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PREFACE 

The evolution of the present text in successive editions is based on experience 
teaching the introductory differential equations course with an emphasis on 

conceptual ideas and the use of applications and projects to involve students in 
active problem-solving experiences. At various points our approach reflects the 
widespread use of technical computing environments like Maple, Mathematica, and 
MATLAB for the graphical, numerical, or symbolic solution of differential equa
tions. Nevertheless, we continue to believe that the traditional elementary analytical 
methods of solution are important for students to learn and use. One reason is that 
effective and reliable use of computer methods often requires preliminary analysis 
using standard symbolic techniques ;  the construction of a realistic computational 
model often is based on the study of a simpler analytical model. 

-------------------------------------

While the successful features of preceding editions have been retained, the exposi
tion has been significantly enhanced in every chapter and in most individual sections 
of the text. Both new graphics and new text have been inserted where needed for 
improved student understanding of key concepts . However, the solid class-tested 
chapter and section structure of the book is unchanged, so class notes and syllabi 
will not require revision for use of this new edition. The following examples of this 
revision illustrate the way the local structure of the text has been augmented and 
polished for this edition. 

Chapter 1: New Figures 1.3 .9 and 1.3 .10 showing direction fields that illus
trate failure of existence and uniqueness of solutions (page 24); new Problems 
34 and 35 showing that small changes in initial conditions can make big dif
ferences in results, but big changes in initial conditions may sometimes make 
only small differences in results (page 30); new Remarks I and 2 clarifying the 
concept of implicit solutions (page 35); new Remark clarifying the meaning 
of homogeneity for first-order equations (page 61); additional details inserted 
in the derivation of the rocket propulsion equation (page 95), and new Prob
lem 5 inserted to investigate the liftoff pause of a rocket on the launch pad 
sometimes observed before blastoff (page 97) .  

Chapter 2: New explanation of signs and directions of  internal forces in 
mass-spring systems (page 101); new introduction of differential operators 
and clarification of the algebra of polynomial operators (page 127); new in
troduction and illustration of polar exponential forms of complex numbers 
(page 132); fuller explanation of method of undetermined coefficients in Ex
amples 1 and 3 (page 149-150); new Remarks 1 and 2 introducing "shooting" 
terminology, and new Figures 2.8.1 and 2.8.2 illustrating why some endpoint 

vii 
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value problems have infinitely many solutions, while others have no solutions 
at all (page 181); new Figures 2.8.4 and 2.8.5 illustrating different types of 
eigenfunctions (pages 183-184) . 

Chapter 3: New Problem 35 on determination of radii of convergence of 
power series solutions of differential equations (page 218); new Example 3 
just before the subsection on logarithmic cases in the method of Frobenius, to 
illustrate first the reduction-of-order formula with a simple non-series problem 
(page 239). 

Chapter 4: New discussion clarifying functions of exponential order and ex
istence of Laplace transforms (page 273); new Remark discussing the me
chanics of partial-fraction decomposition (page 279); new much-expanded 
discussion of the proof of the Laplace-transform existence theorem and its 
extension to include the jump discontinuities that play an important role in 
many practical applications (page 286-287) .  

Chapter 5:  New Problems 20-23 for student exploration of three-railway
cars systems with different initial velocity conditions (page 392); new Remark 
illustrating the relation between matrix exponential methods and the gener
alized eigenvalue methods discussed previously (page 416); new exposition 
inserted at end of section to explain the connection between matrix variation 
of parameters here and (scalar) variation of parameters for second-order equa
tions discussed previously in Chapter 3 (page 427). 

Chapter 6: New discussion with new Figures 6.3 .11 and 6.3 .12 clarifying 
the difference between rotating and non-rotating coordinate systems in moon
earth orbit problems (page 473) .  

Chapter 7:  New remarks on phase plane portraits, autonomous systems, 
and critical points (page 488-490); new introduction of linearized systems 
(page 502); new 3-dimensional Figures 6.5 .18 and 6.5.20 illustrating Lorenz 
and Rossler trajectories (page 552-553). 

Throughout the text, almost 550 computer- generated figures show students 
vivid pictures of direction fields, solution curves, and phase plane portraits that bring 
symbolic solutions of differential equations to life. 

About 15 application modules follow key sections throughout the text. Their 
purpose is to add concrete applied emphasis and to engage students is more exten
sive investigations than afforded by typical exercises and problems. 

A solid numerical emphasis provided where appropriate (as in Chapter 6 on 
Numerical Methods) by the inclusion of generic numerical algorithms and a limited 
number of illustrative graphing calculator, BASIC, and MATLAB routines. 

Organization and Content 

The traditional organization of this text still accommodates fresh new material and 
combinations of topics. For instance: 

• The final two sections of Chapter 1 (on populations and elementary mechan
ics) offer an early introduction to mathematical modeling with significant ap
plications .  

• The final section of Chapter 2 offers unusually early exposure to endpoint 



Applications 
-------
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problems and eigenvalues, with interesting applications to whirling strings 
and buckled beams. 

• Chapter 3 combines a complete and solid treatment of infinite series methods 
with interesting applications of Bessel functions in its final section. 

• Chapter 4 combines a complete and solid treatment of Laplace transform 
methods with brief coverage of delta functions and their applications in its 
final section. 

• Chapter 5 provides an unusually flexible treatment of linear systems. Sec
tions 5.1 and 5 .2  offer an early, intuitive introduction to first-order systems 
and models . The chapter continues with a self-contained treatment of the 
necessary linear algebra, and then presents the eigenvalue approach to linear 
systems. It includes an unusual number of applications (ranging from brine 
tanks to railway cars) of all the various cases of the eigenvalue method. The 
coverage of exponential matrices in Section 5 .7 is expanded from earlier edi
tions. 

• Chapter 6 on numerical methods begins in Section 6.1 with the elementary 
Euler method for single equations and ends in Section 6.4 with the Runge
Kutta method for systems and applications to orbits of comets and satellites. 

• Chapter 7 on nonlinear systems and phenomena ranges from phase plane anal
ysis to ecological and mechanical systems to an innovative concluding section 
on chaos and bifurcation in dynamical systems. Section 7.6 presents an ele
mentary introduction to such contemporary topics as period-doubling in bio
logical and mechanical systems, the pitchfork diagram, and the Lorenz strange 
attractor (all illustrated with vivid computer graphics) .  

This book includes adequate material for different introductory courses vary
ing in length from a single term to two quarters. The longer version, Elementary 
Differential Equations with Boundary Value Problems (0-13-600613-2), contains 
additional chapters on Fourier series methods and partial differential equations (in
cluding separation of variables and boundary value problems). 

To sample the range of applications in this text, take a look at the following ques
tions :  

• What explains the commonly observed lag time between indoor and outdoor 
daily temperature oscillations? (Section 1.5) 

• What makes the difference between doomsday and extinction in alligator pop
ulations? (Section 1.7) 

• How do a unicycle and a two-axle car react differently to road bumps? (Sec
tions 2.6 and 5 .5)  

• Why are flagpoles hollow instead of solid? (Section 3.6) 

• If a mass on a spring is periodically struck with a hammer, how does the 
behavior of the mass depend on the frequency of the hammer blows? (Sec
tion 4.6) 

• If a moving train hits the rear end of a train of railway cars sitting at rest, how 
can it happen that just a single car is "popped" off the front end of the second 
train? (Section 5 .5) 
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• How can you predict the time of next perihelion passage of a newly observed 
comet? (Section 6.4) 

• What determines whether two species will live harmoniously together, or 
whether competition will result in the extinction of one of them and the sur
vival of the other? (Section 7 .4) 

• Why and when does non-linearity lead to chaos in biological and mechanical 
systems? (Section 7.6) 

Applications and Solutions Manuals 

Acknowledgments 

The answer section has been expanded considerably to increase its value as a learn
ing aid. It now includes the answers to most odd-numbered problems plus a good 
many even-numbered ones. The 60S-page Instructor's Solutions Manual (0- 1 3-
6006 1 4-0) accompanying this book provides worked-out solutions for most of the 
problems in the book, and the 345-page Student Solutions Manual (0- 1 3-6006 1 5-
9) contains solutions for most of the odd-numbered problems. 

The approximately 15 application modules in the text contain additional prob
lem and project material designed largely to engage students in the exploration and 
application of computational technology. These investigations are expanded consid
erably in the 320-page Applications Manual (0- 1 3-600679-5) that accompanies the 
text and supplements it with about 30 additional applications modules . Each section 
in this manual has parallel subsections "Using Maple," "Using Mathematica," and 
"Using MATLAB" that detail the applicable methods and techniques of each sys
tem, and will afford student users an opportunity to compare the merits and styles 
of different computational systems . 

In preparing this revision we profited greatly from the advice and assistance of the 
following very capable and perceptive reviewers : 

Raymond A. Claspadle, 
University of Memphis 

Semion Gutman, 
University of Oklahoma 

Miklos Bona, 
University of Florida 

Irfan Ul-Haq, 
University of Wisconsin- Platteville 

Carl Lutzer, 
Rochester Institute of Technology 

Sigal Gittlieb, 
University of Massachusetts, Dartmouth 

It is a pleasure to (once again) credit Dennis Kletzing and his extraordinary 
TEXpertise for the attractive presentation of both the text and the art in this book. 
Finally, but far from least, I am especially happy to acknowledge a new contrib
utor to this effort, David Calvis ,  who assisted in every aspect of this revision and 
contributed tangibly to the improvement of every chapter in the book. 

C. H. E. 
h.edwards@mindspring.com 
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Exa m ple 1 

First-Order 
Differential Equations 

The laws of the universe are written in the language of mathematics. Algebra 
is sufficient to solve many static problems, but the most interesting natural 

phenomena involve change and are described by equations that relate changing 
quantities. 

Because the derivative dxfdt = !' (t )  of the function f is the rate at which 
the quantity x = f(t )  is changing with respect to the independent variable t, it 
is natural that equations involving derivatives are frequently used to describe the 
changing universe. An equation relating an unknown function and one or more of 
its derivatives is called a differential equation . 

..... , 

The differential equation 
dx 
_ = x2 + t2 
dt 

involves both the unknown function x (t )  and its first derivative x'(t) = dxfdt . The 
differential equation 

d2y dy 
dx2 + 3 dx + 7 y = 0 

involves the unknown function y of the independent variable x and the first two 
derivatives y' and y" of y .  • 

The study of differential equations has three principal goals: 

1. To discover the differential equation that describes a specified physical 
situation. 

2. To find-either exactly or approximately-the appropriate solution of that 
equation. 

3. To interpret the solution that is found. 

1 



2 Chapter 1 First-Order Differential Equations 

Exa mple 2 

In algebra, we typically seek the unknown numbers that satisfy an equation 
such as x3 + 7x2 - llx +41 = 0. By contrast, in solving a differential equation, we 
are challenged to find the unknownfitnctions y = y (x)  for which an identity such 
as y' (x ) = 2xy (x)-that is , the differential equation 

dy 
- = 2xy 
dx 

-holds on some interval of real numbers . Ordinarily, we will want to find all 
solutions of the differential equation, if possible. 

If C is a constant and 

then 

( x2 Y x) = Ce , 

�� = C (2xex2) = (2x) (cex2) = 2xy .  

( 1 )  

Thus every function y (x )  of the form i n  Eq. ( 1 )  satisfies-and thus i s  a solution 
of-the differential equation 

dy 
- = 2xy 
dx 

(2) 

for all x .  In particular, Eq. ( 1 )  defines an infinite family of different solutions of 
this differential equation, one for each choice of the arbitrary constant C. By the 
method of separation of variables (Section 1 .4) it can be shown that every solution 
of the differential equation in (2) is of the form in Eq. ( 1 ) . • 

Differential Equations and Mathematical Models 

The following three examples illustrate the process of translating scientific laws and 
principles into differential equations. In each of these examples the independent 
variable is time t, but we will see numerous examples in which some quantity other 
than time is the independent variable . 

• '.h,'.'.' ---Newt�n's  la�-
of �ooling-�ay b�- st�ted 

-
in this way : The time rate oj cha�ge(th� 

rate of change with respect to time t) of the temperature T(t) of a body is propor
tional to the difference between T and the temperature A of the surrounding medium 

Temperature A 

Temperature T 

FIGURE 1.1.1. Newton's law of 
cooling, Eq. (3), describes the 
cooling of a hot rock in water. 

Exa m ple 4 

(Fig. 1 . 1 . 1 ) .  That is , 
dT dt = -k(T - A) , (3) 

where k is a positive constant. Observe that if T > A, then dT /dt < 0, so the 
temperature is a decreasing function of t and the body is cooling. But if T < A, 
then dT /dt > 0, so  that T is increasing. 

Thus the physical law is translated into a differential equation. If we are given 
the values of k and A, we should be able to find an explicit formula for T(t), and 
then-with the aid of this formula-we can predict the future temperature of the 
body. • 

...... 

Torrlcelli 's law implies that the time rate of change of the volume V of water in a 
draining tank (Fig. 1 . 1 .2) is proportional to the square root of the depth y of water 
in the tank: 

d V  
- = -kJy ,  
dt 

(4) 



1 . 1  Differential Equations and Mathematical Models 3 
where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional 
area A, then V = Ay, so dVj dt = A . (dyj dt ) .  In this case Eq. (4) takes the fonn 

where h = kj A is a constant. 

dy 
= -h.jY, 

dt 
(5) 

• 

.1'!!I!!IJlI: il!!ll. ill!!l; ,!!Iil!ll.'lI!!tFI!r.I''--The-
t i
-
m; -�;;te�f�ha-n-g-e-of� "p�pul�tk;�-p(t)

-
w
-

i
-
th
-

const�thlrth-
an
- dd�a

-
th
-

r
-
a
-
te

-
s i

-
s, 

FIGURE 1.1.2. Torricelli's law 
of draining, Eq. ( 4),  describes the 
draining of a water tank. 

in many simple cases, proportional to the size of the population. That is, 

dP 
- = kP,  (6) 
dt 

where k is the constant of proportionality. • 
Let us discuss Example 5 further. Note first that each function of the fonn 

P (t ) = Cek t (7) 

is a solution of the differential equation 

dP 
- = kP 
dt 

in (6). We verify this assertion as follows: 

P'(t) = Ckek t = k (Cek t ) = kP (t ) 

for all real numbers t .  Because substitution of each function of the fonn given in 
(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6). 

Thus, even if the value of the constant k is known, the differential equation 
dP j d  t = k P has infinitely many different solutions of the form P (t) = C ek t , one for 
each choice of the "arbitrary" constant C. This is typical of differential equations. 
It is also fortunate, because it may allow us to use additional information to select 
from among all these solutions a particular one that fits the situation under study . 

• !a.n,j.JtFI' Supp�s� thatP-
(t) �-C ek

t 
is the �pulation of a colony of bacteria �t ti�� -r.-that 

the population at time t = 0 (hours, h) was 1000, and that the population doubled 
after 1 h. This additional infonnation about P (t)  yields the following equations: 

1000 = P (O) = Ceo = C, 
2000 = P ( l )  = Cek• 

It follows that C = 1000 and that ek = 2, so k = In 2 � 0.693 147. With this value 
of k the differential equation in (6) is 

dP 
dt 

= (ln 2)P � (0.693 147) P .  

Substitution of  k = In  2 and C = 1000 in Eq. (7) yields the particular solution 

P (t)  = 1000e(ln 2)t = 1000(e1n 2) t = 1000 . 21 (because e1n 2 = 2) 

that satisfies the given conditions. We can use this particular solution to predict 
future populations of the bacteria colony. For instance, the predicted number of 
bacteria in the population after one and a half hours (when t = 1 .5) is 

P ( 1 .5) = 1000· 23/2 � 2828 . • 
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C= 1 2  C=6 C=3 8 .--'-r-.,,-.'--.--� 
6 

4 
2 

-2 

-4 
-6 

-�2 - 1  
C=- 12  

FIGURE 1.1.3. Graphs of 
P(t) = Cekt with k = In 2. 

The condition P (O} = 1000 in Example 6 is called an initial condition be
cause we frequently write differential equations for which t = 0 is the "starting 
time." Figure 1 . 1 .3 shows several different graphs of the form P (t} = Cekt with 
k = In 2. The graphs of all the infinitely many solutions of dPjdt = kP in fact fill 
the entire two-dimensional plane, and no two intersect. Moreover, the selection of 
any one point Po on the P-axis amounts to a determination of P (O}. Because ex
actly one solution passes through each such point, we see in this case that an initial 
condition P (O} = Po determines a unique solution agreeing with the given data. 

Mathematical Models 

Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial 
process of mathematical modeling (Fig. 1 . 1 .4), which involves the following: 

1. The formulation of a real-world problem in mathematical terms; that is, the 
construction of a mathematical model . 

2. The analysis or solution of the resulting mathematical problem. 
3. The interpretation of the mathematical results in the context of the original 

real-world situation-for example, answering the question originally posed. 

FIGURE 1.1.4. The process of mathematical modeling. 

In the population example, the real-world problem is that of determining the 
population at some future time. A mathematical model consists of a list of vari
ables (P and t) that describe the given situation, together with one or more equations 
relating these variables (dPjdt = kP, P (O) = Po} that are known or are assumed to 
hold. The mathematical analysis consists of solving these equations (here, for P as 
a function of t ) .  Finally, we apply these mathematical results to attempt to answer 
the original real-world question. 

As an example of this process, think of first formulating the mathematical 
model consisting of the equations dPj dt = kP, P (O} = 1000, describing the bac
teria population of Example 6. Then our mathematical analysis there consisted of 
solving for the solution function P (t} = 1000e(ln 2)t = 1000· 2t as our mathemat
ical result. For an interpretation in terms of our real-world situation-the actual 
bacteria population-we substituted t = 1 .5 to obtain the predicted population of 
P ( 1 .5} � 2828 bacteria after 1 .5 hours. If, for instance, the bacteria population is 
growing under ideal conditions of unlimited space and food supply, our prediction 
may be quite accurate, in which case we conclude that the mathematical model is 
quite adequate for studying this particular population. 

On the other hand, it may tum out that no solution of the selected differential 
equation accurately fits the actual population we're studying. For instance, for no 
choice of the constants C and k does the solution P (t) = C ekt in Eq. (7) accurately 
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describe the actual growth of the human population of the world over the past few 
centuries. We must conclude that the differential equation dPjdt = kP is inad
equate for modeling the world population--.-which in recent decades has "leveled 
off" as compared with the steeply climbing graphs in the upper half (P > 0) of 
Fig. 1 . 1 .3 .  With sufficient insight, we might formulate a new mathematical model 
including a perhaps more complicated differential equation, one that that takes into 
account such factors as a limited food supply and the effect of increased population 
on birth and death rates .  With the formulation of this new mathematical model, we 
may attempt to traverse once again the diagram of Fig. 1 . 1 .4 in a counterclockwise 
manner. If we can solve the new differential equation, we get new solution func
tions to compare with the real-world population. Indeed, a successful population 
analysis may require refining the mathematical model still further as it is repeatedly 
measured against real-world experience. 

But in Example 6 we simply ignored any complicating factors that might af
fect our bacteria population. This made the mathematical analysis quite simple, 
perhaps unrealistically so. A satisfactory mathematical model is subject to two con
tradictory requirements : It must be sufficiently detailed to represent the real-world 
situation with relative accuracy, yet it must be sufficiently simple to make the math
ematical analysis practical . If the model is so detailed that it fully represents the 
physical situation, then the mathematical analysis may be too difficult to carry out. 
If the model is too simple, the results may be so inaccurate as to be useless. Thus 
there is an inevitable tradeoff between what is physically realistic and what is math
ematically possible. The construction of a model that adequately bridges this gap 
between realism and feasibility is therefore the most crucial and delicate step in 
the process. Ways must be found to simplify the model mathematically without 
sacrificing essential features of the real-world situation. 

Mathematical models are discussed throughout this book. The remainder of 
this introductory section is devoted to simple examples and to standard terminology 
used in discussing differential equations and their solutions. 

Examples and Terminology 

If C is a constant and y (x)  = Ij(C - x) ,  then 

if x =j:. C. Thus 

dy 1 2 = = y  
dx (C - x)2 

1 
y (x ) =

-C - x  

defines a solution of the differential equation 

dy 2 - = y  dx 

(8) 

(9) 

on any interval of real numbers not containing the point x = C. Actually, Eq. (8) 
defines a one-parameter family of solutions of dyjdx = y2 , one for each value of 
the arbitrary constant or "parameter" C. With C = 1 we get the particular solution 

1 
y (x) = -1 -- x  

that satisfies the initial condition y (O) = 1 .  As indicated in Fig. 1 . 1 .5 , this solution 
is continuous on the interval (-00, 1 )  but has a vertical asymptote at x = 1 .  • 
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Exa m ple 8 

4x2y" + y = 0 ( 10) 
for all x > o. 

Solution First we compute the derivatives 

Then substitution into Eq. ( 1 0) yields 

if x i s  positive, so the differential equation is satisfied for all x > o. • 

The fact that we can write a differential equation is not enough to guarantee 
that it has a solution. For example, it is clear that the differential equation 

( 1 1 ) 

has no (real-valued) solution, because the sum of nonnegative numbers cannot be 
negative. For a variation on this theme, note that the equation 

( 12) 

obviously has only the (real-valued) solution y (x) == O. In our previous examples 
any differential equation having at least one solution indeed had infinitely many. 

The order of a differential equation is the order of the highest derivative that 
appears in it. The differential equation of Example 8 is of second order, those in 
Examples 2 through 7 are first-order equations, and 

is a fourth-order equation. The most general form of an nth-order differential 
equation with independent variable x and unknown function or dependent variable 
y = y (x)  is 

F ( ' "  (n» ) 0 x , y , y , y , . . .  , y  = ,  ( 1 3) 

where F is a specific real-valued function of n + 2 variables. 
Our use of the word solution has been until now somewhat informal. To be 

precise, we say that the continuous function u = u (x) is a solution of the differential 
equation in ( 1 3) on the interval I provided that the derivatives u' , u", . . .  , u(n) exist 
on I and 

F ( ' "  (n» ) 0 X , U , U , u  , . . .  , u  = 

for all x in I . For the sake of brevity, we may say that u = u (x) satisfies the 
differential equation in ( 1 3 )  on I . 

Remark: Recall from elementary calculus that a differentiable function on 
an open interval is necessarily continuous there. This is why only a continuous 
function can qualify as a (differentiable) solution of a differential equation on an 
interval . • 
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FIGURE 1 .1 .5. The solution of 
y' = y2 defined by 
y(x)  = 1/(1 - x ) .  

5�-------.--------� 
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FIGURE 1.1.6. The three 
solutions Yl (x ) = 3 cos 3x ,  
Y2(X) = 2 sin 3x , and 
Y3(X) = -3 cos 3x + 2 sin 3x of 
the differential equation 
y" + 9y = 0 . 
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Figure 1 . 1 .5 shows the two "connected" branches of the graph y = 1/( 1 - x) . The 
left-hand branch is the graph of a (continuous) solution of the differential equation 
y' = y2 that is defined on the interval (-00 , 1 ) .  The right-hand branch is the graph 
of a different solution of the differential equation that is defined (and continuous) 
on the different interval ( 1 ,  (0). So the single formula y(x) = 1/(1 - x) actually 
defines two different solutions (with different domains of definition) of the same 
differential equation y' = y2 . • 
- -
If A and B are constants and 

y(x) = A cos 3x + B sin 3x , 

then two successive differentiations yield 

y'(x) = -3A sin 3x + 3B cos 3x , 

y"(x) = -9A cos 3x - 9B sin 3x = -9y(x) 

(14) 

for all x . Consequently, Eq. ( 14) defines what it is natural to call a two-parameter 
family of solutions of the second-order differential equation 

y" + 9y = 0 (15) 

on the whole real number line. Figure 1 . 1 .6 shows the graphs of several such 
solutions . • 

Although the differential equations in (1 1 )  and ( 12) are exceptions to the gen
eral rule, we will see that an nth-order differential equation ordinarily has an n
parameter family of solutions-one involving n different arbitrary constants or pa
rameters . 

In both Eqs. (1 1 )  and ( 1 2), the appearance of y' as an implicitly defined func
tion causes complications. For this reason, we will ordinarily assume that any dif
ferential equation under study can be solved explicitly for the highest derivative that 
appears ; that is , that the equation can be written in the so-called normal form 

(n) - G ( , ,, (n- l ) ) (16) y - x , y , y , y , . . .  , y  , 

where G is a real-valued function of n + 1 variables . In addition, we will always 
seek only real-valued solutions unless we warn the reader otherwise. 

All the differential equations we have mentioned so far are ordinary differ
ential equations, meaning that the unknown function (dependent variable) depends 
on only a single independent variable. If the dependent variable is a function of 
two or more independent variables, then partial derivatives are likely to be involved; 
if they are, the equation is called a partial differential equation. For example, the 
temperature u = u (x ,  t )  of a long thin uniform rod at the point x at time t satisfies 
(under appropriate simple conditions) the partial differential equation 

au 
= k 

a2u 
a t  ax2' 

where k is a constant (called the thermal diffusivity of the rod) . In Chapters 1 
through 7 we will be concerned only with ordinary differential equations and will 
refer to them simply as differential equations . 

In this chapter we concentrate on first- order differential equations of the form 

dy 
dx 

= f(x ,  y) . (17) 
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Exa mple 10 

We also will sample the wide range of applications of such equations. A typical 
mathematical model of an applied situation will be an initial value problem, con
sisting of a differential equation of the form in (17) together with an initial condi
tion y (xo) = Yo . Note that we call y (xo) = Yo an initial condition whether or not 
Xo = O. To solve the initial value problem 

dy 
dx 

= f(x , y) , y (xo) = Yo ( 1 8) 

means to find a differentiable function y = y (x)  that satisfies both conditions in 
Eq. ( 1 8) on some interval containing Xo . 

Given the solution y (x)  = 1/(C - x) of the differential equation dy/dx = y2 
discussed in Example 7, solve the initial value problem 

dy 2 - = y , y ( 1 )  = 2 . 
dx 

Solution We need only find a value of C so that the solution y (x) = 1/( C - x) satisfies the 
initial condition y ( 1 )  = 2. Substitution of the values x = 1 and y = 2 in the given 
solution yields 

5 I 
I 

Y = 21(3 - 2x) I 
I 

\ ( 1 , Vi - :x= 3/2 

", 0  

-5 
-5 o 

x 

ie 
I 
I 
I 

5 

FIGURE 1.1.7. The solutions of 
y' = y2 defined by 
y(x) = 2/(3 - 2x). 

1 
2 = y ( 1 )  = 

C _ 1 ' 

so 2C - 2 = 1 ,  and hence C = �. With this value of C we obtain the desired 
solution 

1 2 
y (x) = -3-

=
-3 2 ·  "2 - x  - x 

Figure 1 . 1 .7 shows the two branches of the graph y = 2/(3 - 2x) .  The left-hand 
branch is the graph on (-00, �) of the solution of the given initial value problem 
y' = y2 , y (l) = 2. The right-hand branch passes through the point (2, -2) and is 
therefore the graph on (�, 00) of the solution of the different initial value problem 
y' = y2 , y (2) = -2. • 

The central question of greatest immediate interest to us is this :  If we are given 
a differential equation known to have a solution satisfying a given initial condition, 
how do we actually find or compute that solution? And, once found, what can 
we do with it? We will see that a relatively few simple techniques-separation 
of variables (Section 1 .4), solution of linear equations (Section 1 .5) ,  elementary 
substitution methods (Section 1 .6)-are enough to enable us to solve a variety of 
first-order equations having impressive applications. 

__ P�oblel!1s 
___ , ________________ _ 

In Problems I through 12, verify by substitution that each 
given function is a solution of the given differential equation. 
Throughout these problems, primes denote derivatives with re
spect to x. 

1. y' = 3x2; y = x3 + 7 
2. y' + 2y = 0; Y = 3e-2x 
3. y" + 4y = 0; YI = cos 2x, Y2 = sin 2x 
4. y" = 9y; YI = e3x , Y2 = e-3x 

5. y' = y + 2e-x ; y = eX - e-X 
6. y" + 4y' + 4y = 0; YI = e-2x , Y2 = xe-2x 
7. Y" - 2y' + 2y = 0; YI = eX cosx, Y2 = eX sinx 

8. y"+y = 3 cos 2x, YI = cosx- cos 2x, Y2 = sinx-cos 2x 

1 9. y' + 2xy2 = 0; Y = -I +x2 
1 

10. x2y" + xy' - Y = lnx; Yl = x - lnx, Y2 = - - lnx 
x 
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1 lnx 
11. x2y" +5xy' +4y = 0; Yt = 2' Y2 = -2 X X 
12. x2y" - xy' + 2y = 0; Yt = x cos(lnx) , Y2 = x sin (In x) 

In Problems 13 through 16, substitute y = erx into the given 
differential equation to determine all values of the constant r 
for which y = erx is a solution of the equation. 

13. 3y' = 2y 14. 4y" = y 
15. y" + y' - 2y = 0 16. 3y" + 3y' - 4y = 0 

In Problems 17 through 26, first verify that y (x) satisfies the 
given differential equation. Then determine a value of the con
stant C so that y(x) satisfies the given initial condition. Use a 
computer or graphing calculator (if desired) to sketch several 
typical solutions of the given differential equation, and high
light the one that satisfies the given initial condition. 

17. y' + y = 0; y(x) = Ce-X ,  y(O) = 2 
18. y' = 2y ; y (x) = Ce2x ,  y(O) = 3 
19. y' = y + 1 ; y(x) = Cex - I, y(O) = 5 
20. y' = x - y; y (x) = Ce-X + x - I, y(O) = 1 0  

21. y' + 3x2y = 0; y(x) = Ce-x3 , y(O) = 7 

22. eYy' = 1 ; y(x) = In(x + C),  y(O) = 0 
dy 

23. x 
dx 

+ 3y = 2x5 ;  y(x) = ix5 + Cx-3 , y(2) = 1 

24. xy' - 3y = x3 ; y(x) = x3 (C + lnx), y(l) = 1 7 

25. y' = 3x2 (y2 + 1 ) ; y(x) = tan(x3 + C), y(O) = 1 

26. y' + y tanx = cosx; y(x) = (x + C)cosx, y(rr) = 0 

In Problems 27 through 31, a function y = g (x) is described 
by some geometric property of its graph. Write a differential 
equation of the form dyjdx = f(x,  y) having the function g 
as its solution (or as one of its solutions). 

27. The slope of the graph of g at the point (x , y) is the sum 
of x and y. 

28. The line tangent to the graph of g at the point (x , y) inter
sects the x-axis at the point (xj2, 0). 

29. Every straight line normal to the graph of g passes through 
the point (0, 1 ) .  Can you guess what the graph of such a 
function g might look like? 

30. The graph of g is normal to every curve of the form 
y = x2 + k (k is a constant) where they meet. 

31. The line tangent to the graph of g at (x , y) passes through 
the point (-y, x). 

In Problems 32 through 36, write-in the manner of Eqs. (3) 
through (6) of this section-a differential equation that is a 
mathematical model of the situation described. 

32. The time rate of change of a population P is proportional 
to the square root of P .  

33. The time rate o f  change o f  the velocity v of a coasting 
motorboat is proportional'to the square of v. 

34. The acceleration dvjdt of a Lamborghini is proportional 
to the difference between 250 km/h and the velocity of the 
car. 

35. In a city having a fixed population of P persons, the time 
rate of change of the number N of those persons who have 
heard a certain rumor is proportional to the number of 
those who have not yet heard the rumor. 

36. In a city with a fixed population of P persons, the time rate 
of change of the number N of those persons infected with 
a certain contagious disease is proportional to the product 
of the number who have the disease and the number who 
do not. 

In Problems 37 through 42, determine by inspection at least 
one solution of the given differential equation. That is, use 
your knowledge of derivatives to make an intelligent guess. 
Then test your hypothesis. 

37. y" = 0 38. y' = y 
39. xy' + y = 3x2 40. (y')2 + y2 = 1 
41. y' + y = eX 42. y" + y = 0 
43. (a) If k is a constant, show that a general (one-parameter) 

solution of the differential equation 

dx 
= kx2 

dt 

is given by x(t )  = lj (C - kt ) ,  where C is an arbitrary 
constant. 

(b) Determine by inspection a solution of the initial value 
problem x' = kx2, x (0) = O. 

44. (a) Continuing Problem 43, assume that k is positive, and 
then sketch graphs of solutions of x' = kx2 with sev
eral typical positive values of x(O). 

(b) How would these solutions differ if the constant k 
were negative? 

45. Suppose a population P of rodents satisfies the differen
tial equation dPjdt = kp2. Initially, there are P (O) = 2 
rodents, and their number is increasing at the rate of 
dPjdt = 1 rodent per month when there are P = 10  ro
dents . How long will it take for this population to grow 
to a hundred rodents? To a thousand? What's happening 
here? 

46. Suppose the velocity v of a motorboat coasting in water 
satisfies the differential equation dvjdt = kv2. The initial 
speed of the motorboat is v(O) = 10 meters per second 
(mls), and v is decreasing at the rate of 1 mls2 when v = 5 
mls. How long does it take for the velocity of the boat to 
decrease to 1 mls? To kmls? When does the boat come 
to a stop? 

47. In Example 7 we saw that y(x) = lj (C - x) defines a 
one-parameter family of solutions of the differential equa
tion dyjdx = y2. (a) Determine a value of C so that 
y(lO) = 1 0. (b) Is there a value of C such that y(O) = O? 
Can you nevertheless find by inspection a solution of 
dyjdx = y2 such that y(O) = O? (c) Figure 1 . 1 .8 shows 
typical graphs of solutions of the form y(x) = lj (C - x). 
Does it appear that these solution curves fill the entire xy
plane? Can you conclude that, given any point (a, b) in 
the plane, the differential equation dyjdx = y2 has ex
actly one solution y(x) satisfying the condition y(a) = b? 
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FIGURE 1.1.S. Graphs of solutions of the 
equation dyjdx = y2. 

FIGURE 1.1.9. The graph y = CX4 for 
various values of C. 

48. (a) Show that y(x) = CX4 defines a one-parameter fam
ily of differentiable solutions of the differential equation 
xy' = 4y (Fig. 1 . 1 .9). (b) Show that 

y(x) = 
{ _x4 if x < 0, 

X4 if x � 0 

defines a differentiable solution of xy' = 4y for all x, but 
is not of the form y(x) = CX4. (c) Given any two real 
numbers a and h, explain why-in contrast to the situa
tion in part (c) of Problem 47-there exist infinitely many 
differentiable solutions of xy' = 4y that all satisfy the 
condition y ea ) = h. 

The first-order equation dyjdx = f (x ,  y) takes an especially simple form if the 
right-hand-side function f does not actually involve the dependent variable y, so 

dy 

dx 
= f (x ) .  

I n  this special case we  need only integrate both sides of Eq. (1 ) to obtain 

y (x )  = f f(x ) dx + C. 

( 1 )  

(2) 

This is a general solution of Eq. (1 ), meaning that it involves an arbitrary constant 
C, and for every choice of C it is a solution of the differential equation in (1 ) .  If 
G (x )  is a particular antiderivative of f-that is, if G' (x) == f (x)-then 

y (x )  = G (x)  + C. (3) 

The graphs of any two such solutions Yl (x) = G (x) + C 1 and Y2 (x) = 
G (x) + C2 on the same interval I are "parallel" in the sense illustrated by Figs. 1 .2. 1 
and 1 .2.2. There we see that the constant C is geometrically the vertical distance 
between the two curves y (x )  = G (x)  and y (x )  = G (x)  + C .  

To satisfy an initial condition y (xo) = Yo ,  we  need only substitute x = Xo  and 
y = Yo into Eq. (3) to obtain Yo = G (xo) + C, so that C = Yo - G (xo) .  With this 
choice of C, we obtain the particular solution of Eq. (1 ) satisfying the initial value 
problem 

d

dY

X 
= f (x ) ,  ( )  y Xo = Yo · 
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FIGURE 1.2.1. Graphs of FIGURE 1.2.2. Graphs of 
y = � x2 + C for various values of C. y = sin x + C for various values of C. 

We will see that this is the typical pattern for solutions of first -order differential 
equations. Ordinarily, we will first find a general solution involving an arbitrary 
constant C .  We can then attempt to obtain, by appropriate choice of C,  a particular 
solution satisfying a given initial condition y (xo) = Yo .  

Remark: As the term is used in  the previous paragraph, a general solution 
of a first-order differential equation is simply a one-parameter family of solutions. 
A natural question is whether a given general solution contains every particular 
solution of the differential equation. When this is known to be true, we call it 
the general solution of the differential equation. For example, because any two 
antiderivatives of the same function f (x) can differ only by a constant, it follows 
that every solution of Eq. ( 1 )  is of the form in (2) . Thus Eq. (2) serves to define the 
general solution of ( 1 ) . • 

Solve the initial value problem 

dy 
- = 2x + 3 ,  y(1 ) = 2. 
dx 

Solution Integration of both sides of the differential equation as in Eq. (2) immediately yields 

4 

2 

0 
-2 
'" 
-4 

-6 

-8  

-10 -6 -4 -2 0 2 4 
x 

FIGURE 1.2.3. Solution curves 
for the differential equation in 
Example 1 .  

the general solution 

y(x) = f (2x + 3) dx = x2 + 3x + C. 

Figure 1 .2.3 shows the graph y = x2 + 3x + C for various values of C. The 
particular solution we seek corresponds to the curve that passes through the point 
(1 , 2), thereby satisfying the initial condition 

y ( 1 )  = ( 1 ) 2 + 3 . (1 ) + C = 2. 

It follows that C = -2, so the desired particular solution is 

y(x) = x2 + 3x - 2. • 
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Second-order equations . The observation that the special first-order equation 
dyj dx = f(x)  is readily solvable (provided that an antiderivative of f can be found) 
extends to second-order differential equations of the special form 

(4) 

in which the function g on the right-hand side involves neither the dependent vari
able y nor its derivative dyj dx . We simply integrate once to obtain 

�� = f yl/ (x) dx = f g (x ) dx = G (x) + C" 

where G is an antiderivative of g and C, is an arbitrary constant. Then another 
integration yields 

y (x)  = f y' (x) dx = f [G (x )  + Cd dx = f G(x) dx + C' x + C2 , 

where C2 is a second arbitrary constant. In effect, the second-order differential 
equation in (4) is one that can be solved by solving successively the first- order 
equations 

dv 
dx 

= g (x)  and 

Velocity and Acceleration 

dy 
- = v (x) . 
dx 

Direct integration is sufficient to allow us to solve a number of important problems 
concerning the motion of a particle (or mass point) in terms of the forces acting 
on it. The motion of a particle along a straight line (the x-axis) is described by its 
position function 

x = f(t )  

giving its x -coordinate at time t .  The velocity of the particle is  defined to be 

v (t )  = f' (t) ;  that is, 
dx 

v = - . 
dt 

Its acceleration a (t) is a (t) = v' (t) = xl/ (t) ; in Leibniz notation, 

dv d2x 
a = - = - . 

dt dt2 

(5) 

(6) 

(7) 

Equation (6) is sometimes applied either in the indefinite integral form x (t) = J v (t) dt or in the definite integral form 

x (t) = x (to) + 1t v (s) ds, to 
which you should recognize as a statement of the fundamental theorem of calculus 
(precisely because dxj dt = v) . 
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Newton's second law of motion says that if a force F(t) acts on the particle 

and is directed along its line of motion, then 

ma (t) = F(t) ; that is, F = ma , (8) 

where m is the mass of the particle. If the force F is known, then the equation 
x" (t) = F(t)/m can be integrated twice to find the position function x (t) in terms 
of two constants of integration. These two arbitrary constants are frequently deter
mined by the initial position Xo = x (O) and the initial velocity Vo = v (O) of the 
particle. 

Constant acceleration. For instance, suppose that the force F, and therefore the 
acceleration a = F /m, are constant. Then we begin with the equation 

dv 
- = a (a is a constant) 
dt 

and integrate both sides to obtain 

v (t) = f a dt = at + C, .  

(9) 

We know that v = Vo when t = 0, and substitution of this information into the 
preceding equation yields the fact that C, = Vo . So 

A second integration gives 

dx 
v (t) = - = at + Vo . 

dt 

x (t) = f v (t )  dt = f (a t + vo) dt = 4at2 + vot + C2 , 

and the substitution t = 0, x = Xo gives C2 = Xo . Therefore, 

x (t) = 4at2 + vot + Xo . 

(10) 

(1 1 )  

Thus, with Eq. ( 10) we  can find the velocity, and with Eq. (1 1 )  the position, of 
the particle at any time t in terms of its constant acceleration a,  its initial velocity 
vo , and its initial position Xo . 

A lunar lander is falling freely toward the surface of the moon at a speed of 450 
meters per second (m/s). Its retrorockets, when fired, provide a constant decel
eration of 2.5 meters per second per second (m/s2) (the gravitational acceleration 
produced by the moon is assumed to be included in the given deceleration) . At what 
height above the lunar surface should the retrorockets be activated to ensure a "soft 
touchdown" (v = 0 at impact)? 
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Solution We denote by x (t) the height of the lunar lander above the surface, as indicated 

Lunar surface 

FIGURE 1.2.4. The lunar lander 
of Example 2. 

in Fig. 1 .2.4. We let t = 0 denote the time at which the retrorockets should be 
fired. Then Vo = -450 (m/s, negative because the height x (t) is decreasing), and 
a = +2.5 ,  because an upward thrust increases the velocity v (although it decreases 
the speed I v l ) . Then Eqs. ( 1 0) and ( 1 1 )  become 

v et) = 2.5t - 450 ( 1 2) 

and 
x (t) = 1 . 25t2 - 450t + Xo , ( 1 3) 

where Xo is the height of the lander above the lunar surface at the time t = 0 when 
the retrorockets should be activated. 

From Eq. ( 1 2) we see that v = 0 (soft touchdown) occurs when t = 450/2.5 = 
1 80 s (that is, 3 minutes) ; then substitution of t = 1 80, x = 0 into Eq. ( 1 3) yields 

Xo = 0 - ( 1 .25) ( 1 80)2 + 450 ( 1 80) = 40,500 

meters-that is, Xo = 40.5 km � 25 i miles. Thus the retrorockets should be acti
vated when the lunar lander is 40.5 kilometers above the surface of the moon, and it 
will touch down softly on the lunar surface after 3 minutes of decelerating descent. 

• 

Physical Units 

Numerical work requires units for the measurement of physical quantities such as 
distance and time. We sometimes use ad hoc units-such as distance in miles or 
kilometers and time in hours-in special situations (such as in a problem involving 
an auto trip). However, the foot-pound-second (fps) and meter-kilogram-second 
(mks) unit systems are used more generally in scientific and engineering problems. 
In fact, fps units are commonly used only in the United States (and a few other 
countries), while mks units constitute the standard international system of scientific 
units. 

Force pound (lb) newton (N) 

Mass slug kilogram (kg) 

Distance foot (ft) meter (m) 

Time second (s) second (s) 

g 32 ftls2 9.8 rn/s2 

The last line of this table gives values for the gravitational acceleration g at 
the surface of the earth. Although these approximate values will suffice for most 
examples and problems, more precise values are 9.7805 m/s2 and 32.088 ft/s2 (at 
sea level at the equator). 

Both systems are compatible with Newton's second law F = rn a .  Thus 1 N is 
(by definition) the force required to impart an acceleration of 1 m/s2 to a mass of 1 
kg. Similarly, 1 slug is (by definition) the mass that experiences an acceleration of 
1 ft/s2 under a force of l Ib. (We will use mks units in all problems requiring mass 
units and thus will rarely need slugs to measure mass.) 
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Inches and centimeters (as well as miles and kilometers) also are commonly 

used in describing distances . For conversions between fps and mks units it helps to 
remember that 

For instance, 

1 in. = 2.54 cm (exactly) and l Ib � 4.448 N. 

1 ft = 12 in. x 2.54 �m 
= 30.48 cm, 

tn. 

and it follows that 

1 mi = 5280 ft x 30.48 
cm 

= 1 60934.4 cm � 1 .609 km. 
ft 

Thus a posted U.S. speed limit of 50 mi/h means that-in international terms-the 
legal speed limit is about 50 x 1 .609 � 80.45 km/h. 

Vertical Motion with Gravitational Acceleration 

The weight W of a body is the force exerted on the body by gravity. Substitution 
of a = g and F = W in Newton's second law F = ma gives 

W = mg (14) 

for the weight W of the mass m at the surface of the earth (where g � 32 ft/s2 � 9.8 
m/s2). For instance, a mass of m = 20 kg has a weight of W = (20 kg)(9.8 m/s2) = 
1 96 N. Similarly, a mass m weighing 100 pounds has mks weight 

so its mass is 

W = ( 1 00 Ib)(4.448 N/lb) = 444.8 N, 

W 444.8 N 
m = - = � 45.4 kg. 

g 9 .8 m/s2 

To discuss vertical motion it is natural to choose the y-axis as the coordinate 
system for position, frequently with y = 0 corresponding to "ground level." If we 
choose the upward direction as the positive direction, then the effect of gravity on a 
vertically moving body is to decrease its height and also to decrease its velocity v = 
dy/dt .  Consequently, if we ignore air resistance, then the acceleration a = dv/dt of 
the body is given by 

dv - = -g .  
dt 

( 15) 

This acceleration equation provides a starting point in many problems involving 
vertical motion. Successive integrations (as in Eqs .  ( 1 0) and ( 1 1 )  yield the velocity 
and height formulas 

v (t) = -gt + Vo ( 16) 

and 

( 1 7) 

Here, Yo denotes the initial (t = 0) height of the body and Vo its initial velocity. 
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Exa mple 3 
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FIGURE 1.2.5. A swimmer's 
problem (Example 4). 

Exa mple 4 

(a) Suppose that a ball is thrown straight upward from the ground (Yo = 0) with 
initial velocity Vo = 96 (ft/s, so we use g = 32 ft/s2 in fps units) . Then it reaches 
its maximum height when its velocity (Eq. ( 1 6» is zero, 

v et) = -32t + 96 = 0, 

and thus when t = 3 s .  Hence the maximum height that the ball attains is 

y (3) = - 4  . 32 . 32 + 96 . 3 + 0 = 144 (ft) 

(with the aid of Eq. ( 1 7» . 
(b) If an arrow is shot straight upward from the ground with initial velocity Vo = 49 
(m/s, so we use g = 9 .8  m/s2 in mks units), then it returns to the ground when 

y et) = - 4  . (9 .8) t2 + 49t = (4 .9) t ( -t + 1 0) = 0, 

and thus after 1 0  s in the air. • 

A Swimmer's Problem 

Figure 1 .2.5 shows a northward-flowing river of width w = 2a . The lines x = ±a 
represent the banks of the river and the y-axis its center. Suppose that the velocity 
v R at which the water flows increases as one approaches the center of the river, and 
indeed is given in terms of distance x from the center by 

( 1 8) 

You can use Eq. ( 1 8) to verify that the water does flow the fastest at the center, 
where VR = Vo , and that VR = 0 at each riverbank. 

Suppose that a swimmer starts at the point ( -a ,  0) on the west bank and swims 
due east (relative to the water) with constant speed vs . As indicated in Fig. 1 .2.5, his 
velocity vector (relative to the riverbed) has horizontal component Vs and vertical 
component VR . Hence the swimmer's direction angle a is given by 

VR 
tan a = 

Vs 

Because tan a = dy/dx, substitution using ( 1 8) gives the differential equation 

for the swimmer's trajectory y = y (x)  as he crosses the river. 

( 1 9) 

_ · _· __ · _ ·  _____ H ____ __ H '  ___ N ___ � �  ___ N ___ __ _ 

Suppose that the river is 1 mile wide and that its midstream velocity is Vo = 9 mi/h. 
If the swimmer's velocity is Vs = 3 mi/h, then Eq. ( 1 9) takes the form 

Integration yields 

dy 2 - = 3 ( 1 - 4x ) .  
dx 

y (x)  = f (3 - 1 2x2) dx = 3x - 4x3 + C 
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for the swimmer's trajectory. The initial condition y ( - �) = 0 yields C = 1 ,  so 

y (x)  = 3x - 4x3 + 1 .  

Then 
y ( 4 )  = 3 (4 )  - 4 ( 4 ) 3 + 1 = 2, 

so the swimmer drifts 2 miles downstream while he swims 1 mile across the river . 
• 

IIEI Problems 

In Problems 1 through 10, find a function y = f(x) satisfy
ing the given differential equation and the prescribed initial 
condition. 

dy 
1. - = 2x + l ; y (0) = 3  

dx 

2. 
dy = (x - 2)2 ; y (2) = 1 dx 
dy 

3. - = ..jX; y (4) = 0 
dx 
dy 1 

4. dx = x2 ;
 y ( 1 ) = 5 

dy 1 
5. - = ;::---;--;; ; y (2) = - 1  dx '\IX + 2  

dy C');n 6. dx = X'\lX2 + 9; y (-4) = 0 

dy 10 
7 .  - = -- ; y (O) = 0  dx x2 + 1 

dy 
8. dx = cos 2x ; y (O) = 1 

dy 1 
9. - = ; y (O) = 0 dx � 

dy 
10. - = xe-x ; y (O) = 1 dx 

In Problems 11 through 18, find the position function x (t) ofa 
moving particle with the given acceleration a (t), initial posi
tion Xo = x (O), and initial velocity Vo = v (O). 
11. a (t) = 50, Vo = 10, Xo = 20 
12. a (t) = -20, Vo = - 15, Xo = 5 
13. a (t) = 3t, Vo = 5, xo = 0 
14. a (t) = 2t + l , vo = -7, xo = 4 
15. a (t) = 4(t + 3)2 , Vo = - 1 ,  Xo = 1 

1 
16. a (t) = /.7A ' Vo = - 1 , xo = 1 

'\I t  + 4  
1 

17. a (t) = 3 ' Vo = 0, Xo = 0 (t + 1 ) 
18. a (t) = 50 sin 5t , Vo = - 10, X o = 8 

In Problems 19 through 22, a particle starts at the origin and 
travels along the x -axis with the velocity function v (t) whose 
graph is shown in Figs. 1.2.6 through 1.2. 9. Sketch the graph 
of the resulting position function x (t) for 0 :;;; t :;;; 10. 

19. 10  

8 

6 
:> (5, 5) 

4 

2 

0 
0 2 4 6 

FIGURE 1.2.6. Graph of the 
velocity function v (t) of Problem 19 . 

20. 10 ,----,---r----,--.----, 

8 

6 

6 8 10  

FIGURE 1.2.7. Graph of the 
velocity function v (t) of Problem 20. 

21. 1 0  ,-----,-"-"T---,---r--..., 

8 . .  

6 
(5, 5) : 

FIGURE 1.2.8. Graph of the 
velocity function v (t) of Problem 21 . 
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22. 10 ,-----,---,----.----,----, 

8 

6 
. (3, 5) 

2 4 

(7 , 5) 

6 8 10  

FIGURE 1.2.9. Graph of the 
velocity function v (t )  of Problem 22. 

23. What is the maximum height attained by the arrow of part 
(b) of Example 3?  

24. A ball is dropped from the top of  a building 400 ft high. 
How long does it take to reach the ground? With what 
speed does the ball strike the ground? 

25. The brakes of a car are applied when it is moving at 1 00 
km/h and provide a constant deceleration of 1 0  meters per 
second per second (m/s2) .  How far does the car travel be
fore coming to a stop? 

26. A projectile is fired straight upward with an initial veloc
ity of 1 00 m/s from the top of a building 20 m high and 
falls to the ground at the base of the building. Find (a) its 
maximum height above the ground; (b) when it passes the 
top of the building; (c) its total time in the air. 

27. A ball is thrown straight downward from the top of a tall 
building. The initial speed of the ball is 10 m/s. It strikes 
the ground with a speed of 60 m/s. How tall is the build
ing? 

28. A baseball is thrown straight downward with an initial 
speed of 40 ft/s from the top of the Washington Monu
ment (555 ft high). How long does it take to reach the 
ground, and with what speed does the baseball strike the 
ground? 

29. A diesel car gradually speeds up so that for the first 1 0  s 
its acceleration is given by 

dv 
dt = (0. 1 2) t2 + (0.6)t (ft/s2) .  

If  the car starts from rest (xo = 0, V o  = 0) ,  find the dis
tance it has traveled at the end of the first 10 s and its 
velocity at that time. 

30. A car traveling at 60 mi/h (88 ft/s) skids 1 76 ft after its 
brakes are suddenly applied. Under the assumption that 
the braking system provides constant deceleration, what 
is that deceleration? For how long does the skid continue? 

31. The skid marks made by an automobile indicated that its 
brakes were fully applied for a distance of 75 m before it 
came to a stop. The car in question is known to have a con
stant deceleration of 20 m/s2 under these conditions.  How 
fast-in km/h-was the car traveling when the brakes 
were first applied? 

32. Suppose that a car skids 15 m if it is moving at 50 km/h 
when the brakes are applied. Assuming that the car has 
the same constant deceleration, how far will it skid if it is 
moving at 1 00 km/h when the brakes are applied? 

33. On the planet Gzyx, a ball dropped from a height of 20 ft 
hits the ground in 2 s. If a ball is dropped from the top of 
a 200-ft-tall building on Gzyx, how long will it take to hit 
the ground? With what speed will it hit? 

34. A person can throw a ball straight upward from the sur
face of the earth to a maximum height of 1 44 ft. How 
high could this person throw the ball on the planet Gzyx 
of Problem 29? 

35. A stone is dropped from rest at an initial height h above 
the surface of the earth. Show that the speed with which it 
strikes the ground is v = J2gh . 

36. Suppose a woman has enough "spring" in her legs to jump 
(on earth) from the ground to a height of 2.25 feet. If 
she jumps straight upward with the same initial velocity 
on the moon-where the surface gravitational acceleration 
is (approximately) 5 .3 ftls2-how high above the surface 
will she rise? 

37. At noon a car starts from rest at point A and proceeds at 
constant acceleration along a straight road toward point 
B .  If the car reaches B at 1 2:50 P.M .  with a velocity of 
60 mi/h, what is the distance from A to B ?  

38. A t  noon a car starts from rest at point A and proceeds with 
constant acceleration along a straight road toward point C, 
35 miles away. If the constantly accelerated car arrives at 
C with a velocity of 60 mi/h, at what time does it arrive 
at C? 

39. If a = 0.5 mi and Vo = 9 mi/h as in Example 4, what 
must the swimmer's speed Vs be in order that he drifts 
only 1 mile downstream as he crosses the river? 

40. Suppose that a = 0.5 mi , Vo = 9 mi/h, and Vs = 3 mi/h 
as in Example 4, but that the velocity of the river is given 
by the fourth-degree function 

rather than the quadratic function in Eq. ( 1 8). Now find 
how far downstream the swimmer drifts as he crosses the 
river. 

41. A bomb is dropped from a helicopter hovering at an alti
tude of 800 feet above the ground. From the ground di
rectly beneath the helicopter, a projectile is fired straight 
upward toward the bomb, exactly 2 seconds after the bomb 
is released. With what initial velocity should the projectile 
be fired, in order to hit the bomb at an altitude of exactly 
400 feet? 

42. A spacecraft is in free fall toward the surface of the moon 
at a speed of 1000 mph (mi/h). Its retrorockets, when 
fired, provide a constant deceleration of 20,000 mi/h2 . At 
what height above the lunar surface should the astronauts 
fire the retrorockets to insure a soft touchdown? (As in 
Example 2, ignore the moon's gravitational field.) 
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43. Arthur Clarke's The WindJrom the Sun ( 1 963) describes 
Diana, a spacecraft propelled by the solar wind. Its alu
minized sail provides it with a constant acceleration of 
O.oolg = 0.0098 m/s2 • Suppose this spacecraft starts 
from rest at time t = 0 and simultaneously fires a pro
jectile (straight ahead in the same direction) that travels at 
one-tenth of the speed c = 3 X 1 08 m/s of light. How long 
will it take the spacecraft to catch up with the projectile, 

and how far will it have traveled by then? 
44. A driver involved in an accident claims he was going only 

25 mph. When police tested his car, they found that when 
its brakes were applied at 25 mph, the car skidded only 
45 feet before coming to a stop. But the driver's skid 
marks at the accident scene measured 210  feet. Assum
ing the same (constant) deceleration, determine the speed 
he was actually traveling just prior to the accident. 

III) Sl�pe Fields and Solution Curves 

y 

--��-----r��------ X 

FIGURE 1.3.1.  A solution curve 
for the differential equation 
y

' = x - y together with tangent 
lines having 

• slope m l  = Xl - Yl at the 
point (X l .  Y l ) ; 

• slope m2 = X2 - Y2 at the 
point (X2 , Y2) ;  and 

• slope m3 = X3 - Y3 at the 
point (X3 , Y3) .  

Exa mple 1 

Consider a differential equation of the form 

dy 
dx = f(x ,  y) ( 1 )  

where the right-hand function f(x ,  y) involves both the independent variable x and 
the dependent variable y .  We might think of integrating both sides in ( 1 )  with re
spect to x ,  and hence write y(x) = J f(x ,  y (x» dx + C .  However, this approach 
does not lead to a solution of the differential equation, because the indicated integral 
involves the unknown function y (x)  itself, and therefore cannot be evaluated explic
itly. Actually, there exists no straightforward procedure by which a general differen
tial equation can be solved explicitly. Indeed, the solutions of such a simple-looking 
differential equation as y' = x2 + y2 cannot be expressed in terms of the ordinary 
elementary functions studied in calculus textbooks . Nevertheless, the graphical and 
numerical methods of this and later sections can be used to construct approximate 
solutions of differential equations that suffice for many practical purposes . 

Slope Fields and Graphical Solutions 

There is a simple geometric way to think about solutions of a given differential 
equation y' = f(x ,  y) .  At each point (x , y) of the xy-plane, the value of f(x,  y) 
determines a slope m = f (x , y) .  A solution of the differential equation is simply a 
differentiable function whose graph y = y(x) has this "correct slope" at each point 
(x , y (x» through which it passes--that is, y' (x) = f(x ,  y (x» . Thus a solution 
curve of the differential equation y' = f (x , y)--the graph of a solution of the 
equation--is simply a curve in the xy-plane whose tangent line at each point (x , y) 
has slope m = f(x ,  y) .  For instance, Fig. 1 .3. 1 shows a solution curve of the 
differential equation y' = x - y together with its tangent lines at three typical 
points . 

This geometric viewpoint suggests a graphical method for constructing ap
proximate solutions of the differential equation y' = f(x ,  y) . Through each of a 
representative collection of points (x , y) in the plane we draw a short line segment 
having the proper slope m = f(x ,  y) . All these line segments constitute a slope 
field (or a direction field) for the equation y' = f(x ,  y) .  

_ ..... � M ......... "n. . ...... ,.n .. H _ _  .HO. " n "  _ _ _ _ __ •. _ _ _ _ •.. .. n. .._ .. n... . ............ , ............... . 

Figures 1 .3.2 (a)-(d) show slope fields and solution curves for the differential equa-
tion 

dy 
= ky 

dx 
(2) 

with the values k = 2, 0.5,  - 1 ,  and - 3 of the parameter k in Eq. (2) . Note that each 
slope field yields important qualitative information about the set of all solutions 
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FIGURE 1.3.2(a) Slope field 
and solution curves for y' = 2y . 
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-2 
-3  

x 

FIGURE 1.3.2(c) Slope field 
and solution curves for y' = -yo 

4 r-Tl�rrlT"rrTl"� 
3 
2 

"" o =���� 
-1 
-2 

x 

FIGURE 1.3.2(b) Slope field 
and solution curves for 
y' = (O.5)y . 

4 r-r-,-or-Y-'r-r-�, 
3 
2 

-1 
-2 
-3  

x 

FIGURE 1.3.2(d) Slope field 
and solution curves for y' = -3y. 

of the differential equation. For instance, Figs. 1 .3 .2(a) and (b) suggest that each 
solution y (x)  approaches ±oo as x -+ +00 if k > 0, whereas Figs. 1 .3 .2(c) and 
(d) suggest that y (x)  -+ 0 as x -+ +00 if k < O. Moreover, although the sign 
of k determines the direction of increase or decrease of y (x) ,  its absolute value Ik l 
appears to determine the rate of change of y (x ) .  All this is apparent from slope 
fields like those in Fig. 1 .3 .2, even without knowing that the general solution of 
Eq. (2) is given explicitly by y (x) = C ekx • • 

A slope field suggests visually the general shapes of solution curves of the 
differential equation. Through each point a solution curve should proceed in such 
a direction that its tangent line is nearly parallel to the nearby line segments of the 
slope field. Starting at any initial point (a , b) ,  we can attempt to sketch freehand an 
approximate solution curve that threads its way through the slope field, following 
the visible line segments as closely as possible. 

Construct a slope field for the differential equation y' = x - y and use it to sketch 
an approximate solution curve that passes through the point (-4, 4) . 

Solution Solution Fig. 1 .3 . 3  shows a table of slopes for the given equation. The numerical 
slope m = x - y appears at the intersection of the horizontal x-row and the ver
tical y-column of the table. If you inspect the pattern of upper-left to lower-right 
diagonals in this table, you can see that it was easily and quickly constructed. (Of 
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FIGURE 1.3.6. Slope field and 
typical solution curves for 
y

' = x  - y .  

x \ y -4 -3 -2 

-4 0 - 1  -2 

-3  1 0 - 1  

-2 2 1 0 

- 1  3 2 1 

0 4 3 2 

1 5 4 3 

2 6 5 4 

3 7 6 5 

4 8 7 6 
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- 1  0 1 2 3 4 

-3 -4 -5 -6 -7 -8 

-2 -3 -4 -5 -6 -7 

- 1  -2 -3  -4 -5 -6 

0 - 1  -2 -3 -4 -5 

1 0 - 1  -2 -3 -4 

2 1 0 - 1  -2 -3 

3 2 1 0 - 1  -2 

4 3 2 1 0 - 1  

5 4 3 2 1 0 

FIGURE 1 .3.3. Values of the slope y
' = x - y for -4 ;;;; x ,  y ;;;; 4. 
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FIGURE 1.3.4. Slope field for 
y

' = x - y corresponding to the 
table of slopes in Fig. 1 .3 .3 .  
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FIGURE 1.3.5. The solution 
curve through (-4, 4) . 

5 

course, a more complicated function f(x ,  y) on the right-hand side of the differen
tial equation would necessitate more complicated calculations.) Figure 1 .3.4 shows 
the corresponding slope field, and Fig. 1 .3.5 shows an approximate solution curve 
sketched through the point (-4, 4) so as to follow as this slope field as closely as 
possible. At each point it appears to proceed in the direction indicated by the nearby 
line segments of the slope field. • 

Although a spreadsheet program (for instance) readily constructs a table of 
slopes as in Fig. 1 .3 .3 ,  it can be quite tedious to plot by hand a sufficient number 
of slope segments as in Fig. 1 .3.4. However, most computer algebra systems in
clude commands for quick and ready construction of slope fields with as many line 
segments as desired; such commands are illustrated in the application material for 
this section. The more line segments are constructed, the more accurately solution 
curves can be visualized and sketched. Figure 1 . 3.6 shows a "finer" slope field for 
the differential equation y' = x - y of Example 2, together with typical solution 
curves treading through this slope field. 

If you look closely at Fig. 1 .3.6, you may spot a solution curve that appears 
to be a straight line ! Indeed, you can verify that the linear function y = x - I  is 
a solution of the equation y' = x - y, and it appears likely that the other solution 
curves approach this straight line as an asymptote as x -+ +00. This inference 
illustrates the fact that a slope field can suggest tangible information about solutions 
that is not at all evident from the differential equation itself. Can you, by tracing the 
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Exa mple 3 

1 5  20 25 

FIGURE 1.3.7. Slope field and 
typical solution curves for 
Vi = 32 - O. 16v. 

appropriate solution curve in this figure, infer that y (3) � 2 for the solution y (x) of 
the initial value problem y' = x - y, y (-4) = 4? 

Applications of Slope fields 

The next two examples illustrate the use of slope fields to glean useful information 
in physical situations that are modeled by differential equations. Example 3 is based 
on the fact that a baseball moving through the air at a moderate speed v (less than 
about 300 ftls) encounters air resistance that is approximately proportional to v. If 
the baseball is thrown straight downward from the top of a tall building or from a 
hovering helicopter, then it experiences both the downward acceleration of gravity 
and an upward acceleration of air resistance. If the y-axis is directed downward, 
then the ball 's velocity v = dy/dt and its gravitational acceleration g = 32 ftls2 are 
both positive, while its acceleration due to air resistance is negative. Hence its total 
acceleration is of the form 

dv 
- = g - kv. 
dt 

A typical value of the air resistance proportionality constant might be k = 0. 16. 

(3) 

Suppose you throw a baseball straight downward from a helicopter hovering at an 
altitude of 3000 feet. You wonder whether someone standing on the ground below 
could conceivably catch it. In order to estimate the speed with which the ball will 
land, you can use your laptop's computer algebra system to construct a slope field 
for the differential equation 

dv 
- = 32 - 0. 1 6v. 
dt 

(4) 

The result is shown in Fig. 1 .3.7, together with a number of solution curves 
corresponding to different values of the initial velocity v (O) with which you might 
throw the baseball downward. Note that all these solution curves appear to approach 
the horizontal line v = 200 as an asymptote. This implies that-however you 
throw it-the baseball should approach the limiting velocity v = 200 ftls instead 
of accelerating indefinitely (as it would in the absence of any air resistance). The 
handy fact that 60 milh = 88 ftls yields 

ft 60 milh mi 
v = 200- x � 1 36.36 -.  

s 88 ftls h 

Perhaps a catcher accustomed to 1 00 milh fastballs would have some chance of 
fielding this speeding ball. • 

Comment If the ball 's initial velocity is v (O) = 200, then Eq. (4) gives 
v' (O) = 32 - (0. 1 6) (200) = 0, so the ball experiences no initial acceleration. Its 
velocity therefore remains unchanged, and hence v (t) == 200 is a constant "equilib
rium solution" of the differential equation. If the initial velocity is greater than 200, 
then the initial acceleration given by Eq. (4) is negative, so the ball slows down as it 
falls. But if the initial velocity is less than 200, then the initial acceleration given by 
(4) is positive, so the ball speeds up as it falls. It therefore seems quite reasonable 
that, because of air resistance, the baseball will approach a limiting velocity of 200 
ftls-whatever initial velocity it starts with. You might like to verify that-in the 
absence of air resistance-this ball would hit the ground at over 300 milh. • 
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In Section 1 .7 we will discuss in detail the logistic differential equation 

dP 
- = kP (M - P ) 
dt 

(5) 

that often is used to model a population P (t )  that inhabits an environment with 
carrying capacity M. This means that M is the maximum population that this envi
ronment can sustain on a long-term basis (in terms of the maximum available food, 
for instance) . 

If we take k = 0.0004 and M = 1 50, then the logistic equation in (5) takes the form 

dP 2 
- = 0.0004P ( 1 50 - P) = 0.06P - O.OOO4P . 
dt 

(6) 

The positive term 0.06P on the right in (6) corresponds to natural growth at a 6% 
annual rate (with time t measured in years) .  The negative term -0.0004P2 repre
sents the inhibition of growth due to limited resources in the environment. 

Figure 1 .3 . 8  shows a slope field for Eq. (6), together with a number of solution 
curves corresponding to possible different values of the initial population P(O) . 

50 Note that all these solution curves appear to approach the horizontal line P = 150 
0 0 '::-----725::------,5:"::-0-�75::---:-:'100 as an asymptote. This implies that-whatever the initial population-the population 

t P (t) approaches the limiting population P = 1 50 as t ---+ 00. • 
FIGURE 1.3.8. Slope field and 
typical solution curves for 
P' = O.06P - O.0004p2 . 

Example 5 

Comment If the initial population is P (O) = 150, then Eq. (6) gives 

P' (O) = 0.0004( 150) ( 1 50 - 150) = 0, 

so the population experiences no initial (instantaneous) change. It therefore remains 
unchanged, and hence P(t) == 1 50 is a constant "equilibrium solution" of the dif
ferential equation. If the initial popUlation is greater than 1 50, then the initial rate of 
change given by (6) is negative, so the population immediately begins to decrease. 
But if the initial popUlation is less than 1 50, then the initial rate of change given by 
(6) is positive, so the popUlation immediately begins to increase. It therefore seems 
quite reasonable to conclude that the population will approach a limiting value of 
I SO-whatever the (positive) initial population. • 

Existence and Uniqueness of Solutions 

Before one spends much time attempting to solve a given differential equation, it 
is wise to know that solutions actually exist. We may also want to know whether 
there is only one solution of the equation satisfying a given initial condition-that 
is , whether its solutions are unique. 

(a) [Failure of existence] The initial value problem 

, 1 
y = - y (O) = 0 

x 
(7) 

has no solution, because no solution y(x) = J( 1/x) dx = In I x l + C of the differ
ential equation is defined at x = O. We see this graphically in Fig. 1 .3 .9, which 
shows a direction field and some typical solution curves for the equation y' = l/x . 
It is apparent that the indicated direction field "forces" all solution curves near the 
y-axis to plunge downward so that none can pass through the point (0, 0) . 
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FIGURE 1.3.11 .  The rectangle 
R and x-interval I of Theorem 1 ,  
and the solution curve y = y(x) 
through the point (a , b) . 

FIGURE 1 .3.9. Direction field 
and typical solution curves for 
the equation y' = l/x . 

o 

/ / / 
/ / / 
/ / / 
/ / / 
/ / / 
/ / / 
/ / / 

/ / / / 
/ / / / 
/ / / / 
/ / / / /Yl (X) = x2 
/ / /. / 

x 

/ / 
/ / 
/ / 

FIGURE 1 .3.10. Direction field and two 
different solution curves for the initial value 
problem y' = 2..jY, y (O) = O. 

(b) [Failure of uniqueness] On the other hand, you can readily verify that the initial 
value problem 

y' = 2Jy, y (O) = 0 (8) 

has the two different solutions Yl (X) = x2 and Y2 (X) == 0 (see Problem 27) .  Figure 
1 .3 . 1 0  shows a direction field and these two different solution curves for the initial 
value problem in (8) . We see that the curve Yl (x) = x2 threads its way through the 
indicated direction field, whereas the differential equation y' = 2..jY specifies slope 
y' = 0 along the x-axis Y2 (X) = o. • 

Example 5 illustrates the fact that, before we can speak of "the" solution of 
an initial value problem, we need to know that it has one and only one solution. 
Questions of existence and uniqueness of solutions also bear on the process of 
mathematical modeling. Suppose that we are studying a physical system whose be
havior is completely determined by certain initial conditions, but that our proposed 
mathematical model involves a differential equation not having a unique solution 
satisfying those conditions. This raises an immediate question as to whether the 
mathematical model adequately represents the physical system. 

The theorem stated below implies that the initial value problem y' = f (x ,  y) ,  
y(a) = b has one and only one solution defined near the point x = a on the x-axis, 
provided that both the function f and its partial derivative of/oy are continuous 
near the point (a , b) in the xy-plane. Methods of proving existence and uniqueness 
theorems are discussed in the Appendix. 

TH EOREM 1 Existence and U niqueness of Solutions 

Suppose that both the function f (x ,  y) and its partial derivative Dy f (x ,  y) are 
continuous on some rectangle R in the xy-plane that contains the point (a , b) 
in its interior. Then, for some open interval ! containing the point a, the initial 
value problem 

dy 
dx 

= f (x ,  y ) ,  y (a) = b (9) 

has one and only one solution that is defined on the interval !. (As illustrated in 
Fig. 1 .3 . 1 1 ,  the solution interval ! may not be as "wide" as the original rectangle 
R of continuity ; see Remark 3 below.) 



6 

4 

>. 2 

o 

-2 
-4 

y = 1/( 1  - x) 

r - - - -i - - '  I I R I (0. 1) : 1 _____ 

-2 o 

x 

I 

2 

FIGURE 1.3.12. The solution 
curve through the initial point 
(0, 1 )  leaves the rectangle R 
before it reaches the right side of 
R. 

Exa mple 6 

4 

1 .3 Slope Fie lds and Solution Curves 25 

Remark 1 :  In the case of the differential equation dy/dx = -y of Exam
pIe 1 and Fig. 1 .3 .2(c), both the function f (x ,  y) = -y and the partial derivative 
of/oy = - 1  are continuous everywhere, so Theorem 1 implies the existence of a 
unique solution for any initial data (a , b) .  Although the theorem ensures existence 
only on some open interval containing x = a , each solution y (x) = Ce-x actually 
is defined for all x .  

Remark 2 :  In the case of the differential equation dy/dx = -2,.jY of 
Example 5(b) and Eq. (8), the function f (x ,  y) = -2,.jY is continuous wherever 
y > 0, but the partial derivative of/oy = 1/,.jY is discontinuous when y = 0, and 
hence at the point (0, 0) . This is why it is possible for there to exist two different 
solutions Y1 (x) = x2 and Y2 (x) == 0, each of which satisfies the initial condition 
y (O) = o. 

Remark 3 :  In Example 7 of Section 1 . 1  we examined the especially sim
ple differential equation dy/dx = y2 . Here we have f (x ,  y) = y2 and of/oy = 2y . 
Both of these functions are continuous everywhere in the xy-plane, and in partic
ular on the rectangle -2 < x < 2, 0 < y < 2. Because the point (0, 1 )  lies in 
the interior of this rectangle, Theorem 1 guarantees a unique solution-necessarily 
a continuous function-of the initial value problem 

dy 2 - = y ,  y (O) = 1 
dx 

on some open x-interval containing a = O. Indeed this is the solution 

1 
y (x)  = -

I - x 

(10) 

that we discussed in Example 7. But y (x) = 1/( 1 - x) is discontinuous at x = 1 ,  
s o  our unique continuous solution does not exist on the entire interval -2 < x < 2. 
Thus the solution interval I of Theorem 1 may not be as wide as the rectangle R 
where f and of/oy are continuous .  Geometrically, the reason is that the solution 
curve provided by the theorem may leave the rectangle-wherein solutions of the 
differential equation are guaranteed to exist-before it reaches the one or both ends 
of the interval (see Fig. 1 .3 . 1 2) .  • 

The following example shows that, if the function f (x , y) and/or its partial 
derivative of/oy fail to satisfy the continuity hypothesis of Theorem 1 ,  then the 
initial value problem in (9) may have either no solution or many-even infinitely 
many-solutions .  

Consider the first-order differential equation 

dy 
x 

dx 
= 2y . ( 1 1 )  

Applying Theorem 1 with f (x ,  y) = 2y/x and of/oy = 2/x , we conclude that 
Eq. ( 1 1 )  must have a unique solution near any point in the xy-plane where x :f:. O. 
Indeed, we see immediately by substitution in ( 1 1 )  that 

y (x) = Cx2 ( 1 2) 
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(0, b) (0, 0) 

x 

FIGURE 1.3.13. There are 
infinitely many solution curves 
through the point (0, 0) , but no 
solution curves through the point 
(0, b) if b ;f O. 

x 

FIGURE 1.3.14. There are 
infinitely many solution curves 
through the point ( l , - 1 ) .  

satisfies Eq. ( 1 1 )  for any value of  the constant C and for all values of  the variable 
x .  In particular, the initial value problem 

dy 
x

dx 
= 2y ,  y (O) = O  ( 1 3) 

has infinitely many different solutions, whose solution curves are the parabolas y = 
Cx2 illustrated in Fig. 1 .3 . 1 3 .  (In case C = 0 the "parabola" is actually the x-axis 
y = 0.) 

Observe that all these parabolas pass through the origin (0, 0) , but none of 
them passes through any other point on the y-axis. It follows that the initial value 
problem in ( 1 3) has infinitely many solutions, but the initial value problem 

dy 
x

dx 
= 2y ,  y (O) = b  ( 14) 

has no solution if b "1= O. 
Finally, note that through any point off the y-axis there passes only one of the 

parabolas y = Cx2 • Hence, if a "1= 0, then the initial value problem 

dy 
x 

dx 
= 2y , y (a) = b ( 1 5) 

has a unique solution on any interval that contains the point x = a but not the origin 
x = 0 In summary, the initial value problem in ( 1 5) has 

• a unique solution near (a , b) if a "1= 0; 
• no solution if a = 0 but b "1= 0; 
• infinitely many solutions if a = b = O. • 

Still more can be said about the initial value problem in ( 1 5) .  Consider a 
typical initial point off the y-axis-for instance the point (- 1 , 1 )  indicated in Fig. 
1 .3 . 14. Then for any value of the constant C the function defined by 

y (x)  = Ix2 if x ::::: 0, 
Cx2 if x > 0 

is continuous and satisfies the initial value problem 

dy 
x - = 2y , y (- 1 )  = 1 .  

dx 

( 1 6) 

( 1 7) 

For a particular value of C, the solution curve defined by ( 1 6) consists of the left 
half of the parabola y = x2 and the right half of the parabola y = Cx2 . Thus the 
unique solution curve near (- 1 , 1 )  branches at the origin into the infinitely many 
solution curves illustrated in Fig. 1 .3 . 14 .  

We therefore see that Theorem 1 ( if  its hypotheses are satisfied) guarantees 
uniqueness of the solution near the initial point (a , b) ,  but a solution curve through 
(a , b) may eventually branch elsewhere so that uniqueness is lost. Thus a solution 
may exist on a larger interval than one on which the solution is unique. For instance, 
the solution y (x)  = x2 of the initial value problem in ( 1 7) exists on the whole x
axis ,  but this solution is unique only on the negative x -axis - 00  < x < O. 



1111 Problems 

In Problems 1 through 10, we have provided the slope field of 
the indicated differential equation, together with one or more 
solution curves. Sketch likely solution curves through the ad
ditional points marked in each slope field. 
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7 
dy . . 

• - = smx + sm y  dx 

2 

.... 

-1 

- 2  

-2 - 1  

FIGURE 1.3.21. 

dy 
8. - = x2 _ y dx 

9. 

3 

2 

.... 0 

-1 

-2  

FIGURE 1.3.22. 

dy 2 - = x  - y - 2  dx 
3 

2 

.... 0 1 / /  ...... - " \ 1 1 1 / - ...... ' 
-1 ' 1 1 / - - "  

1 1 1 1 / ...... - ..... ' I I 1 1 / / - - ...... 
-2  I I f I I / .... - -I � I I ' I / "-I I f I 1 /  / .... ..... I I I I I I 1 / ,.. 
-3  

- 3  -2 - 1  

FIGURE 1.3.23. 

:: = : :: ::: ::� : :  
0 2 3 
x 

x 

0 2 3 
x 

O 
dy 2 · 1 . - = -x + sm y  dx 

.... 

-1 

- 2  

FIGURE 1.3.24. 

x 

In Problems I I through 20, determine whether Theorem I does 
or does not guarantee existence of a solution of the given initial 
value problem. If existence is guaranteed, determine whether 
Theorem I does or does not guarantee uniqueness of that so-
lution. 

11 .  
dy 
_ = 2x2y2 ; dx y ( l ) = - 1  

dy y ( 1 ) = 1 12. - = x ln y ; dx 
dy 

13. - = -W; y (O) = 1 dx 
dy 

14. dx = -W; y (O) = 0 

15. 
dy y (2) = 2 - = "';x - y ; dx 
dy 

16. dx = "';x - y ; y (2) = 1 

17. 
dy y (O) = 1 y- = x  - 1 ; dx 
dy 

18. y- = x - l ;  y ( 1 ) = 0 dx 

19. 
dy y (O) = 0 _ = In ( 1 + y2) ; dx 

20. 
dy y (O) = 1 _ = x2 _ y2 . dx 

In Problems 21 and 22, first use the method of Example 2 
to construct a slope field for the given differential equation. 
Then sketch the solution curve corresponding to the given ini-
tial condition. Finally, use this solution curve to estimate the 
desired value of the solution y (x) . 
21.  y' = x + y, y (O) = 0; y (-4) = ?  
22. y' = y - x, y (4) = 0; y (-4) = ?  



Problems 23 and 24 are like Problems 21 and 22, but now 
use a computer algebra system to plot and print out a slope 
fieldfor the given differential equation. lfyou wish (and know 
how), you can check your manually sketched solution curve by 
plotting it with the computer. 
23. 

24. 

25. 

y' = x2 + y2 - 1 ,  y eO) = 0; y (2) = ? 
1 y' = x + "2?2 , y(-2) = 0; y (2) = ?  

You bail out of the helicopter of Example 3 and pull the 
ripcord of your parachute. Now k = 1 .6 in Eq. (3) , so 
your downward velocity satisfies the initial value problem 

dv 
dt = 32 - 1 .6v, v (O) = O. 

In order to investigate your chances of survival, construct 
a slope field for this differential equation and sketch the 
appropriate solution curve. What will your limiting veloc
ity be? Will a strategically located haystack do any good? 
How long will it take you to reach 95% of your limiting 
velocity? 

26. Suppose the deer population P (t ) in a small forest satisfies 
the logistic equation 

dP 
dt = 0.0225P - 0.0003P2 . 

Construct a slope field and appropriate solution curve to 
answer the following questions :  If there are 25 deer at 
time t = 0 and t is measured in months, how long will 
it take the number of deer to double? What will be the 
limiting deer population? 

The next seven problems illustrate the fact that, if the hypothe
ses of Theorem 1 are not satisfied, then the initial value prob
lem y' = f(x , y), y ea) = b may have either no solutions, 
finitely many solutions, or infinitely many solutions. 
27. (a) Verify that if c is a constant, then the function defined 

piecewise by 

y (x) = { �x _ C)2 
for x � c, 
for x > c 

satisfies the differential equation y' = 2..jY for all x (in
cluding the point x = c). Construct a figure illustrating the 
fact that the initial value problem y' = 2..jY, yeO) = 0 has 
infinitely many different solutions. (b) For what values of 
b does the initial value problem y' = 2..jY, y eO) = b have 
(i) no solution, (ii) a unique solution that is defined for all 
x?  

28. Verify that i f  k i s  a constant, then the function y (x) == kx 
satisfies the differential equation xy' = y for all x. Con
struct a slope field and several of these straight line so
lution curves. Then determine (in terms of a and b) how 
many different solutions the initial value problem xy' = y, 
y ea) = b has-one, none, or infinitely many. 
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29. Verify that if c is a constant, then the function defined 
piecewise by 

y (x) = { o 3 (x - c) 
for x � c, 
for x > c 

satisfies the differential equation y' = 3y2/3 for all x. Can 
you also use the "left half" of the cubic y = (x - c)3 in 
piecing together a solution curve of the differential equa
tion? (See Fig. 1 .3 .25.) Sketch a variety of such solution 
curves. Is there a point (a , b) of the xy-plane such that 
the initial value problem y' = 3y2/3 , yea) = b has either 
no solution or a unique solution that is defined for all x? 
Reconcile your answer with Theorem 1 .  

y 

c 

FIGURE 1.3.25. A suggestion for Problem 29. 

30. Verify that if c is a constant, then the function defined 
piecewise by 

1
+1 

y (x) = cos (x - c) 
- 1  

if x � c, 
if c < x < c + Jl' , 
if x � c + Jl' 

satisfies the differential equation y' = -.Ji=Y2 for all x. 
(Perhaps a preliminary sketch with c = 0 will be helpful .) 
Sketch a variety of such solution curves. Then determine 
(in terms of a and b) how many different solutions the ini
tial value problem y' = -�, y ea) = b has. 

31. Carry out an investigation similar to that in Problem 30, 
except with the differential equation y' = +�. 
Does it suffice simply to replace cos (x - c) with sin (x - c) 
in piecing together a solution that is defined for all x? 

32. Verify that i f  c > 0 , then the function defined piecewise 
by 

{ O ·f 2 < 
( ) 

1 X = c, y x = (x2 - C)2 if x2 > c 

satisfies the differential equation y' = 4x..jY for all x . 
Sketch a variety of such solution curves for different val
ues of c. Then determine (in terms of a and b) how many 
different solutions the initial value problem y' = 4x.JY, 
yea) = b has . 
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33. If c oft 0, verify that the function defined by y (x) = 
xl(cx - 1 )  (with graph illustrated in Fig. 1 .3 .26) satisfies 
the differential equation x2y' + y2 = ° if x oft 1/c. Sketch 
a variety of such solution curves for different values of 
c. Also, note the constant-valued function y (x) == 

° that 
does not result from any choice of the constant c. Finally, 
determine (in terms of a and b) how many different solu
tions the initial value problem x2y' + y2 = 0, y (a) = b 
has. 
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FIGURE 1 .3.26. Slope field for x2y' + y2 = ° 

and graph of a solution y (x) = xl(cx - 1 ) .  

1 .3 Applic ation 

34. (a) Use the direction field o f  Problem 5 to estimate the 
values at x = 1 of the two solutions of the differ
ential equation y' = y - x + 1 with initial values 
y(- l ) = - 1 .2 and y(- l ) = -0.8. 

(b) Use a computer algebra system to estimate the val
ues at x = 3 of the two solutions of this differen
tial equation with initial values y ( -3) = -3.01  and 
y( -3) = -2.99. 

The lesson of this problem is that small changes in initial 
conditions can make big differences in results. 

35. (a) Use the direction field of Problem 6 to estimate the 
values at x = 2 of the two solutions of the differ
ential equation y' = x - y + 1 with initial values 
y( -3) = -0.2 and y( -3) = +0.2. 

(b) Use a computer algebra system to estimate the val
ues at x = 3 of the two solutions of this differen
tial equation with initial values y( -3) = -0.5 and 
y (-3) = +0.5 . 

The lesson of this problem is that big changes in initial 
conditions may make only small differences in results . 

Widely available computer algebra systems and technical computing environments 
include facilities to automate the construction of slope fields and solution curves, as 
do some graphing calculators (see Fig. 1 .3.27). 

FIGURE 1 .3.27. Slope field and solution curves for the differential 
equation 

dy . 
dx = sm(x - y) 

with initial points (0, b) , b = -3, - 1 ,  -2, 0, 2, 4 and window 
-5 � x , y � 5 on a TI-89 graphing calculator. 

The applications manual accompanying this textbook includes discussion of 
Maple™, Mathematica™, and MATLABTM resources for the investigation of dif
ferential equations. For instance, the Maple command 

with ( DEtool s ) : 

DEplot ( di f f ( y ( x ) , x ) =s in ( x-y ( x » , y ( x ) ,  x=-5 • •  5 ,  y=- 5 • •  5 ) J 
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FIGURE 1.3.28. Computer
generated slope field and solution 
curves for the differential equation 
y' = sin(x - y) .  

and the Mathematica command 
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« Graphics\PlotField . m  
PlotVectorField [ { l , Sin [ x-y ] } , { x , -5 , 5 } , {y ,  -5 , 5 } ]  

produce slope fields similar to the one shown in Fig. 1 .3 .28. Figure 1 .3 .28 it
self was generated with the MATLAB program dfield [John Polking and David 
Arnold, Ordinary Differential Equations Using MATLAB, 2nd edition, Upper Sad
dle River, NJ: Prentice Hall, 1 999] that is freely available for educational use 
(math.rice.edul"-'dfield) .  When a differential equation is entered in the dfield 

setup menu (Fig. 1 .3 .29), you can (with mouse button clicks) plot both a slope field 
and the solution curve (or curves) through any desired point (or points). Another 
freely available and user-friendly MATLAB-based ODE package with impressive 
graphical capabilities is lode (www.math.uiuc.eduliode). 

FIGURE 1.3.29. MATLAB dfield setup to construct slope field and solution curves 
for y' = sin(x - y) .  

Use a graphing calculator or  computer system in the following investigations. 
You might warm up by generating the slope fields and some solution curves for 
Problems 1 through lO in this section. 

INVESTIGATION A: Plot a slope field and typical solution curves for the differen
tial equation dy/dx = sin(x - y) ,  but with a larger window than that of Fig. 1 .3 .28. 
With - 1  0 � x � 1 0, - 1  0 � y � 1 0, for instance, a number of apparent straight 
line solution curves should be visible. 

(a) Substitute y = ax + b in the differential equation to determine what the coeffi
cients a and b must be in order to get a solution. 

(b) A computer algebra system gives the general solution 

y (x) = x - 2 tan- 1 
• 

(X - 2 - C ) 
x - C  

Plot this solution with selected values of the constant C to compare the resulting 
solution curves with those indicated in Fig. 1 .3 .28. Can you see that no value of 
C yields the linear solution y = x - rr /2 corresponding to the initial condition 
y (rr/2) = O? Are there any values of C for which the corresponding solution 
curves lie close to this straight line solution curve? 
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INVESTIGATION B: For your own personal investigation, let n be the smallest 
digit in your student 10 number that is greater than 1 ,  and consider the differential 
equation 

dy 1 
- = - cos (x - ny) .  
dx n 

(a) First investigate (as in part (a) of Investigation A) the possibility of straight line 
solutions .  

(b) Then generate a slope field for this differential equation, with the viewing win
dow chosen so that you can picture some of these straight lines, plus a sufficient 
number of nonlinear solution curves that you can formulate a conjecture about 
what happens to y (x)  as x -+ +00. State your inference as plainly as you can. 
Given the initial value y eO) = Yo , try to predict (perhaps in terms of Yo) how 
y (x)  behaves as x -+ +00. 

(c) A computer algebra system gives the general solution 

Can you make a connection between this symbolic solution and your graphi
cally generated solution curves (straight lines or otherwise)? 

The first-order differential equation 

dy 
- = H (x , y) 
dx 

(1)  

is called separable provided that H (x , y) can be written as the product of a function 
of x and a function of y :  

dy g (x) 

dx 
= g (x )h (y) = 

f (y) ' 

where h (y) = 1/ f (y) . In this case the variables x and y can be separated-isolated 
on opposite sides of an equation-by writing informally the equation 

f ey) dy = g (x) dx , 

which we understand to be concise notation for the differential equation 

dy 
f ey) 

dx 
= g (x ) .  (2) 

It is easy to solve this special type of differential equation simply by integrating 
both sides with respect to x :  

f f (y (x» �� dx = f g (x) dx + C; 
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equivalently, f f(y) dy = f g (x) dx + C. (3) 

All that is required is that the antiderivatives 

F(y) = f f(y) dy and G (x) = f g(x) dx 

can be found. To see that Eqs.  (2) and (3) are equivalent, note the following conse
quence of the chain rule: 

I I dy DAF(y (x)) ]  = F (y (x) )y (x) = f(y) - = g(x)  = Dx [G(x)] ,  
dx 

which in tum is equivalent to 

F(y(x)) = G(x) + C, (4) 

because two functions have the same derivative on an interval if and only if they 
differ by a constant on that interval. 

Solve the initial value problem 

dy 
- = -6xy , y (O) = 7 .  
dx 

Solution Informally, we divide both sides of the differential equation by y and multiply each 
side by dx to get 

8 I 
6 I 

I 
4 I 

I 2 I 
'" 0 H':�"E----if--3��*'"I 
-2 
-4 
-6 
-8 

.-�2--��--����--� 
x 

FIGURE 1.4.1. Slope field and 
solution curves for y' = -6xy in 
Example 1 .  

Hence 

dy 
-- = -6x dx . y 

f d; = f (-6X) dX ;  

I n  I y l = -3x2 + C .  

We see from the initial condition y(O) = 7 that y (x) i s  positive near x = 0, so we 
may delete the absolute value symbols :  

and hence 

ln y = -3x2 + C, 

y (x) = e-3x2+c = e-3x2 eC = Ae-3x2 , 

where A = eC • The condition y (O) = 7 yields A = 7, so the desired solution is 

y (x)  = 7e-3x2 . 

This is the upper emphasized solution curve shown in Fig. 1 .4. 1 .  • 
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Remark: Suppose, instead, that the initial condition in Example 1 had been 
y (O) = -4. Then it would follow that y (x) is negative near x = O. We should 
therefore replace I y l  with -y in the integrated equation In I y l = -3x2 + C to 
obtain 

In( -y) = -3x2 + C. 

The initial condition then yields C = In 4, so In(-y) = -3x2 + In 4, and hence 

This is the lower emphasized solution curve in Fig. 1 .4. 1 .  • 

Solve the differential equation 

dy 4 - 2x 
dx 

= 
3y2 - 5 · (5) 

Solution When we separate the variables and integrate both sides, we get 

- - - - - - - - .- - �  - ..:.-. -4 -.; ;;'  _ .,.;. _ ..:. ·- ( 1 ,  3)- -.-: � . .:. .:.. .:,. . 

-2 

. . . 

- � - � - - - - - - - - .:..... --6 '---'---'---'---'---'--'----' -6 -4 -2 0 2 4 6 8 
x 

FIGURE 1.4.2. Slope field and 
solution curves for 
y' = (4 - 2x)/(3y2 - 5) in 
Example 2. 

f (3i - 5) dy = f (4 - 2x) dx ; 

l - 5y = 4x - x2 + C. 

This equation i s  not readily solved for y as an explicit function of x. 

(6) 

• 

As Example 2 illustrates ,  it may or may not be possible or practical to solve 
Eq. (4) explicitly for y in terms of x .  If not, then we call (4) an implicit solution 
of the differential equation in (2). Thus Eq. (6) gives an implicit solution of the 
differential equation in (5) .  Although it is not convenient to solve Eq. (6) explicitly 
in terms of x, we see that each solution curve y = y (x) lies on a contour (or level) 
curve where the function 

H (x ,  y) = x2 - 4x + l - 5 y 

is constant. Figure 1 .4 .2 shows several of these contour curves . 

• �¥I*!. il,,�i!.'II'I'r-;1Ino sol-:;�-th-e-i�·i-tl-· a-l -va
-I-u�p��b-l-em--- - -

dy 4 - 2x - = , y ( l )  = 3 ,  
dx 3y2 - 5 

(7) 

we substitute x = 1 and y = 3 in Eq. (6) and get C = 9. Thus the desired particular 
solution y (x) is defined implicitly by the equation 

l - 5y = 4x - x2 + 9.  (8) 

The corresponding solution curve y = y (x) lies on the upper contour curve in 
Fig. 1 .4.2-the one passing through ( 1 , 3 ) .  Because the graph of a differentiable 
solution cannot have a vertical tangent line anywhere, it appears from the figure 
that this particular solution is defined on the interval (- 1 ,  5) but not on the interval 
(-3 , 7) . • 
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Remark 1 :  When a specific value of x is substituted in Eq. (8), we can 

attempt to solve numerically for y .  For instance, x = 4 yields the equation 

f (y) = l - 5y - 9 = O. 

Figure 1 .4 .3 shows the graph of f.  With a graphing calculator we can solve for the 
single real root y � 2. 8552. This yields the value y (4) � 2. 8552 of the particular 
solution in Example 3 .  

Remark 2 :  If  the initial condition in  (7) is replaced with the condition 
y ( 1 )  = 0, then the resulting particular solution of the differential equation in (5) 
lies on the lower "half" of the oval contour curve in Fig. 1 .4.2. It appears that this 
particular solution through ( 1 , 0) is defined on the interval (0, 4) but not on the 
interval (- 1 , 5) . On the other hand, with the initial condition y ( 1 )  = -2 we get the 
lower contour curve in Fig. 1 .4.2. This particular solution is defined for all x .  Thus 
the initial condition can determine whether a particular solution is defined on the 
whole real line or only on some bounded interval. With a computer algebra system 
one can readily calculate a table of values of the y-solutions of Eq. (8) for x-values 
at desired increments from x = - 1  to x = 5 (for instance). Such a table of values 
serves effectively as a "numerical solution" of the initial value problem in (7) . • 

Implicit, General, and Singular Solutions 

The equation K (x , y) = 0 is commonly called an implicit solution of a differential 
equation if it is satisfied (on some interval) by some solution y = y (x) of the 
differential equation. But note that a particular solution y = y (x) of K (x , y) = 0 
may or may not satisfy a given initial condition. For example, differentiation of 
x2 + y2 = 4 yields 

dy 
x + y - = 0, 

dx 

so x2 + y2 = 4 is an implicit solution of the differential equation x + yy' = O. But 
only the first of the two explicit solutions 

y (x)  = +J4 - x2 and y (x)  = -J4 - x2 

satisfies the initial condition y (O) = 2 (Fig. 1 .4.4). 
Remark 1 :  You should not assume that every possible algebraic solution 

y = y (x) of an implicit solution satisfies the same differential equation. For in
stance, if we multiply the implicit solution x2 + y2 - 4 = 0 by the factor (y - 2x) ,  
then we  get the new implicit solution 

(y - 2x) (x2 + i - 4) = 0 

that yields (or "contains") not only the previously noted explicit solutions y = 

+J 4 - x2 and y = -J 4 - x2 of the differential equation x + yy' = 0, but also the 
additional function y = 2x that does not satisfy this differential equation. 

Remark 2 :  Similarly, solutions of a given differential equation can be 
either gained or lost when it is multiplied or divided by an algebraic factor. For 
instance, consider the differential equation 

dy 
(y - 2x) y - = -x (y - 2x) 

dx 
(9) 
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FIGURE 1.4.5. The general 
solution curves y = (x - C)2 and 
the singular solution curve y = 0 
of the differential equation 
(y')2 = 4y. 

Example 4 

having the obvious solution y = 2x . But if we divide both sides by the common 
factor (y - 2x) ,  then we get the previously discussed differential equation 

dy 
y- = -x , 

dx 
dy 

or x + y- = 0, 
dx 

( 10) 

of which y = 2x is not a solution. Thus we "lose" the solution y = 2x of Eq. (9) 
upon its division by the factor (y - 2x) ;  alternatively, we "gain" this new solution 
when we multiply Eq. ( 1 0) by (y - 2x) .  Such elementary algebraic operations to 
simplify a given differential equation before attempting to solve it are common in 
practice, but the possibility of loss or gain of such "extraneous solutions" should be 
kept in mind. • 

A solution of a differential equation that contains an "arbitrary constant" (like 
the constant C in the solution of Examples 1 and 2) is commonly called a general 
solution of the differential equation; any particular choice of a specific value for C 
yields a single particular solution of the equation. 

The argument preceding Example 1 actually suffices to show that every partic
ular solution of the differential equation f (y) y' = g (x) in (2) satisfies the equation 
F(y(x)) = G (x )  + C in (4) . Consequently, it is appropriate to call (4) not merely a 
general solution of (2), but the general solution of (2) . 

In Section 1 .5 we shall see that every particular solution of a linear first-order 
differential equation is contained in its general solution. By contrast, it is com
mon for a nonlinear first-order differential equation to have both a general solu
tion involving an arbitrary constant C and one or several particular solutions that 
cannot be obtained by selecting a value for C. These exceptional solutions are 
frequently called singular solutions. In Problem 30 we ask you to show that the 
general solution of the differential equation (y')2 = 4 y yields the family of parabo
las y = (x - C)2 illustrated in Fig. 1 .4 .5 ,  and to observe that the constant-valued 
function y (x) == 0 is a singular solution that cannot be obtained from the general 
solution by any choice of the arbitrary constant C. 

Find all solutions of  the differential equation 

dy - = 6x (y - 1 )2/3 . 
dx 

Solution Separation of variables gives 

x 

FIGURE 1.4.6. General and 
singular solution curves for 
y' = 6x(y - 1 )2/3 . 

! 1 
2/3 dy = ! 2X dX ;  

3 (y - 1 )  

( y  - 1 ) 1 /3 = x2 + C ;  

y (x) = 1 + (x2 + C)3 . 

Positive values of the arbitrary constant C give the solution curves in Fig. 1 .4.6 
that lie above the line y = 1 ,  whereas negative values yield those that dip below 
it. The value C = 0 gives the solution y(x) = 1 + x6 , but no value of C gives 
the singular solution y (x) == 1 that was lost when the variables were separated. 
Note that the two different solutions y (x) == 1 and y (x) = 1 + (x2 - 1 )3 both 
satisfy the initial condition y ( 1 )  = 1 .  Indeed, the whole singular solution curve 
y = 1 consists of points where the solution is not unique and where the function 
f(x ,  y) = 6x (y - 1 )2/3 is not differentiable. • 
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Natural Growth and Decay 

The differential equation 

dx 
= kx (k a constant) 

dt 
( 1 1 )  

serves as  a mathematical model for a remarkably wide range of natural phenomena
any involving a quantity whose time rate of change is proportional to its current size. 
Here are some examples . 

POPULATION GROWTH : Suppose that p et) is the number of individuals in a 
population (of humans, or insects, or bacteria) having constant birth and death rates 
fJ and 8 (in births or deaths per individual per unit of time) . Then, during a short 
time interval /:).t,  approximately fJ P (t) /:).t births and 8 P (t ) /:).t deaths occur, so the 
change in p et) is given approximately by 

and therefore 

where k = fJ - 8 .  

/:)'P  � ( fJ  - 8 ) P (t) /:).t ,  

dP . /:)'P  
- =  hm - = kP , 
dt M-->O /:).t 

( 12) 

COMPOUND INTEREST: Let A (t) be the number of dollars in a savings account 
at time t (in years) ,  and suppose that the interest is compounded continuously at 
an annual interest rate r .  (Note that 10% annual interest means that r = 0. 10.) 
Continuous compounding means that during a short time interval /:).t, the amount of 
interest added to the account is approximately /:).A = r A (t) /:).t ,  so that 

dA /:).A 
- =  l im - = rA .  
dt �t-->O /:).t 

( 1 3) 

RADIOACTIVE DECAY: Consider a sample of material that contains N (t) atoms 
of a certain radioactive isotope at time t .  It has been observed that a constant fraction 
of those radioactive atoms will spontaneously decay (into atoms of another element 
or into another isotope of the same element) during each unit of time. Consequently, 
the sample behaves exactly like a population with a constant death rate and no births. 
To write a model for N(t ) ,  we use Eq. ( 1 2) with N in place of P, with k > 0 in 
place of 8 ,  and with fJ = O. We thus get the differential equation 

dN 
- = -kN . 
dt 

The value of k depends on the particular radioactive isotope. 

( 14) 

The key to the method of radiocarbon dating is that a constant proportion 
of the carbon atoms in any living creature is made up of the radioactive isotope 
14C of carbon. This proportion remains constant because the fraction of 14C in the 
atmosphere remains almost constant, and living matter is continuously taking up 
carbon from the air or is consuming other living matter containing the same constant 
ratio of 14C atoms to ordinary 1 2C atoms . This same ratio permeates all life, because 
organic processes seem to make no distinction between the two isotopes. 
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The ratio of 14C to normal carbon remains constant in the atmosphere because, 
although 14C is radioactive and slowly decays, the amount is continuously replen
ished through the conversion of 1 4N (ordinary nitrogen) to 1 4C by cosmic rays bom
barding the upper atmosphere. Over the long history of the planet, this decay and 
replenishment process has come into nearly steady state. 

Of course, when a living organism dies, it ceases its metabolism of carbon 
and the process of radioactive decay begins to deplete its 14C content. There is no 
replenishment of this 14C, and consequently the ratio of 14C to normal carbon begins 
to drop. By measuring this ratio, the amount of time elapsed since the death of the 
organism can be estimated. For such purposes it is necessary to measure the decay 
constant k. For 14C, it is known that k � 0 .000 1 2 1 6  if t is measured in years. 

(Matters are not as simple as we have made them appear. In applying the tech
nique of radiocarbon dating, extreme care must be taken to avoid contaminating the 
sample with organic matter or even with ordinary fresh air. In addition, the cosmic 
ray levels apparently have not been constant, so the ratio of 1 4C in the atmosphere 
has varied over the past centuries. By using independent methods of dating sam
ples, researchers in this area have compiled tables of correction factors to enhance 
the accuracy of this process.) 

DRUG ELIMINATION : In many cases the amount A (t)  of a certain drug in the 
bloodstream, measured by the excess over the natural level of the drug, will decline 
at a rate proportional to the current excess amount. That is , 

dA 
- = -AA , 
dt 

where A > O. The parameter A is called the elimination constant of the drug. 

The Natural Growth Equation 

( 1 5) 

The prototype differential equation dx/dt = kx with x (t) > 0 and k a constant 
(either negative or positive) is readily solved by separating the variables and inte
grating: 

f � dX = f k dt ;  

In x = kt + C. 

Then we solve for x :  

Because C i s  a constant, so i s  A = e C . It i s  also clear that A = x (0) = Xo , so the 
particular solution of Eq. ( 1 1 )  with the initial condition x (0) = Xo is simply 

x (t) = xoekt • ( 16) 

Because of the presence of the natural exponential function in its solution, the 
differential equation 

dx 
- = kx 
dt 

( 17) 

is often called the exponential or natural growth equation. Figure 1 04.7 shows a 
typical graph of x (t) in the case k > 0; the case k < 0 is illustrated in Fig. 1 .4.8 . 
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x 

x = Xo ekt 
(k > 0) 

FIGURE 1.4.7. Natural growth. 

x 

FIGURE 1.4.8. Natural decay. 

According to data listed at www.census.gov, the world's total population reached 
6 billion persons in mid- 1 999, and was then increasing at the rate of about 2 12 
thousand persons each day. Assuming that natural popUlation growth at this rate 
continues, we want to answer these questions: 
(a) What is the annual growth rate k? 
(b) What will be the world population at the middle of the 21 st century? 
(c) How long will it take the world population to increase tenfold-thereby reach
ing the 60 billion that some demographers believe to be the maximum for which the 
planet can provide adequate food supplies? 

Solution (a) We measure the world popUlation p et) in billions and measure time in years. 
We take t = 0 to correspond to (mid) 1 999, so Po = 6. The fact that P is increasing 
by 2 1 2,000, or 0.0002 1 2  billion, persons per day at time t = 0 means that 

PI (O) = (0.0002 1 2) (365 .25) � 0.07743 

billion per year. From the natural growth equation pi = k P with t = 0 we now 
obtain 

k = PI (O) � 0.07743 � 0.0 1 29 .  
P (O) 6 

Thus the world population was growing at the rate of about 1 .29% annually in 1 999. 
This value of k gives the world population function 

p et) = 6eO.O I 29r . 
(b) With t = 5 1  we obtain the prediction 

P (5 1 )  = 6e(0.0 1 29) (5 1 ) � 1 1 .58 (billion) 

for the world population in mid-2050 (so the population will almost have doubled 
in the just over a half-century since 1 999). 
(c) The world population should reach 60 billion when 

60 = 6eO.O I 29r ; 

and thus in the year 2 1 77 .  

In 10 
that is, when t = 

0.0 1 29 
� 1 78 ;  

• 
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Note: Actually, the rate of growth of the world population is expected to 
slow somewhat during the next half-century, and the best current prediction for the 
2050 population is "only" 9 . 1 billion. A simple mathematical model cannot be 
expected to mirror precisely the complexity of the real world. 

The decay constant of a radioactive isotope is often specified in terms of an
other empirical constant, the half-life of the isotope, because this parameter is more 
convenient. The half-life r of a radioactive isotope is the time required for half of 
it to decay. To find the relationship between k and r ,  we set t = r and N = � No 
in the equation N (t) = Noekt , so that � No = NoekT: .  When we solve for r ,  we find 
that 

In 2 
r = T · ( 1 8) 

Por example, the half-life of 14C is r � (1n 2)/(0.000 1 2 1 6) ,  approximately 5700 
years . 

A specimen of charcoal found at Stonehenge turns out to contain 63% as much 
as a sample of present-day charcoal of equal mass . What is the age of the sample? 

Solution We take t = 0 as the time of the death of the tree from which the Stonehenge 
charcoal was made and No as the number of 14C atoms that the Stonehenge sample 
contained then. We are given that N = (0.63 )No now, so we solve the equation 
(0.63 )No = Noe-kt with the value k = 0.000 1 2 1 6. Thus we find that 

Exa mple 7 

In(0.63) 
t = - 0.000 1 2 1 6  

� 3800 (years) .  

Thus the sample is about 3800 years old. If  i t  has any connection with the builders of 
Stonehenge, our computations suggest that this observatory, monument, or temple
whichever it may be-dates from 1 800 B . C .  or earlier. • 

Cooling and Heating 

According to Newton 's law of cooling (Eq. (3) of Section 1 . 1 ) , the time rate of 
change of the temperature T (t) of a body immersed in a medium of constant tem
perature A is proportional to the difference A - T .  That is, 

dT 
- = k (A - T ) , 
dt 

( 19) 

where k is a positive constant. This is an instance of the linear first-order differential 
equation with constant coefficients : 

dx 
dt 

= ax + b .  (20) 

It includes the exponential equation as a special case (b = 0) and is also easy to 
solve by separation of variables . 

A 4-lb roast, initially at 50oP, is placed in a 375 °P  oven at 5 :00 P.M .  After 75 
minutes it is found that the temperature T (t) of the roast is 1 25 ° F. When will the 
roast be 1 500P (medium rare)? 
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Solution We take time t in minutes, with t = 0 corresponding to 5 :00 P. M .  We also assume 
(somewhat unrealistically) that at any instant the temperature T (t )  of the roast is 
uniform throughout. We have T (t ) < A = 375, T (O) = 50, and T (75) = 1 25 .  
Hence dT dt = k (375 - T) ;  

f 1 dT = f k dt . 
375 - T ' 

- In(375 - T) = kt + C;  

375 - T = Be-kt . 

Now T (0) = 50 implies that B = 325, so T (t) = 375 - 325e-kt . We also know 
that T = 1 25 when t = 75. Substitution of these values in the preceding equation 
yields k = -is  In ( ��� ) � 0.0035 .  

Hence we finally solve the equation 

1 50 = 375 - 325e(-o.0035) t 

for t = - [In (225j325)]j(0.0035) � 1 05 (min), the total cooking time required. 
Because the roast was placed in the oven at 5 :00 P. M . ,  it should be removed at about 
6 :45 P. M .  • 

TorriceIIi 's Law 

Suppose that a water tank has a hole with area a at its bottom, from which water is 
leaking. Denote by y (t )  the depth of water in the tank at time t, and by V(t) the 
volume of water in the tank then. It is plausible-and true, under ideal conditions
that the velocity of water exiting through the hole is 

v = J2gy , (2 1 )  

which i s  the velocity a drop of water would acquire in falling freely from the surface 
of the water to the hole (see Problem 35 of Section 1 .2) . One can derive this formula 
beginning with the assumption that the sum of the kinetic and potential energy of the 
system remains constant. Under real conditions, taking into account the constriction 
of a water jet from an orifice, v = cJ2gy , where c is an empirical constant between 
o and 1 (usually about 0.6 for a small continuous stream of water) . For simplicity 
we take c = 1 in the following discussion. 

As a consequence of Eq. (2 1 ), we have 

equivalently, 

dV 
- = -av = -aJ2gy; dt 

dV 
- = -k,J"Y where k = a../2i. dt 

(22a) 

(22b) 

This is a statement of Torricelli ' s law for a draining tank. Let A (y) denote the hori
zontal cross-sectional area of the tank at height y. Then, applied to a thin horizontal 
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slice of water at height y with area A (y) and thickness dy, the integral calculus 
method of cross sections gives 

V (y) = loy A (y) dY· 

The fundamental theorem of calculus therefore implies that dV /dy 
hence that 

dV 
= 

dV  . dy 
= A (  ) 

dy 
. 

dt dy dt y dt 

From Eqs . (22) and (23) we finally obtain 

dy � A (y) - = -ay 2gy = -ky'y , dt 

an alternative form of Torricelli ' s law. 

A (y) and 

(23) 

(24) 

• 

A hemispherical bowl has top radius 4 ft and at time t = 0 is full of water. At that 
moment a circular hole with diameter 1 in. is opened in the bottom of the tank. How 
long will it take for all the water to drain from the tank? 

Solution From the right triangle in Fig. 1 .4 .9, we see that 

FIGURE 1.4.9. Draining a 
hemispherical tank. 

A (y) = Jrr2 = Jr [ 1 6  - (4 - y)2] = Jr (8y - i) .  

With g = 32 ft/s2 , Eq. (24) becomes 

Now y (O) = 4, so 

2 dy 
( 1 ) 2 � Jr (8y - Y ) dt 

= -Jr 24 y 2 ·  32y ; 

f (8y l /2 - l/2) dy = - f -1z dt ;  

!Qy3/2 _ l y5/2 - _ -'!"t + C 3 5 - 72 . 

C - 16 • 43/2 _ l . 45/2 _ 448 
- 3 5 - 15 · 

The tank is empty when y = 0, thus when 

t = 72 . �8 � 2 1 50 (s) ; 

that is , about 35 min 50 s. So it takes slightly less than 36 min for the tank to 
drain. • 
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Find general solutions (implicit ifnecessary, explicit if conve
nient) of the differential equations in Problems 1 through 18. 
Primes denote derivatives with respect to x. 

dy 
1. dx + 2xy = 0 

dy . 
3. dx = y sm x 

5. 2..[X 
dy = j1=Y2 
dx 

dy 
7. - = (64xy ) I /3 

dx 
9. (l - x2 ) dy = 2y dx 

11. y' = xy3 
dy 

13. y3 - = (y4 + 1 )  cos x dx 

15. 
dy 

= 
(x - 1 )y5 

dx x2 (2y3 - y) 
17. y' = l + x + y +xy 

side.) 

dy 
2. - + 2xy2 = 0 dx 

dy 
4. ( l  + x)- = 4y dx 

dy 
6. dx = 3.JXY 

dy 
8. dx = 2x sec y 

10. ( l  + X)2 dy = ( l  + y)2 dx 
12. yy' = X (y2 + 1 )  

14. 
dy 1 + ..[X  
dx 1 + ,JY 

16. (x2 + l ) (tan y)y' = x 

(Suggestion: Factor the right-hand 

18. x2y' = 1 - x2 + y2 _ x2y2 

Find explicit particular solutions of the initial value problems 
in Problems 19 through 28. 

dy 
19. dx = yeX ,  y eO) = 2e 

dy 
20. dx = 3x2 (y2 + 1 ) ,  y eO) = 1 

dy x 
21. 2y- = y (5) = 2 dx v'x2 - 16 ' 

dy 
22. dx = 4x3y - y, y ( l ) = -3 

dy 
23. - + 1 = 2y, y ( l ) = 1 dx 

dy 
24. (tan x) dx = y, y On) = �n 

dy 
25. x- - y = 2x2y , y ( l ) = 1 dx 

dy 
26. dx = 2xy2 + 3x2y2 , y ( l ) = - 1  

27. �� = 6e2x-y , y eO) = 0 

dy 
28. 2..[X - = cos2 y, y (4) = nj4 

dx 
29. (a) Find a general solution of the differential equation 

dyjdx = y2 . (b) Find a singular solution that is not in
cluded in the general solution. (c) Inspect a sketch of typi
cal solution curves to determine the points (a , b) for which 
the initial value problem y' = y2 , y (a) = b has a unique 
solution. 
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30. Solve the differential equation (dyjdx)2 = 4y to verify the 
general solution curves and singular solution curve that 
are illustrated in Fig. 1 .4 .5 .  Then determine the points 
(a , b) in the plane for which the initial value problem 
(y')2 = 4y, y ea) = b has (a) no solution, (b) infinitely 
many solutions that are defined for all x, (c) on some 
neighborhood of the point x = a, only finitely many solu
tions. 

31. Discuss the difference between the differential equations 
(dyjdx)2 = 4y and dyjdx = 2,JY. Do they have the 
same solution curves? Why or why not? Determine the 
points (a , b) in the plane for which the initial value prob
lem y' = 2,JY, y ea) = b has (a) no solution, (b) a unique 
solution, (c) infinitely many solutions. 

32. Find a general solution and any singular solutions of the 
differential equation dymyslashdx = yJY2=1. Deter
mine the points (a , b) in the plane for which the initial 
value problem y' = yJY2="1, y ea) = b has (a) no solu
tion, (b) a unique solution, (c) infinitely many solutions. 

33. (Population growth) A certain city had a population of 
25000 in 1960 and a population of 30000 in 1970. Assume 
that its population will continue to grow exponentially at a 
constant rate. What population can its city planners expect 
in the year 2000? 

34. (Population growth) In a certain culture of bacteria, the 
number of bacteria increased sixfold in 10 h. How long 
did it take for the population to double? 

35. (Radiocarbon dating) Carbon extracted from an ancient 
skull contained only one-sixth as much 14C as carbon ex
tracted from present-day bone. How old is the skull? 

36. (Radiocarbon dating) Carbon taken from a purported relic 
of the time of Christ contained 4 .6 x 10 1 0  atoms of 14C 
per gram. Carbon extracted from a present-day specimen 
of the same substance contained 5 .0 x 10 1 0  atoms of 14C 
per gram. Compute the approximate age of the relic. What 
is your opinion as to its authenticity? 

37. (Continuously compounded interest) Upon the birth of 
their first child, a couple deposited $5000 in an account 
that pays 8% interest compounded continuously. The in
terest payments are allowed to accumulate. How much 
will the account contain on the child's eighteenth birth
day? 

38. (Continuously compounded interest) Suppose that you 
discover in your attic an overdue library book on which 
your grandfather owed a fine of 30 cents 100 years ago. If 
an overdue fine grows exponentially at a 5% annual rate 
compounded continuously, how much would you have to 
pay if you returned the book today? 

39. (Drug elimination) Suppose that sodium pentobarbital is 
used to anesthetize a dog. The dog is anesthetized when 
its bloodstream contains at least 45 milligrams (mg) of 
sodium pentobarbitol per kilogram of the dog's body 
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weight. Suppose also that sodium pentobarbitol is elim
inated exponentially from the dog's bloodstream, with a 
half-life of 5 h. What single dose should be administered 
in order to anesthetize a 50-kg dog for 1 h? 

40. The half-life of radioactive cobalt is 5 .27 years . Suppose 
that a nuclear accident has left the level of cobalt radia
tion in a certain region at 1 00 times the level acceptable 
for human habitation. How long will it be until the region 
is again habitable? (Ignore the probable presence of other 
radioactive isotopes.) 

41. Suppose that a mineral body formed in an ancient 
cataclysm-perhaps the formation of the earth itself
originally contained the uranium isotope 238U (which has 
a half-life of 4 .5 1 x 1 09 years) but no lead, the end product 
of the radioactive decay of 238U. If today the ratio of 238U 
atoms to lead atoms in the mineral body is 0.9, when did 
the cataclysm occur? 

42. A certain moon rock was found to contain equal numbers 
of potassium and argon atoms. Assume that all the argon 
is the result of radioactive decay of potassium (its half-life 
is about 1 .28 x 109 years) and that one of every nine potas
sium atom disintegrations yields an argon atom. What is 
the age of the rock, measured from the time it contained 
only potassium? 

43. A pitcher of buttermilk initially at 25 °C  is to be cooled 
by setting it on the front porch, where the temperature is 
0° C. Suppose that the temperature of the buttermilk has 
dropped to 1 5 °C  after 20 min. When will it be at 5 °C? 

44. When sugar is dissolved in water, the amount A that re
mains undissolved after t minutes satisfies 'the differential 
equation dAfdt = -kA (k > 0). If 25% of the sugar dis
solves after 1 min, how long does it take for half of the 
sugar to dissolve? 

45. The intensity 1 of light at a depth of x meters below 
the surface of a lake satisfies the differential equation 
d I/dx = (- 1 .4) I. (a) At what depth is the intensity half 
the intensity 10 at the surface (where x = O)? (b) What 
is the intensity at a depth of 10 m (as a fraction of lo)? 
(c) At what depth will the intensity be 1 % of that at the 
surface? 

46. The barometric pressure p (in inches of mercury) at an 
altitude x miles above sea level satisfies the initial value 
problem dp/dx = (-0.2) p, p (O) = 29 .92. (a) Calculate 
the barometric pressure at 10,000 ft and again at 30,000 
ft. (b) Without prior conditioning, few people can sur
vive when the pressure drops to less than 1 5  in. of mer
cury. How high is that? 

47. A certain piece of dubious information about phenylethy
lamine in the drinking water began to spread one day in a 
city with a population of 1 00,000. Within a week, 1 0,000 
people had heard this rumor. Assume that the rate of in
crease of the number who have heard the rumor is propor
tional to the number who have not yet heard it. How long 
will it be until half the population of the city has heard the 
rumor? 

48. According to one cosmological theory, there were equal 
amounts of the two uranium isotopes 235U and 238U at the 
creation of the universe in the "big bang." At present there 
are 1 37.7 atoms of 238U for each atom of 235U. Using the 
half-lives 4.5 1 x 1 09 years for 238U and 7 . 1 0  x 108 years 
for 235U, calculate the age of the universe. 

49. A cake is removed from an oven at 2 10 °F  and left to cool 
at room temperature, which is 70° F. After 30 min the 
temperature of the cake is 140° F. When will it be 1 00°F? 

50. The amount A (t) of atmospheric pollutants in a certain 
mountain valley grows naturally and is tripling every 7.5 
years . 
(a) If the initial amount is 10  pu (pollutant units), write 

a formula for A (t) giving the amount (in pu) present 
after t years . 

(b) What will be the amount (in pu) of pollutants present 
in the valley atmosphere after 5 years? 

(c) If it will be dangerous to stay in the valley when the 
amount of pollutants reaches 100 pu, how long will 
this take? 

51 .  An accident at a nuclear power plant has left the surround
ing area polluted with radioactive material that decays nat
urally. The initial amount of radioactive material present 
is 15 su (safe units), and 5 months later it is still 10 suo 
(a) Write a formula giving the amount A (t) of radioactive 

material (in su) remaining after t months. 
(b) What amount of radioactive material will remain after 

8 months? 
(c) How long-total number of months or fraction 

thereof-will it be until A = 1 su, so it is safe for 
people to return to the area? 

52. There are now about 3300 different human "language fam
ilies" in the whole world. Assume that all these are de
rived from a single original language, and that a language 
family develops into 1 .5 language families every 6 thou
sand years . About how long ago was the single original 
human language spoken? 

53. Thousands of years ago ancestors of the Native Americans 
crossed the Bering Strait from Asia and entered the west
ern hemisphere. Since then, they have fanned out across 
North and South America. The single language that the 
original Native Americans spoke has since split into many 
Indian "language families." Assume (as in Problem 52) 
that the number of these language families has been mul
tiplied by 1 .5 every 6000 years . There are now 1 50 Native 
American language families in the western hemisphere. 
About when did the ancestors of today 's Native Ameri
cans arrive? 

54. A tank is shaped like a vertical cylinder; it initially con
tains water to a depth of 9 ft, and a bottom plug is removed 
at time t = 0 (hours). After 1 h the depth of the water has 
dropped to 4 ft. How long does it take for all the water to 
drain from the tank? 

55. Suppose that the tank of Problem 48 has a radius of 3 ft 
and that its bottom hole is circular with radius 1 in. How 



long will it take the water (initially 9 ft deep) to drain com
pletely? 

56. At time t = 0 the bottom plug (at the vertex) of a full con
ical water tank 16 ft high is removed. After 1 h the water 
in the tank is 9 ft deep. When will the tank be empty? 

57. Suppose that a cylindrical tank initially containing Vo gal
lons of water drains (through a bottom hole) in T minutes. 
Use Torricelli 's law to show that the volume of water in 
the tank after t � T minutes is V = Vo [ 1  - (t/T ) ]2 . 

58. A water tank has the shape obtained by revolving the curve 
y = X4/3 around the y-axis. A plug at the bottom is re
moved at 1 2  noon, when the depth of water in the tank is 
1 2  ft. At 1 P. M .  the depth of the water is 6 ft. When will 
the tank be empty? 

59. A water tank has the shape obtained by revolving the 
parabola x2 = by around the y-axis. The water depth is 
4 ft at 1 2  noon, when a circular plug in the bottom of the 
tank is removed. At 1 P. M .  the depth of the water is 1 ft. 
(a) Find the depth y (t) of water remaining after t hours. 
(b) When will the tank be empty? (c) If the initial radius 
of the top surface of the water is 2 ft, what is the radius of 
the circular hole in the bottom? 

60. A cylindrical tank with length 5 ft and radius 3 ft is sit
uated with its axis horizontal . If a circular bottom hole 
with a radius of 1 in. is opened and the tank is initially 
half full of xylene, how long will it take for the liquid to 
drain completely? 

61. A spherical tank of radius 4 ft is full of gasoline when a 
circular bottom hole with radius 1 in. is opened. How long 
will be required for all the gasoline to drain from the tank? 

62. Suppose that an initially full hemispherical water tank of 
radius 1 m has its flat side as its bottom. It has a bottom 
hole of radius 1 cm. If this bottom hole is opened at 1 P. M . ,  
when will the tank be empty? 

63. Consider the initially full hemispherical water tank of Ex
ample 8, except that the radius r of its circular bottom hole 
is now unknown. At 1 P. M .  the bottom hole is opened and 
at 1 : 30 P. M .  the depth of water in the tank is 2 ft. (a) Use 
Torricelli 's law in the form dV /dt = - (0 .6)Jrr2 J2gy 
(taking constriction into account) to determine when the 
tank will be empty. (b) What is the radius of the bottom 
hole? 

64. (The clepsydra, or water clock) A 1 2-h water clock is to 
be designed with the dimensions shown in Fig. 1 .4. 1 0, 
shaped like the surface obtained by revolving the curve 
y = I(x) around the y-axis. What should be this curve, 
and what should be the radius of the circular bottom hole, 
in order that the water level will fall at the constant rate of 
4 inches per hour (in./h)? 
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FIGURE 1.4.10. The clepsydra. 

65. Just before midday the body of an apparent homicide vic
tim is found in a room that is kept at a constant tempera
ture of 70° F. At 1 2  noon the temperature of the body is 
80°F  and at 1 P.M .  it is 75 °F. Assume that the temperature 
of the body at the time of death was 98.6 °F  and that it has 
cooled in accord with Newton's law. What was the time 
of death? 

66. Early one morning it began to snow at a constant rate. At 
7 A .M .  a snowplow set off to clear a road. By 8 A .M .  it 
had traveled 2 miles, but it took two more hours (until 
1 0  A .M . )  for the snowplow to go an additional 2 miles. 
(a) Let t = 0 when it began to snow and let x denote the 
distance traveled by the snowplow at time t . Assuming 
that the snowplow clears snow from the road at a constant 
rate (in cubic feet per hour, say), show that 

dx 1 k- = -dt t 
where k is a constant. (b) What time did it start snowing? 
(Answer: 6 A .M . )  

67. A snowplow sets off a t  7 A . M .  as  in  Problem 66. Suppose 
now that by 8 A .M .  it had traveled 4 miles and that by 
9 A .M .  it had moved an additional 3 miles. What time did 
it start snowing? This is a more difficult snowplow prob
lem because now a transcendental equation must be solved 
numerically to find the value of k. (Answer: 4:27 A .M . )  

68. Figure 1 .4 . 1 1  shows a bead sliding down a frictionless 
wire from point P to point Q. The brachistochrone prob
lem asks what shape the wire should be in order to min
imize the bead's time of descent from P to Q. In June 
of 1 696, John Bernoulli proposed this problem as a pub
lic challenge, with a 6-month deadline (later extended to 
Easter 1 697 at George Leibniz's request). Isaac Newton, 
then retired from academic life and serving as Warden 
of the Mint in London, received Bernoulli 's challenge on 
January 29, 1 697. The very next day he communicated 
his own solution-the curve of minimal descent time is an 
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arc of an inverted cycloid-to the Royal Society of Lon
don. For a modem derivation of this result, suppose the 
bead starts from rest at the origin P and let y = y (x ) be 
the equation of the desired curve in a coordinate system 
with the y-axis pointing downward. Then a mechanical 
analogue of Snell 's law in optics implies that 

sin a -- = constant, v (i) 

where a denotes the angle of deflection (from the verti
cal) of the tangent line to the curve-so cot a = y' (x) 
(why?)-and v = .,J2gy is the bead's velocity when it has 
descended a distance y vertically (from KE = �mv2 
mgy = -PE) . 

p 

Q 

FIGURE 1.4.11 .  A bead sliding down a 
wire-the brachistochrone problem. 

(a) First derive from Eq. (i) the differential equation 

dy _ J2a - y 
dx - -

y
-

where a is an appropriate positive constant. 

(ii) 

(b) Substitute y = 2a sin2 t , dy = 4a sin t cos t dt in (ii) 
to derive the solution 

x = a (2t - sin 2t) , y = a ( l - cos 2t) (iii) 

for which t = Y = 0 when x = O. Finally, the sub
stitution of e = 2a in (iii) yields the standard para
metric equations x = a (e - sin e ) ,  y = a ( l - cos e)  

I11III Linear First-Order E9�ation� 

69. 

of the cycloid that is generated by a point on the rim 
of a circular wheel of radius a as it rolls along the x
axis . [See Example 5 in Section 9 .4 of Edwards and 
Penney, Calculus: Early Transcendentals, 7th edition 
(Upper Saddle River, NJ: Prentice Hall, 2008).] 

Suppose a uniform flexible cable is suspended between 
two points (±L , H) at equal heights located symmetri
cally on either side of the x-axis (Fig. 1 .4. 1 2) . Principles 
of physics can be used to show that the shape y = y (x) of 
the hanging cable satisfies the differential equation ( dy ) 2 

1 + dx ' 

where the constant a = T/p is the ratio of the cable's 
tension T at its lowest point x = 0 (where y' (0) = 0 
) and its (constant) linear density p . If we substitute 
v = dymyslashdx , dv/dx = d2y/dx2 in this second
order differential equation, we get the first-order equation 

dv � a- = v 1 + v2 • dx 
Solve this differential equation for y' (x) = v ex) 
sinh(x/a ) .  Then integrate to get the shape function 

y (x) = a cosh (�) + C 
of the hanging cable. This curve is called a catenary, from 
the Latin word for chain. 

Y 
(-L, H) (L. H) 

Yo 

x 

FIGURE 1 .4.12. The catenary. 

In Section 1 .4 we saw how to solve a separable differential equation by integrating 
after multiplying both sides by an appropriate factor. For instance, to solve the 
equation 

dy 
- = 2xy (y > 0), 
dx 

we multiply both sides by the factor l/y to get 

1 dy 
- . - = 2x ; that is , Dx (In y) = Dx (x2) .  
Y dx 

( 1 )  

(2) 

Because each side of the equation in (2) is recognizable as a derivative (with respect 
to the independent variable x) , all that remains are two simple integrations, which 
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yield In y = x2 + C. For this reason, the function p (y) = l/y is called an integrat
ing Jactor for the original equation in ( 1 ) . An integrating factor for a differential 
equation is a function p (x , y) such that the multiplication of each side of the differ
ential equation by p (x , y) yields an equation in which each side is recognizable as 
a derivative. 

With the aid of the appropriate integrating factor, there is a standard technique 
for solving the linear first-order equation 

dy 
- + P (x)y = Q(x) 
dx 

(3) 

on an interval on which the coefficient functions P (x) and Q(x) are continuous. We 
multiply each side in Eq. (3) by the integrating factor 

The result is 

Because 

p (x) = ef P (x) dx . 

ef P(X) dx dy + P (x)ef P(x) dxy = Q (x)ef P(x) dx . 
dx 

Dx [/ P (x) dXJ = P (x ) ,  

(4) 

(5) 

the left-hand side is the derivative of the product y (x) . ef P (x) dx , so Eq. (5) is equiv
alent to 

Dx [y (x) . ef P (X) dX ] = Q(x)ef P (x) dx . 

Integration of both sides of this equation gives 

y (x)ef P (x) dx = / (Q(x)ef P (X) dX) dx + C. 

Finally, solving for y,  we obtain the general solution of the linear first-order equation 
in (3) :  

y (x) = e- f P (x) dx [/ (Q(x)ef P (X) dX) dx + cJ . (6) 

This formula should not be memorized. In a specific problem it generally is 
simpler to use the method by which we developed the formula. That is, in order 
to solve an equation that can be written in the form in Eq. (3) with the coefficient 
functions P (x) and Q(x) displayed explicitly, you should attempt to carry out the 
following steps . 

METHOD: SOLUTION OF FIRST-ORDER EQUATIONS 
1 .  Begin by calculating the integrating factor p (x) = ef P(x) dx . 
2. Then multiply both sides of the differential equation by p (x) .  
3.  Next, recognize the left-hand side of  the resulting equation as  the derivative 

of a product: 
Dx [p (x)y (x) ]  = p (x) Q (x ) .  
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Exa m ple 1 

4. Finally, integrate this equation, 

p (x )y (x) = f p (x) Q (x) dx + C, 

then solve for y to obtain the general solution of the original differential equa
tion. 

Remark 1 :  Given an initial condition y (xo) = Yo, you can (as usual) 
substitute x = Xo and y = Yo into the general solution and solve for the value of C 
yielding the particular solution that satisfies this initial condition. 

Remark 2 :  You need not supply explicitly a constant of integration when 
you find the integrating factor p (x ) .  For if we replace 

in Eq. (4), the result is 

f P (x) dx with f P (x) dx + K 

p (x)  = eK+! P (x) dx = eKe! P (x) dx . 

But the constant factor eK 
does not affect materially the result of multiplying both 

sides of the differential equation in (3) by p (x) ,  so we might as well take K = O. 
You may therefore choose for J P (x) dx any convenient antiderivative of P (x) ,  
without bothering to  add a constant of  integration. • 

Solve the initial value problem 

dy I I  -x/3 
dx 

- y = ge , y (O) = - 1 .  

Solution Here we have P (x) == - 1  and Q(x) = Igl e-x/3 , so the integrating factor is 

p (x)  = e!(- I ) dx = e-x . 

Multiplication of both sides of the given equation by e-x yields 

which we recognize as 

-x dy -x 1 1  -4x/3 e - - e y = ge , 
dx 

d 
_ (e-Xy) = Lgl e-4x/3 . 
dx 

Hence integration with respect to x gives 

e-Xy = f ¥e-4x/3 dx = _ ��e-4x/3 + C, 

and multiplication by eX gives the general solution 

y (x) = Cex - �e-x/3 . 

(7) 

(8) 

Substitution of x = 0 and y = - 1  now gives C = 3
1
2 ' so the desired particular 

solution is 

• 



'" -1 
-2 
-3 
-4 

y = -� exp(-xI3) 

-1 0 2 3 4 5 
x 

FIGURE 1.5.1. Slope field and 
solution curves for 
y

' = y + ¥e-x/3 • 

Exa mple 2 
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Remark: Figure 1 .5 . 1  shows a slope field and typical solution curves for 
Eq. (7), including the one passing through the point (0, - 1 ) .  Note that some solu
tions grow rapidly in the positive direction as x increases, while others grow rapidly 
in the negative direction. The behavior of a given solution curve is determined by 
its initial condition y eO) = Yo . The two types of behavior are separated by the par
ticular solution y (x) = _ ��e-x/3 for which C = 0 in Eq. (8), so Yo = -� for the 
solution curve that is dashed in Fig. 1 .5 . 1 .  If Yo > - � ,  then C > 0 in Eq. (8), so 
the term eX eventually dominates the behavior of y (x) ,  and hence y(x) ---+ +00 as 
x ---+ +00. But if Yo < - � ,  then C < 0, so both terms in y(x) are negative and 
therefore y (x) ---+ -00 as x ---+ +00. Thus the initial condition Yo = -� is critical 
in the sense that solutions that start above - � on the y-axis grow in the positive 
direction, while solutions that start lower than - � grow in the negative direction as 
x ---+ +00. The interpretation of a mathematical model often hinges on finding such 
a critical condition that separates one kind of behavior of a solution from a different 
kind of behavior. • 

Find a general solution of 

dy 
(x2 + 1 )- + 3xy = 6x . dx (9) 

Solution After division of both sides of the equation by x2 + 1 , we recognize the result 

X 

FIGURE 1 .5.2. Slope field and 
solution curves for the differential 
equation in Eq. (9). 

dy 3x 6x 
- + --y - -
dx x2 + 1 - x2 + 1 

as a first-order linear equation with P (x) = 3x/(x2 + 1 )  and Q(x) = 6x/(x2 + 1 ) .  
Multiplication by 

p (x)  = exp (/ x2
3: 1 dX) = exp G In (x2 + 1 )) = (x2 + 1 ) 3/2 

yields 

and thus 

Integration then yields 

Multiplication of both sides by (x2 + 1) -3/2 gives the general solution 

y (x )  = 2 + C (x2 + 1 ) -3/2 . ( t o) 
• 

Remark: Figure 1 .5 .2 shows a slope field and typical solution curves for 
Eq. (9). Note that, as x ---+ +00, all other solution curves approach the constant 
solution curve y (x) == 2 that corresponds to C = 0 in Eq. ( 1 0) . This constant 
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solution can be described as an equilibrium solution of the differential equation, be
cause y (O) = 2 implies that y(x) = 2 for all x (and thus the value of the solution 
remains forever where it starts) .  More generally, the word "equilibrium" connotes 
"unchanging," so by an equilibrium solution of a differential equation is meant a 
constant solution y (x)  == c, for which it follows that y' (x)  == O. Note that substi
tution of y' = 0 in the differential equation (9) yields 3xy = 6x , so it follows that 
y = 2 if x ::j:. O. Hence we see that y (x)  == 2 is the only equilibrium solution of this 
differential equation, as seems visually obvious in Fig. 1 .5 .2. • 

A Closer Look at the Method 

The preceding derivation of the solution in Eq. (6) of the linear first-order equation 
y' + Py = Q bears closer examination. Suppose that the coefficient functions P (x) 
and Q (x) are continuous on the (possibly unbounded) open interval I .  Then the 
antiderivatives f P (x) dx and f (Q (x)ef P (X) dX) dx 

exist on I .  Our derivation of Eq. (6) shows that if y = y(x) is a solution of Eq. (3) 
on I, then y (x)  is given by the formula in Eq. (6) for some choice of the constant 
C. Conversely, you may verify by direct substitution (Problem 3 1 )  that the function 
y (x) given in Eq. (6) satisfies Eq. (3) . Finally, given a point Xo of I and any num
ber Yo , there is-as previously noted-a unique value of C such that y(xo) = Yo . 
Consequently, we have proved the following existence-uniqueness theorem. 

TH EOREM 1 The Linear First-Order Equation 

If the functions P (x) and Q (x) are continuous on the open interval I containing 
the point Xo , then the initial value problem 

dy 
dx 

+ P (x)y = Q (x) ,  y (xo) = Yo ( 1 1 )  

has a unique solution y (x)  o n  I ,  given by the formula i n  Eq. (6) with an appro
priate value of C. 

Remark 1 :  Theorem 1 gives a solution on the entire interval I for a linear 
differential equation, in contrast with Theorem 1 of Section 1 .3 ,  which guarantees 
only a solution on a possibly smaller interval . 

Remark 2 :  Theorem 1 tells us that every solution of Eq. (3) is included in 
the general solution given in Eq. (6) . Thus a linear first-order differential equation 
has no singular solutions . 

Remark 3 :  The appropriate value of the constant C in Eq. (6)-as needed 
to solve the initial value problem in Eq. ( 1 1 )-can be selected "automatically" by 
writing 

p (x) = exp (1: P (t) dt) , 

y (x)  = _
1
_ [YO + 1x 

p (t) Q (t) dt] . p (x) xo 

( 1 2) 
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1 .5 Linear First-Order Equations 5 1  

The indicated limits Xo and x effect a choice of indefinite integrals i n  Eq. (6) that 
guarantees in advance that p (xo) = 1 and that y (xo) = Yo (as you can verify directly 
by substituting x = Xo in Eqs . ( 1 2» . • 

. ........ . ..•... � .... . . 

Solve the initial value problem 

2 dy . 
( 1 )  x - + x y  = sm x ,  y = Yo . dx 

( 1 3) 

Solution Division by x2 gives the linear first-order equation 

3 

2 

- 1  
- 2  

- 3 ( I , -3) 
o 5 10 1 5  20 

x 

FIGURE 1 .5.3. Typical solution 
curves defined by Eq. ( 1 5) .  

dy 1 sin x 
- + - y = -
dx x x2 

with P (x)  = ljx and Q (x)  = (sin x)/x2 . With Xo = 1 the integrating factor in ( 12) 
is 

p (x)  = exp ([X � dt) = exp(1n x)  = x ,  

so the desired particular solution i s  given by 

1 [ r sin t ] 
y (x )  = � Yo + 11 -t-

dt . ( 14) 

In accord with Theorem 1 ,  this solution is defined on the whole positive x-axis. • 

Comment: In general, an integral such as the one in Eq. ( 14) would (for 
given x)  need to be approximated numerically-using Simpson's rule, for instance
to find the value y (x )  of the solution at x . In this case, however, we have the sine 
integral function . 1x sin t 

Sl (X ) = - dt, 
o t 

which appears with sufficient frequency in applications that its values have been 
tabulated. A good set of tables of special functions is Abramowitz and Stegun, 
Handbook of Mathematical Functions (New York: Dover, 1 965) . Then the particu
lar solution in Eq. ( 1 4) reduces to 

1 [ 1x sin t 11 sin t ] 1 . . 
y (x) = - Yo +  - dt - - dt = - [YO + Sl (X ) - Sl( l ) ] .  

x 0 t o t x 
( 15) 

The sine integral function is available in most scientific computing systems and can 
be used to plot typical solution curves defined by Eq. ( 1 5) . Figure 1 .5 .3 shows a 
selection of solution curves with initial values y ( l ) = Yo ranging from Yo = -3 to 
Yo = 3 . It appears that on each solution curve, y (x )  --+ 0 as x --+ +00, and this is 
in fact true because the sine integral function is bounded. • 

In the sequel we will see that it is the exception-rather than the rule-when a 
solution of a differential equation can be expressed in terms of elementary functions. 
We will study various devices for obtaining good approximations to the values of 
the nonelementary functions we encounter. In Chapter 6 we will discuss numerical 
integration of differential equations in some detail . 
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� Input: rj Us, Cj gIL 

Amount x(t) 
Volume V(t) 
Concentration co (t) = � 

Output: 
ro LIs, 
Co gIL 

FIGURE 1 .5.4. The single-tank 
mixture problem. 

Mixture Problems 

As a first application of linear first-order equations, we consider a tank containing a 
solution-a mixture of solute and solvent-such as salt dissolved in water. There is 
both inflow and outflow, and we want to compute the amount x (t) of solute in the 
tank at time t ,  given the amount x (O) = Xo at time t = O. Suppose that solution 
with a concentration of Ci grams of solute per liter of solution flows into the tank 
at the constant rate of ri liters per second, and that the solution in the tank-kept 
thoroughly mixed by stirring-flows out at the constant rate of ro liters per second. 

To set up a differential equation for x (t ) ,  we estimate the change fl.x in x 
during the brief time interval [t , t + fl.t] .  The amount of solute that flows into the 
tank during fl.t seconds is ri Ci fl.t grams. To check this, note how the cancellation 
of dimensions checks our computations :  ( liters ) ( grams ) 

ri --- Ci -. - (fl.t seconds) 
second lIter 

yields a quantity measured in grams. 
The amount of solute that flows out of the tank during the same time interval 

depends on the concentration Co (t) of solute in the solution at time t . But as noted in 
Fig. 1 .5 .4, co (t) = x (t)/V (t) , where V (t) denotes the volume (not constant unless 
ri = ro) of solution in the tank at time t. Then 

fl.x = {grams input} - {grams output} � ri ci fl.t - roco fl.t .  

We now divide by  fl.t :  
fl.x - � ri ci - roco · fl.t 

Finally, we take the limit as  fl.t -+ 0; if  all the functions involved are continuous 
and x (t) is differentiable, then the error in this approximation also approaches zero, 
and we obtain the differential equation 

dx 

in which ri , Ci , and ro are constants, but Co denotes the variable concentration 

x (t) 
co (t) = 

V (t) 

( 1 6) 

( 1 7) 

of solute in the tank at time t . Thus the amount x (t) of solute in the tank satisfies 
the differential equation 

dx ro 
- = ri Ci - -x .  
dt V 

( 1 8) 

If Vo = V (O) , then V (t) = Vo + (ri - ro) t ,  so Eq. ( 1 8) is a linear first-order 
differential equation for the amount x (t) of solute in the tank at time t . 

Important: Equation ( 1 8) need not be committed to memory. It is the pro

cess we used to obtain that equation-examination of the behavior of the system 
over a short time interval [t , t + fl.tJ-that you should strive to understand, because 
it is a very useful tool for obtaining all sorts of differential equations. 

Remark: It was convenient for us to use gIL mass/volume units in deriving 
Eq. ( 1 8) . But any other consistent system of units can be used to measure amounts 
of solute and volumes of solution. In the following example we measure both in 
cubic kilometers . • 



Exa mple 4 
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Assum.� "ili�t" L�e Eri� h�s a ��lum.e of 480 kIll.3 and that its rate of inflow (from 
Lake Huron) and outflow (to Lake Ontario) are both 350 km3 per year. Suppose that 
at the time t = 0 (years), the pollutant concentration of Lake Erie-caused by past 
industrial pollution that has now been ordered to cease-is five times that of Lake 
Huron. If the outflow henceforth is perfectly mixed lake water, how long will it take 
to reduce the pollution concentration in Lake Erie to twice that of Lake Huron? 

Solution Here we have 

Exa mple 5 

v = 480 (km3) ,  

ri = ro = r = 350 (km3/yr) , 

ei = e (the pollutant concentration of Lake Huron), and 

xo = x (O) = 5eV,  

and the question i s  this :  When is x (t) = 2eV ? With this notation, Eq. ( 1 8) i s  the 
separable equation 

dx r 
- = re - -x 
dt V ' 

which we rewrite in the linear first-order form 

dx 
dt 

+ px = q 

( 1 9) 

(20) 

with constant coefficients p = r /V , q = re, and integrating factor p = ePt • You 
can either solve this equation directly or apply the formula in ( 1 2) . The latter gives 

x (t) = e-pt [xo + 1 t 
qept dt] = e-pt [xo + � (ept - 1 ) ] 

= e-rt/ v [5ev + ;� (ert/V - 1 ) ] ; 
x (t) = eV + 4eVe-rt/V •  

To find when x (t) = 2eV , we therefore need only solve the equation 

(2 1 )  

V 480 eV + 4eVe-rt/V = 2eV for t = - ln 4  = - ln 4  � 1 .90 1 (years) .  • 
r 350 

- . --. -�---�- -----,-� -.. -�----,.--,-- --�--.- .. - , - .- .- . - --.- . .  - - -, 
A 1 20-gallon (gal) tank initially contains 90 lb of salt dissolved in 90 gal of water. 
Brine containing 2 lb/gal of salt flows into the tank at the rate of 4 galjmin, and the 
well-stirred mixture flows out of the tank at the rate of 3 gal/min. How much salt 
does the tank contain when it is full? 

Solution The interesting feature of this example is that, due to the differing rates of inflow 
and outflow, the volume of brine in the tank increases steadily with V (t) = 90 + t 
gallons . The change fl.x in the amount x of salt in the tank from time t to time 
t + fl.! (minutes) is given by 

fl.x � (4) (2) fl.t - 3 (_x _) fl.t ,  
90 + t 



54 Chapter 1 First-Order Different ia l  Equations 

so our differential equation is 

dx 3 
- + --x = 8 . 
dt 90 + t 

An integrating factor is 

which gives 

p (x ) = exp (/ _3_ dt) = e3 1n(90+r) = (90 + t) 3 , 
90 + t 

Dr [ (90 + t) 3x] = 8 (90 + t) 3 ; 

(90 + t ) 3x = 2(90 + t )4 + c. 

Substitution of x (0) = 90 gives C = -(90)4 , so the amount of salt in the tank at 
time t is 

904 
x (t )  = 2(90 + t)  -

(90 + t ) 3 

The tank is full after 30 min, and when t = 30, we have 

of salt in the tank. 

_ �roblems 
Find general solutions of the differential equations in Prob
lems 1 through 25. If an initial condition is given, find the 
corresponding particular solution. Throughout, primes denote 
derivatives with respect to x. 

1 .  y' + y = 2, y (O) = 0 
2. y' - 2y = 3e2x , y (O) = 0 
3. y' + 3y = 2xe-3x 
4. y' - 2xy = ex2 
5. xy' + 2y = 3x , y ( 1 )  = 5 
6. xy' + 5y = 7x2 , y (2) = 5 
7. 2xy' + y = 1O.JX 
8. 3xy' + y = 1 2x 
9. xy' - y = x ,  y ( 1 )  = 7 

10. 2xy' - 3y = 9x3 
11 .  xy' + y = 3xy ,  y ( 1 )  = 0 
12. xy' + 3y = 2x5 , y (2) = 1 
13. y' + y = eX , y (O) = 1 
14. xy' - 3y = x3 , y ( 1 )  = 1 0  
15. y' + 2xy = x ,  y (O) = -2 
16. y '  = ( 1  - y) cos x ,  y (n ) = 2 
17. (1 + x)y' + y = cos x ,  y (O) = 1 
18. xy' = 2y + x3 cos x 
19. y' + y cot x = cos x 
20. y' = 1 + x + y + xy, y (O) = 0 

904 
x (30) = 2(90 + 30) -

1 203 � 202 (lb) 

21. xy' = 3y + x4 cos x ,  y (2n ) = 0 
22. y' = 2xy + 3x2 exp(x2 ) ,  y (O) = 5 
23. xy' + (2x - 3)y = 4X4 
24. (x2 + 4)y' + 3xy = x ,  y (O) = 1 

dy 
25. (x2 + 1 ) - + 3x3y = 6x exp (- �x2) , y (O) = 1 

dx 

• 

Solve the differential equations in Problems 26 through 28 by 
regarding y as the independent variable rather than x. 

26. (1 _ 4xy2) 
dy 

= y3 
dx 

28. ( 1  + 2xy) 
dy 

= 1 + y2 
dx 

dy 
27. (x + yeY) 

dx 
= 1 

29. Express the general solution of dyjdx = 1 + 2xy in terms 
of the error function 

2 r 2 
erf(x) = .;rr 10 e-I dt . 

30.  Express the solution of the initial value problem 

dy 
2x - = y + 2x cos x ,  y ( 1 )  = 0 

dx 

as an integral as in Example 3 of this section. 



Problems 31 and 32 illustrate-Jor the special case oj first
order linear equations-techniques that will be important 
when we study higher-order linear equations in Chapter 3. 
31. (a) Show that 

yc (x )  = Ce- J P(x) dx 

is a general solution of dy/dx + P (x)y = O. (b) Show 
that 

yp (x) = e- J P(x) dx [f (Q (x)eJ P(X) dX) dxJ 
is a particular solution of dy/dx + P (x)y = Q (x ) .  
(c) Suppose that Yc (x) is  any general solution o f  dy/dx + 
P (x) y = 0 and that y p (x ) is any particular solution of 
dy/dx + P (x)y = Q (x ) .  Show that y (x) = Yc (x) + yp (x) 
is a general solution of dy/dx + P (x )y = Q (x ) .  

32. (a) Find constants A and B such that yp (x ) = A sin x + 
B cos x is a solution of dy/dx + y = 2 sin x .  (b) Use the 
result of part (a) and the method of Problem 3 1  to find the 
general solution of dy/dx + y = 2 sin x .  (c) Solve the 
initial value problem dy/dx + y = 2 sin x ,  y (O) = 1 .  

33. A tank contains 1 000 liters (L) of a solution consisting of 
1 00 kg of salt dissolved in water. Pure water is pumped 
into the tank at the rate of 5 L/s, and the mixture-kept 
uniform by stirring- is pumped out at the same rate. How 
long will it be until only 1 0  kg of salt remains in the tank? 

34. Consider a reservoir with a volume of 8 billion cubic feet 
(ft3 ) and an initial pollutant concentration of 0.25%. There 
is a daily inflow of 500 million ft3 of water with a pollu
tant concentration of 0.05% and an equal daily outflow of 
the well-mixed water in the reservoir. How long will it 
take to reduce the pollutant concentration in the reservoir 
to 0. 1 O%? 

35. Rework Example 4 for the case of Lake Ontario, which 
empties into the St. Lawrence River and receives inflow 
from Lake Erie (via the Niagara River) . The only differ
ences are that this lake has a volume of 1 640 krn3 and an 
inflow-outflow rate of 4 1 0  krn3 /year. 

36. A tank initially contains 60 gal of pure water. Brine 
containing 1 Ib of salt per gallon enters the tank at 
2 gal/min, and the (perfectly mixed) solution leaves the 
tank at 3 gal/min; thus the tank is empty after exactly 1 h. 
(a) Find the amount of salt in the tank after t minutes . 
(b) What is the maximum amount of salt ever in the tank? 

37. A 400-gal tank initially contains 1 00 gal of brine contain
ing 50 Ib of salt. Brine containing 1 Ib of salt per gallon 
enters the tank at the rate of 5 gal/s,  and the well-mixed 
brine in the tank flows out at the rate of 3 gal/s. How 
much salt will the tank contain when it is full of brine? 

38. Consider the cascade of two tanks shown in Fig. 1 .5 .5 ,  
with VI = 1 00 (gal)  and V2 = 200 (gal) the volumes of 
brine in the two tanks. Each tank also initially contains 
50 Ib of salt. The three flow rates indicated in the fig
ure are each 5 gal/min, with pure water flowing into tank 
1 .  (a) Find the amount x (t) of salt in tank 1 at time t . 
(b) Suppose that y (t) is the amount o f  salt i n  tank 2 at 
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time t. Show first that 

dy 
dt 

5x 5y 
1 00 

-
200 ' 

and then solve for y (t) , using the function x (t) found in 
part (a). (c) Finally, find the maximum amount of salt 
ever in tank 2. 

FIGURE 1 .5.5. A cascade of two tanks. 

39. Suppose that in the cascade shown in Fig. 1 .5 .5,  tank 1 
initially contains 1 00 gal of pure ethanol and tank 2 ini
tially contains 1 00 gal of pure water. Pure water flows 
into tank 1 at 10 gal/min, and the other two flow rates 
are also 1 0  gal/min. (a) Find the amounts x (t) and y(t) 
of ethanol in the two tanks at time t :::::: O. (b) Find the 
maximum amount of ethanol ever in tank 2. 

40. A multiple cascade is shown in Fig. 1 .5 .6. 

FIGURE 1 .5.6. A multiple cascade. 

At time t = 0, tank 0 contains 1 gal of ethanol and 1 gal 
of water; all the remaining tanks contain 2 gal of pure wa
ter each. Pure water is pumped into tank 0 at 1 gal/min, 



56 Chapter 1 First-Order Different ia l  Equations 

and the varying mixture in each tank is pumped into the 
one below it at the same rate. Assume, as usual, that the 
mixtures are kept perfectly uniform by stirring. Let Xn (t) 
denote the amount of ethanol in tank n at time t . 
(a) Show that xo (t) = e-t/2 • (b) Show by induction on n 
that 

tne-t/2 xn (t) = --- for n > O. n! 2n 
(c) Show that the maximum value of xn (t) for n > 0 is 
Mn = xn (2n) = nne-n/n L (d) Conclude from Stirling's 
approximation n! :::::: nne-n.J2rrn that Mn :::::: (2rrn) - 1 /2 . 

41. A 30-year-old woman accepts an engineering position 
with a starting salary of $30,000 per year. Her salary 
S(t) increases exponentially, with S(t) = 30et/20 thou
sand dollars after t years . Meanwhile, 1 2% of her salary 
is deposited continuously in a retirement account, which 
accumulates interest at a continuous annual rate of 6%. 
(a) Estimate LlA in terms of Llt to derive the differential 
equation satisfied by the amount A (t) in her retirement 
account after t years. (b) Compute A (40) , the amount 
available for her retirement at age 70. 

42. Suppose that a falling hailstone with density 8 = 1 starts 
from rest with negligible radius r = O. Thereafter its ra
dius is r = kt (k is a constant) as it grows by accretion 
during its fall .  Use Newton's second law-according to 
which the net force F acting on a possibly variable mass 
m equals the time rate of change dp/dt of its momentum 
p = m v-to set up and solve the initial value problem 

d - (mv) = mg, v (O) = 0,  
dt 

where m is the variable mass of the hailstone, v = dy/dt 
is its velocity, and the positive y-axis points downward. 
Then show that dv/dt = g/4. Thus the hailstone falls as 
though it were under one-fourth the influence of gravity. 

43. Figure I .S .7 shows a slope field and typical solution 
curves for the equation y' = x - y . 

1 0 8 6 4 
2 

� O ����������rlrl 
- 2  -4  -6  -8  - 10 WL_-L_-L�-L_�_�W 5 

x 

FIGURE 1 .5.7. Slope field and solution 
curves for y' = x - y . 

(a) Show that every solution curve approaches the 
straight line y = x - I as x --+ +00. (b) For each 
of the five values Yl = 3 .998, 3 .999, 4.000, 4.00 1 ,  and 
4.002, determine the initial value Yo (accurate to four dec
imal places) such that y (S) = Yl for the solution satisfying 
the initial condition y( -S) = Yo . 

44. Figure I .S .8  shows a slope field and typical solution 
curves for the equation y' = x + y. (a) Show that every 
solution curve approaches the straight line y = -x - I 
as x --+ -00. (b) For each of the five values Yl = - 1 0, 
-S, 0, S, and 1 0, determine the initial value Yo (accurate to 
five decimal places) such that y (S) = Y l for the solution 
satisfying the initial condition y( -S) = Yo . 

1 0 8 6 4 
2 

� 0 �������44fJ. 
- 2  - 4  - 6  - 8  

- I O �� __ ���-L __ �� 

x 

FIGURE 1 .5.8. Slope field and solution 
curves for y' = x + y . 

Problems 45 and 46 deal with a shallow reservoir that has 
a one square kilometer water surface and an average water 
depth of 2 meters. Initially it is filled with fresh water, but at 
time t = 0 water contaminated with a liquid pollutant begins 
flowing into the reservoir at the rate of 200 thousand cubic 
meters per month. The well-mixed water in the reservoir flows 
out at the same rate. Your first task is to find the amount x (t) of 
pollutant (in millions of liters) in the reservoir after t months. 
45. The incoming water has a pollutant concentration of 

c(t) = 10 liters per cubic meter (Um3). Verify that 
the graph of x (t ) resembles the steadily rising curve in 
Fig. I .S .9, which approaches asymptotically the graph of 
the equilibrium solution x (t ) == 20 that corresponds to the 
reservoir' s long-term pollutant content. How long does it 
take the pollutant concentration in the reservoir to reach 
S Um3 ? 

25 x 
20 
1 5 

5 
� �Probl= 46 

Problem 45 
1 0 20 30 40 50 60 

FIGURE 1 .5.9. Graphs of solutions in 
Problems 4S and 46. 

46. The incoming water has pollutant concentration c(t) 
10( 1 + cos t) Um3 that varies between 0 and 20, with an 
average concentration of 1 0  Um3 and a period of oscilla
tion of slightly over 6i months. Does it seem predictable 
that the lake's polutant content should ultimately oscillate 
periodically about an average level of 20 million liters? 
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Verify that the graph of x (t) does, indeed, resemble the 
oscillatory curve shown in Fig. 1 .5 .9 .  How long does it 

take the pollutant concentration in the reservoir to reach 
5 Llm3 ? 

1 .5  Ap pl ication 
For an  interesting applied problem that involves the solution of a linear differen
tial equation, consider indoor temperature oscillations that are driven by outdoor 
temperature oscillations of the form 

A (t )  = ao + a l cos wt + bl sin wt . ( 1 )  

If w = rr/1 2, then these oscillations have a period of 24 hours (so that the cycle of 
outdoor temperatures repeats itself daily) and Eq. ( 1 )  provides a realistic model for 
the temperature outside a house on a day when no change in the overall day-to-day 
weather pattern is occurring. For instance, for a typical July day in Athens, GA 
with a minimum temperature of 70° F  when t = 4 (4 A.M. )  and a maximum of 
90° F  when t = 1 6  (4 P.M.) ,  we would take 

A (t )  = 80 - lO cos w (t - 4) = 80 - 5 cos wt - s.J3 sin wt . (2) 

We derived Eq. (2) by using the identity cos (a - f3) = cos a cos f3 + sin a sin 13 to 
get ao = 80, a l  = -S,  and bl  = -s.J3 in Eq. ( 1 ) . 

If we write Newton's law of cooling (Eq. (3) of Section 1 . 1 )  for the corre
sponding indoor temperature u (t)  at time t ,  but with the outside temperature A (t) 
given by Eq. ( 1 )  instead of a constant ambient temperature A ,  we get the linear 
first-order differential equation 

that is, 

du 

dt 
= -k(u - A(t ) ) ;  

du  
b 

. 
- + ku = k (ao + a l  cos wt + I sm wt) 
dt 

(3) 

with coefficient functions p (t )  == k and Q (t )  = kA (t ) . Typical values of the 
proportionality constant k range from 0.2 to 0.5 (although k might be greater than 
O.S for a poorly insulated building with open windows, or less than 0.2 for a well
insulated building with tightly sealed windows) . 

SCENARIO : Suppose that our air conditioner fails at time to = 0 one midnight, 
and we cannot afford to have it repaired until payday at the end of the month. We 
therefore want to investigate the resulting indoor temperatures that we must endure 
for the next several days . 

Begin your investigation by solving Eq. (3) with the initial condition u (O) = 

Uo (the indoor temperature at the time of the failure of the air conditioner) . You 
may want to use the integral formulas in 49 and 50 of the endpapers, or possibly a 
computer algebra system. You should get the solution 

u (t )  = ao + coe-kt + CI cos wt + dl sin wt , (4) 
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FIGURE 1.5.10. Solution curves 
given by Eq. (5) with Uo = 65, 68, 
7 1 ,  . . . , 92, 95. 
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FIGURE 1.5. 1 1. Comparison of 
indoor and outdoor temperature 
oscillations.  

where 

with w = 7(/1 2. 

kwa1 + k2b 1 d1 = k2 + w2 

With ao = 80, al = -5, bl = -5.J3 (as in Eq. (2» , W = 7(/1 2, and k = 0.2 
(for instance) , this solution reduces (approximately) to 

7(t . 7(t  
u (t) = 80 + e-t/5 (uo  - 82.335 1 )  + (2 .335 1 ) cos 12 - (5 .6036) sm 12. (5) 

Observe first that the "damped" exponential tenn in Eq. (5) approaches zero 
as t --+ +00, leaving the long-term "steady periodic" solution 

7(t . 7(t  usp (t) = 80 + (2 .335 1 ) cos 12 - (5 .6036) sm 12 · (6) 

Consequently, the long-tenn indoor temperatures oscillate every 24 hours around 
the same average temperature 80° F  as the average outdoor temperature. 

Figure 1 .5 . 1 0  shows a number of solution curves corresponding to possible 
initial temperatures Uo ranging from 65 °F  to 95 °F. Observe that-whatever the 
initial temperature-the indoor temperature "settles down" within about 1 8  hours 
to a periodic daily oscillation. But the amplitude of temperature variation is less 
indoors than outdoors. Indeed, using the trigonometric identity mentioned earlier, 
Eq. (6) can be rewritten (verify this ! )  as 

u (t) = 80 - (6.0707) cos (7� - 1 .9656) 
7( = 80 - (6.0707) cos 
1 2  

(t - 7 .5082) . (7) 

Do you see that this implies that the indoor temperature varies between a minimum 
of about 74° F and a maximum of about 86 ° F? 

Finally, comparison of Eqs. (2) and (7) indicates that the indoor temperature 
lags behind the outdoor temperature by about 7 .5082 - 4 � 3 . 5  hours, as illustrated 
in Fig. 1 .5 . 1 1 .  Thus the temperature inside the house continues to rise until about 
7 :30 P. M .  each evening, so the hottest part of the day inside is early evening rather 
than late afternoon (as outside). 

For a personal problem to investigate, carry out a similar analysis using av
erage July daily maximum/minimum figures for your own locale and a value of k 
appropriate to your own home. You might also consider a winter day instead of 
a summer day. (What is the winter-summer difference for the indoor temperature 
problem?) You may wish to explore the use of available technology both to solve 
the differential equation and to graph its solution for the indoor temperature in com
parison with the outdoor temperature. 
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I11III Substitution Methods and Exact Eq1J.ations 

Exa mple 1 

The first-order differential equations we have solved in the previous sections have 
all been either separable or linear. But many applications involve differential equa
tions that are neither separable nor linear. In this section we illustrate (mainly with 
examples) substitution methods that sometimes can be used to transform a given 
differential equation into one that we already know how to solve. 

For instance, the differential equation 

dy 
dx 

= f(x ,  y ) ,  ( 1 )  

with dependent variable y and independent variable x ,  may contain a conspicuous 
combination 

v = a(x , y) (2) 

of x and y that suggests itself as a new independent variable v . Thus the differential 
equation 

dy 2 
dx 

= (x + y + 3) 

practically demands the substitution v = x + y + 3 of the form in Eq. (2) . 
If the substitution relation in Eq. (2) can be solved for 

y = f3 (x ,  v ) ,  (3) 

then application of the chain rule-regarding v as an (unknown) function of x
yields 

dy _ af3 dx af3 dv _ R dv 
dx - ax dx + av  dx -

f3x + I-'v dx ' 
(4) 

where the partial derivatives af3jax = f3x (x , v) and af3ja v = f3v (x ,  v) are known 
functions of x and v .  If we substitute the right-hand side in (4) for dyjdx in Eq. ( 1 )  
and then solve for dvjdx , the result i s  a new differential equation of  the form 

dv 
- = g(x , v) 
dx 

(5) 

with new dependent variable v . If this new equation is either separable or linear, 
then we can apply the methods of preceding sections to solve it. 

If v = v (x) is a solution of Eq. (5), then y = f3 (x ,  v (x» will be a solution of 
the original Eq. ( 1 ) . The trick; is to select a substitution such that the transformed 
Eq. (5) is one we can solve. Even when possible, this is not always easy; it may 
require a fair amount of ingenuity or trial and error. 

Solve the differential equation 

dy 2 - = (x + y + 3) . 
dx 
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Solution As indicated earlier, let' s try the substitution 
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�--L-�-7-L __ L-�� 

x 

FIGURE 1.6.1. Slope field and 
solution curves for 
y

' 
= (x + y + 3)2 . 

Then 

v = x + y + 3 ;  that is, y = v - x - 3 .  

dy dv  
- = - - 1 , 
dx dx 

so the transformed equation is 

dv 2 - = I + v . 
dx 

This is a separable equation, and we have no difficulty in obtaining its solution 

f dv 
x = 

1 + v2 = tan - \ v + C. 

So v = tan(x - C) . Because v = x + y + 3 ,  the general solution of the original 
equation dy/dx = (x + y + 3)2 is x + y + 3 = tan(x - C) ;  that is, 

y (x) = tan(x - C) - x - 3 .  • 

Remark: Figure 1 .6 . 1 shows a slope field and typical solution curves for 
the differential equation of Example 1 .  We see that, although the function f (x , y) = 
(x + y +3)2 is continuously differentiable for all x and y ,  each solution is continuous 
only on a bounded interval . In particular, because the tangent function is continuous 
on the open interval (-rr /2, rr /2) ,  the particular solution with arbitrary constant 
value C is continuous on the interval where -rr /2 < x - C < rr /2 ; that is , C -rr j2 < 
x < C + rr /2. This situation is fairly typical of nonlinear differential equations, in 
contrast with linear differential equations, whose solutions are continuous wherever 
the coefficient functions in the equation are continuous . • 

Example I illustrates the fact that any differential equation of the form 

dy 
dx 

= F(ax + by + c) (6) 

can be transformed into a separable equation by use of the substitution v = ax + 
by + c (see Problem 55) .  The paragraphs that follow deal with other classes of 
first-order equations for which there are standard substitutions that are known to 
succeed. 

Homogeneous Equations 

A homogeneous first-order differential equation is one that can be written in the 
form 

dy 
= F (�) . 

dx x 

If we make the substitutions 

y 
v = - ,  y = vx , 

x 
dy dv 
- = v + x - ,  
dx dx 

(7) 

(8) 
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then Eq. (7) i s  transfonned into the separable equation 

dv 
x- = F(v) - v . 

dx 
Thus every homogeneous first-order differential equation can be reduced to an inte
gration problem by means of the substitutions in (8) . 

Remark: A dictionary definition of "homogeneous" is "of a similar kind 
or nature." Consider a differential equation of the fonn 

whose polynomial coefficient functions are "homogeneous" in the sense that each 
of their tenns has the same total degree, m + n = p + q = r + s = K .  If we 
divide each side of (*) by X K , then the result-because xmynjxm+n 

= (yjx)n , and 
so forth-is the equation ( y ) n dy _ ( y ) q ( y ) S 

A - - - B - + c -
x dx x x 

which evidently can be written (by another division) in the fonn of Eq. (7). More 
generally, a differential equation of the fonn P (x , y) y' = Q (x , y) with polynomial 
coefficients P and Q is homogeneous if the tenns in these polynomials all have the 
same total degree K .  The differential equation in the following example is of this 
fonn with K = 2. 

Solve the differential equation 

dy 
2xy- = 4x2 + 3l. 

dx 

Solution This equation is neither separable nor linear, but we recognize it as a homogeneous 
equation by writing it in the fonn 

dy = 
4x2 + 3y2 

= 2 (�) + 
� (�) . 

dx hy y 2 x 

The substitutions in (8) then take the form 

y = vx , 

These yield 

and hence 

dy dv y - = v + x -, 
dx dx v = - , x 

dv 2 3 
v + x - = - + - v ,  

dx v 2 

x 
and - = 

v y 

dv 2 V v2 + 4 
x - = - + - = -- ; 

dx v 2 2v 

-- dv = - dx ;  
f 2v  f 1 

v2 + 4  x 

In (v2 + 4) = In I x l + In C. 
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x 

FIGURE 1.6.2. Slope field and 
solution curves for 
2xyy' = 4x2 + 3y2 . 

We apply the exponential function to both sides of the last equation to obtain 

Note that the left-hand side of this equation is necessarily nonnegative. It follows 
that k > 0 in the case of solutions that are defined for x > 0, while k < 0 for 
solutions where x < O. Indeed, the family of solution curves illustrated in Fig . 1 .6.2 
exhibits symmetry about both coordinate axes. Actually, there are positive-valued 
and negative-valued solutions of the forms y (x) = ±Jkx3 - 4x2 that are defined 
for x > 4/k if the constant k is positive, and for x < 4/ k if k is negative. • 

Solve the initial value problem 

where Xo > O. 

dy �--::-X 
dx 

= Y + Jx2 - y2 , y (xo) = 0, 

Solution We divide both sides by x and find that 

50 r---r---r---.---.-� 

40 

30 

20 

1 0  

'" 0 lE--=�-::::;>�-",�---;;;;#=----:::;'" 
- 1 0  

-20 

-30 

-40 

x 

FIGURE 1.6.3. Solution curves 

for xy' = y + Jx2 - y2 . 

so we make the substitutions in (8) ; we get 

dv ;-;---;} v + x 
dx 

= v + v 1 - v2 ; 

f 1 
dv = f � dx ; .Jf"=V2 x 

sin- 1 v = In x + C. 

We need not write In Ix l  because x > 0 near x = Xo > O. Now note that v (xo) = 

y (xo)/xo = 0, so C = sin- 1 0 - ln xo = - ln xo .  Hence 

and therefore 

v = � = sin (ln x - ln xo) = sin (ln �) , 
x Xo 

y (x) = x sin (In :0 ) 
is the desired particular solution. Figure 1 .6.3 shows some typical solution curves. 
Because of the radical in the differential equation, these solution curves are confined 
to the indicated triangular region x � I y l .  You can check that the boundary lines 
y = x and y = -x (for x > 0) are singular solution curves that consist of points of 
tangency with the solution curves found earlier. • 
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Bernoulli Equations 

A first-order differential equation of the form 

dy 
- + P(x)y = Q(x)yn 
dx 

(9) 

is called a Bernoulli equation. If either n = 0 or n = 1 , then Eq. (9) is linear. 
Otherwise, as we ask you to show in Problem 56, the substitution 

transforms Eq. (9) into the linear equation 

dv 
- + (1 - n) P (x )v  = (1 - n) Q (x ) .  
dx 

(10) 

Rather than memorizing the form of this transformed equation, it is more efficient 
to make the substitution in Eq. ( 1 0) explicitly, as in the following examples. 

ii we re�rite the homogeneous equation 2xyyi = 4;2 + 3yi of Example 2 in the 
form 

dy 3 2x 
- - -y = - , 
dx 2x y 

we see that it is also a Bernoulli equation with P(x) = -3/(2x) ,  Q(x) = 2x , 
n = - 1 ,  and 1 - n = 2. Hence we substitute 

This gives 

_ 2 V - y ,  and 
dy dy dv 1 - 1 /2 dv - = - - = - v -

dx dv dx 2 dx 

1 dv 3 _ v- I /2 _ _ _  V I /2 = 2xv- I/2 • 
2 dx 2x 

Then multiplication by 2v 1 /2 produces the linear equation 

dv 3 - - - v  = 4x 
dx x 

with integrating factor p = e!(-3/x) dx = x-3 . So we obtain 

-3 4 
DAx v) = 2" ;  

x 

• 



64 Cha pter 1 First-Order Different ia l  Equations  

Exa m ple 5 

Exa mple 6 

The equation 

x dy 
+ 6y = 3Xy4/3 

dx 
is neither separable nor linear nor homogeneous, but it is a Bernoulli equation with 
n = � ,  1 - n = - t .  The substitutions 

v = y- l /3 , 

transform it into 

-3 Y = v , and 
dy dy dv _4 dv 
- = - - = -3v -
dx dv dx dx 

dv 
-3xv-4- + 6v-3 = 3xv-4 . dx 

Division by -3xv-4 yields the linear equation 

dv 2 
- - - v  = - 1 
dx x 

with integrating factor p = e!<-2/x) dx = x-2 . This gives 

and finally, 

1 
y(x) = 

(x + Cx2) 3 · 

The equation 

• 

( 1 1 )  

i s  neither separable, nor linear, nor homogeneous, nor i s  i t  a Bernoulli equation. But 
we observe that y appears only in the combinations e2y and DAe2y ) = 2e2yy'. This 
prompts the substitution 

dv = 2e2y dy 
dx dx 

that transforms Eq. ( 1 1 )  into the linear equation xv'(x) = 3x4 + v (x ) ;  that is, 

dv 1 3 - - -v  = 3x . 
dx x 

After multiplying by the integrating factor p = l/x ,  we find that 

� v =  j 3x2 dx = x3 + C, so e2Y = v = x4 + Cx , 

and hence 

y(x) = 4 ln IX4 + Cx l . • 
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FIGURE 1.6.4. The airplane 
headed for the origin. 

x 

FIGURE 1.6.5. The components 
of the velocity vector of the 
airplane. 
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Flight Trajectories 

Suppose that an airplane departs from the point (a , 0) located due east of its intended 
destination-an airport located at the origin (0, 0) . The plane travels with constant 
speed Vo relative to the wind, which is blowing due north with constant speed w .  
As indicated in  Fig. 1 .6.4, we assume that the plane's pilot maintains its heading 
directly toward the origin. 

Figure 1 .6 .5 helps us derive the plane 's velocity components relative to the 
ground. They are 

dx VOX 
-- = -vo cos B = - , 
dt Jx2 + y2 

dy . Voy 
-- = -Vo sm B + w = - + w. dt Jx2 + y2 

Hence the trajectory y = f (x) of the plane satisfies the differential equation 

If we set 

dy dyjdt 1 ( ) -- = ---- = - Voy - wJ x2 + y2 . dx dxjdt VOX 

w 
k = - , 

Vo 

( 1 2) 

( 1 3) 

the ratio of the windspeed to the plane 's airspeed, then Eq. ( 1 2) takes the homoge
neous form 

The substitution y = XV ,  y' = V + xv' then leads routinely to 

/ dv - _ / � dx v't+V2 - x ·  

( 14) 

( 1 5) 

By trigonometric substitution, or by consulting a table for the integral on the left, 
we find that 

In
(
v + �) = -k ln x + C, 

and the initial condition v (a) = y(a)ja = 0 yields 

C = k In a . 

( 16) 

( 1 7) 

As we ask you to show in Problem 68, the result of substituting ( 1 7) in Eq. ( 1 6) and 
then solving for V is 

Because y = XV, we finally obtain _ a [ ( X ) l -k (X ) l+k] y(x) - - - - -

2 a a 

for the equation of the plane's trajectory. 

( 1 8) 

( 1 9) 
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Exa mple 7 

Note that only in the case k < 1 (that is, W < vo) does the curve in Eq. ( 1 9) 
pass through the origin, so that the plane reaches its destination. If W = Vo (so 
that k = 1) , then Eq. ( 19) takes the form y(x) = !a ( 1 - x2/a2) ,  so the plane's 
trajectory approaches the point (0, a/2) rather than (0, 0) . The situation is even 
worse if w > Vo (so k > I )-in this case it follows from Eq. ( 1 9) that y -+ +00 as 
x -+ O. The three cases are illustrated in Fig. 1 .6 .6 . 

If a = 200 �L Vo ,,;;; 500 mi/h, and w = 100 mi/h, then k = w/vo = � , so the plane 
will succeed in reaching the airport at (0, 0) . With these values, Eq. ( 1 9) yields 

[ ( X ) 4/5 ( X ) 6/5 ] y(x) = 1 00 200 - 200 . 
(20) 

Now suppose that we want to find the maximum amount by which the plane is 
blown off course during its trip. That is, what is the maximum value of y(x) for 
o � x � 200? 

Solution Differentiation of the function in Eq. (20) yields 
y 

Ca. 0) 
x 

FIGURE 1.6.6. The three cases 
w < Vo (plane velocity exceeds 
wind velocity), W = Vo (equal 
velocities) ,  and W > Vo (wind is 
greater) . 

dy = 
! [� (�)-1 /5 

_ 

� (�) 1/5] 
dx 2 5 200 5 200 ' 

and we readily solve the equation y' (x) = 0 to obtain (x /200)2/5 = � .  Hence 

[ ( 2 ) 2 ( 2 ) 3] 400 
Ymax = 100 "3 - "3 = 27 � 14 .8 1 .  

Thus the plane is blown almost 1 5  mi north at one point during its westward joumey. 
(The graph of the function in Eq. (20) is the one used to construct Fig. 1 .6.4. The 
vertical scale there is exaggerated by a factor of 4.) • 

Exact Differential Equations 

We have seen that a general solution y(x) of a first-order differential equation is 
often defined implicitly by an equation of the form 

F(x ,  y (x)) = c, (2 1 )  

where C i s  a constant. On the other hand, given the identity in (2 1 ) , we can recover 
the original differential equation by differentiating each side with respect to x . Pro
vided that Eq. (2 1 ) implicitly defines y as a differentiable function of x, this gives 
the original differential equation in the form 

that is, 

aF aF dy - + -- = 0; 
ax ay dx 

dy 
M(x ,  y) + N(x ,  y) - = 0, 

dx 

where M(x ,  y) = FAx ,  y) and N(x ,  y) = Fy (x , y) . 

(22) 
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It is sometimes convenient to rewrite Eq. (22) in the more symmetric form 

M(x , y) dx + N(x , y) dy = 0, (23) 

called its differential form. The general first-order differential equation y' = 

f (x , y) can be written in this form with M = f (x , y) and N == - 1 . The pre
ceding discussion shows that, if there exists a function F(x ,  y) such that 

then the equation 

aF - = M  and 
ax 

aF 
- = N , 
ay 

F(x ,  y) = C 

implicitly defines a general solution of Eq. (23) . In this case, Eq. (23) is called an 
exact differential equation-the differential 

dF = Fx dx + Fy dy 

of F(x ,  y) is exactly M dx + N dy . 
Natural questions are these: How can we determine whether the differential 

equation in (23) is exact? And if it is exact, how can we find the function F such 
that Fx = M and Fy = N? To answer the first question, let us recall that if the 
mixed second-order partial derivatives Fxy and Fyx are continuous on an open set 
in the xy-plane, then they are equal : Fxy = Fyx .  If Eq. (23) is exact and M and N 
have continuous partial derivatives, it then follows that 

Thus the equation 

aM aN 
- = Fxy = Fyx = - .  ay ax 

= 
ay ax 

(24) 

is a necessary condition that the differential equation M dx + N dy = 0 be exact. 
That is, if My =I Nx , then the differential equation in question is not exact, so we 
need not attempt to find a function F (x , y) such that Fx = M and Fy = N -there 
is no such function. 

The differential equation 

l dx + 3xl dy = 0 (25) 

is exact because we can immediately see that the function F(x ,  y) = xy3 has the 
property that Fx = y3 and Fy = 3xy2 . Thus a general solution of Eq. (25) is 

if you prefer, y (x) = kx- 1 /3 . • 
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But suppose that we divide each tenn of the differential equation in Example 
8 by y2 to obtain 

y dx + 3x dy = O. 

This equation is not exact because, with M = y and N = 3x , we have 

aM aN 
- = 1 # 3  = - .  

ay ax 

Hence the necessary condition in Eq. (24) is not satisfied. 

(26) 

We are confronted with a curious situation here. The differential equations in 
(25) and (26) are essentially equivalent, and they have exactly the same solutions, 
yet one is exact and the other is not. In brief, whether a given differential equation 
is exact or not is related to the precise form M dx + N dy = 0 in which it is written. 

Theorem 1 tells us that (subject to differentiability conditions usually satisfied 
in practice) the necessary condition in (24) is also a sufficient condition for exact
ness . In other words, if My = Nx , then the differential equation M dx + N dy = 0 
is exact. 

TH EOREM 1 Criterion for Exactness 

Suppose that the functions M(x ,  y) and N(x ,  y) are continuous and have con
tinuous first-order partial derivatives in the open rectangle R :  a < x < b, 
e < y < d. Then the differential equation 

M(x , y) dx + N(x ,  y) dy = 0 
is exact in R if and only if 

aM aN 
- = -

ay ax 

(23) 

(24) 

at each point of R. That is, there exists a function F (x , y) defined on R with 
aF  lax = M and aF  lay = N if and only if Eq. (24) holds on R. 

Proof: We have seen already that it is necessary for Eq. (24) to hold if 
Eq. (23) is to be exact. To prove the converse, we must show that if Eq. (24) holds, 
then we can construct a function F(x ,  y) such that aFlax = M and aFlay = N. 
Note first that, for any function g(y) ,  the function 

F(x ,  y) = f M(x ,  y) dx + g (y) (27) 

satisfies the condition a Flax = M. (In Eq. (27), the notation J M (x , y) dx denotes 
an antiderivative of M(x ,  y) with respect to x .) We plan to choose g (y) so that 

N = aF  = (� f M(x ,  Y) dX) + g' (y) 
ay ay 

as well ; that is, so that , a f g (y) = N - - M (x , y) dx . ay 
(28) 
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To see that there is such a function of y, it suffices to show that the right-hand side in 
Eq. (28) is a function of y alone. We can then find g(y) by integrating with respect 
to y .  Because the right-hand side in Eq. (28) is defined on a rectangle, and hence on 
an interval as a function of x ,  it suffices to show that its derivative with respect to x 
is identically zero. But 

� (N - � f M(x ,  Y) dX) = 
aN 

- �� f M(x ,  y) dx 
ax ay ax ax ay 

aN a a f = - - -- M(x , y) dx 
ax ay ax 

aN aM 
= - - - = 0 

ax ay 

by hypothesis. So we can, indeed, find the desired function g(y) by integrating 
Eq. (28). We substitute this result in Eq. (27) to obtain 

F(x , y) = f M(x , y) dx + f (N(X , y) -
a
a
y
f M(X , y) dX) dY (29) 

as the desired function with Fx = M and Fy = N. • 

Instead of memorizing Eq. (29), it is usually better to solve an exact equation 
M dx + N dy = 0 by carrying out the process indicated by Eqs . (27) and (28) .  First 
we integrate M (x , y) with respect to x and write 

F(x , y) = f M(x , y) dx + g(y) , 

thinking of the function g(y) as an "arbitrary constant of integration" as far as the 
variable x is concerned. Then we determine g(y) by imposing the condition that 
aF/ay = N(x ,  y) . This yields a general solution in the implicit form F(x ,  y) = c. 

Solve the differential equation 

(6xy - i) dx + (4y + 3x2 - 3xi) dy = o. (30) 

Solution Let M(x ,  y) = 6xy - y3 and N(x ,  y) = 4y + 3x2 - 3xy2 . The given equation is 
exact because 

aM 
= 6x _ 3y2 = 

aN
. ay ax 

Integrating aF/ax = M(x , y) with respect to x, we get 

F(x ,  y) = f (6xy - i) dx = 3x2y - xl + g (y) .  

Then we differentiate with respect to y and set aF/ay = N(x ,  y) . This yields 

aF  
= 3x2 _ 3xi + g' (y) = 4y + 3x2 - 3xi, 

ay 
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x 

FIGURE 1 .6.7. Slope field and 
solution curves for the exact 
equation in Example 9 . 

and it follows that g' (y) = 4y . Hence g(y) = 2y2 + C) , and thus 

Therefore, a general solution of the differential equation is defined implicitly by the 
equation 

(3 1 )  

(we have absorbed the constant C) into the constant C). • 

Remark: Figure 1 .6 .7 shows a rather complicated structure of solution 
curves for the differential equation of Example 9. The solution satisfying a given 
initial condition y (xo) = Yo is defined implicitly by Eq. (3 1 ) , with C determined by 
substituting x = Xo and y = Yo in the equation. For instance, the particular solution 
satisfying y (O) = 1 is defined implicitly by the equation 3x2y - xy3 + 2y2 = 2. 
The other two special points in the figure-at (0, 0) and near (0.75 , 2 . 1 2)-are ones 
where both coefficient functions in Eq. (30) vanish, so the theorem of Section 1 .3 
does not guarantee a unique solution. • 

Reducible Second-Order Equations 

A second-order differential equation involves the second derivative of the unknown 
function y (x ) ,  and thus has the general form 

F(x ,  y ,  y' , y") = O. (32) 

If either the dependent variable y or the independent variable x is missing from a 
second-order equation, then it is easily reduced by a simple substitution to a first
order equation that may be solvable by the methods of this chapter. 

Dependent variable y missing. If y is missing, then Eq. (32) takes the form 

Then the substitution 

F(x ,  y' , y") = O. 

, dy II dp 
p = y = 

dx ' Y dx 

results in the first-order differential equation 

F(x ,  p, p') = O. 

(33) 

(34) 

If we can solve this equation for a general solution p(x ,  C) involving an arbitrary 
constant C 1 , then we need only write 

y (x) = f y' (x ) dx = f p(x , C) dX + C2 

to get a solution of Eq. (33) that involves two arbitrary constants C) and C2 (as is to 
be expected in the case of a second-order differential equation) . 
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Solve the equation xy" + 2y' = 6x in which the dependent variable y is missing. 

Solution The substitution defined in (34) gives the first-order equation 

o 1 2 3 4 5 
x 

FIGURE 1.6.8. Solution curves 
C] 

of the form y = x 2 + - for 
x 

C] = 0, ±3, ± 1O, ±20, ±35, ±60, 
±100. 

dp x 
dx + 2p = 6x ; 

dp 2 
that is, - + -p = 6. 

dx x 

Observing that the equation on the right here is linear, we multiply by its integrating 
factor p = exp (j (2/x) dx ) = e2 1n x  = x2 and get 

Dx (x2p) = 6x2 , 

x2p = 2x3 + C1 , 
dy C1 p = - = 2x + -. dx x2 

A final integration with respect to x yields the general solution 

2 C t y (x)  = x + - + C2 
X 

of the second-order equation xy" + 2y' = 6x . Solution curves with C1 = 0 but 
C2 i= 0 are simply vertical translates of the parabola y = x2 (for which C t = C2 = 
0) . Figure 1 .6.8 shows this parabola and some typical solution curves with C2 = 0 
but C1 i= O. Solution curves with Ct and C2 both nonzero are vertical translates of 
those (other than the parabola) shown in Fig. 1 .6. 8 . • 

Independent variable x missing. If x is missing, then Eq. (32) takes the form 

F(y, y' , y") = O. 

Then the substitution 

, dy 
p = y = 

dx ' " dp dp dy dp y = - = - - = p-
dx dy dx dy 

results in the first-order differential equation 

(35) 

(36) 

for p as a function of y. If we can solve this equation for a general solution p(y, Ct ) 
involving an arbitrary constant Ct , then (assuming that y' i= 0) we need only write 

f dx f 1 f 1 f dy 
x (y) = 

dy dy = 
dy/dx dy = P dy = 

p(y, C t ) 
+ C2 . 

If the final integral P = J ( 1/ p) d y can be evaluated, the result is an implicit solution 
x (y) = P (y ,  Cd + C2 of our second-order differential equation. 
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Exa mple 1 1  Solve the equation yy" = (y,)2 in which the independent variable x is missing. 

Solution We assume temporarily that y and y' are both nonnegative, and then point out at the 
end that this restriction is unnecessary. The substitution defined in (36) gives the 
first-order equation 

5 ���������� 
4 
3 

2 
I 1-------== 

;>, 0 
- I 
-2 
-3 

o I 2 3 4 5 
x 

FIGURE 1.6.9. The solution 
curves y = AeBx with B = 0 and 
A = 0, ± 1 are the horizontal lines 
y = 0, ± 1 .  The exponential curves 
with B > 0 and A = ± 1 are in 
color, those with B < 0 and 
A = ± 1 are black. 

IIIIIJ Problems 

dp 2 yp - = p  dy 

Then separation of variables gives 

j d; = j d; , 
In p = In y + C (because y > 0 and p = y' > 0), p = Cl Y 

where C I = eC . Hence 

dx 1 dy P Cl Y ' 

Clx = j d; = ln y + C I . 

The resulting general solution of the second-order equation yy" = (y')2 is 

where A = e-cz and B = C I . Despite our temporary assumptions, which imply 
that the constants A and B are both positive, we readily verify that y (x )  = AeBx 
satisfies yy" = (y')2 for all real values of A and B . With B = 0 and different 
values of A,  we get all horizontal lines in the plane as solution curves. The upper 
half of Fig. 1 .6 .9 shows the solution curves obtained with A = 1 (for instance) and 
different positive values of B .  With A = - 1  these solution curves are reflected 
in the x-axis, and with negative values of B they are reflected in the y-axis . In 
particular, we see that we get solutions of yy" = (y')2 , allowing both positive and 
negative possibilities for both y and y' . • 

Find general solutions of the differential equations in Prob
lems 1 through 30. Primes denote derivatives with respect to x 
throughout. 

15. x(x + y)y' + y(3x + y) = 0 

16. y' = Jx + y + 1 17. y' = (4x + y)z 
18. (x + y)y' = 1 19. xZy' + 2xy = 5y3 

1.  (x + y)y' = x - Y 
3. xy' = y + 2.jXY 
5. x(x + y)y' = y(x - y) 
7. xyzy' = x3 + y3 
9. xZy' = xy + yZ 

11 .  (xz - yZ)y' = 2xy 
12. xyy' = yZ + x..jr4x-Z=-+-y"7z 
13. xy' = y + J x2 + y2 
14. yy' + x  = Jx2 + y2 

2. 2xyy' = x2 + 2y2 
4. (x - y)y' = x + y 
6. (x + 2y)y' = Y 
8. x2y' = xy + x2eY/x 

10. xyy' = x2 + 3y2 

20. y2y' + 2xy3 = 6x 21. y' = Y + y3 
22. xZy' + 2xy = 5y4 23. xy' + 6y = 3xy4/3 
24. 2xy' + y3e-2x = 2xy 
25. y2(xy' + y)( l  + X4) 1 /2 = x 
26. 3y2y' + y3 = e-X 
27. 3xy2y' = 3x4 + y3 
28. xeY y' = 2(eY + x3e2x) 
29. (2x sin y cos y)y' = 4x2 + sin2 y 
30. (x + eY)y' = xe-Y - 1 



In Problems 31 through 42, verify that the given differential 
equation is exact; then solve it. 

31.  (2x + 3y) dx + (3x + 2y) dy = 0 
32. (4x - y) dx + (6y - x) dy = 0 
33. (3x2 + 2y2 ) dx + (4xy + 6y2 ) dy = 0 
34. (2xy2 + 3x2) dx + (2x2y + 4y3 ) dy = 0 

35. (x3 + �) dx + (y2 + ln x) dy = o 

36. ( 1  + yexy ) dx + (2y + xexy ) dy = 0 

37. (cos x + ln y) dx + (� + eY) dy = 0 

38. (x + tan- 1 y) dx + x + Y dy = 0 
1 + y2 

39. (3x2y3 + y4) dx + (3x3y2 + y4 + 4xy3 ) dy = 0 
40. (eX sin y + tan y) dx + (eX cos y + x  sec2 y) dy = 0 

41. ( 2X _ 3y2 ) dx + ( 2Y 
_ 
x2 + _1_) dy = 0 Y x4 x3 y2 � 

2X5/2 _ 3y5/3 3y5/3 _ 2X5/2 
42. 2X5/2y2/3 dx + 3X3/2y5/3 dy = 0 

Find a general solution of each reducible second-order differ
ential equation in Problems 43-54. Assume x, y and/or y' 
positive where helpful (as in Example 11). 

43. xy" = y' 44. yy" + (y') 2 = 0 
45. y" + 4y = 0 46. xy" + y' = 4x 
47. y" = (y')2 48. x2y" + 3xy' = 2 
49. yy" + (y')2 = yy' 50. y" = (x + y,)2 
51. y" = 2y(y,) 3 52. y3y" = 1 
53. y" = 2yy' 54. yy" = 3 (y')2 
55. Show that the substitution v = ax + by + c transforms 

the differential equation dy/dx = F (ax + by + c) into a 
separable equation. 

56. Suppose that n ¥= 0 and n ¥= 1. Show that the sub
stitution v = y l -n transforms the Bernoulli equation 
dy/dx + P (x)y = Q(x)yn into the linear equation 

dv 
dx + ( 1  - n) P (x )v (x) = ( 1  - n) Q (x ) . 

57. Show that the substitution v = I n  y transforms the differ
ential equation dy/dx + P (x)y = Q(x ) (y In y) into the 
linear equation dv/dx + P (x) = Q(x )v (x ) . 

58. Use the idea in  Problem 57 to solve the equation 

dy 2 X dx - 4x y + 2y In y = o. 

59. Solve the differential equation 

dy x - y - 1 
dx x + y + 3 

by finding h and k so that the substitutions x = u + h, 
y = v + k transform it into the homogeneous equation 

dv u - v 
du u + v 
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60. Use the method in Problem 59 to solve the differential 
equation 

dy 2y - x  + 7  
dx 4x - 3y - 1 8 

61. Make an appropriate substitution to find a solution of the 
equation dy/dx = sin (x - y) . Does this general solution 
contain the linear solution y (x) = x - rrf2 that is readily 
verified by substitution in the differential equation? 

62. Show that the solution curves of the differential equation 

dy y (2x3 _ y3 ) 
dx X (2y3 - x3 ) 

are of the form x3 + y3 = 3Cxy. 
63. The equation dy/dx = A(X)y2 + B(x)y + C(x) is called 

a Riccati equation. Suppose that one particular solution 
Yl (x) of this equation is known. Show that the substitution 

1 
Y = Yl + V 

transforms the Riccati equation into the linear equation 

dv 
dx + (B + 2AYl )V  = -A . 

Use the method of Problem 63 to solve the equations in Prob
lems 64 and 65, given that Yl (x) = x is a solution of each. 

dy 
64. - + y2 = 1 + x2 dx 

dy 
65. - + 2xy = 1 + x2 + y2 dx 
66. An equation of the form 

y = xy' + g (y') (37) 

is called a Clairaut equation. Show that the one
parameter family of straight lines described by 

y (x) = Cx + g(C) (38) 

is a general solution of Eq. (37). 
67. Consider the Clairaut equation 

y = xy' _ � (y')2 
for which g (y') = - � (y')2 in Eq. (37). Show that the line 

y = Cx - �C2 
is tangent to the parabola y = x2 at the point ( 4C, �C2) . 
Explain why this implies that y = x2 is a singular solu
tion of the given Clairaut equation. This singular solution 
and the one-parameter family of straight line solutions are 
illustrated in Fig. 1 .6 . 1 0. 
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FIGURE 1.6.10. Solutions of the Clairaut 
equation of Problem 67 . The "typical" straight 
line with equation y = Cx - �C2 is tangent to 

the parabola at the point ( ! c, � C2) . 
68. Derive Eq. ( 1 8) i n  this section from Eqs. ( 1 6) and ( 1 7) .  
69. In  the situation of  Example 7,  suppose that a = 1 00 mi, 

Vo = 400 milh, and w = 40 mi/h. Now how far north
ward does the wind blow the airplane? 

70. As in the text discussion, suppose that an airplane main
tains a heading toward an airport at the origin. If Vo = 500 
milh and w = 50 milh (with the wind blowing due north), 
and the plane begins at the point (200, 1 50) , show that its 
trajectory is described by 

y + .JX 2 + y2 = 2(200X9 ) 1 / 1O . 

lIB P�pulation Models 

71.  A river 1 00 ft wide is flowing north at  w feet per second. 
A dog starts at ( 1 00 , 0) and swims at Vo = 4 ftls, always 
heading toward a tree at (0, 0) on the west bank directly 
across from the dog's  starting point. (a) If w = 2 ftls, 
show that the dog reaches the tree. (b) If w = 4 ft/s, 
show that the dog reaches instead the point on the west 
bank 50 ft north of the tree. (c) If w = 6 ftls ,  show that 
the dog never reaches the west bank. 

72. In the calculus of plane curves, one learns that the curva
ture K of the curve y = y (x ) at the point (x , y) is given 
by 1y" (x ) 1 K = --'-"---'-'---

[ 1  + y' (x )2P/2 ' 
and that the curvature of a circle of radius r is K = 1 I r . 
[See Example 3 in Section 1 1 .6 of  Edwards and Penney, 
Calculus: Early Transcendentals, 7th edition (Upper Sad
dle River, NJ: Prentice Hall, 2008) . ]  Conversely, substi
tute p = y' to derive a general solution of the second-order 
differential equation 

(with r constant) in the form 

Thus a circle of radius r (or a part thereof) is the only plane 
curve with constant curvature l lr . 

In Section 1 .4 we introduced the exponential differential equation dPjdt = kP ,  
with solution P ( t )  = Poekt , as  a mathematical model for natural population 

growth that occurs as a result of constant birth and death rates . Here we present 
a more general population model that accommodates birth and death rates that are 
not necessarily constant. As before, however, our population function P(t) will be 
a continuous approximation to the actual population, which of course changes only 
by integral increments-that is, by one birth or death at a time. 

Suppose that the population changes only by the occurrence of births and 
deaths-there is no immigration or emigration from outside the country or envi
ronment under consideration. It is customary to track the growth or decline of a 
population in terms of its birth rate and death rate functions defined as follows: 

• f3 (t) is the number of births per unit of population per unit of time at time t ;  
• 8 (t) is the number of deaths per unit of population per unit of time at time t .  

Then the numbers of  births and deaths that occur during the time interval 
[t , t + �t] is given (approximately) by 

births: f3 (t) · P (t) . �t ,  deaths: 8 (t) · P (t) . �t . 

Hence the change � P in the population during the time interval [t , t + �t] of 
length �t is 

�P  = {births} - {deaths} � f3 (t) . P (t) . �t - 8 (t) . P (t) . M ,  
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so 
!:l. P  

!:l. t  
� [,8 (t) - 8 (t ) ]  P (t ) .  

The error i n  this approximation should approach zero as !:l.t -+ 0 ,  so-taking 
the limit-we get the differential equation 

dP 

dt 
= (,8 - 8 )P ,  ( 1 )  

i n  which we  write ,8 = ,8 (t ) ,  8 = 8 (t ) ,  and P = P (t) for brevity. Equation ( 1 )  is 
the general population equation. If ,8 and 8 are constant, Eq. ( 1 )  reduces to the 
natural growth equation with k = ,8 - 8 .  But it also includes the possibility that ,8 
and 8 are variable functions of t .  The birth and death rates need not be known in 
advance; they may well depend on the unknown function P (t) . 

Suppose that an alligator population numbers 1 00 initially, and that its death rate is 
8 = 0 (so none of the alligators is dying) . If the birth rate is ,8 = (0.0005)P-and 
thus increases as the population does-then Eq. ( 1 )  gives the initial value problem 

:: = (O.0005) P2 , P (O) = 1 00 

(with t in years). Then upon separating the variables we get 

f :2 dP = f (0.0005) dt ;  

1 
- - = (0.0005)t  + C. 

P 

Substitution of t = 0, P = 100 gives C = - 1/100, and then we readily solve for 

2000 
P (t )  = -- . 

20 - t 

For instance, P ( 1  0) = 2000/ 1 0  = 200, so after 10  years the alligator popu
lation has doubled. But we see that P -+ +00 as t -+ 20, so a real "population 
explosion" occurs in 20 years . Indeed, the direction field and solution curves shown 
in Fig. 1 .7 . 1 indicate that a population explosion always occurs, whatever the size 
of the (positive) initial population P (O) = Po . In particular, it appears that the 
population always becomes unbounded in afinite period of time. • 

o t±::::±::±:::::±==t=jj 
o 1 0  20 30 40 50 

FIGURE 1.7.1.  Slope field and solution curves for the equation 
dP/dt = (O .0005) P2 in Example 1 .  
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Exa mple 2 

Bounded Populations and the Logistic Equation 

In situations as diverse as the human population of a nation and a fruit fly population 
in a closed container, it is often observed that the birth rate decreases as the popu
lation itself increases . The reasons may range from increased scientific or cultural 
sophistication to a limited food supply. Suppose, for example, that the birth rate 
f3 is a linear decreasing function of the population size P,  so that f3 = f30 - f3, P ,  
where f30 and f31 are positive constants . If  the death rate 8 = 80 remains constant, 
then Eq. ( 1 )  takes the form 

dP 
dt 

= (f30 - f3, P - 80)P ;  

that is , 

� 

where a = f30 - 80 and b = f3, . 

dP 2 - = a P - bP 
dt ' (2) 

If the coefficients a and b are both positive, then Eq. (2) is called the logistic 
equation. For the purpose of relating the behavior of the population P(t) to the 
values of the parameters in the equation, it is useful to rewrite the logistic equation 
in the form 

dP 
dt 

= kP (M - P) ,  

where k = b and M = alb are constants . 

(3) 

In Example 4 of Section 1 .3 we explored graphically a population that is modeled 
by the logistic equation 

dP 
- = 0 .0004P ( 1 50 - P) = 0 .06P - 0.0004p2 . dt 

(4) 

To solve this differential equation symbolically, we separate the variables and inte
grate. We get 

f P( 1 5�- P)  
= f 0 .0004 dt, 

1�0 f (� + 
1 50

1
_ p ) dP = f 0 .0004 dt [partial fractions] , 

In I P I - In 1 1 50 - P I = 0 .06t + C, 
P --- = ±eCeO.06t = BeO.06t [where B = ±ec] .  1 5 0  - P 

If we substitute t = 0 and P = Po i= 150 into this last equation, we find that 
B = Po/ ( 150 - Po) . Hence 

P 
150 - P 

PoeO.06t 
150 - Po 

Finally, this equation is easy to solve for the population 

P (t) = 150Po 
Po + ( 150 - Po)e-O.06t 

(5) 



P 
300 

-r--��--�--�--�� I 
25 50 75 1 00 

FIGURE 1 .7.2. Typical solution 
c�r�s for the logistic e�uation 
P - O.06P - O.0004 P . 

p 

M 

MI2 

FIGURE 1.7.3. Typical solution 
curves for the logistic equation 
pi = k P (M - P ) .  Each solution 
curve that starts below the line 
P = Mj2 has an inflection point 
on this line. (See Problem 34.)  

Exa m ple 3 
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at time t in terms of the initial population Po = P (0) . Figure 1 .7 .2 shows a number 
of solution curves corresponding to different values of the initial population ranging 
from Po = 20 to Po = 300. Note that all these solution curves appear to approach 
the horizontal line P = 1 50 as an asymptote. Indeed, you should be able to see 
directly from Eq. (5) that liml-->oo P(t )  = 1 50, whatever the initial value Po > O . • 

Limiting Populations and Carrying Capacity 

The finite limiting population noted in Example 2 is characteristic of logistic pop
ulations . In Problem 32 we ask you to use the method of solution of Example 2 to 
show that the solution of the logistic initial value problem 

is 

dP dt = k P (M - P) ,  P (O) = Po 

MPo 
P « ) = . 

Po + (M - PO)e-kMI 

(6) 

(7) 

Actual animal populations are positive valued. If Po = M, then (7) reduces 
to the unchanging (constant-valued) "equilibrium population" P (t)  == M. Other
wise, the behavior of a logistic population depends on whether 0 < Po < M or 
Po > M. If 0 < Po < M, then we see from (6) and (7) that P' > 0 and 

P (t)  = MPo 

Po + (M - Po)e-kMI 

MPo MPo 
------------- < -- = M. 
Po + {pos . number} Po 

However, if Po > M, then we see from (6) and (7) that P' < 0 and 

P « )  = MPo 

Po + (M - PO)e-kMI 

MPo MPo 
= -------------- > -- = M. 

Po + {neg. number} Po 

In either case, the "positive number" or "negative number" in the denominator has 
absolute value less than Po and-because of the exponential factor-approaches 0 
as t ---+ +00. It follows that 

. MPo 
hm P (t)  = -- = M. 

1 ->+ 00 Po + 0 
(8) 

Thus a population that satisfies the logistic equation does not grow without 
bound like a naturally growing population modeled by the exponential equation 
P' = k P .  Instead, it approaches the finite limiting population M as t -+ +00. 
As illustrated by the typical logistic solution curves in Fig. 1 .7 .3 ,  the population 
P (t )  steadily increases and approaches M from below if 0 < Po < M, but steadily 
decreases and approaches M from above if Po > M. Sometimes M is called the 
carrying capacity of the environment, considering it to be the maximum popUlation 
that the environment can support on a long-term basis . 

Suppose that in 1 885 the population of a certain country was 50 million and was 
growing at the rate of 750, 000 people per year at that time. Suppose also that in 
1 940 its population was 1 00 million and was then growing at the rate of 1 million 
per year. Assume that this population satisfies the logistic equation. Determine both 
the limiting population M and the predicted population for the year 2000. 
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Solution We substitute the two given pairs of data in Eq. (3) and find that 

Exa mple 4 

Exa m ple 5 

0.75 = 50k(M - 50) , 1 .00 = 1 00k (M - 1 00) . 

We solve simultaneously for M = 200 and k = 0.000 1 .  Thus the limiting popula
tion of the country in question is 200 million. With these values of M and k, and 
with t = 0 corresponding to the year 1 940 (in which Po = 1 00), we find that
according to Eq. (7)-the population in the year 2000 will be 

1 00 · 200 
P (60) = --------:-:-:�-==:-:-=-

1 00 + (200 - 1 00)e-(o.oOO I ) (200) (60) , 

about 1 53 .7 million people. 

Historical Note 

• 

The logistic equation was introduced (around 1 840) by the Belgian mathematician 
and demographer P. F. Verhulst as a possible model for human population growth. 
In the next two examples we compare natural growth and logistic model fits to the 
1 9th-century U.S .  population census data, then compare projections for the 20th 
century. 

The U.S .  population in 1 800 was 5 . 308 million and in 1 900 was 76.2 1 2  million. If 
we take Po = 5 . 308 (with t = 0 in 1 800) in the natural growth model P (t) = Poert 
and substitute t = 1 00, P = 76.2 1 2, we find that 

is 

76.2 1 2  = 5 .308e IOOr , 
1 76. 2 1 2  

so r = 
1 00 

In 
5 . 308 

� 0.026643 . 

Thus our natural growth model for the U.S.  population during the 1 9th century 

P (t) = (5 .308)e(O.026643) 1 (9) 

(with t in years and P in millions). Because eO.026643 � 1 .02700, the average popu
lation growth between 1 800 and 1 900 was about 2 .7% per year. • 

The U.S .  population in 1 850 was 23 . 1 92 million. If we take Po = 5 . 308 and sub
stitute the data pairs t = 50, P = 23 . 1 92 (for 1 850) and t = 1 00, P = 76. 2 1 2  (for 
1 900) in the logistic model formula in Eq. (7), we get the two equations 

(5 .308) M 
= 23 . 1 92 

5 . 308 + (M - 5 . 308)r50kM ' 

(5 . 308) M = 76.2 1 2  
5 . 308 + ( M  - 5 .308)e- IOOkM 

( 1 0) 

in the two unknowns k and M.  Nonlinear systems like this ordinarily are solved 
numerically using an appropriate computer system. But with the right algebraic 
trick (Problem 36 in this section) the equations in ( 1 0) can be solved manually for 
k = 0.000 1 677 1 6, M = 1 88 . 1 2 1 .  Substitution of these values in Eq. (7) yields the 
logistic model 

998.546 
P (t) - ----------,-....,.."...,..,,--

- 5 .308 + ( 1 82 . 8 1 3)e- (O .03 1 55 1 )1 ( 1 1 )  
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FIGURE 1 .7.5. Percentage 
errors in the exponential and 
logistic population models for 
1800-1 950. 
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The table in Fig. 1 .7.4 compares the actual 1 800- 1 990 U.S . census popula
tion figures with those predicted by the exponential growth model in (9) and the 
logistic model in ( 1 1 ) , Both agree well with the 1 9th-century figures . But the ex
ponential model diverges appreciably from the census data in the early decades 
of the 20th century, whereas the logistic model remains accurate until 1 940. By 
the end of the 20th century the exponential model vastly overestimates the actual 
U.S.  population-predicting over a billion in the year 2000-whereas the logistic 
model somewhat underestimates it. 

; : , ; :E}xponential Logistic Logistic 
' Error Model Error 

1 800 5 .308 5 .308 0.000 5 .308 0.000 

1 8 1 0 7 .240 6.929 0.3 1 1  7 .202 0.038 

1 820 9.638 9.044 0.594 9.735 -0.097 

1 830 1 2.861  1 1 .805 1 .056 13 .095 -0.234 

1 840 17 .064 1 5 .409 1 .655 17 .501 -0.437 

1 850 23. 1 92 20. 1 1 3 3 .079 23 . 1 92 0.000 

1 860 3 1 .443 26.253 5 . 1 90 30.405 1 .038 

1 870 38 .558 34.268 4.290 39.326 -0.768 

1 880 50. 1 89 44.730 5 .459 50.034 0. 1 55 

1 890 62.980 58 .387 4.593 62.435 0.545 

1 900 76.2 1 2  76.2 1 2  0.000 76.2 1 3  -0.001 

1 9 1 0  92.228 99.479 -7 .25 1 90.834 1 .394 

1 920 106.022 1 29.849 -23. 827 105 .6 12  0.4 10 

1 930 1 23 .203 1 69 .492 -46.289 1 1 9.834 3.369 

1 940 1 32. 1 65 22 1 .237 - 89.072 1 32.886 -0.721 

1 950 1 5 1 .326 288.780 - 1 37 .454 144.354 6.972 

1 960 1 79.323 376.943 - 1 97 .620 1 54.052 25.27 1 

1970 203 .302 492.023 -288.721 1 6 1 .990 4 1 .3 1 2 

1 980 226.542 642.236 -4 1 5 .694 1 68.3 1 6  58 .226 

1 990 248.7 10 838.308 -589.598 173 .252 76.458 

2000 28 1 .422 1094.240 - 8 1 2. 8 1 8  177.038 1 04.384 

FIGURE 1 .7.4. Comparison of exponential growth and logistic models with U.S. census 
populations (in millions). 

The two models are compared in Fig. 1 .7 .5 ,  where plots of their respective 
errors-as a percentage of the actual population-are shown for the 1 800-1950 
period. We see that the logistic model tracks the actual population reasonably well 
throughout this 1 50-year period. However, the exponential error is considerably 
larger during the 1 9th century and literally goes off the chart during the first half of 
the 20th century. 

In order to measure the extent to which a given model fits actual data, it is cus
tomary to define the average error (in the model) as the square root of the average 
of the squares of the individual errors (the latter appearing in the fourth and sixth 
columns of the table in Fig. 1 .7 .4) . Using only the 1 800-1 900 data, this definition 
gives 3 . 1 62 for the average error in the exponential model , while the average error 
in the logistic model is only 0.452. Consequently, even in 1 900 we might well have 
anticipated that the logistic model would predict the U.S. population growth during 
the 20th century more accurately than the exponential model. • 
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Exa mple 6 

The moral of Examples 4 and 5 is simply that one should not expect too much 
of models that are based on severely limited information (such as just a pair of data 
points) .  Much of the science of statistics is devoted to the analysis of large "data 
sets" to formulate useful (and perhaps reliable) mathematical models. 

More Applications of the Logistic Equation 

We next describe some situations that illustrate the varied circumstances in which 
the logistic equation is a satisfactory mathematical model. 

1. Limited environment situation. A certain environment can support a popula
tion of at most M individuals. It is then reasonable to expect the growth rate 
f3 - 8 (the combined birth and death rates) to be proportional to M - P, be
cause we may think of M - P as the potential for further expansion. Then 
f3 - 8 = k (M - P) ,  so that 

dP 
dt 

= (f3 - 8) P = k P (M - P) .  

The classic example of a limited environment situation i s  a fruit fly  population 
in a closed container. 

2. Competition situation. If the birth rate f3 is constant but the death rate 8 is 
proportional to P, so that 8 = a P, then 

dP 
- = (f3 - a P ) P = kP (M - P) . 
dt 

This might be a reasonable working hypothesis in a study of a cannibalistic 
population, in which all deaths result from chance encounters between indi
viduals .  Of course, competition between individuals is not usually so deadly, 
nor its effects so immediate and decisive. 

3. Joint proportion situation. Let P (t) denote the number of individuals in a 
constant-size susceptible population M who are infected with a certain con
tagious and incurable disease. The disease is spread by chance encounters . 
Then pi (t) should be proportional to the product of the number P of individ
uals having the disease and the number M - P of those not having it, and 
therefore dP/dt = kP (M - P) .  Again we discover that the mathematical 
model is the logistic equation. The mathematical description of the spread of 
a rumor in a population of M individuals is identical . 

. . .. �.�. . . . . .•.•. .  

Suppose that at time t = 0, 1 0  thousand people in a city with population M = 100 
thousand people have heard a certain rumor. After 1 week the number P(t) of 
those who have heard it has increased to P( l )  = 20 thousand. Assuming that P(t) 
satisfies a logistic equation, when will 80% of the city's population have heard the 
rumor? 

Solution Substituting Po = 10 and M = 100 (thousand) in Eq. (7), we get 

1 000 
P (t) = . ( 1 2) 

10  + 90e- IOOkt 

Then substitution of t = 1 ,  P = 20 gives the equation 

20 = 
1000 

1 0  + 90e- IOOk 
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that is readily solved for 

e- 1OOk = � ,  so k = lbo In � � 0.008 109. 

With P (t ) = 80, Eq. ( 12) takes the fonn 

80 = 1000 
10  + 90e- 1OOkt ' 

which we solve for e- lOOkt = -l6 .  It follows that 80% of the population has heard 
the rumor when 

In 36 In 36 
t = -- = -9- � 4.42, 

l OOk In 4 

thus after about 4 weeks and 3 days. 

Doomsday versus Extinction 

• 

Consider a population P (t) of unsophisticated animals in which females rely solely 
on chance encounters to meet males for reproductive purposes. It is reasonable to 
expect such encounters to occur at a rate that is proportional to the product of the 
number P /2 of males and the number P /2 of females, hence at a rate proportional 
to p2 . We therefore assume that births occur at the rate k p2 (per unit time, with 
k constant) . The birth rate (births/time/population) is then given by f3 = kP . If 
the death rate 8 is constant, then the general population equation in ( 1 )  yields the 
differential equation 

dP 2 
- = kP - 8 P  = kP(P  - M) dt 

(where M = 8/k > 0) as a mathematical model of the population. 

( 1 3) 

Note that the right-hand side in Eq. ( 1 3) is the negative of the right-hand side 
in the logistic equation in (3) .  We will see that the constant M is now a threshold 
population, with the way the population behaves in the future depending critically 
on whether the initial population Po is less than or greater than M. 

Consider an animal population P (t )  that is modeled by the equation 

dP 2 
- = 0.0004P (P - 150) = 0.0004P - 0.06P. 
dt 

We want to find P (t )  if (a) P (O) = 200; (b) P (O) = 100. 

(14) 

Solution To solve the equation in ( 1 4) ,  we separate the variables and integrate. We get 

f P(P  � 1 50) = f 0.0004 dt ,  

_ _ 
1
_ f (� - 1 ) dP = f 0.0004 dt [partial fractions] ,  

1 50 P P - 1 50 

In I P I  - In I P  - 150 1 = -0.06t + C, 

__ P __ = ±eCe-O.06t = Be-O.06t 
P - 150 

[where B = ±ec] .  ( 15) 
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p 

M ��� ________ �P�=�M� 

FIGURE 1 .7.6. Typical solution 
curves for the explosion/extinction 
equation pI = kP (P - M).  

_ Problems 

(a) Substitution of t = 0 and P = 200 into ( 1 5) gives B = 4. With this value of B 
we solve Eq. ( 1 5) for 

600e-O.06t 
P (t ) = . 4e-O.06t - 1 

( 16) 

Note that, as t increases and approaches T = In(4) /0.06 � 23 . 105 ,  the positive 
denominator on the right in ( 16) decreases and approaches O. Consequently P(t) � 
+00 as t � T- . This is a doomsday situation-a real population explosion. 
(b) Substitution of t = 0 and P = 100 into ( 1 5 )  gives B = -2. With this value of 
B we solve Eq. ( 1 5) for 

300e-O.06t 300 
P (t ) - --=-=-::--- 2rO.06t + 1 - 2 + eO.06r • 

( 1 7) 

Note that, as t increases without bound, the positive denominator on the right in 
( 1 6) approaches +00. Consequently, P (t) � 0 as t � +00. This is an (eventual) 
extinction situation. • 

Thus the population in Example 7 either explodes or is an endangered species 
threatened with extinction, depending on whether or not its initial size exceeds the 
threshold population M = 1 50. An approximation to this phenomenon is some
times observed with animal populations, such as the alligator population in certain 
areas of the southern United States. 

Figure 1 .7.6 shows typical solution curves that illustrate the two possibilities 
for a population P(t) satisfying Eq. ( 1 3) . If Po = M (exactly ! ) ,  then the popula
tion remains constant. However, this equilibrium situation is very unstable. If Po 
exceeds M (even slightly), then P (t) rapidly increases without bound, whereas if 
the initial (positive) population is less than M (however slightly), then it decreases 
(more gradually) toward zero as t � +00. See Problem 33 . 

Separate variables and use partial fractions to solve the initial 
value problems in Problems 1-8. Use either the exact solution 
or a computer-generated slope field to sketch the graphs ofsev
eral solutions of the given differential equation, and highlight 
the indicated particular solution. 

the population numbers 100 rabbits and is increasing at 
the rate of 20 rabbits per month. How many rabbits will 
there be one year later? 

10. Suppose that the fish population P (t) in a lake is attacked 
by a disease at time t = 0, with the result that the fish 
cease to reproduce (so that the birth rate is f3 = 0) and the 
death rate 8 (deaths per week per fish) is thereafter propor
tional to 1/.../P. If there were initially 900 fish in the lake 
and 44 1 were left after 6 weeks, how long did it take all 
the fish in the lake to die? 

dx 
1. - = x - x2 x (O) = 2 2. dt ' 

dx 
3. - = 1 - x2 , x (O) = 3 4. 

dt 
dx 

5. - = 3x (5 - x), x (O) = 8 
dt 
dx 

6. - = 3x (x - 5), x (O) = 2 dt 
dx 

7. - = 4x (7 - x) , x (O) = 1 1  
dt 
dx 

8. - = 7x (x - 1 3 ) ,  x (O) = 17 
dt 

dx 
-- = lOx - x2 , X (0) = 1 dt 
dx 
- = 9 - 4x2 , x (0) = 0  dt 

9. The time rate of change of a rabbit popUlation P is pro
portional to the square root of P . At time t = 0 (months) 

11 .  Suppose that when a certain lake is stocked with fish, the 
birth and death rates f3 and 8 are both inversely propor
tional to .../P. (a) Show that 

where k is a constant. (b) If Po = 100 and after 6 months 
there are 1 69 fish in the lake, how many will there be after 
1 year? 



12. The time rate of change of an alligator population P in 
a swamp is proportional to the square of P . The swamp 
contained a dozen alligators in 1 988, two dozen in 1 998. 
When wil l  there be four dozen alligators in the swamp? 
What happens thereafter? 

13. Consider a prolific breed of rabbits whose birth and death 
rates, f3 and 8, are each proportional to the rabbit popula
tion P = P (t) , with f3 > 8. (a) Show that 

Po p et) - k constant. - 1 - kPot ' 

Note that P (t) --+ +00 as t --+ liCk Po) . This is dooms
day. (b) Suppose that Po = 6 and that there are nine 
rabbits after ten months. When does doomsday occur? 

14. Repeat part (a) of Problem 1 3  in the case f3 < 8. What 
now happens to the rabbit population in the long run? 

15. Consider a population p et) satisfying the logistic equa
tion dP/dt = aP - bP2 , where B = a P is the time rate 
at which births occur and D = bP2 is the rate at which 
deaths occur. If the initial population is P (O) = Po , and 
Bo births per month and Do deaths per month are occur
ring at time t = 0, show that the limiting population is 
M = BoPo/Do . 

16. Consider a rabbit population p et ) satisfying the logistic 
equation as in Problem 1 5 .  If the initial population is 1 20 
rabbits and there are 8 births per month and 6 deaths per 
month occurring at time t = 0, how many months does it 
take for P (t) to reach 95% of the limiting population M? 

17. Consider a rabbit population p et) satisfying the logistic 
equation as in Problem 1 5 .  If the initial population is 240 
rabbits and there are 9 births per month and 12 deaths per 
month occurring at time t = 0, how many months does it 
take for p et) to reach 105% of the limiting population M? 

18. Consider a population p et) satisfying the extinction
explosion equation dP/dt = a p2 - b P ,  where B = aP2 
is the time rate at which births occur and D = b P is 
the rate at which deaths occur. If the initial population 
is P(O) = Po and Bo births per month and Do deaths per 
month are occurring at time t = 0, show that the threshold 
population is M = DoPo/Bo . 

19. Consider an alligator population p et) satisfying the 
extinction/explosion equation as in Problem 1 8 .  If the ini
tial population is 1 00 alligators and there are 10 births per 
month and 9 deaths per months occurring at time t = 0, 
how many months does it take for p et) to reach 10 times 
the threshold population M? 

20. Consider an  alligator population p et) satisfying the 
extinction/explosion equation as in Problem 1 8 . If the ini
tial population is 1 1 0 alligators and there are 1 1  births per 
month and 12 deaths per month occurring at time t = 0, 
how many months does it take for P(t) to reach 10% of 
the threshold population M? 

21 .  Suppose that the population p et) of a country satisfies the 
differential equation dP/dt = kP (200 - P) with k con
stant. Its population in 1 940 was 1 00 million and was then 
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growing at the rate of 1 million per year. Predict this coun
try 's population for the year 2000. 

22. Suppose that at time t = 0, half of a "logistic" popula
tion of 1 00, 000 persons have heard a certain rumor, and 
that the number of those who have heard it is then increas
ing at the rate of 1 000 persons per day. How long will it 
take for this rumor to spread to 80% of the population? 
(Suggestion: Find the value of k by substituting P(O) and 
P' (O) in the logistic equation, Eq. (3) .) 

23. As the salt KN03 dissolves in methanol ,  the number x(t) 
of grams of the salt in a solution after t seconds satisfies 
the differential equation dx/dt = 0.8x - 0.004x2 .  
(a) What is the maximum amount of the salt that will ever 

dissolve in the methanol? 

(b) If x = 50 when t = 0, how long will it take for an 
additional 50 g of salt to dissolve? 

24. Suppose that a community contains 1 5 ,000 people who 
are susceptible to Michaud's syndrome, a contagious dis
ease. At time t = 0 the number N (t) of people who have 
developed Michaud's syndrome is 5000 and is increasing 
at the rate of 500 per day. Assume that N'(t) is propor
tional to the product of the numbers of those who have 
caught the disease and of those who have not. How long 
will it take for another 5000 people to develop Michaud's 
syndrome? 

25. The data in the table in Fig. 1 .7 .7 are given for a certain 
population P(t) that satisfies the logistic equation in (3). 
(a) What is the limiting population M? (Suggestion : Use 
the approximation 

, p et + h) - P(t - h) P (t) � 
2h 

with h = 1 to estimate the values of P'(t) when P 
25.00 and when P = 47.54. Then substitute these values 
in the logistic equation and solve for k and M.)  (b) Use 
the values of k and M found in part (a) to determine when 
P = 75 . (Suggestion: Take t = 0 to correspond to the 
year 1 925.) 

Year P (millions) 
1 924 24.63 
1 925 25 .00 
1 926 25.38 

1 974 47 .04 
1 975 47.54 
1 976 48 .04 

FIGURE 1 .7.7. Population data for Problem 25. 

26. A population p et) of small rodents has birth rate f3 
(0.00 1 ) P (births per month per rodent) and constant death 
rate 8 .  If P (O) = 1 00 and P' (O) = 8, how long (in 
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months) will  it take this population to double to 200 ro
dents? (Suggestion: First find the value of 8 . )  

27. Consider an animal population P (t) with constant death 
rate 8 = 0.0 1 (deaths per animal per month) and with 
birth rate f3 proportional to P. Suppose that P (0) = 200 
and PI (O) = 2. (a) When is P = 1000? (b) When does 
doomsday occur? 

28. Suppose that the number x (t) (with t in months) of alliga
tors in a swamp satisfies the differential equation dx/dt = 

0.0001x2 - O.O lx . 
(a) I f  initially there are 25 alligators in the swamp, solve 

this differential equation to determine what happens 
to the alligator population in the long run. 

(b) Repeat part (a), except with 1 50 alligators initially. 

29. During the period from 1 790 to 1930, the u.S .  population 
P(t) (t in years) grew from 3 .9 million to 1 23 .2 million. 
Throughout this period, P (t) remained close to the solu
tion of the initial value problem 

dP dt = 0.03 1 35P - 0.000 1489P2 , P (O) = 3 .9 . 

(a) What 1930 population does this logistic equation pre
dict? 

(b) What limiting population does it predict? 
(c) Has this logistic equation continued since 1 930 to ac-

curately model the U.S .  population? 

[This problem is based on a computation by Verhulst, who 
in 1 845 used the 1 790-1 840 U.S.  population data to pre
dict accurately the U.S .  population through the year 1 930 
(long after his own death, of course) . ]  

30. A tumor may be regarded as a population of multiplying 
cells. It is found empirically that the "birth rate" of the 
cells in a tumor decreases exponentially with time, so that 
f3(t) = f3oe-at (where a and f30 are positive constants) ,  
and hence 

dP dt = f3oe-at P , P (O) = Po · 

Solve this initial value problem for 

P (t ) = Po exp (� ( 1 - e-OIt ») . 
Observe that P (t ) approaches the finite limiting popula
tion Po exp (f3o/a) as t � +00. 

31. For the tumor of Problem 30, suppose that at  time t = 0 
there are Po = 106 cells and that P (t) is then increasing 
at the rate of 3 x 105 cells per month. After 6 months the 
tumor has doubled (in size and in number of cells) .  Solve 
numerically for a, and then find the limiting population of 
the tumor. 

32. Derive the solution 

P (t ) = MPo 
Po + (M - Po)e-kMt 

of the logistic initial value problem pI = kP (M - P) , 
P (0) = Po. Make i t  clear how your derivation depends on 
whether 0 < Po < M or Po > M. 

33. (a) Derive the solution 

MPo P (t) = -----'--Po + (M - Po)ekMt 

of the extinction-explosion initial value problem P' = 
kP (P - M) , P (O) = Po. 

(b) How does the behavior of P (t ) as t increases depend 
on whether 0 < Po < M or Po > M? 

34. If P (t) satisfies the logistic equation in (3) , use the chain 
rule to show that 

PII (t ) = 2k2 P (P - �M ) (P - M) . 

Conclude that pI! > 0 if 0 < P < 1M· pI! = 0 if 2 ' 
P = 1M· pI! < 0 if 1M < P < M· and P" > 0 2 ' 2 ' 
if P > M. In particular, it follows that any solution 
curve that crosses the line P = � M has an inflection point 
where it crosses that line, and therefore resembles one of 
the lower S-shaped curves in Fig . 1 .7 .3 . 

35.  Consider two population functions PI (t) and P2 (t ) ,  both 
of which satisfy the logistic equation with the same limit
ing population M but with different values kl and k2 of the 
constant k in Eq. (3 ) . Assume that kl < k2 . Which pop
ulation approaches M the most rapidly? You can reason 
geometrically by examining slope fields (especially if ap
propriate software is available), symbolically by analyzing 
the solution given in Eq. (7) , or numerically by substitut
ing successive values of t . 

36. To solve the two equations i n  ( 10) for the values o f  k and 
M, begin by solving the first equation for the quantity 
x = e-50kM and the second equation for x2 = e- IOOkM . 
Upon equating the two resulting expressions for x2 in 
terms of M, you get an equation that is readily solved for 
M. With M now known, either of the original equations 
is readily solved for k. This technique can be used to "fit" 
the logistic equation to any three population values Po, PI ,  
and P2 corresponding to equally spaced times to = 0, tl , 
and t2 = 2tl . 

37. Use the method of Problem 36 to fit the logistic equation 
to the actual U.S .  population data (Fig. 1 .7 .4) for the years 
1 850, 1900, and 1950. Solve the resulting logistic equa
tion and compare the predicted and actual populations for 
the years 1990 and 2000. 

38. Fit the logistic equation to the actual U.S.  population data 
(Fig. 1 .7 .4) for the years 1900, 1930, and 1960. Solve the 
resulting logistic equation, then compare the predicted and 
actual populations for the years 1980, 1990, and 2000. 

39. Birth and death rates of animal populations typically are 
not constant; instead, they vary periodically with the pas
sage of seasons. Find P (t) if the population P satisfies 
the differential equation 

dP 
- = (k + b cos 2:rr t )P , dt 
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where t is in years and k and b are positive constants . Thus 
the growth-rate function r (t )  = k + b cos 2:n: t varies pe
riodically about its mean value k. Construct a graph that 
contrasts the growth of this population with one that has 

the same initial value Po but satisfies the natural growth 
equation P' = k P  (same constant k). How would the two 
populations compare after the passage of many years? 

Exa m ple 1 

In Section 1 .2 we discussed vertical motion of a mass m near the surface of the earth 
under the influence of constant gravitational acceleration. If we neglect any effects 
of air resistance, then Newton's  second law (F = ma) implies that the velocity v of 
the mass m satisfies the equation 

dv 
m- = F',G dt ' ( 1 )  

where FG = -mg i s  the (downward-directed) force of gravity, where the gravita
tional acceleration is g � 9 .8  m/s2 (in mks units ; g � 32 ft/s2 in fps units). 

" _ h  o _ __ . _ . �  _ _ _ __ _ _ �._. _ _  " _m. _ _ __ _ • _" N N  _ _ _ _ __ • _ _ _  h _ h �  _ .m _ _ _  h _ ____ h _ _  • • ••••••• _.... • •• ,,_.. • ••• • •  

Suppose that a crossbow bolt is shot straight upward from the ground (Yo = 0) with 
initial velocity Vo = 49 (m/s). Then Eq. ( 1 )  with g = 9 .8  gives 

dv 
- = -9.8 ,  so  v (t)  = - (9 .8) t  + Vo = - (9.8)t  + 49. 
dt 

Hence the bolt's height function y (t) is given by 

y (t) = f [- (9 .8 ) t  + 49] dt = - (4.9)t2 + 49t + Yo = - (4.9)t2 + 49t . 

The bolt reaches its maximum height when v = - (9 .8) t  + 49 = 0, hence when 
t = 5 (s). Thus its maximum height is 

Ymax = y (5) = - (4.9) (52) + (49) (5 ) = 1 22.5 (m) . 

The bolt returns to the ground when y = - (4.9) t (t - 10) = 0, and thus after 10 
seconds aloft. • 

Now we want to take account of air resistance in a problem like Example 1 .  
The force F R exerted by air resistance on the moving mass m must be added in 
Eq. ( 1 ) , so now 

dv m - = FG + FR · dt 
(2) 

Newton showed in his Principia Mathematica that certain simple physical assump
tions imply that FR is proportional to the square of the velocity : FR = kv2 . But 
empirical investigations indicate that the actual dependence of air resistance on ve
locity can be quite complicated. For many purposes it suffices to assume that 

where 1 � p � 2 and the value of k depends on the size and shape of the body, as 
well as the density and viscosity of the air. Generally speaking, p = 1 for relatively 
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m 

(Note: F R acts upward when 
the body is falling.) 

m INet force F _ FR + FG 

Ground level 

FIGURE 1.S.1 .  Vertical motion 
with air resistance. 

low speeds and p = 2 for high speeds, whereas 1 < p < 2 for intermediate speeds. 
But how slow "low speed" and how fast "high speed" are depend on the same factors 
that determine the value of the coefficient k. 

Thus air resistance is a complicated physical phenomenon. But the simplify
ing assumption that FR is exactly of the form given here, with either p = l or p = 2, 
yields a tractable mathematical model that exhibits the most important qualitative 
features of motion with resistance. 

Resistance Proportional to Velocity 

Let us first consider the vertical motion of a body with mass m near the surface 
of the earth, subject to two forces: a downward gravitational force F G and a force 
FR of air resistance that is proportional to velocity (so that p = 1 )  and of course 
directed opposite the direction of motion of the body. If we set up a coordinate 
system with the positive y-direction upward and with y = 0 at ground level, then 
FG = -mg and 

FR = -kv ,  (3) 

where k is a positive constant and v = dyfdt is the velocity of the body. Note that 
the minus sign in Eq. (3) makes FR positive (an upward force) if the body is falling 
(v is negative) and makes F R negative (a downward force) if the body is rising (v is 
positive). As indicated in Fig. 1 .8 . 1 ,  the net force acting on the body is then 

F = FR + FG = -kv - mg , 

and Newton's law of motion F = m (dvfdt) yields the equation 

Thus 

dv 
m - = -kv - mg .  

dt 

dv 
- = -pv - g , 
dt 

(4) 

where p = k f m > O. You should verify for yourself that if the positive y-axis were 
directed downward, then Eq. (4) would take the form dVfdt = -pv + g .  

Equation (4) is a separable first-order differential equation, and its solution is 

v (t )  = (vo + �) e-pt - � . 
Here, Vo = v (O) is the initial velocity of the body. Note that 

v-r = lim v (t )  = _ ! .  
t�oo p 

(5) 

(6) 

Thus the speed of a body falling with air resistance does not increase indefinitely; 
instead, it approaches afinite limiting speed, or terminal speed, 

g mg 
I V-r l = - = - · p k 

(7) 



Example 2 

1 .8 Acceleration-Velocity Models 87 

This fact is what makes a parachute a practical invention; it even helps explain 
the occasional survival of people who fall without parachutes from high-flying air
planes. 

We now rewrite Eq. (5) in the form 

Integration gives 

dy _ -pt - - (vo - v'!" )e + v'!" . dt 

1 
y (t) = - - (vo - v'!" )e-pt + v'!" t + C. 

p 

(8) 

We substitute 0 for t and let Yo = y (O) denote the initial height of the body. Thus 
we find that C = Yo + (vo - v,!" )/p , and so 

1 pt y (t )  = Yo + v'!" t + - (vo - v'!" ) ( 1 - e- ) .  
p 

(9) 

Equations (8) and (9) give the velocity v and height y of a body moving ver
tically under the influence of gravity and air resistance. The formulas depend on 
the initial height Yo of the body, its initial velocity vo , and the drag coefficient p, 
the constant such that the acceleration due to air resistance is aR = -pv. The two 
equations also involve the terminal velocity v'!" defined in Eq. (6). 

For a person descending with the aid of a parachute, a typical value of p is 
1 .5 , which corresponds to a terminal speed of I v,!" I � 2 1 . 3  ft/s, or about 14.5 mi/h. 
With an unbuttoned overcoat flapping in the wind in place of a parachute, an unlucky 
skydiver might increase p to perhaps as much as 0.5 , which gives a terminal speed 
of I v'!" I � 65 ft/ s, about 44 mi/h. See Problems 10  and 1 1  for some parachute-jump 
computations. 

._..... . .... . _ ...... . 

We again consider a bolt shot straight upward with initial velocity Vo = 49 m/s 
from a crossbow at ground level. But now we take air resistance into account, with 
p = 0.04 in Eq. (4) . We ask how the resulting maximum height and time aloft 
compare with the values found in Example 1 .  

Solution We substitute Yo = 0, Vo = 49, and v'!" = -g/p = -245 in Eqs. (5) and (9), and 
obtain 

v (t) = 294e-t/25 - 245 , 
y (t) = 7350 - 245t - 7350e-t/25 • 

To find the time required for the bolt to reach its maximum height (when v = 0), 
we solve the equation 

v (t ) = 294e-t/25 - 245 = 0 
for tm = 25 In (294/245) � 4.558 (s). Its maximum height is then Ymax = v(tm) � 
108 .280 meters (as opposed to 1 22 .5 meters without air resistance). To find when 
the bolt strikes the ground, we must solve the equation 

y (t) = 7350 - 245t - 7350e-t/25 = O. 

Using Newton's method, we can begin with the initial guess to = 10 and carry out 
the iteration tn+ ! = tn - y (tn )fy' (tn ) to generate successive approximations to the 
root. Or we can simply use the Solve command on a calculator or computer. We 
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find that the bolt is in the air for tf � 9.41 1 seconds (as opposed to 10 seconds 
without air resistance) . It hits the ground with a reduced speed of I V (tf) 1 � 43 .227 
mls (as opposed to its initial velocity of 49 m/s). 

Thus the effect of air resistance is to decrease the bolt's maximum height, the 
total time spent aloft, and its final impact speed. Note also that the bolt now spends 
more time in descent (tf - tm � 4.853 s) than in ascent (tm � 4.558 s) . • 

Resistance Proportional to Square of Velocity 

Now we assume that the force of air resistance is proportional to the square of the 
velocity : 

( 1 0) 

with k > O. The choice of signs here depends on the direction of motion, which 
the force of resistance always opposes. Taking the positive y-direction as upward, 
FR < 0 for upward motion (when v > 0) while FR > 0 for downward motion 
(when v < 0). Thus the sign of FR is always opposite that of v , so we can rewrite 
Eq. ( 1 0) as 

FR = -kv l v l . 

Then Newton 's second law gives 

dv 
m- = FG + FR = -mg - kv l v l ;  

dt 
that is, 

dv 
- = -g - pv l v l dt ' 

( 1 0') 

( 1 1 )  

where p = kim > O. We must discuss the cases of  upward and downward motion 
separately. 

UPWARD MOTION : Suppose that a projectile is launched straight upward from 
the initial position Yo with initial velocity Vo > O. Then Eq. ( 1 1 )  with v > 0 gives 
the differential equation 

�� = -g - pv2 = -g ( 1 + � v2) • ( 1 2) 

In Problem 1 3  we ask you to make the substitution u = vJ pig and apply the 
familiar integral f _1

_2 du = tan- 1 u + C 
l + u 

to derive the projectile 's velocity function 

V (t ) = !! tan (c , - tJlii) with Cl = tan- l (vom . ( 1 3) 

Because J tan u d u = - In I cos u I + C,  a second integration (see Problem 14) 
yields the position function 

1 cos (Cl - t..;r.;g) 
y (t )  = Yo + - In --'----''--� 

p cos C1 
( 14) 
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DOWNWARD MOTION : Suppose that a projectile is launched (or dropped) 
straight downward from the initial position Yo with initial velocity Vo � O. Then 
Eq. ( 1 1 )  with v < 0 gives the differential equation 

dv 2 ( p 2) 
dt 

= -g + pv = -g 1 - g V . ( 1 5) 

In Problem 1 5  we ask you to make the substitution u = vJ pig and apply the 
integral f -1_2 du = tanh- 1 u + C 

l - u 
to derive the projectile' s  velocity function 

v (t) = f! tanh (C2 - t...[jig) with ( 1 6) 

Because f tanh u d u = In I cosh u I + C,  another integration (Problem 1 6) yields the 
position function 

1 cosh (C2 - t,JPg) 
Y (t) = Yo - - In ------'-----'--------<-p cosh C2 

( 17) 

(Note the analogy between Eqs. ( 1 6) and ( 1 7) and Eqs. ( 1 3) and ( 14) for upward 
motion.)  

If Vo = 0, then C2 = 0, so v (t) = -J g/ p tanh ( t  ,JPg). Because 

. . sinh x . ! (eX - e-X )  
hm tanh x = hm -- = hm 1 = 1 ,  x-+oo x-+oo cosh x x-+oo z (eX + e-X ) 

it follows that in the case of downward motion the body approaches the tenninal 
speed 

( 18) 

(as compared with l v, I = g/p in the case of downward motion with linear resistance 
described by Eq. (4)) .  

We consider once more a bolt shot straight upward with initial velocity Vo = 49 mls 
from a crossbow at ground level, as in Example 2. But now we assume air resistance 
proportional to the square of the velocity, with p = 0.001 1 in Eqs. ( 1 2) and ( 15). In 
Problems 1 7  and 1 8  we ask you to verify the entries in the last line of the following 
table. 

't\�ent . Descent Impact 
'!nine (s) 1ime (s) Speed (ftls) 

0.0 1 22.5 10 5 5 49 
(0.04) v 108.28 9.4 1 4.56 4.85 43.23 
(0.001 1 ) v2 108.47 9.4 1 4.6 1 4.80 43.49 
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FIGURE I.S.2. The height functions in Example I (without air 
resistance), Example 2 (with linear air resistance), and Example 3 
(with air resistance proportional to the square of the velocity) are all 
plotted. The graphs of the latter two are visually indistinguishable. 

Comparison of the last two lines of data here indicates little difference-for the 
motion of our crossbow bolt-between linear air resistance and air resistance pro
portional to the square of the velocity. And in Fig. 1 .8 .2, where the corresponding 
height functions are graphed, the difference is hardly visible. However, the differ
ence between linear and nonlinear resistance can be significant in more complex 
situations-such as, for instance, the atmospheric reentry and descent of a space 
vehicle. • 

Variable Gravitational Acceleration 

Unless a proj ectile in vertical motion remains in the immediate vicinity of the earth's 
surface, the gravitational acceleration acting on it is not constant. According to 
Newton's  law of gravitation, the gravitational force of attraction between two point 
masses M and m located at a distance r apart is given by 

GMm 
F =  

--2 - ' r 
( 1 9) 

where G is a certain empirical constant (G :::::: 6.6726 x 1 0- 1 1  N · (m/kg)2 in mks 
units) . The formula is also valid if either or both of the two masses are homogeneous 
spheres; in this case, the distance r is measured between the centers of the spheres. 

The following example is similar to Example 2 in Section 1 .2, but now we 
take account of lunar gravity. 

1I1!I"'."II!!Il""i.�'�PI".I'- Al-
un

-�i;�d��i;-fr��-falli�g
-

to
-;';-

ar
-
d 

-
the

-
m
-

o
-��:- and at an altitude of 53 kilometers 

above the lunar surface its downward velocity is measured at 1477 kmIh. Its retro
rockets, when fired in free space, provide a deceleration of T = 4 rnIs2 • At what 
height above the lunar surface should the retrorockets be activated to ensure a "soft 
touchdown" (v = 0 at impact)? 

Solution Let r (t)  denote the lander's distance from the center of the moon at time t 
(Fig. 1 .8 .3). When we combine the (constant) thrust acceleration T and the (neg
ative) lunar acceleration F/m = GM/r2 of Eq. ( 1 9) ,  we get the (acceleration) 
differential equation 

(20) 

where M = 7 .35 x 1 022 (kg) is the mass of the moon, which has a radius of 
R = 1 .74 X 1 06 meters (or 1 740 km, a little over a quarter of the earth's radius). 



FIGURE 1.8.3. The lunar lander 
descending to the surface of the 
moon. 
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Noting that this second-order differential equation does not involve the independent 
variable t , we substitute 

dr d2r dv dv dr dv 
V = - , 

dt 
- = - = - · - = v-
dt2 dt dr dt dr 

(as in Eq. (36) of Section 1 .6) and obtain the first-order equation 

dv GM v- = T - -
dr r2 

with the new independent variable r . Integration with respect to r now yields the 
equation 

1 2 GM 
- v  = Tr + - + C 
2 r 

that we can apply both before ignition (T = 0 )  and after ignition (T = 4) . 

Before ignition: Substitution of T = 0 in (2 1 )  gives the equation 

1 2 GM 
-v  = - + Cl 
2 r 

where the constant is given by Cl = v5/2 - GM/ro with 

Ian m 1 h 14770 m 
Vo = - 1477 - x 1 000 - x -- = - -- -

h Ian 3600 s 36 s 

(2 1 )  

(2 1a) 

and ro = ( 1 .74 x 1 06) + 53 , 000 = 1 .793 x 1 06 m (from the initial velocity-position 
measurement) . 

After ignition: Substitution of T = 4 and v = 0, r = R (at touchdown) into (2 1 )  
gives 

1 2 GM 
- v = 4r + - + C2 2 r 

(2 1b) 

where the constant C2 = -4R - GM/R is obtained by substituting the values v = 0, 
r = R at touchdown. 

At the instant of ignition the lunar lander's position and velocity satisfy both 
(2 1 a) and (2 1b) .  Therefore we can find its desired height h above the lunar surface 
at ignition by equating the right-hand sides in (2 1 a) and (2 1b) .  This gives r = 
� (Cl - C2) = 1 .78 1 87 x 1 06 and finally h = r - R = 4 1 , 870 meters (that is, 4 1 .87 
kilometers-just over 26 miles) .  Moreover, substitution of this value of r in (2 1a) 
gives the velocity v = -450 mls at the instant of ignition. • 
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r 
Velocity v (t )  

FIGURE 1.8.4. A mass m at a 
great distance from the earth. 

Escape Velocity 

In his novel From the Earth to the Moon ( 1 865) , Jules Verne raised the question 
of the initial velocity necesary for a projectile fired from the surface of the earth 
to reach the moon. Similarly, we can ask what initial velocity Vo i s  necessary for 
the projectile to escape from the earth altogether. This will be so if its velocity 
v = d r /d t remains positive for all t > 0, so it continues forever to move away from 
the earth. With r (t )  denoting the projectile's distance from the earth's center at time 
t (Fig. 1 .8 .4), we have the equation 

dv d2r GM 
dt 

= 
dt2 

= - --;:z: '  (22) 

similar to Eq. (20) , but with T = 0 (no thrust) and with M = 5 .975 X 1 024 (kg) 
denoting the mass of the earth, which has an equatorial radius of R = 6.378 X 106 
(m). Substitution of the chain rule expression dv/dt = v (dv/dr)  as in Example 4 
gives 

dv GM v- = - - . 
dr r2 

Then integration of both sides with respect to r yields 

1 2 GM 
-v  = - + c. 
2 r 

Now v = Vo and r = R when t = 0, so C = ! v� - GM/R , and hence solution for 
v2 gives 

2 2 ( 1  1 ) 
v = Vo + 2GM ;: -

R 
. (23) 

This implicit solution of Eq. (22) determines the projectile' s  velocity v as a function 
of its distance r from the earth's center. In particular, 

2 2 2GM 
v > vo - -

R ' 

so v will remain positive provided that v� � 2GM/ R .  Therefore, the escape velocity 
from the earth is given by 

Vo = 
j2�M

. (24) 

In Problem 27 we ask you to show that, if the projectile 's initial velocity exceeds 
J2GM/R, then r (t ) -+ 00 as t -+ 00, so it does, indeed, "escape" from the 
earth. With the given values of G and the earth's mass M and radius R,  this gives 
Vo � 1 1 , 1 80 (m/s) (about 36,680 ft/s ,  about 6.95 mils, about 25 ,000 mi/h) . 

Remark: Equation (24) gives the escape velocity for any other (spherical) 
planetary body when we use its mass and radius. For instance, when we use the 
mass M and radius R for the moon given in Example 4, we find that escape velocity 
from the lunar surface is Vo � 2375 m/s. This is just over one-fifth of the escape 
velocity from the earth's  surface, a fact that greatly facilitates the return trip ("From 
the Moon to the Earth"). • 



_ Problems 

1.  The acceleration of a Maserati is proportional to the dif
ference between 250 km/h and the velocity of this sports 
car. If this machine can accelerate from rest to 1 00 km/h 
in 1 0  s, how long will it take for the car to accelerate from 
rest to 200 km/h? 

2. Suppose that a body moves through a resisting medium 
with resistance proportional to its velocity v, so that 
dvldt = -kv .  (a) Show that its velocity and position 
at time t are given by 

v (t) = voe-kt 
and 

x (t) = Xo + (�)  0 - e-kt ) .  
(b) Conclude that the body travels only a finite distance, 
and find that distance. 

3. Suppose that a motorboat is moving at 40 ft/s when its 
motor suddenly quits, and that 1 0  s later the boat has 
slowed to 20 ft/s. Assume, as in Problem 2, that the re
sistance it encounters while coasting is proportional to its 
velocity. How far will the boat coast in all? 

4. Consider a body that moves horizontally through a 
medium whose resistance is proportional to the square of 
the velocity v, so that dvldt = -kv2 • Show that 

and that 

Vo v (t) = 
1 + vokt 

1 x (t) = Xo + k lnO + vokt ) . 
Note that, in contrast with the result of Problem 2 , x (t) -+ 
+00 as t -+ +00. Which offers less resistance when the 
body is moving fairly slowly-the medium in this prob
lem or the one in Problem 2? Does your answer seem 
consistent with the observed behaviors of x (t) as t -+ oo? 

5. Assuming resistance proportional to the square of the ve
locity (as in Problem 4), how far does the motorboat of 
Problem 3 coast in the first minute after its motor quits? 

6. Assume that a body moving with velocity v encounters 
resistance of the form dvldt = _kV3/2 • Show that 

and that 

4vo v (t) = 2 (ktFo + 2) 

x (t) = Xo + �Fo ( I - kt�+ 2) . 

Conclude that under a � -power resistance a body coasts 
only a finite distance before coming to a stop. 

7. Suppose that a car starts from rest, its engine providing an 
acceleration of 1 0  ft/s2 , while air resistance provides 0. 1 
ft/S2 of deceleration for each foot per second of the car's 
velocity. (a) Find the car's maximum possible (limiting) 
velocity. (b) Find how long it takes the car to attain 90% 
of its limiting velocity, and how far it travels while doing 
so. 
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8. Rework both parts of Problem 7, with the sole difference 
that the deceleration due to air resistance now is (0.001 )v2 
ft/s2 when the car's velocity is v feet per second. 

9. A motorboat weighs 32,000 lb and its motor provides a 
thrust of 5000 lb. Assume that the water resistance is 100 
pounds for each foot per second of the speed v of the boat. 
Then 

dv 
1000- = 5000 - 1OOv. 

dt 
If the boat starts from rest, what is the maximum velocity 
that it can attain? 

10. A woman bails out of an airplane at an altitude of 10,000 
ft, falls freely for 20 s, then opens her parachute. How 
long will it take her to reach the ground? Assume lin
ear air resistance pv ft/S2 , taking p = 0. 1 5  without the 
parachute and p = 1 .5 with the parachute. (Suggestion: 
First determine her height above the ground and velocity 
when the parachute opens.) 

11.  According to a newspaper account, a paratrooper survived 
a training jump from 1 200 ft when his parachute failed to 
open but provided some resistance by flapping unopened 
in the wind. Allegedly he hit the ground at 100 mi/h after 
falling for 8 s .  Test the accuracy of this account. (Sugges
tion: Find p in Eq. (4) by assuming a terminal velocity 
of 1 00 mi/h. Then calculate the time required to fall 1 200 
ft. ) 

12. It is proposed to dispose of nuclear wastes-in drums with 
weight W = 640 lb and volume 8 ft3-by dropping them 
into the ocean (vo = 0). The force equation for a drum 
falling through water is 

where the buoyant force B is equal to the weight (at 62.5 
lb/ft3) of the volume of water displaced by the drum 
(Archimedes ' principle) and FR is the force of water re
sistance, found empirically to be 1 lb for each foot per 
second of the velocity of a drum. If the drums are likely 
to burst upon an impact of more than 75 ft/s, what is the 
maximum depth to which they can be dropped in the ocean 
without likelihood of bursting? 

13. Separate variables in Eq. (2) and substitute u = v"fjifg 
to obtain the upward-motion velocity function given in 
Eq. ( 1 3) with initial condition v(O) = Vo . 

14. Integrate the velocity function in Eq. ( 1 3) to obtain the 
upward-motion position function given in Eq. (4) with 
initial condition y (O) = Yo . 

15. Separate variables in  Eq. (5)  and substitute u = v"fjifg 
to obtain the downward-motion velocity function given in 
Eq. ( 1 6) with initial condition v(O) = Vo. 

16. Integrate the velocity function in Eq. ( 1 6) to obtain the 
downward-motion position function given in Eq. ( 1 7) with 
initial condition y (O) = Yo . 
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17. Consider the crossbow bolt of Example 3, shot straight 
upward from the ground (y = 0) at time t = 0 with initial 
velocity Vo = 49 m/s. Take g = 9.8 m/s2 and p = 0.00 1 1 
in Eq. ( 1 2). Then use Eqs . ( 1 3) and ( 14) to show that 
the bolt reaches its maximum height of about 108 .47 m in 
about 4.61 s .  

18. Continuing Problem 17 ,  suppose that the bolt is now 
dropped (vo = 0) from a height of Yo = 108 .47 m. Then 
use Eqs. ( 1 6) and ( 1 7) to show that it hits the ground about 
4.80 s later with an impact speed of about 43.49 m/s. 

19. A motorboat starts from rest (initial velocity v (O) = Vo = 
0). Its motor provides a constant acceleration of 4 ft/S2 , 
but water resistance causes a deceleration of v2 / 400 ft/ S2 . 
Find v when t = 1 0  s, and also find the limiting velocity 
as t --+ +00 (that is, the maximum possible speed of the 
boat) . 

20. An arrow is shot straight upward from the ground with an 
initial velocity of 1 60 ft/s. It experiences both the decel
eration of gravity and deceleration v2/800 due to air resis
tance. How high in the air does it go? 

21. If a ball is projected upward from the ground with initial 
velocity Vo and resistance proportional to v2 , deduce from 
Eq. ( 1 4) that the maximum height it attains is 

1 ( PV5 ) Ymax = - In 1 + - . 
2p g 

22. Suppose that p = 0.075 (in fps units, with g = 32 ft/s2) 
in Eq. ( 1 5) for a paratrooper falling with parachute open. 
If he jumps from an altitude of 10,000 ft and opens his 
parachute immediately, what will be his terminal speed? 
How long will it take him to reach the ground? 

23. Suppose that the paratrooper of Problem 22 falls freely for 
30 s with p = 0.00075 before opening his parachute. How 
long will it now take him to reach the ground? 

24. The mass of the sun is 329,320 times that of the earth and 
its radius is 109 times the radius of the earth. (a) To what 
radius (in meters) would the earth have to be compressed 
in order for it to become a black hole-the escape velocity 
from its surface equal to the velocity c = 3 X 1 08 m/s of 
light? (b) Repeat part (a) with the sun in place of the 
earth. 

25. (a) Show that if a projectile is launched straight upward 
from the surface of the earth with initial velocity Vo less 
than escape velocity "j2GM/R, then the maximum dis
tance from the center of the earth attained by the projectile 
is 

2GMR 
r - -----,;-max - 2GM _ Rv2 ' o 

where M and R are the mass and radius of the earth, re
spectively. (b) With what initial velocity Vo must such a 
projectile be launched to yield a maximum altitude of 100 
kilometers above the surface of the earth? (c) Find the 
maximum distance from the center of the earth, expressed 
in terms of earth radii, attained by a projectile launched 
from the surface of the earth with 90% of escape velocity. 

26. Suppose that you are stranded-your rocket engine has 
failed-on an asteroid of diameter 3 miles, with density 
equal to that of the earth with radius 3960 miles . If you 

have enough spring in your legs to jump 4 feet straight up 
on earth while wearing your space suit, can you blast off 
from this asteroid using leg power alone? 

27. (a) Suppose a projectile is launched vertically from the 
surface r = R of the earth with initial velocity Vo = 
"j2GM/R so V5 = e/R where k2 = 2GM. Then solve 
the differential equation dr/dt = k/,.Jr (from Eq. (23) 
in this section) explicitly to deduce that r et) --+ 00 as 
t --+ 00. 

(b) If the projectile is launched vertically with initial ve
locity Vo > "j2GM/R, deduce that 

dr =
jk2 + a  > � . 

dt r ,.Jr 
Why does it again follow that r et) --+ 00 as t --+ oo? 

28. (a) Suppose that a body is dropped (vo = 0) from a dis
tance ro > R from the earth's center, so its acceleration 
is dv/dt = -GM/r2 • Ignoring air resistance, show that it 
reaches the height r < ro at time 

t = j ro (Jrro - r2 + ro cos- 1 �) . 2GM V ;;  
(Suggestion: Substitute r ro cos2 e to evaluate f "jr/(ro - r) dr.) (b) If a body is dropped from a height 
of 1000 km above the earth's surface and air resistance 
is neglected, how long does it take to fall and with what 
speed will it strike the earth's surface? 

29. Suppose that a projectile is fired straight upward from the 
surface of the earth with initial velocity Vo < "j2GM/R . 
Then its height y et ) above the surface satisfies the initial 
value problem 

GM 
(y + R)2 '  y eO) = 0, y' (O) = vo . 

Substitute dv/dt = v (dv/dy) and then integrate to obtain 

2GMy 
v2 = V5 - -,:-:-,:---'--,-

R(R + y) 
for the velocity v of the projectile at  height y . What maxi
mum altitude does it reach if its initial velocity is 1 km/s? 

30. In Jules Verne's original problem, the projectile launched 
from the surface of the earth is attracted by both the earth 
and the moon, so its distance r (t )  from the center of the 
earth satisfies the initial value problem 

d2r GMe GMm 
dt2 

= -7 + (S _ r)2 ; 
r eO) = R, r' (O) = Vo 

where Me and Mm denote the masses of the earth and 
the moon, respectively; R is the radius of the earth and 
S = 384,400 km is the distance between the centers of 
the earth and the moon. To reach the moon, the projectile 
must only just pass the point between the moon and earth 
where its net acceleration vanishes. Thereafter it is "under 
the control" of the moon, and falls from there to the lunar 
surface. Find the minimal launch velocity Vo that suffices 
for the projectile to make it "From the Earth to the Moon." 
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FIGURE 1 .8.5. An ascending 
rocket. 
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Rocket Propulsion 
. .......... ..m 

Suppose that the rocket of Fig. 1 .8 .5 blasts off straight upward from the surface of 
the earth at time t = 0. We want to calculate its height y and velocity v = dy/dt at 
time t .  The rocket is propelled by exhaust gases that exit (rearward) with constant 
speed c (relative to the rocket) . Because of the combustion of its fuel, the mass 
m = m (t )  of the rocket is variable. 

To derive the equation of motion of the rocket, we use Newton's second law 
in the form 

dP 
- = F  
dt 

( 1 )  

where P i s  momentum (the product of  mass and velocity) and F denotes net external 
force (gravity, air resistance, etc . ) .  If the mass m of the rocket is constant so m' (t) == 
O-when its rockets are turned off or burned out, for instance-then Eq. ( 1 )  gives 

d(mv) dv dm dv F =  -- = m- + -v = m-
dt dt dt dt ' 

which (with dv/dt = a) is the more familiar form F = ma of Newton's second law. 
But here m is not constant. Suppose m changes to m + 11m and v to v + 11 v 

during the short time interval from t to t + I1t .  Then the change in the momentum 
of the rocket itself is 

I1 P  � (m + I1m)(v + I1 v) - mv = m I1v + v 11m + 11m I1v .  

But the system also includes the exhaust gases expelled during this time interval, 
with mass -11m and approximate velocity v - c. Hence the total change in mo
mentum during the time interval I1t is 

I1 P  � (m I1v + v 11m + 11m I1v) + (-l1m) (v - c) 
= m 11 v + c 11m + 11m 11 v. 

Now we divide by I1t and take the limit as I1t � 0, so 11m � 0, assuming 
continuity of m(t ) .  The substitution of the resulting expression for dPjdt in ( 1 )  
yields the rocket propulsion equation 

dv dm m - + c- = F. (2) dt dt 
If F = FG + FR , where FG = -mg is a constant force of gravity and FR = -kv is 
a force of air resistance proportional to velocity, then Eq. (2) finally gives 

dv dm 
m- + c- = -mg - kv. (3) 

dt dt 

Constant Thrust 

Now suppose that the rocket fuel is consumed at the constant "burn rate" fJ during 
the time interval [0, tl ] ,  during which time the mass of the rocket decreases from mo 

to m l . Thus 

m(O) = mo, 

m (t) = mo - fJt . 

with burnout occurring at time t = tl . 

m (td = m i . 
dm 
- = -fJ for t :::: tJ , 
dt 

(4) 
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PROBLEM 1 Substitute the expressions in (4) into Eq. (3) to obtain the differential 
equation 

dv 
(m - f3t) - + kv = f3e - (mo - f3t)g .  

dt 

Solve this linear equation for 

where Vo = v (O) and 

M = _
m_(t_

) 
= _

m
_
o 
_
-....:...f3_t 

mo mo 

denotes the rocket's fractional mass at time t .  

No Resistance 

(5) 

PROBLEM 2 For the case of no air resistance, set k = 0 in Eq. (5) and integrate 
to obtain 

mo v (t) = Vo - gt + e ln --

mo - f3t 
(7) 

Because mo - f3tl = m J ,  it follows that the velocity of the rocket at burnout (t = tl ) 
is 

PROBLEM 3 Start with Eq. (7) and integrate to obtain 

1 2 e mo 
y (t) = (vo + e)t - -gt - - (mo - f3t) In -......:..--

2 f3 mo - f3t 

It follows that the rocket's altitude at burnout is 

(8) 

(9) 

( 10) 

PROBLEM 4 The V-2 rocket that was used to attack London in World War II had 
an initial mass of 1 2,850 kg, of which 68.5% was fuel. This fuel burned uniformly 
for 70 seconds with an exhaust velocity of 2 km/s. Assume it encounters air resis
tance of 1 .45 N per mls of velocity. Then find the velocity and altitude of the V-2 at 
burnout under the assumption that it is launched vertically upward from rest on the 
ground. 
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PROBLEM 5 Actually, our basic differential equation in (3 )  applies without qual
ification only when the rocket is already in motion. However, when a rocket is 
sitting on its launch pad stand and its engines are turned on initially, it is observed 
that a certain time interval passes before the rocket actually "blasts off' and begins 
to ascend. The reason is that if v = 0 in (3) , then the resulting initial acceleration 

dv e dm - = - - - g 
dt m dt 

of the rocket may be negative. But the rocket does not descend into the ground; 
it just "sits there" while (because m is decreasing) this calculated acceleration in
creases until it reaches 0 and (thereafter) positive values so the rocket can begin to 
ascend. With the notation introduced to described the constant-thrust case, show 
that the rocket initially just "sits there" if the exhaust velocity e is less than mog/f3 , 
and that the time tB which then elapses before actual blastoff is given by 

Free Space 

mog - f3e 
tB = . 

f3g 

Suppose finally that the rocket is accelerating in free space, where there is neither 
gravity nor resistance, so g = k = O. With g = 0 in Eq. (8) we see that, as the mass 
of the rocket decreases from mo to m 1 , its increase in velocity is 

mo 
L\v = VI - Vo = e ln - . 

m l 
( 1 1 )  

Note that L\v  depends only on  the exhaust gas speed e and the initial-to-final mass 
ratio mo/m I , but does not depend on the burn rate f3 .  For example, if the rocket 
blasts off from rest (vo = 0) and e = 5 km/s and mo/m l = 20, then its velocity at 
burnout is V I = S In 20 � 1 5  km/s. Thus if a rocket initially consists predominantly 
of fuel, then it can attain velocities significantly greater than the (relative) velocity 
of its exhaust gases. 

IillllIIiI.illiII __ �������"_" ____ _____ . _ ___ __ _ _ _ _ _ _ __ _ _ _ __ ___ . _ ____ ____ __ _ 

In this chapter we have discussed applications of and solution methods for several 
important types of first-order differential equations, including those that are separa
ble (Section 1 .4), linear (Section 1 .5) ,  or exact (Section 1 .6). In Section 1 .6 we also 
discussed substitution techniques that can sometimes be used to transform a given 
first-order differential equation into one that is either separable, linear, or exact. 

Lest it appear that these methods constitute a "grab bag" of special and unre
lated techniques, it is important to note that they are all versions of a single idea. 
Given a differential equation 

I(x , y, y') = 0, 

we attempt to write it in the form 

d 
dx 

[G(x ,  y) ] = O. 

( 1 )  

(2) 
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It is precisely to obtain the form in Eq. (2) that we multiply the terms in Eq. ( 1 )  by an 
appropriate integrating factor (even if all we are doing is separating the variables). 
But once we have found a function G(x , y) such that Eqs. ( 1 )  and (2) are equivalent, 
a general solution is defined implicitly by means of the equation 

G(x , y) = C (3) 

that one obtains by integrating Eq. (2). 
Given a specific first-order differential equation to be solved, we can attack it 

by means of the following steps :  

• Is it separable? If so, separate the variables and integrate (Section 1 .4). 
• Is it linear? That is , can it be written in the form 

dy 
- + P (x)y = Q(x)?  
dx 

If so, multiply by the integrating factor p = exp (J P dx) of Section 1 .5 .  
• Is it exact? That is , when the equation is written in the form M dx + N d y = 0, 

is aMlay = aN lax (Section 1 .6)? 
• If the equation as it stands is not separable, linear, or exact, is there a plausible 

substitution that will make it so? For instance, is it homogeneous (Section 
1 .6)? 

Many first-order differential equations succumb to the line of attack outlined 
here. Nevertheless, many more do not. Because of the wide availability of com
puters, numerical techniques are commonly used to approximate the solutions of 
differential equations that cannot be solved readily or explicitly by the methods of 
this chapter. Indeed, most of the solution curves shown in figures in this chapter 
were plotted using numerical approximations rather than exact solutions .  Several 
numerical methods for the appropriate solution of differential equations will be dis
cussed in Chapter 6. 

Chapter 1 Review Problems - - --- - -- - -- - - - - - - - - - - - - - - -- - -- - - - - - - - - - -- -- - - - - -- - - -- - - - - - - - - - - - - - - -- - - ---- - - -- - - - - - -- - - - - -- - - ---- -- - - ---

Find general solutions of the differential equations in Problems 1 through 30. Primes denote derivatives with respect 
to x. 

1. x3 + 3y - xy' = 0 
2. xy2 + 3y2 - x2y' = 0 
3. xy + y2 - x2y' = 0 
4. 2xy3 + eX + (3x2y2 + sin y)y' = 0 
S. 3y + x4y' = 2xy 
6. 2xy2 + x2y' = y2 
7. 2x2y + x3y' = 1 
8. 2xy + x2y' = y2 
9. xy' + 2y = 6x2.jY 

10. y' = 1 + x2 + y2 + X2y2 
11 .  x2y' = xy + 3y2 
12. 6xy3 + 2y4 + (9x2y2 + 8xy3 )y' = 0 

13. 4xy2 + y' = 5x4y2 
14. x3y' = x2y _ y3 
15. y' + 3y = 3x2e-3x 
16. y' = x2 - 2xy + y2 
17. eX + yexy + (eY + xeYX )y' = 0 
18. 2x2y _ x3y' = y3 
19. 3X5y2 + x3y' = 2y2 
20. xy' + 3y = 3X-3/2 
21. (x2 - l )y' + (x - l)y = 1 
22. xy' = 6y + 1 2x4y2/3 
23. eY + y cos x + (xeY + sin x)y' = 0 
24. 9x2y2 + X3/2y' = y2 
25. 2y + (x + l )y' = 3x + 3 



26. 9X 1 /2y4/3 - 1 2x 1 /5y3/2 + (8X3/2y l /3 - 15x6/5y l /2 )y ' = 0 
27. 3y + X3y4 + 3xy' = 0 
28. y + xy' = 2e2x 
29. (2x + 1 )y' + y = (2x + 1 )3/2 
30. y' = .Jx + y 

Each of the differential equations in Problems 31 through 36 

is of two different types considered in this chapter-separable, 
linear, homogeneous, Bernoulli, exact, etc. Hence, derive gen-
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eral solutionsfor each of these equations in two different ways; 
then reconcile your results. 

31 .  
dy dy 
- = 3 (y + 7)x2 32. - = xy3 - xy dx dx 

33. 
dy 3x2 + 2y2 

34. 
dy 

= 
x + 3y 

= 

dx 4xy dx y - 3x 

35. 
dy 2xy + 2x 

36. 
dy y'y - Y 

dx x2 + 1 dx tan x 



Linear Equations 
of Higher Order 

IIfII Introduction: Second-Order I:inear Equations 

1 00 

In Chapter 1 we investigated first-order differential equations. We now turn to 
equations of higher order n � 2, beginning in this chapter with equations that are 

linear. The general theory of linear differential equations parallels the second-order 
case (n = 2), which we outline in this initial section. 

Recall that a second-order differential equation in the (unknown) function 
y (x) is one of the form 

G (x ,  y ,  y' , y") = O. ( 1 )  

This differential equation i s  said to be  linear provided that G i s  linear in  the depen
dent variable y and its derivatives y' and y". Thus a linear second-order equation 
takes (or can be written in) the form 

A (x )y" + B (x )y' + C (x)y = F(x) .  (2) 

Unless otherwise noted, we will always assume that the (known) coefficient func
tions A(x) ,  B (x ) ,  C (x) ,  and F(x) are continuous on some open interval I (perhaps 
unbounded) on which we wish to solve this differential equation, but we do not 
require that they be linear functions of x .  Thus the differential equation 

eXy" + (cos x )y' + ( 1  + Jx )y = tan- 1 x 

is linear because the dependent variable y and its derivatives y' and y" appear lin
early. By contrast, the equations 

y" = yy' and y" + 3 (y')2 + 4l = 0 

are not linear because products and powers of y or its derivatives appear. 
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If the function F(x) on the right-hand side of Eq. (2) vanishes identically on 
I ,  then we call Eq. (2) a homogeneous linear equation; otherwise, it is nonhomo
geneous. For example, the second-order equation 

x2y" + 2xy ' + 3y = cos x 

is nonhomogeneous ;  its associated homogeneous equation is 

x2y" + 2xy' + 3y = O. 

In general, the homogeneous linear equation associated with Eq. (2) is 

A(x)y" + B(x)y' + C(x)y = O. (3) 

In case the differential equation in (2) models a physical system, the nonhomoge
neous term F(x) frequently corresponds to some external influence on the system. 

Remark: Note that the meaning of the term "homogeneous" for a second
order linear differential equation is quite different from its meaning for a first-order 
differential equation (as in Section 1 .6). Of course, it is not unusual-either in 
mathematics or in the English language more generally-for the same word to have 
different meanings in different contexts . 

A Typical Application 

Linear differential equations frequently appear as mathematical models of mechan
ical systems and electrical circuits. For example, suppose that a mass m is attached 
both to a spring that exerts on it a force Fs and to a dashpot (shock absorber) that 
exerts a force FR on the mass (Fig. 2. 1 . 1 ) . Assume that the restoring force Fs of 
the spring is  proportional to the displacement x of the mass from its eqUilibrium 
position and acts opposite to the direction of displacement. Then 

Fs = -kx (with k > 0) 

so Fs < 0 if x > 0 (spring stretched) while Fs > 0 if x < 0 (spring compressed). 
We assume that the dashpot force F R is proportional to the velocity v = dx/dt of 
the mass and acts opposite to the direction of motion. Then 

dx 
FR = -cv = -c- (with c > 0) 

dt 

so F R < 0 if v > 0 (motion to the right) while F R > 0 if v < 0 (motion to the left). 
If FR and Fs are the only forces acting on the mass m and its resulting accel

eration is a = dv/dt, then Newton's law F = ma gives 

(4) 

that is , 

(5) 

Thus we have a differential equation satisfied by the position function x (t) of the 
mass m . This homogeneous second-order linear equation governs the free vibrations 
of the mass ;  we will return to this problem in detail in Section 2.4. 
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If, in addition to Fs and FR , the mass m i s  acted on by an external force 
F (t )-which must then be added to the right-hand side in Eq. (4)-the resulting 
equation is 

d2x dx m -2 + c- + kx = F(t ) . dt dt 
(6) 

This nonhomogeneous linear differential equation governs the forced vibrations of 
the mass under the influence of the external force F(t) .  

Homogeneous Second-Order Linear Equations 

Consider the general second-order linear equation 

A(x)y" + B (x)y' + C (x)y = F(x) ,  (7) 

where the coefficient functions A, B ,  C, and F are continuous on the open interval 
I .  Here we assume in addition that A (x) "I- 0 at each point of I, so we can divide 
each term in Eq. (7) by A (x)  and write it in the form 

y" + p (x)y' + q (x)y = f(x ) .  (8) 

We will discuss first the associated homogeneous equation 

y" + p (x)y' + q (x)y = O. (9) 

A particularly useful property of this homogeneous linear equation is the fact that the 
sum of any two solutions of Eq. (9) is again a solution, as is any constant multiple 
of a solution. This is the central idea of the following theorem. 

THEOREM 1 Principle of Superposition for Homogeneous 

Equations 

Let Yl and Y2 be two solutions of the homogeneous linear equation in (9) on the 
interval I .  If Cl and C2 are constants, then the linear combination 

( 10) 

is also a solution of Eq. (9) on I . 

Proof: The conclusion follows almost immediately from the linearity of the 
operation of differentiation, which gives 

Then 

, , , d "  " " y = Cl Yl + C2Y2 an Y = Cl Yl + C2Y2 · 

y" + py' + qy = (C l Yl + C2Y2)" + P(c l Yl + C2Y2)' + q (cl Yl + C2Y2) 
= (C l Y� + C2Y�) + p (Cl Y; + C2Y;) + q (Cl Yl + C2Y2) 
= Cl (y� + PY; + qYl ) + C2 (Y� + PY; + qY2) 
= Cl • 0 + C2 • 0 = 0 

because Yl and Y2 are solutions. Thus Y = Cl Yl + C2Y2 is also a solution. 
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We can see by inspection that 

Yl (x) = cos x and Y2 (X) = sin x 

are two solutions of the equation 

Y" + Y = O. 

Theorem 1 tells us that any linear combination of these solutions, such as 

y (x) = 3Yl (X) - 2Y2 (X) = 3 cos x - 2 sin x , 

is also a solution. We will see later that, conversely, every solution of y" + Y = 0 
is a linear combination of these two particular solutions Yl and Y2 . Thus a general 
solution of y" + Y = 0 is given by 

y (x) = Cl cos x + C2 sin x .  

It i s  important to understand that this single formula for the general solution encom
passes a "twofold infinity" of particular solutions, because the two coefficients Cl 
and C2 can be selected independently. Figures 2. 1 .3 through 2. 1 .5 illustrate some of 
the possibilities, with either Cl or C2 set equal to zero, or with both nonzero. • 

8 10 
6 8 

4 6 
4 

2 2 
;... 0 ;... 0 

-2 - 2  

- 4  - 4  
- 6  

- 6  c2 = -5 - 8  
23t - 8  -It 0 It 21t - 10 -It 0 It 21t 31t 

x X 

FIGURE 2.1.3. Solutions 
y (x )  = Cl cos x of y" + y = O. 

FIGURE 2.1.4. Solutions 
y (x) = C2 sin x of y" + y = O. 

FIGURE 2.1.5. Solutions of 
y" + y = 0 with Cl and C2 both 
nonzero. 

Earlier in this section we gave the linear equation mx" + CX' + kx = F(t) as 
a mathematical model of the motion of the mass shown in Fig. 2. 1 . 1 .  Physical con
siderations suggest that the motion of the mass should be determined by its initial 
position and initial velocity. Hence, given any preassigned values of x (0) and x' (O) ,  
Eq. (6) ought to have a unique solution satisfying these initial conditions. More 
generally, in order to be a "good" mathematical model of a deterministic physical 
situation, a differential equation must have unique solutions satisfying any appro
priate initial conditions. The following existence and uniqueness theorem (proved 
in the Appendix) gives us this assurance for the general second-order equation. 
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FIGURE 2.1.6. Solutions of 
y" + 3y' + 2y = 0 with the same 
initial value y eO) = 1 but different 
initial slopes . 
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FIGURE 2.1.7. Solutions of 
y" + 3y' + 2y = 0 with the same 
initial slope y' (0) = 1 but different 
initial values. 

Exa mple 1 
Continued 

THEOREM 2 Existence and U niqueness for Linear Equations 

Suppose that the functions p, q, and I are continuous on the open interval I 
containing the point a . Then, given any two numbers bo and bl , the equation 

y" + p (x)y' + q (x)y = I(x ) (8) 

has a unique (that is, one and only one) solution on the entire interval I that 
satisfies the initial conditions 

y ea) = bo , y' (a) = bl . ( 1 1 )  

Remark 1 :  Equation (8) and the conditions i n  ( 1 1 )  constitute a second
order linear initial value problem. Theorem 2 tells us that any such initial value 
problem has a unique solution on the whole interval I where the coefficient func
tions in (8) are continuous. Recall from Section 1 .3 that a nonlinear differential 
equation generally has a unique solution on only a smaller interval. 

Remark 2 :  Whereas afirst-order differential equation dyjdx = F(x ,  y) 
generally admits only a single solution curve y = y (x)  passing through a given 
initial point (a , b), Theorem 2 implies that the second-order equation in (8) has 
infinitely many solution curves passing through the point (a , bo)-namely, one for 
each (real number) value of the initial slope y' (a) = bl . That is, instead of there 
being only one line through (a , bo) tangent to a solution curve, every nonvertical 
straight line through (a , bo) is tangent to some solution curve of Eq. (8) . Figure 
2. 1 .6 shows a number of solution curves of the equation y" + 3y' + 2y = 0 all 
having the same initial value y eO) = 1 ,  while Fig. 2. 1 .7 shows a number of solution 
curves all having the same initial slope y' (0) = 1 .  The application at the end of 
this section suggests how to construct such families of solution curves for a given 
homogeneous second-order linear differential equation. • 

We saw in the first part of Example 1 that y (x) = 3 cos x - 2 sin x is a solution (on 
the entire real line) of y" + y = O. It has the initial values y eO) = 3, y' (O) = -2 . 

Theorem 2 tells us that this is the only solution with these initial values. More 
generally, the solution 

y (x)  = bo cos x + bl sin x 

satisfies the arbitrary initial conditions y (0) = bo, y' (0) = bl ; this illustrates the 
existence of such a solution, also as guaranteed by Theorem 2. • 

Example 1 suggests how, given a homogeneous second-order linear equation, 
we might actually find the solution y (x)  whose existence is assured by Theorem 2. 
First, we find two "essentially different" solutions YI and Y2 ; second, we attempt to 
impose on the general solution 

the initial conditions y ea) 
simultaneous equations 

for the coefficients c] and C2 . 

( 1 2) 

bo , y' (a) = bl . That is, we attempt to solve the 

c l YI (a ) + c2Y2 (a) = bo , 
c lY ; (a) + c2y� (a) = bl 

( 1 3) 
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Verify that the functions 

are solutions of the differential equation 

y" - 2y' + y = 0, 

and then find a solution satisfying the initial conditions yeO) = 3, y' (O) = 1 . 

Solution The verification is routine; we omit it. We impose the given initial conditions on the 
general solution 

1 0 r-.-.-.--.�,,�� 
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x 

FIGURE 2.1.8. Different 
solutions y (x )  = 3ex + C2xex of 
y" - 2y' + y = 0 with the same 
initial value y (O) = 3 . 

Exa mple 3 

2 

for which 
y' (x) = (C I + c2)eX + C2xeX , 

to obtain the simultaneous equations 

y eO) = CI = 3 ,  
y' (0) = CI + C2 = 1 . 

The resulting solution is CI = 3, C2 = -2. Hence the solution of the original initial 
value problem is 

y (x)  = 3ex - 2xex . 
Figure 2. 1 .8 shows several additional solutions of y" - 2y' + y = 0, all having the 
same initial value y eO) = 3 .  • 

In order for the procedure of Example 2 to succeed, the two solutions YI and 
Y2 must have the elusive property that the equations in ( 1 3) can always be solved for 
CI and C2 , no matter what the initial conditions bo and bl might be. The following 
definition tells precisely how different the two functions YI and Y2 must be. 

DEFI N ITION Linear I ndependence of Two Functions 

Two functions defined on an open interval I are said to be linearly independent 
on I provided that neither is a constant multiple of the other. 

Two functions are said to be linearly dependent on an open interval provided 
that they are not linearly independent there; that is , one of them is a constant multi
ple of the other. We can always determine whether two given functions f and g are 
linearly dependent on an interval I by noting at a glance whether either of the two 
quotients f /g or g/ f is a constant-valued function on I . 

Thus it is clear that the following pairs of functions are linearly independent on the 
entire real line: 

sin x and cos x ;  

eX and e-2x ; 
eX and xex ; 

x + l  and x2 . , 
x and Ix l · 
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That is, neither sin xj cos x = tan x nor cos xj sin x = cot x is  a constant-valued 
function; neither eX je-2x = e3x nor e-2x jeX is a constant-valued function; and so 
forth. But the identically zero function f (x) == 0 and any other function g are 
linearly dependent on every interval, because 0 . g (x) = 0 = f (x) .  Also, the 
functions 

f (x) = sin 2x and g (x )  = sin x cos x 

are linearly dependent on any interval because f (x) = 2g (x) is the familiar trigono
metric identity sin 2x = 2 sin x cos x .  • 

General Solutions 

But does the homogeneous equation y" + py' + qy = 0 always have two linearly 
independent solutions? Theorem 2 says yes ! We need only choose Yl and Y2 so that 

It is then impossible that either Y l = kY2 or Y2 = kYI because k . 0 i:- 1 for any 
constant k. Theorem 2 tells us that two such linearly independent solutions exist; 
actually finding them is a crucial matter that we will discuss briefly at the end of 
this section, and in greater detail beginning in Section 2 .3 .  

We want to show, finally, that given any two linearly independent solutions Yl 

and Y2 of the homogeneous equation 

y"(x )  + p(x)y' (x) + q (x)y (x )  = 0, (9) 

every solution Y of Eq. (9) can be expressed as a linear combination 

( 1 2) 

of Yl and Y2 . This means that the function in ( 1 2) is a general solution of Eq. (9)-it 
provides all possible solutions of the differential equation. 

As suggested by the equations in ( 1 3) ,  the determination of the constants Cl 
and C2 in ( 1 2) depends on a certain 2 x 2 determinant of values of Yl , Y2 , and 
their derivatives .  Given two functions f and g, the Wronskian of f and g is the 
determinant 

W = 
f 
f' 

g 
= fg' - f'g · g' 

We write either W (j, g) or W (x) ,  depending on whether we wish to emphasize the 
two functions or the point x at which the Wronskian is to be evaluated. For example, 

and 

. I cos x sin x I 2 • 2 W (cos x ,  sm x)  = . = cos x + sm x = 1 - sm x cos x 

X X I � x� I 2x W(e , xe ) = X X + X = e . e e xe 

These are examples of linearly independent pairs of solutions of differential equa
tions (see Examples 1 and 2). Note that in both cases the Wronskian is everywhere 
nonzero. 
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On the other hand, if the functions f and g are linearly dependent, with f = 
kg (for example), then 

W(j, g) = I ::, :' I = kgg' - kg'g == O. 

Thus the Wronskian of two linearly dependent functions is identically zero. In 
Section 2.2 we will prove that, if the two functions Yl and Y2 are solutions of a 
homogeneous second-order linear equation, then the strong converse stated in part 
(b) of Theorem 3 holds. 

THEOREM 3 Wronskians of Solutions 

Suppose that YI and Y2 are two solutions of the homogeneous second-order linear 
equation (Eq. (9» 

Y" + p (x)y' + q (x)y = 0 

on �n open interval f .  on which p and q are continuous.  
(a) If Yl and Y2 are linearly dependent, then W(Yl , Y2) == 0 on f .  
(b) . If Yl and Y2 are linearly independent, then W (Yl ,  Y2) :j:. 0 at each point of I .  

Thus, given two solutions of Eq. (9), there are just two possibilities: The 
Wronskian W is identically zero if the solutions are linearly dependent; the Wron
skian is never zero if the solutions are linearly independent. The latter fact is what 
we need to show that Y = Cl Yl + C2Y2 is the general solution of Eq. (9) if Yl and Y2 
are linearly independent solutions . 

THEOREM 4 General Solutions of Homogeneous Equations 

Let Yl and Y2 be two linearly independent solutions of the homogeneous equation 
CEq • .  (9» 

Y" +' p(x)y' + q (x)y = 0 

With j5 andqfontinuous on the open interval I .  If Y is any solution whatsoever 
of Eq. (9) on f, then there exist numbers Cl and C2 such that 

. .• for all� in l. .... . 

In essence, Theorem 4 tells us that when we have found two linearly inde
pendent solutions of the second-order homogeneous equation in (9), then we have 
found all of its solutions. We therefore call the linear combination Y = Cl Yl + C2Y2 
a general solution of the differential equation. 

Proof of Theorem 4: Choose a point a of I, and consider the simultaneous 
equations 

CI YI (a) + c2Y2 (a) = Y ea) ,  
CI Y; (a) + c2y� (a) = y '  (a) .  

( 14) 

The determinant of the coefficients in this system of linear equations in the un
knowns CI and C2 is simply the Wronskian W(Yl , Y2) evaluated at x = a .  By 
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Exa mple 4 

Theorem 3 ,  this determinant is nonzero, so by elementary algebra it follows that the 
equations in ( 1 4) can be solved for CI and C2 . With these values of CI and C2 , we 
define the solution 

of Eq. (9); then 
G (a) = CI YI (a) + c2Y2 (a) = Y (a) 

and 
G'(a) = CI Y; (a) + c2y� (a) = Y'(a ) .  

Thus the two solutions Y and G have the same initial values at a ; likewise, so  do Y' 
and G' .  By the uniqueness of a solution determined by such initial values (Theorem 
2), it follows that Y and G agree on I .  Thus we see that 

Y (x) == G(x) = CI YI (x ) + C2Y2 (X) , 

as desired. 

Y;' = (2) (2)e2x = 4e2x = 4YI and y� = (-2) ( _2)e-2x = 4e-2x = 4Y2 . 

Therefore, YI and Y2 are linearly independent solutions of 

Y" - 4y = O. ( 1 5) 

But Y3 (X )  = cosh 2x and Y4 (X )  = sinh 2x are also solutions of Eq. ( 1 5) ,  because 

d2 d 
-2 (cosh 2x) = - (2 sinh 2x) = 4 cosh 2x 
dx dx 

and, similarly, (sinh 2x)" = 4 sinh 2x . It therefore follows from Theorem 4 that the 
functions cosh 2x and sinh 2x can be expressed as linear combinations of YI (x) = 

e2x and Y2 (X) = e-2x .  Of course, this is no surprise, because 

by the definitions of the hyperbolic cosine and hyperbolic sine. • 
Remark: Because e2x ,  e-2x and cosh x, sinh x are two different pairs of 

linearly independent solutions of the equation Y" - 4y = 0 in ( 1 5), Theorem 4 
implies that every particular solution Y (x) of this equation can be written both in 
the form 

and in the form 
Y (x) = a cosh x + b sinh x . 

Thus these two different linear combinations (with arbitrary constant coefficients) 
provide two different descriptions of the set of all solutions of the same differential 
equation y" - 4 Y = O. Hence each of these two linear combinations is a general 
solution of the equation. Indeed, this is why it is accurate to refer to a specific such 
linear combination as "a general solution" rather than as "the general solution." • 
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Linear Second-Order Equations with Constant Coefficients 

As an illustration of the general theory introduced in this section, we discuss the 
homogeneous second-order linear differential equation 

ay" + by' + cy = 0 ( 1 6) 

with constant coefficients a , b, and c. We first look for a single solution of Eq. ( 1 6) 
and begin with the observation that 

( 17) 

so any derivative of erx is a constant multiple of erx . Hence, if we substituted 
y = erx in Eq. ( 1 6) ,  then each term would be a constant multiple of erx , with the 
constant coefficients dependent on r and the coefficients a , b, and c. This suggests 
that we try to find a value of r so that these multiples of erx will have sum zero. If 
we succeed, then y = erx will be a solution of Eq. ( 1 6) .  

For example, if we substitute y = erx in the equation 

y" - 5y' + 6y = 0, 

we obtain 

Thus 
(r2 - 5r + 6)erx = 0; (r - 2) (r - 3)erx = o. 

Hence y = erx will be a solution if either r = 2 or r = 3 . So, in searching for a 
single solution, we actually have found two solutions :  Yl (x ) = e2x and Y2 (x ) = e3x . 

To carry out this procedure in the general case, we substitute y = erx in 
Eq. ( 1 6) . With the aid of the equations in ( 1 7) , we find the result to be 

Because erx is never zero, we conclude that y(x) = erx will satisfy the differential 
equation in ( 1 6) precisely when r is a root of the algebraic equation 

ar2 + br + c = o. ( 1 8) 

This quadratic equation is called the characteristic equation of the homogeneous 
linear differential equation 

ay" + by' + cy = o. ( 16) 

If Eq. ( 1 8) has two distinct (unequal) roots rl and r2 , then the corresponding solu
tions Yl (x ) = er1 x and Y2 (X ) = er2x of ( 1 6) are linearly independent. (Why?) This 
gives the following result. 

THEOREM 5 Distinct Real Roots 

If the roots rl and r2 of the characteristic equation in ( 1 8) are real and distinct, 
then 

( 19) 

is a general solution of Eq. ( 1 6) . 
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Example 5 Find the general solution of 

2y" - 7y' + 3y = o. 

Solution We can solve the characteristic equation 

Exa mple 6 

x 

FIGURE 2.1.9. Solutions 
y (x) = 1 + C2e-2x of y" + 2y' = 0 
with different values of C2 . 

2r2 - 7r + 3 = 0 

by factoring: 
(2r - l ) (r - 3) = O. 

The roots r, = ! and r2 = 3 are real and distinct, so Theorem 5 yields the general 
solution 

• 

The differential equation y" + 2y' = 0 has characteristic equation 

r2 + 2r = r (r + 2) = 0 

with distinct real roots r, = 0 and r2 = -2. Because eO.x == 1 ,  we get the general 
solution 

Figure 2. 1 .9 shows several different solution curves with c , = 1 ,  all appearing to 
approach the solution curve y (x) == 1 (with C2 = 0) as x --+ +00. • 

Remark: Note that Theorem 5 changes a problem involving a differential 
equation into one involving only the solution of an algebraic equation. • 

If the characteristic equation in ( 1 8) has equal roots r, = r2 , we get (at first) 
only the single solution y, (x ) = er1 x of Eq. ( 1 6) . The problem in this case is to 
produce the "missing" second solution of the differential equation. 

A double root r = r, will occur precisely when the characteristic equation is 
a constant multiple of the equation 

Any differential equation with this characteristic equation is equivalent to 

(20) 

But it is easy to verify by direct substitution that y = xer1 x is a second solution of 
Eq. (20) . It is dear (but you should verify) that 

are linearly independent functions,  so the general solution of the differential equa
tion in (20) is 



Exa mple 7 

x 

FIGURE 2.1 . 10. Solutions 
y (x) = c l e-x + 2xe-x of 
y" + 2y' + y = 0 with different 
values of C l ' 

_ Problems 

2 . 1 I n troduction :  Second-Order Linear Equations 1 1 1  

THEOREM 6 Repeated Roots 

If the characteristic equation in ( 1 8) has equal (necessarily real) roots rl = r2 , 
then 

(2 1 )  

is a general solution of Eq. ( 1 6) .  

To solve the initial value problem 

y" + 2y' + y = 0; 
y (O) = 5 ,  y' (O) = -3 ,  

we note first that the characteristic equation 

r2 + 2r + 1 = (r + 1 ) 2 = 0 

has equal roots r, = r2 = - 1 . Hence the general solution provided by Theorem 6 
is 

Differentiation yields 

so the initial conditions yield the equations 

y(O) = c, 5 ,  
y' (O) = -Cj + C2 = -3, 

which imply that c ,  = 5 and C2 = 2. Thus the desired particular solution of the 
initial value problem is 

y(x) = 5e-x + 2xe-x . 
This particular solution, together with several others of the form y(x) = c, e-x + 
2xe-x , is illustrated in Fig. 2. 1 . 1 O. • 

The characteristic equation in ( 1 8) may have either real or complex roots. The 
case of complex roots will be discussed in Section 2.3 . 

In Problems I through 16, a homogeneous second-order lin
ear differential equation, two functions Yl and yz, and a pair 
of initial conditions are given. First verify that Yl and Yz are 
solutions of the differential equation. Then find a particular 
solution of the form Y = Cl Yl + czYz that satisfies the given 
initial conditions. Primes denote derivatives with respect to x. 

2. y" - 9y = 0; Y l = e3x ,  Yz = e-3x ; y eO) = - 1 ,  y' (0) = 15 
3. y" + 4y = 0; Yl = cos 2x , Yz = sin 2x ; yeO) = 3, 

y' (O) = 8 
4. y" + 25y = 0; Yl = cos 5x , yz = sin 5x ; y eO) = 10, 

y' (0) = - 1 0  
5 .  y" - 3y' +2y = 0; Y l  = eX ,  Yz = e

Z
x ;  y eO) = 1 ,  y' (O) = 0 

6. y" + y' - 6y = 0; Y l = e
Z
X ,  Yz = e-3x ;  y eO) = 7, 

y' (0) = - 1  1. y" - y = 0; Y l  = eX , Yz = e-x ; y eO) = 0, y' (0) = 5 



1 1 2 Chapter 2 Linear Equations of H igher Order 

7. y" + y' = 0; YI  = I ,  Y2 = e-x ; y eO) = -2, y' (O) = 8 
8. y" - 3y' = 0; YI = I ,  Y2 = e3x ;  y eO) = 4, y' (O) = -2 
9 .  y" + 2y' + y = 0; YI  = e-x ,  Y2 = xe-x ; y eO) = 2, 

y' (O) = - I 
10. y" - lOy' + 25y = 0; YI = e5x ,  Y2 = xe5x ;  y eO) = 3 , 

y' (O) = 1 3 
1 1 .  y " - 2y' + 2y = 0; YI  = eX cos x ,  Y2 = eX sin x ; y eO) = 0, 

y' (O) = 5 
12. y" + 6y' + By = 0; YI = e-3x cos 2x , Y2 = e-3x sin 2x ; 

yeO) = 2, y' (O) = 0 
13. x2y" - 2xy' + 2y = 0; YI = X , Y2 = x2 ; y ( 1 )  = 3 , 

y' ( 1 ) = I 
14. x2y" + 2xy' - 6y = 0; YI = x2 , Y2 = x-3 ; y (2) = 10, 

y' (2) = 15 
15. x2y" - xy' + y = 0; YI  = X , Y2 = x ln x ; y ( 1 )  = 7 , 

y' ( I )  = 2 
16. x2y" + xy' + y = 0; YI = cos(1n x ) ,  Y2 = sin(1n x) ; 

y ( 1 ) = 2, y' ( 1 )  = 3 

The following three problems illustrate the fact that the super
position principle does not generally hold for nonlinear equa
tions. 
17. Show that y = I /x is a solution of y' + y2 = 0, but that if 

c =1= 0 and c =1= I ,  then y = c / x is not a solution. 
18. Show that y = x3 is a solution of yy" = 6x4 , but that if 

c2 =1= 1 , then y = cx3 is not a solution. 
19. Show that YI  == I and Y2 = ..Ji are solutions of yy" + 

(y')2 = 0, but that their sum y = YI + Y2 is not a solution. 

Determine whether the pairs of functions in Problems 20 

through 26 are linearly independent or linearly dependent on 
the real line. 
20. f(x) = rr , g (x) = cos2 X + sin2 x 
21. f(x) = x3 , g (x) = x2 1x l 
22. f(x) = I + x ,  g (x) = I + Ix l 
23. f(x) = xex ,  g (x) = Ix lex 
24. f(x) = sin2 x , g (x) = 1 - cos 2x 
25. f(x) = eX sin x ,  g (x )  = eX cos x 
26. f(x) = 2 cos x + 3 sin x ,  g (x )  = 3 cos x - 2 sin x 
27. Let yp be a particular solution of the nonhomogeneous 

equation y" + py' + qy = f(x) and let Yc be a solu
tion of its associated homogeneous equation. Show that 
y = Yc + YP is a solution of the given nonhomogeneous 
equation. 

28. With YP = I and Yc = C I COS X + C2 sin x in the notation 
of Problem 27, find a solution of y" + y = I satisfying the 
initial conditions y eO) = - 1  = y' (O) . 

29. Show that YI = x2 and Y2 = x3 are two different solu
tions of x2y" - 4xy' + 6y = 0, both satisfying the initial 
conditions y eO) = 0 = y'(O) . Explain why these facts do 
not contradict Theorem 2 (with respect to the guaranteed 
uniqueness). 

30. (a) Show that YI  = x3 and Y2 = Ix3 1 are linearly 
independent solutions on the real line of the equation 
x2 y" - 3x y' + 3 y = O. (b) Verify that W (Y I , Y2) is iden
tically zero. Why do these facts not contradict Theorem 
3? 

31.  Show that Y I  = sin x2 and Y2 = cos x2 are linearly in
dependent functions, but that their Wronskian vanishes at 
x = O. Why does this imply that there is no differential 
equation of the form y" + p (x)y' + q (x)y = 0, with both 
p and q continuous everywhere, having both YI and Y2 as 
solutions? 

32. Let YI and Y2 be two solutions of A (x)y" + B(x)y' + 
C(x)y = 0 on an open interval 1 where A, B, and C 
are continuous and A (x) is never zero. (a) Let W = 

W (YI , Y2) . Show that 

Then substitute for Ay� and Ay;' from the original differ
ential equation to show that 

dW A(x)- = -B(x) W(x) .  dx 

(b) Solve this first-order equation to deduce Abel's for
mula 

W (x)  = K exp (- f B(x ) dX) , A(x) 
where K is a constant. (c) Why does Abel's formula 
imply that the Wronskian W (Y I , Y2 ) is either zero every
where or nonzero everywhere (as stated in Theorem 3)? 

Apply Theorems 5 and 6 to find general solutions of the dif
ferential equations given in Problems 33 through 42. Primes 
denote derivatives with respect to x. 

33. y" - 3y' + 2y = 0 34. y" + 2y' - 1 5y = 0 
35. y" + 5y' = 0 36. 2y" + 3y' = 0 
37. 2y" - y' - y = 0 38. 4y" + 8y' + 3y = 0 
39. 4y" + 4y' + y = 0 40. 9y" - 12y' + 4y = 0 
41. 6y" - 7y' - 20y = 0 42. 35y" - y' - 12y = 0 

Each of Problems 43 through 48 gives a general solution 
y (x) of a homogeneous second-order differential equation 
ay" + by' + cy = 0 with constant coefficients. Find such an 
equation. 
43. y (x) = CI + C2e- 10x 

45. y (x ) = c l e- l Ox + c2xe- I Ox 

46. y (x) = cl e lOx + C2e lOOx 47. y (x) = CI + C2X 

48. y (x) = eX (c1 exJ2 + c2e-xJ2) 
Problems 49 and 50 deal with the solution curves of y" + 3 y' + 
2y = 0 shown in Figs. 2. 1 .6 and 2. 1. 7. 

49. Find the highest point on the solution curve with y eO) = I 
and y' (0) = 6 in Fig. 2. 1 .6. 

50. Find the third-quadrant point of intersection of the solu
tion curves shown in Fig. 2. 1 .7 . 
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51.  A second-order Euler equation is one of the fonn conclude that a general solution of the Euler equation in 
(22) is y (x) = C 1 Xr l + C2Xr2 . ax2y" + bxy' + cy = 0 (22) 

where a, b, c are constants . (a) Show that if x > 0, 
then the substitution v = ln x transfonns Eq. (22) into 
the constant-coefficient linear equation 

Make the substitution v = In x of Problem 51 to find general 
solutions (for x > 0) of the Euler equations in Problems 52-

56. 

d2y dy a 
dv2 + (b - a) dv + cy = 0 (23) 52. x2y" + xy' - y = 0 53. x2y" + 2xy' - 1 2y = 0 

with independent variable v. (b) If the roots rl and r2 of 
the characteristic equation of Eq. (23 ) are real and distinct, 

54. 4x2y" + 8xy' - 3y = 0 55. x2y" + xy' = 0 
56. x2y" - 3xy' + 4y = 0 

Exa mple 1 

We now show that our discussion in Section 2. 1 of second-order linear equations 
generalizes in a very natural way to the general nth-order linear differential equa
tion of the form 

Po (x )y (n) + PI (x )y <n- l ) + . . . + Pn- I (X )Y' + Pn (x )y = F(x) .  ( 1 )  

Unless otherwise noted, we will always assume that the coefficient functions Pi (x) 
and F (x ) are continuous on some open interval I (perhaps unbounded) where we 
wish to solve the equation. Under the additional assumption that Po (x) =j:. 0 at each 
point of I ,  we can divide each term in Eq. ( 1 )  by Po (x) to obtain an equation with 
leading coefficient 1 ,  of the form 

y (n) + P I (x )y (n- i ) + . . .  + Pn- I (X )Y' + Pn (x)y = f(x) .  (2) 

The homogeneous linear equation associated with Eq. (2) is 

y (n) + PI (x )y (n- l ) + . . . + Pn- I (X )y' + Pn (x )y = O. (3) 

Just as in the second-order case, a homogeneous nth-order linear differential equa
tion has the valuable property that any superposition, or linear combination, of so
lutions of the equation is again a solution. The proof of the following theorem is 
essentially the same-a routine verification-as that of Theorem 1 of Section 2. 1 . 

TH EOREM 1 Principle of Superposition for Homogeneous 

Equations 

Let Yl , Y2 , . . .  , Yn be n solutions of the homogeneous linear equation in (3) on 
the interval I . If Cl , C2 , . . .  , Cn are constants, then the linear combination 

Y = CI YI + C2Y2 + . . .  + CnYn 

is also a solution of Eq. (3) on I .  

It i s  easy to verify that the three functions 

YI (X )  = e-3x , Y2 (X) = cos 2x , and Y3 (X ) = sin 2x 

(4) 
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FIGURE 2.2.1 .  The particular 
solution y (x) = 

_3e-3x + 3 cos 2x - 2 sin 2x . 

Exa mple 1 
Continued 

are all solutions of the homogeneous third-order equation 

Y (3) + 3 y" + 4 y' + 1 2  y = 0 

on the entire real line. Theorem 1 tells us that any linear combination of these 
solutions,  such as 

y (x)  = -3YI (x ) + 3Y2 (X ) - 2Y3 (X) = _3e-3x + 3 cos 2x - 2 sin 2x , 

is also a solution on the entire real line. We will see that, conversely, every solu
tion of the differential equation of this example is a linear combination of the three 
particular solutions YJ , Y2 , and Y3 . Thus a general solution is given by 

• 

Existence and Uniqueness of Solutions 

We saw in Section 2. 1 that a particular solution of a second-order linear differential 
equation is determined by two initial conditions. Similarly, a particular solution of 
an nth-order linear differential equation is determined by n initial conditions .  The 
following theorem, proved in the Appendix, is the natural generalization of Theorem 
2 of Section 2. 1 . 

TH EOREM 2 Existence and U niqueness for Linear Equations 

Suppose that the functions PI , P2 , . . .  , Pn , and f are continuous on the open 
interval I containing the point a .  Then, given n numbers bo, bI , . . .  , bn- I ,  the 
nth-order linear equation (Eq. (2» 

y (n) + P I (x )y(n- I ) + . . .  + Pn- I (x )y' + Pn (x)y = f (x) 

has a unique (that is , one and only one) solution on the entire interval I that 
satisfies the n initial conditions 

y (a ) = bo , y' (a) = bI , (5) 

Equation (2) and the conditions in (5) constitute an nth-order initial value 
problem. Theorem 2 tells us that any such initial value problem has a unique so
lution on the whole interval I where the coefficient functions in (2) are continuous. 
It tells us nothing, however, about how to find this solution. In Section 2.3 we will 
see how to construct explicit solutions of initial value problems in the constan,t
coefficient case that occurs often in applications. 

We saw earlier that 

y (x)  = _3e-3x + 3 cos 2x - 2 sin 2x 

is a solution of 
y <3) + 3y" + 4y' + 1 2y = 0 

on the entire real line. This particular solution has initial values y (0) = 0, y' (0) = 5 ,  
and y" (O) = -39, and Theorem 2 implies that there is no other solution with these 
same initial values. Note that its graph (in Fig. 2.2. 1 )  looks periodic on the right. 
Indeed, because of the negative exponent, we see that y (x) � 3 cos 2x - 2 sin 2x 
for large positive x . • 
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Remark: Because its general solution involves the three arbitrary constants 
Cl , C2 , and C3 , the third-order equation in Example 1 has a "threefold infinity" of 
solutions, including three families of especially simple solutions :  

• y (x )  = cl e-3x (obtained from the general solution with C2 = C3 = 0), 
• y (x )  = C2 cos 2x (with C l = C3 = 0), and 
• y (x )  = C3 sin 2x (with CI = C2 = 0) . 

Alternatively, Theorem 2 suggests a threefold infinity of particular solutions corre
sponding to independent choices of the three initial values y (0) = bo, y' (0) = bl , 
and y" (O) = b2 • Figures 2.2.2 through 2.2.4 illustrate three corresponding families 
of solutions-for each of which, two of these three initial values are zero. • 

2 

- I  

- 2  

3 4 5 - 3  
-2 - I 0 

y '(O) = 3 
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FIGURE 2.2.2. Solutions of 
y (3) + 3y" + 4y' + 1 2y = 0 with 
y' (0) = y" (0) = 0 but with 
different values for y eO) . 

FIGURE 2.2.3. Solutions of 
y (3) + 3y" + 4y' + 1 2y = 0 with 
y eO) = y" (O) = 0 but with 
different values for y' (O) . 

FIGURE 2.2.4. Solutions of 
y (3) + 3y" + 4y' + 1 2y = 0 with 
y eO) = y' (O) = 0 but with 
different values for y" (O) . 

Exa mple 2 

Note that Theorem 2 implies that the trivial solution y (x )  == 0 is the only 
solution of the homogeneous equation 

y(n) + PI (x )y (n- I ) + . . .  + Pn- I (X)y' + Pn (x )y = 0 (3) 

that satisfies the trivial initial conditions 

y (a) = y'(a )  = . . .  = y <n- I ) (a) = O. 

" - " - - - " -" " - - " - -- - - - _  . .  _ --_ . - . .  - - - ---- - - - - - - --"----
It is easy to verify that 

are two different solutions of 

x2y" - 4xy' + 6y = 0, 

and that both satisfy the initial conditions y (O) = y' (O) = O. Why does this not 
contradict the uniqueness part of Theorem 2? It is because the leading coefficient in 
this differential equation vanishes at x = 0, so this equation cannot be written in the 
form of Eq. (3) with coefficient functions continuous on an open interval containing 
the point x = O. • 
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Linearly Independent Solutions 

On the basis of our knowledge of general solutions of second-order linear equations, 
we anticipate that a general solution of the homogeneous nth-order linear equation 

y <n) + PI (X)y (n- I ) + . . . + Pn- I (X )y' + Pn (X )Y = 0 (3) 

will be a linear combination 

(4) 

where YI , Y2 , . . . , Yn are particular solutions of Eq. (3) . But these n particular solu
tions must be "sufficiently independent" that we can always choose the coefficients 
c" C2 , . . .  , Cn in (4) to satisfy arbitrary initial conditions of the form in (5) . The 
question is this :  What should be meant by independence of three or more func
tions? 

Recall that two functions II and 12 are linearly dependent if one is a constant 
multiple of the other; that is, if either iJ = kh or 12 = kil for some constant k. If 
we write these equations as 

( 1 ) 11 + (-k) h = 0 or (k) II + (- 1 )12 = 0, 

we see that the linear dependence of II and 12 implies that there exist two constants 
CI and C2 not both zero such that 

(6) 

Conversely, if CI and C2 are not both zero, then Eq. (6) certainly implies that II and 
12 are linearly dependent. 

In analogy with Eq. (6), we say that n functions I" 12, . . .  , In are linearly 
dependent provided that some nontrivial linear combination 

of them vanishes identically; nontrivial means that not all of the coefficients C I , C2 , 
• • •  , Cn are zero (although some of them may be zero). 

DEFI N ITION Linear Dependence of Functions 

The n functions iJ, 12, . . . , In are said to be linearly dependent on the interval 
I provided that there exist constants Cl , C2 , . . .  , Cn not all zero such that 

(7) 

on I; that is, 

for all x in I . 

If not all the coefficients in Eq. (7) are zero, then clearly we can solve for at least 
one of the functions as a linear combination of the others, and conversely. Thus the 
functions II , 12, . . .  , In are linearly dependent if and only if at least one of them is 
a linear combination of the others. 
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The functions 

fl (x ) = sin 2x , h(x)  = sin x cos x ,  and h (x) = eX 

are linearly dependent on the real line because 

( l )!I + (-2) 12 + (0) 13 = 0 

(by the familiar trigonometric identity sin 2x = 2 sin x cos x) .  • 

The n functions fl ' 12, . . .  , fn are called linearly independent on the interval 
I provided that they are not linearly dependent there. Equivalently, they are linearly 
independent on I provided that the identity 

cdl + c2h + · · · + cnfn = 0  

holds on I only in the trivial case 

CI = C2 = . . .  = Cn = 0; 

(7) 

that is , no nontrivial linear combination of these functions vanishes on I .  Put yet 
another way, the functions fl ' 12, . . .  , fn are linearly independent if no one of them 
is a linear combination of the others . (Why?) 

Sometimes one can show that n given functions are linearly dependent by 
finding, as in Example 3 , nontrivial values of the coefficients so that Eq. (7) holds . 
But in order to show that n given functions are linearly independent, we must prove 
that nontrivial values of the coefficients cannot be found, and this is seldom easy to 
do in any direct or obvious manner. 

Fortunately, in the case of n solutions of a homogeneous nth-order linear equa
tion, there is a tool that makes the determination of their linear dependence or inde
pendence a routine matter in many examples. This tool is the Wronskian determi
nant, which we introduced (for the case n = 2) in Section 2. 1 . Suppose that the n 
functions fl ' 12, . . . , fn are each n - 1 times differentiable. Then their Wronskian 
is the n x n determinant 

W = 

12 

f� 
fn 
f� 

(8) 

We write W(jl , 12, . . .  , fn ) or W(x) ,  depending on whether we wish to empha
size the functions or the point x at which their Wronskian is to be evaluated. The 
Wronskian is named after the Polish mathematician J. M. H. Wronski ( l 778-1 853). 

We saw in Section 2. 1 that the Wronskian of two linearly dependent functions 
vanishes identically. More generally, the Wronskian of n linearly dependent junc
tions !I ,  12, . . .  , fn is identically zero. To prove this, assume that Eq. (7) holds on 
the interval I for some choice of the constants CI , C2 , • • •  , Cn not all zero. We then 
differentiate this equation n - 1 times in succession, obtaining the n equations 

cdl (x) + c2h (x) 
cd{ (x) + c2f� (x ) 

+ . . . + 
+ . . .  + 

cn fn (x) = 0, 

cn f� (x) = 0, 
(9) 
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Exa mple 4 

which hold for all x in I .  We recall from linear algebra that a system of n lin
ear homogeneous equations in n unknowns has a nontrivial solution if and only 
if the determinant of coefficients vanishes. In Eq. (9) the unknowns are the con
stants Cl , C2 , • • •  , Cn and the determinant of coefficients is simply the Wronskian 
W (fl , 12 , . . .  , in ) evaluated at the typical point x of I .  Because we know that the 
Ci are not all zero, it follows that W(x)  == 0, as we wanted to prove. 

Therefore, to show that the functions iI , 12, . . . , in are linearly independent 
on the interval 1 , it suffices to show that their Wronskian is nonzero at just one point 
of I .  

Show that the functions Yl (X ) = e-3x , y; (x ) = cos 2x , and Y3 (X) = sin 2x (of 
Example 1 )  are linearly independent. 

Solution Their Wronskian is 

Example 5 

cos 2x 

W = _3e-3x -2 sin 2x 

sin 2x 

2 cos 2x 

ge-3x -4 cos 2x -4 sin 2x 

-2 sin 2x 2 cos 2x 

-4 cos 2x -4 sin 2x 
+ 3e-3x cos 2x sin 2x 

-4 cos 2x -4 sin 2x 

cos 2x sin 2x 
= 26e-3x i= O. 

-2 sin 2x 2 cos 2x 

Because W i= 0 everywhere, it follows that Yl , Y2 , and Y3 are linearly independent 
on any open interval (including the entire real line) . • 

Show first that the three solutions 

of the third-order equation 

x3y <3) - x2y" + 2xy' - 2y = 0 ( 1 0) 

are linearly independent on the open interval x > O. Then find a particular solution 
of Eq. ( 1 0) that satisfies the initial conditions 

y ( 1 )  = 3 ,  y' ( 1 )  = 2 ,  y" ( 1 )  = 1 .  ( 1 1 )  

Solution Note that for x > 0, we could divide each term in ( 1 0) by x3 to obtain a homoge
neous linear equation of the standard form in (3) . When we compute the Wronskian 
of the three given solutions,  we find that 

x x ln x x2 

W =  1 + ln x 2x = x . 

0 
1 

2 
x 
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Thus W (x) =1= 0 for x > 0, so Yl ,  Y2 , and Y3 are linearly independent on the interval 
x > O. To find the desired particular solution, we impose the initial conditions in 
( 1 1 ) on 

y (x) = ClX + C2X In x 

y l/ (x) = 0 

This yields the simultaneous equations 

y ( 1 )  = Cl + C3 = 3 ,  

y' ( 1 )  = Cl + C2 + 2C3 = 2, 

yl/ ( l )  = 

we solve to find C l  = 1 , C2 = -3,  and C3 = 2. Thus the particular solution in 
question is  

y (x) = x - 3x In x + 2x2 . • 

Provided that W(Yl ,  Y2 , . . .  , Yn ) =1= 0, it turns out (Theorem 4) that we can 
always find values of the coefficients in the linear combination 

Y = Cl YI + C2Y2 + . . . + cnYn 

that satisfy any given initial conditions of the form in (5). Theorem 3 provides the 
necessary nonvanishing of W in the case of linearly independent solutions. 

THEOREM 3 Wronskians of Solutions 

Suppose that Yl ,  Y2 , . . .  , Yn are n solutions of the homogeneous nth-order linear 
equation 

y(n) + PI (x)/n- l ) + . . . + Pn- I (X)Y' + Pn (x)y = 0 (3) 

on an open interval I, where each Pi is continuous. Let 

W = W(Yl ,  Y2 , · · ·  , Yn ) .  

(a) If Yl ,  Y2 , . . .  , Yn are linearly dependent, then W == 0 on I .  

(b) If Yl ,  Y2 , . . .  , Yn are linearly independent, then W =1= 0 at each point of I .  

Thus there are just two possibilities: Either W = 0 everywhere on I ,  or W =1= 0 
everywhere on I .  

Proof: We have already proven part (a) . To prove part (b), it i s  sufficient 
to assume that W (a) = 0 at some point of I ,  and show this implies that the solu
tions Yl ,  Y2 , . . .  , Yn are linearly dependent. But W(a)  is simply the determinant of 
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coefficients of the system of n homogeneous linear equations 

CI Yl (a) + 

C I Y� (a) + 

C2Y2 (a) + . . .  + 

c2y� (a) + . . .  + cny� (a) = 0, 

CI y �n- l ) (a) + c2yin- 1 ) (a) + . . .  + cny�n- l ) (a) = 0 

( 1 2) 

in the n unknowns Cl , C2 , . . .  , Cn . Because W(a) = 0, the basic fact from linear 
algebra quoted just after (9) implies that the equations in ( 1 2) have a nontrivial 
solution. That is, the numbers Cl , C2 , . . .  , Cn are not all zero. 

We now use these values to define the particular solution 

( 1 3) 

of Eq. (3) . The equations in ( 1 2) then imply that Y satisfies the trivial initial 
conditions 

Y (a ) = Y' (a ) = . . .  = y(n- l ) (a) = O. 

Theorem 2 (uniqueness) therefore implies that Y (x) == 0 on I. In view of ( 1 3) 
and the fact that Cl , C2 , . . .  , Cn are not all zero, this is the desired conclusion that 
the solutions YI , Y2 , . . .  , Yn are linearly dependent. This completes the proof of 
Theorem 3 .  .... 

General Solutions 

We can now show that, given any fixed set of n linearly independent solutions of 
a homogeneous nth-order equation, every (other) solution of the equation can be 
expressed as a linear combination of those n particular solutions .  Using the fact 
from Theorem 3 that the Wronskian of n linearly independent solutions is nonzero, 
the proof of the following theorem is essentially the same as the proof of Theorem 
4 of Section 2. 1 (the case n = 2) . 

TH EOREM 4 General Solutions of Homogeneous Equations 

Let Yl . Y2 , . . .  , Yn be n linearly independent solutions of the homogeneous equa
tion 

y<n) + PI (x)y<n- l ) + . . . + Pn- l (X)Y' + Pn (x)y = 0 (3) 

on an open interval 1 where the Pi are continuous.  If Y is any solution whatsoever 
of Eq. (3), then there exist numbers Cl , C2 , . . .  , Cn such that 

for all x in I .  

Thus every solution of a homogeneous nth-order linear differential equation 
is a linear combination 

Y = CI YI + C2Y2 + . . .  + cnYn 

of any n given linearly independent solutions. On this basis we call such a linear 
combination a general solution of the differential equation. 
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2 .2 General Solutions of Linear Equations 1 21 

According to Example 4, the particular solutions YI (x) = e-3x , Y2 (x) = cos 2x , 
and Y3 (X) = sin 2x of the linear differential equation y(3) + 3y" +4y' + 12y = 0 are 
linearly independent. Now Theorem 2 says that-given bo , bl , and b2-there exists 
a particular solution y (x)  satisfying the initial conditions y(O) = bo , y' (O) = bj , 
and y" (0) = b2 • Hence Theorem 4 implies that this particular solution is a linear 
combination of Y I , Y2 , and Y3 . That is, there exist coefficients C j , C2 , and C3 such 
that 

y (x) = cl e-3x + C2 cos 2x + C3 sin 2x . 
Upon successive differentiation and substitution of x = 0, we discover that to find 
these coefficients, we need only solve the three linear equations 

CI + C2 = bo , 
-3cI + 2C3 = b l , 

9cI - 4C2 = b2 . 

(See the application for this section.) 

Nonhomogeneous Equations 

We now consider the nonhomogeneous nth-order linear differential equation 

y(n) + PI (X)y(n- l ) + . . .  + Pn- I (X )y' + Pn (x)y = f(x) 

with associated homogeneous equation 

y(n) + PI (X)y(n- l ) + . . .  + Pn- I (X )y' + Pn (x)y = O. 

• 

(2) 

(3) 

Suppose that a single fixed particular solution YP of the nonhomogeneous 
equation in (2) is known, and that Y is any other solution of Eq. (2) . If Yc = Y - yp , 
then subsitution of Yc in the differential equation gives (using the linearity of differ
entiation) 

y�n) + Pl y�n- I )+ . . .  + Pn- I Y� + PnYc 

= [ (y(n) + Pl y(n- I ) + . . .  + Pn- I Y' + PnY] 

- [(y�n) + P l y�n- I ) + . . .  + Pn- I Y� + PnYp] 

= f(x) - f(x) = o. 

Thus Yc = Y - YP is a solution of the associated homogeneous equation in (3) . Then 

Y = Yc + yp , ( 14) 

and it follows from Theorem 4 that 

( 1 5) 

where YI , Y2 , . . . , Yn are linearly independent solutions of the associated homo
geneous equation. We call Yc a complementary function of the nonhomogeneous 
equation and have thus proved that a general solution of the nonhomogeneous equa
tion in (2) is the sum of its complementary function Yc and a single particular solu
tion YP of Eq. (2) . 
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TH EOREM 5 Solutions of Nonhomogeneous Equations 

Let Yp be a particular solution of the nonhomogeneous equation in (2) on an 
open interval I where the functions Pi and f are continuous. Let YI , Y2 , . . . , Yn 
be linearly independent solutions of the associated homogeneous equation in (3). 
If Y i s  any solution whatsoever of Eq. (2) on I, then there exist numbers CI , C2 , 
• • •  , Cn such that 

for all x in I .  

Example 7 It is evident that Yp = 3x is a particular solution of the equation 

Y" + 4y = 12x ,  ( 1 7) 

and that Yc (x) = CI cos 2x + C2 sin 2x is its complementary solution. Find a solution 
of Eq. ( 1 7) that satisfies the initial conditions y (O) = 5 ,  Y' (0) = 7 . 

Solution The general solution of Eq. ( 1 7) is 

y (x)  = CI cos 2x + C2 sin 2x + 3x . 

Now 
y' (x)  = -2cI sin 2x + 2C2 cos 2x + 3 . 

Hence the initial conditions give 

y (O) = CI = 5 ,  

y' (0) = 2C2 + 3 = 7 . 

We find that CI = 5 and C2 = 2. Thus the desired solution is 

In Problems 1 through 6, show directly that the given functions 
are linearly dependent on the real line. That is, find a non
trivial linear combination of the given functions that vanishes 
identically. 

1. f(x) = 2x , g (x) = 3x2 , h ex)  = 5x - 8x2 
2. f(x) = 5, g (x) = 2 - 3x2 , h ex) = 1 0  + 1 5x2 
3. f(x) = 0, g (x) = sin x ,  h ex)  = eX 
4. f(x) = 17 ,  g (x) = 2 sin2 x, h ex)  = 3 cos2 x 
5. f(x) = 1 7, g (x) = cos2 x , h ex)  = cos 2x 
6. f(x) = eX ,  g (x)  = cosh x , h ex) = sinh x 

In Problems 7 through 12, use the Wronskian to prove that the 
given functions are linearly independent on the indicated in
terval. 

y (x) = 5 cos 2x + 2 sin 2x + 3x . • 

7. f (x) = 1 ,  g (x) = x , h ex)  = x2 ; !he real line 
8. f (x) = eX , g (x) = e2x ,  h ex)  = e3x ; !he real line 
9. f (x) = eX , g (x) = cos x , h ex) = sin x ; the real line 

10. f(x) = eX , g (x) = x-2 , h ex) = x-2 ln x ; x > 0 

11 .  f(x) = x , g (x) = xeX ,  h ex) = x2ex ; the real line 
12. f (x) = x, g (x) = cos (ln x ) ,  h ex) = sin (In x) ; x > 0 

In Problems 13 through 20, a third-order homogeneous linear 
equation and three linearly independent solutions are given. 
Find a particular solution satisfying the given initial condi
tions. 
13. y(3) + 2y" - y' - 2y = 0; y eO) = 1 ,  leO) = 2, y" (O) = 0; 

YI = eX , Y2 = e-X ,  Y3 = e-2x 



14. y (3) - 6y" + l l y' - 6y = 0; y eO) = 0, y' (O) = 0, 
y" (O) = 3 ; Y I = eX , Y2 = e2x , Y3 = e3x 

15. y<3) - 3y" + 3y' - y = 0; y eO) = 2, y' (O) = 0, y" (O) = 0; 
Y I = eX ,  Y2 = xex ,  Y3 = x2ex 

16. y(3) _ 5y" + 8y' -4y = 0; y eO) = 1 ,  y' (O) = 4, y" (O) = 0; 
Y I = eX , Y2 = e2x ,  Y3 = xe2x 

17. y(3) + 9y' = 0; y eO) = 3 ,  y' (O) = - 1 ,  y" (O) = 2; YI = 1 ,  
Y2 = cos 3x , Y3 = sin 3x 

18. y(3) - 3y" +4y' - 2y = 0; y eO) = 1 ,  y' (O) = 0, y" (O) = 0; 
Y I = eX , Y2 = eX cos x , Y3 = eX sin x .  

19. x3y(3) - 3x2y" + 6xy' - 6y  = 0; y ( l )  = 6, y' ( 1 )  = 14, 
y" ( 1 )  = 22; Y I = X ,  Y2 = x2 , Y3 = x3 

20. x3y (3) + 6x2y" + 4xy' - 4y = 0; y ( 1 )  = 1 , y' ( 1 )  = 5 , 
y" ( I )  = - 1 1 ; Y I = X , Y2 = X-2 , Y3 = x-2 In x 

In Problems 21 through 24, a nonhomogeneous differential 
equation, a complementary solution Yo and a particular so
lution yp are given. Find a solution satisfying the given initial 
conditions. 
21. y" + y = 3x ; y eO) = 2, y' (O) = -2; 

Yc = C I cos x + C2 sin x ; YP = 3x 
22. y" - 4y = 1 2; y eO) = 0, y' (O) = 10; 

Yc = cl e2x + C2e-2x ;  YP = -3 
23. y" - 2y' - 3y = 6 ; y eO) = 3 , y' (O) = 1 1 ; 

Yc = c l e-x + C2e3x ;  YP = -2 
24. y" - 2y' + 2y = 2x ; y eO) = 4, y' (O) = 8 ; 

Yc = c l ex cos x + C2ex sin x ; YP = x + 1 
25. Let Ly = y" + py' + qy. Suppose that YI and Y2 are two 

functions such that 

LY I = f (x) and LY2 = g (x) .  

Show that their sum y = Y I  + Y2 satisfies the nonhomoge
neous equation Ly = f (x) + g(x ) . 

26. (a) Find by inspection particular solutions of  the two non
homogeneous equations 

y" + 2y = 4 and y" + 2y = 6x . 

(b) Use the method of Problem 25 to find a particular so
lution of the differential equation y" + 2y = 6x + 4. 

27. Prove directly that the functions 

fl (x ) == 1 , h ex) = x ,  and h ex) = x2 

are linearly independent on the whole real line. (Sugges
tion: Assume that C I + C2X + C3x2 = O. Differentiate this 
equation twice, and conclude from the equations you get 
that C I = C2 = C3 = 0.) 

28. Generalize the method of Problem 27 to prove directly that 
the functions 

are linearly independent on the real line. 
29. Use the result of Problem 28 and the definition of linear 

independence to prove directly that, for any constant r, the 
functions 

fo (x) = e'x , !l ex) = xe'x ' 
are linearly independent on the whole real line. 
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30. Verify that Y I = x and Y2 = x2 are linearly independent 
solutions on the entire real line of the equation 

x2y" - 2xy' + 2y = 0, 

but that W (x , x2) vanishes at x = O. Why do these obser
vations not contradict part (b) of Theorem 3? 

31.  This problem indicates why we can impose only n initial 
conditions on a solution of an nth-order linear differential 
equation. (a) Given the equation 

32. 

y" + py' + qy = 0, 

explain why the value of y"(a) is determined by the values 
of y ea) and y' (a) . (b) Prove that the equation 

y" - 2y' - 5y = 0 

has a solution satisfying the conditions 

y eO) = 1 ,  y' (O) = 0, and y"(O) = c 

if and only if C = 5 .  
Prove that an nth-order homogeneous linear differential 
equation satisfying the hypotheses of Theorem 2 has n lin
early independent solutions Y I , Y2 , . . .  , Yn . (Suggestion: 
Let Yj be the unique solution such that 

(i - I ) ( ) - 1 Yj a - and Yj(k) (a) = 0 if k � i - I .) 

33. Suppose that the three numbers rl , r2 , and r3 are dis
tinct. Show that the three functions exp(r lx) ,  exp(r2x) , 
and exp(r3x )  are linearly independent by showing that 
their Wronskian 

is nonzero for all x .  
34. Assume as  known that the Vandermonde determinant 

rl r2 rn 
v =  r2 I r2 2 r2 n 

n- I rl n- I r2 r:- I 

is nonzero if the numbers r l ,  r2 , . . .  , rn are distinct. Prove 
by the method of Problem 33 that the functions 

fi (x) = exp(rjx ) ,  1 � i � n 

are linearly independent. 
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35. According to Problem 32 of Section 2. 1 ,  the Wronskian 
W (YI , Y2) of two solutions of the second-order equation 

37. Before applying Eq. ( 1 9) with a given homogeneous 
second-order linear differential equation and a known so
lution Yl (x) , the equation must first be written in the form 
of ( 1 8) with leading coefficient I in order to correctly 
determine the coefficient function p (x ) .  Frequently it is 
more convenient to simply substitute Y = V (X) Yl (X) in 
the given differential equation and then proceed directly 
to find v ex ) .  Thus, starting with the readily verified solu
tion YI (x) = x3 of the equation 

36. 

Y" + P I (X)Y' + P2 (X)Y  = 0 

is given by Abel 's 's  formula 

W(x)  = K exp (- f P I (X) dX) 
for some constant K .  It can be shown that the Wronskian 
of n solutions YI >  Y2 , . . .  , Yn of the nth-order equation 

y(n) + P I (x )y <n- I ) + . . .  + Pn- I (X)Y' + Pn (x) y  = 0 

satisfies the same identity. Prove this for the case n = 3 
as follows: (a) The derivative of a determinant of func
tions is the sum of the determinants obtained by separately 
differentiating the rows of the original determinant. Con
clude that 

Y I Y2 
W' = Y; y� y� 

y l3) y2) yj3) 

(b) Substitute for Y?) , yi3) , and yj3) from the equation 

y(3) + P I Y" + P2Y' + P3Y = 0, 

and then show that W' = -P I W. Integration now gives 
Abel's formula. 
Suppose that one solution YI (x ) of the homogeneous 
second-order linear differential equation 

Y" + p (x)y' + q (x)y = 0 ( 1 8) 

is known (on an interval I where P and q are continuous 
functions) .  The method of reduction of order consists 
of substituting Y2 (X) = V (X)YI (x ) in ( 1 8) and attempting 
to determine the function v ex )  so that Y2 (X) is a second 
linearly independent solution of ( 1 8) . After substituting 
y = V (X)Y I (x ) in Eq. ( 1 8) ,  use the fact that Yl (x) is a 
solution to deduce that 

( 1 9) 

If YI (x ) is known, then ( 1 9) is a separable equation that 
is readily solved for the derivative v' (x) of v ex ) .  Integra
tion of v' (x) then gives the desired (nonconstant) function 
v ex ) .  

x2y" - 5xy' + 9y = 0 (x > 0) , 

substitute Y = vx3 and deduce that xv" + v' = O. Thence 
solve for v ex) = C In x ,  and thereby obtain (with C = 1 )  
the second solution Y2 (X) = x3 ln x .  

In each of Problems 38 through 42, a differential equation and 
one solution Yl are given. Use the method of reduction of order 
as in Problem 37 to find a second linearly independent solution 
Y2·  

38. x2y" + xy' - 9y = 0 (x > 0) ; YI (x ) = x3 
39. 4y" - 4y' + Y = 0; Y l (x) = ex/2 

40. x2y" - x (x + 2)y' + (x + 2)y = 0 (x > 0) ; YI (x) = x 
41. (x + l )y" - (x + 2)y' + y = 0  (x > - 1 ) ; Yl (x ) = ex 
42. ( 1 - x2)y" + 2xy' - 2y = 0 (- 1  < x < 1 ) ;  Yl (X) = x 
43. First note that YI (x) = x is one solution of Legendre's 

equation of order 1 ,  

( 1  - x2)y" - 2xy' + 2y = O. 

Then use the method of reduction of order to derive the 
second solution 

x 1 + x  
Y2 (X) = 1 - - In -- (for - l  < x < 1 ) .  

2 I - x 

44. First verify by substitution that Yl (x) = x - 1 /2 cos x is one 
solution (for x > 0) of Bessel 's equation of order � ,  

Then derive b y  reduction o f  order the second solution 
Y2 (X) = X- 1 /2 sin x .  

IIIJ Homogeneous Eq!::latim:ls with Constant Coeffic�ents 

In Section 2.2 we saw that a general solution of an nth-order homogeneous linear 
equation is a linear combination of n linearly independent particular solutions,  but 
we said little about how actually to find even a single solution. The solution of a 
linear differential equation with variable coefficients ordinarily requires numerical 
methods (Chapter 6) or infinite series methods (Chapter 3) .  But we can now show 
how to find, explicitly and in a rather straightforward way, n linearly independent 
solutions of a given nth-order linear equation if it has constant coefficients . The 
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general such equation may be written in the form 

( 1 )  

where the coefficients ao , a I , a2 , . . .  , an are real constants with an i= O. 

The Characteristic Equation 

We first look for a single solution of Eq. ( 1 ) ,  and begin with the observation that 

(2) 

so any derivative of erx is a constant multiple of erx • Hence, if we substituted 
y = erx in Eq. ( 1 ) , each term would be a constant multiple of erx , with the constant 
coefficients depending on r and the coefficients ak . This suggests that we try to find 
r so that all these multiples of erx will have sum zero, in which case y = erx will be 
a solution of Eq. ( 1 ) . 

For example, in Section 2. 1 we substituted y = erx in the second-order equa-
tion 

ay" + by' + cy = 0 

to derive the characteristic equation 

ar2 + br + c  = 0 

that r must satisfy. 
To carry out this technique in the general case, we substitute y = erx in Eq. ( 1 ) , 

and with the aid of Eq. (2) we find the result to be 

that is , 
erx (anrn + an_ I rn- 1 + . . . + a2r2 + a I r + ao) = O. 

Because erx is never zero, we see that y = erx will be a solution of Eq. ( 1 )  precisely 
when r is a root of the equation 

(3) 

This equation is called the characteristic equation or auxiliary equation of the 
differential equation in ( 1 ) . Our problem, then, is 'reduced to the solution of this 
purely algebraic equation. 

According to the fundamental theorem of algebra, every nth-degree poly
nomial-such as the one in Eq. (3)-has n zeros, though not necessarily distinct 
and not necessarily real. Finding the exact values of these zeros may be difficult 
or even impossible; the quadratic formula is sufficient for second-degree equations, 
but for equations of higher degree we may need either to spot a fortuitous fac
torization or to apply a numerical technique such as Newton's method (or use a 
calculator/computer solve command) . 
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Exa mple 1 

Distinct Real Roots 

Whatever the method we use, let us suppose that we have solved the characteristic 
equation. Then we can always write a general solution of the differential equation. 
The situation is  slightly more complicated in the case of repeated roots or complex 
roots of Eq. (3) ,  so let us first examine the simplest case-in which the characteristic 
equation has n distinct (no two equal) real roots rl , r2 , . . .  , rn . Then the functions 

are all solutions of Eq. ( 1 ) , and (by Problem 34 of Section 2.2) these n solutions are 
linearly independent on the entire real line. In summary, we have proved Theorem 1 .  

TH EOREM 1 Distinct Real Roots 

If the roots rl , r2 , . . .  , rn of the characteristic equation in (3) are real and distinct, 
then 

is a general solution of Eq. ( 1 )  . 

......•... 

Solve the initial value problem 

y (3) + 3y" - lOy' = 0; 
y (O) = 7 ,  y' (O) = 0, y" (O) = 70. 

(4) 

Solution The characteristic equation of the given differential equation is 

r3 + 3r2 - lOr = O. 

We solve by factoring: 

r (r2 + 3r - 10) = r (r + 5 ) (r - 2) = 0, 

and so the characteristic equation has the three distinct real roots r = 0, r = -5, 
and r = 2. Because eO = 1 ,  Theorem 1 gives the general solution 

Then the given initial conditions yield the linear equations 

y (O) = Cl + 
y' (O) = 
y" (O) = 

C2 + C3 = 7 ,  
5C2 + 2C3 = 0, 

25c2 + 4C3 = 70 

in the coefficients Cl , C2 , and C3 . The last two equations give y" (O) - 2y' (0) = 
35c2 = 70, so C2 = 2. Then the second equation gives C3 = 5 ,  and finally the first 
equation gives Cl = O. Thus the desired particular solution is  

• 
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Polynomial Differential Operators 

If the roots of the characteristic equation in (3) are not distinct-there are repeated 
roots-then we cannot produce n linearly independent solutions of Eq. ( 1 )  by the 
method of Theorem 1 .  For example, if the roots are 1 ,  2, 2, and 2, we obtain only 
the two functions eX and e2x . The problem, then, is to produce the missing linearly 
independent solutions . For this purpose, it is convenient to adopt "operator notation" 
and write Eq. ( 1 )  in the form Ly = 0, where the operator 

operates on the n-times differentiable function y (x ) to produce the linear combina
tion 

Ly = any (n) + an_ l y <n- l ) + . . .  + a2y (2) + a l y' + aoy 

of y and its first n derivatives. We also denote by D = djdx the operation of 
differentiation with respect to x ,  so that 

and so on. In terms of D, the operator L in (5) may be written 

(6) 

and we will find it useful to think of the right-hand side in Eq. (6) as a (formal) nth
degree polynomial in the "variable" D;  it is a polynomial differential operator. 

A first-degree polynomial operator with leading coefficient 1 has the form 
D - a ,  where a is a real number. It operates on a function y = y (x ) to produce 

(D - a)y = Dy - ay = y' - ay . 

The important fact about such operators is that any two of them commute: 

(D - a) (D - b)y = (D - b) (D - a)y (7) 

for any twice differentiable function y = y (x) . The proof of the formula in (7) is 
the following computation: 

(D - a) (D - b)y = (D - a ) (y' - by) 
= D (y' - by) - a (y' - by) 
= y" - (b + a)y' + aby = y" - (a + b)y' + bay 
= D (y' - ay) - b (y' - ay) 
= (D - b) (y' - ay) = (D - b) (D - a)y .  

We see here also that (D - a) (D - b) = D2 - (a + b)D + abo Similarly, it can 
be shown by induction on the number of factors that an operator product of the 
form (D - ad (D - a2) ' "  (D - an) expands-by multiplying out and collecting 
coefficients-in the same way as does an ordinary product (x - al ) (x - a2) ' " 
(x - an ) of linear factors, with x denoting a real variable. Consequently, the algebra 
of polynomial differential operators closely resembles the algebra of ordinary real 
polynomials. 
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Repeated Real Roots 

Let us now consider the possibility that the characteristic equation 

anrn + an_ I rn- 1 + . . . + a2r2 + a i r + ao = 0 (3) 

has repeated roots . For example, suppose that Eq. (3) has only two distinct roots, ro 
of multiplicity 1 and rl of multiplicity k = n - I > 1 . Then (after dividing by an) 
Eq. (3) can be rewritten in the form 

(r - rd(r - ro) = (r - ro) (r - rdk = O. 

Similarly, the corresponding operator L in (6) can be written as 

L = (D - rd(D - ro) = (D - ro) (D - rd , 

the order of the factors making no difference because of the formula in (7) .  

(8) 

(9) 

Two solutions of the differential equation Ly = 0 are certainly Yo = erox and 
YI = er1 x . This is , however, not sufficient; we need k + 1 linearly independent 
solutions in order to construct a general solution, because the equation is of order 
k + 1 .  To find the missing k - 1 solutions, we note that 

Ly = (D - ro) [ (D - rdy] = O. 

Consequently, every solution of the kth-order equation 

(D - rdy = o  ( 1 0) 

will also be a solution of the original equation Ly = O. Hence our problem is 
reduced to that of finding a general solution of the differential equation in ( 1 0) .  

The fact that YI = er1 X is one solution of Eq. ( 1 0) suggests that we try the 
substitution 

( 1 1 )  

where u (x) i s  a function yet to be determined. Observe that 

(D - rl ) [uer 1 X ] = (Du)eqx + u (rl er1 X ) - rl (uer 1 X ) = (Du)er1 x . ( 1 2) 

Upon k applications of this fact, it follows that 

( 1 3) 

for any sufficiently differentiable function u (x ) .  Hence y = uer1 x will be a solution 
of Eq. ( 1 0) if and only if Dku = u (k) = O. But this is so if and only if 

u (x) = CI + C2X + C3X2 + . . .  + Ckxk- I , 

a polynomial of degree at most k - 1 .  Hence our desired solution of Eq. ( 1 0) is 

y (x) = uer1 x = (cl + C2X + C3x2 + . . .  + Ckxk- I )er l x . 

In particular, we see here the additional solutions xer1 x , x2er1 x , . . .  , xk- I er 1 x of the 
original differential equation Ly = O. 

The preceding analysis can be carried out with the operator D - r l  replaced 
with an arbitrary polynomial operator. When this is done, the result is a proof of the 
following theorem. 
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TH EOREM 2 Repeated Roots 

If the characteristic equation in (3) has a repeated root r of multiplicity k, then 
the part of a general solution of the differential equation in ( 1 )  corresponding to 
r is of the form 

( 14) 

We may observe that, according to Problem 29 of Section 2.2, the k func
tions erx , xerx , x2erx , • • •  , and xk- 1 erx involved in ( 14) are linearly independent on 
the real line. Thus a root of multiplicity k corresponds to k linearly independent 
solutions of the differential equation. 

_ _.. v.V"_ ,_,_V"V" V"_'V'V"_." V"_' __ 

Find a general solution of the fifth-order differential equation 

9/5) _ 6/4) + y(3) = o.  

Solution The characteristic equation is 

9r5 - 6r4 + r3 = r3 (9r2 - 6r + 1) = r3 (3r - 1 )2 = o. 
It has the triple root r = 0 and the double root r = i .  The triple root r = 0 
contributes 

c l eoox + c2xeoox + c3x2eOox = Cl + C2X + C3x2 

to the solution, while the double root r = i contributes C4ex/3 + C5xex/3 . Hence a 
general solution of the given differential equation is 

• 

Complex-Valued Functions and Euler's Formula 

Because we have assumed that the coefficients of the differential equation and its 
characteristic equation are real, any complex (nonreal) roots will occur in complex 
conjugate pairs a ± bi where a and b are real and i = .J=T. This raises the question 
of what might be meant by an exponential such as e(a+bi )x . 

To answer this question, we recall from elementary calculus the Taylor (or 
MacLaurin) series for the exponential function 00 tn t2 t3 t4 et = L.: - = l + t + - + - + - + · · · . 

n=O n !  2 !  3 !  4 !  

If  we substitute t = i 0 in this series and recall that i 2 = - 1 ,  i 3 = -i ,  i4 = 1 ,  and 
so on, we get 

eifJ = f: (ie )n 

n=O n !  

02 ie3 04 i e5 
= 1 + ie - - - - + - + - - · · · 

2 !  3 !  4 !  5 !  

= ( 1 _ 
02 

+ 
04 

_ . • •  ) + i (0 _ 
03 

+ 
05 

- • • • ) . 
2 !  4 !  3 !  5 !  
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Because the two real series in the last line are the Taylor series for cos 0 and sin 0 , 
respectively, this implies that 

eiO = cos O + i sin O .  ( 1 5) 

This result is known as Euler's formula. Because of it, we define the exponential 
function eZ ,  for z = x + iy an arbitrary complex number, to be 

( 1 6) 

Thus it appears that complex roots of the characteristic equation will lead to 
complex-valued solutions of the differential equation. A complex-valued function 
F of the real variable x associates with each real number x (in its domain of defini
tion) the complex number 

F(x) = f (x) + ig (x) . ( 1 7) 

The real-valued functions f and g are called the real and imaginary parts, respec
tively, of F. If they are differentiable, we define the derivative F' of F by 

F'(x) = f' (x) + ig' (x) . ( 1 8) 

Thus we simply differentiate the real and imaginary parts of F separately. 
We say that the complex-valued function F(x) satisfies the homogeneous lin

ear differential equation L[F(x) ]  = 0 provided that its real and imaginary parts in 
( 1 7) separately satisfy this equation-so L[F(x) ]  = L [f (x) ]  + i L [g (x) ]  = O. 

The particular complex-valued functions of interest here are of the form 
F(x) = eTX , where r = a ± bi . We note from Euler's formula that 

( 1 9a) 

and 

( 1 9b) 

The most important property of eTX is that 

(20) 

if r is a complex number. The proof of this assertion is a straightforward computa
tion based on the definitions and formulas given earlier: 

Dx (eTX ) = Dx (eax cos bx ) + i Dx (eax sin bx) 
= (aeax cos bx - beax sin bx) + i (aeax sin bx + beax cos bx) 
= (a + bi ) (eax cos bx + i eax sin bx ) = reTX • 
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C omplex Roots 

It follows from Eq. (20) that when r is complex Gust as when r is real), eTX will be a 
solution of the differential equation in ( 1 )  if and only if r is a root of its characteristic 
equation. If the complex conjugate pair of roots r) = a + bi and r2 = a - bi are 
simple (nonrepeated) ,  then the corresponding part of a general solution of Eq. ( 1 )  is 

y (x)  = C) eT1 X + C2eT2X = C) e(a+bi )x + C2e(a-bi )x 
= C) eax (cos bx + i sin bx) + C2eax (cos bx - i sin bx) 

y (x)  = (C) + C2)eax cos bx + i CC) - C2)eax sin bx , 

where the arbitrary constants C) and C2 can be complex. For instance, the choice 
C) = C2 = � gives the real-valued solution YI (x) = eax cos bx , while the choice 
C) = - � i , C2 = � i gives the independent real-valued solution Y2 (X) = eax sin bx . 
This yields the following result. 

THEOREM 3 Complex Roots 

If the characteristic equation in (3) has an unrepeated pair of complex conjugate 
roots a ± bi (with b i= 0) , then the corresponding part of a general solution of 
Eq. ( 1 )  has the form 

eax (c) cos bx + C2 sin bx) .  

The characteristic equation of 

Y" + b2y = 0 (b > 0) 

(2 1 )  

is r2 + b2 = 0 ,  with roots r = ±bi . So Theorem 3 (with a = 0)  gives the general 
solution 

y (x)  = CI cos bx + C2 sin bx . • 

Find the particular solution of 

y" - 4 y' + 5 y = 0 

for which y eO) = 1 and y' (O) = 5 .  

Solution Completion of the square in the characteristic equation yields 

r2 - 4r + 5 = (r - 2)2 + 1 = 0, 

so r - 2 = ±.J=T = ±i . Thus we obtain the complex conjugate roots 2 ± i (which 
could also be found directly using the quadratic formula) . Hence Theorem 3 with 
a = 2 and b = 1 gives the general solution 

y (x)  = e2x (CI cos x + C2 sin x ) .  
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y 

(x, y) 

FIGURE 2.3.1. Modulus and 
argument of the complex number 
x + iy. 

Exa mple 5 

x 

Then 

so the initial conditions give 

y (O) = Cl = 1 and y' (O) = 2Cl + C2 = 5 .  

I t  follows that C2 = 3 ,  and s o the desired particular solution is 

y (x ) = e2x (cos x + 3 sin x ) . 

I n Example 5 below we employ the polar form 

z = x + iy = reie 

• 

(22) 

of the complex number z. This form follows from Euler's formula upon writing 

z = r (� + i �) = r (cos e + i sin e ) = reie 

in terms of the modulus r = J x2 + y2 > 0 of the number z and its argument e 
indicated in Fig. 2.3 . 1 . For instance, the imaginary number i has modulus 1 and 
argument ]'( /2, so i = ei7r/2 • Similarly, -i = e37r/2 • Another consequence is the fact 
that the nonzero complex number z = reie has the two square roots 

(23) 

where .;r denotes (as usual for a positive real number) the positive square root of 
the modulus of z .  

Find a general soluti
�
n of ;(

4
) +  4y  = O. 

Solution The characteristic equation is 

and its four roots are ±J±2i . Since i = ei7r/2 and -i  = ei37r/2 , we find that 

and 

J -2i = (2ei37r/2) 1 /2 = ...fiei37r/4 = ...fi (cos 3; + i sin 3; ) = - 1  + i . 

Thus the four (distinct) roots of the characteristic equation are r = ±(± 1 +i ) .  These 
two pairs of complex conjugate roots, 1 ± i and - 1  ± i, give a general solution 

of the differential equation y(4) + 4y = O. • 
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Repeated Complex Roots 

Theorem 2 holds for repeated complex roots. If the conjugate pair a ± bi has mul
tiplicity k, then the corresponding part of the general solution has the form 

(A , + A2x + . . .  + Akxk- ' )e(a+bi )x + (B, + B2X + . . .  + Bkxk- ' )e(a-bi )x 
k- ' 

= L xP eax (Ci cos bx + di sin bx) . (24) 
p=O 

It can be shown that the 2k functions 

xPeax cos bx , xPeax sin bx , 0 � p � k - 1 

that appear in Eq. (24) are linearly independent. 

Find a general solution of (D2 + 6D + 1 3)2y = O. 

Solution By completing the square, we see that the characteristic equation 

Exa mple 7 

(r2 + 6r + 1 3)2 = [ (r + 3)2 + 4f = 0 

has as its roots the conjugate pair -3 ± 2i of multiplicity k = 2. Hence Eq. (24) 
gives the general solution 

y (x) = e-3x (c, cos 2x + d, sin 2x) + xe-3x (C2 cos 2x + d2 sin 2x) . • 

In applications we are seldom presented in advance with a factorization as 
convenient as the one in Example 6. Often the most difficult part of solving a homo
geneous linear equation is finding the roots of its characteristic equation. Example 
7 illustrates an approach that may succeed when a root of the characteristic equation 
can be found by inspection. 

" " 

The characteristic equation of the differential equation 

yC3) + y' _ l Oy = 0 

is the cubic equation 
r3 + r - 10 = O. 

By a standard theorem of elementary algebra, the only possible rational roots are 
the factors ± 1 ,  ±2, ±5, and ± 1 0  of the constant term 10. By trial and error (if not 
by inspection) we discover the root 2. The factor theorem of elementary algebra 
implies that r - 2 is a factor of r3 + r - 10, and division of the former into the latter 
produces as quotient the quadratic polynomial 

r2 + 2r + 5 = (r + 1 )2 + 4. 

The roots of this quotient are the complex conjugates -1 ± 2i . The three roots we 
have found now yield the general solution 

• 
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Example 8 The roots of the characteristic equation of a certain differential equation are 3, -5, 
0, 0, 0, 0, -5, 2 ± 3i , and 2 ± 3i . Write a general solution of this homogeneous 
differential equation. 

Solution The solution can be read directly from the list of roots . It is 

y (x) = CI + C2X + C3x2 + C4x3 + C5e
3x + C6e-5x + C7xe-5x 

+ e2x (cs cos 3x + C9 sin 3x) + xe2x (CIO cos 3x + CI I  sin 3x) .  • 

IIIfIJ Proble�s 

Find the general solutions of the differential equations in Prob
lems 1 through 20. 

1. y" - 4y = 0 
3. y" + 3y' - lOy = 0 
5. y" + 6y' + 9y = 0 
7. 4y" - 12y' + 9y = 0 
9. y" + 8y' + 25y = 0 

11 .  y (4) - 8y(3) + 16y" = 0 
12. y(4) - 3y(3) + 3y" - y' = 0 

2. 2y" - 3y' = 0 
4. 2y" - 7y' + 3y = 0 
6. y" + 5 y' + 5 y = 0 
8. y" - 6y' + 1 3y = 0 

10. 5y(4) + 3y(3) = 0 

13. 9y(3) + 12y" + 4y' = 0 14. y (4) + 3y" - 4y = 0 
15. y(4) - 8y" + 16y = 0 16. y(4) + 1 8y" + 8 1 y = 0 
17. 6y(4) + l l y" + 4y = 0 18. y(4) = 1 6y 
19. y(3) + y" - y' - y = 0 
20. y(4) + 2y(3) + 3y" + 2y' + y = 0 (Suggestion: Expand 

(r2 + r + 1 )2 .) 

Solve the initial value problems given in Problems 21 through 
26. 
21. y" - 4y' + 3y = 0; y eO) = 7, y' (O) = 1 1  
22. 9y" + 6y' + 4y = 0; y eO) = 3 , y ' (O) = 4 
23. y" - 6y' + 25y = 0; y eO) = 3 , y' (O) = 1 
24. 2y(3) - 3y" - 2y' = 0; y eO) = 1 ,  y' (O) = - 1 ,  y" (O) = 3 
25. 3y(3) + 2y" = 0; y eO) = - 1 ,  y' (O) = 0, y" (O) = 1 
26. y(3) + lOy" + 25y' = 0; y eO) = 3 , y' (O) = 4, y" (O) = 5 

Find general solutions of the equations in Problems 27 through 
32. First find a small integral root of the characteristic equa
tion by inspection; then factor by division. 
27. y(3) + 3y" - 4y = 0 
28. 2y(3) - y" - 5y' - 2y = 0 
29. y(3) + 27y = 0 
30. y(4) - y(3) + y" - 3y' - 6y = 0 
31. y(3) + 3y" + 4y' - 8y = 0 
32. y(4) + y(3) - 3y" - 5y' - 2y = 0 

In Problems 33 through 36, one solution of the differential 
equation is given. Find the general solution. 
33. y(3) + 3y" - 54y = 0; Y = e3x 
34. 3y(3) - 2y" + 12y' - 8y = 0; y = e2xf3 
35. 6y(4) + 5y(3) + 25y" + 20y' + 4y = 0; Y = cos 2x 
36. 9y(3) + l l y" + 4y' - 14y = 0; y = e-x sin x 

37. Find a function y (x) such that y (4) (X) = y(3) (X ) for all x 
and y eO) = 1 8, y' (O) = 12 , y" (O) = 1 3 , and y(3) (0) = 7. 

38. Solve the initial value problem 

y(3) _ 5y" + 100y' - 500y = 0; 
y eO) = 0, y' (0) = 10, y" (0) = 250 

given that Yl (x ) = e5x is  one particular solution of the 
differential equation. 

In Problems 39 through 42, find a linear homogeneous 
constant-coefficient equation with the given general solution. 
39. y (x) = (A + Bx + Cx2)e2x 
40. y (x) = Ae2x + B cos 2x + C sin 2x 
41 . y (x) = A cos 2x + B sin 2x + C cosh 2x + D sinh 2x 
42. y (x) = (A + Bx + Cx2 ) cos 2x + (D + Ex + Fx2 ) sin 2x 

Problems 43 through 47 pertain to the solution of differential 
equations with complex coefficients. 
43. (a) Use Euler's formula to show that every complex num

ber can be written in the form rei8 ,  where r � 0 and 
-n < e � n . (b) Express the numbers 4, -2, 3i , 
1 + i , and -1 + i

../3 
in  the form rei8 •  (c) The two square 

roots of rei8 are ±..jrei8/2 • Find the square roots of the 
numbers 2 - 2i

../3 
and -2 + 2i

../3
. 

44. Use the quadratic formula to solve the following equa
tions. Note in each case that the roots are not complex 
conjugates. 

(a) x2 + ix + 2 = 0 (b) x2 - 2ix + 3 = 0 
45. Find a general solution of y" - 2iy' + 3y = O. 
46. Find a general solution of y" - iy' + 6y = 0 
47. Find a general solution of y" = (-2 + 2i../3 ) y . 
48. Solve the initial value problem 

y (3) = y ; y eO) = 1 , y' (O) = y" (O) = O. 

(Suggestion: Impose the given initial conditions on the 
general solution 

y (x) = Aex + Be"x + CefJx , 



where ex and fJ are the complex conjugate roots of r3 - 1  = 

0, to discover that 

1 ( x
.J3) y (x) = "3 eX + 2e-x/2 cos -
2

-

is a solution.)  

49. Solve the initial value problem 

/4) = y(3) + y" + y' + 2y ; 

y eO) = /(0) = y" (O) = 0, 2y (3) (0) = 30. 

50. The differential equation 

y" + (sgn x)y = 0 

has the discontinuous coefficient function 

{+ 1 if x >  0, 
sgn x = 

- 1  if x < O. 

(25) 

Show that Eq. (25) nevertheless has two linearly indepen
dent solutions Yl (x) and Y2 (X ) defined for all x such that 

• Each satisfies Eq. (25) at each point x #- 0; 
• Each has a continuous derivative at x = 0; 
• Yl (0) = y� (O) = 1 and Y2 (0) = y; (0) = O. 

(Suggestion : Each Yi (x ) will be defined by one formula 
for x < 0 and by another for x � 0.) The graphs of these 
two solutions are shown in Fig. 2 .3 .2 .  

51.  
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FIGURE 2.3.2. Graphs of Yl (x) and 
Y2 (X) in Problem 50. 

According to Problem 5 1  in Section 2. 1 ,  the substitution 
v = In x (x > 0) transforms the second-order Euler equa
tion ax2y" + bxy' + cy = 0 to a constant-coefficient ho
mogeneous linear equation. Show similarly that this same 
substitution transforms the third-order Euler equation 

ax3ylll + bx2y" + cxy' + dy = 0 

(where a, b, c, d are constants) into the constant
coefficient equation 

�y �y � a- + (b - 3a)- + (c - b + 2a)- + dy = 0. dv3 dv2 dv 

Make the substitution v = In x of Problem 51 to find general 
solutions (for x > 0) of the Euler equations in Problems 52 
through 58. 
52. x2y" + xy' + 9y = 0 
53. x2y" + 7xy' + 25y = 0 
54. X3ylll + 6x2y" + 4xy' = 0 
55. X3ylll - x2y" + xy' = 0 
56. x3yl/l + 3x2y" + xy' = 0 
57. x3y'" - 3x2y" + xy' = 0 
58. X3ylll + 6x2y" + 7xy' + y = 0 

m 

nnnnnw n / ' �." ." ." .r:':St 
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The motion of a mass attached to a spring serves as a relatively simple example 
of the vibrations that occur in more complex mechanical systems. For many such 
systems, the analysis of these vibrations is a problem in the solution of linear differ
ential equations with constant coefficients . 

x 
I 
I 

Equilibrium 
position 

FIGURE 2.4.1 .  A mass
spring-dashpot system. 

We consider a body of mass m attached to one end of an ordinary spring that 
resists compression as well as stretching; the other end of the spring is attached to 
a fixed wall, as shown in Fig. 2.4. 1 .  Assume that the body rests on a frictionless 
horizontal plane, so that it can move only back and forth as the spring compresses 
and stretches. Denote by x the distance of the body from its equilibrium position
its position when the spring is unstretched. We take x > 0 when the spring is 
stretched, and thus x < 0 when it is compressed. 

According to Hooke's law, the restorative force Fs that the spring exerts on 
the mass is proportional to the distance x that the spring has been stretched or com
pressed. Because this is the same as the displacement x of the mass m from its 
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U nstretched 
spring 

Static 
equilibrium -'----111m 

y 
System 

in motion -'---1m 

FIGURE 2.4.2. A mass 
suspended vertically from a spring. 

equilibrium position, it follows that 

Fs = -kx . ( 1 )  

The positive constant o f  proportionality k i s  called the spring constant. Note that 
Fs and x have opposite signs: Fs < 0 when x > 0, Fs > 0 when x < o. 

Figure 2.4. 1 shows the mass attached to a dashpot-a device, like a shock 
absorber, that provides a force directed opposite to the instantaneous direction of 
motion of the mass m.  We assume the dashpot is so designed that this force FR is 
proportional to the velocity v = dxjdt of the mass; that is, 

dx FR = -ev = -e- . 
dt 

(2) 

The positive constant e is the damping constant of the dashpot. More generally, 
we may regard Eq. (2) as specifying frictional forces in our system (including air 
resistance to the motion of m). 

If, in addition to the forces Fs and FR , the mass is subjected to a given exter
nal force FE = F (t ) ,  then the total force acting on the mass is F = Fs + FR + FE . 
Using Newton's law 

d2x " F = ma = m- = mx 
dt2 ' 

we obtain the second-order linear differential equation 

mx" + ex' + kx = F(t) 

that governs the motion of the mass. 

(3) 

If there is no dashpot (and we ignore all frictional forces), then we set e = 0 
in Eq. (3) and call the motion undamped; it is damped motion if e > O. If there is 
no external force, we replace F(t) with 0 in Eq. (3). We refer to the motion as free 
in this case and forced in the case F(t)  :f:. O. Thus the homogeneous equation 

mx" + ex' + kx = 0 (4) 

describes free motion of a mass on a spring with dashpot but with no external forces 
applied. We will defer discussion of forced motion until Section 2.6. 

For an alternative example, we might attach the mass to the lower end of a 
spring that is suspended vertically from a fixed support, as in Fig.  2.4.2. In this case 
the weight W = mg of the mass would stretch the spring a distance So determined 
by Eq. ( 1 )  with Fs = - W and x = so .  That is, mg = kso , so that So = mgjk . This 
gives the static equilibrium position of the mass. If y denotes the displacement of 
the mass in motion, measured downward from its static eqUilibrium position, then 
we ask you to show in Problem 9 that y satisfies Eq. (3) ;  specifically, that 

my" + ey' + ky = F (t )  (5) 

if we include damping and external forces (meaning those other than gravity) . 



FIGURE 2.4.3. The simple 
pendulum. 
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The Simple Pendulum 

The importance of the differential equation that appears in Eqs. (3) and (5) stems 
from the fact that it describes the motion of many other simple mechanical systems. 
For example, a simple pendulum consists of a mass m swinging back and forth on 
the end of a string (or better, a massless rod) of length L, as shown in Fig. 2.4.3 .  
We may specify the position of the mass at time t by giving the counterclockwise 
angle e = e (t) that the string or rod makes with the vertical at time t . To analyze 
the motion of the mass m, we will apply the law of the conservation of mechanical 
energy, according to which the sum of the kinetic energy and the potential energy 
of m remains constant. 

The distance along the circular arc from ° to m is s = Le, so the velocity of 
the mass is v = dsjdt = L (dejdt) ,  and therefore its kinetic energy is 

T = 
�mv2 = 

�m 
(ds ) 2 

= 
�mL2 (de ) 2 

2 2 dt 2 dt 

We next choose as reference point the lowest point 0 reached by the mass (see 
Fig. 2.4.3) .  Then its potential energy V is the product of its weight mg and its 
vertical height h = L ( l  - cos e) above 0 ,  so 

V = mgL ( 1  - cos e) . 

The fact that the sum of T and V is a constant C therefore gives 

1 (de ) 2 
-mL2 - + mgL ( 1 - cos e) = c. 
2 dt 

We differentiate both sides of this identity with respect to t to obtain 

so 

(de ) (d2e ) . de 
mL2 - --2 + mgL (sm e) - = 0, 

dt dt dt 

(6) 

after removal of the common factor mL2 (dejdt) . This differential equation can 
be derived in a seemingly more elementary manner using the familiar second law 
F = ma of Newton (applied to tangential components of the acceleration of the 
mass and the force acting on it) . However, derivations of differential equations 
based on conservation of energy are often seen in more complex situations where 
Newton's law is not so directly applicable, and it may be instructive to see the energy 
method in a simpler application like the pendulum. 

Now recall that if e is small, then sin e � e (this approximation obtained by 
retaining just the first term in the Taylor series for sin e) . In fact, sin e and e agree 
to two decimal places when l e i  is at most nj1 2  (that is, 1 5 ° ) .  In a typical pendulum 
clock, for example, e would never exceed 1 5 ° .  It therefore seems reasonable to 
simplify our mathematical model of the simple pendulum by replacing sin e with () 
in Eq. (6). If we also insert a term ce' to account for the frictional resistance of the 
surrounding medium, the result is an equation in the form of Eq. (4) : 

e" + ce' + ke = 0, (7) 
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A 

FIGURE 2.4.4. The angle cx .  

where k = giL .  Note that this equation is independent of  the mass m on the end 
of the rod. We might, however, expect the effects of the discrepancy between e and 
sin e to accumulate over a period of time, so that Eq. (7) will probably not describe 
accurately the actual motion of the pendulum over a long period of time. 

In the remainder of this section, we first analyze free undamped motion and 
then free damped motion. 

Free Undamped Motion 

If we have only a mass on a spring, with neither damping nor external force, then 
Eq. (3) takes the simpler form 

It is convenient to define 

and rewrite Eq. (8) as 

The general solution of Eq. (8') is 

mx" + kx = O. 

" 2 0 X + wox = . 

x (t) = A COS WOt + B sin wot .  

(8) 

(9) 

(8') 

( 1 0) 

To analyze the motion described by this solution, we choose constants C and 
a so that 

A 
cos a = 

C ' 
and . B 

Sln a  = - , 
C 

( 1 1 )  

a s  indicated i n  Fig.  2.4.4. Note that, although tan a = B/A , the angle a i s  not given 
by the principal branch of the inverse tangent function (which gives values only in 
the interval -rrj2 < x < rrj2). Instead, a is the angle between 0 and 2rr whose 
cosine and sine have the signs given in ( 1 1 ) , where either A or B or both may be 
negative. Thus 

{ tan- I (B/A) 
a = rr + tan- I (B/A) 

2rr + tan- I (B/A) 

if A > 0, B > 0 (first quadrant), 
if A < 0 (second or third quadrant), 
if A > 0, B < 0 (fourth quadrant), 

where tan- l (B/A) is the angle in (-rrj2, rrj2) given by a calculator or computer. 
In any event, from ( 1 0) and ( 1 1 )  we get 

x (t)  = C (� cos wot + � sin wot) = C (cos a cos wot + sin a sin wot ) .  

With the aid of the cosine addition formula, we find that 

x (t) = C cos (wot - a) .  ( 1 2) 

Thus the mass oscillates to and from about its equilibrium position with 



x 
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1. Amplitude 

2. Circular frequency 

3. Phase angle 

C, 

Wa ,  and 
ot .  

Such motion i s  called simple harmonic motion. 
If time t is measured in seconds, the circular frequency Wa has dimensions of 

radians per second (rad/s). The period of the motion is the time required for the 
system to complete one full oscillation, so is given by 

seconds ; its frequency is 

2:n: 
T = 

Wa 

1 Wa 
v = - = -

T 2:n: 

( 13) 

( 14) 

in hertz (Hz), which measures the number of complete cycles per second. Note 
that frequency is measured in cycles per second, whereas circular frequency has the 
dimensions of radians per second. 

A typical graph of a simple harmonic position function 

x (t )  = C cos (wat - ot) = C cos (wa (t - :
a
)) = C cos(Wo (t - 8» 

FIGURE 2.4.5. Simple 
harmonic motion. is shown in Fig. 2.4.5 ,  where the geometric significance of the amplitude C, the 

period T ,  and the time lag 

Exa mple 1 

are indicated. 

ot 
8 = 

Wa 

If the initial position x (0) = Xa and initial velocity x' (0) = Va of the mass 
are given, we first determine the values of the coefficients A and B in Eq. ( 10), then 
find the amplitude C and phase angle ot by carrying out the transformation of x(t) 
to the form in Eq. ( 1 2), as indicated previously. 

A body �ith mass m = f kiiogram (kg) is attached to the end of a spring that is 
stretched 2 meters (m) by a force of 1 00 newtons (N). It is set in motion with initial 
position Xa = 1 (m) and initial velocity Va = -5 (m/s) .  (Note that these initial 
conditions indicate that the body is displaced to the right and is moving to the left 
at time t = 0.) Find the position function of the body as well as the amplitude, 
frequency, period of oscillation, and time lag of its motion. 

Solution The spring constant is k = ( 100 N)/(2 m) = 50 (N/m), so Eq. (8) yields �x" + 
50x = 0; that is, 

x" + 1 00x = O. 

Consequently, the circular frequency of the resulting simple harmonic motion of the 
body will be Wa = .J1 00 = 10  (radls) .  Hence it will oscillate with period 

and with frequency 

2:n: 2:n: 
T = - = - � 0.6283 s 

Wa 1 0  

1 Wa 1 0  
v = - = - = - � 1 .59 15  Hz. 

T 2:n: 2:n: 
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We now impose the initial conditions x (0) = I and x' (0) = -5 on the position 
function 

x (t ) = A cos l Ot + B sin l Ot with x' (t) = - l OA sin l Ot + l OB cos l Ot .  

I t  follows readily that A = 1 and B = - 4 ,  so  the position function of  the body is 

x (t) = cos l Ot - � sin l Ot .  

Hence its amplitude of motion i s  

To find the time lag, we  write 

../5 ( 2 1 ) ../5 
x (t ) = 2 

../5 
cos l Ot -

../5 
sin l Ot = 2 cos ( l Ot - a) ,  

where the phase angle a satisfies 

2 1 
cos a = 

../5 
> 0 and sin a = - - < O. 

../5 

Hence a is the fourth-quadrant angle 

( - 1 /../5) 
a = 2:n: + tan- 1 

2/../5 
= 2:n: - tan- l ( 4 )  ::::::: 5 . 8 1 95 ,  

and the time lag of  the motion i s  

a 
8 = - ::::::: 0.5820 s. 

(Va 

With the amplitude and approximate phase angle shown explicitly, the position func
tion of the body takes the form 

x (t ) ::::::: 4.J5 cos ( l Ot - 5 . 8 1 95) ,  

and its graph is shown in Fig. 2.4.6. • 



o 

FIGURE 2.4.7. Overdamped 
motion: x (t )  = C l erl t + C2er2 t with 
rl < 0 and r2 < O. Solution curves 
are graphed with the same initial 
position Xo and different initial 
velocities. 
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x 

I ·  T 

0.5 c 

.5 .5 2.5 

-0.5 

-1 

FIGURE 2.4.6. Graph of the position function 
x (t)  = C cos(wot - a) in Example I ,  with amplitude 
C � 1 . 1 1 8, period T � 0.628, and time lag 8 � 0.582. 

Free Damped Motion 

3 

With damping but no external force, the differential equation we have been studying 
takes the form mx" + cx' + kx = 0; alternatively, 

" 2 I 2 0 X + px + wox = , 

where Wo = Jk/m is the corresponding undamped circular frequency and 

C 
p = - > 0. 

2m 

The characteristic equation r2 + 2pr + w6 = 0 of Eq. ( 1 5) has roots 

rl , r2 = -p ± (p2 - (6) 1 /2 

that depend on the sign of 

2 2 c2 k c2 - 4km 
p - W = -- - - = o 4m2 m 4m2 

( 1 5) 

( 16) 

( 17) 

( 1 8) 

The critical damping Cer is given by Cer = J 4km, and we distinguish three cases, 
according as C > Cer ' C = Cen or C < Cer .  

OVERDAMPED CASE : C > Ccr (C2 > 4km) .  Because C i s  relatively large in  this 
case, we are dealing with a strong resistance in comparison with a relatively weak 
spring or a small mass . Then ( 1 7) gives distinct real roots rl and r2 , both of which 
are negative. The position function has the form 

( 19) 

It is easy to see that x (t) ---+ 0 as t ---+ +00 and that the body settles to its equilibrium 
position without any oscillations (Problem 29). Figure 2.4.7 shows some typical 
graphs of the position function for the overdamped case; we chose Xo a fixed positive 
number and illustrated the effects of changing the initial velocity Vo . In every case 
the would-be oscillations are damped out. 
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o 

FIGURE 2.4.8. Critically 
damped motion: 
x (t )  = (CI + c2t)e-pt with p > O. 
Solution curves are graphed with 
the same initial position Xo and 
different initial velocities .  

a 
,W I I 

" x = Ce-pt cos (W j/ - a) -/.. X - + Ce-pt 

'- - - .I  

o 

FIGURE 2.4.9. Underdamped 
oscillations :  
x(t) = Ce-pt COS(W l t  - a) .  

CRITICALLY DAMPED CASE : C = Ccr (c2 = 4km) .  In this case, ( 1 7) gives 
equal roots 'I = '2 = - P of the characteristic equation, so the general solution is 

(20) 

Because e-pt > 0 and CI + C2t has at most one positive zero, the body passes 
through its equilibrium position at most once, and it is clear that x (t) ---+ 0 as 
t ---+ +00. Some graphs of the motion in the critically damped case appear in 
Fig. 2.4.8, and they resemble those of the overdamped case (Fig. 2.4.7). In the 
critically damped case, the resistance of the dashpot is just large enough to damp 
out any oscillations, but even a slight reduction in resistance will bring us to the 
remaining case, the one that shows the most dramatic behavior. 

UNDERDAMPED CASE : C < Ccr (c2 < 4km) .  The characteristic equation now 
has two complex conjugate roots -p ± i J wB - p2 , and the general solution is 

(2 1 )  

where 

_ J 2 2 _ 
J 4km - c2 

WI - Wo - p - 2m 
(22) 

Using the cosine addition formula as in the derivation of Eq. ( 1 2) ,  we may rewrite 
Eq. (20) as 

so 

x (t) = Ce-pl COS (Wl t - a) (23) 

where 

A 
cos a = 

C ' and . B 
sm a = 

C . 

The solution in (22) represents exponentially damped oscillations of the body 
around its equilibrium position. The graph of x (t) lies between the "amplitude 
envelope" curves x = -Ce-pl and x = Ce-pl and touches them when wI t - a is 
an integral multiple of rr .  The motion is not actually periodic, but it is nevertheless 
useful to call WI its circular frequeucy (more properly, its pseudofrequency), TI = 
2rr/wl its pseudoperiod of oscillation, and Ce-pl its time-varying amplitude. 
Most of these quantities are shown in the typical graph of underdamped motion 
in Fig. 2.4.9. Note from Eq. (2 1 )  that in this case WI is less than the undamped 
circular frequency wo, so TI is larger than the period T of oscillation of the same 
mass without damping on the same spring. Thus the action of the dashpot has at 
least two effects: 

1. It exponentially damps the oscillations, in accord with the time-varying 
amplitude. 

2. It slows the motion; that is, the dashpot decreases the frequency of the motion. 
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As the following example illustrates, damping typically also delays the motion 

further-that is, increases the time lag-as compared with undamped motion with 
the same initial conditions . 

The mass and spring of Example 1 are now attached also to a dashpot that pro
vides 1 N of resistance for each meter per second of velocity. The mass is set in 
motion with the same initial position x (0) = 1 and initial velocity x' (O) = -5 as 
in Example 1 .  Now find the position function of the mass, its new frequency and 
pseudoperiod of motion, its new time lag, and the times of its first four passages 
through the initial position x = O. 

Solution Rather than memorizing the various formulas given in the preceding discussion, it is 
better practice in a particular case to set up the differential equation and then solve 
it directly. Recall that m = 1 and k = 50; we are now given c = 1 in mks units . 
Hence Eq. (4) is 1X" + x' + 50x = 0; that is, 

x" + 2x' + 100x = O. 

The characteristic equation r2 + 2r + 100 = (r + 1 ) 2 + 99 = 0 has roots ri o 

r2 = - 1  ± .J99 i ,  so the general solution is 

x (t )  = e-t (A cos ,J99 t + B sin ,J99 t ) . (24) 

Consequently, the new circular (pseudo)frequency is W I = .J99 � 9.9499 (as com
pared with W() = 1 0  in Example 1 ) . The new (pseudo)period and frequency are 

and 

211: 211: 
TI = - = Ini\ � 0.63 15  S 

WI '\f 99 

1 WI .J99 VI = - = - = -- � 1 .5836 Hz 
TI 211: 211: 

(as compared with T � 0.6283 < TI and V � 1 . 59 15  > V I in Example 1 ) .  
We now impose the initial conditions x (0) = 1 and x' (0) = -5 on the position 

function in (23) and the resulting velocity function 

x' (t) = _ e-t (A cos ,J99 t + B sin ,J99 t) + ,J99 e -t (-A sin ,J99 t + B cos .J99 t) . 

It follows that 

x (O) = A = 1 and x' (O) = -A + B,J99 = -5, 

whence we find that A = 1 and B = -4/.J99. Thus the new position function of 
the body is 

x (t )  = e -t (cos ,J99 t - � sin ,J99 t) . 
Hence its time-varying amplitude of motion is 
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We therefore write 

v'TIS ( � 4 ) x (t )  = Ini\ e-t 
� cos � t - � sin � t 

", 99 '" 1 1 5 '" 1 1 5 

{U5 = V 9ge-t 
cos (J99 t - a l ) , 

where the phase angle al satisfies 

� 
cos a l = � > 0 and 

'" 1 1 5 

Hence a l is the fourth-quadrant angle 

. 4 
sm al = --- < o. 

v'TIS 

( -4/v'TIS ) ( 4 ) al = 211: + tan- I � v'TIS = 211: - tan- I Ini\ ::::::: 5 .9009 , 
99/ 1 1 5 ", 99 

and the time lag of the motion is 

a l 8 1 = - ::::::: 0 .593 1 s 
WI 

(as compared with 8 ::::::: 0.5820 < 8 1 in Example 1 ) . With the time-varying am
plitude and approximate phase angle shown explicitly, the position function of the 
mass takes the form 

{U5 x (t )  ::::::: V 99 e-t 
cos (J99 t - 5 .9009) , (25) 

and its graph is the damped exponential that is shown in Fig. 2.4. 1 0  (in comparison 
with the undamped oscillations of Example 1 ) . 

x 

3 -

FIGURE 2.4.10. Graphs of the position function 
x (t)  = CJ e-t cos(wJ t - a l ) of Example 2 (damped 
oscillations), the position function x (t) = C cos (wot - a) of 
Example I (undamped oscillations), and the envelope curves 
x (t) = ±C1 e-t • 
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From (24) we see that the mass passes through its equilibrium position x = 0 
when COS (evl t - (¥I ) = 0, and thus when 

that is, when 

11: 

2 ' 
11: 

2 ' 
311: 

2 '  . . .  , 

We see similarly that the undamped mass of Example 1 passes through equilibrium 
when 

311: 
t = 80 - - , 

2evo 
11: 

80 - -2evo ' 
11: 

80 + - , 2evo 
311: 

80 + 
2evo ' 

The following table compares the first four values tl , t2 , t3 , t4 we calculate for the 
undamped and damped cases, respectively. 

n 1 2 3 4 

tn (undamped) 0. 1 1 07 0.4249 0.7390 1 .0532 

tn (damped) 0. 1 1 95 0.4352 0.7509 1 .0667 

Accordingly, in Fig. 2.4. 1 1  (where only the first three equilibrium passages are 
shown) we see the damped oscillations lagging slightly behind the undamped ones . 

• 
x 

x(t) = C cos (Wo t - a ) 

- I 

FIGURE 2.4.1 1 .  Graphs on the interval 0 :::: t :::: 0.8 
illustrating the additional delay associated with damping. 

1.  Determine the period and frequency of the simple har
monic motion of a 4-kg mass on the end of a spring with 
spring constant 1 6  N/m. 

2. Determine the period and frequency of the simple har
monic motion of a body of mass 0.75 kg on the end of 
a spring with spring constant 48 N/m. 

3. A mass of 3 kg is attached to the end of a spring that is 

stretched 20 cm by a force of 15 N. It is set in motion with 
initial position Xa = 0 and initial velocity Va = - 1 0 m/s. 
Find the amplitude, period, and frequency of the resulting 
motion. 

4. A body with mass 250 g is attached to the end of a spring 
that is stretched 25 cm by a force of 9 N. At time t = 0 
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the body is pulled 1 m to the right, stretching the spring, 
and set in motion with an initial velocity of 5 m/s to the 
left. (a) Find x (t) in the form C cos(wot - a) .  (b) Find 
the amplitude and period of motion of the body. 

In Problems 5 through 8, assume that the differential equation 
of a simple pendulum of length L is LO" + gO = 0, where 
g = G M / R2 is the gravitational acceleration at the location 
of the pendulum (at distance R from the center of the earth; M 
denotes the mass of the earth). 

5. Two pendulums are of lengths L J  and L2 and-when lo
cated at the respective distances RI and R2 from the center 
of the earth-have periods P I and P2 . Show that 

PI RI....;r; 

P2 
= 

R2
..;r;.· 

6. A certain pendulum keeps perfect time in Paris, where the 
radius of the earth is R = 3956 (mi). But this clock loses 
2 min 40 s per day at a location on the equator. Use the 
result of Problem 5 to find the amount of the equatorial 
bulge of the earth. 

7. A pendulum of length 100. 10  in. ,  located at a point at 
sea level where the radius of the earth is R = 3960 (mi), 
has the same period as does a pendulum of length 100.00 
in. atop a nearby mountain. Use the result of Problem 5 to 
find the height of the mountain. 

8. Most grandfather clocks have pendulums with adjustable 
lengths. One such clock loses 10 min per day when the 
length of its pendulum is 30 in. With what length pendu
lum will this clock keep perfect time? 

9. Derive Eq. (5) describing the motion of a mass attached to 
the bottom of a vertically suspended spring. (Suggestion : 
First denote by x (t) the displacement of the mass below 
the unstretched position of the spring; set up the differen
tial equation for x . Then substitute y = x - Xo in this 
differential equation.) 

10. Consider a floating cylindrical buoy with radius r , height 
h, and uniform density p � 0.5 (recall that the density 
of water is 1 g/cm3 ) .  The buoy is initially suspended at 
rest with its bottom at the top surface of the water and 
is released at time t = O. Thereafter it is acted on by 
two forces: a downward gravitational force equal to its 
weight mg = nr2hg and (by Archimedes' principle of 
buoyancy) an upward force equal to the weight nr2xg of 
water displaced, where x = x (t ) is the depth of the bot
tom of the buoy beneath the surface at time t (Fig. 2.4. 1 2) .  
Conclude that the buoy undergoes simple harmonic mo
tion around its equilibrium position Xe = ph with period 
p = 2n.J ph/g . Compute p and the amplitude of the mo
tion if p = 0.5 g/cm3 , h = 200 cm, and g = 980 cm/s2 . 

FIGURE 2.4.12. The buoy of Problem 10.  

11 .  A cylindrical buoy weighing 100 lb (thus of mass m 
3 . 1 25 slugs in ft-lb-s (fps) units) floats in water with its 
axis vertical (as in Problem 10) .  When depressed slightly 
and released, it oscillates up and down four times every 
1 0  s. Assume that friction is negligible. Find the radius of 
the buoy. 

12. Assume that the earth is a solid sphere of uniform density, 
with mass M and radius R = 3960 (mi). For a particle of 
mass m within the earth at distance r from the center of 
the earth, the gravitational force attracting m toward the 
center is Fr = -GMrm/r2 , where Mr is the mass of the 
part of the earth within a sphere of radius r . (a) Show that 
Fr = -GMmr/R3 • (b) Now suppose that a small hole is 
drilled straight through the center of the earth, thus con
necting two antipodal points on its surface. Let a particle 
of mass m be dropped at time t = 0 into this hole with ini
tial speed zero, and let r (t ) be its distance from the center 
of the earth at time t (Fig. 2.4. 1 3) .  Conclude from New
ton's second law and part (a) that r"(t) = -er(t) , where 
k2 = GM/R3 = giR o 

FIGURE 2.4.13. A mass m falling down 
a hole through the center of the earth 
(Problem 1 2) .  

(c) Take g = 32.2 ft/S2 , and conclude from part (b) that 
the particle undergoes simple harmonic motion back and 
forth between the ends of the hole, with a period of about 
84 min. (d) Look up (or derive) the period of a satellite 
that just skims the surface of the earth; compare with the 
result in part (c). How do you explain the coincidence? 
Or is it a coincidence? (e) With what speed (in miles 



13. 

14. 

per hour) does the particle pass through the center of the 
earth? (1) Look up (or derive) the orbital velocity of a 
satellite that just skims the surface of the earth; compare 
with the result in part (e). How do you explain the coinci
dence? Or is it a coincidence? 
Suppose that the mass in a mass-spring-dashpot system 
with m = 10, c = 9, and k = 2 is set in motion with 
x (O) = 0 and x' (O) = 5 . (a) Find the position func
tion x (t ) and show that its graph looks as indicated in 
Fig. 2.4. 14 . (b) Find how far the mass moves to the 
right before starting back toward the origin. 

5 r---.----.----.---� 
4 

3 

2 

O �---L--�--��--� 

- I  

- 2 0�---5�--�1�0--�1�5--�20 
FIGURE 2.4.14. The position function 
x (t ) of Problem 1 3 . 

Suppose that the mass i n  a mass-spring-dashpot system 
with m = 25 , c = 10, and k = 226 is set in motion 
with x (O) = 20 and x' (O) = 4 1 .  (a) Find the position 
function x (t ) and show that its graph looks as indicated in 
Fig. 2.4. 1 5 . (b) Find the pseudoperiod of the oscillations 
and the equations of the "envelope curves" that are dashed 
in the figure. 

20 
10 " 

'< 0 
- 1 0 

/ / - 20 / 

0 5 1 0 1 5  20 
FIGURE 2.4.15. The position function 
x (t) of Problem 14 . 

The remaining problems in this section deal with free damped 
motion. In Problems 15 through 21, a mass m is attached 
to both a spring (with given spring constant k) and a dash
pot (with given damping constant c). The mass is set in 
motion with initial position Xo and initial velocity Vo. Find 
the position function x (t) and determine whether the mo
tion is overdamped, critically damped, or under damped. If 
it is underdamped, write the position function in the form 
x(t) = C1 e-pt cOS(Wl t - a l ) . Also, find the undamped position 
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function u (t) = Co cos(wot - ao) that would result if the mass 
on the spring were set in motion with the same initial position 
and velocity, but with the dashpot disconnected (so c = 0). 
Finally, construct a figure that illustrates the effect of damping 
by comparing the graphs ofx (t) and u (t) . 
15. m = ! , c = 3 , k = 4; Xo = 2, Vo = 0 
16. m = 3, c = 30, k = 63 ; Xo = 2, Vo = 2 
17. m = I ,  c = 8, k = 16 ; Xo = 5, Vo = - 10 
18. m = 2, c = 12, k = 50; Xo = 0, Vo = -8 
19. m = 4, c = 20, k = 169 ; Xo = 4, Vo = 16 
20. m = 2, c = 16 , k = 40; Xo = 5, Vo = 4 
21.  m = I ,  c = 10, k = 125 ; Xo = 6, Vo = 50 
22. A 1 2-lb weight (mass m = 0.375 slugs in fps units) 

is attached both to a vertically suspended spring that it 
stretches 6 in. and to a dashpot that provides 3 Ib of re
sistance for every foot per second of velocity. (a) If the 
weight is pulled down I ft below its static equilibrium po
sition and then released from rest at time t = 0, find its po
sition function x (t ) . (b) Find the frequency, time-varying 
amplitude, and phase angle of the motion. 

23. This problem deals with a highly simplified model of a car 
of weight 3200 Ib (mass m = 100 slugs in fps units). As
sume that the suspension system acts like a single spring 
and its shock absorbers like a single dashpot, so that its 
vertical vibrations satisfy Eq. (4) with appropriate values 
of the coefficients . (a) Find the stiffness coefficient k 
of the spring if the car undergoes free vibrations at 80 cy
cles per minute (cycles/min) when its shock absorbers are 
disconnected. (b) With the shock absorbers connected, 
the car is set into vibration by driving it over a bump, and 
the resulting damped vibrations have a frequency of 78 
cycles/min. After how long will the time-varying ampli
tude be I % of its initial value? 

Problems 24 through 34 deal with a mass-spring-dashpot sys
tem having position function x (t) satisfying Eq. (4). We write 
Xo = x (O) and Vo = x' (O) and recall that p = c/(2m), 
w5 = kim, and wr = w5 - p2. The system is critically 
damped, overdamped, or under damped, as specified in each 
problem. 
24. (Critically damped) Show in this case that 

x (t) = (xo + vot + pxot)e-pt . 

25. (Critically damped) Deduce from Problem 24 that the 
mass passes through x = 0 at some instant t > 0 if and 
only if Xo and Vo + pXo have opposite signs. 

26. (Critically damped) Deduce from Problem 24 that x (t) has 
a local maximum or minimum at some instant t > 0 if and 
only if Vo and Vo + pXo have the same sign. 

27. (Overdamped) Show in this case that 

where r1 , r2 = -p ± J p2 - wB and y = (rl - r2)/2 > O. 
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28. (Overdamped) If  Xo = 0, deduce from Problem 27 that 

x (t ) = 
Vo e-pt sinh y t . 
Y 

29. (Overdamped) Prove that in this case the mass can pass 
through its equilibrium position x = 0 at most once. 

30. (Underdamped) Show that in this case 

_ ( Vo + pXo . ) x (t) = e pt xO COS W l t + 
WI 

sm wl t . 

31. (Underdamped) If the damping constant c is small in com
parison with 

.,/
8mk, apply the binomial series to show that 

WI � WO ( I - �) . 8mk 

32. (Underdamped) Show that the local maxima and minima 
of 

occur where 

tan(wl t - a) = _.!!.... . 
WI 

Conclude that t2 - t l = 2n/wl  if two consecutive maxima 
occur at times tl and t2 . 

33. (Underdamped) Let X I and X2 be two consecutive local 
maximum values of X (t) . Deduce from the result of Prob
lem 32 that 

In 
X I 

= 
2np 

X2 WI 

The constant � = 2n P/WI is called the logarithmic 
decrement of the oscillation. Note also that c = mWI �/n 
because p = c/(2m) . 

Note: The result of Problem 33 provides an accurate method 
for measuring the viscosity of a fluid, which is an important 
parameter in fluid dynamics but is not easy to measure directly. 
According to Stokes 's drag law, a spherical body of radius a 
moving at a (relatively slow) speed through a fluid of viscosity 
jl experiences a resistive force FR = 6n jlav. Thus if a spheri
cal mass on a spring is immersed in the fluid and set in motion, 
this drag resistance damps its oscillations with damping con
stant c = 6najl. Thefrequency WI and logarithmic decrement 
� of the oscillations can be measured by direct observation. 
The final formula in Problem 33 then gives c and hence the 
viscosity of the fluid. 

34. (Underdamped) A body weighing 100 Ib (mass m = 
3 . 1 25 slugs in fps units) is oscillating attached to a spring 
and a dashpot. Its first two maximum displacements of 
6.73 in. and 1 .46 in. are observed to occur at times 0.34 
s and 1 . 1 7 s ,  respectively. Compute the damping con
stant (in pound-seconds per foot) and spring constant (in 
pounds per foot) . 

Differential Equations and Determinism 
Given a mass m, a dashpot constant c, and a spring constant 
k, Theorem 2 of Section 2. 1 implies that the equation 

mx" + cx' + kx = 0 (26) 

has a unique solution for t ;?; 0 satisfying given initial condi
tions x (O) = Xo, x' (0) = Vo. Thus the future motion of an ideal 
mass-spring-dashpot system is completely determined by the 
differential equation and the initial conditions. Of course in 
a real physical system it is impossible to measure the param
eters m, c, and k precisely. Problems 35 through 38 explore 
the resulting uncertainty in predicting the future behavior of a 
physical system. 
35. Suppose that m = 1 ,  c = 2, and k = 1 in Eq. (26) . Show 

that the solution with x (O) = 0 and x' (O) = 1 is 

XI (t) = te-t . 

36. Suppose that m = 1 and c = 2 but k = 1 - 1O-2n . Show 
that the solution of Eq. (26) with x (O) = 0 and x' (O) = 1 
is 

X2 (t) = lOn e-t sinh lO-n t .  

37. Suppose that m = 1 and c = 2 but that k = 1 + 1O-2n . 
Show that the solution of Eq. (26) with x (O) = 0 and 
x' (O) = 1 is 

38. Whereas the graphs of x, (t) and X2 (t) resemble those 
shown in Figs . 2.4.7 and 2.4.8, the graph of X3 (t) exhibits 
damped oscillations like those illustrated in Fig. 2.4.9, but 
with a very long pseudoperiod. Nevertheless, show that 
for each fixed t > 0 it is true that 

lim X2 (t) = lim X3 (t) = x, (t ) . 
n�oo n�oo 

Conclude that on a given finite time interval the three solu
tions are in "practical" agreement if n is sufficiently large. 

_ Nonhomogel!�ous Eqt:J.ations and Undetermined Coefficients 

We learned in Section 2.3 how to solve homogeneous linear equations with constant 
coefficients, but we saw in Section 2.4 that an external force in a simple mechanical 
system contributes a nonhomogeneous term to its differential equation. The general 
nonhomogeneous nth-order linear equation with constant coefficients has the form 

( 1 )  
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By Theorem 5 of Section 2.2, a general solution of Eq. ( 1 )  has the form 

Y = Yc + YP (2) 
where the complementary function Yc (x) is a general solution of the associated ho
mogeneous equation 

(3) 

and yp (x) is a particular solution of Eq. ( 1 ) . Thus our remaining task is to find Yp . 
The method of undetermined coefficients is a straightforward way of doing 

this when the given function f(x) in Eq. ( 1 )  is sufficiently simple that we can make 
an intelligent guess as to the general form of Yp . For example, suppose that f (x ) 
is a polynomial of degree m .  Then, because the derivatives of a polynomial are 
themselves polynomials of lower degree, it is reasonable to suspect a particular 
solution 

yp (x) = Amxm + Am_ 1xm- ' + . . .  + A , x + Ao 
that is also a polynomial of degree m, but with as yet undetermined coefficients. We 
may, therefore, substitute this expression for Yp into Eq. ( 1 ) , and then-by equating 
coefficients of like powers of x on the two sides of the resulting equation-attempt 
to determine the coefficients Ao, A "  . . .  , Am so that YP will, indeed, be a particular 
solution of Eq. ( 1 ) . 

Similarly, suppose that 

f (x) = a cos kx + b sin kx . 

Then it is reasonable to expect a particular solution of the same form: 

yp (x) = A cos kx + B sin kx , 

a linear combination with undetermined coefficients A and B . The reason is that 
any derivative of such a linear combination of cos kx and sin kx has the same form. 
We may therefore substitute this form of Yp in Eq. ( 1 ) , and then-by equating co
efficients of cos kx and sin kx on both sides of the resulting equation-attempt to 
determine the coefficients A and B so that YP will, indeed, be a particular solution . 

It turns out that this approach does succeed whenever all the derivatives of 
f(x) have the same form as f(x) itself. Before describing the method in full gen
erality, we illustrate it with several preliminary examples. 

- - - -

Find a particular solution of Y" + 3 y' + 4 y = 3x + 2. 

Solution Here f(x) = 3x + 2 is a polynomial of degree 1, so our guess is that 

Yp (x)  = Ax + B . 

Then Y� = A and y; = 0, so yp will satisfy the differential equation provided that 

(0) + 3 (A) + 4(Ax + B) = 3x + 2, 

that is, 
(4A)x + (3A + 4B) = 3x + 2 
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Exa mple 2 

for all x .  This will be true if the x-terms and constant terms on the two sides of this 
equation agree. It therefore suffices for A and B to satisfy the two linear equations 
4A = 3 and 3A + 4B = 2 that we readily solve for A = � and B = - k . Thus we 
have found the particular solution 

• 

Find a particular solution of y" - 4y = 

Solution Any derivative of e3x is a constant mUltiple of e3x , so it is reasonable to try 

Exa mple 3 

Then y� = 9Ae3x , so the given differential equation will be satisfied provided that 

that is, SA = 2, so that A = � .  Thus our particular solution is yp (x) = �e3x . • 

Find a particular solution of 3 y" + y' - 2 y = 2 cos x .  

Solution A first guess might be yp (x) = A cos x, but the presence of y' on the left-hand side 
signals that we probably need a term involving sin x as well . So we try 

Exa m ple 4 

yp (x) = A cos x + B sin x ;  
y� (x) = -A sin x + B cos x ,  
y� (x) = -A cos x - B sin x .  

Then substitution of yP and its derivatives into the given differential equation yields 

3 ( -A cos x - B sin x) + ( -A sin x + B cos x) - 2(A cos x + B sin x) = 2 cos x ,  

that i s  (collecting coefficients on the left), 

(-SA + B) cos x + (-A - SB)  sin x = 2 cos x .  

This will be true for all x provided that the cosine and sine terms on the two sides 
of this equation agree. It therefore suffices for A and B to satisfy the two linear 
equations 

-SA + B = 2, 

-A - SB = 0 

with readily found solution A = - -f:J ,  B = � .  Hence a particular solution is 

( ) 5 I . 
yP X = - 13  cos x + 13 sm x .  • 

The following example, which superficially resembles Example 2, indicates 
that the method of undetermined coefficients is not always quite so simple as we 
have made it appear. 

Find a particular solution of y" - 4 y = 2e2x • 
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Solution If we try yp (x) = Ae2x , we find that 

Thus, no matter how A is chosen, Ae2x cannot satisfy the given nonhomogeneous 
equation. In fact, the preceding computation shows that Ae2x satisfies instead the 
associated homogeneous equation. Therefore, we should begin with a trial function 
yp (x) whose derivative involves both e2x and something else that can cancel upon 
substitution into the differential equation to leave the e2x term that we need. A 
reasonable guess is 

for which 

y� (x) = Ae2x + 2Axe2x and y; (x) = 4Ae2x + 4Axe2x . 

Substitution into the original differential equation yields 

(4Ae2x + 4Axe2x ) - 4(Axe2x ) = 2e2x • 

The terms involving xe2x obligingly cancel , leaving only 4Ae2x = 2e2x , so that 
A = ! .  Consequently, a particular solution is 

• 

The General Approach 

Our initial difficulty in Example 4 resulted from the fact that f (x) = 2e2x satisfies 
the associated homogeneous equation. Rule I ,  given shortly, tells what to do when 
we do not have this difficulty, and Rule 2 tells what to do when we do have it. 

The method of undetermined coefficients applies whenever the function f (x ) 
in Eq. ( 1 )  is a linear combination of (finite) products of functions of the following 
three types : 

1. A polynomial in x ;  
2. An exponential function erx ; 
3. cos kx or sin kx . 

Any such function-for example, 

f(x) = (3 - 4x2)e5x - 4x3 cos lOx ,  

(4) 

has the crucial property that only finitely many linearly independent functions ap
pear as terms (summands) in f(x) and its derivatives of all orders . In Rules 1 and 
2 we assume that Ly = f(x) is a nonhomogeneous linear equation with constant 
coefficients and that f (x) is a function of this kind. 

RULE 1 Method of U ndetermined Coefficients 

Suppose that no term appearing either in f (x) or in any of its derivatives satisfies 
the associated homogeneous equation Ly = O. Then take as a trial solution for 
YP a linear combination of all l inearly independent such terms and their deriva
tives. Then determine the coefficients by substitution of this trial solution into 
the nonhomogeneous equation Ly = f(x) .  
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Note that this rule is not a theorem requiring proof; it is merely a procedure to 
be followed in searching for a particular solution Yp . If we succeed in finding Yp ,  
then nothing more need be  said. (It can be  proved, however, that this procedure will 
always succeed under the conditions specified here.) 

In practice we check the supposition made in Rule 1 by first using the charac
teristic equation to find the complementary function Ye ,  and then write a list of all 
the terms appearing in f (x) and its successive derivatives. If none of the terms in 
this list duplicates a term in Ye ,  then we proceed with Rule 1 .  

Find a particular solution of 

y" + 4y = 3x3 . (5) 

Solution The (familiar) complementary solution of Eq. (5) is 

Exa m ple 6 

Ye (x )  = C, cos 2x + C2 sin 2x . 

The function f (x) = 3x3 and its derivatives are constant mUltiples of the linearly 
independent functions x3 , x2 , x ,  and 1 .  Because none of these appears in Ye ,  we try 

YP = Ax3 + Bx2 + Cx + D, 

Y� = 3Ax2 + 2Bx + C,  

Y; = 6Ax + 2B .  

Substitution in Eq. (5) gives 

Y; + 4yp = (6Ax + 2B) + 4(Ax3 + Bx2 + Cx + D) 

= 4Ax3 + 4Bx2 + (6A + 4C)x + (2B + D) = 3x3 • 

We equate coefficients of like powers of x in the last equation to get 

4A = 3 , 

6A + 4C = 0, 

4B = 0 , 
2B + D = 0 

with solution A = � ,  B = 0, C = - � , and D = O. Hence a particular solution of 
Eq. (5) is 

Solve the initial value problem 

( )  3 3 9 
YP X = 4X - gX .  

Y" - 3y' + 2y = 3e-x - l O cos 3x ; 
y (O) = 1 ,  y' (O) = 2. 

• 

(6) 

Solution The characteristic equation r2 - 3r + 2 = 0 has roots r = 1 and r = 2, so the 
complementary function is 
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The terms involved in f (x) = 3e-x - lO cos 3x and its derivatives are e-x , cos 3x , 
and sin 3x . Because none of these appears in Ye ,  we try 

Yp = Ae-x + B cos 3x + C sin 3x , 

Y� = -Ae-X - 3B sin 3x + 3C cos 3x , 

Y; = Ae-x - 9B cos 3x - 9C sin 3x . 

After we substitute these expressions into the differential equation in (6) and collect 
coefficients , we get 

Y; - 3y� + 2yp = 6Ae-x + (-7B - 9C) cos 3x + (9B - 7C) sin 3x 
= 3e-x - 1 0 cos 3x . 

We equate the coefficients of the terms involving e-x , those involving cos 3x , and 
those involving sin 3x. The result is the system 

6A = 3 ,  
-7B - 9C = - 10, 

9B - 7C = 0 

with solution A = 1 ,  B = f:" and C = -& .  This gives the particular solution 

( )  [ -x 7 3 9 ·  3 Yp x = "2e + 13 cos x + T3 sm x ,  

which, however, does not have the required initial values i n  (6). 
To satisfy those initial conditions, we begin with the general solution 

y (x)  = Ye (x) + Yp (x) 

x 2x [ -x 7 3 9 ·  3 = c[ e + C2e + "2e + 13 cos x + T3 sm x ,  

with derivative 

The initial conditions in (6) lead to the equations 

y (O) = c[ + C2 + 1 + f:, = 1 ,  

Y' (0) = c[ + 2C2 - 1 + N = 2 

with solution c [  = - 1 ,  C2 = -& .  The desired particular solution is therefore 

( ) [ x + 6 2x + [ -x + 7 3 + 9 
. 3 Y x = - "2e T3e "2 e 13 cos x 13 sm x .  

Find the general form of a particular solution of 

• 

(7) 
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Solution The characteristic equation r3 + 9r = ° has roots r = 0, r = -3i ,  and r = 3i . So 
the complementary function is 

The derivatives of the right-hand side in Eq. (7) involve the terms 

cos x ,  sin x , x cos x ,  x sin x ,  
e2x , xe2x , and X2e2x . 

Because there is no duplication with the terms of the complementary function, the 
trial solution takes the form 

Yp (x)  = A cos x + B sin x + ex cos x + Dx sin x + Ee2x + Fxe2x + Gx2e2x • 

Upon substituting YP in Eq. (7) and equating coefficients of like terms, we get seven 
equations determining the seven coefficients A, B, C, D, E, F, and G. • 

The Case of Duplication 

Now we tum our attention to the situation in which Rule 1 does not apply : Some of 
the terms involved in f(x) and its derivatives satisfy the associated homogeneous 
equation. For instance, suppose that we want to find a particular solution of the 
differential equation 

(8) 

Proceeding as in Rule 1 ,  our first guess would be 

(9) 

This form of Yp (x) will not be adequate because the complementary function of 
Eq. (8) is 

( 1 0) 

so substitution of (9) in the left-hand side of (8) would yield zero rather than 
(2x - 3)erx • 

To see how to amend our first guess, we observe that 

by Eq. ( 1 3) of Section 2.3 . If y (x) is any solution of Eq. (8) and we apply the 
operator (D - r)2 to both sides, we see that y (x) is also a solution of the equation 
(D - r)5 y = 0. The general solution of this homogeneous equation can be written 
as 

Thus every solution of our original equation in (8) is the sum of a complementary 
function and a particular solution of the form 

( 1 1 )  
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Note that the right-hand side in Eq. ( 1 1 )  can be obtained by mUltiplying each term 
of our first guess in (9) by the least positive integral power of x (in this case, x3 ) 
that suffices to eliminate duplication between the terms of the resulting trial solution 
yp (x) and the complementary function Yc (x ) given in ( 1 0) . This procedure succeeds 
in the general case. 

To simplify the general statement of Rule 2, we observe that to find a particular 
solution of the nonhomogeneous linear differential equation 

Ly = h (x) + h(x) ,  ( 12) 

it suffices to find separately particular solutions Y, (x) and Y2 (x ) of the two equa
tions 

Ly = h (x ) and Ly = h(x) ,  

respectively. For linearity then gives 

L[Y, + Y2] = LYI + LY2 = I, (x) + h(x) ,  

( 1 3) 

and therefore YP = YI + Y2 is a particular solution of Eq. ( 1 2) . (This is a type of 
"superposition principle" for nonhomogeneous linear equations . )  

Now our problem is to find a particular solution of the equation Ly = I(x) ,  
where I (x) is a linear combination of products of the elementary functions listed in 
(4) . Thus I (x) can be written as a sum of terms each of the form 

( 14) 

where Pm (x) is a polynomial in x of degree m .  Note that any derivative of such 
a term is of the same form but with both sines and cosines appearing. The proce
dure by which we arrived earlier at the particular solution in ( 1 1 )  of Eq. (8) can be 
generalized to show that the following procedure is always successful. 

RULE 2 Method of Undetermined Coefficients 

If the function I(x) is of either form in ( 1 4) ,  take as the trial solution 

yp (x) = xS [(Ao + A lx + A2X2 + . . .  + Amxm)erX cos kx 
+ (Bo + B,x + B2X2 + . . .  + Bmxm)erX sin kx] ,  ( 1 5) 

where s is the smallest nonnegative integer such that such that no term in YP du
plicates a term in the complementary function Yc . Then determine the coefficients 
in Eq. ( 1 5) by substituting YP into the nonhomogeneous equation. 

In practice we seldom need to deal with a function I (x ) exhibiting the full 
generality in ( 14) . The table in Fig. 2.5 . 1 lists the form of yp in various common 
cases, corresponding to the possibilities m = 0, r = 0, and k = O. 

On the other hand, it is common to have 

I (x ) = h (x) + h(x) ,  

where II (x) and h (x) are different functions of  the sort listed in  the table in 
Fig. 2.5 . 1 . In this event we take as yp the sum of the trial solutions for II (x) and 
h(x) ,  choosing s separately for each part to eliminate duplication with the comple
mentary function. This procedure is illustrated in Examples 8 through 10. 
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Exa mple 8 

Pm = bo + btx + b2x2 + . . .  + bmxm 

a cos kx + b sin kx 

e'X (a cos kx + b sin kx) 

Pm (x)e'X 

Pm (x) (a cos kx + b sin kx) 

xS (Ao + A t x + A2X2 + . . .  + Amxm ) 

xS (A cos kx + B sin kx ) 

xS e'X (A cos kx + B sin kx ) 

xS (Ao + A t x + A2X2 + . . .  + Amxm )erx 

xS [ (Ao + A t x  + . . .  + Amxm ) cos kx 

+ (Bo + B tx  + . . .  + Bmxm ) sin kx ] 

FIGURE 2.5.1 .  Substitutions in the method of undetermined coefficients. 

Find a particular solution of 

( 1 6) 

Solution The characteristic equation r3 + r2 = 0 has roots r] = r2 = 0 and r3 = - 1 ,  so the 
complementary function is 

As a first step toward our particular solution, we form the sum 

The part AeX corresponding to 3ex does not duplicate any part of the complemen
tary function, but the part B + Cx + Dx2 must be multiplied by x2 to eliminate 
duplication. Hence we take 

Yp = Aex + Bx2 + Cx3 + Dx4 , 

Y� = Aex + 2Bx + 3Cx2 + 4Dx3 , 

Y; = Aex + 2B + 6Cx + 1 2Dx2 , and 

y�3) = Aex + 6C + 24Dx . 

Substitution of these derivatives in Eq. ( 1 6) yields 

2Aex + (2B + 6C) + (6C + 24D)x + 1 2Dx2 = 3ex + 4x2 . 

The system of equations 

2A = 3 , 
6C + 24D = 0, 

2B + 6C = 0, 

1 2D = 4  

has the solution A = � ,  B = 4, C = -1 ,  and D = t .  Hence the desired particular 
solution is 

• 
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Determine the appropriate form for a particular solution of 

y" + 6y' + 1 3y = e-3x cos 2x . 

Solution The characteristic equation r2 + 6r + 13 = 0 has roots -3 ± 2i , so the complemen
tary function is 

Exa mple 1 0  

yc (x )  = e-3x (C l cos 2x + C2 sin 2x) .  

This i s  the same form as a first attempt e-3x ( A  cos 2x + B sin 2x) at a particular 
solution, so we must multiply by x to eliminate duplication. Hence we would take 

yp (x ) = e-3x (Ax cos 2x + Bx sin 2x) .  

___ ,� ___ �u , _ _  �� _ _ __ • __ _ • _ N  _ ___ _ • _ _  . _  ¥ _  • _ _  u _ _  • __ ___ � __ u� _ _ _  .�._. • ••  _ . . . _. _ __ _  v _ __ 

• 

Determine the appropriate form for a particular solution of the fifth-order equation 

Solution The characteristic equation (r - 2)3 (r2 + 9) = 0 has roots r = 2, 2, 2, 3i, and -3i , 
so the complementary function is 

As a first step toward the form of a particular solution, we examine the sum 

[(A + Bx + Cx2)e2x ] + [ (D + Ex) cos 3x + (F + Gx) sin 3x] .  

To eliminate duplication with terms of  Yc (x ) ,  the first part-corresponding to x2e2x_ 
must be multiplied by x3 , and the second part--corresponding to x sin 3x-must be 
multiplied by x .  Hence we would take 

Variation of Parameters 

Finally, let us point out the kind of situation in which the method of undetermined 
coefficients cannot be used. Consider, for example, the equation 

y" + y = tan x ,  ( 17) 

which at first glance may appear similar to those considered in the preceding ex
amples . Not so; the function f (x) = tan x has infinitely many linearly independent 
derivatives 

sec2 x ,  2 sec2 x tan x ,  4 sec2 x tan2 x + 2 sec4 x ,  

Therefore, we do not have available a finite linear combination to use as a trial 
solution. 
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We discuss here the method of variation of parameters, which-in principle 
(that is, if the integrals that appear can be evaluated)-can always be used to find a 
particular solution of the nonhomogeneous linear differential equation 

yen) + Pn- I (x)y <n- I ) + . . .  + P I (x)y' + Po (x)y = f(x ) ,  ( 1 8) 

provided that we already know the general solution 

Yc = C I YI + C2Y2 + . . .  + CnYn ( 1 9) 

of the associated homogeneous equation 

y en) + Pn- I (x)y <n- I ) + . . .  + PI (x)y' + Po (x)y = o. (20) 

Here, in brief, is the basic idea of the method of variation of parameters . Sup
pose that we replace the constants, or parameters, C I , C2 , . . .  , Cn in the complemen
tary function in Eq. ( 1 9) with variables : functions U t .  U2 , . . .  , Un of x . We ask 
whether it is possible to choose these functions in such a way that the combination 

is a particular solution of the nonhomogeneous equation in ( 1 8) .  It turns out that 
this is always possible. 

The method is essentially the same for all orders n � 2, but we will describe 
it in detail only for the case n = 2. So we begin with the second-order nonhomoge
neous equation 

L [y] = y" + P (x)y' + Q(x)y = f(x) (22) 

with complementary function 

(23) 

on some open interval I where the functions P and Q are continuous. We want to 
find functions U I and U2 such that 

(24) 

is a particular solution of Eq. (22) . 
One condition on the two functions U I and U2 is that L [yp ] = f(x) .  Because 

two conditions are required to determine two functions, we are free to impose an 
additional condition of our choice. We will do so in a way that simplifies the com
putations as much as possible. But first, to impose the condition L [yp ] = f(x) ,  we 
must compute the derivatives y� and y� . The product rule gives 

To avoid the appearance of the second derivatives u� and u� ,  the additional condition 
that we now impose is that the second sum here must vanish: 

(25) 
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Then 

Y� = U I Y� + U2Y� ' 
and the product rule gives 

II ( " ") ( " " ) Yp = U I Yl + U2Y2 + U 1 Y l + U2Y2 . 
But both Yl and Y2 satisfy the homogeneous equation 

y" + PY' + Qy = 0 

associated with the nonhomogeneous equation in (22), so 

for i = 1 , 2 . It therefore follows from Eq. (27) that 

In view of Eqs. (24) and (26) , this means that 

hence 

II ( " " ) p ' Q . Yp = u 1 Y l + u2Y2 - Yp - Yp , 

L [ ] " " Yp = u 1 Yl + u2Y2 · 

(26) 

(27) 

(28) 

(29) 

The requirement that Yp satisfy the nonhomogeneous equation in (22)-that is, that 
L [yp ] = J(x)-therefore implies that 

(30) 

Finally, Eqs. (25) and (30) determine the functions U l and U2 that we need. 
Collecting these equations, we obtain a system 

(3 1 )  

of  two linear equations i n  the two derivatives u� and u; . Note that the detenninant 
of coefficients in (3 1 )  is simply the Wronskian W(Yl , Y2) . Once we have solved 
the equations in (3 1 )  for the derivatives u� and u; , we integrate each to obtain the 
functions u l and U2 such that 

(32) 

is the desired particular solution of Eq. (22). In Problem 63 we ask you to carry 
out this process explicitly and thereby verify the fonnula for Yp (x) in the following 
theorem. 
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Exa mple 1 1  

THEOREM 1 Variation of Parameters 

If the nonhomogeneous equation y" + P (x)Y' + Q (x)y = f (x) has comple
mentary function Yc (x) = Cl YI (x) + C2Y2 (X) , then a particular solution is given 
by ( ) - - ( ) f Y2 (x)f (x) d + ( ) f Yl (x)f (x) 

d Yp x - Yl x x Y2 X x ,  
W(x)  W(x)  

(33) 

where W = W (Yl , Y2) is the Wronskian of the two independent solutions Yl and 
Y2 of the associated homogeneous equation . 

. "_... ".... ""- � •...•.... _... ..-.. . � - -

Find a particular solution of the equation Y" + Y = tan x .  

Solution The complementary function is Yc (x) = Cl cos x + C2 sin x ,  and we could simply 
substitute directly in Eq. (33) .  But it is more instructive to set up the equations in 
(3 1 )  and solve for u � and u; , so we begin with 

Yl = cos x ,  
yi = - sin x ,  

Y2 = sin x ,  
y� = cos x .  

Hence the equations in (3 1 )  are 

(u �Hcos x)  + (u;Hsin x )  = 0, 

(u �H- sin x )  + (u;Hcos x) = tan x .  

We easily solve these equations for 

Hence we take 

, . sin2 x 
u l = - sm x tan x = - -- = cos x - sec x ,  

cos x 

u; = cos x tan x = sin x .  

U l = f (cos x - sec x )  dx = sin x - In I sec x + tan x l  

and 
U2 = f sin x dx = - cos x .  

(Do you see why we choose the constants of integration to be zero?) Thus our 
particular solution is 

Yp (x) = U l (X )Yl (X) + U2 (X)Y2 (X) 
= (sin x - In I sec x + tan x I )  cos x + (- cos x Hsin x ) ;  

that is , 

Yp (x) = - (cos x)  In I sec x + tan x l . • 



2.5 Nonhomogeneous Equations and U ndetermined Coefficients 1 6 1 

In Problems I through 20, find a particular solution yp of the 
given equation. In all these problems, primes denote deriva
tives with respect to x.  

1.  y" + 1 6y = e3x 2. y" - y' - 2y = 3x + 4 
3. y" - y' - 6y = 2 sin 3x 4. 4y" + 4y' + y = 3xex 
5. y" + y' + y = sin2 x 6. 2y" + 4y' + 7y = x2 
7. y" - 4y = sinh x 8. y" - 4y = cosh 2x 
9. y" + 2y' - 3y = I + xeX 

10. y" + 9y = 2 cos 3x + 3 sin 3x 
11 .  y(3) + 4y' = 3x - I 12. y(3) + y' = 2 - sin x 
13. y" + 2y' + 5y = eX sin x 14. y(4) - 2y" + y = xeX 
15. y(5) + 5y(4) - y = 1 7  16. y" + 9y = 2x2e3x + 5 
17. y" + y = sin x + x cos x 
18. y(4) - 5y" + 4y = eX - xe2x 
19. y(5) + 2y(3) + 2y" = 3x2 - I 
20. y(3) - y = eX + 7 

In Problems 21 through 30, set up the appropriate form of a 
particular solution yp, but do not determine the values of the 
coefficients. 
21.  y" - 2y' + 2y = eX sin x 
22. y(5) - y(3) = eX + 2x2 - 5 
23. y" + 4 y = 3x cos 2x 
24. y(3) - y" - 1 2y' = x - 2xe-3x 
25. y" + 3y' + 2y = x (e-X - e-2x ) 
26. y" - 6y' + 1 3y = xe3x sin 2x 
27. y(4) + 5y" + 4y = sin x + cos 2x 
28. y(4) + 9y" = (x2 + I )  sin 3x 
29. (D - 1 )3 (D2 - 4) y = xeX + e2x + e-2x 
30. y(4) - 2y" + y = x2 cos x 

Solve the initial value problems in Problems 31 through 40. 
31. y" + 4y = 2x ; y (O) = I ,  y' (O) = 2 
32. y" + 3y' + 2y = eX ;  y (O) = 0, y' (O) = 3 
33. y" + 9y = sin 2x ; y (O) = I ,  y' (O) = 0 
34. y" + y = cos x ;  y (O) = I ,  y' (O) = - I  
35. y" - 2y' + 2y = x + I ; y (O) = 3 ,  y' (O) = 0 
36. y(4) - 4y" = x2 ; y (O) = y' (O) = I ,  y"(O) = y(3) (O) = - I  
37. y(3) - 2y" + y' = I + xex ; y (O) = y' (O) = 0, y"(O) = I 
38. y" + 2y' + 2y = sin 3x ; y (O) = 2, y' (O) = 0 
39. y(3) + y" = x + e-x ; y (O) = I ,  y' (O) = 0, y" (O) = I 
40. y(4) - Y = 5 ; y (O) = y' (O) = y" (O) = y(3l (O) = 0 
41. Find a particular solution of the equation 

y(4) _ y(3) _ y" _ y' _ 2y = 8x5 . 

42. Find the solution of the initial value problem consisting 
of the differential equation of Problem 41 and the initial 
conditions 

y (O) = y' (O) = y" (O) = y<3) (0) = O. 

43. (a) Write 

cos 3x + i sin 3x = e3ix = (cos x + i sin x) 3 

by Euler's formula, expand, and equate real and imag
inary parts to derive the identities 

cos3 x = � cos x + ± cos 3x , 

sin3 x = � sin x - ± sin 3x . 

(b) Use the result of part (a) to find a general solution of 

y" + 4 y = cos3 x .  

Use trigonometric identities to find general solutions of the 
equations in Problems 44 through 46. 
44. y" + y' + y = sin x sin 3x 

45. y" + 9y = sin4 x 

46. y" + y = X cos3 X 

In Problems 47 through 56, use the method of variation ofpa
rameters to find a particular solution of the given differential 
equation. 
47. y" + 3y' + 2y = 4eX 

49. y" - 4y' + 4y = 2e2x 

48. y" - 2y' - 8y = 3e-2x 
50. y" - 4y = sinh 2x 

51.  y" + 4y = cos 3x 52. y" + 9y = sin 3x 

53. y" + 9y = 2 sec 3x 54. y" + y = csc2 x 

55. y" + 4y = sin2 x 56. y" - 4y = xex 

57. You can verify by substitution that Yc = C1 X + C2X- 1 is a 
complementary function for the nonhomogeneous second
order equation 

But before applying the method of variation of parame
ters , you must first divide this equation by its leading co
efficient x2 to rewrite it in the standard form 

" 
I , I 

3 Y + -y - - y = 72x . 
x x2 

Thus f (x) = 72x3 in Eq. (22). Now proceed to solve the 
equations in (3 1 )  and thereby derive the particular solution 
YP = 3x5 • 

In Problems 58 through 62, a nonhomogeneous second-order 
linear equation and a complementary function Yc are given. 
Apply the method of Problem 57 to find a particular solution 
of the equation. 
58. x2y" - 4xy' + 6y = x3 ; Yc = C 1 X2 + C2x3 
59. x2y" - 3xy' + 4y = X4 ; Yc = x2 (C l + c2 ln x)  

60. 4x2y" - 4xy' + 3y = 8x4/3 ; Yc  = C 1 X + C2X3/4 
61.  x2y" + xy' + y = In x ;  Yc = C l cos(ln x)  + C2 sin(ln x) 

62. (x2 - I )y" - 2xy' + 2y = x2 - I ; Yc = C 1X + C2 ( l + x2) 

63. Carry out the solution process indicated in the text to 
derive the variation of parameters formula in (33) from 
Eqs. (3 1 )  and (32). 

64. Apply the variation of parameters formula in (33) to find 
the particular solution YP (x) = -x cos x of the nonhomo
geneous equation y" + y = 2 sin x .  
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Forced Oscillations and Resonance 

Equilibrium 

FIGURE 2.6.1.  The cart
with-flywheel system. 

In Section 2.4 we derived the differential equation 

mx" + cx' + kx = F(t) ( 1 )  

that governs the one-dimensional motion of  a mass m that is attached to a spring 
(with constant k) and a dashpot (with constant c) and is also acted on by an external 
force F(t ) .  Machines with rotating components commonly involve mass-spring 
systems (or their equivalents) in which the external force is simple harmonic: 

F(t) = Fo cos wt or F(t) = Fo sin wt , (2) 

where the constant Fo is the amplitude of the periodic force and w is its circular 
frequency. 

For an example of how a rotating machine component can provide a sim
ple harmonic force, consider the cart with a rotating vertical flywheel shown in 
Fig. 2.6. 1 .  The cart has mass m - mo, not including the flywheel of mass mo.  The 
centroid of the flywheel is off center at a distance a from its center, and its angular 
speed is w radians per second. The cart is attached to a spring (with constant k) 
as shown. Assume that the centroid of the cart itself is directly beneath the center 
of the flywheel, and denote by x (t) its displacement from its equilibrium position 
(where the spring is unstretched). Figure 2.6. 1 helps us to see that the displacement 
x of the centroid of the combined cart plus flywheel is given by 

_ (m - mo)x + mo(x + a cos wt) moa x = = x + -- cos wt . 
m m 

Let us ignore friction and apply Newton's second law mx" = -kx, because the 
force exerted by the spring is -kx . We substitute for x in the last equation to obtain 

mx" - moaw2 cos wt = -kx ; 

that is , 
mx" + kx = moaw2 cos wt . (3) 

Thus the cart with its rotating flywheel acts like a mass on a spring under the in
fluence of a simple harmonic external force with amplitude Fo = moaw2 • Such a 
system is a reasonable model of a front-loading washing machine with the clothes 
being washed loaded off center. This illustrates the practical importance of analyz
ing solutions of Eq. ( 1 )  with external forces as in (2). 

Undamped Forced Oscillations 

To study undamped oscillations under the influence of the external force F(t) = 
Fo cos wt, we set c = 0 in Eq. ( 1 ) , and thereby begin with the equation 

mx" + kx = Fo cos wt (4) 

whose complementary function is Xc = CI cos wot + C2 sin wot .  Here 

wo = /f 
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(as in Eq. (9) of Section 2 .4) is the (circular) natnral frequency of the mass-spring 
system. The fact that the angle wot is measured in (dimensionless) radians reminds 
us that if t is measured in seconds (s), then Wo is measured in radians per second
that is , in inverse seconds (S- I ) . Also recall from Eq. ( 14) in Section 2.4 that di
vision of a circular frequency W by the number 2rr of radians in a cycle gives the 
corresponding (ordinary) frequency v = w/2rr in Hz (hertz = cycles per second). 

Let us assume initially that the external and natural frequencies are unequal: 
W 'I Wo o We substitute xp = A cos wt in Eq. (4) to find a particular solution. (No 
sine term is needed in xp because there is no term involving x' on the left-hand side 
in Eq. (4) . )  This gives 

so 

and thus 

-mw2 A cos wt + kA cos wt = Fo cos wt, 

Fo 
A = -,------;:k - mw2 

Fo/m 
xp (t) = 2 2 cos wt . 

Wo - w 

Therefore, the general solution x = Xc + X p is given by 

. Fo/m 
x (t) = Cj COs wot + C2 sm wot + 2 2 cos wt , 

Wo - w  

(5) 

(6) 

(7) 

where the constants Cl and C2 are determined by the initial values x (O) and X' (O) . 
Equivalently, as in Eq. ( 1 2) of Section 2.4, we can rewrite Eq. (7) as 

Fo/m 
x (t) = C cos(wot - ex) + 2 2 cos wt , 

Wo - w  
(8) 

so we see that the resulting motion is a superposition of two oscillations, one with 
natural circular frequency wo , the other with the frequency w of the external force. 

__ � ___ u n n .  on _ u _ . n h h _� _n �  _ __ _  n _ _  � _ n� h_ n n u  _n � __ _ n h  _� ___ h _ _  h h  n _ _  . U h  n .  N , .... _ . _  

Suppose that m = 1 ,  k = 9, Fo = 80, and w = 5 ,  so the differential equation in (4) 
is 

x" + 9x = 80 cos 5t . 
Find x (t) if x (O) = X' (O) = O. 

Solution Here the natural frequency Wo = 3 and the frequency w = 5 of the external force 
are unequal, as in the preceding discussion. First we substitute x p = A cos 5t in 
the differential equation and find that -25A + 9A = 80, so that A = -5 . Thus a 
particular solution is 

xp (t) = -5 cos 5t . 
The complementary function is Xc = Cl cos 3t + C2 sin 3t ,  so the general solution of 
the given nonhomogeneous equation is 

x (t) = C j  cos 3t + C2 sin 3t - 5 cos 5t ,  

with derivative 

x' (t) = -3cj sin 3t + 3C2 cos 3t + 25 sin 5t .  
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The initial conditions x (O) = 0 and x'(O) = 0 now yield Cl = 5 and C2 = 0, so the 
desired particular solution is 

x (t) = 5 cos 3t - 5 cos 5t . 

As indicated in Fig. 2 .6 .2 , the period of x (t )  is the least common multiple 2rr of the 
periods 2rr /3 and 2rr /5 of the two cosine terms. • 

- 1 5 Beats 
O :n:  2:n: 3:n: 4:n: 5:n: 6:n: 

FIGURE 2.6.2. The response 
x(t) = 5 cos 3t - 5 cos 5t in 
Example 1 .  

Example 2 

x = sin 5t 
1 .0 

0.5 I 

� 0.0 HltfftttlilHttlttlfffiHttlttuffifttttlfflffiHHfll 

- 0.5 

- 1 .0 \ / ' 
x = sin 5t sin SOt 

- I. 5 '::--=-'"="----:-'-::--:-'-:---=-'"::----c:"-::-__=_'"=' 
0.0 0.5 1 .0 1 .5 2 .0 2.5 3 .0 

FIGURE 2.6.3. The 
phenomenon of beats. 

If we impose the initial conditions x (O) = x' (O) = 0 on the solution in (7), we find 
that 

Fo 
Cl = - and C2 = 0, 

m (w5 - (2) 
so the particular solution is 

Fo 
x (t )  = 2 2 (cos wt - cos wot ) .  

m (wo - w ) 
(9) 

The trigonometric identity 2 sin A sin B = cos (A - B) - cos (A + B) ,  applied with 
A = i (wo + w)t and B = i (wo - w)t ,  enables us to rewrite Eq. (9) in the form 

2Fo . 1 • 1 x (t )  = 2 2 S10 2: (wo - w)t S10 2: (wo + w)t .  
m (wo - w ) 

( 10) 

Suppose now that w � Wo , so that Wo + w is very large in comparison with IWo - w i .  
Then sin i (wo + w) t  is a rapidly varying function, whereas sin i (Wo - w)t i s  a 
slowly varying function. We may therefore interpret Eq. ( 1 0) as a rapid oscillation 
with circular frequency i (wo + w) , 

x (t )  = A (t) sin i (Wo + w)t ,  

but with a slowly varying amplitude 

2Fo . 1 A (t) = 2 2 S10 2: (Wo - w)t .  
m (wo - w ) 

With m = 0. 1 ,  Fo = 50, Wo = 55 ,  and w = 45 , Eq. ( 1 0) gives 

x (t) = sin 5t sin 50t . 

Figure 2.6.3 shows the corresponding oscillation of frequency i (wo + w) = 50 that 
is "modulated" by the amplitude function A (t) = sin 5t of frequency i (Wo-w) = 5 . 

• 
A rapid oscillation with a (comparatively) slowly varying periodic amplitude 

exhibits the phenomenon of beats. For example, if two horns not exactly attuned 
to one another simultaneously play their middle C, one at wo/(2rr) = 258 Hz and 
the other at w/(2rr ) = 254 Hz, then one hears a beat-an audible variation in the 
amplitude of the combined sound-with a frequency of 

(wo - w)/2 258 - 254 
---- = = 2 (Hz) . 

2rr 2 
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Looking at Eq. (6), we see that the amplitude A of xp is large when the natural and 
external frequencies Wo and W are approximately equal. It is sometimes useful to 
rewrite Eq. (5) in the form 

A = Fo = 
k - mw2 

Folk = ± pFo 
1 - (wlWo)2 k ' 

( 1 1 )  

where Folk is the static displacement of a spring with constant k due to a constant 
force Fo, and the amplification factor p is defined to be 

( 12) 

It is clear that p -+ +00 as w -+ Wo o This is the phenomenon of resonance
the increase without bound (as W -+ wo) in the amplitude of oscillations of an 
undamped system with natural frequency Wo in response to an external force with 
frequency W � Wo .  

We have been assuming that W =1= Wo o What sort of  catastrophe should one 
expect if w and Wo are, precisely equal? Then Eq. (4), upon division of each term by 
m,  becomes 

/I 2 Fo x + wox = - cos Wot .  m ( 1 3) 

Because cos Wot is a term of the complementary function, the method of undeter
mined coefficients calls for us to try 

Xp (t ) = t (A cos wot + B sin wot) .  

We substitute this in Eq. ( 1 3) and thereby find that A = 0 and B = Fo/(2mwo) .  
Hence the particular solution is 

Fo . xp (t) = -- t sm wot .  ( 14) 
2mwo 

- 1 .5 ':-::-::-':-:::-::-'::-::-::-'::-::-:-'::-::--:-':-::-:-� 0.00 0.25 0.50 0.75 1 .00 1 .25 1 .50 The graph of xp (t) in Fig. 2.6.4 (in which m = 1, Fo = 1 00, and Wo = 50) shows 
vividly how the amplitude of the oscillation theoretically would increase without 

FIGURE 2.6.4. The bound in this case of pure resonance, W = Woo We may interpret this phenomenon 
phenomenon of resonance. as reinforcement of the natural vibrations of the system by externally impressed 

vibrations at the same frequency. 

Exa m ple 3 Suppose that m = 5 kg and k = 500 N 1m in the cart with the flywheel of Fig. 2.6. 1 .  
Then the natural frequency i s  Wo = ,Jklm = 10  rad/s ;  that is, 101(21l') � 1 .59 
Hz. We would therefore expect oscillations of very large amplitude to occur if the 
flywheel revolves at about ( 1 .59) (60) � 95 revolutions per minute (rpm). • 

In practice, a mechanical system with very little damping can be destroyed by 
resonance vibrations. A spectacular example can occur when a column of soldiers 
marches in step over a bridge. Any complicated structure such as a bridge has many 
natural frequencies of vibration. If the frequency of the soldiers ' cadence is approx
imately equal to one of the natural frequencies of the structure, then-just as in our 
simple example of a mass on a spring-resonance will occur. Indeed, the resulting 
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Solution 

resonance vibrations can be of such large amplitude that the bridge will collapse. 
This has actually happened-for example, the collapse of Broughton Bridge near 
Manchester, England, in 1 83 1-and it is the reason for the now-standard practice 
of breaking cadence when crossing a bridge. Resonance may have been involved 
in the 1 9 8 1  Kansas City disaster in which a hotel balcony (called a skywalk) col
lapsed with dancers on it. The collapse of a building in an earthquake is sometimes 
due to resonance vibrations caused by the ground oscillating at one of the natural 
frequencies of the structure; this happened to many buildings in the Mexico City 
earthquake of September 1 9, 1 985.  On occasion an airplane has crashed because of 
resonant wing oscillations caused by vibrations of the engines. It is reported that 
for some of the first commercial jet aircraft, the natural frequency of the vertical 
vibrations of the airplane during turbulence was almost exactly that of the mass
spring system consisting of the pilot's head (mass) and spine (spring) . Resonance 
occurred, causing pilots to have difficulty in reading the instruments . Large modem 
commercial jets have different natural frequencies, so that this resonance problem 
no longer occurs . 

Modeling Mechanical Systems 

The avoidance of destructive resonance vibrations is an ever-present consideration 
in the design of mechanical structures and systems of all types. Often the most 
important step in determining the natural frequency of vibration of a system is the 
formulation of its differential equation. In addition to Newton's law F = ma , the 
principle of conservation of energy is sometimes useful for this purpose (as in the 
derivation of the pendulum equation in Section 2.4). The following kinetic and 
potential energy formulas are often useful .  

1. Kinetic energy: T = tmv2 for translation of a mass m with velocity v; 
2. Kinetic energy: T = t I w2 for rotation of a body of a moment of inertia I 

with angular velocity w; 
3. Potential energy: V = tkx2 for a spring with constant k stretched or com

pressed a distance x ;  
4. Potential energy: V = mgh for the gravitational potential energy of a mass m 

at height h above the reference level (the level at which V = 0), provided that 
g may be regarded as essentially constant. 

Find the natural frequency of a mass m on a spring with constant k if, instead of 
sliding without friction, it is a uniform disk of radius a that rolls without slipping, 
as shown in Fig 2 .6 .5 .  

With the preceding notation, the principle of conservation of energy gives 

tmv2 + t 1w2 + tkx2 = E 

where E is a constant (the total mechanical energy of the system). We note that 
v = aw and recall that I = ma2/2 for a uniform circular disk. Then we may 
simplify the last equation to 

�mv2 + tkx2 = E.  

Because the right-hand side of this equation is constant, differentiation with respect 
x = o to t (with v = x' and v' = x") now gives 

F GU 2 6 5  3 I II k I 0 I RE  • • .  The rolling disk. 'imx x + xx = . 
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We divide each term by �mx' to obtain 

" 2k 
x + -x = O. 

3m 
Thus the natural frequency of horizontal back-and-forth oscillation of our rolling 
disk is J2k/3m, which is J2/3 � 0. 8 1 65 times the familiar natural frequency 
Jk/m of a mass on a spring that is sliding without friction rather than rolling without 
sliding. It is interesting (and perhaps surprising) that this natural frequency does not 
depend on the radius of the disk. It could be either a dime or a large disk with a 
radius of one meter (but of the same mass). • 

Suppose that a car oscillates vertically as if it were a mass m = 800 kg on a single 
spring (with constant k = 7 X 104 N/m), attached to a single dashpot (with constant 
c = 3000 N·s/m). Suppose that this car with the dashpot disconnected is driven 
along a washboard road surface with an amplitude of 5 cm and a wavelength of 
L = 10  m (Fig. 2.6 .6) . At what car speed will resonance vibrations occur? 

y = a cos �s 

s = o 

FIGURE 2.6.6. The washboard 
road surface of Example 5 .  

position 

FIGURE 2.6.7. The "unicycle 
model" of a car. 

Solution We think of the car as a unicycle, as pictured in Fig. 2.6 .7 . Let x (t) denote the 
upward displacement of the mass m from its equilibrium position; we ignore the 
force of gravity, because it merely displaces the equilibrium position as in Problem 
9 of Section 2.4. We write the equation of the road surface as 

2rrs 
y = a cos L (a = 0.05 m, L = 10  m). ( 1 5) 

When the car is in motion, the spring is stretched by the amount x - y, so Newton's 
second law, F = ma, gives 

mx" = -k (x - y) ;  

that is , 

mx" + kx = ky ( 1 6) 

If the velocity of the car is v ,  then s = vt in Eq. ( 1 5), so Eq. ( 1 6) takes the form 

, 2rr vt 
mx' + kx = ka cos � . ( 1 6') 
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This is the differential equation that governs the vertical oscillations of the car. In 
comparing it with Eq. (4), we see that we have forced oscillations with circular 
frequency w = 2rr vlL . Resonance will occur when w = Wo = Jklm . We use our 
numerical data to find the speed of the car at resonance: 

L /f 1 O �X 104 
V = - - = - � 1 4.89 (m/s); 

2rr m 2rr 800 

that is , about 33 . 3  milh (using the conversion factor of 2 .237 milh per m/s). • 

Damped Forced Oscillations 

In real physical systems there is always some damping, from frictional effects if 
nothing else. The complementary function Xc of the equation 

mx" + cx' + kx = Fo cos wt ( 17) 

is given by Eq. ( 1 9) , (20) , or (2 1 )  of Section 2.4, depending on whether C > Cer = 
J4km, C = Cer ' or C < Cer . The specific form is not important here. What is 
important is that, in any case, these formulas show that xc (t) ---+ 0 as t ---+ +00. 
Thus Xc is a transient solution of Eq. ( 1 7)---one that dies out with the passage of 
time, leaving only the particular solution xp . 

The method of undetermined coefficients indicates that we should substitute 

x (t )  = A cos wt + B sin wt 

in Eq. ( 1 7) . When we do this, collect terms, and equate coefficients of cos wt and 
sin wt , we obtain the two equations 

(k - m(2)A  + cwB = Fo , -cwA + (k - m(2)B  = 0 ( 1 8) 

that we solve without difficulty for 

( 1 9) 

If we write 

A cos wt + B sin wt = C (cos wt cos a + sin wt sin a) = C cos (wt - a) 

as usual, we see that the resulting steady periodic oscillation 

xp (t ) = C cos (wt - a) (20) 

has amplitude 

(2 1 )  

Now ( 1 9) implies that sin a = BIC > 0 ,  so  i t  follows that the phase angle a lies in 
the first or second quadrant. Thus 

B cw 
tan a = - = with 0 < a < rr, 

A k - mw2 (22) 
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{ tan- I cw 
if k > mw2, 

k - mw2 ex = cw n + tan- I if k < mw2 
k - mw2 

(whereas ex = nj2 if k = m(2) .  
Note that if c > 0, then the "forced amplitude"-defined as a function C(w) 

by (2 1 )-always remains finite, in contrast with the case of resonance in the un
damped case when the forcing frequency w equals the critical frequency Wo = 
.Jklm . But the forced amplitude may attain a maximum for some value of w, in 
which case we speak of practical resonance. To see if and when practical res
onance occurs , we need only graph C as a function of w and look for a global 
maximum. It can be shown (Problem 27) that C is a steadily decreasing function 
of w if c � .J2km . But if c < .J2km,  then the amplitude of C attains a maxi
mum value-and so practical resonance occurs-at some value of w less than wo, 
and then approaches zero as w � +00. It follows that an underdamped system 
typically will undergo forced oscillations whose amplitude is 

• Large if w is close to the critical resonance frequency ; 
• Close to Folk if w is very small ; 
• Very small if w is very large. 

.,.�. 

Find the transient motion and steady periodic oscillations of a damped mass-and
spring system with m = 1 ,  c = 2, and k = 26 under the influence of an external 
force F(t) = 82 cos 4t with x (O) = 6 and x' (O) = O. Also investigate the possibility 
of practical resonance for this system. 

Solution The resulting motion x (t) = Xtr (t) + xsp (t )  of the mass satisfies the initial value 
problem 

x" + 2x' + 26x = 82 cos 4t ; x (O) = 6, x' (0) = O. (23) 

Instead of applying the general formulas derived earlier in this section, it is better in 
a concrete problem to work it directly. The roots of the characteristic equation 

r2 + 2r + 26 = (r + 1 )2 + 25 = 0 

are r = - 1  ± 5 i , so the complementary function is 

When we substitute the trial solution 

x (t) = A cos 4t + B sin 4t 

in the given equation, collect like terms, and equate coefficients of cos 4t and sin 4t , 
we get the equations 

1 0A + 8B = 82, 
-8A + l OB = 0 
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with solution A = 5 ,  B = 4. Hence the general solution of the equation in (23) is 

X (t )  = e-t (C 1 cos 5t + C2 sin 5t) + 5 cos 4t + 4 sin 4t . 

At this point we impose the initial conditions x (O) = 6, x ' (O) = 0 and find that 
C 1 = 1 and C2 = -3 .  Therefore, the transient motion and the steady periodic 
oscillation of the mass are given by 

and 

Xtr (t ) = e-t (cos 5t - 3 sin 5t) 

Xsp (t) = 5 cos 4t + 4 sin 4t = .J4T (� cos 4t + � sin 4t) 
= .J4T cos (4t - a) 

where a = tan- 1 ( � )  � 0.6747. 
Figure 2.6.8 shows graphs of the solution x (t) = Xtr (t) + xsp (t) of the initial 

value problem 

xI/ + 2x' + 26x = 82 cos 4t , x (O) = xo ,  x' (O) = O  (24) 

for the different values Xo = -20, - 10, 0, 10 ,  and 20 of the initial position. Here 
we see clearly what it means for the transient solution Xtr (t) to "die out with the 
passage of time," leaving only the steady periodic motion xsp ( t ) .  Indeed, because 
Xtr (t ) --+ 0 exponentially, within a very few cycles the full solution x (t )  and the 
steady periodic solution xsp (t) are virtually indistinguishable (whatever the initial 
position xo) .  

x 
xO = 20 

20 

1 0 

-10 

-20 

FIGURE 2.6.8. Solutions of the initial value problem in (24) 
with Xo = -20, - 1 0, 0, 10 ,  and 20. 
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1 0  

9 

8 

Practical resonance 
To investigate the possibility of practical resonance in the given system, we 

substitute the values m = I ,  c = 2, and k = 26 in (2 1 )  and find that the forced 
amplitude at frequency w is 

7 

6 

\..l 5 

4 

82 
C (w) = . 

J676 - 48w2 + w4 
3 

2 The graph of C(w) is shown in Fig. 2.6.9. The maximum amplitude occurs when 

1 5  20 I -4 1 (4w3 - 96w) 
C (w) = -

(6-7-6---4-8-w--=2:-+
-

W--:-4)--::C3-:::-/2 
- 1 64w (w2 - 24) 

-----;:----:-;:-= - 0 
(676 - 48w2 + (4) 3/2 - . 

FIGURE 2.6.9. Plot of 
amplitude C versus external 
frequency w. 

Thus practical resonance occurs when the external frequency is w = J24 (a bit less 
than the mass-and-spring's undamped critical frequency of Wo = Jk/m = J26 ). 

WI' Problems 

In Problems I through 6, express the solution of the given ini
tial value problem as a sum of two oscillations as in Eq. (8). 
Throughout, primes denote derivatives with respect to time t. 
In Problems 1-4, graph the solution function x (t) in such a 
way that you can identify and label (as in Fig. 2.6.2) its pe
riod. 
1. x" + 9x = l O cos 2t ; x (O) = x' (O) = 0 

2. x" + 4x = 5 sin 3t ; x (O) = x' (O) = 0 

3. x" + 1 00x = 225 cos 5t + 300 sin 5t ; x (0) 375, 
x' (O) = 0 

4. x" + 25x = 90 cos 4t ; x (O) = 0, x' (O) = 90 

5. mx" + kx = Fo cos wt with w =1= Wo ; x (0) = xo , x' (0) = 0 

6. mx" + kx = Fo cos wt with w = Wo ; x (O) = 0, x' (O) = Vo 

In each of Problems 7 through 10, find the steady periodic so
lution xsp (t) = C cos (wt - a) of the given equation mx" + 
cx' + kx = F(t) with periodic forcing function F(t) offre
quency w. Then graph xsp (t) together with (for comparison) 
the adjusted forcing function F) (t) = F (t ) j mw. 
7. x" + 4x' + 4x = IO cos 3 t 
8. x" + 3x' + 5x = -4 cos 5t 
9. 2X" + 2x' + x = 3 sin l Ot 

10. x" + 3x' + 3x = 8 cos lOt + 6 sin lOt 

In each of Problems I I through 14, find and plot both the 
steady periodic solution xsp (t) = C cos (wt - a ) of the given 
differential equation and the transient solution Xtr (t) that sat
isfies the given initial conditions. 
11. x" + 4x' + 5x = l O cos 3t ; x (O) = x' (O) = 0 

12. x" + 6x' + 1 3x = 1 0  sin 5t ; x (O) = x' (O) = 0 

13. x" + 2x' + 26x = 600 cos l Ot ;  x (O) = 1 0, x' (O) = 0 

14. x" + 8x' + 25x = 200 cos t + 520 sin t ; x (O) = -30, 
x' (O) = - 1 0 

• 

Each of Problems 15 through 18 gives the parameters for a 
forced mass-spring-dashpot system with equation mx" +cx' + 
kx = Fo cos wt. Investigate the possibility of practical reso
nance of this system. In particular, find the amplitude C(w) 
of steady periodic forced oscillations with frequency w. Sketch 
the graph of C (w) and find the practical resonance frequency 
w (if any). 
15. m = I ,  c = 2, k = 2, Fo = 2 

16. m = l , c = 4, k = 5, Fo = 10 

17. m = l , c = 6 , k = 45, Fo = 50 

18. m = I, c = 1 0, k = 650, Fo = 1 00 

19. A mass weighing 1 00 lb (mass m = 3 . 1 25 slugs in fps 
units) is attached to the end of a spring that is stretched 
I in. by a force of 1 00 lb. A force Fo cos wt acts on the 
mass.  At what frequency (in hertz) will resonance oscilla
tions occur? Neglect damping. 

20. A front-loading washing machine is mounted on a thick 
rubber pad that acts like a spring; the weight W = mg 
(with g = 9 .8  mjs2 ) of the machine depresses the pad ex
actly 0.5 cm. When its rotor spins at w radians per second, 
the rotor exerts a vertical force Fo cos wt newtons on the 
machine. At what speed (in revolutions per minute) will 
resonance vibrations occur? Neglect friction. 

21. Figure 2.6. 1 0  shows a mass m on the end of a pendulum 
(of length L) also attached to a horizontal spring (with 
constant k). Assume small oscillations of m so that the 
spring remains essentially horizontal and neglect damp
ing. Find the natural circular frequency Wo of motion of 
the mass in terms of L, k, m, and the gravitational con
stant g . 
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L 

FIGURE 2.6.10. The pendulum
and-spring system of Problem 2 1 .  

22. A mass m hangs on the end of a cord around a pulley of 
radius a and moment of inertia I, as shown in Fig. 2.6. 1 1 .  
The rim of the pulley is attached to a spring (with constant 
k). Assume small oscillations so that the spring remains 
essentially horizontal and neglect friction. Find the natu
ral circular frequency of the system in terms of m, a, k, I , 
and g .  

k 

FIGURE 2.6.11 .  The mass-spring
pulley system of Problem 22. 

23. A building consists of two floors. The first floor is at
tached rigidly to the ground, and the second floor is of 
mass m = 1 000 slugs (fps units) and weighs 1 6  tons 
(32,000 Ib) . The elastic frame of the building behaves as a 
spring that resists horizontal displacements of the second 
floor; it requires a horizontal force of 5 tons to displace the 
second floor a distance of 1 ft. Assume that in an earth
quake the ground oscillates horizontally with amplitude 
Ao and circular frequency w, resulting in an external hor
izontal force F (t) = m Aow2 sin wt on the second floor. 
(a) What is the natural frequency (in hertz) of oscillations 
of the second floor? (b) If the ground undergoes one 
oscillation every 2 .25 s with an amplitude of 3 in., what 
is the amplitude of the resulting forced oscillations of the 
second floor? 

24. A mass on a spring without damping is acted on by the 
external force F (t) = Fo cos3 wt .  Show that there are two 
values of w for which resonance occurs, and find both. 

25. Derive the steady periodic solution of 

mx" + CX' + kx = Fo sin wt.  

In particular, show that it  is  what one would expect-the 
same as the formula in (20) with the same values of C and 
w, except with sin(wt - a ) in place of cos (wt - a) .  

26. Given the differential equation 

mx" + cx' + kx = Eo cos wt + Fo sin wt 

-with both cosine and sine forcing terms---derive the 
steady periodic solution 

/ E2 + F.2 

xsp (t) = 
V 0 0 

cos (wt - a - {3) ,  
.j(k - m(2)2 + (cw)2 

where a is defined in Eq. (22) and {3 = tan- I (Fo/Eo) .  
(Suggestion: Add the steady periodic solutions separately 
corresponding to Eo cos wt and Fo sin wt (see Problem 
25).) 

27. According to Eq. (2 1 ), the amplitude of forced steady 
periodic oscillations for the system mx" + cx' + kx = 
Fo cos wt is given by 

28. 

(a) If c � ccr/h, where Ccr = ,J4km, show that C 
steadily decreases as w increases. (b) If c < ccr/h, 
show that C attains a maximum value (practical reso
nance) when 

As indicated by the cart-with-flywheel example discussed 
in this section, an unbalanced rotating machine part typ
ically results in a force having amplitude proportional to 
the square of the frequency w. (a) Show that the am
plitude of the steady periodic solution of the differential 
equation 

mx" + cx' + kx = mAw2 cos wt 

(with a forcing term similar to that in Eq. ( 1 7» is given by 

(b) Suppose that c2 < 2mk .  Show that the maximum 
amplitude occurs at the frequency Wm given by 

wm = 
k ( 2mk ) 
;;; 2mk - c2 • 

Thus the resonance frequency in this case is larger (in 
contrast with the result of Problem 27) than the natural fre
quency Wo = ,Jk/m. (Suggestion: Maximize the square 
of C.) 
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Automobile Vibrations 
Problems 29 and 30 deal further with the car of Example 
5. Its upward displacement function satisfies the equation 
mx" + cx' + kx = cy' + ky when the shock absorber is con
nected (so that c > 0). With y = a sin wt for the road surface, 
this differential equation becomes 

amplitude slightly over 5 cm. Maximum resonance vibra
tions with amplitude about 14 cm occur around 32 mi/h, 
but then subside to more tolerable levels at high speeds. 
Verify these graphically based conclusions by analyzing 
the function C(w) . In particular, find the practical reso
nance frequency and the corresponding amplitude. 

mx" + cx' + kx = Eo cos wt + Fo sin wt 
1 5  

where Eo = cwa and Fo = ka. 
1 2  

29. Apply the result o f  Problem 26 to show that the amplitude 
C of the resulting steady periodic oscillation for the car is 
given by 

8' 
S 
0) '0 .B 

9 

-a 6 
S 
-< 

Because w = 2n v/L when the car is moving with velocity 
v, this gives C as a function of v .  

3 

30. Figure 2.6. 1 2  shows the graph of the amplitude function 
C(w) using the numerical data given in Example 5 (in
cluding c = 3000 N· s/m). It indicates that, as the car 
accelerates gradually from rest, it initially oscillates with 

20 40 60 80 1 00 
Velocity (mi/h) 

FIGURE 2.6.12. Amplitude of vibrations of 
the car on a washboard surface. 

_ Electrical Circuits 
c 

L 

R 

FIGURE 2.7.1. The series RLC 
circuit. 

Circuit 
Element 

Inductor 

Resistor 

Capacitor 

dl L-dt 
RI 
1 

C Q  
FIGURE 2.7.2. Table of voltage 
drops.  

Here we examine the RLC circuit that is a basic building block in more complicated 
electrical circuits and networks. As shown in Fig. 2.7 . 1 ,  it consists of 

A resistor with a resistance of R ohms, 
An inductor with an inductance of L henries, and 
A capacitor with a capacitance of C farads 

in series with a source of electromotive force (such as a battery or a generator) 
that supplies a voltage of E (t) volts at time t .  If the switch shown in the circuit 
of Fig. 2.7 . 1 is closed, this results in a current of I (t) amperes in the circuit and 
a charge of Q (t) coulombs on the capacitor at time t .  The relation between the 
functions Q and I is 

�; = I (t) . ( 1 )  

We will always use mks electric units, i n  which time i s  measured in  seconds. 
According to elementary principles of electricity, the voltage drops across 

the three circuit elements are those shown in the table in Fig. 2.7 .2. We can analyze 
the behavior of the series circuit of Fig. 2.7 . 1 with the aid of this table and one of 
Kirchhoff's laws: 

The (algebraic) sum of the voltage drops across the elements in a 
simple loop of an electrical circuit is equal to the applied voltage. 

As a consequence, the current and charge in the simple RLC circuit of Fig. 2.7. 1 
satisfy the basic circuit equation 

dI 1 
L- + RI + - Q = E(t) . dt C 

(2) 
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If we substitute ( 1 )  in Eq. (2) ,  we get the second-order linear differential equation 

1 
L Q" + R Q' + - Q  = E(t) 

C 

for the charge Q(t ) ,  under the assumption that the voltage E(t) is known. 

(3) 

In most practical problems it is the current / rather than the charge Q that is 
of primary interest, so we differentiate both sides of Eq. (3) and substitute / for Q' 
to obtain 

I 
L/" + R/' + - /  = E' (t) . 

C 
(4) 

We do not assume here a prior familiarity with electrical circuits . It suffices to 
regard the resistor, inductor, and capacitor in an electrical circuit as "black boxes" 
that are calibrated by the constants R, L, and C. A battery or generator is described 
by the voltage E(t) that it supplies. When the switch is open, no current flows in the 
circuit; when the switch is closed, there is a current / (t) in the circuit and a charge 
Q (t) on the capacitor. All we need to know about these constants and functions is 
that they satisfy Eqs.  ( 1 )  through (4), our mathematical model for the RLC circuit. 
We can then learn a good deal about electricity by studying this mathematical model. 

The Mechanical-Electrical Analogy 

It is striking that Eqs. (3) and (4) have precisely the same form as the equation 

mx" + ex' + kx = F(t) (5) 

of a mass-spring-dashpot system with external force F(t) . The table in Fig. 2.7.3 
details this important mechanical-electrical analogy. As a consequence, most of 
the results derived in Section 2.6 for mechanical systems can be applied at once to 
electrical circuits . The fact that the same differential equation serves as a mathemat
ical model for such different physical systems is a powerful illustration of the unify
ing role of mathematics in the investigation of natural phenomena. More concretely, 
the correspondences in Fig. 2.7.3 can be used to construct an electrical model of a 
given mechanical system, using inexpensive and readily available circuit elements. 
The performance of the mechanical system can then be predicted by means of ac
curate but simple measurements in the electrical model. This is especially useful 
when the actual mechanical system would be expensive to construct or when mea
surements of displacements and velocities would be inconvenient, inaccurate, or 
even dangerous. This idea is the basis of analog eomputers--electrical models of 
mechanical systems. Analog computers modeled the first nuclear reactors for com
mercial power and submarine propulsion before the reactors themselves were built. 

Mass m 

Damping constant c 

Spring constant k 
Position x 

Force F 

Inductance L 
Resistance R 
Reciprocal capacitance 1 /  C 
Charge Q (using (3) (or current I using (4))) 

Electromotive force E (or its derivative E') 

FIGURE 2.7.3. Mechanical-electrical analogies. 
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In the typical case of an alternating current voltage E (t )  = Eo sin wt, Eq. (4) 
takes the form 

I 
L I" + RI' + 

C
I = wEo cos wt . (6) 

As in a mass-spring-dashpot system with a simple harmonic external force, the 
solution of Eq. (6) is the sum of a transient cnrrent Itr that approaches zero as 
t -+ +00 (under the assumption that the coefficients in Eq. (6) are all positive, 
so the roots of the characteristic equation have negative real parts), and a steady 
periodic current Isp ; thus 

1 = Itr + Isp . (7) 

Recall from Section 2 .6 (Eqs . ( 1 9) through (22) there) that the steady periodic solu
tion of Eq. (5) with F (t )  = Fo cos wt is 

where 

Fo cos (wt - a) X�U) = , 
J(k - m(2)2 + (cw)2 

- 1 cw 
a = tan 2 ' O � a � lr.  k - mw 

If we make the substitutions L for m, R for c, I j C  for k, and wEo for Fo, we get 
the steady periodic current 

with the phase angle 

- 1 wRC 
a = tan , O � a � lr.  

1 - LCw2 

Reactance and Impedance 

The quantity in the denominator in (8), 

Z � J R' + (WL -
W
�)' (ohms) , 

is called the impedance of the circuit. Then the steady periodic current 

has amplitude 

Eo 
Isp (t) = Z cos (wt - a) 

Eo 10 = Z ' 
reminiscent of Ohm's law, I = EjR . 

(8) 

(9) 

( 10) 

( 1 1 )  

( 12) 
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-s 

R 

FIGURE 2.7.4. Reactance and 
delay angle. 

FIGURE 2.7.5. Time lag of 
current behind imposed voltage. 

Example 1 

Equation ( 1 1 )  gives the steady periodic current as a cosine function, whereas 
the input voltage E (t) = Eo sin wt was a sine function. To convert Isp to a sine 
function, we first introduce the reactance 

1 
S = wL - - . wC 

( 1 3) 

Then Z = J R2 + S2 , and we see from Eq. (9) that a is as in Fig. 2.7.4, with delay 
angle 8 = a - !rr .  Equation ( 1 1 )  now yields 

Therefore, 

where 

Isp (t) = �o (cos ot cos wt + sin a sin wt) 

= Eo (_ S 
cos wt + 

R 
sin wt) Z Z Z 

Eo � . . � = - (cos 0 sm wt - sm 0 cos wt) .  
Z 

Eo . � Isp (t) = - sm(wt - 0 ) , 
Z 

S LCw2 - 1 8 = tan- 1 - = tan- 1 ----
R wRC 

( 14) 

( 1 5) 

This finally gives the time lag 8/w (in seconds) of the steady periodic current Isp 
behind the input voltage (Fig. 2.7 .5) .  

Initial Value Problems 

When we want to find the transient current, we are usually given the initial values 
I (0) and Q (O) . SO we must first find I' (0) . To do so, we substitute t = 0 in Eq. (2) 
to obtain the equation 

LI' (0) + RI  (0) + � Q (O) = E (O) ( 1 6) 

to determine I' (0) in terms of the initial values of current, charge, and voltage. 

Consider an RLC circuit with R = 50 ohms (Q), L = 0. 1 henry (H), and C = 
5 x 1 0-4 farad (F) . At time t = 0, when both I (0) and Q (0) are zero, the circuit is 
connected to a 1 1 0-V, 60-Hz alternating current generator. Find the current in the 
circuit and the time lag of the steady periodic current behind the voltage. 

Solution A frequency of 60 Hz means that w = (2rr) (60) rad/s, approximately 377 rad/s. So 
we take E (t) = 1 10 sin 377t and use equality in place of the symbol for approximate 
equality in this discussion. The differential equation in (6) takes the form 

(0. 1 )1"  + 501' + 20001 = (377) ( 1 10) cos 377t . 
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We substitute the given values of R ,  L ,  C ,  and w = 377 in Eq. ( 10) to find that the 
impedance is Z = 59.58 Q, so the steady periodic amplitude is 

1 10 (volts) 10 = = 1 . 846 amperes (A) . 
59 .58 (ohms) 

With the same data, Eq. ( 1 5) gives the sine phase angle: 

8 = tan- l (0.648) = 0.575 . 

Thus the time lag of current behind voltage is 

� = 0.575 
= 0.00 1 5  s 

w 377 ' 

and the steady periodic current is 

Isp = ( 1 . 846) sin(377t - 0.575) . 

The characteristic equation (0 . 1  )r2 + 50r + 2000 = 0 has the two roots r] � 
-44 and r2 � -456. With these approximations, the general solution is 

I (t )  = cl e-44t + c2e-456t + ( 1 . 846) sin (377t - 0.575) , 

with derivative 

I ' (t) = -44cl e-44t - 456c2e-456t + 696 cos (377t - 0.575) . 

Because 1 (0) = Q (O) = 0, Eq. ( 1 6) gives 1 ' (0) = 0 as well. With these initial 
values substituted, we obtain the equations 

1 (0) = Cl + C2 - 1 .004 = 0, 
I' (0) = -44c] - 456c2 + 584 = 0; 

their solution is c,  = -0.307, C2 = 1 . 3 1 1 .  Thus the transient solution is 

Itr (t ) = (-0.307)e-44t + ( 1 . 3 1 1 ) e-456t . 

The observation that after one-fifth of a second we have I /tr (0.2) 1  < 0.000047 A 
(comparable to the current in a single human nerve fiber) indicates that the transient 
solution dies out very rapidly, indeed. • 

Suppose that the RLC circuit of Example 1 ,  still with 1 (0) = Q(O) = 0, is con
nected at time t = 0 to a battery supplying a constant 1 10 V. Now find the current 
in the circuit. 
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Solution We now have E (t)  = 1 1 0, so Eq. ( 1 6) gives 

FIGURE 2.7.6. The effect of 
frequency on 10 • 

, E (O) 1 1 0 
I (0) = - = - = 1 100 (A/s), 

L 0. 1 

and the differential equation is 

(0. 1 ) /" + 501 ' + 20001 = E'(t) = O. 

Its general solution is the complementary function we found in Example 1 :  

l (t) = cl e-44t + c2e-456t • 

We solve the equations 

1 (0) = Cl + C2 = 0 ,  

I ' (0) = -44cl - 456c2 = 1 1 00 

for Cl = -C2 = 2.670. Therefore, 

I (t) = (2 .670) (e-44t _ e-456t ) .  

Note that I (t ) --+ 0 as t --+ + 00  even though the voltage is constant. 

Electrical Resonance 

• 

Consider again the current differential equation in (6) corresponding to a sinusoidal 
input voltage E (t) = Eo sin wt . We have seen that the amplitude of its steady 
periodic current is 

Eo Eo 
10 = - = -;======� 

z / R2 + (WL -
W
� ) ' 

( 1 7) 

For typical values of the constants R, L ,  C ,  and Eo, the graph of 10 as a function of w 

resembles the one shown in Fig. 2.7.6. It reaches a maximum value at Wrn = l/JLC 
and then approaches zero as w --+ +00; the critical frequency Wrn is the resonance 
frequency of the circuit. 

In Section 2.6 we emphasized the importance of avoiding resonance in most 
mechanical systems (the cello is an example of a mechanical system in which reso
nance is sought) . By contrast, many common electrical devices could not function 
properly without taking advantage of the phenomenon of resonance. The radio is a 
familiar example. A highly simplified model of its tuning circuit is the RLC circuit 
we have discussed. Its inductance L and resistance R are constant, but its capaci
tance C is varied as one operates the tuning dial . 

Suppose that we wanted to pick up a particular radio station that is broad
casting at frequency w, and thereby (in effect) provides an input voltage E (t) = 
Eo sin wt to the tuning circuit of the radio. The resulting steady periodic current Isp 
in the tuning circuit drives its amplifier, and in tum its loudspeaker, with the volume 
of sound we hear roughly proportional to the amplitude 10 of Isp . To hear our pre
ferred station (of frequency w) the loudest-and simultaneously tune out stations 
broadcasting at other frequencies-we therefore want to choose C to maximize 10 . 
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But examine Eq. ( 1 7) ,  thinking of w as a constant with C the only variable. We see 
at a glance-no calculus required-that 10 is maximal when 

that is, when 

1 wL - - = 0; 
wC 

1 
C = - . Lw2 ( 1 8) 

So we merely turn the dial to set the capacitance to this value. 
This is the way that old crystal radios worked, but modern AM radios have a 

more sophisticated design. A pair of variable capacitors are used. The first controls 
the frequency selected as described earlier; the second controls the frequency of a 
signal that the radio itself generates, kept close to 455 kilohertz (kHz) above the 
desired frequency. The resulting beat frequency of 455 kHz, known as the interme
diate frequency, is then amplified in several stages. This technique has the advantage 
that the several RLC circuits used in the amplification stages easily can be designed 
to resonate at 455 kHz and reject other frequencies, resulting in far more selectivity 
of the receiver as well as better amplification of the desired signal. 

_ Problems " 

Problems I through 6 deal with the RL circuit of Fig. 2. 7. 7, a 
series circuit containing an inductor with an inductance of L 
henries, a resistor with a resistance of R ohms, and a source of 
electromotive force (emf), but no capacitor. In this case Eq. (2) 
reduces to the linear first-order equation 

L/' + RI = E(t) . 

L 

R 

FIGURE 2.7.7. The circuit for 
Problems 1 through 6. 

1. In the circuit of Fig.  2.7.7, suppose that L = 5 H, R = 25 
Q, and the source E of emf is a battery supplying 100 V 
to the circuit. Suppose also that the switch has been in po
sition 1 for a long time, so that a steady current of 4 A is 
flowing in the circuit. At time t = 0, the switch is thrown 
to position 2, so that 1 (0) = 4 and E = 0 for t � O. Find 
I (t) . 

2. Given the same circuit a s  i n  Problem I ,  suppose that the 
switch is initially in position 2, but is thrown to position 1 
at time t = 0, so that 1 (0) = 0 and E = 100 for t � O. 
Find I (t) and show that I (t) --+ 4 as t --+ +00. 

3. Suppose that the battery in Problem 2 is replaced with 
an alternating-current generator that supplies a voltage of 
E (t) = 1 00 cos 60t volts . With everything else the same, 
now find I (t) .  

4 .  I n  the circuit of Fig. 2.7.7, with the switch i n  position I ,  
suppose that L = 2 ,  R = 40, E(t) = 100e- lOt , and 
1 (0) = O. Find the maximum current in the circuit for 
t � O. 

5. In the circuit of Fig. 2.7.7, with the switch in position I ,  
suppose that E(t) = 100e- lOt cos 60t , R = 20, L = 2, 
and 1 (0) = O. Find l (t ) . 

6 .  In  the circuit of  Fig. 2.7.7, with the switch in  position I ,  
take L = I ,  R = 10, and E(t) = 30 cos 60t + 4O sin 60t . 
(a) Substitute Isp (t) = A cos 60t + B sin 60t and then 
determine A and B to find the steady-state current Isp in 
the circuit. (b) Write the solution in the form Isp (t) = 

C cos(wt - a) .  

Problems 7 through 10 deal with the RC circuit in Fig. 2. 7.8, 
containing a resistor (R ohms), a capacitor (C farads), a 
switch, a source of emf, but no inductor. Substitution of L = 0 
in Eq. (3) gives the linear first-order differential equation 

dQ 1 R- + - Q  = E(t) dt C 

for the charge Q = Q(t) on the capacitor at time t. Note that 
I (t ) = Q'(t) . 
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R 

FIGURE 2.7.8. The circuit for 
Problems 7 through 1 0. 

7. (a) Find the charge Q(t) and current I (t) in the RC circuit 
if E(t) = Eo (a constant voltage supplied by a battery) and 
the switch is closed at time t = 0, so that Q(O) = O. (b) 
Show that 

lim Q(t) = EoC and that lim I (t) = O. (-++00 1-++00 

8. Suppose that in the circuit of Fig. 2.7.8 , we have R = 10, 
C = 0.02, Q(O) = 0, and E (t) = 100e-5t (volts) .  (a) 
Find Q(t) and I (t) . (b) What is the maximum charge on 
the capacitor for t � 0 and when does it occur? 

9. Suppose that in the circuit of Fig. 2.7 .8 , R = 200, 
C = 2.5 x 10-4 , Q (O) = 0, and E (t) = 100 cos 1 20t . 
(a) Find Q(t) and I (t) .  (b) What is the amplitude of the 
steady-state current? 

10. An emf of voltage E (t) = Eo cos wt is applied to the RC 
circuit of Fig. 2.7.8 at time t = 0 (with the switch closed), 
and Q(O) = O. Substitute Q,p (t) = A cos wt + B sin wt in 
the differential equation to show that the steady periodic 
charge on the capacitor is 

EoC Q,p (t) = cos (wt - fJ) 
.JI + w2R2C2 

where fJ = tan- I (wRC) . 

In Problems 11 through 16, the parameters of an RLC circuit 
with input voltage E (t) are given. Substitute 

I,p (t) = A cos wt + B sin wt 

in Eq. (4), using the appropriate value of w, to find the steady 
periodic current in the form I,p (t) = 10 sin (wt - 8) .  

11 .  R = 30 [2, L = 10 H, C = 0.02 F; E (t) = 50 s in 2t V 
12. R = 200 [2, L = 5 H, C = 0.001 F; 

E(t) = 100 sin l Ot V 
13. R = 20 [2, L = 10 H, C = om F; 

E (t) = 200 cos 5t V 
14. R = 50 [2, L = 5 H, C = 0.005 F; 

E (t) = 300 cos l OOt + 400 sin lOOt V 
15. R = 1 00 [2, L = 2 H, C = 5 X 10-6 F; 

E (t) = 1 1 0 sin 60rr t V 
16. R = 25 [2, L = 0.2 H, C = 5 X 10-4 F; 

E (t) = 1 20 cos 377t V 

In Problems 1 7 through 22, an RLC circuit with input volt
age E (t) is described. Find the current I (t) using the given 
initial current (in amperes) and charge on the capacitor (in 
coulombs). 
17. R = 16 [2, L = 2 H, C = 0.02 F; 

E (t) = 1 00 V; 1 (0) = 0, Q (O) = 5 
18. R = 60 [2, L = 2 H, C = 0.0025 F; 

E (t) = 100e-t V; 1 (0) = 0, Q (O) = 0 
19. R = 60 [2, L = 2 H, C = 0.0025 F; 

E(t) = 100e- l Ot V; 1 (0) = 0, Q (O) = I 

In each of Problems 20 through 22, plot both the steady peri
odic current I,p (t) and the total current I (t) = Isp (t) + Itr (t). 
20. The circuit and input voltage of Problem I I  with 1 (0) = 0 

and Q(O) = 0 
21.  The circuit and input voltage of Problem 1 3 with 1 (0) = 0 

and Q(O) = 3 
22. The circuit and input voltage of Problem 1 5 with 1 (0) = 0 

and Q(O) = 0 
23. Consider an LC circuit-that is, an RLC circuit with R = 

O-with input voltage E(t) = Eo sinwt . Show that un
bounded oscillations of current occur for a certain reso
nance frequency; express this frequency in terms of L and 
C. 

24. I t  was stated in the text that, i f  R, L , and C are positive, 
then any solution of LI" + RI ' + IIC = 0 is a transient 
solution-it approaches zero as t � +00. Prove this .  

25. Prove that the amplitude 10 of the steady periodic solution 
of Eq. (6) is maximal at frequency w = I/.../LC. 

BJ En�p()int Problem� and E�g�nvalues 

You are now familiar with the fact that a solution of a second-order linear differential 
equation is uniquely determined by two initial conditions. In particular, the only 
solution of the initial value problem 

y" + p (x)y' + q (x)y = 0; y (a) = 0, y' (a) = 0 ( 1 )  

i s  the trivial solution y (x)  == O .  Most of Chapter 2 has been based, directly or indi
rectly, on the uniqueness of solutions of linear initial value problems (as guaranteed 
by Theorem 2 of Section 2.2). 



Exa mple 1 

FIGURE 2.8.1. Various possible 
solutions y (x) = B sin x.J3 of the 
endpoint value problem in 
Example I .  For no B f= 0 does the 
solution hit the target value y = 0 
for x = n .  

Exa mple 2 

x 

FIGURE 2.8.2. Various possible 
solutions y (x) = B sin 2x of the 
endoint value problem in Example 
2. No matter what the coefficient 
B is, the solution automatically 
hits the target value y = 0 for 
x = n .  
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In this section we will see that the situation is radically different for a problem 
such as 

y" + p (x)y' + q (x)y = 0; y ea ) = 0, y (b) = O. (2) 

The difference between the problems in Eqs. ( 1 )  and (2) is that in (2) the two con
ditions are imposed at two different points a and b with (say) a < b. In (2) we are 
to find a solution of the differential equation on the interval (a , b) that satisfies the 
conditions y ea ) = 0 and y (b) = 0 at the endpoints of the interval. Such a problem 
is called an endpoint or boundary value problem. Examples 1 and 2 illustrate the 
sorts of complications that can arise in endpoint problems. 

Consider the endpoint problem 

y" + 3y = 0; y eO) = 0, y en )  = o. (3) 

The general solution of the differential equation is 

y (x )  = A cos x.J3 + B sin x.J3 . 

Now y eO) = A,  so the condition y eO) = 0 implies that A = O. Therefore the only 
possible solutions are of the form y (x )  = B sin xJ3. But then 

y en )  = B sin n .J3 � -0.7458B ,  

so  the other condition y en )  = 0 requires that B = 0 also. Graphically, Fig. 2.8. 1 
illustrates the fact that no possible solution y (x)  = B sin xJ3 with B =1= 0 hits the 
desired target value y = 0 when x = n . Thus the only solution of the endpoint 
value problem in (3) is the trivial solution y (x )  == 0 (which probably is no surprise). 

_ _  ._'N __ �_.N'N._._ •.. N .•.. . ....... 

Consider the endpoint problem 

y" + 4y = 0; y eO) = 0, y en )  = o. 
The general solution of the differential equation is 

y (x )  = A cos 2x + B sin 2x . 

• 

(4) 

Again, y eO) = A,  so the condition y eO) = 0 implies that A = O. Therefore the only 
possible solutions are of the form y (x )  = B sin 2x . But now y en )  = B sin 2n = 0 
no matter what the value of the coefficient B is .  Hence, as illustrated graphically 
in Fig. 2 .8 .2, every possible solution y (x )  = B sin 2x hits automatically the desired 
target value y = 0 when x = n (whatever the value of B) .  Thus the endpoint value 
problem in (4) has infinitely many different nontrivial solutions. Perhaps this does 
seem a bit surprising. • 

Remark 1 :  Note that the big difference in the results of Examples 1 and 2 
stems from the seemingly small difference between the differential equations in (3) 
and (4), with the coefficient 3 in one replaced by the coefficient 4 in the other. In 
mathematics as elsewhere, sometimes "big doors turn on small hinges." 

Remark 2 :  The "shooting" terminology used in Examples 1 and 2 is of
ten useful in discussing endpoint value problems. We consider a possible solution 
which starts at the left endpoint value and ask whether it hits the "target" specified 
by the right endpoint value. 
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Exa m ple 3 

Eigenvalue Problems 

Rather than being the exceptional cases, Examples 1 and 2 illustrate the typical 
situation for an endpoint problem as in (2) : It may have no nontrivial solutions, or 
it may have infinitely many nontrivial solutions. Note that the problems in (3) and 
(4) both can be written in the form 

y" + p (x )y' + Aq (X )y  = 0; y (a ) = 0, y (b) = 0, (5) 

with p (x) == 0, q (x )  == I ,  a = 0, and b = 1T:. The number A is a parameter in 
the problem (nothing to do with the parameters that were varied in Section 2.5) . If 
we take A = 3 ,  we get the equations in (3) ;  with A = 4, we obtain the equations in 
(4) . Examples 1 and 2 show that the situation in an endpoint problem containing a 
parameter can (and generally will) depend strongly on the specific numerical value 
of the parameter. 

An endpoint value problem such as the problem in (5)-one that contains an 
unspecified parameter A-is called an eigenvalue problem. The question we ask in 
an eigenvalue problem is this :  For what values of the parameter A does there exist 
a nontrivial (i .e . ,  nonzero) solution of the endpoint value problem? Such a value 
of A is called an eigenvalue of the problem. One might think of such a value as a 
"proper" value of A for which there exist proper (nonzero) solutions of the problem. 
Indeed, the prefix eigen is a German word that (in some contexts) may be translated 
as the English word proper, so eigenvalues are sometimes called proper values (or 
characteristic values) . 

Thus we saw in Example 2 that A = 4 is an eigenvalue of the endpoint problem 

y" + AY = 0, y (O) = 0, y (rr )  = 0, 

whereas Example 1 shows that A = 3 is not an eigenvalue of this problem. 

(6) 

Suppose that A* is an eigenvalue of the problem in (5) and that y* (x) is a 
nontrivial solution of the endpoint problem that results when the parameter A in (5) 
is replaced by the specific numerical value A*, so 

Then we call y* an eigenfunction associated with the eigenvalue A*. Thus we saw 
in Example 2 that y* (x) = sin 2x is an eigenfunction associated with the eigenvalue 
A* = 4, as is any constant multiple of sin 2x . 

More generally, note that the problem in (5) is homogeneous in the sense that 
any constant multiple of an eigenfunction is again an eigenfunction-indeed, one 
associated with the same eigenvalue. That is , if y = y* (x) satisfies the problem in 
(5) with A = A*, then so does any constant multiple cy* (x) .  It can be proved (under 
mild restrictions on the coefficient functions p and q )  that any two eigenfunctions 
associated with the same eigenvalue must be linearly dependent. 

Determine the eigenvalues and associated eigenfunctions for the endpoint problem 

y" + AY = 0; y (O) = 0, y (L) = 0 (L > 0) . (7) 

Solution We must consider all possible (real) values of A-positive, zero, and negative. 
If A = 0, then the equation is simply y" = 0 and its general solution is 

y (x )  = Ax + B .  
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Then the endpoint conditions y (O) = 0 = y (L) immediately imply that A = B = 0, 
so the only solution in this case is the trivial function y (x)  == O. Therefore, A = 0 is 
not an eigenvalue of the problem in (7) . 

If A < 0, let us then write A = -a2 (with a > 0) to be specific. Then the 
differential equation takes the form 

and its general solution is 

" 2 0 Y - a  Y = , 

y (x)  = cl eax + C2e-ax = A cosh ax + B sinh ax , 

where A = Cl + C2 and B = Cl - C2 . (Recall that cosh ax = (eax + e-ax )/2 and 
that sinh ax = (eax - e-ax )/2.) The condition y (O) = 0 then gives 

y (O) = A cosh 0 + B sinh 0 = A = 0, 

so that y (x )  = B sinh ax . But now the second endpoint condition, y (L) = 0, gives 
y (L)  = B sinh aL = O. This implies that B = 0, because a i= 0, and sinh x = 0 
only for x = 0 (examine the graphs of y = sinh x and y = cosh x in Fig. 2.8 .3 . ) 
Thus the only solution of the problem in (7) in the case A < 0 is the trivial solution 
y == 0, and we may therefore conclude that the problem has no negative eigenvalues. 

The only remaining possibility is that A = a2 > 0 with a > O. In this case the 
differential equation is 

with general solution 

" 2 0 Y + a  y = , 

y (x )  = A cos ax + B sin ax . 

The condition y (O) = 0 implies that A = 0, so y (x )  = B sin ax . The condition 
y (L)  = 0 then gives 

y (L )  = B sin aL = O. 

Can this occur if B i= O? Yes, but only provided that aL is a (positive) integral 
multiple of rr :  

a L  = n ,  2n , 3rr, nrr, 
that is, if 

. . .  , 

Thus we have discovered that the problem in (7) has an infinite sequence of positive 
eigenvalues 

(8) 

With B = 1, the eigenfunction associated with the eigenvalue An is 

. nrrx 
Yn (X) = Slll L '  n = 1 , 2 , 3 , . . . . (9) 

Figure 2. 8 .4 shows graphs of the first several of these eigenfunctions. We see vis
ibly how the endpoint conditions y (O) = y (L)  = 0 serve to select just those sine 
functions that start a period at x = 0 and wind up at x = L precisely at the end of a 
half-period. • 
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Example 3 illustrates the general situation. According to a theorem whose 
precise statement we will defer until Section 9. 1 ,  under the assumption that q (x ) > 
o on the interval [a , b] , any eigenvalue of the form in (5) has a divergent increasing 
sequence 

A I < A2 < A3 < . . .  < An < . . .  --+ +00 

of eigenvalues, each with an associated eigenfunction. This is also true of the fol
lowing more general type of eigenvalue problem, in which the endpoint conditions 
involve values of the derivative y' as well as values of y :  

y" + p (x)y' + Aq (X)Y = 0;  

a l y (a) + a2y' (a) = 0, b l y (b) + b2y' (b) = 0,  
( 10) 

where a i ,  a2 , b l , and b2 are given constants. With a l = I = b2 and a2 = 0 = bl , we 
get the problem of Example 4 (in which p (x )  == 0 and q (x)  == I ,  as in the previous 
example). 

Exa mple 4 Determine the eigenvalues and eigenfunctions of the problem 

y 

FIGURE 2.8.5. The 
eigenfunctions 

. (2n - 1 )nx 
Yn (x) = sm 

2L 
for n = 1 , 2, 3 , 4. 

y" + AY = 0; y (O) = 0, y' (L) = O. ( 1 1 )  

Solution Virtually the same argument as that used in Example 3 shows that the only possible 
eigenvalues are positive, so we take A = a2 > 0 (a > 0) to be specific. Then the 
differential equation is 

with general solution 
y (x)  = A cos ax + B sin ax . 

The condition y (O) = 0 immediately gives A = 0, so 

y (x)  = B sin ax and y' (x) = Ba cos ax . 

The second endpoint condition y' (L) = 0 now gives 

y' (L) = Ba cos aL = O. 

This will hold with B :j:. 0 provided that aL is an odd positive integral multiple of 
rr/2 : 

rr 
aL = -

2 ' 

that is , if 
rr2 

A = -
4U ' 

3rr 
2 '  0 • •  , 

9rr2 

4U ' 

(2n - I )rr 
2 

(2n - 1 )2rr2 

4U 

. . .  , 

Thus the nth eigenvalue An and associated eigenfunction of the problem in ( 1 1 )  are 
given by 

(2n - I )rr x 
and Yn (x) = sin 

2L 
( 12) 

for n = 1 ,  2, 3 ,  . . . .  Figure 2 .8 .5  shows graphs of the first several of these eigen
functions. We see visibly how the endpoint conditions y (O) = y'(L) = 0 serve to 
select just those sine functions that start a period at x = 0 but wind up at x = L 
precisely in the middle of a half-period. • 
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A general procedure for determining the eigenvalues of the problem in ( 1 0) 
can be outlined as follows. We first write the general solution of the differential 
equation in the form 

y = Ay, (x , A) + BY2 (X , A) . 
We write Yi (X ,  A) because y , and Y2 will depend on A, as in Examples 3 and 4, in 
which 

y, (x) = cos ax = cos xv'A and Y2 (X) = sin ax = sin xv'A. 

Then we impose the two endpoint conditions, noting that each is linear in Y and y', 
and hence also linear in A and B .  When we collect coefficients of A and B in the 
resulting pair of equations, we therefore get a system of the form 

a , (A)A + fh  (A) B  = 0, 

a2 (A)A + fh (A) B  = O. 
( 1 3) 

Now A is an eigenvalue if and only if the system in ( 1 3) has a nontrivial solution (one 
with A and B not both zero). But such a homogeneous system of linear equations 
has a nontrivial solution if and only if the determinant of its coefficients vanishes. 
We therefore conclude that the eigenvalues of the problem in ( 1 0) are the (real) 
solutions of the equation 

D(A) = a, (A)/32 (A) - a2 (A)/3 1  (A) = O. ( 14) 

To illustrate Eq. ( 14) in a concrete problem, let's revisit the eigenvalue prob
lem of Example 3 .  If A > 0, then the differential equation y" + AY = 0 has 
the general solution y (x )  = A cos(JIx) + B sin(JIx) .  The endpoint conditions 
y eO) = 0 and y (L)  = 0 then yield the equations 

y eO) = A · 1 + B · 0  = 0, 
y (L) = A cos(JIL)  + B sineJIL) = 0  

(in the unknowns A and B )  which correspond to the equations in ( 1 3). The de
terminant equation D(A) = 0 corresponding to ( 14) is then simply the equation 
sin (JIL) = 0, which implies that JIL = mf , or A = n2rr2jL2 for n = 1 , 2, 3, . . .  
(as we saw in Example 3) .  

For more general problems, the solution of the equation D(A) = 0 in ( 14) may 
present formidable difficulties and require a numerical approximation method (such 
as Newton's method) or recourse to a computer algebra system. 

Most of the interest in eigenvalue problems is due to their very diverse physi
cal applications. The remainder of this section is devoted to three such applications. 
Numerous additional applications are included in Chapters 8 and 9 (on partial dif
ferential equations and boundary value problems). 

The Whirling String 

Who of us has not wondered about the shape of a quickly spinning jump rope? Let 
us consider the shape assumed by a tightly stretched flexible string of length L and 
constant linear density p (mass per unit length) if it is rotated or whirled (like ajump 
rope) with constant angular speed w (in radians per second) around its equilibrium 
position along the x-axis. We assume that the portion of the string to one side of 
any point exerts a constant tension force T on the portion of the string to the other 
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FIGURE 2.8.6. The whirling 
string. 
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FIGURE 2.8.7. Forces on a short 
segment of the whirling string. 

side of the point, with the direction of T tangential to the string at that point. We 
further assume that, as the string whirls around the x-axis, each point moves in a 
circle centered at that point's equilibrium position on the x-axis. Thus the string is 
elastic, so that as it whirls it also stretches to assume a curved shape. Denote by 
y (x ) the displacement of the string from the point x on the axis of rotation. Finally, 
we assume that the deflection of the string is so slight that sin e � tan e = y' (x ) in 
Fig. 2 .8 .6(c) . 

We plan to derive a differential equation for y (x )  by application of Newton's 
law F = rna to the piece of string of mass p �x corresponding to the interval 
[x , x + �x] .  The only forces acting on this piece are the tension forces at its two 
ends. From Fig. 2 . 8 .7 we see that the net vertical force in the positive y-direction is 

F = T sin(e + �e) - T sin e � T tan(e + �e) - T tan e ,  

s o  that 

F � Ty' (x + �x) - Ty' (x) .  ( 1 5) 

Next we recall from elementary calculus or physics the formula a = rui for the 
(inward) centripetal acceleration of a body in uniform circular motion (r is the radius 
of the circle and w is the angular velocity of the body). Here we have r = y, so 
the vertical acceleration of our piece of string is a = _w2y,  the minus sign because 
the inward direction is the negative y-direction. Because rn = p �x , substitution of 
this and ( 1 5) in F = rna yields 

so that 

Ty' (x + �x) - Ty' (x) � _pw2y �x , 

y' (x + �x) - y' (x) 2 T ·  � -pw y .  
�x 

We now take the limit as �x ---+ 0 to get the differential equation of motion of the 
string: 

If we write 

T " 2 0 Y + pw Y = . 
( 1 6) 

( 1 7) 

and impose the condition that the ends of the string are fixed, we finally get the 
eigenvalue problem 

y" + Ay = 0; y eO) = 0, y (L)  = 0 (7) 

that we considered in Example 3. We found there that the eigenvalues of the problem 
in (7) are 

(8) 

with the eigenfunction Yn (x) = sin (mrx/L) associated with An . 
But what does all this mean in terms of the whirling string? It means that un

less A in ( 1 7) is one of the eigenvalues in (8) ,  then the only solution of the problem 
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in (7) is the trivial solution y (x)  == O. In this case the string remains in its equilib
rium position with zero deflection. But if we equate ( 1 7) and (8) and solve for the 
value Wn corresponding to An , 

( 1 8) 

for n = 1 ,  2, 3 ,  . . .  , we get a sequence of critical speeds of angular rotation. Only 
at these critical angular speeds can the string whirl up out of its equilibrium position. 
At angular speed W it assumes a shape of the form Yn = Cn sin(nrrxjL) illustrated 
in Fig. 2 .8 .4 (where Cn == 1 ) .  Our mathematical model is not sufficiently complete 
(or realistic) to determine the coefficient Cn , but it assumes much smaller deflections 
than those observed in Fig. 2 .8 .4, so the numerical value of Cn would necessarily be 
significantly smaller than 1 .  

Suppose that we start the string rotating at speed 

then gradually increase its speed of rotation. So long as W < WI , the string remains 
in its undeflected position y == O. But when W = WI ,  the string pops into a whirling 
position y = Cl sin(rr xjL) .  And when W is increased still further, the string pops 
back into its undeflected position along the axis of rotation ! 

The Deflection of a Uniform Beam 

We include now an example of the use of a relatively simple endpoint value problem 
to explain a complicated physical phenomenon-the shape of a horizontal beam on 
which a vertical force is acting. 

Consider the horizontal beam shown in Fig. 2 .8 .8 ,  uniform both in cross sec
tion and in material. If it is supported only at its ends, then the force of its own 
weight distorts its longitudinal axis of symmetry into the curve shown as a dashed 
line in the figure. We want to investigate the shape y = y (x )  of this curve, the 
deflection curve of the beam. We will use the coordinate system indicated in 
Fig. 2 .8 .9, with the positive y-axis directed downward. 

A consequence of the theory of elasticity is that for relatively small deflections 
of such a beam (so small that [Y' (x) ]2 is negligible in comparison with unity), an 
adequate mathematical model of the deflection curve is the fourth-order differential 
equation 

Ely(4) = F (x ) ,  ( 1 9) 

where 

• E is a constant known as the Young 's modulus of the material of the beam, 
• I denotes the moment of inertia of the cross section of the beam around a 

horizontal line through the centroid of the cross section, and 
• F (x)  denotes the density of downward force acting vertically on the beam at 

the point x .  



1 88 Chapter 2 Linear Equations of H igher Order 

x = o x = L  

Simply supported or hinged 

x = O  x = L  

I ---- I 
Built in 

FIGURE 2.8.10. Two ways of 
supporting a beam. 

Density of force? Yes ;  this means that the force acting downward on a very 
short segment [x , x + �x] of the beam is approximately F (x )  �x . The units of 
F (x )  are those of force per unit length, such as pounds per foot. We will consider 
here the case in which the only force distributed along the beam is its own weight, 
w pounds per foot, so that F (x )  == w .  Then Eq. ( 1 9) takes the form 

Ely(4) = w (20) 

where E,  I ,  and w are all constant. 

Note : We assume no previous familiarity with the theory of elasticity or with 
Eq. ( 1 9) or (20) here. It is important to be able to begin with a differential equation 
that arises in a specific applied discipline and then analyze its implications; thus 
we develop an understanding of the equation by examining its solutions .  Observe 
that, in essence, Eq. (20) implies that the fourth derivative y(4) is proportional to 
the weight density w .  This proportionality involves, however, two constants : E, 
which depends only on the material of the beam, and I ,  which depends only on the 
shape of the cross section of the beam. Values of the Young's modulus E of various 
materials can be found in handbooks of physical constants ; I = tJra4 for a circular 
cross section of radius a . 

Although Eq. (20) is a fourth-order differential equation, its solution involves 
only the solution of simple first-order equations by successive simple integrations. 
One integration of Eq. (20) yields 

a second yields 

another yields 
Ely' = i wx 3 + tC,x2 + C2X + C3 ;  

a final integration gives 

where C" C2 , C3 , and C4 are arbitrary constants . Thus we obtain a solution of 
Eq. (20) of the form 

(2 1)  

where A, B ,  C, and D are constants resulting from the four integrations. 
These last four constants are determined by the way in which the beam is sup

ported at its ends, where x = 0 and x = L .  Figure 2 .8 . 1 0  shows two common types 
of support. A beam might also be supported one way at one end but another way at 
the other end. For instance, Fig. 2 .8 . 1 1  shows a cantilever-a beam firmly fastened 
at x = 0 but free (no support whatsoever) at x = L .  The following table shows the 
boundary or endpoint conditions corresponding to the three most common cases. 
We will see that these conditions are applied readily in beam problems, although a 
discussion here of their origin would take us too far afield. 
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?:�j��Z�'��'\�;� ��))�; ) ) ; ':» ) Endpoint Condition 

Simply supported y = y" 
= 0 

Built-in or fixed end y = y' 
= 0 

Free end y" 
= y(3) 

= 0 

For example, the deflection curve of the cantilever in Fig. 2.8 . 1 1 would be 
given by Eq. (2 1 ) , with the coefficients A ,  B ,  C ,  and D determined by the conditions 

y (O) = y' (O) = 0 and y"(L) = y(3) (L) = 0, (22) 

corresponding to the fixed end at x = 0 and the free end at x = L. The conditions 
FIGURE 2.S.11. The cantilever. in (22) together with the differential equation in (2 1 )  constitute an endpoint value 

problem. 

Exa mple 5 Determine the shape of the deflection curve of a uniform horizontal beam of length 
L and weight w per unit length and simply supported at each end. 

Solution We have the endpoint conditions 

y (O) = y" (O) = 0 = y (L) = y"(L) .  

Rather than imposing then directly on Eq. (2 1 ) , let us begin with the differential 
equation E I y(4) = w and determine the constants as we proceed with the four 
successive integrations. The first two integrations yield 

Ely(3) = wx + A; Ely" = 1 wx2 + Ax + B .  

Hence y" (O) = 0 implies that B = 0 ,  and then y" (L) = 0 gives 

0 =  1 wL2 + A L . 

It follows that A = - wL/2 and thus that 

Ely" = 1x2 - 1wLx . 

Then two more integrations give 

and finally, 

Ely(x)  = f4 wx4 - fi wLx3 + Cx + D. 

Now y (O) = 0 implies that D = 0; then, because y (L)  = 0 ,  

I t  follows that C = wL3j24. Hence from Eq. (23) we obtain 

y (x) = � (x4 - 2Lx3 + L3x)  
24EI  

(23) 

(24) 
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Exa mple 6 

as the shape of the simply supported beam. It is apparent from symmetry (see also 
Problem 17 )  that the maximum deflection Ymax of the beam occurs at its midpoint 
x = L/2, and thus has the value 

that is , 

( L ) W ( l  4 2 4 1 4) Ymax = Y "2 = 
24E I 16 L - 8" L + 2" L ; 

5wL4 
Ymax = 

384E I · (25) 

• 

For instance, suppose that we want to calculate the maximum deflection of a simply 
supported steel rod 20 ft long with a circular cross section 1 in. in diameter. From a 
handbook we find that typical steel has density 8 = 7.75 g/cm3 and that its Young's 
modulus is E = 2 X 1 0 12 g/ cm · S2 , so it will be more convenient to work in cgs 
units . Thus our rod has 

and 

length: L = (20 ft) (30.48 
c;) = 609.60 cm 

radius : a = (� in.) (2.54 �:.) = 1 .27 cm. 

Its linear mass density (that is, its mass per unit length) is 

so 

W = pg = (39 .27 �) (980 
c�) :;::::; 38484.6 

dyn
. 

cm s cm 

The area moment of inertia of a circular disk of radius a around a diameter is I = �JTa4 , so 

Therefore Eq. (25) yields 

:;::::; 
(5 ) (38484.6) (609 .60)4 

:;::::; 1 6.96 cm Ymax 
(384) (2 x 1 012) (2 .04) 

, 

about 6 .68 in . ,  as the maximum deflection of the rod at its midpoint. It is interesting 
to note that Ymax is proportional to L 4 , so if the rod were only 1 0  ft long, its maxi
mum deflection would be only one-sixteenth as much-only about 0.42 in. Because 
I = �JTa4 , we see from Eq. (25) that the same reduction in maximum deflection 
could be achieved by doubling the radius a of the rod. • 
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The Buckled Rod 
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Figure 2.8 . 1 2  shows a uniform rod of length L ,  hinged at each end, that has been 
"buckled" by an axial force of compression P applied at one end. We assume 

--.!.p��iiZii:��tfJ...!.p� this buckling to be so slight that the deflection curve y = y (x ) of the rod may 
x be regarded as defined on the interval 0 � x � L . 

x = O  
I 
I x = L  

FIGURE 2.8.12. The buckled 
rod. 

In the theory of elasticity the linear endpoint boundary value problem 

Ely" + Py = 0, y (O) = y (L) = 0 (26) 

is used to model the actual (nonlinear) behavior of the rod. As in our discussion of 
the deflection of a uniform beam, E denotes the Young's modulus of the material 
of the beam and I denotes the moment of inertia of each cross section of the beam 
around a horizontal line through its centroid. 

If we write 

P 
A = 

EI ' 

then the problem in (26) becomes the eigenvalue problem 

y" + AY = 0; y (O) = y(L) = 0 

(27) 

(7) 

that we considered in Example 3. We found that its eigenvalues {An } are given by 

(8) 

with the eigenfunction Yn = sin(mTx/L )  associated with An . (Thus whirling strings 
and buckled rods lead to the same eigenvalues and eigenfunctions . ) 

To interpret this result in terms of the buckled rod, recall from Eq. (27) that 
P = AEI . The forces 

n = 1 , 2, 3 , . . .  (28) 

are the critical buckling forces of the rod. Only when the compressive force P is 
one of these critical forces should the rod "buckle" out of its straight (undeflected) 
shape. The smallest compressive force for which this occurs is 

(29) 

This smallest critical force PI is called the Euler buckling force for the rod; it is the 
upper bound for those compressive forces to which the rod can safely be subjected 
without buckling. (In practice a rod may fail at a significantly smaller force due to a 
contribution of factors not taken into account by the mathematical model discussed 
here.) 
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Example 7 For instance, suppose that we want to compute the Euler buckling force for a steel 
rod 10 ft long having a circular cross section 1 in. in diameter. In cgs units we have 

L = ( 1 0 ft) (30.48 c; ) = 304.8 cm, and 

I = � [ (0.5 in.) (2.54 �:.) r � 2.04 cm4 . 

Upon substituting these values in Eg. (29) we find that the critical force for this rod 
is 

PI � 4.34 X 1 08 dyn � 976 Ib , 

using the conversion factor 4.448 x 1 05 dyn/lb. • 

_ Problems 

The eigenvalues in Problems 1 through 5 are all nonnegative. 
First determine whether A = 0 is an eigenvalue; then find the 
positive eigenvalues and associated eigenfunctions. 

1. y" + AY = 0; y' (0) = 0, y ( 1 )  = 0 
2. y" + Ay = 0; y' (0) = 0, y ' (n ) = 0 
3. y" + Ay = O; y (-n) = O, y (n ) = O  
4. y" + AY = 0; y' (-n) = 0, y ' (n ) = 0 
5. y" + Ay = 0; y (-2) = 0, y' (2) = 0 
6. Consider the eigenvalue problem 

y" + Ay = 0; y' (O) = 0, y ( 1 )  + y' ( 1 )  = O. 

All the eigenvalues are nonnegative, so write A = a2 
where a � O. (a) Show that A = 0 is not an eigen
value. (b) Show that y = A cos ax + B sin ax satisfies 
the endpoint conditions if and only if B = 0 and a is 
a positive root of the equation tan z = l/z . These roots 
{an I j'" are the abscissas of the points of intersection of the 
curves y = tan z and y = 1 / z , as indicated in Fig. 2.8 . 1 3 . 
Thus the eigenvalues and eigenfunctions o f  this problem 
are the numbers {a� l\)O and the functions {cos anx lj"' ,  re
spectively. 

z 

FIGURE 2.8.13. The eigenvalues are determined by 
the intersections of the graphs of y = tan z and y = l/z 
(Problem 6). 

7. Consider the eigenvalue problem 

y" + AY = 0; y eO) = 0, y ( 1 )  + y' ( 1 )  = 0; 

all its eigenvalues are nonnegative. (a) Show that A = 0 
is not an eigenvalue. (b) Show that the eigenfunctions 
are the functions { sin anxlj"' ,  where an is the nth positive 
root of the equation tan z = -z . (c) Draw a sketch indi
cating the roots {an I yo as the points of intersection of the 
curves y = tan z and y = - z .  Deduce from this sketch 
that an � (2n - 1 )n /2 when n is large. 

8. Consider the eigenvalue problem 

y" + AY = 0; y eO) = 0, y ( l ) = y' ( I ) ;  

all its eigenvalues are nonnegative. (a) Show that A = 0 
is an eigenvalue with associated eigenfunction Yo (x) = x .  
(b) Show that the remaining eigenfunctions are given by 
Yn (x) = sin f3nx ,  where f3n is the nth positive root of the 
equation tan z = z . Draw a sketch showing these roots. 
Deduce from this sketch that f3n � (2n + l )n /2 when n is 
large. 

9. Prove that the eigenvalue problem of Example 4 has no 
negative eigenvalues. 

10. Prove that the eigenvalue problem 

y" + AY = 0; y eO) = 0, y ( l ) + y' ( l )  = 0 

has no negative eigenvalues . (Suggestion: Show graph
ically that the only root of the equation tanh z = -z is 
z = 0.) 

11. Use a method similar to that suggested in Problem 10 to 
show that the eigenvalue problem in Problem 6 has no neg
ative eigenvalues. 

12. Consider the eigenvalue problem 

y" + AY = 0; y(-n) = y en ) , y' (-n ) = y' (n ) , 

which i s  not o f  the type i n  ( 1 0) because the two endpoint 
conditions are not "separated" between the two endpoints . 
(a) Show that AO = 0 is an eigenvalue with associated 



eigenfunction Yo (x) == 1 .  (b) Show that there are no neg
ative eigenvalues. (c) Show that the nth positive eigen
value is n2 and that it has two linearly independent associ
ated eigenfunctions, cos nx and sin nx . 

13. Consider the eigenvalue problem 

y" + 2y' + AY = 0; y eO) = y ( 1 ) = O. 

(a) Show that A = 1 is not an eigenvalue. (b) Show 
that there is no eigenvalue A such that A < 1 .  (c) Show 
that the nth positive eigenvalue is An = n2rr2 + 1 ,  with 
associated eigenfunction Yn (x) = e-X sin nrr x . 

14. Consider the eigenvalue problem 

y" + 2y' + AY = 0; y eO) = 0, y' ( I )  = O. 

Show that the eigenvalues are all  positive and that the nth 
positive eigenvalue is An = a; + 1 with associated eigen
function Yn (x) = e-x sin anx ,  where an is the nth positive 
root of tan z = z . 

15. (a) A uniform cantilever beam is fixed at x = 0 and free 
at its other end, where x = L . Show that its shape is given 
by 

w y (x) = __ (x4 - 4Lx3 + 6L2x2 ) .  
24£ 1  

(b) Show that y '  (x) = 0 only at x = 0 ,  and thus that i t  fol
lows (why?) that the maximum deflection of the cantilever 
is Ymax = y (L) = wL 4/(8£ I ) .  
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16. (a) Suppose that a beam is fixed at its ends x = 0 and 
x = L . Show that its shape is given by 

w y (x) = __ (x4 - 2Lx3 + L2x2) . 
24£ 1  

(b) Show that the roots of y' (x) = 0 are x = 0 ,  x = L, 
and x = L/2, so it follows (why?) that the maximum 
deflection of the beam is ( L ) WL4 Ymax = Y "2 = 

384£1 ' 

one-fifth that of a beam with simply supported ends. 
17. For the simply supported beam whose deflection curve is 

given by Eq. (24), show that the only root of y' (x) = ° in 
[0, L] is x = Lj2, so it follows (why?) that the maximum 
deflection is indeed that given in Eq. (25) .  

18. (a) A beam is fixed at i ts  left end x = 0 but is simply sup
ported at the other end x = L. Show that its deflection 
curve is  

(b) Show that its maximum deflection occurs where x = ( 15 -
.J33 )L/1 6 and is about 4 1 .6% of the maximum de

flection that would occur if the beam were simply sup
ported at each end. 
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Po"Wer Series 
Methods 

In Section 2.3 we saw that solving a homogeneous linear differential equation 
with constant coefficients can be reduced to the algebraic problem of finding the 

roots of its characteristic equation. There is no similar procedure for solving linear 
differential equations with variable coefficients, at least not routinely and in finitely 
many steps .  With the exception of special types, such as the occasional equation that 
can be solved by inspection, linear equations with variable coefficients generally 
require the power series techniques of this chapter. 

These techniques suffice for many of the nonelementary differential equations 
that appear most frequently in applications. Perhaps the most important (because of 
its applications in such areas as acoustics, heat flow, and electromagnetic radiation) 
is Bessel's equation of order n :  

Legendre's equation of order n i s  important in many applications. It has the form 

( 1  - x2)y" - 2xy' -+- n (n + 1 )y  = O. 

In this section we introduce the power series method in its simplest form and, 
along the way, state (without proof) several theorems that constitute a review of the 
basic facts about power series. Recall first that a power series in (powers of) x - a 
is an infinite series of the form 

00 

I>n (X - at = Co + c\ (x - a) + C2 (X - a)2 + . . .  + cn (x - at + . . . . ( 1 )  n=O 
If a = 0, this is a power series in x :  

00 
L cnxn = Co + C\x + C2x2 + . . .  + cnxn + . . . . n=O 

(2) 
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We will confine our review mainly to power series in x , but every general property 
of power series in x can be converted to a general property of power series in x - a 
by replacement of x with x - a . 

The power series in (2) converges on the interval I provided that the limit 

(3) 

exists for all x in I . In this case the sum 
00 

f(x) = I >nxn (4) 
n=O 

is defined on I, and we call the series L cnxn a power series representation of the 
function f on I . The following power series representations of elementary functions 
should be familiar to you from introductory calculus: 

and 

00 (- ltx2n x2 X4 
cos x = � = 1 - - + - - . . . . =a (2n) ! 2 !  4! ' 

• 
00 (- ltx2n+ ! x3 xS slO x = L = x - - + - - · · · · 
n=O (2n + I ) !  3 !  5 !  ' 

00 x2n x2 x4 
cosh x = L -- = 1 + - + - + . . . . 

n=O (2n) ! 2! 4! ' 

00 x2n+ ! x3 xS 
sinh x = L = x + - + - + . . . . 

n=O (2n + I ) !  3 !  5 !  ' 

00 (_ l )n+ ! xn x2 x3 
In( 1  + x) = L 

n 
= x - 2 + 3 - . . .  ; 

n=! 
1 00 

-- = L xn = 1 + x + x2 + x3 + . . .  ; I - x n=O 

(5) 

(6) 

(7) 

(8) 

(9) 

( 10) 

( 1 1 )  

01 a (a - l )x2 a (a - l ) (a - 2)x3 
( 1  + x) = 1 + ax + 

2 !  
+ 

3 !  
+ . . .  . ( 1 2) 

In compact summation notation, we observe the usual conventions that o ! = 1 and 
that xO = 1 for all x ,  including x = O. The series in (5) through (9) converge to 
the indicated functions for all x . In contrast, the series in ( 1 0) and ( 1 1 )  converge if 
I x I < 1 but diverge if I x I > 1 .  (What if I x I = I ?) The series in ( 1 1 )  is the geometric 
series. The series in ( 1 2) ,  with a an arbitrary real number, is the binomial series. 
If a is a nonnegative integer n ,  then the series in ( 1 2) terminates and the binomial 
series reduces to a polynomial of degree n which converges for all x . Otherwise, 
the series is actually infinite and it converges if Ix I < 1 and diverges if I x I > 1 ;  its 
behavior for I x l = 1 depends on the value of a. 
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Remark: Power series such as those listed in (5) through ( 1 2) are often 
derived as Taylor series . The Taylor series with center x = a of the function f is 
the power series 00 f(n) (a) !"(a) 
� L (x - at = f (a)  + f' (a ) (x - a)  + -- (x - a)2 + . . .  ( 1 3) 

n=O n !  2 !  

in powers of x - a ,  under the hypothesis that f is infinitely differentiable at x = a 
(so that the coefficients in Eq. ( 1 3) are all defined). If a = 0, then the series in ( 1 3) 
is the Maclaurin series 

( 1 3') 

For example, suppose that f (x) = eX . Then f (n) (x ) = eX , and hence f (n) (0) = I 
for all n � O. In this case Eq. ( 1 3') reduces to the exponential series in (5). • 

Power Series Operations 

If the Taylor series of the function f converges to f (x)  for all x in some open 
interval containing a ,  then we say that the function f is analytic at x = a .  For 
example, 

• every polynomial function is analytic everywhere; 
• every rational function is analytic wherever its denominator is nonzero; 
• more generally, if the two functions f and g are both analytic at x = a ,  then 

so are their sum f + g and their product f . g, as is their quotient fig if 
g (a)  =1= O. 

For instance, the function h ex )  = tan x = (sin x )/ (cos x)  is analytic at x = 0 
because cos 0 = I =1= 0 and the sine and cosine functions are analytic (by virtue 
of their convergent power series representations in Eqs . (6) and (7)). It is rather 
awkward to compute the Taylor series of the tangent function using Eq. ( 1 3) be
cause of the way in which its successive derivatives grow in complexity (try it ! ) .  
Fortunately, power series may be manipulated algebraically in much the same way 
as polynomials. For example, if 

then 

and 

00 
f (x)  = L anxn 

n=O 

00 
and g (x)  = L bnxn , 

n=O 

00 
f (x)  + g (x)  = L (an + bn )xn 

n=O 

00 
f (x)g (x )  = L cnxn 

n=O 

( 14) 

( 1 5) 



3. 1 In troduction and Review of Power Series 1 97 

where Cn = aobn + a 1 bn_ 1 + . . .  + anbo . The series in ( 1 5 )  is the result of termwise 
addition and the series in ( 1 6) is the result of formal multiplication-multiplying 
each term of the first series by each term of the second and then collecting coef
ficients of like powers of x .  (Thus the processes strongly resemble addition and 
multiplication of ordinary polynomials .) The series in ( 1 5) and ( 1 6) converge to 
! (x )  + g (x )  and ! (x)g(x) ,  respectively, on any open interval on which both the 
series in ( 14) converge. For example, 

. ( 1 3 1 5 ) (  1 2 1 4 ) 
sm x cos x = x - (jx + 

120
x - . . .  1 - "2x +

24
x - . . . 

for all x .  

= x + 
(_� _ �) x3 + 

(� + � + _
1
_
) 

x5 + . . .  
6 2 24 12  120 

4 3 1 6  5 = x - -x + -x 
6 120 

1 [ (2x) 3 (2x )5 ] 1 . 
= "2 (2x) - � + S"! - . . .  = "2 sm 2x 

Similarly, the quotient of two power series can be computed by long division, 
as illustrated by the computation shown in Fig. 3 . 1 . 1 .  This division of the Taylor 
series for cos x into that for sin x yields the first few terms of the series 

1 3 2 5 17 7 
tan x = x + -x + -x + -x + . . . . 

3 15  3 1 5 
( 1 7) 

Division of power series is more treacherous than multiplication ; the series thus 
obtained for ! / g may fail to converge at some points where the series for ! and g 
both converge. For example, the sine and cosine series converge for all x ,  but the 
tangent series in ( 1 7) converges only if Ix I < rr /2. 

The Power Series Method 

The power series method for solving a differential equation consists of substituting 
the power series 

( 1 8) 

in the differential equation and then attempting to determine what the coefficients 
Co , C I , C2 , . • .  must be in order that the power series will satisfy the differential 
equation. This is reminiscent of the method of undetermined coefficients, but now 
we have infinitely many coefficients somehow to determine. This method is not 
always successful, but when it is we obtain an infinite series representation of a 
solution, in contrast to the "closed form" solutions that our previous methods have 
yielded. 

Before we can substitute the power series in ( 1 8) in a differential equation, we 
must first know what to substitute for the derivatives y'

, y
"

, . . . .  The following the
orem (stated without proof) tells us that the derivative y' of y = L cnxn is obtained 
by the simple procedure of writing the sum of the derivatives of the individual terms 
in the series for y .  
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x3 2x5 17x7 
X + 

3 
+ 

15  
+ 

3 1 5  

x2 x4 x6 ) x3 x5 x7 
+ 1 - "2 + 

24 
-

720 
+ . . . x 

6 1 20 5040 

x3 x5 x7 
X - + 

2 24 720 

x3 x5 x7 

3 30 
+ 

840 

x3 x5 x7 

3 6 
+ 

72 

2x5 4x7 

15  3 1 5 

2x5 x7 

1 5  15  

1 7x7 

3 1 5 

FIGURE 3.1 .1 .  Obtaining the series for tan x by division of series. 

THEOREM 1 Termwlse Differentiation of Power Series 

If the power series representation 

00 
f (x)  = L cnxn = Co + C IX + C2x2 + C3x

3 + . . .  
n=O 

+ . . .  

+ . . .  

+ . . .  

+ . . .  

+ . . .  

+ . . .  

+ . . .  

( 1 9)  

of the function f converges on the open interval I ,  then f is differentiable on I , 
and 

00 
f' ex) = L nCnxn- l = Cl + 2C2X + 3C3X2 + . . .  

n= l 

at each point of I . 

For example, differentiation of the geometric series 

1 Loo n 2 3 -- = x = l + x + x + x  + . . .  
I - x n=O 

(20) 

( 1 1 )  
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gives 
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1 = � nxn- 1 = 1 + 2x + 3x2 + 4x3 + . . . . ( 1 - x)2 � n= l 
The process of determining the coefficients in the series y = L cnxn so 

that it will satisfy a given differential equation depends also on Theorem 2. This 
theorem-also stated without proof-tells us that if two power series represent the 
same function, then they are the same series. In particular, the Taylor series in ( 1 3) 
is the only power series (in powers of x - a) that represents the function f.  

TH EOREM 2 Identity Principle 

If 
00 00 
L anxn = L bnxn n=O n=O 

for every point x in some open interval I ,  then an = bn for all n � o. 

In particular, if L anxn = 0 for all x in some open interval, it follows from 
Theorem 2 that an = 0 for all n � o. 

Solve the equation y' + 2y = O. 

Solution We substitute the series 

and obtain 

00 
and y

' = LncnXn- 1 , n=l 

00 00 
L ncnxn- 1 + 2 L cnxn = O. 
n=l n=O 

(2 1 ) 

To compare coefficients here, we need the general term in each sum to be the term 
containing xn . To accomplish this, we shift the index of summation in the first sum. 
To see how to do this, note that 

00 00 
LnCnxn- l = Cl + 2C2X + 3C3X2 + . . . = L(n + l )cn+ 1Xn . n=l n=O 

Thus we can replace n with n + I if, at the same time, we start counting one step 
lower; that is, at n = 0 rather than at n = 1 . This is a shift of + I in the index of 
summation. The result of making this shift in Eq. (2 1 ) is the identity 

that is, 

00 00 
L(n + I )Cn+ 1Xn + 2 L cnxn = 0; 
n=O n=O 

00 
L[(n + I )Cn+ l + 2cn ]xn = O. 
n=O 
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If this equation holds on some interval, then it follows from the identity principle 
that (n + l )cn+ l + 2cn = 0 for all n � 0; consequently, 

2cn Cn+ l = - n + 1 
(22) 

for all n 2:: o. Equation (22) is a recurrence relation from which we can succes
sively compute C l , C2 , C3 , . . .  in terms of co ; the latter will turn out to be the arbitrary 
constant that we expect to find in a general solution of a first-order differential equa
tion. 

With n = 0, Eq. (22) gives 

With n = 1 ,  Eq. (22) gives 

With n = 2, Eq. (22) gives 

2C2 

2co Cl = - - .  

1 

C3 = - - = 
3 

By now it should be clear that after n such steps, we will have 

n 2nco C = (- 1 )  -n , ' n . n � 1 . 
(This is easy to prove by induction on n .) Consequently, our solution takes the form 

00 00 2n 00 ( 2 )n L n L n Co n L - X -2x y (x )  = CnX = (- 1 )  --x = Co = coe . n ' n ' n=O n=O . n=O · 
In the final step we have used the familiar exponential series in Eq. (5) to identify our 
power series solution as the same solution y (x )  = coe-2x we could have obtained 
by the method of separation of variables. • 

Shift of Index of Summation 

In the solution of Example 1 we wrote 

00 00 
LncnXn- 1 = L(n + l )cn+ lXn n=l n=O 

(23) 

by shifting the index of summation by + 1 in the series on the left. That is, we 
simultaneously increased the index of summation by 1 (replacing n with n + 1 ,  
n ---+ n + 1 )  and decreased the starting point by  1 ,  from n = 1 to n = 0 ,  thereby 
obtaining the series on the right. This procedure is valid because each infinite series 
in (23) is simply a compact notation for the single series 

(24) 
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More generally, we can shift the index of summation by k in an infinite series 
by simultaneously increasing the summation index by k (n ---+ n+k) and decreasing 
the starting point by k. For instance, a shift by +2 (n ---+ n + 2) yields 

If k is negative, we interpret a "decrease by k" as an increase by -k = Ik l .  Thus a 
shift by -2 (n ---+ n - 2) in the index of summation yields 

00 00 
L ncnxn- 1 = L (n - 2)cn_2Xn-3 ; 
n= l n=3 

we have decreased the index of summation by 2 but increased the starting point by 
2, from n = I to n = 3 .  You should check that the summation on the right is merely 
another representation of the series in (24) . 

We know that the power series obtained in Example I converges for all x 
because it is an exponential series .  More commonly, a power series solution is 
not recognizable in terms of the familiar elementary functions. When we get an 
unfamiliar power series solution, we need a way of finding where it converges. 
After all, y = L cnxn is merely an assumed form of the solution. The procedure 
illustrated in Example I for finding the coefficients {en } is merely a formal process 
and may or may not be valid. Its validity-in applying Theorem I to compute 
y' and applying Theorem 2 to obtain a recurrence relation for the coefficients
depends on the convergence of the initially unknown series y = L cnxn . Hence 
this formal process is justified only if in the end we can show that the power series 
we obtain converges on some open interval. If so, it then represents a solution of 
the differential equation on that interval. The following theorem (which we state 
without proof) may be used for this purpose. 

THEOREM 3 Radius of Convergence 

Given the power series L cnxn , suppose that the limit 

. I Cn I p =  hm --n--+oo Cn+ l 
(25) 

exists (p i s  finite) or is  infinite (in this case we will write p = (0). Then 

(a) If p = 0, then the series diverges for all x f= O. 
(b) If 0 < p < 00, then L cnxn converges if I x I < p and diverges if I x I > p. 
(c) If p = 00, then the series converges for all x. 

The number p in (25) is called the radius of convergence of the power series 
L cnxn . For instance, for the power series obtained in Example 1 ,  we have 

1· I (- 1 )n2nco/n !  I l
' n + l  

p = 1m = 1m -- = 00 n--+oo (- 1 )n+ 1 2n+ l co/ (n + 1 ) !  n--+oo 2 ' 

and consequently the series we obtained in Example 1 converges for all x . Even 
if the limit in (25) fails to exist, there always will be a number p such that exactly 
one of the three alternatives in Theorem 3 holds. This number may be difficult to 
find, but for the power series we will consider in this chapter, Eq. (25) will be quite 
sufficient for computing the radius of convergence. 
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Exa mple 2 Solve the equation (x - 3)y' + 2y = O. 

Solution As before, we substitute 

to obtain 

so that 

00 
and y' = L nCnxn- l 

n=l 

00 00 
(x - 3) L ncnxn- 1 + 2 L cnxn = 0, 

n= l n=O 

00 00 00 
L ncnxn - 3 L ncnxn- 1 + 2 L cnxn = O. 
n= l n= l n=O 

In the first sum we can replace n = 1 with n = 0 with no effect on the sum. In the 
second sum we shift the index of summation by + 1 . This yields 

that is, 

00 00 00 
L ncnxn - 3 L (n + 1 )cn+ 1Xn + 2 L cnxn = 0; 
n=O n=O n=O 

00 
L [ncn - 3 (n + 1 )Cn+ l + 2cn ] xn = O. 
n=O 

The identity principle then gives 

nCn - 3 (n + l )cn+ l + 2cn = 0, 

from which we obtain the recurrence relation 

n + 2 
C - C n+ l - 3 (n + 1 )  n for n ;:;; O. 

We apply this formula with n = 0, n = 1 , and n = 2, in tum, and find that 

3 3 
C2 = --Cl = -co , 

3 · 2 32 

This is almost enough to make the pattern evident; it is not difficult to show by 
induction on n that 

n + l  
Cn = -- co if n ;:;; 1 . 3n 

Hence our proposed power series solution is 

Its radius of convergence is 

. I Cn I . 3n + 3 
p = hm -- = hm -- = 3 .  n--->oo Cn+ l n--->oo n + 2 

(26) 
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Thus the series in (26) converges if -3 < x < 3 and diverges if I x l > 3. In this 
particular example we can explain why. An elementary solution (obtained by sepa
ration of variables) of our differential equation is y = 1 / (3 - X)2 . If we differentiate 
termwise the geometric series 

we get a constant multiple of the series in (26) . Thus this series (with the arbitrary 
constant Co appropriately chosen) represents the solution 

1 
y(x) = 

(3 _ X)2 

on the interval -3  < x < 3 ,  and the singularity at x = 3 is the reason why the 
radius of convergence of the power series solution turned out to be p = 3 . • 

Solve the equati���2y/-';';; -y - x - 1 .  . 

Solution We make the usual substitutions y = L cnxn and y' = L ncnxn- 1 , which yield 

so that 

00 00 
x2L ncnXn- 1 = - 1 - x + L cnXn 

n= l n=O 

00 00 
L ncnXn+ 1 = - 1  - x + L cnXn . 
n= l n=O 

Because of the presence of the two terms - 1  and -x on the right-hand side, we need 
to split off the first two terms, Co + CI X ,  of the series on the right for comparison. If 
we also shift the index of summation on the left by - 1  (replace n = 1 with n = 2 
and n with n - 1 ), we get 

00 00 
L (n - I )Cn_ lXn = - 1  - x + Co + C I X + L cnXn . 
n� n� 

Because the left-hand side contains neither a constant term nor a term containing 
x to the first power, the identity principle now yields Co = I ,  Cl = 1 ,  and Cn = 
(n - 1 )cn- l for n � 2. It follows that 

C2 = 1 . C l = 1 ! , C3 = 2 · C2 = 2 ! , C4 = 3 . C3 = 3 ! , 

and, in general, that 

Cn = (n - l ) !  for n � 2. 

Thus we obtain the power series 

00 
y(x) = 1 + x + L (n _ l ) ! xn . 

n=2 
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Exa m ple 4 

But the radius of convergence of this series is 

. (n - I ) !  1 
p = hm = lim - = 0,  n--->oo n !  n--->oo n 

so the series converges only for x = O. What does this mean? Simply that the 
given differential equation does not have a (convergent) power series solution of the 
assumed form y = L cnxn . This example serves as a warning that the simple act of 
writing y = L cnxn involves an assumption that may be false. • 

.... . ....... 

Solve the equation y" + y = O. 

Solution If we assume a solution of the form 

we find that 

00 
y

' = L ncnXn- ) 
n= ) 

and 
00 

y
" = L n (n - l )cnxn-2 . 

n=2 

Substitution for y and y" in the differential equation then yields 

00 00 
L n (n - l )cnxn-2 + L cnxn = O. 
n=2 n=O 

We shift the index of summation in the first sum by +2 (replace n = 2 with n = 0 
and n with n + 2) . This gives 

00 00 
L (n + 2) (n + l ) cn+2xn + L cnxn = O. 
n=O n=O 

The identity (n + 2) (n + l ) cn+2 + Cn = 0 now follows from the identity principle, 
and thus we obtain the recurrence relation 

Cn+2 = (n + l ) (n + 2) 
(27) 

for n � O. It is evident that this formula will determine the coefficients Cn with even 
subscript in terms of Co and those of odd subscript in terms of C) ; Co and C) are not 
predetermined and thus will be the two arbitrary constants we expect to find in a 
general solution of a second-order equation. 

When we apply the recurrence relation in (27) with n = 0, 2, and 4 in turn, 
we get 

Co Co C2 = - 2!  ' 
C4 = 4! ' 

Taking n = 1 , 3 , and 5 in turn, we find that 

C)  
C3 = -

3 ! ' 
C)  

C5 - - 5 ! ' 

Co 
and C6 = -- . 6 ! 

and 
C) 

C7 = -- . 7 !  
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Again, the pattern is clear; we leave it for you to show (by induction) that for k � 1 ,  

Thus we  get the power series solution ( x2 X4 x6 ) ( x3 x5 X 7 ) 
y(x )  = Co 1 - - + - - - + . . .  + Cl X - - + - - - + . . .  . 

2 !  4! 6 !  3 !  5 !  7 !  ' 

that is, y (x)  = Co cos x + Cl sin x .  Note that we have no problem with the radius of 
convergence here; the Taylor series for the sine and cosine functions converge for 
all x .  • 

The solution of Example 4 can bear further comment. Suppose that we had 
never heard of the sine and cosine functions, let alone their Taylor series. We would 
then have discovered the two power series solutions 

and 

00 (_ 1 )n x2n x2 X4 
C (x)  = L = 1 - - + - - . . .  

n=O (2n ) !  2 !  4 ! 

00 (_ 1 )n x2n+l x3 x5 
S(x )  = � (2n + I ) !  

= x -
3 !  

+ 5! - . .
. 

(28) 

(29) 

of the differential equation y" + y = O. Both of these power series converge for 
all x .  For instance, the ratio test in Theorem 3 implies convergence for all z of the 
series L ( _ 1 )n zn /(2n ) !  obtained from (28) by writing z = x2 . Hence it follows that 
(28) itself converges for all x ,  as does (by a similar ploy) the series in (29). 

It is clear that C (0) = 1 and S (0) = 0, and termwise differentiation of the two 
series in (28) and (29) yields 

C' (x ) = -S(x) and S' (x ) = C (x) .  (30) 

Consequently, C' (0) = 0 and S' (0) = 1 .  Thus with the aid of the power series 
method (all the while knowing nothing about the sine and cosine functions), we 
have discovered that y = C (x) is the unique solution of 

y" + y = 0 

that satisfies the initial conditions y (O) = 1 and y' (O) = 0, and that y = S(x) 
is the unique solution that satisfies the initial conditions y (O) = 0 and y' (O) = 1 .  
It follows that C (x )  and S(x )  are linearly independent, and-recognizing the im
portance of the differential equation y" + y = O-we can agree to call C the cosine 
function and S the sine function. Indeed, all the usual properties of these two func
tions can be established, using only their initial values (at x = 0) and the derivatives 
in (30); there is no need to refer to triangles or even to angles. (Can you use the 
series in (28) and (29) to show that [C (x) ]2 + [S(x ) ]2 = 1 for all x?) This demon
strates that 

The cosine and sine functions are fully determined by the differen
tial equation y" + y = 0 of which they are the two natural linearly 
independent solutions. 



206 Chapter 3 Power Series Methods 

Figures 3 . 1 .2 and 3 . 1 . 3  show how the geometric character of the graphs of cos x and 
sin x is revealed by the graphs of the Taylor polynomial approximations that we get 
by truncating the infinite series in (28) and (29). 

This is by no means an uncommon situation. Many important special func
tions of mathematics occur in the first instance as power series solutions of differ
ential equations and thus are in practice defined by means of these power series. 
In the remaining sections of this chapter we will see numerous examples of such 
functions. 

y 
n = 8  n = 1 6 n = 24 

n = 6  n = 14 n = 22 

FIGURE 3.1.2. Taylor polynomial approximations to 
cos x .  

In Problems 1 through 10, find a power series solution of the 
given differential equation. Determine the radius of conver
gence of the resulting series, and use the series in Eqs. (5) 
through (12) to identify the series solution in terms of famil
iar elementary functions. (Of course, no one can prevent you 
from checking your work by also solving the equations by the 
methods of earlier chapters!) 
1. y' = Y 
3. 2y' + 3y = 0 
5. y' = x2y 
7. (2x - l )y' + 2y = 0 
9. (x - l )y' + 2y = 0 

2. y' = 4y 
4. y' + 2xy = 0 
6. (x - 2)y' + y = 0 
8. 2(x + l )y' = Y 

10. 2(x - l ) y' = 3y 

In Problems 1 1 through 14, use the method of Example 4 to find 
two linearly independent power series solutions of the given 
differential equation. Determine the radius of convergence of 
each series, and identify the general solution in terms offamil
iar elementary functions. 
11. y" = Y 
13. y" + 9y = 0 

12. y" = 4y 
14. y" + y = x 

Show (as in Example 3) that the power series method fails to 
yield a power series solution of the form y = L cnx" for the 
differential equations in Problems 15 through 18. 
15. xy' + y = 0 
17. x2y' + y = 0 

16. 2xy' = y 
18. x3y' = 2y 

y 
n = 5 n = 1 3 n = 2 1 

n = 7  n = 1 5 n = 23 

FIGURE 3.1.3. Taylor polynomial approximations to 
sin x .  

In Problems 19 through 22, first derive a recurrence relation 
giving Cn for n � 2 in terms of Co or c, (or both). Then ap
ply the given initial conditions to find the values of Co and c, . 
Next determine Cn (in terms of n, as in the text) and, finally, 
identify the particular solution in terms offamiliar elementary 
functions. 
19. y" + 4y = 0; y eO) = 0, y' (O) = 3 
20. y" - 4y = 0; y eO) = 2, y' (O) = 0 
21. y" - 2y' + y = 0; y eO) = 0, y' (O) = 1 
22. y" + y' - 2y = 0; y eO) = 1 ,  y' (O) = -2 
23. Show that the equation 

has no power series solution of the form y = L c.x· . 
24. Establish the binomial series in ( 1 2) by means of the fol

lowing steps .  (a) Show that y = (1 + x)'" satisfies the 
initial value problem ( 1  +x)y' = ay, y eO) = 1 . (b) Show 
that the power series method gives the binomial series in 
( 1 2) as the solution of the initial value problem in part (a), 
and that this series converges if Ix l < 1 .  (c) Explain why 
the validity of the binomial series given in ( 1 2) follows 
from parts (a) and (b) . 

25. For the initial value problem 

y" = y' + y , y eO) = 0, y ( l ) = 1 



derive the power series solution 

00 F. 
y (x)  = L -Txn 

n= 1 n .  

where { Fn }�o i s  the sequence 0 , 1 ,  1 ,  2 ,  3 ,  5 ,  8 ,  1 3 ,  
. . .  o f  Fibonacci numbers defined by Fo = 0, FI = 1 ,  
Fn = Fn -2 + Fn - I for n > 1 .  

26. (a) Show that the solution of the initial value problem 

y' = 1 + y2 , y eO) = 0 
is y (x)  = tan x .  (b) Because y (x)  = tan x is an odd 
function with y' (0) = 1 ,  its Taylor series is of the form 

y = x + C3X3 + csx
s + C7X 7 + . . . . 

Substitute this series in y' = 1 + y2 and equate like powers 
of x to derive the following relations: 

3C3 = 1 ,  5cs = 2C3 , 
7C7 = 2cs + (C3 )2 , 9C9 = 2C7 + 2C3CS , 

l l c i l = 2C9 + 2C3C7 + (CS )2 . 

(c) Conclude that 

1 2 1 7  
tan x = x + _ x 3 + _x

s + _ x
7 

3 1 5  3 1 5  

62 9 1 382 I I  + 
2835

x + 
1 55925

x + . . . . 

(d) Would you prefer to use the Maclaurin series formula 
in ( 1 3) to derive the tangent series in part (c)? Think about 
it ! 
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27. This section introduces the use of infinite series to solve 
differential equations. Conversely, differential equations 
can sometimes be used to sum infinite series . For exam
ple, consider the infinite series 

1 1 1 1 1  
1 + - - - + - + - - - + · · · · 

I !  2! 3 !  4! 5 !  ' 

note the + + - + + - . . .  pattern of signs superimposed 
on the terms of the series for the number e. We could 
evaluate this series if we could obtain a formula for the 
function 

1 2 1 3 1 4 1 5 J (x) = 1 + x - -x + - x  + -x - -x + . . .  
2!  3 !  4!  5 !  ' 

because the sum of the numerical series in question is sim
ply J ( I ) .  (a) It 's possible to show that the power series 
given here converges for all x and that termwise differen
tiation is valid. Given these facts, show that J(x)  satisfies 
the initial value problem 

/3) = y ; y eO) = y' (O) = 1 ,  y" (O) = - 1 . 

(b) Solve this initial value problem to show that 

For a suggestion, see Problem 48 of Section 2.3. (c) Eval
uate J ( 1 )  to find the sum of the numerical series given 
here. 

_ Series Solutions Near Ordinary Points 
" -.--� 

The power series method introduced in Section 3 . 1 can be applied to linear equa
tions of any order (as well as to certain nonlinear equations), but its most important 
applications are to homogeneous second-order linear differential equations of the 
form 

A (x)y" + B (x)y' + C (x)y = 0, ( 1 )  

where the coefficients A ,  B ,  and C are analytic functions of x .  Indeed, in most 
applications these coefficient functions are simple polynomials. 

We saw in Example 3 of Section 3 . 1 that the series method does not always 
yield a series solution. To discover when it does succeed, we rewrite Eq. ( 1 )  in the 
form 

y" + P (x)y' + Q (x)y  = 0 (2) 

with leading coefficient 1 ,  and with P = B / A and Q = C / A. Note that P (x) and 
Q (x)  will generally fail to be analytic at points where A (x)  vanishes. For instance, 
consider the equation 

xy" + y' + xy = O. (3) 
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Exa m ple 2 

Exa m ple 3 

The coefficient functions in (3) are continuous everywhere. But in the form of (2) it 
is the equation 

1 
y" + -y' + y = 0 

x 

with P (x)  = l /x not analytic at x = O. 

(4) 

The point x = a is called an ordinary point of Eq. (2)-and of the equivalent 
Eq. ( 1 )-provided that the functions P (x)  and Q (x)  are both analytic at x = a. 
Otherwise, x = a is a singular point. Thus the only singular point of Eqs. (3) and 
(4) is x = O. Recall that a quotient of analytic functions is analytic wherever the 
denominator is nonzero. It follows that, if A (a ) =1= 0 in Eq. ( 1 )  with analytic coef
ficients , then x = a is an ordinary point. If A (x) ,  B (x) ,  and C (x)  are polynomials 
with no common factors, then x = a is an ordinary point if and only if A (a) =1= O. 

xy" + (sin x)y' + x2y = 0, 

despite the fact that A (x)  = x vanishes at x = O. The reason is that 

is nevertheless analytic at x = 0 because the division by x yields a convergent power 
series .  • 

The point x = 0 is not an ordinary point of the equation 

For while P (x )  = x2 is analytic at the origin, Q (x)  = X I /2 is not. The reason is 
that Q (x)  is not differentiable at x = 0 and hence is not analytic there. (Theorem 1 
of Section 3 . 1  implies that an analytic function must be differentiable. )  • 

. ,. .. �" 

The point x = 0 is an ordinary point of the equation 

because the coefficient functions A (x ) ,  B (x) ,  and C (x)  are polynomials with 
A (O) =1= O. • 

Theorem 2 of Section 2. 1 implies that Eq. (2) has two linearly independent 
solutions on any open interval where the coefficient functions P (x)  and Q (x)  are 
continuous .  The basic fact for our present purpose is that near an ordinary point a, 
these solutions will be power series in powers of x - a . A proof of the following 
theorem can be found in Chapter 3 of Coddington, An Introduction to Ordinary 
Differential Equations (Englewood Cliffs, N.J . :  Prentice Hall, 1 96 1 ) .  
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TH EOREM 1 Solutions Near an Ordinary Point 

Suppose that a is an ordinary point of the equation 

A (x )y" + B (x)y' + C (x)y = 0; ( 1 )  

that i s ,  the functions P = BIA and Q = CIA are analytic at x = a .  Then Eq. ( 1 )  
has two linearly independent solutions, each o f  the form 

00 
y (x )  = I>n (X - at· (5) 

n=O 
The radius of convergence of any such series solution is at least as large as the 
distance from a to the nearest (real or complex) singular point of Eq. ( 1 ) . The 
coefficients in the series in (5) can be determined by its substitution in Eq. ( 1 ) . 

Determine the radius of convergence guaranteed by Theorem 1 of a series solution 
of 

(6) 

in powers of x. Repeat for a series in powers of x - 4. 

Solution This example illustrates the fact that we must take into account complex singular 
points as well as real ones . Because 

x 
P (x )  = 

x2 + 9  
and 

x2 
Q (x )  = 

x2 + 9 ' 

the only singular points of Eq. (6) are ±3i . The distance (in the complex plane) 
of each of these from 0 is 3, so a series solution of the form L cnxn has radius 
of convergence at least 3 . The distance of each singular point from 4 is 5, so a 
series solution of the form L Cn (x - 4 t has radius of convergence at least 5 (see 
Fig. 3 .2. 1 ) .  • 

y 

x 

-3; 

FIGURE 3.2.1. Radius of convergence as distance to nearest singularity. 
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Exa mple 5 Find the general solution in powers of x of 

(x2 - 4)y" + 3xy' + y = o. (7) 
Then find the particular solution with y(O) = 4, y' (0) = I .  

Solution The only singular points of Eq. (7) are ±2, so the series we get will have radius 
of convergence at least 2. (See Problem 35 for the exact radius of convergence.) 
Substitution of 

00 
_ '"'  n y - L.,. cnx , 

n=O 

in Eq. (7) yields 

00 
, '"'  n- l y = L.,. ncnx , 

n=l 

00 

and y" = L n (n - l ) cnxn-2 
n=2 

00 00 00 00 
L n (n - l )cnxn - 4 L n (n - l )cnxn-2 + 3 L ncnXn + L Cnxn = o. 
n=2 n=2 n=l n=O 

We can begin the first and third summations at n = 0 as well, because no nonzero 
terms are thereby introduced. We shift the index of summation in the second sum 
by +2, replacing n with n + 2 and using the initial value n = O. This gives 

00 00 00 00 
L n (n - I )cnxn - 4 L (n + 2) (n + l ) cn+2Xn + 3 L ncnxn + L cnxn = o. 
n=O n=O n=O n=O 

After collecting coefficients of Cn and Cn+2 , we obtain 

00 

L [ (n2 + 2n + l ) cn - 4(n + 2) (n + l )Cn+2] xn = o. 
n=O 

The identity principle yields 

(n + 1 )2cn - 4(n + 2) (n + I )Cn+2 = 0, 

which leads to the recurrence relation 

(n + l )cn Cn+2 = 
4(n + 2) 

for n ;; O. With n = 0, 2, and 4 in tum, we get 

5C4 3 ·  5co 
and C6 = -- = . 

4 . 6 43 
• 2 . 4 . 6 

Continuing in this fashion, we evidently would find that 

1 . 3 . 5 . . .  (2n - I )  
C2n = -------Co · 4n 

• 2 . 4 . . .  (2n) 

With the common notation 

(2n + I ) !  
(2n + I ) ! !  = 1 · 3  · 5 ·  . .  (2n + I )  = ---2n . n !  

(8) 
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and the observation that 2 . 4 . 6 ·  . .  (2n) = 2n . n ! ,  we finally obtain 

(2n - l ) ! !  
C2n = 

23n • n !  
co · 

(We also used the fact that 4n . 2n = 23n .) 
With n = 1 , 3 ,  and 5 in Eq. (8), we get 

4C3 2 ·  4C l 
Cs = -- = , 4 · 5  42 . 3 . 5 

It is apparent that the pattern is 

and 
6cs 2 · 4 ·  6C l 

C7 = -- = . 
4 . 7 43 . 3 . 5 . 7 

2 . 4 . 6 . . .  (2n) n !  
C2n+ 1 = Cl = Cl · 4n • 1 · 3 · 5 ·  . .  (2n + 1 )  2n . (2n + I ) ! !  

(9) 

( 10) 

The formula in (9) gives the coefficients of even subscript in terms of co ; the 
formula in ( 1 0) gives the coefficients of odd subscript in terms of Cl . After we 
separately collect the terms of the series of even and odd degree, we get the general 
solution 

Alternatively, 

y (x)  = Co 1 + -x + -x + --x + . . .  ( 1 2 3 4 5 6 ) 
8 1 28 1 024 ( 1 3 I s 1 7 ) + Cl x + -x + -x + -x + . . . . 

6 30 140 ( 1 1 ') 

Because y (O) = Co and y' (O) = Cl , the given initial conditions imply that Co = 4 
and Cl = 1 . Using these values in Eq. ( 1 1 ') , the first few terms of the particular 
solution satisfying y (O) = 4 and y' (O) = 1 are 

1 2 1 3 3 4 I s y (x)  = 4 + x + 2x + 6x + 
32

x + 
30

x + . . . . ( 12) 

• 

Remark: As in Example 5 ,  substitution of y = L cnxn in a linear second
order equation with x = 0 an ordinary point typically leads to a recurrence relation 
that can be used to express each of the successive coefficients C2 , C3 , C4 , • • •  in 
terms of the first two, Co and Cl . In this event two linearly independent solutions are 
obtained as follows. Let Yo (x) be the solution obtained with Co = 1 and Cl = 0, and 
let Yl (x) be the solution obtained with Co = 0 and Cl = 1 . Then 

yo (O) = 1 , yb (O) = 0 and Yl (0) = 0, y� (0) = 1 ,  

so it i s  clear that Yo and Yl are linearly independent. In Example 5 ,  yo (x) and Yl (x) 
are defined by the two series that appear on the right-hand side in Eq. ( 1 1 ), which 
expresses the general solution in the form Y = CoYo + Cl YI . • 
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Translated Series Solutions 

If in Example 5 we had sought a particular solution with given initial values y(a) 
and y' (a ) ,  we would have needed the general solution in the form 

00 
y(x) = LCn (X - a)n ; ( 1 3) 

n=O 
that is ,  in powers of x - a rather than in powers of x . For only with a solution of 
the form in ( 1 3) is it true that the initial conditions 

y (a)  = Co and y' (a ) = Cl 
determine the arbitrary constants Co and C l in terms of the initial values of y and y' . 
Consequently, to solve an initial value problem, we need a series expansion of the 
general solution centered at the point where the initial conditions are specified . 

Solve the initial value problem 

2 d2y dy (t - 2t - 3) 
dt2 

+ 3 (t - 1 )  
dt 

+ y = 0; y ( 1 )  = 4, y' ( 1 )  = - 1 . ( 14) 

Solution We need a general solution of the form L Cn (t - l )n . But instead of substituting this 
series in ( 1 4) to determine the coefficients, it simplifies the computations if we first 
make the substitution x = t - 1 ,  so that we wind up looking for a series of the form 
L cnxn after all. To transform Eq. ( 1 4) into one with the new independent variable 
x ,  we note that 

and 

t2 - 2t - 3 = (x + 1 )2 - 2(x + 1 )  - 3 = x2 - 4, 

dy dy dx dy , 
dt = dx dt 

= 
dx 

= Y , 

d2y _ [� (dY ) ] dx _ � , _ " 
dt2 - dx dx dt - dx 

(y ) - y , 

where primes denote differentiation with respect to x .  Hence we transform Eq. ( 14) 
into 

(x2 - 4)y" + 3xy' + y = 0 

with initial conditions y = 4 and y' = 1 at x = 0 (corresponding to t = 1 ) . This is 
the initial value problem we solved in Example 5 ,  so the particular solution in ( 12) 
is available. We substitute t - 1 for x in Eq. ( 1 2) and thereby obtain the desired 
particular solution 

1 1 
y (t )  = 4 + (t - 1 )  + "2 (t - 1 )2 + 6 (t - 1 )3 

3 4 1 5 + 32 (t - 1 )  + 
30 

(t - 1 )  + . . . . 
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This series converges if - 1  < t < 3 .  (Why?) A series such as this can be used to 
estimate numerical values of the solution. For instance, 

1 1 
y (0. 8) = 4 + (-0.2) + "2 (-0.2)2 + (5 (-0.2) 3 

so that y (0. 8) � 3 .8 1 88 .  

3 4 1 5 + - (-0 2) + - (-0.2) + . . .  
32 

. 30 ' 

• 

The last computation in Example 6 illustrates the fact that series solutions of 
differential equations are useful not only for establishing general properties of a 
solution, but also for numerical computations when an expression of the solution in 
terms of elementary functions is unavailable. 

Types of Recurrence Relations 

The formula in Eq. (8) is an example of a two-term recurrence relation; it expresses 
each coefficient in the series in terms of one of the preceding coefficients. A many
term recurrence relation expresses each coefficient in the series in terms of two or 
more preceding coefficients. In the case of a many-term recurrence relation, it is 
generally inconvenient or even impossible to find a formula that gives the typical 
coefficient Cn in terms of n . The next example shows what we sometimes can do 
with a three-term recurrence relation. 

Find two linearly independent solutions of 

y" - xy' - x2y = O. ( 1 5) 

Solution We make the usual substitution of the power series y = L cnxn . This results in the 
equation 

00 00 00 
Ln(n - l )cnxn-2 - LnCnxn - L Cnxn+2 = O. 
n=2 n=l n=O 

We can start the second sum at n = 0 without changing anything else. To make 
each term include xn in its general term, we shift the index of summation in the first 
sum by +2 (replace n with n + 2), and we shift it by -2 in the third sum (replace n 
with n - 2). These shifts yield 

00 00 00 
L(n + 2) (n + l )cn+2xn - LnCnxn - LCn-2Xn = O. 
n=O n=O n=2 

The common range of these three summations is n ;; 2, so we must separate the 
terms corresponding to n = 0 and n = 1 in the first two sums before collecting 
coefficients of xn . This gives 

00 
2C2 + 6C3X - CIX + L [(n + 2) (n + l )cn+2 - nCn - Cn-2] xn = O. 

n=2 
The identity principle now implies that 2C2 = 0, that C3 = iCl , and the three-term 
recurrence relation 

nCn + Cn-2 Cn+2 = (n + 2) (n + 1 )  
( 1 6) 
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for n ;; 2. In particular, 

5cs + C3 C7 = ---
42 

3C3 + Cl 
Cs = 

20 
6C6 + C4 Cg = 

56 

( 17) 

Thus all values of Cn for n ;; 4 are given in terms of the arbitrary constants Co and 
C l  because C2 = 0 and C3 = �Cl . 

To get our first solution Yl of Eq. ( 1 5) , we choose Co = 1 and Cl = 0, so that 
C2 = C3 = O. Then the formulas in ( 1 7) yield 

thus 

Cs = 0, 3 
C - -_ .  g - 1 1 20 ' 

1 4 1 6 3 g Yl (x) = 1 + -x + -x + --x + . . . . 
1 2  90 1 1 20 

( 18) 

Because C l  = C3 = 0, it is clear from Eq. ( 1 6) that this series contains only tenns of 
even degree. 

To obtain a second linearly independent solution Y2 of Eq. ( 1 5) ,  we take Co = 0 
and Cl = 1 ,  so that C2 = 0 and C3 = � .  Then the formulas in ( 1 7) yield 

so that 

C4 = 0, 
3 

Cs = 
40 ' C6 = 0, 

1 3 3 s 1 3  7 Y2 (X) = x + -x + -x + --x + . . . . 
6 40 1 008 

( 19) 

Because Co = C2 = 0, it is clear from Eq. ( 1 6) that this series contains only tenns 
of odd degree. The solutions Yl (x) and Y2 (x) are linearly independent because 
Yl (0) = 1 and Y� (0) = 0, whereas Y2 (0) = 0 and Y� (0) = 1 .  A general solution of 
Eq. ( 1 5) is a linear combination of the power series in ( 1 8) and ( 1 9) .  Equation ( 1 5) 
has no singular points, so the power series representing Yl (x) and Y2 (x ) converge 
for all x .  • 

The Legendre Equation 

The Legendre equation of order a is the second-order linear differential equation 

( 1  - x2)y" - 2xy' + a(a + 1 ) y  = 0, (20) 

where the real number a satisfies the inequality a > - 1 .  This differential equation 
has extensive applications, ranging from numerical integration formulas (such as 
Gaussian quadrature) to the problem of determining the steady-state temperature 
within a solid spherical ball when the temperatures at points of its boundary are 
known. The only singular points of the Legendre equation are at + 1 and - 1 , so 
it has two linearly independent solutions that can be expressed as power series in 
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powers of x with radius of convergence at least I .  The substitution y = L cmxm in 
Eq. (20) leads (see Problem 3 1 ) to the recurrence relation 

(a - m ) (a + m + 1 ) Cm+2 = - (m + 1 ) (m + 2) Cm (2 1 ) 

for m � O. We are using m as  the index of summation because we have another role 
for n to play. 

In terms of the arbitrary constants Co and CI , Eq. (2 1 ) yields 

a(a + I )  C2 = - Co , 2 ! 
(a - I ) (a + 2) C3 = - CI , 3 ! 

a (a - 2) (a + I ) (a + 3) C4 = Co , 4! 
(a - I ) (a - 3) (a + 2) (a + 4) Cs = CI . 5 ! 

We can show without much trouble that for m > 0, 

a (a - 2) (a - 4) · ·  · (a - 2m + 2) (a + 1 ) (a + 3) · ·  · (a + 2m - 1) C2m = (_ 1 )m (2m) ! Co 
(22) 

and 

m (a - I ) (a - 3) . . .  (a - 2m + 1 ) (a + 2) (a + 4) . . .  (a + 2m) C2m+ 1 = (- I )  
(2m + 1 ) ! CI · 

(23) 
Alternatively, 

where a2m and a2m+ l denote the fractions in Eqs. (22) and (23), respectively. With 
this notation, we get two linearly independent power series solutions 

00 
Yl (X) = Co L(_ 1 )ma2mx2m m=O 

of Legendre's equation of order a .  

00 
and Y2 (X) = CI L(- 1 )ma2m+ IX2m+ 1 m=O 

(24) 

Now suppose that a = n, a nonnegative integer. If a = n is even, we see 
from Eq. (22) that a2m = 0 when 2m > n .  In this case, YI (x) is a polynomial of 
degree n and Y2 is a (nonterminating) infinite series. If a = n is an odd positive 
integer, we see from Eq. (23) that a2m+ 1 = 0 when 2m + 1 > n . In this case, 
Y2 (x) is a polynomial of degree n and Yl is a (nonterminating) infinite series. Thus 
in either case, one of the two solutions in (24) is a polynomial and the other is a 
non terminating series. 
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_ Problems 

With an appropriate choice (made separately for each n)  of the arbitrary con
stants Co (n even) or c, (n odd), the nth-degree polynomial solution of Legendre's 
equation of order n , 

( 1  - x2)y" - 2xy' + n (n + 1 )y = 0, (25) 

is denoted by Pn (x ) and is called the Legendre polynomial of degree n. It is cus
tomary (for a reason indicated in Problem 32) to choose the arbitrary constant so 
that the coefficient of xn in Pn (x) is (2n ) ! 1  [2n (n ! )2] . It then turns out that 

L
N (- 1 )k (2n - 2k) ! n-2k Pn (x) = X , 

k=O 2nk !  (n - k) ! (n - 2k) ! 
(26) 

where N = [nI2] , the integral part of n12. The first six Legendre polynomials are 

PO (x) == 1 ,  

1 2 P2 (x) = 2 (3x - 1 ) ,  
1 3 P3 (x) = 2 (5x - 3x) ,  

1 
P4 (X) = g (35x4 - 30X2 + 3 ) ,  

1 
P5 (x) = g (63x5 - 70x3 + 1 5x ) ,  

and their graphs are shown in  Fig. 3 .2.2. 

y 

FIGURE 3.2.2. Graphs y = Pn (x) of the Legendre polynomials for 
n = 1 ,  2, 3 , 4, and 5 . The graphs are distinguished by the fact that all n 
zeros of Pn (x) lie in the interval - 1  < x < 1 .  

Find general solutions in powers of x of the differential equa
tions in Problems 1 through 15. State the recurrence relation 
and the guaranteed radius of convergence in each case. 

7. (x2 + 3)y" - 7xy' + 1 6y = 0 
8. (2 - x2)y" - xy' + 16y = 0 
9. (x2 - l )y" + 8xy' + 12y = 0 

1. (x2 - l )y" + 4xy' + 2y = 0 10. 3y" + xy' - 4y = 0 

2. (x2 + 2)y" + 4xy' + 2y = 0 
3. y" + xy' + y = 0 

11 .  5y" - 2xy' + lOy = 0 
12. y" - x2y' - 3xy = 0 

4. (x2 + l )y" + 6xy' + 4y = 0 13. y" + x2y' + 2xy = 0 

5. (x2 - 3)y" + 2xy' = 0 14. y" + xy = 0 (an Airy equation) 
6. (x2 - l )y" - 6xy' + 12y = 0 15. y" + x2y = 0 



Use power series to solve the initial value problems in Prob
lems 16 and 1 7. 
16. ( 1 + X2)y" + 2xy' - 2y = 0; y (O) = 0, y' (O) = 1 
17. y" + xy' - 2y = 0; y (O) = 1 ,  y' (O) = 0 

Solve the initial value problems in Problems 18 through 22. 
First make a substitution of the form t = x - a, then find a 
solution L cn tn of the transformed differential equation. State 
the interval of values of x for which Theorem 1 of this section 
guarantees convergence. 
18. y" + (x - 1 )y' + y = 0; y ( 1 ) = 2, y' ( I ) = 0 
19. (2x - x2)y" - 6(x - l )y' - 4y = 0; y ( 1 ) = 0, y'( I ) = 1 
20. (x2 - 6x + lO)y" - 4(x - 3)y' + 6y = 0; y (3) = 2, 

y'(3) = 0 
21. (4x2 + 16x + 17)y" = 8y; y (-2) = 1 ,  y'(-2) = 0 
22. (x2+6x)y" + (3x+9)y' -3y = 0; y ( -3) = 0, y'( -3) = 2 

1n Problems 23 through 26, find a three-term recurrence re
lation for solutions of the form y = L cnxn . Then find the 
first three nonzero terms in each of two linearly independent 
solutions. 
23. y" + ( 1  + x) y = 0 
24. (x2 - l)y" + 2xy' + 2xy = 0 
25. y" + x2y' + x2y = 0 
26. ( l  + x3 )y" + x4y = 0 
27. Solve the initial value problem 

y" + xy' + (2x2 + l )y = 0; y (O) = 1 ,  y' (O) = - 1 .  

Determine sufficiently many terms to compute y ( l j2) ac
curate to four decimal places .  

In Problems 28 through 30, find the first three nonzero terms 
in each of two linearly independent solutions of the form 
Y = L cnxn . Substitute known Taylor series for the analytic 
functions and retain enough terms to compute the necessary 
coefficients. 
28. y" + e-X y = 0 
29. (cos x)y" + y = 0 
30. xy" + (sin x)y ' + xy = 0 
31. Derive the recurrence relation in (2 1 )  for the Legendre 

equation. 
32. Follow the steps outlined in this problem to establish Ro

drigues's formula 

for the nth-degree Legendre polynomial . (a) Show that 
v = (x2 - 1 )n satisfies the differential equation 

( 1  - x2) v' + 2nxv = O. 

Differentiate each side of this equation to obtain 

( l  - x2)v" + 2(n - l )xv' + 2nv = O. 
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(b) Differentiate each side of the last equation n times in 
succession to obtain 

( 1 - x2)v(n+2) - 2xv(n+ l ) + n(n + l )v(n) = O. 

Thus u = v(n) = Dn (x2 - 1 )n satisfies Legendre's equa
tion of order n . (c) Show that the coefficient of xn 
in u is (2n) ! jn ! ; then state why this proves Rodrigues' 
formula. (Note that the coefficient of xn in Pn (x) is 
(2n) !j [2n (n ! )2] . ) 

33. The Hermite equation of order a is 

y" - 2xy' + 2ay = O. 

(a) Derive the two power series solutions 

� 2ma (a - 2) . . .  (a - 2m + 2) 
Yl = 1 + L., (- I )m x2m 

m= ] (2m) ! 

and 

Y2 = X  

� 2m (a - 1 ) (a - 3) . . . (a - 2m + 1 )  + L., (- I )m x2m+ l 
m=l  (2m + I ) ! . 

Show that Yl is a polynomial if a is an even integer, 
whereas Y2 is a polynomial if a is an odd integer. (b) The 
Hermite polynomial of degree n is denoted by Hn (x) . It 
is the nth-degree polynomial solution of Hermite's equa
tion, multiplied by a suitable constant so that the coeffi
cient of xn is 2n . Show that the first six Hermite polyno
mials are 

Ho (x) == 1 ,  

H2 (x) = 4x2 - 2, 

H4 (x) = 16x4 - 48x2 + 12,  

Hs (x) = 32xs - 160x3 + 1 20x . 

HI (x) = 2x , 

H3 (x) = 8x3 - 12x ,  

A general formula for the Hermite polynomials is 

Verify that this formula does in fact give an nth-degree 
polynomial . It is interesting to use a computer alge
bra system to investigate the conjecture that (for each 
n) the zeros of the Hermite polynomials Hn and Hn+ l 
are "interlaced"-that is, the n zeros of Hn lie in the n 
bounded open intervals whose endpoints are successive 
pairs of zeros of Hn+ 1 •  

34. The discussion following Example 4 in Section 3 . 1 sug
gests that the differential equation y" + y = 0 could be 
used to introduce and define the familiar sine and cosine 
functions. In a similar fashion, the Airy equation 

y" = xy 
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serves to introduce two new special functions that appear 
in applications ranging from radio waves to molecular vi
brations . Derive the first three or four terms of two dif
ferent power series solutions of the Airy equation. Then 
verify that your results agree with the formulas 

and 

� 1 . 4 . . . . . (3k - 2) 
Yl (x) = 1 + 8 (3k) ! X3k 

Y2 (X) = x 
+ f: 2 · 5 . . . . . (3k - 1) 

X3k+ l 

k= l (3k + 
I ) !  

for the solutions that satisfy the initial conditions Y l (0) = 
1 ,  Y ; (0) = 0 and Y2 (0) = 0, Y� (0) = 1 ,  respectively. The 
special combinations 

and 

B .  
Y l (x ) + Y2 (X) 

1 (x ) - --:'--c:-'--'c:;-- 3 1 /6r ( � ) 3- 1 /6r ( 1 ) 
define the standard Airy functions that appear in math
ematical tables and computer algebra systems. Their 
graphs shown in Fig. 3 .2 .3 exhibit trigonometric-like os
cillatory behavior for x < 0, whereas Ai (x)  decreases 
exponentially and Bi(x) increases exponentially as 
x --+ +00. It is interesting to use a computer algebra 
system to investigate how many terms must be retained in 
the Yl - and Y2-series above to produce a figure that is visu
ally indistinguishable from Fig. 3 .2 .3 (which is  based on 
high-precision approximations to the Airy functions). 

Regular Singular Points ...... . ... . . . . . . . . . 

y 

FIGURE 3.2.3. The Airy function graphs 
Y = Ai(x)  and Y = Bi(x ) .  

35. (a) To determine the radius of  convergence of  the series 
solution in Example 5, write the series of terms of even 
degree in Eq. ( 1 1 ) in the form 

00 00 
Yo (x ) = 1 + L C2nX2n = 1 + L anzn 

n= l n= l 

where an = C2n and z = x2 • Then apply the recurrence 
relation in Eq. (8) and Theorem 3 in Section 3 . 1 to show 
that the radius of convergence of the series in z is 4. Hence 
the radius of convergence of the series in x is 2. How does 
this corroborate Theorem 1 in this section? (b) Write the 
series of terms of odd degree in Eq. ( 1 1 ) in the form 

to show similarly that its radius of convergence (as a 
power series in x) is also 2. 

We now investigate the solution of the homogeneous second-order linear equation 

A (x)y" + B(x)y' + C(x)y = 0 ( 1 )  

near a singular point. Recall that i f  the functions A,  B ,  and C are polynomials 
having no common factors, then the singular points of Eq. ( 1 )  are simply those 
points where A (x) = O. For instance, x = 0 is the only singular point of the Bessel 
equation of order n,  

x2y" + xy' + (x2 - n2)y = 0, 

whereas the Legendre equation of order n,  

( 1  - x2)y" - 2xy' + n (n + l ) y  = 0, 

has the two singular points x = - 1 and x = 1 .  It turns out that some of the features 
of the solutions of such equations of the most importance for applications are largely 
determined by their behavior near their singular points . 
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We will restrict our attention to the case in which x = 0 is a singular point 
of Eq. ( 1 ) . A differential equation having x = a as a singular point is easily trans
formed by the substitution t = x - a into one having a corresponding singular point 
at O. For example, let us substitute t = x - I  into the Legendre equation of order n. 
Because 

, dy dy dt dy 
y = - = - - = -, dx dt dx dt 

and 1 - x2 = 1 - (t + 1 )2 = -2t - t2 , we get the equation 

d2y dy -t (t + 2)-2 - 2 (t + 1 )- + n (n + 1 )y = O. 
dt dt 

This new equation has the singular point t = 0 corresponding to x = 1 in the 
original equation; it has also the singular point t = -2 corresponding to x = - 1 . 

Types of Singular Points 

A differential equation having a singular point at 0 ordinarily will not have power 
series solutions of the form y (x) = L cnxn , so the straightforward method of Sec
tion 3 .2 fails in this case. To investigate the form that a solution of such an equation 
might take, we assume that Eq. ( 1 )  has analytic coefficient functions and rewrite it 
in the standard form 

y" + P(x)y' + Q(x)y = 0, (2) 

where P = BIA and Q = CIA . Recall that x = 0 is an ordinary point (as opposed 
to a singular point) of Eq. (2) if the functions P (x) and Q(x) are analytic at x = 
0; that is , if P (x) and Q (x ) have convergent power series expansions in powers 
of x on some open interval containing x = O. Now it can be proved that each 
of the functions P (x) and Q(x) either is analytic or approaches ±oo as x -+ O. 
Consequently, x = 0 is a singular point of Eq. (2) provided that either P(x) or 
Q (x) (or both) approaches ±oo as x -+ O. For instance, if we rewrite the Bessel 
equation of order n in the form 

" 1 , ( n2 ) 
y + -y + 1 - - y = 0, 

X x2 

we see that P (x) = 1 I x and Q (x) = 1 - (n I x)2 both approach infinity as x -+ O. 
We will see presently that the power series method can be generalized to apply 

near the singular point x = 0 of Eq. (2), provided that P (x) approaches infinity no 
more rapidly than 1 /x ,  and Q(x) no more rapidly than 1 /x2 , as x -+ O. This is a 
way of saying that P (x) and Q (x ) have only "weak" singularities at x = O. To state 
this more precisely, we rewrite Eq. (2) in the form 

where 

" + 
p(x) 

' + 
q (x) 

0 y --y -y = ,  
X x2 

p (x)  = xP (x) and q (x) = x2 Q (x) . 

(3) 

(4) 
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Exa m ple 1 

D E FI N ITION Regular Singular Point 

The singular point x = 0 of Eq. (3) is a regular singular point if the functions 
p (x) and q (x) are both analytic at x = O. Otherwise it is an irregular singular 
point. 

In particular, the singular point x = 0 is a regular singular point if p(x) and 
q (x)  are both polynomials. For instance, we see that x = 0 is a regular singular 
point of Bessel ' s  equation of order n by writing that equation in the form 

1 x2 - n2 
y" + -y' + 2 Y = 0, 

x x 

noting that p(x) == 1 and q (x) = x2 - n2 are both polynomials in x .  
By contrast, consider the equation 

2x3y" + ( 1  + x)y' + 3xy = 0, 

which has the singular point x = O. If we write this equation in the form of (3), we 
get 

" ( 1  + x)/ (2x2) , i 
0 y + y + 2"Y = . 

x x 
Because 

1 + x l I 
p (x) = -- = - + - � 00 

2x2 2x2 2x 
as x � 0 (although q (x) == i is a polynomial), we see that x = 0 is an irregular 
singular point. We will not discuss the solution of differential equations near irreg
ular singular points ; this is a considerably more advanced topic than the solution of 
differential equations near regular singular points . 

• �._� . �  _ _  ......... m .. _ _  • ______ � 

Consider the differential equation 

x2 ( 1  + x)y" + x (4 - x2)y' + (2 + 3x)y = O. 

In the standard form y" + Py' + Qy = 0 it is 

Because 

" 4 _ x2 , 2 + 3x 
y + x ( 1 + x) y + x2 ( 1  + x)

y = O. 

4 - x2 
P (x) - -x (-l

-
+
-
x-) 

and 
2 + 3x 

Q (x) = 
x2 ( 1  + x) 

both approach 00 as x � 0, we see that x = 0 is a singular point. To determine the 
nature of this singular point we write the differential equation in the form of Eq. (3): 

Thus 

" (4 - x2) / ( 1  + x) , (2 + 3x)/ ( 1  + x) 
0 y + y + 2 y =  . X X 

4 - x2 
p (x) = 

l + x 
2 + 3x 

and q (x) = -- .  
l + x 

Because a quotient of polynomials is analytic wherever the denominator is nonzero, 
we see that p(x) and q (x) are both analytic at x = O. Hence x = 0 is a regular 
singular point of the given differential equation. • 
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It may happen that when we begin with a differential equation in the general 
form in Eq. ( 1 )  and rewrite it in the form in (3), the functions p(x) and q (x) as given 
in (4) are indeterminate forms at x = O. In this case the situation is determined by 
the limits 

and 

Po = p (O) = lim p(x) = lim xP (x) 
x--->o x---> o 

qo = q(O) = lim q (x) = lim x2 Q (x) .  
x--->o x---> o 

(5) 

(6) 

If Po = 0 = qo , then x = 0 may be an ordinary point of the differential equation 
x2y" + xp (x)y' + q (x)y = 0 in (3) . Otherwise: 

• If both the limits in (5) and (6) exist and are finite, then x = 0 is a regular 
singular point. 

• If either limit fails to exist or is infinite, then x = 0 is an irregular singular 
point. 

Remark: The most common case in applications, for the differential equa
tion written in the form 

,, +
p (x)  , +

q (x) 0 y -- y - y = , 
X x2 (3) 

is that the functions p(x) and q (x) are polynomials. In this case Po = p(O) and 
qo = q (O) are simply the constant terms of these polynomials, so there is no need 
to evaluate the limits in Eqs . (5) and (6). • 

To investigate the nature of the point x = 0 for the differential equation 

x4y" + (x2 sin x)y' + ( 1  - cos x)y = 0, 

we first write it in the form in (3) : 

" (sin x)/x , ( 1  - cos x)/x2 
Y + y + 2 Y = O. x x 

Then I 'Hopital 's rule gives the values 

and 

. sin x . cos x 
Po = hm -- = hm -- = 1 

x---> o X x-->o 1 

1 - cos x sin x 1 
qo = lim = lim -- = -

x-->o x2 x---> o 2x 2 
for the limits in (5) and (6). Since they are not both zero, we see that x = 0 is not 
an ordinary point. But both limits are finite, so the singular point x = 0 is regular. 
Alternatively, we could write 



222 Chapter 3 Power Series Methods 

and 

1 - cos x 1 [ ( x2 X4 x6 ) ] 
q (x) = = - 1 - 1 - - + - - - + . . .  

x2 x2 2 !  4 !  6 !  

1 x2 x4 
= - - - + - - . . .  

2 !  4 !  6 !  
. 

These (convergent) power series show explicitly that p(x) and q (x) are analytic and 
moreover that Po = p(O) = 1 and qo = q (O) = 4 ,  thereby verifying directly that 
x = 0 is a regular singular point. • 

The Method of Frohenius 

We now approach the task of actually finding solutions of a second-order linear dif
ferential equation near the regular singular point x = O. The simplest such equation 
is the constant-coefficient equidimensional equation 

2 " , 0 x y + Poxy + qoY = (7) 

to which Eq. (3) reduces when p(x) == Po and q (x) == qo are constants . In this case 
we can verify by direct substitution that the simple power function y(x) = xr is a 
solution of Eq. (7) if and only if r is a root of the quadratic equation 

r (r - 1 )  + por + qo = O. (8) 

In the general case, in which p (x) and q (x) are power series rather than con
stants, it is a reasonable conjecture that our differential equation might have a solu
tion of the form 

00 00 
y (x ) = xr L cnxn = L cnxn+r = coxr + C1Xr+ 1 + C2Xr+2 + . . .  (9) 

n=O n=O 

-the product of xr and a power series. This turns out to be a very fruitful con
jecture; according to Theorem 1 (soon to be stated formally), every equation of the 
form in ( 1 )  having x = 0 as a regular singular point does,  indeed, have at least one 
such solution. This fact is the basis for the method of Frobenius, named for the 
German mathematician Georg Frobenius ( 1 848- 19 17) ,  who discovered the method 
in the 1 870s. 

An infinite series of the form in (9) is called a Frobenius series. Note that 
a Frobenius series is generally not a power series. For instance, with r = - 4  the 
series in (9) takes the form 

it is not a series in integral powers of x .  
To investigate the possible existence of Frobenius series solutions, we begin 

with the equation 

x2y" + xp(x)y' + q (x)y = 0 ( 1 0) 
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obtained by multiplying the equation in (3) by x2 • If x = 0 is a regular singular 
point, then p(x) and q (x)  are analytic at x = 0, so 

p(x) = Po + P IX + P2X2 + P3x3 + . . . , 
q (x) = qo + q lX + q2x2 + q3x3 + . . .  . 

Suppose that Eq. ( 1 0) has the Frobenius series solution 

00 
y = L Cnxn+r . 

n=O 

( 1 1 )  

( 12) 

We may (and always do) assume that Co t= 0 because the series must have a first 
nonzero term. Termwise differentiation in Eq. ( 1 2) leads to 

and 

00 
y' = L cn (n + r)xn+r- l 

n=O 

00 
y" = L cn (n + r) (n + r - I )xn+r-2 . 

n=O 

( 1 3) 

( 14) 

Substitution of the series in Eqs . ( 1 1 )  through ( 14) in Eg. ( 1 0) now yields 

[r (r - I )coxr + (r + 1 )rclxr+ 1 + . . . ] 
+ [Pox + PlX2 + . . .  ] . [rcoxr- l + (r + I )clxr + . . .  ] 
+ [qO + qlX  + . . .  ] . [coxr + CIXr+ 1 + . . .  ] = O. ( 15 )  

Upon mUltiplying initial terms of  the two products on the left-hand side here and 
then collecting coefficients of xr ,  we see that the lowest-degree term in Eg. ( 1 5) is 
co [r (r - 1 ) + por +qo]x r .  If Eq. ( 1 5) is to be satisfied identically, then the coefficient 
of this term (as well as those of the higher-degree terms) must vanish. But we are 
assuming that Co t= 0, so it follows that r must satisfy the quadratic equation 

r (r - 1 )  + por + qo = 0 ( 16) 

of precisely the same form as that obtained with the equidimensional equation in (7). 
Equation ( 1 6) is called the indicial equation of the differential equation in ( 10), and 
its two roots (possibly equal) are the exponents of the differential equation (at the 
regular singular point x = 0). 

Our derivation of Eq. ( 1 6) shows that if the Frobenius series y = xr L cnxn is 
to be a solution of the differential equation in ( 1 0) ,  then the exponent r must be one 
of the roots rl and r2 of the indicial equation in ( 1 6) .  If rl t= r2 , it follows that there 
are two possible Frobenius series solutions, whereas if rl = r2 there is only one 
possible Frobenius series solution; the second solution cannot be a Frobenius series. 
The exponents rl and r2 in the possible Frobenius series solutions are determined 
(using the indicial equation) by the values Po = p(O) and qo = q (O) that we have 
discussed. In practice, particularly when the coefficients in the differential equation 
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Exa mple 3 

in the original form in ( 1 )  are polynomials, the simplest way of finding Po and qo is 
often to write the equation in the form 

Po + PIX + P2x2 + . . . , qo + q ,x + q2x2 + . . .  
y

" + y + 2 Y = O. ( 17) x x 

Then inspection of the series that appear in the two numerators reveals the constants 
Po and qo · 

Find the exponents in the possible Frobenius series solutions of the equation 

Solution We divide each term by 2x2 (1 + x) to recast the differential equation in the form 

and thus see that Po = � and qo = - � .  Hence the indicial equation is 

r (r - 1) + �r - � = r2 + � r - � = (r +. l ) (r - � ) = 0, 

with roots r, = � and r2 = - 1 .  The two possible Frobenius series solutions are 
then of the forms 

00 
y, (x) = x '/2 Lanxn n=O 

Frohenius Series Solutions 

00 
and Y2 (X) = X- I Lbnxn . n=O 

• 

Once the exponents r, and r2 are known, the coefficients in a Frobenius series so
lution are determined by substitution of the series in Eqs. ( 1 2) through ( 14) in the 
differential equation, essentially the same method as was used to determine coef
ficients in power series solutions in Section 3 .2. If the exponents r, and r2 are 
complex conjugates, then there always exist two linearly independent Frobenius se
ries solutions . We will restrict our attention here to the case in which r, and r2 are 
both real . We also will seek solutions only for x > O. Once such a solution has 
been found, we need only replace xr[ with Ix Ir t to obtain a solution for x < O. 
The following theorem is proved in Chapter 4 of Coddington 's An Introduction to 
Ordinary Differential Equations. 
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TH EOREM 1 Frobenius Series Solutions 

Suppose that x = 0 is a regular singular point of the equation 

x2y" + xp (x)y' + q (x)y = o. ( 10) 

Let p > 0 denote the minimum of the radii of convergence of the power series 

00 00 
p (x) = L Pnxn and q (x) = L qnxn . 

n=O n=O 

Let rl and r2 be the (real) roots, with rl � r2 , of the indicial equation r (r - 1 )  + 
Por + qo = O. Then 

(a) For x > 0, there exists a solution of Eq. ( 1 0) of the form 

00 
Yl (X )  = xrl L anxn 

n=O 

corresponding to the larger root rl . 

(aO =I=- 0) ( 1 8) 

(b) If rl - r2 is neither zero nor a positive integer, then there exists a second 
linearly independent solution for x > 0 of the form 

00 

Y2 (X) = xr2 L bnxn 
n=O 

corresponding to the smaller root r2 . 

(bo =I=- 0) ( 19) 

The radii of convergence of the power series in Eqs. ( 1 8) and ( 1 9) are each at 
least p. The coefficients in these series can be determined by substituting the 
series in the differential equation 

x2y" + xp (x)y' + q (x)y = O. 

We have already seen that if r[ = r2 , then there can exist only one Frobenius 
series solution. It turns out that, if rl - r2 is a positive integer, there may or may 
not exist a second Frobenius series solution of the form in Eq. ( 1 9) corresponding to 
the smaller root r2 . These exceptional cases are discussed in Section 3 .4. Examples 
4 through 6 illustrate the process of determining the coefficients in those Frobenius 
series solutions that are guaranteed by Theorem 1 . 

Find the Frobenius series solutions of 

2x2y" + 3xy' - (x2 + 1 )y = o. (20) 

Solution First we divide each term by 2x2 to put the equation in the form in ( 17) :  

1 _ 1 _ 1x2 
y" + l.y' + 2 2 Y = O. 

X x2 (2 1 )  

We now see that x = 0 is a regular singular point, and that Po = � and qo = - � .  
Because p (x) == � and q (x) = -� - �X2 are polynomials, the Frobenius series we 
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obtain will converge for all x > O. The indicial equation is 

r (r - 1) + �r - 1 = (r - D (r + I ) = 0, 

so the exponents are rl = 1 and r2 = - I . They do not differ by an integer, so 
Theorem 1 guarantees the existence of two linearly independent Frobenius series 
solutions. Rather than separately substituting 

00 
YI = x l/2 L anXn 

n=O 

00 
and Y2 = x- I L bnxn 

n=O 

in Eq. (20) , it is more efficient to begin by substituting Y = xr L cnxn . We will 
then get a recurrence relation that depends on r .  With the value rl = 1 it becomes 
a recurrence relation for the series for YI , whereas with r2 = - I  it becomes a 
recurrence relation for the series for Y2 . 

and 

When we substitute 

00 
Y = L cnXn+r , 

n=O 

00 

00 
Y' = L(n + r)cnxn+r- I , 

n=O 

Y" = L(n + r) (n + r - l )cnxn+r-2 
n=O 

in Eq. (20)-the original differential equation, rather than Eq. (2 1 )-we get 

00 00 
2 L(n + r ) (n + r - 1 )cnxn+r + 3 L(n + r)cnxn+r 

n=O n=O 
00 00 

- L cnxn+r+2 
- L cnxn+r = O. (22) 

n=O n=O 

At this stage there are several ways to proceed. A good standard practice is to shift 
indices so that each exponent will be the same as the smallest one present. In this 
example, we shift the index of summation in the third sum by -2 to reduce its 
exponent from n + r + 2 to n + r . This gives 

00 00 
2 L(n + r) (n + r - l )cnxn+r + 3 L(n + r)cnxn+r 

n=O n=O 
00 00 

- L Cn_2Xn+r - L cnxn+r = O. (23) 
n=2 n=O 

The common range of summation is n � 2, so we must treat n = 0 and n = I 
separately. Following our standard practice, the terms corresponding to n = 0 will 
always give the indicial equation 

[2r (r - I )  + 3r - l ]co = 2 (r2 + 1 r - D Co = O. 
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The terms corresponding to n = 1 yield 

[2(r + l )r  + 3 (r + 1 ) - 1 ]c ,  = (2r2 + 5r + 2)c, = o. 

Because the coefficient 2r2 + 5r + 2 of c ,  is nonzero whether r = 4 or r = - 1 , it 
follows that 

C ,  = 0 (24) 

in either case. 
The coefficient of xn+r in Eq. (23) is 

2(n + r ) (n + r - l )cn + 3 (n + r)cn - Cn-2 - Cn = O. 

We solve for Cn and simplify to obtain the recurrence relation 

Cn-2 Cn = ------,::------2(n + r)2 + (n + r) - 1  
for n � 2. (25) 

CASE 1 :  r, = 4 .  We now write an in place of Cn and substitute r = 4 in Eq. (25) . 
This gives the recurrence relation 

for n � 2. (26) 

With this formula we can determine the coefficients in the first Frobenius solution 
y, . In view of Eq. (24) we see that an = 0 whenever n is odd. With n = 2, 4, and 6 
in Eq. (26) , we get 

a2 ao a - -4 - 44 - 6 1 6 ' 

Hence the first Frobenius solution is 

and 

y, (x) = aox ' /2 1 + - + - + -- + . . . . ( x2 x4 x6 ) 
14 6 1 6  55 ,440 

CASE 2 :  r2 = - 1 . We now write bn in place of Cn and substitute r = - 1 in 
Eq. (25) .  This gives the recurrence relation 

b _ bn-2 n - 2b2 - 3n 
for n � 2. (27) 

Again, Eq. (24) implies that bn = 0 for n odd. With n = 2, 4, and 6 in (27), we get 

bo b2 = - , 
2 

Hence the second Frobenius solution is 

Y2 (X) = box- ' 1 + - + - + -- + . . . . 
( x2 x4 x6 ) 

2 40 2 1 60 
• 
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Exa mple 5 
.�� U N  �.�_ •• __ _ � ••• _. _ _  _ _ _  _ _ __ _ _ __ __ H N  ___ _ • __ _ _ _ _ _ __ _ _  " _ _ _ _ _  � _ __ _  � 

Find a Frobenius solution of Bessel 's equation of order zero, 

(28) 

Solution In the fonn of ( 1 7) ,  Eq. (28) becomes 

" 1 , x2 Y + -y + -y = O. 
x x2 

Hence x = ° is a regular singular point with P (x) == 1 and q (x) = x2 , so our series 
will converge for all x > 0. Because Po = 1 and qo = 0, the indicial equation is 

r (r - 1) + r = r2 = 0. 

Thus we obtain only the single exponent r = 0, and so there is only one Frobenius 
series solution 

00 
y (x) = xO L cnxn n=O 

of Eq. (28); it is in fact a power series . 
Thus we substitute y = L cnxn in (28) ;  the result is 

00 00 00 
Ln(n - l)cnxn + LnCnxn + LcnXn+2 = 0. 
n� n� n� 

We combine the first two sums and shift the index of summation in the third by -2 
to obtain 

00 00 
L n2cnxn + L Cn_2Xn = 0. 
n=O n=2 

The tenn corresponding to xO gives ° = 0: no infonnation. The tenn corresponding 
to x 1 gives Cl = 0, and the tenn for xn yields the recurrence relation 

Cn-2 Cn = - -n2 for n � 2.  (29) 

Because Cl = 0, we see that Cn = ° whenever n is odd. Substituting n = 2, 4, and 
6 in Eq. (29) ,  we get 

Evidently, the pattern is 

The choice Co = 1 gives us one of the most important special functions in math
ematics, the Bessel function of order zero of the first kind, denoted by Jo (x) . 
Thus 

(30) 

In this example we have not been able to find a second linearly independent solution 
of Bessel 's equation of order zero. We will derive that solution in Section 3 .4 ; it will 
not be a Frobenius series . • 
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When Tl - T2 Is an Integer 
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Recall that, if rl - r2 is a positive integer, then Theorem 1 guarantees only the 
existence of the Frobenius series solution corresponding to the larger exponent rl . 

Example 6 illustrates the fortunate case in which the series method nevertheless 
yields a second Frobenius series solution. The case in which the second solution is 
not a Frobenius series will be discussed in Section 3 .4. 

Find the Frobenius series solutions of 

xy" + 2y' + xy = O. (3 1 )  

Solution In standard form the equation becomes 

" 2 , x2 
Y + -y + -y = 0, 

X x2 

so we see that x = 0 is a regular singular point with Po = 2 and qo = O. The 
indicial equation 

r (r - 1 )  + 2r = r (r + 1 )  = 0 
has roots rl = 0 and r2 = - 1 ,  which differ by an integer. In this case when rl - r2 
is an integer, it is better to depart from the standard procedure of Example 4 and 
begin our work with the smaller exponent. As you will see, the recurrence relation 
will then tell us whether or not a second Frobenius series solution exists. If it does 
exist, our computations will simultaneously yield both Frobenius series solutions. 
If the second solution does not exist, we begin anew with the larger exponent r = rl 

to obtain the one Frobenius series solution guaranteed by Theorem 1 .  
Hence we begin b y  substituting 

in Eq. (3 1 ) .  This gives 

00 00 
y = X- I L cnXn = L cnXn- 1 

n=O n=O 

00 00 00 
L (n - l ) (n - 2)cnxn-2 + 2 L (n - l )cnxn-2 + L cnXn = O. 
n=O n=O n=O 

We combine the first two sums and shift the index by -2 in the third to obtain 

00 00 
L n (n - l )cnxn-2 + L Cn_2Xn-2 = O. 
n=O n=2 

The cases n = 0 and n = 1 reduce to 

o . Co = 0 and 0 . CI = O. 

(32) 

Hence we have two arbitrary constants Co and CI and therefore can expect to find a 
general solution incorporating two linearly independent Frobenius series solutions. 
If, for n = 1 ,  we had obtained an equation such as O ·  CI = 3, which can be satisfied 
for no choice of CI , this would have told us that no second Frobenius series solution 
could exist. 
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Y 

Yl 

FIGURE 3.3.1.  The solutions 
cos x sin x 

Yl (x) = -- and Y2 (X) = --
x x 

in Example 6. 

Now knowing that all is well, from (32) we read the recurrence relation 

Cn-2 Cn = ----n (n - 1 ) for n � 2. 
The first few values of n give 

1 1 C2 = -�CO , 
1 Co C4 = ---C2 = -4 · 3 4 ! ' 

1 Co C6 = - 6 . 5 C4 = - 6 ! ' 

C3= - 3 . 2 C) ,  
1 C) Cs = ---C3 = -5 · 4 5 ! ' 

1 C) C7 = ---C6 = - _ .  

7 · 6 7 ! ' 

evidently the pattern is 

( - 1 )nc ) C2n+ ) = (2n + I ) !  
for n � 1 . Therefore, a general solution of Eq. (3 1 )  is 

Thus 

00 
y (x)  = x - I L cnxn n=O 

= Co (1 _ x2 + x4 _ . . . ) + C) (x _ x3 + xs _ . . .  ) 
x 2 !  4! x 3 !  5 !  

1 . 
y (x )  = - (co cos x + C) sm x) .  

x 

(33) 

We have thus found a general solution expressed as a linear combination of the two 
Frobenius series solutions 

cos x 
y) (x ) =-

x 

sin x 
and Y2 (X) = -- . 

x 
(34) 

As indicated in Fig. 3 .3 . 1 ,  one of these Frobenius series solutions is bounded but the 
other is unbounded near the regular singular point x = O-a common occurrence in 
the case of exponents differing by an integer. • 

Summary 

When confronted with a linear second-order differential equation 

A (x )y" + B (x)y' + C (x)y  = 0 

with analytic coefficient functions, in order to investigate the possible existence of 
series solutions we first write the equation in the standard form 

y" + P (x)y' + Q (x)y  = O. 

If P (x)  and Q (x)  are both analytic at x = 0, then x = 0 is an ordinary point, and 
the equation has two linearly independent power series solutions. 
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Otherwise, x = 0 is a singular point, and we next write the differential equa
tion in the form 

y" 
+ 

p(x) y' 
+ 

q (x) y = O. 
X X2 

If p (x) and q (x) are both analytic at x = 0, then x = 0 is a regular singular point. 
In this case we find the two exponents r1 and r2 (assumed real, and with r1 � r2) by 
solving the indicial equation 

r (r - 1 )  + por + qo = 0, 

where Po = p (O) and qo = q (O) . There always exists a Frobenius series solution y 
= xr1 L anxn associated with the larger exponent r1 , and if r1 - r2 is not an 

integer, the existence of a second Frobenius series solution Y2 = xr2 L bnxn is also 
guaranteed. 

In Problems 1 through 8, determine whether x = 0 is an ordi
nary point, a regular singular point, or an irregular singular 
point. If it is a regular singular point, find the exponents of the 
differential equation at x = O. 
1. xy" + (x - x3 )y ' + (sin x)y = 0 
2. xy" + x2y' + (eX - l )y = 0 
3. X2y" + (cos x)y' + xy = 0 
4. 3X3y" + 2x2y' + ( 1  - x2)y = 0 
5. x ( 1  + x)y" + 2y' + 3xy = 0 
6. x2 ( 1  - X2)y" + 2xy' - 2y = 0 
7. x2y" + (6 sin x)y' + 6y = 0  
8. (6x2 + 2x3 )y" + 2lxy' + 9 (x2 - 1 )y = 0 

If x = a oft 0 is a singular point of a second-order linear dif
ferential equation, then the substitution t = x - a transforms 
it into a differential equation having t = 0 as a singular point. 
We then attribute to the original equation at x = a the be
havior of the new equation at t = O. Classify (as regular or 
irregular) the singular points of the differential equations in 
Problems 9 through 16. 
9. ( 1 _ X)Y" + xy' + x2y = 0 

10. ( 1  - X)2y" + (2x - 2)y' + y = 0 
11. ( 1  - X2)y" - 2xy' + l 2y = 0 
12. (x - 2)3yll + 3 (x - 2)2y' + x3y = 0 
13. (x2 - 4)y" + (x - 2)y' + (x + 2)y = 0 
14. (x2 - 9)2y" + (x2 + 9)y' + (x2 + 4)y = 0 
15. (x - 2)2y" - (x2 - 4)y' + (x + 2)y = 0 
16. x3 ( 1 - X)y" + (3x + 2)y' + xy = 0 

Find two linearly independent Frobenius series solutions (for 
x > 0) of each of the differential equations in Problems 1 7  
through 26. 
17. 4xy" + 2y' + y = 0 
18. 2xy" + 3y' - y = 0 

19. 2xy" - y' - y = 0 

20. 3xy" + 2y' + 2y = 0 

21. 2X2y" + xy' - ( 1  + 2X2)y = 0 

22. 2X2y" + xy' - (3 - 2X2)y = 0 

23. 6X2y" + 7xy' - (x2 + 2)y = 0 

24. 3X2y" + 2xy' + x2y = 0 

25. 2xy" + ( 1  + x)y' + y = 0 

26. 2xy" + ( 1  - 2X2)y' - 4xy = 0 

Use the method of Example 6 to find two linearly independent 
Frobenius series solutions of the differential equations in Prob
lems 27 through 31. Then construct a graph showing their 
graphs for x > O. 
27. xy" + 2y' + 9xy = 0 

28. xy" + 2y' - 4xy = 0 

29. 4xy" + 8y' + xy = 0 

30. xy" - y' + 4x3y = 0 

31. 4X2y" - 4xy' + (3 - 4X2)y = 0 

In Problems 32 through 34, find the first three nonzero terms 
of each of two linearly independent Frobenius series solutions. 
32. 2X2y" + x (x + l )y' - (2x + l )y = 0 

33. (2x2 + 5x3 )y" + (3x - x2)y' - ( 1  + x)y = 0 

34. 2x2y" + (sin x)y' - (cos x)y = 0 

35. Note that x = 0 is an irregular point of the equation 

X2y" + (3x - l )y' + y = o. 

(a) Show that y = xr L cnxn can satisfy this equation 
only if r = O. (b) Substitute y = I >nxn to derive 
the "formal" solution y = L n !xn . What is the radius of 
convergence of this series? 



232 Chapter 3 Power Series Methods 

36. (a) Suppose that A and B are nonzero constants . Show 
that the equation x2y" + Ay' + By = 0 has at most one 
solution of the form y = xr L cnxn . (b) Repeat part (a) 
with the equation x3y" + Axy' + By = O. (c) Show 
that the equation x3y" + Ax2y' + By = 0 has no Frobe
nius series solution. (Suggestion: In each case substitute 
y = xr L cnxn in the given equation to determine the pos
sible values of r . ) 

37. (a) Use the method of  Frobenius to derive the solution 
Y I = x of the equation x3 y" - X y' + y = O. (b) Verify 
by substitution the second solution Y2 = xe- I /x •  Does Y2 
have a Frobenius series representation? 

38. Apply the method of Frobenius to Bessel's equation of 
order 1 ,  

x2y" + xy' + (x2 - D y = 0, 

to derive its general solution for x > 0, 

cos x sin x y(x) = Co ..jX + CI ..jX . 

Figure 3 .3 .2 shows the graphs of the two indicated solu
tions. 

y 

FIGURE 3.3.2. The solutions 
cos x sin x . 

Y I (x ) = ..jX and Y2 (X) = ..jX In 

Problem 38 .  

39. (a) Show that Bessel 's equation of order 1 ,  

x2y" + xy' + (x2 - l ) y  = 0, 

has exponents rl = 1 and r2 = - 1  at x = 0, and that the 
Frobenius series corresponding to rl = 1 is 

x 00 (_ I )nx2n 
JI (x) = 2" � n !  (n + 1 ) ! 22n · 

(b) Show that there is no Frobenius solution correspond
ing to the smaller exponent r2 = - 1 ;  that is, show that it 
is impossible to determine the coefficients in 

00 
Y2 (X ) = X-

I L cnXn . 
n=O 

40. Consider the equation x2y" + xy' + ( 1  - x)y = O. (a) 
Show that its exponents are ±i , so it has complex-valued 
Frobenius series solutions 

00 
i ,",  n y+ = X  � Pnx 
n=O 

00 
and y_ = x -i L qnxn 

n=O 

with Po = qo = 1 .  (b) Show that the recursion formula 
is Cn- I Cn = . 

n2 + 2rn 
Apply this formula with r = i to obtain Pn = Cn , then with 
r = -i to obtain qn = Cn . Conclude that Pn and qn are 
complex conjugates: Pn = an + ibn and qn = an - ibn , 
where the numbers {an } and {bn } are real . (c) Deduce 
from part (b) that the differential equation given in this 
problem has real-valued solutions of the form 

YI (x) = A (x)  cos (1n x)  - B(x)  sin(1n x) ,  

Y2 (X) = A (x)  sin(1n x)  + B(x )  cos (1n x) ,  

where A (x) = L anxn and B(x)  = L bnxn . 
41. Consider the differential equation 

x (x - l ) (x + 1 )2y" + 2x (x - 3 ) (x + l )y' - 2(x - l )y = 0 

that appeared in an advertisement for a symbolic algebra 
program in the March 1 984 issue of the American Math
ematical Monthly. (a) Show that x = 0 is a regular 
singular point with exponents rl = 1 and r2 = O. (b) It 
follows from Theorem 1 that this differential equation has 
a power series solution of the form 

Substitute this series (with C I = 1 )  in the differential equa
tion to show that C2 = -2, C3 = 3, and 

Cn+2 = 

(n2 - n)cn- I + (n2 - 5n - 2)cn - (n2 + 7n + 4)cn+ 1 
(n + 1 ) (n + 2) 

for n ;:;; 2. (c) Use the recurrence relation in part (b) 
to prove by induction that Cn = (_ 1 )n+ I n for n ;:;; 1 ( ! ) . 
Hence deduce (using the geometric series) that 

for 0 < x < 1 .  

X 
YI (x ) = 

( 1  + X)2 

42. This problem is a brief introduction to Gauss's bypergeo
metric equation 

x ( 1  - x)y" + [y - (a + f3 + 1 )x ]y' - af3y = 0, (35) 

where a, f3, and y are constants . This famous equation has 
wide-ranging applications in mathematics and physics. 
(a) Show that x = 0 is a regular singular point of Eq. (35), 
with exponents 0 and 1 - y. (b) If y is not zero or a neg
ative integer, it follows (why?) that Eq. (35) has a power 
series solution 

00 00 
y (x) = xo L cnXn = L cnXn 

n=O n=O 



3.4 Method of Frobenius :  The Exceptional  Cases 233 

with Co i= O. Show that the recurrence relation for this where an = a (a + I ) (a + 2) . . .  (a + n - I ) for n � I ,  
and f3n and Yn are defined similarly. (d) The series in (36) 
is  known as the hypergeometric series and is commonly 
denoted by F(a,  f3, y, x ) . Show that 

series is 
(a + n) (f3 + n) 

C - C n+ l - (y + n) ( l + n) n 

for n � O. (c) Conclude that with Co = 1 the series in 
part (b) is 

. I (I) F ( l ,  I ,  I ,  x ) = -- (the geometric series); 
I - x  

00 a R 
(36) 

(ii) x F ( l ,  1 , 2, -x ) = In( l + x) ; 
(iii) x F  G ,  1 ,  � ,  -x2) = tan- 1 x ;  y (x ) = I + L �xn 

n=O n ! Yn (iv) F(-k, 1 ,  I ,  -x ) = ( l  + X)k (the binomial series). 

IIIJ Method of Frobenius: The Exceptional Cases 

We continue our discussion of the equation 

,, +
p (x) , +

q (x) 0 y --y -y = 
X x2 ( 1 )  

where p(x) and q (x) are analytic at x = 0, and x = 0 is a regular singular point. If 
the roots rl and r2 of the indicial equation 

¢ (r) = r (r - 1 )  + por + qo = 0 (2) 

do not differ by an integer, then Theorem 1 of Section 3 .3 guarantees that Eq. ( 1 )  
has two linearly independent Frobenius series solutions .  We consider now the more 
complex situation in which rl - r2 is an integer. If rl = r2 , then there is only one 
exponent available, and thus there can be only one Frobenius series solution. But 
we saw in Example 6 of Section 3 .3 that if r) = r2 + N, with N a positive integer, 
then it is possible that a second Frobenius series solution exists. We will also see 
that it is possible that such a solution does not exist. In fact, the second solution 
involves In x when it is not a Frobenius series. As you will see in Examples 3 and 4, 
these exceptional cases occur in the solution of Bessel 's equation. For applications, 
this is the most important second-order linear differential equation with variable 
coefficients. 

The Nonlogarithmic Case with Tl = T2 + N 
In Section 3 .3 we derived the indicial equation by substituting the power series 
p(x) = L Pnxn and q (x) = L qnxn and the Frobenius series 

00 00 
y (x) = xr L cnxn = L cnxn+r 

n=O n=O 

in the differential equation in the form 

x2y" + xp(x)y' + q (x)y = O. 

(co i=- 0) (3) 

(4) 

The result of this substitution, after collection of the coefficients of like powers of 
x ,  is an equation of the form 

00 
L Fn (r)xn+r = 0 (5) 
n=O 
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Exa mple 1 

in which the coefficients depend on r . It turns out that the coefficient of xr is 

Fo(r) = [r (r - 1) + POr + qO]cO = cjJ (r)CO , (6) 

which gives the indicial equation because Co =1= 0 by assumption; also, for n � 1 ,  
the coefficient of xn+r has the form 

(7) 

Here Ln is a certain linear combination of Co , CI , . . .  , Cn- I . Although the exact 
formula is not necessary for our purposes, it happens that 

n- I Ln = I)(r + k)Pn-k + qn-k ]ck . (8) k=O 
Because all the coefficients in (5) must vanish for the Frobenius series to be a 

solution of Eq. (4), it follows that the exponent r and the coefficients Co, CI , . . .  , Cn 
must satisfy the equation 

cjJ (r + n)cn + Ln (r ; Co , CI , . . .  , cn-d = O. (9) 

This is a recurrence relation for Cn in terms of Co, CI , . . .  , Cn- I . 
Now suppose that rl = r2 + N with N a positive integer. If we use the larger 

exponent rl in Eq. (9), then the coefficient cjJ (rl + n) of Cn will be nonzero for every 
n � 1 because cjJ (r) = 0 only when r = rl and when r = r2 < rl . Once Co, CI , . . .  , Cn- I have been determined, we therefore can solve Eq. (9) for Cn and continue 
to compute successive coefficients in the Frobenius series solution corresponding to 
the exponent rl . 

But when we use the smaller exponent r2 , there is a potential difficulty in 
computing CN . For in this case cjJ (r2 + N) = 0, so Eq. (9) becomes 

( 1 0) 

At this stage Co , CI , . . .  , C N -I have already been determined. If it happens that 

then we can choose CN arbitrarily and continue to determine the remaining coeffi
cients in a second Frobenius series solution. But if it happens that 

then Eq. ( 1 0) is not satisfied with any choice of CN ; in this case there cannot exist a 
second Frobenius series solution corresponding to the smaller exponent r2 . Exam
ples 1 and 2 illustrate these two possibilities. 

Consider the equation 

( 1 1 )  

Here Po = 6 and qo = 0 ,  so  the indicial equation i s  

cjJ (r) = r (r - 1 )  + 6r = r2 + 5r = 0 ( 1 2) 
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with roots rl = 0 and r2 = -5 ; the roots differ by the integer N = 5 . We substitute 
the Frobenius series y = L cnxn+r and get 

00 00 
L(n + r) (n + r - l )cnxn+r + 6 L(n + r)cnxn+r n=O n=O 

00 00 
+ L(n + r)cnxn+r+ 1 + LCnxn+r+ l = o. 
n� n� 

When we combine the first two and also the last two sums, and in the latter shift the 
index by - 1 , the result is 

00 00 
L[(n + r)2 + 5 (n + r) ]cnxn+r + L(n + r)cn_ lXn+r = o. 
n=O n=! 

The terms corresponding to n = 0 give the indicial equation in ( 1 2), whereas for 
n � 1 we get the equation 

[ en + r)2 + 5 (n + r) ]cn + (n + r)cn- l = 0, ( 13) 

which in this example corresponds to the general solution in (9). Note that the 
coefficient of Cn is ¢ (n + r) . 

We now follow the recommendation in Section 3 .3 for the case rl = r2 + N: 
We begin with the smaller root r2 = -5 . With r2 = -5, Eq. ( 1 3) reduces to 

n (n - 5)cn + (n - 5)Cn- l = O. 

If n i= 5 , we can solve this equation for Cn to obtain the recurrence relation 

This yields 

Cl = -co , 

Cn- l Cn = - -n for n i= 5 . 

and 

( 14) 

( 1 5) 

( 16) 

In the case rl = r2 + N, it is always the coefficient CN that requires special consid
eration. Here N = 5, and for n = 5 Eq. ( 1 4) takes the form O ·  C5 + 0 = O. Hence 
C5 is a second arbitrary constant, and we can compute additional coefficients, still 
using the recursion formula in ( 1 5) : 

and so on. 

C5 C6 = - - , 6 
( 17) 
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Exa mple 2 

When we combine the results in ( 1 6) and ( 1 7), we get 

00 
y = X-5 L Cnxn n=O 

in terms of the two arbitrary constants Co and C5 . Thus we have found the two 
Frobenius series solutions 

and 

of Eq. ( 1 1 ) . • 
"" 

Determine whether or not the equation 

( 1 8) 
has two linearly independent Frobenius series solutions .  

Solution Here Po = - 1 and qo = -8, so the indicial equation is 

ljJ (r) = r (r - 1) - r - 8 = r2 - 2r - 8 = 0 

with roots rl = 4 and r2 = -2 differing by N = 6. On substitution of y 
L cnxn+r in Eq. ( 1 8) , we get 

00 00 
L(n + r) (n + r - 1)cnxn+r - L(n + r)cnxn+r �O n� 

00 00 
+ L cnxn+r+2 - 8 L cnxn+r = O. 
n=O n=O 

If we shift the index by -2 in the third sum and combine the other three sums, we 
get 

00 00 

L[(n + r)2 - 2(n + r) - 8]cnxn+r + LCn_2Xn+r = O. 
n� n� 

The coefficient of xr gives the indicial equation, and the coefficient of xr+ 1 gives 

[ (r + 1 )2 - 2(r + 1 ) - 8] Cl = O. 
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Because the coefficient of Cl is nonzero both for r = 4 and for r = -2, it follows 
that Cl = 0 in each case. For n � 2 we get the equation 

[ (n + r) 2 - 2(n + r) - 8] Cn + Cn-2 = 0, (19) 
which corresponds in this example to the general equation in (9) ; note that the coef
ficient of Cn is cp (n + r ) .  

We work first with the smaller root r = r2 = -2. Then Eq. ( 1 9) becomes 

n (n - 6)cn + Cn-2 = 0 
for n � 2. For n =1= 6 we can solve for the recurrence relation 

Cn-2 Cn = ----n (n - 6) 
Because Cl = 0, this formula gives 

Co C2 = 8 '  
C2 Co C4 = 8 = 64 ' 

Now Eq. (20) with n = 6 reduces to 

(n � 2, n =1= 6) . 

C3 = 0, 

and Cs = o.  

(20) 

(2 1) 

But Co =1= 0 by assumption, and hence there is no way to choose C6 so that this 
equation holds. Thus there is no Frobenius series solution corresponding to the 
smaller root r2 = -2. 

To find the single Frobenius series solution corresponding to the larger root 
rl = 4, we substitute r = 4 in Eq. ( 1 9) to obtain the recurrence relation 

This gives 

Cn-2 Cn = ----n(n + 6) (n � 2) . 

Co C2 = - 2 . 8 '  
C2 Co C4 = --- = . 4 · 10 2 · 4 · 8 · 1 0 

The general pattern is 

(- ltco (- 1 )n6co C2n = = . 2 · 4 · · ·  (2n) · 8 · 1 0 · · ·  (2n + 6) 22nn ! (n + 3) ! 
This yields the Frobenius series solution 

of Eq. ( 1 8) . 

(22) 

• 
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Reduction of Order 

When only a single Frobenius series solution exists, we need an additional tech
nique. We discuss here the method of reduction of order, which enables us to 
use one known solution YI of a second-order homogeneous linear differential equa
tion to find a second linearly independent solution Y2 . Consider the second-order 
equation 

Y" + P(x)y' + Q(x)y = 0 (23) 

on an open interval I on which P and Q are continuous.  Suppose that we know one 
solution YI of Eq. (23) . By Theorem 2 of Section 2. 1 ,  there exists a second linearly 
independent solution Y2 ; our problem is to find Y2 . Equivalently, we would like to 
find the quotient 

v ex) = 
Y2 (X) 

. 
YI (X) 

Once we know v ex ) ,  Y2 will then be given by 

(24) 

(25) 

We begin by substituting the expression in (25) in Eq. (23) , using the 
derivatives 

We get 
[vy�' + 2v'y� + V"YI ] + P [vy� + V'YI ] + QVYI = 0, 

and rearrangement gives 

[ II p '  Q ] " 2 " p '  0 V YI + YI + YI + V YI + V Yl + V YI = . 

But the bracketed expression in this last equation vanishes because YI is a solution 
of Eq. (23). This leaves the equation 

(26) 

The key to the success of this method is that Eq. (26) is linear in v'. Thus the 
substitution in (25) has reduced the second-order linear equation in (23) to the first
order (in v') linear equation in (26) . If we write u = v' and assume that YI (x) never 
vanishes on I , then Eq. (26) yields 

u' + (2�: + P(X ») u = O. (27) 

An integrating factor for Eq. (27) is 

thus 

p (x) = y� exp (/ P(x) dX) . 
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We now integrate the equation in (27) to obtain 

uyf exp (I P (X) dX) = C, so Vi = U = � exp (- 1 P (X) dX) . 

Another integration now gives 

Y2 _ _ 1 exp (- f P (x) dx ) - - v - C 2 dx + K . 
y, Y I 

With the particular choices C = 1 and K = 0 we get the reduction-of-order 
formula 

1 exp (- f P (x) dx ) 
Y2 = y, 2 dx . 

Y I 
(28) 

This formula provides a second solution Y2 (X ) of Eq. (23) on any interval where 
y, (x) is never zero. Note that because an exponential function never vanishes, Y2 (x) 
is a nonconstant multiple of Y I  (x) ,  so y, and Y2 are linearly independent solutions. 

For an elementary application of the reduction-of-order formula consider the differ
ential equation 

x2y" - 9xy' + 25y = O. 

In Section 3 .3 we mentioned that the equidimensional equation X2y" + Poxy' + 
qoY = 0 has the power function y (x )  = xr as a solution if and only if r is a root of 
the quadratic equation r2 + (Po - l )r  + qo = O. Here Po = -9 and qo = 25 , so our 
quadratic equation is r2 - lOr + 25 = (r - 5)2 = 0 and has the single (repeated) root 
r = 5 . This gives the single power function solution Y I  (x) = x5 of our differential 
equation. 

Before we can apply the reduction-of-order formula to find a second solution, 
we must first divide the equation X2y" - 9xy' + 25y = 0 by its leading coefficient 
x2 to get the standard form 

II 9 I 25 
y - -y  + -y = 0 

X x2 

in Eq. (23) with leading coefficient 1 .  Thus we have P (x) = -9/x and Q(x) = 
25/x2 , so the reduction-of-order formula in (28) yields the second linearly indepen
dent solution 

Y2 (X ) = x5 1 
(x!)2 exp (- 1 -� dX) dx 

= x5 1 x- I O exp (9 In x)  dx = x5 1 x- l Ox9 dx = x5 ln x 

for x > O. Thus our particular equidimensional equation has the two independent 
solutions YI (x) = x5 and Y2 (X) = x5 ln x for x > O. • 

Similar applications of the reduction-of-order formula can be found in Prob
lems 37-44 of Section 2.2-where we introduced the method of reduction of order 
in Problem 36 (though without deriving there the reduction-of-order formula itself). 
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The Logarithmic Cases 

We now investigate the general form of the second solution of the equation 

y" + 
p(x) y' + 

q (x) y = 0, X X2 ( I )  

under the assumption that its exponents rl and r2 = rl - N differ by the integer 
N � 0. We assume that we have already found the Frobenius series solution 

00 

YI (x) = xrl L anxn n=O 
(ao =1= 0) (29) 

for x > ° corresponding to the larger exponent rl .  Let us write P (x) for p(x)/x 
and Q (x) for q (x)/x2 . Thus we can rewrite Eq. ( 1 )  in the form y" + Py' + Qy = ° 
of Eq. (23) .  

Because the indicial equation has roots rl and r2 = rl - N, i t  can be factored 
easily :  

r2 + (po - 1 )r + qo = (r - rl ) (r - rl + N) 
= r2 + (N - 2rl )r + (r? - rl N) = 0, 

so we see that 

that is, 

-Po - 2rl = - I  - N. 

In preparation for use of the reduction of order formula in (28), we write 

Then 

so that 

Po + PIX + P2x2 + . . . Po P (x) = = - + PI + P2X + . . . . x x 

= exp (-po ln x - PIX - 1P2X2 - .
.
. ) 

= x-po exp (-P I X - 1P2X2 - . . . ) , 

(30) 

In the last step we have used the fact that a composition of analytic functions is 
analytic and therefore has a power series representation; the initial coefficient of 
that series in (3 1 )  is I because eO = I .  

We now substitute (29) and (3 1 )  in (28) ;  with the choice ao = I in (29), this 
yields 
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We expand the denominator and simplify :  f x-Po-Zrl ( I  + A1x + Azxz + . . .  ) Yz = Yl dx 
I + BIX + Bzxz + . .  . 

= Yl f X- 1-N ( I  + CIX + Czxz + . . .  ) dx (32) 

(Here we have substituted (30) and indicated the result of carrying out long division 
of series as illustrated in Fig. 3 . 1 . 1 ,  noting in particular that the constant term of 
the quotient series is 1 .) We now consider separately the cases N = 0 and N > o. 
We want to ascertain the general form of Yz without keeping track of specific coef
ficients . 

CASE 1 :  EQUAL EXPONENTS (rt = r2) '  With N = 0 ,  Eq. (32) gives 

Yz = Yl f (� + C1 + Czxz + . . .  ) dx 
= y1 ln x + Yl (C1x + �Czxz + . . .  ) 
= Yl ln x + xrl ( I  + alX + . . .  ) (C1x + �Czxz + . . .  ) 
= y1 ln x + xrl (box + b1xZ + bzx3 + . . .  ) . 

Consequently, in the case of equal exponents, the general form of Yz is 

00 
Yz (x) = Yl (x) In x + x l+rl L bnxn . n=O 

Note the logarithmic term; it is always present when rl = rz . 

(33) 

CASE 2: POSITIVE INTEGRAL DIFFERENCE (rt = r2 + N). With N > 0, 
Eq. (32) gives 

so that 

Yz = Yl f X- 1 -N ( I  + C1x + Czxz + . . .  + CNXN + . . .  ) dx 
f (CN I Cl ) = Yl - +-- + - +  . . .  dx x XN+1 xN 

= CNy1 ln x + x 2 a x  x- -- + + . . .  r +N (Loo n) N ( I CIX ) 
n=O n N -N + I ' 

00 
yz (x) = CNYI (x) In x + xr2 L bnxn , n=O 

(34) 

where bo = -ao/ N =f=. O. This gives the general form of Yz in the case of exponents 
differing by a positive integer. Note the coefficient CN that appears in (34) but not 
in (33) . If it happens that CN = 0, then there is no logarithmic term; if so, Eq. ( I )  
has a second Frobenius series solution (as in  Example 1 ) .  
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In our derivation of Eqs. (33) and (34 )-which exhibit the general form of the 
second solution in the cases rl = r2 and rl - r2 = N > 0, respectively-we have 
said nothing about the radii of convergence of the various power series that appear. 
Theorem I (next) is a summation of the preceding discussion and also tells where 
the series in (33) and (34) converge. As in Theorem I of Section 3 .3 ,  we restrict our 
attention to solutions for x > o. 

THEOREM 1 The Exceptional  Cases 

Suppose that x = 0 is a regular singular point of the equation 

x2y" + xp(x)y' + q (x )y = O. (4) 

Let p > 0 denote the minimum of the radii of convergence of the power series 

00 00 
p (x) = LPnxn and q (x) = Lqnxn . n=O n=O 

Let rl and r2 be the roots, with rl � r2 , of the indicial equation 

r (r - 1 )  + Por + qo = O. 

(a) If rl = r2 , then Eq. (4) has two solutions Yl and Y2 of the forms 

and 

00 

Yl (X) = xrl Lanxn n=O 
(aO i= 0) 

00 
Y2 (X) = Yl (x) ln x + xrl +1 L bnxn . n=O 

(35a) 

(35b) 

(b) If rl - r2 = N, a positive integer, then Eq. (4) has two solutions Yl and Y2 of 
the forms 

and 

00 
Yl (X) = xrl LanXn n=O 

(aO i= 0) 

00 
Y2 (X) = CYl (x ) ln x + xr2 Lbnxn . n=O 

(36a) 

(36b) 

In Eq. (36b) ,  bo i= 0 but C may be either zero or nonzero, so the logarithmic 
term may or may not actually be present in this case. The radii of convergence of 
the power series of this theorem are all at least p. The coefficients in these series 
(and the constant C in Eg. (36b» may be determined by direct substitution of the 
series in the differential equation in (4) . 
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We will illustrate the case rl = r2 by deriving the second solution of Bessel 's equa
tion of order zero, 

(37) 

for which rl = r2 = O. In Example 5 of Section 3 .3 we found the first solution 

(38) 

According to Eq. (35b) the second solution will have the form 

00 
Y2 = Yl ln x + Lbnxn . (39) n=l 

The first two derivatives of Y2 are 

00 , ' I  Yl � b n- I Y2 = Yl n x + - + �n nX X n=l 
and 

We substitute these in Eq. (37) and use the fact that Jo (x) also satisfies this equation 
to obtain 

O 2 " , 2 = X Y2 + XY2 + X Y2 

and it follows that 

00 00 00 
+ Ln(n - l)bnxn + Lnbnxn + Lbnxn+2 , n=2 n=l n=1 

00 ( l )n2 2n 00 � -
nx 2 2 � 2 n 0 =  2 � 22n n ' 2 + blx + 2 b2X + �(n bn + bn-2)X . n=l ( .) n=3 (40) 

The only term involving x in Eq. (40) is blx , so bl = O. But n2bn + bn-2 = 0 if n 
is odd, and it follows that all the coefficients of odd subscript in Y2 vanish. 

Now we examine the coefficients with even subscripts in Eq. (40). First we 
see that 

b = -2 . (- 1 ) (2) = 
� 2 22 . 22 . ( 1 !)2 4 

For n � 2, we read the recurrence relation 

(2) ( - l )n (2n) 
22n (n ! )2 

(4 1) 

(42) 
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from (40). Note the "nonhomogeneous" term (not involving the unknown coeffi
cients) on the right-hand side in (42) . Such nonhomogeneous recurrence relations 
are typical of the exceptional cases of the method of Frobenius, and their solution 
often requires a bit of ingenuity. The usual strategy depends on detecting the most 
conspicuous dependence of b2n on n. We note the presence of 22n (n ! )2 on the right
hand side in (42) ; in conjunction with the coefficient (2n )2 on the left-hand side, 
we are induced to think of b2n as something divided by 22n (n ! )2 . Noting also the 
alternation of sign, we make the substitution 

(43) 

in the expectation that the recurrence relation for C2n will be simpler than the one 
for b2n . We chose (_ l )n+ ! rather than (- It because b2 = i > 0 ;  with n = 1 in 
(43) , we get C2 = 1 . Substitution of (43) in (42) gives 

which boils down to the extremely simple recurrence relation 

Thus 

and so on. Evidently, 

1 C2n = C2n-2 + - . n 

1 1 C4 = C2 + 2 = 1 + 2 '  
1 1 1 C6 = C4 + "3 = 1 + 2 + "3 '  
1 1 1 1 Cg = C6 + 4 = 1 + 2 + "3 + 4 ' 

1 1 1 C2 = 1 + - + - + · · · + - = H  n 2 3 n n , 
where we denote by Hn the nth partial sum of the harmonic series L( 1 ln) . 

(44) 

Finally, keeping in mind that the coefficients of odd subscript are all zero, we 
substitute (43) and (44) in (39) to obtain the second solution 

00 (_ l )n+ ! Hnx2n Y2 (X) = Jo (x) ln x + '"' 2 2 � 2 n (n ! ) n=! 
x2 3x4 l lx6 = Jo (x) ln x + - - - + -- - . . . 
4 1 28 1 3824 

(45) 

of Bessel 's  equation of order zero. The power series in (45) converges for all x . The 
most commonly used linearly independent [of Jo (x) ] second solution is 

2 2 Yo (x) = - (y - ln 2)y ! + -Y2 ; 
JT JT 
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that is , 

(46) 

where y denotes Euler 's constant: 
y = lim (Hn - In n) � 0.57722. (47) n ..... oo 

This particular combination Yo (x) is chosen because of its nice behavior as x � 
+00; it is called the Bessel function of order zero of the second kind. • 

As an alternative to the method of substitution, we illustrate the case rl - r2 = N 
by employing the technique of reduction of order to derive a second solution of 
Bessel 's equation of order 1 , 

(48) 
the associated indicial equation has roots rl = 1 and r2 
Problem 39 of Section 3 .3 , one solution of Eq. (48) is 

- 1 . According to 

Thus 

With P (x) = l /x from (48), the reduction of order formula in (28) yields 

Y2 = Yl f � dX XYI 

f 1 = YI b x (x/2 - x3/ 1 6 + x5/384 - x7 / 1 8432 + . . .  )2 

f 1 ( x2 7x4 19x6 ) = 4Yl - 1 + - + - + -- + . . .  dx x3 4 192 4608 

f ( 1 1 7x 19x3 ) = 4Yl - + - + - + -- + . . .  dx 4x x3 192 4608 ( 1 7x2 19x4 ) = yl ln x + 4YI -- +- +--+ . . . . 2x2 384 1 8432 

1 X x3 l 1x5 

(by lOng) 
division 

Y2 (X) = YI (x) ln x - - + - + - --- + . . . . x 8 32 4608 (50) 
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IIIIJ?roblems . . 

Note that the technique of reduction of order readily yields the first several terms of 
the series, but does not provide a recurrence relation that can be used to determine 
the general term of the series. 

With a computation similar to that shown in Example 4 (but more complicated 
-see Problem 2 1 ) , the method of substitution can be used to derive the solution 

where Hn is defined in (44) for n � 1 ;  Ho = O. The reader can verify that the terms 
shown in Eq. (50) agree with 

(52) 

The most commonly used linearly independent [of JI l  solution of Bessel 's equation 
of order 1 is the combination 

= � [ ( In ==-) J (x _ ! � (- 1 )n (Hn + Hn_dx2n- l ] . (53) 
Y + 2 I ) + L..., 22n ' ( - 1 ) ' JT X n=l n .  n . 

• 

Examples 4 and 
5 

illustrate two methods of finding the solution in the logarith
mic cases--direct substitution and reduction of order. A third alternative is outlined 
in Problem 1 9 . 

. .. . . . _ _  . - . -... - - - - _  . . . . .. --. . . .  _ ..... _ .  __ . .... _ - _  ......... _ - _  . .......... _.- ........... . - _ . . ... _ ... . . 

In Problems I through 8, either apply the method of Example 
I to find two linearly independent Frobenius series solutions, 
or find one such solution and show (as in Example 2) that a 
second such solution does not exist. 

12. x2y" + x2y' - 2y = 0 
13. x2y" + (2x2 - 3x)y' + 3y = 0 
14. x2y" + x ( 1  + x)y' - 4y = 0 
15. Begin with 

1. xy" + (3 - x)y' - y = 0 
2. xy" + (5 - x)y' - y = 0 
3. xy" + (5 + 3x)y' + 3y = 0 
4. 5xy" + (30 + 3x)y' + 3y = 0 
5. xy" - (4 + x)y' + 3y = 0  
6. 2xy" - (6 + 2x)y' + y = 0 
7. x2y" + (2x + 3X2)y' - 2y = 0 
8. x( 1 - x)y" - 3y' + 2y = 0 

In Problems 9 through I4, firstfind thefirstfour nonzero terms 
in a Frobenius series solution of the given differential equa
tion. Then use the reduction of order technique (as in Example 
4) to find the logarithmic term and the first three nonzero terms 
in a second linearly independent solution. 
9. xy" + y' - xy = 0 

10. x2y" - xy' + (x2 + l )y = 0 
11 .  x2y" + (x2 - 3x)y' + 4y = 0 

x2 X4 x6 Jo (x) = 1 - - + - - -- + . . . . 4 64 2304 
Using the method of reduction of order, derive the second 
linearly independent solution 

x2 3x4 l lx6 Y2 (X) = Jo (x) ln x + 4" - 128 + 13284 -
. . . 

of Bessel 's  equation of order zero. 
16. Find two linearly independent Frobenius series solutions 

of Bessel 's  equation of order � ,  

17. (a) Verify that Yl (x) = x eX i s  one solution of 

x2y" - x ( l  + x)y' + y = O. 
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(b) Note that rl = r2 = 1 .  Substitute 

00 
Y2 = yl ln x + Lbnxn+ 1 

n=1 
in the differential equation to deduce that bl 
that 

- 1  and 

1 nbn - bn- I = -- for n � 2. n !  
(c) Substitute bn = cn / n !  i n  this recurrence relation and 
conclude from the result that Cn = -Hn . Thus the second 
solution is 

00 H xn+ 1 Y2 (X) = xex ln x - L _n __ . 
n= 1 n !  

18. Consider the equation xy" - Y = 0, which has exponents 
rl = 1 and r2 = 0 at x = O. (a) Derive the Frobenius 
series solution 

(b) Substitute 

00 
Y2 = Cyl ln x + Lbnxn 

n=O 
in the equation xy" - Y 
relation 

o to derive the recurrence 

2n + 1 n (n + l )bn+ 1 - bn = - C. (n + 1 ) ! n !  
Conclude from this result that a second solution is 

� Hn + Hn- 1 Y2 (X) = YI (x) ln x + 1 - � xn . 
n= 1 n !  ( n - I ) !  

19. Suppose that the differential equation 

L [y] = x2y" + xp(x)y' + q (x)y = 0 (54) 

has equal exponents rl = r2 at the regular singular point 
x = 0, so that its indicial equation is 

Let Co = 1 and define cn (r) for n � 1 by using Eq. (9) ; 
that is ,  

( _ Ln (r ; cO , c I , . . .  , Cn_ l ) Cn r) - - . ¢ (r + n) 
Then define the function y (x , r) of x and r to be 

00 
y (x , r ) = 

Lcn (r)xn+r . 
n=O 

(55) 

(56) 

(a) Deduce from the discussion preceding Eq. (9) that 

(57) 

Hence deduce that 

00 
YI = y (x , rl ) = L Cn (rl )xn+r] (58) 

n=O 
is one solution of Eq. (54). (b) Differentiate Eq. (57) 
with respect to r to show that 

Deduce that Y2 = Yr (x , rl ) is a second solution of 
Eq. (54) . (c) Differentiate Eq. (58) with respect to r to 
show that 

00 
Y2 = yl ln x + xr] L c� (rl )Xn . (59) 

n= 1 

20. Use the method of Problem 19 to derive both the solu
tions in (38) and (45) of Bessel 's  equation of order zero. 
The following steps outline this computation. (a) Take 
Co = 1 ; show that Eq. (55) reduces in this case to 

Cn-2 (r) 
(n + r)2 for n � 2. 

(60) 

(b) Next show that CI (0) = c; (0) = 0, and then deduce 
from (60) that cn (O) = c� (O) = 0 for n odd. Hence you 
need to compute Cn (0) and c� (0) only for n even. (c) De
duce from (60) that 

(_ 1 )n C2n (r) = (6 1 ) (r + 2)2 (r + 4)2 . . .  (r + 2n)2 

With r = rl = 0 in (58) , this gives Jo(x) .  (d) Differenti
ate (6 1 ) to show that 

(_ I )n+ 1 H , (0) n c2n = 22n (n !)2 . 

Substitution of this result in (59) gives the second solution 
in (45) .  

21.  Derive the logarithmic solution in (5 1 ) of Bessel 's equa
tion of order 1 by the method of substitution. The follow
ing steps outline this computation. (a) Substitute 

in Bessel 's equation to obtain 

00 
-bl + X + L[(n2 - 1 )bn+ 1 + bn_ I lxn 

n=2 

+ C x +
" 

= 0. 
[ 00 (- 1 )n (2n + I )X2n+ l ] 

� 22n (n + 1 ) ! n !  (62) 
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(b) Deduce from Eq. (62) that C = - 1  and that bn = 0 
for n odd. (c) Next deduce the recurrence relation 

[ 2 ( _ l )n (2n + 1 )  (2n + l ) - l ] b2n+2 + b2n = 22n (n + l ) ! n ! (63) 
for n � 1 . Note that if b2 is chosen arbitrarily, then b2n is 
determined for all n > 1 . (d) Take b2 = � and substitute 

b _ (- l )n c2n 2n - 22n (n - l ) !n !  

lID Bessel's Eq�ation 

in Eq. (63) to obtain 

1 1 
C2n+2 - C2n = -- + - . n + l  n 

(e) Note that C2 = 1 = HI + Ho and deduce that 

C2n = Hn + Hn- I • 

We have already seen several cases of Bessel 's equation of order p � 0, 

( 1 )  

Its solutions are now called Bessel functions of  order p .  Such functions first ap
peared in the 1730s in the work of Daniel Bernoulli and Euler on the oscillations 
of a vertically suspended chain. The equation itself appears in a 1 764 article by 
Euler on the vibrations of a circular drumhead, and Fourier used Bessel functions in 
his classical treatise on heat ( 1 822). But their general properties were first studied 
systematically in an 1 824 memoir by the German astronomer and mathematician 
Friedrich W. Bessel ( 1 784--1 846), who was investigating the motion of planets. The 
standard source of information on Bessel functions is G. N. Watson's A Treatise on 
the Theory of Bessel Functions, 2nd ed. (Cambridge: Cambridge University Press, 
1 944) . Its 36 pages of references, which cover only the period up to 1 922, give 
some idea of the vast literature of this subject. 

Bessel 's equation in ( 1 ) has indicial equation r2 - p2 = 0, with roots r = ±p. 
If we substitute y = L cmxm+r in Eq. ( 1 ) , we find in the usual manner that Cl = 0 
and that 

(2) 

for m � 2. The verification of Eq. (2) is left to the reader (Problem 6) . 

The Case r = p  > 0 
If we use r = p and write am in place of Cm , then Eq. (2) yields the recursion 
formula 

am-2 am = - . 
m (2p + m) 

(3) 

Because al = 0, it follows that am = ° for all odd values of m. The first few even 
coefficients are 

ao ao a - -2 - -
2(2p + 2) - -

22 (p + 1 ) ' 

a2 ao a4 = -
4(2p + 4) 

= -24:-.-2-(p-+-l-) (-p-+-2-) 
, 

a4 ao 
� = - = - . 

6(2p + 6) 26 . 2 . 3 (p + 1 ) (p + 2) (p + 3) 
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The general pattern is 

a2m = 22mm ! (p + 1 ) (p + 2) . . .  (p + m) , 

so with the larger root r = p we get the solution 

00 (_ 1 )m x2m+p 
YI (X) = ao " . f;;:o 22mm ! (p + l ) (p + 2) · · ·  (p + m) (4) 

If P = 0 this is the only Frobenius series solution; with ao = 1 as well , it is the 
function Jo (x) we have seen before. 

The Case r =  -p < 0 
If we use r = -p and write bm in place of em , Eq. (2) takes the fonn 

m(m - 2p)bm + bm-2 = 0 (5) 

for m � 2, whereas bl = O. We see that there is a potential difficulty if it happens 
that 2p is a positive integer-that is, if p is either a positive integer or an odd positive 
integral multiple of � . For then when m = 2p, Eq. (5) is simply O · bm + bm-2 = o. 
Thus if bm-2 t= 0, then no value of bm can satisfy this equation. 

But if p is an odd positive integral multiple of �, we can circumvent this 
difficulty. For suppose that p = k /2 where k is an odd positive integer. Then we 
need only choose bm = 0 for all odd values of m. The crucial step is the kth step, 

k (k - k)bk + bk-2 = 0; 

and this equation will hold because bk = bk-2 = O. 
Hence if p is not a positive integer, we take bm = 0 for m odd and define the 

coefficients of even subscript in tenns of bo by means of the recursion fonnula 

bm-2 bm = - , m(m - 2p) m � 2. (6) 

In comparing (6) with (3), we see that (6) will lead to the same result as that in (4), 
except with p replaced with -p. Thus in this case we obtain the second solution 

00 (_ 1 )m x2m-p 
Y2 (X) = bo L . (7) m=O 22mm ! (-p + 1 ) (-p + 2) · · ·  (-p + m) 

The series in (4) and (7) converge for all x > 0 because x = 0 is the only singular 
point of Bessel ' s  equation. If p > 0, then the leading tenn in YI is aoxP , whereas 
the leading term in Y2 is box -p . Hence YI (0) = 0, but Y2 (x) --+ ±oo as x --+ 0, so 
it is clear that YI and Y2 are linearly independent solutions of Bessel 's equation of 
order p > o. 



250 Cha pter 3 Power Series Methods 

The Gamma Function 

The formulas in (4) and (7) can be simplified by use of the gamma function r (x) , 
which is defined for x > 0 by 

r (x) = 100 e-t tx- 1 dt . (8) 

It is not difficult to show that this improper integral converges for each x > O. The 
gamma function is a generalization for x > 0 of the factorial function n ! ,  which 
is defined only if n is a nonnegative integer. To see the way in which r (x) is a 
generalization of n ! ,  we note first that 

100 b r ( 1 ) = e-t dt = lim [_e-t ] = 1 . 
o b-'>oo 0 

Then we integrate by parts with u = tX and dv = e-t dt : 

that is, 

r (x + 1) = xr (x ) . 
This is  the most important property of  the gamma function. 

If we combine Eqs. (9) and ( 1 0), we see that 

r (2) = 1 . r ( 1 ) = l ! , r (3) = 2 . r (2) = 2 ! , r (4) = 3 . r (3) = 3 ! , 
and in general that 

r (n + 1 ) = n ! for n � 0 an integer. 

An important special value of the gamma function is 

where we have substituted u2 for t in the first integral ; the fact that 

(9) 

( 1 0) 

( 1 1 ) 

( 1 2) 

is known, but is far from obvious .  [See, for instance, Example 5 in Section 1 3 .4 of 
Edwards and Penney, Calculus: Early Transcendentals, 7th edition (Upper Saddle 
River, NJ: Prentice Hall, 2008) . ] 

Although r (x) is defined in (8) only for x > 0, we can use the recursion 
formula in ( 1 0) to define r (x) whenever x is neither zero nor a negative integer. If 
- 1 < x < 0, then 

r (x) = r (x + 1 ) ; x 



FIGURE 3.5.1 .  The graph of the 
extended gamma function. 
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the right-hand side is defined because 0 < x + 1 < 1 . The same formula may then 
be used to extend the definition of r (x ) to the open interval (- 2, - 1) , then to the 
open interval (-3 , -2) , and so on. The graph of the gamma function thus extended 
is shown in Fig. 3 .5 . 1 . The student who would like to pursue this fascinating topic 
further should consult Artin's The Gamma Function (New York: Holt, Rinehart and 
Winston, 1 964) . In only 39 pages, this is one of the finest expositions in the entire 
literature of mathematics. 

Bessel Functions of the First Kind 

If we choose ao = 1 / [2p r (p + 1 ) ] in (4), where p > 0, and note that 

r (p + m + 1 )  = (p + m)(p + m - 1 ) · · · (p + 2) (p + 1 ) r (p + 1 ) 
by repeated application of  Eq. ( 1 0), we can write the Bessel function of the first 
kind of order p very concisely with the aid of the gamma function: 

00 (_ 1 )m (X ) 2m+p 1p (x ) = ,; m !r (p + m + 1 ) "2 . ( 1 3) 

Similarly, if p > 0 is not an integer, we choose bo = 1 / [2-P r (-p + 1 ) ] in (7) to 
obtain the linearly independent second solution 

( 14) 

of Bessel ' s  equation of order p. If p is not an integer, we have the general solution 

( 1 5) 
for x > 0; xP must be replaced with Ix I P in Eqs. ( 1 3) through ( I S) to get the correct 
solutions for x < o. 

If p = n ,  a nonnegative integer, then Eq. ( 1 3) gives 

_ � (_ 1 )m (X ) 2m+n 1n (x ) - � ,  , -m=O m . (m + n) . 2 

for the Bessel functions of the first kind of integral order. Thus 

and 

( 1 6) 

The graphs of 10 (x) and 1) (x ) are shown in Fig. 3 .5 .2 .  In a general way they re
semble damped cosine and sine oscillations, respectively (see Problem 27). Indeed, 
if you examine the series in ( 1 7) , you can see part of the reason why 10 (x ) and 
cos x might be similar-only minor changes in the denominators in ( 1 7) are needed 
to produce the Taylor series for cos x .  As suggested by Fig. 3 .5 .2, the zeros of the 
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y nth Zero (n + D K 
of J1 (X) 

1 2.4048 2.3562 3 .83 1 7  3 .9270 

2 5.520 1  5 .4978 7 .0 1 56 7.0686 

x 3 8 .6537 8.6394 1 0. 1 735 1 0.2 102 

4 1 1 .79 1 5  1 1 .78 1 0  1 3 .3237 13 . 35 1 8  

5 14.9309 14.9226 1 6.4706 1 6.4934 

FIGURE 3.5.2. The graphs of the Bessel 
functions 10 (x) and 11 (x) .  

FIGURE 3.5.3. Zeros o f  10 (x) and 11 (x) .  

functions Jo (x) and J1 (x) are interlaced-between any two consecutive zeros of 
Jo (x) there is precisely one zero of J1 (x ) (Problem 26) and vice versa. The first 
four zeros of Jo (x) are approximately 2.4048, 5 .520 1 ,  8 .6537, and 1 1 .79 1 5 . For 
n large, the nth zero of Jo (x) i s  approximately (n - �) rr ;  the nth zero of J1 (x) 
is approximately (n + D rr .  Thus the interval between consecutive zeros of either 
Jo (x) or J1 (x) is approximately rr-another similarity with cos x and sin x .  You 
can see the way the accuracy of these approximations increases with increasing n 
by rounding the entries in the table in Fig. 3 .5 .3 to two decimal places. 

It turns out that J p (x ) is an elementary function if the order p is half an odd 
integer. For instance, on substitution of p = � and p = - �  in Eqs . ( 1 3) and ( 14), 
respectively, the results can be recognized (Problem 2) as 

ff · J1/2 (X) = - sm x 
rrx 

and L1/2 (X) = J 2 cos x .  
rrx 

Bessel Functions of the Second Kind 

( 19) 

The methods of Section 3 .4 must be used to find linearly independent second so
lutions of integral order. A very complicated generalization of Example 3 in that 
section gives the formula 

2 ( X ) 1 n- I 2n-2m (n - m - 1 ) !  Yn (x ) = 
rr 

y + In "2 In (x ) - -; L --m-!-x-n -""""2-m--
m=O 

with the notation used there. If n = 0 then the first sum in (20) is taken to be zero. 
Here, Yn (x ) is called the Bessel function of the second kind of integral order 
n � o. 

The general solution of Bessel 's equation of integral order n is  

(2 1 )  

It is  important to note that Yn (x ) --+ -00 as  x --+ 0 (Fig. 3 .5 .4) . Hence C2 = 0 in 
Eq. (2 1 )  if y (x)  is continuous at x = O. Thus if y (x)  is a continuous solution of 
Bessel ' s  equation of order n ,  it follows that 



y 
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for some constant c . Because 10 (0) = 1 , we see in addition that if n = 0, then 
C = y eO) . In Section 9 .4 we will see that this single fact regarding Bessel functions 
has numerous physical applications. 

Figure 3 .5 .5 illustrates the fact that for n > 1 the graphs of In (x) and Yn (x) 
look generally like those of II (x) and YI (x ) . In particular, In (0) = 0 while Yn (x) ---+ 
-00 as x -+ 0+ , and both functions undergo damped oscillation as x -+ +00. 

y 

FIGURE 3.5.4. The graphs of the Bessel functions 
Yo (x) and Y1 (x) . 

FIGURE 3.5.5. The graphs of the Bessel functions 
}z (x) and Y2 (x) . 

Bessel Function Identities 

Bessel functions are analogous to trigonometric functions in that they satisfy a large 
number of standard identities of frequent utility, especially in the evaluation of inte
grals involving Bessel functions. Differentiation of 

00 (_ 1 )m (X ) 2m+p Ip (X) =; m ! r (p + m + 1 ) "2 
in the case that p is a nonnegative integer gives 

d d 00 ( _ 1 )m x2m+2p - [xp I (x)] = -" �---dx p dx f::o 22m+Pm ! (p + m) ! 
00 (_ 1 )m x2m+2p- 1 = ; 22m+p- Im ! (p + m - 1 ) ! 

00 (_ 1 )mx2m+p- 1 - xP " ---------- f::o 22m+p- Im ! (p + m - 1 ) ! ' 
and thus we have shown that 

Similarly, 

d [ p ] _ P ( - x Ip (x) - x Ip_ 1 x) . dx 

d - [x-p Ip (x)] = -x-p Ip+ l (x) . dx 

(13) 

(22) 

(23) 
If we carry out the differentiations in Eqs. (22) and (23) and then divide the resulting 
identities by xP and x-P , respectively, we obtain (Problem 8) the identities 

(24) 
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Exa mple 1 

Exa m ple 2 

Exa m ple 3 

and 

(25) 

Thus we may express the derivatives of Bessel functions in terms of Bessel functions 
themselves . Subtraction of Eq. (25) from Eq. (24) gives the recursion formula 

(26) 

which can be used to express Bessel functions of high order in terms of Bessel 
functions of lower orders. In the form 

(27) 

it can be used to express Bessel functions of large negative order in terms of Bessel 
functions of numerically smaller negative orders. 

The identities in Eqs. (22) through (27) hold wherever they are meaningful
that is, whenever no Bessel functions of negative integral order appear. In particular, 
they hold for all nonintegral values of p .  

With p = 0, Eq. (22) gives 

f xJo (x) dx = xJ] (x ) + C. 

Similarly, with p = 0, Eq. (23) gives 

, w"'�, 

f J] (x ) dx = -Jo (x) + C . 

Using first p = 2 and then p = I in Eq. (26), we get 

so that 

J3 (X )  = -� Jo (X) + (:2 - I) J) (x ) .  

• 

With similar manipulations every Bessel function of positive integral order can be 
expressed in terms of Jo (x) and J) (x) .  • 

To antidifferentiate x}z (x ) ,  we first note that 

f x- 1 }z(x) dx = -x- ) J) (x ) + C 

by Eq. (23) with p = 1 . We therefore write 
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and integrate by parts with 

du = 2x dx , 

This gives 

and 

dv = X- I h(x) dx , 
v = -x- I JI (x) . 

f xh (x) dx = -xJI (x ) + 2 f JI (x) dx = -x JI (X) - 2Jo (x) + C, 

with the aid of the second result of Example 1 .  

The Parametric Bessel Equation 

The parametric Bessel equation of order n is 

• 

(28) 

where a is a positive parameter. As we will see in Chapter 9, this equation appears in 
the solution of Laplace's equation in polar coordinates. It is easy to see (Problem 9) 
that the substitution t = ax transforms Eq. (28) into the (standard) Bessel equation 

d2y dy t2_ + t- + (t2 - n2)y = 0 
dt2 dt 

(29) 

with general solution y(t )  = cI Jn (t) + C2Yn (t) . Hence the general solution of 
Eq. (28) i s  

y (x) = cI Jn (ax) + C2Yn (ax) . 
Now consider the eigenvalue problem 

x2y" + xy' + (AX2 - n2) = 0, 
y (L ) = 0 

(30) 

(3 1 )  

on  the interval [0, L ] .  We seek the positive values of A for which there exists a 
nontrivial solution of (3 1 )  that is continuous on [0, L] . If we write A = a2 , then 
the differential equation in (3 1 )  is that in Eq. (28), so its gener8J. solution is given in 
Eq. (30) . Because Yn (x) -+ - 00  as x -+ 0 but In (O) is finite, the continuity of y (x) 
requires that C2 = O. Thus y (x) = cI Jn (ax) . The endpoint condition y(L) = 0 
now implies that z = a L must be a (positive) root of the equation 

In (z) = O. (32) 

For n > 1 ,  In (x) oscillates rather like JI (x) in Fig. 3 .5 .2 and hence has an infinite 
sequence of positive zeros Yn l , Yn2 , Yn3 , . . .  (see Fig. 3 .5 .6). It follows that the kth 
positive eigenvalue of the problem in (3 1 )  is 

Ak = (ak )2 = 
(Y2�)2

, (33) 

and that its associated eigenfunction is 

(34) 

The roots Ynk of Eq. (32) for n � 8 and k � 20 are tabulated in Table 9.5 of 
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (New York: 
Dover, 1 965). 
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y 

FIGURE 3.5.6. The positive zeros Yn h Yn2 , Yn3 , . . .  of the 
Bessel function ln (x) .  

___ ��oblems 
_ . _ _ __ . _. _ _  ... ____ _ _  . ___ _ _ _ _  . _ _  �, _ _  . _ _  � _ _  . ,  __ _ . _ ___ __ . _ ___ _ . _ .� _ . ___ _ _ _ _ _ __ ____ _ ., _ _ _ ., __ , _ _  

1. Differentiate termwise the series for 10 (x ) t o  show directly 
that l� (x) = -11 (x) (another analogy with the cosine and 
sine functions). 

2. (a) Deduce from Eqs. ( 1 0) and ( 1 2) that 

r ( 1 ) _ 1 . 3 . 5 . (2n - 1 ) 'n + 2 - y 7L 2n 
(b) Use the result of part (a) to verify the formulas in 
Eq. ( 1 9) for 11 /2 (x) and L1/2 (X) , and construct a figure 
showing the graphs of these functions. 

3. (a) Suppose that m is a positive integer. Show that 

r ( � ) _ 2 · 5 · 8 · . .  (3m - 1 ) ( � ) m + 3 - 3m r 3 • 

(b) Conclude from part (a) and Eq. ( 1 3) that 

L1/3 (X) = 

(X/2) - 1 /3 ( 00 (_ 1 )m 3mx2m ) 
r (D 1 + � 22m m ! . 2 . 5 . . .  (3m - 1 ) . 

4. Apply Eqs. ( 1 9), (26), and (27) to show that 

and 

g .  h/2 (X) = -3 (SIll X - X cos x)  7rX 

L3/2 (X) = -J 2 3 (cos x + x sin x ) . 7rX 
Construct a figure showing the graphs o f  these two func
tions. 

S. Express 14 (x) in terms of 10 (x) and 11 (x) .  
6. Derive the recursion formula i n  Eq. (2) for Bessel 's 

equation. 
7. Verify the identity in (23) by termwise differentiation. 
8. Deduce the identities in Eqs . (24) and (25) from those in 

Eqs. (22) and (23) . 
9.  Verify that the substitution t = ax transforms the para

metric Bessel equation in (28) into the equation in (29) . 
10. Show that 

41; (x ) = lp_2 (x) - 2Jp (x ) + lp+2 (x) .  

1 1 .  Use the relation r (x + 1 ) = xr (x) to deduce from 
Eqs . ( 1 3) and ( 1 4) that if p is not a negative integer, then 

lp (x) = 

(x /2)P [ 00 (_ 1 )m (x /2)2m ] r (p + 1 ) 1 + � m ! (p + 1 ) (p + 2) · . .  (p + m) . 

This form is more convenient for the computation of lp (x) 
because only the single value r (p + 1 ) of the gamma func
tion is required. 

12. Use the series of Problem 1 1  to find y (O) = lim y (x) if 
x-+o 

( ) _ 2 [ lS/2 (X) + LS/2 (X) ] y x - x . 11 /2 (x) + L1/2 (X) 
Use a computer algebra system to graph y (x) for x near O. 
Does the graph corroborate your value of y (O) ? 

Any integral of the form f xm ln (x) dx can be evaluated 
in terms of Bessel functions and the indefinite integral f 10 (x) dx. The latter integral cannot be simplified further, 
but the function f; 10 (t) dt is tabulated in Table 11 . 1 of 
Abramowitz and Stegun. Use the identities in Eqs. (22) and 
(23) to evaluate the integrals in Problems 13 through 21. 

13. f x2 10 (x) dx 14. f x3 10(x) dx 
15. f x410 (x) dx 16. f xll (x) dx 
17. f x211 (x) dx 18. f x3 11 (x) dx 
19. f x411 (x) dx 20. f h(x) dx 

21. f 13 (x) dx 
22. Prove that 

1 1" 
10 (x ) = - cos (x sin ()) d() 

7r 0 
by showing that the right-hand side satisfies Bessel 's equa
tion of order zero and has the value 10 (0) when x = O. 
Explain why this constitutes a proof. 



23. Prove that 

1 1lt 11 (x) = - cos(e - x sin e) de n 0 

by showing that the right-hand side satisfies Bessel 's equa
tion of order 1 and that its derivative has the value 1{ (0) 
when x = O. Explain why this constitutes a proof. 

24. It can be shown that 

1 llt 1n (x ) = - cos(ne - x sin e) de .  n 0 

With n � 2, show that the right-hand side satisfies 
Bessel 's equation of order n and also agrees with the val
ues 1n (0) and 1 � (0) . Explain why this does not suffice to 
prove the preceding assertion. 

25. Deduce from Problem 22 that 

1 12lt 10 (x ) = - eix sin 8 de .  2n 0 
(Suggestion: Show first that 

[2lt [It 10 eix sin 8 de = 10 (eiX Sin 8 + e-iX Sin 8 ) de ; 

then use Euler's formula.) 

26. Use Eqs. (22) and (23) and Rolle's theorem to prove that 
between any two consecutive zeros of 1n (x) there is pre
cisely one zero of 1n+ 1 (x) .  Use a computer algebra system 
to construct a figure illustrating this fact with n = 10 (for 
instance) . 

27. (a) Show that the substitution y = X- 1 /2z in Bessel 's 
equation of order p, 
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yields 

z" + ( 1 - p2
X
� � ) Z = O. 

(b) If x is so large that (p2 - D /X2 is negligible, then 
the latter equation reduces to z" + z """ O. Explain why this 
suggests (without proving it) that if y (x) is a solution of 
Bessel 's equation, then 

y (x) """ X- 1 /2 (A cos x + B sin x)  

= CX- 1 /2 cos(x - ex) 
with C and ex constants, and x large. 

(35) 

Asymptotic Approximations It is known that the choices 
C = .../2/n and ex = (2n + 1)n /4 in (35) yield the best ap
proximation to 1n (x) for x large: 

1n (x ) """ (2 cos 
[x - � (2n + l )n] . V �  (36) 

Similarly, 

Yn (x) """ (2 sin 
[x - � (2n + 1 )n] . V �  (37) 

In particular, 

10 (x ) """ (2 cos (x - �n) V �  
and 

Yo (x) """ (2 sin (x - �n) V �  
if x is large. These are asymptotic approximations in that the 
ratio of the two sides in each approximation approaches unity 
as x -+ +00. 

The importance of Bessel functions stems not only from the frequent appearance of 
Bessel ' s  equation in applications, but also from the fact that the solutions of many 
other second-order linear differential equations can be expressed in terms of Bessel 
functions. To see how this comes about, we begin with Bessel 's equation of order p 
in the form 

( 1 )  

and substitute 

w = x-ay ,  z = kxf3 . (2) 

Then a routine but somewhat tedious transformation (Problem 14) of Eq. ( 1 )  yields 
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Exa m ple 1 

that is, 

(3) 

where the constants A, B, C, and q are given by 

A = 1 - 2a , B = ot2 - f;2p2 , C = fJ2k2 , and q = 2fJ. (4) 

It is a simple matter to solve the equations in (4) for 

1 - A ot = --
2 ' 

k = 
2v'c

, 
q 

and 

q fJ = 2 '  
J( 1 - A)2 - 4B 

p =  . 
q 

(5) 

Under the assumption that the square roots in (5) are real , it follows that the general 
solution of Eq. (3) is 

where 
w (Z) = cI Jp (Z) + C2Lp (Z) 

(assuming that p is not an integer) is the general solution of the Bessel equation in 
( 1 ) . This establishes the following result. 

TH EOREM 1 Solutions in Bessel Functions 

If C > 0, q =1= 0, and (1 - A)2 � 4B, then the general solution (for x > 0) of 
Eq. (3) is 

(6) 

where ot, fJ, k, and p are given by the equations in (5). If p is an integer, then 
Lp is to be replaced with yp . - -

Solve the equation 

4x2y" + 8xy' + (x4 - 3)y = o. (7) 

Solution To compare Eq. (7) with Eq. (3), we rewrite the former as 

x2y" + 2xy' + (- �  + ix4) Y = 0 

and see that A = 2, B = - � , C = i , and q = 4. Then the equations in (5) give 
ot = -t ,  fJ = 2, k = i , and p = t .  Thus the general solution in (6) of Eq. (7) is 

y(x) = X- I /2 [CI JI /2 ( ix2) + C2LI/2 ( ix2) ] . 

If we recall from Eq. ( 1 9) of Section 3 .5 that 

J1 /2 (Z) = [2 sin z and LI/2 (Z) = [2 COS Z , V �  V �  
we see that a general solution of Eq. (7) can be written in the elementary form 

y(x) = X-3/2 (A COS : + B sin :2 ) . • 
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y
" + 9xy = O. (8) 

Solution First we rewrite the given equation in the form 

x = L  

FIGURE 3.6.1. The buckling 
column. 

This is the special case of Eq. (3) with A = B = 0, C = 9, and q = 3. It follows 
from the equations in (5) that ex = t ,  f3 = � ,  k = 2, and p = t .  Thus the general 
solution of Eq. (8) is 

• 

Buckling of a Vertical Column 

For a practical application, we now consider the problem of determining when a 
uniform vertical column will buckle under its own weight (after, perhaps, being 
nudged laterally just a bit by a passing breeze) . We take x = 0 at the free top end 
of the column and x = L > 0 at its bottom; we assume that the bottom is rigidly 
imbedded in the ground, perhaps in concrete; see Fig. 3 .6. 1 .  Denote the angular 
deflection of the column at the point x by O (x) .  From the theory of elasticity it 
follows that 

d20 
EI -2 + gpxO = 0, 

dx 
(9) 

where E is the Young's modulus of the material of the column, 1 is its cross
sectional moment of inertia, p is the linear density of the column, and g is gravita
tional acceleration. For physical reasons-no bending at the free top of the column 
and no deflection at its imbedded bottom-the boundary conditions are 

0' (0) = 0, O (L) = O. ( 10) 

We will accept (9) and ( 1 0) as an appropriate statement of the problem and attempt 
to solve it in this form. With 

A -
2 

-
gp 

- Y - EI ' 

we have the eigenvalue problem 

0" + y 2xO = 0; 0 ' (0) = 0, O (L) = O. 

( 1 1 )  

( 1 2) 

The column can buckle only if there is a nontrivial solution of ( 1 2) ; otherwise the 
column will remain in its undeflected vertical position. 

The differential equation in ( 1 2) is an Airy equation similar to the one in Ex
ample 2. It has the form of Eq. (3) with A = B = 0, C = y 2 , and q = 3. The 
equations in (5) give ex = t ,  f3 = � ,  k = j y ,  and p = t .  So the general solution is 

( 1 3) 
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5 10 

FIGURE 3.6.2. The graph of  
'- l j3 (Z) . 

I S 

In order to apply the initial conditions, we substitute p = ±�  in 

00 ( _ l )m (X ) 2m+p 
Jp (X) = ]; m ! r (p + m + l ) "2 ' 

and find after some simplifications that 

C23 1 /3 (
1 _ 

y2x3 y4x6 
_ . . . ) + 

y l /3r (D 6 + 1 80 . 

From this it is clear that the endpoint condition e' (0) = 0 implies that C I = 0, so 

( 14) 

The endpoint condition e (L) = 0 now gives 

( 1 5) 

Thus the column will buckle only if Z 
L I /3 (Z) = O. The graph of 

� y L3/2 is a root of the equation 

( 1 6) 

(see Problem 3 of Section 3 .5) is shown in Fig. 3 .6 .2, where we see that the smallest 
positive zero Z I  is a bit less than 2. Most technical computing systems can find roots 
like this one. For instance, each of the computer system commands 

fso1ve ( Besse1J ( - 1 / 3 , x ) =O ,  x , 1 • .  2 )  

FindRoot [ BeSse1J [ - 1 / 3 , x ] ==O , { x , 2 } ] 

fz ero ( 'besse1j ( - 1 / 3 , x ) ' , 2 )  

(Map/e) 
(Mathematica) 
(MATLAB) 

yield the value Z I = 1 . 86635 (rounded accurate to five decimal places) . 
The shortest length L I for which the column will buckle under its own weight 

is 

L , 
� G�r � [ 3� 1 e:rr 

If we substitute Z I  � 1 . 86635 and p = 8A, where 8 is the volumetric density of the 
material of the column and A is its cross-sectional area, we finally get 

( E l  ) 1 /3 
L I � ( 1 .986) -

g8A 
( 1 7) 
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for the critical buckling length. For example, with a steel column or rod for which 
E = 2. 8 X 1 07 Ibjin.2 and go = 0.28 Ibjin.3 , the formula in ( 1 7) gives the results 
shown in the table in Fig. 3 .6. 3 . 

Circular with r = 0.5 in. 

Circular with r = 1 .5 in. 

Shortest Buckling Length Ll 

Annular with rinner = 1 .25 in. and router = 1 .5 in .  

30 ft 6 in. 

63 ft 5 in. 

75 ft 7 in. 

FIGURE 3.6.3. 

We have used the familiar formulas A = rrr2 and I = irrr4 for a circular 
disk. The data in the table show why flagpoles are hollow. 

lID Problems 

In Problems 1 through 12, express the general solution of the 
given differential equation in terms of Bessel functions. 
1. x2y" - xy' + ( 1  + x2)y = 0 
2. xy" + 3y' + xy = 0 
3. xy" - y' + 36x3y = 0 
4. x2y" - 5xy' + (8 + x)y = 0 
5. 36x2y" + 60xy' + (9x3 - 5)y = 0 
6. 16x2y" + 24xy' + ( 1  + 144x3 )y = 0 
7. x2y" + 3xy' + ( 1  + x2 )y = 0 
8. 4x2y" - 12xy' + ( 1 5 + 16x)y = 0 
9. 1 6x2y" - (5 - 144x3 )y = 0 

10. 2x2y" - 3xy' - 2( 14 - x5 )y = 0 
11 .  y" + X4y = 0 
12. y" + 4x3 Y = 0 
13. Apply Theorem 1 to show that the general solution of 

xy" + 2y' + xy = 0 

is y (x) = X- I (A cos x + B sin x ) .  

14. Verify that the substitutions i n  (2) i n  Bessel ' s  equation 
(Eq. ( 1 » yield Eq. (3) . 

15. (a) Show that the substitution 

1 du y = --u dx 

transforms the Riccati equation dy/dx = x2 + y2 into 
utI + x2u = O. (b) Show that the general solution of 
dy/dx = x2 + y2 is 

(Suggestion: Apply the identities in Eqs. (22) and (23) of 
Section 3 .5 . ) 

16. (a) Substitute the series of Problem 1 1  of Section 3 .5 in 
the result of Problem 15 here to show that the solution of 
the initial value problem 

is 

dy 
dx = x

2 + l, y eO) = 0 

h/4 
Gx2) 

y (x) = x  ( I ) . 1-1/4 zx2 
(b) Deduce similarly that the solution of the initial value 
problem 

is 

dy - = x2 + l, y eO) = 1 dx 

2r (D h/4 Gx2) + r U) 1-3/4 ( !x2) y (x) = x  ( 3 ) ( I ) ( I ) ( I ) · 2r 4 1-1/4 zx2 - r 4 11/4 zx2 

Some solution curves of the equation dy/dx = x2 + y2 are 
shown in Fig. 3 .6.4. The location of the asymptotes where 
y (x) -+ +00 can be found by using Newton's method to 
find the zeros of the denominators in the formulas for the 
solutions as listed here. 

3 .-"".-.. -..-onrr� 

2 

- 1  

- 2  

x 
dy 

FIGURE 3.6.4. Solution curves of - = x2 + y2 . dx 
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17. Figure 3.6.5 shows a linearly tapered rod with circular 
cross section, subject to an axial force P of compression. 
As in Section 2.8, its deflection curve y = y (x) satisfies 
the endpoint value problem 

Ely" + Py = 0; y ea) = y (b) = o. ( 1 8) 

y 

x 

x = a  x = b  

FIG URE 3.6.5. The tapered rod of Problem 17 . 
Here, however, the moment of  inertia I = I (x) of the 
cross section at x is given by 

I (x) = 
�rr (kx)4 = 10 . Gf , 

where 10 = I (b) , the value of I at x = b. Substitution of 
I (x) in the differential equation in ( 1 8) yields the eigen
value problem 

x4y" + AY = 0, y ea) = y (b) = 0, 

where A = J-L2 = Pb4/E 10 • (a) Apply the theo
rem of this section to show that the general solution of 
x4y" + J-L2y = 0 is 

y (x) = x (A cos '; + B sin ';) . 
(b) Conclude that the nth eigenvalue is given by J-Ln 
nrrab/L , where L = b - a is the length of the rod, and 
hence that the nth buckling force is 

3.6  Application 

Note that i f  a = b , this result reduces to Eq. (28) o f  Sec
tion 2.8 . 

18. Consider a variable-length pendulum as indicated in 
Fig. 3 .6.6. Assume that its length is increasing linearly 
with time, L (t) = a + bt. It can be shown that the oscil
lations of this pendulum satisfy the differential equation 

Le" + 2L'e' + ge = 0 

under the usual condition that e is so small that sin (J 
is very well approximated by e :  e � sin e. Substitute 
L = a + bt to derive the general solution 

For the application of this solution to a discussion of the 
steadily descending pendulum ("its nether extremity was 
formed of a crescent of glittering steel, about a foot in 
length from horn to horn; the horns upward, and the under 
edge as keen as that of a razor . . .  and the whole hissed 
as it swung through the air . . .  down and still down it 
came") of Edgar Allan Poe's macabre classic "The Pit and 
the Pendulum," see the article by Borrelli, Coleman, and 
Hobson in the March 1 985 issue of Mathematics Maga
zine (Vol. 58, pp. 78-83) . 

FIGURE 3.6.6. A variable-length pendulum. 

A Riccati equation is one of the form 

dy - = A(x)l + B(x)y + C(x) . dx 

Many Riccati equations like the ones listed next can be solved explicitly in terms of 
Bessel functions .  

( 1 )  

(2) 
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dy 
dx 

= l - x2 ; 

dy 
dx 

= x + l ; 

dy 
- = x - l; dx 
dy 2 - = y - x . 
dx 

(3) 

(4) 

(5) 

(6) 

For example, Problem 15 in this section says that the general solution of Eq. ( I )  is 
given by 

(7) 

See whether the symbolic DE solver command in your computer algebra sys
tem, such as the Maple command 

dsolve ( di f f ( y ( x ) , x )  = x A 2  + y ( x ) A 2 ,  y ( x »  

or the Mathematica command 

DSolve [ y ' [ x ) == x A 2 + y [ x ) A 2 ,  y [ x ) , x ) 

agrees with Eq. (7) .  If Bessel functions other than those appearing in Eq. (7) are 
involved, you may need to apply the identities in (26) and (27) of Section 3 .5 to 
transform the computer's "answer" to (7) .  Then see whether your system can take 
the limit as x ---+ 0 in (7) to show that the arbitrary constant c is given in terms of 
the initial value y(O) by 

y (o)r U) 
c = ---:-:=:-':-"'"'-

2r (n 
(8) 

Now you should be able to use built-in Bessel functions to plot typical solution 
curves like those shown in Fig. 3 .6.4. 

Next, investigate similarly one of the other equations in (2) through (6). Each 
has a general solution of the same general form in (7)-a quotient of linear com
binations of Bessel functions. In addition to Jp (x) and Yp (x ) ,  these solutions may 
involve the modified Bessel functions 

and 
7r 

Kp (x) = 2, i -P [Jp (ix) + Yp (ix)] 

that satisfy the modified Bessel equation 

x2y" + xy' - (x2 + p2)y = 0 

of order p.  For instance, the general solution of Eq. (5) is given for x > 0 by 

I ( 2 3/2) I ( 2 3/2) 1 /2 2/3 3x - C -2/3 3x 
y (x) = x  

( 2 ) 2 ) ' L I /3 3x3/2 - cIl /3 ( 3x3/2 
(9) 
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4 

2 

"' 0  

- 2  

- 4  

- 5  
x 

FIGURE 3.6.7. Solution curves 

dy 
of - = x _ y2 . dx 

where 
y(o)r G) 

c = - . 
3 1 j3 r (D 

( 1 0) 

Figure 3 .6.7 shows some typical solution curves, together with the parabola i = x 
that appears to bear an interesting relation to Eq. (6)-we see a funnel near y = 
+JX and a spout near y = -JX. 

The Bessel functions with imaginary argument that appear in the definitions 
of I p (x ) and K p (x ) may look exotic, but the power series of the modified function 
In (x ) is simply that of the unmodified function In (x ) except without the alternating 
minus signs. For instance, 

and 

x2 X4 x6 
Io (x ) = 1 + - + - + -- + . . .  

4 64 2304 

X x3 x5 x7 
II (x ) = '2 + 

1 6  
+ 

384 
+ 

1 8432 
+ . . . . 

Check these power series expansions using your computer algebra system-look at 
BesselI  in either Maple or Mathematica-and compare them with Eqs. ( 1 7) and 
( 1 8) in Section 3 .5 .  

The second-order differential equations of the form y" = f (x ,  y) with the 
same right-hand sides as in Eqs. ( 1 )  through (6) have interesting solutions which, 
however, cannot be expressed in terms of elementary functions and/or "known" 
special functions such as Bessel functions .  Nevertheless, they can be investigated 
using an ODE plotter. For instance, the interesting pattern in Fig. 3 .6 .8 shows solu
tion curves of the second-order equation 

y" = y2 _ X ( 1 1 )  

with the same initial value y eO) = 0 but different slopes y' (O) = -3 .3 ,  -3 . 1 ,  . . .  , 
0 .7 .  Equation ( 1 1 )  is a form of thefirst Painleve transcendant, an equation that arose 
historically in the classification of nonlinear second-order differential equations in 
terms of their critical points (see Chapter 14 of E. L. Ince, Ordinary Differential 
Equations, New York: Dover Publications, 1 956). Figure 3 .6.8 was suggested by 
an article by Anne Noonburg containing a similar figure in the Spring 1 993 issue of 
the C .  ODE . E  Newsletter. 

- - -

- - - -

2 _ - - - - -

y2 = x 
--- -

x 

FIGURE 3.6.8. The first Painleve transcendant y" = y2 - x ,  
y eO) = 0 , y' (O) = -3 . 3 , -3 . 1 , . . .  , 0 .7 . 
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Finally, here's a related example that was inspired by a Maple demonstration 
package. The Maple dsolve command yields the general solution 

y (x)  = x- I (C I JlO (X) + C2YlO (X» 
+ x - l l  ( 1 857945600 + 5 1609600x2 + 806400x4 + 9600x6 + 100x8 + x lO) ( 12) 

of the nonhomogeneous second-order equation 

x2y" + 3xy' + (x2 - 99)y = x .  ( 1 3) 

Show that Theorem 1 in this section explains the "Bessel part" of the alleged solu
tion in Eq. ( 1 2) .  Can you explain where the rational function part comes from, or 
at least verify it? For further examples of this sort, you can replace the coefficient 
99 in Eq. ( 1 3) with r2 - 1 ,  where r is an even integer, and/or replace the x on the 
right-hand side with xS , where s is an odd integer. (With parities other than these, 
more exotic special functions are involved. )  



Laplace Transform 
Methods 

l1li Laplace Transforms and Inverse Transforms 
f(t) ---, 

D { f(t» ) = f '(t) 

f(t) ---, 

::f { f(t» ) = F(s) 

FIGURE 4.1 .1 .  Transformation 
of a function: £- in analogy with 
D. 

266 

In Chapter 2 we saw that linear differential equations with constant coefficients 
have numerous applications and can be solved systematically. There are common 

situations, however, in which the alternative methods of this chapter are preferable. 
For example, recall the differential equations 

mx" + cx' + kx = F(t)  and LI" + RI' + �I  = E' (t) 
C 

corresponding to a mass-spring-dashpot system and a series RLC circuit, respec
tively. It often happens in practice that the forcing term, F(t)  or E'(t ) ,  has 
discontinuities-for example, when the voltage supplied to an electrical circuit is 
turned off and on periodically. In this case the methods of Chapter 2 can be quite 
awkward, and the Laplace transform method is more convenient. 

The differentiation operator D can be viewed as a transformation which, when 
applied to the function f(t ) ,  yields the new function D{f(t ) } = f'(t) . The Laplace 
transformation £- involves the operation of integration and yields the new function 
£-{f (t ) } = F(s) of a new independent variable s . The situation is diagrammed in 
Fig. 4. 1 . 1 .  After learning in this section how to compute the Laplace transform F (s ) 
of a function f(t ) ,  we will see in Section 4.2 that the Laplace transform converts 
a differential equation in the unknown function f(t) into an algebraic equation in 
F(s ) . Because algebraic equations are generally easier to solve than differential 
equations, this is one method that simplifies the problem of finding the solution 
f(t ) · 
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DEFI N ITION The Laplace Transform 

Given a function f(t )  defined for all t � 0, the Laplace transform of f is the 
function F defined as follows: 

F(s) = £{f(t ) }  = 100 e-st f (t) dt 

for all values of s for which the improper integral converges. 

( 1 )  

Recall that an improper integral over an infinite interval i s  defined as a limit 
of integrals over bounded intervals ;  that is, 100 

g et) dt = lim lb 
g et) dt . 

a b-+oo a 
(2) 

If the limit in (2) exists , then we say that the improper integral converges; otherwise, 
it diverges or fails to exist. Note that the integrand of the improper integral in ( 1 )  
contains the parameter s i n  addition to the variable of  integration t . Therefore, when 
the integral in ( 1 )  converges, it converges not merely to a number, but to afunction 
F of s . As in the following examples, it is typical for the improper integral in the 
definition of £ {f (t) } to converge for some values of s and diverge for others. 

With f(t) == 1 for t � 0, the definition of the Laplace transform in ( 1 )  gives 

and therefore 

" { l } -- ! � ° <L lor s > . s 
(3) 

As in (3), it's good practice to specify the domain of the Laplace transform-in 
problems as well as in examples. Also, in this computation we have used the com
mon abbreviation 

[g (t)]OO 
= lim [g(t)] b . 

a b-+oo a 
(4) 

• 

Remark: The limit we computed in Example 1 would not exist if s < 0, 
for then ( l /s)e-bs would become unbounded as b ---+ +00. Hence £ { 1 } is defined 
only for s > 0. This is typical of Laplace transforms;  the domain of a transform is 
normally of the form s > a for some number a . • 

With f(t) = eat for t � 0, we obtain 100 100 [ -(s-a)/ Joo 
£{eat } = e-st eat dt = e-(s-a) t dt = _ 

e 
. 

o 0 s - a /=0 
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Exa m ple 3 

If s - a > 0, then e- (s-a)t -+ 0 as t -+ +00, so it follows that 

" {eat } __
_ 

1 _ & <L lor s > a .  
s - a 

(5) 

Note here that the improper integral giving £{eat } diverges if s � a .  It is worth 
noting also that the formula in (5) holds if a is a complex number. For then, with 
a = ex + i{J , 

e-(s-a) t = eifJt e-(s-OI)t -+ 0 
as t -+ +00, provided that s > ex = Re[a ] ;  recall that eifJt = cos {Jt + i sin {Jt .  • 

The Laplace transform £{ ta } of a power function is most conveniently ex
pressed in terms of the gamma function [' (x) ,  which is defined for x > 0 by the 
formula 

(6) 

For an elementary discussion of [' (x ) ,  see the subsection on the gamma function in 
Section 3 .5 ,  where it is shown that 

[' ( 1 )  = I (7) 

and that 

[' (x + I )  = x[' (x)  (8) 

for x > O. It then follows that if n is a positive integer, then 

[' (n + 1 )  = n[' (n) 
= n . (n - I ) [' (n - I )  
= n . (n - I )  . (n - 2)[' (n - 2) 

= n (n - I ) (n - 2) . .  · 2 ·  [' (2) 
= n (n - I ) (n - 2) . .  · 2 ·  1 . [' ( 1 ) ;  

thus 

[' (n + 1 )  = n !  (9) 

if n is a positive integer. Therefore, the function [' (x + 1 ) ,  which is defined and 
continuous for all x > - I , agrees with the factorial function for x = n ,  a positive 
integer. 

- -
Suppose that f (t) = ta where a is real and a > - 1 . Then 

£{ta } = 100 e-st ta dt .  

If we substitute u = st ,  t = u/s , and dt = du/s in this integral, we get 

£ t  = -- e u u = --,.--{ a } 
I 100 -u a d [' (a + I )  

sa+ ! 0 sa+ ! ( 1 0) 
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for all s > 0 (so that u = st > 0). Because r (n + 1) = n! if n is a nonnegative 
integer, we see that 

For instance, 

1 
£{t } = 2 '  s 

2 2 
£ {t } = 3 '  

s 
3 6 

and £{t } = 4" .  
s 

( 1 1 )  

As  in Problems 1 and 2, these formulas can be  derived immediately from the defi
nition, without the use of the gamma function. • 

Linearity of Transforms 

It is not necessary for us to proceed much further in the computation of Laplace 
transforms directly from the definition . Once we know the Laplace transforms of 
several functions, we can combine them to obtain transforms of other functions. The 
reason is that the Laplace transformation is a linear operation. 

TH EOREM 1 Linearity of the Laplace Transform 

If a and b are constants, then 

£ {af(t )  + bg (t) } = a£ {f (t ) }  + b£ {g(t ) }  ( 12) 

for all s such that the Laplace transforms of the functions f and g both exist. 

The proof of Theorem 1 follows immediately from the linearity of the opera
tions of taking limits and of integration : 

£{af(t) + bg(t) }  = 100 e-st [af (t) + bg (t)] dt 

= lim t e-st [af(t) + bg (t)] dt 
c---+ oo 10 

= a ( lim [C e-st f (t) dt) + b ( lim t e-st g(t) dt) 
c---+ oo 10 c---+ oo 10 

= a£{f(t ) }  + b£{g(t) } .  

The computation of £{tn/2 } is based on the known special value 

of the gamma function. For instance, it follows that 

( 1 3) 
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Exa m ple 5 

Exa mple 6 

using the formula r (x + 1 )  = x r (x) in (9), first with x = � and then with x = 4 .  
Now the formulas i n  ( 1 0) through ( 1 2) yield 

2' 4r (� )  6 Hs 
£ {3t2 + 4t3/2 } = 3 . .-....:. + __ 2_ = - + 3 - . 

s3 s5/2 s3 s5 

Recall that cosh kt = 
together give 

that is ,  

Similarly, 

£{cosh kt } = _£ {ekt } + _£ {e-kt } = _ -- + -- ; 
1 1 1 ( 1 1 ) 
2 2 2 s - k s + k  

s 
£ {cosh kt } = 2 2 for s > k > O. 

s - k  

. k 
£ {smh kt } = 2 2 for s > k > O. 

s - k  

Because cos kt = (eikt + e-ikt )/2, the formula in (5) (with a = ik) yields 

1 ( 1 1 ) 1 2s 
£ {cos kt } = 2 -

s ---i-k 
+ -s -+-i-k 

= 2 . ---;s2:---(i-:-k )-=2 ' 

and thus 

s 
£ {cos kt } = 2 2 for s > O. s + k  

(The domain follows from s > Re[ik] = 0.) Similarly, 

. k 
£ {sm kt } = 2 k2 for s > O. 

s + 

• 

( 14) 

( 1 5) 

( 1 6) 

( 17) 

• 

Applying linearity, the formula in ( 1 6) , and a familiar trigonometric identity, we get 

£ {3e2t + 2 sin2 3t } = £ {3e2t + l - cos 6t } 

3 1 s 
= -- + - - -::---

s - 2 S S2 + 36 

3s3 + 144s - 72 
= for s > O. 

s (s - 2) (s2 + 36) 
• 
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1(/) 

(s > 0) 
s 

(s > 0) 

(s > 0) 

ta (a > - 1 )  r (a + 1 )  
(s > 0) 

sa+ ! 

eat 
(s > 0) 

s - a 

cos kt 
s 

S2 + k2 (s > 0) 

sin kt 
k 

s2 + k2 
(s > 0) 

cosh kt 
S 

S2 - k2 
(s > I k l )  

sinh kt 
k 

S2 - k2 
(s > I k l )  

u(t - a)  
e-as 

(s > 0) 
s 

FIGURE 4.1.2. A short table of 
Laplace transforms. 
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Inverse Transforms 

According to Theorem 3 of this section, no two different functions that are both 
continuous for all t � ° can have the same Laplace transform. Thus if F (s) is the 
transform of some continuous function f(t) ,  then f(t) is uniquely determined. This 
observation allows us to make the following definition : If F(s) = £{f(t ) } ,  then we 
call f(t) the inverse Laplace transform of F(s) and write 

f(t) = £- I { F(s) } .  

Using the Laplace transforms derived i n  Examples 2, 3 ,  and 5 w e  see that 

and so on. 

£- 1 {_I } = e-2t 
s + 2 ' 

( 1 8) 

• 

NOTATION : FUNCTIONS AND THEIR TRANSFORMS. Throughout this chapter 
we denote functions of t by lowercase letters . The transform of a function will al
ways be denoted by that same letter capitalized. Thus F(s) is the Laplace transform 
of f(t) and x (t )  is the inverse Laplace transform of X (s) .  

A table o f  Laplace transforms serves a purpose similar to that o f  a table of 
integrals .  The table in Fig. 4. 1 .2 lists the transforms derived in this section ; many 
additional transforms can be derived from these few, using various general proper
ties of the Laplace transformation (which we will discuss in subsequent sections). 

Piecewise Continuous Functions 

As we remarked at the beginning of this section, we need to be able to handle certain 
types of discontinuous functions. The function f (t) is said to be piecewise contin
uous on the bounded interval a � t � b provided that [a , b] can be subdivided into 
finitely many abutting subintervals in such a way that 

1. f is continuous in the interior of each of these subintervals ;  and 
2. f(t) has a finite limit as t approaches each endpoint of each subinterval from 

its interior. 

We say that f is piecewise continuous for t � ° if it is piecewise continuous on 
every bounded subinterval of [0, +00) . Thus a piecewise continuous function has 
only simple discontinuities (if any) and only at isolated points. At such points the 
value of the function experiences a finite jump, as indicated in Fig. 4. 1 .3 .  The jump 
in f(t) at the point c is defined to be f(c+) - f(c-) ,  where 

f(c+) = lim f(C + E) and f(c-) = lim f(C - E) .  
" ..... 0+ " ..... 0+ 

Perhaps the simplest piecewise continuous (but discontinuous) function is the 
unit step function, whose graph appears in Fig. 4. 1 .4. It is defined as follows: 

1 0 for t < 0, 
u (t )  = 

1 for t � 0. 
( 1 9) 
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y 

a b x 

u (t) .. .-u,;:.;,, (t�) _= _u (;..t _- ....;a)_ (a , I ) . 

t = a 
FIGURE 4.1.3. The graph of a 
piecewise continuous function; the 
solid dots indicate values of the 
function at discontinuities. 

FIGURE 4.1.4. The graph of the 
unit step function. 

FIGURE 4.1.5. The unit step 
function ua (t) has a jump at t = a .  

Exa m ple 8 

Because u (t) = 1 for t � 0 and because the Laplace transform involves only the 
values of a function for t � 0, we see immediately that 

1 
£{u (t ) }  = - (s > 0) . 

s 
(20) 

The graph of the unit step function ua (t) = u (t - a) appears in Fig. 4. 1 .5 .  Its jump 
occurs at t = a rather than at t = 0; equivalently, 1 0 for t < a ,  ua (t) = u (t - a) = 

1 for t � a . 

Find £{ua (t ) }  if a > o. 

(2 1 )  

Solution We begin with the definition of the Laplace transform. We obtain 

£{ua (t ) } = e-sl ua (t) dt = e-Sl dt = lim _ _  
e

_ ; 100 100 [ -SI ] b 
o a b-'>oo S t =a 

consequently, 
e-as 

£ {ua (t ) }  = - (s > 0, a > 0) . 
s 

General Properties of Transforms 

It is a familiar fact from calculus that the integral 

1b 
g (t) dt 

(22) 
• 

exists if g is piecewise continuous on the bounded interval [a , b] . Hence if f is 
piecewise continuous for t � 0, it follows that the integral 

exists for all b < +00 . But in order for F (s)-the limit of this last integral as 
b ---+ +oo-to exist, we need some condition to limit the rate of growth of f(t) as 
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t ---+ +00. The function f is said to be of exponential order as t ---+ +00 if there 
exist nonnegative constants M, c, and T such that 

I f (t) 1 � Mect for t � T. (23) 

Thus a function is of exponential order provided that it grows no more rapidly (as 
t ---+ +(0) than a constant multiple of some exponential function with a linear 
exponent. The particular values of M, c, and T are not so important. What is 
important is that some such values exist so that the condition in (23) is satisfied. 

The condition in (23) merely says that f(t)/ect lies between -M and M and 
is therefore bounded in value for t sufficiently large. In particular, this is true (with 
c = 0) if f (t) itself is bounded. Thus every bounded function-such as cos kt or 
sin kt-is of exponential order. 

If p (t )  is a polynomial, then the familiar fact that p(t)e-t ---+ 0 as t ---+ +00 
implies that (23) holds (for T sufficiently large) with M = c = 1 . Thus every 
polynomial function is of exponential order. 

For an example of an elementary function that is continuous and therefore 
bounded on every (finite) interval, but nevertheless is not of exponential order, con
sider the function f (t)  = et2 = exp(t2) .  Whatever the value of c, we see that 

1· f (t)  1 · et2 1 · t2 ct 1m -- = 1m - = 1m e - = +00 t-+oo ect t-+oo ect t-+oo 
because t2 - ct  ---+ +00 as  t ---+ +00. Hence the condition in (23) cannot hold 
for any (finite) value M, so we conclude that the function f (t)  = et2 is not of 
exponential order. 

Similarly, because e-st et2 ---+ +00 as t ---+ +00, we see that the improper inte
gral Jooo e-st et2 dt that would define £ {et2 } does not exist (for any s) , and therefore 

that the function et2 does not have a Laplace transform. The following theorem guar
antees that piecewise functions of exponential order do have Laplace transforms. 

THEOREM 2 Existence of Laplace Transforms 

If the function f is piecewise continuous for t � 0 and is of exponential order as 
t ---+ +00, then its Laplace transform F(s) = £ { J (t ) }  exists . More precisely, if 
f is piecewise continuous and satisfies the condition in (23) ,  then F(s) exists for 
all s > c. 

Proof: First we note that we can take T = 0 in (23) .  For by piecewise 
continuity, I f (t ) 1 is bounded on [0, T] .  Increasing M in (23) if necessary, we can 
therefore assume that I f  (t) I � M if 0 � t � T . Because ect � 1 for t � 0, it then 
follows that I f (t) 1 � Mect for all t � o. 

By a standard theorem on convergence of improper integrals-the fact that ab
solute convergence implies convergence-it suffices for us to prove that the integral 

100 l e-st f (t) 1 dt 

exists for s > c. To do this, it suffices in turn to show that the value of the integral 
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remains bounded as b -+ +00. But the fact that I f (t) 1 � Mect for all t � 0 implies 
that 

� M e- (s-c)t dt = --100 M 

if s > c. This proves Theorem 2. 

o s - c 

We have shown, moreover, that 

100 M 
I F(s) I � l e-st f (t) 1 dt � --

o s - c  
if s > c. When we take limits as s -+ +00, we get the following result. 

COROLLARY F(s) for s Large 

If f (t) satisfies the hypotheses of Theorem 2, then 

lim F(s) = o. s ...... oo 

(24) 

(25) 

The condition in (25) severely limits the functions that can be Laplace trans
forms. For instance, the function G (s) = s / (s + 1 )  cannot be the Laplace transform 
of any "reasonable" function because its limit as s -+ +00 is 1 ,  not O. More gen
erally, a rational function-a quotient of two polynomials-can be (and is, as we 
shall see) a Laplace transform only if the degree of its numerator is less than that of 
its denominator. 

On the other hand, the hypotheses of Theorem 2 are sufficient, but not neces
sary, conditions for existence of the Laplace transform of f(t ) .  For example, the 
function f(t) = 1/.Jt fails to be piecewise continuous (at t = 0), but nevertheless 
(Example 3 with a = - t > - 1 )  its Laplace transform 

£ {t- 1 /2 } = r (1 )  = � 
S I /2 V -; 

both exists and violates the condition in (24), which would imply that sF  (s) remains 
bounded as s -+ +00. 

The remainder of this chapter is devoted largely to techniques for solving a 
differential equation by first finding the Laplace transform of its solution. It is then 
vital for us to know that this uniquely determines the solution of the differential 
equation; that is , that the function of s we have found has only one inverse Laplace 
transform that could be the desired solution. The following theorem is proved in 
Chapter 6 of Churchill 's Operational Mathematics, 3rd ed. (New York: McGraw
Hill, 1 972). 

THEOREM 3 U niqueness of I nverse Laplace Transforms 

Suppose that the functions f(t) and g (t) satisfy the hypotheses of Theorem 2, 
so that their Laplace transforms F(s) and G(s) both exist. If F(s) = G(s) for 
all s > c (for some c), then f(t)  = g (t )  wherever on [0, +00) both f and g are 
continuous. 
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Thus two piecewise continuous functions of exponential order with the same 
Laplace transform can differ only at their isolated points of discontinuity. This is 
of no importance in most practical applications, so we may regard inverse Laplace 
transforms as being essentially unique. In particular, two solutions of a differential 
equation must both be continuous, and hence must be the same solution if they have 
the same Laplace transform. 

Historical Remark: Laplace transforms have an interesting history. 
The integral in the definition of the Laplace transform probably appeared first in 
the work of Euler. It is customary in mathematics to name a technique or theorem 
for the next person after Euler to discover it (else there would be several hundred 
different examples of "Euler's theorem") . In this case, the next person was the 
French mathematician Pierre Simon de Laplace ( 1 749-1 827), who employed such 
integrals in his work on probability theory. The so-called operational methods for 
solving differential equations, which are based on Laplace transforms, were not ex
ploited by Laplace. Indeed, they were discovered and popularized by practicing 
engineers-notably the English electrical engineer Oliver Heaviside ( 1 850--1925). 
These techniques were successfully and widely applied before they had been rig
orously justified, and around the beginning of the twentieth century their validity 
was the subject of considerable controversy. One reason is that Heaviside blithely 
assumed the existence of functions whose Laplace transforms contradict the condi
tion that F(s) ---+ 0 as s ---+ 0, thereby raising questions as to the meaning and nature 
of functions in mathematics. (This is reminiscent of the way Leibniz two centuries 
earlier had obtained correct results in calculus using "infinitely small" real numbers, 
thereby raising questions as to the nature and role of numbers in mathematics.) 

Apply the definition in (1) to find directly the Laplace trans
forms of the functions described (by formula or graph) in Prob
lems 1 through 10. 

9. 
�(I' l l 

1. f(t ) = t 

3. f(t ) = e3t+ 1 

5. f(t ) = sinh t 

7. 
�(l' 1 1 

FIGURE 4.1.6. 

8. 

j 
( 1 , 1 ) (2, 1 ) 

� 

• c 
I 

FIGURE 4.1.7. 

2. f(t) = t2 

4. f(t) = cos t 

6. f(t ) = sin2 t 

FIGURE 4.1.8. 

10. 
(o' l lk: 

Use the transforms in Fig. 4. 1 .2 to find the Laplace transforms 
of the functions in Problems 1 1 through 22. A preliminary in
tegration by parts may be necessary. 
11.  f(t ) = ..fi + 3t 
13. f(t) = t - 2e3t 
15. f(t) = 1 + cosh 5t 

17. f(t ) = cos2 2t 
19. f(t ) = (1 + t )3 
21. f(t) = t cos 2t 

12. f(t) = 3t5/2 - 4t3 
14. f(t) = t3/2 - e- lOt 
16. f(t) = sin 2t + cos 2t 
18. f(t) = sin 3t cos 3t 

20. f(t) = tet 
22. f(t) = sinh2 3t 
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Use the transforms in Fig. 4. 1 .2 to find the inverse Laplace 
transforms of the functions in Problems 23 through 32. 

3 
23. F(s) = 4" s 

1 2 
25. F(s) = - - 5/2 S S 

3 
27. F(s) = -s - 4 

5 - 3s 
29. F(s) = S2 + 9 

lOs - 3  
31. F(s) = 25 _ S2 

24. F (s) = S-3/2 

1 
26. F (s) = -s + 5  

3s + 1 
28. F (s) = S2 + 4  

9 + s  
30. F (s) = 4 - s2 

33. Derive the transform of f(t ) = sin kt by the method used 
in the text to derive the formula in ( 1 6) . 

34. Derive the transform of f (t) = sinh kt by the method used 
in the text to derive the formula in ( 14) . 

35. Use the tabulated integral 

f eax eax cos bx dx = -2--2 (a cos bx + b sin bx) + C a + b  

to obtain £ {cos kt } directly from the definition of the 
Laplace transform. 

36. Show that the function f(t) = sin (et
2
) is of exponential 

order as t -+ +00 but that its derivative is not. 

37. Given a > 0, let f(t ) = 1 if 0 � t < a, f (t ) = 0 if 
t � a. First, sketch the graph of the function f, making 
clear its value at t = a. Then express f in terms of unit 
step functions to show that £(f( t ) } = s- l ( 1 - e-as ) . 

38. Given that 0 < a < b, let f(t) = 1 i f  a � t < b , 
f(t) = 0 i f  either t < a o r  t � b. First, sketch the graph 
of the function f, making clear its values at t = a and 
t = b. Then express f in terms of unit step functions to 
show that £(f (t) } = s- l (e-as - e-bs ) . 

39. The unit staircase function i s  defined a s  follows: 

f(t) = n  if n - l � t < n , n = 1 . 2 , 3 , . . . . 

(a) Sketch the graph of f to see why its name is appropri
ate. (b) Show that 

00 
f(t) = L u (t - n) 

n=O 
for all t � o. (c) Assume that the Laplace transform of 
the infinite series in part (b) can be taken termwise (it can). 

Apply the geometric series to obtain the result 

£ _ 1 (f (t ) } - s ( 1  _ e-S ) 

40. (a) The graph of the function f is shown in Fig. 4. 1 . 10. 
Show that f can be written in the form 

00 
f(t ) = L(- l )nu (t - n) . 

n=O 
(b) Use the method of Problem 39 to show that 

£ _ 1 
(f (t ) } - s ( 1  + e-S ) 

o • 4 5 0--
6 t 

FIGURE 4.1.10. The graph of the function of 
Problem 40. 

41. The graph of the square-wave function g et ) is shown in 
Fig. 4. 1 . 1 1 .  Express g in terms of the function f of Prob
lem 40 and hence deduce that 

1 - e-s 1 s £ {g (t) } = = - tanh - . s ( l + e-S ) s 2 

IL .---.0 .---.0 _ • • •  � '  2 3 4 5 '  

FIGURE 4.1.11. The graph of the function of 
Problem 4 1 .  

42. Given constants a and b ,  define h (t ) for t � 0 by 

h (t) = { a if n - 1 � t < n and n is odd; 

b if n - 1 � t < n and n is even. 

Sketch the graph of h and apply one of the preceding prob
lems to show that 

a + be-s £ {h (t ) } = . s ( l + e-S ) 
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lIB Transformation of Initial Value Problems 

y riYlcontinuous function 
I I I I I I I I I I I I I I I I I : I I 

a 
I 

I 
I 
I I I 

I b I 
I 
I I I 

y' I I 

� 
I 
I 
I 
I 
I I 

I I : I � I . 

a 

I I I 
I I 
I I � 

'b 

x 

x 

Piecewise continuous derivative 

FIGURE 4.2.1. The 
discontinuities of f' correspond to 
"corners" on the graph of f .  

We now discuss the application of Laplace transforms to solve a linear differential 
equation with constant coefficients, such as 

axl/ (t) + bx' (t) + ex (t) = f(t) , ( 1 )  

with given initial conditions x (O) = xo and x' (O) = xb . By the linearity of the 
Laplace transformation, we can transform Eq. ( 1 )  by separately taking the Laplace 
transform of each term in the equation . The transformed equation is 

a£ {xl/ (t ) }  + b£{x' (t) } + e£ {x (t) } = £{f(t) } ;  (2) 

it involves the transforms of the derivatives x' and xl/ of the unknown function x (t) . 
The key to the method is Theorem 1 ,  which tells us how to express the transform of 
the derivative of a function in terms of the transform of the function itself. 

TH EOREM 1 Transforms of Derivatives 

Suppose that the function f(t) is continuous and piecewise smooth for t � 0 and 
is  pf exponential order as t -+ +00, so that there exist nonnegative constants M, 
e, and T such that 

I f (t ) 1 � Meet for t � T. 
Then £{f' (t ) } exists for s > e, and 

£{f'(t) } = s£{f (t ) } - f(O) = sF (s) - f(O) . 

(3) 

(4) 

The function f is called piecewise smooth on the bounded interval [a , b] if it 
is piecewise continuous on [a , b] and differentiable except at finitely many points, 
with f' (t) being piecewise continuous on [a , b] .  We may assign arbitrary values 
to f(t) at the isolated points at which f is not differentiable. We say that f is 
piecewise smooth for t � 0 if it is piecewise smooth on every bounded subinterval 
of [0, +(0) . Figure 4.2. 1 indicates how "corners" on the graph of f correspond to 
discontinuities in its derivative f' . 

The main idea of the proof of Theorem 1 is exhibited best by the case in which 
f' (t) is continuous (not merely piecewise continuous) for t � O. Then, beginning 
with the definition of £{f' (t) } and integrating by parts, we get 

£{f' (t) } = [00 e-st f' (t) dt = [e-st f (t )Joo + s [00 e-st f (t) dt . � t=O � 
Because of (3) ,  the integrated term e-st f(t) approaches zero (when s > c) as t -+ 
+00, and its value at the lower limit t = 0 contributes -f(O) to the evaluation of 
the preceding expression. The integral that remains is simply £{f(t ) } ; by Theorem 
2 of Section 4. 1 ,  the integral converges when s > e . Then £{f' (t) } exists when 
s > e, and its value is that given in Eq. (4) . We will defer the case in which f' (t) 
has isolated discontinuities to the end of this section. 
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Example 1 

Solution of Initial Value Problems 

In order to transform Eq. ( 1 ) , we need the transform of the second derivative as 
well. If we assume that g (t) = f' (t) satisfies the hypotheses of Theorem 1 ,  then 
that theorem implies that 

and thus 

£{f" (t ) } = £{g' (t) } = s£ {g (t) } - g (O) 
= s£ {f' (t ) }  - f' (O) 
= s [s£ {f (t ) }  - f(O) ] - f' (O) , 

£ {f" (t ) } = s2F(s)  - sf(O) - f' (O) . 

A repetition of this calculation gives 

(5) 

£{f"' (t ) } = s£ {f" (t ) } - f" (O) = S3 F (s)  - s2 f(O) - sf' (O) - f"(O) . (6) 

After finitely many such steps we obtain the following extension of Theorem 1 .  

COROLLARY Transforms of Higher Derivatives 

Suppose that the functions f, f', f", . . .  , f (n- l ) are continuous and piecewise 
smooth for t 2': 0, and that each of these functions satisfies the conditions in (3) 
with the same

-
values of M and c. Then £{f(n) (t ) }  exists when s > c, and 

£{f(n) (t ) } = sn £ {f (t) }  - sn- l f (O) - sn-2 f' (O) - . . .  - f(n- l ) (0) 

= sn F (s )  - sn- l f (O) - . . .  - sf(n-2) (0) - f(n- l ) (o) . 

Solve the initial value problem 

x" - x' - 6x = 0; x (O) = 2, x ' (O) = - 1 .  

(7) 

Solution With the given initial values, Eqs. (4) and (5) yield 

£{x' (t) } = s£ {x (t ) } - x (0) = sX (s)  - 2 

and 
£ {x" (t) } = S2 £ {x (t ) }  - sx (O) - x' (0) = s2 X (s) - 2s + 1 ,  

where (according to our convention about notation) X (s) denotes the Laplace trans
form of the (unknown) function x (t ) .  Hence the transformed equation is 

[S2X (S) - 2s + 1] - [sX (s) - 2] - 6 [X (s) ]  = 0, 

which we quickly simplify to 

Thus 

(S2 - S - 6)X (s) - 2s + 3 = O. 

2s - 3 
X (s)  = -,---

s2 - S - 6 
2s - 3 

(s - 3) (s + 2) 
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By the method of partial fractions (of integral calculus), there exist constants A and 
B such that 

2s - 3  A B 
----- = -- + -- ,  
(s - 3) (s + 2) s - 3 s + 2 

and multiplication of both sides of this equation by (s - 3) (s + 2) yields the identity 

2s - 3 = A (s + 2) + B(s - 3) . 

If we substitute s = 3 ,  we find that A = � ;  substitution of s = -2 shows that 
B = � .  Hence 

3 7 

X (s) = £{x (t ) } = � + 5
2 '  s - 3  s + 

Because £-1 { l/(s - a) }  = eat , it follows that 

is the solution of the original initial value problem. Note that we did not first find 
the general solution of the differential equation. The Laplace transform method 
directly yields the desired particular solution, automatically taking into account
via Theorem 1 and its corollary-the given initial conditions. • 

Remark: In Example 1 we found the values of the partial-fraction coeffi
cients A and B by the "trick" of separately substituting the roots s = 3 and s = -2 
of the original denominator s2 - s - 6 = (s - 3) (s + 2) into the equation 

2s - 3 = A (s + 2) + B(s - 3) 

that resulted from clearing fractions. In lieu of any such shortcut, the "sure-fire" 
method is to collect coefficients of powers of s on the right-hand side, 

2s - 3 = (A + B)s + (2A - 3) .  

Then upon equating coefficients of  terms of  like degree, we get the linear equations 

A + B = 2, 
2A - 3B = -3 

which are readily solved for the same values A = � and B = � .  
Solve the initial value problem 

x" + 4x = sin 3t ;  x (O) = x' (0) = O .  

• 

Such a problem arises in the motion of a mass-and-spring system with external 
force, as shown in Fig. 4.2.2. 
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Solution Because both initial values are zero, Eq. (5) yields £ {x"(t ) }  = s2X (s ) .  We read 
the transform of sin 3t  from the table in Fig. 4. 1 .2 (Section 4. 1 )  and thereby get the 

FIGURE 4.2.2. A mass-and
spring system satisfying the initial 
value problem in Example 2. The 
mass is initially at rest in its 
equilibrium position. 

x 

FIGURE 4.2.3. The position 
function x (t ) in Example 2. 

transformed equation 

Therefore, 

3 
s2X (s)  + 4X (s) = -2- ' S + 9  

3 
X (s ) - ---::----::--

- (S2 + 4) (S2 + 9) ' 

The method of partial fractions calls for 

3 As + B Cs + D 
��--�---- = + . 
(s2 + 4) (s2 + 9) s2 + 4 s2 + 9 

The sure-fire approach would be to clear fractions by multiplying both sides by the 
common denominator, and then collect coefficients of powers of s on the right-hand 
side. Equating coefficients of like powers on the two sides of the resulting equation 
would then yield four linear equations that we could solve for A, B, C, and D. 

However, here we can anticipate that A = C = 0, because neither the numer
ator nor the denominator on the left involves any odd powers of s ,  whereas nonzero 
values for A or C would lead to odd-degree terms on the right. So we replace A and 
C with zero before clearing fractions .  The result is the identity 

3 = B(s2 + 9) + D(s2 + 4) = (B + D)s2 + (9B + 4D) .  

When we equate coefficients of  like powers of  s we get the linear equations 

B + D  = 0 , 

9B + 4D = 3 ,  

which are readily solved for B = � and D = -� .  Hence 

3 2 1 3 
X (s) = £ {x (t ) }  = - . -- - - . -- . 

1 0  s2 + 4 5 S2 + 9 

Because £ { sin 2t } = 2/ (s2 + 4) and £ { sin 3 t }  = 3/(s2 + 9) ,  it follows that 

x (t )  = fa sin 2t - ! sin 3 t .  

Figure 4.2 .3 shows the graph of  this period 2n position function of  the mass. Note 
that the Laplace transform method again gives the solution directly, without the 
necessity of first finding the complementary function and a particular solution of the 
original nonhomogeneous differential equation. Thus nonhomogeneous equations 
are solved in exactly the same manner as are homogeneous equations. • 

Examples 1 and 2 illustrate the solution procedure that is outlined in Fig. 4.2.4. 
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Differential 
equation 

in x(t) 

Algebraic 
equation 

in X(s) 

Solution x(t) 
of differential 

Solution Xes) 
)----..1 of algebraic 

equation 

FIGURE 4.2.4. Using the Laplace transform to solve an initial 
value problem. 

Linear Systems 

Laplace transforms are frequently used in engineering problems to solve a system 
of two or more constant-coefficient linear differential equations involving two or 
more unknown functions x (t ) ,  y (t) , . . .  of the independent variable t .  When initial 
conditions are specified, the Laplace transform reduces such a linear system of dif
ferential equations to a linear system of algebraic equations in which the unknowns 
are the transforms of the solution functions. As Example 3 illustrates, the technique 
for a system is essentially the same as for a single linear differential equation with 
constant coefficients. 

Solve the system 

2x" = -6x + 2y , 
y" = 2x - 2y + 40 sin 3t ,  

(8) 

subject to the initial conditions 

x (O) = x'(O) = y(O) = y' (O) = O. (9) 

This initial value problem determines the indicated displacement functions x(t) and 
y (t )  of the two masses shown in Fig. 4.2 .5 , assuming that the force f(t) = 40 sin 3t 
is suddenly applied to the second mass at the time t = 0 when both masses are at 
rest in their equilibrium positions. 

J(t )  = 40 sin 3t 

FIGURE 4.2.5. A mass-and-spring system satisfying the initial 
value problem in Example 3. Both masses are initially at rest in their 
equilibrium positions.  

Solution We write X (s) = £{x (t ) }  and Y (s )  = £{y (t) } .  Then the initial conditions in (9) 
imply that 

£{x" (t ) }  = S2X (S )  and £{y"(t) } = s2y (S ) .  
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yet) 

FIGURE 4.2.6. The position 
functions x (t ) and y (t) in 
Example 3 . 

Because £ {sin 3t } = 3/(s2 + 9) ,  the transforms of the equations in (8 )  are the 
equations 

2S2X (S ) = -6X (s )  + 2Y(s ) ,  
1 20 

s2y (S)  = 2X (s)  - 2Y(s)  + -2- . 
s + 9  

Thus the transformed system is 

(S2 + 3)X (s)  - Y (s)  = 0, 

1 20 
-2X (s)  + (s2 + 2) Y (s)  = �9

. 
s + 

( 10) 

The determinant of this pair of linear equations in X (s) and Y (s) is 

and we readily solve-using Cramer's rule, for instance-the system in ( 1 0) for 

and 

1 20 5 8 3 
X (s)  = 

(s2 + 1 ) (s2 + 4) (s2 + 9) 
= 

s2 + 1 
-

s2 + 4  
+ 

s2 + 9  
( 1 1a) 

1 20(s2 + 3) 10  8 1 8  Y (s )  = 
(s2 + 1 ) (S2 + 4) (s2 + 9) 

= 
s2 + 1  

+ 
s2 + 4  

-
s2 + 9 · ( 1 1 b) 

The partial fraction decompositions in Eqs. ( 1 1 a) and ( 1 1 b) are readily found using 
the method of Example 2. For instance, noting that the denominator factors are 
linear in s2 , we can write 

1 20 A B C  
�(s-:::2-+--:-1 )-(�s2::-+----:4-:-) (-:-s::-2 -+--:9:-) 

= -s2-+-1 
+ -s2-+-4 

+ -s2-+-9 ' 

and it follows that 

1 20 = A (s2 + 4) (s2 + 9) + B(s2 + l ) (s2 + 9) + C (s2 + l ) (s2 + 4) . ( 1 2) 

Substitution of s2 = - 1  (that is, s = i ,  a zero of the factor s2 + 1 )  in Eq. ( 1 2) gives 
1 20 = A . 3 . 8, so A = 5. Similarly, substitution of s2 = -4 in Eq. ( 1 2) yields 
B = - 8, and substitution of s2 = -9 yields C = 3. Thus we obtain the partial 
fraction decomposition shown in Eq. ( 1 1 a) .  

At any rate, the inverse Laplace transforms of the expressions in Eqs. ( 1 1 a) 
and ( 1 1 b) give the solution 

x (t) = 5 sin t - 4 sin 2t + sin 3t , 
y (t )  = I O sin t + 4 sin 2t - 6 sin 3t .  

Figure 4.2.6 shows the graphs of these two period 2rr position functions of the two 
masses. • 
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FIGURE 4.2.7. A mass
spring-dashpot system with 
external force J (t ) .  
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The Transform Perspective 

Let us regard the general constant-coefficient second-order equation as the equation 
of motion 

mx" + ex' + kx = f(t) 
of the familiar mass-spring-dashpot system (Fig. 4.2.7) . Then the transformed 
equation is 

m [s2 X (s) - sx (O) - x' (0)] + c [s X (s) - x (O)] + kX (s) = F(s) . ( 1 3) 

Note that Eq. ( 1 3) is an algebraic equation-indeed, a linear equation-in the "un
known" X (s) .  This is the source of the power of the Laplace transform method: 

Linear differential equations are transformed 
into readily solved algebraic equations. 

If we solve Eq. ( 1 3) for X (s) ,  we get 

where 

F(s) / (s) 
X (s) = 

Z(s) + Z(s) 
, 

Z (s)  = ms2 + cs + k  and / (s) = mx (O)s + mx' (O) + cx (O) . 

( 14) 

Note that Z(s) depends only on the physical system itself. Thus Eq. ( 14) presents 
X (s ) = oC {x (t) }  as the sum of a term depending only on the external force and one 
depending only on the initial conditions. In the case of an underdamped system, 
these two terms are the transforms 

F(s) 
oC {xsp (t ) }  = -

Z(s) 
/ (s) 

and oC{Xtr (t ) }  = -

Z(s) 

of the steady periodic solution and the transient solution, respectively. The only po
tential difficulty in finding these solutions is in finding the inverse Laplace transform 
of the right-hand side in Eq. ( 1 4) .  Much of the remainder of this chapter is devoted 
to finding Laplace transforms and inverse transforms. In particular, we seek those 
methods that are sufficiently powerful to enable us to solve problems that-unlike 
those in Examples 1 and 2-cannot be solved readily by the methods of Chapter 2. 

Additional Transform Techniques 

Show that 

Solution If f(t) = teat , then f(O) = 0 and !'(t) = eat + ateat . Hence Theorem I gives 

oC {eat + ateat } = oC {J' (t ) }  = soC {J (t) }  = soC {teat } .  

I t  follows from the linearity of the transform that 
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Hence 

( 1 5) 

because oC {eat } = 1/(s - a) .  • 

Example 5 Find oC {t sin kt } . 

Solution Let f (t) = t sin kt .  Then f(O) = 0 and 

f' (t )  = sin kt + kt cos kt .  

The derivative involves the new function t cos kt ,  so we note that f' (0) = 0 and 
differentiate again. The result is 

f" (t) = 2k cos kt - k2t sin kt .  

But oCU"(t) } = s2oCU(t) } by the formula in (5 )  for the transform of the second 
derivative, and oC {cos kt } = s/(s2 + k2) ,  so we have 

2ks 
2 2 - k2oC{ t sin kt } = s2oC {t sin kt } . 

s + k 

Finally, we solve this equation for 

( 1 6) 

This procedure is considerably more pleasant than the alternative of evaluating the 
integral 

oC {t sin kt } = 100 te-st sin kt dt .  • 

Examples 4 and 5 exploit the fact that if f (0) = 0, then differentiation of f 
corresponds to mUltiplication of its transform by s .  It is reasonable to expect the 
inverse operation of integration (antidifferentiation) to correspond to division of the 
transform by s .  

TH EOREM 2 Transforms of I ntegrals 

If f(t) is a piecewise continuous function for t � 0 and satisfies the condition of 
exponential order I f (t ) 1 � Meet for t � T, then { t } 1 F(s) oC 10 f(r ) dr = ;oCU(t) } = -s-

( 1 7) 

for s > c. Equivalently, 

oC- 1 { F;S) } = 1t f(r) dr . ( 1 8) 
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Proof: Because f is piecewise continuous, the fundamental theorem of cal
culus implies that 

g(t) = fo t f(r ) dr 

is continuous and that g' (t )  = f(t) where f is continuous ;  thus g is continuous and 
piecewise smooth for t � O. Furthermore, 

i t i t M M 
I g (t ) 1 � I f (r ) 1 dr � M ecr dr = _ (ect - 1 ) < _ect , 

o 0 C C 

so g (t) is of exponential order as t -+ +00. Hence we can apply Theorem 1 to g ;  
this gives 

£{f (t ) }  = £{g' (t) } = s£ {g(t) } - g (O) . 

Now g (O) = 0, so division by s yields 

£ {fo t f(r ) dr } = £{g (t ) }  = 
£{f(t) }

, s 

which completes the proof. 

Find the inverse Laplace transform of 

G(s) 
1 

S2 (S - a) 
. 

Solution In effect, Eq. ( 1 8) means that we can delete a factor of s from the denominator, find 
the inverse transform of the resulting simpler expression, and finally integrate from 
o to t (to "correct" for the missing factor s) . Thus 

£-1 { 1 } = t £-1 { _1_ } dr = t ear dr = ! (eat - 1 ) . s (s - a ) 10 s - a 10 a 

We now repeat the technique to obtain 

£- 1 
= £-1 dr = _ (ear - 1 ) dr { I } i t { I } i t 1 

s2 (s - a ) 0 s (s - a ) 0 a [ 1 ( 1 ar ) ] t 1 at = -;; -;; e - r 0 = 
a2 (e - at - 1 ) .  

This technique i s  often a more convenient way than the method of partial fractions 
for finding an inverse transform of a fraction of the form P (s)/Isn Q (s)] .  • 
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Proof of Theorem 1: We conclude this section with the proof of Theorem 1 
in the general case in which l' is merely piecewise continuous. We need to prove 
that the limit 

lim rb e-st f' (t) dt b�oo 10 
exists and also need to find its value. With b fixed, let tJ , t2 , . . .  , tk- I be the points 
interior to the interval [0, b] at which f' is discontinuous. Let to = 0 and tk = b. 
Then we can integrate by parts on each interval (tn- I , tn ) where l' is continuous. 
This yields 

Now the first summation 

+ . . .  + [_estk-2 f(tk-2) + e-stk- l f(tk- I )] 
+ [_estk- l f (tk- I ) + e-stk f (tk )] 

( 1 9) 

(20) 

in ( 1 9) telescopes down to -f(to) + e-stk f(tk ) = -f(O) + e-sb f(b) ,  and the sec
ond summation adds up to s times the integral from to = 0 to tk = b. Therefore ( 1 9) 
reduces to lb e-st f' (t) dt = -f(O) + e-sb f(b) + s lb e-st f(t) dt . 

But from Eq. (3) we get 

if s > c. Therefore, finally taking limits (with s fixed) as b -+ +00 in the preceding 
equation, we get the desired result 

£ {f/ (t) } = s£ {f (t ) }  - f(O) . 

Extension of Theorem 1 
Now suppose that the function f is only piecewise continuous (instead of continu
ous), and let tl , t2 , t3 , . . .  be the points (for t > 0) where either f or f' is discontin
uous. The fact that f is piecewise continuous includes the assumption that-within 
each interval [tn- I , tn ] between successive points of discontinuity-f agrees with a 
function that is continuous on the whole closed interval and has "endpoint values" 

that may not agree with the actual values f(tn- I ) and f(tn ) . The value of an in
tegral on an interval is not affected by changing the values of the integrand at the 
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endpoints . However, if the fundamental theorem of calculus is applied to find the 
value of the integral, then the antiderivative function must be continuous on the 
closed interval . We therefore use the "continuous from within the interval" end
point values above in evaluating (by parts) the integrals on the right in ( 19) . The 
result is 

where 

+ . . .  + [ _estk-2 f (tt-2 ) + e-stk- I f (tk- I ) ] 
+ [ _estk- l  f(tt-I ) + e-stk f (tk- ) ] 

k- I 

= -f(O+ ) - L h (tn ) + e-sb f(b- ) ,  
n= 1  

(20') 

(2 1 )  

denotes the (finite) jump i n  f(t) at t = tn . Assuming that aC{f'(t) } exists, we 
therefore get the generalization 

00 
aC{f'(t) } = sF (s) - f(O+ ) - L e-stn h (tn ) 

n=1  

of aC{f' (t) } = sF (s) - f(O) when we now take the limit in ( 1 9) as b -+ +00. 

(22) 

Let f(t )  = 1 + [t] be the unit staircase function; its graph is shown in Fig. 4.2.8. 
Then f(O) = 1 , !'(t) == 0, and h en) = 1 for each integer n = 1 , 2, 3 , . . . .  Hence 
Eg. (22) yields 

00 
0 =  sF (s) - 1 - L e-ns ,  

n= 1  
so the Laplace transform of f (t )  i s  

1 � -ns 1 
F(s) = - � e = . 

S n=O s ( l  - e-S ) 

In the last step we used the formula for the sum of a geometric series , 

1 - x ' 

with x = e-s < 1 . • 

Use Laplace transforms to solve the initial value problems in 
Problems 1 through 16. 

3. x" - x' - 2x = 0; x (O) = 0, X' (O) = 2 
4. x" + 8x' + 1 5x = 0; x (O) = 2, X' (O) = -3 

1. x" + 4x = 0; x (O) = 5, X' (O) = 0 
5. x" + x = sin 2t ; x (O) = 0 = X' (O) 
6. x" + 4x = cos t ; x (O) = 0 = X' (O) 

2. x" + 9x = 0; x (O) = 3, X' (O) = 4 7. x" + x = cos 3t ; x (O) = 1 ,  X' (O) = 0 
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8. x" + 9x = 1 ; x (0) = 0 = x' (0) 
9. x" + 4x' + 3x = 1 ; x (O) = 0 = x' (O) 

10. x" + 3x' + 2x = t ; x (O) = 0, x' (O) = 2 
11 .  x' = 2x + y, y' = 6x + 3y ; x (O) = 1 ,  y eO) = -2 
12. x ' = x + 2y , y ' = x + e-' ; x (O) = y eO) = 0 
13. x' + 2y' + x = 0, x' - y' + y = 0; x (0) = 0, y eO) = 1 
14. x" + 2x + 4y = 0, y" + X + 2y = 0; x (O) = y eO) = 0, 

x' (O) = y' (O) = - 1  
15. x" + x' + y' + 2x - y = 0, y" + x '  + y' + 4x - 2y = 0; 

x (O) = y eO) = 1 ,  x' (O) = y' (O) = 0 
16. x' = x + z, y' = x + y, z' = -2x - z ; x (O) = 1 ,  y eO) = 0, 

z (O) = 0 

Apply Theorem 2 to find the inverse Laplace transforms of the 
functions in Problems 1 7 through 24. 

1 3 
17. F(s) = 18. F (s) = ----:-------:::-s (s - 3) s (s + 5) 

1 2s + 1 
19. F(s) = 

S (S2 + 4) 20. F (s) = 
S (S2 + 9) 

1 1 
21. F(s) = 2 2 22. F(s) = -"--2--

S (s + 1 )  s (s - 9) 
1 1 

23. F(s) = 24. F (s) = ----.,.-
S2 (S2 - 1 ) s (s + l ) (s + 2) 

25. Apply Theorem 1 to derive £ { sin k t }  from the formula for 
£ {cos kt } .  

26. Apply Theorem 1 to derive £ {cosh k t }  from the formula 
for £ { sinh k t } .  

27. (a) Apply Theorem 1 to show that 

n 
£ { tn ea l } = __ £ { tn- 1 ea l } . s - a 

(b) Deduce that £ { tneal } = n !j(s - a)n+ 1 
for n = 1 ,  2, 

3 , . . . . 

Apply Theorem 1 as in Example 5 to derive the Laplace trans
forms in Problems 28 through 30. 

S2 - k2 
28. £{t cos kt }  = 

(s2 + k2)2 

2ks 
29. £{t  sinh kt } = (s2 _ P)2 

S2 + k2 
30. £{t  cosh kt } = 

(S2 _ P)2 

31. Apply the results in Example 5 and Problem 28 to show 
that 

p _ 1 { 1 } 1 . 
<L 2 2 2  = -3 (sm kt - kt cos kt ) .  (s + k ) 2k 

Apply the extension of Theorem 1 in Eq. (22) to derive the 
Laplace transforms given in Problems 32 through 37. 
32. £{u (t - a) } = S- I e-as for a > O. 
33. If f(t) = I on the interval [a , b] (where 0 < a < b) and 

f(t) = 0 otherwise, then 

e-as _ e-bs 
£
(f (t) } = ---s 

34. If f(t ) = (_ 1 ) [1] is the square-wave function whose 
graph is shown in Fig. 4.2.9, then 

1 s £ (f(t ) } = - tanh - .  s 2 

(Suggestion: Use the geometric series . )  

/(t ) 
1 ........a ........a - • • •  

1 2 3 4 5 6 1 - 1  ........a ........a ........a 

FIGURE 4.2.9. The graph of the 
square-wave function of Problem 34. 

35. If f (t) is the unit on-off function whose graph is shown in 
Fig. 4.2. 10, then 

1 
£
(f (t ) } = s ( 1 + e-' ) 

/(t ) 
1 ........a ........a _ • • • 

1 2 3 4 5 6 t 

FIGURE 4.2. 10. The graph of the 
on-off function of Problem 35. 

36. If g et )  is the triangular wave function whose graph is 
shown in Fig. 4.2. 1 1 , then 

1 s 
£ {g (t) } = 2" tanh - .  s 2 

g(l ) 

.. 

FIGURE 4.2. 1 1 .  The graph of the 
triangular wave function of Problem 36. 

37. If f(t) is the sawtooth function whose graph is shown in 
Fig. 4.2. 1 2, then 

1 e-s 
£
(f (t) } = 2" - ( 1 -S ) s s - e 

(Suggestion: Note that f'(t) == 1 where it is defined.) 

/(t )  

2 3 4 5 6  

. .. 

FIGURE 4.2.12. The graph of the 
sawtooth function of Problem 37. 
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Translation and Partial Fractions 

As illustrated by Examples 1 and 2 of Section 4.2, the solution of a linear differential 
equation with constant coefficients can often be reduced to the matter of finding the 
inverse Laplace transform of a rational function of the form 

R (s) = 
P (s) 
Q (s) ( 1 )  

where the degree of P (s) i s  less than that of Q (s) . The technique for finding 
£- 1 {R (s) } is based on the same method of partial fractions that we use in ele
mentary calculus to integrate rational functions. The following two rules describe 
the partial fraction decomposition of R (s) , in terms of the factorization of the de
nominator Q (s) into linear factors and irreducible quadratic factors corresponding 
to the real and complex zeros, respectively, of Q (s ) . 

R U L E  1 Linear Factor Partia l  Fractions 

The portion of the partial fraction decomposition of R (s) corresponding to the 
linear factor s - a of multiplicity n is a sum of n partial fractions, having the 
form Al A2 An 

-- + + . . . + , s - a (s - a)2 (s - a)n 
where AI . A2 , . . .  , and An are constants . 

RULE 2 Quadratic Factor Partia l  Fractions 

(2) 

The portion of the partial fraction decomposition corresponding to the irreducible 
quadratic factor (s - a)2 + b2 of multiplicity n is a sum of n partial fractions, 
having the form 

where AI , A2 , . . .  , An , BJ , B2 , . . . , and Bn are constants . 

Finding £- I {R (s ) } involves two steps. First we must find the partial fraction 
decomposition of R (s ) , and then we must find the inverse Laplace transform of each 
of the individual partial fractions of the types that appear in (2) and (3). The latter 
step is based on the following elementary property of Laplace transforms. 

TH EOREM 1 Translation on the s-Axls 

If F(s)  = £{f (t) } exists for s > c, then £{eat f(t) } exists for s > a + c, and 

Equivalently, 
� 

£{eat f (t ) } = F(s - a) . 

£- I {F (s - a) } = eat f(t) . 

(4) 

(5) 

Thus the translation s � s - a in the transform corresponds to multiplication of 
the original function of t by eat . 



290 Chapter 4 Laplace Transform Methods 

Exa mple 1 

Solution 

FIGURE 4.3.1. The mass
spring-dashpot system of Example 
1 .  

x 

11 2 

FIGURE 4.3.2. The position 
function x (t) in Example 1 .  

Proof: If we simply replace s with s -a in the definition of F (s)  = oC{f(t) } ,  
we obtain 

F (s - a) = 100 e-(S-a)l f(t) dt = 100 e-st [eal f(t)] dt = oC {eal f(t) } . 

This is Eq. (4), and it is clear that Eq. (S) is the same. 

If we apply the translation theorem to the formulas for the Laplace transforms 
of tn , cos kt , and sin kt that we already know-multiplying each of these functions 
by eal and replacing s with s - a in the transforms-we get the following additions 
to the table in Fig. 4. 1 .2 . 

eat tn n !  
(s > a )  (6) 

(s - a)n+ 1 

s - a 
eat cos kt  

(s  - a)2 + k2 (s > a)  (7) 

k 
eat sin kt (s - a)2 + k2 (s > a)  (8) 

For ready reference, all the Laplace transforms derived in this chapter are 
listed in the table of transforms that appears in the endpapers. 

Consider a mass-and-spring system with m = k = 1 7 , and c = 3 in mks units 
(Fig. 4 .3 . 1 ) . As usual, let x (t )  denote the displacement of the mass m from its 
equilibrium position. If the mass is set in motion with x (0) = 3 and x' (0) = 1 ,  find 
x (t )  for the resulting damped free oscillations .  

The differential equation is & x" + 3x' + 17 x = 0, so we need to solve the initial 
value problem 

x" + 6x' + 34x = 0; x (O) = 3, x' (O) = 1 .  

We take the Laplace transform of each term of the differential equation. Because 
(obviously) OC{O} == 0, we get the equation 

[S2X (S)  - 3s - 1 ] + 6 [sX (s) - 3] + 34X (s) = 0, 

which we solve for 

3s + 1 9  s + 3 S 
X (s) = 

s2 + 6s + 34 
= 3 · (S + 3)2 + 2S + 2 . 

(s + 3)2 + 2S · 

Applying the formulas in (7) and (8) with a = -3 and k = S ,  we now see that 

x (t) = e-31 (3 cos S t + 2 sin St )  . 

Figure 4.3 .2 shows the graph of this rapidly decaying damped oscillation. • 
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Example 2 illustrates a useful technique for finding the partial fraction coeffi
cients in the case of nonrepeated linear factors. 

- - --------_ .. _ -- -- - --.- - . _ - ------ -

Find the inverse Laplace transform of 

S2 + 1 
R (s) = -:s3:--

-2
-
s2::-----:S,-s 

Solution Note that the denominator of R (s)  factors as Q (s)  = s (s + 2) (s - 4) . Hence 

Example 3 

S2 + 1 A B C 
-::-----::--- = - + -- + -- . 
S3 - 2S2 - Ss S s + 2 s - 4 

Multiplication of each term of this equation by Q (s) yields 

S2 + 1 = A (s + 2) (s - 4) + Bs (s - 4) + Cs (s + 2) . 

When we successively substitute the three zeros s = 0, s = -2, and s = 4 of the 
denominator Q (s)  in this equation, we get the results 

-SA = 1 ,  12B = 5 ,  and 24C = 17 .  

Thus A = - � ,  B = fz' and C = *'  so 

and therefore 

S2 + 1 � fz * 
-::-----:---::-----:-- = - - + -- + --, 
S3 - 2s2 - Ss S s + 2 s - 4 

£ = - - + -e + - e . 
- I { s2 + 1  } 1 5 -21 1 7 41 

s3 - 2s2 - Ss S 1 2  24 
• 

Example 3 illustrates a differentiation technique for finding the partial fraction 
coefficients in the case of repeated linear factors. 

Solve the initial value problem 

y" + 4y' + 4y = t2 ; y eO) = y' (O) = O. 

Solution The transformed equation is 

Thus 

2 
s2y (S) + 4sY (s) + 4Y (s) = 3" .  

s 

2 A B C D E 
Y (s) = 

s3 (s + 2)2 
= 

s3 
+ 

s2 + -; + 
(s + 2)2 

+ 
s + 2 · 

(9) 

To find A ,  B ,  and C ,  we multiply both sides by s3 to obtain 

2 
---=-2 = A + Bs + Cs2 + s3 F (s ) ,  
( s  + 2) 

( 10) 
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Exa m ple 4 

where F (s)  = D(s + 2) -2 + E (s + 2)- 1 is the sum of the two partial fractions 
corresponding to (s + 2)2 . Substitution of s = 0 in Eq. ( 1 0) yields A = 1 .  To find 
B and C, we differentiate Eq. ( 1 0) twice to obtain 

and 

-4 --""73 = B + 2Cs + 3s2 F (s) + S3 F' (s )  
(s  + 2) 

1 2  ----:-4 = 2C  + 6sF(s) + 6s2F' (s) + S3 F"(S) .  
(s + 2) 

( 1 1 ) 

( 1 2) 

Now substitution of s = 0 in Eq. ( 1 1 )  yields B = - 1 ,  and substitution of s = 0 in 
Eq. ( 1 2) yields C = � .  

To find D and E ,  we multiply each side in Eq. (9) by (s + 2)2 to get 

2 3" = D + E (s + 2) + (s + 2)2G (S) ,  
s 

where G (s )  = As-3 + Bs-2 + Cs- I , and then differentiate to obtain 

6 - 4  = E + 2(s + 2)G (s)  + (s + 2)2G' (S ) .  
s 

( 1 3) 

( 14) 

Substitution of s = -2 in Eqs . ( 1 3) and ( 1 4) now yields D = - !  and E = - i . 

Thus 1 1 3 1 3 
y es )  = 2" _ 2" + 1 _ 4 _ � 

S3 s2 S (s + 2)2 S + 2 ' 

so the solution of the given initial value problem is 

• 

Examples 4, 5 ,  and 6 illustrate techniques for dealing with quadratic factors in 
partial fraction decompositions. 

Consider the mass-spring-dashpot system as in Example 1, but with initial condi
tions x (O) = x' (O) = 0 and with the imposed external force F (t) = 1 5  sin 2t. Find 
the resulting transient motion and steady periodic motion of the mass. 

Solution The initial value problem we need to solve is 

x" + 6x' + 34x = 30 sin 2t ; x (O) = x' (O) = O. 

The transformed equation is 

Hence 

60 
S2X (S) + 6sX (s) + 34X (s) = ---Z--4 ' s + 

60 As + B Cs + D 
X es)  = 

(s2 + 4) [ (s + 3)2 + 25] 
= 

s2 + 4  
+ 

(s + 3)2 + 25 ' 



FIGURE 4.3.3. The periodic 
forced oscillation xsp (t ) ,  damped 
transient motion Xtr (t ) ,  and 
solution x (t )  = xsp (t)  + Xtr (t) in 
Example 4. 
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When we multiply both sides by the common denominator, we get 

60 = (As + B) [ (s + 3) 2 + 25] + (Cs + D) (s2 + 4) .  ( 1 5) 

To find A and B, we substitute the zero s = 2i of the quadratic factor s2 + 4 
in Eq. ( 1 5) ; the result is 

60 = (2i A + B) [(2i + 3) 2 + 25] , 

which we simplify to 

60 = (-24A + 30B) + (60A + 12B) i . 

We now equate real parts and imaginary parts on each side of this equation to obtain 
the two linear equations 

-24A + 30B = 60 and 60A + 12B = 0, 

which are readily solved for A = -� and B = � .  
To find C and D ,  we substitute the zero s = -3 + 5 i  of the quadratic factor 

(s + 3)2 + 25 in Eq. ( 1 5) and get 

60 = [C ( -3 + 5i ) + D] [ ( -3 + 5i )2 + 4] , 

which we simplify to 

60 = ( 1 86C - 12D) + (30C - 30D)i . 

Again we equate real parts and imaginary parts; this yields the two linear equations 

1 86C - 1 2D = 60 and 30C - 30D = 0, 

and we readily find their solution to be C = D = � .  
With these values of the coefficients A ,  B , C ,  and D ,  our partial fractions 

decomposition of X (s ) is 

1 ( - 1OS + 50 lOs + 10 ) 
X (s ) = 

29 S2 + 4 
+ (s + 3)2 + 25 

- + . _ � ( - lOS + 25 . 2 lO(s + 3)  - 4 . 5 )  
29 s2 + 4 (s + 3)2 + 25 

After we compute the inverse Laplace transforms, we get the position function 

x (t ) = f9 (-2 cos 2t + 5 sin 2t) + �e-3t (5 cos 5t - 2 sin 5 t ) . 

The terms of circular frequency 2 constitute the steady periodic forced oscillation of 
the mass, whereas the exponentially damped terms of circular frequency 5 constitute 
its transient motion, which disappears very rapidly (see Fig. 4.3 .3) .  Note that the 
transient motion is nonzero even though both initial conditions are zero. • 
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Resonance and Repeated Quadratic Factors 

The following two inverse Laplace transforms are useful in inverting partial frac
tions that correspond to the case of repeated quadratic factors : 

- 1 { S } 1 . k £. 2 2 2 = - t sm t ,  
( s  + k ) 2k 

- 1 { 1 } 1 . £. 2 2 2 = -3 (sm kt - kt cos kt) . 
(s + k ) 2k 

( 16) 

( 17) 

These follow from Example 5 and Problem 3 1  of Section 4.2, respectively. Because 
of the presence in Eqs . ( 1 6) and ( 1 7) of the terms t sin kt and t cos kt ,  a repeated 
quadratic factor ordinarily signals the phenomenon of resonance in an undamped 
mechanical or electrical system. --
Use Laplace transforms to solve the initial value problem 

x" + w6x = Fo sin wt ; x (O) = 0 = x' (0) 

that determines the undamped forced oscillations of a mass on a spring. 

Solution When we transform the differential equation, we get the equation 

4 

-4 

FIGURE 4.3.4. The resonance 
solution in ( 1 8) with (Va = � and 
Fa = 1 ,  together with its envelope 
curves x = ±C(t) . 

2 2 Fow Fow 
s X es )  + WoX (s) = 2 2 ' so X es)  = 2 . 

S + W (s2 + (2) (S2 + Wo) 

If W =1= wo, we find without difficulty that 

so it follows that 

X (s)  = - ,  
Fow ( 1 1 ) 

w2 - w6 S2 + w6 S2 + w2 

Fow ( 1 . 1 . ) 
x (t) = 2 - sm wot - - sm wt . 

w2 - Wo Wo W 

But if W = Wo , we have 
Fowo 

X es)  = 2 2 2 ' (s + Wo) 
so Eq. ( 1 7) yields the resonance solution 

Fo . x (t) = -2 (sm wot - wot cos wot) .  
2wo 

( 1 8) 

• 

Remark: The solution curve defined in Eq. ( 1 8) bounces back and forth 
(see Fig. 4.3 .4) between the "envelope curves" x = ±C(t) that are obtained by 
writing ( 1 8) in the form 

x (t) = A (t) cos wot + B(t) sin wot 

and then defining the usual "amplitude" C = ,J A2 + B2 . In this case we find that 

C (t) = 
Fo J w6t2 + 1 .  

2w6 

This technique for constructing envelope curves of resonance solutions is illustrated 
further in the application material for this section. • 
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y(4) + 2y" + y = 4tet ; y eO) = y' (O) = y" (O) = y(3) (O) = O. 

Solution First we observe that 

Hence the transformed equation is 

4 
(S4 + 2s2 + 1 ) Y (s)  = 2 . 

(s - 1 )  

Thus our problem i s  to find the inverse transform of 

4 
Y (s) = ----:---::--

(s - 1 )2 (s2 + 1 )2 

A B Cs + D  Es + F  
= + -- + + . ( 1 9) 

(s - 1 )2 S - 1 (S2 + 1 )2 S2 + 1 

If we multiply by the common denominator (s - 1 )2 (S2 + 1 )2 , we get the equation 

A (S2 + 1 )2 + B (s - 1 ) (s2 + 1 )2 + Cs (s - 1 )2 

+ D (s - 1 )2 + Es (s - 1 )2 (s2 + 1 )  + F(s - 1 )2 (s2 + 1 )  = 4. (20) 

Upon substituting s = 1 we find that A = 1 .  
Equation (20) is an identity that holds for all values of s .  To find the values of 

the remaining coefficients , we substitute in succession the values s = 0, s = - 1 ,  
s = 2 ,  s = -2, and s = 3 in Eq. (20) . This yields the system 

- B  + D + F =  3,  

-SB - 4C + 4D - SE + SF = 0, 

25B + 2C + D +  1 OE + 5 F  = - 2 1 ,  (2 1 )  

-75B - I SC + 9D - 90E + 45 F = -2 1 ,  
200B + 12C + 4D + 1 20E + 40F = -96 

of five linear equations in B, C ,  D,  E,  and F. With the aid of a calculator pro
grammed to solve linear systems, we find that B = -2, C = 2, D = 0, E = 2, and 
F = 1 . 

We now substitute in Eq. ( 1 S) the coefficients we have found, and thus obtain 

1 2 2s 2s + 1  
Y (s )  = - -- + + -- . 

(s - 1 )2 S - 1 (s2 + 1 )2 s2 + 1 

Recalling Eq. ( 1 6), the translation property, and the familiar transforms of cos t and 
sin t ,  we see finally that the solution of the given initial value problem is 

y et) = (t - 2)et + (t + 1) sin t + 2 cos t .  • 
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_ Problems 

Apply the translation theorem to find the Laplace transforms 
of the functions in Problems 1 through 4. 

1. f(t) = t4e"t 2. f(t ) = t3/2e-4t 
3. f (t) = e-2t sin 3n t 4. f(t ) = e-t/2 cos 2 (t - kn ) 
Apply the translation theorem to find the inverse Laplace trans
forms of the functions in Problems 5 through 10. 

3 s - 1  
5. F(s) = -- 6. F(s) = 3 2s - 4 (s + 1 ) 

1 
7. F(s) = s2 + 4s + 4 

s + 2 
8. F(s) = s2 + 4s + 5 

3s + 5  
9. F(s) = s2 _ 6s + 25 

2s - 3 
10. F(s) = 9s2 _ 1 2s + 20 

Use partial fractions to find the inverse Laplace transforms of 
the functions in Problems 1 1 through 22. 

1 
1 1. F(s) = -2

-
s - 4  

5 - 2s 
13. F(s) = s2 + 7s + 10 

1 
15. F(s) = 3 2 s - 5s 

1 
17. F(s) = -4

-
s - 16 
S2 - 2s 

19. F(s) = 4 2 S + 5s + 4  
S2 + 3  

21. F(s) = (s2 + 2s + 2)2 

Use the factorization 

5s - 6 
12. F(s) = -2-3

-
s - s 

5s - 4  
14. F(s) = S3 _ s2 _ 2s 

1 
16. F (s) = (S2 + s _ 6)2 

S3 
18. F(s) = (s _ 4)4 

1 20. F (s) = S4 _ 8s2 + 16 
2s3 - S2 

22. F(s) = (4s2 _ 4s + 5)2 

to derive the inverse Laplace transforms listed in Problems 23 
through 26. 

23. £ -1 { S4 :34a4 } = cosh at cos at 

24. £ - 1 L4 : 4a4 } = 2:2 sinh at sin at 

25. £ - 1 { s4 :24a4 } = 2� (cosh at sin at + sinh at cos at ) 

26. £ - 1 { 4 1 4 } = �3 (cosh at sin at  - sinh at cos at ) s + 4a 4a 

Use Laplace transforms to solve the initial value problems in 
Problems 27 through 38. 
27. x" + 6x' + 25x = 0; x (O) = 2, x' (O) = 3 
28. x" - 6x' + 8x = 2; x (O) = x' (O) = 0 

29. x" - 4x = 3t ; x (O) = x' (O) = 0 
30. x" + 4x' + 8x = e-t ; x (O) = x' (O) = 0 
31. x (3) + x" - 6x' = 0; x (O) = 0, x' (O) = x" (O) = 1 
32. X (4) - x = 0; x (O) = 1 ,  x' (O) = x" (O) = X(3) (0) = 0 
33. X (4) + x = 0; x (O) = x' (O) = x" (O) = 0, X (3) (0) = 1 

34. X (4) + 1 3x" + 36x = 0; x (O) = x"(O) = 0, x' (O) = 2, 
x (3) (0) = - 1 3 

35. x (4) + 8x" + 16x = 0; x (O) = x' (O) = x" (O) = 0, 
x (3) (O) = 1 

36. X (4) + 2x" +x = e2t ; x (O) = x' (O) = x"(O) = X (3) (0) = 0 
37. x" + 4x' + 1 3x = te-t ; x (O) = 0, x' (O) = 2 
38. x" + 6x' + 18x = cos 2t ; x (O) = 1 ,  x' (O) = - 1 

Problems 39 and 40 illustrate two types of resonance in a 
mass-spring-dashpot system with given external force F(t) 
and with the initial conditions x (0) = x' (0) = o. 
39. Suppose that m = 1 ,  k = 9, c = 0, and F(t ) = 6 cos 3t . 

Use the inverse transform given in Eq.  ( 1 6) to derive the 
solution x (t) = t sin 3t . Construct a figure that illustrates 
the resonance that occurs . 

40. Suppose that m = 1 ,  k = 9.04, c = 0.4, and F(t) = 

6e-t15 cos 3t . Derive the solution 

x (t ) = te-tl5 sin 3 t . 

Show that the maximum value of  the amplitude function 
A (t ) = te-tl5 is A (5) = 5/e. Thus (as indicated in 
Fig. 4.3 .5) the oscillations of the mass increase in am
plitude during the first 5 s before being damped out as 
t -+ +00. 

2 

-2 

FIGURE 4.3.5. The graph of the damped 
oscillation in Problem 40. 
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The Laplace transform of the (initially unknown) solution of a differential equation 
is sometimes recognizable as the product of the transforms of two known functions. 
For example, when we transform the initial value problem 

we get 

x" + x  = cos t ;  x (O) = x/ CO) = 0 ,  

X es )  = 2 
S 

2 = -/-- . _2_
1
- = £{cos t } · £ {sin t } . 

(s + 1 )  s + 1 s + 1 
This strongly suggests that there ought to be a way of combining the two functions 
sin t and cos t to obtain a function x (t )  whose transform is the product of their 
transforms. But obviously x (t) is not simply the product of cos t and sin t, because 

£ {cos t sin t } = £ H sin 2t } = _2_
1
- i= 2 

s 
2 . S + 4 (s + 1 )  

Thus £ {cos t sin t } i= £ {cos t } ·  £ {sin t } . 
Theorem 1 of this section will tell us that the function 

h (t) = 1t I (r )g (t - r )  dr 

has the desired property that 

£ {h (t) } = H (s)  = F(s) . G (s ) .  

( 1 )  

(2) 

The new function of t defined as the integral in ( 1 )  depends only on I and g and is 
called the convolution of I and g. It is denoted by I * g, the idea being that it is a 
new type of product of I and g, so tailored that its transform is the product of the 
transforms of I and g .  

DEFIN ITION The Convolution of Two Functions 

The convolution I * g of the piecewise continuous functions I and g is defined 
for t � 0 as follows :  

(f * g) (t )  = 1t I (r )g (t - r ) dr . (3) 

We will also write l (t) * g et )  when convenient. In terms of the convolution 
product, Theorem 1 of this section says that 

£ {f  * g} = £{f } . £ {g} . 

If we make the substitution u = t - r in the integral in (3), we see that 

l (t) * g et) = 1t I (r )g (t - r ) dr = 1° I(t - u)g(u ) (  -du) 

= 1t g (u)/ (t - u) du = g (t) * l(t) .  

Thus the convolution i s  commutative :  I * g = g * I . 
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Exa mple 1 

Exa mple 2 

The convolution of cos t and sin t is 

(cos t) * (sin t) = 11 cos r sin(t - r )  dr . 

We apply the trigonometric identity 

cos A sin B = � [sin(A + B) - sin(A - B) ]  

to  obtain 

(cos t )  * (sin t)  = 11 � [sin t - sin(2r - t) ]  dr 

= � [r s in t + -! cos (2r _ t )] t ; 
r=O 

that is ,  
(cos t )  * (sin t )  = � t sin t .  

And we recall from Example 5 of Section 4.2 that the Laplace transform of -! t sin t 
is indeed sj(S2 + 1 )2 . • 

Theorem 1 is proved at the end of this section. 

THEOREM 1 The Convolution Property 

Suppose that f (t)  and g et )  are piecewise continuous for t � 0 and that I f (t) 1 
and I g (t) 1 are bounded by Meet as t � +00. Then the Laplace transform of the 
convolution f (t )  * g (t )  exists for s > c; moreover, 

£ { f (t)  * g et ) } = £ {f (t ) } . £ {g (t) } (4) 

and 

£- l { F (s) . G (s ) }  = f (t )  * get) . (5) 

Thus we can find the inverse transform of the product F (s )  . G (s ) ,  provided 
that we can evaluate the integral 

£- l {F (s ) ' G (s) }  = 11 f (r )g (t - r ) dr .  (5') 

Example 2 illustrates the fact that convolution often provides a convenient 
alternative to the use of partial fractions for finding inverse transforms. 

With f (t )  = sin 2t and g et )  = et , convolution yields £- 1 { 2 
2 

} = (sin 2t) * el = t el-r sin 2r dr 
(s  - 1 ) (s + 4) Jo 

t [ -r ] 1 = et Jo 
e-r sin 2r dr = el ;- (- sin 2r - 2 COS 2r) 0 '  

so 

£ = -e - - SIll 2t - - cos 2t. 
-1 { 2 } 2 

t 
1 . 2 

(s - 1 ) (S2 + 4) 5 5 5 
• 
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Differentiation of Transforms 

According to Theorem 1 of Section 4.2, if f(O) = 0 then differentiation of f(t) 
corresponds to multiplication of its transform by s . Theorem 2, proved at the end 
of this section, tells us that differentiation of the transform F (s) corresponds to 
multiplication of the original function f (t )  by -t o  

TH EOREM 2 Differentiation of Transforms 

If f (t) is piecewise continuous for t � 0 and I f (t) 1 � Meet as t -+ +00, then 

£ { -tf (t) } = F' (s) (6) 

for s > C. Equivalently, 

(7) 

Repeated application of Eq. (6) gives 

(8) 

for n = 1 ,  2, 3, . . . .  

Find £ {i2sin kt } .  

Solution Equation (8) gives 

Exa m ple 4 

(9) 

• 
The form of the differentiation property in Eq. (7) is often helpful in finding 

an inverse transform when the derivative of the transform is easier to work with than 
the transform itself. 

Find £-I {tan- i ( l ls ) } .  

Solution The derivative of tan- 1 ( l Is )  is a simple rational function, so we apply Eq. (7): 

£ tan - = - - £  - tan -
_ \ { _ \ I } 1 _ \ { d _ \ I } 

s t ds s 
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Exa m ple 5 

Therefore, 

- 1 { _ I I } sin t 
£ tan - = --- . 

s t 
• 

Equation (8) can be applied to transform a linear differential equation having 
polynomial, rather than constant, coefficients . The result will be a differential equa
tion involving the transform; whether this procedure leads to success depends, of 
course, on whether we can solve the new equation more readily than the old one. 

Let x (t )  be the solution of Bessel 's equation of order zero, 

tx" + x' + tx = 0, 

such that x (O) = 1 and x' (0) = O. This solution of Bessel 's  equation is customarily 
denoted by lo (t ) .  Because 

£ {x' (t ) }  = sX (s)  - 1 and £ {x" (t ) }  = s2X (s)  - s ,  

and because x and x" are each multiplied by t ,  application of Eq. (6) yields the 
transformed equation 

d d 
- - [s2X (s)  - s] + [sX (s)  - 1 ] - - [X (s) ]  = O. 

ds ds 

The result of differentiation and simplification is the differential equation 

(S2 + l )X' (s) + sX (s) = O. 

This equation is separable-

its general solution is 

X' (s) s = 
X (s )  

-
s2 + 1 ' 

c 
X (s) = G+1 

s2 + 1 

In Problem 39 we outline the argument that C = 1 .  Because X (s) = £ { lo (t ) } ,  it 
follows that 

1 
£ { lo (t ) }  = � . 

v s2 + 1 
( 1 0) 

• 
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Integration of Transforms 

Differentiation of F (s )  corresponds to multiplication of f (t )  by t (together with 
a change of sign). It is therefore natural to expect that integration of F(s) will 
correspond to division of f (t) by t .  Theorem 3, proved at the end of this section, 
confirms this, provided that the resulting quotient f (t )jt remains well behaved as 
t � ° from the right; that is, provided that 

1 . f (t) 
1m -

t-->O+ t 
exists and is finite. 

TH EOREM 3 I ntegration of Transforms 

( 1 1 )  

Suppose that f(t) i s  piecewise continuous for t � 0 ,  that f(t) satisfies the con
dition in ( 1 1 ) ,  and that I f (t ) 1 � Meet as t � +00. Then 

for s > c. Equivalently, 

_ _  . . _ .. .. _ ........ N._ .. ......•.•.•........ 

Find .£ { (sinh t )/t } .  

{ f (t ) } 100 
.£ -

t
- = 

s 
F(cr )  dcr ( 12) 

( 1 3) 

Solution We first verify that the condition in ( 1 1 )  holds : 

Exa m ple 7 

sinh t et - e-t et + e-t 
lim -- = lim = lim = 1 ,  
t-->O t t-->O 2t t-->O 2 

with the aid of I ' Hopital ' s  rule. Then Eq. ( 1 2), with f (t) = sinh t, yields { sinh t } 100 100 dcr 
.£ -- = .£ {sinh t } dcr = ----z-=-t s s cr 1 

Therefore, 

because In 1 = 0. 

1 100 ( 1 1 ) 1 [ cr - 1 ]00 = 2 s cr - 1 
-

cr + 1 
dcr = 2 In 

cr + 1 s 

.£ 
{ sinh t } = � 

In 
s + 1 

, 
t 2 s - 1 

• 

The form of the integration property in Eq. ( 1 3) is often helpful in finding an 
inverse transform when the indefinite integral of the transform is easier to handle 
than the transform itself. 



302 Chapter 4 Laplace Tra nsform Methods 

Solution We could use partial fractions, but it is much simpler to apply Eq. ( 1 3). This gives 

£- 1 _ t£- 1 dO' 
{ 2S } {[OO 20' } 

(S2 - 1 )2 -
S (0'2 - 1 )2 

and therefore 

- 1 { [ - 1  ]OO } - 1 { 1 } = t£ 
0'2 _ 1 S 

= t£ 
S2 - 1 ' 

£- 1 { 
(s2 

� 
1 )2

} = t sinh t .  

". Proofs of  Theorems 

• 

Proof of Theorem 1 :  The transforms F(s) and G(s) exist when s > c by 
Theorem 2 of Section 4. 1 .  For any r > 0 the definition of the Laplace transform 
gives 

G(s) = 100 e-SU g (u) du = 100 e-S (t-T ) g (t - r) dt (u = t - r) ,  

and therefore 

G(s) = eST 100 e-st g (t - r) dt ,  

because we may define J(t) and g (t) to be zero for t < O. Then 

F (s )G (s) = G(s) 100 e-ST J (r) dr = 100 e-sr J (r)G (s) dr 

= 100 e-sr J(r )  (esr 100 e-st g (t - r)  dt) dr 

= 100 (100 e-st f(r )g (t - r) dt) dr. 

Now our hypotheses on J and g imply that the order of integration may be reversed. 
(The proof of this requires a discussion of uniform convergence of improper inte
grals, and can be found in Chapter 2 of Churchill ' s  Operational Mathematics, 3rd 
ed. (New York: McGraw-Hill, 1 972) . ) Hence 

and therefore, 

F(s)G (s) = 100 (100 e-st J(r)g (t - r) dr) dt 

= 100 e-st (1 t 
f (r)g (t - r) dr) dt 

= 100 e-st [f(t) * g (t ) ] dt , 

F (s)G (s) = £ {f(t) * g (t) } .  

We replace the upper limit of the inner integral with t because g (t - r) = 0 whenever 
r > t .  This completes the proof of Theorem 1 .  A 
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Proof of Theorem 2: Because 

differentiation under the integral sign yields 

thus 

d 100 F(s) = - e-st f (t) dt 
ds 0 

F'(s) = £ { -tf (t ) } ,  

which i s  Eq. (6). We obtain Eq. (7) by applying £- 1 and then dividing by - t .  The 
validity of differentiation under the integral sign depends on uniform convergence 
of the resulting integral ; this is discussed in Chapter 2 of the book by Churchill just 
mentioned. .... 

Proof of Theorem 3:  By definition, 

F(a) = 100 e-a t f (t ) dt .  

S o  integration of F(a)  from s to + 00  gives 

Under the hypotheses of the theorem, the order of integration may be reversed (see 
Churchill 's book once again) ; it follows that 

100 F(a) da = 100 (100 e-a t f(t) da ) dt 

= 
e
_ f(t) dt 100 [ -at J oo o t a=s 

This verifies Eq. ( 1 2) ,  and Eq. ( 1 3) follows upon first applying £- 1 and then multi
plying by t .  .... 

Find the convolution f (t ) * g (t ) in Problems 1 through 6. 6. f(t ) = eat , g et ) = eM (a i= b) 
1. f(t) = t, g (t ) == 1 
3. f(t) = g et ) = sin t 
S. f(t) = g (t ) = eat 

2. f(t) = t , g et ) = eat 
4. f(t ) = t2 , g et ) = cos t Apply the convolution theorem to find the inverse Laplace 

transforms of the functions in Problems 7 through 14. 
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1 
7. F(s) = --s (s - 3) 

1 
9. F (s) = (S2 + 9)2 

S2 
11 .  F(s) = (S2 + 4)2 

S 
13. F(s) = ------=--(S - 3 ) (S2 + 1 ) 

1 
8. F (s) = S (S2 + 4) 

1 
10. F (s) = S2 (S2 + k2) 

1 
12. F (s) = ----:-::----:-------::::S (S2 + 4s + 5) 

s 
14. F (s) = -,-----::-S4 + 5s2 + 4 

In Problems 15 through 22, apply either Theorem 2 or Theo
rem 3 to find the Laplace transform of f(t) . 
15.  f(t) = t sin 3t 16. f (t) = t2 cos 2t 
17. f (t) = te2I cos 3t 18.  f (t) = te-l sin2 t 

sin t f )  1 - cos 2t 
19. f(t) = - 20. (t = ---t t 

e31 - 1 el - e-I 
21. f(t) = -- 22. f (t) = --t t 
Find the inverse transforms of the functions in Problems 23 
through 28. 

s - 2  
23. F(s) = In -

s + 2  
S2 + 1 

25. F(s) = In ----(s + 2) (s - 3) 

27. F(s) = In  ( 1 + s12 ) 

S2 + 1 
24. F (s) = In -2--s + 4  

3 
26. F (s) = tan- I 

-

s + 2  

28 F (s) _ 
s 

• 
- (S2 + 1 )3 

In Problems 29 through 34, transform the given differential 
equation to find a nontrivial solution such that x (0) = O. 
29. tx" + (t - 2)x' + x = 0 
30. tx" + (3t - l )x' + 3x = 0 
31. tx" - (4t + l )x' + 2(2t + l )x = 0 
32. tx" + 2(t - l )x' - 2x = 0 
33. tx" - 2x' + tx = 0 
34. tx" + (4t - 2)x' + ( l 3t - 4)x = 0 
35. Apply the convolution theorem to show that 

£- 1 { 1 yS } = 2� {.Ii e-u2 du = elerf.Jt. (s - l ) s y n Jo 
(Suggestion: Substitute u = v't .) 

In Problems 36 through 38, apply the convolution theorem 
to derive the indicated solution x (t ) of the given differential 
equation with initial conditions x (0) = x ' (0) = o. 

1 1 1 
36. x" + 4x = f(t) ; x (t ) = - f(t - .) sin 2. d. 2 0 

37. x" + 2x' + x = f(t) ; x (t) = 11 u-r f(t - .) d-c 
38. x" + 4x' + 1 3x = f(t) ; 

x (t ) = - f (t - .)e-2r sin 3. d. 1 1 1 
3 0 

Termwise Inverse Transformation of Series 

In Chapter 2 of Churchill 's Operational Mathematics, thefol
lowing theorem is proved. Suppose that f (t ) is continuous for 
t ;?; 0, that f (t) is of exponential order as t � +00, and that 

00 an F (s) = L sn+k+ 1 n=O 

where 0 � k < 1 and the series converges absolutely for 
s > c. Then 

00 an tn+k f (t ) = � r (n + k + 1 ) ' 
Apply this result in Problems 39 through 41. 
39. In Example 5 it was shown that 

C C ( 1 ) - 1 /2 £ { Jo (t ) } = .JS2+T = - 1 + 2" 
S2 + 1 s s 

Expand with the aid of the binomial series and then com
pute the inverse transformation term by term to obtain 

Finally, note that Jo (O) = 1 implies that C = 1 .  
40. Expand the function F (s) = S- I /2e- l /s in powers of S- I 

to show that 

41. Show that 

£- 1 { _I_e- l /s } = _1_ cos 2.Jt. yS .fiit 

£- 1 { �e- I /s } = Jo (2.Jt) . 

Mathematical models of mechanical or electrical systems often involve functions 
with discontinuities corresponding to external forces that are turned abruptly on or 
off. One such simple on-off function is the unit step function that we introduced in 
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a 
FIGURE 4.5.1. The graph of the 
unit step function at t = a . 

a 
FIGURE 4.5.2. Translation of 
J (t)  a units to the right. 
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Section 4. 1 .  Recall that the unit step Junction at t = a is defined by 

1 0 if t < a, ua (t) = u (t - a) = 
' f > l i t = a .  

( 1 )  

The notation Ua (t) indicates succinctly where the unit upward step in  value takes 
place (Fig. 4.5 . 1 ) , whereas u (t - a) connotes the sometimes useful idea of a "time 
delay" a before the step is made. 

In Example 8 of Section 4. 1 we saw that if a � 0, then 

e-as 
"c {u (t - a) } = - . 

s 
(2) 

Because "c {u (t ) }  = l is , Eg. (2) implies that multiplication of the transform of u (t) 
by e-as corresponds to the translation t --+ t -a in the original independent variable. 
Theorem 1 tells us that this fact, when properly interpreted, is a general property of 
the Laplace transformation. 

TH EOREM 1 Translation on the '-Axis 

If "cU(t ) }  exists for s > c, then 

"c{u (t - a)J(t - a) } = e-as F (s) 

and 

for s > c + a .  

Note that 

"c-l {e-as F(s) } = u (t - a)J(t - a) 

u (t - a)J(t - a) = 1 ° J (t - a) 
if t < a, 
if  t � a .  

(3a) 

(3b) 

(4) 

Thus Theorem 1 implies that "c-l {e-as F (s ) }  is the function whose graph for t � a 
is the translation by a units to the right of the graph of J (t) for t � 0. Note that the 
part (if any) of the graph of J(t) to the left of t = ° is "cut off" and is not translated 
(Fig. 4.5 .2) .  In some applications the function J(t) describes an incoming signal 
that starts arriving at time t = 0. Then u (t - a)J (t - a) denotes a signal of the same 
"shape" but with a time delay of a, so it does not start arriving until time t = a. 

ProoJoJ Theorem 1:  From the definition of "cU(t) } ,  we get 

The substitution t = r + a then yields 

e-as F (s) = 100 e-st J(t - a) dt . 
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Example 1 

Exa mple 2 

From Eg. (4) we see that this is the same as 

e-as F(s) = 100 e-st u (t - a)f(t - a) dt = £(u (t - a)f(t - a ) } ,  

because u (t - a )f(t - a) = ° for t < a .  This completes the proof of 
Theorem 1 .  ... 

With f(t )  = 4 t2, Theorem 1 gives 

£- 1 
_ = u (t - a) - (t _ a)2 = { e-S } 1 1 0 s3 2 4 (t - a)2 

if t < a ,  
if t � a 

Find £(g(t ) } if 

if t < 3 ,  

i f  t � 3 
(Fig. 4.5 .4). 

(Fig. 4.5 .3) .  

• 

Solution Before applying Theorem 1 ,  we must first write g (t) in the form u (t - 3)f (t - 3) .  

Example 3 

a 

The function f(t) whose translation 3 units to the right agrees (for t � 3) with 
g (t) = t2 is f(t ) = (t + 3)2 because f(t - 3) = t2 . But then 

2 6 9 
F(s) = £ {t2 + 6t + 9 } = 3" + 2" + - , 

s s s 
so now Theorem 1 yields 

( 2 6 9) £ (g (t ) } = £ (u (t - 3)f (t - 3 ) }  = e-3s F(s) = e-3s 3" + 2" + - . 
s s s 

Find £(f (t ) } if 

I (t )  = l�s 2t 

x 

20 

1 5 

\0 

5 

2 3 

if O � t < 2rr ,  

if t � 2rr 

4 

(Fig. 4 .5 .5) .  

x 

• 

3n: t 

FIGURE 4.5.3. The graph of 
the inverse transfonn of 
Example I .  

FIGURE 4.5.4. The graph of the 
function g (t ) of Example 2. 

FIGURE 4.5.5. The function 
f (t) of Examples 3 and 4 
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Solution We note first that 

Exa m ple 4 

f (t )  = [ 1  - u (t - 2Jl') ]  cos 2t = cos 2t - u (t - 2Jl') cos 2(t - 2rr) 

because of the periodicity of the cosine function. Hence Theorem 1 gives 

s ( 1  - e-2rrs )  
£ { f (t ) } = £ {cos 2t } - e-2rrs £ {cos 2t } = 2 • • 

s + 4  

• •  ___ _ __ � � _�� __ M __ � _ M  ___ � ____ _ � _ _ _  N __ � "  __ N � _ N  _ __ N�_ _ _  

A mass that weighs 32 lb (mass m = 1 slug) is attached to the free end of a long, 
light spring that is stretched 1 ft by a force of 4 lb (k = 4 Ib/ft). The mass is initially 
at rest in its equilibrium position. Beginning at time t = 0 (seconds), an external 
force f (t )  = cos 2t is applied to the mass, but at time t = 2rr this force is turned off 
(abruptly discontinued) and the mass is allowed to continue its motion unimpeded. 
Find the resulting position function x (t )  of the mass .  

Solution We need to solve the initial value problem 

xl! + 4x = f (t ) ;  x (O) = x' (O) = 0, 

where f(t )  is the function of Example 3. The transformed equation is 

so 

Because 

s ( 1  - e-2rrS)  
(s2 + 4)X (s )  = F(s)  = 2 ' s + 4  

- 1 { S } 1 . 
2 £ 2 2 = 4 t sm t 

(s + 4) 

by Eq. ( 1 6) of Section 4 .3 ,  it follows from Theorem 1 that 

H ,------,---.------,-----, x (t )  = i t sin 2t - u (t - 2Jl') · i (t - 2Jl') sin 2(t - 2rr) 

= i [t - u (t - 2Jl') . (t - 2Jl') ]  sin 2t .  x = H/2 

X =  -H/2 

2H 

FIGURE 4.5.6. The graph of the 
function x (t )  of Example 4. 

If we separate the cases t < 2Jl' and t � 2Jl' , we find that the position function may 
be written in the form l i t sin 2t 

x (t )  = !Jl' sin 2t 

if t < 2Jl' , 

if t � 2Jl' . 

As indicated by the graph of x (t )  shown in Fig. 4.5 .6, the mass oscillates with 
circular frequency w = 2 and with linearly increasing amplitude until the force 
is removed at time t = 2Jl' . Thereafter, the mass continues to oscillate with the 
same frequency but with constant amplitude Jl' /2. The force F (t) = cos 2t would 
produce pure resonance if continued indefinitely, but we see that its effect ceases 
immediately at the moment it is turned off. • 
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Exa m ple 5 

Solution 

R 

FIGURE 4.5.7. The series RLC 
circuit of Example 5 . 

If  we were to attack Example 4 with the methods of  Chapter 2 ,  we would 
need to solve one problem for the interval 0 � t < 2n and then solve a new 
problem with different initial conditions for the interval t � 2n . In such a situation 
the Laplace transform method enjoys the distinct advantage of not requiring the 
solution of different problems on different intervals .  

Consider the RLC circuit shown in Fig. 4.5 .7, with R = 1 1 0 n, L = 1 H, C = 0.001 
F, and a battery supplying Eo = 90 V. Initially there is no current in the circuit and 
no charge on the capacitor. At time t = 0 the switch is closed and left closed for 
1 second. At time t = 1 it is opened and left open thereafter. Find the resulting 
current in the circuit. 

We recall from Section 2.7 the basic series circuit equation 

di . 1 
L - + Rl + -q = e (t) ; 

dt C 
(5) 

we use lowercase letters for current, charge, and voltage and reserve uppercase let
ters for their transforms. With the given circuit elements, Eq. (5) is 

di . 
dt 

+ l l Ol + 1 000q = e (t ) ,  (6) 

where e (t) = 90[ 1 - u (t - 1 ) ] ,  corresponding to the opening and closing of the 
switch. 

In Section 2.7 our strategy was to differentiate both sides of Eq. (5), then apply 
the relation 

. dq l = -
dt 

to obtain the second-order equation 

d2i di 1 . , 
L - + R - + -l  = e (t ) .  

dt2 dt C 

(7) 

Here we do not use that method, because e' (t ) = 0 except at t = 1 ,  whereas the 
jump from e (t) = 90 when t < 1 to e (t) = 0 when t > 1 would seem to require 
that e'( l )  = - 00 . Thus e'(t) appears to have an infinite discontinuity at t = 1 . This 
phenomenon will be discussed in Section 4.6. For now, we will simply note that it 
is an odd situation and circumvent it rather than attempt to deal with it here. 

To avoid the possible problem at t = 1 ,  we observe that the initial value 
q (0) = 0 and Eq. (7) yield, upon integration, 

q (t )  = 11 i (r: )  dr:. 

We substitute Eq. (8) in Eq. (5) to obtain 

di 1 11 L - + Ri + - i (r:) dr: = e (t) . 
dt C 0 

(8) 

(9) 

This is the integrodifferential equation of a series RLC circuit; it involves both 
the integral and the derivative of the unknown function i (t ) .  The Laplace transform 
method works well with such an equation. 
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In the present example, Eq. (9) is 

Because 

di t 
dt +

 1 10i + 1 000 10 
i (r ) dr = 90 [ 1 - u (t - 1 ) ] . 

{ t } / (s) £. 1
0 

i (r ) dr = -
s
-

(10) 

by Theorem 2 of Section 4.2 on transforms of integrals, the transformed equation is 

/ (s) 90 s / (s) + 1 I 0/ (s) + 1 000- = - ( 1 - e-S ) .  
s s 

We solve this equation for / (s) to obtain 

But 

so we have 

90( 1 - e-S ) 
/ (s ) = 

s2 + l I Ds + 1 000 · 

90 1 1 
-::------ = -- - ----:-
s2 + 1 1 0s + 1 000 s + 1 0  s + 100 '  

1 1 -s ( 1 1 ) 
/ (s) = s + 1 0  

-
s + 1 00 

- e 
s + 10  

-
s + 100 

. 

We now apply Theorem 1 with f(t) = e- 101 - e- 1OOI ; thus the inverse transform is 

i (t ) = e- IOI - e- IOOI - u (t - 1 )  [e- IO(I- l ) _ e- IOO(I- l ) ] . 

After we separate the cases t < 1 and t � 1 ,  we find that the current in the circuit is 
given by 

e - e  1 - 101 - 1001 
i (t ) = e- IOI _ e- IO(I- l ) _ e- IOOI + e- 100(I- l ) 

if t < 1 ,  
if t � 1 . 

The portion e- IOI - e- IOOI of the solution would describe the current if the switch 
were left closed for all t rather than being open for t � 1 .  • 
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I 
I 
I 
I 

�p� 
FIGURE 4.5.8. The graph of a 
function with period p .  

Transforms of Periodic Functions 

Periodic forcing functions in practical mechanical or electrical systems often are 
more complicated than pure sines or cosines. The nonconstant function f(t) defined 
for t � 0 is said to be periodic if there is a number p > 0 such that 

f(t + p) = f(t) ( 1 1 ) 

for all t � O. The least positive value of p (if any) for which Eq. ( 1 1 )  holds is called 
the period of f. Such a function is shown in Fig. 4.5 .8 .  Theorem 2 simplifies the 
computation of the Laplace transform of a periodic function. 

TH EOREM 2 Transforms of Periodic Functions 

Let f(t) be periodic with period p and piecewise continuous for t � O. Then the 
transform F(s) = £{f(t ) } exists for s > 0 and is given by 

F(s) = e-st f(t) dt . 
1 loP 

1 - e-PS 0 

Proof: The definition of the Laplace transform gives 

100 00 l (n+ l )p 
F(s) = e-st f(t) dt = L e-st f(t) dt .  o n=O np 

( 1 2) 

The substitution t = r + np in the nth integral following the summation sign yields 

l (n+ l )p lP lP e-st f(t) dt = e-s (r+np) f(r + np) dr = e-nps e-sr f(r ) dr 
� 0 0 

because f(r + np) = f(r) by periodicity. Thus 

Consequently, 

F(s) = f (e-nps lP e-sr f(r) dr) 
n=O 0 

= ( 1  + e-Ps + e-2ps + . . .  ) loP e-sr f(r ) dr . 

F (s) = 
1 ( P e-sr f(r ) dr . 

1 - e-PS 10 
We use the geometric series 

1 2 3 -- = I + x + x + x  + . . .  , 
I - x 

with x = e-Ps < 1 (for s > 0) to sum the series in the final step. Thus we have 
derived Eq. ( 1 2) .  ... 

The principal advantage of Theorem 2 is that it enables us to find the Laplace 
transform of a periodic function without the necessity of an explicit evaluation of an 
improper integral . 



Exa mple 6 

f(t )  e---o e---o .... . . .  

a 2a 3a 4a 5a 6a 
- I e---o e---o e---o 

FIGURE 4.5.9. The graph of the 
square-wave function of Example 
6. 

Exa m ple 7 
g(t) 

... 
a 2a 3a 4a 5a 6a 

FIGURE 4.5.10. The graph of 
the triangular-wave function of 
Example 7. 

Exa m ple 8 

4.5 Periodic and Piecewise Continuous Input Functions 31 1 

Fig�re 4.5 .9 shows ihe graph of the square-wave function f(t) = (_ i) [tj�D of 
period p = 2a ; [x] denotes the greatest integer not exceeding x .  By Theorem 
2 the Laplace transform of f(t )  is 

Therefore, 

1 12a 
F (s)  = 2 e-st f(t) dt 

1 - e- as 0 

= 
1 ( r e-st dt + 12a 

(- l )e-st dt) 
1 - e-2as Jo a 

= 
1 ( [_ !e-stJ a _ [_ !e-stJ 2a) 

1 - e-2as s 0 S a 

1 - e-as 
F(s ) = ---

s ( 1  + e-as ) 

I -as - e 

eas/2 - e-as/2 1 as 
= = - tanh - . s (eas/2 + e-as/2 ) S 2 

( 1 3a) 

( 1 3b) 

• 

Figure 4.5 . 1 0  shows the graph of a triangular-wave function g(t) of period p = 2a . 
Because the derivative g' (t) is the square wave function of Example 6, it follows 
from the formula in ( l 3b) and Theorem 2 of Section 4.2 that the transform of this 
triangular-wave function is 

F (s )  1 as 
G(s )  = -- = - tanh - .  

s s2 2 

._-- _ . . . _ . . . .  . . _  . . _ . . _ _  . ---_ . . _ . . . _ . _ - - -_._- - - _ . . .  _ . . _---_. 

( 14) 

• 

Consider a mass-spring-dashpot system with m = 1 ,  c = 4, and k = 20 in ap
propriate units . Suppose that the system is initially at rest at equilibrium (x (O) = 
x' (0) = 0) and that the mass is acted on beginning at time t = 0 by the external 
force f(t) whose graph is shown in Fig. 4 .5 . 1 1 : the square wave with amplitude 20 
and period 2rr . Find the position function f(t ) .  

Solution The initial value problem is 

x" + 4x' + 20x = f(t ) ;  x (O) = x' (O) = O. 

The transformed equation is 

S2X (S) + 4s X (s )  + 20X (s) = F (s ) .  ( 1 5) 
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.f(t) 
20 ..---<? ..---<? .......-0 

I 
I 
I 
I 
I 

1t 21t 31t 41t S1t 61t I I I I I I I I I I I I I I I I I I I I I I I I 
-20 .........0 � � 
FIGURE 4.5.11 .  The graph of 
the external-force function of 
Example 8. 

From Example 6 with a = :rr we see that the transform of f (t)  is 

so that 

20 1 - e-:n:s 
F(s) = - · --

s 1 + e-:n:s 

20 = - ( 1  - e-:n:S ) ( 1  _ e-:n:s + e-2:n:s _ e-3:n:s + . . .  ) 
s 

20 = - ( 1  - 2e-:n:s + 2e-2:n:s _ 2e-3:n:s + . . .  ) , 
s 

20 40 00 
F(s )  = - + - L(- l )n e-n:n:s . s S n=1 

Substitution of Eq. ( 1 6) in Eq. ( 1 5) yields 

X (s) 
_ F(s) 
- s2 + 4s + 20 

( 16) 

20 00 20e-n:n:s = 
s [ (s + 2)2 + 1 6] 

+ 2 � (_ l )n s [ (s + 2)2 + 1 6] " ( 17) 

From the transform in Eq. (8) of Section 4.3 ,  we get 

£- 1 { 20 } = 5e-2t sin 4t 
(s + 2)2 + 16 ' 

so by Theorem 2 of Section 4.2 we have 

g (t )  = £- 1 { 20
2 

} = r 5e-2, sin 4r dr . 
s [ (s + 2) + 1 6] 10 

U sing a tabulated formula for J eat sin bt d t ,  we get 

g (t)  = 1 - e-2t (cos 4t + 4 sin 4t) = 1 - h (t) , 

where 

h (t )  = e-2t (cos 4t + 4 sin 4t) . 

( 1 8) 

( 1 9) 

Now we apply Theorem 1 to find the inverse transform of the right-hand term 
in Eq. ( 1 7) .  The result is 

00 
x (t ) = g (t ) + 2 L(- ltu (t - n:rr )g (t - n:rr ) ,  (20) 

n=1 

and we note that for any fixed value of t the sum in Eq. (20) is finite. Moreover, 

g (t - n:rr ) = 1 - e-2(t-n:n:) [cos 4(t - n:rr ) + 4 sin 4(t - n:rr ) ]  

= 1 - e2n:n: e-2t (cos 4t + 4 sin 4t) . 
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Therefore, 

g (t - mr) = 1 - e2n:n: h (t ) .  

Hence i f  0 < t < Jr,  then 
x (t )  = 1 - h (t ) .  

I f  Jr < t < 2Jr , then 

x (t )  = [ 1 - h (t) ] - 2 [ 1 - e2:n: h (t ) ] = - 1  + h (t) - 2h (t) [ 1 - e2:n:] . 

If 2Jr < t < 3Jr,  then 

x (t) = [ 1  - h (t) ]  - 2 [ 1 - e2:n:h (t)] + 2 [ 1 - e4:n:h (t)] 
= 1 + h (t )  - 2h (t) [ 1 - e2:n: + e4:n: ] .  

The general expression fo( nJr < t < (n + 1 )Jr is 

x (t )  = h (t) + (_ 1 )n - 2h (t )  [ 1 - e2:n: + . . .  + (_ 1 )ne2n:n: ] 

1 + (_ Ite2(n+ l ):n: = h (t) + (- It - 2h (t) 2 ' I + e :n: 

(2 1 )  

(22) 

which we obtained with the aid of the familiar formula for the sum of a finite ge
ometric progression. A rearrangement of Eq. (22) finally gives, with the aid of 
Eq. ( 1 9), 

e2:n: - 1 
x (t )  = 2 e-2t (cos 4t + t sin 4t) + (_ I )n 

e :n: + 1 
2 . (_ 1 )ne2:n: 

- e-2(t-n:n:) (cos 4t + ! sin 4t) e2:n: + 1  2 

for nJr < t < (n + I )Jr . The first term in Eq. (23) is the transient solution 

(23) 

Xtr(t) � (0.9963)e-2t (cos 4t + t sin 4t) � ( 1 .  1 1 39)e-2t cos (4t - 0.4636) . (24) 

The last two terms in Eq. (23) give the steady periodic solution xsp . To investigate 
it, we write r = t - nJr for t in the interval nJr < t < (n + I)Jr . Then 

xsp (t) = (_ 1 )n [ 1 - 2
2e2:n: 

e-2r (cos 4r + t sin 4r)] e :n: + 1 (25) 
� (_ I )n [ 1 - (2.23 I 9)e-2r cos (4r - 0.4636)] . 

Figure 4.5 . 1 2  shows the graph of xsp (t) . Its most interesting feature is the appear
ance of periodically damped oscillations with a frequency four times that of the 
imposed force f(t) .  In Chapter 8 (Fourier Series) we will see why a periodic ex
ternal force sometimes excites oscillations at a higher frequency than the imposed 
frequency. • 
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- I 

- I + (2 .23)e -2(t - It) II 

I V\ 

I 
I 
\ 

I 
I 
I 
I 

I _ I - (2.23)e -2(t - It) I 

/ / 

FIGURE 4.5.12. The graph of the steady periodic solution for 
Example 8 ;  note the "periodically damped" oscillations with 
frequency four times that of the imposed force. 

IID,. Problems 
Find the inverse Laplace transform f (t) of each function given 
in Problems 1 through 10. Then sketch the graph of f. 

e-3s 
1. F(s) = -2 S 

e-S 
3. F(s) = --

2 s + 
e-1t"' 

5. F(s) = S2 + 1 
1 - e-21ts 

7. F(s) = S2 + 1 
s ( l + e-3s ) 

9. F(s) = 2 2 S + n 

e-S _ e-3s 
2. F(s) = 2 S 

e-S _ e2-2s 
4. F(s) = ---s - 1 

se-S 
6. F(s) = -2--2 S + n 

8. F(s) = sO - e-2s ) 
S2 + n2 

2s (e-1tS _ e-21t"' ) 
10. F(s) = S2 + 4  

Find the Laplace transforms of the functions given in Problems 
11 through 22. 
11. J(t) = 2 if 0 � t < 3 ; f(t) = 0 if t � 3 
12. J(t) = 1 if 1 � t � 4; f(t) = 0 if t < 1 or if t > 4 
13. J(t) = sin t if 0 � t � 2n ; J(t) = O if t > 2n 
14. J(t) = cos m if 0 � t � 2; J(t) = 0 if t > 2 
15. J(t) = sin t if 0 � t � 3n ; J(t) = O if t > 3n 
16. J(t) = sin 2t if n � t � 2n ; f (t) = 0 if t < n or if 

t > 2n 
17. J(t) = sin m if 2 � t � 3 ; J (t) = O if t < 2 0r if t > 3 
18. f(t) = cos �m if 3 � t � 5 ; J(t) = O if t  < 3 or if t > 5 
19. f(t) = 0 if t < 1 ; f(t) = t if t � 1 
20. f(t) = t if t � 1 ; J(t) = 1 if t > 1 
21. J(t) = t if t � 1 ; J(t) = 2 - t if 1 � t � 2; f(t) = 0 if 

t > 2  
22. J(t) = t3 if 1 � t � 2; J(t) = 0 if t < I or if t > 2 

23. Apply Theorem 2 with p = 1 to verify that el{ l } = lis . 
24. Apply Theorem 2 to verify that el{cos kt } = sl(s2 + k2) . 
25. Apply Theorem 2 to  show that the Laplace transform of 

the square-wave function of Fig. 4.5 . 1 3 is 

1 elU(t) } = s ( l + e-aS ) 

-1 -1 -1 -1 -I -
I I I I I 

a 2a 3a 4a 5a 6a 

FIGURE 4.5.13. The graph of the 
square-wave function of Problem 25 . 

26. Apply Theorem 2 to show that the Laplace transform of 
the sawtooth function J(t) of Fig. 4.5 . 14 is 

1 e-as F(s) = - - . as2 sO - e-as ) 

f(t )  

a 2a 3a 4a 5a 6a 

FIGURE 4.5.14. The graph of the 
sawtooth function of Problem 26. 
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27. Let g (t) be the staircase function of Fig. 4.S . 1 S . Show that 
g (t) = (t / a) - f (t ) ,  where f is the sawtooth function of 
Fig. 4.S . 14 , and hence deduce that 

e-as £ {g (t) } = s ( l _ e-aS ) 

g(t ) 
4 , • • • 

I I 
3 r---' I I 
2 r---' I I 

r---' 

a 2a 3a 4a t 
FIGURE 4.5.15. The graph of the 
staircase function of Problem 27. 

28. Suppose that f (t) is  a periodic function of period 2a with 
f (t) = t if 0 ;;:; t < a and f (t) = 0 if a ;;:; t < 2a . Find 
£ {f(t) } . 

29. Suppose that f(t) is the half-wave rectification of sin kt ,  
shown in Fig. 4.S . 1 6. Show that 

k £ {f(t) } = 
(S2 + P) ( l  _ e-"sfk ) 

f\ 2" 3" T T 

FIGURE 4.5.16. The half-wave rectification of 
sin kt . 

30. Let g (t) = u (t - n/k)f(t - n/k) , where f(t) is the 
function of Problem 29 and k > O. Note that h (t) = 
f(t) + g(t) is the full-wave rectification of sin kt shown 
in Fig. 4.S . 17 . Hence deduce from Problem 29 that 

k ns £ {h (t ) } = 
S2 + k2 coth 2k · 

!! � � 
k k k 

FIGURE 4.5.17. The full-wave rectification of 
sin kt . 

In Problems 31 through 35, the values of mass m, spring con
stant k, dashpot resistance c, and force f (t) are given for a 

mass-spring-dashpot system with external forcing function. 
Solve the initial value problem 

mx" + cx' + kx = f(t ) , x (O) = x' (O) = 0 

and construct the graph of the position function x (t) . 
31. m = 1 , k = 4, c = 0; f(t) = 1 if 0 ;;:; t < n, f(t) = 0 if 

t � n 
32. m = 1 ,  k = 4, c = S ; f(t) = 1 if 0 ;;:; t < 2, f(t) = 0 if 

t � 2 
33. m = 1 , k = 9, c = 0; f(t) = sin t if 0 ;;:; t ;;:; 2n , 

f (t) = 0 if t > 2n 
34. m = 1 ,  k = 1 ,  c = 0; f(t) = t if 0 ;;:; t < 1 ,  f(t) = 0 if 

t � 1 
35. m = 1 ,  k = 4, c = 4; f(t) = t if 0 ;;:; t ;;:; 2, f(t) = 0 if 

t > 2 

In Problems 36 through 40, the values of the elements of an 
RLC circuit are given. Solve the initial value problem 

di 1 l' 
L- + Ri + - i (r) dr = e(t) ; dt C 0 

with the given impressed voltage e(t). 

i (O) = 0 

36. L = 0, R = 100, C = 10-3 ; e(t) = 100 if 0 ;;:; t < 1 ; 
e(t) = 0 if t � 1 

37. L = 1 ,  R = 0, C = 10-4 ; e(t) = 100 if 0 ;;:; t < 2n ; 
e(t) = 0 if t � 2n 

38. L = 1 ,  R = 0, C = 10-4 ; e(t) = 100 sin lOt if 
0 ;;:;  t < n ; e(t) = 0 if t � n 

39. L = 1 ,  R = lS0, C = 2 x  10-4 ; e(t) = lOOt if 0 ;;:; t < I ;  
e(t) = 0 i f  t � 1 

40. L = 1 ,  R = 100, C = 4 x 10-4 ; e(t) = SOt if 0 ;;:; t < 1 ; 
e(t) = 0 if t � 1 

In Problems 41 and 42, a mass-spring-dashpot system with 
external force f(t) is described. Under the assumption that 
x (O) = x' (O) = 0, use the method of Example 8 to find the 
transient and steady periodic motions of the mass. Then con
struct the graph of the position function x (t) . If you would like 
to check your graph using a numerical DE solver, it may be 
useful to note that the function 

f(t) = A [2u «t - n) (t - 2n) (t - 3n) . 
(t - 4n) (t - Sn) (t - 6n )) - 1] 

has the value +A if 0 < t < n, the value -A ifn < t < 2n, 
and so forth, and hence agrees on the interval [0, 6n] with 
the square-wave function that has amplitude A and period 2n. 
(See also the definition of a square-wave function in terms of 
sawtooth and triangular-wave functions in the application ma
terialfor this section. ) 
41. m = 1 ,  k = 4, c = 0; f(t) is a square-wave function with 

amplitude 4 and period 2n . 
42. m = 1 , k = 10, c = 2; f(t) is a square-wave function 

with amplitude 1 0  and period 2n . 
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lID !1l1::pulses and Delta Functions 

x 
I-- e -----j 

r IT I I 
I I : Area = !  : � 
I I 
I I 
I I 
I I 

a a + e  
FIGURE 4.6.1. The graph of the 
impulse function da ,< (t ) .  

Consider a force f(t )  that acts only during a very short time interval a � t � b, 
with f(t) = 0 outside this interval . A typical example would be the impulsive 
force of a bat striking a ball-the impact is almost instantaneous. A quick surge 
of voltage (resulting from a lightning bolt, for instance) is an analogous electrical 
phenomenon. In such a situation it often happens that the principal effect of the 
force depends only on the value of the integral 

p = lb 
f (t) dt ( 1 )  

and does not depend otherwise on  precisely how f (t) varies with time t .  The num
ber p in Eq. ( 1 )  is called the impulse of the force f(t) over the interval [a , b] .  

In the case of a force f (t) that acts on a particle of mass m in linear motion, 
integration of Newton's law 

yields 

d 
f(t) = mv' (t) = - [mv (t) ] dt 

lb d 
p = - [mv (t ) ]  dt = mv(b) - mv (a ) .  

a dt 
(2) 

Thus the impulse of the force is equal to the change in momentum of the particle. 
So if change in momentum is the only effect with which we are concerned, we need 
know only the impulse of the force;  we need know neither the precise function f(t) 
nor even the precise time interval during which it acts . This is fortunate, because 
in a situation such as that of a batted ball, we are unlikely to have such detailed 
information about the impulsive force that acts on the ball. 

Our strategy for handling such a situation is to set up a reasonable mathemat
ical model in which the unknown force f(t) is replaced with a simple and explicit 
force that has the same impulse. Suppose for simplicity that f(t )  has impulse 1 and 
acts during some brief time interval beginning at time t = a � O. Then we can 
select a fixed number E > 0 that approximates the length of this time interval and 
replace f(t) with the specific function 

if a � t < a + E ,  
(3) 

otherwise. 

This is a function of t , with a and E being parameters that specify the time interval 
[a ,  a + E ] . If b � a + E ,  then we see (Fig. 4.6. 1 )  that the impulse of da ,E over [a , b] 
is 

p = lb 
da , E (t) dt = la+E 

! dt = 1 . 
a a E 

Thus da,E has a unit impulse, whatever the number E may be. Essentially the same 
computation gives 

(4) 



Function g (t) \ 

FIGURE 4.6.2. A diagram 
illustrating how the delta function 
"sifts out" the value g (a ) . 
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Because the precise time interval during which the force acts seems unimpor
tant, it is tempting to think of an instantaneous impulse that occurs precisely at the 
instant t = a . We might try to model such an instantaneous unit impulse by taking 
the limit as E � 0, thereby defining 

(5) 

where a � O. If we could also take the limit under the integral sign in Eq. (4), then 
it would follow that 

(6) 

But the limit in Eq. (5) gives 

if t = a ,  
(7) 

if t =1= a . 

Obviously, no actual function can satisfy both (6) and (7)-if a function is zero 
except at a single point, then its integral is not I but zero. Nevertheless, the symbol 
Da (t) is very useful. However interpreted, it is called the Dirac delta function at a 
after the British theoretical physicist P. A. M. Dirac ( 1 902-1984), who in the early 
1 930s introduced a "function" allegedly enjoying the properties in Eqs .  (6) and (7). 

Delta Functions as Operators 

The following computation motivates the meaning that we will attach here to the 
symbol Da (t) . If g(t) is continuous function, then the mean value theorem for inte
grals implies that la+€ 

g(t )  dt = Eg (t ) 
for some point t in  [a , a + E) .  I t  follows that 100 la+€ 1 

lim g (t)da , € (t) dt = lim g (t) . - dt = lim g (t) = g(a) €---+ O 0 €---+ O a E €---+O 
(8) 

by continuity of g at t = a . If Da (t) were a function in the strict sense of the 
definition, and if we could interchange the limit and the integral in Eq. (8), we 
therefore could conclude that 100 g(t)Da (t) dt = g(a ) .  (9) 

We take Eq. (9) as the definition ( ! )  of the symbol Da (t ) .  Although we call it 
the delta function, it is not a genuine function; instead, it specifies the operation 

which-when applied to a continuous function g (t)-sifts out or selects the value 
g (a) of this function at the point a � O. This idea is shown schematically in 
Fig. 4.6.2. Note that we will use the symbol Da (t) only in the context of integrals 
such as that in Eq. (9), or when it will appear subsequently in such an integral. 
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For instance, if we take g (t) = e-st in Eq. (9) , the result is 

We therefore define the Laplace transform of the delta function to be 

If we write 

£ {8a (t) } = e-as (a � 0) . 

8 (t )  = 80 (t) and 8 (t - a) = 8a (t) , 

then ( 1 1 )  with a = 0 gives 

£ {8 (t) } = 1 .  

( 10) 

( 1 1 )  

( 12) 

( 1 3) 

Note that if 8 (t )  were an actual function satisfying the usual conditions for existence 
of its Laplace transform, then Eq. ( 1 3) would contradict the corollary to Theorem 2 
of Section 4. 1 .  But there is no problem here; 8 (t )  is not a function, and Eq. ( 1 3) is 
our definition of £ {8 (t ) } .  

Delta Function Inputs 

,Now, finally, suppose that we are given a mechanical system whose response x (t) 
to the external force f(t) is determined by the differential equation 

Ax" + Bx' + ex = f(t) . ( 14) 

To investigate the response of this system to a unit impulse at the instant t = a, it 
seems reasonable to replace f(t) with 8a (t) and begin with the equation 

Ax" + Bx' + ex = 8a (t) . ( 1 5) 

But what is meant by the solution of such an equation? We will call x (t) a solution 
of Eq. ( 1 5) provided that 

x (t) = lim x€ (t) , €-->o ( 1 6) 

where x€ (t) is a solution of 

Ax" + Bx' + ex = da , € (t) . ( 17) 

Because 

( 1 8) 

is an ordinary function, Eq. ( 1 7) makes sense. For simplicity suppose the initial 
conditions to be x (O) = x' (O) = O. When we transform Eq. ( 1 7) ,  writing X€ = 
£ {x€ } ,  we get the equation 
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If we take the limit in the last equation as E ---+ 0, and note that 

1 - e-SE 
lim = 1 E-+O SE 

by I 'Hopital ' s  rule, we get the equation 

(AS2 + Bs + C)X (s) = e-as , 

if 
X (s) = lim XE (x) .  E-+O 

( 1 9) 

Note that this  is precisely the same result that we would obtain if we transformed 
Eq. ( 1 5) directly, using the fact that £{8a (t ) }  = e-as . 

On this basis it is reasonable to solve a differential equation involving a delta 
function by employing the Laplace transform method exactly as if 8a (t) were an 
ordinary function. It is important to verify that the solution so obtained agrees 
with the one defined in Eq. ( 1 6) ,  but this depends on a highly technical analysis of 
the limiting procedures involved; we consider it beyond the scope of the present 
discussion. The formal method is valid in all the examples of this section and will 
produce correct results in the subsequent problem set. 

-�-- - --. - --.-- --�.---".� ... -,,- - .� .... 

A mass m = 1 is attached to a spring with constant k = 4; there is no dashpot. The 
mass is released from rest with x (0) = 3 .  At the instant t = 217: the mass is struck 
with a hammer, providing an impulse p = 8 . Determine the motion of the mass. 

Solution According to Problem 1 5 ,  we need to solve the initial value problem 

x" + 4x = 8823T (t) ; x (O) = 3 ,  x' (O) = O. 

We apply the Laplace transform to get 

so 

S2 X (s) - 3s + 4X (s) = 8e-23TS , 

3s 8e-23TS 
X (s) = 

s2 + 4 
+ s2 + 4 ' 

Recalling the transforms of sine and cosine, as well as the theorem on translations 
on the t-axis (Theorem 1 of Section 4.5), we see that the inverse transform is 

x (t) = 3 cos 2t + 4u (t - 217:) sin 2(t - 217:) 
= 3 cos 2t + 4U23T (t) sin 2t . 

Because 3 cos 2t + 4 sin 2t = 5 cos (2t - a) with a = tan- 1 (4/3) � 0.9273, sepa
ration of the cases t < 217: and t � 217: gives 

( )  
1 3 cos 2t x t � 
5 cos(2t - 0.9273) 

if t � 217: , 
if t � 217: . 

The resulting motion is shown in Fig. 4.6.3 . Note that the impulse at t = 217: results 
in a visible discontinuity in the velocity at t = 217: , as it instantaneously increases 
the amplitude of the oscillations of the mass from 3 to 5 . • 



320 Cha pter 4 Laplace Transform Methods 

x 

a a + E  

6 

- 6 

o 

t = 2Jr 

2n 4n 
t 

6n 

FIGURE 4.6.3. The motion of the mass of Example 1 .  

Delta Functions and Step Functions 

It is  useful to regard the delta function 8a (t) as the derivative of the unit step function 
ua (t) . To see why this is reasonable, consider the continuous approximation Ua , f (t) 
to ua (t) shown in Fig. 4.6.4. We readily verify that 

Because 

FIGURE 4.6.4. Approximation 
of ua (t) by ua , . (t ) .  

an interchange of  limits and derivatives yields 

Exa mple 2 

and therefore 

d 
-ua (t) = 8a (t) = 8 (t - a) .  dt 

(20) 

We may regard this as theformal definition of the derivative of the unit step function, 
although Ua (t) is not differentiable in the ordinary sense at t = a .  

- - - -

We return to the RLC circuit of Example 5 of Section 4.5, with R = 1 1 0 n, L = 
1 H, C = 0.001  F, and a battery supplying eo = 90 V. Suppose that the circuit is 
initially passive-no current and no charge. At time t = 0 the switch is closed and 
at time t = 1 it is opened and left open. Find the resulting current i (t) in the circuit. 

Solution In Section 4.5 we circumvented the discontinuity in the voltage by employing the in
tegrodifferential form of the circuit equation. Now that delta functions are available, 
we may begin with the ordinary circuit equation 

Li" + Ri ' + .!.i = e' (t) . 
C 

In this example we have 

e(t) = 90 - 90u (t - 1 )  = 90 - 90u , (t) , 
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so e' (t) = -908 (t - 1 ) by Eq. (20) . Hence we want to solve the initial value problem 

i " + HOi '  + 1000i = -908 (t - 1 ) ; i (O) = 0, i ' (O) = 90. (2 1 )  

The fact that i ' (0) = 90 comes from substitution of t = 0 in  the equation 

1 
Li ' (t) + Ri (t) + C q (t) = e (t) 

with the numerical values i (O) = q (O) = 0 and e (O) = 90. 
When we transform the problem in (2 1 ), we get the equation 

s2 I (s) - 90 + HOsI (s) + 1 000/ (s) = -90e-s . 

Hence 
90( 1  - e-S ) I (s) = 

S2 + HOs + 1 000 
This is precisely the same transform I (s ) we found in Example 5 of Section 4.5, so 
inversion of I (s) yields the same solution i (t) recorded there. • 

Consider a mass on a spring with m = k = 1 and x (0) = x' (0) = O. At each of the 
instants t = 0, :rr , 2:rr , 3:rr , . . .  , n:rr , . . .  , the mass is struck a hammer blow with a 
unit impulse. Determine the resulting motion. 

Solution We need to solve the initial value problem 

x(t )  

00 
x" + x = I )mr (t) ; x (O) = 0 = x' (O) . 

n=O 
Because £ {8mr (t ) }  = e-nrr s , the transformed equation is 

so 

00 
S2X (s) + X (s) = L e-nrrs , 

n=O 

00 e-nrrs X (s) = L -2-1 · 
n=O S + 

We compute the inverse Laplace transform term by term; the result is 

00 
x (t) = L u (t - n:rr ) sin(t - n:rr ) . 

n=O 
Because sin(t - n:rr ) = (_ 1 )n sin t and u (t - n:rr ) = 0 for t < n:rr , we see that if 
n:rr < t < (n + 1 ):rr , then 

x (t) = sin t - sin t + sin t - . . .  + (- It sin t ;  

that is, 

x (t) = l
o
sin t if n is even, 

if n is odd. 

Hence x (t) is the half-wave rectification of sin t shown in Fig. 4.6.5 .  The physical 
explanation is that the first hammer blow (at time t = 0) starts the mass moving to 

�I-----'---L-----'-----I.-t the right; just as it returns to the origin, the second hammer blow stops it dead; it 
rr 2n: 3n: 4n: 

FIGURE 4.6.5. The half-wave 
rectification of sin t .  

remains motionless until the third hammer blow starts i t  moving again, and so  on. 
Of course, if the hammer blows are not perfectly synchronized then the motion of 
the mass will be quite different. • 



322 Chapter 4 Laplace Tra nsform Methods 

Systems Analysis and Duhamel's Principle 

Consider a physical system in which the output or response x (t)  to the input func
tion f(t) is described by the differential equation 

ax" + bx' + ex = f(t ) ,  (22) 

where the constant coefficients a ,  b, and e are determined by the physical parameters 
of the system and are independent of f (t) . The mass-spring-dashpot system and the 
series RLC circuit are familiar examples of this general situation. 

For simplicity we assume that the system is initially passive: x (O) = x' (O) = 
O. Then the transform of Eq. (22) is 

so 

The function 

as2X (s) + bsX (s) + eX (s) = F (s ) ,  

F (s) 
X (s) = 2 = W(s) F(s ) .  

as  + bs + e 

1 
W(s) = ---

as2 + bs + e 

(23) 

(24) 

is called the transfer function of the system. Thus the transform of the response to 
the input f(t) is the product of W(s) and the transform F(s) . 

The function 

w(t) = .,c- l rW (s ) }  (25) 

is called the weight function of the system. From Eq. (24) we see by convolution 
that 

x (t) = lot w(r)f (t - r) dr . (26) 

This formula is Duhamel's principle for the system. What is important is that 
the weight function w(t) is determined completely by the parameters of the system. 
Once w (t) has been determined, the integral in (26) gives the response of the system 
to an arbitrary input function f(t ) .  

In  principle-that i s ,  via the convolution integral-Duhamel's principle re
duces the problem of finding a system's outputs for all possible inputs to calculation 
of the single inverse Laplace transform in (25) that is needed to find its weight func
tion. Hence, a computational analogue for a physical mass-spring-dashpot system 
described by (22) can be constructed in the form of a "black box" that is hard-wired 
to calculate (and then tabulate or graph, for instance) the response x (t) given by (26) 
automatically whenever a desired force function f (t) is input. In engineering prac
tice, all manner of physical systems are "modeled" in this manner, so their behaviors 
can be studied without need for expensive or time-consuming experimentation. 
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Consider a mass-spring-dashpot system (initially passive) that responds to the ex
ternal force f(t) in accord with the equation x" + 6x' + l Ox = f(t) . Then 

1 1 
W(s) - - ---=---- s2 + 6s + 10  

- (s + 3)2 + l ' 

so the weight function is w(t) = e-31 sin t .  Then Duhamel 's principle implies that 
the response x (t) to the force f(t) i s  

Note that 

x (t) = 1 1 
e-3, (sin r )f (t - r) dr . 

W(s) = 1 = £ {8 (t) } 
. 

as2 + bs + c as2 + bs + c 

• 

Consequently, it follows from Eq. (23) that the weight function is simply the re
sponse of the system to the delta function input 8 (t ) .  For this reason w(t) is some
times called the unit impulse response. A response that is usually easier to measure 
in practice is the response h (t) to the unit step function u (t ) ;  h (t) is the unit step 
response. Because £{u (t ) }  = lis ,  we see from Eq. (23) that the transform of h(t) 
is 

H(s) = W(s)
. 

s 
It follows from the formula for transforms of integrals that 

h (t) = 1 1 
w (r ) dr , so that w(t) = h' (t) . (27) 

Thus the weight function, or unit impulse response, is the derivative of the unit step 
response. Substitution of (27) in Duhamel 's principle gives 

x (t) = 1 1 
h' (t)f (t - r) dr (28) 

for the response of the system to the input f(t ) .  

ApPLICATIONS : To describe a typical application of  Eq. (28), suppose that we 
are given a complex series circuit containing many inductors, resistors, and capac
itors. Assume that its circuit equation is a linear equation of the form in (22), but 
with i in place of x .  What if the coefficients a ,  b, and c are unknown, perhaps 
only because they are too difficult to compute? We would still want to know the 
current i (t) corresponding to any input f(t) = e' (t ) .  We connect the circuit to a 
linearly increasing voltage e (t) = t, so that f(t) = e' (t) = 1 = u (t) ,  and measure 
the response h (t) with an ammeter. We then compute the derivative h'(t) , either 
numerically or graphically. Then according to Eq. (28), the output current i (t) cor
responding to the input voltage e (t) will be given by 

i (t) = 1 1 
h' (r )e' (t - r) dr 

(using the fact that f(t) = e' (t» . 
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HISTORICAL REMARK: In conclusion, we remark that around 1 950, after engi
neers and physicists had been using delta functions widely and fruitfully for about 
20 years without rigorous justification, the French mathematician Laurent Schwartz 
developed a rigorous mathematical theory of generalized/unctions that supplied the 
missing logical foundation for delta function techniques .  Every piecewise continu
ous ordinary function is a generalized function, but the delta function is an example 
of a generalized function that is not an ordinary function. 

Solve the initial value problems in Problems 1 through 8, and 
graph each solution function x (t) . 

1.  x" + 4x = o Ct) ; x (O) = x' (O) = 0 
2. x" + 4x = o (t ) + o (t - n) ; x (O) = x ' (O) = 0 
3. x" + 4x' + 4x = 1 + o (t - 2) ; x (O) = x' (O) = 0 
4. x" + 2x' + x = t + o (t ) ; x (O) = O, x ' (O) = 1 
5. x" + 2x' + 2x = 20 (t - n) ; x (O) = x' (O) = 0 
6. x" + 9x = o (t - 3n) + cos 3t ; x (O) = x' (O) = 0 
7. x"+4x'+ 5x = 0 (t - n) + 0 (t - 2n) ; x (0) = 0, x' (O) = 2 
8. x" + 2x' + x = o (t) - o (t - 2) ; x (O) = x' (O) = 2 

Apply Duhamel 's principle to write an integral formula for the 
solution of each initial value problem in Problems 9 through 
12. 

9. x" + 4x = f(t) ; x (O) = x' (O) = 0 
10. x" + 6x' + 9x = f(t) ; x (O) = x' (O) = 0 
11.  x" + 6x' + 8x = f(t) ; x (O) = x' (O) = 0 
12. x" + 4x' + 8x = f(t) ; x (O) = x' (O) = 0 
13. This problem deals with a mass m, initially at rest at the 

origin, that receives an impulse p at time t = O. (a) Find 
the solution x< (t) of the problem 

mx" = pdo,< (t) ; x (O) = x' (O) = O. 

(b) Show that l im x< (t) agrees with the solution of the <-+0 
problem 

mx" = po et) ; x (O) = x' (O) = O. 

(c) Show that mv = p for t > 0 (v = dx/dt) . 
14. Verify that u'(t - a) = o (t - a) by solving the problem 

x' = o (t - a) ; x (O) = 0 

to obtain x (t) = u (t - a) . 
15. This problem deals with a mass m on  a spring (with con

stant k) that receives an impulse Po = mvo at time t = O. 
Show that the initial value problems 

and 

mx" + kx = 0; x (O) = 0, x' (O) = vo 

mx" + kx = Poo (t) ; x (O) = 0, x' (O) = 0 

have the same solution. Thus the effect of Poo (t) is ,  in
deed, to impart to the particle an initial momentum PO . 

16. This is a generalization of Problem 1 5 . Show that the 
problems 

ax" + bx' + cx = f(t) ; x (O) = 0, x' (O) = vo 

and 

ax" + bx' + cx = f(t) + avoo (t) ; x (O) = x' (O) = 0 

have the same solution for t > O. Thus the effect of the 
term avoo (t) is to supply the initial condition x' (O) = vo . 

17. Consider an initially passive RC circuit (no inductance) 
with a battery supplying eo volts. (a) If the switch to 
the battery is closed at time t = a and opened at time 
t = b > a (and left open thereafter), show that the current 
in the circuit satisfies the initial value problem 

1 Ri ' + C i = eoo (t - a) - eoo (t - b) ; i (O) = O. 

(b) Solve this problem if R = 100 n, C = 10-4 F, 
eo = 100 V, a = 1 (s), and b = 2 (s). Show that i (t ) > 0 
if 1 < t < 2 and that i (t) < 0 if t > 2. 

18. Consider an initially passive LC circuit (no resistance) 
with a battery supplying eo volts. (a) If the switch is 
closed at time t = 0 and opened at time t = a > 0, show 
that the current in the circuit satisfies the initial value prob
lem 

1 Li" + C i = eoo (t) - eoo (t - a) ; 

i (O) = i ' (O) = O. 

(b) If L = 1 H, C = 10-2 F, eo = 10 V, and a = n (s), 
show that 

'
( 

{ Sin lOt 
I t) = o 

if t < n , 
if t > n .  

Thus the current oscillates through five cycles and then 
stops abruptly when the switch is opened (Fig. 4.6.6). 
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FIGURE 4.6.6. The current function of 
Problem 1 8 . 

19. Consider the LC circuit of Problem 1 8(b), except suppose 
that the switch is alternately closed and opened at times 
t = 0, rr/lO, 2rr/1O, . . . .  (a) Show that i (t ) satisfies the 
initial value problem 

<Xl 
i "+ lOOi = 10 L (- I )n8 (t -

nrr ) ; i (O) = i ' (O) == O. 
n=O 10 

(b) Solve this initial value problem to show that 

i (t) = (n + 1) sin l Ot if 
nrr (n + l )rr 
- < t  < . 10 10 

Thus a resonance phenomenon occurs (see Fig. 4.6.7) . 
i(t) 

10 

- 10  

FIGURE 4.6.7. The current function of 
Problem 19 . 

20. Repeat Problem 19 , except suppose that the switch is al
ternately closed and opened at times t = 0, rr/5, 2rr/5, . . .  , 
nrr/5, . . . .  Now show that if 

then 

nrr (n + l )rr 
- < t < -'----=--'--5 5 '  

i (t) = { �in l Ot if n is even; 

if n is odd. 

Thus the current in alternate cycles of length rr/5 first ex
ecutes a sine oscillation during one cycle, then is dormant 
during the next cycle, and so on (see Fig. 4.6.8) . 
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i(t) 

FIGURE 4.6.8. The current function of 
Problem 20. 

21. Consider an RLC circuit in series with a battery, with 
L = 1 H, R = 60 Q, C = 10-3 F, and eo = 10 V. (a) 
Suppose that the switch is alternately closed and opened 
at times t = 0, rr/lO, 2rr/1O, . . . .  Show that i (t) satisfies 
the initial value problem 

<Xl ( nrr ) i " + 60i ' + 1000i = 10 L ( - l t 8  t - - ; 
n=O 10 

i (O) = i ' (O) = O. 

(b) Solve this problem to show that if 

then 

nrr (n + l )rr 
- < t < -'--...,....,..-'--10 10 

e3mr+31r - 1 i (t) = e-30t sin lOt . 
e31r - 1 

Construct a figure showing the graph of this current func
tion. 

22. Consider a mass m = 1 on a spring with constant k = 1 ,  
initially at rest, but struck with a hammer at each of the in
stants t = 0, 2rr , 4rr , . . . .  Suppose that each hammer blow 
imparts an impulse of + 1 .  Show that the position function 
x (t) of the mass satisfies the initial value problem 

<Xl 
x " + X = 

L 
8 (t - 2nrr) ;  x (O) = x ' (O) = O. 

n=O 
Solve this problem to show that if 2nrr < t < 2(n + l )rr ,  
then x (t) = (n + 1 )  sin t .  Thus resonance occurs because 
the mass is struck each time it passes through the origin 
moving to the right-in contrast with Example 3, in which 
the mass was struck each time it returned to the origin. Fi
nally, construct a figure showing the graph of this position 
function. 
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In the preceding chapters we have discussed methods for solving an ordinary dif
ferential equation that involves only one dependent variable. Many applications, 

however, require the use of two or more dependent variables, each a function of a 
single independent variable (typically time). Such a problem leads naturally to a 
system of simultaneous ordinary differential equations. We will usually denote the 
independent variable by t and the dependent variables (the unknown functions of t) 
by Xl , X2 , X3 , . . •  or by X, y, z ,  . . . .  Primes will indicate derivatives with respect to 
t .  

We will restrict our attention to systems in  which the number of equations is 
the same as the number of dependent variables (unknown functions). For instance, 
a system of two first-order equations in the dependent variables X and y has the 
general form 

f(t ,  x ,  y ,  x' , y') = 0, 

g (t ,  x, y ,  x' , y') = 0, 
( 1 )  

where the functions f and g are given. A solution of this system is a pair x (t) ,  y (t) 
of functions of t that satisfy both equations identically over some interval of values 
of t . 

For an example of a second-order system, consider a particle of mass m that 
moves in space under the influence of a force field F that depends on time t, the po
sition (x (t) , y (t) , z (t» of the particle, and its velocity (x ' (t ) ,  y' (t) , z' (t» . Applying 
Newton's law ma = F componentwise, we get the system 

mx" = FI (t , x ,  y, z, x' , y' , z') ,  
my" = F2 (t , x ,  y ,  z ,  x' , y' , z') ,  
mz" = F3 (t , x ,  y ,  z ,  x' , y' , z') 

(2) 
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FIGURE 5.1.1.  The mass
and-spring system of Example I .  
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FIGURE 5.1.2. The "free 
body diagrams" for the 
system of Example 1 .  
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Exa mple 2 
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FIGURE 5.1.3. The two brine 
tanks of Example 2. 
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of three second-order equations with independent variable t and dependent variables 
x ,  y, z ;  the three right-hand-side functions FI , F2, F3 are the components of the 
vector-valued function F. 

Initial Applications 

Examples 1 through 3 further illustrate how systems of differential equations arise 
naturally in scientific problems. 

.•.. ..... ...... ..... . . .... ... . ... ....... .. .. ....... .................... _. 

Consider the system of two masses and two springs shown in Fig. 5 . 1 . 1 ,  with a 
given external force f (t )  acting on the right-hand mass m2 . We denote by x(t) 
the displacement (to the right) of the mass m l from its static equilibrium position 
(when the system is motionless and in equilibrium and f(t)  = 0) and by y(t) the 
displacement of the mass m2 from its static position. Thus the two springs are 
neither stretched nor compressed when x and y are zero. 

In the configuration in Fig. 5 . 1 . 1 ,  the first spring is stretched x units and the 
second by y - x units. We apply Newton's law of motion to the two "free body 
diagrams" shown in Fig. 5 . 1 .2 ;  we thereby obtain the system 

m ix" = -klx + k2 (y - x) ,  
m2y " = -k2 (y - x) + f(t)  

(3) 

of differential equations that the position functions x (t) and y(t) must satisfy. For 
instance, if m I = 2, m2 = 1 ,  kl = 4, k2 = 2, and f (t) = 40 sin 3t in appropriate 
physical units, then the system in (3) reduces to 

2x" = -6x + 2y ,  
y" = 2x - 2y + 40 sin 3t .  

(4) 

• 

Consider two brine tanks connected as shown in Fig. 5 . 1 .3 .  Tank 1 contains x(t) 
pounds of salt in 1 00 gal of brine and tank 2 contains y (t) pounds of salt in 200 gal 
of brine. The brine in each tank is kept uniform by stirring, and brine is pumped 
from each tank to the other at the rates indicated in Fig. 5 . 1 .3 .  In addition, fresh wa
ter flows into tank 1 at 20 gal/min, and the brine in tank 2 flows out at 20 gal/min 
(so the total volume of brine in the two tanks remains constant) . The salt concen
trations in the two tanks are x / 1 00 pounds per gallon and y /200 pounds per gallon, 
respectively. When we compute the rates of change of the amount of salt in the two 
tanks, we therefore get the system of differential equations that x (t) and y(t) must 
satisfy :  

that is , 

, x y 3 1 
x = -30 · - + 1O · - = - -x + -y 

1 00 200 10  20 ' 

, x y y 3 3 
y = 30 · - - 1 0  . - - 20 . - = -x - _yo 

1 00 200 200 1 0  20 ' 

20x' = -6x + y ,  
20y' = 6x - 3y .  

(5) 

• 
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FIGURE 5.1.5. Voltage drops 
across common circuit elements . 

L :  2 henries 

+ 8  Eo : -=- /1 R1 :  
1 00 volts -_ 50 ohms 

c: 0.008 farads 

FIGURE 5.1.4. The electrical network of Example 3 . 

Consider the electrical network shown in  Fig. S . 1 .4, where II ( t )  denotes the cur
rent in the indicated direction through the inductor L and h(t) denotes the current 
through the resistor R2 . The current through the resistor RI is I = h - h in the di
rection indicated. We recall Kirchhoff's voltage law to the effect that the (algebraic) 
sum of the voltage drops around any closed loop of such a network is zero. As in 
Section 2.7, the voltage drops across the three types of circuit elements are those 
shown in Fig. S . 1 .S .  We apply Kirchhoff's law to the left-hand loop of the network 
to obtain 

dh 2- + SO(h - h) - 100 = 0, 
dt 

(6) 

because the voltage drop from the negative to the positive pole of the battery is 
- 100. The right-hand loop yields the equation 

1 2S Q2 + 2Sh + SO(h - h )  = 0, (7) 

where Q2 (t) is the charge on the capacitor. Because d Q2Idt = h differentiation 
of each side of Eq. (7) yields 

dl2 dll 1 2Sh  + 7S- - SO- = O. 
dt dt 

(8) 

After dividing Eqs.  (6) and (8) by the factors 2 and -2S, respectively, we get the 
system 

dll 
- + 2S/1 - 2Sh = SO, 
dt 

dh dh 
2- - 3- - Sh = 0  

dt dt 

of differential equations that the currents h (t) and h(t) must satisfy. 

(9) 

• 
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First-Order Systems 

Consider a system of differential equations that can be solved for the highest-order 
derivatives of the dependent variables that appear, as explicit functions of t and 
lower-order derivatives of the dependent variables. For instance, in the case of a 
system of two second-order equations, our assumption is that it can be written in the 
form 

( 1 0) 

It is of both practical and theoretical importance that any such higher-order system 
can be transformed into an equivalent system of first-order equations. 

To describe how such a transformation is accomplished, we consider first the 
"system" consisting of the single nth-order equation 

(n) f (  , (n- I ) x = t , x , X , . . . , X  . 

We introduce the dependent variables X I , X2 , . . .  , Xn defined as follows: 

XI = X ,  X2 = x' , X3 = x" , Xn = x (n- I ) . 

( 1 1 )  

( 1 2) 

Note that x ; = x' = X2 , x� = x" = X3 , and so on. Hence the substitution of ( 1 2)lin 
Eq. ( 1 1 )  yields the system 

( 1 3) 
, xn_ 1 = Xn , 
x� = f(t ,  X I , X2 , . . .  , xn ) 

of n first-order equations. Evidently, this system is equivalent to the original nth
order equation in ( 1 1 ) , in the sense that x (t) is a solution of Eq. ( 1 1 )  if and only if 
the functions XI (t ) ,  X2 (t ) ,  . . .  , xn (t) defined in ( 1 2) satisfy the system of equations 
in ( 1 3) . 

The third-order equation 

X (3) + 3x" + 2x' - 5x = sin 2t 

is of the form in ( 1 1 )  with 

f (t , x, x' , x") = 5x - 2x' - 3x" + sin 2t . 

Hence the substitutions 

X I = X ,  I I " '  X2 = X = X I ' X3 = X = x2 
yield the system 

, x I = X2 , , x2 = X3 , 
x� = 5x I - 2X2 - 3X3 + sin 2t 

of three first-order equations. • 
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Exa mple 5 

It may appear that the first-order system obtained in Example 4 offers little 
advantage because we could use the methods of Chapter 2 to solve the original (lin
ear) third-order equation. But suppose that we were confronted with the nonlinear 
equation 

x" = X3 + (X ')3 , 
to which none of our earlier methods can be applied. The corresponding first-order 
system is 

( 14) 

and we will see in Section 6.4 that there exist effective numerical techniques for 
approximating the solution of essentially any first-order system. So in this case the 
transformation to a first-order system is advantageous. From a practical viewpoint, 
large systems of higher-order differential equations typically are solved numerically 
with the aid of the computer, and the first step is to transform such a system into a 
first-order system for which a standard computer program is available. 

The system 

2x" = -6x + 2y, 
y" = 2x - 2y + 40 sin 3t 

(4) 

of second-order equations was derived in Example 1 .  Transform this system into an 
equivalent first-order system. 

Solution Motivated by the equations in ( 1 2) ,  we define 

Xl = X ,  Yl = y ,  

Then the system in (4) yields the system 
, X l = X2 , 

2x� = -6Xl + 2Yl , 

Y ; = Y2 , 

, , Y2 = Y = Yl ' 

y� = 2Xl - 2Yl + 40 sin 3t 

( 1 5) 

of four first-order equations in the dependent variables Xl , X2 , Yl , and Y2 . • 

Simple Two-Dimensional Systems 

The linear second-order differential equation 

X" + px' + qx = 0 ( 16) 

(with constant coefficients and independent variable t) transforms via the substitu
tions x' = y, x" = Y' into the two-dimensional linear system 

, X = y , 
, Y = -qx - py . 

( 1 7) 
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FIGURE 5.1.6. Direction field 
and solution curves for the system 
x ' = -2y, y' = !X of Example 6. 
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Conversely, we can solve this system in ( 1 7) by solving the familiar single equation 
in ( 1 6) .  

To solve the two-dimensional system 

we begin with the observation that 

X' = -2y, 
' - 1 Y - 2x ,  

x" = -2y' = -2 ( !x) = -x . 

This gives the single second-order equation x" + x = 0 with general solution 

x (t )  = A cos t + B sin t = C cos(t - a) 

where A = C cos a and B = C sin a .  Then 

y (t )  = - �x' (t )  = - � (-A sin t + B cos t) 

= �C sin(t - a ) .  

( 1 8) 

The identity cos2 () + sin2 () = 1 therefore implies that, for each value of t ,  the point 
(x (t ) ,  y (t ) )  lies on the ellipse 

with semi axes C and C /2. Figure 5 . 1 .6 shows several such ellipses in the xy-plane . 
• 

A solution (x (t ) ,  y (t ) )  of a two-dimensional system 

x' = f(t ,  x ,  y) , 

y' = g (t , x ,  y) 

may be regarded as a parametrization of a solution curve or trajectory of the sys
tem in the xy-plane. Thus the trajectories of the system in ( 1 8) are the ellipses of 
Fig. 5 . 1 .6 .  The choice of an initial point (x (0) , y (O)) determines which one of these 
trajectories a particular solution parametrizes . 

The picture showing a system's trajectories in the xy-plane-its so-called 
phase plane portrait-fails to reveal precisely how the point (x (t) , y (t ) )  moves 
along its trajectory. If the functions f and g do not involve the independent variable 
t ,  then a direction field-showing typical arrows representing vectors with com
ponents (proportional to) the derivatives x' = f(x ,  y) and y' = g (x , y)-can be 
plotted. Because the moving point (x (t ) ,  y (t ) )  has velocity vector (x' (t) , y'(t) ) ,  
this direction field indicates the point's direction of motion along its trajectory. 
For instance, the direction field plotted in Fig. 5 . 1 .6 indicates that each such point 
moves counterclockwise around its elliptical trajectory. Additional information can 
be shown in the separate graphs of x (t )  and y (t) as functions of t . 
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FIGURE 5.1.S. Direction field 
and solution curves for the system 
x' = y, y' = 2x + y of Example 7 . 

With initial values x (O) = 2, y (O) = 0, the general solution in Example 6 yields 

x (O) = A = 2, y (O) = - �B = O. 

The resulting particular solution is given by 

x (t )  = 2 cos t ,  y (t )  = sin t .  

The graphs of the two functions are shown i n  Fig. 5 . 1 .7 .  We see that x (t )  initially 
decreases while y (t )  increases . It follows that, as t increases, the solution point 
(x (t ) ,  y (t » traverses the trajectory �x2 + y2 = 1 in the counterclockwise direction, 
as indicated by the direction field vectors in Fig. 5 . 1 .6 .  • 

4 r-----.-----.-----� 
3 

2 
x = 2 cos t 

� 0 r-\--''t-I'-.f__\--'�f__.f__\_I 

- 1 
- 2  

- 3  
y = sin t 

-4 0�----�----�----�1 5 

FIGURE 5.1.7. x- and y-solution curves for the initial 
value problem x' = -2y, y' = !x , x (O) = 2, y (O) = O . 

.... _.. --��'"'"''-- ._....... ..� .... � ... " .. "-- " "  -_. " ." .•.. � •.. 

To find a general solution of the system 

x' = y , 

y' = 2x + y ,  

we begin with the observation that 

x" = y' = 2x + y = x' + 2x . 

This gives the single linear second-order equation 

x" - x' - 2x = 0 

with characteristic equation 

r2 - r - 2 = (r + l ) (r - 2) = 0 

and general solution 

x (t )  = Ae-t + Be2t . 

Then 

y (t ) = x' (t) = -Ae-t + 2Be2t . 

( 1 9) 

(20) 

(2 1 )  

Typical phase plane trajectories of the system i n  ( 1 9) parametrized by Eqs . (20) and 
(2 1 )  are shown in Fig. 5 . 1 . 8 .  These trajectories may resemble hyperbolas sharing 
common asymptotes, but Problem 23 shows that their actual form is somewhat more 
complicated. • 
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To solve the initial value problem 

x' = -y ,  

y' = ( 1 .0 1 )x - (0.2)y ,  

X (O) = 0, y (O) = - I ,  

we begin with the observation that 

x" = -y' = - [ ( 1 .0 1 )x - (0.2)y] = (- 1 .0 1 )x - (0.2)x' . 

This gives the single linear second-order equation 

x" + (O.2)x' + ( 1 .0 1 )x = 0 

with characteristic equation 

r2 + (0 .2)r + 1 .0 1  = (r + 0. 1 )2 + 1 = 0, 

characteristic roots -0. 1 ± i ,  and general solution 

x (t )  = e-t/ IO (A cos t + B sin t) . 

Then x (O) = A = 0, so 

x (t )  = Be-t/ IO sin t ,  

(22) 

FIGURE 5.1.9. Direction field y(t )  = -x' (t) = To Be-t/ IO sin t - Be-t/ lo cos t .  
and solution curve for the system 
x' = -y,  y' = ( l . O l )x - (O.2)y of Finally, y eO) = -B = - 1 ,  so the desired solution of the system in (22) is 
Example 8 . 

0.8 

0.4 

� 0.0 r-+-t-t-,I-+-'�'-\'-'rI-J""",,,�""""'.!SI 

-0.4 

-0.8 y = y (t) 
- 1 .2 '----'-_.l....----'-_-'-----L_.LJ 

o 5 10 1 5  20 25 30 

FIGURE 5.1.10. x- and 
y-solution curves for the initial 
value problem of Example 8 . 

x (t) = e-t/ IO sin t ,  
(23) 

y (t )  = Toe-t/ lo (sin t - lO cos t ) .  

These equations parametrize the spiral trajectory i n  Fig. 5 . 1 .9 ; the trajectory ap
proaches the origin as t --+ +00. Figure 5 . 1 . 1 0 shows the x- and y-solution curves 
given in (23) .  • 

When we study linear systems using the eigenvalue method of Section 5 .4, we 
will learn why the superficially similar systems in Examples 6 through 8 have the 
markedly different trajectories shown in Figs . 5 . 1 .6 , 5 . 1 . 8 ,  and 5 . 1 .9. 

Linear Systems 

In addition to practical advantages for numerical computation, the general theory of 
systems and systematic solution techniques are more easily and more concisely de
scribed for first-order systems than for higher-order systems. For instance, consider 
a linear first-order system of the form 

x� = PI I (t)X I + P1 2 (t)X2 + . . .  + PlnXn + fl (t) ,  
x �  = P2 1  (t)X I + P22 (t)X2 + . . .  + P2nXn + h(t) , 

(24) 

x� = Pn l (t)X I + Pn2 (t)X2 + . . .  + Pnnxn + fn (t) .  
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We say that this system is homogeneous if the functions II , 12, . . .  , In are all 
identically zero; otherwise, it is nonhomogeneous. Thus the linear system in (5) is 
homogeneous, whereas the linear system in ( 1 5) is nonhomogeneous. The system 
in ( 1 4) is nonlinear because the right-hand side of the second equation is not a linear 
function of the dependent variables XI and X2 . 

A solution of the system in (24) is an n-tuple of functions XI (t ) ,  X2 (t) , . . .  , 
Xn (t) that (on some interval) identically satisfy each of the equations in (24) . We will 
see that the general theory of a system of n linear first-order equations shares many 
similarities with the general theory of a single nth-order linear differential equation. 
Theorem I (proved in the Appendix) is analogous to Theorem 2 of Section 2.2. It 
tells us that if the coefficient functions Pij and h in (24) are continuous, then the 
system has a unique solution satisfying given initial conditions . 

THEOREM 1 Existence and U niqueness for Linear Systems 

Suppose that the functions PI J ,  P 1 2 , . . .  , Pnn and the functions iI ,  12, . . .  , In 
are continuous on the open interval I containing the point a .  Then, given the n 
numbers b j ,  b2 , . . .  , bn , the system in (24) has a unique solution on the entire 
interval I that satisfies the n initial conditions 

(25) 

Thus n initial conditions are needed to determine a solution of a system of 
n linear first-order equations, and we therefore expect a general solution of such a 
system to involve n arbitrary constants . For instance, we saw in Example 5 that the 
second-order linear system 

2x" = - 6x + 2y , 
y" = 2x - 2y + 40 sin 3t ,  

which describes the position functions x (t) and y(t) of Example 1 ,  is equivalent to 
the system of lour first-order linear equations in ( 1 5) .  Hence four initial conditions 
would be needed to determine the subsequent motions of the two masses in Example 
1 .  Typical initial values would be the initial positions x (O) and y (O) and the initial 
velocities x ' (O) and y' (O) . On the other hand, we found that the amounts x (t) and 
y (t )  of salt in the two tanks of Example 2 are described by the system 

20x' = - 6x + y ,  
20y' = 6x - 3y 

of two first-order linear equations. Hence the two initial values x (O) and y (O) should 
suffice to determine the solution. Given a higher-order system, we often must trans
form it into an equivalent first-order system to discover how many initial conditions 
are needed to determine a unique solution. Theorem 1 tells us that the number of 
such conditions is precisely the same as the number of equations in the equivalent 
first-order system. 



_ Problems 

In Problems I through 10, transform the given differential 
equation or system into an equivalent system offirst-order dif
ferential equations. 

1. x" + 3x' + 7x = t2 
2. x (4) + 6x" - 3x' + x = cos 3t 

3. t2x" + tx' + (t2 - l )x = 0 

4. t3X (3) - 2t2x" + 3tx' + 5x = In t 
5. X (3) = (x '/ + cos x 
6. x" - 5x + 4y = 0, y" + 4x - 5y = 0 

kx " ky 
7. x" = (x2 + y2 )3/2 ' Y = - (x2 + y2)3/2 
8. x" + 3x' + 4x - 2y = 0, y" + 2y' - 3x + y = cos t 
9. x" = 3x - Y + 2z, y" = x + Y - 4z, z" = 5x - y - z 

10. x" = ( 1  - y)x, y" = ( 1  - x)y 

Use the method of Examples 6, 7, and 8 to find general solu
tions of the systems in Problems II through 20. If initial con
ditions are given, find the corresponding particular solution. 
For each problem, use a computer system or graphing calcu
lator to construct a direction field and typical solution curves 
for the given system. 
11 .  x' = y, y' = -x 
12. x' = y, y' = x 
13. x' = -2y, y' = 2x ; x (O) = 1 ,  y eO) = 0 

14. x' = l Oy , y' = - lOx ; x (O) = 3, y eO) = 4 
15. x' = � y , y' = -Sx 
16. x' = Sy, y' = -2x 
17. x' = y, y' = 6x - y ; x (O) = 1 ,  yeO) = 2 

18. x' = -y, y' = l Ox - 7y ; x (O) = 2, yeO) = -7 
19. x' = -y, y' = 1 3x + 4y ; x (O) = 0, yeO) = 3 
20. x' = y, y' = -9x + 6y 
21. (a) Calculate [x (t) ]2 + [y(t) ]2 to show that the trajecto

ries of the system x' = y, y' = -x of Problem 1 1  are 
circles. (b) Calculate [x (t)f - [y(t)f to show that the 
trajectories of the system x' = y, y' = x of Problem 1 2  
are hyperbolas . 

22. (a) Beginning with the general solution of the system 
x' = -2y, y' = 2x of Problem 1 3 ,  calculate x2 + y2 to 
show that the trajectories are circles. (b) Show similarly 
that the trajectories of the system x' = � y , y' = -Sx 
of Problem 1 5  are ellipses with equations of the form 
1 6x2 + y2 = C2 . 

23. First solve Eqs. (20) and (2 1 )  for e-t and e2t in terms of 
x (t ) , yet ) , and the constants A and B . Then substitute the 
results in (e2t ) (e- t ) 2 = 1 to show that the trajectories of 
the system x' = y, y' = 2x + y in Example 7 satisfy an 
equation of the form 

4x3 - 3xi + l = C (constant). 

Then show that C = 0 yields the straight lines y = -x 
and y = 2x that are visible in Fig. 5 . 1 .S .  
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24. Derive the equations 

m i x;' = -(k l + k2)x l + k2X2 , 
m2x� = k2X I - (k2 + k3 )X2 

for the displacements (from equilibrium) of the two 
masses shown in Fig. 5 . 1 . 1 1 .  

FIGURE 5.1. 11 .  The system of 
Problem 24. 

25. Two particles each of mass m are attached to a string under 
(constant) tension T, as indicated in Fig. 5 . 1 . 12. Assume 
that the particles oscillate vertically (that is, parallel to the 
y-axis) with amplitudes so small that the sines of the an
gles shown are accurately approximated by their tangents. 
Show that the displacements Y I and Y2 satisfy the equa
tions 

26. 

ky;' = -2Y I + Y2 , ky� = Y I - 2Y2 
where k = mL/ T . 

y 

x 

FIGURE 5.1.12. The mechanical system of 
Problem 25 . 

Three 100-gal fermentation vats are connected as indi
cated in Fig. 5 . 1 . 1 3 ,  and the mixtures in each tank are 
kept uniform by stirring. Denote by Xj (t) the amount (in 
pounds) of alcohol in tank T; at time t (i = 1 , 2, 3). Sup
pose that the mixture circulates between the tanks at the 
rate of 1 0  gal/min. Derive the equations 

l Ox; = -X I + X3 
lOx� = X I - X2 

FIGURE 5.1.13. The fermentation tanks 
of Problem 26. 
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27. Set up a system of first-order differential equations for 
the indicated currents 11 and lz in the electrical circuit of 
Fig. 5 . 1 . 14, which shows an inductor, two resistors, and 
a generator which supplies an alternating voltage drop of 
E (t) = 100 sin 60t V in the direction of the current 11 . 

FIGURE 5.1.14. The electrical circuit of Problem 27 . 
28. Repeat Problem 27, except with the generator replaced 

with a battery supplying an emf of 1 00 V and with the 
inductor replaced with a I -millifarad (mF) capacitor. 

29. A particle of mass m moves in the plane with coordinates 
(x (t) ,  y(t» under the influence of a force that is directed 
toward the origin and has magnitude k/(x2 + y2)-an 
inverse-square central force field. Show that 

" kx " ky 
mx = -0 and my = -0 '  

where r = Jx2 + y2 . 
30. Suppose that a projectile of mass m moves in a vertical 

plane in the atmosphere near the surface of the earth un
der the influence of two forces : a downward gravitational 

force of magnitude mg, and a resistive force F R that is 
directed opposite to the velocity vector v and has magni
tude kv2 (where v = I v l  is the speed of the projectile; 
see Fig. 5 . 1 . 15) . Show that the equations of motion of the 
projectile are 

mx" = -kvx ' , my" = -kvy' - mg, 

where v = J (x')2 + (y,)2 . 

y v 

, , 

x 

FIGURE 5.1.15. The trajectory of the 
projectile of Problem 30. 

31. Suppose that a particle with mass m and electrical charge 
q moves in the xy-plane under the influence of the mag
netic field B = Bk (thus a uniform field parallel to the 
z-axis), so the force on the particle is F = qv x B if its 
velocity is v. Show that the equations of motion of the 
particle are 

mx" = +qBy' , my" = -qBx' . 

5 . 1  Application Gravitation and Kt?pler's Laws of Planetary Motion 

Around the tum of the 1 7th century, Johannes Kepler analyzed a lifetime of plane
tary observations by the astronomer Tycho Brahe. Kepler concluded that the motion 
of the planets around the sun is described by the following three propositions, now 
known as Kepler's laws of planetary motion: 

1. The orbit of each planet is an ellipse with the sun at one focus .  
2.  The radius vector from the sun to each planet sweeps out area at a constant 

rate. 
3. The square of the planet's period of revolution is proportional to the cube of 

the major semi axis of its elliptical orbit. 

In his Principia Mathematica ( 1 687) Isaac Newton deduced the inverse-square 
law of gravitation from Kepler's laws. In this application we lead you (in the oppo
site direction) through a derivation of Kepler's first two laws from Newton's law of 
gravitation. 

Assume that the sun is located at the origin in the plane of motion of a planet, 
and write the position vector of the planet in the form 

r(t ) = (x (t) , y (t »  = xi + yj , ( 1 )  

where i = ( 1 , 0) and j = (0, 1 ) denote the unit vectors in  the positive x- and y 
directions. Then the inverse-square law of  gravitation implies (Problem 29) that the 



y 

FIGURE 5.1.16. The radial and 
transverse unit vectors Dr and De . 

0 (0)) 

FIGURE 5.1.17. Area swept out 
by the radius vector. 
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acceleration vector r" (t) of the planet is given by 

" kr 
r = - -, 

r3 
(2) 

where r = J x2 + y2 is the distance from the sun to the planet. If the polar co
ordinates of the planet at time t are (r (t ) ,  O (t) ) ,  then the radial and transverse unit 
vectors shown in Fig. 5 . 1 . 1 6  are given by 

Ur = i cos 0 + j sin 0 and Uo = - i sin 0 + j cos O . (3) 

The radial unit vector Ur (when located at the planet's position) always points di
rectly away from the origin, so Ur = r / r, and the transverse unit vector De is ob
tained from Ur by a 90° counterclockwise rotation. 

STEP 1 :  Differentiate the equations in (3) componentwise to show that 

(4) 

STEP 2 :  Use the equations in (4) to differentiate the planet's position vector r = 

rUr and thereby show that its velocity vector is given by 

dr dr dO 
V =  - = ur - + r -ue . 

dt dt dt 

STEP 3:  Differentiate again to show that the planet's acceleration vector a 

dv/dt is given by 

a = [d2r _ r (dO )2] U + [�� (r2 dO ) ]ue . 
dt2 dt 

r 
r dt dt 

(5) 

(6) 

STEP 4 :  The radial and transverse components on the right-hand sides in Eqs. (2) 
and (6) must agree. Equating the transverse components-that is, the coefficients 
of ue-we get 

so it follows that 

�� (r2 dO ) = 0, 
r dt dt 

r2 dO 
= h 

dt ' 

(7) 

(8) 

where h is a constant. Because the polar-coordinate area element-for computation 
of the area A (t) in Fig. 5 . 1 . 1 7-is given by dA = �r2dO ,  Eq. (8) implies that the 
derivative A' (t ) is constant, which is a statement of Kepler' s  second law. 

STEP 5: Equate radial components in (2) and (6) and then use the result in (8) 
to show that the planet's radial coordinate function r (t )  satisfies the second-order 
differential equation 

k 
-

r2 ' 
(9) 
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y 

FIGURE 5.1.1S. The elliptical 
orbit 

L 
r = ------,----1 + e cos(O - a) 

with perihelion distance 
rl = Lj( l  + e) and aphelion 
distance r2 = Lj ( l  - e) . 

c __ � 
FIGURE 5.1.19. The shape of 
the orbit of Halley 's comet. 

STEP 6 :  Although the differential equation in (9) is nonlinear, it can be trans
formed to a linear equation by means of a simple substitution. For this purpose, 
assume that the orbit can be written in the polar-coordinate form r = r (O) ,  and first 
use the chain rule and Eq. (8) to show that if r = I/z ,  then 

dr dz 
dt 

= -h 
dO · 

Differentiate again to deduce from Eq. (9) that the function z (O) = ljr (O) satisfies 
the second-order equation 

STEP 7 :  Show that the general solution of Eq. ( 1 0) is 

. k 
z (O )  = A sm O + B cos O + h2 • 

STEP 8 :  Finally, deduce from Eq. ( 1 1 ) that r (O )  = I/z (O )  i s  given by 

L 
r (O )  = -----

1 + e cos (O - a) 

( 10) 

( 1 1 )  

( 1 2) 

with e = Ch2/k, C cos a = A,  C sin a = B ,  and L = h2/k . The polar-coordinate 
graph of Eq. ( 1 2) is a conic section of eccentricity e-an ellipse if 0 ;;; e < 1 ,  a 
parabola if e = 1 ,  and a hyperbola if e > I-with focus at the origin. Planetary 
orbits are bounded and therefore are ellipses with eccentricity e < 1 .  As indicated 
in Fig. 5 . 1 . 1 8 , the major axis of the ellipse lies along the radial line 0 = a .  

STEP 9 :  Plot some typical elliptical orbits a s  described by  ( 1 2) with different 
eccentricities, sizes, and orientations. In rectangular coordinates you can write 

x (t )  = r (t )  cos t ,  y (t )  = r (t )  sin t ,  0 ;;; t ;;; 211: 

to plot an elliptical orbit with eccentricity e, semilatus rectum L (Fig. 5 . 1 . 1 8), and 
rotation angle a .  The eccentricity of the earth 's orbit is e � 0.0 1 67 ,  so close to 
zero that the orbit looks nearly circular (though with the sun off center) , and the 
eccentricities of the other planetary orbits range from 0.0068 for Venus and 0.0933 
for Mars to 0.2056 for Mercury and 0.2486 for Pluto. But many comets have highly 
eccentric orbits, like Halley 's comet with e � 0.97 (Fig. 5 . 1 . 1 9) .  

_ The Method of Elimination 

The most elementary approach to linear systems of differential equations involves 
the elimination of dependent variables by appropriately combining pairs of equa
tions. The object of this procedure is to eliminate dependent variables in succession 
until there remains only a single equation containing only one dependent variable. 
This remaining equation will usually be a linear equation of high order and can fre
quently be solved by the methods of Chapter 2. After its solution has been found, the 
other dependent variables can be found in tum, using either the original differential 
equations or those that have appeared in the elimination process. 
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The method of elimination for linear differential systems is similar to the 
solution of a linear system of algebraic equations by a process of eliminating the 
unknowns one at a time until only a single equation with a single unknown remains. 
It is most convenient in the case of manageably small systems : those containing 
no more than two or three equations. For such systems the method of elimina
tion provides a simple and concrete approach that requires little preliminary theory 
or formal machinery. But for larger systems of differential equations, as well as 
for theoretical discussion, the matrix methods of later sections in this chapter are 
preferable. 

Find the particular solution of the system 

x' = 4x - 3y ,  y' = 6x - 7y 

that satisfies the initial conditions x (O) = 2, y (O) = - 1 .  

( 1 )  

Solution If we solve the second equation in ( 1 )  for x, we get 

so that 

I , 7 X = iiY + iiY ' 

, I " 7 ,  X = iiY + iiY · 

(2) 

(3) 

We then substitute these expressions for x and x' in the first equation of the system 
in ( 1 ) ;  this yields 

which we simplify to 

I " 7 '  4 ( 1 '  7 ) 3 iiY + iiY = iiY + iiY - y ,  

Y" + 3 Y' - lOy = O. 

This second-order linear equation has characteristic equation 

r2 + 3r - 10 = (r - 2) (r + 5) = 0, 

so its general solution is 

Next, substitution of (4) in (2) gives 

that is , 

Thus Eqs .  (4) and (5) constitute the general solution of the system in ( 1 ) . 
The given initial conditions imply that 

x (O) = �CI + �C2 = 2 

and that 
y (O) = CI + C2 = - 1 ;  

(4) 

(5) 
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FIGURE 5.2.1.  Direction field 
and solution curves for the system 
x' = 4x - 3y, y' = 6x - 7y of 
Example l .  

these equations are readily solved for Cl = 2 and C2 = -3 . Hence the desired 
solution is 

x (t) = 3e2t - e-5t , y et) = 2e2t - 3e-5t . 
Figure 5 .2. 1 shows this and other typical solution curves parametrized by the equa
tions x (t )  = �Cl e2t + � C2e-5t , y et) = c l e2t + C2e-5t with different values of the 
arbitrary constants Cl and C2 . We see two families of curves resembling hyperbolas 
sharing the same pair of (oblique) asymptotes. • 

Remark: The general solution defined by Eqs. (4) and (5) may be regarded 
as the pair or vector (x (t) , y et » � .  Recalling the componentwise addition of vectors 
(and multiplication of vectors by scalars) ,  we can write the general solution in (4) 
and (5) in the form 

This expression presents the general solution of the system in ( 1 )  as a linear combi
nation of the two particular solutions 

• 

Polynomial Differential Operators 

In Example 1 we used an ad hoc procedure to eliminate one of the independent 
variables by expressing it in terms of the other. We now describe a systematic 
elimination procedure. Operator notation is most convenient for these purposes. 
Recall from Section 2.3 that a polynomial differential operator is one of the form 

(6) 

where D denotes differentiation with respect to the independent variable t .  
If  L 1 and L2 are two such operators, then their product L 1 L2 is defined this 

way: 

For instance, if L l = D + a and L2 = D + b, then 

L 1 L2 [x] = (D + a) [ (D + b)x ] = D(Dx + bx) + a (Dx + bx) 
= [D2 + (a + b)D + ab]x . 

(7) 

This illustrates the fact that two polynomial operators with constant coefficients can 
be multiplied as if they were ordinary polynomials in the "variable" D. Because the 
multiplication of such polynomials is commutative, it follows that 

(8) 

if the necessary derivatives of x (t) exist. By contrast, this property of commutativity 
generally fails for polynomial operators with variable coefficients-see Problems 21  
and 22. 
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Any system of two linear differential equations with constant coefficients can 
be written in the form 

L lx + L2Y = II (t) , 
L3X + L4y = h(t) ,  

(9) 

where L \ , L2 , L3 , and L4 are polynomial differential operators (perhaps of different 
orders) as in Eq. (6), and II (t) and h(t) are given functions. For instance, the 
system in ( 1 )  (Example 1 )  can be written in the form 

(D - 4)x + 3y = 0, 
-6x + (D + 7)y = 0, 

with L I = D - 4, L2 = 3 ,  L3 = -6, and L4 = D + 7. 
To eliminate the dependent variable x from the system in (9) , we operate with 

L3 on the first equation and with L I on the second. Thus we obtain the system 

L3L I X + L3L2y = Ldl (t) , 
L I L3X + L I L4y = L l h (t) . 

( 1 1 )  

Subtraction of  the first from the second of these equations yields the single equation 

( 1 2) 

in the single dependent variable y .  After solving for y = y(t) we can substitute the 
result into either of the original equations in (9) and then solve for x = x(t) . 

Alternatively, we could eliminate in like manner the dependent variable y from 
the original system in (9) . If so, we would get the equation 

( 1 3) 

which can now be solved for x = x (t ) .  
Note that the same operator L I L4 - L2L3 appears on the left-hand side in both 

Eq. ( 1 2) and Eq. ( 1 3) .  This is the operational determinant 

( 1 4) 
of the system in (9) . In determinant notation Eqs. ( 1 2) and ( 1 3) can be rewritten as 

II (t) L2 1 
h(t) L4 ' 

I · 
( I 5) 

It is important to note that the determinants on the right-hand side in ( 1 5 ) are eval
uated by means of the operators operating on the functions. The equations in ( I 5) 
are strongly reminiscent of Cramer's rule for the solution of two linear equations in 
two (algebraic) variables and are thereby easy to remember. Indeed, you can solve 
a system of two linear differential equations either by carrying out the systematic 
elimination procedure described here or by directly employing the determinant no
tation in ( I 5 ) . Either process is especially simple if the system is homogeneous 
(fl (t) == 0 and h(t) == 0), because in this case the right-hand sides of the equations 
in ( 1 2) ,  ( 1 3), and ( 1 5) are zero. 
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Exa m ple 2 Find a general solution of the system 

(D - 4)x + 3y = 0, 
-6x + (D + 7)y = O. 

( 10) 

Solution The operational detenninant of this system is 

(D - 4) (D + 7) - 3 . (-6) = D2 + 3D - 10 . 

Hence Eqs. ( 1 3) and ( 1 2) are 

x" + 3x' - lOx = 0, 
y" + 3y' - lOy = O. 

The characteristic equation of each is 

r2 + 3r - 10 = (r - 2) (r + 5) = 0, 

so their (separate) general solutions are 

x (t) = a , e2t + a2e-5t , 
y et) = b , e2t + b2e-5t . 

( 16) 

( 1 7) 

At this point we appear to havefour arbitrary constants a" a2 , b" and b2 • But 
it follows from Theorem 1 in Section 5 . 1  that the general solution of a system of two 
first-order equations involves only two arbitrary constants . This apparent difficulty 
demands a resolution. 

The explanation is simple: There must be some hidden relations among our 
four constants . We can discover them by substituting the solutions in ( 1 7) into either 
of the original equations in ( 1 0) .  On substitution in the first equation, we get 

0 =  x' - 4x + 3y 
= (2a , e2t - 5a2e-5t ) - 4(a , e2t + a2e-5t ) + 3 (b, e2t + b2e-5t ) ;  

that is , 
0 =  (-2a , + 3b, )e2t + (-9a2 + 3b2)e-5t . 

But e2t and e-5t are linearly independent functions, so it follows that a, = �b, and 
a2 = �b2 '  Therefore, the desired general solution is given by 

Note that this result is in accord with the general solution (Eqs. (4) and (5» that we 
obtained by a different method in Example 1 .  • 

As illustrated by Example 2, the elimination procedure used to solve a linear 
system frequently will introduce a number of interdependent constants that may 
appear to be arbitrary, but actually are not independent. The "extra" constants must 
then be eliminated by substitution of the proposed general solution into one or more 
of the original differential equations. The appropriate number of arbitrary constants 
in a general solution of a linear system is detennined by the following proposition : 
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If the operational determinant in ( 1 5 )  is not identically zero, then the 
number of independent arbitrary constants in a general solution of the 
system in (9) is equal to the order of its operational determinant-that 
is , its degree as a polynomial in D. 

(For a proof of this fact, see pages 144- 1 50 of E.L. Ince's Ordinary Differential 
Equations (New York: Dover, 1 956) . ) Thus the general solution of the system in 
( 1 0) of Example 2 involves two arbitrary constants, because its operational determi
nant D2 + 3D - 10  is of order 2. 

If the operational determinant is identically zero, then the system is said to be 
degenerate. A degenerate system may have either no solution or infinitely many 
independent solutions .  For instance, the equations 

Dx - Dy = 0, 
2Dx - 2Dy = 1 

with operational determinant zero are obviously inconsistent and thus have no solu
tions. On the other hand, the equations 

Dx + Dy = t ,  
2Dx + 2Dy = 2t 

with operational determinant zero are obviously redundant; we can substitute any 
(continuously differentiable) function for x (t )  and then integrate to obtain y et) . 
Roughly speaking, every degenerate system is equivalent to either an inconsistent 
system or a redundant system. 

Although the aforementioned procedures and results are described for the case 
of a system of two equations, they can be generalized readily to systems of three or 
more equations. For the system 

L l 1 X + L 12Y + L 1 3Z = II (t) ,  
L2 1x + L22y + L23Z = h(t) , 
L3 1x + L32y + L33Z = h (t) 

( 1 8) 

of three linear equations, the dependent variable x (t )  satisfies the single linear equa
tion 

L 1 1  L 12 L 1 3  
L2 1  L22 L23 X = 
L3 1  L32 L33 

II (t) L 12 L 1 3  
h (t) L22 L23 
h (t) L32 L33 

( 19) 

with analogous equations for y = y et) and z = z (t ) .  For most systems of more than 
three equations, however, the method of operational determinants is too tedious to 
be practical . 

Mechanical Vibrations 

A mechanical system typically vibrates or oscillates periodically in one or more spe
cific ways. The methods of this section often can be applied to analyze the "natural 
modes of oscillation" of a given system. Example 3 illustrates this approach. 
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Exa mple 3 In Example 1 of Section 5 . 1 ,  we derived the equations 

(D2 + 3)x + (- l ) y  = 0, 
-2x + (D2 + 2)y = 0 

(20) 

for the displacements of the two masses in Fig. 5 .2.2. Here ! (t )  == 0 because we 
assume that there is no external force. Find the general solution of the system in 
(20) . 

Solution The operational determinant of the system in (20) is 

� '�Y 
x (t) y (t) 

Equilibrium positions 

FIGURE 5.2.2. The mass
and-spring system of Example 3 . 

(D2 + 3) (D2 + 2 )  - (- 1 ) (-2) = D4 + 5D2 + 4 = (D2 + 1 ) (D2 + 4) . 

Hence the equations for x (t )  and y et )  are 

(D2 + 1 ) (D2 + 4)x = 0, 
(D2 + 1 ) (D2 + 4)y = O. 

(2 1 )  

The characteristic equation (r2 + 1 ) (r2 + 4) = 0 has roots i ,  - i ,  2i , and -2i . So 
the general solutions of the equations in (2 1 )  are 

x (t )  = a,  cos t + a2 sin t + h cos 2t + b2 sin 2t , 
y et )  = c ,  cos t + C2 sin t + d, cos 2t + d2 sin 2t . 

(22) 

Because the operational determinant is of order 4, the general solution should 
contain four (rather than eight) arbitrary constants. When we substitute x (t) and 
y et) from (22) in the first equation in (20) , we get 

thus 

0 =  x" + 3x - y 
= (-a, cos t - a2 sin t - 4b , cos 2t - 4b2 sin 2t) 

+ 3 (a, cos t + a2 sin t + b, cos 2t + b2 sin 2t) 
- (c, sin t + C2 sin t + d, cos 2t + d2 sin 2t) ; 

o = (2a , - CI ) cos t + (2a2 - C2) sin t 
+ (-bl - dj } cos 2t + (-b2 - d2) sin 2t . 

Because cos t ,  cos 2t, sin t ,  and sin 2t are linearly independent, it follows that their 
coefficients in the last equation are zero. Thus 

Therefore 

x (t )  = al cos t + a2 sin t + bl cos 2t + b2 sin 2t, 
y et )  = 2a1 cos t + 2a2 sin t - h cos 2t - b2 sin 2t 

is the desired general solution of the system in (20) . 

(23) 

• 
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The equations in (23) describe free oscillations of the mass-and-spring sys
tem of Fig. 5 .2.2-motion subject to no external forces. Four initial conditions 
(typically, initial displacements and velocities) would be required to determine the 
values of ai , a2 , b l , and b2 . The expression 

(X (t) , y et » �  = a l (cos t, 2 cos t )  + a2 (sin t, 2 sin t) 
+ bl (cos 2t , - cos 2t) + b2 (sin 2t, - sin 2t) 

(24) 

then presents the general solution of the system in (20) as a linear combination 
of four particular solutions. Moreover, the first two of these particular solutions 
represent physically similar oscillations of the masses, as do the latter two. 

and 

Indeed, we can (by the usual trigonometric machinations) write 

a l cos t + a2 sin t = A cos (t - a) ,  
2al cos t + 2a2 sin t = 2A cos (t - a) 

bl cos 2t + b2 s in 2t = B cos (2t - fJ) , 
-bl cos 2t - b2 s in 2t = -B cos (2t - fJ) 

with A = Jar + aI , tan a = az/al , B = Jbr + b� , and tan fJ = b2/bl . Then 
Eq. (24) takes the form 

(25) 

where the particular solutions 

(X I (t) , YI (t» = (cos (t - a) , 2 cos (t - a» (26) 

and 

(X2 (t) ,  Y2 (t» = (cos (2t - fJ ) ,  - cos (2t - fJ » (27) 

describe the two natural modes of oscillation of the mass-and-spring system. More
over, they exhibit its two (circular) natural frequencies WI = 1 and Wz = 2. 

The linear combination in Eq. (25) represents an arbitrary free oscillation of 
the mass-and-spring system as a superposition of its two natural modes of oscilla
tion, with the constants A, a , B, and fJ determined by the initial conditions. Figure 
5 .2 .3 (where a = 0) illustrates the natural mode (XI , YI ) of Eq. (26) , in which the 
two masses move in synchrony in the same direction with the same frequency of os
cillation WI = 1 ,  but with the amplitude of m2 twice that of m l (because YI = 2x I ) . 
Figure 5 .2.4 (where fJ = 0) illustrates the natural mode (X2 , Y2) of Eq. (27), in 
which the masses move in synchrony in opposite directions, with the same fre
quency W2 = 2 and with equal amplitudes of oscillation (because Y2 = -X2) . 

Find general solutions of the linear systems in Problems 1 
through 20. If initial conditions are given, find the particu
lar solution that satisfies them. In Problems 1 through 6, use a 
computer system or graphing calculator to construct a direc-

tion field and typical solution curves for the given system. 
1. x

' = -x + 3y, y' = 2y 

2. x
' = x - 2y, y' = 2x - 3y 
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3. x' = -3x + 2y, y' = -3x + 4y ; x (O) = 0, y eO) = 2 
4. x' = 3x - y , y' = 5x - 3y ; x (O) = 1 ,  y eO) = - 1  

5. x' = -3x - 4 y ,  y' = 2x + y 
6. x' = x + 9y, y' = -2x - 5y ; x (0) = 3 , y eO) = 2 
7. x' = 4x + y + 2t , y' = -2x + y 
8. x' = 2x + y, y' = x + 2y - e2t 
9. x' = 2x - 3y + 2 sin 2t, y' = x - 2y - cos 2t 
10. x' + 2y' = 4x + 5y , 2x' - y' = 3x ; x (O) = 1 ,  y eO) = - 1 
11. 2y' - x' = x + 3y + et , 3x' - 4y' = x - 15y + e-t 
12. x" = 6x + 2y, y" = 3x + 7y 
13. x" = -5x + 2y, y" = 2x - 8y 
14. x" = -4x + sin t ,  y" = 4x - 8y 
15. x" - 3y' - 2x = 0, y" + 3x' - 2y = 0 

16. x" + l 3y' - 4x = 6 sin t , y" - 2x' - 9y = 0 

17. x" + y" - 3x' - y' - 2x + 2y = 0, 
2X" + 3y" - 9x' - 2y' - 4x + 6y = 0 

18. x' = x + 2y + z, y' = 6x - y, z' = -x - 2y - z 
19. x' = 4x - 2y, y' = -4x + 4y - 2z , z' 

= -4y + 4z 
20. x' = y + z + e-t , y' = x + z, z' 

= x + y (Suggestion: 
Solve the characteristic equation by inspection.) 

21. Suppose that L I = al D2 + bl D + CI and L2 = a2D2 + 
b2D + C2 , where the coefficients are all constants, and 
that x (t) is a twice differentiable function. Verify that 
L I L2x = L2L lx .  

22. Suppose that L IX = t Dx + x and that L2x = Dx + tx . 
Show that L I L2x =1= L2L I x . Thus linear operators with 
variable coefficients generally do not commute. 

Show that the systems in Problems 23 through 25 are degen
erate. In each problem determine-by attempting to solve 
the system-whether it has infinitely many solutions or no 
solutions. 
23. (D + 2)x + (D + 2)y = e-3t 

(D + 3)x + (D + 3)y = e-2t 
24. (D + 2)x + (D + 2)y = t 

(D + 3)x + (D + 3)y = t2 
25. (D2 + 5D + 6)x + D(D + 2)y = 0 

(D + 3)x + Dy = 0 

In Problems 26 through 29, first calculate the operational de
terminant of the given system in order to determine how many 
arbitrary constants should appear in a general solution. Then 
attempt to solve the system explicitly so as to find such a gen
eral solution. 
26. (D2 + l )x + D2y = 2e-t 

(D2 - l )x + D2y = 0 

27. (D2 + l )x + (D2 + 2)y = 2e-t 
(D2 - l )x + D2y = 0 

28. (D2 + D)x + D2y = 2e-t 
(D2 - I )x + (D2 - D)y = 0 

29. (D2 + I )x - D2y = 2e-t 
(D2 - l )x + D2y = 0 

30. Suppose that the salt concentration in each of the two brine 
tanks of Example 2 of Section 5 . 1  initially (t = 0) is 0.5 
Ib/gal. Then solve the system in Eq. (5) there to find the 
amounts x (t) and y et ) of salt in the two tanks at time t . 

31 .  Suppose that the electrical network of  Example 3 of  Sec
tion 5 . 1  is initially open-no currents are flowing. As
sume that it is closed at time t = 0; solve the system in 
Eq. (9) there to find II (t) and 12 (t) .  

32. Repeat Problem 3 1 , except use the electrical network of 
Problem 27 of Section 5 . 1 .  

33. Repeat Problem 3 1 ,  except use the electrical network of 
Problem 28 of Section 5 . 1 .  Assume that 11 (0) = 2 and 
Q(O) = 0, so that at time t = 0 there is no charge on the 
capacitor. 

34. Three 1 00-gal brine tanks are connected as indicated in 
Fig. 5 . 1 . 1 3  of Section 5 . 1 .  Assume that the first tank ini
tially contains 1 00 lb of salt, whereas the other two are 
filled with fresh water. Find the amounts of salt in each of 
the three tanks at time t . (Suggestion: Examine the equa
tions to be derived in Problem 26 of Section 5 . 1 . ) 

35. From Problem 3 1  of Section 5 . 1 ,  recall the equations of 
motion 

mx" = qBy' , my II = -qBx' 

for a particle of mass m and electrical charge q under the 
influence of the uniform magnetic field B = Bk. Sup
pose that the initial conditions are x (O) = ro , y eO) = 0, 
x ' (O) = 0, and y' (0) = -wro where w = qBlm . Show 
that the trajectory of the particle is a circle of radius ro o 

36. If, in addition to the magnetic field B = Bk, the charged 
particle of Problem 35 moves with velocity v under the in
fluence of a uniform electric field E = Ei, then the force 
acting on it is F = q (E + v x B) .  Assume that the particle 
starts from rest at the origin. Show that its trajectory is the 
cycloid 

x = a ( l - cos wt) ,  y = -a (wt - sin wt) 

where a = EI(wB) and w = q Blm . The graph of such a 
cycloid is shown in Fig. 5 .2.5 . 

FIGURE 5.2.5. The cycloidal path of 
the particle of Problem 36. 

37. In the mass-and-spring system of Example 3 , suppose in
stead that m l = 2, m2 = 0.5,  kl = 75, and k2 = 25. (a) 
Find the general solution of the equations of motion of the 
system. In particular, show that its natural frequencies are 
W I  = 5 and W2 = 5

./3
. (b) Describe the natural modes 

of oscillation of the system. 



38. Consider the system of two masses and three springs 
shown in Fig. 5 .2.6. Derive the equations of motion 

m I x" = - (k l + k2)x + k2y , 
m2Y" = k2x - (k2 + k3 )y , 

Equi l ibrium positions 

FIGURE 5.2.6. The mechanical system of 
Problem 38 . 

In Problems 39 through 46, find the general solution of the 
system in Problem 38 with the given masses and spring con
stants. Find the natural frequencies of the mass-and-spring 
system and describe its natural modes of oscillation. Use a 
computer system or graphing calculator to illustrate the two 
natural modes graphically (as in Figs. 5.2.3 and 5.2.4). 

39. m l  = 4, m2 = 2, k l = 8, k2 = 4, k3 = 0 
40. m l  = 2, m2 = I ,  k l = 100, k2 = 50, k3 = 0 
41. m l  = l , m2 = I , k l = 1 , k2 = 4, k3 = 1 
42. m l  = l , m2 = 2, k l = l , k2 = 2, k3 = 2 
43. m l = l , m2 = I , k l = l , k2 = 2, k3 = I 
44. m l = I ,  m2 = I ,  kl = 2, k2 = I ,  k3 = 2 
45. m l  = 1 ,  m2 = 2, k l = 2, k2 = 4, k3 = 4 
46. m l = I ,  m2 = 1 ,  k l = 4, k2 = 6, k3 = 4 
47. (a) For the system shown in Fig. 5 .2.7, derive the equa

tions of motion 

mx" = -2kx + ky, 
my" = kx - 2ky + kz, 
mz" = ky - 2kz. 

(b) Assume that m = k = 1 .  Show that the natural fre
quencies of oscillation of the system are 

W I  =
..fi

, W2 = .)2 - ..fi, and W3 = .)2 + ..fi. 
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� x y Z 

FIGURE 5.2.7. The mechanical system of 
Problem 47. 

48. Suppose that the trajectory (x (t ) ,  y (t» of a particle mov
ing in the plane satisfies the initial value problem 

x" - 2y' + 3x = 0, 
y" + 2x' + 3 y = 0; 
x (O) = 4, y (O) = x' (O) = y' (O) = O. 

Solve this problem. You should obtain 

x (t) = 3 cos t + cos 3t , 
y (t ) = 3 sin t - sin 3t . 

Verify that these equations describe the hypocycloid traced 
by a point P (x ,  y) fixed on the circumference of a circle 
of radius b = 1 that rolls around inside a circle of radius 
a = 4. If P begins at A (a , 0) when t = 0, then the pa
rameter t represents the angle A O C  shown in Fig. 5.2.8. 

y 

A (a, 0) 
x 

FIGURE 5.2.8. The hypocycloid of 
Problem 48. 

A lthough the simple elimination techniques of Section 5.2 suffice for the 
solution of small linear systems containing only two or three equations with 

constant coefficients, the general properties of linear systems-as well as solution 
methods suitable for larger systems-are most easily and concisely described using 
the language and notation of vectors and matrices . For ready reference and review, 
this section begins with a complete and self-contained account of the matrix notation 
and terminology that is needed. Special techniques of linear algebra-specifically, 
those associated with eigenvalues and eigenvectors-are introduced as needed in 
subsequent sections of this chapter. 
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Exa mple 1 

Review of Matrix Notation and Terminology 

An m x n matrix A is a rectangular array of mn numbers (or elements) arranged in 
m (horizontal) rows and n (vertical) columns: 

a l l  a 1 2  a l 3 a l j a ln 
a2 1  a22 a23 a2j a2n 
a3 1  a32 a33 a3j a3n 

A =  (1 )  
ai l  ai2 ai3 aij ain 

am I am2 am3 amj amn 

We will ordinarily denote matrices by boldface capital letters . Sometimes we use 
the abbreviation A = [ aij ] for the matrix with the element aij in the i th row and 
j th column, as in Eq. ( 1 ) . We denote the zero matrix, each entry of which is zero, 
by 

(2) 

Actually for each pair of positive integers m and n there is an m x n zero matrix, 
but the single symbol 0 will suffice for all these zero matrices. 

Two m x n matrices A = [ aij ] and B = [ bij ] are said to be equal if 
corresponding elements are equal ; that is , if aij = bij for 1 � i � m and 1 � j � n .  
We add A and B by adding corresponding entries : 

A + B = [ aij ] + [ bij ] = [ aij + bij ] . (3) 

Thus the element in row i and column j of C = A + B is Cij = aij + bij . To multiply 
the matrix A by the number c, we simply multiply each of its elements by c :  

If 

then 

and 

[ 2 -3 ] A =  4 7 ' 

cA = Ac = [caij ] .  

B _ [ - 1 3  10 ] - 7 -5 ' 

[ 2 -3 ] [ - 1 3  1 0 ] [ - 1 1  A + B = 4 7 + 7 -5 = 1 1  

[ 3 0 ] [ 1 8  0 ] 6C = 6 · 5 -7 
= 30 -42 . 

(4) 

� ] 
• 
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We denote (- l )A by -A and define subtraction of matrices as follows: 

A - B = A + (-B) . (5) 

The matrix operations just defined have the following properties, each of 
which is analogous to a familiar algebraic property of the real number system: 

A + O = O + A = A, A - A = O; 
A + B = B + A  
A + (B + C) = (A + B) + C 

c (A + B) = cA + cB, 
(c + d)A = cA + dA. 

(commutativity); 

(associativity); 

(distributivity) 

(6) 

(7) 

(8) 

(9) 

Each of these properties is readily verified by elementwise application of a corre
sponding property of the real numbers . For example, aij + bij = bij + aij for all i 
and j because addition of real numbers is commutative. Consequently, 

A + B = [ aij + bij ] = [ bij + aij ] = B + A. 

The transpose AT of the m x n matrix A = [aij ] is the n x m (note ! )  matrix 
whose j th column is the j th row of A (and consequently, whose i th row is the i th 
column of A). Thus AT = [ a ji ] ,  although this is not notationally perfect; you 
must remember that AT will not have the same shape as A unless A is a square 
matrix-that is, unless m = n . 

An m x 1 matrix--one having only a single column-is called a column 
vector, or simply a vector. We often denote column vectors by boldface lowercase 
letters, as in 

Similarly, a row vector is a 1 x n matrix--one having only a single row, such 
as c = [ 5  1 7  0 -3 ] .  For aesthetic and typographical reasons, we will 
frequently write a column vector as the transpose of a row vector; for example, the 
two preceding column vectors may be written in the forms 

b = [ 3  -7 

Sometimes it is convenient to describe an m x n matrix in terms of either its 
m row vectors or its n column vectors . Thus if we write 

. . .  b ] n , 

it is understood that a I ,  a2 , . . .  , and am are the row vectors of the matrix A and that 
bl , b2 , . . .  , and bn are the column vectors of the matrix B. 
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Exa mple 2 

Matrix Multiplication 

The properties listed in Eqs . (6) through (9) are quite natural and expected. The first 
surprises in the realm of matrix arithmetic come with multiplication. We define first 
the scalar product of a row vector a and a column vector b, each having the same 
number p of elements . If 

. . .  b ] T p , 

then a • b is defined as follows: 

p 
a · b = L akbk = al b l + a2b2 + . . .  + apbp , 

k= 1 
( 1 0) 

exactly as in the scalar or dot product of two vectors-a familiar topic from elemen
tary calculus. 

The product AB of two matrices is defined only if the number of columns of 
A is equal to the number of rows of B. If A is an m x p matrix and B is a p x n 
matrix , then their product AB is the m x n matrix C = [ ci} ] , where ci} is the 
scalar product of the i th row vector ai of A and the j th column vector bj of B. Thus 

( 1 1 )  

In terms of the individual entries of A = [ ai} ] and B = [ bi} ] ,  Eq. ( 1 1 )  can be 
recast in the form 

P 
Cij = L aikbkj ' 

k= 1  
( 1 2) 

For purposes of hand computation, the definition in Eqs . ( 1 1 )  and ( 1 2) is easy to 
remember by visualizing the picture 

a l l  a I2 a l p b l l  b l2 btj b In 
a2 1 a22 a2p b2 1 b22 ��j b2n 

ai ----+ 

am I am2 amp bp I bp2 bpj bpn 
t 
bj 

which shows that one forms the dot product of the row vector ai with the column 
vector bj to obtain the element Cij in the i th row and the j th column of AB. It may 
help to think of "pouring the rows of A down the columns of B." This also reminds 
us that the number of columns of A must be equal to the number of rows of B. 

Check your understanding of the definition of matrix multiplication by verifying 
that if [ 2 -3 ] A = - 1  5 

[ 1 3  and B = 4 



then 
AB = [ -i 

Similarly, verify that 

U 
-3 

5 
-7 

and that 
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-3 ] [ 1 3 9 ] _ [ 14 1 8  ] 
5 4 0 - 7 -9 . 

1 ] [ x ] [ 2x - 3y + z ] -2 Y = 4x + 5y - 2z 
o z 6x - 7y 

U n [ -i 1 3 -� J � U 
7 - 1 ] 

1 5  1 23 3 . 31 5 
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• 

It can be shown by direct (though lengthy) computation based on its definition 
that matrix multiplication is associative and is also distributive with respect to matrix 
addition; that is, 

A(BC) = (AB)C ( 1 3) 

and 

A(B + C) = AB + AC, (14) 

provided that the matrices are of such sizes that the indicated multiplications and 
additions are possible. 

But matrix multiplication is not commutative. That is, if A and B are both 
n x n matrices (so that both the products AB and BA are defined and have the same 
dimensions-n x n) ,  then, in general, 

AB i- BA. 

Moreover, it can happen that 

AB = 0 even though A i- 0 and B i- O. 

( 1 5) 

( 16) 

Examples illustrating the phenomena in ( 1 5) and ( 1 6) may be found in the problems, 
although you can easily construct your own examples using 2 x 2 matrices with small 
integral elements. 

Inverse Matrices 

A square n x n matrix is said to have order n. The identity matrix of order n is the 
square matrix 1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 
1 = 0 0 0 1 0 ( 1 7) 

0 0 0 0 1 
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for which each entry on the principal diagonal is 1 and all off-diagonal entries are 
zero. It is quite easy to verify that 

AI = A = IA ( 1 8) 

for every square matrix A of the same order as I. 
If A is a square matrix,  then an inverse of A is a square matrix B of the same 

order as A such that both 

AB = I and BA = I. 

It is not difficult to show that if the matrix A has an inverse, then this inverse is 
unique. Consequently, we may speak of the inverse of A, and we will denote it by 
A- I . Thus 

( 1 9) 

given the existence of A - I . It is clear that some square matrices do not have 
inverses-consider any square zero matrix .  It is also easy to show that if A - I exists, 
then (A- I )- I exists and (A- I )- I = A. 

In linear algebra it is proved that A - I exists if and only the determinant det(A) 
of the square matrix A is nonzero. If so, the matrix A is said to be nonsingular; if 
det(A) = 0, then A is called a singular matrix.  

Determinants 

We assume that the student has computed 2 x 2 and 3 x 3 determinants in earlier 
courses. If A = [ aij ] is a 2 x 2 matrix,  then its determinant det(A) = IA I is 
defined as 

Determinants of higher order may be defined by induction, as follows. If A = [ aij ] 
is an n x n matrix,  let Aij denote the (n - 1 )  x (n - 1 )  matrix obtained from A by 
deleting its i th row and its j th column. The expansion of the determinant IA I along 
its i th row is given by 

n 

IA I = L (_ 1 ) i+jaij IAij I 
j= 1  

and its expansion along its j th column is given by 

n 

IA I = L (- l ) i+jaij IAij I 
i= 1 

(i fixed) , (20a) 

(j fixed) . (20b) 

It is shown in linear algebra that whichever row we use in Eq. (20a) and whichever 
column we use in Eq. (20b) , the results are the same in all 2n cases. Hence IA I is 
well defined by these formulas . 
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If 

A =  [ ! 
-2 

1 -2 ] 
2 1 , 
3 5 

then the expansion of IA I along its second row is 

IA I = -4 · 1 � -; 1 + 2 · 1 _; -; 1 - 1 · 1 -; 
= -4 · 1 1 + 2 · 1 1  - 1 . 1 1  = -33 .  

And the expansion of IA I along its third column i s  

IA I = -2 ' 1 _� 2 1 _ 1 . 1 3 
3 -2 

= -2 · 16 - 1 . 1 1  + 5 · 2 =  -33 .  • 

Calculators and computers are convenient for the calculation of higher-dim en
sional determinants and inverse matrices, but determinants and inverses of 2 x 2 
matrices are easy to compute by hand. For instance, if the 2 x 2 matrix 

has nonzero determinant IA I = ad - be #- 0, then its inverse matrix is 

A- 1 - _
1 [ d -b J 

- IA I -e a · (2 1 )  

Note that the matrix on  the right-hand side of  Eq. (2 1 )  i s  obtained from A by inter
changing the diagonal elements and changing the signs of the off-diagonal elements. 

If 

A = [ �  � l  
then IA I = 6 · 7 - 5 · 8  = 2.  Hence Eq. (2 1 )  gives 

A- I = ! [ 7 -8 ] = [ � 
-4 ] . 

2 -5 6 - i  3 

You should pause to verify that 

• 
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Exa mple 5 

Matrix-Valued Functions 

A matrix-valued function, or simply matrix fnnction, is a matrix such as 

Xl (t) 

X2 (t) 
(22a) x(t) = 

Xn (t) 

or 

a l l  (t) adt) a ln (t) 

A(t )  = 
a2 l (t) a22 (t) a2n (t) 

(22b) 

am l (t) am2 (t) amn (t) 

in which each entry is a function of t . We say that the matrix function A(t) is 
continuous (or differentiable) at a point (or on an interval) if each of its elements 
has the same property. The derivative of a differentiable matrix function is defined 
by elementwise differentiation; that is, 

If 

then 

and 

A'(t) = 
dA 

= [ daij ] . 
dt dt 

dx [ 1 ] - - 2t dt -e -
t and A' (t) = [ co

l
s t 

� ] . - sm t 

The differentiation rules 

d dA dB 
d/A + B) = dt + dt 

d dB dA -(AB) = A- + -B dt dt dt 

(23) 

• 

(24) 

(25) 

follow readily by elementwise application of the analogous differentiation rules of 
elementary calculus for real-valued functions. If c is a (constant) real number and 
C is a constant matrix,  then 

d dA - (cA) = c- , dt dt 
d dA -(CA) = C- , dt dt 

d dA 
and -(AC) = -C. dt dt (26) 

Because of the noncommutativity of matrix multiplication, it is important not to 
reverse the order of the factors in Eqs.  (25) and (26). 
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First-Order Linear Systems 

The notation and terminology of matrices and vectors may seem rather elaborate 
when first encountered, but it is readily assimilated with practice. Our main use for 
matrix notation will be the simplification of computations with systems of differ
ential equations, especially those computations that would be burdensome in scalar 
notation. 

We discuss here the general system of n first-order linear equations 

x ; = PI 1 (t)X l + pdt)X2 + . . .  + Pln (t)Xn + fl (t ) ,  
x� = P2 1 (t)X l + P22 (t)X2 + . . .  + P2n (t)Xn + h(t) ,  
x� = P3 l (t)X l + P32 (t)X2 + . . .  + P3n (t)Xn + h (t) , (27) 

If we introduce the coefficient matrix 

and the column vectors 

pet) = [ Pij (t) ] 

X = [ Xi ] and f(t) = [ .fi (t) ] , 

then the system in (27) takes the form of a single matrix equation 

dx 
- = P(t)x + f(t) . 
dt 

(28) 

We will see that the general theory of the linear system in (27) closely parallels 
that of a single nth-order equation. The matrix notation used in Eq. (28) not only 
emphasizes this analogy, but also saves a great deal of space. 

A solution of Eq. (28) on the open interval I is a column vector function 
x(t) = [ Xi (t) ] such that the component functions of x satisfy the system in (27) 
identically on I .  If the functions Pij (t) and .fi (t) are all continuous on I, then 
Theorem 1 of Section 5 . 1 guarantees the existence on I of a unique solution x(t) 
satisfying preassigned initial conditions x(a) = h. 

The first-order system 

x ; = 4Xl - 3X2 , 
x� = 6Xl - 7X2 

can be written as the single matrix equation 

To verify that the vector functions 
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are both solutions of the matrix differential equation with coefficient matrix P, we 
need only calculate [ 4 -3 ] [ 3e2t ] [ 6e2t ] I PxI = 6 - 7 2e2t = 4e2t = XI 

and 

• 

To investigate the general nature of the solutions of Eq. (28), we consider first 
the associated homogeneous equation 

dx 
- = P(t)x, dt 

(29) 

which has the form shown in Eq. (28) ,  but with f(t) == O. We expect it to have n 
solutions XI , X2 , . . .  , Xn that are independent in some appropriate sense, and such 
that every solution of Eq. (29) is a linear combination of these n particular solutions. 
Given n solutions XI , X2 , . . .  , Xn of Eq. (29), let us write 

(30) 

Thus xij (t) denotes the i th component of the vector x/t) ,  so the second subscript 
refers to the vector function Xj (t) , whereas the first subscript refers to a component 
of this function. Theorem 1 is analogous to Theorem 1 of Section 2.2. 

TH EOREM 1 Principle of Superposition 

Let X I , X2 , . . .  , Xn be n solutions of the homogeneous linear equation in (29) on 
the open interval I .  If CI , C2 , . . .  , Cn are constants, then the linear combination 

(3 1 )  

i s  also a solution of Eq. (29) on I .  

Proof: We know that x ;  = P(t)Xj for each i ( l :S; :s; n), so it follows 
immediately that 

X' = CI X� + C2X; + . . . + cnx� 
= cI P(t)XI + C2P(t)X2 + . . .  + cnP(t)xn 
= P(t) (C I XI + C2X2 + . . .  + cnxn ) .  

That is, x' = P(t )x, as desired. The remarkable simplicity of this proof demonstrates 
clearly one advantage of matrix notation. • 
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If Xl and X2 are the two solutions of 

dx _ [ 4 -3 ] 
dt - 6 -7 X 

discussed in Example 6, then the linear combination 

is also a solution. In scalar form with X = [X l x2f ,  this gives the solution 

Xl (t) = 3Cl e2t + C2e-5t , 
X2 (t) = 2Cl e2t + 3C2e-5t , 

which is equivalent to the general solution we found by the method of elimination 
in Example 2 of Section 5 .2. • 

Independence and General Solutions 

Linear independence is defined in the same way for vector-valued functions as for 
real-valued functions (Section 2.2) . The vector-valued functions Xl , X2 , • • •  , Xn are 
linearly dependent on the interval I provided that there exist constants C l , C2 , . . .  , 
Cn not all zero such that 

CI XI (t) + C2X2 (t) + . . . + CnXn (t) = 0 (32) 

for all t in I . Otherwise, they are linearly independent. Equivalently, they are 
linearly independent provided that no one of them is a linear combination of the 
others . For instance, the two solutions Xl and X2 of Example 6 are linearly indepen
dent because, clearly, neither is a scalar multiple of the other. 

Just as in the case of a single nth-order equation, there is a Wronskian deter
minant that tells us whether or not n given solutions of the homogeneous equation 
in (29) are li�early dependent. If Xl , X2 , . . .  , Xn are such solutions, then their Wron
skian is the n x n determinant 

W(t) = 

Xl l  (t) x u(t) 
X2 l  (t) X22 (t) 

Xn l (t) Xn2 (t) 

(33) 

using the notation in (30) for the components of the solutions. We may write either 
W (t) or W(XI ' X2 , • . •  , xn ) . Note that W is the determinant of the matrix that has as 
its column vectors the solutions x" X2 , • • •  , Xn . Theorem 2 is analogous to Theorem 
3 of Section 2.2. Moreover, its proof is essentially the same, with the definition of 
W(XI , X2 , . . •  , xn ) in Eq. (33) substituted for the definition of the Wronskian of n 
solutions of a single nth-order equation (see Problems 42 through 44) . 
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TH EOREM 2 Wronsklans of Solutions 

Suppose that XI , X2 , • • •  , Xn are n solutions of the homogeneous linear equation 
x' = P(t)x on an open interval I . Suppose also that P(t) is continuous on I . Let 

Then: 
• If XI , X2 , • • •  , Xn are linearly dependent on I , then W = 0 at every point 

of ! .  
• If XI , X2 , • • •  , Xn are linearly independent on I ,  then W -::f:. 0 at each point 

of ! .  
Thus there are only two possibilities for solutions of homogeneous systems: Ei
ther W = 0 at every point of I ,  or W = 0 at no point of I . 

" H  H 'H<'H _'_�'H"'"''''''''_''''' ..... _._ 

It is readily verified (as in Example 6) that 

are solutions of the equation 

dx 
= 
[

_� dt 0 

The Wronskian of these solutions is 

W =  
2et 2e3t 
2et 0 
et _e3t 

-2 
3 

- 1  

2 2 2  
2 0 -2 = - 16e9t , 
1 - 1  1 

(34) 

which is never zero. Hence Theorem 2 implies that the solutions XI . X2 , and X3 are 
linearly independent (on any open interval) .  • 

Theorem 3 is analogous to Theorem 4 of Section 2.2. It says that a general 
solution of the homogeneous n x n system x' = P(t)x is a linear combination 

(35) 

of any n given linearly independent solutions XI , X2 , . • •  , Xn • 

TH EOREM 3 General Solutions of Homogeneous Systems 

Let Xl , X2 , • • •  , Xn be n linearly independent solutions of the homogeneous linear 
equation x' = P(t)x on an open interval I ,  where pet) is continuous. If x(t) 
is any solution whatsoever of the equation x' = P(t)x on I, then there exist 
numbers Cl , C2 , • • •  , Cn such that 

(35) 

for all t in I . 
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Proof: Let a be a fixed point of I . We show first that there exist numbers Cl , 
C2 , • • •  , Cn such that the solution 

(36) 

has the same initial values at t = a as does the given solution x(t ) ;  that is, such that 

(37) 

Let X(t) be the n x n matrix with column vectors X l . X2 , . . .  , Xn , and let c be the 
column vector with components Cl , C2 , • • •  , Cn . Then Eq. (37) may be written in the 
form 

X(a)c = x(a ) .  (38) 

The Wronskian determinant W (a)  = IX(a ) 1 is nonzero because the solutions Xl , 
X2 , . . .  , Xn are linearly independent. Hence the matrix X(a) has an inverse matrix 
X(a) - l . Therefore the vector c = X(a) - l x(a)  satisfies Eq. (38) , as desired. 

Finally, note that the given solution x(t) and the solution y(t) of Eq. (36)
with the values of Ci determined by the equation c = X(a) - lx(a)-have the same 
initial values (at t = a) .  It follows from the existence-uniqueness theorem of Sec
tion 5 . 1 that x(t) = y(t) for all t in I .  This establishes Eq. (35). ... 

Remark: Every n x n system x' = P(t )x with continuous coefficient ma
trix does have a set of n linearly independent solutions Xl . X2 , . . .  , Xn as in the 
hypotheses of Theorem 3 .  It suffices to choose for Xj (t) the unique solution such 
that 

0 
0 
0 

xj (a) = 0 
1 +-- position j 

0 

0 

-that is, the column vector with all elements zero except for a 1 in row j .  (In other 
words, xj (a) is merely the jth column of the identity matrix.) Then 

so the solutions Xl , X2 , . . .  , Xn are linearly independent by Theorem 2. How actually 
to find these solutions explicitly is another matter-one that we address in Section 
5.4 (for the case of constant coefficient matrices). • 

Initial Value Problems and Elementary Row Operations 

The general solution in Eq. (35) of the homogeneous linear system x' = P(t)x can 
be written in the form 

X(t) = X(t)c, (39) 
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where 

X(t) = [ XI (t) X2 (t) (40) 

is the n x n matrix whose column vectors are the linearly independent solutions XI . 
X2 , . . .  , Xn , and c = [ C I C2 . . .  Cn r is the vector of coefficients in the linear 
combination 

Suppose now that we wish to solve the initial value problem 

dx 
- = Px, x(a) = b, 
dt 

(35) 

(4 1 )  

where the initial vector b = [ b l b2 . . .  bn r is given. Then, according to 
Eq. (39) , it suffices to solve the system 

X(a)c = b (42) 

to find the coefficients C I , C2 , • • •  , Cn in Eq. (35) . 
We therefore review briefly the elementary technique of row reduction to solve 

an n x n algebraic linear system 

al lX I + a l2x2 + . . .  + alnXn = bl , 
a2 1X I + a22X2 + . . .  + a2nXn = b2 , 

(43) 

with nonsingular coefficient matrix A = [aij ] , constant vector b = [bd , and un
knowns XI , X2 , . . .  , Xn . The basic idea is to transform the system in (43) into the 
simpler upper triangular form 

al ix i + al2X2 + . . .  + alnXn = bl , 
a22x2 + . . .  + a2nXn = b2 , (44) 

in which only the unknowns Xj , xj+ J ,  . . .  , Xn appear explicitly in the jth equation 
(j = 1 ,  2, . . .  , n) .  The transformed system is then easily solved by the process of 
back substitution. First the last equation in (44) is solved for Xn , then the next-to-Iast 
is solved for Xn- I , and so forth, until the first equation is finally solved for XI . 

The transformation of the system in (43) to upper triangular form is most 
easily described in terms of elementary row operations on the augmented coefficient 
matrix 

al l  a l2 a ln ! b l 
I 

[ A ! b ] =  
a2 1 a22 a2n : b2 I (45) I I I I I 
an i an2 ann ! bn 

that is obtained by adjoining the vector b to the matrix A as an additional column. 
The admissible elementary row operations are of the following three types: 
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1. Multiply any (single) row of the matrix by a nonzero constant. 
2. Interchange any two rows of the matrix. 
3. Subtract a constant multiple of one row from any other row. 

The goal is to use a sequence of such operations (one by one, in tum) to trans
form [ A  ! b ] into an upper triangular matrix, one that has only zeros beneath its 
principal diagonal . This upper triangular augmented coefficient matrix then cor
responds to an upper triangular system as in (44). The process of transforming 
[ A ! b ] is carried out one column at a time, from left to right, as in the next exam
ple. 

- --_ . _----- - -- ------_ .. -.. - . _-- ---- -- --�- -- - -- -------_.-

Use the solution vectors given in Example 7 to solve the initial value problem 

dx [ 3 -2 0 ] dt 
= -� -i -� x, (46) 

Solution It follows from Theorem 3 that the linear combination 

is a general solution of the 3 x 3 linear system in (46) . In scalar form, this gives the 
general solution 

XI (t) = 2c l et + 2c2e3t + 2c3e5t , 
X2 (t) = 2c l et - 2c3e5t , 
X3 (t) = c l et - C2e3t + C3e5t . 

We seek the particular solution satisfying the initial conditions 

XI (0) = 0, X2 (0) = 2, X3 (0) = 6. 

When we substitute these values in the three preceding scalar equations, we get the 
algebraic linear system 

2cI + 2C2 + 2C3 = 0, 
2c I - 2C3 = 2, 
C I - C2 + C3 = 6 

with augmented coefficient matrix [ 2 2 2 !  0 ] 
2 ° -2 i 2 . 
1 - 1  1 : 6 

Multiplication of each of the first two rows by 1 gives 

1 1 :  0 ] 
° - 1  i i , 

- I I !  6 
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then subtraction of the first row both from the second row and from the third row 
gives the matrix [ 1 1 1 

o - 1  -2 
o -2 0 n 

The first column of this matrix now has the desired form. 
Now we mUltiply the second row by - 1 , then add twice the result to the third 

row. Thereby we get the upper triangular augmented coefficient matrix 

1 
o 

that corresponds to the transformed system 

C I + C2 + C3 = 0, 
C2 + 2C3 = - 1 ,  

4C3 = 4. 

We finally solve in tum for C3 = 1 ,  C2 = -3 , and C I  = 2. Thus the desired particular 
solution is given by 

Nonhomogeneous Solutions 

We finally tum our attention to a nonhomogeneous linear system of the form 

dx 
dt = P(t)x + f(t ) . 

• 

(47) 

The following theorem is analogous to Theorem 5 of Section 2.2 and is proved in 
precisely the same way, substituting the preceding theorems in this section for the 
analogous theorems of Section 2.2 . In brief, Theorem 4 means that the general 
solution of Eq. (47) has the form 

x(t) = xc (t) + xp (t ) ,  (48) 

where xp (t) is a single particular solution of Eq. (47) and the complementary func
tion xc (t) is a general solution of the associated homogeneous equation x' = P(t )x. 

TH EOREM 4 Solutions of Nonhomogeneous Systems 

Let xp be a particular solution of the nonhomogeneous linear equation in (47) 
on an open interval I on which the functions P(t) and f(t )  are continuous. Let 
XI , X2 , • . .  , Xn be linearly independent solutions of the associated homogeneous 
equation on I .  If x(t) is any solution whatsoever of Eq. (47) on I, then there exist 
numbers C I , C2 , • . •  , Cn such that 

(49) 

for all t in I .  
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Thus finding a general solution of a nonhomogeneous linear system involves 
two separate steps: 

1. Finding the general solution xc (t) of the associated homogeneous system; 
2. Finding a single particular solution xp (t) of the nonhomogeneous system. 

The sum x(t) = xc (t) +xp (t) will then be a general solution of the nonhomogeneous 
system. 

The nonhomogeneous linear system 

xi = 3Xl - 2X2 - 9t + 1 3 , 
x� = -Xl + 3X2 - 2X3 + 7t - 15 , 

x� = - X2 + 3X3 - 6t + 7 
is of the form in (47) with 

-2 0 ] 3 -2 , 
- 1  3 

[ -9t + 1 3 ] f(t) = 7t - 15 . 

-6t + 7 
In Example 7 we saw that a general solution of the associated homogeneous linear 
system 

is given by 

dx [ 3 -2 0 ] 
dt = -b -i -� x 

and we can verify by substitution that the function 

(found using a computer algebra system, or perhaps by a human being using a 
method discussed in Section 5 .8 )  is a particular solution of the original nonhomo
geneous system. Consequently, Theorem 4 implies that a general solution of the 
nonhomogeneous system is given by 

that is , by 

Xl (t ) = 2c l et + 2C2e3t + 2C3e5t + 3t , 
X2 (t) = 2cl et - 2c3e51 + 5 , 
X3 (t) = c l et - C2e31 + C3e51 + 2t . 

• 
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_ Problems 

1. Let 

and B =  U -4 J 1 . 

Find (a) 2A + 3B; (b) 3A - 2B; (c) AB; (d) BA. 
2. Verify that (a) A (BC) = (AB)C and that (b) A (B+C) = 

AB + AC, where A and B are the matrices given in Prob
lem 1 and 

C =  [ � -i J .  
3. Find AB and BA given 

A =  [ � o 
-4 

� ] . 
-2 

4.  Let A and B be the matrices given in Problem 3 and let 

and y = [ s{� t ] . 
cos t 

Find Ay and Bx. Are the products Ax and By defined? 
Explain your answer. 

5. Let 

A =  
[ � 

-5 

Find (a) 7A + 4B; (b) 3A - 5B; (c) AB; (d) BA; 
(e) A - tl. 

6. Let 

A l  = [ _� � l A2 = [ -
� 

-
; l 

B =  [ i � J . 
(a) Show that A l B = A2B and note that A l  i=- A2 . Thus 
the cancellation law does not hold for matrices; that is, if 
A l B = A2B and B i=- 0, it does not follow that A l = A2 . 
(b) Let A = A l  - A2 and use part (a) to show that AB = O. 
Thus the product of two nonzero matrices may be the zero 
matrix. 

7. Compute the determinants of the matrices A and B in 
Problem 6. Are your results consistent with the theorem 
to the effect that 

det(AB) = det(A) . det(B) 

for any two square matrices A and B of the same order? 
8. Suppose that A and B are the matrices of Problem 5. Ver

ify that det(AB) = det(BA) .  

In Problems 9 and 10, verify the product law for differentia
tion, (AB)' = A'B + AB'. 

9. A (t)  = [ :3 [ el 
10. A(t) = -t 

8t 

In Problems 11 through 20, write the given system in the form 
x' = P(t )x + f(t) . 
11 .  x' = -3y , y' = 3x 
12. x' = 3x - 2y, y' = 2x + y 
13. x' = 2x + 4 y + 3el , y' = 5x - y - t2 
14. x' = tx - ely + cos t ,  y' = e-Ix + t2y - sin t 

15. x' = y + z , y' = z + x , z' = X + y 
16. x' = 2x - 3y , y' = x + y + 2z , z' = 5y - 7z 
17. x' = 3x - 4y + z + t , y' = X - 3z + t2 , Z' = 6y - 7z + t3 
18. x' = tx - y +elz , y' = 2x + t2y - z, z' = e-tx + 3ty+ t3z 
19. x; = X2 , x� = 2X3 , x� = 3X4 , x� = 4xI 

20. x; = X2 + X3 + 1 ,  x� = X3 + X4 + t , 
x� = X I + X4 + t2 , x� = X I + X2 + t3 

In Problems 21 through 30, first verify that the given vectors 
are solutions of the given system. Then use the Wronskian to 
show that they are linearly independent. Finally, write the gen
eral solution of the system. 

21. x' = [ _� _ i J x; XI = [ -�:; l X2 = [ -:�; J 
[ -3 22. x' = -3 

2 J [ e3t J [ 2e-2t J 4 
x; XI = 3e3t , X2 = e-2t 

23. x' = U =; J x; XI = e21 [ � l X2 = e-21 [ ; J 
24. x' = [ _� � J x; X I = e31 [ _ �  l X2 = e2t [ -� J 

27. 



-4 1 - 1 2 
-4 

o - 2 ] [ 1 ] o 0 _I 0 - 1 -6 
x; X l  = e O ' 

o - 1 1 
-l O t 1 t 0 [
0 ] [ 

0 ] [
1 ] X2 = e � ' X3 = e _� '  Xi = e � 

In Problems 31 through 40, find a particular solution of the in
dicated linear system that satisfies the given initial conditions. 
31. The system of Problem 22: Xl (0) = 0, X2 (0) = 5 
32. The system of Problem 23: Xl (0) = 5, X2 (0) = -3 
33. The system of Problem 24: Xl (0) = 1 1 , X2 (0) = -7 
34. The system of Problem 25 : Xl (0) = 8, X2 (0) = 0 
35. The system of Problem 26: Xl (0) = 0, X2 (0) = 0, 

X3 (0) = 4 
36. The system of Problem 27: Xl (0) = 10, X2 (0) = 12, 

X3 (0) = - 1 
37. The system of Problem 29: Xl (0) = 1 , X2 (0) = 2, 

X3 (0) = 3 
38. The system of Problem 29: Xl (O) = 5, X2 (0) = -7, 

X3 (0) = I I  
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39. The system of Problem 30: Xl (0) = X2 (0) = X3 (0) = 

X4 (0) = 1 
40. The system of Problem 30: Xl (0) = 1 , X2 (0) = 3, 

X3 (0) = 4, X4 (0) = 7 
41. (a) Show that the vector functions 

Xl (t) = [ t; ] and X2 = [ :: ] 
are linearly independent on the real line. (b) Why does it 
follow from Theorem 2 that there is no continuous matrix 
P(t) such that Xl and X2 are both solutions of x' 

= P(t)x? 
42. Suppose that one of the vector functions 

Xl (t) = [ Xl l  (t) ] X2 l (t) 

is a constant multiple of the other on the open interval I. 
Show that their Wronskian W(t) = I [Xij (t ) ] 1  must vanish 
identically on I . This proves part (a) of Theorem 2 in the 
case n = 2. 

43. Suppose that the vectors Xl  (t) and X2 (t) of Problem 42 are 
solutions of the equation x' 

= P(t)x, where the 2 x 2 ma
trix P(t) is continuous on the open interval I. Show that if 
there exists a point a of I at which their Wronskian W(a) 
is zero, then there exist numbers C l and C2 not both zero 
such that C l X l  (a ) + c2x2 (a ) = O. Then conclude from the 
uniqueness of solutions of the equation x' 

= P(t)x that 

for all t in I ; that is, that Xl  and X2 are linearly dependent. 
This proves part (b) of Theorem 2 in the case n = 2. 

44. Generalize Problems 42 and 43 to prove Theorem 2 for n 
an arbitrary positive integer. 

45. Let Xl (t ) , X2 (t) , . . .  , Xn (t) be vector functions whose i th 
components (for some fixed i )  Xi i (t) , Xi2 (t) , . . .  , Xin (t) are 
linearly independent real-valued functions. Conclude that 
the vector functions are themselves linearly independent. 

[ [ 2 .  2 .  2 ]  [ 2 .  0 .  -2 ] [ 1 .  - 1  
. 1 1 HA 

[ [ 2 2 2 ]  
[ 2  0 -2 ]  
[ 1  - 1  1 ] ]  

[ [ 0 ]  [ 2 ]  [ 6 ]  ] �B 

Linear systems with more than two or three equations are most frequently solved 
with the aid of calculators or computers . For instance, recall that in Example 8 we 
needed to solve the linear system 

[ [ 0 ]  
[ 2 ]  
[ 6 ] ] 

[ [ 2 ] 
[ -3 ] 
[ 1  ] ]  

FIGURE 5.3.1.  TI-86 solution 
of the system AC = B in ( 1 ) . 

2cI + 2C2 + 2C3 = 0, 
2cI - 2C3 = 2, 

CI  - C2 + C3 = 6 
( 1 )  

that can be  written i n  the form AC = B with 3 x 3 coefficient matrix A,  right
hand side the 3 x 1 column vector B = [ 0  2 6 r, and unknown column vector 

C = [ C I  C2 C3 r. Figure 5 .3 . 1  shows a TI calculator solution for C = A- IB , 
with the result that C I  = 2, C2 = -3 ,  and C3 = 1 .  Once the matrices A and B have 
been entered, the same result can be found using the Maple command 
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C : = multiply ( inverse ( A ) , B ) i 

the Mathematica command 

C = Inverse [ A ] . B  

or the MATLAB commands 

C = inv (A ) *B 

Use your own calculator or available computer algebra system to solve "automati
cally" Problems 3 1  through 40 in this section. 

We now introduce a powerful alternative to the method of elimination for construct
ing the general solution of a homogeneous first-order linear system with constant 
coefficients, 

X � = al l X I  + a 12X2 + . . .  + a lnXn , 
x� = a2 1X I + a22X2 + . . .  + a2nXn , 

( 1 )  

B y  Theorem 3 of Section 5 .3 ,  we know that it suffices to find n linearly independent 
solution vectors XI , X2 , . • .  , Xn ; the linear combination 

(2) 

with arbitrary coefficients will then be a general solution of the system in ( 1 ) . 
To search for the n needed linearly independent solution vectors, we proceed 

by analogy with the characteristic root method for solving a single homogeneous 
equation with constant coefficients (Section 2.3) .  It is reasonable to anticipate solu
tion vectors of the form 

XI v l eAt V I 
X2 V2eAt V2 

x(t) = X3 V3eAt V3 eAt = veAt (3) 

Xn vneAt Vn 

where A ,  V I , V2 , . . .  , Vn are appropriate scalar constants . For if we substitute 

(i = 1 , 2 , . . .  , n) 

in ( 1 ) , then each term in the resulting equations will have the factor eAt , so we 
can cancel it throughout. This will leave us with n linear equations which-for 
appropriate values of A-we can hope to solve for values of the coefficients VI , V2 , 
. . .  , Vn in Eq. (3) so that x(t) = veAt is, indeed, a solution of the system in ( 1 ) . 

To investigate this possibility, it is more efficient to write the system in ( I )  in 
the matrix form 

X' = Ax (4) 
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where A = [ aij ] . When we substitute the trial solution x = veAt with derivative 
x' = AveAt in Eq. (4), the result is 

We cancel the nonzero scalar factor eAt to get 

Av =  AV. (5) 

This means that x = veAt will be a nontrivial solution of Eq. (4) provided that v is a 
nonzero vector and A is a constant such that Eq. (5) holds ; that is, the matrix product 
Av is a scalar multiple of the vector v. The question now is this :  How do we find v 
and A? 

To answer this question, we rewrite Eq. (5 )  in  the form 

(A - AI)v = O. (6) 

Given A, this is a system of n homogeneous linear equations in the unknowns VI , V2 , 
• . •  , Vn . By a standard theorem of linear algebra, it has a nontrivial solution if and 
only if the determinant of its coefficient matrix vanishes ; that is, if and only if 

IA - Al l = det(A - AI) = O. (7) 

In its simplest formulation, the eigenvalue method for solving the system x = Ax 
consists of finding A so that Eq. (7) holds and next solving Eq. (6) with this value of 
A to obtain V" V2 , • . •  , Vn . Then x = veAl will be a solution vector. The name of the 
method comes from the following definition. 

DEFI N ITION Eigenvalues and Eigenvectors 

The number A (either zero or nonzero) is called an eigenvalue of the n x n matrix 
A provided that 

IA - Al l = 0 . (7) 

An eigenvector associated with the eigenvalue A is a nonzero vector v such that 
Av = AV, so that 

(A - AI)v = O. (6) 

Note that if v is an eigenvector associated with the eigenvalue A, then so is any 
nonzero constant scalar multiple cv of v-this follows upon multiplication of each 
side in Eq . (6) by c i= O. 

The prefix eigen is a German word with the approximate translation charac
teristic in this context; the terms characteristic value and characteristic vector are 
in common use. For this reason, the equation 

a" - A a 12 a ln 
a2 1 a22 - A a2n lA - AI l = = 0 (8) 

an i an2 ann - A 
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is called the characteristic equation of the matrix A; its roots are the eigenval
ues of A. Upon expanding the determinant in (8) , we evidently get an nth-degree 
polynomial of the form 

(9) 

By the fundamental theorem of algebra, this equation has n roots-possibly some 
are complex, possibly some are repeated-and thus an n x n matrix has n eigenval
ues (counting repetitions, if any) . Although we assume that the elements of A are 
real numbers, we allow the possibility of complex eigenvalues and complex-valued 
eigenvectors . 

Our discussion of Eqs . (4) through (7) provides a proof of the following the
orem, which is the basis for the eigenvalue method of solving a first-order linear 
system with constant coefficients . 

TH EOREM 1 Eigenvalue Solutions of x' = Ax 

Let A be an eigenvalue of the [constant] coefficient matrix A of the first-order 
linear system 

. .. . 

dx 
- = Ax. 
dt 

If v is an eigenvector a�sociated with A, then 

x(t) = veAl 

is a nontrivial solution of the system. 

The Eigenvalue Method 

In outline, this method for solving the n x n homogeneous constant-coefficient sys
tem x' = Ax proceeds as follows: 

1. We first solve the characteristic equation in (8) for the eigenvalues A I ,  A2, . . .  , 
An of the matrix A. 

2. Next we attempt to find n linearly independent eigenvectors V I , V2 ,  . . .  , Vn 
associated with these eigenvalues . 

3. Step 2 is not always possible, but when it is, we get n linearly independent 
solutions 

( 1 0) 

In this case the general solution of x' = Ax is a linear combination 

of these n solutions .  

We will discuss separately the various cases that can occur, depending on whether 
the eigenvalues are distinct or repeated, real or complex. The case of repeated 
eigenvalues-multiple roots of the characteristic equation-will be deferred to Sec
tion 5 .6 .  



Exa mple 1 

5.4 The Eigenva lue Method for Homogeneous Systems 369 

Distinct Real Eigenvalues 

If the eigenvalues A I , A2 , . . .  , An are real and distinct, then we substitute each of 
them in turn in Eq. (6) and solve for the associated eigenvectors VI , V2 , . . .  , Vn • 

In this case it can be proved that the particular solution vectors given in ( 1 0) are 
always linearly independent. (For instance, see Section 6.2 of Edwards and Pen
ney, Elementary Linear Algebra (Englewood Cliffs, NJ: Prentice Hall, 1988).) In 
any particular example such linear independence can always be verified by using 
the Wronskian determinant of Section 5 .3 . The following example illustrates the 
procedure. 

Find a general solution of the system 

x i = 4xI + 2X2 , 
x� = 3xI - X2 . 

( 1 1 ) 

Solution The matrix form of the system in ( 1 1 )  is 

X' = [ j -i ]  x. ( 12) 

The characteristic equation of the coefficient matrix is 

2 1 = (4 - A) (- I - A) - 6 - I - A = A2 - 3A - 10  = (A + 2) (A - 5) = 0, 

so we have the distinct real eigenvalues A l = -2 and A2 = 5 . 
For the coefficient matrix A in Eq. ( 1 2) the eigenvector equation (A-AI)v = 0 

takes the form 

( 1 3) 

for the associated eigenvector V = [ a  b r. 
CASE 1 :  A l = -2. Substitution of the first eigenvalue A l = -2 in Eq. ( 1 3) yields 
the system 

that is, the two scalar equations 

6a + 2b = 0, 
3a + b = O. 

( 14) 
In contrast with the nonsingular (algebraic) linear systems whose solutions we dis
cussed in Section 5 .3 ,  the homogeneous linear system in ( 14) is singular-the 
two scalar equations obviously are equivalent (each being a multiple of the other). 
Therefore, Eq. ( 1 4) has infinitely many nonzero solutions-we can choose a arbi
trarily (but nonzero) and then solve for b. 
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Substitution of an eigenvalue A in the eigenvector equation (A - AI)v = 0 
always yields a singular homogeneous linear system, and among its infinity of solu
tions we generally seek a "simple" solution with small integer values (if possible) . 
Looking at the second equation in ( 1 4) ,  the choice a = 1 yields b = -3, and thus 

is an eigenvector associated with A l = -2 (as is any nonzero constant multiple of 
Yd·  

Remark: If  instead of the "simplest" choice a = 1 ,  b = -3, we had made 
another choice a = c =1= 0, b = -3c, we would have obtained the eigenvector 

VI = [ -3� ] = c [ _j ] . 
Because this is a constant multiple of our previous result, any choice we make leads 
to (a constant multiple of) the same solution 

CASE 2 :  A2 = 5 .  Substitution of  the second eigenvalue A = 5 in  ( 1 3) yields the 
pair 

-a + 2b = 0, 
3a - 6b = 0 

( 15) 

of equivalent scalar equations. With b = 1 in the first equation we get a = 2, so 

is an eigenvector associated with A2 = 5. A different choice a = 2c, b = c =1= 0 
would merely give a [constant] multiple of V2 . 

These two eigenvalues and associated eigenvectors yield the two solutions 

They are linearly independent because their Wronskian 

I e-2t 2e5t I 3t 
3 -2t 5t = 7e - e e 

is nonzero. Hence a general solution of the system in ( 1 1 )  is 

in scalar form, 
XI (t) = C I e-2t + 2c2e5t , 
X2 (t) = -3cl e-2t + C2e5t . 
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FIGURE 5.4.1.  Direction field 
and solution curves for the linear 
system x ; = 4Xl + 2X2 , 
x� = 3Xl - X2 of Example 1 .  

� r (gaVmin) 
Tank 1 
VI (gal) 
- -- � -

� 

� ...
. 
� •. lJl ... ' .. � 

.
. .• �.· ..... '."

.
3 •• :
"

' .. � V 
FIGURE 5.4.2. The three brine 
tanks of Example 2. 

Exa m ple 2 

5.4 The Eigenva lue Method for Homogeneous Systems 371 

Figure 5 .4. 1 shows some typical solution curves of the system in ( 1 1 ) .  We see 
two families of hyperbolas sharing the same pair of asymptotes: the line XI = 2X2 
obtained from the general solution with CI = 0, and the line X2 = -3xI obtained 
with C2 = 0. Given initial values XI (0) = b l ,  X2 (0) = b2 , it is apparent from the 
figure that 

• If (b l ' b2) lies to the right of the line X2 = -3xJ , then XI (t) and X2 (t) both 
tend to +00 as t --+ +00; 

• If (b l ,  b2) lies to the left of the line X2 = -3XI ' then X I (t) and X2 (t) both tend 
to -00 as t --+ +00. -

Remark: As in Example 1 ,  it is convenient when discussing a linear system 
x' = Ax to use vectors XI , X2 , . • .  , Xn to denote different vector-valued solutions of 
the system, whereas the scalars XI , X2 , . . .  , Xn denote the components of a single 
vector-valued solution x. -

Compartmental Analysis 

Frequently a complex process or system can be broken down into simpler subsys
tems or "compartments" that can be analyzed separately. The whole system can 
then be modeled by describing the interactions between the various compartments. 
Thus a chemical plant may consist of a succession of separate stages (or even phys
ical compartments) in which various reactants and products combine or are mixed. 
It may happen that a single differential equation describes each compartment of the 
system, and then the whole physical system is modeled by a system of differential 
equations .  

As a simple example of a three-stage system, Fig. 5 .4.2 shows three brine 
tanks containing VI . V2 , and V3 gallons of brine, respectively. Fresh water flows 
into tank 1 ,  while mixed brine flows from tank 1 into tank 2, from tank 2 into tank 
3 ,  and out of tank 3 .  Let Xi (t) denote the amount (in pounds) of salt in tank i at 
time t for i = 1 ,  2, and 3 .  If each flow rate is r gallons per minute, then a simple 
accounting of salt concentrations, as in Example 2 of Section 5 . 1 ,  yields the first
order system 

where 

X; = -kIXI , 
x� = klxl - k2X2 , 
x� = k2X2 - k3X3 , 

r 
ki = 

Vi ' i = 1 , 2, 3 . 

( 1 6) 

( 1 7) 

If VI = 20, V2 = 40, V3 = 50, r = 10  (gal/min), and the initial amounts of salt in 
the three brine tanks, in pounds, are 

find the amount of salt in each tank at time t � 0. 
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Solution Substituting the given numerical values in ( 16) and ( 1 7) ,  we get the initial value 
problem [ -0.5 0 .0  0 .0  ] 

x' (t) = 0.5 -0.25 0 .0  x, 
0 .0 0.25 -0.2 

for the vector x(t) = [ X I (t) X2 (t) X3 (t) f.  The simple form of the matrix [ -0 .5 - A 0 .0 
A - AI = 0.5 -0.25 - A 

0.0 0.25 

leads readily to the characteristic equation 

0.0 ] 
0.0 

-0.2 - A  

IA  - Al l = (-0.5 - A) ( -0.25 - A) ( -0.2 - A) = O. 

( 1 8) 

( 1 9) 

Thus the coefficient matrix A in ( 1 8) has the distinct eigenvalues A l = -0.5, A2 = 
-0.25, and A3 = -0.2 . 

CASE 1:  A l = -0.5 .  Substituting A = -0.5 in ( 1 9) ,  we get the equation [ 0.0 0 .0 0 .0 ] [ a ]  [ 0 ] 
[ A + (0.5) . I ] v = 0 .5 0 .25 0 .0  b = 0 

0 .0 0.25 0 .3  c 0 

for the associated eigenvector v = [ a  b e ] T . The last two rows, after division 
by 0 .25 and 0.05,  respectively, yield the scalar equations 

2a + b = 0, 

5b + 6c = O. 

The second equation is  satisfied by b = -6 and c = 5 ,  and then the first equation 
gives a = 3 .  Thus the eigenvector 

VI = [ 3 -6 5 f 
is associated with the eigenvalue A l = -0.5 .  

CASE 2 :  A2 = -0.25 .  Substituting A = -0.25 in ( 1 9) , we get the equation [ -0.25 
[ A + (0.25) . I ] v = � .5 

o 
o 
0 .25 

for the associated eigenvector v = [ a  b e ] T . Each of the first two rows implies 
that a = 0, and division of the third row by 0.05 gives the equation 

5b + c  = 0, 

which is satisfied by b = 1 ,  c = -5.  Thus the eigenvector 

V2 = [ 0 1 -S f 
is associated with the eigenvalue A2 = -0.25.  
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CASE 3: A3 = -0.2. Substituting A = -0.2 in ( 1 9) , we get the equation 

[ A + (0.2) . I ] v = O.S -O.OS 
[ -0.3 0.0 

0.0 0.2S 

for the eigenvector v. The first and third rows imply that a = 0, and b 0, 
respectively, but the all-zero third column leaves c arbitrary (but nonzero) . Thus 

V3 = [ 0  0 I r 

is an eigenvector associated with A3 = -0.2. 

The general solution 

therefore takes the form 

x(t) � C1 [ -i ] e'-o ", + C2 [ J ]  e,-0 25) ' + c, [ � ] e,-0 2)' . 

The resulting scalar equations are 

XI (t) = 3c l e(-0.5) / , 
X2 (t) = -6cI e ( -0.5) 1 + C2e( -0.25) / , 
X3 (t) = SCl e(-0.5) 1 - SC2e(-0.25) 1 + C3e(-0.2) 1 . 

When we impose the initial conditions XI (0) = I S ,  X2 (0) = X3 (0) = 0, we get the 
equations 

3cI = IS ,  
-6c I + C2 = 0, 

SCI - SC2 + C3 = 0 

that are readily solved (in turn) for CI = S, C2 = 30, and C3 = 1 2S .  Thus, finally, 
the amounts of salt at time t in the three brine tanks are given by 

XI (t) = ISe(-O.5) / , 
X2 (t) = -30e(-0.5) 1 + 30e(-0.25)/ , 
X3 (t) = 2Se( -0.5) 1 - ISOe( -0.25) 1 + 1 2Se( -0.2)/ . 

Figure S .4.3 shows the graphs of XI (t) , X2 (t) , and X3 (t ) .  As we would expect, tank 
I is rapidly "flushed" by the incoming fresh water, and XI (t) ---+ 0 as t ---+ +00. The 
amounts X2 (t) and X3 (t) of salt in tanks 2 and 3 peak in turn and then approach zero 
as the whole three-tank system is purged of salt as t ---+ +00. _ 
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Complex Eigenvalues 

Even if some of the eigenvalues are complex, so long as they are distinct the method 
described previously still yields n linearly independent solutions. The only compli
cation is that the eigenvectors associated with complex eigenvalues are ordinarily 
complex valued, so we will have complex-valued solutions. 

To obtain real-valued solutions, we note that-because we are assuming that 
the matrix A has only real entries-the coefficients in the characteristic equation in 
(8) will all be real . Consequently any complex eigenvalues must appear in complex 
conjugate pairs . Suppose then that A = P + q i and I = p - q i are such a pair of 
eigenvalues . If v is an eigenvector associated with A, so that 

(A - AI)v = 0,  

then taking complex conjugates in this equation yields 

(A - II)v = 0 

since A = A and j = I (these matrices being real) and the conjugate of a complex 
product is the product of the conjugates of the factors . Thus the conjugate v of v 
is an eigenvector associated with I. Of course the conjugate of a vector is defined 
componentwise; if 

(20) 

then v = a - bi . The complex-valued solution associated with A and v is then 

that is , 

x(t) = veAl = ve(p+qi ) t = (a + bi )ept (cos qt + i sin qt) ; 

x(t) = ept (a cos q t  - b sin qt )  + i ept (b cos q t  + a sin q t ) .  (2 1 )  

Because the real and imaginary parts of  a complex-valued solution are also solu
tions, we thus get the two real-valued solutions 

X l (t) = Re[x(t ) ]  = ePt (a cos qt - b sin q t ) ,  

X2 (t) = Im[x(t ) ]  = ePt (b cos q t  + a sin qt)  
(22) 

associated with the complex conjugate eigenvalues p ± q i . It is easy to check that 
the same two real-valued solutions result from taking real and imaginary parts of 
veIt . Rather than memorizing the formulas in (22), it is preferable in a specific 
example to proceed as follows:  

• First find explicitly a single complex-valued solution x(t) associated with the 
complex eigenvalue A ;  

• Then find the real and imaginary parts Xl (t) and X2 (t) to get two independent 
real-valued solutions corresponding to the two complex conjugate eigenvalues 
A and I. 
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Find a general solution of the system 

dx, 
- = 4x, - 3x2 , 
dt 

dX2 - = 3x, + 4X2 . 
dt 

(23) 

Solution The coefficient matrix 

FIGURE 5.4.4. Direction field 
and solution curves for the linear 
system x; = 4x, - 3X2 , 
X� = 3x , + 4X2 of Example 3 .  

[ 4 -3 ] A =  
3 4 

has characteristic equation 

and hence has the complex conjugate eigenvalues A = 4 - 3i and I = 4 + 3i . 
Substituting A = 4 - 3i in the eigenvector equation (A - AI)v = 0, we get the 

equation 

[A - (4 - 3i )  . I]v = [ 3� -;� ] [ � ] = [ � ] 
for an associated eigenvalue v = [ a b r . Division of each row by 3 yields the 
two scalar equations 

ia - b = 0, 
a + ib = 0, 

each of which is satisfied by a = 1 and b = i .  Thus v = [ 1  i r is a complex 
eigenvector associated with the complex eigenvalue A = 4 - 3 i .  

The corresponding complex-valued solution x(t) = veAl of  x' = Ax i s  then 

( ) - [ 1 ] (4-3i) t _ [ 1 ] 4t ( 3 . , 3 )  _ 4t [ cos 3t  - i sin 3tJ x t - . e - . e cos t - l SIll t - e . 

3 + 
. 

3 . 
l l l cos t SIll t 

The real and imaginary parts of x(t) are the real-valued solutions 

( ) - 4t [ cos 3t ] x, t - e . 
3 SIll t 

4t [ - sin 3t ] and X2 (t) = e cos 3t ' 

A real-valued general solution of x' = Ax is then given by 

4t [c , cos 3t - C2 sin 3t J x(t) = c , x , (t) + C2X2 (t) = e . 
3 t  + 3t ' c, SIll C2 cos 

Finally, a general solution of the system in (23 ) in scalar form is 

x ,  (t) = e4t (c, cos 3 t  - C2 sin 3t) , 

X2 (t) = e4t (c, sin 3t + C2 cos 3 t ) .  

Figure 5 .4.4 shows some typical solution curves of  the system in  (23) .  Each 
appears to spiral counterclockwise as it emanates from the origin in the x,x2-plane. 
Actually, because of the factor e4t in the general solution, we see that 
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FIGURE 5.4.5. The three brine 
tanks of Example 4. 

Exa mple 4 

• Along each solution curve, the point (X I (t ) ,  X2 (t ) )  approaches the origin as 
t ---+ - 00 ,  whereas 

• The absolute values of X I  (t)  and X2 (t) both increase without bound as t ---+ 

+00. _ 

Figure 5 .4.5 shows a "closed" system of three brine tanks with volumes VI , 
V2 , and V3 . The difference between this system and the "open" system of Fig. 5 .4.2 
is that now the inflow to tank I is the outflow from tank 3 .  With the same notation 
as in Example 2, the appropriate modification of Eq. ( 1 6) is 

dXI 
- = -klx l 
dt 

dX2 

dt 

where ki = r / Vi as in ( 1 7) . 

(24) 

Find the amounts XI  (t ) , X2 (t) , and X3 (t) of salt at time t in the three brine tanks of 
Fig. 5 .4.5 if VI = 50 gal, V2 = 25 gal, V3 = 50 gal, and r = 10  gal/min. 

Solution With the given numerical values, (24) takes the form 

- = 0.2 -0.4 0 x 
dx [ -0.2 0 0.2 ] 
dt 0 0.4 -0.2 

(25) 

with x = [ XI  X2 X3 r as usual. When we expand the determinant of the matrix 

[ -0.2 - A 0.0 0.2 ] 
A - A . I = 0.2 -0.4 - A 0.0 

0.0 0.4 -0.2 - A 

along its first row, we find that the characteristic equation of A is 
(-0.2 - A) (-O.4 - A) (-0.2 - A) + (0 .2) (0 .2) (0 .4) 

= _A3 - (0. 8) . A2 - (0.2) . A 
= -A [(A + 0.4)2 

+ (0 .2)2] = O. 

(26) 

Thus A has the zero eigenvalue AO = 0 and the complex conjugate eigenvalues A, 
I = -0.4 ± (0.2) i . 

CASE 1 :  Ao = o. Substitution of A = 0 in Eq. (26) gives the eigenvector equation 

[ -0.2 0.0 0.2 ] [ a ] [ 0 ] 
(A - 0 . I)v = 0.2 -0.4 0.0 b = 0 

0.0 0.4 -0.2 c 0 
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for v = [ a b c r . The first row gives a = c and the second row gives a = 2b, 
so vo = [ 2 1 2 ] T is an eigenvector associated with the eigenvalue AO = O. The 
corresponding solution xo (t ) = voeAOI of Eq . (25) is the constant solution 

� (t ) = m (27) 

CASE 2: A = -0.4 - (0 .2) i .  
the eigenvector equation 

Substitution of A = -0.4 - (0.2) i  in Eq. (26) gives [ 0 .2  + (0 .2 ) i  
[A - (-0.4 - (0 .2) i ) I] v = 0 .2  

0 .0  

0 .0  
(0 .2) i  
0 .4 

0 .2  ] [ a ] 
0.0 b 

0 .2  + (0 .2) i  c 

The second equation (0 .2)a + (0 .2 ) i  b = 0 is satisfied by a = 1 and b = i .  Then 
the first equation 

[0 .2 + (0 .2) i ]a + (0 .2)c = 0 

gives c = - 1  - i .  Thus v = [ 1 i (- 1 - i )  r is a complex eigenvector associ
ated with the complex eigenvalue A = -0.4 - (0 .2) i .  

The corresponding complex-valued solution x(t )  = veAl of (25) is 

x( t )  = [ 1 

= [ 1 

- 1  - i ] T e( -0.4-0.2i ) 1  

- 1  - i r e (-0.4)' (cos O .2t  - i sin O .2t )  

= e(-0.4) 1 sin 0 .2t + i cos 0 .2t . 
[ COS 0.2t  - i sin 0.2t  ] 

- cos 0.2t - sin 0 .2t - i cos 0 .2t + i sin 0.2t 

The real and imaginary parts of x(t )  are the real-valued solutions 

Xl (t ) = e (-0.4)1 sin 0.2t , 
[ cos O .2t ] 

- cos 0 .2t - sin 0 .2t [ - s in O.2t ] 
X2 (t )  = e (-0.4)1 cos O .2t . 

- cos 0 .2t + sin 0.2t 

The general solution 

has scalar components 

X I  (t ) = 2co + e(-0.4)1 (C I  cos 0 .2t - C2 sin 0 .2t ) ,  

(28) 

X2 (t )  = Co + e(-0.4)1 (C I  sin 0 .2t + C2 cos 0 .2t ) ,  (29) 

X3 ( t )  = 2co + e (-O.4)I [ (  - C l  - C2) cos 0 .2t + ( - C I  + C2 ) sin 0.2t ]  
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giving the amounts of salt in the three tanks at time t . 
Observe that 

(30) 

Of course the total amount of salt in the closed system is constant; the constant Co 

in (30) is one-fifth the total amount of salt. Because of the factors of e (-0.4)1 in (29), 
we see that 

lim X l (t) = 2co , lim X2 (t) = Co , and lim X3 (t) = 2co . 
1 ---+ 00 1 ---+ 00 1 ---+ 00 

20 

FIGURE 5.4.6. The salt content 
functions of Example 4. 

Thus as t --+ +00 the salt in the system approaches a steady-state distribution with 
40% of the salt in each of the two 50-gallon tanks and 20% in the 25-ga1lon tank. 
So whatever the initial distribution of salt among the three tanks, the limiting distri
bution is one of uniform concentration throughout the system. Figure 5 .4.6 shows 
the graphs of the three solution functions with Co = 1 0, C l = 30, and C2 = - 10, in 
which case 

In Problems 1 through 16, apply the eigenvalue method of this 
section to find a general solution of the given system. If initial 
values are given, find also the corresponding particular solu
tion. For each problem, use a computer system or graphing 
calculator to construct a direction field and typical solution 
curves for the given system. 

1. x; = Xl + 2X2 , x� = 2X l + X2 
2. x; = 2Xl + 3X2 , x� = 2Xl + X2 
3. x; = 3X l + 4X2 , x� = 3Xl + 2X2 ; X l (0) = X2 (0) = 1 
4. x; = 4Xl + X2 , X� = 6Xl - X2 
5. x; = 6Xl - 7X2 , x� = X l - 2X2 
6. X; = 9Xl + 5X2 , X� = -6X I - 2x2 ; X l (0) = I , X2 (0) = 0  
7. x; = -3Xl + 4X2 , x� = 6Xl - 5X2 
8. x; = Xl - 5X2 , x� = Xl - X2 
9. x; = 2Xl - 5X2 , x� = 4Xl - 2X2 ; X l (O) = 2, X2 (0) = 3 

10. x; = -3Xl - 2X2 , x� = 9Xl + 3X2 
11 . x; = X l - 2X2 , x� = 2Xl + X2 ; Xl (0) = 0, X2 (0) = 4 
12. x; = Xl - 5X2 , x� = Xl + 3X2 
13. x; = 5Xl - 9X2 , X� = 2X l - X2 
14. x; = 3Xl - 4X2 , x� = 4X l + 3X2 
15. x; = 7Xl - 5X2 , x� = 4X l + 3X2 
16. x; = -50Xl + 20X2 , x� = 100X I - 60X2 
In Problems 1 7  through 25, the eigenvalues of the coefficient 
matrix can be found by inspection and factoring. Apply the 
eigenvalue method to find a general solution of each system. 
17. x; = 4Xl + X2 + 4X3 , x� = Xl + 7X2 + X3 , 

x� = 4Xl + X2 + 4X3 
18. x; = Xl + 2X2 + 2X3 , x� = 2Xl + 7X2 + X3 , 

x� = 2Xl + X2 + 7X3 
19. x; = 4Xl +X2+X3 , x� = Xl +4X2+X3 , X� = Xl +X2+4X3 

Xl (0) = 50 and X2 (0) = X3 (0) = O. 

20. x; = 5Xl + X2 + 3X3 , X� = Xl + 7X2 + X3 , 
X� = 3X l + x2 + 5X3 

• 

21. x; = 5X I -6x3 , x� = 2X l -X2 -2x3 , x� = 4XI -2x2-4x3 
22. x; = 3Xl + 2x2 + 2x3 , x� = -5Xl - 4X2 - 2X3 , 

x� = 5X l + 5X2 + 3X3 
23. x; = 3Xl + X2 + X3 , x� = -5X l - 3X2 - X3 , 

x� = 5Xl + 5X2 + 3X3 
24. x; = 2X l + X2 - X3 , x� = -4Xl - 3X2 - X3 , 

x� = 4Xl + 4X2 + 2X3 
25. x; = 5Xl + 5X2 + 2X3 , x� = -6Xl - 6X2 - 5X3 , 

x� = 6X l + 6X2 + 5X3 
26. Find the particular solution of the system 

dXl 
dt 

dX3 - = -9Xl + 4X2 - X3 dt 
that satisfies the initial conditions Xl (0) = 0, X2 (0) = 0, 
X3 (0) = 17 . 

The amounts X l ( t ) and X2 (t) of salt in the two brine tanks of 
Fig. 5.4. 7 satisfy the differential equations 

where ki = r/Vi for i = 1, 2. In Problems 27 and 28 the vol
umes VI and V2 are given. First solve for Xl (t) and X2 (t), as
suming that r = 10 (gal/min), Xl (0) = 15 (lb), and X2 (0) = O. 
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Then find the maximum amount of salt ever in tank 2. Finally, 
construct afigure showing the graphs of XI (t) and X2 (t) . 

Fresh water 
Flow rate r 

FIGURE 5.4.7. The two brine tanks of 
Problems 27 and 28. 

27. VI = 50 (gal), V2 = 25 (gal) 
28. VI = 25 (gal) ,  V2 = 40 (gal) 

The amounts XI (t) and X2 (t) of salt in the two brine tanks of 
Fig. 5.4. 8 satisfy the differential equations 

where kj = r/Vj as usual. In Problems 29 and 30, solve for 
XI (t) and X2 (t) , assuming that r = 10 (gal/min), XI (0) = 1 5 
(lb), and X2 (0) = O . Then construct a figure showing the 
graphs of XI (t) and X2 (t) . 

FIGURE 5.4.8. The two brine tanks of 
Problems 29 and 30. 

29. VI = 50 (gal), V2 = 25 (gal) 
30. VI = 25 (gal) ,  V2 = 40 (gal) 

Problems 31 through 34 deal with the open three-tank system 
of Fig. 5.4.2. Fresh water flows into tank 1; mixed brine flows 
from tank 1 into tank 2, from tank 2 into tank 3, and out of tank 
3; all at the given flow rate r gallons per minute. The initial 
amounts X I (0) = Xo (lb), X2 (0) = 0, and X3 (0) = 0 of salt 
in the three tanks are given, as are their volumes VI , V2, and 
V3 (in gallons). First solve for the amounts of salt in the three 
tanks at time t, then determine the maximal amount of salt that 
tank 3 ever contains. Finally, construct a figure showing the 
graphs of X I (t) , X2 (t) , and X3 (t) . 
31. r = 30, xo = 27, VI = 30, V2 = 15, V3 = 10 
32. r = 60, Xo = 45, VI = 20, V2 = 30 , V3 = 60 
33. r = 60, Xo = 45, VI = 15 , V2 = 10, V3 = 30 

34. r = 60, Xo = 40, VI = 20, V2 = 12, V3 = 60 

Problems 35 through 37 deal with the closed three-tank sys
tem of Fig. 5.4.5, which is described by the equations in (24). 
Mixed brine flows from tank 1 into tank 2, from tank 2 into 
tank 3, and from tank 3 into tank 1, all at the given flow rate r 
gallons per minute. The initial amounts XI (0) = Xo (pounds), 
X2 (0) = 0, and X3 (0) = 0 of salt in the three tanks are given, 
as are their volumes VI , V2, and V3 (in gallons). First solve 
for the amounts of salt in the three tanks at time t, then deter
mine the limiting amount (as t --+ +00) of salt in each tank. 
Finally, construct a figure showing the graphs of XI (t), X2 (t), 
and X3 (t) . 
35. r = 1 20, Xo = 33 , VI = 20, V2 = 6, V3 = 40 
36. r = 10, Xo = 1 8, VI = 20, V2 = 50, V3 = 20 
37. r = 60, Xo = 55, VI = 60, V2 = 20, V3 = 30 

For each matrix A given in Problems 38 through 40, the zeros 
in the matrix make its characteristic polynomial easy to calcu
late. Find the general solution of x' = Ax. 

�. h U  

0 0 

� ]  2 0 
3 3 
0 4 [ -2 0 0 

- I

n 
39. A = � 2 0 

0 - 1  
0 0 [ 2 0 0 

-� ] -21 -5 -27 40. A = � 0 5 
0 -21 -2 

41. The coefficient matrix A of the 4 x 4 system 

X; = 4x I + X2 + X3 + 7X4 , 
x� = X I + 4X2 + IOx3 + X4 , 
x� = X I + lOx2 + 4X3 + X4 , 
x� = 7xI + X2 + X3 + 4X4 

has eigenvalues A l  = -3, 1..2 = -6, 1..3 = 10, and 
1..4 = 15 . Find the particular solution of this system that 
satisfies the initial conditions 

In Problems 42 through 50, use a calculator or computer sys
tem to calculate the eigenvalues and eigenvectors (as illus
trated in the 5.4 Application below) in order to find a general 
solution of the linear system x' = Ax with the given coefficient 
matrix A. [ -40 - 1 2 54 ] 42. A = 35 13 -46 

-25 -7 34 [ -20 1 1  1 3 ] 43. A = 1 2 -1 -7 
-48 2 1 3 1 
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44. A = -90 -9 129 - 10 32 18 -2 

90 15 - 1 23 48. A = 1 39 -40 - 1 67 - 1 2 1 

[ 47 -5 ] 
[ 

9 -7 -5 

-
n 

-232 64 360 248 
- 1 2 7 1 1  [ 1 39 - 14 -52 - 14 � ]  45. A = 24 - 1 7 - 19 -22 5 7 8 -7 
- 1 8 1 3 17 49. A = 370 -38 - 1 39 -38 76 [ 1 3 -42 106 1 39

] 
1 52 - 16 -59 - 1 3  35 

46. A = ; - 16 52 70 95 - 10 -38 -7 23 
6 -20 -3 1 9 1 3  0 0 0 - 1 3  

- 1  -6 22 33 - 14 19 - 1 0 -20 10 4 

[ � 

- 1 8  - 16 

J ]  
50. A = -30 12 -7 -30 1 2 1 8 

-8 6 7 - 1 2  10 - 10 -9 10 2 47. A =  34 -27 -26 6 9 0 6 5 - 1 5 
-26 21 25 12 - 14 23 - 1 0 -20 10 0 

5.4 Application 

. " . , .  [ e  • •  25 . - . 2 ]  H ·A [ [ - . 513 13 . 1313 13 . 1313 ] [ • 513 - • 25 e .  €Ie ] [ e .  €Ie • 25 - • 213 ] ] e i 91J 1  A 

e i 9IJc A · 
[ [ 13 . 1313 13 . 1313 1 . 1313 ] [ e .  €Ie 1 .  €Ie -2 . €Ie ] [ 1 . 1313 -5 . 1313 1 . 67 ] ]  

"' it t·1 E :  E [l I T  Cl'l'r.1 D F' :'  e f' L :': 
� __ 1'i'r.l'7I:'I 1rffiliI . ' • 

FIGURE 5.4.9. TI-86 
calculation of the eigenvalues and 
eigenvectors of the matrix A. 

Most computational systems offer the capability to find eigenvalues and eigenvec
tors readily. For instance, Fig. 5 .4 .9 shows a graphing calculator computation of the 
eigenvalues and eigenvectors of the matrix 

A = 0.5 -0.25 0.0 
[ -0.5 0.0 0.0 ] 

0.0 0.25 -0.2 

of Example 2. We see each eigenvector displayed as a column vector beneath its 
eigenvalue. Note that with results presented in decimal form, it is up to us to guess 
(and verify by matrix multiplication) that the exact eigenvector associated with the 

third eigenvalue A = - 1 is v = [ 1  -2 � r. Once the matrix A has been 
entered, the Maple command 

eigenvects (A)  ; 

the Mathematica command 

Eigensystem [ A ]  

or  the MATLAB command 

[ V , D ]  = eig (A)  

(where D will be  a diagonal matrix displaying the eigenvalues of  A and the column 
vectors of v are the corresponding eigenvectors) produce similar results . You can 
use these commands to find the eigenvalues and eigenvectors needed for any of the 
problems in this section. 

For a more substantial investigation, choose a positive integer n < 10  (n = 5, 
for instance) and let q\ , q2 , . . .  , qn denote the first n nonzero digits in your student 
ID number. Now consider an open system of brine tanks as in Fig. 5 .4.2, except 
with n rather than three successive tanks having volumes Vi = I Oqi (i = 1 , 2, . . .  , 
n) in gallons. If each flow rate is r = 10 gallons per minute, then the salt amounts 
x\ (t ) ,  X2 (t) ,  . . .  , xn (t) satisfy the linear system 

x� = -k\x\ , 
x; = ki- \ Xi - \ - kiXi (i = 2, 3 ,  . . .  , n ) ,  
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X l X 2 X 3 

FIGURE 5.5.1.  Three 
spring-coupled masses. 
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where ki = r/� . Apply the eigenvalue method to solve this system with initial 
conditions 

Graph the solution functions and estimate graphically the maximum amount of salt 
that each tank ever contains. 

For an alternative investigation, suppose that the system of n tanks is closed 
as in Fig. 5 .4 .5 ,  so that tank 1 receives as inflow the outflow from tank n (rather 
than fresh water) . Then the first equation should be replaced with x; = knxn - klXI . 
Now show that, in this closed system, as t ---+ +00 the salt originally in tank 1 
distributes itself with constant density throughout the various tanks. A plot like 
Fig. 5 .4.6 should make this fairly obvious. 

In this section we apply the matrix methods of Sections 5.3 and 5 .4 to investigate 
the oscillations of typical mass-and-spring systems having two or more degrees of 
freedom. Our examples are chosen to illustrate phenomena that are generally char
acteristic of complex mechanical systems. 

Figure 5 .5 . 1  shows three masses connected to each other and to two walls by 
the four indicated springs. We assume that the masses slide without friction and 
that each spring obeys Hooke's law-its extension or compression x and force F of 
reaction are related by the formula F = -kx .  If the rightward displacements Xl , 
X2 , and X3 of the three masses (from their respective equilibrium positions) are all 
positive, then 

• The first spring is stretched the distance Xl ; 
• The second spring is stretched the distance X2 - Xl ; 
• The third spring is stretched the distance X3 - X2 ; 
• The fourth spring is compressed the distance X3 . 

Therefore, application of Newton's law F = ma to the three masses (as in Example 
1 of Section 5 . 1 )  yields their equations of motion: 

m2X� = -k2 (X2 - Xl ) + k3 (X3 - X2) ,  

m3x� = -k3 (X3 - X2) - k4X3 . 

( 1 )  

Although we  assumed in  writing these equations that the displacements of the masses 
are all positive, they actually follow similarly from Hooke's and Newton's laws, 
whatever the signs of these displacements . 

In terms of the displacement vector x = [ X l X2 X3 r, the mass matrix 

[ m l 0 0 ] 
M = 0 m2 0 o 0 m3 

(2) 

• This optional section may be omitted without loss of continuity. It provides a sample of the more 
technical applications of eigenvalues to physics and engineering problems. 
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�. � ... ,! ' " �.
kn+1 

. ", J , . . , '  . " "'" . . , 

X I  X2 Xn _ )  Xn 
FIGURE 5.5.2. A system of n 
spring-coupled masses . 

and the stiffness matrix 

(3) 

the system in ( l )  takes the matrix form 

Mx" = Kx. (4) 

The notation in Egs.  ( 1 )  through (4) generalizes in a natural way to the system 
of n spring-coupled masses shown in Fig. 5 .5 .2. We need only write 

and 

K =  

- (kl + k2) k2 
k2 - (k2 + k3) 

o 
o 

o 
o 

o 
o 

o 

for the mass and stiffness matrices in Eg. (4) .  

o 
o 
o 
o 

- (kn- 1 + kn) kn 

kn - (kn + kn+1 ) 

(5) 

(6) 

The diagonal matrix M is obviously nonsingular; to get its inverse M- 1 we 
need only replace each diagonal element with its reciprocal. Hence multiplication 
of each side in Eg. (4) by M-1 yields the homogeneous second-order system 

x" = Ax, (7) 

where A = M- 1 K. There is a wide variety of frictionless mechanical systems for 
which a displacement or position vector x, a nonsingular mass matrix M, and a 
stiffness matrix K satisfying Eg. (4) can be defined. 

Solution of Second-Order Systems 

To seek a solution of Eg. (7) ,  we substitute (as in Section 5 .4 for a first-order system) 
a trial solution of the form 

(8) 

where v is a constant vector. Then x" = ot2vecxt , so substitution of Eg. (8) in (7) 
gives 
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which implies that 

Av = o?v. (9) 

Therefore x(t) = year is a solution of x" = Ax if and only if a2 = A, an eigenvalue 
of the matrix A, and v is an associated eigenvector. 

If x" = Ax models a mechanical system, then it is typical that the eigenvalues 
of A are negative real numbers . If 

a2 = A = - ul < 0, 

then a = ±wi . In this case the solution given by Eg. (8) is 

x(t ) = ve iwr = v(cos wt + i sin wt ) . 

The real and imaginary parts 

X I (t) = v cos wt and X2 (t ) = v sin wt ( 1 0) 

of x(t) are then linearly independent real-valued solutions of the system. This anal
ysis leads to the following theorem. 

TH EOREM 1 Second-Order Homogeneous Linear Systems 

If the n x n matrix A has distinct negative eigenvalues -wT , -w� , . . .  , -w� with 
associated [real] eigenvectors VI , V2 , . . . , vn , then a general solution of 

is given by 

x" = Ax 

n 
x(t)  = L )ai cos wi t + bi sin w; t )v; 

;= 1 
( 1 1 ) 

with ai and bi arbitrary constants . In the special case of a nonrepeated zero 
eigenvalue AO with associated eigenvector Yo , 

xo (t) = (ao + bot )vo ( 1 2) 

is the corresponding part of the general solution. 

Remark: The nonzero vector Vo is an eigenvector corresponding to 1..0 = 0 
provided that Avo = O. If x(t) = (ao + bot )vo ,  then 

x" = o ·  Vo = (ao + bot )  · 0 =  (ao + bot )  . (Avo) = Ax, 

thus verifying the form in Eg. ( 1 2) .  • 
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Exa mple 1 

�. � x2 (t) 

Equilibrium positions 

FIGURE 5.5.3. The mass-and
spring system of Example 1 .  

.. .. .. . - " -" 

Consider the mass-and-spring system with n = 2 shown in Fig. 5 .5 .3 .  Because there 
is no third spring connected to a right-hand wall, we set k3 = O. If m ]  = 2, m2 = 1 ,  
kl = 1 00, and k2 = 50, then the equation Mx" = Kx is 

( 1 3) 

which reduces to x" = Ax with 

The characteristic equation of A is 

(-75 - A) (-50 - A) - 50 · 25 = A2 + 1 25A + 2500 
= (A + 25) (A + 1 00) = 0, 

so A has the negative eigenvalues A l = -25 and A2 = - 100. By Theorem 1 ,  
the system i n  ( 1 3) therefore has solutions with [circular] frequencies W I  = 5 and 
W2 = 1 0. 

CASE 1 :  A l = -25 . The eigenvector equation (A - U)v = 0 is [ -50 25 ] [ a ] [ 0 ] 
50 -25 b - 0 ' 

so an eigenvector associated with A l = -25 is V I = [ 1  2 r .  

CASE 2 :  A2 = - 100. The eigenvector equation (A - U)v = 0 is 

so an eigenvector associated with A2 = - 100 is V2 = [ 1  - 1 ] T • 

By Eq. ( 1 1 )  it follows that a general solution of the system in ( 1 3) is given by 

x(t) = (a l cos 5t + bl sin 5t)v I + (a2 cos l Ot + b2 sin l Ot)v2 .  ( 14) 

As in the discussion of Example 3 of Section 5 .2, the two terms on the right in 
Eq. ( 14) represent free oscillations of the mass-and-spring system. They describe 
the physical system's two natural modes of oscillation at its two [circular] natural 
frequencies W I = 5 and W2 = 1 0. The natural mode 

(with c I  = Jar + br , cos al = aJ /CI , and sin al = b J /c] ) has the scalar component 
equations 

XI (t) = CI  cos (5t - al ) ,  
X2 (t) = 2cI cos (5t - ad,  

( 1 5) 



Exa m ple 2 

FIGURE 5.5.6. The three 
railway cars of Example 2. 
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and therefore describes a free oscillation in which the two masses move in syn
chrony in the same direction and with the same frequency w, = 5, but with the 
amplitude of motion of m2 twice that of m ,  (see Fig. 5 .5 .4). The natural mode 

has the scalar component equations 

x, (t) = C2 cos ( 10t - CX2) ,  
X2 (t) = -C2 cos ( l Ot - CX2) ,  

( 16) 

and therefore describes a free oscillation in which the two masses move in syn
chrony in opposite directions with the same frequency W2 = 10 and with equal 
amplitudes of oscillation (see Fig. 5 .5 .5) .  • 

o 

x = X2(t) 

n 
t 

FIGURE 5.5.4. Oscillations in 
the same direction with frequency 
WI = 5 ; the amplitude of motion 
of mass 2 is twice that of mass 1 .  

1\ f\ 1\ � /I r:� ="X�(t� 1\ " 1\ 
A 

v V v V v  y v v v v v v v V 
x = X2(t) 

o n/2 1t 3n/2 

FIGURE 5.5.5. Oscillations in 
opposite directions with frequency 
lV2 = lO ;  the amplitudes of motion 
of the two masses are the same. 

Figure 5 .5 .6 shows three railway cars connected by buffer springs that react when 
compressed, but disengage instead of stretching. With n = 3, k2 = k3 = k, and 
k, = k4 = 0 in Eqs .  (2) through (4), we get the system 

[ 1' 
which is equivalent to 

with 

0 
m2 
0 

o ] [ -k 
o x" = k 

m3 0 

C, [ -c,  x" = c� -2C2 
C3 

k 
-2k 

k 

c� ] x 
-C3 

k 
(i = 1 , 2, 3) . Ci = -mi 

� J x' 
-k 

( 17) 

( 1 8) 

( 1 9) 

If we assume further that m ,  = m3 , so that c, = C3 , then a brief computation gives 

(20) 
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for the characteristic equation of the coefficient matrix A in Eq. ( 1 8) .  Hence the 
matrix A has eigenvalues 

(2 I a) 

corresponding to the natural frequencies 

(2 Ib) 

of the physical system. 
For a numerical example, suppose that the first and third railway cars weigh 12 

tons each, that the middle car weighs 8 tons, and that the spring constant is k = 1 .5 
tons/ft; i .e . , k = 3000 lb/ft. Then, using fps units with mass measured in slugs (a 
weight of 32 pounds has a mass of 1 slug) , we have 

and 
3000 

CI = 
750 

= 4, 
Hence the coefficient matrix A is 

[ -4 A = � 

C2 = 3000 = 6 .  
500 

4 
- 12 
4 � ] , -4 

(22) 

and the eigenvalue-frequency pairs given by (2 1 a) and (2 1 b) are A l = 0, WI = 0; 
A2 = -4, Wz = 2; and A3 = - 1 6, W3 = 4. 
CASE 1 :  A l = 0, WI = O. The eigenvector equation (A - AI)v = 0 is 

[ -4 Av = � 4 
- 1 2  
4 

so it is clear that VI = [ 1 1 1 r is an eigenvector associated with A l = O. 
According to Theorem 1 ,  the corresponding part of a general solution of xl! = Ax is 

CASE 2 :  A2 = -4, W2 = 2. The eigenvector equation (A - AI)v = 0 is 

[ 0 4 
(A + 4I)v = 6 -8 

o 4 

so it is clear that V2 = [ 1 0 - 1 ] T is an eigenvector associated with A2 = -4. 
According to Theorem 1 ,  the corresponding part of a general solution of xl! = Ax is 
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CASE 3: A3 = - 1 6, (V3 = 4. The eigenvector equation (A - AI)v = 0 is [ 1 2  
(A + l 6I)v = � 

so it is clear that V3 = [ 1 -3 1 r is an eigenvector associated with A3 = - 16. 
According to Theorem 1 ,  the corresponding part of a general solution of x" = Ax is 

The general solution x = XI + X2 + X3 of x" = Ax is therefore given by 

To determine a particular solution, let us suppose that the leftmost car is moving to 
the right with velocity Vo and at time t = 0 strikes the other two cars, which are 
together but at rest. The corresponding initial conditions are 

X I  (0) = X2 (0) = X3 (0) = 0, 
x; (0) = Va , x2 (0) = x� (O) = O. 

Then substitution of (24a) in (23) gives the scalar equations 

al + a2 + a3 = 0, 
a l - 3a3 = 0, 
a l - a2 + a3 = 0, 

(24a) 
(24b) 

which readily yield a l = a2 = a3 = O. Hence the position functions of the three 
cars are 

X I (t) = b i t  + b2 sin 2t + b3 sin 4t, 
X2 (t) = b i t  - 3b3 sin 4t, 
X3 (t) = b i t  - b2 sin 2t + b3 sin 4t , 

and their velocity functions are 

X; (t) = bl + 2b2 cos 2t + 4b3 cos 4t , 
x2 (t) = bl - l 2b3 cos 4t , 
x� (t) = bl - 2b2 cos 2t + 4b3 cos 4t . 

Substitution of (24b) in (26) gives the equations 

b l + 2b2 + 4b3 = Va , 
bl - l 2b3 = 0, 
b l - 2b2 + 4b3 = 0 

(25) 

(26) 
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that readily yield b l = � Vo , b2 = i Vo , and b3 = 12 Vo .  Finally, the position functions 
in (25) are 

X l (t) = -b. vo ( 1 2t + 8 sin 2t + sin 4t) ,  

- 3 sin 4t) ,  

X3 (t) = -b. vo ( 1 2t - 8 sin 2t + sin 4t ) .  

(27) 

But these equations hold only so long as the two buffer springs remain com
pressed; that is, while both 

X2 - Xl < 0 and X3 - X2 < o. 

To discover what this implies about t ,  we compute 

and, similarly, 

X2 (t) - X l (t) = -b. vo ( -8 sin 2t - 4 sin 4t) 

= - -b. vo (8 sin 2t + 8 sin 2t cos 2t) 

= - i vo (sin 2t) ( 1  + cos 2t) 

X3 (t) - X2 (t) = - i vo (sin 2t) ( 1  - cos 2t) .  

It follows that X2 - Xl < 0 and X3 - X2 < 0 until t = rr / 2  � 1 .57 (seconds), at 
which time the equations in (26) and (27) give the values 

We conclude that the three railway cars remain engaged and moving to the right 
until disengagement occurs at time t = rr /2. Thereafter, cars 1 and 2 remain at 
rest ( ! ) , while car 3 continues to the right with speed Vo . If, for instance, Vo = 48 
feet per second (about 33 miles per hour) , then the three cars travel a distance of 
9rr � 28 .27 (ft) during their 1 .57 seconds of engagement, and 

X l (t) = X2 (t) = 9rr, X3 (t) = 48t - 1 5rr (27') 

for t > rr /2. Figure 5 .5 .7 illustrates the "before"and "after"situations, and Fig. 5 .5.8 
shows the graphs of the functions X l (t ) ,  X2 (t) , and X3 (t) in Eqs. (27) and (27'). • 

Forced Oscillations and Resonance 

Suppose now that the i th mass of the mass-and-spring system in Fig. 5 . 5 . 2  is subject 
to an external force F; (i = I ,  2, . . .  , n) in addition to the forces exerted by the 
springs attached to it. Then the homogeneous equation Mx" = Kx is replaced with 
the nonhomogeneous equation 

Mx" = Kx + F  (28) 
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(a) 
50 

25 

.y Car3 ,-"", 
. IJ '  conunlles �" 

Cars I and 2 

° o����---L--�� 0.5 1 .0 1 .5 2.0 2.5 
( b) 

FIGURE 5.5.7. (a) Before; (b) after. FIGURE 5.5.8. Position 
functions of the three rai lway cars 
of Example 2. 

Exa m ple 3 

FIGURE 5.5.9. The forced 
mass-and-spring system of 
Example 3 . 

where F = [ F, F2 FIl r is the external force vector for the system. Mul-
tipl ication by M- ' yields 

x" = Ax + f  (29) 

where f is the external force vector per unit mass. We are especially interested in 
the case of a periodic external force 

f( t ) = Fa cos wt (30) 

(where Fa is a constant vector) . We then anticipate a periodic particular solution 

xp (t ) = c cos wt (3 1 ) 

with the known external frequency w and with a coefficient vector c yet to be deter
mined. Because x; = -w2c cos wt , substitution of (30) and (3 1 )  in (29), followed 
by cancellation of the common factor cos wt , gives the linear system 

(32) 

to be solved for c.  
Observe that the matrix A + w21 is nonsingular-in which case Eq. (32) can 

be solved for c-unless -w2 = A, an eigenvalue of A. Thus a periodic particular 
solution of the form in Eq. (3 1 )  exists provided that the external forcing frequency 
does not equal one of the natural frequencies w "  W2 , . . .  , Wn of the system. The 
case in which w is a natural frequency corresponds to the phenomenon of resonance 
discussed in Section 2.6 .  

Suppose that the second mass in Example 1 is subjected to the external periodic 
force 50 cos wt . Then with m ,  = 2, m2 = 1 , k ,  = 1 00, k2 = 50, and Fa = 50 in 
Fig. 5 . 5 .9, Eq. (29) takes the form " [ -75 25 ] [ 0 ] 

x = 50 -50 x + 50 cos wt , 

and the substitution x = c cos wt leads to the equation [ w2 - 75 25 ] [ 0 ] 
50 w2 - 50 c = 

-50 

(33) 

(34) 
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1 5 .----,m-----�----� 

°O�----75----�10���15 
Forced frequency 

FIGURE 5.5.10. Frequency
amplitude plot for Example 3 . 

for the coefficient vector c = [ C [ C2 r. This system is readily solved for 

1 250 
CI - --::---------:::-------- (w2 - 25) (w2 - 100) 

, 
50(w2 - 75) 

C2 = - . 
(w2 - 25) (w2 - 100) 

(35) 

For instance, if the external squared frequency is w2 = 50, then (35) yields 
CI = - 1 ,  C2 = - 1 .  The resulting forced periodic oscillation is described by 

X I (t) = - cos wt , X2 (t) = - cos wt . 

Thus the two masses oscillate in synchrony with equal amplitudes and in the same 
direction .  

If the external squared frequency is w2 = 1 25 ,  then (35) yields C [ = ! ,  C2 = 
- 1 .  The resulting forced periodic oscillation is described by 

XI (t) = ! cos wt , X2 (t ) = - cos wt , 

and now the two masses oscillate in synchrony in opposite directions, but with the 
amplitude of motion of m2 twice that of m I . 

It is evident from the denominators in (35) that C I and C2 approach +00 as 
w approaches either of the two natural frequencies WI = 5 and Wz = 1 0  (found 
in Example 1 ) . Figure 5 .5 . 1 0  shows a plot of the amplitude J cr + c� of the forced 
periodic solution x(t) = c cos wt as a function of the forced frequency w. The peaks 
at W2 = 5 and W2 = 10  exhibit visually the phenomenon of resonance. • 

Periodic and Transient Solutions 

It follows from Theorem 4 of Section 5 .3 that a particular solution of the forced 
system 

x" = Ax + F 0 cos wt (36) 

will be of the form 

(37) 

where xp (t ) is a particular solution of the nonhomogeneous system and xc (t) is a 
solution of the corresponding homogeneous system. It is typical for the effects of 
frictional resistance in mechanical systems to damp out the complementary function 
solution Xc (t ) ,  so that 

xc (t) --+ 0 as t --+ +00. (38) 

Hence xc (t) is a transient solution that depends only on the initial conditions ;  it 
dies out with time, leaving the steady periodic solution xp (t) resulting from the 
external driving force: 

x(t) --+ xp (t ) as t --+ +00. (39) 

As a practical matter, every physical system includes frictional resistance (however 
small) that damps out transient solutions in this manner. 
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lID Problems 

Problems 1 through 7 deal with the mass-and-spring system 
shown in Fig. 5.5. 1 1  with stiffness matrix 

K = [ - (kl + k2) k2 
and with the given mks values for the masses and spring con
stants. Find the two natural frequencies of the system and de
scribe its two natural modes of oscillation. 

FIGURE 5.5.11 .  The mass-and-spring 
system for Problems 1 through 6. 

1. m l = m2 = 1 ; k l = 0, k2 = 2, k3 = 0 (no walls) 
2. m l = m2 = 1 ; kl = I , k2 = 4, k3 = 1 
3. m l = I , m2 = 2; k l = I , k2 = k3 = 2  
4. m l = m2 = 1 ; k l = 1 ,  k2 = 2, k3 = 1 
5. m l = m2 = 1 ; kl = 2, k2 = 1 ,  k3 = 2 6. m l = I , m2 = 2; k l = 2, k2 = k3 = 4  
7. m l  = m2 = 1 ; kl = 4, k2 = 6, k3 = 4  

In Problems 8 through 10 the indicated mass-and-spring sys
tem is set in motion from rest (x; (0) = x� (0) = 0) in its equi
librium position (X I (0) = X2 (0) = 0) with the given external 
forces FI (t) and F2 (t) acting on the masses m I and m2, respec
tively. Find the resulting motion of the system and describe it 
as a superposition of oscillations at three different frequencies. 
8. The mass-and-spring system of Problem 2, with FI (t) = 

96 cos 5t , F2 (t) == 0 
9. The mass-and-spring system of Problem 3 , with FI (t) == 

0, F2 (t) = 120 cos 3t 
10. The mass-and-spring system of Problem 7, with FI (t) = 

30 cos t , F2 (t) = 60 cos t 
11. Consider a mass-and-spring system containing two 

masses m l = 1 and m2 = 1 whose displacement func
tions x (t ) and y et ) satisfy the differential equations 

x" = -40x + 8y, 
y" = 12x - 60y . 

(a) Describe the two fundamental modes of free oscilla
tion of the system. (b) Assume that the two masses start 
in motion with the initial conditions 

and 

x (O) = 19 , x' (O) = 12 

y eO) = 3 , y' (O) = 6 

and are acted on by the same force, FI (t) = F2 (t) = 
- 1 95 cos 7 t . Describe the resulting motion as a superpo
sition of oscillations at three different frequencies. 

In Problems 12 and 13, find the natural frequencies of the 
three-mass system of Fig. 5.5. 1,  using the given masses and 
spring constants. For each natural frequency w, give the ra
tio a l :a2:a3 of amplitudes for a corresponding natural mode 
XI = al cos wt, X2 = a2 cos wt, X3 = a3 cos wt. 
12. 
13. 

14. 

15. 

16. 

m l = m2 = m3 = 1 ; k l = k2 = k3 = k4 = 1 m l = m2 = m3 = I ; kl = k2 = k3 = k4 = 2  
(Hint: One eigenvalue is A = -4.) 
In the system of Fig. 5 .5 . 1 2, assume thatm l = 1 ,  kl = 50, 
k2 = 10, and Fa = 5 in mks units, and that w = 10. Then 
find m2 so that in the resulting steady periodic oscillations, 
the mass m l  will remain at rest( ! ) .  Thus the effect of the 
second mass-and-spring pair will be to neutralize the ef
fect of the force on the first mass. This is an example of 
a dynamic damper. It has an electrical analogy that some 
cable companies use to prevent your reception of certain 
cable channels .  

FIGURE 5.5.12. The mechanical 
system of Problem 14. 

Suppose that m l = 2, m2 = � ,  k l = 75, k2 = 25, 
Fa = 100, and w = 10 (all in mks units) in the forced 
mass-and-spring system of Fig. 5 .5.9. Find the solution of 
the system Mx" = Kx + F that satisfies the initial condi
tions x(O) = x' (O) = O. 
Figure 5 .5 . 1 3 shows two railway cars with a buffer spring. 
We want to investigate the transfer of momentum that oc
curs after car 1 with initial velocity Va impacts car 2 at rest. 
The analog of Eq. ( 1 8) in the text is 

x" = [ -cI C2 cI J -C2 
X 

with c; = k/m; for i = 1 , 2. Show that the eigenvalues of 
the coefficient matrix A are A l = 0 and A2 = -CI - C2, 
with associated eigenvectors v I = [ 1 1 r and V2 = 

[ C I -C2 r. 
X2'(O) = 0 

FIGURE 5.5.13. The two railway 
cars of Problems 1 6  through 19 . 

17. If  the two cars of Problem 1 6  both weigh 16 tons (so that 
m l = m2 = 1000 (slugs» and k = 1 ton/ft (that is, 2000 
lb/ft), show that the cars separate after If /2 seconds, and 
that x; (t) = 0 and x� (t) = Va thereafter. Thus the original 
momentum of car 1 is completely transferred to car 2. 
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18. If  cars 1 and 2 weigh 8 and 1 6 tons, respectively, and 
k = 3000 lb/ft, show that the two cars separate after 7r /3 
seconds, and that 

x; (t) = - t Va and x� (t) = + � vo 

thereafter. Thus the two cars rebound in opposite direc
tions. 

19. If cars 1 and 2 weigh 24 and 8 tons, respectively, and 
k = 1500 lb/ft, show that the cars separate after 7r /2 sec
onds, and that 

x; (t) = + 4 vo and x� (t) = + � vo 

thereafter. Thus both cars continue in the original direc
tion of motion, but with different velocities. 

Problems 20 through 23 deal with the same system of three 
railway cars (same masses) and two buffer springs (same 
spring constants) as shown in Fig. 5.5.6 and discussed in Ex
ample 2. The cars engage at time t = 0 with X I (0) = 
X2 (0) = X3 (0) = 0 and with the given initial velocities (where 
Vo = 48 ftls). Show that the railway cars remain engaged until 
t = 7r /2 (s), after which time they proceed in their respective 
ways with constant velocities. Determine the values of these 
constantfinal velocities x; (t) , x� (t) , and x� (t) of the three cars 
for t > 7r /2. In each problem you should find (as in Example 
2) that the first and third railway cars exchange behaviors in 
some appropriate sense. 
20. x; (0) = vo , x� (0) = 0, x� (0) = -Vo 
21. x; (0) = 2vo , x� (O) = 0, x� (O) = -Vo 
22. x; (0) = vo , x� (0) = vo , x� (0) = -2vo 
23. x; (0) = 3vo , x� (O) = 2vo , x� (O) = 2vo 
24. In the three-railway-car system of Fig. 5.5 .6, suppose that 

cars 1 and 3 each weigh 32 tons, that car 2 weighs 8 tons, 
and that each spring constant is 4 tons/ft. If x; (0) = Vo 
and x� (0) = x� (0) = 0, show that the two springs are 
compressed until t = 7r /2 and that 

x; (t) = - � vo and x� (t) = x� (t) = +� vo 

thereafter. Thus car 1 rebounds, but cars 2 and 3 continue 
with the same velocity. 

The Two-Axle Automobile 
In Example 4 of Section 2. 6 we investigated the vertical oscil
lations of a one-axle car-actually a unicycle. Now we can 
analyze a more realistic model: a car with two axles and with 
separate front and rear suspension systems. Figure 5.5. 14 rep
resents the suspension system of such a car. We assume that 
the car body acts as would a solid bar of mass m and length 
L = L I + L2. It has moment of inertia I about its center of 
mass C, which is at distance L I from the front of the car. The 
car has front and back suspension springs with Hooke 's con
stants kl and k2, respectively. When the car is in motion, let 
x (t) denote the vertical displacement of the center of mass of 
the car from equilibrium; let O (t) denote its angular displace
ment (in radians) from the horizontal. Then Newton 's laws of 

motion for linear and angular acceleration can be used to de
rive the equations 

25. 

26. 

Equilibrium 
position 

FIGURE 5.5.14. Model of the 
two-axle automobile. 

(40) 

Suppose that m = 75 slugs (the car weighs 2400 lb), L I = 
7 ft, L2 = 3 ft (it's a rear-engine car) , kl = k2 = 2000 
lb/ft, and I = 1000 ft·lb·s2 • Then the equations in (40) 
take the form 

75x" + 4oo0x - 80000 = 0, 

10000" - 8oo0x + 1 1 6,0000 = O. 

(a) Find the two natural frequencies WI and W2 of the car. 
(b) Now suppose that the car is driven at a speed of v feet 
per second along a washboard surface shaped like a sine 
curve with a wavelength of 40 ft. The result is a periodic 
force on the car with frequency W = 27r v/40 = 7r v/20. 
Resonance occurs when with W = WI or W = W2 . Find the 
corresponding two critical speeds of the car (in feet per 
second and in miles per hour) . 
Suppose that kl = k2 = k and L I = L2 = 4 L in 
Fig. 5 .5 . 1 4 (the symmetric situation). Then show that ev
ery free oscillation is a combination of a vertical oscilla
tion with frequency 

and an angular oscillation with frequency 

In Problems 27 through 29, the system of Fig. 5.5. 14 is taken 
as a model for an undamped car with the given parameters in 
fps units. (a) Find the two natural frequencies of oscillation 
(in hertz). (b) Assume that this car is driven along a sinu
soidal washboard surface with a wavelength of 40 ft. Find the 
two critical speeds. 
27. m = 1 00, I = 800, L I = L2 = 5, kl = k2 = 2000 
28. m = 1 00, I = 1 000, L I = 6, L2 = 4, kl = k2 = 2000 
29. m = 1 00, I = 800, L I = L2 = 5, kl = 1 000, k2 = 2000 
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___ l\!uItipl� Ei.&e.�value Solutions 

Exa mple 1 

In Section 5 .4 we saw that if the n x n matrix A has n distinct (real or complex) 
eigenvalues A I . A2 • . . . •  An with respective associated eigenvectors VJ , V2 • . . . •  Vn • 
then a general solution of the system 

is given by 

dx 
- = Ax 
dt 

( 1 )  

(2) 

with arbitrary constants C I . C2 • • • • •  Cn . In this section we discuss the situation when 
the characteristic equation 

IA - Al l = 0 (3) 

does not have n distinct roots. and thus has at least one repeated root. 
An eigenvalue is of mUltiplicity k if it is a k-fold root of Eq. (3) . For each 

eigenvalue A. the eigenvector equation 

(A - AJ)v = 0 (4) 

has at least one nonzero solution v. so there is at least one eigenvector associated 
with A .  But an eigenvalue of multiplicity k > 1 may have fewer than k linearly 
independent associated eigenvectors. In this case we are unable to find a "complete 
set" of n linearly independent eigenvectors of A. as needed to form the general 
solution in (2). 

Let us call an eigenvalue of multiplicity k complete if it has k linearly in
dependent associated eigenvectors . If every eigenvalue of the matrix A is com
plete. then-because eigenvectors associated with different eigenvalues are linearly 
independent-it follows that A does have a complete set of n linearly independent 
eigenvectors V I . V2 • . . . •  Vn associated with the eigenvalues A I .  A2 • . . . •  An (each 
repeated with its multiplicity) .  In this case a general solution of x' = Ax is still 
given by the usual combination in (2). 

- -
Find a general solution of the system 

4 
- 1  

4 
(5) 

Solution The characteristic equation of the coefficient matrix A in Eq. (5) is 

IA - Al l = 
9 - A 
-6 
6 

4 
- I - A  

4 

o 
o 

3 - A  

= (3 - A) [ (9 - A)(- 1 - A) + 24] 
= (3 - A) ( 1 5  - 8A + A 2) 
= (5 - A) (3 - A)2 = o. 

Thus A has the distinct eigenvalue A l = 5 and the repeated eigenvalue A2 = 3 of 
multiplicity k = 2. 
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CASE 1:  A I = 5. The eigenvector equation (A-U)v = 0, where v = [a b cf , 
is 

(A - Snv � [ -i -� J ]  [ n � m 
Each of the first two equations, 4a + 4b = 0 and -6a - 6b = 0, yields b = -a . 
Then the third equation reduces to 2a - 2c = 0, so that c = a . The choice a = I 
then yields the eigenvector 

VI = [ I - 1  I r 
associated with the eigenvalue A I = 5 .  

CASE 2 :  A2 = 3 . Now the eigenvector equation is 

[ 6 4 
(A - 3J)v = -6 -4 

6 4 

so the nonzero vector v = [ a  b C r is an eigenvector if and only if 

6a + 4b = 0; (6) 

that is, b = - �a .  The fact that Eq. (6) does not involve c means that C is arbitrary, 
subject to the condition v =1= O. If c = 1 ,  then we may choose a = b = 0; this gives 
the eigenvector 

V2 = [ 0 0 1 r 
associated with A2 = 3 . If c = 0, then we must choose a to be nonzero. For 
instance, if a = 2 (to avoid fractions) , then b = -3 ,  so 

V3 = [ 2  -3 0 r 

is a second linearly independent eigenvector associated with the multiplicity 2 eigen
value A2 = 3 . 

Thus we have found a complete set VI , V2 , V3 of three eigenvectors associated 
with the eigenvalues 5 , 3 , 3 .  The corresponding general solution of Eq. (5) is 

with scalar component functions given by 

XI (t) = cj e5t + 2c3e3t , 
X2 (t) = _cl e5t - 3c3e3t , 
X3 (t) = c l e5t + C2e3t . 

(7) 

• 
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Remark: Our choice in Example I of the two eigenvectors 

V2 = [ 0  0 I r and V3 = [ 2 -3 0 r 
associated with the repeated eigenvalue A2 = 3 bears comment. The fact that b = 
- �a for any eigenvector associated with A2 = 3 means that any such eigenvector 
can be written as 

and thus is a linear combination of V2 and V3 . Therefore, given a and c not both 
zero, we could choose v rather than V3 as our third eigenvector, and the new general 
solution 

x(t) = CI VI e5t + c2v2e3t + C3ve3t 

would be equivalent to the one in Eq . (7) .  Thus we need not worry about making the 
"right" choice of independent eigenvectors associated with a multiple eigenvalue. 
Any choice will do ; we generally make the simplest one we can. • 

Defective Eigenvalues 

The following example shows that-unfortunately-not all multiple eigenvalues are 
complete. 

The matrix 

has characteristic equation 

IA - HI = I I -3 A -3 
7 - A  

= ( l  - A) (7 - A) + 9 
= A2 - 8A + 1 6  = (A - 4)2 = O.  

(8)  

Thus A has the single eigenvalue A I = 4 of multiplicity 2. The eigenvector equation 

[ -3 (A  - 4I)v  = 3 
then amounts to the equivalent scalar equations -3a - 3b = 0, 3a + 3b = O. 

Hence b = -a if v = [ a  b r is to be an eigenvector of A. Therefore any eigen
vector associated with A I = 4 is a nonzero multiple of v = [ I - I ] T . Thus the 
multiplicity 2 eigenvalue A I = 4 has only one independent eigenvector, and hence 
is incomplete. • 
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An eigenvalue A of multiplicity k > 1 is called defective if it is not complete. 
If A has only p < k linearly independent eigenvectors, then the number 

d = k - p  (9) 

of "missing" eigenvectors is called the defect of the defective eigenvalue A. Thus 
the defective eigenvalue A I = 4 in Example 2 has multiplicity k = 2 and defect 
d = 1 , because we saw that it has only p = 1 associated eigenvector. 

If the eigenvalues of the n x n matrix A are not all complete, then the eigen
value method as yet described will produce fewer than the needed n linearly inde
pendent solutions of the system x' = Ax. We therefore need to discover how to find 
the "missing solutions" corresponding to a defective eigenvalue A of multiplicity 
k >  1 . 

The Case of Multiplicity k = 2 
Let us begin with the case k = 2, and suppose that we have found (as in Example 
2) that there is only a single eigenvector VI associated with the defective eigenvalue 
A. Then at this point we have found only the single solution 

( 1 0) 

of x: = Ax. By analogy with the case of a repeated characteristic root for a single 
linear differential equation (Section 2.3) , we might hope to find a second solution 
of the form 

( 1 1 )  

When we substitute x = V2teAt i n  x' = Ax, we get the equation 

But because the coefficients of both eAt and teAt must balance, it follows that V2 = 0, 
and hence that X2 (t )  == O. This means that-contrary to our hope-the system 
x' = Ax does not have a nontrivial solution of the form assumed in ( 1 1 ) .  

Instead of simply giving up on the idea behind Eq. ( 1 1 ) ,  let us extend it slightly 
and replace V2t with Vl t + V2 . Thus we explore the possibility of a second solution 
of the form 

( 12) 

where VI and V2 are nonzero constant vectors . When we substitute x = vl teAt +v2eAt 
in x' = Ax, we get the equation 

( 1 3) 

We equate coefficients of eAt and teAt here, and thereby obtain the two equations 

(A - H)vI = 0 ( 14) 

and 

( 1 5) 

that the vectors VI and V2 must satisfy in order for ( 1 2) to give a solution of x' = Ax. 
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Note that Eq. ( 14) merely confirms that VI is an eigenvector of A associated 
with the eigenvalue J... . Then Eq. ( 1 5) says that the vector V2 satisfies the equation 

It follows that, in order to solve simultaneously the two equations in ( 1 4) and ( 1 5), 
it suffices to find a solution V2 of the single equation (A - AI)2V2 = 0 such that the 
resulting vector V I  = (A - J...I)v2 is nonzero. It turns out that this is always possible 
if the defective eigenvalue J... of A is of multiplicity 2. Consequently, the procedure 
described in the following algorithm always succeeds in finding two independent 
solutions associated with such an eigenValue. 

ALGORITHM Defective Multiplicity 2 Eigenvalues 

1. First find a nonzero solution V2 of the equation 

such that 

(A - J...I)v2 = V I  

is nonzero, and therefore is an eigenvector VI associated with J... . 
2. Then form the two independent solutions 

and 

of x' = Ax corresponding to J... . 

, [ 1 
x = 3 -3 J 7 x. 

( 16) 

( 17) 

( 1 8) 

( 1 9) 

(20) 

Solution In Example 2 we found that the coefficient matrix A in Eq. (20) has the defective 
eigenValue J... = 4 of multiplicity 2. We therefore begin by calculating 

Hence Eq. ( 1 6) is [ g  g J V2 = 0, 

and therefore is satisfied by any choice of V2 . In principle, it could happen that 
(A - 4I)v2 is nonzero (as desired) for some choices of V2 though not for others. If 
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FIGURE 5.6.1 . Direction field 
and solution curves for the linear 
system x; = Xl - 3X2 , 
X� = 3Xl + 7X2 of Example 3 .  

we try V2 = [ 1  O ] T we find that [ -3 
(A - 4I)v2 = 3 -� ] [ 6 ] = [ -� ] = V I 

is nonzero, and therefore is an eigenvector associated with A = 4. (It is -3 times 
the eigenvector found in Example 2. ) Therefore the two solutions of Eq. (20) given 
by Eqs . ( 1 8) and ( 1 9) are 

( ) 4t [ -3 ] 4t XI t = vi e  = 3 e , 

The resulting general solution 

x(t) = CIX I (t) + C2X2 (t) 

has scalar component functions 

XI (t) = (-3C2t + C2 - 3cde4t , 
X2 (t) = (3C2t + 3cI )e4t • 

With C2 = 0 these solution equations reduce to the equations Xj (t )  = -3cl e4t , 
X2 (t) = 3cl e4t , which parametrize the line X l  = -X2 in the x lx2 -plane . The point 
(X I  (t ) ,  X2 (t» then recedes along this line away from the origin as t -+ +00, to the 
northwest if CI > 0 and to the southeast if CI < O .  As indicated in Fig. 5 .6 . 1 ,  each 
solution curve with C2 i= 0 is tangent to the line X l  = -X2 at the origin; the point 
(X I (t) , X2 (t» approaches the origin as t -+ -00 and approaches +00 along the 
solution curve as t -+ +00. _ 

Generalized Eigenvectors 

The vector V2 in Eq. ( 1 6) is an example of a generalized eigenvector. If A is an 
eigenvalue of the matrix A, then a rank r generalized eigenvector associated with 
A is a vector v such that 

(A - Alr v = 0 but (A - AIr- I v i= O.  (2 1 )  

If r = 1 , then (2 1 )  simply means that v i s  an eigenvector associated with A (recalling 
the convention that the Oth power of a square matrix is the identity matrix). Thus a 
rank 1 generalized eigenvector is an ordinary eigenvector. The vector V2 in ( 1 6) is a 
rank 2 generalized eigenvector (and not an ordinary eigenvector) . 

The multiplicity 2 method described earlier boils down to finding a pair {V I , V2 } 
of generalized eigenvectors , one of rank 1 and one of rank 2, such that (A - AI)V2 = 
V I . Higher multiplicity methods involve longer "chains" of generalized eigenvec
tors . A length k chain of generalized eigenvectors based on the eigenvector V I is 
a set {V I , V2 , . . .  , Vk } of k generalized eigenvectors such that 

(A - AI)Vk = Vk- I , 
(A - AI)Vk- 1  = Vk-2 ,  

(A - AI)V2 = V I . 

(22) 
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Because V I is an ordinary eigenvector, (A - AI)V I = O. Therefore, i t follows from 
(22) that 

(23) 

If {v I , V2 , V3 } is a length 3 chain of generalized eigenvectors associated with 
the multiple eigenvalue A of the matrix A, then it is easy to verify that three linearly 
independent solutions of Xl = Ax are given by 

XI (1) = vl eAt , 
X2 (t) = (V l t + v2)eAt , 
X3 (t) = ( tVl t2 + V2t + V3) eAt . 

For instance, the equations in (22) give 

so 

AX3 = [ 1Avl t2 + AV2t + AV3] eAt 
= [1AVl t2 + (V I + AV2) t + (V2 + AV3 )] eAt 
= (V l t + V2)eAt + A (tVl t2 + v2t + V3 ) eAt 

Therefore, X3 (t) in (24) does, indeed, define a solution of Xl = Ax. 

(24) 

Consequently, in order to "handle" a multiplicity 3 eigenvalue A, it suffices 
to find a length 3 chain {V I ,  V2 , V3 } of generalized eigenvalues associated with A. 
Looking at Eq. (23), we see that we need only find a solution V3 of 

(A - AI)3V3 = 0 

such that the vectors 

V2 = (A - AI)V3 and VI = (A - AI)V2 
are both nonzero (although, as we will see, this is not always possible) . 

Find three linearly independent solutions of the system 

(25) 

Solution The characteristic equation of the coefficient matrix in Eq. (25) is [ -A 1 2 ] 
I A - Al l = -5 -3 - A -7 

1 ° -A 
= 1 . [-7 - 2 · (-3 - A)] + (-A) [ (-A) (-3 - A) + 5] 
= _A3 - 3A2 - 3A - 1 = - (A + 1 ) 3 = 0, 
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and thus A has the eigenvalue A = - 1 of multiplicity 3 . The eigenvector equation 
(A - AI)v = 0 for an eigenvector v = [ a b c r is 

[ 1 1 
(A + I)v = -5 -2 

1 0 
The third row a + c = 0 gives c = -a, then the first row a + b + 2c = 0 gives b = a .  Thus, to within a constant multiple, the eigenvalue A = - 1 has only the 
single associated eigenvector v = [ a a -a r with a I- 0, and so the defect 
of A = - 1 is 2. 

To apply the method described here for triple eigenvalues, we first calculate 

(A + 1)2 = [ -i 1 

-n [ -� 
1 -2 -2 0 0 

and 

(A + 1)3 = [ -i 1 2 ] [ -2 - 1 -2 -� -; - 1 0 1 

2 ]  [ -2 -� = -; 
-3 ] [ 0 -3 = 0 3 0 0 0 0 

- 1 -3 ] 
- 1 -3 
1 3 

n 
Thus any nonzero vector V3 will be a solution of the equation (A + I)3v3 O. 
Beginning with V3 = [ 1 0 0 r, for instance, we calculate 

V2 = (A + I)V3 = [ -i -� -n m = [ -H 
v , = (A + I)v, = [ -i -� -n [ -i ] = [ =n 

Note that V I is the previously found eigenvector v with a = -2; this agreement 
serves as a check of the accuracy of our matrix computations. 

Thus we have found a length 3 chain {V I ,  V2 , V3 } of generalized eigenvectors 
associated with the triple eigenvalue A = - 1 . Substitution in (24) now yields the 
linearly independent solutions 

of the system Xl = Ax. • 
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The General Case 

A fundamental theorem of linear algebra states that every n x n matrix A has n 
linearly independent generalized eigenvectors. These n generalized eigenvectors 
may be arranged in chains, with the sum of the lengths of the chains associated 
with a given eigenvalue A equal to the multiplicity of A . But the structure of these 
chains depends on the defect of A, and can be quite complicated. For instance, a 
multiplicity 4 eigenvalue can correspond to 

• Four length 1 chains (defect 0) ; 
• Two length 1 chains and a length 2 chain (defect 1 ) ;  
• Two length 2 chains (defect 2) ; 
• A length 1 chain and a length 3 chain (defect 2); or 
• A length 4 chain (defect 3) . 

Note that, in each of these cases, the length of the longest chain is at most d + 1 ,  
where d i s  the defect of the eigenvalue. Consequently, once we have found all the 
ordinary eigenvectors associated with a multiple eigenvalue A, and therefore know 
the defect d of A, we can begin with the equation 

� (A - AI)d+ I U = ° (26) 

to start building the chains of generalized eigenvectors associated with A. 

ALGORITHM Chains of Generalized Eigenvectors 

Begin with a nonzero solution UI of Eq. (26) and successively multiply by the 
matrix A - AI until the zero vector is obtained. If 

(A - AI)uI = U2 f. 0, 

(A - AI)Uk- 1 = Uk f. 0, 

but (A - AI)uk = 0, then the vectors 

(listed in reverse order of their appearance) form a length k chain of generalized 
eigenvectors based on the (ordinary) eigenvector v I . 

Each length k 
chain {V I , V2 , . . .  , vd of generalized eigenvectors (with VI an 

ordinary eigenvector associated with A) determines a set of k independent solutions 
of x' = Ax corresponding to the eigenvalue A :  

XI (t) = vl eAt , 
X2 (t) = (V l t  + v2)eAt , 
X3 (t) = UVl t2 + v2t + V3 ) eAt , 

VI Vk-2t At 
( tk- I 2 ) Xk (t) = (k _ I ) ! + . . .  + � + Vk- I t + Vk e . 

(27) 
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Exa m ple 5 

FIGURE 5.6.2. The railway cars 
of Example 6. 

Note that (27) reduces to Eqs. ( 1 8) through ( 1 9) and (24) in the cases k = 2 and 
k = 3 ,  respectively. 

To ensure that we obtain n generalized eigenvectors of the n x n matrix A that 
are actually linearly independent, and therefore produce a complete set of n linearly 
independent solutions of x' = Ax when we amalgamate all the "chains of solutions" 
corresponding to different chains of generalized eigenvectors, we may rely on the 
following two facts: 

• Any chain of generalized eigenvectors constitutes a linearly independent set 
of vectors . 

• If two chains of generalized eigenvectors are based on linearly independent 
eigenvectors, then the union of these two chains is a linearly independent set 
of vectors (whether the two base eigenvectors are associated with different 
eigenValues or with the same eigenvalue) . 

Suppose that the 6 x 6 matrix A has two multiplicity 3 eigenvalues A I = -2 and 
A2 = 3 with defects 1 and 2, respectively. Then A l must have an associated eigen
vector UI and a length 2 chain {V I , V2 } of generalized eigenvectors (with the eigen
vectors UI and VI being linearly independent), whereas A2 must have a length 3 chain 
{WI , W2 , W3 } of generalized eigenvectors based on its single eigenvector WI . The six 
generalized eigenvectors UI , V I , V2 , WI , W2 , and W3 are then linearly independent 
and yield the following six independent solutions of x' = Ax: 

X I (t ) = ul e-2t , 
X2 (t ) = vl e-2t , 
X3 (t ) = (V l t + v2)e-2t , 
, X4 (t) = wl e3t , 
xs (t) = (Wi t  + w2)e3t , 
X6 (t) = ( tWl t2 + W2t + W3) e3t • • 

As Example 5 illustrates, the computation of independent solutions corre
sponding to different eigenvalues and chains of generalized eigenvalues is a routine 
matter. The determination of the chain structure associated with a given multiple 
eigenvalue can be more interesting (as in Example 6) . 

An Application 

Figure 5 .6 .2 shows two railway cars that are connected with a spring (permanently 
attached to both cars) and with a damper that exerts opposite forces on the two cars, 
of magnitude c (x; - x�) proportional to their relative velocity. The two cars are also 
subject to frictional resistance forces CIX; and C2X� proportional to their respective 
velocities. An application of Newton's law ma = F (as in Example 1 of Section 
5 . 1 )  yields the equations of motion 

mix;' = k (X2 - XI ) - CI X; - c(x; - x�) ,  
m2x� = k (x i  - X2) - C2X� - c(x� - xi ) .  

(28) 

In terms of the position vector x(t) = [ X I (t) X2 (t ) t, these equations can be 
written in the matrix form 

Mx" = Kx + Rx' , (29) 
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where M and K are mass and stiffness matrices (as in Eqs. (2) and (3) of Section 
5 .5) , and 

R = [ -(c + CI ) C ] 
C - (c + C2) 

is the resistance matrix. Unfortunately, because of the presence of the term involv
ing x' , the methods of Section 5 .5 cannot be used. 

Instead, we write (28) as a first-order system in the four unknown functions 
XI (t ) ,  X2 (t ) ,  X3 (t) = xi (t ) ,  and X4 (t )  = x� (t) . If m l = m2 = 1 we get 

x' = Ax 

where now x = [ XI X2 X3 X4 r and 

o 
o 
k 

-k 

I 
o 

-(c + Cl ) 
C 

o __ • •  _ _ __ • _ __ _  • ___ . _  •• _ __ • __ _ _ _  . �  ____ � __ ��_�� __ . _, __ • __ ,_ _ __ _ � _ . _  _ _  __ �,_., 

With m l = m2 = C = 1 and k = Cl = C2 = 2, the system in Eq. (30) is 

[ 0 0 
, 0 0 x = -2 2 

2 -2 

1 
o 

-3 
1 
: ]  x. 

-3 

(30) 

(3 1 )  

(32) 

It is not too tedious to calculate manually-although a computer algebra system 
such as Maple, Mathematica, or MATLAB is useful here-the characteristic equa
tion 

of the coefficient matrix A in Eq. (32). Thus A has the distinct eigenvalue AO = 0 
and the triple eigenvalue A l = -2. 

CASE 1 :  AO = O. The eigenvalue equation (A - AI)v = 0 for the eigenvector 
v = [ a  b c d r is 

o 1 
o 0 
2 -3 

-2 1 

The first two rows give c = d = 0, then the last two rows yield a = b. Thus 

vo = [ 1  1 0 0 r 

is an eigenvector associated with AO = O. 
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CASE 2: A I = -2. The eigenvalue equation (A - AI)v = 0 is 

[
2 0  
o 2 (A + 21)v = -2 2 
2 -2 

1 
o 

- 1  
1 

The third and fourth scalar equations here are the differences of the first and second 
equations, and therefore are redundant. Hence v is determined by the first two 
equations, 

2a + c = 0 and 2b + d = O. 
We can choose a and b independently, then solve for c and d. Thereby we obtain 
two eigenvectors associated with the triple eigenvalue A I = -2. The choice a = 1 , 
b = 0 yields c = -2, d = 0 and thereby the eigenvector 

"I = [ 1  o -2 o r · 
The choice a = 0, b = 1 yields c = 0, d = -2 and thereby the eigenvector 

"2 = [ 0 1 

Because A I = -2 has defect 1 ,  we need a generalized eigenvector of rank 2, 
and hence a nonzero solution V2 of the equation 

2 2 [
2 

(A + 21) V2 = � 
Obviously, 

V2 = [ 0 
is such a vector, and we find that 

[
2 0 
o 2 (A + 21)V2 = -2 2 
2 -2 

0 

1 
0 

- 1 
1 

2 1 
l J V2 = O 2 1 

0 0 
0 0 

1 - I r 

j ] [J] = [ =i ] = VI 

is nonzero, and therefore is an eigenvector associated with A I = -2. Then {V I , V2 } 
is the length 2 chain we need. 

The eigenvector VI just found is neither of the two eigenvectors "I and "2 
found previously, but we observe that VI = "I - "2 . For a length 1 chain WI to 
complete the picture we can choose any linear combination of "I and "2 that is 
independent of VI . For instance, we could choose either W I = "l or WI = "2 . 
However, we will see momentarily that the particular choice 

WI = "I + "2 = [ 1 -2 -2 r 

yields a solution of the system that is of physical interest. 
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Finally, the chains {Va } , {WI } , and {VI , V2 } yield the four independent solutions 

XI (t) = voeOo t = [ 1  1 

X2 (t) = wl e-2t = [ 1 1 

X3 (t) = vl e-2t = [ 1  - 1  
X4 (t) = (Vl t + v2)e-2t 

= [ t  -t -2t + 1 
of the system x' = Ax in (32) . 

0 O r , 
-2 -2 r e-2t , 
-2 2 r e-2t , 

2t - 1 r e-2t 

The four scalar components of the general solution 

are described by the equations 

Xl (t) = CI + e-2t (C2 + C3 + C4t ) , 
X2 (t) = CI + e-2t (C2 - C3 - C4t) , 
X3 (t) = e-2t (-2C2 - 2C3 + C4 - 2C4t) , 
X4 (t) = e-2t (-2c2 + 2C3 - C4 + 2C4t) . 

(33) 

(34) 

Recall that Xl (t) and X2 (t) are the position functions of the two masses, whereas 
X3 (t) = xi (t) and X4 (t) = x� (t) are their respective velocity functions. 

For instance, suppose that XI (0) = X2 (0) = 0 and that xi (0) = x� (O) = vo. 
Then the equations 

XI (0) = CI + C2 + C3 = 0, 
X2 (0) = CI + C2 - C3 = 0, 
xi (O) = - 2C2 - 2C3 + C4 = vo , 
x� (0) = - 2C2 + 2C3 - C4 = vo 

are readily solved for CI = t vo , C2 = -t vo, and C3 = C4 = 0, so 

XI (t) = X2 (t) = t vo ( 1 - e-2t ) , 
xi (t) = x� (t) = voe-2t . 

In this case the two railway cars continue in the same direction with equal but ex
ponentially damped velocities, approaching the displacements XI = X2 = t vo as 
t -+ +00. 

It is of interest to interpret physically the individual generalized eigenvector 
solutions given in (33) . The degenerate (Ao = 0) solution 

Xl (t) = [ 1  1 0 0 r 
describes the two masses at rest with position functions XI (t) == 1 and X2 (t) == 1 . 
The solution 

1 -2 -2 r e-2t 
corresponding to the carefully chosen eigenvector WI describes damped motions 
Xl (t) = e-2t and X2 (t) = e-2t of the two masses, with equal velocities in the 
same direction. Finally, the solutions X3 (t) and X4 (t) resulting from the length 2 
chain {v I , V2 } both describe damped motion with the two masses moving in opposite 
directions. • 
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The methods of this section apply to complex multiple eigenvalues just as to 
real multiple eigenvalues (although the necessary computations tend to be somewhat 
lengthy) .  Given a complex conjugate pair ()( ± fJi of eigenvalues of multiplicity k, 
we work with one of them (say, ()( - fJi )  as if it were real to find k independent 
complex-valued solutions. The real and imaginary parts of these complex-valued 
solutions then provide 2k real-valued solutions associated with the two eigenvalues 
A = ()( - fJi and I = ()( + fJi each of multiplicity k. See Problems 33 and 34. 

_ Problems 

Find general solutions of the systems in Problems 1 through 
22. In Problems 1 through 6, use a computer system or graph
ing calculator to construct a direction field and typical solution 
curves for the given system. 

[ -2 1. X/ = - 1  -! J x 2. x' = [ i - I J 1 x 

3. x' = [ � -2 ] 5 x 4. x' = [ i - 1 ] 5 x 

5. x' = [ _� ; J
x 6. X/ = [ ! -4 ] 9 x 

7. x � [ -� 0 

n
x 9 

0 

[ 
25 1 2 

g ] x 8. x' = - 1� -5 
6 1 3 

[ - 19 1 2 84 ] 9. x' = 0 5 o x 
-8 4 33 [ - 1 3 40 -48 ] 

10. x' = -� 23 -2� x 
0 [ -3 0 -4 ] 11. x' = - �  - 1  - �  x 

0 [ - 1  0 l 12. x' = � - 1  
- 1  - 1  

[ - I 0 
-l J x  13. x' = � 1 

1 -3 

14. x' � [ -� 0 
-� ] x - 1  

1 -2 

[ -2 -9 

� } 15. x' = � 4 

3 

16. x � [ -� 0 
-
n
x -2 

3 

17. x � [ I i 0 �} 7 
-27 -9 -5 

18. X � [ : 0 

l 3 
-2 -4 - 1  

-4 0 
1 0 19. x � [ � - 12 - 1  -� ] -6 x 

-4 0 - 1  

20. x � U 
1 0 

i } 2 1 
0 2 
0 0 

[ 
- 1  -4 0 

�
J
x 21. x' = i 3 0 

2 1 
1 0 

3 7 
22. x � [ � - 1  -4 

n
x 1 3 

-6 - 1 4 

In Problems 23 through 32 the eigenvalues of the coefficient 
matrix A are given. Find a general solution of the indicated 
system x' = Ax. Especially in Problems 29 through 32, use of 
a computer algebra system may be useful. 

[ 39 8 - 16 ] 
23. x' = -36 -5 16 x; A = - 1 , 3 , 3 

72 16 -29 [ 28 50 100 ] 24. x' = 1 5 33 60 x; A = -2, 3 , 3 
- 1 5 -30 -57 [ -2 17 

n
x; 25. x' = -� 6 A = 2, 2, 2 

1 

26. X � [ ; - 1  � ] X; 3 A = 3 , 3, 3 
-3 2 [ -3 5 -5 ] 27. x' = � - 1  

1� x
; A = 2, 2, 2 

-8 



[ - [5 -7 - [n X; 

28. x' = 34 16 )" = 2, 2, 2  
17 7 [ - [ 1 1 -2 ] 

29. x' = � -4 -6 1 1  
).. = - 1 ,  - 1 ,  2, 2 - 1 1 � x; 

-2 -2 
1 -2 
3 -5 

�. x � U 
- 1 3  22 - ii } ; ).. = - 1 , - 1 , 2, 2 
-27 45 -25 [ 35 - 1 2  4 30 ] 

31. x' = -i� -8 3 19 
).. = 1 , 1 ,  1 , 1 3 0 -9 x; 

-27 9 -3 -23 [ [ [ - 1  26 6 -3 ] 
32. x' = -� 3 0 0 � x; 0 -24 -6 

0 9 5 - 1  
-48 -3 - 1 38 -30 1 8  

).. = 2, 2 , 3 , 3 , 3 
33. The characteristic equation of the coefficient matrix A of 

the system 

is 

, 4 

[
3 

x = � 
-4 
3 
o 
o 

1 
o 
3 
4 

4> ()..) = ()..2 - 6)" + 25)2 
= O. 

Therefore, A has the repeated complex conjugate pair 
3 ± 4i of eigenvalues. First show that the complex vec
tors 

V I = 
[ 1 o 0 r and V2 = 

[ 9 0 

form a length 2 chain {V I , V2 } associated with the eigen
value ).. = 3 - 4i . Then calculate the real and imaginary 
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parts of the complex-valued solutions 

to find four independent real-valued solutions of x' = Ax. 

34. The characteristic equation of the coefficient matrix A of 
the system 

is 

, [ - 1 � x = -9 
33 

o 
- 1  
-3 
10 

-8 
o 

-25 
90 -� ] -9 x 

32 

4> ()..) = ()..2 - 4)" + 13 )2 
= O. 

Therefore, A has the repeated complex conjugate pair 
2 ± 3i of eigenvalues. First show that the complex vec
tors 

V I = 
[ -i 3 + 3i 0 -i r , 

V2 = 
[ 3 - 10 + 9i -i 0 r 

form a length 2 chain {V I , V2 } associated with the eigen
value ).. = 2 + 3i . Then calculate (as in Problem 33) four 
independent real-valued solutions of x' = Ax. 

35. Find the position functions X I (t) and X2 (t) of the railway 
cars of Fig. 5.6. 1 if the physical parameters are given by 

m l  = m2 = C I  = C2 = C = k = 1 

and the initial conditions are 

X I (0) = X2 (0) = 0, x ; (0) = x� (0) = Vo .  

How far d o  the cars travel before stopping? 

36. Repeat Problem 35 under the assumption that car 1 is 
shielded from air resistance by car 2, so now CI = O. Show 
that, before stopping, the cars travel twice as far as those 
of Problem 35. 

The solution vectors of an n x n homogeneous linear system 

x' = Ax ( 1 ) 

can be used to construct a square matrix X = (f)(t) that satisfies the matrix differen
tial equation 

X' = AX ( 1 ') 
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associated with Eq. ( 1 ) . Suppose that XI (t) , X2 (t) , . . .  , Xn (t) are n linearly indepen
dent solutions of Eq. ( 1 ) . Then the n x n matrix 

(2) 

having these solution vectors as its column vectors, is called a fundamental matrix 
for the system in ( 1 ) . 

Fundamental Matrix Solutions 

Because the column vector x = x j (t) of the fundamental matrix c) (t) in (2) satisfies 
the differential equation x' = Ax , it follows (from the definition of matrix multi
plication) that the matrix X = c)(t) itself satisfies the matrix differential equation 
X' = AX. Because its column vectors are linearly independent, it also follows that 
the fundamental matrix c)(t) is nonsingular, and therefore has an inverse matrix 
c)(t) - l . Conversely, any nonsingular matrix solution \II (t) of Eq. ( 1 ' ) has linearly 
independent column vectors that satisfy Eq. ( 1 ) , so \II (t) is a fundamental matrix for 
the system in ( 1 ) . 

In terms of the fundamental matrix c)(t) in (2), the general solution 

x(t) = C I XI (t) + C2X2 (t) + . . .  + cnxn (t) (3) 

of the system x' = Ax can be written in the form 

X(t) = c)(t)c (4) 
where c = [CI C2 cnf is an arbitrary constant vector. If \II (t) is any other 
fundamental matrix for ( 1 ) , then each column vector of \II (t) is a linear combination 
of the column vectors of c)(t ) , so it follows from Eq. (4) that 

(4') 
for some n x n matrix C of constants. 

In order that the solution x(t) in (3) satisfy a given initial condition 

x(O) = Xo , (5) 

it suffices that the coefficient vector c in (4) be such that c) (O)c = Xo ; that is, that 

(6) 

When we substitute (6) in Eq. (4), we get the conclusion of the following theorem. 

THEOREM 1 Fundamental Matrix Solutions 

Let c) (t) be a fundamental matrix for the homogeneous linear system x' = Ax . 
Then the [unique] solution of the initial value problem 

is given by 

x' = Ax, x(O) = Xo (7) 

(8) 
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Section 5 .4 tells us how to find a fundamental matrix for the system 

x' = Ax (9) 

with constant n x n coefficient matrix A, at least in the case where A has a com
plete set of n linearly independent eigenvectors VI , V2 , • . •  , Vn associated with the 
(not necessarily distinct) eigenvalues A I , A2 , . . .  , An , respectively. In this event the 
corresponding solution vectors of Eq. (9) are given by 

for i = 1 , 2, . . .  , n. Therefore, the n x n matrix 

( 10) 

having the solutions XI , X2 , • • •  , Xn as column vectors is a fundamental matrix for 
the system x' = Ax. 

In order to apply Eq. (8), we must be able to compute the inverse matrix 
«)(0)- 1 . The inverse of the nonsingular 2 x 2 matrix 

is 

A-I = � [ d -b ] 
� -e a ' ( 1 1 )  

where � = det(A) = ad  - be i= O .  The inverse of the nonsingular 3 x 3 matrix 
A = [aij ] is given by [ +A l l  

- I 1 
A = 

� -A2 1 
+A3 1 

-A 12 +A I3 ] T 

+A22 -A23 , 

-A32 +A33 

( 12) 

where � = det(A) i= 0 and Aij denotes the determinant of the 2 x 2 submatrix of A 
obtained by deleting the i th row and j th column of A. (Do not overlook the symbol 
T for transpose in Eq. ( 12) . )  The formula in ( 12) is also valid upon generalization to 
n x n matrices, but in practice inverses of larger matrices are usually computed in
stead by row reduction methods (see any linear algebra text) or by using a calculator 
or computer algebra system. 

Find a fundamental matrix for the system 

x' = 4x + 2y , 
y' = 3x - y ,  

( 13) 

then use it to find the solution of ( 1 3) that satisfies the initial conditions x (0) = 1 ,  
y(O) = - 1 .  
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Solution The linearly independent solutions 

[ -2t ] 
X l (t) = _3:-2t 

found in Example 1 of Section 5.4 yield the fundamental matrix 

[ -2t c)(t) = _3:-2t 

Then 

and the formula in ( 1 1 )  gives the inverse matrix 

-2 ] 
1 . 

Hence the formula in (8) gives the solution 

( 14) 

( 1 5) 

[ -2t 
X (t) = _3:-2t 

2eSt ] (�) [ 1 -2 ] [ 1 ] = (�) [ e-2t 2eSt ] [ 3 ] 
eSt 7 3 1 - 1 7 _3e-2t eSt 2 ' 

and so 
1 [ 3e-2t + 4eSt ] x(t) = "7 _ge-2t + 2eSt . 

Thus the solution of the original initial value problem is given by 

• 

Remark: An advantage of the fundamental matrix approach is this : Once 
we know the fundamental matrix c)(t) and the inverse matrix C)(O)- l , we can calcu
late rapidly by matrix multiplication the solutions corresponding to different initial 
conditions. For example, suppose that we seek the solution of the system in ( 1 3) 
satisfying the new initial conditions x (O) = 77, y eO) = 49. Then substitution of 
( 14) and ( 1 5) in (8) gives the new particular solution 

1 [ e-2t x(t) = - 3 -2t 7 - e 

1 [ e-2t = "7 _3e-2t 
2eSt ] [ -21  ] _ [ _3e-2t + 80eSt ] 
eSt 280 - ge-2t + 40eSt . • 
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Exponential Matrices 

We now discuss the possibility of constructing a fundamental matrix for the constant
coefficient linear system x' = Ax directly from the coefficient matrix A-that is, 
without first applying the methods of earlier sections to find a linearly independent 
set of solution vectors . 

We have seen that exponential functions play a central role in the solution of 
linear differential equations and systems, ranging from the scalar equation x' = kx 
with solution x (t ) = xoekt to the vector solution x(t) = veAt of the linear system 
x' = Ax whose coefficient matrix A has eigenvalue A with associated eigenvector 
v. We now define exponentials of matrices in such a way that 

X(t) = eAt 

is a matrix solution of the matrix differential equation 

X/ = AX 
with n x n coefficient matrix A-in analogy with the fact that the ordinary expo
nential function x (t) = eat is a scalar solution of the first-order differential equation 
x' = ax . 

The exponential eZ of the complex number z may be defined (as in Section 
2 .3) by means of the exponential series 

Z2 Z3 zn eZ = 1 + z + - + - + . . .  + - + . . . . 2 !  3 !  n !  
( 1 6) 

Similarly, if A is an n x n matrix, then the exponential matrix eA is the n x n matrix 
defined by the series 

A2 An 
eA = I + A +  - + . . .  + - + . . .  

2 !  n !  
( 1 7) 

where I is the identity matrix. The meaning of the infinite series on the right in ( 1 7) 
is given by 

- - lim -
00 An ( k An ) ?; n !  - k�oo ?; n !  

( 1 8) 

where AO = I, A2 = AA, A3 = AA2, and so on; inductively, An+ 1 = AAn if n � o. 
It can be shown that the limit in ( 1 8) exists for every n x n square matrix A. That 
is, the exponential matrix eA is defined (by Eq. ( 1 7» for every square matrix A. 

Consider the 2 x 2 diagonal matrix 

Then it is apparent that 
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for each integer n � 1 .  It therefore follows that 

A2 
eA = I + A + - + . . .  

2 !  

� 
[ �  � ]  

+ 
[ �  � ]  + [ a' �2 !  

o ] 
2 • 

1 + b + b /2! + . . .  

Thus 
eA = [ � ; J .  

so the exponential of the diagonal 2 x 2 matrix A is obtained simply by exponenti
ating each diagonal element of A. • 

The n x n analog of the 2 x 2 result in Example 2 is established in the same 
way. The exponential of the n x n diagonal matrix 

D =  . 
[ 6 

0 

is the n x n diagonal matrix 

D 0 
[ e., 

e = . 

0 

0 n a2 

0 

0 n ea2 

0 

obtained by exponentiating each diagonal element of D. 

( 1 9) 

(20) 

The exponential matrix eA satisfies most of the exponential relations that are 
familiar in the case of scalar exponents . For instance, if 0 is the n x n zero matrix, 
then Eq. ( 1 7) yields 

(2 1 )  

the n x n identity matrix. In Problem 3 1  we ask you to show that a useful law of 
exponents holds for n x n matrices that commute: 

If AB = BA, then eA+B = eA eB . (22) 

In Problem 32 we ask you to conclude that 

(eAr ' = e-A . (23) 

In particular, the matrix eA is nonsingular for every n x n matrix A (reminiscent 
of the fact that eZ i= 0 for all z) . It follows from elementary linear algebra that the 
column vectors of eA are always linearly independent. 

If t is a scalar variable, then substitution of At for A in Eq. ( 1 7) gives 

At 2 t2 n tn e = I + A t + A - + · · · + A - + . . . . 
2 !  n ! 

(Of course, At is obtained simply by multiplying each element of A by t . )  

(24) 
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[ 0 0 1 8 ] 
A2 = 0 0 0 

o 0 0 

[ 0 0 
and A3 = 0 0 

o 0 

so An = 0 for n � 3 .  It therefore follows from Eq. (24) that 

that is, 

[ 1 0 0 ] [ 0 
= 0 1 0 + 0 

o 0 1 0 

[ 1 3t 4t + 9t2 ] eAt = 0 1 6t . 
o 0 1 

• 

Remark: If An = 0 for some positive integer n ,  then the exponential series 
in (24) terminates after a finite number of terms, so the exponential matrix eA (or eAt ) is readily calculated as in Example 3 .  Such a matrix-with a vanishing power
is said to be nilpotent. • 

If [ 2 3 

n A =  0 2 
o 0 

then 

A =  [ �  ° 0 ] [ 0 3 4 ] 
2 0 + 0 o 6 = D + B  
0 2 0 o 0 

where D = 21 is a diagonal matrix and B is the nilpotent matrix of Example 3 .  
Therefore, (20) and (22) give 

thus 

3t 4t + 9t2 ] 
1 6t ; 
o 1 

• 
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Exa m ple 5 

Matrix Exponential Solutions 

It happens that term-by-term differentiation of the series in (24) is valid, with the 
result 

that is, 

At 2 3 t 2 t d 2 ( 2 ) 
- (e ) = A + A t + A - + . . . = A  I + At + A - + · · ·  . 
dt 2 !  2 ! ' 

(25) 

in analogy to the formula Dt (ekt ) = kekt from elementary calculus . Thus the 
matrix-valued function 

X(t) = eAt 

satisfies the matrix differential equation 

X' = AX. 

Because the matrix eAt is nonsingular, it follows that the matrix exponential eAt is 
a fundamental matrix for the linear system x' = Ax. In particular, it is the funda
mental matrix X(t) such that X(O) = I. Therefore, Theorem 1 implies the following 
result. 

THEOREM 2 Matrix Exponential Solutions 

If A is an n x n matrix, then the solution of the initial value problem 

x' = Ax, x(O) = Xo (26) 

is given by 

(27) 

and this solution is unique. 

Thus the solution of homogeneous linear systems reduces to the task of com
puting exponential matrices . Conversely, if we already know a fundamental matrix 
c)(t) for the linear system x' = Ax, then the facts that eAt = c)(t )C (by Eq. (4'» 
and eAoO = eO = I (the identity matrix) yield 

(28) 

So we can find the matrix exponential eAt by solving the linear system x' = Ax . 
•• 0" 

In Example 1 we found that the system x' = Ax with 



Exa m ple 6 

5 .7  Matrix Exponentia ls and Linear Systems 41 5 

has fundamental matrix 

Hence Eq. (28) gives 

At 1 [ e-2t e = ;; _3e-2t 
2e5t J [ 1 -2 ] 
e5t 3 1 

Use an exponential matrix to solve the initial value problem 

[ 2 3 4 ] 
x' = 0 2 6 x, 

0 0 2  

• 

(29) 

Solution The coefficient matrix A in (29) evidently has characteristic equation (2 - A)3 = 0 
and thus the triple eigenvalue A = 2, 2, 2. It is easy to see that the eigenvector 
equation 

has (to within a constant multiple) the single solution v = [ 1 0 0 r. Thus there 
is only a single eigenvector associated with the eigenvalue A = 2, and so we do not 
yet have the three linearly independent solutions needed for a fundamental matrix. 
But we note that A is the same matrix whose matrix exponential 

was calculated in Example 4. Hence, using Theorem 2, the solution of the initial 
value problem in (29) is given by 

[ ( 1 9  + 243t + 35 1 t2 )e2t ] 
= (29 + 234t)e2t . 

3ge2t 
• 
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Remark: The same particular solution x(t) as in Example 6 could be found 
using the generalized eigenvector method of Section 5 .6 .  One would start by finding 
the chain of generalized eigenvectors 

corresponding to the triple eigenvalue ).., = 2 of the matrix A. Then one would
using Eqs . (27) in Section 5 .6-assemble the linearly independent solutions 

of the differential equation x' = Ax in (29) . The final step would be to deter
mine values of the coefficients Cl , C2 , C3 so that the particular solution x(t) = 
C I X l (t) + C2X2 (t) + C3X3 (t) satisfies the initial condition in (29) . At this point it 
should be apparent that-especially if the matrix exponential eAt is readily available 
(for instance, from a computer algebra system)-the method illustrated in Exam
ple 6 can well be more "computationally routine" than the generalized eigenvector 
method. 

General Matrix Exponentials 

The relatively simple calculation of eAt carried out in Example 4 (and used in Ex
ample 6) was based on the observation that if 

A =  0 2 6 , 
[ 2 3 4 ] 

then A - 21 is nilpotent: 

(A - 21) 3 = [ �  

0 0 2  

3 4 ] 3 [ 0 
o 6 = 0 
0 0 0 

o 0 ] 
o 0 = 0 . 

o 0 
(30) 

A similar result holds for any 3 x 3 matrix A having a triple eigenvalue r, in 
which case its characteristic equation reduces to ().., - r)3 = O. For such a matrix, 
an explicit computation similar to that in Eq. (30) will show that 

(A - rl) 3 = o. (3 1 ) 
(This particular result i s  a special case of the Cay ley-Hamilton theorem of advanced 
linear algebra, according to which every matrix satisfies its own characteristic equa
tion. )  Thus the matrix A - rl is nilpotent, and it follows that 

the exponential series here terminating because of Eq. (3 1 ) . In this way, we can 
rather easily calculate the matrix exponential eAt for any square matrix having only 
a single eigenvalue. 
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The calculation in Eq. (32) motivates a method of calculating eAt for any n x n 
matrix A whatsoever. As we saw in Section 5.6, A has n linearly independent gen
eralized eigenvectors UI , U2 , . . .  , Un . Each generalized eigenvector U is associated 
with an eigenvalue A of A and has a rank r � 1 such that 

(A - Alru = 0 but (33) 

(If r = 1 ,  then U is an ordinary eigenvector such that Au = AU.) 
Even if we do not yet know eAt explicitly, we can consider the function x(t) = 

eAt u, which is a linear combination of the column vectors of eAt and is therefore a 
solution of the linear system x' = Ax with x(O) = u. Indeed, we can calculate x 
explicitly in terms of A, u, A, and r :  

so 

x(t) = eAtu = e(A.I+A-AI)tu = eAIt e (A-AI) tu 

= eAtI I + (A - AI)t + . . .  + (A - AIr- I t + . . .  u, [ r- I ] (r - 1 ) !  

[ 2 
At 2 t x(t) = e u + (A - AI)ut + (A - AI) u- + . . .  

2 !  

+ (A - Alr -
Iu , 
tr- I ] 

(r - 1 ) !  

using (33) and the fact that eAIt = eAt I. 

(34) 

If the linearly independent solutions XI (t) , X2 (t) , . . .  , xn (t) of x' = Ax are 
calculated using (34) with the linearly independent generalized eigenvectors UI , U2, 
• • .  , Un , then the n x n matrix 

(35) 

is a fundamental matrix for the system x' = Ax . Finally, the specific fundamental 
matrix X(t) = c)(t)c) (O) - 1 satisfies the initial condition X(O) = I, and thus is the 
desired matrix exponential eAt . We have therefore outlined a proof of the following 
theorem. 

THEOREM 3 Computation of eAt 

Let UI , U2 , . . .  , Un be n linearly independent generalized eigenvectors of the 
n x n matrix A .  For each i ,  1 � i � n ,  let Xj (t) be the solution of x' = Ax given 
by (34), substituting u = Uj and the associated eigenvalue A and rank r of the 
generalized eigenvector Uj . If the fundamental matrix c)(t) is defined by (35), 
then 

(36) 

(37) 
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Solution Theorem 3 would apply even if the matrix A were not upper triangular. But be
cause A is upper triangular, this fact enables us to see quickly that its characteristic 
equation is 

(5 - A) (3 - A)2 = O. 

Thus A has the distinct eigenvalue A l = 5 and the repeated eigenvalue A2 = 3. 

CASE 1 :  A l = 5 . The eigenvector equation (A - U)u = 0 for u = [ a b c r 
is [ -2 

(A - 51)u = � 
The last two scalar equations 4c = 0 and -2c = 0 give c = O. Then the first 
equation -2a + 4b = 1 is satisfied by a = 2 and b = 1 .  Thus the eigenvalue A l  = 5 
has the (ordinary) eigenvector U1 = [ 2 l O r . The corresponding solution of 
the system x' = Ax is 

(38) 

CASE 2 :  A2 = 3 . The eigenvector equation (A - U)u = 0 for u = [ a b c r 
is 

(A - 3nu � [ g � � ]  
[ 
n � m . 

The first two equations 4b + 5c = 0 and 2b + 4c = 0 imply that b = c = 0, but 
leave a arbitrary. Thus the eigenvalue A2 = 3 has the single (ordinary) eigenvector 
U2 = [ 1 0 0 ] T . The corresponding solution of the system x' = Ax is 

(39) 

To look for a generalized eigenvector of rank r = 2 in Eq. (33), we consider the 
equation 

(A - 3I)'u � [ g  � li J [ n � m 
The first two equations 8b + 1 6c = 0 and 4b + 8c = 0 are satisfied by b = 2 
and c = - I , but leave a arbitrary. With a = 0 we get the generalized eigenvector 
U3 = [ 0 2 - 1 ] T of rank r = 2 associated with the eigenvalue A = 3 .  Because 
(A - 31)2u = 0, Eq. (34) yields the third solution 

With the solutions listed in Eqs . (39) and (40), the fundamental matrix 
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with 

Hence Theorem 3 finally yields 

eAt = <J)(t)<J) (O)- 1 [ 2e5' 
eSt 0 e3t 0 0 3te" ] [ 0 

2e3t 1 
_e3t 0 

2eSt _ 2e3t 

1 

-� ] -2 0 - 1 

= 0 [ e" 
eSt 2eSt _ 2e3t . 

4e5< - (4 + 31)e3, ] 0 0 e3t • 

Remark: As in Example 7, Theorem 3 suffices for the computation of eAt 
provided that a basis consisting of generalized eigenvectors of A can be found. • 

_ Problems 

Find a fundamental matrix of each of the systems in Problems 
1 through 8, then apply Eq. (8) to find a solution satisfying the 
given initial conditions. 

Compute the matrix exponential eAt for each system x' = Ax 
given in Problems 9 through 20. 
9. x; = 5x I - 4X2 , x� = 2x I - X2 

10. x; = 6x I - 6X2 , x� = 4x I - 4X2 
11 .  x; = 5xI - 3X2 , x� = 2x I 
12. x; = 5xI - 4X2 , x� = 3xI - 2X2 

13. x; = 9x I - 8X2 , x� = 6x I - 5X2 
14. x; = lOx I - 6X2 , x� = 1 2x I - 7X2 
15. x; = 6xI - lOx2 , x� = 2x I - 3X2 
16. x; = l lx l - 15x2 , x� = 6x I - 8X2 
17. x; = 3x I + X2 , x� = XI + 3X2 
18. x; = 4x I + 2X2 , x� = 2x I + 4X2 
19. x; = 9x I + 2X2 , x� = 2x I + 6X2 
20. x; = 1 3x l + 4X2 , x� = 4x I + 7X2 

In Problems 21 through 24, show that the matrix A is nilpo
tent and then use this fact to find (as in Example 3) the matrix 
exponential eAt . 

21. A = U 
23. A �  U -: ] o -3 ] 

o 7 
o -3 

Each coefficient matrix A in Problems 25 through 30 is the 
sum of a nilpotent matrix and a multiple of the identity matrix. 
Use this fact (as in Example 6) to solve the given initial value 
problem. 

25. x' = [ � ; ] x, x(O) = [ � ] 
26. x' = [ 1 � � ]  x, x(O) = [ - l� ] 
27. X � U ! n x. x(O) � m 
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[ 5 0 0 ] 
28. x' = 10 5 0 x, 

20 30 5 [ 1 2 3 4 ] , 0 1 6 3 
29. x = 0 0 1 2 x, 

o 0 0 1 [ 3 0 0 0 ] 
, 6 3 0 0  30. x = 9 6 3 0 x, 

12 9 6 3 

and apply this fact to find a general solution of x' = Ax. 
Verify that it is equivalent to the general solution found by 
the eigenvalue method. 

34. Suppose that 

A = [ -� � l 
Show that eAt = I cos 2t + 

! A sin 2t . Apply this fact to 
find a general solution of x' = Ax, and verify that it is 
equivalent to the solution found by the eigenvalue method. 

31. Suppose that the n x n matrices A and B commute; that 
is, that AB = BA. Prove that eMB = eAeB . (Suggestion: Apply Theorem 3 to calculate the matrix exponential eAt for 

each of the matrices in Problems 35 through 40. 
Group the terms in the product of the two series on the 
right-hand side to obtain the series on the left .)  

35. A = [ �  � J � h [ � 2 3 ] 
32. Deduce from the result of Problem 3 1  that, for ev

ery square matrix A, the matrix eA is nonsingular with 

(eAr l 
= e-A • 

37. A � U 3 

n 
1 4 
o 1 

3U � [ g  20 30 ] 33. Suppose that 

A = [ � � l 1 
0 

10 20 
o 5 

Show that A2n = I and that A2n+ 1  = A if n is a positive 
integer. Conclude that 39. h [ � 3 

1 
0 

3 
3 
2 
n 

�. h [ �  4 4 

n 

2 4 
0 2 

eAt = I cosh t + A sinh t , 0 0 0 0 

_ Nonhomogeneo�s Linear �ystem�_ .. _ _ . 

In Section 2.5 we exhibited two techniques for finding a single particular solution 
of a single nonhomogeneous nth-order linear differential equation-the method of 
undetermined coefficients and the method of variation of parameters. Each of these 
may be generalized to nonhomogeneous linear systems. In a linear system mod
eling a physical situation, nonhomogeneous terms typically correspond to external 
influences, such as inflow of liquid to a cascade of brine tanks or an external force 
acting on a mass-and-spring system. 

Given the nonhomogeneous first-order linear system 

X' = Ax + f(t) ( 1 ) 

where A is an n x n constant matrix and the "nonhomogeneous term" f(t) is a given 
continuous vector-valued function, we know from Theorem 4 of Section 5 .3 that a 
general solution of Eq. ( 1 )  has the form 

X(t) = xc (t) + xp (t) , (2) 

where 

• xc (t) = Cj Xj (t) + C2X2 (t) + . . . + cnxn (t) is a general solution of the associ
ated homogeneous system x' = Ax, and 

• xp (t) is a single particular solution of the original nonhomogeneous system in 
( 1 ) . 

Preceding sections have dealt with xc (t) , so our task now is to find xp (t ) . 
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Undetermined Coefficients 

First we suppose that the nonhomogeneous term f(t) in ( 1 )  is a linear combination 
(with constant vector coefficients) of products of polynomials, exponential func
tions, and sines and cosines . Then the method of undetermined coefficients for 
systems is essentially the same as for a single linear differential equation. We make 
an intelligent guess as to the general form of a particular solution xp , then attempt 
to determine the coefficients in xp by substitution in Eq. ( 1 ) . Moreover, the choice 
of this general form is essentially the same as in the case of a single equation (dis
cussed in Section 2.5) ;  we modify it only by using undetermined vector coefficients 
rather than undetermined scalars. We will therefore confine the present discussion 
to illustrative examples . 

Find a particular solution of the nonhomogeneous system 

(3) 

Solution The nonhomogeneous term f = [ 3  2t r is linear, so it is reasonable to select a 
linear trial particular solution of the form 

Xp (t) = at + b = [ :� ] t + [ :� ] . (4) 

Upon substitution of x = xp in Eq. (3), we get 

We equate the coefficients of t and the constant terms (in both X I - and x2-compon
ents) and thereby obtain the equations 

3a l + 2a2 = 0, 
7a l + 5a2 + 2 = 0, 
3b l + 2b2 + 3 = a l , 

7bl + 5b2 = a2 ·  

(5) 

We solve the first two equations in (5) for al = 4 and a2 = -6. With these values we 
can then solve the last two equations in (5) for bl = 17  and b2 = -25 . Substitution 
of these coefficients in Eq. (4) gives the particular solution x = [ XI X2 r of (3) 
described in scalar form by 

X I (t) = 4t + 17 , 
X2 (t) = -6t - 25 . • 
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� r (gal/min) 

c;� 

C�l , r  
FIGURE 5.S.1. The three brine 
tanks of Example 2. 

Figure 5 .S . l shows the system of three brine tanks investigated in Example 2 of 
Section 5 .4. The volumes of the three tanks are VI = 20, V2 = 40, and V3 = 50 
(gal), and the common flow rate is r = 1 0 (gal/min). Suppose that all three tanks 
contain fresh water initially, but that the inflow to tank 1 is brine containing 2 pounds 
of salt per gallon, so that 20 pounds of salt flow into tank 1 per minute. Referring 
to Eq. ( 1 S) in Section 5 .4, we see that the vector x(t) = [ X I (t) X2 (t) X3 (t) r of 
amounts of salt (in pounds) in the three tanks at time t satisfies the nonhomogeneous 
initial value problem 

- - 0.5 dx _ [ -0.5 
dt 0 

o 
-0.25 0.25 

� ] x +  [ 2� ] , -0.2 0 
(6) 

The nonhomogeneous term f = [ 20 0 0 ] T here corresponds to the 20 lb/min 
inflow of salt to tank 1 , with no (external) inflow of salt into tanks 2 and 3 . 

Because the nonhomogeneous term is constant, we naturally select a constant 
trial function xp = [ al a2 a3 r, for which x� == O. Then substitution of x = xp 
in (6) yields the system [ 0 ] [ -0.5 0 0 ] [ a l ] [ 20 ] 

o = 0.5 -0.25 0 a2 + 0 
o 0 0.25 -0.2 a3 0 

that we readily solve for al = 40, a2 = SO, and a3 = 100 in turn. Thus our 
particular solution is xp (t) = [ 40 SO 100 r . 

In Example 2 of Section 5 .4 we found the general solution 

of the associated homogeneous system, so a general solution x = Xc + xp of the 
nonhomogeneous system in (6) is given by 

When we apply the zero initial conditions in (6) , we get the scalar equations 

3c I + 40 = 0, 
-6cI + C2 + SO = 0, 
SCI - 5c2 + C3 + 100 = 0 

that are readily solved for CI = -�,  C2 = - 160, and C3 = - 25300 . Substituting 
these coefficients in Eq. (7) ,  we find that the amounts of salt in the three tanks at 
time t are given by 

XI (t) = 40 - 40e-t/2 , 
X2 (t) = SO + SOe-t/2 - l60e-t/4 , (S) 
X3 (t) = 100 + I�O (_2e-t/2 + 24e-t/4 - 25e-t/5 ) . 
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As illustrated in Fig. 5 . 8 .2, we see the salt in each of the three tanks approaching, as 
t � +00, a uniform density of 2 Ib/gal-the same as the salt density in the inflow 
to tank 1 .  • 

1 20 r-----r-.-------r---.--,-----, 
_ _ _ _ _ _ _  � __ X�3�(t)�-�1�00� 

x2(t) - 80 

30 40 50 60 
t 

FIGURE 5.8.2. The salt amount 
solution curves defined in (8) . 

In the case of duplicate expressions in the complementary function and the 
nonhomogeneous terms, there is one difference between the method of undeter
mined coefficients for systems and for single equations (Rule 2 in Section 2.5). For 
a system, the usual first choice for a trial solution must be multiplied not only by 
the smallest integral power of t that will eliminate duplication, but also by all lower 
(nonnegative integral) powers of t as well, and all the resulting terms must be in
cluded in the trial solution. 

Consider the nonhomogeneous system 

I [ 4 2 J [ 1 5 J -2t X = 3 - 1  x - 4 te . 

In Example 1 of Section 5.4 we found the solution [ 1 ] -2t [ 2 ] 5t xc (t) = Cl -3 e + C2 1 e 

(9) 

( 10) 

of the associated homogeneous system. A preliminary trial solution xp (t) = ate-2t+ 
be-2t exhibits duplication with the complementary function in ( 10) .  We would 
therefore select 

Xp (t) = at2e-2t + bte-2t + ce-2t 

as our trial solution, and we would then have six scalar coefficients to determine. It 
is simpler to use the method of variation of parameters, our next topic. • 

Variation of Parameters 

Recall from Section 2.5 that the method of variation of parameters may be applied 
to a linear differential equation with variable coefficients and is not restricted to 
nonhomogeneous terms involving only polynomials, exponentials, and sinusoidal 
functions. The method of variation of parameters for systems enjoys the same flexi
bility and has a concise matrix formulation that is convenient for both practical and 
theoretical purposes. 
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We want to find a particular solution xp of the nonhomogeneous linear system 

x' = P(t)x + f(t ) ,  ( 1 1 )  

given that we  have already found a general solution 

( 1 2) 

of the associated homogeneous system 

x' = P(t)x. ( 1 3) 

We first use the fundamental matrix <J) (t) with column vectors x I , X2 , . . .  , Xn 
to rewrite the complementary function in ( 1 2) as 

xc (t) = <J) (t)c, ( 14) 

where c denotes the column vector whose entries are the coefficients e l , e2 ,  . . .  , en . 
Our idea is to replace the vector "parameter" c with a variable vector u(t) . Thus we 
seek a particular solution of the form 

xp (t) = <J)(t)u(t) . ( 1 5) 

We must determine u(t) so that xp does, indeed, satisfy Eg. ( 1 1 ) . 
The derivative of xp (t) is (by the product rule) 

x� (t) = <J)' (t)u(t) + <J) (t)u' (t ) .  ( 1 6) 

Hence substitution of Egs . ( 1 5) and ( 1 6) in ( 1 1 )  yields 

<J)' (t)u(t) + <J) (t)u' (t) = P(t)<J) (t)u(t) + f(t ) .  ( 1 7) 

But 

<J)'(t) = P(t)<J) (t) ( 1 8) 

because each column vector of <J) (t) satisfies Eg. ( 1 3) . Therefore, Eg. ( 1 7) reduces 
to 

<J)(t)u' (t) = f(t ) .  ( 1 9) 

Thus it suffices to choose u(t) so that 

u' (t) = <J)(t)- I f(t ) ;  (20) 

that is, so that 

u(t) = J <J)(t) - I f(t) dt . (2 1 )  

Upon substitution of (2 1 )  in ( 1 5) ,  we finally obtain the desired particular solution, 
as stated in the following theorem. 
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TH EOREM 1 Variation of Parameters 

If �(t) is a fundamental matrix for the homogeneous system x' = P(t)x on 
some interval where P(t) and f(t )  are continuous, then a particular solution of 
the nonhomogeneous system 

x' = P(t)x + f(t) 

is given by 

(22) 

This is the variation of parameters formula for first-order linear systems. If 
we add this particular solution and the complementary function in ( 14), we get the 
general solution 

x(t) = �(t)c + �(t) f �(t)- l f(t) dt (23) 

of the nonhomogeneous system in ( 1 1 ) . 
The choice of the constant of integration in Eq. (22) is immaterial, for we 

need only a single particular solution. In solving initial value problems it often is 
convenient to choose the constant of integration so that xp (a) = 0, and thus integrate 
from a to t :  

If we add the particular solution of the nonhomogeneous problem 

x' = P(t)x + f(t ) ,  x(a) = 0 

(24) 

in (24) to the solution xc (t) = � (t)� (a)- I Xa of the associated homogeneous prob
lem x' = P(t)x, x(a) = xa , we get the solution 

of the nonhomogeneous initial value problem 

x' = P(t)x + f(t ) ,  x(a) = Xa . 

(25) 

(26) 

Equations (22) and (25) hold for any fundamental matrix �(t) of the homo
geneous system x' = P(t)x. In the constant-coefficient case P(t) == A we can use 
for �(t) the exponential matrix eAt-that is, the particular fundamental matrix such 
that �(O) = I. Then, because (eAt )- 1 = e-At , substitution of �(t) = eAt in (22) 
yields the particular solution 

(27) 
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of the nonhomogeneous system x' = P(t)x + f(t) . Similarly, substitution of �(t) = 
eAt in Eq. (25) with a = 0 yields the solution 

of the initial value problem 

x' = P(t)x + f(t ) ,  x(O) = Xo .  

(28) 

(29) 

Remark: If we retain t as the independent variable but use s for the variable 
of integration, then the solutions in (27) and (28) can be rewritten in the forms 

xp (t) = f e-A(s-t) f(s ) ds and x(t) = eAtXo + 1 t 
e-A(s-t ) f(s ) ds . • 

Solve the initial value problem 

, [ 4 2 ] [ 1 5  ] -2t x = 3 - I x - 4 te , x(O) = [ � l (30) 

Solution The solution of the associated homogeneous system is displayed in Eq. ( 1 0) . It gives 
the fundamental matrix 

It follows by Eq. (28) in Section 5 .7 that the matrix exponential for the coefficient 
matrix A in (30) is 

Then the variation of parameters formula in Eq. (28) gives 

[ 7 ] r 1 [ e2s + 6e-5s 
= 3 + 10 "7 -3e2s + 3e-5s 

_2e2s + 2e-5s ] [ - 1 5se-2s ] ds 6e2s + e-5s -4se-2s 

= [ � ] + 1 t [ �� = I ��:=�: ] ds 

[ 7 ] 1 [ -4 - 7t2 + 4e-7t + 28te-7t ] = 3 + 14 -2 + 2 1 t2 + 2e-7t + 14te-7t . 
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-At I [ 94 - 7t2 + 4e-7t + 28te-7t ] e x(t ) = 14 40 + 2 l t2 + 2e-7t + l4te-7t . 

Upon multiplication of the right-hand side here by eAt , we find that the solution of 
the initial value problem in (30) is given by 

_ .! [ e-2t + 6e5t x(t) - 7 -3e-2t + 3e5t 
_2e-2t + 2e5t ] I [ 94 - 7t2 + 4e-7t + 28te-7t ] 

6e-2t + e5t . 14 40 + 2 1 t2 + 2e-7t + l4te-7t 

• 

In conclusion, let us investigate how the variation of parameters formula in 
(22) "reconciles" with the variation of parameters formula in Theorem 1 of Sec
tion 2.5 for the second-order linear differential equation 

y" + Py' + Qy = f(t ) .  (3 1 )  

If we write y = XI , y '  = x i = X2 , y" = x i' = x� ,  then the single equation in (3 1 )  is 
equivalent to the linear system x i = X2 , x� = - QXI - P X2 + f (t) , that is, 

x' = P(t)x + f(t) , (32) 

where 

Now two linearly independent solutions YI and Y2 of the homogeneous system 
y" + Py' + Qy = 0 associated with (3 1 )  provide two linearly independent solutions 

XI = [ �; ] and X2 = [ �� ] 
of the homogeneous system x' = P(t)x associated with (32) . Observe that the 
determinant of the fundamental matrix . = [ XI X2 ] is simply the Wronskian 

w = YI Y2 
yi y� 

of the solutions YI and Y2 , so the inverse fundamental matrix is 

. - 1  = � 
W 

Therefore the variation of parameters formula xp = • J .- I f dt in (22) yields 
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The first component of this column vector is 

Y2 - dt = -Yl - dt + Y2 - dt . ] f I [ -Y2! ] f Y2! f yJ / W yJ / W W 

If, finally, we supply the independent variable t throughout, the final result on the 
right-hand side here is simply the variation of parameters formula in Eq. (33) of 
Section 2.5 (where, however, the independent variable is denoted by x) .  

_ Problems 

Apply the method of undetermined coefficients to find a par
ticular solution of each of the systems in Problems 1 through 
14. If initial conditions are given, find the particular solution 
that satisfies these conditions. Primes denote derivatives with 
respect to t. 
1. x' = x + 2y + 3, y' = 2x + y - 2 
2. x' = 2x + 3y + 5, y' = 2x + y - 2t 
3. x' = 3x + 4y, y' = 3x + 2y + t2 ; x (O) = y eO) = 0 
4. x' = 4x + y + et , y' = 6x - y - et ; x (O) = y eO) = 1 
5. x' = 6x - 7y + 10, y' = x - 2y - 2e-t 
6. x' = 9x + y + 2et , y' = -8x - 2y + tet 
7. x' = -3x + 4y + sin t , y' = 6x - 5y ; x (O) = 1 ,  y eO) = 0 
8. x' = x - 5 y + 2 sin t, y' = x - y - 3 cos t 
9. x' = x - 5y + cos 2t , y' = x - y  

10. x' = x - 2y, y' = 2x - y + et sin t 
11 . x' = 2x + 4y + 2, y' = x + 2y + 3 ; x (O) = 1 ,  y eO) = - 1  
12. x '  = x + y + 2t, y' = x + y - 2t 
13. x' = 2x + y + 2et , y' = x + 2y - 3et 
14. x' = 2x + y + 1 ,  y' = 4x + 2y + e4t 

Problems 15 and 16 are similar to Example 2, but with two 
brine tanks (having volumes VI and V2 gallons as in Fig. 5. 8.2) 

instead of three tanks. Each tank initially contains fresh water; 
and the inflow to tank 1 at the rate of r gallons per minute has 
a salt concentration of Co pounds per gallon. (a) Find the 
amounts XI (t) and X2 (t) of salt in the two tanks after t min
utes. (b) Find the limiting (long-term) amount of salt in each 
tank. (c) Find how long it takes for each tank to reach a salt 
concentration of 1 lb / gal. 
15. VI = 100, V2 = 200, r = 10, Co = 2 
16. VI = 200, V2 = 100, r = 10, Co = 3 

In Problems 1 7  through 34, use the method of variation ofpa
rameters (and perhaps a computer algebra system) to solve the 
initial value problem 

x' = Ax + f(t) , x(a) = Xa . 

In each problem we provide the matrix exponential eAt as pro
vided by a computer algebra system. 

17. A = [ � =i 1 f(t ) = [ �� 1 x(O) = [ � 1 
At _ ! [ _e-t + 7eSt e - 6 _e-t + eSt 

18. Repeat Problem 17 , but with f(t ) replaced with [ ��� l [ 1 2 ] [ l 80t ] [ 0 ] 19. A = 2 -2 , f(t) = 90 ' x(O) = 0 ' 

At _ I [ e-3t + 4e2t _2e-3t + 2e2t ] e - 5" _2e-3t + 2e2t 4e-3t + e2t 

20. Repeat Problem 1 9, but with f(t ) replaced with [ 75e� J 
21. A = [ �  =� 1 f(t ) = D�:�: 1 x(O) = [ � l 

[ _e-t + 5e3t e-t - e3t ] eAt = ! 4 -5e-t + 5e3t 5e-t _ e3t 

22. Repeat Problem 2 1 ,  but with f(t) replaced with [ ;�:�1 
23. A = [ �  =n , f(t ) = [ � l  x(O) = U 1 

At = [ 1 + 3t -t ] e 9t 1 - 3t 

24. Repeat Problem 23, but with f(t) = [ t�2 ] and x( 1 ) = 

U l  
25. A = [ 7 =; 1 f(t) = [ 4: 1 x(O) = [ � 1 
26. 

eAt = [ cos t :- 2 sin t -5 sin t
. ] sm t cos t - 2 sm t  

Repeat Problem 25, but with f(t ) = [ 46C?S t ] and x(O) = sm t U J 
27. A = [ 7  =� 1 f(t ) = [ 3�:2 l x(O) = [ � l  

eAt = [ 1 + 2t -4t ] 
t 1 - 2t 

28. Repeat Problem 27, but with f(t) = [ 4t�� t ] and x( 1 ) = 

[ - �  l 



[ 0  - I J [ sec t J [ O J  29. A = 1 0 ' f(t) = 0 , x(O) = 0 ' 

At _ [ cos t - sin t J e - . sm t cos t 

30. A = [ � -� l f(t) = [ � ��:�: l x(O) = [ � l 
eAt = [ c�s 2t - sin 2t J 

sm 2t cos 2t 

31. A = [ � i ; ] , f(t) = [ � ] ,  x(O) = [ � ] ,  o 0 1 6et 0 

[ et 2tet (3t + 2t2)et ] eAt = 0 et 2tet 
o 0 et 

32. A = [ � i � ] ,  f(t) = [ � ] , x(O) = [ � ] , 
0 0 2  2e2t 0 
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[ et 3tet 
eAt = 0 et 

o 0 [ 0 4 8 
0 0 3  33. A = 0 0 0 
0 0 0  
[ 1 4t 8t + 6t2 32t2 + 8t3 ] 

At 0 1 3t 8t + 6t2 e = O O  1 4t 
o 0 0 1 [ 0 4 8 0 ] [ 0 ] [ 4 ] 0 0 0  8 fu 2 

34. A = 0 0 2 4 ' f(t) = 0 ' x(O) = 2 ' 

o 0 0 2 e2t 1 
[ 1  4t 

At 0 1 e = 0 0 
o 0 o 
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N ulllerical Methods 

It is the exception rather than the rule when a differential equation of the general 
form 

dy 
dx 

= I (x , y) 

can be solved exactly and explicitly by elementary methods like those discussed in 
Chapter 1 . For example, consider the simple equation 

dy _x2 - = e  
dx 

( 1 )  

A solution of Eq. ( 1 )  is simply an anti derivative of e-x2 • But i t  i s  known that every 
antiderivative of I (x) = e-x2 is a nonelementary function-one that cannot be 
expressed as a finite combination of the familiar functions of elementary calculus. 
Hence no particular solution of Eq. ( 1 )  is finitely expressible in terms of elementary 
functions. Any attempt to use the symbolic techniques of Chapter 1 to find a simple 
explicit formula for a solution of ( 1 )  is therefore doomed to failure. 

As a possible alternative, an old-fashioned computer plotter-one that uses an 
ink pen to draw curves mechanically-can be programmed to draw a solution curve 
that starts at the initial point (xo , Yo) and attempts to thread its way through the slope 
field of a given differential equation y' = I (x , y) . The procedure the plotter carries 
out can be described as follows .  

• The plotter pen starts at the initial point (xo , Yo) and moves a tiny distance 
along the slope segment though (xo , Yo) . This takes it to the point (X l , YI ) .  

• At (X l , YI ) the pen changes direction, and now moves a tiny distance along 
the slope segment through this new starting point (X l , yd . This takes it to the 
next starting point (X2 , Y2) . 



y 

Solution 
curve 

���---------------- x 
FIGURE 6.1.1 . The first few 
steps in approximating a solution 
curve. 

FIGURE 6.1.2. The step from 
(Xn , Yn ) to (Xn+ l , Yn+ l ) . 
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• At (X2 , Y2) the pen changes direction again, and now moves a tiny distance 
along the slope segment through (X2 , Y2) . This takes it to the next starting 
point (X3 , Y3 ) . 

Figure 6. 1 . 1  illustrates the result of continuing in this fashion--by a sequence 
of discrete straight-line steps from one starting point to the next. In this figure we 
see a polygonal curve consisting of line segments that connect the successive points 
(xo , Yo) , (X l , Yl ) ,  (X2 , Y2) ,  (X3 , Y3 ) , . . . .  However, suppose that each "tiny distance" 
the pen travels along a slope segment--before the midcourse correction that sends 
it along a fresh new slope segment--is so very small that the naked eye cannot 
distinguish the individual line segments constituting the polygonal curve. Then the 
resulting polygonal curve looks like a smooth, continuously turning solution curve 
of the differential equation. Indeed, this is (in essence) how most of the solution 
curves shown in the figures of Chapter 1 were computer generated. 

Leonhard Euler--the great 1 8th-century mathematician for whom so many 
mathematical concepts, formulas, methods, and results are named--did not have a 
computer plotter, and his idea was to do all this numerically rather than graphically. 
In order to approximate the solution of the initial value problem 

dy 
dx 

= I(x , Y) ,  y (xo) = Yo ,  (2) 

we first choose a fixed (horizontal) step size h to use in making each step from 
one point to the next. Suppose we've started at the initial point (xo , Yo) and after 
n steps have reached the point (xn , Yn ) . Then the step from (xn , Yn ) to the next 
point (Xn+ l , Yn+d is illustrated in Fig. 6. 1 .2. The slope of the direction segment 
through (xn , Yn ) is m = I (xn , Yn ) .  Hence a horizontal change of h from Xn to 
Xn+ l corresponds to a vertical change of m . h = h . I (xn , Yn ) from Yn to Yn+ l . 
Therefore the coordinates of the new point (xn+ I , Yn+ I ) are given in terms of the old 
coordinates by 

Xn+ 1 = Xn + h ,  Yn+ 1 = Yn + h . I (xn , Yn ) . 

Given the initial value problem in (2) , Euler's method with step size h con
sists of starting with the initial point (xo , Yo) and applying the formulas 

XI = xo + h 
X2 = X I + h 
X3 = X2 + h 

YI = Yo + h . I (xo , Yo) 
Y2 = YI + h . I (x t , Y t ) 
Y3 = Y2 + h . I (X2 , Y2) 

to calculate successive points (X l , yd, (X2 , Y2) ,  (X3 , Y3 ) ,  . . .  on an approximate so
lution curve. 

However, we ordinarily do not sketch the corresponding polygonal approxi
mation. Instead, the numerical result of applying Euler's method is the sequence of 
approximations 

YI , Y2 , Y3 , · · · , Yn , · · ·  
to the true values 

Y (X I ) ,  Y (X2) , Y (X3 ) ,  . . .  , Y (Xn ) ,  . . .  
at the points XI , X2 , X3 , . . .  , Xn , . . .  of the exact (though unknown) solution y(x) of 
the initial value problem. These results typically are presented in the form of a table 
of approximate values of the desired solution. 
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Example 1 

ALGORITHM The Euler Method 

Given the initial value problem 

dy 
dx 

= I(x , y) , y (xo) = Yo ,  

Euler's method with step size h consists of applying the iterative formula 

Yn+ l = Yn + h . I (xn , Yn) (n � 0) 

(2) 

(3) 

to calculate successive approximations YI , Y2 , Y3 , . . .  to the [true] values y (xj ) ,  
Y (X2) ,  Y (X3 ) ,  . . .  of the [exact] solution y = y (x) at the points Xl , X2 , X3 , . . . , 
respectively. 

The iterative formula in (3) tells us how to make the typical step from Yn to 
Yn+ l and is the heart of Euler's method. Although the most important applications 
of Euler's method are to nonlinear equations, we first illustrate the method with a 
simple initial value problem whose exact solution is available, just for the purpose 
of comparison of approximate and actual solutions .  

-- - ._- _ ..... __ .... _ .... .. .. 

Apply Euler's method to approximate the solution of the initial value problem 

dy I 
dx 

= X + 
S

y,  y eO) = -3 , 

(a) first with step size h = 1 on the interval [0, 5] ,  
(b) then with step size h = 0.2 on  the interval [0, 1 ] .  

(4) 

Solution (a) With Xo = 0, Yo = -3, I (x , y) = X + �y, and h = 1 the iterative formula in 
(3) yields the approximate values 

Yl = Yo + h . [xo + �Yo] = (-3) + ( 1 ) [0 + � (-3) ] = -3 .6, 
Y2 = YI + h · [X l + �Y t l = (-3 .6) + ( 1 ) [ 1  + � (-3 .6) ] = -3 .32, 
Y3 = Y2 + h · [X2 + �Y2 ] = (-3 .32) + ( 1 ) [2 + � (-3 .32) ] = - 1 .984, 
Y4 = Y3 + h · [X3 + �Y3 ] = (- 1 .984) + ( 1 ) [3 + � (- 1 .984) ] = 0.6 1 92, and 
Y5 = Y4 + h . [X4 + �Y4] = (0.69 1 2) + ( 1 ) [4 + � (0.69 1 2) ] � 4.7430 

at the points X l = 1 , X2 = 2, X3 = 3 ,  X4 = 4, and X5 = 5 . Note how the result of 
each calculation feeds into the next one. The resulting table of approximate values 
is 

X 0 1 2 3 4 5 
Approx. Y -3 -3 .6 -3 .32 - 1 .984 0.69 1 2  4.7430 

Figure 6. 1 .3 shows the graph of this approximation, together with the graphs 
of the Euler approximations obtained with step sizes h = 0.2 and 0.05 , as well as 
the graph of the exact solution 

y(x) = 22ex/5 - 5x - 25 

that is readily found using the linear-equation technique of Section 1 .5 . We see that 
decreasing the step size increases the accuracy, but with any single approximation, 
the accuracy decreases with distance from the initial point. 
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FIGURE 6.1 .3. Graphs of Euler approximations with step sizes 
h = 1, h = 0.2, and h = 0.05 . 

(b) Starting afresh with Xo = 0, Yo = -3,  I(x ,  y) = x + �y, and h = 0.2, we get 
the approximate values 

YI = Yo + h · [xo + �Yo] = (-3) + (0.2) [0 + � (-3) ]  = -3 . 1 2, 
Y2 = YI + h · [XI + �YI l  = (-3 . 1 2) + (0.2) [0.2 + � (-3 . 1 2) ]  � -3.205 , 
Y3 = Y2 + h · [X2 + �Y2 ] � (-3 .205) + (0.2) [0.4 + � (-3 .205) ]  � -3.253, 
Y4 = Y3 + h · [X3 + �Y3 ] � (-3 .253) + (0.2) [0.6 + � (-3 .253) ] � -3.263, 
Y5 = Y4 + h · [X4 + �Y4] � (-3 .263) + (0.2) [0. 8  + � (-3 .263) ] � -3.234 

at the points XI = 0.2, X2 = 0.4, X3 = 0.6, X4 = 0.8 ,  and X5 = 1 .  The resulting 
table of approximate values is 

X 0 0.2 0.4 0.6 0.8 1 
Approx. Y -3 -3 . 1 2  -3 .205 -3 .253 -3 .263 -3 .234 • 

High accuracy with Euler's method usually requires a very small step size and 
hence a larger number of steps than can reasonably be carried out by hand. The 
application material for this section contains calculator and computer programs for 
automating Euler's method. One of these programs was used to calculate the table 
entries shown in Fig. 6. 1 .4. We see that 500 Euler steps (with step size h = 0.002) 
from X = 0 to X = 1 yield values that are accurate to within 0.00 1 .  

Suppose the baseball of Example 3 in Section 1 .3 i s  simply dropped (instead of 
being thrown downward) from the helicopter. Then its velocity v et) after t seconds 
satisfies the initial value problem 

dv 
-- = 32 - 0. 1 6v ,  v (O) = O .  
dt 

(5) 

We use Euler's method with h = 1 to track the ball ' s increasing velocity at I -second 
intervals for the first 1 0  seconds of fall .  With to = 0, Vo = 0, F(t ,  v) = 32 - 0. 1 6v, 
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x . . . . c::) :�:������,�:��;�(:�tr,�il�· i �-,-,,' -,-"<>.�>"-•• �-,,,ith-,-,,A_Ph_Pro�=_�;...:··::ro_2 ___ V_�_U_C:_O_�_Y 
o 
0.2 
0.4 
0.6 
0.8 

-3 .000 
-3 . 1 20 
-3 .205 
-3 .253 
-3 .263 
-3 .234 

-3 .000 
-3 . 104 
-3 . 172 
-3 .201 
-3 . 1 9 1 
-3 . 140 

-3 .000 -3.000 
-3 . 102 -3 . 102 
-3 . 168 -3 . 168 
-3 . 1 96 -3 . 195 
-3 . 1 84 -3 . 1 83 
-3 . 1 30 -3 . 129 

FIGURE 6.1.4. Euler approximations with step sizes h = 0.2, h = 0.02, and h = 0.002. 

and h = 1 the iterative formula in (3) yields the approximate values 

V I = Vo + h . [32 - 0. 1 6vo] = (0) + ( 1 ) [32 - 0. 1 6(0) ] = 32, 
V2 = V I + h . [32 - 0. 1 6vd = (32) + ( 1 ) [32 - 0. 1 6(32) ] = 58 .88 ,  
V3 = V2 + h . [32 - 0. 1 6v2 ] = (58 . 88) + ( 1 ) [32 - 0. 1 6(58 .88) ]  � 8 1 .46, 
V4 = V3 + h . [32 - 0. 1 6v3 ] = (8 1 .46) + ( 1 ) [32 - 0. 1 6(8 1 .46) ] � 1 00.43 , and 
V5 = V4 + h . [32 - 0. 1 6v4] = ( 1 00.43) + ( 1 ) [32 - 0. 1 6( 1 00.43) ] � 1 1 6.36 . 

Continuing in this fashion, we complete the h = 1 column of v-values shown in the 
table of Fig. 6. 1 .5-where we have rounded off velocity entries to the nearest foot 
per second. The values corresponding to h = 0. 1 were calculated using a computer, 
and we see that they are accurate to within about 1 ftls . Note also that after 1 0  
seconds the falling ball has attained about 80% of  its limiting velocity of 200 ftls . 

Actual 
value of v 

32 30 30 
2 59 55 55 
3 8 1  77 76 
4 100 95 95 
5 1 1 6 1 1 1  1 10 
6 1 30 124 1 23 
7 14 1 1 35 1 35 
8 150 145 144 
9 158 153 153 
10 165 160 160 

FIGURE 6.1.5. Euler approximations in Example 2 with step 
sizes h = 1 and h = 0. 1 .  

Local and Cumulative Errors 

• 

There are several sources of error in Euler's method that may make the approxima
tion Yn to y (xn ) unreliable for large values of n ,  those for which Xn is not sufficiently 
close to Xo . The error in the linear approximation formula 

(6) 



Y 

I } Local error 
: (Xn +  I '  Yn +  I) 
I 
I 
I 
I 
I 

FIGURE 6.1 .6. The local error 
in Euler's method. 

x 
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is the amount by which the tangent line at (xn , Yn ) departs from the solution curve 
through (xn , Yn ) ,  as illustrated i n  Fig. 6. 1 .6 .  This error, introduced at each step in 
the process, is called the local error in Euler's method. 

The local error indicated in Fig. 6. 1 .6 would be the total error in Yn+ ! if the 
starting point Yn in (6) were an exact value, rather than merely an approximation 
to the actual value y (xn ) . But Yn itself suffers from the accumulated effects of all 
the local errors introduced at the previous steps. Thus the tangent line in Fig. 6. 1 .6 
is tangent to the "wrong" solution curve-the one through (xn , Yn ) rather than the 
actual solution curve through the initial point (xo , Yo) .  Figure 6. 1 .7 illustrates this 
cumulative error in Euler's method; it is the amount by which the polygonal step
wise path from (xo , Yo) departs from the actual solution curve through (xo , Yo) . 

Y 

FIGURE 6.1.7. The cumulative error in Euler's method. 

! ) c"m •. ti� _ 

(Xn•  Yn) 

Approximate 
values 

x 

The usual way of attempting to reduce the cumulative error in Euler's method 
is to decrease the step size h .  The table in Fig. 6. 1 .8 shows the results obtained in 
approximating the exact solution y (x) = 2ex - x - I  of the initial value problem 

dy 
dx

= x + y, y (O) = 1 ,  

using the successively smaller step sizes h = 0. 1 ,  h = 0.02, h = 0.005, and 
h = 0.00 1 .  We show computed values only at intervals of �X = 0. 1 .  For instance, 
with h = 0.00 1 ,  the computation required 1 000 Euler steps, but the value Yn is 
shown only when n is a multiple of 1 00, so that Xn is an integral multiple of 0. 1 .  

B y  scanning the columns in Fig. 6. 1 . 8 we observe that, for each fixed step size 
h ,  the error Yactual - Yapprox increases as x gets farther from the starting point Xo = O. 
But by scanning the rows of the table we see that for each fixed x ,  the error decreases 
as the step size h is reduced. The percentage errors at the final point x = 1 range 
from 7 .25% with h = 0. 1 down to only 0.08% with h = 0.00 1 .  Thus the smaller 
the step size, the more slowly does the error grow with increasing distance from the 
starting point. 
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x 

0. 1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .0 

1 . 1 000 
1 .2200 
1 .3620 
1 .5282 
1 .72 10 
1 .946 1 
2. 1974 
2.4872 
2.8 159 
3 . 1 875 

1 . 1082 
1 .2380 
1 .39 17 
1 .57 19 
1 .78 1 2 
2.0227 
2.2998 
2.6 16 1 
2.9757 
3.3832 

1 . 1098 
1 .24 16 
1 .3977 
1 .5807 
1 .7933 
2.0388 
2.3205 
2.6422 
3.0082 
3 .4230 

y with 

h = 0.001 

1 . 1 102 
1 .2426 
1 .3993 
1 .583 1 
1 .7966 
2.043 1 
2.326 1 
2.6493 
3 .0170 
3 .4238 

FIGURE 6.1 .8. Approximating the solution of dy/dx = x + y, y eO) = 1 with 
successively smaller step sizes. 

Actual 

Y 

1 . 1 103 
1 .2428 
1 .3997 
1 .5836 
1 .7974 
2.0442 
2.3275 
2.65 1 1  
3 .0192 
3.4266 

The column of data for h = 0. 1 in Fig. 6. 1 .8 requires only 1 0  steps, so Euler's 
method can be carried out with a hand-held calculator. But 50 steps are required 
to reach x = 1 with h = 0.02, 200 steps with h = 0.005 , and 1 000 steps with 
h = 0.00 1 .  A computer is almost always used to implement Euler's method when 
more than 1 0  or 20 steps are required. Once an appropriate computer program has 
been written, One step size is-in principle-just as convenient as another; after all, 
the computer hardly cares how many steps it is asked to carry out. 

Why, then, do we not simply choose an exceedingly small step size (such as 
h = 1 0- 12) ,  with the expectation that very great accuracy will result? There are two 
reasonS for not doing so. The first is obvious :  the time required for the computation. 
For example, the data in Fig. 6. 1 .8 were obtained using a hand-held calculator that 
carried out nine Euler steps per second. Thus it required slightly over One second 
to approximate y ( l )  with h = 0. 1 and about 1 min 50 s with h = 0.00 1 .  But with 
h = 1 0- 12 it would require over 3000 years ! 

The second reason is more subtle. In addition to the local and cumulative er
rors discussed previously, the computer itself will contribute roundoff error at each 
stage because only finitely many significant digits can be used in each calculation. 
An Euler's method computation with h = 0.000 1 will introduce roundoff errors 
1 000 times as often as one with h = 0. 1 .  Hence with certain differential equations, 
h = 0. 1 might actually produce more accurate results than those obtained with 
h = 0.000 1 ,  because the cumulative effect of roundoff error in the latter case might 
exceed combined cumulative and roundoff error in the case h = 0. 1 .  

The "best" choice of h i s  difficult to determine in practice as well as in theory. 
It depends on the nature of the function f (x , y) in the initial value problem in (2) , on 
the exact code in which the program is written, and on the specific computer used. 
With a step size that is too large, the approximations inherent in Euler's method 
may not be sufficiently accurate, whereas if h is too small, then roundoff errors may 
accumulate to an unacceptable degree or the program may require too much time to 
be practical . The subject of error propagation in numerical algorithms is treated in 
numerical analysis courses and textbooks. 
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The computations in Fig. 6. 1 .8 illustrate the common strategy of applying a 
numerical algorithm, such as Euler's method, several times in succession, beginning 
with a selected number n of subintervals for the first application, then doubling n for 
each succeeding application of the method. Visual comparison of successive results 
often can provide an "intuitive feel" for their accuracy. In the next two examples we 
present graphically the results of successive applications of Euler's method. 

The exact solution of the logistic initial value problem 

dy I 
dx 

= 3" y (8 - y) , y eO) = 1 

is y (x) = 8/0 + 7e-8x/3 ) .  Figure 6. 1 .9 shows both the exact solution curve and 
approximate solution curves obtained by applying Euler's method on the interval 
o � x � 5 with n = 5 ,  n = 1 0, and n = 20 subintervals. Each of these "curves" ac
tually consists of line segments joining successive points (xn , Yn )  and (Xn+ I ' Yn+ I ) .  
The Euler approximation with 5 subintervals i s  poor, and the approximation with 10  
subintervals also overshoots the limiting value Y = 8 of the solution before leveling 
off, but with 20 subintervals we obtain fairly good qualitative agreement with the 
actual behavior of the solution. • 

1 2  

l O  

8 

", 6  

4 

2 

0 0 2 3 4 5 
x 

FIGURE 6.1.9. Approximating a 
logistic solution using Euler's 
method with n = 5, n = 10, and 
n = 20 subintervals . 

The exact solution of the initial value problem 

3 Exact 

2 

O �---------------=� 

o 5 l O 1 5  
x 

FIGURE 6.1. 10. Approximating 
the exact solution y = esin x using 
Euler's method with 50, 100, 200, 
and 400 subintervals. 

dy 
dx 

= y cos x , y eO) = 1 

is the periodic function y (x)  = esin x . Figure 6. 1 . 1 0 shows both the exact solution 
curve and approximate solution curves obtained by applying Euler's method on the 
interval 0 � x � 6n with n = 50, n = 1 00, n = 200, and n = 400 subintervals. 
Even with this many subintervals, Euler's method evidently has considerable diffi
culty keeping up with the oscillations i.n the actual solution. Consequently, the more 
accurate methods discussed in succeeding sections are needed for serious numerical 
investigations. • 
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Exa mple 5 

A Word of Caution 

The data shown in Fig. 6 . 1 . 8 indicate that Euler's method works well in approximat
ing the solution of dyjdx = x + y, y eO) = 1 on the interval [0, 1 ] .  That is, for each 
fixed x it appears that the approximate values approach the actual value of y (x) as 
the step size h is decreased. For instance, the approximate values in the rows corre
sponding to x = 0.3 and x = 0.5 suggest that y (0.3) � 1 .40 and y (0.5) � 1 . 80, in 
accord with the actual values shown in the final column of the table. 

Example 5, in contrast, shows that some initial value problems are not so well 
behaved. 

Use Euler's method to approximate the solution of the initial value problem 

�� = x2 + l, y eO) = 1 (7) 

on the interval [0, 1 ] . 

Solution Here f (x , y) = x2 + y2 , so the iterative formula of Euler' s  method is 

(8) 

With step size h = 0. 1 we obtain 

Yl = 1 + (0. 1 ) · [ (0)2 + ( 1 ) 2 ] = 1 . 1 ,  
Y2 = 1 . 1  + (0. 1 ) · [ (0. 1 ) 2 + ( 1 . 1 )2 ] = 1 .222, 
Y3 = 1 .222 + (0. 1 )  . [ (0.2)2 + ( 1 .222)2 ] � 1 .3753 ,  

and so forth. Rounded to four decimal places, the first ten values obtained in this 
manner are 

Yl = 1 . 1 000 
Y2 = 1 .2220 
Y3 = 1 . 3753 
Y4 = 1 .5735 
Ys = 1 . 837 1 

Y6 = 2. 1 995 
Y7 = 2.7 1 93 
Ys = 3 .5078 
Y9 = 4. 8023 

YIO = 7 . 1 895 

But instead of naively accepting these results as accurate approximations, we 
decided to use a computer to repeat the computations with smaller values of h. The 
table in Fig. 6. 1 . 1 1 shows the results obtained with step sizes h = 0. 1 ,  h = 0.02, 
and h = 0.005 . Observe that now the "stability" of the procedure in Example 1 is 
missing. Indeed, it seems obvious that something is going wrong near x = 1 .  

Figure 6. 1 . 1 2 provides a graphical clue to the difficulty. It shows a slope field 
for dyjdx = x2 + y2 , together with a solution curve through (0, 1 )  plotted using 
one of the more accurate approximation methods of the following two sections. 
It appears that this solution curve may have a vertical asymptote near x = 0.97. 
Indeed, an exact solution using Bessel functions (see Problem 16 in Section 3 .6) can 
be used to show that y (x)  ---+ +00 as x ---+ 0.9698 1 1  (approximately) . Although 
Euler's method gives values (albeit spurious ones) at x = 1 ,  the actual solution 
does not exist on the entire interval [0, 1 ] .  Moreover, Euler's method is unable to 
"keep up" with the rapid changes in y (x) that occur as x approaches the infinite 
discontinuity near 0 .9698 1 1 .  • 
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, With 
x h li# o.02 � : ' :; t ' ";> 

0. 1 1 . 1000 1 . 1088 
0.2 1 .2220 1 .2458 
0.3 1 .3753 1 .4243 
0.4 1 .5735 1 .6658 
0.5 1 .837 1 2.0074 
0.6 2. 1 995 2.520 1 
0.7 2.7 1 93 3 .36 1 2 
0.8 3 .5078 4.960 1 
0.9 4.8023 9.0000 
1 .0 7 . 1 895 30.9 1 67 

; ' .. , with 
. /t il: '8.:005 

1 . 1 1 08 
1 .25 1 2  
1 .4357 
1 .6882 
2.05 1 2 
2.6 104 
3 .5706 
5.5763 
1 2.206 1 

1 502.2090 

: : :  : : :  : : :  : :  : : :  I : : : : :  
6 : : : : : : : : : : : : : :  : : : : : : : , , , , " , " " , " ' I " ' " 
4 : : : : : : : : : : : : : : : : : : : : :  ' "  " " " " "  , I " " ,  

'" 2 : : : : : : : : : : : : ' :  : : : : : : : 
: : : : : .: " .:.: _ (0, 1) I: : : : : 

O �����-L-+�� 
: . .  : :  : : : : : : : : : : :'x.=.Op7 

-2 , : : : : : : : : : : : : :  : : : : : : : 
: :  : : : : : : : : : : : :  : 1 : : : : :  

_ 4 L-�����-L�� 
-2,0 - 1 .0 0,0 1 .0 2,0 

x 

FIGURE 6.1.11. Attempting to approximate the 
solution of dy/dx = X

Z 
+ y

Z
, y (O) = 1 .  

FIGURE 6.1.12. Solution of 
dy/dx = X

Z 
+ y

Z
, y (O) = 1 .  

The moral of Example 5 i s  that there are pitfalls i n  the numerical solution of 
certain initial value problems. Certainly it's pointless to attempt to approximate a 
solution on an interval where it doesn 't even exist (or where it is not unique, in which 
case there's no general way to predict which way the numerical approximations will 
branch at a point of nonuniqueness). One should never accept as accurate the results 
of applying Euler's method with a single fixed step size h . A second "run" with 
smaller step size (hj2, say, or hj5, or hj l O) may give seemingly consistent results, 
thereby suggesting their accuracy, or it may-as in Example 5-reveal the presence 
of some hidden difficulty in the problem. Many problems simply require the more 
accurate and powerful methods that are discussed in the final two sections of this 
chapter. 

l1li __ J�E� 1?��Il!�___ _ _ _ _ _ __ . _ _ _ _ _ ___ __ __ ___ _ __ _ _ 

In Problems I through 10, an initial value problem and its ex
act solution y (x ) are given. Apply Euler 's method twice to ap
proximate to this solution on the interval [0, H first with step 
size h = 0.25, then with step size h = 0. 1 .  Compare the three
decimal-place values of the two approximations at x = � with 
the value y ( � ) of the actual solution. 
1. y' = -y, y (O) = 2; y (x) = 2e-x 
2. y' = 2y, y (O) = � ;  y (x ) = � e2x 
3. y' = y + 1 ,  y (O) = 1 ; y (x ) = 2ex - 1 
4. y' = x - y , y (O) = 1 ; y (x) = 2e-x + x - I  
5. y' = y - x - I , y (O) = 1 ; y (x) = 2 + x - eX 
6. y' = -2xy, y (O) = 2; y (x ) = 2e-x2 

7. y' = -3x
Z
y, y (O) = 3 ; y (x) = 3e-x

3 

8. y' = e-Y , y (O) = 0; y (x) = In (x + 1 )  
9. y' = ± ( l  + yZ) , y (O) = 1 ; y (x) = tan ± (x + 1l' )  

10. y '  = 2xy
Z
, y (O) = 1 ; y (x) = _

1-z I - x 
Note: The application following this problem set lists illus
trative calculator !computer programs that can be used in the 
remaining problems. 

A programmable calculator or a computer will be useful for 
Problems I I through 16. In each problem find the exact so
lution of the given initial value problem. Then apply Euler's 
method twice to approximate (to four decimal places) this so
lution on the given interval, first with step size h = 0.0 1, then 
with step size h = 0.005. Make a table showing the approxi
mate values and the actual value, together with the percentage 
error in the more accurate approximation, for x an integral 
mUltiple of 0.2. Throughout, primes denote derivatives with 
respect to x. 
11 .  y' = y - 2, y (O) = 1 ; 0 � x � 1 
12. y' = � (y - 1 )z , y (O) = 2; 0 � x � 1 
13. yy' = 2x3 , y ( l ) = 3 ; 1 � x � 2 
14. xy' = y

Z
, y ( l ) = 1 ; 1 � x � 2 

15. xy' = 3x - 2y, y (2) = 3 ; 2 � x � 3 
16. y

Z
y' = 2X5 , y (2) = 3 ; 2 � x � 3 

A computer with a printer is requiredfor Problems 1 7  through 
24. In these initial value problems, use Euler's method with 
step sizes h = 0. 1 , 0.02, 0.004, and 0.0008 to approximate to 
four decimal places the values of the solution at ten equally 
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spaced points of the given interval. Print the results in tabular 
form with appropriate headings to make it easy to gauge the 
effect of varying the step size h. Throughout, primes denote 
derivatives with respect to x. 
17. y' = x2 + y2 , y (O) = 0; 0 � x � 1 
18. y' = x2 - y2 , y (O) = 1 ; 0 � x � 2 
19. y' = x + ,JY, y (O) = 1 ; 0 � x � 2 
20. y' = x + �, y (O) = - 1 ; 0 � x � 2 
21. y' = In y, y ( l ) = 2; 1 � x � 2 
22. y' = x2/3 + y2/3 , y (O) = 1 ; 0 � x � 2 
23. y' = sin x + cos y , y (O) = 0; 0 � x � 1 
24. y' =  1 : y2 , Y (- 1 ) = 1 ; - 1 � X � 1 
25. You bail out of the helicopter of Example 2 and immedi

ately pull the ripcord of your parachute. Now k = 1 .6 
in Eq. (5), so your downward velocity satisfies the initial 
value problem 

dv 
dt = 32 - 1 .6v , v (O) = 0 

(with t in seconds and v in ftlsec) . Use Euler's method 
with a programmable calculator or computer to approx
imate the solution for 0 � t � 2, first with step size 
h = 0.01 and then with h = 0.005, rounding off approx
imate v-values to one decimal place. What percentage of 
the limiting velocity 20 ftlsec has been attained after 1 
second? After 2 seconds? 

26. Suppose the deer population P (t) in a small forest initially 
numbers 25 and satisfies the logistic equation 

dP = 0.0225 P _ 0.0003 P2 dt 
(with t in months) .  Use Euler's method with a pro
grammable calculator or computer to approximate the so
lution for 10 years, first with step size h = 1 and then with 
h = 0.5, rounding off approximate P-values to integral 
numbers of deer. What percentage of the limiting popula
tion of 75 deer has been attained after 5 years? After 10 
years? 

Use Euler's method with a computer system to find the desired 
solution values in Problems 27 and 28. Start with step size 

6 . 1  Application 

h = 0. 1 , and then use successively smaller step sizes until suc
cessive approximate solution values at x = 2 agree rounded 
off to two decimal places. 
27. y' = x2 + y2 - 1 , y (O) = 0; y (2) = ? 
28. y' = x + � y2 , y (-2) = 0; y (2) = ? 
29. Consider the initial value problem 

dy 7x- + y = 0, y(- l ) = 1 . dx 
(a) Solve this problem for the exact solution 

1 y (x) = - X I /7 ' 

which has an infinite discontinuity at x = O. (b) Apply 
Euler's method with step size h = 0. 1 5 to approximate 
this solution on the interval - 1  � x � 0.5 . Note that, 
from these data alone, you might not suspect any difficulty 
near x = O. The reason is that the numerical approxima
tion "jumps across the discontinuity" to another solution 
of 7xy' + y = 0 for x > O. (c) Finally, apply Euler's 
method with step sizes h = 0.03 and h = 0.006, but still 
printing results only at the original points x = - 1 .00, 
-0.85, -0.70, . . .  , 1 .20, 1 .35 . and 1 .50. Would you now 
suspect a discontinuity in the exact solution? 

30. Apply Euler's method with successively smaller step sizes 
on the interval [0, 2] to verify empirically that the solution 
of the initial value problem 

dy 
dx = x

2 + i,  y (O) = 0 

has a vertical asymptote near x = 2.003 147 . (Contrast 
this with Example 2, in which y (O) = 1 .) 

31. The general solution of the equation 

dy = ( l  + i) cos x dx 
is y (x) = tan(C + sin x ) .  With the initial condition 
y (O) = 0 the solution y (x) = tan(sin x) is well behaved. 
But with y(O) = 1 the solution y (x) = tan Un + sin x) 
has a vertical asymptote at x = sin- l (n/4) � 0.90334. 
Use Euler's method to verify this fact empirically. 

Construction of a calculator or computer program to implement a numerical algo
rithm can sharpen one's understanding of the algorithm. Figure 6 . 1 . 1 3  lists TI-85 
and BASIC programs implementing Euler's method to approximate the solution of 
the initial value problem 

dy 
dx 

= x + y, y (O) = I 
considered in this section. The comments provided in the final column should make 
these programs intelligible even if you have little familiarity with the BASIC and 
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PROGRAM : EULER 

: 10--+N 

: 0--+ X 

: l--+ Y  

: 1--+ X l  

: ( Xl - X )  /N--+ H 

: For ( I , l , N )  

: X+Y--+F 

: Y+H*F--+Y 

: X+H--+ X 

: Disp X , Y  

: End 

Program EULER 

N = 10 

X = 0 

Y = 1 

Xl  = 1 

H = ( Xl -X ) /N 

FOR 1=1 TO N 

F X + Y 

Y = Y + H*F 

X = X + H 

PRINT X , Y  

NEXT I 

Comment 

Program title 

Number of steps 

Initial x 

Initial Y 
Final x 

step size 

Begin loop 

Function value 

Euler iteration 

New x 

Display results 

End loop 

FIGURE 6.1.13. TI-85 and BASIC Euler's method programs. 

TI calculator programming languages. Indeed, the BASIC language is no longer 
widely used for programming computers but is still useful (as in Fig. 6. 1 . 1 3 and sub
sequent ones in this text) for brief description of mathematical algorithms in a trans
parent form intermediate between English and higher programming languages. (Ap
propriately, the name BASIC is an acronym describing the Beginner's All-purpose 
Symbolic Instruction Code introduced in 1 963, intially for instructional use at Dart
mouth College. ) 

To increase the number of steps (and thereby decrease the step size) you need 
only change the value of N specified in the first line of the program. To apply Euler's 
method to a different equation dyjdx = f(x , y) ,  you need change only the single 
line that calculates the function value F. 

Any other procedural programming language (such as FORTRAN or Pascal) 
would follow the pattern illustrated by the parallel lines ofTI-85 and BASIC code in 
Fig. 6 . 1 . 1 3 .  Some of the modem functional programming languages mirror standard 
mathematical notation even more closely. Figure 6. 1 . 14 shows a MATLAB imple
mentation of Euler's method. The euler function takes as input the initial value x, 
the initial value y, the final value x l of x ,  and the desired number n of subintervals . 

function yp = f ( x , y )  
yp = x + Y J % yp = y '  

funct ion [ X , Y ]  = euler ( x , y , x l , n )  
h ( x l - x ) /n J % step s i z e  
X = X J  
Y = Y J 
for i = 

y = 

x = 

X = 

Y 

end 

l : n  

y + h* f ( x , Y ) J 
x + h J 
[ X J x ] J 
[ Y J Y ] J 

% 
% 
% 
% 
% 
% 
% 
% 

initial x 
initial y 

begin loop 

Euler iteration 

new x 
update x-column 

update y-column 

end loop 

FIGURE 6.1.14. MATLAB implementation of Euler's method. 
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For instance, the MATLAB command 

[ X ,  Y ]  = euler ( O ,  1 ,  1 ,  10 ) 

then generates the xn - and Yn -data shown in the first two columns of the table of Fig. 
6 . 1 . 8 .  

You should begin this project by implementing Euler's method with your own 
calculator or computer system. Test your program by first applying it to the initial 
value problem in Example 1 ,  then to some of the problems for this section. 

Famous Numbers Investigation 

The following problems describe the numbers e � 2.7 1 828, In 2 � 0.693 1 5 , and 
7r � 3 . 1 4 1 59 as specific values of solutions of certain initial value problems. In 
each case, apply Euler's method with n = 50, 100, 200, . . .  subintervals (doubling 
n each time). How many subintervals are needed to obtain-twice in succession
the correct value of the target number rounded to three decimal places? 

1. The number e = y ( 1 ) ,  where y (x) is the solution of the initial value problem 
dy/dx = y, y eO) = 1 .  

2.  The number In 2 = y (2) , where y (x )  is the solution of the initial value prob
lem dy/dx = l/x ,  y ( l )  = O. 

3. The number 7r = y ( l ) ,  where y (x) is the solution of the initial value problem 
dy/dx = 4/( 1 + x2) ,  y eO) = O. 

Also explain in each problem what the point is-why the indicated famous 
number is the expected numerical result. 

lIB A Closer Look at the Euler Method 

The Euler method as presented in Section 6. 1 is not often used in practice, mainly 
because more accurate methods are available. But Euler's method has the advantage 
of simplicity, and a careful study of this method yields insights into the workings of 
more accurate methods, because many of the latter are extensions or refinements of 
the Euler method. 

To compare two different methods of numerical approximation, we need some 
way to measure the accuracy of each. Theorem 1 tells what degree of accuracy we 
can expect when we use Euler's method. 

THEOREM 1 The Error In the Euler Method 

Suppose that the initial value problem 

dy 
dx 

= I (x , y) , y (xo) = Yo ( 1 )  

has a unique solution y (x )  on  the closed interval [a , b] with a = xo , and assume 
that y (x) has a continuous second derivative on [a , b ] .  (This would follow from 
the assumption that I, lx , and Iy are all continuous for a � x � b and c � y � d, 
where c � y (x) � d for all x in [a , b] . ) Then there exists a constant C such that 
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the following is true: If the approximations Yl o Y2 , Y3 , . . .  , Yk to the actual values 
y (x} ) ,  Y (X2) ,  Y (X3 ) ,  . . .  , Y (Xk) at points of [a ,  b] are computed using Euler's 
method with step size h > 0, then 

(2) 

for each n = 1 , 2 , 3 , . . . , k .  

Remark: The error 
Yactual - Yapprox = y (xn ) - Yn 

in (2) denotes the [cumulative] error in Euler's method after n steps in the approxi
mation, exclusive of roundoff error (as though we were using a perfect machine that 
made no roundoff errors) . The theorem can be summarized by saying that the error 
in Euler 's method is of order h ;  that is, the error is bounded by a [predetermined] 
constant C multiplied by the step size h .  It follows, for instance, that (on a given 
closed interval) halving the step size cuts the maximum error in half; similarly, with 
step size hl l O  we get 10 times the accuracy (that is , 1 / 10 the maximum error) as 
with step size h . Consequently, we can-in principle-get any degree of accuracy 
we want by choosing h sufficiently small. • 

We will omit the proof of this theorem, but one can be found in Chapter 7 of 
G. Birkhoff and G.-c. Rota, Ordinary Differential Equations, 4th ed. (New York: 
John Wiley, 1 989). The constant C deserves some comment. Because C tends to 
increase as the maximum value of I y" (x ) I on [a , b] increases, it follows that C must 
depend in a fairly complicated way on y, and actual computation of a value of C 
such that the inequality in (2) holds is usually impractical . In practice, the following 
type of procedure is commonly employed. 

1. Apply Euler's method to the initial value problem in ( 1 )  with a reasonable 
value of h . 

2. Repeat with h12, h14, and so forth, at each stage halving the step size for the 
next application of Euler's method. 

3. Continue until the results obtained at one stage agree-to an appropriate num
ber of significant digits-with those obtained at the previous stage. Then the 
approximate values obtained at this stage are considered likely to be accurate 
to the indicated number of significant digits . 

Carry out this procedure with the initial value problem 

dy 2xy 
dx 

= -
1 + x2 ' y eO) = 1 

to approximate accurately the value y ( 1 ) of the solution at x = 1 .  

(3) 

Solution Using an Euler method program, perhaps one of those listed in Figs. 6. 1 . 1 3 and 
6. 1 . 14, we begin with a step size h = 0.04 requiring n = 25 steps 'to reach x = 1 .  
The table in Fig. 6.2. 1 shows the approximate values of y ( 1 ) obtained with succes
sively smaller values of h . The data suggest that the true value of y ( 1 ) is exactly 0.5. 
Indeed, the exact solution of the initial value problem in (3) is y(x) = V( 1 + x2) , 
so the true value of y ( 1 ) is exactly � .  • 



444 Cha pter 6 Numerica l  Methods 

y (x + h, y (x + h)) 

1 
1 

1 
1 

I 

1 
1 

1 

1 

i }  Error 

I' Predicted / y-value 

/ Slope y ' (x) 
1 

x x + h  
FIGURE 6.2.2. True and 
predicted values in Euler's 
method. 

x 

h Approxbnate y (l) Actual y (l) 

0.04 0.5045 1 0.50000 
0.02 0.50220 0.50000 
0.Q1 0.50 109 0.50000 
0.005 0.50054 0.50000 
0.0025 0.50027 0.50000 
0.00 1 25 0.500 1 3 0.50000 
0.000625 0.50007 0.50000 
0.0003 1 25 0.50003 0.50000 

FIGURE 6.2.1. Table of values in Example 1 .  

IErrorl / h 

0. 1 1  
0. 1 1  
0. 1 1  
0. 1 1  
0. 1 1  
0. 10 
0. 1 1  
0. 10 

The final column of the table in Fig. 6.2. 1 displays the ratio of the magnitude 
of the error to h ;  that is, I Yactual - Yapprox l/h . Observe how the data in this column 
substantiate Theorem I-in this computation, the error bound in (2) appears to hold 
with a value of C slightly larger than 0. 1 .  

An Improvement in Euler's Method 

As Fig. 6.2.2 shows, Euler's method is rather unsymmetrical. It uses the predicted 
slope k = f (xn , Yn ) of the graph of the solution at the left-hand endpoint of the 
interval [xn , Xn + h] as if it were the actual slope of the solution over that entire 
interval. We now tum our attention to a way in which increased accuracy can easily 
be obtained; it is known as the improved Euler method. 

Given the initial value problem 

dy 
dx 

= f (x , Y) ,  y (xo) = Yo ,  (4) 

suppose that after carrying out n steps with step size h we have computed the ap
proximation Yn to the actual value y (xn ) of the solution at Xn = Xo + nh . We can 
use the Euler method to obtain a first estimate-which we now call un+ I rather than 
Yn+ l-of the value of the solution at xn+ l = Xn + h .  Thus 

Now that Un+ l ;::::: Y (Xn+ l ) has been computed, we can take 

as a second estimate of the slope of the solution curve Y = Y (x ) at x = Xn+ I . 
Of course, the approximate slope kl = f (xn , Yn ) at x = Xn has already been 

calculated. Why not average these two slopes to obtain a more accurate estimate of 
the average slope of the solution curve over the entire subinterval [xn , xn+d?  This 
idea is the essence of the improved Euler method. Figure 6.2.3 shows the geometry 
behind this method. 

. 
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y 

x 

FIGURE 6.2.3. The improved Euler method: Average the slopes of the tangent lines 
at (xn •  Yn ) and (Xn+ l .  Un+ l ) . 

ALGORITHM The I mproved Euler Method 

Given the initial value problem 

dy 
dx = f(x ,  y) , y (xo) = Yo ,  

the improved Euler method with step size h consists i n  applying the iterative 
fonnulas 

kJ = f (xn •  Yn ) ,  
Un+l = Yn + h . kl ' 

k2 = f(Xn+l , un+t > , 
Yn+! = Yn + h . i (k1 + k2 ) 

(5) 

to compute successive approximations Yl . Y2 , Y3 , . . .  to the [true] values Y(Xl ) ,  
Y (X2) ,  Y (X3 ) ,  . . .  of the [exact] solution Y = y (x) at the points Xl . X2 , X3 , . . . , 
respectively. 

Remark: The final fonnula in (5) takes the "Euler fonn" 

if we write 

Yn+ l = Yn + h . k 

k = 
kl + k2 

2 
for the approximate average slope on the interval [xn , Xn+ l ] .  • 

The improved Euler method is one of a class of numerical techniques known 
as predictor-corrector methods. First a predictor Un+ l of the next y-value is com
puted; then it is used to correct itself. Thus the improved Euler method with step 
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Example 2 

size h consists of using the predictor 

(6) 

and the corrector 

(7) 

iteratively to compute successive approximations Yl , Y2 , Y2 , . . .  to the values Y (Xl ) ,  
Y (X2) ,  Y (X3 ) ,  . . .  of the actual solution of the initial value problem in (4) . 

Remark: Each improved Euler step requires two evaluations of the func
tion f (x , Y) ,  as compared with the single function evaluation required for an ordi
nary Euler step. We naturally wonder whether this doubled computational labor is 
worth the trouble. 

Answer: Under the assumption that the exact solution Y = y (x)  of the 
initial value problem in (4) has a continuous third derivative, it can be proved-see 
Chapter 7 of Birkhoff and Rota-that the error in the improved Euler method is 
of order h2 . This means that on a given bounded interval [a ,  b] , each approximate 
value Yn satisfies the inequality 

(8) 

where the constant C does not depend on h. Because h2 is much smaller than h if 
h itself is small, this means that the improved Euler method is more accurate than 
Euler's method itself. This advantage is offset by the fact that about twice as many 
computations are required. But the factor h2 in (8) means that halving the step size 
results in 1 /4 the maximum error, and with step size h / 1 0  we get 1 00 times the 
accuracy (that is, 1 / 1 00 the maximum error) as with step size h . • 

� �...... , . .. ............. . 
Figure 6. 1 . 8 shows results of applying Euler's method to the initial value problem 

dy 
dx 

= x + y , y (O) = 1 (9) 

with exact solution y (x)  = 2ex - x - I . With f(x , y) = x + y in Eqs . (6) and (7), 
the predictor-corrector formulas for the improved Euler method are 

Un+ l = Yn + h . (xn + Yn ) , 
Yn+l = Yn + h ·  � [ (xn + Yn ) + (Xn+ l + Un+ l ) ] . 

With step size h = 0. 1 we calculate 

U 1 = 1 + (0. 1 )  . (0 + 1 )  = 1 . 1 ,  
Yl = 1 + (0.05) . [ (0 + 1 )  + (0. 1 + 1 . 1 ) ]  = 1 . 1 1 ,  
U2 = 1 . 1 1 + (0. 1 )  . (0. 1 + 1 . 1 1 ) = 1 .23 1 , 
Y2 = 1 . 1 1  + (0.05) . [ (0. 1 + 1 . 1 1 ) + (0.2 + 1 .23 1 ) ]  = 1 .24205 , 

and so forth. The table in Fig. 6.2.4 compares the results obtained using the im
proved Euler method with those obtained previously using the "unimproved" Euler 
method. When the same step size h = 0. 1 is used, the error in the Euler approxi
mation to y ( 1 )  is 7 .25%, but the error in the improved Euler approximation is only 
0.24%. 



Euler, 
Approximate Actual 

x y 

0.0 1 .00000 1 .00000 
0. 1 1 . 1 1 034 1 . 1 1034 
0.2 1 .24280 1 .2428 1 
0.3 1 .3997 1 1 .39972 
0.4 1 .58364 1 .58365 
0.5 1 .79744 1 .79744 
0.6 2.04423 2.04424 
0.7 2.32749 2.3275 1 
0.8 2.65 107 2.65 108 
0.9 3 .0 1 9 1 9 3 .0 192 1 
1 .0 3 .43654 3 .43656 

FIGURE 6.2.5. Improved Euler 
approximation to the solution of 
Eg. (9) with step size h = 0.005 . 

Exa m ple 3 

Euler Method, 
h ' � (hl 

Valu�$ �f,.v 
0. 1 1 . 1000 
0.2 1 .2200 
0.3 1 .3620 
0.4 1 .5282 
0.5 1 .72 10 
0.6 1 .943 1 
0.7 2. 1974 
0.8 2.4872 
0.9 2.8 1 59 
1 .0 3 . 1 875 
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Improved Euler, 

h = 0. 1  Actual 

Values of y y 

1 . 1 098 1 . 1 100 1 . 1 103 
1 .241 6 1 .242 1 1 .2428 
1 .3977 1 .3985 1 .3997 
1 .5807 1 .58 1 8 1 .5836 
1 .7933 1 .7949 1 .7974 
2.0388 2.0409 2.0442 
2.3205 2.323 1 2.3275 
2.6422 2.6456 2.65 1 1  
3 .0082 3 .0124 3.0192 
3 .4230 3 .4282 3 .4366 

FIGURE 6.2.4. Euler and improved Euler approximations to the solution of 
dyjdx = x + y, y (O) = 1 .  

Indeed, the improved Euler method with h = 0. 1 i s  more accurate (in this 
example) than the original Euler method with h = 0.005 . The latter requires 200 
evaluations of the function f(x ,  y) ,  but the former requires only 20 such evalua
tions, so in this case the improved Euler method yields greater accuracy with only 
about one-tenth the work. 

Figure 6.2.5 shows the results obtained when the improved Euler method is 
applied to the initial value problem in (9) using step size h = 0.005. Accuracy of 
five significant figures is apparent in the table. This suggests that, in contrast with 
the original Euler method, the improved Euler method is sufficiently accurate for 
certain practical applications-such as plotting solution curves. • 

An improved Euler program (similar to the ones listed in the project material 
for this section) was used to compute approximations to the exact value y ( 1 ) = 0.5 
of the solution y (x) = 1/( 1 + x2) of the initial value problem 

dy 
dx 

2xy 
1 + x2 ' 

y eO) = 1 (3) 

of Example 1 .  The results obtained by successively halving the step size appear in 
the table in Fig. 6.2.6. Note that the final column of this table impressively cor
roborates the form of the error bound in (8), and that each halving of the step size 
reduces the error by a factor of almost exactly 4, as should happen if the error is 
proportional to h2 . 

In the following two examples we exhibit graphical results obtained by em
ploying this strategy of successively halving the step size, and thus doubling the 
number of subintervals of a fixed interval on which we are approximating a solu
tion. 

In Example 3 of Section 6. 1 we applied Euler's method to the logistic initial value 
problem 

dy 1 
dx 

= 3y (8 - y) , y eO) = 1 .  
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12 
10 

Exact 
8 

'" 6 

4 

2 
0 0 2 3 4 5 

x 

FIGURE 6.2.7. Approximating 
a logistic solution using the 
improved Euler method with 
n = 5, n = 10, n = 20, and 
n = 40 subintervals . 

0.04 0.500 195903 -0.000195903 
0.02 0.500049494 -0.000049494 
0.Q1 0.5000 1 2437 -0.00001 2437 
0.005 0.500003 1 17 -0.000003 1 17 
0.0025 0.500000780 -0.000000780 
0.00 125 0.500000 195 -0.000000195 
0.000625 0.500000049 -0.000000049 
0.0003 1 25 0.50000001 2 -0.00000001 2 

FIGURE 6.2.6. Improved Euler approximation to y ( l ) for 
dyjdx = -2xyj ( l + x2) , y eO) = 1 .  

[Errorll h2 

0. 1 2 
0. 1 2 
0. 1 2 
0. 12 
0. 1 2 
0. 1 2 
0. 1 2 
0. 1 2 

Figure 6. 1 .9 shows an obvious difference between the exact solution y(x) = 
8/0 + 7e-8x(3) and the Euler approximation on 0 � x � 5 using n = 20 subin
tervals . Figure 6.2.7 shows approximate solution curves plotted using the improved 
Euler's method. 

The approximation with five subintervals is still bad-perhaps worse! It ap
pears to level off considerably short of the actual limiting popUlation M = 8 .  You 
should carry out at least the first two improved Euler steps manually to see for 
yourself how it happens that, after increasing appropriately during the first step, the 
approximate solution decreases in the second step rather than continuing to increase 
(as it should). In the project for this section we ask you to show empirically that the 
improved Euler approximate solution with step size h = 1 levels off at y � 4.3542. 

In contrast, the approximate solution curve with n = 20 subintervals tracks 
the exact solution curve rather closely, and with n = 40 subintervals the exact 
and approximate solution curves are indistinguishable in Fig. 6.2.7. The table in 
Fig. 6.2 .8 indicates that the improved Euler approximation with n = 200 subinter
vals is accurate rounded to three decimal places (that is, four significant digits) on 
the interval 0 � x � 5 .  Because discrepancies in the fourth significant digit are 
not visually apparent at the resolution of an ordinary computer screen, the improved 
Euler method (using several hundred subintervals) is considered adequate for many 
graphical purposes. • 

0 1 .0000 1 .0000 
1 5 .3822 5.3809 
2 7.7385 7.7379 
3 7.98 1 3 7.98 12 
4 7 .9987 7.9987 
5 7.9999 7.9999 

FIGURE 6.2.8. Using the improved Euler 
method to approximate the actual solution of the 
initial value problem in Example 3 . 
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3 n = 50 

2 

O �----------------� 

o 5 1 0  1 5  
x 

FIGURE 6.2.9. Approximating 
the exact solution y = esin x using 
the improved Euler method with 
n = 50, 100, and 200 subintervals. 
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In Example 4 of Section 6. 1 we applied Euler's method to the initial value problem 

dy 
-- = y cos x ,  y(O) = 1 .  
dx 

Figure 6 . 1 . 1 0 shows obvious visual differences between the periodic exact solution 
y (x) = esin x and the Euler approximations on 0 ;; x ;; 6rr with as many as n = 400 
subintervals. 

Figure 6.2.9 shows the exact solution curve and approximate solution curves 
plotted using the improved Euler method with n = 50, n = 1 00, and n = 200 
subintervals. The approximation obtained with n = 200 is indistinguishable from 
the exact solution curve, and the approximation with n = 100 is only barely distin
guishable from it. • 

Although Figs. 6.2.7 and 6.2.9 indicate that the improved Euler method can 
provide accuracy that suffices for many graphical purposes, it does not provide the 
higher-precision numerical accuracy that sometimes is needed for more careful in
vestigations. For instance, consider again the initial value problem 

dy 
dx 

2xy 
-

1 + x2 ' y (O) = 1 

of Example 1 .  The final column of the table in Fig. 6 .2 .6 suggests that, if the im
proved Euler method is used on the interval 0 ;; x ;; 1 with n subintervals and step 
size h = ljn ,  then the resulting error E in the final approximation Yn � y ( 1 )  is 
given by 

2 0. 1 2  
E = I y ( l )  - Yn l � (0. 1 2)h = -2 . 

n 
If so, then 1 2-place accuracy (for instance) in the value y ( l )  would require that 
(0. 1 2)n-2 < 5 x 10- 1 3 , which means that n � 489 , 898. Thus, roughly half a 
million steps of length h � 0.000002 would be required. Aside from the possi
ble impracticality of this many steps (using available computational resources), the 
roundoff error resulting from so many successive steps might well overwhelm the 
cumulative error predicted by theory (which assumes exact computations in each 
separate step). Consequently, still more accurate methods than the improved Euler 
method are needed for such high-precision computations. Such a method is pre
sented in Section 6 .3 .  

A hand-held calculator will suffice for Problems 1 through 10, 

where an initial value problem and its exact solution are given. 
Apply the improved Euler method to approximate this solution 
on the interval [0, 0.5] with step size h = 0. 1 . Construct a 
table showing four-decimal-place values of the approximate 
solution and actual solution at the points x = 0. 1 , 0.2, 0.3, 
004, 0.5. 

6. y' = -2xy, y eO) = 2; y (x) = 2e-x2 

7. y' = -3x2y , y eO) = 3 ; y (x) = 3e-x3 
8. y' = e-Y , y eO) = 0; y (x) = In (x + 1 ) 
9 .  y ' = 

� ( l + y2) , y eO) = 1 ; y (x) = tan � (x + n) 
1 

10. y' = 2xy2 , y eO) = 1 ; y (x ) = --l - x2 
Note: The application following this problem set lists illustra
tive calculator !computer programs that can be used in Prob
lems 1 1  through 24. 

1. y' = -y, y eO) = 2; y (x) = 2e-x 
2. y' = 2y, y eO) = 

! ; y (x) = 
!e2X 

3. y' = y + 1 ,  y eO) = I ; y (x ) = 2ex - 1 
4. y' = x - y , y eO) = I ; y (x) = 2e-x + x - I  
S. y' = y - x - I , y eO) = 1 ; y (x) = 2 + x - eX 

A programmable calculator or a computer will be useful for 
Problems 1 1  through 16. In each problem find the exact so
lution of the given initial value problem. Then apply the im-
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proved Euler method twice to approximate (to five decimal 
places) this solution on the given interval, first with step size 
h = 0.01 , then with step size h = 0.005. Make a table showing 
the approximate values and the actual value, together with the 
percentage error in the more accurate approximations, for x 
an integral multiple of 0.2. Throughout, primes denote deriva
tives with respect to x. 
11. y' = y - 2, y (O) = 1 ; 0 ;'£ x ;'£ 1 
12. y' = � (y - 1 )2 , y (O) = 2; 0 ;'£  x ;'£ 1 
13. yy' = 2x3 , y ( l ) = 3 ; 1 ;'£ x ;'£ 2 
14. xy' = y2, y ( l )  = 1 ; 1 ;'£ x ;'£ 2 
15. xy' = 3x - 2y, y (2) = 3 ; 2 ;'£ x ;'£ 3 
16. y2y' = 2x5 , y (2) = 3 ; 2 ;'£  x ;'£ 3 

A computer with a printer is required for Problems 1 7  through 
24. In these initial value problems, use the improved Euler 
method with step sizes h = 0. 1 , 0.02, 0.004, and 0.0008 to 
approximate to five decimal places the values of the solution 
at ten equally spaced points of the given interval. Print the 
results in tabular form with appropriate headings to make it 
easy to gauge the effect of varying the step size h. Throughout, 
primes denote derivatives with respect to x. 
17. y' = x2 + y2 , y (O) = 0; 0 ;'£ x ;'£ 1 
18. y' = x2 - y2 , y (O) = 1 ; 0 ;'£  x ;'£ 2 
19. y' = x + ..;y, y (O) = 1 ; 0 ;'£ x ;'£ 2 
20. y' = x + -0', y(0) = - 1 ; 0 ;'£ x ;,£ 2 
21. y' = In y , y ( l )  = 2; 1 ;'£ x ;'£ 2 
22. y' = X2/3 + y2(3 , y (O) = 1 ; 0 ;'£  x ;'£ 2 
23. y' = sin x + cos y , y (O) = 0; 0 ;'£ x ;'£  1 

x 
24. y' = -- y (- I ) = l ' - 1  :s; x :s; 1 1 + y2 ' ' - -

25. As in Problem 25 of Section 6. 1 ,  you bail out of a he
licopter and immediately open your parachute, so your 
downward velocity satisfies the initial value problem 

dv 
dt = 32 - 1 .6v , v (O) = 0 

(with t in seconds and v in ftls) .  Use the improved Eu
ler method with a programmable calculator or computer 
to approximate the solution for 0 ;'£ t ;'£ 2, first with step 
size h = 0.01 and then with h = 0.005, rounding off 
approximate v-values to three decimal places. What per
centage of the limiting velocity 20 ftls has been attained 
after 1 second? After 2 seconds? 

26. As in Problem 26 of Section 6. 1 ,  suppose the deer popu
lation P(t) in a small forest initially numbers 25 and sat
isfies the logistic equation 

dP = 0.0225P _ 0 .0003P2 dt 
(with t in months). Use the improved Euler method with a 
programmable calculator or computer to approximate the 
solution for 1 0 years, first with step size h = 1 and then 

with h = 0.5, rounding off approximate P-values to three 
decimal places. What percentage of the limiting popula
tion of 75 deer has been attained after 5 years? After 10 
years? 

Use the improved Euler method with a computer system to find 
the desired solution values in Problems 27 and 28. Start with 
step size h = 0. 1 , and then use successively smaller step sizes 
until successive approximate solution values at x = 2 agree 
rounded off to four decimal places. 
27. y' = x2 + y2 - 1 ,  y (O) = 0; y (2) = ? 
28. y' = x + �y2 , y (-2) = 0; y (2) = ? 
29. Consider the crossbow bolt of Example 2 in Section 1 .8, 

shot straight upward from the ground with an initial veloc
ity of 49 m/s. Because of linear air resistance, its velocity 
function v (t ) satisfies the initial value problem 

dv 
dt = - (0.04)v - 9.8 , v (O) = 49 

with exact solution v (t ) = 294e-t/25 - 245 . Use a calcu
lator or computer implementation of the improved Euler 
method to approximate v (t ) for 0 ;'£ t ;'£ 10 using both 
n = 50 and n = 100 subintervals . Display the results 
at intervals of 1 second. Do the two approximations
each rounded to two decimal places-agree both with 
each other and with the exact solution? If the exact so
lution were unavailable, explain how you could use the 
improved Euler method to approximate closely (a) the 
bolt's time of ascent to its apex (given in Section 1 .8 as 
4.56 s) and (b) its impact velocity after 9 .41 s in the air. 

30. Consider now the crossbow bolt of Example 3 in Section 
1 .8 . It still is shot straight upward from the ground with 
an initial velocity of 49 mis, but because of air resistance 
proportional to the square of its velocity, its velocity func
tion v (t ) satisfies the initial value problem 

dv - = -(0.001 1 ) v l v l  - 9.8 , v (O) = 49 . dt 

The symbolic solution discussed in Section 1 . 8 required 
separate investigations of the bolt 's ascent and its descent, 
with v (t ) given by a tangent function during ascent and 
by a hyperbolic tangent function during descent. But 
the improved Euler method requires no such distinction. 
Use a calculator or computer implementation of the im
proved Euler method to approximate v (t ) for 0 ;'£ t ;'£ 10 
using both n = 100 and n = 200 subintervals. Dis
play the results at intervals of 1 second. Do the two 
approximations---each rounded to two decimal places
agree with each other? If an exact solution were un
available, explain how you could use the improved Euler 
method to approximate closely (a) the bolt's time of as
cent to its apex (given in Section 1 .8 as 4.61 s) and (b) its 
impact velocity after 9 .41 s in the air. 



6 .2 Ap plication 

6 .2  A Closer Look at the  Eu ler Method 451 

Figure 6.2 . 1 0  lists TI-85 and BASIC programs implementing the improved Euler 
method to approximate the solution of the initial value problem 

dy 
dx 

= x + y ,  y (O) = I 

considered in Example 2 of this section. The comments provided in the final column 
should make these programs intelligible even if you have little familiarity with the 
BASIC and TI programming languages. 

PROGRAM : IMPEULER 

: F=X+Y 

: 10�N 

: o� X  

: l� Y  

: 1� X 1  

: ( X l- X )  /N�B 

: For ( I , l , N ) 

: Y� YO 

: F�K1 

: YO+H*K1�Y 

: X+B� X 

: F� K2 

: ( K1+K2 ) /2�K 

: YO+H*K� Y 

: Disp X , Y  

: End 

Program IMPEULER 

DEF FN F ( X , Y )  = X + Y 

N 10  

X = 0 

Y = 1 

Xl  = 1 

H = ( X 1 -X ) /N 

FOR 1=1 TO N 

YO = Y 

K1 = FNF ( X , y )  

Y = Y O  + H*K1 

X = X + B 

K2 = FNF ( X , Y )  

K = ( K1 + K2 ) / 2 

Y = YO + B*K 

PRINT X , Y  

NEXT I 

FIGURE 6.2.10. TI-85 and BASIC improved Euler programs. 

Comment 

Program title 

Define function f 

No . of steps 

Initial x 

Initial y 

Final x 

Step size  

Begin loop 

Save previous y 

First slope 

Predictor 

New x 

Second slope 

Average slope 

Corrector 

Display results 

End loop 

To apply the improved Euler method to a differential equation dyjdx = f(x ,  y), 
one need only change the initial line of the program, in which the function f is de
fined. To increase the number of steps (and thereby decrease the step size) one need 
only change the value of N specified in the second line of the program. 

Figure 6.2. 1 1  exhibits one MATLAB implementation of the improved Euler 
method. The impeuler function takes as input the initial value x, the initial value 
y, the final value x l of x , and the desired number n of subintervals . As output it 
produces the resulting column vectors X and Y of x- and y-values. For instance, the 
MATLAB command 

[ X ,  Y ]  = impeuler ( O ,  1 ,  1 ,  1 0 )  

then generates the first and fourth columns of data shown i n  Fig. 6.2.4. 
You should begin this project by implementing the improved Euler method 

with your own calculator or computer system. Test your program by applying it 
first to the initial value problem of Example I ,  then to some of the problems for this 
section. 
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funct ion yp 

yp = x + y ;  

f ( x , y )  

% yp = y '  

function [ X , Y ]  

h ( x l - x ) /n ;  

X = x ; 

impeuler ( x , y , x l , n ) 

Y = 

for 
y ;  

i = 

kl  = 

k2 = 

k 

x = 

y 
X = 

Y = 

end 

l : n ;  

f ( x , y ) ; 

f ( x+h , y+h*kl ) ;  

( kl + k2 ) /2 ; ; 

x + h ;  

Y + h * k ;  

[ X i X ] ;  

[ Y ; y ] ; 

% step s i z e  

% initial x 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

initial y 

begin loop 

first slope 

second slope 

average slope 

new x 

new y 

update x-column 

update y-column 

end loop 

FIGURE 6.2.11 .  MATLAB implementation of improved Euler method. 

Famous Numbers Revisited 

The following problems describe the numbers e � 2.7 1 828 1 8, In 2 � 0.693 1472, 
and Jr � 3 . 1 4 1 5927 as specific values of certain initial value problems . In each case, 
apply the improved Euler method with n = 1 0, 20, 40, . . .  subintervals (doubling n 
each time) . How many subintervals are needed to obtain-twice in succession-the 
correct value of the target number rounded to five decimal places? 

1. The number e = y ( 1 ) ,  where y (x) is the solution of the initial value problem 
dy /dx = y ,  y (o) = 1 .  

2. The number In 2 = y (2) , where y (x) is the solution of the initial value prob
lem dy/dx = l/x ,  y ( l )  = O. 

3. The number Jr = Y ( 1 ) ,  where y (x) is the solution of the initial value problem 
dy/dx = 4/( 1 + x2) , y (O) = O. 

Logistic Population Investigation 

Apply your improved Euler program to the initial value problem d y /dx = t y (8 -y), 
y (O) = 1 of Example 3 .  In particular, verify (as claimed) that the approximate 
solution with step size h = 1 levels off at y � 4.3542 rather than at the limiting 
value y = 8 of the exact solution. Perhaps a table of values for 0 � x � 1 00 will 
make this apparent. 

lem 
For your own logistic population to investigate, consider the initial value prob-

dy 1 
- = -y(m - y) , y (O) = 1 ,  
dx n 

where m and n are (for instance) the largest and smallest nonzero digits in your 
student ID number. Does the improved Euler approximation with step size h = 1 
level off at the "correct" limiting value of the exact solution? If not, find a smaller 
value of h so that it does . 
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FIGURE 6.2.12. Solution curves 
of dy/dt = y ( l - y) - sin 2n t .  
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Periodic Harvesting and Restocking 

The differential equation 

dy ( 2n t ) 
-- = ky (M - y) - h sin -

dt P 

models a logistic population that is periodically harvested and restocked with period 
P and maximal harvesting/restocking rate h .  A numerical approximation program 
was used to plot the typical solution curves for the case k = M = h = P = 1 that 
are shown in Fig. 6.2. 1 2. This figure suggests-although it does not prove-the 
existence of a threshold initial population such that 

• Beginning with an initial population above this threshold, the population os
cillates (perhaps with period P ?) around the (unharvested) stable limiting 
population y (t )  == M, whereas 

• The population dies out if it begins with an initial population below this thresh
old. 

Use an appropriate plotting utility to investigate your own logistic population with 
periodic harvesting and restocking (selecting typical values of the parameters k, M, 
h ,  and P) .  Do the observations indicated here appear to hold for your population? 

We now discuss a method for approximating the solution y = y (x) of the initial 
value problem 

dy 
dx 

= f (x ,  y) , y (xo) = Yo ( 1 )  

that is considerably more accurate than the improved Euler method and i s  more 
widely used in practice than any of the numerical methods discussed in Sections 6. 1 
and 6.2 . It is called the Runge-Kutta method, after the German mathematicians who 
developed it, Carl Runge ( 1 856-1 927) and Wilhelm Kutta ( 1 867-1 944). 

With the usual notation, suppose that we have computed the approximations 
Yl ,  Y2 , Y3 , . . .  , Yn to the actual values y (Xl ) ,  y (X2) ,  y (X3 ) ,  . . .  , y (xn) and now want 
to compute Yn+ l � Y (Xn+ l ) .  Then 

lxn+1 lxn+h 
y (Xn+ l ) - y (xn ) = y' (x) dx = y' (x ) dx Xn Xn (2) 

by the fundamental theorem of calculus. Next, Simpson's rule for numerical inte
gration yields 

Hence we want to define Yn+ l so that 

h [ , , ( h ) , ( h ) , ] Yn+ l � Yn + 6" y (xn ) + 2y Xn + 2" + 2y Xn + 2" + y (Xn+ l ) ; 

(3) 

(4) 
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we have split 4 y' (Xn + 1 h) into a sum of two terms because we intend to approxi
mate the slope y' (xn + 1h)  at the midpoint Xn + 1h  of the interval [xn , xn+ I l  in two 
different ways. 

On the right-hand side in (4), we replace the [true] slope values y' (xn) ,  
y' (Xn + 1h ) ,  y '  (xn + 1h ) ,  and Y' (Xn+ l ) ,  respectively, with the following estimates. 

• This is the Euler method slope at Xn • 

(5a) 

(5b) 

• This is an estimate of the slope at the midpoint of the interval [xn , xn+ I l using 
the Euler method to predict the ordinate there. 

• This is an improved Euler value for the slope at the midpoint. 

(5c) 

(5d) 

• This is the Euler method slope at Xn+ l , using the improved slope k3 at the 
midpoint to step to Xn+ l .  

When these substitutions are made in (4) , the result is the iterative formula 

(6) 

The use of this formula to compute the approximations Yl , Y2 , Y3 , . . .  successively 
constitutes the Runge-Kutta method. Note that Eq. (6) takes the "Euler form" 

if we write 

Yn+ l = Yn + h . k 

for the approximate average slope on the interval [xn , Xn+ l ] .  

(7) 

The Runge-Kutta method is afourth-order method-it can be proved that the 
cumulative error on a bounded interval [a , b] with a = Xo is of order h4 . (Thus the 
iteration in (6) is sometimes called the fourth-order Runge-Kutta method because 
it is possible to develop Runge-Kutta methods of other orders . )  That is, 

(8) 

where the constant C depends on the function f (x ,  y) and the interval [a , b], but 
does not depend on the step size h .  The following example illustrates this high 
accuracy in comparison with the lower-order accuracy of our previous numerical 
methods. 
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We first apply the Runge-Kutta method to the illustrative initial value problem 

dy 
dx

= x + y , y (O) = 1 (9) 

that we considered in Fig. 6 . 1 .8 of Section 6. 1 and again in Example 2 of Section 
6.2 . The exact solution of this problem is y (x) = 2ex - x - I . To make a point we 
use h = O.S , a larger step size than in any previous example, so only two steps are 
required to go from x = 0 to x = 1 .  

In the first step we use the formulas in (S) and (6) to calculate 

and then 

kt = O + l = l , 
k2 = (0 + 0.2S) + ( 1  + (0.2S) . ( 1 » = 1 .S , 
k3 = (0 + 0.2S) + ( 1  + (0.2S) . ( 1 .S» = 1 .62S , 
k4 = (O.S) + ( 1  + (O.S) . ( 1 . 62S» = 2.3 1 2S ,  

O . S  
Yt = 1 + 6 [ 1 + 2 · ( 1 .S )  + 2 · ( 1 . 62S) + 2 .3 1 2S] � 1 .7969 . 

Similarly, the second step yields Y2 � 3 .4347 . 
Figure 6 .3 . 1  presents these results together with the results (from Fig. 6.2.4) 

of applying the improved Euler method with step size h = 0. 1 .  We see that even 
with the larger step size, the Runge-Kutta method gives (for this problem) four to 
five times the accuracy (in terms of relative percentage errors) of the improved Euler 
method. • 

0.0 
0.5 
1 .0 

1 .0000 
1 .7949 
3 .4282 

0.00% 
0. 14% 
0.24% 

1 .0000 
1 .7969 
3 .4347 

..... ''I' .. 'lt Error Actual y 

0.00% 
0.03% 
0.05% 

1 .0000 
1 .7974 
3 .4366 

FIGURE 6.3.1 .  Runge-Kutta and improved Euler results for the initial value problem 
dy/dx = x + y, y eO) = 1 .  

It i s  customary to measure the computational labor involved i n  solving 
dyjdx = I (x ,  y) numerically by counting the number of evaluations of the func
tion I (x , y) that are required. In Example 1 ,  the Runge-Kutta method required 
eight evaluations of I (x ,  y) = x + y (four at each step), whereas the improved 
Euler method required 20 such evaluations (two for each of 1 0  steps). Thus the 
Runge-Kutta method gave over four times the accuracy with only 40% of the labor. 

Computer programs implementing the Runge-Kutta method are listed in the 
project material for this section. Figure 6 .3 .2 shows the results obtained by applying 
the improved Euler and Runge-Kutta methods to the problem dyjdx = x + y ,  
y eO) = 1 with the same step size h = 0. 1 .  The relative error in the improved Euler 
value at x = 1 is about 0.24%, but for the Runge-Kutta value it is 0.000 12%. In this 
comparison the Runge-Kutta method is about 2000 times as accurate, but requires 
only twice as many function evaluations, as the improved Euler method. 
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Exa m ple 2 

", 2 

° . . , "  - - - - - - - - - , I X = 0.97 . . . , , , , , , , , , , , , I , , . . . 
- 2 . : : : : : : : : : : : : :  : : : : : : : 

: : :  : : : : : : : : : : :  : 1 : :  : : : 
- 4 ��������� 
- 2.0 - LO 0.0 LO 2.0 

x 

FIGURE 6.3.3. Solutions of 
dy/dx = x2 + y2 , y eO) = 1 .  

0. 1 1 . 1 100 1 . 1 10342 1 . 1 10342 
0.2 1 .242 1 1 .242805 1 .242806 
0.3 1 .3985 1 .3997 17 1 .3997 1 8 
0.4 1 .58 1 8 1 .583648 1 .583649 
0.5 1 .7949 1 .79744 1 1 .797443 
0.6 2.0409 2.044236 2.044238 
0.7 2.323 1 2.327503 2.327505 
0.8 2.6456 2.65 1079 2.65 1082 
0.9 3 .0 1 24 3 .019203 3 .019206 
1 .0 3 .4282 3 .436559 3 .436564 

FIGURE 6.3.2. Runge-Kutta and improved Euler results for the initial value 
problem dy/dx = x + y, y eO) = 1 ,  with the same step size h = 0. 1 .  

The error bound 

(8) 

for the Runge-Kutta method results in a rapid decrease in the magnitude of errors 
when the step size h is reduced (except for the possibility that very small step sizes 
may result in unacceptable roundoff errors) .  It follows from the inequality in (8) that 
(on a fixed bounded interval) halving the step size decreases the absolute error by 
a factor of Gt = 1� ' Consequently, the common practice of successively halving 
the step size until the computed results "stabilize" is particularly effective with the 
Runge-Kutta method. 

In Example 5 of Section 6. 1 we saw that Euler's method is not adequate to approx
imate the solution y(x) of the initial value problem 

( 10) 

as x approaches the infinite discontinuity near x = 0.9698 1 1  (see Fig. 6 .3 .3) .  Now 
we apply the Runge-Kutta method to this initial value problem. 

Figure 6 .3 .4 shows Runge-Kutta results on the interval [0.0, 0.9] , computed 
with step sizes h = 0. 1 ,  h = 0.05, and h = 0.025. There is still some difficulty near 
x = 0.9, but it seems safe to conclude from these data that y (0.5) � 2.0670. 

0. 1 
0.3 
0.5 
0.7 
0.9 

1 . 1 1 1 5 
1 .4397 
2.0670 
3 .6522 
14.02 1 8 

1 . 1 1 1 5 1 . 1 1 1 5 
1 .4397 1 .4397 
2.0670 2.0670 
3 .6529 3.6529 
14.27 12 14.302 1 

FIGURE 6.3.4. Approximating the solution of  the initial value problem in  Eq. ( 10) . 
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We therefore begin anew and apply the Runge-Kutta method to the initial 
value problem 

dy 
- = x2 + l, y (0.5) = 2.0670. dx 

( 1 1 )  

Figure 6 .3 .5 shows results on  the interval [0.5 , 0.9] ,  obtained with step sizes h = 
0.0 1 ,  h = 0.005 , and h = 0.0025 . We now conclude that y (0.9) � 14.3049. 

0.5 
0.6 
0.7 
0.8 
0.9 

2.0670 
2.6440 
3 .6529 
5 .8486 
14.3048 

0.005 y with h =  

2.0670 2.0670 
2.6440 2.6440 
3 .6529 3.6529 
5 .8486 5.8486 
14.3049 14.3049 

FIGURE 6.3.5. Approximating the solution of the initial value problem in Eq. ( 1 1 ) . 

Finally, Fig. 6 .3 .6 shows results on the interval [0.90, 0 .95] for the initial value 
problem 

dy 
dx 

= x2 + y2 , y (0.9) = 14 . 3049 , ( 12) 

obtained using step sizes h = 0.002, h = 0.00 1 ,  and h = 0.0005 . Our final 
approximate result is y (0.95) � 50.4723 . The actual value of the solution at x = 
0.95 is y (0.95) � 50.47 1 867. Our slight overestimate results mainly from the fact 
that the four-place initial value in ( 1 2) is (in effect) the result of rounding up the 
actual value y (0.9) � 14 .304864; such errors are magnified considerably as we 
approach the vertical asymptote. • 

0.90 
0.9 1 
0.92 
0.93 
0.94 
0.95 

14.3049 
16.7024 
20.06 17 
25 . 1073 
33 .5363 
50.4722 

14.3049 
16.7024 
20.06 17 
25 . 1 073 
33 .5363 
50.4723 

y with h 

14.3049 
16.7024 
20.06 17 
25 . 1073 
33 .5363 
50.4723 

FIGURE 6.3.6. Approximating the solution of the initial value problem in Eq. ( 12) . 

• •  �.... _ ••• _� " _  ".�. .._ •••• _... A • " ....... 

A skydiver with a mass of 60 kg jumps from a helicopter hovering at an initial 
altitude of 5 kilometers . Assume that she falls vertically with initial velocity zero 
and experiences an upward force F R of air resistance given in terms of her velocity 
v (in meters per second) by 

FR = (0.0096) ( 1 00v + l Ov2 + v3 ) 

(in newtons, and with the coordinate axis directed downward so that v > 0 during 
her descent to the ground) . If she does not open her parachute, what will be her 
terminal velocity? How fast will she be falling after 5 s have elapsed? After 1 0  s? 
After 20 s? 
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Solution 

40 
20 

S' 0 f-----+------'�--__l <;:; 
-20 
-40 

v 

FIGURE 6.3.7. Graph of I(v) = 
9.8 - (0.OOO I6) ( 1 00v + 1Ov2 + v3 ) . 

0 0 1 1  35.54 1 
9.636 1 2 35.560 

2 1 8 .386 1 3 35 .569 
3 25 .299 14 35 .574 
4 29.949 15 35 .576 
5 32.678 16 35 .577 
6 34. 1 37 17 35.578 
7 34.875 1 8 35.578 
8 35 .239 19 35.578 
9 35.4 1 5 20 35 .578 
10 35.500 

FIGURE 6.3.8. The skydiver's 
velocity data. 

Example 4 

Newton's law F = ma gives 

that is , 
60�� = (60) (9 .8 )  - (0.0096) ( 1 00v + I Ov2 + v3 ) ( 1 3) 

because m = 60 and g = 9 .8 .  Thus the velocity function v et) satisfies the initial 
value problem 

where 

dv 
dt 

= f(v) , v (O) = 0, 

f (v) = 9 .8  - (0.000 1 6) ( 1 00v + I Ov2 + v3 ) .  

( 14) 

( 1 5) 
The skydiver reaches her terminal velocity when the forces of gravity and air 

resistance balance, so f (v) = o. We can therefore calculate her terminal velocity 
immediately by solving the equation 

f (v) = 9 .8  - (0.000 1 6) ( 1 00v + I Ov2 + v3 ) = O. ( 1 6) 

Figure 6 .3 .7 shows the graph of the function f(v) and exhibits the single real so
lution v � 35 .5780 (found graphically or by using a calculator or computer Solve 

procedure). Thus the skydiver's terminal speed is approximately 35 .578 mis, about 
1 28 km/h (almost 80 mi/h) . 

Figure 6 .3 .8 shows the results of Runge-Kutta approximations to the solution 
of the initial value problem in ( 1 4) ;  the step sizes h = 0 .2 and h = 0. 1 yield the 
same results (to three decimal places). Observe that the terminal velocity is effec
tively attained in only 1 5  s. But the skydiver's velocity is 9 1 .85% of her terminal 
velocity after only 5 s, and 99.78% after 1 0  s . • 

The final example of this section contains a warning: For certain types of 
initial value problems, the numerical methods we have discussed are not nearly so 
successful as in the previous examples. 

Consider the seemingly innocuous initial value problem 

dy x 
dx 

= 5y - 6e- , y eO) = 1 ( 1 7) 

whose exact solution is y (x)  = e-x • The table in Fig. 6 .3 .9 shows the results ob
tained by applying the Runge-Kutta method on the interval [0, 4] with step sizes 
h = 0.2, h = 0. 1 ,  and h = 0.05. Obviously these attempts are spectacularly un
successful. Although y (x)  = e-x ---+ 0 as x ---+ +00, it appears that our numerical 
approximations are headed toward -00 rather than zero. 

The explanation lies in the fact that the general solution of the equation dy/dx = 

5y - 6e-x is 

( 1 8) 

The particular solution of ( 1 7) satisfying the initial condition y eO) = 1 is ob
tained with C = O. But any departure, however small, from the exact solution 
y (x) = e-x-even if due only to roundoff error-introduces [in effect] a nonzero 
value of C in Eq. ( 1 8) .  And as indicated in Fig. 6.3 . 1 0, all solution curves of the 
form in ( 1 8) with C t= 0 diverge rapidly away from the one with C = 0, even if 
their initial values are close to 1 .  • 
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RungFKutta y 
witb h = 0.05 Actualy 

0.4 0.66880 0.67020 0.6703 1 0.67032 
0.8 0.437 1 3 0.44833 0.44926 0.44933 
1 .2 0.2 1099 0.29376 0.30067 0.30199 
1 .6 -0.460 19 0. 14697 0. 19802 0.20190 
2.0 -4.72 142 -0.27026 0. 10668 0. 1 3534 
2.4 -35 .534 1 5 -2.904 19 -0. 1 2 102 0.09072 
2.8 -26 1 .25023 -22.05352 - 1 .50367 0.0608 1 
3.2 - 1 , 9 1 6.69395 - 1 63 .25077 - 1 1 .5 1 868 0.04076 
3.6 - 14059.35494 - 1205 .7 1249 -85 .38 1 56 0.02732 
4.0 - 1 03 , 1 26.5270 -8903 . 1 2866 -63 1 .03934 0.0 1 832 

FIGURE 6.3.9. Runge-Kutta attempts to solve numerically the initial value problem in 
Eq. ( 1 7) . 

2.5 

2.0 

1 .5 

1 .0 
""' 

0.5 

0.0 

-0.5 

x 

FIGURE 6.3.10. Direction field and 
solution curves for dy/dx = 5y - 6e-X . 

Difficulties of the sort illustrated by Example 4 sometimes are unavoidable, 
but one can at least hope to recognize such a problem when it appears. Approxi
mate values whose order of magnitude varies with changing step size are a common 
indicator of such instability. These difficulties are discussed in numerical analysis 
textbooks and are the subject of current research in the field. 

_ Problems 

A hand-held calculator will suffice for Problems 1 through 10, 

where an initial value problem and its exact solution are given. 
Apply the Runge-Kutta method to approximate this solution on 
the interval [0, 0 .5] with step size h = 0.25. Construct a table 
showing five-decimal-place values of the approximate solution 
and actual solution at the points x = 0.25 and 0.5. 
1. y' = -y, y (O) = 2; y (x) = 2e-x 
2. y' = 2y, y (O) = � ;  y (x) = � e2x 
3. y' = y + 1 ,  y (O) = 1 ; y (x) = 2ex - 1 
4. y' = x - y , y (O) = 1 ; y (x) = 2e-x + x - I  
5. y' = y - x - I , y (O) = 1 ;  y (x) = 2 + x - eX 

6. y' = -2xy, y (O) = 2; y (x) = 2e-x 2 

7. y' = -3x2y , y (O) = 3 ; y (x) = 3e-x3 

8. y' = e-Y , y (O) = 0; y (x) = In (x + 1 ) 

9 .  y '  = 
� ( l + y2) , y (O) = 1 ; y (x) = tan � (x + ]f) 

1 
10. y' = 2xy2 , y (O) = 1 ; y (x ) = --l - x2 

Note : The application following this problem set lists illus
trative calculator !computer programs that can be used in the 
remaining problems. 
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A programmable calculator or a computer will be useful for 
Problems 1 1 through 16. In each problem find the exact solu
tion of the given initial value problem. Then apply the Runge
Kutta method twice to approximate (to five decimal places) this 
solution on the given interval, first with step size h = 0.2, then 
with step size h = 0. 1 . Make a table showing the approxi
mate values and the actual value, together with the percentage 
error in the more accurate approximation, for x an integral 
multiple of 0.2. Throughout, primes denote derivatives with 
respect to x. 
11. y' = y - 2, y (O) = 1 ; 0 � x � 1 
12. y' = ! (y - 1 )2 , y (O) = 2; 0 � x � 1 
13. yy' = 2x3 , y ( 1 )  = 3 ; 1 � x � 2 
14. xy' = y2 , y ( 1 )  = 1 ; 1 � x � 2 
15. xy' = 3x - 2y, y (2) = 3 ; 2 � x � 3 
16. y2y' = 2x5 , y (2) = 3 ; 2 � x � 3 

A computer with a printer is required for Problems 1 7 through 
24. In these initial value problems, use the Runge-Kutta 
method with step sizes h = 0.2, 0. 1 , 0.05, and 0.025 to approx
imate to six decimal places the values of the solution at five 
equally spaced points of the given interval. Print the results 
in tabular form with appropriate headings to make it easy to 
gauge the effect of varying the step size h. Throughout, primes 
denote derivatives with respect to x. 
17. y' = x2 + y2 , y (O) = 0; 0 � x � 1 
18. y' = x2 - y2 , y (O) = 1 ; 0 � x � 2 
19. y' = x +,JY, y (O) = 1 ; 0 � x � 2 
20. y' = x + ,lfY, y (O) = - 1 ; 0 � x � 2 
21. y' = In y , y ( 1 )  = 2; 1 � x � 2 
22. y' = X2/3 + y2/3 , y (O) = 1 ; 0 � x � 2 
23. y' = sin x + cos y ,  y (O) = 0; 0 � x � 1 

x 
24. y' = -- y(- l ) = 1 · - 1 :::;; x :::;; 1 1 + y2 ' ' - -
25. As in Problem 25 of Section 6.2, you bail out of a he

licopter and immediately open your parachute, so your 
downward velocity satisfies the initial value problem 

dv 
dt = 32 - 1 .6v , v (O) = 0 

(with t in seconds and v in ftls). Use the Runge-Kutta 
method with a programmable calculator or computer to 
approximate the solution for 0 � t � 2, first with step 
size h = 0. 1 and then with h = 0.05, rounding off approx
imate v-values to three decimal places. What percentage 
of the limiting velocity 20 ftls has been attained after 1 
second? After 2 seconds? 

26. As in Problem 26 of Section 6.2, suppose the deer popu
lation P (t) in a small forest initially numbers 25 and sat
isfies the logistic equation 

dP de = 0.0225P - 0.0003P2 

(with t in months). Use the Runge-Kutta method with a 
programmable calculator or computer to approximate the 
solution for 1 0  years, first with step size h = 6 and then 
with h = 3, rounding off approximate P-values to four 
decimal places . What percentage of the limiting popula
tion of 75 deer has been attained after 5 years? After 10  
years? 

Use the Runge-Kutta method with a computer system to find 
the desired solution values in Problems 27 and 28. Start with 
step size h = 1 , and then use successively smaller step sizes 
until successive approximate solution values at x = 2 agree 
rounded off to five decimal places. 
27. y' = x2 + y2 - 1 ,  y (O) = 0; y (2) =? 
28. y' = x + !y2 , y (-2) = 0; y (2) =? 

Velocity-Acceleration Problems 
In Problems 29 and 30, the linear acceleration a = dv/dt 
of a moving particle is given by a formula dv/dt = f(t , v), 
where the velocity v = dy/dt is the derivative of the function 
y = y (t) giving the position of the particle at time t. Suppose 
that the velocity v (t) is approximated using the Runge-Kutta 
method to solve numerically the initial value problem 

dv 
dt = f(t , v) , v (O) = Vo · ( 1 9) 

That is, starting with to = 0 and vo, the formulas in Eqs. (5) 
and (6) are applied-with t and v in place of x and y-to 
calculate the successive approximate velocity values V I >  Vz, 
V3 , . . .  , Vm at the successive times t" t2, t3 , . . .  , tm (with 
tn+ ' = tn + h). Now suppose that we also want to approximate 
the distance y (t) traveled by the particle. We can do this by 
beginning with the initial position y (O) = Yo and calculating 

(20) 

(n = 1, 2, 3, . . .  ), where an = f(tn , vn ) � v'(tn ) is the parti
cle 's approximate acceleration at time tn . Theformula in (20) 

would give the correct increment (from Yn to Yn+ ' ) if the accel
eration an remained constant during the time interval [tn , tn+ , ] . 

Thus, once a table of approximate velocities has been 
calculated, Eq. (20) provides a simple way to calculate a table 
of corresponding successive positions. This process is illus
trated in the project for this section, by beginning with the ve
locity data in Fig. 6.3. 8 (Example 3) and proceeding tofollow 
the skydiver 's position during her descent to the ground. 
29. Consider again the crossbow bolt of Example 2 in Sec

tion 1 .8 , shot straight upward from the ground with an ini
tial velocity of 49 m/s. Because of linear air resistance, 
its velocity function v = dy/dt satisfies the initial value 
problem 

dv 
dt = -(0.04)v - 9.8 , v (O) = 49 

with exact solution v (t ) = 294e-t/25 -245 . (a) Use a cal
culator or computer implementation of the Runge-Kutta 
method to approximate v (t ) for 0 � t � 1 0  using both 
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n = 1 00 and n = 200 subintervals. Display the results at 
intervals of I second. Do the two approximations--each 
rounded to four decimal places-agree both with each 
other and with the exact solution? (b) Now use the veloc
ity data from part (a) to approximate y (t) for 0 :;::; t :;::; 1 0  
using n = 200 subintervals .  Display the results at inter
vals of 1 second. Do these approximate position values
each rounded to two decimal places-agree with the exact 
solution 

Beginning with this initial value problem, repeat parts (a) 
through (c) of Problem 25 (except that you may need 
n = 200 subintervals to get four-place accuracy in part 
(a) and n = 400 subintervals for two-place accuracy in 
part (b». According to the results of Problems 17 and 18  
i n  Section 1 .8 , the bolt's velocity and position functions 
during ascent and descent are given by the following for
mulas. 

y (t) = 7350 ( 1 - e-t/25 )  - 245t? Ascent: 

(c) If the exact solution were unavailable, explain how 
you could use the Runge-Kutta method to approximate 
closely the bolt's times of ascent and descent and the max
imum height it attains. 

v (t )  = (94 .388) tan(0.478837 - [0. 1 03827] t ) ,  
y (t) = 1 08 .465 

+ (909.09 1 )  In (cos(0.478837 - [0. 1 03827]t» ; 

30. Now consider again the crossbow bolt of Example 3 in 
Section 1 . 8 .  It still is shot straight upward from the ground 
with an initial velocity of 49 mis, but because of air resis
tance proportional to the square of its velocity, its velocity 
function v (t) satisfies the initial value problem 

Descent: 
v (t) = -(94. 388) tanh(0. 1 03827[t - 4.61 19] ) ,  
y (t) = 1 08 .465 

dv 
dt 

= -(O.OO l l ) v l v l  - 9 .8 ,  v (O) = 49. - (909.09 1 )  In (cosh(O. l 03827[t - 4.6 1 19]) . 

6 .3 Appl ic atio n  Runge-Kutta Implementation 
mv _ _  '� ____ ,�www� WW� __ _ _ _  _ _ _  _ _  _ _  . � . .  _____ .w _ _ _  �w����. � , _ _  . , , _ _  ��. 

Figure 6 .3 . 1 1  lists TI-85 and BASIC programs implementing the Runge-Kutta 
method to approximate the solution of the initial value problem 

dy 
dx 

= x + y , y (O) = 1 

considered in Example 1 of this section. The comments provided in the final column 
should make these programs intelligible even if you have little familiarity with the 
BASIC and TI programming languages. 

To apply the Runge-Kutta method to a different equation dyjdx = f(x , y) , 
one need only change the initial line of the program, in which the function f is 
defined. To increase the number of steps (and thereby decrease the step size), one 
need only change the value of N specified in the second line of the program. 

Figure 6 .3 . 1 2  exhibits a MATLAB implementation of the Runge-Kutta 
method. Suppose that the function f describing the differential equation y' = 
f (x ,  y) has been defined. Then the rk function takes as input the initial value x, 

the initial value y, the final value xl of x ,  and the desired number n of subintervals. 
As output it produces the resulting column vectors x and Y of x- and y-values. For 
instance, the MATLAB command 

[ X ,  Y ]  = rk ( O ,  1 ,  1 ,  10 ) 

then generates the first and third columns of data shown in the table in Fig. 6.3.2. 
You should begin this project by implementing the Runge-Kutta method with 

your own calculator or computer system. Test your program by applying it first to 
the initial value problem in Example 1 ,  then to some of the problems for this section. 
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PROGRAM : RK 

: F=X+Y 

: 10�N 

: O� X  

: l� Y  

: 1� X 1  

: ( X l - X )  /N� B 

: For ( I , l , N )  

: X� XO 

: Y� YO 

: F�K1 

: XO+B / 2 � X  

: YO+B*K1 / 2 � Y  

: F� K2 

: YO+B*K2 / 2 � Y  

: F� K3 

: XO+B� X 

: YO+B*K3 � Y  

: F� K4 

: ( K1+2 *K2+2 *K3 

+K4 ) / 6�K 

: YO+B*K�Y 

: Disp X , Y  

: End 

Program RK 

DEF FN F ( X , y )  = X + Y 

N = 10  

X 0 

Y = 1 

Xl = 1 

B = ( X 1 -X ) /N 

FOR 1=1 TO N 

XO = X 

YO = Y 

K1 = FNF ( X , Y )  

X = XO + B/2  

Y = YO + B*K1 /2  

K2  = FNF ( X , Y )  

Y = Y O  + B*K2 /2  

K3 = FNF ( X , Y )  

X = XO + B 

Y = YO + B*K3 

K4 = FNF ( X , y )  

K = ( K1+2 *K2+2 *K3 

+K4 ) / 6 

Y = YO + K*K 

PRINT X , Y  

NEXT I 

Program title 

Define function f 

No . of steps 

Initial x 

Initial y 

Final x 

step s i z e  

Begin loop 

Save previous x 

Save previous y 

First slope 

Midpoint 

Midpt predictor 

Second slope 

Midpt predictor 

Third slope 

New x 

Endpt predictor 

Fourth slope 

Average slope 

Corrector 

Display results 

End loop 

FIGURE 6.3.11 .  TI-85 and BASIC Runge-Kutta programs. 

function yp 

yp = x + y ;  

f ( x , y )  

function [ X , Y ]  rk ( x , y , x 1 , n )  
h ( x l - x ) /n ;  
X = x ; 

Y = y ;  

for i = 1 : n  
k1 f ( x , y ) ; 
k2 f ( x+h/ 2 , y+h*k1 /2 ) ;  

k3 f ( x+h/2 , y+h*k2 /2 ) ;  
k4 f ( x+h , y+h*k3 ) ;  
k ( k1+2 *k2+2 *k3+k4 ) / 6 ;  

x x + h ;  

y y + h * k ;  

X [ X i X ] ;  
Y [ Y ; y ] ; 
end 

% yp = y '  

% step s i z e  

% initial x 
% initial y 

% begin loop 

% first slope 

% second slope 

% third slope 

% fourth slope 

% average slope 

% new x 
% new y 

% update x-column 

% update y-column 

% end loop 

FIGURE 6.3.12. MATLAB implementation of the Runge-Kutta method. 



t (s) v (nl/s) )� (.�: . 
0 0 0 
2 1 8 .386 1 8.984 
4 29.949 68.825 
6 34. 1 37 133 .763 
8 35 .239 203 .392 
10 35 .500 274. 1 92 
12 35.560 345.266 
14 35 .574 4 16.403 
1 6 35 .577 487.555 
1 8  35 .578 558 .7 10 
20 35.578 629.866 

FIGURE 6.3.13. The skydiver' s  
velocity and position data. 
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Famous Numbers Revisited, One Last Time 

The following problems describe the numbers 

e � 2.7 1 828 1 82846, In 2 � 0.693 147 1 8056, and :rr � 3 . 141 59265359 

as specific values of certain initial value problems. In each case, apply the Runge
Kutta method with n = 10, 20, 40, . . .  subintervals (doubling n each time) . How 
many subintervals are needed to obtain-twice in succession-the correct value of 
the target number rounded to nine decimal places? 

1. The number e = y ( l ) ,  where y (x)  is the solution of the initial value problem 
dy/dx = y ,  y (O) = 1 .  

2. The number In 2 = y(2) , where y (x )  is the solution of the initial value prob
lem dy/dx = l/x ,  y ( 1 )  = O. 

3. The number :rr = y ( l ) ,  where y (x )  is the solution of the initial value problem 
dy/dx = 4/( 1 + x2) ,  y (O) = O. 

The Skydiver's Descent 

The following MATLAB function describes the skydiver's acceleration function in 
Example 3 .  

function vp = f ( t , v ) 

vp = 9 . S  - 0 . 00016* ( 100*v + 10*vA2 + vA 3 ) ; 

Then the commands 

k = 200 % 200 subintervals 

[ t , v l = rk ( O ,  20 , 0,  k ) ; 

[ t ( 1 : 10 : k+1 ) ; v ( 1 : 10 : k+1 ) 1 

% Runge-Kutta approximation 

% Display every 10th entry 

produce the table of approximate velocities shown in Fig. 6 .3 .8 .  Finally, the com
mands 

y = z eros ( k+l , l ) : 

h = 0 . 1 ;  

for n = l : k  

a = f ( t ( n ) , v ( n » : 

y ( n+1 ) = y ( n )  + v ( n ) *h + 0 . 5*a*hA 2 ; 
end 

[ t ( 1 : 20 : k+l ) , v ( 1 : 20 : k+l ) , y ( 1 : 20 : k+l ) 1 

% 
% 
% 
% 
% 
% 
% 

initialize y 

step size 

for n = 1 to k 

acceleration 

Equation ( 2 0 )  

end loop 

each 20th entry 

carry out the position function calculations described in Eq. (20) in the instruc-
tions for Problems 29 and 30. The results of these calculations are shown in 
the table in Fig. 6 .3 . 1 3 .  It appears that the skydiver falls 629 . 866 m during her 
first 20 s of descent, and then free falls the remaining 4370. 1 34 meters to the 
ground at her terminal speed of 35 .578 m/s. Hence her total time of descent is 
20 + (4370. 1 34/35 .578) � 142. 833 s, or about 2 min 23 s. 

For an individual problem to solve after implementing these methods using 
an available computer system, analyze your own skydive (perhaps from a different 
height), using your own mass m and a plausible air-resistance force of the form 
FR = av + bv2 + cv3 • 
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l1li Numerical Methods for Systems 

We now discuss the numerical approximation of solutions of systems of differential 
equations. Our goal is to apply the methods of Sections 6. 1 through 6.3 to the initial 
value problem 

X' = f(t , x) , x(to) = Xo ( 1 )  

for a system of  m first-order differential equations. I n  ( 1 )  the independent variable 
is the scalar t ,  and 

x = (XI , X2 , . . .  , xm ) and f = (fJ , h ,  . . . , fm ) 

are vector-valued functions. If the component functions of f and their first-order 
partial derivatives are all continuous in a neighborhood of the point (to ,  xo) ,  then 
Theorems 3 and 4 of the Appendix guarantee the existence and uniqueness of a 
solution x = x(t) of ( 1 )  on some subinterval [of the t-axis] containing to . With this 
assurance we can proceed to discuss the numerical approximation of this solution. 

Beginning with step size h, we want to approximate the values of x(t) at the 
points tj , t2 , t3 , . . . , where tn+ 1  = tn + h for n � O. Suppose that we have already 
computed the approximations 

to the actual values 

of the exact solution of the system in ( 1 ) . We can then make the step from Xn to 
the next approximation Xn+ 1  � X(tn+ l ) by any one of the methods of Sections 6. 1 
through 6 .3 .  Essentially all that is required is to write the iterative formula of the 
selected method in the vector notation of the present discussion. 

Euler Methods for Systems 

For example, the iterative formula of Euler's method for systems is 

Xn+ 1 = Xn + hf(t , xn ) .  (2) 

To examine the case m = 2 of a pair of first-order differential equations, let us write 

x = 
[ � ] and f = [ � J .  

Then the initial value problem in ( 1 )  is 

X' = f(t ,  x, y) , 
y' = g (t ,  x ,  y) , 

X (to) = Xo , 
y (to) = Yo ,  

and the scalar components of  the vector formula in  (2) are 

Xn+ 1  = Xn + hf(tn , Xn , Yn ) ,  
Yn+ 1  = Yn + hg (tn ' Xn , Yn ) .  

(3) 

(4) 
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Note that each iterative formula in (4) has the form of a single Euler iteration, but 
with Yn inserted like a parameter in the first formula (for Xn+ l ) and with Xn inserted 
like a parameter in the second formula (for Yn+ l ) .  The generalization to the system 
in (3) of each of the other methods in Sections 6. 1 through 6.3 follows a similar 
pattern. 

The improved Euler method for systems consists at each step of calculating 
first the predictor 

(S) 

and then the corrector 

h 
Xn+ l = Xn + 2 [f(tn , Xn ) + f(tn+ l ,  un+d] .  (6) 

For the case of the two-dimensional initial value problem in (3) , the scalar compo
nents of the formulas in (S) and (6) are 

Un+ l = Xn + hf(tn , Xn , Yn) ,  
Vn+ l = Yn + hg(tn , Xn , Yn ) 

and 

h 
Yn+ l = Yn + 2 [g (tn , Xn , Yn ) + g (tn+ l ' Un+ l , vn+d] .  

� . .  � ...... . 

Consider the initial value problem 

x' = 3x - 2y ,  
Y' = Sx  - 4y ,  

The exact solution of  the system in  (9) is 

x (t) = 2e-2t + et , 

X (O) = 3 ;  
y (O) = 6. 

(7) 

(8) 

(9) 

( 10) 

Here we have f(x ,  y) = 3x - 2y and g (x ,  y) = Sx -4y in (3), so the Euler iterative 
formulas in (4) are 

With step size h = 0. 1 we calculate 

and 

Xl = 3 + (0. 1 )  . [3 · 3  - 2 · 6] = 2 .7, 
Yl = 6 + (0. 1 )  . [S · 3  - 4 · 6] = S . l 

X2 = 2.7 + (0 . 1 )  . [3 . (2 .7) - 2 ·  (S . l ) ]  = 2.49 , 
Y2 = S . l  + (0. 1 ) · [S · (2 .7) - 4 · (S . l ) ] = 4.41 . 

The actual values at t2 = 0.2 given by ( 1 0) are x (0.2) � 2.S62 and y (0.2) � 4.S73 . 
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To compute the improved Euler approximations to x (0.2) and y (0.2) with a 
single step of size h = 0.2, we first calculate the predictors 

U I = 3 + (0.2) . [3 . 3-2 · 6] = 2.4, 

V I = 6 + (0.2) . [S . 3-4 . 6] = 4.2. 

Then the corrector formulas in (8) yield 

X I = 3 + (0. 1 )  . ( [3 . 3 - 2 · 6] + [3 · (2.4) - 2 · (4.2) ] )  = 2.S8 , 

YI = 6 + (0. 1 )  . ([S . 3 - 4 · 6] + [S . (2.4) - 4 · (4.2) ] )  = 4.62. 

As we would expect, a single improved Euler step gives better accuracy than two 
ordinary Euler steps. • 

The Runge-Kutta Method and Second-Order Equations 

The vector version of the iterative formula for the Runge-Kutta method is 

( 1 1 )  

where the vectors kl ' k2 , k3 , and k4 are defined (by analogy with Eqs. (Sa)-(Sd) of 
Section 6.3) as follows :  

kl = f(tn , Xn ) ,  

k2 = f (tn + �h ,  Xn + �hkl ) ' 
k3 = f (tn + �h ,  Xn + �hk2) ' 
� = f(tn + h ,  Xn + hk3 ) .  

( 1 2) 

To describe in scalar notation the Runge-Kutta method for the two
dimensional initial value problem 

let us write 

X' = f(t ,  X ,  y) , 
y' = g (t ,  X ,  y) , 

X (to) = Xo , 
y (to) = Yo ,  

(3) 

Then the Runge-Kutta iterative formulas for the step from (xn , Yn ) to the next ap
proximation (Xn+ l ,  Yn+ l ) � (X (tn+ I ) , y (tn+ I » are 

h Xn+ 1  = Xn + "6 (FI + 2F2 + 2F3 + F4) , 
( 1 3) 

h Yn+ 1  = Yn + "6 (G I + 2G2 + 2G3 + G4) , 



t 

0.5 
1 .0 
1 .5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

+0.47943 
+0.84 147 
+0.99749 
+0.90930 
+0.59847 
+0. 14 1 1 2 
-0.35078 
-0.75680 
-0.97753 
-0.95892 

+0.87758 
+0.54030 
+0.07074 
-0.4 1 6 1 5 
-0.80 1 14 
-0.98999 
-0.93646 
-0.65364 
-0.21 080 
+0.28366 

FIGURE 6.4.1. Runge-Kutta 
values (with h = 0.05) for the 
problem in Eq. ( 1 8) . 

Exa mple 2 

Exa m ple 3 
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where the values FJ , F2 , F3 , and F4 of the function f are 

FI = f (tn , xn , Yn ) ,  

F2 = f (tn + �h , Xn + �hFI ' Yn + �hG I ) ' 
F3 = f (tn + �h , Xn + �hF2 ' Yn + �hG2) , 
F4 = f (tn + h , Xn + hF3 , Yn + hG3 ) ;  

G I , G2 , G3 , and G 4 are the similarly defined values of the function g .  

( 14) 

Perhaps the most common application of the two-dimensional Runge-Kutta 
method is to the numerical solution of second-order initial value problems of the 
form 

x" = g (t , x ,  x') ,  
x (to) = Xo , x ' (to) = Yo .  

( 1 5) 

If we introduce the auxiliary variable Y = x' , then the problem in ( 1 5) translates 
into the two-dimensional first-order problem 

x' = y , 
Y' = g (t ,  x ,  y) , 

x (to) = Xo , 
y (to) = Yo · 

This is a problem of the form in (3) with f(t ,  x ,  y) = y .  

( 16) 

If the functions f and g are not too complicated, then it is feasible to carry 
out manually a reasonable number of steps of the two-dimensional Runge-Kutta 
method described here. But the first operating electronic computers were con
structed (during World War II) specifically to implement methods similar to the 
Runge-Kutta method for the numerical computation of trajectories of artillery pro
jectiles. The application material for this section lists TI-85 and BASIC versions of 
Program RK2DIM that can be used with two-dimensional systems. 

The exact solution of the initial value problem 

x" = -x ; x (O) = 0, x' (O) = 1 ( 17) 

is x (t) = sin t .  The substitution y = x' translates ( 1 7) into the two-dimensional 
problem 

x' = y , 
y' = -x , 

x (O) = 0; 
y (O) = 1 , 

( 1 8) 

which has the form in (3) with f(t ,  x , y) = y and g (t , x ,  y) = -x . The table 
in Fig. 6.4. 1 shows the results produced for 0 � t � 5 (radians) using Program 
RK2DIM with step size h = 0.05 .  The values shown for x = sin t and y = cos t 
are all accurate to five decimal places. • 

In Example 4 of Section 1 .8 we considered a lunar lander that initially is falling 
freely toward the surface of the moon. Its retrorockets, when fired, provide a de
celeration of T = 4 mls2 • We found that a soft touchdown at the lunar surface 
is achieved by igniting these retrorockets when the lander is at a height of 41 ,870 
meters Gust over 26 miles) above the surface and is then descending at the rate of 
450 mls. 
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Now we want to compute the descent time of the lunar lander. Let the distance 
x (t) of the lander from the center of the moon be measured in meters and measure 
time t in seconds. According to the analysis in Section 1 .8 (where we used r (t) 
instead of x (t) ) ,  x (t )  satisfies the initial value problem 

x (O) = R + 41 870 = 1 , 78 1 , 870, x' (O) = -450 

( 1 9) 

where G � 6.6726 X 10- 1 1  N . (mjkg)2 is the universal gravitational constant and 
M = 7 .35 X 1022 kg and R = 1 .74 X 1 06 m are the mass and radius of the moon. 
We seek the value of t when x (t) = R = 1 , 740,000. 

The problem in ( 1 9) is equivalent to the first-order system 

dx 
dt = y , x (O) = 1 , 78 1 , 870; 

dy 4.9044 X 10 12 
- = 4 - y (O) = -450. 
dx x2 

(20) 

The table in Fig. 6.4.2 shows the result of a Runge-Kutta approximation with step 
size h = 1 (the indicated data agreeing with those obtained with step size h = 2). 
Evidently, touchdown on the lunar surface (x = 1 , 740,000) occurs at some time 
between t = 1 80 and t = 1 90 seconds. The table in Fig. 6.4.3 shows a second 
Runge-Kutta approximation with t (O) = 1 80, x (O) = 1 , 740,059, y (O) = - 1 6.83, 
and h = 0. 1 .  Now it is apparent that the lander's time of descent to the lunar surface 
is very close to 1 87 seconds; that is, 3 min 7 s. (The final velocity terms in these 
two tables are positive because the lander would begin to ascend if its retrorockets 
were not turned off at touchdown.) • 

t (s) 
° 
20 
40 
60 
80 
100 
120 
140 
1 60 
1 80 
200 

1 ,78 1 ,870 
1 ,773 ,360 
1 ,765 ,826 
1 ,759,264 
1 ,753,667 
1 ,749,033 
1 ,745 ,357 
1 ,742,637 
1 ,740,872 
1 ,740,059 
1 ,740, 1 99 

-450.00 
-401 .04 
-352.37 
-303.95 
-255 .74 
-207 .73 
- 1 59 .86 
- 1 1 2 . 1 1  
-64.45 
- 1 6.83 
30.77 

FIGURE 6.4.2. The lander's descent 
to the lunar surface. 

1 80 
1 8 1  
1 82 
1 83 
1 84 
1 85 
1 86 
1 87 
1 88 
1 89 
190 

1 ,740,059 
1 ,740,044 
1 ,740,030 
1 ,740,0 1 9 
1 ,740,0 1 1 
1 ,740,005 
1 ,740,00 1 
1 ,740,000 
1 ,740,00 1 
1 ,740,004 
1 ,740,0 10 

- 1 6.83 
- 14.45 
- 12.07 
-9.69 
-7.3 1 
-4.93 
-2.55 
-0. 17 
2.21 
4.59 
6.97 

FIGURE 6.4.3. Focusing on the 
lunar lander's soft touchdown. 
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Higher-Order Systems 

As we saw in Section 5 . 1 ,  any system of higher-order differential equations can be 
replaced with an equivalent system of first-order differential equations. For exam
ple, consider the system 

x" = F(t ,  x ,  y, x' ,  y') , 
y" = G (t ,  x ,  y ,  x' ,  y') 

of second-order equations. If we substitute 

X = Xl , y = X2 , X' = X3 = X; ,  Y' = X4 = X� ,  

then we get the equivalent system 

x; = X3 , 
X� = X4 , 
X� = F(t ,  X l , X2 , X3 , X4) ,  
X� = G (t ,  X l , X2 , X3 , X4) 

(2 1 )  

(22) 

of four first-order equations in the unknown functions Xl (t) = X (t) , X2 (t) = y (t) , 
X3 (t) ,  and X4 (t) . It would be a routine (if slightly tedious) matter to write a four
dimensional version of program RK2DIM for the purpose of solving such a sys
tem. But in a programming language that accommodates vectors, an n-dimensional 
Runge-Kutta program is scarcely more complicated than a one-dimensional pro
gram. For instance, the application material for this section lists the n-dimensional 
MATLAB program rkn that closely resembles the one-dimensional program rk of 
Fig. 6.3 . 1 1 . 

no." _ .  • ........ . 

Suppose that a batted ball starts at Xo = 0, Yo = 0 with initial velocity Vo = 160 
ftjs and with initial angle of inclination e = 30° . If air resistance is ignored, we 
find by the elementary methods of Section 1 .2 that the baseball travels a [horizontal] 
distance of 400.J3 ft (approximately 693 ft) in 5 s before striking the ground. Now 
suppose that in addition to a downward gravitational acceleration (g = 32 ftjs2), 
the baseball experiences an acceleration due to air resistance of (0.0025)v2 feet 
per second per second, directed opposite to its instantaneous direction of motion. 
Determine how far the baseball will travel horizontally under these conditions. 

Solution According to Problem 30 of Section 5 . 1 ,  the equations of motion of the baseball are 

d2x dx 
- = -cv -,  
dt2 dt 

d2y dy 
- = -cv - - g 
dt2 dt 

(23) 

where v = J (x,)2 + (y')2 is the speed of the ball, and where c = 0.0025 and 
g = 32 in fps units. We convert to a first-order system as in (22) and thereby obtain 
the system 

X; = X3 , 
x� = X4 , 

x� = -CX3JX� + xl , 

x� = -CX4JX� + xl - g 

(24) 
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t 

0.0 0.00 
0.5 69.28 
1 .0 138 .56 
1 .5 207 .85 
2.0 277. 1 3 
2.5 346.4 1 
3 .0 4 1 5 .69 
3 .5 484.97 
4.0 554.26 
4.5 623 .54 
5.0 692.82 

of four first-order differential equations with 

Xl (0) = X2 (0) = 0, 

X3 (0) = 80.J3, X4 (0) = 80. 
(25) 

Note that X3 (t) and X4 (t) are simply the x- and y-components of the baseball 's 
velocity vector, so v = J xj + xl . We proceed to apply the Runge-Kutta method to 
investigate the motion of the batted baseball described by the initial value problem 
in (24) and (25), first taking c = 0 to ignore air resistance and then using c = 0.0025 
to take air resistance into account. 

WITHOUT AIR RESISTANCE : Figure 6 .4.4 shows the numerical results obtained 
when a Runge-Kutta program such as rkn is applied with step size h = 0. 1 and with 
c = 0 (no air resistance) . For convenience in interpreting the results, the printed 
output at each selected step consists of the horizontal and vertical coordinates X 
and y of the baseball, its velocity v ,  and the angle of inclination a of its velocity 
vector (in degrees measured from the horizontal) . These results agree with the exact 
solution when c = O. The ball travels a horizontal distance of 400,J3 � 692 . 82 ft 
in exactly 5 s, having reached a maximum height of 100 ft after 2.5 s. Note also that 
the ball strikes the ground at the same angle and with the same speed as its initial 
angle and speed. 

Y V IX 

0.00 160.00 +30 t x y V IX 
36.00 1 52.63 +25 
64.00 146.64 + 19 0.0 0.00 0.00 160.00 +30 
84.00 142.2 1 + 1 3 0.5 63 .25 32.74 1 27. 1 8  +24 
96.00 1 39.48 +7 1 .0 1 17 . 1 1  53 .20 lO4.86 +17 
100.00 1 38.56 +0 1 .5 1 64.32 63 .60 89.72 +8 
96.00 1 39 .48 -7 2.0 206.48 65.30 80. 17 -3 
84.00 142.21 - 1 3 2.5 244.61 59.22 75.22 - 15 
64.00 146.64 - 1 9 3.0 279.29 46.05 73 .99 -27 
36.00 1 52.63 -25 3 .5 3 l O.9 1 26.4 1 75 .47 -37 
0.00 1 60.00 -30 4.0 339.67 0.9 1 78.66 -46 

FIGURE 6.4.4. The batted baseball with no air FIGURE 6.4.5. The batted baseball with air 
resistance (c = 0). resistance (c = 0.0025) . 

WITH AIR RESISTANCE : Figure 6.4.5 shows the results obtained with the fairly 
realistic value of c = 0.0025 for the air resistance for a batted baseball. To within a 
hundredth of a foot in either direction, the same results are obtained with step sizes 
h = 0.05 and h = 0.025 . We now see that with air resistance the ball travels a 
distance well under 400 ft in just over 4 s .  The more refined data in Fig. 6.4.6 show 
that the ball travels horizontally only about 340 ft and that its maximum height is 
only about 66 ft. As illustrated in Fig. 6.4.7, air resistance has converted a massive 
home run into a routine fly ball (if hit straightaway to center field) . Note also that 
when the ball strikes the ground, it has slightly under half its initial speed (only 
about 79 ft/s) and is falling at a steeper angle (about 46° ) .  Every baseball fan has 
observed empirically these aspects of the trajectory of a fly ball. 



1 .5 164.32 
1 .6 173 . 1 1  
1 .7 1 8 1 .72 
1 .8 1 90. 1 5 
1 .9 198 .40 
2.0 206.48 

3 . 8 328.50 
3.9 334. 14 
4.0 339.67 
4. 1 345 . 1 0 
4.2 350.4 1 

FIGURE 6.4.6. 
ground. 

63 .60 89.72 
64.60 87.40 
65.26 85.29 
65.60 83.39 
65 .6 1 8 1 .68 
65.30 80. 1 7 

1 1 .77 77.24 
6.45 77.93 
0.9 1 78 .66 
-4.84 79.43 
- 10.79 80.22 

+8 
+5 
+3 
+ 1 
- 1  
-3 

-42 
-44 
-46 
-47 
-49 

+-- Apex 
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The massive home run 

+-- Impact 

The batted ball 's apex and its impact with the FIGURE 6.4.7. An "easy out" or 
a home run? 

Variable Step Size Methods 

The Runge-Kutta method for a large system requires an appreciable amount of com
putational labor, even when a computer is employed. Therefore, just as the step 
size h should not be so large that the resulting error in the solution is unaccept
able, h ought not to be so small that too many steps are needed, hence requiring 
an unacceptable amount of computation. Thus the practical numerical solution of 
differential equations involves a tradeoff between accuracy and efficiency. 

To facilitate this tradeoff, modern variable step size methods vary the step 
size h as the solution process proceeds . Large steps are taken in regions where 
the dependent variables are changing slowly ; smaller steps are taken when these 
variables are changing rapidly, in order to prevent large errors. 

An adaptable or variable step size Runge-Kutta method employs both a pre
assigned minimum error tolerance MinTol and a maximum error tolerance MaxTol 
to attempt to ensure that the error made in the typical step from Xn to Xn+! is nei
ther too large (and hence inaccurate) nor too small (and hence inefficient) . A fairly 
simple scheme for doing this may be outlined as follows: 

• Having reached Xn with a Runge-Kutta step of length tn - tn- ! = h, let x( l ) 
denote the result of a further Runge-Kutta step of length h and let x(2) denote 
the result of two successive Runge-Kutta steps each of length h/2. 

• On the grounds that X(2) should be a more accurate approximation to x(tn + h) 
than is X( l ) , take 

Err = I x( ! ) - X(2) I 
as an estimate of the error in x( 1 ) • 

• If MinTol � Err � MaxTol, then let Xn+ ! = x( l ) , tn+ ! = tn + h, and proceed 
to the next step. 

• If Err < MinTol, then the error is too small ! Hence let xn+! = x( l ) , tn+! = 
tn + h ,  but double the step size to 2h before making the next step. 

• If Err > MaxTol, then the error is too large. Hence reject x( l ) and start afresh 
at Xn with the halved step size h /2. 
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/ / 

/ / / 

E(- I-\, O) 

FIGURE 6.4.8. The 
Earth-Moon center-of-mass 
coordinate system. 

The detailed implementation of such a scheme can be complicated. For a 
much more complete but readable discussion of adaptive Runge-Kutta methods, 
see Section 1 5 .2 of William H. Press et aI . ,  Numerical Recipes: The Art of Scientific 
Computing (New York: Cambridge University Press, 1 986) . 

Several widely available scientific computing packages (such as Maple, Math
ematica, and MATLAB) include sophisticated variable step size programs that will 
accommodate an essentially arbitrary number of simultaneous differential equa
tions. Such a general-purpose program might be used, for example, to model nu
merically the major components of the solar system: the sun and the nine (known) 
major planets. If mi denotes the mass and ri = (Xi , Yi , zd denotes the position 
vector of the i th one of these 10 bodies, then-by Newton's laws-the equation of 
motion of mi is 

(26) 

where rij = I rj - rd denotes the distance between mi and mj . For each i = 1 ,  
2, . . .  , 1 0, the summation in Eq. (26) i s  over all values of j =1= i from 1 to 10. 
The 1 0  vector equations in (26) constitute a system of 30 second-order scalar equa
tions, and the equivalent first-order system consists of 60 differential equations in 
the coordinates and velocity components of the 10 major bodies in the solar system. 
Mathematical models that involve this many (or more) differential equations-and 
that require sophisticated software and hardware for their numerical analysis-are 
quite common in science, engineering, and applied technology. 

Earth-Moon Satellite Orbits 

For an example of a program whose efficient solution requires adaptive step size 
methods, we consider an Apollo satellite in orbit about the Earth E and Moon M. 
Figure 6.4.8 shows an xlx2-coordinate system whose origin lies at the center of 
mass of the Earth and the Moon and which rotates at the rate of one revolution per 
"moon month" of approximately i = 27 .32 days, so the Earth and Moon remain 
fixed in their positions on the XI -axis .  If we take as unit distance the distance (about 
3 84, 000 kilometers, assumed constant) between the Earth and Moon centers, then 
their coordinates are E (-IL , 0) and M( 1  - IL , 0) , where IL = mM/(mE + mM) in 
terms of the Earth mass mE and Moon mass m M . If we take the total mass m E + m M 
as the unit of mass and i /(2rr) � 4.35 days as the unit of time, then the gravitational 
constant is G = 1 in Eq. (26), and the equations of motion of the satellite position 
S(X I , X2) are 

X" = X + 2x' _ ( 1  - IL) (XI + IL) _ IL(XI - 1 + IL) 
I I 2 (rE )3 (rM )3 ' 

X" = X _ 2x' _ ( 1  - IL)X2 _ ILX2 
2 2 I (rE )3 (rM ) 3 ' 

(27) 

where rE and rM denote the satellite 's distance to the Earth and Moon (indicated 
in Fig. 6.4.8) . The initial two terms on the right-hand side of each equation result 
from the rotation of the coordinate system. In the system of units described here, the 
lunar mass is approximately mM = 0.01 227747 1 .  The second-order system in (27) 
can be converted to an equivalent first-order system (of four differential equations) 
by substituting 

X; = X3 , x2 = X4 , so that x;' = x� , x� = x� .  



Moon 

FIGURE 6.4.9. Apollo Moon
Earth bus orbit with insertion 
velocity Vo = 7476 kmlh. 

Moon 

FIGURE 6.4.10. Apollo Moon
Earth bus orbit with insertion 
velocity Vo = 7365 kmlh. 
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Suppose that the satellite initially is in a clockwise circular orbit of ra
dius about 2400 kilometers about the Moon. At its farthest point from the Earth 
(Xl = 0.994) it is "launched" into Earth-Moon orbit with initial velocity Vo . The 
corresponding initial conditions are 

An adaptive step size method (ode4S)  in the MATLAB software system was used 
to solve numerically the system in (27). The orbits in Figs. 6.4.9 and 6.4. 10 were 
obtained with 

Vo = 2.03 1 732629557 and Vo = 2.00 1585 1 06379, 

respectively. [In the system of units used here, the unit of velocity is approxi
mately 3680 km/h.] In each case a closed but multilooped periodic trajectory about 
the Earth and the Moon-a so-called bus orbit-is obtained, but a relatively smail 
change in the initial velocity changes the number of loops ! For more information, 
see NASA Contractor Report CR-6 1 1 39, "Study of the Methods for the Numerical 
Solution of Ordinary Differential Equations," prepared by O. B .  Francis, Jr. et aI . for 
the NASA-George C. Marshall Space Flight Center, June 7, 1 966. 

So-called Moon-Earth "bus orbits" are periodic-that is, are closed trajecto
ries traversed repeatedly by the satellite-only in a rotating X lx2-coordinate system 
as discussed above. The satellite of Fig. 6.4.9 traverses its closed orbit and returns 
to rendezvous with the Moon about 48.4 days after its insertion into orbit. Fig
ures 6.4. 1 1 and 6.4. 1 2  illustrate the motion of the same satellite-but in an ordinary 
nonrotating xy-coordinate system centered at the Earth, in which the Moon encir
cles the Earth counterclockwise in a near-circular orbit, completing one revolution 
in about 27 .3 days. The Moon starts at point S, and after 48.4 days it has completed 
a bit over 1 .75 revolutions about the Earth and reaches the point R at which its ren
dezvous with the satellite occurs . Figure 6.4. 1 1  shows the positions of Moon and 
satellite a day and a half after the satellite 's insertion into its orbit, each traveling in 
a generally counterclockwise direction around the Earth. Figure 6.4. 12  shows their 
positions a day and a half before their rendezvous at point R, the satellite mean
while having encircled the Earth about 2.5 times in an orbit that (in the indicated 
xy-coordinate system) appears to resemble a slowly varying ellipse. 
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FIGURE 6.4.11 .  The moon and 
satellite in a nonrotating coordinate 
system, 1 .5 days after orbital insertion 
of the satellite at starting point S. 
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FIGURE 6.4.12. The moon and 
satellite in a nonrotating coordinate 
system, 1 .5 days before their 
rendezvous at point R. 
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IIIl Problems 

A hand-held calculator will suffice for Problems 1 through 8. 

In each problem an initial value problem and its exact solu
tion are given. Approximate the values of x (0.2) and y (0.2) 
in three ways: (a) by the Euler method with two steps of size 
h = 0. 1 ; (b) by the improved Euler method with a single step 
of size h = 0.2; and (c) by the Runge-Kutta method with a 
single step of size h = 0.2. Compare the approximate values 
with the actual values x (0.2) and y(0.2). 

1. x' = x + 2y, x (O) = 0, 
y' = 2x + y, y eO) = 2; 
x (t) = e3t - e-t , y et) = e3t + e-t 

2. x' = 2x + 3y, x (O) = 1 ,  
y' = 2x + y ,  y eO) = - 1 ; 
x (t) = e-t , y (t ) = -e-t 

3. x' = 3x + 4y, x (0) = 1 ,  
y' = 3x + 2y , y eO) = 1 ; 
x (t) = t (8e6t - e-t ) , y et) = � (6e6t + e-t ) 

4. x' = 9x + 5y, x (O) = 1 ,  
y' = -6x - 2y, y eO) = 0; 
x (t) = _5e3t + 6e4t , y et) = 6e3t - 6e4t 

5. x' = 2x - 5y, x (O) = 2, 
y' = 4x - 2y, y eO) = 3 ; 
x (t) = 2 cos 4t - ¥ sin 4t , y et) = 3 cos 4t + � sin 4t 

6. x' = x - 2y, x (O) = 0, 
y' = 2x + y, y eO) = 4; 
x (t) = -4et sin 2t, y et) = 4et cos 2t 

7. x' = 3x - y, x (O) = 2, 
y' = x + y, y eO) = 1 ; 
x (t) = (t + 2)e2t , y et) = (t + l )e2t 

8. x' = 5x - 9y, x (0) = 0, 
y' = 2x - y, y eO) = - 1 ; 
x (t) = 3e2t sin 3t , y et) = e2t (sin 3t - cos 3t) 

A computer will be requiredfor the remaining problems in this 
section. In Problems 9 through 12, an initial value problem 
and its exact solution are given. In each of these four prob
lems, use the Runge-Kutta method with step sizes h = 0. 1 and 
h = 0.05 to approximate to five decimal places the values x ( l )  
and y ( l ) . Compare the approximations with the actual values. 

9. x' = 2x - y, x (O) = 1 ,  
y' = x + 2y, y eO) = 0; 
x (t) = e2t cos t ,  yet) = e2t sin t 

10. x' = x + 2y, x (O) = 0, 
y' = x + e-t , y (O) = 0; 
x Ct) = � (2e2t - 2e-t + 6te-t ) , 
y et) = � (e2t - e-t + 6te-t ) 

11. x' = -x - y - ( 1  + t3 )e-t , x (O) = 0, 
y' = -x - y - (t - 3t2)e-t , y eO) = 1 ; 
x (t) = e-t (sin t - t) , y (t) = e-t (cos t + t3 ) 

12. x" + x = sin t, x (0) = 0; 
x (t) = � (sin t - t cos t) 

13. Suppose that a crossbow bolt is shot straight upward with 
initial velocity 288 ftl s. If its deceleration due to air re
sistance is (0.04) v , then its height x (t ) satisfies the initial 

value problem 

x" = -32 - (0.04)x' ; x (O) = 0, x' (O) = 288. 

Find the maximum height that the bolt attains and the time 
required for it to reach this height. 

14. Repeat Problem 1 3 , but assume instead that the decelera
tion of the bolt due to air resistance is (0.0002)v2 . 

15. Suppose that a projectile is fired straight upward with ini
tial velocity Vo from the surface of the earth. If air resis
tance is not a factor, then its height x (t) at time t satisfies 
the initial value problem 

gR2 . 
(x + R)2 ' x (O) = 0, x' (O) = vo . 

Use the values g = 32. 1 5 ft/s2 � 0.006089 mi/s2 for the 
gravitational acceleration of the earth at its surface and 
R = 3960 mi as the radius of the earth. If Vo = 1 mils, 
find the maximum height attained by the projectile and its 
time of ascent to this height. 

Problems 16 through 18 deal with the batted baseball of Ex
ample 4, having initial velocity 160ft Is and air resistance co
efficient c = 0.0025. 
16. Find the range-the horizontal distance the ball travels be

fore it hits the ground-and its total time of flight with 
initial inclination angles 40° , 45° ,  and 50° . 

17. Find (to the nearest degree) the initial inclination that 
maximizes the range. If there were no air resistance it 
would be exactly 45° , but your answer should be less than 
4SO . 

18. Find (to the nearest half degree) the initial inclination an
gle greater than 45° for which the range is 300 ft. 

19. Find the initial velocity of a baseball hit by Babe Ruth 
(with c = 0.0025 and initial inclination 40°) if it hit the 
bleachers at a point 50 ft high and 500 horizontal feet from 
home plate. 

20. Consider the crossbow bolt of Problem 14, fired with the 
same initial velocity of 288 ftl s and with the air resistance 
deceleration (0.0002) v2 directed opposite its direction of 
motion. Suppose that this bolt is fired from ground level at 
an initial angle of 45° .  Find how high vertically and how 
far horizontally it goes, and how long it remains in the air. 

21. Suppose that an artillery projectile is fired from ground 
level with initial velocity 3000 ft/s and initial inclination 
angle 40° . Assume that its air resistance deceleration is 
(0.000 1 ) v2 . (a) What is the range of the projectile and 
what is its total time of flight? What is its speed at impact 
with the ground? (b) What is the maximum altitude of 
the projectile, and when is that altitude attained? (c) You 
will find that the projectile is still losing speed at the apex 
of its trajectory. What is the minimum speed that it attains 
during its descent? 
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Comet� and Spacecraft 

Figure 6.4. 1 3  lists TI-85 and BASIC versions of the two-dimensional Runge-Kutta 
program RK2DIM. You should note that it closely parallels the one-dimensional 
Runge-Kutta program listed in Fig. 6 .3 . 1 1 , with a single line there replaced (where 
appropriate) with two lines here to calculate a pair of x- and y-values or slopes. 
Note also that the notation used is essentially that of Eqs. ( 1 3) and ( 14) in this 
section. The first several lines define the functions and initial data needed for Ex
ample 1 .  

Figure 6.4. 14  exhibits an n-dimensional MATLAB implementation of the 
Runge-Kutta method. The MATLAB function f defines the vector of right-hand 
sides of the differential equations in the system x' = f(t , x) to be solved. The rkn 

function then takes as input the initial t-value t, the column vector x of initial x
values, the final t -value tl, and the desired number n of subintervals. As output 
it produces the resulting column vector T of t -values and the matrix x whose rows 
give the corresponding x-values. For instance, with f as indicated in the figure, the 
MATLAB command 

[ T , X ] = rkn ( O ,  [ 0 ; 1 ] , 5 ,  5 0 )  

then generates the data shown i n  the table o f  Fig. 6.4. 1 (which lists only every fifth 
value of each variable) . 

You can use Examples 1 through 3 in this section to test your own imple
mentation of the Runge-Kutta method. Then investigate the comet and space
craft problems described next. Additional application material at the Web site 
www . prenhall . com/edwards describes additional numerical ODE investiga
tions ranging from batted baseballs to the Apollo orbits shown in Figs. 6.4.9 and 
6.4. 10 .  

Your Spacecraft Landing 

Your spacecraft is traveling at constant velocity V ,  approaching a distant earthlike 
planet with mass M and radius R .  When activated, your deceleration system pro
vides a constant thrust T until impact with the surface of the planet. During the 
period of deceleration, your distance x (t) from the center of the planet satisfies the 
differential equation 

( 1 )  

where G � 6.6726 X 10- 1 1  N. (m/kgf as  in  Example 3 .  Your question i s  this: 
At what altitude above the surface should your deceleration system be activated in 
order to achieve a soft touchdown? For a reasonable problem, you can take 

M = 5 .97 X 1024 (kg) , 
R = 6 .38 X 106 (m) , 
V = p X 104 (km/h) , 
T = g + q (m/s2) 

where g = GM/ R2 is the surface gravitational acceleration of the planet. Choose p 
to be the smallest nonzero digit and q the next-to-smallest nonzero digit in your ID 
number. Find the "ignition altitude" accurate to the nearest meter and the resulting 
"descent time" accurate to the nearest tenth of a second. 
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PROGRAM : RK2DIM 

: F=Y 

: G=-X 

: 5 0-+N 

: O-+ T  

: O-+ X  

: 1-+ Y  

: 5 -+ T l  

: ( T I - T )  /N-+ B 

: For ( I , I , N ) 

: T-+ TO 

: X-+ XO 

: Y-+YO 

: F-+ F l  

: G-+Gl 

: TO+B/2-+T 

: XO+B*F l /2-+X 

: YO+B*Gl / 2 -+ Y  

: F-+ F2 

: G-+G2 

: XO+B*F2 /2-+X 

: YO+B*G2 / 2 -+ Y  

: F-+F3 

: G-+ G3 

: TO+B-+ T 

: XO+B*F3-+X 

: YO+B*G3 -+  Y 

: F-+F4 

: G-+G4 

: ( F l+2 *F2+2 *F3 

+F4 ) / 6-+ FA 

: ( Gl+2 *G2+2 *G3 

+G4 ) /6-+GA 

: XO+B*FA-+ X 

: YO+B*GA-+ Y 

: Disp T , X , Y  

: End 

Program RK2DIM 

DEF FN F ( T , X , Y )  

DEF FN G ( T , X , Y )  

N = 50 

T 0 

x o 

Y = 1 

Tl = 5 

B = ( T I -T ) /N 

FOR 1=1 TO N 

TO T 

XO X 

YO = Y 

F l  FNF ( T , X , y )  

Gl FNG ( T , X , y )  

T TO + B/2  

X XO + B * F l / 2  

Y = YO + B*Gl /2 

F2 = FNF ( T , X , y )  

G2 = FNG ( T , X , Y )  

X XO + B*F2 /2 

Y = YO + B*G2 / 2  

F3 = FNF ( T , X , Y )  

G3 = FNG ( T , X , Y )  

T = TO + B 

X = XO + B*F3 

Y YO + B*G3 

F4 FNF ( T , X , y )  

G4 FNG ( T , X , Y )  

FA ( F l+2 *F2+2 *F3 

+F4 ) / 6 

GA ( Gl+2 *G2+2 *G3 

+G4 ) / 6 

X = YO + B*FA 

Y YO + B*GA 

PRINT T , X , Y  

NEXT I 

Y 

-x 

. . . Comment 

Program title 

De fine function f 

Define function g 

No . of steps 

Initial t 

Initial x 

Initial y 

Final t 

Step size  

Begin loop 

Save previous t 

Save previous x 

Save previous y 

First f-slope 

First g-slope 

Midpoint t 

Midpt x-predictor 

Midpt y-predictor 

Second f-slope 

Second g-slope 

Midpt x-predictor 

Midpt y-predictor 

Third f-slope 

Third g-slope 

New t 

Endpt x-predictor 

Endpt y-predictor 

Fourth f-slope 

Fourth g-slope 

Average f-slope 

Average g-slope 

x-corrector 

y-corrector 

Display results 

End loop 

FIGURE 6.4.13. TI-85 and BASIC two-dimensional Runge-Kutta programs. 
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function xp = f ( t , x ) 

xp = X ; 

xp ( l )  x ( 2 ) ; 

xp ( 2 )  = -x ( l ) ; 

function [ T , Y ]  = rkn ( t , x , t l , n ) 

h ( t l  - t ) /n ;  
T = 

X = 

for 

t ;  

x ' ; 

i = l : n  

kl  f ( t , x ) ;  

k2 = f ( t+h/2 , x+h* k l / 2 ) ;  
k3 = f ( t+h/2 , x+h*k2 /2 ) ; 
k4 f ( t+h , x+h*k3 ) ; 
k ( kl+2 *k2+2 *k3+k4 ) / 6 ; 

t = t + h ;  

X = X + h*k ; 
T = [ T ; t ] ; 
X = [ X i X ' ] ;  

end 

% step size 

% initial t 

% initial x-vector 

% begin loop 

% first k-vector 

% second k-vector 

% third k-vector 

% fourth k-vector 

% average k-vector 

% new t 

% new x 
% update t-column 

% update x-matrix 
% end loop 

FIGURE 6.4.14. MATLAB implementation of the Runge-Kutta method. 

Kepler's Law of Planetary (or Satellite)  Motion 

Consider a satellite in ellipticaJ orbit around a planet of mass M, and suppose that 
physicaJ units are so chosen that GM = 1 (where G is the gravitational constant) . 
If the planet is located at the origin in the xy-plane, then the equations of motion of 
the satellite are 

x 
= y 

(2) 

Let T denote the period of revolution of the satellite. Kepler's third law says that 
the square of T is proportional to the cube of the major semiaxis a of its elliptical 
orbit. In particular, if G M = 1 ,  then 

(3) 

(For details, see Section 1 1 .6 of Edwards and Penney, Calculus: Early Transcen
dentals, 7th ed. (Upper Saddle River, NJ: Prentice HaJI, 2008) .) If the satellite's x
and y-components of velocity, X3 = x' = x; and X4 = y' = x� , are introduced, then 
the system in (2) translates into a system of four first-order differentiaJ equations 
having the form of those in Eq. (22) of this section. 

(a) Solve this 4 x 4 system numericaJly with the initiaJ conditions 

x (O) = I ,  y eO) = 0, x' (O) = 0, leO) = 1 

that correspond theoreticaJly to a circular orbit of radius a = I ,  so Eq. (3) gives 
T = 2rr . Is this what you get? 
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z 

-5 

FIGURE 6.4.15. yz-projection 
of the orbit of Halley's comet. 

(b) Now solve the system numerically with the initial conditions 

x (O) = 1 ,  y eO) = 0, x' (0) = 0, y' (0) = t.J6 
that correspond theoretically to an elliptical orbit with major semi axis a = 2, 
so Eq. (3) gives T = 4n.J2. Is this what you get? 

Halley's Comet 

Halley 's comet last reached perihelion (its point of closest approach to the sun at the 
origin) on February 9, 1 986. Its position and velocity components at that time were 

Po = (0 . 3255 14, -0.459460, 0. 1 66229) and 
Vo = (-9 .096 1 1 1 ,  -6 .9 1 6686, - 1 . 30572 1 )  

(respectively), with position i n  AU (astronomical units, i n  which the unit of distance 
is the major semiaxis of the earth 's orbit) and time in years . In this system, the three
dimensional equations of motion of the comet are 

d2x f.LX 
dt2 

- -;:J ' 
where 

f.L = 4n2 

d2y f.Ly 
- = - - , 
dt2 r3 

d2z 
dt2 

and r = J x2 + y2 + Z2 . 

f.LZ 
r3 (4) 

Solve the equations in (4) numerically to verify the appearance of the yz-projection 
of the orbit of Halley 's comet shown in Fig. 6.4. 1 5 .  Plot the xy- and xz-projections 
as well . 

Figure 6.4. 1 6  shows the graph of the distance r et) of Halley 's comet from 
the sun. Inspection of this graph indicates that Halley 's comet reaches a maximum 
distance (at aphelion) of about 35 AU in a bit less than 40 years and returns to 
perihelion after about three-quarters of a century. The closer look in Fig. 6.4. 17 
indicates that the period of revolution of Halley 's comet is about 76 years . Use your 
numerical solution to refine these observations. What is your best estimate of the 
calendar date of the comet's next perihelion passage? 

30 
20 
1 0  

r 

FIGURE 6.4.16. 200-year plot of the distance r (t) of Halley's comet from the sun. 
Is there a cusp near t = 75? 

Your Own Comet 

The night before your birthday in 2007 you set up your telescope on a nearby moun
taintop. It was a clear night, and you had a stroke of luck: At 12 :30 A . M .  you spotted 
a new comet. After repeating the observation on successive nights, you were able 
to calculate its solar system coordinates Po = (xo , Yo , zo) and its velocity vector 
Vo = (vxo , vyo , vzo) on that first night. Using this information, determine the fol
lowing: 



r 
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FIGURE 6.4.17. A closer look at Halley's perihelion 
passage after about 76 years . 

• the comet' s  perihelion (point nearest the sun) and aphelion (point farthest from 
the sun), 

• the comet' s  velocity at perihelion and at aphelion, 
• the comet's period of revolution around the sun, and 
• the comet's next two dates of perihelion passage. 

Using units of length in AU and time in earth years, the equations of motion 
of your comet are given in (4) .  For your personal comet, begin with random initial 
position and velocity vectors with the same order of magnitude as those of Halley 's 
comet. Repeat the random selection of initial position and velocity vectors, if nec
essary, until you get a plausible eccentric orbit that ranges well outside the earth's 
orbit (as most real comets do) . 



Exa mple 1 

FIGURE 7.1.1.  Typical solution 
curves for the equation of 
Newton's law of cooling, 
dx/dt = -k(x - A ) .  

480 

Nonlinear Systems 
and Phenolllena 

In previous chapters we have often used explicit solutions of differential equations to 
answer specific numerical questions .  But even when a given differential equation is 
difficult or impossible to solve explicitly, it often is possible to extract qualitative in
formation about general properties of its solutions .  For example, we may be able to 
establish that every solution x (t) grows without bound as t --+ +00, or approaches 
a finite limit, or is a periodic function of t . In this section we introduce-mainly by 
consideration of simple differential equations that can be solved explicitly-some 
of the more important qualitative questions that can sometimes be answered for 
equations that are difficult or impossible to solve. 

Let x (t )  denote the temperature of a body with initial temperature x (O) = Xo . At 
time t = 0 this body is immersed in a medium with constant temperature A. As
suming Newton's law of cooling, 

dx 
dt 

= -k (x - A )  (k > 0 constant), 

we readily solve (by separation of variables) for the explicit solution 

x (t )  = A + (xo - A )e-kl • 

It follows immediately that 
lim x (t )  = A ,  

1 -+ 00  

( 1 )  

(2) 

so the temperature of the body approaches that of the surrounding medium (as is 
evident to one's intuition). Note that the constant function x (t) == A is a solution of 
Eq. ( 1 ) ;  it corresponds to the temperature of the body when it is in thermal equilib
rium with the surrounding medium. In Fig. 7 . 1 . 1  the limit in (2) means that every 
other solution curve approaches the equilibrium solution curve x = A asymptoti
cally as t --+ +00. _ 



x' > O  x' < O  
. I .  

x < A  x = A  x > A  

FIGURE 7.1.2. Phase diagram 
for the equation 
dx/dt = f(x) = k(A - x) .  
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Remark: The behavior of solutions of Eq. ( I )  is summarized briefly by the 
phase diagram in Fig. 7 . 1 .2-which indicates the direction (or "phase") of change 
in x as a function of x itself. The right-hand side f(x) = -k(x - A) = k(A - x) is 
positive if x < A, negative if x > A. This observation corresponds to the fact that 
solutions starting above the line x = A and those starting below it both approach 
the limiting solution x (t) == A as t increases (as indicated by the arrows). • 

In Section 1 .7 we introduced the general population equation 

dx 
dt 

= (fJ - 8)x ,  (3) 

where fJ and 8 are the birth and death rates, respectively, in births or deaths per 
individual per unit of time. The question of whether a population x (t) is bounded or 
unbounded as t -+ +00 is of evident interest. In many situations-like the logistic 
and explosion/extinction populations of Section 1 .7-the birth and death rates are 
known functions of x . Then Eq. (3) takes the form 

dx 
dt 

= f(x ) .  (4) 

This is an autonomous first-order differential equation-one in which the indepen
dent variable t does not appear explicitly (the terminology here stemming from the 
Greek word autonomos for "independent," e.g. , of the time t) .  As in Example 1 ,  the 
solutions of the equation f(x) = 0 play an important role and are called critical 
points of the autonomous differential equation dx/dt = f(x) .  

I f  x = c is a critical point of  Eq. (4) , then the differential equation has the 
constant solution x (t) == c. A constant solution of a differential equation is some
times called an equilibrium solution (one may think of a population that remains 
constant because it is in "equilibrium" with its environment) . Thus the critical point 
x = c, a number, corresponds to the equilibrium solution x (t) == c, a constant
valued function. 

Example 2 illustrates the fact that the qualitative behavior (as t increases) of 
the solutions of an autonomous first-order equation can be described in terms of its 
critical points . 

Consider the logistic differential equation 

dx - = kx (M - x) 
dt 

(5) 

(with k > 0 and M > 0). It has two critical points-the solutions x = 0 and x = M 
of the equation 

f (x) = kx (M - x) = o. 
In Section 1 .7 we discussed the logistic-equation solution 

Mxo 
x (t) = ---�-� 

Xo + (M - xo)e-kMt 
(6) 

satisfying the initial condition x (O) = Xo . Note that the initial values Xo = 0 and 
Xo = M yield the equilibrium solutions x (t) == 0 and x (t) == M of Eg. (5). 
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FIGURE 7.1.3. Typical solution 
curves for the logistic equation 
dx/dt = kx (M - x) . 

7 r-1r--r--T--�-'--' 
6 
5 

>< 2 
I 
o 

-I 
-2 

FIGURE 7.1.4. Solution curves, 
funnel, and spout for 
dx/dt = 4x - x2 • 

x' < O  x' > O  
p !  1 

x = O  x = M  
Unstable Stable 

x' < O  

FIGURE 7.1.5. Phase diagram 
for the logistic equation 
dx/dt = f(x) = kx (M - x) . 

We observed in Section 1 .7 that i f  Xo > 0 ,  then x (t )  --+ M as t --+ +00. But 
if Xo < 0, then the denominator in Eq. (6) initially is positive, but vanishes when 

1 M - xo 
t = t1 = - In > O. 

kM -Xo 

Because the numerator in (6) is negative in this case, it follows that 

lim x (t )  = -00 i f  Xo  < O .  
t ...... t1 

It follows that the solution curves of the logistic equation in (5) look as illustrated in 
Fig. 7 . 1 .3 .  Here we see graphically that every solution either approaches the equi
librium solution x (t) == M as t increases, or (in a visually obvious sense) diverges 
away from the other equilibrium solution x (t )  == O. • 

Stability of Critical Points 

Figure 7 . 1 .3 illustrates the concept of stability. A critical point x = c of an au
tonomous first-order equation is said to be stable provided that, if the initial value 
Xo is sufficiently close to c, then x (t )  remains close to c for all t > O. More precisely, 
the critical point c is stable if, for each E > 0, there exists 8 > 0 such that 

Ixo - c l < 8 implies that Ix (t )  - c l < E 

for all t > O. The critical point x = c is unstable if it is not stable. 

(7) 

Figure 7 . 1 .4 shows a "wider view" of the solution curves of a logistic equation 
with k = 1 and M = 4. Note that the strip 3 . 5  < x < 4.5 enclosing the stable 
equilibrium curve x = 4 acts like afunnel-solution curves (moving from left to 
right) enter this strip and thereafter remain within it. By contrast, the strip -0.5 < 
x < 0.5 enclosing the unstable solution curve x = 0 acts like a spout-solution 
curves leave this strip and thereafter remain outside it. Thus the critical point x = M 
is stable, whereas the critical point x = 0 is unstable. 

Remark 1 :  We can summarize the behavior of solutions of the logistic 
equation in (5)-in terms of their initial values-by means of the phase diagram 
shown in Fig. 7 . 1 .5 .  It indicates that x (t )  --+ M as t --+ +00 if either Xo > M 
or 0 < Xo < M, whereas x (t )  --+ -00 as t increases if Xo < O. The fact that M 
is a stable critical point would be important, for instance, if we wished to conduct 
an experiment with a population of M bacteria. It is impossible to count precisely 
M bacteria for M large, but any initially positive population will approach M as t 
increases. 

Remark 2: Related to the stability of the limiting solution M = a/b of 
the logistic equation 

dx 2 
-- = ax - bx 
dt 

(8) 

is the "predictability" of M for an actual population. The coefficients a and b are 
unlikely to be known precisely for an actual popUlation. But if they are replaced with 
close approximations a* and b*-derived perhaps from empirical measurements
then the approximate limiting population M* = a*/b* will be close to the actual 
limiting population M = a/b. We may therefore say that the value M of the limiting 
population predicted by a logistic equation not only is a stable critical point of the 
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FIGURE 7.1 .6. Typical solution 
curves for the explosion/extinction 
equation dx/dt = kx (x - M) . 

x' > O  x' < O  
• ! • 
x = O  x = M  
Stable Unstable 

x' > O  

FIGURE 7.1.7. Phase diagram 
for the explosion/extinction 
equation 
dx/dt = f(x ) = kx (x - M) . 

Exa mple 4 

7. 1 Equi l ibrium Solutions and Stabil ity 483 

differential equation; this value also is "stable" with respect to small perturbations 
of the constant coefficients in the equation. (Note that one of these two statements 
involves changes in the initial value Xo ; the other involves changes in the coefficients 
a and b.) • 

Consider now the explosion/extinction equation 

dx 
- = kx (x - M) dt 

(9) 

of Eq. ( 1 0) in Section 1 .7 .  Like the logistic equation, it has the two critical points 
x = 0 and x = M corresponding to the equilibrium solutions x (t) == 0 and x (t) == 
M. According to Problem 33 in Section 1 .7 , its solution with x (0) = Xo is given by 

Mxo 
x (t) = -----:-:-:

Xo + (M - xo)ekMt 
(0) 

(with only a single difference in sign from the logistic solution in (6)). If Xo < M, 
then (because the coefficient of the exponential in the denominator is positive) it 
follows immediately from Eq. ( 1 0) that x (t) ---+ 0 as t ---+ +00. But if Xo > M, then 
the denominator in ( 1 0) initially is positive, but vanishes when 

1 Xo t = t1 = - In > O. 
kM xo - M  

Because the numerator in ( 1 0) is positive in this case, it follows that 

lim x (t) = +00 if Xo > M. 
t--> t1 

Therefore, the solution curves of the explosion/extinction equation in (9) look as 
illustrated in Fig. 7 . 1 .6 . A narrow band along the equilibrium curve x = 0 (as in 
Fig. 7 . 1 .4) would serve as a funnel, while a band along the solution curve x = M 
would serve as a spout for solutions . The behavior of the solutions of Eq. (9) is 
summarized by the phase diagram in Fig. 7 . 1 .7, where we see that the critical point 
x = 0 is stable and the critical point x = M is unstable. • 

Harvesting a Logistic Population 

The autonomous differential equation 

dx 2 - = ax - bx - h  
dt 

( 1 1 )  

(with a ,  b ,  and h all positive) may be considered to describe a logistic population 
with harvesting. For instance, we might think of the population of fish in a lake 
from which h fish per year are removed by fishing. 

Let us rewrite Eq. ( 1 1 )  in the form 

dx 
- = kx (M - x) - h ,  
dt 

( 1 2) 
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x = N  

x = O H-��--�----�� 

FIGURE 7.1.8. Typical solution 
curves for the logistic harvesting 
equation 
dx/dt = k eN - x ) (x - H) . 

x' < O  x' > O  
. I . 

x = H  x = N  
Unstable Stable 

x' < O  

FIGURE 7.1.9. Phase diagram 
for the logistic harvesting equation 
dx/dt = I(x) = keN -x ) (x - H) . 

which exhibits the limiting population M in the case h = 0 of no harvesting. As
suming hereafter that h > 0, we can solve the quadratic equation _kx2+kMx -h = 
o for the two critical points 

assuming that the harvesting rate h is sufficiently small that 4h < kM2 , so both 
roots H and N are real with 0 < H < N < M. Then we can rewrite Eq. ( 1 2) in the 
form 

dx 
-- = k eN - x) (x - H) .  
dt 

( 1 4) 

For instance, the number of critical points of the equation may change abruptly as 
the value of a parameter is changed. In Problem 24 we ask you to solve this equation 
for the solution 

N(xo - H) - H(xo - N)e-k(N-H)t 
x (t) = ---------;-:-:-:----::::-

(xo - H) - (xo - N)e-k(N-H)t 

in terms of the initial value x (0) = Xo . 

( 1 5) 

Note that the exponent -keN - H)t is negative for t > O. If Xo > N, then 
each of the coefficients within parentheses in Eq. ( 1 5) is positive; it follows that 

If Xo > N then x (t) ---+ N as t ---+ +00 . 

In Problem 25 we ask you to deduce also from Eq. ( 1 5) that 

( 1 6) 

If H < Xo < N then x (t) ---+ N as t ---+ +00 , whereas ( 1 7) 
if Xo < H then x (t) ---+ -00 as t ---+ t1 ( 1 8) 

for a positive value t1 that depends on Xo . It follows that the solution curves of 
Eq. ( 1 2)-still assuming that 4h < kM2-100k as illustrated in Fig. 7 . 1 . 8 .  (Can 
you visualize a funnel along the line x = N and a spout along the line x = H?) 
Thus the constant solution x (t) == N is an equilibrium limiting solution, whereas 
x (t) == H is a threshold solution that separates different behaviors-the population 
approaches N if Xo > H, while it becomes extinct because of harvesting if Xo < H. 
Finally, the stable critical point x = N and the unstable critical point x = H are 
illustrated in the phase diagram in Fig. 7 . 1 .9 . • 
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k = 1 and M = 4 for a logistic population x (t) of fish in a lake, measured in 
hundreds after t years . Without any fishing at all , the lake would eventually contain 
nearly 400 fish, whatever the initial population. Now suppose that h = 3, so that 
300 fish are "harvested" annually (at a constant rate throughout the year) . Equation 
( 1 2) is then dx/dt = x (4 - x) - 3, and the quadratic equation 

_x2 + 4x - 3 = (3 - x) (x - 1 )  = 0 

has solutions H = 1 and N = 3 .  Thus the threshold population is 1 00 fish and the 
(new) limiting population is 300 fish. In short, if the lake is stocked initially with 
more than 100 fish, then as t increases, the fish population will approach a limiting 
value of 300 fish. But if the lake is stocked initially with fewer than 1 00 fish, then 
the lake will be "fished out" and the fish will disappear entirely within a finite period 
� tim� • 
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FIGURE 7.1. 10. Solution curves 
of the equation x' = x (4 - x) - h 
with critical harvesting h = 4. 

FIGURE 7.1 .11 .  Solution curves 
of the equation x' = x (4 - x) - h 
with excessive harvesting h = 5 .  
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Bifurcation and Dependence on Parameters 

A biological or physical system that is modeled by a differential equation may de
pend crucially on the numerical values of certain coefficients or parameters that 
appear in the equation. For instance, the number of critical points of the equation 
may change abruptly as the value of a parameter is changed. 

The differential equation 

dx - = x (4 - x ) - h  
dt 

( 19) 

(with x in hundreds) models the harvesting of a logistic population with k = 1 
and limiting population M = 4 (hundred) . In Example 5 we considered the case 
of harvesting level h = 3 ,  and found that the new limiting population is N = 3 
hundred and the threshold population is H = 1 hundred. Typical solution curves, 
including the equilibrium solutions x (t ) == 3 and x (t )  == 1 ,  then look like those 
pictured in Fig. 7. 1 . 8 . 

Now let's investigate the dependence of this picture upon the harvesting level 
h .  According to Eq. ( 1 3) with k = 1 and M = 4, the limiting and threshold 
populations N and H are given by 

H, N = � ( 4 ± J 16 - 4h) = 2 ± J 4 - h .  (20) 

If h < 4-we can consider negative values of h to describe stocking rather than 
harvesting the fish-then there are distinct equilibrium solutions x (t ) == N and 
x (t )  == H with N > H as in Fig. 7. 1 . 8 . 

But if h = 4, then Eq. (20) gives N = H = 2, so the differential equation 
has only the single equilibrium solution x (t )  == 2. In this case the solution curves 
of the equation look like those illustrated in Fig. 7. 1 . 1 O. If the initial number Xo (in 
hundreds) of fish exceeds 2, then the population approaches a limiting population 
of 2 (hundred fish). However, any initial population Xo < 2 (hundred) results in ex
tinction with the fish dying out as a consequence of the harvesting of 4 hundred fish 
annually. The critical point x = 2 might therefore be described as "semistable"-it 
looks stable on the side x > 2 where solution curves approach the equilibrium so
lution x (t) == 2 as t increases, but unstable on the side x < 2 where solution curves 
instead diverge away from the equilibrium solution. 

If, finally, h > 4, then the quadratic equation corresponding to (20) has no 
real solutions and the differential equation in ( 1 9) has no equilibrium solutions. The 
solution curves then look like those illustrated in Fig. 7. 1 . 1 1 , and (whatever the 
initial number of fish) the population dies out as a result of the excessive harvesting . 

• 
If we imagine turning a dial to gradually increase the value of the parameter h 

in Eq. ( 1 9) , then the picture of the solution curves changes from one like Fig. 7. 1 .8 
with h < 4, to Fig. 7. 1 . 1 0 with h = 4, to one like Fig. 7. 1 . 1 1  with h > 4. Thus the 
differential equation has 

• two critical points if h < 4 ; 
• one critical point if h = 4 ; 
• no critical point if h > 4. 
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The value h = 4-for which the qualitative nature of the solutions changes as h 
increases-is called a bifurcation point for the differential equation containing the 

c parameter h . A common way to visualize the corresponding "bifurcation" in the 
solutions is to plot the bifurcation diagram consisting of all points (h , c) , where c 
is a critical point of the equation x' = x (4 - x)  + h . For instance, if we rewrite 
Eq. (20) as 

--_---:=-+-'<=---------'-__ h C = 2 ± J 4 - h ,  
(c - 2)2 = 4 - h ,  

F1GURE 7.1. 12. The parabola 
(c - 2)2 = 4 - h is the bifurcation 
diagram for the differential 
equation x' = x (4 - x) - h . 

where either c = N or  c = H, then we get the equation of the parabola that is shown 
in Fig. 7 . 1 . 1 2 . This parabola is then the bifurcation diagram for our differential 
equation that models a logistic fish population with harvesting at the level specified 
by the parameter h . 

_ Problems 

In Problems I through 12 first solve the equation f (x) = 0 
to find the critical points of the given autonomous differential 
equation dx/dt = f(x) . Then analyze the sign of f(x) to de
termine whether each critical point is stable or unstable, and 
construct the corresponding phase diagram for the differen
tial equation. Next, solve the differential equation explicitly 
for x (t ) in terms of t. Finally, use either the exact solution 
or a computer-generated slope field to sketch typical solution 
curves for the given differential equation, and verify visually 
the stability of each critical point. 

dx 
1. - = x - 4  dt 

dx 2 3. - = X  - 4x dt 
dx 

5. - = x2 - 4  dt 
dx 

7. - = (x - 2)2 dt 
dx 

9. - = x2 - 5x + 4 dt 
dx 

11. - = (x - V dt 

dx 
2. - = 3 - x dt 

dx 
4. - = 3x _ x2 dt 

dx 
6. - = 9 - x2 dt 

dx 2 8. dt = - (3 - x) 
dx 2 10. - = 7x - x - 10 dt 
dx 

12. - = (2 _ x)3 dt 
In Problems 13 through 18, use a computer system or graphing 
calculator to plot a slope field and/or enough solution curves 
to indicate the stability or instability of each critical point of 
the given differential equation. (Some of these critical points 
may be semistable in the sense mentioned in Example 6. ) 

dx dx 
13. - = (x + 2) (x - 2)2 14. - = x (x2 - 4) dt dt 

dx dx 
15. - = (x2 - 4)2 16. - = (x2 - 4)3 dt dt 

dx dx 
17. - = X2 (X2 - 4) 18. - = X3 (x2 - 4) dt dt 
19. The differential equation dx/dt = tox ( lO-x) - h models 

a logistic population with harvesting at rate h. Determine 

(as in Example 6) the dependence of the number of critical 
points on the parameter h, and then construct a bifurcation 
diagram like Fig. 7. 1 . 1 2 . 

20. The differential equation dx/dt = lbox (x - 5) + s models 
a population with stocking at rate s. Determine the depen
dence of the number of critical points c on the parameter s , 
and then construct the corresponding bifurcation diagram 
in the sc-plane. 

21. Consider the differential equation dx/d t = kx - x3 • 
(a) If k :::: 0, show that the only critical value c = 0 of 
x is stable. (b) If k > 0, show that the critical point c = 0 
is now unstable, but that the critical points c = ±

../k 
are 

stable. Thus the qualitative nature of the solutions changes 
at k = 0 as the parameter k increases, and so k = 0 is a 
bifurcation point for the differential equation with param
eter k. The plot of all points of the form (k , c) where c is a 
critical point of the equation x' = kx -x3 is the "pitchfork 
diagram" shown in Fig. 7. 1 . 1 3 .  

FIGURE 7.1.13. Bifurcation diagram for 
dx/dt = kx - x3 • 

22. Consider the differential equation dx/dt = x + kx3 con
taining the parameter k. Analyze (as in Problem 2 1 ) the 
dependence of the number and nature of the critical points 
on the value of k, and construct the corresponding bifur
cation diagram. 



23. Suppose that the logistic equation dx/dt = kx (M - x) 
models a population x (t ) of  fish in a lake after t months 
during which no fishing occurs. Now suppose that, be
cause of fishing, fish are removed from the lake at the rate 
of hx fish per month (with h a positive constant) . Thus 
fish are "harvested" at a rate proportional to the existing 
fish population, rather than at the constant rate of Exam
ple 4. (a) If 0 < h < kM, show that the popUlation is 
still logistic. What is the new limiting population? (b) If 
h � kM, show that x (t ) � 0 are t � +00, so the lake is 
eventually fished out. 

24. Separate variables in the logistic harvesting equation 
dx/dt = keN - x ) (x - H) and then use partial fractions 
to derive the solution given in Eq. ( 1 5) . 

25. Use the alternative forms 

N(xo - H) + H(N - xo)e-k(N-H)t x (t ) = (xo - H) + (N - XO)e-k(N-H)t 

H (N - xo)e-k(N-H)t - N(H - xo) = 
(N - XO)e-k(N-H)t - (H - xo) 

of the solution in ( 1 5) to establish the conclusions stated 
in ( 1 7) and ( 1 8) . 

Example 4 dealt with the case 4h > kM2 in the equation 
dx/dt = kx (M - x) - h that describes constant-rate har
vesting of a logistic population. Problems 26 and 2 7  deal with 
the other cases. 
26. If 4h = kM2, show that typical solution curves look 

as illustrated in Fig. 7 . 1 . l4 . Thus if Xo � M/2 , then 
x (t) � M/2 as t � +00. But if Xo < M/2 , then 
x (t) = 0 after a finite period of time, so the lake is 
fished out. The critical point x = M /2 might be called 
semistable, because it looks stable from one side, unstable 
from the other. 

27. If 4h > kM2, show that x (t ) = 0 after a finite period of 
time, so the lake is fished out (whatever the initial popula-

FIGURE 7.1.14. Solution 
curves for harvesting a logistic 
population with 4h = kM2 . 
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tion). [Suggestion: Complete the square to rewrite the dif
ferential equation in the form dx/dt = -k[(x - a)2 + b2] . 
Then solve explicitly by  separation of  variables .] The re
sults of this and the previous problem (together with Ex
ample 4) show that h = !kM2 is a critical harvesting rate 
for a logistic population. At any lesser harvesting rate the 
population approaches a limiting population N that is less 
than M (why?), whereas at any greater harvesting rate the 
population reaches extinction. 

28. This problem deals with the differential equation dx/dt = 

kx (x -M) -h that models the harvesting of an unsophisti
cated population (such as alligators) . Show that this equa
tion can be rewritten in the form dx/dt = k(x - H)(x -
K) ,  where 

H = � ( M + .J M2 + 4h/k) > 0, 

K = � ( M - .J M2 + 4h/k) < o. 
Show that typical solution curves look as illustrated in 
Fig. 7. 1 . 1 5 . 

29. Consider the two differential equations 

and 

dx 
- = (x - a ) (x - b) (x - c) dt 
dx 
- = (a - x) (b - x) (c - x) , dt 

(2 1 ) 

(22) 

each having the critical points a, b, and c; suppose that 
a < b < c. For one of these equations, only the criti
cal point b is stable; for the other equation, b is the only 
unstable critical point. Construct phase diagrams for the 
two equations to determine which is which. Without at
tempting to solve either equation explicitly, make rough 
sketches of typical solution curves for each. You should 
see two funnels and a spout in one case, two spouts and a 
funnel in the other. 

FIGURE 7.1.15. Solution 
curves for harvesting a 
population of alligators. 
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Awide variety of natural phenomena are modeled by two-dimensional first-order 
systems of the form 

dx 
dt 

= F(x ,  y) , 

dy 
dt 

= G (x ,  y) 
( 1 )  

i n  which the independent variable t does not appear explicitly. We usually think 
of the dependent variables x and y as position variables in the xy-plane and of t 
as a time variable. We will see that the absence of t on the right-hand sides in ( 1 )  
makes the system easier to analyze and its solutions easier to visualize. Using the 
terminology of Section 7 . 1 ,  such a system of differential equations in which the 
derivative values are independent (or "autonomous") of time t is often called an 
autonomous system. 

We generally assume that the functions F and G are continuously differen
tiable in some region R of the xy-plane. Then according to the existence and 
uniqueness theorems of the Appendix, given to and any point (xo , Yo) of R, there is 
a unique solution x = x (t ) ,  y = y (t )  of ( 1 )  that is defined on some open interval 
(a , b) containing to and satisfies the initial conditions 

x (to) = Xo , y (to) = Yo · (2) 

The equations x = x (t ) ,  y = y (t )  then describe a parametrized solution curve in 
the phase plane. Any such solution curve is called a trajectory of the system in 
( 1 ) , and precisely one trajectory passes through each point of the region R (Problem 
29). A critical point of the system in ( 1 )  is a point (x* , y*) such that 

(3) 

If (x* , y*) is a critical point of the system, then the constant-valued functions 

(4) 

have derivatives x' (t) == 0 and y' (t )  == 0, and therefore automatically satisfy the 
equations in ( 1 ) .  Such a constant-valued solution is called an equilibrium solution 
of the system. Note that the trajectory of the equilibrium solution in (4) consists of 
the single point (x* , y*) .  

I n  some practical situations these very simple solutions and trajectories are 
the ones of greatest interest. For example, suppose that the system x' = F(x ,  y), 
y' = G (x , y) models two populations x (t) and y (t) of animals that cohabit the same 
environment, and perhaps compete for the same food or prey on one another; x (t) 
might denote the number of rabbits and y (t )  the number of squirrels present at time 
t .  Then a critical point (x* , y*) of the system specifies a constant population x* of 
rabbits and a constant population y* of squirrels that can coexist with one another 
in the environment. If (xo , Yo) is not a critical point of the system, then i t  is not 
possible for constant populations of Xo rabbits and Yo squirrels to coexist; one or 
both must change with time. 
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Find the critical points of the system 

dx 2 
- = l4x - 2x - xy ,  
dt 
dy 2 
dt 

= l 6y - 2y - xy. 
(5) 

Solution When we look at the equations 

l4x - 2x2 - xy = x ( 1 4  - 2x - y) = 0, 
l 6y - 2l - xy = y ( 1 6  - 2y - x) = 0 

that a critical point (x , y) must satisfy, we see that either 

x = 0 or 14  - 2x - y = 0, 

and either 

y = 0 or 1 6  - 2y - x = o. 

(6a) 

(6b) 

If x = 0 and y =1= 0, then the second equation in (6b) gives y = 8. If y = 0 and 
x =1= 0, then the second equation in (6a) gives x = 7 .  If both x and y are nonzero, 
then we solve the simultaneous equations 

2x + y = 14 ,  x + 2y = 1 6  

for x = 4 ,  y = 6 .  Thus the system in (5) has the four critical points (0, 0) , (0, 8), 
(7, 0) , and (4, 6) . If x (t) and y (t )  denote the number of rabbits and the number 
of squirrels, respectively, and if both populations are constant, it follows that the 
equations in (5) allow only three nontrivial possibilities : either no rabbits and 8 
squirrels, or 7 rabbits and no squirrels, or 4 rabbits and 6 squirrels. In particular, 
the critical point (4, 6) describes the only possibility for the coexistence of constant 
nonzero populations of both species . • 

Phase Portraits 

If the initial point (xo , Yo) is not a critical point, then the corresponding trajectory is 
a curve in the xy-plane along which the point (x (t) , y (t ) )  moves as t increases. It 
turns out that any trajectory not consisting of a single point is a nondegenerate curve 
with no self-intersections (Problem 30) .  We can exhibit qualitatively the behavior 
of solutions of the autonomous system in ( 1 )  by constructing a picture that shows 
its critical points together with a collection of typical solution curves or trajectories 
in the xy-plane. Such a picture is called a phase portrait (or phase plane picture) 
because it illustrates "phases" or xy-states of the system, and indicates how they 
change with time. 

Another way of visualizing the system is to construct a slope field in the xy-
phase plane by drawing typical line segments having slope 

dy y' G (x ,  y) 
- = - = , dx x' F(x ,  y) 

or a direction field by drawing typical vectors pointing the same direction at each 
point (x , y) as does the vector (F (x , y ) ,  G (x , y ) ) .  Such a vector field then indicates 
which direction along a trajectory to travel in order to "go with the flow" described 
by the system. 
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FIGURE 7.2.1 .  Direction field and 
phase portrait for the rabbit- squirrel 
system x' = 14x - 2X2 - xy , 
y' = 1 6y - 2y2 - xy of Example l .  

Exa mple 2 

y 

G(x, y) = I - x2 = 0  
x = +1 

Remark: It is worth emphasizing that if our system of differential equa
tions were not autonomous, then its critical points, trajectories, and direction vec
tors would generally be changing with time. In this event, the concrete visualization 
afforded by a (fixed) phase portrait or direction field would not be available to us. 
Indeed, this is a principal reason why an introductory study of nonlinear systems 
concentrates on autonomous ones. • 

Figure 7 .2 . 1 shows a direction field and phase portrait for the rabbit-squirrel 
system of Example 1 .  The direction field arrows indicate the direction of motion of 
the point (x (t ) ,  y (t ) ) .  We see that, given any positive initial numbers xo t= 4 and 
Yo t= 6 of rabbits and squirrels, this point moves along a trajectory approaching the 
critical point (4, 6) as t increases . 

x 

FIGURE 7.2.2. Direction field 
for the system in Eq. (7). 

For the system 

x' = x - y ,  
y' = 1 - x2 

4 '-r-�����WI� 
3 

2 

"" 0 fI'+'-I-7f:-I7-7""'I<-+II':n""*'"*,,-¥"'i'-i-\l 

- I  

- 2  

- 3  

x 

FIGURE 7.2.3. Phase portrait 
for the system in Eq. (7). 

(7) 

we see from the first equation that x = y and from the second that x = ± 1 at 
each critical point. Thus this system has the two critical points (- 1 ,  - 1 )  and ( 1 ,  1 ) .  
The direction field in  Fig. 7.2 .2 suggests that trajectories somehow "circulate" coun
terclockwise around the critical point (- 1 ,  - 1 ) ,  whereas it appears that some tra
jectories may approach, while others recede from, the critical point ( 1 ,  1 ) .  These 
observations are corroborated by the phrase portrait in Fig. 7.2 .3 for the system 

----�I'------;;x in (7). • 

x = -l 
G (x, y) = 1 - x2 = 0  

FIGURE 7.2.4. The two critical 
points (- 1 ,  - 1 )  and (+ 1 ,  + 1 )  in 
Example 2 as the intersection of 
the curves F(x ,  y) = x - y = 0 
and G(x , y) = 1 - x2 = O. 

Remark: One could carelessly write the critical points in Example 2 as 
(± 1 ,  ± 1 )  and then jump to the erroneous conclusion that the system in (7) has four 
rather than just two critical points . When feasible, a sure-fire way to determine the 
number of critical points of an autonomous system is to plot the curves F (x , y) = 0 
and G (x , y) = 0 and then note their intersections, each of which represents a critical 
point of the system. For instance, Fig. 7.2.4 shows the curve (line) F(x ,  y) = 
x - y = 0 and the pair of lines x = + 1 and x = - 1  that constitute the "curve" 
G(x ,  y) = 1 -x2 = O. The (only) two points of intersection (- 1 , - 1 )  and (+ 1 ,  + 1 )  
are then visually apparent. • 
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x 

FIGURE 7.2.5. A proper node; 
the trajectories approach the 
origin, so it is a nodal sink. 

x 

FIGURE 7.2.6. An improper 
node because all trajectories are 
tangent to a single line ; they 
approach the origin, so it is a nodal 
sink. 

7.2 Stabi l ity and the Phase Plane 49 1 

Critical Point Behavior 

The behavior of the trajectories near an isolated critical point of an autonomous 
system is of particular interest. In the remainder of this section we illustrate with 
simple examples some of the most common possibilities . 

- _._ - . - _ . . _- --- �.------. 

Consider the autonomous linear system 

dx 
- = -x ,  
dt 

dy 
- = -ky (k a nonzero constant) , 
dt 

(8) 

which has the origin (0, 0) as its only critical point. The solution with initial point 
(xo , Yo) is 

If Xo t= 0, we can write 

x (t )  = xoe-I , y et )  = yoe-kl . 

-kl Yo 
( -I )k b k Y = yoe = k xoe = x ,  

Xo 

(9) 

( 10) 

where b = yo/ x§ . The nature of the critical point (0, 0) depends on whether the 
nonzero parameter k is positive or negative. 

CASE 1 :  k > O. If k is positive, then we see from (9) that the point (x (t ) ,  y(t» 
approaches the origin along the curve y = bxk as t ---+ +00 . The appearance of this 
curve depends on the magnitude of k :  

• If k = 1 ,  then y = bx with b = Yo/xo is a straight line through the point 
(xo , yo) .  These straight-line trajectories are illustrated by the phase portrait in 
Fig. 7 .2 .5 .  

• If k > 1 and neither Xo nor Yo in Eq. ( 1 0) is zero, then the curve y = bxk 
is tangent to the x-axis at the origin. This case is illustrated by the phase 
portrait in Fig. 7 .2.6, where k = 2 and the trajectories are parabolas. More 
precisely, the trajectories are the semiaxes and the right and left halves of these 
parabolas . 

• If 0 < k < 1 and neither Xo nor Yo is zero, then the phase portrait is similar to 
Fig. 7.2 .6, except that each curve y = bxk is tangent to the y-axis (rather than 
to the x-axis) at the origin. 

The type of critical point illustrated in Figs. 7 .2 .5 and 7.2 .6 is called a node. In 
general, the critical point (x* , y*) of the autonomous system in ( 1 )  is called a node 
provided that 

• Either every trajectory approaches (x* , y*) as t ---+ +00 or every trajectory 
recedes from (x* , y*) as t ---+ +00, and 

• Every trajectory is tangent at (x* , y*) to some straight line through the critical 
point. 

A node is said to be proper provided that no two different pairs of "opposite" 
trajectories are tangent to the same straight line through the critical point. This is 
the situation in Fig. 7 .2 .5 (in which the trajectories are straight lines, not merely 
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x 

FIGURE 7.2.7. A saddle point 
with trajectories resembling the 
contour curves of a saddle point on 
a surface. 

Exa mple 3 
Continued 

tangent to straight lines). A proper node might be called a "star point." In Fig. 7 .2.6 
all trajectories except for a single opposite pair are tangent to a single straight line 
through the critical point. This type of node is said to be improper. 

A node is also called a sink if all trajectories approach the critical point, a 
source if all trajectories recede (or emanate) from it. Thus the origin in Fig. 7.2.5 
is a proper nodal sink, whereas in Fig. 7.2.6 it is an improper nodal sink. If the 
direction field arrows in each figure were reversed, then the origin would be a nodal 
source in each figure. 

CASE 2 :  k < O. If k is negative, then the trajectories resemble those for the 
case k = - 1 ,  which is illustrated in Fig. 7 .2 .7 . If neither Xo nor Yo is zero, then 
the corresponding trajectory in Fig. 7 .2 .7 is one branch of the rectangular hyperbola 
xy = b, and ly (t ) 1 -+ +00 as t -+ +00. If either Xo or Yo is zero, then the trajectory 
is a semiaxis of the hyperbola. The point (x (t ) ,  y (t ) )  approaches the origin along 
the x-axis, but recedes from it along the y-axis, as t -+ +00. Thus there are two 
trajectories that approach the critical point (0, 0) , but all others are unbounded as 
t -+ +00. This type of critical point, illustrated in Fig. 7 .2 .7 , is called a saddle 
point. • 

Stability 

A critical point (x* , y*) of the autonomous system in ( 1 )  is said to be stable provided 
that if the initial point (xo , Yo) is sufficiently close to (x* , y*) ,  then (x (t) , y (t) ) re
mains close to (x* , y*) for all t > O. In vector notation, with x(t) = (x (t) , y (t ) ) ,  the 
distance between the initial point Xo = (xo , Yo) and the critical point x* = (x* , y*) 
is 

Ixo - x* 1 = J(xo - X*)2 + (Yo - y*)2 . 

Thus the critical point x* is stable provided that, for each E > 0, there exists 8 > 0 
such that 

( 1 1 ) 

for all t > O. Note that the condition in ( 1 1 )  certainly holds if x(t ) -+ x* as t -+ 
+00, as in the case of a nodal sink. Thus the nodal sinks illustrated in Figs. 7.2.5 
and 7.2.6 can also be described as stable nodes. 

The critical point (x* , y*) is called unstable if it is not stable. The saddle point 
at (0, 0) in Fig. 7 .2 .7 is an unstable critical point because the point (x (t ) ,  y (t) ) goes 
to infinity as t -+ +00 (assuming that xoYo =1= 0), and hence the condition in ( 1 1 )  is 
not satisfied. 

If the signs on the right-hand side in (8) are changed to obtain the system 

dx 
- = x , 
dt 
dy 
- = ky (k a nonzero constant) , 
dt 

( 12) 

then the solution is x (t )  = xoet , y (t )  = yoekt • Then with k = 1 and k = 2, the 
trajectories are the same as those shown in Figs. 7 .2 .5 and 7.2.6, respectively, but 
with the arrows reversed, so that the point (x (t ) ,  y (t ) )  goes to infinity as t -+ 00. 
The result in each case is a nodal source-that is, an unstable node-at (0, 0) . • 
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FIGURE 7.2.S. Direction field 
and elliptical trajectories for the 
system x' = y, y' = - �x .  The 
origin is a stable center. 
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If (x* , y* ) is a critical point, then the equilibrium solution x (t) == x* ' yet) == 
y* is called stable or unstable depending on the nature of the critical point. In 
applications the stability of an equilibrium solution is often a crucial matter. For 
instance, suppose in Example 1 that x (t) and y et) denote the rabbit and squirrel 
populations, respectively, in hundreds. We will see in Section 7.4 that the critical 
point (4, 6) in Fig. 7 .2 . 1 is stable. It follows that if we begin with close to 400 
rabbits and 600 squirrels-rather than exactly these eqUilibrium values-then for all 
future time there will remain close to 400 rabbits and close to 600 squirrels. Thus 
the practical consequence of stability is that slight changes (perhaps due to random 
births and deaths) in the eqUilibrium populations will not so upset the equilibrium 
as to result in large deviations from the equilibrium solutions. 

It is possible for trajectories to remain near a stable critical point without ap
proaching it, as Example 4 shows . 

...... _ ._ .... 

Consider a mass m that oscillates without damping on a spring with Hooke's con
stant k , so that its position function x (t) satisfies the differential equation x" +w2x = 
o (where w2 = kim) .  If we introduce the velocity y = dxldt of the mass, we get 
the system 

with general solution 

dx 
- = y, 
dt 
dy 2 - = -w x  
dt 

x (t) = A cos wt + B sin wt , 
y et )  = -Aw sin wt + Bw cos wt . 

( 1 3) 

( l4a) 
( 14b) 

With e = J A2 + B2 , A = e cos a ,  and B = e sin a ,  we can rewrite the solution 
in ( 1 4) in the form 

x (t) = e cos (wt - a) ,  
y et) = -we sin(wt - a) ,  

( l 5a) 
( I 5b) 

so it becomes clear that each trajectory other than the critical point (0, 0) is an ellipse 
with equation of the form 

( 1 6) 

As illustrated by the phase portrait in Fig. 7 .2 .8 (where w = � ) ,  each point (xo , Yo) 
other than the origin in the xy-plane lies on exactly one of these ellipses, and each 
solution (x (t) , y et ) )  traverses the ellipse through its initial point (xo , Yo) in the 
clockwise direction with period P = 2rrlw. (It is clear from ( 1 5) that x (t + P) = 
x (t) and y et + P) = y et )  for all t . )  Thus each nontrivial solution of the system 
in ( 1 3) is periodic and its trajectory is a simple closed curve enclosing the critical 
point at the origin. • 
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y 

x 

FIGURE 7.2.9. If the initial 
point (xo , Yo) lies within distance 8 
of the origin, then the point 
(x (t) ,  y (t ) ) stays within distance E 
of the origin. 

Figure 7.2.9 shows a typical elliptical trajectory in Example 4, with its minor 
semiaxis denoted by 8 and its major semiaxis by E . We see that if the initial point 
(xo ,  Yo) lies within distance 8 of the origin-so that its elliptical trajectory lies inside 
the one shown-then the point (x (t) , y (t)) always remains within distance E of 
the origin. Hence the origin (0, 0) is a stable critical point of the system x' = y, 
y' = -w2x .  Unlike the situation illustrated in Figs. 7.2.5 and 7 .2 .6 , however, no 
single trajectory approaches the point (0, 0) . A stable critical point surrounded by 
simple closed trajectories representing periodic solutions is called a (stable) center. 

Asymptotic Stability 

The critical point (x* , y*) is called asymptotically stable if it is stable and, more
over, every trajectory that begins sufficiently close to (x* , y*) also approaches 
(x* , y*) as t -+ +00. That is, there exists 8 > 0 such that 

I x - x* I < 8 implies that lim x(t) = x* , 
t -+ oo  

( 1 7) 

where Xo = (xo , Yo) ,  x* = (x* , y*) ,  and x(t) = (x (t ) ,  y (t »  is a solution with 
x(O) = Xo . 

Remark: The stable nodes shown in Figs. 7.2.5 and 7.2 .6 are asymptoti
cally stable because every trajectory approaches the critical point (0, 0) as t -+ +00. 
The center (0, 0) shown in Fig. 7 .2 .8 is stable but not asymptotically stable, because 
however small an elliptical trajectory we consider, a point moving around this el
lipse does not approach the origin. Thus asymptotic stability is a stronger condition 
than mere stability. • 

Now suppose that x (t) and y (t) denote coexisting populations for which 
(x* , y*) is an asymptotically stable critical point. Then if the initial populations 
Xo and Yo are sufficiently close to x* and y* , respectively, it follows that both 

lim x (t) = x* and lim y (t) = y* . 
t -+ oo  t -+ oo  

( 1 8) 

That is, x (t )  and y (t) actually approach the eqUilibrium populations x* and y* as 
t -+ +00, rather than merely remaining close to those values. 

For a mechanical system as in Example 4, a critical point represents an equi
librium state of the system-if the velocity y = x' and the acceleration y' = x" 
vanish simultaneously, then the mass remains at rest with no net force acting on 
it. Stability of a critical point concerns the question whether, when the mass is 
displaced slightly from its equilibrium, it 

1. Moves back toward the eqUilibrium point as t -+ +00, 

2.  Merely remains near the eqUilibrium point without approaching it, or 
3. Moves farther away from eqUilibrium. 

In Case 1 the critical [equilibrium] point is asymptotically stable; in Case 2 
it is stable but not asymptotically so; in Case 3 it is an unstable critical point. A 
marble balanced on the top of a soccer ball is an example of an unstable critical 
point. A mass on a spring with damping illustrates the case of asymptotic stability 
of a mechanical system. The mass-and-spring without damping in Example 4 is an 
example of a system that is stable but not asymptotically stable. 
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FIGURE 7.2.10. A stable spiral 
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Suppose that m = 1 and k = 2 for the mass and spring of Example 4 and that 
the mass is attached also to a dashpot with damping constant c = 2. Then its 
displacement function x (t) satisfies the second-order equation 

xl/ (t) + 2X' (t) + 2x (t) = O. 

With y = Xl we obtain the equivalent first-order system 

dx 
dt 

= y ,  

dy 
- = -2x - 2y 
dt 

( 1 9) 

(20) 

with critical point (0, 0) . The characteristic equation r2 + 2r + 2 = 0 of Eq. ( 1 9) 
has roots - 1  + i and - 1  - i ,  so the general solution of the system in (20) is given 
by 

x (t )  = e-t (A cos t + B sin t) = Ce-t cos(t - ex) ,  
y et )  = e-t [ (B - A) cos t - (A + B) sin t ] 

= -Cv'2e-t sin (t - ex + in) , 

(2 1 a) 

(2 1b) 

where C = ,J A2 + B2 and ex = tan- ' (B/A) .  We see that x (t) and y et) oscillate 
between positive and negative values and that both approach zero as t -+ +00. 
Thus a typical trajectory spirals inward toward the origin, as illustrated by the spiral 
in Fig. 7.2. 1 0. • 

It is clear from (2 1 )  that the point (x (t) , y et » �  approaches the origin as t -+ 
+00, so it follows that (0, 0) is an asymptotically stable critical point for the system 
Xl = y, yl = -2x - 2y of Example 5 .  Such an asymptotically stable critical 
point-around which the trajectories spiral as they approach it-is called a stable 
spiral point (or a spiral sink) . In the case of a mass-spring-dashpot system, a 
spiral sink is the manifestation in the phase plane of the damped oscillations that 
occur because of resistance. 

If the arrows in Fig. 7.2. 10  were reversed, we would see a trajectory spiraling 
outward from the origin. An unstable critical point-around which the trajectories 
spiral as they emanate and recede from it-is called an unstable spiral point (or 
a spiral source). Example 6 shows that it also is possible for a trajectory to spiral 
into a closed trajectory-a simple closed solution curve that represents a periodic 
solution (like the elliptical trajectories in Fig. 7.2.8) . 

Consider the system 

dx 2 2 
dt 

= -ky + x ( 1  - x - y ) ,  

dy 2 2 
dt 

= kx + y ( 1  - x - y ) . 
(22) 

In Problem 2 1  we ask you to show that (0, 0) is its only critical point. This system 
can be solved explicitly by introducing polar coordinates x = r cos () , y = r sin () ,  
as  follows. First note that 

d() 
= 

!!:...- (
arctan �) = 

xyl - xly
. 

dt dt x x2 + y2 
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x 

FIGURE 7.2.11 .  Spiral 
trajectories of the system in 
Eq. (22) with k = 5. 

Then substitute the expressions given in (22) for x' and y' to obtain 

dO 
= 

k (x2 + y2) 
= k . dt x2 + y2 

It follows that 

O (t) = kt + 00 , where 00 = 0 (0) . 

Then differentiation of r2 = x2 + y2 yields 

dr dx dy 2r 
dt 

= 2x 
dt + 2y dt 

= 2(x2 + l) ( l  - x2 - i) = 2r2 ( 1  - r2) ,  

so r = r (t) satisfies the differential equation 

dr 
- = r ( 1 - r2) .  
dt 

In Problem 22 we ask you to derive the solution 
ro 

r (t) = 
, 

Jrg + ( 1  - rg)e-2t 

(23) 

(24) 

(25) 

where ro = r (O) . Thus the typical solution of Eq. (22) may be expressed in the form 

x (t )  = r (t) cos(kt + (0) ,  
y (t) = r (t) sin(kt + (0) . 

(26) 

If ro = 1 ,  then Eq. (25) gives r (t) == 1 (the unit circle) . Otherwise, if ro > 0, 
then Eq. (25) implies that r (t) --+ 1 as t --+ +00. Hence the trajectory defined 
in (26) spirals in toward the unit circle if ro > 1 and spirals out toward this closed 
trajectory if 0 < ro < 1 .  Figure 7.2 . 1 1 shows a trajectory spiraling outward from the 
origin and four trajectories spiraling inward, all approaching the closed trajectory 
r (t) == 1 .  • 

Under rather general hypotheses it can be shown that there are four possibili
ties for a nondegenerate trajectory of the autonomous system 

dx 
dt 

= F(x ,  y ) ,  

The four possibilities are these: 

dy 
- = G(x , y ) .  
d t  

1. (x (t) , y (t ) )  approaches a critical point as  t --+ +00. 

2.  (x (t) , y (t ) )  is unbounded with increasing t .  
3.  (x (t ) ,  y (t ) )  is a periodic solution with a closed trajectory. 
4. (x (t) , y (t ) )  spirals toward a closed trajectory as t --+ +00. 

As a consequence, the qualitative nature of the phase plane picture of the 
trajectories of an autonomous system is determined largely by the locations of its 
critical points and by the behavior of its trajectories near its critical points. We will 
see in Section 7 .3 that, subject to mild restrictions on the functions F and G,  each 
isolated critical point of the system x' = F(x ,  y) ,  y' = G(x ,  y) resembles qualita
tively one of the examples of this section-it is either a node (proper or improper), 
a saddle point, a center, or a spiral point. 



Problems 

In Problems 1 through 8, find the critical point or points of the 
given autonomous system, and thereby match each system with 
its phase portrait among Figs. 7.2. 12 through 7.2. 19. 

dx dy 
1.  dt = 2x - y , dt = x - 3y 

dx 
2. dt = x - y, dy -- = x + 3y - 4 dt 

7.2 Stabi lity and the Phase Plane 

dx 
3. dt 

= x - 2y + 3, 

dx 
4. dt 

= 2x - 2y - 4, 

dy -- = x - y + 2  dt 

dy -- = x + 4y + 3  
dt 

dx 
5. dt 

dy 
dt = X  + 2y 
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FIGURE 7.2.17. Spiral point 
(- 1 ,  - 1 ) ,  saddle point (0, 0) , and 
node ( 1 , - 1 ) . 
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dx 
6. dt = 2 - 4x - 15y , 

dx 
7. dt = X  - 2y , dy - = 4x - x3 

dt 
dx 2 8. dt = x - y - x + xy, dy 2 

dt = -y - x 

In Problems 9 through 12, find each equilibrium solution 
x(t) == Xo of the given second-order differential equation 
x" + f(x , x') = o. Use a computer system or graphing cal
culator to construct a phase portrait and directionfieldfor the 
equivalent first-order system x' = y, y' = -f(x ,  y) . Thereby 
ascertain whether the critical point (xo , 0) looks like a center, 
a saddle point, or a spiral point of this system. 

9. x" + 4x - x3 = 0 
10. x" + 2x' + x + 4x3 = 0 
11 .  x" + 3x' + 4 sin x = 0 
12. x" + (x2 - l )x' + x = 0 

Solve each of the linear systems in Problems 13 through 20 to 
determine whether the critical point (0, 0) is stable, asymptot
ically stable, or unstable. Use a computer system or graphing 
calculator to construct a phase portrait and direction field for 
the given system. Thereby ascertain the stability or instabil
ity of each critical point, and identify it visually as a node, a 
saddle point, a center, or a spiral point. 

13. 
dx - = -2x , dt 

14. 
dx - = 2x, dt 

15. 
dx - = -2x , dt 

16. 
dx 
dt = x, 

17. 
dx 
dt = y, 

18. 
dx dt = -y, 

19. 
dx 

- 2 dt 
- y, 

20. 
dx 
dt = y, 

dy - = -2y dt 
dy - = -2y dt 
dy 
dt = -y 

dy _ 3 dt - y 

dy - = -x dt 
dy - = 4x dt 
dy - = -2x dt 
dy - = -5x - 4y dt 

21. Verify that (0, 0) is the only critical point of the system in 
Example 6. 

22. Separate variables in Eq. (24) to derive the solution in 
(25) . 

In Problems 23 through 26, a system dx/dt 
dy/dt = G(x , y) is given. Solve the equation 

dy G (x , y) 
dx F(x , y) 

F(x ,  y), 

to find the trajectories of the given system. Use a computer sys
tem or graphing calculator to construct a phase portrait and 

direction field for the system, and thereby identify visually the 
apparent character and stability of the critical point (0, 0) of 
the given system. 

dx 
23. dt = y, 

dy - = -x dt 
dx 

24. - = y ( l + x2 + y2) , 
d t 
dx 

25. - = 4y ( l  + x2 + y2) , 
d t 

dy = x ( l + x2 + y2) dt 
dy = -x ( l  + x2 + y2) dt 

27. Let (x (t) ,  y (t» be a nontrivial solution of the nonau
tonomous system 

dx 
dt = y , 

dy - = tx . dt 
Suppose that cp (t ) = x (t + y)  and 1/I (t) = y et + y) ,  
where y =1= O. Show that (cp (t) ,  1/I (t ) ) i s  not a solution of 
the system. 

Problems 28 through 30 deal with the system 

dx 
dt = F(x , y) , 

dy 
dt = G(x ,  y) 

in a region where the functions F and G are continuously dif
ferentiable, so for each number a and point (xo , Yo), there is a 
unique solution with x (a) = Xo and y ea) = Yo. 

28. Suppose that (x (t) ,  y et »� is a solution of the autonomous 
system and that y =1= O. Define cp (t) = x (t + y) and 
1/I (t) = y (t + y) .  Then show (in contrast with the sit
uation in Problem 27) that (cp (t) ,  1/I (t» is also a solution 
of the system. Thus autonomous systems have the simple 
but important property that a "t-translate" of a solution is 
again a solution. 

29. Let (Xl (t) ,  Yl (t» and (X2 (t) ,  Y2 (t» be two solutions hav
ing trajectories that meet at the point (xo , Yo) ;  thus 
x l (a) = x2 (b) = Xo and Yl (a) = Y2 (b) = Yo for some 
values a and b of t .  Define 

X3 (t) = X2 (t + y)  and Y3 (t) = Y2 (t + y) ,  

where y = b - a, so  (X2 (t) ,  Y2 (t» and (X3 (t) ,  Y3 (t» 
have the same trajectory. Apply the uniqueness theorem 
to show that (X l (t) ,  Yl (t» and (X3 (t) ,  Y3 (t» are identical 
solutions. Hence the original two trajectories are identi
cal. Thus no two different trajectories of an autonomous 
system can intersect. 

30. Suppose that the solution (X l (t) ,  Yl (t)) is defined for all t 
and that its trajectory has an apparent self-intersection: 

Xl (a) = Xl (a + P) = XO , Yl (a) = Y l (a + P) = Yo 

for some P > O. Introduce the solution 
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and then apply the uniqueness theorem to show that 

XI (t + P) = X I  (t) and YI (t) = YI (t + P) 
period P and has a closed trajectory. Consequently a so
lution of an autonomous system either is periodic with 
a closed trajectory, or else its trajectory never passes 
through the same point twice. for all t. Thus the solution (XI (t) , Y I (t» is periodic with 

7.2 A p plication 
Consider a first-order differential equation of the form 

dy G (x , y) 
- = , dx F (x , y) 

( 1 )  

which may be  difficult or  impossible to solve explicitly. Its solution curves can 
nevertheless be plotted as trajectories of the corresponding autonomous two-dimen
sional system 

dx 
dt 

= F(x , y) , 
dy 
- = G (x , y) .  
dt 

(2) 

Most ODE plotters can routinely generate phase portraits for autonomous sys
tems. Many of those appearing in this chapter were plotted using (as illustrated 
in Fig. 7.2.20) John Polking' s  MATLAB-based pplane program that is available 
free for educational use (math . rice . edu/-dfield).  Another freely available 
and user-friendly MATLAB-based ODE package with similar graphical capabilities 
is lode (www . math . uiuc . edu/ iode). 

FIGURE 7.2.20. MATLAB pplane menu entries to plot a direction field and 
phase portrait for the system x' = -X, Y' = -2y (as shown in Fig. 7.2.6). 

For example, to plot solution curves for the differential equation 

dy 2xy _ y2 
- = , dx x2 - 2xy 

(3) 
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FIGURE 7.2.21. Phase portrait 
for the system in Eq. (4) . 
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FIGURE 7.2.22. Phase portrait 
for the system corresponding to 
Eq. (5). 

we plot trajectories of the system 

dx 2 - = x - 2xy, 
dt 

The result is shown in Fig. 7.2.2 1 . 

dy 2 - = 2xy - y . 
dt 

(4) 

Plot similarly some solution curves for the following differential equations .  

1. dy 4x - 5y 
- = 
dx 2x + 3y 

2. dy 4x - 5y 
= 

dx 2x - 3y 

3. dy 4x - 3y 
dx 

-
2x - 5y 

4. dy 2xy 
dx 

-
x2 _ y2 

s. dy x2 + 2xy 
= 

dx y2 + 2xy 

Now construct some examples of your own. Homogeneous functions like 
those in Problems 1 through 5-rational functions with numerator and denominator 
of the same degree in x and y-work well. The differential equation 

dy 25x + y ( 1  - x2 - y2) (4 _ x2 _ y2) 
-

dx -25y + x ( 1  - x2 - y2) (4 - x2 _ y2) 
(5) 

of this form generalizes Example 6 in this section but would be inconvenient to solve 
explicitly. Its phase portrait (Fig. 7.2.22) shows two periodic closed trajectories
the circles r = 1 and r = 2. Anyone want to try for three circles? 

We now discuss the behavior of solutions of the autonomous system 

dx 
dt 

= !(x ,  y) , 
dy - = g(x , y) 
dt 

( 1 )  

near an  isolated critical point (xo , Yo) where !(xo , Yo) = g (xo , Yo) = O. A critical 
point is called isolated if some neighborhood of it contains no other critical point. 
We assume throughout that the functions ! and g are continuously differentiable in 
a neighborhood of (xo , Yo) .  

We can assume without loss o f  generality that Xo = Yo = O .  Otherwise, 
we make the substitutions u = x - Xo, v = y - Yo .  Then dx/dt = du/dt and 
dy/dt = dv/dt , so ( 1 )  is equivalent to the system 

du 
- = !(u + xo ,  v + Yo) = !\ (u , v) ,  
dt 
dv 
- = g (u + xo ,  v + Yo) = g\ (u , v) 
dt 

that has (0, 0) as an isolated critical point. 

(2) 
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x 

FIGURE 7.3.1.  The saddle point 
( 1 ,  2) for the system 
x' = 3x - X2 - xy, 
y' = y + y2 _ 3xy 
of Example 1 .  

u 

FIGURE 7.3.2. The saddle point 
(0, 0) for the equivalent system 
u' = -u - v - u2 - uv , 
v ' = -6u + 2v + v2 - 3uv . 
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The system 

dx 2 - = 3x - x - xy = x (3 - x - y) ,  
dt 

dy 
= y + y2 _ 3xy = y ( 1  - 3x + y) 

dt 

(3) 

has ( 1 , 2) as one of its critical points. We substitute u = x - I ,  v = y - 2; that is, 
x = u + I ,  y = v + 2. Then 

3 - x - y = 3 - (u + 1 )  - (v + 2) = -u - v 

and 
1 - 3x + y = 1 - 3 (u + 1 )  + (v + 2) = -3u + v ,  

so the system in (3 )  takes the form 

du 2 - = (u + 1 ) (-u - v) = -u - v - u - uv ,  
dt 

dv 
dt 

= (v + 2) ( -3u + v) = -6u + 2v + v2 - 3uv 
(4) 

and has (0, 0) as a critical point. If we can determine the trajectories of the system 
in (4) near (0, 0) , then their translations under the rigid motion that carries (0, 0) to 
( 1 ,  2) will be the trajectories near ( 1 ,  2) of the original system in (3). This equiva
lence is illustrated by Fig. 7 .3 . 1 (which shows computer-plotted trajectories of the 
system in (3) near the critical point ( 1 , 2) in the xy-plane) and Fig. 7.3 .2 (which 
shows computer-plotted trajectories of the system in (4) near the critical point (0, 0) 
in the u v-plane) . • 

Figures 7 .3 . 1 and 7 .3 .2 illustrate the fact that the solution curves of the xy
system in ( 1 )  are simply the images under the translation (u , v) � (u + xo , v + Yo) 
of the solution curves of the u v-system in (2) . Near the two corresponding critical 
points-(xo , Yo) in the xy-plane and (0, 0) in the uv-plane-the two phase portraits 
therefore look precisely the same. 

Linearization Near a Critical Point 

Taylor's formula for functions of two variables implies that-if the function f (x , y) 
is continuously differentiable near the fixed point (xo , Yo)-then 

f (xo + u ,  Yo + v) = f (xo , Yo) + fx Cxo , Yo)u + fy (xo , Yo) v  + r (u ,  v) 

where the "remainder term" r (u ,  v) satisfies the condition 

lim 
r (u ,  v) 

= o .  
(U , v)--+ (O,O) ";u2 + v2 

(Note that this condition would not be satisfied if r (u ,  v) were a sum containing 
either constants or terms linear in u or v .  In this sense, r (u ,  v) consists of the 
"nonlinear part" of the function f (xo + u ,  Yo + v) of u and v.) 
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Exa mple 1 
Continued 

If we apply Taylor's formula to both f and g in (2) and assume that (xo , Yo) 
is an isolated critical point so f(xo , Yo) = g (xo , Yo) = 0, the result is 

du 
dt 

= fx (xo , yo) u  + fy (xo ,  yo) v  + r (u ,  v) , 

dv 
dt 

= gx (xo ,  yo) u  + gy (xo ,  yo) v  + s (u ,  v) 
(5) 

where r (u ,  v) and the analogous remainder term s (u ,  v) for g satisfy the condition 

r (u ,  v) 
lim 

(U , v) -+ (O,O) Ju2 + v2 lim 
s (u ,  v )  

= O. 
(u , v)-+ (O,O) Ju2 + v2 (6) 

Then, when the values u and v are small, the remainder terms r (u ,  v) and s (u ,  v) 
are very small (being small even in comparison with u and v) . 

If we drop the presumably small nonlinear terms r (u ,  v) and s (u ,  v) in (5) , the 
result is the linear system 

du 
dt 

= fx Cxo , yo)u  + fy (xo , yo) v ,  

d v  
d t  

= gx (xo ,  yo)u  + gy (xo ,  yo) v  
(7) 

whose constant coefficients (of the variables u and v) are the values fx (xo ,  Yo) ,  
fy (xo , Yo) and gx Cxo ,  Yo ) ,  gy (xo , Yo) of the functions f and g at the critical point 
(xo ,  Yo ) .  Because (5) is equivalent to the original (and generally) nonlinear system 
u' = f(xo + u ,  Yo + v ) ,  v' = g (xo + u ,  Yo + v) in (2), the conditions in (6) suggest 
that the linearized system in (7) closely approximates the given nonlinear system 
when (u , v) is close to (0, 0) . 

Assuming that (0, 0) is also an isolated critical point of the linear system, 
and that the remainder terms in (5) satisfy the condition in (6), the original system 
x' = f (x , y ) ,  y' = g (x , y) is said to be almost linear at the isolated critical point 
(xo , Yo) . In this case, its linearization at (xo , Yo) is the linear system in (7) . In 
short, this linearization is the linear system u' = Ju (where u = [ u  v r ) whose 
coefficient matrix is the so-called Jacobian matrix 

of the functions f and g, evaluated at the point (xo , Yo) . 

[ 3 - 2x - y -x ] J(x ,  y) = -3y 1 + 2y - 3x ' 
[ - 1  - 1  ] so J( 1 , 2) = -6 2 ' 

(8) 

Hence the linearization of the system x' = 3x - x2 - xy, y' = y + y2 - 3xy at its 
critical point ( 1 ,  2) is the linear system 

I U = -u - v ,  
v' = -6u + 2v 

that we get when we drop the nonlinear (quadratic) terms in (4) . • 
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ed by the eigenvectors VI and V2 . 
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It turns out that in most (though not all) cases, the phase portrait of an al
most linear system near an isolated critical point (xo ,  Yo) strongly resembles
qualitatively-the phase portrait near the origin of its linearization. Consequently, 
the first step toward understanding general autonomous systems is to characterize 
the critical points of linear systems. 

Critical Points of Linear Systems 

We can use the eigenvalue-eigenvector method of Section 5 .4 to investigate the 
critical point (0, 0) of a linear system 

(9) 

with constant-coefficient matrix A. Recall that the eigenvalues AI and A2 of A are 
the solutions of the characteristic equation 

I a - A  b I det(A - AI) = c d _ A 
= (a - A) (d - A) - bc = O. 

We assume that (0, 0) is an isolated critical point of the system in (9), so it follows 
that the coefficient determinant ad - bc of the system ax + by = 0, cx + dy = 0 
is nonzero. This implies that A = 0 is not a solution of (9), and hence that both 
eigenvalues of the matrix A are nonzero. 

The nature of the isolated critical point (0, 0) then depends on whether the two 
nonzero eigenvalues A I and A2 of A are 

• real and unequal with the same sign; 
• real and unequal with opposite signs; 
• real and equal ; 
• complex conjugates with nonzero real part; or 
• pure imaginary numbers . 

These five cases are discussed separately. In each case the critical point (0, 0) re
sembles one of those we saw in the examples of Section 7 .2-a node (proper or 
improper), a saddle point, a spiral point, or a center. 

UNEQUAL REAL EIGENVALUES WITH THE SAME SIGN : In this case the ma
trix A has linearly independent eigenvectors VI and V2 , and the general solution 
x(t) = [ x (t) y et) r of (9) takes the form 

( 10) 

This solution is most simply described in the oblique uv-coordinate system indi
cated in Fig. 7 .3 .3 ,  in which the u- and v-axes are determined by the eigenvectors VI 
and V2 . Then the uv-coordinate functions u (t) and v et) of the moving point x(t) are 
simply its distances from the origin measured in the directions parallel to the vectors 
VI and V2 , so it follows from Eq. ( 1 0) that a trajectory of the system is described by 

( 1 1 )  

where Uo = u (O) and Vo = v (O) . If  Vo = 0, then this trajectory lies on the u
axis , whereas if Uo = 0, then it lies on the v-axis .  Otherwise-if Uo and Vo are 
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FIGURE 7.3.4. The improper 
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5 

5 ""�-CrT��-r-r� 
4 
3 

- I ��;..:;;. 
-2  
- 3 
- 4 

5 
x 

FIGURE 7.3.5. The saddle point 
of Example 3 . 

Exa m ple 3 

both nonzero-the parametric curve in ( 1 1 )  takes the explicit form v = Cuk where 
k = A2/)" 1  > O. These solution curves are tangent at (0, 0) to the u-axis if k > 1 ,  to 
the v-axis if 0 < k < 1 . Thus we have in this case an improper node as in Example 
3 of Section 7.2. If A I and A2 are both positive, then we see from ( 10) and ( 1 1 )  that 
these solution curves "depart from the origin" as t increases, so (0, 0) is a nodal 
source. But if A l and A2 are both negative, then these solution curves approach the 
origin as t increases, so (0, 0) is a nodal sink. 

(a) The matrix 

I [ 7 A =  g -3 1� ] 
haS eigenvalues A l = 1 and A2 = 2 with associated eigenvectors VI = [ 3  1 f 
and V2 = [ 1  3 f.  Figure 7 .3 .4 shows a direction field and typical trajectories of 
the corresponding linear system x' = Ax . Note that the two eigenvectors point in 
the directions of the linear trajectories. As is typical of an improper node, all other 
trajectories are tangent to one of the oblique axes through the origin. In this example 
the two unequal real eigenvalues are both positive, so the critical point (0, 0) is an 
improper nodal source. 
(b) The matrix 

I [ -7 -3 ] B = -A = g  3 - 1 7  

has eigenvalues A l = - 1  and A2 = -2  with the same associated eigenvectors 
V I = [ 3  1 f and V2 = [ 1  3 f.  The new linear system x' = Bx has the same 
direction field and trajectories as in Fig. 7 .3 .4 except with the direction field arrows 
now all reversed, so (0, 0) is now an improper nodal sink. • 

UNEQUAL REAL EIGENVALUES WITH OPPOSITE SIGNS : Here the situation 
is the same as in the previous case, except that A2 < 0 < A l in ( 1 1 ) .  The trajectories 
with Uo = 0 or Vo = 0 lie on the u- and v-axes through the critical point (0, 0) . 
Those with Uo and Vo both nonzero are curves of the explicit form v = Cuk , where 
k = A2/A I < O. As in the case k < 0 of Example 3 in Section 7.2, the nonlinear 
trajectories resemble hyperbolas, and the critical point (0, 0) is therefore an unstable 
saddle point. 

_ .. 

The matrix 

-3 ] 
-5 

has eigenvalues A l = 1 and A2 = - 1  with associated eigenvectors VI = [ 3  1 f 
and V2 = [ 1  3 f.  Figure 7 .3 .5 shows a direction field and typical trajectories 
of the corresponding linear system x' = Ax. Note that the two eigenvectors again 
point in the directions of the linear trajectories. Here k = - 1  and the nonlinear 
trajectories are (true) hyperbolas in the oblique uv-coordinate system, so we have 
the saddle point indicated in the figure. Note that the two eigenvectors point in the 
directions of the asymptotes to these hyperbolas. • 
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EQUAL REAL ROOTS : In this case, with A = A I = A2 i= 0, the character 
of the critical point (0, 0) depends on whether or not the coefficient matrix A has 
two linearly independent eigenvectors VI and V2 . If so, then we have oblique uv
coordinates as in Fig. 7 .3 .3 , and the trajectories are described by 

u (t ) = uoeAt , v et) = voeAt ( 12) 

as in ( 1 1 ) .  But now k = A2/A I = I ,  so the trajectories with Uo i= 0 are all of the 
form v = Cu and hence lie on straight lines through the origin. Therefore, (0, 0) is 
a proper node (or star) as illustrated in Fig. 7.2.4, and is a source if A > 0, a sink 
if A < O. 

If the multiple eigenvalue A i= 0 has only a single associated eigenvector VI , 
then (as we saw in Section 5 .6) there nevertheless exists a generalized eigenvector 
V2 such that (A - AJ)V2 = VI , and the linear system x' = Ax has the two linearly 
independent solutions 

( 13) 

We can still use the two vectors VI and V2 to introduce oblique uv-coordinates as in 
Fig. 7 .3 .3 .  Then it follows from ( 1 3) that the coordinate functions u (t )  and v et) of 
the moving point x(t) on a trajectory are given by 

u (t) = (uo + vot)eAt , v et) = voeAt , ( 14) 

where Uo = u (O) and Vo = v (O) . If Vo = 0 then this trajectory lies on the u-axis. 
Otherwise we have a nonlinear trajectory with 

dv dv/dt AvOeAt AVO = = = ------
du du/dt voeAt + A (UO + vot)eAt Vo + A (UO + vot) 

We see that dv/du � 0 as t � ±oo, so it follows that each trajectory is tangent to 
the u-axis . Therefore, (0, 0) is an improper node. If A < 0, then we see from ( 14) 
that this node is a sink, but it is a source if A > O. 

- - - _._- . _- _ . _. _- --_ . .  _- - - ._----_._. __ ._ .. _ .  _ .  ---_ . _ --------- -- - -_ . . .. .. _ . .  _ - _ . .... - ----- - _ . .  -_. 

The matrix 

A _ .! [ - l 1  9 J  
- 8 - 1  -5 

has the multiple eigenvalue A = - 1 with the single associated eigenvector VI = 

[ 3 1 r. It happens that V2 = [ 1  3 r is a generalized eigenvector based on 
VJ , but only the actual eigenvector shows up in a phase portrait for the linear sys
tem x' = Ax. As indicated in Fig. 7 .3 .6, the eigenvector VI determines the u-axis 
through the improper nodal sink (0, 0) , this axis being tangent to each of the non
linear trajectories. • 

COMPLEX CONJUGATE EIGENVALUES : Suppose that the matrix A has eigen
values A = P + qi and I = p - qi (with p and q both nonzero) having associated 
complex conjugate eigenvectors V = a + bi and v = a - bi . Then we saw in Section 
5 .4-see Eq. (22) there-that the linear system x' = Ax has the two independent 
real-valued solutions 

xI (t ) = ept (a cos qt - b sin qt) and x2 (t ) = ept (b cos qt + a sin qt) .  ( 1 5) 
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FIGURE 7.3.8. The stable 
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Thus the components x (t )  and y et) of any solution x(t) = C IXI (t) +C2X2 (t) oscillate 
between positive and negative values as t increases, so the critical point (0, 0) is a 
spiral point as in Example 5 of Section 7.2. If the real part p of the eigenvalues 
is negative, then it is clear from ( 1 5) that x(t) � 0 as t � +00, so the origin is a 
spiral sink. But if p is positive, then the critical point is a spiral source. 

The matrix 
1 [ - 10 A = 4 - 15 

I� ] 
has the complex conjugate eigenvalues A = - � ± 3i with negative real part, so (0, 0) 
is a spiral sink. Figure 7.3 .7 shows a direction field and a typical spiral trajectory 
approaching the origin as t � +00. • 

PURE IMAGINARY EIGENVALUES : If the matrix A has conjugate imaginary 
eigenvalues A = q i and I = -q i with associated complex conjugate eigenvec
tors v = a + bi and v = a - bi , then ( 1 5) with p = 0 gives the independent 
solutions 

Xl (t) = a cos qt  - b sin qt  and X2 (t) = b cos qt  + a sin qt ( 1 6) 

of the linear system x' = Ax. Just as in Example 4 of Section 7.2, it follows that 
any solution x(t) = C IXI (t) + C2X2 (t) describes an ellipse centered at the origin in 
the xy-plane. Hence (0, 0) is a stable center in this case. 

The matrix 
1 [ -9 A = 4 - 15 

I� ] 
has the pure imaginary conjugate eigenvalues A = ±3i , and therefore (0, 0) is a 
stable center. Figure 7 .3 .8 shows a direction field and typical elliptical trajectories 
enclosing the critical point. • 

For the two-dimensional linear system x' = Ax with det A =I=- 0, the table in 
Fig. 7.3 .9 lists the type of critical point at (0, 0) found in the five cases discussed 
here, according to the nature of the eigenvalues A 1 and A2 of the coefficient matrix A. 
Our discussion of the various cases shows that the stability of the critical point (0, 0) 
is determined by the signs of the real parts of these eigenvalues, as summarized in 
Theorem I .  Note that if A l and A2 are real, then they are themselves their real parts. 

Real, unequal, same sign 

Real, unequal, opposite sign 

Real and equal 

Complex conjugate 

Pure imaginary 

Improper node 

Saddle point 

Proper or improper node 

Spiral point 

Center 

FIGURE 7.3.9. Classification of the critical point (0, 0) 
of the two-dimensional system x' = Ax. 
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TH EOREM 1 Stability of Linear Systems 

Let A 1 and A2 be the eigenvalues of the coefficient matrix A of the two
dimensional linear system 

dx 
dt = ax + by , 

dy 
dt = ex + dy 

with ad - be ¥: O. Then the critical point (0, 0) is 

1. Asymptotically stable if the real parts of Al and A2 are both negative; 

( 17) 

2. Stable but not asymptotically stable if the real parts of Al and A2 are both 
zero (so that A I ,  A2 = ±qi ) ;  

3. Unstable i f  either A 1 or  A2  has a positive real part. 

It is worthwhile to consider the effect of small perturbations in the coefficients 
a ,  b, e, and d of the linear system in ( 1 7), which result in small perturbations of 
the eigenvalues A 1 and A2 . If these perturbations are sufficiently small, then positive 
real parts (of A 1 and A2) remain positive and negative real parts remain negative. 
Hence an asymptotically stable critical point remains asymptotically stable and an 
unstable critical point remains unstable. Part 2 of Theorem I is therefore the only 
case in which arbitrarily small perturbations can affect the stability of the critical 
point (0, 0) . In this case pure imaginary roots A t . A2 = ±qi of the characteristic 
equation can be changed to nearby complex roots IL t .  IL2 = r ± s i ,  with r either 
positive or negative (see Fig. 7.3 . 1 0) .  Consequently, a small perturbation of the 
coefficients of the linear system in (7) can change a stable center to a spiral point 
that is either unstable or asymptotically stable. 

There is one other exceptional case in which the type, though not the stability, 
of the critical point (0, 0) can be altered by a small perturbation of its coefficients. 
This is the case with A l  = A2 , equal roots that (under a small perturbation of the 
coefficients) can split into two roots IL 1 and IL2 , which are either complex conjugates 
or unequal real roots (see Fig. 7 .3 . 1 1 ) .  In either case, the sign of the real parts of the 
roots is preserved, so the stability of the critical point is unaltered. Its nature may 
change, however; the table in Fig. 7.3 .9 shows that a node with A l = A2 can either 
remain a node (if ILl and IL2 are real) or change to a spiral point (if ILl and IL2 are 
complex conjugates). 

Suppose that the linear system in ( 17) is used to model a physical situation. It 
is unlikely that the coefficients in ( 1 7) can be measured with total accuracy, so let 
the unknown precise linear model be 

dx 
- = a*x + b*y ,  
dt 
dy - = e*x + d*y .  
dt 

( 17*) 

If the coefficients in ( 1 7) are sufficiently close to those in ( 1 7*), it then follows from 
the discussion in the preceding paragraph that the origin (0, 0) is an asymptotically 
stable critical point for ( 17) if it is an asymptotically stable critical point for ( 17*), 
and is an unstable critical point for ( 1 7) if it is an unstable critical point for ( 1 7*). 
Thus in this case the approximate model in ( 17) and the precise model in ( 17*) 
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predict the same qualitative behavior (with respect to asymptotic stability versus 
instability) . 

Almost Linear Systems 

Recall that we first encountered an almost linear system at the beginning of this 
section, when we used Taylor's formula to write the nonlinear system (2) in the 
almost linear form (5) which led to the linearization (7) of the original nonlinear 
system. In case the nonlinear system x' = f (x ,  y) , y' = g (x , y) has (0, 0) as an 
isolated critical point, the corresponding almost linear system is 

dx 
dt 

= ax + by + r (x , y) , 

dy 
dt 

= cx + dy + s (x , y) 
( 1 8) 

where a = fx (O , 0) , b = fy (O , 0) and c = gx (O, 0) , d = gy (O, 0) ; we assume also 
that ad - bc i= O. Theorem 2, which we state without proof, essentially implies 
that-with regard to the type and stability of the critical point (0, O)-the effect of 
the small nonlinear terms r ex ,  y) and s ex ,  y) is equivalent to the effect of a small 
perturbation in the coefficients of the associated linear system in ( 1 7) . 

THEOREM 2 Stability of Almost Linear Systems 

Let Al and A2 be the eigenvalues of the coefficient matrix of the linear system in 
( 1 7) associated with the almost linear system in ( 1 8) .  Then 

1. If A l = A2 are equal real eigenvalues, then the critical point (0, 0) of ( 1 8) is 
either a node or a spiral point, and is asymptotically stable if Al = A2 < 0, 
unstable if A l = A2 > O. 

2. If A l and A2 are pure imaginary, then (0, 0) is either a center or a spiral 
point, and may be either asymptotically stable, stable, or unstable. 

3. Otherwise-that is, unless A I and A2 are either real equal or pure 
imaginary-the critical point (0, 0) of the almost linear system in ( 1 8) is 
of the same type and stability as the critical point (0, 0) of the associated 
linear system in ( 1 7) .  

Thus, if A l i= A2 and Re(Ad i= 0, then the type and stability of the critical 
point of the almost linear system in ( 1 8) can be determined by analysis of its associ
ated linear system in ( 1 7), and only in the case of pure imaginary eigenvalues is the 
stability of (0, 0) not determined by the linear system. Except in the sensitive cases 
A l = A2 and Re(Ai ) = 0, the trajectories near (0, 0) will resemble qualitatively 
those of the associated linear system-they enter or leave the critical point in the 
same way, but may be "deformed" in a nonlinear manner. The table in Fig. 7.3 . 12 
summarizes the situation. 

An important consequence of the classification of cases in Theorem 2 is that 
a critical point of an almost linear system is asymptotically stable if it is an asymp
totically stable critical point of the linearization of the system. Moreover, a critical 
point of the almost linear system is unstable if it is an unstable critical point of the 
linearized system. If an almost linear system is used to model a physical situation, 
then-apart from the sensitive cases mentioned earlier-it follows that the qualita
tive behavior of the system near a critical point can be determined by examining its 
linearization. 
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AI < A2 < 0 
A I = A2 < 0 
A I < 0 < A2 
A I = A2 > 0 
A I > A2 > 0 
A I .  A2 = a ± bi (a < 0) 
A I ,  A2 = a ± bi (a > 0) 
A I .  A2 = ±bi 

Type of Critical Point of 

the Almost Linear System 

Stable improper node 
Stable node or spiral point 
Unstable saddle point 
Unstable node or spiral point 
Unstable improper node 
Stable spiral point 
Unstable spiral point 
Stable or unstable, center or spiral point 

FIGURE 7.3.12. Classification of critical points of an almost linear system. 

- -

Determine the type and stability of the critical point (0, 0) of the almost linear 
system 

dx 
= 4x + 2y + 2x2 - 3i ,  

dt 
dy 
dt 

= 4x - 3y + 7xy .  
( 1 9) 

Solution The characteristic equation for the associated linear system (obtained simply by 
deleting the quadratic terms in ( 1 9)) is 

(4 - 1..) (  -3 - A) - 8 = (A - 5) (1.. + 4) = 0, 

so the eigenvalues A l  = 5 and 1..2 = -4 are real, unequal, and have opposite signs . 
By our discussion of this case we know that (0, 0) is an unstable saddle point of 
the linear system, and hence by Part 3 of Theorem 2, it is also an unstable sad
dle point of the almost linear system in ( 1 9) .  The trajectories of the linear system 
near (0, 0) are shown in Fig. 7.3 . 1 3 , and those of the nonlinear system in ( 1 9) are 
shown in Fig. 7 .3 . 14 . Figure 7.3 . 1 5  shows a phase portrait of the nonlinear sys
tem in ( 1 9) from a "wider view." In addition to the saddle point at (0, 0) , there are 
spiral points near the points (0.279, 1 .065) and (0.933 , - 1 .057) , and a node near 
(-2.354, -0.483) . • 
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FIGURE 7.3.13. Trajectories of 
the linearized system of Example 7. 

-0.2 �;---. 

- 0.4 

x 

FIGURE 7.3.14. Trajectories of 
the original almost linear system of 
Example 7. 

x 

FIGURE 7.3.15. Phase portrait 
for the almost linear system in 
Eq. ( 1 9) .  
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Exa m ple 8 

We have seen that the system x' = f(x , y) ,  y' = g (x , y) with isolated critical 
point (xo , Yo) transforms via the substitution x = u + xo , y = v + Yo to an equiv
alent u v-system with corresponding critical point (0, 0) and linearization u' = Ju, 
whose coefficient matrix J is the Jacobian matrix in (8) of the functions f and g at 
(xo ,  yo) .  Consequently we need not carry out the substitution explicitly; instead, we 
can proceed directly to calculate the eigenvalues of J preparatory to application of 
Theorem 2. 

Determine the type and stability of the critical point (4, 3) of the almost linear 
system 

dx 2 
dt 

= 33 - lOx - 3y + x , 

dy 
dt 

= - 1 8  + 6x + 2y - xy. 
(20) 

Solution With f(x , y) = 33 - lOx - 3y + x2 , g (x , y) = - 1 8  + 6x + 2y - xy and Xo = 4, 
Yo = 3 we have 

J( ) _ [ - 1O + 2X x , y - 6 - y 

The associated linear system 

-3 ] 
2 - x ' 

[ -2 -3 ] so J(4, 3) = 
3 -2 . 

du 
- = -2u - 3v ,  
dt  
dv  
- = 3u - 2v 
dt 

(2 1 )  

has characteristic equation (.i. + 2)2 + 9 = 0,  with complex conjugate roots .i. = 
-2 ± 3i . Hence (0, 0) is an asymptotically stable spiral point of the linear system in 
(2 1 ) ,  so Theorem 2 implies that (4, 3) is an asymptotically stable spiral point of the 
original almost linear system in (20) . Figure 7 .3 . 1 6  shows some typical trajectories 
of the linear system in (2 1 ) , and Fig. 7 .3 . 1 7  shows how this spiral point fits into the 
phase portrait for the original almost linear system in (20) . • 

u 

FIGURE 7.3.16. Spiral trajectories 
of the linear system in Eq. (2 1 ) .  

1 2 r7�w-���"nnrTO 

10 

8 p'--� 

6 

", 4  

2 

O ��������� 

-2 

x 

FIGURE 7.3.17. Phase portrait for 
the almost linear system in Eq. (20). 



_ Problems 

In Problems 1 through 10, apply Theorem 1 to determine the 
type of the critical point (0, 0) and whether it is asymtotically 
stable, stable, or unstable. Verify your conclusion by using a 
computer system or graphing calculator to construct a phase 
portrait for the given linear system. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

dx - = -2x + y dt ' 
dx 
dt = 4x - y , 
dx - = x + 2y, dt 
dx - = 3x + y, dt 
dx - = x - 2y , dt 
dx - = 5x - 3y dt ' 
dx - = 3x - 2y, dt 
dx - = x - 3y , dt 
dx - = 2x - 2y , dt 
dx - = x - 2y, dt 

dy - = x  - 2y dt 
dy - = 2x + y  dt 
dy - = 2x + y  dt 
dy - = 5x - y  dt 
dy - = 2x - 3y dt 
dy - = 3x - y  dt 
dy - = 4x - y  dt 
dy - = 6x - 5y dt 
dy - = 4x - 2y dt 
dy - = 5x - y  dt 

Each of the systems in Problems 11 through 18 has a single 
critical point (xo , yo) . Apply Theorem 2 to classify this critical 
point as to type and stability. Verify your conclusion by using 
a computer system or graphing calculator to construct a phase 
portrait for the given system. 

11.  

12. 

13. 

14. 

15. 

16. 

17. 

18. 

dx dy 
dt = x - 2y, dt = 3x - 4y - 2 
dx dy 
dt = x - 2y - 8, dt = x + 4y + 10 
dx dy 
dt = 2x - y - 2, dt = 3x - 2y - 2 
dx dy 
dt = x + y - 7, dt = 3x - y - 5 
dx dy 
dt = x - y, dt = 5x - 3y - 2 
dx dy - = x - 2y + 1 - = x + 3y - 9 dt ' dt 
dx dy 
dt = x - 5y - 5, dt = x - y - 3 
dx dy 
dt = 4x - 5y + 3, dt = 5x - 4y + 6 

In Problems 19 through 28, investigate the type of the criti
cal point (0, 0) of the given almost linear system. Verify your 
conclusion by using a computer system or graphing calculator 
to construct a phase portrait. Also, describe the approximate 
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locations and apparent types of any other critical points that 
are visible in your figure. Feel free to investigate these addi
tional critical points; you can use the computational methods 
discussed in the application material for this section. 

dx 
19. dt = x - 3y + 2xy, 

dx 
20. - = 6x - 5y + x2 , dt 

dy - = 4x - 6y - xy 
dt 
dy 
_ = 2x _ y +  y2 dt 

dx 
21. - = x + 2y + x2 + y2 , 

dt 
dy - = 2x - 2y - 3xy 
dt 

dx 
22. - = x + 4y - xy2 , dt 

dx 
23. - = 2x - 5y + x3 , dt 

dy - = 2x _ y + x2y dt 
dy = 4x _ 6y + y4 dt 

dx 
24. dt = 5x - 3y + Y (X2 + y2) , dy 

_ = 5x + Y (X2 + y2) dt 
dx 

25. dt = x - 2y + 3xy, dy 2 2 - = 2x - 3y - x - Y dt 
dx 2 2 26. dt = 3x - 2y - x - y , 

dx 
27. - = x - y + X4 _ y2, 

dt 
dx 

28. - = 3x - y + x3 + y3 , 
dt 

dy - = 2x - y  - 3xy 
dt 

dy = 2x _ y + y4 _ x2 dt 
dy - = 13x - 3y + 3xy 
dt 

In Problems 29 through 32, find all critical points of the given 
system, and investigate the type and stability of each. Verify 
your conclusions by means of a phase portrait constructed us
ing a computer system or graphing calculator. 

dx dy 
29. dt = x - y, dt = x

2 - Y 

30. 
dx 
dt = y - 1 , dy 

_ = x2 - y  dt 
dx dy 

31. _ = y2 - 1 , _ = x3 - y dt dt 

32. 
dx dy - = xy - 2, - = x - 2y dt dt 

Bifurcations 

The term bifurcation generally refers to something "splitting 
apart. " With regard to differential equations or systems involv
ing a parameter, it refers to abrupt changes in the character of 
the solutions as the parameter is changed continuously. Prob
lems 33 through 36 illustrate sensitive cases in which small 
perturbations in the coefficients of a linear or almost linear 
system can change the type or stability (or both) of a critical 
point. 
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FIGURE 7.3.18(a). Stable spiral 
with E = -0.2. 
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FIGURE 7.3.18(b). Stable spiral 
with E = -0.05 . 
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FIGURE 7.3.18(c). Stable center 
with E = O. 

FIGURE 7.3.18(d). Unstable 
spiral with E = 0.05. 

FIGURE 7.3.18(e). Unstable 
spiral with E = 0.2. 

33. Consider the linear system 

dx - = EX - y, dt 
dy - = X + Ey . 
d t 

Show that the critical point (0, 0 ) i s  (a) a stable spiral 
point if E < 0; (b) a center if E = 0; (c) an unstable spi
ral point if E > O. Thus small perturbations of the system 
Xl = -y, yl = X can change both the type and stability of 
the critical point. Figures 7 .3 . 1 8(a)-(e) illustrate the loss 
of stability that occurs at E = 0 as the parameter increases 
from E < 0 to E > O. 

34. Consider the linear system 

dx - = -X + EY , d t 
dy 
dt = x - y . 

Show that the critical point (0, 0 ) i s  (a) a stable spiral 
point if E < 0; (b) a stable node if 0 � E < 1 .  Thus 
small perturbations of the system Xl = -X, yl = X - Y can 
change the type of the critical point (0, 0) without chang
ing its stability. 

35. This problem deals with the almost linear system 

dx 
dt = y + hx (x

2 + l) , dy 
dt = -x + hY (X

2 + l) ,  

i n  illustration o f  the sensitive case o f  Theorem 2 , in which 
the theorem provides no information about the stability of 
the critical point (0, 0) . (a) Show that (0, 0) is a center of 
the linear system obtained by setting h = O. (b) Suppose 
that h =1= O. Let r2 = X2 + y2 , then apply the fact that 

dx dy dr x dt + y dt = r dt 
to show that dr/dt = hr3 . (c) Suppose that h = -1 . 
Integrate the differential equation in (b) ; then show that 
r -+ 0 as t -+ +00. Thus (0, 0) is an asymptotically sta
ble critical point of the almost linear system in this case. 
(d) Suppose that h = + 1 .  Show that r -+ +00 as t in
creases, so (0, 0) is an unstable critical point in this case. 

36. This problem presents the famous H opj bifurcation for the 
almost linear system 

dx - = EX + y - x (x2 + l) ,  dt 
dy 2 2 
dt = -x + Ey - y (x + y ) ,  

which has imaginary characteristic roots A = ± i i f  E = O. 
(a) Change to polar coordinates as in Example 6 of Sec
tion 7.2 to obtain the system rl = r (E - r2) , (}I = -1 . 
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(b) Separate variables and integrate directly to show that 
if E ;£ 0, then r et) � ° as t � +00, so in this case the 
origin is a stable spiral point. (e) Show similarly that if 
E > 0, then r et) � .jE as t � +00, so in this case the 
origin is an unstable spiral point. The circle r (t ) == .jE 
itself is a closed periodic solution or limit cycle. Thus a 
limit cycle of increasing size is spawned as the parameter 
E increases through the critical value 0. 
In the case of a two-dimensional system that is not almost 
linear, the trajectories near an isolated critical point can 
exhibit a considerably more complicated structure than 
those near the nodes, centers, saddle points, and spiral 
points discussed in this section. For example, consider 
the system 

dx 3 3 
dt = x (x - 2y ) , 

dy 
= y (2x3 - l ) dt 

(22) 

having (0, 0) as an isolated critical point. This system is 
not almost linear because (0, 0) is not an isolated critical 
point of the trivial associated linear system x' = 0, y' = 0. 
Solve the homogeneous first-order equation 

= dx x (x3 - 2y3 ) 
to show that the trajectories of the system in (22) are folia 
of Descartes of the form 

x3 + l = 3cxy, 

where c is an arbitrary constant (Fig. 7.3 . 1 9) . 

FIGURE 7.3.19. Trajectories of the 
system in Eq. (22). 
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D 
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T 

38. First note that the characteristic equation of the 2 x 2 ma
trix A can be written in the form A 2 - T A + D = 0, 
where D is the determinant of A and the trace T of the 
matrix A is the sum of its two diagonal elements. Then 
apply Theorem 1 to show that the type of the critical point 
(0, 0) of the system x' = Ax is determined-as indicated 
in Fig. 7.3 .20-by the location of the point (T, D) in the 
trace-determinant plane with horizontal T -axis and verti
cal D-axis. 

FIGURE 7.3.20. The critical point (0, 0) of the 
system x' = Ax is a 

• spiral sink or source if the point (T, D) lies 
above the parabola T2 = 4D but off the 
D-axis ; 

• stable center if (T, D) lies on the positive 
D-axis; 

• nodal sink or source if (T, D) lies between the 
parabola and the T -axis; 

• saddle point if (T, D) lies beneath the T -axis. 

_ Ecol�g�c�l Models: ?redat�rs �n� Co�pet!tors 

Some of the most interesting and important applications of stability theory involve 
the interactions between two or more biological populations occupying the same 
environment. We consider first a predator-prey situation involving two species. 
One species-the predators-feeds on the other species-the prey-which in turn 
feeds on some third food item readily available in the environment. A standard 
example is a population of foxes and rabbits in a woodland; the foxes (predators) 
eat rabbits (the prey), while the rabbits eat certain vegetation in the woodland. Other 
examples are sharks (predators) and food fish (prey), bass (predators) and sunfish 
(prey) , ladybugs (predators) and aphids (prey), and beetles (predators) and scale 
insects (prey). 
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Exa mple 1 

The classical mathematical model of a predator-prey situation was developed 
in the 1 920s by the Italian mathematician Vito Volterra ( 1 860-1940) in order to 
analyze the cyclic variations observed in the shark and food-fish populations in the 
Adriatic Sea. To construct such a model, we denote the number of prey at time 
t by x (t ) ,  the number of predators by y (t) ,  and make the following simplifying 
assumptions . 

1. In the absence of predators, the prey population would grow at a natural rate, 
with dx/dt = ax , a > 0. 

2. In the absence of prey, the predator population would decline at a natural rate, 
with dy/dt = -by, b > 0. 

3. When both predators and prey are present, there occurs, in combination with 
these natural rates of growth and decline, a decline in the prey population and a 
growth in the predator population, each at a rate proportional to the frequency 
of encounters between individuals of the two species. We assume further that 
the frequency of such encounters is proportional to the product xy, reasoning 
that doubling either population alone should double the frequency of encoun
ters , while doubling both populations ought to quadruple the frequency of 
encounters . Consequently, the consumption of prey by predators results in 

• an interaction rate of decline -p x y in the prey population x ,  and 
• an interaction rate of growth qxy in the predator population y. 

When we combine the natural and interaction rates ax and -pxy for the prey 
population x ,  as well as the natural and interaction rates -by and qxy for the preda
tor population y,  we get the predator-prey system 

dx 
dt 

= ax - pxy = x (a - py) , 

dy 
dt 

= -by + qxy = y (-b + qx) ,  
( 1 )  

with the constants a ,  b, p ,  and q all positive. [Note: You may see the predator and 
prey equations written in either order in ( l ) .  It is important to recognize that the 
predator equation has negative linear term and positive interaction term, whereas 
the prey equation has positive linear term and negative interaction term.] 

_ _  O N  N ___ O_ N� N N N  ___ _ • _ ___ u _ . �  •• _� � _ .  __ o� � __ o _� N ___ ' _ _  � _ 

The Critical Points A critical point of the general predator-prey system in ( 1 )  is 
a solution (x , y) of the equations 

x (a - py) = 0, y (-b + qx) = 0. (2) 

The first of these two equations implies that either x = ° or y = a/ p ¥= 0, and 
the second implies that either y = ° or x = b/q ¥= 0. It follows readily that this 
predator-prey system has the two (isolated) critical points (0, 0) and (b/q , alp) .  

THE CRITICAL POINT (0, 0) : The Jacobian matrix of the system in ( 1 )  is [ a - py -px ] J(x , y) =  qy -b + qx ' so J(O, 0) = [ � -� l (3) 

The matrix J(O , 0) has characteristic equation (a - A) ( -b - A) = ° and the eigen
values A l  = a > 0, A2 = -b < ° with different signs. Hence it follows from 
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Theorems 1 and 2 in Section 7 .3 that the critical point (0, 0) is an unstable saddle 
point, both of the predator-prey system and of its linearization at (0, 0) . The cor
responding equilibrium solution x (t) == 0, y et) == 0 merely describes simultaneous 
extinction of the prey (x ) and predator (y) populations. 

THE CRITICAL POINT (blq , alp) : The Jacobian matrix 

J(blq , alp) = 
[ 0 _:b ] 

aq 
0 

P 

(4) 

has characteristic equation )...2 + ab = 0 and the pure imaginary eigenvalues A I , 
A2 = ±iv'ab. It follows from Theorem 1 in Section 7 .3 that the linearization of the 
predator-prey system at (blq , alp) has a stable center at the origin. Thus we have 
the indeterminate case of Theorem 2 in Section 7 .3 ,  in which case the critical point 
can (aside from a stable center) also be either a stable spiral sink or an unstable spiral 
source of the predator-prey system itself. Hence further investigation is required to 
determine the actual character of the critical point (blq , alp) .  The corresponding 
equilibrium solution x (t) == blq , y et) == alp describes the only nonzero constant 
prey (x) and predator (y) populations that coexist permanently. 

THE PHASE PLANE PORTRAIT In Problem 1 we ask you to analyze numerically 
a typical predator-prey system and verify that the linearizations at its two critical 
points agree qualitatively with the phase plane portrait shown in Fig. 7 .4. 1-where 
the nontrivial critical point appears visually to be a stable center. Of course, only 
the first quadrant of this portrait corresponds to physically meaningful solutions 
describing nonnegative populations of prey and predators. 

In Problem 2 we ask you to derive an exact implicit solution of the predator
prey system of Fig. 7.4. I-a solution that can be used to show that its phase plane 
trajectories in the first quadrant are, indeed, simple closed curves that encircle the 
critical point (75 , 50) as indicated in the figure. It then follows from Problem 30 in 

x 

FIGURE 7.4.1 .  Phase plane portrait for the predator-prey system 
x' = 200x - 4xy , y' = - 1 50y + 2xy with critical points (0, 0) and (75 , 50) . 
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FIGURE 7.4.2. The predator-prey 
phase portrait of Example 2. 
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Example 2 
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FIGURE 7.4.3. Periodic 
oscillations of the predator and 
prey populations in Example 2. 

Section 7 .2 that the explicit solution functions x (t) and y (t) are both periodic func
tions of t-thus explaining the periodic fluctuations that are observed empirically 
in predator-prey populations. • 

Oscillating Populations Figure 7 .4.2 shows a computer-generated direction field 
and phase portrait for the predator-prey system 

dx 
dt 

= (0.2)x - (0.005)xy = (0.005)x (40 - y) , 
(5) 

dy 
dt 

= - (0.5)y + (O.OI )xy = (O.O l ) y (  -50 + x) ,  

where x (t) denotes the number of  rabbits and y (t) the number of  foxes after t 
months. Evidently the critical point (50, 40) is a stable center representing equi
librium populations of 50 rabbits and 40 foxes . Any other initial point lies on a 
closed trajectory enclosing this equilibrium point. The direction field indicates that 
the point (x (t ) ,  y (t ) )  traverses its trajectory in a counterclockwise direction, with 
the rabbit and fox populations oscillating periodically between their separate max
imum and minimum values. A drawback is that the phase plane plot provides no 
indication as to the speed with which each trajectory is traversed. 

This lost "sense of time" is recaptured by graphing the two individual popu
lation functions as functions of time t .  In Fig. 7.4.3 we have graphed approximate 
solution functions x (t) and y (t) calculated using the Runge-Kutta method of Sec
tion 6.4 with initial values x (O) = 70 and y (O) = 40. We see that the rabbit 
population oscillates between the extreme values Xmax � 72 and Xmin � 33,  while 
the fox population oscillates (out of phase) between the extreme values Ymax � 70 
and Ymin � 20. A careful measurement indicates that the period P of oscillation 
of each population is slightly over 20 months. One could "zoom in" on the maxi
mum/minimum points on each graph in order to refine these estimates of the period 
and the maximum and minimum rabbit and fox populations . 

Any positive initial conditions Xo = x (O) and Yo = y (O) yield a similar pic
ture, with the rabbit and fox populations both surviving in coexistence with each 
other. • 

Competing Species 

Now we consider two species (of animals, plants, or bacteria, for instance) with 
populations x (t) and y (t) at time t and which compete with each other for the food 
available in their common environment. This is in marked contrast to the case in 
which one species preys on the other. To construct a mathematical model that is as 
realistic as possible, let us assume that in the absence of either species, the other 
would have a bounded (logistic) population like those considered in Section 1 .7 .  In 
the absence of any interaction or competition between the two species, their popu
lations x (t) and y (t) would then satisfy the differential equations 

dx 2 - = alX  - b1x , 
dt 
dy 2 - = a2Y - b2Y , 
dt 

(6) 

each of the form of Eq. (2) of Section 1 .7 .  But in addition, we assume that competi
tion has the effect of a rate of decline in each population that is proportional to their 
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product xy. We insert such tenns with negative proportionality constants -CI and 
-C2 in the equations in (6) to obtain the competition system 

dx 2 
- = a lx - blx - ClXY = x (a l - blx - CI Y) ,  
dt 

where the coefficients a i ,  a2 , b l , b2 , CI , and C2 are all positive. 

(7) 

The almost linear system in (7) has four critical points. Upon setting the right
hand sides of the two equations equal to zero, we see that if x = 0, then either Y = 0 
or Y = a2/b2 , whereas if Y = 0, then either x = 0 or x = ai/bl . This gives the three 
critical points (0, 0) , (0, a2/b2) ,  and (a i/b I , 0) . The fourth critical point is obtained 
from the simultaneous solution of the equations 

(8) 

We assume that, as in most interesting applications, these equations have a single 
solution and that the corresponding critical point lies in the first quadrant of the XY
plane. This point (xE ' YE )  i s  then the fourth critical point of the system in (7), and it 
represents the possibility of coexistence of the two species, with constant nonzero 
equilibrium populations x (t) == xE and y (t ) == YE •  

We are interested in the stability of the critical point (xE ' YE ) .  This turns out 
to depend on whether 

(9) 

Each inequality in (9) has a natural interpretation. Examining the equations in (6), 
we see that the coefficients bl and b2 represent the inhibiting effect of each popula
tion on its own growth (possibly due to limitations of food or space). On the other 
hand, CI and C2 represent the effect of competition between the two populations. 
Thus bl b2 is a measure of inhibition while CI C2 is a measure of competition. A 
general analysis of the system in (7) shows the following: 

1. If CI C2 < bl b2 , so that competition is small in comparison with inhibition, 
then (xE ' YE )  i s  an asymptotically stable critical point that i s  approached by 
each solution as t ---+ +00. Thus the two species can and do coexist in this 
case. 

2. If CI C2 > bl b2 , so that competition is large in comparison with inhibition, then 
(xE ' YE )  is an unstable critical point, and either x (t) or y (t) approaches zero 
as t ---+ +00. Thus the two species cannot coexist in this case; one survives 
and the other becomes extinct. 

Rather than carrying out this general analysis, we present two examples that 
illustrate these two possibilities . 

_,.n.i.m" -"��i;al�f-a--Si';gJ; Sp��ies --SU:pp��� that the
- 'p�p��ti��-;-x(i)� �d- y<t) '-s�ti�y 

the equations 

dx I 2 
- = 14x - Z-X - xy ,  
dt 
dy I 2 
dt 

= 1 6y - z-y - xy, 
( 10) 
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x 

FIGURE 7.4.4. Phase plane 
portrait for the linear system 
x' = 14x ,  y' = 1 6y corresponding 
to the critical point (0, 0) . 

u 

FIGURE 7.4.5. Phase plane 
portrait for the linear system in 
Eq. ( 1 3) corresponding to the 
critical point (0, 32) .  

in which a l = 14, a2 = 1 6, bi = b2 = ! , and CI = C2 = 1 .  Then C j C2 = 1 > 

� = bI b2 , so we should expect survival of a single species as predicted in Case 2 
previously. We find readily that the four critical points are (0, 0) , (0, 32) , (28, 0) , 
and ( 1 2 , 8) . We shall investigate them individually. 

THE CRITICAL POINT (0, 0 ) :  The Jacobian matrix of  the system in  ( 1 0) is 

J(x ,  y) = [ 1 4 -
_� - y -x ] 

1 6  - y - x ' [ 14  0 ] so J(O , 0) = 0 1 6  
. ( 1 1 )  

The matrix J (O , 0 )  has characteristic equation ( 14  - A) ( 1 6  - A) = 0 and has the 
eigenvalues 

and 

A l = 14  with eigenvector VI = [ l O r  

A2 = 1 6  with eigenvector V2 = [ 0 1 r .  

Both eigenvalues are positive, so it follows that (0, 0) is a nodal source for the 
system's linearization x' = 14x , y' = 1 6y at (0, 0) , and hence-by Theorem 2 in 
Section 7 .3-is also an unstable nodal source for the original system in ( 1 0) .  Figure 
7 .4.4 shows a phase portrait for the linearized system near (0, 0) . 

THE CRITICAL POINT (0, 32) : Substitution of x = 0, y = 32 in the Jacobian 
matrix J(x , y) shown in ( 1 1 )  yields the Jacobian matrix 

[ - 1 8  0 ] J(O , 32) = -32 - 1 6 
( 12) 

of the nonlinear system ( 1 0) at the point (0, 32) . Comparing Eqs . (7) and (8) in 
Section 7 .3 ,  we see that this Jacobian matrix corresponds to the linearization 

du 
- = - 1 8u ,  
dt 
dv 
- = -32u - 1 6v 
dt 

( 1 3) 

of ( 1 0) at (0, 32) . The matrix J(O , 32) has characteristic equation (- 1 8  - A) (  - 16 -
A )  = 0 and has the eigenvalues A l = - 1 8  with eigenvector VI = [ 1 1 6  r and 

A2 = - 1 6 with eigenvector V2 = [ 0 1 ] T . Because both eigenvalues are negative, 
it follows that (0, 0) is a nodal sink for the linearized system, and hence-by Theo
rem 2 in Section 7 .3-that (0, 32) is also a stable nodal sink for the original system 
in ( 1 0) .  Figure 7.4.5 shows a phase portrait for the linearized system near (0, 0) . 



u 

FIGURE 7.4.6. Phase plane 
portrait for the linear system in 
Eq. ( 1 5) corresponding to the 
critical point (28 , 0) .  

u 

FIGURE 7.4.7. Phase plane 
portrait for the linear system in 
Eq. ( 1 7) corresponding to the 
critical point ( 1 2, 8) . 
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THE CRITICAL POINT (28, 0) :  The Jacobian matrix 

J(28 , 0) = [ - 16 =i� ] 
corresponds to the linearization 

du 
- = - 14u - 28v 
dt ' 

dv 
- = - 1 2v 
dt 

( 14) 

( 15) 

of ( 1 0) at (28 , 0) . The matrix J(28, 0) has characteristic equation (- 14 - A) ( - 12-
A) = 0 and has the eigenvalues A I = - 14 with eigenvector v I = [ l O r  and A2 = 

- 1 2 with eigenvector V2 = [ - 14 1 r. Because both eigenvalues are negative, it 
follows that (0, 0) is a nodal sink for the linearized system, and hence-by Theorem 
2 in Section 7 .3-that (28 , 0) is also a stable nodal sink for the original nonlinear 
system in ( 1 0) .  Figure 7.4.6 shows a phase portrait for the linearized system near 
(0, 0) . 

THE CRITICAL POINT ( 12,  8 ) :  The Jacobian matrix 

J( 1 2, 8) = [ =� -�� ] 
corresponds to the linearization 

du 
- = -6u - 1 2v ,  
dt 
dv 
- = - 8u - 4v 
dt 

of ( 1 0) at ( 1 2, 8) . The matrix J( 1 2, 8) has characteristic equation 

(-6 - A) (-4 - A) - (-8) (- 1 2) = A2 + lOA - 72 = 0 

and has the eigenvalues 

and 

A l = -5 - ,J97  < 0 with eigenvector VI = [ i ( 1 + -J97) 1 r 

A2 = -5 + ,J97 > 0 with eigenvector V2 = [ i ( 1 - -J97 )  1 t .  

( 16) 

( 17) 

Because the two eigenvalues have opposite signs, it follows that (0, 0) is a sad
dle point for the linearized system and hence-by Theorem 2 in Section 7.3-that 
( 1 2, 8) is also an unstable saddle point for the original system in ( 10) .  Figure 7.4.7 
shows a phase portrait for the linearized system near (0, 0) . 

Now that our local analysis of each of the four critical points is complete, it 
remains to assemble the information found into a coherent global picture. If we 
accept the facts that 
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Exa m ple 4 

• Near each critical point, the trajectories for the original system in ( 10) resem
ble qualitatively the linearized trajectories shown in Figs. 7.4.4-7.4.7, and 

• As t -+ +00 each trajectory either approaches a critical point or diverges 
toward infinity, 

then it would appear that the phase plane portrait for the original system must resem
ble the rough sketch shown in Fig. 7.4. 8 .  This sketch shows a few typical freehand 
trajectories connecting a nodal source at (0, 0) , nodal sinks at (0, 32) and (28 , 0) , 
and a saddle point at ( 1 2, 8) , with indicated directions of flow along these trajecto
ries consistent with the known character of these critical points . Figure 7 .4.9 shows 
a more precise computer-generated phase portrait and direction field for the nonlin
ear system in ( 10) . 
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FIGURE 7.4.8. Rough sketch consistent 
with the analysis in Example 3 . 

FIGURE 7.4.9. Phase plane portrait 
for the system in Example 3 . 

The two trajectories that approach the saddle point ( 1 2, 8) , together with that 
saddle point, form a separatrix that separates regions I and II in Figure 7.4.9. 
It plays a crucial role in determining the long-term behavior of the two popula
tions. If the initial point (xo , Yo) lies precisely on the separatrix, then (x (t ) ,  y et»� 
approaches ( 1 2, 8) as t -+ +00. Of course, random events make it extremely 
unlikely that (x (t) , y et » �  will remain on the separatrix. If not, peaceful coexis
tence of the two species is impossible. If (xo , Yo) lies in Region I above the sep
aratrix, then (x (t) , y et » �  approaches (0 , 32) as t -+ +00, so the population x (t) 
decreases to zero. Alternatively, if (xo , Yo) lies in Region II below the separatrix, 
then (x (t ) ,  y et » �  approaches (28, 0) as t -+ +00, so the population y et) dies out. 
In short, whichever population has the initial competitive advantage survives, while 
the other faces extinction. • 

... 

Peaceful Coexistence of Two Species Suppose that the populations x (t) and yet) 
satisfy the competition system 

dx 2 - = 14x - 2x - xy, 
dt 
dy 

= 1 6y - 2l - xy 
dt ' 

( 1 8) 

for which al = 1 4, a2 = 1 6, b l = b2 = 2, and CI = C2 = 1 .  Then CI C2 = 1 < 
4 = bl b2 , so now the effect of inhibition is greater than that of competition. We find 
readily that the four critical points are (0, 0) , (0, 8) , (7, 0) , and (4 , 6) . We proceed 
as in Example 3 .  



u 

FIGURE 7.4.10. Phase plane 
portrait for the linear system in 
Eq. (20) corresponding to the 
critical point (0, 8) .  

u 

FIGURE 7.4. 1 1. Phase plane 
portrait for the linear system in 
Eq. (22) corresponding to the 
critical point (7 , 0) . 
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THE CRITICAL POINT (0,0 ) :  When we drop the quadratic terms in ( 1 8) ,  we 
get the same linearization x' = 14x ,  y' = 1 6y at (0, 0) as in Example 3. Thus its 
coefficient matrix has the two positive eigenvalues )1.\ = 14  and A2 = 16 ,  and its 
phase portrait is the same as that shown in Fig. 7 .4.3 . Therefore, (0, 0) is an unstable 
nodal source for the original system in ( 1 8) .  

THE CRITICAL POINT (0,8) : The Jacobian matrix of the system in ( 1 8) is 

J(x ,  y) = [ 14  - 4x - y 
-y 

-x ] 
1 6  - 4y - x ' so J(O, 8) = [ _� - 1

� l ( 19) 

The matrix J (0, 8) corresponds to the linearization 

du 
= 6u 

dt ' 

dv 
- = -8u - 1 6v 
dt 

(20) 

of ( 1 8) at (0, 8 ) .  It has characteristic equation (6 - A) (- 16  - A) = 0 and has the 
positive eigenvalue A l  = 6 with eigenvector VI = [ 1 1  -4 r and the negative 

eigenvalue A2 = - 1 6 with eigenvector V2 = [ 0 1 r. It follows that (0, 0) is a 
saddle point for the linearized system, and hence that (0, 8) is an unstable saddle 
point for the original system in ( 1 8) .  Figure 7.4. 1 0  shows a phase portrait for the 
linearized system near (0, 0) . 

THE CRITICAL POINT (7, 0 ) :  The Jacobian matrix 

corresponds to the linearization 

du 
- = - 14u - 7v 
dt ' 

dv 
- = 9v 
dt 

(2 1 )  

(22) 

of ( 1 8) at (7, 0) . The matrix J (7 , 0) has characteristic equation ( - 14 - A) (9 - A) = 0 
and has the negative eigenvalue A l  = - 14 with eigenvector VI = [ l O r  and the 

positive eigenvalue A2 = 9 with eigenvector V2 = [ -7 23 ] T . It follows that 
(0, 0) is a saddle point for the linearized system, and hence that (7, 0) is an unstable 
saddle point for the original system in ( 1 8) .  Figure 7 .4. 1 1  shows a phase portrait for 
the linearized system near (0, 0) . 

THE CRITICAL POINT (4,6) : The Jacobian matrix 

[ -8 -4 ] 
J(4, 6) = 

-6 - 1 2  
(23) 
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u 

FIGURE 7.4.12. Phase plane 
portrait for the linear system in 
Eq. (24) corresponding to the 
critical point (4, 6) . 

8 
(4, 6) 

(0, 0) 

(0, 8) 

x 

FIGURE 7.4.13. Direction field 
and phase portrait for the 
competition system 
x

' = 14x - 2X2 - xy, 

y
' = 16y - 2y2 - xy 

of Example 4. 

corresponds to the linearization 

du 
- = - 8u - 4v 
dt ' 

dv 
- = -6u - 1 2v 
dt 

of ( 1 8) at (4, 6) . The matrix J (4, 6) has characteristic equation 

(-8  - A) (- 1 2  - A) - (-6) (-4) = A2 + 20A + 72 = 0 

and has the two negative eigenvalues 

and 

A l = 2(-5 - v'7) with eigenvector VI = [ H� l + v'7 )  1 r 

A2 = 2 (-5 + v'7) with eigenvector V2 = [ H- I - v'7) 1 r · 

(24) 

It follows that (0, 0) is a nodal sink for the linearized system, and hence that (4 , 6) 
is a stable nodal sink for the original system in ( 1 8) .  Figure 7.4. 1 2  shows a phase 
portrait for the linearized system near (0, 0) . 

Figure 7.4. 1 3  assembles all this local information into a global phase plane 
portrait for the original system in ( 1 8) .  The notable feature of this system is 
that-for any positive initial population values Xo and Yo-the point (x (t) , y et)) 
approaches the single critical point (4 ,  6) as t -+ +00. It  follows that the two 
species both survive in stable (peaceful) existence. • 

Interactions of Logistic Populations 

li the coefficients aI , a2 , b l , b2 are positive but C I = C2 = 0, then the equations 

dx 2 
- = alX  - b1 x - CIXY , 
dt 
dy 2 
- = a2Y - b2y - C2XY dt 

(25) 

describe two separate logistic populations x (t )  and y et) that have no effect on each 
other. Examples 3 and 4 illustrate cases in which the xy-coefficients C I and C2 
are both positive. The interaction between the two populations is then described 
as competition, because the effect of the xy-terms in (25) is to decrease the rates 
of growth of both populations-that is ,  each population is "hurt" by their mutual 
interaction. 

Suppose, however, that the interaction coefficients C I  and C2 in (25) are both 
negative. Then the effect of the xy-terms is to increase the rates of growth of both 
populations-that is, each population is "helped" by their mutual interaction. This 
type of interaction is aptly described as cooperation between the two logistic pop
ulations. 

Finally, the interaction between the two populations is one of predation if the 
interaction coefficients have different signs. For instance, if C I > 0 but C2 < 0, then 
the x-population is hurt but the y-population is helped by their interaction. We may 
therefore describe x (t) as a prey population and y (t )  as a predator population. 
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If either bl or b2 is zero in (25), then the corresponding population would 
(in the absence of the other) exhibit exponential growth rather than logistic growth. 
For instance, suppose that a l > 0, a2 < 0, bl = b2 = 0, and CI > 0, C2 < 0. 
Then x (t )  is a naturally growing prey population while y (t )  is a naturally declining 
predator population. This is the original predator-prey model with which we began 
this section. 

Problems 26 through 34 illustrate a variety of the possibilities indicated here. 
The problems and examples in this section illustrate the power of elementary 
critical-point analysis. But remember that ecological systems in nature are seldom 
so simple as in these examples. Frequently they involve more than two species, 
and the growth rates of these populations and the interactions among them often are 
more complicated than those discussed in this section. Consequently, the mathe
matical modeling of ecological systems remains an active area of current research. 

BI Problems 

Problems 1 and 2 deal with the predator-prey system 

dx 
dt = 200x - 4xy , 

dy 
dt = - IS0y + 2xy 

that corresponds to Fig. 7.4. 1. 

( 1 )  

1 .  Starting with the Jacobian matrix o f  the system i n  ( 1 ), de
rive its linearizations at the two critical points (0, 0) and 
(7S , SO) . Use a graphing calculator or computer system 
to construct phase plane portraits for these two lineariza
tions that are consistent with the "big picture" shown in 
Fig. 7.4. 1 .  

2. Separate the variables i n  the quotient 

dy - ISOy + 2xy 
- = --,--,,.-,,--:=-----=--dx 200x - 4xy 

of the two equations in ( I ) , and thereby derive the exact 
implicit solution 

200 1n y + I SO ln x - 2x - 4y = C 

of the system. Use the contour plot facility of a graphing 
calculator or computer system to plot the contour curves 
of this equation through the points (7S , 100) , (7S , I SO) , 
(7S , 200) , (7S , 2S0) , and (7S , 300) i n  the xy-plane . Are 
your results consistent with Fig. 7.4. 1 ?  

3. Let x (t ) be a harmful insect population (aphids?) that un
der natural conditions is held somewhat in check by a be
nign predator insect population y (t ) (ladybugs?). Assume 
that x (t ) and y (t ) satisfy the predator-prey equations in 
( 1 ), so that the stable equilibrium populations are xE = b/q 
and YE = a/po Now suppose that an insecticide is em
ployed that kills (per unit time) the same fraction f < a 
of each species of insect. Show that the harmful popula
tion xE is increased, while the benign population YE is de
creased, so the use of the insecticide is counterproductive. 

This is an instance in which mathematical analysis reveals 
undesirable consequences of a well-intentioned interfer
ence with nature. 

Problems 4 through 7 deal with the competition system 

dx 
- = 60x - 4x2 - 3xy 
dt ' 

dy 
= 42y _ 2y2 - 3xy dt ' 

(2) 

in which C IC2 = 9 > 8 = bl b2, so the effect of competition 
should exceed that of inhibition. Problems 4 through 7 imply 
that the four critical points (0, 0), (0, 2 1 ), ( I S , 0), and (6, 12) 
of the system in (2) resemble those shown in Fig. 7.4.9-a 
nodal source at the origin, a nodal sink on each coordinate 
axis, and a saddle point interior to the first quadrant. In each 
of these problems use a graphing calculator or computer sys
tem to construct a phase plane portrait for the linearization at 
the indicated critical point. Finally, construct a first-quadrant 
phase plane portrait for the nonlinear system in (2). Do your 
local and global portraits look consistent? 
4. Show that the coefficient matrix of the linearization x

' = 
60x , y' = 42y of (2) at (0, 0) has positive eigenvalues 
A I = 60 and A2 = 42. Hence (0, 0) is a nodal source for 
(2). 

5. Show that the linearization of (2) at (0, 2 1 ) is u' = -3u, 
v' = -63u -42v.  Then show that the coefficient matrix of 
this linear system has negative eigenvalues A I = -3 and 
A2 = -42. Hence (0, 2 1 )  is a nodal sink for the system in 
(2). 

6. Show that the linearization of (2) at ( 1 S ,  0) is u' = -60u-
4Sv , v' = -3v .  Then show that the coefficient matrix of 
this linear system has negative eigenValues A I = -60 and 
A2 = -3. Hence ( I S , 0) is a nodal sink for the system in 
(2). 

7. Show that the linearization of (2) at (6, 12) is u' = 
-24u - 1 8v,  v' = -36u - 24v . Then show that the 
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coefficient matrix of this linear system has eigenvalues 
A l = -24 - 1 8.J2 < 0 and A2 = -24 + 1 8.J2 > O. 
Hence (6, 1 2) is a saddle point for the system in (2). 

Problems 8 through 10 deal with the competition system 

dx 2 
dt = 60x - 3x - 4xy, 

dy 2 - = 42y - 3y - 2xy, dt 

(3) 

in which CI C2 = 8 < 9 = bl b2, so the effect of inhibition 
should exceed that of competition. The linearization of the sys
tem in (3) at (0, 0) is the same as that of (2). This observation 
and Problems 8 through 10 imply that the four critical points 
(0, 0), (0, 14), (20, 0), and ( 12 , 6) of(3) resemble those shown 
in Fig. 7.4. 13-a nodal source at the origin, a saddle point 
on each coordinate axis, and a nodal sink interior to the first 
quadrant. In each of these problems use a graphing calculator 
or computer system to construct a phase plane portrait for the 
linearization at the indicated critical point. Finally, construct 
a first-quadrant phase plane portrait for the nonlinear system 
in (3). Do your local and global portraits look consistent? 
8.  Show that the linearization of (3)  at (0 , 14) is u' = 4u , 

Vi = -28u - 42v . Then show that the coefficient matrix 
of this linear system has the positive eigenvalue A l = 4 
and the negative eigenvalue A2 = -42 . Hence (0, 14) is a 
saddle point for the system in (3) . 

9. Show that the linearization of (3) at (20, 0) is u' = -60u-
80v, Vi = 2v . Then show that the coefficient matrix of this 
linear system has the negative eigenvalue A l = -60 and 
the positive eigenvalue A2 = 2. Hence (20, 0) is a saddle 
point for the system in (3). 

10. Show that the linearization of (3) at ( 12 , 6) is u' = 
-36u - 48v, Vi = - 12u - 1 8v . Then show that the 
coefficient matrix of this linear system has eigenvalues 
A l = -27 + 3../73 and A2 = -27 - 3../73, both of which 
are negative. Hence ( 12 , 6) is a nodal sink for the system 
in (3). 

Problems 11 through 13 deal with the predator-prey system 

dx 2 
dt = 5x - x  - xy , 

dy - = -2y + xy dt ' 
(4) 

in which the prey population x (t ) is logistic but the predator 
population y (t) would (in the absence of any prey) decline 
naturally. Problems 1 1 through 13 imply that the three crit
ical points (0, 0), (5 , 0), and (2, 3) of the system in (4) are as 
shown in Fig. 7.4. 14-with saddle points at the origin and on 
the positive x-axis, and with a spiral sink interior to the first 
quadrant. In each of these problems use a graphing calcula
tor or computer system to construct a phase plane portrait for 
the linearization at the indicated critical point. Do your local 
portraits look consistent with Fig. 7.4. 14? 
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FIGURE 7.4.14. Direction field and phase 
portrait for the predator-prey system of 
Problems 1 1  through 1 3 .  

1 1. Show that the coefficient matrix of  the linearization x' = 
5x, y' = -2y of (4) at (0, 0) has the positive eigenvalue 
A l = 5 and the negative eigenvalue A2 = -2. Hence 
(0, 0) is a saddle point of the system in (4). 

12. Show that the linearization of (4) at (5 , 0) is u' = -5u -
5v , Vi = 3v .  Then show that the coefficient matrix of this 
linear system has the negative eigenvalue A I = -5 and the 
positive eigenvalue A2 = 3. Hence (5 , 0) is a saddle point 
for the system in (4). 

13. Show that the linearization of (4) at (2, 3) is u' = -2u -
2v, Vi = 3u .  Then show that the coefficient matrix of this 
linear system has the complex conjugate eigenvalues AI . 
A2 = - 1  ± i..j5 with negative real part. Hence (2, 3) is a 
spiral sink for the system in (4). 

Problems 14 through 17 deal with the predator-prey system 

dx 2 - = X - 2x - xy , d t 
dy 2 - = y  - 4y + xy . d t 

(5) 

Here each population-the prey population x (t) and the 
predator population y (t)-is an unsophisticated population 
(like the alligators of Section 1. 7) for which the only alter
natives (in the absence of the other population) are doomsday 
and extinction. Problems 14 through 1 7 imply that the four 
critical points (0, 0), (0, 4), (2, 0), and (3 , 1 )  of the system in 
(5) are as shown in Fig. 7.4. 15-a nodal sink at the origin, a 
saddle point on each coordinate axis, and a spiral source in
terior to the first quadrant. This is a two-dimensional version 
of "doomsday versus extinction." If the initial point (xo , Yo) 
lies in Region I, then both populations increase without bound 
(until doomsday), whereas if it lies in Region II, then both pop
ulations decrease to zero (and thus both become extinct). In 
each of these problems use a graphing calculator or computer 
system to construct a phase plane portrait for the linearization 
at the indicated critical point. Do your local portraits look 
consistent with Fig. 7.4. IS? 
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FIGURE 7.4.15. Direction field and phase 
portrait for the predator-prey system of 
Problems 14 through 17 ,  

14. Show that the coefficient matrix of  the linearization x' = 
-2x, y' = -4 y of the system in (5) at (0, 0) has the neg
ative eigenvalues A 1 = -2 and A2 = -4, Hence (0, 0) is 
a nodal sink for (5) . 

15. Show that the linearization of (5) at (0, 4) is u' = -6u, 
Vi = 4u + 4v. Then show that the coefficient matrix of 
this linear system has the negative eigenvalue A 1 = -6 
and the positive eigenvalue A2 = 4. Hence (0 , 4) is a sad
dle point for the system in (5) . 

16. Show that the linearization of (5) at (2, 0) is u' = 2u - 2v, 
Vi = -2v. Then show that the coefficient matrix of this 
linear system has the positive eigenvalue A 1 = 2 and the 
negative eigenvalue A2 = -2, Hence (2, 0) is a saddle 
point for the system in (5) . 

17. Show that the linearization of (5) at (3 , 1) is u' = 3u - 3v, 
Vi = U + v . Then show that the coefficient matrix of 
this linear system has complex conjugate eigenvalues A J ,  
A2 = 2 ± i

...fi 
with positive real part. Hence (3 , 1 )  i s  a 

spiral source for (5) . 

Problems 18 through 25 deal with the predator-prey system 

dx 
dt = 2x - xy + Ex (5 - x) , 

dy 
dt = -5y + xy , 

(6) 

for which a bifurcation occurs at the value E = ° of the pa
rameter E. Problems 18 and 19 deal with the case E = 0, in 
which case the system in (6) takes the form 

dx - = 2x - xy dt ' 
dy 
- = -5x + xy dt ' (7) 

and these problems suggest that the two critical points (0, 0) 
and (5 , 2) of the system in (7) are as shown in Fig. 7.4. 16-a 
saddle point at the origin and a center at (5 , 2). In each prob
lem use a graphing calculator or computer system to construct 
a phase plane portrait for the linearization at the indicated 
critical point. Do your local portraits look consistent with Fig. 
7.4. 16? 
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FIGURE 7.4.16. The case E = ° 
(Problems 1 8  and 1 9) . 

18. Show that the coefficient matrix of the linearization x' = 
2x , y' = -5y of (7) at (0, 0) has the positive eigenvalue 
A 1 = 2 and the negative eigenvalue A2 = -5. Hence 
(0, 0) is a saddle point for the system in (7) . 

19. Show that the linearization of the system in (7) at (5 , 2) is 
u' = -5v, Vi = 2u . Then show that the coefficient matrix 
of this linear system has conjugate imaginary eigenvalues 
A 1 , A2 = ±i

vltO. Hence (0, 0) is a stable center for the 
linear system. Although this is the indeterminate case of 
Theorem 2 in Section 7.3 , Fig. 7.4. 1 6 suggests that (5, 2) 
also is a stable center for (7). 

Problems 20 through 22 deal with the case E = - 1, for which 
the system in (6) becomes 

dx 2 - = -3x + x  - xy dt ' 
dy 
dt = -5y + xy, (8) 

and imply that the three critical points (0, 0), (3, 0), and (5, 2) 
of(8) are as shown in Fig. 7.4. 1 7-with a nodal sink at the ori
gin, a saddle point on the positive x -axis, and a spiral source at 
(5 , 2). In each problem use a graphing calculator or computer 
system to construct a phase plane portrait for the linearization 
at the indicated critical point. Do your local portraits look 
consistent with Fig. 7.4. 17? 

FIGURE 7.4.17. The case E = - 1  
(Problems 20 through 22). 

20. Show that the coefficient matrix of the linearization x' = 
-3x, y' = -5 y of the system in (8) at (0, 0) has the neg
ative eigenvalues A 1 = -3 and A2 = -5. Hence (0, 0) is 
a nodal sink for (8). 
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21 .  Show that the linearization of the system in (8 ) at (3 , 0) i s  
u' = 3u - 3v , v' = -2v. Then show that the coefficient 
matrix of this linear system has the positive eigenvalue 
A 1 = 3 and the negative eigenvalue A2 = -2. Hence 
(3, 0) is a saddle point for (8) . 

22. Show that the linearization of (8) at (5 , 2) is u' = 5u - 5v , 
v ' = 2u . Then show that the coefficient matrix of  this lin
ear system has complex conjugate eigenvalues A 1 , A2 = 
H5 ± i

.JI5 ) with positive real part. Hence (5 , 2) is a 
spiral source for the system in (8) . 

Problems 23 through 25 deal with the case € = 1, so that the 
system in (6) takes theform 

dx 2 - = 7x - x  - xy dt ' 
dy - = -5y + xy dt ' (9) 

and these problems imply that the three critical points (0, 0), 
(7 , 0), and (5 , 2) of the system in (9) are as shown in 
Fig. 7.4. I8-with saddle points at the origin and on the pos
itive x-axis and with a spiral sink at (5 , 2). In each problem 
use a graphing calculator or computer system to construct a 
phase plane portrait for the linearization at the indicated crit
ical point. Do your local portraits look consistent with Fig. 
7.4. I8? 
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FIGURE 7.4.18. The case € = + 1  
(Problems 23 through 25) . 

23. Show that the coefficient matrix of the linearization x' = 
7x, y' = -5y of (9) at (0, 0) has the positive eigenvalue 

A 1 = 7 and the negative eigenvalue A2 = -5. Hence 
(0, 0) is a saddle point for the system in (9). 

24. Show that the linearization of (9) at (7, 0) is u' = -7u -
7v, v' = 2v. Then show that the coefficient matrix of this 
linear system has the negative eigenvalue A 1 = -7 and the 
positive eigenvalue A2 = 2. Hence (7, 0) is a saddle point 
for the system in (9). 

25. Show that the linearization of (9) at (5 , 2) is u' = -5u -
5v , v' = 2u . Then show that the coefficient matrix of this 
linear system has the complex conjugate eigenvalues A J ,  
A2 = H -5 ± i

.JI5 ) with negative real part. Hence (5 , 2) 
is a spiral sink for the system in (9). 

For each two-population system in Problems 26 through 34, 
first describe the type of x- and y-populations involved (ex
ponential or logistic) and the nature of their interaction
competition, cooperation, or predation. Then find and char
acterize the system 's critical points (as to type and stability). 
Determine what nonzero x- and y-populations can coexist. 
Finally, construct a phase plane portrait that enables you to 
describe the long-term behavior of the two populations in 
terms of their initial populations x (O) and y (O). 

dx dy 
26. dt = 2x - xy, dt = 3y - xy 

dx dy 
27. dt = 2xy - 4x , dt = xy - 3y 

dx dy 
28. - = 2xy - 16x , - = 4y - xy dt dt 
29. 

30. 

31.  

32. 

33. 

34. 

dx 2 1 - = 3x - x - -xy dt 2 ' 
dx 2 1 - = 3x - x + -xy dt 2 ' 
dx 2 1 - = 3x - x  - -xy dt 4 ' 
dx - = 30x - 3x2 + xy , dt 
dx 2 - = 30x - 2x - xy dt ' 
dx - = 30x - 2X2 - xy dt ' 

dy - = 4y - 2xy dt 
dy 1 
dt = 

Sxy - y 

dy - = xy - 2y dt 
dy - = 60y - 3y2 + 4xy dt 
dy - = 80y - 4y2 + 2xy dt 
dy - = 20y _ 4y2 + 2xy dt 

Equilibrium 
position 

110 .......... · ... · ... 4&"" ... 4...... ...... : "  � I 
�' ) �.:nnmr��::;·0 ' 

FIGURE 7.5.1.  The mass on a 
spring. 

Now we apply the qualitative methods of Sections 7.2 and 7.3 to the analysis of 
simple mechanical systems like the mass-on-a-spring system shown in Fig. 7 .5 . 1 .  
Let m denote the mass in a suitable system of units and let x (t ) denote the dis
placement of the mass at time t from its equilibrium position (in which the spring 
is unstretched) .  Previously we have always assumed that the force F(x) exerted by 
the spring on the mass is a linear function of x :  F(x) = -kx (Hooke's law). In 
reality, however, every spring in nature actually is nonlinear (even if only slightly 
so). Moreover, springs in some automobile suspension systems deliberately are de
signed to be nonlinear. Here, then, we are interested specifically in the effects of 
nonlinearity. 



7.5 Non l inear Mechanical Systems 527 

So now we allow the force function F(x) to be nonlinear. Because F(O) = 
o at the equilibrium position x = 0, we may assume that F has a power series 
expansion of the form 

F(x) = -kx + ax2 + fJx3 + . . . . ( 1 )  

We take k > 0 so  that the reaction of the spring i s  directed opposite to the displace
ment when x is sufficiently small. If we assume also that the reaction of the spring 
is symmetric with respect to positive and negative displacements by the same dis
tance, then F (-x) = -F (x) ,  so F is an odd function. In this case it follows that 
the coefficient of xn in Eq. ( 1 )  is zero if n is even, so the first nonlinear term is the 
one involving x3 • 

For a simple mathematical model of a nonlinear spring we therefore take 

F(x) = -kx + fJx3 , (2) 

ignoring all terms in Eq. ( 1 )  of degree greater than 3 . The equation of motion of the 
mass m is then 

mx" = -kx + fJx3 • 

The Position-Velocity Phase Plane 

If we introduce the velocity 
y (t )  = x' (t) 

(3) 

(4) 

of the mass with position x (t ) ,  then we get from Eq. (3) the equivalent first-order 
system 

dx 
dt 

= y ,  

dy 3 m- = -kx + fJx . 
dt 

(5) 

A phase plane trajectory of this system is a position-velocity plot that illustrates the 
motion of the mass on the spring. We can solve explicitly for the trajectories of this 
system by writing 

whence 

Integration then yields 

dy dy/dt 
dx dx/dt 

-kx + fJx3 

my 

my dy + (kx - fJx3) dx = O. 

(6) 

for the equation of a typical trajectory. We write E for the arbitrary constant of 
integration because KE = �my2 is the kinetic energy of the mass with velocity y ,  
and i t  is natural to define 

(7) 

as the potential energy of the spring. Then Eq. (6) takes the form KE + PE = E, 
so the constant E turns out to be the total energy of the mass-spring system. Eq. (6) 
then expresses conservation of energy for the undamped motion of a mass on a 
spring. 
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The behavior of the mass depends on the sign of the nonlinear term in Eq. (2). 
The spring is called 

• hard if fJ < 0, 
• soft if fJ > O. 

We consider the two cases separately. 

HARD SPRING OSCILLATIONS : If fJ < 0, then the second equation in (5) takes 
the form my' = -x ( l fJ lx2 + k) , so it follows that the only critical point of the 
system is the origin (0, 0) . Each trajectory 

(8) 

is an oval closed curve like those shown in Fig. 7 .5 .2,  and thus (0, 0) is a stable 
center. As the point (x (t) , y (t »  traverses a trajectory in the clockwise direction, 
the position x (t )  and velocity y (t )  of the mass oscillate alternately, as illustrated in 
Fig. 7 .5 .3 .  The mass is moving to the right (with x increasing) when y > 0, to the 
left when y < O. Thus the behavior of a mass on a nonlinear hard spring resembles 
qualitatively that of a mass on a linear spring with fJ = 0 (as in Example 4 of Section 
7.2) . But one difference between the linear and nonlinear situations is that, whereas 
the period T = 2rr Jm/k of oscillation of a mass on a linear spring is independent 
of the initial conditions, the period of a mass on a nonlinear spring depends on its 
initial position x (O) and initial velocity y (O) (Problems 2 1  through 26) . 
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FIGURE 7.5.2. Position-velocity 
phase plane portrait for the hard 
mass-and-spring system with 
m = k = 2 and ,B = -4 < O. 
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FIGURE 7.5.3. Position and 
velocity solution curves for the hard 
mass-and-spring system with 
m = k = 2 and ,B = -4 < O. 

Remark: The hard spring equation mx" = -kx - IfJ lx3 has equivalent 
first-order system 

x' = y , 

with Jacobian matrix 

J(x , y) = [ _� _03 I P I X2 
m m 

, k I fJ l 3 y = --x - -x 
m m 

1 ] 

o ' 
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(writing kim = w2 as usual) . The latter matrix has characteristic equation ').2 + 
w2 = 0 and pure imaginary eigenvalues '). 1 , ').2 = ±wi . Thus the linearized system 
x' = y, y' = _w2 x has a stable center at the critical point (0, O)-as we observed 
in Example 4 of Section 7.2 .  However, the nonlinear cubic term in the differential 
equation has (in effect) replaced the elliptical trajectories (as in Fig. 7 .2.7) of the 
linear system with the "flatter" quartic ovals we see in Fig. 7 .5 .2. • 

SOFT SPRING OSCILLATIONS :  If f3 > 0, then the second equation in (5) takes 
the form my' = x (f3x2 - k) , so it follows that the system has the two critical points 
(±Jk/f3 , 0) in addition to the critical point (0, 0) . These three critical points yield 
the only solutions for which the mass can remain at rest. The following example 
illustrates the greater range of possible behaviors of a mass on a soft spring. 

(9) 

and Eq. (6) gives the trajectories in the form 

( 10) 

After solving for 

( 10') 

we could select a fixed value of the constant energy E and plot manually a trajectory 
like one of those shown in the computer-generated position-velocity phase plane 
portrait in Fig. 7 .5 .4. 

5 
4 
3 

(-2, 0) 2 
1 

'" 0 
- 1  
- 2  (2, 0) 

- 3  
- 4  

x 

FIGURE 7.5.4. Position-velocity phase plane portrait 
for the soft mass-and-spring system with m = I ,  k = 4, 
and fJ = 1 > O. The separatrices are emphasized. 

The different types of phase plane trajectories correspond to different values 
of the energy E .  If we substitute x = ±Jk/f3 and y = 0 into (6), we get the 
energy value E = k2/(4f3) = 4 (because k = 4 and f3 = 1 )  that corresponds to 
the trajectories that intersect the x-axis at the nontrivial critical points (-2, 0) and 
(2, 0) . These emphasized trajectories are called separatrices because they separate 
phase plane regions of different behavior. 

The nature of the motion of the mass is determined by which type of trajectory 
its initial conditions determine. The simple closed trajectories encircling (0, 0) in 
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10 mr---r--�--�----rn 

5 

-0.5 o 
t 

0.5 

FIGURE 7.5.5. Position and 
velocity solution curves for the 
soft mass-and-spring system with 
m = I ,  k = 4, f3 = 1 > 0, and 
energy E = 8-sufficiently great 
that the mass approaches the 
origin from the left and continues 
on indefinitely to the right. 

the region bounded by the separatrices correspond to energies in the range 0 < E < 
4. These closed trajectories represent periodic oscillations of the mass back and 
forth around the equilibrium point x = O. 

The unbounded trajectories lying in the regions above and below the separa
trices correspond to values of E greater than 4. These represent motions in which 
the mass approaches x = 0 with sufficient energy that it continues on through the 
equilibrium point, never to return again (as indicated in Fig. 7.5.5) .  

The unbounded trajectories opening to the right and left correspond to negative 
values of E .  These represent motions in which the mass initially is headed toward 
the equilibrium point x = 0, but with insufficient energy to reach it. At some point 
the mass reverses direction and heads back whence it came. 

In Fig. 7.5 .4 it appears that the critical point (0, 0) is a stable center, whereas 
the critical points (±2, 0) look like saddle points of the equivalent first-order system 

x' = y , y' = -4x + x3 ( 1 1 )  

with Jacobian matrix 

J (x , y) = [ -4 2 3x2 b ] · 
To check these observations against the usual critical-point analysis, we note first 
that the Jacobian matrix 

J(O, 0) = [ _� 6 ] 
at the critical point (0, 0) has characteristic equation A 2 + 4 = 0 and pure imaginary 
eigenvalues A I , A2 = ±2i consistent with a stable center. Moreover, the Jacobian 
matrix 

J(±2, O) = [ �  6 ]  
corresponding to the other two critical points has characteristic equation A 2 - 8 = 0 
and real eigenvalues A I ,  A2 = ±-J8 of opposite sign, consistent with the saddle
point behavior that we observe near (-2, 0) and (+2, 0) . • 

Remark: Figures 7.5 .2 and 7.5 .4 illustrate a significant qualitative differ
ence between hard springs with f3 < 0 and soft springs with f3 > 0 in the nonlinear 
equation mx" = kx + f3x3 • Whereas the phase plane trajectories for a hard spring 
are all bounded, a soft spring has unbounded phase plane trajectories (as well as 
bounded ones). However, we should realize that the unbounded soft-spring trajec
tories cease to represent physically realistic motions faithfully when they exceed the 
spring's  capability of expansion without breaking. • 

Damped Nonlinear Vibrations 

Suppose now that the mass on a spring is connected also to a dashpot that provides a 
force of resistance proportional to the velocity y = dxfdt of the mass. If the spring 
is still assumed nonlinear as in Eq. (2), then the equation of motion of the mass is 

mx" = -ex' - kx + f3x3 , ( 12) 

where c > 0 is the resistance constant. If f3 > 0, then the equivalent first-order 
system 

dx - = y , 
dt 

dy = -kx - cy + f3x3 
= _�y _ �x (1 _ t!...x2) 

dt m m m k 
( 1 3) 
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has critical points (0, 0) and (±,Jk/f3 , 0) and Jacobian matrix 

J(x , y) = [
_

"- : 3p 
x' _

Ie ] . 

m m m 

Now the critical point at the origin is the most interesting one. The Jacobian matrix 

has characteristic equation 

and eigenvalues 

( C ) k 1 2 (-A) - - - A  + - = -(mA + cA + k) = O 
m m m 

-c ± ,Jc2 - 4km 
A I , A2 = 

2m . 
It follows from Theorem 2 in Section 7 .3  in that the critical point (0, 0) of the system 
in ( 1 3) is 

• a nodal sink if the resistance is so great that c2 > 4km (in which case the 
eigenvalues are negative and unequal), but is 

• a spiral sink if c2 < 4km (in which case the eigenvalues are complex conju
gates with negative real part). 

The following example illustrates the latter case. (In the borderline case with equal 
negative eigenvalues, the origin may be either a nodal or a spiral sink.) 

� _  _ __ H_�_ ._ �_'� ___ � ___ . __ H � . _ _ _  " _ " � _  

Suppose that m = 1 , c = 2, k = 5 ,  and f3 = Then the nonlinear system in ( 1 3) is 

dx 
- = y, 
dt 

dy = -5x _ 2y + ix3 = -2y - 5x ( 1  - iX2) .  
dt 

It has critical points (0, 0), (±2, 0) and Jacobian matrix 

At (0, 0) : The Jacobian matrix 

(14) 

has characteristic equation A 2 + 2A + 5 = 0 and has complex conjugate eigenvalues 
A I , A2 = - 1  ± 2i with negative real part. Hence (0, 0) is a spiral sink of the 
nonlinear system in ( 1 4), and the linearized position function of the mass is of the 
form 

x (t )  = e-t (A cos 2t + B sin 2t) 
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that corresponds to an exponentially damped oscillation about the equilibrium posi
tion x = o. 
At (±2, 0) : The Jacobian matrix 

J(±2, 0) = [ l � _� ] 
has characteristic equation A 2 + 2A - 10 = 0 and real eigenvalues A l = - 1  - .JII < 
o and A2 = - 1  + .JII > 0 with different signs. It follows that (-2, 0) and (+2, 0) 
are both saddle points of the system in ( 1 4) .  

The position-velocity phase plane portrait in Fig. 7.5 .6 shows trajectories of 
( 1 4) and the spiral sink at (0, 0), as well as the unstable saddle points at (-2, 0) and 
(2, 0) . The emphasized separatrices divide the phase plane into regions of different 
behavior. The behavior of the mass depends on the region in which its initial point 
(xo ,  YO) is located. If this initial point lies in 

• Region I between the separatrices, then the trajectory spirals into the ori
gin as t --+ +00, and hence the periodic oscillations of the undamped case 
(Fig. 7.5 .4) are now replaced with damped oscillations around the stable equi
librium position x = 0; 

• Region II, then the mass passes through x = 0 moving from left to right (x 
increasing); 

• Region III, then the mass passes through x = 0 moving from right to left (x 
decreasing) ; 

• Region IV, then the mass approaches (but does not reach) the unstable equi
librium position x = -2 from the left, but stops and then returns to the left; 

• Region V, then the mass approaches (but does not reach) the unstable equilib
rium position x = 2 from the right, but stops and then returns to the right. 

If the initial point (xo , Yo) l ies precisely on one of the separatrices, then the corre
sponding trajectory either approaches the stable spiral point or recedes to infinity 
from a saddle point as t --+ +00. -

FIGURE 7.5.6. Position-velocity phase plane portrait for the soft mass-and-spring 
system with m = 1 ,  k = 5, f3 = � , and resistance constant c = 2. The (black) 
separatrices are emphasized. 
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The Nonlinear Pendulum 

In Section 2.4 we derived the equation 

d2e g . � - + - sm e = O  
dt2 L 

( 1 5) 

for the undamped oscillations of the simple pendulum shown in Fig. 7 .5 .7 . There 
we used the approximation sin e � e for e near zero to replace Eq. ( 1 5) with the 
linear model 

d2e 
dt2 + (Jie = 0, 

where w2 = giL . The general solution 

e (t) = A cos wt + B sin wt 

( 1 6) 

( 17) 

of Eq. ( 1 6) describes oscillations around the equilibrium position e = 0 with circu
lar frequency w and amplitude C = (A2 + B2) 1 /2 . 

The linear model does not adequately describe the possible motions of the 
pendulum for large values of e .  For instance, the equilibrium solution e (t) == :n: of 
Eq. ( 1 5), with the pendulum standing straight up, does not satisfy the linear equation 
in ( 1 6) . Nor does Eq. ( 1 7) include the situation in which the pendulum "goes over 
the top" repeatedly, so that e (t )  is a steadily increasing rather than an oscillatory 
function of t . To investigate these phenomena we must analyze the nonlinear equa
tion e" + w2 sin e = 0 rather than merely its linearization e" + w2e = O. We also 
want to include the possibility of resistance proportional to velocity, so we consider 
the general nonlinear pendulum equation 

d2e de . � 
dt2 

+ c 
dt + w2 sm e = O. ( 1 8) 

The case c > 0 corresponds to damped motion in which there actually is 
resistance proportional to (angular) velocity. But we examine first the undamped 
case in which c = O. With x (t ) = e (t) and y (t ) = e ' (t ) the equivalent first-order 
system is 

dx 
- = y,  
dt 

dy 2 • - = -w sm x .  
dt 

We see that this system is almost linear by writing it in the form 

dx 

where 

dt 
= y ,  

dy 2 
dt 

= -w x + g(x ) ,  

g (x) = -w2 (sin x - x) = w2 - - - + . . .  
(X3 x5 ) 

3 !  5 !  
has only higher-degree terms. 

( 1 9) 

(20) 

The critical points of the system in ( 1 9) are the points (n:n: ,  0) with n an integer, 
and its Jacobian matrix is given by 

J(x ,  y) = [ -w2�os x � ] . 
The nature of the critical point (n:n:, 0) depends on whether n is even or odd. 

(2 1 )  
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EVEN CASE : If n = 2m is an even integer, then cos nrr = + 1 ,  so (2 1 )  yields the 
matrix 

J(2mrr, 0) = [ _�2 6 ] 
with characteristic equation A2 + w2 = 0 and pure imaginary eigenvalues A I , A2 = 
±wi . The linearization of ( 1 9) at (nrr, 0) is therefore the system 

du 
- = v , 
dt 

dv 2 - = -w u 
dt 

(22) 

for which (0, 0) is the familiar stable center enclosed by elliptical trajectories (as in 
Example 4 of Section 7 .2). Although this is the delicate case for which Theorem 2 
of Section 7.3 does not settle the matter, we will see presently that (2mrr, 0) is also 
a stable center for the original nonlinear pendulum system in ( 1 9) . 

ODD CASE : If n = 2m + 1 is an odd integer, then cos nrr = - 1 ,  so (2 1 )  yields 
the matrix 

J«2m + l )rr, 0) = [ �2 6 ] 
with characteristic equation A2 - w2 = 0 and real eigenvalues A I , A2 = ±w with 
different signs. The linearization of ( 1 9) at «2m + 1 )rr, 0) is therefore the system 

du 
dt 

= v , 
dv 2 - = w u 
dt 

(23) 

for which (0, 0) is a saddle point. It follows from Theorem 2 of Section 7.3 that 
the critical point «2m + l )rr, 0) is a similar saddle point for the original nonlinear 
pendulum system in ( 1 9) .  

THE TRAJECTORIES : We can see how these "even centers" and "odd saddle 
points" fit together by solving the system in ( 1 9) explicitly for the phase plane tra
jectories. If we write 

and separate the variables, 

dy dyfdt 
= 

dx dxfdt y 

y dy + w2 sin x dx = 0, 

then integration from x = 0 to x = x yields 

(24) 

We write E for the arbitrary constant of integration because, if physical units are so 
chosen that m = L = 1 ,  then the first term on the left is the kinetic energy and the 
second term the potential energy of the mass on the end of the pendulum. Then E 
is the total mechanical energy; Eq. (24) thus expresses conservation of mechanical 
energy for the undamped pendulum. 

If we solve Eq. (24) for y and use a half-angle identity, we get the equation 

(25) 
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x 

FIGURE 7.S.S. Position-velocity phase plane portrait for the undamped pendulum 
system x' = y, y

' = - sin x .  The (black) separatrices are emphasized. 

that defines the phase plane trajectories. Note that the radicand in (25) remains 
positive if E > 2w2 • Figure 7 .5 .8  shows (along with a direction field) the results of 
plotting these trajectories for various values of the energy E.  

The emphasized separatrices in  Fig. 7 .5 . 8  correspond to the critical value E = 
2w2 of the energy; they enter and leave the unstable critical points (n:rr , 0) with n 
an odd integer. Following the arrows along a separatrix, the pendulum theoretically 
approaches a balanced vertical position () = x = (2m + l ):rr with just enough energy 
to reach it but not enough to "go over the top." The instability of this eqUilibrium 
position indicates that this behavior may never be observed in practice ! 

The simple closed trajectories encircling the stable critical points-all of 
which correspond to the downward position () = 2m:rr of the pendulum-represent 
periodic oscillations of the pendulum back and forth around the stable eqUilibrium 
position () = O. These correspond to energies E < 2w2 that are insufficient for the 
pendulum to ascend to the vertical upward position-so its back-and-forth motion 
is that which we normally associate with a "swinging pendulum." 

The unbounded trajectories with E > 2w2 represent whirling motions of the 
pendulum in which it goes over the top repeatedly-in a clockwise direction if y(t) 
remains positive, in a counterclockwise direction if y (t )  is negative. 

Period of Undamped Oscillation 

If the pendulum is released from rest with initial conditions 

x (O) = () (O) = a, y (O) = () ' (0) = 0, 

then Eq. (24) with t = 0 reduces to 

(26) 

(27) 

Hence E < 2w2 if 0 < a < :rr , so a periodic oscillation of the pendulum ensues. 
To determine the period of this oscillation, we subtract Eq. (27) from Eq. (24) and 
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write the result (with x = B and y = dB/dt) in the form (dB )2 
4 dt 

= ai (cos B - cos a) .  (28) 

The period T of time required for one complete oscillation is four times the 
amount of time required for B to decrease from B = a to B = 0, one-fourth of an 
oscillation. Hence we solve Eq. (28) for dt/dB and integrate to get 

T = _4_ fOi dB 
. 

w,J'i 10 Jcos B - cos a 
(29) 

To attempt to evaluate this integral we first use the identity cos B = 1 - 2 sin2 (Bj2) 
and get 

where 
. a 

k = sm 2 . 

Next, the substitution u = ( I/k) sin(Bj2) yields 

4 t du 
T = -;; 10 J( I  _ u2) ( 1  - k2u2) 

Finally, the substitution u = sin cp gives 

4 r(2 dcp 
T = -;; 10 Jl - k2 sin2 cp (30) 

The integral in (30) is the elliptic integral of the first kind that is often denoted 
by F (k ,  rr/2) . Whereas elliptic integrals normally cannot be evaluated in closed 
form, this integral can be approximated numerically as follows. First we use the 
binomial series 

1 � 1 . 3 . . .  (2n - 1 )  
---=== = 1 + L.,. xn 
.JI=X n= !  2 · 4 · · ·  (2n) 

(3 1) 

with x = k2 sin2 cp < 1 to expand the integrand in (30). Then we integrate termwise 
using the tabulated integral formula 

11((2 2 rr 1 ·  3 . . .  (2n - 1 )  
sin n cp dcp = - . . 

o 2 2 · 4 · · ·  (2n) 

The final result is the formula 

2rr [ � ( 1 · 3 · · ·  (2n - 1 » )2 2 ] T = - 1 + L.,. k n 
w 2 · 4 · · ·  (2n) n= !  [ ( ) 2 ( ) 2 ( ) 2 ] 1 2 1 · 3 4 1 · 3 · 5  6 

= To l + - k + - k +  k + · · ·  
2 2 · 4  2 · 4 · 6  

(32) 

(33) 

for the period T of the nonlinear pendulum released from rest with initial angle 
B (O) = a ,  in terms of the linearized period To = 2rr/w and k = sin(aj2) . 



10° 1 .00 1 9 
20° 1 .0077 
30° 1 .0 1 74 
40° 1 .03 1 3 
50° 1 .0498 
60° 1 .0732 
70° 1 . 1 02 1 
80° 1 . 1 375 
90° 1 . 1 803 

FIGURE 7.5.9. Dependence of 
the period T of a nonlinear 
pendulum on its initial angle Ot .  
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The infinite series within the second pair of brackets in Eq. (33) gives the 
factor T /To by which the nonlinear period T is longer than the linearized period. 
The table in Fig. 7 .5 .9 ,  obtained by summing this series numerically, shows how 
T /To increases as ex is increased. Thus T is 0. 1 9% greater than To if ex = 1 0° , 
whereas T is 1 8 .03% greater than To if ex = 90° . But even a 0. 1 9% discrepancy is 
significant-the calculation 

seconds hours days 
(0.00 1 9) x 3600 x 24-- x 7-- � 1 149 (seconds/week) 

hour day week 

shows that the linearized model is quite inadequate for a pendulum clock; a discrep
ancy of 1 9  min 9 s after only one week is unacceptable. 

Damped Pendulum Oscillations 

Finally, we discuss briefly the damped nonlinear pendulum. The almost linear first
order system equivalent to Eq. ( 1 9) is 

dx 
dt = y ,  

dy 2 • 
- = -w sm x - cy , 

dt 

(34) 

and again the critical points are of the form (nrr, 0) where n is an integer. In Prob
lems 9 through 1 1  we ask you to verify that 

• If n is odd, then (nrr, O) is an unstable saddle point of (34) , just as in the 
undamped case; but 

• If n is even and c2 > 4w2 , then (nrr, 0) is a nodal sink; whereas 
• If n is even and c2 < 4w2 , then (nrr, 0) is a spiral sink. 

Figure 7.5 . 1 0  illustrates the phase plane trajectories for the more interesting 
underdamped case, c2 < 4w2 • Other than the physically unattainable separatrix 

-3lt -2lt -It o 
x 

It 2lt 3lt 

FIGURE 7.5.10. Position-velocity phase plane portrait for the damped pendulum 
system x ' = y, y

' = - sin x - !y .  The (black) separatrices are emphasized. 
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trajectories that enter unstable saddle points, every trajectory eventually is "trapped" 
by one of the stable spiral points (mr, 0) with n an even integer. What this means is 
that even if the pendulum starts with enough energy to go over the top, after a certain 
(finite) number of revolutions it has lost enough energy that thereafter it undergoes 
damped oscillations around its stable (lower) equilibrium position. 

In Problems 1 through 4, show that the given system is almost 
linear with (0, 0) as a critical point, and classify this criti
cal point as to type and stability. Use a computer system or 
graphing calculator to construct a phase plane portrait that 
illustrates your conclusion. 

dx x dy . 
1. dt = 1 - e + 2y, dt = -x - 4 sm y 

2. �; = 2 sin x + sin y , �; = sin x + 2 sin y (Fig. 7.5 . 1 1 ) 

x 

FIGURE 7.5.11 .  Trajectories of the 
system in Problem 2. 

dx dy 
3. dt = e + 2y - 1 ,  dt = 8x + eY - 1 

dx . dy . 4. -d = smx cos y - 2y, - = 4x - 3 cos x sm y  t dt 
Find and classify each of the critical points of the almost lin
ear systems in Problems 5 through 8. Use a computer system 
or graphing calculator to construct a phase plane portrait that 
illustrates your findings. 

dx . dy 
5. - = -x + sm y, - = 2x dt dt 

dx dy . 
6. dt = y, dt = sm rrx - y  

dx dy 
7. - = 1 - ex -y , - = 2 sin x 

dt dt 
dx . dy . 

8. dt = 3 sm x + y, dt = smx + 2y 

Problems 9 through 11 deal with the damped pendulum system 
x' = y, y' = -u} sin x - cy. 

9. Show that if n is an odd integer, then the critical point 
(nrr, 0) is a saddle point for the damped pendulum sys
tem. 

10. Show that if n is an even integer and c2 > 4w2 , then the 
critical point (nrr , 0) is a nodal sink for the damped pen
dulum system. 

11.  Show that if n is an even integer and c2 < 4w2 , then the 
critical point (nrr , 0) is a spiral sink for the damped pen
dulum system. 

In each of Problems 12 through 16, a second-order equation 
of the form x" + f(x ,  x') = 0, corresponding to a certain 
mass-and-spring system, is given. Find and classify the criti
cal points of the equivalent first-order system. 
12. x" + 20x -5x3 = 0: Verify that the critical points resemble 

those shown in Fig. 7.5 .4. 
13. x" + 2x' + 20x - 5x3 = 0: Verify that the critical points 

resemble those shown in Fig. 7 .5 .6 . 
14. x" - 8x + 2x3 = 0: Here the linear part of the force is re

pUlsive rather than attractive (as for an ordinary spring). 
Verify that the critical points resemble those shown in 
Fig. 7 .5 . 1 2. Thus there are two stable equilibrium points 
and three types of periodic oscillations. 

15. x" + 4x - x2 = 0: Here the force function is nonsymmet
ric. Verify that the critical points resemble those shown in 
Fig. 7 .5 . 1 3 .  

16. x" +4x -5x3 + x5 = 0 : The idea here i s  that terms through 
the fifth degree in an odd force function have been re
tained. Verify that the critical points resemble those shown 
in Fig. 7.5 . 14.  

In Problems 17 through 20, analyze the critical points of the 
indicated system, use a computer system to construct an illus
trative position-velocity phase plane portrait, and describe the 
oscillations that occur. 
17. Example 2 in this section illustrates the case of damped 

vibrations of a soft mass-spring system. Investigate an 
example of damped vibrations of a hard mass-spring sys
tem by using the same parameters as in Example 2, except 
now with ,8 = - �  < O. 

18. Example 2 illustrates the case of damped vibrations of a 
soft mass-spring system with the resistance proportional 
to the velocity. Investigate an example of resistance pro
portional to the square of the velocity by using the same 
parameters as in Example 2, but with resistance term 
-cx' lx' l instead of -ex' in Eq. ( 12) . 

19. Now repeat Example 2 with both the alterations corre
sponding to Problems 1 7  and 1 8 . That is, take ,8 = - �  < 
o and replace the resistance term in Eq. ( 1 2) with -cx' lx' l . 
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x x 

FIGURE 7.5.12. The phase 
portrait for Problem 14 . 

FIGURE 7.5.13. The phase 
portrait for Problem 1 5 . 

FIGURE 7.5.14. The phase 
portrait for Problem 16. 

20. The equations x' = y , y' = - sin x - iy l y l  model a 
damped pendulum system as in Eqs . (34) and Fig. 7.5 . 10 . 
But now the resistance is proportional to the square of the 
angular velocity of the pendulum. Compare the oscilla
tions that occur with those that occur when the resistance 
is proportional to the angular velocity itself. 

Problems 21 through 26 outline an investigation of the period 
T of oscillation of a mass on a nonlinear spring with equation 
of motion 

d2x -2 + cjJ (x) = o. dt (35) 

If cjJ (x ) = kx with k > 0, then the spring actually is linear 
with period To = 2n /../k. 
21. Integrate once (as in Eq. (6» to derive the energy equation 

22. 

!l + V ex)  = E, (36) 
where y = dx/dt and 

V ex) = lox cjJ (u) du o (37) 

If the mass is released from rest with initial conditions 
x (O) = xo , y eO) = 0 and periodic oscillations ensue, con
clude from Eq. (36) that E = V (xo) and that the time T 
required for one complete oscillation is 

4 ro du T = ..fi 10 ,JV(Xo) - V(u) 
(38) 

23. If cjJ (x) = kx - f3x3 as in the text, deduce from Eqs . (37) 
and (38) that 

T = 4
..fi x lXO d 

o ,J(x;j - u2) (2k - f3x;j - f3u2) 
(39) 

24. Substitute u = Xo cos cjJ in (39) to show that 

where To = 2n/../k 
is the linear period, 

1 E 
and fJ- = - - . -- . 2 l - E 

(40) 

(4 1 ) 

25. Finally, use the binomial series in  (3 1 )  and the integral 
formula in (32) to evaluate the elliptic integral in (40) and 
thereby show that the period T of oscillation is given by 

To ( 1 9 2 25 3 ) T = -- 1 + -fJ- + -fJ- + -fJ- + . . . . .JT=E 4 64 256 (42) 

26. If E = f3x5lk is sufficiently small that E2 is negligible, de
duce from Eqs. (4 1 ) and (42) that 

T � To ( 1 + �E) = To ( 1 + !! x�) . (43) 

It follows that 
• If f3 > 0, so the spring is soft, then T > To, and 

increasing Xo increases T, so the larger ovals in 
Fig. 7.5.4 correspond to smaller frequencies . 

• If f3 < 0, so the spring is hard, then T < To, 
and increasing Xo decreases T, so the larger ovals 
in Fig. 7.5 .2 correspond to larger frequencies. 
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7.5 Ap plic ation 

c 

FIGURE 7.5.17. A simple 
circuit with an active element. 

L 

The British mathematical physicist Lord Rayleigh (John William Strutt, 1 842- 19 19) 
introduced an equation of the form 

mx" + kx = ax' - b(x,) 3 ( 1 )  

to model the oscillations of a clarinet reed. With y = x' we  get the autonomous 
system 

x' = y , 

-kx + ay - bl 
y

' = -----=-----'--
(2) 

m 

whose phase plane portrait is shown in Fig. 7 .5 . 1 5  (for the case m = k = a = b = 
1 ) . The outward and inward spiral trajectories converge to a "limit cycle" solution 
that corresponds to periodic oscillations of the reed. The period T (and hence the 
frequency) of these oscillations can be measured on a tx-solution curve plotted as 
in Fig. 7 .5 . 1 6. This period of oscillation depends only on the parameters m, k, a, 
and b in Eq. ( 1 )  and is independent of the initial conditions (why?). 

x 

FIGURE 7.5.15. Phase plane 
portrait for the Rayleigh system in 
(2) with m = k = a = b = 1 .  

2.0 ,..--.---.-----.--,..-.----.----.--, 

1 .5 

1 .0 

0.5 

� 0.0 ...... o1-\-LJH-fJ4-+-t-'-f'--t-+i 
- 0.5 

- 1 .0 

- 1 .5 

- 2.0 0�..J,--...,..L,--,L:-::ll:--:'::--::'::--::':,....--J 
FIGURE 7.5.16. The tx-solution 
curve with initial conditions 
x (O) = 0.0 1 ,  x' (O) = O. 

Choose your own parameters m, k, a ,  and b (perhaps the least four nonzero 
digits in your student ID number) , and use an available ODE plotting utility to 
plot trajectories and solution curves as in Figs. 7 .5 . 1 5  and 7 .5 . 1 6. Change one of 
your parameters to see how the amplitude and frequency of the resulting periodic 
oscillations are altered. 

Van der Pol's Equation 

Figure 7 .5 . 1 7  shows a simple RLC circuit in which the usual (passive) resistance R 
has been replaced with an active element (such as a vacuum tube or semiconductor) 
across which the voltage drop V is given by a known function f (/) of the current I .  
Of course, V = f (/) = IR for a resistor. If  we substitute f (/) for IR in the familiar 
RLC-circuit equation L I ' + RI + Q / C  = 0 of Section 2.7, then differentiation gives 
the second-order equation 

1 
L I" + f' (/) / ' + - = o. 

C 
(3) 



4 r-.-.--.-.�r-.-.-� 
3 

2 

'" 0 I---'--flf--+'---H�'+-R---'--I 
- 1  

- 2  
- 3  

- 4 �7-����L-7-�� - 4  - 3  - 2  - 1  
x 

7.5 Nonl inear Mechanical Systems 541 

In a 1 924 study of oscillator circuits in early commercial radios, Balthasar van der 
Pol ( 1 889-1959) assumed the voltage drop to be given by a nonlinear function of 
the form f(1 )  = bI3 - aI ,  which with Eq. (3) becomes 

LI" + (3bl2 - a ) I ' + i = o. 
C 

(4) 

This equation is closely related to Rayleigh's equation and has phase portraits re
sembling Fig. 7 .5 . 1 5 .  Indeed, differentiation of the second equation in (2) and the 
resubstitution x' = y yield the equation 

my" + (3by2 - a)y' + ky = 0, (5) 

which has the same form as Eq. (4) . 
If we denote by r the time variable in Eq. (4) and make the substitutions 

1 =  px , t = rj.,fLC,  the result is 

d2x ( 2 2 ) rc dx 
dt2 + 3bp x - a V L dt 

+ x = o. 

With P = .,fa j (3b) and fL = a.,f C j L ,  this gives the standard form 

x" + fL(X2 - l )x' + x = 0 (6) 

of van der Pol 's equation. 
For every nonnegative value of the parameter fL, the solution of van der Pol's 

equation with x (0) = 2, x' (0) = 0 is periodic, and the corresponding phase plane 
trajectory is a limit cycle to which the other trajectories converge (as in Fig. 7.5. 15) .  
I t  will be instructive for you to solve van der Pol 's equation numerically and to 
plot this periodic trajectory for a selection of values from fL = 0 to fL = 1000 
or more. With fL = 0 it is a circle of radius 2 (why?). Figure 7 .5 . 1 8  shows the 
periodic trajectory with fL = 1 ,  and Fig. 7 .5 . 1 9  shows the corresponding x(t) and 
y (t )  solution curves. When fL is large, van der Pol 's equation is quite "stiff" and the 
periodic trajectory is more eccentric as in Fig. 7 .5 .20, which was plotted using MAT
LAB 'S stiff ODE solver ode 1 5 s .  The corresponding x (t) and y (t) solution curves 
in Figs. 7 .5 .21  and 7 .5 .22 reveal surprising behavior of these component functions. 

4 

3 

2 

1 
'" 0 � 

- 1  

- 2  
- 3  y(t) 
- 4  

0 5 1 0  1 5  20 
t 

2000 r-.---.---.--.----r---r---r-----, 

1 500 

1000 

500 

'" O r-�����--��� 

- 500 

- 1000 

- 1 500 
- 2000 '---':-�-'-----:':-----'-----':-�----' 

- 4 - 3  - 2  - 1  0 1 2 3 4 
x 

FIGURE 7.S.1S. The phase plane 
trajectory of a periodic solution of 
van der Pol's equation with fJ- = I ,  as 
well as some trajectories spiraling in 
and out. 

FIGURE 7.5.19. x (t) and y et) 
solution curves defining the 
periodic solution of van der Pol's 
equation with fJ- = 1 .  

FIGURE 7.5.20. The phase plane 
trajectory of the periodic solution of 
van der Pol's equation with 
fJ- = 1000. 
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1 500 1 500 
x(t) 1 000 y(t) 1000 

T 

-401--500.i--1O.J.....OO -1 5..LO""'0-2...J.OO-O-2....150-0-3....1000 
t 

FIGURE 7.5.21 .  Graph of x (t ) 
with JL = 1000. 

500 
'" 0 

-500 
-1000 
-1 500 

T 

o 500 1 000 1 500 2000 2500 3000 

FIGURE 7.5.22. Graph of y et ) with 
JL = 1000. 

500 
'" 0 

-500 
- 1000 
- 1500 

16 14.28 16 14.285 16 14.29 

FIGURE 7.5.23. The upper spike in 
the graph of y (t ) . 

Each alternates long intervals of very slow change with periods of abrupt change 
during very short time intervals that correspond to the "quasi-discontinuities" that 
are visible in Figs. 7 .5 .21  and 7 .5 .22. For instance, Fig. 7 .5 .23 shows that, between 
t = 1 6 1 4.28 and t = 1 6 1 4.29, the value of y (t ) zooms from near zero to over 1 300 
and back again. Perhaps you can measure the distance between x- or y-intercepts 
to show that the period of circuit around the cycle in Fig. 7 .5 .20 is approximately 
T = 1 6 14 .  Indeed, this calculation and the construction of figures like those shown 
here may serve as a good test of the robustness of your computer system's ODE 
solver. 

You might also plot other trajectories for f.L = 1 0, 1 00 or 1 000 that (like the 
trajectories in Fig. 7 .5 . 1 8) are "attracted" from within and without by the limit 
cycle. The origin looks like a spiral point in Fig. 7 .5 . 1 8 . Indeed, show that (0, 0) 
is a spiral source for van der Pol 's equation if 0 < f.L < 2 but is a nodal source if 
f.L � 2.  

IIIJ . .  Chaos in Dynamical �ystems 

In preceding sections we have looked at population growth and mechanical systems 
from a deterministic point of view-with the expectation that the initial state of a 
physical system fully determines its future evolution. But many common systems 
exhibit behavior that sometimes appears chaotic, in the sense that future states may 
not seem reliably predictable from a knowledge of initial conditions. This section 
includes project material illustrating the phenomenon of chaos, which is a topic of 
much current interest in science and engineering. 

Population Growth and Period Doubling 

In Section 1 .7 we introduced the logistic differential equation 

dP 2 - = aP - bP 
dt 

(a , b > 0) ( 1 )  

that models a bounded (rather than exponentially growing) population. Indeed, if 
the population p et) satisfies Eq. 0 ), then as t ---+ +00, p et) approaches the (finite) 
limiting population M = a/b . We discuss here a "discrete" version of the logistic 
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equation in the form of a type of "difference equation" that has been studied exten
sively in the past, but only recently has been discovered to predict quite exotic and 
unexpected patters of behavior for certain populations. 

In order to solve Eq. ( 1 )  numerically as in Section 6. 1 ,  we first choose a fixed 
step size h > 0 and consider the sequence of discrete times 

(2) 

where tn+ 1 = tn + h for each n . Beginning with the initial value Po = P (to) ,  we 
then calculate approximations 

(3) 

to the true values P (tl ) ,  P (t2 ) ,  P (t3 ) ,  . . .  of the actual population P(t) . For in
stance, Euler's  method for the logistic equation in ( 1 )  consists of calculating the 
approximations in (3) iteratively by means of the formula 

(4) 

Now suppose that the population is one for which the step size h can be cho
sen so that the approximations calculated using Eq. (4) agree to acceptable accuracy 
with the actual population values . This might be the case, for instance, for an ani
mal or insect population in which all reproduction takes place within short-duration 
breeding seasons that recur at regular intervals .  If h is the interval between suc
cessive breeding seasons, then the population Pn during one breeding season may 
depend only on the population Pn- I during the previous season, and Pn may com
pletely determine the population Pn+ 1 during the next breeding season. 

So let us assume for the sake of discussion that the successive values Pn = 
P (tn ) of the population are given by the equation 

(4) 

Thus we replace the original differential equation in ( 1 )  with a "discrete" difference 
equation 

(5) 

that gives the population difference � Pn = Pn+ I - Pn in terms of the time difference 
h = �t and the preceding population Pn • 

Equation (4) can be rewritten as the logistic difference equation 

where 

The substitution 

r = 1 + ah and s = bh . 

r 
Pn = -Xn 

S 

in Eq. (6) simplifies it still further to 

(6) 

(7) 

(8) 

(9) 

At this point we focus our attention on the final iterative formula in Eq. (9). 
Beginning with given values of Xo and r , this formula generates a sequence X" X2 , 
X3 , . . .  of values corresponding to the successive times tl ,  t2 , t3 , . . . . We may 
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r := 1 . 5 :  

think of Xn , the value at time tn , as the fraction of the maximum population that the 
environment can support. Assuming that the limiting fractional population 

Xoo = lim Xn n ...... oo ( 1 0) 

exists , we want to investigate the way in which Xoo depends on the growth parameter 
r in Eq. (9). That is, if we regard r as the input to the process and Xoo as the output, 
we ask how the output depends on the input. 

The iteration in Eq. (9) is readily implemented in any available calculator 
or computer language. Figure 7.6 . 1 shows illustrative Maple, Mathematica, and 
MATLAB code for a simple program that begins with Xl = 0.5 and calculates and 
assembles a list of the first couple of hundred (k = 200) iterates with r = 1 .5 .  

r = 1 . 5 ;  r = 1 . 5 ; 

x = array ( 1  . .  200 ) : 

x [ l ] : =  0 . 5 : 

x = Table [ n , { n , 1 , 200 } ] ; 

x [  [ 1 ] ] = 0 . 5 ;  

x = 1 : 200 ; 

x ( l )  = 0 . 5 ; 

for n = 2 : 200 for n from 2 to 200 do 

z : =  x [ n- 1 ] : 

FOr [ n=2 , n<=200 , 

n=n+1 , z = x ( n- 1 ) ; 

x [ n ]  : =  r* z * ( l- z ) : z = x [  [ n- 1 ) ) ; x ( n )  = r* z * ( l- z ) ; 

end od : x [ [ n ] ] = r* z * ( l - z ) ] ;  

FIGURE 7.6.1 .  Maple, Mathematica, and MATLAB versions of a simple iteration program. 

Because r = 1 + ah in (7), only values of r greater than 1 are pertinent to 
our idealized model of discrete population growth. It turns out that, for a typical 
such value of the growth parameter r entered at the first line, the results do not 
depend materially on the initial value Xl . After a reasonable number of iterations
the number required depends on the value of r-the value of Xn generally appears 
to "stabilize" on a limiting value Xoo as in Eq. ( 1 0) .  For example, Fig. 7 .6 .2 shows 
results of runs of our simple iteration program with the values r = 1 .5 ,  2.0, and 2.5 
of the growth rate parameter, yielding limiting (fractional) populations 

Xoo = 0.333333 ,  0 .500000, and 0.6000000, 

respectively. Thus it appears (so far) that Xoo exists and that its value grows moder
ately as r increases. 

X l 0 . 5  0 . 5  0 . 5  

x2 0 . 3 7 50 0 . 5000 0 . 6250 

x3 0 . 3 5 1 6  0 . 5000 0 . 5 8 5 9  

x l 9 7  0 . 3 3 3 3  0 . 5000 0 . 6000 

x l 9 8  0 . 3 3 3 3  0 . 5000 0 . 6000 

x l 9 9  0 . 3 3 3 3  0 . 5000 0 . 6000 

x200 0 . 3 3 3 3  0 . 5000 0 . 6000 

FIGURE 7.6.2. Iterates with growth parameters r = 1 .5 , 2.0, and 2.5. 
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EXERCISE 1 :  Try several other values of the growth rate parameter in the range 
1 < r < 3 .  Do your results support the conjecture that the limiting population 
always exists and is an increasing function of r ?  

The results i n  Fig. 7 .6 .3 show that the conjecture stated i n  Exercise 1 is false ! 
With growth rate parameters r = 3 . 1 and r = 3 .25 ,  the (fractional) population fails 
to stabilize on a single limiting population. (We calculated over a thousand iterates 
to make sure.) Instead, it oscillates between two different populations in alternate 
months (thinking of a month as our unit of time) . For instance, with r = 3 .25 we 
see that 

XlOOl = XlOO3 = XlOO5 = . . .  � 0.4953 ,  

whereas 
XlOO2 = X lO04 = X lOO6 = . . .  � 0.8 1 24. 

Thus we have not a single limiting population, but rather a "limiting cycle" consist
ing of two distinct populations (as illustrated graphically in Fig. 7.6.4). Furthermore, 
when the growth rate is increased to r = 3 .5 ,  the period of the cycle doubles, and 
now we have a limiting cycle with a period of 4-the population cycles repeatedly 
through the four distinct values 0.5009, 0.8750, 0 .3828, and 0.8269 (Fig. 7.6.5) . 

x - 0.8 124 

x = 0.4953 

r = 3.S 

x l 0 . 5000 0 . 5000 0 . 5000 

x2 0 . 7 7 50 0 . 8 1 2 5  0 . 8750  

x3 0 . 5406  0 . 4 9 5 1  0 . 3 8 2 8  

x4 0 . 7 6 99  0 . 8 1 2 4  0 . 8269  

x 1001 0 . 5580 0 . 4953  0 . 5009 

x 1002 0 . 7 64 6  0 . 8 1 2 4  0 . 87 50 

x 1003 0 . 5580  0 . 4953  0 . 3828  

x 1004 0 . 7 64 6  0 . 8 1 2 4  0 . 8269  

x 1005 0 . 5580 0 . 4953  0 . 5009 

x 1006 0 . 7 64 6  0 . 8 1 2 4  0 . 8750  

x 1007 0 . 5580  0 . 4953  0 . 3828  

x 1008 0 . 7 646  0 . 8 1 2 4  0 . 8269 

FIGURE 7.6.3. Cycles with period 2 with r = 3 . 1 and r = 3 .25 ; a 
cycle with period 4 with r = 3 .5 . 

1 .0 

0.6 
� 
� 

0.4 
x = 0.3828 

0.2 

0.0 '-::----L_..L..,----L---,..L----L..,......., -,J 
988 990 992 994 996 998 1000 0·�88 990 992 994 996 998 1000 

n n 

FIGURE 7.6.4. The graph of x (n) = Xn , showing 
the period 2 cycle of iterates obtained with r = 3 .25 . 

FIGURE 7.6.5. The graph of x (n) = Xn , showing 
the period 4 cycle of iterates obtained with r = 3 .5 . 
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n xn 

1001 0 . 5060 

1002 0 . 8 8 7 4  

1003 0 . 3 5 4 8 

1004 0 . 8 1 2 7  

1005 0 . 5405 

1006 0 . 8 8 1 7  

1007 0 . 3 7 0 3  

1008 0 . 82 7 8  

1009 0 . 5060 

1010 0 . 887 4 

1011  0 . 3 5 4 8 

1012 0 . 8 1 2 7  

1013 0 . 5405 

1014 0 . 8 8 1 7  

1015 0 . 3 7 0 3  

1 0 1 6  0 . 82 7 8  

FIGURE 7.6.6. The period 8 
cycle obtained with r = 3 .55 . 

EXERCISE 2: Try values of the growth rate parameter in the range 2 .9 < r < 3 . 1  
to determine as closely as possible just where the single limiting population splits 
(as r increases) into a cycle of period 2. Does this appear to happen just as r 
exceeds 3 ?  

The results shown i n  Fig. 7 .6 .6 indicate that a cycle with period 8 i s  obtained 
with the growth rate parameter value r = 3 .55 .  Events are now changing quite 
rapidly. 

EXERCISE 3 :  Verify that a cycle with period 1 6  is obtained with the growth rate 
parameter value r = 3 .565. 

EXERCISE 4: See if you can find a cycle of period 32 somewhere between r = 
3 .565 and r = 3 . 570. 

This is the phenomenon of period doubling for which the innocuous-looking 
iteration Xn+ l = r Xn ( 1  - xn) has become famous in recent years. As the growth 
rate parameter is increased beyond r = 3 .56, period doubling occurs so rapidly 
that utter chaos appears to break out somewhere near r = 3 .57.  Thus the graph 
shown in Fig. 7 .6 .7 indicates that, with r = 3 . 57, the earlier periodicity seems to 
have disappeared. No periodic cycle is evident, and the population appears to be 
changing (from one month to the next) in some essentially random fashion. Indeed, 
the deterministic population growth that is observed with smaller parameter values 
seems now to have degenerated into a nondeterministic process of apparently ran
dom change. That is, although the entire sequence of population values is certainly 
determined by the values Xl = 0.5 and r = 3 .57, successive population values for n 
large do not now appear to be "predicted" or determined in any systematic fashion 
by the immediately preceding values. 

1 .0 

0.8 

0.6 
? 
� 

0.4 

0.2 

0.0 '----'-_.l...--'-_.l...--'-_.L.---'----' 

1000 1005 1010 1015 1020 1025 1030 1035 1040 
n 

FIGURE 7.6.7. With r = 3 .57: Chaos ! 

The solutions and applications manuals accompanying this text include MAT
LAB, Mathematica, and other versions of a program called PICHFORK. This pro
gram produces a visual presentation of the way in which the behavior of our iteration 
depends on the value of the growth parameter r. For each value of r in the input 
interval a � r � b (the horizontal axis in the resulting diagram), 1 000 iterations 
are first carried out to achieve "stability." Then the next 250 values of X generated 
by the iteration are plotted on the vertical axis-that is, the screen pixel at (r, x) is 
"turned on." The descriptively named "pitchfork diagram" that results then shows 
at a glance whether a given value of r corresponds to a cycle (with finite period) or 
to chaos. If the resolution in the picture suffices to make it clear that only finitely 
many values of x are placed above a given value of r, then we see that the iteration 
is "eventually periodic" for that specific value of the growth rate parameter. 
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FIGURE 7.6.8. The pitchfork 
diagram with 2.8 ;;:; r ;;:; 4.0, 
0 ;;:;  x ;;:;  1 . 

r 
FIGURE 7.6.9. The pitchfork 
diagram with 3 . 8 ;;:; r ;;:; 3 .9, 
0 ;;:;  x ;;:;  1 . 
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Figure 7 .6 .8 shows the pitchfork diagram for the range 2.8 � r � 4.0. Scan
ning from left to right, we see a single limiting population until r � 3, then a cycle 
with period 2 until r � 3 .45, then a cycle of period 4, then one of period 8, and 
so forth, rapidly approaching the darkness of chaos. But note the vertical bands of 
"white space" that appear in the diagram between r = 3 .6  and r = 3 .7, between 
r = 3 .7  and r = 3 . 8 ,  and again between r = 3 . 8  and r = 3 .9 .  These represent 
regions where (periodic) order returns from the preceding chaos. 

For instance, Fig. 7.6.9 shows the interval 3 . 8  � r � 3 .9, where we observe 
a cycle of period 3 that emerges suddenly from the chaos near r = 3 .83 ,  and then 
splits successively into cycles of periods 6, 1 2, 24, . . .  (Figs. 7 .6 . 1 0  and 7.6. 1 1 ) . 
This period doubling beginning with a cycle of period 3 is especially significant-a 
fundamental article by James Yorke and T.-y' Li in the 1 975 American Mathemat
ical Monthly was entitled "Period Three Implies Chaos." According to this article, 
the existence of a cycle of period 3 (for an appropriate iteration) implies the exis
tence of cycles of every other (finite) period, as well as chaotic "cycles" with no 
period at all. 

:$ .., 

1 .0 x =  0.9594 
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x = 0.4880 

- x = 0. 1494 

0.0 
1002 1 004 1006 1008 10 10  1 0 1 2  

n 

FIGURE 7.6.10. The graph of x (n) = xn , 
showing the period 3 cycle of iterates 
obtained with r = 3 . 84. 
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x =  0.9582 

x =  8.5009 
x = .47 18  

x = 0. 1540 
x = 0. 1432 

FIGURE 7.6.11 .  The graph of x(n) = xn , 
showing the period 6 cycle of iterates 
obtained with r = 3 . 845. 

PROJECT 1 :  Use Program PICHFORK to search for other interesting cycles, and 
verify their apparent periods by appropriate iterative computations. For instance, 
you should find a cycle with period 1 0  between r = 3 .60 and r = 3 .6 1 ,  and one 
with period 14  between r = 3 .59 and r = 3 .60. Can you find cycles with period 5 
and 7? If so, look for subsequent period doubling. A run of PICHFORK requires 
several hundred thousand iterations, so it will help if you have a fast computer (or 
one you can leave running overnight) . 

As we scan the pitchfork diagram (Fig. 7 .6 .8) from left to right, we spot the 
successive values rl ,  r2 , r3 , . . .  of the growth rate parameter at which a bifurcation 
or qualitative change in the iteration Xn+ l = rxn ( 1  - xn) occurs as the value of r is 
increased further. These are the discrete values of r at which any sufficiently small 
increase in the growth parameter doubles the period of the iteration. In the 1970s the 
Los Alamos physicist Mitchell Feigenbaum discovered that a certain order underlies 
this period doubling toward chaos: 

1 .  rk - rk- l 
1m = 4.66920 1 6098 1 . . . . 

k-+oo rk+ l - rk 
( 1 1 )  

The fraction on the left i n  Eq. ( 1 1 )  i s  the ratio of the lengths of successive constant
period "windows" in the pitchfork diagram. It is the fact that this ratio approaches 
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",Uillr---j(t) 

(a) (b) (c) 

FIGURE 7.6.12. Equilibrium 
positions of a mass on a filament: 
(a) stable equilibrium with x < 0; 
(b) unstable equilibrium at x = 0; 
(c) stable equilibrium with x > o. 

a limit as k -+ +00, rather than the specific value of this limit, that demonstrates 
a sort of order underlying the period doubling observed with the particular iteration 
Xn+ 1 = rxn ( 1 - xn ) .  On the other hand, it is now known that precisely the same 
Feigenbaum constant 4.66920 1 6098 1  . . .  plays exactly the same role for a wide 
variety of period-doubling phenomena arising in many different areas of science. 

PROJECT 2 :  Feigenbaum used a (now long obsolete) HP-65 pocket calculator 
(rather than a powerful computer) to carry out the computations leading to the dis
covery of his famous constant. Perhaps you would like to use iterative computations 
and/or PICHFORK to isolate the first few bifurcation values rl , r2 , r3 , . . .  with suffi
cient accuracy to verify that the limit in ( 1 1 )  is approximately 4.67. You can consult 
pages 1 24-1 26 of T. Gray and J. Glynn, Exploring Mathematics with Mathematica 
(New York: Addison-Wesley, 1 99 1 )  for a fancier approach. 

Period Doubling in Mechanical Systems 

In Section 7.5 we introduced the second-order differential equation 

mx" + ex' + kx + f3x3 = 0 ( 1 2) 

to model the free velocity-damped vibrations of a mass on a nonlinear spring. Recall 
that the term kx in Eq. ( 1 2) represents the force exerted on the mass by a linear 
spring, whereas the term f3x3 represents the nonlinearity of an actual spring. 

We want now to discuss the forced vibrations that result when an external 
force F (t) = Fo cos wt acts on the mass. With such a force adjoined to the system 
in Eq. ( 1 2) ,  we obtain the forced Duffing equation 

mx" + ex' + kx + f3x3 = Fo cos wt ( 1 3 ) 

for the displacement x (t) of the mass from its equilibrium position. For most values 
of the parameters it is impossible to solve Eq. ( 1 3) explicitly for x (t ) .  Nevertheless, 
its solutions can be portrayed qualitatively by means of [numerically approximated] 
phase plane trajectories like those we used in Section 7 .5 to describe free vibrations 
of nonlinear mechanical systems. 

The Hooke's constant k is positive for a typical spring that resists displacement 
from equilibrium. But there do exist simple mechanical systems that emulate a 
spring having a negative Hooke' s  constant. For example, Fig. 7.6. 1 2  shows a mass 
m atop a vertical metal filament. We assume that the thin metal filament can oscillate 
only in a vertical plane, and behaves like a flexible column that "buckles" or bends 
when the mass is displaced to either side of the vertical position. Then there is one 
stable equilibrium point to the left (x < 0) and another to the right (x > 0) , but 
the vertical equilibrium position (x = 0) is unstable. When the mass is displaced 
slightly from this unstable equilibrium position, the internal force exerted on it is 
repulsive rather than attractive; this corresponds to a negative value of k in Eq. ( 1 3 ) . 
If a periodic force is exerted on the mass by (say) an oscillating electromagnetic 
field, and air resistance damps its oscillations, then Eq. ( 1 3) with k < 0 but with 
c > 0 and f3 > 0 is a reasonable mathematical model for its horizontal displacement 
function x (t) . 

In the absence of both damping and the external force, the phase plane trajec
tories of the free oscillations of the mass would resemble those shown in Fig. 7.5 . 12 
(with Problem 14  in Section 7 .5) .  The mass behaves as  though i t  is repelled by the 
unstable critical point at x = 0 but is attracted by each of the two stable critical 
points symmetrically located on either side of the origin. 
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We saw in Section 2.6 that in the linear case a periodic external force F(t) = 
Fo cos wt causes a steady periodic response x (t )  = C cos(wt - a) with the same 
frequency w. The amplitude C of the steady periodic response is proportional to 
the amplitude Fo of the external force. For instance, if the periodic external force is 
doubled in amplitude, then the only change in the response is that its amplitude is 
doubled as well. 

To illustrate the quite different behavior of a nonlinear system, we take k = - 1 
and m = c = f3 = w = 1 in Eq. ( 1 3), so the differential equation is 

x" + x' - x + x3 = Fo cos t .  ( 14) 

As an exercise you may verify that the two stable critical points are (- 1 , 0) and 
( 1 , 0) . We want to examine the dependence of the (presumably steady peri
odic) response x (t)  on the amplitude Fo of the periodic external force of period 
2Tl/w = 2Tl . 

Figures 7.6. 1 3  through 7.6. 1 6  show the solutions of Eq. ( 14) obtained with the 
successive values Fo = 0.60, 0.70, 0.75, and 0.80 of the amplitude of the external 
force. In each case the system was solved numerically with initial conditions x (O) = 
1 ,  x' (0) = 0 and the resulting solution plotted for the range 1 00 � t � 200 (to show 
the steady periodic response remaining after the initial transient response has died 
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FIGURE 7.6.13(a). Period 2n response 
with Fo = 0.60: phase plane trajectory. 
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FIGURE 7.6.14(a). Period 4n response 
with Fo = 0.70: phase plane trajectory. 
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FIGURE 7.6.13(b). Period 2n response 
with Fo = 0.60: solution x (t ) .  
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FIGURE 7.6.14(b). Period 4n response 
with Fo = 0.70: solution x(t) .  
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Forced Duffing equation ( 14) 
with Fo - 0.75 

1.5 r----r--...------r--,--,-----. 

Forced Duffing equation ( 14) 
with Fo - 0.75 

1 .5 ,..-----.,..-----.--,----,r----:----",.--.,-, 

1 .0 1 .0 

0.5 0.5 

'" 0.0 \---'--...L.--+H---I-+--I-+-H 

- 0.5 - 0.5 

- 1 .0 - 1 .0 

- 1 .5 '---'-_...1...-----'-_-'-_'---' - 1 .5 '------'-----'------'---'----' 
- 1 .5 - 1 .0 - 0.5 0.0 0.5 1 .0 1 .5 1 00 1 20 140 1 60 1 80 200 

t x 

FIGURE 7.6.15(a). Period 8Jl" response 
with Fo = 0.75 : phase plane trajectory. 

FIGURE 7.6.15(b). Period 8Jl" response 
with Fo = 0.75 : solution x (t ) . 

Forced Duffing equation ( 14) 
with Fo = 0.80 
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FIGURE 7.6.16(a). Chaotic response with 
Fo = 0.80: phase plane trajectory. 
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FIGURE 7.6.16(b). Chaotic response with 
Fo = 0.80: solution x (t ) . 

out) . Part (a) of  each figure shows the phase plane trajectory x = x (t) , Y = x' (t) , 
and part (b) shows the actual solution curve x = x (t ) in the tx -plane. Part (a) 
exhibits the qualitative character of the solution more vividly, but part (b) is required 
to determine the period and frequency of the solution. 

Figure 7.6. 1 3  shows a simple oscillation of period 2rr of the mass around 
the right-hand critical point. In the ensuing sequence of figures we see successive 
period doubling and finally chaos as the amplitude of the external force is increased 
in the range from Fo = 0.6 to Fo = 0.8 .  This period doubling toward chaos is 
a common characteristic of the behavior of a nonlinear mechanical system as an 
appropriate physical parameter (such as m, c, k, {J ,  Fo, or w in Eq. ( 1 3» is increased 
or decreased. No such phenomenon occurs in linear systems. 

PROJECT 3: Use an ODE plotting utility to see whether you can reproduce 
Figs .  7.6. 1 3-7.6. 16 .  Then investigate the parameter range 1 .00 � Fo � 1 . 10 for 
the force constant in Eq. ( 14). With Fo = 1 .00 you should see a period 6rr phase 
plane trajectory that encircles both stable critical points (as well as the unstable 
one) . The period doubles around Fo = 1 .07 and chaos sets in around Fo = 1 . 10. 
See whether you can spot a second period doubling somewhere between Fo = 1 .07 
and Fo = 1 . 1 0. Produce both phase plane trajectories and tx-solution curves on 
which you can measure the periods. 
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Warning: You should not expect your own hardware and ODE software to 
replicate the exact detail of the "chaotic tangle" shown in Fig. 7.6. 16 . To explain 
why, let's regard the forced Duffing equation (in ( 14» with Fo = 0.80 as an input
output system having the initial point (x (0) , x' (0» as input and the corresponding 
solution x (t) as output. This input-output system is chaotic in the sense that very 
small changes in the input may cause very large changes in the output. For in
stance, the data shown in the table in Fig. 7.6. 1 7  were generated using MATLAB 'S 
sophisticated numerical solver ode45 with two nearby initial points and two dif
ferent error tolerance settings . Solving the same numerical initial value problem 
repeatedly with different error tolerances can provide some indication of the relia
bility of the results ; significant discrepancies certainly suggest little reliability. With 
initial conditions x (O) = 1 ,  X' (O) = 0 it looks plausible (though hardly certain) that 
x ( I 00) � - 1 . 1  and x (200) � -0.6, but the value of x (300) remains quite uncer
tain. By contrast, with initial conditions x (O) = 1 .00000 1 ,  X' (O) = 0 it appears that 
perhaps x (200) � -0.3 instead. If so, then a visually significant change in the solu
tion results from a change of initial conditions no larger than might be expected from 
accumulated roundoff error in the course of a numerical approximation process that 
relies on machine arithmetic. In this event, any numerically computed solution is 
likely to diverge appreciably from the true solution over a long time interval. Hence 
we cannot be confident of the fine structure in a numerically generated trajectory 
such as that shown in Fig. 7.6. 1 6. Investigations like this suggest only that the 
actual long-interval solution with initial conditions x (O) = 1 ,  x' (0) = 0 is not peri
odic, but instead "wanders" back and forth in a seemingly unpredictable or chaotic 
fashion. Thus the qualitative character of the solution indicated in Fig. 7.6. 16 may 
approximate reality without necessarily presenting an accurate picture of the precise 
detail of the trajectory. This behavior of solutions of the forced Duffing equation is 
not yet fully understood and remains a subject of current research. An interesting 
exposition with further references can be found in Chapter 1 5  of Dan Schwalbe and 
Stan Wagon, VisualDSolve (New York: Springer-Verlag, 1 997). 

with x(t) with 
= 10-8 ErrTol = 10-12 

0 1 1 1 . 00000 1 1 . 000001 

100 - 1 . 1 1 2 5  - 1 . 1 125  - 1 . 1 12 5  - 1 . 1125 

200 -0 . 5823  -0 . 5 8 2 8  -0 . 2925  -0 . 2816  

300 - 1 . 2 8 5 0  -0 . 1 3 5 7  -0 . 07 2 3  -0 . 1633 

FIGURE 7.6.17. MATLAB attempts to  approximate the solution of  the forced Duffing 
equation x" + x' - x + x3 = (0. 80) cos t on 0 :;:; t :;:; 300 with x' (0) = 0 and two different 
values of x (O) and two different error tolerances (ErrTol denoting the value used for both the 
absolute and the relative error tolerance in ode45) .  

The Lorenz Strange Attractor 

The substitution of Xl = X, X2 = X' in the forced Duffing equation in ( 1 3) yields a 
two-dimensional nonlinear system of first-order differential equations, and period
doubling phenomena are characteristic of such systems. But in higher dimensions 
even more exotic phenomena occur and are currently the subject of much active 
investigation. All this work stems ultimately from the original investigation of an 
extraordinary three-dimensional nonlinear system by the mathematical meteorolo
gist E. N. Lorenz, who later described its discovery as follows. 
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50 

25 

FIGURE 7.6.18. The Lorenz 
trajectory in space with initial 
values x (O) = -8, y (O) = 8 , 
z (O) = 27, and 0 ::£ t ::£ 40. 

By the middle 1 950s "numerical weather prediction," i .e . ,  forecasting by 
numerically integrating such approximations to the atmospheric equa
tions as could feasibly be handled, was very much in vogue, despite the 
rather mediocre results which it was then yielding. A smaller but de
termined group favored statistical prediction. . . .  I was skeptical, and 
decided to test the idea by applying the statistical method to a set of 
artificial data, generated by solving a system of equations numerically. 
. . .  The first task was to find a suitable system of equations to solve . . . .  
The system would have to be simple enough . . .  and the general solution 
would have to be aperiodic, since the statistical prediction of a periodic 
series would be a trivial matter, once the periodicity had been detected 
. . .  [In the course of talks with Dr. Barry Saltzman] he showed me some 
work on thermal convections, in which he used a system of seven ordi
nary differential equations . Most of his solutions soon acquired periodic 
behavior, but one solution refused to settle down. Moreover, in this so
lution four of the variables appeared to approach zero. Presumably the 
equations governing the remaining three variables, with the terms con
taining the four variables eliminated, would also possess aperiodic so
lutions . Upon my return I put the three equations on our computer, and 
confirmed the aperiodicity which Saltzman had noted. We were finally 
in business. [Quoted in E. Hairer, S. P. Norsett, and G. Wanner, Solving 
Ordinary Differential Equations I (New York: Springer-Verlag, 1 987).] 

The famous Lorenz system of differential equations is given by 

dx 
- = -ax + ay , 
dt 
dy 
- = px - y - xz ,  
dt 
dz 
dt 

= -f3z + xy . 

( 1 5) 

Figure 7.6. 1 8  shows a plot in space of a trajectory obtained by numerical inte
gration of the Lorenz system with parameter values f3 = � ,  a = 1 0, and p = 28. As 
this trajectory is traced in "real time," the moving solution point P (x (t) , y (t ) ,  z (t» 
appears to undergo a random number of oscillations on the right followed by a ran
dom number of oscillations on the left, then a random number on the right followed 
by a random number on the left, and so on. Given the meteorological origin of the 
Lorenz system, one naturally thinks of a random number of clear days followed by 
a random number of rainy days, then a random number of clear days followed by a 
random number of rainy days, and so on. 

Further investigation of this Lorenz trajectory shows that it is not simply os
cillating back and forth around a pair of critical points (as Fig. 7.6. 1 8  may initially 
suggest) . Instead, as t -+ +00, the solution point P (t) on the trajectory wanders 
back and forth in space approaching closer and closer to a certain complicated set 
of points whose detailed structure is not yet fully understood. This elusive set that 
appears somehow to "attract" the solution point is the famous Lorenz strange at
tractor. 

PROJECT 4 :  Sometimes the behavior of a trajectory is clarified by examining its 
projections into one or more coordinate planes . First use an ODE plotting utility to 
produce the xz-projection of the Lorenz trajectory shown in Fig. 7 .6 . 1 9, using the 
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FIGURE 7.6.19. The 
xz-projection of the Lorenz 
trajectory with initial point 
( -8 , 8, 27) and 0 � t � 60. 

FIGURE 7.6.20. The Rossler 
band illustrated with a trajectory 
plotted with x (0) = 2, y(O) = 0, 
z (O) = 3, and 0 � t � 400. 
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same parameter values as listed following ( 1 5) . Plot also the xy- and yz-projections 
of this same solution. Next, experiment with different parameter values and initial 
conditions. For instance, see if you can find a periodic solution with p = 70 (and 
f3 = � ,  (1 = 1 0  as before) and initial values Xo = -4 and Zo = 64. To get a 
trajectory that almost repeats itself, you will need to try different values of Yo in the 
range 0 � Yo � 10  and look at xz-projections as in Fig. 7 .6. 1 9. 

PROJECT 5 :  Another much-studied nonlinear three-dimensional system is the 
Rossler system 

dx 
- = -y - z , 
dt 
dy 
dt 

= X  + ay,  

dz 
dt 

= f3 - yz + xz .  

( 16) 

Figure 7.6 .20 shows a plot in space of a trajectory by numerical integration of the 
Rossler system with parameter values a = 0.398, f3 = 2, and y = 4. This trajectory 
spirals around and around as it approaches some sort of "chaotic attractor"-the 
so-called Rossler band that looks twisted, somewhat like a Mobius strip in space. 
Investigate the period doubling toward chaos that occurs with the Rossler system as 
the parameter a is increased, beginning with a = 0.3 ,  a = 0.35, and a = 0.375 
(take f3 = 2 and y = 4 in all cases). 

In this section we have given just a taste of the ideas that are the focus of 
contemporary applications of nonlinear systems. To see how these ideas come full 
circle, consult the discussion of the Lorenz system on pages 1 1 7-123 of the book by 
Hairer et al . referenced previously. There you will see a certain aspect of the Lorenz 
trajectory described visually by means of a picture that looks very much like the 
pitchfork diagram shown in Fig. 7.6.8 , together with the very same Feigenbaum 
constant 4.6692 . . . ! 

For an engaging account of the historical background to this final section of 
Chapter 6, see James Gleick, Chaos: Making a New Science (New York: Viking 
Press, 1 987) . For more detailed discussions of the forced Duffing, Lorenz, and 
Rossler equations, see J. M. T. Thompson and H. B .  Stewart, Nonlinear Dynamics 
and Chaos (New York: John Wiley, 1 986). 
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The literature of the theory and applications of differential equations is vast. The 
following list includes a selection of books that might be useful to readers who wish 
to pursue further the topics introduced in this book. 

1 .  ABRAMOWITZ, M. and I. A. STEGUN, Handbook of Mathematical Func
tions. New York: Dover, 1 965 . A comprehensive collection of tables to which 
frequent reference is made in the text. 

2. BIRKHOFF, G.  and G . -C .  ROTA, Ordinary Differential Equations (2nd ed.) .  
New York: John Wiley, 1 969. An intermediate-level text that includes more 
complete treatment of existence and uniqueness theorems, Sturm-Liouville 
problems, and eigenfunction expansions. 

3.  BRAUN ,  M., Differential Equations and Their Applications (3rd ed.) . New 
York: Springer-Verlag, 1 983 .  An introductory text at a slightly higher level 
than this book; it includes several interesting "case study" applications . 

4. CHURCHILL, R. V. , Operational Mathematics, 3rd edition. New York: 
McGraw-Hill, 1 972. The standard reference for theory and applications of 
Laplace transforms, starting at about the same level as Chapter 7 of this book. 

5 .  CHURCHILL, R. V. and J .  W. BROWN, Fourier Series and Boundary Value 
Problems, 3rd edition. New York: McGraw-Hill, 1 978. A text at about the 
same level as Chapters 9 and 1 0  of this book. 

6 .  CODDINGTON, E. A . ,  An Introduction to Ordinary Differential Equations. 
Englewood Cliffs, N.J. : Prentice Hall, 1 96 1 .  An intermediate-level introduc
tion; Chapters 3 and 4 include proofs of the theorems on power series and 
Frobenius series solutions stated in Chapter 8 of this book. 

7. CODDINGTON, E. A. and N. LEVINSON, Theory of Ordinary Differential 
Equations. New York: McGraw-Hill, 1 955 . An advanced theoretical text; 
Chapter 5 discusses solutions near an irregular singular point. 

8. DORMAND, J. R . ,  Numerical Methods for Differential Equations. Boca Ra
ton: CRC Press, 1 996. More complete coverage of modem computational 
methods for approximate solution of differential equations . 

9 .  HABERMAN, R. ,  Elementary Applied Partial Differential Equations, 3rd edi
tion. Upper Saddle River, N.J. : Prentice Hall, 1 998. A next step beyond Chap
ters 9 and 1 0  of this book, but still quite accessible. 
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A P P E N D I X 
Existence and Uniqueness 
of Solutions 

In Chapter 1 we saw that an initial value problem of the form 

dy 
dx 

= f(x ,  y) ,  y (a) = b ( 1 )  

can fail (on a given interval containing the point x = a) to have a unique solution. 
For instance, the answer to Problem 33 in Section 1 .3 says that the initial value 
problem 

dy 
x2 _ + i = 0, y (O) = b 

dx 
(2) 

has no solutions at all unless b = 0, in which case there are infinitely many solu
tions. According to Problem 3 1  of Section 1 .3 ,  the initial value problem 

dy 
= 

-Jl=Y2, 
y(O) = 1 

dx 
(3) 

has the two distinct solutions Yl (x ) == 1 and Y2 (x ) = cos x on the interval 0 � x � 
1C .  In this appendix we investigate conditions on the function f (x , y) that suffice 
to guarantee that the initial value problem in ( 1 )  has one and only one solution, and 
then proceed to establish appropriate versions of the existence-uniqueness theorems 
that were stated without proof in Sections 1 .3 ,  2. 1 ,  2.2, and 5 . 1 .  

Ell Existence of  Solutions 

The approach we employ is the method of successive approximations, which was 
developed by the French mathematician Emile Picard ( 1 856-194 1 ). This method is 
based on the fact that the function y (x ) satisfies the initial value problem in ( 1 )  on 
the open interval I containing x = a if and only if it satisfies the integral equation 

y (x ) = b + lx f(t ,  y (t ) )  dt (4) 

for all x in I . In particular, if y (x ) satisfies Eq. (4), then clearly y(a) = b, and 
differentiation of both sides in (4)-using the fundamental theorem of calculus
yields the differential equation y' (x ) = f (x , y (x ) ) .  

559 
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Exa mple 1 

To attempt to solve Eq. (4) ,  we begin with the initial function 

Yo (x) == b, (5) 
and then define iteratively a sequence Yl ,  Y2 , Y3 , . . .  of functions that we hope will 
converge to the solution. Specifically, we let 

Yl (x) = b +  IX J(t , Yo (t» dt and Y2 (x) = b +  IX J(t , Yl (t» dt .  (6) 

In general, Yn+ l is obtained by substitution of Yn for Y in the right-hand side in 
Eq. (4) :  

(7) 

Suppose we know that each of these functions {Yn (x) }� is defined on some open 
interval (the same for each n) containing x = a, and that the limit 

y (x)  = lim Yn (x) (8) n ..... oo 
exists at each point of this interval . Then it will follow that 

and hence that 

y(x)  = lim Yn+ l (X) = lim [b +  r J(t , Yn (t» dt] n---+oo n---+oo Ja 

= b +  lim r J(t , Yn (t» dt (9) n---+oo Ja 

= b + r J (t ,  lim Yn (t ») dt ( 10) 
Ja n---+oo 

y (x) = b + IX J(t ,  y (t» dt , 

provided that we can validate the interchange of limit operations involved in passing 
from (9) to ( 1 0) .  It is therefore reasonable to expect that, under favorable conditions, 
the sequence {Yn (x) }  defined iteratively in Eqs. (5) and (7) will converge to a so
lution y(x)  of the integral equation in (4), and hence to a solution of the original 
initial value problem in ( 1 ) . 

N _ _  � N' _ • •  _ _  � _  •• �. • • •  _ _  • •  ____ •• _ .  _ .  � •• �.M_� _ _  � __ " _ �_ .. M�. Mw • •  _ • 

To apply the method of successive approximations to the initial value problem 

dy 
dx

= Y' y (O) = 1 ,  ( 1 1 ) 

we write Eqs . (5) and (7), thereby obtaining 

Yo (x) == 1 ,  Yn+ l (X ) = 1 + foX Yn (t) dt .  ( 12) 

The iteration formula in ( 1 2) yields 

Yl (X ) = 1 + foX I dt = 1 + x , 

Y2 (X) = 1 + foX ( 1  + t) dt = 1 + x  + �x2 , 

Y3 (X ) = 1 + foX ( 1  + t  + � t2) dt = 1 + x  + �x2 + �x3 , 
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and 

= 1 + x  + 4X2 + ix3 + f4x4 . 

It is clear that we are generating the sequence of partial sums of a power series 
solution; indeed, we immediately recognize the series as that of y(x) = eX . There 
is no difficulty in demonstrating that the exponential function is indeed the solution 
of the initial value problem in ( 1 1 ) ; moreover, a diligent student can verify (using 
a proof by induction on n) that Yn (x) ,  obtained in the aforementioned manner, is 
indeed the nth partial sum for the Taylor series with center zero for y(x) = eX . • 

To apply the method of successive approximations to the initial value problem 

dy 
- = 4xy, 
dx 

y (O) = 3 ,  

we write Eqs. (5 )  and (7) as  in  Example 1 .  Now we obtain 

yo (x) == 3, Yn+ l (X) = 3 + fox 4tYn (t) dt . 

The iteration formula in ( 14) yields 

and 

Yl (x) = 3 + fox (4t) (3) dt = 3 + 6x2 , 

Y2 (X) = 3 + fox (4t) (3 + 6t2) dt = 3 + 6x2 + 6x4 , 

Y3 (X) = 3 + fox (4t) (3 + 6t2 + 6t4) dt = 3 + 6x2 + 6x4 + 4x6 , 

Y4 (X) = 3 + fox (4t) (3 + 6t2 + 6t4 + 4t6) dt 

= 3 + 6x2 + 6x4 + 4x6 + 2x8 • 

( 13) 

( 14) 

It is again clear that we are generating partial sums of a power series solution. It is 
not quite so obvious what function has such a power series representation, but the 
initial value problem in ( 1 3) is readily solved by separation of variables : 

00 (2x2)n 
y (x) = 3 exp (2x2) = 3 L -,-

n=O n .  

= 3 + 6x2 + 6x4 + 4x6 + 2x8 + �x lO + . . . . • 

In some cases it may be necessary to compute a much large number of terms, 
either in order to identify the solution or to use a partial sum of its series with large 
subscript to approximate the solution accurately for x near its initial value. Fortu
nately, computer algebra systems such as Maple and Mathematica can perform the 
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symbolic integrations (as opposed to numerical integrations) of the sort in Examples 
1 and 2. If necessary, you could generate the first hundred terms in Example 2 in a 
matter of minutes. 

In general, of course, we apply Picard's method because we cannot find a 
solution by elementary methods. Suppose that we have produced a large number of 
terms of what we believe to be the correct power series expansion of the solution. 
We must have conditions under which the sequence {Yn (x) }  provided by the method 
of successive approximations is guaranteed in advance to converge to a solution. It 
is just as convenient to discuss the initial value problem 

dx 

dt 
= f(x, t ) ,  x(a) = b 

for a system of m first-order equations, where 

XI II 
X2 h 

X =  X3 f =  h and b =  

Xm 1m 

( 1 5) 

b l 
b2 b3 
bm 

It turns out that with the aid of this vector notation (which we introduced in Sec
tion 5 .3) ,  most results concerning a single [scalar] equation x' = I(x , t) can be 
generalized readily to analogous results for a system of m first-order equations, as 
abbreviated in ( 1 5) .  Consequently, the effort of using vector notation is amply jus
tified by the generality it provides. 

The method of successive approximations for the system in ( 1 5) calls for us 
to compute the sequence {xn (t ) }g" of vector-valued functions of t, 

defined iteratively by 

Xln (t) 
X2n (t) 

xn (t) = X3n (t) 

xo (a) == b, Xn+ 1 (t) = b + it f(xn (s) ,  s) ds . 

Recall that vector-valued functions are integrated componentwise. 

Consider the m-dimensional initial value problem 

dx 
- = Ax, x(O) = b 
dt 

( 16) 

( 1 7) 

for a homogeneous linear system with m x m constant coefficient matrix A. The 
equations in ( 1 6) take the form 

xo (t) = b, Xn+ 1 = b + foX AXn (s ) ds . ( 1 8) 
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Thus 

Xl (t ) = b + 1t Ab ds = b + Abt = (I + At)b; 

X2 (t) = b + 1t A(b + Abs) ds = b + Abt + 1A2bt2 = (I + At + 1A2t2)b 

and 

We have therefore obtained the first several partial sums of the exponential series 
solution 

X(t) = eAtb = (f (Atr ) b 
n=O n . 

of ( 1 7) , which was derived earlier in Section 5 .7 .  

( 1 9) 

• 
The key to establishing convergence in the method of successive approxima

tions is an appropriate condition on the rate at which f(x, t) changes when X varies 
but t is held fixed. If R is a region in (m + 1 ) -dimensional (x, t ) -space, then the 
function f(x, t )  is said to be Lipschitz continuous on R if there exists a constant 
k > 0 such that 

(20) 

if (Xl , t )  and (X2 , t )  are points of R.  Recall that the norm of an m-dimensional point 
or vector X is defined to be 

I x i  = Jxi + xi + xJ, + . . .  + x� . (2 1 )  

Then I XI - x2 1 i s  simply the Euclidean distance between the points Xl and X2 . 

Let f (� , t )  = x2 exp (_ t2) sin t and let R be the strip 0 � x � 2 in the xy-plane. If 
(X l , t )  and (X2 , t )  are both points of R, then 

I f (Xl , t) - f(X2 , t ) 1 = I exp (_t2) sin t l · l x l + x2 1 · lx l - x2 1 � 4 1x l - x2 1 , 

because lexp (_t2) sin t I � 1 for all t and IX I + x2 1 � 4 if X l and X2 are both in the 
interval [0, 2] . Thus f satisfies the Lipschitz condition in (20) with k = 4 and is 
therefore Lipschitz continuous in the strip R.  • 

Let f(x ,  t) = t..;x on the rectangle R consisting of the points (x ,  t) in the xt-plane 
for which 0 � X � 1 and 0 � t � 1 .  Then, taking Xl = X ,  X2 = 0, and t = 1 ,  we 
find that 

1 I f (x ,  1 )  - f(O, 1 ) 1 = ..;x = 
..;x

Ix - 0 1 · 
Because X- I /2 -+ +00 as X -+ 0+ , we see that the Lipschitz condition in (20) 
cannot be satisfied by any (finite) constant k > O. Thus the function f, though 
obviously continuous on R, is not Lipschitz continuous on R. • 
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x 

Suppose, however, that the function f (x , t )  has a continuous partial derivative 
fx (x , t) on the closed rectangle R in the xt -plane, and denote by k the maximum 
value of I fx (x , t )  I on R.  Then the mean value theorem of differential calculus yields 

for some x in (X l ,  X2) ,  so it follows that 

I f (X I , t) - f (X2 , t ) 1 � k lxl - x2 1 

because I fAx, t ) 1 � k .  Thus a continuously differentiable function f(x ,  t )  defined 
on a closed rectangle is Lipschitz continuous there. More generally, the multivari
able mean value theorem of advanced calculus can be used similarly to prove that a 
vector-valued function f(x, t )  with continuously differentiable component functions 
on a closed rectangular region R in (x, t )-space is Lipschitz continuous on R .  

--------,, ---- -- --. ----------- --- - -- .--- - - - - - ----. - --- - - ------- -
The function f(x ,  t )  = is Lipschitz continuous on any closed [bounded] region 
in the xt -plane. But consider this function on the infinite strip R consisting of the 
points (x , t) for which 0 � t � 1 and x is arbitrary. Then 

I f (X I , t) - f(X2 , t ) 1 = I x� - x� 1 = I X I + x2 1 · lx I - x2 1 . 

Because I X I + x2 1 can be made arbitrarily large, it follows that f is not Lipschitz 
continuous on the infinite strip R . • 

If I is an interval on the t-axis, then the set of all points (x, t) with t in I is an 
infinite strip or slab in (m + I )-space (as indicated in Fig. A. I ) . Example 6 shows -:i--t::::;:::==t------rt that Lipschitz continuity of f(x , t )  on such an infinite slab is a very strong condition. 

FIGURE A.!, An infinite slab in 
(m + I ) -space. 

Nevertheless, the existence of a solution of the initial value problem 

dx 
dt 

= f(x, t ) ,  x(a) = b ( 1 5) 

under the hypothesis of Lipschitz continuity of f in such a slab is of considerable 
importance. 

THEOREM 1 Global Existence of Solutions 

Let f be a vector-valued function (with m components) of m + 1 real variables, 
and let I be a [bounded or unbounded] open interval containing t = a . If f(x, t) 
is continuous and satisfies the Lipschitz condition in (20) for all t in I and for 
all Xl and X2 , then the initial value problem in ( 1 5) has a solution on the [entire] 
interval I . 

Proof: We want to show that the sequence {xn (t ) }� of successive approxi
mations determined iteratively by 

xo (a) = b, Xn+ l (t) = b + lo t 
f(xn (s) ,  s) ds ( 16) 

converges to a solution x(t) of ( 1 5) . We see that each of these functions in tum is 
continuous on I , as each is an [indefinite] integral of a continuous function. 

We may assume that a = 0, because the transformation t -+ t + a converts 
( 1 5) into an equivalent problem with initial point t = O. Also, we will consider only 
the portion t � 0 of the interval I ;  the details for the case t � 0 are very similar. 
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The main part of the proof consists in showing that if [0, T] is a closed (and 
bounded) interval contained in I , then the sequence {xn (t ) }  converges uniformly on 
[0, T] to a limit function x(t ) .  This means that, given E > 0, there exists an integer 
N such that 

(22) 

for all n � N and all t in [0, T] .  For ordinary (perhaps nonuniform) convergence 
the integer N, for which (22) holds for all n � N, may depend on t ,  with no single 
value of N working for all t in I . Once this uniform convergence of the sequence 
{xn (t ) }  has been established, the following conclusions will follow from standard 
theorems of advanced calculus (see pages 620-622 of A. E. Taylor and W. R. Mann, 
Advanced Calculus, 3rd ed. (New York: John Wiley, 1 983)) :  

1 .  The limit function x(t) is continuous on [0,  T]. 
2. If N is so chosen that the inequality in (22) holds for n � N, then the Lipschitz 

continuity of f implies that 

I f(xn (t ) ,  t) - f(x(t ) ,  t ) 1 � k lxn (t) - x(t) 1 < kE 

for all t in [0, T] and n � N, so it follows that the sequence {f(xn (t) ,  t) }go 
converges uniformly to f(x(t ) ,  t ) on [0, T]. 

3. But a uniformly convergent sequence or series can be integrated termwise, so 
it follows that, on taking limits in the iterative formula in ( 1 6), 

thus 

x(t) = lim xn+ \ (t) = b + lim t f(xn (s) , s) ds n ..... oo n ..... oo Jo 

= b + t lim f(xn (s) ,  s) ds ; Jo n ..... oo 

x(t) = b + lt f(x(s) , s) ds . (23) 

4. Because the function x(t) is continuous on [0, T] ,  the integral equation in (23) 
(analogous to the one-dimensional case in (4)) implies that x' (t) = f(x(t) ,  t) 
on [0, T] .  But if this is true on every closed subinterval of the open interval I, 
then it is true on the entire interval I as well. 

It therefore remains only to prove that the sequence {xn (t ) }go converges uni
formly on the closed interval [0, T] .  Let M be the maximum value of I f(b, t) 1 for t 
in [0, T] .  Then 

I x \ (t) - xo (t) I = l lot f(xo (s) ,  s) ds l � lot I f(b , s) 1 ds � Mt. (24) 

Next, 

I X2 (t) - x\ (t) 1 = I l t [f(x \ (s) ,  s) - f(xo (s) ,  S ) ] dS I � k lot I x \ (s) - Xo(s) l ds , 

and hence 

(25) 
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We now proceed by induction . Assume that 

M (kt )n 
I xn (t) - Xn- l (t) 1 � -

k 
. -

,
- . n . 

It then follows that 

consequently, 

I Xn+ 1 (t) - xn (t) 1 = l fot f(xn (s) ,  s )  - f(Xn- 1 (s) , s ) ]  ds I 
� k fot I Xn (s) - xn- l (s) 1 ds ; 

fot M (ks)n 
I Xn+ l (t) - Xn (t) I � k - . -- ds . 

o k n !  
It follows upon evaluating this integral that 

M (kt)n+ l 
I Xn+ 1 (t) - xn (t) 1 � k . 

(n + 1 ) !  
Thus (26) holds on [0, T ]  for all n � 1 . 

Hence the terms of the infinite series 
00 

xo (t) + L [Xn (t) - Xn- l (t)] 
n=l 

(26) 

(27) 

are dominated (in magnitude on the interval [0, Tn by the terms of the convergent 
series f M . (kT)n+ 1 

= M (ekT - 1 ) ,  
n=l k (n + 1 ) !  k 

(28) 

which is a series of positive constants . It therefore follows (from the Weierstrass 
M-test on pages 6 1 8-6 19  of Taylor and Mann) that the series in (27) converges 
uniformly on [0, T] .  But the sequence of partial sums of this series is simply our 
original sequence {xn (t ) }  go of successive approximations, so the proof of Theorem 
1 is finally complete. .. 

An important application of the global existence theorem just given is to the initial 
value problem 

dx 
dt = A(t)x + g(t ) ,  x(a) = b (29) 

for a linear system, where the m x m matrix-valued function A(t) and the vector
valued function g(t) are continuous on a [bounded or unbounded] open interval I 
containing the point t = a .  In order to apply Theorem 1 to the linear system in 
(29), we note first that the proof of Theorem 1 requires only that, for each closed 
and bounded subinterval J of I ,  there exists a Lipschitz constant k such that 

I f(Xl , t) - f(X2 , t ) 1 � k l xl - x2 1 (20) 

for all t in J (and all Xl and X2) .  Thus we do not need a single Lipschitz constant 
for the entire open interval I . 
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In (29) we have f(x, t) = A(t)x + g, so 

f(X I , t) - f(X2 , t) = A(t) (xi - X2) . (30) 

It therefore suffices to show that, if A(t) is continuous on the closed and bounded 
interval J,  then there is a constant k such that 

IA(t)x l � k l x l (3 1 )  

for all t i n  J . But this follows from the fact (Problem 1 7) that 

IAx l � I IA I I ' l x l , (32) 

where the norm I I A I I of the matrix A is defined to be 

(33) 

Because A(t) is continuous on the closed and bounded interval J, the norm I IA I I  is 
bounded on J, so Eq. (3 1 )  follows, as desired. Thus we have the following global 
existence theorem for the linear initial value problem in (29). 

TH EO REM 2 Existence for Linear Systems 

Let the m x m matrix-valued function A(t) and the vector-valued function g(t) be 
continuous on the [bounded or unbounded] open interval I containing the point 
t = a . Then the initial value problem 

dx 
dt 

= A(t)x + g(t ) ,  x(a) = b 

has a solution on the [entire] interval I . 

As we saw in Section 5 . 1 ,  the mth-order initial value problem 

x (m) + al (t)x (m- I ) + . . .  + am- l (t)x' + am (t)x = p(t ) ,  
x (a) = bo , x' (a) = bl , . . .  , x (m- l ) (a) = bm- I 

(29) 

(34) 

is readily transformed into an equivalent m x m system of the form in (29). It there
fore follows from Theorem 2 that if the functions al (t) ,  a2 (t) ,  . . .  , am (t) and p(t) 
in (34) are all continuous on the [bounded or unbounded] open interval I containing 
t = a ,  then the initial value problem in (34) has a solution on the [entire] interval I . 

In the case of a nonlinear initial value problem 

dx 
- = f(x, t ) ,  x(a)  = b, 
dt 

(35) 

the hypothesis in Theorem 1 that f satisfies a Lipschitz condition on a slab (x, t) 
(t in I , all x) is unrealistic and rarely satisfied. This is illustrated by the following 
simple example. 
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dy 2 
dx 

= X ,  x (O) = b > O. (36) 

As we saw in Example 6, the equation x' = x2 does not satisfy a "strip Lipschitz 
condition." When we solve (36) by separation of variables, we get 

b 
x (t )  = -- . 

1 - bt 
(37) 

Because the denominator vanishes for t = l ib, Eq. (37) provides a solution of the 
initial value problem in (36) only for t < l ib, despite the fact that the differential 
equation x' = x2 "looks nice" on the entire real line-certainly the function appear
ing on the right-hand side of the equation is continuous everywhere. In particular, if 
b is large, then we have a solution only on a very small interval to the right of t = O . 

• 
Although Theorem 2 assures us that linear equations have global solutions, 

Example 7 shows that, in general, even a "nice" nonlinear differential equation can 
be expected to have a solution only on a small interval around the initial point t = 
a ,  and that the length of this interval of existence can depend on the initial value 
x(a ) = b, as well as on the differential equation itself. The reason is this :  If f(x, t ) 
is continuously differentiable in a neighborhood of the point (b ,  a) in (m + 1)
dimensional space, then-as indicated in the discussion preceding Example 6-we 
can conclude that f(x ,  t )  satisfies a Lipschitz condition on some rectangular region 
R centered at (b, a) ,  of the form 

I t - a l < A ,  IXi - b; l  < Bj (38) 

(i = 1 ,  2, . . .  , m) . In the proof of Theorem 1,  we need to apply the Lipschitz 
condition on the function f in analyzing the iterative formula 

xn+ ! (t) = b + 1t f(xn (s) ,  s) ds . (39) 

The potential difficulty is that unless the values of t are suitably restricted, then the 
point (xn (t ) ,  t) appearing in the integrand in (39) may not lie in the region R where f 
is known to satisfy a Lipschitz condition. On the other hand, it can be shown that
on a sufficiently small open interval J containing the point t = a-the graphs of the 
functions {xn (t ) }  given iteratively by the formula in (39) remain within the region 
R,  so the proof of convergence can then be carried out as in the proof of Theorem 
1 .  A proof of the following local existence theorem can be found in Chapter 6 of 
G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 2nd ed. (New York: 
John Wiley, 1 969). 

TH EOREM 3 Loca l  Existence of Solutions 

Let f be a vector-valued function (with m components) of the m + 1 real variables 
XI , X2 , • • •  , xm , and t. If the first-order partial derivatives of f all exist and are 
continuous in some neighborhood of the point x = b, t = a ,  then the initial value 
problem 

dx 
- = f(x, t) , x(a) = b, 
dt 

has a solution on some open interval containing the point t = a . 

(35) 
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BI Uniqueness of Solutions 

It is possible to establish the existence of solutions of the initial value problem in 
(35) under the much weaker hypothesis that f(x, t) is merely continuous;  techniques 
other than those used in this section are required. By contrast, the Lipschitz con
dition that we used in proving Theorem 1 is the key to uniqueness of solutions . In 
particular, the solution provided by Theorem 3 is unique near the point t = a . 

THEOREM 4 U niqueness of Solutions 

Suppose that on some region R in (m + 1 ) -space, the function f in (35) is contin
uous and satisfies the Lipschitz condition 

(20) 

If XI (t) and X2 (t) are two solutions of the initial problem in (35) on some open 
interval I containing x = a ,  such that the solution curves (XI (t) ,  t) and (X2 (t) , t) 
both lie in R for all t in I, then XI (t) = X2 (t) for all t in I . 

We will outline the proof of Theorem 4 for the one-dimensional case in which 
x is a real variable. A generalization of this proof to the multi variable case can be 
found in Chapter 6 of Birkhoff and Rota. 

Let us consider the function 

(40) 

for which ¢ (a) = 0, because XI (a ) = x2 (a) = h. We want to show that ¢ (t) == 0, 
so that Xl (t) == X2 (t ) .  We will consider only the case t � a ;  the details are similar 
for the case t :;; a .  

If we  differentiate each side i n  Eq. (40), we  find that 

W(t) 1 = 1 2 [x l (t) - X2 (t) ] · [x; (t) - x� (t) ] 1 
= 1 2[X l (t) - X2 (t)] . [f (x l (t ) ,  t) - f(X2 (t ) ,  t) ] 1 
:;; 2k lx l (t) - x2 (t) 1 2 = 2k¢ (t) ,  

using the Lipschitz condition on f. Hence 

¢' (t) :;; 2k¢ (t) . (4 1 )  

Now let u s  temporarily ignore the fact that ¢ (a) = ° and compare ¢ (t) with the 
solution of the differential equation 

<t> ' (t ) = 2k<t> (t) (42) 

such that <t> (a ) = ¢ (a) ;  clearly 

<t> (t) = <t> (a )e2k(t-a) . (43) 

In comparing (4 1 )  with (42) , it seems inevitable that 

¢ (t) :;; <t> (t) for t � a, (44) 

and this is easily proved (Problem 1 8) .  Hence 

° :;; [X I (t) - x2 (t)f :;; [X l (a ) - x2 (a )fe2k(t-a) . 
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On taking square roots, we get 

o � IX I (t) - X2 (t) I � IX I (a) - x2 (a) l ek(t-a) . 

But XI (a) - x2 (a) = 0, so (45) implies that XI (t) == X2 (t) .  
< 0_< . 

The initial value problem 

dx 
= 3X2/3 , x (O) = 0 

dt 

(45) 

(46) 

has both the obvious solution XI (t) == 0 and the solution X2 (t) = t3 that is readily 
found by separation of variables. Hence the function f(x ,  t) mustfail to satisfy a 
Lipschitz condition near (0, 0) . Indeed, the mean value theorem yields 

I f (x , O) - f(O, 0) 1 = I fAx, 0) 1 '  I x - 0 1 

for some x between 0 and x . But fAx ,  0) = 2x- 1 /3 is unbounded as X ---+ 0, so no 
Lipschitz condition can be satisfied. • 

_ Well-Posed Problems and Mathematical Models 

In addition to uniqueness, another consequence of the inequality in (45) is the fact 
that solutions of the differential equation 

dx 
dt 

= f (x ,  t) (47) 

depend continuously on the initial value x (a ) ;  that is, if XI (t) and X2 (t) are two 
solutions of (47) on the interval a � t � T such that the initial values XI (a) and 
x2 (a) are sufficiently close to one another, then the values of XI (t) and X2 (t) remain 
close to one another. In particular, if I X I (a) - x2 (a) 1 � 8 ,  then (45) implies that 

(48) 

for all t with a � t � T . Obviously, we can make E as small as we wish by choosing 
8 sufficiently close to zero. 

This continuity of solutions of (47) with respect to initial values is important 
in practical applications where we are unlikely to know the initial value Xo = x (a) 
with absolute precision. For example, suppose that the initial value problem 

dx 
dt 

= f(x ,  t ) ,  x (a) = Xo (49) 

models a population for which we know only that the initial population is within 
8 > 0 of the assumed value Xo . Then even if the function f(x ,  t) is accurate, 
the solution x (t) of (49) will be only an approximation to the actual population. 
But (45) implies that the actual population at time t will be within 8ek (T-a) of the 
approximate population x (t) . Thus, on a given closed interval [a ,  n ,  x (t) will be 
a close approximation to the actual population provided that 8 > 0 is sufficiently 
small. 

An initial value problem is usually considered well posed as a mathematical 
model for a real-world situation only if the differential equation has unique solutions 



Appendix 571 

that are continuous with respect to initial values .  Otherwise i t  is unlikely that the 
initial value problem adequately mirrors the real-world situation. 

An even stronger "continuous dependence" of solutions is often desirable. In 
addition to possible inaccuracy in the initial value, the function f(x ,  t) may not 
model precisely the physical situation. For instance, it may involve physical pa
rameters (such as resistance coefficients) whose values cannot be measured with 
absolute precision. Birkhoff and Rota generalize the proof of Theorem 4 to estab
lish the following result. 

THEOREM 5 Continuous Dependence of Solutions 

Let x(t) and y(t) be solutions of the equations 

dx dy 
dt 

= f(x, t) and 
dt = g(y, t ) (50) 

on the closed interval [a , T] .  Let f and g be continuous for a ;;;:; t ;;;:; T and for x 
and y in a common region D of n-space and assume that f satisfies the Lipschitz 
condition in (20) on the region D. If 

I f(z, t) - g(z, t ) 1 ;;;:; J.L (5 1 )  

for all t i n  the interval [a , T]  and all z in D, i t  then follows that 

I x(t) - y(t) 1 ;;;:; I x(a) - y(a) l · ek(t-a) + i [ek(t-a) - 1 ] (52) 

on the interval [a , T] .  

I f  J.L > 0 is small, then (5 1 )  implies that the functions f and g appearing in  the 
two differential equations, though different, are "close" to each other. If E > 0 is 
given, then it is apparent from (52) that 

I x(t) - y(t) 1 ;;;:; E (53) 

for all t in [a , T] if both I x (a) - y(a) I and J.L are sufficiently small. Thus Theorem 
5 says (roughly) that if both the two initial values and the two differential equations 
in (50) are close to each other, then the two solutions remain close to each other for 
a ;;;:; t ;;;:; T .  

For example, suppose that a falling body i s  subject both to constant gravita
tional acceleration g and to resistance proportional to some power of its velocity, 
so (with the positive axis directed downward) its velocity v satisfies the differential 
equation 

dv 
- = g - cvP 
dt 

(54) 

Assume, however, that only an approximation c to the actual resistance c and an 
approximation p to the actual exponent p are known. Then our mathematical model 
is based on the differential equation 

du -
- = g - cuP 
dt 

(55) 

instead of the actual equation in (54). Thus if we solve Eq. (55), we obtain only 
an approximation u (t) to the actual velocity v (t ) .  But if the parameters c and p are 
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sufficiently close to the actual values c and p ,  then the right-hand sides in (54) and 
(55) will be close to each other. If so, then Theorem 5 implies that the actual and 
approximate velocity functions v (t) and u (t) are close to each other. In this case the 
approximation in (55) will be a good model of the actual physical situation. 

- _ _ _ _ _ _ _ _ _ _ __ _ _ _  m _ _ __ _ _ _ __ __ _ _ ___ •• _ _  • ______ •• _ 

In Problems I through 8, apply the successive approximation 
formula to compute Yn (X) for n � 4. Then write the expo
nential series for which these approximations are partial sums 
(perhaps with the first term or two missing; for example, 

eX - 1 = x + �X2 + ix3 + -f4x4 + . . .  ) .  
dy 

1. - = y, y (O) = 3 dx 
dy 

3. - = -2xy , y (O) = 1 
dx 

dy 
2. dx = -2y, y (O) = 4 

dy 
4. - = 3x2y, y (O) = 2 

dx 
dy dy 

5. - = 2y + 2, y (O) = 0 6. - = x + y, y (O) = 0 dx dx 
dy 

7. dx = 2x ( 1 + y) , y (O) = 0 

8. 
dy 

= 4x (y + 2x2) , y (O) = 0 dx 
In Problems 9 through /2, compute the successive approxima
tions Yn (x) for n � 3; then compare them with the appropriate 
partial sums of the Taylor series of the exact solution. 

dy 
9. - = x + y, y (O) = 1 

dx 
dy 

10. - = y + eX , y (O) = 0 
dx 

dy 
2 11. - = y , y (O) = 1 

dx 
dy 

12. - = � y3 , y (O) = 1 
dx 

13. Apply the iterative fonnula in ( 1 6) to compute the first 
three successive approximations to the solution of the ini
tial value problem 

dx 
dt = 2x - y , x (O) = 1 ; 

dy 
dt = 3x - 2y, y (O) = - 1 .  

14. Apply the matrix exponential series in ( 1 9) to solve (in 
closed fonn) the initial value problem , [ 1 x (t) = 0 
(Suggestion: Show first that 

x(O) = U l 
[ 1 1 I n [ 1  n ] 

o 1 - 0 1 

for each positive integer n. ) 
15 .  For the initial value problem dyjdx = 1 + y3 , y(1 ) = 1 , 

show that the second Picard approximation is 

Then compute Y2 ( 1 . 1 ) and Y2 ( 1 .2) .  The fourth-order 
Runge-Kutta method with step size h = 0.005 yields 
y ( l . 1 )  � 1 .2391 and y ( 1 .2) � 1 .6269. 

16. For the initial value problem dyjdx = x2 + y2 , y (O) = 0, 
show that the third Picard approximation is 

1 3 1 7 2 1 1  1 1 5 
Y3 (X) = 3X + 63 x + 2079x + 59535 x . 

Compute Y3 ( 1 ) .  The fourth-order Runge-Kutta method 
yields y ( 1 ) � 0.350232, both with step size h = 0.05 and 
with step size h = 0.025 . 

17. Prove as follows the inequality IAx l  � I IA I I  . l x i ,  where A 
is an m x m matrix with row vectors a I ,  a2 , . . .  , am , and x 
is an m-dimensional vector. First note that the components 
of the vector Ax are al . x, a2 . x, . . .  , am • x, so 

Then use the Cauchy-Schwarz inequality (a . X)2 � 
l a l 2 1 x l 2 for the dot product. 

18. Suppose that ¢ (t) is a differentiable function with 

¢' (t) � k¢ (t) (k > 0) 

for t � a. Multiply both sides by e-kl ,  then transpose to 
show that 

!!... [¢ (t)e-kl ] :<=; 0 dt -
for t � a . Then apply the mean value theorem to conclude 
that 

¢ (t) � ¢ (a)ek(t-a) 
for t � a . 
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Chapter 1 

Section 1.1 

11.  If Y = YI = x-2 , then y'(x )  = -2x-3 and y"(x) = 6x-4, so 
x2y" + 5xy' + 4y = x2 (6x-4) + 5x( -2x-3 ) + 4(x -2) = 
6x-2 - IOx-2 + 4x-2 = o. If y = Y2 = x-2 In x ,  then 
y'(x) = x-3 - 2x-3 ln x and y"(x) = -5x-4 + 6x-4 In x , so 
x2y" + 5xy' + 4y = 
x2 ( -5x-4 + 6x-4 In x) + 5x(x-3 - 2x-3 In x) + 4(x-2 In x) = o. 

13. r = � 14. r = ± � 15. r = -2, 1 

16. r = i (-3 ± v's7) 
17. C = 2 

0 
x 

18. C = 3 

0 
x 

5 

5 

19. C = 6 

20. C = I I  

21. C = 7 

20 .---�----n----r.----. 

'" 0 �----�--��---+--� 

-20 
-10  -5 0 5 10 

x 

1 0  

5 

'" 0 

-5 

- 10  
-2 -1  0 2 

x 
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22. C = I 26. C = -JT 

23. C = -56 

24. C =  17 

25. C = JT/4 

5 .----.-----.-----r--� 

-5 L-�_ll __ L_�� __ ��--U 
-20 -10  o 

x 
10  20 

30 ,,----�--��--_nW<, 

20 

10  

- 10  

-20 

-30 �--���--��----� 
o 2 3 x 

20 

10  

-10 

-20 

-30 L-��W-���� __ L_� 
o 0.5 I 1 .5 2 2.5 3 3.5 4 4.5 5 

x 

4 ,---,,----,-,-"rm--' 

2 

-2 

-4 L_L....UL...1..L.L....J. __ -'--__ '--'-____ � 
-2 - I  o 

x 
2 

10 ,---------.----------, 

5 

-5 

- I O u---------�------�� 
o 5 10  

x 

27. y' = x + y 28. y' = 2y/x 
29. y' = x/ ( l  - y) 
32. dP/dt = kVP 

31. y' = (y - x)/ (y + x) 
33. dv/dt = kv2 

35. dN /dt = k(P - N) 
39. y = x2 
42. y = cos x or y = sin x 

37. y == I or y = x 
41. y = � ex 

43. (b) The identically zero function x (0) == 0 

44. (a) The graphs (figure below) of typical solutions with k = � 
suggest that (for each) the value x (t) increases without bound as 
t increases. 

5 

4 

3 

2 

O L-__ � ____ � __ � __ � 
o 2 3 4 

t 
(b) The graphs (figure below) of typical solutions with k = - � 
suggest that now the value x (t) approaches 0 as t increases 
without bound. 

6 r----.-----.-----.----, 

5 

4 

" 3 

2 

2 3 4 

45. P (t)  = 1 00/(50 - t ) ;  P = 1 00 when t = 49, and P = 1 000 
when t = 49.9. Thus it appears that P(t) grows without bound 
as t approaches 50. 



46. v (t )  = 50/(5 + 2t) ;  v = I when t = 22.5 , and v = 10 when 
t = 247 .5 .  Thus it appears that v (t ) approaches 0 as t increases 
without bound. 

47. (a) C = 1 0. 1 ;  (b) No such C, but the constant function y (x) == 0 
satisfies the conditions y' = y2 and y(O) = O. 

Section 1.2 

1. y (x) = x2 + X + 3 

3. y(x)  = t (2X3/2 - 1 6) 

5. y (x )  = 2Jx + 2 - 5 

7. y(x) = 1 0  tan- l x 

9. y(x) = sin- 1 x 

2. y(x) = t (x - 2)2 + I 

4. y(x) = - l /x + 6 

6. y (x )  = H<X2 + 9)3/2 - 1 25] 

8. y (x) = � sin 2x + I 

10. y (x) = -(x + I )e-X + 2 

11. x (t ) = 25t2 + l Ot + 20 12. x (t ) = - I Ot2 - 1 5t + 5 

13. x (t )  = � t3 + 5t 14. x (t ) = � t3 + � t2 - 7t + 4 

15. x (t) = k (t + W - 37t - 26 

16. x (t )  = � (t + 4) 3/2 - 5t - � 
17. x (t ) = � [ (t + n-l + t - I ] 

19. x (t) = { ��t _ 1 t2 _ � 2 2 
if 0 :::: t :::: 5 ,  
if 5 :::: t :::: 1 0. 

2 4 6 

20. 
{ 1 t2 if 0 :::: t :::: 5 , x (t )  = 
2 25 5t - T if 5 :::: t :::: 1 0. 

40 

30 

::.. 20 

1 0  

0 
0 2 4 6 

8 1 0  

8 1 0  
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21. x (t )  = :Ot _ � t2 _ 25 if 5 :::: t :::: 1 0. 

40 ,---.---.---.---.--, 

30 

::.. 20 

1 0  

2 4 

22. x (t )  = I t2
_ ¥ 

i (-5t2 + l OOt - 290) 

6 8 

if 0 :::: t :::: 3 , 
if 3 :::: t :::: 7, 
if 7 :::: t :::: 1 0. 

1 0  

23. v (t )  = - (9.8) t + 49, s o  the ball reaches its maximum height 
(v = 0) after t = 5 seconds. Its maximum height then is 
y (5) = 1 22 .5 (m). 

24. v(5) = - 1 60 ftls 
25. The car stops when t "'> 2.78 (s), so the distance traveled before 

stopping is approximately x (2.78) "'> 38 .58 (m). 
26. (a) y "'> 530 m (b) t "'> 20.4 1  s (c) t "'> 20.6 1 s 
27. Yo "'> 1 78.57 (m) 
28. v (4.77) "'> - 1 92.64 ftls 
29. After 1 0  seconds the car has traveled 200 ft and is traveling at 70 

ft/s. 
30. a = 22 ftls2 ; it skids for 4 seconds. 
31. Vo = 1OJ30 (m/s), about 1 97 . 1 8  kmlh 
32. 60 m 33. 20JTQ "'> 63.25 (ft/s) 
34. 460.8 ft 36. About 1 3 .6 ft 
37. 25 (mi) 38. 1 : 1 0 pm 
39. 6 mph 40. 2.4 mi 
41. 5� "'> 1 8 1 .33 ftls 42. 25 mi 
43. Time: 6. 1 2245 x 1 09 S "'> 1 94 years; 

Distance: 1 . 8367 x 1 0 17 m "'> 1 9 .4 light-years 
44. About 54 milh 
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9. 3 
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'" 0 

- I 
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-2 - I 0 2 3 
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10. 3 

2 

'" 0 

- I 

-2 

-2 - I 0 
x 

11 .  A unique solution exists in some neighborhood of x = I .  
12. A unique solution exists i n  some neighborhood of x = I . 
13. A unique solution exists in some neighborhood of x = O. 
14. Existence but not uniqueness is guaranteed in some 

neighborhood of x = O. 
15. Neither existence nor uniqueness is guaranteed in any 

neighborhood of x = 2. 
16. A unique solution exists in some neighborhood of x = 2. 
17. A unique solution exists in some neighborhood of x = O. 
18. Neither existence nor uniqueness is guaranteed. 
19. A unique solution exists in some neighborhood of x = O. 
20. A unique solution exists in some neighborhood of x = O. 
21. Your figure should suggest that y( -4) � 3 ; an exact solution of 

the differential equation gives y( -4) = 3 + e-4 � 3 .0 183 . 

5 
4 
3 
2 

I 
'" 0 

- I · . � \ 
-2 · . \ . . \ 
-3 · . \ . .  \ .  
-4 · . \  . .  \ 
-5 
-5 -4 -3 

22. y(-4) � -3 

. \ - . \  
.\ . . \ 
.\ . . \ 

. .  \ . . \ . .  
-2 -I 0 

x 

. /  / .  

. ., . . I · 

. r · 1  
I i 
/ . / -

'" . --:- . 

2 3 4 5 
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23. Your figure should suggest that y (2) � 1 ;  the actual value is 
closer to 1 .004. 

2 . , , . , . . / . . , . / -1 . . / / . /. i · f ., 
I I I / / / / / / / / / / 
j / / I / / / / / / i / / 
I / / I I / " ". ". ,/ / I I / (2,?) 
i / I- I ' ;" ",. _ - - - .,. ;" . / / 
I / 
/ / (0,0) I 

'" 0 

/ / /. - - ..... 
-I . /  1 � ", . _ -

/ / / / ,/ ". ." ,/  / I 
/ / ( / / / / / / 1 
I / / / / / / / / / 

-2 . , / / . .  / . /  -I . / / / / 

-2 -I 0 2 
x 

24. y(2) � 1 .5 
25. Your figure should suggest that the limiting velocity is about 20 

ft/sec (quite survivable) and that the time required to reach 
19 ft/sec is a little less than 2 seconds. An exact solution gives 
v(t)  = 1 9  when t = � In 20 � 1 .8723. 

40 \ \ � \ \ \ \ \ \ \ \ \ \ \ 
35 . \ . \ \ . \" . \ \ \ \ \" . \"  \ \ . , \ 

\ \ \ \ \ \ \ \ \ \ \ \ \ \ 
30 ' " ' " .". , , " . , . ' " " , " " , . . , 

25 , , , , , , , , , , , , , , " "- -...: '.,. ...;, "- , "- "-
;. 20 - - ...:- - - - - -

I S  /. �.  / ,.,. / /. /. � "" 
/ / / / / / / / / 

1 0  / I / / .(. . / / . I / . / 
/ / / / / / / I / / 

5 · 1  . , / .  ./ . , . . f.  · 1 , I · ./ 
/ I / / I , , i I I 

0 
0 2 3 4 5 

26. A figure suggests that there are 40 deer after about 60 months; a 
more accurate value is t � 6 1 . 6 1 .  The limiting population is 75 
deer. 

27. The initial value problem y' = 2"fY, y (O) = b has no solution if 
b < 0; a unique solution if b > 0; infinitely many solutions if 
b = O. 

x 

28. The initial value problem xy' = y, y (a )  = b has a unique 
solution if a f= 0; infinitely many solutions if a = b = 0; no 
solution if a = 0 but b f= O. 

29. The initial value problem y' = 3y2/3 , y (a) = b always has 
infinitely many solutions defined for all x. However, if b f= 0 
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then i t  has a unique solution near x = a .  

30. The initial value problem y' = -�, yea ) = b has a 
unique solution if Ib l  < 1 ;  no solution if Ib l  > 1 ,  and infinitely 
many solutions (defined for all x) if b = ± 1 . 

31. The initial value problem y' = �, yea ) = b has a unique 
solution if Ib l  < I ;  no solution if Ib l  > I ,  and infinitely many 
solutions (defined for all x) if b = ± I .  

-rrJ2 rrJ2 
x 

32. The initial value problem y' = 4x,JY, yea) = b has infinitely 
many solutions (defined for all x) if b � 0; no solutions if b < O. 
However, if b > 0 then it has a unique solution near x = a .  

33. The initial value problem x2y' + y2 = 0, yea) = b has a unique 
solution with initial point (a , b) if a =1= 0, no solution if a = 0 
but b =1= 0, infinitely many solutions if a = b = O. 

4 

2 r-_�� 

-2 

-4 

x 
34. (a) If y( - I )  = - 1 .2 then y ( l ) � -0.48 . If y( - 1 ) = -0.8 then 

y ( l )  � 2.48. (b) If y (  -3) = -3 .0 1  then y(3) � - 1 .0343. 
If y( -3) = -2.99 then y (3) � 7.0343. 

35. (a) If y (  -3) = -0.2 then y (2) � 2.0 1 9 . If y (  -3) = +0.2 then 
y (2) � 2.022. In either case, y(2) � 2.02. 
(b) If y(-3) � -0.5 then y (2) � 2.0 17 .  If y(-3) � +0.5 then 
y(2) � 2.024. In either case, y (2) � 2.02. 

Section 1.4 

1. y (x) = C exp(-x2) 

3. y (x) = C exp(- cos x) 

5. y(x) = sin (C + .JX) 

7. y (x) = (2X4/3 + C)3/2 

9. y(x) = C ( I  + x)/ ( I  - x) 

2. y(x) = 1 / (x2 + C) 

4. y(x) = C( I  + X)4 

6. y (x) = (X3/2 + C)2 

8. y (x) = sin- I (x2 + C) 

10. y(x) = (I + x)/ [ I  + C( 1 + x)] - I 

11 . y (x) = (C - X2)- 1/2 

12. y2 + 1 = C ex2 

13. In(y4 + 1 )  = C + 4 sin x 
14. 3y + 2y3/2 = 3x + 2X3/2 + C 
15. 1 / (3y3 ) - 2/y = I /x + In I x l  + C 

16. y (x) = secl (C.JI+X2) 

17. ln l l + Y I = x + kx2 + C  

18. y (x) = tan (c - � - x) 
19. y(x) = 2 exp(eX )  20. y(x) = tan(x3 + 1T/4) 

21. y2 = 1 +  ";x2 - 1 6  

23. y (x) = k ( I  + e2X-2) 

25. y (x) = x exp(x2 - I )  

27. y = In(3e2x - 2) 

22. y(x) = -3 exp(x4 - x) 

24. y(x) = f sin x 

26. y(x) = 1 / ( 1  - x2 - x3) 

28. y(x) = tan- I (.JX - I )  

29. (a) General solution y (x) = - I / (x - C ) ;  (b) The singular 
solution y (x) == o. (c) In the following figure we see that there is 
a unique solution through every point of the x y- plane. 

4 

-4 

-6 L--W __ -ll __ � __ � __ W-� 
-6 -4 -2 0 

x 
2 4 6 

30. General solution y (x) = (x - C)2 ; singular solution y (x) == O. 
(a) No solution if b < 0; (b) Infinitely many solutions (for all 
x) if b � 0; (c) Two solutions near (a , b) if b > O. 

31. Separation of variables gives the same general solution 
y = (x - C)2 as in Problem 30, but the restriction that 
y' = 2,JY � 0 implies that only the right halves of the parabolas 
qualify as solution curves. In the figure below we see that 
through the point (a , b) there passes (a) No solution curve if 
b < 0, (b) a unique solution curve if b > 0, (c) Infinitely many 



solution curves if b = O. 

- 15 -10 -5 0 5 10 1 5 
x 

32. General solution y (x) = ± sec(x - C) ; singular solutions 
y (x) "" ± 1 .  
(a) No solution i f  I b l  < I ;  (b) A unique solution i f  I b l  > I ;  
(c) Infinitely many solutions if b = ± 1 .  

33. About 5 1 840 persons 34. t :::::; 3 .87 hr 
35. About 14735 years 36. Age about 686 years 
37. $2 1 103.48 38. $44.52 
39. 2585 mg 40. About 35 years 
41. About 4.86 x 1 09 years ago 
42. About 1 .25 billion years 
43. After a total of about 63 min have elapsed 
44. About 2.4 1 minutes 
45. (a) 0.495 m; (b (8.32 x 1 0-7) 10 ; (c) 3 .29 m 
46. (a) About 9.60 inches; (b) About 1 8 ,200 ft 
47. After about 46 days 
48. About 6 billion years 
49. After about 66 min 40 s 
50. (a) A (t) = 10 . 321/ 1 5 ; (b) About 20.80 pu; (c) About 1 5 .72 

years 
51. (a) A (t) = 1 5  . ( � ) t/5 ; (b) approximately 7.84 su; (c) After about 

33.4 months 
52. About 1 20 thousand years ago 
53. About 74 thousand years ago 
54. 3 hours 55. 972 s 
56. At time t = 2048/ 1 562 :::::; 1 . 3 1  (in hours) 
58. 1 :20 P.M .  
59. (a) y (t) = ( 8  - 7t)2/3 ; (b) at 1 :08:34 P. M . ;  

(c) r = -torr; :::::; 0. 1 5  (in.) 
60. About 6 min 3 sec 
61. Approximately 1 4  min 29 s 
62. The tank is empty about 1 4  seconds after 2:00 P.M .  
63. (a) 1 :53 :34 P.M . ;  (b) r :::::; 0.04442 ft :::::; 0.53 in. 
64. r = 7�0 v'3 ft, about ts in. 
65. At approximately 1 0:29 A . M .  

Section 1.5 

1 .  y(x) = 2(1 - e-X )  
3 .  y(x) = e-3x (x2 + C) 
5. y(x) = x + 4x-2 
7. y(x) = 5X I /2 + CX- I /2 
9. y (x) = x (7 + In x) 

11.  y (x) "" 0 

2. y (x) = (3x + C)elx 
4. y (x) = (x + C)eX2 
6. y (x) = x2 + 32/x5 
8. y (x) = 3x + CX- I /3 

10. y(x) = 3x3 + CX3/2 
12. y(x) = iX5 - 56x-3 
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13. y(x) = (eX + e-X ) /2 14. y(x) = x3 1n x + IOx3 
15. y(x) = [ 1 - 5 exp(-x2) ]/2 
16. y(x) = I + e- sin x 
17. y(x) = ( I  + sin x )/ ( I  + x) 
18. y(x) = x2 (sin x + C) 
19. y(x) = & sin x + C csc x 
20. y(x) = - I  + exp (x + &X2) 
21. y(x) = x3 sin x 
22. y (x) = (x3 + 5)eX2 
23. y(x) = x3 (2 + Ce-lx ) 
24. y(x) = H I  + 1 6(x2 + 4)-3/2 ] 
25. y(x) = [exp (_ �X2)] [3(x2 + 1 )3/2 - 2] 
26. x (y) = 1 /2y2 + C/y4 
27. x (y) = eY (C + & y2) 
28. x (y) = Hy + ( I  + y2) (tan- 1 y + C)] 
30. y(x) = x l /2 j; r l/2 cos t dt 
29. y(x) = [exp(x2 ) ] [C + &.J1f erf(x)] 
32. (a) y (x) = sin x - cos x ;  (b) y (x) = Ce-X + sin x - cos x ; 

(c) y (x) = 2e-x + sin x - cos x 
33. After about 7 min 4 1  s 
34. About 22.2 days 
35. About 5 .5452 years 
36. (a) x (t) = (60 - t) - (60 - t)3 /3600; (b) About 23.09 lb 
37. 393.75 Ib 
38. (a) x (t) = 50e-t/20 ; (b) y (t ) = 150e-t/40 - l ooe-t/2o ; 

(c) 56.25 1b 
39. (b) Ymax = 1 00e- 1 :::::; 36.79 (gal) 
41. (b) Approximately $ 1 ,308,283 
43. -50.0529, -28.0265, -6.0000, 1 6 .0265, 38 .0529 
44. 3.99982, 4.00005, 4.00027, 4.00050, 4.00073 
45. x (t) = 20( 1 - e-t/ I O ) ;  x = 10  after t = 10  I n  2 :::::; 6.93 months. 
46. x (t) = 12� ( 10 1  - 102e-t/ 1O + cos t + 10  sin t ) ;  x = 10 after 

t = 6.47 months. 

Section 1.6 

1 .  x2 - 2xy - y2 = C 
3. y(x) = x (C + In I x l )2 
4. 2 tan- I (y/x) - In(y2/x2 + I )  = 2 1n x  + C 
5. ln lxy l = C + xy- 1 6. 2y ln y = x + Cy 
7. y3 = 3x3 (C + In Ix l )  8 .  y = -x In(C - ln x) 
9. y (x) = x/ (C - In Ix l )  10. x2 + 2y2 = Cx6 

11 .  y = C(x2 + y2) 
12. 4x2 + y2 = x2 (ln x + C)2 
13. y + J x2 + y2 = Cx2 14. x - Jx2 + y2 = C 
15. x2 (2xy + y2 ) = C 
16. x = 2.Jx + y + I - 2 1n ( I + .Jx + y + I ) + C 
17. y (x) = -4x + 2 tan(2x + C) 
18. y = In(x + y + I )  + C 
19. y2 = x/(2 + Cx5) 
21. y2 = I / (Ce-lx - I )  
23. y(x) = (x + CX2)-3 
25. 2X3y3 = 3.JI + X4 + C 
27. y (x) = (x4 + CX) I /3 
29. sin2 y = 4x2 + Cx 
31. x2 + 3xy + y2 = C 
33. x3 + 2xy2 + 2y3 = C 
35. 3x4 + 4y3 + 1 2y In x = C 
36. x + eXY + y2 = C 
37. sin x + x In y + eY = C 

20. y3 = 3 + Ce-3x2 
22. y3 = 7x/(7Cx7 + 15) 
24. y2 = elx /(C + In x) 
26. y3 = e-X (x + C) 
28. y = In(Cx2 + x2elx) 
30. x2 - 2xeY - e2y = C 
32. 2x2 - xy + 3y2 = C 
34. x3 + x2y2 + y4 = C 



580 Answers to Selected Problems 

38. x2 + 2x tan- I y + In( 1 + y2) = C 
39. 5X3y3 + 5xy4 + y5 = C 
40. eX sin y + x tan y = C 
41. x2y- 1 + y2x-3 + 2//2 = C 
42. xy-2/3 + X-3/2y = C 
43. y(x) = AX2 + B 
44. x(y) = Ay2 + B 
45. y(x) = A cos 2x + B sin 2x 
46. y(x) = x2 + A ln x + B  
47. y(x) = A - In Ix + B I  
48. y(x) = In x + Ax-2 + B 
49. y(x) = ±(A + Bex ) I /2 
50. y(x) = In I sec(x + A) I  - �X2 + B 
51. x(y) = - � V + Ay + B) 
52. Ay2 - (Ax + B)2 = I 
53. y(x) = A tan(Ax + B) 
54. Ay2 (B - x) = I 
58. y = exp(x2 + C/X2) 
59. x2 - 2xy - y2 - 2x - 6y = C 
60. (x + 3y + 3)5 = C(y - x - 5) 
61. x = tan(x - y) + sec(x - y) + C 
64. y(x) = x + e-x' [C + �.ft erf(x) r 
65. y(x) = x + (C - X)- I 
69. Approximately 3 .68 mi 

Section 1. 7 

2 
1. x (t) = --

2 - e-t 

2 
_ 1 0  

• x (t) - I + ge- lOt 

1 5 ,--,----,----, 

-5 L-_� ____ � __ � 

o 

2 + e-2t 
3. x (t) = ---

2 2 - e- t 

4 ,---�---,,--, 

3 

O r---��-��--� 

-I ���==�---� 
-2 � __ �� __ � __ � 

2 3 

3 ( 1  - e- 121 ) 
4. x (t) = 2( 1 + e- 1 2t ) 

-2 

-3 �--�---�--� 

40 
5. x (t) = 8 _ 3e- 1 5t 

10 .--�.--.--.---, 

-5 �---��-�--� 
o 0.25 0.5 



1 0  
6 .  x (t )  = 2 + 3e l51 

1 0 ,------,--.--,-----. 

-5 L-__ -L ____ �� ______ � 
o 

77 
7. x (t) = .,--:----:---:c::I I  - 4e-281 

0.25 0.5 

1 5 .----.-----.-.-----. 

22 1 
8. x (t )  = 1 7  _ 4e9 1 1  

'"< 10E=======---i 
- I O L-----�--� ________ � 

o 0.01 

9. 484 10. 20 weeks 
11 .  (b) p et) = ( 4 t + 1 0) 2 

240 
12. p et )  = --20 - t 

1 80 
13. p et )  = 

30 _ t 

14 p et )  _ Po 
• - 1 +  kPot 

16. About 27 .69 months 1 7 .  About 44.22 months 
19. About 24.4 1 months 
20. About 42. 1 2  months 

200 . .  21. 1 + e-6/5 � 1 53.7 millIon 

0.02 
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22. About 34.66 days 
23. (a) lim x (t)  = 200 grams (b) � In 3 � 1 . 37 seconds 1-->00 
24. About 9.24 days 
25. (a) M = 1 00 and k = 0.0002; (b) In the year 2035 
26. 50 In � � 5 .89 months 
27. (a) 1 00 In � � 58 .78 months; (b) 100 In 2 � 69.3 1 months 
28. (a) The alligators eventually die out. (b) Doomsday occurs after 

about 9 years 2 months. 
29. (a) P ( l 40) � 1 27 .008 million; (b) About 2 1 0.544 million; 

(c) In 2000 we get P � 1 96. 1 69, whereas the actual 2000 
population was about 28 1 .422 million. 

31. a � 0.39 1 5 ;  2 . 1 5  x 1()6 cells 
37. k � 0.00006687 17 ,  M � 338.027 
38. k � 0.000 1 46679, M � 208.250 

39. p et )  = Po exp (kt + 2� sin 2m) ; the colored curve in the 
figure below shows the graph with Po = 1 00, k = 0.03, and 
b = 0.06. It oscillates about the black curve which represents 
natural growth with Po = 1 00 and k = 0.03. We see that the two 
agree at the end of each full year. 

P 
1 20 

Section 1.8 

1. Approximately 3 1 .5 s 
3. 400/(ln 2) � 577 ft 
5. 400 ln 7 � 778 ft 
7. (a) 1 00 ft/sec; (b) about 23 sec and 1403 ft to reach 90 ft/sec 
8. (a) 1 00 ft/sec; (b) about 14.7 sec and 830 ft to reach 90 ft/sec 
9. 50 ft/s 

10. About 5 min 47 s 
11 .  Time of fall :  about 1 2.5 s 
12. Approximately 648 ft 
19. Approximately 30.46 ft/s; exactly 40 ft/s 
20. Approximately 277.26 ft 
22. Approximately 20.67 ft/s; about 484.57 s 
23. Approximately 259.304 s 
24. (a) About 0.88 cm; (b) about 2.9 1 km 
25. (b) About 1 .389 kmlsec; (c) rmax = 1 00R/ 19 � 5 .26R 
26. Yes 
28. (b) After about 8 � minutes it hits the surface at about 4. 1 1 6 

kmlsec. 
29. About 5 1 .427 km 
30. Approximately 1 1 . 1 1  kmlsec (as compared with the earth's 

escape velocity of about 1 1 . 1 8  kmlsec). 
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Chapter 1 Review Problems 

1. Linear: y (x) = x\C + In x) 
2. Separable: y (x) = x/(3 - Cx - x In x) 
3. Homogeneous: y (x) = x/(C - In x) 
4. Exact: X2yl + eX - cos y = C 
5. Separable: y (x) = C exp([3 - x-2 ) 
6. Separable: y (x) = x/ ( I  + Cx + 2x In x) 
7. Linear: y (x) = [2 (C + In x) 
8. Homogeneous: y (x) = 3Cx/(C - x3 ) = 3x/ ( I  + KXl) 
9. Bernoulli: y (x) = (x2 + CX- I )2 

10. Separable: y (x) = tan (C + x + ±xl ) 
11. Homogeneous: y (x) = x/(C - 3 lnx )  
12. Exact: 3X2yl + 2xy4 = C 
13. Separable: y (x) = I /(C + 2x2 - x5 ) 
14. Homogeneous: y2 = x2/(C + 2 In x) 
15. Linear: y (x) = (Xl + C)e-lx 
16. Substitution: v = y - x; solution: y - x - I = C e2x (y - x + I )  
17. Exact: eX + e Y  + eXY = C 
18. Homogeneous: y2 = CX2 (X2 _ y2) 
19. Separable: y (x) = X2/ (X5 + Cx2 + I )  
20. Linear: y (x) = 2X-3/2 + Cx-3 
21. Linear: y (x) = [C + In(x - I ) ] / (x + I )  
22. Bernoull i : y (x) = (2x4 + CX2)l 
23. Exact: xeY + y sin x = C 
24. Separable: Y (X) = X I /2 / (6x2 + CX I /2 + 2) 
25. Linear: y (x) = (x + 1 )-2 (Xl + 3x2 + 3x + C) 

= x + I + K (x + 1 )-2 
26. Exact: 3X3/2 y4/l - 5X6/5 yl/2 = C 
27. Bernoulli : y (x) = X- I (C + In x) - I /l 
28. Linear: y (x) = [I (C + e2x ) 
29. Linear: y(x) = (x2 + x  + C) (2x + 1 ) - 1 /2 
30. Substitution: v = x + y ;  solution: 

x = 2(x + y) I /2 - 2 1n [ 1  + (x + y) I /2 ] + C 
31. Separable and linear 
32. Separable and Bernoulli 
33. Exact and homogeneous 
34. Exact and homogeneous 
35. Separable and linear 
36. Separable and Bernoulli 

Chapter 2 
Section 2.1 

1. y(x) = � ex - � e-x 
2. y(x) = 2e3x - 3e-lx 
3. y(x) = 3 cos 2x + 4 sin 2x 
4. y(x) = lO cos 5x - 2 sin 5x 
5. y(x) = 2eX - e2x 
6. y(x) = 4e2x + 3e-3x 
7. y(x) = 6 - 8e-X 
8. y(x) = i ( 1 4  - 2e3x )  
9 .  y(x) = 2e-X + xe-X 

10. y(x) = 3e5x - 2xe5x 
11.  y(x) = 5eX sin x 
12. y (x) = e-3x (2 cos 2x + 3 sin 2x) 
13. y(x) = 5x - 2X2 
14. y(x) = 3x2 - 1 6/xl 
15. y(x) = 7x - 5x In x 
16. y(x) = 2 cos (In x) + 3 sin(ln x) 
21. Linearly independent 

22. Linearly independent 
23. Linearly independent 
24. Linearly dependent 
25. Linearly independent 
26. Linearly independent 
28. y(x) = I - 2 cos x - sin x 
29. There is no contradiction because if the given differential 

equation is divided by x2 to get the form in Eq. (8), then the 
resulting coefficient functions p (x) = -4/x and q (x) = 6/x2 
are not continuous at x = O. 

33. y (x) = c l ex + C2e2x 
35. y (x) = C I + C2e-5x 
37. y(x) = cl e-x/2 + C2ex 
39. y (x) = (C I + c2x)e-x/2 

41. y(x) = c l e-4x/l + C2e5x/2 

43. y" + lOy' = 0 
45. y" + 20y' + 100y = 0 
47. y" = 0 
49. The high point is (In � , � ) .  
50. (- ln 2, -2) 
53. y (x) = CI X-4 + C2X3 

55. y(x) = C I + c2 1n x 

Section 2.2 

34. y(x) = c l e-5x + C2e3x 
36. y(x) = C I + C2e-3X/2 

38. y(x) = c l e-x/2 + C2e-lx/2 

40. y (x) = (C I + c2x)e2x/l 
42. y(x) = c l e-4xj7 + C2elx/5 
44. y" - 100y = 0 
46. y" - I l Oy' + 1000y = 0 
48. y" - 2y' - y = 0 

52. y (x) = CI X + cz/x 
54. y (x) = CI X-l/2 + C2X 1/2 

56. y(x) = X2 (C I + c2 ln x) 

1. 1 5 · (2x) - 1 6 · (3x2 ) - 6 · (5x - 8x2) == 0 
2. (-4) (5) + (5) (2 - 3x2 ) + ( 1 ) ( 1 0  + 1 5x2 ) == 0 
3. I · 0 + 0 . sin x + 0 . eX == 0 
4. (6) ( 1 7) + (-5 1 ) (2 sin2 x) + (-34) (3 cos2 x) == 0 
5. I · 17 - 34 . cos2 x + 1 7  . cos 2x == 0 
6. (- I ) (eX )  + ( I ) (cosh x) + ( I ) (sinh x) == 0 

13. y(x) = � ex - ie-2x 
14. y(x) = � (3eX - 6e2x + 3elx ) 
15. y (x) = (2 - 2x + x2)ex 
16. y(x) = - 1 2eX + 1 3e2x - 1 0xe2x 
17. y(x) = � (29 - 2 cos 3x - 3 sin 3x) 
18. y (x) = eX (2 - cos x - sin x) 
19. y(x) = x + 2X2 + 3Xl 
20. y(x) = 2x - [2 + [2 ln x 
21. y (x) = 2 cos x - 5 sin x + 3x 
22. y (x) = 4e2x - e-2x - 3 
23. 

24. 

38. 

y(x) = e-X + 4e3x - 2 
y (x) = eX (3 cos x + 4 sin x) + x + I 

I 
Y2 (X) = 3" x 

39. Y2 (X) = xex/2 

40. Y2 (X) = xeX 
41. Y2 (X) = x + 2 
42. Jz (x) = I + x2 



Section 2.3 

1 .  y(x) = cl e2x + C2e-2x 
2. y(x) = CI + C2e3x/2 
3. y(x) = cl e2x + C2e-5x 
4. y (x) = cl ex/2 + C2e3x 
5. y(x) = cl e-3x + C2xe-3x 
6. y(x) = e-5x/2 [CI exp ( �x.J5) + C2 exp ( - �x.J5) ] 
7 .  y(x) = cl e3x/2 + c2xe3x/2 
8. y(x) = e3x (c l cos 2x + C2 sin 2x) 
9. y(x) = e-4X (c l cos 3x + C2 sin 3x ) 

10. y (x) = CI + C2X + C3X2 + C4e-3x/5 
11 .  y(x) = CI + C2X + C3e4x + C4xe4x 
12. y(x) = CI + C2ex + C3xex + C4x2ex 
13. y (x) = CI + C2e-2x/3 + c3xe-2x/3 
14. y (x) = cl ex + C2e-x + C3 cos 2x + C4 sin 2x 
15. y(x) = cl e2x + C2xe2x + C3e-2x + C4xe-2x 
16. y(x) = (C I + C2X) cos 3x + (C3 + C4X) sin 3x 
17. y (x) = CI cos (x /.J2) + C2 sin (x /.J2) + C3 cos (2x /./3 ) + 

C4 sin (2x/./3 ) 
18. y(x) = cl e2x + C2e-2x + C3 cos 2x + C4 sin 2x 
19. y (x) = cl ex + C2e-x + C3xe-x 
20. y(x) = 

e-x/2 [(C I + C2X) cos Ux./3) + (C3 + C3X) sin Ux./3)] 
21 .  y(x) = 5eX + 2e3x 
22. y (x) = e-x/3 [3 cos (x/./3) + 5./3 sin (x/./3) ] 
23. y (x) = e3X (3 cos 4x - 2 sin 4x) 
24. y(x) = � (-7 + e2x + 8e-x/2 ) 
25. y (x) = � (- 1 3 + 6x + ge-2x/3 ) 
26. y (x) = k (24 - ge-5x - 25xe-5x ) 
27. y (x) = cl ex + C2e-2x + C3xe-2x 
28. y (x) = c l e2x + C2e-x + C3e-x/2 
29. y(x) = cl e-3x + e3x/2 [C2 cos Ox./3) + C3 sin Ox./3) ] 
30. y (x) = cl e-x + C2e2x + C3 cos(x./3) + C4 sin(x./3) 
31. y (x) = cl ex + e-2x (C2 cos 2x + C3 sin 2x) 
32. y (x) = c l e2x + (C2 + C3X + c4x2 )e-x 
33. y(x) = CI e3x + e-3x (c2 cos 3x + C3 sin 3x) 
34. y (x) = cl e2x/3 + c2 cos 2x + C3 sin 2x 
35. y(x) = CI e-x/2 + C2e-x/3 + C3 cos 2x + C4 sin 2x 
36. y(x) = c l e7xf9 + e-X (c2 cOS X + c3 sin x) 
37. y(x) = I I  + 5x + 3x2 + 7eX 
38. y(x) = 2e5x - 2 cos l Ox 
39. y(3) - 6y" + 1 2y' - 8y = 0 
40. y (3) - 2y" + 4y' - 8y = 0 
41. y(4) - 1 6y = 0 
42. y(6) + 1 2y(4) + 48y" + 64y = 0 
44. (a) x = i ,  -2i (b) x = -i ,  3i 
45. y(x) = cl e-ix + C2e3iX 
46. y(x) = cl e3ix + C2e-21X 
47. y(x) = CI exp ( [ I + i./3] x) + C2 exp ( - [ I + i./3] x) 
48. y (x) = 

t (ex + exp [ � (- I + i./3) x] + exp [ �  (- I 
-

i./3) x]) 
49. y(x) = 2e2x - 5e-X + 3 cos x - 9 sin x 
52. y(x) = CI cos(3 In x) + C2 sin(3 ln x) 
53. y(x) = X-3 [C I cos(4 In x) + C2 sin(4 In x) ] 
54. y (x) = C I + c2 1n x + C3X-3 
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55. y(x) = CI + X2 (C2 + c3 ln x) 
56. y(x) = CI + c2 1n x + c3 (ln x)2 

57. y(x) = CI + x3 (C2X-v'i + C3X+v'i) 
58. y(x) = X- I [C I + c2 ln x + c3 (1n x)2 ] 

Section 2.4 

1. Frequency: 2 rad/s ( l /n Hz); period: n s 
2. Frequency: 8 rad/sec (4/n Hz); period: n /4 sec 
3. Amplitude: 2 m; frequency: 5 rad/s; 

period: 2n /5 s 
4. (a) x (t) = H cos( l 2t - a) with 

a = 2n - tan- I (5/ 1 2) "" 5 .8884; 
(b) Amplitude: H m; period: n /6 sec 

6. About 7.33 mi 
7. About 1 0450 ft 
8. 29.59 in. 

10. Amplitude: 100 cm; period: about 2.01 sec 
11 .  About 3 .8 in. 
13. (a) x (t) = 50(e-2t/5 - e-t/2 ) ;  (b) 4.096 exactly 
14. (a) x (t) = 25e-t/5 cos(3t - a) with a = tan- I (3/4) "" 0.6435 ; 

(b) envelope curves x = ±25e-t/5 ; pseudoperiod 2n /3 
15. x (t) = 4e-2t - 2e-4t , overdamped; u (t) = 2 cos(2.J2t) 

16. x (t) = 4e-3t - 2e-7t , overdamped; 
u (t) "" 21¥.. cos( v'2T t - 0.2 149) 

17. x (t) = 5e-4t (2t + I ) ,  critically damped; 
u (t) "" �.J5cos(4t - 5 . 8 1 95) 
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18 .  x(t) = 2e-3t cos (4t - �) .  underdamped; 
u (t )  = � cos (5t - �) 

19. x(t) :::::; t .J3i3  e-5t/2 cos(6t - 0.8254) . underdamped; 
u (t) :::::; � .J233 cos (¥ t  - 0.55 17) 

20. x(t) :::::; 1 3e-4t cos(2t - 1 . 1 760). underdamped; 
u (t ) :::::; !¥ cos(2../5t - 0. 1770) 

21. x(t) :::::; lOe-5t cos ( l Ot - 0.9273) .  underdamped; 
u (t) :::::; 2.Jl4 cos (5../5 t - 0.6405) 

22. (b) The time-varying amplitude is � .J3. the frequency is 4.J3 
rad/s. and the phase angle is rr/6. 

23. (a) k :::::; 70 1 8 1b/ft; (b) After about 2.47 s 
34. Damping constant: c :::::; 1 l .5 1 1b/ft/s; spring constant: 

k :::::; 1 89 .68 1b/ft 

Section 2.5 

1. Yp (x) = �e3X 
2. Yp (x) = - � (5 + 6x) 
3. yp(x) = � (cos 3x - 5 sin 3x) 
4. Yp (x) = � (-4e' + 3xeX )  
5 .  Yp (x) = � ( l 3  + 3 cos 2x - 2 sin 2x) 
6. Yp (x) = 3!3 (4 - 56x + 49x2 ) 
7. Yp (x)  = - i (eX - e-X )  = - t  sinh x 
8. Yp (x) = �x sinh 2x 
9. Yp (x)  = - t  + -h, (2x2 - x)eX 

10. 
11 .  
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 

43. 

44. 

45. 
46. 

47. 
48. 
49. 
50. 
51. 

52. 
53. 
54. 
55. 
56. 
58. 
59. 
60. 
61. 

62. 

Yp (x)  = i (2x sin 3x - 3x cos 3x) 
yp(x) = k (3x2 - 2x) 
yp (x) = 2x + 4x sin x 
yp(x) = tseX (7 sin x - 4 cos x) 
yp (x) = � (-3x2eX + x3ex ) 
yp(x) = - 17 
yp (x) = iI (45 + e3x - 6xe3x + 9x2e3x ) 
yp(x) = � (X2 sin x - x cos x) 
yp(x) = - 1� (24xeX - 1 9xe2x + 6X2e2x ) 
yp(x) = k ( l Ox2 - 4x3 + x4) 
yp(x) = -7 + txex 
yp(x) = xeX (A cos x + B sin x)  
yp (x) = Ax3 + BX4 + Cx5 + Dxe' 
yp (x) = Ax cos 2x + Bx sin 2x + Cx2 cos 2x + Dx2 sin 2x 
yp (x)  = Ax + Bx2 + (Cx + Dx2)e-3x 
yp (x) = Axe-x + Bx2e-x + Cxe-2x + Dx2e-2x 
yp (x) = (Ax + Bx2)e3x cos 2x + (Cx + Dx2)e3x sin 2x 
yp(x) = Ax cos x + Bx sin x + Cx cos 2x + Dx sin 2x 
yp (x) = (Ax + Bx2 + Cx3 ) cos 3x + (Dx + Ex2 + Fx3 ) sin 3x 
yp (x) = Ax3ex + Bx4ex + Cxe2x + Dxe-2x 
yp (x) = (A + Bx + Cx2 ) cos x + (D + Ex + Fx2) sin x 
y (x)  = cos 2x + � sin 2x + !X 
y (x) = i ( l 5e-x - 16e-2x + eX ) 
y (x)  = cos 3x - Is sin 3x + k sin 2x 
y (x)  = cos x - sin x + 4x sin x 
y (x)  = eX (2 cos x - � sin x)  + !x + 1 
y (x) = 1!2 (234 + 240x - ge-2x - 33e2x - 1 2x2 - 4X4) 
y (x)  = 4 - 4ex + 3xex + x - 4x2ex + ix3e' 
y (x)  = Me-X ( I 76 cos x + I 97 sin x) - (6 cos 3x + 7 sin 3x)] 
y (x)  = -3 + 3x - 4X2 + iX3 + 4e-x + xe-X 
y (x)  = � (5e-X + 5ex + lO cos x - 20) 
yp (x) = 255 - 450x + 30x2 + 20x3 + IOx4 - 4x5 
y (x)  = lOe-x + 35e2x + 2 I O cos x + 390 sin x + yp (x) where 
yp (x)  is the particular solution of Problem 4 l . 
(b) y (x) = Cl cos 2x + C2 sin 2x 
+ � cos x - 2\; cos 3x 
y (x)  = e-x/2 [C l cos Ox.J3) + C2 sin Ox.J3) ] + 
� (-3 cos 2x + 2 sin 2x) + 4

�2 ( 1 5  cos 4x + 4 sin 4x) 
y (x)  = Cl cos 3x + C2 sin 3x + � - fo cos 2x - -k cos 4x 
y (x)  = Cl COS X + C2 sin x + -h, (3x cos x + 3x2 sin x) + 
1�8 (3 sin 3x - 4x cos 3x) 
yp(x) = � ex 
yp (x) = - 1i- (6x + I )e-2X 
yp (x) = X2e2x 
yp(x) = -h, (4x cosh 2x - sinh 2x) 
yp(x) = - i (cos 2x cos x - sin 2x sin x) + 2\; (cos 5x cos 2x + 
sin 5x sin 2x) = - k cos 3x ( ! )  
yp (x) = - ix cos 3x 
yp (x) = �x sin 3x + � (cos 3x) In I cos 3x l 
yp(x) = - 1 - (cos x) In I csc x - cot x l  
yp (x) = k ( l - x sin 2x) 
yp (x) = - �eX (3x + 2) 
yp (x) = x3 (ln x - 1 )  
yp (x) = iX4 
yp (x) = _ JfX4/3 
yp (x) = In x 

yp(x) = -x2 + x ln -- + - ( 1  + x2) ln I I - x2 1 1 1 + x I 1 
I - x 2 



Section 2. 6 

1. x (t )  = 2 cos 2t - 2 cos 3t 

2. x (t) = � sin 2t - sin 3t 

3. x (t )  = v'138388 cos ( lOt - a) + 5 cos(5t - f3) with 
a = 21T - tan- I ( 1 / 1 86) "'" 6.2778 and 
f3 = tan- I (4/3) "'" 0.9273 . 

375 

-375 

4. x (t )  = 2v'f06 cos(5t - a) + 10 cos 4t with 
a = 1T - tan- I (9/5) "'" 2.0779 

30 I '  21t ' I  

-30 

5. x (t )  = (xo - C) cos wot + C COS M ,  where C = Fo/(k - m(2) 
7. xsp (t ) = 1% cos(3t - a) with a = 1T - tan- I ( 1 2/5) "'" 1 .9656 

8. xsp (t) = 15 cos(5t - a) with a = 21T - tan- I (3/4) "'" 5 .6397 
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9. xsp (t) = � cos ( lOt - a) with 
a = 1T + tan- I ( 1 99/20) "'" 4.6 1 22 

0 1  r 
-0. 1 

F, 

10. xsp (t) = ;� v'6T cos ( lOt - a) with 
a = 1T + tan- I ( 1 7 1 /478) "'" 3 .485 1 

-I 

11 .  xsp (t) = v;o cos(3t - a) with a = 1T - tan- I (3) "'" 1 .8925 
x,, (t) = % v'2 e-2t cos(t - f3) with f3 = 21T - tan- I (7) "'" 4.8543 

12. xsp (t) = 3� cos(3t - a) with a = 1T + tan- I (2/5) "'" 3 .522 1 
x,, (t) = 6�e-3t cos(2t - f3) with f3 = tan- I (5/2) "'" 1 . 1 903 

0.5 

-0.5 

13. xsp (t) = Ji!!k cos ( lOt - a) with 
a = 1T - tan- I ( 1 0/37) "'" 2.9320 
x,, (t) = 2 1 :!�!4 e-t cos(5t - f3) with 
f3 = 21T - tan- I (42 1 / 1 2895) "'" 6.2505 
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14. xsp (t) = .J485 cos(t - IX) with IX = tan- 1 (22) "" 1 .5254 
Xtr (t) = .J3665 e-4t cos(3t - f3) with 
f3 = n + tan- 1 (52/3 1 )  "" 4. 1 748 

-30 

15. C(w) = 2/.J4 + w4 ;  there is no practical resonance frequency. 

c 

+-____ :;:::===_ w 
5 10 

16. C(w) = 1O/.J25 + 6wZ + w4 ;  there is no practical resonance 
frequency. 

c 

+-______ � __ ====� w 
5 10  

17. C(w) = 50/.J2025 - 54w2 + w4 ;  there is practical resonance at 
frequency w = 3.J3. 

C 

+-___ � ___ �__ w 
10 20 

18. C(w) = 100/.J422500 - 1200wZ + w4 ;  there is practical 
resonance at frequency w = 10.J6. 

C 

+-___ � ___ �___ w 
25 50 

19. w = .J384 rad/sec (approximately 3 . 1 2  Hz) 
20. w "" 44.27 rad/sec (approximately 7 .05 Hz) 
21. Wo = .J(8/ L) + (k/m) 
22. wo = Jk/(m + l/a2 ) 
23. (a) Natural frequency: .JfO rad/s (approximately 0.50 Hz); 

(b) amplitude: approximately 10 .625 in. 

Section 2. 7 

1. I (t) = 4e-5t 
2. I (t) = 4( 1 - e-5t ) 
3. I (t )  = 1:5

(cos 60t + 1 2 sin 60t - e-5t ) 
4. I (t )  = 5 (e- lOr - e-20t ) ; Imax = 1 ( 10  In 2) = 5/4. 
5. I (t) = �e- lOt sin 60t 

6. Isp (t) = � (-21  cos 60t + 22 sin 60t ) = (5/.J37) cos(60t - IX) , 
where IX = n - tan- 1 (22/21 ) "" 2 .3329. 

7. (a) Q (t )  = EoC( l  - e-tIRC) ; I (t) = (Eo/ R)e-rIRc 
8. (a) Q (t )  = lOte-5t ; I (t )  = 10 ( 1  - 5t)e-5t ; 

(b) Qrna. = Q( 1 /5) = 2e- 1 . 
9. (a) Q (t )  = (cos 1 20t + 6 sin 1 20t - e-20t ) / 1 480 

I (t) = (36 cos 1 20t - 6 sin 1 20t + e-20t ) /74 
(b) Isp = � (6 cos 1 20t - sin 1 20t ) = .k cos( 1 20t - IX) with 
IX = 2n - tan- 1 � . 

11 .  Isp (t) = Jb sin(2t - 8) with 8 = 2n - tan- l ( 1 /6) "" 6. 1 1 80 

12. Isp (t) = .k sin( 10t - 8) with 8 = 2n - tan- 1 ( 1 /4) "" 6.0382 
13. Isp (t) = � sin(5t - 8) with 8 = 2n - tan- l (2/3) "" 5 .6952 
14. Isp (t) "" 0.9990 sin ( 100t - 0.8272) 
15. Isp (t) "" 0. 1 59 1  sin(60m - 4.8576) 
16. Isp (t) "" 1 .6 1 25 sin(377t - 1 .2282) 
17. I (t )  = -25e-4t sin 3t 
18. I (t ) = t�l ( 1 ge- lOt - 1 8e-20t - e-t )  
19. I (t ) = lOe-20t - lOe- l Ot - 50te- lOt 
20. I (t) = - 37�e-3tI2 (v'IT cos tv'IT/2 + 27 sin tv'IT/2) + 

� (cos 2t + 6 sin 2t) 

21. I (t) = - �e-t ( l 2 cos 3t + 47 sin 3t) + � (2 cos 5t + 3 sin 5t) 



I 

22. I (t) � -e-251 (0. 1 574 cos 25t.JI59 + 0.0262 sin 25t.JI59) + 
(0. 1 574 cos 60m + 0.0230 sin 60n t)  

I 

Section 2.8 

1. Only positive eigenvalues {n2n2/4} and associated 
eigenfunctions {cos(nnx/2) } for n = 1 , 3 , 5 ,  . . . .  

2. Eigenvalue Ao = 0 with eigenfunction Yo (x)  == 1 ,  and positive 
eigenvalues {n2 } with associated eigenfunctions {cos nx } for 
n = 1 , 2, 3 ,  . . . . 

3. Only positive eigenvalues {n2/4} for n = 1 , 2, 3 , . . . .  The nth 
eigenfunction Yn (x) is cos(nx /2) if n is odd, sin(nx /2) if n is 
even. 

4. Eigenvalue Ao = 0 with eigenfunction Yo (x)  == 1 ,  and positive 
eigenvalues {n2/4} for n = 1 , 2 , 3 , . . . .  The nth eigenfunction 
Yn (x) is sin(nx /2) if n is odd, cos(nx /2) if n is even. 

5. Only positive eigenvalues {n2n2/64} for n = 1 , 2, 3, . . . .  The 
nth eigenfunction Yn (x) is cos(nn x /8) + sin(nn x /8) if n is 
odd, cos(nn x /8) - sin(nn x /8) if n is even. 

7-8. In the figure below, points of intersection of the curve Y = tan z 
with the lines Y = ±z are labeled with their z-coordinates. We 
see that Cln lies just to the right of the vertical line 
z = (2n - l )n /2, while f3n lies just to the left of the line 
z = (2n + 1 )n/2. 

Chapter 3 

Section 8. 1 
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( 3x (3X) 2 (3X)3 (3X)4 ) 
3. y (x)  = Co 1 - 2 + 

2!22 - 3 !23 
+ 

4!24 - . . .  = 

coe-3x!2 ; p = +00 ( X2 X4 x6 ) , 

4. y (x)  = Co 1 - l! + 
2! - 3 !  

+ . . . = coe-x- ; p = 00 

5. y (x)  = Co ( 1 + 
x3 + � + � + . . .  ) = co exp ( !x3 ) . 
3 2 !32 3 !33 3 ' 

P = +00 ( X x2 x3 X4 ) 2co 
6. y (x)  = Co 1 + 2" + "4 + 8" + 1 6 + . . . = 2 _ x ; p = 2 

2 3 Co I 7. y(x)  = co ( l  + 2x + 4x + 8x + . . . ) = 1 _ 2x ; p = "2 ( X x2 x3 5x4 ) 
8. y (x)  = Co 1 + 2" - 8" + 1 6 - 1 28 + . . .  = co.JT+x; 

p = l  
Co 

9. y(x) = co ( l  + 2x + 3x2 + 4x3 + . . . ) = 
( l _ X)2 ; p = 1 ( 3x 3x2 x3 3x4 ) 10. y(x)  = Co 1 - 2 + """"8 + 

1 6 + 
1 28 

+ . . .  = co ( l _ X)3!2 ; 
p = l  

11 .  y(x)  = Co ( 1 + �: + :: + �� + . . .  
) + 

CI (x + x3 
+ 

x5 + x7 
+ . . .  

) 
3 ! 5 !  7 ! 

= Co cosh x + C I sinh x ; p = +00 ( (2X)2 (2X)4 (2x)6 ) 
12. y(x)  = Co 1 + � + 4! + """6! + . . .  + 

C I ( (2X)3 (2x)5 (2X)7 ) "2 (2x) + � + ----s! + """"7! + . . .  = 

Co cosh 2x + % sinh 2x ; p = 00 ( (3X)2 (3X)4 (3X)6 ) 
13. y (x) = Co 1 - � + 4! - """6! + . . .  + 

� (3X _ (3X)3 + (3X)5 _ (3X)7 + . . . ) 
3 3 !  5 !  7 !  

= Co cos 3x + tC I sin 3x ; p = +00 
14. y(x) = x + Co ( 1 - �: + :: - �� + . . . ) 

+ (C I _ 1 )  (x _ x3 + x5 
_ x7 + . . .  ) 

3 !  5 !  7 ! 
= x + co cos x + (C I - 1 )  sin x ;  p = 00 

15. (n + l ) cn = 0 for all n ;::; 0, so Cn = 0 for all n ;::; o. 

16. 2ncn = Cn for all n ;::; 0, so Cn = 0 for all n ;::; o. 
17. Co = C I = 0 and Cn+ 1 = -nCn for n ;::; 1 ,  thus Cn = 0 for all 

n ;::; o. 
18. Cn = 0 for all n ;::; 0 
19. (n + l ) (n + 2)cn+2 = -4cn ; 

3 [ (2x)3 (2X)5 (2X)7 ] 3 . y (x)  = 2" (2x) - � + ----s! - """"7! + . . .  = 2: sm h 

20. (n + l ) (n + 2)cn+2 = 4c,, ; [ (2X)2 (2x)4 (2X)6 ] y(x)  = 2 1 + -- + -- + -- + . . . = 2 cosh 2x 2! 4! 6! 
21. n (n + l ) cn+ 1 = 2ncn - Cn- I ; 

x3 X4 x5 
y (x)  = X + x2 + - + - + - + . . .  = xeX 

2 ! 3 !  4 ! 
22. n (n + l ) cn+ 1 = -nCn + 2Cn_ l ; y = e-2x 
23. As Co = C I = 0 and (n2 - n + l )cn + (n - l )cn- I = 0 for n ;::; 2, 

Cn = 0 for all n ;::; 0 
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Section 3.2 

. � 2n � 2n+ l Co + Cl X 
1. Cn+2 = C," y (X)  = Co � X + C I � X = --- ; p = 

n=O n=O 1 - x2 

3. (n + 2)Cn+2 = -Cn ;  
00 (_ I )nx2n 00 (_ I )nx2n+ 1 

y (x)  = Co 8 n !2n + C I 8 (2n + I ) ! !  ; p = +00 

4. (n + 2)Cn+2 = - en + 4)cn ; p = I ; 
00 00 

y(x) = Co L (- I )n (n + l )x2n + � C I  L (- I )" (2n + 3)X2n+ 1 
11=0 n=O 

00 x2n+ l 
5. 3 (n + 2)Cn+2 = ncn ;  p = vS"; y (x)  = Co + C I L ---

n=O (2n + 1 ) 3n 

6. (n + I ) (n + 2)Cn+2 = (n - 3 ) (n - 4)cn ; p = 00; 
y (x) = co ( l  + 6x2 + x4) + CI (x + x3 ) 

7. 3 (n + I ) (n + 2)Cn+2 = -en - 4)2Cn ; 
y (x) = Co ( I _ 8;2 

+ �4 ) + ( X3 x5 00 (- I )n (2n - 5) ! !X2n+ l ) CI x - 2 + 
120 

+ 9 � (2n + 1 ) !3n 

8. 2(n + I ) (n + 2)Cn+2 = (n - 4) (n + 4)cn ; y (x)  = co ( l  - 4x2 + 

4 ( 5x3 7xs � (2n - 5) ! ! (2n + 3) ! !X2n+ l ) 2x ) + C I X - 4 + 32 + � (2n + 1 ) !2n 

9. (n + I ) (n + 2)Cn+2 = (n + 3 ) (n + 4)cn ; P = I ; 
00 C 00 

y(x) = Co L (n + 1 ) (2n + I )x2n + i L (n + 1 ) (2n + 3)X2n+ 1 
n� _0 

10. 3 (n + I ) (n + 2)Cn+2 = - en - 4)cn ; 

y (x)  = Co ( I + 
2;2 

+ 
��) + ( X3 XS 00 (- I )n (2n - S) ! !x2n+ I ) CI x + 6 + 

360 + 3 � (2n + 1 ) ! 3n 

11. 5(n + I ) (n + 2)Cn+2 = 2(n - 5)cn ; 

y (x)  = CI (x _ 4x3 
+ 4XS ) + 1 5  375 

Co I - x + - + - + 15 '" ---'---( 2 x4 X6 00 (2n _ 7) ! ! 2nX2n ) 
10 750 -S (2n) !5n 

12. C2 = 0; (n + 2)Cn+3 = Cn ; 

y(x) = Co ( I + f x3n ) + CI � X3n+ 1 

n= 1 2 · 5 · · ·  (3n - I )  � n !3n 

13. C2 = 0; (n + 3)Cn+3 = -Cn ; 
00 (_ I )nx3n 00 (_ I )nx3n+ 1 

y (x) = Co '" + C I '" -...,.-----� n !3n � 1 · 4 · · ·  (3n + I )  

14. C2 = 0; ( n  + 2)(n + 3)Cn+3 = -Cn ; 

y(x) = Co I + L + ( 00 (_ I )nx3n ) 
n= 1 3n . n ! · 2 ·  5 . . .  (3n - I )  

00 (_ I )nx3n+ 1 
CI 8 3n . n !  . I · 4 · . .  (3n + I )  

15. C2 = C3 = 0; ( n  + 3 ) (n + 4)Cn+4 = -Cn ; 

y (x)  = Co I + L + ( 00 ( _ I )n x4n ) 
n= 1 4n . n ! . 3 · 7 · . . (4n - I )  

00 (_ I )n X4n+ 1 
C I L ---'------

n=O 4
n . n ! . 5 . 9 ·  . .  (4n + I )  

16. y(x)  = x 

17. y (x)  = I + x2 
00 (- I )n (x _ 1 )2n 

18. y(x)  = 2 L ; converges for all x 
n=O n ! 2n 

00 

19. y(x) = � L (2n + 3 ) (x - 1 )2n+ l ; converges if 0 < x < 2 
n=O 

20. y(x)  = 2 - 6(x - 3? ; converges for all x 

21. y (x) = 1 +  4(x + 2)2 ; converges for all x 

22. y (x)  = 2x + 6 

23. 2C2 + Co = 0; (n + I ) (n + 2)Cn+2 + Cn + Cn- I = 0 for n � I ; 

24. 

25. 

x2 x3 x3 X4 
Y I (x)  = 1 - 2 - 6 + " ' ; Y2 (X) = x - 6 - 12  + . . .  

x3 XS x6 
YI (X) = 1 + 3" + 5" + 45 + . . . ; 

x3 X4 XS 
Y2 (X) = x + 3" + 6 + 5" + . . .  

C2 = C3 = 0, (n + 3 ) (n + 4)cn+4 + (n + I )Cn+ 1 + Cn = 0 for 
X4 x7 

n � O· YI (x ) = I - - + - + . . . . - , 1 2  1 26 ' 
X4 XS 

Y2 (X) = x - 12 - 20 + . . . 

26. y(x) = Co ( I - ;� + ;� + . . .  ) + CI (x - :� + �� + . . .  ) 

28. 

29. 

Y(X) = CO ( I _ �2 
+

x; + " ' ) + CI (X - : + �; + . . .  ) 
I 2 I 

6 Y I (x) = I - 2:x + nox + . . . ; 
I 3 I 5 Y2 (X) = x - 6x - 60

x' + . . . 

30. Y (X) = co ( I _ �2 
+ : + " ' ) + C I (X _ X; + �; + . . . 

) 
33. The following figure shows the interlaced zeros of the 4th and 

5th Hermite polynomials. 

y 

34. The figure below results when we use n = 40 terms in each 
summation. But with n = 50 we get the same picture as 
Fig. 3 .2.3 in the text. 



Y 

Section 3.3 

1 .  Ordinary point 2. Ordinary point 
3. Irregular singular point 4. Irregular singular point 
5. Regular singular point; rl = 0, r2 = - I 
6. Regular singular point; rl = I , r2 = -2 
7. Regular singular point; r = -3, -3 

8. Regular singular point; r = & ' -3 

9. Regular singular point x = I 
10. Regular singular point x = I 
11 .  Regular singular points x = I ,  - 1 

12. Irregular singular point x = 2 

13. Regular singular points x = 2, -2 
14. Irregular singular points x = 3, -3 

15. Regular singular point x = 2 
16. Irregular singular point x = 0, regular singular point x = I 
17. YI (X) = cos ,JX, Y2 (X) = sin ,JX 

00 � 00 � 
18 Y (x) - " Y (x)  - X- I/2 " ----

• 
I - � n ! (2n + I ) ! ! ' 2 - � n !  (2n - I ) ! !  

19. 

20. 

21. 

22. 

23. 

3/2 ( 00 xn ) 
YI (x) = x I + 3 � n !  (2n + 3 ) ! !  ' 

00 xn 
Y2 (X) = I - x - L ' (2 _ 3 )"  n=2 n . n . , 

00 (- 1 )"2n xn 
YI (X) = x l/3 L ' 

n=O n !  . 4 . 7 . . .  (3n + I )  
00 (_ I )n2nxn 

Y2 (X) = L -----

n=O n !  . 2 · 5 ·  . .  (3n - I )  ( 00 x2n ) 
YI (X) = x 1 +  , � n !  · 7 ·  1 1 · . . (4n + 3) ( 00 x2n ) 
Y2 (X) = X- I /2 I + � n !  . I · 5 ·  . . (4n - 3) 

YI (x) = X3/2 I + , 
( 00 (- I )" x2n ) � n !  · 9 ·  1 3 · . .  (4n + 5) ( 00 (_ i )n- I x2n ) 

Y2 (X) = X-I 1 + � n ! . 3 · 7 · · · (4n - I )  

YI (x) = x l/2 I + , 
( 00 x2n ) � 2n . n ! · 1 9 · 3 1 . . · ( l 2n + 7) ( 00 x2n ) 

Y2 (X) = X-2/3 1 +  � 2n . n !  · 5 ·  1 7 . . · ( l 2n - 7) 
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24. YI (x) = x l/3 I + " , ( 00 (_ I )nx2n ) f:-r 2n . n !  · 7 ·  1 3 · . .  (6n + I )  

25. 

26. 

00 (_ I )"x2n 
Y2 (X) = I + L 2n . n !  . 5 . I I  . . . (6n - I )  n=l 

YI (X) = X I/2 � (- I )"xn 
= x l/2e-x/2 , 

L..- n ! . 2n n=O 
00 (- I )"xn 

Y2 (X) = I + � (2n _ I ) ! !  

00 x2n 
Y (x) = X I/2 L -- = X I/2 exp ( lx2) I 

n=O n !  . 2n 2 ' 
00 2n X2n 

Y2 (X) = I + L 3 . 7 . . . (4n - I )  n= l 

I I . 27. YI (x) = - cos 3x, Y2 (X) = - sm 3x 
x x 

Y 

Y2 

-1 YI 

28 
1 I . 

• 
YI (X) = - cosh 2x, Y2 (X) = - smh 2x 

x x 

Y 

-L-------':-------=-2 x 

I x I x 
29. YI (X) = - cos - , Y2 (X) = - sin -

x 2 x 2 

Y 

-0.5 
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y 

31. y, (x) = X '/2 coshx , Y2 (X) = X ' /2 sinh x 

Y 

--'-"'---------7-- X 

x2 
32. y, (x) = x + 5 '  

- '/2 ( 5x 1 5x2 5x3 ) Y2 (X) = x 1 - 2 - -8- - 4s + . .  . 

33. y, (x) = x- , ( 1 + l Ox + 5x2 + 1�3 
+ . . .  ) . 

Y2 (X) = x / I + - - -- + -- + . . .  ' 2 ( 1 1x 1 1x2 67 1x3 ) 
20 224 24 192 

34. y, (x) = x ( 1 - :� + 1
;;

0 + . . . ) . 

Y2 (X) = X- '/2 1 - - + -- + . . .  ( 7X2 19x4 ) 
24 3200 

Section 3.4 

1 + x 00 x" 1. y, (x) = -2- ' Y2 (X) = 1 + 2 L ---X "= , (n + 2) ! 
1 ( x2 X3 ) 00 x" 

2. y, (x) = 2 1 + x + - + -6 , Y2 (x) = 1 + 24 L ---x 2 "= , (n + 4) ! 

3. y, (x) = :4 ( 1 _ 3x + 9�2 
_ 9�3 ) . 

00 (- 1 )" 3"x" 
Y2 (x) = 1 + 24 L -'-----'----:c-:

"= , (n + 4) ! 
1 ( 3x 9x2 9x3 27X4 ) 4. y, (x) = x5 1 - 5 + 50 - 250 

+ 5000 ' 
00 (- 1 )" 3" x" 

Y2 (X) = 1 + 1 20 " I f=t (n5) . · 5" 
3x x2 x3 

5. y, (x) = 1 + "4 + "4 + 24 ' ( 00 (n + 1)X" ) 
Y2 (X) = x5 1 + 1 208 (n + 5) ! ( 8 

00 (2n + 5) ! !x" ) 
6. y, (x) = x4 1 + s 8 n ! (n + 4) !2" 

( 2x x2 2x3 X4 ) 14. y, (x) = x2 1 - 5 + 10 - 1 05 + 336 -
. . . , ( 1 1 1 1 3  ) Y2 (X) = y, (x) · - 4X4 + 15x3 + 100x2 - 1750x 

+ . . .  ; 
Y2 (X) contains no logarithmic term. ( 00 (- 1 )"x2" ) 

16. y, (x) = X3/2 1 + L ' "= , 2" . n !  . 5 · 7 · . . (2n + 3) 

Y2 (X) = X-3/2 
(
1 + f (- 1 )"x2" ) 

"= , 2" . n !  . (- 1 )  . 1 · 3 · . .  (2n - 3) 

Section 3.5 

2. 

4. 

5 
1 2 

8 
2 

• J4(x) = - (x - 24)Jo (x) + -3 (6 - x ) J, (x) 
x2 x 



12. The following figure corroborates the calculated value y(O) = 3 .  

y 

-----------+----------- x 

13. X2JI (X) + XJI (x) - f Jo (x) dx + C  

14. (x3 - 4x) JI (x) + 2x2 Jo(x) + C 
15. (x4 - 9x2) JI (x) + (3x3 - 9x) Jo(x) + 9 f Jo(x) dx + C 

16. -XJI (x) + f Jo (x) dx + C 

17. 2xJI (x) - x2Jo(x) + C  
18. 3x2 JI (x) + (3x - x3 ) JO (x) - 3 f Jo (x) dx + C 

19. (4x3 - I6xM (x) + (8x2 - X4)JO (X) + C 
20. -2]1 (x) + f Jo (x) dx + C 

4 21. Jo(x) - - JI (x) + C x 
26. 0.3 

-0.3 

Section 3.6 

1. y(x) = x [cI JO (X) + C2 YO (X)] 
I 2. y(x) = - [CI JI (x) + C2 YI (x)] x 

3. y(x) = x [CI JI /2 (3x
2) + C2'-1/2 (3x

2)] 
4. y(x) = x3 [C I J2 (2x l /2 ) + C2 Y2 (2x 1 /2 )] 
5. y(x) = X- I /3 [CI JI /3 ( tX

3/2 ) + C2'-1/3 ( tX
3/2) ]  

6 . y(x) = X- I/4 [C I JO (2x3/2) + c2 Yo(2x3/2)] 
7. y(x) = X- I [C I Jo (x) + C2 YO (X)] 
8. y (x) = x2 [C I JI (4X I/2) + C2 YI (4X I /2 )] 
9. y(x) = X I /2 [C I JI/2 (2x

3/2) + C2'- 1/2 (2x
3/2)] 

10. y(x) = X- I /4 [CI J3/2 GXS/2 ) + C2'-3/2 GXS/2) ]  
11. y(x) = X I/2 [CI JI /6 ( tx3 ) + C2'- 1 /6 ( tx

3 ) ] 
12. y(x) = X I/2 [C I JI/S UXS/2) + C2'-I/S UXS/2) ]  

Chapter 4 
Section 4.1 

1. I /s2 , s > 0 2. 2/s3 , S > 0 
3. e/ (s - 3) , s > 3 4. S/(S2 + 1 ) ,  s > 0 
5. I / (s2 - 1 ) ,  s > 1 
6. H I /s - S/(S2 + 4)] ,  s > 0 
7. ( 1  - e-' ) /s , s > 0 
8. (e-' - e-2, ) /s ,  s > 0 

10. (s - 1 + e-' ) /s2 , s > 0 
11. �.J7Ts-3/2 + 3s-2 , S > 0 
12. (451!" - 192s3/2 ) / (8s7/2 ) ,  S > 0 
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13. S-2 - 2(s - 3)- 1 , S > 3 
14. 3.J7T/(4ss/2) + I / (s + 10) , s > 0 
15. S- I + S (S2 - 25)- 1 , S > 5 16. (s + 2)/(S2 + 4) , s > 0 
17. cos2 2t = � ( 1  + cos 4t) ; � [S- I + S/(S2 + 16)] , s > 0 
18. 3/(S2 + 36) , s > 0 
19. S- I + 3s-2 + 6s-3 + 6s-4 , S > 0 
20. I / (s - 1 ) 2 , s >  1 21. (S2 - 4)/(S2 + 4)2 , S > 0 
22. � [S/ (S2 - 36) - S- I ] 23. � t3 

24. 2"fiTii 25. 1 - � t3/21!"- 1 /2 

26. e-s, 27. 3e4' 
28. 3 cos 2t + � sin 2t 

30. - cosh 2t - � sinh 2t 
32. 2u (t - 3) 

29. � sin 3t - 3 cos 3t 

31. � sinh 5t - IO cosh 5t 

37. f(t) = 1 - u (t - a ) . Your figure should indicate that the graph 
of f contains the point (a, 0) ,  but not the point (a , 1 ) .  

38. f(t) = u (t - a) - u (t - b) . Your figure should indicate that the 
graph of f contains the points (a , 1 )  and (b, 0) , but not the 
points (a,  0) and (b, 1 ) .  

39. Figure 4.2.8 shows the graph of  the unit staircase function. 

Section 4.2 

1. x (t) = 5 cos 2t 

3. x(t) = � (e2' - e-' ) 

5. x (t) = t (2 sin t - sin 2t) 

7. x(t) = � (9 cos t - cos 3t) 

9. x (t) = � (2 - 3e-' + e-3' ) 

2. x (t) = 3 cos 3t + � sin 3t 

4. x (t) = � (7e-31 - 3e-SI ) 
6 . x (t ) = t (cos t - cos 2t) 

8. x (t) = � ( I  - cos 3t) 

10. x (t) = � (2t - 3 + I2e-' - ge-2' ) 
11 . x (t) = 1 ,  y(t) = -2 
12. x(t) = � (e21 - e-' - 3te-' ) ,  y (t ) = � (e2' - e-' + 6te-' )  

13. x (t) = - (2/v'3) sinh (t /v'3) , 
y (t ) = cosh (t/v'3) + ( I /v'3) sinh (t/v'3) 

14. x (t) = � (2t - 3 sin 2t) ,  y(t) = - � (2t + 3 sin 2t) 

15. x (t) = t (2 + e-3'/2 [cos(rt /2) + r sin(rt /2)1) ,  
y (t) = -k (28 - ge' + 2e-31/2 [cos(rt /2) + 4r sin(rt /2)1) where 
r = v'3 

16. x(t) = cos t + sin t ,  y (t) = e' - cos t , z (t) = -2 sin t 
17. f(t) = t (e3' - 1 )  

18. f(t) = � ( 1  - e-S' )  

19. f(t) = � ( 1  - cos 2t) = � sin2 t 

20. f(t) = � (6 sin 3t - cos 3t + 1 )  
21 .  f(t) = t - sin t 
22. f(t) = � (- I  + cosh 3t) 
23. f(t) = -t + sinh t 
24. f(t) = � (e-2' - 2e-' + 1 )  
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Section 4.3 

1. 24/(s - 71')5 2. � .J1f  (s + 4)-5/2 

3. 37r/[(s + 2)2 + 971'2] 4. "fi (2s + 5)/(4s2 + 4s + 17) 
5. � e2t 6. (t - t2)e-t 
7. te-2t 8. e-2t cos t 
9. e3t (3 cos 4t + � sin 4t) 10. �e2t/3 (8 cos � t  - 5 sin � t) 

11. � sinh 2t 12. 2 + 3e3t 
13. 3e-2t - 5e-5t 14. 2 + e2t - 3e-t 
15. -/s (e5t - 1 - 5t) 16. 1�5 [e

2t (5t -2) +e-3t (5t +2) ] 
17. i\i (sinh 2t - sin 2t) 18. e4t ( 1 + 12t + 24t2 + ¥ t3 ) 
19. t (2 cos 2t + 2 sin 2t - 2 cos t - sin t) 
20. J'z[e2t (2t - 1 )  + e-2t (2t + 1 ) ] 
21. �e-t (5 sin t - 3t cos t - 2t sin t) 
22. �et/2 [(4t + 8) cos t + (4 - 3t) s in t ] 
27. �e-3t (8 cos 4t + 9 sin 4t) 
28. � (l - 2e2t + e4t )  29. � (-6t + 3 sinh 2t) 
30. i\i [2e-t - e-2t (2 cos 2t + sin 2t)] 
31. 1s (6e2t - 5 - e-3t ) 32. � (cosh t + cos t) 
33. x (t) = r (cosh rt sin rt - sinh rt cos rt) where r = 1 /"fi 
34. � sin 2t + t sin 3t 35. i\i (sin 2t - 2t cos 2t) 
36. M2e2t + ( l Ot - 2) cos t - (5t + 14) sin t] 
37. � [(5t - l )e-t + e-2t (cos 3t + 32 sin 3t) ] 
38. 5:0 e-

3t (489 cos 3t + 307 sin 3t) + l�o (7 cos 2t + 6 sin 2t) 
39. 20 

-20 x = -t 

Section 4.4 

1. � t2 
3. � (sin t - t cos t) 

2. (eat - at - 1 )/a2 
4. 2(t - sin t) 

5. teat 6. (eat - ebt )/ (a - b) 
7. t (e3t - l ) 8. � ( l - cos 2t) 
9. it (sin 3t - 3t cos 3t) 10. (kt - sin kt)/ k3 

11. � (sin 2t + 2t cos 2t) 12. H l - e-2t (cos t + 2 sin t) ] 
13. i\i (3e3t - 3 cos t + sin t) 14. t (cos t - cos 2t) 
15. 6s/(s2 + 9)2 , s > 0  16. (2S3 _ 24s)/(S2 + 4)3 , S > 0  
17. (S2 - 4s - 5)/(S2 - 4s + 13)2 , S > 0 

2(3s2 + 6s + 7) 18. s > 0 (s + 1 )2 (s2 + 2s + 5)2 ' 
19. �7r - arctan s = arctan( l /s ) ,  s > 0 
20. � In(s2 + 4) - In s , s > 0 21. In s - In(s - 3) , s > 3 
22. In(s + I) - In(s - I ) ,  s > I 
23. -(2 sinh 2t)/ t  24. 2(cos 2t - cos t )/ t 
25. e-2t + e3t - 2 cos t ) / t  26. (e-2t sin 3t)/t 
27. 2( l - cos t )/ t 28. � (t sin t - t2 cos t) 
29. (s + I )X'(s) + 4X (s) = O; x (t) = Ct3e-t , C ::f:  0 
30. X(s) = A/(s + 3)3 ; x (t ) = Ct2e-3t ,  C ::f: 0 
31. (s - 2)X'(s) + 3X (s) = 0; x (t) = Ct2e2t , C ::f: 0 

32. (S2 + 2s)X' (s) + (4s + 4)X (s) = 0; 
x (t ) = C( l  - t - e-2t - te-2t ) ,  C ::f: 0 

33. (S2 + I )X' (s) + 4sX (s) = O; x (t) = C(sin t - t cos t) , C ::f:  0 

34. x (t) = Ce-2t (sin 3t - 3t cos 3t) , C ::f:  0 

Section 4.5 

1. f(t) = u (t - 3) . (t - 3) 

fit) 

2. f(t) = (t - l ) u (t - 1 )  - (t - 3)u(t - 3) 

fit) 

2 

3 

3. f(t) = u (t - 1 )  . e-2(t- l ) 

fit) 

fit) 

-5 

-10 



5. f(t) = u (t - 71") . sin(t - 71") = -u(t - 71") sin t 

j(t) 

6. f(t) = u (t - 1 ) · COS 7l" (t - 1 ) = -u(t - I ) cos lTt 

j(t) 

-1 

7. f(t) = sin t - u (t - 271") sin(t - 271") = [ l  - u (t - 271")] sin t 

j(t) 

+-----�----�x�------ t  

8. f(t) = cOS lTt - u (t - 2) COS 7l" (t - 2) = [ 1  - u (t - 2)] COS lTt 

j(t) 

9. f(t) = cos lTt + u (t - 3) cos 7l" (t - 3) = [1 - u (t - 3)] cos lTt 

j(t) 
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10. f(t) = 2u(t - 7I") cos 2(t - 71") - 2u (t - 271") cos 2(t - 271") 
= 2[u (t - 71") - u (t - 271")] cos 2t 

j(t) 
2 

-2 

11 .  f(t) = 2 [ 1  - U3 (t) ] ;  F(s) = 2( 1 - e-3' )/s 
12. F(s) = (e-' - e-4s ) /s 
13. F(s) = ( l - e-'brs)/(s2 + 1 )  
14. F(s) = s ( I  - e-2s )/ (s2 + 71"2 ) 
15. F(s) = ( 1  + e-3"' )/ (s2 + 1 )  
16. F(s) = 2(e-'" - e-2x' ) / (s2 + 4) 
17. F(s) = 7I"(e-2s + e-3' )/ (s2 + 71"2) 
18. F(s) = 271"(e-3s + e-S' )/ (4s2 + 71"2) 
19. F(s) = e-' (S- l + S-2) 
20. F(s) = ( l  - e-' )/s2 
21. F(s) = ( 1  - 2e-' + e-2s )/s2 
28. F(s) = ( 1  - e-a, - ase-a' )/ [s2 ( 1  - e-2a,) ] 
31. x (t) = & [ 1  - u (t - 71")] sin2 t 

x(t) 

32. x (t) = g(t) - u (t - 2)g(t - 2) where g(t) = 12 (3 - 4e-1 +e-4t ) . 

x(t) 

0. 1 

33. x (t) = k [ 1  - u (t - 271")] (sin t - t sin 3t) 
x(t) 

2x 

-0. 1 
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34. x (t) = g(t) - u (t - l ) [g(t - 1 )  + h (t - 1 )] where 
g(t) = t - sin t and h(t) = 1 - cos t .  

x(t) 
0.5 

-0.5 

35. x(t) = � { - I  + t + (t + l )e-2' + 

u (t - 2) [ 1 - t + (3t - 5)e-2('-2) ] }  
x(t) 

! 4 

36. i (t) = e- 10, - u (t - l )e- IO('- I ) 

37. i (t) = [ 1  - u (t - 2n)] sin l OOt 
38. i (t) = � [ 1  - (u - n)] (cos l Ot - cos l OOt) 
39. i (t) = -lo [( 1  - e-50' ) 2 - u (t - 1 ) ( 1  + 98e-50(t- I ) - 9ge- 'OO('- ' ) ] 
40. i (t) = -lo [( 1  - e-50' - 50te-50, ) - u (t - 1 ) ( 1  - e-50('- I ) 

+ 2450te-50('- I » ) ] 
41. x (t) = 21 sin t l  sin t 

1t 

00 

42. x(t) = g(t) + 2 L (_ 1 )n u (t - nn)g(t - nn) where 
n=l 

g(t) = 1 - te-' (3 cos 3t + sin 3t) 

x(t) 
2 

-2 

Section 4.6 

1. x (t) = t sin 2t 
x 

-1 

2. x (t) = W + u (t - n)] sin 2t 

x 

3. x(t) = HI - e-2' - 2te-2, ] + u (t - 2) (t - 2)e-2('-2) 

x 
0.5 

4. x (t) = -2 + t + 2e-' + 3te-' 

x 

5. x(t) = 2u (t - n)e-(l-1r) sin(t - n) 

x 

0.5 

3x 



6. x (t) = i (t - 2u (t - 3rr» sin 3t 

x 

7. x(t) = [2 - e2Jr u (t - rr) + e4" u (t - 2rr)] e-2t sin t 

x 

31t 

8. x(t) = (2 + 5t)e-t - u (t - 2) (t - 2)e-(t-2) 

x 
3 

9. x(t) = [ ! (sin 2r)f(t - r) dr 

10. x(t) = I t 
u-3, f(t - r) dr 

11. x (t) = 1 '
(e-3, sinh r )f(t - r) dr 

12. x (t) = - (e-2, sin 2r)f(t - r) dr 1 1 t 
2 0 

13. (a) mx, (t) = p[t2 - U, (t) (t - E)2]/ (2E) ; 

6 

(b) If t > E, then mx, (t) = p(2Et - E2)/ (2E) ,  and hence 
mx, (t) � pt as E � 0; 
(c) mv = (mx)' = (pt)' = O. 

15. The transform of each of the two given initial value problems is 
(ms2 + k)X (s )  = m vo = Po . 

17. (b) i (t) = e- IOO(t- l ) u l (t) - e- IOO(t-2) U2 (t) . 
If t > 2, then i (t) = _ (e IOO - l )e IOO( l-t) < O. 

18. i (t ) = [ I  - u (t - rr) ] sin lOt 
00 

19. i (t ) = L u (t - nrr/ l O) sin l Ot 
n=O 

00 

20. i (t ) = L(- I )" u (t - nrr/5) sin l Ot 
n=O 
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00 

21. i (t ) = Lu (t - nrr/ l O)e3n" e-30t sin t 
n=O 

i(t) 

0. 1 

-0. 1 

00 

22. x (t) = L u (t - 2nrr) sin t 
n=O 

x(t) 
5 

-5 

Chapter 5 
Section 5.1 

1. x; = X2 , x� = -7xl - 3X2 + t2 

It 

2. x; = X2 , x� = X3 , x� = X4 , x� = -XI + 3X2 - 6X3 + cos 3t 
3. x; = X2 , t2x� = (I - t2)XI - tX2 
4. x; = X2 , x� = X3 , t3x� = -5xl - 3tX2 + 2t2x3 + In t 
5. x; = X2 , x� = X3 , x� = xi + COS XI 
6. x; = X2 , xi = 5xI - 4yI . Y; = Y2 , y� = -4xl + 5YI 
7. x; = X2 , Y; = Y2 , x� = -kxl . (x� + y�)-3/2 , 

Yi = -kYI . (x� + y�)-3/2 
8. x; = X2 , xi = -4xl + 2YI - 3X2 

Y; = Y2 , Yi = 3xI - YI - 2Y2 + cos t 
9. x; = X2 , Y; = Y2 , z; = Z2 , xi = 3xI - YI + 2z l ,  

yi = XI + YI - 4z I . zi = 5xI - YI - Z l 
10. x; = X2 , xi = xl ( 1  - YI ) 

Y; = Y2 , Yi = YI ( l - XI ) 
11 .  x (t) = A cos t + B sin t , y (t) = B cos t - A sin t 

5 

-5 -4 -3 -2 -1 0 1 2 
x 
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12. x (t) = Aet + Be-t , y (t) = Aet - Be-t 

5 
4 
3 
2 

-2 
-3 
-4 
-5 ���������� 

x 

13. x(t) = A cos 2t + B sin 2t, y (t) = -B cos 2t + A sin 2t ; 
x(t) = cos 2t, y (t) = sin 2t 

-5 -4 -3 -2 -1 0 1 2 3 4 5 
x 

14. x(t) = A cos l Ot + B sin l Ot ,  y (t ) = B cos l Ot - A sin l Ot ; 
x(t) = 3 cos l Ot + 4 sin l Ot ,  y (t ) = 4 cos l Ot - 3 sin l Ot 

2 
1 

'" 0 1tT-I:-'H�""I\""""t-;-tl-:t-=-if-oll-J""""'-.H..w 
- 1  
-2 
-3 
-4 
� L-������� 

-5 -4 -3 -2 -1 0 1 2 3 4 5 
x 

15. x (t) = A cos 2t + B sin 2t, y (t) = 4B cos 2t - 4A sin 2t 

-1  

-5 -4 -3 -2 - 1  0 1 2 3 4 5 
x 

16. x (t) = A cos 4t + B sin 4t, y (t) = � B cos 4t - �A sin 4t 

-1 
-2 
-3 
-4 

� W-���-l-L-L��� 
-5 -4 -3 -2 -1 1 2 3 4 5 

x 

17. x (t) = Ae-3t + Be2t ,  y (t) = -3Ae-3t + 2Be2t ; x (t) = e2t ,  
y (t ) = 2e2t 

-5 W-��������� 
-5 -4 -3 -2 -1 0 1 2 3 4 5 

x 



18. x (t) = Ae-21 + Be-51 ,  y (t ) = 2Ae-2t + 5Be-5t ; A = ¥ and 
B = - ¥ in the particular solution. 

- I  
-2 
-3 
-4 
-5 

��������-U-W 
x 

19. x(t) = _e-2t sin 3t , y (t) = e-2t (3 cos 3t + 2 sin 3t) 

5 
4 
3 
2 
1 

'" 0 kb-klr-+-r"t-+ 
-1 
-2 
-3 
-4 
-5 LL���LU���-L-W -5 -4 -3 -2 -1 0 1 2 3 4 5 

x 

20. x(t) = (A + Bt)e3t ,  y (t ) = (3A + B + 3Bt)e31 

-5 -4 -3 -2 -1 0 1 2 3 4 5 
x 

27. 2(1{ - I�) + 50/1 = 1 00 sin 60t , 2(1� - I{) + 25/2 = 0 

Section 5.2 
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5 
4 
3 

1 
'" O ���������� 

-1 

-4 

� ���������W 

-5 

5 
4 
3 

1 

-5 -4 -3 -2 -1 0 1 2 3 4 5 
x 

���������� -5 -4 -3 -2 -1 0 2 3 4 5 
x 

'" O ���������� 
-1 
-2 �:;;.....-...... 
-3 
-4 
-5 w���������� -5 -4 -3 -2 -1 0 I 2 3 4 5 

x 
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3 
2 
1 

'" O IH"""",,-,,--p+,l'-;;;-hd"1rl�� 
-1  
-2 
-3 
-4 
-5 ��LruU1���� 

-5 -4 -3 -2 -1 0 
x 

2 3 4 5 

5. x(t) = e-' (al cos 2t + a2 sin 2t) ,  
y (t ) = - te-' [(a l + a2) cos 2t + (a2 - a l )  s in 2tl 

5 
4 
3 
2 
1 

'" 0 
-1 
-2 
-3 
-4 
-5 

-5 -4 -3 -2 - 1  0 1 2 3 
x 

6. x (t) = e-2t (3 cos 3t + 9 sin 3t) , y (t ) = e-2' (2 cos 3t - 4 sin 3t) 
5 
4 
3 
2 
1 

'" 0 
-1  
-2 
-3 
-4 
-5 

-5 -4 -3 -2 -1 0 1 2 3 4 5 
x 

7. x (t) = a l e2, + a2e3, - ! t + is ,  y (t) = -2a l e2, - a2e3, - � t - � 
8. x(t) = cl e' + C2e3, + e2t , y (t) = -cl e' + C2e3, 
9. x(t) = 3a l e' + a2e-' - � (7 cos 2t + 4 sin 2t), 

y (t) = al e' + a2e-' - � (2 cos 2t + 4 sin 2t) 
10. x(t) = e' , y (t) = -e' 
11. x (t) = al cos 3t + a2 sin 3t - 4i\ e' - ie-t , 

y(t) = t [(al - a2) cos 3t + (a l + a2) sin 3tl + fo e' 
12. x(t) = cl e2, + C2e-2, + C3e3t + C4e-3" 

y (t) = -cl e2t - C2e-2, + �c3e3t + �c4e-3' 
13. x (t) = al cos 2t + a2 sin 2t + bl cos 3t + b2 sin 3t , 

y (t) = t (a l cos 2t + a2 sin 2t) - 2(bl cos 3t + b2 sin 3t) 
14. x(t) = CI cos 2t + C2 sin 2t + t sin t , 

y (t) = CI cos 2t + C2 s in 2t + C3 cos 2tv'2 + 
C4 sin 2tv'2 + 1i sin t 

15. x (t) = a l cos t + a2 sin t + bl cos 2t + b2 sin 2t, 
y (t) = a2 cos t - al sin t + b2 cos 2t - bl sin 2t 

17. x(t) = a l cos t + a2 sin t + bl e2, + b2e-2" 
y (t ) = 3a2 cos t - 3a l sin t + bl e2, - b2e-2t 

18. x(t) = � (4cl e3' - 3c2e-4, ) ,  y (t) = cl e3t + C2e-4" 
z (t) = � (-4cl e3' + 3c2e-4, ) 

19.  x (t) = a l + a2e4t + a3e8t ,  y (t) = 2a 1 - 2a3e8" 
z (t) = 2al - 2a2e4t + 2a3e8, 

20. x(t) = a l e2, + a2e-' + � te-t , y (t ) = al e2, + b2e-t - t te-' , 
z (t) = al e2t - (a2 + b2 + D e-' - t te-' 

23. Infinitely many solutions 

24. No solution 

25. Infinitely many solutions 

26. Two arbitrary constants 

27. No arbitrary constants 

28. No solution 

29. Four arbitrary constants 

31. II (t) = 2 + e-s, [-2 cos ( l Ot / v'6) + 4v'6 sin ( l Ot / v'6) J . 
12 (t) = (20/v'6) e-s, sin ( IOt/v'6) 

32. II (t) = 1 3
1
2 1 ( l 20e-25,/3 - 1 20 cos 60t + 1778 sin 60t) , 

h (t) = 1 3
1
2 1 (_240e-2St/3 + 240 cos 60t + 1728 sin 60t) 

33. II (t) = � (2 + e-60t ) , 12 (t) = W _ e-60, ) 

37. 

39. 

(a) x (t) = al cos 5t + a2 sin 5t + bl cos 5t v'3 + b2 sin 5t v'3, 
y (t) = 2a l cos 5t + 2a2 sin 5t - 2b l cos 5tv'3 - 2b2 sin 5tv'3; 
(b) In the natural mode with frequency WI = 5, the masses move 
in the same direction, whereas in the natural mode with 
frequency W2 = 5v'3 they move in opposite directions. In each 
case the amplitude of the motion of m2 is twice that of m I . 

x (t) = al cos t + a2 sin t + bl cos 2t + b2 sin 2t, 
y (t) = 2a 1 cos t + 2a2 sin t - bl cos 2t - b2 sin 2t . 
In the natural mode with frequency WI = I the masses move in 
the same direction, with the amplitude of motion of the second 
mass twice that of the first mass. In the natural mode with 
frequency W2 = 2 they move in opposite directions with the 
same amplitude of motion. 

3 

2 

'" 
>{ 0 

-1  

-2 

-3 
0 1t 

/YI  = 2 cos(t) 

21t 31t 



3 

2 

;>, 
� 0 

- 1  \X2 = cos(2t) -2 

-3 
0 1t 21t 31t 

40. x (t) = al cos 5t + a2 sin 5t + bl cos l Ot + b2 sin l Ot , 
y et) = 2al cos 5t + 2a2 s in 5t - bl cos l Ot - b2 s in l Ot .  

41 .  x (t) = al cos t + a2 sin t + bl cos 3t + b2 sin 3t , 
y et) = al cos t + a2 sin t - bl cos 3t - b2 sin 3t . 
In the natural mode with frequency WI = I the masses move in 
the same direction, while in the natural mode with frequency 
W2 = 3 they move in opposite directions. In each case the 
amplitudes of motion of the two masses are equal. 

;>, 
� 

;>, 
� 

2 .-----.------r-----. 

0 

- 1  

-2 
0 

2 

0 

- 1  

-2 
0 

Xl = Yl = cos(t) 

1t 

1t 

21t 

Y2 = - cos(3t) 

21t 

42. x (t) = al cos t + a2 sin t + bl cos 2t + b2 sin 2t, 
y et) = al cos t + a2 sin t - 4bl cos 2t - 4b2 sin 2t . 

43. x (t) = al cos t + a2 sin t + bl cos t.J5 + b2 sin t.J5, 
yet) = al cos t + a2 sin t - bl cos t.J5 - b2 sin t.J5. 
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In the natural mode with frequency WI = I the masses move in 
the same direction, while in the natural mode with frequency 
W2 = .J5 they move in opposite directions. In each case the 
amplitudes of motion of the two masses are equal. 

2 .-----�------,-----� Xl = Yl = cos(t) 

;>, 
0 � 

-1  

-2 
0 1t 21t 

2 

;>, 0 � 

-I '" X2 = cos(t {5 )  
-2 

0 1t 21t 

44. x (t) = al cos tv2 + a2 sin tv2 + bl cos 2t + b2 sin 2t , 
y et) = al cos tv2 + a2 sin tv2 - bl cos 2t - b2 sin 2t . 

45. x (t) = al cos tv2 + a2 sin tv2 + bl cos tv's + b2 sin tv's, 
yet) = al cos tv2 + a2 sin tv2 - 4bl cos tv's - 4b2 sin tv's. 
In the natural mode with frequency WI = v2 the two masses 
move in the same direction with equal amplitudes of oscillation . 
In the natural mode with frequency � = v's = 2v2 the two 
masses move in opposite directions with the amplitude of m2 
being half that of m I .  

2 .-----�------,-----� 

;>, 0 � 

-I  '" Xl = Yl = cos(tV2) 
-2 

0 1t 21t 
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2 r-----�----�------, 

-2 � ____ � ____ � ____ � 
o 1t 21t 

46. x (t) = al cos 2t + a2 sin 2t + bl cos 4t + b2 sin 4t, 
y et) = al cos 2t + a2 sin 2t - bl cos 4t - b2 sin 4t . 

Section 5.8 

1. (a) [ �� - !� l (b) [ � �� l 
(c) [ �� -�� l (d) [ - �� -�� ] 

2. (AB)C = A(BC) = [ ::::�� I�� l 
A(B + C) = AB + AC = [ -!� ::::: ]  

3. AB = [ �! _� ] ; BA = [ - !! - I �  1
; ] 

o 8 - 1 3  

4. Ay = [ 3t2 _2�
2 .- co

+
s � ] , Bx = [ 2t 

�1!�
-t ] SlD t cos t 6t _ 2e-t 

5. (a) [ 2
! 4� � ] ; (b) [ _� �� -�! ] ; 

-27 34 45 -25 - 19 26 

(c) [ 1 � �� - 1 � ] ; (d) [ - ! � �� - 1 � ] ; 
16 58 -23 1 1  22 6 

(e) [ 3  � t 4 :' t -;1 ] 
-5 2 7 - t 

7. det(A) = det(B) = 0 8. det(AB) = det(BA) = 1 44 

9 (AB)' 
_ [ I - 8t + 1 8t2 I + 2t - 1 2t2 + 32t3 ] • - 3 + 3t2 - 4t3 8t + 3t2 + 4t3 

11. x = [ � J .  pet) = [ � -� J . f(t) = [ � ] 
13. x = [ � J . P(t) = [ ; _i J . f (t ) = [ ��� ] 
15' X � [n p{') � [ : � n f«) � m 
17. x = [ � ] , pet) = [ � -6 -� ] , f(t) = [ t� ] 

Z 0 6 -7 t3 

I •. x � [n p
«
) � n i ! H f«) � m 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. x = 2xI - X2 
32. x = 7x I - 2X2 
33. x = 1 5xI - 4X2 
34. x = � (3xI - 2X2) 
35. x = XI + 2X2 + X3 
36. x = 7xI + 3X2 + 5X3 
37. x = 3xI - 3X2 - 5X3 
38. x = -2xI + 1 5x2 - 4X3 
39. x = 3xI + 7X2 + X3 - 2� 
40. x = 1 3xI + 4 1x2 + 3X3 - 1 2� 
41. (a) X2 = tX I , so neither is a constant multiple of the other. 

(b) W(XI o X2) == 0, whereas Theorem 2 would imply that W 1= 0 
if XI and X2 were independent solutions of a system of the 
indicated form. 

Section 5.4 

Xl 

2. XI (t) = CI e-t + 3c2e4t , X2 (t) = -cl e-t + 2C2e4t 
3. General solution XI (t) = cl e-t + 4c2e6t , X2 (t) = -cl e-t + 3c2e6t 

Particular solution XI (t) = � (-e-t + 8e6t ) ,  
X2 (t) = � (e-t + 6e6t ) .  



S 
4 
3 
2 
1 

� 0 �"H�f-Jl-r'-Jf--.d-�f-fr-H+1l 
-1 
-2 
-3 
-4 
� ����-il���� 

-S -4 -3 -2 -1 0 2 3 4 S 

S 
4 
3 
2 
1 

� O ��� 
-1 E-_--v�_+_ 
-2 '--........ 

-S
���������� -S -4 -3 -2 -1 0 1 2 3 4 S 

xl 

6. General solution XI (t) = SCl e31 + C2e41 ,  X2 (t) = -6cl e31 - C2e41 
Particular solution XI (t) = -Se31 + 6e4t , X2 (t) = 6e31 - 6e41 .  

S 
4 
3 
2 

� 0 
-1  
-2 
-3 
-4 
-S 

xl 
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S 
4 
3 
2 
1 

� 0 
-1  
-2 
-3 
-4 
-S 

8. XI (t) = SCI cos 2t + SC2 sin 2t, 
X2 (t) = (CI - 2C2 ) cos 2t + (2cI + C2 ) sin 2t 

S � � � �  
4 
3 
2 

� 0 
-1 
-2 
-3 � � 
-4 -? -? � � -v."""'�' 
-S � � � � -=--�, 

-S -4 -3 -2 -1 0 
Xl 

9. General solution XI (t) = SCI cos 4t + SC2 sin 4t, 
X2 (t) = CI (2 cos 4t + 4 sin 4t) + c2 (2 sin 4t - 4 cos 4t) .  
Particular solution XI ( t )  = 2 cos 4 t - ¥ sin 4t , 
X2 (t) = 3 cos 4t + � sin 4t 

10. XI (t) = -2cI cos 3t - 2C2 sin 3t, 
X2 (t) = (3cI + 3C2) cos 3t + (3C2 - 3cI ) sin 3t 

11. General solution XI (t) = e' (CI cos 2t - C2 sin 2t) ,  
X2 (t) = e' (CI sin 2t + C2 cos 2t) 
Particular solution XI (t) = -4e' sin 2t, X2 (t) = 4e' cos 2t 

S 
4 
3 
2 

� 0 �'l'-1='f-!¥-,f-Ft",*,'-k--hr--Ift---7'I 
-1 
-2 
-3 
-4 
-S WL��������� 

12. XI (t) = e21 (-Scl cos 2t - SC2 sin 2t) ,  
X2 (t) = e21 [(cl + 2C2 ) cos 2t + (-2c1 + C2) sin 2t] 

13. XI (t) = 3e21 (CI cos 3t - C2 sin 3t) , 
X2 (t) = e21 [(cl + C2 ) cos 3t + (CI - C2) sin 3t] 

14. XI (t) = e31 (CI cos 4t + C2 sin 4t) ,  
X2 (t) = e31 (c1 sin 4t - C2 cos 4t) 
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15. XI ( t )  = 5e5' (CI cos 4t - C2 sin 4t), 
X2 (t) = e5' [(2cI + 4C2 ) cos 4t + (4cI - 2C2 ) sin 4t] 

16. XI (t) = cl e- IOt + 2c2e- lOO' ,  X2 (t) = 2cl e- JO' - 5c2e- 100t 

5 
4 
3 
2 
1 

� 0 
-1 
-2 
-3 
-4 
-5 

17. XI (t) = CI e9' + C2e6' + C3 , 
X2 (t) = cl e9' - 2c2e6' ,  
X3 (t) = cl e9' + C2e6' - C3 

18. XI (t) = cl e9' + 4C3 , 
X2 (t) = 2cl e9' + C2e6' - C3 , 
X3 (t) = 2cl e9' - C2e6' - C3 

19. XI (t) = cl e6' + c2e3' + c3e3" 
X2 (t) = cl e6t - 2c2e3' ,  
X3 (t) = cl e6' + C2e3' - C3e3' 

20. XI (t) = CI e9' + C2e6' + C3e2' , 
X2 (t) = cl e9' - 2c2e6' ,  
X3 (t) = cl e9' + c2e6' - C3e2' 

21. XI (t) = 6c1 + 3c2e' + 2c3e-' , 
X2 (t) = 2c1 + C2e' + C3e-' , 
X3 (t) = 5cI + 2c2e' + 2c3e-' 

22. XI (t) = C2e' + C3e3' ,  
X2 (t) = cl e-2' - C2e' - C3e3' ,  
X3 (t) = -cl e-2' + C3e3' 

23. XI (t) = cl e2t + C3e3' ,  
X2 (t) = -CI e2' + C2e-2' - C3e3' ,  
X3 (t) = -C2e-2, + C3e3' 

24. XI (t) = cl e' + c2 (2 cos 2t - sin 2t) + C3 (COS 2t + 2 sin 2t) 
X2 (t) = -cl e' - c2 (3 cos 2t + sin 2t) + C3 (COS 2t - 3 sin 2t) 
X3 (t) = c2 (3 cos 2t + sin 2t) + c3 (3 sin 2t - cos 2t) 

25. XI (t) = CI + e2' [(C2 + C3 ) cos 3t + (-C2 + C3 ) sin 3t] , 
X2 (t) = -CI + 2e2' ( -C2 cos 3t - C3 sin 3t) , 
X3 (t) = 2e2' (C2 cos 3t + C3 s in 3t) 

26. xI (t) = 4e3' - e-' (4 cos t - sin t ) ,  
X2 (t) = ge3' - e-' (9 cos t + 2 sin t ) ,  
X3 (t) = l7e-' cos t 

27. XI (t) = 15e-o.2' ,  X2 (t) = 1 5 (e-o.2' - e-o.4t ) .  
The maximum amount ever i n  tank 2 i s  x2 (5 1n 2 )  = 3.75 lb. 

20 

28. XI (t) = 1 5e-o.4" X2 (t) = 40( _e-O.4' + e-O.25' ) .  
The maximum amount ever i n  tank 2 i s  about 6.85 lb. 

31. XI (t) = 27e-' , 

l 5 r----r----.----.--� 

5 10 

20 

15 

0 1-.------'-------'-------' 
o 5 10 1 5  

X2 (t) = 27e-' - 27e-2' ,  
X3 (t) = 27e-' - 54e-2, + 27e-3' .  
The maximum amount of salt ever i n  tank 3 is X3 (In 3 )  = 4 



pounds. 

32. Xl (t) = 45e-3t , 
X2 (t) = - 1 35e-3t + 1 35e-2t , 
X3 (t) = 1 35e-3t - 270e-2t + 1 35e-t . 
The maximum amount of salt ever in tank 3 is X3 (In 3) = 20 
pounds. 

45
r-------------------� 40 

33. Xl (t) = 45e-4t , 

35 
30 
25 
20 
1 5  
10  
5 

X2 (t) = 90e-4t - 90e-6t , 
X3 (t) = -270e-4t + 1 35e-6t + 1 35e-2t . 

5 

The maximum amount of salt ever in tank 3 is X3 ( 1 1n 3) = 20 
pounds. 

34. Xl (t) = 40e-3t , 

45 r--------------,r--, 
40 
35 

X2 (t) = 60e-3t - 6Oe-St , 
X3 (t) = - 1 50e-3t + 75e-St + 75e-t . 
The maximum amount of salt ever in tank 3 is 
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X3q In 5) � 2 1 .4663 pounds. 

40 .--------------------, 
35 
30 

1 5 
10 
5 

35. Xl (t) = 1 0  - � (55e- 1 8t - 2 1 6e- l l t ) , 
X2 (t) = 3 - � ( 1 65e- 1 8t - 144e- l l t ) , 
X3 (t) = 20 + � (220e- 1 8t - 360e- l l t ) . 

4 

The limiting amounts of salt in tanks I ,  2, and 3 are 10 lb, 3 lb, 
and 20 lb. 

36. Xl (t) = 4 + e-3t/S [ 14 cos(3t/ 1 O) - 2 sin(3t/ 1 O)] , 
X2 (t) = 1 0  - e-3t/S [ l O cos(3t/ 1 O) - l O sin(3t/ 1 O)] , 
X3 (t) = 4 - e-3t/s [4 cos(3t/ 1 O) + 8 sin(3t/ 1 O) ] .  
The limiting amounts of salt in tanks I ,  2 , and 3 are 4 Ib, 10 lb, 
and 4 lb. 

37. Xl (t) = 30 + e-3t [25 cos(tv'2) + l Ov'2sin(tv'2)], 
X2 (t) = 1 0  - e-3t [ lO cos(tv'2) - ¥v'2sin(tv'2)], 
X3 (t) = 1 5  - e-3t [ 1 5 cos(tv'2 ) + 1jv'2sin(tv'2)] . 

10 

The limiting amounts of salt in tanks I ,  2 ,  and 3 are 30 lb, 10 Ib, 
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and 1 5  lb. 

Xl 
� 

25 
20 
1 5  

X2 

38. XI (t) = cl et , 
X2 (t) = -2cl et + C2e2t , 
X3 (t) = 3cI et - 3c2e2t + C3e3t , X4 (t) = -4cl et + 6c2e2t - 4c3e3t + C4e4t 

39. XI (t) = 3cl et + C4e-2t , 
X2 (t) = -2cl et + C3e2t - C4e-2t , 
X3 (t) = 4cI et + C2e-t , 
X4 (t) = cl et 

40. XI (t) = cl e2t , 
X2 (t) = -3cl e2t + 3c2e-2t - C4e-5t , 
X3 (t) = C3e5t , 
X4 (t) = -C2e-2t - 3c3e5t 

X3 

2 

41. XI (t) = 2elOt + el 5t = X4 (t) , X2 (t) = _elOt + 2e l5t = X3 (t) 

42. X(t) = CI [ -� ] + C2 U ] e2t + C3 [ _� ] e5t 

� x(,) � " [ -l ] ,-> H, m " + " [ -J }' 
� x(,) � "  [ -l ] ,-x + " m .. H, [ -l },. 
45. x(<) � " U }-.+c, [ -t J +c' m .. +ct�}· 
46. x(t) = 

" [ -l J ,-' + 'In .. H, [ -1 ] .. +,tU " 
47. x(t) = 

" [ j ] ,-" + " [ -t ] �, 
+ " [ 1 ] .. + "  [ = � ] " 

48. x(t) = 

,, [ -t }" +'l!}m+" [ -! ]�+4 U}� 
�. x(<) � " [ l J .-,, + ,, [ -r J + " [ t J " + 

50. 

Section 5.5 

1. The natural frequencies are Wo = 0 and WI = 2. In the 
degenerate natural mode with "frequency" Wo = 0 the two 
masses move linearly with XI (t) = X2 (t) = C/o + hot .  At 
frequency WI = 2 they oscillate in opposite directions with equal 
amplitudes. 

2. The natural frequencies are WI = I and W2 = 3. In the natural 
mode with frequency WI > the two masses m l and m2 move in the 
same direction with equal amplitudes of oscillation. At 
frequency W2 they move in opposite directions with equal 
amplitudes. 

3. The natural frequencies are WI = I and W2 = 2. In the natural 
mode with frequency WI > the two masses m l and m2 move in the 
same direction with equal amplitudes of oscillation. In the 
natural mode with frequency W2 they move in opposite directions 
with the amplitude of oscillation of m l twice that of m2 . 

4. The natural frequencies are WI = I and W2 = ./5. In the natural 
mode with frequency WI > the two masses m l and m2 move in the 
same direction with equal amplitudes of oscillation. At 
frequency W2 they move in opposite directions with equal 
amplitudes. 

5. The natural frequencies are WI = "fi and W2 = 2. In the natural 
mode with frequency WI , the two masses m I and m2 move in the 
same direction with equal amplitudes of oscillation. At 
frequency W2 they move in opposite directions with equal 
amplitudes. 

6. The natural frequencies are WI = "fi and W2 = .J8. In the 
natural mode with frequency WI , the two masses m I and m2 
move in the same direction with equal amplitudes of oscillation. 
In the natural mode with frequency W2 they move in opposite 
directions with the amplitude of oscillation of m I twice that of 
m2 · 

7. The natural frequencies are WI = 2 and W2 = 4. In the natural 
mode with frequency WI ,  the two masses m I and m2 move in the 
same direction with equal amplitudes of oscillation. At 
frequency W2 they move in opposite directions with equal 
amplitudes. 

8. x l (t) = 2 cos t + 3 cos 3t - 5 cos 5t , 
X2 (t) = 2 cos t - 3 cos 3t + cos 5t . 
We have a superposition of three oscillations, in which the two 
masses move ( I )  in the same direction with frequency WI = I 
and equal amplitudes; (2) in opposite directions with frequency 
W2 = 3 and equal amplitudes; (3) in opposite directions with 
frequency W3 = 5 and with the amplitude of motion of m I being 
5 times that of m2 . 



9. XI (t) = 5 cos t - 8 cos 2t + 3 cos 3t, 
X2 (t) = 5 cos t + 4 cos 2t - 9 cos 3t . 
We have a superposition of three oscillations, in which the two 
masses move ( I )  in the same direction with frequency WI = I 
and equal amplitudes; (2) in opposite directions with frequency 
W2 = 2 and with the amplitude of motion of m I being twice that 
of m2 ; (3) in opposite directions with frequency W3 = 3 and with 
the amplitude of motion of m2 being 3 times that of m i .  

10. XI (t) = cos 2t - 1 5 cos 4t + 1 4 cos t ,  
X2 (t) = cos 2t + 1 5 cos 4t + 1 6 cos t .  
We have a superposition of three oscillations, in which the two 
masses move ( 1 )  in the same direction with frequency WI = I 
and with the amplitude of motion of m2 being 8/7 times that of 
m l ;  (2) in the same direction with frequency W2 = 2 and equal 
amplitudes; (3) in opposite directions with frequency W3 = 4 and 
equal amplitudes. 

11.  (a) The natural frequencies are WI = 6 and Wz = 8. In mode I 
the two masses oscillate in the same direction with frequency 
WI = 6 and with the amplitude of motion of m I being twice that 
of m2 . In mode 2 the two masses oscillate in opposite directions 
with frequency W2 = 8 and with the amplitude of motion of m2 
being 3 times that of m i .  
(b) x (t) = 2 sin 6 t  + 1 9 cos 7t, y (t ) = sin 6t + 3 cos 7t 
We have a superposition of (only two) oscillations, in which the 
two masses move ( 1 )  in the same direction with frequency 
WI = 6 and with the amplitude of motion of m l being twice that 
of m2 ; (2) in the same direction with frequency W3 = 7 and with 
the amplitude of motion of m I being 1 9/3 times that of m2 . 

12. The system's three natural modes of oscillation have ( I )  natural 
frequency WI = ./2 with amplitude ratios I :  0 :  - I ;  (2) natural 
frequency W2 = ./2 + ./2  with amplitude ratios I :  -./2: I ;  
(3) natural frequency W3 = ./2 - ./2 with amplitude ratios 
1 : ./2: 1 . 

13. The system's three natural modes of oscillation have ( I )  natural 
frequency WI = 2 with amplitude ratios I :  0: - I ;  (2) natural 
frequency W2 = ./4 + 2./2 with amplitude ratios I :  -./2: I ;  (3) 
natural frequency W3 = ./4 - 2./2 with amplitude ratios 1 : ./2: 
I . 

15. XI (t) = � cos 5t - 2 cos 5../3 t + � cos l Ot ,  
X2 (t) = � cos 5t + 4 cos 5../3 t + ¥ cos l Ot .  
We have a superposition of two oscillations with the natural 
frequencies WI = 5 and W2 = 5../3 and a forced oscillation with 
frequency W = 1 0. In each of the two natural oscillations the 
amplitude of motion of m2 is twice that of m I , while in the 
forced oscillation the amplitude of motion of m2 is four times 
that of m i .  

20. x ;  (t) = -Vo , x� (t) = 0, x ;  (t) = Vo for t > rr 12 
21. x; (t) = -Vo, x� (t) = 0, x; (t) = 2vo for t > rr/2 
22. x; (t) = -2vo , x� (t) = VO , x; (t) = Vo for t > rr/2 
23. x; (t) = 2vo, x� (t) = 2vo, x; (t) = 3vo for t > rr/2 
24. (a) WI � 1 .0293 Hz; Wz � 1 .797 1 Hz. 

(b) VI � 28 mi/h; V2 � 49 mi/h 
27. WI = 2JTQ, VI � 40.26 (ft/s (about 27 mi/h), 

W2 = 5.J5, V2 � 7 1 . 1 8  ftls (about 49 mi/h) 
28. WI � 6. 1 3 1 1 ,  V I � 39.03 ftls (about 27 mi/h) 

W2 � 1 0.3 1 55, V2 � 65 .67 ftls (about 45 milh) 
29. WI � 5.0424, V I � 32. 1 0  ftls (about 22 mi/h), 

W2 � 9 .9 1 58, V2 � 63. 1 3  ftls (about 43 mi/h) 

Section 5.6 

1. Repeated eigenvalue A. = -3, eigenvector v = [ I  - 1  r ;  
XI (t) = (CI + C2 + c2 t)e-3t , X2 (t) = (-CI - c2t)e-3t 
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-5 w-��������-u 

-5 -4 -3 -2 -1 0 1 2 3 4 5 

2. Repeated eigenvalue A. = 2, single eigenvector v = [ I  I r; 
XI (t) = (CI + C2 + c2t)e2t , X2 (t) = (C I + c2t)e2t 

5 
4 
3 
2 
1 

� 0 
-I 
-2 
-3 
-4 
-5 

-5 -4 -3 -2 -1 0 I 2 3 4 5 

3. Repeated eigenvalue A. = 3, eigenvector v = [ -2 2 r; 
XI (t) = (-2cl + C2 - 2c2t)e3t , x2 (t) = (2cl + 2c2t)e3t 

4. Repeated eigenvalue A. = 4, single eigenvector v = [ - 1  1 ] T ; 
X I (t) = (-CI + C2 - c2t)e4t , X2 (t) = (CI + c2 t)e4t 

5. Repeated eigenvalue A. = 5, eigenvector v = [ 2 -4 r ; 
XI (t) = (2cI + C2 + 2c2t)eSt , X2 (t) = (-4cl - 4c2t)eSt 

5 
4 
3 
2 

� 0 �..---;;--=-....,..-"Ii:"""':--''-''�"'''--i 
-I 
-2 
-3 
-4 �;-.----,-
� ���-LLL���� 

-5 -4 -3 -2 -1 0 2 3 4 5 

6. Repeated eigenvalue A. = 5, single eigenvector v = [ -4 4 r;  
XI (t) = (-4cl + C2 - 4c2t)eSt , X2 (t) = (4c1 + 4c2t)eSt 
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5 

3 
2 
1 

� 0 
-1 
-2 
-3 
-4 
-5 

-5 -4 -3 -2 -1 0 1 2 3 4 5 
xl 

7. Eigenvalues A = 2, 2, 9 with three linearly independent 
eigenvectors; XI (t) = cl e21 + C2e21 ,  X2 (t) = cl e21 + C3e91 , 
X3 (t) = C2e21 

8. Eigenvalues A = 7, 1 3 ,  1 3  with three linearly independent 
eigenvectors; XI (t) = 2cl e71 - C3e 1 3t , X2 (t) = -3cl e71 + C3e 1 3t , 
X3 (t) = cl e7t + C2e l3t 

9. Eigenvalues A = 5, 5, 9 with three linearly independent 
eigenvectors; x l (t ) = cl eSt + 7c2eSt + 3c3e91 , x2 (t) = 2cl esl ,  
X3 (t) = 2c2esl + C3e9t 

10. Eigenvalues A = 3, 3, 7 with three linearly independent 
eigenvectors; XI (t) = 5cl e31 - 3c2e31 + 2c3e7t , 
X2 (t) = 2cl e3t + C3e71 , X3 (t) = C2e3t 

11.  Triple eigenvalue A = - 1  of defect 2; 
XI (t) = (-2C2 + C3 - 2c3 t)e-l ,  
X2 (t) = (CI - C2 + C2 t - 'C3 t + 4 c3 t2)e-' ,  
X3 (t) = (C2 + c3 t)e-1 

12. Triple eigenvalue A = - 1  of defect 2; 
XI (t) = e-t (CI + C3 + C2 t + 4C3 t2) 
X2 (t) = e-I (ci + C2 t + 4C3 t2 ) ,  
X3 (t) = e-l (c2 + C3 t ) 

13. Triple eigenvalue A = -I of defect 2; 
XI (t) = (CI + C2 t + 4 c3t2)e-l ,  
X2 (t) = (2C2 + C3 + 2c3 t)e-l , 
X3 (t) = (C2 + c2t)e-1 

14. Triple eigenvalue A = - I  of defect 2; 
XI (t) = e-I (5cl + C2 + C3 + 5C2t + C3 t + �C3 t2) ,  
X2 (t) = e-t (-25cl - 5C2 - 25c2 t - 5C3 t - ¥C3t2 ) ,  
X3 (t) = e-t (-5cl + 4C2 - 5C2t + 4C3 t - �C3 t2 ) 

15. Triple eigenvalue A = 1 of defect 1 ;  
XI (t) = (3cl + C3 - 3c3 t)e' ,  
X2 (t) = (-CI + c3 t )e' , x3 (t) = (C2 + c3 t)e' 

16. Triple eigenvalue A = 1 of defect 1 ;  
XI (t) = et (3cl + 3C2 + C3 ) 
X2 (t) = e' (-2cl - 2C3 t ) ,  
X3 (t) = et (-2c2 + 2C3 t ) 

17. Triple eigenvalue A = 1 of defect 1 ;  
XI (t) = (2cl + c2 )e' ,  X2 (t) = (-3C2 + C3 + 6c3 t)et , 
X3 (t) = -9(cl + c3 t)e' 

18. Triple eigenvalue A = I of defect 1 ;  
X I  (t) = e' (-CI - 2C2 + C3 ) ,  
X2 (t) = e' (C2 + C3 t ) ,  
X3 (t) = e' (C I - 2C3 t) 

19. Double eigenvalues A = -1 and A = 1, each with defect 1 ;  
XI (t) = cl e-I + C4et , 
X2 (t) = C3e' , 
X3 (t) = C2e-1 + 3c4e' ,  
X4 (t) = cl e-I - 2c3e' 

20. Eigenvalue A = 2 with multiplicity 4 and defect 3; 
X I (t) = (CI + C3 + C2t + C4t + 4C3 t2 + iC4t3 )e21 ,  
X2 (t) = (C2 + C3 t + 4 C4t2)e21 , 
X3 (t) = (C3 + C4t )e21 ,  X4 (t) = C4e21 

21. Eigenvalue A = 1 with multiplicity 4 and defect 2; 
X I (t) = (-2C2 + C3 - 2c3 t )e' ,  X2 (t) = (C2 + c3 t)e' ,  
X3 (t) = (C2 + C4 + c3 t )et , X4 (t) = (CI + C2t + 4c3 t2)e' 

22. Eigenvalue A = 1 with multiplicity 4 and defect 2; 
XI (t) = (CI + 3C2 + C4 + C2t + 3C3 t + 4c3 t2)et , 
X2 (t) = - (2C2 - C3 + 2c3t )et , X3 (t) = (C2 + c3 t)e' ,  
X4 (t) = -(2c1 + 6c2 + 2C2 t + 6c3 t + c3 t2)e' 

23. x(t) = cl v l e-t + (C2V2 + c3v3 )e31 with VI = [ 1  - 1  2 f, 
V2 = [ 4  0 9 f, V3 = [ 0 2 1 f 

24. x(t) = cl v l e-I + (C2V2 + c3v3 )e3t with VI = [ 5  3 -3 f, 
V2 = [ 4  0 - 1  f, V3 = [ 2  - 1  0 f 

25. x(t) = [CI VI + C2 (V l t + V2) + C3 ( 4 Vl t2 + V2t + V3)] e2t with 
vl = [ - 1 0 - I f , v2 = [ -4 - 1  O f , and 
V3 = [ 1  0 0 f 

26. x(t) = [CI V I + C2 (Vl t + V2 ) + C3 ( 4 V l t2 + V2 t + V3 )] e31 with 
VI = [ O 2 2 f , V3 = [ 2  1 -3 r. and 
V3 = [ 1  0 0 f 

27. x(t) = [CI VI + C2 (V l t + V2) + c3v3 ]e2t with 
V I = [ -5 3 8 f, V2 = [ I  0 0 f, V3 = [ 1  0 f 

28. x(t) = [CI VI + C2 (Vl t + V2 ) + C3 ( 4 V l t2 + V2t + V3 )] e21 with 
vl = [ 1 1 9 -289 0 f , v2 = [ - I7 34 17 f , and 
V3 = [ 1  0 0 f 

29. x(t) = [CI VI + C2 (Vl t  + v2 ) ]e-1 + [C3V3 + C4 (V3 t + v4)]e2t with 
v l = [ I  -3 - 1  -2 f , V2 = [ O 1 0 O f , 
V3 = [ O - 1  O f , V4 = [ O 0 2 I f 

30. x(t) = [CI V I + C2 (V l t  + v2 ) ]e-1 + [C3V3 + C4 (V3 t + v4) ]e21 ,  with 
V I = [ O 1 - 1  -3 f , V2 = [ O 0 1 2 f , 
V3 = [ - 1 0 0 0 f, V4 = [ 0  0 3 5 f 

31. x(t) = [CI V I + C2 (Vl t + V2 ) 
+ C3 ( 4 V l t2 + V2t + V3) + C4V4] e' with 
VI = [ 42 7 -21 -42 f, 
v2 = [ 34 22 - 1 0  -27 f , v3 = [ - I 0 0 O f , 
V4 = [ 0  1 3 0 f 

32. x(t) = (CI V I + c2v2 )e21 + (C3V3 + C4V4 + csvs )e31 with 
v l = [ 8  0 -3 1 0 f , v2 = [ 1  0 0 0 3 f , 
v3 = [ 3  -2 - 1  0 O f , 
V4 = [ 2  -2 0 -3 0 f,  Vs = [ 1  - 1  0 0 3 f 

33. XI (t) = [ cos 4t sin 4t 0 O f e31 ,  
X2 (t) = [ - sin 4t cos 4t 0 O f e31 ,  
X3 (t) = [ t cos 4t t sin 4t cos 4t sin 4t f e3t , 
�(t) = [ -t sin 4t t cos 4t - sin 4t cos 4t f e31 

( ) _ [ 3 cos 3s/�� sin 3t ] 21 34. XI t - 0 e , 
sin 3t 

( ) _ 
[ 3 Sin3tC�Si�OS 3t ] 21 X2 t - 0 e , 

- cos 3t [ 3 cos 3t + t sin 3t ] ( ) _ 
(3t - 10) cos 3t - (3t + 9) sin 3t 21 X3 t - sin 3t e , 

t sin 3t 



[ 
-t cos 3t + 3 sin 3t ] X4 (t) = (3t + 9) cos 3t + (3t - 10) sin 3t 2t - cos 3t e 

-t cos 3t 
35. XI (t) = X2 (t) = vo ( l  - e-t ) ;  lim X I (t) = lim X2 (t) = vo 
36. X I (t) = vo (2 _ 2e-t _ te-t ) ,  

H OO  H OO  

x.z (t) = vo (2 -:- 2e-t - te-t - t t2e-t ) ;  
hm XI (t) = hm X2 (t) = 2vo 
t-HX) , --,," 00 

Section 5. 7 

1. c)(t) = [ et e3t ] x(t) = l [ 5et + e3t ] 
_et e3t , 2 -5et + e3t 

2. c)(t) = [ �  -2::: l x(t) = � [ i � 1
5;:;t ] 

3. c)(t) = [ 5 cos 4t . -5 sin 4t ] 
2 cos 4t + 4 sm 4t 4 cos 4t - 2 sin 4t ' 

x(t) = l [ -5 sin 4t ] 
4 4 cos 4t - 2 sin 4t 

4. c)(t) = e2t [ � 1 ;- t l x(t) = e2t [ I ;- t ] 
5. c)(t) = [ 2 cos 3t . -2 sin 3t ] -3 cos 3t + 3 sm 3t 3 cos 3t + 3 sin 3t ' 

x(t) = l [ 3 cos 3t - sin 3t ] 
3 -3 cos 3t + 6 sin 3t 

6. c)(t) = e5t [ cos 4t - 2 sin 4t 2 cos 4t + 2 sin 4t ] 
2 cos 4t 2 sin 4t ' 

x(t) = 2e5t [ cos 4t. + sin 4t ] sm 4t [ 6 3et 2e-t ] [ - 12 + 1 2et + 2e-t ] 
7. c)(t) = 2 et e-t , x(t) = -4 + 4et + e-t 

5 2et 2e-t - 1 0  + 8et + 2e-t [ 0 et e3t ] [ et ] 
8. c)(t) = e-2t _et _e3t , x(t) = -et + e-2t 

_e-2t 0 e3t _e-2t 

9. e t = 3t t 3 A [ 2e3t - et _2e3t + 2et ] 
e - e -e t + 2et 

10 At _ [ -2 + 3e2t 3 - 3e2t ] 
• e - -2 + 2e2t 3 _ 2e2t 

A [ 3e3t - 2e2t _3e3t + 3e2t ] 11 .  e t = 2 3t 2 2t e - e _2e3t + 3e2t 

12. eAt = [ -3et + 4e2t 4et - 4e2t ] 
-3et + 3e2t 4et _ 3e2t 

13. eAt = [ 4e3t - 3et _4e3t + 4et ] 
3e3t - 3et -3e3t + 4et 

14 At _ [ -8et + ge2t 6et - 6e2t ] • e - - 1 2et + 1 2e2t get _ 8e2t 

15. eAt = [ 5e2t - 4et _ lOe2t + 1 0et ] 
2e2t _ 2et _4e2t + 5et 

16. eAt = [ -get + lOe2t 1 5et - 1 5e2t ] 
-6et + 6e2t JOet _ ge2t 

17 eAt _ I [ e4t + e2t e4t - e2t ] 
• 

- :1 e4t _ e2t e4t + e2t 

18. eAt = � [ e2t + e6t _e2t + e6t ] 2 _e2t + e6t e2t + e6t 

19. eAt = l [ 4elOt + e5t 2e lOt - 2e5t ] 
5 2e lOt _ 2e5t e lOt + 4e5t 

20. eAt = � [ e5t + 4e l5t _2e5t + 2e l5t ] 
5 _2e5t + 2e l5t 4e5t + e l5t 
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21. eAt = [ I ;- t 

22 At _ [ 1 + 6t 
• e - -9t [ I + t 

23. eAt = 
� 

-t ] 
1 - t 

4t ] 
1 - 6t 

[ 1 +  3t 0 
24. eAt = 5t + 1 8t2 I 

3t 0 

-3t ] 
7t - 1 8t2 
1 - 3t 

30. 

[ I 
eAt = e3t 6t 

9t + 1 8t2 
1 2t + 54t2 + 36t3 

'«l = 
� [ 1 ] 

33. x(t) = [ CI c?sh t + C2 sinh t ] 
CI smh t + C2 cosh t [ I 2t 3t + 4t2 ] 

36. eAt = et g � it 

0 0 

n I 0 
6t I 

9t + 1 8t2 6t 

[ e2t 3e2t - 3et 1 3e2t - ( 1 3  + 9t)et ] 
37. eAt = g et 3tet 

0 et [ e5t 4e lOt _ 4e5t 1 6e lOt - ( 1 6  + 50t)e5t ] 
38. eAt = 

g 
elOt 4elOt _ 4e5t 
0 e5t 

39. eAt = 

[! 
3tet 1 2e2t - ( 1 2  + 9t)et (5 1 + I BM - (5 1 -3&k'] 
et 3e2t - 3et 6et - (6 - 9t)e2t 
0 e2t 4e3t _ 4e2t 
0 0 e2t 

40. eAt = ['1 4te2t (4t + 8t2 )e2t lllO<" - ( l]]() + 9<d ''''l'''] 
e2t 4te2t 20e3t - (20 + 16t)e2t 
0 e2t 4e3t _ 4e2t 
0 0 e3t 
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Section 5.8 

1. x (t) = � , y (t) = - �  
2. x (t) = � ( 1  + 1 2t) , y(t) = - � (5 + 4t) 
3. x (t) = 7!6 (864e-t + 4e6t - 868 + 840t - 504t2 ) ,  

y (t) = 7� (-864e-t + 3e6t + 86 1 - 882t + 378t2 ) 
4. x(t) = ii (9ge5t - 8e-2t - 7et ) ,  y (t) = ii (9ge5t + 48e-2t - 63et ) 
5. x(t) = t (- 1 2  - e-t - 7te-t ) ,  y(t) = t (-6 - 7te-t ) 
6. x (t) = -�6 (9 1 + 1 6t )et , y (t) = J'z (25 + 1 6t )et 

7. x (t) = 4:0 (36get + 1 66e-9t - 1 25 cos t - 1 05 sin t) , 
y (t) = 4:0 (36get - 24ge-9t - 1 20 cos t - 1 50 sin t) 

8. x (t) = t 07 cos t + 2 sin t) , y (t) = t (3 cos t + 5 sin t) 
9. x (t) = � (sin 2t + 2t cos 2t + t sin 2t), y(t) = � t sin 2t 

10. x (t) = fiet (4 cos t - 6 sin t ) , y (t) = fiet (3 cos t + 2 sin t) 
11. x (t) = to - 4t + e4t ) , y (t) = � (-5 + 4t + e4t ) 
12. x(t ) = t2 , y (t) = -t2 
13. x (t) = to + 5t)et , y (t) = - � tet 
14. x (t) = � (-2 + 4t _ e4t + 2te4t ) ,  y (t) = ! t (-2 + e4t ) 
15. (a) Xl (t) = 200( 1 - e-t/ IO) ,  X2 (t) = 400( 1  + e-t/ IO - 2e-t/20) 

(b) Xl (t) -+ 200 and X2 (t) -+ 400 as t -+ +00 
(c) Tank 1 :  about 6 min 56 s; tank 2: about 24 min 34 s 

16. (a) Xl (t) = 6000 - e-t/20) ,  X2 (t) = 300( 1 + e-t/ IO _ 2e-t/20) 
(b) Xl (t) -+ 600 and X2 (t) -+ 300 as t -+ 00 
(c) Tank 1 :  about 8 min 7 sec; tank 2: about 1 7  min 1 3  sec 

17. Xl (t) = 1 02 - 95e-t - 7e5t , X2 (t) = 96 - 95e-t - e5t 
18. Xl (t) = 68 - 1 1 0t - 75e-t + 7e5t ,  X2 (t) = 74 - 80t - 75e-t + e5t 
19. Xl (t) = -70 - 60t + 1 6e-3t + 54e2t , 

X2 (t) = 5 - 60t - 32e-3t + 27e2t 
20. Xl (t) = 3e2t + 6Ote2t - 3e-3t , X2 (t) = _6e2t + 30te2t + 6e-3t 
21. Xl (t) = _e-t - 14e2t + 1 5e3t , x2 (t) = -5e-t - lOe2t + 1 5e3t 
22. Xl (t) = - l Oe-t - 7te-t + l Oe3t - 5te3t , 

X2 (t) = - 1 5e-t - 35te-t + 1 5e3t - 5te3t 
23. Xl (t) = 3 + l I t + 8t2 , X2 (t) = 5 + 17t + 24t2 

1 
24. Xl (t) = 2 + t  + ln t , x2 (t) = 5 + 3t - - + 3 ln t  t 
25. Xl (t) = - 1  + 8t + cos t - 8 sin t , 

X2 (t) = -2 + 4t + 2 cos t - 3 sin t 
26. Xl (t) = 3 cos t - 32 sin t + 1 7t cos t + 4t sin t , 

X2 (t) = 5 cos t - 1 3  s in t + 6t cos t + 5t s in t 
27. Xl (t) = 8t3 + 6t\ X2 (t) = 3t2 - 2t3 + 3t4 
28. Xl (t) = -7 + 14t - 6t2 + 4t2 In t , 

X2 (t) = -7 + 9t - 3t2 + In t  - 2t ln t + 2t2 ln t 
29. Xl (t) = t cos t - (In cos t ) (sin t ) ,  

X2 (t) = t sin t + (In cos t ) (cos t) 
30. Xl (t) = ! t2 cos 2t, X2 (t) = ! t2 sin 2t 
31. Xl (t) = (9t2 + 4t3 )et , X2 (t) = 6t2et , X3 (t) = 6tet 
32. Xl (t) = (44 + 1 8t)et + (-44 + 26t)e2t , 

X2 (t) = 6et + (-6 + 6t)e2t , X3 (t) = 2te2t 
33. Xl (t) = 15t2 + 6Ot3 + 95t4 + 1 2t5 , X2 (t) = 1 5t2 + 55t3 + 1 5t\ 

X3 (t) = 15t2 + 20t3 , X4 (t) = 1 5t2 
34. Xl (t) = 4t3 + (4 + 1 6t + 8t2)e2t , 

X2 (t) = 3t2 + (2 + 4t)e2t , 
X3 (t) = (2 + 4t + 2t2 )e2t , X4 (t) = ( I  + t)e2t 

Chapter 6 
Section 6.1 

In Problems 1 through l O we round off the indicated values to 3 
decimal places. 

1. Approximate values 1 . 1 25 and 1 . 1 8 1 ;  true value 1 . 2 1 3  
2 .  Approximate values 1 . 1 25 and 1 .244; true value 1 .359 
3. Approximate values 2. 1 25 and 2.22 1 ;  true value 2.297 
4. Approximate values 0.625 and 0.68 1 ;  true value 0.7 1 3  
5 .  Approximate values 0.938 and 0.889; true value 0.85 1 
6. Approximate values 1 .750 and 1 .627; true value 1 .558 
7. Approximate values 2.859 and 2.737; true value 2.647 
8. Approximate values 0.445 and 0.420; true value 0.405 
9. Approximate values 1 .267 and 1 .278; true value 1 .287 

10. Approximate values 1 . 1 25 and 1 .23 1 ;  true value 1 .333 

Problems 1 1  through 24 call for tables of values that would occupy 
too much space for inclusion here. In Problems 1 1  through 16 we give 
first the final x-value, next the corresponding approximate y-values 
obtained with step sizes h = 0.01 and h = 0.005, and then the final 
true y-value. (All y-values rounded off accurate to 4 decimal places.) 

11. 1 .0, -0.7048, -0.7 1 1 5 ,  -0.7 1 83 
12. 1 .0, 2.9864, 2.993 1 ,  3 .0000 
13. 2.0, 4.8890, 4.8940, 4.8990 
14. 2.0, 3 .203 1 ,  3 .2304, 3 .2589 
15. 3.0, 3 .4422, 3 .4433 ,  3.4444 
16. 3.0, 8 .8440, 8. 8445 , 8 .845 1 

In Problems 1 7  through 24 we give first the final x-value and then the 
corresponding approximate y-values obtained with step sizes 
h = 0. 1 ,  h = 0.02, h = 0.004, and h = 0.0008 respectively. (All 
y-values rounded off accurate to 4 decimal places .) 

17. 1 .0, 0.2925 , 0.3379, 0.3477, 0.3497 
18. 2.0, 1 .6680, 1 .677 1 ,  1 .6790, 1 .6794 
19. 2.0, 6. 1 83 1 ,  6.3653, 6.4022, 6.4096 
20. 2.0, - 1 .3792, - 1 .2843 , - 1 .2649, - 1 .26 1 0  
21. 2.0, 2.8508, 2.868 1 ,  2 .87 1 6 , 2.8723 
22. 2.0, 6.9879, 7 .2601 , 7 .3 1 54, 7 .3264 
23. 1 .0 , 1 .2262, 1 .2300, 1 .2306, 1 .2307 
24. 1 .0, 0.9585, 0.99 1 8 , 0.9984, 0.9997 
25. With both step sizes h = 0.01 and h = 0.005, the approximate 

velocity after 1 second is 1 6.0 ftlsec (80% of the limiting 
velocity of 20 ftlsec); after 2 seconds it is 1 9.2 ftlsec (96% of the 
limiting velocity). 

26. With both step sizes h = 1 and h = 0.5, the approximate 
population after 5 years is 49 deer (65% of the limiting 
population of 75 deer); after 10 years it is 66 deer (88% of the 
limiting population). 

27. With successive step sizes h = 0. 1 , 0.0 1 , 0.001 , . . . the first four 
approximations to y (2) we obtain are 0.7772, 0.9777, 1 .001 7, 
and 1 .0042. It therefore seems likely that y (2) � 1 .00. 

28. With successive step sizes h = 0. 1 , 0.0 1 , 0.001 , . . .  the first four 
approximations to y(2) we obtain are 1 .2900, 1 .4435, 1 .46 13 ,  
and 1 .463 1 .  I t  therefore seems likely that y (2) � 1 .46. 



29. 

- 1 .0 
-0.7 
-0.4 
-0. 1 
0.2 
0.5 

30. 

31. 

Section 6.2 

1. 

1 .8 
1 .9 
2.0 

0.7 
0.8 
0.9 

0. 1 
0.2 
0.3 
0.4 
0.5 

1 .0000 
1 .0472 
1 . 1 2 1 3  
1 .2826 
0.8900 
0.7460 

2.8200 
3 .9393 
5 .852 1 

4.3460 
5 .8670 
8.3349 

1 .8 1 00 
1 .638 1  
1 .4824 
1 .34 1 6  
1 .2 142 

1 .0000 
1 .05 1 2  
1 . 1 358 
1 .36 1 2  
1 .47 1 1 
1 .2808 

4.3308 
7.9425 

28.3926 

6.4643 
1 1 . 8425 
39.50 1 0  

1 .8097 
1 .6375 
1 .48 1 6  
1 .3406 
1 .2 1 3 1  

1 .0000 
1 .052 1 
1 . 1 390 
1 .3835 
0.82 1 0  
0.7 1 92 

Note: In Problems 2 through 1 0, we give the value of x , the 
corresponding improved Euler value of y, and the true value of y. 
2. 0.5 , 1 .35 14 , 1 . 3 1 9 1  
3 .  0.5 , 2.2949, 2.2974 
4. 0.5 , 0.7 142, 0.7 1 3 1  
5 .  0.5 , 0.8526, 0 .85 1 3  
6. 0.5 , 1 .5575, 1 .5576 
7. 0.5, 2.6405 , 2.6475 
8. 0.5, 0.4053 , 0.4055 
9. 0.5, 1 .2873 , 1 .2874 

10. 0.5 , 1 .3309, 1 . 3333 

In Problems 1 1  through 16 we give the final value of x ,  the 
corresponding values of y with h = 0.01 and with h = 0.005, and the 
true value of y . 

11. 1 .0 , -0.7 1 824, -0.7 1 827 , -0.7 1 828 

Answers to Selected Problems 609 

12. 1 .0 , 2.99995 , 2.99999, 3 .00000 
13. 2.0, 4.8990 1 ,  4.89899, 4 .89898 
14. 2.0, 3 .25847 , 3 .25878, 3 .25889 
15. 3 .0, 3 .44445, 3.44445 , 3.44444 
16. 3.0, 8 .845 1 1 ,  8 .84509, 8 .84509 

In Problems 17 through 24 we give the final value of x and the 
corresponding values of y for h = 0. 1 ,  0.02, 0.004, and 0.0008. 
17. 1 .0 , 0.35 1 83 ,  0.35030, 0.35023 , 0.35023 
18. 2.0, 1 .68043, 1 .67949, 1 .67946, 1 .67946 
19. 2.0, 6.40834, 6.4 1 1 34, 6.4 1 147, 6.41 147 
20. 2.0, - 1 .26092, - 1 .26003, - 1 .25999, - 1 .25999 
21. 2.0, 2.87204, 2.87245 , 2.87247, 2.87247 
22. 2.0, 7 .3 1 578 , 7.3284 1 ,  7.329 1 6, 7.32920 
23. 1 .0 , 1 .22967, 1 .23069, 1 .23073, 1 .23073 
24. 1 .0 , 1 .00006, 1 .00000, 1 .00000, 1 .00000 
25. With both step sizes h = 0.01 and h = 0.005 the approximate 

velocity after 1 second is 1 5 .962 ft/sec (80% of the limiting 
velocity of 20 ft/sec); after 2 seconds it is 1 9. 1 85 ft/sec (96% of 
the limiting velocity). 

26. With both step sizes h = 1 and h = 0.5 the approximate 
population after 5 years is 49.39 1 deer (65% of the limiting 
population of 75 deer); after 10 seconds it is 66. 1 1 3  deer (88% of 
the limiting population) . 

27. With successive step sizes h = 0. 1 ,  0.0 1 , 0.00 1 ,  . . .  the first 
three approximations to y(2) we obtain are 1 .0 109, 1 .0045, and 
1 .0045 . It therefore seems likely that y(2) � 1 .0045. 

28. With successive step sizes h = 0. 1 ,  0.0 1 ,  0.00 1 ,  . . .  the first four 
approximations to y(2) we obtain are 1 .4662, 1 .4634, 1 .4633, 
and 1 .4633. It therefore seems likely that y(2) "" 1 .4633. 

29. Impact speed approximately 43.22 mls 
30. Impact speed approximately 43.48 mls 

Section 6.8 

1. y(0.25) "" 1 .55762; y(0.25) = 1 .55760. 
y(0.5) "" 1 .2 1 309; y(0.5) = 1 .2 1 306. 
Solution: y = 2e-x 

In Problems 2 through 10 we give the approximation to y(0.5) , its 
true value, and the solution. 

2. 1 .35867, 1 . 359 14; y = !e2x 
3. 2.29740, 2.29744; y = 2ex - 1 
4. 0.7 1 309, 0.7 1 306; y = 2e-x + x - I 
5. 0.85 1 30, 0.85 1 28; y = _eX + x + 2 
6. 1 .55759, 1 .55760; u = 2 exp (_x2) 
7. 2.64745 , 2.64749; y = 3 exp (-x 3 )  
8. 0.40547 , 0.40547; y = In(x + 1 )  
9 .  1 .28743 , 1 .28743 ; y = tan i (x + 11') 

10. 1 .33337, 1 .33333; y = ( 1  - X2)- 1 
11.  Solution: y(x) = 2 - eX . 

0.0 1 .00000 1 .00000 1 .00000 
0.2 0.77860 0.77860 0.77860 
0.4 0.508 1 8  0.508 1 8  0.508 1 8  
0.6 0. 1 7789 0. 1 7788 0. 17788 
0.8 -0.22552 -0.22554 -0.22554 
1 .0 -0.7 1 825 -0.7 1 828 -0.71 828 



6 1 0 Answers to Selected Problems 

In Problems 1 2  through 1 6  we give the final value of x , the 
corresponding Runge-Kutta approximations with h = 0.2 and with 
h = 0. 1 ,  the exact value of y, and the solution. 

12. 1 .0, 2.99996, 3 .00000, 3 .00000; 
y = I + 2/(2 - x) 

13. 2.0, 4.89900, 4 .89898, 4 .89898; 
y = .J8 + x4 

14. 2.0, 3 .25795 , 3 .25882, 3 .25889; 
y = 1 / ( 1  - In x) 

15. 3.0, 3 .44445, 3 .44444, 3 .44444; 
y = x + 4x-

2 
16. 3.0, 8 .845 15 ,  8 .84509 , 8 .84509; 

y = (x6 _ 37) 1 /3 

In Problems 1 7  through 24 we give the final value of x and the 
corresponding values of y with h = 0.2, 0. 1 ,  0.05, and 0.025. 
17. 1 .0, 0.350258 , 0.350234, 0.350232, 0.350232 
18. 2.0, 1 .6795 1 3 ,  1 .67946 1 ,  1 .679459, 1 .679459 
19. 2.0, 6.4 1 1 464, 6.4 1 1 474, 6.41 1474, 6.41 1 474 
20. 2.0, - 1 .259990, - 1 .259992, - 1 .259993, 

- 1 .259993 
21. 2.0, 2.872467 , 2.872468 ,  2.872468, 2.872468 
22. 2.0, 7.32676 1 ,  7 .328452, 7 .32897 1 ,  7 .329 1 34 
23. 1 .0 , 1 .230735, 1 .23073 1 ,  1 .23073 1 ,  1 .23073 1 
24. 1 .0, 1 .000000, 1 .000000, 1 .000000, 1 .000000 
25. With both step sizes h = 0. 1 and h = 0.05 , the approximate 

velocity after I second is 1 5 .962 ftlsec (80% of the limiting 
velocity of 20 ft/sec) ; after 2 seconds it is 1 9. 1 85 ftlsec (96% of 
the limiting velocity). 

26. With both step sizes h = 6 and h = 3, the approximate 
population after 5 years is 49.39 1 5  deer (65% of the limiting 
population of 75 deer); after 10 years it is 66. 1 1 36 deer (88% of 
the limiting population). 

27. With successive step sizes h = 1 , 0 . 1 , 0.0 1 ,  . . .  the first four 
approximations to y(2) we obtain are 1 .05722, 1 .00447, 
1 .00445and 1 .00445. Thus it seems likely that y(2) "" 1 .00445 
accurate to 5 decimal places. 

28. With successive step sizes h = I ,  0. 1 ,  0.0 1 , . . .  the first four 
approximations to y(2) we obtain are 1 .48990, 1 .46332, 
1 .4633 1 ,  and 1 .4633 1 .  Thus it seems likely that y(2) "" 1 .4633 
accurate to 5 decimal places. 

29. Time aloft: approximately 9.41 seconds 
30. Time aloft: approximately 9.41 seconds 

Section 6.4 

The format for the first eight answers is this : (x (t) ,  y(t)) at t = 0.2 
by the Euler method, by the improved Euler method, by the 
Runge-Kutta method, and finally the actual values. 

1. (0.8800, 2.5000) , (0.9600, 2.6000) , ( 1 .0027 , 2.640 1 ) ,  
( 1 .0034, 2.6408) 

2. (0.8 1 00, -0. 8 1 00), (0.8200, -0.8200) , (0. 8 1 87 ,  -0.8 1 87) , 
(0.8 1 87, -0. 8 1 87) 

3. (2. 8 100, 2.3 1 00) , (3.2200, 2.6200) , (3 .648 1 , 2 .9407) , 
(3.6775 , 2.9628) 

4. (3 .3 1 00, - 1 .6200) , (3.8200, -2.0400) , (4.2274, -2.4060) , 
(4.2427 , -2.4205) 

5. (-0.5200, 2.9200) , (-0.8400, 2.4400) , (-0.57 12 , 2.4485) , 
(-0.5793 , 2.4488) 

6. (- 1 .7600, 4.6800) , (- 1 .9200, 4.5600) , (- 1 .9029, 4 .4995) ,  
(- 1 .9025 , 4.4999) 

7. (3 . 1 200, 1 .6800) , (3.2400, 1 .7600) , (3.28 16 ,  1 .7899), 
(3.2820, 1 .7902) 

8. (2. 1 600, -0.6300) , (2.5200, -0.4600) , (2.5320, -0.3867) , 
(2.5270, -0.3889) 

9. At t = I we obtain (x , y) = (3.9926 1 , 6.2 1770) (h = 0. 1 )  and 
(3.99234, 6.2 1768) (h = 0.05); the actual value is 
(3.99232, 6 .21 768) . 

10. At t = I we obtain (x , y) = ( 1 .3 1 498, 1 .02537) (h = 0. 1 )  and 
( 1 . 3 1 50 1 , 1 .02538) (h = 0.05); the actual value is 
( 1 .3 1 50 1 ,  1 .02538) . 

11. At t = I we obtain (x , y) = (-0.05832, 0.56664) (h = 0. 1 )  and 
(-0.05832, 0.56665) (h = 0.05); the actual value is 
(-0.05832, 0.56665) . 

12. We solved x' = y, y' = -x + sin t , x (O) = y (O) = O. With 
h = 0. 1 and also with h = 0.05 we obtain the actual value 
x ( 1 .0) "" 0. 1 5058. 

13. Runge-Kutta, h = 0. 1 :  about 1050 ft in about 7.7 s 
14. Runge-Kutta, h = 0. 1 :  about 1044 ft in about 7 .8 s 

15. Runge-Kutta, h = 1 .0 : about 83.83 mi in about 1 68 s 

16. At 40° : 5 .0 s, 352.9 ft; at 45° : 5 .4 s, 347.2 ft; at 50° : 5 . 8 s, 334.2 
ft (all values approximate) 

17. At 39.0° the range is about 352.7 ft. At 39.5" it is 352.8 ; at 40° , 
352.9; at 40.5" , 352.6; at 4 1 .0° , 352. 1 .  

18. Just under 57.5" 

19. Approximately 253 ftls 

20. Maximum height: about 1 005 ft, attained in about 5 .6 s; range: 
about 1 880 ft; time aloft: about 1 1 .6 s 

21. Runge-Kutta with h = 0. 1 yields these results: 
(a) 2 1400 ft, 46 s, 5 1 8  ft/s; (b) 8970 ft, 17 .5 s; (c) 368 ft/s (at 
t "" 23). 

Chapter 7 

Section 7. 1 

1. Unstable critical point: x = 4; 
x (t) = 4 + (Xo - 4)e' 

� 4 �o;e;;E:::::--------l 



2. Stable critical point: x = 3; 

x (t) = 3 + (xo - 3)e-' 

6 '---�--T>--�--'---' 

2 3 4 5 

3. Stable critical point: x = 0; unstable critical point: x = 4; 

4xo x (t) = ----:-:,.......:-----:-7 Xo + (4 - xo)e41 

S r---r---�--�--,.--, 

3 4 5 

4. Stable critical point: x = 3; unstable critical point: x = 0; 

3xo x (t) = --------=----

Xo + (3 - xo)e-31 

6 .---r---�--TT--'---' 

5 
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s. Stable critical point: x = -2; unstable critical point: x = 2; 

2[xo + 2 + (xo - 2)e4l ] x (t) = --=--':'-"--::--:-,--'---=-:,-7"""" Xo + 2 - (xo - 2)e41 

6. Stable critical point: x = 3; unstable critical point: x = -3; 

( 3 [xo - 3 + (xo + 3)e61 ] x t) = --=-------:------=-:-:-� 
3 - Xo + (xo + 3)e61 

7. Semi-stable (see Problem I S) critical point: x = 2; 

4 

(2t - I )xo - 4t x (t) = ----::----;txo - 2t - I 

O �-��-�--r--� 

5 
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8.  Semi-stable critical point: x = 3 ; 

x (t ) = 
(3t + I )xo - 9t 
txo - 3t + I 

9. Stable critical point: x = I ; unstable critical point: x = 4; 

( ) _
4.:-.( l_----.:xo:..:..) ....:+_(�XO:...-_4.:...:)e�31 x t  = I - Xo + (XO - 4 )e31 

2 3 4 5 

10. Stable critical point: x = 5; unstable critical point: x = 2; 

x (t) = 
2(5 - xo) + 5 (xo - 2)e31 

5 - Xo + (xo - 2)e31 

11. Unstable critical point: x = I ;  

I I 
---- = - 2t (x (t) - 1 )2 (XO - 1 )2 

-2 L-_�_�_-u_��� 
o 2 3 4 5 

12. Stable critical point: x = 2; 

I I 
---- = + 2t (2 - X(t»2 (2 - XO)2 

-2 �_�_���-L�_� 
o 2 3 4 5 

For each of Problems 1 3  through 1 8  we show a plot of slope field and 
typical solution curves. The equilibrium solutions of the given 
differential equation are labeled, and the stability or instability of 
each should be clear from the picture. 
13. 

4 

-4 

o 2 3 4 



14. 

15. 

16. 

17. 
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18. 

19. 

20. 

o 
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I I 

2 
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I I I 

3 

There are two critical points if h < 2 1 ,  one critical point if 
h = 2 1 ,  and no critical points if h > 2 1 .  The bifurcation 
diagram is the parabola (e - 5)2 = 25 - IOh in the he-plane. 
There are two critical points if s < i6 ,  one critical point if 
s = i6 ,  and no critical points if s > i6 .  The bifurcation diagram 
is the parabola (2e - 5)2 = 25( 1  - 16s) in the se-plane. 

Section 7.2 

1. 7. l . l 3  2. 7. l . l 5  3. 7. l . l S  4. 7. l . l 2  
5. 7. l . l 1 6. 7 . l . l 7 7. 7 . l . l 4  8. 7. l . l6 
9. Equilibrium solutions x (t) == 0, ±2. The critical point (0, 0) in 

the phase plane looks like a center, whereas the points (±2, 0) 
look like saddle points. 

-5 o 5 
x 

10. Equilibrium solution x (t) == O. The critical point (0, 0) in the 
phase plane looks like a spiral sink. 

x 
11. Equilibrium solutions x (t) == . . . , -211" , -11" , 0, 11" , 211" , . . . . The 

phase portrait shown in the solutions manual suggests that the 
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critical point (mr, 0)  in the phase plane is a spiral sink if n i s  
even, but is a saddle point if n is odd. 

12. Equilibrium solution x (t) == O. The critical point (0, 0) in the 
phase plane looks like a spiral source, with the solution curves 
emanating from this source spiraling outward toward a closed 
curve trajectory. 

x 

13. Solution x (t) = xoe-2t , y(t) = yoe-2t . The origin is a stable 
proper node similar to the one illustrated in Fig. 6 . 1 .4. 

14. Solution x (t) = xoe2t , y(t) = yoe-2t . The origin is an unstable 
saddle point. 

x 

15. Solution x (t) = xoe-2t , y(t) = yoe-t . The origin is a stable node. 

5 

-5 � __ L-____ � __ -L ____ � 
-5 o 

x 
5 

16. Solution x (t) = xoet , y(t) = yoe3t . The origin is an unstable 

improper node. 

-5 o 
x 

5 

17. Solution x (t) = A cos t + B sin t , y (t) = B cos t - A sin t .  The 
origin is a stable center. 

-5 o 
x 

18. Solution x (t) = A cos 2t + B sin 2t, 

5 

y(t) = -2B cos 2t + 2A sin 2t . The origin is a stable center. 

19. Solution x (t) = A cos 2t + B sin 2t , y (t ) = B cos 2t - A sin 2t . 
The origin is a stable center. 

20. Solution x (t) = e-2t (A cos t + B sin t ) , 
y (t) = e-2t [( -2A + B) cos t - (A + 2B) s in t ] .  The origin is a 
stable spiral point. 

23. The origin and the circles x2 + y2 = C > 0; the origin is a stable 
center. 

24. The origin and the hyperbolas y2 - x2 = C; the origin is an 



unstable saddle point. 

-5 o 
x 

5 

25. The origin and the ellipses x2 + 4y2 = C > 0; the origin is a 
stable center. 

26. The origin and the ovals of the form X4 + y4 = C > 0; the origin 
is a stable center. 

-4 o 
x 

4 
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Section 7.8 

1. Asymptotically stable node 

-5 

2. Unstable improper node 

3. Unstable saddle point 

-5 

4. Unstable saddle point 

5. Asymptotically stable node 

x 

6. Unstable node 
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7.  Unstable spiral point 

-5 

8. Asymptotically stable spiral point 

o 
x 

9. Stable, but not asymptotically stable, center 

10. Stable, but not asymptotically stable, center 

11. Asymptotically stable node: (2, I )  

12. Unstable improper node: (2, -3) 

5 

13. Unstable saddle point: (2, 2) 

14. Unstable saddle point: (3, 4) 

15. Asymptotically stable spiral point: ( I ,  I ) 

-5 

16. Unstable spiral point: (3 ,  2) 

17. Stable center: ( � ,  - D 

-5 

o 
x 

18. Stable, but not asymptotically stable, center: (-2, - I ) 



19. (0, 0) is a stable node. Also, there is a saddle point at 
(0.67, 0.40) . 

-2 o 2 
x 

20. (0, 0) is an unstable node. Also, there is a saddle point at 
(- I ,  - I )  and a spiral sink at (-2.30, - 1 .70) . 

-3 3 
x 

21. (0, 0) is an unstable saddle point. Also, there is a spiral sink at 
(-0.5 1 ,  -2. 1 2) .  

-5 o 5 
x 

22. (0, 0) is an unstable saddle point. Also, there are nodal sinks at 
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(±0.82, ±5.06) and nodal sources at (±3 .65 , 'f0.59) . 

x 

23. (0, 0) is a spiral sink. Also, there is a saddle point at 
(- 1 .08, -0.68) . 

-3 -2 - I 0 
x 

2 3 

24. (0, 0) is an spiral source. No other critical points are visible. 

-5 o 5 
x 
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25. Theorem 2 implies only that (0, 0 ) is a stable sink-either a node 
or a spiral point. The phase portrait for -5 :5 x ,  Y :5 5 shows 
also a saddle point at (0.74, -3 .28) and spiral sink at 
(2.47, -0.46) . The origin looks like nodal sink in a second 
phase portrait for -0.2 :5 x, y :5 0.2, which also reveals a 
second saddle point at (0. 12 ,  0.07) . 

26. Theorem 2 implies only that (0, 0) is an unstable source. The 
phase portrait for -3 :5 x ,  y :5 3 shows also saddle points at 
(0.20, 0.25) and (-0.23 , - 1 .50) , as well as a nodal sink at 
(2 .36, 0.58) . 

-3 o 
x 

3 

27. Theorem 2 implies only that (0, 0) is a center or a spiral point, 
but does not establish its stability. The phase portrait for 
-2 :5 x ,  y :5 2 shows also saddle points at (-0.25, -0.5 1 )  and 
(- 1 .56, 1 .64) , plus a nodal sink at (- 1 .07, - 1 .20) . The origin 
looks like a likely center in a second phase portrait for 
-0.6 :5 x ,  y :5 0.6. 

-2 o 2 
x 

28. Theorem 2 implies only that (0, 0) is a center or a spiral point, 
but does not establish its stability (though in the phase portrait it 
looks like a likely center) . The phase portrait for 
-0.25 :5 x :5 0.25 , - I  :5 Y :5 I also shows saddle points at 
(0. 1 3 , 0.63) and (-0. 12 ,  -0.47) . 



29. There is a saddle point at (0, 0) . The other critical point ( 1 , 1 )  is 
indeterminate, but looks like a center in the phase portrait. 

-2 o 2 
x 

30. There is a saddle point at ( I ,  1 )  and a spiral sink at (- 1 ,  1 ) . 

3 

o 3 
x 

31. There is a saddle point at ( I ,  I )  and a spiral sink at ( - 1 ,  - 1 ) .  

32. There i s  a saddle point a t  ( 2 ,  I )  and a spiral sink a t  (-2 ,  - 1 ) .  
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37. Note that the differential equation is homogeneous. 

Section 7.4 

1. Linearization at (0, 0) : x' = 200x, y' = - 150y ; phase plane 
portrait: 

-5 o 
x 

5 

Linearization at (75 , 50) : u' = -300v, v' = J OOu ; phase plane 
portrait: 

5. The characteristic equation is A2 + 45A + 1 26 = O. 

7. The characteristic equation is (-24 - A)2 - 2 . ( 1 8)2 = O. Phase 
plane portrait: 
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Phase plane portrait for the nonlinear system in Problems 4-7:  

(0,2 1 )  

20 
(6, 1 2) 

1 5  

'" 
10 

5 ( 1 5,0) 

0 

0 5 10  1 5  20 
x 

9. The characteristic equation is )..2 + 58)" - 1 20 = O. 

10. The characteristic equation is ().. + 36) ().. + 1 8) - 576 = O. 
Phase plane portrait: 

5 

-5 ��------��--------� 
-5 o 5 

u 

Phase plane portrait for the nonlinear system in Problems 8-10: 

20 
(0, 14) 

1 5  

'" 
10  

5 ( 1 2,6) 
(20,0) 

0 

0 5 10  1 5  20 
x 

12. The characteristic equation is )..2 + 2)" - 1 5  = O. 

13. The characteristic equation is )..2 + 2)" + 6 = O. Phase plane 

portrait: 

-5 o 5 
u 

15. The characteristic equation is )..2 + 2)" - 24 = O. 

17. The characteristic equation is )..2 - 4)" + 6 = O. Phase plane 
portrait: 

u 

19. The characteristic equation is )..2 + 1 0  = O. Phase plane portrait: 

u 

21. The characteristic equation is )..2 - ).. - 6 = O. 

22. The characteristic equation is )..2 - 5)" + 1 0  = 0 . Phase plane 



portrait: 

-5 o 5 
u 

24. The characteristic equation is }..2 + 5}" - 14 = o. 

25. The characteristic equation is }..2 + 5}" + 1 0  = O. Phase plane 
portrait: 

5 

26. Naturally growing populations in competition 
Critical points: nodal source (0, 0) and saddle point (3, 2) 
Nonzero coexisting populations x (t) == 3, y (t) == 2 

27. Naturally declining populations in cooperation 
Critical points: nodal sink (0, 0) and saddle point (3, 2) 
Nonzero coexisting populations x (t) == 3, y (t) == 2 

.X'-f--+-+-+ (3,2) 

o 5 
x 

28. Naturally declining predator, naturally growing prey population 
Critical points: saddle point (0, 0) and apparent stable center 
(4, 8) 
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Nonzero coexisting populations x (t) == 4, y(t) == 8 

1 5  

(4,8) 
10  

5 

o 5 10 15 
x 

29. Logistic and naturally growing populations in competition 
Critical points: nodal source (0, 0) , nodal sink (3, 0), and saddle 
point (2, 2) 
Nonzero coexisting populations x (t) == 2, y(t) == 2 

x 

30. Logistic and naturally declining populations in cooperation 
Critical points: saddle point (0, 0) , nodal sink (3, 0), and saddle 
point (5, 4) 
Nonzero coexisting populations x (t) == 5, y(t) == 4 

31. Logistic prey, naturally declining predator population 
Critical points: saddle points (0, 0) and (3, 0) , spiral sink (2, 4) 
Nonzero coexisting populations x (t) == 2, y(t) == 4 

5 

(2,4 ) +-ft--\1r\-t� 

x 

32. Logistic populations in cooperation 
Critical points: nodal source (0, 0) , saddle points ( 1 0, 0) and 
(0, 20) , nodal sink (30, 60) 
Nonzero coexisting populations x (t) == 30, y(t) == 60 

33. Logistic prey and predator populations 
Critical points: nodal source (0, 0) , saddle points (30, 0) and 
(0, 20) , nodal sink (4, 22) 
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Nonzero coexisting populations x (t) == 4, y et) == 22 

34. Logistic prey and predator populations 
Critical points: nodal source (0, 0) , saddle points ( 1 5 ,  0) and 
(0, 5) ,  spiral sink ( 10, 1 0) 
Nonzero coexisting populations x (t) == 1 0, y et) == 1 0  

Section 7.5 

1. Eigenvalues: -2, -3;  stable node 

-10 
x 

2. Eigenvalues: 1 , 3 ;  unstable node 

3. Eigenvalues: -3, 5 ;  unstable saddle point 

x 

4. Eigenvalues: - 1  ± 2i ; stable spiral point 

-4 o 
x 

4 

5. Critical points: (0, mr) where n is an integer; an unstable saddle 
point if n is even, a stable spiral point if n is odd 

-5 

6. Critical points : (n , 0) where n is an integer; an unstable saddle 
point if n is even, a stable spiral point if n is odd 

7. Critical points : (mc, mr) where n is an integer; an unstable 
saddle point if n is even, a stable spiral point if n is odd 

3lt 

2lt 

It 

'" 0 

-It 

-2lt 

-3lt 

-3lt -2lt -It 0 It 2lt 3lt 

x 

8. Critical points: (mc, 0) where n is an integer; an unstable node if 
n is even, an unstable saddle point if n is odd 

9. If n is odd then (mr, 0) is an unstable saddle point. 
10. If n is odd then (mr, 0) is a stable node. 
11. (mc, 0) is a stable spiral point. 
12. Unstable saddle points at (2, 0) and (-2, 0) , a stable center at 

(0, 0) 
13. Unstable saddle points at (2, 0) and (-2, 0) , a stable spiral point 

at (0, 0) 
14. Stable centers at (2, 0) and (- 2, 0), an unstable saddle point at 

(0, 0) 



15. A stable center at (0, 0) and an unstable saddle point at (4, 0) 
16. Stable centers at (2, 0), (0, 0), and (-2, 0) , unstable saddle 

points at ( I ,  0) and (- 1 , 0) 
17. (0, 0) is a spiral sink. 

I O ��--�---'�-'-'--TOn 

5 

-5 

-5 o 5 
x 

18. (0, 0) is a spiral sink; the points (±2, 0) are saddle points. 

x 
19. (0, 0) is a spiral sink. 

5 

'" 0 f-:;:-+:-+--+--+ .... HI-J-+=-� 

-5 

-5 o 5 
x 
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20. (mf, 0) is a spiral sink if n is even, a saddle point if n is odd. 

Appendix 
1. Yo = 3, Yl = 3 + 3x, Y2 = 3 + 3x + �X2 , 

Y3 = 3 + 3x + �X2 + �x3 , 
Y4 = 3 + 3x + �X2 + �X3 + kX4 ; y (x) = 3eX 

3. Yo = I ,  Yl = I - x2 , Y2 = I - x2 + �X4 ,  
Y3 = I - x2 + �X4 - �X6 , 
Y4 = I - x2 + �X4 - �X6 + �X8 ; y (x) = exp (_x2) 

5. Yo = 0, Yl = 2x , Y2 = 2x + 2x2 , 
Y3 = 2x + 2x2 + !X3 , 
Y4 = 2x + 2X2 + !X3 + �X4 ; y (x) = e2x - I 

7. Yo = 0, Yl = x2 , Y2 = x2 + �x4 ,  Y3 = x2 + �X4 + �X6 , 
Y4 = x2 + 4X4 + �X6 + �X8 ;  y (x) = exp(x2) - I 

9. Yo = I ' YI = ( I  + x) + 4X2 , Y2 = ( I  + x  + x2) + �X3 , 
Y3 = ( I + x  + x2 + kX3 ) + �X4 ; 
y (x) = 2eX - I - x = I + x + x2 + kX3 + . . . 

11. Yo = I ,  Yl = I + x ,  Y2 = ( I + x + x2) + kx3 , 
Y3 = ( 1 + x  + x2 + x3) + �X4 + kX5 + �X6 + tJx7 ;  

I y (x) = -- = I + x + x2 + x3 + X4 + x5 + . . . I - x 
12. Yo = I ,  Yl = I + 4x ,  Y2 = I + 4x + �X3 + kX3 + iiX4, 

Y3 = I + �x + �X2 + f6x3 + �X4 + . . .  ; y (x) = (1 - X)- 1/2 

13. [ �� ]  = [ - ! l [ �: ] = [ - ! ! �� l [ X2 ] [ I + 3t + I t2 ] 
Y2 

= - I + 5t - � t2 , 

[ X3 ] _ 
[ I + 3t + I t2 + I t3 ] 

Y3 - - 1 + 5t - � t2 + � t3 
14. [ et + tet ] x(t) = et 16. Y3 ( 1 ) � 0.350 1 85 
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Boldface page numbers indicate where terms are defined. 

A 
Abel 's fonnula, 1 1 2, 1 24 
Acceleration, 12 
Addition (of matrices), 348 
Adriatic Sea, 5 14 
Air resistance, 85 

proportional to square of velocity, 
88 

proportional to velocity, 22, 86 
Airy equation, 2 1 7, 259 
Airy function, 2 1 8  
Alligator population, 82, 83 
Almost linear system, 502, 508 

stability, 508 
Ampere, 173 
Amplification factor, 165 
Amplitude, 139 
Analog computers, 1 74 
Analytic function, 196 
Argument (of complex number), 1 32 
Arnold, David, 3 1  
Artin, Emil,  25 1 
Associated homogeneous equation, 

101, 1 2 1 , 149, 1 5 1 , 356, 362 
Asymptotic approximations, 257 
Asymptotic stability, 494, 507, 508 
Augmented coefficient matrix, 360 
Automobile: 

two-axle, 392 
vibrations, 173  

Autonomous differential equation, 481 
critical point, 481 
equilibrium solution, 481 
stable critical point, 482 
unstable critical point, 482 

Autonomous system, 488 
linearized, 502 

Auxiliary equation, see Characteristic 
equation 

Average error, 79 

B 
Batted baseball, 469, 474 

Beats, 1 64 
Bernoulli, Daniel ( 1700-1 782), 248 
Bernoulli equation, 63 
Bessel, Friedrich W. ( 1 784-1 846), 248 
Bessel 's equation, 1 24, 194, 228, 245,  

248, 257, 300 
modified, 263 
parametric, 255 

Bessel function: 
asymptotic approximations, 257 
identities, 253 
modified, 263 
order I ,  first kind, 232, 
order I ,  second kind, 246, 247 
order � ,  232 

order � , 246 
order n, second kind, 252 
order p, first kind, 251 
order zero, first kind, 228 
order zero, second kind, 245 
solutions in tenns of, 258 

Bifurcation, 485, 5 1 1 ,  525, 537 
diagram, 486 
Hopf, 5 1 2  
point, 486 

Big bang, 44 
Binomial series, 195, 206, 233 
Birth rate, 74 
Black hole, 94 
Boundary value problem, 1 8 1  
Brachistochrone problem, 46 
Broughton Bridge, 1 66 
Buckled rod, 1 9 1  
Buckling o f  vertical column, 259 
Buoy, 146 
Bus orbit (Moon-Earth), 473 

C 
Cantilever, 188 
Capacitor, 173 
Carbon- 14, 37 
Carrying capacity, 77 
Cart with flywheel, 1 62 

Cascade, 55 
Catenary, 46 
Cauchy-Schwarz inequality, 570 
Cello, 178  
Center, 494 

of power series, 196 
stable, 494, 506 

Chain (of generalized eigenvectors), 
398, 40 1 

Chaos, 542 
and period-doubling, 547 

Characteristic equation, 109, 125 
of matrix, 368 
complex roots, 1 3 1 ,  1 33 
distinct real roots, 109, 1 26 
repeated roots, I l l, 1 29, 133 

Characteristic value, see Eigenvalue 
Churchill, Ruel V. , 274, 302, 303 
Circular frequency, 139, 142 
Clairaut equation, 73 
Clarinet reed, 540 
Clarke, Arthur, 1 9  
Clepsydra, 45 
Closed trajectory, 495 
Coefficient matrix, 355 
Column vector, 349 
Compartmental analysis, 37 1 
Competing species, 5 1 6  
Competition and cooperation, 522 
Competition, measure of, 5 1 7  
Competition system, 5 1 7  
Complementary function, 121, 362 
Complex eigenvalue, 374 
Complex-valued function, 130 
Complex-valued solution, 374 
Compound interest, 37 
Conservation of mechanical energy, 

1 37, 1 66 
Constant acceleration, 1 3  
Constant thrust, 95 
Continuous dependence of solutions, 

569 
Convergence of power series, 195 

1 - 1  
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Convolution (of functions), 297 
Cooperation and competition, 522 
Corrector (improved Euler), 446 
Coulomb, 173 
Criterion for exactness, 68 
Critical buckling force, 1 9 1  
Critical damping, 141 
Critical point (of autonomous 

equation), 481 
Critical point (of system), 488 

asymptotic stability, 494 
center, 494 
classification, 509 
isolated, 500, 503 
node, 491 
of predator-prey system, 5 14 
saddle point, 492 
spiral point, 495 
spiral sink, 495 
spiral source, 495 
stability, 492 

Critical speed (of whirling string), 1 87 
Crossbow, 85, 87, 89, 450, 460, 474 
Cumulative error, 435, 443 
Cycloid, 346 

D 
Damped motion, 136 

nonlinear, 530 
Damped pendulum oscillations, 537 
Damping constant, 136 
Death rate, 74 
Decay constant, 38 
Defect (of eigenvalue), 396 
Defective eigenvalue, 396 
Degenerate system, 343 
de Laplace, Pierre Simon 

( 1749-1 827), 275 
Delta function, 317 

inputs, 3 1 8  
and step functions, 320 

Density of force, 1 88 
Deflection of beam, 1 87 

deflection curve, 187 
Dependence on parameters, 485 
Dependent variable missing, 70 
Derivative: 

of complex-valued function, 1 30 
of matrix function, 354 

Determinant, 352 
Difference equation, 543 
Differential equation, 1 

autonomous, 481 
Bernoulli, 63 
Clairaut, 73 
dependent variable missing, 70 

differential form, 67 
exact, 67 
first-order, 7 
general solution, 1 0, 36, 1 06 
homogeneous, 60, 101 
independent variable missing, 7 1  
linear, 47, 100 
normal form, 7 
order, 6 
order n ,  1 1 3 
ordinary, 7 
partial, 7 
particular solution, 10 
reducible second-order, 70 
Riccati , 73 
separable, 32 
singular solution, 36 
solution, 2, 6 

Differential equations and 
determinism, 148 

Differential form, 67 
Dirac, P. A. M. ( 1 902-1984), 3 1 7  
Dirac delta function, 317 
Direction field, 19 , 33 1 , 489 
Displacement vector, 381 
Distinct real eigenvalues, 369 
Doomsday situation, 82 
Doomsday versus extinction, 8 1  
Downward motion, 89 
Drag coefficient, 87 
Drug elimination, 38 
Duffing equation, 548 
Duhamel 's principle, 322 
Duplication, case of, 1 54 
Dynamic damper, 39 1 

E 
Earth-Moon satellite orbits, 472 
Eigenfunction, 182 
Eigenvalue, 182 

complete, 393 
complex, 374 
defective, 396 
distinct real, 369 
for matrix, 367 
multiplicity 2, 397 
multiplicity k, 393 

Eigenvalue method, 367, 368 
Eigenvalue problem, 182 
Eigenvector, 367 

rank r generalized, 398 
Electrical resonance, 178 
Elementary row operations, 360 
Elimination, method of, 339 
Elimination constant, 38 
Elliptic integral, 536 

Endpoint conditions, 1 88 
Endpoint problem, 1 8 1 ,  1 89 
Equidimensional equation, 222 
Equilibrium position, 135 
Equilibrium solution, 22, 50, 481 

stable or unstable, 493 
of system, 488 

Error function, 54 
Error: 

in the Euler method, 442 
in the improved Euler method, 446 
in the Runge-Kutta method, 454 

Escape velocity, 92 
Euler, Leonhard ( 1 707-1783),  248, 

43 1 
Euler buckling force, 1 9 1  
Euler equation, 1 1 3 ,  1 35 
Euler's formula, 1 30 
Euler's method, 432 

cumulative error, 435, 443 
improved, 445 
local error, 435 
roundoff error, 436 
for systems, 464 

Exact equation, 67 
Existence, uniqueness of solutions, 23 , 

24, 50, 1 04, 1 14, 557, 565, 567 
for linear systems, 565 
global, 562 
local, 566 
of solutions of systems, 334, 

Exponential growth, see Natural 
growth 

Exponential matrix, 411, 4 1 7  
Exponential order, 273 
Exponential series, 196 
Exponents (of a differential equation), 

223 
External force, 136 

vector, 389 

F 
Famous numbers, 442, 452, 463 
Farad (unit of capacitance), 173 
Feigenbaum, Mitchell, 547 
Feigenbaum constant, 547, 553 
Fibonacci number, 207 
First-order equation, 7 
First-order system, 329, 355 
Flagpole, 26 1 
Flight trajectories, 65 
Flywheel on cart, 1 62 
Folia of Descartes, 5 1 3  
Forced Duffing equation, 548 
Forced motion, 1 36 
Forced oscillations: 



damped, 168 
and resonance, 388 
undamped, 1 62 

Forced vibrations, 1 0 1  
Formal multiplication o f  series, 197 
Fourier, Joseph, ( 1 768-1 830), 248,  546 
Free motion, 136 

damped, 1 4 1  
undamped, 1 38 

Free oscillations, 345, 384 
Free space, 97 
Free vibrations, 1 0 1  
Frequency, 139 

resonance, 178 
Frequency equation 
Frobenius, Georg ( 1 848- 1 9 1 9) ,  222 
Frobenius series, 222 

solutions, 225 
From the Earth to the Moon, 92, 94 
Fundamental matrix, 408 
Fundamental matrix solutions, 408 
Fundamental theorem of algebra, 1 25 ,  

368 
Funnel, 482 

G 
g, 14  
G, 90 
Gamma function, 250, 268 
Gauss's hypergeometric equation, 232 
General population equation, 75 
General solution, 10, 36, 1 06, 1 07 

of homogeneous equation, 120 
of nonhomogeneous equation, 1 2 1  

Generalized eigenvector, 398 
Generalized functions, 324 
Geometric series, 195, 233 
Gleick, James, 553 
Global existence of solutions, 562 
Gzyx, 1 8  

H 
Hailstone, 56 
Half-life, 40 
Halley 's comet, 478 
Hard spring, 528 

oscillation, 528 
Harvesting a logistic population, 453 ,  

483 
Heaviside, Oliver ( 1 850-1925), 275 
Henry (unit of inductance), 173 
Hermite equation, 217 
Hermite polynomial, 217 
Hole-through-Earth problem, 146 
Homicide victim, 45 
Homogeneous equation, 60, 101 

Hooke's law, 1 35 , 526 
Hopf bifurcation, 5 1 2  
Hypergeometric equation, series, 

232-233 
Hypocycloid, 347 

Identity principle, 1 99 
Imaginary part, 1 30 
Impedance, 175 
Implicit solution, 35 
Improper integral, 267 
Improper node, 505 
Improved Euler method, 445 

error in, 446 
for systems, 465 

Impulse, 316 
Ince, E. L. ,  264, 343 
Independent variable missing, 7 1  
Indicial equation, 223 
Inductor, 173 
Inhibition, measure of, 5 1 7  
Initial condition, 4 ,  8 
Initial position, 12 
Initial velocity, 12 
Initial value problem, 8, 104, 1 14, 557 

and elementary row operations, 359 
for linear systems, 360 
order n, 1 14 

Integrating factor, 47 
Inverse Laplace transform, 271 
Inverse matrix, 351 
Irregular singular point, 220 
Isolated critical point, 500 

J 
Jacobian matrix, 502 
Jump, 271 

K 
Kansas City (skywalk collapse), 1 66 
Kepler, Johannes ( 1 57 1-1630), 336 

laws of planetary motion, 336, 477 
Kinetic energy, 166 
Kirchhoff's laws, 173,  328 
Kutta, Wilhelm ( 1 867-1 944), 453 

L 
Lakes Erie, Huron, and Ontario, 53  
Language families, 43 
Laplace transform, 267 

and convolution, 298 
of derivative, 277 
derivatives of transforms, 299 

differentiation, 299 
existence, 273 
for s large, 274 

Index 1 -3 

general properties of, 272 
of higher derivatives, 278 
and initial value problems, 278 
of integral, 284 
integrals of transforms, 30 I 
inverse, 271 
inverse transforms of series, 304 
linearity of, 269 
and linear systems, 28 1 
notation, 27 1 
of periodic function, 3 1 0  
products of transforms, 297 
translation on the s-axis, 289 
translation on the t -axis, 305 
uniqueness of inverse, 274 

Legendre polynomial, 216 
Legendre's equation, 194, 358, 2 1 8  
Limit cycle, 5 1 3 
Limiting population, 23, 77 
Limiting solution, 484 
Limiting velocity, 22 
Linear dependence, independence, 

105, 107, 116, 117 
of vector-valued functions, 357 

Linear differential equation, 47, 100 
Linear system, 333 

almost linear, 502 
associated homogeneous equation, 

356 
eigenvalue method, 368 
first-order, 355 
general solution, 358 
homogeneous, 334 
nonhomogeneous, 334, 362, 420 
solution, 334, 355, 362 
upper triangular form, 360 

Linearity of Laplace transform, 269 
Linearization, 502 
Linearized system, 502 
Lipschitz continuous, 561 
Local error, 435 
Local existence of solutions, 566 
Logarithmic decrement, 148 
Logistic difference equation, 543 
Logistic equation, 23, 76, 452, 542 

competition situation, 80 
with harvesting, 453,  483 
joint proportion situation, 80 
limited environment situation, 80 

Logistic populations, interaction of, 
522 

Lorenz, E. N.,  55 1 
Lorenz strange attractor, 55 1 
Lorenz system, 552 
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Lunar lander, 1 3 , 90, 467 

M 
Maclaurin series, 196 
Manchester (England) bridge collapse, 

1 66 
Mass matrix, 381 
Mass-spring-dashpot system, 1 0 1  
Mathematical model, 4 
Mathematical modeling, 4 
Matrix, 348 

addition, 348 
augmented, 360 
coefficient, 355 
columns, 348 
determinant, 352 
diagonal, 4 1 2  
elements, 348 
elementary row operations, 360 
equality, 348 
exponential, 411 
fundamental, 408 
identity, 351,  359 
inverse, 352 
multiplication, 350 
nilpotent, 413 
nonsingular, 352 
order, 351 
principal diagonal, 352 
rows, 348 
singular, 352 
subtraction, 349 
transpose, 349 
zero, 348 

Matrix differential equation, 407 
Matrix exponential solutions, 4 14  

general, 4 16  
Matrix-valued function, 354 

continuous, 354 
differentiable, 354 

Mechanical-electrical analogy, 1 74 
Mechanical vibrations, 343 
Method of elimination, 339 
Method of Frobenius, 222 

logarithmic case, 240 
nonlogarithmic case, 233 
the exceptional cases, 242 

Method of successive approximations, 
557 

Method of undetermined coefficients, 
149 

for nonhomogeneous systems, 42 1 
Mexico City earthquake, 1 66 
Mixture problems, 52 
Modem Jazz Quartet, 640 
Modulus (of complex number), 1 32 

Multiplicity of eigenvalue, 393 

N 
Natural frequency, 163, 345, 384 

of beam, 644 
Natural growth and decay, 37 
Natural growth equation, 38 
Natural mode of oscillation, 345, 384 
Newton, Sir lsaac ( 1 642-1727), 85, 

336 
Newton's law of cooling, 2, 40, 57, 480 
Newton's law of gravitation, 90, 336, 

472 
Newton's method, 1 25 ,  1 85 , 26 1 
Newton's second law of motion, 1 3 ,  

1 5 , 85, 95,  1 36, 1 62, 1 66, 1 86, 
326, 3 8 1  

Nilpotent matrix, 4 1 3  
Nodal sink, 504 
Nodal source, 504 
Node, 491 

improper, 492, 504, 505 
proper, 491 ,  505 

Nonelementary function, 430 
Nonhomogeneous equation, 101, 1 2 1 ,  

1 22 
Nonhomogeneous system, 334, 362 
Nonlinear pendulum, 533 

period of oscillation, 535, 539 
Nonlinear spring, 527, 528 
Nonsingular matrix, 352 
Noonburg, Anne, 264 
Norm, 561  

o 
Ohm (unit of resistance), 173 
Operational determinant, 341 
Operator, polynomial differential, 1 27, 

340 
Order of differential equation, 6 
Ordinary differential equation, 7 
Ordinary point, 208 

solution near, 209 
Oscillating populations, 5 1 6  
Overdamping, 1 4 1  

p 
Painleve transcendant, 264 
Parachute, 87, 94, 440, 450, 457, 460 
Parameters, variation of, 1 58, 160 
Parametric Bessel equation, 255 
Partial differential equation, 7 
partial fraction decomposition, 289 
Particular solution, 10 

Peaceful coexistence of two species, 
520 

Pendulum, 1 37, 146, 1 7 1 , 262 
nonlinear, 533 
variable length, 262 

Period, 139 
Period doubling, 546, 550 

in mechanical systems, 548 
Periodic function, 310 
Periodic harvesting and restocking, 

453 
Phase angle, 139 
Phase diagram, 481 
Phase plane, 489 

position-velocity, 527 
Phase plane portrait, 33 1 , 489 
Phenylethylarnine, 44 
Physical units, 14  
Picard, Emile ( 1 856-194 1 ), 557 
Pitchfork diagram, 486 
Piecewise continuous function, 271 

jump, 271 
Piecewise smooth function, 277 
Pit and the Pendulum, The, 262 
Pitchfork diagram, 546 
Poe, Edgar Allan ( 1 809-1 849), 262 
Polar form (of a complex number), 1 32 
Polking, John, 3 1 , 499 
Polynomial differential operator, 1 27, 

340 
Population equation, 75 
Population explosion, 75, 82 
Population growth, 37 

and period doubling, 542 
Position function, 12 
Position-velocity phase plane, 527 
Potential energy, 1 66 
Power series, 194 
Power series method, 1 94 
Power series representation, 1 95 
Practical resonance, 1 69 
Predation, 522 
Predator, 5 1 3  
Predator-prey situation, 5 1 3  
Predator-prey system, 5 14 
Predictor (improved Euler), 446 
Predictor-corrector methods, 445 
Prey, 5 1 3 
Principle of superposition, 102, 1 1 3 

for nonhomogeneous equations, 1 55 
for systems, 356 

Principia Mathematica, 85, 336 
Product of matrices, 350 
Proper node, 505 
Pseudofrequency, 142 
Pseudoperiod, 142 
Pure resonance, 1 65 



R 
Radio frequencies, 178  
Radioactive decay, 37  
Radius of  convergence, 201 
Railway cars, 385,  39 1 ,  402 
Rank r generalized eigenvector, 398 
Rayleigh, Lord (John William Strutt, 

1 842- 1 9 1 9), 540 
Rayleigh's equation, 540 
Reactance, 176 
Real part, 1 30 
Recurrence relation, 200 

many-term, 2 1 3  
two-term, 2 1 3  

Reducible second-order equation, 70 
Reduction of order, 1 24, 238 

formula, 239 
Regular singular point, 220 
Repeated quadratic factors, 294 
Resistance: 

proportional to velocity, 86 
proportional to square of velocity, 

88 
Resistance matrix,  403 
Resistor, 1 73 
Resonance, 165, 389 

electrical, 178 
practical, 169 
pure, 165 
and repeated quadratic factors, 294 
Riccati equation, 73, 262 

RLC circuit, 1 73 , 308, 320 
initial value problems, 1 76 
integrodifferential equation, 308 

Rocket propulsion, 95 
Rodrigues ' formula, 217 
Rossler band, 553 
Rossler system, 553 
Row vector, 349 
Runge, Carl ( 1 856-1 927), 453 
Runge-Kutta method, 453 

error in, 454 
for systems, 466 
variable step size methods, 47 1 

S 
Saddle point, 492, 504 
Saltzman, Barry, 552 
Sawtooth function, 288, 3 1 4  
Schwartz, Laurent, 324 
Second law of motion, 1 3 ,  1 5 , 85, 1 36, 

162, 166, 1 86, 326, 3 8 1  
Second-order system, 382, 383 
Separable equation, 32 
Separatrix, 520, 529 
Series: 

binomial, 195, 206, 233 
convergent, 195 
exponential, 196 
formal multiplication, 197 
geometric, 195, 233 
hypergeometric, 233 
identity principle, 1 99 
Maclaurin, 196 
power, 194 
radius of convergence, 201 
shift of index, 200 
Taylor, 196 
termwise addition, 197 
term wise differentiation, 1 98 
trigonometric, 205 

Shift of index of summation, 200 
Simple harmonic motion, 1 39 
Simple pendulum, 1 37 
Sine integral function, 5 1  
Singular matrix, 352 
Singular point, 208 

irregular, 220 
regular, 220 

Singular solution, 36 
Sink, 492 
Skydiver, 457, 463 
Skywalk, 166 
Slope field, 19, 489 
Snowplow problem, 45 
Sodium pentobarbitol, 43 
Soft spring, 528 

oscillation, 529 
Soft touchdown, 14, 1 8  
Solution curve, 19, 33 1 
Solution: 

of differential equation, 2, 7 
of system, 326 
on an interval, 6 
linear first -order, 50 
existence, uniqueness, 23, 24, 50, 

104, 1 14, 557 
general, 10, 36 
implicit, 35 
one-parameter family, 5 
singular, 36 

Source, 492 
Spacecraft landing, 467 
Spiral point, 506 
Spiral sink, 495 
Spiral source, 495 
Spout, 482 
Spring constant, 136 
Square wave function, 276, 288, 3 1 1 ,  

3 14, 549 
Stability : 

of almost linear systems, 508 
of linear systems, 507 

Stable center, 506 
Stable critical point, 492 
Staircase function, 3 1 5  
Star, see Proper node 
Static displacement, 165 

Index 1 -5  

Static equilibrium position, 136 
Steady periodic current, 175 
Steady periodic solution, 390 
Step size, 43 1 ,  445, 47 1 
Stiffness matrix, 382 
Stirling's approximation, 56 
Stokes' drag law, 148 
Stonehenge, 40 
Strange attractor, 552 
Substitution methods, 59 
Superposition principle, 102, 1 1 3 

for nonhomogeneous equations, 155 
for systems, 356 

Survival of a single species, 5 1 7 
Swimmer's problem, 16  
Systems analysis, 322 

T 
Taylor series, 196 
Temperature oscillations, indoor, 57 
Terminal speed, 86 
Termwise differentiation of series, 198 
Termwise inverse Laplace 

transformation, 304 
Thermal diffusivity, 7 
Threshold population, 81 
Threshold solution, 484 
Time lag, 1 39, 176 
Time-varying amplitude, 142 
Torricelli 's law, 2, 4 1  
Trace-determinant plane, 5 1 3  
Trajectory, 33 1 ,  488 

closed, 495 
Transfer function, 322 
Transient current, 175 
Transient solution, 168, 390 
Translated series solutions, 2 12  
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