FlockLab: A Testbed for Distributed, Synchronized
Tracing and Profiling of Wireless Embedded Systems

Roman Lim Federico Ferrari

Marco Zimmerling
Philipp Sommer*

Christoph Walser
Jan Beutel

Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland
*Autonomous Systems Lab, CSIRO ICT Centre, Australia

lim@tik.ee.ethz.ch

ABSTRACT

Testbeds are indispensable for debugging and evaluating
wireless embedded systems. While existing testbeds provide
ample opportunities for realistic, large-scale experiments,
they are limited in their ability to closely observe and control
the distributed operation of resource-constrained nodes—
access to the nodes is restricted to the serial port. This paper
presents FLOCKLAB, a testbed that overcomes this limita-
tion by allowing multiple services to run simultaneously and
synchronously against all nodes under test in addition to
the traditional serial port service: tracing of GPIO pins to
record logical events occurring on a node, actuation of GPIO
pins to trigger actions on a node, and high-resolution power
profiling. FLOCKLAB’s accurate timing information in the
low microsecond range enables logical events to be correlated
with power samples, thus providing a previously unattained
level of visibility into the distributed behavior of wireless
embedded systems. In this paper, we describe FLOCKLAB’s
design, benchmark its performance, and demonstrate its ca-
pabilities through several real-world test cases.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems—measurement techniques; D.2.5 [Software Engi-
neering|: Testing and Debugging—distributed debugging,
tracing; C.3 [Computer Systems Organization|: Special-
Purpose and Application-Based System—real-time and em-
bedded systems; C.2.1 [Computer-Communication Net-
works]: Network Architecture and Design—uwireless com-
munication

General Terms

Design, Experimentation, Measurement, Performance

Keywords

Testbed, GPIO tracing, GPIO actuation, power profiling,
adjustable power supply, wireless sensor network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IPSN’13, April 8-11, 2013, Philadelphia, Pennsylvania, USA.

Copyright 2013 ACM 978-1-4503-1959-1/13/04 ...$15.00.

http://www.flocklab.ethz.ch/

Figure 1: FlockLab observer with Tmote Sky, IRIS,
Opal, and Tinynode connected via interface boards.

1. INTRODUCTION

Testbeds play a key role in developing real-world wireless
embedded systems by providing the facilities to debug and
evaluate protocols and applications in a controlled, yet real-
istic distributed environment. A review of the spectrum of
existing testbeds yields a long list: relocatable testbeds to
study applications in the intended target environment [29|,
testbeds with robots for controlled mobility experiments 18],
testbeds performing distributed power measurements 15|
homogeneous testbeds with hundreds of devices Eﬂ, and
emulation platforms and heterogeneous testbed federa-
tions [4] to assess large-scale services on thousands of nodes.

Despite this broad spectrum, the current practice of test-
bed-assisted development revolves around LED and printf
debugging: developers use the nodes’ on-board LEDs to ob-
serve conditions in the running program and printf state-
ments to log diagnostic messages, performance counters, or
program state over the serial port. However, it is well known
that printfs alter the timing behavior and are therefore
unsuitable for analyzing timing sensitive code such as ra-
dio drivers and MAC protocols. Perhaps one reason for the
unchallenged popularity of these techniques is their ease of
use . Another reason is that current testbeds allow access
to the devices under test only through the serial port. As a

http://www.flocklab.ethz.ch/

result, developers are left with no other option than to use
printfs, a means suitable for a number of long-term profil-
ing tasks but cumbersome, highly intrusive, and unsuitable
for detailed investigation of interactions among multiple de-
vices, especially real-time issues.

The current solution for debugging low-level software and
hardware interactions is a logic analyzer and a mixed-signal
oscilloscope allowing to capture and trigger events of inter-
est (e.g., changes in program state or packet transmissions)
at high timing resolution. Different from printfs, setting
digital GPIO pins on a node introduces a known delay of
just a few clock cycles, which makes GPIO tracing a pow-
erful tool for debugging timing sensitive code. The required
equipment, however, limits the setup to a few nodes on a
table, bearing little resemblance to a real multi-hop setting.

The main contribution of this paper is FLOCKLAB, a test-
bed with services providing a previously unattained level
of visibility into wireless embedded systems. FLOCKLAB’s
novelty stems from the combined capability of tracing and
actuating logical state changes at high level of detail, accu-
rate timing information in the low microsecond range, and
the possibility to profile and control power over the whole
testbed. By coupling a powerful, stateful observer platform
directly with every device under test, the target, FLOCKLLAB
overcomes the bottleneck at the single sink of centralized
data collection systems. FLOCKLAB leverages distributed
target-observer pairs with deep local storage that are capa-
ble of capturing event and power traces of all targets locally,
simultaneously, synchronously, and at high rates without
sacrificing on timing accuracy or incurring data rate limi-
tations of traditional backchannel-based testbeds [14} |37].

As such, FLOCKLAB combines the capability of a logic an-
alyzer, power analyzer, serial data logger, and programmable
power supply with network synchronization and deep local
storage adjacent to each target—distributed across the en-
tire testbed. FLOCKLAB also supports multiple target plat-
forms, allowing for comparative analysis of applications and
protocols on the same physical topology. It performs dis-
tributed power measurements at higher rate, resolution, and
synchronization accuracy than prior testbeds. Users may ap-
ply power profiling and GPIO tracing against all targets to
correlate power samples and logical events, or dynamically
adjust the target supply voltage to emulate battery depletion
effects. Sec. [details the services available in FLOCKLAB.

Sec. [3] presents the design of FLOCKLAB to meet the chal-
lenges that arise when providing these services. Based on
our current FLOCKLAB deployment at ETH Zurich, which
consists of 30 observers in a mixed indoor/outdoor setting
that host Opal, IRIS, Tinynode 184, and Tmote Sky targets
as shown in Fig. [} we benchmark FLOCKLAB’s performance
in Sec.[d] We find, for instance, that FLOCKLAB can capture
GPIO events reliably up to a rate of 10kHz; it can times-
tamp distributed events and power samples with an average
pairwise error below 40 us; and it measures power draw with
an average error smaller than 0.4 % over six orders of mag-
nitude, while providing a highly stable and programmable
supply voltage. We further demonstrate in Sec. [5| the util-
ity of FLOCKLAB through various real-world test cases, in-
cluding an experiment in which we take a detailed look into
packet propagation and power draw during a Glossy network
flood [10]. Gaining similar multi-modal insights at this level
of detail would hardly be feasible with any prior testbed.
We review related work in Sec. [l and conclude in Sec. [T

Platform Microcontroller Speed |Cycles Time

Tmote Sky MSP430 F1611 4 MHz 5 1,250 ns
Tinynode 184 MSP430 F2417 12 MHz 5 417 ns
Opal ARM Cortex-M3 96 MHz 5 52 ns
IRIS ATMegal281 8 MHz 2 250 ns

Table 1: Clock cycles and time needed to set a GPIO
pin on the current FlockLab targets. The known, min-
tmal delay of GPIO tracing allows for virtually non-intrusive
debugging of timing sensitive code.

2. FLOCKLAB SERVICES

FLOCKLAB delivers new insights into wireless embedded
systems by providing the following key services.
GPIO tracing. An observer can trace level changes of five
target GPIO pins at a rate of up to 10kHz. Setting a GPIO
pin takes only 2—5 clock cycles on current target platforms,
as listed in Table[I[] Thus, using simple code instrumenta-
tion, this service allows for virtually non-intrusive tracing of
events of interest; for example, a trace of packet exchanges
may help debug a MAC or routing protocol. Like a mixed-
signal oscilloscope that can trigger on digital signals and
capture on analog signals, it is also possible to couple GPIO
tracing with GPIO actuation and power profiling using a
callback mechanism: upon detecting a defined pin edge, an
observer can set another GPIO pin or start measuring power.
GPIO actuation. An observer can set, clear, and toggle up
to three target GPIO pins, one of which is the target’s reset
pin, either periodically or at predefined times. This is useful,
for example, to create controlled experiments by triggering
some action on all targets at the same time, such as starting
or stopping the nodes, turning on the radio, transmitting a
packet, or freezing and logging a state variable.
Power profiling. An observer can sample the current draw
of the target at a maximum frequency of 28 kHz when op-
erating the ADC in high-resolution mode and up to 56 kHz
when operating it in high-speed mode. FLOCKLAB defaults
to the high-resolution mode since it provides a higher SNR
than the high-speed mode, as further described in Sec. [3.:4]
Users specify time windows during which this service should
be running. The resulting power traces can aid in develop-
ing energy-efficient applications and have also been used for
conformance testing [38] and failure diagnosis [20].
Adjustable supply voltage. An observer can dynamically
adjust the target supply voltage between 1.8V and 3.3V in
steps of 100mV. To introduce repeatable voltage changes,
users can select from a range of predefined charge/discharge
curves or define their own voltage-time profiles. This can be
used, for example, to study discharge-dependent behavior.
Serial I/O. Finally, an observer can read or inject data over
the target’s serial port, which is a standard service avail-
able on almost any testbed. FLOCKLAB currently supports
ASCII data, TOS messages, and SLIP datagrams, making it
compliant with the serial communication available in state-
of-the-art operating systems like TinyOS and Contiki.

FLOCKLAB allows a user to run any combination of the
above services simultaneously and synchronously on any sub-
set of observers. FLOCKLAB accurately timestamps data ac-
quired during a test across all services and observers, thus
providing previously unattained insights into local and dis-
tributed system behavior both in detail and at scale. To the
best of our knowledge, this makes FLOCKLAB unique in the
spectrum of testbeds for wireless embedded systems.

3. FLOCKLAB ARCHITECTURE

Providing the above services presents several challenges to
the design of FLOCKLAB. This section highlights these chal-
lenges and describes FLOCKLAB’s hardware and software ar-
chitecture designed to solve them.

3.1 Challenges

e Minimum disruption: FLOCKLAB must not perturb
the behavior of the system under test beyond the min-
imum necessary to obtain the desired measurements.

e High accuracy and resolution: FLOCKLAB needs to
provide highly accurate power samples over a dynamic
range that spans six orders of magnitude in current draw,
from sleep currents of just 2 uA on a Tinynode up to active
currents on the order of 100 mA. The resolution of power
measurements and event traces must approach or exceed
10kHz to capture ephemeral radio events, such as clear
channel assessments, which last only 100-200 us.

e Time synchronization: FLOCKLAB must tightly time-
synchronize the observers against a stable global clock, so
as to precisely correlate events and power samples of one
observer as well as across multiple observers. With sam-
pling rates of at least 10kHz, events and power samples
must thus be timestamped with 50 us accuracy or better.

e Large data volume: FLOCKLAB needs to cope with
large data volumes that arise particularly during high-
resolution power profiling. Samples should not be lost and
be quickly processed to achieve high testbed utilization.

e Platform support: FLOCKLAB’s hardware and software
architecture must be designed in such a way that new
platforms can be supported with little effort and cost.

3.2 Overview

FLOCKLAB consists of several distributed target-observer
pairs and a set of servers. Observers are powerful platforms
that can host up to four devices under test, the targets, con-
nected through relatively simple interface boards. Observers
implement all services available in FLOCKLAB in hardware
or software. They connect to several backend servers respon-
sible for coordinating their distributed and synchronized op-
eration, for processing and storing collected results, and in-
teracting with FLOCKLAB users.

3.3 Observer Hardware

Observers are based on a custom-designed PCB assembly
as depicted in Fig.[2| Its heart forms a Gumstix XL6P COM
embedded computer, which is driven by a 624 MHz Marvell
XScale PXA270 microprocessor and equipped with 128 MB
SDRAM and 32MB flash memory. We add an 8 GB SD
card to cache test configurations, program images, and test
results. Observers connect to FLOCKLAB servers preferably
through the Ethernet expansion of the Gumstix; USB Wi-Fi
adapters can be used if Ethernet proximity is lacking.

A switching regulator converts a 5-56 V DC input voltage
to the 5V on-board voltage required by the Gumstix. A lin-
ear regulator with low output noise further down-converts
to the 3.3 V on-board voltage required by other components.
The ADS1271, a 24-bit delta-sigma ADC, is used for power
profiling as detailed in Sec. Additionally, there are three
USB connectors and a humidity/temperature sensor. In our
current deployment, described in Sec. [3.8] we use the read-
ings of the latter to control a USB-powered fan on four out-
door observers to prevent humidity and overheating issues.

0—5..56V~5VH 5V-3.3V

Humidity/ 18..33V—~(A)—1— ‘T)aor‘f’,:tr
temperature
sensor |
[4
24bitADC > -
c B—== GPIO
Embedded 5 S == tracing
Computer w9 =
I3 5 GPIO
) = actuation
= ¢
e a
2 | —
£ - ==
)
O—] Ethernet N = Reset/Prog
L —|D
UsB
goo- USB hub Target slot 1

Figure 2: High-level schematic of the FlockLab ob-
server hardware.

An observer provides four pin header connectors to attach
targets through interface boards, and replicates the following
main components for each connector: an LM3370 switching
regulator to adjust the target supply voltage in the range
of 1.8-3.3V with 100mV resolution; a MAX9923H current-
sense amplifier for power measurements; five incoming and
two outgoing GPIO lines to trace and actuate GPIO pins
of the target; UART lines to read and inject data over the
target’s serial port; lines to reset and program the target; an
ID line to identify the interface board as further discussed in
Sec. and a USB port for USB-enabled targets and inter-
face boards. Two 8-bit signal translators match the variable
voltage of the target with the 3.3V on-board voltage of the
observer. Finally, an observer provides nine LEDs controlled
by the GPIO and UART data lines for visual inspection.

Because of the limited number of GPIO pins on the Gum-
stix, we need to multiplex the available signal lines between
the four targets. We achieve this by letting the Gumstix en-
able the two voltage level translators and the current-sense
amplifier of the desired target and disable them for all other
slots. The Gumstix can thus control one target at a time.

The cost of the complete observer PCB assembly amounts
to a rough total of 1000 USD including manufacturing costs.

3.4 Measuring Power

To measure power, we put a small shunt resistor between
the switching regulator and the target. The voltage across
the resistor is proportional to the current draw of the target.
We use a MAX9923H high-side current-sense amplifier to
amplify the sense voltage by a gain of 100. The MAX9923H
has low offset voltage and high gain accuracy, providing pre-
cise measurements also at low sense voltages. The output of
the amplifier is then fed into an ADS1271 ADC, whose sam-
ples are fetched by the Gumstix over an SPI bus. Conversion
into current is done in the FLOCKLAB backend based on the
shunt resistance, the gain of the amplifier, the reference volt-
age of the ADC, and the supply voltage of the target. We
assess the stability of the latter in Sec. [£:2] showing that the
voltage drops only by a few mV at typical current draws.

The choice of the shunt resistor presents a tradeoff. Using
a small resistor reduces the influence on the measurements,
whereas using a large resistor gives a better SNR. Another
important factor is the wide dynamic range of current draw.
For instance, a Tinynode draws only 2 A in sleep mode,

Services Kernelspace

Userspace

Interrupt handlers
Top half |

Counter register |

Timestamp/set pin

GPIO actuation —>|

A 4

A 4

Counter to time

|

|

i |
Bl | _v__Timestamp every 500 ms |

Bottom half

’IIIII E Wiitetoihl » /gpioactuation.db
“ I E Write to file

Data daemon 4 SD card)

A 4

/powerprofiling.db

Serial data —_ UART driver

E Serial reader

—> Timestamp packets \: /serialreader.db

Figure 3: Processing of GPIO events, power samples, and serial data on an observer. Timestamping occurs in
the bottom half of an interrupt handler using a tick count taken in the top half, which increases precision and throughput.

whereas an Opal draws as much as 49 mA when both radios
are turned on. To prepare FLOCKLAB for even higher cur-
rent draws of future platforms, we want to support up to
160 mA. Based on these considerations, we decided to use a
relatively small 150 m§2 shunt resistor, which still enables the
high-gain amplifier to accurately measure low signal levels.
The ADC has a resolution of 24 bits, which gives a the-
oretical resolution of 10nA in current draw based on the
specifications of shunt resistor, amplifier, and ADC. The
ADC features two modes of operation that are interesting
for FLOCKLAB, selectable by a jumper: high-speed and high-
resolution. Using a 14.3 MHz clock source, the ADC sam-
ples at 56 kHz in high-speed mode and at 28 kHz in high-
resolution mode. FLOCKLAB defaults to the latter as it has
a higher SNR of 109dB, while still providing a sufficiently
high sampling rate to capture short-lived radio events.

3.5 Observer Software

Observers run OpenEmbedded Linux and use Chrony as
an NTP client to synchronize every 1-2min with the
FLOCKLAB NTP server (see Sec. [3.7). This provides the
basis for accurately timestamping GPIO events, power sam-
ples, and serial messages. Observers cache the timestamped
data locally before uploading them to the FLOCKLAB data-
base server, and have a collection of Python scripts that are
used by the FLOCKLAB test management server to trigger
scheduled actions such as starting and stopping a test, re-
programming a target, and setting the target supply voltage.
Data acquisition and timestamping. To gain access to
hardware connected to the Gumstix—in our case the GPIO
lines and the SPI bus which interfaces with the ADC—
we implement data acquisition and timestamping as kernel
modules. Kernel processes run with highest priority, which
helps reduce processing delays and thus increase throughput.

As shown in Fig. 3] data acquisition for GPIO tracing,
GPIO actuation, and power profiling starts in interrupt han-
dlers. Triggered by a hardware or timer interrupt, the top
half of a handler serves the interrupt, reads a register to ob-
tain the current tick count, and requests that the bottom
half of the handler be executed at some future time. The
bottom half uses then the tick count to compute a precise
timestamp. This approach increases throughput and times-
tamp precision, because it minimizes the execution time of
the top halves, enabling interrupt requests to be served at
high rate and low jitter.

As for GPIO tracing and GPIO actuation, an observer
timestamps single events. This is however different for power
profiling. To reduce system load and memory consumption,

we generate a timestamp only every 500 ms. Using the con-
stant sampling rate of the ADC, the FLOCKLAB backend
later interpolates the timestamps of single power samples.
Timestamping of serial messages is less critical since these
are already affected by non-deterministic UART transfer de-
lays [5] and therefore should not be used to log data that
require highly accurate timestamps. For this reason, we pro-
cess and timestamp serial messages in userspace.
Data caching. When using FLOCKLAB’s power profiling
service, the observers have to deal with enormous amounts
of data, so efficient data handling is key. Motivated by this,
we use a custom-built binary log file mechanism rather than
a full-blown database system. As shown in Fig. kernel
FIFO queues are used for transferring acquired data from
kernel to userspace, where a daemon receives the data and
writes them into separate files on the SD card. Upon request
from the FLOCKLAB test management server, an observer
uploads accumulated data to the database server.

3.6 Supporting Diverse Target Platforms

FLOCKLAB possesses the flexibility to support diverse tar-
get platforms with little effort in terms of hardware and soft-
ware. FEvery observer can host four targets of possibly differ-
ent form factors, connectors, features, and tools required for
installing program images. Key to this flexibility is the use of
interface boards: simple PCB assemblies that interconnect
the components on an observer (see Fig. and Sec. with
the corresponding components on the target.

Every platform requires its own custom-designed interface
board, since there is no standardized connector or pin layout
for wireless embedded devices. An interface board may also
need to make provisions for different logic levels.

Additionally, FLOCKLAB imposes a few constraints on the
design of an interface board. First, it needs to fit certain
maximum dimensions and have an appropriate header con-
nector. Second, the components on an interface board must
work with one of the available power supplies: 3.3V, 5.0V,
or the 1.8-3.3V DC adjustable voltage. Third, an interface
board must feature a serial ID chip that is compliant with
the widely used DS2401, which is needed to automatically
identify the mapping of target slots to interface boards.

Besides interface boards for Tmote Sky, Tinynode, and
Opal designed by us, external collaborators from IBM de-
signed an interface board for IRIS, which also supports Mica2
and MicaZ due to pin-compatibility. We leverage these inter-
face boards in our current FLOCKLLAB deployment at ETH
Zurich to attach four different platforms to each observer,
as shown in Fig.

On the software side, it is sufficient to port the reprogram-
ming tool to the Gumstix to support a new platform. As
for serial I/O, FLOCKLAB observers already support ASCII
data, TOS messages, and SLIP datagrams. The target soft-
ware requires no special measures, since embedded operating
systems already provide functions for serial I/O and access-
ing GPIO pins, and power is measured by the observer.

3.7 Backend Infrastructure

Observers connect via Ethernet or Wi-Fi to a set of servers
that provide all what it takes to make FLOCKLAB a testbed.
Time synchronization server. FLOCKLAB operates its
own NTP server that synchronizes against another server on
campus and a high-accuracy pulse per second (PPS) signal
output by a GPS receiver, which provides a precise time ref-
erence. All observers synchronize against this NTP server.
Web server. Users interact with this server to schedule
and configure their tests. Every user is allowed to reserve
FLOCKLAB for a certain maximum duration and number of
tests at a time. A test configuration consists of a single XML
file to setup the services and one or more compiled binaries.
A user can run a test as soon as possible or during some
specified time slot, abort a running test, and fetch the results
of successfully completed tests. If requested, a user receives
email notifications about started and completed tests.

Test management server. This server is responsible for
operations related to starting, running, and finalizing sched-
uled tests. If a test is about to start, it parses the configu-
ration, prepares flashable images from the supplied binaries,
and dispatches these data to the observers. While a test is
running, it periodically queries the observers for results and
stores them in a database. When a test has finished, it pro-
cesses the raw data (e.g., interpolate timestamps, convert to
current) and stores them in a compressed archive.
Database server. This server hosts a MySQL database,
which stores test configurations, test results, and user-specific
data such as quotas and login information.

Monitoring server. Finally, we use Zabbix and Cacti to
constantly monitor all server instances, networking compo-
nents, and observers. In case of an abnormal situation,
FLOCKLAB admins are automatically informed via e-mail
and/or SMS to ensure maximum uptime of the testbed.

3.8 Deployment

The current FLOCKLAB deployment at ETH Zurich con-
sists of 30 observers, each hosting a Tmote Sky, IRIS, Opal,
and Tinynode 184. As illustrated in Fig.[4] 26 observers are
deployed indoors across one floor in an office building, dis-
tributed in offices, hallways, and storerooms. Four observers
are deployed outside, sitting on the roof of an adjacent build-
ing a few meters beneath the floor with the indoor observers.

All indoor observers connect via Ethernet, and have a
light acrylic glass cover to protect against dust. To help the
accuracy of NTP by reducing communication latency and
jitter, they are all in the same LAN segment. The outdoor
observers use Wi-Fi due to lack of Ethernet on the roof, and
are housed in robust polycarbonate boxes with controlled
ventilation to avert humidity and overheating problems.

During testbed idle times, the test management server
runs an RSSI scanner on all target platforms, determining
the noise level on all channels and frequency bands, and a
test where targets broadcast 500 30-byte packets each and
then report the number of packets they received from any

@ ndoor observer (Ethernet)
{73 Outdoor observer (Wi-Fi)
Link with PRR > 90% (Tmote)

Figure 4: Layout of FlockLab deployment including
information about link qualities and noise.

other target, which gives an estimate of the link qualities in
the testbed. This information is stored in the database and
displayed on the FLOCKLAB website as an overlay on the
deployment map as shown in Fig. [d] giving users an idea as
to what extent their tests may be affected by external inter-
ference (e.g., from co-located Wi-Fi) or limited connectivity.

4. BENCHMARKING FLOCKLAB

Using our current deployment, we benchmark in this sec-
tion the accuracy and the limits of key FLOCKLAB services.
We start by evaluating FLOCKLAB’s timing accuracy, which
is fundamental to exploit the full potential of the GPIO and
power profiling services, check the stability of the power sup-
ply and the accuracy of the power measurements, and finally
determine the maximum rate for capturing GPIO events.

4.1 Timing Accuracy

4.1.1 GPIO Tracing and Actuation

Setup. We randomly select 7 Ethernet-connected observers,
and put one Wi-Fi-connected observer indoors on a table.
We evaluate GPIO tracing and actuation in two separate
1h tests. In the first test, we use a signal cable to con-
nect a GPS clock to one GPIO pin of each observer. The
GPS clock generates a PPS signal, and the observers times-
tamp the corresponding GPIO events. In the second test,
we connect one GPIO pin of each observer to a Tektronix
MSO04054B mixed-signal oscilloscope. All observers simul-
taneously toggle the pins every second, and the oscilloscope
measures the actual timing of these events.
Pairwise timing error. We first measure the pairwise
timing error between simultaneous GPIO events at different
observers. This evaluates the alignment of GPIO traces col-
lected by different observers and, for GPIO actuation, the
precision with which simultaneous actions can be triggered.
Table [2] shows that the average pairwise error is smaller
than 40 us when using the 7 Ethernet-connected observers.
If we add the Wi-Fi-connected observer, the error increases
significantly due to higher and more variable delays in the
exchange of NTP packets over Wi-Fi. The error is similar for
GPIO tracing and actuation, as an observer executes similar
operations when timestamping an event or setting a pin.

GPIO 7 Ethernet 7 Ethernet, 1 Wi-Fi
service avg 85th max avg 85th max
Tracing 36us 69us 255us | 166 us 527us 1,161 us
Actuation | 30pus 54 pus 394 pus | 138us 334us 1,170 us

Table 2: Pairwise timing error of GPIO services. The
average error is smaller than 40 us with Ethernet observers.

20+ =

Occurrence [%]
> o
T T

[$))
T

s ‘ s s |

S0 50 0 50 0 50 100 150 200
Error on time intervals of 1s [us]

Figure 5: Distribution of the error on time intervals

between GPIO events. The average error is -0.011 ps.

These results show that FLOCKLAB allows users to align
GPIO traces and to set GPIO pins with an error as small as
a few tens of microseconds when using the indoor observers.
This high accuracy is more than sufficient to trace packet
transmissions among targets, as we demonstrate in Sec. [5.5]
The results also show that because of the higher NTP syn-
chronization error over Wi-Fi, the outdoor observers are less
suited for tests that require sub-millisecond timing accuracy.
Error on time intervals. Using data from the previous ex-
periment, we also assess the error on time intervals. We com-
pute for each observer the difference between timestamps of
consecutive GPIO events and compare it to the PPS signal.
In this way, we evaluate the precision with which an observer
measures the interval between GPIO events.

Fig. shows the distribution of the error on time intervals,
as measured by all 8 observers used in the experiment. We
see that it approaches a normal distribution with a sample
mean of -0.011 us and a sample standard deviation of 27 us.
The average error is small because each timestamp is sim-
ilarly affected by variable interrupt delays on an observer.
We show in Sec. [f] that this precision allows to profile the
radio activity or to measure the clock drift of a target.

4.1.2 Power Profiling

Setup. To evaluate the timing accuracy of the power pro-
filing service, we run a 2min test on 6 Tmote Sky targets
attached to Ethernet-connected observers. One transmitter
generates a 30-byte packet every 62.5ms. The other 5 re-
cetvers, located in the transmission range of the transmitter,
have their radios turned on and receive the packets. The cor-
responding observers enable GPIO tracing and power pro-
filing, measuring current’ draws at 28 kHz.

When a start frame delimiter (SFD) interrupt signals the
start of a packet reception, a receiver toggles a GPIO pin and
turns on its three on-board LEDs. As shown in Fig.
these operations generate a GPIO event and an increase in
current draw from 22 mA to 34 mA. When the next SFD in-
terrupt signals the end of a reception, each receiver turns off
its LEDs and the current decreases accordingly. We consider

!We use power and current interchangeably in Secs. 4| and
because FLOCKLAB supplies a known, stable voltage (see
Sec. |4.2) and thus power is directly proportional to current.

Current [mA]
w
o

n
a

351
—A—GPIO event
r ——Power trace
O Power event

Leds—on threshold (23 mA) %
20 ‘ ‘ ‘

| | |
0 0.25 0.5 0.75 1 1.25 1.5
Time [ms]

(a) Simultaneous GPIO and power events on 5 observers.

Fraction

— GPIO and power events (same observer)
Power events (different observers)
L L L

G Il Il Il Il Il Il J
0 20 40 60 80 100 120 140 160 180 200

Timing error [us]
(b) Cumulative distribution of timing errors.

Figure 6: Timing errors of power profiling. Observers
timestamp simultaneous power events with an average pair-
wise timing error of 39 us.

these events as occurring at the same time, as we measure
with an oscilloscope that the lag due to different time of
flight and interrupt delays is smaller than 1us. To com-
pare power timestamps, we define that a power event occurs
when the current rises above a leds-on threshold of 23 mA.
Timing error between GPIO and power events. We
measure the timing error between GPIO and power events
on the same observer by computing the interval between the
GPIO and the respective power timestamp (i.e., between a
vertical line and the corresponding circle in Fig. .

The solid line in Fig. shows the cumulative distri-
bution of the timing error, which is 20 us on average and
smaller than 29 us in 85 % of the cases. We see that the aver-
age error is close to half the power sampling period (17 us):
power profiling has a lower resolution than GPIO tracing
and most of the timing error comes from the random delay
between a GPIO event and the following power sample.
Pairwise timing error. We now look at the pairwise tim-
ing error between simultaneous power events on different
observers (i.e., between two circles in Fig. .

The dashed line in Fig. shows the cumulative distri-
bution of this pairwise timing error, averaging around 39 us
with an 85th percentile below 68 us. The error is compara-
ble to that of simultaneous GPIO events in Sec. [f.1.1] since
the sources of time inaccuracies are similar. Fig. and
the test case in Sec. [5.5| confirm that the precise alignment of
power traces in FLOCKLAB allows to match the power draw
of a target to packets exchanged with other targets.

4.2 Power Accuracy

We use ad-hoc experiments to check whether an observer
accurately measures the current draw of the target with only
minimal impact on the stability of the target supply voltage.
Setup. We connect the target slot of an observer to a high-
precision Agilent N6705A power analyzer, which acts as a
target that draws predefined currents. The current draws

100
—Observers

AA Batteries

80 (average, 15th and 85th percentiles)

60~

40

Voltage drop [mV]

20

0

. . . .
0.1 1 10 100
Current [mA]

(a) The average voltage drop is small for typical target cur-
rents and less than 42 mV even when a target draws 160 mA.

Relative error [%]
&
o
T

501 — After calibration
Before calibration
N) (Fverage, 15th and 85th perceqtiles)
01 1 10 100
Current [mA]

(b) Calibration using linear regression reduces the average
relative error on current draw to -0.39 %.

Figure 7: Stability of the power supply and accuracy
of the power measurements in FlockLab.

cover the full dynamic range and proceed in a step-wise fash-
ion as follows: from 0mA to 1mA in steps of 0.1 mA, from
1mA to 10mA in steps of 1 mA, and from 10 mA to 160 mA
in steps of 10mA; each of the 35 steps lasts 3s. During the
experiment, the observer supplies a nominal voltage of 3.3V
and records the current drawn by the power analyzer with
a resolution of 14 kHz, while the power analyzer records the
voltage supplied by the observer with a resolution of 24 kHz.
We repeat the experiment 32 times, using the four target
slots of eight randomly chosen observers.
Stability of power supply. We first look at the stability
of the supply voltage. To this end, we measure the voltage
drop as the difference between the zero-load voltage (i.e.,
when no current is drawn by the power analyzer) and the
voltage supplied at a certain current draw. The solid line
in Fig. shows that the average voltage drop is at most a
few mV for typical current draws of our targets; for example,
an Opal draws 49 mA when fully active, yielding an average
voltage drop of 13 mV. The voltage drop of the other target
platforms is even smaller, because they draw less current.
To put these numbers into perspective, we measure the
voltage drop of two AA alkaline batteries, a typical power
supply in real deployments. The dashed line in Fig.
shows that their average voltage drop is higher than that of
an observer, and is above 23mV already at a current draw
of 20mA. We compute a linear fit between voltages and
currents and find that a target sees an average resistance of
259 m{2 when connected to an observer, which is almost four
times smaller than what a target would see with AA bat-
teries (947 mf?). The results show that power profiling with
FLOCKLAB minimally affects the target supply voltage.
Accuracy of power measurements. Next, we evaluate
the accuracy of power measurements by computing the rel-
ative error between the current draw measured by the ob-
servers and the current drawn by the power analyzer.

Number of Power Captured GPIO events
GPIO pins profiling 99 % 100 %
1 no 80 us 290 ps
yes 90 us 280 us
. no 20 us 80 us
5 interl d
tterieave yes 30 us 90 us

Table 3: Minimum required interval between con-
secutive GPIO events to capture 99% and 100% of
generated events. An observer captures 99 % of events on
one GPIO pin if they are at least 90 us apart.

The dashed line in Fig. shovvs that FLOCKLAB under-
estimates at currents below 2mA and slightly overestimates
at higher currents. The relative error is particularly signifi-
cant for low currents: static offset errors of the current-sense
amplifier, manufacturing errors of the shunt resistor, and in-
accuracies of the amplifier gain introduce a constant offset
and a constant multiplication factor into the measurements.
Motivated by this observation, we use linear regression to
estimate these constants by comparing the measurements
from the observers with those from the power analyzer, ef-
fectively calibrating FLOCKLAB’s power profiling service.

For each observer and target slot, we repeat the exper-
iment and correct the measured current draw by applying
our calibration based on the constants computed from the
previous experiment. The solid line in Fig. shows that
the calibration reduces the relative error on current draw sig-
nificantly, especially for currents below 1 mA. For currents
between 0.1 mA and 160 mA, the accuracy of the power mea-
surements increases by a factor of 6 after calibration.

Based on calibration parameters we computed for all tar-
get slots on all 30 observers, the FLOCKLAB test manage-
ment server corrects the power measurements before deliv-
ering them to the user. We show in Sec. that this results
in accurate power measurements allowing to precisely mea-
sure the energy consumed by a target throughout a test.

4.3 Limits in Capturing GPIO Events

The sampling rate of the ADC defines the interval between
power samples. This is different for tracing GPIO events on
an observer: the minimum required interval to reliably cap-
ture consecutive events depends on the interrupt delay and
the execution time of the top half of the interrupt handler.
We run experiments to determine this minimum interval.
Setup. We use all 30 Tmote Skys and let them toggle GPIO
pins with an increasing interval. Starting from 10 us, targets
increase the interval in steps of 10 us up to 1 ms, and gener-
ate at each setting 100 GPIO events. We run four tests, each
repeated ten times: two where they toggle a single pin and
two where they toggle five pins interleaved. In both cases,
we run one test with and one test without power profiling.
Minimum interval between GPIO events. For each
interval, we compare the number of captured events with
the number of generated events. Table [3] lists the minimum
required interval to capture 99 % and 100 % of events. First,
we see that FLOCKLLAB captures more frequent events when
they are interleaved on 5 GPIO pins. This is because every
GPIO pin is mapped to a specific interrupt flag, and no new
events can be captured until the respective flag is cleared.

We further observe that the minimum required interval
to capture GPIO events increases by 10 pus when the power
profiling service is enabled. This service increases the load
on an observer, leading to higher interrupt delays and thus

141 LPL wake-up 14+ LPL wake-up
—_ intervals: T intervals:
E12f ® 20ms E12F ® 20ms
% Platforms: * 50 ms (% Platforms: * 50 ms
510 RIS m 100ms 5 10F — RIS = 100 ms
g | o X 200 ms 5 o X 200ms
£ g}~ Tinynode ¥ 500 ms g sk Tinynode ¥ 500 ms
° Tmote Sky ¢ 1000 ms ° Tmote Sky ¢ 1000 ms
& 6 & 6
H 2

M \-I) 7&
k 4
c .
I
2 I I I I I v '# 2 LA il Il Il Il Il Il Il
75 80 95 100 0 0.5 1 25 3 3.5

1.5 2
End-to-end latency [s]
(b) Average current draw against end-to-end latency.

85 90
Data yield [%]
(a) Average current draw against data yield.

Figure 8: FlockLab enables comparative performance analyses of the same application on multiple platforms.
The plots show performance results from CTP running atop LPL for different LPL wake-up intervals and platforms, including
IRIS (2.4 GHz, 3dBm), Opal (868 MHz, 6 dBm), Tinynode (868 MHz, 12.5dBm), and Tmote Sky (2.4 GHz, 0dBm).

to a lower probability that events are successfully captured.
Finally, we note the significant difference between the mini-
mum required intervals for capturing 99 % or 100 % of events,
since sporadic activity on the observers (e.g., exchanging and
processing NTP packets or storing measurement data into a
file) may sometimes increase the interrupt delay, too.

The following section shows that FLOCKLAB’s GPIO trac-
ing service allows to accurately record MCU and radio activ-
ity, measure end-to-end packet delays, monitor the exchange
of packets, and measure the clock drift of a target.

5. FLOCKLAB IN ACTION

After presenting the architecture of FLOCKLAB and eval-
uating its performance, we now demonstrate the utility of
FLOCKLAB for testing, debugging, and evaluating wireless
embedded systems through several real-world test cases.

5.1 Comparative Multi-Platform Analysis

One feature that sets FLOCKLAB apart from other testbeds
is the possibility to test multiple platforms on the same phys-
ical topology. Comparative analyses of this type can provide
valuable feedback, for example, to developers of communica-
tion protocols, because the characteristics of the underlying
platform may affect the performance of these protocols con-
siderably and in non-trivial ways.

In this test case we perform a comparative multi-platform
analysis of the standard TinyOS data collection application.
The application uses CTP [13] on top of the LPL [27] link
layer to collect data from a set of nodes at a single sink. We
use all 30 observers and all four targets available in FLOCK-
LAB: Opal, Tinynode, Tmote Sky, and IRIS. The radios of
these platforms differ in terms of frequency band, maximum
transmit power, modulation scheme, and data rate. For each
individual platform we let the nodes transmit at the highest
power setting, and all nodes but the sink generate a packet
every 5s for a duration of 35 min.

We are interested in how each platform affects the trade-
offs between energy consumption, data yield, and end-to-end
latency. Since these key performance metrics are known to
be influenced by the operational parameters of the link-layer
protocol [40], we further test for each platform six different
LPL wake-up intervals: 20, 50, 100, 200, 500, and 1,000 ms.
We thus expect to gain insights into the platform-dependent
sensitivity of the system performance to changes in the LPL
wake-up interval, too.

Without FlockLab. Despite the lack of multiple platforms
on other testbeds, it is not trivial to obtain reliable and un-
obtrusive measurements of the performance metrics we are
interested in. Data yield can be measured quite straightfor-
wardly based on the sequence numbers of received packets,
but measuring energy and latency is more difficult.

On testbeds that do not support power profiling, energy
consumption must be estimated in software. For example,
Energest [6] provides accurate energy estimations in Contiki
but is also intrusive (see Sec. . Other operating systems
like TinyOS lack a standard energy estimator. This increases
the overhead to obtain energy estimates in the first place,
may lead to incomparable results from different custom-built
estimators, and generally encourages the use of radio duty
cycle as a proxy for energy consumption, which may not be
meaningful toward the total node energy budget.

One approach to measure the end-to-end latency is to log
a message over the serial port when generating a packet at
the source and another message when receiving a packet at
the sink. However, serial logging alters the timing behavior
of the application, and the resulting timestamps are inac-
curate due to non-deterministic UART delays [5]. Another
approach is to run a dedicated time synchronization protocol
such as FTSP [23] concurrently to the protocol under test
and to timestamp packets at the source. But, as shown in |3],
running multiple network protocols concurrently entails the
risk of unanticipated interactions between protocols that can
lead to performence losses or even failures. Furthermore, for
some combinations of platforms and operating systems there
may not be a synchronization protocol readily available.
With FlockLab. The power profiling service in FLOCKLAB
provides non-intrusive current measurements for computing
the energy consumption. The GPIO tracing service can be
used to measure the end-to-end latency: the application tog-
gles a GPIO pin when a source generates a packet and an-
other GPIO pin when the sink receives a packet. Taking the
interval between both events of the same packet, we obtain
non-intrusive measurements of the end-to-end latency of re-
ceived packets. The effort is limited to inserting two GPIO
tracing statements in the application code and configuring
the FLOCKLAB services in an XML file.

Fig. shows data yield and Fig.[8(b)|shows end-to-end
latency against average current draw*, for all platforms and

2The high current draw with Opal is due to a software issue
that prevents the nodes from entering a low-power mode.

Radio on W Data Tx
Data/Ack Rx WACck Tx
Parent | (1)
chig) I NIl ‘ ol 11 1
0 25 50 75 100 125 150

Time [ms]

Figure 9: GPIO trace showing a misconfiguration of
CTP and LPL on Tinynodes. After receiving a packet,
the parent turns off the radio (1) before the child sends the
next packet (2), causing packet loss due to queue overflows.

LPL wake-up intervals. As expected, higher data yield and
lower end-to-end latency can generally be achieved at the
expense of higher average current draw. While this holds for
all platforms, data yield and end-to-end latency are better
with IRIS, Opal, and Tinynode than with Tmote Sky, since
the higher transmit power of the former platforms leads to
shorter routing paths with CTP. Interestingly, IRIS is least
sensitive to changes in the LPL wake-up interval, and all four
platforms draw minimum current at 200ms LPL wake-up
interval, which is thus the most energy-efficient parameter
setting for this particular topology and traffic load.

5.2 Finding and Fixing Bugs

GPIO tracing is also a very powerful debugging tool. We
already found and fixed several bugs this way, and as a con-
crete example we describe next how we found and fixed a
protocol misconfiguration that caused a poor performance
during initial experiments of the previous test case.
Finding the bug. With LPL wake-up intervals of 500 ms
and 1s, the initial results from Tinynode and Opal nodes
were significantly worse than expected in terms of data yield
and end-to-end latency. All sources were seemingly affected,
and we could not pinpoint specific nodes to debug with a
logic analyzer. We thus instrumented the radio stacks to set
different GPIO pins according to the current radio state (z.e.,
sleeping, active, receiving, or transmitting) and repeated the
experiments with GPIO tracing enabled. Using printfs in-
stead of GPIO, we would have run the risk of breaking the
timing-sensitive operation of the radio driver and LPL.

After aligning the GPIO traces of all nodes, we noticed
that nodes located farther away from the sink could com-
municate properly. The bug indeed affected mostly nodes
close to the sink, which delivered only a small fraction of
the many packets they had to forward. We decided to fo-
cus on these nodes and, by looking deeper into the transfers
between a child and its parent, we found that children were
transmitting at most one packet during an LPL wake-up in-
terval, although they had multiple packets ready to be sent.
Fixing the bug. With the help of GPIO traces, we were
also able to find and fix the cause of this bug. Fig. [J]shows
an example of the problem, based on GPIO traces collected
from two Tinynodes. After a successful packet reception,
the parent kept the radio on for a short time but went to
sleep (1) before the child could transmit the next packet (2).
As a result, children had to wait until the next regular wake-
up of their parents before they could send the next packet,
which caused severe data loss at long wake-up intervals.

This prompted us to check the configurations of CTP and
LPL. Based on our settings, a Tinynode or Opal node kept
the radio on for 20ms after a reception, but its children
transmitted additional packets only after 32 ms (the default
CTP setting for generic platforms). We fixed this misconfig-

uration by changing the value of these parameters based on
the radios’ data rate and experimental results. For example,
on Tinynodes a parent keeps the radio on for 36 ms after a
reception, and a child transmits the next packet after 10 ms.

5.3 Controlling and Profiling Applications

When evaluating applications like data collection it is of-
ten desirable not only to precisely measure performance fig-
ures but also to control nodes during an experiment, for ex-
ample, to specify which nodes generate packets and when [40],
or to emulate failures by turning some nodes off during a
certain interval |[13]. We now show that FLOCKLAB greatly
helps control and profile typical data collection applications.

In this test case, we run the default data collection ap-
plication of Contiki on Tmote Sky targets, that is, Collect
on top of ContikiMAC. The wake-up interval of the latter is
128 ms. We want one node to generate a packet every 2s for
260s, from t = 30s to t = 290s. We also want to measure
the energy consumed by that node during these 260 s.
Controlling without FlockLab. A common approach to
control an experiment is to add some logic that, for example,
starts and stops the generation of packets depending on the
current time and the identifier of the node. This approach
requires to recompile the application program for tests that
need different parameterization, which is time-consuming.
Most importantly, some form of in-band time synchroniza-
tion is also needed if several nodes are to simultaneously
start and stop generating packets, which can, however, de-
grade the performance of the application under test [3].
Controlling with FlockLab. With GPIO actuation we
can control the targets without employing an additional time
synchronization within the application. In our test case, the
observer connected to the node of interest sets a GPIO pin at
t = 30s and clears it at ¢ = 290s: the target starts and stops
generating packets accordingly. Because the observers are
time-synchronized, it is also possible to let multiple targets
start and stop generating packets simultaneously. Moreover,
we can test different generation patterns by simply modify-
ing the GPIO actuation timings in the test configuration.
Profiling without FlockLab. On testbeds without power
profiling, the energy consumption of a node can be estimated
in software. For example, Energest measures the time spent
by the node in different states [6], which can be combined
with the current draws in each state to estimate energy. This
method is however intrusive, since it requires nodes to start
and stop counters whenever they change state, and requires
changes to existing code to be used on a different platform.
Profiling with FlockLab. Power profiling allows to mea-
sure the energy consumption of any supported target in a
completely non-intrusive fashion. GPIO tracing allows also
to profile a target’s operation and measure state timings by
setting GPIO pins according to the MCU and radio states.

In our test case, we enable power profiling between t = 30s
and t = 290s. Fig. [10(a)| shows the energy consumption
measured by FLOCKLAB, averaged over eight test repeti-
tions, and compares it with measurements from a power an-
alyzer attached to the target and with software-based esti-
mations using Energest. The non-intrusive FLOCKLAB mea-
surements are slightly more accurate than the estimations
provided by Energest: the former measures an average en-
ergy consumption that is 3.6 % higher than the one measured
with the power analyzer, while the latter underestimates it
by 4.6 %. We also see from Fig. that the state timings

] Il FlockLab [JEnergest EFlockLab
= Il Power analyzer 100 [JEnergest
c
S0.8
E" —

2
206 I
s E 10
E
204
f=
g
502

0 ! LPM CPU IRQ RX TX

(b) State timings.

Figure 10: FlockLab can be leveraged to obtain non-
intrusive and highly accurate energy measurements.

(a) Average energy consumption.

measured with GPIO tracing correspond on average within
2.7% to those reported by Energest. FLOCKLAB is however
less intrusive than Energest; for example, we measure on a
Tmote Sky that Energest requires 11 and 21 MCU cycles to
start and stop a counter, whereas only 5 cycles are required
to set the level of a GPIO pin on a Tmote Sky.

5.4 Measuring Clock Drift

When evaluating communication and time synchroniza-
tion protocols, it is often desirable to measure how much
the clock of a target drifts from the nominal frequency dur-
ing a test. We now demonstrate that FLOCKLAB allows to
run tests where targets experience different clock drifts (e.g.,
by using targets located outdoors) and to measure the actual
drift during a test accurately and minimally intrusive.

In this test case, we want to measure the clock drift of

30 Tmote Sky targets during a 24h experiment. In partic-
ular, we are interested in comparing the drift of indoor and
outdoor targets, and in relating the drift to the temperature
measured by the targets’ on-board sensors during the test.
Without FlockLab. A possible method to measure the
clock drift is to employ FTSP, the default time synchroniza-
tion protocol in TinyOS, as it periodically estimates how
much the clock of a node drifts compared to the clock of
a root [23]. As previously discussed, time synchronization
protocols are however intrusive and may affect the behavior
and the performance of the application under test.
With FlockLab. With GPIO tracing we can measure the
clock drift of a target in a simpler and less intrusive way,
without the need of running a synchronization protocol on
the target. In our test case, we instrument the application to
toggle a GPIO pin every 0.5 s, and measure the clock drift by
comparing the difference between consecutive GPIO times-
tamps with the nominal value of 0.5s. We then average these
drift values over intervals of 5 min to limit the GPIO timing
errors discussed in Sec. To evaluate the accuracy of
our measurements, we enable FTSP with a resynchroniza-
tion interval of 3s and use an indoor target as the root.

Fig. shows the temperature measured during the
24h by the FTSP root and three other targets, one lo-
cated indoors and two outdoors. We notice that during day-
time the outdoor targets experience significant (but differ-
ent) temperature variations, while the indoor targets mea-
sure fairly constant temperatures. Fig. shows how the
clocks of the three targets drift compared to the clock of
the FTSP root, measured with GPIO tracing and by FTSP.
As expected, we see that variations in temperature trans-
late into variations in the targets’ clock speed and thus into
varying drift. We also notice that the drift measured with
GPIO tracing corresponds to that estimated by FTSP: their

o
o

0 (indoors, FTSP root)
4 1 (indoors)
Q 40 —2 (outdoors)
° 3 (outdoors)
535
©
g 30
Ees

n
o

S S S RS R R R
0123 456 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 0
Time of the day [h]

(a) Temperature measured by four targets.

10r,
SW ”V‘/(‘W
. v \

=

Q

& =

5 GPIO tracing: FTSP:

§ =51 1 (indoors) === | (indoors)

o _10l- —2 (outdoors) 2 (outdoors)
—3 (outdoors) 3 (outdoors)

.

-5 N T
0123456 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 0
Time of the day [h]

(b) Clock drift of three targets compared to the FTSP root,

measured with GPIO tracing and by FTSP.

Figure 11: With FlockLab it is possible to accurately
measure clock drift on multiple targets during an
experiment with minimal intrusiveness.

difference is hardly noticeable in Fig. and averages
0.003 ppm. An observer performs such accurate drift mea-
surements despite temperature variations affect also its clock
speed, because it resynchronizes at least every 2 min with the
FrockLAB NTP server.

5.5 Multi-Modal Monitoring at Network Scale

The possibility of monitoring the activity of multiple tar-
gets while simultaneously measuring their current draws is
invaluable for developers of low-power wireless applications.
This allows, for example, to trace the exchange of packets
among targets, to analyze in which states targets consume
most energy, or to detect possible misbehaviors that may
cause targets to reach undesired states or to draw more cur-
rent than expected. Unlike any existing testbed, FLOCKLAB
offers this possibility, and with a minimal effort from a user.

As a test case we use the Glossy flooding protocol, which
lets an initiator flood a packet to all receivers within a few
milliseconds [10]. We set the transmit power of 26 Tmote Sky
targets to -10 dBm and let Glossy flood a 30-byte packet ev-
ery 24 ms, using different initiators in consecutive floods.
Without FlockLab. With current testbeds, the only pos-
sibility to monitor state transitions or packet exchanges is
to instrument an application to store timestamps (e.g., into
external flash memory) whenever an event of interest occurs.
Nodes print these timestamps at the end of a test, and the
testbed collects them from the serial ports. As mentioned
before, this approach is very intrusive and provides mean-
ingful results only if the nodes employ some form of in-band
time synchronization. Alternatively, network simulators like
Cooja [26] can be used to visualize the exchange of packets,
but their channel and hardware models may not accurately
reproduce what happens during an experiment on real de-
vices. With either approach, however, no information about
the instantaneous current draws of the nodes is available.
With FlockLab. GPIO tracing allows to monitor the radio
states of the targets and the exchange of packets among
them with minimal intrusiveness. In our test case, we simply

20— ™" Sinitiator
10 e

0 Radio on
20l Packet Rx
10k I Packet Tx

o IRx failure
20— —— Current

0
20
10

0

s

5 10 15 20 25 30 35 40
Time [ms]

Figure 12: GPIO tracing and power profiling allow
for monitoring the activity of multiple targets while
simultaneously measuring their current draw.

instrument Glossy to toggle four GPIO pins whenever the
radio state changes: when it is turned on or off, when it
starts or stops receiving or transmitting a packet, and when
a packet reception fails (e.g., because of packet corruption).
Together with GPIO tracing, we enable also power profiling
to measure the current draw of the 26 targets.

Fig.[I2]shows a graphical representation of the radio states
and the current draws of the 26 targets during two consecu-
tive floods with different initiators, based on a short excerpt
of the GPIO and power traces collected with FLOCKLAB.
The timing accuracy of FLOCKLAB allows to precisely mon-
itor how packets propagate in the network based on the re-
ported radio states. For example, it is clearly visible that
multiple targets transmit packets simultaneously, which is a
peculiarity of Glossy. It is also possible to analyze the sets
of targets transmitting or receiving at a certain time instant,
and study how they are related to the network topology.

This type of visualization resembles that of the Cooja
simulator, but with FLOCKLAB it is based on information
collected during experiments on real devices and over real
wireless links. FLOCKLAB provides also the current draws
of the targets during the experiment. It is thus possible to
correlate logical states and power samples and, for example,
to measure the energy cost of different states. As expected,
Fig.[[2]shows that targets draw most current when the radio
is turned on, and in particular when they are receiving or
waiting for a packet; transmissions are indeed cheaper due
to the low transmit power used in the experiment.

To the best of our knowledge, FLOCKLAB is the first test-
bed that, among other features, provides the functionality
of multiple logic analyzers and power analyzers—distributed
and synchronized across the entire testbed. We maintain
that developers of distributed applications and low-power
wireless protocols can significantly benefit from such aug-
mented debugging and testing capabilities.

6. RELATED WORK

Sensor network testbeds. Departing from most of the
early installations [@ , emerging testbeds are increasingly
diverse and specialized: relocatable testbeds to evaluate ap-
plications in the intended target environment , testbeds
with robots for controlled mobility experiments , and
testbed federations to assess large-scale services [4]. FLOCK-
LAB, instead, aims to provide visibility into the distributed
behavior of protocols and applications, to detect bugs and
inefficiencies early in the development cycle. As such, to the
best of our knowledge, FLOCKLAB is the first testbed with
verified support for distributed, synchronized GPIO tracing
and actuation coupled with high-resolution power profiling.

Closest to FLOCKLAB are PowerBench [15], SANDbed [16],
and w-iLab.t . As shown in Table EI, these testbeds also
provide distributed power measurements at comparable or
lower rates and resolutions. FLOCKLAB also achieves a bet-
ter synchronization, allowing for a better alignment of power
traces recorded at different nodes. Furthermore, FLOCKLLAB
supports four different platforms and future platforms can
be added with little effort, whereas the other testbeds sup-
port only one platform. We note that w-iLab.t also seems
to support GPIO-based services, but there exists no public
information on the performance of these services in w-iLab.t.

DSN provides coarse network-wide power sensing by sam-
pling the nodes’ current draw every few minutes . In ad-
dition, like MoteLab , DSN instruments one node with

Testbed #Nodes Supported Platforms Sampling Rate Resolution | Synchronization Error
PowerBench 28 TNOde 5kHz 12 bit ~1,000 us
SANDbed 28 MicaZ 40kHz 16 bit ~10,000 ps

w-iLab.t 200 Tmote Sky 10kHz 12 bit unknown
FLOCKLAB 4x30 Opal, Tinynode, IRIS, Tmote Sky hli};éisscs;:;mggfgfz 24 bit avg/85th%: 39 us/68 us

Table 4: Existing testbeds supporting distributed power measurements. FLOCKLAB is the only testbed with multiple
platforms; it provides the highest resolution, and timestamps power samples with 20-200% better synchronization accuracy.

a high-precision multimeter. FLOCKLAB clearly exceeds the
capabilities of these testbeds. However, the approach of cou-
pling targets with powerful observers is inspired by these and
other systems [12]. Like FLOCKLAB, many support multiple
platforms [4} 14], but, unlike FLOCKLAB, only serial I/O.
Power and energy estimation. Several sensor network
simulators [1}|32] and emulators [21] provide power or energy
estimation capabilities. They mainly differ in the level of de-
tail in which they model hardware components and program
execution, and hence in the accuracy of their estimates. The
basic approach consists of recording the time each hardware
component spends in each power state, and combining these
data with a calibrated power model of the target node.

Software-based online energy estimation follows the same
approach, but performs time measurements on real nodes [6].
Different from simulation or emulation, intricate effects of
interrupts and timers are automatically taken into account.
Changes to existing code, overhead in terms of processing,
memory, and code footprint, and lack of visibility into the
instantaneous power draw are the downside of this approach.

By contrast, FLOCKLAB measures power non-intrusively
on several platforms, enabling detailed profiling prior to de-
ployment. Thus, FLOCKLAB has advantages especially in
the early stages of development, whereas software-based es-
timation allows for energy profiling on larger testbeds.
Power and energy measurement. A number of methods
exist for measuring rather than estimating power or energy.
Some target external profiling [24} [35], while others enable
a node to measure its own consumption |7}, [17]. Different
from FLOCKLAB, none of them addresses the challenge of
synchronizing measurements across multiple nodes.

SPOT [17] uses a voltage-to-frequency converter to feed
an energy counter that is read by the node. It achieves high
accuracy across a large dynamic range, assuming a constant
supply voltage. Aveksha adopts a similar approach to ob-
tain power traces [35]. The design in [36] measures also the
supply voltage to accurately calculate energy as the voltage
varies. iCount provides energy metering at nearly zero cost
by counting the cycles of a node’s switching regulator [7].

Quanto [11] builds on iCount to obtain the energy break-
down per programmer-defined activity, using regression mod-
els and causal activity tracking. Targeting high-performance
sensing platforms, [33] resolves energy usage at the level of
processes and hardware components using a dedicated in-
tegrated circuit. By combining GPIO tracing with power
profiling, also FLOCKLAB can be used to track network-wide
activities and subsequently attribute costs to each activity.
Sensor network debugging. A wealth of research has
been devoted to diagnosing and debugging wireless embed-
ded systems. Existing approaches target failures caused by
interactions among multiple nodes |19} 30|, network faults
such as routing and node failures |22} 28], or node-local bugs
including data races and stack overflows (34} [39].

Most of these systems feature a frontend that collects data

about the running system and a backend that analyzes these
data for possible failures. FLOCKLAB does not solve the
latter, but it provides correlated power and event traces
in a way that is nearly unobtrusive for the debugged ap-
plication. This is in sharp contrast with many debugging
techniques that perturb the timing behavior by adding de-
bug statements, logging events into non-volatile memory, or
transmitting debug messages in-band with application traf-
fic. Because of this, FLOCKLAB can be highly effective in de-
tecting failures due to time-critical interactions among mul-
tiple nodes, possibly by applying distributed assertions [30]
or data mining techniques [19] on event traces. Moreover,
power traces can be exploited for conformance testing [38]
and failure diagnosis [20]. For cycle-accurate debugging of a
single node, however, other solutions may be more suitable.

For instance, Aveksha uses a custom-built debug board to
interface with the on-chip debug module through JTAG [35].
It provides breakpoints, watchpoints, and program counter
polling for very detailed event tracing, and power measure-
ments that can be correlated with events of interest. Avek-
sha is truly non-intrusive, except for breakpoints. However,
the design is tied to MSP430-based platforms, and setting
triggers correctly may require detailed knowledge of machine
code and memory addresses. Instead, FLOCKLAB makes dis-
tributed event tracing as simple as LED and printf debug-
ging, supports several platforms and MCUs, and facilitates
the integration of new ones with little effort.

7. CONCLUSIONS AND FUTURE WORK

FLOCKLAB is the result of a multi-year effort to push be-
yond the capabilities of contemporary testbeds, providing
the research community with a shared tool to study wireless
embedded system in unprecedented detail. We presented
the design of FLOCKLAB, benchmarked its performance, and
demonstrated its utility through real-world test cases.

Looking ahead, we see the need for systematic approaches
that guide developers in (or partially relieve them from) in-
strumenting their code with tracing statements, and for tools
that visualize and aid in analyzing the possibly huge amount
of test data. As a first step, we have published the sources
of the test cases presented in this paper as tutorials on the
FLOCKLAB website http://www.flocklab.ethz.ch/.

Acknowledgements

We thank all the people that helped us over the past years
in building FLOCKLAB, most notably Matthias Woehrle for
starting off the project, Mustafa Yuecel for his contribution
to the design of the observer hardware, and Alexandru Cara-
cas for adding support for IRIS. We also thank our shepherd,
Prabal Dutta, and the anonymous reviewers for their valu-
able comments. This work was supported by nano-tera.ch
and NCCR-MICS under SNSF grant number 5005-67322.

http://www.flocklab.ethz.ch/

8.

(1]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

REFERENCES

A. Barberis, L. Barboni, and M. Valle. Evaluating energy
consumption in wireless sensor networks applications. In 10th
Euromicro Conf. on Digital System Design Architectures,
Methods and Tools (DSD), 2007.

S. Bouckaert, W. Vandenberghe, B. Jooris, I. Moerman, and
P. Demeester. The w-iLab.t testbed. In Proc. of the 6th ICST
Intl. Conf. on Testbeds and Research Infrastructures for the
Development of Networks and Communities (TridentCom,),
2010.

J. Choi, M. Kazandjieva, M. Jain, and P. Levis. The case for a
network protocol isolation layer. In Proc. of the 7th ACM
Conf. on Embedded Networked Sensor Systems (SenSys),
2009.

G. Coulson, B. Porter, I. Chatzigiannakis, C. Koninis,

S. Fischer, D. Pfisterer, D. Bimschas, T. Braun, P. Hurni,

M. Anwander, G. Wagenknecht, S. P. Fekete, A. Kréller, and
T. Baumgartner. Flexible experimentation in wireless sensor
networks. Communications of the ACM, 55(1), 2012.

M. Delvai, U. Eisenmann, and W. Elmenreich. Intelligent
UART module for real-time applications. In Proc. of the 1st
Workshop on Intelligent Solutions in Embedded Systems
(WISES), 2003.

A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He. Software-based
on-line energy estimation for sensor nodes. In Proc. of the 4th
Workshop on Embedded networked sensors (EmNets), 2007.
P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler. Energy
metering for free: Augmenting switching regulators for
real-time monitoring. In Proc. of the 7th Intl. Conf. on
Information Processing in Sensor Networks (IPSN), 2008.
M. Dyer, J. Beutel, T. Kalt, P. Oehen, L. Thiele, K. Martin,
and P. Blum. Deployment support network: A toolkit for the
development of WSNs. In Proc. of the 4th European Conf. on
Wireless sensor networks (EWSN), 2007.

E. Ertin, A. Arora, R. Ramnath, M. Nesterenko, V. Naik,

S. Bapat, V. Kulathumani, M. Sridharan, H. Zhang, and

H. Cao. Kansei: A testbed for sensing at scale. In Proc. of the
5th Intl. Conf. on Information Processing in Sensor
Networks (IPSN), 2006.

F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient
network flooding and time synchronization with Glossy. In
Proc. of the 10th Intl. Conf. on Information Processing in
Sensor Networks (IPSN), 2011.

R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto: Tracking
energy in networked embedded systems. In Proc. of the 8th
USENIX Conf. on Operating systems design and
implementation (OSDI), 2008.

L. Girod, J. Elson, T. Stathopoulos, M. Lukac, and D. Estrin.
EmStar: A software environment for developing and deploying
wireless sensor networks. In Proc. of the USENIX Annual
Technical Conf., 2004.

O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis.
Collection tree protocol. In Proc. of the 7th ACM Conf. on
Embedded Networked Sensor Systems (SenSys), 2009.

V. Handziski, A. Kopke, A. Willig, and A. Wolisz. TWIST: A
scalable and reconfigurable testbed for wireless indoor
experiments with sensor networks. In Proc. of the 2nd Intl.
Workshop on Multi-hop ad hoc networks: from theory to
reality (REALMAN), 2006.

1. Haratcherev, G. Halkes, T. Parker, O. Visser, and

K. Langendoen. PowerBench: A scalable testbed infrastructure
for benchmarking power consumption. In Proc. of the Intl.
Workshop on Sensor Network Engineering (IWSNE), 2008.
A. Hergenroder, J. Wilke, and D. Meier. Distributed energy
measurements in WSN testbeds with a sensor node
management device (SNMD). In Workshop Proceedings of the
23rd Intl. Conf. on Architecture of Computing Systems
(ARCS), 2010.

X. Jiang, P. Dutta, D. Culler, and I. Stoica. Micro power meter
for energy monitoring of wireless sensor networks at scale. In
Proc. of the 6th Intl. Conf. on Information Processing in
Sensor Networks (IPSN), 2007.

A. Jiménez-Gonzalez, J. Martinez-de Dios, and A. Ollero. An
integrated testbed for heterogeneous mobile robots and other
cooperating objects. In Proc. of the 28rd IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2010.

M. M. H. Khan, H. K. Le, H. Ahmadi, T. F. Abdelzaher, and
J. Han. Dustminer: Troubleshooting interactive complexity
bugs in sensor networks. In Proc. of the 6th ACM Conf. on
Embedded Networked Sensor Systems (SenSys), 2008.

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

[32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

M. M. H. Khan, H. K. Le, M. LeMay, P. Moinzadeh, L. Wang,
Y. Yang, D. K. Noh, T. Abdelzaher, C. A. Gunter, J. Han, and
X. Jin. Diagnostic powertracing for sensor node failure analysis.
In Proc. of the 9th Intl. Conf. on Information Processing in
Sensor Networks (IPSN), 2010.

O. Landsiedel, K. Wehrle, and S. Goétz. Accurate prediction of
power consumption in sensor networks. In Proc. of the 2nd
Workshop on Embedded networked sensors (EmNets), 2005.
K. Liu, M. Li, Y. Liu, M. Li, Z. Guo, and F. Hong. Passive
diagnosis for wireless sensor networks. In Proc. of the 6th
ACM Conf. on Embedded Networked Sensor Systems
(SenSys), 2008.

M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding
time synchronization protocol. In Proc. of the 2nd ACM Conf.
on Embedded Networked Sensor Systems (SenSys), 2004.

A. Milenkovic, M. Milenkovic, E. Jovanov, D. Hite, and

D. Raskovic. An environment for runtime power monitoring of
wireless sensor network platforms. In Proc. of the 37th
Southeastern Symp. on System Theory (SSST), 2005.

D. Mills, J. Martin, J. Burbank, and W. Kasch. Network time
protocol version 4: Protocol and algorithms specification. RFC
5905, 2010.

F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt.
Cross-level sensor network simulation with COOJA. In Proc. of
the 7th IEEE Intl. Workshop on Practical Issues in Building
Sensor Network Applications (SenseApp), 2006.

J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In Proc. of the 2nd ACM
Conf. on Embedded Networked Sensor Systems (SenSys),
2004.

N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and
D. Estrin. Sympathy for the sensor network debugger. In Proc.
of the 3rd ACM Conf. on Embedded Networked Sensor
Systems (SenSys), 2005.

O. Rensfelt, F. Hermans, L.-A. Larzon, and P. Gunningberg.
Sensei-UU: A relocatable sensor network testbed. In Proc. of
the 5th ACM Intl. Workshop on Wireless network testbeds,
experimental evaluation and characterization (WiNTECH),
2010.

K. Romer and J. Ma. Passive distributed assertions for sensor
networks. In Proc. of the 8th Intl. Conf. on Information
Processing in Sensor Networks (IPSN), 2009.

R. Shea, M. Srivastava, and Y. Cho. Scoped identifiers for
efficient bit aligned logging. In Proc. of the Conf. on Design,
Automation and Test in Europe (DATE), 2010.

V. Shnayder, M. Hempstead, B. Chen, G. Allen, and M. Welsh.
Simulating the power consumption of large-scale sensor network
applications. In Proc. of the 2nd ACM Conf. on Embedded
Networked Sensor Systems (SenSys), 2004.

T. Stathopoulos, D. MclIntire, and W. J. Kaiser. The energy
endoscope: Real-time detailed energy accounting for wireless
sensor nodes. In Proc. of the 7th Intl. Conf. on Information
Processing in Sensor Networks (IPSN), 2008.

V. Sundaram, P. Eugster, and X. Zhang. Efficient diagnostic
tracing for wireless sensor networks. In Proc. of the 8th ACM
Conf. on Embedded Networked Sensor Systems (SenSys),
2010.

M. Tancreti, M. S. Hossain, S. Bagchi, and V. Raghunathan.
Aveksha: A hardware-software approach for non-intrusive
tracing and profiling of wireless embedded systems. In Proc. of
the 9th ACM Conf. on Embedded Networked Sensor Systems
(SenSys), 2011.

T. Trathnigg and R. Weiss. A runtime energy monitoring
system for wireless sensor networks. In Proc. of the 3rd Intl.
Symp. on Wireless Pervasive Computing (ISWPC), 2008.

G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: A
wireless sensor network testbed. In Proc. of the 4th Intl. Conf.
on Information Processing in Sensor Networks (IPSN), 2005.
M. Woehrle, K. Lampka, and L. Thiele. Exploiting timed
automata for conformance testing of power measurements. In
Proc. of the Tth Intl. Conf. on Formal Modeling and Analysis
of Timed Systems (FORMATS), 2009.

J. Yang, M. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant:
A comprehensive source-level debugger for wireless sensor
networks. In Proc. of the 5th ACM Conf. on Embedded
Networked Sensor Systems (SenSys), 2007.

M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele.
pTunes: Runtime parameter adaptation for low-power MAC
protocols. In Proc. of the 11th Intl. Conf. on Information
Processing in Sensor Networks (IPSN), 2012.

	Introduction
	FlockLab Services
	FlockLab Architecture
	Challenges
	Overview
	Observer Hardware
	Measuring Power
	Observer Software
	Supporting Diverse Target Platforms
	Backend Infrastructure
	Deployment

	Benchmarking FlockLab
	Timing Accuracy
	GPIO Tracing and Actuation
	Power Profiling

	Power Accuracy
	Limits in Capturing GPIO Events

	FlockLab in Action
	Comparative Multi-Platform Analysis
	Finding and Fixing Bugs
	Controlling and Profiling Applications
	Measuring Clock Drift
	Multi-Modal Monitoring at Network Scale

	Related Work
	Conclusions and Future Work
	References

