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Variance Estimation for Complex Estimators
in Sample Surveys

Keith Rust!

Abstract: The complex estimators frequently
used in sample surveys lead to special difficul-
ties in the estimation of sampling variance.
This paper reviews current practical methods
of deriving such variance estimates. Both
theoretical and empirical results for these
methods and comparisons between the
methods are considered.

1. Introduction

In producing estimates from sample surveys,
it is a generally recommended practice that
due concern be given to quantifying the extent
of sampling error. Textbooks on survey
sampling, such as those by Cochran (1977),
Hansen, Hurwitz, and Madow (1953), and
Kish (1965), provide explicit formulae for
unbiased estimators of the sampling variance
of simple (linear) estimators of, say, totals and
means from a population of known size. This
is provided for a variety of the more straight-
forward sample designs. However, such
formulae are usually inadequate in survey
practice because non-linear estimators are
often used for estimating parameters of inter-
est.
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An estimator {1 of a parameter p is linear if it
can be expressed in the form

i =’_(2; BT X;
where S denotes the sample and i the selected
units, and E,T denotes the transpose of the
vector ;. The components of X; are the values
of some characteristic (or characteristics) of
the selected units, and the components of ;
are constants which do not depend on the sam-
ple values, but only upon the label of unit i.
For multistage samples, X; is an estimate of
characteristics of the primary sampling unit
(PSU) i, derived from the units sampled at the
second and later stages. In survey practice,
such linear estimators consist of linear
combinations (with known coefficients) of
estimators of stratum totals. Commonly
encountered estimators of parameters such as
ratios, regression coefficients, measures of
association, and population variances are
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non-linear. Furthermore, non-linear esti-
mators are used frequently for estimating
population totals and means, as they may be
more precise than the appropriate linear esti-
mators (a ratio estimator of a total provides an
example).

In traditional statistical theory, models are
used and statistical inference relates to the
parameters of these models. The use of such
models frequently gives rise to explicit variance
estimators for non-linear estimators, and
permits one to ignore the mechanism by which
sample observations are generated. When
inferences about the parameters of a finite
population are based on sample survey data
without model assumptions other methods
must be used to derive estimates of the
variances of the parameter estimates.

Two approaches to the task of estimating
the variance of a non-linear estimator can be
distinguished. One is linearization, in which
the non-linear estimator is approximated by a
linear one for the purposes of variance estima-
tion. The second is replication, in which
several estimates of the population parameter
under study are derived from different, com-
parable parts of the original sample. The
variability of these estimates is used to esti-
mate the variance of the parameter estimator.
This paper reviews current knowledge about
the properties and practice of these procedures.

2. The Taylor Series Linearization Procedure

The basis of the Taylor series linearization
procedure is the approximation of the estima-
tor of interest by a linear estimator. The
variance of this linear approximation is then
estimated using standard variance estimation
methods available for linear estimators. The
linear approximation is derived by taking a
first order Taylor series approximation for the
estimator {i about the parameter u. Some of
the components of this linear approximation
will involve unknown population parameters,
and must be estimated from sample data. As
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fi is in general biased for u, the resulting
variance estimator actually estimates the
mean square error of fi.

As with linear estimators, for multistage
samples it is necessary only to use estimates of
PSU totals in variance estimation, provided
that the assumption of with replacement
sampling at the first stage is tenable. Wood-
ruff (1971) was the first to make this clear.

Traditionally, the technique has been used
for ratio estimation, and it is described
specifically for this purpose in many sampling
textbooks where it is often referred to as the
delta method. Tepping (1968) gives a detailed
description of the use of the method for more
complex estimators. Shah, Holt, and Folsom
(1977) evaluated the use of the technique for
estimating the covariance matrices of sets of
regression coefficients estimated from
complex sample designs. They found that the
linearization approach gave rise to generally
acceptable inferences, far superior to infer-
ences based on the assumption of simple
random sampling. Other studies of the linear-
ization method, in which its performance is
compared with that of replication, are
discussed in Section 7.

When using the linearization method, one
encounters two major difficulties. The proce-
dure assumes that in the Taylor series expan-
sion of the estimator, terms beyond the linear
one make a negligible contribution to the
variance of the estimator. This may not be the
case, particularly for small sample sizes, and
the approximation can fail badly in practice.

The second difficulty lies in the derivation
of the linear substitute appropriate for a given
estimator. This is straightforward for esti-
mators such as a ratio, r = x/y, used to
estimate a population parameter R = X/Y.
However, for more complex estimators, the
analytic partial differentiation needed to
derive the linear substitute has generally been
found to be intractable. Woodruff and Causey
(1976) describe a solution to this problem that
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uses a numerical procedure to obtain the
necessary partial derivatives. A computer
program, GENVAR, has been developed for
implementing the procedure. The program
requires that the user supply a subroutine for
calculating the within stratum variance,
appropriate to the design, of a linear esti-
mator. The program is not actively main-
tained and is not being developed further
(Francis (1981, Ch. 5)).

Recent work by Binder (1983) provides a
general approach to the analytic derivation of
variance estimators for first order (linear)
Taylor series approximations for a wide class
of estimators. In particular, variance esti-
mators can be derived for estimators of
implicitly defined parameters estimated by
iterative procedures. Binder gives examples
of the application of the procedure to variance
estimation for estimators of ordinary least
squares regression coefficients, logistic
regression coefficients, and coefficients for
log-linear models for categorical data. The
method has wide applicability, and it appears
that a solution is available for many of the
estimators likely to be used in survey practice.
However, a separate variance estimator must
be derived for each estimator used, and corre-
spondingly a specific computer subroutine is
required in each case. The resulting variance
estimation formulae can easily become
complex. An explicit variance (and covariance)
estimator that is appropriate for linear esti-
mators is required in all cases.

Consequently, it is not always clear to what
extent this approach provides a more easily
implemented and less costly alternative to the
replicated procedures described later. In
these replicated procedures, the variance esti-
mator does not explicitly vary with the
estimator being considered.

Empirical evidence has shown that the
variance estimates obtained from the lineari-
zation procedure are generally of adequate
accuracy (see Section 7). It is also frequently
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an inexpensive procedure relative to the alter-
native replicated procedures. Consequently,
Shah (1978), in many circumstances recom-
mends the use of linearization rather than
replication because of its ease of computation
and generality of application.

3. Replicated Variance Estimation Proce-
dures

There are a number of commonly used repli-
cation procedures for variance estimation.
Their origins are found in the works of Maha-
lanobis (1944), and Deming (1956), who have
advocated the use of interpenetrating or
replicated samples. If a given sample design
is used to select a sample, and then repeated r
times, the final sample consists of r indepen-
dent replicates, each with identical design.
The resulting sample is called a simple
replicated sample. Each replicate sample then
provides an estimate of the parameter of
interest. The variability among the r replicate
estimates then gives a measure of the variance
of the overall sample estimator, which is the
simple average of the r replicate estimators. In
his work, Mahalanobis advocated the use of
four replicates, while Deming proposed the
use of ten.

There are two reasons that simple replicated
sampling has failed to find general favour.
First, the constraint that the sample design
includes r replicates often leads to less precise
estimation than otherwise would be the case.
Fewer gains in precision are possible through
the use of techniques such as stratification and
systematic selection, since the sample size of
each replicate is only one rth of the full
sample. This loss in precision can be consider-
able, particularly if r is large (more than five).
Second, unless r is reasonably large (at least
ten), the precision of the simple replication
variance estimator is poor. For the most part,
this negates the benefits of having a procedure
that gives unbiased variance estimates.



384

The attractive concept of using the variabili-
ty among estimates derived from subsample
replicates to provide an overall estimator of
variance has been adapted to derive a number
of pseudoreplication procedures. These do
not impose restrictions on the design of the
overall sample as simple replication does, and
are designed to give variance estimators of low
bias and adequate precision. Three methods
are in current use for large scale sample
surveys: the random groups method, balanced
(half-sample) repeated replication, and jack-
knifing. These are discussed in the next three
sections.

4. The Random Groups Method

The random groups procedure, which was
first developed at the U.S. Bureau of the
Census, is described by Hansen, Hurwitz, and
Madow (1953, Vol. 1, Section 10.16). Of the
three commonly used pseudoreplication
procedures, it is the closest to the original
concept of replicated sampling. The major dif-
ference between the random groups method
and the original simple replicated sampling is
that the replicates are not formed indepen-
dently.

The original sample is divided into a
number of groups. An estimate of the popula-
tion parameter of interest is formed from each
group (replicate), and the variability among
these estimates is used to obtain an estimate of
the variance of the parameter estimator
computed from the full sample. To ensure that
the variance estimator has small bias, the
groups must be formed so that each reflects
the design of the full sample.

The random groups procedure attempts to
impart a simple replicated design after the
sample has been selected. Consequently, it
faces the same problems as simple replicated
sampling with regard to the choice of the
number of groups to be used.

The larger the number of groups, the greater
the departure from true replication. This gives

Journal of Official Statistics

rise to increased bias in the estimation of
variance. In particular, if the number of
groups exceeds the sample size of one or more
strata, then not all groups can contain a
sampled PSU from each stratum. In practice,
this can be handled by collapsing strata for the
purpose of forming replicates, but then the
groups do not constitute true replicates, and
bias in variance estimation results.

If the number of random groups is kept
small to minimize the bias of variance estima-
tion, as with simple replication, the precision
of variance estimation is low. Thus, for many
designs the random groups estimator of
variance is poor, having either high bias, low
precision, or a combination of these.

The random groups method is most useful
in surveys using a large sample of PSUs, where
either many PSUSs are selected per stratum, or
few gains are believed to result from the finer
levels of stratification. The Retail Trade
Survey of the U.S. Bureau of the Census
fulfils these requirements, and 16 random
groups are used for variance estimation (see
Wolter et al. (1976)).

5. Balanced Repeated Replication

For surveys with a large number of strata, but
only few sampled PSUs per stratum, the
random groups method described in Section 4
is unsatisfactory. The method of balanced
repeated replication (BRR) has been devel-
oped for use with such designs, and has proved
most useful in the common case where two
PSUs are selected per stratum.

During the 1960s, a number of statisticians
developed the idea of using repeated replica-
tions based on half-samples to estimate
variances. McCarthy (1966, 1969) discovered
a means of deriving balanced half-sample
repeated replications. This method limits the
number of replicates required while it achieves
high precision.

For designs where two PSUs are selected
per stratum, the procedure is as follows. Let p
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be the population parameter of interest, esti-
mated from the sample by i. Two groups of
PSUs are formed. For each stratum h,
randomly denote one of the two sampled
PSUs as belonging to group 1, the other to
group 2. Let (i’ be the estimate of p derived
from the half-sample of PSUs from group 1,
and ﬂ" the estimate of u derived from the
complementary half-sample of PSUs, taken
from group 2. The operation of forming
random half-samples can be repeated T times,
with the half-sample estimates from the rth
repetition being denoted by p, and y;’ An esti-
mator of variance is given by

v =1 2 Gidy

For linear i, this estimator can be expressed
in an illuminating form. Let o, = +1 if in
stratum /4 the unit from group 1 is chosen in
the half-sample (rather than the complement)
on the rth replication, and a,;, = -1 if the other
unit in stratum 4 is chosen. Then

v(t) = —Z( i)
1 A NN
+2—th E <2kathatk (0, ~0m) (1)

where ' is the estimate derived from the PSU
from group 1 and stratum 4, and {t; is derived
from the PSU from group 2 and stratum #.

The first term is the standard explicit un-
biased variance estimator when two PSUs are
selected with replacement per stratum; the
second term reflects variability around the
standard estimator, and represents the lack of
precision of the replicated estimator relative
to the standard form. This second term has an
expected value of zero.

If the a,;’s are chosen so that

T
tz 1 OOy = 0 (1)
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for all pairs of strata h and k, the second term
in the above variance formula disappears.
BRR variance estimation is defined as half-
sample replication for which condition (1)
holds true.

The usefulness of BRR is manifested when
used for non-linear estimators. For linear esti-
mators, BRR does not differ from the standard
explicit form, and there is no point in using
BRR. We assume that, since BRR is unbiased
and relatively precise for linear estimators
obtained by sampling with replacement of
PSUs, it will have low bias and be relatively
precise for non-linear estimators.

For designs in which without replacement
sampling of PSUs is used, the variance esti-
mator V;{(ii) is positively biased. Either a
separate adjustment is introduced to account
for this bias, or, more commonly, this bias is
ignored, since it is deemed unsubstantial.

Plackett and Burman (1946) developed a
method for constructing mxm orthogonal
matrices with entries of +1 and -1, where m is
a multiple of four. These can be used directly
to obtain values of a,, satisfying (1). If there
are H strata, each with two sampled PSUs, the
orthogonal matrix of size T, where T is the
multiple of four between H and H+3, can be
used, dropping the last 7-H columns. The
entries of the matrix, being +1 and -1 values,
can be successively substituted as the ath
values, one row for each replicate and one
column for each stratum. Thus, a number of
replicates in the range of H to H+3 is required.

The question of what use to make of the
complementary half-samples arises in the case
of non-linear fi. There are four possible
variations of BRR variance estimators:

verr-s(t) = 2T2{(H ) + (- 1)),

. 1o, -
verr-u(t) = T% (- 0)?,
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. |
verr-c(t) = T? (e I‘«)z >

Arng

. 1 A
VBRr-D(I1) =47 (B —phy)* . 2

Since vgrg_s is the average of vggrp_y and
verr—c (Which are of equivalent form, one
using the half-sample and the other the
complementary half-sample), it is at least as
precise as the others, and equally biased.
However, vgrr_s requires the computation of
half-sample estimates from both half-samples
for each replicate. Thus, it is more costly than
vprr-n>, and perhaps significantly so when
many estimates are produced.

Another set of variance estimators for non-
linear estimators can be obtained using i =
§M7 /T in place of {Lin the estimators (2). Such

estimators are unbiased for linear i only if the
number of half-samples T is strictly greater
than the number of strata H. If H is a multiple
of four, T=H+4 half-samples must be used to
retain this unbiasedness (see Lemeshow and
Epp (1977)).

The estimators that use {i are generally not
preferred to those that use {i, since they give
smaller and less conservative estimates of the
mean square error, as they fail to include a
component for the bias of {i.

Although BRR is an effective means of
maximizing the precision of variance estima-
tion without the use of an excessive number of
replicates, it can easily occur that for samples
with many strata, the cost and complexity of
using BRR become prohibitive when many
variance estimates are required. Two adapta-
tions of BRR have been proposed that require
fewer replicates, and are correspondingly less
precise, but no more biased, than the full
BRR. One method is to use the combined
strata technique (see for example Kalton
(1977)). With this approach, strata are
combined into sets. For each replicate ¢, all
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strata h in a set g are assigned the same value

for a,,. The constraint = a,,a, = 0 is imposed
for pairs & and k of strata which are not within
the same combined stratum g. This constraint
means that, if G combined strata are formed,
the number of replicates T required is the
multiple of four which will fall in the range of
G to G+3. The orthogonal matrix of size T"is
used to derive the values of a,,. This combined
strata BRR method is somewhat less precise
than the full BRR, since it uses fewer
replicates.

The second procedure for reducing the
number of replicates required for variance
estimation, discussed by McCarthy (1966) and
developed by Lee (1972, 1973), is the method
of partially balanced repeated replication
(PBRR). In this procedure, the strata are
divided into groups, and full balancing is
applied to the strata within each group. If G
replicates are required for H strata, S (=H/G)
groups are formed with G strata in each. A
GxG orthogonal matrix is used to ensure a full
balance within each group. As noted by Rust
(1984, Ch. 2), PBRR as proposed by Lee is
equivalent to a special form of combined
strata BRR, in which all combined strata have
the same number of component strata.

Lee (1972, 1973) suggests methods of
implementing PBRR to minimize the loss in
precision over fully balanced BRR. The
methods proposed require an ordering of
strata by the size of their contribution to the
total sampling variance. Rust (1984, Ch. 2)
generalizes these findings, making use of the
equivalence of PBRR and combined strata
BRR. It is suggested that, given reasonable
knowledge of the relative contributions of
each stratum to the total sampling variance,
the use of about 30 replicates will probably
suffice for most purposes.

Procedures for extending BRR to the case
of more than two selections per stratum have
been developed. Gurney and Jewett (1975)
describe a procedure that can be used for any
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design having a constant, prime, number of
PSUs selected per stratum. Few designs meet
such a requirement (other than two per
stratum), and a large number of replicates
may be required. These facts have limited the
use of this procedure.

For more general designs, in which stratum
sample sizes may vary, BRR can be
implemented by randomly dividing the PSUs
in each stratum into two groups of equal size,
and then using BRR by treating these groups
as units (see Kish and Frankel (1970)). In this
case, the precision of the BRR variance
estimator for linear estimators is somewhat
less than that of an appropriate explicit
variance estimator.

6. Jackknife Variance Estimation Proce-
dures

The jackknife procedure was originated by
Quenouille (1956) as a means of reducing the
bias of parameter estimates. Tukey (1958)
conjectured that the technique could be
adapted to produce variance estimates for a
large class of estimators, and this included
finite population samples. Miller (1964, 1974)
has reviewed the possible uses of the jackknife
procedure in a range of statistical applica-
tions. For variance estimation, the technique
consists of splitting the total sample into a set
of L equal-sized, disjoint, exhaustive sub-
samples, dropping out each of the subsamples
in turn, and estimating the population param-
eter of interest from the remaining units each
time. The variability among these L estimates
can then be used to estimate the variance of
the original sample estimator.

Unlike BRR, jackknifing is not restricted to
designs with two (or any other constant
number) selections per stratum in order to
attain full efficiency, and thus can be applied
in situations not well-suited to BRR.

For a stratified design with H strata, the
sample within each stratum is subdivided
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randomly into ¢ , disjoint groups of equal size,
H
giving a total of L =h§1 {;, dropout groups.

Let u be the parameter of interest, [i the
estimator of p based on the whole sample, and
figr the estimator of p based on the sample
with the ith subsample from stratum 4 omitted.
If {iis linear, and the sample of PSUs is drawn
with replacement, then

(Lh— Wy

vei() 2 2 (M(zh)—li) 3

is an unbiased variance estimator for fi. For
without replacement designs and non-linear
estimators, the bias of vg(ji) is assumed to be
relatively small. The estimator vg; in (3)
requires the formation of L replicates.

The jackknife variance estimator can be
generalized by dropping out only a random
selection of g, of the £, subsamples in stratum

H
h, giving G =h21 g replicates. The appropri-

ate variance estimator, unbiased for linear i
under with replacement sampling of PSUs, is

H(&,, l)g

vsai(f) = 1 T (F‘*(th)_l‘“)2
In the case where{,=2 for every stratum,
with each subsample dropped out, an alterna-
tive estimator, equivalent to (3) for linear i, is

. H .
vip(f) = % 2= ( (1h)'P«(2h))2-

The precision of the jackknife variance esti-
mator is maximized when each dropout group
is of size one, and each unit is dropped out
once. If the sample in stratum % consists of n,

PSUs, n = 2 n,, rephcates are required to

give maxnmum precision. " The variance esti-
mator in this case is (3) with£, replaced by n,,.

Chakrabarty and Rao (1967) considered the
use of the jackknife for estimating the
variance of a ratio estimator. They showed
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that under a particular regression model the
bias of the jackknife variance estimator is
minimized for dropout groups of size one,
with each unit dropped out once.

The jackknife variance estimation proce-
dure can be used with combined strata also.
Replicates can be formed by dropping out
PSUs from several strata at the same time. As
with BRR, combining strata does not add bias
to the jackknife variance estimation proce-
dure. Rust (1984, Ch. 3 and 4) discusses
strategies for determining the most suitable
form of jackknife variance estimator for a
given survey, subject to constraints on the
number of replicates to be formed.

7. Comparisons Among Variance Estima-
tion Procedures

A number of investigators have compared the
performances of the BRR, jackknife, and
linearization procedures, both analytically
and empirically. The empirical investigations
have been of two distinct types: those using
actual survey data which comparisons are
based on, and those based on randomly
generated data sets with known properties.

A pioneering and central investigation has
been the work of Kish and Frankel (1968,
1970, 1974), and Frankel (1971)). This work
includes a major study using data from the
1967 Current Population Survey conducted by
the U.S. Bureau of the Census. The perfor-
mances of the linearization, BRR, and jack-
knife procedures were compared for two PSU
per stratum designs featuring 6, 12, and 30
strata. A large range of estimators were
considered: ratio means, differences of ratio
means, correlation coefficients, regression
coefficients, partial correlation coefficients,
and multiple correlation coefficients. The
three variance estimation methods were
compared with regard to bias, mean square
error, and the coverage of confidence inter-
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vals based upon the variance estimates and
parameter estimates using the appropriate
coefficient from a ¢ distribution.

There was good evidence that all three
methods performed satisfactorily and with
similar accuracy for ratio means and differ-
ences between them, correlation coefficients,
and regression coefficients. Although there
was variation across estimators and sample
sizes, consistent evidence was found that
linearization gave the smallest mean square
error for the variance estimates, and BRR
gave the largest. As expected, the bias of each
technique decreased as the number of strata
increased. Although linearization generally
had the smallest mean square error, it did not
consistently have the smallest absolute
relative bias.

For this same group of estimators, all three
methods showed that the quality of coverage
of the t-intervals increased as the number of
strata increased. BRR consistently gave the
best coverage, and linearization the poorest.
The intervals slightly overstated the true
confidence level for the linearization and jack-
knife techniques, but no such consistent over-
or understatement of the true level of
confidence resulted from BRR-based confi-
dence intervals.

For the BRR and jackknife methods, the
performances of the different alternative
forms of variance estimator were considered.
The forms Vgrr.s> Verr-H» and VprrD
(described in Section 5) were compared for
BRR, and vgj, vsgy, and vyp, (described in
Section 6) were compared for jackknifing.
Frankel (1971) recommended vgrr-s Over
Verr.p, and correspondingly vg; over vjp.
These recommendations were based on the
quality of the coverage of confidence intervals
derived from the variance estimates. How-
ever, the question of whether it is cost
effective to compute estimates from the
complementary replicates for two PSUs per
stratum designs cannot be answered unequi-



Rust: Variance Estimation for Complex Estimators in Sample Surveys

vocally. Complementary replicate estimates
are required for vgrr_s, Verr-D> Vi, and vyp,
but not for the estimators vggr_y and vggy. The
relative performances of the different variance
estimators vary both with the parameter and
the number of PSUs in the sample.

For estimators of partial and multiple corre-
lation coefficients, these three methods
proved much less satisfactory. The lineariza-
tion procedure was not used, since Frankel
found the necessary analytic differentiation
intractable for these two types of estimator.
The stated confidence levels of the #intervals
based on BRR were substantially above the
true confidence levels, particularly for
multiple correlation coefficients, and were
even further overstated when variance esti-
mates were derived using jackknifing. These
poor performances persisted over designs
with different numbers of strata.

Using numerical differentiation, Woodruff
and Causey (1976) were able to consider the
performance of linearization for partial and
multiple correlations. They used the same set
of data (but not the same samples) as Kish and
Frankel. Woodruff and Causey found that, as
with the other estimators considered by Kish
and Frankel, linearization gave a lower mean
square error for the estimates of variance for
both partial and multiple correlation coeffi-
cients across 6, 12, and 30 stratum designs.
The quality of coverage of symmetric #-inter-
vals based on linearization was worse than for
BRR and jackknifing, again consistent with
the results for other estimators. This is parti-
cularly notable in view of the poor quality of
confidence interval estimation shown by BRR
and jackknifing, especially for multiple corre-
lation coefficients.

No definitive reason for the poor perfor-
mance of all three variance estimation
methods for partial and multiple correlation
coefficients in these two studies has been
found. Kalton (1974) points out that a simple
correlation is a special case of a multiple corre-
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lation, and yet the performance of these
methods of estimating the variances of simple
correlations was found to be most satisfactory.

Bean (1975) undertook an empirical study
using data from the 1969 Health Interview
Survey of the U.S. National Center for Health
Statistics. The performances of the lineariza-
tion variance estimator and BRR were
considered. For BRR, the variance estimators
verr.s and vgrr.y Were used. Ratio estimates
using poststratification were studied for
several two-PSUs-per-stratum designs. The
findings were similar to those of Kish and
Frankel. The bias, the mean square error, and
the confidence interval performance were
compared for five characteristics and three
different self-weighting two-stage designs,
varying only in their overall sampling rate.
This variation was introduced to assess the
effect of ignoring the without replacement
aspect of PSU selection.

The three variance estimators were found
to have comparable and negligible bias for all
sample designs and estimators. Treating the
PSUs as if they had been selected with
replacement did not introduce a substantial
bias. The linearization estimator showed
greatest consistency. The tendency for bias to
decrease as sample size increased was
strongest for this method. The two BRR
variance estimators showed similar bias, as
expected, with vggg.s having smaller variance
than vggr.y. The linearization estimator
showed smaller mean square error than BRR,
but this effect was notable only for one esti-
mator.

The analysis of the performances of confi-
dence intervals based on these variance esti-
mators showed patterns very similar to those
found by Kish and Frankel. Both linearization
and BRR gave good results, with the true
confidence levels close to the stated levels.
The performance of BRR was consistently a
little better than that of linearization. The
findings from this study for estimates of-ratios
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were thus consistent with the earlier findings
of Kish and Frankel.

Campbell and Meyer (1978) also conducted
a study to compare linearization, BRR, and
jackknifing for variance estimation. They
studied the performance of these methods for
designs with two PSUs per stratum, but used
randomly generated data, so that they could
compare the performances over different
population conditions. The main criterion
used to judge the performance of the variance
estimators was the quality of coverage of
symmetric 90 % and 95 % confidence inter-
vals, based on the ¢ distribution. The param-
eters estimated were means, ratios, popula-
tion variances and logarithmically trans-
formed population variances, regression coeffi-
cients, simple correlation coefficients, and the
Fisher z transform of a simple correlation
coefficient. Campbell and Meyer found that,
averaged across parameters, BRR gave better
performance across a variety of populations
than either of the other two procedures. The
study also indicated that the performance of
all methods was poor for the populations and
sample sizes studied when the parameter esti-
mated was a population variance or its loga-
rithmic transform. The study’s findings
strengthen the impression that BRR gives
superior confidence interval statements in
comparison to the other two procedures, and
that the performances of all three methods
(but not their relative performances) vary
markedly with the parameter being estimated.

Another finding common to the studies of
Kish and Frankel (1970), Bean (1975), and a
study by Simmons and Baird (1968) is that
there is little loss in accuracy in using the
original whole sample weights (needed to
account for the effects of poststratification
and nonresponse) for units in each half-
sample of each replicate. The alternative is to
derive new weights each time that are appro-
priate to the particular half-sample. This
finding has important implications for the
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practical use of replicated techniques, since
the procedure of using the same weights is
simpler and cheaper. It appears that in the
applications considered, sampling variability
in the unit weights did not make an important
contribution to the sampling variance.

Lemeshow (1976, 1979), using randomly
generated data, studied the effects of these
alternative weighting procedures for half-
samples, particularly when estimates of
variance are required for subclass estimates, a
common requirement in practice. Both BRR
(Lemeshow (1976, 1979)) and jackknifing
(Lemeshow (1976)) were considered. Leme-
show found that the use of constant weights
throughout proved far from satisfactory, for
the situations considered, giving both greater
bias and lower precision of variance estima-
tion. Lemeshow concluded that, especially
when subclass estimates are important, the
use of the reweighting method is preferable to
the use of a single set of weights. These
findings were considered not to be inconsis-
tent with those of Kish and Frankel and
Simmons and Baird, who found a single set of
weights to be satisfactory. These earlier
investigations did not consider subclass esti-
mates, and there were not large differences
among stratum means in these studies, an
important factor contributing to Lemeshow’s
findings.

Lemeshow’s findings suggest that rather
than using fully balanced BRR with fixed
weights, new weights for each half-sample
should be used. However, it might prove
necessary to use fewer replicates. Lemeshow’s
findings are particularly useful when subclass
estimates are important. The cost of perform-
ing the reweighting can be balanced by the
reduction in cost resulting from the use of
fewer replicates. This argument also applies to
the use of jackknifing.

Other studies have used randomly generat-
ed data to study the properties of variance
estimators for complex estimators. Leme-
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show, Hosmer, and Hislop (1980) conducted a
Monte Carlo study comparing the perfor-
mance of linearization, BRR, and the jackknife
for estimating the variance of a combined
ratio estimate in the presence of non-normali-
ty of the underlying distributions. They found
that the estimators performed badly when
only three strata with small sample sizes were
used. However, with 16 strata or a reasonably
large sample of second stage units in each
stratum all three techniques performed satis-
factorily and were comparable over a variety
of distributions. Lemeshow and Levy (1979)
had previously studied the performance of the
methods for combined ratio estimation when
the underlying variables are normally distri-
buted, again using a Monte Carlo approach.
In this case, they found all three methods to be
satisfactory. It would seem that in actual
survey practice, at least for the combined ratio
estimator, these techniques are robust to the
underlying population distribution, and that
they differ little on the basis of this criterion.

A number of authors have considered these
variance estimation techniques analytically.
The results obtained have concentrated on
particular aspects and properties of the
variance estimators, whereas much of the
empirical analysis has concentrated on overall
measures of performance.

Krewski and Rao (1981) showed that for
two-PSUs-per-stratum designs, using with
replacement selection of PSUs, as the number
of strata increases, the variance estimators
obtained via the linearization, jackknife, and
BRR techniques are consistent, under reason-
ably limiting conditions. This result holds for
all variations of BRR and jackknife variance
estimators. This result, while suggesting small
differences in the quality of the three proce-
dures for samples with many strata, does not
indicate the relative performances of the three
methods in practice. In the same paper,
Krewski and Rao consider the performances
of the three methods for combined ratio esti-
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mation. Exact analytic results on the bias and
precision of each of the three methods were
sought under a general regression model. The
results are for stratified single stage sampling
with proportional allocation. The relativities
when comparing the size of the biases of the
three methods depend upon the heteroscedas-
ticity of the error distribution of the regression
model in each stratum, the intercepts of the
regression models, the stratum sizes, and the
number of strata. The bias for jackknifing and
BRR depend upon the exact form of the
variance estimator used.

Even for a single estimator under restricted
population model and sample design condi-
tions, general relationships are not discernible
in either the signs or the magnitudes of the
biases of the three methods. When the mean
square error (MSE) of the methods was
considered, it was found that the MSE of the
BRR estimator vy exceeds that of the
linearization procedure. However, the size of
the excess is not generalizable across different
model conditions. The MSEs for jackknifing
and the other forms of the BRR estimator
proved intractable (as was even the bias for
some forms of jackknife estimator).

The results of Krewski and Rao’s work
illustrate two aspects of the non-asymptotic
analytic examination of these variance esti-
mators. Results can be difficult to derive,
especially considering the range of possible
variance estimators that can be used with
BRR and jackknifing. When the results are
derivable, they tend to be of limited general-
ity, and hence of little use for discerning which
technique is the most suitable for a range of
estimators, and for a population whose
characteristics are at best only broadly known.

Mellor (1973) compared various replicated
variance estimators both empirically and
analytically. He showed that among a class of
replicated variance estimators that he called
“balanced” (essentially estimators in which
each sample unit appears in an equal number
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of replicates), the jackknife procedure is
optimal for linear estimators (for which it is
equivalent to BRR for two-PSUs-per-stratum
designs).

Mellor also considered the large-sample
properties of some replicated variance proce-
dures for non-linear estimators. He general-
ized the results of Brillinger (1964) to show
that a variety of replication estimators,
including jackknifing, result in the quantity
(y=Y)/ Vv being distributed asymptotically as
a t distribution with b—1 degrees of freedom,
where b is the number of replicates used, y is
the estimate of Y, and v is the variance esti-
mate. This asymptotic result holds as the
sample size increases and b remains fixed.
This large-sample result gives reason for
confidence in the use of replicated procedures
for variance estimation, and in particular for
estimating confidence intervals.

It seems clear that in order to discriminate
analytically between variance estimation
procedures for non-linear estimators, higher
order analyses are required. Recently, Rao
and Wu (1983a) have used second order
analyses to compare BRR, jackknifing, and
the linearization method. In particular, the
asymptotic relative biases of the three proce-
dures were considered. The authors show that
for designs with two PSUs selected per
stratum with replacement the BRR (using
verr-p) and jackknife (using v;p) procedures
are identical to the linearization procedure for
quadratic estimators. Results are also derived
showing that seven variations of the jackknife
variance estimator are equivalent to higher
order terms. However, the three variations of
the BRR estimator considered do not show
this equivalence to the same order. The jack-
knife and linearization estimators are equiva-
lent to higher order terms. The BRR esti-
mators vgrgr_s and vgrr_p, in which comple-
mentary half-samples are used, show closer
relation to the linearization procedure than
vBrr-n, Which does not make use of comple-
mentary half-samples values.
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These results, and in particular the equiva-
lence of the linearization procedure and all
seven variations of the jackknife procedure
considered to stochastic order n%, suggest that
for designs where the sample size of PSUs is
large there is very little difference among
these estimators, and that practical matters
should be considered when choosing among
them.

Rao and Wu (1983a) also considered these
variance  estimators non-asymptotically,
specifically for use with combined ratio esti-
mation. They found that the biases of both the
jackknife and the BRR variance estimators
exceeded that of the linearization estimator.
The result for jackknife estimators is based on
the assumption that the squared residuals
about the ratio slope are positively correlated
with the auxiliary variable, a common occur-
rence in practice.

Little research appears to have been under-
taken to compare the properties of the
random groups method with those of lineari-
zation, BRR and jackknifing. This is perhaps
because the random groups method is a useful
procedure for relatively few survey designs.
Also, the method of forming the random
groups depends upon the design. This means
that it is difficult to consider the general
properties of this method.

8. Other Properties of Replicated Techniques

A number of studies have shown replication to
be a useful tool in analytic surveys, particular-
ly for the estimation of covariance matrices.
Koch and Lemeshow (1972) used a replication
estimator of a covariance matrix in analyzing
differences between domain means in the
U.S. Health Examination Survey. Freeman
(1975) undertook an empirical investigation
of replicated estimates of covariance matrices,
and Koch, Freeman, and Freeman (1975)
discuss the use of replication methods for use
in univariate and multivariate comparisons
among cross-classified domains. Chapman
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(1966) and Nathan (1975) present an approx-
imate test for independence in contingency
tables using replicated estimates of the
covariance matrices.

In addition to the findings of Kish and
Frankel (1970, 1974), which showed that both
BRR and jackknifing could perform poorly
when used with estimates of partial and
multiple correlation coefficients, there is
further evidence of the poor performance of
replicated procedures in special circum-
stances. Brillinger (1977) shows analytically
that the jackknife variance estimator will have
a severe downward bias when used for an esti-
mate of the median of a population from a
simple random sample. The variance estimate
derived using the jackknife estimator with
dropout groups of size one is shown to be
asymptotically for only 25 % of the true
asymptotic variance. Brillinger (1964)
suggests that the poor approximation of the
sample median by a linear estimator accounts
for this phenomenon. This in turn suggests
that the jackknife variance estimator is likely
to perform poorly for other estimators not
well approximated by a linear form, and that
this argument should extend to other repli-
cated variance estimation techniques.

The theoretical justifications for both BRR
and jackknifing are based on the assumption
that PSUs are sampled independently (i.e.,
with replacement). To the extent that PSU
selection is not independent, and the sampling
of first stage units contributes to the overall
sampling variance, replicated procedures will
be biased. In empirical studies, this source of
bias has not been found to have a substantial
adverse effect on the performance of replicat-
ed variance estimation procedures. However,
one must be aware of this potential source of
bias when making use of these techniques.

Replicated variance estimation methods
occupy a firmly established position in the
repertoire of techniques used by practising
survey statisticians. Their generality, their
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ability to provide variance estimators for
parameter estimators for which it is difficult to
do so otherwise, and their relative robustness
have given them their appeal. The major
drawbacks have been their relatively high
cost, and the lack of theoretical results
concerning their accuracy in realistic cases.
Asymptotic properties are generally highly
favorable. Small sample Monte Carlo studies
raise some doubts as to their accuracy. Both
theoretical and Monte Carlo results are
lacking for samples of the size and design for
which the techniques are typically used. Their
accuracy when used with certain types of esti-
mators, particularly highly non-linear esti-
mators, remains very much in doubt.

9. Concluding Remarks

Recent theoretical developments have been
discussed for Taylor series linearization,
increasing its generality of application (Binder
(1983)). Methods of implementing the BRR
and jackknifing procedures that will give
adequate precision using a modest number of
replicates have been proposed (see Rust
(1984, Ch. 2 to 4)). Furthermore, the costs of
large scale numerical manipulation via
computer have decreased substantially, and it
is likely that these costs will keep decreasing
for some time. These developments suggest
that both linearization and replication proce-
dures for estimating sampling variances are
becoming increasingly readily available to
sampling practitioners.

A number of computer programs are
currently available for variance estimation for
complex estimators, either as stand-alone
programs or as routines in statistical packages.
Examples are the programs SUPER CARP
(Iowa State University) and SURREGR
(Research Triangle Institute, North Caroli-
na), which use the linearization approach, and
the REPERR routine of the OSIRIS IV
package (Institute for Social Research, the
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University of Michigan), which provides both
the BRR and jackknife procedures. Details of
many of the available programs are contained
in Francis (1981).

At present, on theoretical grounds there
appears to be little to choose among the estab-
lished procedures of linearization, BRR, and
jackknifing. Given that the complexities of
the sample design are still frequently ignored
in the analysis of survey data, it would appear
that the availability, cost, and ease of use of
suitable software should be the main consider-
ations in the practical choice among these
methods. All three methods offer substantial
improvement over the use of traditional
methods based on an assumption of simple
random sampling.

In the future, the important research on
these methods seems likely to be focussed on
two areas: the examination of the properties
of the different methods when these methods
are used for making statistical inferences
about population parameters, and the
development of alternative methods for use in
situations where none of the currently
practised methods has proved successful.

Further research is needed, no doubt both
theoretical and empirical, to establish the
properties of linearization, BRR, and jack-
knifing when the variance estimator is used to
derive a confidence interval for the parameter
of interest. The empirical works of Frankel
(1971) and Campbell and Meyer (1978) need
to be followed up in an attempt to determine
the desirable properties of a variance estima-
tor when used for such a purpose, and to
establish a means of discriminating among
methods.

The method known as the bootstrap, intro-
duced by Efron (1982), appears to offer a
potential alternative in cases where current
methods are unsatisfactory. The expense of this
method seems likely to restrict its usefulness
in other circumstances. A systematic evalua-
tion of this procedure, as applied to sample
surveys, is still in its early stages. The work of
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Rao and Wu (1983b, 1984) provides the first
detailed insight into the methods for applying
the bootstrap to variance estimation for com-
plex sample designs, and the asymptotic pro-
perties of the resulting variance estimator and
confidence intervals. Recently, McCarthy and
Snowden (1985) have also undertaken an
evaluation of bootstrapping for finite popula-
tion sampling that uses simulations based on
five artificial populations.
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