (1991) and van Damme, S
and Winter (1990). The model in Section 7.4.3, in which a player can opt out, was suggested by Binmore, Sh
and Sutton; see for example Shaked and Sutton (1984b) and Binmore (1985). The model in Section 7.4.4 is
discussed in Binmore, Rubinstein, and Wolinsky (1986). The example discussed in Section 7.4.5 is due to S
see Osborne and Rubinstein (1990, Section 3.13) for more detail. For another interpretation of the model of
bargaining game of alternating offers see Rubinstein (1
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8
Repeated Game

The model of a repeated game is designed to examine the logic -@éfamgteraction. It captures the idea that a
player will take into account the effect of his current behavior on the other players' future behavior, and aims
explain phenomena like cooperation, revenge, and tf

8.1 The Basic Ide

The basic idea behind the theory is illustrated by the case in which two individuals repeatedly Piespties's
Dilemme (reproduced in Figure 134.1). Recall that this game has a unique Nash equilibrium, in which each pl
choose®; further, for each player the actiénstrictly dominates the actidd, so that the rationale behind the
outcome D, D) is very strong. Despite this, both players are better off if they "cooperate” and Chddsemain
idea behind the theory of repeated games is that if the game is played repeatedly then the mutually desirable
outcome in which@, O occurs in every period is stable if each player believes that a defection will terminate t
cooperation, resulting in a subsequent loss for him that outweighs tk-term gain

The primary achievement of the theory is to isolate types of strategies that support mutually desirable outcon
any game. The theory gives us insights into the structure of behavior when individuals interact repeatedly
that may be interpreted in terms of a "social norm". The results that we describe show that the social norm ne
to sustain mutually desirable outcomes involves each player's "punishing” any player whose behavior is
undesirable. When we impose the requirement embedded in the notion of subgame perfect equilibrium that t
of punishment be credible, the social norm must also ensure that the punishers have an incentive to carry ou
threats in circumstanc
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Figure 134.1
The Prisoner's Dilemmnr

in which the social norm requires them to do so. In this case the precise nature of the punishment depends o
the players value future outcomes. Sometimes it is sufficient that a punishment phase last for a limited amou
time, after which the players return to pursue the mutually desirable outcome; sometimes the social norm mu
entail future rewards for players who ca out costly punishn

Although we regard these results aboutdinaectureof the equilibrium strategies to be the main achievement
theory, most of the results in the literature focus instead on the g@yaifsthat can be sustained by equilibria,
giving conditions under which this set consists of nearly all reasonable payoff profiles. These "folk theorems"
two sides. On the one hand they demonstrate that socially desirable outcomes that cannot be sustained i
shortsighted can be sustained if the players have-teng objectives. On the other hand they show that the set c
equilibrium outcomes of a repeated game is huge, so that the notion of equilibrium lacks predictive power. "F
theorems" are the focus of much of the formal development in this chapter. Nevertheless, we stress that in ot
opinion the main contribution of the theory is the discovery of interesting stable social norms (strategies) that
support mutually desirable payoff profiles, and not simply the demonstration that eqaiibtthat generate sut
profiles

8.2 Infinitely Repeated Games vs. Finitely Repeated Gan

The model of a repeated game has two versions: the horizon may be finite or infinite. As we shall see, the
the two cases are different. An extreme (and far from general) case of the difference is that in which the ¢
game is thérisoner's DilemmaWe shall see below that in afigite repetition of this game the only Nash
equilibrium outcome is that in which the players cho@s€e) in every period; on the other hand, in thinitely
repeated game the set of subg
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perfect equilibrium payoff profiles is huge. Thus in applying the model of a repeated game in specific situ:
may need to determine whether a finite or infinite horizon is appro|

In our view a model should attempt to capture the features of reality that the plengsise it should not
necessarily aim to describe the reality that an outside observer perceives, though obviously there are links be
the two perceptions. Thus the fact that a situation has a horizon that is in some physical sense finite (or infini
does nohecessarilymply that the best model of the situation has a finite (or infinite) horizon. A model with an
infinite horizon is appropriate if after each period the players believe that the game will continue for an additic
period, while a model with a finite horizon is appropriate if the players clearly perceive defwedld final period.
The fact that players have finite lives, for example, does not imply that one should always model their strateg
interaction as a finitely repeated game. If they play a game so frequently that the horizon approaches only ve
slowly then they may ignore the existence of the horizon entirely until its arrival is imminent, and until this poi
their strategic thinking may be better captured by a game with an infinite h

AR In a situation that is objectively finite, a key criterion that determines whether we should use a model with
finite or an infinite horizon is whether the last period enters explicitly into the players' strategic considerations
this reason, even some situations that involve a small number of repetitions are better analyzed as infinitely
repeated games. For example, when laboratory subjects are instructed to Blagotier's Dilemmawenty times
with payoffs as in Figure 134.1 (interpreted as dollars), | believe that their lines of reasoning are better model
an infinitely repeated game than by a@riod repeated game, since except very close to the end of the game t
are likely to ignore the existence of the final pel

MJO The behavior of experimental subjects who playPttigoner's Dilemmaepeatedly a finite number of times

is inconsistent with the unique subgame perfect equilibrium of the finitely repeated game. The fact that it may
consistent with some subgame perfect equilibrium of the infinitely repeated game is uninteresting since the r:
of outcomes that are smnsistent is vast. Certainly the subgame perfect equilibria of the infinitely repeated gar
give no insights about the dependence of the subjects' behavior on the magnitude of the payoffs and the lenc
the game. (For a summary of the evidence see Rapoport (1987).) The experimental results definitely indicate
the notion of subgame |-
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fect equilibrium in the finitely repeatderisoner's Dilemmaloes not capture human behavior. However, this
deficiency appears to have more to do with the backwards induction inherent in the notion of subgame perfec
equilibrium than with the finiteness of the horizmer se A model that will give us an understanding of the fac
likely to be a variant of the finitely repeated game; some characteristics of the equilibria of the infinitely repea
game may be suggestive, but this model itself appears unpromising as an explanatory tool. Moreover, in
which the constituent game has multiple Nash equilibria, the equilibria of finitely repeated games correspond
with the casual observation that people act cooperatively when the horizon is distant and opportunistically wt
is near; the equilibria of infinitely repeated games can give us no insight into such behavior. Finally, in sitt
which people's discount factors decline to zero over time, even if they never become zero (i.e. no fixed finite
horizon is perceived), the equilibrium outcomes have more in common with those of finitely repeated games
with those of infinitely repeated gam

AR In much of the existing literature the fact that the set of equilibria in a long finitely repeated game may be
different from the set of equilibria of an infinite repetition of the same constituent game is regarded as "dis

In contrast, | find it attractive: the two models capture a very realistic feature of life, namely the fact that the
existence of a prespecified finite period may crucially affect people's behavior (consider the last few months «
presidency or the fact that religions attempt to persuade their believers that there is "life afte

MJO First, for a large set of constituent games theme discontinuity between the outcomes of the associated
finitely and infinitely repeated games (see Section 8.10). Second, in some cases in which the discontinuity dc
exist it is indeed unappealing. If people who are faced with a known fixed distant horizon behave as if the hot
is infinite then this should be the prediction of a model with a fixed finite horizon; if it is not then doubts are ra
about the plausibility of the notion of subgame perfect equilibrium in other co

8.3 Infinitely Repeated Games: Definition

The model of an infinitely repeated game captures a situation in which players repeatedly engage in a strate
gameG, which we refer to as ttconstituent game. Throughout we restrict attention to games in
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the action set of each player is compact and the preference relation of each player is confihes no limit

on the number of times th&tis played; on each occasion the players choose their actions simultaneously. Wh
taking an action, a player knows the actions previously chosen by all players. We model this situation as an
extensive game with perfect information (and simultaneous moves) as f

* Definition 137.1

Let G = {N,(4:), (X)) pe a strategic game; 4 = xwen4:. Aninfinitely repeated game ofG is an extensive
game with perfect information and simultaneous m™ H P CZ) in whick

o« H={2}U(UR,4)UA™ (wheredis the initial history aniA® s the set of infinite sequer@)&=1 of action
profiles inG)

* P(h) = N for each nonterminal histo h € H

«Xiisa preference relation (4™ that extends the preference relat Zhin the sense that it satisfies the
following condition ofweak separabilityif (a°) € A*,a € 4,4’ € A gpnda Zi @' then

['ﬂlp .. ~1ﬂt_1+ﬂ,ﬂ"+1, . “} t: {ﬂ11 s .al—llﬂr*ﬂl&l“ . ]
for all values of.

A history is terminal if and only if it is infinite. After any nonterminal history every pl.i € N chooses an acti
in A. Thus a strategy of players a function that assigns an actiorAjiio every finite sequence of outcome<sn

We now impose restrictions on the players' preference relations in addition to weak separability. We assume
throughout that playets preference relatic in the repeated game is based upon a payoff funatibiat
represents his preference relat=hin G: we assume that whetr (@) Zi (%) depends only on the relation
between the corresponding sequenaga)) and (i(b')) of payoffs inG.

We consider three forms of the preference relations, the first of which is defined as

« Discounting: There is some numb¥ € (0,1) (thediscount factoy such that the sequen (¥) of real numbers |
at least as good as the seque™®) if and only if Zeea 87 (vf —wf) 20,

According to this criterion a player evaluates a sequ(“f )-ef payoffs by T 87 for some discount factor

6 € (0,1) (Since we have assumed that the values of the player's payoffs lie in a bounded set, this sum is w
defined.) When the players' preferences take this for
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T -
refer to the profile(“ = 8) Xy 87 vl dien a5 thepayoff profile in the repeated game associated with the sequence
(v)&1 of payoff profiles in the constituent gat

Preferences with discounting treat the periods differently: the value of a given gain diminishes with time. We
specify two alternative criteria that treat all periods symmetrically. In one criterion a player evaluates a seque

" T
() of payoffs essentially by its limiting avera;]f"?’“'-*'fm L= /T However, this limit does not always exist (the
average payoff over t periods may continually oscillateiasreases); the criterion that we discuss is defined as
follows. (It is convenient to define this criterion in terms of the strict preference rel

« Limit of means: The sequenc(¥) of real numbers is preferred to the sequd®?)zif and only if lim inf

T
Yiei(vf = wf)/T > 0 (je. if and only if there exisie > 0 such tha 2=1(% = w)/T > € tor q| but a finite number ¢
periodsT).

When the players' preferences take this form we refer to the FEI,DT',’W':ZE;I vi/T)ien , If it exists, as th@ayoff
£
profile in the repeated game associated with the SGC]I{H e of payoff profiles in the constituent gar

Note that if the sequemf“f} is preferred to the sequer[‘”ﬁ' according to the limit of means then there is a
discount factod close enough to 1 such tt (%) is preferred t( () by the discounting criterio

Under the discounting criterion a change in the payoff in a single period can matter, whereas under the limit
means criterion payoff differences in any finite number of periods do not matter. A player whose preferences
satisfy the limit of means is ready to sacrifice any loss in the first finite number of periods in order to increase
stream of payoffs he eventually obtains. For example, the stream (0,..., 0, 2, 2,...) of payoffs is preferred by tt
limit of means criterion to the constant stream (1,1,...) independent of the index of the period in which the pla
first gets 2 in the first stream. At first sight this property may seem strange. However, it is not difficult to think
situations in which decision makers put overwhelming emphasis on the long run at the expense of the short r
(think of nationalist struggle:

We now introduce a criterion that treats all periods symmetrically and puts emphasis on the long run but at tr
same time is sensitive to a change in payoff in a single period. (Again we define the criterion in terms of the <
preference relatior
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- Overtaking: The sequenc(®) is preferred to the sequer ™ if and only if lim inf Ztes(vf =) >0,

The following examples illustrate some of the differences between the three criteria. The sequén8e]l,.) is

preferred for am¥ € (0, 1) by the discounting criterion to the sequence (0, 0,...), but according to the other two
criteria the two sequences are indifferent. The sequebc®, O, O, ...) is preferred to the sequence (0, O, ...)
according to the overtaking criterion, but the two sequences are indifferent according to the limit of means. Ti
sequence (0, ..., 0,1, 1, ...) in whiMzeros are followed by a constant sequence of 1's is preferred by the limit
means to (1, 0, O, ...) for every valueMdfbut for every there exisi" large enough that for &l > M" the latter

is preferred to the former according to the discounting criterion for that vad.

Let €= (M (4, (X)) pe a strategic game and for e € N |etu be a payoff function that represeﬁ-’-}s We

define thed-discounted infinitely repeated game o (N> (4 (D) 10 pe the infinitely repeated game for which the
constituent game & and the preference orderi "n'-j of each playef € ¥ is derived from the payoff functian
using the discounting criterion with a discount factod &dr each player. Similarly we define thenit of means
infinitely repeated game oftM (A (W)} gng theovertaking infinitely repeated game ol GACHACH

We denote byi(a) the profile(®(a)ien. Define a vecto ¥ € RY o be apayoff profile of N (Aa, () it there is
an outcomea € 4 for whichv = u(a). We refer to a vectc? € Y as gfeasible payoff profile of N (4 ()} jf
it is a convex combination of payoff profiles of outcomeaithat is, if¥ = 2 aea@at(@) for some collection
(@a)aea of nonnegative rational numbexswith Yoea® =1 (In the literature the coefficients are allowed to

be any real numbers, not necessarily rational, a generalization that complicates the argument while adding i

(N, (4,

substance.) Note that a feasible payoff profi (%) is not necessarily a payoff profile (N, (4s), (w)},

» Exercise 139.
Consider an infinitely repeated game in which the players' preferences are derived from their payoffs in the

constituent game usirdjfferentdiscount factors. Show that a payoff profile in such a repeated game may not b
feasible payoff profile of the constituent ga
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8.4 Strategies as Machine

As we discussed in the introduction to this chapter, the main achievement of the theory of repeated game
us insights into the structure of behavior when individuals interact repeatedly. In this section we develop a
language in which to describe conveniently the structure of the equilibria that we find. We begin by defining a
machine, which is intended as an abstraction of the process by which a player implements a strategy in a ref

game. Amachine (or automatoi for playeri in an infinitely repeated game ¥ (4:): (Z¢)) has the following
component:

*A setQ (the set obtates.
«An elemeni % € Qi (theinitial state).

« A function fi @ = A that assigns an action to every state output function).

*A function 7 @ X A = @ that assigns a state to every pair consisting of a state and an action profile (the
transition function).

The selQ is unrestricted. The names of the states do not of course have any significance (the fact that we cal
state "cooperative"”, for example, does not mean that the behavior associated with it matches its name). In th
period the state of the machinedf sand the machine chooses the acfi(#). Whenever the machine is in some
stateq, it chooses the actidyfg) corresponding to that state. The transition functj@pecifies how the machine
moves from one state to another: if the machine is in gtatela is the action profile chosen then its state cha

to1,(q, @).

Note that the input of the transition function consists of the current state and the piall the players' current
actions. It is more natural to take as the input the current state and the list of actions chosethbyiagers.

This fits the natural description of a "rule of behavior" or "strategy" as a plan of how to behave in all possible
circumstances that are consistent with one's plans. However, since théhganetic definition requires that a
strategy specify an action for all possible historileduding those that are inconsistent with the player's own
strategy, we have to include as an input into the transition function the action of the player

To illustrate the concept of a machine we now give four examples of machines for a player in the repeated
Prisoner's Dilemm (Figure 134.1
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{(c,C1} all outcomes
c:C «D:D

ell outcomes
except (C,C)
Figure 141.1
A machine that corresponds to the grim strategy in the Prisoner's Dil

Figure 141.2
The machine M This machine for player 1 in the Prisoner's Dilemma

plays C as long as player 2 does so and punishes player 2 for choosing
D by choosing D for three periods. (We use X)} to denote the set
of all outcomes in which player 2's action is

* Example 141.:

(A machine for the "grim" strateyyrhe machind@u e fu i) defined as follows is the simplest one that carrie:
the ("grim.gif") strategy that choos€sso long as both players have cho€an every period in the past, and
otherwise chooseD.

« Qi ={c, D},

. =C

« il€) =C andf(D) = D.

o HC,(C,C)) =C gng wl(X, (Y, 2)) = P j5 (X, (Y, 2)) # (C,(C,C)).

This machine is illustrated in Figure 141.1. Each box corresponds to a state; inside each box is the name
followed (after the colon) by the action that the machine takes in that state. The box with the heavy boundary
corresponds to the initial state. The arrows correspond to the transitions; adjacent to each arrow is the set of
outcomes that induces the transit

* Example 141..

The machinéV, of player 1 shown in Figure 141.2 plagsas long as player 2 plag; it playsD for three periods

and then reverts back @ if player 2 playD when he should pla§. (We can think of the other player being
"punished" for three periods for playilly and then "forgiven”.) Notice that a machine must have at least four
states in order to carry out this stratt

* Example 141.:

The machinéV, of player 2 shown in Figure 142.1 starts by playihand continues to do so if the other player
choose®D.
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Figure 142.1
The machine M This machine for player 2 in the

Prisoner's Dilemma starts by playing C but switches
to D if player 1 chooses C, returning to C only if
player 1 chooses

period | state of M; | state of My | outcome | payoffs
1 P Ry (C,C) 3,3
2 B R e.p) | o4
3 B R (p,0) | 1,1
4 P Ro (D,C) | 40
5 P Ro (D,C) | 40
6 Ry Ry (C,C) 3,3
Figure 142.2

The outcomes in the first six periods of the repeated Prisoner's
Dilemma when player 1 uses the machingifvFigure 141.2

and player 2 uses the maching il Figure 142.1.

If the other player choosé&sthen it switches t®, which it continues to play until the other player again chooses
D, when it reverts to playinC.

To illustrate the evolution of play in a repeated game when each player's strategy is carried out by a machine
suppose that player 1 uses the macMnand player 2 uses the machMein the repeate®risoner's Dilemma

The machines start in the staBsandR, respectively. The outcome in the first period@sC) since the output
function ofM, assigns the actio@ to stateP, and the output function &, assigns the actio@ to stateR,. The

states in the following period are determined by the transition functions. The transition fundiplea@fes the
machine in stat®,, since the outcome in the first period @ C), while the transition function d¥l, moves the
machine fronR, to R, in response to this input. Thus the pair of states in period?%, B J. The output functions
determine the outcome in period 2 to Be@), so thatM, now moves fronP, to P, while M, stays inR,. Play
continues through period 5 as in the table in Figure 142.2. In period 6 the pair of states is the same as it is in
1; subsequently the states and outcomes cycle, following the pattern in the first five periods. The fact that cyc
are generated is not peculiar to this example: whenever each
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uses a machine with finitely many states a cycle is eventually reached, though not necessarily in period 1. (T
follows from the fact that each machine takes as its input only the actions in the previous period (i.e. it is
"Markovian").)

* Exercise 143.

Show that not every strategy in an infinitely repeated game can be executed by a machifiaiteitiuanber of
states

8.5 Trigger Strategies: Nash Folk Theorern

We now study the set of Nash equilibrium outcomes of an infinitely repeated game. We show that this set inc
outcomes that are not repetitions of Nash equilibria of the constituent game. To support such an outcome, ec
player must be deterred from deviating by being "punished". Such punishment may take many forms. One
possibility is that each player uses a "trigger strategy": any deviation causes him to carry out a punitive actior
lasts forever. In the equilibria that we study in this section each player uses such a

Let (N, (4:), (Z4)) be a strategic game and for eid € N letu, be a payoff function that represents the preference
orderingXs. Recall that we define a feasible payoff profileG = (N, {4:), (1)) to be a convex combination

2ae4 %(9) for which the coefficients_ are rational. Le? = 2aea %(8) pe such a profile and suppose thgat

B,/y for eacta € A, where everg, is an integer an? = 2aeaPe Then the sequence of outcomes in the repeated
game that consists of an indefinite repetition of a cycle of lengthvhich eacta € A is played fof3, periods

yields an average payoff profile over the cycle, and hence in the entire repeated (w.

Define playeli's minmax payoff in G, henceforth denoteg, to be the lowest payoff that the other players can
force upon playei:

v = min maxua;ai). (143.2)
A payoff profile w for whichwi 2 v for alli € N is calledenforceable if w, > v, for alli € N thenw is strictly
enforceable! If a € A is an outcome d& for whichu(a) is (strictly) enforceable i then we refer ta as a

(strictly) enforceable outcome of5. Denote by € 4—i one of the solutions of the minimization problem on the
right-hand side of (143.2). For each action prca € A let

1n much of the literature the terimdividually rationalis used instead of "enforceable".
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bi(a-i) € 4i be an action of playeéfin G that is a best responseag(i.e. bla-i) € Bila—)). (Notice thap, and the
functionb, depend only on the players' preferences dyeot on the payoff representations of these preferences.
The collection of actiong, is the most severe "punishment.qgif" that the other players can inflict upon iplaygr

(Note that we restrict punishments to be deterministic. In some of the literature punishers are allowed to r
possibly correlating their actions over time; this changes the set of feasible payoff profiles and the enforceabl
payoffs but not the structure of the set of equilibria of the repeated

In the next two results we show that the set of Nash equilibrium payoff profiles of an infinitely repeated game
which the players evaluate streams of payoffs by the limit of means is theaideatible enforceable payoff
profiles of the constituent game. The third result shows that the same is approximately true when the players
discount future payoffs using a discount factor close

* Proposition 144.:

Every Nash equilibrium payoff profile of the limit of means infinitely repeated ge@ = (M () (%)) is an
enforceable payoff profile of G. The same is true, forf € {&1) of every Nash equilibrium payoff profile of the
d-discounted infinitely repeated game c.

Proof.

Suppose thaw is a payoff profile of the limit of means infinitely repeated gam@ tifat is not enforceable;
suppose that, <v,. Thenw is not a Nash equilibrium payoff profile of the repeated game, because for any strat

profile s the strategs of playeri defined by®(#) = bi(s-i(h)) for each history gives playei a payoff of at least
v, in each period. The same argument applies t@datigcounted infinitely repeated game@f

The following Exercise asks you to express the streSiegfyplayeri in this proof in the language of machines that
we developed in Section 8

* Exercise 144.

Consider a tweplayer infinitely repeated game. For any given machine for player 2 construct a machine for plz
1 that yields her a payoff of at least

* Proposition 144.:

(Nash folk theorem for the limit of means criteri@ery feasible enforceable payoff profileG = (N, (), (w)) is
a Nash equilibrium payoff profile of the limit of means infinitely repeated gam.
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Proof.

Let ¥ = 2qe4lBa/7)u(a) be a feasible enforceable payoff profile, wheréor eactsea is an integer and
¥=2aeaPa_and let &) be the cycling sequence of action profiles for which the cycle (of lghgtimtaing3,
repetitions of a for eaweA. Lets be the strategy of playein the repeated game that choc®ida each period

unless there was a previous periad which a single player other thadeviated frona!, in which case it choos:
(p,)» wherej is the deviant in the first such peritdThe strategy profils is a Nash equilibrium of the repeated

game since a playgwho deviates receives at most his minmax payaff every subsequent period; the payoff
profile generated bs isw.

* Exercise 145.

Construct a machine that executes the equilibrium stratedylayeri in this proof.

The strategy in this proof is drigger strategy Many other strategies can be used to prove the result (for examy
the strategy used in the proof of Proposition 14

The following is an analog of Proposition 144.3 for an infinitely repeated game with discounting. The proof is
similar to that of the previous result; we leave it to

*Proposition 145.;

(Nash folk theorem for the discounting criteridu@t w be a strictly enforceable feasible payoff profile of
G = (N,(4), (u))_ For all e > 0 there exist€ < 1 such that it > € then thed-discounted infinitely repeated gal
of G has a Nash equilibrium whose payoff profile w' sat I’ —w| <e,

To illuminate the character of equilibria in which each player uses a trigger strategy, consider two infinitely
repeated games: one in which the constituent game Brid@ner's Dilemmawhich we denot&, (see Figure

134.1), and the other in which the constituent game is the Gast®wn in Figure 146.1. In bot, andG, each
player's minmax payoff is 1 and by playiBgeach player holds the other's payoff to this lepeHp., = D).

In both games the trigger strategies used in the proof of Proposition 144.3 involve each player swilzfong to
good in response to any deviation from the equilibrium pat, the actiorD dominates the actiog, so that it is

a stable order for each player to chobBsé hus there is some rationale for a punisher who believes that a de
signals the end of the current stable order to choose the Bctiote future. By contrast, i3, a constant

repetition of D, D) is not a stab
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Figure 146.1
The game G

order sinceA strictly dominate® for player 1. Thus player 1 suffers from the punishment he inflicts on his
opponent, making incredible his threat to punish a deviation and casting doubt on the plausibility of equilibria
which such trigger strategies are employed. We are led to study the notion of subgame perfect equilibrium, w
rules out such strategies since it requires that each player's behaviever\ history be optima

* Exercise 146.

Consider the infinitely repeated game in which the players' preferences are represented by the discountir
the common discount factorjisand the constituent game is the gamen Figure 146.1. Show thatX(A), (A,
A),...) is not a subgame perfect equilibrium outcome

8.6 Punishing for a Limited Length of Time: A Perfect Folk Theorem for the Limit of Means Criterior

The strategies used in the proof of Proposition 144.3 to generate an arbitrary enforceable payoff profile punis
deviant indefinitely. Such punishment is unnecessarily harsh: a deviant's payoff needs to be held down to the
minmax level only for enough periods to wipe out his {pagod) gain from the deviation. If the players'
preferences satisfy the limit of means criterion then a strategy that returns to the equilibrium path after the
punishment has the advantage that it yields the same payoff for the punishers as does the equilibrium path it
that the players have no reason not to adopt it. Hence under the limit of means criterion the social norm of
punishing for only a finite number of periods is a subgame perfect equilibrium of the infinitely repeate

* Proposition 146.:

(Perfect folk theorem for the limit of means criteri@very feasible strictly enforceable payoff profile of

G = {N,(4), (%)) is a subgame perfect equilibrium payoff profile of the limit of means infinitely repeated game
G.
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Proof.

Let ¥ = Laea(Ba/7)u0) e 3 feasible strictly enforceable payoff profileGoind let(@*)i=1 be the sequence of
action profiles that consists pf repetitions ofa for eacha € A.

We now construct a strategy profile that generates a sequence of action pr@iemisisting of an indefinite

repetition of the cycl@ﬂk}LL Each player punishes any deviation for only a limited number of periods. It is
convenient to specify the strategy of each player so that any punishment begins only in the period that follow
completion of a cycle. If a single player deviates in some period in which nobody deserves to be punishec
player, say, is declared to deserve punishment; beginning in the first period of the next cycle the other player
punishi by choosingp, for enough periods to cancel out any possible gain for him. Subsequently the punishers
return to the equilibrium, starting at the beginning of a cycle. (Simultaneous deviations by more than one
ignored.) Given that the players' preferences satisfy the limit of means criterion, the payoff proéifeeisevery
possible histon

To define the strategies preciselydebe the maximal amount that any player can gain by deviating from any
action profile inG. That is, leg’ be the maximum ct(8-4ai) —ui(a) oyer alli € N, ! € 4i anda € A. Sincew, >

v, there exists an integm* = 1 that is an integral multiple gfsuch tha¥8" +m*v < m*w; for glli € N. The
strategy of each playi punishes any deviant fm" periods and is given by the following mach

« Set of states: {{ornt, d):eitherk=1andd=0o0r2 < k < 7 andd € {0} UNYU{P(j,t):j €N gnl <t<m’}

(The stateNormk, 0) means that we are in tkih period of the cycle and no player deserves punishment. The st:
(Nornt, j) means that we are in tkth period of the cycle and playedeserves punishment. The sta(g t) mean:
that playejj is being punished and there t periods left in which he has to be punish

« Initial state: Nornr?, 0).

« Output function: In Kornk, d) for anyd € {0}UN chooseat; in P(j, t) choose i0,), if ## 3 andb(p,) if i =j.

* Transition functior

e From (Norn, d) move t@ (Normk+t (mody) "d) unless

2We definem (mody) to be the integey with 1 ¢ £ ¥ satisfyingm = &1+ ¢ for some integet (so that, in particulay (mody)
=y).
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« d = 0 and playej alone deviated frorak, in which case move tiNorn** j) if <¥=1and toP(j, m) if k=y
«d=j#0 in which case move ttNorm*, j) if ¥ < ¥ —1and taP(j, n") if k= .
* FromP(j, t) move toP(j, t-1) if 2=t <m* and to Norn?, 0) ift = 1.
We leave it to you to verify that the strategy profile thus defined is a subgame perfect equ

The strategies that we define in this proof do not initiate punishment immediately after a deviation, but wait ul
the end of a cycle before doing so. We define the strategies in this way in order to calculate easily the length
punishment necessary to deter a deviation: if punishment were to begin immediately after a deviation then w
would have to take into account, when we calculated the length of the required punishment, the possibility th
deviant's payoffs in the remainder of the cycle are low, so that he has an additional gain from terminating

* Exercise 148.

(A game with both longand shortlived player3 Consider an infinite horizon extensive game in which the
strategic gamé& is played between player | and an infinite sequence of players, each of whom lives for only ol
period and is informed of the actions taken in every previous period. Player 1 evaluates sequences of pa)
limit of means, and each of the other players is interested only in the payoff that he gets in the single period i
which he lives

a. Find the set of subgame perfect equilibria of the game when GPrisoner's Dilemm (see Figure 134.:

b. Show that whess is the modification of th€risoner's Dilemma invhich the payoff to player 2 o€( D) is O

then for every rational numb® € [1,3] there is a subgame perfect equilibrium in which player 1's average payo
IS X.

Consider the infinitely repeated game for which the constituent game is given in Figure 146.1. In thssgame

= 1. Consider the strategy profile defined in the proof of Proposition 146.2 to support the segjuehoeatCome

in whicha' = (A, A for all t that takes the following form: each player chooses A in every period (the cycle is of
length one) unless the other player deviated in the previous period, in which case helgtiooses- 2 periods

and then reverts 1A.

This strategy profile is not a subgame perfect equilibrium of the infinitely repeated game when the players'
preferences are represente:
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either the overtaking criterion or the discounting criterion. After a deviation by player 2, each player is suppos
chooseD for two periods before reverting £0 Player 1 would be better off choosiAdhan punishing player 2,
since the sequence of payoffs (1,1, 2, 2,...) is preferred under both criteria to the sequence (0, 0, 2, 2,...). (Th
sequences are indifferent under the limit of means criterion.) To support the path in which the outdoians (
every period as a subgame perfect equilibrium, player 2 has to punish player 1 if player 1 does not fulfill her
obligations to punish player 2. Further, player 2 has to be punished if he does not punish player 1 for not pun
player 2, and so on. In the next two sections we use strategies with these features to prove perfect folk theor
when the players' preferences are represented by the overtaking and discountin

8.7 Punishing the Punisher: A Perfect Folk Theorem for the Overtaking Criteriol

The next result is an analog of Proposition 146.2 for the overtaking criterion; it shows how strategies diffe
those used to prove the perfect folk theorem for the limit of means criterion can support desirable outcomes \
the players' preferences are represented by the overtaking criterion. For simplicity we construct a strategy pr
only for the case in which the equilibrium path consists of the repetition of a single (strictly enforceable)

* Proposition 149.:

(Perfect folk theorem for the overtaking criteri¢igr any strictly enforceable outcomeaf @ = (N, (4, (wi))
there is a subgame perfect equilibrium of the overtaking infinitely repeated game of G that generateg#)e patt
in which & = ¢ for all t.

Proof.

Let M be the maximum afi(a) over alli € N anda € A. Consider the strategy profile in which each playeses
the following machine

« Set of states{Nerm}U{P(5,t):5 € N andt is a positive integer}. (In the sta®dj, t) playerj deserves to be
punished fot periods more

* Initial state:Norrr.
« Output function: IlNorm choosé@. In P(j, t) choose§,), if ## 3 andb(p,) if i = .

* Transitions in response to an outcca € A:
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e FromNormstay inNormunless for some playgwe have*-i = aZ; and% ¥ 4 (i.e.] is the only deviant from
a’), in which case move t(j, t), wheret is the smallest integer such that+ tv, < (t + 1)u(a’).

* FromP(j, t):

*If a,=p, oro # (P-3)e for at least two playews(i.e. all punishers punish or at least two do not do so) then mov:
toP(j, t- 1) ift=2 and toNorrr if t = 1.

o If 8- # P-5 and%e = (P-j)e if £ # j* (i.e.j" is the only punisher who does not punish) then mow&jter(j, t)),
whereT(j, t) is large enough that the sumj&é payoff in staté(j, t) and his payoff in the subsequdify, t)
periods if he does not deviate is greater than his payoff in the deviaticT(: 8% (Such a numbeF(j, t) exists

since aftet periods the players were supposed to go back to the equilibrium ota” and%s*(a®) > ¥;+.)

Under this strategy profile any attempt by a player to increase his payoff by a unilateral deviation after any hit
including one after which punishment is supposed to occur, is offset by the other players' subsequent punishi
Again we leave it to you to verify that the strategy profile is a subgame perfect equil

8.8 Rewarding Players Who Punish: A Perfect Folk Theorem for the Discounting Criteric

The strategy profile defined in the proof of Proposition 149.1, in which players are punished for failing to mete
the punishment that they are assigned, may fail to be a subgame perfect equilibrium when the players' prefet
are represented by the discounting criterion. The reason is as follows. Under the strategy profile a player whc
to participate in a punishment that was supposed to last, paryods is himself punished for, sdéyperiods,

wheret” may be much larger thanFurther deviations may require even longer punishments, with the result tha
the strategies should be designed to carry out punishments that are unboundedly long. However slight the
discounting, there may thus be some punishment that results in losses that can never be recovered. Conseq
the strategy profile may not be a subgame perfect equilibrium if the players' preferences are represented by 1
discounting criteriot
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To establish an analog to Proposition 149.1 for the case that the players' preferences are represented by the
discounting criterion, we construct a new strategy. In this strategy players who punish deviants as the strateg
dictates are subsequentgwarded making it worthwhile for them to complete their assignments. As in the
previous section we construct a strategy profile only for the case in which the equilibrium path consists of the
repetition of a single (strictly enforceable) outcome. The result requires a restriction on the set of games that
usually callecfull dimensionalit.

* Proposition 151..;

(Perfect folk theorem for the discounting criteritie} & be a strictly enforceable outcome® = (N, (A4}, ()
Assume that there is a collect (@(i)ien of strictly enforceable outcomes of G such that for every pi € N we
havea* > a(i) and ald) »i e(i) for all 3 € N\ {i}. Then there existf < 1 such that for al§ > & there is a

subgame perfect equilibrium of thaliscounted infinitely repeated game of G that generates thg(g@pih which
at = ¢ forall t.

Proof.

The strategy profile in which each player uses the following machine is a subgame perfect equilibrium that
supports the outcon@ in every period. The machine has three types of states. IIC§fgtthe action profile
chosen by the playersa’. For each .gif"

To summarize, the machine of playés defined as follows, where for convenience we va(f = d; we specify
L later
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. Set of states{C0):j € {OYUN}U{P(,t):je Nand 1 <t S L}

« Initial state:C(0).

« Output function: InC(j) choose &(j)).. In P(j, t) choose ), if ##J andb(p,) if i = .

« Transitions in response to an outcca € A:

* FromC(j) stay inC(j) unless a single playk deviated frona(j), in which case move P(k, L).
e FromP(j, t):

« If a single playek # J deviated fronp, then move td’(k, L).

* Otherwise move tP(j, t- 1) if £=2 and toC(j) itt = 1.

We now specify the values éfandL. As before, leM be the maximum afi(a) over alli € N anda € A. We
chooséd. andé to be large enough that all possible deviations are deterred. To deter a deviation of any player
any stateC(j) we takel large enough thadl - u(a(j)) < L(u(a(j)) - v) for all i € N and alli € {0}Y N and choosé

> & whered’ is close enough to 1 that for & >&" we hawv

L+1
M — us(al(d)) < 3 8 (mal3) — ).

k=1
(This condition is sufficient sinag(a(j)) > u(a(i)) for J # i.) If a playeri deviates fronP(j, t) for 7 # ¥ then he
obtains at moa¥l in the period that he deviates followedlbperiods ofv. < u(a(i)) andu,(a(i)) subsequently. If
does not deviate then he obtair(g,, b, (p,)) for between 1 ant periods andi(a(j)) subsequently. Thus to dete
deviation it is sufficient to choo > #* close enough to one that for ¢ > ¢ we haw

L fe)
38U M — wlp_p,bip-)) < Y. 8 Mwl(a(i) - wilali)).
k=1 k=L+1

(Such a value d exists because of our assumption th@()) > u(a(i)) if §#4.)

* Exercise 152.

Consider the threplayer symmetric infinitely repeated game in which each player's preferences are repres
the discounting criterion and the constituent gant{1, 2,3} (4, (%)) where fori = 1, 2, 3 we havé, = [0, 1] and

U(a,a, &) = 2,28, + (1- 8)(1- a)(1-a,) for all (41,02,:83) € 4y x Az x 45
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a. Find the set of enforceable payoffs of the constituent ¢

b. Show that for any discount facté € (0,1) the payoff of any player in any subgame perfect equilibrium of the
repeated game is at led.

c. Reconcile these results with Proposition 1f

8.9 The Structure of Subgame Perfect Equilibria Under the Discounting Criterio

The strategy of each player in the equilibrium constructed in the proof of Proposition 151.1, which concer

in which the discount factor is close to 1, has the special feature that when any player deviates, the subseque
sequence of action profiles depends only on the identity of the deviant and not on the history that preceded tl
deviation. In this section we show that sty common discount factor a profile of such strategies can be found t
support any subgame perfect equilibrium outc

We begin with two lemmas, the first of which extends the one deviation property proved for finite extensiv
in Lemma 98.2 to infinitely repeated games with discour

e Lemma 153.:

A strategy profile is a subgame perfect equilibrium old-discounted infinitely repeated game of G if and only if
no player can gain by deviating in a single period after any hi.

* Exercise 153.
Prove this resul

The next result shows that under our assumptions the set of subgame perfect equilibrium payoff profiles of al
discounted infinitely repeated game is clo

Lemma 153.:

Let (v*)i21 be a sequence of subgame perfect equilibrium payoff profiles éfdiseounted infinitely repeated
game of G that converges t¢. Then v' is a subgame perfect equilibrium payoff profile of this repeated.

Proof.

For each value dflet s be a subgame perfect equilibrium of the repeated game that generates the payoff prof
wK. We construct a strategy profgghat we show is a subgame perfect equilibrium and yields the payoff profile
w'. We define, by induction on the length of the histargn action profiles(h) of G and an auxiliary infinite
subsequence!) of the sequences{ that has the property that the payoff profile generated by the members of tt
subsequence in the subgame following the hidtdrgs a limit and the action profitgh) converges
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to s(h). Assume we have done so for all histories of lefigbh less, and consider a histohy § of lengthT + 1,
whereh is a history of lengtii. Let (r¥) be the sequence of strategy profiles that we chose for the Histoylets
(h) be the action profile we chose for that history. &ers(h) select for §i, 8 a subsequenceXj of (r¥) for which
the sequence'{(h, @) converges, and let the action profile to whi&th, 8 converges bglh, @). Obviously the
limiting payoff profile of the subsequence that we have chosen is the same asrthaEof @ # $(h) choose for
(h, @ a subsequence"f) of (r'¥) for which the sequence of payoff profiles and the sequeligk, (@) both
converge, and let the action profile to whr.gif"k(h, €) converges bs(h, ).

No playeri can gain in deviating frorg by changing his action after the histérand inducing some outcorae

instead ofs(h) since if this were so then for large enolkgdire could profitably deviate frort, where (¥ is the
sequence that we chose for the histh, €). Further, the payoff profile (sisw"

By this result the set of subgame perfect equilibrium payoffs of any playéne repeated game is closed; since it
is bounded it has a minimum, which we denuofg. Let @(i)!) be the outcome of a subgame perfect equilibrium ir
which playeli's payoff ism(i).

* Proposition 154.:

Let (&) be the outcome of a subgame perfect equilibrium obttiscounted infinitely repeated game of

G = (N,(4), (w)), Then the strategy profile in which each player i uses the following machine is a subgame
perfect equilibrium with the same outcc (a').

« Set of state; {Nerm®:t is a positive integer} U {P(j,£):§ € N and 1 is a positive integer

* Initial state: Norn?.

« Output function: In state Nott play . In state K, t) play sl

* Transition functior:

* In state Norrt move to Norr**! unless exactly one player, say j', deviated fr¢, in which case move toj, 1).

« In state Kj, t): Move to Kj, t + 1) unless exactly one player, say j', deviated fr@y)i, & which case move to(jP
1).

Proof.

It is straightforward to verify, using Lemma 153.1, that this defines a subgame perfect equilibrium with the
required propert



Page 15

8.10 Finitely Repeated Game
8.10.1 Definitior

We now turn to a study of finitely repeated games. The formal description of a finitely repeated game is very
similar to that of an infinitely repeated game: for any positive int€ger-period finitely repeated game of the
strategic gam{N: (44), (Z4) is an extensive game with perfect information that satisfies the conditions in
Definition 137.1 when the symbaé is replaced byl. We restrict attention to the case in which the preference
relation&i of each player in the finitely repeated game is represented by the funBi=uile’)/T, wherey, is a
payoff function that represenits preferences in the constituent game. We refer to this gameTapehied

repeated game c (N (4i), (w)),

8.10.2 Nash Equilibriun

The intuitive argument that drives the folk theorems for infinitely repeated games is that a mutually desirable
outcome can be supported by a stable social arrangement in which a player is deterred from deviating by the
that he will be "punished" if he does so. The same argument applies, with modifications, to a large class of fir
repeated games. The need for modification is rooted in the fact that the outcome in the last period of any Nas
equilibrium of any finitely repeated game must be a Nash equilibrium of the constituent game, a fact that casi
shadow over the rest of the game. This shadow is longest in the special case in which every player's pay:
Nash equilibrium of the constituent game is equal to his minmax payoff (asPrisoner's Dilemma In this cas
the intuitive argument behind the folk theorems fails: the outcoreedryperiod must be a Nash equilibrium of
the constituent game, since if there were a period in which the outcome were not such an equilibrium then in
last such period some player could deviate with impunity. The following result formalizes this ar

* Proposition 155.:

If the payoff profile in every Nash equilibrium of the strategic game G is the (v) of minmax payoffs in G

then for any value of T the outcoffa,... ,a) of every Nash equilibrium of the-geriod repeated game of G has
the property that! is a Nash equilibrium of G for allt = 1,.T.

Proof.

Let G = (N, (4, (%)) and leta = (a.,...a") be the outcome of a Nash equilibrisrof the T-period repeated game
G. Suppos
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thata! is not a Nash equilibrium @ for some period. Let¢ 2 1 be the last period for whid is not a Nash
equilibrium ofG; suppose thetilatiai) > uila®)  Consider the stratdigyf playeri that follows the precepts f
after every history of length at mdst2 (i.e. through periot- 1), chooses in periodt, and chooses an action t
yields his minmax payoff, given the actions taken by the other players, in each subsequent period. The outcc
((s-4: %)) is a terminal historj that is identical to a through peribel1; playeri prefersat to at and is indifferent
betweerés andas for # 2 t+ 1, Thus player prefersa to a, contradicting our assumption treis a Nash

equilibrium of the repeated gar

This result applies to a very small set of games. If, contrary to the assumptions of the result, the constituent ¢
has a Nash equilibrium in which some player's payoff exceeds his minmax payoff then that player can be
punished for deviating in the penultimate period of the game whenever the outcome in the final peridugs
punishment may not be enough to deter the deviation if the difference between the player's minmax payoff al
payoff ina’ is small. However, there is always some intégsuch that if the outcome & in the lastL periods

then any deviation by the player in any period before this sequehgalafs beginss deterred by the threat to
impose upon the player his minmax payoff in the remaining periods. Further, the vialisearmdependent of the
lengthT of the game, so that if for each player the constituent game has a Nash equilibrium in which that play
payoff exceeds his minmax payoff then Tolarge enouglanyfeasible strictly enforceable payoff profile can be
approximately achieved as the average payoff profile in a Nash equilibriumBptreod repeated game. For
simplicity we state and prove this result only for the case in which the constituent gansenigésNash

equilibrium in whicheveryplayer's payoff exceeds his minmax payoff; we also restrict attention to equilibrium
paths that are repetitions of a single outcome of the constituent

* Proposition 156.:

(Nash folk theorem for finitely repeated gamié<G = (¥, (4:), (%)) has a Nash equilibriuré in which the payoff «
every player i exceeds his minmax paydtien for any strictly enforceable outcomieo&G and an¥ > 0 there

exists an integer Tsuch that if T > Tthe TFperiod repeated game of G has a Nash equilibrium in which the |
of each player i is withie of y (a").

Proof.

Consider the strategy of playiethat is carried out by the following machine. The set of states consiétsraffor
t=1,...,T-L
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(L is determined later)Nash andP(j) for eacti € N. Each player choose®i in Nornt for all values ot, 4 in
Nast, and punishes playgby choosingg,), in P(j). If a single player j deviates in the stiternt then there is a
transition toP(j); otherwise there is a transitionNworni*t if t <T - L and toNashif t = T - L. Once reached, the
statedP(j) andNashare never left. The outcome is tlaais chosen in the firsk - L periods and is chosen in the
lastL periods. To summarize, playi's machine is the followin

 Set of statedNorm":1 <t < T = L}U{P(j): j € N} U {Nash}

* Initial state:Norn?
« Output function: IfNorm choosedi, in P(j) choose 6,)., and inNashchoose;,.

*Transition functior

* FromNornt move toNornmt** unless eithet=T - L, in which case move tdash or exactly one player, say
deviated frona", in which case move 1P(j).

* P(j) for anyi € N andNast are absorbin

It remains to specifi. A profitable deviation is possible only in one of the stitesrt. To deter such a deviation
we requirel to be large enough th™&Xa.e4. %i(aZy,8:) —ui(a*) < L(ui(8) — w) for gl i € N. Finally, in order to
obtain a payoff profile withie of u(@") we choos(T so that II(T" = Lui(a®) + Lu@)/T* —wi(e) <€ ¢ 5 5¢ N

* Exercise 157.

Extend this result to the case in which the Nash equilibriu@iafwhich playei's payoff exceedg may depend
oni.

8.10.3 Subgame Perfect Equilibriu

In any subgame perfect equilibrium of a finitely repeated game the outcome in the last perady/aitgory (not
just after the history that occurs if every player adheres to his strategy) is a Nash equilibrium of the cc

game. Thus the punishment embedded in the strategies used to prove the Nash folk theorem (Proposition 1=
not consistent with a subgame perfect equilibrium; indeed, no punishment is possible if the constituent game
unique Nash equilibrium payoff profile. Consequently we have the following |

*Proposition 157.:

If the strategic game G has a unique Nash equilibrium payoff profile then for any value of T the actio
chosen afte
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Figure 158.1
A modified Prisoner's Dilemm

any history in any subgame perfect equilibrium of t-period repeated game of G is a Nash equilibrium .
Proof.

The outcome in any subgame that starts in périotlany subgame perfect equilibrium of the repeated game is a
Nash equilibrium oG. Thus each player's payoff in the last period of the game is independent of history.
Consequently in any subgame that starts in pdriotl the action profile is a Nash equilibrium@fAn inductive
argument completes the prc

If the constituent game has more than one Nash equilibrium payoff profile then punisamieatembedded in a
subgame perfect equilibrium strategy profile: the players' payoffs in the final periods of the game can depend
their behavior in previous periods. The following example illustrates the equilibria that can arise in this case.'
argue that in th&-period repeated game of the strategic game in Figure 158.1 there is a subgame perfect
equilibrium for which the outcome i€( C) in every period but the last three, in which it D), so that ifT is

large the average payoff profile is close to (3, 3). In the equilibrium each player uses the following strateg

C in every period through period3 unless one of the players ch@& some previous period, in which case
chooseE in every subsequent period, regardless of the subsequent outcomes; if the out€orBeirsdvery

period throughr - 3 then choosP in the last three periods. A player who deviated to any period up t@ - 3

after a history in which the outcome w&s ©) in every previous period gains one unit of payoff in that perioc
then subsequently loses at least 1.5 units, since the other player dhaosesry subsequent period. That is, the
threat to playE subsequently is enough to deter any deviation; this punishment is credibleEsiBees @ Nash
equilibrium of the constituent game. (Note that the same strategy profile is a subgame perfect equilibrii
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in the constituent game the payoff profiizf) is replaced by (0, 0), in which case the constituent game differs
from thePrisoner's Dilemm only in that each player has an additional weakly dominated a

This example makes it clear that if there are two Nash equilibria of the constituenGganeeof which

dominates the other, then any payoff profile in which every player obtains more than his payoff in the infe
equilibrium of G can be achieved as the average payoff profile in a subgame perfect equilibriur-petic
repeated game & for T large enough. In fact a stronger result can be established: any strictly enforceable pa
profile can be achieved as the average payoff profile in a subgame perfect equilibrium of the repeated ga
payoff profile is supported by a strategy profile that, up until the final periods of the game, is akin to that
constructed in the proof of the perfect folk theorem for the discounting criterion (Proposition

The argument (which draws upon the ideas in the proofs of Propositions 151.1 and 156.1) is the folloaing. Le
be a strictly enforceable outcome@fA strategy profile in th&-period repeated game that generates a sequenc
of outcomes for which the average payoff profile is cloagdd whenT is large has the following form. There
three stages. Throughout the first two stages each plaiiense®i so long as no player deviates. In the third
stage the players adhere, in the absence of a deviation, to a sequence of Nash equilibria of the constituent g
which each player's average payoff exceeds his lowest Nash equilibrium payoff in the constituent game. |
are punished as follows. A deviation that occurs during the first stage is punished by the other players' using
action that holds the deviant to his minmax payoff for long enough to wipe out his gain. After this punishment
complete, a state of "reconciliation.gif" is entered for long enough to reward the players who took part in the
punishment for completing their assignment (cf. the strategy in the proof of Proposition 151.1). A deviation by
some player that occurs during the second stage is ignored until the beginning of the third stage, during whic
worst Nash equilibrium for playeilis executed in every period. Deviations during the last stage do not need to |
punished since the outcome in every period is a Nash equilibrium of the constituent game. The length of 1
stage is chosen to be large enough that for a player who deviates in the last period of the first stage both the
punishment and the subsequent reconciliation can be completed during the second stage. Given the length ¢
second stage, the length of the third stage is chosen to be large enough that a player who deviates in the firs
of the second sta
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is worse off given his punishment, which begins in the first period of the third stage. The lower bounds on the
lengths of the second and third stages are independénsothat foiT large enough the average payoff profile
induced by the strategy profile is closeu(a’).

In the following statement of the result we restrict attention to equilibrium paths that consist of the repetition ¢
single outcome of the constituent game (as we did in the discussion above). We omit a proof, which may be 1
in Krishna (1989), for examp

* Proposition 160.:

(Perfect folk theorem for finitely repeated gamies) d be a strictly enforceable outcomeG = (N, (A:), (ui)).
Assume that (i) for ea ¢ € N there are two Nash equilibria of G that differ in the payoff of player i and (ii) th
a collection(@(®)ien of strictly enforceable outcomes of G such that for every pi € N we havee® > a(i) and
a(4) =i a(d) for all § € N\{i}. Then for anye > 0 there exists an integef Such that if T > Tthe Fperiod repeated
game of G has a subgame perfect equilibrium in which the payoff of each player i i € of y(a’).

Notes

Early discussions of the notion of a repeated game and the ideas behind the Nash folk theorem (Section

in Luce and Raiffa (1957, pp. 405 (especially p. 102) and Appendix 8), Shubik (1959b, Ch. 10 (especially p.
226)), and Friedman (1971). Perfect folk theorems for the limit of means criterion were established by Au
Shapley and by Rubinstein in the mid 1970's; see Aumann and Shapley (1994) and Rubinstein (1994). The .
folk theorem for the overtaking criterion (Proposition 149.1) is due to Rubinstein (1979). The perfect folk theo
for the discounting criterion (Proposition 151.1) is due to Fudenberg and Maskin (1986); the proof that we giv
based on Abreu, Dutta, and Smith (1994). Section 8.9 is based on Abreu (1988). Proposition 155.1 and the N
and perfect folk theorems for finitely repeated games (Propositions 156.1 and 160.1) are du# tmBétrishne
(1985, 1987). (Luce and Raiffa (1957, Section 5.5) earlier argued that the conclusion of Proposition 155.1
thePrisoner's Dilemm.)

For an early discussion of the difference between the models of finitely and infinitely repeated games (Sectio
see Aumann (1959, Section 6). For a detailed discussion of preference relations over streams of outcomes s
example, Diamond (1965). For a presentatic
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some of the folk theorems in the language of machines seP@&ath and Peleg (1987). The example in Figure
158.1 is taken from Benoit and Krishna (1985); Friedman (1985) contains a similar example. Exercise 148.1
to Fudenberg and Levine (1989). Exercise 152.1 is taken from Fudenberg and Maskil

For a discussion of the issues that arise when the players use mixed strategies see Fudenberg and Maskin (
As we have seen, the equilibria of a repeated game are not all efficient; further, the outcome generated by ar
equilibrium after a deviation occurs may not be efficient even if the outcome in the absence of any deviation i
efficient. Pearce (1992, Section 4) discusses models that examine the consequences of allowing the set of p
after any history, to switch from their current strategy profile to one that is Pareto superior (i.e. to "renegotiate
some or all of the players in a repeated game do not know the form of the constituent game then many new i
arise. Zamir (1992) and Forges (1992) are surveys of work in thi:

Krishna (1989), Sorin (1990, 1992), Fudenberg (1992), and Pearce (1992) are surveys that cover the materic
this chapter and extensions o
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9
Complexity Considerations in Repeated Gami

In this chapter we investigate the structure of the equilibrium strategies in an infinitely repeated game in whic
each player is concerned about the complexity of his str.

9.1 Introduction

In the previous chapter we described representatives of a family of results known as "“folk theorems", which
establish, under a variety of assumptions about the players' preferences, that a very wide range of payoffs is
compatible with Nash equilibrium and even subgame perfect equilibrium in an infinitely repeated game. A foll
theorem entails the constructionsaimeequilibria that generate the required outcomes. It does not demand that
these equilibrium strategies be reasonable in any sense; our judgments about the nature of the equilibrium
strategies used in the proofs are an informal. In this chapter we focus more closely on the structure of the
equilibrium strategies rather than on the set of equilibrium payoffs, using the tool of a machine described in tt
previous chapte

The basic assumption upon which the analysis is predicated is that players care about the complexity of theit
strategies. When choosing a strategy a player is confronted with a tradeoff. on the one hand he would like hi:
strategy to serve his goals as well as possible, and on the other hand he would like it to be as simple as poss
There are many reasons why a player may value simplicity: a more complex plan of action is more likely to b
down; it is more difficult to learn; it may require time to implement. We do not study these reasons here, but
simply assum that complexity is costly and is under the control of the de-maker
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We explore the effect of this assumption on the equilibrium outcomes of an infinitely repeated game, asking,
particular, how the introduction of a cost of complexity affects the predictions of the model. Although we limit
attention to repeated games, complexity considerations may be studied in the context of any model of choice
model that includes such "procedural” aspects of de-making is known as a model of "bounded rational

9.2 Complexity and the Machine Gam

In this chapter we restrict attention, for simplicity, to an infinitely repeated game in which the players' preferer
are represented by the discounting criterion: we study the players' behavior in-flieytard-discounted

infinitely repeated game € = {12} (4, (%)} (see Section 8.3). We study this behavior by analyzingehine
gamg, in which each player chooses a machine to play the infinitely repeated game. In this chdpfarerze
machine of playei to be a foi-tuple (@« fis7) in whick

* Q is a set obtates

- & €Qi s theinitial state
« fi: Qi — A js theoutput function
o T:Qi x A5 — Qi (whered # 1) is thetransition function .

This definition differs from that given in the previous chapter (Section 8.4) in that a player's transition functionr
describes how the state changes in response &xtiom of the other playenot in response to an outcome of the
strategic game (i.e. a pair of actions). As defined in the previous chapter, a machine corresponds to the notic
strategy in an extensive game, which requires that a player's action be specified for every history, including tl
that are precluded by the strategy itself (see Section 6.4). Here we want a machine to correspond to a ple

as it is usually understood, and thus take as an input to a player's transition function only the actmthef the
player

Every pair M., M,) of machines induces a seque[ﬂ,‘[MhMﬂ}?il of outcomes irG and a sequence
(¢"(M1, Ma))iZ: of pairs of states defined as follows: i = 1, 2 anct 2 1 we hav:

o G}(My, Ma) = of
o af(My, M3) = fi(gf(M, M3))

. q:+1l:M1.M3:| = Ti':q'ﬂMh Mﬂjla;[MllMﬂ] (Wherej 5£ i).
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We restrict each player to choose a machine that has a finite number of states, and denote the set of all suct
machines for playarby Mi. Thus the machine game is a tplayer strategic game in which the set of actions of
each player is Mi. To complete the description of this game we need to describe the players' preferences. If v
assume that each playerares only about his pay(“‘{Ml*M“] = (1= 6) X 8 wie' (M1, Ma)) jpy the repeated
game then we obtain the same conclusion as that of the Nash folk theorem (Proposition 145.2), since the trig
strategies that are used in the proof of this result can be implemented by finite machines. If, on the other
player cares about both his payoff in the repeated game and the complexity of his strategy then, as we shall -
obtain results that are very different from the folk theo

There are many ways of defining the complexity of a machine. We takeeaapgproach: theomplexity (M) of

the machindd = (@,¢°. £,7) is its number of states (i.e. the cardinalityQdf Our analysis is sensitive to the
measure of complexity that we use. We view this measure as an additional piece of information about the str
situation, which should reflect the relevant difficulties of the player in carrying out a strategy. From this
perspective the sensitivity of the model to the complexity measure is desirable: in different circumstances diff
measures may be appropri

In the following definition we assume that each player's preferences in a machine game are positively sensiti
his payoff in the repeated game and negatively sensitive to the complexity of his n

* Definition 165.1

A machine gameof thed-discounted infinitely repeated game{{1,2}: (4:), (%)) is a strategic game
{1, 25 (Ma), (Za)) in which for each playei

« Mi is the set of all finite machines for playi in the infinitely repeated gar

« Zi is a preference ordering that is increasing in pleggrayoff in the repeated game and decreasing in the
complexity of his machine(Mu, Ma) = (M{, M3) \whenever eitheli(Mi1, Mz) > Ui(M], M}) ange(Mi) = (M) o
Ui(My, M) = Ui(M], M3) and (M) andﬂ(“’ﬂ < e(M])

A special case is that in which each player's preferences are aczitiveepresented LHi(Mi, Ma) — ye(Mi) oy
somey > 0, in which casg can be interpreted as the cost of each state of the machine. Another special case is
in which the preferences elexicographic:
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Figure 166.1
The Prisoner's Dilemmnr

C CorD
5—{oD]

Figure 166.2
The machine M in Example 166.1 (a machine
that carries out the grim strategy in the repeated
Prisoner's Dilemme

each player is concerned first with his payoff in the repeated game and second with the complexity of his ma
This case is especially interesting since lexicographic preferences are close to the preferences in the stat

of a repeated game in which complexity considerations are absent, a model that is the progenitor of the modk
machine gam

* Example 166.:

Suppose that the ganteis thePrisoner's Dilemmawith the payoffs given in Figure 166.1. Consider the-$tate
machineM that implements the grim strategy (see Figure 166.2). If the players' common discourd ifatztoye
enough then this machine is a best response to itself drdiseounted repeated gameGfEven by using a more
complex machine, player 1 cannot achieve a higher payoff in the repeated game. However, while there is no
machine of player 1 that achievekigherpayoff in the repeated game thdrdoes, given that player 2 udds
thereis a machine of player 1 that achievesshemepayoff and is less complex: that in which there is one state, i
which C is chosen. The sta:in the machiné is designed to allow a player to threaten his opponent, but in
equilibrium this threat is redundant since each player always chGo3ésis either player can drop the sDte
without affecting the outcome; hendM, M) is not a Nash equilibrium of the machine ge¢

*Example 166.:

For thePrisoner's Dilemmdas in the previous example) Mtbe the machine in Figure 167.1. The behavior that
this machine generates can be interpreted as beginning with a displa
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Figure 167.1
The machine M in Example 16€

ability to punish. After this display the player begins a cooperative phase in which h€ pllagesatening to puni
a deviant by moving back to the initial state. If both players use the madhhen the sequence of payoffs in the
repeated game is (1, 1, 1) followed by an infinite sequence

We claim that if the players' common discount fadta large enough themA, M) is a Nash equilibrium of the
machine game if the players' preferences do not give too much weight to complexity (as is the case if their
preferences are either lexicographic or additive with a small cost of complexity). The argument is as follows. |
increase his payoff in the repeated game, a player must ddaddeast sometimes when his opponent's machine
is in stateR. Any such choice dD causes the other machine to chddder at least three periods, so that wiea
close enough to 1 a player does not gain by such a maneuded{3®® < 3 + D + 35* + 3 for d close enough

to 1). Thus fo® large enough a player cannot increase his payoff in the repeated game by any machine, hows
complex

We now show that a player cannot achieve the same payoff in the repeated game by using a less complex ir
To achieve the same payoff he must chddse least once when the other player's machine is inRtdte do so

his machine must have at least four states. To see this, consider the first pelti,dd,wa';ch'i'} =R ang

filg) = € we must havfile:™®) = £ile™) = £ilgi™) =D and hence, in particule % # @ Further,

4 # &' since (@™ D) = ¢~ while (@ D) = & Similarly, @ # 4™ andel ™ # 4™

In a machine game a player has to solve a problem in which he balances his desires to achieve a high payof
employ a simple machine. In some sense this problem is more complicated than that of finding an optimal str
in the repeated game, since the player must consider the complexity of his rule of behavior; we do not impos:
constraint on the player's ability to solve this prob
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9.3 The Structure of the Equilibria of a Machine Gam:

We now characterize the structure of the Nash equilibria of a machine game. We first generalize an obse
made about Example 166.1: if the machihef some player has a state that is not used wh&randM, operate

then M,, M,) is not a Nash equilibrium, since the state can be eliminated without affecting the outcome, ar
I prefers the machine in which the state is elimin

e Lemma 168.:

If (M1, M3) is a Nash equilibrium of a machine game then for every stafatie machindi there exists a period
t such the %M, M3) =g

Our next result shows that in a Nash equilibrium each machine has the same number of states and that any |
equilibrium of a machine game corresponds to a Nash equilibrium of the repeate

Lemma 168.:

If (M}, M3) is a Nash equilibrium of a machine game

o o(M7) = c(M3)

« the pair of strategies in the repeated game associate! (M1:M3) is a Nash equilibrium of the repeated g:.
Proof.

For any strategy of playerj in the repeated game and any machMnef playeri, denote byHi(Ms, 35) playeri's
payoff in the repeated game when he sasd player uses the strategy that corresponddl taSinceMy is finite,
playerj's problen™a%s, Us(M7,35) of finding a best response (ignoring complexity) to the mad¥ihim the
repeated game has a solution (see Derman (1970, Theorem 1 on p. zﬂi = (@i fum) and for each

g € Qi let Vilg) = max, U;(M;(a),3;) wherelM;(a) is the machine that differs froM only in that the initial state
is g. For eaclq € Qi let A(g) be the set of solutions to the problem

max {u;(fi(q), a5) + 6Vs(ri(q, a4))}-

le.*‘._f

Then in the repeated game a strategy of plpigea best response to the strategy correspondiMg] ifoand only if
the action it plays when playgs machine is in statgis a member of\(q). In particular, choosind (@) € 4;(9) oy
each? € @i, there is a best response that is implemented by the following machine, whe(M{) states

* The set of states 3.
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Figure 169.1
Machines M for player 1 and Mfor player 2 for the infinitely
repeated Prisoner's Dilemma. The pair,(M,) generates the path in

which (D, D) occurs for k periods and then the sequence (C, C),
(C, C), (C, D), (D, C) is repeated indefinite

« The initial state i
*The output functiorf is defined byfi(@) = #j(a).
*The transition functiom, is defined byr,(g, x) =1,(q, f(q)) for any= € 4.

Since(M{, M3) is a Nash equilibrium of the machine game it follows €M5) < e(M{) ang hencie(Mz) = e(M;)
Further, since playdrcan use a macline wic{M;) states to achieve a payoff in the repeated game equal to
max,, U; (M7, 85) it follows that the pair of strategies that is execute(M3, M3) is a Nash equilibrium of the
repeated gam

* Exercise 169.

Give an example of a thrg#ayer game for which the associated machine game has a Nash equilibrium in whic
the numbers of states in the players' machines are not the

We now derive a result that has strong implications for the set of Nash equilibria of a machine game. To obta
some intuition for the result, consider the pair of machines for the infinitely regeaseder's Dilemmahat is
shown in Figure 169.1. This pair of machines generates a path in which there are ¥ = 2ifheriods in which

the outcome isl{, D) (the players display their threats), after which a cycle of length four in which the outcome
are C, O, (C, O, (C, D) and D, C) is repeated indefinitely. Any deviation by a player from the prescribed
behavior in the cycle causes his opponent's machine to go to its initial state, punishing the dévjpanidds. As
you can check, the pair of machines is a Nash equilibrium of the repeated game when the discoding tdosar
enough to 1. However, it is not an equilibrium of the machine game. To see this, chhsldexach of the three

state9Q,,
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Q,, andQ, player 1 takes the same action; she uses the fact that there are three states only to know when to ¢
the actiorD. However, she could obtain this information by observing player 2's action, as follows. Suppose tl
she adopts the machiMi in which the three stat€3, Q,, andQ, are replaced by a single st&én which she
choose<, the state remain@ so long as player 2 chooggsthe state switches Q, if player 2 chooseb, and th
transition from the state is toQ if player 2 chooseB. Then(Mi, M) generates the same sequence of outcon
the Prisoner's Dilemma adoes 1,, M,); thus in the machine game player 1 can profitably devieMi gince it

has fewer states thau,.

Note thati does not monitor player 2's behavior when player 2's machin®isoinQ,: if player 2 chooseB in
either of these states thMi does not return to the stdteout moves t@,. If player 1 uses the machiMi then
player 2 can exploit this feature by choostha stateQ,.

The situation is similar to that in which a paratrooper has to jump after counting to 100 and another parati

to jump after counting to 101. If the second paratrooper counts then he can monitor the first paratrooper, whc
afraid of jumping. However, counting is costly in the tense environment of the plane, and the second paratroc
can avoid the burden of counting by simply watching his friend and jumping immediately after her. Howev
second paratrooper does not count then the first paratrooper can exploit this lack of monitoring and ...

In general we can show that if a Nash equilibrium pair of machines generates outcomes in which one of t
takes the same action in two different periods then the other player also takes the same action in these two [
(contrary to the behavior of the players in perik + 2 anck + 3 of the example that we just discuss

e Lemma 170.:

If (M1, M3) is a Nash equilibrium of a machine game then there is é®pee correspondence between the

actions of player 1 and player 2 prescribedMijandMi: if #{(M,M3) = a}(M{, M3) for somet # 3 then
ﬂ;[M;!M;} = GE[M:IT:-M::}

Proof.

Let M{ = (Qigd fum} and for eacls € Qi defineA(q) as in the proof of Lemma 168.2. By the second part of

Lemma 168.2 the machitM executes a strategy in the repeated game that is a solution of the problem
max,, Uy(M7,8;) Thereforefi(@(M7, M3)) € A;(ai(M7, M3)) for allt. Thus if there are two periot ands in
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whichal(Mf, M3) # af (M}, M3) and %(Mi, M) = a5(M{, M5) then there exists an optimal poliayof playerj for
which 9 (e (M, M3)) = ai{(gf (M7, M3)) That is, playef uses the same action whenever plagestate is either
ai(Mi, M3) or ¢ (M1, M3), The following machine carries out the pol&yand ha<tM{') =1 states, contradicting
the first part of Lemma 168

* The set of states @i \ {gf}.
« The initial state i4f if & # @and is% otherwise

* The output function is defined tiyq) = a'(q).

« The transition function is defined as followsT(4: fi{@)) = ¢f theni(@:2) = 4! for all # € 4i; otherwisex (q, x) =
1(, f(q)) for all% € 4« if 7 & and

_ [nla fi(@?) if ai = af (M7, M3)
“‘q:’“"‘{;{qs.f:{qm otherwise

This completes the pro

This result has a striking implication for the equilibrium outcome path in any game in which each player has t
actions. For example, if in the repeaRisoner's Dilemmdwo outcomes appear on the equilibrium path, ther
pair of outcomes is eitherC, C), (D, D)} or {(C, D),(D, C)}.

We now turn to an exploration of the structure of the equilibrium machines. Since each player's machine is fit

there is a minimal numbérsuch that for somie> t' we haves =%  for both= 1 and = 2; lett” be the minimal
sucht. The sequence of pairs of states starting in pérmzhsists of cycles of length- t'. We refer to this stage
as thecycling phasg, the stage before perid' is theintroductory phase.

We now show that the sets of states that a player uses in the cycling and introductory phases are disjoint. Fu
in the introductory phase each state is entered only once and each of a player's states that is used in the cyc
phase appears only once in each cycle. Thus in equilibrium there ig@a@me correspondence between the s

in the machines of players 1 and 2, a fact that may be interpreted to mean that in each period each machine
"knows" the state that the other machine i

*Proposition 171.:

If (MisM3) is an equilibrium of a machine game then there exists a péranitan integef < * such that for i
" wyyE =1 - . -
= 1, 2,the states in the sequel GMIMEe=i” are distingt ani %M1, M3) = ¢~ (M7, M) for t 2 ¢
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Proof.

Lett" be the first period in which one of the states of either of the two machines appears for the second time.
is, lett” be the minimal time for which there is a playand a period <t" such thad’ = &' We haveaf = o
and hence, by Lemma 170% = o' |t follows that for allk > 0 we havesi ™* = gi**

168.1,6(M7) = * — 1. By the selection of playérll states o™ through timet’-1 are distinct, so that the first part

, and thus, using Lemma

[ -
of Lemma 168.2 implies that there existst" such tha®' =% . It remains to show that=t. Assume to the
contrary that, say, >t. Then playef can obtain the same path of outcomes with a machine in 9 iigh

excluded by making a transition frcdi' to% , omitting%'. But this contradicts the optimality M5,

A machine game is a strategic game, so that no considerations of the type modeled by the notion of subgam
perfect equilibrium enter the analysis. To incorporate such considerations, we can modify the solution concej
require that after every history in the repeated game the pair of machines be an equilibrium of the machine g.
Such a modification implies that the play of the machines does not have any introductory phase: a player whi
change his machine in the course of play wants to omit any introductory states once the cycling phase is
follows that the set of equilibrium paths is severely restricted by this modification of the solution, as Exerc
illustrates

9.4 The Case of Lexicographic Preferenc

The results of the previous section significantly limit the set of equilibria of a machine game. To limit the set c
equilibria further we need to specify the tradeoff in each player's preferences between his payoff in the repea
game and the complexity of his machine. In this section we assume that the players' preferences are lexicog!
(complexity being a secondary consideration, after the payoff in the repeated game); we restrict attention to t
case in which the component game isPrisoner's Dilemm (with payoffs as in Figure 166.

As we noted above, Lemma 170.1 implies that the set of outcomes that occurs on an equilibrium path is eithe
subset of {C, C), (D, D)} or a subset of {C, D), (D, C)}. First consider equilibria of the former type. lretandn,

be two nonnegative integers, at least one of which is positive. Thérchmse enough to 1 it can be shown that
there is an equilibrium with a cycle of length+ n, in which C, C) appears
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Figure 173.1
A machine M for either player in the infinitely repeated Prisoner's Dile

n. times andD, D) appears, times. For the case = n, = 1 there is a symmetric equilibrium in which each

player uses the machihkin Figure 173.1. (For preferences that are not lexicographic thevpa¥)(is an
equilibrium only if the players's preferences do not put too much weight on comp

* Exercise 173.
a. Show that itd is close enough to | then the pair of machiiM, M) is a Nash equilibrium of the machine ga

b. Show that if the machind is modified so that iR, it playsC, in R, it playsD, and the transitions iR, andR,
are reversed, then the new pair of machinnot a Nash equilibrium of the machine ga

In these equilibria the introductory phase is nonempty, and this is so for any equilibrium that supports a path
which (C, C) is an outcom

» Exercise 173.
Show that every equilibrium in whiclC, C) is one of the outcomes has an introductory p

Now consider equilibria in which every outcome on the equilibrium path is eC, D) or (D, C). Some such
equilibria are cyclical, without any introductory phase. Precisely, for all positive integerdn, satisfyingsn(n,
+n,) > 1 fori = 1 and = 2 there existd large enough that there is an equilibrium of the machine game in which
the cycle consists af, plays of D, C) followed byn, plays of C, D), without any introductory phase. (The
condition onn, andn, ensures that each player's average payoff exceeds his minmax payoff of 1.)

An equilibrium for the case, =n, = 1 is shown in Figure 174.1. One interpretation of this equilibrium is that the
players alternate being generous towards each other. One can tHinPYBE the event in which player 1 gives a
gift to player 2 andld, C) as the event in which player 2 gives a gift to player 1. In the equilibrium a player doe:
not care if his opponent does not accept the gift (i.e. ch@sdegen he could have chosBrand received the

gift), but he insists that his oppon
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Figure 174.1
Machines M for player 1 and Mfor player 2 for the
infinitely repeated Prisoner's Dilemma. Foiarge
enough the pair (M M,) is an equilibrium of the
machine game; it generates the path consisting of
repetitions of the cycle ((D, C), (C, C

A B

Al131}L3

Bl20/]20

Figure 174.2
The constituent game for the
repeated game in Exercise 17

give him a gift (playC) in periods in which he expects to get a gift: if he does not receive a gift then he does nc
move to the state in which he is gener

In our analysis so far the constituent game is a strategic game. One can think also of the case in which the
constituent game is an extensive game. While the analysis of the Nash equilibria of the repeated game is
(though the set of subgame perfect equilibria may be somewhat different), the analysis of the Nash equili
machine game is quite different in this case, as the following exercise demot

* Exercise 174.
Consider the infinitely repeated game for which the constituent game is given in Figur

a. Show that the set of paths associated with the Nash equilibria of the machine game contains only the outc
(A, A) and B, B).

b. Show that if the players' preferences in the machine game are lexicographic, then every finite sequence
containing only the outcome& (A and (B, B) is the cycling phase of the path associated with some Nash

equilibrium of the machine game 10 large enougl|



Page 17

c. Notice that the game is the strategic form of an extensive game with perfect information. Assume that t
engage in the infinitely repeated game in which the constituent game is this extensive game, learning at the ¢
each round the terminal history that occurs. Show that the machine game for this repeated game has a uniqt
equilibrium, in which the payoff profile is (2, 0) in every period. [Hint: When player 1 chooses B she cannot
monitor whether player 2 plans to choA or B if she chooseA.]

Notes

This chapter is based on Rubinstein (1986) and Abreu and Rubinstein (1988). The line of argument, and in
particular the proof of Lemma 170.1, is a modification due to Piccione (1992) of the proof of Abreu and Ri
(1988). Exercise 174.1 is based on Piccione and Rubinstein (

In a related strand of literature the complexity of the machines that a player can employ is taken to be exogel
bounded. The main aim of this line of research is to show that equilibrium outcomes that differ from repetitior
(D, D) can be supported in the finitely repealréoner's Dilemmasee for example Neyman (1985) and Zemel
(1989)
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10
Implementation Theory

In this chapter we study the inverse of the problem considered in the previous chapters: rather than fix a gan
look for the set of outcomes given by some solution concept, we fix a set of outcomes and look for a game th
yields that set of outcomes as equilit

10.1 Introduction

The standard procedure in game theory is to formulate a model that captures a situation and to investigat
outcomes that are consistent with some solution concept. If we fix the structure of the game and vary the pla)
preferences then a solution concept induces a correspondence from preference profiles to the set o

Our general approach in this book is that a game is not necessarily a description of some physical rules that
most strategic situations lack a clear structure, and even when one exists the players' perceptions of the
not necessarily coincide with an "objective" description of that situation. By contrast, in this chapter a planner
assumed to set the rules of the interaction, and the individuals, when confronted with these rules, are assumi
take them literally. The planner can design the structure of the game but cannot control the players' preferent
actions. She starts with a description of the outcomes she wishes to associate with each possible preference
and looks for a game that "implements" this correspondence. On finding such a game she can realize her ob
by having the individuals play the game, assuming of course that their behavior conforms with the solution
concepi

An assumption underlying this interpretation of an implementation problem is that the planner can force the
individuals to play the game but cannot enforce the desirable outcome directly, possibly be«
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lacks information about some parameters of the situation, information that is known to all participants but is e
too costly or impossible for her to obt:

To illustrate the nature of an implementation problem, consider a planner who wishes to assign an object to c
two individuals. Suppose that she wants to give it to the individual who values it most, but does not know whc
is. Her problem then is to design a game form with the property that, for every possible pair of valuations, the
outcome according to some solution concept is that the object is given to the individual who values it most.
Whether this is possible depends on the outcomes that the planner can impose on the individuals. For examj
may be allowed only to transfer money from one individual to another, or she may be allowed also to impose
on the individuals

As in other chapters, we focus on the conceptual aspects of the theory and present only a sample of the mai
We restrict attention to implementation problems in which the individuals are fully informed about the parame
of the situation; we do not touch upon the large literature that considers the case in which there is asymmetri
information

10.2 The Implementation Problen

Let N be a set of individual€; a set of feasibleutcomesand?® a set of preference profiles overWe denote

individuali's preference relation kEi and sometimes denote a preference prL’CAliEN simply by%. A choice
rule is a function that assignssabsebf C to each profile irP. We refer to a choice rule that is singlet@iued
as achoice function The objective of the planner is to design a game form whose outcomes, for each preferel

profile X in P, coincide with/(%), wheref is the choice rule or the choice functiont i§ not singletorvalued thet
the planner is concerned that each of the outcon/(Z)rbe possible. For instance, in the example discussed in
the previous section the planner may wish to assign the object to the individual whose valuation is highest, w
discriminating between the individuals if their valuations are the same. In a more general problem, the ple
wish to implement the choice rule that associates with each preference profile the set of efficient «

The planner controls the rules of the game, formalized as a game fetmatégic game form with consequenct
in Cis a triplelM, (4:).8) whereA, for eacti € N is the set of actions available to playeand

9:A — C (where A = XienAi) i anoutcome functic tha:
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associates an outcome with every action profile. A strategic game form and a preferendZsiofilece a
strategic gam{M: (4:): (1) whereXi is defined bye Xi ® if and only if9(a) %« 9(8) for eachi € N. An extensive

game form (with perfect information) with consequences i€ is a tuple!™:H, £,9) whereH is a set of historie:
P:H\Z — N is a player function, arg: € = € is an outcome functiorZ S H being the set of terminal histories).
(Cf. Definition 89.1 and the following definition of an extensive game form.) An extensive game form and a
preference profile induce an extensive g:

The planner operates in environment that consists «

« a finite seiN of players, witH¥l =2

* a selC of outcome

* a selP of preference profiles oviC

« a self of (either strategic or extensive) game forms with consequenC.

When designing a game form to implement her objectives the planner must take into account how the individ

will play any possible game. golution conceptfor the environmert™ G P8} is a sevalued functiorS with

domaing x P. If the members c€ are strategic game forms th&nakes values in the set of action profiles, while
if the members c& are extensive game forms th$§ takes values in the set of terminal histo

The following definition is one formulation of the planner's prob

* Definition 179.1

Let (N, C,P,8) be an environment and IStbe a solution concept. The game f&& € § with outcome functiony
is said tcS-implement the choice rullf:P — € if for every preference profilz € P we haved(S(G X)) = £(X) |n
this case we say the choice rf is S-implementable jn {V,C,P,6),

In other notions of implementation via a strategic game form the set of actions of each player is required to b
set of possible preference profiles (each player must announce a preference relatierypdayer) and
announcing the true profile is required to be consistent with the solution concept. One such notion is the

* Definition 179.z

Let (N,C,P,6) be an environment in whicis a set of strategic game forms for which the set of actions of each
playeri is a seP of preference profiles, and I8tbe a solution concept. The strategic game form

G = (N,(4:):9) € G trythfully S-implements the choice ruld*® = C if for every preference profils € P we
have
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«a* € 8(G,Z) where® = Z for eachi € N (every player reporting the true preference profile is a solution of the
game

« 9(a*) € f(Z) (the outcome if every player reports the true preference profile is a menf(Z)).
In this case we say the choice rf istruthfully S-implementable in (V,C,P,G)

This notion of implementation differs from the previously defined notion in three respects. First, and most
important, it requires the set of actions of each player to be the set of preference profiles and "truth telling" to
solution to every game that may arise. Second, it allows (nontétlitig) solutions of the game to yield outcomes
that are inconsistent with the choice rule. Third, it allows there to be preference profiles for which not every
outcome prescribed by the choice rule corresponds to a solution of the

Our discussion is organized according to the set of game forms under consideration and the solution concep
We begin with strategic game forms and the solution of dominant strategy equilibrium; we then consider strat
game forms and the solution of Nash equilibrium; finally we consider extensive game forms and the solution
subgame perfect equilibriu

We establish two types of results, one negative and one positive. The negative results give conditions under
only degenerate choice rules can be implemented. The positive ones give conditions under which every rule
very large set can be (at least approximately) implemented. Results of the latter type are reminiscent of the ™
theorems" of Chapter 8. Like the folk theorems their main interest is not the fact that "anything is possible"; re
the structuresof the mechanisms that we use to prove the results are the most interesting aspects of the
investigation. Some features of these structures sometimes correspond to mechanisms that we observe, givi
insight into the rationale for these mechani:

10.3 Implementation in Dominant Strategie

In this section we assume that the planner is restricted to use a strategic game form. We assume also that, d
to avoid strategic complications, she aims to achieve her goals by designing the game so that the outcomes
wishes to implement are consistent with the solution concept of dominant strategy equilibrium (DSE), definec
follows.
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*Definition 181.1

A dominant strategy equilibrium of a strategic game{N*{A*L X is a profiles* € A of actions with the
property that for every playii € N we have(e-#4{) Zi (a-4:) for all a € A.

Thus the action of every player in a dominant strategy equilibrium is a best respewnsey/tollection of actions
for the other players, not just tequilibriumactions of the other players as in a Nash equilibrium (Definition

14.1). (Note that the fact thatis a dominant strategy equilibrium does not imply that for any playeractior®
dominates (even weakly) all the other actions of playiecould be that for som# # & we have

(a—i8}) ~i (a-i,34) for all e-i € A-i.) The notion of DSEmplementation is strong, since a dominant strategy is
optimal no matter what the other players do. We now see that it is hard -implement a choice rul

We say that a choice ruf:P — € isdictatorial if there is a played € N such that for any preference profile

% € P and outcom € f(X) we have® %5 b for allb € €. The following result, known as the Gibbard
Satterthwaite theorem, is a milestone in implementation tt

*Proposition 181.:

Let{N,C,P,€) be an environment in which C contains at least three mefy Pdssthe set of all possible

preference profiles, ar § is the set of strategic game forms. £ = € be a choice rule that is DSE
implementable and satisfies the condi

Jor every a € C there exists > € P such that f(=)={a}. (181.3)
Then f is dictatoriec.

A proof of this result uses the following res

eLemma 181.4 (Revelation principle for DSI-iimplementation)

Let {N,C,P,0) be an environment in whicGis the set of strategic game forms. If a choice P =€ is DSE
implementable the

a. f is truthfully DSEimplementabl

b. there is a strategic game forG* = (N, (4:),9") € ¢ in which Ais the set of all preferenaelations (ather than

profiles) such that for ¢ & € P the action profile is a dominant strategy equilibrium of the strategic game
{Girt} and g'(%) € f(%)

Proof.

Let G = {N,(4:),9) be a game form that DSEplements. We first prove (b). The set of dominant actions for any
Fla{erj depends only o%s, so that we can defir®i{Zs) to be a dominant action for playjen any game
G,(Z-1%4)). Define the outcome functiagi of G. by
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9*(2) = 9((a(Z4))). SinceG DSFimplements we haved*(Z) € £(Z). Now suppose that there is a preference profile
% for which&i is not a dominant strategy for playeén G'. Then there is a preference pro%:such that
9°(Z%5%5) =i 9" (Rl Zs) | so thams(Zs) is not a best responsef X) to the collection of actior (@i(Ziemii, a
contradiction. ThuZ is a dominant strategy equilibrium (G*»%).

It is immediate tha’ is a dominant strategy for every player in the g {6:Z} in which the set of actions of e
player isP and the outcome function is given g’j:(t{l'}}} = g*((Z:(®)) (Where?-:["} is a preference profile for each
i € N), so thaf is truthfully DSE-implementable, proving (

From this lemma it follows that if a choice rule cannot be truthfully §lemented then it cannot be DSE
implemented. Thus for examplePfcontains only strict preference relations then the choice function that choos
the second ranked outcome in player I's preferences is noetriy@&mentable: if it were, then by the lemma a
dominant strategy " for player 1 would be to announce her true preference relation, but in @icit iis better

for her to announce a preference relation in which her most preferred action is rankec

Notice that the gamG" in the lemma does not necessarily Bitplement the choice rule since, as we noted
earlier, the notion of truthful DSEnplementation does not exclude the possibility that there arératbriul
dominant strategy profiles for which the outcome is different from any given by the choice rule. In briefnitdoe
follow from Lemma 181.4 that DS-implementation is equivalent to truthful D-implementatior

*Exercise 182.

Show that if the seP of preference profiles contains only strict preferences then a choice function is truthfully
DSE-implementable if and only if it is D&-implementable

The main part of the proof of the Gibb&gdtterthwaite theorem (181.2) is the proof of the following result in
social choice theory, which we omit. (The standard proof of this result relies on Arrow's impossibility theorem
a proof of which see, for example, Sen (198

sLemma 182.:

Let C be a set that contains at least three members ¢ P be the set of all possible preference profiles. If a
choice functior P = € satisfies (181.3) and for every preference préz € P we havef -5 %) Bs F(Z-1%j)
for every preference relati i then f is dictatoric.
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Proof of Proposition 181.:

It follows from the proof of Lemma 181.4 that if the choice fuleDSEimplementable, say by the game foBn
then any selectiog” of f (i.e. 9'(X) € f(Z} for allz € P) has the property that for every preference pri%leve

haved (=4 %s) &5 9*(%-5X5) for every preference relatic™3. Sincef satisfies (181.3g" does also.
Consequently by Lemma 189" is dictatorial, so thef is also

* Exercise 183.

Explain, without making reference to the Gibb&atkterthwaite theorem (181.2), why the following choice
function is not DSEmplementable in an environme®:C,P,€) in whichC contains at least three memb®Pss
the set of all possible preference profiles, & is the set of strategic game for

f{*}—{ﬂ ifforallic Nwehavea>;bforallb#a
~/7 |1 a* otherwise,

wherea’ is an arbitrary member C.
The Gibbar-Satterthwaite theorem (181.2) applies to an environment .gif"> is the cost of the

Not all such choice functions are D-implementable. The next proposition and exercise establish that such a
choice functiorf is truthfully DSEimplementable if and only if for ead € N thereis a funchiosuch that

m;(6) = 2(6)(v—Liemis3 96) +hs(6-5) for allo e RY, wheref(8) = (x(8),m(08)). In the strategic game form used to
implementf,
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each playej announces a numbay interpreted as a declaration of his value of the project, and the project is
executed if and only if the sum of these declarations is atyetst payment made by playes equal td(a,)
(which is independent of his announcement), plus, if the project is carried out, an amount equal to the differel

between the cost of the pro{ect and the sum of the announcements made by the other players. Formally, in tt
strategic game forrlV, (A:), 9} we haved: = R and ¢(a) = (x(a), m(a)) for eacha € A where

{::(a}zlifandﬂnljrif dien@ =Y (184.1)
mj(a) = z(a)(y — i) %) + hila—;) for each j € N. '
Such a game form is callecGroves mechanis.

*Proposition 184.:

Let{N,C,P,9) be an environment in whi(C = {(#,m):z € {0,1} 3ngm € RV}, P is the set of profile(Zs) in which
eachZi is represented by a utility function of the foBpem for somef € R, and§ is the set of strategic game
forms; identif  with FN. A choice functio f:RY — € with f(8) = (x(6),m()) for whict

« x(8) = 1if and only if 2en % 27
« for eachi € N there is a function fsuch tha™ (@) = 2@y = Tieangsy ) +5i(0-3) o1 511 9 ¢ RV
is truthfully DSE-implemented by the Groves mechai (¥, (4:), 9) defined in (184.).

Proof.

Leti € N and leta, be an arbitrary vector of actions of the players otherjthafe argue that when the players
other tharj choosea,, j's payoff when he choosas= 6, is at least as high as his payoff when he chooses any oth
action inA.. There are three cases.

*If x(a,,0) =x(a,,a's) thenm(a,, ) =m,, 6)) and hencg(a,, a) =g(a,, 6).

G977

«If x(a,,0) = 0 andx(a,, @) = 1 then's payoff underd, 6) is -m(a,,0) = -h(a,), while his payoff underg(, a') is
0; —mj(a-,05) = 8; = (v = Liemint %) — hi(8-5) < —hi(3-5) sincex(a,, 8) = 0 implies thadeiems) % +05 <7

«If x(a,,8) = 1 andx(a,, @) = 0 thenj's payoff underd,, 8) is 85 = mj(a—;,0;) = 8; = (v = Liem &) = hsila-;)
while his payoff underg(,a') is ~-mj(a-j05) = =hj(a_;) < 0; = (Y = Lieanisy &) = hjla—j) , sincex(a;, 8) =1
implies thaiemg) % +8 27,
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Hence it is a dominant action for each playterchoose, = 6. The outcome(6) is equal td(8), so thailV. (4:).g)
truthfully DSE-implementsf.

Note that the Groves mechanism (184.1) (not Nashimplement a choice functidnsatisfying the conditions of
the proposition: for example,Y = 2, [N| = 2 andd, = 1 for both players then the associated game has also, in
addition to (1,1), an inefficient equilibriur-2,-2).

* Exercise 185.

In an environment like that in the previous proposition, show that if a choice fuhetitmf(6) - (x(6),m(8)) andx
(6) = 1 if and only ifluen i 27 jg truthfully DSEimplementable then for ead € N there is a functioh, such

that ™) = 207 = Liemgs} 0 =hs(0-3) 1or a10 € RV, [You need to show that whenevg8, 6) = 1 andx(0,,
e'j) =0 then my(0-5,05) — my(0-4,0) = - EiEN\{j} 6;.]

10.4 Nash Implementatiol

We now turn to the case in which the planner, as in the previous section, uses strategic game forms, but ass
that for any game form she designs and for any preference profile the outcome of the game may be any of its
equilibria

The first result is a version of the revelation principle (see also Lemma 181.4). It shows that any Nash
implementable choice rule is also truthfully Nastplementable: there is a game form in whighe@ch player he

to announce a preference profile anylfor any preference profile trutielling is a Nash equilibrium. This result
serves two purposes. First, it helps to determine the boundaries of the set-ohplasientable choice rules.
Second, it shows that a simple game can be used to achieve the objective of a planner who considers truthfu
equilibrium to be natural and is not concerned about the outcome so long as it is in the set given by the ¢

eLemma 185.2 (Revelation principle for Nash implementatior

Let MG, P.6) pe an environment in whidis the set of strategic game forms. If a choice rule is Nash
implementable then it is truthfully Ne-implementabl.

Proof.

Let @ = (N,(4:),9) be a game form that Naghplements the choice ruf:P =€ and for eack € P let (X)) pe

a Nash equilibrium of the gan{(,:--t}. Define a new game forG" = (N:(43):9") i whichAf = P for eachi € N
andg'(p) = g((a(p))) for each
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P € XienAj (Note that each, is a preference profile anqdis a profile of preference profiles.) Clearly the profile
p' in which®! = X for eachi € N is a Nash equilibrium {G"%) and9"(®") € f(X),

Note that it doenotfollow from this result that in an analysis of Nash implementation we can restrict attention
games in which each player announces a preference profile, since the game that truthfuttyolmseants the
choice rule may have narnuthful Nash equilibria that generate outcomes different from that dictated by the
rule. Note also that it is essential that the set of actions of each player be the set of prefeiirs-@ot the
(smaller) set of preference relations, as in part (b) of the revelation principle fanip&tEnentation (Lemma
181.4)

We now define a key condition in the analysis of Nash implement

*Definition 186.1

A choice rule/*P = € is monotonic if whenever€ € f(Z) ande ¢ f(Z') there is some playi € N and some
outcomeb € C such thac Zi b and® *i¢.

That is, in order for an outcome c to be selected by a monotonic choice rule when the preferenceXboifilads

when it isZ’ the ranking of ¢ relative to some other alternative must be worse % them unde X for at least
one individual

An example of a monotonic choice riilis that in whictf(X) is the set of weakly Pareto efficient outcomes:
f(Z) ={c€C: there is ncb € € such tha® ™ for all i € N}. Another example is the ruldn whichf(Z) consists

of every outcome that is a favorite of at least one plf(Z) = {¢ € C: there existd € ¥ such tha¢ Zi b for all
beC}.

*Proposition 186.:

Let{¥,C,P,9) be an environment in whichis the set of strategic game forms. If a choice rule is Nash
implementable then it is monoto.

Proof.

Suppose that the choice rnf:? =+ C is Nashimplemented by a game for @ = (¥, (4:),9), ¢ € f(X), and
¢ £ f(X'). Then there is an action profile a for whigfa) = ¢ that is a Nash equilibrium of the gafG: %) but not

of {G:%"). That is, there is a playgand actior% € 43 such tha 9(3-:9) =} 9(8) 5nq9(a) Zj 9(a-595) ences is
monotonic

*Example 186.3 Solomon's predicamei)

The biblical story of the Judgment of Solomon illustrates some of the main ideas of implementation theon
two women, 1 and 2, claims a baby; each of them k
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who is the true mother, but neither can prove her motherhood. Solomon tries to educe the truth by threatenin
cut the baby in two, relying on the fact that the false mother prefers this outcome to that in which the true moi
obtains the baby while the true mother prefers to give the baby away than to see it cut in two. Solomon c
baby to either of the mothers or order its execL

Formally, let a be the outcome in which the baby is given to mothwethdf in which the baby is given to mother
2, and d that in which the baby is cut in two. Two preference profiles are pc

# (1 is the real mother): a -y by dand b>2d 3 a

& (2 is the real mother): a »{ d > band b5 a5 d.

Despite Solomon's alleged wisdom, the choicefrdifined byf(6) = {a} and f(8") = {b} is not Nash

implementable, since it is not monotor® € () anda € f(¢') but there is no outcomeand playei € N such that

a Zi ¥ and¥ > a. (In the biblical story Solomon succeeds in assigning the baby to the true mother: he gives
only woman to announce that she prefers that it be given to the other woman than be cut in two. Probably the
women did not perceive Solomon's instructions as a strategic game

The next result provides sufficient conditions for a choice rule to be-implementable

*Definition 187.1

A choice rulef:P = € hasno veto powerif ¢ € fX) whenever for at leastl| = 1 players we hax¢ i ¥ for all
yE C.

*Proposition 187.:

Let{N,C,P,6) be an environment in whidis the set of strategic game formsI¥1 2 3 then any choice rule that
is monotonic and has no veto power is Mimplementabl.

Proof.

Let f:P — € be a monotonic choice rule that has no veto power. We construct a gan G = (N,(4.9) tha

Nast-implementd as follows. The set of actiodsof each player is the set of an tripleg,( c, m), where

p€P, & €C andm is a nonnegative integer. The vali9{Pi&Midiex) of the outcome function are defined as
follows.

« If for somed € N and som&Z&m) with e € F(Z) we have P = (Zsem) to0 o1 i € N\ {5} ther

¢ ifeXjc

g[{p":c-hnli}}={c ifﬂ-"{jﬂ'j.
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« Otherwiseg((p, ¢, m)) = ¢, wherek is such tha™x Z™; for all § € N (in the case of a tie the identity lofs
immaterial)

This game form has three components. First, if all the players agree about the preferend<: andfilee outcorn

¢ € f(Z) to be implemented then the outcome is indeefkecond, if there is almost agreemeat! players but

one agree-then the majority prevails unless the exceptional player announces an outcome that, under the
preference relation announced by the majority, is not better for him than the outcome announced by the majc
(which persuades the planner that the preference relation announced for him by the others is incorrect). Thirc
there is significant disagreement then the law of the jungle applies: the player who "shouts loudest.gif" choos
outcome

We now show that this game form Nasfplements. Let € € f(X) for someZ € P. Let % = (%:60) for eactie N.
Then &) is a Nash equilibrium of the gar{@ &} with the outcome: any deviation by any playgrsay to
(%'.¢,m’) that affects the outcome has the property that the outcc® <5 €.

Now let(a{) be a Nash equilibrium of the galG: X} with the outcom«'. We show tha¢” € f(X).

There are three cases to consider. First suppos® = (X"¢ ™) for gl i € N ange” € f(X)). |f ¢ ¢ f(Z) then
the monotonicity of implies that there is a playi € N andb € € such tha¢ Zi b and® i ¢* Byt then the

deviation by player to the actior (%+5,9) changes the action profile to one that yields his preferable outzcome
Hence®" € f(Z).

Second suppose th® = (Z's¢*m) for a1l i € N and<” & f(Z'). If there is somd € N and outcomé € € such the
b= ¢* then playei can deviate t(X";5:m") for somem" > m, yielding the preferred outconbe Thusc' is a
favorite outcome of every player; sirf has no veto power we ha¢* € f(Z),

Third suppose the % # 8} for some playersandj. We show that for at lead|{1 playersc” is a favorite outcom
so that sincé has no veto power we ha¢" € f(X). SincelN1 23 there existh € ¥\ {61} 93 is different from
eitheraf or %, say% # 4. |f there is an outcomesuch tha ® *x ¢* for some* € ¥ \ {i} thenk can profitably
deviate by choosin{Z's&:m") for somem” > me for all # k. Thus for all* € ¥ \ i} we have®® %x b for all

b€ C (Note that player, unlike the other players, may not be able to achieve his favorite outcome by deviatini
since all the other players might be in agreernr
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The interest of a result of this type, like that of the folk theorems in Chapter 8, depends on the reasonablenes
the game form constructed in the proof. A natural component of the game form constructed here is that a
against a consensus is accepted only if the suggested alternative is worse for the complainant under the pretf
profile claimed by the other players. A less natural component is the "shouting” part of the game form, espec
since shouting bears no cost h

The strength of the result depends on the size of the set of choice rules that are monotonic and have no veto
If there are at least three alternatives P1id the set of all preference profiles themmonotonic choicéunction

has no veto power. (This follows from Muller and Satterthwaite (1977, Corollary on p. 417); note that a mono
choice function satisfies Muller and Satterthwaite's condition SPA.) Thus the proposition is of interest only for
either a nondegenerate chorule or a choice function with a limited dome

The game form in the proof of the proposition is designed to cover all possible choice rules. A specific choice
may be implemented by a game form that is much simpler. Two examples

Example 189.:

Suppose that an object is to be assigned to a player in the sett{Assume first that for all possible preference
profiles there is a single player who prefers to have the object than not to have it. The choice function that as
the object to this player can be implemented by the game form in which the set of actions of each Mager is {
Nc} and the outcome function assigns the object to the player with the lowest index who aniasfdéere is
such a player, and to playeotherwise. It is easy to check that if playes the one who prefers to have the object
than not to have it then the only equilibrium outcome isi gets the objec

Now assume that in each preference profile there are two ("privileged") players who prefer to have the o

to not have it, and that we want to implement the choice rule that assigns to each preference profile the two
outcomes in which the object is assigned to one of these players. The game form just described does not wo
since, for example, for the profile in which these players are 1 and 2 there is no equilibrium in which player 2
the object. The following game form does implement the rule. Each player announces a name of a player an
number. Ifn - 1 players announce the same namej,siéneni obtains the object unless he names a different p
sayj, in which casgq obtains the object. In any other case the player who names the largest numbe
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Mine Hers Mine4

Mine | (0,e,¢) | (1,0,0) | (2,e, M)

His | (2,0,0) | (0,¢¢€) (0,0,0)

Mine+ | (1, M,¢€) | (0,0,0) | (0,2¢,2¢)

Figure 190.1
A game form that implements the choice function
considered in Example 190.1 in which the legitimate
owner obtains the object. (Note that the entries in the
boxes are outcomes, not payo'

object. Any action profile in which all players announce the name of the same privileged player is an equilibri
Any other action profile is not an equilibrium, since if at leasfi. players agree on a player who is not privileged
then that player can deviate profitably by announcing somebody else; if there is no -sétpdhyers who agree
then there is at least one privileged player who can deviate profitably by announcing a larger number than ar
else

* Example 190.1 Solomon's predicamel)

Consider again Solomon's predicament, described in Example 186.3. Assume that the object of dispute has
monetary value to the two players and that Solomon may assign the object to one of the players, or to neithe
them, and may also impose fines on them. The set of outcomes is then the set of,tnples)(where eithex =

0 (the object is not given to either player * € {12} (the object is given to play&) andm is a fine imposed on
playeri. Player's payoff if he gets the objectus- m if he is the legitimate owner of the object and m if he is
not, wherev, >v,_ > 0; it is-m if he does not get the object. There are two possible preference p,?;»ﬁiltew,hich
player 1 is the legitimate owner a%' in which player 2 i

King Solomon wishes to implement the choice funcfiéar which f(Z) = (1,0,0) and f(Z") = (2,0,0} This

function is monotonic: for examp(10:0) #z (2,0, (va+v2)/2) 4nd (2,0, (va+ve)/2) +4 (1,0,0) Proposition 187.2

does not apply since there are only two players. However, the following game form (which is simpler than tha
the proof of the proposition) implemeriteach player has three actions, and the outcome function is that given
Figure 190.1, wher® = (v, +Vv,)/2 and¢ > 0 is small enough. (The action "Mine+.gif" can be interpreted
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1 mine 2 mine [\2‘!'}’”
hls[ hers]

(2,0,0) (1,0,0)

Figure 191.1
An extensive game form that implements the choice
function given in Example 190.1. The vector near each
terminal history is the outcome associated with that his

as an impudent demand for the object, which is penalized if the other player does not dispute the o

Given our interest in the structure of the game forms that we construct, the fact that the game form in this ex
is simple and lacks a "shouting" component is attractive. In the next section (see Example 191.2) we show th
choice function in the example can be implemented by an even simpler ¢

* Exercise 191.

Consider the case in which there are two individualsN.ef{1, 2} andC = {a, b, c}, and suppose that there are
two possible preference profileX, with @ »1 € =1 b ande »2 b »2 & ancX’ with €>1 8 *1b angb >2 ¢ >3 6 _Show
that the choice functiof defined byf(X) =@ andf() =® is monotonic but not Na-implementable

10.5 Subgame Perfect Equilibrium Implementatiol

Finally, we turn to the case in which the planner uses extensive game forms with perfect information and ass
that for any preference profile the outcome of the game may be any subgame perfect equilibrium (SPE). To
motivate the possibilities for implementing choice rules in this case, consider Solomon's quandary ol

*Example 191.2 Solomon's predicamel)

The choice functioh given in the previous example (190.1) is SRiplemented by the following game form. F
player | is asked whether the object is hers. H she says "no" then the object is given to player 2. If she says "
then player 2 is asked if he is the owner. If he says "no" then the object is given to player 1, while if he says "
then he obtains the object and must pay a firld ehtisfyingv, <M <v, while player 1 has to pay a small fine

€ >0 This game form is illustrated in Figure 191.1 (in which outcomes, not payoffs, are shown near the termi
histories)
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If player 1 is the legitimate owner (i.e. the preference pr&ilthen the game has a unique subgame perfect
equilibrium, in which player 2 chooses "hers" and player 1 chooses "mine", achieving the desirable outcome
(1,0,0). If player 2 is the real owner then the game has a unique subgame perfect equilibrium, in which he ch
"mine" and player 1 chooses "his.gif", yielding the outcome (2,0,0). Thus the ganm@BiEents the choice
function given in Example 190

The key idea in the game form described in this example is that player 2 is confronted with a choice that lead
to choose truthfully. If he does so then player 1 is faced with a choice that leads her to choose truthfully also.
tricks used in the literature to construct game forms toi8plement choice functions in other contexts are in the
same spirit. In the remainder of the chapter we present a result that demonstrates the richness of the pos
SPE-implementatior

Let C" be a set of deterministic consequences. We study the case in whichC of outcomes has the fo

C = {(L,m): L is a lottery over C* and m € R"}. (192.1)
If (Lym) € C then we interprem as a fine paid by playér(Note thatm is not transferred to another player.)

We assume that for each play¢here is a payoff functiot: C* =R such that playeits preference relation over
is represented by the function(&(c")) -m; we identify a preference profile with a prof(tien of Such payoff
functions and denote &(c") simply byu(L). We assume further th? = U¥ whereU is a finite set that excludes

the constant function. The <9 tof game forms that we consider is the set of extensive game forms with perfect
information with consequencescC.

The notion of implementation that we explore is weaker than those studied previously: we construct a game f
I' € G with the property that for any preference prou € P the game{F:%) has a unique subgame perfect
equilibrium in which the desired alternative is realized with very high probability, though not necessarily with
certainty. More precisely, we say that a choice funcf*? = €* is virtually SPEimplementable if for ane> 0

there is an extensive game fol' € G such that for any preference proiu € P the extensive gan ;%) has a
unigue subgame perfect equilibrium, in which the outcorf(u) with probability at least —e.
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* Proposition 193.:

Let C be a set of deterministic consequences {MCP.8) be an environment in whid™¥123, C is given by
(192.7), P=U¥ where U is the (finite) set of payoff functions described above%dadhe set of extensive game

forms with perfect information and consequences in C. Then every choice i fiP=C g virtually SPE
implementabl.

Proof.

First note that since for no payoff functionUinare all outcomes indifferent, for any pair ) of distinct payoff
functions there is a pait.(v, V),L'(v, V)) of lotteries oveC" such thaw/(L(v, V)) >v(L'(v, V)) and v(L'(v, V)) > V(L
(v, V)). (A player's choice between the lotteri€g, V) and L(v, V) thus indicates whether his payoff function is v
orVv'.) For any tripley, v, V) of payoff functions let"(u, v, V) be the member of the sdt({, V),L'(v, V)} that is
preferred byu. Then for any pairy, V) of payoff functions we have(L"(u, v, V)) = max u(L(v, V)),u(L'(v, V))}, so

that HE* (%0, v)) 2 w(L*(W,9,v)) 1o any payoff functioru'. Furtheru(L*(u, u, u’)) > u(L*(u', u, u')).

Now suppose that for some pav, V') a player who announces the payoff functide given the lottery."(u, v, V).
Let B be the minimumeover an pairqu, u) of distinct payoff functions, of the average gain, over an paik§) ( of
any player with payoff functiou from announcinwu rather tharu':

B= mh, (;—g > f"fL'(u=v-v'}1—utL'-:u’,u,t-’n}).

(v, }eW

whereW s the set of an pairs of distinct payoff functions &hd |U|([U] - 1) (the number of members ). By
the argument above we heB > 0.

For everye > 0 we construct a game form thatiKas1 stagesK being defined below). Each stage consists of
IN| substages. L&t = {1,...,n}. In substage i of each of the fiksistages playdrannounces a preferengmofile (a
member o'UN); in substagi of stageK + 1 playeli announces a paycfunctior (a member oU).

For any terminal history the outcome, which consists of a lottery and a profile of fines, is defined as follows. E

stagek for k = 1,...,K contributes to the lottery a consequence with probal(1—€)/K_ If in stagek an the players
except possibly one announce the same preference profiley)s#élygn this consequencefffu)); otherwise it is

some fixed consequenc® € C*.
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Each substage of the last stage contributes the prob#/INlto the lottery. This probability is split intd equal
parts, each corresponding to a pair of payoff functions. The probz¢/IN|M that corresponds to

(3 (v,v")) € N x W s assigned to the lottety(u', v, V), whereu', is the payoff function that playeannounces in
stageK + 1.

As for the fines, a player has to pay O if he is the last player in the filststages to announce a preference

profile different from the profile of announcements in stidge 1. In addition, a player has to pay a finéi€ for
each stage in the firgt in which all the other players announce the same profile, different from the one that he
announces. (In order for the odd player out to be-defined we need at least three play

Finally, we choos® so thaeB/IN| > 8 andK so thai(l ~OD/K+8/K <8 \yhere

D=Lnf.§{u(c}-u(¢’]:ﬂé U,ceC* and d € C'}.

We now show that for any .gif"> the net effect is that the best action for any player is to announce his true pa
function in the final period, whatever history precedes his dec

We now show that in any subgame perfect equilibrium all players announce the true preference pioiadh

of the firstK stages. Suppose to the contrary that some player does not do so; letiplay@yek be the last

player not to do so. We argue that playean increase his payoff by deviating and announcing the true preferen
profile (u). There are two cases to consider.
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* If no other player announces a profile different frafhi( stagek then playei's deviation has no effect on the
outcome; it reduces the fine he has to paw/By since he no longer announces a profile different from that

announced by the other players, and may further reduce his finéfthe is no longer the last player to announce
a profile different from ()).

* If some other player announces a profile different frajnrf stagek then the component of the final lottery

attributable to stage may change, reducing playi&s payoff by at mos(l = &D/K |n addition he may become
odd player out at stadeand be fined/K. At the same time he avoids the finésince he is definitely not the last
player to announce a profile different from)). Since(l = )D/K + 8/K < & the net effect is that the deviation is
profitable

We conclude that in every subgame perfect equilibrium every player, after every history at which he has to
announce a preference profile, announces the true preference profile, so that the outcome of the game assig
probability of at leas! — € to f((u)).

The game form constructed in this proof is based on two ideas.Stadds designed so that it is dominant for
every player to announce his true payoff function. In the earlier stages a player may wish to announce a pref
profile different from the true one, since by doing so he may affect the final outcome to his advantage; but no
player wants to be trast to do so, with the consequence that no player ever dc

Notes

The GibbardSatterthwaite theorem (181.2) appears in Gibbard (1973) and Satterthwaite (1975). For alternati
proofs see Schmeidler and Sonnenschein (1978) and B§t983). Proposition 184.2 is due to Groves and Loeb
(1975); the result in Exercise 185.1 is due to Green and Laffont (1977). Maskin first proved Proposition 187.z
Maskin (1985)); the proof that we give is due to Repullo (1987). The discussion in Section 10.5 is based on A
and Matsushima (1992), who prove a result equivalent to Proposition 193.1 for implementation via iterated
elimination of strictly dominated strategies in strategic game forms; the variant that we present is that of C
Perry (1996). The analysis of Solomon's predicament in Examples 186.3, 190.1, and 191.2 first appeared in !
and Ma (1989
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For a characterization of choice functions that are-implementable see Moore and Repullo (1€

In writing this chapter we benefited from Moore (1992) (a survey of the literature) and from unpublished lectu
notes by Repull
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I
EXTENSIVE GAMES WITH IMPERFECT INFORMATION

The model of an extensive game with imperfect information allows a player, when taking an action, to have o
partial information about the actions taken previously. The model is rich; it encompasses not only situations il
which a player is imperfectly informed about the other players' previous actions, but also, for example, sit
which during the course of the game a player forgets an action that he previously took and situations in whicl
player is uncertain about whether another player has

We devote Chapter 11 to an exploration of the concept of an extensive game with imperfect information, leav
until Chapter 12 a study of the main solution concept for such games, namely the notion of sequential e«
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11
Extensive Games with Imperfect Informatior

In this chapter we explore the concept of an extensive game with imperfect information, in which each player
when taking an action, may have only partial information about the actions taken pre

11.1 Extensive Games with Imperfect Informatiol
11.1.1 Introductior

In each of the models we studied previously there is a sense in which the players are not perfectly informed \
making their choices. In a strategic game a player, when taking an action, does not know the actions that the
players take. In a Bayesian game a player knows neither the other players' private information nor the action:
they take. In an extensive game with perfect information a player does not know the future moves planned by
other player:

The model that we study herean extensive game with imperfect informatiediffers in that the players may in
addition be imperfectly informed about some (or all) of the choices thathaaelybeen made. We analyze the
model by assuming, as we did previously, that each player, when choosing an action, forms an expectation &
the unknowns. However, these expectations differ from those we considered before. Unlike those in strategic
games, they are not derived solely from the players' equilibrium behavior, since the players may face situatio
inconsistent with that behavior. Unlike those in Bayesian games, they are not deduced solely from the equilik
behavior and the exogenous information about the moves of chance. Finally, unlike those in extensive game:
perfect information, they relate not only to the other players' future behavior but also to events that happened
past
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11.1.2 Definition:

The following definition generalizes that of an extensive game with perfect information (89.1) to allow players
be imperfectly informed about past events when taking actions. It also allows for exogenous uncertainty: somn
moves may be made by "chance" (see Section 6.3.1). It does not incorporate the other generalization of the
definition of an extensive game with perfect information that we discussed in Section 6.3, in which more than
player may move after any history (see however the discussion after Example

*Definition 200.1

An extensive gam has the following componer

* A finite setN (the set oplayers).

* A setH of sequences (finite or infinite) that satisfies the following three prop

» The empty sequen is a member cH.

o If @*)k=1,..,x € H (whereK may be infinite) ani < K then (@*}=1,..z € H

« If an infinite sequencexf),., satisfies(@®k=1,... € H for every positive integdr then(® e=1... € H,
(Each member dfl is ahistory; each component of a history isaation taken by a player.) A history
(8")k=,...x € H s terminal if it is infinite or if there is n@**! such tha(8*)e=1,..x+1 € H The set of actions

available after the nonterminal histdrys denotec Ath) = {a:(h,a) € H} 3 the set of terminal histories is
denotecZ.

* A function P that assigns to each nonterminal history (each memiy¢k dj a member o Vle} (Pis the
player function, P(h) being the player who takes an action after the histolfyP(h) = c then chance determines
the action taken after the histch.)

* A functionf, that associates with every histdryor whichP(h) = ¢ a probability measuri(:|h) on A(h), where
each such probability measure is independent of every other such mdgalimeis(the probability that a occurs
after the histonh.)

« For each playei € N a partitionZ of {h € H:P(B) = i} \ith the property that(h) = A(h") wheneveh andh'
are in the same member of the partition. % € -i we denote by A() the setA(h) and byP(l) the playetP(h) for
anyh € Ii (L is theinformation partition of playeri; a setli € Ii is aninformation set of playeri.)
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« For each playei € N a preference relatics¢ on lotteries oveZ (thepreference relationof playeri) that can be
represented as the expected value of a payoff function defirZ.

We refer to a tupl{™: B, P, fe, (Ziien} (which excludes the players' preferences) whose components satisfy the
conditions in the definition as &xtensive game forr.

Relative to the definition of an extensive game with perfect information and chance moves (see Section 6.3.1
new element is the collectidZiken of information partitions. We interpret the histories in any given memtZir of
to be indistinguishable to playerThus the game models a situation in which after any hik € It € I playeri is
informed that some history inhas occurred but is not informed that the histohas occurred. The condition that

A(h) = A(h') wheneveh andh' are in the same memberZfcaptures the idea that4(k) # A(K) then playei

could deduce, when he facA¢h), that the history was nbt, contrary to our interpretation L. (Note that
Definition 200.1, unlike the standard definition of an extensive game, does not rule out the possibility that an
information set contains two historih andh’ whereh' = (h, &,...,&¥) for some sequence of actioial,....av)

Each player's information partition is a primitive of the game; a player can distinguish between histories in
different members of his partition without having to make any inferences from the actions that he observes. A
game is played, a participant may be able, given his conjectures about the other players' behavior, to make
inferences that refine this information. Suppose, for example, that the first move of a game is made by player
who chooses betweenandb, and the second move is made by player 2, one of whose information setigis {
We interpret this game to model a situation in which player 2 does not observe the choice of player 1: when
making his move, he is not informed whether player 1 chasd. Nevertheless, when making his move player 2
may infer (from his knowledge of a steady state or from introspection about player 1) that the histeveins
though he does not observe the action chosen by pl:

Each player's preference relation is defined dtigrieson the set of terminal histories, since even if the players'
actions are deterministic the chance moves that the model allows induce such

Note that Definition 200.1 extends our definition of an extensive game with perfect information (89.1) in tl
that if {Ni H,P, f., (Ii):'EN,
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0,0 1,2 1,2 0,0
Figure 202.1
An extensive game with imperfect informati

(Z+)ien) is an extensive game and every member of the information partition of every player is a singleton the
(N, H, P, fe, (Zi)ieN) is an extensive game with perfect information (and chance m

* Example 202.:

An example of an extensive game with imperfect information is shown in Figure 202.1. In this game player 1
makes the first move, choosing betwéeandR. If she chooseR, the game ends. If. she chooket is player 2's
turn to move; he is informed that player 1 chbsad chooseA or B. In either case it is player 1's turn to move,
and when doing so she is not informed whether player 2 &osB, a fact indicated in the figure by the dotted
line connecting the ends of the histories after which player 1 has to move for the second time, choosing an a
from the sef&r}. Formally, we have Bf) = P(L, A) = P(L, B) = 1,P(L) = 2, %1 = {{2}, {(L, A), (L, B)}}  ang

T2 = {{L}} (player 1 has two information sets and player 2 has one). The numbers under the terminal historie:
the players' payoffs. (The first number in each pair is the payoff of player 1 and the second is the payoff of pl:
2.)

In Definition 200.1 we do not allow more than one player to move after any history. However, there is a sens
which an extensive game as we have defined it can model such a situation. To see this, consider the exampl
above. After player 1 choosksthe situation in which players 1 and 2 are involved is essentially the same as tf
captured by a game with perfect information in which they choose actions simultaneously. (This is the reasor
in much of the literature the definition of an extensive game with perfect information does not include the
possibility of simultaneous move

A player's strategy in an extensive game with perfect information is a function that specifies an action for eve
history after which the player chooses an action (Definition 92.1). The following defin
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Figure 203.1
Three on-player extensive games with imperfect re

an extension to a general extensive game; since we later consider the possibility that the players may randor
we add the qualifier "pure

*Definition 203.1

A pure strategy of playeri € N in an extensive gan{¥ H P, fe (T (Z4)) is a function that assigns an actiorAin
(1) to each information sdi € Z;,

As for an extensive game with perfect information, we can associate with any extensive game a strategic
the definitions of the strategic form (94.1) and reduced strategic form (95.1). (Note that the outcome of a stra
profile here may be a lottery over the terminal histories, since we allow moves of ¢

11.1.3 Perfect and Imperfect Rec

The model of an extensive game is capable of capturing a wide range of informational environments. In parti
it can capture situations in which at some points players forget what they knew earlier. We refer to games in
at every point every player remembers whatever he knew in the mmshas with perfect recall'o define such

games formally, lelN, H, P, fe, (T:)) be an extensive game form andXgh) be the record of playés experience
along the historyr: X(h) is the sequence consisting of the information sets that the player encounters in the his

h and the actions that he takes at them, in the order that these events occur. In the game in Figure 202.1, for
example X/((L, A)) = @.L, {(L, A, (L, B)}).

* Exercise 203.
Give a formal definition oK (h).
« Definition 203.3

An extensive game form haerfect recall if for each player we havex(h) = X,(h") whenever the historidsand
h' are in the same information set of plai.

The game in Figure 202.1 has perfect recall, while the threep{ager) game forms in Figure 203.1 do not. In the
left-hand game a player does not know if she has made a choice or not: when che
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Figure 204.1
Two distinct oneplayer extensive games that
appear to model the same situal

action she does not know whether she is at the beginning of the game or has already choséaindaktfon. In
the middle game the player forgets something that she previously knew: when making a choice at her last
information set she is not informed of the action of chance, though she was so informed when she made her
previous choice. In the ric-hand game she does not remember the action she took in tl

The literature on games with imperfect recall is very small. An example of a game theoretic treatment of ¢
with imperfect recall is that of the machine games in Chapter 9. In the underlying repeated game that a mack
game models, each player, when taking an action, is not informed of past events, including his own previous
actions. The size of his memory depends on the structure of his machine. More memory requires more state
states are costly, even in equilibrium a player still may imperfectly recall his own past

11.2 Principles for the Equivalence of Extensive Gam

Some extensive games appear to represent the same strategic situation as others. Consider, for example, th
oneplayer games in Figure 204.1. (In these games, as in the others in this section, we associate letters with
terminal histories. If two terminal histories are assigned the same letter then the two histories represent the s
event; in particular, all the players are indifferent between them.) Formally, the two games are different: n the
hand game player 1 makes two decisions, while in the-highd game she makes only one. However, princip
rationality suggest that the two games model the same siti

We now give further examples of pairs of games that arguably represent the same situation and discuss somn
principles that generalize these examples. We do not argue that these principles should be taken as axioms;
simply believe that studying them illuminates the meaning of an extensive game, especially one with imperfe
information
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Figue 205.1
The gamd' ;.

o! o? o® ot o® o®
Figure 205.2
The gamd",, equivalent td", according to
the inflatior-deflation principle

The four principles that we consider all preserve the reduced strategic form of the game: if one extensive gar
equivalent to another according to the principles then the reduced strategic forms of the two games are the s
Thus a solution concept that does not depend solely on the reduced strategic form may assign different o
games that are equivalent according to the principles; to justify such a solution concept one has to argue tha
least one of the principles is inappropri

Letl", be the game in Figure 205.1. The principles that we discuss claim that this game is equivalent to four c
extensive games, as folloy

Inflation -Deflation

According to this principlé€ | is equivalent to the ganfe in Figure 205.2. I, player 1 has imperfect recall: at
her second information set she is not informed whether she chofat the start of the game. That is, the three
historiest (r€), and ¢, r) are all in the same information set’in while inT", the historyé lies in one information
set and the historid™£) and ¢, r) lie in another. The interpretation that we have given to a gamg likehat

player 1, when acting at the end of the game, has forgotten the action she took at the beginning of the game.
However, another interpretation of an information set is that it represents the information about history that is
inherent in the structure of the game, information that may be r
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Figure 206.1
The gamd ,, equivalent td", according to the principle
of addition of a superfluous mo'

by inferences that the players may make. Under this interpretation a player always remembers what he knew
did in the past and may obtain information by making inferences from this knowledge. Indeed, the argument 1
andl, are equivalent relies on the assumption that player 1 is capable of making such inferences. The fact th
is informed whether the history wA®r a member cln 8, (nr)} is irrelevant to her strategic calculations,
according to the argument, since in any case she can infer this information from her knowledge of her action
start of the game. Under this interpretation it is inappropriate to refer to a game like that in Figure 205.2 as he
'imperfect recall.gif": the information sets reflect imperfections in the information inherent in the situation that
be overridden by the players' abilities to remember their past expe

Formally, according to thieflation-deflation principlethe extensive ganieis equivalent to the extensive gafe
if " differs from[l™ only in that there is an information set of some playef that is a union of information sets

of playeri in I""with the following property: any two historiésandh’ in different members of the union have
subhistories that are in the same information set of plegmal playei's action at this information set is different

in h andh'. (To relate this to the examples above[letl,, " =T, andi = 1.)
Addition of a Superfluous Mov

According to this principlé , is equivalent to the gantig in Figure 206.1. The argument is as follows. If in the

gamel , player 1 choose&; at the start of the game then the action of player 2 is irrelevant, since it has no €

the outcome (note the outcomes in the bottorhaftd part of the game). Thuslinwhether player 2 is informed
of player 1's choice at the start of the game should make no difference to his

Formally theprinciple of addition of a superfluous moigethe following. Lef” be an extensive game, Rfh) =1,
and leta € A(k) Suppos
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Figure 207.1
The gamd™,, equivalent td", according to the
principle of coalescing of move

that for any sequende of actions (including the empty sequence) that follows the hidtoi &nd for any
b€ A(R) we hav

o (hya,b) € H if and only if(l& k) € H and h, a, I') is terminal if and only ifh, b, I') is termina
« if both (h, a, H) and &, b, H) are terminal therh( a, H) ~ (h, b, H) for alli€ N
« if both (h, a, I') and h, b, I') are nonterminal then they are in the same informatic

Thenl is equivalent to the ganié that differs fronT only in that {) all histories of the formh| c, H) for .gif">,
and leta be one of the actions of player

Coalescing of move¢

According to this principlel;, is equivalent to the ganfg in Figure 207.1. Iti, player 1 first chooses betweén
andr, then chooses betwe@mndB in the event that she choo#23 he idea is that this decision problem is
equivalent to that of deciding betwef4, £B, andr, as inl",. The argument is that if player 1 is rational then her
choice at the start df, requires her to compare the outcomes of chodsargir; to determine the outcome of
choosinct requires her to plan at the start of the game whether to cA or B.

Formally theprinciple of coalescing of movésthe following. Lef” be an extensive game andméh) =i, with
hel |eta€AL) anc
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Figure 208.1
The gamd ., equivalent td", according to the
principle of interchange of mov

suppose the{(W,a): b € L} = I} j5 an information set of playerLetl™ be the game that differs fromonly in that
the information set, is deleted, for al’ € L the history k', @) is deleted and every historly'(a, b, H) where

b € A(W,a) js replaced by the historj'( ab, i) whereabis a new action (that is not a membeA(i')), and the
information sets, player function, and players' preferences are changed accordingly ahd€hare equivalent.
(Inthe example leff =TI, "=, h=@,i=1, anca=2.)

Interchange of move

According to this principlé€, is equivalent to the ganig in Figure 208.1. The idea is that the order of play is
immaterial if one player does not have any information about the other player's action when making

Formally theprinciple of interchange of movésthe following (which allows transformations more general than
that froml™, to[,). Letl" be an extensive game and let .gif">

* Exercise 208.

Formulate the principles of coalescing of moves and infladeflation for oneplayer extensive games and show
that ever
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oneplayer extensive game with imperfect information and no chance moves (but possibly with imperfect reca
which no information set contains both a histbignd a subhistory df is equivalent to a decision problem with a
single nonterminal history. (The result holds even for games with chance moves, which are excluded only for
simplicity.)

Thompson (1952) shows that these four transformations preserve the reduced strategic form. He restricts att
to finite extensive games in which no information set contains both a histmy some subhistory bfand show:
that if any two such games have the same reduced strategic form then one can be obtained from the other b
sequence of the four transformations. We are not aware of any elegant proof of this result. We simply give ar
example to illustrate the procedure: starting with the game at the top of Figure 210.1 the series of transforma
shown in Figures 210.1 and 211.1 leads to the extensive game with perfect information and simultaneous mc
the bottom of Figure 211

11.3 Framing Effects and the Equivalence of Extensive Gan

The principles of equivalence between extensive games discussed in the previous section are based on :

of rationality that ignores framing effects. This conception is inconsistent with the findings of psychologists th:
even minor variations in the framing of a problem may dramatically affect the participants' behavior (see for
example Tversky and Kahneman (19¢

To illustrate that games that are equivalent according to these principles may differ in their framing and lead 1
different behavior, consider the strictly competitive games in Figure 212.1. The middle game is obtained from
top one by adding a superfluous move; the bottom game is the strategic form of each extens

A reasonable principle for behavior in these games is that of maxminimizing. However, this principle yields
different outcomes in the games. In the bottom game player 1's maxminimizer is the purersivatkgiyn the to)

game the logic of maxminimizing directs her towards using the mixed stl'[,%,-ﬂy(since she is informed that
chance played righ

This example was originally proposed as a demonstration of the difficulties with the principle of maxminimizir
but we view it as a part of a deeper problem: how to analyze game theoretic situations taking into account fra
effects, an intriguing issue of current reses
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Figure 210.1
The first three transformations in a series that converts the
top game into an extensive game with perfect information
and simultaneous moves. The transformations continue in
Figure 211.1
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Figure 211.1
The last three transformations in a series that converts the top
game in Figure 210.1 into the extensive game with perfect
information and simultaneous moves in the bottom of this fi
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ri3-3|1-1

Figure 212.1
Three games. The middle game is obtained from the top
game by adding a superfluous move. The bottom game is the
strategic form of both the top and middle gal

11.4 Mixed and Behavioral Strategie

In Definition 203.1 we defined the notion of a pure strategy in an extensive game. There are two ways to
possibility that a player's actions in such a game depend upon random

* Definition 212.1

A mixed strategy of playeri in an extensive gamt¥: H, P, fe, (Zi), (Z4)) is a probability measure over the set of
playeri's pure strategies. Behavioral strategy of playeri is a collectiorl@i{Z))nez of independent probability
measures, wheifg(l) is a probability measure ova(l).

For any histonh € Ii € T and actiors € A(k) we denote b (h)(a) the probabilityB,(I)(a) assigned b (1) to the
actiona.

Thus, as in a strategic game, a mixed strategy of plager probability measure over playasrset of pure
strategies. By contrast, a behavioral strategy specifies a probability measure over the actions availabledb pla
each of his information sets. The two notions reflect two different ways in which a player might randomize: he
might randoml
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select a pure strategy, or he might plan a collection of randomizations, one for each of the points at which he
take an action. The difference between the two notions can be appreciated by examining the game in Figure
In this game player | has two information sets, at each of which she has two possible actions. Thus she has f
pure strategies, which assign to the information. $8}sahd {(L, A), (L, B)} respectively the actionis and¢, L

andr, Rand¢, andR andr. (If you are puzzled by the last two strategies, read (or reread) Section 6.1.2.) A mixt
strategy of player 1 is a probability distribution over these four pure strategies. By contrast, a behavioral <
player 1 is a pair of probability distributions, one for each information set; the first is a distributioh. oReafd

the second is a distribution ov{4 7},

In describing a mixed or behavioral strategy we have used the language dVéhimtespretation of actions that
depend on random factors, according to which a player consciously chooses a random device (see Section 2
When discussing mixed strategies in Chapter 3, we describe some other interpretations, which have analogs
For example, we may think of the mixed and behavioral strategies of ply&wvo ways of describing the other
players' beliefs about playes behavior. The other players can organize their beliefs in two ways: they can forn
conjectures about playés pure strategy in the entire game (a mixed strategy), or they can form a collection of
independent beliefs about play's actions for each history after which he has to act (a behavioral st

For any profile .gif"> (where fck = 0 the historya?,...,a") is the initial history’
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Figure 214.1
A oneplayer extensive game in
which there is a behavioral strategy
that is not outcomequivalent to
any mixed strateg

Two (mixed or behavioral) strategies of any player are outezmevalent if for every collection of pure stratec

of the other players the two strategies induce the same outcome. In the remainder of this section we examine
conditions under which for any mixed strategy there is an outemuwalent behavioral strategy avide versa

we show, in particular, that this is so in any game with perfect |

We first argue that, in a set of games that includes all those with perfect recall, for any behavioral strategy the
an outcomesquivalent mixed strategy. Consider an extensive game in which no information set contains both
some histonh and a history of the formh( i) for some .gif"> taa generates the outcomes @), (a, b), andb with
probabilitiesp?, p(l-p), and -p respectively, a distribution that cannot be duplicated by any mixed str.

We now show that, in a game with perfect recall, for every mixed strategy there is an eetovaéent
behavioral strateg

* Proposition 214.:

For any mixed strategy of a player in a finite extensive game with perfect recall there is an -equivalent
behavioral stratec.
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Figure 215.1
An extensive game in which mixed and
behavioral strategies are not equiva

Proof.

Let o, be a mixed strategy of playerAs above, for any histotylet rt(h) be the sum of the probabilities accord
to g, of all the pure strategies of playehat are consistent with Leth andh' be two histories in the same
information set. of playeri, and letd € A(h). Since the game has perfect recall, the sets of actions of player
andh' are the same. Thogh) = 1(h"). Since in any pure strategy of play¢ne actiora is taken afteh if and only
if it is taken aftelh’, we also have(h, 8 =1 (h', 8. Thus we can define a behavioral stratBgyf playeri by B.(l,)
(8) = Ti(h, &/ Ti(h) for anyk € & for whichTi(h) > 0 (clearly Zaeam AI)@) =1): how we define(1,)(a) if Ti(h) =
0 is immateria

We claim thaf3, is outcomeequivalent tao,. Lets, be a collection of pure strategies for the players otherithan
Let h be a terminal history. l includes moves that are inconsistent vgitthen the probability o is zero under
botho, andp,. Now assume that all the moves of players otheritirah are consistent with.. If h includes a
move after a subhisto®’ € I of h that is inconsistent witty, thena(l.) assigns probability zero to this move, and
thus the probability ofi according td3, is zero. Finally, it is consistent witlw, thenti(h’) > O for all subhistories
h' of h and the probability ofi according td3, is the product oft(h’, a/m(h’) over all {', & that are subhistories of
h; this product igt(h), the probability oh according tao..

In a game with imperfect recall there may be a mixed strategy for which there is no ecatpgwadent behavioral
strategy, as the orayer game with imperfect recall in Figure 215.1 shows. Consider the mixed strategy il

player 1 choosesL with probabilityi andRRwith probabilityi. The outcome of this strategy is the probability

distribution(2:9:0: %) over the terminal histories. This outcome cannot be achieved by any behavioral strategy:
behavioral strategyp, 1- p), (g, 1- g)) induces a distribution over the terminal histories in w
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Figure 216.1
The extensive game form for Exercise 21

LR has zero probability only if eithp = 0 org = 1, in which case the probability of eittLL or RF is zero
* Exercise 216.

Consider the game form in Figure 216.1. Find the behavioral strategy of player 1 that is equivalent to her mix
strategy in which she playB, r) with probability 0.4 (B+& with probability 0.1, an(4:€) with probability 0.5

11.5 Nash Equilibrium

A Nash equilibrium in mixed strategiesof an extensive game is (as before) a prafilef mixed strategies with
the property that for every playi € ¥ we havi

O(eZ407) Zi O1024:94) o1 every mixed strategy of playeri.

For finite games an equivalent definition of a mixed strategy equilibrium is that every pure strategy in the sup

of each player's mixed strategy is a best response to the strategies of the other players (cf. DefinitioNdghl). /
equilibrium in behavioral strategies is defined analogous

Given Proposition 214.1, the two definitions are equivalent for games with perfect recall. For games with
recall they are not equivalent, as the game in Figure 214.1 shows. In this game the player is indifferent amon
her mixed strategies, which yield her a payoff of 0, while the behavioral strategy that assigns preplialaility
yields her a payoff gb - O+p - (1-p) - 1 + (1- p)? - 0=p(1- p), so that the best behavioral strategy? ?,%, and
yields her a payoff ci.

In Chapter 6 we argue that the notion of Nash equilibrium is often unsatisfactory in extensive games with per
information and we introduce the notion of subgame perfect equilibrium to deal with the problems. To extend
ideas behind this notion to general extensive g
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,-1 0,0 0,0 0,0 0,0 0,0 00 1,-1
Figure 217.1
The extensive game with imperfect information in Exercise 2

is challenging, mainly because when making a choice at-gingleton information set a player has to form an
expectation about the history that occurred, an expectation that may not be uniquely determined by the equill
strategies. The next chapter is devoted to a discussion of thit

* Exercise 217.

Consider the strictly competitive extensive game with imperfect recall in Figure 217.1. Show that player 1's b
behavioral strategy assures her a payoff of 1 with proba#ility , while there is a mixed strategy that assures h
payoff 1 with probabilityZ.

* Exercise 217.

Letl, be an extensive game with imperfect information in which there are no chance moves, and assume the
gamel , differs froml", only in that one of the information sets of player I jis split into two information sets

I",. Show that all Nash equilibria in pure strategieb aforrespond to Nash equilibria 6f. Show that the
requirement that there be no chance moves is essential for this

* Exercise 217.

Formulate the following parlor game as an extensive game with imperfect information. First player 1 receives
card that is eithad or L with equal probabilities. Player 2 does not see the card. Player 1 may announce that f
card isL, in which case she must pay $1 to player 2, or may claim that her ¢&rohig/hich case player 2 may
choose to concede or to insist on seeing player 1's card. If player 2 concedes then he must pay $1 to player
insists on seeing player 1's card then player 1 must pay him $4 if her cadds$he must pay her $4 if her card is
H. Find the Nash equilibria of this gar

Notes

The model of an extensive game with imperfect information studied in this chapter is due to Kuhn (1953), as
the notions of perfect and imperfect recall. Section 11.2 is based on Thompson (1952); the
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at the end of the section is based on one in ElImes and Reny (1994). The example in Section 11.3 is based o
Aumann and Maschler (1972). Proposition 214.1 is due to Kuhn (1953). The game in Figure 214.1 is a variar
one due to Isbell (1957, p. 8
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12
Sequential Equilibrium

In this chapter we extend the notion of subgame perfect equilibrium to extensive games with imperfect
information. We focus on the concept of sequential equilibrium and briefly discuss some of its refii

12.1 Strategies and Belie

Recall that a subgame perfect equilibrium of an extensive game with perfect information is a strategy profile 1
which every player's strategy is optimal (given the other players' strategies) at any history after which it is his
to take an action, whether or not the history occurs if the players follow their strategies. The natural applicatic
this idea to extensive games with imperfect information leads to the requirement that each player's strategy «
optimal at each of his information s

For the game in Figure 219.1 this requirement is substantial. The pair of strdte&eis @ Nash equilibrium of
this game. If player 1 adheres to this equilibrium then player 2's information set is not |

3,1 0,0 0,2 L1

Figure 219.1
An extensive game with imperfect information in which
the requirement that each player's strategy be optimal at
every information set eliminates a Nash equilibr|
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3,1 0,2 0,2 1,1

Figure 220.1
An extensive game with imperfect information that has a
Nash equilibrium that is not ruled out by an implementation
of the idea behind the notion of subgame perfect equilib

However, if for some reason player 2's information set is reached then hisRa&timrfierior to his actioh
whateverhe thinks caused him to have to act (i.e. whether player 1, contrary to her plariMard®e Thus for

this game the natural extension of the idea of subgame perfect equilibrium is unproblematic: the equiliiium (
does not satisfy the conditions of this extension (while the equilibfilin) does). The games for which this is
are rare; a more common situation is that which arises in the game in Figure 220.1. In this game too the strat
profile (L, R) is a Nash equilibrium in which player 2's information set is not reached. But in this case player 2’
optimal action in the event that his informationiseeached depends on his belief about the history that has

occurred. The actioR is optimal if he assigns probability of at ledsto the historyM, while L is optimal if he

assigns probability of at mo13:to this history. Thus his optimal action depends on his explanation of the cause
his having to act. His belief cannot be derived from the equilibrium strategy, since this strategy assigns proba
zero to his information set being reacl

The solutions for extensive games that we have studied so far have a single component: a strategy profile. W
study a solutior- sequential equilibrium-that consists of both a strategy profile and a belief system, where a
belief system specifies, for each information set, the beliefs held by the players who have to move at that
information set about the history that occurred. It is natural to include a belief system as part of the equilibriur
given our interpretation of the notion of subgame perfect equilibrium (see Section 6.4). When discussing this
notion of equilibrium we argue that to describe fully the players' reasoning about a game we have to specify t
expectations about the actions that will be taken after histories that will not occi
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players adhere to their plans, and that these expectations should be consistent with rationality. In particular, \
interpret the components of a strategy that specify actions after histories that are not consistent with the strat
beliefs about what will happen in these unexpected events. In games with imperfect information, beliefs abou
unexpected events must include beliefs not only about the future but also about

To summarize, the basic idea behind the notion of sequential equilibrium is that an equilibrium should specify
only the players' strategies but also their beliefs at each information set about the history that occurred. We i
such a pair as assessmenthat is, an assessment consists)dd profile of behavioral strategies amd & belief
system consisting of a collection of probability measures, one for each information set. (Note that the notion «
assessment coincides with that of a strategy profile for an extensive game with perfect information since in s
game all information sets are singletons and hence there is only one possible (degenerate) beli

The extension of the requirement in a subgame perfect equilibrium that each player's strategy be optimal afte
history is the following, which we refer to asquential rationalityfor each information set of each playéhne
(behavioral) strategy of players a best response to the other players' strategies, givenifgdyadrefs at that
information se

So far we have imposed no restriction on the players' beliefs. Several classes of additional constraints art
in the literature, including the followir

Consistency with Strategi

In the spirit of Nash equilibrium we should require that the belief system be consistent with the strategy profil
the sense that at any information set consistent with the players' strategies the belief about the history that h:
occurred should be derived from the strategies using Bayes' rule. For example in the game in Figure 220.1 w
not want M, L) to be a solution supported by the belief of player 2 that the history that led to his information s
R. If player 1's strategy is consistent with her choosing elfherR (that is, her strategy assigns positive
probability to at least one of these choices), then we want to require that player 2's belief that thi higsory
occurred be derived from player 1's strategy using Bayes' rule. That is, player 2 should assign pf@jgiity

(B,(@2)(M) + B,(9)(R) (wherep, is player 1's behavioral strategy) to this event.
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Structural Consistenc

Even at an information set that is not reached if all players adhere to their strategies we may wish to require 1
player's belief be derived froeome(alternative) strategy profile using Bayes' rule. (This constraint on the belief
is referred to as "structural” since it does not depend on the players' payoffs or on the equilibrium

Common Belief

Game theoretic solution concepts require that all asymmetries be included in the description of the game; ev
player is assumed to analyze the situation in the same way. In the context of subgame perfect equilibriurn

to the (implicit) requirement that all the players' beliefs about the plans of someiptagase an unexpected
event occurs are the same. In the current context it leads to the requirement that all playerssstmaebethief

about the cause of any unexpected e

For some families of games the formal expression of these three restrictions is not problematic, though the
reasonableness of the restrictions is in dispute. One example is the family of games in which the first move, ¢
which the players may be asymmetrically informed, is made by chance, and subsequently every player is infc
of every other player's moves. However, for arbitrary games even the formalization of the restrictions present
difficulties, as we shall see. The most widabed formulation is that of sequential equilibrium, which we defi

the next section. This notion usually leaves many degrees of freedom and is frequently consistent with a larg
of outcomes, a fact that has motivated game theorists to impose additional restrictions on beliefs. In later sec
we briefly discuss some of these restricti

12.2 Sequential Equilibriun

We restrict attention throughout to games with perfect recall (see Definition 203.3) in which every information
contains a finite number of histories. As we discuss above, a candidate for a sequential equilibrium of such a
is an assessment, defined formally as folls

* Definition 222.1

An assessmenin an extensive game is a pd (1), wherep3 is a profile of behavioral strategies gné a
function that assigns to every information set a probability measure on the set of histories in the inforn
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Let (3, 1) be an assessment!’ = (N, H, P, fe, (T:), (Zi)). The interpretation gfi, which we refer to aslaelief
systen, is thatp(l)(h) is the probability that play¢P(l) assigns to the histoh € I', conditional orl being reache

An assessment gquentially rationalf for every playei and every information sdi € Ii the strategy of player
IS a best response to the other players' strategiesitgveeliefs at,. To state this condition more formally, define
the outcomeO(, y|!) of (B, 1) conditional on | to be the distribution over terminal histories determinefi bpd

u conditional orl being reached, as follows. Lh" = (al,...,aX) be a terminal history. Th

* O(B,u\)(h*) = 0 if there is no subhistory h" in | (i.e. the information that the game has read rules outh®)
« O(B,uID)(h*) = p(I)(k) - I Bp(an,...axy(a's. 1, @*)(@**!) if the subhistonh = (al,.., &) of b is inl, whereL <K.

(If 1 is the information set consisting of the initial history tk¥f, y|l) is just the outcom®(p3) defined in Sectio
11.4.) Note that the assumption of perfect recall implies that there is at most one subhistory.dfote also
that the rationale for taking the product in the second case is that by perfect recall the hastorig§ for k =
L,...K - 1 lie in different information sets, and thus kor L,...K - 1 the eventsd**! follows (@l,... a) conditional
on (al,...a" occurring} are independe

While at first sight this definition aD(3, p|l) is natural, it has undesirable features in a game in which there are
two information set$ andl' and historie:h € I and®’ € I' with the property that a subhistorylofs inl' and a
subhistory oh' is inl. The following example demonstrates this p

* Example 223.:

Consider the game form shown in Figure 224.1. (Sometimes, as here, we represent the initial history by seve
small circles rather than a single circle. In this example the number adjacent to each such circle is the probat

assigned by chance to one of its actions at the initial history.) In an assefsmgnt (vhich3, = 3, = Out player
2's information set is not reached; if he is called upon to move then an unexpected event must have occurrec
Suppose that his belief at his information sesatisfiequ(1)(A, © > 0 andu(1)(B, © > 0. In deciding the action to

take in the event thatis reached, he must calcul@€3, p|l). The definition of this distribution given above
assume
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Figure 224.1
The game form in Example 223.1. (The game
begins with a move of chance in which A and

B are each selected with probabi\i.)

that he continues to hold expectations about the moves of players | and 3 that are deriffetHbwever, any

strategy profile that generates the bgli@) must differ fromB: it must assign positive probability to both player 1
and player 3 choosin@. That is, if his belief is derived from an alternative strategy profile, then his explanation
the past is inconsistent with his expectation of the ft

This example illustrates the complexity of defining a reasonable extension of the notion of subgame perfect
equilibrium for games in which one information set can occur both before and after another. The definition of
sequential equilibrium that we now present covers such games but, as the example indicates, can lack appe:
them. We begin with a formal definition of sequential ration:

* Definition 224.1

LetT = (N, H,P, fe, (1), (Z4)) pe an extensive game with perfect recall. The assessfenti§ sequentially
rational if for every playeii € N and every information sdi € Ii we hav

O(B, plli) Zis O((B-4» 80, BIE) to every strategp'’, of playeri.

The following definition aims to capture some of the restrictions on beliefs discussed in the previous section.
Define a behavioral strategy profile to d@mpletely mixed it assigns positive probability to every action at e\
information se

* Definition 224.Z

Let T'= (N, H, P, f, (T3), (Z4)) pe a finite extensive game with perfect recall. An assessfiantié consistentif

there is a sequenﬂ;':,ﬁ"““"”il of assessments that converge{3tquj in Euclidian space and has the properties

that each strategy profi[@ is completely mixed and that each belief systgns derived fronf3" using Bayes'
rule.
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3,32 0,00 440 0,01

Figure 225.1
The game in Example 225.2 (Selten's ho

The idea behind this requirement is that the probability of events conditional gprabability events must
approximate probabilities that are derived from strategies that assign positive probability to every action. We
not find this consistency requirement to be natural, since it is stated in terms of limits; it appears to be a rathe
opaque technical assumption. To quote Kreps (1990a, p. 430), "[r]lather a lot of bodies are buried in this ¢
The assumptions embodied in the definition are unclear to us, though we shall see that the definition does ca
some appealing requirements that we may wish to impose on asses

* Definition 225.1

An assessment issequential equilibrium of a finite extensive game with perfect recall if it is sequentially
rational and consiste

We show later (Proposition 249.1) that every finite extensive game with perfect recall has a sequential eq
Itis clear that if 3, 1) is a sequential equilibrium thgnis a Nash equilibrium. Further, in an extensive game with
perfect informationf, W) is a sequential equilibrium if and onlyB is a subgame perfect equilibrit

Consider again the game in Figure 220.1. The assesgBehtrf which3, =L, B, =R, andu((M, R)(M) = a for
any @ € [0,1] s consistent since it is the limit € = 0 of assessmen(8%#*) where

Bi = (1-gae(1-a)e), B3 = (1-€) ands*({M,RN(M) = a for everye. For® 2 % this assessment is also
sequentially rational, so that it is a sequential equilibi

* Example 225..

(Selten's horgeThe game in Figure 225.1 has two types of Nash equilibria: one in Rjid}{D) = 1,

§ <BACN) <1 andB(1)(L) = 1, and one in whicB,(@)(C) = 1,B,(C)(c) = 1, ancs < A(B) £ 1 (yherel =
{(D),(C, 0}, player 3's information set). A Nash equilibrium of the first type is not part of any seq
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3! 1 _zjﬂ 2,'] _1,,1
Figure 226.1
The game in Exercise 22€
equilibrium since the choice of player 2 at his (singleton) information set is not sequentially rational. For even

Nash equilibriunf of the second type there is a sequential equilibrgim)(in which pI)(D) =3 (To verify

consistency, consider the sequelf*hof strategy profiles in whic Fi(@)C) =1-¢ 3(C)(e) =1-2¢ 7nq
B3(I)(R) = B3(I)(R) — ¢ )

* Exercise 226.
Find the set of sequential equilibria of the game in Figure 2

The following example shows that the notion of sequential equilibrium is not invariant to the principle of
coalescing of moves considered in Section 11.2, a principle that seems very re¢

* Example 226..

Consider the games in Figure 227.1. The top g&n)eg obtained from the bottom onle, by coalescing the
moves of player 1. If, the assessmerf}, (1) in which, =L, 3, =L, andp({M, R)(R) = 0 is a sequential
equilibrium. (To verify consistency, consider the sequ@ﬁ‘;’dn which Ai(@) = (1 —e - é,6,¢) 5nqg

Bi({M, R}) = (1 - &€) ) This equilibrium yields the payoff profile (3, 3). On the other hand, in any sequential
equilibrium ofl", player 1's action at her second information sB sy sequential rationality (siné&dominates
L). Thus in any consistent assessment player 2's p¢{{eZ, L), (C, R}) assigns probability 1 tod, R), in which
case player 2 must chodReHenceB, = (C, R is the only equilibrium strategy of player 1. Thus the only
sequential equilibrium payoff profile in, is (5,1).

The significant difference between the two games is that player 2's bdlig6ibased on the assumption that the
relative likelihood of the actiorlsandR at player 1's second information set is the outcome of a rational choice
player 1, whereas player 2's beliefipabout the relative probabilities bf andR is not constrained by any choice
of player 1. We argued in Section 6.4 that in some games a |
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0,1 0,0 1,0 5,1
Figure 227.1
Two similar game. The top gamie ) is obtained from
the bottom game'() by coalescing the moves of player 1.

strategy is not only a plan of action but also a specification of the other players' beliefs about his actions in th
event that he does not follow this planIplayer 1's strategy has this relé specifies player 2's belief about

relative probabilities of player | choosibhgandR when she begins by choosi@g—while in [, player 1's strategy
describes only her move, without giving any relative probabilities to the other ¢

The following Exercise gives an extension of the one deviation property for subgame perfect equilibria of
extensive games with perfect information (Lemma 98.2) to sequential equilibria of extensive games with impge
information

* Exercise 227.

(The one deviation property for sequential equilibrjurat (3, 1) be a consistent assessment in a finite extensive
game with perfect recall and I8t be a strategy of playerdenote' = (B,, ). Show that ifl, andl’, are

information sets of playerwith the property that, contains histories that have subhistoriek then Of', p|l)(h)
= O, uI")(h) - Pr@, p|l)(I") for any terminal history that has a subhistory Ihy where Pig', p|l,)(I") is the
probability (according tof{, p)) thatl', is reached given that h is reached. Use this fact to showBthati§
sequentially rational if and only if no playielhas an information sétat which a change (1) (holding the
remainder of, fixed) increases his expected payoff conditional on readhing
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o,0,0 0,0,0 41,1 1,12 11,2 141

Figure 228.1
An extensive game in which there is a sequential equilibrium
for which the belief system is not structurally consis

In Section 12.1 we discuss three conditions that relate the beliefs and strategies in an assessment. One of th
structural consistency, which may be defined formally as fol

* Definition 228.1

The belief systerm in an extensive game with perfect recabltiaicturally consistent if for each information sdt
there is a strategy profi@with the properties thatis reached with positive probability undandp(l) is derivec
from 3 using Bayes' rul

(Note thatdifferen strategy profiles may justify the beliefs at different information ¢

In many games, for any assessm@nfj that is consistent (in the sense of Definition 224.2) the belief sysiem
structurally consistent. However, the following example shows that in some games there are consistent a

(B, W) (in fact, even sequential equilibria) in whighs not structurally consistent: the beliefs cannot be derived
from any alternative strategy prof

* Example 228..

The game in Figure 228.1 has a unique Nash equilibrium outcome, in which players 1 and Rchoas® this,
suppose to the contrary that player 3's information set is reached with positive probability. Let the strategy pr
used b and le3(1)(R) = a. fori =1, 2, 3, where¢ is the single information set of playier

a. If @ < 1 thenL yields player 2 a payoff ({1 +3as) < 101 <1+ 2a1 pjs payoff toR. Thus player 2 chooses
R. But thenu(l,)((L, R) = 1 and hence player 3 choogewith probability 1, contradictin &3 <3

b. If @ 2 § thenL yields player 1 a payoff (2(4 = 3a3) < 302 <142 o payoff taR. Thus player 1 chooses
R. Now if player 2 choosds with positive probability thep(l,)((R, D) = 1, and hence player 3 chootesith

probability 1, contradictin©3 2§ Thu
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Figure 229.1
The game in Exercise 22¢

player 2 chooseR with probability 1, contradicting our assumption that player 3's information set is reached wi
positive probability

Thus in any Nash equilibrium, = a, = 1; in addition we nee®s € (3 %l, otherwise either player 1 or player 2 can
profitably deviate. LeB be such an equilibrium. For an assessn&nt)(to be sequentially rational, player 3's
belief u(l,) must assign equal probabilities to the histories} and R, L), and thus must take the form2¢, y,

y); an assessment in whiplfl,) takes this form is consistent if and onh¥ = i (A sequence of strategy profiles
that demonstrates consistency 7 = # is (8%) in which A (I)(R) = B5(I2)(R) = 1 —€ 57 B5(Is)(R) = @3 ) However

the belief(0:2:3) of player 3 violates structural consistency since any strategy profile that yieldsaith
probability zero also yields eithel, ) or (R, L) with probability zerc

* Exercise 229.

Consider the game in Figure 229.1. As in the game in Figure 224.1 the first move is made by chance, and th
information sets are not ordered (player 1's information set comes either before or after player 3's informatior
depending on the move of chance). Show that the game has three sequential equilibria in pure strategies, in
which players 1 and 3 both chocS. Discuss the reasonableness of these sequential eqt

The next example further illustrates the relationship between consistency and structural consistency. It st
sequentially rational assessmeBiti() in whichp is structurally consistent may not be consistent (and hence ma
not be a sequential equilibriur

* Example 229..

In the game in Figure 230.1 the assessnig&nt)(in which 3 is the pure strategy profil®( S, R player 2's belief
assigns probability 1 to the histcR, and player 3's belief assigns probabili
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0,0,0 0,0,1 1,21 1,0,0

Figure 230.1
An extensive game in which there is a sequentially
rational assessment with structurally consistent beliefs
that is not a sequential equilibrit

to the historyI(, C), is sequentially rational. Further, the belie structurally consistent: in particular, player 3's
belief is supported by the alternative pure strategy profile in which player 1 choasdgplayer 2 choos€s That

is, if player 3 has to move then she believes that player 1, as well as player 2, deviated from her equilibrium
strategy. To rationalize her having to move it is sufficient for her to believe that player 2 deviated, and in fact
knowsthat he did so. Thus structural consistency allows player 3 to revise her belief about player 1 even 1
only evidence she has is that player 2 deviated, and this is enough to explain what has |

These structurally consistent beliefs are not consistent: every sequence of assessments that involves strateg
are completely mixed and convergeptgenerates beliefs of player 3 that converge to the belief that assigns
probability 1 to the historyR, O (while p assigns probability 1 td_( C)). Thus {3, W) is not a sequential
equilibrium. (In the only sequential equilibrium of the game the strategy proffRe ,(), the belief of player 2
assigns probability 1 tR, and the belief of player 3 assigns probability 1R, C).)

The next example illustrates how subtle the consistency requirement
* Example 230.:

Consider a twestage threglayer game in which in the first stage players 1 and 2 simultaneously choose from f
set {L, M, R, and in the second stage player 3 finds out how many players Rrayshow many chode In this
game player 3 has six information sets (for exammg {{I)} —the case in which she is informed that two players
choseM—and {(R, L), (L, R))—the case in which she is informed that one player cR and one chosL).
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If the strategies of players 1 and 2 call for them to choose the same action, but if in fact they choose different
actions, then player 3 has to form a belief about the action chosen by each of them. At first sight it may seem
the notion of sequential equilibrium does not constrain these beliefs. Consider for example an asgesgrirent (
which all three beliefgi({( M,L),(L,M)})(M,L), p{(L,R),(RL)}N(L,R), andp({(M,R),(RM)DH(RM) are equal t.
These beliefs are clearly structurally consistent (recall that a different strategy profile can support the belief a
information set). However, the fact that consistency requires the belief at each information set to be justified |

same sequence of strategy profiles implies tIf3, 1) is not consistent, as the following argument sh

For (3,1) to be consistent there must be a sequef“péof which the limits of

B(M)B3(L)/B3(L)B3(M), Bi(L)B3(R)/BHRIFI(L), andBi(R)B(M)/Bi(M)BS(R) as€ = 0 are all 2 (wher(@) is an
abbreviation fo%(2)(a)). But the product of these three ratios is 1, independeeptadfile the product of their
limits is 8. Thus consistency rules out the belief sysu (regardless cp).

12.3 Games with Observable Actions: Perfect Bayesian Equilibriu

We now examine a family of games in which we can define a notion of equilibrium that is closely related to
sequential equilibrium but is simpler.Bayesian extensive game with observable actioodels a situation in
which every player observes the action of every other player; the only uncertainty is about an initial move of
chance that distributes paya#flevant personal information among the players in such a way that the informatic
received by each player does not reveal any information about any of the other players. We say that chance

typesfor the players and refer to playeafter he receives the informati@nas typed.. The formal definition
follows.

* Definition 231.1
A Bayesian extensive game with observable acticis a tuplem (), (pa), ()} \where
« ' = (N,H, P} js an extensive game form with perfect information and simultaneous

and for each playe € N

L . . . B =xien8;
* 9i is a finite set (the set of possible types of pld); we write
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* p. is a probability measure (8 for which p(8) > 0 for all% € 8 and the measurgsare stochastically
independentg (B, is the probability that playeris selected to be of ty)

48 x Z — R s 3 yon NeumanMorgenstern utility functionu((8, h) is playeri's payoff when the profile of
types isB and the terminal history @ is h).

The situation that such a game models is one in which chance selects the types of the players, who are s
fully cognizant at all points of all moves taken previously. We can associate with any such game an exter

(with imperfect information and simultaneous moves) in which the set of histo{2}(®xH) ang each

information set of each playetakes the forn (8 #) = {((8:, 8., h): 02, € B3} for ¢ € P(h) angfi € 6 (o that
the number of histories i@, h) isthe number of members €-).

A candidate for an equilibrium of such a game is a (90, (1)) = (@) )iemsico.. (i(R)iennemz) \where each
0,(0) is a behavioral strategy of playen I" (the strategy used by ty@eof playeri) and eachy,(h) is a probability
measure o/ (the common belief, after the histdryof all players other thanabout player's type). Such a pair

is closely related to an assessment. The prafijjeéphrases the information in a profile of behavioral strategies i

the associated extensive game; the profilesummarizes the players' beliefs and is tailored to the assumption tl

each player is perfectly informed about the other players' previous moves and may be uncertain only about t
other players' type

Let s be a profile of behavioral strategie$ irDefineQ,(s) to be the probability measure on the set of terminal
histories off generated by s given that the history h has occurred (see Section 6.2) Gefirssu |h) to be the
probability measure on the set of terminal historiels given that player uses the strategyin I, each type, of
each playej uses the strategy(6), the game has reachledand the probability thatassigns t®, is derived fron
w(h). That is,0(0,, s, |1.|h) is the compound lottery in which the probability of the lott @293 (0sDiemus 31 g
Miem s (h)05) tor oqch?~i € O~

The solution concept that we define is the follown
*Definition 232.1
Let (T:(Ba. (22), (w)) e a Bayesian extensive game with observable actions, T = (N, H,P) A pair

(), () =((@4(B:))iem,0ico,, (Hi(A))ien nemz) whereo (0) is a behavioral strategy of playién I andj(h) is a
probability measure o®4, is ¢
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perfect Bayesian equilibriun of the game if the following conditions are satisi

Sequential rationalitfFor every nonterminal histok € H\ Z, every playet € P(#) and event: € 6: the
probability measur®(o,,0,(8,), |h) is at least good for typé asOo , su,|h) for any strategy of playeri inT".

Correct initial belief: #(2) =pi for eacrie N.

Actior-determined beliefs ¥ ¢ P(k) and & € A(h) thenp(h,a) = p(h); if § € P(h), a € A(k), ' € A(h) andei =a;
thenp,(h,a) =p(h, &)

Bayesian updating i€ P(h) and at is inthe support 0b,(8)(h) for somed, in the support oft.(h) then for any
6 €8 we havi

. _ _ oi(6)(h)(ai) - pa(h)(67)
pi(h, a)(6;) Y a,e0, 0i(0:)(h)(a:) - HT;‘}(Ei}.

The conditions in this definition are easy to interpret. The first requires that the st#89gyf each typ®, of
each player be optimal for typ#, after every sequence of events. The second requires that initially the other
players' beliefs about the type of each play® given byp,

The condition of actiomdetermined beliefs requires that only a player's actions influence the other players' beli
about his type:i] if playeri does not have to move at the histbriphen the actions taken at h do not affect the
other players' beliefs about play&rtype andii) if playeri is one of the players who takes an action at h then the
other players' beliefs about play&rtype depend only on h and the action taken by plapet on the other

players' actions. This condition excludes the possibility that, for example, ptaypdating of his belief about
playeri is affected by a move made by some plk # i. Thus the condition is consonant with the general
approach that assumes independence between the players' st

The condition of Bayesian updating relates to a case in which plsigetion at the history h is consistent with the
other players' beliefs about playeath, giveno,. In such a case the condition requires not only that the new belie
depend only on playets action (as required by the condition of actilmtermined beliefs) but also that the play
beliefs be derived via Bayes' rule from their observation of pi&yactions. Thus the players update their beliefs
about player using Bayes' rule until his behavior contradicts his strategt which point they form a
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new conjecture about playes type that is the basis for future Bayesian updating until there is another conflict
with o.

We now show that every sequential equilibrium of the extensive game associated with a finite Bayesian extel
game with observable actions is equivalent to a perfect Bayesian equilibrium of the Bayesian extensive game
the sense that it induces the same behavior and k

* Proposition 234.:

Let (B, 1) be a sequential equilibrium of the extensive game associated with the finite Bayesian extensive gan
with observable actior {{N, H, P}, (84), (), (%)} For everyh € H, i € P(h) and 6 € 8; et 5(6)(h) = B(I(6, h)).
Then there is a coIIectic[-‘“("}:“EN-hEH, wherey(h) is a probability measure ¢ i, such that

p(I(6i B))(8, B) = Wyem\iy a5 (h)8s) 1o o)) €@ gngheH ang ((6), (L)) is a perfect Bayesian equilibrium of the
Bayesian extensive ga.

* Exercise 234.

Prove the proposition. (The main difficulty is to confirm that the beliefs in the sequential equilibrium can be
reproduced by a collection of common independent beliefs about the players

The concept of perfect Bayesian equilibrium is easier to work with than that of sequential equilibrium (since tl
is no need to mess with consistency) but applies to a significantly smaller set of situations. The following exa
shows that even in this restricted domain the two notions are not equ

* Exercise 234.

Consider a Bayesian extensive game with observable actions with the structure given in Figure 235.1. Playel
three equally likely possible types,y, andz, and player 2 has a single type. Consider a perfect Bayesian

equilibrium (@),(1)) in whicho,(x) = (Out, 1), o,(y) = (Out, M), 6,(2) = (C,R.1,C, () = 1,1,(C, M(X) =1, and
L,(C, R(2 = 1. That is, player 2 believes that player 1 is certainly of type y if he observes the Kisigry (
certainly of type z if he observes the histaty M), and certainly of typ& if he observes the histor€ (R (the
only history that is consistent with).

We claim that @), (1)) may (depending on the payoffs) be a perfect Bayesian equilibrium of such a game
satisfies the conditions of actiaietermined beliefs and Bayesian updating. (Notepth@®, L) andyp, (C, M) are
not constrained by the condition of Bayesian updating since the probabilities of the hi€tokjesnd C, M) are
both zero, givew,.) However, the associated assessn&nt)(is not
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Figure 235.1
The structure of the Bayesian extensive games with observable
actions in Example 234.3. Such a game may have a perfect Bayesian
equilibrium (in which player 1's actions are those indicated by the
arrows and player 2's beliefs are indicated by [1]'s and [0]'s) that is
not a sequential equilibrium of the associated extensive

consistent, and hence is not a sequential equilibrium of any associated extensive game, whatever the payoff:
see this, letf",u") be a sequence of assessments that converd&gXowith the properties that eafhassigns
positive probability to each choice at every information set andiedstderived fronf3" using Bayes' rule.

Denote by€ the probability, according 1#L, that player | chooses after the history, and denote b and™#

the probabilities, according B, that she chooses L and M respectively after the hisip)( Let

I ={(z,C,K),(1,C, K),(,C,K)} for K = L, M, R be the information set of player 2 that is reached if player 1
choose<C and therk. Then by Bayes' rule we hat"U5)wC, L) = GG/ (G +GE+€6) (ysing the fact that the
three types of player | are equally likely), which converges (by assumptia{fF)(uC, L) = 1. Since

& = AW.C)L) =0 5,9 & — Bilz,C)L) = 1 e conclude, dividing the numerator and denominator of

s (), G, L) by %, that /g —0, Performing a similar calculation for the belie’,’fﬂx we reach the
contradictory conclusion tha/es =0 Thys ,1) is not consister

This example reflects the fact that the notion of sequential equilibrium requires that the beliefs of player 2 at t
information sets not reached in the equilibrium not be independent: they must be derived samedejuence

of perturbed strategies of player 1. The notion of perfect Bayesian equilibrium imposes no such restriction on
beliefs
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Figure 236.1
The extensive game discussed in Example 236.1. In all sequential
equilibria of this game player 2 believes at his first information set
that chance chose r with certainty, but believes at his second
information set that there is a positive probability that chance (.

The notion of perfect Bayesian equilibrium may be refined by imposing additional constraints on players' belit
after unexpected events. For example, one can require that if at some point the players otbenthate thait

is certainly not of typ®. then they never subsequently reverse this conclusion. This requirement has been use
some of the literature (see for example Osborne and Rubinstein (1990,93)).9bhe following example shows,
however, that there are games in which no perfect Bayesian equilibrium satisfies it: in all perfect Bayesian
equilibria of the game we describe, a player who at some point assigns probability zero to some history later
assigns positive probability to this histc

* Example 236.:

In any sequential equilibrium of the game in Figure 2
« player 1 chooses C after the histr

« player 1 chooses X after the histor, C, C)

* player 2 chooseC at his information selt

* player 2 chooses X with probability at le 838t his information sd# (otherwise player 1 chooses C after the

histories¢ and 4C:C)), so that player 2 assigns probability 1 to the histh€:C:C) at his information sd#,
making C inferior tcX)

« player 1 chooses X after the hist.

Thus player 2's belief &t assigns probability 1 to the history r while his belidPatssigns positive probability to
chance having chos¢f (otherwiseC is better thaiX).
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* Exercise 237.

Players 1 and 2 bargain over an item whose value for player 1 is 0 or 3, with equal probabilities. Player 1 knc
the value of the object, while player 2 is informed of this value only after he purchases it. The value of the
player 2 is its value to player 1 plus 2. The bargaining procedure is: player 1 makes an offer, which player 2 ¢
accepts or rejects; in the event of rejection player 1 makes another offer, which player 2 either accepts or reje
no offer is accepted, player 1 is left with the object and obtains a payoff equal to its value; player 2's payoff is
Take the set of possible offers to be finite, including 2 and 5. Show that there is a sequential equilibrium in pt
strategies in which there is no deal when player 1's valuation is 3, while the object is sold at the price of two i
first period when player 1's valuation i

12.3.1 Signaling Game

A signaling game is a Bayesian extensive game with observable actions that has the following simple form. T
are two players, a "sender" and a "receiver". The sender is informed of the value of an uncertain Basateter
then chooses an action m (referred to aseasagethough it may be payofielevant). The receiver observes the
message (but not the value@fand takes an action a. Each player's payoff depends upon the V@juinef
messagm sent by the sender, and the action a taken by the re

Formally, asignaling gameis a Bayesian extensive game with observable ac{ls (€ (i), (%)} in which F is ¢
two-player game form in which first player 1 takes an action then player 2 takes an acti®2 is a singletor

The tension in such a game arises from the fact that the receiver controls the action while the sender control:
information. The receiver has an incentive to try to deduce the sender's type from the sender's message, anc
sender may have an incentive to mislead the rec

A well-known simple example of a signaling game is the following, proposed by Spence
* Example 237..

(Spence's model of educafjghworker (the sender) knows her tal@tvhile her employer (the receiver) does
not. The value of the worker to the employer is the expectatibp vk assume that the employer pays the worke
a wage w that is equal to this expectation. (The economic story that underlies this assumption is that ther
employers who compete for the worker, so that her wage is driven up to the expecttiphamodel this
behavioral &-
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sumption we assume that the payoff of the employdwis 0,)? (the expectation of which is maximized wher
E(0,)). The worker's message is the amount e of education that she obtains and her wayaff (seflecting the
assumption that the larger@she easier it is for a worker to acquire education). Assume that the worker's talen

either & or off > Ef', and denote the probabilities of these valuep-tandp™. Restrict attention to pure strategy
equilibria and denote the choices (messages) of the two tymesbgle’. This game has two types of perfect
Bayesian equilibriun

Pooling Equilibrium Ir one type of equilibrium both types choose the same level of educgtioe{=¢€") and the

. w* = pHgH 4 plgl . .
wage is 1 757 71 The possible values ef are determined as follows. If a worker chooses a value of e

different frome” then in an equilibrium the employer must pay her a wgggfor which w(e) —e/0f < w*—e*/8ff
for K =L, H. The easiest way to satisfy this inequality is by making the employer believe that every deviation

. — gL .
originates from a typ® worker, so tha®(€) = 6f or € #.©

. The most profitable deviation for the worker is t
ok < w* — e fok

1 L H _ gL
to choosee-=0, so that we nee , which is equivalent t ® < ofp™(6f' - o] }.

Separating Equilibrium Iranother type of equilibrium the two types of worker choose different levels of edu

In this case '&= 0 (since the wage paid to a ty F‘,‘f worker is % , independent of-). For it to be unprofitable for
either type to mimic the other we n

o7 =07 —ejof and 6 -5 /0y > 07,

which are equivalent 101 = 1) < e <O (8 - 8F) gincedt’ > 6F 4 separating equilibrium thus always
exists; the messages=0 ance” € [Br(6f — 61),67 (65 - 67)] gre supported as a part of an equilibrium in which
any action other thae" leads the employer to conclude that the worker's tyﬂf’.

 Exercise. 238.
Verify that the perfect Bayesian equilibria that we have described are also sequential e

Example 246.1 in the next section shows how a refinement of the notion of sequential equilibrium exclude
these equilibriz

12.3.2 Modeling Reputatic

In Section 6.5 we study two finite horizon games that highlight the fact that in a subgame perfect equilibrium
player maintains the assu-
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tion that another player intends to adhere to his equilibrium strategy even after that player has deviated from
strategy many times. For example, in the unique subgame perfect equilibrium of thstetegame (a finite
horizon extensive game with perfect information) every challenger believes that thetonaiwill acquiesce to

its entry even after a history in which the cl-store has fought every one of a large number of ent

One way to capture the idea that after such a history a player may begin to entertain doubts about the intenti
his opponents is to study a model in which at the very beginning of the game there is a small chance that the
opponents have motives different from those captured in the original extensive form. (The aberrant players tf
thus included, with small probability, in the strategic calculations of their opponents are often referred to &

or “irrational”, although their payoffs, not their strategic reasoning, diverge from the staimdsudh a

"perturbed" game the regular types may find it advantageous to imitate the aberrant types at the beginning of
game: the shortterm loss from doing so may be more than outweighed by ttertorggain from maintaining the
opponents’ doubts about their motivations. Thus such a game can capture the idea that people may act a
"crazy" because doing so leads their opponents to respond in such a way that even according to their real, "s
preferences they are better off. The following example illustrates this apj

* Example 239.:

(A perturbation of the chaistore gamgConsider the variant of the chastore game in which there is small
probability, at the beginning of the game, that the cktore prefers to fight than to accommodate entry. Prec

consider the Bayesian extensive game with observable afFs(8:: ®), (@) in whichr is the game form of the
chainstore game (Section 6.5.. 8cs = {R(egular), T(ough)}, 8k s 5 singleton for every potential competior1,..

K, pes(R) =1-¢ pes(T) =€ and the payoff functions are defined as follows. For any terminal historyf I, let

h, be the sequence of actions in petodhe payoff of each challenger k is independent of the type of the chain
store and is given |

b if hy=(InC)
ui(6, k) = {5— 1 if by = (In, F)
0  ifhe = Out,

where 0 < b < 1. The payaif (0, h) of the chairstore is the sum
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its payoffs in the K periods, where its payoff in peik is given b

-1 ifhg=(InF)and 8cs=R, or hy = (In,C) and 8cg=T

{IJ if kg = (In,C) and 8gs = R, or hy = (In, F) and 8gs =T
a if hy = Out,

where a > 1. In other words, for both types of ctsore the best outcome in any period is that the challenge

out; the regular chainstore prefers to accommodate an entrant than to fight (fighting is costly), while the tougt
chair-store prefers to fight than to accommoc

We do not characterize all perfect Bayesian equilibria of the game but merely describe an equilibrium that dif
radically from the unique subgame perfect equilibrium of the perfect information game. This equilibrium has t
following features: so long as no challenger enters the challengers maintain their original belief that-#terehain
is tough with probability; entry that is accommodated leads the challengers to switch to believing that the cha
store is definitely not tough; entry that is fought leads the challengers to maintain or increase the probability t
they assign to the chastore being tough. Consequently it is optimal for a regular ettane, as well as a tough
one, to threaten to fight any entry that occurs, at least until the horizon impends. This threat deters all entry u
the horizon gets close, when the regular clsaime's threats become less firm: it cooperates with entrants with
positive probability, behavior that is consistent with the entrants beginning to enter with positive probability. C
a challenger enters and the chaiare cooperates with it, the challengers switch to believing that thestbagnis
certainly regular and henceforth always e

Precisely, the equilibrium is given as follows. The actions prescribed by the strai@)yof the regular chain

store and by the strategy of each challengdcafter any history depend an(h)(T), the probability assigned by
the challengers after the history h to the ckstore being tough. The chainstore has to move only after histories
that end with entry by a challenger. For any such higtodgnote by(h) the number of challengers who have
moved, so that.(R)(h) prescribes the response of the cksiore to challengd(h). The strategy of a regular
chair-store is then given |

C iftlh)=K

ocs(R)(h) = {F if t(h) < K — 1 and pes(h)(T) > bX—44)
mg i () < K — 1 and pes(h)(T) < b¥-H®

h
if P(h) = CS, where™ 9% is the mixed strategy in which F is u
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. . Kt
with probability [(Fb“"®™)u (h)(T)/ Kl'“csmm)bK-t(h.)] and Cis used with the complementary probability; the strategy of a tough

chair-store is given t
oes(TY(h) = F if P(h) = C§.

The strategy of challenger k is giver

Out if pos(h)(T) > bE-F+1
ox(h) = {mk if pos(h)(T) = X5+
In if pes(h)(T) < bk

if P(h) =k (so that(h) = k - 1), wherem,_ is the mixed strategy in whidbutis used with probability 1/a arid is

used with probability 11/a. The challengers' beliefs are as follo#es(@)(T) = € andfor any history h witiP(h)
= k we havau_dh, In) = p.{h) and the probability.(h, h)(T) assigned by challengkr+ 1 to the chairstore
being tough i

pes(h)(T) if he = Out
max{b* ¥, ues(h)(T)} if hx = (In, F) and pos(h)(T) >0
0 if Ay = (In, C) or pes(h)(T) =0,

To understand this equilibrium consider Figure 242.1, which shows, for each vijukeobelief of challenger k
at the beginning of period k along the equilibrium path that the ctaie is tough. The numbkris the smallest

value of k for whict € < L H. Along the equilibrium path through peri&dthe challengers maintain their
original belief that the chaigtore is tough with probabilite; all challengers througki - 1 stay out. (If, contrary 1
its strategy, one of them enters then the regular ¢tane, as well as the tough one, responds by fighting, after
which the beliefs of subsequent challengers that the -saia is tough are also maintainect.atSince

€< bk-r”, challengek’ enters. The regular chastore responds by randomizing between fighting and

cooperating (sinc #es(A)(T) = € < 5"~ The probabilities it uses are such that after it fights, the probability
(calculated using Bayes' rule) that it is toug,f!ﬂ,'fk', the point on the graph ofty? for periodk’ + 1. (This has th
implication that the closgr.(h)(T) is to the graph ob***, the higher is the probability that the regular ctetore

fights in the event of entry.) If the chainstore cooperates (as the regular one does With positive probability) th
probability that the challengers assign to the c¢-store's being tough becomes z
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Figure 242.1
The belief of the challengers at the beginning of each period that the
chainstore is tough along an equilibrium path of the perfect Bayesian
equilibrium for the perturbation of the chastore game described in the
text. Possible beliefs along the path are indicated by small disks. Possible
transitions are indicated by dotted lines; the label adjacent to each dotted line
indicates the sequence of actions that induces the transition. (Note that only
transitions that can occur with positive probability along the equilibrium path
are indicated; more are possible off the equilibrium g

If the chainstore fights the entrant in perigdthen the probability that challengér+ 1 assigns to the chain

store's being tough rises il , SO that challengek* + 1 randomizes between entering and not. If challekiger

1 does not enter then the bellef that the ciséine is tough remains the same and challekige® definitely

enters. If challenged + 1 enters and the chastore fights then the probability assigned to the ektire's being
tough again rises to the graphbtf+L. If challengek™ + 1 enters and the chasore cooperates then the
probability assigned to the chastore's being tough falls to zero and challehfer2 enters. The same pattern
continues until the end of the game: in any period in which the challenger's belief lies below the graph the
challenger enters; if the chastore responds by fighting then the belief of the subsequent challenger rises to th
graph. In any period in which the challenger's belief is on the graph the challenger randomizes; if it does not «
then the belief is unchanged, while if it enters and is fought then the belief again rises to the graph. In every c
the result of the chaistore's cooperating is that the probability that the challengers assign to its being toug
zero

Note that if the belief of any challenger k is given by a point on the graph then after a history h that end:
decision by k to enter the probability that the cketore fights igi.{(h)(R).-0.(R)(h)(F)+ pd{h)(T) - 1 = (1- b*
k+1)[(1 - bK—k) bK—k+l]/[(1_bK—k+l) bK—k]+
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br++1=b.making challenger k indifferent between entering and staying out. The probability with which the
challenger chooses to enter makes the esiaire's expected payoff O regardless of its future actions. Similarly, i
the belief of any challenger k is given by a point below (above) the graph then the probability that tseoohain
fights is less (greater) thib, making it optimal for challenger k to enter (stay ¢

The number of periods remaining after the first entry of a challengek’(iK the case just described) is
independent of the length of the game. Thus the longer the game, the more periods in Which no challer

* Exercise 243.
Complete the proof that the paio(y, (1<S)) described above is a perfect Bayesian equilibrium of the game.

Sometimes it is said that the regular chstiore "builds reputation” in this equilibrium. Note, however, that along
the equilibrium path no reputation is built: no entry takes place until the final few periods, so that even thougf
regular chairstorewouldfight entry were it to occur, it does not get the opportunity to do so. This response of :
regular chairstore to a deviation by a challenger at the beginning of the game is necessary in order to mainta
doubt that the challengers hold about the motivation of the -shaia, a doubt required to deter them from
entering. The considerations of the regular ciséame after such (otdf-equilibrium) entry near the beginning of
the game are like those of a player who wants to build, or at least maintain, a re|

12.4 Refinements of Sequential Equilibriur

The concept of sequential equilibrium permits great (though as we have seen not complete) freedom regardi
beliefs that players hold when they observe actions that are not consistent with the equilibrium strategies. An
advantage of including beliefs as part of the specification of an equilibrium is that it allows us to discuss furth
restrictions on these beliefs. Many such restrictions have been proposed; the new solution concepts that aris
referred to in the literature as refinements of sequential equilibrium. We give only a very brief introduction to t
subject

The notion of sequential equilibrium essentially bases beliefs on the equilibrium strategies and imposes only
"structural” restrictions on c-of-equilibrium beliefs. The refinements of sequential equilibrium -
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1,3 0,0 0,0 5,1

Figure 244.1
This game has a sequential equilibrium with the outcdn £}, (
though player 2's belief in such an equilibrium has the undesirable feature
that it assigns a positive probability to player I's having chosen the
action M, which is strictly dominated by

duce new strategic considerations, as demonstrated by the following e:
* Example 244.:

The game in Figure 244.1 has a sequential equilibrium with the outéymjel also has a sequential equilibrium
with the outcome®s€), in which player 2 believes, in the event that his information set is reached, that with hig
probability player 1 choskl. However, if player 2's information set is reached then a reasonable argument for |
may be that since the action M for player 1 is strictly dominated by L it is not rational for player 1 to choos
hence she must have cho$erThis argument excludes any belief that suppd:4) s a sequential equilibrium
outcome

The next example further illustrates the strategic considerations introduced in the previous
* Example 244..

(Beer or QuichgConsider thgame in Figure 245.1, a signaling game in which there are two types of player 1,
strong and weakthe probabilities of these types are 0.9 and 0.1 respectively, the set of message} (e
consumption of beer or quiche for breakfast), and player 2 has two aEijigyins) or N(of). Player 1's payoff is tt
sum of two elements: she obtains two units if player 2 does not fight and one unit if she consumes her prefer
breakfastB if she is strong and Q if she is weak). Player 2's payoff does not depend on player 1's breakfast; i
if he fights the weak type or if he does not fight the strong

This game has two types of sequential equilibrium, as fol

 Both types of player 1 choose B, and player 2 fights if he obs€reesl not if he observds If player 2
observe«Q then he assigns probability of at least 0.5 that player | is
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Figure 245.1
The game Beer or Quiche (Example 24-

* Both types of player | choose Q, and player 2 fights if he observes B and not if he oQsdirpésyer 2
observes B then he assigns probability of at least 0.5 that player 1 i

The following argument suggests that an equilibrium of the second type is not reasonable. If player 2 observe
player 1 chose B then he should conclude that player 1 is strong, as follows. If player 1 is weak then she sho
realize that the choice of B is worse for her than following the equilibrium (in which she obtains the payoff 3),
whatever the response of player 2. Further, if player 1 is strong and if player 2 concludes from player 1 choo:s
that she is strong and consequentiposes Nthen player 1 is indeed better off than she is in the equilibrium (in
which she obtains 2). Thus it is reasonable for a strong type of player 1 to deviate from the equilibrium,
anticipating that player 2 will reason that indeed she is strong, so that player 2's belief that player 1 is weak w
positive probability when she observes B is not reasotl

The argument in this example is weaker than that in the previous example. In the previous example the argul
uses only the fact that the action M is dominated and thus is independent of the equilibrium that is eliminated
contrast, in the game here the argument is relative to the equilibrium that is eliminated. Unless the suppositio
that the players behave according to an equilibrium in which both types cpoibexe is no basis for the
argument that the message B must come from a strong type. This raises a criticism: if the basis of the argum
that the situation in which both types of player 1 chd@@sean equilibrium then perhaps player 2 should concluds
after observing a deviation sim|
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that player 1 is not rational or does not understand the structure of the game, rather than assume that she is
rationally trying to send him a strategic sig

* Example 246.:

(Spence's model of educatjoive first argue that all the pooling equilibria of the game in Example 237.2 are
eliminated by arguments like those in the previous example. Let e :“,’,'f“:"rﬂf' > 8f'~e/0} 5ng

w*—e"/0f < Of —e/bf (Such a value o clearly exists.) If a worker of typgf deviates and chooses e (which
exceeds ¢ then the firms should conclude that the deviation comes fronf’ffpmce type"{' is worse off if she

so deviates even if she persuades the firms that she is d"’fl;ywhile type'gf is better off if she so deviates. Thus
the firms should respond to such a deviation by paying a we&fs which makes the deviation profitable for a
worker of typeff'.

Now consider separating equilibria. In such an equilibie- = 0 ang® —effof < of. M off — " /0L <0 {hen a
worker of type®f' can deviate by slightly reducing the valuesofirguing that she is not of ty?f, who would

lose from such a deviation whatever best response the firm used (that is, even if she vﬁf:‘)a paus in all

sequential equilibria that survive this argument, the levef education of typ@f" solves the equation
off — e fof = o}

* Exercise 246.

(Pre-trial negotiation) Player 1 is involved in an accident with player 2. Player | knows whether she is negligen
not, but player 2 does not know; if the case comes to court the judge learns the truth. Player | senisoa "take
leaveit" pre-trial offer of compensation that must be either 3 or 5, which player 2 either accepts or rejects. If h
accepts the offer the parties do not go to court. If he rejects it the parties go to court and player | has to pay &
player 2 if he is negligent and 0 otherwise; in either case player | has to pay the court expenses of 6. The pay
are summarized in Figure 247.1. Formulate this situation as a signaling game and find its sequential equilibri
Suggest a criterion for ruling out unreasonable equilibria. (Consult Banks and Sobel

12.5 Trembling Hand Perfect Equilibrium

The notions of subgame perfect equilibrium and sequential equilibrium treat the requirement of sequential
rationality as part of the players' strategic reasoning; they invoke the assumption that the players are rational
only in selecting their actions on the equilibrium path but
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Y N Y N
3| -3,3 | —6,0 3| -3,3 | -1,5
5| -55 | —6,0 6| -556 | -11,5
Player 1 is non-negligent. Pleyer 1 is negligent.
Figure 247.1

The payoffs in Exercise 246

in forming beliefs about the other players' plans regarding events that do not occur in equilibrium. The solutio
concepts that we study in this section follow a different route: they treat the players' rationality with respect to
of-equilibrium events as the result of each player's taking into account that the other players could make
uncorrelated mistakes (their hands may tremble) that lead to these unexpected events. The basic idea is thai
player's actions be optimal not only given his equilibrium beliefs but also given a perturbed belief that allows 1
the possibility of slight mistakes. These mistakes are not modeled as part of the description of the game. Rat
strategy profile is defined to be stable if it satisfies sequential rationality given some beliefs that are generate
strategy profile that is a perturbation of the equilibrium strategy profile, embodying "small" mistakes. Note tha
perturbed strategy profile is common to all players and the equilibrium strategy profile is required to be
sequentially rational only with respect to a single such pr

The requirement that a player's strategy be optimal not only against the other players' equilibrium strategies |
also against a perturbation of these strategies that incorporates the possibility of small mistakes is powerful €
strategic games. We begin by studying such games; subsequently we turn back to extensive games with img
information

12.5.1 Strategic Gam

Recall that we say that a player's strategy in a strategic gaomdetely mixed it assigns positive probability
each of the player's actio
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A B C

A|0,0)00]00

Bloo0|1,1]20

¢|00|0,2]22

Figure 248.1
A strategic game in which there are Nash
equilibria ((A,A) and (C, C)) that are not
trembling hand perfer

* Definition 248.1

A trembling hand perfect equilibrium of a finite strategic game is a mixed strategy prafilgith the property
that there exists a sequer(?',‘i”»“:n of completely mixed strategy profiles that converges soich that for each

playeri the strategy, is a best response“’;* for all values ok.

Let o be a trembling hand perfect equilibrium. Since each player's expected payoff is continuous in the vectol
the other players' mixed strategies it follows that for each piagerstrategy, is a best response @, so that

every trembling hand perfect equilibrium is a Nash equilibrium. Note that the definition requires only that eacl
player's strategy be a best responsstoesequence of perturbed strategy profiles in which the probabilities of
mistakes converge to zero; all players' strategies must be best responses to the same sequence of strategy |
but they need not be best responses to all such seqt

The game in Figure 248.1 shows that not all Nash equilibria are trembling hand pBrfBgts the only
trembling hand perfect equilibrium of the ga

In Section 4.3 we defined the notion of a weakly dominated action in a strategic game; a player has no reaso
use such an action, although, depending on the other players' behavior, he may have notreassssuch an
action either. The notion of Nash equilibrium does not rule out the use of such actions (see, for example, the
actionsA andC in the game in Figure 248.1), but the notion of trembling hand perfect equilibrium does, since :
weakly dominated strategy is not a best response to a vector of completely mixed s

In a twc-playel game we have the following stronger re:
* Proposition 248.:

A strategy profile in a finite tv-player strategic game is a trembling hand perfect equilibrium if and only if it is &
mixec
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L R L R
T|1,1,1|1,01 T|1,,0|(000
B 11,1001 B|0,1,0]| 100

£ _ r
Figure 249.1

A threeplover strategic game in which there is a Nash
equilibrium (B, I, £)) that is not trembling hand perfect
but in which every player's strategy is undomin:

strategy Nash equilibrium and the strategy of neither player is weakly don.
Proof.

It remains to show only that a mixed strategy Nash equilibrium in which the action of each player is not weak
dominated is trembling hand perfect. Icétbe a mixed strategy Nash equilibrium in which the stra?’!'gpf

neither player is weakly dominated. By the result in Exercise 64.2, the str:,‘,’,f’;g;f each playeris a best
response to a completely mixed strategy, %iagf playerd # i. For anye > 0 |et %3(€) = (1-€)oj +eo; Tpig

strategy is completely mixed and converge‘?? tofurther, @i is a best response to it. Thaisis a trembling hand
perfect equilibriurr

That the same is not true for a game with more than two players is demonstrated by-jblaybregame in Figul
249.1. In this game the Nash equilibriuB: L€ ) is undominated but is not trembling hand perfect (player I's
payoff to T exceeds her payoff to B whenever players 2 and 3 assign small enough positive probability to R &
respectively’

The following result shows that every strategic game has a trembling hand perfect equ
* Proposition 249.:

Every finite strategic game has a trembling hand perfect equilil.

Proof.

Define a perturbation of the game by letting the set of actions of each iplseytre set of mixed strategies of

playeri that assign probability of at lee§i to each actionpof playeri, for some coIIection‘{) with & > 9 for eact
i andj. (That is, constrain each player to use each action available to him with some minimal probability.) Eve
such perturbed game has a Nash equilibrium by Proposition 20.3. Consider a sequence of such perturbed ge

which® = © for alli andj: by the
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L R

Aall1]1,1

Ab|1,1]1,1

Ba | 0,2 2,0

3,3

B,b|0,2]33

Figure 250.1
An extensive game (left) whose strategic form (right)
has a trembling hand perfect equilibrium (((A, a), L)) that
is not a subgame perfect equilibrit

compactness of the set of strategy profiles, some sequence of selections from the sets of Nash equilibria of t

games in the sequence converges, say.tlh may be verified that™ corresponds to a trembling hand perfect
equilibrium of the gam

12.5.2 Extensive Gam

We now extend the idea of trembling hand perfection to the model of an extensive game. The game in Fi
shows that a straightforward generalization of Definition 248.1 has an unsatisfactory feature. This game has.
unigue subgame perfect equilibriunB(),R). However, the strategy pair ((A, &),is a trembling hand perfect
equilibrium of the strategic form of the game, since the stra#®gy) (Of player 1 is a best response to any strateg;
of player 2 for which the probability of L is close enough to 1,largda best response to any strategy of player 1
for which the probability ofA, a) is close enough to 1 and the probabilityB&]) is sufficiently high compared

with the probability of B,b). The point is that when evaluating the optimality of her strategy player 1 does not
consider the possibility that she herself will make mistakes when carrying out this strategy. If she does allow
mistakes, and considers that in attempting to carry out her strategy she may choose B rather than A at the st
the game (in addition to considering that player 2 may make a mistake and Rmatiesy thark) then it is no

longer optimal for her to choose a at her second informatic

These considerations lead us to study the trembling hand perfect equilibria not of the strategic form but of the
agent strategic forrr of the game, in which there is one player for each information set in the«
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sive game: each player in the extensive game is split into a numdngerds one for each of his information sets,
all agents of a given player having the same payoffs. (Note that any mixed strategyogrofiie agent strategic
form corresponds to the behavioral strategy prffile which (1) is the mixed strategy of playes agent at the
information set,.) Thus we make the following definition.

* Definition 251.1

A trembling hand perfect equilibrium of a finite extensive game is a behavioral strategy profile that correspon
to a trembling hand perfect equilibrium of the agent strategic form of the

The behavioral strategy profile ((A, &), is not a trembling hand perfect equilibrium of the extensive game in
Figure 250.1 since for any pair of completely mixed strategies of player 1's first agent and player 2 the unique
response of player 1's second agent is the pure stiat&tpyre generally, we can show that every trembling hand
perfect equilibrium of a finite extensive game with perfect recall corresponds to the behavioral strategy profile
sequential equilibriur

* Proposition 251.:

For every trembling hand perfect equilibril3 of a finite extensive game with perfect recall there is a belief
system Is such tr (B,u) is a sequential equilibrium of the ga.

Proof.

Let (3¥) be the sequence of completely mixed behavioral strategy profiles that corresponds to the sequence ¢
mixed strategy profiles in the agent strategic form of the game that is associated with the eq(liBtieach
information set. of each playerin the game, define the beligfl) to be the limit of the beliefs defined frgsh

using Bayes' rulef, 1) is then a consistent assessment. Since every agent's information set is reached with
positive probability and every agent's strategy is a best response t@eivéojlows from the one deviation
property for sequential equilibrium (see Exercise 227.1) that every such strategy is also a best rg3pdrese to
the beliefs at each information set are definep. Thus (3,1) is a sequential equilibriut

The converse of this result does not hold since in a game with simultaneous moves every Nash equilibrium is
strategy profile of a sequential equilibrium, but only those Nash equilibria in which no player's strategy is wea
dominated can be trembling hand perfect. (In the simultar®@owe extensive game whose strategic form is ¢

in Figure 248.1, for exampleA( A) and C, O are the strategy profiles of sequential equilibria but are not
trembling hand perfect equilibria.) H«
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4l41u ulﬂ‘l‘l

Figure 252.1
The game Example 252.1 (Selten's ho

ever, the converse is "almost" true: &mostevery game the strategy profilealmost evergequential
equilibrium is a trembling hand perfect equilibrium (see Kreps and Wilson (1982b, Theorems |

The next example illustrates the concept of trembling hand perfect equilibrium for the game that we studied i
Example 225..

* Example 252.:

(Selten's horgeAs wesaw in Example 225.2, the game in Figure 252.1 (the same as that in Figure 225.1) has
types of Nash equilibrium. Equilibria of the first type, in which player 1 chddspkayer 2 chooses ¢ with

probability at IeasE!j‘, and player 3 choosés do not correspond to sequential equilibria; they are not trembling
hand perfect, since if player 1 chooses C with positive probability and player 3 chooses L with probability clos
1 then the action d is better than c for player 2. Equilibria of the second type, in which player 1 Chplzses 2

chooseg, and player 3 chooses R with probability at I(,%.siorrespond to sequential equilibria and are also
trembling hand perfect; tal?i(D) = & o5(d) =2¢/(1 - ¢€) 5q03(R) =0oa(R) —¢

The game in Figure 253.1 shows that the set of trembling hand perfect equilibria of an extensive game is not
subset of the set of trembling hand perfect equilibria of its strategic form, and that in a trembling hand perfect
equilibrium of an extensive game a player may use a weakly dominated strategy. The strategyLpmfil® (¢ ¢
trembling hand perfect equilibrium of the game (take a sequence of strategy profiles in which player I's secor
agent trembles more than player 2 does), but it is not a trembling hand perfect equilibrium of the strategic for
the game (since player I's strateL,r) is weakly dominated byR,I)).

* Exercise 252.

Show that the notion of trembling hand perfect equilibrium of an extensive game (like the notion of sequentia
equilibrium) is not invariant to the coalescing of moves (one of the principles studied in Section 11.2). (Use th
game in Figure 253.:
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L R
1 L,é)0,0| 1,1
L R
2 1 Ly |00]1,1
L R £ r

R,2| 0,000

0,0 1,1 0,0 1,1
Rr|{l1]|11

Figure 253.1

An extensive game (left) that has a trembling hand perfect equilibrium
that does not correspond to any trembling hand perfect equilibrium
of its strategic form (right

The next exercise gives an extensive ganadl iof whose trembling hand perfect equilibria at least one playe
a weakly dominated strategy (so that no such equilibrium is a trembling hand perfect equilibrium of the strate
form).

* Exercise 253.

Two people are engaged in the following game to select either a good outcome or a bad outcome. First each
them names either himself or the other person as the one who will make the choice. If they both name the sa
person then that person selects the outcome. If each of them chooses himself then chance selects each of tf
equal probability to make the choice. If each of them chooses the other then the good outcome is automatica
chosen. At no point in the procedure is either person informed of the person initially selected by the other per
Each person's payoff from the good outcome is 2, regardless of who chooses it; his payoff from the bad outc
| if the other person chooses it and O if he himself chooses it. Show that the set of trembling hand perfect eqt
of this extensive game is disjoint from the set of behavioral strategy profiles associated with the trembling hal
perfect equilibria of its strategic form; interpret the equilil

We conclude the chapter by noting that it follows from Proposition 249.1 that every finite extensive game witl
perfect recall has a trembling hand perfect equilibrium and hence, by Proposition 251.2, a sequential et

 Corollary 253.2

Every finite extensive game with perfect recall has a trembling hand perfect equilibrium and thus also a s
equilibriurr.
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Notes

The main contributors to the extension of the notion of subgame perfect equilibrium to games with imperfect
information are Kreps, Selten, and Wilson, who developed the two main solution concepts discussed in this
chapter: trembling hand perfect equilibrium (Selten (1975)) and sequential equilibrium (Kreps and Wilson
(1982b))

Section 12.2 relies on ideas and examples that appear in Kreps and Wilson (1982b) and many subsequent p
For a review of the concept of sequential equilibrium see Kreps (1990b). Example 223.1 and Exercise 229.1
due to Kreps and Ramey (1987) and Battigalli (1988). Example 225.2 is due to Selten (1975), Exercise 226.]
Kreps and Wilson (1982b), Example 226.2 to Kohlberg and Mertens (1986), Exercise 227.1 to Hendon, Jaco
and Sloth (1996), Example 228.2 to Kreps and Ramey (1987), Example 229.2 to Battigalli (1996), and Exam|
230.1 to Kohlberg and Reny (19¢

The discussion of perfect Bayesian equilibrium in Section 12.3 is based on Fudenberg and Tirole (1991b), wi
contains Proposition 234.1 and Example 234.3. Example 236.1 is based on Madrigal, Tan, and Werlang (19¢
Sections 12.3.1 and 12.4 are based on Cho and Kreps (1987). The model of reputation in Section 12.3.2
Kreps and Wilson (1982a) (see also Milgrom and Roberts (1982)); Fudenberg and Maskin (1986, Section 5)
that the type of irrationality that is incorporated in the model may dictate the equilibrium outcome. Exercise 2«
is due to Banks and Sobel (19¢

Most of the material in Section 12.5, which discusses the notion of trembling hand perfect equilibrium, is take
from Selten (1975). Proposition 248.2 was discovered independently by Cave, Kohlberg, and van Damme.
Proposition 251.2 is due to Kreps and Wilson (1982b). The game in Exercise 253.1 is taken from Merte

Battigalli (1996) studies sequential equilibrium and perfect Bayesian equilibrium and gives an alternative
characterization of consistency for a class of games. Kohlberg and Reny (1997) formulate an equivalent defi
of sequential equilibrium using systems of "relative" probabilities. As we have mentioned, there are many
refinements of the notion of sequential equilibrium; especially noteworthy is the work of Kohlberg and Merten
(1986). Myerson (1978) studies a variant of the notion of trembling hand perfect equilibrium called "proper
equilibrium®,

Kohlberg (1990) and van Damme (1992) are surveys of the literature on refinements of Nash eq
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\Y
COALITIONAL GAMES

The primitives of the models we study in Parts I, Il, and Il (often referred to as "noncooperative" games) are
players' sets of possible actions and their preferences over the possible outcomes, where an outcome is a pr
actions; each action is taken by a single player autonomously. In this part we study the modalitdzal

game¢. One primitive of this model is the collection of sets of joint actions that each group of players (coalit
take independently of the remaining players. An outcome of a coalitional game is a specification of the coaliti
that forms and the joint action it takes. (More general models, in which many coalitions may form simultaneo
are discussed in the literature.) The other' primitive of the model of a coalitional game is the profile of the play
preferences over the set of all possible outcomes. Thus although actions are taken by coalitions, the theory i
(as are the theories in the other parts of the book) on the individuals' prefe

A solution concept for coalitional games assigns to each game a set of outcomes. As before, each solution ¢
we study captures the consequences of a natural line of reasoning for the participants in a game; it defines a
arrangements that are stable in some sense. In general the stability requirement is that the outcome be immt
deviations of a certain sort by groups of players; by contrast, most (though not all) solutions for noncooperati
games require immunity to deviations by individual players. Many variants of the solution concepts we study
analyzed in the literature; we consider a sample designed to illustrate the ma

A coalitional model is distinguished from a noncooperative model primarily by its focus on what groups of pla
can achieve rather than
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what individual players can do and by the fact that it does not consider the details of how groups of players
function internally. If we wish to model the possibility of coalition formation in a noncooperative game then we
must specify how coalitions form and how their members choose joint actions. These details are absent from
coalitional game, so that the outcome of such a game does not depend

To illustrate the differences between the two modeling approaches, consider the following situation. Each of
group of individuals owns a bundle of inputs and has access to a technology for producing a valuable sin
Each individual's inputs are unproductive in his own technology but productive in some other individual's
technology. A noncooperative model of this situation specifies precisely the set of actions that is available to
individual: perhaps each individual can announce a price vector at which he is willing to trade inputs, or p
can propose a distribution of inputs for the whole of the society. A coalitional model, by contrast, starts from t
sets of payoff vectors that each group of individuals can jointly achieve. A coalition may use contracts, threat
promises to achieve a high level of production; these institutions are not modeled explicitly in a coalitior

We do not view either of the two approaches as superior or more basic. Each of them reflects different kinds
strategic considerations and contributes to our understanding of strategic reasoning. The study of the
interconnections between noncooperative and cooperative models can also be illur
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13 The Core

The core is a solution concept for coalitional games that requires that no set of players be able to break away
take a joint action that makes all of them better off. After defining the concept and giving conditions for its
nonemptiness, we explore its connection with the concept of a competitive equilibrium in a model of

13.1 Coalitional Games with Transferable Payo

We begin with a simple version of a coalitional game in which each group of players is associated with a sinc
number, interpreted as the payoff that is available to the group; there are no restrictions on how this payoff m
divided among the members of the gr«

* Definition 257.1

A coalitional game with transferable payof consists ¢

« a finite seiN (the set of player

« a function v that associates with every nonempty stS of N (acoalition) a real numbev(S) (theWorth of S).

For each coalitiois the numbew(S) is the total payoff that is available for division among the membe& . Tdfat
is, the set of joint actions that the coalitt®nan take consists of all possible divisions(@& among the members
of S (Later, in Section 13.5, we define a more general notion of a coalitional game in which each coalition is
associated with a set of payoff vectors that is not necessarily the set of all possible divisions of some fixe:

In many situations the payoff that a coalition can achieve depends on the actions taken by the other players.
However, the interpretation o
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coalitional game that best fits our discussion is that it models a situation in which the actions of the player
not part of S do not influencgS). In the literature other interpretations are given to a coalitional game; for
examplev(S) is sometimes interpreted to be the most payoff that the coalition S can guarantee independe
behavior of the coalitioN \ S These other interpretations alter the interpretation of the solutions concepts defir
we do not discuss them he

Throughout this chapter and the next we assume that the coalitional games with transferable payoff that we ¢
have the property that the worth of the coalition N of all players is at least as large as the sum of the worths c
members of any partition &f. This assumption ensures that it is optimal that the coahtiohall players form, a

is required by our interpretations of the solution concepts we study (though the formal analysis is meaningful
without the assumptior

* Definition 258.1
(N,v)

A coalitional game with transferable payoff icohesive if

K
o(N) 2 3 v(Sh)
k=1 for every partition §,...,S} of N.

(This is a special case of the conditiorsoperadditivity which requiresthat"[‘sun 2 v(S) +u(T) for all
coalitionsS andT with §NT = @),

13.2 The Cort

The idea behind the core is analogous to that behind a Nash equilibrium of a noncooperative game: an outcc
stable if no deviation is profitable. In the case of the core, an outcome is stable if no coalition can deviate anc
obtain an outcome better for all its members. For a coalitional game with transferable payoff the stability conc
is that no coalition can obtain a payoff that exceeds the sum of its members' current payoffs. Given our assur
that the game is cohesive we confine ourselves to outcomes in which the cN of all players form:

Let {M:%) be a coalitional game with transferable payoff. For any pr':?l’*:",'E"‘r of real numbers and any coalition

Swe let®5) = Lies%i A vector @ies of real numbers is aBfeasible payoff vectorif x(S) = v(S). We refer to
anN-feasible payoff vector asfeasible payoff profile.

* Definition 258.2

(z:)ienw
Thecore of the coalitional game with transferable payo (M%) is the set of feasible payoff profil for
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(i)ies

which there is no coalitioB andS-feasible payoff vectc for whichy, > x for all # € 5,

A definition that is obviously equivalent is that the core is the set of feasible payoff p{Z:en for which

v(S) < 2(S) for every coalitiorS. Thus the core is the set of payoff profiles satisfying a system of weak linear
inequalities and hence is closed and cor

The following examples indicate the wide range of situations that may be modeled as coalitional games and
illustrate the notion of the co

* Example 259.:

(A threeplayer majority gampeSuppose that three players can obtain one unit of payoff, any two of them can
obtain® € [0:1] independently of the actions of the third, and each player alone can obtain nothing, indepenc

of the actions of the remaining two players. We can model this situation as the coalition,{N:,‘,’}rimwhichN =
{1,2,3}, v(N) = 1,»(S) - awhenever |S| = 2, ang{i}) = O for all i € N. The core of this game is the set of all

nonnegative payoff profilesx,, x,) for whichx(N) = 1 anc*(8) 2 @ g5 every tweplayer coalitionS Hence the
core is nonempty if and only @ < 2/3,

* Example 259..

An expedition of n people has discovered treasure in the mountains; each pair of them can carry out one pie
coalitional game that models this situatiol ™ ":’, where

_ [1ISI/2 If | 8] is even
¥(S) = {(|3| —1)/2 if|S]is odd.

If INl Z 4 is even then the core consists of the single payoff pn,i’ : i"\%). If INl 23 s odd then the core is
empty

* Exercise 259.

(A production economnA capitalist owns a factory and eachwtorkers owns only his own labor power.
Workers alone can produce nothing; together with the capitalist, any group of m workers can produce output
f(m), wheref:R+ = R+ js a concave nondecreasing function vig@) = 0. A coalitional game that models this

situation ist™ ¥} whereN = {cjuW (player c being the capitalist and W the set of workers

_fo ifcg S
v(S) = {f{wnwn ifces.

Show that the core of this game { € RY:0 < 2 < f(w) — flw—1) for i € W and Zsen = = F(W)} \wherew =
|[w|, and interpret the members of this set. (See also Exercises 268.1, 289.1, ar
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* Example 260.:

(A market for an indivisiblgood) In a market for an indivisible good the set of buyers is B and the set of seller:
L. Each seller holds one unit of the good and has a reservation price of O; each buyer wishes to purchase
the good and has a reservation price

We may model this market as a coalitional game with transferable payoff as f(¥ = BUL gnd

v(5) = min{|S N B|,1S N L]} for each coalitiors If |B| >| then the core consists of the single payoff profile in
which every seller receives 1 and every buyer receives 0. To see this, suppose that the payoff profile z is in t
core. Let b be a buyer whose payoff is minimal among the payoffs of all the buyers and let | be a seller whose

payoff is minimal among the payoffs of all the sellers. Siissin the core we ha\ s + ¢ 2 v({8,£}) = 1 gng
|L| = v(N) = 2(N) 2 |Blzs + |L|z¢ 2 (|B] = |L])zs + IL] which implies thak, = 0and® 21 and hence (usingN)

=|L| and the fact thé€: is the worsbff seller)x = 1 for every seller.
* Exercise 260.
Calculate and interpret the core of this game w|B| = L|.

* Example 260.:

(A majority gamgA group of n players, whel® Z3 s odd, has one unit to divide among its members. A
coalition consisting of a majority of the players can divide the unit among its members as it wishes. This situa

is modeled by the coalitional gar™®) in which N| =n anc

o(S) ={1 if |S] = n/2

0 otherwise.

This game has an empty core by the following argument. Assume that z is in the coren H1Shenv(S) = 1 so
that Zees % 2 1. Since there are n coalitions of sn- 1 we thus hay 24sisi=n-1} Zies% 2 ® 1 o the other hai

> Y=Y ¥ w=Ye-Du=n-1,

{8:|8|=n—1} €S iEN {5:|8|=n—1, S3i} iEN

a contradictior

* Exercise 260.

(Convex gami) A coalitional game with transferable pay(N %) is convex i

o(S) +o(T) £ v(SUT)+v(SNT)

{{1,...,n},

for all coalitionsS andT. Let v} be such a game and de
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the payoff profilex by #i = v(8; U {i}) — v(8;) for eachi € N, whereS = {1,...,i-1} (with S = @). Show that x is in
the core of{l;...,n},v),

* Exercise 261.

(Simple gam@sA coalitional game with transferable pay{™:v} is simple if v(S) is either 0 or 1 for every
coalitionS, andv(N) = 1; a coalitiorSfor whichv(s) = 1 is called avinning coalition. A player who belongs to ¢
winning coalitions is iveto playel.

a. Show that if there is no veto player then the core is e

b. Show that if the set of veto players is nonempty then the core is the set of all nonnegative feasible pay:«
that give zero to all other playe

* Exercise 261.

(Zerosum gam@sA coalitional game with transferable pay{™:v} is zerosumif v(S) + V(N\S = v(N) for every
coalition§; it is additive if ¥(8) +v(T) = v(SUT) for all disjoint coalitionsSandT. Show that a zerosum game that
is not additive has an empty cc

We remarked earlier that when modeling as a coalitional game a situation in which the actions of any coalitio
affect its complement there may be several ways to deff)eeach entailing a different interpretation. The next
Exercise asks you to definv(S) to be the highest payoff thS can guarantee independently of the behaviN\S.

* Exercise 261.

(Pollute the lakgEach of n factories draws water from a lake and discharges waste into the same lake. Each
factory requires pure water. It costs any factaryo purify its water supply, wheteis the number of factories tt

do not treat their waste before discharging it into the lake; it costs any fadtotieat its waste. Assume that
c<h<nc

a. Model this situation as a coalitional game under the assumption that the/(@udhany coalitiorSis the
highest payoff tha® can guarantee (that \S) is the highest payoff & under the assumption that none of the
other factories treats its was

b. Find the conditions under which the game has a nonempty core and the conditions under which the core is
singleton

c. Discuss the interpretation of the core of this game, taking into account that the defini{i§mnadkes
assumptions about the behavior of the players ouS.
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13.3 Nonemptiness of the Co

We now derive a condition under which the core of a coalitional game is nonempty. Since the core is defined
system of linear inequalities such a condition could be derived from the conditions for the existence of a <

a general system of inequalities. However, since the system of inequalities that defines the core has a specic
structure we are able to derive a more specific conc

Denote by the set of all coalitions, for any coaliti®@denote byR® the §-dimensional Euclidian space in which
the dimensions are indexed by the membesS, and denote bls € R¥ the characteristic vector S given by

(1 ifieS
l:1‘5':“_{& otherwise.

A collection(As)sec of numbers in [0,1] is balanced collection of weightsf for every playeii the sum of over
all the coalitions that contairis1* ZsecAsls = In_As an example, leN| = 3. Then the collection\() in which
As =3 if |§ = 2 and\ = O otherwise is a balanced collection of weights; so too is the collegfiom \WhichA =1

if |9 = 1 and\, = 0 otherwise. A gam{™:v} is balancedif 2sec As¥(S) < ¥(N) for every balanced collection of
weights

One interpretation of the notion of a balanced game is the following. Each player has one unit of time, which
must distribute among all the coalitions of which he is a member. In order for a cdatiitwe active for the

fraction of timeA, all its members must be activeStor this fraction of time, in which case the coalition yields

the payoffAv(S). In this interpretation the condition that the collection of weights be balanced is a feasibility

condition on the players' allocation of time, and a game is balanced if there is no feasible allocation of time th
yields the players more thiv(N).

The following result is referred to as the Bonda-Shapley theorer

* Proposition 262.:

A coalitional game with transferable payoff has a nonempty core if and only if it is ba.
Proof.

Let{V,v) be a coalitional game with transferable payoff. Firsk le¢ a payoff profile in the core {¥:v} and let
(As)sec be a balanced collection of weights. T

Y As0(S) < 3 Asz(8) =D m Y As =) 7 =v(N),
iEN

Sec Sec iEN 8ai

so thaV,v) is balance«
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Now assume thd™:v} is balanced. Then there is no balanced colledAs)sec of weights for which
2 secAs¥(5) > v(N) Therefore the convex sl(1v,¢(N) +¢) € RIN*1:¢ > 0} i5 disjoint from the convex co

{v e RWHy = %" As(15,v(S)) where As > 0 for all S €C},
Fec

since if not thel® = Lsec As1s, so thalAs)sec is a balanced collection of weights csec As¥(8) > v(N) Thys
by the separatin% hyperplane theorem (see, for example, Rockafeller (1970, Theorem 11.3)) there is a nonze
vector(en,e) € RIM xR gych the

(an,a) -y 20> (an,a) - (1n,v(N) +¢) (263.1)

for all y in the cone and ae > 0. Since (1, v(N)) is in the cone, we hawe< 0.

Now letx = a,/(-a). Since (1, V(9) is in the cone for a§ € €, we havex(S) = z-1s 2 v(S) by the lefthand
inequality in (263.1), an¥(N} 2 1z = z(N) from the righthand inequality. Adding a vector of nonnegative
numbers tcx to getv(N) = x(N), we obtain a payoff profile that is in the corelN,v).

» Exercise 263.

LetN = {1,2,3,4}. Show that the gant¥:v)} in whict
1 fS=N

v(8) = { § i5={1,2}, {1,3}, (1,4}, or {2,3,4}
0 otherwise

has an empty core, by using the fact that there exists a balanced colAs)secof weights in which\, = 0 for all
coalitionsS that are not equal to {1, 2}, {1, 3}, {1, 4}, or {2, 3, ¢

13.4 Markets with Transferable Payof
13.4.1 Definitior

In this section we apply the concept of the core to a classical model of an economy. Each of the agents in the
economy is endowed with a bundle of goods that can be used as inputs in a production process that the agel
operate. All production processes produce the same output, which can be transferred between the agent:

a market with transferable payoff consist

* a finite seiN (the set oagent)
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* a positive integet (the number of input gooc
« for each ageri € N a vectol€ R} (theendowmer of agenti)

« for each ageri. € N a continuous, nondecreasing, and concave fundfe R = Ry (theproduction functiorof
agenti).

An input vecto is a member cmﬂ-; a profile(#)ien of input vectors for whiclien % = Zien wi is anallocatior.

In such a market the agents may gain by cooperating: if their endowments are complementary then in order t
maximize total output they may need to exchange inputs. However, the agents' interests conflict as far as the
distribution of the benefits of cooperation is concerned. Thus a-theoretic analysis is called f

We can model a market with transferable pafi¥:& (ws), (£)) as a coalitional game with transferable pa{¥:v}
in whichN is the set of agents and for each coaliS we havi

v(S) = max {Z.ﬂ(zﬂ:m eR}and ) z -Zm}- (264.1)
Hlies | ies ies ied

That is,v(s) is the maximal total output that the memberS o&n produce by themselves. We definedire of a
market to be the core of the associated coalitional g

Note that our assumptions that all agents produce the same good and the production of anySis
independent of the behavior N\S are essentiz

13.4.2 Nonemptiness of the C¢

We now use the Bondarexahapley theorem (262.1) to show that every market with transferable payoff has a
nonempty cor

* Proposition 264.:
Every market with transferable payoff has a nonempty.
Proof.

Let{N, 4 (ws), (fs)) be a market with transferable payoff and¥: ¥} be the coalitional game defined in (264.1). By
the BondarewShapley theorem it suffices to show tiV,) is balanced. LdAs)see be a balanced collection of
weights. We must show th2=sec As?(S) £¥(¥) For each coalitios let (%' )ies be a solution of the problem

(264.1) definingv(S). For eaclie N let % = Xsec,s3A5%  We hav

ICEDIEDY ﬁsff=zzlszf=szﬂﬁsz;f=

iEN iEN SeC, 83 FeCiesd ies
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Elszuu=zwi Z }-5-=ZH‘£|

SeC  icS iEN  SeC,5ai iEN

where the last equality follows from the fact t{As)sec is a balanced collection of weights. It follows from the
definition ofv(N) that?(N) 2 Lien fi(21): the concavity of each functidnand the fact that the collection of
weights is balanced implies t|

E Y23 3 AshE) =" Al = E Asv(S),

iEN SeC, 534 BeC 4§
completing the proc
* Example 265.:

Consider the market with transferable payoff in WiN = K U M, there are two input gooff = 2), wi = (1,0) jf
i€ K, w=(0,1)ifi € M, andf(a, b = min{a, b} for everyi € N. Thenv(§) = min{|KnS|,|MNS|} By Proposition
264.2 the core is nonempty. K| |< M| then it consists of a single point, in which each ageltreceives the
payoff of 1 and each agenthhreceive the payoff of O; the proof is identical to that for the market with an
indivisible good in Example 260

* Exercise 265.

Consider the market with transferable payoff like that of the previous example in which there are fivevagents,

w, = (2, 0), andv, = w, =w, = (0,1).

a. Find the coalitional form of this market and calculate the

b. Suppose that agents 3, 4, and 5 form a syndicate: they enter coalitions only as a block, so that we have
threeplayer game. Does the core predict that the formation of the syndicate benefits its members? Interpr

your answe

15.4.3 The Core and the Competitive Equilit

Classical economic theory defines the solution of "competitive equilibrium” for a market. We now show that tf

core of a market contains its competitive equilil

We begin with the simple case in which all agents have the same production féaatibinere is only one input.
Let«@* = Zienw/IN| the average endowment. Given the concavity thie allocation in which each agent rece

the amounty’ of the input maximizes the total output. Ipete the slope of a tangent to the production function a

w' and letg be the aide function with sloge for whichg(w') = f(w') (see Figure 266.1). Thdg(wi))ien is in the
core sinc
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9(z)
f(z)

I
I
I
I
1
1

0 w* &=
Figure 266.1
The production function f of each agent and the
function g in a market in which there is a single ir

u(8) = [51f(Eiesw)/I5]) < IS19((Eies wi)/15]) = Lies 9lwn) and
v(N) = [N|F((Eien wi)/INT) = |N|f(w*) = [N|g(w") = Xien 9(wi),

The payoff profildg(wi))iex can be achieved by each agent trading input for output at thepp(each unit of
input costg” units of output): if trade at this price is possible then aigeratximizes his payoff by choosing the
amountz of input to solve mai(2)-p’(z-w)), the solution of which isy". In terms of the next definition, the pair
(p*, (2)ien) wherezi =w" for alli € N is a competitive equilibrium of the mark

We define acompetitive equilibrium of a market with transferable payoff as a [P (2)ie¥) consisting of a

vector?” € R} (the vector ofnput price$ and an allocatio(zi)ien such that for each ageanthe vectog solves th
problern

ﬂﬁ(ﬂ(zﬂ —p* (% —wy)). (266.1)

If (#*:(z2)ien) is a competitive equilibrium then we referfs(2f) —p*(2 = wi), the value of the maximum in (266.

as acompetitive payoff of agent. The idea is that the agents can trade inputs at fixed prices, which are expres
in terms of units of output. If after buying and selling inputs agkatds the bundle then his net expenditure, in
units of output, i9*(z - w); he can producHz) units of output, so that his net payoff(g) - p'(z - w). A price
vectorp” generates a competitive equilibrium if, when each agent chooses his trades to maximize his payoff,
resulting profilel#)ien of input vectors is feasible in the sense that it is an alloc
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We now show that any profile of competitive payoffs in a market with transferable payoff is in tl
* Proposition 267..

Every profile of competitive payoffs in a market with transferable payoff is in the core of the.
Proof.

Let (N4, (wi), (£} be a market with transferable payoff,{N.t) be the associated coalitional game(®*, (2 )ien)

be a competitive equilibrium of the market, and assume contrary to the result that the ﬁrofile of associated
competitive payoffs is not in the core. Then there is a coalimmd a vectolz)ies such thad-ies % =Y ies%i and
Lies filz) > gesffif’-? ) —p*2} +p"wi) |t follows thatlies(filz) — p*&) > Ties(fiz!) = ") and hence for at least
one ageni € § we havefilz) — p*z > fi(2}) - p*2 contradicting the fact th# is a solution of (266.1). Finally,
v(N) = Lien fil#]) since for anf®dien such thaZiien % = Lien i we have

ZEEN .f{{z-l} = E{EH{I‘(z:} - thz +P""i} = ZiEN -f‘{z::l

Proposition 267.1 provides an alternative route to show that the core of a market with transferable payoff is
nonempty, since every market with transferable payoff has a competitive equilibrium, as the following Exercis
shows

* Exercise 267.

Let{N, & (i), (£:)) be a market with transferable payoff in which every componesien “ is positive, let
Xi = {(z,m) €R§ x Reyi < fil=)} for eacti € N, and lef{zi hen be a solution ¢

max {z fu(z):subject to S % EE”‘}'

{shen | iy iEN

Show that the coefficients of the hyperplane that SGpEZtEN,X* from{(zv) € R x R:z < Ty 2f and
v 2 Xien fil21)} define competitive price

The notion of competitive equilibrium is intended to capture a world in which the bargaining power of each ag
is small. In a market that contains only a few agents some may have strong bargaining positions, and the cor
contain outcomes very different from the competitive equilibrium. However, in a large market, where each ag
action has only a small effect on the outcome, we might expect the core to contain only outcomes that are
the competitive equilibrium. The following Exercise illustrates this idea in a special case; in Section 13.6.2 we
study the idea in a more general con
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* Exercise 268.

(A production economyet (M & (), (f)) be a market with transferable payoff in which

N={1..,k+1}, £ =2 wy =(1,0),w; =(0,1) fori # 1 andf =f for alli € N, with f(0, m) = 0 for allm, {1,0) = 0,
andlimm-.cs f(1,m) < 00, Suppose that the input goods are indivisible. The associated coalitional game is the s:
as that in Exercise 259.3. Show that fole >0 there is an integé*(€) such that for al > k*(€) no member of the
core gives player 1 a payoff less tlf(1,k) — €. Give an economic interpretation of this re:

13.5 Coalitional Games without Transferable Payo

In a coalitional game with transferable payoff each coal@ancharacterized by a single numbg), with the
interpretation tha¥(S) is a payoff that may be distributed in any way among the memb&ri\t# now study a
more general concept, in which each coalition cannot necessarily achieve all distributions of some fixed payc
rather, each coalitioS is characterized by an arbitrary V(S) of consequence

* Definition 268.z

A coalitional game (without transferable payoff) consists

« a finite seiN (the set oplayers)

« a selX (the set oconsequence)

« a functionV that assigns to every nonempty sulS of N (acoalition) a se¥(S) € X
« for each playei € N a preference relaticsi on X.

Any coalitional game with transferable pay{¥: v} (Definition 257.1) can be associated with a general coalitiona
gametM: X,V (Ziien) as follows X =RY, V(8) = {z € RY: e 2: = v(S) andx = 0 if § €N\ 5} for each coalitiol

S andZ Zi ¥ if and only if#: = %. Under this association the set of coalitional games with transferable payoff is
subset of the set of all coalitional gan

The definition of the core of a general coalitional game is a natural extension of our definition for the core of ¢
game with transferable payoff (Definition 258

* Definition 268.z

Thecore of the coalitional gamd, V. X, (Ziien) is the set of az € V(N) for which there is no coalit®and
y € V(S) for whichy >« z for alli € S.

Under conditions like that of balancedhess for a coalitional game with transferable payoff (see Section 13.3)
core of a general coalitior
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game is nonempty (see Scarf (1967), Billera (1970), and Shapley (1973)). We do not discuss these conc

13.6 Exchange Economit
13.6.1 Definition:

A generalization of the notion of a market with transferable payoff is the followingxé&mange economy
consists @

* a finite seiN (the set oagent)
* a positive integet (the number of good

« for each ageri € N a vectoii € R{ (theendowmer of agenii) such that every componentz:ie:«r*-JIII IS positive

« for each ageri € N a nondecreasing, continuous, and geasicave preference relati&a over the seR% of
bundles of good

The interpretation is thad is the bundle of goods that agewotvns initially. The requirement that every

component 02-ieN @i be positive means that there is a positive quantity of every good available in the economn
Goods may be transferred between the agents, but there is no payoff that is freely tra

An aIIocatLon is a distribution of the total endowment in the economy among the agents: that is, {Zienle
with 2 € R} for all § € N andZien 2 = Zien “. A competitive equilibrium of an exchange economy is a pair

(7", (=1 )ien) consisting of a vect®* € B% with p* # 0 (theprice vector) and an allocatid® )en such that for ea
agenti we havep*#i < p*wi anc

z; i« for any z; for which p*z; < p uy. (269.1)
If (#*)(z2)ien) is a competitive equilibrium thel#ilen is acompetitive allocatior.

As in the case of a competitive equilibrium of a market with transferable payoff, the idea is that the agents ca
trade goods at fixed prices. Here there is no homogeneous output in terms of which the prices are expres

we can think ofj as the "money" price of gogdGiven any price vectq, each ageritchooses a bundle that is
most desirable (according to his preferences) among all those that are affordable (i.®: < p<)). Typically

an agent chooses a bundle that contains more of some goods and leas of others than he initially own: he "de
some goods and "supplies.qgif" others. The requirement



Page 27

Dl

Figure 270.1
An Edgeworth box, illustrating an exchange economy in which there are
two agents and two goods. A competitive equilibrium price ratio is given by
the slope of the line throughand X; X" corresponds to a competitive
allocation. The core is the set of all allocations that correspond to points
on the line joining y' and y

definition of competitive equilibrium that the profile of chosen bundles be an allocation means that for every ¢
the sum of the individuals' demands is equal to the sum of their su

A standard result in economic theory is that an exchange economy in which every agent's preference relatior
increasing has a competitive equilibrium (see, for example, Arrow and Hahn (1971, Theorem 5 of). pNdt&9)
that an economy may possess many such equi

An exchange economy that contains two ageN{s<R) and two good? = 2) can be conveniently represented
diagram like that in Figure 270.1, which is known ag&dgeworth boxBundles of goods consumed by agent :
measured from the origi@* in the bottom left, while bundles consumed by agent 2 are measured from the orig
O? in the top right. The width of the box formed by the two pairs of axes is the total endowment of good 1 in t
economy and the heig

1 Arrow and Hahn's result is for the more general notion of an economy with production. To apply it here, let the production set
of each firmf be; = {0}. Note that if every agent's preference relation is increasing then every agent is resource related (in the
sense of Arrow and Hahn) to every other ag
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of the box is the total endowment of good 2. Thus each pathe box corresponds to an allocation in which
agent receives the bundlemeasured fron®’; the point labeled corresponds to the pair of endowments. The
curved lines labelet andl'areindifference curvesf agent: if x andy are points on one of these curves then

z ~; ¥. The straight line passing throughandx' is (relative toO') the set of all bundles for whichpx = pw. The
pointX" corresponds to a competitive allocation since the most preferred bundle dfiaghatse{xﬂlm < pun}

is X" when measured from orig®. The ratio of the competitive prices is the negative of the slope of the straigh
line throughw andx’.

An exchange economy is closely related to a market (as defined in Section 13.4). In a market, payoff can be
directly transferred between agents, while in an exchange economy only goods can be directly transferre
model an exchange economy as a coalitional game without transferable payoff. Precisely, we associate the

exchange econontM & (), () with the coalitional gamtN, X, V; (<)) where

o« X = {(z)ien:2; € R for all i € N}-
- V(8) = {(adien € X:3oies % = Lies W andx = o for all § €N\ S} for each coalitiors

« each preference relati&i is defined by(#idien X (us)sen if and only if%i i v,

The third condition expresses the assumption that each agent cares only about his own consumption. We de
core of an exchange economy to be the core of the associated coalition

15.6.2 The Core and the Competitive Equilit

For the coalitional gamiN: XV, (Z4)) associated with the exchange econd: & (ws), (%4)) the sew(N) is the set

of all allocations and for ead € N we haveV({s}) = {{ws)ien}. Thus the core of a twagent economy is the set

all allocationd®:)ien such thaZs Xi @i for each agerjtand there is no allocatid®i)sen such tha®s >3 %i for both
agentg. For example, in the Edgeworth box in Figure 270.1 the core corresponds to the locus of points in the
bounded by', andl, for which an indifference curve of agent | and an indifference curve of agent 2 share a
common tangent (i.e. it is the curved line passing thrgugh andy.gif"). In particular, the core contains the
competitive allocation. We now show that this is a general pro
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* Proposition 272.:
Every competitive allocation in an exchange economy is in th.
Proof.

LetE = {N,4 (), (Z4)) be an exchange economy, ®":(z})ien) be a competitive equilibrium & and assume
that(z$)ien is not in the core dE. Then there is a coalitidBand(¥)ies with Zies¥ = Lies®i such thaw > =i
for alli € §; using (269.1) we havygy, > p'w for alli € 8. HenceP” Liesth > P" Liegwi contradicting

Dies ¥ = Dies W,

Note that it follows from this result that an economy that has a competitive equilibrium has a nonen

By examining an Edgeworth box we can see that in agman tweagent economy the core may be large.
However, we now show that as the number of agents increases, the core shrinks to the set of competitive
allocations. That is, in a large enough economy the predictions of the competitive equiHarconcept that is
based on agents who trade at fixed prease very close to those of the cera concept that is based on the
ability of a group of agents to improve its lot by forming an autonomous subeconomy, without reference to pr
Put differently, in a large enough economy the only outcomes that are immune to deviations by groups of age
are competitive equilibrium allocatiol

To state the result precisely, Ebe an exchange economy in which therenaagents. For any positive inteder
let KE be the economy derived froin which there ar&n agents—k copies of each agent i We refer to an
agent in KEwho is a copy of agemtn E as being ofype i =1(j). The comparison between the cordeaind that
of KE is facilitated by the following rest

e Lemma 272..

(Equal treatment in the coregt E be an exchange economy in which the preference relation of every agent is
increasing and strictly quagioncave, and let k be a positive integer. In any allocation in the core of KE all ager
of the same type obtain the same bt.

Proof.

Let B = {N,&,(ws), (Z4)} and letx be an allocation in the core kiE in which there are two agents of typevhose
bundles are different. We now show that there is a distribution of the endowment of the coalition consisting o
worstoff agent of each type that makes every member of the coalition better off than keRsacisely, for each
typet select one agerit, in KE who is least well off (according %t) in x among all agents of tygeand letS be

the coalition (of sizel|) of these agents. For each typet z be the average bundle of the agents
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of typet in the allocatior® # = Lutn=%1/% Then we ha
. EteNzl = EzeN W

% e i, (otherwise # =t Zj whenever(j) = t, so that by the quasbncavity oft we haves =t z, a
contradiction)

«#* == T, (by the strict qua-concavity of the preference relatiol

That is, () it is feasible for the coalitioBto assign to each agei € § the bundlex (j) (since
Yjes Buli) = Leen 2 = Ljes “4), (ii) for every ageni € S the bundlen(j) is at least as desirablexasand i) for
the ageni € § of typet” the bundlex (j) is preferable tox.

Since each agent's preference relation is increasing we can modify the alllzekemiby reducing”™s bundle by
a small amount and distributing this amount equally among the other memBess thfat we have a profil#)en

with Zeen 2 = Lien e and®m ) %i for all § € 8. This contradicts the fact thx is in the core okE.

Given this result, for any positive integewe can identify the core &E with a profile of N| bundles, one for ea
type. Under this identification it is clear that the cor&Bfs a subset of the core Bf We now show that the core
of KE shrinks to the set of competitive allocation:E as k increase

* Proposition 273.:

Let E be an exchange economy in which every agent's preference relation is increasing and stri-concave
and every agent's endowment of every good is positive. Let z be an allocation in E. If for every positive intege
the allocation in KE in which every agent of each type t receives the buisdie the core of KE then x is a

competitive allocation of.

Proof.

Let E= (N, &, {wi), (Z4)). Let

Q= {Zﬂ;z.:zg. =1,04 >0, and z 4 wi ¢ 2 for aIlt} .
tEN tEN

Under our assumptions on preferen@ds convex. We claim thd ¢ @. Suppose to the contrary tt0 = Lien e
for some (1) and g) with Zeen @ =1, & 2 0, andz +w: = 2 for alk. Suppose that eveny is a rational

number. If not, we need to do some approximation.) Choose an itégere enough tha€a, is an integer for all

t, letSbe a coalition ifKE that consists dKa, agents of each tygeand letx,_ (i) + w for eachi € §. We have
2ies T = Laen Kowze +
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2iesWi = LiesWi andzi =i Zifor alli € 8§, contradicting the fact thix is in the core oKE.

Now by the separating hyperplane theorem (see, for example, Rockafeller (1970, Theorem 11.3)) there i<
vectorp € R® such thapz 2 0 if 2 € Q. Since all the agents' preferences are increasing, each unit vectQr(isua
z =%-w + |, anda, = 1/|N| for each, where ], is themth unit vector irR¢). Thusp = 0.

We now argue that # =i i for somei € N thenpy > pw, so that by (269.1§ is a competitive allocation &.
Suppose thet =i Zi. Thenwi—ws € @, so that by the choice pfwe havery 2 poi. Furthermorefu: =i i for some
0 < 1, so thaw —ws € @ and henclpw = pwi; alsopw > 0 since every component@fis positive. Thugy, > pw.

In any competitive equilibrium &KE all agents of the same type consume the same bundle, so that any such
equilibrium is naturally associated with a competitive equilibriurg.dfhus the result shows a sense in which the
largerk is, the closer are the core and the set of competitive allocatikE.

* Exercise 274.

Consider an exchange econoBin which there are two goods and two agents; agent 1's endowment is (1,0) a
her preferences are represented by the utility fungtiex,, while agent 2's endowment is (0,1) and his
preferences are represented by the utility function xinf}. For each positive integéefind the core and set of
competitive allocations «E.

Notes

The notion of a coalitional game is due to von Neumann and Morgenstern (1944). In the early 1950s Gillies
introduced the notion of the core as a tool to study stable sets (his work is published in Gillies (1959)); Sh
Shubik developed it as a solution concept. Proposition 262.1 is due to Bondareva (1963) and Shapley (1967,
idea of modeling markets as coalitional games is due to yon Neumann and Morgenstern (19445&4), i88a:
developed by Shapley and Shubik (see, for example, Shapley (1959) and Shubik (1959a)). Proposition 2!

to Shapley and Shubik (1969a). The idea of generalizing a coalitional game to situations in which payoff is nc
transferable is due to Shapley and Shubik (1953) and Luce and Raiffa (1957,-gB523t%e formulation that we
describe is due to Aumann and Peleg (1¢
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Scarf (1967), Billera (1970), and Shapley (1973) discuss the nonemptiness of the core of a coalitional game
without transferable payoff. The relation between the core and the set of competitive equilibria of an econom
first noticed by Edgeworth (1881, pp.-39). The relation between Edgeworth's work and modem notions in gar
theory was recognized by Shubik (1959a). Proposition 273.1 is due to Debreu and Scarf (1963); for a dia
proof for a tw-agent tw-good economy see Varian (1992, pp.-392)

Example 259.2 is due to Shapley (inspired by the 1948 nitnaeTreasure of the Sierra Madrdhe game in
Exercise 259.3 is analyzed by Shapley and Shubik (1967). The market in Example 260.1 is studied by Shapl
(1959). Exercise 260.4 is taken from Shapley (1971/72), Exercise 261.3 from Shapley and Shubik (1969b),
Exercise 265.2 from Postlewaite and Rosenthal (1974), and Exercise 268.1 from Owen (1982, Theore

Aumann (1989) contains an introduction to the theory of coalitional games. Other references include Owe
Shubik (1982), Moulin (1986, 1988), Friedman (1990), and Myerson (:

Aumann (1964) provides an alternative formulation of Edgeworth's idea that the core converges to the set of
competitive equilibria in a large economy: he studies a model in which there is a continuum of agents and sh:
that the core coincides with the set of competitive equilibria. Axiomatizations of the core are surveyed by Pels
(1992)
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14
Stable Sets, the Bargaining Set, and the Shapley Va

In contrast to the core, the solution concepts we study in this chapter restrict the way that an objecting coaliti
may deviate, by requiring that each possible deviation either itself be a stable outcome or be balanced by a
counterdeviation. These restrictions yield several solutions: stable sets, the bargaining set, the kernel, the
and the Shapley valt

14.1 Two Approache

The definition of the core does not restrict a coalition's credible deviations, beyond imposing a feasibility
constraint. In particular it assumes that any deviation is the end of the story and ignores the fact that a deviat
may trigger a reaction that leads to a different final outcome. The solution concepts we study in this chapter
consider various restrictions on deviations that are motivated by these consid:

In the first approach we study (in Section 14.2), an objection by a coalition to an outcome consists of an alter
outcome that is itself constrained to be stable. The idea is that a deviation by a coalition will lead via some
sequence of events to a stable outcome and that a coalition should choose to deviate on the basis of the ultir
effect of its action, not the proximate effect. This stability condition isreédfential: a stable outcome has the
property that no coalition can achieve some other stable outcome that improves the lot of all its

In the second approach (studied in Sections 14.3 and 14.4) the chain of events that a deviation unleashes is
short after two stages: the stability condition is that for every objection to an outcome there is a balancing
counterobjection. Different notions of objection and countgection give rise to a number of different solution
concepts
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The arguments captured by the solution concepts in this chapter are attractive. Nevertheless, it is our impres
that there are few persuasive applications of the concepts. Consequently we simply describe the concepts, d
their interpretations, and give simple examples. Throughout we restrict attention to coalitional games with
transferable payo

14.2 The Stable Sets of yon Neumann and Morgensts

The idea behind the first solution concept we study is that a coditluat is unsatisfied with the current division
of v(N) cancredibly object by suggestingsdabledivisionx of v(N) that is better for all the members®&and is
backed up by a threat to implemd{#ilies  on its own (by dividing the w¢@ramong its members). The logic
behind the requirement that an objection itself be stable is that otherwise the objection may unleash a proces
involving further objections by other coalitions, at the end of which some of members of the deviating coalitio
may be worse of

This idea leads to a definition in which a set of stable outcomes satisfies two conditifumse\ery outcome that
is not stable some coalition has a credible objectionignalo( coalition has a credible objection to any stable
outcome. Note that this definition is sreferential and admits the possibility that there be many stabl

We now turn to the formal definition. L{V:%)  be a coalitional game with transferable payoff. As in the previol
chapter we assume ti¥,v} is cohesive (see Definition 258.1). Anputation of {¥.%} is a feasible payoff profil

x for which#i = v({i}) for all i € ¥; let X be the set of all imputations {¥:v). We first define objections (which

are not necessarily credibl

* An imputationx is anobjection of the coalitionSto the imputationy if x, >y, for alli € § andi € N, in which
case we Writ& >s v.

(In the literature it is sometimes said thatdfbminates via S' if x is an objection o8toy.) SincelV: v} is
cohesive we have =s ¥ if and only if there is a8-feasible payoff vectd®i)ies for whichx >y, for alli € S. The
core of the gam{V,?) is the set of all imputations to which there is no objecti¥ € X: there is no coalitiols
and imputatiorx for whichz =s ¥}. The solution concept we now study is defined as foll
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* Definition 279.1

A subsety of the seX of imputations of a coalitional game with transferable paiVst) is astable seff it
satisfies the following two conditior

Internal stability If ¥ € ¥ then for ncz € ¥ does there exist a coalitiS for whichz >s v.
External stabilit If # € X\Y then there existv € ¥ such thay *s z for some coalitiorS.

This definition can be written alternatively as follows. For anyrsgftimputations 1eP(Y) be the set of
imputationsz for which there is a coalitioBand an imputatio¥ € ¥ such thav *s 2. Then internal and external
stability are equivalent to the conditicY’ € X \ P(¥) andY 2 X\ P(Y), so that a sef of imputations is a stable
set if and only it = X\ D(Y),

While the core is a single set of imputations, a game may have more than one stable set (see the examples |
or none at all (as shown by the complex example in Lucas (1969)); each such set may contain many imputat
Von Neumann and Morgenstern (1944) interpret each stable set as correspondiagdara of behaviothe

idea being that all the imputations in any given stable set correspond to some mode of behavior while imputa
in different stable sets correspond to different modes of bel

Some simple properties of stable sets are given in the following
* Proposition 279.:

a.The core is a subset of every stable Isd¥lo stable set is a proper subset of any atbdf the core is a stable
set then it is the only stable .

Proof.

a. Every member of the core is an imputation and no member is dominated by an imputation, so the result fol
from external stabilityb. This follows from external stabilit:c. This follows from (a) and (k

* Example 279.:

(The threeplayer majority gameConsider the gam{{1,2:3}v) in whichv(S) = 1 ifI8] 2 2 andv(S) = 0 otherwise.
One stable set of this gam:

Y ={(1/2,1/2,0),(1/2,0,1/2),(0,1/2,1/2)}.

This corresponds to the "standard of behavior" in which some pair of players shares equally the single unit of
payoff that is available. The internal stabilityYofollows from the fact that for ak andy in Y only one player
prefersx toy. To check external stability, letbe an imputation outsidé Then there are two playerand] for

whorr
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% < and% < %, so that there is an imputationY that is an objection ofi, j} to z.

For any¢ € [0:3) and anyi € {1,2,3} the se
Yie={zeX:zi=¢}

is also a stable set of the game. This corresponds to a "standard of behavior" in which one of the players is s
out and given a fixed payoff. The internal stabilityvpffollows from the fact that for anyandy in the set there

only one player who preferstoy. To show the external stability &f_ leti = 3 and lez be an imputation outside
Y,. If z>cthenz +z < 1- c and there exis€ € Ys.c such thak, >z andx, >z, so tha® >3} 2. If z, < c and,
say,21 < z2 then(l —€.0,¢) =11,3) 2.

* Exercise 280.

(Simple gaméd_et{V,v) be a simple game (see Exercise 261.1) Tl a minimal winning coalition (a winning
coalition that has no strict subset that is winning). Show that the set of imputations that assign 0 to all pla
Tis a stable se

* Exercise 280.

(A market for an indivisible go() For the market described in Example 260.1 VBl 2 |E| show that the s
Y={zeX:z;=2z;ifi,jeLorije B},

is a stable set; interpret

* Exercise. 280.

(Threeplayer gamegsFor a threglayer game the set of imputations can be represented geometrically as an
equilateral triangle with heigh{N) in which each point represents the imputation whose components are the
distances to each edge. (Thus the comers correspond to the three imputations thgt\adsigrsingle player.)

Use such a diagram to find the general form of a stable set of thepthyee game in which({1, 2}) = B < 1,v

({1, 3}) = v({1, 2, 3}) =1, andv(S = 0 otherwise. We can interpret this game as a market in which player 1 is a
seller and players 2 and 3 are buyers with reservation Valalesd 1 respectively. Interpret the stable sets of the
game in terms of this mark

* Exercise 280.

Playeri is adummy in (V. v) if »(SU {i}) = v(S) =v({i}) for every coalitiorSS of whichi is not a member. Show that
if playeri is a dummy i, v} then his payoff in any imputation in any stable sv({i}).

* Exercise 280.

Let X be an arbitrary set (of outcomes) andddie a binary relation oX, with the interpretation that ¥ D ythen
X IS
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an objection of some coalitidhto y. Generalize the definition of stable sets as follows. ThY € X of outcome
is stable if it satisfies the following two conditio

Internal stability If ¥ € ¥ then there exists rz € ¥ such thaz D .
External stabilit If 2 € X\Y then there existv € ¥ such thay D :.

Consider an exchange economy (see Section 13.6) in which there are two goods and two a¥drgshieetet c
all allocationsx for whichi Zi wi for each agerit Define the relatio by x D yif both agents prefex toy. Show
that the only (generalized) stable set is the core of the ecc

14.3 The Bargaining Set, Kernel, and Nucleolt

We now turn to the second approach that we described at the start of the chapter. That is, we regard an (

a coalition to be convincing if no other coalition has a "balancing" counterobjection; we do not require the
objection or counterobjection to be themselves stable in any sense. We study three solution concepts that dif
the nature of the objections and counterobject

14.3.1 The Bargaining Si

Let x be an imputation in a coalitional game with transferable pd¥.v). Define objections and
counterobjections as follov

* A pair (y, 9, whereSis a coalition ang is anS-feasible payoff vector, is avbjection of i againstj to x if S
includesi but notj andy, > x, for allk € 8.

* A pair (z, T), whereT is a coalition ana is aT-feasible payoff vector, is@unterobjection to the objection(y,
S) of i agains'j if T includesj but noti, zx = =« for allk € T\S, andzx = & for allk € TN S.

Such an objection is an argument by one player against another. An objectamainisi to x specifies a coalitio
Sthat includes but notj and a divisiory of v(S) that is preferred by all members®fo x. A counterobjection to
(y, 9 by| specifies an alternative coalitidnthat containg but noti and a division of(T) that is at least as good
y for all the members of who are also it and is at least as good»afor the other members @t The solution
concept that we study is defined as follc
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* Definition 282.1

Thebargaining setof a coalitional game with transferable payoff is the set of all imputatianih the property
that for every objectiory, S) of any playei against any other playj to x there is a counterobjection ty, <) byj.

The bargaining set models the stable arrangements in a society in which any argument that anngager
against an imputatioxtakes the following form: "I get too little in the imputatiwandj gets too much; | can
form a coalition that excludgsn which everybody is better off thanxh Such an argument is ineffective as fa
the bargaining set is concerned if playean respond as follows: "Your demand is not justified; | can form a
coalition that excludes you in which everybody is at least as well off as theyxaaadrthe players who
participate in your coalition obtain at least what you offer th

The bargaining set, like the other solution concepts in this section, assumes that the argument underlying an
objection for which there is no counterobjection undermines the stability of an outcome. This fact is taken
and is not derived from more primitive assumptions about the players' behavior. The appropriateness of the
solution in a particular situation thus depends on the extent to which the participants in that situation regard t
existence of an objection for which there is no counterobjection as a reason to change the

Note that an imputation is in the core if and only if no player has an objection against any other player; |
core is a subset of the bargaining set. We show later (in Corollary 288.3) that the bargaining set of every gan
nonempty

* Example 282..

(The threeplayer majority gamgeConsider the threplayer majority game. The core of this game is empty (see
Example 259.1) and the game has many stable sets (see Example 279.3). The bargaining set of the game is

singleton{(§-%-§1}, by the following argument. Letbe an imputation and suppose thaty is an objection of
againsj to x. Then we must hav@= {i, h}, whereh is the third player ang < 1- x (sincey, >x andy(S =w(S) =
1). Forj to have a counterobjection tp, @ we need +2;i =1 Thus forx to be in the bargaining set we require
that for all players, j, andh we have¥s = 1=2;j whenever, < 1- x, which implies thal =% = 1—2; orz; < i for

alli andj, so tha® = (3:$:3). Obviously this imputation is in the bargaining
* Example 282.:

(My aunt and ) Let{{1,2,3,4},v) be a simple game (see Exercise 261.1) in Wi{igh= 1 if and only ifS contains
one of



Page 28

the coalitions {2,3,4} or {1i} for .gif">. (Note that by contrast the core is emg

We saw (Example 265.1) that the competition inherent in the core can drive to zero the payoff of players holc
goods that are in excess supply. The following Exercise gives an example that shows how this intense comp
is muted in the bargaining <

* Exercise 283.

(A marke} Consider the coalitional game derived from the market with transferable payoff in Exercise 265.2.

Show that the bargaining set of this gamf{(es @ 8,8,8):0 <« < § and 21 + 33 = 3}. Contrast this set with the
core and give an interpretati

14.3.2 The Kerne

We now describe another solution that, like the bargaining set, is defined by the condition that to every objec
there is a counterobjection; it differs from the bargaining set in the nature of objections and counterobjections
are considered effecti

Let x be an imputation in a coalitional game with transferable pdN.v); for any coalitionScall &S, » = v(S) - x
(S theexcesof S. H the excess of the coaliti@is positive then it measures the amount 8ilads to forgo in
order for the imputatior to be implemented,; it is the sacrifice tis|ahakes to maintain the social order. If the
excess 05is negative then its absolute value measures the amount over and above the SidhSxbtains
when the imputatiox is implemented,; it iS's surplus in the social ord

A playeri objects to an imputatioxby forming a coalitiors that excludes some playjefior whomx > v({j}) and
pointing out the
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he is dissatisfied with the sacrifice or gain of this coalition. Plageunterobjects by pointing to the existence
coalition that containgbut noti and sacrifices more (&S, ¥ > 0) or gains less (#S, ¥ < 0). More precisely,
define objections and counterobjections as foll

* A coalition S is arbjection of i againstj to x if Sincludesi but notj andx > v({j}).

« A coalition T is counterobjection to the objectior S of i againsj if T includesj but noti ande(T:z) 2 (S, z),
* Definition 284.1

Thekernel of a coalitional game with transferable payoff is the set of all imputationih the property that for
every objectiorS of any playeli against any other playj to x there is a counterobjectionj to S.

For any two playersandj and any imputatior defines;(x) to be the maximum excess of any coalition that
containsi but notj:

35(z) = ?EE{E(S'I}:E €ESand jE N\ S}

Then we can alternatively define the kernel to be the set of imputz € Xssuch that for every pair, {) of
players eithe®i(z) 2 %;(z) or 25 = v({i})

The kernel models the stable arrangements in a society in which a player makes arguments of the following t
against an imputatioxt "Here is a coalition to which | belong that excludes plqyerd sacrifices too much (or
gains too little)". Such an argument is ineffective as far as the kernel is concerned if ptayezspond by saying
"your demand is not justified; | can name a coalition to which | belong that excludes you and sacrifices even |
(or gains even less) than the coalition that you ne

Note that the definitions of the core and the bargaining set do not require us to compare the payoffs o
players, while that of the kernel does. Thus the definitions of the former concepts can easily be extended to &
general coalitional gam™, X, V;(Zi)} (see Definition 268.2). For example, as we saw in Section 13.5, the core i
the set of alz € V(N) for which there is no coalitioB and¥ € ¥{5) for whichy *: z for all i € §. By contrast, the
definition of the kernel cannot be so extended; it assumes that there is meaning to the statement that the exc
one coalition is larger than that of another. Thus the kernel is an appropriate solution concept only in situatior
which the payoffs of different players can be meaningfully comg
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We show later that the kernel is nonempty (see Corollary 288.3). Its relation with the bargaining set is &
* Lemma 285.:
The kernel of a coalitional game with transferable payoff is a subset of the bargait.
Proof.
Let .gif">, so thatz, T) is a counterobjection tcy, <).
* Example 285..

(The threeplayer majority gamglt follows from our calculation of the bargaining set (Example 282.2), the
previous lemma (285.1), and the nonemptiness of the kernel that the kernel of tptayeeenajority game is

{353} To see this directly, assume tz1 2 z2 2 3, with at least one strict inequality. Thef(x) = 1- x, - X, >
1-x,-x =5s.(X) andx > 0 =v({1}), so thatx is not in the kernel.

* Example 285.:

(My aunt and ) The kernel of the game in Example 282 (3,530} , by the following argument.beecin
the kernel. By Lemma 285.1 and the calculation of the bargaining set of the game welfavea, a, a, a) for
somet < @ < § so thass,(x) = 20 ands,,(x) = 1-30. Since 1- 30 > 0 we nee¢(z) =2a 2 sn(z) =1-3a  or
a2 hence® = .

14.3.3 The Nucleolt

A solution that is closely related to the kernel is the nucleolus< hetan imputation in a coalitional game with
transferable payoff. Define objections and counterobjections as fc

* A pair (S, ) consisting of a coalitioS and an imputatioy is an objection tx if e(S, ) > €(S, ) (i.e.y(S) >x(9)).
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* A coalition T is acounterobjection to the objection(S, y if &T, y) >¢&(T, ¥ (i.e.x(T) > y(T)) and
e(T,y) = e(S,z),

* Definition 286.1

Thenucleolusof a coalitional game with transferable payoff is the set of all imputatiaih the property that
for every objectionS, Y) to x there is a counterobjection 1S, y).

As for the kernel the idea is that the excesSisfa measure @&s dissatisfaction with: it is the price thak pays

to toleratex rather than secede fros In the definition of the kernel an objection is made by a single player,
here an objection is made by a coalition. An object®nj(may be interpreted as a statemenSlof the form

"our excess is too large ) we suggest the alternative imputatiom which it is smaller". The nucleolus models
situations in which such objections cause outcomes to be unstable only if no cdataiomespond by saying

"your demand is not justified since our excess ugdetarger than it was undgrand furthermore exceeds unger
what yours was undef'. Put differently, an imputation fails to be stable according to the nucleolus if the exces:
some coalitiors can be reduced without increasing the excess of some coalition to a level at least as large
the original excess (.

This definition of the nucleolus, which is not standard, facilitates a comparison with the kernel and the bargai
set and is easier to interpret than the standard definition, to which we now show it is eq

For any |mE_utat|orx letS1,- -+, Saivi—y be an ordering of the coalitions for whie(Sez) = €(Se41,2) for

| = 2 and letE(X) be the vector of excesses definecEe(z) = (St 2) for all £ =1,...,2¥ =1 | etB,
(x),..., K(x) be the partition of the set of all coalitions in whi#hndS are in the same cell if and onlyeffS, ¥ =e
(S', . For anyS € Bel(z) let (S, ) = e(x), so thai,(x) > e,(x) > . .. >e(X).

We say thaE(x) is lexicographically less than(g) if Ee(z) < Ee(y) for the smallest for which Be(z) # Ee(y), or
equivalently if there exists such that for alk <k’ we haveB,(X)| = B(Y)| ande(x) = e(y), and eitherij e*(x) <

&x(y) or (i) 8*(x) = eX(y) and BX(X)| < BX(¥(-
e L.emma 286.:

The nucleolus of a coalitional game with transferable payoff is the set of imputations x for which the(xector E
lexicographically minime.
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Proof.

Let{N,v) be a coalitional game with transferable payoff and & an imputation for whicE(x) is
lexicographically minimal. To show thatis in the nucleolus, suppose th8t ) is an objection ta, so thai(S, y
< ¢S, 3. Letk” be the maximal value d&fsuch thag(x) = e(y) andB(x) = B(y) (not just B,(X)| = B,(y)| for allk <
K. SinceE(y) is not lexicographically less th&ifx) we have eitheri)e*(y) >e*(x) or (i) e*(x) = e*(y) and

|Bi= ()] 21Bi= ()], In either case there is a coalitT € Be=(¥) with e*(y) = &(T, y) > &(T, ¥. We now argue that
e(T,y) 2 €(8,2), so thafl is a counterobjection t&( Y. Sincee(S, ) < &S, ¥ we have® €Ui=1'Be(z) and hence
ex+(z) = (5, z); sinceer (V) = er-(z) we havee(T,y) 2 e(S,z),

Now assume thix is in the nucleolus and th&gy) is lexicographically less thd(x). Letk” be the smallest value
of k for whichB(X) = B(y) for allk <k and eitherij e*(y) <e*(x) or (i) e*(y) = e*(X) andBe-(¥) # Bx-(2) (and
hencdBi-(¥)| # |Bx+ (2)]). In either case there exists a coalit® € Be-(z)  for whi@li>S , y) <e(S, 3. Let

A € (0,1) and letz(A) = Ax + (1- A)y; we havex(R, Z7\)) = Ae(R, X + (1- A)e(R, y) for any coalitiorR. We claim
that the pair$, ZA)) is an objection ta for which there is no counterobjection. It is an objection si8eZA)) <
&S, 3. ForT to be a counterobjection we need be(ff, 1)) > (T, ¥ ande(T:2(3)) 2 e(S,2). However, ife(T, 2
(A) > &(T, ¥ thene(T, y) > &(T, ¥, which implies thaT ¢ Us=18x(z) and hence(S, 3 > &(T, ¥. Also, since

T ¢ Up ' Br(v) we havee(S,2) = ex-(2) 2 ex=(t) = e(T,¥). Thuse(S, ) > &(T, 2))). We conclude that there is no
counterobjection taS, i(A)).

The nucleolus is related to the kernel as folls

e Lemma 287.:

The nucleolus of a coalitional game with transferable payoff is a subset of the.
Proof.

Let{N,v} be a coalitional game with transferable payoff ana ket an imputation that is not in the kerne{N:v).

We show thak is not in the nucleolus ¢¥,v}. Sincex is not in the kernel there are playeendj for whichs(x) >
s (x) andx > v({j}). Sincex > v({j}) there existe > 0 such tha¥ = % + €l — €l s an imputation (where,lis
thekth unit vector); choosesmall enough thag (y) > s(y). Note thai(S, 2 <€(S, y if and only ifScontains but

notj ande(S, ¥ > (S, Y if and only ifScontaing but noti. Letk” be the minimal value d€ for which there is a
coalition € Bi-(2) with &(5,z) # €(S,). Sinces;(x) > s5,(x) the seB*(x) contains
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at least one coalition that containisut notj and no coalition that containsut noti. Further, for alk <k” we hav
B.(y) = B.(X) ande(y) = e(X). Now, if B*(X) contains coalitions that contain batandj or neither of them theg*

(y) =eX*(x) andBX(y) is a strict subset d@ *(x). If not, then since;(y) > s,(y) we haveg*(y) < €.(X). In both case
E(y) is lexicographically less th¢E(x) and hencix is not in the nucleolus NV, v},

We now show that the nucleolus of any game is none

* Proposition 288.:

The nucleolus of any coalitional game with transferable payoff is non.
Proof.

First we argue that for each valuekahe functiong, is continuous. This follows from the fact that for &nwye
have

Ep(z) = ']"EE:!iP-l SHEI%' e(S,z), (288.2)

where€® = {@} andc* for k = 1is the set of all collections &fcoalitions. Sincé, is continuous the set
Xy = argmin,¢ x E1(%) js nonempty and compact. Now, for each inté_= 1 defineXs+1 =argminzex, Bxya(2) By
induction every such set is nonempty and compact; Xai-1 is the nucleolus the proof is compl

This result immediately implies that the bargaining set and kernel of any game are nc
* Corollary 288.3

The bargaining set and kernel of any coalitional game with transferable payoff are nc.
Proof.

This follows from the nonemptiness of the nucleolus (Proposition 288.1) and the facts that the nucleolus i
of the kernel (Lemma 287.1) and the kernel is a subset of the bargaining set (Lemm

As we have seen above the bargaining set of a game may contain many imputations; the same is true of the
However, the nucleolus is always a singleton, as the following result :

* Proposition 288.:
The nucleolus of any coalitional game with transferable payoff is a sin.
Proof.

Let{N,v) be a coalitional game with transferable payoff. Suppose that the imputatindg are both in the
nucleolus, so thd(x) = E(y). We show that for any coalitiddwe havex(S, X = &(S, y) and hence, in particular,
for any playei we havee({i}, x) =e({i}, y), sc
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thatx = y. Assume there is at least one coaliibwith e(S*,z) #e(8*,) and consider the imputati@ = 2(z + ),
SinceE(x) = E(y) for all k we haves(x) = e(y) and B(X)| = B(y)| for allk. But sincee(S*,z) # e(S*,y) there
exists a minimal valuk of k for whichBe=(z) # Br=(¥). Now, if Bx+(z) N Bik+(y) # @ then

By+(z) = By+(z) N Bi=(y) C Bu=(z); if Ba+(2) N B+ (¥) = & thene*(2) <e*(X) =e*(y). In both caseE(2) is
lexicographically less theE(x), contradicting the fact thi is in the nucleolu

* Exercise 289.

(A production economyshow that the single imputation in the nucleolus of the game in Exercise 259.3, which

models a production economy with one capitalist\anabrkers, gives each workalf(w) = f(w - 1)] (Note that
since the nucleolus is a singleton you need only to verify that the imputation is in the nu

* Exercise 289.
(Weighted majority gam) A weighted majority game is a simple gam{:v} in whict

for somes € R andw € RY \wherew(5) = Lies Wi for any coalitiorS. An interpretation is that, is the number of
votes that playerhas andj is the number of votes needed to win (the quota). A weighted majority game is
homogeneousf w(S) = g for any minimal winning coalitios and iszerosumif for each coalitiorS eitherv(S) = 1
or v(N\ = 1, but not both. Consider a zerosum homogeneous weighted majorit{N; thie whichw, = 0 for
every playei who does not belong to any minimal winning coalition. Show that the nucled,thtonsists of
the imputatiorx defined byx =w/w(N) for all i € N.

14.4 The Shapley Valu

The last solution concept that we study in this chapter is the Shapley value. Following our approach in the
section we begin by characterizing this solution in terms of objections and counterobjections. Then we turn tc
standard (axiomatic) characterizat

14.4.1 A Definition in Terms of Objections and Counterobjecti

The solution concepts for coalitional games that we have studied so far are defined with reference to single ¢
in isolation. By contrast, the Shapley value of a given game is defined with reference
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games. It is an example ovalue—a function that assignsumiquefeasible payoff profile to every coalitional
game with transferable payoff, a payoff profile being feasible if the sum of its compongits {Jhe
requirement that the payoff profile assigned by the value be feasible is sometimeefficienc.)

Our first presentation of the Shapley value, like our presentations of the solutions studied in the previous
in terms of certain types of objections and counterobjections. To define these objections and counterobjectiol
{N,v) be a coalitional game with transferable payoff and for each coafitiefine thesubgamdS:v®) of (¥, ) to

be the coalitional game with transferable payoff in whigi) = v(T) for anyT' € S. Lety be a value. Ambjection
of playeri against playej to the divisiorx of v(N) may take one of the following two forr

« "Give me more since otherwise | will leave the game, causing you to obtaifi(diy}, VVii}) rather than the
larger payofix, so that you will lose the positive amouqi ,(N\{i}, Vi)™

*"Give me more since otherwise | will persuade the other players to exclude you from the game, causing me
obtainy,(N\{j}, v™'i}) rather than the smaller payoqf so that | will gain the positive amoui(N\{j}, Wb -x-*

A counterobjectio by playerj to an objection of the first type is an asse!

* "It is true that if you leave then | will lose, but ieave theryouwill lose at least as much:
24 = %N \ (THho"U) 2 25 - 9y(V\ i} o™ ) e

A counterobjectio by playerj to an objection of the second type is an ass¢

« "It is true that if you exclude me then you will gain, butéxcludeyouthen | will gain at least as much:
O3 (N \ {51 o™M\) — 25 > (N {5}, oMW — 2 g

The Shapley value is required to satisfy the property that for every objection of anyi piggerst any other
playerj there is a counterobjection of play.

These objections and counterobjections differ from those used to define the bargaining set, kernel, and n
that they refer to the outcomes of smaller games. It is assumed that these outcomes are derived from the
as the payoff of the game itself: that is,
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outcomes of the smaller games, like the outcome of the game itself, are given by the value. In this respect th
definition of a value shares features with that of stable

The requirement that a value assign to every game a payoff profile with the property that every objection is
balanced by a counterobjection is equivalent to the following cont

* Definition 291.1

A value satisfies thévalanced contributions property if for every coalitional game with transferable payoff
(N9} e hav

i N, v) = (N \ {5}, 0™ ) = gy (N, 0) — 95(V\ {5}, o™ )

whenevelf € N gndi €N

We now show that the unique value that satisfies this property is the Shapley value, defined as follows. F
themarginal contribution of playei to any coalitiorS with i€ 5 in the gam(”"'r"”'}I to be

Ay(S) = v(S U {i}) — »(S).
 Definition 291.2

TheShapley value ¢ is defined by the conditic

o) = 3 AdS(R) for each i € I,

where®R is the set of alN|! orderings oN andS(R) is the set of players precedinm the orderingR.

We can interpret the Shapley value as follows. Suppose that all the players are arranged in some order, all o
being equally likely. Theg (N, V) is the expected marginal contribution over all orders of platgethe set of

players who precede him. Note that the sum of the marginal contributions of all players in any orgé\ngas
that the Shapley value is indeed a v

* Proposition 291.:
The unique value that satisfies the balanced contributions property is the Shapl.

Proof.

First we show that there is at most one value that satisfies the properfyahdt)’ be any two values that satisfy
the condition. We prove by induction on the number of playersitlaaidy’ are identical. Suppose that they are
identical for all games with less tharmplayers and 1elVs¥) e a game with players. Since

N\ {3} D) = YN (h oMY anyi, 3 € ¥ we deduce from the balanced contributions property
Yi(N,v) = ¥i(N,v) = ¥;(N,v) _'I’;{Nlt"]
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for alli, 3 € ¥N_Now fixingi and summing oved € ¥ using the fact the 2ejen ¥i(V,0) = Ljen ¥3(N,v) = u(N),
we conclude the ¥iV:0) =¥iN.v) f5r gl ie N,

We now verify that the Shapley val@esatisfies the balanced contributions property. Fix a ¢t¥:¥). We show
that(bi(N, V) - ¢j(N| V) - ¢.(N\{J}1 VN\{j}) - ¢J(N\{ |}’ VN\{i}) for all i, JE N. The lefthand side of this equation is

D as[ad8) — Ay(8)] + BslAd(S U (i) - As(SuU D),
STN\{id}

wherea. = [J!(IN] - |- D)YIN|! andB. = (|5 + 1)!(N[- |9-2)|N]!, while the righthand side is

2, sladS) - a4(9),
SCN\{i.f}

wherey, = [S!(IN|- |S- 2)Y/(IN|- 1)!. The result follows from the facts tt Ai(S)-44(5) = A(SULN-AHSUED 5
GS+ B:ys

Note that the balanced contributions property links a game only with its subgames. Thus in the derivat

Shapley value of a gan (¥,%) we could restrict attention to the subgame(H- v), rather than work with the set
of all possible game

14.4.2 An Axiomatic Characterizatic

We now turn to an axiomatic characterization of the Shapley value. The derivation, unlike that in the previous
section, restricts attention to the set of games with a given set of players. Throughout we fix this Netrtd be
denote a game simply by its worth functv.

To state the axioms we need the following definitions. Plaigeadummyin v if A,(S) = v({i}) for every coalition
Sthat excludes. Playerd andj areinterchangeablén v if A(S) =A,(S) for every coalition S that contains neither

norj (or, equivalently ®((8 \ {ED U {5} =v(8) or every coalitiorSthat includes but notj). The axioms are the
following.

SYM (SymmetryIf i andj are interchangeable intheny,(v) = y,(v).
DUM (Dummy playexIf i is a dummy inv theny,(v) = v({i}).

ADD (Additivity) For any two gamegandw we havey,(v +w) = ,(v) + y,(w) for all €N \wherev+wis the
game defined byv + w)(S) =v(S) + w(S) for every coalitiorS.
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Note that the First two axioms impose conditions on single games, while the last axiom links the out:
different games. This last axiom is mathematically convenient but hard to motivate: the structuve gy

induce behavior that is unrelated to that induced tw separately. Luce and Raiffa (1957, p. 248) write that the
axiom "strikes us as a flaw in the concept of value"; for a less negative view see Myerson (19¢-438)

* Proposition 293.:
The Shapley value is the only value that satt SYM, DUM, and ADD.
Proof.

We first verify that the Shapley value satisfies the axi

SYM: Assume thai andj are interchangeable. For every ordelR € R |et B € R (differ from R only in that the
positions ofi andj are interchanged. ifprecede$ in R then we havé\(S(R)) = A(S(R)).. If j precedes then
Bi(Si(R)) — 84(S;(R) = v(SU{i}) - v(SU{i}) whereS = S(R)\{j}. Sincei and] are interchangeable we have
v(SU{i}) = v(SV{ib:, so thath (S(R)=A(S(R)) in this case too. It follows thatsatisfies SYM.

DUM: It is immediate tha¢ satisfies this conditio

ADD: This follows from the fact that u =v + w ther
#(S U {i}) - u(S) = v(S U {i}) — »(S) + w(S U {i}) — w(S).

We now show that the Shapley value is the only value that satisfies the axiomidd atvalue that satisfies the
axioms. For any coalitiom define the game, by

1 ifS2T

vr{3)={ﬂ otheruise.

Regard a gameas a collection of#- 1 number:(¥(8))sec. We begin by showing that for any gamthere is a

unique collectior{@r)rec of real numbers such th? = Zrec ¥ That is, we show thd{*r)rec is an algebraic
basis for the space of games. Since the colle(tr)rec of games containg™®1 members it suffices to show that

these games are linearly independent. Suppos 2secPsvs = 0: e need to show th@t=0 for allS. Suppose t
the contrary that there exists some coalifiomith Br #0 Then we can choose such a coaliffdior which B;=0

forall S €T in which cast2secBsvs(T) =Br #0 5 contradictior

Now, by SYM and DUM the value of any gaiav, for & 2 0 is given uniquely by, = o/|[T| if ¥€ T andy,(av,) =
0 otherwise. We complete the proof by noting th? = Lirec ®TVT then we hay
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v = Yo{TeCiar>0) OTVT ~ Lqreciar<0)(=0T¥T) 50 that by ADD the value w is determined unique!
sExample 294..

(Weighted majority gamggonsider the weighted majority gamésee Exercise 289.2) with weights= (1,1,1,2)
and quotay = 3. In all orderings in which player 4 is first or last his marginal contribution is O; in all other
orderings his marginal contribution is 1. T = (&84 3) Note that we have = Vi Vo T34V, 55 -

v pi(v)=3-1+0-3.1=1

v, s = Vesap fTOM which we can alternatively dedu ™

1,24
* Exercise 294.

Show the following results, which establish that if any one of the three axioms SYM, DUM, and ADD is dropp
then there is a value different from the Shapley value that satisfies the remain

a. For any game v and a# € N |et (V) be the average marginal contribution of playaver all the {{i- 1)!
orderings oN in which player 1 is first. They satisfies DUM and ADD but not SYI

b. For any game let i,(v) = v(N)/IN|. Theny satisfies SYM and ADD but not DUM.

c. For any game let D(v) be the set of dummies ynand let

Yi(v) = { WY’)_(W (”{N ) — Zsene) "({j}]) ifie N\ D(v)
v({i}) if i € D(v).

Theny satisfies SYM and DUM but not AD

* Example 294..

Consider the gar ({12319} in whichv(1,2,3) =v(1,2) =v(1,3) = 1 and/(S) = 0 otherwise. (This game can be
interpreted as a model of a market in which there is a seller (player 1) who holds one unit of a good that she
not value and two potential buyers (players 2 and 3) who each value the good as worth one unit of payoff.) T
are six possible orderings of the players. In the four in which player 1 is second or third her marginal contribu
is 1 and the marginal contributions of the other two players are 0; in the ordering (1,2,3) player 2's marginal
contribution is 1, and in (1,3,2) player 3's marginal contribution is 1. Thus the Shapley value of the game is

{513**]. By contrast, the core of the game consists of the single payoff profile |

sExample. 294.4 (A market

Consider the market for an indivisible good in Example 260.1, in which theb buyers ané sellers, witrf < b,
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Consider replications of the market in which thereklrbuyers an®¢ sellers for some positive intederlf k is

very large then in most random orderings of the players the fraction of buyers in the set of players who pr

given playerii is close tc®€> 1. In any such ordering the marginal contribution of playsrl if she is a seller, so
that the Shapley value payoff of a seller is close to | (and that of a buyer is close to 0). Precisely, it can be sh
that the limit ack — @ of the Shapley value payoff of a seller is 1. This is the simplest example of a more gene
result due to Aumann (1975) that the Shapley value converges to the profile of competitive payoffs as the siz
the market increast

* Exercise 295.

Find the core and the Shapley value of the g{{1:%:3:4} in whichv({1,2,3,4}) = 3,w(9 = 0 if Sincludes at most
one of the players in {1, 2, 3}, amdS) = 2 otherwise. Explain the source of the difference between the two
solutions

 Exercise 295.2 Exercise (A production economnr

Find the Shapley value of the game in Exercise 259.3 and contrast it with the core and the nucleolus (see Ex
289.1)

« Example 295.3 (A majority game

Consider a parliament in which there is one party with seats anch parties each with one seat, and a majori
decisive (a generalization by aunt and ). This situation can be modeled as a weighted majority game (see
Exercise 289.2) in whicN={1,... y#+1}, w, =m-1,w, = 1 fori#1 andq =m. The marginal contribution of the

large party is 1 in all but the 2m! orderings in which it is first or last. Hence the Shapley value of the game as:¢
to the large party the payofim+ 1)!-2m!]/(m+ 1)!=(m- 1)/(m+ 1).

* Exercise 295.

Consider a parliament in which there arparties; two of them ha8: of the seats each and the othe share th
remaining seats equally. Model this situation as a weighted majority game (see Exercis

a. Show that the limit a™ = ® of the Shapley value payoff of each of the large parti%.

b. Is it desirable according to the Shapley value fon-2 small parties to form a single united pa
* Exercise 295.

Show that in a convex game (see Exercise 260.4) the Shapley value is a member o

The result in the following Exercise suggests an interpretation of the Shapley value that complements those
discussed abo\
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* Exercise 296.

Consider the following variant of the bargaining game of alternating offers studied in Chapte{™:%)_ée a
coalitional game with transferable payoff in wh#(8) 2 0 ang?(SULiD 2 v(S)+v({i}) for every coalitiors and
player: € N\S |y each period there isa SN of active players, inithiligne of whom, say playéris
chosen randomly to propose &4feasible payoff vectaxS'. Then the remaining active players, in some fixed c
each either accepts or rejets If every active player acceptd then the game ends and each pld € §
receives the payof"'f" If at least one reject$ then we move to the next period, in which with probability

P € (0,1) the set of active players remains S and with probabigytlbbecome$\{i} (i.e. playeri is ejected from
the game) and playi receives the payov({i}). Players do not discount the fut.

Suppose that there is a collect (#%)sec,ies of Sfeasible payoff vectors such tt *‘f '{_= T3+ (1- P}ffw} for all
S alli€5 and alld € S\ {i}, where® = Lies=*'/IS| for all S Show that the game has a subgame perfect
equilibrium in which each playd € § proposesSi whenever the set of active player&ishow further that there
is such a collection for whic z° = (5,v) for eachS € €, thus showing that the game has a subgame perfect
equilibrium in which the expected payoff of each playisrhis Shapley value payd§f(N, v). Note that ifp is

close to 1 in this case then every propa&ais close to the Shapley value of the ge‘,{,‘S?!’}. (Hart and MaColell

(1996) show that every subgame perfect equilibrium in which each player's strategy is independent of history

this property; Krishna and Serrano (1995) study-stationary equilibria
14.4.3 Cos<Sharing

Let N be a set of players and for each coalidat C(S) be the cost of providing some service to the members of

S How shouldC(N) be shared among the players? One possible answer is given by the ShapléyGjadiithe
game{‘f"'rl e, where¢,(C) is the payment requested from play€erhis method of costharing is supported by the

axioms presented above, which in the current context can be given the following interpretations. The feasibili

requiremen Zuien #i(C) = C(N) says that the total payments requested from the players shouldCégyahe

total cost of providing the service. The axioms DUM and SYM have interpretations as principles of "fairness.c

when applied to the game. DUM says that a player for whom the marginal cost of provi
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service is the same, no matter which group is currently receiving the service, should pay that cost. SYM says
two players for whom the marginal cost is the same, no matter which group is currently receiving the service,
should pay the same. ADD is somewhat more attractive here than it is in the context of strategic interaction. |
that the payment of any player for two different services should be the sum of the payments for the two servit
separatel

Notes

Stable sets were first studied by von Neumann and Morgenstern (1944). The idea of the bargaining set is du
Aumann and Maschler (1964); the formulation that we give is that of Davis and Maschler (1963). The kernel
nucleolus are due respectively to Davis and Maschler (1965) and Schmeidler (1969). Proofs of the nonen
the bargaining set (using direct arguments) were first given by Davis, Maschler, and Peleg (see Davis ani
(1963, 1967) and Peleg (1963b, 1967)). Our definition of the nucleolus in terms of objections and counterob
jections appears to be new. The results in Section 14.3.3 (other than Lemma 286.2) are due to Schmeic

The Shapley value is due to Shapley (1953), who proved Proposition 293.1. The balanced contributions prop
(Definition 291.1) is due to Myerson (1977, 1980); see also Hart an-Colell (1989)

The application of the Shapley value to the problem ofsloating was suggested by Shubik (1962); the theory
has been developed by many authors, including Roth and Verrecchia (1979) and Billera, Heath, and Raanan
(1978)

The gameMy aunt and lin Examples 282.3 and 285.3 is studied by Davis and Maschler (1965, Section 6). The
result in Exercise 283.1 is due to Maschler (1976). Exercise 289.1 is taken from Moulin (1988; 1@/ ;16

also Exercise 5.3). Weighted majority games were first studied by yon Neumann and Morgenstern (1944); th:
result in Exercise 289.2 is due to Peleg (1968). The game in Exercise 295.1 is due to Zamir, quoted in Auma
(1986, p. 986). Exercise 295.2 is taken from Moulin (1988, p. 111). The result in Exercise 295.4 is due to Milr
and Shapley (1978), that in Exercise 295.5 to Shapley (1971/72), and that in Exercise 296.1 to HarGoidlIMas
(1996)

Much of the material in this chapter draws on Aumann's (1989) lecture notes, though some of our interpre
the solution concepts are different from
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The definitions of stable sets and the bargaining set can be extended straightforwardly to coalitional games v
transferable payoff (see, for example, Aumann and Peleg (1960) and Peleg (1963a)). For extensions of the £
value to such games see Harsanyi (1963), Shapley (1969), Aumann (1985a), Hart (1985), and Maschler and
(1989, 1992

Harsanyi (1974) studies an extensive game for which a class of subgame perfect equilibria correspond to sta
sets. Harsanyi (1981), Gul (1989), and Hart and-NMakll (1996) study extensive games that have equilibria
corresponding to the Shapley va

The solution concepts that we study in this chapter can be interpreted as formalizing notions of "fairness"; for
analysis along these lines see Moulin (1€

Lucas (1992) and Maschler (1992) are surveys that cover the models in Sections 14.2
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15
The Nash Solutior

In this chapter we study twgerson bargaining problems from the perspective of coalitional game theory. We g
a definition of the Nash solutibin terms of objections and counterobjections and characterize the solution
axiomatically. In addition we explore the connection between the Nash solution and the subgame perfect
equilibrium outcome of a bargaining game of alternating o

15.1 Bargaining Problem:

In Chapter 7 we discuss twaerson bargaining using the tools of the theory of extensive games. Here we do sc
using the approach of coalitional game theory. We deflrergaining problento be a tupltfxiﬂ- ZuZal in
which X is a set of possible consequences that the two players can jointly al € X.is the event that occurs

the players fail to agree, a® and™ are the players' preference relations cc,':t",'], the set of lotteries ovéX.
We refer toX as the set of possibégreementsand toD as thedisagreemenbutcome. Note that such a tuple can

be identified with a coalitional game without transferable pe{{hZh LX)V, (X)) in whichV({1,2})=X andV
({iH={ D} for i =1, 2 (see Definition 268.:

The members oX should be thought of as deterministic. Note that we require the players' preference relations
be defined over the set lotteriesoverX, rather than simply ovef itself. That is, each preference relation
includes information not only about the player's preferences over the set of possible joint actions but also abc
attitude

The only connection between the Nash solution and the notion of Nash equilibrium studied in Parts I, I, and lll is John Nash.
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towards risk. We denote t2- =@ (1 =) - ¥ the [ottery that gives with probabilityp andy with probability 1- p
and byp - x the lottery P*2®(1-p)-D

Our basic definition of a bargaining problem contains some restrictions, as f

* Definition 300.1

(X, D, %1, %3)

A bargaining problem is a tuple , Where

*X (the set oagreement;) is a compact set (for example, in a Euclidian sy

D (thedisagreemen outcome) is a member X

«%1 and%2 are continuous preference relations on the®{X) of Iotteries oveiX that satisfy the assumptions of
von Neumann and Morgenst

2% D tor gl € X fori=1, 2, and there exis® € X such thaz =1 D ang®*™2 P
«(convexity) for any® € X ¥ € X angP € [01] thore existz € X such tha® ™~ P 2@ =P) ¥ ¢4 =1 ;

«(nor-redundancy) i# P 2@ =P)*¥ then there is n# € X with ¥ # # such tha% ™~ % fori=1, 2

«(unique best agreements) for each pli there is a unique agreemBi € X wjith Bi Zi # for all z€ X

«for each playei we haveBi ~i D D for J #1.

The first three of these assumptions guarantee that each player's preference rele£X) axam be represented
by the expectation of some continuous function o¢/&he player's yon Neumasiorgenstern utility function).

The fourth assumption says that disagreement is the worst possible outcome and that the probldeyenece
in the sense that there exists an agreement that is more attractive to both players than disagreement. The

assumption of convexity requires that the set of agreements be rich enough that every lottery is equivalent fo
players to some (deterministic) agreement. The last three assumptions are made for convenience. The assut
of nonredundancy says that we identify any two agreements between which both players are indifferent. The
assumption of unique best agreements implies that the best agreement for each player is strongly Pareto effi
(i.e. there is no agreement that is better for one player and at least as good for the other). The last assumptic

that each player is indifferent betw:
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disagreement and the outcome in which the other player obtains his favorite agi

Given our assumptions on the players' preferences we can associate with any bargaining problem .gif"> a
bargaining problem contains more information than such ¢

Our aim now is to construct reasonable systematic descriptions of the way that bargaining problems may be
resolved. The notion of a bargaining solution is a formal expression of such a systematic de

* Definition 301.1

- o : : - e e .
A bargaining solution is a function that assigns to every bargaining prol{x‘ D.ZnZa) 5 unigue member X.

A bargaining solution describes the way in which the agreement (or disagreement) depends upon the param
the bargaining problem. The bargaining theory that we study focuses on the effect of the players' risk attitude
the bargaining outcome. Alternative theories focus on other relevant factors (for example the players' time
preferences or their ability to bargain), but such theories require that we change the primitives of tl

15.2 The Nash Solution: Definition and Characterizatio

15.2.1 Definitior

We now define the solution concept that we study in this ch

* Definition 301.2

TheNash solutionis a bargaining solution that assigns to the bargaining prc';f’,flp! Znxa) gn agreement
= €X for whict

if prz >z forsome p€[0,1) and z € X then p-2* X z for j #1i.
(301.3)
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This definition is equivalent to one whose structure is similar to those of the bargaining set, kernel, and nucle
given in the previous chapter. To see this, definebgection of playeri to the agreemeiz* € X to be a pairX|

p) with £ € X andP € [0.3] for whichP-2>=i %" The interpretation is thais an alternative agreement that player
proposes and-fb is the probability that the negotiations will break down if playmesses his objection. The
agreemenk and the probabilityp are chosen by playerthe probabilityp may be determined indirectly by the
actions (like threats and intimidations) that playekes when he presses his demand that the agreement be
Thus playei makes an argument of the form "I demand the outcorather tharx’; | back up this demand by
threatening to take steps that will cause us to fail to agree with probakplity threat that is credible since if |
carry it out and the outcomeghen | will be better off than | am now". Playerancounterobjectto (x, p) if

P-=" Zi ¥ The interpretation is that under the risky conditions that playrerates by his objection it is desirable
for playerj to insist on the original agreemetit Thus playej's argument is "If you take steps that will cause t
disagree with probability-p then it is still desirable for me to insist ghrather than agreeing 6. Given these
definitions of objection and counterobjection the Nash solution is the set of all agreg€mgtiighe property that
playerj can counterobject to every objection of plai to x".

15.2.2 Characterizatio

We now show that the Nash solution is wagifined and has a simple characterization: the Nash solution of the
bargaining probler X, D, RuZal is the agreement that maximizes the prody@u,(x), whereu, is a yon

Neumani-Morgenstern utility function that represe\ti fori=1,2
* Proposition 302.:

{X: Dl?\:ll

a.The agreemer®” € X is a Nash solution of the bargaining probl %) if and only if

uy (2% )uz(z*) 2 uy(z)uz(z) for all z € X,

where uis a yon NeumanMorgenstern utility function that represelz;f and satisfies (D) =0for i=1, 2.

b. The Nash solution is w-definec.
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Proof.

We first prove (a). Suppose ttt(2")ua(z") 2 wi(z)ua(2) for gl 2 € X Thenu(x’) > 0 fori = 1, 2 (sinceX contain:
an agreement for whichu(y) > 0 fori = 1, 2). Now, ifpu(X) > u(x’) for some® € [%:1] then
pus(z)us(") > wileJus(=*) 2 wl=)us(=) and hencpuy(x) > u (sinceu(x) > 0), orP* =" *5 2,

Now suppose thex" satisfies (301.3): i?*Z > 2" for someP € [0:1] and® € X thenP-=* %5 =, Let £ € X pe sucl
thatu(x) > 0 fori = 1, 2 andu(x) > u(x’) for some. (For any other value ofwe obviously have

u1(z*)uz(2") 2 wi(2)uz(2)-) Then ifp>u,(x)/u(x) for someP €10:1) we haveP#i() 2 4(2), 5 that, since(x) > 0,
we haveP 2 u(z)/ui(2*) Hence ui(2*) fui(z) 2 ujlz)/us(z*) and thusta{*)uz(z*) = w1 (z)uz(z).

To prove (b), lelV = {(m(=),uwa(z)):z € X} By (a), the agreement is a Nash solution & Dy %K) if and only
if (v, v,) = (u(X'), u,(X)) maximiziesv,v, overU. SinceU is compact this problem has a solution; since the

functionvy, is strictly quasiconcave on the interior % andU is convex the solution is unique. Finally, by the
assumption of nc-redundancy there is a unique agreenz*® € X that yields the pair of maximizing utilitie

The simplicity of this characterization is attractive and accounts for the widespread application of the Nash
solution. The characterization also allows us to illustrate the Nash solution geometrically, as in Figure 304.1.
Although the maximization of a product of utilities is a simple mathematical operation it lacks a straightforwar
interpretation; we view it simply as a technical device. Originally Nash defined the solution in terms of this
characterization; we find Definition 301.2 preferable since it has a natural interpr

15.2.3 Comparative Statics of Risk Avers

A main goal of Nash's theory is to provide a relationship between the players' attitudes towards risk and the
outcome of the bargaining. Thus a first test of the plausibility of the theory is whether this relationship acc
our intuition. We compare two bargaining problems that differ only in that one player's preference relation in ¢
of the problems is more riskverse than it is in the other; we verify that the outcome of the former problem is
worse for the player than that of the la

. . - - r
Define the preference relati1 to beat least as riskaverse aa if X1 and <1 agree orX and whenevex ~, L
for some® € X anc
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5 -

vy = ty(z*)uz(z"*)

(w1 (z*), ua(z*))
U=
{(u1(z), ua(z)): z € X}

0 ) e

Figure 304.1
A geometric characterization of the Nash solution x
of the bargaining probleftX:2:Z1.&3) For i=1, 2 the
function y is a yon Neumaniorgenstern utility
function that represenZs and satisfies,(D)=0.

L € £(X) e have® X1 L (This definition is equivalent to the standard definition that is given in terms of utility
representations

* Proposition 304.:

Let x and x' be the Nash solutions of the bargaining prob{: 2:%1,%2}) and (X, D, X1, Za) respectively, where
r

-t .
~1 s at least as ricaverse as~1. Then® X1 &',

Proof.

Assume to the contrary th ¥z By the convexity of the bargaining problems there exists an agreement

z€X suchtha? ™~ 3@ 2= 1, 2. LetZ be a Pareto efficient agreement for wr#™ Zi # fori =1,
2. By the characterization of the Nash solution (Proposition 302.1a), the agrerauatitsare Pareto efficient, ¢

thatz <1 2* <1 2 and® =2 z* <a T _Now, sincex is the Nash solution ¢ D:Z1. %) we haveu,(X)u,(X) > u,
(X)u,(x"), whereu, is a yon NeumaniVorgenstern utility function withu(D) = O that represen i fori = 1, 2. By
the quasiconcavity of the functioil(v,Vv,) = v,v, we haveu,(2)u,(2>u,(X)u,(x) and hence,(Z)u,(Z') > u,(X)u,(x).
Since®’ =1 2° it follows that 131,(Z')/u,(X)>u,(X)/u(Z, so that there exisP € 0.1] such that,(Z)/u,(X’) >p>u,
(X)/u,(Z) and henc/? - # =2 Z and#” 1P #. Since the preference relati= is at least as risaverse a =t we
also havez' =1P°% 5o that £ ,p) is an objection of player 2 td for which there is no counterobjection,

contradicting the fact thi' is the Nash solution %D, %5, %a)
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15.3 An Axiomatic Definition
15.3.1 Axiom

A beauty of the Nash solution is that it is uniquely characterized by three simple axioms (properties). In the
following statements of these axiolF denotes an arbitrary bargaining solut

-
PAF (Pareto efficiency There is no agreeme® € X such tha” ~ F(&: Dy X1, %2) for = 1, 2 with strict
preference for at least oi.

The standard justification of PAR is that an inefficient outcome is not likely since it leaves room for renegotiat
that makes both players better off. The fact that the Nash solution satisfies PAR follows immediately from
Proposition 302.1

To state the next axiom we need first to define a symmetric bargaining problem. Informally, a bargaining prok
is symmetric if there is a relabeling of the set of agreements that interchanges the players' preference relatiol
player 1's preference relation in the relabeled problem coincides with player 2's preference relation in the orig
problem, and vice versa. To state this definition differently, consider the language that consists of the names
preference relations and the name of the disagreement point, but not the names of the agreements. A proble
symmetric if any definition of an agreement by means of a formula in this language defines the same agreerr
we interchange the names of the pla

* Definition 305.1

A bargaining problent%i2:X1:%2) is symmetric if there is a functio®*X — X with D) = D and@(x) =y if and
only if @y) = x, such thaZr X+ Lz if and only if®(F1) Zi ¢(L2) for §# 3 and for any lotteriek, andL, in £(X),
whereq@(L) is the lottery in which each prix in the support of L is replaced by the prg(x).

We refer to the functio® X = X in this definition as theymmetry functiarAn example of a symmetric
bargaining problem is that in which two rigkutral players split a pie, obtaining nothing if they disagree (cor

the symmetry function given b(x;, X,) = (X,,X))-

SYM (Symmetr) If X, D, X1,X2) is symmetric with symmetry functico then®(F (X D X1 %a)) = F(X, D, 21, Xa).

The justification of this axiom is that we seek a solution in which all asymmetries between the players are inc
in the description of the bargaining problem. Thus if players | and 2 are indistinguishe
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certain problem then the agreement assigned to that problem should not discriminate betw
e Lemma 306.!
The Nash solution satisfi SYM.

Proof.

Let X" be the Nash solution of the symmetric bargaining prolﬁx-ntht’} with symmetry fupcBuppos
that®(x’) is not the Nash solution of the bargaining prob{: D:Z2:Z1). Then some playérhas an objectior(
p) to @(X’) for which there is no counterobjection by plad: P* % * #(z*) and p-#(z*) <5 2 Byt then

¢(p- 2} = p- §(z) =5 $(#(z*)) = 2" and §(p- $(z")) =P~ 2" < =)y 50 that ¢(x),p) is an objection by playgto X
for which there is no counterobjection by plai, contradicting the fact thix" is the Nash solutic

The final axiom is. the most problema

[IA (Independence of irrelevant alternatiyest z* = F(X,D,%1,%2)  and let%t be a preference relation that

o -
agrees witt™~* on X and satisfie
«if %i2* andpx~ x' for some® € X and? € [0,1] then P-2 32"

«if # % 2" andx ~ px' for some® € X ang? 01 o2 ~ipeat

ThenF(xvﬂ:thtj} =F(I,D,:',;;,tj]

A player whose preference relatior&i;is more apprehensive than one whose preference rela®ératsout the
risk of demanding alternatives that are better #idut has the same attitudes to alternatives that are worse thar

X". The axiom requires that the outcome when plapess the preference relati %4 is the same as that when

playeri has the preference relati Zi. The idea is that i’ survives player's objections originally then it should
survive them also in a problem in which he is less eager to make them (i.e. fewer, paiasg objections of
playeri); it should continue also to survive playsrobjections since playés ability to counterobject has not b
changec

Note that despite its name, the axiom involves a comparison of two problems in which the sets of altern

the same; it is the players' preferences that are different. (The name derives from the fact that the axiom is
analogous to an axiom presented by Nash that does involve a comparison of two problems with different sets
agreements.) Note also that the axiom differs from PAR and SYM in that it involves-
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parison of bargaining problems, while PAR and SYM impose conditions on the solutions of single bargaining
problems

e Lemma 307.:
The Nash solution satisfi lIA.

Proof.

Let X" be the Nash solution of the bargaining prob (X, D, Zis) and let™ be a preference relation that satis
the hypotheses of IIA. Consider the bargaining prot{X:D: X5 %5} W4e show that for every objection of either
orj tox in (X:DyX1:%2) there is a counterobjection, so tx' is the Nash solution X P X1, %a),

First suppose that playehas an objection 12" % =i " for somez € X and® € [0,1] Then® *i 2* and hence
z > 2% (since® andt. agree orX). Thus from the first part of IIA we haP* 2>+ 2" (if P2 342" then there
exists? 2P such thax ~ X and thus?'# 22", so thai"® % #* Sincex is the Nash solution (X2 % %3} e

thus have? 2" %i =

Now suppose that playj has an objection 12" - Xi 2* for some £ € X and® € [&:1], Sincex is Pareto

efficient we have®® %t # and since is the Nash solution (X2 Z6Zs) we haveP*#* %i %, Thus from the
L ¥

second part of 1A we hayP" % % %

15.3.2 Characterizatio

The following result completes the characterization of the Nash solution in terms of the axioms PAR, SYM, al
[IA discussed abov

* Proposition 307.:

The Nash solution is the only bargaining solution that sat PAR, SYM,and lIA.

Proof.

We have shown that the Nash solution satisfies the three axioms; we now show uni

(X,D, Za%a) 1/2-p)-= 25"

Step 1Letx be the Nash solution of the bargaining prob " If X ~-X" then
Proof.

For each playerchoose the yon Neumaiorgenstern utility function, that represemr";f and satisfiesi(xX) = 1
andu,(D) = 0. We first argue that for every agreenry € X we have®1 ) +u2(¥) < 2 10 see this, suppose to
the contrary that for son¥ € X we have®1(¥) +u2(¥) = 2+ € yjth € > 0. By the convexity of the bargaining

problem, for evenP? € [9.1] there is an agreeme*(p) € X with u(z(p)=pu(y)+(1-p)u(X)=pu(y)+1-p fori = 1, 2,

so that®1 (Z(PNua(2(p)) = 1+ep+p?[ma(W)ualy) = 1 =€ Thys forp close enough to 0 we haugz(p))u,(z(p))>1=u,
(X)u,(x.), contradicting
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the fact thak’ is the Nash solution of the problem. Nowx i, px* we haveu(x) =p and henc®® <2-P ¢,
that [1!{2-—11]] T :i.f ::'.

Step .. Any bargaining solution that satisfies PAR, SYM, and IIA is the Nash sol

Proof.

Letx" be the Nash solution of the bargaining prob®:2:Z1:Z2)  and let F be a bargaining solution that satis

PAR, SYM, and IIA. Let=t and%2 be preference relations that coincide vE1randZ2 on X and satisfy the
following conditions. For any Pareto efficient agreen® € X we hawv

Y . _ .
if 2>12" andx ~, px for some? € O U then T3P % gng ="~ 1/ 2-p) -z,

ad ooz * ik — )] -

if = =12" andx ~, px' for some? € 0,1 then® "1 P gng T ™2 1/@=p)l-=

(These conditions completely describe a pair of preference relations satisfying the assumptions of yon Neum
and Morgenstern since for eve® € X and each playeérthere is some Pareto efficient agreemefr whichx ~

X'.) Letu be the yon Neumanrklorgenstern utility function that represe ~i;and satisfiesi(D) = 0 andu(x’) = 1

fori =1, 2. Thenu,(x) + u,(x) = 2 for all Pareto efficient agreeme € X,

It is easy to verify that the problem .gi

Now, the pair of problem{LD!fvfﬂ} and® D, X1 %3) and the pair of problen,':ix‘ﬂ'tl' %a) andlX D %1, %a)
satisfy the hypothesis of I1A since by Step 1 we FH/@=p)'Z3; 2* if x ~ px'. Therefore

F(X1D1hhtﬂ) = fovpltilt;] =z*

As noted earlier, Nash defined a bargaining problem to be f:,[{t‘?}i,rwhereu SR js g compact convex set (the

set of pairs of payoffs to agreements) ¢ € U (the pair of payoffs in the event of disagreementhafgaining
solutior in this context is a function that assi
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a point inU to every bargaining proble,{,{f'r‘q. Nash showed that there is a unique bargaining solution that s:

axioms similar to those considered above and that this solution assigns to the bargaining‘:,{,’!‘ﬁoibmpair
(v,v,) of payoffs inU for which the product\- d)(v,- d,) is highest. The following Exercise asks you to prove this

result
* Exercise 309.

Show, following the line of the proof of the previous result, that in the standard Nash bargaining model (as
presented in the previous paragraph) there is a unique bargaining solution that satisfies analogs of PAR and
and the following two axioms, in whid denotes a bargaining soluti

(Covariance with positive affine transformatigrset {U,d) pe a bargaining problem, let> 0 andp, be real
numbers, le

U’ = {(v],v}): v} = eyey + f5; for i = 1, 2 for some (v;,v2) € U},
and let% =@idi +Bi for =1 2. Therf(U', d) = af (U, d) + B, fori =1, 2.

(Independence of irrelevant alternati) If vetw and’f([ﬁ"ﬂ €v thenf(U' d)=f(U, d).
15.3.3 Is Any Axiom Superfluous

We have shown that the axioms PAR, SYM, and IIA uniquely define the Nash solution; we now show that no
these axioms is superfluous. We do so by exhibiting, for each axiom, a bargaining solution that is different frc
Nash's and satisfies the remaining two axis

PAR: Consider the solution defined F{X,D,Z1,%2) = D_ This satisfies SYM and IIA and differs from the Nash
solution

* Exercise 309.

Show that there is a solutiéhdifferent from the Nash solution that satisfies SYM, IIA, F(X,D,Z1,%2) = D

D fori = 1, 2 étrict individual rationality. Roth (1977) shows that in the standard Nash bargaining model (as
presented in the previous Exercise) the axioms SYM, IIA, and strict individual rationality are sufficient to
characterize the Nash solution. Account for the differt

SYM: For eact € (0,1) consider the solution (asymmetric Plash solutidthat assigns t X, D, Z1,Z2) the
agreement’ for which (#1(@)*(u2(z))'"* 2 (u1(2))*(u2(=))'"* for a1l = € X, whereu, andu, represen X1 and
%2 and satisfyuy(D) = 0 fori = 1, 2.
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* Exercise 310.

Show that any asymmetric Nash solution is vdelfined (the agreement that it selects does not depend on the

utility functions chosen to represent the preferences), satisfies PAR and IIA, ¢* ?‘ éoldiffers from the Nash
solution

lIA: Let K DrZnZa) pe g bargaining problem and iebe a utility function that represer and satisfiesi(D)
= 0 fori = 1, 2. TheKalai-Smorodinsky solutioassigns tdX:D:Z1:Za} the Pareto efficient agreemenfior which
u,(X)/u(x)/u,(B,)/u, (B,).

* Exercise 310.

Show that the Kalabmorodinsky solution is wetlefined, satisfies SYM and PAR, and differs from the Nash
solution

15.4 The Nash Solution and the Bargaining Game of Alternating Offe

We now show that there is a close relationship between the Nash solution and the subgame perfect equilibrit
outcome of the bargaining game of alternating offers studied in Chapter 7, despite the different methods that
used to derive thel

Fix a bargaining problerfxlﬂ*thtﬂ} and consider the version of the bargaining game of alternating offers
described in Section 7.4.4, in which the set of agreemeXighig preference relations of the playersZrand
%3, and the outcome that results if negotiations break down at the end of a period, an event with probability

a€(0,1) isp. Under assumptions analogous to-A4 (Section 7.3.1) this game has a unique subgame perfect
equilibrium outcome: player | proposg$a), which player 2 accepts, whepé (a), y* ()) is the pair of Pareto
efficient agreements that satisfieso(:x'(a) ~y* and (ta)y'(a) ~, X' () (see Exercise 130.2).

* Proposition 310.:

Let 6Dy ZnZa) pe a bargaining problem. The agreemeri{sixand y(a) proposed by the players in every
subgame perfect equilibrium of the variant of the bargaining game of alternating offers associated with

(X, D, %1 Za) in which there is a probability a of breakdown after any rejection both converge to the Nash solut
of ‘:xt Dt tht?}a&ﬂ! — 0

Proof.

Letu represent the preference relat=H1and satisfyu(D) = 0 fori = 1, 2. From the conditions defining(a) and
y'(0) we haveu,(x (0))u(x (@) = u(y (@))u,(y)(@)). Since®" (@) =1 ¥°(@) for a1 € %1 we have

z*(a) Z1 2" Z1 ¥'(a) wherez' is the Nas
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b o = w(a (@)a(e"(@))
(= (" (@)z (v (@)))
uy(y*(a)) v1vg = vy (2" uz(2°)

u(2°), uz(2"))

w@@)f - - -~ - - ==

|
0 u(y*(a)) u(z*(a)) 17

Figure 311.1
An illustration of the proof of Proposition 31

solution of¢XsDs %1, %2) (see Figure 311.1). For any seque':"*:'?:ﬂ-l converging to O we have

w(z*(an)) = wily*(ar)) = 0 o1 = 1, 2 by the definition of (a,) andy'(a), so thaui(X (a,)) andu(y'(a,))
converge tai(Z) fori = 1, 2 and thug'(a,) andy’(a,) converge t@& (using norredundancy).

15.5 An Exact Implementation of the Nash Solutic

We now return to the implementation approach described in Chapter 10. A byproduct of the result in the prev
section is that the bargaining game of alternating offers with risk of breakdown approximatehg@étaents th
Nash solution. We now describe an extensive game with perfect informatiexactlyimplements it. From the
point of view of a planner this game has the advantage that it is simpler, in the sense that it involves a small
number of stages. However, it has the disadvantage of being more remote from familiar bargaining p

Fix a setX and an ever and assume the planner wants to implement the Nash solution for a(Z&2) for

which (X, Dy ZnZa) is a bargaining problem. Consider the extensive game form (with perfect information and
chance moves) consisting of the following ste

*Player 1 choose¥ € X,

*Player 2 choosez € X and? € [0:1],

*With probability 1- p the game ends, with the outcoD, and with probabilityp it continues
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* Player 1 chooses eithx or the lotteryp-y; this choice is the outcon
* Proposition 312.:
The game form described above -implements the Nash solut.

* Exercise 312.

Letx' be the Nash solution Py &1:%3). Show thai is the unique subgame perfect equilibrium outcome ¢
game form when the players' preferencesm"t’}.

Notes
The seminal paper on the topic of this chapter is Nash (1!

Our presentation follows Rubinstein, Safra, and Thomson (1992). Zeuthen (1930, Ch. IV) contains an early n
in which negotiators bear in mind the risk of a breakdown when making demands. The connection between t
Nash solution and the subgame perfect equilibrium outcome of a bargaining game of alternating offers
pointed out by Binmore (1987) and was further investigated by Binmore, Rubinstein, and Wolinsky (1986). Tl
exact implementation of the Nash solution in Section 15.5 is due to Howard

The comparative static result of Section 15.2.3 concerning the effect of the players' degree of risk aversion o
solution was first explored by Kihlstrom, Roth, and Schmeidler (1981). Harsanyi and Selten (1972) study the
asymmetric Nash solutions described in Section 15.3.3 (axiomatizations appear in Kalai (1977) and Roth (19
16)) and Kalai and Smorodinsky (1975) axiomatize the Kataorodinsky solution. Exercise 309.2 is based on
Roth (1977

Several other papers (e.g. Roemer (1988)) study models in which the set of physical agreements, rather thar
resulting set of utility pairs (as in Nash's model), is a primitive. Roth (1979) and Kalai (1985) are surveys of tr
field of axiomatic bargaining theo
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LIST OF RESULTS

This is a list of the main results in the book, stated informally. It is designed to give an overview of the proper
of the solutions that we study. Not all conditions are included in the statements; refer to the complete stateme
the text for detail:

Strategic Game:

Nash Equilibrium and Mixed Strategy Equilibrium

* (Nash equilibrium existeng&very game in which the action set of each player is compact and convex and th
preference relation of each player is continuous and-goasave has a Nash equilibrium
Proposition 20.

* A symmetric game has a symmetric Nash equilibrium
Exercise 20.

« In a strictly competitive game that has a Nash equilibrium, a pair of actions is a Nash equilibrium if and only
each action is a maxminimizer
Proposition 22.

* (Mixed strategy equilibrium existerydévery finite game has a mixed strategy Nash equilibrium
Proposition 33.

* A mixed strategy profile is a mixed strategy Nash equilibrium of a finite game if and only if every player is
indifferent between all actions in the support of his equilibrium strategy
Lemma 33.

* A strategy profile in a finite twqplayer strategic game is a trembling hand perfect equilibrium if and only if it is
mixed strategy Nash equilibrium and the strategy of neither player is weakly dominated
Proposition 248.
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* (Trembling hand perfect equilibrium existeh&ery finite strategic game has a trembling hand perfect

equilibrium
Proposition 249.

Correlated Equilibrium

» Every mixed strategy Nash equilibrium corresponds to a correlated equi

Proposition 45.

» Every convex combination of correlated equilibrium payoff profiles is a correlated equilibrium payoff profile
Proposition 46.

 Every correlated equilibrium outcome is the outcome of a correlated equilibrium in which the set of states is
set of action profiles
Proposition 47.

Rationalizability

« Every action used with positive probability in a correlated equilibrium is rationalizable
Lemma 56.

* An action is a nevebest response if and only if it is strictly dominated
Lemma 60.

» An action that is not weakly dominated is a best response to a completely mixe
Exercise 64.

« Actions that survive iterated elimination of strictly dominated actions are rationalizable
Proposition 61.

Knowledge

* (Individuals cannot agree to disagddétwo individuals have the same prior and their posterior beliefs are
common knowledge then these beliefs are the same
Proposition 75.

« If each player is rational, knows the other players' actions, and has a belief consistent with his knowledge, t
the action profile is a Nash equilibrium
Proposition 77.

« If there are two players and each player knows that the other player is rational, knows the other player's bel
and has a belief consistent with his knowledge, then the pair of beliefs is a mixed strategy Nash equilibrium
Proposition 78.
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« If it is common knowledge that each player is rational and that each players' belief is consistent with his
knowledge then each player's action is rationalizable
Proposition 80.

« If all players are rational in all states, every player's belief in every state is derived from a common prior, an
each player's action is the same in all states in any given member of his information partition, then the inform
partitions and actions correspond to a correlated equilibrium

Exercise 81.

Extensive Games with Perfect Informatiol

Basic Theory

* A strategy profile is a subgame perfect equilibrium of a finite horizon game if and only if it has the one devia

property
Lemma 98.2, Exercise 102.1, Exercise 1

* (Subgame perfect equilibrium existence: Kuhn's thepEarary finite game has a subgame perfect equilibrium
Proposition 99.2, Exercise 10

* All players are indifferent among all subgame perfect equilibria of a finite game that satisfies the no indiffere
condition, and an equilibria are interchangeable
Exercise 100.

Bargaining Game:

* A bargaining game of alternating offers that satisfiesAdlhas a unique subgame perfect equilibrium outcome
Proposition 122.

« In a subgame perfect equilibrium of a bargaining game of alternating offers, a player is worse off the more
impatient he is
Proposition 126.

Infinitely Repeated Game:

* (Nash folk theorem for limit of megrsvery feasible enforceable payoff profile of the constituent game is
equilibrium payoff profile of the limit of means infinitely repeated game
Proposition 144.

* (Nash folk theorem for discountingvery feasible strictly enforceable payoff profile of the constituent game is
close to a Nash equilibrium payoff profile of the discounting infinitely repeated game for a discount factor clos
enoughto 1

Proposition 145.
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* (Perfect folk theorem for limit of megrisvery feasible strictly enforceable payoff profile of the constituent ¢
is a subgame perfect equilibrium payoff profile of the limit of means infinitely repeated game
Proposition 146.

* (Perfect folk theorem for overtakingor every strictly enforceable outcome of the constituent game there is a
subgame perfect equilibrium of the overtaking infinitely repeated game consisting of a repetition of the outcor
Proposition 149.

* (Perfect folk theorem for discountingor every feasible strictly enforceable outcome of adimiensional
constituent game there is a discount factor close enough to 1 for which there is a subgame perfect equilibriur
the discounting infinitely repeated game consisting of a repetition of the outcome

Proposition 151.

« A strategy profile is a subgame perfect equilibrium of a discounted infinitely repeated game if and only if it h
the one deviation property
Lemma 153.

 For any subgame perfect equilibrium outcome of a discounted infinitely repeated game there is a strategy p
that generates the same outcome in which the sequence of action profiles that follows a deviation depends o
the identity of the deviant (not on the history or on the nature of the deviation)

Proposition 154.

* In every equilibrium of a machine game of a discounted infinitely repeated game there-is-@ome
correspondence between the actions chosen by the two machines in the repeated game
Lemma 170.

 Every equilibrium of a machine game of a discounted infinitely repeated game consists of an introductory pl
in which all the states are distinct, followed by a cycling phase, in each cycle of which each state appears at |
once

Proposition 171.

Finitely Repeated Game

If the payoff profile in every Nash equilibrium of the constituent game is the profile of minmax payoffs then ev
Nash equilibrium of the finitely repeated game generates a sequence of Nash equilibria of the constit
Proposition 155.

* (Nash folk theorem for finitely repeated gajnéshe constituent game has a Nash equilibrium in which every
player's payoff exceeds his min max payoff then for any strictly enforceable outcome there i
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equilibrium of the finitely repeated game in which each player's payoff is close to his payoff from the outcome
Proposition 156.

« If the constituent game has a unique Nash equilibrium payoff profile then every subgame perfect equilibriun
the finitely repeated game generates a sequence of Nash equilibria of the constituent game
Proposition 157.

« (Perfect folk theorem for finitely repeated gainéshe constituent game is full dimensional and for every playel
there are two Nash equilibria that yield different payoffs then for any strictly enforceable outcome a sufficientl
long finitely repeated game has a subgame perfect equilibrium in which each player's payoff is close to his p:
from the outcome

Proposition 160.

Implementation Theory

* (Gibbard-Satterthwaite theorenin an environment in which there are at least three consequences and any
preference ordering is possible, any choice rule that isiBfplEementable and satisfies the condition that for any
consequence there is a preference profile for which the choice rule induces that consequence is dictatorial
Proposition 181.

* (Revelation principle for DSEmplementatiopIf a choice rule is DSkEmplementable then it is truthfully DSE
implementable.
Lemma 181.

* (Revelation principle for NasimplementatiopIf a choice rule is Nasimplementable then it is truthfully Nash
implementable.
Lemma 185.

* If s choice rule is Nasimplementable then it is monotonic
Proposition 186.

« In an environment in which there are at least three players, a choice rule that is monotonic and has no veto
is Nashimplementable
Proposition 187.

« In an environment in which there are at least three players, who can be required to pay monetary fines, eve
choice function is virtually SPEnplementable
Proposition 193.

Extensive Games with Imperfect Informatior

* For any mixed strategy of a player in a finite extensive game with perfect recall there is an @guomalent
behavioral strategy
Proposition 214.
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* Every sequential equilibrium of the extensive game associated with a finite Bayesian game with observable
actions induces a perfect Bayesian equilibrium of the Bayesian game
Proposition 234.

* Every trembling hand perfect equilibrium of a finite extensive game with perfect recall is associated with a
sequential equilibrium
Proposition 251.

* (Trembling hand perfect equilibrium and sequential equilibrium exisjdewery finite extensive game with

perfect recall has a trembling hand perfect equilibrium and hence a sequential equilibrium
Corollary 253..

Coalitional Games

Core

* A coalitional game with transferable payoff has a nonempty core if and only if it is balanced
Proposition 262.

« Every market with transferable payoff has a nonempty core
Proposition 264.

* Every profile of competitive payoffs in a market with transferable payoff is in the core of the
Proposition 267.

» Every competitive allocation in an exchange economy is in the core
Proposition 272.

« If every agent's preference relation is increasing and strictly-qaasave and every agent's endowment of €
good is positive, the core converges to the set of competitive allocations
Proposition 273.

Stable Set

* The core is a subset of every stable set; no stable set is a proper subset of any other; if the core is a stable
it is the only stable set
Proposition 279.

Bargaining Set, Kernel, Nucleolu

« In a coalitional game with transferable payoff the nucleolus is a member of the kernel, which is a subset of t
bargaining set
Lemmas 285.1 and 28

* The nucleolus of any coalitional game with transferable payoff is a singleton
Proposition 288.
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Shapley Value

» The unique value that satisfies the balanced contributions property is the Shapley value
Proposition 291.

* The Shapley value is the only value that satisfies axioms of symmetry, dummy, and additivity
Proposition 293.

Nash Solutior

* The definition of the Nash solution of a bargaining problem in terms of objections and counterobjections is
equivalent to the definition of it as the agreement that maximizes the product of the players' yon Neumann
Morgenstern utilities

Proposition 302.

« In the Nash solution a player is worse off the more aigrse he is
Proposition 304.

» The Nash solution is the only bargaining solution that satisfies axioms of Pareto efficiency, symmetry, and
independence of irrelevant alternatives
Proposition 307.

» The agreements proposed by the players in every subgame perfect equilibrium outcome of the variant of a
bargaining game of alternating offers in which there is a risk of breakdown converge to the Nash solution
Proposition 310.
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