

Deep Learning for Computer Vision with
Python

Practitioner Bundle
Dr. Adrian Rosebrock

1st Edition (1.2.1)

Copyright c© 2017 Adrian Rosebrock, PyImageSearch.com

PUBLISHED BY PYIMAGESEARCH

PYIMAGESEARCH.COM

The contents of this book, unless otherwise indicated, are Copyright c©2017 Adrian Rosebrock,
PyimageSearch.com. All rights reserved. Books like this are made possible by the time invested by
the authors. If you received this book and did not purchase it, please consider making future books
possible by buying a copy at https://www.pyimagesearch.com/deep-learning-computer-vision-
python-book/ today.

First printing, September 2017

https://www.pyimagesearch.com/deep-learning-computer-vision-python-book/
https://www.pyimagesearch.com/deep-learning-computer-vision-python-book/

To my father, Joe; my wife, Trisha;
and the family beagles, Josie and Jemma.
Without their constant love and support,

this book would not be possible.

Contents

1 Introduction . 13

2 Introduction . 15

3 Training Networks Using Multiple GPUs . 17

3.1 How Many GPUs Do I Need? 17
3.2 Performance Gains Using Multiple GPUs 18
3.3 Summary 19

4 What Is ImageNet? . 21

4.1 The ImageNet Dataset 21
4.1.1 ILSVRC . 21

4.2 Obtaining ImageNet 23
4.2.1 Requesting Access to the ILSVRC Challenge . 23
4.2.2 Downloading Images Programmatically . 23
4.2.3 Using External Services . 24
4.2.4 ImageNet Development Kit . 24
4.2.5 ImageNet Copyright Concerns . 25

4.3 Summary 27

5 Preparing the ImageNet Dataset . 29

5.1 Understanding the ImageNet File Structure 29
5.1.1 ImageNet “test” Directory . 30
5.1.2 ImageNet “train” Directory . 31
5.1.3 ImageNet “val” Directory . 32
5.1.4 ImageNet “ImageSets” Directory . 33

5.1.5 ImageNet “DevKit” Directory . 34

5.2 Building the ImageNet Dataset 37
5.2.1 Your First ImageNet Configuration File . 37
5.2.2 Our ImageNet Helper Utility . 42
5.2.3 Creating List and Mean Files . 46
5.2.4 Building the Compact Record Files . 50

5.3 Summary 52

6 Training AlexNet on ImageNet . 53

6.1 Implementing AlexNet 54
6.2 Training AlexNet 58
6.2.1 What About Training Plots? . 59
6.2.2 Implementing the Training Script . 60

6.3 Evaluating AlexNet 65
6.4 AlexNet Experiments 67
6.4.1 AlexNet: Experiment #1 . 68
6.4.2 AlexNet: Experiment #2 . 70
6.4.3 AlexNet: Experiment #3 . 71

6.5 Summary 74

7 Training VGGNet on ImageNet . 75

7.1 Implementing VGGNet 76
7.2 Training VGGNet 81
7.3 Evaluating VGGNet 85
7.4 VGGNet Experiments 86
7.5 Summary 88

8 Training GoogLeNet on ImageNet . 89

8.1 Understanding GoogLeNet 89
8.1.1 The Inception Module . 90
8.1.2 GoogLeNet Architecture . 90
8.1.3 Implementing GoogLeNet . 91
8.1.4 Training GoogLeNet . 95

8.2 Evaluating GoogLeNet 99
8.3 GoogLeNet Experiments 99
8.3.1 GoogLeNet: Experiment #1 . 100
8.3.2 GoogLeNet: Experiment #2 . 101
8.3.3 GoogLeNet: Experiment #3 . 102

8.4 Summary 103

9 Training ResNet on ImageNet . 105

9.1 Understanding ResNet 105
9.2 Implementing ResNet 106
9.3 Training ResNet 112
9.4 Evaluating ResNet 116

9.5 ResNet Experiments 116
9.5.1 ResNet: Experiment #1 . 116
9.5.2 ResNet: Experiment #2 . 116
9.5.3 ResNet: Experiment #3 . 117

9.6 Summary 120

10 Training SqueezeNet on ImageNet . 121

10.1 Understanding SqueezeNet 121
10.1.1 The Fire Module . 121
10.1.2 SqueezeNet Architecture . 123
10.1.3 Implementing SqueezeNet . 124

10.2 Training SqueezeNet 128
10.3 Evaluating SqueezeNet 132
10.4 SqueezeNet Experiments 132
10.4.1 SqueezeNet: Experiment #1 . 132
10.4.2 SqueezeNet: Experiment #2 . 134
10.4.3 SqueezeNet: Experiment #3 . 135
10.4.4 SqueezeNet: Experiment #4 . 136

10.5 Summary 139

11 Case Study: Emotion Recognition . 141

11.1 The Kaggle Facial Expression Recognition Challenge 141
11.1.1 The FER13 Dataset . 141
11.1.2 Building the FER13 Dataset . 142

11.2 Implementing a VGG-like Network 147
11.3 Training Our Facial Expression Recognizer 150
11.3.1 EmotionVGGNet: Experiment #1 . 153
11.3.2 EmotionVGGNet: Experiment #2 . 153
11.3.3 EmotionVGGNet: Experiment #3 . 154
11.3.4 EmotionVGGNet: Experiment #4 . 155

11.4 Evaluating our Facial Expression Recognizer 157
11.5 Emotion Detection in Real-time 159
11.6 Summary 163

12 Case Study: Correcting Image Orientation . 165

12.1 The Indoor CVPR Dataset 165
12.1.1 Building the Dataset . 166

12.2 Extracting Features 170
12.3 Training an Orientation Correction Classifier 173
12.4 Correcting Orientation 175
12.5 Summary 177

13 Case Study: Vehicle Identification . 179

13.1 The Stanford Cars Dataset 179
13.1.1 Building the Stanford Cars Dataset . 180

13.2 Fine-tuning VGG on the Stanford Cars Dataset 187
13.2.1 VGG Fine-tuning: Experiment #1 . 192
13.2.2 VGG Fine-tuning: Experiment #2 . 193
13.2.3 VGG Fine-tuning: Experiment #3 . 194

13.3 Evaluating our Vehicle Classifier 195
13.4 Visualizing Vehicle Classification Results 197
13.5 Summary 201

14 Case Study: Age and Gender Prediction . 203

14.1 The Ethics of Gender Identification in Machine Learning 203
14.2 The Adience Dataset 204
14.2.1 Building the Adience Dataset . 205

14.3 Implementing Our Network Architecture 219
14.4 Measuring “One-off” Accuracy 221
14.5 Training Our Age and Gender Predictor 224
14.6 Evaluating Age and Gender Prediction 227
14.7 Age and Gender Prediction Results 230
14.7.1 Age Results . 230
14.7.2 Gender Results . 231

14.8 Visualizing Results 233
14.8.1 Visualizing Results from Inside Adience . 234
14.8.2 Understanding Face Alignment . 238
14.8.3 Applying Age and Gender Prediction to Your Own Images 240

14.9 Summary 244

15 Faster R-CNNs . 247

15.1 Object Detection and Deep Learning 247
15.1.1 Measuring Object Detector Performance . 248

15.2 The (Faster) R-CNN Architecture 250
15.2.1 A Brief History of R-CNN . 250
15.2.2 The Base Network . 254
15.2.3 Anchors . 255
15.2.4 Region Proposal Network (RPN) . 257
15.2.5 Region of Interest (ROI) Pooling . 258
15.2.6 Region-based Convolutional Neural Network . 259
15.2.7 The Complete Training Pipeline . 260

15.3 Summary 260

16 Training a Faster R-CNN From Scratch . 261

16.1 The LISA Traffic Signs Dataset 261
16.2 Installing the TensorFlow Object Detection API 262
16.3 Training Your Faster R-CNN 263
16.3.1 Project Directory Structure . 263
16.3.2 Configuration . 265
16.3.3 A TensorFlow Annotation Class . 267

16.3.4 Building the LISA + TensorFlow Dataset . 269
16.3.5 A Critical Pre-Training Step . 274
16.3.6 Configuring the Faster R-CNN . 275
16.3.7 Training the Faster R-CNN . 280
16.3.8 Suggestions When Working with the TFOD API . 282
16.3.9 Exporting the Frozen Model Graph . 286
16.3.10 Faster R-CNN on Images and Videos . 286

16.4 Summary 290

17 Single Shot Detectors (SSDs) . 293

17.1 Understanding Single Shot Detectors (SSDs) 293
17.1.1 Motivation . 293
17.1.2 Architecture . 294
17.1.3 MultiBox, Priors, and Fixed Priors . 295
17.1.4 Training Methods . 296

17.2 Summary 297

18 Training a SSD From Scratch . 299

18.1 The Vehicle Dataset 299
18.2 Training Your SSD 300
18.2.1 Directory Structure and Configuration . 300
18.2.2 Building the Vehicle Dataset . 302
18.2.3 Training the SSD . 307
18.2.4 SSD Results . 310
18.2.5 Potential Problems and Limitations . 311

18.3 Summary 312

19 Conclusions . 313

19.1 Where to Now? 314

Companion Website

Thank you for picking up a copy of Deep Learning for Computer Vision with Python! To accompany
this book I have created a companion website which includes:
• Up-to-date installation instructions on how to configure your development environment
• Instructions on how to use the pre-configured Ubuntu VirtualBox virtual machine and

Amazon Machine Image (AMI)
• Supplementary material that I could not fit inside this book
• Frequently Asked Questions (FAQs) and their suggested fixes and solutions
Additionally, you can use the “Issues” feature inside the companion website to report any bugs,

typos, or problems you encounter when working through the book. I don’t expect many problems;
however, this is a brand new book so myself and other readers would appreciate reporting any
issues you run into. From there, I can keep the book updated and bug free.

To create your companion website account, just use this link:
http://pyimg.co/fnkxk
Take a second to create your account now so you’ll have access to the supplementary materials

as you work through the book.

http://pyimg.co/fnkxk

1. Introduction

Welcome to the Practitioner Bundle of Deep Learning for Computer Vision with Python! This
volume is meant to be the next logical step in your deep learning for computer vision education
after completing the Starter Bundle.

At this point, you should have a strong understanding of the fundamentals of parameterized
learning, neural networks, and Convolutional Neural Networks (CNNs). You should also feel
relatively comfortable using the Keras library and the Python programming language to train your
own custom deep learning networks.

The purpose of the Practitioner Bundle is to build on your knowledge gained from the Starter
Bundle and introduce more advanced algorithms, concepts, and tricks of the trade — these tech-
niques will be covered in three distinct parts of the book.

The first part will focus on methods that are used to boost your classification accuracy in one
way or another. One way to increase your classification accuracy is to apply transfer learning
methods such as fine-tuning or treating your network as a feature extractor.

We’ll also explore ensemble methods (i.e., training multiple networks and combining the
results) and how these methods can give you a nice classification boost with little extra effort.
Regularization methods such as data augmentation are used to generate additional training data
– in nearly all situations, data augmentation improves your model’s ability to generalize. More
advanced optimization algorithms such as Adam [1], RMSprop [2], and others can also be used on
some datasets to help you obtain lower loss. After we review these techniques, we’ll look at the
optimal pathway to apply these methods to ensure you obtain the maximum amount of benefit with
the least amount of effort.

We then move on to the second part of the Practitioner Bundle which focuses on larger
datasets and more exotic network architectures. Thus far we have only worked with datasets that
have fit into the main memory of our system – but what if our dataset is too large to fit into RAM?
What do we do then? We’ll address this question in Chapter ?? when we work with HDF5.

Given that we’ll be working with larger datasets, we’ll also be able to discuss more advanced
network architectures using AlexNet, GoogLeNet, ResNet, and deeper variants of VGGNet. These
network architectures will be applied to more challenging datasets and competitions, including the

14 Chapter 1. Introduction

Kaggle: Dogs vs. Cats recognition challenge [3] as well as the cs231n Tiny ImageNet challenge
[4], the exact same task Stanford CNN students compete in. As we’ll find out, we’ll be able to
obtain a top-25 position on the Kaggle Dogs vs. Cats leaderboard and top the cs231n challenge for
our technique type.

The final part of this book covers applications of deep learning for computer vision outside of
image classification, including basic object detection, deep dreaming and neural style, Generative
Adversarial Networks (GANs), and Image Super Resolution. Again, the techniques covered in this
volume are meant to be much more advanced than the Starter Bundle – this is where you’ll start to
separate yourself from a deep learning novice and transform into a true deep learning practitioner.
To start your transformation to deep learning expert, just flip the page.

2. Introduction

Welcome to the ImageNet Bundle of Deep Learning for Computer Vision with Python, the final
volume in the series. This volume is meant to be the most advanced in terms of content, covering
techniques that will enable you to reproduce results of state-of-the-art publications, papers, and
talks. To help keep this work organized, I’ve structured the ImageNet Bundle in two parts.

In the first part, we’ll explore the ImageNet dataset in detail and learn how to train state-of-the-
art deep networks including AlexNet, VGGNet, GoogLeNet, ResNet, and SqueezeNet from scratch,
obtaining as similar accuracies as possible as their respective original works. In order to accomplish
this goal, we’ll need to call on all of our skills from the Starter Bundle and Practitioner Bundle.

We’ll need to ensure we understand the fundamentals of Convolutional Neural Networks,
especially layer types and regularization, as we implement some of these more “exotic” architectures.
Luckily, you have already seen more shallow implementations of these deeper architectures inside
the Practitioner Bundle so implementing networks such as VGGNet, GoogLeNet, and ResNet will
feel somewhat familiar.

We’ll also need to ensure we are comfortable with babysitting the training process as we
can easily overfit our network architectures on the ImageNet dataset, especially during the later
epochs. Learning how to correctly monitor loss and accuracy plots to determine if/when parameter
updates should be updated is an acquired skill, so to help you develop this skill faster and train
deep architectures on large, challenging datasets, I’ve written each of these chapters as “experiment
journals” that apply the scientific method.

Inside each chapter for a given network you’ll find:
1. The exact process I used when training the network.
2. The particular results.
3. The changes I decided to make in the next experiment.
Thus, each chapter reads like a “story”: you’ll find out what worked for me, what didn’t, and

ultimately what obtained the best results and enabled me to replicate the work of a given publication.
After reading this book, you’ll be able to use this knowledge to train your own network architectures
from scratch on ImageNet without spinning your wheels and wasting weeks (or even months) of
time trying to tune your parameters.

16 Chapter 2. Introduction

The second part of this book focuses on case studies – real-world applications of applying
deep learning and computer vision to solve a particular problem. We’ll first start off by training a
CNN from scratch to recognition emotions/facial expressions of people in real-time video streams.
From there we’ll use transfer learning via feature extraction to automatically detect and correct
image orientation. A second case study on transfer learning (this time via fine-tuning) will enable
us to recognize over 164 vehicle makes and models in images. A model such as this one could
enable you to create an “intelligent” highway billboard system that displays targeted information or
advertising to the driver based on what type of vehicle they are driving. Our final case study will
demonstrate how to train a CNN to correctly predict the age and gender of a person in a photo.

Finally, I want to remind you that the techniques covered in this volume are much more advanced
than both the Starter Bundle and the Practitioner Bundle. Both of the previous volumes gave you
the required knowledge you need to be successful when reading through this book – but this point
is where you’ll separate yourself from a deep learning practitioner and a true deep learning master.
To start your final transformation into a deep learning expert, just flip the page.

3. Training Networks Using Multiple GPUs

Training deep neural networks on large scale datasets can take a long time, even single experiments
can take days to finish. In order to speed up the training process, we can use multiple GPUs. While
backends such as Theano and TensorFlow (and therefore Keras) do support multiple GPU training,
the process to set up a multiple GPU experiment is arduous and non-trivial. I do expect this process
to change for the better in the future and become substantially easier.

Therefore, for deep neural networks and large datasets, I highly recommend using the mxnet
library [5] which we will be using for the majority of experiments in the remainder of this book. The
mxnet deep learning library (written in C++) provides bindings to the Python programming language
and specializes in distributed, multi-machine learning – the ability to parallelize training across
GPUs/devices/nodes is critical when training state-of-the-art deep neural network architectures on
massive datasets (such as ImageNet).

The mxnet library is also very easy to work with – given your background using the Keras
library from previous chapters in this book, you’ll find working with mxnet to be easy, straightfor-
ward, and even quite natural.

It’s important to note that all neural networks in the ImageNet Bundle can be trained using a
single GPU – the only caveat is time. Some networks, such as AlexNet and SqueezeNet, require
only a few days time to be trained on a single GPU. Other architectures, such as VGGNet and
ResNet, may take over a month to train on a single GPU.

In the first part of this chapter, I’ll highlight the network architectures we’ll be discussing that
can easily be trained on a single GPU and which architectures should use multiple GPUs if at all
possible. Then, in the second half of this chapter, we’ll examine some of the performance gains we
can expect when training Convolutional Neural Networks using multiple GPUs.

3.1 How Many GPUs Do I Need?

If you were to ask any seasoned deep learning practitioner how many GPUs you need to train a
reasonably deep neural network on a large dataset, their answer would almost always be “The more,
the better”. The benefit of using multiple GPUs is obvious – parallelization. The more GPUs we

18 Chapter 3. Training Networks Using Multiple GPUs

can throw at the problem, the faster we can train a given network. However, some of us may only
have one GPU when working through this book. That raises the questions:
• Is using just one GPU a fruitless exercise?
• Is reading through this chapter a waste a time?
• Was purchasing the ImageNet Bundle a poor investment?
The answer to all of these questions is a resounding no – you are in good hands, and the knowl-

edge you learn here will be applicable to your own deep learning projects. However, you do need
to manage your expectations and realize you are crossing a threshold, one that separates educational
deep learning problems from advanced, real-world applications. You are now entering the world
of state-of-the-art deep learning where experiments can take days, weeks, or even in some rare
cases, months to complete – this timeline is totally and completely normal.

Regardless if you have one GPU or eight GPUs, you’ll be able to replicate the performance of
the networks detailed in this chapter, but again, keep in mind the caveat of time. The more GPUs
you have, the faster the training will be. If you have a single GPU, don’t be frustrated – simply be
patient and understand this is part of the process. The primary goal of the ImageNet Bundle is to
provide you with actual case studies and detailed information on how to train state-of-the-art deep
neural networks on the challenging ImageNet dataset (along with a few additional applications
as well). No matter if you have one GPU or eight GPUs, you’ll be able to learn from these case
studies and use this knowledge in your own applications.

For readers using a single GPU, I highly recommend spending most of your time training
AlexNet and SqueezeNet on the ImageNet dataset. These networks are more shallow and can be
trained much faster on a single GPU system (in the order of 3-6 days for AlexNet and 7-10 days
for SqueezeNet, depending on your machine). Deeper Convolutional Neural Networks such as
GoogLeNet can also be trained on a single GPU but can take up to 7-14 days.

Smaller variations of ResNet can also be trained on a single GPU as well, but for the deeper
version covered in this book, I would recommend multiple GPUs.

The only network architecture I do not recommend attempting to train using one GPU is
VGGNet – not only can it be a pain to tune the network hyperparameters (as we’ll see later in this
book), but the network is extremely slow due to its depth and number of fully-connected nodes. If
you decide to train VGGNet from scratch, keep in mind that it can take up to 14 days to train the
network, even using four GPUs.

Again, as I mentioned earlier in this section, you are now crossing the threshold from deep
learning practitioner to deep learning expert. The datasets we are examining are large and challeng-
ing – and the networks we will train on these datasets are deep. As depth increases, so does the
computation required to perform the forward and backward pass. Take a second now to set your
expectations that these experiments are not ones you can leave running overnight and gather the
results the next morning – your experiments will take longer to run. This is a fact that every deep
learning researcher must accept.

But even if you are training your own state-of-the-art deep learning models on a single GPU,
don’t fret. The same techniques we use for multiple GPUs can also be applied to single GPUs. The
sole purpose of the ImageNet Bundle is to give you the knowledge and experience you need to be
successful applying deep learning to your own projects.

3.2 Performance Gains Using Multiple GPUs
In an ideal world, if a single epoch for a given dataset and network architecture takes N seconds
to complete on a single GPU, then we would expect the same epoch with two GPUs to complete
in N/2 seconds. However, this expectation isn’t the actual case. Training performance is heavily
dependent on the PCIe bus on your system, the specific architecture you are training, the number of
layers in the network, and whether your network is bound via computation or communication.

3.3 Summary 19

In general, training with two GPUs tends to improve speed by ≈ 1.8x. When using four GPUs,
performance scales to ≈ 2.5− 3.5x scaling depending on your system [6]. Thus, training does
not decrease linearly with the number of GPUs on your system. Architectures that are bound
by computation (larger batch sizes increasing with the number of GPUs) will scale better with
multiple GPUs as opposed to networks that rely on communication (i.e., smaller batch sizes) where
latency starts to play a role in degrading performance.

Figure 3.1: On the x-axis we have the number of GPUs (1-4) while the y-axis describes the number
of images trained per second. When increasing from one to two GPUs we can inspect an increase
of ≈ 1.82x performance. Jumping from one to four GPUs yields an increase of ≈ 2.71.

To investigate GPU scaling further, let’s look at the official benchmarks released by NVIDIA
in Figure 3.1. Here we can see three types of GPUs (Tesla K80, Tesla M40, and Tesla P400) that
are used to train GoogLeNet on the ImageNet dataset using the Caffe [7] deep learning library.
The x-axis plots the number of GPUs (one, two, and four, respectively) while the y-axis describes
the number of images trained per second (forward and backward pass). On average, we see a
performance increase of ≈ 1.82x when switching from one GPU to two GPUs. When comparing
one GPU to four GPUs, performance increases to ≈ 2.71x.

Performance will continue to increase as more GPUs are added to the system, but again, keep
in mind that training speed will not scale linearly with the number GPUs – if you train a network
using one GPU, then train it again using four GPUs, don’t expect the amount of time it takes to
train the network to decrease by a factor of four. That said, there are performance gains to be had
by training deep learning models with more GPUs, so if you have them available, by all means, use
them.

3.3 Summary

In this chapter, we discussed the concept of training deep learning architectures using multiple GPUs.
To perform most of the experiments in this book, we’ll be using the mxnet library which is highly
optimized for multi-GPU training. Given your experience using the Keras library throughout earlier
chapters in this book, you’ll find using mxnet to be natural with function and class names being
very similar.

From there we discussed basic expectations when training networks using a single GPU versus
multiple GPUs. Yes, training a deep network on a large dataset with a single GPU will take longer,

20 Chapter 3. Training Networks Using Multiple GPUs

but don’t be discouraged – the same techniques you use for single GPU instances will apply to
multi-GPU instances as well. Keep in mind that you are now crossing the threshold from deep
learning practitioner to deep learning expert – the experiments we perform here will be more
challenging and will require more time and effort. Set this expectation now as all deep learning
researchers do in their career.

In Chapter 6, we’ll train our first Convolutional Neural Network, AlexNet, on the ImageNet
dataset, replicating the performance of Krizhevsky et al. in their seminal work in 2012 [8], which
changed the landscape of image classification forever.

4. What Is ImageNet?

In this chapter, we’ll discuss the ImageNet dataset and the associated ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [9]. This challenge is the de facto benchmark for evaluating
image classification algorithms. The leaderboard for ILSVRC has been dominated by Convolutional
Neural Networks and deep learning techniques since 2012 when Krizhevsky et al. published their
seminal AlexNet work [8].

Since then, deep learning methods have continued to widen the accuracy gap between CNNs
and other traditional computer vision classification methods. There is no doubt that CNNs are
powerful image classifiers and are now a permanent fixture in the computer vision and machine
learning literature. In the second half of this chapter, we’ll explore how to obtain the ImageNet
dataset, a requirement in order for you to replicate the results of state-of-the-art neural networks
later in this chapter.

4.1 The ImageNet Dataset
Within the computer vision and deep learning communities, you might run into a bit of contextual
confusion surrounding what ImageNet is and isn’t. ImageNet is actually a project aimed at labeling
and categorizing images into all its 22,000 categories based on a defined set of words and phrases.
At the time of this writing, there are over 14 million images in the ImageNet project.

So, how is ImageNet organized? To order such a massive amount of data, ImageNet actually
follows the WordNet hierarchy [10]. Each meaningful word/phrase inside WordNet is called a
“synonym set” or synset for short. Within the ImageNet project, images are categorized according
to these synsets; the goal of the project is to have 1,000+ images per synset.

4.1.1 ILSVRC
In the context of computer vision and deep learning, whenever you hear people talking about image
net, they are likely referring to the ImageNet Large Scale Visual Recognition Challenge [9], or
simply ILSVRC for short. The goal of the image classification track in this challenge is to train a
model that can correctly classify an image into 1,000 separate object categories, some of which are
considered fine-grained classification and others which are not. Images inside the ImageNet dataset

22 Chapter 4. What Is ImageNet?

were gathered by compiling previous datasets and scraping popular online websites. These images
were then manually labeled, annotated, and tagged.

Figure 4.1: Since the seminal AlexNet architecture was introduced in 2012, Convolutional Neural
Network methods have dominated the ILSVRC challenge, both in terms of accuracy and number of
entries. (Image credit: NVIDIA [11])

Since 2012, the leaderboard for the ILSVRC challenges has been dominated by deep learning-
based approaches with the rank-1 and rank-5 accuracies increasing every year (Figure 4.1). Models
are trained on ≈ 1.2 million training images with another 50,000 images for validation (50 images
per synset) and 100,000 images for testing (100 images per synset).

These 1,000 image categories represent various object classes that we may encounter in our
day-to-day lives, such as species of dogs, cats, various household objects, vehicle types, and much
more. You can find the full list of object categories in the ILSVRC challenge on this official
ImageNet documentation page (http://pyimg.co/1ogm0).

In Chapter 5 of the Starter Bundle, I included a figure demonstrating some of the challenges
associated with the ImageNet dataset from the ImageNet Large Scale Visual Recognition Challenge.
Unlike having generic “bird”, “cat”, and “dog” classes, ImageNet includes more fine-grained classes
compared to previous image classification benchmark datasets such as PASCAL VOC [12]. While
PASCAL VOC limited “dog” to only a single category, ImageNet instead includes 120 different
breeds of dogs. This finger classification requirement implies that our deep learning networks
not only need to recognize images as “dog”, but also be discriminative enough to determine what
species of dog.

Furthermore, images in ImageNet vary dramatically across object scale, number of instances,
image clutter/occlusion, deformability, texture, color, shape, and real-world size. This dataset is
challenging, to say the least, and in some cases, it’s hard for even humans to correctly label. Because
of the challenging nature of this dataset, deep learning models that perform well on ImageNet are
likely to generalize well to images outside of the validation and testing set – this is the exact reason
why we apply transfer learning to these models as well.

We’ll discuss more examples of images and specific classes in Chapter 5 when we start exploring
the ImageNet dataset and write code to prepare our images for training. However, until that time, I
would highly encourage you to take 10-20 minutes and browse the synsets (http://pyimg.co/1ogm0)
in your web browser to get a feel for the scale and challenge associated with correctly classifying
these images.

http://pyimg.co/1ogm0
http://pyimg.co/1ogm0

4.2 Obtaining ImageNet 23

4.2 Obtaining ImageNet
The ImageNet classification challenge dataset is quite large, weighing in at 138GB for the training
images, 6.3GB for the validation images, and 13GB for the testing images. Before you can
download ImageNet, you first need to obtain access to the ILSVRC challenge and download the
images and associated class labels. This section will help you obtain the ImageNet dataset.

4.2.1 Requesting Access to the ILSVRC Challenge
The ILSVRC challenge is a joint work between Princeton and Stanford universities, and is, therefore,
an academic project. ImageNet does not own the copyrights to the images and only grants access to
the raw image files for non-commercial research and/or educational purposes (although this point is
up for debate – see Section 4.2.5 below). If you fall into this camp, you can simply register for an
account on the ILSVRC website (http://pyimg.co/fy844).

However, please note that ImageNet does not accept freely available email addresses such
as Gmail, Yahoo, etc. – instead, you will need to supply the email address of your university
or government/research affiliation. As Figure 4.2 demonstrates, I simply needed to provide my
university email address, from there I was able to verify my email address and then accept the
Terms of Access.

Figure 4.2: If you have a university or research organization associated email address, be sure to
use it when registering with ImageNet and the associated ILSVRC competition.

Once you’ve accepted the Terms of Access you’ll have access to the Download Original
Images page – click the ILSVRC 2015 image data link. From there make sure you download
the Development Kit, a .zip file containing a README, information on the training/testing splits,
blacklisted files that should not be used for training, etc. (Figure 4.3).

You’ll then want to download the CLS-LOC dataset which contains the 1.2 million images in
the ImageNet dataset (Figure 4.3). Keep in mind that this is a large file and depending on your
internet connection (and the stability of image-net.org), this download may take a couple of days.
My personal suggestion would be to use the wget command line program to download the archive,
enabling you to restart the download from where you left off, just in case there are connectivity
issues (which there are likely to be a handful of). Explaining how to use wget is outside the scope
of this book, so please refer to the following page for instructions on how to restart a download
with wget (http://pyimg.co/97u59).

After the .tar archive is downloaded, the next step is to unpack it, which is also a computationally
expensive process as you need to unarchive ≈ 1.2 million images – I would suggest leaving your
system to tackle this task overnight.

4.2.2 Downloading Images Programmatically
If you are denied access to the ILSVRC raw image data, don’t worry – there are other methods to
obtain the data, although those methods are slightly more tedious. Keep in mind that ImageNet

http://pyimg.co/fy844
http://pyimg.co/97u59

24 Chapter 4. What Is ImageNet?

Figure 4.3: To download the entire ImageNet dataset you’ll need to download the development kit
along with the large .tar archive of the ≈ 1.2million images. (highlighted with red rectangles).

does not “own” the images inside the dataset so they can freely distribute the URLs of the images.
The URLs of every image (a .txt file with one URL per line) in the dataset can be found here:

http://pyimg.co/kw64x
Again, you would need to use wget to download the images. A common problem you may

encounter here is that some image URLs may have naturally 404’d since the original web crawl and
you won’t have access to them. Therefore, downloading the images programmatically can be quite
cumbersome, tedious, and a method I do not recommend. But don’t fret – there is another way to
obtain ImageNet.

4.2.3 Using External Services
Due to the vast size of the ImageNet dataset and the need for it to be distributed globally, the dataset
lends itself well to being distributed via BitTorrent. The website AcademicTorrents.com provides
downloads for both the training set and validation set (http://pyimg.co/asdyi) [13]. A screenshot of
the webpage can be found in Figure 4.4.

The testing set is not included in the torrent as we will not have access to the ImageNet
evaluation server to submit our predictions on the testing data. Please keep in mind that even if you
do use external services such as AcademicTorrents to download the ImageNet dataset, you are still
implicitly bound to the Terms of Access. You can use ImageNet for researching and developing
your own models, but you cannot repackage ImageNet and use it for profit – this is strictly an
academic dataset provided by a joint venture between Stanford and Princeton. Respect the scientific
community and do not violate the Terms of Access.

4.2.4 ImageNet Development Kit
While you are downloading the actual ImageNet dataset, make sure you download the ImageNet
Development Kit (http://pyimg.co/wijj7) which we’ll henceforth simply refer to as “DevKit”.

I have also placed a mirror to the DevKit here: http://pyimg.co/ounw6
The DevKit contains:
• An overview and statistics for the dataset.
• Meta data for the categories (allowing us to build our image filename to class label mappings).
• MATLAB routines for evaluation (which we will not need).

http://pyimg.co/kw64x
http://pyimg.co/asdyi
http://pyimg.co/wijj7
http://pyimg.co/ounw6

4.2 Obtaining ImageNet 25

Figure 4.4: A screenshot of the AcademicTorrents website for ImageNet. Make sure you download
the “ImageNet LSVRC 2012 Validation Set (Object Detection)” and “ImageNet LSVRC 2012
Training Set (Object Detection)” files, outlined in red.

The DevKit is a small download at only 7.4MB and should complete within a few seconds.
Once you’ve downloaded the DevKit, unarchive it, and take the time to familiarize yourself with
the directory structuring including the license (COPYING) and the readme.txt. We’ll be reviewing
the DevKit in detail in our following chapter when we build the ImageNet dataset and prepare it for
training a CNN.

4.2.5 ImageNet Copyright Concerns

At first glance, it may appear that the ImageNet dataset and associated ILSVRC challenge is a
minefield of copyright claims – who exactly owns what in the ImageNet dataset? To answer this
question, let’s break the problem into three concrete asset classes:
• Asset #1: The images themselves.
• Asset #2: The pre-compiled ILSVRC dataset.
• Asset #3: The output model weights obtained by training a network on ILSVRC.
To start, the raw images themselves belong to the person/entity who captured the image – they

own the full copyright over these images. The ImageNet project operates under the same restrictions
as search engines like Google, Bing, etc. – they are allowed to provide links to the original
copyrighted images, provided that the copyright is retained. This provision is why the ImageNet
website is allowed to provide the URLs of the original images in the dataset without requiring you
to register and create an account – it is your responsibility to actually download them.

This process seems fairly clear-cut; however, the waters start to muddy once we look at the
actual ILSVRC challenge. Since the end user is no longer responsible for downloading each image
one-by-one (and can instead download an entire archive of the dataset), we run into copyright
concerns – why can a user download a pre-compiled archive of (potentially) copyrighted images?
Doesn’t that violate the copyright of the person who took the original photograph? This is a point
of debate between the arts and sciences communities, but as it currently stands, we are allowed to

26 Chapter 4. What Is ImageNet?

download the ILSVRC image archives due to the Terms of Access we accept when participating in
ILSVRC:

1. You are free to use the ImageNet dataset for academic and non-commercial pursuits.
2. You cannot distribute the ILSVRC data as part of your end product.
The original copyright question is not answered directly but is somewhat pacified by the

restrictions placed on the pre-compiled dataset archives. Furthermore, the ImageNet website
provides DMCA takedown applications for copyright holders who wish to have their images
removed from the dataset.

Finally, let’s examine asset #3, a given model’s serialized weights obtained after training a
Convolutional Neural Network on the ImageNet dataset – are these model weights under copyright
as well?

The answer is a bit unclear, but as far as our current understanding of the law goes, there is no
restriction on the open release of learned model weights [14] Therefore, we are free to distribute our
trained models as we see fit, provided we keep in mind the spirit of fair use and proper attribution.

The reason we are allowed to distribute our own models (and even copyright them using our
own restrictions) is due to parameterized learning (Starter Bundle, Chapter 8) – our CNN does not
store “internal copies” of the raw images (such as the k-NN algorithm would). Since the model
does not store the original images (whether in whole or part), the model itself is not bound to the
same copyright claims as the original ImageNet dataset. We can thus distribute our model weights
freely or place additional copyrights on them (for example, the end user is free to use our existing
architecture, but must re-train the network from scratch on the original dataset before using it in
a commercial application).

But what about models trained on ImageNet that are used in commercial applications?
Do models trained on the ImageNet dataset and used in commercial applications violate the
Terms of Access? According to the Terms of Access wording, yes, technically these commercial
applications are at risk of breaking the contract.

On the other hand, there has been no lawsuit brought against a deep learning company/startup
who has trained their own networks from scratch using the ImageNet dataset. Keep in mind that
a copyright has no power unless it’s enforced – no such enforcing has ever been done regarding
ImageNet.

In short: this is a gray area in the deep learning community. There are a large number of
deep learnings startups that rely on CNNs trained on the ImageNet dataset (company names omitted
on purpose) – their revenue is based solely on the performance of these networks. In fact, without
ImageNet and ILSVRC, these companies wouldn’t have the dataset required to create their product
(unless they invested millions of dollars and many years collecting and annotating the dataset
themselves).

My Anecdotal Opinion
It is my anecdotal opinion that there is an unspoken set of rules that govern the fair usage of
the ImageNet dataset. I believe these rules to be as follows (although there are sure to be many
who disagree with me):
• Rule #1: You need to obtain the ILSVRC dataset by some means and accept (either explicitly

or implicitly) the Terms of Access.
• Rule #2: After obtaining the data associated with the ILSVRC challenge, you need to train

your own Convolutional Neural Network on the dataset. You are free to use existing network
architectures such as AlexNet, VGGNet, ResNet, etc. provided that you train the network
from scratch on the ILSVRC dataset. You do not need to develop a novel network architecture.
• Rule #3: Once you have obtained your model weights, you can then distribute them under

your own restrictions, including open access, usage with attribution, and even limited com-

4.3 Summary 27

mercial usage.
Rule number three will be hotly contested, and I’m positive I’ll receive a number of emails about

it – but the point is this – while the rules are unclear, there have been no lawsuits brought to court
on how network weights derived from ILSVRC can be used, including commercial applications.
Again, keep in mind that a copyright is only valid if it is actually enforced – simply holding a
copyright does not serve as a form of protection.

Furthermore, the usage of deep learning models trained on ILSVRC is both a legal issue and an
economic issue – the computer science industry is experiencing a tremendous boom in deep learning
applications. If sweeping legislation were to be passed restricting the commercial usage of CNNs
trained from scratch on copyrighted image data (even though there are no replicates of the original
data due to parameterized learning), we would be killing part of an economy experiencing high
growth and valuations in the billions of dollars. This style of highly restrictive, sweeping legislature
could very easily catalyze another AI winter (Starter Bundle, Chapter 2).

For further information on “who owns what” in the deep learning community (datasets, model
weights, etc.), take a look Deep Learning vs. Big Data: Who owns what?, an excellent article
by Tomasz Malisiewicz on the subject [15].

4.3 Summary
In this chapter, we reviewed the ImageNet dataset and associated ILSVRC challenge, the de
facto benchmark used to evaluate image classification algorithms. We then examined multiple
methods to obtain the ImageNet dataset.

In the remaining chapters in this book I will assume that you do not have access to the testing
set and associated ImageNet evaluation server; therefore, we will derive our own testing set from
the training data. Doing so will ensure we can evaluate our models locally and obtain a reasonable
proxy to the accuracy of our network.

Take the time now to start downloading the ImageNet dataset on your machine. I would
recommend using the official ILSVRC challenge website to download the ImageNet data as this
method is the easiest and most reliable. If you do not have access to a university, government,
or research affiliated email address, feel free to ask your colleagues for access – but again keep in
mind that you are still bound to the Terms of Access, regardless of how you obtain the data (even if
you download via AcademicTorrents).

It is my anecdotal opinion that models weights obtained via training on the ILSVRC dataset
can be used as you best see fit; however, keep in mind that this is still a point of contention. Before
deploying a commercial application that leverages a model trained on ImageNet, I would encourage
you to consult proper legal counsel.

In our next chapter, we’ll explore the ImageNet dataset, understand its file structure, and write
Python helper utilities to facilitate our ability to load the images from disk and prepare them for
training.

5. Preparing the ImageNet Dataset

Once you’ve downloaded the ImageNet dataset, you might be a bit overwhelmed. You now have
over 1.2 million images residing on disk, none of them have “human readable” file names, there isn’t
an obvious way to extract the class labels from them, and it’s totally unclear how you are supposed
to train a custom Convolutional Neural Network on these images – what have you gotten yourself
into?

No worries, I’ve got you covered. In this chapter, we’ll start by understanding the ImageNet
file structure, including both the raw images along with the development kit (i.e., “DevKit”). From
there, we’ll write a helper Python utility script that will enable us to parse the ImageNet filenames +
class labels, creating a nice output file that maps a given input filename to its corresponding label
(one filename and label per line).

Finally, we’ll use these output files along with the mxnet im2rec tool, which will take our
mappings and create efficiently packed record (.rec) files that can be used when training deep
learning models on datasets too large to fit into main memory. As we’ll find out, this .rec format
is not only more compact than HDF5, but it’s also more I/O efficient as well, enabling us to train
our networks faster.

The techniques and tools we apply in this chapter will allow us to train our own custom CNNs
from scratch on the ImageNet dataset in subsequent chapters. In later chapters, such as our case
studies on vehicle make and model identification along with age and gender prediction, we’ll again
use these same tools to help us create our image datasets.

Be sure to pay close attention to this dataset and take your time when working through it. The
code we will be writing isn’t necessarily “deep learning code”, but rather helpful utility scripts that
will facilitate our ability to train networks further down the road.

5.1 Understanding the ImageNet File Structure

Let’s go ahead and get started by understanding the ImageNet file structure. I’ll assume that you
have finished downloading the ILSVRC2015_CLS-LOC.tar.gz file, likely having to restart the
download at least two to three times (when I personally downloaded the massive 166GB archive, it

30 Chapter 5. Preparing the ImageNet Dataset

took two restarts and a total of 27.15 hours to download). I then unpacked the archive using the
following command:

$ tar -xvf ILSVRC2015_CLS-LOC.tar.gz

I would suggest starting this command right before you go to bed to ensure it has been fully
unpacked by the time you wake up in the morning. Keep in mind that there are over 1.2 million
images in the training set alone, so the unarchive process will take a bit of time.

Once the tarball has finished uncompressing, you’ll have a directory named ILSVRC2015:

$ ls ILSVRC2015

Let’s go ahead and change directory into ILSVRC2015 and list the contents, where you’ll find
three sub-directories:

$ cd ILSVRC2015
$ ls
Annotations Data ImageSets

First, we have the Annotations directory. This directory is only used for the localization
challenge (i.e., object detection), so we can ignore this directory.

The Data directory is more important. Inside Data we’ll find a sub-directory named CLS-LOC:

$ ls Data/
CLS-LOC

Here we can find the training, testing, and validation “splits”:

$ ls Data/CLS-LOC/
test train val

I put the word “splits” in quotations as there is still work that needs to be done in order to
get this data in a format such that we can train a Convolutional Neural Network on it and obtain
state-of-the-art classification results. Let’s go ahead and review each of these sub-directories
individually.

5.1.1 ImageNet “test” Directory
The test directory contains (as the name applies) 100,000 images (100 data points for each of the
1,000 classes) for our testing split:

$ ls -l Data/CLS-LOC/test/ | head -n 10
total 13490508
-rw-r--r-- 1 adrian adrian 33889 Jul 1 2012 ILSVRC2012_test_00000001.JPEG
-rw-r--r-- 1 adrian adrian 122117 Jul 1 2012 ILSVRC2012_test_00000002.JPEG
-rw-r--r-- 1 adrian adrian 26831 Jul 1 2012 ILSVRC2012_test_00000003.JPEG
-rw-r--r-- 1 adrian adrian 124722 Jul 1 2012 ILSVRC2012_test_00000004.JPEG
-rw-r--r-- 1 adrian adrian 98627 Jul 1 2012 ILSVRC2012_test_00000005.JPEG

5.1 Understanding the ImageNet File Structure 31

-rw-r--r-- 1 adrian adrian 211157 Jul 1 2012 ILSVRC2012_test_00000006.JPEG
-rw-r--r-- 1 adrian adrian 219906 Jul 1 2012 ILSVRC2012_test_00000007.JPEG
-rw-r--r-- 1 adrian adrian 181734 Jul 1 2012 ILSVRC2012_test_00000008.JPEG
-rw-r--r-- 1 adrian adrian 10696 Jul 1 2012 ILSVRC2012_test_00000009.JPEG

However, we were unable to use these images directly for our experiments. Recall that the
ILSVRC challenge is the de facto standard for image classification algorithms. In order to keep this
challenge fair (and to ensure no one cheats), the labels for the testing set are kept private.

First, a person/team/organization trains their algorithm using the training and testing splits.
Once they are satisfied with the results, predictions are made on the testing set. The predictions
from the testing set are then automatically uploaded to the ImageNet evaluation server where they
are compared to the ground-truth labels. At no point do any of the competitors have access to the
testing ground-truth labels. The ImageNet evaluation server then returns their overall accuracy.

Some readers of this book may have access to the ImageNet evaluation server, in which case
I encourage you to explore this format further and consider submitting your own predictions.
However, many other readers will have obtained ImageNet without directly registering for an
account on the ImageNet website. Either way is perfectly okay (provided you follow the licensing
agreements I mentioned in Chapter 4), but you will not have access to the evaluation server. Since
I want to keep this chapter as open and accessible to everyone, regardless of how you obtained
ImageNet, we will ignore the test directory and create our own testing set by sampling the
training data, just as we did for the Tiny ImageNet challenges in Chapter 11 and Chapter 12 of the
Practitioner Bundle.

5.1.2 ImageNet “train” Directory
The train directory of ImageNet consists of a set of sub-directories:

$ ls -l Data/CLS-LOC/train/ | head -n 10
total 60020
drwxr-xr-x 2 adrian adrian 69632 Sep 29 2014 n01440764
drwxr-xr-x 2 adrian adrian 69632 Sep 29 2014 n01443537
drwxr-xr-x 2 adrian adrian 57344 Sep 29 2014 n01484850
drwxr-xr-x 2 adrian adrian 57344 Sep 29 2014 n01491361
drwxr-xr-x 2 adrian adrian 61440 Sep 29 2014 n01494475
drwxr-xr-x 2 adrian adrian 61440 Sep 29 2014 n01496331
drwxr-xr-x 2 adrian adrian 53248 Sep 29 2014 n01498041
drwxr-xr-x 2 adrian adrian 53248 Sep 29 2014 n01514668
drwxr-xr-x 2 adrian adrian 61440 Sep 29 2014 n01514859

At first, these sub-directory names may appear to be unreadable. However, recall from Chapter
4 on ImageNet that the dataset is organized according to WordNet IDs [10] called synonym sets or
simply “syn sets” for short. A synset maps to a particular concept/object, such as goldfish, bald
eagle, airplane, or acoustic guitar. Therefore, in each of these strangely labeled sub-directories,
you will find approximately 732-1,300 images per class.

For example, the WordNet ID n01440764 consists of 1,300 images of “tench”, a type of
European freshwater fish, closely related to the minnow family (Figure 5.1):

$ ls -l Data/CLS-LOC/train/n01440764/*.JPEG | wc -l
1300
$ ls -l Data/CLS-LOC/train/n01440764/*.JPEG | head -n 5
adrian 13697 Jun 10 2012 Data/CLS-LOC/train/n01440764/n01440764_10026.JPEG

32 Chapter 5. Preparing the ImageNet Dataset

adrian 9673 Jun 10 2012 Data/CLS-LOC/train/n01440764/n01440764_10027.JPEG
adrian 67029 Jun 10 2012 Data/CLS-LOC/train/n01440764/n01440764_10029.JPEG
adrian 146489 Jun 10 2012 Data/CLS-LOC/train/n01440764/n01440764_10040.JPEG
adrian 6350 Jun 10 2012 Data/CLS-LOC/train/n01440764/n01440764_10042.JPEG

Figure 5.1: A sample of 25 images from the n01440764 syn-set. These images are examples of
“tench”, a type of European freshwater fish.

Given that the WordNet IDs of the training images are built-into the file name, along with the
train_cls.txt file we are going to review later in this chapter, it will be fairly straightforward
for us to associate a given training image with its class label.

5.1.3 ImageNet “val” Directory
Similar to the test directory, the val directory contains 50,000 images per class (50 images for
each of the 1,000 classes):

$ ls -l Data/CLS-LOC/val/*.JPEG | wc -l
50000

Each of these 50,000 images are stored in a “flat” directory, implying that no extra sub-
directories are used to help us associate a given image with a class label:

Furthermore, by inspecting the filenames, you can see that there are no class label identifying
information built into the file paths (such as WordNet ID, etc.). Luckily, we’ll be reviewing a file
named val.txt later in this chapter which provides us with the mappings from filename to class
label.

$ ls -l Data/CLS-LOC/val/ | head -n 10
total 6648996

5.1 Understanding the ImageNet File Structure 33

-rw-r--r-- 1 adrian adrian 109527 Jun 12 2012 ILSVRC2012_val_00000001.JPEG
-rw-r--r-- 1 adrian adrian 140296 Jun 12 2012 ILSVRC2012_val_00000002.JPEG
-rw-r--r-- 1 adrian adrian 122660 Jun 12 2012 ILSVRC2012_val_00000003.JPEG
-rw-r--r-- 1 adrian adrian 84885 Jun 12 2012 ILSVRC2012_val_00000004.JPEG
-rw-r--r-- 1 adrian adrian 130340 Jun 12 2012 ILSVRC2012_val_00000005.JPEG
-rw-r--r-- 1 adrian adrian 151397 Jun 12 2012 ILSVRC2012_val_00000006.JPEG
-rw-r--r-- 1 adrian adrian 165863 Jun 12 2012 ILSVRC2012_val_00000007.JPEG
-rw-r--r-- 1 adrian adrian 107423 Jun 12 2012 ILSVRC2012_val_00000008.JPEG
-rw-r--r-- 1 adrian adrian 114708 Jun 12 2012 ILSVRC2012_val_00000009.JPEG

5.1.4 ImageNet “ImageSets” Directory
Now that we’ve gone through the train, test, and val sub-directories, let’s go up a level back to
the Annotations and Data folders. Here you’ll see a directory named ImageSets. Let’s change
directory to ImageSets and investigate it:

$ ls
Annotations Data ImageSets
$ cd ImageSets/
$ ls
CLS-LOC
$ cd CLS-LOC
$ ls
test.txt train_cls.txt train_loc.txt val.txt

We can ignore the test.txt file since we will be constructing our own testing split from the
training data. However, we need to take a look at both train_cls.txt (where the “cls” stands
for “classification”) and val.txt. These files contain the base filenames for the training images
(1,281,167) along with the validation images (50,000). You can verify this fact using the following
command:

$ wc -l train_cls.txt val.txt
1281167 train_cls.txt

50000 val.txt
1331167 total

This file reports a total of 1,331,167 images to work with. Investigating train_cls.txt, you
can see the contents are simply a base image filename (without the file extension) and a unique
integer ID with one row per line:

$ head -n 10 train_cls.txt
n01440764/n01440764_10026 1
n01440764/n01440764_10027 2
n01440764/n01440764_10029 3
n01440764/n01440764_10040 4
n01440764/n01440764_10042 5
n01440764/n01440764_10043 6
n01440764/n01440764_10048 7
n01440764/n01440764_10066 8
n01440764/n01440764_10074 9
n01440764/n01440764_10095 10

34 Chapter 5. Preparing the ImageNet Dataset

The base image filename will allow us to derive the full image filename. The unique integer is
simply a counter that increments, one per row.

The same is true for val.txt as well:

$ head -n 10 val.txt
ILSVRC2012_val_00000001 1
ILSVRC2012_val_00000002 2
ILSVRC2012_val_00000003 3
ILSVRC2012_val_00000004 4
ILSVRC2012_val_00000005 5
ILSVRC2012_val_00000006 6
ILSVRC2012_val_00000007 7
ILSVRC2012_val_00000008 8
ILSVRC2012_val_00000009 9
ILSVRC2012_val_00000010 10

The unique integer ID for the image isn’t too helpful, other than when we need to determine
“blacklisted” images. Images that are marked as “blacklisted” by the ImageNet dataset curators
are too ambiguous in their class labels, and therefore should not be considered in the evaluation
process. Later in this chapter we’ll loop over all blacklisted images and remove them from our
validation set by examining the unique integer ID associated with each validation image.

The benefit of using the train_cls.txt and val.txt files is that we do not have to list the
contents of the training and validation subdirectories using paths.list_images – instead, we can
simply loop over each of the rows in these .txt files. We’ll be using both of these files later in this
chapter, when we convert the raw ImageNet files to .rec format, suitable for training with mxnet.

5.1.5 ImageNet “DevKit” Directory
Besides downloading the raw images themselves in Chapter 4, you also downloaded the ILSVRC
2015 DevKit. This archive contains the actual index files we need to map image file names to their
corresponding class labels. You can unarchive the ILSVRC2015_devkit.tar.gz file using the
following command:

$ tar -xvf ILSVRC2015_devkit.tar.gz

Inside the ILSVRC2015 directory you’ll find the directory we are looking for – devkit:

$ cd ILSVRC2015
$ ls
devkit

You can technically place this file anywhere you like on your system (as we’ll be creating a
Python configuration file to point to important path locations); however, I personally like to keep
it with the Annotations, Data, and ImageSets sub-directories for organizational purposes. I
would suggest you copy the devkit directory so that it lives with our Annotations, Data, and
ImageSets directories as well:

$ cp -R ~/home/ILSVRC2015/devkit /raid/datasets/imagenet/

5.1 Understanding the ImageNet File Structure 35

R The exact paths you specify here will be dependent on your system. I’m simply showing the
example commands I ran on my personal system. The actual commands you use will be the
same, but you will need to update the corresponding file paths.

Let’s go ahead and take a look at the contents of devkit:

$ cd devkit/
$ ls
COPYING data evaluation readme.txt

You can read the COPYING file for more information on copying and distributing the ImageNet
dataset and associated evaluation software. The readme.txt file contains information on the
ILSVRC challenge, including how the dataset is structured (we are providing a more detailed
review of the dataset in this chapter). The evaluation directory, as the name suggests, contains
MATLAB routines for evaluating predictions made on the testing set – since we will be deriving
our own testing set, we can ignore this directory.

Most importantly, we have the data directory. Inside data you’ll find a number of metafiles,
both in MATLAB and plain text (.txt) format:

$ cd data/
$ ls -l
total 2956
ILSVRC2015_clsloc_validation_blacklist.txt
ILSVRC2015_clsloc_validation_ground_truth.mat
ILSVRC2015_clsloc_validation_ground_truth.txt
ILSVRC2015_det_validation_blacklist.txt
ILSVRC2015_det_validation_ground_truth.mat
ILSVRC2015_vid_validation_ground_truth.mat
map_clsloc.txt
map_det.txt
map_vid.txt
meta_clsloc.mat
meta_det.mat
meta_vid.mat

From this directory, we are most concerned with the following three files:
• map_clsloc.txt
• ILSVRC2015_clsloc_validation_ground_truth.txt
• ILSVRC2015_clsloc_validation_blacklist.txt
The map_clsloc.txt file maps our WordNet IDs to human readable class labels and is,

therefore, the easiest method to convert a WordNet ID to a label a human can interpret. Listing the
first few lines of this file, we can see the mappings themselves:

$ head -n 10 map_clsloc.txt
n02119789 1 kit_fox
n02100735 2 English_setter
n02110185 3 Siberian_husky
n02096294 4 Australian_terrier
n02102040 5 English_springer
n02066245 6 grey_whale
n02509815 7 lesser_panda

36 Chapter 5. Preparing the ImageNet Dataset

n02124075 8 Egyptian_cat
n02417914 9 ibex
n02123394 10 Persian_cat

Here we can see the WordNet ID n02119789 maps to the kit_fox class label. The n02096294
WordNet ID corresponds to the Australian_terrier, a species of dog. This mapping continues
for all 1,000 classes in the ImageNet dataset. As detailed in Section 5.1.3 above, the images inside
the val directory do not contain any class label information built into the filename; however, we do
have the val.txt file inside the ImageSets directory. The val.txt file lists the (partial) image file-
names for the validation set. There are exactly 50,000 entries (on per line) in the val.txt file. There
are also 50,000 entries (one per line) inside ILSVRC2015_clsloc_validation_ground_truth.txt.

Let’s take a look at these entries:

$ head -n 10 ILSVRC2015_clsloc_validation_ground_truth.txt
490
361
171
822
297
482
13
704
599
164

As we can see, there is a single integer listed on each line. Taking the first line of val.txt and
the first line of ILSVRC2015_clsloc_validation_ground_truth.txt we end up with:

(ILSVRC2012_val_00000001, 490)

Figure 5.2: This image is of a snake, but what kind of snake? To find out we need to examine the
ground-truth labels for the validation set inside ImageNet.

If we were to open up ILSVRC2012_val_00000001.JPEG we would see the image in Figure
5.2. Clearly, this is some sort of snake – but what type of snake? If we examine map_clsloc.txt,
we see that class label ID with 490 is WordNet ID n01751748, which is a sea_snake:

5.2 Building the ImageNet Dataset 37

$ grep ’ 490 ’ map_clsloc.txt
n01751748 490 sea_snake

Therefore, we need to use both val.txt and ILSVRC2015_clsloc_validation_ground_truth.txt
to build our validation set.

Let’s also examine the contents of ILSVRC2015_clsloc_validation_blacklist.txt:

$ head -n 10 ILSVRC2015_clsloc_validation_blacklist.txt
36
50
56
103
127
195
199
226
230
235

As I mentioned before, some validation files are considered too ambiguous in their class label.
Therefore, the ILSVRC organizers marked these images as “blacklisted”, implying that they should
not be included in the validation set. When building our validation set, we need to check the
validation image IDs to this blacklist set – if we find that a given image belongs in this set, we’ll
ignore it and exclude it from the validation set.

As you can see, there are many files required to build the ImageNet dataset. Not only do we
need the raw images themselves, but we also need a number of .txt files used to construct the
mappings from the original training and validation filename to the corresponding class label. This
would be a tough, arduous process to perform by hand, so in the next section, I will show you
my ImageNetHelper class that I personally use when building the ImageNet dataset.

5.2 Building the ImageNet Dataset
The overall goal of building the ImageNet dataset is so that we can train Convolutional Neural
Networks from scratch on it. Therefore, we will review building the ImageNet dataset in context of
preparing it for a CNN. To do so, we’ll first define a configuration file that stores all relevant image
paths, plaintext paths, and any other settings we wish to include.

From there, we’ll define a Python class named ImageNetHelper which will enable us to
quickly and easily build:

1. Our .lst files for the training, testing, and validation split. Each line in a .lst file contains
the unique image ID, class label, and the full path to the input image. We’ll then be able to
use these .lst files in conjunction with the mxnet tool im2rec to convert our image files to
an efficiently packed record file.

2. Our mean Red, Green, and Blue channel averages for the training set which we’ll later use
when performing mean normalization.

5.2.1 Your First ImageNet Configuration File
Whenever training a CNN on ImageNet, we’ll create a project with the following directory structure:

--- mx_imagenet_alexnet
| |--- config

38 Chapter 5. Preparing the ImageNet Dataset

| | |--- __init__.py
| | |--- imagnet_alexnet_config.py
| |--- imagenet
| |--- output/
| |--- build_imagenet.py
| |--- test_alexnet.py
| |--- train_alexnet.py

As the directory and filenames suggests, this configuration file is for AlexNet. Inside the
config directory we have placed two files:

1. __init__.py
2. imagenet_alexnet_config.py
The __init__.py file turns config into a Python package that is actually importable via the

import statement into our own scripts – this file enables us to use Python syntax/libraries within the
actual configuration, making the process of configuring a neural network for ImageNet much easier.
The actual ImageNet configurations are then stored in imagenet_alexnet_config.py.

Instead of typing out the full path to the ImageNet dataset (i.e., /raid/datasets/imagenet/)
I decided to create a symbolic link (often called “sym-link” or a “shorcut”) aliased as imagenet.
This saved me a bunch of keystrokes and typing out long paths. In the following example you can
see (1) the full path to the lists directory and (2) the sym-link version:
• /raid/datasets/imagenet/lists
• imagenet/lists (which points to the full /raid path above)
To create your own sym-links (in a Unix-based environment) you can use the ln command.

The example command below will create a symbolic link named imagenet in my current working
directory which links to the full ImageNet dataset in my /raid drive:

$ ln -s /raid/datasets/imagenet imagenet

You can modify the above command to your own paths.
Regardless of where you choose to store your base ImageNet dataset directory, take the time

now to create two subdirectories – lists and rec:

$ mkdir imagenet/lists
$ mkdir imagenet/rec

In the above command I assume you have created a sym-link named imagenet to point to the
base dataset directory. If not, please specify your full path. The lists and rec subdirectories will
be used later in this chapter.

The build_imagenet.py script will be responsible for building the mappings from input
image file to output class label. The train_alexnet.py script will be used to train AlexNet
from scratch on ImageNet. Finally, the test_alexnet.py script will be used to evaluate the
performance of AlexNet on our test set.

The latter two scripts will be covered in Chapter 6, so for the time being, let’s simply review
imagenet_alexnet_config.py – this file will remain largely unchanged for all ImageNet exper-
iments we run in this book. Therefore, it’s important for us to take the time to understand how this
file is structured.

Go ahead and open up imagenet_alexnet_config.py and insert the following code:

5.2 Building the ImageNet Dataset 39

1 # import the necessary packages
2 from os import path
3

4 # define the base path to where the ImageNet dataset
5 # devkit are stored on disk)
6 BASE_PATH = "/raid/datasets/imagenet/ILSVRC2015"

Line 2 imports the only Python package we need, the path sub-module. The path sub-
module contains a special variable named path.sep – this is the path separator for your oper-
ating system. On Unix machines, the path separator is / – an example file path may look like
path/to/your/file.txt. However, on Windows the path separator is \, making the example file
path path\to\your\file.txt. We would like our configuration to work agnostic of the operating
system, so we’ll use the path.sep variable whenever convenient.

Line 6 then defines the BASE_PATH to where our ImageNet dataset resides on disk. This
directory should contain your four Annotations, Data, devkit, and ImageSets directories.

Due to the size of the ImageNet dataset, I decided to store all ImageNet related files on the
RAID drive of system (which is why you see the BASE_PATH start with /raid). You should modify
the BASE_PATH and update it to where the ImageNet dataset is stored on your system. Feel free to
use the datasets directory that we have used in previous examples of Deep Learning for Computer
Vision with Python – the datasets project structure will work just fine provided you have enough
space on your main partition to store the entire dataset.

Again, I want to draw attention that you will need to update the BASE_PATH variable on your
own system – please take the time to do that now.

From our BASE_PATH we can derive three more important paths:

8 # based on the base path, derive the images base path, image sets
9 # path, and devkit path

10 IMAGES_PATH = path.sep.join([BASE_PATH, "Data/CLS-LOC"])
11 IMAGE_SETS_PATH = path.sep.join([BASE_PATH, "ImageSets/CLS-LOC/"])
12 DEVKIT_PATH = path.sep.join([BASE_PATH, "devkit/data"])

The IMAGES_PATH is joined with the BASE_PATH to point to the directory that contains our
raw images for the test, train, and val images. The IMAGE_SETS_PATH points to the directory
containing the important train_cls.txt and val.txt files which explicitly list out the filenames
for each set. Finally, as the name suggests, the DEVKIT_PATH is the base path to where our DevKit
lives, in particular our plaintext files that we’ll be parsing in Section 5.1.5.

Speaking of the DevKit, let’s define WORD_IDS, the path to the map_clsloc.txt file which
maps the 1,000 possible WordNet IDs to (1) the unique identifying integers and (2) human readable
labels.

14 # define the path that maps the 1,000 possible WordNet IDs to the
15 # class label integers
16 WORD_IDS = path.sep.join([DEVKIT_PATH, "map_clsloc.txt"])

In order to build our training set, we need to define TRAIN_LIST, the path that contains the
≈ 1.2 million (partial) image filenames for the training data:

40 Chapter 5. Preparing the ImageNet Dataset

18 # define the paths to the training file that maps the (partial)
19 # image filename to integer class label
20 TRAIN_LIST = path.sep.join([IMAGE_SETS_PATH, "train_cls.txt"])

Next, we need to define some validation configurations:

22 # define the paths to to the validation filenames along with the
23 # file that contains the ground-truth validation labels
24 VAL_LIST = path.sep.join([IMAGE_SETS_PATH, "val.txt"])
25 VAL_LABELS = path.sep.join([DEVKIT_PATH,
26 "ILSVRC2015_clsloc_validation_ground_truth.txt"])
27

28 # define the path to the validation files that are blacklisted
29 VAL_BLACKLIST = path.sep.join([DEVKIT_PATH,
30 "ILSVRC2015_clsloc_validation_blacklist.txt"])

The VAL_LIST variable points to the val.txt file in the ImageSets directory. As a reminder,
val.txt lists the (partial) image filenames for the 50,000 validation files. In order to obtain the
ground-truth labels for the validation data, we need to define the VAL_LABELS path – doing so
enable us to connect individual image file names with class labels. Finally, the VAL_BLACKLIST file
contains the unique integer IDs of validation files that have been blacklisted. When we build the
ImageNet dataset, we’ll take explicit care to ensure these images are not included in the validation
data.

In the next code block we define the NUM_CLASSES variable as well as NUM_TEST_IMAGES:

32 # since we do not have access to the testing data we need to
33 # take a number of images from the training data and use it instead
34 NUM_CLASSES = 1000
35 NUM_TEST_IMAGES = 50 * NUM_CLASSES

For the ImageNet dataset, there are 1,000 possible image classes, therefore, NUM_CLASSES is
set to 1000. In order to derive our testing set, we need to sample images from the training set. We’ll
set NUM_TEST_IMAGES to be 50×1,000 = 50,000 images. As I mentioned earlier, we’ll be using
the im2rec mxnet tool to convert our raw images files on disk to a record file suitable for training
using the mxnet library.

To accomplish this action, we first need to define the MX_OUTPUT path and then derive a few
other variables:

37 # define the path to the output training, validation, and testing
38 # lists
39 MX_OUTPUT = "/raid/datasets/imagenet"
40 TRAIN_MX_LIST = path.sep.join([MX_OUTPUT, "lists/train.lst"])
41 VAL_MX_LIST = path.sep.join([MX_OUTPUT, "lists/val.lst"])
42 TEST_MX_LIST = path.sep.join([MX_OUTPUT, "lists/test.lst"])

All files that are outputted either by (1) our Python helper utilities or (2) the im2rec binary will
be stored in the base directory, MX_OUTPUT. Based on how I organize datasets (detailed in Chapter 6
of the Starter Bundle), I’ve chosen to include all output files in the imagenet directory, which also
stores the raw images, DevKit, etc. You should store the output files wherever you feel comfortable
– I am simply providing an example of how I organize datasets on my machine.

5.2 Building the ImageNet Dataset 41

As I mentioned, after applying our Python utility scripts, we’ll be left with three files –
train.lst, val.lst, and test.lst – these files will contain the (integer) class label IDs and the
full path to the image filenames for each of our data splits (Lines 40-42). The im2rec tool will
then take these .lst files as input and create .rec files which store the actual raw images + class
labels together, similar to building an HDF5 dataset in Chapter 10 of the Practitioner Bundle:

44 # define the path to the output training, validation, and testing
45 # image records
46 TRAIN_MX_REC = path.sep.join([MX_OUTPUT, "rec/train.rec"])
47 VAL_MX_REC = path.sep.join([MX_OUTPUT, "rec/val.rec"])
48 TEST_MX_REC = path.sep.join([MX_OUTPUT, "rec/test.rec"])

The difference here is that these record files are much more compact (as we can store images
as compressed JPEG or PNG files, instead of raw NumPy array bitmaps). Furthermore, these
record files are meant to be used exclusively with the mxnet library, allowing us to obtain better
performance than the original HDF5 datasets.

R I have chosen to include the lists and rec subdirectories inside the imagenet directory for
organizational purposes – I would highly suggest you do the same. Provided that you follow
my directory structure, please take the time to create your lists and rec subdirectories now.
If you wait until we review and execute the build_imagenet.py you may forget to create
these subdirectories, resulting in the script erroring out. But don’t worry! You can simply go
back create the lists and rec and re-execute the script.

When building our dataset, we’ll need to compute the DATASET_MEAN for each of the RGB
channels in order to perform mean normalization:

50 # define the path to the dataset mean
51 DATASET_MEAN = "output/imagenet_mean.json"

This configuration simply stores the path to where the means will be serialized to disk in
JSON format. Provided you run all experiments on the same machine (or at least machines
with identical ImageNet directory structures), the only configurations you will have to edit from
experiment-to-experiment are the ones below:

53 # define the batch size and number of devices used for training
54 BATCH_SIZE = 128
55 NUM_DEVICES = 8

Line 54 defines the BATCH_SIZE in which images will be passed through the network during
training. For AlexNet we’ll use mini-batch sizes of 128. Depending on how deep a given CNN
is, we may want to decrease this batch size. The NUM_DEVICES attribute controls the number of
devices (whether CPUs, GPUs, etc.) used when training a given neural network. You should
configure this variable based on the number of devices you have available for training on your
machine.

42 Chapter 5. Preparing the ImageNet Dataset

5.2.2 Our ImageNet Helper Utility
Now that we have created an example configuration file, let’s move on to the ImageNetHelper
class we’ll use to generate the .lst files for the training, testing, and validation splits, respectively.
This class is an important utility helper, so we’ll update our pyimagesearch module and store it in
a file named imagenethelper.py inside the utils submodule:

--- pyimagesearch
| |--- __init__.py
| |--- callbacks
| |--- io
| |--- nn
| |--- preprocessing
| |--- utils
| | |--- __init__.py
| | |--- captchahelper.py
| | |--- imagenethelper.py
| | |--- ranked.py

Go ahead and open imagenethelper.py and we’ll define the utility class:

1 # import the necessary packages
2 import numpy as np
3 import os
4

5 class ImageNetHelper:
6 def __init__(self, config):
7 # store the configuration object
8 self.config = config
9

10 # build the label mappings and validation blacklist
11 self.labelMappings = self.buildClassLabels()
12 self.valBlacklist = self.buildBlackist()

Line 6 defines the constructor to our ImageNetHelper. The constructor requires only a single
parameter: an object named config. The config is actually the imagenet_alexnet_config file
that we defined in the previous section. By passing in this file as an object to ImageNetHelper,
we can access all of our file paths and additional configurations. We then build our label mappings
and validation blacklist on Lines 11 and 12. We’ll review both the buildClassLabels and
buildBlacklist methods later in this section.

Let’s start with buildClassLabels:

14 def buildClassLabels(self):
15 # load the contents of the file that maps the WordNet IDs
16 # to integers, then initialize the label mappings dictionary
17 rows = open(self.config.WORD_IDS).read().strip().split("\n")
18 labelMappings = {}

On Line 17 we read the entire contents of the WORD_IDs file which maps the WordNet IDs to
(1) the unique integer representing that class and (2) the human readable labels. We then define the
labelMappings dictionary which take a WordNet ID as a key and the integer class label as the
value.

5.2 Building the ImageNet Dataset 43

Now that the entire WORD_IDS file has been loaded into memory, we can loop over each of the
rows:

20 # loop over the labels
21 for row in rows:
22 # split the row into the WordNet ID, label integer, and
23 # human readable label
24 (wordID, label, hrLabel) = row.split(" ")
25

26 # update the label mappings dictionary using the word ID
27 # as the key and the label as the value, subtracting ‘1‘
28 # from the label since MATLAB is one-indexed while Python
29 # is zero-indexed
30 labelMappings[wordID] = int(label) - 1
31

32 # return the label mappings dictionary
33 return labelMappings

For each row, we break it into a 3-tuple (since each entry in the row is separated by a space),
consisting of:

1. The WordNet ID (wordID).
2. The unique integer class label ID (label).
3. The human readable name of the WordNet ID (hrLabel).
Now that we have these values we can update our labelMappings dictionary. The key to the

dictionary is the WordNet ID, wordID. Our value is the label with a value of 1 subtracted from it.
Why do we subtract one? Keep in mind that the ImageNet tools provided by ILSVRC were

built using MATLAB. The MATLAB programming language is one-indexed (meaning it starts
counting from 1) while the Python programming language is zero-indexed (we start counting from
0). Therefore, to convert the MATLAB indexes to Python indexes, we simply subtract a value of 1
from the label.

The labelMappings dictionary is returned to the calling function on Line 33.
Next we have the buildBlacklist function:

35 def buildBlackist(self):
36 # load the list of blacklisted image IDs and convert them to
37 # a set
38 rows = open(self.config.VAL_BLACKLIST).read()
39 rows = set(rows.strip().split("\n"))
40

41 # return the blacklisted image IDs
42 return rows

This function is fairly straightforward. On Line 38, we read the entire contents of the
VAL_BLACKLIST file. The VAL_BLACKLIST file contains the unique integer names of the vali-
dation files (one per line) that we should exclude from the validation set due to ambiguous labels.
We simply break the string into a list (splitting on the newline \n character) and convert rows to
a set object. A set object will allow us to determine if a given validation image is part of the
blacklist in O(1) time.

Our next function is responsible for ingesting the TRAIN_LIST and IMAGES_PATH configura-
tions to construct a set of image paths and associated integer class labels for the training set:

44 Chapter 5. Preparing the ImageNet Dataset

44 def buildTrainingSet(self):
45 # load the contents of the training input file that lists
46 # the partial image ID and image number, then initialize
47 # the list of image paths and class labels
48 rows = open(self.config.TRAIN_LIST).read().strip()
49 rows = rows.split("\n")
50 paths = []
51 labels = []

On Line 48 we load the entire contents of the TRAIN_LIST file and break it into rows on
Line 49. Recall that the TRAIN_LIST file contains the partial image file paths – a sample of the
train_cls.txt file can be seen below:

n01440764/n01440764_10969 91
n01440764/n01440764_10979 92
n01440764/n01440764_10995 93
n01440764/n01440764_11011 94
n01440764/n01440764_11018 95
n01440764/n01440764_11044 96
n01440764/n01440764_11063 97
n01440764/n01440764_11085 98
n01440764/n01440764_1108 99
n01440764/n01440764_1113 100

Our job will be to build both lists for the (1) the full image path and (2) corresponding class label
(Lines 50 and 51). In order to build the lists, we need to loop over each or the rows individually:

53 # loop over the rows in the input training file
54 for row in rows:
55 # break the row into the partial path and image
56 # number (the image number is sequential and is
57 # essentially useless to us)
58 (partialPath, imageNum) = row.strip().split(" ")
59

60 # construct the full path to the training image, then
61 # grab the word ID from the path and use it to determine
62 # the integer class label
63 path = os.path.sep.join([self.config.IMAGES_PATH,
64 "train", "{}.JPEG".format(partialPath)])
65 wordID = partialPath.split("/")[0]
66 label = self.labelMappings[wordID]

Each row consists of two entries – the partialPath to the training image file (e.x., n01440764/
n01440764_10026) and the imageNum. The imageNum variable is simply a bookkeeping counter
– it serves no purpose when building the training set; we’ll be ignoring it. Lines 63 and 64 are
responsible for building the full path to the training image given the IMAGES_PATH and the
partialPath.

This path consists of three components:
1. The IMAGES_PATH where all our train, test, and val directories live.
2. The hardcoded train string which indicates that we are constructing a file path for a training

image.

5.2 Building the ImageNet Dataset 45

3. The partialPath which is the sub-directory and base filename of the image itself.
We append the file extension to .JPEG to create the final image path. An example path can be

seen below:

/raid/datasets/imagenet/ILSVRC2015/Data/CLS-LOC/train/n02097130/n02097130_4602.JPEG

When debugging your Python scripts used to generate these .lst files, make sure you validate
the file paths before continuing. I would suggest using the simple ls command to check and see if
the file exists. If ls comes back and tells you the file path doesn’t exist, then you know you have an
error in your configuration.

On Line 65 we extract the wordID. The wordID is the sub-directory of the partialPath,
therefore, we simply have to split on the / character and we can extract the wordID. Once we have
the wordID, we can lookup the corresponding integer class label in labelMappings (Line 66).

Given the path and the label, we can update the paths and labels lists, respectively:

68 # update the respective paths and label lists
69 paths.append(path)
70 labels.append(label)
71

72 # return a tuple of image paths and associated integer class
73 # labels
74 return (np.array(paths), np.array(labels))

Line 74 returns a 2-tuple of the paths and labels to the calling function. These values will
later be written to disk as a .lst file using our (to be defined) build_dataset.py script.

The final function we need to create our path is buildValidationSet, which is responsible
for building our validation image paths and validation class labels:

76 def buildValidationSet(self):
77 # initialize the list of image paths and class labels
78 paths = []
79 labels = []
80

81 # load the contents of the file that lists the partial
82 # validation image filenames
83 valFilenames = open(self.config.VAL_LIST).read()
84 valFilenames = valFilenames.strip().split("\n")
85

86 # load the contents of the file that contains the *actual*
87 # ground-truth integer class labels for the validation set
88 valLabels = open(self.config.VAL_LABELS).read()
89 valLabels = valLabels.strip().split("\n")

Our buildValidationSet function is very similar to our buildTrainingSet, only with a
few extra additions. To start, we initialize our list of image paths and class labels (Lines 78 and
79). We the load the contents of VAL_LIST which contains the partial filenames of the validation
files (Lines 83 and 84). In order to build our class labels, we need to read in the contents of
VAL_LABELS – this file contains the integer class label for each entry in VAL_LIST.

Given both valFilenames and valLabels, we can create our paths and labels lists:

46 Chapter 5. Preparing the ImageNet Dataset

91 # loop over the validation data
92 for (row, label) in zip(valFilenames, valLabels):
93 # break the row into the partial path and image number
94 (partialPath, imageNum) = row.strip().split(" ")
95

96 # if the image number is in the blacklist set then we
97 # should ignore this validation image
98 if imageNum in self.valBlacklist:
99 continue

100

101 # construct the full path to the validation image, then
102 # update the respective paths and labels lists
103 path = os.path.sep.join([self.config.IMAGES_PATH, "val",
104 "{}.JPEG".format(partialPath)])
105 paths.append(path)
106 labels.append(int(label) - 1)
107

108 # return a tuple of image paths and associated integer class
109 # labels
110 return (np.array(paths), np.array(labels))

On Line 92 we loop over each of the valFilenames and valLabels. We unpack the row
on Line 94 to extract the partialPath along with the imageNum. Unlike in the training set, the
imageNum is important here – we make a check on Lines 98 and 99 to see if the imageNum is in
the blacklist set, and if so, we ignore it.

From there, Lines 103 and 104 construct the path to the validation file. We update the paths
list on Line 105. The labels list is then updated on Line 106 where we once again take care
to subtract 1 from the label since it is zero indexed. Finally, Line 110 returns the 2-tuple of
validation paths and labels to the calling function.

Now that our ImageNetHelper is defined, we can move on to constructing the .lst files
which will be fed into im2rec.

5.2.3 Creating List and Mean Files
Just like in our previous build_*.py scripts in previous chapters, the build_imagenet.py script
will look very similar. At a high level, we will:

1. Build the training set.
2. Build the validation set.
3. Construct the testing set by sampling the training set.
4. Loop over each of the sets.
5. Write the image path + corresponding class label to disk.
Let’s go ahead and start working on build_imagenet.py now:

1 # import the necessary packages
2 from config import imagenet_alexnet_config as config
3 from sklearn.model_selection import train_test_split
4 from pyimagesearch.utils import ImageNetHelper
5 import numpy as np
6 import progressbar
7 import json
8 import cv2

5.2 Building the ImageNet Dataset 47

Line 2 imports our imagenet_alexnet_config module and aliases it as config. We then
import the train_test_split function from scikit-learn so we can construct a testing split from
our training set. We’ll also import our newly defined ImageNetHelper class to aid us in building
the imageNet dataset.

Next, we can build our training and validation paths + class labels:

10 # initialize the ImageNet helper and use it to construct the set of
11 # training and testing data
12 print("[INFO] loading image paths...")
13 inh = ImageNetHelper(config)
14 (trainPaths, trainLabels) = inh.buildTrainingSet()
15 (valPaths, valLabels) = inh.buildValidationSet()

We then need to sample NUM_TEST_IMAGES from trainPaths and trainLabels to construct
our testing split:

17 # perform stratified sampling from the training set to construct a
18 # a testing set
19 print("[INFO] constructing splits...")
20 split = train_test_split(trainPaths, trainLabels,
21 test_size=config.NUM_TEST_IMAGES, stratify=trainLabels,
22 random_state=42)
23 (trainPaths, testPaths, trainLabels, testLabels) = split

From here, our code looks near identical to all our other previous “dataset building” scripts in
Deep Learning for Computer Vision with Python:

25 # construct a list pairing the training, validation, and testing
26 # image paths along with their corresponding labels and output list
27 # files
28 datasets = [
29 ("train", trainPaths, trainLabels, config.TRAIN_MX_LIST),
30 ("val", valPaths, valLabels, config.VAL_MX_LIST),
31 ("test", testPaths, testLabels, config.TEST_MX_LIST)]
32

33 # initialize the list of Red, Green, and Blue channel averages
34 (R, G, B) = ([], [], [])

Lines 28-31 define a datasets list. Each entry in the datasets list is a 4-tuple, consisting of
four values:

1. The type of split (i.e., training, testing, or validation).
2. The image paths.
3. The image labels.
4. The path to the output .lst file required by mxnet.
We’ll also initialize the RGB channel averages on Line 34. Next, let’s loop over each entry in

the datasets list:

36 # loop over the dataset tuples
37 for (dType, paths, labels, outputPath) in datasets:
38 # open the output file for writing

48 Chapter 5. Preparing the ImageNet Dataset

39 print("[INFO] building {}...".format(outputPath))
40 f = open(outputPath, "w")
41

42 # initialize the progress bar
43 widgets = ["Building List: ", progressbar.Percentage(), " ",
44 progressbar.Bar(), " ", progressbar.ETA()]
45 pbar = progressbar.ProgressBar(maxval=len(paths),
46 widgets=widgets).start()

Line 40 opens a file pointer to our outputPath. We then build a progressbar widget
on Lines 43-46. A progress bar is certainly not required, but I find it helpful to provide ETA
information when building datasets (and computation could take while).

We now need to loop over each of the individual images and labels in the split:

48 # loop over each of the individual images + labels
49 for (i, (path, label)) in enumerate(zip(paths, labels)):
50 # write the image index, label, and output path to file
51 row = "\t".join([str(i), str(label), path])
52 f.write("{}\n".format(row))
53

54 # if we are building the training dataset, then compute the
55 # mean of each channel in the image, then update the
56 # respective lists
57 if dType == "train":
58 image = cv2.imread(path)
59 (b, g, r) = cv2.mean(image)[:3]
60 R.append(r)
61 G.append(g)
62 B.append(b)
63

64 # update the progress bar
65 pbar.update(i)

For each path and label, we write three values to the output .lst file:
1. The index, i (this is simply a unique integer that mxnet can associate with the image in the

set).
2. The integer class label.
3. The full path to the image file.
Each of these values are separated by a tab, with one set of values per line. A sample of such an

output file can be seen below:

0 35 /raid/datasets/imagenet/ILSVRC2015/Data/CLS-LOC/train/n02097130/n02097130_4602.JPEG
1 640 /raid/datasets/imagenet/ILSVRC2015/Data/CLS-LOC/train/n02276258/n02276258_7039.JPEG
2 375 /raid/datasets/imagenet/ILSVRC2015/Data/CLS-LOC/train/n03109150/n03109150_2152.JPEG
3 121 /raid/datasets/imagenet/ILSVRC2015/Data/CLS-LOC/train/n02483708/n02483708_3226.JPEG
4 977 /raid/datasets/imagenet/ILSVRC2015/Data/CLS-LOC/train/n04392985/n04392985_22306.JPEG

The im2rec tool in mxnet will then take these .lst files and build our .rec datasets. On
Lines 57-62 we check to see if our dataset type is train – and if so, we compute the RGB mean
for the image and update the respective channel lists.

Our final code block handles cleaning up file pointers and serializing the RGB means to disk:

5.2 Building the ImageNet Dataset 49

67 # close the output file
68 pbar.finish()
69 f.close()
70

71 # construct a dictionary of averages, then serialize the means to a
72 # JSON file
73 print("[INFO] serializing means...")
74 D = {"R": np.mean(R), "G": np.mean(G), "B": np.mean(B)}
75 f = open(config.DATASET_MEAN, "w")
76 f.write(json.dumps(D))
77 f.close()

To execute the build_dataset.py script, just execute the following command:

$ time python build_imagenet.py
[INFO] loading image paths...
[INFO] constructing splits...
[INFO] building /raid/datasets/imagenet/lists/train.lst...
Building List: 100% |####################################| Time: 1:47:35
[INFO] building /raid/datasets/imagenet/lists/val.lst...
Building List: 100% |####################################| Time: 0:00:00
[INFO] building /raid/datasets/imagenet/lists/test.lst...
Building List: 100% |####################################| Time: 0:00:00
[INFO] serializing means...

real 107m39.276s
user 75m26.044s
sys 2m35.237s

As you can see, the training set took the longest to complete at 107m39s due to the fact that
each of the 1.2 million images needed to be loaded from disk and have their means computed. The
testing and validation .lst files were written to disk in a manner of seconds due to the fact that all
we needed to do was write the image paths and labels to file (no extra I/O was required).

To validate that your .lst files for the training, testing, and validation files were successfully
created, check the contents of your MX_OUTPUT directory. Below you can find the contents of my
MX_OUTPUT/lists directory (where I choose to store the .lst files):

$ ls /raid/datasets/imagenet/lists/
test.lst train.lst val.lst

Doing a line count on each of the files reveals there are 50,000 images in our testing set, 50,000
images in our validation set, and 1,231,167 images in our testing set:

$ wc -l /raid/datasets/imagenet/lists/*.lst
50000 /raid/datasets/imagenet/lists/test.lst

1231167 /raid/datasets/imagenet/lists/train.lst
48238 /raid/datasets/imagenet/lists/val.lst

1329405 total

Given these .lst files, let’s build our record packed dataset using mxnet’s im2rec.

50 Chapter 5. Preparing the ImageNet Dataset

5.2.4 Building the Compact Record Files
Now that we have the .lst files, building a .rec file for each of the individual training, testing, and
validation files is a breeze. Below you can find my example command to generate the train.rec
file using mxnet’s im2rec binary:

$ ~/mxnet/bin/im2rec /raid/datasets/imagenet/lists/train.lst "" \
/raid/datasets/imagenet/rec/train.rec \ resize=256 encoding=’.jpg’ \
quality=100

On my system, I compiled the mxnet library in my home directory; therefore, the full path
to the im2rec is /mxnet/im2rec. You may need to adjust this path if you compiled mxnet in
a different location on your machine. Another alternative solution is to simply place the im2rec
binary on your system PATH.

The first argument to im2rec is the path to our output train.lst file – this path should
match the TRAIN_MX_LIST variable on imagenet_alexnet_config.py. The second argument
is a blank empty string. This parameter indicates the root path to our image files. Since we have
already derived the full path to the images on disk inside our .lst files, we can simply leave this
parameter blank. We then have the final required parameter to im2rec – this is the path to our
output record file database, where our compressed images and class labels will be stored. This
parameter should match the TRAIN_MX_REC variable in imagenet_alexnet_config.py.

Next, we supply three optional arguments to im2rec:
1. resize: Here we indicate that our image should be resized to 256 pixels along the shortest

dimension. This resizing not only reduces the input resolution of the image (thereby reducing
the output .rec file size), but also enables us to perform data augmentation during training.

2. encoding: Here we can supply either JPEG or PNG encoding. We’ll use JPEG encoding
to save disk space as it’s a lossy format. The PNG is a lossless format, but will result in
much larger .rec files. Furthermore, we shouldn’t be worried about a small amount of JPEG
artifacts. JPEG artifacts exist in real-world images and can even be viewed as at type of data
augmentation.

3. quality: This value is the image quality of either the JPEG or PNG image. For JPEG
images, this value ranges from 1-100 (the larger the value, the less compression/artifacts
introduced, but resulting in a larger file size). For PNG images, this value will range from
1-9. In this example, we’ll supply a JPEG value of 100 to not further introduce additional
JPEG artifacts in our dataset.

As the output below demonstrates, converting the .lst files into packed record files is time
consuming as each of the ≈ 1.2million images needs to be loaded from disk, resized, and stored in
the dataset:

[17:25:21] tools/im2rec.cc:126: New Image Size: Short Edge 256
[17:25:21] tools/im2rec.cc:139: Encoding is .jpg
[17:25:21] tools/im2rec.cc:185: Write to output: /raid/datasets/imagenet/rec/train.rec
[17:25:21] tools/im2rec.cc:187: Output: /raid/datasets/imagenet/rec/train.rec
[17:25:21] tools/im2rec.cc:200: JPEG encoding quality: 100
[17:25:26] tools/im2rec.cc:295: 1000 images processed, 5.81205 sec elapsed
[17:25:33] tools/im2rec.cc:295: 2000 images processed, 12.213 sec elapsed
[17:25:39] tools/im2rec.cc:295: 3000 images processed, 18.6334 sec elapsed
...
[19:22:42] tools/im2rec.cc:295: 1230000 images processed, 7041.57 sec elapsed
[19:22:49] tools/im2rec.cc:295: 1231000 images processed, 7048.79 sec elapsed
[19:22:51] tools/im2rec.cc:298: Total: 1231167 images processed, 7050.07 sec elapsed

5.2 Building the ImageNet Dataset 51

On my machine, this entire process took a little under two hours.
I can then repeat the process for the validation set:

$ ~/mxnet/bin/im2rec /raid/datasets/imagenet/lists/val.lst "" \
/raid/datasets/imagenet/rec/val.rec resize=256 encoding=’.jpg’ \
quality=100

[06:40:10] tools/im2rec.cc:126: New Image Size: Short Edge 256
[06:40:10] tools/im2rec.cc:139: Encoding is .jpg
[06:40:10] tools/im2rec.cc:185: Write to output: /raid/datasets/imagenet/rec/val.rec
[06:40:10] tools/im2rec.cc:187: Output: /raid/datasets/imagenet/rec/val.rec
[06:40:10] tools/im2rec.cc:200: JPEG encoding quality: 100
[06:40:15] tools/im2rec.cc:295: 1000 images processed, 5.9966 sec elapsed
[06:40:22] tools/im2rec.cc:295: 2000 images processed, 12.0281 sec elapsed
[06:40:27] tools/im2rec.cc:295: 3000 images processed, 17.2865 sec elapsed
...
[06:44:36] tools/im2rec.cc:295: 47000 images processed, 266.616 sec elapsed
[06:44:42] tools/im2rec.cc:295: 48000 images processed, 272.019 sec elapsed
[06:44:43] tools/im2rec.cc:298: Total: 48238 images processed, 273.292 sec elapsed

As well as the testing set:

$ ~/mxnet/bin/im2rec /raid/datasets/imagenet/lists/test.lst "" \
/raid/datasets/imagenet/rec/test.rec resize=256 encoding=’.jpg’ \
quality=100

[06:47:16] tools/im2rec.cc:139: Encoding is .jpg
[06:47:16] tools/im2rec.cc:185: Write to output: /raid/datasets/imagenet/rec/test.rec
[06:47:16] tools/im2rec.cc:187: Output: /raid/datasets/imagenet/rec/test.rec
[06:47:16] tools/im2rec.cc:200: JPEG encoding quality: 100
[06:47:22] tools/im2rec.cc:295: 1000 images processed, 6.32423 sec elapsed
[06:47:28] tools/im2rec.cc:295: 2000 images processed, 12.3095 sec elapsed
[06:47:35] tools/im2rec.cc:295: 3000 images processed, 19.0255 sec elapsed
...
[06:52:47] tools/im2rec.cc:295: 49000 images processed, 331.259 sec elapsed
[06:52:55] tools/im2rec.cc:295: 50000 images processed, 339.409 sec elapsed
[06:52:55] tools/im2rec.cc:298: Total: 50000 images processed, 339.409 sec elapsed

After we have generated the datasets using im2rec for the training, testing, and validation
splits, let’s take a look at the file sizes:

$ ls -l /raid/datasets/imagenet/rec/
total 105743748
-rw-rw-r-- 1 adrian adrian 4078794388 Dec 12 2016 test.rec
-rw-rw-r-- 1 adrian adrian 100250277132 Dec 12 2016 train.rec
-rw-rw-r-- 1 adrian adrian 3952497240 Dec 12 2016 val.rec

Here we can see the train.rec file is the largest, coming in at just over 100GB. The test.rec
and val.rec files are approximately 4GB apiece. The benefit here is that we were able to substan-
tially compress our entire ImageNet dataset into efficiently packed record files. Not only has the
compression saved us disk space, but it will dramatically speed up the training process as well due
to the fact that less I/O operations will need to be performed.

This approach is in contrast to the HDF5 approach where we needed to store the raw NumPy
array bitmap for each image. If we were to construct training split for ImageNet using HDF5
(using 256×256×3 images), the resulting file would be over 1.9TB, an increase of 1,831 percent!
Because of this increase, it’s highly advisable to use the mxnet .rec format when working with
large datasets.

52 Chapter 5. Preparing the ImageNet Dataset

5.3 Summary
In this chapter, we learned how to prepare the ImageNet dataset. We started by exploring the
directory structure of both the raw images in ImageNet, followed by the metafiles in the DevKit.
From there, we created our first ImageNet Python configuration file – all experiments performed on
ImageNet will be derived from this original configuration file. Here we supplied paths to the raw
input images, metafiles, number of class labels, output mean RGB serializations, etc. Provided that
you use the same machine for running all ImageNet experiments (or at least an identical directory
structure across all machines you run experiments on), this configuration file will rarely (if ever)
need to be updated.

After constructing our configuration file, we defined the ImageNetHelper class. This class
includes four utilities that facilitate our ability to generate mxnet list (called .lst files). Each .lst
file includes three values per row:

1. The unique integer ID of the image.
2. The class label of the image.
3. The full path to the image residing on disk.
Given a .lst file for each of the training, testing, and validation splits, we then applied

the im2rec binary (provided by mxnet) to create efficiently backed record files for each split.
These record files are super compact and highly efficient. As we’ll see in our next chapter when
we train AlexNet from scratch on ImageNet, we’ll leverage these .rec files using a special
ImageRecordIter. Similar to our HDF5DatasetGenerator, the ImageRecordIter class will
enable us to:

1. Iterate over all images in a given .rec file in mini-batches.
2. Apply data augmentation to each image in every batch.
To see how all the pieces fit together so we can train a Convolutional Neural Network from

scratch on ImageNet, proceed to the next chapter.

6. Training AlexNet on ImageNet

In our previous chapter we discussed the ImageNet dataset in detail; specifically, the directory
structure of the dataset and the supporting meta files used provide class labels for each image. From
there, we defined two sets of files:

1. A configuration file to allow us to easily create new experiments when training Convolutional
Neural Networks on ImageNet.

2. A set of utility scripts to prepare the dataset for the conversion from raw images residing on
disk to an efficiently packed mxnet record file.

Using the im2rec binary provided by mxnet, along with the .lst files we created using our
utility scripts, we were able to generate record files for each of our training, testing, and validation
sets. The beauty of this approach is that the .rec files only have to be generated once – we can
reuse these record files for any ImageNet classification experiment we wish to perform.

Secondly, the configuration files themselves are also reusable. While we built our first configu-
ration file with AlexNet in mind, the reality is that we’ll be using the same configuration file for
VGGNet, GoogLeNet, ResNet, and SqueezeNet as well – the only aspect of the configuration file
that needs to be changed when training a new network on ImageNet are:

1. The name of the network architecture (which is embedded in the configuration filename).
2. The batch size.
3. The number of GPUs to train the network on (if applicable).
In this chapter, we are first going to implement the AlexNet architecture using the mxnet

library. We’ve already implemented AlexNet once back in Chapter 10 of the Practitioner Bun-
dle using Keras. As you’ll see, there are many parallels between mxnet and Keras, making it
extremely straightforward to port an implementation between the two libraries. From there, I’ll
demonstrate how to train AlexNet on the ImageNet dataset.

This chapter, and all other chapters in this bundle that demonstrate how to train a given network
architecture on the ImageNet dataset, are treated as a cross between a case study and a lab journal.
For each of the chapters in this book, I’ve run tens to hundreds of experiments to gather the
respective results. I want to share with you my thought process when training deep, state-of-the-art
neural networks on the challenging ImageNet dataset so you can gain experience by watching me

54 Chapter 6. Training AlexNet on ImageNet

obtain sub-optimal results – and then tweaking a few parameters to boost my accuracy to replicate
the state-of-the-art performance. Sharing the “story” of how the network was trained, and not
just the final result, will help you in your own deep learning experiments. Watching others, and
then learning by experience, is the optimal way to quickly master the techniques required to be
successful working with large image datasets and deep learning.

6.1 Implementing AlexNet
The first step in training AlexNet on ImageNet is to implement the AlexNet architecture using the
mxnet library. We have already reviewed Krizhevsky et al.’s [8] seminal architecture in Chapter 10
of the Practitioner Bundle where we trained AlexNet on the Kaggle Dogs vs. Cats challenge, so
this network should not feel new and unfamiliar. That said, I have included Table 6.1 representing
the structure of the network as a matter of completeness.

We will now implement this architecture using Python and mxnet. As a personal preference,
I like to keep my mxnet CNN implementations separate from my Keras CNN implementations.
Therefore, I have created a sub-module named mxconv inside the nn module of pyimagesearch:

--- pyimagesearch
| |--- __init__.py
| |--- callbacks
| |--- nn
| | |--- __init__.py
| | |--- conv
| | |--- mxconv
| |--- preprocessing
| |--- utils

All network architectures implemented using mxnet will live inside this sub-module (hence why
the module name starts with the text mx). Create a new file named mxalexnet.py inside mxconv
to store our implementation of the MxAlexNet class:

--- pyimagesearch
| |--- __init__.py
| |--- callbacks
| |--- nn
| | |--- __init__.py
| | |--- conv
| | |--- mxconv
| | | |--- __init__.py
| | | |--- mxalexnet.py
| |--- preprocessing
| |--- utils

From there, we can start implementing AlexNet:

1 # import the necessary packages
2 import mxnet as mx
3

4 class MxAlexNet:
5 @staticmethod
6 def build(classes):

6.1 Implementing AlexNet 55

Layer Type Output Size Filter Size / Stride
INPUT IMAGE 227×227×3
CONV 55×55×96 11×11/4×4,K = 96
ACT 55×55×96
BN 55×55×96
POOL 27×27×96 3×3/2×2
DROPOUT 27×27×96
CONV 27×27×256 5×5,K = 256
ACT 27×27×256
BN 27×27×256
POOL 13×13×256 3×3/2×2
DROPOUT 13×13×256
CONV 13×13×384 3×3,K = 384
ACT 13×13×384
BN 13×13×384
CONV 13×13×384 3×3,K = 384
ACT 13×13×384
BN 13×13×384
CONV 13×13×256 3×3,K = 256
ACT 13×13×256
BN 13×13×256
POOL 13×13×256 3×3/2×2
DROPOUT 6×6×256
FC 4096
ACT 4096
BN 4096
DROPOUT 4096
FC 4096
ACT 4096
BN 4096
DROPOUT 4096
FC 1000
SOFTMAX 1000

Table 6.1: A table summary of the AlexNet architecture. Output volume sizes are included for each
layer, along with convolutional filter size/pool size when relevant.

56 Chapter 6. Training AlexNet on ImageNet

7 # data input
8 data = mx.sym.Variable("data")

Line 2 imports our only required library, mxnet aliased as mx for convenience. For readers
similar with OpenCV and the cv2 library, all functionality is neatly organized and contained inside
a single import – which has the benefit of keeping our import code block tidy and clean, but also
requires the architecture code to be slightly more verbose.

We then define the build method to MxAlexNet on Line 6, a standard we have developed
throughout the entirety of this book. The build method is responsible for constructing the network
architecture and returning it to the calling function.

However, examining the structure, you’ll notice that we only need a single argument, classes,
the total number of class labels in our dataset. The number of arguments is in contrast to imple-
menting CNNs in Keras where we also need to supply the spatial dimensions, including width,
height, and depth. How come we don’t need to supply these values to the mxnet library? As
we’ll find out, the reason mxnet does not explicitly require the spatial dimensions is because the
ImageRecordIter class (the class responsible for reading images from our record files) automati-
cally infers the spatial dimensions of our images – there is no need to explicitly pass the spatial
dimensions into the class.

Line 8 defines a mxnet variable named data – this is a very important variable as it represents
the input data to the neural network. Without this variable our network would not be able to receive
inputs, thus we would not be able to train or evaluate it.

Next, let’s implement the first set of CONV => RELU => POOL layers:

10 # Block #1: first CONV => RELU => POOL layer set
11 conv1_1 = mx.sym.Convolution(data=data, kernel=(11, 11),
12 stride=(4, 4), num_filter=96)
13 act1_1 = mx.sym.LeakyReLU(data=conv1_1, act_type="elu")
14 bn1_1 = mx.sym.BatchNorm(data=act1_1)
15 pool1 = mx.sym.Pooling(data=bn1_1, pool_type="max",
16 kernel=(3, 3), stride=(2, 2))
17 do1 = mx.sym.Dropout(data=pool1, p=0.25)

As you can see, the mxnet API is similar to that of Keras. The function names have changed
slightly, but overall, it’s easy to see how mxnet function names map to Keras function names (e.x.,
Conv2D in Keras is simply Convolution in mxnet). Each layer in mxnet requires that you pass in
a data argument – this data argument is the input to the layer. Using Keras and the Sequential
model, the input would be automatically inferred. Conversely, mxnet gives you the flexibility
to easily build graph structures where the input to one layer isn’t necessarily the output of the
preceding layer. This flexibility is especially handy when we start defining more exotic architectures
such as GoogLeNet and ResNet.

Lines 11 and 12 define our first CONV layer. This layer takes our input data as an input, then
applies a kernel size of 11× 11 pixels using a stride of 4× 4 and learning num_filter=96
filters.

The original implementation of AlexNet used standard ReLU layers; however, I’ve often found
that ELUs perform better, especially on the ImageNet dataset; therefore, we’ll apply an ELU on
Line 13. The ELU activation is implemented inside the LeakyReLU class which accepts our first
CONV layer, conv1_1 as an input. We then supply act_type="elu" to indicate that we wish to use
the ELU variant of the Leaky ReLU family. After applying the activation, we’ll want to perform
batch normalization on Lines 14 via the BatchNorm class. Note that we do not have to supply

6.1 Implementing AlexNet 57

the channel axis in which to normalize the activations – the channel axis is determined by mxnet
automatically.

To reduce the spatial dimensions of the input we can apply the Pooling class on Lines 15 and
16. The Pooling class accepts the output of bn1_1 as its input, then applies max pooling with a
kernel size of 3×3 and a stride of 2×2. Dropout is applied on Line 17 on help reduce overfitting.

Given this is your first exposure to implementing a layer set in mxnet, I would recommend
going back and re-reading this section once or twice more. There are obvious parallels between the
naming conventions in mxnet and Keras, but make sure you understand them now, especially the
data argument and how we must explicitly define the input of a current layer as the output of a
previous layer.

The rest of the AlexNet implementation I’ll explain in less tedious detail as:
1. You have already implemented AlexNet once before in the Practitioner Bundle.
2. The code itself is quite self-explanatory and explaining each line of code ad nauseum would

become tedious.
Our next layer set consists of another block of CONV => RELU => POOL layers:

19 # Block #2: second CONV => RELU => POOL layer set
20 conv2_1 = mx.sym.Convolution(data=do1, kernel=(5, 5),
21 pad=(2, 2), num_filter=256)
22 act2_1 = mx.sym.LeakyReLU(data=conv2_1, act_type="elu")
23 bn2_1 = mx.sym.BatchNorm(data=act2_1)
24 pool2 = mx.sym.Pooling(data=bn2_1, pool_type="max",
25 kernel=(3, 3), stride=(2, 2))
26 do2 = mx.sym.Dropout(data=pool2, p=0.25)

Here our CONV layer learns 256 filters, each of size 5×5. However, unlike Keras which can
automatically infer the amount of padding required (i.e., padding="same"), we need to explicitly
supply the pad value, as detailed in the table above. Supplying pad=(2, 2) ensures that the input
and output spatial dimensions are the same.

After the CONV layer, another ELU activation is applied, followed by a BN. Max pooling is
applied to the output of BN, reducing the spatial input size down to 13×13 pixels. Again, dropout
is applied to reduce overfitting.

To learn deeper, more rich features, we’ll stack multiple CONV => RELU layers on top of each
other:

28 # Block #3: (CONV => RELU) * 3 => POOL
29 conv3_1 = mx.sym.Convolution(data=do2, kernel=(3, 3),
30 pad=(1, 1), num_filter=384)
31 act3_1 = mx.sym.LeakyReLU(data=conv3_1, act_type="elu")
32 bn3_1 = mx.sym.BatchNorm(data=act3_1)
33 conv3_2 = mx.sym.Convolution(data=bn3_1, kernel=(3, 3),
34 pad=(1, 1), num_filter=384)
35 act3_2 = mx.sym.LeakyReLU(data=conv3_2, act_type="elu")
36 bn3_2 = mx.sym.BatchNorm(data=act3_2)
37 conv3_3 = mx.sym.Convolution(data=bn3_2, kernel=(3, 3),
38 pad=(1, 1), num_filter=256)
39 act3_3 = mx.sym.LeakyReLU(data=conv3_3, act_type="elu")
40 bn3_3 = mx.sym.BatchNorm(data=act3_3)
41 pool3 = mx.sym.Pooling(data=bn3_3, pool_type="max",
42 kernel=(3, 3), stride=(2, 2))
43 do3 = mx.sym.Dropout(data=pool3, p=0.25)

58 Chapter 6. Training AlexNet on ImageNet

Our first CONV layer learns 384, 3×3 filters using a padding size of (1,1) to ensure the input
spatial dimensions match the output spatial dimensions. An activation is applied immediately
following the convolution, followed by batch normalization. Our second CONV layer also learns 384,
3×3 filters, again followed by an activation and a batch normalization. The final CONV in the layer
set reduces the number of filters learned to 256; however, maintains the same file size of 3×3.

The output of the final CONV is then passed through an activation and a batch normalization. A
POOL operation is once again used to reduce the spatial dimensions of the volume. Dropout follows
the POOL to help reduce overfitting.

Following along with Table 6.1 above, the next step in implementing AlexNet is to define the
two FC layer sets:

45 # Block #4: first set of FC => RELU layers
46 flatten = mx.sym.Flatten(data=do3)
47 fc1 = mx.sym.FullyConnected(data=flatten, num_hidden=4096)
48 act4_1 = mx.sym.LeakyReLU(data=fc1, act_type="elu")
49 bn4_1 = mx.sym.BatchNorm(data=act4_1)
50 do4 = mx.sym.Dropout(data=bn4_1, p=0.5)
51

52 # Block #5: second set of FC => RELU layers
53 fc2 = mx.sym.FullyConnected(data=do4, num_hidden=4096)
54 act5_1 = mx.sym.LeakyReLU(data=fc2, act_type="elu")
55 bn5_1 = mx.sym.BatchNorm(data=act5_1)
56 do5 = mx.sym.Dropout(data=bn5_1, p=0.5)

Each of the FC layers includes 4096 hidden units, each followed by an activation, batch
normalization, and more aggressive dropout of 50%. It is common to use dropouts of 40-50% in
the FC layers as that is where the CNN connections are most dense and overfitting is most likely to
occur.

Finally, we apply our softmax classifier using the supplied number of classes:

58 # softmax classifier
59 fc3 = mx.sym.FullyConnected(data=do5, num_hidden=classes)
60 model = mx.sym.SoftmaxOutput(data=fc3, name="softmax")
61

62 # return the network architecture
63 return model

After reviewing this implementation, you might be surprised at how similar the mxnet library
is to Keras. While not identical, the function names are very easy to match together, as are the
parameters. Perhaps the only inconvenience is that we must now explicitly compute our padding
rather than on relying on the automatic padding inference of Keras. Otherwise, implementing
Convolutional Neural Networks with mxnet is just as easy as Keras.

6.2 Training AlexNet

Now that we have implemented the AlexNet architecture in mxnet, we need to define a driver script
responsible for actually training the network. Similar to Keras, training a network with mxnet is
fairly straightforward, although there are two key differences:

1. The mxnet training code is slightly more verbose due to the fact that we would like to leverage
multiple GPUs (if possible).

6.2 Training AlexNet 59

2. The mxnet library doesn’t provide a convenient method to plot our loss/accuracy over time
and instead logs training progress to the terminal.

Therefore, we need to use the logging package of Python to capture this output and save it
to disk. We then manually inspect the output logs of training progress as well as write Python
utility scripts to parse the logs and plot our training/loss. It’s slightly more tedious than using
Keras; however, the benefit of being to train networks substantially faster due to (1) mxnet being a
compiled C++ library with Python bindings and (2) multiple GPUs is well worth the tradeoff.

I have included an example of mxnet training log below:

Start training with [gpu(0), gpu(1), gpu(2), gpu(3), gpu(4),
gpu(5), gpu(6), gpu(7)]

Epoch[0] Batch [1000] Speed: 1677.33 samples/sec Train-accuracy=0.004186
Epoch[0] Batch [1000] Speed: 1677.33 samples/sec Train-top_k_accuracy_5=0.0181
Epoch[0] Batch [1000] Speed: 1677.33 samples/sec Train-cross-entropy=6.748022
Epoch[0] Resetting Data Iterator
Epoch[0] Time cost=738.577
Saved checkpoint to "imagenet/checkpoints/alexnet-0001.params"
Epoch[0] Validation-accuracy=0.008219
Epoch[0] Validation-top_k_accuracy_5=0.031189
Epoch[0] Validation-cross-entropy=6.629663
Epoch[1] Batch [1000] Speed: 1676.29 samples/sec Train-accuracy=0.028924
Epoch[1] Batch [1000] Speed: 1676.29 samples/sec Train-top_k_accuracy_5=0.0967
Epoch[1] Batch [1000] Speed: 1676.29 samples/sec Train-cross-entropy=5.883830
Epoch[1] Resetting Data Iterator
Epoch[1] Time cost=734.455
Saved checkpoint to "imagenet/checkpoints/alexnet-0002.params"
Epoch[1] Validation-accuracy=0.052816
Epoch[1] Validation-top_k_accuracy_5=0.150838
Epoch[1] Validation-cross-entropy=5.592251
Epoch[2] Batch [1000] Speed: 1675.09 samples/sec Train-accuracy=0.073691
Epoch[2] Batch [1000] Speed: 1675.09 samples/sec Train-top_k_accuracy_5=0.2045
Epoch[2] Batch [1000] Speed: 1675.09 samples/sec Train-cross-entropy=5.177066
Epoch[2] Resetting Data Iterator
Epoch[2] Time cost=733.579
Saved checkpoint to "imagenet/checkpoints/alexnet-0003.params"
Epoch[2] Validation-accuracy=0.094177
Epoch[2] Validation-top_k_accuracy_5=0.240031
Epoch[2] Validation-cross-entropy=5.039742

Here you can see that I am training AlexNet using eight GPUs (one GPU is sufficient, but I
used eight in order to gather results faster). After every set number of batches (which we’ll define
later), the training loss, rank-1, and rank-5 accuracy are logged to file. Once the epoch completes,
the training data iterator is reset, a checkpoint file created and model weights serialized, and the
validation loss, rank-1, and rank-5 accuracy displayed. As we can see, after the first epoch, AlexNet
is obtaining ≈ 3% rank-1 accuracy on the training data and ≈ 6% rank-1 accuracy on the validation
data.

6.2.1 What About Training Plots?
The training log is easy enough to read and interpret; however, scanning a plain text file does not
make up for the lack of visualization – actually visualizing a plot of the loss and accuracy over time
can enable us to make better, more informed decisions regarding whether we need to adjust the
learning rate, apply more regularization, etc.

60 Chapter 6. Training AlexNet on ImageNet

The mxnet library (unfortunately) does not ship out-of-the-box with a tool to parse the logs
and construct a training plot, so I have created a separate Python tool to accomplish this task for
us. Instead of further bloating this chapter with utility code (which simply amounts to using basic
programming and regular expressions to parse the log), I have decided to cover the topic directly
on the PyImageSearch blog – you can learn more about the plot_log.py script here:

http://pyimg.co/ycyao
However, for the time being simply understand that this script is used to parse mxnet training

logs and plot our respective training and validation losses and accuracies.

6.2.2 Implementing the Training Script
Now that we have defined the AlexNet architecture, we need to create a Python script to actually
train the network on the ImageNet dataset. To start, open up a new file, name it train_alexnet.py,
and insert the following code:

1 # import the necessary packages
2 from config import imagenet_alexnet_config as config
3 from pyimagesearch.nn.mxconv import MxAlexNet
4 import mxnet as mx
5 import argparse
6 import logging
7 import json
8 import os

Lines 2-8 import our required Python packages. Notice how we’re importing our imagenet_
alexnet_config, aliased as config, so we can access our ImageNet-specific training configu-
rations. We’ll then import our implementation of the AlexNet architecture in mxnet on Line 3.
As I mentioned earlier in this chapter, mxnet logs training progress to file; therefore, we need the
logging package on Line 6 to capture the output of mxnet and save it directly to a file that we can
later parse.

From here, let’s parse our command line arguments:

10 # construct the argument parse and parse the arguments
11 ap = argparse.ArgumentParser()
12 ap.add_argument("-c", "--checkpoints", required=True,
13 help="path to output checkpoint directory")
14 ap.add_argument("-p", "--prefix", required=True,
15 help="name of model prefix")
16 ap.add_argument("-s", "--start-epoch", type=int, default=0,
17 help="epoch to restart training at")
18 args = vars(ap.parse_args())

Our train_alexnet.py script requires two switches, followed by a third optional one. The
–checkpoints switch controls the path to the output directory where our model weights will be
serialized after each epoch. Unlike Keras where we need to explicitly define when a model will be
serialized to disk, mxnet does so automatically after every epoch.

The –prefix command line argument the name of the architecture you are training. In our
case, we’ll be using a prefix of alexnet. The prefix name will be included in the filename of every
serialized weights file.

Finally, we can also supply a --start-epoch. When training AlexNet on ImageNet, we’ll
inevitably notice signs of either training stagnation or overfitting. In this case we’ll want to ctrl +

http://pyimg.co/ycyao

6.2 Training AlexNet 61

c out of the script, adjust our learning rate, and continue training. By supplying a –start-epoch,
we can resume training from a specific previous epoch that has been serialized to disk.

When training our network from scratch we’ll use the following command to kick off the
training process:

$ python train_alexnet.py --checkpoints checkpoints --prefix alexnet

However, if we wanted to resume training from a specific epoch (in this case, epoch 50), we
would provide this command:

$ python train_alexnet.py --checkpoints checkpoints --prefix alexnet \
--start-epoch 50

Keep this process in mind when you are training AlexNet on the ImageNet dataset.
As I mentioned before, mxnet uses logging to display training progress. Instead of displaying

the training log to stdout, we should instead capture the log and save it to disk so we can parse it
and review it later:

20 # set the logging level and output file
21 logging.basicConfig(level=logging.DEBUG,
22 filename="training_{}.log".format(args["start_epoch"]),
23 filemode="w")

Lines 21 and 22 create a file named training_{epoch}.log based on the value of --start-epoch.
Having a unique filename for each starting epoch will make it easier to plot accuracy and loss over
time, as discussed in the PyImageSearch blog post above.

Next, we can load our RGB means from disk and compute the batch size:

25 # load the RGB means for the training set, then determine the batch
26 # size
27 means = json.loads(open(config.DATASET_MEAN).read())
28 batchSize = config.BATCH_SIZE * config.NUM_DEVICES

Previously, our batch size was always a fixed number since we were using only a single
CPU/GPU/device to train our networks. However, now that we are starting to explore the world of
multiple GPUs, our batch size is actually BATCH_SIZE * NUM_DEVICES. The reason we multiply
our initial batch size by the total number of CPUs/GPUs/devices we are training our network with
is because each device is parsing a separate batch of images in parallel. After all devices have
processed their batch, mxnet updates the respective weights in the network. Therefore, our batch
size actually increases with the number of devices we use for training due to parallelization.

Of course, we need to access our training data in order to train AlexNet on ImageNet:

30 # construct the training image iterator
31 trainIter = mx.io.ImageRecordIter(
32 path_imgrec=config.TRAIN_MX_REC,
33 data_shape=(3, 227, 227),
34 batch_size=batchSize,
35 rand_crop=True,

62 Chapter 6. Training AlexNet on ImageNet

36 rand_mirror=True,
37 rotate=15,
38 max_shear_ratio=0.1,
39 mean_r=means["R"],
40 mean_g=means["G"],
41 mean_b=means["B"],
42 preprocess_threads=config.NUM_DEVICES * 2)

Lines 31-42 define the ImageRecordIter responsible for reading our batches of images from
our training record file. Here we indicate that each output image from the iterator should be resized
to 227×227 pixels while applying data augmentation, including random cropping, random marring,
random rotation, and shearing. Mean subtraction is also applied inside the iterator as well.

In order to speed up training (and ensure our network is not waiting on new samples from the
data iterator), we can supply a value for preprocess_threads – generates N threads that poll
image batches for the iterator and apply data augmentation. I’ve found a good rule of thumb is to
set the number of preprocess_threads to be double the number of devices you are using to train
the network.

Just as we need to access our training data, we also need to access our validation data:

44 # construct the validation image iterator
45 valIter = mx.io.ImageRecordIter(
46 path_imgrec=config.VAL_MX_REC,
47 data_shape=(3, 227, 227),
48 batch_size=batchSize,
49 mean_r=means["R"],
50 mean_g=means["G"],
51 mean_b=means["B"])

The validation data iterator is identical to the training data iterator, with the exception that
no data augmentation is being applied (but we do apply mean subtraction normalization).

Next, let’s define our optimizer:

53 # initialize the optimizer
54 opt = mx.optimizer.SGD(learning_rate=1e-2, momentum=0.9, wd=0.0005,
55 rescale_grad=1.0 / batchSize)

Just like in the original Krizhevsky paper, we’ll be training AlexNet using SGD with an initial
learning rate of 1e−2, a momentum term of γ = 0.9, and a L2-weight regularization (i.e., “weight
decay) of 0.0005. The rescale_grad parameter in the SGD optimizer is very important as it
scales the gradients by our batch size. Without this rescaling, our network may be unable to learn.

The next code block handles defining the path to our output checkpoints path directory, along
with initializing the argument parameters and auxiliary parameters to the network:

57 # construct the checkpoints path, initialize the model argument and
58 # auxiliary parameters
59 checkpointsPath = os.path.sep.join([args["checkpoints"],
60 args["prefix"]])
61 argParams = None
62 auxParams = None

6.2 Training AlexNet 63

In the case that we are training AlexNet from the very first epoch, we need to build the network
architecture:

64 # if there is no specific model starting epoch supplied, then
65 # initialize the network
66 if args["start_epoch"] <= 0:
67 # build the LeNet architecture
68 print("[INFO] building network...")
69 model = MxAlexNet.build(config.NUM_CLASSES)

Otherwise, if we are restarting training from a specific epoch, we need to load the serialized
weights from disk and extract the argument parameters, auxiliary parameters, and model “symbol”
(i.e., what mxnet calls a compiled network):

71 # otherwise, a specific checkpoint was supplied
72 else:
73 # load the checkpoint from disk
74 print("[INFO] loading epoch {}...".format(args["start_epoch"]))
75 model = mx.model.FeedForward.load(checkpointsPath,
76 args["start_epoch"])
77

78 # update the model and parameters
79 argParams = model.arg_params
80 auxParams = model.aux_params
81 model = model.symbol

Regardless of whether we are starting training from the first first epoch or we are restarting
training from a specific epoch, we need to initialize the FeedForward object representing the
network we wish to train:

83 # compile the model
84 model = mx.model.FeedForward(
85 ctx=[mx.gpu(1), mx.gpu(2), mx.gpu(3)],
86 symbol=model,
87 initializer=mx.initializer.Xavier(),
88 arg_params=argParams,
89 aux_params=auxParams,
90 optimizer=opt,
91 num_epoch=90,
92 begin_epoch=args["start_epoch"])

The ctx parameter controls the context of our training. Here we can supply a list of GPUs,
CPUs, or devices used to train the network. In this case, I am using three GPUs to train AlexNet;
however, you should modify this line based on the number of GPUs available on your system. If
you have only one GPU, then Line 85 would read:

85 ctx=[mx.gpu(0)],

The initializer controls the weight initialization method for all weight later in the network –
here we are using Xavier (also known as Glorot) initialization, the default initialization method for

64 Chapter 6. Training AlexNet on ImageNet

most Convolutional Neural Networks (and the one used by default for Keras). We’ll allow AlexNet
to train for a maximum of 100 epochs, but again, this value will likely be adjusted as you train your
network and monitor the process – it could very well be less epochs or it could be more epochs.

Finally, the begin_epochs parameter controls which epoch we should resume training from.
This parameter is important as it allows mxnet to keep its internal bookkeeping variables in order.

Just as Keras provides us with callbacks to monitor training performance, so does mxnet:

94 # initialize the callbacks and evaluation metrics
95 batchEndCBs = [mx.callback.Speedometer(batchSize, 500)]
96 epochEndCBs = [mx.callback.do_checkpoint(checkpointsPath)]
97 metrics = [mx.metric.Accuracy(), mx.metric.TopKAccuracy(top_k=5),
98 mx.metric.CrossEntropy()]

On Line 95 we define a Speedometer callback that is called at the end of every batch. This
callback will provide us with training information after every batchSize * 500 batches. You may
lower or raise this value depending on how frequently you would like training updates. A smaller
value will result in more updates to the log, while a larger value will imply less updates to the log.

Line 96 defines our do_checkpoint callback that is called at the end of every epoch. This
callback is responsible for serializing our model weights to disk. Again, at the end of every epoch,
our network weights will be serialized to disk, enabling us to restart training from a specific epoch
of need be.

Finally, Lines 97 and 98 initialize our list of metrics callbacks. We’ll be monitoring rank-1
accuracy (Accuracy), rank-5 accuracy (TopKAccuracy), as well as categorical cross-entropy loss.

All that’s left to do now is train our network:

100 # train the network
101 print("[INFO] training network...")
102 model.fit(
103 X=trainIter,
104 eval_data=valIter,
105 eval_metric=metrics,
106 batch_end_callback=batchEndCBs,
107 epoch_end_callback=epochEndCBs)

A call to the .fit of the model starts (or restarts) the training process. Here we need to supply
the training data iterator, validation iterator, and any callbacks. Once .fit is called, mxnet will
start logging results to our output log file so we can review the training process.

While the code required to train a network using mxnet may seem slightly verbose, keep in mind
that this is literally a blueprint for training any Convolutional Neural Network on the ImageNet
dataset. When we implement and train other network architectures such as VGGNet, GoogLeNet,
etc., we’ll simply need to:

1. Change Line 2 to properly set the configuration file.
2. Update the data_shape in the trainIter and valIter (only if the network requires

different input image spatial dimensions).
3. Update the SGD optimizer on Lines 54 and 55.
4. Change the name of the model being initialized on Line 69.
Other than these three changes, there are literally no other updates required to our script when

training various CNNs on the ImageNet dataset. I have purposely coded our trainings script to be
portable and extendible. Future chapters in the ImageNet Bundle will require much less coding –
we’ll simply implement the new network architecture, make a few changes to the optimizer and

6.3 Evaluating AlexNet 65

configuration file, and be up and running within a matter of minutes. My hope is that you’ll use
this same script when implementing and experimenting with your own deep learning network
architectures.

6.3 Evaluating AlexNet
In this section, we’ll learn how to evaluate a Convolutional Neural Network trained on the ImageNet
dataset. This chapter specifically discusses AlexNet; however, as we’ll see later in this book, the
same script can be used to evaluate VGGNet, GoogLeNet, etc. as well, simply by changing the
configuration import file.

To see how we can change the configuration, open up a new file, name it test_alexnet.py,
and insert the following code:

1 # import the necessary packages
2 from config import imagenet_alexnet_config as config
3 import mxnet as mx
4 import argparse
5 import json
6 import os

Lines 2-6 import our required Python packages. Take special note of Line 2 where we import
our configuration file. As mentioned above, these exact same suite of scripts can be used to evaluate
other networks simply by changing Line 2 to match the configuration file for your respective
network.

From there, we can parse our command line arguments:

8 # construct the argument parse and parse the arguments
9 ap = argparse.ArgumentParser()

10 ap.add_argument("-c", "--checkpoints", required=True,
11 help="path to output checkpoint directory")
12 ap.add_argument("-p", "--prefix", required=True,
13 help="name of model prefix")
14 ap.add_argument("-e", "--epoch", type=int, required=True,
15 help="epoch # to load")
16 args = vars(ap.parse_args())

Our script requires three switches, each of which are detailed below:
1. –checkpoints: This is the path to our output checkpoints directory during the training

process.
2. –prefix: The prefix is the name of our actual CNN. When we run the test_alexnet.py

script, we’ll supply a value of alexnet for –prefix.
3. –epoch: Here we supply the epoch of our network that we wish to use for evaluation. For

example, if we stopped our training after epoch 100, then we would use the 100th epoch for
evaluating our network on the testing data.

These three command line arguments are required as they are all used to build the path to the
serialized model weights residing on disk.

To evaluate our network, we need to create an ImageRecordIter to loop over the testing data:

18 # load the RGB means for the training set
19 means = json.loads(open(config.DATASET_MEAN).read())

66 Chapter 6. Training AlexNet on ImageNet

20

21 # construct the testing image iterator
22 testIter = mx.io.ImageRecordIter(
23 path_imgrec=config.TEST_MX_REC,
24 data_shape=(3, 227, 227),
25 batch_size=config.BATCH_SIZE,
26 mean_r=means["R"],
27 mean_g=means["G"],
28 mean_b=means["B"])

Line 19 loads the average Red, Green, and Blue pixel values across the entire training set,
exactly as we did during the training process. These values will be subtracted from each of the
individual RGB channels in the image during testing prior to being fed through the network to
obtain our output classifications. Recall that mean subtraction is a form of data normalization and
thus needs to be performed on all three of the training, testing, and validation sets.

Lines 22-28 define the testIter used to loop over batches of images in the testing set. No
data augmentation needs to be performed in this case, so we’ll simply supply:

1. The path to the testing record file.
2. The intended spatial dimensions of the images (3 channels, with 227×227 width and height,

respectively).
3. The batch size used during evaluation – this parameter is less important during testing as it is

during trading as we are simply want to obtain our output predictions.
4. The RGB values used for mean subtraction/normalization.
Our AlexNet weights for each epoch are serialized to disk, so the next step is to define the

path to the output checkpoints directory using the prefix (name of the network) and epoch (the
specific weights that we wish to load):

30 # load the checkpoint from disk
31 print("[INFO] loading model...")
32 checkpointsPath = os.path.sep.join([args["checkpoints"],
33 args["prefix"]])
34 model = mx.model.FeedForward.load(checkpointsPath,
35 args["epoch"])

Lines 32 and 33 define the path to our output –checkpoints directory using the model
–prefix. As we know during the training process, the output serialized weights are stored using
the following filename convention:

checkpoints_directory/prefix-epoch.params

The checkpointsPath variable contains the checkpoints_directory/prefix portion of
the file path. We then use Lines 34 and 35 to:

1. Derive the rest of the file path using the supplied –epoch number.
2. Load the serialized parameters from disk.
Now that our pre-trained weights are loaded, we need to finish initializing the model:

37 # compile the model
38 model = mx.model.FeedForward(
39 ctx=[mx.gpu(0)],

6.4 AlexNet Experiments 67

40 symbol=model.symbol,
41 arg_params=model.arg_params,
42 aux_params=model.aux_params)

Line 38 defines the model as a FeedForward neural network. We’ll use only a single GPU
during evaluation (although you could certainly use more than one GPU or even your CPU).
The argument parameters (arg_params) and auxiliary parameters (aux_params) are then set by
accessing their respective values from the model loaded from disk.

Making predictions on the testing set is trivially easy:

44 # make predictions on the testing data
45 print("[INFO] predicting on test data...")
46 metrics = [mx.metric.Accuracy(), mx.metric.TopKAccuracy(top_k=5)]
47 (rank1, rank5) = model.score(testIter, eval_metric=metrics)
48

49 # display the rank-1 and rank-5 accuracies
50 print("[INFO] rank-1: {:.2f}%".format(rank1 * 100))
51 print("[INFO] rank-5: {:.2f}%".format(rank5 * 100))

Line 46 defines the list of metrics we are interested in – rank-1 and rank-5, respectively. We
then make a call to the .score method of model to compute the rank-1 and rank-5 accuracies. The
.score method requires that we pass in the ImageRecordIter object for the testing set, followed
by the list of metrics that we wish to compute. Upon calling .score mxnet will loop over all
batches of images in the testing set and compare these scores. Finally, Lines 50 and 51 display the
accuracies to our terminal.

At this point, we have all the ingredients we need to train AlexNet on the ImageNet dataset.
We have:

1. A script to train the network.
2. A script to plot training loss and accuracy over time.
3. A script to evaluate the network.
The final step is to start running experiments and apply the scientific method to arrive at AlexNet

model weights that replicate the performance of Krizhevsky et al.

6.4 AlexNet Experiments
When writing the chapters in this book, especially those related to training state-of-the-art network
architectures on ImageNet, I wanted to provide more than just code and example results. Instead, I
wanted to show the actual “story” of how a deep learning practitioner runs various experiments to
obtain a desirable result. Thus, almost every chapter in the ImageNet Bundle contains a section like
this one where I create a hybrid of lab journal meets case study. In the remainder of this section, I’ll
describe the experiments I ran, detail the results, and then describe the changes I made to improve
the accuracy of AlexNet.

R When evaluating and comparing AlexNet performance, we normally use the BVLC AlexNet
implementation provided by Caffe [16] rather than the original AlexNet implementation. This
comparison is due to a number of reasons, including different data augmentations being used
by Krizhevsky et al. and the usage of the (now deprecated) Local Response Normalization
layers (LRNs). Furthermore, the “CaffeNet” version of AlexNet tends to be more accessible
to the scientific community. In the remainder of this section I’ll be comparing my results to
the CaffeNet benchmark, but still referring back to the original Krizhevsky et al. paper.

68 Chapter 6. Training AlexNet on ImageNet

Epoch Learning Rate
1−50 1e−2
51−65 1e−3
66−80 1e−4
81−90 1e−5

Table 6.2: Learning rate schedule used when training AlexNet on ImageNet for Experiment #1.

6.4.1 AlexNet: Experiment #1
In my first AlexNet on ImageNet experiment I decided to empirically demonstrate why we place
batch normalization layers after the activation rather than before the activation. I also use standard
ReLUs rather than ELUs to obtain a baseline for model performance (Krizhevsky et al. used ReLUs
in their experiments). I thus modified the mxalexnet.py file detailed earlier in this chapter to
reflect the batch normalization and activation changes, a sample of which can be seen below:

10 # Block #1: first CONV => RELU => POOL layer set
11 conv1_1 = mx.sym.Convolution(data=data, kernel=(11, 11),
12 stride=(4, 4), num_filter=96)
13 bn1_1 = mx.sym.BatchNorm(data=conv1_1)
14 act1_1 = mx.sym.Activation(data=bn1_1, act_type="relu")
15 pool1 = mx.sym.Pooling(data=act1_1, pool_type="max",
16 kernel=(3, 3), stride=(2, 2))
17 do1 = mx.sym.Dropout(data=pool1, p=0.25)

Notice how my batch normalization layer is now before the activation and I am using ReLU
activation functions. I have included Table 6.2 to reflect my epoch number and associated learning
rates below – we will review why I choose to lower the learning rates at each respective epoch in
the remainder of this section.

I started training AlexNet using SGD with an initial learning rate of 1e−2, a momentum term
of 0.9, and L2 weight decay of 0.0005. The command to start the training process looked like this:

$ python train_alexnet.py --checkpoints checkpoints --prefix alexnet

I allowed my network to train, monitoring progress approximately every 10 epochs. One of
the worst mistakes I see new deep learning practitioners make is checking their training plots too
often. In most cases, you need the context of 10-15 epochs before you can make the decision
that a network is indeed overfitting, underfitting, etc. After epoch 70, I plotted my training loss
and accuracy (Figure 6.1), top-left). At this point, validation and training accuracy had essentially
stagnated at ≈ 49− 50% , a clear sign that the learning rate can be reduced to further improve
accuracy.

Thus, I updated my learning rate to be 1e−3 by editing Lines 53 and 54 of train_alexnet.py:

53 # initialize the optimizer
54 opt = mx.optimizer.SGD(learning_rate=1e-3, momentum=0.9, wd=0.0005,
55 rescale_grad=1.0 / batchSize)

Notice how the learning rate has been decreased from 1e− 2 to 1e− 3, but all other SGD
parameters have been left the same. I then restarted training from epoch 50 using the following
command:

6.4 AlexNet Experiments 69

Figure 6.1: Top-left: Letting AlexNet train to epoch 70 with a 1e−2 learning rate. Notice how
rank-1 accuracy stagnates around≈ 49%. I terminated training after epoch 70 and decided to restart
training at epoch 50. Top-right: Restarting training from epoch 50 with a learning rate of 1e−3.
The order of magnitude decrease in α allows the network to “jump” to higher accuracy/lower loss.
Bottom-left: Restarting training from epoch 65 with α = 1e−4. Bottom-right: Epochs 80-90 at
α = 1e−5.

$ python train_alexnet.py --checkpoints checkpoints --prefix alexnet \
--start-epoch 50

Again, I kept monitoring AlexNet progress until epoch 70 (Figure 6.1, top-right). The first key
takeaway you should examine from this plot is how lowering my learning rate from 1e− 2 to
1e−3 caused a sharp rise in accuracy and a dramatic dip in loss immediately past epoch 50 – this
rise in accuracy and drop in loss is normal when you are training deep neural networks on large
datasets. By lowering the learning rate we are allowing our network to descend into lower areas of
loss, as previously the learning rate was too large for the optimizer to find these regions. Keep in
mind that the goal of training a deep learning network is not necessarily to find a global minimum
or even local minimum; rather to simply find a region where loss is sufficiently low.

However, toward the later epochs, I started to notice stagnation in the validation loss/accuracy
(although the training accuracy/loss continued to improve). This stagnation tends to be a clear sign

70 Chapter 6. Training AlexNet on ImageNet

that overfitting is starting to occur, but the gap between validation and training loss is more than
acceptable, so I wasn’t too worried. I updated my learning rate to be 1e−4 (again, by editing Lines
53 and 54 of train_alexnet.py) and restarted training from epoch 65:

$ python train_alexnet.py --checkpoints checkpoints --prefix alexnet \
--start-epoch 65

Validation loss/accuracy improved slightly, but at this point, the learning rate is starting to
become too small – furthermore, we are starting to overfit to the training data (Figure 6.1, bottom-
left).

I finally allowed my network to train for 10 more epochs (80-90) using a 1e−5 learning rate:

$ python train_alexnet.py --checkpoints checkpoints --prefix alexnet \
--start-epoch 80

Figure 6.1 (bottom-right) right contains the resulting plot for the final ten epochs. Further
training past epoch 90 is unnecessary as validation loss/accuracy has stopped improving while
training loss continues to drop, putting us at risk at overfitting. At the end of epoch 90, I obtained
54.14% rank-1 accuracy and 77.90% rank-5 accuracy on the validation data. This accuracy is
very reasonable for a first experiment, but not quite what I would expect from AlexNet-level
performance, which the BVLC CaffeNet reference model reports to be approximately 57% rank-1
accuracy and 80% rank-5 accuracy.

R I am purposely not evaluating my experiments on the testing data yet. I know there are
more experiments to be run, and I try to only evaluate on the test set when I’m confident that
I’ve obtained a high performing model. Remember that your testing set should be used very
sparingly – you do not want to overfit to your testing set; otherwise, you’ll completely destroy
the ability for your model to generalize outside the samples in your dataset.

6.4.2 AlexNet: Experiment #2
The purpose of this experiment is to build on the previous one and demonstrate why we place batch
normalization layers after the activation. I kept the ReLU activation, but swapped the ordering of
the batch normalizations, as the following code block demonstrates:

10 # Block #1: first CONV => RELU => POOL layer set
11 conv1_1 = mx.sym.Convolution(data=data, kernel=(11, 11),
12 stride=(4, 4), num_filter=96)
13 act1_1 = mx.sym.Activation(data=conv1_1, act_type="relu")
14 bn1_1 = mx.sym.BatchNorm(data=act1_1)
15 pool1 = mx.sym.Pooling(data=bn1_1, pool_type="max",
16 kernel=(3, 3), stride=(2, 2))
17 do1 = mx.sym.Dropout(data=pool1, p=0.25)

Again, I used the exact same optimizer parameters of SGD with an initial learning rate of 1e−2,
momentum of 0.9, and L2 weight decay of 0.0005. Table 6.3 includes my epoch and associated
learning rate schedule. I started training AlexNet using the following command:

$ python train_alexnet.py --checkpoints checkpoints --prefix alexnet

6.4 AlexNet Experiments 71

Epoch Learning Rate
1−65 1e−2
66−85 1e−3
86−100 1e−4

Table 6.3: Learning rate schedule used when training AlexNet on ImageNet for Experiment #2 and
Experiment #3.

Around epoch 65 I noticed that validation loss and accuracy were stagnating (Figure 6.2,
top-left). Therefore, I stopped training, adjusted my learning rate to be 1e−3, and then restarted
training from the 65th epoch:

$ python train_alexnet.py --checkpoints checkpoints --prefix alexnet \
--start-epoch 65

Again, we can see the characteristic jump in accuracy by lowering the learning rate, when
validation accuracy/loss plateaus (Figure 6.2, top-right). At epoch 85 I again lowered my learning
rate, this time from 1e− 3 to 1e− 4 and allowed the network to train for 15 more epochs, after
which validation loss/accuracy stopped improving (Figure 6.2, bottom).

Examining the logs for my experiment, I noticed that my rank-1 accuracy was 56.72% and
rank-5 accuracy was 79.62%, much better than my previous experiment of placing the batch
normalization layer before the activation. Furthermore, these results are well within the statistical
range of what true AlexNet-level performance looks like.

6.4.3 AlexNet: Experiment #3
Given that my previous experiment demonstrated placing batch normalization after the activation
yielded better results, I decided to swap out the standard ReLU activations with ELU activations. In
my experience, replacing ReLUs with ELUs can often add a 1-2% increase in your classification
accuracy on the ImageNet dataset. Therefore, my CONV => RELU block now become:

10 # Block #1: first CONV => RELU => POOL layer set
11 conv1_1 = mx.sym.Convolution(data=data, kernel=(11, 11),
12 stride=(4, 4), num_filter=96)
13 act1_1 = mx.sym.LeakyReLU(data=conv1_1, act_type="elu")
14 bn1_1 = mx.sym.BatchNorm(data=act1_1)
15 pool1 = mx.sym.Pooling(data=bn1_1, pool_type="max",
16 kernel=(3, 3), stride=(2, 2))
17 do1 = mx.sym.Dropout(data=pool1, p=0.25)

Notice how the batch normalization layer is placed after the activation along with ELUs
replacing ReLUs. During this experiment I used the exact same SGD optimizer parameters as my
previous two trials. I also followed the same learning rate schedule from the second experiment
(Table 6.3).

To replicate my experiment, you can use the following commands:

$ python train_alexnet.py --checkpoints checkpoints --prefix alexnet
...
$ python train_alexnet.py --checkpoints checkpoints --prefix alexnet \

72 Chapter 6. Training AlexNet on ImageNet

Figure 6.2: Top-right: The first 65 epochs with a 1e−2 learning rate when placing the activation
before the batch normalization. Top-left: Decreasing α to 1e−3 causes a sharp increase in accuracy
and decrease in loss; however, the training loss is decreasing significantly faster than validation
loss. Bottom: A final decrease in α to 1e−4 for epochs 85-100.

--start-epoch 65
...
$ python train_alexnet.py --checkpoints checkpoints \

--prefix alexnet --start-epoch 85
...

The first command starts training from the first epoch with an initial learning rate of 1e−2.
The second command restarts training at the 65 epoch using a learning rate of 1e−3. And the final
command restarts training at the 85th epoch with a learning rate of 1e−4.

A full plot of the training and validation loss/accuracy can be seen in Figure 6.3. Again, you
can see the clear characteristic marks of adjusting your learning rate by an order of magnitude
at epochs 65 and 85, with the jumps becoming less pronounced as the learning rate decreases. I
did not want to train past epoch 100 as AlexNet is clearly starting to overfit to the training data
while validation accuracy/loss remains stagnate. The more this gap is allowed to grow, the worse
overfitting becomes, therefore we apply the “early stopping” regularization criteria to prevent

6.4 AlexNet Experiments 73

Figure 6.3: In our final AlexNet + ImageNet experiment we swap out ReLUs for ELUs and
obtain a validation rank-1/rank5 accuracy of 57.00%/75.52% and testing rank-1/rank-5 accuracy of
59.80%/81.75%.

further overfitting.
Examining the accuracies for the 100th epoch, I found that I obtained 57.00% rank-1 accuracy

and 79.52% rank-5 accuracy on the validation dataset. This result is only marginally better than my
second experiment, but what’s very interesting is what happens when I evaluated on the testing set
using the test_alexnet.py script:

$ python test_alexnet.py --checkpoints checkpoints --prefix alexnet \
--epoch 100

[INFO] loading model...
[INFO] predicting on test data...
[INFO] rank-1: 59.80%
[INFO] rank-5: 81.74%

I have summarized the results in Table 6.4. Here you can see that I obtained 59.80% rank-1
and 81.75% rank-5 accuracy on the testing set, certainly above what most independent papers
and publications report AlexNet-level accuracy to be. For your convenience, I have included the
weights for this AlexNet experiment in your download of the ImageNet Bundle.

Overall, the purpose of this section is to give you an idea of the types of experiments you’ll
need to run to obtain a reasonably performing model on the ImageNet dataset. Realistically, my lab
journal included 25 separate experiments for AlexNet + ImageNet, far too many to include in this
book. Instead, I picked the ones most representative of important changes I made to the network
architecture and optimizer. Keep in mind that for most deep learning problems you’ll be running

74 Chapter 6. Training AlexNet on ImageNet

Testing Set
Rank-1 Accuracy 59.80%
Rank-5 Accuracy 81.75%

Table 6.4: Evaluating AlexNet on the ImageNet test set. Our results outperform the standard Caffe
reference model used to benchmark AlexNet.

10-100 (and in some cases, even more) experiments before you obtain a model that performs well
on both your validation and testing data.

Deep learning is not like other areas of programming where you write a function once and it
works forever. Instead, there are many knobs and levers that need to be tweaked. Once you tweak
the parameters, you’ll be rewarded with a well performing CNN, but until then, be patient, and log
your results! Making note of what does and does not work is invaluable – these notes will enable
you to reflect on your experiments and identify new avenues to pursue.

6.5 Summary
In this chapter, we implemented the AlexNet architecture using the mxnet library and then trained
it on the ImageNet dataset. This chapter was quite lengthy due to the need of us to comprehensively
review the AlexNet architecture, the training script, and the evaluation script. Now that we have
defined our training and evaluation Python scripts, we’ll be able to reuse them in future experiments,
making training and evaluation substantially easier – the main task will be for us to implement the
actual network architecture.

The experiments we performed allowed us to identify two important takeaways:
1. Placing batch normalization after the activation (rather than before) will lead to higher

classification accuracy/lower loss in most situations.
2. Swapping out ReLUs for ELUs can give you a small boost in classification accuracy.
Overall, we were able to obtain 59.80% rank-1 and 81.75% rank-5 accuracy on ImageNet,

outperforming the standard Caffe reference model used to benchmark AlexNet.

7. Training VGGNet on ImageNet

In this chapter, we will learn how to train the VGG16 network architecture on the ImageNet dataset
from scratch. The VGG family of Convolutional Neural Networks was first introduced by Simonyan
and Zisserman in their 2014 paper, Very Deep Convolutional Networks for Large Scale Image
Recognition [17].

This network is characterized by its simplicity, using only 3×3 convolutional layers stacked on
top of each other in increasing depth. Reducing the spatial dimensions of volumes is accomplished
through the usage of max pooling. Two fully-connected layers, each with 4,096 nodes (and dropout
in between), are followed by a softmax classifier.

VGG is often used today for transfer learning as the network demonstrates an above average
ability to generalize to datasets it was not trained on (as compared to other network types such as
GoogLeNet and ResNet). More times than not, if you are reading a publication or lab journal that
applies transfer learning, it likely uses VGG as the base model.

Unfortunately, training VGG from scratch is a pain, to say the least. The network is brutally
slow to train, and the network architecture weights themselves are quite large (over 500MB). This
is the only network inside the ImageNet Bundle that I would recommend that you not train if
you do not have access to at least four GPUs. Due to the depth of the network along with the
fully-connected layers, the backpropagation phase is excruciatingly slow.

In my case, training VGG on eight GPUs took ≈ 10 days – with any less than four GPUs,
training VGG from scratch will likely take prohibitively long (unless you can be very patient).
That said, it’s important as a deep learning practitioner to understand the history of deep learning,
especially the concept of pre-training and how we later learned to avoid this expensive operation
by optimizing our initialization weight functions.

Again, this chapter is included in the ImageNet Bundle as the VGG family of networks is a
critical aspect of deep learning; however, please do not feel the need to train this network from
scratch – I have included the weights file derived from my experiment in this chapter for you to use
in your own applications. Use this chapter as an educational reference so you can learn from VGG
when you apply it to your own projects. In particular, this chapter will highlight the proper usage of
the PReLU activation function and MSRA initialization.

76 Chapter 7. Training VGGNet on ImageNet

7.1 Implementing VGGNet

When implementing VGG, Simonyan and Zisserman tried variants of VGG that increased in
depth. Table 1 of their publication is included in Figure 7.1 below to highlight their experiments.
In particular, we are most interested in configurations A, B, D, and E. You have already used
both configuration D and E earlier in this book – these are the VGG16 and VGG19 architectures.
Looking at these architectures, you’ll notice two patterns:

The first is that the network uses only 3×3 filters. The second is as the depth of the network
increases, the number of filters learned increases as well – to be exact, the number of filters
doubles each time max pooling is applied to reduce volume size. The notion of doubling the number
of filters each time you decrease spatial dimensions is of historical importance in the deep learning
literature and even a pattern you will see today.

Figure 7.1: A replication of Table 1 from Simonyan and Zisserman [17]. We’ll be implementing
configuration D in this chapter, commonly called VGG16.

The reason we perform this doubling of filters is to ensure no single layer block is more biased
than the others. Layers earlier in the network architecture have fewer filters, but their spatial
volumes are also much larger, implying there is “more (spatial) data” to learn from.

However, we know that applying a max pooling operation will reduce our spatial input volumes.
If we reduce the spatial volumes without increasing the number of filters, then our layers become
unbalanced and potentially biased, implying that layers earlier in the network may influence our
output classification more than layers deeper in the network. To combat this imbalance, we keep in
mind the ratio of volume size to number of filters. If we reduce the input volume size by 50-75%,
then we double the number of filters in the next set of CONV layers to maintain the balance.

The issue with training such deep architectures is that Simonyan and Zisserman found training
VGG16 and VGG19 to be extremely challenging due to their depth. If these architectures were

7.1 Implementing VGGNet 77

randomly initialized and trained from scratch, they would often struggle to learn and gain any
initial “traction” – the networks were simply too deep for basic random initialization. Therefore,
to train deeper variants of VGG, Simonyan and Zisserman came up with a clever concept called
pre-training.

Pre-training is the practice of training smaller versions of your network architecture with fewer
weight layers first and then using these converged network weights as the initializations for larger,
deeper networks. In the case of VGG, the authors first trained configuration A, VGG11. VGG11
was able to converge to the level of reasonably low loss, but not state-of-the-art accuracy worthy.

The weights from VGG11 were then used as initializations to configuration B, VGG13. The
conv3-64 and conv3-128 layers (highlighted in bold in Figure 7.1) in VGG13 were randomly
initialized while the remainder of the layers were simply copied over from the pre-trained VGG11
network. Using the initializations, Simonyan and Zisserman were able to successfully train VGG13
– but still not obtain state-of-the-art accuracy.

This pre-training pattern continued to configuration D, which we commonly know as VGG16.
This time three new layers were randomly initialized while the other layers were copied over
from VGG13. The network was then trained using these “warmed pre-trained up” layers, thereby
allowing the randomly initialized layers to converge and learn discriminating patterns. Ultimately,
VGG16 was able to perform very well on the ImageNet classification challenge.

As a final experiment, Simonyan and Zisserman once again applied pre-training to configuration
E, VGG19. This very deep architecture copied the weights from the pre-trained VGG16 architecture
and then added another additional three convolutional layers. After training, it was found that
VGG19 obtained the highest classification accuracy from their experiments; however, the size of
the model (574MB) and the amount of time it took to train and evaluate the network, all for meager
gains, made it less appealing to deep learning practitioners.

If pre-training sounds like a painful, tedious process, that’s because it is. Training smaller
variations of your network architecture and then using the converged weights as initializations to
your deeper versions of the network is a clever trick; however, it requires training and tuning the
hyperparameters to N separate networks, where N is your final network architecture along with the
number of previous (smaller) networks required to obtain the end model. Performing this process is
extremely time-consuming, especially for deeper networks with many fully-connected layers such
as VGG.

The good news is that we no longer perform pre-training when training very deep Convolutional
Neural Networks – instead, we rely on a good initialization function. Instead of pure random weight
initializations we now use Xavier/Glorot [18] or MSRA (also known as He et al. initialization).
Through the work of both Mishkin and Mtas in their 2015 paper, All you need is a good init [19]
and He et al. in Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification [20], we found that we can skip the pre-training phase entirely and jump directly to
the deeper variations of the network architectures.

After these papers were published, Simonyan and Zisserman re-evaluated their experiments
and found that these “smarter” initialization schemes and activation functions were able to replicate
their previous performance without the usage of tedious pre-training.

Therefore, whenever you train VGG16 or VGG19 make sure you:
1. Swap out all ReLUs for PReLUs.
2. Use MSRA (also called “He et al. initialization”) to initialize the weight layers in your

network.
I additionally recommend using batch normalization after the activation functions in the network.

Apply batch normalization was not discussed in the original Simonyan and Zisserman paper, but as
other chapters have discussed, batch normalization can stabilize your training and reduce the total
number of epochs required to obtain a reasonably performing model.

78 Chapter 7. Training VGGNet on ImageNet

Now that we have learned about the VGG architecture, let’s go ahead and implement configura-
tion D from Simonyan and Zisserman, the seminal VGG16 architecture:

--- pyimagesearch
| |--- __init__.py
| |--- callbacks
| |--- nn
| | |--- __init__.py
| | |--- conv
| | |--- mxconv
| | | |--- __init__.py
| | | |--- mxalexnet.py
| | | |--- mxvggnet.py
| |--- preprocessing
| |--- utils

You’ll notice from the project structure above that I have created a file named mxvggnet.py in
the mxconv sub-module of pyimagesearch – this file is where our implementation of VGG16 is
going to live. Open up mxvggnet.py and we’ll start to implement the network:

1 # import the necessary packages
2 import mxnet as mx
3

4 class MxVGGNet:
5 @staticmethod
6 def build(classes):
7 # data input
8 data = mx.sym.Variable("data")

Line 2 imports our mxnet library while Line 4 defines the MxVGGNet class. Like all other
CNNs we have implemented in this book, we’ll create a build method on Line 6 that is responsible
for constructing the actual network architecture. This method accepts a single parameter, the
number of classes that our network is supposed to discriminate amongst. Line 8 then initializes
the all important data variable, the actual input data to the CNN.

Looking at Figure 7.1 above, we can see our first block of layers should include (CONV =>
RELU) * 2 => POOL. Let’s go ahead and define this layer block now:

10 # Block #1: (CONV => RELU) * 2 => POOL
11 conv1_1 = mx.sym.Convolution(data=data, kernel=(3, 3),
12 pad=(1, 1), num_filter=64, name="conv1_1")
13 act1_1 = mx.sym.LeakyReLU(data=conv1_1, act_type="prelu",
14 name="act1_1")
15 bn1_1 = mx.sym.BatchNorm(data=act1_1, name="bn1_1")
16 conv1_2 = mx.sym.Convolution(data=bn1_1, kernel=(3, 3),
17 pad=(1, 1), num_filter=64, name="conv1_2")
18 act1_2 = mx.sym.LeakyReLU(data=conv1_2, act_type="prelu",
19 name="act1_2")
20 bn1_2 = mx.sym.BatchNorm(data=act1_2, name="bn1_2")
21 pool1 = mx.sym.Pooling(data=bn1_2, pool_type="max",
22 kernel=(2, 2), stride=(2, 2), name="pool1")
23 do1 = mx.sym.Dropout(data=pool1, p=0.25)

7.1 Implementing VGGNet 79

The CONV layers in this block learn 64 filters, each of size 3×3. A leaky ReLU variant, PReLU
(covered in Chapter 10 of the Starter Bundle) is used as our activation function. After every PReLU
we then apply a batch normalization layer (not included in the original paper, but useful when
stabilizing the training of VGG). At the end of the layer block a pooling layer is used to reduce the
spatial dimensions of the volume using a 2×2 kernel and a 2×2 stride, reducing the volume size.
We also apply dropout with a small percentage (25%) to help combat overfitting.

The second layer set in VGG16 also applies (CONV => RELU) * 2 =< POOL, only this time
128 filters are learned (again, each being 3×3). The number of filters has doubled since we have
reduced the spatial input volume via the max pooling operation:

25 # Block #2: (CONV => RELU) * 2 => POOL
26 conv2_1 = mx.sym.Convolution(data=do1, kernel=(3, 3),
27 pad=(1, 1), num_filter=128, name="conv2_1")
28 act2_1 = mx.sym.LeakyReLU(data=conv2_1, act_type="prelu",
29 name="act2_1")
30 bn2_1 = mx.sym.BatchNorm(data=act2_1, name="bn2_1")
31 conv2_2 = mx.sym.Convolution(data=bn2_1, kernel=(3, 3),
32 pad=(1, 1), num_filter=128, name="conv2_2")
33 act2_2 = mx.sym.LeakyReLU(data=conv2_2, act_type="prelu",
34 name="act2_2")
35 bn2_2 = mx.sym.BatchNorm(data=act2_2, name="bn2_2")
36 pool2 = mx.sym.Pooling(data=bn2_2, pool_type="max",
37 kernel=(2, 2), stride=(2, 2), name="pool2")
38 do2 = mx.sym.Dropout(data=pool2, p=0.25)

Each CONV layer in this layer block is responsible of learning 128 filters. Again, the PReLU
activation function is applied after every CONV layer, followed by a batch normalization layer. Max
pooling is used to reduce the spatial dimensions of the volume followed by a small amount of
dropout to reduce the effects of overfitting.

The third layer block of VGG adds an additional CONV layer, implying there are three total CONV
operations prior to the max pooling:

40 # Block #3: (CONV => RELU) * 3 => POOL
41 conv3_1 = mx.sym.Convolution(data=do2, kernel=(3, 3),
42 pad=(1, 1), num_filter=256, name="conv3_1")
43 act3_1 = mx.sym.LeakyReLU(data=conv3_1, act_type="prelu",
44 name="act3_1")
45 bn3_1 = mx.sym.BatchNorm(data=act3_1, name="bn3_1")
46 conv3_2 = mx.sym.Convolution(data=bn3_1, kernel=(3, 3),
47 pad=(1, 1), num_filter=256, name="conv3_2")
48 act3_2 = mx.sym.LeakyReLU(data=conv3_2, act_type="prelu",
49 name="act3_2")
50 bn3_2 = mx.sym.BatchNorm(data=act3_2, name="bn3_2")
51 conv3_3 = mx.sym.Convolution(data=bn3_2, kernel=(3, 3),
52 pad=(1, 1), num_filter=256, name="conv3_3")
53 act3_3 = mx.sym.LeakyReLU(data=conv3_3, act_type="prelu",
54 name="act3_3")
55 bn3_3 = mx.sym.BatchNorm(data=act3_3, name="bn3_3")
56 pool3 = mx.sym.Pooling(data=bn3_3, pool_type="max",
57 kernel=(2, 2), stride=(2, 2), name="pool3")
58 do3 = mx.sym.Dropout(data=pool3, p=0.25)

80 Chapter 7. Training VGGNet on ImageNet

Here the number of filters learned by each CONV layer jumps to 256, but the size of the filters
remains at 3×3. The same pattern of PReLUs and batch normalization is used as well.

The fourth block of VGG16 also applies three CONV layers stacked on top of each other, but
this time the total number of filters doubles again to 512:

60 # Block #4: (CONV => RELU) * 3 => POOL
61 conv4_1 = mx.sym.Convolution(data=do3, kernel=(3, 3),
62 pad=(1, 1), num_filter=512, name="conv4_1")
63 act4_1 = mx.sym.LeakyReLU(data=conv4_1, act_type="prelu",
64 name="act4_1")
65 bn4_1 = mx.sym.BatchNorm(data=act4_1, name="bn4_1")
66 conv4_2 = mx.sym.Convolution(data=bn4_1, kernel=(3, 3),
67 pad=(1, 1), num_filter=512, name="conv4_2")
68 act4_2 = mx.sym.LeakyReLU(data=conv4_2, act_type="prelu",
69 name="act4_2")
70 bn4_2 = mx.sym.BatchNorm(data=act4_2, name="bn4_2")
71 conv4_3 = mx.sym.Convolution(data=bn4_2, kernel=(3, 3),
72 pad=(1, 1), num_filter=512, name="conv4_3")
73 act4_3 = mx.sym.LeakyReLU(data=conv4_3, act_type="prelu",
74 name="act4_3")
75 bn4_3 = mx.sym.BatchNorm(data=act4_3, name="bn4_3")
76 pool4 = mx.sym.Pooling(data=bn4_3, pool_type="max",
77 kernel=(2, 2), stride=(2, 2), name="pool3")
78 do4 = mx.sym.Dropout(data=pool4, p=0.25)

Interestingly, the final set of CONV layers in VGG does not increase the number of filters and
remains at 512. As to why this number did not double, I’m not entirely sure, but my best guess is
either:

1. Jumping from 512 to 1024 filters introduced too many parameters in the network which
caused VGG16 to overfit.

2. Training the network using 1024 filters in the final CONV blocks was simply too computation-
ally expensive.

Regardless, the final set of CONV layers in VGG16 also learn 512 filters, each 3×3:

80 # Block #5: (CONV => RELU) * 3 => POOL
81 conv5_1 = mx.sym.Convolution(data=do4, kernel=(3, 3),
82 pad=(1, 1), num_filter=512, name="conv5_1")
83 act5_1 = mx.sym.LeakyReLU(data=conv5_1, act_type="prelu",
84 name="act5_1")
85 bn5_1 = mx.sym.BatchNorm(data=act5_1, name="bn5_1")
86 conv5_2 = mx.sym.Convolution(data=bn5_1, kernel=(3, 3),
87 pad=(1, 1), num_filter=512, name="conv5_2")
88 act5_2 = mx.sym.LeakyReLU(data=conv5_2, act_type="prelu",
89 name="act5_2")
90 bn5_2 = mx.sym.BatchNorm(data=act5_2, name="bn5_2")
91 conv5_3 = mx.sym.Convolution(data=bn5_2, kernel=(3, 3),
92 pad=(1, 1), num_filter=512, name="conv5_3")
93 act5_3 = mx.sym.LeakyReLU(data=conv5_3, act_type="prelu",
94 name="act5_3")
95 bn5_3 = mx.sym.BatchNorm(data=act5_3, name="bn5_3")
96 pool5 = mx.sym.Pooling(data=bn5_3, pool_type="max",
97 kernel=(2, 2), stride=(2, 2), name="pool5")
98 do5 = mx.sym.Dropout(data=pool5, p=0.25)

7.2 Training VGGNet 81

Our first set of FC layers includes 4,096 nodes and also follows the pattern of applying a PReLU
and batch normalization:

100 # Block #6: FC => RELU layers
101 flatten = mx.sym.Flatten(data=do5, name="flatten")
102 fc1 = mx.sym.FullyConnected(data=flatten, num_hidden=4096,
103 name="fc1")
104 act6_1 = mx.sym.LeakyReLU(data=fc1, act_type="prelu",
105 name="act6_1")
106 bn6_1 = mx.sym.BatchNorm(data=act6_1, name="bn6_1")
107 do6 = mx.sym.Dropout(data=bn6_1, p=0.5)

Dropout is applied with a much stronger probability of 50% in the FC layers as the connections
are much more dense here and prone to overfitting. Similarly, we add another FC layer set in the
exact same manner below:

109 # Block #7: FC => RELU layers
110 fc2 = mx.sym.FullyConnected(data=do6, num_hidden=4096,
111 name="fc2")
112 act7_1 = mx.sym.LeakyReLU(data=fc2, act_type="prelu",
113 name="act7_1")
114 bn7_1 = mx.sym.BatchNorm(data=act7_1, name="bn7_1")
115 do7 = mx.sym.Dropout(data=bn7_1, p=0.5)

The final code block in VGG16 constructs FC layer for the total number of classes and then
applies a softmax classifier:

117 # softmax classifier
118 fc3 = mx.sym.FullyConnected(data=do7, num_hidden=classes,
119 name="fc3")
120 model = mx.sym.SoftmaxOutput(data=fc3, name="softmax")
121

122 # return the network architecture
123 return model

While there is certainly a lot more code required to implement VGG16 (as compared to
AlexNet), it’s all fairly straightforward. Furthermore, using a blueprint such as Figure 7.1 above
makes the process substantially easier. When you implement your own sequential network
architectures like these, I suggest writing the first set of CONV layers, then copying and pasting them
for the next block, making sure you:

1. Change the inputs of each layer (i.e., the data argument) appropriately.
2. Increase the number of filters in the CONV layers according to your blueprint.
Doing so will help reduce any bugs that might be injected into your code due to writing out

each layer definition by hand.

7.2 Training VGGNet

Now that we have implemented VGG16, we can train it on the ImageNet dataset. But first, let’s
define our project structure:

82 Chapter 7. Training VGGNet on ImageNet

--- mx_imagenet_vggnet
| |--- config
| | |--- __init__.py
| | |--- imagnet_vggnet_config.py
| |--- output/
| |--- test_vggnet.py
| |--- train_vggnet.py

The project structure is essentially identical to the AlexNet structure in the previous chapter.
We require a script named train_vggnet.py to actually train the network. The test_vggnet.py
script will then be responsible for evaluating VGG16 on ImageNet. Finally, the imagenet_vggnet_config.py
file contains our configurations for the experiment.

When defining this project structure, I simply copied the entire mx_imagenet_alexnet direc-
tory and then renamed the files to say vggnet instead of alexnet. Comparing imagenet_vggnet_config.py
to imagenet_alexnet_config.py, you’ll notice the configurations are identical (as the paths to
our ImageNet dataset files do not change), with one exception:

53 # define the batch size and number of devices used for training
54 BATCH_SIZE = 32
55 NUM_DEVICES = 8

Here I have reduced the BATCH_SIZE for 128 down to 32. Due the depth and size of VGG16
(and therefore the amount of memory it consumes on our GPU), we won’t be able to pass as many
image batches through the network at one time. In order to fit VGG16 on my GPU (Titan X, 12GB),
the batch size had to be reduced to 32. If you opt to train VGG16 from scratch on your own GPU,
you might have to decrease the BATCH_SIZE further if you don’t have as much GPU memory.

Secondly, I have also updated the number of GPUs I’ll be using to train VGGNet to eight. As I
mentioned at the beginning of this chapter, VGG16 is the only chapter in the ImageNet Bundle that
I do not recommend training from scratch unless you have a four to eight GPUs. Even with this
number of GPUs, it can easily take you 10-20 days to train the network.

Now that we have updated our configuration file, let’s also update train_vggnet.py. Again,
recall from Chapter 6 on AlexNet that we coded train_alexnet.py such that it requires minimal
changes whenever training a new network architecture on ImageNet. As a matter of completeness
I will review the entire file while highlighting the updates we have made; however, for a more
exhaustive review of the training script, please see Chapter 6 where the entire template is reviewed
in detail.

1 # import the necessary packages
2 from config import imagenet_vggnet_config as config
3 from pyimagesearch.nn.mxconv import MxVGGNet
4 import mxnet as mx
5 import argparse
6 import logging
7 import json
8 import os

On Line 2 we import our imagenet_vggnet_config file from our project structure – this con-
figuration file has been changed from the imagenet_alexnet_config import from the previous
chapter. We’ll also import MxVGGNet, our implementation of the VGG16 architecture. These are
the only two changes required to our import section.

7.2 Training VGGNet 83

Next, let’s parse our command line arguments and create our log file so mxnet can log training
progress to it:

10 # construct the argument parse and parse the arguments
11 ap = argparse.ArgumentParser()
12 ap.add_argument("-c", "--checkpoints", required=True,
13 help="path to output checkpoint directory")
14 ap.add_argument("-p", "--prefix", required=True,
15 help="name of model prefix")
16 ap.add_argument("-s", "--start-epoch", type=int, default=0,
17 help="epoch to restart training at")
18 args = vars(ap.parse_args())
19

20 # set the logging level and output file
21 logging.basicConfig(level=logging.DEBUG,
22 filename="training_{}.log".format(args["start_epoch"]),
23 filemode="w")
24

25 # load the RGB means for the training set, then determine the batch
26 # size
27 means = json.loads(open(config.DATASET_MEAN).read())
28 batchSize = config.BATCH_SIZE * config.NUM_DEVICES

Line 27 loads the RGB means so we can apply mean subtraction data normalization while Line
28 computes our batchSize based on the total number of devices we are using to train VGG16.
Next, we need to construct the training data iterator:

30 # construct the training image iterator
31 trainIter = mx.io.ImageRecordIter(
32 path_imgrec=config.TRAIN_MX_REC,
33 data_shape=(3, 224, 224),
34 batch_size=batchSize,
35 rand_crop=True,
36 rand_mirror=True,
37 rotate=15,
38 max_shear_ratio=0.1,
39 mean_r=means["R"],
40 mean_g=means["G"],
41 mean_b=means["B"],
42 preprocess_threads=config.NUM_DEVICES * 2)

As well as the validation data iterator:

44 # construct the validation image iterator
45 valIter = mx.io.ImageRecordIter(
46 path_imgrec=config.VAL_MX_REC,
47 data_shape=(3, 224, 224),
48 batch_size=batchSize,
49 mean_r=means["R"],
50 mean_g=means["G"],
51 mean_b=means["B"])

84 Chapter 7. Training VGGNet on ImageNet

We are now ready to initialize our optimizer:

53 # initialize the optimizer
54 opt = mx.optimizer.SGD(learning_rate=1e-2, momentum=0.9, wd=0.0005,
55 rescale_grad=1.0 / batchSize)

Following the paper by Simonyan and Zisserman, we’ll be using the SGD optimizer with an
initial learning rate of 1e−2, a momentum term of 0.9, and a L2 weight decay of 0.0005. Special
care is taken to rescale the gradients based on our batch size.

From there, we can construct the path to our checkpointsPath directory where the model
weights will be serialized after every epoch:

57 # construct the checkpoints path, initialize the model argument and
58 # auxiliary parameters
59 checkpointsPath = os.path.sep.join([args["checkpoints"],
60 args["prefix"]])
61 argParams = None
62 auxParams = None

Next, we can determine if we are (1) training our model from the very first epoch or (2)
restarting training from a specific epoch:

64 # if there is no specific model starting epoch supplied, then
65 # initialize the network
66 if args["start_epoch"] <= 0:
67 # build the LeNet architecture
68 print("[INFO] building network...")
69 model = MxVGGNet.build(config.NUM_CLASSES)
70

71 # otherwise, a specific checkpoint was supplied
72 else:
73 # load the checkpoint from disk
74 print("[INFO] loading epoch {}...".format(args["start_epoch"]))
75 model = mx.model.FeedForward.load(checkpointsPath,
76 args["start_epoch"])
77

78 # update the model and parameters
79 argParams = model.arg_params
80 auxParams = model.aux_params
81 model = model.symbol

Lines 66-69 handle if we are training VGG16 with no prior checkpoint. In this case, we
instantiate the MxVGGNet class on Line 69. Otherwise, Lines 72-81 assume we are loading a
specific checkpoint from disk and restarting training (presumably after adjusting the learning rate
to the SGD optimizer).

Finally, we can compile the model:

83 # compile the model
84 model = mx.model.FeedForward(
85 ctx=[mx.gpu(i) for i in range(0, config.NUM_DEVICES)],

7.3 Evaluating VGGNet 85

86 symbol=model,
87 initializer=mx.initializer.MSRAPrelu(),
88 arg_params=argParams,
89 aux_params=auxParams,
90 optimizer=opt,
91 num_epoch=80,
92 begin_epoch=args["start_epoch"])

Our model will be trained with ctx of NUM_DEVICES GPUs – you should change this line
based on the number of GPUs you are using on your system. Also, pay special attention to Line
87 where we define the initializer – we’ll be using MSRAPrelu as our initialization method,
the exact same method suggested by He et al. [20] to train very deep neural networks. Without this
initialization method, VGG16 would struggle to converge during training.

Next, let’s define our set of callbacks and evaluation metrics:

94 # initialize the callbacks and evaluation metrics
95 batchEndCBs = [mx.callback.Speedometer(batchSize, 250)]
96 epochEndCBs = [mx.callback.do_checkpoint(checkpointsPath)]
97 metrics = [mx.metric.Accuracy(), mx.metric.TopKAccuracy(top_k=5),
98 mx.metric.CrossEntropy()]

Since VGG16 is a very slow network to train, I prefer to see more training updates logged
to file; therefore, I decrease the number of batch size Speedometer updates (previously 500 for
AlexNet) to log training updates more frequently to the log. We’ll then monitor rank-1 accuracy,
rank-5 accuracy, and categorical cross-entropy.

Our final code block handles training VGG16:

100 # train the network
101 print("[INFO] training network...")
102 model.fit(
103 X=trainIter,
104 eval_data=valIter,
105 eval_metric=metrics,
106 batch_end_callback=batchEndCBs,
107 epoch_end_callback=epochEndCBs)

As you can see from the implementation of train_vggnet.py, there are very few differences
between the code detailed here and the trian_alexnet.py from the previous chapter – this
similarity is exactly why I use this same template when training my own CNNs on ImageNet. I can
simply copy the file, adjust a few import statements, instantiate my network, and then optionally
adjust my optimizer and initializer parameters. Once you have done this process a few times, you
can spin up a new ImageNet project in less than ten minutes.

7.3 Evaluating VGGNet

To evaluate VGGNet, we’ll be using the test_vggnet.py script mentioned in our project structure
above. Please note that this script is identical to test_alexnet.py in the previous chapter. There
were no changes made to the script as the test_*.py scripts in this chapter are meant to be
templates that can be applied and reapplied to any CNN trained on ImageNet.

86 Chapter 7. Training VGGNet on ImageNet

Since the code is identical, I will not be reviewing test_vggnet.py here. Please consult
Chapter 6 on test_alexnet.py for a thorough review of the code. Additionally, you can use the
code downloads portion of this book to inspect the project and see the contents of test_vggnet.py.
Again, the contents of these files are identical as they are part of our framework for training and
evaluating CNNs trained on ImageNet.

7.4 VGGNet Experiments

When training VGG16, it was critical that I considered the experiments run by other researchers
including Simonyan and Zisserman [17], He et al. [21, 22], and Mishkin et al. [19]. Through these
works I was able to avoid running additional, expensive experiments and applied the following
guidelines:

1. Skip pre-training in favor of better initialization methods.
2. Use MSRA/He et al. initialization.
3. Use PReLU activation functions.

Figure 7.2: Top-left: Letting VGGNet train to epoch 50 with a 1e−2 learning rate. Top-right:
Restarting training from epoch 50 with a learning rate of 1e−2. The order of magnitude decrease
in α allows the network to “jump” to higher accuracy/lower loss. Bottom: Restarting training from
epoch 70 with α = 1e−4 for a total of 10 more epochs.

7.4 VGGNet Experiments 87

Because I followed these guides, I only needed to perform one experiment with VGG16 to
replicate the results of Simonyan and Zisserman – this single experiment replicated their results near
identically. In this experiment, I used the SGD optimizer to train VGG16 with an initial learning
rate of 1e−2, a momentum term of 0.9, and a L2 weight regularization of 0.0005. To speed up
training, I used an Amazon EC2 instance with eight GPUs. I would not recommend trying to train
VGG on a machine with less than four GPUs unless you are very patient.

I kicked off the VGG training process using the following command:

$ python train_vggnet.py --checkpoints checkpoints --prefix vggnet

I allowed the network to train until epoch 50 where both training and validation accuracy
seemed to stagnate (Figure 7.2, top-left). I then ctrl + c out of the train_vggnet.py script and
lowered the learning rate from 1e−2 to 1e−3:

53 # initialize the optimizer
54 opt = mx.optimizer.SGD(learning_rate=1e-3, momentum=0.9, wd=0.0005,
55 rescale_grad=1.0 / batchSize)

Training was then resumed using the following command:

$ python train_vggnet.py --checkpoints checkpoints --prefix vggnet \
--start-epoch 50

In the Figure 7.2 (top-right) you can see the results of lowering the learning rate over the course
of 20 epochs. Immediately you can see the massive jump in both training and validation accuracy.
Training and validation loss also fall with the learning rate update, as common when performing
order of magnitude shifts when accuracy/loss saturates on deep Convolutional Neural Networks
trained on large datasets, such as ImageNet.

Past epoch 70 I once again noted validation loss/accuracy stagnation while training loss
continued to drop – this indicator shows overfitting starting to happen. In fact, we can see this
divergence start to appear past epoch 60 in the accuracy plot: training accuracy continues to climb
while validation accuracy remains the same.

In order to milk every last bit of performance out of VGG that I could (without overfitting too
terribly), I once again dropped the learning rate from 1e− 3 to 1e− 4 and restarted training on
epoch 70:

$ python train_vggnet.py --checkpoints checkpoints --prefix vggnet \
--start-epoch 70

I then allowed the network to continue training for another 10 epochs until epoch 80 where
I applied early stopping criteria (Figure 7.2, bottom). At this point, validation accuracy/loss
had stagnated while the gap between training loss and validation loss started to diverge heavily,
indicating that we are slightly overfitting and further training would only hurt the ability of the
model to generalize. At the end of the 80th epoch, VGG16 was obtaining 68.77% rank-1 and
88.78% rank-5 validation accuracy. I then evaluated the 80th epoch on the test set using the
following command:

88 Chapter 7. Training VGGNet on ImageNet

Epoch Learning Rate
1−50 1e−2
51−70 1e−3
71−80 1e−4

Table 7.1: Learning rate schedule used when training VGGNet on ImageNet.

$ python test_vggnet.py --checkpoints checkpoints --prefix vggnet \
--epoch 80

[INFO] loading model...
[INFO] predicting on test data...
[INFO] rank-1: 71.42%
[INFO] rank-5: 90.03%

As my output demonstrates, VGG16 reached 71.42% rank-1 and 90.03% rank-5 accuracy,
where is nearly identical to the original VGGNet paper by Simonyan and Zisserman. As a matter
of completeness, I have included my learning rate schedule in the Table 7.1 for readers who wish to
replicate these results.

The biggest downside to VGG16 (besides how long it takes to train) is the resulting model
size, weighing in at over 533MB. If you were building a deep learning application and intended
to ship the model size with your app, you would already have a package > 500MB to distribute.
Furthermore, all software is updated at some point, requiring you to repackage and re-distribute a
large 500MB package, likely over a network connection. For high-speed broadband connections,
this large model size may not be an issue. But for resource constrained devices such as embedded
devices, cell phones, and even self-driving cars, this 500MB model size can be a huge burden. In
these types of situations, we prefer very small model sizes.

Luckily, all remaining models we’ll discuss in this bundle are substantially smaller than
VGGNet. The weights for our highly accurate ResNet model come in at 102MB. GoogLeNet is
even smaller at 28MB. And the super tiny, efficient SqueezeNet model size is only 4.9MB, making
it ideal for any type of resource constrained deep learning.

7.5 Summary
In this chapter, we implemented the VGG16 architecture using the mxnet library and trained it
from scratch on the ImageNet dataset. Instead of using the tedious, time-consuming process of
pre-training to train smaller versions of our network architecture and subsequently using these
pre-trained weights as initializations to our deeper architecture, we instead skipped this step, relying
on the work of He et al. and Mishkin et al.:

1. We replaced standard ReLU activations with PReLUs.
2. We swapped Glorot/Xavier weight initialization for MSRA/He et al. initialization.
This process enabled us to replicate the work of Simonyan and Zisserman in a single experiment.

Whenever training VGG-like architectures from scratch, definitely consider using PReLUs and
MSRA initialization whenever possible. In some network architectures you won’t notice an impact
on performance when using PReLU + MSRA, but with VGG, the impact is substantial.

Overall, our version of VGG16 obtained 71.42% rank-1 and 90.03% rank-5 accuracy on the
ImageNet test set, the highest accuracy we have seen thus far in this bundle. Furthermore, the VGG
architecture has demonstrated itself to be well suited for generalization tasks. In our next chapter,
we’ll explore micro-architectures in more detail, including the GoogLeNet model, which will set
the stage for more specialized micro-architectures including ResNet and SqueezeNet.

8. Training GoogLeNet on ImageNet

In this chapter we are going to implement the full GoogLeNet architecture introduced by Szgedy
et al. in their 2014 paper, Going deeper with convolutions [23]. Both GoogLeNet and VGGNet
were the top performers in the ImageNet Large Scale Visual Recognition challenge (ILSVRC) in
2014 with GoogLeNet slightly edging out VGGNet for the top #1 position. GoogLeNet also has
the added benefit of being significantly smaller than VGG16 and VGG19 with only a 28.12MB
model size versus the VGG, coming in at over 500MB.

That said, it has been shown that the VGG family of networks:
1. Achieve higher classification accuracy (in practice).
2. Generalize better.
The generalization, in particular, is why VGG is more often used in transfer learning problems

such as feature extraction and especially fine-tuning. Later incarnations of GoogLeNet (which
simply go by the name of Inception N where N is the version number released by Google) extend
on the original GoogLeNet implementation and Inception module, bringing further accuracy – that
said, we still tend to use VGG for transfer learning.

Finally, it’s also worth mentioning that many researchers (myself included) have had trouble
replicating the original results by Szegedy et al. Independent ImageNet experiments, such as the
leaderboard maintained by vlfeat (an open source library for computer vision and machine learning),
report both VGG16 and VGG19 outperforming GoogLeNet by a significant margin [24]. It is
unclear exactly why this is, but as we’ll find out in the remainder of this chapter, our GoogLeNet
implementation does not outperform VGG, which is what we would expect from the original
publication and ILSVRC 2014 challenge. Regardless, it’s still important for us to study this seminal
architecture and how to train it on the ImageNet dataset.

8.1 Understanding GoogLeNet
We’ll start off this section with a quick review of the Inception module, the novel contribution by
Szegedy et al. in their seminal work. From there we’ll review the full GoogLeNet architecture that
was used in the ILSVRC 2014 challenge. Finally, we’ll implement GoogLeNet using Python and
mxnet.

90 Chapter 8. Training GoogLeNet on ImageNet

8.1.1 The Inception Module

Figure 8.1: The original Inception module used in GoogLeNet. The Inception module acts as
a “multi-level feature extractor” by computing 1× 1, 3× 3, and 5× 5 convolutions within the
same module of the network. Figure from Szegedy et al., 2014 [23].

The Inception module is a four branch micro-architecture used inside the GoogLeNet archi-
tecture (Figure 8.1). The primary purpose of the Inception module is to learn multi-scale features
(1×1, 3×3, and 5×5 filters), then let the network “decide” which weights are the most important
based on the optimization algorithm.

The first branch of the Inception module consists of entirely 1×1 filters. The second branch
applies 1×1 convolutions followed by 3×3 filters. A smaller number of 1×1 filters are learned
as a form of dimensionality reduction, thereby reducing the number of parameters in the overall
architecture. The third branch is identical to the second branch, only instead of learning 3×3 filters,
it instead learns 5×5 filters.

The fourth and final branch in the Inception module is called the pool projection branch. The
pool projection applies 3×3 max pooling followed by a series of 1×1 convolutions. The reasoning
behind this branch is that state-of-the-art Convolutional Neural Networks circa 2014 applied heavy
usage of max pooling. It was postulated that to achieve high accuracy on the challenging ImageNet
dataset, a network architecture must apply max pooling, hence why we see it inside the Inception
module. We now know that max pooling is not a requirement in a network architecture and we can
instead reduce volume size strictly through CONV layers [21, 25]; however, this was the prevailing
thought at the time.

The output of the four branches are concatenated along the channel dimension, forming a stack
of filters, and then passed into the next layer in the network. For a more detailed review of the
Inception module, please refer to Chapter 12 of the Practitioner Bundle.

8.1.2 GoogLeNet Architecture
Figure 8.2 details the GoogLeNet architecture we will be implementing, including the number of
filters for each of the four branches of the Inception module. After every convolution, it is implicitly
implied (i.e., not shown in the table to save space) that a batch normalization is applied, followed
by a ReLU activation. Typically we would place the batch normalization after the activation, but
once again, we will stick as close to the original GoogLeNet implementation as possible.

We start off with a 7×7 convolution with a stride of 2×2 where we are learning a total of 64
filters. A max pooling operation is immediately appealed with a kernel size of 3×3 and a stride of

8.1 Understanding GoogLeNet 91

Figure 8.2: The full GoogLeNet architecture proposed by Szegedy et al. We’ll be implementing
this exact architecture and trying to replicate their accuracy.

2×2. These CONV and POOL layers reduce our input volume size down from 224×224×3 all the
way down to 56×56×64 (notice how dramatically the spatial dimensions of the image dropped).

From there, another CONV layer is applied, where we learn 192 3×3 filters. A POOL layer then
follows, reducing our spatial dimensions to 28×28×192. Next, we stack two Inception modules
(named 3a and 3b), followed by another POOL.

To learn deeper, richer features, we then stack five Inception modules (4a-4e), again followed by
a POOL. Two more Inception modules are applied (5a and 5b), leaving us with an output volume size
of 7×7×1024. To avoid the usage of fully-connected layers, we can instead use global average
pooling where we average the 7×7 volume down to 1×1×1024. Dropout can then be applied to
reduce overfitting. Szegedy et al. recommended using a dropout rate of 40%; however, 50% tends
to be the standard for most networks – in this case, we’ll follow the original implementation as
close as possible and use 40%. After the dropout, we apply the only fully-connected layer in the
entire architecture where the number of nodes is the total number of class labels (1,000) followed
by a softmax classifier.

8.1.3 Implementing GoogLeNet
Using the table detailed above, we can now implement GoogLeNet using Python and the mxnet li-
brary. Create a new file named mxgooglenet.py inside the nn.mxconv sub-module of pyimagesearch,
that way we can keep our Keras CNN implementations separate from our mxnet CNN implementa-
tions (something I highly recommend):

--- pyimagesearch
| |--- __init__.py
| |--- callbacks
| |--- nn
| | |--- __init__.py

92 Chapter 8. Training GoogLeNet on ImageNet

| | |--- conv
| | |--- mxconv
| | | |--- __init__.py
| | | |--- mxalexnet.py
| | | |--- mxgooglenet.py
| | | |--- mxvggnet.py
| |--- preprocessing
| |--- utils

From there, open up the file and we’ll start implementing GoogLeNet:

1 # import the necessary packages
2 import mxnet as mx
3

4 class MxGoogLeNet:
5 @staticmethod
6 def conv_module(data, K, kX, kY, pad=(0, 0), stride=(1, 1)):
7 # define the CONV => BN => RELU pattern
8 conv = mx.sym.Convolution(data=data, kernel=(kX, kY),
9 num_filter=K, pad=pad, stride=stride)

10 bn = mx.sym.BatchNorm(data=conv)
11 act = mx.sym.Activation(data=bn, act_type="relu")
12

13 # return the block
14 return act

On Line 6 we define our conv_module method, a convenience function used to apply a layer
sequence of CONV => BN => RELU. This function accepts an input data (i.e., the input from the
previous layer), the kernel size K, the size of the kernel kX and kY, the amount of zero-padding pad,
and finally the stride of the convolution. Lines 8-11 use these inputs to build our CONV => BN
=> RELU, which we then return to the calling function on Line 14.

The reason we define the conv_module is simply for convenience – anytime we need to apply
the CONV => BN => RELU pattern (which will be a lot), we just make a call to conv_module.
Furthermore, doing so helps clean up our code as we won’t have to explicitly write out every
Convolution, BatchNorm, and Activation.

Next, we can define our inception_module which is identical to our implementation in
Chapter 11 of the Practitioner Bundle, only we are now using mxnet as the implementing library
rather than Keras:

16 @staticmethod
17 def inception_module(data, num1x1, num3x3Reduce, num3x3,
18 num5x5Reduce, num5x5, num1x1Proj):
19 # the first branch of the Inception module consists of 1x1
20 # convolutions
21 conv_1x1 = MxGoogLeNet.conv_module(data, num1x1, 1, 1)

On Line 21 we create the first branch of the Inception module, which applies a total of num1x1
1× 1 convolutions. The second branch in the Inception module is a set of 1× 1 convolutions
followed by 3×3 convolutions:

8.1 Understanding GoogLeNet 93

23 # the second branch of the Inception module is a set of 1x1
24 # convolutions followed by 3x3 convolutions
25 conv_r3x3 = MxGoogLeNet.conv_module(data, num3x3Reduce, 1, 1)
26 conv_3x3 = MxGoogLeNet.conv_module(conv_r3x3, num3x3, 3, 3,
27 pad=(1, 1))

The exact same process is applied for the third branch, only this time we are learning 5×
5 convolutions:

29 # the third branch of the Inception module is a set of 1x1
30 # convolutions followed by 5x5 convolutions
31 conv_r5x5 = MxGoogLeNet.conv_module(data, num5x5Reduce, 1, 1)
32 conv_5x5 = MxGoogLeNet.conv_module(conv_r5x5, num5x5, 5, 5,
33 pad=(2, 2))

The final branch in our Inception module is the pool projection, which is simply a max pooling
followed by 1×1 CONV layer:

35 # the final branch of the Inception module is the POOL +
36 # projection layer set
37 pool = mx.sym.Pooling(data=data, pool_type="max", pad=(1, 1),
38 kernel=(3, 3), stride=(1, 1))
39 conv_proj = MxGoogLeNet.conv_module(pool, num1x1Proj, 1, 1)

The output of these four channels (i.e., the convolutions) are then concatenated along the
channel dimension, forming the output of the Inception module:

41 # concatenate the filters across the channel dimension
42 concat = mx.sym.Concat(*[conv_1x1, conv_3x3, conv_5x5,
43 conv_proj])
44

45 # return the block
46 return concat

The reason we are able to perform this concatenation is because special care is taken to add
each of the 3×3 and 5×5 convolutions such that the output volume dimensions are the same. If
the output volumes shapes for each branch did not match then we would be unable to perform the
concatenation.

Given the conv_module and inception_module, we are now ready to create the build
method responsible or using these building blocks to construct the GoogLeNet architecture:

48 @staticmethod
49 def build(classes):
50 # data input
51 data = mx.sym.Variable("data")
52

53 # Block #1: CONV => POOL => CONV => CONV => POOL
54 conv1_1 = MxGoogLeNet.conv_module(data, 64, 7, 7,
55 pad=(3, 3), stride=(2, 2))
56 pool1 = mx.sym.Pooling(data=conv1_1, pool_type="max",

94 Chapter 8. Training GoogLeNet on ImageNet

57 pad=(1, 1), kernel=(3, 3), stride=(2, 2))
58 conv1_2 = MxGoogLeNet.conv_module(pool1, 64, 1, 1)
59 conv1_3 = MxGoogLeNet.conv_module(conv1_2, 192, 3, 3,
60 pad=(1, 1))
61 pool2 = mx.sym.Pooling(data=conv1_3, pool_type="max",
62 pad=(1, 1), kernel=(3, 3), stride=(2, 2))

Following Figure 8.2 above, we start off by applying a CONV => POOL => CONV => POOL to
reduce the spatial input dimensions from 224×224 pixels down to 28×28 pixels.

R Keep in mind that we are simplicity applying a batch normalization and activation after every
CONV. These layers have been omitted from the description of the code (1) for brevity and (2)
because we have already discussed how they are applied inside the conv_module function.

Next we apply two Inception modules (3a and 3b) followed by a POOL:

64 # Block #3: (INCEP * 2) => POOL
65 in3a = MxGoogLeNet.inception_module(pool2, 64, 96, 128, 16,
66 32, 32)
67 in3b = MxGoogLeNet.inception_module(in3a, 128, 128, 192, 32,
68 96, 64)
69 pool3 = mx.sym.Pooling(data=in3b, pool_type="max",
70 pad=(1, 1), kernel=(3, 3), stride=(2, 2))

The exact parameters for each of the branches can be found in Table 8.2 above. Szegedy et
al. determined these parameters through their own experimentations and it is recommended to
leave the number of filters for each branch as they are. I provide a more thorough discussion on the
assumptions we make regarding the number of filters for each CONV layer in the Inception module
in Chapter 12 of the Practitioner Bundle.

To learn deeper, richer features that are more discriminative, we next apply five Inception
modules (4a-4e), followed by another POOL:

72 # Block #4: (INCEP * 5) => POOL
73 in4a = MxGoogLeNet.inception_module(pool3, 192, 96, 208, 16,
74 48, 64)
75 in4b = MxGoogLeNet.inception_module(in4a, 160, 112, 224, 24,
76 64, 64)
77 in4c = MxGoogLeNet.inception_module(in4b, 128, 128, 256, 24,
78 64, 64)
79 in4d = MxGoogLeNet.inception_module(in4c, 112, 144, 288, 32,
80 64, 64)
81 in4e = MxGoogLeNet.inception_module(in4d, 256, 160, 320, 32,
82 128, 128)
83 pool4 = mx.sym.Pooling(data=in4e, pool_type="max",
84 pad=(1, 1), kernel=(3, 3), stride=(2, 2))

Notice the deeper we get in the architecture and the smaller the output volume becomes, the
more filters we learn – this is a common pattern when creating Convolutional Neural Networks.

Another two Inception modules (5a and 5b) are used, followed by average pooling and dropout:

8.1 Understanding GoogLeNet 95

86 # Block #5: (INCEP * 2) => POOL => DROPOUT
87 in5a = MxGoogLeNet.inception_module(pool4, 256, 160, 320, 32,
88 128, 128)
89 in5b = MxGoogLeNet.inception_module(in5a, 384, 192, 384, 48,
90 128, 128)
91 pool5 = mx.sym.Pooling(data=in5b, pool_type="avg",
92 kernel=(7, 7), stride=(1, 1))
93 do = mx.sym.Dropout(data=pool5, p=0.4)

Examining Lines 89 and 90 you can see that a total of 384+384+128+128 = 1024 filters
are outputted as a result from the concatenation operation during Inception module 5b. Thus, this
result produces an output volume size of 7×7×1024. To alleviate the need for fully-connected
layers, we can average the 7×7 spatial dimensions down to 1×1×1024, a common technique
used in GoogLeNet, ResNet, and SqueezeNet. Doing so allows us to reduce the overall number of
parameters in our network substantially.

Finally, we define a single dense layer for our total number of classes and apply a softmax
classifier:

95 # softmax classifier
96 flatten = mx.sym.Flatten(data=do)
97 fc1 = mx.sym.FullyConnected(data=flatten, num_hidden=classes)
98 model = mx.sym.SoftmaxOutput(data=fc1, name="softmax")
99

100 # return the network architecture
101 return model

In our next section, we’ll review the train_googlenet.py script used to actually train our
implementation of GoogLeNet.

8.1.4 Training GoogLeNet

Now that we have implemented GoogLeNet in mxnet, we can move on to training it on the ImageNet
dataset from scratch. Before we get started, let’s take a look at the directory structure of our project:

--- mx_imagenet_googlenet
| |--- config
| | |--- __init__.py
| | |--- imagnet_googlenet_config.py
| |--- output/
| |--- test_googlenet.py
| |--- train_googlenet.py

Just as in the AlexNet and VGGNet chapters, the project structure is identical. The train_googlenet.py
script will be responsible for training the actual network. We can then use test_googlenet.py
script to evaluate the performance of a particular GoogLeNet epoch on the ImageNet testing set.

R The test_googlenet.py file is actually identical to both test_alexnet.py and test_vggnet.py
– I simply copied and included the file in this directory should you wish to modify it for your
own needs.

96 Chapter 8. Training GoogLeNet on ImageNet

Most importantly, we have the imagenet_googlenet_config.py file which controls our con-
figuration for training GoogLeNet. I copied this file directly from imagenet_alexnet_config.py,
renaming it to imagenet_googlenet_config.py. The ImageNet configuration file paths are
identical to our previous experiments; the only exception is the BATCH_SIZE and NUM_DEVICES
configuration:

1 # define the batch size and number of devices used for training
2 BATCH_SIZE = 128
3 NUM_DEVICES = 3

Here I indicate that batch sizes of 128 images should be passed through the network at a time
– this fits comfortably on my Titan X GPU with 12GB of memory. If you have less memory on
your GPU, simply decrease the batch size (by power of two) until the batch will fit along with the
network. I then set NUM_DEVICES = 3, indicating I want to use three GPUs to train GoogLeNet.
Using three GPUs, I was able to complete an epoch approximately every 1.7 hours, or 14 epochs in
a single day. If you were to use a GPU, you can expect to reach six to eight epochs per day, making
it totally feasible to train GoogLeNet is less than a week.

Now that our configuration has been updated, it’s time to implement train_googlenet.py.
I would suggest copying either train_alexnet.py or train_vggnet.py from earlier chapters
as we’ll only need to make slight modifications to train_googlenet.py. After copying the file,
open it up, and we’ll review the contents:

1 # import the necessary packages
2 from config import imagenet_googlenet_config as config
3 from pyimagesearch.nn.mxconv import MxGoogLeNet
4 import mxnet as mx
5 import argparse
6 import logging
7 import json
8 import os

On Line 2 we import our imagenet_googlenet_config file so we can access the variables
inside the configuration. We then import our MxGoogLeNet implementation from earlier in Section
8.1.3.

Next, let’s parse our command line arguments and create a logging file so we can save the
training process to it (enabling us to review the log and even plot training loss/accuracy):

10 # construct the argument parse and parse the arguments
11 ap = argparse.ArgumentParser()
12 ap.add_argument("-c", "--checkpoints", required=True,
13 help="path to output checkpoint directory")
14 ap.add_argument("-p", "--prefix", required=True,
15 help="name of model prefix")
16 ap.add_argument("-s", "--start-epoch", type=int, default=0,
17 help="epoch to restart training at")
18 args = vars(ap.parse_args())
19

20 # set the logging level and output file
21 logging.basicConfig(level=logging.DEBUG,
22 filename="training_{}.log".format(args["start_epoch"]),
23 filemode="w")

8.1 Understanding GoogLeNet 97

24

25 # load the RGB means for the training set, then determine the batch
26 # size
27 means = json.loads(open(config.DATASET_MEAN).read())
28 batchSize = config.BATCH_SIZE * config.NUM_DEVICES

These command line arguments are identical to our AlexNet and VGGNet chapters. First, we
supply a –checkpoints switch, the path to a directory to serialize each of the model weights after
every epoch. The –prefix serves as the model name – in this case, you’ll likely want to supply a
–prefix value of googlenet when entering the script into your terminal. In the case that we are
restarting training from a specific epoch, we can supply a –start-epoch.

Lines 21-23 create a log file based on the –start-epoch so we can save the training results
and later plot the loss/accuracy. In order to perform mean normalization, we load our RGB means
from disk on Line 27.

We then derive the batchSize for the optimizer based on (1) the batch size specified in the
configuration file and (2) the number of devices we’ll be using to train the network. If we are using
multiple devices (GPUs/CPUs/machines/etc.), then we’ll need to scale the gradient update step by
this batchSize.

Next, let’s create the training data iterator:

30 # construct the training image iterator
31 trainIter = mx.io.ImageRecordIter(
32 path_imgrec=config.TRAIN_MX_REC,
33 data_shape=(3, 224, 224),
34 batch_size=batchSize,
35 rand_crop=True,
36 rand_mirror=True,
37 rotate=15,
38 max_shear_ratio=0.1,
39 mean_r=means["R"],
40 mean_g=means["G"],
41 mean_b=means["B"],
42 preprocess_threads=config.NUM_DEVICES * 2)

As well as the validation iterator:

44 # construct the validation image iterator
45 valIter = mx.io.ImageRecordIter(
46 path_imgrec=config.VAL_MX_REC,
47 data_shape=(3, 224, 224),
48 batch_size=batchSize,
49 mean_r=means["R"],
50 mean_g=means["G"],
51 mean_b=means["B"])

Just like in the Practitioner Bundle, we’ll be using the Adam optimizer to train GoogLeNet:

53 # initialize the optimizer
54 opt = mx.optimizer.Adam(learning_rate=1e-3, wd=0.0002,
55 rescale_grad=1.0 / batchSize)

98 Chapter 8. Training GoogLeNet on ImageNet

As you’ll see in Section 8.3, I initially used SGD as the optimizer, but found that it returned
sub-par results. Further accuracy was gained using Adam. I also included a small amount of weight
decay (wd=0.0002) as recommended by Szegedy et al.

Next, let’s construct the checkpointsPath, the path to the directory where the GoogLeNet
weights will be serialized after every epoch:

57 # construct the checkpoints path, initialize the model argument and
58 # auxiliary parameters
59 checkpointsPath = os.path.sep.join([args["checkpoints"],
60 args["prefix"]])
61 argParams = None
62 auxParams = None

We’ll be using the ctrl + c method to train GoogLeNet on ImageNet, so we need a method
to (1) train GoogLeNet from scratch and (2) restart training from a specific epoch:

64 # if there is no specific model starting epoch supplied, then
65 # initialize the network
66 if args["start_epoch"] <= 0:
67 # build the LeNet architecture
68 print("[INFO] building network...")
69 model = MxGoogLeNet.build(config.NUM_CLASSES)
70

71 # otherwise, a specific checkpoint was supplied
72 else:
73 # load the checkpoint from disk
74 print("[INFO] loading epoch {}...".format(args["start_epoch"]))
75 model = mx.model.FeedForward.load(checkpointsPath,
76 args["start_epoch"])
77

78 # update the model and parameters
79 argParams = model.arg_params
80 auxParams = model.aux_params
81 model = model.symbol

Lines 66-69 handle instantiating the MxGoogLeNet architecture. Otherwise, Lines 71-81 as-
sume that we are loading a checkpoint from disk and restarting training from a specific epoch
(likely after a hyperparameter update, such as learning rate).

Finally, we can compile our model:

83 # compile the model
84 model = mx.model.FeedForward(
85 ctx=[mx.gpu(0), mx.gpu(1), mx.gpu(2)],
86 symbol=model,
87 initializer=mx.initializer.Xavier(),
88 arg_params=argParams,
89 aux_params=auxParams,
90 optimizer=opt,
91 num_epoch=90,
92 begin_epoch=args["start_epoch"])

8.2 Evaluating GoogLeNet 99

Here you can see that I am training GoogLeNet using three GPUs – you should modify Line
85 based on the number of devices you have available on your machine. I’m also initializing my
weights using the Xavier/Glorot method, the same method suggested by the original GoogLeNet
paper. We’ll allow our network to train for a maximum of 90 epochs, but as Section 8.3 will
demonstrate, we won’t need that many epochs.

I recommend setting num_epochs to a value larger than what you think you will need. One of
the worst time wasters is monitoring an experiment, going to bed, and waking up the next morning,
only to find that training stopped early and could have continued – you can always go back to a
previous epoch if overfitting occurs or if validation loss/accuracy stagnates.

Next, let’s create our callbacks and evaluation metrics:

94 # initialize the callbacks and evaluation metrics
95 batchEndCBs = [mx.callback.Speedometer(batchSize, 250)]
96 epochEndCBs = [mx.callback.do_checkpoint(checkpointsPath)]
97 metrics = [mx.metric.Accuracy(), mx.metric.TopKAccuracy(top_k=5),
98 mx.metric.CrossEntropy()]

And finally we can train our network:

100 # train the network
101 print("[INFO] training network...")
102 model.fit(
103 X=trainIter,
104 eval_data=valIter,
105 eval_metric=metrics,
106 batch_end_callback=batchEndCBs,
107 epoch_end_callback=epochEndCBs)

By this point reviewing the train_*.py files for ImageNet should start to feel quite redundant.
I have purposely created these files such that they feel like a “framework”. Whenever you want to
explore a new architecture on ImageNet, copy one of these directories, update the configuration file,
change any model imports, adjust the optimizer and initialization scheme, and then start training –
deep learning can be complicated, but our code shouldn’t be.

8.2 Evaluating GoogLeNet

To evaluate GoogLeNet on the testing set of ImageNet, we’ll be using the test_googlenet.py
script mentioned in our project structure above. This file is identical to both test_alexnet.py
and test_vggnet.py, so we are going to skip reviewing the file to avoid redundancy. I’ve included
test_googlenet.py in the directory structure and downloads associated with this book as a matter
of completeness. Please refer to Chapter 6 on AlexNet for a thorough review of this file.

8.3 GoogLeNet Experiments

The results of ILSVRC 2014 indicate that GoogLeNet just slightly beat out VGGNet for the #1
position [26]; however, many deep learning researchers (myself included) have found it hard to
reproduce these exact results [24] – the results should be at least on par with VGG. There is likely a
parameter setting missing during training that myself and others are missing from the Szegedy et al.
paper.

100 Chapter 8. Training GoogLeNet on ImageNet

Regardless, it’s still interesting to review the experiments and the thought process it uses to take
GoogLeNet and make it achieve reasonable accuracy (i.e., better than AlexNet, but not as good as
VGG).

8.3.1 GoogLeNet: Experiment #1

In my first GoogLeNet experiment, I used the SGD optimizer (unlike the Adam optimizer detailed
in Section 8.1.4 above) with an initial learning rate of 1e−2, the base learning rate recommended
by the authors, as well as a momentum term of 0.9 and a L2 weight decay of 0.0002. As far as I
could tell, these optimizer parameters were an exact replica of what Szegedy et al. report in their
paper. I then started training using the following command:

$ python train_googlenet.py --checkpoints checkpoints --prefix googlenet

Figure 8.3: Top-left: The first 15 epochs of training GoogLeNet on ImageNet are highly volatile.
Top-right: Lowering the learning rate by an order of magnitude stabilizes the volatility; however,
learning quickly stagnates. Bottom: Lowering the learning rate to 1e−4 does not improve results.

8.3 GoogLeNet Experiments 101

As my first 15 epochs demonstrate, learning is extremely volatile when examining the validation
set (Figure 8.3, top-left). There are dramatic drops in validation accuracy along with significant
increases in validation loss. In an effort to combat the volatility, I stopped training after the 15th
epoch and lowered the learning rate to 1e−3, then resumed training:

$ python train_googlenet.py --checkpoints checkpoints --prefix googlenet \
--start-epoch 15

Unfortunately, this updated caused the network performance to totally stagnate after a slight
bump in accuracy (Figure 8.3, top-right). To validate that stagnation was indeed the case, I stopped
training after epoch 25, lowered the learning rate to 1e−4, and then resumed training for another
five epochs:

$ python train_googlenet.py --checkpoints checkpoints --prefix googlenet \
--start-epoch 25

As my plot demonstrates, there is a tiny bump in accuracy as SGD is able to navigate to an area
of lower loss, but overall, training has plateaued (Figure 8.3, bottom). After epoch 30 I terminated
training and took a closer look at the results. A quick inspection of the logs revealed that I was
obtaining 57.75% rank-1 and 81.15% rank-5 accuracy on the validation set. While this isn’t a
bad start, it’s a far cry from what I expected: somewhere between AlexNet and VGGNet-level
accuracies.

8.3.2 GoogLeNet: Experiment #2

Given the extreme volatility of the 1e− 2 learning rate, I decided to restart training completely,
this time using a base learning rate of 1e−3 to help smooth the learning process. I used the exact
same network architecture, momentum, and L2 regularization as in the previous experiment. This
approach led to steady learning; however, the process was painfully slow (Figure 8.4, top-left).

As learning started to slow dramatically around epoch 70, I stopped training, and lowered the
learning rate to 1e−4, then resumed training:

$ python train_googlenet.py --checkpoints checkpoints --prefix googlenet \
--start-epoch 70

We can see a small jump in accuracy and decrease in loss as we would expect, but learning
again fails to progress (Figure 8.4, top-right). I allowed GoogLeNet to continue to epoch 80, then
stopped training once again, and lowered my learning rate by an order of magnitude to 1e−5:

$ python train_googlenet.py --checkpoints checkpoints --prefix googlenet \
--start-epoch 80

The result, as you might expect by now, is stagnation (Figure 8.4, bottom). After the 85th
epoch completed, I stopped training altogether. Unfortunately, this experiment did not perform was
well – I only reached 53.67% rank-1 and 77.85% rank-5 validation accuracy, worse than my first
experiment.

102 Chapter 8. Training GoogLeNet on ImageNet

Figure 8.4: Top-left: The first 70 epochs demonstrate extremely slow but steady learning. Top-
right: After learning stagnated I lowered the learning rate from 1e−3 to 1e−4 using the SGD
optimizer. However, after the initial bump, learning quickly plateaus. Bottom: Further lowering of
the learning rate does not improve results..

8.3.3 GoogLeNet: Experiment #3
Given my experience with GoogLeNet and Tiny ImageNet in the Practitioner Bundle, I decided to
swap out the SGD optimizer for Adam with an initial (default) learning rate of 1e−3. Using this
approach, I then followed the learning rate decay schedule shown in Table 8.1.

The plot of accuracy and loss can be seen in Figure 8.5. As compared to other experiments, we
can see that GoogLeNet + Adam quickly reached > 50% validation accuracy (less than 10 epochs,
compared to the 15 epochs it took from experiment #1, and that’s only because of the learning rate
change). You can see my lowering of the learning rate from 1e−3 to 1e−4 on epoch 30 introduced
a jump in accuracy. Unfortunately, there wasn’t as much of a jump on epoch 45 where I switched
to 1e−5 and allowed training to continue for five more epochs.

After the 50th epoch, I stopped training entirely. Here GoogLeNet reached 63.45% rank-1 and
84.90% rank-5 accuracy on the validation set, much better than the previous two experiments.

I then decided to run this model on the testing set:

8.4 Summary 103

Epoch Learning Rate
1−30 1e−3
31−45 1e−4
46−50 1e−5

Table 8.1: Learning rate schedule used when training GoogLeNet on ImageNet in Experiment #3.

Figure 8.5: Using the Adam optimizer when training GoogLeNet yielded the best results; however,
we are unable to replicate the original work by Szegedy et al. Our results are consistent with
independent experiments [24] that have tried to replicate the original performance but came up
slightly short.

$ python test_googlenet.py --checkpoints checkpoints --prefix googlenet \
--epoch 50

[INFO] loading model...
[INFO] predicting on test data...
[INFO] rank-1: 65.87%
[INFO] rank-5: 86.48%

On the testing set, we obtained 65.87% rank-1 and 87.48% rank-5 accuracy. This result is
certainly better than AlexNet, but doesn’t compare to the 71.42% rank-1 and 90.03% rank-5 of
VGG.

8.4 Summary
In this chapter we studied the GoogLeNet architecture proposed by Szegedy et al. in their 2014
paper, Going Deeper with Convolutions [23]. We then trained GoogLeNet from scratch on the
ImageNet dataset, attempting to replicate their original results. However, instead of replicating the

104 Chapter 8. Training GoogLeNet on ImageNet

Szegedy et al. results, we instead validated the vlfeat results [24] where our network is obtaining
≈ 65% rank-1 accuracy. Based on our results, as well as the ones reported by vlfeat, it seems likely
there are other extra parameters and/or training procedures we are unaware of required to obtain
the VGG-level accuracy. Unfortunately, without further clarification from Szegedy et al., it’s hard
to pinpoint exactly what these extra parameters are.

We could continue to explore this architecture and introduce further optimizations, including:
1. Using CONV => RELU => BN layer ordering rather than CONV => BN => RELU.
2. Swapping out ReLUs for ELUs.
3. Use MSRA/He et al. initialization in combination with PreLUs.
However, it’s far more interesting to study the two remaining network architectures we’ll train

on ImageNet – ResNet and SqueezeNet. The ResNet architecture is exciting as it introduces
the residual module, capable of obtaining state-of-the-art accuracies higher than any (currently)
published paper on ImageNet. We then have SqueezeNet, which obtains AlexNet-level accuracy –
but does so with 50x less parameters and a 4.9MB model size.

9. Training ResNet on ImageNet

In this chapter, we’ll be implementing and training the seminal ResNet architecture from scratch.
ResNet is extremely important in the history of deep learning as it introduced the concept of
residual modules and identity mappings. These concepts have allowed us to train networks that
have > 200 layers on ImageNet and > 1,000 layers on CIFAR-10 – depths that were previously
thought impossible to reach while successfully traiing a network.

We have reviewed the ResNet architecture in detail inside Chapter 12 of the Practitioner Bundle;
however, this chapter will still briefly review the current incarnation of the residual module as a
matter of completeness. From there, we will implement ResNet using Python and the mxnet library.
Finally, we’ll perform a number of experiments training ResNet from scratch ImageNet with the
end goal of replicating the work by He et al. [21, 22].

9.1 Understanding ResNet
The cornerstone of ResNet is the residual module, first introduced by He et al. in their 2015 paper,
Deep Residual Learning for Image Recognition [21]. The residual module consists of two branches.
The first is simply a shortcut which connects the input to an addition of the second branch, a series
of convolutions and activations (Figure 9.1, left).

However, in the same paper, it was found that bottleneck residual modules perform better,
especially when training deeper networks. The bottleneck is a simple extension to the residual
module. We still have our shortcut module, only now the second branch to our micro-architecture
has changed. Instead of applying only two convolutions, we are now applying three convolutions
(Figure 9.1, middle).

The first CONV consists of 1×1 filters, the second of 3×3 filters, and the third of 1×1 filters.
Furthermore, the number of filters learned by the first two CONV is 1/4 the number learned by the
final CONV – this point is where the “bottleneck” comes in.

Finally, in an updated 2016 publication, Identity Mappings in Deep Residual Networks [22], He
et al. experimented with the ordering of convolution, activation, and batch normalization layers
within the residual module. They found that by applying pre-activation (i.e., placing the RELU and
BN before the CONV) higher accuracy could be obtained (Figure 9.1, right).

106 Chapter 9. Training ResNet on ImageNet

Figure 9.1: Left: The original residual module building block. Center: The residual module
with a bottleneck. The bottleneck adds in an extra CONV layer. This module also helps reduce the
dimensionality of spatial volumes. Right: The updated pre-activation module that changes the
order of RELU, CONV, and BN.

We will be using the bottleneck + pre-activation version of the residual module when imple-
menting ResNet in this chapter; however, in Section 9.5.1 I will provide results from ResNet trained
without pre-activation to empirically demonstrate how pre-activations can boost accuracy when
applied to the challenging ImageNet dataset. For more detailed information on the residual module,
bottlenecks, and pre-activations, please refer to Chapter 13 of the Practitioner Bundle where these
concepts are discussed in more detail.

9.2 Implementing ResNet

The version of ResNet we will be implementing in this chapter is ResNet50 from the He et al. 2015
publication (Figure 9.2). We call this ResNet50 because there are fifty weight layers (i.e., CONV or
FC)) inside the network architecture. Given that each residual module contains three CONV layers,
we can compute the total number of CONV layers inside the network via:

(3×3)+(4×3)+(6×3)+(3×3) = 48 (9.1)

Finally, we add in one CONV layer before the residual modules followed by the FC layer prior to
the softmax classifier, and we obtain a total of 50 layers – hence the name ResNet50.

Following Figure 9.2, our first CONV layer will apply a 7×7 convolution with a stride of 2×2.
We’ll then use a max pooling layer (the only max pooling layer in the entire network) with a size of
3×3 and 2×2. Doing so will enable us to reduce the spatial dimensions of the input volume from
224×224 down to 56×56 quickly.

9.2 Implementing ResNet 107

Figure 9.2: Table 1 of ResNet architectures for ImageNet used by He et al. in their 2015 publication
[21]. The residual modules are shown in brackets and are stacked on top of each other. The number
of residual modules stacked can be determined by the ×N number next to the brackets.

From there, we’ll start stacking residual modules on top of each other. To start, we’ll stack
three residual modules (with bottleneck) to learn K = 256 filters (the first two CONV layer will learn
64 filters, respectively, while the final CONV in the bottleneck will learn 256 filters). Downsampling
via an intermediate CONV layer will then occur, reducing the spatial dimensions to 28×28.

Then, four residual modules will be stacked on top of each other, each responsible for learning
K = 512 filters. Again, an intermediate residual module will be used to reduce the volume size
from 28×28 down to 14×14.

We’ll again stack more residual modules (this time, six of them) where K = 1024. A final
residual downsampling is performed to reduce spatial dimensions to 7×7, after each, we stack
three residual modules to learn K = 2048 filters. Average 7×7 pooling is then applied (to remove
the necessity of dense, fully-connected layers), followed by a softmax classifier. It’s interesting to
note that there is no dropout applied within ResNet.

I personally trained this version of ResNet50 from scratch on ImageNet using eight GPUs.
Each epoch took approximately 1.7 hours, enabling me to complete a little over 14 epochs in a
single day.

R It took the authors of ResNet over two weeks to train the deepest variants of the architecture
using 8 GPUs.

The positive here is that it only took ≈ 40 epochs to successfully train ResNet (under three
days). However, it’s likely that not all of us have access to eight GPUs, let alone four GPUs. If you
do have access to four to eight GPUs, you should absolutely train the 50 and 101 layer variants of
ResNet from scratch.

However, if you only have two to three GPUs, I would recommend training more shallow varia-
tions of ResNet by reducing the number of stages in the network. If you only have one GPU, then
consider training ResNet18 or ResNet 34 (Figure 9.2). While this variant of ResNet won’t obtain as
high an accuracy as its deeper brothers and sisters, it will still give you practice training this seminal
architecture. Again, keep in mind that ResNet and VGGNet are the two most computationally
expensive networks covered in this book. All other networks, including AlexNet, GoogLeNet, and
SqueezeNet can be trained with fewer GPUs.

Now that we have reviewed the ResNet architecture, let’s go ahead and implement. Create a
new file named mxresnet.py inside the mxconv sub-module of pyimagesearch.nn.conv:

108 Chapter 9. Training ResNet on ImageNet

--- pyimagesearch
| |--- __init__.py
| |--- callbacks
| |--- nn
| | |--- __init__.py
| | |--- conv
| | |--- mxconv
| | | |--- __init__.py
| | | |--- mxalexnet.py
| | | |--- mxgooglenet.py
| | | |--- mxresnet.py
| | | |--- mxvggnet.py
| |--- preprocessing
| |--- utils

This is where our implementation of the ResNet architecture will live. Open up mxresnet.py
and let’s get to work:

1 # import the necessary packages
2 import mxnet as mx
3

4 class MxResNet:
5 # uses "bottleneck" module with pre-activation (He et al. 2016)
6 @staticmethod
7 def residual_module(data, K, stride, red=False, bnEps=2e-5,
8 bnMom=0.9):

On Lines 7 and 8 we define the residual_module function which is very similar to our
implementation from Chapter 13 of the Practitioner Bundle. In fact, our implementation of ResNet
closely follows that of He et al. [27] and Wei Wu [28] – the parameters they proposed will be used
inside this implementation. The residual_module accepts the following parameters:
• data: The input layer to the residual module.
• K: The number of filters the final CONV layer will learn. The first two CONV layers in the

bottleneck will be learning K / 4 layers.
• stride: The stride of the convolution.
• red: A boolean indicating whether or not we should apply an additional residual module to

reduce the spatial dimensions of the volume (this downsampling is done in between stages).
• bnEps: The epsilon value of batch normalization used to prevent division by zero errors.
• bnMom: The momentum of the batch normalization which serves as how much “rolling

average” is kept.
Let’s continue to define the residual_module:

9 # the shortcut branch of the ResNet module should be
10 # initialized as the input (identity) data
11 shortcut = data
12

13 # the first block of the ResNet module are 1x1 CONVs
14 bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False,
15 eps=bnEps, momentum=bnMom)
16 act1 = mx.sym.Activation(data=bn1, act_type="relu")
17 conv1 = mx.sym.Convolution(data=act1, pad=(0, 0),

9.2 Implementing ResNet 109

18 kernel=(1, 1), stride=(1, 1), num_filter=int(K * 0.25),
19 no_bias=True)

On Line 11 we initialize the shortcut branch as the input data to the module. This shortcut
will later be added to the output of our bottleneck branch.

From there, Lines 14-19 define the BN => RELU => CONV pattern of the first 1×1 block in
the bottleneck. We call this the “pre-activation” version of ResNet since we are applying the batch
normalization and activation before the convolution. We also leave out the bias from the convolution
(no_bias=True) as the biases are included in the batch normalization [29].

Let’s move on to the second CONV in the bottleneck which is responsible for learning 3×3 filters:

21 # the second block of the ResNet module are 3x3 CONVs
22 bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False,
23 eps=bnEps, momentum=bnMom)
24 act2 = mx.sym.Activation(data=bn2, act_type="relu")
25 conv2 = mx.sym.Convolution(data=act2, pad=(1, 1),
26 kernel=(3, 3), stride=stride, num_filter=int(K * 0.25),
27 no_bias=True)

The final CONV block in the bottleneck residual module consists of K, 1×1 filters:

29 # the third block of the ResNet module is another set of 1x1
30 # CONVs
31 bn3 = mx.sym.BatchNorm(data=conv2, fix_gamma=False,
32 eps=bnEps, momentum=bnMom)
33 act3 = mx.sym.Activation(data=bn3, act_type="relu")
34 conv3 = mx.sym.Convolution(data=act3, pad=(0, 0),
35 kernel=(1, 1), stride=(1, 1), num_filter=K, no_bias=True)

In the case that we are to reduce the spatial dimensions of the volume, such as when we are in
between stages (red=True), we apply a final CONV layer with a stride > 1:

37 # if we are to reduce the spatial size, apply a CONV layer
38 # to the shortcut
39 if red:
40 shortcut = mx.sym.Convolution(data=act1, pad=(0, 0),
41 kernel=(1, 1), stride=stride, num_filter=K,
42 no_bias=True)
43

44 # add together the shortcut and the final CONV
45 add = conv3 + shortcut
46

47 # return the addition as the output of the ResNet module
48 return add

This check allows us to apply the insights from Springenberg et al. [25] where we use
convolutions with larger strides (rather than max pooling) to reduce volume size. Notice how in this
case we apply the CONV to the output of act1, the first activation in the network. The reason we
perform the CONV on the act1 rather than the raw shortcut is because (1) the data has not been
batch normalized and (2) the input data is the output of an addition operation. In practice, this

110 Chapter 9. Training ResNet on ImageNet

process tends to increase our network accuracy. Finally, we finish the residual module by adding
the shortcut to the output of the bottleneck (Line 45) and returning the output on Line 48.

Let’s continue on to the build method:

50 @staticmethod
51 def build(classes, stages, filters, bnEps=2e-5, bnMom=0.9):
52 # data input
53 data = mx.sym.Variable("data")

The build method requires three parameters, followed by two optional ones. The first argument
is classes, the number of total class labels we wish our network to learn. The stages parameter
is a list of integers, indicating the number of residual modules that will be stacked on top of each
other. The filters list is also a list of integers, only this list contains the number of filters each
CONV layer will learn based on what stage the residual module belongs to. Finally, we can supply
optional values for the epsilon and momentum of batch normalization – we’ll leave these at their
default values per the recommendation of He et al. and Wei Wu.

Our next code block handles creating a series of BN => CONV => RELU => BN => RELU =>
POOL layers, the first set of layers in the network prior to stacking the residual modules on top of
each other:

55 # Block #1: BN => CONV => ACT => POOL, then initialize the
56 # "body" of the network
57 bn1_1 = mx.sym.BatchNorm(data=data, fix_gamma=True,
58 eps=bnEps, momentum=bnMom)
59 conv1_1 = mx.sym.Convolution(data=bn1_1, pad=(3, 3),
60 kernel=(7, 7), stride=(2, 2), num_filter=filters[0],
61 no_bias=True)
62 bn1_2 = mx.sym.BatchNorm(data=conv1_1, fix_gamma=False,
63 eps=bnEps, momentum=bnMom)
64 act1_2 = mx.sym.Activation(data=bn1_2, act_type="relu")
65 pool1 = mx.sym.Pooling(data=act1_2, pool_type="max",
66 pad=(1, 1), kernel=(3, 3), stride=(2, 2))
67 body = pool1

Lines 57 and 58 first apply a BN to the input data. The batch normalization is recommended by
He et al. and serves as another form of normalization (on top of mean subtraction). From there we
learn a total of filters[0] filters, each of which are 7×7. We use a stride of 2×2 to reduce the
spatial dimensions of our input volume. Batch normalization is then applied to the output of the
CONV (Lines 62 and 63) followed by a ReLU activation (Line 64).

The first and only max pooling layer is then used on Lines 65 and 66. The purpose of this
layer is to quickly reduce the spatial dimensions from 112×112 (after the first CONV layer) down to
56×56. From here, we can start stacking residual modules on top of each other (where “ResNet”
gets it name).

To stack residual modules on top of each other, we need to start looping over the number of
stages:

69 # loop over the number of stages
70 for i in range(0, len(stages)):
71 # initialize the stride, then apply a residual module
72 # used to reduce the spatial size of the input volume

9.2 Implementing ResNet 111

73 stride = (1, 1) if i == 0 else (2, 2)
74 body = MxResNet.residual_module(body, filters[i + 1],
75 stride, red=True, bnEps=bnEps, bnMom=bnMom)
76

77 # loop over the number of layers in the stage
78 for j in range(0, stages[i] - 1):
79 # apply a ResNet module
80 body = MxResNet.residual_module(body, filters[i + 1],
81 (1, 1), bnEps=bnEps, bnMom=bnMom)

Our first residual_module (Lines 74 and 75) is designed to reduce the spatial dimensions of
our input volume by 50% (when stride=(2, 2)). However, since this is our first stage of residual
modules, we’ll instead set the stride=(1, 1) to ensure the spatial dimension is not reduced.
From there, Lines 78-81 handle stacking residual modules.

Keep in mind that stages is simply a list of integers. When we implement our train_resnet.py
script, stages will be set to (3, 4, 6, 3), which implies that the first stage in ResNet will consist
of three residual modules stacked on top of each other. Once these three residual modules have
been stacked, we go back to Lines 73-75 where we reduce spatial dimensions. The next execution
of Lines 78-81 will stack four residual modules. Once again, we then reduce spatial dimensions on
Lines 73-75. This process repeats when stacking six residual modules and three residual modules,
respectively. Luckily, by using both the for loops on Line 70 and Line 78, we can reduce the
amount of code we actually have to write (unlike in previous architectures where each layer was
“hardcoded”).

It’s also worth noting that this stacking of the filters list is what makes it very easy for us
to control the depth of a given ResNet implementation. If you want your version of ResNet to be
deeper, simply increase the number of residual modules stacked on top of each other at each stage.
In the case of ResNet152, we could set stages=(3, 8, 36, 3) to create a very deep network.

If you would rather your ResNet be more shallow (in the case that you want to train it using a
small number of GPUs), you would decrease the number of residual modules stacked at each stage.
For ResNet18, we may set stages=(2, 2, 2, 2) to create a shallow, but faster to train network.

After we are done stacking residual modules we can apply a batch normalization, activation,
and then average pooling:

83 # apply BN => ACT => POOL
84 bn2_1 = mx.sym.BatchNorm(data=body, fix_gamma=False,
85 eps=bnEps, momentum=bnMom)
86 act2_1 = mx.sym.Activation(data=bn2_1, act_type="relu")
87 pool2 = mx.sym.Pooling(data=act2_1, pool_type="avg",
88 global_pool=True, kernel=(7, 7))

Keep in mind that after our final set of residual modules, our output volume has the spatial
dimensions 7 x 7 x classes. Therefore, if we apply average pooling over the 7×7 region, we
will be left with an output volume of size 1 x 1 x classes – reducing the output volume in such
a way is also called global averaging pooling.

The last step is to simply construct a single FC layer with our number of classes and apply a
softmax classifier:

90 # softmax classifier
91 flatten = mx.sym.Flatten(data=pool2)
92 fc1 = mx.sym.FullyConnected(data=flatten, num_hidden=classes)

112 Chapter 9. Training ResNet on ImageNet

93 model = mx.sym.SoftmaxOutput(data=fc1, name="softmax")
94

95 # return the network architecture
96 return model

9.3 Training ResNet
Now that we have implemented ResNet, we can train it on the ImageNet dataset. But first, let’s
define our directory structure:

--- mx_imagenet_resnet
| |--- config
| | |--- __init__.py
| | |--- imagnet_resnet_config.py
| |--- output/
| |--- test_resnet.py
| |--- train_resnet.py

I copied this directory structure from our AlexNet implementation in Chapter 6 and simply
renamed all occurrences of “alexnet” to “resnet”. The train_resnet.py script will be responsible
for training our network. We can then use test_resnet.py to evaluate the performance of ResNet
on the ImageNet testing set.

Finally, the imagenet_resnet_config.py file contains our configurations for our upcom-
ing experiments. This file is identical to imagenet_alexnet_config.py, only I updated the
BATCH_SIZE and NUM_DEVICES:

53 # define the batch size and number of devices used for training
54 BATCH_SIZE = 32
55 NUM_DEVICES = 8

Given the depth of ResNet50, I needed to reduce the BATCH_SIZE to 32 images on my Titan X
12GB GPU. On your own GPU, you may need to reduce this number to 16 or 8 if the GPU runs
out of memory. I also set NUM_DEVICES to eight in order to train the network faster.

Again, I wouldn’t recommend training ResNet50 on a machine without 4-8 GPUs. If you wish
to train ResNet on fewer GPUs, consider using the 18 or 34 layer variant as this will be much faster
to train. Besides VGGNet, this is the only network architecture I don’t recommend training without
multiple GPUs – and even with that said, ResNet10 can still be trained with one GPU if you are
patient (and you’ll still outperform AlexNet from Chapter 6).

Now that our configuration file has been updated, let’s also update the train_resnet.py
script. Just as in all previous ImageNet chapters, the train_*.py scripts are meant to serve as a
framework, requiring us to make as little changes as possible. I will quickly review this file as we
have already reviewed many times in this book. For a more detailed review of the training scripts,
please refer to Chapter 6. Now, go ahead and open up train_resnet.py and we’ll get to work:

1 # import the necessary packages
2 from config import imagenet_resnet_config as config
3 from pyimagesearch.nn.mxconv import MxResNet
4 import mxnet as mx
5 import argparse
6 import logging

9.3 Training ResNet 113

7 import json
8 import os

Here we are simply importing our required Python packages. Notice how we are importing our
ResNet configuration on Line 2 along with our implementation of MxResNet on Line 3.

Next, we can parse our command line arguments and dynamically set our log file based on the
--start-epoch:

10 # construct the argument parse and parse the arguments
11 ap = argparse.ArgumentParser()
12 ap.add_argument("-c", "--checkpoints", required=True,
13 help="path to output checkpoint directory")
14 ap.add_argument("-p", "--prefix", required=True,
15 help="name of model prefix")
16 ap.add_argument("-s", "--start-epoch", type=int, default=0,
17 help="epoch to restart training at")
18 args = vars(ap.parse_args())
19

20 # set the logging level and output file
21 logging.basicConfig(level=logging.DEBUG,
22 filename="training_{}.log".format(args["start_epoch"]),
23 filemode="w")

The --checkpoints switch should point to the output directory where we wish to store
the serialized weights for ResNet after every epoch. The --prefix controls the name of the
architecture, which in this case will be resnet. Finally, the --start-epoch switch is used to
indicate which epoch to restart training from.

From there, we can load our RGB means from the training set and compute the batchSize
based on the BATCH_SIZE and NUM_DEVICES in our configuration file:

25 # load the RGB means for the training set, then determine the batch
26 # size
27 means = json.loads(open(config.DATASET_MEAN).read())
28 batchSize = config.BATCH_SIZE * config.NUM_DEVICES

Let’s go ahead and create our training data iterator:

30 # construct the training image iterator
31 trainIter = mx.io.ImageRecordIter(
32 path_imgrec=config.TRAIN_MX_REC,
33 data_shape=(3, 224, 224),
34 batch_size=batchSize,
35 rand_crop=True,
36 rand_mirror=True,
37 rotate=15,
38 max_shear_ratio=0.1,
39 mean_r=means["R"],
40 mean_g=means["G"],
41 mean_b=means["B"],
42 preprocess_threads=config.NUM_DEVICES * 2)

114 Chapter 9. Training ResNet on ImageNet

Along with the validation iterator:

44 # construct the validation image iterator
45 valIter = mx.io.ImageRecordIter(
46 path_imgrec=config.VAL_MX_REC,
47 data_shape=(3, 224, 224),
48 batch_size=batchSize,
49 mean_r=means["R"],
50 mean_g=means["G"],
51 mean_b=means["B"])

We’ll be using the SGD optimizer to train ResNet:

53 # initialize the optimizer
54 opt = mx.optimizer.SGD(learning_rate=1e-1, momentum=0.9, wd=0.0001,
55 rescale_grad=1.0 / batchSize)

We’ll start with an initial learning rate of 1e−1 and then lower it by an order of magnitude when
loss/accuracy plateaus or we become concerned with overfitting. We’ll also supply a momentum
term of 0.9 and L2 weight decay of 0.0001, per the recommendation of He et al.

Now that our optimizer is initialized, we can construct the checkpointsPath, the directory
where we will store the serialized weights after every epoch:

57 # construct the checkpoints path, initialize the model argument and
58 # auxiliary parameters
59 checkpointsPath = os.path.sep.join([args["checkpoints"],
60 args["prefix"]])
61 argParams = None
62 auxParams = None

In the case that we are training ResNet from scratch, we first need to instantiate our model:

64 # if there is no specific model starting epoch supplied, then
65 # initialize the network
66 if args["start_epoch"] <= 0:
67 # build the LeNet architecture
68 print("[INFO] building network...")
69 model = MxResNet.build(config.NUM_CLASSES, (3, 4, 6, 3),
70 (64, 256, 512, 1024, 2048))

Here we will be training ResNet50 using a stages list of (3, 4, 6, 3) and filters list
of (64, 256, 512, 1024, 2048). The first CONV layer in ResNet (before any residual module)
will learn K = 64 filters. Then, the first set of three residual modules will learn K = 256 filters. The
number of filters learned will increase to K = 512 for the four residual modules stacked together. In
the third stage, six residual modules will be stacked, each responsible for learning K = 1024 filters.
And finally, the fourth stage will stack three residual modules that will learn K = 2048 filters.

R Again, we call this architecture “ResNet50” since there are 1+(3×3)+(4×3)+(6×3)+
(3×3)+1 = 50 trainable layers in the network.

9.3 Training ResNet 115

If we are instead restarting training from a specific epoch (presumably after adjusting the
learning rate of our optimizer), we can simply load the serialized weights from disk:

72 # otherwise, a specific checkpoint was supplied
73 else:
74 # load the checkpoint from disk
75 print("[INFO] loading epoch {}...".format(args["start_epoch"]))
76 model = mx.model.FeedForward.load(checkpointsPath,
77 args["start_epoch"])
78

79 # update the model and parameters
80 argParams = model.arg_params
81 auxParams = model.aux_params
82 model = model.symbol

We are now ready to compile our model:

84 # compile the model
85 model = mx.model.FeedForward(
86 ctx=[mx.gpu(i) for i in range(0, config.NUM_DEVICES)],
87 symbol=model,
88 initializer=mx.initializer.MSRAPrelu(),
89 arg_params=argParams,
90 aux_params=auxParams,
91 optimizer=opt,
92 num_epoch=100,
93 begin_epoch=args["start_epoch"])

I’ll be using eight GPUs to train ResNet (Line 86), but you’ll want to adjust this ctx list based
on the number of CPUs/GPUs on your machine (and also make sure to update your NUM_DEVICES
variable in imagenet_resnet_config.py). Since we are training a very deep neural network,
we’ll want to use MSRA/He et al. initialization (Line 88). We’ll set the num_epoch to train to a
larger number (100), although in reality we likely won’t be training for that long.

From there, we can construct our set of callbacks to monitor network performance and serialize
checkpoints to disk:

95 # initialize the callbacks and evaluation metrics
96 batchEndCBs = [mx.callback.Speedometer(batchSize, 250)]
97 epochEndCBs = [mx.callback.do_checkpoint(checkpointsPath)]
98 metrics = [mx.metric.Accuracy(), mx.metric.TopKAccuracy(top_k=5),
99 mx.metric.CrossEntropy()]

The last code block handles actually training the network:

101 # train the network
102 print("[INFO] training network...")
103 model.fit(
104 X=trainIter,
105 eval_data=valIter,
106 eval_metric=metrics,
107 batch_end_callback=batchEndCBs,
108 epoch_end_callback=epochEndCBs)

116 Chapter 9. Training ResNet on ImageNet

9.4 Evaluating ResNet
To evaluate ResNet, we’ll be using the test_resnet.py script mentioned in our project structure
above. This script is identical to all other test_*.py scripts used in ResNet experiments. Since
these scripts are the same, I will not be reviewing the Python program line-by-line. If you would
like a detailed review of this evaluation script, please refer to Chapter 6.

9.5 ResNet Experiments
In this section, I will be sharing three experiments I performed when training ResNet on the
ImageNet dataset. As we’ll find out, ResNet can be a bit challenging to train, as due to the number
of parameters in the network, it can overfit. However, on the positive side (and as we’ll find out),
training ResNet will require fewer epochs than previous experiments.

9.5.1 ResNet: Experiment #1
In the first two experiments on ResNet, I wanted to demonstrate how:

1. Using the residual module without pre-activations leads to sub-optimal performance.
2. A smaller initial learning rate can reduce the accuracy of the network.
Therefore, in this first experiment, I implemented the residual module without pre-activations.

I then used the SGD optimizer with an initial learning rate of 1e−2. I kept all other parameters
identical to the implementation detailed in Section 9.2 above. Training was started according to the
following command:

$ python train_resnet.py --checkpoints checkpoints --prefix resnet

The first 20 epochs of training can be seen in Figure 9.3 (top-left). This plot demonstrates that
the training loss is dropping faster than the validation loss. The training accuracy is also growing at
a faster rate than validation. I stopped training after epoch 20, lowered the learning rate to 1e−3,
and then resumed training:

$ python train_resnet.py --checkpoints checkpoints --prefix resnet \
--start-epoch 20

Training continued for another 10 epochs (Figure 9.3, top-right). We initially see a large jump
in accuracy; however, our learning quickly plateaus. To validate, I stopped training at epoch 30,
adjusted my learning rate to 1e−4, then resumed training:

$ python train_resnet.py --checkpoints checkpoints --prefix resnet \
--start-epoch 30

I only allowed training to continue for three epochs to validate my findings (Figure 9.3, bottom).
Sure enough, learning had essentially stalled. However, looking at rank-1 and rank-5 accuracies, I
found that we reached 60.91% and 83.19%, already outperforming AlexNet.

9.5.2 ResNet: Experiment #2
My second experiment tested using a larger base learning rate of 1e−1 (rather than the 1e−2 from
the first experiment). Other than the learning rate, no other changes were made to the experiment. I
then applied a similar learning rate schedule as that of Experiment #1 (Table 9.1).

9.5 ResNet Experiments 117

Figure 9.3: Top-left: First 20 epochs of training ResNet (without pre-activations) on ImageNet.
Top-right: Lowering the learning from 1e−2 to 1e−3. This allows for a jump in accuracy, but
learning quickly stagnates. Bottom: Further lowering of learning rate only marginally improves
accuracy.

The results of the training process can be seen in Figure 9.4. Once again, training accuracy
outpaces validation accuracy, but we are able to obtain higher accuracy faster. Furthermore,
lowering the learning rate from 1e− 1 to 1e− 2 at epoch 20 gives us a huge jump in validation
accuracy by≈ 13%. A smaller jump in accuracy is obtained during the 1e−2 to 1e−3 drop at epoch
25; however, this small jump is accompanied by a dramatic increase in training accuracy/decrease
in training loss, implying that we are at risk of modeling the training data too closely.

Once epoch 30 completed, I evaluated performance and found this version of ResNet to obtain
67.91% rank-1 and 88.13% rank-5 validation accuracy, a marked increase from our first experiment.
Based on these two experiments, we can undoubtedly conclude that 1e−1 is a better initial learning
rate.

9.5.3 ResNet: Experiment #3

In my final ResNet experiment, I swapped out the original residual module for the pre-activation resid-
ual module (the one we implemented in Section 9.2 above). I then trained ResNet using the SGD
optimizer with a base learning rate of 1e− 1, a momentum term of 0.9, and L2 weight decay

118 Chapter 9. Training ResNet on ImageNet

Epoch Learning Rate
1−20 1e−2
21−25 1e−3
26−30 1e−4

Table 9.1: Learning rate schedule used when training ResNet on ImageNet in Experiment #2.

Figure 9.4: In Experiment #2 we start training ResNet with an initial learning rate of α = 1e−1.
This allows our accuracy to improvement upon Experiment #1.

of 0.0001. I started training using the following command:

$ python train_resnet.py --checkpoints checkpoints --prefix resnet

At epoch 30, we can see that training accuracy is outpacing validation accuracy, but not at an
unreasonable amount (Figure 9.5, top-left). The ratio between the gaps at every epoch is quite
consistent. However, as validation loss started to stagnate (and even rise slightly), I stopped training,
lowered the learning rate from 1e−1 to 1e−2 and resumed training from epoch 30:

$ python train_resnet.py --checkpoints checkpoints --prefix resnet \
--start-epoch 30

I allowed training to continue, but as my results demonstrate, we are seeing the classic signs of
heavy overfitting (Figure 9.5, top-right). Notice how our validation loss is increasing, validation
accuracy is decreasing, all while both the training accuracy and loss metrics are improving. Because

9.5 ResNet Experiments 119

Figure 9.5: Top-left: Training ResNet on ImageNet using the bottleneck residual module with
pre-activations. Top-right: Lowering the learning rate to α = 1e−2 allows for dramatic increase
in accuracy; however, we need to be careful with overfitting. Bottom: We can only train for another
5 epochs as overfitting is becoming problematic; however, we still obtain our best accuracy yet on
ImageNet.

of this overfitting, I was forced to stop training, go back to epoch 35, adjust the learning rate from
1e−2 to 1e−3 and train for another five epochs:

$ python train_resnet.py --checkpoints checkpoints --prefix resnet \
--start-epoch 35

I did not want to train for more than five epochs, because as my plots show, the training loss
is decreasing at a sharply faster rate than validation loss, while training accuracy is increasing
significantly faster than validation accuracy (Figure 9.5, bottom). Given that training could proceed
for no longer, I stopped after epoch 40 and examined the validation metrics – 70.47% rank-1 and
89.72% rank-5, respectively. I then moved over to evaluating ResNet on the ImageNet testing set:

120 Chapter 9. Training ResNet on ImageNet

$ python test_resnet.py --checkpoints checkpoints --prefix resnet \
--epoch 40

[INFO] loading model...
[INFO] predicting on test data...
[INFO] rank-1: 73.00%
[INFO] rank-5: 91.08%

Here we can see our best results yet, coming in at 73.01% rank-1 and 91.08% rank-5 on the
testing set. This is by far our best performance on the ImageNet dataset.

However, according to the independent experiments run by vlfeat [24], we should be at
approximately 75.40% rank-1 and 92.30% rank-5 accuracy. We can likely attribute our slightly
lower accuracy results to the overfitting in our network. Future experiments should consider
being more aggressive with regularization, including weight decay, data augmentation, and even
attempting to apply dropout. In either case, we still came very close to replicating the original work
by He et al. We were also able to validate that the bottleneck + pre-activation version of the residual
module does lead to obtain higher accuracy than the original residual module.

9.6 Summary
In this chapter, we discussed the ResNet architecture, including both the original residual module,
the bottleneck module, and the bottleneck + pre-activation module. We then trained ResNet50
from scratch on the ImageNet dataset. Overall, we were able to obtain 73.01% rank-1 and
91.08% rank-5 accuracy, higher than any of our previous experiments on the ImageNet dataset.

While ResNet is an extremely interesting architecture to study, I do not recommend training
this network from scratch unless you have the time and/or financial resources to do so. ResNet50
takes a long time to train, hence why I needed to use eight GPUs to train the network (in order
to gather the results and publish this book on time). Realistically, you could also train ResNet50
using four GPUs, but you would have to be a bit more patient. With fewer than four GPUs, I would
not train ResNet50 and would encourage you to train the smaller variants, such as ResNet10 and
ResNet18. While your results won’t be quite as good as ResNet50, you’ll still be able to learn from
the process.

Keep in mind that as a deep learning practitioner, results are not everything – you should be
exposing yourself to as many new projects and experiments as possible. Deep learning is part
science, part art. You learn the “art” of training a deep learning network through running hundreds
of experiments. Don’t become discouraged if your results don’t match mine or other state-of-the-art
publications after your first trial – it’s all part of the process.

Becoming a deep learning expert does not happen overnight. My goal through these series of
chapters on ImageNet was to expose you to a variety of different experiments and show you how I
systematically used the results from each experiment to iteratively improve upon my previous work.
Keep an experiment journal of your own, noting what did (and did not) work, and you’ll be able to
apply this process yourself.

10. Training SqueezeNet on ImageNet

In our final chapter on training deep neural networks on the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC), we will be discussing arguably my favorite deep learning architecture to
date – SqueezeNet – introduced by Iandola et al. in their 2016 paper, SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and < 0.5MB model size [30].

The title alone of this paper should pique your interest. Most of the previous network archi-
tectures we’ve discussed in this book have a model size between 100MB (ResNet) and 553MB
(VGGNet). AlexNet sits in the middle of this size range too with a model weight of 249MB. The
closest we’ve come to a “tiny” model size is GoogLeNet at 28MB – but can we go smaller and still
maintain state-of-the-art accuracy?

As the work of Iandola et al. demonstrates, the answer is yes, we absolutely can decrease model
size by applying a novel usage of 1×1 and 3×3 convolutions, along with no fully-connected layers.
The end result is a model weighing in at 4.9MB, which can be further reduced to 0.5MB by model
compression, also called weight pruning and “sparsifying a model” (setting 50% of the smallest
weight values across layers to zero). In this chapter, we’ll focus on the original implementation of
SqueezeNet. The concept of model compression, including quantization, is outside the scope of
this book but can be found in the relevant academic publication [30].

10.1 Understanding SqueezeNet
In this section we will:

1. Review the Fire module, the critical micro-architecture responsible for reducing model
parameters and maintaining a high level of accuracy.

2. Review the entire SqueezeNet architecture (i.e., the macro-architecture).
3. Implement SqueezeNet by hand using mxnet.
Let’s go ahead and start with a discussion on the Fire module.

10.1.1 The Fire Module
The work by Iandola et al. served two purposes. The first was to provide a case for more research
into designing Convolutional Neural Networks that can be trained with a dramatic reduction in the

122 Chapter 10. Training SqueezeNet on ImageNet

number of parameters (while still obtaining a high level of accuracy). The second contribution was
the Fire module itself, the actual implementation of this goal.

The Fire module is quite clever in how it works, as it relies on an expand and reduce phase
consisting of only 1×1 and 3×3 convolutions – a visualization of the Fire module can be seen in
Figure 10.1.

Figure 10.1: The Fire module in SqueezeNet. First a set of 1× 1 filters are learned to reduce
the dimensionality of the volume. Then a combination of 3×3 and 1×1 filters are learned and
concatenated along the channel dimension to expand the output volume.

The squeeze phase of the Fire module learns a set of 1×1 filters, followed by a ReLU activation
function. The number of squeeze filters learned is always smaller than the volume size input to the
squeeze; hence, the squeeze process can be seen as a form of dimensionality reduction.

Secondly, by using 1×1 filters, we are only learning local features. Typically we would use a
larger 3×3 or even 5×5 kernel to learn features capturing spatial information of pixels lying close
together in the input volume. This is not the case for 1×1 filters – instead of trying to learn the
spatial relationship amongst neighboring pixels, we are strictly interested in the relationship this
pixel has amongst its channels.

Finally, even though we are reducing the dimensionality during the squeeze (since the number
of filters learned during the squeeze stage is always smaller than the filters inputted to it), we
actually have a chance to add more nonlinearity as the ReLU activation is applied after every
1×1 convolution.

After we apply a squeeze, the output is fed into an expand. During the expand stage we learn a
combination of 1×1 and 3×3 convolutions (again, keeping in mind that the output of the squeeze
is the input to the expand). The 3×3 convolutions are especially helpful here as they can allow us
to capture spatial information from the original 1×1 filters.

In the SqueezeNet architecture, we learn N, 1×1 expand filters followed by N, 3×3 filters –
in the Iandola et al. paper, N is 4x larger than the number of squeeze filters, hence why we call this
the “expand” stage of the micro-architecture. First we “squeeze” the dimensionality of the input,
then we “expand” it. The output of both the 1×1 and 3×3 expands are concatenated across the
filter dimension, serving as the final output of the module. The 3×3 convolutions are zero-padded
with one pixel in each direction to ensure the outputs can be stacked.

The Fire module is able to keep the number of total parameters small due to the dimensionality
reduction during the squeeze stage. For example, suppose the input to a Fire module was 55×
55×96. We could then apply a squeeze with 16 filters, reducing the volume size to 55×55×16.
The expand could then increase the number of filters learned from 16 to 128 (64 filters for the
1×1 convolutions and 64 filters for the 3×3 convolutions). Furthermore, by using many 1×1 filters

10.1 Understanding SqueezeNet 123

rather than 3×3 filters, fewer parameters are required. This process allows us to reduce spatial
volume size throughout the network while keeping the number of filters learned relatively low
(compared to other network architectures such as AlexNet, VGGNet, etc.). We’ll discuss the second
huge parameter saving technique (no fully-connected layers) in the following section.

10.1.2 SqueezeNet Architecture
You can find the entire SqueezeNet architecture, including output volume size, summarized in
Figure 10.2.

Figure 10.2: The SqueezeNet architecture, reproduced from Table 1 of Iandola et al. [30]. Given an
input input we apply a CONV layer with a 2×2 stride followed by max pooling to quickly reduce
volume size. A series of fire modules are then stacked on top of each other. The s1×1 column
indicates the number of squeeze filters learned in the first CONV layer of the fire module. The e1×1
and e3×3 indicate the number of filters learned in the second set of CONV layers, respectively.

R ReLU activations are assumed to be applied after every convolution and are removed from
this table as their usage is implied (and to help save space including this table in the book).

It’s interesting to note that in the original Iandola et al. publication they reported the input
image to have spatial dimensions 224×224×3; however, if we apply the following calculation
used in the Starter Bundle (Chapter 11):

((224−7+2(0))/4)+1 = 55.25 (10.1)

Then we know that a 7×7 convolution with a stride of 2×2 cannot possibly fit. Similar to the
AlexNet confusion in Chapter 6, I’m assuming this to be a typo in the original work. Using an input
of 227×227×3 pixels allows the convolutions to be tiled and provides the exact output volume
size for all other layers as detailed in the original Iandola et al. publication. Therefore, in this book,
we will assume the input image to be 227×227×3.

124 Chapter 10. Training SqueezeNet on ImageNet

After an input image is fed into the network, 96 filters are learned, each of size 7×7. A stride
of 2×2 is used to reduce the spatial dimensions from 227×227 down to 111×111. To further
reduce spatial dimensions, max pooling is applied with a pool size of 3×3 and a stride of 2×2,
yielding an output volume of 55×55×96.

Next, we apply three fire modules. The first two fire modules use apply 16 squeeze filters,
reducing the input volume size from 55×55×96 down to 55×55×16. The expand then applies
64, 1×1 filters and 64 3×3 filters – these 128 filters are concatenated along the channel dimension
where the output spatial size is 55× 55× 128. The third fire module increases the number of
1×1 squeeze filters to 32, along with the number of 1×1 and 3×3 expands to 64, respectively.
Prior to the max pooling operation, our spatial dimension size is 55×55×256. A max pooling
layer with a 3×3 pool size and 2×2 stride reduces our spatial dimensions down to 27×27×256.

From there we apply four fire models sequentially. The first fire module uses 32, 1× 1
squeeze filters and 128 filters for both the 1×1 and 3×3 expand, respectively.

The second two fire modules increase the number of 1×1 squeezes to 48, as well as increases
the 1× 1 and 3× 3 expands to 192, resulting in an output volume size of 27× 257× 384. The
final fire module performs another squeeze increase, this time to 64, 1×1 filters. The number of
1×1 and 3×3 expands also increases to 256, respectfully. After concatenating these expand filters,
our volume size is now 27×27×512. Another max pooling operation is then applied to reduce
our spatial dimensions to 13×13×512.

A final fire module is applied, increasing the 1×1 squeeze filters to 64. The expand filters are
then increased to 256 each for the 1×1 and 3×3, respectively. Concatenating along the channel
dimension, we arrive at an output volume size of 13×13×512.

One last fire module is applied again, identical to fire8 earlier in the table. Dropout is then
applied directly after fire9 with a probability of 50% – this done to help reduce overfitting. The
final convolution (conv10) consists of 1×1 filters with N total filters, where N should equal the
total number of class labels – in the case of ImageNet, N = 1000.

We can perform global average pooling across the entire 13×13 volume to reduce the 13×
13×1000 down to a 1×1×1000 volume. We take these activations and then pass them through a
softmax layer to obtain our final output probabilities for each of the N class labels.

As you can see, no fully-connected layers are applied in this network architecture. Similar
to GoogLeNet and ResNet, using global average pooling can help reduce (and often eliminate
entirely) the need for FC layers. Removing the FC layers also has the added benefit of reducing
the number of parameters require by the network substantially. Keep in mind that all nodes in a
fully-connected layer are densely connected (i.e., every node in the current layer codes with every
other node in the subsequent layer). However, convolutional layers are by definition sparse and thus
require less memory. Anytime we can replace a set of fully-connected layers with convolution and
average pooling we can dramatically reduce the number of parameters required by our network.

10.1.3 Implementing SqueezeNet
Now that we have reviewed the SqueezeNet architecture, let’s go ahead and implement it. Create a
new file named mxsqueezenet.py inside the mxconv sub-module of pyimagesearch.nn.conv:

--- pyimagesearch
| |--- __init__.py
| |--- callbacks
| |--- nn
| | |--- __init__.py
| | |--- conv
| | |--- mxconv
| | | |--- __init__.py

10.1 Understanding SqueezeNet 125

| | | |--- mxalexnet.py
| | | |--- mxgooglenet.py
| | | |--- mxresnet.py
| | | |--- mxsqueezenet.py
| | | |--- mxvggnet.py
| |--- preprocessing
| |--- utils

This file is where our implementation of the SqueezeNet network will live. Open up mxsqueezenet.py
and we’ll get to work:

1 # import the necessary packages
2 import mxnet as mx
3

4 class MxSqueezeNet:
5 @staticmethod
6 def squeeze(input, numFilter):
7 # the first part of a FIRE module consists of a number of 1x1
8 # filter squeezes on the input data followed by an activation
9 squeeze_1x1 = mx.sym.Convolution(data=input, kernel=(1, 1),

10 stride=(1, 1), num_filter=numFilter)
11 act_1x1 = mx.sym.LeakyReLU(data=squeeze_1x1,
12 act_type="elu")
13

14 # return the activation for the squeeze
15 return act_1x1

Line 4 defines our MxSqueezenet class – all methods responsible for building and creating
the SqueezeNet architecture will exist inside this class. Line 6 then defines the squeeze method
which is part of the Fire module discussed in the previous section. The squeeze function requires
an input (i.e., the preceding layer) along with numFilter, the number of 1×1 filters the CONV
layer should learn (Lines 9 and 10).

Once we compute the 1×1 convolutions, we pass the values through an activation function on
Lines 11 and 12. In the original Iandola et al. publication they used the standard ReLU activation
function, but here we are going to use an ELU. As previous experiments with different architectures
have demonstrated, replacing ReLUs with ELUs can increase classification accuracy. I will justify
this claim in Section 10.4.4 below. Finally, the 1×1 activations are returned to the calling function
on Line 15.

Now that the squeeze function is defined, let’s also create the fire function:

17 @staticmethod
18 def fire(input, numSqueezeFilter, numExpandFilter):
19 # construct the 1x1 squeeze followed by the 1x1 expand
20 squeeze_1x1 = MxSqueezeNet.squeeze(input, numSqueezeFilter)
21 expand_1x1 = mx.sym.Convolution(data=squeeze_1x1,
22 kernel=(1, 1), stride=(1, 1), num_filter=numExpandFilter)
23 relu_expand_1x1 = mx.sym.LeakyReLU(data=expand_1x1,
24 act_type="elu")

The fire method requires three parameters:
1. input: The input layer to the current Fire module.

126 Chapter 10. Training SqueezeNet on ImageNet

2. numSqueezeFilter: The number of squeeze filters to learn.
3. numExpandFilter: The number of expand filters to learn. As per the Iandola et al. im-

plementation, we’ll be using the same number of expand filters for both the 1× 1 and
3×3 convolutions, respectively.

Line 20 makes a call to the squeeze function, reducing our input spatial dimensions. Based
off of squeeze_1x1, we can compute the 1× 1 expand on Lines 21 and 22. Here indicate
that the input to the CONV layer should be the squeeze_1x1 output and that we wish to learn
numExpandFilter, each of size 1× 1. An ELU is applied to the output of the convolution on
Lines 23 and 24.

We perform a similar operation for the 3×3 expand below:

26 # construct the 3x3 expand
27 expand_3x3 = mx.sym.Convolution(data=squeeze_1x1, pad=(1, 1),
28 kernel=(3, 3), stride=(1, 1), num_filter=numExpandFilter)
29 relu_expand_3x3 = mx.sym.LeakyReLU(data=expand_3x3,
30 act_type="elu")
31

32 # the output of the FIRE module is the concatenation of the
33 # activation for the 1x1 and 3x3 expands along the channel
34 # dimension
35 output = mx.sym.Concat(relu_expand_1x1, relu_expand_3x3,
36 dim=1)
37

38 # return the output of the FIRE module
39 return output

This time we learn numExpandFilter, each of which are 3× 3 using squeeze_1x1 as an
input. We apply 1×1 zero padding here to ensure the spatial dimensions are not reduced so we can
concatenate along the channel dimension later in this function. An ELU is then also applied to the
output of expand_3x3. Once we have the activations for both the 1×1 and 3×3 expands, we can
concatenate them along the channel dimension on Lines 35 and 36. This concatenation is returned
to the calling method on Line 39.

To help you visualize the Fire module further, please refer to Figure 10.1 above. Here you
can see that the Fire module takes an input layer and applies a squeeze, consisting of a number of
1×1 kernels. This squeeze then branches into two forks. In one fork we compute the 1×1 expand,
while the second fork computes the 3×3 expand. The two forks meet again and are concatenated
along the channel dimension to serve as the final output of the channel module.

Let’s continue our discussion on implementing SqueezeNet as we’ve now reached the all
important build method:

41 @staticmethod
42 def build(classes):
43 # data input
44 data = mx.sym.Variable("data")
45

46 # Block #1: CONV => RELU => POOL
47 conv_1 = mx.sym.Convolution(data=data, kernel=(7, 7),
48 stride=(2, 2), num_filter=96)
49 relu_1 = mx.sym.LeakyReLU(data=conv_1, act_type="elu")
50 pool_1 = mx.sym.Pooling(data=relu_1, kernel=(3, 3),
51 stride=(2, 2), pool_type="max")

10.1 Understanding SqueezeNet 127

The build method accepts a single parameter, the total number of classes we wish to learn.
In the case of ImageNet, we’ll set classes=1000.

Line 44 then instantiates our data variable, the input batch to our network. Given the data,
we define the first convolution layer in SqueezeNet. This layer learns 96 filters, each of which are
7×7 with a stride of 2×2. An ELU activation is applied (Line 49) before we reduce the spatial
dimensions via max pooling (Lines 50 and 51).

Next comes our three fire modules followed by another max pooling operation:

53 # Block #2-4: (FIRE * 3) => POOL
54 fire_2 = MxSqueezeNet.fire(pool_1, numSqueezeFilter=16,
55 numExpandFilter=64)
56 fire_3 = MxSqueezeNet.fire(fire_2, numSqueezeFilter=16,
57 numExpandFilter=64)
58 fire_4 = MxSqueezeNet.fire(fire_3, numSqueezeFilter=32,
59 numExpandFilter=128)
60 pool_4 = mx.sym.Pooling(data=fire_4, kernel=(3, 3),
61 stride=(2, 2), pool_type="max")

Following along with Figure 10.2 above, we then apply our four fire modules and then another
max pooling:

63 # Block #5-8: (FIRE * 4) => POOL
64 fire_5 = MxSqueezeNet.fire(pool_4, numSqueezeFilter=32,
65 numExpandFilter=128)
66 fire_6 = MxSqueezeNet.fire(fire_5, numSqueezeFilter=48,
67 numExpandFilter=192)
68 fire_7 = MxSqueezeNet.fire(fire_6, numSqueezeFilter=48,
69 numExpandFilter=192)
70 fire_8 = MxSqueezeNet.fire(fire_7, numSqueezeFilter=64,
71 numExpandFilter=256)
72 pool_8 = mx.sym.Pooling(data=fire_8, kernel=(3, 3),
73 stride=(2, 2), pool_type="max")

At this point, we are at the deepest part of the network – we need to apply another fire module,
dropout to reduce overfitting, a convolution to adjust the volume size to 13 x 13 x classes,
and finally global averaging pooling to average the 13×13 spatial dimensions down to 1 x 1 x
classes:

75 # Block #9-10: FIRE => DROPOUT => CONV => RELU => POOL
76 fire_9 = MxSqueezeNet.fire(pool_8, numSqueezeFilter=64,
77 numExpandFilter=256)
78 do_9 = mx.sym.Dropout(data=fire_9, p=0.5)
79 conv_10 = mx.sym.Convolution(data=do_9, num_filter=classes,
80 kernel=(1, 1), stride=(1, 1))
81 relu_10 = mx.sym.LeakyReLU(data=conv_10, act_type="elu")
82 pool_10 = mx.sym.Pooling(data=relu_10, kernel=(13, 13),
83 pool_type="avg")

Our final code block handles flattening the output of the average pooling operation and creating
the softmax output:

128 Chapter 10. Training SqueezeNet on ImageNet

85 # softmax classifier
86 flatten = mx.sym.Flatten(data=pool_10)
87 model = mx.sym.SoftmaxOutput(data=flatten, name="softmax")
88

89 # return the network architecture
90 return model

As you can see, our implementation follows the network architecture detailed in Figure 10.2
above. The question is, can we train it on ImageNet? And how challenging will it be? To answer
these questions, let’s move on to the next section.

10.2 Training SqueezeNet

Now that we have implemented SqueezeNet, we can train it on the ImageNet dataset. But first, let’s
define the project structure:

--- mx_imagenet_squeezenet
| |--- config
| | |--- __init__.py
| | |--- imagnet_squeezenet_config.py
| |--- output/
| |--- test_squeezenet.py
| |--- train_squeezenet.py

The project structure is essentially identical to all other ImageNet projects earlier in this book.
The train_squeezenet.py script will be responsible for training the actual network. We’ll then
use test_squeezenet.py to evaluate a trained SqueezeNet model on ImageNet. Finally, the
imagenet_squeezenet_config.py file contains our configurations for the experiment.

When defining this project structure, I copied the entire mx_imagenet_alexnet directory
and renamed the files to say squeezenet instead of alexnet. The ImageNet configuration paths
are identical to all previous experiments, so let’s briefly take a look at the BATCH_SIZE and
NUM_DEVICES configuration:

53 # define the batch size and number of devices used for training
54 BATCH_SIZE = 128
55 NUM_DEVICES = 3

Here I indicate that a BATCH_SIZE of 128 should be used, which fits comfortably on my 12GB
Titan X GPU. If you have a GPU with less memory, simply reduce the batch size such that the
network fits on your GPU. I then used three GPUs for training as I was in a rush to gather results
for this chapter. This network can also easily be trained with one or two GPUs with a small amount
of patience.

Now that our configuration file has been updated, let’s also update train_squeeznet.py. Just
as in all previous ImageNet chapters, the train_*.py scripts are meant to serve as a framework,
requiring us to make as few changes as possible; therefore, I will quickly review this file, highlight-
ing the changes, and defer a thorough review of the training scripts to Chapter 6. Go ahead and
open up train_squeezenet.py and we can get started:

10.2 Training SqueezeNet 129

1 # import the necessary packages
2 from config import imagenet_squeezenet_config as config
3 from pyimagesearch.nn.mxconv import MxSqueezeNet
4 import mxnet as mx
5 import argparse
6 import logging
7 import json
8 import os

Lines 2-8 import our required Python packages. Notice how we are importing the SqueezeNet
configuration file (Line 2) along with the MxSqueezeNet class (our implementation of the SqueezeNet
architecture) on Line 3.

Let’s parse our command line arguments and create our logging file so we can log the training
process to it:

10 # construct the argument parse and parse the arguments
11 ap = argparse.ArgumentParser()
12 ap.add_argument("-c", "--checkpoints", required=True,
13 help="path to output checkpoint directory")
14 ap.add_argument("-p", "--prefix", required=True,
15 help="name of model prefix")
16 ap.add_argument("-s", "--start-epoch", type=int, default=0,
17 help="epoch to restart training at")
18 args = vars(ap.parse_args())
19

20 # set the logging level and output file
21 logging.basicConfig(level=logging.DEBUG,
22 filename="training_{}.log".format(args["start_epoch"]),
23 filemode="w")
24

25 # load the RGB means for the training set, then determine the batch
26 # size
27 means = json.loads(open(config.DATASET_MEAN).read())
28 batchSize = config.BATCH_SIZE * config.NUM_DEVICES

These are the exact same command line arguments as in our previous experiments. We need to
supply a --checkpoints directory to serialize the model weights after each epoch, a --prefix
(i.e., name) of the model, and optionally a --start-epoch to resume training from. Lines 21 and
22 dynamically create the logging file based on the starting epoch. We then load our RGB means
on Line 27 so we can apply mean subtraction normalization. The batchSize is derived on Line
28 based on the total number of devices used to train SqueezeNet.

Next, let’s create the training data iterator:

30 # construct the training image iterator
31 trainIter = mx.io.ImageRecordIter(
32 path_imgrec=config.TRAIN_MX_REC,
33 data_shape=(3, 227, 227),
34 batch_size=batchSize,
35 rand_crop=True,
36 rand_mirror=True,
37 rotate=15,
38 max_shear_ratio=0.1,

130 Chapter 10. Training SqueezeNet on ImageNet

39 mean_r=means["R"],
40 mean_g=means["G"],
41 mean_b=means["B"],
42 preprocess_threads=config.NUM_DEVICES * 2)

As well as the validation data iterator:

44 # construct the validation image iterator
45 valIter = mx.io.ImageRecordIter(
46 path_imgrec=config.VAL_MX_REC,
47 data_shape=(3, 227, 227),
48 batch_size=batchSize,
49 mean_r=means["R"],
50 mean_g=means["G"],
51 mean_b=means["B"])

SGD will once again be used to train the network:

53 # initialize the optimizer
54 opt = mx.optimizer.SGD(learning_rate=1e-2, momentum=0.9, wd=0.0002,
55 rescale_grad=1.0 / batchSize)

Iandola et al. recommended a learning rate of 4e− 2 in their original publication; however,
I found this learning rate to be far too large. Learning was extremely volatile and it made the
network hard to converge; thus, in all of my experiments that obtained “good” accuracy, I used
a 1e−2 initial learning rate. The momentum term of 0.9 and L2 weight day of 0.0002 are those
recommended by Iandola et al.

Now that our optimizer is initialized, we can construct the checkpointsPath, the directory
where we will store the serialized weights after every epoch:

57 # construct the checkpoints path, initialize the model argument and
58 # auxiliary parameters
59 checkpointsPath = os.path.sep.join([args["checkpoints"],
60 args["prefix"]])
61 argParams = None
62 auxParams = None

Next, we can handle if we are (1) training SqueezeNet from the very first epoch or (2) restarting
training from a specific epoch:

64 # if there is no specific model starting epoch supplied, then
65 # initialize the network
66 if args["start_epoch"] <= 0:
67 # build the LeNet architecture
68 print("[INFO] building network...")
69 model = MxSqueezeNet.build(config.NUM_CLASSES)
70

71 # otherwise, a specific checkpoint was supplied
72 else:
73 # load the checkpoint from disk

10.2 Training SqueezeNet 131

74 print("[INFO] loading epoch {}...".format(args["start_epoch"]))
75 model = mx.model.FeedForward.load(checkpointsPath,
76 args["start_epoch"])
77

78 # update the model and parameters
79 argParams = model.arg_params
80 auxParams = model.aux_params
81 model = model.symbol

Lines 66-69 handle if we are training SqueezeNet with no prior checkpoint. If this is indeed
the case, we instantiate MxSqueezeNet on Line 69 using the supplies number of class labels found
in our configuration file (1,000 for ImageNet). Otherwise, Lines 71-81 assume we are loading a
checkpoint from disk and restarting training from a specific epoch.

Finally, we can compile our model:

83 # compile the model
84 model = mx.model.FeedForward(
85 ctx=[mx.gpu(0), mx.gpu(1), mx.gpu(2)],
86 symbol=model,
87 initializer=mx.initializer.Xavier(),
88 arg_params=argParams,
89 aux_params=auxParams,
90 optimizer=opt,
91 num_epoch=90,
92 begin_epoch=args["start_epoch"])

Here you can see that I am training SqueezeNet with three GPUs. SqueezeNet can also be
trained with a single GPU (although it will take longer, of course). Feel free to speed up or slow
down the training time by allocating more/fewer GPUs to the training process. We’ll initialize the
weights layers in the network using Xavier initialization (Line 87) and allow the network to train
for a maximum of 90 epochs. As our experiments will demonstrate, we’ll apply early stopping at
epoch 80 to reduce overfitting.

In the following code block we define our callbacks and evaluation metrics:

94 # initialize the callbacks and evaluation metrics
95 batchEndCBs = [mx.callback.Speedometer(batchSize, 250)]
96 epochEndCBs = [mx.callback.do_checkpoint(checkpointsPath)]
97 metrics = [mx.metric.Accuracy(), mx.metric.TopKAccuracy(top_k=5),
98 mx.metric.CrossEntropy()]

And finally we can train our network:

100 # train the network
101 print("[INFO] training network...")
102 model.fit(
103 X=trainIter,
104 eval_data=valIter,
105 eval_metric=metrics,
106 batch_end_callback=batchEndCBs,
107 epoch_end_callback=epochEndCBs)

132 Chapter 10. Training SqueezeNet on ImageNet

Again, just as in all previous ImageNet chapters in this book, our train_squeezenet.py
script is nearly identical to all other train_*.py scripts – the only real difference is in:

1. The configuration import file.
2. The model import file.
3. The model instantiation.
4. Updates to the SGD optimizer.
5. Any weight initializations.
Using this template, you can easily create your own training script in a manner of minutes,

provided that you have already coded your network architecture.

10.3 Evaluating SqueezeNet
To evaluate SqueezeNet, we’ll be using the test_squeezenet.py script mentioned in our project
structure above. Again, just as in all other ImageNet experiments in the book, this script is
identical to test_alexnet.py and all other test_*.py scripts used to evaluate a given network
architecture. Since these scripts are identical, I will not be reviewing test_squeezenet.py here.
Please consult Chapter 6 on test_alexnet.py for a thorough review of the code.

Additionally, you can use the downloads portion of this book to inspect the project and see the
contents of test_squeezenet.py. Again, the contents of these files are identical as they are part of
our framework for training and evaluating CNNs trained on ImageNet. I simply provided a separate
test_squeezenet.py script here just in case you wished to perform your own modifications.

10.4 SqueezeNet Experiments
In 2016, Iandola et al. made the claim that SqueezeNet could obtain AlexNet-level accuracy with
50x fewer parameters. I would define AlexNet accuracy in the range of 55-58% rank-1 accuracy.
Thus, if our version of SqueezeNet can fall inside this range of rank-1 accuracy, I will call our
reproduction of the experiment a success.

Just like in previous chapters, I’ll explain my initial baseline experiments, discuss what worked
(and what didn’t), and how I modified any parameters before the next experiment. In total, I
required four experiments to replicate the results of Iandola et al. You can find the results of my
experiments below – use these results to help you when performing experiments of your own.

It’s not just the end result that matters, it’s the scientific method of devising an experiment,
running it, gathering the results, and tuning the parameters that is critical. To become a true deep
learning expert, you need to study the path that leads to an optimal CNN, not just the end result.
Reading case studies such as these will help you develop this skill.

10.4.1 SqueezeNet: Experiment #1
In my first SqueezeNet experiment I attempted to replicate the work of Iandola et al. by using
their exact architecture and optimizer parameters. Instead of using ELUs as reported in the
implementation section above, I used ReLUs. I also used an initial learning rate of 4e− 2, as
recommended by the original paper. To start the training process, I executed the following command:

$ python train_squeezenet.py --checkpoints checkpoints --prefix squeezenet

I closely monitored my training process, but was noticing significant volatility in the training
process, especially during epoch 15 and epochs in the early 20’s (Figure 10.3, top-left). In the latter
case, accuracy plummeted all the way down to 0.9%, but was able to recover again. After epoch 25
I decided to lower the learning rate from 4e−2 to 4e−3 to see if the lower learning rate helped
stabilize the network:

10.4 SqueezeNet Experiments 133

Figure 10.3: Top-left: Training SqueezeNet on ImageNet with an initial learning rate of 4e−2
(suggested by Iandola et al. [30]) demonstrates dramatic volatility. Top-right: Reducing the
learning rate from 4e− 2 to 4e− 3 helps reduce the volatility; however, learning is starting to
stagnate. Bottom: Adjusting α to 4e−4 leads to total stagnation.

$ python train_squeezenet.py --checkpoints checkpoints --prefix squeezenet \
--start-epoch 25

Lowering the learning rate helped stabilize the learning curve; however, validation loss started
declining at a much slower rate (Figure 10.3, top-right). At epoch 35 I stopped training and adjusted
the learning rate from 4e−3 to 4e−4, mainly just to validate my intuition that this change in α

would totally stagnate learning:

$ python train_squeezenet.py --checkpoints checkpoints --prefix squeezenet \
--start-epoch 35

In this case, my intuition was correct – lowering the learning rate stagnated results completely
(Figure 10.3, bottom). At epoch 40 I killed off the experiment. Given both the volatility and
stagnation, it was clear that the initial learning rate needed to be adjusted (and likely a few other
hyperparameters).

134 Chapter 10. Training SqueezeNet on ImageNet

However, this experiment was not for nothing. Most importantly, I was able to obtain a baseline
accuracy. After epoch 40, SqueezeNet was obtaining 48.93% rank-1 and 72.07% rank-5 accuracy
on the validation set. This is a far cry from AlexNet-level accuracy, so we clearly have some work
to do.

10.4.2 SqueezeNet: Experiment #2
Given that training SqueezeNet with a 4e−2 learning rate was so volatile, I decided to reduce the
learning rate to a more standard 1e−2. I also kept ReLU activations and did not swap them out for
ELUs (that will come later). I started training SqueezeNet using the following command:

$ python train_squeezenet.py --checkpoints checkpoints --prefix squeezenet

I then allowed SqueezeNet to train for 50 epochs at the 1e− 2 learning rate (Figure 10.4,
top-left).

Figure 10.4: Top-left: Training SqueezeNet with an initial of α = 1e−2 is stable but slow going.
Top-right: Lowering the learning rate to 1e− 3 leads to an increase in accuracy/drop in loss;
however, learning quickly stagnates. Bottom: Learning has totally stagnated with α = 1e−4.

There are two key takeaways from this plot:

10.4 SqueezeNet Experiments 135

1. Learning is much more smooth and less volatile. SqueezeNet is not randomly dropping down
to 0% classification accuracy.

2. Similarly, the training and validation curves mimic each other near exactly until epoch 30
where we see divergence.

However, past epoch 50, the divergence continues and there is stagnation in the validation
loss/accuracy. Because of this stagnation, I decided to ctrl + c out of the experiment and restart
my training from epoch 45 with a lower learning rate of 1e−3:

$ python train_squeezenet.py --checkpoints checkpoints --prefix squeezenet \
--start-epoch 45

As you can see, loss immediately drops and accuracy increases, as the optimizer lands in lower
areas of loss in the loss landscape (Figure 10.4, top-right). However, this increase in accuracy
stagnates quickly so I once again ctrl + c out of the experiment and restart training at epoch 55
with a 1e−4 learning rate:

$ python train_squeezenet.py --checkpoints checkpoints --prefix squeezenet \
--start-epoch 55

Training continues for another five epochs before I officially stop the experiment as there are
no further gains to be had (Figure 10.4, bottom). Looking at my validation data, I found that
SqueezeNet was now obtaining 51.30% rank-1 and 74.60% rank-5 accuracy on the validation set, a
marked improvement from the previous experiment; however, we are still not yet at AlexNet-level
accuracy.

10.4.3 SqueezeNet: Experiment #3
My third experiment is an excellent example of a failed experiment – one that sounds good in
your head, but when you actually apply it, fails miserably. Given that micro-architectures such as
GoogLeNet and ResNet benefit from having batch normalization layers, I decided to update the
SqueezeNet architecture to include batch normalizations after every ReLU, an example of which
can be seen below:

46 # Block #1: CONV => RELU => POOL
47 conv_1 = mx.sym.Convolution(data=data, kernel=(7, 7),
48 stride=(2, 2), num_filter=96)
49 relu_1 = mx.sym.Activation(data=conv_1, act_type="relu")
50 bn_1 = mx.sym.BatchNorm(data=relu_1)
51 pool_1 = mx.sym.Pooling(data=bn_1, kernel=(3, 3),
52 stride=(2, 2), pool_type="max")

I then started training once again:

$ python train_squeezenet.py --checkpoints checkpoints --prefix squeezenet

It took less than 20 epochs to realize that this experiment was not going to turn out well (Figure
10.5). While SqueezeNet started off with a higher initial accuracy during the earlier epochs (close
to 10% rank-1 and 20% rank-5), these benefits were quickly lost. The network was slow to train

136 Chapter 10. Training SqueezeNet on ImageNet

Figure 10.5: Adding batch normalization layers to SqueezeNet was a total failure and I quickly
killed the experiment.

and furthermore the validation data reported volatility. Based on Experiment #2, I was expecting to
have > 40% rank-1 accuracy by the time I reached epoch 20 – as Figure 10.5 above demonstrates,
this result was not going to happen.

I killed off this experiment and noted in my lab journal that batch normalization layers do
not help the SqueezeNet architecture, something I found very surprising. I then removed all batch
normalization layers from SqueezeNet and moved to my next experiment.

10.4.4 SqueezeNet: Experiment #4
At this point, my best result had come from Experiment #2 (51.30% rank-1 and 74.60% rank-5),
but I couldn’t break my way into the AlexNet-level accuracy of 55-58% accuracy. In an attempt to
reach this point, I decided to perform my old trick of swapping out ReLUs for ELUs:

46 # Block #1: CONV => RELU => POOL
47 conv_1 = mx.sym.Convolution(data=data, kernel=(7, 7),
48 stride=(2, 2), num_filter=96)
49 relu_1 = mx.sym.LeakyReLU(data=conv_1, act_type="elu")
50 pool_1 = mx.sym.Pooling(data=relu_1, kernel=(3, 3),
51 stride=(2, 2), pool_type="max")

Training was then started using the following command:

$ python train_squeezenet.py --checkpoints checkpoints --prefix squeezenet

At first, I was a bit worried regarding the learning curve – swapping out ReLUs for ELUs I was
expecting slightly higher than 40% rank-1 accuracy by epoch 20; however, I let training continue as

10.4 SqueezeNet Experiments 137

Figure 10.6: Top-left: Training SqueezeNet on ImageNet with ELUs instead of ReLUs at α =
1e−2. Top-right: Lowering α to 1e−3 gives us a nice boost in accuracy. Bottom-left: Another
small boost is obtained with α = 1e−4. Bottom-right: Learning has essentially stagnated once
we reach α = 1e−5.

learning was quite stable. This turned out to be a good decision as it allowed SqueezeNet to train
for longer without having to update the learning rate (Figure 10.6, top-left).

By the time I reached epoch 50, I started to notice stagnation in the validation accuracy/loss
(and even a few accompanying dips), so I stopped training, lowered the learning rate from 1e−2 to
1e−3, and then continued training:

$ python train_squeezenet.py --checkpoints checkpoints --prefix squeezenet \
--start-epoch 50

As we can see, the jump in validation accuracy (and drop in validation loss) is quite dramatic,
more pronounced than the second experiment – this jump alone put me over the 51% rank-1 mark
(Figure 10.6, top-right). At this point, I was confident that using ELUs was a good choice. I allowed
training to continue for 15 epochs where I once again stopped training, reduced the learning rate
from 1e−3 to 1e−4, and restarted training:

138 Chapter 10. Training SqueezeNet on ImageNet

$ python train_squeezenet.py --checkpoints checkpoints --prefix squeezenet \
--start-epoch 65

Again, we can see another jump in validation accuracy and drop in validation loss, although
less pronounced than the previous time (Figure 10.6, bottom-left). SqueezNet was reaching ≈ 54%
classification accuracy after epoch 75, but there was definite stagnation. I decided to try a 1e−5
learning rate for five epochs just to see if it made a difference, but at this point the learning rate was
too low for the optimizer to find any lower areas of loss in the loss landscape:

$ python train_squeezenet.py --checkpoints checkpoints --prefix squeezenet \
--start-epoch 75

At the end of epoch 80, I stopped training entirely and evaluated SqueezeNet (Figure 10.6,
bottom-right). On the validation set, this iteration of SqueezeNet reached 54.49% rank-1 and
77.98% rank-5 accuracy, which is very close to AlexNet-levels. Given this encouraging result, I
switched over to the test set and evaluated:

$ python test_squeezenet.py --checkpoints checkpoints --prefix squeezenet \
--epoch 80

[INFO] loading model...
[INFO] predicting on test data...
[INFO] rank-1: 57.01%
[INFO] rank-5: 79.45%

As the results demonstrate, SqueezeNet was able to obtain 57.01% rank-1 and 79.45% rank-5
accuracy, well within AlexNet-level results.

Through this experiment, I was able to successfully replicate the results of Iandola et al.,
although I must admit that much of this success hinged on replacing their original reporting learning
rate of 4e−2 with 1e−2. After doing a bit of research online regarding the experience other deep
learning practitioners had with training SqueezeNet from scratch, most others report that 4e−2 was
far too large, sometimes requiring them to lower the learning rate to 1e−3 to obtain any traction.

Experiments such as these go to show you how challenging it can be to replicate the results of a
published work. Depending on the deep learning library you use and the versions of CUDA/cuDNN
running on your system, you may get different results even if your implementation is identical to
the authors’. Furthermore, some deep learning libraries implement layers differently, so there may
be underlying parameters that you are unaware of this.

A great example of this is the ELU activation layer:
• In Keras, the ELU activation uses a default α value of 1.0.
• But in mxnet, the ELU α value defaults to 0.25.
It’s subtle, but small variations like these can really add up. Instead of becoming disgruntled

and frustrated that your implementation of a given network doesn’t achieve the exact reported
results of the author, do a little more research first. See if you can determine what libraries and
what assumptions they made when training their network. From there, start experimenting. Note
what works and what doesn’t – and be sure to log these results in a journal! After an experiment
completes, revisit the results and examine what you can tweak to boost accuracy further. In most
cases, this will be your learning rate, regularization, weight initializations, and activation functions.

10.5 Summary 139

10.5 Summary
In this chapter, we learned how to train the SqueezeNet architecture from scratch on the ImageNet
dataset. Furthermore, we were able to successfully reproduce the results of Iandola et al., suc-
cessfully obtaining AlexNet-level accuracy – 57.01% rank-1 and 79.45% rank-5 on the testing
set, respectively. To achieve this result, we needed to reduce the 4e− 2 learning rate originally
suggested by Iandola et al. and use a smaller learning rate of 1e−2. This smaller learning rate
helped reduce volatility in the model and ultimately obtain higher classification.

Secondly, swapping out ReLUs for ELUs allowed us to train the network for longer with
less stagnation. Ultimately, it was the activation function swap that allowed us to obtain the
AlexNet-level results.

As I’ve mentioned in previous chapters, always start with standard ReLU activation function to
(1) ensure your model can be trained properly and (2) obtain a baseline. Then, go back and tweak
other hyperparameters to the network, including learning rate scheduling, regularization/weight
decay, weight initialization, and even batch normalization. Once you have optimized your network
as far as you think you can, swap out ReLUs for ELUs to (normally) obtain a small boost in
classification accuracy. The only exception to this rule is if you are training a very deep CNN and
require the usage of MSRA/He et al. initialization – in this case, as soon as you make the swap to
MSRA initialization, you should also consider swapping out standard ReLUs for PReLUs.

This chapter concludes our discussion on training state-of-the-art Convolutional Neural Net-
works on the challenging ImageNet dataset. Be sure to practice and experiment with these networks
as much as you can. Devise experiments of your own and run experiments not included in this book.
Explore various hyperparameters and the effects they have on training a given network architecture.

Throughout this book, I have consolidated my ImageNet experiments so they can easily be read
and digested. In some cases, I needed to run 20+ experiments (AlexNet being a prime example)
before obtaining my best results. I then selected the most important experiments to include in this
book to demonstrate the right (and wrong) turns I made.

The same will be true for you as well. Don’t be discouraged if many of your experiments aren’t
immediately obtaining excellent results, even if you feel you are applying identical architectures
and parameters as the original authors – this trial and error is part of the process.

Deep learning experimentation is iterative. Develop a hypothesis. Run the experiment. Evaluate
the results. Tweak the parameters. And run another experiment.

Keep in mind that the world’s top deep learning experts perform tens to hundreds of experiments
per project – the same will be true for you as you develop your ability to train deep neural networks
on challenging datasets. This skill hinges right on the cusp of “science” and “art” – and the only
way to obtain this much-needed skill is practice.

In the remaining chapters in the ImageNet Bundle, we’ll look at a variety of case studies,
including emotion/facial expression recognition, predicting and correcting image orientation,
classifying the make and model of a vehicle, and predicting the age and gender of a person in a
video. These case studies will help you further improve your skills as a deep learning practitioner.

11. Case Study: Emotion Recognition

In this chapter, we are going to tackle Kaggle’s Facial Expression Recognition challenge [31] and
claim a top-5 spot on the leaderboard. To accomplish this task, we are going to train a VGG-like
network from scratch on the training data, while taking into account that our network needs to be
small enough and fast enough to run in real-time on our CPU. Once our network is trained (and we
have claimed our top-5 spot on the leaderboard), we’ll write some code to load the serialized model
from disk and apply it to a video stream to detect emotions in real-time.

However, before we get started, it’s important to understand that as humans, our emotions are in
a constant fluid state. We are never 100% happy or 100% sad. Instead, our emotions mix together.
When experiencing “surprise” we might also be feeling “happiness” (such as a surprise birthday
party) or “fright” (if the surprise is not a welcome one). And even during the “scared” emotion, we
might feel hints of “anger” as well.

When studying emotion recognition, it’s important to not focus on a single class label (as we
sometimes do in other classification problems). Instead, it’s much more advantageous for us to
look at the probability of each emotion and characterize the distribution. As we’ll see later in this
chapter, examining the distribution of emotion probabilities provides us with a more accurate gauge
of emotion prediction than simply picking a single emotion with the highest probability.

11.1 The Kaggle Facial Expression Recognition Challenge

The Kaggle Emotion and Facial Expression Recognition challenge training dataset consists of
28,709 images, each of which are 48×48 grayscale images (Figure 11.1). The faces have been
automatically aligned such that they are approximately the same size in each image. Given these
images, our goal is to categorize the emotion expressed on each face into seven distinct classes:
angry, disgust, fear, happy, sad, surprise, and neutral.

11.1.1 The FER13 Dataset

The dataset used in the Kaggle competition was aggregated by Goodfellow et al. in their 2013
paper, Challenges in Representation Learning: A report on three machine learning contests [32].

142 Chapter 11. Case Study: Emotion Recognition

Figure 11.1: A sample of the facial expressions inside the Kaggle: Facial Expression Recognition
Challenge. We will train a CNN to recognize and identify each of these emotions. This CNN will
also be able to run in real-time on your CPU, enabling you to recognize emotions in video streams.

This facial expression dataset is called the FER13 dataset and can be found at the official Kaggle
competition page and downloading the fer2013.tar.gz file:

http://pyimg.co/a2soy
The .tar.gz archive of the dataset is≈ 92MB, so make sure you have a decent internet connec-

tion before downloading it. After downloading the dataset, you’ll find a file named fer2013.csv
with with three columns:
• emotion: The class label.
• pixels: A flattened list of 48×48 = 2,304 grayscale pixels representing the face itself.
• usage: Whether the image is for Training, PrivateTest (validation), or PublicTest

(testing).
Our goal is to now take this .csv file and convert it to HDF5 format so we can more easily

train a Convolutional Neural Network on top of it.
After I unpacked the fer2013.tar.gz file I set up the following directory structure for the

project:

--- fer2013
| |--- fer2013
| |--- hdf5
| |--- output

Inside the fer2013 directory, I have included the contents of the unarchived fer2013.tar.gz
file (i.e., the dataset itself). The hdf5 directory will contain the training, testing, and validation
splits. Finally, we’ll save any training logs/plots to the output directory.

11.1.2 Building the FER13 Dataset
Let’s go ahead and setup our directory structure for this emotion recognition project:

http://pyimg.co/a2soy

11.1 The Kaggle Facial Expression Recognition Challenge 143

--- emotion_recognition
| |--- config
| | |--- __init__.py
| | |--- emotion_config.py
| |--- build_dataset.py
| |--- emotion_detector.py
| |--- haarcascade_frontface_default.xml
| |--- test_recognizer.py
| |--- train_recognizer.py

As in previous experiments, we’ll create a directory named config and turn it into a Python
sub-module by placing a __init__.py field inside of it. Inside config, we’ll then create a file
named emotion_config.py – this file is where we’ll store any configuration variables, including
paths to the input dataset, output HDF5 files, and batch sizes.

The build_dataset.py will be responsible for ingesting the fer2013.csv dataset file and
outputting set a set of HDF5 files; one for each of the training, validation, and testing splits,
respectively. We’ll train our CNN to recognize various emotions using train_recognizer.py.
Similarly, the test_recognizer.py script will be used to evaluate the performance of CNN.

Once we are happy with the accuracy of our model, we’ll then move on to implementing the
emotion_detector.py script to:

1. Detect faces in real-time (as in our smile detector chapter in the Starter Bundle).
2. Apply our CNN to recognize the most dominant emotion and display the probability distribu-

tion for each emotion.
Most importantly, this CNN will be able to run and detect facial expressions in real-time on our

CPU. Let’s go ahead and review the emotion_config.py file now:

1 # import the necessary packages
2 from os import path
3

4 # define the base path to the emotion dataset
5 BASE_PATH = "/raid/datasets/fer2013"
6

7 # use the base path to define the path to the input emotions file
8 INPUT_PATH = path.sep.join([BASE_PATH, "fer2013/fer2013.csv"])

On Line 5 we define the BASE_PATH to our root project directory. This location is where the
input FER13 dataset will live, along with the output HDF5 dataset files, logs, and plots. Line 8 then
defines the INPUT_PATH to the actual fer2013.csv file itself.

Let’s also define the number of classes in the FER13 dataset:

10 # define the number of classes (set to 6 if you are ignoring the
11 # "disgust" class)
12 # NUM_CLASSES = 7
13 NUM_CLASSES = 6

In total, there are seven classes in FER13: angry, disgust, fear, happy, sad, surprise, and
neutral. However, there is heavy class imbalance with the “disgust” class, as it has only 113 image
samples (the rest have over 1,000 images per class). After doing some research, I came across
the Mememoji project [33] which suggests merging both “disgust” and “anger” into a single class

144 Chapter 11. Case Study: Emotion Recognition

(as the emotions are visually similar), thereby turning FER13 into a 6 class problem. In this chapter
we will investigate emotion recognition using both six and seven classes; however, when it’s time
to actually deploy and use our CNN to classify emotions, we’ll reduce the number of emotions to
six to better improve the results.

Since we’ll be converting the fer2013.csv file into a series of HDF5 datasets for training,
validation, and testing, we need to define the paths to these output HDF5 files:

15 # define the path to the output training, validation, and testing
16 # HDF5 files
17 TRAIN_HDF5 = path.sep.join([BASE_PATH, "hdf5/train.hdf5"])
18 VAL_HDF5 = path.sep.join([BASE_PATH, "hdf5/val.hdf5"])
19 TEST_HDF5 = path.sep.join([BASE_PATH, "hdf5/test.hdf5"])

Finally, we’ll initialize the batch size when training our CNN along with the output directory
where any logs or plots will be stored:

21 # define the batch size
22 BATCH_SIZE = 128
23

24 # define the path to where output logs will be stored
25 OUTPUT_PATH = path.sep.join([BASE_PATH, "output"])

Now that our configuration file is created, we can actually build the dataset:

1 # import the necessary packages
2 from config import emotion_config as config
3 from pyimagesearch.io import HDF5DatasetWriter
4 import numpy as np
5

6 # open the input file for reading (skipping the header), then
7 # initialize the list of data and labels for the training,
8 # validation, and testing sets
9 print("[INFO] loading input data...")

10 f = open(config.INPUT_PATH)
11 f.__next__() # f.next() for Python 2.7
12 (trainImages, trainLabels) = ([], [])
13 (valImages, valLabels) = ([], [])
14 (testImages, testLabels) = ([], [])

On Line 2 we import our emotion_config file that we just created. Line 3 then imports
our HDF5DatasetWriter which we have used many times in this book to convert an input set of
images to an HDF5 dataset.

Line 10 opens a pointer to the input fer2013.csv file. By calling the .next method of the file
pointer, we can skip to the next line, allowing us to skip the header of the CSV file. Lines 12-14 then
initialize lists of images and labels for the training, validation, and testing sets, respectively.

We are now ready to start building our data splits:

16 # loop over the rows in the input file
17 for row in f:
18 # extract the label, image, and usage from the row

11.1 The Kaggle Facial Expression Recognition Challenge 145

19 (label, image, usage) = row.strip().split(",")
20 label = int(label)
21

22 # if we are ignoring the "disgust" class there will be 6 total
23 # class labels instead of 7
24 if config.NUM_CLASSES == 6:
25 # merge together the "anger" and "disgust classes
26 if label == 1:
27 label = 0
28

29 # if label has a value greater than zero, subtract one from
30 # it to make all labels sequential (not required, but helps
31 # when interpreting results)
32 if label > 0:
33 label -= 1

On Line 17 we start looping over each of the rows in the input file. Line 19 takes the row and
splits it into a 3-tuple of the image label, the raw pixel intensities of the image, along with the
usage (i.e., training, testing, or validation). By default, we’ll assume that we are treating FER13 as
a 7-class classification problem; however, in the case that we wish to merge the anger and disgust
class together (Line 24), we need to change disgust label from a 1 to a 0 (Lines 26 and 27). We’ll
also subtract a value of 1 from every label on Lines 32 and 33 to ensure that each class label is
sequential – this subtraction isn’t required but it helps when interpreting our results.

At this point our image is just a string of integers. We need to take this string, split it into a list,
convert it to an unsigned 8-bit integer data type, and reshape it to a 48×48 grayscale image:

35 # reshape the flattened pixel list into a 48x48 (grayscale)
36 # image
37 image = np.array(image.split(" "), dtype="uint8")
38 image = image.reshape((48, 48))

Keep in mind that each image column is a list of 2,304 integers. These 2,304 integers represent
the square 48×48 image. We can perform this reshaping on Line 38.

The last step in parsing the fer2013.csv file is to simply check the usage and assign the
image and label to the respective training, validation, or testing lists:

40 # check if we are examining a training image
41 if usage == "Training":
42 trainImages.append(image)
43 trainLabels.append(label)
44

45 # check if this is a validation image
46 elif usage == "PrivateTest":
47 valImages.append(image)
48 valLabels.append(label)
49

50 # otherwise, this must be a testing image
51 else:
52 testImages.append(image)
53 testLabels.append(label)

From here, our dataset creation code starts to become more familiar:

146 Chapter 11. Case Study: Emotion Recognition

55 # construct a list pairing the training, validation, and testing
56 # images along with their corresponding labels and output HDF5
57 # files
58 datasets = [
59 (trainImages, trainLabels, config.TRAIN_HDF5),
60 (valImages, valLabels, config.VAL_HDF5),
61 (testImages, testLabels, config.TEST_HDF5)]

Here we are simply initializing the datasets list. Each entry in the list is a 3-tuple of the raw
images, labels, and output HDF5 path.

The last step is to loop over each of the training, validation, and testing sets:

63 # loop over the dataset tuples
64 for (images, labels, outputPath) in datasets:
65 # create HDF5 writer
66 print("[INFO] building {}...".format(outputPath))
67 writer = HDF5DatasetWriter((len(images), 48, 48), outputPath)
68

69 # loop over the image and add them to the dataset
70 for (image, label) in zip(images, labels):
71 writer.add([image], [label])
72

73 # close the HDF5 writer
74 writer.close()
75

76 # close the input file
77 f.close()

Line 67 instantiates a HDF5DatasetWriter for the dataset. We then loop over the pairs of
images and labels, writing them to disk in HDF5 format (Lines 70 and 71).

To build the FER2013 dataset for emotion recognition, simply execute the following command:

$ python build_dataset.py
[INFO] loading input data...
[INFO] building /raid/datasets/fer2013/hdf5/train.hdf5...
[INFO] building /raid/datasets/fer2013/hdf5/val.hdf5...
[INFO] building /raid/datasets/fer2013/hdf5/test.hdf5...

After the command finishes executing, you can validate that the HDF5 files have been generated
by examining the contents of the directory where you instructed your HDF5 files to be stored inside
emotion_config.py:

$ ls -l fer2013/hdf5
total 646268
-rw-rw-r-- 1 adrian adrian 66183304 Aug 29 08:25 test.hdf5
-rw-rw-r-- 1 adrian adrian 529396104 Aug 29 08:25 train.hdf5
-rw-rw-r-- 1 adrian adrian 66183304 Aug 29 08:25 val.hdf5

Notice how I have three files: train.hdf5, val.hdf5, and test.hdf5 – these are the files I
will use when training and evaluating my network on the FER2013 dataset.

11.2 Implementing a VGG-like Network 147

Layer Type Output Size Filter Size / Stride
INPUT IMAGE 48×48×1
CONV 48×48×32 3×3,K = 32
CONV 48×48×32 3×3,K = 32
POOL 24×24×32 2×2
CONV 24×24×64 3×3,K = 64
CONV 24×24×64 3×3,K = 64
POOL 12×12×64 2×2
CONV 12×12×128 3×3,K = 128
CONV 12×12×128 3×3,K = 128
POOL 6×6×128 2×2
FC 64
FC 64
FC 6
SOFTMAX 6

Table 11.1: A table summary of the EmotionVGGnet architecture. Output volume sizes are included
for each layer, along with convolutional filter size/pool size when relevant.

11.2 Implementing a VGG-like Network
The network we are going to implement to recognize various emotions and facial expressions is
inspired by the family of VGG networks:

1. The CONV layers in the network will only be 3×3.
2. We’ll double the number of filters learned by each CONV layer the deeper we go in the

network.
To aid in training of the network, we’ll apply some a priori knowledge gained from experiment-

ing with VGG and ImageNet in Chapter 9:
1. We should initialize our CONV and FC layers using the MSRA/He et al. method – doing so

will enable our network to learn faster.
2. Since ELUs and PReLUs have been shown to boost classification accuracy throughout all of

our experiments, let’s simply start with an ELU instead of a ReLU.
I have included a summary of the network, named EmotionVGGNet, in Table 11.1. After every

CONV layer, we will apply an activation followed by a batch normalization – these layers were pur-
posely left out of the table to save space. Let’s go ahead and implement the EmotionVGGNet class
now. Add a new file named emotionvggnet.py to the nn.conv sub-module of pyimagesearch:

--- pyimagesearch
| |--- __init__.py
| |--- callbacks
| |--- io
| |--- nn
| | |--- __init__.py
| | |--- conv
| | | |--- __init__.py
...
| | | |--- emotionvggnet.py
...
| |--- preprocessing
| |--- utils

148 Chapter 11. Case Study: Emotion Recognition

From there, open emotionvggnet.py and start by importing our required Python packages:

1 # import the necessary packages
2 from keras.models import Sequential
3 from keras.layers.normalization import BatchNormalization
4 from keras.layers.convolutional import Conv2D
5 from keras.layers.convolutional import MaxPooling2D
6 from keras.layers.advanced_activations import ELU
7 from keras.layers.core import Activation
8 from keras.layers.core import Flatten
9 from keras.layers.core import Dropout

10 from keras.layers.core import Dense
11 from keras import backend as K

All of these imports are standard when building Convolutional Neural Networks with Keras, so
we can skip an in-depth discussion of them (not to mention, you’ve seen these imports many times
before in this book).

From there, we can define the build method of EmotionVGGNet:

13 class EmotionVGGNet:
14 @staticmethod
15 def build(width, height, depth, classes):
16 # initialize the model along with the input shape to be
17 # "channels last" and the channels dimension itself
18 model = Sequential()
19 inputShape = (height, width, depth)
20 chanDim = -1
21

22 # if we are using "channels first", update the input shape
23 # and channels dimension
24 if K.image_data_format() == "channels_first":
25 inputShape = (depth, height, width)
26 chanDim = 1

Line 18 initializes the model object that we’ll be adding layers to. Since the VGG family of
networks sequentially applies layers one right after the other, we can use the Sequential class
here. We’ll also assume “channels last” ordering (Lines 19 and 20), but if we are instead using
“channels first” ordering, we can update the input shape and channel dimension axis as well (Lines
24-26).

Each block in convolution block in EmotionVGGNet will consist of (CONV => RELU => BN)
* 2 => POOL layer sets. Let’s define the first block now:

28 # Block #1: first CONV => RELU => CONV => RELU => POOL
29 # layer set
30 model.add(Conv2D(32, (3, 3), padding="same",
31 kernel_initializer="he_normal", input_shape=inputShape))
32 model.add(ELU())
33 model.add(BatchNormalization(axis=chanDim))
34 model.add(Conv2D(32, (3, 3), kernel_initializer="he_normal",
35 padding="same"))
36 model.add(ELU())
37 model.add(BatchNormalization(axis=chanDim))

11.2 Implementing a VGG-like Network 149

38 model.add(MaxPooling2D(pool_size=(2, 2)))
39 model.add(Dropout(0.25))

The first CONV layer will learn 32 3×3 filters. We’ll then apply an ELU activation followed
by batch normalization. Similarly, the second CONV layer applies the same pattern, learning 32
3×3 filters, followed by an ELU and batch normalization. We then apply max pooling and then a
dropout layer with probability 25%.

The second block in EmotionVGGNet is identical to the first, only now we are doubling the
number of filters in the CONV layers to 64 rather than 32:

41 # Block #2: second CONV => RELU => CONV => RELU => POOL
42 # layer set
43 model.add(Conv2D(64, (3, 3), kernel_initializer="he_normal",
44 padding="same"))
45 model.add(ELU())
46 model.add(BatchNormalization(axis=chanDim))
47 model.add(Conv2D(64, (3, 3), kernel_initializer="he_normal",
48 padding="same"))
49 model.add(ELU())
50 model.add(BatchNormalization(axis=chanDim))
51 model.add(MaxPooling2D(pool_size=(2, 2)))
52 model.add(Dropout(0.25))

Moving on to the third block, we again apply the same pattern, now increasing the number of
filters from 64 to 128 – as we get deeper in the CNN, the more filters we learn:

54 # Block #3: third CONV => RELU => CONV => RELU => POOL
55 # layer set
56 model.add(Conv2D(128, (3, 3), kernel_initializer="he_normal",
57 padding="same"))
58 model.add(ELU())
59 model.add(BatchNormalization(axis=chanDim))
60 model.add(Conv2D(128, (3, 3), kernel_initializer="he_normal",
61 padding="same"))
62 model.add(ELU())
63 model.add(BatchNormalization(axis=chanDim))
64 model.add(MaxPooling2D(pool_size=(2, 2)))
65 model.add(Dropout(0.25))

Next, we need to construct our first fully-connected layer set:

67 # Block #4: first set of FC => RELU layers
68 model.add(Flatten())
69 model.add(Dense(64, kernel_initializer="he_normal"))
70 model.add(ELU())
71 model.add(BatchNormalization())
72 model.add(Dropout(0.5))

Here we learn 64 hidden nodes, followed by applying an ELU activation function and batch
normalization. We’ll apply a second FC layer in the same manner:

150 Chapter 11. Case Study: Emotion Recognition

74 # Block #6: second set of FC => RELU layers
75 model.add(Dense(64, kernel_initializer="he_normal"))
76 model.add(ELU())
77 model.add(BatchNormalization())
78 model.add(Dropout(0.5))

Finally, we’ll apply a FC layer with the supplied number of classes along with a softmax
classifier to obtain our output class label probabilities:

80 # Block #7: softmax classifier
81 model.add(Dense(classes, kernel_initializer="he_normal"))
82 model.add(Activation("softmax"))
83

84 # return the constructed network architecture
85 return model

Now that we have implemented our EmotionVGGNet class, let’s go ahead and train it.

11.3 Training Our Facial Expression Recognizer
In this section, we will review how to train EmotionVGGNet from scratch on the FER2013 dataset.
We’ll start with a review of the train_recognizer.py script used to train FER2013, followed by
examining a set of experiments I performed to maximize classification accuracy. To get started,
create a new file named train_recognizer.py and insert the following code:

1 # set the matplotlib backend so figures can be saved in the background
2 import matplotlib
3 matplotlib.use("Agg")
4

5 # import the necessary packages
6 from config import emotion_config as config
7 from pyimagesearch.preprocessing import ImageToArrayPreprocessor
8 from pyimagesearch.callbacks import EpochCheckpoint
9 from pyimagesearch.callbacks import TrainingMonitor

10 from pyimagesearch.io import HDF5DatasetGenerator
11 from pyimagesearch.nn.conv import EmotionVGGNet
12 from keras.preprocessing.image import ImageDataGenerator
13 from keras.optimizers import Adam
14 from keras.models import load_model
15 import keras.backend as K
16 import argparse
17 import os

Lines 2 and 3 configure our matplotlib backend so we can save plots to disk. From there, Lines
6-17 import the remainder of our Python packages. We have used all of these packages before,
but I will call your attention to Line 11 where the newly implemented EmotionVGGNet package is
imported.

Next, let’s parse our command line arguments:

19 # construct the argument parse and parse the arguments
20 ap = argparse.ArgumentParser()

11.3 Training Our Facial Expression Recognizer 151

21 ap.add_argument("-c", "--checkpoints", required=True,
22 help="path to output checkpoint directory")
23 ap.add_argument("-m", "--model", type=str,
24 help="path to *specific* model checkpoint to load")
25 ap.add_argument("-s", "--start-epoch", type=int, default=0,
26 help="epoch to restart training at")
27 args = vars(ap.parse_args())

These command line arguments are indicative of a ctrl + c-style experiment setup. We’ll
need a --checkpoints directory to store EmotionVGGNet weights as the network is trained. If
we are loading a specific epoch from disk and (presumably) restarting training, we can supply
the --model path to the specific checkpoint and provide the --start-epoch of the associated
checkpoint.

From here, we can instantiate our data augmentation objects:

29 # construct the training and testing image generators for data
30 # augmentation, then initialize the image preprocessor
31 trainAug = ImageDataGenerator(rotation_range=10, zoom_range=0.1,
32 horizontal_flip=True, rescale=1 / 255.0, fill_mode="nearest")
33 valAug = ImageDataGenerator(rescale=1 / 255.0)
34 iap = ImageToArrayPreprocessor()

As expected, we’ll be applying data augmentation to the training set to help reduce overfitting
and improve the classification accuracy of our model (Lines 31 and 32). But what you may be
unfamiliar with is applying data augmentation to the validation set (Line 33). Why would we
need to apply data augmentation to the validation set? Isn’t that set supposed to stay static and
unchanging?

The answer lies in the rescale attribute (which is also part of the training data augmenter).
Recall Section 11.1.2 where we converted the fer2013.csv file to an HDF5 dataset. We stored
these images as raw, unnormalized RGB images, meaning that pixel values are allowed to exist in the
range [0,255]. However, it’s common practice to either (1) perform mean normalization or (2) scale
the pixel intensities down to a more constricted change. Luckily for us, the ImageDataGenerator
class provided by Keras can automatically perform this scaling for us. We simply need to provide a
rescale value of 1/255 – every image will be multiple by this ratio, thus scaling the pixels down
to [0,1].

Let’s also initialize our training and validation HDF5DatasetGenerator objects:

36 # initialize the training and validation dataset generators
37 trainGen = HDF5DatasetGenerator(config.TRAIN_HDF5, config.BATCH_SIZE,
38 aug=trainAug, preprocessors=[iap], classes=config.NUM_CLASSES)
39 valGen = HDF5DatasetGenerator(config.VAL_HDF5, config.BATCH_SIZE,
40 aug=valAug, preprocessors=[iap], classes=config.NUM_CLASSES)

The path to the input HDF5 files, batch size, and number of classes are all coming from our
emotion_config, making it easy for us to change these parameters.

In the case that no specific model checkpoint is supplied, we’ll assume we are training our
model from the very first epoch:

42 # if there is no specific model checkpoint supplied, then initialize
43 # the network and compile the model

152 Chapter 11. Case Study: Emotion Recognition

44 if args["model"] is None:
45 print("[INFO] compiling model...")
46 model = EmotionVGGNet.build(width=48, height=48, depth=1,
47 classes=config.NUM_CLASSES)
48 opt = Adam(lr=1e-3)
49 model.compile(loss="categorical_crossentropy", optimizer=opt,
50 metrics=["accuracy"])

Otherwise, we are loading a specific checkpoint from disk, updating the learning rate, and
restarting training:

52 # otherwise, load the checkpoint from disk
53 else:
54 print("[INFO] loading {}...".format(args["model"]))
55 model = load_model(args["model"])
56

57 # update the learning rate
58 print("[INFO] old learning rate: {}".format(
59 K.get_value(model.optimizer.lr)))
60 K.set_value(model.optimizer.lr, 1e-3)
61 print("[INFO] new learning rate: {}".format(
62 K.get_value(model.optimizer.lr)))

Before we can start the training process we must construct our list of callbacks used to
serialize epoch checkpoints to disk and log accuracy/loss to disk over time:

64 # construct the set of callbacks
65 figPath = os.path.sep.join([config.OUTPUT_PATH,
66 "vggnet_emotion.png"])
67 jsonPath = os.path.sep.join([config.OUTPUT_PATH,
68 "vggnet_emotion.json"])
69 callbacks = [
70 EpochCheckpoint(args["checkpoints"], every=5,
71 startAt=args["start_epoch"]),
72 TrainingMonitor(figPath, jsonPath=jsonPath,
73 startAt=args["start_epoch"])]

Our final code block handles training the network:

75 # train the network
76 model.fit_generator(
77 trainGen.generator(),
78 steps_per_epoch=trainGen.numImages // config.BATCH_SIZE,
79 validation_data=valGen.generator(),
80 validation_steps=valGen.numImages // config.BATCH_SIZE,
81 epochs=15,
82 max_queue_size=config.BATCH_SIZE * 2,
83 callbacks=callbacks, verbose=1)
84

85 # close the databases
86 trainGen.close()
87 valGen.close()

11.3 Training Our Facial Expression Recognizer 153

Epoch Learning Rate
1−20 1e−2
21−40 1e−3
41−60 1e−4

Table 11.2: Learning rate schedule used when training EmotionVGGNet on FER2013 in Experiment
#1.

The exact number of epochs we’ll need to train the network is dependent on the network
performance and how we stop training, update the learning rate, and restart training.

In the next section, we’ll review four experiments I performed to incrementally improve the
classification performance of EmotionVGGNet for facial expression recognition. Use this case
study to help you in your own projects – the exact same techniques I use to set baselines, run
experiments, investigate the results, and update parameters can be leveraged when you apply deep
learning to projects outside of this book.

11.3.1 EmotionVGGNet: Experiment #1
As I always do with my first experiment, I aim to establish a baseline that I can incrementally
improve upon – your experiment will rarely be your best performing model. Keep in mind
that obtaining a neural network with high classification is an iterative process. You need to run
experiments, gather the results, interpret them, adjust your parameters, and run the experiment
again. One more time, this is a science, so you need to apply the scientific method – there are no
shortcuts.

In this experiment, I started with the SGD optimizer with a base learning rate of 1e− 2, a
momentum term of 0.9, and Nesterov acceleration applied. The (default) Xavier/Glorot initialization
method was used to initialize the weights in the CONV and FC layers. Furthermore, the only data
augmentation I applied was horizontal flipping – no other data augmentation (such as rotation,
zoom, etc.) was applied.

I started training using the following command:

$ python train_recognizer.py --checkpoints checkpoints

And then used the learning rate schedule in Table 11.2 to train the rest of the network:
The loss/accuracy plot for the full 60 epochs can be seen in Figure 11.2. It’s interesting to

note that as soon as I lowered the learning rate from 1e− 2 to 1e− 3, the network effectively
stopped learning. The switch from 1e−3 to 1e−4 is practically unnoticeable – with these order of
magnitude drops we would expect to see at least some rise in accuracy and a corresponding drop in
loss.

At the end of the 60th epoch, I examined the validation accuracy and noted that the network
was reaching 62.91%. If this were the testing set, we would already be in the top #10 for the Kaggle
facial expression recognition leaderboard.

11.3.2 EmotionVGGNet: Experiment #2
Given that SGD led to stagnation in learning when dropping the learning rate, I decided to swap
out SGD for Adam, using a base learning rate of 1e−3. Other than the adjustment to the optimizer,
this experiment is identical to the first one. I started training using the following command:

$ python train_recognizer.py --checkpoints checkpoints

154 Chapter 11. Case Study: Emotion Recognition

Figure 11.2: Training plot for EmotionVGGNet on FER2013 in Experiment #1. Past epoch 40
learning has stagnated.

At epoch 30 I started to notice sharp divergence between the training loss and validation loss
developing (Figure 11.3, left), so I stopped training and reduced the learning rate from 1e−3 to
1e−4 and then allowed the network to train for another 15 epochs:

$ python train_recognizer.py --checkpoints checkpoints \
--model checkpoints/epoch_30.hdf5 --start-epoch 30

However, the result was not good (Figure 11.3, right). As we can see, there is clear overfitting –
training loss continues to drop while validation loss not only stagnates but continues to rise as well.
All that said, the network was still obtaining 66.34% accuracy at the end of the 45th epoch, certainly
better than SGD. If I could find a way to curb the overfitting, the Adam optimizer approach would
likely perform very well in this situation.

11.3.3 EmotionVGGNet: Experiment #3
A common cure to overfitting is to gather more training data that is representative of your validation
and testing set. However, since the FER2013 dataset is pre-compiled and we want our results to
be relevant in terms of the Kaggle competition, gathering additional data is out of the question.
Instead, we can apply data augmentation to help reduce overfitting.

In my third experiment, I kept my Adam optimizer, but also added in a random rotation range
of 10 degrees along with a zoom range of 0.1 (the other augmentation parameters Keras provides
did not seem appropriate here). With the new data augmentation scheme in place, I repeated my
second experiment:

11.3 Training Our Facial Expression Recognizer 155

Figure 11.3: Left: The first 30 epochs for a 1e−3 learning rate and the Adam optimizer. Right:
Lowering the learning rate to α = 1e−4 causes clear overfitting.

$ python train_recognizer.py --checkpoints checkpoints

As the plot below demonstrates, learning is much more stable with saturation starting to occur
around epoch 40 (Figure 11.4, top-left). At this point, I stopped training, lowered the Adam learning
rate from 1e−3 to 1e−4, and resumed training:

$ python train_recognizer.py --checkpoints checkpoints \
--model checkpoints/epoch_40.hdf5 --start-epoch 40

This process led to a characteristic drop in loss/rise in accuracy which we expect when adjusting
the learning rate in this manner (Figure 11.4, top-right). However, learning plateaus, so I again
stopped training at epoch 60, lowered the learning rate from 1e−4 to 1e−5, and resumed training
for another 15 epochs:

$ python train_recognizer.py --checkpoints checkpoints \
--model checkpoints/epoch_60.hdf5 --start-epoch 60

The final plot of the network can be seen in Figure 11.4 (bottom). As we can see, we aren’t
at risk of overfitting – the downside is that we aren’t seeing any dramatic gains in accuracy past
epoch 45. All that said, by applying data augmentation we were able to stabilize learning, reduce
overfitting, and allow us to reach 67.53% classification accuracy on the validation set.

11.3.4 EmotionVGGNet: Experiment #4
In my final experiment with FER2013 and EmotionVGGNet I decided to make a few changes:

1. I swapped out Xavier/Glorot initialization (the default used by Keras) for MSRA/He et al.
initialization. This swap is due to the fact that He et al. initialization tends to work better for
the VGG family of networks (as we’ve seen in earlier experiments in this book).

156 Chapter 11. Case Study: Emotion Recognition

Figure 11.4: Top-left: The first 30 epochs for Experiment #3. Top-right: Adjusting the learning
rate to 1e−4. Bottom: A final adjustment of α = 1e−5.

2. I replaced all ReLUs with ELUs in an attempt to further boost accuracy.
3. Given the class imbalance caused by the “disgust” label, I merged “anger” and “disgust” into

a single label, per the recommendation of the Mememoji project [33]. The reason for this
label merge is two-fold: (1) so we can obtain higher classification accuracy and (2) our model
will generalize better when applied to real-time emotion recognition later in this chapter.

In order to merge these two classes, I needed to run build_dataset.py again with NUM_CLASSES
set to six rather than seven.

Again, the Adam optimizer was used with a base learning rate of 1e−3 which was decayed
according to Table 11.3.

The loss/accuracy plot of this experiment can be seen in Figure 11.5. Notice how I always
drop the learning rate once validation loss and accuracy plateau. The plot itself looks identical to
that of the third experiment; however, when we inspect the output of the 75th epoch we now see
EmotionVGGNet is reaching 68.51% accuracy – this is the highest accuracy we have seen thus far.
From here, let’s move on to evaluating our facial expression recognizer on the test set.

11.4 Evaluating our Facial Expression Recognizer 157

Epoch Learning Rate
1−40 1e−3
40−60 1e−4
61−75 1e−5

Table 11.3: Learning rate schedule used when training EmotionVGGNet on FER2013 in Experiment
#4.

Figure 11.5: Our final experiment training EmotionVGGNet on FER2013. Here we reach 68.51%
accuracy by merging the “anger” and “disgust” classes into a single label.

11.4 Evaluating our Facial Expression Recognizer

To evaluate EmotionVGGnet on the FER2013 testing set, let’s open up test_recognizer.py,
and insert the following code:

1 # import the necessary packages
2 from config import emotion_config as config
3 from pyimagesearch.preprocessing import ImageToArrayPreprocessor
4 from pyimagesearch.io import HDF5DatasetGenerator
5 from keras.preprocessing.image import ImageDataGenerator
6 from keras.models import load_model
7 import argparse

Lines 2-7 import our required Python packages. Line 2 imports our emotion_config so we
have access to our project configuration variables. The HDF5DatasetGenerator will be needed to

158 Chapter 11. Case Study: Emotion Recognition

access the testing set (Line 4). We’ll also import the ImageDataGenerator so we can scale the
images in FER2013 down to the range [0,1].

Our script will require only a single command line argument, --model, which is the path to the
specific model checkpoint to load:

9 # construct the argument parse and parse the arguments
10 ap = argparse.ArgumentParser()
11 ap.add_argument("-m", "--model", type=str,
12 help="path to model checkpoint to load")
13 args = vars(ap.parse_args())

From there, we initialize our data augmentation class to rescale the images in the testing set:

15 # initialize the testing data generator and image preprocessor
16 testAug = ImageDataGenerator(rescale=1 / 255.0)
17 iap = ImageToArrayPreprocessor()
18

19 # initialize the testing dataset generator
20 testGen = HDF5DatasetGenerator(config.TEST_HDF5, config.BATCH_SIZE,
21 aug=testAug, preprocessors=[iap], classes=config.NUM_CLASSES)

A pointer to the testing HDF5 dataset is then opened on Lines 20 and 21, ensuring that we
apply both: (1) our data augmentation for rescaling and (2) our image to Keras-compatible array
converter.

Finally, we can load our model checkpoint from disk:

23 # load the model from disk
24 print("[INFO] loading {}...".format(args["model"]))
25 model = load_model(args["model"])

And evaluate it on the testing set:

27 # evaluate the network
28 (loss, acc) = model.evaluate_generator(
29 testGen.generator(),
30 steps=testGen.numImages // config.BATCH_SIZE,
31 max_queue_size=config.BATCH_SIZE * 2)
32 print("[INFO] accuracy: {:.2f}".format(acc * 100))
33

34 # close the testing database
35 testGen.close()

To evaluate EmotionVGGNet on FER2013, simply open up a terminal and execute the following
command:

$ python test_recognizer.py --model checkpoints/epoch_75.hdf5
[INFO] loading checkpoints/epoch_75.hdf5...
[INFO] accuracy: 66.96

11.5 Emotion Detection in Real-time 159

As my results demonstrate, we were able to obtain 66.96% accuracy on the test set, enough
for us to claim the 5th position on the Kaggle Facial Expression Recognition Challenge [31].

R This 66.96% classification result was obtained from the 6-class variant of FER2013, not
the 7-class original version in the Kaggle recognition challenge. That said, we can easily
re-train the network on the 7-class version and obtain a similar accuracy. The reason we are
ending with the 6-class network is so we can obtain more meaningful results when applied to
real-time emotion detection in the next section.

11.5 Emotion Detection in Real-time
Now that our CNN is trained and evaluated, let’s apply it to detect emotion and facial expressions
in video streams in real-time. Open up a new file, name it emotion_detector.py, and insert the
following code:

1 # import the necessary packages
2 from keras.preprocessing.image import img_to_array
3 from keras.models import load_model
4 import numpy as np
5 import argparse
6 import imutils
7 import cv2
8

9 # construct the argument parse and parse the arguments
10 ap = argparse.ArgumentParser()
11 ap.add_argument("-c", "--cascade", required=True,
12 help="path to where the face cascade resides")
13 ap.add_argument("-m", "--model", required=True,
14 help="path to pre-trained emotion detector CNN")
15 ap.add_argument("-v", "--video",
16 help="path to the (optional) video file")
17 args = vars(ap.parse_args())

Lines 2-7 import our required Python packages. From there, we parse our command line
arguments. Our script requires two switches, followed by a third optional one. The --cascade
switch is the path to our face detection Haar cascade (included in the downloads portion of this
book). The --model is our pre-trained CNN that we will use to detect emotion. Finally, if you
wish to apply emotion detection to a video file rather than a video stream, you can supply the path
to the file via the --video switch.

From there, let’s load our face detection cascade, emotion detection CNN, as well as initialize
the list of emotion labels that our CNN can predict:

19 # load the face detector cascade, emotion detection CNN, then define
20 # the list of emotion labels
21 detector = cv2.CascadeClassifier(args["cascade"])
22 model = load_model(args["model"])
23 EMOTIONS = ["angry", "scared", "happy", "sad", "surprised",
24 "neutral"]

Notice how our EMOTIONS list contains six entries, implying that we are using the 6-class
version of FER2013 for better accuracy.

160 Chapter 11. Case Study: Emotion Recognition

Our following code block instantiates a cv2.VideoCapture object based on whether we are
(1) accessing a webcam or (2) reading from a video file:

26 # if a video path was not supplied, grab the reference to the webcam
27 if not args.get("video", False):
28 camera = cv2.VideoCapture(1)
29

30 # otherwise, load the video
31 else:
32 camera = cv2.VideoCapture(args["video"])

We are now ready to start looping over frames from the video pointer:

34 # keep looping
35 while True:
36 # grab the current frame
37 (grabbed, frame) = camera.read()
38

39 # if we are viewing a video and we did not grab a
40 # frame, then we have reached the end of the video
41 if args.get("video") and not grabbed:
42 break

Line 37 reads the next frame from the video stream. If the frame was not grabbed (i.e., set to
False) and we are reading frames from a video stream, we have reached the end of the file, so we
should break from the loop (Lines 41 and 42).

Otherwise, it’s time to pre-process the frame by resizing it to have a width of 300 pixels and
converting it to grayscale:

44 # resize the frame and convert it to grayscale
45 frame = imutils.resize(frame, width=300)
46 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
47

48 # initialize the canvas for the visualization, then clone
49 # the frame so we can draw on it
50 canvas = np.zeros((220, 300, 3), dtype="uint8")
51 frameClone = frame.copy()
52

53 # detect faces in the input frame, then clone the frame so that
54 # we can draw on it
55 rects = detector.detectMultiScale(gray, scaleFactor=1.1,
56 minNeighbors=5, minSize=(30, 30),
57 flags=cv2.CASCADE_SCALE_IMAGE)

We initialize an empty NumPy canvas (Line 50) which has a width of 300px and a height
of 200px. We’ll be using the canvas to draw the probability distribution predicted by our CNN,
which will enable us to visualize the range and mixture of the emotions.

Lines 55-57 then detect faces in the frame using OpenCV’s pre-trained Haar cascade. If
you are interested in learning more about object detection via Haar cascades, please refer to
Practical Python and OpenCV [34] (http://pyimg.co/ppao) and the PyImageSearch Gurus course
[35] (http://pyimg.co/gurus).

In the next code block, we prepare the face ROI for classification via the CNN:

http://pyimg.co/ppao
http://pyimg.co/gurus

11.5 Emotion Detection in Real-time 161

59 # ensure at least one face was found before continuing
60 if len(rects) > 0:
61 # determine the largest face area
62 rect = sorted(rects, reverse=True,
63 key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0]
64 (fX, fY, fW, fH) = rect
65

66 # extract the face ROI from the image, then pre-process
67 # it for the network
68 roi = gray[fY:fY + fH, fX:fX + fW]
69 roi = cv2.resize(roi, (48, 48))
70 roi = roi.astype("float") / 255.0
71 roi = img_to_array(roi)
72 roi = np.expand_dims(roi, axis=0)

Line 60 ensures that at least one face was detected in the frame. Provided there was at least
one face detected, we sort the bounding box list rect according to the size of the bounding box,
with large faces at the front of the list (Lines 62 and 64).

We could certainly apply emotion detection and facial expression recognition to every face
in the frame; however, the point of this script is to demonstrate how we can (1) detect the most
dominant facial expression and (2) plot a distribution of emotions. Plotting this distribution for
every face in the frame would be distracting and harder for us to visualize. Thus, I will leave it as
an exercise to the reader to loop over each of the rects individually – as a matter of simplicity,
we’ll simply be using the largest face region in our example.

Line 68 extracts the face region from the grayscale image via NumPy array slicing. We then pre-
process the roi by resizing it to a fixed 48×48 pixels (the input size required by EmotionVGGNet).
From there, we convert the roi to a floating point data type, scale it to the range [0,1], and convert
it to a Keras-compatible array (Lines 69-72).

Now that the roi has been pre-processed, we can pass it through our model to obtain the class
probabilities:

74 # make a prediction on the ROI, then lookup the class
75 # label
76 preds = model.predict(roi)[0]
77 label = EMOTIONS[preds.argmax()]
78

79 # loop over the labels + probabilities and draw them
80 for (i, (emotion, prob)) in enumerate(zip(EMOTIONS, preds)):
81 # construct the label text
82 text = "{}: {:.2f}%".format(emotion, prob * 100)
83

84 # draw the label + probability bar on the canvas
85 w = int(prob * 300)
86 cv2.rectangle(canvas, (5, (i * 35) + 5),
87 (w, (i * 35) + 35), (0, 0, 255), -1)
88 cv2.putText(canvas, text, (10, (i * 35) + 23),
89 cv2.FONT_HERSHEY_SIMPLEX, 0.45,
90 (255, 255, 255), 2)

Line 76 makes a call to the predict method of model which returns the predicted class label
probabilities. The label is thus the label with the largest associated probability (Line 77).

162 Chapter 11. Case Study: Emotion Recognition

However, since human facial expressions are often a mixture of emotions, it’s much more
interesting to examine the probability distribution of the labels. To accomplish this determination,
we loop over the labels and associated probabilities on Line 80. Line 86 and 87 draw a bar chart
where each bar width is proportional to the predicted class label probability. Lines 88-90 then draw
the name of the label on the canvas.

R If you are interested in understanding how these OpenCV drawing functions work in more
detail, please refer to Practical Python and OpenCV [34] (http://pyimg.co/ppao).

Our next code block handles drawing the label with the highest probability to our screen as
well as drawing a bound box surrounding the face we predicted emotions for:

92 # draw the label on the frame
93 cv2.putText(frameClone, label, (fX, fY - 10),
94 cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
95 cv2.rectangle(frameClone, (fX, fY), (fX + fW, fY + fH),
96 (0, 0, 255), 2)

The last code block in this example simply displays the output images to our screen so we can
visualize the results in real-time:

98 # show our classifications + probabilities
99 cv2.imshow("Face", frameClone)

100 cv2.imshow("Probabilities", canvas)
101

102 # if the ’q’ key is pressed, stop the loop
103 if cv2.waitKey(1) & 0xFF == ord("q"):
104 break
105

106 # cleanup the camera and close any open windows
107 camera.release()
108 cv2.destroyAllWindows()

If you wish to apply the emotion detector to a webcam video stream, open up your terminal and
execute the following command:

$ python emotion_detector.py --cascade haarcascade_frontalface_default.xml \
--model checkpoints/epoch_75.hdf5

Otherwise, if you instead are applying facial expression prediction to a video file, update the
command to use the --video switch to point to your video file residing on disk:

$ python emotion_detector.py --cascade haarcascade_frontalface_default.xml \
--model checkpoints/epoch_75.hdf5 --video path/to/your/video.mp4

In the chapter downloads associated with this book, I have provided an example video that you
can use to verify that your emotion predictor is working correctly. For example, in the following
frame my face is clearly happy (Figure 11.6, top-left). While in the top-right my facial expression
has changed to angry. However, notice that the probability of sad is also higher, implying that

http://pyimg.co/ppao

11.6 Summary 163

Figure 11.6: Examples of facial expression recognition using our Convolutional Neural Network.
In each case we are able to correctly recognize the emotion. Furthermore, notice that the probability
distribution represents facial expression as a mixture of emotions.

there is a mixture of emotions. A few seconds later, my face returns to a resting, neutral position
(bottom-left). Finally, in bottom-right, I am clearly surprised.

It’s important to note that this model was not trained on any example images of myself –
the only dataset used was FER2013. Given that our model is able to correctly predict my facial
expressions, we can say that our EmotionVGGNet expresses a very good ability to generalize.

11.6 Summary
In this chapter, we learned how to implement a Convolutional Neural Network capable of predicting
emotion and facial expressions. To accomplish this task, we trained a VGG-like CNN named
EmotionVGGNet. This network consisted of two CONV layers stacked on top of each other with the
number of filters doubling in each block. It was important that our CNN be:

1. Deep enough to obtain high accuracy.
2. But not so deep that it would be impossible to run in real-time on the CPU.
We then trained our CNN on the FER2013 dataset, part of the Kaggle Emotion and Facial

Expression Recognition challenge. Overall, we were able to obtain 66.96% accuracy, enough to
claim the #5 position on the leaderboard. Further accuracy can likely be obtained by being more
aggressive with our data augmentation, deepening the network, increasing the number of layers,
and adding in regularization.

Finally, we ended this chapter by creating a Python script that can (1) detect faces in a video
stream and (2) apply our pre-trained CNN to recognize dominant facial expression in real-time.
Furthermore, we also included the probability distribution for each emotion, enabling us to more
easily interpret the results of our network.

Again, keep in mind that as humans, our emotions are fluid and are constantly changing.
Furthermore, our emotions are often mixtures of each other – we are rarely, if ever, 100% happy
or 100% sad – instead we are always some blend of feelings. Because of this fact, it’s important
that you examine the probability distribution returned by EmotionVGGNet when trying to label the
facial expression of a given person.

12. Case Study: Correcting Image Orientation

In this case study, we are going to learn how to apply transfer learning (specifically feature
extraction) to automatically detect and correct the orientation of an image. The reason we are using
feature extraction from a pre-trained Convolutional Neural Network is two-fold:

1. To demonstrate that the filters learned by a CNN trained on ImageNet are not rotation
invariant across a full 360-degree spectrum (otherwise, the features could not be used to
discriminate between image rotation).

2. Transfer learning via feature extraction obtains the highest accuracy when predicting image
orientation.

As I mentioned in Chapter 11 of the Starter Bundle, it’s a common misconception that the
individual filters learned by a CNN are invariant to rotation – the filters themselves are not. Instead,
the CNN is able to learn a set of filters that activate when they see a particular object under a given
rotation. Therefore, the filters themselves are not rotation invariant, but the CNN is able to obtain
some level of rotation invariance due to the number of filters it has learned, with ideally some of
these filters activating under various rotations. As we’ll see in this chapter, CNNs are not fully
rotation invariant, otherwise, it would be impossible for us to determine the orientation of an image
strictly from the features extracted during the fine-tuning phase.

12.1 The Indoor CVPR Dataset
The dataset we’ll be using for this case study is the Indoor Scene Recognition (also called Indoor
CVPR) dataset [36] released by MIT. This database contains 67 indoor categories room/scene
categories, including homes, offices, public spaces, stores, and many more. A sample of this dataset
can be seen in Figure 12.1.

The reason we are using this dataset is because it is very easy for a human to determine if a
natural scene image is incorrectly oriented – our goal is to replicate this level of performance using
a Convolutional Neural Network. However, all images in Indoor CVPR are correctly oriented;
therefore, we need to build our own dataset from Indoor CVPR with labeled images under various
rotations.

To download the Indoor CVPR dataset use this link:

166 Chapter 12. Case Study: Correcting Image Orientation

Figure 12.1: A sample of the classes and images from the Indoor Scene Recognition dataset [36].

http://pyimg.co/x772x
And form there click the “Download” link. The entire .tar archive is ≈ 2.4GB so plan your

download accordingly. Once the file has downloaded, unarchive it. Once unarchived, you’ll find
a directory named Images which contains a number of subdirectories, each one containing a
particular class label in the dataset:

$ cd Images
$ ls -l | head -n 10
total 0
drwxr-xr-x@ 610 adrianrosebrock staff 20740 Mar 16 2009 airport_inside
drwxr-xr-x@ 142 adrianrosebrock staff 4828 Mar 16 2009 artstudio
drwxr-xr-x@ 178 adrianrosebrock staff 6052 Mar 16 2009 auditorium
drwxr-xr-x@ 407 adrianrosebrock staff 13838 Mar 16 2009 bakery
drwxr-xr-x@ 606 adrianrosebrock staff 20604 Mar 16 2009 bar
drwxr-xr-x@ 199 adrianrosebrock staff 6766 Mar 16 2009 bathroom
drwxr-xr-x@ 664 adrianrosebrock staff 22576 Mar 16 2009 bedroom
drwxr-xr-x@ 382 adrianrosebrock staff 12988 Mar 16 2009 bookstore
drwxr-xr-x@ 215 adrianrosebrock staff 7310 Mar 16 2009 bowling

To keep the Indoor CVPR dataset organized I created a new directory named indoor_cvpr,
moved the Images directory inside of (changing the uppercase “I” to lowercase “i”), and creating
two new subdirectories – hdf5 and rotated_images. My directory structure for this project is as
follows:

--- indoor_cvpr
| |--- hdf5
| |--- images
| |--- rotated_images

The hdf5 directory will store the features extracted from our input images using a pre-trained
Convolutional Neural Network. In order to generate our training data, we will create a custom
Python script that generates randomly rotates images. These rotated images will be stored in
rotated_images. The features extracted from these images will be stored in HDF5 datasets.

12.1.1 Building the Dataset
Before we get started let’s take a look at our project structure:

--- image_orientation
| |--- creat_dataset.py

http://pyimg.co/x772x

12.1 The Indoor CVPR Dataset 167

| |--- extract_features.py
| |--- indoor_cvpr/
| |--- models/
| |--- orient_images.py
| |--- train_model.py

We’ll be using the create_dataset.py script to build the training and testing sets for our input
dataset. From there extract_features.py will be used to create an HDF5 file for the dataset
splits. Given the extracted features we can use train_model.py to train a Logistic Regression
classifier to recognize image orientations and save the resulting model in the models directory.
Finally, orient_images.py can be applied to orient testing input images.

Just as I have done with the ImageNet dataset, I created a sym-link to indoor_cvpr to make it
easier to type out commands; however, you can ignore this step if you wish and instead specify the
full path to the input/output directories when executing the Python scripts.

Let’s go ahead and learn how we can construct our own custom image orientation dataset
from an existing dataset. Make sure you have downloaded the .tar file from the Indoor Scene
Recognition dataset, and from there, open up a new file, name it create_dataset.py, and we’ll
get it work:

1 # import the necessary packages
2 from imutils import paths
3 import numpy as np
4 import progressbar
5 import argparse
6 import imutils
7 import random
8 import cv2
9 import os

10

11 # construct the argument parse and parse the arguments
12 ap = argparse.ArgumentParser()
13 ap.add_argument("-d", "--dataset", required=True,
14 help="path to input directory of images")
15 ap.add_argument("-o", "--output", required=True,
16 help="path to output directory of rotated iamges")
17 args = vars(ap.parse_args())

Lines 2-9 import our required Python packages, all of which we have reviewed earlier in this
book. We’ll again be using the optional progressbar package to display updates to our terminal
as our dataset creation process runs. If you do not want to use progressbar, simply comment out
the few lines in this script that reference it.

Lines 12-17 then parse our command line arguments. We only need two command line
arguments here, --dataset, the path to the directory containing our input images (the Indoor
CVPR dataset), along with --output the path to the directory where our labeled, rotated images
will be stored.

Next, let’s randomly sample 10,000 images from our --dataset directory and initialize our
progress bar:

19 # grab the paths to the input images (limiting ourselves to 10,000
20 # images) and shuffle them to make creating a training and testing
21 # split easier

168 Chapter 12. Case Study: Correcting Image Orientation

22 imagePaths = list(paths.list_images(args["dataset"]))[:10000]
23 random.shuffle(imagePaths)
24

25 # initialize a dictionary to keep track of the number of each angle
26 # chosen so far, then initialize the progress bar
27 angles = {}
28 widgets = ["Building Dataset: ", progressbar.Percentage(), " ",
29 progressbar.Bar(), " ", progressbar.ETA()]
30 pbar = progressbar.ProgressBar(maxval=len(imagePaths),
31 widgets=widgets).start()

Given our sampled imagePaths, we are now ready to create our rotated image dataset:

33 # loop over the image paths
34 for (i, imagePath) in enumerate(imagePaths):
35 # determine the rotation angle, and load the image
36 angle = np.random.choice([0, 90, 180, 270])
37 image = cv2.imread(imagePath)
38

39 # if the image is None (meaning there was an issue loading the
40 # image from disk, simply skip it)
41 if image is None:
42 continue

On Line 34 we start looping over each of the individual sampled images. Line 36 then randomly
selects the rotation angle in which we are going to rotate the image – either by 0 degrees (no change),
90 degrees, 180 degrees (flipped vertically), or 270 degrees. Line 37 loads our image from disk.
I’ve found that some images in the Indoor CVPR dataset do not load properly from disk due to
JPEG encoding issues; therefore, Lines 41 and 42 ensure the image is loaded properly, and if not,
we simply skip the image.

The next code block will handle rotating our image by the randomly selected angle and then
writing the image to disk:

44 # rotate the image based on the selected angle, then construct
45 # the path to the base output directory
46 image = imutils.rotate_bound(image, angle)
47 base = os.path.sep.join([args["output"], str(angle)])
48

49 # if the base path does not exist already, create it
50 if not os.path.exists(base):
51 os.makedirs(base)
52

53 # extract the image file extension, then construct the full path
54 # to the output file
55 ext = imagePath[imagePath.rfind("."):]
56 outputPath = [base, "image_{}{}".format(
57 str(angles.get(angle, 0)).zfill(5), ext)]
58 outputPath = os.path.sep.join(outputPath)
59

60 # save the image
61 cv2.imwrite(outputPath, image)

12.1 The Indoor CVPR Dataset 169

Line 46 rotates our image by the angle, ensuring the entire image stays in the field of view
(http://pyimg.co/7xnk6). We then determine the base output path for the image, again, based on the
angle. This implies that our output dataset will have the following directory structure:

/output/{angle_name}/{image_filename}.jpg

Lines 50 and 51 check to see if the /output/{angle_name} directory structure exists, and if
not, creates the required sub-directory. Given the base output path, we can derive the path to the
actual image on Lines 55-58 by extracting the:

1. Original image file extension.
2. The number of images currently selected with the given angle.
Finally, Line 61 writes our rotated image to disk in the correct angle sub-directory, ensuring

we can easily determine the label of the image simply by examining the file path. For example, we
know the output image path /rotated_images/180/image_00000.jpg has been rotated by 180
degrees because it resides in the 180 sub-directory.

In order to keep track of the number of images per angle, we update the angles bookkeeping
dictionary in the following code block:

63 # update the count for the angle
64 c = angles.get(angle, 0)
65 angles[angle] = c + 1
66 pbar.update(i)

Finally, we display some statistics on the number of images per angle in our dataset:

68 # finish the progress bar
69 pbar.finish()
70

71 # loop over the angles and display counts for each of them
72 for angle in sorted(angles.keys()):
73 print("[INFO] angle={}: {:,}".format(angle, angles[angle]))

To build our rotated image dataset, open up a terminal and execute the following command:

$ python create_dataset.py --dataset indoor_cvpr/images \
--output indoor_cvpr/rotated_images

Building Dataset: 100% |####################################| Time: 0:01:19
[INFO] angle=0: 2,487
[INFO] angle=90: 2,480
[INFO] angle=180: 2,525
[INFO] angle=270: 2,483

As you can see from the output, the entire dataset creation process took 1m19s with ≈ 2,500
images per rotation angle, give or take a few images due to the random sampling process. Now that
we have created our dataset, we can move on to applying transfer learning via feature extraction
– these features will then be used in a Logistic Regression classifier to predict (and correct) the
orientation of an input image.

http://pyimg.co/7xnk6

170 Chapter 12. Case Study: Correcting Image Orientation

12.2 Extracting Features
To extract features from our dataset, we’ll be using the VGG16 network architecture that has been
pre-trained on the ImageNet dataset. This script is identical to the one we implemented in Chapter
3 of the Practitioner Bundle. The reason we are able to reuse the same code is due to:

1. The modularity of the tools we built throughout this entire book, ensuring we can reuse
scripts provided our input datasets follow a specific directory structure.

2. Ensuring our images follow the directory pattern /dataset_name/class_label/example
_image.jpg

As a matter of completeness, I’ll review extract_features.py below, but for more details,
please refer to Chapter 3 of the Practitioner Bundle:

1 # import the necessary packages
2 from keras.applications import VGG16
3 from keras.applications import imagenet_utils
4 from keras.preprocessing.image import img_to_array
5 from keras.preprocessing.image import load_img
6 from sklearn.preprocessing import LabelEncoder
7 from pyimagesearch.io import HDF5DatasetWriter
8 from imutils import paths
9 import numpy as np

10 import progressbar
11 import argparse
12 import random
13 import os

Lines 2-13 import our required Python packages. Line 2 imports the VGG16 network architec-
ture that we’ll be treating as a feature extractor. Features extracted by the CNN will be written to
an HDF5 dataset using our HDF5DatasetWriter.

Next, let’s parse our command line arguments:

15 # construct the argument parse and parse the arguments
16 ap = argparse.ArgumentParser()
17 ap.add_argument("-d", "--dataset", required=True,
18 help="path to input dataset")
19 ap.add_argument("-o", "--output", required=True,
20 help="path to output HDF5 file")
21 ap.add_argument("-b", "--batch-size", type=int, default=32,
22 help="batch size of images to be passed through network")
23 ap.add_argument("-s", "--buffer-size", type=int, default=1000,
24 help="size of feature extraction buffer")
25 args = vars(ap.parse_args())

Here we need to supply an input path to our --dataset of rotated images on disk along with
the --output path to our HDF5 file. Given the path to our --dataset we can grab the paths to
the individual images:

27 # store the batch size in a convenience variable
28 bs = args["batch_size"]
29

30 # grab the list of images that we’ll be describing then randomly
31 # shuffle them to allow for easy training and testing splits via

12.2 Extracting Features 171

32 # array slicing during training time
33 print("[INFO] loading images...")
34 imagePaths = list(paths.list_images(args["dataset"]))
35 random.shuffle(imagePaths)

Followed by encoding the labels by extracting the orientation angle from the image path:

37 # extract the class labels from the image paths then encode the
38 # labels
39 labels = [p.split(os.path.sep)[-2] for p in imagePaths]
40 le = LabelEncoder()
41 labels = le.fit_transform(labels)

The following code block handles loading our pre-trained VGG16 network from disk, ensuring
the FC layers are left (allowing us to perform feature extraction):

43 # load the VGG16 network
44 print("[INFO] loading network...")
45 model = VGG16(weights="imagenet", include_top=False)
46

47 # initialize the HDF5 dataset writer, then store the class label
48 # names in the dataset
49 dataset = HDF5DatasetWriter((len(imagePaths), 512 * 7 * 7),
50 args["output"], dataKey="features", bufSize=args["buffer_size"])
51 dataset.storeClassLabels(le.classes_)

We also initialize our HDF5DatasetWriter to write the extracted features to disk. And I’ll
initialize a progress bar so we can keep track of the feature extraction process:

53 # initialize the progress bar
54 widgets = ["Extracting Features: ", progressbar.Percentage(), " ",
55 progressbar.Bar(), " ", progressbar.ETA()]
56 pbar = progressbar.ProgressBar(maxval=len(imagePaths),
57 widgets=widgets).start()

We are now ready to apply transfer learning via feature extraction:

59 # loop over the images in patches
60 for i in np.arange(0, len(imagePaths), bs):
61 # extract the batch of images and labels, then initialize the
62 # list of actual images that will be passed through the network
63 # for feature extraction
64 batchPaths = imagePaths[i:i + bs]
65 batchLabels = labels[i:i + bs]
66 batchImages = []
67

68 # loop over the images and labels in the current batch
69 for (j, imagePath) in enumerate(batchPaths):
70 # load the input image using the Keras helper utility
71 # while ensuring the image is resized to 224x224 pixels
72 image = load_img(imagePath, target_size=(224, 224))

172 Chapter 12. Case Study: Correcting Image Orientation

73 image = img_to_array(image)
74

75 # preprocess the image by (1) expanding the dimensions and
76 # (2) subtracting the mean RGB pixel intensity from the
77 # ImageNet dataset
78 image = np.expand_dims(image, axis=0)
79 image = imagenet_utils.preprocess_input(image)
80

81 # add the image to the batch
82 batchImages.append(image)

Line 60 starts looping over all images in our imagePaths list in batches. For each of the
images, we load them from disk, pre-process them, and store them in a batchImages list. The
batchImages are then passed through the pre-trained VGG16 network yielding us our features
which are written to the HDF5 dataset:

84 # pass the images through the network and use the outputs as
85 # our actual features
86 batchImages = np.vstack(batchImages)
87 features = model.predict(batchImages, batch_size=bs)
88

89 # reshape the features so that each image is represented by
90 # a flattened feature vector of the ‘MaxPooling2D‘ outputs
91 features = features.reshape((features.shape[0], 512 * 7 * 7))
92

93 # add the features and labels to our HDF5 dataset
94 dataset.add(features, batchLabels)
95 pbar.update(i)
96

97 # close the dataset
98 dataset.close()
99 pbar.finish()

To extract features from our rotated images dataset, simply execute the following command:

$ python extract_features.py --dataset indoor_cvpr/rotated_images \
--output indoor_cvpr/hdf5/orientation_features.hdf5

[INFO] loading images...
[INFO] loading network...
Extracting Features: 100% |####################################| Time: 0:02:13

Depending on whether you are using your CPU or GPU, this process may take a few minutes to
a few hours. After the process completes, you’ll find a file named orientation_features.hdf5
in your output directory:

$ ls -l indoor_cvpr/hdf5/
total 1955192
-rw-rw-r-- 1 adrian adrian 2002108504 Nov 21 2016 orientation_features.hdf5

This file contains the features extracted by our CNN on top of which which we’ll train Logistic
Regression classifier. Again, for more information on transfer learning via feature extraction, please
see Chapter 3 of the Practitioner Bundle.

12.3 Training an Orientation Correction Classifier 173

12.3 Training an Orientation Correction Classifier
Training a classifier to predict image orientation will be accomplished using the train_model.py
script from the Practitioner Bundle as well – we simply need to supply the path to our input HDF5
dataset and our script will take care of tuning the Logistic Regression hyperparameters and writing
the output model to disk. Again, as a matter of completeness, I will review train_model.py
below, but you’ll want to refer to Chapter 3 of the Practitioner Bundle for more detailed information
on this script.

1 # import the necessary packages
2 from sklearn.linear_model import LogisticRegression
3 from sklearn.model_selection import GridSearchCV
4 from sklearn.metrics import classification_report
5 import argparse
6 import pickle
7 import h5py
8

9 # construct the argument parse and parse the arguments
10 ap = argparse.ArgumentParser()
11 ap.add_argument("-d", "--db", required=True,
12 help="path HDF5 database")
13 ap.add_argument("-m", "--model", required=True,
14 help="path to output model")
15 ap.add_argument("-j", "--jobs", type=int, default=-1,
16 help="# of jobs to run when tuning hyperparameters")
17 args = vars(ap.parse_args())

Lines 2-7 import our required Python packages while Lines 10-17 parse our command line
arguments. We only need to supply two command line arguments here, --db, which is the path
to our input HDF5 dataset, and --model, the path to our output serialized Logistic Regression
classifier once it has been trained.

We then construct a training and testing split based on the number of entries in the database,
using 75% of the data for testing and 25% for testing:

19 # open the HDF5 database for reading then determine the index of
20 # the training and testing split, provided that this data was
21 # already shuffled *prior* to writing it to disk
22 db = h5py.File(args["db"], "r")
23 i = int(db["labels"].shape[0] * 0.75)

To tune the parameters of our Logistic Regression classifier we’ll perform a grid search below:

25 # define the set of parameters that we want to tune then start a
26 # grid search where we evaluate our model for each value of C
27 print("[INFO] tuning hyperparameters...")
28 params = {"C": [0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0]}
29 model = GridSearchCV(LogisticRegression(), params, cv=3,
30 n_jobs=args["jobs"])
31 model.fit(db["features"][:i], db["labels"][:i])
32 print("[INFO] best hyperparameters: {}".format(model.best_params_))

Based on the best hyperparameters we’ll evaluate the model on the testing data:

174 Chapter 12. Case Study: Correcting Image Orientation

34 # evaluate the model
35 print("[INFO] evaluating...")
36 preds = model.predict(db["features"][i:])
37 print(classification_report(db["labels"][i:], preds,
38 target_names=db["label_names"]))

And then finally write the trained classifier to disk:

40 # serialize the model to disk
41 print("[INFO] saving model...")
42 f = open(args["model"], "wb")
43 f.write(pickle.dumps(model.best_estimator_))
44 f.close()
45

46 # close the database
47 db.close()

To train our Logistic Regression classifier on the features extracted from our VGG16 network,
just execute the following command:

$ python train_model.py --db indoor_cvpr/hdf5/orientation_features.hdf5 \
--model models/orientation.cpickle

[INFO] tuning hyperparameters...
[INFO] best hyperparameters: {’C’: 0.01}
[INFO] evaluating...

precision recall f1-score support

0 0.95 0.93 0.94 646
180 0.92 0.94 0.93 612
270 0.92 0.92 0.92 635
90 0.93 0.94 0.93 601

avg / total 0.93 0.93 0.93 2494

Once train_model.py finishes executing, you’ll notice that our classifier obtains 93% accu-
racy, implying that 93% of the time our model can correctly predict the orientation of the image.
Given that we can predict the orientation of the image we can then correct it in the following
section.

Again, it’s worth mentioning here that we would not be able to obtain such a high prediction
accuracy if VGG16 was truly rotation invariant. Instead, the (collective) filters inside VGG16 are
able to recognize objects in various rotations – the individual filters themselves are not rotation
invariant. If these filters truly were rotation invariant, then it would be impossible for us to determine
image orientation due the fact that the extracted features would be near identical regardless of
image orientation.

This is an important lesson to learn when you are studying Convolutional Neural Networks
and expect to deploy them to real-world situations. If you intend on recognizing objects under
any orientation, you’ll want to ensure that your training data sufficiently reflects that, or use a
feature extraction + machine learning method that naturally handles rotation.

12.4 Correcting Orientation 175

12.4 Correcting Orientation

To demonstrate that our VGG16 feature extraction + Logistic Regression classifier can sufficiently
classify images, let’s write a Python script that applies the pipeline to input images. Open up a new
file, name it orient_images.py, and insert the following code:

1 # import the necessary packages
2 from keras.applications import VGG16
3 from keras.applications import imagenet_utils
4 from keras.preprocessing.image import img_to_array
5 from keras.preprocessing.image import load_img
6 from imutils import paths
7 import numpy as np
8 import argparse
9 import pickle

10 import imutils
11 import h5py
12 import cv2

We start by importing our required Python packages. Notice how we’ll once again need VGG16
for feature extraction. We’ll also load some helper utilities used to facilitate loading our input
image from disk and preparing it for feature extraction by VGG16.

Next, let’s parse our command line arguments:

14 # construct the argument parse and parse the arguments
15 ap = argparse.ArgumentParser()
16 ap.add_argument("-d", "--db", required=True,
17 help="path HDF5 database")
18 ap.add_argument("-i", "--dataset", required=True,
19 help="path to the input images dataset")
20 ap.add_argument("-m", "--model", required=True,
21 help="path to trained orientation model")
22 args = vars(ap.parse_args())

Our script requires three command line arguments, each of which are detailed below:
• --db: Here we supply the path to our HDF5 dataset of extracted features residing on disk.

We only need this dataset so we can extract the label names (i.e., angles) from the HDF5 file,
otherwise this switch would not be needed.
• --dataset: This is the path to our dataset of rotated images residing on disk.
• --model: Here we can provide the path to our trained Logistic Regression classifier used to

predict the orientation of the images.
Let’s go ahead and load the label names from our HDF5 dataset, followed by creating a sample

of ten images from our input --dataset that we’ll use to visualize our orientation correction:

24 # load the label names (i.e., angles) from the HDF5 dataset
25 db = h5py.File(args["db"])
26 labelNames = [int(angle) for angle in db["label_names"][:]]
27 db.close()
28

29 # grab the paths to the testing images and randomly sample them
30 print("[INFO] sampling images...")

176 Chapter 12. Case Study: Correcting Image Orientation

31 imagePaths = list(paths.list_images(args["dataset"]))
32 imagePaths = np.random.choice(imagePaths, size=(10,), replace=False)

We’ll also load the VGG16 network architecture and Logistic Regression classifier from disk
as well:

34 # load the VGG16 network
35 print("[INFO] loading network...")
36 vgg = VGG16(weights="imagenet", include_top=False)
37

38 # load the orientation model
39 print("[INFO] loading model...")
40 model = pickle.loads(open(args["model"], "rb").read())

The core of the orientation correction pipeline can be found below:

42 # loop over the image paths
43 for imagePath in imagePaths:
44 # load the image via OpenCV so we can manipulate it after
45 # classification
46 orig = cv2.imread(imagePath)
47

48 # load the input image using the Keras helper utility while
49 # ensuring the image is resized to 224x224 pixels
50 image = load_img(imagePath, target_size=(224, 224))
51 image = img_to_array(image)
52

53 # preprocess the image by (1) expanding the dimensions and (2)
54 # subtracting the mean RGB pixel intensity from the ImageNet
55 # dataset
56 image = np.expand_dims(image, axis=0)
57 image = imagenet_utils.preprocess_input(image)
58

59 # pass the image through the network to obtain the feature vector
60 features = vgg.predict(image)
61 features = features.reshape((features.shape[0], 512 * 7 * 7))

On Line 43 we loop over each of the individual sampled image paths. For each of these images,
we load the original from disk via OpenCV (Line 46) so we can correct its orientation later in the
script. Lines 50 and 51 load the image from disk via the Keras helper utility, ensuring the channels
of the image are properly ordered.

We then continue to pre-process the image for classification on Lines 56 and 67. Line
60 performs a forward pass, passing the image through vgg and obtaining the output features.
These feature are then flattened from a 512×7×7 array into a flattened list of 9,975 floating point
values. Flattening the output of the POOL layer is a requirement prior to passing the images through
the Logistic Regression classifier, which we do below:

63 # now that we have the CNN features, pass these through our
64 # classifier to obtain the orientation predictions
65 angle = model.predict(features)
66 angle = labelNames[angle[0]]

12.5 Summary 177

Given the predicted angle from the input features, we can now correct the orientation of the
image and display both the original and corrected image to our screen:

68 # now that we have the predicted orientation of the image we can
69 # correct for it
70 rotated = imutils.rotate_bound(orig, 360 - angle)
71

72 # display the original and corrected images
73 cv2.imshow("Original", orig)
74 cv2.imshow("Corrected", rotated)
75 cv2.waitKey(0)

To see our orientation correction script in action, execute the following command:

$ python orient_images.py --db indoor_cvpr/hdf5/orientation_features.hdf5 \
--dataset indoor_cvpr/rotated_images --model models/orientation.cpickle

Figure 12.2: Correcting image orientation with features extracted from a pre-trained CNN.

The results of our algorithm can be seen in Figure 12.2. On the left, we have examples of two
original, uncorrected images. Then on the right, we have our images after applying orientation
correction. In each of these cases, we were able to predict the rotation angle of the original image
and then correct it in the output image.

Algorithms and deep learning pipelines such as these can be used to process large datasets,
perhaps of scanned images, where the orientation of the input images is unknown. Applying such a
pipeline would dramatically reduce the amount of time taken for a human to manually correct the
orientation prior to storing the image in an electronic database.

12.5 Summary
In this case study, we learned how to predict the orientation of images with no a priori knowledge.
To accomplish this task, we generated a labeled dataset where images were randomly rotated by

178 Chapter 12. Case Study: Correcting Image Orientation

{0,90,180,360} degrees. We then applied transfer learning via feature extraction and the VGG16
network architecture to extract features from the final POOL layer in the network. These features
were fed into a Logistic Regression classifier, enabling us to correctly predict the orientation of
an image with 93% accuracy. Combining both the VGG16 network and our trained Logistic
Regression model enabled us to construct a pipeline that can automatically detect and correct image
orientation.

Finally, it’s once again worth mentioning that this result would have been impossible if our
CNN was truly rotation invariant. CNNs are robust image classification tools and can correctly
classify images under a variety of orientations; however, the individual filters inside the CNN are
not rotation invariant.

Furthermore, CNNs are only able to classify objects under rotations on which they were trained.
There is certainly a degree of generalization here as well; however, if these filters were truly rotation
invariant the features we extracted from our input images would be near identical to each other.
If the features were near identical, then the Logistic Regression classifier would not be able to
discriminate between our image orientations. This is an important lesson to keep in mind when
developing your own deep learning applications – if you expect input objects to exist under many
orientations, make sure your training data reflects this requirement.

13. Case Study: Vehicle Identification

Have you ever seen the movie Minority Report? In the film, there is a scene where the protagonist
(Tom Cruise) is walking through a crowded shopping mall. A combination of camera sensors
mounted next to each LCD display, along with specialized computer vision algorithms, are able to
(1) recognize who he is and (2) display targeted advertising based on his specific profile.

Back in 2002 when Minority Report was released, this type of robust, targeted advertis-
ing sounded like science fiction. But the truth is we aren’t too far from it. Imagine you were driving
a car down a highway filled with billboards – only instead of being posters plastered on a big wall,
they were instead massive LCD screens. Then, based on what type of car you were driving, you
would see a different ad. The interests of a person driving a brand new BMW 5 series might receive
ads for golfing lessons, while the driver of a later model minivan might be drawn to advertising
on how to save money for their kids’ college. Whether or not these ads reflect the interest of the
individual driver is questionable, but taken on aggregate, the following process is exactly how
advertising works:

1. Analyze a demographic.
2. Identify their interests.
3. Display advertising that reflects these interests.
In this chapter, we’ll learn how to build the computer vision component of an intelligent

billboard system. Specifically, we’ll learn how to fine-tune a pre-trained CNN with the mxnet
library to recognize over 164 vehicle makes and models (using remarkably little training data) with
over 96.54% accuracy.

13.1 The Stanford Cars Dataset
The Stanford cars dataset is a collection of 16,185 images of 196 cars (Figure 13.1), curated
by Krause et al. in their 2013 publication, 3D Object Representation for Fine-Grained Classifica-
tion [37].

You can download an archive of the dataset here:
http://pyimg.co/9s9mx
After downloading, use the following command to uncompress the dataset:

http://pyimg.co/9s9mx

180 Chapter 13. Case Study: Vehicle Identification

Figure 13.1: The Stanford Cars Dataset consists of 16,185 images with 196 vehicle make and
model classes.

$ tar -xvf car_ims.tar.gz

We’ll discuss this dataset in more detail in Section 13.1.1. The goal of the original Krause et
al. paper is to correctly predict the make, model, and year of a given vehicle. However, given that
there are:

1. Extreme class imbalances in the dataset where some vehicle makes and models are heav-
ily overrepresented (e.x., Audi and BMW each having over 1,000 data points while Tesla
only has 77 examples).

2. Very little data, even for the large classes.
I decided to remove the year label and instead categorize images strictly based on their make and

model. Even when doing categorization this way, there are instances where we have < 100 images
per class, making it very challenging to fine-tune a deep CNN on this dataset. However, with the
right fine-tuning approach, we’ll still be able to obtain > 95% classification accuracy.

Once removing the year label, we were left with 164 total vehicle make and model classes to
recognize. Our goal will be to fine-tune VGG16 to identify each of the 164 classes.

13.1.1 Building the Stanford Cars Dataset
In order to fine-tune VGG16 on the Stanford Cars dataset, we first need to compact the images into
efficiently packed record files, just like in our chapters on training ImageNet. But before we get
that far, let’s take a look at the directory structure for our project:

--- car_classification
| |--- config
| | |--- __init__.py
| | |--- car_config.py
| |--- build_dataset.py
| |--- fine_tune_cars.py
| |--- test_cars.py
| |--- vgg16
| | |--- vgg16-0000.params
| | |--- vgg16-symbol.json
| |--- vis_classification.py

We’ll once again have a config module where we’ll store car_config.py – this file will

13.1 The Stanford Cars Dataset 181

contain all necessary configurations to build the Stanford Cars Dataset and fine-tune VGG16 on it.
Furthermore, there will be substantially fewer configuration variables required.

The build_dataset.py, as the name suggests, will input our image paths and class labels and
then generate a .lst file for each of the training, validation, and testing splits, respectively. Once
we have these .lst files, we can apply mxnet’s im2rec binary to construct the record database.

The fine_tune_cars.py script will be responsible for fine-tuning VGG16 on our dataset.
Once we have successfully fine-tuned VGG16, we’ll want to evaluate the performance on the
testing set – this is exactly what test_cars.py will accomplish.

Of course, evaluating a network on a pre-built dataset does not give you any insight in how to
apply CNN trained with mxnet to a single, individual image. To investigate how to classify a single
image futher (and demonstrate how you might build an intelligent ad-serving billboard), we’ll
create vis_classification.py. This script will load an input image from disk, pre-process it,
pass it through our fine-tuned VGG16, and display the output predictions.

The Stanford Cars Configuration File
Before we can build our .lst and .rec files, we first need to create our car_config.py file. Go
ahead and open up car_config.py now and we’ll review the contents:

1 # import the necessary packages
2 from os import path
3

4 # define the base path to the cars dataset
5 BASE_PATH = "/raid/datasets/cars"
6

7 # based on the base path, derive the images path and meta file path
8 IMAGES_PATH = path.sep.join([BASE_PATH, "car_ims"])
9 LABELS_PATH = path.sep.join([BASE_PATH, "complete_dataset.csv"])

On Line 5 I define the BASE_PATH to my Stanford Cars dataset. Inside the BASE_PATH you’ll
find my unarchived cars_ims directory, along with my checkpoints, lists, output, and rec
directories used to store model checkpoints, dataset list files, model output, raw images, and im2rec
encoded datasets:

$ ls
car_ims car_ims.tgz checkpoints complete_dataset.csv lists output rec

This configuration is how I personally prefer to define my directory structure for a given dataset,
but you should configure your environment in the way you are most comfortable – just keep in
mind that you will need to update the BASE_PATH and any other paths to match your system.

R The complete_dataset.csv file is a custom CSV included with your download of Deep
Learning for Computer Vision with Python. You can find the complete_dataset.csv file in
the code directory associated with this chapter. Please either (1) copy complete_dataset.csv
into your cars dataset as indicated in the directory structure above or (2) update the LABELS_PATH
accordingly.

Line 8 uses the BASE_PATH to derive the IMAGES_PATH, which is where the input images to
the Stanford Cars dataset live. As you can see, there are are 16,185 JPEG files, each of them named
sequentially:

182 Chapter 13. Case Study: Vehicle Identification

$ ls -l car_ims/*.jpg | wc -l
16185
$ ls -l car_ims/*.jpg | head -n 5
-rw-r--r-- 1 adrian adrian 466876 Feb 28 2015 car_ims/000001.jpg
-rw-r--r-- 1 adrian adrian 25139 Feb 28 2015 car_ims/000002.jpg
-rw-r--r-- 1 adrian adrian 19451 Feb 28 2015 car_ims/000003.jpg
-rw-r--r-- 1 adrian adrian 16089 Feb 28 2015 car_ims/000004.jpg
-rw-r--r-- 1 adrian adrian 1863 Feb 28 2015 car_ims/000005.jpg

Line 9 then defines the path to our complete_dataset.csv file. This file is actually not part
of the dataset curated by Krause et al. Instead, original DevKit supplied by Krause et al. included
MATLAB meta files that were hard to parse as all three vehicle make, model, and name were
stored as a single string. To make the Stanford Cars dataset easier to work with, I created a
complete_dataset.csv file which lists the image filename, vehicle make, model, model, type
(sedan, coupe, etc.), and manufacture year all in a convenient comma separated file. Using this file,
we’ll be able to more easily build our dataset.

Next, we’ll definite path to our output training, validation, and testing .lst files:

11 # define the path to the output training, validation, and testing
12 # lists
13 MX_OUTPUT = BASE_PATH
14 TRAIN_MX_LIST = path.sep.join([MX_OUTPUT, "lists/train.lst"])
15 VAL_MX_LIST = path.sep.join([MX_OUTPUT, "lists/val.lst"])
16 TEST_MX_LIST = path.sep.join([MX_OUTPUT, "lists/test.lst"])

As well as the paths to our .rec files for each of the data splits:

18 # define the path to the output training, validation, and testing
19 # image records
20 TRAIN_MX_REC = path.sep.join([MX_OUTPUT, "rec/train.rec"])
21 VAL_MX_REC = path.sep.join([MX_OUTPUT, "rec/val.rec"])
22 TEST_MX_REC = path.sep.join([MX_OUTPUT, "rec/test.rec"])

Notice how I am using the path.sep variable provided by Python to make these configurations
as (reasonably) portable as possible. We’ll need to encode the human readable vehicle make +
model names as integers during training which will require a label encoder:

24 # define the path to the label encoder
25 LABEL_ENCODER_PATH = path.sep.join([BASE_PATH, "output/le.cpickle"])

This encoder will also enable us to perform the inverse transform and obtain the human readable
names from the integer class labels.

In order to perform mean normalization we’ll need to define the RGB means:

27 # define the RGB means from the ImageNet dataset
28 R_MEAN = 123.68
29 G_MEAN = 116.779
30 B_MEAN = 103.939

13.1 The Stanford Cars Dataset 183

Keep in mind that these are the RGB means from the original Simonyan and Zisserman
paper [17]. Since we are fine-tuning VGG, we must use the RGB means they derived from the
ImageNet dataset – it would not make any sense for us to compute the RGB means for the cars
dataset and then use them to fine-tune VGG. We need the original RGB means that VGG16 was
trained on in order to successfully fine-tune the network to recognize vehicle makes and models.

Next, we need to define the total number of classes, along with the number of validation and
testing images we’ll be using:

32 # define the percentage of validation and testing images relative
33 # to the number of training images
34 NUM_CLASSES = 164
35 NUM_VAL_IMAGES = 0.15
36 NUM_TEST_IMAGES = 0.15

Our CNN must be able to recognize 164 different vehicle makes and models (Line 34). We’ll
then take 30% of the original dataset, and use 15% for validation and 15% for testing, leaving 70%
for training.

Our final code block handles configuring the batch size and number of devices to train with:

38 # define the batch size
39 BATCH_SIZE = 32
40 NUM_DEVICES = 1

We’ll use a mini-batch size of 32 images along with a single GPU to fine-tune VGG on the cars
dataset. As we’ll find out, fine-tuning VGG on the Stanford Cars dataset is very fast due to the
small dataset – we’ll be able to complete a single epoch in ≈ 10 minutes with just one GPU.

Creating the List Files
Now that our configuration file has been created, we can move on to the build_dataset.py
script. Just like in our ImageNet experiments, this script will be responsible for building the
training, validation, and testing .lst files. Go ahead and open up build_dataset.py and insert
the following code:

1 # import the necessary packages
2 from config import car_config as config
3 from sklearn.preprocessing import LabelEncoder
4 from sklearn.model_selection import train_test_split
5 import progressbar
6 import pickle
7 import os
8

9 # read the contents of the labels file, then initialize the list of
10 # image paths and labels
11 print("[INFO] loading image paths and labels...")
12 rows = open(config.LABELS_PATH).read()
13 rows = rows.strip().split("\n")[1:]
14 trainPaths = []
15 trainLabels = []

Lines 2-7 import our required Python packages. We’ll make sure to import our car_config
module (aliased as config) so we can access our file paths and additional configurations. The

184 Chapter 13. Case Study: Vehicle Identification

train_test_split function will be used to create our validation and testing splits, respectively.
We then read the contents of the LABELS_PATH file (i.e., complete_dataset.csv) while initializ-
ing two lists: one for our training image paths and the other for our training labels.

Now that we have loaded the contents of our labels file, let’s loop over each row individually:

17 # loop over the rows
18 for row in rows:
19 # unpack the row, then update the image paths and labels list
20 # (filename, make) = row.split(",")[:2]
21 (filename, make, model) = row.split(",")[:3]
22 filename = filename[filename.rfind("/") + 1:]
23 trainPaths.append(os.sep.join([config.IMAGES_PATH, filename]))
24 trainLabels.append("{}:{}".format(make, model))

For each row, we break the comma separated line into three values: the filename, vehicle
make, and vehicle model. At this point the filename is represented as car_ims/000090.jpg,
so we parse the path and remove the sub-directory, leaving the filename as 000090.jpg (Line
22). We update the trainPaths list with the path to our input training image by combining our
IMAGES_PATH with the filename. The label is then constructed by concatenating the make and
model, and then it’s added to the trainLabels list.

Now that we have parsed the entire LABELS_PATH file, we need to compute the total number
of validation and testing files we’ll need based on the NUM_VAL_IMAGES and NUM_TEST_IMAGES
percentages:

26 # now that we have the total number of images in the dataset that
27 # can be used for training, compute the number of images that
28 # should be used for validation and testing
29 numVal = int(len(trainPaths) * config.NUM_VAL_IMAGES)
30 numTest = int(len(trainPaths) * config.NUM_TEST_IMAGES)

We’ll also take the time now to convert our strings labels to integers:

32 # our class labels are represented as strings so we need to encode
33 # them
34 print("[INFO] encoding labels...")
35 le = LabelEncoder().fit(trainLabels)
36 trainLabels = le.transform(trainLabels)

As mentioned earlier, we do not have a preset validation and testing set, so we need to create
them from the training set. The following code block creates each of these splits:

38 # perform sampling from the training set to construct a a validation
39 # set
40 print("[INFO] constructing validation data...")
41 split = train_test_split(trainPaths, trainLabels, test_size=numVal,
42 stratify=trainLabels)
43 (trainPaths, valPaths, trainLabels, valLabels) = split
44

45 # perform stratified sampling from the training set to construct a
46 # a testing set

13.1 The Stanford Cars Dataset 185

47 print("[INFO] constructing testing data...")
48 split = train_test_split(trainPaths, trainLabels, test_size=numTest,
49 stratify=trainLabels)
50 (trainPaths, testPaths, trainLabels, testLabels) = split

Next, let’s build our datasets list where each entry is a 4-tuple containing the split type, paths
to images, corresponding class labels, and path to output .lst file:

52 # construct a list pairing the training, validation, and testing
53 # image paths along with their corresponding labels and output list
54 # files
55 datasets = [
56 ("train", trainPaths, trainLabels, config.TRAIN_MX_LIST),
57 ("val", valPaths, valLabels, config.VAL_MX_LIST),
58 ("test", testPaths, testLabels, config.TEST_MX_LIST)]

To construct each .lst file, we need to loop over each of the entries in datasets:

60 # loop over the dataset tuples
61 for (dType, paths, labels, outputPath) in datasets:
62 # open the output file for writing
63 print("[INFO] building {}...".format(outputPath))
64 f = open(outputPath, "w")
65

66 # initialize the progress bar
67 widgets = ["Building List: ", progressbar.Percentage(), " ",
68 progressbar.Bar(), " ", progressbar.ETA()]
69 pbar = progressbar.ProgressBar(maxval=len(paths),
70 widgets=widgets).start()

Line 64 opens a file pointer to the current outputPath. We can then loop over each of the
individual image paths and labels, writing them to the output .lst file as we do:

72 # loop over each of the individual images + labels
73 for (i, (path, label)) in enumerate(zip(paths, labels)):
74 # write the image index, label, and output path to file
75 row = "\t".join([str(i), str(label), path])
76 f.write("{}\n".format(row))
77 pbar.update(i)
78

79 # close the output file
80 pbar.finish()
81 f.close()

Our final code block handles saving the serialized label encoder to disk so we can reuse it later
in this chapter:

83 # write the label encoder to file
84 print("[INFO] serializing label encoder...")
85 f = open(config.LABEL_ENCODER_PATH, "wb")
86 f.write(pickle.dumps(le))
87 f.close()

186 Chapter 13. Case Study: Vehicle Identification

To build our training, validation, and testing .lst files, execute the following command:

$ python build_dataset.py
[INFO] loading image paths and labels...
[INFO] encoding labels...
[INFO] constructing validation data...
[INFO] constructing testing data...
[INFO] building /raid/datasets/cars/lists/train.lst...
Building List: 100% |####################################| Time: 0:00:00
[INFO] building /raid/datasets/cars/lists/val.lst...
Building List: 100% |####################################| Time: 0:00:00
[INFO] building /raid/datasets/cars/lists/test.lst...
Building List: 100% |####################################| Time: 0:00:00
[INFO] serializing label encoder...

After the command finishes running, you should verify that you indeed have the train.lst,
test.lst, and val.lst files on your system:

$ wc -l lists/*.lst
2427 lists/test.lst

11331 lists/train.lst
2427 lists/val.lst

16185 total

Creating the Record Database
Given the .lst files of each of the splits, we now need to generate mxnet record files. Below
you can see the command to generate the train.rec file which is the exact same file path as in
TRAIN_MX_REC config:

$ ~/mxnet/bin/im2rec /raid/datasets/cars/lists/train.lst "" \
/raid/datasets/cars/rec/train.rec resize=256 encoding=’.jpg’ \
quality=100

...
[12:23:13] tools/im2rec.cc:298: Total: 11331 images processed, 124.967 sec elapsed

You can generate the test.rec dataset using this command:

$ ~/mxnet/bin/im2rec /raid/datasets/cars/lists/test.lst "" \
/raid/datasets/cars/rec/test.rec resize=256 encoding=’.jpg’ \
quality=100

...
[12:25:18] tools/im2rec.cc:298: Total: 2427 images processed, 33.5529 sec elapsed

And the val.rec file with this command:

$ ~/mxnet/bin/im2rec /raid/datasets/cars/lists/val.lst "" \
/raid/datasets/cars/rec/val.rec resize=256 encoding=’.jpg’ \

quality=100
...
[12:24:05] tools/im2rec.cc:298: Total: 2427 images processed, 23.9026 sec elapsed

13.2 Fine-tuning VGG on the Stanford Cars Dataset 187

As a sanity check, list the contents of the directory where you have stored the record databases:

$ ls -l rec
total 1188668
-rw-rw-r-- 1 adrian adrian 182749528 Aug 26 12:25 test.rec
-rw-rw-r-- 1 adrian adrian 851585528 Aug 26 12:23 train.rec
-rw-rw-r-- 1 adrian adrian 182850704 Aug 26 12:24 val.rec

As you can see from my output, my training database is approximately 850MB, while the
validation and testing datasets are 181MB a piece, substantially smaller than the ImageNet dataset
we worked with earlier.

13.2 Fine-tuning VGG on the Stanford Cars Dataset

We are now finally ready to fine-tune VGG16 on the Stanford Cars dataset. But before we can write
the code for fine_tune_cars.py, we first need to download the pre-trained weights for VGG16.
You can download the weights using this link:

http://data.dmlc.ml/models/imagenet/vgg/
Be sure to download both the vgg16-0000.params and vgg16-symbol.json files. Again,

keep in mind that the weights for VGG16 are ≈ 550MB, so be patient as the file downloads. The
.params file are the actual weights while the .json file is the architecture. We’ll learn how to load
these two files and then fine-tune VGG16 in fine_tune_cars.py. Go ahead and open the file up
now and we’ll get to work:

1 # import the necessary packages
2 from config import car_config as config
3 import mxnet as mx
4 import argparse
5 import logging
6 import os
7

8 # construct the argument parse and parse the arguments
9 ap = argparse.ArgumentParser()

10 ap.add_argument("-v", "--vgg", required=True,
11 help="path to pre-trained VGGNet for fine-tuning")
12 ap.add_argument("-c", "--checkpoints", required=True,
13 help="path to output checkpoint directory")
14 ap.add_argument("-p", "--prefix", required=True,
15 help="name of model prefix")
16 ap.add_argument("-s", "--start-epoch", type=int, default=0,
17 help="epoch to restart training at")
18 args = vars(ap.parse_args())

Lines 2-6 import our Python packages – we’ll import our car_config here so we can have
access to our configurations. We then parse three required command line arguments, followed by a
fourth optional one:
• --vgg: This is the path to the pre-trained VGG weights we will be fine-tuning.
• --checkpoints: During the fine-tuning process, we’ll serialize the weights after every

epoch. This switch controls where the serialized weight files will be stored.
• --prefix: Just like all other mxnet examples, we need to supply a name for our network.

http://data.dmlc.ml/models/imagenet/vgg/

188 Chapter 13. Case Study: Vehicle Identification

• --start-epoch: If we choose to stop and restart training during fine-tuning, we can indicate
which epoch we want to restart training from. This command line argument is optional pro-
vided you are fine-tuning from epoch zero.

Next, we’ll set our logging file as well as determine our batch size based on the configuration
file and the number of devices we’ll be using for training:

20 # set the logging level and output file
21 logging.basicConfig(level=logging.DEBUG,
22 filename="training_{}.log".format(args["start_epoch"]),
23 filemode="w")
24

25 # determine the batch
26 batchSize = config.BATCH_SIZE * config.NUM_DEVICES

In order to access our training data, we’ll need to instantiate the ImageRecordIter:

28 # construct the training image iterator
29 trainIter = mx.io.ImageRecordIter(
30 path_imgrec=config.TRAIN_MX_REC,
31 data_shape=(3, 224, 224),
32 batch_size=batchSize,
33 rand_crop=True,
34 rand_mirror=True,
35 rotate=15,
36 max_shear_ratio=0.1,
37 mean_r=config.R_MEAN,
38 mean_g=config.G_MEAN,
39 mean_b=config.B_MEAN,
40 preprocess_threads=config.NUM_DEVICES * 2)

The VGG16 network architecture assumes input images that are 224× 224 pixels with 3
channels; however, recall from Section 13.1.1 above, that we created .rec files with images that
are 256 pixels along their shortest dimension . Why did we do create these files? The answer
lies with the rand_crop attribute (Line 33). This attribute indicates that we wish to randomly
crop 224×224 regions from the 256×256 input image. Doing so can help us improve classification
accuracy. We’ll also supply the RGB means from the original VGG16 trained by Simonyan
and Zisserman since we are fine-tuning rather than training from scratch.

Let’s also construct the validation image iterator:

42 # construct the validation image iterator
43 valIter = mx.io.ImageRecordIter(
44 path_imgrec=config.VAL_MX_REC,
45 data_shape=(3, 224, 224),
46 batch_size=batchSize,
47 mean_r=config.R_MEAN,
48 mean_g=config.G_MEAN,
49 mean_b=config.B_MEAN)

In order to fine-tune VGG16, we’ll be using the SGD optimizer:

13.2 Fine-tuning VGG on the Stanford Cars Dataset 189

51 # initialize the optimizer and the training contexts
52 opt = mx.optimizer.SGD(learning_rate=1e-4, momentum=0.9, wd=0.0005,
53 rescale_grad=1.0 / batchSize)
54 ctx = [mx.gpu(3)]

We’ll be using a small(er) learning rate of 1e− 4 initially – future experiments will help us
determine what the optimal initial learning rate is. We’ll also train with a momentum of 0.9 and L2
weight regularization term of 0.0005. A single GPU will be used to fine-tune VGG on the Stanford
Cars dataset as epochs will only take ≈ 11 seconds.

Next, we’ll build the path to our output checkpointsPath, as well as initialize the argument
parameters, auxiliary parameters, and whether or not “missing” parameters are allowed in the
network:

56 # construct the checkpoints path, initialize the model argument and
57 # auxiliary parameters, and whether uninitialized parameters should
58 # be allowed
59 checkpointsPath = os.path.sep.join([args["checkpoints"],
60 args["prefix"]])
61 argParams = None
62 auxParams = None
63 allowMissing = False

In this context, “missing parameters” are parameters that have not yet been initialized in the
network. Normally we would not allow uninitialized parameters; however, recall that fine-tuning
requires us to slice off the head of the network and replace it with a new, uninitialized fully-
connected head. Therefore, if we are training from epoch zero, we will allow missing parameters.

Speaking of training from epoch zero, let’s see how this process is done:

65 # if there is no specific model starting epoch supplied, then we
66 # need to build the network architecture
67 if args["start_epoch"] <= 0:
68 # load the pre-trained VGG16 model
69 print("[INFO] loading pre-trained model...")
70 (symbol, argParams, auxParams) = mx.model.load_checkpoint(
71 args["vgg"], 0)
72 allowMissing = True

Line 67 makes a check to see if we are starting the initial fine-tuning process. Provided that we
are, Lines 70 and 71 load the pre-trained --vgg weights from file. We also update allowMissing
to be True as we’re about to replace the head of the network.

Replacing the head of the network is not as straightforward as Keras (as it involves some
investigative work in the layer names), but it’s still a relatively straightforward process:

74 # grab the layers from the pre-trained model, then find the
75 # dropout layer *prior* to the final FC layer (i.e., the layer
76 # that contains the number of class labels)
77 # HINT: you can find layer names like this:
78 # for layer in layers:
79 # print(layer.name)

190 Chapter 13. Case Study: Vehicle Identification

80 # then, append the string ‘_output‘ to the layer name
81 layers = symbol.get_internals()
82 net = layers["drop7_output"]

Line 81 grabs all layers inside the VGG16 network we just loaded from disk. We then need
to determine where the final output layer is and then slice off the rest of the FC head. This process
requires a bit of investigative work as we need to know the name of the final output layer we are
interested in (in this case, the final dropout layer before we apply the 1,000 node FC layer for
ImageNet labels). To find this dropout layer, I recommend loading VGG16 in a separate Python
shell, grabbing the layers, and printing out the names:

$ python
>>> import mxnet as mx
>>> (symbol, argParams, auxParams) = mx.model.load_checkpoint("vgg16", 0)
>>> layers = symbol.get_internals()
>>> for layer in layers:
... print(layer.name)
...
data
conv1_1_weight
conv1_1_bias
conv1_1
relu1_1
conv1_2_weight
conv1_2_bias
conv1_2
relu1_2
pool1
...
fc7_weight
fc7_bias
fc7
relu7
drop7
fc8_weight
fc8_bias
fc8
prob_label
prob

Here we can see that drop7 is the final dropout layer before the 1,000 node FC layer. To obtain
the output of this class, simply append output to the end of the drop7 string: drop7_output.
Constructing this string serves as the key to our layers dictionary on Line 82, allowing us to keep
all layers up until the final FC layer.

Our next code block attaches a new FC head with NUM_CLASSES (164) to the body of VGG16,
followed by a softmax classifier:

84 # construct a new FC layer using the desired number of output
85 # class labels, followed by a softmax output
86 net = mx.sym.FullyConnected(data=net,
87 num_hidden=config.NUM_CLASSES, name="fc8")
88 net = mx.sym.SoftmaxOutput(data=net, name="softmax")

13.2 Fine-tuning VGG on the Stanford Cars Dataset 191

89

90 # construct a new set of network arguments, removing any previous
91 # arguments pertaining to FC8 (this will allow us to train the
92 # final layer)
93 argParams = dict({k:argParams[k] for k in argParams
94 if "fc8" not in k})

Lines 93 and 94 delete any parameter entries for fc8, the FC layer we just surgically removed
from the network. The problem is that argParams does not contain any information regarding our
new FC head, which is exactly why we set allowMissing to True earlier in the code.

In the case that we are restarting our fine-tuning from a specific epoch, we simply need to load
the respective weights:

96 # otherwise, a specific checkpoint was supplied
97 else:
98 # load the checkpoint from disk
99 print("[INFO] loading epoch {}...".format(args["start_epoch"]))

100 (net, argParams, auxParams) = mx.model.load_checkpoint(
101 checkpointsPath, args["start_epoch"])

Let’s also initialize our standard set of callbacks and metrics:

103 # initialize the callbacks and evaluation metrics
104 batchEndCBs = [mx.callback.Speedometer(batchSize, 50)]
105 epochEndCBs = [mx.callback.do_checkpoint(checkpointsPath)]
106 metrics = [mx.metric.Accuracy(), mx.metric.TopKAccuracy(top_k=5),
107 mx.metric.CrossEntropy()]

Finally, we can fine-tune our network:

109 # construct the model and train it
110 print("[INFO] training network...")
111 model = mx.mod.Module(symbol=net, context=ctx)
112 model.fit(
113 trainIter,
114 eval_data=valIter,
115 num_epoch=65,
116 begin_epoch=args["start_epoch"],
117 initializer=mx.initializer.Xavier(),
118 arg_params=argParams,
119 aux_params=auxParams,
120 optimizer=opt,
121 allow_missing=allowMissing,
122 eval_metric=metrics,
123 batch_end_callback=batchEndCBs,
124 epoch_end_callback=epochEndCBs)

The call the fit method in our fine-tuning example is a bit more verbose than the previous
ImageNet examples because most of our previous parameters (e.x., arg_params, aux_params,
etc.) could be passed in via the FeedForward class. However, since we are now relying on either (1)

192 Chapter 13. Case Study: Vehicle Identification

performing network surgery or (2) loading a specific epoch, we need to move all these parameters
into the fit method.

Also, notice how we supply the allow_missing parameter to mxnet, enabling the library to
understand that we are attempting to perform fine-tuning. We’ll set our maximum num_epoch to
65 – this number may increase or decrease depending on how the training process is going.

13.2.1 VGG Fine-tuning: Experiment #1
In my first experiment, fine-tuning the VGG16 architecture on the Stanford Cars dataset, I decided
to use the SGD optimizer with an initial learning rate of 1e−4. This is technically a large learning
rate for a fine-tuning task, but I decided to give it a try to obtain a baseline accuracy. A momentum
term of 0.9 and L2 weight decay of 0.0005 were also supplied. I then started training using the
following command:

$ python fine_tune_cars.py --vgg vgg16/vgg16 --checkpoints checkpoints \
--prefix vggnet

During the first 10 epochs, we can see that our fine-tuning looks quite good, with nearly 70%
rank-1 accuracy and over 90% rank-5 accuracy being obtained (Figure 13.2, left). However, past
epochs 15-30, we start to see VGG overfitting to the training data.

Figure 13.2: Left: Fine-tuning VGG16 on the cars dataset. The first ten epochs look good, but past
epoch 15 we start to see overfitting. Right: Lowering α to 1e−5 saturates learning.

I decided to stop training at this point and lower the learning rate from 1e−4 to 1e−5 and then
restart training command:

$ python fine_tune_cars.py --vgg vgg16/vgg16 --checkpoints checkpoints \
--prefix vggnet --start-epoch 30

I then let training resume for 15 more epochs until epoch 45 (Figure 13.2, right). As we can
see, both training loss and accuracy are nearly fully saturated – the rank-1 accuracy for the training
data is actually higher than the rank-5 accuracy for the validation set. Furthermore, examining

13.2 Fine-tuning VGG on the Stanford Cars Dataset 193

our cross-entropy loss plot, we can see that validation loss is starting to increase past epoch 35, a
sure-fire sign of overfitting.

All that said, this initial experiment obtained 82.48% rank-1 and 96.38% rank-5 accuracy. The
problem is that our network is far too overfit and we need to explore other avenues.

13.2.2 VGG Fine-tuning: Experiment #2
Due to the overfitting caused by the base learning rate of 1e− 4, I decided to lower my initial
learning rate to 1e− 5. SGD was once again used as my optimizer with the same momentum
and weight decay parameters as the first experiment. Training was started using the following
command:

$ python fine_tune_cars.py --vgg vgg16/vgg16 --checkpoints checkpoints \
--prefix vggnet

Figure 13.3: Left: Learning is much more stable using a 1e−5 learning rate. Right: However,
accuracy is much lower than our previous experiment, even when reducing α to 1e−6. The initial
learning rate is too low in this case.

Examining the plots of the first 80 epochs, we can see that learning is much more stable (Figure
13.3, left). The effects of overfitting have been reduced. The problem is that it’s taking a long time
for the network to train – it’s also questionable if our validation accuracy will be as high as the
previous experiment. At epoch 100 I stopped training, lowered the learning rate from 1e−5 to
1e−6, then resumed training:

$ python fine_tune_cars.py --vgg vgg16/vgg16 --checkpoints checkpoints \
--prefix vggnet --start-epoch 100

I allowed the network to continue training for another 20 epochs to epoch 120 before I stopped
the experiment (Figure 13.3, right). The problem here is that accuracy has dropped significantly
– down to 78.41% rank-1 and 94.47% rank-5. A base learning rate of 1e− 5 was too low and
therefore hurt our classification accuracy.

194 Chapter 13. Case Study: Vehicle Identification

13.2.3 VGG Fine-tuning: Experiment #3
In my final VGG16 fine-tuning experiment, I decided to split the difference between the 1e−4
and 1e−5 learning rate and start training with a 5e−4 learning rate. The same SGD optimizer,
momentum, and regularization terms were kept as the first two experiments. I once again started
the fine-tuning process using the following command:

$ python fine_tune_cars.py --vgg vgg16/vgg16 --checkpoints checkpoints \
--prefix vggnet

Figure 13.4: Left: The first 50 epochs using a 5e−4 learning rate. Right: Reducing the learning
rate to 5e−5 and training for another 5 epochs. We obtain slightly lower accuracy than Experiment
#1; however, we are much less overfit.

The first 50 epochs are plotted in Figure 13.4 (left). Here we can see the training loss/accuracy
keeping pace with the validation, and eventually overtaking the validation loss/accuracy. However,
what’s important to note here is that the training loss/accuracy is not saturating as it did in our first
experiments.

I allowed the network to continue training until epoch 50 where I stopped training, reduced the
learning rate from 5e−4 to 5e−5 and trained for another five epochs:

$ python fine_tune_cars.py --vgg vgg16/vgg16 --checkpoints checkpoints \
--prefix vggnet --start-epoch 50

The final loss/accuracy plot can be seen in Figure 13.4 (right). While there is certainly a
gap between the training and validation loss starting to form, the validation loss is not increasing.
Looking at the output of the final epoch, our network was reaching 81.25% rank-1 and 95.88% rank-
5 accuracy on the validation set. These accuracies are certainly better than our second experiment.
I would also argue that these accuracies are more desirable than the first experiment as we did not
overfit our network and risk the ability of the model to generalize. At this point, I felt comfortable
stopping the experiment altogether and moving on to the evaluation stage.

13.3 Evaluating our Vehicle Classifier 195

Keep in mind that when fine-tuning (large) networks such as VGG16 on small datasets (such as
Stanford Cars), that overfitting is an inevitability. Even when applying data augmentation there are
simply too many parameters in the network and too few training examples. Thus, it’s extremely
important that you get the initial learning rate correct – this is even more critical than when training
a network from scratch. Take your time when fine-tuning networks and explore a variety of initial
learning rates. This process will give you the best chance at obtaining the highest accuracy during
fine-tuning.

13.3 Evaluating our Vehicle Classifier
Now that we have successfully fine-tuned VGG16 on the Stanford Cars Dataset, let’s move on to
evaluating the performance of our network on the testing set. To accomplish this process, open up
the test_cars.py file and insert the following code:

1 # import the necessary packages
2 from config import car_config as config
3 from pyimagesearch.utils.ranked import rank5_accuracy
4 import mxnet as mx
5 import argparse
6 import pickle
7 import os

Lines 1-7 import our required Python packages. We’ll need our car_config (aliased as
config) so we can access our car dataset specific configuration and variables (Line 2). We’ll
import the rank5_accuracy function on Line 3 so we can compute the rank-1 and rank-5 accuracy
on the testing set, respectively. The mxnet library is then imported on Line 4 so we can have access
to the mxnet Python bindings.

Next, let’s parse our command line arguments:

9 # construct the argument parse and parse the arguments
10 ap = argparse.ArgumentParser()
11 ap.add_argument("-c", "--checkpoints", required=True,
12 help="path to output checkpoint directory")
13 ap.add_argument("-p", "--prefix", required=True,
14 help="name of model prefix")
15 ap.add_argument("-e", "--epoch", type=int, required=True,
16 help="epoch # to load")
17 args = vars(ap.parse_args())

Similar to our experiments evaluating ImageNet, our command line arguments are near identical.
To start, we need --checkpoints, which is the path to the directory where VGG16 weights were
serialized during the fine-tuning process. The --prefix controls the name of the network, which
in this case will be vggnet. Finally, --epoch is an integer which controls the weight epoch of
VGG16 we are going to load for evaluation.

From there, we can load our label encoder as well as initialize the ImageRecordIter for the
testing set:

19 # load the label encoder
20 le = pickle.loads(open(config.LABEL_ENCODER_PATH, "rb").read())
21

196 Chapter 13. Case Study: Vehicle Identification

22 # construct the validation image iterator
23 testIter = mx.io.ImageRecordIter(
24 path_imgrec=config.TEST_MX_REC,
25 data_shape=(3, 224, 224),
26 batch_size=config.BATCH_SIZE,
27 mean_r=config.R_MEAN,
28 mean_g=config.G_MEAN,
29 mean_b=config.B_MEAN)

The next step is to then load our pre-trained model from disk:

31 # load our pre-trained model
32 print("[INFO] loading pre-trained model...")
33 checkpointsPath = os.path.sep.join([args["checkpoints"],
34 args["prefix"]])
35 (symbol, argParams, auxParams) = mx.model.load_checkpoint(
36 checkpointsPath, args["epoch"])
37

38 # construct the model
39 model = mx.mod.Module(symbol=symbol, context=[mx.gpu(0)])
40 model.bind(data_shapes=testIter.provide_data,
41 label_shapes=testIter.provide_label)
42 model.set_params(argParams, auxParams)

Lines 33 and 34 construct the base path to the serialized weights using both the --checkpoints
and --prefix switch. To control exactly which epoch is loaded, we pass in the checkpointsPath
and --epoch to the load_checkpoint function (Lines 35 and 36).

Line 39 creates the mxnet Module class. This class accepts two parameters, the model symbol
loaded from disk along with the context, which is the list of devices we will use to evaluate our
network on the testIter dataset. Here I indicate that only a single GPU is need via mx.gpu(0);
however, you should update this parameter to be the number of devices on your system.

A call to the bind method of model on Line 40 and 41 is required in order for the model to
understand that the testIter is responsible for providing the shape (i.e., dimensions) of both the
data and labels. In our case, all input images will be 224×224 with three channels. Finally, we set
the argument parameters and auxiliary parameters of the serialized network on Line 42.

At this point, we can start evaluating the network on the testing set:

44 # initialize the list of predictions and targets
45 print("[INFO] evaluating model...")
46 predictions = []
47 targets = []
48

49 # loop over the predictions in batches
50 for (preds, _, batch) in model.iter_predict(testIter):
51 # convert the batch of predictions and labels to NumPy
52 # arrays
53 preds = preds[0].asnumpy()
54 labels = batch.label[0].asnumpy().astype("int")
55

56 # update the predictions and targets lists, respectively
57 predictions.extend(preds)
58 targets.extend(labels)

13.4 Visualizing Vehicle Classification Results 197

59

60 # apply array slicing to the targets since mxnet will return the
61 # next full batch size rather than the *actual* number of labels
62 targets = targets[:len(predictions)]

Lines 46 and 47 initialize our list of predictions and ground-truth targets. On Line 50 we
use the iter_predict function to allow us to loop over the testIter in batches, yielding us both
the predictions (preds) and the ground-truth labels (batch).

On Line 53 we grab the predictions from the network and convert it to a NumPy array. This
array has the shape of (N, 164) where N is the number of data points in the batch and 164 is
the total number of class labels. Line 54 extracts the ground-truth class label from the testIter,
again converting it to a NumPy array. Given both the preds and ground-truth labels, we are now
able to update our predictions and targets lists, respectively.

Line 62 ensures that both the targets and predictions lists are the same length. This line
is a requirement as the iter_predict function will only return batch in sizes of powers of two
for efficiency reasons (or it could also be a small bug in the function). Thus, it’s nearly always the
case that the targets list is longer than the predictions list. We can easily fix the discpreancy
by applying array slicing.

The final step is to take our predictions and targets from the testing set and compute our
rank-1 and rank-5 accuracies:

64 # compute the rank-1 and rank-5 accuracies
65 (rank1, rank5) = rank5_accuracy(predictions, targets)
66 print("[INFO] rank-1: {:.2f}%".format(rank1 * 100))
67 print("[INFO] rank-5: {:.2f}%".format(rank5 * 100))

To evaluate our fine-tuned VGG16 network on the vehicle make and model dataset, just execute
the following command:

$ python test_cars.py --checkpoints checkpoints --prefix vggnet \
--epoch 55

[INFO] loading pre-trained model...
[INFO] evaluating model...
[INFO] rank-1: 84.22%
[INFO] rank-5: 96.54%

As the results demonstrate, we are able to obtain 84.22% rank-1 and 96.54% rank-5 accuracy
on the testing set. This level of accuracy is especially impressive given that we (1) have a very limited
amount of training data for each vehicle make and model combination and (2) need to predict a
fairly large number of classes (164) given this small amount of training data.

Further accuracy can be obtained by gathering more training data for each vehicle make and
model. Given this extra data, we could either train a custom CNN from scratch or continue to apply
fine-tuning. Since we are already performing very well with fine-tuning, I would focus efforts on
data gathering and performing more fine-tuning experiments to boost accuracy.

13.4 Visualizing Vehicle Classification Results
In our previous experiment, we learned how to use the iter_predict function to loop over the
data points in an ImageRecordIter and make predictions. But what if we wanted to loop over

198 Chapter 13. Case Study: Vehicle Identification

raw images and make predictions on those? What are we to do then? Luckily for us, the process of
preparing an image for classification with mxnet is not unlike the methods we used for Keras.

In this section, we’ll learn how to load individual images from disk, pre-process them, and pass
them through mxnet to obtain our top-5 predictions for a given input vehicle. To see how this is
done, open up the vis_classification.py file and insert the following code:

1 # due to mxnet seg-fault issue, need to place OpenCV import at the
2 # top of the file
3 import cv2
4

5 # import the necessary packages
6 from config import car_config as config
7 from pyimagesearch.preprocessing import ImageToArrayPreprocessor
8 from pyimagesearch.preprocessing import AspectAwarePreprocessor
9 from pyimagesearch.preprocessing import MeanPreprocessor

10 import numpy as np
11 import mxnet as mx
12 import argparse
13 import pickle
14 import imutils
15 import os

On Line 3 we import our cv2 bindings to the OpenCV library. On two out of the three machines
I installed both OpenCV and mxnet on, I received a segmentation fault error whenever I tried to
import mxnet before OpenCV. Because of this error, I recommend placing your cv2 import at the
top of your file. That said, it may not be the case that your system seg-faults, so feel free to test this
out on your own machine.

From there, Lines 6-15 import the rest of our Python packages. Take note of Lines 7-9 where
we import our image pre-processors, initially designed for Keras, but they can be easily reused
when working with mxnet as well.

Next, let’s parse our command line arguments:

17 # construct the argument parse and parse the arguments
18 ap = argparse.ArgumentParser()
19 ap.add_argument("-c", "--checkpoints", required=True,
20 help="path to the checkpoint directory")
21 ap.add_argument("-p", "--prefix", required=True,
22 help="name of model prefix")
23 ap.add_argument("-e", "--epoch", type=int, required=True,
24 help="epoch # to load")
25 ap.add_argument("-s", "--sample-size", type=int, default=10,
26 help="epoch # to load")
27 args = vars(ap.parse_args())

We’ll require three command line arguments to run vis_classification.py:
• --checkpoints: The path to our VGG16 checkpoints directory when we fine-tuned.
• --prefix: The name of our network that we fine-tuned.
• --epoch: The epoch number that we will be loading from disk.
Finally, an optional switch, --sample-size, can be supplied to indicate the number of images

we wish to sample from our dataset for classification.
Speaking of sampling our images, let’s go ahead and do that now:

13.4 Visualizing Vehicle Classification Results 199

29 # load the label encoder, followed by the testing dataset file,
30 # then sample the testing set
31 le = pickle.loads(open(config.LABEL_ENCODER_PATH, "rb").read())
32 rows = open(config.TEST_MX_LIST).read().strip().split("\n")
33 rows = np.random.choice(rows, size=args["sample_size"])

Line 31 loads our serialized LabelEncoder so we can convert the integer class labels produced
by mxnet and convert them to human readable labels (i.e., the make and model names). Lines
32 and 33 load the contents of our test.lst file and sample --sample-size rows from them.
Recall that the test.lst file contains the paths to our testing images. Therefore, to visualize our
predictions, we simply need to sample rows from this file.

We can then load our serialized VGG16 network from disk:

35 # load our pre-trained model
36 print("[INFO] loading pre-trained model...")
37 checkpointsPath = os.path.sep.join([args["checkpoints"],
38 args["prefix"]])
39 model = mx.model.FeedForward.load(checkpointsPath,
40 args["epoch"])

As well as compile the model:

42 # compile the model
43 model = mx.model.FeedForward(
44 ctx=[mx.gpu(0)],
45 symbol=model.symbol,
46 arg_params=model.arg_params,
47 aux_params=model.aux_params)

From there, let’s initialize our image pre-processors:

49 # initialize the image pre-processors
50 sp = AspectAwarePreprocessor(width=224, height=224)
51 mp = MeanPreprocessor(config.R_MEAN, config.G_MEAN, config.B_MEAN)
52 iap = ImageToArrayPreprocessor(dataFormat="channels_first")

Line 50 instantiates our AspectAwarePreprocessor which will resize images to 224×
224 pixels. The MeanPreprocessor will perform mean subtraction using the RGB averages
from the Simonyan and Zisserman paper [17] – the means are not computed from our training set
as we are doing fine-tuning and must use the averages computed over the ImageNet dataset.

Finally, we initialize our ImageToArrayPreprocessor on Line 52. Originally, this class was
used to convert raw images to Keras-compatible arrays based on whether we were using “channels
last” or “channels first” in our keras.json configuration file. However, since mxnet always repre-
sents images in channels first ordering, we need to supply the dataFormat="channels_first"
parameter to the class to ensure our channels are ordered properly.

It’s time to loop over our sample images, classify them, and display the results to our screen:

200 Chapter 13. Case Study: Vehicle Identification

54 # loop over the testing images
55 for row in rows:
56 # grab the target class label and the image path from the row
57 (target, imagePath) = row.split("\t")[1:]
58 target = int(target)
59

60 # load the image from disk and pre-process it by resizing the
61 # image and applying the pre-processors
62 image = cv2.imread(imagePath)
63 orig = image.copy()
64 orig = imutils.resize(orig, width=min(500, orig.shape[1]))
65 image = iap.preprocess(mp.preprocess(sp.preprocess(image)))
66 image = np.expand_dims(image, axis=0)

Line 57 and 58 extract the ground-truth target and imagePath from the input row, followed
by converting the target to an integer. We then:

1. Load our input image (Line 62).
2. Clone it so we can draw the output class label visualization on it (Line 63).
3. Start the pre-processing stage by resizing the image to have a maximum width of 500 pixels

(Line 64).
4. Apply all three of our image pre-processors (Line 65).
5. Expand the dimensions of the array so the image can be passed through the network (Line

66).
Classifying an image using a pre-trained mxnet network is as simple as calling the predict

method of model:

68 # classify the image and grab the indexes of the top-5 predictions
69 preds = model.predict(image)[0]
70 idxs = np.argsort(preds)[::-1][:5]
71

72 # show the true class label
73 print("[INFO] actual={}".format(le.inverse_transform(target)))
74

75 # format and display the top predicted class label
76 label = le.inverse_transform(idxs[0])
77 label = label.replace(":", " ")
78 label = "{}: {:.2f}%".format(label, preds[idxs[0]] * 100)
79 cv2.putText(orig, label, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,
80 0.6, (0, 255, 0), 2)

Line 69 returns our predictions for each of the 164 class labels. We then sort the indexes of
these labels according to their probability (from largest to smallest), keeping the top-5 predictions
(Line 70). Line 73 displays the human readable class name of the ground-truth label, while Lines
76-80 draw the #1 predicted label to our image, including the probability of the prediction.

Our last code block handles printing the top-5 predictions to our terminal and displaying our
output image:

82 # loop over the predictions and display them
83 for (i, prob) in zip(idxs, preds):
84 print("\t[INFO] predicted={}, probability={:.2f}%".format(
85 le.inverse_transform(i), preds[i] * 100))

13.5 Summary 201

86

87 # show the image
88 cv2.imshow("Image", orig)
89 cv2.waitKey(0)

To see vis_classification.py in action, simply open up a terminal and execute the follow-
ing command:

$ python vis_classification.py --checkpoints checkpoints --prefix vggnet \
--epoch 55

Figure 13.5: Our fine-tuned VGG16 network can correctly recognize the make and model of a
vehicle with over 84% rank-1 and 95% rank-5 accuracy.

In Figure 13.5 you can see samples of correctly classified vehicle make and models. Again,
it’s quite remarkable that we are able to obtain such high classification accuracy using such little
training data via fine-tuning. This is yet another example of the power and utility of deep learning
applied to image classification.

13.5 Summary
In this chapter, we learned how to fine-tune VGG16 architecture (pre-trained on ImageNet) to
correctly recognize 164 vehicle make and model classes with over 84.22% rank-1 and 96.54% rank-
5 testing accuracy. To accomplish this task, we sliced off the final fully-connected layer in VGG16
(the FC layer that outputs the total number of classes, which is 1,000 in the case of ImageNet) and
replaced it with our own fully-connected layer of 164 classes, followed by a softmax classifier.

A series of experiments were performed to determine the optimal learning rate when fine-tuning
VGG16 using the SGD optimizer. After fine-tuning and evaluating our network, we then wrote a
simple Python script named vis_classification.py to help us visualize the vehicle make and
model classifications for a given input image. This same script can be modified to make intelligent,
highly targeted billboard advertisements of your own, strictly based on the type of car a given
person is driving.

14. Case Study: Age and Gender Prediction

In this final Case Study in Deep Learning for Computer Vision with Python, we’ll learn how to build
a computer vision system capable of recognizing the age and gender of a person in a photograph.
To accomplish this task, we’ll be using the Adience dataset, curated by Levi and Hassner and used
in their 2015 publication, Age and Gender Classification using Convolutional Neural Networks
[38].

This case study will be more complex than the previous ones, requiring us to train two models,
one for age recognition and another for gender identification. Furthermore, we’ll also have to rely
on more advanced computer vision algorithms such as facial landmarks (http://pyimg.co/xkgwd)
and face alignment (http://pyimg.co/tnbzf) to help us pre-process our images prior to classification.

We’ll start off this chapter with a discussion on the Adience dataset and then review our
project structure. From there, we’ll create MxAgeGenderNet, an implementation of the network
proposed by Levi et al. Given our implementation, we’ll train two separate instantiations of
MxAgeGenderNet, one to recognize ages and the other to recognize genders. Once we have these
two networks, we’ll apply them to images outside the Adience dataset and evaluate performance.

Due to the length of this chapter, we’ll review the most important aspects of the case study,
including reviewing the code used to train and evaluate the network. Further detail, especially
regarding the utility functions and helper class we’ll define later in the chapter can be found in the
supplementary material accompanying this book.

14.1 The Ethics of Gender Identification in Machine Learning

Before we get too far in this chapter I want to bring up the subject of ethics and gender identification.
While utilizing computer vision and deep learning to recognize the age and gender of a person

in a photo is an interesting classification challenge, it is one wrought with moral implications. Just
because someone visually looks, dresses, or appears a certain way does not imply that they identify
with that (or any) gender.

Before even considering building a piece of software that attempts to recognize the gender of a
person, take the time to educate yourself on gender issues and gender equality.

http://pyimg.co/xkgwd
http://pyimg.co/tnbzf

204 Chapter 14. Case Study: Age and Gender Prediction

Applications such as gender recognition are best used for “demographic surveys”, such as
monitoring the number of people who stop and examine various kiosks at a department store. These
types of surveys can help you optimize the layout of a store and in turn make more sales. But even
then you need to take extreme care to ensure that smaller groups of people are not marginalized.
Keep in mind the law of large numbers as individual data points will average out in the population.

You should never use gender recognition to customize user experience (e.x., swapping gender-
specific pronouns) based on (1) photos of individual users utilizing your software and (2) the output
of your model. Not only are machine learning models far from perfect, you also have the moral
responsibility to not assume a user’s gender.

Age and gender classification is a very interesting task to examine from a computer vision
perspective – not only is it challenging, but it’s also a great example of a fine-grained classification
task where subtle differences may make the difference in a correct or incorrect classification.

But therein lies the problem – people are not data points and gender is not binary. There
are very few ethical applications of gender recognition using artificial intelligence. Software that
attempts to distill gender into binary classification only further chains us to antiquated notions of
what gender is. Therefore, I would encourage you to not utilize gender recognition in your own
applications if at all possible. If you must perform gender recognition, make sure you are holding
yourself accountable and ensure you are not building applications that attempts to conform others
to gender stereotypes.

Use this chapter to help you study computer vision and deep learning, but use your knowledge
here for good. Please be respectful of your fellow humans and educate yourself on gender issues
and gender equality.

My hope is I can one day remove this chapter from Deep Learning for Computer Vision with
Python, not because people are using it for nefarious, egregious reasons, but rather that gender
identification has become so antiquated that no one bothers to think about gender, let alone try to
identify it.

14.2 The Adience Dataset
The Adience dataset [39] consists of 26,580 images of faces. A total of 2,284 subjects (people)
were captured in this dataset. The dataset was then split into two gender classes (male and female)
along with eight age groups; specifically: 0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, and 60+. The
goal of the Adience dataset is to correctly predict both the age and the gender of a given person in a
photo. A sample of the dataset can be seen in Figure 14.1.

The dataset is imbalanced with more samples being present for people in the age brackets
25−32 than than any other age group by a factor of two (4,897). Samples in the age ranges 48−53
and 60+ are the most unrepresented (825 and 869, respectively). The number of male samples
(8,192) is slightly lower than the number of female data points (9,411), but is still within reasonable
limits of class distribution.

When training a model on the Adience dataset, we have two choices:
1. Train a single classifier that is responsible for predicting both the gender and age classes, for

a total of 16 possible classes.
2. Train two classifiers, one responsible for predicting gender (2 classes) and a separate model

for age recognition (8 classes).
Both methods are viable options; however, we are going to opt for taking the approach of Levi

et al. and train two separate CNNs – not only will doing so enable us to reproduce their results
(and even outperform their reported accuracies), but it will enable our classifier to be more robust.
The facial features learned to discriminate a 60+ woman are likely extremely different than the
features learned to recognize a man who is also 60+; therefore, it makes sense to separate age and
gender into two separate classifiers.

14.2 The Adience Dataset 205

Figure 14.1: A sample of the Adience dataset for age and gender recognition. Age ranges span
from 0−60+.

14.2.1 Building the Adience Dataset
You can download the Adience dataset using the following link:

http://www.openu.ac.il/home/hassner/Adience/data.html
Simply navigate to the “Download” section and enter your name and email address (this

information is only used to send you periodic emails if the dataset is ever updated). From there,
you’ll be able to login to the FTP site:

http://www.cslab.openu.ac.il/download/
You’ll want to download the aligned.tar.gz file along with all fold_frontal_*_data.txt

where the asterisk represents the digits 0-4 (Figure 14.2).
After downloading the dataset, you can unarchive it using the following command:

$ tar -xvf aligned.tar.gz

When organizing the dataset on my machine, I choose to use the following directory structure:

--- adience
| |--- aligned
| |--- folds
| |--- lists
| |--- rec

The aligned directory contains a number of subdirectories which contain the example faces
we will use to train our age and gender CNNs. Strictly for organizational purposes, I also decided
to store all fold .txt files (which Levi et al. originally used for cross-validation) inside a directory
named folds. I then created the lists directory to store my generated .lst files along with a
rec directory for the mxnet record databases.

http://www.openu.ac.il/home/hassner/Adience/data.html
http://www.cslab.openu.ac.il/download/

206 Chapter 14. Case Study: Age and Gender Prediction

Figure 14.2: Make sure you download the aligned.tar.gz file along with all
fold_frontal_*_data.txt files.

In the ImageNet and vehicle make and model chapters, we’ve computed both rank-1 and
rank-5 accuracy; however, in context of Adience, rank-5 accuracy does not make intuitive sense.
To start, computing rank-5 accuracy of a two class (gender) problem will always be (trivially)
100%. Therefore, when reporting the accuracy of the gender model, we’ll simply report if a given
classification is correct or not.

For the age model, we’ll report what Levi et al. call “one-off” accuracy. One-off accuracy
measures whether the ground-truth class label matches the predicted class label or if the ground-
truth label exists in the two adjacent bins. For example, suppose our age model predicted the age
bracket 15−20; however, the ground-truth label is 25−32 – according to the one-off evaluation
metric, this value is still correct because 15−20 exists in the set {15−20,25−32,38−48}.

Note that one-off accuracy is not the same thing as rank-2 accuracy. For example, if our model
was presented with an image containing a person of age 48−53 (i.e., the ground-truth label) and
our model predicted:
• 4−6 with probability 63.7%
• 48−53 with probability 36.3%
Then we would consider this an incorrect classification since the first predicted label (4−6) is

not adjacent to the 48−53 bin. If instead our model predicted:
• 38−43 with probability 63.7%
• 48−53 with probably 36.3%
Then this would be a correct one-off prediction since the 38−43 bin is directly adjacent to the

48−53 bin. We will learn how to implement custom evaluation metrics such as one-off accuracy
later in this chapter.

The Adience Configuration File
Just as in our ImageNet experiments, we need to first define a directory structure of our project:

|--- age_gender
| |--- config
| | |--- __init__.py
| | |--- age_gender_config.py
| | |--- age_gender_deploy.py

14.2 The Adience Dataset 207

| |--- checkpoints
| | |--- age/
| | |--- gender/
| |--- build_dataset.py
| |--- test_accuracy.py
| |--- test_prediction.py
| |--- train.py
| |--- vis_classification.py

Inside the config sub-module, we’ll create two separate configuration files. One file age_
gender_config.py will be used when we are training our CNNs. The second file, age_gender_
deploy.py will be used after training is complete, and we wish to apply our CNNs to images
outside the Adience dataset.

The checkpoints directory will store all model checkpoints during training. The age subdi-
rectory will contain all checkpoints related to the age CNN while the gender subdirectory will
store all checkpoints related to the gender CNN.

The build_dataset.py script will be responsible for creating our .lst and .rec files for
both the age and gender splits. Once we have created our datasets, we can use train.py to
train our CNNs. To evaluate the performance of our networks on the testing set, we’ll use
test_accuracy.py. We’ll then be able to visualize predictions from within the Adience dataset
using vis_classification.py. Anytime we want to classify an image outside of Adience, we’ll
use test_prediction.py.

Let’s go ahead and review the contents of age_gender_config.py now:

1 # import the necessary packages
2 from os import path
3

4 # define the type of dataset we are training (i.e., either "age" or
5 # "gender")
6 DATASET_TYPE = "gender"
7

8 # define the base paths to the faces dataset and output path
9 BASE_PATH = "/raid/datasets/adience"

10 OUTPUT_BASE = "output"
11 MX_OUTPUT = BASE_PATH
12

13 # based on the base path, derive the images path and folds path
14 IMAGES_PATH = path.sep.join([BASE_PATH, "aligned"])
15 LABELS_PATH = path.sep.join([BASE_PATH, "folds"])

On Line 6 we define the DATASET_TYPE. This value can either be gender or age. Depending
on the DATASET_TYPE we will change various output paths and settings later in this configuration
file.

We then define the BASE_PATH to the audience dataset on Line 9 using the directory structure I
detailed above – you will need to change the BASE_PATH to point to where your Adience dataset
lives on disk. Line 14 uses the BASE_PATH to construct the path to our aligned directory which
contains the input images. Line 15 also utilizes BASE_PATH to build the path to the folds directory
where we store our .txt files containing the class labels.

Next, let’s define some information on our training, testing, and validation splits:

208 Chapter 14. Case Study: Age and Gender Prediction

17 # define the percentage of validation and testing images relative
18 # to the number of training images
19 NUM_VAL_IMAGES = 0.15
20 NUM_TEST_IMAGES = 0.15

We’ll use 70% of our data for training. The remaining 30% will be equally split, 15% for
validation and 15% for testing. We’ll also train our network using batch sizes of 128 and two GPUs:

22 # define the batch size
23 BATCH_SIZE = 128
24 NUM_DEVICES = 2

I used two GPUs on this experiment to enable me to quickly gather results (in the order of 17
second epochs). You can easily train your models using a single GPU as well.

Our next code block handles if we are training a CNN on the “age” dataset:

26 # check to see if we are working with the "age" portion of the
27 # dataset
28 if DATASET_TYPE == "age":
29 # define the number of labels for the "age" dataset, along with
30 # the path to the label encoder
31 NUM_CLASSES = 8
32 LABEL_ENCODER_PATH = path.sep.join([OUTPUT_BASE,
33 "age_le.cpickle"])
34

35 # define the path to the output training, validation, and testing
36 # lists
37 TRAIN_MX_LIST = path.sep.join([MX_OUTPUT, "lists/age_train.lst"])
38 VAL_MX_LIST = path.sep.join([MX_OUTPUT, "lists/age_val.lst"])
39 TEST_MX_LIST = path.sep.join([MX_OUTPUT, "lists/age_test.lst"])
40

41 # define the path to the output training, validation, and testing
42 # image records
43 TRAIN_MX_REC = path.sep.join([MX_OUTPUT, "rec/age_train.rec"])
44 VAL_MX_REC = path.sep.join([MX_OUTPUT, "rec/age_val.rec"])
45 TEST_MX_REC = path.sep.join([MX_OUTPUT, "rec/age_test.rec"])
46

47 # derive the path to the mean pixel file
48 DATASET_MEAN = path.sep.join([OUTPUT_BASE,
49 "age_adience_mean.json"])

Line 31 defines the NUM_CLASSES for the age dataset, which is eight overall age brackets. We’ll
also explicitly define the LABEL_ENCODER_PATH which will store the serialized LabelEncoder
object.

Lines 37-39 define the paths to the .lst files while Lines 43-45 do the same, only for the
.rec files. We’ll also want to make sure we store the RGB means for the training set by defining
the DATASET_MEAN (Lines 48 and 49).

In the case that we are instead training a CNN on the gender data, we’ll initialize the same set
of variables, only with different image paths:

51 # otherwise, check to see if we are performing "gender"
52 # classification

14.2 The Adience Dataset 209

53 elif DATASET_TYPE == "gender":
54 # define the number of labels for the "gender" dataset, along
55 # with the path to the label encoder
56 NUM_CLASSES = 2
57 LABEL_ENCODER_PATH = path.sep.join([OUTPUT_BASE,
58 "gender_le.cpickle"])
59

60 # define the path to the output training, validation, and testing
61 # lists
62 TRAIN_MX_LIST = path.sep.join([MX_OUTPUT,
63 "lists/gender_train.lst"])
64 VAL_MX_LIST = path.sep.join([MX_OUTPUT,
65 "lists/gender_val.lst"])
66 TEST_MX_LIST = path.sep.join([MX_OUTPUT,
67 "lists/gender_test.lst"])
68

69 # define the path to the output training, validation, and testing
70 # image records
71 TRAIN_MX_REC = path.sep.join([MX_OUTPUT, "rec/gender_train.rec"])
72 VAL_MX_REC = path.sep.join([MX_OUTPUT, "rec/gender_val.rec"])
73 TEST_MX_REC = path.sep.join([MX_OUTPUT, "rec/gender_test.rec"])
74

75 # derive the path to the mean pixel file
76 DATASET_MEAN = path.sep.join([OUTPUT_BASE,
77 "gender_adience_mean.json"])

Notice now the NUM_CLASSES variable has been changed to two (either “male” or “female”),
followed by replacing all occurrences of “age” with “gender” in the file paths. Now that our
configuration file is created, let’s move on to building the helper class used to facilitate building the
dataset and converting it to a format we can use with mxnet.

The Adience Helper Class
In order to work with the Adience dataset, we’ll first need to define a set of utility functions,
similar what we did with the ImageNet dataset. This function will be responsible for helping
us build our class labels, image paths, and aiding in computing accuracy. Let’s name this file
agegenderhelper.py and include it in the pyimagesearch.utils sub-module:

| --- pyimagesearch
| |--- __init__.py
| |--- callbacks
| |--- io
| |--- nn
| |--- preprocessing
| |--- utils
| | |--- __init__.py
| | |--- agegenderhelper.py
| | |--- captchahelper.py
| | |--- imagenethelper.py
| | |--- ranked.py

When you’re ready, open up agegenderhelper.py, and we’ll get to work:

210 Chapter 14. Case Study: Age and Gender Prediction

1 # import the necessary packages
2 import numpy as np
3 import glob
4 import cv2
5 import os
6

7 class AgeGenderHelper:
8 def __init__(self, config):
9 # store the configuration object and build the age bins used

10 # for constructing class labels
11 self.config = config
12 self.ageBins = self.buildAgeBins()

Lines 2-5 import our required Python packages while Line 8 defines the constructor to our
AgeGenderHelper class. The constructor requires a single argument, config which is assumed to
be the age_gender_config module. We store this config object on Line 11 and build the set of
ageBins on Line 12.

We define the buildAgeBins function below:

14 def buildAgeBins(self):
15 # initialize the list of age bins based on the Adience
16 # dataset
17 ageBins = [(0, 2), (4, 6), (8, 13), (15, 20), (25, 32),
18 (38, 43), (48, 53), (60, np.inf)]
19

20 # return the age bins
21 return ageBins

Lines 17 and 18 create a list of 2-tuples that represent the lower boundary on the age bracket
and the upper boundary on the age bracket. As you can see, there are eight age brackets defined,
identical to Levi et al. The ageBins are returned to the calling function on Line 21.

Given an arbitrary age bracket or gender name, we need to encode the input as a label – the
following function handles this:

23 def toLabel(self, age, gender):
24 # check to see if we should determine the age label
25 if self.config.DATASET_TYPE == "age":
26 return self.toAgeLabel(age)
27

28 # otherwise, assume we are determining the gender label
29 return self.toGenderLabel(gender)

This function accepts both an age and gender. If we are working with the age dataset, then we
call toAgeLabel and return the value. Otherwise, we’ll assume we are working with the gender
dataset and encode the gender label instead.

The next step is to define the toAgeLabel function:

31 def toAgeLabel(self, age):
32 # initialize the label
33 label = None
34

14.2 The Adience Dataset 211

35 # break the age tuple into integers
36 age = age.replace("(", "").replace(")", "").split(", ")
37 (ageLower, ageUpper) = np.array(age, dtype="int")
38

39 # loop over the age bins
40 for (lower, upper) in self.ageBins:
41 # determine if the age falls into the current bin
42 if ageLower >= lower and ageUpper <= upper:
43 label = "{}_{}".format(lower, upper)
44 break
45

46 # return the label
47 return label

Here we pass in a single parameter, the age string. Inside the Adience dataset, age labels are
represented as strings in the form (0, 2), (4, 6), etc. In order to determine the correct label for
this input string, we first need to extract the lower and upper age boundaries as integers (Lines 36
and 37).

We then loop over our ageBins (Line 40) and determine which bin the supplied age falls into
(Line 42). Once we have found the correct bin, we build our label as a string with the lower and
upper boundaries separated by an underscore. For example, if an input age of (8, 13) was passed
into this function, the output would be 8_13. Performing this encoding makes it easier for us to
parse the labels, both when training and evaluating our network.

Now that we can create age labels, we need to construct gender labels as well:

49 def toGenderLabel(self, gender):
50 # return 0 if the gender is male, 1 if the gender is female
51 return 0 if gender == "m" else 1

This function is straightforward – if the input gender is m (for “male”) we return 0; otherwise,
the gender is assumed to be female, so we return 1.

When evaluating one-off accuracy, we need an efficient, fast method to determine if the
predicted class label is equal to or adjacent to the ground-truth label. The easiest way to accomplish
this task is to define a dictionary that maps a ground-truth label to its corresponding adjacent labels.
For example, if we knew the ground-truth label to a given data point is 8_13, we could use this
value as a key to our dictionary. The value would then be ["4_6", "8_13", "15_20"] – the set
of adjacent labels. Simply checking if 8_13 exists in this list would enable us to quickly evaluate
one-off accuracy.

To define this dictionary, we’ll create a more complex function, buildOneOffMappings:

53 def buildOneOffMappings(self, le):
54 # sort the class labels in ascending order (according to age)
55 # and initialize the one-off mappings for computing accuracy
56 classes = sorted(le.classes_, key=lambda x:
57 int(x.decode("utf-8").split("_")[0]))
58 oneOff = {}

Our method will accept a single required argument, le, which is an instantiation of the
LabelEncoder object used to encode age class labels. As we know from earlier in the definition
of this class, age labels will be encoded in the form {lower}_{upper}. To determine adjacent age

212 Chapter 14. Case Study: Age and Gender Prediction

boundaries, we first need to extract the class label names from le and then sort label names in
ascending order based on the lower boundary (Lines 56 and 57). Line 58 defines the oneOff
dictionary we will use to quickly evaluate one-off accuracy.

Next, we need to loop over the index and name of the sorted class labels:

60 # loop over the index and name of the (sorted) class labels
61 for (i, name) in enumerate(classes):
62 # determine the index of the *current* class label name
63 # in the *label encoder* (unordered) list, then
64 # initialize the index of the previous and next age
65 # groups adjacent to the current label
66 current = np.where(le.classes_ == name)[0][0]
67 prev = -1
68 next = -1
69

70 # check to see if we should compute previous adjacent
71 # age group
72 if i > 0:
73 prev = np.where(le.classes_ == classes[i - 1])[0][0]
74

75 # check to see if we should compute the next adjacent
76 # age group
77 if i < len(classes) - 1:
78 next = np.where(le.classes_ == classes[i + 1])[0][0]
79

80 # construct a tuple that consists of the current age
81 # bracket, the previous age bracket, and the next age
82 # bracket
83 oneOff[current] = (current, prev, next)
84

85 # return the one-off mappings
86 return oneOff

Line 66 determines the index of the current class label name. Provided that our age bracket
is greater than the 0−2 range, we then determine the previous adjacent bracket (Lines 72 and 73).
In the case that the current age bracket is less than the 60+ range, we then determine the next
adjacent bracket (Lines 77 and 78).

The oneOff dictionary is then updated using the current age bracket as a key with a 3-tuple
consisting of the current label, along with the two adjacent prev and next class labels. The
oneOff dictionary is then returned to the calling function on Line 86.

Utility functions such as these are great examples of why it’s important to learn the fundamentals
of the Python programming, the NumPy library, and have at least a basic understanding of the
scikit-learn library. Using these techniques, we can easily build methods that enable us to evaluate
complex metrics efficiently. If you find yourself having trouble understanding this function, take
the time to work with it and insert print statements so you can see how a given age class in the le
label encoder is able to have its two adjacent age brackets computed.

Our next function handles building the image paths and corresponding labels to the data points
in the Adience dataset:

88 def buildPathsAndLabels(self):
89 # initialize the list of image paths and labels
90 paths = []

14.2 The Adience Dataset 213

91 labels = []
92

93 # grab the paths to the folds files
94 foldPaths = os.path.sep.join([self.config.LABELS_PATH,
95 "*.txt"])
96 foldPaths = glob.glob(foldPaths)

On Lines 90 and 91 we initialize our paths and labels lists, respectively. Both the age and
gender of a given person are stored inside the LABELS_PATH files or the “fold” .txt files – we grab
the paths to all fold files on Lines 94-96.

Next, let’s loop over each of the foldPaths and parse them individually:

98 # loop over the folds paths
99 for foldPath in foldPaths:

100 # load the contents of the folds file, skipping the
101 # header
102 rows = open(foldPath).read()
103 rows = rows.strip().split("\n")[1:]
104

105 # loop over the rows
106 for row in rows:
107 # unpack the needed components of the row
108 row = row.split("\t")
109 (userID, imagePath, faceID, age, gender) = row[:5]
110

111 # if the age or gender is invalid, ignore the sample
112 if age[0] != "(" or gender not in ("m", "f"):
113 continue

For all of the foldPath files, we load the contents on Lines 102 and 103. We then loop over
each of the rows in the input file on Line 106. Each row is tab separated, which we break into a
list of strings on Line 108. We then extract the five first entries from the row:

1. userID: Unique ID of the subject in the photo.
2. imagePath: The path to the input image.
3. faceID: Unique ID of the face itself.
4. age: The age label encoded in a string in the format (lower, upper).
5. gender: The gender label represented as a single character, either m or f.
Lines 112 and 113 ensure that the data point is valid by ensuring the age is properly encoded

and the gender is either male or female. If either of these conditions do not hold, we throw out the
data point due to ambiguous labeling. Provided the labels pass our sanity checks, we can move on
to building our input image paths and encoding the label:

115 # construct the path to the input image and build
116 # the class label
117 p = "landmark_aligned_face.{}.{}".format(faceID,
118 imagePath)
119 p = os.path.sep.join([self.config.IMAGES_PATH,
120 userID, p])
121 label = self.toLabel(age, gender)

Lines 117 and 118 start building the path to the input image by combining the faceID with
the filename. We then finish constructing the path to the image on Lines 119 and 120.

214 Chapter 14. Case Study: Age and Gender Prediction

We can validate this code works by inspecting an example image path in the Adience dataset:

adience/aligned/100003415@N08/landmark_aligned_face.2174.9523333835_c7887c3fde_o.jpg

Notice how the first component of the path is adience, our base directory. The next sub-
directory is the userID. Inside the userID sub-directory, there are a number of images, each
starting with the base filename landmark_aligned_face.*. To finish building the image path,
we supply the faceID, followed by the rest of the filename, imagePath. Again, you can validate
this code yourself by examining the file paths in the Adience dataset. Line 121 then encodes the
label using our toLabel function.

Finally, we can update our paths and labels lists:

123 # if the label is None, then the age does not fit
124 # into our age brackets, ignore the sample
125 if label is None:
126 continue
127

128 # update the respective image paths and labels lists
129 paths.append(p)
130 labels.append(label)
131

132 # return a tuple of image paths and labels
133 return (paths, labels)

Line 125 handles the case when our label is None, which occurs when the age does not fit
into our age brackets, likely due to either (1) an error when hand labeling the dataset or (2) a
deprecated age bin that was not removed from the Adience dataset. In either case, we discard the
data point since the label is ambiguous. Lines 129 and 130 update our paths and labels lists,
respectively, which are then returned to the calling method on Line 133.

Two more functions are defined in our AgeGenderHelper class named visualizeAge and
visualizeGender, respectively. These functions accept a predicted probability distribution for
each label and construct a simple bar chart enabling us to visualize the class label distribution,
exactly as we did in Chapter 11 on emotion and facial expression recognition. As this is already a
lengthy chapter, I will leave reviewing these functions as an exercise to the reader – they are simply
used for visualization and play no part in the role of building a deep learning classifier to recognize
age and gender.

Creating the List Files
Our build_dataset.py script is near identical to the script we used when building the vehicle
make and model dataset in Chapter 13. Let’s go ahead and (briefly) review the file name:

1 # import the necessary packages
2 from config import age_gender_config as config
3 from sklearn.preprocessing import LabelEncoder
4 from sklearn.model_selection import train_test_split
5 from pyimagesearch.utils import AgeGenderHelper
6 import numpy as np
7 import progressbar
8 import pickle
9 import json

14.2 The Adience Dataset 215

10 import cv2
11

12 # initialize our helper class, then build the set of image paths
13 # and class labels
14 print("[INFO] building paths and labels...")
15 agh = AgeGenderHelper(config)
16 (trainPaths, trainLabels) = agh.buildPathsAndLabels()

Lines 2-10 import our required Python packages. Note the import of our age_gender_config –
this import will allow us to use the same build_dataset.py script, regardless if we are building the
age or gender dataset. To facilitate our ability to build the input image paths and corresponding class
labels based on the DATASET_TYPE, we’ll also import our newly implemented AgeGenderHelper.
Using the AgeGenderHelper, we then build the paths to the input images and class labels on Lines
15 and 16.

Now that we have the total number of images in the training set, let’s derive the number of
images for the validation and testing set, respectively:

18 # now that we have the total number of images in the dataset that
19 # can be used for training, compute the number of images that
20 # should be used for validation and testing
21 numVal = int(len(trainPaths) * config.NUM_VAL_IMAGES)
22 numTest = int(len(trainPaths) * config.NUM_TEST_IMAGES)
23

24 # our class labels are represented as strings so we need to encode
25 # them
26 print("[INFO] encoding labels...")
27 le = LabelEncoder().fit(trainLabels)
28 trainLabels = le.transform(trainLabels)

Lines 27 and 28 encode our input labels from strings to integers. Next, let’s sample numVal
validation images from the training set:

30 # perform sampling from the training set to construct a a validation
31 # set
32 print("[INFO] constructing validation data...")
33 split = train_test_split(trainPaths, trainLabels, test_size=numVal,
34 stratify=trainLabels)
35 (trainPaths, valPaths, trainLabels, valLabels) = split

The same is then done for numTest images to create our testing set:

37 # perform stratified sampling from the training set to construct a
38 # a testing set
39 print("[INFO] constructing testing data...")
40 split = train_test_split(trainPaths, trainLabels, test_size=numTest,
41 stratify=trainLabels)
42 (trainPaths, testPaths, trainLabels, testLabels) = split

We’ll then build our datasets lists, where each entry is a 4-tuple containing the dataset split
type, image paths, class labels, and output .lst file:

216 Chapter 14. Case Study: Age and Gender Prediction

44 # construct a list pairing the training, validation, and testing
45 # image paths along with their corresponding labels and output list
46 # files
47 datasets = [
48 ("train", trainPaths, trainLabels, config.TRAIN_MX_LIST),
49 ("val", valPaths, valLabels, config.VAL_MX_LIST),
50 ("test", testPaths, testLabels, config.TEST_MX_LIST)]
51

52 # initialize the lists of RGB channel averages
53 (R, G, B) = ([], [], [])

We’ll also initialize our RGB mean values as well – these values will enable us to perform
mean normalization during the training process.

Next, we need to loop over each of the entries in the datasets list:

55 # loop over the dataset tuples
56 for (dType, paths, labels, outputPath) in datasets:
57 # open the output file for writing
58 print("[INFO] building {}...".format(outputPath))
59 f = open(outputPath, "w")
60

61 # initialize the progress bar
62 widgets = ["Building List: ", progressbar.Percentage(), " ",
63 progressbar.Bar(), " ", progressbar.ETA()]
64 pbar = progressbar.ProgressBar(maxval=len(paths),
65 widgets=widgets).start()

Line 59 opens a file pointer to the current .lst file. We also initialize progressbar widgets
on Lines 62-65. The progress bar isn’t a requirement, but it is often nice to have ETA information
displayed to our screen when building a dataset.

Our next code block handles looping over each of the image paths and corresponding labels in
the data split:

67 # loop over each of the individual images + labels
68 for (i, (path, label)) in enumerate(zip(paths, labels)):
69 # if we are building the training dataset, then compute the
70 # mean of each channel in the image, then update the
71 # respective lists
72 if dType == "train":
73 image = cv2.imread(path)
74 (b, g, r) = cv2.mean(image)[:3]
75 R.append(r)
76 G.append(g)
77 B.append(b)
78

79 # write the image index, label, and output path to file
80 row = "\t".join([str(i), str(label), path])
81 f.write("{}\n".format(row))
82 pbar.update(i)
83

84 # close the output file
85 pbar.finish()
86 f.close()

14.2 The Adience Dataset 217

If we are examining the training split, we load the image from disk, compute the RGB mean,
and update our average lists (Lines 72-77). Otherwise, we write an mxnet-formatted row to the
output file containing the unique image integer i, the class label, and the path to the input image
(Lines 80 and 81). Line 86 closes the file pointer and the for loop restarts for the next data split
(until we have created .lst files for each of the data splits).

Our final code block handles serializing the RGB means to disk, as well as the label encoder:

88 # construct a dictionary of averages, then serialize the means to a
89 # JSON file
90 print("[INFO] serializing means...")
91 D = {"R": np.mean(R), "G": np.mean(G), "B": np.mean(B)}
92 f = open(config.DATASET_MEAN, "w")
93 f.write(json.dumps(D))
94 f.close()
95

96 # serialize the label encoder
97 print("[INFO] serializing label encoder...")
98 f = open(config.LABEL_ENCODER_PATH, "wb")
99 f.write(pickle.dumps(le))

100 f.close()

To construct our .lst files for the “gender” dataset, ensure that DATASET_TYPE is set to gender
in age_gender_config.py and execute the following command:

$ python build_dataset.py
[INFO] building paths and labels...
[INFO] encoding labels...
[INFO] constructing validation data...
[INFO] constructing testing data...
[INFO] building /raid/datasets/adience/lists/gender_train.lst...
Building List: 100% |####################################| Time: 0:01:01
[INFO] building /raid/datasets/adience/lists/gender_val.lst...
Building List: 100% |####################################| Time: 0:00:00
[INFO] building /raid/datasets/adience/lists/gender_test.lst...
Building List: 100% |####################################| Time: 0:00:00
[INFO] serializing means...
[INFO] serializing label encoder...

You can validate that the gender .lst files were properly created by listing the contents of your
*_MX_LIST variables:

$ wc -l adience/lists/gender_*.lst
1712 adience/lists/gender_test.lst
7991 adience/lists/gender_train.lst
1712 adience/lists/gender_val.lst

11415 total

Here you can see that we have a total of 11,415 images in our dataset, with ≈ 8,000 images for
training and ≈ 1,700 for both validation and testing.

To create the .lst files for the “age” dataset, go back to the age_gender_config.py file and
update DATASET_TYPE to be age. Then, once again execute build_dataset.py:

218 Chapter 14. Case Study: Age and Gender Prediction

$ python build_dataset.py
[INFO] building paths and labels...
[INFO] encoding labels...
[INFO] constructing validation data...
[INFO] constructing testing data...
[INFO] building /raid/datasets/adience/lists/age_train.lst...
Building List: 100% |####################################| Time: 0:00:52
[INFO] building /raid/datasets/adience/lists/age_val.lst...
Building List: 100% |####################################| Time: 0:00:00
[INFO] building /raid/datasets/adience/lists/age_test.lst...
Building List: 100% |####################################| Time: 0:00:00
[INFO] serializing means...
[INFO] serializing label encoder...

Once again, validate that your .lst files have been successfully created for each of the data
splits:

$ wc -l adience/lists/age_*.lst
1711 adience/lists/age_test.lst
7986 adience/lists/age_train.lst
1711 adience/lists/age_val.lst

11408 total

Creating the Record Database
Given our .lst files for the age and gender datasets, let’s create our .rec files using mxnet’s
im2rec binary. We’ll start by creating the age record files:

$ ~/mxnet/bin/im2rec /raid/datasets/adience/lists/age_train.lst "" \
/raid/datasets/adience/rec/age_train.rec resize=256 encoding=’.jpg’ \
quality=100

...
[07:28:16] tools/im2rec.cc:298: Total: 7986 images processed, 42.5361 sec elapsed
$ ~/mxnet/bin/im2rec /raid/datasets/adience/lists/age_val.lst "" \

/raid/datasets/adience/rec/age_val.rec resize=256 encoding=’.jpg’ \
quality=100

...
[07:28:51] tools/im2rec.cc:298: Total: 1711 images processed, 10.5159 sec elapsed
$ ~/mxnet/bin/im2rec /raid/datasets/adience/lists/age_test.lst "" \

/raid/datasets/adience/rec/age_test.rec resize=256 encoding=’.jpg’ \
quality=100

...
[07:29:20] tools/im2rec.cc:298: Total: 1711 images processed, 10.7158 sec elapsed

And then switch over to the gender record files:

$ ~/mxnet/bin/im2rec /raid/datasets/adience/lists/gender_train.lst "" \
/raid/datasets/adience/rec/gender_train.rec resize=256 encoding=’.jpg’ \
quality=100

...
[07:30:35] tools/im2rec.cc:298: Total: 7991 images processed, 43.2748 sec elapsed
$ ~/mxnet/bin/im2rec /raid/datasets/adience/lists/gender_val.lst "" \

/raid/datasets/adience/rec/gender_val.rec resize=256 encoding=’.jpg’ \
quality=100

14.3 Implementing Our Network Architecture 219

...
[07:31:00] tools/im2rec.cc:298: Total: 1712 images processed, 9.81215 sec elapsed
$ ~/mxnet/bin/im2rec /raid/datasets/adience/lists/gender_test.lst "" \

/raid/datasets/adience/rec/gender_test.rec resize=256 encoding=’.jpg’ \
quality=100

...
[07:31:27] tools/im2rec.cc:298: Total: 1712 images processed, 9.5392 sec elapsed

To validate that your record files were created, simply check the paths of your *_MX_REC
variables:

$ ls -l adience/rec/
total 1082888
-rw-rw-r-- 1 adrian adrian 82787512 Aug 28 07:29 age_test.rec
-rw-rw-r-- 1 adrian adrian 387603688 Aug 28 07:28 age_train.rec
-rw-rw-r-- 1 adrian adrian 83883944 Aug 28 07:28 age_val.rec
-rw-rw-r-- 1 adrian adrian 83081304 Aug 28 07:31 gender_test.rec
-rw-rw-r-- 1 adrian adrian 388022840 Aug 28 07:30 gender_train.rec
-rw-rw-r-- 1 adrian adrian 83485564 Aug 28 07:31 gender_val.rec

Sure enough, all six of our files are there: Three for the training, testing, and validation split for
age. And three files for the training testing, and validation split for gender. Each of the training files
are approximately 388MB, while all of the testing and validation files weigh in at ≈ 83MB. We’ll
be using these record files to train our CNN – but first, let’s define the network architecture itself.

14.3 Implementing Our Network Architecture
The network architecture used by Levi et al. is similar to AlexNet (Chapter 6), only:

1. More shallow with no multiple CONV => RELU layers stacked on top of each other.
2. Fewer nodes in the fully-connected layers.
We will replicate their exact architecture, with two exceptions. First, we will utilize batch

normalization rather than the now deprecated Local Response Normalization (LRN) used in earlier
CNN architectures. Secondly, we’ll introduce a small amount of dropout after every pooling layer
to help reduce overfitting.

Let’s go ahead and implement the Levi et al. architecture, which we will call MxAgegenderNet.
Create a new file named mxagegendernet.py inside the nn.mxconv sub-module of pyimagesearch:

--- pyimagesearch
| |--- __init__.py
| |--- callbacks
| |--- nn
| | |--- __init__.py
| | |--- conv
| | |--- mxconv
| | | |--- __init__.py
| | | |--- mxagegender.py
| | | |--- mxalexnet.py
| | | |--- mxgooglenet.py
| | | |--- mxresnet.py
| | | |--- mxsqueezenet.py
| | | |--- mxvggnet.py
| |--- preprocessing
| |--- utils

220 Chapter 14. Case Study: Age and Gender Prediction

From there, open up the file and insert the following code:

1 # import the necessary packages
2 import mxnet as mx
3

4 class MxAgeGenderNet:
5 @staticmethod
6 def build(classes):
7 # data input
8 data = mx.sym.Variable("data")
9

10 # Block #1: first CONV => RELU => POOL layer set
11 conv1_1 = mx.sym.Convolution(data=data, kernel=(7, 7),
12 stride=(4, 4), num_filter=96)
13 act1_1 = mx.sym.Activation(data=conv1_1, act_type="relu")
14 bn1_1 = mx.sym.BatchNorm(data=act1_1)
15 pool1 = mx.sym.Pooling(data=bn1_1, pool_type="max",
16 kernel=(3, 3), stride=(2, 2))
17 do1 = mx.sym.Dropout(data=pool1, p=0.25)

Line 6 defines the build method of our network, as in all previous architectures covered in
this book. The data variable on Line 8 serves as the input to our network.

From there, we define a series of CONV => RELU => POOL layers on Lines 11-17. Our first
CONV layer in the network will learn 96, 7×7 kernels with a stride of 4×4 used to reduce the spatial
dimensions of the input 227×227 images. An activation is applied after the convolution, followed
by a batch normalization, following the recommended usage of batch normalization (Chapter 11,
Starter Bundle).

Max pooling is applied on Lines 15 and 16 with a kernel size of 3×3 and stride of 2×2 to
once again reduce spatial dimensions. Dropout with a probability of 25% is used to help reduce
overfitting.

Our second series of layers applies the same structure, only this time adjusting the CONV layer
to learn 256, 5×5 filters:

19 # Block #2: second CONV => RELU => POOL layer set
20 conv2_1 = mx.sym.Convolution(data=do1, kernel=(5, 5),
21 pad=(2, 2), num_filter=256)
22 act2_1 = mx.sym.Activation(data=conv2_1, act_type="relu")
23 bn2_1 = mx.sym.BatchNorm(data=act2_1)
24 pool2 = mx.sym.Pooling(data=bn2_1, pool_type="max",
25 kernel=(3, 3), stride=(2, 2))
26 do2 = mx.sym.Dropout(data=pool2, p=0.25)

The final CONV => RELU => POOL layer set is near identical, only the number of filters is
increased to 384 and the filter size reduced to 3×3:

28 # Block #3: second CONV => RELU => POOL layer set
29 conv2_1 = mx.sym.Convolution(data=do2, kernel=(3, 3),
30 pad=(1, 1), num_filter=384)
31 act2_1 = mx.sym.Activation(data=conv2_1, act_type="relu")
32 bn2_1 = mx.sym.BatchNorm(data=act2_1)
33 pool2 = mx.sym.Pooling(data=bn2_1, pool_type="max",

14.4 Measuring “One-off” Accuracy 221

34 kernel=(3, 3), stride=(2, 2))
35 do3 = mx.sym.Dropout(data=pool2, p=0.25)

Next comes our first set of fully-connected layers:

37 # Block #4: first set of FC => RELU layers
38 flatten = mx.sym.Flatten(data=do3)
39 fc1 = mx.sym.FullyConnected(data=flatten, num_hidden=512)
40 act4_1 = mx.sym.Activation(data=fc1, act_type="relu")
41 bn4_1 = mx.sym.BatchNorm(data=act4_1)
42 do4 = mx.sym.Dropout(data=bn4_1, p=0.5)

Unlike the AlexNet architecture where 4,096 hidden nodes are learned, we only learn 512 nodes
here. We also apply an activation followed by a batch normalization in this layer set as well.

The second set of fully-connected layers is then applied:

44 # Block #5: second set of FC => RELU layers
45 fc2 = mx.sym.FullyConnected(data=do4, num_hidden=512)
46 act5_1 = mx.sym.Activation(data=fc2, act_type="relu")
47 bn5_1 = mx.sym.BatchNorm(data=act5_1)
48 do5 = mx.sym.Dropout(data=bn5_1, p=0.5)

Our final code block is simply an FC layer to learn the desired number of classes, along with
a softmax classifier:

50 # softmax classifier
51 fc3 = mx.sym.FullyConnected(data=do5, num_hidden=classes)
52 model = mx.sym.SoftmaxOutput(data=fc3, name="softmax")
53

54 # return the network architecture
55 return model

In terms of network architectures, MxAgeGenderNet is arguably the simplest network architec-
ture we have examined during the entirety of the ImageNet Bundle. However, as our results will
demonstrate, this simple, sequential network architecture is not only able to replicate the results of
Levi et al., but improve on their work as well.

14.4 Measuring “One-off” Accuracy
As mentioned in Section 14.2.1 above, when training and evaluating MxAgeGenderNet on the
gender dataset, we’ll want to compute “one-off accuracy”. Unlike rank-5 accuracy, this metric
marks a given prediction as “correct” if the predicted label is either (1) the ground-truth label or
(2) directly adjacent to the ground-truth label.

In practice, this evaluation metric makes practical sense, and discriminating age is often
highly subjective and highly correlated with genetics, appearances, and environmental factors. For
example, an 18 year old man who smokes a carton of cigarettes a day for 20 years will likely look
much older at 38 than the biologically correct 38 year old man.

To create our special one-off metric, let’s create a new sub-module inside pyimagesearch
named mxcallbacks, and inside this new sub-module, we’ll place a new file – mxmetrics.py:

222 Chapter 14. Case Study: Age and Gender Prediction

--- pyimagesearch
| |--- __init__.py
| |--- callbacks
| |--- mxcallbacks
| | |--- __init__.py
| | |--- mxmetrics.py
| |--- nn
| |--- preprocessing
| |--- utils

The mxmetrics.py function will store our function to compute the one-off evaluation metric.
Defining mxnet callback metrics is unfortunately not as easy as it is with Keras, so we’ll need to
take some special care here defining the function. Open up mxmetrics.py and we’ll get to work:

1 # import the necessary packages
2 import mxnet as mx
3 import logging
4

5 def one_off_callback(trainIter, testIter, oneOff, ctx):
6 def _callback(iterNum, sym, arg, aux):
7 # construct a model for the symbol so we can make predictions
8 # on our data
9 model = mx.mod.Module(symbol=sym, context=ctx)

10 model.bind(data_shapes=testIter.provide_data,
11 label_shapes=testIter.provide_label)
12 model.set_params(arg, aux)
13

14 # compute one-off metric for both the training and testing
15 # data
16 trainMAE = _compute_one_off(model, trainIter, oneOff)
17 testMAE = _compute_one_off(model, testIter, oneOff)
18

19 # log the values
20 logging.info("Epoch[{}] Train-one-off={:.5f}".format(iterNum,
21 trainMAE))
22 logging.info("Epoch[{}] Test-one-off={:.5f}".format(iterNum,
23 testMAE))
24

25 # return the callback method
26 return _callback

Lines 2 and 3 import our required Python packages. We’ll need the logging package in order
to log the one-off evaluation metric to the same log file as our training progress.

From there, we define the actual callback function, one_off_callback on Line 5. This
function accepts four required parameters:
• trainIter: The ImageRecordIter for the training set.
• testIter: The imageRecordIter for either the validation or testing set.
• oneOff: The dictionary of one-off mappings constructed by the AgeGenderHelper class.
• ctx: The context (i.e., CPU/GPU/etc.) that will be used during the evaluation.
In order to turn this into a true “callback” function, mxnet requires us to define an encap-

sulated Python function (i.e., an “inner” function) named _callback – those unfamiliar with
encapsulated functions should first read this great introduction (http://pyimg.co/fbchc). Per the
mxnet documentation, the encapsulated _callback function must accept four parameters:

http://pyimg.co/fbchc

14.4 Measuring “One-off” Accuracy 223

1. The iteration (i.e., epoch) number of the network that is being trained.
2. The network symbol (sym) which represents the model weights after the current epoch.
3. The argument parameters (arg) to the network.
4. The auxiliary parameters (aux).
Based on these values, we can create a Module for the network parameters on Lines 9-12. We

then call _compute_one_off (to be defined in the next section) on Lines 16 and 17 to compute
the one-off accuracies for both the training and validation/testing sets. These one-off accuracies are
logged to our training history file (Lines 20-23). The outer one_off_callback function returns
the _callback function to mxnet, allowing it to pass in the epoch number, model symbol, and
relevant parameters after every epoch (Line 26).

The next step is to define the _compute_one_off function. As the name suggests, this method
will be responsible for accepting an instantiated model, a data iterator (detaIter), and the oneOff
dictionary mapping and then computing the one-off accuracies:

28 def _compute_one_off(model, dataIter, oneOff):
29 # initialize the total number of samples along with the
30 # number of correct (maximum of one off) classifications
31 total = 0
32 correct = 0
33

34 # loop over the predictions of batches
35 for (preds, _, batch) in model.iter_predict(dataIter):
36 # convert the batch of predictions and labels to NumPy
37 # arrays
38 predictions = preds[0].asnumpy().argmax(axis=1)
39 labels = batch.label[0].asnumpy().astype("int")
40

41 # loop over the predicted labels and ground-truth labels
42 # in the batch
43 for (pred, label) in zip(predictions, labels):
44 # if correct label is in the set of "one off"
45 # predictions, then update the correct counter
46 if label in oneOff[pred]:
47 correct += 1
48

49 # increment the total number of samples
50 total += 1
51

52 # finish computing the one-off metric
53 return correct / float(total)

Line 31 initializes the total number of samples in the dataIter. Line 32 then initializes the
number of correct one-off predictions. To compute the number of correct one-off predictions, we
must use the iter_predict method of the model to loop over samples in the detaIter, just as
we did in Chapter 13 on identifying vehicle make and models (Line 35).

Line 38 grabs the output predictions from our model for the given batch, then finds the
index of the label with the largest probability. On Line 39 we extract the ground-truth labels so
we can compare them to our predictions. We loop over each of the predicted and ground-truth
labels on Line 43. If the ground-truth label exists in the set of one-off labels for the prediction
(pred), then we increment the number of correct classifications.

We then increment the total number of samples examined in the dataIter on Line 50. Finally,
Line 53 returns the one-off metric as a ratio of the correct predictions to the total number of

224 Chapter 14. Case Study: Age and Gender Prediction

data points.
If this callback seems a bit confusing at first glance, rest assured you’re not the only developer

who has struggled to create mxnet callbacks (myself included). If you find yourself struggling with
this code, I suggest treating it as a “black box evaluation metric” and returning to it later once you
see how it is used inside our train.py script.

I would also suggest that you read the mxnet documentation on existing callbacks (http://pyimg.co/d2u11)
as well as reviewing the actual implementations of these callbacks (http://pyimg.co/fos3c). In par-
ticular, pay attention to the module_checkpoint function which provides an example of how to
use the encapsulated _callback method.

14.5 Training Our Age and Gender Predictor
Now that we have our record dataset generated as well as our one-off evaluation metric implemented,
let’s move on to train.py, the script responsible for training both the age and gender CNNs. This
script will be able to handle both the age and gender CNNs due to our age_gender_config.py
file – whatever we set the DATASET_TYPE to, is what the CNN will bet trained on. Furthermore,
the DATASET_TYPE also set all relevant output directories inside age_gender_config. This is yet
another great example of the importance of using configuration files for deep learning projects.

Our train.py script will be near identical to all of our other projects in the ImageNet Bundle,
so let’s briefly review the file. First, we’ll start with our imports:

1 # import the necessary packages
2 from config import age_gender_config as config
3 from pyimagesearch.nn.mxconv import MxAgeGenderNet
4 from pyimagesearch.utils import AgeGenderHelper
5 from pyimagesearch.mxcallbacks import one_off_callback
6 import mxnet as mx
7 import argparse
8 import logging
9 import pickle

10 import json
11 import os

The three most important imports to take note of here are our MxAgeGenderNet implementation,
the AgeGenderHelper, and our one_off_callback (Lines 3-5). From there, we can parse our
command line arguments as well as our our logging file:

13 # construct the argument parse and parse the arguments
14 ap = argparse.ArgumentParser()
15 ap.add_argument("-c", "--checkpoints", required=True,
16 help="path to output checkpoint directory")
17 ap.add_argument("-p", "--prefix", required=True,
18 help="name of model prefix")
19 ap.add_argument("-s", "--start-epoch", type=int, default=0,
20 help="epoch to restart training at")
21 args = vars(ap.parse_args())
22

23 # set the logging level and output file
24 logging.basicConfig(level=logging.DEBUG,
25 filename="training_{}.log".format(args["start_epoch"]),
26 filemode="w")

http://pyimg.co/d2u11
http://pyimg.co/fos3c

14.5 Training Our Age and Gender Predictor 225

The --checkpoints switch controls the path to where we will store the serialized weights to
MxAgeGenderNet after every epoch. The --prefix switch controls the name of the CNN. And
finally, if we are restarting training from a previous epoch, we can specify exactly which epoch via
--start-epoch.

We’ll also need to set our batchSize based on the BATCH_SIZE and NUM_DEVICES in the
config module:

28 # determine the batch and load the mean pixel values
29 batchSize = config.BATCH_SIZE * config.NUM_DEVICES
30 means = json.loads(open(config.DATASET_MEAN).read())

Line 30 handles loading our RGB means for either the age or gender dataset, respectively. Let’s
go ahead and create our training data iterator:

32 # construct the training image iterator
33 trainIter = mx.io.ImageRecordIter(
34 path_imgrec=config.TRAIN_MX_REC,
35 data_shape=(3, 227, 227),
36 batch_size=batchSize,
37 rand_crop=True,
38 rand_mirror=True,
39 rotate=7,
40 mean_r=means["R"],
41 mean_g=means["G"],
42 mean_b=means["B"],
43 preprocess_threads=config.NUM_DEVICES * 2)

Since our images are already pre-aligned in the Adience dataset, we don’t want to apply too
much rotation, so a rotate of ±7 degrees seems appropriate here. We’ll also randomly crop
227×227 regions from the input 256×256 image by specifying the rand_crop flag.

We’ll also need a corresponding validation image iterator:

45 # construct the validation image iterator
46 valIter = mx.io.ImageRecordIter(
47 path_imgrec=config.VAL_MX_REC,
48 data_shape=(3, 227, 227),
49 batch_size=batchSize,
50 mean_r=means["R"],
51 mean_g=means["G"],
52 mean_b=means["B"])

Levi et al. used the SGD optimizer to train their network – we’ll do the same with a base
learning rate of 1e−4, a momentum term of 0.9, and L2 weight decay of 0.0005:

54 # initialize the optimizer
55 opt = mx.optimizer.SGD(learning_rate=1e-3, momentum=0.9, wd=0.0005,
56 rescale_grad=1.0 / batchSize)

Let’s also define the output path to our model checkpoints and initialize the model argument
and auxiliary parameters, respectively:

226 Chapter 14. Case Study: Age and Gender Prediction

58 # construct the checkpoints path, initialize the model argument and
59 # auxiliary parameters
60 checkpointsPath = os.path.sep.join([args["checkpoints"],
61 args["prefix"]])
62 argParams = None
63 auxParams = None

Next, we can determine if we are starting training from scratch or loading from a specific epoch:

65 # if there is no specific model starting epoch supplied, then
66 # initialize the network
67 if args["start_epoch"] <= 0:
68 # build the LeNet architecture
69 print("[INFO] building network...")
70 model = MxAgeGenderNet.build(config.NUM_CLASSES)
71

72 # otherwise, a specific checkpoint was supplied
73 else:
74 # load the checkpoint from disk
75 print("[INFO] loading epoch {}...".format(args["start_epoch"]))
76 (model, argParams, auxParams) = mx.model.load_checkpoint(
77 checkpointsPath, args["start_epoch"])

Regardless if we are training from scratch or restarting training from a specific epoch, the next
step is to compile the model:

79 # compile the model
80 model = mx.model.FeedForward(
81 ctx=[mx.gpu(2), mx.gpu(3)],
82 symbol=model,
83 initializer=mx.initializer.Xavier(),
84 arg_params=argParams,
85 aux_params=auxParams,
86 optimizer=opt,
87 num_epoch=110,
88 begin_epoch=args["start_epoch"])

Again, I am using two GPUs to train our CNN; however, this experiment can easily be run with
just a single GPU. We start initializing our callbacks and evaluation metrics below:

90 # initialize the callbacks and evaluation metrics
91 batchEndCBs = [mx.callback.Speedometer(batchSize, 10)]
92 epochEndCBs = [mx.callback.do_checkpoint(checkpointsPath)]
93 metrics = [mx.metric.Accuracy(), mx.metric.CrossEntropy()]

These callbacks will be applied regardless if we are training on the age dataset or the gen-
der dataset. However, if we are specifically working with age, then we have extra work to do:

95 # check to see if the one-off accuracy callback should be used
96 if config.DATASET_MEAN == "age":

14.6 Evaluating Age and Gender Prediction 227

97 # load the label encoder, then build the one-off mappings for
98 # computing accuracy
99 le = pickle.loads(open(config.LABEL_ENCODER_PATH, "rb).read())

100 agh = AgeGenderHelper(config)
101 oneOff = agh.buildOneOffMappings(le)
102 epochEndCBs.append(one_off_callback(trainIter, valIter,
103 oneOff, mx.gpu(0)))

Line 99 loads our age LabelEncoder from disk while Line 100 instantiates the AgeGenderHelper.
Based off the config and le, we can generate the oneOff dictionary mappings.

Finally, Lines 102 and 103 update the epochEndCBs list by appending the one_off_calback
function. We supply the training data iterator (trainIter), validation data iterator (valIter),
oneOff dictionary mappings, and device context (mx.gpu(0)) to the one_off_callback. These
lines will enable us to both (1) compute the one-off evaluation metric for both the training and
validation set, and (2) log the results to our training history file as well.

You’ll also notice that I am using a separate GPU for my context. When working with
mxnet, I found that for optimal performance, a separate GPU/CPU/device should be used for
evaluation than the one(s) used for training. I’m not entirely sure why it’s faster, but I do notice that
evaluation slows down if you try to use the same context for both training and evaluation using
the one_off_callback – this discrepancy in evaluation speed is something to keep in mind when
developing your own custom evaluation metrics.

Our last step is to simply train the network:

105 # train the network
106 print("[INFO] training network...")
107 model.fit(
108 X=trainIter,
109 eval_data=valIter,
110 eval_metric=metrics,
111 batch_end_callback=batchEndCBs,
112 epoch_end_callback=epochEndCBs)

In our next section, we’ll create test_accuracy.py so we can evaluate our MxAgeGenderNet
weights on the respective testing sets. Then in Section 14.7, we’ll apply both train.py and
test_accuracy.py to run experiments on age and gender prediction.

14.6 Evaluating Age and Gender Prediction
Just as train.py can be used to train a network on either the age or gender datasets, our
test_accuracy.py script will be able to evaluate accuracy on both the age and gender datasets
– to switch between datasets, we simply need to update DATASET_TYPE in age_gender_config.
Let’s review test_accuracy.py now:

1 # since ‘AgeGenderHelper‘ also imports OpenCV, we need to place it
2 # above the mxnet import to avoid a segmentation fault
3 from pyimagesearch.utils import AgeGenderHelper
4

5 # import the necessary packages
6 from config import age_gender_config as config
7 from pyimagesearch.mxcallbacks.mxmetrics import _compute_one_off
8 import mxnet as mx

228 Chapter 14. Case Study: Age and Gender Prediction

9 import argparse
10 import pickle
11 import json
12 import os

Lines 3-12 take care of our Python imports. Since the AgeGenderHelper class imports the
cv2 library, I have placed it at the top of the file. As I mentioned earlier in this book, on two
out of three machines I configured mxnet + OpenCV on, importing cv2 before mxnet caused a
segmentation fault. Placing any cv2 imports prior to mxnet imports resolved the issue. It is unlikely
that you will run into this problem, but if you do, simply follow the suggestions recommended
above to resolve the problem.

Let’s now parse our command line arguments:

14 # construct the argument parse and parse the arguments
15 ap = argparse.ArgumentParser()
16 ap.add_argument("-c", "--checkpoints", required=True,
17 help="path to output checkpoint directory")
18 ap.add_argument("-p", "--prefix", required=True,
19 help="name of model prefix")
20 ap.add_argument("-e", "--epoch", type=int, required=True,
21 help="epoch # to load")
22 args = vars(ap.parse_args())
23

24 # load the RGB means for the training set
25 means = json.loads(open(config.DATASET_MEAN).read())

You’ve seen all these command line arguments in previous chapters in the ImageNet Bundle.
The --checkpoints switch controls the base directory to where our serialized MxAgeGenderNet
weights live. The --prefix is the name of our the network. And finally, --epoch controls the
integer value of the epoch we want to load from disk. When combined together, we can load
a specific weight file from disk. Line 25 then loads our RGB means so we can perform mean
normalization.

Accessing the testing set requires constructing an ImageRecordIter:

27 # construct the testing image iterator
28 testIter = mx.io.ImageRecordIter(
29 path_imgrec=config.TEST_MX_REC,
30 data_shape=(3, 227, 227),
31 batch_size=config.BATCH_SIZE,
32 mean_r=means["R"],
33 mean_g=means["G"],
34 mean_b=means["B"])

From there, we can load the specific --epoch from disk:

36 # load the checkpoint from disk
37 print("[INFO] loading model...")
38 checkpointsPath = os.path.sep.join([args["checkpoints"],
39 args["prefix"]])
40 model = mx.model.FeedForward.load(checkpointsPath,

14.6 Evaluating Age and Gender Prediction 229

41 args["epoch"])
42

43 # compile the model
44 model = mx.model.FeedForward(
45 ctx=[mx.gpu(0)],
46 symbol=model.symbol,
47 arg_params=model.arg_params,
48 aux_params=model.aux_params)

Regardless if we are evaluating our network on the age or gender dataset, we need to compute
the rank-1 accuracy, which is handled by the following code block:

50 # make predictions on the testing data
51 print("[INFO] predicting on ’{}’ test data...".format(
52 config.DATASET_TYPE))
53 metrics = [mx.metric.Accuracy()]
54 acc = model.score(testIter, eval_metric=metrics)
55

56 # display the rank-1 accuracy
57 print("[INFO] rank-1: {:.2f}%".format(acc[0] * 100))

However, if we are working with the age dataset, we also need to compute the one-off accuracy
as well:

59 # check to see if the one-off accuracy callback should be used
60 if config.DATASET_TYPE == "age":
61 # re-compile the model so that we can compute our custom one-off
62 # evaluation metric
63 arg = model.arg_params
64 aux = model.aux_params
65 model = mx.mod.Module(symbol=model.symbol, context=[mx.gpu(1)])
66 model.bind(data_shapes=testIter.provide_data,
67 label_shapes=testIter.provide_label)
68 model.set_params(arg, aux)
69

70 # load the label encoder, then build the one-off mappings for
71 # computing accuracy
72 le = pickle.loads(open(config.LABEL_ENCODER_PATH, "rb").read())
73 agh = AgeGenderHelper(config)
74 oneOff = agh.buildOneOffMappings(le)
75

76 # compute and display the one-off evaluation metric
77 acc = _compute_one_off(model, testIter, oneOff)
78 print("[INFO] one-off: {:.2f}%".format(acc * 100))

On Line 60 we make a check to ensure we are evaluating our network on the age dataset.
Provided that we are, we unpack the model parameters on Lines 63 and 64, followed by re-
initializing the model as a Module object that can be compatible with our one-off accuracy metric
(Lines 65-68).

Lines 72-74 build our oneOff dictionary mappings. A call to _compute_one_off on Line
77 computes the one-off accuracy for our testing set. We use the _compute_one_off function
here rather than the one_off_callback function because we need to evaluate accuracy on a

230 Chapter 14. Case Study: Age and Gender Prediction

single data iterator (keep in mind that the one_off_callback function requires two data iterators,
one presumed to be the training iterator and the other a validation/testing iterator). Finally, Line
78 prints the one-off accuracy to our terminal.

In our next section, we’ll see how both train.py and test_accuracy.py are used together
to train and evaluate two CNNs for age and gender prediction accuracy, respectively.

14.7 Age and Gender Prediction Results

In previous chapters in both the Practitioner Bundle and ImageNet Bundle, I provided a series of
experiments to demonstrate how I obtained an optimally performing model. However, due to the
length of this chapter, I am going to present the best results only for both the age CNN and gender
CNN.

14.7.1 Age Results
My best experiment on predicting age using MxAgeGenderNet was obtained using the Adam
optimizer with an initial learning rate of 1e−4 (which is smaller than the default 1e−3). An L2
weight decay of 0.0005 was also applied. Using a small initial learning rate enabled me to train the
network for longer without overfitting creeping in. I started training using the following command:

$ python train.py --checkpoints checkpoints/age --prefix agenet

The gap between training and validation remains small until approximately epoch 90 when
divergence starts. I allowed training to continue to epoch 120 (Figure 14.3, top-left), where I
stopped training, lowered the learning rate to 1e−5, and restarted training:

$ python train.py --checkpoints checkpoints/age --prefix agenet \
--start-epoch 120

I allowed training to continue for 20 epochs (Figure 14.3, top-right). At this point, we can
start to see both the validation loss and accuracy start to level out a bit. I didn’t want to train for
too much longer as overfitting to the training data was a concern of mine. I decided to lower the
learning rate to 1e−6 and then resume training for 10 more epochs:

$ python train.py --checkpoints checkpoints/age --prefix agenet \
--start-epoch 140

After epoch 150, I killed the training process and examined my validation set, noting the
validation accuracy to be 71.65% rank-1 and 94.14% one-off (Figure 14.3, bottom). Happy with
these results, I then evaluated on the testing set:

$ python test_accuracy.py --checkpoints checkpoints/age --prefix agenet \
--epoch 150

[INFO] loading model...
[INFO] predicting on ’age’ test data...
[INFO] rank-1: 71.15%
[INFO] one-off: 88.28%

14.7 Age and Gender Prediction Results 231

Figure 14.3: Top-left: Using an initial learning rate of α1e−4 allows us to slowly but steadily train
up until epoch 120. Top-right: At this point training and validation metrics start to deviate from
each other so we adjust α to 1e−5 and train for another 10 epochs. Bottom: Using α = 1e−6
stagnates training.

Here you can see that this approach yielded 71.15% rank-1 and 88.28% one-off accuracy
on the testing set. Compared to the original method by Levi et al., this result is a substantial
improvement. Their best method (using 10-crop oversampling) achieved only achieved 50.7%
rank-1 accuracy and 84.70% one-off accuracy. The rank-1 results alone in this experiment are an
improvement by a rate of 20.45%!

14.7.2 Gender Results

After applying train.py to the age dataset, I went back to age_gender_config and set DATASET_TYPE
to gender to indicate that I wanted to train the MxAgeGenderNet architecture on the gender dataset.
My best results came from training using the SGD optimizer with a base learning rate of 1e−2. I
also applied a momentum term of 0.9 and L2 weight decay of 0.0005. I started training using the
following command:

$ python train.py --checkpoints checkpoints/gender --prefix gendernet

232 Chapter 14. Case Study: Age and Gender Prediction

Figure 14.4: Top-left: The first 80 epochs training our network on the gender dataset. Top-right:
Lowering α from 1e−2 to 1e−3 for 20 epochs. Bottom: The final 10 epochs at α = 1e−4.

As the image below shows, training is slow and steady (Figure 14.4, top-left). At epoch 80, I
stopped training, lowered the learning rate to 1e−3 and continued training for another 20 epochs:

$ python train.py --checkpoints checkpoints/gender --prefix gendernet \
--start-epoch 80

The output plot of epoch 100 can be seen in Figure 14.4 (top-right). My biggest concern here
was overfitting. The validation loss had leveled out entirely with the training loss continuing to
decrease. I didn’t want to train for much longer as overfitting seemed plausible, so I lowered the
learning rate from 1e−3 to 1e−4 and allowed the network to train for 10 more epochs:

$ python train.py --checkpoints checkpoints/gender --prefix gendernet \
--start-epoch 100

The final plot of all 120 epochs can be seen in Figure 14.4 (bottom). Looking at the loss plot,
we can see the stagnation in validation, while training continues to decrease. However, when

14.8 Visualizing Results 233

examining the accuracy plot, we note that the gap between training and validation is relatively
stable for the majority of the training process. The validation accuracy after epoch 120 was 92.57%.

I then used epoch 120 to evaluate the test set:

$ python test_accuracy.py --checkpoints checkpoints/gender \
--prefix gendernet --epoch 110

[INFO] loading model...
[INFO] predicting on ’gender’ test data...
[INFO] rank-1: 90.29%

As you can see, I achieved 90.29% accuracy on the testing set. Looking at the results of Levi
et al., note that their approach (using the 10-crop oversampling technique) yielded 86.8% accuracy
– my method is a full 3.5% higher.

Now that both of our age and gender Convolutional Neural Networks are trained and evaluated,
let’s move on to how we can prepare and pre-process images for classification using these networks.

14.8 Visualizing Results
Now that we have trained two separate CNNs – one for age prediction and the other for gender
identification – we can move on to the topic of deployment. During the deployment phase, we’ll
need to be able to load both of our pre-trained CNNs, pre-process our input images, and then pass
them through the two networks to obtain our output classifications.

Instead of using the existing age_gender_config configuration, let’s instead open up a new
file, name it age_gender_deploy.py, and insert the following configurations:

1 # import the necessary packages
2 from age_gender_config import OUTPUT_BASE
3 from os import path
4

5 # define the path to the dlib facial landmark predictor
6 DLIB_LANDMARK_PATH = "shape_predictor_68_face_landmarks.dat"

In order to obtain higher accuracy when predicting age and gender, it’s often helpful to crop and
align a face from a given image. Thus far, all of our input images have been pre-cropped and
pre-aligned for us; however, this assumption will not hold in the real-world. To boost accuracy
further, we need to apply face alignment, a topic we’ll discuss in Section 14.8.2 below. The
DLIB_LANDMARK_PATH variables provideacc the path to a pre-trained facial landmark predictor that
will enable us to align faces in input images.

Next, let’s define the age CNN configurations:

8 # define the path to the age network + supporting files
9 AGE_NETWORK_PATH = "checkpoints/age"

10 AGE_PREFIX = "agenet"
11 AGE_EPOCH = 150
12 AGE_LABEL_ENCODER = path.sep.join([OUTPUT_BASE, "age_le.cpickle"])
13 AGE_MEANS = path.sep.join([OUTPUT_BASE, "age_adience_mean.json"])

Here we start by defining the AGE_NETWORK_PATH, which is the path to the age weight check-
points. The AGE_PREFIX controls the name of the network, in this case agenet. We’ll be loading

234 Chapter 14. Case Study: Age and Gender Prediction

AGE_EPOCH number 150 from disk. To convert from raw integer labels to human-readable labels,
we’ll need path to our AGE_LABEL_ENCODER. Finally, to perform mean normalization we need the
AGE_MEANS path.

We define identical variables for the gender network below:

15 # define the path to the gender network + supporting files
16 GENDER_NETWORK_PATH = "checkpoints/gender"
17 GENDER_PREFIX = "gendernet"
18 GENDER_EPOCH = 110
19 GENDER_LABEL_ENCODER = path.sep.join([OUTPUT_BASE,
20 "gender_le.cpickle"])
21 GENDER_MEANS = path.sep.join([OUTPUT_BASE,
22 "gender_adience_mean.json"])

In our next section we’ll learn how to apply our two networks to classify and visualize the
results of age and gender predictions from images inside the Adience dataset. But what happens if
you want to apply these types of predictions to images outside Adience? To do so, we first need
to understand the process of facial alignment. From there, we’ll use these techniques (and our
pre-trained networks) to apply age and gender predictions to our own custom images.

14.8.1 Visualizing Results from Inside Adience
Let’s go ahead and review vis_classification.py, the script responsible for visualizing pre-
dictions inside the Adience dataset. Open up the vis_classification.py file and we’ll get to
work:

1 # import OpenCV before mxnet to avoid a segmentation fault
2 import cv2
3

4 # import the necessary packages
5 from config import age_gender_config as config
6 from config import age_gender_deploy as deploy
7 from pyimagesearch.preprocessing import ImageToArrayPreprocessor
8 from pyimagesearch.preprocessing import SimplePreprocessor
9 from pyimagesearch.preprocessing import MeanPreprocessor

10 from pyimagesearch.utils import AgeGenderHelper
11 import numpy as np
12 import mxnet as mx
13 import argparse
14 import pickle
15 import imutils
16 import json
17 import os

We start off by importing our necessary Python packages on Lines 2-17 – notice how I am once
again placing the cv2 import above mxnet, which is because of the seg-fault issue I mentioned
above. On your machine, this action may not be required. From there, we import both our standard
config and deploy configuration files.

Lines 7-9 import our image pre-processors so we can properly pre-process our images before
classifying them. The AgeGenderHelper will be used to visualize the probability distributions for
each class label.

Let’s move on to the command line arguments:

14.8 Visualizing Results 235

19 # construct the argument parse and parse the arguments
20 ap = argparse.ArgumentParser()
21 ap.add_argument("-s", "--sample-size", type=int, default=10,
22 help="epoch # to load")
23 args = vars(ap.parse_args())

We only need a single switch here, --sample-size, which is an integer representing the
number of images we want to sample from the Adience testing set. We can now load our label
encoders and mean files for both the age and gender datasets:

25 # load the label encoders and mean files
26 print("[INFO] loading label encoders and mean files...")
27 ageLE = pickle.loads(open(deploy.AGE_LABEL_ENCODER, "rb").read())
28 genderLE = pickle.loads(open(deploy.GENDER_LABEL_ENCODER, "rb").read())
29 ageMeans = json.loads(open(deploy.AGE_MEANS).read())
30 genderMeans = json.loads(open(deploy.GENDER_MEANS).read())

As well as load the serialized networks from disk:

32 # load the models from disk
33 print("[INFO] loading models...")
34 agePath = os.path.sep.join([deploy.AGE_NETWORK_PATH,
35 deploy.AGE_PREFIX])
36 genderPath = os.path.sep.join([deploy.GENDER_NETWORK_PATH,
37 deploy.GENDER_PREFIX])
38 ageModel = mx.model.FeedForward.load(agePath, deploy.AGE_EPOCH)
39 genderModel = mx.model.FeedForward.load(genderPath,
40 deploy.GENDER_EPOCH)

Once the models are loaded we need to compile them:

42 # now that the networks are loaded, we need to compile them
43 print("[INFO] compiling models...")
44 ageModel = mx.model.FeedForward(ctx=[mx.gpu(0)],
45 symbol=ageModel.symbol, arg_params=ageModel.arg_params,
46 aux_params=ageModel.aux_params)
47 genderModel = mx.model.FeedForward(ctx=[mx.gpu(0)],
48 symbol=genderModel.symbol, arg_params=genderModel.arg_params,
49 aux_params=genderModel.aux_params)

Before passing an image through a given network, the image must first be pre-processed. Let’s
initialize those pre-preprocessors now:

51 # initialize the image pre-processors
52 sp = SimplePreprocessor(width=227, height=227, inter=cv2.INTER_CUBIC)
53 ageMP = MeanPreprocessor(ageMeans["R"], ageMeans["G"],
54 ageMeans["B"])
55 genderMP = MeanPreprocessor(genderMeans["R"], genderMeans["G"],
56 genderMeans["B"])
57 iap = ImageToArrayPreprocessor()

236 Chapter 14. Case Study: Age and Gender Prediction

Notice how we are instantiating two MeanPreprocessor objects: one for the age and one for
the gender. We use two mean processors here because both age and gender have two separate
training sets and therefore have different RGB mean values.

The following code block samples --sample-size rows from the testing .lst file:

59 # load a sample of testing images
60 rows = open(config.TEST_MX_LIST).read().strip().split("\n")
61 rows = np.random.choice(rows, size=args["sample_size"])

Let’s loop over each of these rows individually:

63 # loop over the rows
64 for row in rows:
65 # unpack the row
66 (_, gtLabel, imagePath) = row.strip().split("\t")
67 image = cv2.imread(imagePath)
68

69 # pre-process the image, one for the age model and another for
70 # the gender model
71 ageImage = iap.preprocess(ageMP.preprocess(
72 sp.preprocess(image)))
73 genderImage = iap.preprocess(genderMP.preprocess(
74 sp.preprocess(image)))
75 ageImage = np.expand_dims(ageImage, axis=0)
76 genderImage = np.expand_dims(genderImage, axis=0)

For each row, we unpack it into the ground-truth label (gtLabel) and corresponding imagePath
(Line 66). The input image is loaded from disk on Line 67. Pre-processing the image is handled
on Lines 71-76, creating two output images.

The first output image is ageImage, the result of the image being processed by the age pre-
processors. Similarly, we have the genderImage, the result of being passed through the gender
pre-processors. Now that our images have been pre-processed, we can pass them through their
respective networks for classification:

78 # pass the ROIs through their respective models
79 agePreds = ageModel.predict(ageImage)[0]
80 genderPreds = genderModel.predict(genderImage)[0]
81

82 # sort the predictions according to their probability
83 ageIdxs = np.argsort(agePreds)[::-1]
84 genderIdxs = np.argsort(genderPreds)[::-1]

A call to the .predict methods on Lines 79 and 80 give us our probabilities for each class
label. We then sort these labels in descending order with the largest probability at the front of the
lists (Lines 83 and 84).

To visualize the probability distribution of each class label, we’ll use our visualizeAge and
visualizeGender methods:

86 # visualize the age and gender predictions
87 ageCanvas = AgeGenderHelper.visualizeAge(agePreds, ageLE)

14.8 Visualizing Results 237

Figure 14.5: Various example classifications from within the Adience dataset used our age and
gender networks. In each of the cases we were able to correctly predict both the age and gender of
the subject.

88 genderCanvas = AgeGenderHelper.visualizeGender(genderPreds,
89 genderLE)
90 image = imutils.resize(image, width=400)

For the sake of brevity, these function explanations were not included in this chapter. These two
functions are simply extensions to the emotion/facial expression visualizations in Chapter 11. For
those interested, I have provided an explanation of these two functions in the companion website
to this book. Otherwise, I will leave it as an exercise to the reader to investigate these functions
as they are totally unrelated to deep learning and simply OpenCV functions used to draw a nicely
formatted probability distribution.

Our final code block draws both the top age and gender prediction on the output image,
followed by displaying the results to our screen:

92 # draw the actual prediction on the image
93 gtLabel = ageLE.inverse_transform(int(gtLabel))
94 text = "Actual: {}-{}".format(*gtLabel.split("_"))
95 cv2.putText(image, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,
96 0.7, (0, 0, 255), 3)
97

98 # show the output image
99 cv2.imshow("Image", image)

100 cv2.imshow("Age Probabilities", ageCanvas)
101 cv2.imshow("Gender Probabilities", genderCanvas)
102 cv2.waitKey(0)

To see our vis_classification.py script in action, open up a terminal and execute the
following command:

238 Chapter 14. Case Study: Age and Gender Prediction

$ python vis_classification.py

A sample of the output results can be seen in Figure 14.5. Notice how we are able to correctly
predict both the age and gender of the person in the photo.

14.8.2 Understanding Face Alignment
In order to understand face alignment, we first need to review the fundamentals of facial landmarks.
Facial landmarks are used to localize and represent the salient regions of the face, such as:
• Eyes
• Eyebrows
• Nose
• Mouth
• Jawline

Figure 14.6: An example of detecting facial landmarks on a face. Notice how the eyes, eyebrows,
nose, mouth, and jawline are localized.

An example of facial landmarks detected on an image can be seen in Figure 14.6. Detecting
facial landmarks is a subset of the shape prediction problem. Given an input image (normally a
ROI that specifies the object of interest), a shape predictor attempts to localize key points of interest
along the shape. In the context of facial landmarks, our goal is to detect important facial structures
on the face using shape prediction models. Detecting facial landmarks is, therefore, a two step
process:
• Step #1: Localize the face in the image.
• Step #2: Detect the key facial structures on the face ROI.
To accomplish both of these steps, we will be using the dlib library [40]. For Step #1, dlib uses

a pre-trained HOG + Linear SVM [41, 42] detector – this detector can locate the bounding box
(x,y)-coordinates of a face in an image. Then, for Step #2, using the method proposed by Kazemi
and Sullivan in their 2014 paper, One Millisecond Face Alignment with an Ensemble of Regression

14.8 Visualizing Results 239

Trees, the key facial structures can be localized. The end result is a facial landmark detector that
can be used to detect facial landmarks in real-time with high-quality results.

Given the facial landmarks, we can then apply facial alignment, the process of:
1. Identifying the geometric structure of faces in digital images.
2. Attempting to obtain a canonical alignment of the face based on translation, scale, and

rotation.
There are many forms of face alignment. Some methods try to impose a (pre-defined) 3D model

and then apply a transformation to the input images such that the facial landmarks on the input
face match the landmarks on the 3D Model. Other, more simplistic methods, rely on the facial
landmarks themselves (in particular, the eye regions) to obtain a normalized rotation, translation,
and scale representation of the face.

Thus, face alignment can be seen as yet another form of data normalization. Just as we mean
normalize images prior to passing them through a CNN, we can align faces to obtain better accuracy
when (1) training our CNNs and (2) evaluating them. A full review of the facial alignment process
is outside the scope of this book as it focuses heavily on computer vision and image processing
techniques outside the deep learning space; however, I encourage readers interested in both facial
landmarks and face alignments to read my tutorials on these methods:
• Facial landmarks: http://pyimg.co/xkgwd
• Face alignment: http://pyimg.co/tnbzf
In order to apply facial alignment to our input images, we’ll be using the FaceAligner class

implemented in my imutils library (http://pyimg.co/7c29j). I briefly describe the face alignment
algorithm below.

Figure 14.7: Top: Localizing the eyes via facial landmarks (red) is followed by computing the
angle between the eyes (green). Bottom: In order to align the face we also need to compute the
center (x,y) midpoint between the eyes. Right: Results of applying facial alignment to the two
faces. Notice how both faces are scaled approximately equally and rotated such at the eyes lie along
a horizontal line.

First, the eyes are localized using facial landmarks (Figure 14.7, top). Given the (x,y)-
coordinates of the eyes, we can then compute the angle between them. From there we also
need the midpoint between the eyes (bottom). An affine transformation is then applied to warp the
images into a new output coordinate space, such that the face is:

1. Centered in the image.

http://pyimg.co/xkgwd
http://pyimg.co/tnbzf
http://pyimg.co/7c29j

240 Chapter 14. Case Study: Age and Gender Prediction

2. Rotated such that the eyes lie on a horizontal line (i.e., the face is rotated such that the eyes
lie along the same y-coordinates).

3. Scaled such that the size of all faces across a given dataset are approximately equal.
The results of applying facial alignment to the two faces can be seen in Figure 14.7 (right).

Notice how in each example the face is centered, scaled approximately equally, and rotated such
that the eyes lie along a horizontal line. Again, a full review of the facial landmarks are outside the
scope of this book, so please refer to the PyImageSearch blog links above for more information on
both of these methods. In the remainder of this chapter, we’ll treat facial alignment as a blackbox
algorithm. Those interested in learning more about these techniques should refer to the links.

14.8.3 Applying Age and Gender Prediction to Your Own Images
Being able to apply age and gender prediction to the Adience dataset is all well and good – but if
what if we wanted to apply our CNNs to images outside of Adience? What do we do then? And
what are the necessary steps to take? To find out, open the test_prediction.py, and start by
importing the following libraries:

1 # import OpenCV before mxnet to avoid a segmentation fault
2 import cv2
3

4 # import the necessary packages
5 from config import age_gender_deploy as deploy
6 from pyimagesearch.preprocessing import ImageToArrayPreprocessor
7 from pyimagesearch.preprocessing import SimplePreprocessor
8 from pyimagesearch.preprocessing import MeanPreprocessor
9 from pyimagesearch.preprocessing import CropPreprocessor

10 from pyimagesearch.utils import AgeGenderHelper
11 from imutils.face_utils import FaceAligner
12 from imutils import face_utils
13 from imutils import paths
14 import numpy as np
15 import mxnet as mx
16 import argparse
17 import pickle
18 import imutils
19 import json
20 import dlib
21 import os

As you can see, there are quite a number of Python packages that we need to import. To start,
we’ll need our deploy configuration so we can load both of our age and gender networks. We’ll be
using a number of image preprocessors. Take note of Line 9 where we import the CropPreprocessor
– to boost classification accuracy, we’ll be performing the 10-crop method from Chapter 10 of the
Practitioner Bundle.

We then have the FaceAligner class imported on Line 11. The face alignment method was
briefly discussed in Section 14.8.2 above (please see http://pyimg.co/tnbzf for more information),
but for the time being, simply treat this class as a blackbox face alignment tool.

We then have our command line arguments:

23 # construct the argument parse and parse the arguments
24 ap = argparse.ArgumentParser()
25 ap.add_argument("-i", "--image", required=True,

http://pyimg.co/tnbzf

14.8 Visualizing Results 241

26 help="path to input image (or directory)")
27 args = vars(ap.parse_args())

Only a single argument is needed here, --image, which can either be:
1. A path to a single image.
2. A path to a directory of images.
In the case that --image is a directory, we’ll loop over each of the images individually and

apply age and gender classification to each of them. Our next few code blocks will look similar to
our previous vis_classification.py script. We’ll start by loading our label encoders and mean
files:

29 # load the label encoders and mean files
30 print("[INFO] loading label encoders and mean files...")
31 ageLE = pickle.loads(open(deploy.AGE_LABEL_ENCODER, "rb").read())
32 genderLE = pickle.loads(open(deploy.GENDER_LABEL_ENCODER, "rb").read())
33 ageMeans = json.loads(open(deploy.AGE_MEANS).read())
34 genderMeans = json.loads(open(deploy.GENDER_MEANS).read())

Followed by loading the serialized networks themselves:

36 # load the models from disk
37 print("[INFO] loading models...")
38 agePath = os.path.sep.join([deploy.AGE_NETWORK_PATH,
39 deploy.AGE_PREFIX])
40 genderPath = os.path.sep.join([deploy.GENDER_NETWORK_PATH,
41 deploy.GENDER_PREFIX])
42 ageModel = mx.model.FeedForward.load(agePath, deploy.AGE_EPOCH)
43 genderModel = mx.model.FeedForward.load(genderPath,
44 deploy.GENDER_EPOCH)

Once the models have been loaded, they also need to be compiled:

46 # now that the networks are loaded, we need to compile them
47 print("[INFO] compiling models...")
48 ageModel = mx.model.FeedForward(ctx=[mx.gpu(0)],
49 symbol=ageModel.symbol, arg_params=ageModel.arg_params,
50 aux_params=ageModel.aux_params)
51 genderModel = mx.model.FeedForward(ctx=[mx.gpu(0)],
52 symbol=genderModel.symbol, arg_params=genderModel.arg_params,
53 aux_params=genderModel.aux_params)

Of course, we’ll need to pre-process our images before passing them through the networks:

55 # initialize the image pre-processors
56 sp = SimplePreprocessor(width=256, height=256,
57 inter=cv2.INTER_CUBIC)
58 cp = CropPreprocessor(width=227, height=227, horiz=True)
59 ageMP = MeanPreprocessor(ageMeans["R"], ageMeans["G"],
60 ageMeans["B"])
61 genderMP = MeanPreprocessor(genderMeans["R"], genderMeans["G"],
62 genderMeans["B"])
63 iap = ImageToArrayPreprocessor(dataFormat="channels_first")

242 Chapter 14. Case Study: Age and Gender Prediction

Notice how we have initialized our SimplePreprocessor to resize an image to 256×256 pix-
els (Line 56 and 57). Once an image has been resized, we’ll apply the 10-crop method, extracting
227× 227 regions from the input image using the CropPreprocessor (Line 58). Special care
is taken on Line 63 to instantiate the ImageToArrayPreprocessor with the “channels first”
dataFormat. We use “channels first” ordering due to the fact that mxnet represents images with
the channels before the spatial dimensions.

The next code block handles initializing dlib’s (HOG-based [41, 42]) face detector, loading the
facial landmark predictor from disk, and instantiating our FaceAligner:

65 # initialize dlib’s face detector (HOG-based), then create the
66 # the facial landmark predictor and face aligner
67 detector = dlib.get_frontal_face_detector()
68 predictor = dlib.shape_predictor(deploy.DLIB_LANDMARK_PATH)
69 fa = FaceAligner(predictor)

Next, we should determine if we are loading a single image from disk, or if we should list the
contents of the directory and grab the paths to all input images:

71 # initialize the list of image paths as just a single image
72 imagePaths = [args["image"]]
73

74 # if the input path is actually a directory, then list all image
75 # paths in the directory
76 if os.path.isdir(args["image"]):
77 imagePaths = sorted(list(paths.list_files(args["image"])))

Given our imagePaths, let’s loop over them individually:

79 # loop over the image paths
80 for imagePath in imagePaths:
81 # load the image from disk, resize it, and convert it to
82 # grayscale
83 print("[INFO] processing {}".format(imagePath))
84 image = cv2.imread(imagePath)
85 image = imutils.resize(image, width=800)
86 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
87

88 # detect faces in the grayscale image
89 rects = detector(gray, 1)

We start by loading our image from disk (Line 84), resizing it to have a fixed width of 800
pixels (Line 85), and converting it to grayscale (Line 86). Line 89 then uses dlib’s face detector to
detect the locations of faces in the image.

Let’s loop over each of the detected faces:

91 # loop over the face detections
92 for rect in rects:
93 # determine the facial landmarks for the face region, then
94 # align the face
95 shape = predictor(gray, rect)

14.8 Visualizing Results 243

96 face = fa.align(image, gray, rect)
97

98 # resize the face to a fixed size, then extract 10-crop
99 # patches from it

100 face = sp.preprocess(face)
101 patches = cp.preprocess(face)
102

103 # allocate memory for the age and gender patches
104 agePatches = np.zeros((patches.shape[0], 3, 227, 227),
105 dtype="float")
106 genderPatches = np.zeros((patches.shape[0], 3, 227, 227),
107 dtype="float")

For each of the bounding box face location, rect, we apply the facial landmark predictor,
extract the face, and align it (Lines 95 and 96). We then pre-preprocess the face by applying
SimplePreprocessor to resize it to 256× 256 pixels, followed by the CropPreprocessor to
extract the 10 patches of the face.

Lines 104-107 initialize empty NumPy arrays to store each of the ten crops for both the age
predictions and gender predictions, respectively. The reason we explicitly define these two arrays is
because each ROI in patches needs to be pre-processed by both the age pre-processors and gender
pre-processors. We can apply these pre-processors now:

109 # loop over the patches
110 for j in np.arange(0, patches.shape[0]):
111 # perform mean subtraction on the patch
112 agePatch = ageMP.preprocess(patches[j])
113 genderPatch = genderMP.preprocess(patches[j])
114 agePatch = iap.preprocess(agePatch)
115 genderPatch = iap.preprocess(genderPatch)
116

117 # update the respective patches lists
118 agePatches[j] = agePatch
119 genderPatches[j] = genderPatch

On Line 110 we start looping over each of the ten patches. For each one, we apply the age mean
subtraction pre-processor and the gender mean subtraction pre-processor (Lines 112 and 113).
Both agePatch and genderPatch are then converted to mxnet-compatible arrays via channel
ordering on Lines 114 and 115. After both have been through the pre-processing pipeline, they
can be added to the agePatches and genderPatches arrays, respectively (Lines 118 and 119).

We are now finally ready to make predictions on the agePatches and genderPatches:

121 # make predictions on age and gender based on the extracted
122 # patches
123 agePreds = ageModel.predict(agePatches)
124 genderPreds = genderModel.predict(genderPatches)
125

126 # compute the average for each class label based on the
127 # predictions for the patches
128 agePreds = agePreds.mean(axis=0)
129 genderPreds = genderPreds.mean(axis=0)

244 Chapter 14. Case Study: Age and Gender Prediction

Lines 123 and 124 pass the age and gender ROIs through their respective networks, yielding
the class probabilities for each patch. We average the class probabilities together across every patch
to obtain our final predictions on Lines 128 and 129.

Our final code block handles displaying the class label distribution for both age and gender, as
well as drawing a bounding box surrounding the face we are predicting the age and gender for:

131 # visualize the age and gender predictions
132 ageCanvas = AgeGenderHelper.visualizeAge(agePreds, ageLE)
133 genderCanvas = AgeGenderHelper.visualizeGender(genderPreds,
134 genderLE)
135

136 # draw the bounding box around the face
137 clone = image.copy()
138 (x, y, w, h) = face_utils.rect_to_bb(rect)
139 cv2.rectangle(clone, (x, y), (x + w, y + h), (0, 255, 0), 2)
140

141 # show the output image
142 cv2.imshow("Input", clone)
143 cv2.imshow("Face", face)
144 cv2.imshow("Age Probabilities", ageCanvas)
145 cv2.imshow("Gender Probabilities", genderCanvas)
146 cv2.waitKey(0)

The final output images are displayed to our screen on Lines 142-146.
To apply our test_prediction.py script on images outside of the Adience dataset, simply

execute the following command:

$ python test_prediction.py --image examples

A set of example results can be found in Figure 14.8. Notice how we were able to correctly
classify the subject in the photo based on their gender and age bracket.

14.9 Summary
In this chapter, we learned how to predict the age and gender of a person in a photo by training two
separate Convolutional Neural Networks. To accomplish this process, we trained our networks on
the Adience dataset which includes labels for two genders along with eight separate age brackets.
Our goal was to replicate the performance Levi et al. obtained on this dataset, where they obtained:

1. 50.57% exact and 84.70% one-off accuracy for age.
2. 86.8% exact accuracy for age.
We followed their CNN architecture while introducing (1) batch normalization layers and (2)

additional dropout. During the training process, we applied additional data augmentation to help
reduce overfitting. Overall, we were able to obtain:

1. 71.15% exact and 88.28% one-off accuracy for age.
2. 90.29% exact accuracy for age.
Both of these results are huge improvements over all the original reported accuracies. After we

evaluated our CNN performance, we then defined a custom Python script to predict the age and
gender of people in photographs not a part of the Adience dataset. This task was accomplished by
using a technique called face aligning before passing the ROI through the networks for classification.

It’s worth noting that we did not use the same alignment tool as the Levi et al. Instead, we used
our own (simpler) face alignment algorithm and achieved good results. When training your own

14.9 Summary 245

Figure 14.8: Example age and gender predictions for a sample of input images outside the Adience
dataset.

custom age and gender prediction algorithms, I would suggest using the same face alignment tool
for your training, validation, testing, and outside evaluation images – doing so will ensure that your
images are pre-processed identically and that your model will generalize better.

15. Faster R-CNNs

Deep learning has impacted almost every facet of computer vision that relies on machine learning
in a meaningful way. Image classification, image search engines (also known as Content-based
Image Retrieval, or CBIR), localization and mapping (SLAM), image segmentation, to name a few,
have all been changed since the latest resurgence in neural networks and deep learning. Object
detection is no different.

One of the most popular deep learning-based object detection algorithms is the family of R-CNN
algorithms, originally introduced by Girshick et al. in 2013 [43]. Since then, the R-CNN algorithm
has gone under a number of iterations, improving the algorithm with each new publication, and
outperforming traditional object detection algorithms (ex., Haar cascades [44]; HOG + Linear SVM
[41]) at every step of the way.

In this chapter we’ll discuss the Faster R-CNN algorithm and its components, including anchors,
the base network, the Region Proposal Network (RPN), and Region of Interest (ROI) pooling. This
discussion of Faster R-CNN building blocks will help you understand the core algorithm, how it
works, and how end-to-end deep learning object detection is possible.

In the following chapter, we’ll review the TensorFlow Object Detection API [45], including
how to install it, how it works, and how to use the API to train your own Faster R-CNN object
detectors on custom datasets.

These two chapters on Faster R-CNNs, along with the following two chapters on Single Shot
Detectors (SSDs), will focus on object detection from a self-driving cars standpoint, demonstrating
how to train object detectors to localize street signs and vehicles in images and video streams.
You’ll be able to use these discussions and code examples as a starting point for your own projects.

15.1 Object Detection and Deep Learning
Object detection, regardless of whether performed via deep learning or other computer vision
techniques, has three primary goals — given an input image we wish to obtain:

1. A list of bounding boxes, or the (x,y)-coordinates for each object in an image
2. A class label associated with each bounding box
3. The probability/confidence score associated with each bounding box and class label

248 Chapter 15. Faster R-CNNs

Inside Chapter 13 of the Practitioner Bundle we reviewed the traditional object detection
pipeline, including:
• Sliding windows to localize objects at different locations
• Image pyramids, used to detect objects at varying scales
• Classification via a pre-trained CNN
In this manner we were able to frame object detection as classification, simply by utilizing

sliding windows and image pyramids. The problems with this approach are numerous, but the
primary ones include:
• Slow and tedious: running a sliding window at every location at every layer of an image

pyramid is a time consuming process
• Lack of aspect ratio: Since our CNN requires a fixed-size input, we cannot encode the

aspect ratio of a potential object into the ROI extracted and fed into the CNN. This leads to
less accurate localizations.
• Error prone: Balancing speed (larger sliding windows steps and fewer image pyramid

layers) with hopefully higher accuracy (more sliding window steps and more pyramid layers)
is incredibly challenging. This issue is only further compounded by a lack of object aspect
ratio in the ROI.

What we really need is an end-to-end deep learning-based object detector where we input an
image to the network and obtain the bounding boxes and class labels for output. As we’ll see,
building an end-to-end object detector is not an easy task.

15.1.1 Measuring Object Detector Performance

Figure 15.1: Left: An example of detecting a stop sign in an image. The predicted bounding box is
drawn in red while the ground-truth bounding box is drawn in green. Our goal is to compute the
Intersection of Union between these bounding box. Right: Computing the Intersection of Union is
as simple as dividing the area of overlap between the bounding boxes by the area of union.

When evaluating object detector performance we use an evaluation metric called Intersection
over Union (IoU). You’ll typically find IoU used to evaluate the performance of HOG + Linear
SVM detectors [41], Convolutional Neural Network methods, such as Faster R-CNN [46], SSD
[47], You Only Look Once (YOLO) [48, 49], and others; however, keep in mind that the actual
algorithm used to generate the predicted bounding boxes does not matter.

Any algorithm that provides predicted bounding boxes (and optionally class labels) as output
can be evaluated using IoU. More formally, in order to apply IoU to evaluate an arbitrary object
detector, we need:

1. The ground-truth bounding boxes (i.e., the hand labeled bounding boxes from our testing set
that specify where in an image our object is).

15.1 Object Detection and Deep Learning 249

2. The predicted bounding boxes from our model.
3. If you want to compute recall along with precision, you’ll also need the ground-truth class

labels and predicted class labels.
As long as we have these two sets of bounding boxes we can apply IoU.
In Figure 15.1 (left) I have included a visual example of a ground-truth bounding box (green)

versus a predicted bounding box (red). Computing IoU can therefore be determined by the equation
illustration in Figure 15.1 (right).

Examining this equation you can see that IoU is simply a ratio. In the numerator we compute
the area of overlap between the predicted bounding box and the ground-truth bounding box. The
denominator is the area of union, or more simply, the area encompassed by both the predicted
bounding box and ground-truth bounding box. Dividing the area of overlap by the area of union
yields a final score — the Intersection over Union.

Where do the ground-truth examples come from?
Before we get too far, you might be wondering where the ground-truth examples come from. I’ve
mentioned earlier in this chapter that our dataset must be “hand labeled”, but what exactly does that
mean?

When training your own object detector, you need a dataset. This dataset should be broken into
(at least) two groups:

1. A training set used for training your object detector
2. A testing set for evaluating your object detector
You may also have a validation set used to tune the hyperparameters of your model.
Both the training and testing set will consist of:

1. The actual images themselves
2. The bounding boxes associated with the object(s) in the image. The bounding boxes are

simply the (x,y)-coordinates of the object in the image.
The bounding boxes for the training and testing sets are hand labeled, hence why we call them

the “ground-truth”. Your goal is to take the training images + bounding boxes, construct an object
detector, and then evaluate its performance on the testing set. An IoU score > 0.5 is normally
considered a “good” prediction.

Why do we use Intersection over Union?
So far in this book we have primarily performed classification, where our model predicts a set of
class labels for an input image — the predicted label with the highest probability is either correct or
incorrect. This type of binary classification makes computing accuracy straightforward — it’s
either correct or not; however, for object detection, it’s not so simple.

Figure 15.2: An example of computing Intersection over Unions for various bounding boxes. The
more the predicted bounding box overlaps with the ground-truth bounding box, the better the
prediction, and thus a higher IoU score.

250 Chapter 15. Faster R-CNNs

In reality, it’s extremely unlikely that the (x,y)-coordinates of our predicted bounding box are
going to exactly match the (x,y)-coordinates of the ground-truth bounding box. Due to varying
parameters of our model, such as layer used for feature extraction, anchor placement, loss function,
etc., a complete and total match between predicted and ground-truth bounding boxes is simply
unrealistic.

Because coordinates will not match exactly, we need to define an evaluation metric that
rewards predicted bounding boxes for heavily overlapping with the ground-truth, as Figure
15.2 demonstrates.

In this illustration I have included three examples of good and bar IoU scores. Predicted
bounding boxes that heavily overlap with the ground-truth bounding boxes have higher scores than
those with less overlap. This behavior makes IoU an excellent metric for evaluating custom object
detectors.

Again, we aren’t concerned with an exact match of (x,y)-coordinates, but we do want to ensure
that our predicted bounding boxes match as closely as possible — IoU is able to take this fact into
account.

Implementing IoU by hand is outside the context of this book, although it is a fairly straight-
forward process. If you’re interested in learning more about IoU, including a walkthrough
of Python code demonstrating how to implement it, please see this PyImageSearch blog post:
http://pyimg.co/ag4o5

Mean Average Precision (mAP)
In the context of machine learning, precision typically refers to accuracy — but in the context of
object detection, IoU is our precision. However, we need to define a method to compute accuracy
per class and across all classes in dataset. To accomplish this goal, we need mean Average
Precision (mAP).

To compute average precision for a single class, we determine the IoU of all data points for a
particular class. Once we have the IoU we divide by the total class labels for that specific class,
yielding the average precision. To compute the mean average precision, we compute the average
IoU for all N classes — then we take the average of these N averages, hence the term mean average
precision.

When reading object detection papers you’ll typically see results reported in terms of mAP.
This mAP value is derived by averaging the average precision on a per-class basis for all classes in
the dataset. Typically we’ll report mAP@0.5, indicating that in order for an object in the testing
set to be marked as a “positive detection” it must have, at least, 0.5 IoU with the ground-truth. The
0.5 value is tunable, but 0.5 is fairly standard across most object detection datasets.

15.2 The (Faster) R-CNN Architecture
In this section we’ll review the Faster R-CNN architecture. We’ll start with a brief discussion on
R-CNNs and how they have evolved over the series of three publications, leading to the Faster
R-CNN architecture that we commonly use now. Finally, we’ll examine the core building blocks of
the Faster R-CNN architecture, first at a high level and then again in more detail.

As we’ll see, the Faster R-CNN architecture is complex, with many moving parts — we’ll
focus our efforts on obtaining an understanding of tenets of this architecture prior to training the
network on our own custom datasets in Chapter 16.

15.2.1 A Brief History of R-CNN
To better understand how the Faster R-CNN object detection algorithm works, we first need to
review the history of the R-CNN algorithm, including its original incarnation and how it has
evolved.

http://pyimg.co/ag4o5

15.2 The (Faster) R-CNN Architecture 251

R-CNN

Figure 15.3: The original R-CNN architecture consisted of (1) accepting an input image, (2)
extracting ≈ 2,000 proposals via the Selective Search algorithm, (3) extracting features for each
proposal ROI using a pre-trained CNN (such as one trained on ImageNet), and (4) classifying the
features for each ROI using a class-specific Linear SVM. (Image credit: Figure 1 of Girshick et al.
[43])

The first R-CNN paper, Rich feature hierarchies for accurate object detection and semantic
segmentation, was published in 2013 by Girshick et al. [43] — we refer to this initial paper and
associated implementation as simply R-CNN. An overview of the original R-CNN algorithm can
be found in Figure 15.3, which includes a four step process:
• Step #1: Input an image
• Step #2: Extract regions proposals (i.e., regions of the image that potentially contain objects)

using an algorithm such as Selective Search [50].
• Step #3: Use transfer learning, specifically feature extraction, to compute features for

each proposal (which is effectively an ROI) using the pre-trained CNN.
• Step #4: Classify each proposal using the extracted features with a Support Vector Machine

(SVM).
In the first step we input an image to our algorithm. We then run a region proposal algorithm as

such Selective Search (or equivalent). The Selective Search algorithm takes the place of sliding
windows and image pyramids, intelligently examining the input image at various scales and
locations, thereby dramatically reducing the total number of proposal ROIs that will be sent to the
network for classification. We can thus think of Selective Search as a smart sliding window and
image pyramid algorithm.

R A review of the Selective Search algorithm is outside the scope of this book so I recommend
treating it as a “black box” that intelligently proposes ROI locations to you. For a detailed
discussion of Selective Search refer to Uijlings et al. [50].

Once we have our proposal locations we crop each of them individually from the input image
and apply transfer learning via feature extraction (Chapter 3 of the Practitioner Bundle). Instead of
obtaining the final predictions from the CNN, we utilize feature extraction to enable a downstream
classifier to learn more discriminating patterns from these CNN features.

The fourth and final step is to train a series of SVMs on top of these extracted features for each
class.

Looking at this pipeline for the original R-CNN we can clearly see inspirations and parallels
from traditional object detectors such as Dalal and Triggs seminal HOG + Linear SVM framework:

252 Chapter 15. Faster R-CNNs

• Instead of applying an exhaustive image pyramid and sliding window, we are swapping in a
more intelligent Selective Search algorithm
• Instead of extracting HOG features from each ROI, we’re now extracting CNN features
• We’re still training SVM(s) for the final classification of the input ROI, only we’re training

this SVM on the CNN features rather than the HOG ones
The primary reason this approach worked so well is due to the robust, discriminative features

learned by a CNN — something we have explored thoroughly in Chapter 3 and Chapter 5 on transfer
learning inside the Practitioner Bundle.

The problem with the original R-CNN approach is that it’s still incredibly slow. And further-
more, we’re not actually learning to localize via deep neural network.

Instead, we’re leaving the localization to the Selective Search algorithm — we’re only classify-
ing the ROI once it’s been determined as “interesting” and “worth examining” by the region proposal
algorithm, which raises the question: is it possible to obtain end-to-end deep learning-based object
detection?

Fast R-CNN

Figure 15.4: In the Fast R-CNN architecture, we still use Selective Search to obtain our proposals,
but now we apply ROI Pooling by extracting a fixed-size window from the feature map and using
these features to obtain the final class label and bounding box. (Image credit: Figure 1 of Girshick
et al. [51])

Approximately a year and a half after Girshick et al. submitted the original R-CNN publication
to arXiv, Girkshick published a second paper, Fast R-CNN [51]. Similar to the original R-CNN, Fast
R-CNN algorithm still utilized Selective Search to obtain region proposals, but a novel contribution
was made: Region of Interest (ROI) Pooling. A visualization of the new, updated architecture
can be seen in Figure 15.4

In this new approach, we apply the CNN to the entire input image and extract a feature map
from it using our network. ROI Pooling works by extracting a fixed-size window from the feature
map and then passing it into a set of fully-connected layers to obtain the output label for the ROI.
We’ll discuss ROI Pooling in more detail in Section 15.2.5, but for the time being, understand
that ROI Pooling operates over the feature map extracted from the CNN and extracts a fixed-size
window from it.

The primary benefit here is that the network is now, effectively, end-to-end trainable:
1. We input an image and associated ground-truth bounding boxes
2. Extract the feature map
3. Apply ROI pooling and obtain the ROI feature vector
4. And finally use two sets of fully-connected layers to obtain (1) the class label predictions and

(2) the bounding box locations for each proposal.
While the network is now end-to-end trainable, performance suffered dramatically at inference

15.2 The (Faster) R-CNN Architecture 253

(i.e., prediction) time by being dependent on the Selective Search (or equivalent) region proposal
algorithm. To make the R-CNN architecture even faster we need to incorporate the region proposal
directly into the R-CNN.

Faster R-CNN

Figure 15.5: The latest incarnation of the R-CNN family, Faster R-CNN, introduces a Region
Proposal Network (RPN) that bakes region proposal directly in the architecture, alleviating the
need for the Selective Search algorithm. (Image credit: Figure 2 of Girshick et al. [46])

A little over a month after the Fast R-CNN paper was published, Girshick collaborated with
Ren and Sun in a 2015 paper, Faster R-NN: Towards Real-Time Object Detection with Region
Proposal Networks [46].

In this work, Girshick et al. created an additional component to the R-CNN architecture, a
Region Proposal Network (RPN). As the name of this module sounds, the goal of the RPN is to
remove the requirement of running Selective Search prior to inference and instead bake the region
proposal directly into the R-CNN architecture.

Figure 15.5 provides a visualization of the updated architecture. Here we can see an input
image is presented to the network and its features extracted via pre-trained CNN (i.e., the base
network). These features, in parallel, are sent to two different components of the Faster R-CNN
architecture.

The first component, the RPN, is used to determine where in an image a potential object could
be. At this point we do not know what the object is, just that there is potentially an object at a
certain location in the image.

The proposed bounding box ROIs are based on the Region of Interest (ROI) Pooling module of
the network along with the extracted features from the previous step. ROI Pooling is used to extract
fixed-size windows of features which are then passed into two fully-connected layers (one for the
class labels and one for the bounding box coordinates) to obtain our final localizations.

We’ll discuss the RPN in detail inside Section 15.2.4, but in essence, we are now going to place
anchors spaced uniformly across the entire image at varying scales and aspect ratios. The RPN
will then examine these anchors and output a set of proposals as to where it “thinks” an object
exists.

254 Chapter 15. Faster R-CNNs

It’s important to note here that the RPN is not actually labeling the ROI; instead, it’s computing
its “objectness score” and asking: “Does this region look like an object of some sort?” I personally
like to think of the RPN and objectness score as a binary classifier of sorts where the RPN is
labeling each ROI as “background” or “foreground”. If the RPN thinks the ROI is “foreground”
then the ROI is worth further consideration by the ROI Pooling and final label + bounding box
fully-connected layers.

At this point the entire architecture is end-to-end trainable and the complete object detection
pipeline takes place inside the network, including:

1. Region proposal
2. Feature extraction
3. Computing the bounding box coordinates of the objects
4. Providing class labels for each bounding box
And furthermore, depending on which GPU and base architecture is used, it’s now possible to

obtain ≈ 7−10 frames per second (FPS), a huge step towards making real-time object detection
with deep learning a reality.

Now that we have a brief introduction to the components in a (Faster) R-CNN architecture, let’s
examine each of them individually in more detail.

15.2.2 The Base Network
In Figure 15.5 we can see the general modules in the Faster R-CNN architecture. After we input
the image to the architecture, the first component we come across is the base network. The base
network is typically a CNN pre-trained for a particular classification task. This CNN will be used
for transfer learning, in particular, feature extraction.

In the context of object detection, we typically use a CNN pre-trained on the ImageNet dataset.
We use a pre-trained CNN here as the features learned by a particular layer are often transferrable
to classification tasks outside what the original network was trained on. For a complete review
on transfer learning, feature extraction, fine-tuning, and how we can use transfer learning via
pre-trained networks, please refer to Chapter 3 of the Practitioner Bundle.

The original Faster R-CNN paper used VGG [17] and ZF [52] as the base networks. Today, we
would typically swap in a deeper, more accurate base network such as ResNet [21, 22], or a smaller,
more compact network for resource contained devices, such as MobileNet [53].

One important aspect of object detection networks is that they should be fully-convolutional,
not to be confused with fully-connected. A fully-convolutional neural network does not contain the
fully-connected layers typically found at the end of a network prior to making output predictions. In
the context of image classification, removing the fully-connected layers is normally accomplished
by applying average pooling across the entire volume prior to a single dense softmax classifier used
to output the final predictions

A fully-convolutional neural network enjoys two primary benefits, including being:
1. Fast, due to all convolution operations
2. Able to accept images of any spatial resolution (i.e., width and height), provided that the

image and network can fit into memory, of course
When implementing object detection with deep learning it’s important that we do not rely

on fixed-size input images that require us to force the image to a specific dimension. Not only
can fixed-sizes distort the aspect ratio of the input image, but it has the even worse side effect of
making it extremely challenging for the network to detect small objects — if we reduce the spatial
dimensions of our image too much, small objects will now appear as tiny pixel blobs, too small for
the network to detect. Therefore, it’s important that we allow the network to accept arbitrary spatial
resolution images and allow input image size to be a decision made by the network developer or
engineer.

15.2 The (Faster) R-CNN Architecture 255

Figure 15.6: The base network is used to extract features from the input image. We ensure our
network is fully-convolutional by removing the fully-connected layers at the end of the network
and instead utilizing the output of the CONV and POOL layers. This process allows our network to
handle input images of arbitrary spatial dimensions. The features are then fed into the RPN and
ROI Pooling modules.

However, in the case of VGG in Girshick et al., we know there are fully-connected layers at the
end of VGG — it is thus not a fully-convolutional network. There is a way to change the behavior
of the CNN though. Keep in mind that we only need the output of a specific CONV (or POOL) layer
in the network — this output is our feature map, the process of which is visualized in Figure 15.6.

We can obtain this feature map by propagating the input image through the network and
stopping at our target layer (we do not have to pass the image through the entire network to obtain
our feature map). The fact that VGG originally only accepted a 224×224 input image is entirely
arbitrary now that we’re only interested in the output of a specific CONV + POOL layer. This feature
map will be used by Region Proposal Network and ROI Pooling module later in the Faster R-CNN
architecture.

15.2.3 Anchors
In traditional object detection pipelines we would use either (1) a combination of a sliding window
+ image pyramid or (2) a Selective Search-like algorithm to generate proposals for our classifier.
Since our goal is to develop an end-to-end object detector using deep learning that includes the
proposal module, we need to define a method that will generate our proposal ROIs.

The core separation between classification and object detection is the prediction of bounding
boxes, or (x,y)-coordinates surrounding an object. Thus, we might expect our network to return a
tuple consisting of the bounding box coordinates of a particular object. But, there is a problem with
this approach, namely:

1. How do we handle a network predicting values outside the boundaries of the image?
2. How do we encode restrictions such as xmin < xmax and ymin < ymax?
It sounds out that this is a near impossible problem to solve. However, the solution proposed by

256 Chapter 15. Faster R-CNNs

Girchick et al., called anchors, is a clever and novel one.

Figure 15.7: Left: Creating anchors starts with the process of sampling the coordinates of an image
every r pixels (r = 16 in the original Faster R-CNN implementation). Right: We create a total of
nine anchors centered around each sampled (x,y)-coordinate. In this visualization, x = 300,y = 200
(center blue coordinate). The nine total anchors come from every combination of scale: 64×64
(red), 128×128 (green), 256×256 (blue); and aspect ratio: 1 : 1, 2 : 1, 1 : 2.

Instead of trying to predict the raw (x,y)-coordinates of the bounding boxes, we can instead
learn to predict their offsets from the reference boxes, namely: ∆x−center, ∆y−center, ∆width, and
∆height . These delta values allow us to obtain a better fit to our reference box without having to
predict the actual raw (x,y)-coordinates, enabling us to bypass the potentially impossible problem
of encoding bounding box “rules” into the network.

So where do these reference bounding boxes come from? We need to generate the anchors
ourselves without utilizing a Selective Search algorithm. To accomplish this process, we first need
to uniformly sample points across an input image (Figure 15.7, left). Here we can see an input
image that is 600×400 pixels — we have labeled each point at a regularly sampled integer (at an
interval of sixteen pixels) with a blue circle.

The next step is to create a set of anchors at each of the sampled points. As in the original
Faster R-CNN publication, we’ll generate nine anchors (which are fixed bounding boxes) with
varying sizes and aspect ratios surrounding a given sampled point.

The colors of the bounding boxes are our scales/sizes, namely: 64× 64, 128× 128, and
256×256. For each scale we also have the aspect ratio, 1 : 1, 1 : 2, and 2 : 1. Each combination of
scale and aspect ratio yields nine total anchors. This combination of scale and aspect ratio yields
us considerable coverage over all possible object sizes and scales in the input image (Figure 15.7,
right).

However, there is a problem here once we break down the total number of anchors generated:

• If we use a stride of 16 pixels (the default for Faster R-CNN) on a 600×800 image, we’ll
obtain a total of 1,989 total positions.
• With nine anchors surrounding each of the 1,989 positions, we now have a total of 1,989×9=

17,901 bounding box positions for our CNN to evaluate.

If our CNN classified each of the 17,901 bounding boxes our network would be only slightly
faster than exhaustively looping over each combination of sliding window and image pyramid.
Luckily, with the Region Proposal Network (RPN) we can dramatically reduce the number of
candidate proposal windows, leaving us with a much more manageable size.

15.2 The (Faster) R-CNN Architecture 257

15.2.4 Region Proposal Network (RPN)

If the goal of generating anchors is to obtain good coverage over all possible scales and sizes of
objects in an image, the goal of the Region Proposal Network (RPN) is to prune the number of
generated bounding boxes to a more manageable size.

Figure 15.8: The goal of the Region Proposal Module is to accept a set of anchors and quickly
determine the “objectness” of a region in image. Namely, this involves labeling the ROI as either
foreground or background. Background anchor regions are discarded while foreground objects are
propagated to the ROI Pooling module.

The RPN module is simplistic yet powerful, consisting of two outputs. The top of the RPN
module accepts an input, which is our convolutional feature map from Section 15.2.2. We then
apply a 3×3 CONV, learning 512 filters.

These filters are fed into two paths in parallel. The first output (left) of the RPN is a score
that indicates whether the RPN thinks the ROI is foreground (worth examining further) or back-
ground (discard). Figure 15.8 provides a visualization of labeling the “objectness” of an input
ROI.

Again, the RPN is not actually labeling the ROI — it’s just trying to determine if the ROI
is either background or foreground. The actual labeling of the ROI will take place later in the
architecture (Section 15.2.6). The dimensionality of this output is 2×K where K is the total number
of anchors, one output for the foreground probability and the second output for the background
probability.

The second output (right) is our bounding box regressor used to adjust the anchors to better fit
the object that it is surrounding. Adjusting the anchors is again accomplished via 1×1 convolution,
but this time outputting a 4×K volume. The output is 4×K as we are predicting the four delta
(i.e., offset) values: ∆x−center, ∆y−center, ∆width, ∆height .

Provided that our foreground probability is sufficiently large, we then apply:
• Non-maxima suppression to suppress overlapping
• Proposal selection
There will naturally be many overlapping anchor locations as per Section 15.2.3 above —

non-maxima suppression helps reduce the number of locations to pass on to the ROI Pooling
module. We further reduce the number of locations to pass into the ROI pooling module via
proposal selection Here we take only the top N proposals and discard the rest.

In the original Faster R-CNN publication, Girshick et al. set N = 2,000, but we can get away
with a much smaller N, such as N = 10,50,100,200 and still obtain good predictions.

258 Chapter 15. Faster R-CNNs

The next step in the pipeline would be to propagate the ROI and deltas to the Region of Interest
(ROI) Pooling module (Section 15.2.5), but let’s first discuss how we might train the RPN.

Training the RPN
During training, we take our anchors and put them into two different buckets:
• Bucket #1 — Foreground: All anchors that have a 0.5 IoU with a ground-truth object

bounding box.
• Bucket #2 — Background: All anchors that have < 0.1 IoU with a ground-truth object.
Based on these buckets we randomly sample between the two to maintain an equal ratio between

background and foreground.
From there, we need to consider our loss functions. In particular, the RPN module has two loss

functions associated with it. The first loss function is for classification which measures the accuracy
of the RPN predicting foreground vs. background (binary cross-entropy works nicely here).

The second loss function is for our bounding box regression. This loss function only operates
on the foreground anchors as backgrounds anchors would have no sense of a bounding box (and we
should have already detected “background” and discarded it).

For the bounding box regression loss function, Girshick et al. utilized a variant or L1 loss
called Smooth L1 loss. Since it’s unrealistic for us to 100% accurately predict the ground-truth
coordinates of a bounding box (addressed in Section 15.1.1), Smooth L1 loss allows bounding
boxes that are “sufficiently close” to their corresponding ground-truth boxes to be essentially correct
and thereby diminish the impact of the loss.

15.2.5 Region of Interest (ROI) Pooling

Figure 15.9: The goal of the Region of Interest ROI Pooling module is to take all N proposal
locations and then extract the corresponding ROI features from the convolutional feature map. The
ROI Pooling module then resizes the dimensions of the extracted features for the ROI down to
7×7×D (where D is the depth of the feature map). This fixed size prepares the feature for the two
upcoming FC layers in the next module.

The goal of the ROI Pooling module is to accept all N proposal locations from the RPN module
and crop out feature vectors from the convolutional feature map in Section 15.2.2 (Figure 15.9).
Cropping feature vectors is accomplished by:
• Using array slicing to extract the corresponding patch from the feature map
• Resizing it to 14×14×D where D is the depth of the feature map
• Applying a max pooling operation with 2×2 strides, yielding a 7×7×D feature vector.

15.2 The (Faster) R-CNN Architecture 259

The final feature vector obtained from the ROI Pooling module can now be fed into the Region-
based Convolutional Neural network (covered in the next section) which we will use to obtain the
final bounding box coordinates for each object along with the corresponding class label.

For more information on how ROI Pooling is implemented, please see the original Girshick
et al. publication [46] as well as the excellent tutorial, Faster R-CNN: Down the Rabbit Hole of
Modern Object Detection [54].

15.2.6 Region-based Convolutional Neural Network
The final stage in our pipeline is the Region-based Convolutional Neural Network, or as we know
it, R-CNN. This module serves two purposes:

1. Obtain the final class label predictions for each bounding box location based on the cropped
feature map from the ROI Pooling module

2. Further refine the bounding box prediction (x,y)-coordinates for better prediction accuracy
In practice, the R-CNN component is implemented via two fully-connected layers, as Figure

15.10 demonstrates. On the far left we have the input to our R-CNN, which are the feature vectors
obtained from the ROI Pooling module. These features pass through two fully-connected layers
(each 4096-d) before being passed into the final two FC layers which will yield our class label (or
background class) along with the bounding box delta values.

Figure 15.10: The final module in the Faster R-CNN architecture takes the output of the ROI
Pooling component and passes it through two FC layers (each 4096-d), similar to the final layers
of classification networks trained on ImageNet. The output of these FC layers feed into the final
two FC layers in the network. One FC layer is N +1—d, a node for each of the class labels plus an
additional label for the background. The second FC layer is 4×N which represents the deltas for
the final predicted bounding boxes.

One FC layer has N + 1 nodes, where N is the total number of class labels. The addition of
the extra dimension is used to indicate the background class, just in case our RPN module let a
background region through.

The second FC layer is 4×N. The N here is again our total number of class labels. The four
values are our corresponding deltas for ∆x−center, ∆y−center, ∆width, ∆height which will be transformed
to our final bounding boxes.

These two outputs again imply that we’ll have two loss functions:
1. Categorical cross-entropy for classification
2. Smooth L1 loss for bounding box regression
We use categorical cross-entropy rather than binary cross-entropy here as we are computing

probabilities for each of our N classes versus the binary case (background vs. foreground) in the
RPN module. The final step is to apply non-maxima suppression class-wise to our set of bounding

260 Chapter 15. Faster R-CNNs

boxes — these bounding boxes and associated class labels are considered the final predictions from
our network.

15.2.7 The Complete Training Pipeline
We have a choice to make when training the entire Faster R-CNN pipeline. The first choice is to
train the RPN module, obtain satisfiable results, and then move on to training the R-CNN module.
The second choice is to combine the four loss functions (two for the RPN module, two for the
R-CNN module) via weighted sum and then jointly train all four. Which one is better?

In nearly all situations you’ll find that jointly training the entire network end-to-end by mini-
mizing the weighted sum of the four loss functions not only takes less time but also obtains higher
accuracy as well.

In our next chapter we’ll learn how to use the TensorFlow Object Detection API to train our own
Faster R-CNN networks. If you’re interested in more details on the Faster R-CNN pipeline, RPN
and ROI Pooling modules, along with additional notes on how we jointly minimize the four loss
functions, be sure to refer to the original Faster R-CNN publication [46] as well as the TryoLabs
article [54].

15.3 Summary
In this chapter we started by reviewing the Faster R-CNN architecture, along with its earlier
variants, by Girshick et al. [43, 46, 51]. The R-CNN architecture has gone under a few iterations
and improvements, but with the latest Faster R-CNN architecture we are able to train end-to-end
deep learning object detectors.

The architecture itself includes four primary components. The first component is the base
network (i.e., ResNet, VGGNet, etc.) which is used as a feature extractor.

We then have the Region Proposal Network (RPN), which accepts a set of anchors, and
outputs proposals as to where it thinks objects are in an image. It’s important to note that the RPN
does not know what the object is in the image, just that a potential object exists at a given location.

Region of Interest Pooling is used to extract feature maps from each proposal region.
Finally a Region-based Convolutional Neural Network is used to (1) obtain the final class

label predictions for the proposal and (2) further refine the proposal locations for better accuracy.
Given the large number of moving parts in the R-CNN architecture, it is not advisable to imple-

ment the entire architecture by hand. Instead, it’s recommended to use existing implementations
such as the TensorFlow Object Detection API [55] or Luminoth from TryoLabs [56].

In our next chapter we will learn how to train a Faster R-CNN using the TensorFlow Object
Detection API to detect and recognize common United States street/road signs.

16. Training a Faster R-CNN From Scratch

In our previous chapter we discussed the Faster R-CNN architecture and its many components,
including the Region Proposal Network (RPN) and ROI Pooling module. While the previous
chapter focused strictly on the inner-working parts, this chapter will switch towards implementation
and how to actually train a Faster R-CNN on a custom dataset.

We are going to be taking a “deep learning for self-driving cars” approach to both this chapter
and Chapter 18 on Single Shot Detectors. By the end of this chapter you’ll be able to:

1. Install and configure the TensorFlow Object Detection API on your system
2. Build an image dataset + image annotations in the TensorFlow Object Detection API Form
3. Train a Faster R-CNN on the LISA Traffic Signs dataset (or your own custom dataset)
4. Evaluate the accuracy and apply the trained Faster R-CNN to input images and videos

16.1 The LISA Traffic Signs Dataset

The LISA Traffic Signs dataset was curated and put together by Mogelmose et al. and fully
detailed in their 2012 paper, Vision-Based Traffic Sign Detection and Analysis for Intelligent Driver
Assistance Systems: Perspectives and Survey [57].

The dataset consists of 47 different United States traffic sign types, including stop signs,
pedestrian crossing signs, etc. An example image from the LISA Traffic Signs dataset can be seen
in Figure 16.1. The dataset was initially captured via video but the individual frames and associated
annotations are also included.

There are a total of 7,855 annotations on 6,610 frames. Road signs vary in resolution, from
6×6 to 167×168 pixels. Furthermore, some images were captured in a lower resolution 640×
480 camera while others were captured on a higher resolution 1024×522 pixels. Some images are
grayscale while others are color. The variance in camera quality and capture color space make this
an interesting dataset to study in terms of object detection.

The full LISA Traffic Signs dataset is over 7GB, so in order to train our network faster (and
learn the fundamentals of object detection quicker), we will be sampling three traffic sign classes:
stop sign, pedestrian crossing, and signal ahead signs. We’ll be training our Faster R-CNN on this

262 Chapter 16. Training a Faster R-CNN From Scratch

Figure 16.1: The LISA Traffic Signs datasets consists of 47 different United States traffic signs
with 7,855 annotations over 6,610 frames. Here we can see an example image containing two stop
signs. Our goal will be to detect and label traffic signs such as this stop sign.

three class sampled dataset but you are welcome to train on the full dataset as well (but I would
recommend replicating our results in this chapter before you make any changes).

The LISA Traffic Signs homepage can be found using this link: http://pyimg.co/lp6xo. From
there you’ll want to scroll to the bottom of the page to the “Access” section and download the .zip
archive of the dataset. I have chosen to store the dataset in a directory appropriately named lisa.
Once the download is complete, unarchive it:

$ mkdir lisa
$ cd lisa
$ mv signDatabasePublicFramesOnly.zip ./
$ unzip signDatabasePublicFramesOnly.zip

16.2 Installing the TensorFlow Object Detection API

When putting this book together I evaluated many deep learning-based object detection implemen-
tations, including pure Keras-based libraries, mxnet-based packages, Caffe implementations, and
even Torch libraries.

Object detection is not only much harder to train a network on, but significantly more challeng-
ing to implement as well, as there are many more components, some of which require custom layers
and loss functions. After reading Chapter ?? on the fundamentals of Faster R-CNNs, it should be
clear there are many modules that would need to be implemented by hand.

Implementing the entire Faster R-CNN architecture is not something that can be covered in this
book, for a number of reasons, including:

1. Implementing and explaining the Faster R-CNN architecture by hand using the same style
used throughout the rest of the book (code blocks and detailed explanations) would take
hundreds (if not more) of pages.

2. Object detection libraries and packages tend to be fragile in their nature as custom layers and
loss methods are used. When a new version of their associated backend library is released,
the risk of breaking such a custom module is high.

http://pyimg.co/lp6xo

16.3 Training Your Faster R-CNN 263

The goal here is to instead discuss a library that is least fragile as possible, giving you the best
of both worlds: knowledge of the Faster R-CNN architecture and ability to train the network from
scratch.

Because of the fragility of custom, ground-up implementations, we are going to use the
TensorFlow Object Detection API (TFOD API) in this chapter and Chapter 18 on Single Shot
Detectors. Not only is TensorFlow one of the most used deep learning libraries, but the TFOD API
is supported by Google itself — there is a large community of both open source, research, and
corporate developers working on the project, helping reduce the fragile nature of the library.

If you’re interested in learning more about the TFOD API, be sure to take a look at their
official GitHub page [45] as well as their 2017 CVPR paper, Speed/accuracy trade-offs for modern
convolution object detectors [55].

To install and configure the TensorFlow Object Detection API, please refer to the following
page of the companion website for this book: http://pyimg.co/7b7xm

If you do not have access to the companion website, please refer to the first few pages of this
book for the companion website registration link.

Using the companion website for the TFOD API install instructions ensures that they can always
be kept up to date, something that a printed book cannot guarantee. Follow the instructions using
the link above to configure your machine and from there we can train your first Faster R-CNN!

16.3 Training Your Faster R-CNN
The first part of this section will detail and review project structure. It’s important that you
understand how to properly structure your project, otherwise you may run into hard to diagnose
errors during training or evaluation.

The TensorFlow API requires our images and annotations be in a particular record format —
we’ll discuss how to take an image dataset + associated annotations and put them in the required
format. From there we can train our Faster R-CNN architecture, evaluate its performance, and
apply it to sample testing images.

16.3.1 Project Directory Structure
Between the TFOD API and our custom scripts used to build our input dataset, train a network,
evaluate performance, and apply our models to custom images, there are a number of moving parts.
Furthermore, some of these scripts live solely inside the TFOD API directory structure while other
scripts will need to be hand-implemented by us.

Let’s start by listing the TFOD API Python scripts we’ll be using. My TFOD API was cloned
into my home directory, so my root path to the TFOD API is /home/adrian/models/research:

$ cd ~/models/research/
$ pwd
/home/adrian/models/research
$ ls -l
adversarial_crypto
adversarial_text
adv_imagenet_models
...
object_detection
...

Your TFOD root path may be different depending on where you cloned it.
There are quite a number of subdirectories here, but the one we are most interested in is

object_detection:

http://pyimg.co/7b7xm

264 Chapter 16. Training a Faster R-CNN From Scratch

$ ls -A1 object_detection/*.py
object_detection/eval.py
object_detection/evaluator.py
object_detection/eval_util.py
object_detection/exporter.py
object_detection/exporter_test.py
object_detection/export_inference_graph.py
object_detection/__init__.py
object_detection/trainer.py
object_detection/trainer_test.py
object_detection/train.py

We’ll be using three of these Python scripts, including:
1. train.py: Used to train our deep learning-based object detectors.
2. eval.py: Runs concurrently with train.py to evaluate on the testing set as we train.
3. export_inference_graph.py: After our model is fully trained we’ll need to freeze the

weights and export the model so we can import it into our own applications.
Again, these three scripts are part of the TFOD API and are not part of any custom code or

implementation we will be writing. The directory structure and project structure for our Faster
R-CNN custom scripts and training/evaluation configurations can be seen below:

| --- ssds_and_rcnn
| |--- build_lisa_records.py
| |--- config
| | |--- __init__.py
| | |--- lisa_config.py
| |--- lisa/
| | |--- allAnnotations.csv
| | |--- categories.txt
...
| | |--- vid8/
| | |--- vid9/
| | |--- videoSources.txt
| |--- predict.py
| |--- predict_video.py

There are a number of configurations required to build our custom object detector so we’ll
create a file named lisa_config.py to store any configurations, such as file paths, class labels,
etc.

The build_lisa_records.py will be used to accept an input set of images, creating the
training and testing splits, and then create TensorFlow compatible record files that can be used for
training.

After our network has been trained, we can use both predict.py and predict_video.py to
apply our network to input images or video files/streams, respectively.

The setup.sh script contains a single command that can be used to easily update your
PYTHONPATH to include the TFOD API imports when you execute your Python scripts via the
command line.

The lisa directory contains all files relevant to the LISA Traffic Signs dataset such as the
raw images themselves and the serialized record files. I have decided to store the LISA dataset
on a separate hard drive on my system (where I have more space) and then create a sym-link
to the dataset in my project structure, similar to what we have done in previous chapters of this

16.3 Training Your Faster R-CNN 265

book. Again, this is my personal preference but you may have your own best practices that you are
comfortable with.

Inside the LISA dataset directory I would also suggest creating the following directories for
your experiments and data:

$ cd lisa
$ mkdir records experiments
$ mkdir experiments/training experiments/evaluation experiments/exported_model

The records directory will store three files:
1. training.record: The serialized image dataset of images, bounding boxes, and labels

used for training.
2. testing.record: The images, bounding boxes, and labels used for testing.
3. classes.pbtxt: A plaintext file containing the names of the class labels and their unique

integer IDs.
We then have an experiments subdirectory that will house any files used for our training ex-

periments. Inside the experiments directory there are three additional subdirectories: training,
evaluation, and exported_model.

The training directory will store the special pipeline configuration file used to instruct the
TFOD API how to train our model, the pre-trained model we’ll be using for fine-tuning, and any
model checkpoints created during training.

While we train our network we’ll also be running an evaluation script provided by the TFOD
API — any logs generated by the evaluation script will be stored in the evaluation directory,
enabling us to use TensorFlow tools to graph and plot the training process using the special
TensorBoard utility.

Finally, exported_model will store the final exported, frozen weight model after training has
completed.

When I first started using the TFOD API, I was a bit overwhelmed by the number of files,
directories, and subdirectories required in order to use it. Through trial and error I developed this
proposed directory structure as it properly balances ease of use with what the TFOD API requires.

For your convenience, I have included a template of the directory structure in the code down-
loads associated with this book. Feel free to modify this proposed structure as you see fit, but until
you successfully train your first network, consider using my proposed method.

16.3.2 Configuration
The first file we’re going to examine is the setup.sh file:

#!/bin/sh

export PYTHONPATH=$PYTHONPATH:/home/adrian/
models/research:/home/adrian/models/research/slim

All this file is doing is updating our PYTHONPATH variable to include the TFOD API imports.

R You’ll want to update these paths to point to where you cloned the TFOD API repository on
your own system. Do not copy and paste my file paths. Additionally, the PYTHONPATH should
be on a single line — I needed to use two lines (due to text width restrictions of the book) to
fit the entire command.

266 Chapter 16. Training a Faster R-CNN From Scratch

If we do not update our PYTHONPATH to include the TFOD API, our TensorFlow imports will
fail when executing our scripts. Whenever I am working with the TFOD API, I always open up a
shell and source the file:

$ source setup.sh

Sourcing the setup.sh script and update my PYTHONPATH to include the TFOD API files
ensures that my TensorFlow imports will succeed.

Next, let’s define the lisa_config.py configuration file:

1 # import the necessary packages
2 import os
3

4 # initialize the base path for the LISA dataset
5 BASE_PATH = "lisa"
6

7 # build the path to the annotations file
8 ANNOT_PATH = os.path.sep.join([BASE_PATH, "allAnnotations.csv"])

Lines 5 defines the BASE_PATH to the LISA Traffic Signs directory (i.e., where the raw images,
records, and experiment logs live). Here, the lisa directory will live in the same directory as our
build_lisa_records.py and predict.py scripts.

Line 8 uses the BASE_PATH to derive the path to the annotations file provided with the LISA
Traffic Signs dataset download.

Using the BASE_PATH we can also derive the path to our output training and testing records
(75% for training, 25% for testing), along with the class labels plaintext file:

10 # build the path to the output training and testing record files,
11 # along with the class labels file
12 TRAIN_RECORD = os.path.sep.join([BASE_PATH,
13 "records/training.record"])
14 TEST_RECORD = os.path.sep.join([BASE_PATH,
15 "records/testing.record"])
16 CLASSES_FILE = os.path.sep.join([BASE_PATH,
17 "records/classes.pbtxt"])
18

19 # initialize the test split size
20 TEST_SIZE = 0.25
21

22 # initialize the class labels dictionary
23 CLASSES = {"pedestrianCrossing": 1, "signalAhead": 2, "stop": 3}

When training our Faster R-CNN, we’ll only be interested in three classes:
1. Pedestrian crossings
2. Signal ahead
3. Stop signs
We could certainly train on all 47 traffic sign classes included with LISA, but for the sake of

this example we’ll only train on three classes, enabling us to train the network faster and examine
the results. I will leave training on the full LISA dataset as an exercise to you.

16.3 Training Your Faster R-CNN 267

16.3.3 A TensorFlow Annotation Class
When working with the TFOD API, we need to build a dataset consisting of both the images and
their associated bounding boxes. But before we can get to building the dataset, we need to consider
what makes up “data point” for object detection? According to the TFOD API, we need to supply a
number of attributes, including:
• The TensorFlow-encoded image
• The width and height of the image
• The file encoding of the image (i.e., JPG, PNG, etc.)
• The filename
• A list of bounding box coordinates, normalized in the range [0,1], for the image
• A list of class labels for each bounding box
• A flag used to encode if the bounding box is “difficult” or not (you’ll almost always want to

leave this value as “0”, or “not difficult” so TensorFlow trains on it — the difficult flag is a
remnant of the VOC challenge [58]).

Encoding all of this information in a object requires quite a bit of code, so in order to:
1. Keep our build script neat and tidy
2. Reuse code, and therefore reduce the potential of inserting bugs in our code
We’re going to build a TFAnnotation class to encapsulate encoding an object detection data

point in TensorFlow format. Our TFAnnotation class will live in tfannotation.py insider the
utils sub-module of pyimagesearch:

| --- pyimagesearch
| |--- __init__.py
| |--- callbacks
| |--- io
...
| |--- utils
| | |--- __init__.py
| | |--- agegenderhelper.py
...
| | |--- tfannotation.py

Open up tfannotation.py and insert the following code:

1 # import the necessary packages
2 from object_detection.utils.dataset_util import bytes_list_feature
3 from object_detection.utils.dataset_util import float_list_feature
4 from object_detection.utils.dataset_util import int64_list_feature
5 from object_detection.utils.dataset_util import int64_feature
6 from object_detection.utils.dataset_util import bytes_feature

Lines 2-6 import TensorFlow dataset utility functions used to serialize and encode various
Python attributes and objects — we’ll be using these functions to encode integers, strings, lists, etc.
We can then define the constructor to TFAnnotation:

8 class TFAnnotation:
9 def __init__(self):

10 # initialize the bounding box + label lists
11 self.xMins = []
12 self.xMaxs = []

268 Chapter 16. Training a Faster R-CNN From Scratch

13 self.yMins = []
14 self.yMaxs = []
15 self.textLabels = []
16 self.classes = []
17 self.difficult = []
18

19 # initialize additional variables, including the image
20 # itself, spatial dimensions, encoding, and filename
21 self.image = None
22 self.width = None
23 self.height = None
24 self.encoding = None
25 self.filename = None

As we can see, our constructor is simply performing a series of initializations. The xMins,
xMaxs, yMins, and yMaxs will store the (x,y)-coordinates for our bounding boxes, respectively.

The textLabels list is a list of human readable class labels for each bounding box. Similarly,
we have classes, a list of integer IDs for each class label.

Line 21 will store the TensorFlow-encoded image, along with its width, height, image encoding
type, and filename.

As we’ll see in Section 16.3.4 below, we’ll first instantiate the TFAnnotation object and then
set each of these attributes. When we are ready to build the actual TensorFlow data point, we can
call the build method:

27 def build(self):
28 # encode the attributes using their respective TensorFlow
29 # encoding function
30 w = int64_feature(self.width)
31 h = int64_feature(self.height)
32 filename = bytes_feature(self.filename.encode("utf8"))
33 encoding = bytes_feature(self.encoding.encode("utf8"))
34 image = bytes_feature(self.image)
35 xMins = float_list_feature(self.xMins)
36 xMaxs = float_list_feature(self.xMaxs)
37 yMins = float_list_feature(self.yMins)
38 yMaxs = float_list_feature(self.yMaxs)
39 textLabels = bytes_list_feature(self.textLabels)
40 classes = int64_list_feature(self.classes)
41 difficult = int64_list_feature(self.difficult)

The above code block calls TensorFlow’s encoding functions on each of our attributes. We can
then build a data dictionary from these encoded objects:

43 # construct the TensorFlow-compatible data dictionary
44 data = {
45 "image/height": h,
46 "image/width": w,
47 "image/filename": filename,
48 "image/source_id": filename,
49 "image/encoded": image,
50 "image/format": encoding,
51 "image/object/bbox/xmin": xMins,
52 "image/object/bbox/xmax": xMaxs,

16.3 Training Your Faster R-CNN 269

53 "image/object/bbox/ymin": yMins,
54 "image/object/bbox/ymax": yMaxs,
55 "image/object/class/text": textLabels,
56 "image/object/class/label": classes,
57 "image/object/difficult": difficult,
58 }
59

60 # return the data dictionary
61 return data

The keys to this data dictionary are not arbitrary — these are the keys and values that Tensor-
Flow expects an individual data point to have. A complete review of the TensorFlow dataset API is
outside the scope of this book. If you’re interested in learning more about this encoding, please
refer to the TensorFlow documentation [45].

Line 61 returns the TensorFlow-compatible object to our calling function, enabling us to add
the object to the record dataset.

16.3.4 Building the LISA + TensorFlow Dataset
In order to train a network using the TFOD API, we first need to convert our images and an-
notations into TensorFlow record format, similar to how we converted an image dataset to
mxnet’s format. Let’s go ahead and convert our sample of the LISA dataset — open up the
build_lisa_records.py file and insert the following code:

1 # import the necessary packages
2 from config import lisa_config as config
3 from pyimagesearch.utils.tfannotation import TFAnnotation
4 from sklearn.model_selection import train_test_split
5 from PIL import Image
6 import tensorflow as tf
7 import os

Lines 2-7 import our required Python packages. Line 2 imports our special configuration file
so we have access to our input image paths, annotations, file, and output record files. On Line 3 we
import our custom TFAnnotation class to make our actual build_lisa_records.py cleaner and
easier to read.

Next, let’s start defining the main method which will be executed when we run our script:

9 def main(_):
10 # open the classes output file
11 f = open(config.CLASSES_FILE, "w")
12

13 # loop over the classes
14 for (k, v) in config.CLASSES.items():
15 # construct the class information and write to file
16 item = ("item {\n"
17 "\tid: " + str(v) + "\n"
18 "\tname: ’" + k + "’\n"
19 "}\n")
20 f.write(item)
21

22 # close the output classes file

270 Chapter 16. Training a Faster R-CNN From Scratch

23 f.close()
24

25 # initialize a data dictionary used to map each image filename
26 # to all bounding boxes associated with the image, then load
27 # the contents of the annotations file
28 D = {}
29 rows = open(config.ANNOT_PATH).read().strip().split("\n")

On Line 11 we open a file pointer to our output class labels file. Lines 13-20 then loop
over each of the class labels, writing each to file. The TFOD API expects this file in a certain a
JSON/YAML-like format.

Each class must have an item object with two attributes: id and name. The name is the
human-readable name for the class label while the id is an unique integer for the class label. Keep
in mind that the class IDs should start counting from 1 rather than 0 as zero is reserved for the
“background” class.

Line 28 initialize a data dictionary used to map each individual image filename to its respective
bounding boxes and annotations. Line 29 then loads the contents of our annotations file.

The format of this annotations file will become clear in the next code block:

31 # loop over the individual rows, skipping the header
32 for row in rows[1:]:
33 # break the row into components
34 row = row.split(",")[0].split(";")
35 (imagePath, label, startX, startY, endX, endY, _) = row
36 (startX, startY) = (float(startX), float(startY))
37 (endX, endY) = (float(endX), float(endY))
38

39 # if we are not interested in the label, ignore it
40 if label not in config.CLASSES:
41 continue

On Line 32 we start looping over each of the individual rows in the annotations file, skipping
the header. Line 34 breaks the comma separated row into a list. Line 35 then extracts the values
from the rows, thus enabling us to see there are six important components to our CSV annotations
file:

1. The input path to the image file
2. The class label
3. The starting x-coordinate for the bounding box
4. The starting y-coordinate for the bounding box
5. The ending x-coordinate for the bounding box
6. The ending y-coordinate for the bounding box
Lines 36 and 37 convert the bounding box coordinates from strings to floats. If the row we are

currently examining is not included in our list of CLASSES, we ignore it (Lines 40 and 41).
Since an image can contain multiple traffic signs, and therefore multiple bounding boxes,

we need to utilize a Python dictionary to map the image path (as the key) to a list of labels and
associated bounding boxes (the value):

43 # build the path to the input image, then grab any other
44 # bounding boxes + labels associated with the image
45 # path, labels, and bounding box lists, respectively

16.3 Training Your Faster R-CNN 271

46 p = os.path.sep.join([config.BASE_PATH, imagePath])
47 b = D.get(p, [])
48

49 # build a tuple consisting of the label and bounding box,
50 # then update the list and store it in the dictionary
51 b.append((label, (startX, startY, endX, endY)))
52 D[p] = b

Line 46 builds the full path to the current imagePath using our BASE_PATH from the config
file. We then fetch all bounding boxes + class labels for the current image path, p (Line 47). We
append our label and bounding box coordinates to the list b, and then store it back in the mapping
dictionary, D (Lines 51 and 52).

This mapping may seem unimportant, but keep in mind that we still need to:
1. Create our training and testing split
2. Ensure that our training and testing split is performed on the images rather than the bounding

boxes
Our goal here is to ensure that if a particular image is labeled as “training”, then all bounding

boxes for that image is included in the training set. Similarly, if an image is labeled as “testing”,
then we want all bounding boxes for that image to be associated with the testing set.

We want to avoid situations where an image contains bounding boxes for both training and
testing sets. Not only is this behavior inefficient, it creates a larger problem — some object detection
algorithms utilize hard-negative mining to increase their accuracy by taking non-labeled areas of
the image and treating them as negatives.

It’s therefore possible that our network could think a particular ROI was not a road sign, when
in fact it was, thereby confusing our network and hurting accuracy. Because of this nuance, you
should always associate the image and not a bounding box with either the training or testing set.

Speaking of which, let’s create our training/testing split now:

54 # create training and testing splits from our data dictionary
55 (trainKeys, testKeys) = train_test_split(list(D.keys()),
56 test_size=config.TEST_SIZE, random_state=42)
57

58 # initialize the data split files
59 datasets = [
60 ("train", trainKeys, config.TRAIN_RECORD),
61 ("test", testKeys, config.TEST_RECORD)
62]

We use scikit-learn’s train_test_split to create our split. Notice how we are splitting on
the keys of the D mapping dictionary, ensuring we split on the image paths rather than the bounding
boxes, avoiding the potentially harmful scenario mentioned above.

Lines 59-62 define a datasets list, associating the training and testing splits with their
associated output files.

At this point we are ready to build our TensorFlow record files:

64 # loop over the datasets
65 for (dType, keys, outputPath) in datasets:
66 # initialize the TensorFlow writer and initialize the total
67 # number of examples written to file
68 print("[INFO] processing ’{}’...".format(dType))
69 writer = tf.python_io.TFRecordWriter(outputPath)

272 Chapter 16. Training a Faster R-CNN From Scratch

70 total = 0
71

72 # loop over all the keys in the current set
73 for k in keys:
74 # load the input image from disk as a TensorFlow object
75 encoded = tf.gfile.GFile(k, "rb").read()
76 encoded = bytes(encoded)
77

78 # load the image from disk again, this time as a PIL
79 # object
80 pilImage = Image.open(k)
81 (w, h) = pilImage.size[:2]

We start looping over our training and testing splits on Line 65. We instantiate our writer, a
TFRecordWriter which points to our current outputPath on Line 69.

Line 73 starts looping over the keys to our D mapping dictionary for the current split. Keep
in mind that k is actually an image path — using this path we can load the encoded image in
TensorFlow format on Lines 75 and 76.

It is possible to extract the width and height from a TensorFlow encoded object, but it’s a
bit tedious — I prefer to simply load the image in PIL/Pillow format and extract the dimensions
(Lines 80 and 81). Loading the image a second time does require an additional I/O call, but this
script is only executed once per dataset — I prefer clean, understandable, less-buggy code in this
circumstance.

We can now build our tfAnnot object:

83 # parse the filename and encoding from the input path
84 filename = k.split(os.path.sep)[-1]
85 encoding = filename[filename.rfind(".") + 1:]
86

87 # initialize the annotation object used to store
88 # information regarding the bounding box + labels
89 tfAnnot = TFAnnotation()
90 tfAnnot.image = encoded
91 tfAnnot.encoding = encoding
92 tfAnnot.filename = filename
93 tfAnnot.width = w
94 tfAnnot.height = h

Lines 84 and 85 extract the filename and image encoding (i.e., JPG, PNG, etc.) from the
file path.

Lines 89-94 instantiate the tfAnnot object and set the TensorFlow encoded image, file encod-
ing, filename, and width and height. We haven’t added any bounding box information to tfAnnot,
so let’s take care of that now:

96 # loop over the bounding boxes + labels associated with
97 # the image
98 for (label, (startX, startY, endX, endY)) in D[k]:
99 # TensorFlow assumes all bounding boxes are in the

100 # range [0, 1] so we need to scale them
101 xMin = startX / w
102 xMax = endX / w
103 yMin = startY / h

16.3 Training Your Faster R-CNN 273

104 yMax = endY / h
105

106 # update the bounding boxes + labels lists
107 tfAnnot.xMins.append(xMin)
108 tfAnnot.xMaxs.append(xMax)
109 tfAnnot.yMins.append(yMin)
110 tfAnnot.yMaxs.append(yMax)
111 tfAnnot.textLabels.append(label.encode("utf8"))
112 tfAnnot.classes.append(config.CLASSES[label])
113 tfAnnot.difficult.append(0)
114

115 # increment the total number of examples
116 total += 1

Line 98 loops over all labels and bounding boxes associated with the image path, k.
TensorFlow assumes all bounding boxes are in the range [0,1] so we perform a scaling step on

Lines 101-104 by dividing the bounding box coordinates by their associated with or height.
Lines 107-113 add the class label and bounding box information to the tfAnnot object. We’ll

also increment our total count so we can keep track of the total number of bounding boxes for
each training/testing split, respectively.

Our final code block handles encoding the data point attributes in TensorFlow format, adding
the example to the writer, and ensuring that our main method is executed via TensorFlow when we
start our build_lisa_records.py script:

118 # encode the data point attributes using the TensorFlow
119 # helper functions
120 features = tf.train.Features(feature=tfAnnot.build())
121 example = tf.train.Example(features=features)
122

123 # add the example to the writer
124 writer.write(example.SerializeToString())
125

126 # close the writer and print diagnostic information to the
127 # user
128 writer.close()
129 print("[INFO] {} examples saved for ’{}’".format(total,
130 dType))
131

132 # check to see if the main thread should be started
133 if __name__ == "__main__":
134 tf.app.run()

To build the LISA records file, open up a terminal, and execute the following command:

$ time python build_lisa_records.py
[INFO] processing ’train’...
[INFO] 2876 examples saved for ’train’
[INFO] processing ’test’...
[INFO] 955 examples saved for ’test’

real 0m4.879s
user 0m3.117s
sys 0m2.580s

274 Chapter 16. Training a Faster R-CNN From Scratch

Here you can see that the entire process took only four seconds. Examining your lisa/records
directory you should see our training and testing files:

$ ls lisa/records/
classes.pbtxt testing.record training.record

As you can see, we have successfully created our record files and associated class labels file in
TensorFlow format.

16.3.5 A Critical Pre-Training Step
At this point we can proceed to training our Faster R-CNN; however, I want to end with a word of
warning:

One of the biggest mistakes I see deep learning developers, students, and researchers make is
rushing and not double-checking their work when building a dataset.

Whether your school project is due tonight at midnight, your boss is breathing down your neck
for the latest and greatest model, or you’re simply tinkering with deep learning as a hobby, be
warned: rushing will only cause you problems, especially in the context of object detection.

Keep in mind that we are working with more than just an input image and a class label — we
now have four additional components: the bounding box coordinates themselves. Too often I
see people assume their code is correct, and if the script executes and completes without error, then
everything must be okay. Don’t fall into this trap.

Before you even think about training your network, double-check your code. In particular, go
through Lines 98-113 when we build the bounding box and class label for a given image. You
should visually validate your code is working as you think it should by:

1. Loading the image from disk via OpenCV
2. Drawing the bounding box coordinates on the image by scaling xMin, xMax, yMin, and yMax

back to standard integer coordinates
3. Drawing the class label on the image as well
Below I have included a code segment on how I perform this process:

96 # loop over the bounding boxes + labels associated with
97 # the image
98 for (label, (startX, startY, endX, endY)) in D[k]:
99 # TensorFlow assumes all bounding boxes are in the

100 # range [0, 1] so we need to scale them
101 xMin = startX / w
102 xMax = endX / w
103 yMin = startY / h
104 yMax = endY / h
105

106 # load the input image from disk and denormalize the
107 # bounding box coordinates
108 image = cv2.imread(k)
109 startX = int(xMin * w)
110 startY = int(yMin * h)
111 endX = int(xMax * w)
112 endY = int(yMax * h)
113

114 # draw the bounding box on the image
115 cv2.rectangle(image, (startX, startY), (endX, endY),
116 (0, 255, 0), 2)

16.3 Training Your Faster R-CNN 275

117

118 # show the output image
119 cv2.imshow("Image", image)
120 cv2.waitKey(0)

I won’t inspect every single image in my dataset, but I’ll sample a few hundred for each class
and spend 10-20 minutes looking at them for errors. This visual validation is critical and should
not be skipped under any circumstance.

Do not fall into the false assumption that just because your code executes and completes that
everything is working fine. Instead, take a pessimistic approach: nothing is working fine until
you take the time to double-check your work.

If you wish to work with your own custom datasets and build the associated record files, you
should use this script as a starting point and modify the class label/bounding box parsing. Try not
to modify the actual construction of the TFAnnotation object as best as you can, ensuring you
minimize the potential of inserting bugs.

While you can certainly parse out information from the TensorFlow record files after they are
built, it’s a tedious, time consuming process and your time and effort is better spent before the
annotation object is added to the record.

Again, I cannot stress the importance of checking your bounding boxes enough — take your
time, avoid costly errors, both in terms of time and finances spent training your network.

If you are not obtaining satisfiable accuracy on a particular object detection dataset, none of my
hyperparameter tuning recommendations matter or will have an impact if you do not take the time
to validate your dataset before you move on to training — please, for your sake, keep this in mind
when working with your own data.

16.3.6 Configuring the Faster R-CNN
Training our Faster R-CNN on the LISA dataset is a four step process:

1. Download the pre-trained Faster R-CNN so we can fine-tune the network
2. Download the sample TFOD API configuration file and modify it to point to our record files
3. Start the training process and monitor
4. Export the frozen model graph after training is complete

R Links can and will change over time. I will do my absolute best to keep this book up to
date, but if you find a link is 404’ing or the resulting page does not look like a screenshot
included in this book, please refer to the companion website (http://pyimg.co/fnkxk) for the
most up-to-date links.

To download our pre-trained model, you’ll first want to head to the TensorFlow Object Detection
Model Zoo: http://pyimg.co/1z34r

Here you’ll find a table that lists various models that have been trained on the Common Objects
in Context (COCO) dataset [59].

The COCO dataset contains over 200,000 labeled images. Networks trained on the COCO
challenge can detect 20 class labels, including airplanes, bicycles, cars, dogs, cats, and more.
Networks trained on the large COCO dataset typically can be fine-tuned to recognize objects in
other datasets as well.

To download the model, find the Faster R-CNN + ResNet-101 + COCO link in the table (Figure
16.2) and download it. At the time of this writing, the filename is faster_rcnn_resnet101_coco_2018_01
_28.tar.gz. Again, make sure you check the table on the TFOD API GitHub page to download
the latest model). For additional help downloading the pre-trained model and configuring your
development environment, please refer to Section 16.2 above.

http://pyimg.co/fnkxk
http://pyimg.co/1z34r

276 Chapter 16. Training a Faster R-CNN From Scratch

Figure 16.2: For this example, we will be using the Faster R-CNN + ResNet-101 architecture,
trained on the COCO dataset. We will be fine-tuning this model for traffic sign detection.

After you have downloaded the model, move it to the experiments/training subdirectory
and untar it:

$ cd lisa/experiments/training
$ mv ~/Downloads/faster_rcnn_resnet101_coco_2018_01_28.tar.gz ./
$ tar -zxvf faster_rcnn_resnet101_coco_2018_01_28.tar.gz
$ ls -l faster_rcnn_resnet101_coco_2018_01_28
checkpoint
frozen_inference_graph.pb
model.ckpt.data-00000-of-00001
model.ckpt.index
model.ckpt.meta
pipeline.config
saved_model

The files inside faster_rcnn_resnet101_coco_2018_01_28 constitute the pre-trained Ten-
sorFlow Faster R-CNN on the COCO dataset. The exact structure of of this directory will become
clear as we work through the chapter — we will defer an explanation of each file until the appropriate
sections, respectively.

Now that we have our model weights, we also need a configuration file to instruct the TFOD
API on how to train/fine-tune our network. Trying to define your own TFOD API configuration file
from scratch would be an extremely trying, tedious, and arduous process. Instead, it’s recommended
to take one of the existing configuration files and update the paths and any other settings you see fit.

The full list of sample TFOD API configuration files can be found on this page: http://pyimg.co/r2xql.
You’ll see there are four files for the Faster R-CNN + ResNet-101 architecture (Figure 16.3, outlined
in red) — make sure you download the faster_rcnn_resnet101_pets.config and save it to
the experiments/training directory:

http://pyimg.co/r2xql

16.3 Training Your Faster R-CNN 277

Figure 16.3: Along with our frozen model weights, we also need a starter configuration file.
The TFOD API provides a number of configuration files for the Faster R-CNN + ResNet-101
architecture.

$ cd lisa/experiments/training
$ mv ~/Downloads/faster_rcnn_resnet101_pets.config faster_rcnn_lisa.config

I have also taken the extra step of renaming the configuration file to faster_rcnn_lisa.config.
You may be confused why we are using the configuration associated with the Oxford-IIIT

“Pets” Dataset [60] rather than the COCO dataset the network was originally trained on. The short
answer is that the Pets configuration requires fewer changes than the COCO configuration (at least,
at the time of this writing) — the Pets configuration tends to be a better starting point.

Opening up our faster_rcnn_lisa.config configuration you’ll see a large number of at-
tributes in a JSON/YAML-like configuration:

$ vi faster_rcnn_lisa.config
model {

faster_rcnn {
num_classes: 37
image_resizer {

keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024

}
}
feature_extractor {

type: ’faster_rcnn_resnet101’

278 Chapter 16. Training a Faster R-CNN From Scratch

first_stage_features_stride: 16
}

...

Luckily, there are only seven configurations we need to update, five of which are file paths that
can be easily copied and pasted.

Let’s start by setting the number of num_classes — this value is originally 37 but we’ll change
it to 3, the total number of classes (pedestrian crossing, signal ahead, and stop sign) in our LISA
dataset sample:

8 faster_rcnn {
9 num_classes: 3

10 image_resizer {
11 keep_aspect_ratio_resizer {
12 min_dimension: 600
13 max_dimension: 1024
14 }
15 }

You’ll then want to update the num_steps, which is the number of batch_size steps to
perform when training:

84 train_config: {
85 batch_size: 1
86 ...
87 num_steps: 50000
88 data_augmentation_options {
89 random_horizontal_flip {
90 }
91 }
92 }

This value defaults at 200,000, but I recommend using 50,000 for this particular dataset. For
most datasets you’ll want to train a bare minimum of 20,000 steps. You can certainly train for more
steps, especially if you see your network performance improving with time, but I would typically
not even bother stopping training until after 20,000 steps.

You will typically see a batch_size=1 for Faster R-CNNs using the TFOD API. You can
adjust this value as you see fit in your own experiments, provided your GPU has enough memory.

You’ll notice that the configuration API conveniently has the text PATH_TO_BE_CONFIGURED
placed throughout the configuration file wherever you need to update a file path. The first one is
the fine_tune_checkpoint, which is the path to our downloaded Faster R-CNN + ResNet 101
model.ckpt base file:

109 gradient_clipping_by_norm: 10.0
110 fine_tune_checkpoint: "/home/adrian/pyimagesearch/dlbook/ssds_and_rcnn/lisa/
111 experiments/training/faster_rcnn_resnet101_coco_2018_01_28/model.ckpt"
112 from_detection_checkpoint: true

Make sure you supply the full path to this file without any console shortcuts, such as the ~
directory operator.

16.3 Training Your Faster R-CNN 279

R If you examine the contents of faster_rcnn_resnet101_coco_2018_01_28 you’ll notice
there is no actual model.cpkt file but there are three files that start with model.cpkt —
this is expected. The model.cpkt file is the base filename in which the TFOD API uses to
derive the other three files.

The next two PATH_TO_BE_CONFIGURED updates can be found inside the train_input_reader,
in particular the input_path and label_map_path:

123 train_input_reader: {
124 tf_record_input_reader {
125 input_path: "/home/adrian/pyimagesearch/dlbook/ssds_and_rcnn/lisa/
126 records/training.record"
127 }
128 label_map_path: "/home/adrian/pyimagesearch/dlbook/ssds_and_rcnn/lisa/
129 records/classes.pbtxt"
130 }

You’ll want to update these paths to point to your training.record file and classes.pbtxt
file, respectively. Again, it’s likely that your directory structure will be slightly different than mine
so do not copy and paste my paths — make sure you double-check your paths and include them in
the configuration file.

The eval_input_reader requires us to update the input_path and label_map_path as
well:

137 eval_input_reader: {
138 tf_record_input_reader {
139 input_path: "/home/adrian/pyimagesearch/dlbook/ssds_and_rcnn/lisa/
140 records/testing.record"
141 }
142 label_map_path: "/home/adrian/pyimagesearch/dlbook/ssds_and_rcnn/lisa/
143 records/classes.pbtxt"
144 shuffle: false
145 num_readers: 1
146 }

But this time make sure you include the path to the testing.record file rather than the
training.record file.

I would also suggest updating your eval_config as well:

130 eval_config: {
131 num_examples: 955
132 # Note: The below line limits the evaluation process to 10 evaluations.
133 # Remove the below line to evaluate indefinitely.
134 #max_evals: 10
135 }

Set the num_examples to be the total number of bounding boxes in the testing set. I also like
to comment out the max_evals as this will ensure the evaluation script runs indefinitely until we
manually stop it, but that decision is up to you and your hardware. We will discuss how you should
properly set max_evals and run the evaluation script in Section 16.3.8.

280 Chapter 16. Training a Faster R-CNN From Scratch

16.3.7 Training the Faster R-CNN

We are now ready to train our Faster R-CNN + ResNet-101 architecture on the LISA Traffic Signs
dataset! It may seem like it has taken a lot of steps to get to this point, but keep in mind two key
aspects:

1. The TFOD API is meant to be extendible, reusable, and configurable so by definition
there will be more configuration files. Using these configuration files is actually a benefit
to you, the end user, as it enables you to write less code and focus on the actual model
parameters.

2. The process becomes significantly easier the more and more you run these experiments.
Since we are using the TFOD API, we do not have to write any actual code to launch the training

process — the only custom code required on our part is to build the record dataset, as we have done in
the previous sections. From there, the scripts provided in the models/research/object_detection
directory of the TFOD API can be used to train and evaluate our networks.

Training can be started using the following command (make sure you source the setup.sh
script to export your PYTHONPATH before you run this command):

$ python object_detection/train.py --logtostderr \
--pipeline ssds_and_rcnn/lisa/experiments/training/faster_rcnn_lisa.config \
--train_dir ssds_and_rcnn/lisa/experiments/training

INFO:tensorflow:Starting Session.
INFO:tensorflow:Starting Queues.
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:Recording summary at step 0.
INFO:tensorflow:global step 1: loss = 2.3321 (5.715 sec/step)
INFO:tensorflow:global step 2: loss = 2.1641 (0.460 sec/step)
...

Notice how the --pipeline switch points to our faster_rcnn_lisa.config file. The
--train-dir switch then points to our training subdirectory inside data.

R The paths to the input files and directories can be quite long, so for convenience, I have
created a sym-link from the ssds_and_rcnn directory to the models/research directory,
enabling me to spend less time typing and debugging long file paths. You may wish to apply
this tactic as well.

While the command above will start training the network, we need a second command to start
evaluation. Open up a second terminal and issue the following command:

$ python object_detection/eval.py --logtostderr \
--pipeline_config_path ssds_and_rcnn/lisa/experiments/training/faster_rcnn_lisa.config \
--checkpoint_dir ssds_and_rcnn/lisa/experiments/training \
--eval_dir ssds_and_rcnn/lisa/experiments/evaluation

...

Here we supply:
• --pipeline_config_path which points to our faster_rcnn_lisa.config file
• --checkpoint_dir which is the path to the training subdirectory and where all model

checkpoints will be saved during training
• --eval_dir, which is the path to the evaluation subdirectory where the evaluation logs

will be stored

16.3 Training Your Faster R-CNN 281

Notice how the two above commands were executed inside the models/research directory of
the TFOD API (I.e., where the object_detection/train.py and object_detection/eval.py
scripts live).

The last command can be executed anywhere on your system, provided you supply the full path
to the data directory containing our training and evaluation subdirectories:

$ cd ~/pyimagesearch/dlbook/ssds_and_rcnn/
$ tensorboard --logdir lisa/experiments
TensorBoard 0.1.8 at http://annalee:6006 (Press CTRL+C to quit)

The tensorboard command can be used to produce a nice visualization of the training process
inside our web browser (i.e., no parsing logs like in mxnet). On my machine, I can visualize the
training process by opening up a web browser and pointing it to http://annalee:6006.

Figure 16.4: An example screenshot of my TensorBoard dashboard after 24 hours of training.

On your machine the port should still be 6006 but the hostname (i.e., annalee) will be either
the IP address of your machine or the name of the machine itself.

Additionally, it may take a few minutes for the TensorBoard dashboard to populate — both
train.py and eval.py need to run for awhile in order to generate the logs for TensorBoard to
parse and display. Furthermore, some TensorBoard values, such as mAP, be be invisible until
the eval.py script has a chance to run. Depending on the speed of your machine and evaluation
process, it may take upwards of 15-30 minutes for the mAP values to display.

Figure 16.4 contains a screenshot of my TensorBoard dashboard. Here you can see loss steadily
decreasing while my mAP grows, increasing as our network is learning.

Training will continue until either num_steps have been met or you ctrl + c out of the script
— you’ll also need to ctrl + c out of the eval.py and tensorboard as well.

By the time we reach step 50,000, my loss value is a ≈ 0.008 with a mAP of 98%, which is
very good.

I’ll wrap up this section by saying if this is your first time trying to train a network using
the TFOD API, you’ll very likely run into errors. Be sure to read Section 16.3.8 below as I have

282 Chapter 16. Training a Faster R-CNN From Scratch

listed suggestions for training your networks to help you (1) avoid errors entirely and (2) resolve
them when errors appear.

16.3.8 Suggestions When Working with the TFOD API
This section includes a number of recommendations and best practices I personally utilize whenever
working with the TFOD API. Take time to carefully read this section as it will help you diagnose
errors and better train your own object detection networks.

Accept there is a Learning Curve
The first fact you need to accept is that there is a learning curve when using the TFOD API — and
there is no way around it. When you first utilize the TFOD API, do not expect all scripts to work
out-of-the-box.

To be frank, it’s unrealistic. My suggestion would be to set aside at least one to two days (de-
pending on your experience level with Python, Unix systems, and diagnosing errors) to familiarize
yourself with the API.

If you expect your entire pipeline to be up and running in under an hour, especially if this is the
first time you’ve used the TFOD API, your expectations are not aligned with reality — that’s not
how these state-of-the-art deep learning tools work.

Don’t become frustrated. Don’t become annoyed. And despite any confusion or frustration,
don’t leave your workstation and immediately run to your colleague, coworker, or fellow student
for help. Errors with these tools will happen. It is expected.

Start by taking a deep breath and then take the time to diagnose the error, and again, accept there
is a learning curve — the stack traces produced by TensorFlow are typically helpful and include
what the error is (although you may need to scroll through the output to find exactly what the error
is as the output can be a bit verbose).

In many situations the errors you run into will likely be due to not properly updating your
Python path or your file paths. Always double-check your file paths!

Replicate Known Results First
My second recommendation is to train your first Faster R-CNN on the LISA Traffic Sign dataset as
we do in this chapter. Whether or not you train the network over 50,000 steps is up to you, but I
would train for at least 2,500 steps so you can validate that your training and evaluation pipeline is
properly working — accuracy will still be low at this point but you’ll at least be able to determine
if the network is actually learning.

Too often I see deep learning students, engineers, researchers, and practitioners try to immedi-
ately:

1. Swap out the example datasets
2. Plug in their own data
3. Attempt to train the network
4. And become confused when there are errors or poor results
Don’t do this. There are too many moving parts to immediately swap in your own dataset. You

need to learn how to use the TFOD API tools before you can train a network on your own dataset.
Regardless if you are facing a project deadline, trying to complete your graduation/capstone

requirement, or simply toying with a hobby project, the simple fact is this:
There is no excuse for not first replicating the example results discussed here before you

work with your own data. The rationale behind this thought goes back to the scientific method —
don’t change too many variables at one time.

Right now your goal is to get to the top of the TFOD API learning curve. The best way to get
to the top of the learning curve is to work with a dataset and example where you can clearly see the
expected results — replicate these results before you move on to other experiments.

16.3 Training Your Faster R-CNN 283

Export Your PYTHONPATH

Another common error I see is failing to update your PYTHONPATH when trying to execute either (1)
the scripts inside the models/research directory of the TFOD API or (2) trying to import files
from the TFOD API. If you forget to update your PYTHONPATH your error will likely look similar
to this:

$ python build_lisa_records.py
Traceback (most recent call last):

File "build_lisa_records.py", line 6, in <module>
from pyimagesearch.utils.tfannotation import TFAnnotation

File "/home/adrian/.virtualenvs/dl4cv/lib/python3.4/site-packages/
pyimagesearch/utils/tfannotation.py", line 2, in <module>

from object_detection.utils.dataset_util import bytes_list_feature
ImportError: No module named ’object_detection’

Here we are trying to execute build_lisa_records.py which is trying to import functions
from the object_detection sub-module of the TFOD API; however, since our PYTHONPATH is
not properly set, the import fails.

In this case, export your PYTHONPATH using either the setup.sh script or manually via your
shell:

$ source setup.sh
$ python build_lisa_records.py
[INFO] processing ’{train}’...
[INFO] processing ’{test}’...

From there Python will be able to find the TFOD API libraries.

Cleanup Your “training” Directory

When training my own networks I encountered a strange bug where my network training would
dramatically slow down if I didn’t occasionally delete all files in my training directory besides my
faster_rcnn_resnet101_coco_2018_01_28.tar.gz and faster_rcnn_lisa.config files.

I’m not entirely sure why this is, but if you find your networks are training slower or your
results don’t seem right, stop training and then clean up the training directory:

$ cd lisa/experiments/training/
$ rm checkpoint graph.pbtxt pipeline.config
$ rm events.* model.*
$ rm -rf faster_rcnn_resnet101_coco_2018_01_28
$ tar -zxvf faster_rcnn_resnet101_coco_2018_01_28.tar.gz
$ ls -l
faster_rcnn_lisa.config
faster_rcnn_resnet101_coco_2018_01_28
faster_rcnn_resnet101_coco_2018_01_28.tar.gz

Here you can see I have deleted all checkpoints (including the original untarred Faster R-CNN
model pre-trained on COCO) and event files. From there, restart training. Again, this bug/behavior
may be specific to my machine or my particular setup, but I wanted to share it with you as well.

284 Chapter 16. Training a Faster R-CNN From Scratch

Monitor Loss and mAP
When training your own object detectors be sure to measure your loss and mAP values (the mAP
will only be computed if you are running the eval.py script).

The mAP should start off low, rise quickly over the first 10,000-50,000 steps (depending on
how long you are training for), and then level off. Your loss should decrease during this time as
well. Your goal here is to drive the loss as low as you can, ideally < 1.5. A loss < 1 is desirable
when training your own object detectors.

Training and Evaluation with GPUs and CPUs
Training a network with the TFOD API can be done using multiple GPUs, but, at the time of this
writing, it’s advisable to use a single GPU until you are familiar with the TFOD API tools. When
running the evaluation script you should use a single GPU (if available) as well.

If you have only a single GPU on your machine you should not try to train and evaluate on the
same GPU — you will likely run into a memory exhausted error and your scripts will exit.

Instead, you should kickoff the training process on your GPU and then run evaluation on your
CPU. The catch here is that evaluating with your CPU will be incredibly slow; therefore, you
should set num_examples to a very small number (such as 5-10) inside the eval_config of your
pipeline configuration:

130 eval_config: {
131 num_examples: 5
132 # Note: The below line limits the evaluation process to 10 evaluations.
133 # Remove the below line to evaluate indefinitely.
134 #max_evals: 10
135 }

This update will ensure that a small fraction of your evaluation dataset is used for evaluation
(allowing you to compute the approximate mAP) but not the entire testing set (which would take a
long time on a single CPU).

Try to keep your CPU load as low as possible here so you can use those cycles for moving data
on and off the GPU, thereby reducing the amount of time it takes to train the network.

Forgetting to Set your CUDA Visible Devices
Going hand-in-hand with Section 16.3.8 above, I’ve found that some readers are aware that they
need to use a GPU for training and a CPU (if no additional GPUs are available) for evaluation, but
are not sure how to accomplish this.

Reading the TensorFlow documentation (or most any documentation for deep learning libraries)
you’ll come across the CUDA_VISIBLE_DEVICES environment variable. By default, TensorFlow
will allocate your model to GPUs on your machine when running a script, but somewhat confusingly
to readers new to TensorFlow, the library will not train the network on all GPUs — it will only
allocate memory on each of the GPUs. This behavior is problematic if you want a script to run on a
single GPU or no GPU at all.

On my machine I have four Titan X GPUs which, by default, TensorFlow will try to allocate
memory on all four of these GPUs. To prevent this undesired allocation from happening I can set
my CUDA_VISIBLE_DEVICES before executing the script:

$ export CUDA_VISIBLE_DEVICES="0"
$ python object_detection/train.py --logtostderr \

--pipeline ssds_and_rcnn/lisa/experiments/training/faster_rcnn_lisa.config \
--train_dir ssds_and_rcnn/lisa/experiments/training

...

16.3 Training Your Faster R-CNN 285

Here you can see that I am instructing my current shell session to only expose GPU 0 to
TensorFlow. From there, only GPU 0 will be allocated when running train.py.

I can then open up a second terminal and set CUDA_VISIBLE_DEVICES to expose only GPU 1:

$ export CUDA_VISIBLE_DEVICES="1"
$ python object_detection/eval.py --logtostderr \
--pipeline_config_path ssds_and_rcnn/lisa/experiments/training/faster_rcnn_lisa.config \
--checkpoint_dir ssds_and_rcnn/lisa/experiments/training \
--eval_dir ssds_and_rcnn/lisa/experiments/evaluation

...

Here only GPU 1 is visible to TensorFlow and therefore TensorFlow will only use GPU 1 for
eval.py — in this manner I can allocate specific GPUs to specific scripts.

Of course, if you do not want TensorFlow to use a GPU for a script, typical behavior when your
machine only has one GPU and this GPU is utilized for training, you can set CUDA_VISIBLE_DEVICES
to be empty:

$ export CUDA_VISIBLE_DEVICES=""
$ python object_detection/eval.py --logtostderr \
--pipeline_config_path ssds_and_rcnn/lisa/experiments/training/faster_rcnn_lisa.config \
--checkpoint_dir ssds_and_rcnn/lisa/experiments/training \
--eval_dir ssds_and_rcnn/lisa/experiments/evaluation

...

The above command will instruct TensorFlow there are no GPUs (implied by the blank string
in the export command) and that the CPU should be used instead when executing eval.py.

Optimizer Parameters
Looking at our pipeline configuration you’ll see that we haven’t fiddled with any of the optimizer
parameters. In the case of Faster R-CNN + ResNet-101, the default configuration file uses a SGD +
Nesterov momentum optimizer with a learning rate of 0.0003 — you should keep these optimizer
parameters as-is until you are comfortable with the toolkit and ideally have replicated the
results of this chapter a handful of times.

Additionally, be sure to read through the comments in the pipeline configuration from the
TensorFlow community as they give you suggested values for parameters as well. A full review
of all possible optimizer parameters inside the TFOD API is well outside the scope of this book,
but provided you have read through the Starter Bundle and Practitioner Bundle, you’ll find the
parameters used inside the TFOD API closely match Keras and mxnet. Be sure to refer to the
TFOD API documentation for questions regarding these parameters: http://pyimg.co/pml2d [45].

Respect the Toolkit
After going through this section you’ll see there are a number of recommendations and best practices
I suggest, but none of them is as important as Section 16.3.8 above — there is a learning curve
and you need to dedicate the time and energy to climb it.

The TFOD API is an extremely powerful tool and once you get used to it, you’ll be able to
quickly and easily train your own deep learning-based object detectors. But to get to that point,
you’ll need to be patient.

Inevitably, you’ll run into an error. Take the time to read through it, digest it, and even spend
some time Googling the error and reading the TensorFlow documentation. Do not expect a “quick
fix”, that expectation is typically unrealistic.

That said, more times than not, you’ll find your error is due to either:

http://pyimg.co/pml2d

286 Chapter 16. Training a Faster R-CNN From Scratch

1. Forgetting to export your PYTHONPATH
2. A typo in a file path in a configuration file
3. A problem generating your record files, such as invalid bounding boxes
Respect the toolkit, invest your time in climbing the learning curve, and the toolkit will respect

you.

16.3.9 Exporting the Frozen Model Graph
Now that our model is trained, we can use the export_inference_graph.py to create a Tensor-
Flow model we can import into our own scripts. To export your model, first change directory to your
models/research directory on your own machine and then execute export_inference_graph.py:

$ cd ~/models/research
$ python object_detection/export_inference_graph.py \
--input_type image_tensor \
--pipeline_config_path ~ssds_and_rcnn/lisa/experiments/training/faster_rcnn_lisa.config \
--trained_checkpoint_prefix ~ssds_and_rcnn/lisa/experiments/training/model.ckpt-50000 \
--output ~/ssds_and_rcnn/lisa/experiments/exported_model

Here you can see that I have exported the model checkpoint at step 50,000 to the exported_model
directory. Checking the contents of exported_model you can see the files TensorFlow generated:

$ ls lisa/experiments/exported_model/
checkpoint frozen_inference_graph.pb model.ckpt.data-00000-of-00001
model.ckpt.index model.ckpt.meta saved_model

Be sure to keep your exported_model directory and the files inside it — we’ll need to import
these files into our Python script in the next section.

16.3.10 Faster R-CNN on Images and Videos
We’ve trained our Faster R-CNN. We’ve evaluated its accuracy. But we have yet to programmatically
apply it to an input image — how do we go about applying our network to an input image outside
the dataset it was trained on? To answer this question, open up predict.py and insert the following
code:

1 # import the necessary packages
2 from object_detection.utils import label_map_util
3 import tensorflow as tf
4 import numpy as np
5 import argparse
6 import imutils
7 import cv2
8

9 # construct the argument parse and parse the arguments
10 ap = argparse.ArgumentParser()
11 ap.add_argument("-m", "--model", required=True,
12 help="base path for frozen checkpoint detection graph")
13 ap.add_argument("-l", "--labels", required=True,
14 help="labels file")
15 ap.add_argument("-i", "--image", required=True,
16 help="path to input image")

16.3 Training Your Faster R-CNN 287

17 ap.add_argument("-n", "--num-classes", type=int, required=True,
18 help="# of class labels")
19 ap.add_argument("-c", "--min-confidence", type=float, default=0.5,
20 help="minimum probability used to filter weak detections")
21 args = vars(ap.parse_args())

Lines 2-8 import our Python libraries. TensorFlow’s label_map_util is a helper function
that will enable us to easily load our class labels file from disk.

We then parse our command line arguments on Lines 10-21. We require four command line
arguments, followed by one optional one:

1. --model: Here we specify the path to our frozen checkpoint detection graph (i.e., the
TensorFlow model itself).

2. --labels: The labels are not built into the TensorFlow model, so we’ll need to supply the
path to our classes.pbtxt file.

3. --image: This switch controls the path to our input image that we want to apply object
detection to.

4. --num-classes: Unfortunately, TensorFlow cannot automatically determine the number of
classes from the --labels file so we need to manually specify this number as well.

5. --min-confidence (optional): The minimum probability used to filter out weak detections.
Now that our command line arguments are parsed, we can load the model from disk:

23 # initialize a set of colors for our class labels
24 COLORS = np.random.uniform(0, 255, size=(args["num_classes"], 3))
25

26 # initialize the model
27 model = tf.Graph()
28

29 # create a context manager that makes this model the default one for
30 # execution
31 with model.as_default():
32 # initialize the graph definition
33 graphDef = tf.GraphDef()
34

35 # load the graph from disk
36 with tf.gfile.GFile(args["model"], "rb") as f:
37 serializedGraph = f.read()
38 graphDef.ParseFromString(serializedGraph)
39 tf.import_graph_def(graphDef, name="")

Line 24 randomly initializes a set of RGB colors for each bounding box. The random initial-
ization is done out of convenience — you can modify this script to use fixed colors per label as
well.

Line 27 initializes the model that we’ll be loading from disk. Lines 31-39 then load the
serialized TensorFlow network using TensorFlow’s helper utilities.

Let’s load our class labels from disk as well:

41 # load the class labels from disk
42 labelMap = label_map_util.load_labelmap(args["labels"])
43 categories = label_map_util.convert_label_map_to_categories(
44 labelMap, max_num_classes=args["num_classes"],
45 use_display_name=True)
46 categoryIdx = label_map_util.create_category_index(categories)

288 Chapter 16. Training a Faster R-CNN From Scratch

Line 42 loads the raw pbtxt file from disk. We can then use the convert_label_map_to_categories
function along with our --numclasses switch to build the set of categories. Line 46 creates a
mapping from the integer ID of the class label (i.e., what TensorFlow will return when predicting)
to the human readable class label.

In order to predict bounding boxes for our input image we first need to create a TensorFlow
session and grab references to each of the image, bounding box, probability, and classes tensors
inside the network:

48 # create a session to perform inference
49 with model.as_default():
50 with tf.Session(graph=model) as sess:
51 # grab a reference to the input image tensor and the boxes
52 # tensor
53 imageTensor = model.get_tensor_by_name("image_tensor:0")
54 boxesTensor = model.get_tensor_by_name("detection_boxes:0")
55

56 # for each bounding box we would like to know the score
57 # (i.e., probability) and class label
58 scoresTensor = model.get_tensor_by_name("detection_scores:0")
59 classesTensor = model.get_tensor_by_name("detection_classes:0")
60 numDetections = model.get_tensor_by_name("num_detections:0")

These references will enable us to access their associated values after passing the image through
the network.

Next, let’s load our image from disk and prepare it for detection:

62 # load the image from disk
63 image = cv2.imread(args["image"])
64 (H, W) = image.shape[:2]
65

66 # check to see if we should resize along the width
67 if W > H and W > 1000:
68 image = imutils.resize(image, width=1000)
69

70 # otherwise, check to see if we should resize along the
71 # height
72 elif H > W and H > 1000:
73 image = imutils.resize(image, height=1000)
74

75 # prepare the image for detection
76 (H, W) = image.shape[:2]
77 output = image.copy()
78 image = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2RGB)
79 image = np.expand_dims(image, axis=0)

This code block should feel similar to what we have previous done with Keras and mxnet. We
start by loading the image from disk, grabbing its dimensions, and resizing it such that the largest
dimension is, at most, 1,000 pixels (Lines 63-73). You can resize the image either larger or smaller
as you see fit, but 300-1,000 pixels is a good starting point. Lines 75-79 then prepare the image for
detection.

Obtaining the bounding boxes, probabilities, and class labels is as simple as calling the .run
method of the session:

16.3 Training Your Faster R-CNN 289

81 # perform inference and compute the bounding boxes,
82 # probabilities, and class labels
83 (boxes, scores, labels, N) = sess.run(
84 [boxesTensor, scoresTensor, classesTensor, numDetections],
85 feed_dict={imageTensor: image})
86

87 # squeeze the lists into a single dimension
88 boxes = np.squeeze(boxes)
89 scores = np.squeeze(scores)
90 labels = np.squeeze(labels)

Here we pass our list of bounding box, scores (i.e., probabilities), class labels, and number
of detections tensors into the sess.run method. The feed_dict instructs TensorFlow to set the
imageTensor to our image and run a forward-pass, yielding our bounding boxes, scores (i.e.,
probabilities), and class labels.

The boxes, scores, and labels are all multi-dimensional arrays so we squeeze them to a 1D
array, enabling us to easily loop over them.

R If you are unfamiliar with NumPy’s squeeze method and how it works, be sure to refer to the
documentation: http://pyimg.co/fnbgd

Figure 16.5: Examples of applying our Faster R-CNN to detect and label the presence of US traffic
signs in images.

The final step is to loop over our detections, draw them on the output image, and display the
result to our screen:

http://pyimg.co/fnbgd

290 Chapter 16. Training a Faster R-CNN From Scratch

92 # loop over the bounding box predictions
93 for (box, score, label) in zip(boxes, scores, labels):
94 # if the predicted probability is less than the minimum
95 # confidence, ignore it
96 if score < args["min_confidence"]:
97 continue
98

99 # scale the bounding box from the range [0, 1] to [W, H]
100 (startY, startX, endY, endX) = box
101 startX = int(startX * W)
102 startY = int(startY * H)
103 endX = int(endX * W)
104 endY = int(endY * H)
105

106 # draw the prediction on the output image
107 label = categoryIdx[label]
108 idx = int(label["id"]) - 1
109 label = "{}: {:.2f}".format(label["name"], score)
110 cv2.rectangle(output, (startX, startY), (endX, endY),
111 COLORS[idx], 2)
112 y = startY - 10 if startY - 10 > 10 else startY + 10
113 cv2.putText(output, label, (startX, y),
114 cv2.FONT_HERSHEY_SIMPLEX, 0.3, COLORS[idx], 1)
115

116 # show the output image
117 cv2.imshow("Output", output)
118 cv2.waitKey(0)

On Line 93 we start looping over each of the individual bounding boxes, scores, and predicted
labels. If the score is below the minimum confidence, we ignore it, thereby filtering out weak
predictions.

Keep in mind that the TFOD API requires our bounding boxes to be in the range [0,1] — to
draw them on our image, we first need to call them back to the range [0,W] and [0,H], respectively
(Lines 100-104).

Lines 107-114 handle looping up the human readable label in the categoryIdx dictionary
and then drawing the label and associated probability on the image. Finally, Lines 117 and
118 display the output image to our screen.

To execute our predict.py script, open up your terminal, and execute the following command,
ensuring that you supply a valid path to an input image:

$ python predict.py \
--model lisa/experiments/exported_model/frozen_inference_graph.pb \
--labels lisa/records/classes.pbtxt \
--image path/to/input/image.png \
--num-classes 3

I have executed the predict.py on a number of example images in the LISA testing set. A
montage of these detections can be seen in Figure 16.5.

16.4 Summary
In this chapter we learned how to use the TensorFlow Object Detection API to train a Faster R-CNN
+ ResNet-101 architecture to detect the presence of traffic signs in images. Overall, we were able to

16.4 Summary 291

train a very high 98% mAP@0.5 IoU after a total of 50,000 steps.
You’ll typically want to train your networks for a bare minimum of 20,000 steps — higher

accuracy can be obtained using 50,000-200,000 steps depending on the dataset.
After we trained our Faster R-CNN using the TFOD API, we then created a Python script to

apply our network to our own input images. This same script can be utilized in your own projects.
An example script used to apply models to input video streams/files can be found in the downloads
associated with this book.

In our next chapter we’ll continue the theme of deep learning for self-driving cars by training a
SSD to detect the front and rear view of vehicles.

17. Single Shot Detectors (SSDs)

In our previous two chapters we discussed the Faster R-CNN framework and then trained a Faster
R-CNN to detect road signs in images. While Faster R-CNNs enabled us to achieve our goal, we
found two problems that needed to be addressed:

1. The framework is complex, including multiple moving parts
2. We achieved approximately 7− 10 FPS — reasonable for a deep learning-based object

detector, but not if we want true real-time performance
To address these concerns we’ll review the Single Shot Detector (SSD) framework for object

detection. The SSD object detector is entirely end-to-end, contains no complex moving parts, and
is capable of super real-time performance.

17.1 Understanding Single Shot Detectors (SSDs)

The SSD framework was first introduced by Liu et al. in their 2015 paper, SSD: Single Shot
MultiBox Detector [61]. The Mulitbox component, used for the bounding box regression algorithm,
comes from Szegedy (the same Christian Szegedy of Google’s Inception network) et al.’s 2015
paper,Scalable High Quality Object Detection [62].

Combining both the Multibox regression technique along with the SSD framework, we can
create an object detector that reaches comparable accuracy to Faster R-CNN and obtain up to 59+
FPS — faster FPS can be obtained using smaller, more efficient base networks as well.

In the first part of this section we’ll discuss some of the motivation behind SSDs, why they
were created, and the problems they address in context of object detection. From there we’ll review
the SSD architecture, including the concept of MultiBox priors. Finally, we’ll discuss how SSDs
are trained.

17.1.1 Motivation

The work of Girchick et al. in their three R-CNN publications [43, 46, 51] is truly remarkable and
has enabled deep learning-based object detection to become a reality. However, there are a few
problems that both researchers and practitioners found with R-CNNs.

294 Chapter 17. Single Shot Detectors (SSDs)

The first is that training required multiple phases. The Region Proposal Network (RPN) needed
to be trained in order to generate suggested bounding boxes before we could train the actual
classifier to recognize objects in images. The problem was later mitigated by training the entire
R-CNN architecture end-to-end, but prior to this discovery, it introduced a tedious pre-training
process.

The second issue is that training took too long. A (Faster) R-CNN consists of multiple
components, including:

1. A Region Proposal Network
2. A ROI Pooling Module
3. The final classifier
While all three fit together into a framework, they are still moving parts that slow down the

entire training procedure.
The final issue, and arguably most important, is that inference time was too slow — we could

not yet obtain real-time object detection with deep learning.
In fact, we can see how SSDs attempt to address each of these problems by inspecting the name

itself. The term Single Shot implies that both localization and detection are performed in a single
forward pass of the network during inference time — the network only has to “look” at the image
once to obtain final predictions.

It’s important to understand the significance of the term single shot. Unlike R-CNNs that
require refetching pixels from the original image or slices from the feature map, SSDs instead
continue to propagate the feature maps forward, connecting the feature maps in a novel way such
that objects of various sizes and scales can be detected. As we’ll see, and according to Liu et al, the
fundamental improvement in speed of SSDs comes from eliminating bounding box proposals and
subsampling of pixels or features [61].

The term Multibox refers to Szegedy et al’s original Multibox algorithm used for bounding
box regression [62]. This algorithm enables SSDs to localize objects of different classes, even if
their bounding boxes overlap. In many object detection algorithms, overlapping objects of different
classes are often suppressed into a single bounding box with the highest confidence.

Finally, the term Detector implies that we’ll be not only localizing the (x,y)-coordinates of a
set of objects in an image, but also returning their class labels as well.

17.1.2 Architecture
Just like a Faster R-CNN, an SSD starts with a base network. This network is typically pre-trained,
normally on a large dataset such as ImageNet, enabling it to learn a rich set of discriminative
features. Again, we’ll use this network for transfer learning, propagating an input image to a
pre-specified layer, obtaining the feature map, and then moving forward to the object detection
layers.

In the work of Liu et al., VGG16 was used [17], as at the time of publication, VGG was found
to provide better transfer learning accuracy/results than other popular network architectures. Today
we would instead use the deeper ResNet [21, 22] or DenseNet [55] architectures to obtain higher
accuracy, or we may swap in SqueezeNet [30] or MobileNet [53] for additional speed. For the sake
of the explanation of the SSD framework in this section, we’ll use VGG as our base network.

Figure 17.1 illustrates the SSD architecture. We utilize the VGG layers up until conv_6 and
then detach all other layers, including the fully-connected layers. A set of new CONV layers are then
added to the architecture — these are the layers that make the SSD framework possible. As you
can see from the diagram, each of these layers are CONV layers as well. This behavior implies that
our network is fully-convolutional: we can accept an input image of arbitrary size — we are no
longer restricted by the 224×224 input requirements of VGG.

We’ll review what these additional auxiliary layers are doing later in this chapter, but for the

17.1 Understanding Single Shot Detectors (SSDs) 295

Figure 17.1: A diagram of the Single Shot Detector (SSD) architecture. The SSD starts with a
base network (typically pre-trained on ImageNet). A set of new CONV layers are used to replace
later CONV and POOL layers. Each CONV layer connects to the output FC layer. Combined with the
(modified) Multibox algorithm, this allows SSDs to detect objects at varying scales in the image in
a single forward pass. (Credit: Figure 2 of Lui et al. [61])

time being notice two important components:
1. We progressively reduce the volume size in deeper layers, as we would with a standard CNN
2. Each of the CONV layers connects to the final detection layer.
The fact that each feature map connects to the final detection layer is important — it allows

the network to detect and localize objects in images at varying scales. Furthermore, this scale
localization happens in a forward pass. No resample of feature maps is required, enabling SSDs to
operate in an entire feedforward manner — this fact is what makes SSDs so fast and efficient.

17.1.3 MultiBox, Priors, and Fixed Priors

The SSD framework uses a modified version of Szegedy et al.’s MultiBox algorithm [62] for
bounding box proposals. This algorithm is inspired by Szegedy’s previous work on the Inception
network — MultiBox uses both (1) a series of 1×1 kernels to help reduce dimensionality (in terms
of volume width and height) and (2) a series of 3×3 kernels for more feature-rich learning.

The MultiBox algorithm starts with priors, similar to though not exactly like anchors from the
Faster R-CNN framework. The priors are fixed size bounding boxes whose dimensions have been
pre-computed based on the dimensions and locations of the ground-truth bounding boxes for each
class in the dataset.

We call these a “prior” as we’re relying on Bayesian statistical inference, or more specifically,
a prior probability distribution, of where object locations will appear in an image. The priors are
selected such that their Intersection over Union (IoU) is greater than 50% with ground-truth objects.
It turns out that this method of computing priors is better than randomly selecting coordinates from
the input image; however, the problem is that we now need to pre-train the MultiBox predictor,
undermining our goal of training a complete deep learning-based object detector end-to-end.

Luckily, there is a solution: fixed priors — and it involves a similar anchor selection technique
as Faster R-CNNs.

To visualize the concept of fixed priors, take a look at Figure 17.2. On the left we have our
original input image with ground-truth bounding boxes. Our goal is to generate feature maps that
discretizes the input image into cells (middle and right) — this process will naturally happen as
the image progresses through the CNN and the output spatial dimensions of our volumes become
progressively smaller and smaller.

Each cell in a feature map, similar to an anchor, has a small set of default bounding boxes (four
of them) of varying aspect ratios. By discretizing the input image into different sized feature maps
we are able to detect objects at different scales in the image.

296 Chapter 17. Single Shot Detectors (SSDs)

Figure 17.2: Left: The original input image with ground-truth bounding boxes. Middle and Right:
Generating feature map that discretizes the input image into cells of different sizes. Each cell
(similar to an anchor in Faster R-CNN terminology) has a set of default bounding boxes associated
with it. The smaller the number of cells, the larger the object that can be detected. The larger the
number of cells, the smaller the object can be detected. (Credit: Figure 1 of Lui et al. [61])

To understand this process further, consider the middle 8×8 feature map. Here our surrounding
bounding box priors are small, capable of localizing small objects. However, in the right 4×
4 feature map our bounding box priors are larger, capable of localizing larger objects.

In the example from Liu et al., the 8× 8 feature map, in particular the blue highlighted
bounding box prior, can be used to localize the cat in the image while the 4×4 feature map with
the red highlighted bounding box prior can localize the dog — the dog is much larger than the cat
and thus requires a discretized feature map with fewer cells.

This process of discretization of feature maps (whose spatial dimensions are subsequently
reduced later in the CNN) combined with varying aspect ratios allows us to efficiently localize
objects of varying scales, viewpoints, and ratios.

Furthermore, just like in Faster R-CNN, instead of predicting raw (x,y) coordinates, we predict
the bounding box offsets (i.e., deltas) for each class label.

To make this point more clear, consider a bounding box consisting of two sets of (x,y)-
coordinates with b default fixed priors per feature map cell along with c total class labels. If our
feature map spatial dimensions are f = M×N, then we would compute a total of t = f ×b× (4+
c) values for each feature map [61, 63].

Again, it’s important to keep in mind that for each predicted bounding box we are also computing
the probability of all class labels inside the region rather than keeping only the bounding box with
the largest probability across all classes. Computing, and retaining, the probability for the bounding
boxes in a class-wise manner enables us to detect potentially overlapping objects as well.

17.1.4 Training Methods
When training a SSD we need to consider the loss function of the MultiBox algorithm which
includes two components:

1. Confidence loss
2. Location loss
Categorical cross-entropy loss is used for confidence, as it measures if we were correct in

our class label prediction for the bounding box. The location loss, similar to Faster R-CNN, uses
a smooth L1-loss, giving the SSD more leeway for close but not perfect localizations (i.e., the
final predicted bounding box does not need to be perfect just “close enough”). Keep in mind that
predicting bounding boxes that match the ground-truth is simply unrealistic.

Before training your network you’ll also want to consider the number of default bounding boxes

17.2 Summary 297

used by the SSD — the original paper by Liu et al. recommends using four or six default bounding
boxes. You may adjust these numbers as you see fit, but you’ll typically want to keep them at the
default recommended values. Adding more variations in scale and aspect ratio can potentially (but
not always) enable you to detect more objects, but will also significantly slow down your inference
time.

The same concept is true for the number of feature maps as well — you can include additional
CONV blocks to the network, therefore increasing depth which leads to increasing the likelihood of
an object being correctly detected and classified. The tradeoff here is again speed. The more CONV
layers you add, the slower the network will run.

Liu et al. provide an extensive study of the tradeoffs between adding/removing the number of
default bounding boxes and CONV blocks in their paper [61] — please refer to it if you are interested
in more details on these tradeoffs.

The SSD framework also includes a common object detection concept of hard-negative
mining to increase training accuracy. During the training process, cells that have a low IoU with
ground-truth objects are treated as negative examples.

By definition, most objects in an image will be contained in a small fraction of the image. It’s
therefore possible that most of the image will be considered negative examples — if we used all
negative examples for an input image, our proportions of positive to negative training examples
would be extremely unbalanced.

To ensure the number of negative examples do not overwhelm the number of positive ones, Liu
et al. recommends keeping a ratio of negative to positive examples around 3:1. Most SSD imple-
mentations you will use either do this sampling by default or provide it as a tunable parameter for
the network.

The SGD optimizer was used in the original paper to train end-to-end, but other optimizers can
be used. Typically, you will see see RMSprop or Adam, especially when fine-tuning an existing
object detection model.

During prediction time, non-maxima suppression is used class-wise, yielding the final predic-
tions from the network. Once trained, Liu et al. demonstrated SSDs obtained comparable accuracy
to their Faster R-CNN counterparts on a number of object detection datasets, including PASCAL
VOC [58], COCO [59], and ILSVRC [9].

However, the major contribution here is that SSDs can run at approximately 22 FPS on
512× 512 input images and 59 FPS on 300× 300 images. Even higher FPS can be obtained
by swapping out the VGG base network for a more computationally efficient MobileNet (although
accuracy may decrease slightly).

17.2 Summary

In this chapter we reviewed the fundamentals of the Single Shot Detector (SSD) framework.
Unlike Faster R-CNNs which contain multiple moving parts and components, SSDs are unified,
encapsulated in a single end-to-end network, making SSDs easier to train and capable of real-time
object detection while still obtaining comparable accuracy.

The primary criticism of SSDs is that they tend to not work well for small objects, mainly
because small objects may not appear on all feature maps — the more an object appears on a feature
map, the more likely that the MultiBox algorithm can detect it.

A common hack to address the problem is to increase the size of the input image, but that
(1) reduces the speed at which SSD can run and (2) does not completely alleviate the problem of
detecting small objects. If you are trying to detect objects that are small relative to the size of the
input image you should consider using Faster R-CNN instead. For further information on SSDs,
refer to Liu et al.’s publication [61] along with Eddie Forson’s excellent introductory article [63].

298 Chapter 17. Single Shot Detectors (SSDs)

Continuing our theme of deep learning for self-driving cars, in our next chapter we’ll learn how
to train an SSD from scratch to recognize the front and rear view of vehicles using Google’s Object
Detection API.

18. Training a SSD From Scratch

In our last chapter we discussed the inner workings of the Single Shot Detector (SSD) from Liu et
al. Now that we have an understanding of the SSD framework we can use the TensorFlow Object
Detection API (TFOD API) to train a SSD on dataset, similar to Chapter 16 where we trained a
Faster R-CNN using the TFOD API.

We’ll be continuing the theme of deep learning for self-driving cars by training a SSD to
recognize both the front and rear views of vehicles using a vehicle dataset curated and labeled by
Davis King of dlib [40]. Not only will this process give us increased exposure to working with
the TFOD API and toolkit, but it will also give us additional insight into the limitations of the
TFOD API and how certain types of datasets can be more challenging to train than others due to
hard-negative mining.

18.1 The Vehicle Dataset
The dataset we are using for this example comes from Davis King’s dlib library [40] and was hand
annotated by King for usage in a demonstration of his max-margin object detection algorithm [64,
65].

Each image in this dataset was captured from a camera mounted to a car’s dashboard. For each
image, all visible front and rear views of vehicles are labeled as such. An example of such vehicle
annotations in the dataset can be found in Figure 18.1.

The images were labeled using the imglab tool included with dlib [66]. One of the benefits
of using imglab for annotation is that we can mark potentially “confusing” areas of an image as
“ignore”. Provided you are using the dlib library to train your own HOG + Linear SVM detector or
CNN MMOD detector (using C++), dlib will exclude the areas marked as ignored from training.

Examples of areas that can and should be marked as ignored in context of vehicle detection
include:

1. Areas where a large number of cars are in a compact area where it’s not clear where one car
begins and the other ends

2. Vehicles at a distance that are too small to be 100% visually recognizable, but the CNN can
still “see” them and learn patterns from them

300 Chapter 18. Training a SSD From Scratch

Figure 18.1: An example of rear views of vehicles and their associated bounding boxes in the dlib
Vehicle dataset [67].

Unfortunately, the TFOD API has no concept of “ignored” areas of images which can hurt our
object detection performance. The goal of using dlib’s vehicle dataset is twofold:

1. To train a high quality SSD object detector to localize front and rear views of vehicles in
images

2. To demonstrate how a combination of (1) SSD’s hard-negative mining with (2) the lack of
“ignored” areas in the TFOD API can confuse our object detector

By the end of this chapter you’ll have a strong understanding of both goals, enabling you to
make intelligent decisions regarding which object detection framework to use when training your
own detectors on custom datasets.

18.2 Training Your SSD
This section will demonstrate how to train a SSD using the TFOD API, similar to how we trained
a Faster R-CNN using the TFOD API in Chapter 16. Since we have already reviewed the TFOD
API in detail, we’ll be spending less time discussing the API and associated tools here. For a more
detailed review of the TFOD API and toolkit, please refer to Chapter 16.

18.2.1 Directory Structure and Configuration
Similar to Chapter 16 where we trained a Faster R-CNN, we’ll have a near identical directory
structure for this project:

| --- ssds_and_rcnn
| |--- build_vehicle_records.py
| |--- config
| | |--- __init__.py
| | |--- dlib_front_rear_config.py
| |--- dlib_front_and_rear_vehicles_v1/
| | |--- image_metadata_stylesheet.xsl
| | |--- input_videos
...
| | |--- testing.xml
| | |--- training.xml
| | |--- youtube_frames
| |--- predict.py
| |--- predict_video.py

18.2 Training Your SSD 301

We’ll create a module named config where we’ll store all necessary Python-based configura-
tions inside dlib_front_rear_config.py.

The build_vehicle_records.py will be used to build the vehicles dataset in TensorFlow
record format. As we’ll see, build_vehicle_records.py is very similar to build_lisa_records.py,
only with a handful of modifications.

Both predict.py and predict_video.py are identical to Chapter 16. The setup.sh script
will be used to configure our PYTHONPATH to access the TFOD API imports and libraries, again,
identical to Chapter 16.

The dlib_front_and_rear_vehicles_v1 directory contain the vehicles dataset. You can
download the dataset using the following link (http://pyimg.co/9gq7u) and then clicking the
dlib_front_and_rear_vehicles_v1.tar file.

Alternatively, you can use wget and tar to download and unarchive the files:

$ wget http://dlib.net/files/data/dlib_front_and_rear_vehicles_v1.tar
$ tar -xvf dlib_front_and_rear_vehicles_v1.tar

Inside dlib_front_and_rear_vehicles_v1 you’ll find your image files, along with two
XML files, training.xml and testing.xml:

$ cd dlib_front_and_rear_vehicles_v1
$ ls *.xml
testing.xml training.xml

These files contain our bounding box annotations + class labels for both the training and testing
set, respectively. You’ll want to take the time now to create your records and data directories as
we did in Chapter 16:

$ mkdir records experiments
$ mkdir experiments/training experiments/evaluation experiments/exported_model

Creating these directories ensures that our project structure matches Chapter 16 on Faster
R-CNN, enabling us to reuse the majority of our code and example commands.

Go ahead and open up dlib_front_rear_config.py and we’ll review the contents:

1 # import the necessary packages
2 import os
3

4 # initialize the base path for the front/rear vehicle dataset
5 BASE_PATH = "dlib_front_and_rear_vehicles_v1"
6

7 # build the path to the input training and testing XML files
8 TRAIN_XML = os.path.sep.join([BASE_PATH, "training.xml"])
9 TEST_XML = os.path.sep.join([BASE_PATH, "testing.xml"])

Line 5 defines the BASE_PATH to the vehicles dataset on our system. We then define TRAIN_XML
and TEST_XML, the paths to the training and testing files provided with the vehicles dataset,
respectively.

http://pyimg.co/9gq7u

302 Chapter 18. Training a SSD From Scratch

If you were to open one of these files you’ll notice that it’s an XML file. Each image element
in the file includes the file path along with a number of bounding box objects. We’ll learn how to
parse this XML file in Section 18.2.2.

From there, we define the path to our record files:

11 # build the path to the output training and testing record files,
12 # along with the class labels file
13 TRAIN_RECORD = os.path.sep.join([BASE_PATH,
14 "records/training.record"])
15 TEST_RECORD = os.path.sep.join([BASE_PATH,
16 "records/testing.record"])
17 CLASSES_FILE = os.path.sep.join([BASE_PATH,
18 "records/classes.pbtxt"])

Along with the class labels dictionary:

20 # initialize the class labels dictionary
21 CLASSES = {"rear": 1, "front": 2}

Again, keeping in mind that the label ID 0 is reserved for the background class (hence why we
start counting from 1 rather than 0).

18.2.2 Building the Vehicle Dataset
The vast majority of the build_vehicle_records.py file is based on build_lisa_records.py
from Chapter 16 — the primary modification is parsing the vehicle dataset XML file rather than the
CSV file provided with the LISA Traffic Sign dataset.

There are a number of libraries used to parse XML files, but my favorite one is BeautifulSoup
[68]. If you do not have BeautifulSoup installed on your system, you can install it via pip:

$ pip install beautifulsoup4

If you are using Python virtual environments make sure you use the workon command to access
your respective Python virtual environment before installing BeautifulSoup. I will assume that you
understand the extreme basics of XML files, including tags and attributes — advanced knowledge
of XML files is certainly not required.

R If you have never used XML files before, I suggest you read the following tutorial to help you
get up to speed before continuing: http://pyimg.co/5wzvd

Let’s go ahead and get started — open up build_vehicle_records.py and insert the follow-
ing code:

1 # import the necessary packages
2 from config import dlib_front_rear_config as config
3 from pyimagesearch.utils.tfannotation import TFAnnotation
4 from bs4 import BeautifulSoup
5 from PIL import Image
6 import tensorflow as tf
7 import os

http://pyimg.co/5wzvd

18.2 Training Your SSD 303

Line 2 imports our configuration file so we can access it throughout the Python script. Our
TFAnnotation class (Line 3) will enable us to efficiently build TensorFlow data points that will
be written to our output record file. We’ll also import BeautifulSoup so we can parse our image
paths, bounding boxes, and class labels from our XML files.

Our next code block handles writing the CLASSES to file in the JSON/YAML-like format that
TensorFlow expects (which is again identical to Chapter 16):

9 def main(_):
10 # open the classes output file
11 f = open(config.CLASSES_FILE, "w")
12

13 # loop over the classes
14 for (k, v) in config.CLASSES.items():
15 # construct the class information and write to file
16 item = ("item {\n"
17 "\tid: " + str(v) + "\n"
18 "\tname: ’" + k + "’\n"
19 "}\n")
20 f.write(item)
21

22 # close the output classes file
23 f.close()
24

25 # initialize the data split files
26 datasets = [
27 ("train", config.TRAIN_XML, config.TRAIN_RECORD),
28 ("test", config.TEST_XML, config.TEST_RECORD)
29]

Lines 26-29 defines a datasets tuple consisting of the input training/testing XML file and the
output training/testing record file. In Chapter 16 we had to manually build our training and testing
split, but for the vehicles dataset our data is pre-split — no additional work is required from us on
this front.

Next, let’s start looping over each of the training and testing splits, respectively:

31 # loop over the datasets
32 for (dType, inputPath, outputPath) in datasets:
33 # build the soup
34 print("[INFO] processing ’{}’...".format(dType))
35 contents = open(inputPath).read()
36 soup = BeautifulSoup(contents, "html.parser")
37

38 # initialize the TensorFlow writer and initialize the total
39 # number of examples written to file
40 writer = tf.python_io.TFRecordWriter(outputPath)
41 total = 0

Line 35 loads the contents of the current inputPath while Line 36 builds the soup by applying
BeautifulSoup to parse the contents and build an XML tree that we can easily traverse in memory.

Line 40 creates a writer, an instantiation of TFRecordWriter, that we can use to write
images and bounding boxes to the output TensorFlow record file.

Let’s traverse the XML document by looping over all image elements:

304 Chapter 18. Training a SSD From Scratch

43 # loop over all image elements
44 for image in soup.find_all("image"):
45 # load the input image from disk as a TensorFlow object
46 p = os.path.sep.join([config.BASE_PATH, image["file"]])
47 encoded = tf.gfile.GFile(p, "rb").read()
48 encoded = bytes(encoded)
49

50 # load the image from disk again, this time as a PIL
51 # object
52 pilImage = Image.open(p)
53 (w, h) = pilImage.size[:2]
54

55 # parse the filename and encoding from the input path
56 filename = image["file"].split(os.path.sep)[-1]
57 encoding = filename[filename.rfind(".") + 1:]
58

59 # initialize the annotation object used to store
60 # information regarding the bounding box + labels
61 tfAnnot = TFAnnotation()
62 tfAnnot.image = encoded
63 tfAnnot.encoding = encoding
64 tfAnnot.filename = filename
65 tfAnnot.width = w
66 tfAnnot.height = h

For each of the image elements, we exact the file path attribute (Line 46). Lines 47 and
48 load the image from disk in the encoded TensorFlow format. Lines 52 and 53 load the image
from disk again, this time in PIL/Pillow format, enabling us to extract the image dimensions.

Lines 56 and 57 extract the filename from the image path and then use the filename to
derive the image encoding (i.e., JPG, PNG, etc.). From there we can initialize our tfAnnot object
(Lines 61-66). For a more detailed review of this code, please see Section 16.3.3 in the Faster
R-CNN chapter.

Each image element in the XML tree also has a series of children bounding box elements —
let’s loop over all box elements for a particular image now:

68 # loop over all bounding boxes associated with the image
69 for box in image.find_all("box"):
70 # check to see if the bounding box should be ignored
71 if box.has_attr("ignore"):
72 continue
73

74 # extract the bounding box information + label,
75 # ensuring that all bounding box dimensions fit
76 # inside the image
77 startX = max(0, float(box["left"]))
78 startY = max(0, float(box["top"]))
79 endX = min(w, float(box["width"]) + startX)
80 endY = min(h, float(box["height"]) + startY)
81 label = box.find("label").text

Line 71 makes a check to see if the ignore attribute of the box is set, and if so, we do not
further process the bounding box. In an ideal world, the TFOD API would allow us to mark specific

18.2 Training Your SSD 305

ROIs as “ignore”, like in dlib, thereby instructing our network not to be trained on certain areas of
the image. Unfortunately, this process of “ignoring” certain regions of the image is not possible
with the TFOD API.

Lines 77-81 extract the bounding box and class label information from the box element. The
bounding box coordinates in our respective XML files can be negative or larger than the actual
width and height of the image — we take special precautions to ensure we clip these values using
the max and min functions, respectively.

So, why exactly does our dataset have bounding box coordinates that are outside the dimensions
of the image? The reason lies in how the dlib library and imglab tool work.

The dlib library requires that objects have similar bounding box aspect ratios during training —
if bounding boxes do not have similar aspect ratios, the algorithm will error out. Since vehicles can
appear at the borders of an image, in order to maintain similar aspect ratios, the bounding boxes
can actually extend outside the boundaries of the image. The aspect ratio issue isn’t a problem with
the TFOD API so we simply clip those values.

Next, we can scale the bounding box coordinates to the range [0,1], which is what TensorFlow
expects:

83 # TensorFlow assumes all bounding boxes are in the
84 # range [0, 1] so we need to scale them
85 xMin = startX / w
86 xMax = endX / w
87 yMin = startY / h
88 yMax = endY / h

Our next code block makes a check to ensure that our maximum x and y values are always
larger than their corresponding minimums (and vice versa):

90 # due to errors in annotation, it may be possible
91 # that the minimum values are larger than the maximum
92 # values -- in this case, treat it as an error during
93 # annotation and ignore the bounding box
94 if xMin > xMax or yMin > yMax:
95 continue
96

97 # similarly, we could run into the opposite case
98 # where the max values are smaller than the minimum
99 # values

100 elif xMax < xMin or yMax < yMin:
101 continue

If either of these checks fail, we ignore the bounding box and presume it to be an error during
the annotation process.

R When I first trained a network on the vehicles dataset using the TFOD API, I spent over a day
trying to diagnose why my network errored out during the training process. It turns out the
problem was related to bounding boxes having invalid coordinates where the maximum x or
y value was actually smaller than the corresponding minimum (and vice versa). Applying
these checks on Lines 90-101 discarded the invalid bounding boxes (two of them) and allowed
the network to be trained.

From there we can continue building our tfAnnot object and add it to our output record file:

306 Chapter 18. Training a SSD From Scratch

103 # update the bounding boxes + labels lists
104 tfAnnot.xMins.append(xMin)
105 tfAnnot.xMaxs.append(xMax)
106 tfAnnot.yMins.append(yMin)
107 tfAnnot.yMaxs.append(yMax)
108 tfAnnot.textLabels.append(label.encode("utf8"))
109 tfAnnot.classes.append(config.CLASSES[label])
110 tfAnnot.difficult.append(0)
111

112 # increment the total number of examples
113 total += 1
114

115 # encode the data point attributes using the TensorFlow
116 # helper functions
117 features = tf.train.Features(feature=tfAnnot.build())
118 example = tf.train.Example(features=features)
119

120 # add the example to the writer
121 writer.write(example.SerializeToString())

Our final code block closes the writer object and starts the main thread of execution:

123 # close the writer and print diagnostic information to the
124 # user
125 writer.close()
126 print("[INFO] {} examples saved for ’{}’".format(total,
127 dType))
128

129 # check to see if the main thread should be started
130 if __name__ == "__main__":
131 tf.app.run()

To build the vehicle dataset, open up a terminal, ensure you have executed setup.sh to
configure your PYTHONPATH, and execute the following command:

$ time python build_vehicle_records.py
[INFO] processing ’train’...
[INFO] 6133 examples saved for ’train’
[INFO] processing ’test’...
[INFO] 382 examples saved for ’test’

real 0m2.749s
user 0m2.411s
sys 0m1.163s

Listing the contents of my records directory we can see that our training and testing record
files have been successfully created:

$ ls dlib_front_and_rear_vehicles_v1/records/
classes.pbtxt testing.record training.record

18.2 Training Your SSD 307

18.2.3 Training the SSD
In order to train our SSD on the vehicles dataset, we first need to head back to TensorFlow Object
Detection Model Zoo (http://pyimg.co/1z34r) and download the SSD + Inception v2 trained on
COCO. Figure 18.2 shows a screenshot of the two SSDs available to us:
• SSD + MobileNet
• SSD + Inception

Figure 18.2: We will be training a SSD with Inception base network for vehicle detection. Make
sure you download the SSD + Inception model weights pre-trained on COCO from the TensorFlow
Model Zoo.

We’ll be using the SSD + Inception architecture in this chapter as it yields higher detection accu-
racy, but you can use SSD + MobileNet if you so desire. Go ahead and download the SSD + Incep-
tion network using the link above or use wget and tar to download and unarchive the archive, which
at the time of this writing is the November 17 2017, version (ssd_inception_v2_coco_2017_11_17.tar.gz):

$ cd dlib_front_and_rear_vehicles_v1/experiments/training
$ mv ~/Downloads/ssd_inception_v2_coco_2017_11_17.tar.gz ./
$ tar -zxvf ssd_inception_v2_coco_2017_11_17.tar.gz
$ ls -l ssd_inception_v2_coco_2017_11_17
checkpoint
frozen_inference_graph.pb
model.ckpt.data-00000-of-00001
model.ckpt.index
model.ckpt.meta
saved_model

Next, we need our base configuration file. Head back to the sample configuration pages
(http://pyimg.co/r2xql) and download the ssd_inception_v2_pets.config file.

Once you have downloaded the configuration file, move it to our dlib Vehicles dataset directory
and rename it:

http://pyimg.co/1z34r
http://pyimg.co/r2xql

308 Chapter 18. Training a SSD From Scratch

$ cd dlib_front_and_rear_vehicles_v1/experiments/training
$ mv ~/Downloads/ssd_inception_v2_pets.config ssd_vehicles.config

As you can see from the commands above, I have renamed the file ssd_vehicles.config.
Just as we updated the configuration in Chapter 16 on Faster R-CNN, we need to do the same

for our SSD. The first change is to set num_classes to 2, as we have two class labels, the “front”
and “rear” views of the vehicles, respectively:

7 model {
8 ssd {
9 num_classes: 2

10 box_coder {
11 faster_rcnn_box_coder {
12 y_scale: 10.0
13 x_scale: 10.0
14 height_scale: 5.0
15 width_scale: 5.0
16 }
17 }

You’ll then want to set the fine_tune_checkpoint in train_config to point to your down-
loaded SSD + Inception model checkpoint:

150 fine_tune_checkpoint: "/home/adrian/pyimagesearch/dlbook/ssds_and_rcnn/
151 dlib_front_and_rear_vehicles_v1/experiments/training/
152 ssd_inception_v2_coco_2017_11_17/model.ckpt"
153 from_detection_checkpoint: true

Keep in mind that your path will be different than mine so take a few minutes to validate that
your path is correct — this step will save you some headaches down the line.

I’m going to allow my model to train for a maximum of 200,000 steps; however, you could
obtain approximately the same accuracy at 75,000-100,000 steps:

134 train_config: {
135 batch_size: 24
136 ...
137 num_steps: 200000
138 ...
139 }

Next we’ll update our train_input_reader to point to our training.record and classes.pbtxt
file:

167 train_input_reader: {
168 tf_record_input_reader {
169 input_path: "/home/adrian/pyimagesearch/dlbook/ssds_and_rcnn/
170 dlib_front_and_rear_vehicles_v1/records/training.record"
171 }
172 label_map_path: "/home/adrian/pyimagesearch/dlbook/ssds_and_rcnn/
173 dlib_front_and_rear_vehicles_v1/records/classes.pbtxt"
174 }

18.2 Training Your SSD 309

As well as our eval_input_reader to point to the testing.record and classes.pbtxt
file:

181 eval_input_reader: {
182 tf_record_input_reader {
183 input_path: "/home/adrian/pyimagesearch/dlbook/ssds_and_rcnn/
184 dlib_front_and_rear_vehicles_v1/records/training.record"
185 }
186 label_map_path: "/home/adrian/pyimagesearch/dlbook/ssds_and_rcnn/
187 dlib_front_and_rear_vehicles_v1/records/classes.pbtxt"
188 shuffle: false
189 num_readers: 1
190 }

Again, I would recommend updating your eval_config to either use the full num_examples
(if using a GPU) or 5-10 if you are using a CPU:

174 eval_config: {
175 num_examples: 382
176 # Note: The below line limits the evaluation process to 10 evaluations.
177 # Remove the below line to evaluate indefinitely.
178 #max_evals: 10
179 }

Provided you have properly set your file paths, you should be all set! Open up a new terminal
(ensuring you execute setup.sh from the ssds_and_rcnn directory to set your PYTHONPATH) and
change directory to models/research, and execute the following command:

$ source setup.sh
$ cd ~/models/research
$ python object_detection/train.py --logtostderr \

--pipeline ~/ssds_and_rcnn/dlib_front_and_rear_vehicles_v1/
experiments/training/ssd_vehicles.config \

--train_dir ~/ssds_and_rcnn/dlib_front_and_rear_vehicles_v1/
experiments/training

INFO:tensorflow:Starting Queues.
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:Recording summary at step 0.
INFO:tensorflow:global step 1: loss = 18.8345 (14.528 sec/step)
INFO:tensorflow:global step 2: loss = 17.7939 (0.966 sec/step)
INFO:tensorflow:global step 3: loss = 17.3796 (0.885 sec/step)
...

The training process has now started, but we also need our evaluation script

$ python object_detection/eval.py --logtostderr \
--pipeline_config_path ~/ssds_and_rcnn/dlib_front_and_rear_vehicles_v1/

experiments/training/ssd_vehicles.config \
--checkpoint_dir ~/ssds_and_rcnn/dlib_front_and_rear_vehicles_v1/

experiments/training \
--eval_dir ~/ssds_and_rcnn/dlib_front_and_rear_vehicles_v1/experiments

As well as our TensorBoard dashboard:

310 Chapter 18. Training a SSD From Scratch

$ cd ~/pyimagesearch/dlbook/ssds_and_rcnn/
$ tensorboard --logdir dlib_front_and_rear_vehicles_v1/experiments
TensorBoard 0.4.0rc3 at http://annalee:6006 (Press CTRL+C to quit)

R The paths to the input files and directories can be quite long, so for convenience, I have
created a sym-link from the ssds_and_rcnn directory to the models/research directory,
enabling me to spend less time typing and debugging long file paths. You may wish to apply
this tactic as well.

On my machine, I can visualize the training process by opening up a web browser and pointing
it to http://annalee:6006. On your machine the port should still be 6006 but the hostname (i.e.,
annalee) will be either the IP address of your machine or the name of the machine itself.

Again, make sure you have properly source’d your setup.sh file to set your PYTHONPATH
before executing any of the above commands.

Figure 18.3: Left: Total loss when training SSD + Inception on dlib Vehicles dataset. Loss starts
off high, then gradually decreases over the course of 200,000 steps. Further training yields marginal
gains in accuracy and loss. Right: Total mAP@0.5 for both the front and rear labels. We reach
≈ 65.5% accuracy, a respectable accuracy for object detection.

Figure 18.3 shows my training process over 200,000 steps, which took approximately 50 hours
on a single GPU. The loss ended at approximately 1.7 with the mAP@0.5 around 65.5%. Further
training would only marginally improve the results, if it all. Ideally, I would like to see the loss
below 1 and certainly below 1.5 — we’ll save a discussion regarding why we can’t push loss that
low for later in Section 18.2.5.

18.2.4 SSD Results
Now that our SSD has been trained, let’s export it:

$ cd ~/models/research
$ python object_detection/export_inference_graph.py --input_type image_tensor \

--pipeline_config_path ~/ssds_and_rcnn/dlib_front_and_rear_vehicles_v1/experiments/
training/ssd_vehicles.config \

--trained_checkpoint_prefix ~/ssds_and_rcnn/dlib_front_and_rear_vehicles_v1/
experiments/training/model.ckpt-200000 \

--output ~/ssds_and_rcnn/dlib_front_and_rear_vehicles_v1/experiments/exported_model

Here you can see that I have exported the model checkpoint at step 200,000 to the exported_model
directory; however, you could obtain approximately the same accuracy at 75,000-100,000 steps:

18.2 Training Your SSD 311

Now that our model is exported, we can apply it to an example image, ensuring that you supply
a valid path to an input image:

$ python predict.py \
--model dlib_front_and_rear_vehicles_v1/experiments/

exported_model/frozen_inference_graph.pb \
--labels dlib_front_and_rear_vehicles_v1/records/classes.pbtxt \
--image path/to/input/image.png \
--num-classes 2

Figure 18.4: Examples of our SSD + Inception network classifying input testing frames from the
dlib vehicle dataset. Our architecture does an extremely good job of detection + labeling, except
for the bottom-right where we misclassify a rear view of a car as a frontal view. In some cases, no
matter how much you tune your hyperparameters, you cannot overcome limitations of your dataset
(Section 18.2.5).

I have executed the predict.py on a number of example images in the dlib Vehicles testing
set. Figure 18.4 displays a montage of these example detections. Here we see that our SSD is
typically able to correctly detect and label the “front” versus “rear” view of a vehicle; however, in
some cases the detection is correct, but the label is off.

Is there a problem with our detector? Should we have used a different optimizer? Do we need
to tune our hyperparameters?

Sometimes, no matter how you tune your hyperparameters, you cannot overcome the limitations
of your dataset and/or the framework you are using to train your object detector, which is exactly
the topic of our next section.

18.2.5 Potential Problems and Limitations
There are two limitations and drawbacks to our results. The first one can be discerned from
inspecting the results and reading Chapter 17, where we discussed the fundamentals of Single Shot
Detectors — SSDs do not perform well on small objects.

312 Chapter 18. Training a SSD From Scratch

Looking at the output of our results, you’ll see that small vehicles are missed by the detector.
We could help reduce this problem by increasing the resolution of our input images, but if we really
want to detect small vehicles at a distance, we might want to consider using the Faster R-CNN
framework. Of course, there is a tradeoff — if we use a Faster R-CNN we’ll sacrifice the speed of
our object detection pipeline.

In the context of vehicle detection and this specific project, recognizing small vehicles at a
distance is unlikely to be a problem. Vehicles that are far away are not an immediate concern to us.
As they approach, our SSD will be able to recognize their presence, and instruct the self-driving
vehicle to take corrective action. Given that our SSD can run at over 20 FPS, our concerns of not
recognizing small objects can be mitigated, but we still need to be concerned with vehicles far away
operating at very high speeds that can quickly close the gap.

The second problem we can encounter is our SSD confusing “front” and “rear” views” of
vehicles. These misclassifications are partially due to the fact that the front and rears of vehicles,
while semantically different, still share many visually similar characteristics, but the larger problem
is being unable to mark images as “ignore” with the TFOD API.

Vehicles at a distance still contain vehicle-like characteristics which can confuse the TFOD
API during training. This problem is further compounded by the hard-negative mining algorithm of
SSD which tries to learn negative patterns from cells that likely contain vehicles.

That said, this issue is not specific to SSDs. I encourage you to go back and train a Faster
R-CNN on the vehicles dataset — you’ll notice the same behavior. If you find that you need to mark
regions of images as “ignore”, and areas need to be ignored in the majority of images in your
dataset (such is the case with our vehicles dataset), then you may want to consider using a different
object detection library than the TFOD toolkit.

18.3 Summary
In this chapter we learned how to train a Single Shot Detector to recognize the front and rear views
of vehicles using Davis King’s [65] dataset. Overall, we were able to obtain ≈ 65.5% mAP on the
dataset — visually inspecting the results confirmed that predictions were good and even capable of
running in real-time.

Real-time prediction is one of the major benefits in the SSD framework. The TensorFlow
Object Detection Model Zoo reports that our SSD can run at approximately 24 FPS while our Faster
R-CNN can only reach 9 FPS.

However, training our SSD on the vehicle dataset highlighted some problems we can encounter
when training our own custom object detectors. Since the TFOD API does not have a concept of
“ignore this region of the image”, we cannot exclude potentially “confusing" parts of the image
from the training process. Examples of such a “confusing” area can include:

1. A large number of cars in a compact area where it’s not clear where one car begins and the
other ends

2. Vehicles at a distance that are too small to be 100% visually recognizable, but the CNN can
still “see” them and learn patterns from them

The hard-negative mining process of an SSD is especially sensitive in these situations and can
actually hurt performance. In the future I hope that the TFOD API includes a method to mark
bounding boxes as “ignored” as the dlib imglab tool does [66], but until that point, it’s important
to be cognizant of these limitations.

19. Conclusions

Congratulations on finishing the ImageNet Bundle of Deep Learning for Computer Vision with
Python! It’s been quite the journey, and I feel quite privileged and honored to have taken this
journey with you. You’ve learned a lot over the past 15 chapters, so let’s take a second and recap
your newfound knowledge. Inside this bundle you’ve learned how to:

• Train networks in multi-GPU environments.
• Obtain and download the ImageNet dataset (along with the associated licensing assumptions

that accompany the dataset and resulting trained models).
• Prepare the ImageNet dataset by compressing the images and class labels into efficiently

packed record files.
• Train state-of-the-art network architectures on ImageNet, including AlexNet, VGGNet,

GoogLeNet, ResNet, and SqueezeNet – and in each case, replicating the results of the
original respective authors.
• Implement a “Deep Learning as a Service” system that you can use to efficiently create deep

learning API endpoints (and potentially use to start your own company).
• Train a model that can recognize facial expressions and emotions in a real-time video stream.
• Us transfer learning and feature extraction to automatically predict and correct the orientation

of an image.
• Apply fine-tuning to recognize over 164 makes and models of vehicles with over 96.54%

accuracy.
• Train a deep learning model capable of predicting the age and gender of a person in a

photograph.
• Train a Faster R-CNN and Single Shot Detector (SSD) for self-driving cars, including traffic

road sign detection and front/rear view vehicle detection.

Each of these projects were challenging, and representative of the types of techniques you’ll
need to apply when performing deep learning in the real world. Furthermore, these exact same
techniques, best practices, and rules of thumb are the exact ones used by deep learning researchers
performing state-of-the-art work. Provided you’ve worked through all the examples in this book,
I am confident that you can confer upon yourself the title deep learning practitioner if not deep

314 Chapter 19. Conclusions

learning expert. However, to maintain this status, you’ll want to continue your studies. . .

19.1 Where to Now?
Deep learning is a quickly evolving field with new techniques being published every day. It may
feel like a daunting task to keep up with all the new research trends, so to help you out, I’ve created
a set of resources that I personally use to keep myself updated. These resources can also be used to
help you study deep learning further. To start, I would highly recommend Stanford University’s
excellent cs231n class, Convolutional Neural Networks for Visual Recognition:

http://cs231n.stanford.edu/
Every spring semester a new session of the class is taught with slides and notes posted on the

syllabus page:
http://cs231n.stanford.edu/syllabus.html
Links to previous semester notes can also be found there as well.
For a more theoretical treatment of deep learning, Deep Learning by Goodfellow et al. is a

must read:
http://www.deeplearningbook.org/
The book is free to read online and can be bought on Amazon here:
http://pyimg.co/v6b1i
While not specific to computer vision, Deep Learning provides more theoretical information

than covered in this hands-on book. Furthermore, if you intend on applying deep learning to domains
outside computer vision, then you’ll definitely want to read through the work of Goodfellow et al.

When it comes to staying on top of recent deep learning news, I highly recommend following
the /r/machinelearning and /r/deeplearning subreddits:
• https://www.reddit.com/r/MachineLearning/
• https://www.reddit.com/r/deeplearning/
I frequent these subreddits and tend to read through most posts every 24-48 hours, bookmarking

the most interesting threads for me to read later. The benefit of following these subreddits is that
you’ll be part of an actual community with whom you can discuss various techniques, algorithms,
and recent publications.

Two other communities I recommend are LinkedIn Groups, Computer Vision Online and
Computer Vision and Pattern Recognition, respectively:
• http://pyimg.co/s1tc3
• http://pyimg.co/6ep60
While not specific to deep learning, these groups consistently contains interesting discussions

and serves as a hub for anyone interested in studying computer vision at the intersection of deep
learning.

When it comes to keeping up with deep learning publications, look no further than Andrej
Karpathy’s Arxiv Sanity Preserver:

http://www.arxiv-sanity.com/
This website enables you to filter pre-print deep learning publications submitted to arXiv based

on a number of terms, including:
• Most recent submission
• Top most recent submissions
• Recommend papers
• Recently discussed papers
This site is an invaluable tool for anyone who is intending on performing research in the deep

learning field.
When it comes to software, I would suggest following the GitHub repositories for both Keras

and mxnet:

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/syllabus.html
http://www.deeplearningbook.org/
http://pyimg.co/v6b1i
https://www.reddit.com/r/MachineLearning/
https://www.reddit.com/r/deeplearning/
http://pyimg.co/s1tc3
http://pyimg.co/6ep60
http://www.arxiv-sanity.com/

19.1 Where to Now? 315

• https://github.com/fchollet/keras
• https://github.com/dmlc/mxnet
By following the above repositories, you to receive email notifications as the libraries (and

associated functionality) is updated. Staying on top of these packages will enable you to quickly
iterate your own projects based on new features coming down the pipeline. While it’s always
interesting to discuss the theory behind deep learning, it’s no secret that I’m a proponent of actually
implementing what you learn – following both Keras and mxnet will enable you to improve your
implementation skills.

For more general purpose deep learning news delivered to your inbox on a weekly basis, I
recommend This Wild Week in AI, curated by Denny Britz:

http://www.wildml.com/newsletter/
I would also recommend Deep Learning Weekly, put together by Jan Buss and Matle Baumann:
http://www.deeplearningweekly.com/
Both of these newsletters serve up content that is relevant to the larger deep learning community,

but given the traction and interest of deep learning applied to computer vision, you’ll see content
related to computer vision in nearly every issue.

Finally, make sure you stay up to date on the PyImageSearch.com blog and follow along
with new posts. While not every post may be related to deep learning, you’ll be able to use
these tutorials to better understand computer vision and apply these techniques to actual practical,
real-world projects.

A little bit of computer vision knowledge can go a long way when studying deep learning,
so if you haven’t already, be sure to take a look at both Practical Python and OpenCV [34]:

http://pyimg.co/ppao
And the more intensive PyImageSearch Gurus course [35]:
http://pyimg.co/gurus
Both of these resources will enable you to level-up your general computer vision skills, and in

turn, help you on your deep learning career.
Thank you again for allowing me to accompany you on your journey to becoming deep learning

expert. If you have any questions, please email me at adrian@pyimagesearch.com. And no matter
what, keep practicing and keep implementing – deep learning is part science, part art. The more
you practice, the better you’ll become.

Cheers,
–Adrian Rosebrock

https://github.com/fchollet/keras
https://github.com/dmlc/mxnet
http://www.wildml.com/newsletter/
http://www.deeplearningweekly.com/
http://www.pyimagesearch.com
http://pyimg.co/ppao
http://pyimg.co/gurus

Bibliography

[1] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
CoRR abs/1412.6980 (2014). URL: http://arxiv.org/abs/1412.6980 (cited on
page 13).

[2] Geoffrey Hinton. Neural Networks for Machine Learning. http://www.cs.toronto.edu/
~tijmen/csc321/slides/lecture_slides_lec6.pdf (cited on page 13).

[3] Kaggle Team. Kaggle: Dogs vs. Cats. https://www.kaggle.com/c/dogs-vs-cats
(cited on page 14).

[4] Andrej Karpathy. Tiny ImageNet Challenge. http://cs231n.stanford.edu/project.
html (cited on page 14).

[5] Tianqi Chen et al. “MXNet: A Flexible and Efficient Machine Learning Library for Het-
erogeneous Distributed Systems”. In: arXiv.org (Dec. 2015), arXiv:1512.01274. arXiv:
1512.01274 [cs.DC] (cited on page 17).

[6] Caffe Community. Caffe: Multi-GPU Usage. https://github.com/BVLC/caffe/blob/
master/docs/multigpu.md (cited on page 19).

[7] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Embedding”. In:
Proceedings of the 22Nd ACM International Conference on Multimedia. MM ’14. Orlando,
Florida, USA: ACM, 2014, pages 675–678. ISBN: 978-1-4503-3063-3. DOI: 10.1145/
2647868.2654889. URL: http://doi.acm.org/10.1145/2647868.2654889 (cited on
page 19).

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Advances in Neural Information Processing
Systems 25. Edited by F. Pereira et al. Curran Associates, Inc., 2012, pages 1097–1105. URL:
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf (cited on pages 20, 21, 54).

http://arxiv.org/abs/1412.6980
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.kaggle.com/c/dogs-vs-cats
http://cs231n.stanford.edu/project.html
http://cs231n.stanford.edu/project.html
http://arxiv.org/abs/1512.01274
https://github.com/BVLC/caffe/blob/master/docs/multigpu.md
https://github.com/BVLC/caffe/blob/master/docs/multigpu.md
http://dx.doi.org/10.1145/2647868.2654889
http://dx.doi.org/10.1145/2647868.2654889
http://doi.acm.org/10.1145/2647868.2654889
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

318 BIBLIOGRAPHY

[9] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: Inter-
national Journal of Computer Vision (IJCV) 115.3 (2015), pages 211–252. DOI: 10.1007/
s11263-015-0816-y (cited on pages 21, 297).

[10] WordNet. About WordNet. http://wordnet.princeton.edu. 2010 (cited on pages 21,
31).

[11] Alisson Gray. NVIDIA and IBM Cloud Support ImageNet Large Scale Visual Recognition
Challenge. https://devblogs.nvidia.com/parallelforall/nvidia-ibm-cloud-
support - imagenet - large - scale - visual - recognition - challenge/ (cited on
page 22).

[12] M. Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”. In: International
Journal of Computer Vision 88.2 (June 2010), pages 303–338 (cited on page 22).

[13] AcademicTorrents Community and Curators. ImageNet LSVRC 2015. http://academictorrents.
com/collection/imagenet-lsvrc-2015 (cited on page 24).

[14] Yangqing Jia and Evan Shelhamer. Caffe Model Zoo: BAIR model license. http://caffe.
berkeleyvision.org/model_zoo.html#bvlc-model-license (cited on page 26).

[15] Tomasz Malisiewicz. Deep Learning vs Big Data: Who owns what? http://www.computervisionblog.
com/2015/05/deep- learning- vs- big- data- who- owns- what.html (cited on
page 27).

[16] Jeff Donahue. BVLC Reference CaffeNet. https://github.com/BVLC/caffe/tree/
master/models/bvlc_reference_caffenet (cited on page 67).

[17] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for Large-
Scale Image Recognition”. In: CoRR abs/1409.1556 (2014). URL: http://arxiv.org/
abs/1409.1556 (cited on pages 75, 76, 86, 183, 199, 254, 294).

[18] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feedforward
neural networks”. In: In Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS’10). Society for Artificial Intelligence and Statistics. 2010 (cited on
page 77).

[19] Dmytro Mishkin and Jiri Matas. “All you need is a good init”. In: CoRR abs/1511.06422
(2015). URL: http://arxiv.org/abs/1511.06422 (cited on pages 77, 86).

[20] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification”. In: CoRR abs/1502.01852 (2015). URL: http://arxiv.org/
abs/1502.01852 (cited on pages 77, 85).

[21] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR abs/1512.03385
(2015). URL: http://arxiv.org/abs/1512.03385 (cited on pages 86, 90, 105, 107, 254,
294).

[22] Kaiming He et al. “Identity Mappings in Deep Residual Networks”. In: CoRR abs/1603.05027
(2016). URL: http://arxiv.org/abs/1603.05027 (cited on pages 86, 105, 254, 294).

[23] Christian Szegedy et al. “Going Deeper with Convolutions”. In: Computer Vision and Pattern
Recognition (CVPR). 2015. URL: http://arxiv.org/abs/1409.4842 (cited on pages 89,
90, 103).

[24] VLFeat Community. VLFeat: Pre-trained Models. http://www.vlfeat.org/matconvnet/
pretrained/ (cited on pages 89, 99, 103, 104, 120).

[25] Jost Tobias Springenberg et al. “Striving for Simplicity: The All Convolutional Net”. In:
CoRR abs/1412.6806 (2014). URL: http://arxiv.org/abs/1412.6806 (cited on
pages 90, 109).

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://wordnet.princeton.edu
https://devblogs.nvidia.com/parallelforall/nvidia-ibm-cloud-support-imagenet-large-scale-visual-recognition-challenge/
https://devblogs.nvidia.com/parallelforall/nvidia-ibm-cloud-support-imagenet-large-scale-visual-recognition-challenge/
http://academictorrents.com/collection/imagenet-lsvrc-2015
http://academictorrents.com/collection/imagenet-lsvrc-2015
http://caffe.berkeleyvision.org/model_zoo.html#bvlc-model-license
http://caffe.berkeleyvision.org/model_zoo.html#bvlc-model-license
http://www.computervisionblog.com/2015/05/deep-learning-vs-big-data-who-owns-what.html
http://www.computervisionblog.com/2015/05/deep-learning-vs-big-data-who-owns-what.html
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1511.06422
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1409.4842
http://www.vlfeat.org/matconvnet/pretrained/
http://www.vlfeat.org/matconvnet/pretrained/
http://arxiv.org/abs/1412.6806

BIBLIOGRAPHY 319

[26] ImageNet. Large Scale Visual Recognition Challenge 2014 (ILSVRC2014). http://image-
net.org/challenges/LSVRC/2014/results (cited on page 99).

[27] Kaiming He. Deep Residual Networks. https : / / github . com / KaimingHe / deep -
residual-networks (cited on page 108).

[28] Wei Wu. ResNet. https://github.com/tornadomeet/ResNet (cited on page 108).

[29] Kaiming He. ResNet: Should the convolution layers have biases? https://github.com/
KaimingHe/deep-residual-networks/issues/10#issuecomment-194037195 (cited
on page 109).

[30] Forrest N. Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and <1MB model size”. In: CoRR abs/1602.07360 (2016). URL: http://arxiv.org/abs/
1602.07360 (cited on pages 121, 123, 133, 294).

[31] Kaggle Team. Challenges in Representation Learning: Facial Expression Recognition Chal-
lenge. https://www.kaggle.com/c/challenges-in-representation-learning-
facial-expression-recognition-challenge (cited on pages 141, 159).

[32] Ian J. Goodfellow et al. “Challenges in Representation Learning: A Report on Three Machine
Learning Contests”. In: Neural Information Processing: 20th International Conference,
ICONIP 2013, Daegu, Korea, November 3-7, 2013. Proceedings, Part III. Edited by Minho
Lee et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pages 117–124. ISBN:
978-3-642-42051-1. DOI: 10.1007/978-3-642-42051-1_16. URL: https://doi.org/
10.1007/978-3-642-42051-1_16 (cited on page 141).

[33] Jostine Ho. Facial Emotion Recognition. https://github.com/JostineHo/mememoji.
2016 (cited on pages 143, 156).

[34] Adrian Rosebrock. Practical Python and OpenCV + Case Studies. PyImageSearch.com,
2016. URL: https://www.pyimagesearch.com/practical-python-opencv/ (cited
on pages 160, 162, 315).

[35] Adrian Rosebrock. PyImageSearch Gurus. https://www.pyimagesearch.com/pyimagesearch-
gurus/. 2016 (cited on pages 160, 315).

[36] A. Quattoni and A. Torralba. “Recognizing indoor scenes”. In: Computer Vision and Pat-
tern Recognition, IEEE Computer Society Conference on. Los Alamitos, CA, USA: IEEE
Computer Society, 2009, pages 413–420 (cited on pages 165, 166).

[37] Jonathan Krause et al. “3D Object Representations for Fine-Grained Categorization”. In: 4th
International IEEE Workshop on 3D Representation and Recognition (3dRR-13). Sydney,
Australia, 2013 (cited on page 179).

[38] G. Levi and T. Hassncer. “Age and gender classification using convolutional neural net-
works”. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). June 2015, pages 34–42. DOI: 10.1109/CVPRW.2015.7301352 (cited on
page 203).

[39] Eran Eidinger, Roee Enbar, and Tal Hassner. “Age and Gender Estimation of Unfiltered
Faces”. In: Trans. Info. For. Sec. 9.12 (Dec. 2014), pages 2170–2179. ISSN: 1556-6013.
DOI: 10.1109/TIFS.2014.2359646. URL: http://dx.doi.org/10.1109/TIFS.2014.
2359646 (cited on page 204).

[40] Davis E. King. “Dlib-ml: A Machine Learning Toolkit”. In: J. Mach. Learn. Res. 10 (Dec.
2009), pages 1755–1758. ISSN: 1532-4435. URL: http://dl.acm.org/citation.cfm?
id=1577069.1755843 (cited on pages 238, 299).

http://image-net.org/challenges/LSVRC/2014/results
http://image-net.org/challenges/LSVRC/2014/results
https://github.com/KaimingHe/deep-residual-networks
https://github.com/KaimingHe/deep-residual-networks
https://github.com/tornadomeet/ResNet
https://github.com/KaimingHe/deep-residual-networks/issues/10#issuecomment-194037195
https://github.com/KaimingHe/deep-residual-networks/issues/10#issuecomment-194037195
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge
http://dx.doi.org/10.1007/978-3-642-42051-1_16
https://doi.org/10.1007/978-3-642-42051-1_16
https://doi.org/10.1007/978-3-642-42051-1_16
https://github.com/JostineHo/mememoji
https://www.pyimagesearch.com/practical-python-opencv/
https://www.pyimagesearch.com/pyimagesearch-gurus/
https://www.pyimagesearch.com/pyimagesearch-gurus/
http://dx.doi.org/10.1109/CVPRW.2015.7301352
http://dx.doi.org/10.1109/TIFS.2014.2359646
http://dx.doi.org/10.1109/TIFS.2014.2359646
http://dx.doi.org/10.1109/TIFS.2014.2359646
http://dl.acm.org/citation.cfm?id=1577069.1755843
http://dl.acm.org/citation.cfm?id=1577069.1755843

320 BIBLIOGRAPHY

[41] Navneet Dalal and Bill Triggs. “Histograms of Oriented Gradients for Human Detection”.
In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05) - Volume 1 - Volume 01. CVPR ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pages 886–893. ISBN: 0-7695-2372-2. DOI: 10.1109/CVPR.
2005.177. URL: http://dx.doi.org/10.1109/CVPR.2005.177 (cited on pages 238,
242, 247, 248).

[42] Pedro F. Felzenszwalb et al. “Object Detection with Discriminatively Trained Part-Based
Models”. In: IEEE Trans. Pattern Anal. Mach. Intell. 32.9 (Sept. 2010), pages 1627–1645.
ISSN: 0162-8828. DOI: 10.1109/TPAMI.2009.167. URL: http://dx.doi.org/10.
1109/TPAMI.2009.167 (cited on pages 238, 242).

[43] Ross B. Girshick et al. “Rich feature hierarchies for accurate object detection and semantic
segmentation”. In: CoRR abs/1311.2524 (2013). URL: http://arxiv.org/abs/1311.
2524 (cited on pages 247, 251, 260, 293).

[44] Paul Viola and Michael Jones. “Rapid object detection using a boosted cascade of simple
features”. In: 2001, pages 511–518 (cited on page 247).

[45] TensorFlow Community. Tensorflow Object Detection API. https : / / github . com /
tensorflow/models/tree/master/research/object_detection. 2017 (cited on
pages 247, 263, 269, 285).

[46] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks”. In: CoRR abs/1506.01497 (2015). URL: http://arxiv.org/abs/
1506.01497 (cited on pages 248, 253, 259, 260, 293).

[47] L. Fei-Fei, R. Fergus, and Pietro Perona. “Learning Generative Visual Models From Few
Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories”.
In: 2004 (cited on page 248).

[48] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”. In:
CoRR abs/1506.02640 (2015). URL: http://arxiv.org/abs/1506.02640 (cited on
page 248).

[49] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In: arXiv preprint
arXiv:1612.08242 (2016) (cited on page 248).

[50] J.R.R. Uijlings et al. “Selective Search for Object Recognition”. In: International Journal
of Computer Vision (2013). DOI: 10.1007/s11263-013-0620-5. URL: http://www.
huppelen.nl/publications/selectiveSearchDraft.pdf (cited on page 251).

[51] Ross B. Girshick. “Fast R-CNN”. In: CoRR abs/1504.08083 (2015). arXiv: 1504.08083.
URL: http://arxiv.org/abs/1504.08083 (cited on pages 252, 260, 293).

[52] Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding Convolutional Net-
works”. In: CoRR abs/1311.2901 (2013). URL: http://arxiv.org/abs/1311.2901 (cited
on page 254).

[53] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications”. In: CoRR abs/1704.04861 (2017). URL: http://arxiv.org/abs/
1704.04861 (cited on pages 254, 294).

[54] Javier Rey. Faster R-CNN: Down the rabbit hole of modern object detection. https :
//tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-
modern-object-detection/. 2018 (cited on pages 259, 260).

[55] Jonathan Huang et al. “Speed/accuracy trade-offs for modern convolutional object detectors”.
In: CoRR abs/1611.10012 (2016). URL: http://arxiv.org/abs/1611.10012 (cited on
pages 260, 263, 294).

http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/TPAMI.2009.167
http://dx.doi.org/10.1109/TPAMI.2009.167
http://dx.doi.org/10.1109/TPAMI.2009.167
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.02640
http://dx.doi.org/10.1007/s11263-013-0620-5
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/
https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/
https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/
http://arxiv.org/abs/1611.10012

BIBLIOGRAPHY 321

[56] TryoLabs and Open Source Community. luminoth - Deep Learning toolkit for Computer
Vision. https://github.com/tryolabs/luminoth. 2017 (cited on page 260).

[57] Andreas Mogelmose, Mohan Manubhai Trivedi, and Thomas B. Moeslund. “Vision-Based
Traffic Sign Detection and Analysis for Intelligent Driver Assistance Systems: Perspectives
and Survey”. In: Trans. Intell. Transport. Sys. 13.4 (Dec. 2012), pages 1484–1497. ISSN:
1524-9050 (cited on page 261).

[58] M. Everingham et al. “The Pascal Visual Object Classes Challenge: A Retrospective”.
In: International Journal of Computer Vision 111.1 (Jan. 2015), pages 98–136 (cited on
pages 267, 297).

[59] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: CoRR abs/1405.0312
(2014). URL: http://arxiv.org/abs/1405.0312 (cited on pages 275, 297).

[60] O. M. Parkhi et al. “Cats and Dogs”. In: IEEE Conference on Computer Vision and Pattern
Recognition. 2012 (cited on page 277).

[61] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: CoRR abs/1512.02325 (2015).
URL: http://arxiv.org/abs/1512.02325 (cited on pages 293–297).

[62] Christian Szegedy et al. “Scalable, High-Quality Object Detection”. In: CoRR abs/1412.1441
(2014). URL: http://arxiv.org/abs/1412.1441 (cited on pages 293–295).

[63] Eddie Forson. Understanding SSD MultiBox - Real-Time Object Detection in Deep Learning.
https://towardsdatascience.com/understanding-ssd-multibox-real-time-
object-detection-in-deep-learning-495ef744fab. 2017 (cited on pages 296, 297).

[64] Davis E. King. “Max-Margin Object Detection”. In: CoRR abs/1502.00046 (2015). URL:
http://arxiv.org/abs/1502.00046 (cited on page 299).

[65] Davis King. Dlib 18.6 released: Make your own object detector! http://blog.dlib.
net/2014/02/dlib-186-released-make-your-own-object.html. 2014 (cited on
pages 299, 312).

[66] Davis King. dlib - imglab. https://github.com/davisking/dlib/tree/master/
tools/imglab. 2016 (cited on pages 299, 312).

[67] Davis King. Vehicle Detection with Dlib 19.5. http://blog.dlib.net/2017/08/
vehicle-detection-with-dlib-195_27.html. 2017 (cited on page 300).

[68] Leonard Richardson. Beautiful Soup: We called him Tortoise because he taught us. https:
//www.crummy.com/software/BeautifulSoup/. 2004 (cited on page 302).

https://github.com/tryolabs/luminoth
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1412.1441
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
http://arxiv.org/abs/1502.00046
http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html
http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html
https://github.com/davisking/dlib/tree/master/tools/imglab
https://github.com/davisking/dlib/tree/master/tools/imglab
http://blog.dlib.net/2017/08/vehicle-detection-with-dlib-195_27.html
http://blog.dlib.net/2017/08/vehicle-detection-with-dlib-195_27.html
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/

	1 Introduction
	2 Introduction
	3 Training Networks Using Multiple GPUs
	3.1 How Many GPUs Do I Need?
	3.2 Performance Gains Using Multiple GPUs
	3.3 Summary

	4 What Is ImageNet?
	4.1 The ImageNet Dataset
	4.1.1 ILSVRC

	4.2 Obtaining ImageNet
	4.2.1 Requesting Access to the ILSVRC Challenge
	4.2.2 Downloading Images Programmatically
	4.2.3 Using External Services
	4.2.4 ImageNet Development Kit
	4.2.5 ImageNet Copyright Concerns

	4.3 Summary

	5 Preparing the ImageNet Dataset
	5.1 Understanding the ImageNet File Structure
	5.1.1 ImageNet “test” Directory
	5.1.2 ImageNet “train” Directory
	5.1.3 ImageNet “val” Directory
	5.1.4 ImageNet “ImageSets” Directory
	5.1.5 ImageNet “DevKit” Directory

	5.2 Building the ImageNet Dataset
	5.2.1 Your First ImageNet Configuration File
	5.2.2 Our ImageNet Helper Utility
	5.2.3 Creating List and Mean Files
	5.2.4 Building the Compact Record Files

	5.3 Summary

	6 Training AlexNet on ImageNet
	6.1 Implementing AlexNet
	6.2 Training AlexNet
	6.2.1 What About Training Plots?
	6.2.2 Implementing the Training Script

	6.3 Evaluating AlexNet
	6.4 AlexNet Experiments
	6.4.1 AlexNet: Experiment #1
	6.4.2 AlexNet: Experiment #2
	6.4.3 AlexNet: Experiment #3

	6.5 Summary

	7 Training VGGNet on ImageNet
	7.1 Implementing VGGNet
	7.2 Training VGGNet
	7.3 Evaluating VGGNet
	7.4 VGGNet Experiments
	7.5 Summary

	8 Training GoogLeNet on ImageNet
	8.1 Understanding GoogLeNet
	8.1.1 The Inception Module
	8.1.2 GoogLeNet Architecture
	8.1.3 Implementing GoogLeNet
	8.1.4 Training GoogLeNet

	8.2 Evaluating GoogLeNet
	8.3 GoogLeNet Experiments
	8.3.1 GoogLeNet: Experiment #1
	8.3.2 GoogLeNet: Experiment #2
	8.3.3 GoogLeNet: Experiment #3

	8.4 Summary

	9 Training ResNet on ImageNet
	9.1 Understanding ResNet
	9.2 Implementing ResNet
	9.3 Training ResNet
	9.4 Evaluating ResNet
	9.5 ResNet Experiments
	9.5.1 ResNet: Experiment #1
	9.5.2 ResNet: Experiment #2
	9.5.3 ResNet: Experiment #3

	9.6 Summary

	10 Training SqueezeNet on ImageNet
	10.1 Understanding SqueezeNet
	10.1.1 The Fire Module
	10.1.2 SqueezeNet Architecture
	10.1.3 Implementing SqueezeNet

	10.2 Training SqueezeNet
	10.3 Evaluating SqueezeNet
	10.4 SqueezeNet Experiments
	10.4.1 SqueezeNet: Experiment #1
	10.4.2 SqueezeNet: Experiment #2
	10.4.3 SqueezeNet: Experiment #3
	10.4.4 SqueezeNet: Experiment #4

	10.5 Summary

	11 Case Study: Emotion Recognition
	11.1 The Kaggle Facial Expression Recognition Challenge
	11.1.1 The FER13 Dataset
	11.1.2 Building the FER13 Dataset

	11.2 Implementing a VGG-like Network
	11.3 Training Our Facial Expression Recognizer
	11.3.1 EmotionVGGNet: Experiment #1
	11.3.2 EmotionVGGNet: Experiment #2
	11.3.3 EmotionVGGNet: Experiment #3
	11.3.4 EmotionVGGNet: Experiment #4

	11.4 Evaluating our Facial Expression Recognizer
	11.5 Emotion Detection in Real-time
	11.6 Summary

	12 Case Study: Correcting Image Orientation
	12.1 The Indoor CVPR Dataset
	12.1.1 Building the Dataset

	12.2 Extracting Features
	12.3 Training an Orientation Correction Classifier
	12.4 Correcting Orientation
	12.5 Summary

	13 Case Study: Vehicle Identification
	13.1 The Stanford Cars Dataset
	13.1.1 Building the Stanford Cars Dataset

	13.2 Fine-tuning VGG on the Stanford Cars Dataset
	13.2.1 VGG Fine-tuning: Experiment #1
	13.2.2 VGG Fine-tuning: Experiment #2
	13.2.3 VGG Fine-tuning: Experiment #3

	13.3 Evaluating our Vehicle Classifier
	13.4 Visualizing Vehicle Classification Results
	13.5 Summary

	14 Case Study: Age and Gender Prediction
	14.1 The Ethics of Gender Identification in Machine Learning
	14.2 The Adience Dataset
	14.2.1 Building the Adience Dataset

	14.3 Implementing Our Network Architecture
	14.4 Measuring “One-off” Accuracy
	14.5 Training Our Age and Gender Predictor
	14.6 Evaluating Age and Gender Prediction
	14.7 Age and Gender Prediction Results
	14.7.1 Age Results
	14.7.2 Gender Results

	14.8 Visualizing Results
	14.8.1 Visualizing Results from Inside Adience
	14.8.2 Understanding Face Alignment
	14.8.3 Applying Age and Gender Prediction to Your Own Images

	14.9 Summary

	15 Faster R-CNNs
	15.1 Object Detection and Deep Learning
	15.1.1 Measuring Object Detector Performance

	15.2 The (Faster) R-CNN Architecture
	15.2.1 A Brief History of R-CNN
	15.2.2 The Base Network
	15.2.3 Anchors
	15.2.4 Region Proposal Network (RPN)
	15.2.5 Region of Interest (ROI) Pooling
	15.2.6 Region-based Convolutional Neural Network
	15.2.7 The Complete Training Pipeline

	15.3 Summary

	16 Training a Faster R-CNN From Scratch
	16.1 The LISA Traffic Signs Dataset
	16.2 Installing the TensorFlow Object Detection API
	16.3 Training Your Faster R-CNN
	16.3.1 Project Directory Structure
	16.3.2 Configuration
	16.3.3 A TensorFlow Annotation Class
	16.3.4 Building the LISA + TensorFlow Dataset
	16.3.5 A Critical Pre-Training Step
	16.3.6 Configuring the Faster R-CNN
	16.3.7 Training the Faster R-CNN
	16.3.8 Suggestions When Working with the TFOD API
	16.3.9 Exporting the Frozen Model Graph
	16.3.10 Faster R-CNN on Images and Videos

	16.4 Summary

	17 Single Shot Detectors (SSDs)
	17.1 Understanding Single Shot Detectors (SSDs)
	17.1.1 Motivation
	17.1.2 Architecture
	17.1.3 MultiBox, Priors, and Fixed Priors
	17.1.4 Training Methods

	17.2 Summary

	18 Training a SSD From Scratch
	18.1 The Vehicle Dataset
	18.2 Training Your SSD
	18.2.1 Directory Structure and Configuration
	18.2.2 Building the Vehicle Dataset
	18.2.3 Training the SSD
	18.2.4 SSD Results
	18.2.5 Potential Problems and Limitations

	18.3 Summary

	19 Conclusions
	19.1 Where to Now?

