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Preface

Over the past 20 years, I’ve spent many of my working hours manipulating data with
SQL. For most of those years, I’ve worked in technology companies spanning a wide
range of consumer and business-to-business industries. In that time, volumes of data
have increased dramatically, and the technology I get to use has improved by leaps
and bounds. Databases are faster than ever, and the reporting and visualization tools
used to communicate the meaning in the data are more powerful than ever. One
thing that has remained remarkably constant, however, is SQL being a key part of my
toolbox.

I remember when I first learned SQL. I started my career in finance, where spread‐
sheets rule, and I’d gotten pretty good at writing formulas and memorizing all those
keyboard shortcuts. One day I totally geeked out and Ctrl- and Alt-clicked every key
on my keyboard just to see what would happen (and then created a cheat sheet for my
peers). That was part fun and part survival: the faster I was with my spreadsheets, the
more likely I would be to finish my work before midnight so I could go home and get
some sleep. Spreadsheet mastery got me in the door at my next role, a startup where I
was first introduced to databases and SQL.

Part of my role involved crunching inventory data in spreadsheets, and thanks to
early internet scale, the data sets were sometimes tens of thousands of rows. This was
“big data” at the time, at least for me. I got in the habit of going for a cup of coffee or
for lunch while my computer’s CPU was occupied with running its vlookup magic.
One day my manager went on vacation and asked me to tend to the data warehouse
he’d built on his laptop using Access. Refreshing the data involved a series of steps:
running SQL queries in a portal, loading the resulting csv files into the database, and
then refreshing the spreadsheet reports. After the first successful load, I started tin‐
kering, trying to understand how it worked, and pestering the engineers to show me
how to modify the SQL queries.

I was hooked, and even when I thought I might change directions with my career, I’ve
kept coming back to data. Manipulating data, answering questions, helping my
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colleagues work better and smarter, and learning about businesses and the world
through sets of data have never stopped feeling fun and exciting.

When I started working with SQL, there weren’t many learning resources. I got a
book on basic syntax, read it in a night, and from there mostly learned through trial
and error. Back in the days when I was learning, I queried production databases
directly and brought the website down more than once with my overly ambitious (or
more likely just poorly written) SQL. Fortunately my skills improved, and over the
years I learned to work forward from the data in tables, and backward from the out‐
put needed, solving technical and logic challenges and puzzles to write queries that
returned the right data. I ended up designing and building data warehouses to gather
data from different sources and avoid bringing down critical production databases.
I’ve learned a lot about when and how to aggregate data before writing the SQL query
and when to leave data in a more raw form.

I’ve compared notes with others who got into data around the same time, and it’s
clear we mostly learned in the same ad hoc way. The lucky among us had peers with
whom to share techniques. Most SQL texts are either introductory and basic (there’s
definitely a place for these!) or else aimed at database developers. There are few
resources for advanced SQL users who are focused on analysis work. Knowledge
tends to be locked up in individuals or small teams. A goal of this book is to change
that, giving practitioners a reference for how to solve common analysis problems
with SQL, and I hope inspiring new inquiries into data using techniques you might
not have seen before.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, and
keywords.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, environment variables, and
statements.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.
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This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/cathytanimura/sql_book.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “SQL for Data Analysis
by Cathy Tanimura (O’Reilly). Copyright 2021 Cathy Tanimura, 978-1-492-08878-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xi

https://github.com/cathytanimura/sql_book
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com


O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/sql-data-analysis.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book wouldn’t have been possible without the efforts of a number of people at
O’Reilly. Andy Kwan recruited me to this project. Amelia Blevins and Shira Evans
guided me through the process and gave helpful feedback along the way. Kristen
Brown shepherded the book through the production process. Arthur Johnson
improved the quality and clarity of the text and inadvertently made me think more
deeply about SQL keywords.

xii | Preface

http://oreilly.com
http://oreilly.com
https://oreil.ly/sql-data-analysis
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Many colleagues over the years played an important role in my SQL journey, and I’m
grateful for their tutorials, tips, and shared code, and the time spent brainstorming
ways to solve analysis problems over the years. Sharon Lin opened my eyes to regular
expressions. Elyse Gordon gave me lots of book-writing advice. Dave Hoch and our
conversations about experiment analysis inspired Chapter 7. Dan, Jim, and Stu from
the Star Chamber have long been my favorite guys to geek out with. I’m also grateful
for all of the colleagues who asked hard questions over the years—and once those
were answered, asked even harder ones.

I’d like to thank my husband Rick, son Shea, daughters Lily and Fiona, and mom
Janet for their love, encouragement, and most of all the gift of time to work on this
book. Amy, Halle, Jessi, and the Den of Slack kept me sane and laughing through
months of writing and pandemic lockdown.

Preface | xiii





CHAPTER 1

Analysis with SQL

If you’re reading this book, you’re probably interested in data analysis and in using
SQL to accomplish it. You may be experienced with data analysis but new to SQL, or
perhaps you’re experienced with SQL but new to data analysis. Or you may be new to
both topics entirely. Whatever your starting point, this chapter lays the groundwork
for the topics covered in the rest of the book and makes sure we have a common
vocabulary. I’ll start with a discussion of what data analysis is and then move on to a
discussion of SQL: what it is, why it’s so popular, how it compares to other tools, and
how it fits into data analysis. Then, since modern data analysis is so intertwined with
the technologies that have enabled it, I’ll conclude with a discussion of different types
of databases that you may encounter in your work, why they’re used, and what all of
that means for the SQL you write.

What Is Data Analysis?
Collecting and storing data for analysis is a very human activity. Systems to track
stores of grain, taxes, and the population go back thousands of years, and the roots of
statistics date back hundreds of years. Related disciplines, including statistical process
control, operations research, and cybernetics, exploded in the 20th century. Many dif‐
ferent names are used to describe the discipline of data analysis, such as business
intelligence (BI), analytics, data science, and decision science, and practitioners have
a range of job titles. Data analysis is also done by marketers, product managers, busi‐
ness analysts, and a variety of other people. In this book, I’ll use the terms data ana‐
lyst and data scientist interchangeably to mean the person working with SQL to
understand data. I will refer to the software used to build reports and dashboards as
BI tools.

Data analysis in the contemporary sense was enabled by, and is intertwined with, the
history of computing. Trends in both research and commercialization have shaped it,
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and the story includes a who’s who of researchers and major companies, which we’ll
talk about in the section on SQL. Data analysis blends the power of computing with
techniques from traditional statistics. Data analysis is part data discovery, part data
interpretation, and part data communication. Very often the purpose of data analysis
is to improve decision making, by humans and increasingly by machines through
automation.

Sound methodology is critical, but analysis is about more than just producing the
right number. It’s about curiosity, asking questions, and the “why” behind the num‐
bers. It’s about patterns and anomalies, discovering and interpreting clues about how
businesses and humans behave. Sometimes analysis is done on a data set gathered to
answer a specific question, as in a scientific setting or an online experiment. Analysis
is also done on data that is generated as a result of doing business, as in sales of a
company’s products, or that is generated for analytics purposes, such as user interac‐
tion tracking on websites and mobile apps. This data has a wide range of possible
applications, from troubleshooting to planning user interface (UI) improvements, but
it often arrives in a format and volume such that the data needs processing before
yielding answers. Chapter 2 will cover preparing data for analysis, and Chapter 8 will
discuss some of the ethical and privacy concerns with which all data practitioners
should be familiar.

It’s hard to think of an industry that hasn’t been touched by data analysis: manufac‐
turing, retail, finance, health care, education, and even government have all been
changed by it. Sports teams have employed data analysis since the early years of Billy
Beane’s term as general manager of the Oakland Athletics, made famous by Michael
Lewis’s book Moneyball (Norton). Data analysis is used in marketing, sales, logistics,
product development, user experience design, support centers, human resources, and
more. The combination of techniques, applications, and computing power has led to
the explosion of related fields such as data engineering and data science.

Data analysis is by definition done on historical data, and it’s important to remember
that the past doesn’t necessarily predict the future. The world is dynamic, and organi‐
zations are dynamic as well—new products and processes are introduced, competi‐
tors rise and fall, sociopolitical climates change. Criticisms are leveled against data
analysis for being backward looking. Though that characterization is true, I have seen
organizations gain tremendous value from analyzing historical data. Mining histori‐
cal data helps us understand the characteristics and behavior of customers, suppliers,
and processes. Historical data can help us develop informed estimates and predicted
ranges of outcomes, which will sometimes be wrong but quite often will be right. Past
data can point out gaps, weaknesses, and opportunities. It allows organizations to
optimize, save money, and reduce risk and fraud. It can also help organizations find
opportunity, and it can become the building blocks of new products that delight
customers.
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Organizations that don’t do some form of data analysis are few and
far between these days, but there are still some holdouts. Why do
some organizations not use data analysis? One argument is the
cost-to-value ratio. Collecting, processing, and analyzing data takes
work and some level of financial investment. Some organizations
are too new, or they’re too haphazard. If there isn’t a consistent pro‐
cess, it’s hard to generate data that’s consistent enough to analyze.
Finally, there are ethical considerations. Collecting or storing data
about certain people in certain situations may be regulated or even
banned. Data about children and health-care interventions is sensi‐
tive, for example, and there are extensive regulations around its
collection. Even organizations that are otherwise data driven need
to take care around customer privacy and to think hard about what
data should be collected, why it is needed, and how long it should
be stored. Regulations such as the European Union’s General Data
Protection Regulation, or GDPR, and the California Consumer Pri‐
vacy Act, or CCPA, have changed the way businesses think about
consumer data. We’ll discuss these regulations in more depth in
Chapter 8. As data practitioners, we should always be thinking
about the ethical implications of our work.

When working with organizations, I like to tell people that data analysis is not a
project that wraps up at a fixed date—it’s a way of life. Developing a data-informed
mindset is a process, and reaping the rewards is a journey. Unknowns become
known, difficult questions are chipped away at until there are answers, and the most
critical information is embedded in dashboards that power tactical and strategic deci‐
sions. With this information, new and harder questions are asked, and then the pro‐
cess repeats.

Data analysis is both accessible for those looking to get started and hard to master.
The technology can be learned, particularly SQL. Many problems, such as optimizing
marketing spend or detecting fraud, are familiar and translate across businesses.
Every organization is different and every data set has quirks, so even familiar prob‐
lems can pose new challenges. Communicating results is a skill. Learning to make
good recommendations and becoming a trusted partner to an organization take time.
In my experience, simple analysis presented persuasively has more impact than
sophisticated analysis presented poorly. Successful data analysis also requires partner‐
ship. You can have great insights, but if there is no one to execute on them, you
haven’t really made an impact. Even with all the technology, it’s still about people, and
relationships matter.
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Why SQL?
This section describes what SQL is, the benefits of using it, how it compares to other
languages commonly used for analysis, and finally how SQL fits into the analysis
workflow.

What Is SQL?
SQL is the language used to communicate with databases. The acronym stands for
Structured Query Language and is pronounced either like “sequel” or by saying each
letter, as in “ess cue el.” This is only the first of many controversies and inconsisten‐
cies surrounding SQL that we’ll see, but most people will know what you mean
regardless of how you say it. There is some debate as to whether SQL is or isn’t a pro‐
gramming language. It isn’t a general purpose language in the way that C or Python
are. SQL without a database and data in tables is just a text file. SQL can’t build a web‐
site, but it is powerful for working with data in databases. On a practical level, what
matters most is that SQL can help you get the job of data analysis done.

IBM was the first to develop SQL databases, from the relational model invented by
Edgar Codd in the 1960s. The relational model was a theoretical description for man‐
aging data using relationships. By creating the first databases, IBM helped to advance
the theory, but it also had commercial considerations, as did Oracle, Microsoft, and
every other company that has commercialized a database since. From the beginning,
there has been tension between computer theory and commercial reality. SQL
became an International Organization for Standards (ISO) standard in 1987 and an
American National Standards Institute (ANSI) standard in 1986. Although all major
databases start from these standards in their implementation of SQL, many have var‐
iations and functions that make life easier for the users of those databases. These
come at the cost of making SQL more difficult to move between databases without
some modifications.

SQL is used to access, manipulate, and retrieve data from objects in a database. Data‐
bases can have one or more schemas, which provide the organization and structure
and contain other objects. Within a schema, the objects most commonly used in data
analysis are tables, views, and functions. Tables contain fields, which hold the data.
Tables may have one or more indexes; an index is a special kind of data structure that
allows data to be retrieved more efficiently. Indexes are usually defined by a database
administrator. Views are essentially stored queries that can be referenced in the same
way as a table. Functions allow commonly used sets of calculations or procedures to
be stored and easily referenced in queries. They are usually created by a database
administrator, or DBA. Figure 1-1 gives an overview of the organization of databases.
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Figure 1-1. Overview of database organization and objects in a database

To communicate with databases, SQL has four sublanguages for tackling different
jobs, and these are mostly standard across database types. Most people who work in
data analysis don’t need to recall the names of these sublanguages on a daily basis, but
they might come up in conversation with database administrators or data engineers,
so I’ll briefly introduce them. The commands all work fluidly together, and some may
coexist in the same SQL statement.

DQL, or data query language, is what this book is mainly about. It’s used for querying
data, which you can think of as using code to ask questions of a database. DQL com‐
mands include SELECT, which will be familiar to prior users of SQL, but the acronym
DQL is not frequently used in my experience. SQL queries can be as short as a single
line or span many tens of lines. SQL queries can access a single table (or view), can
combine data from multiple tables through the use of joins, and can also query across
multiple schemas in the same database. SQL queries generally cannot query across
databases, but in some cases clever network settings or additional software can be
used to retrieve data from multiple sources, even databases of different types. SQL
queries are self-contained and, apart from tables, do not reference variables or out‐
puts from previous steps not contained in the query, unlike scripting languages.

DDL, or data definition language, is used to create and modify tables, views, users,
and other objects in the database. It affects the structure but not the contents. There
are three common commands: CREATE, ALTER, and DROP. CREATE is used to
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make new objects. ALTER changes the structure of an object, such as by adding a col‐
umn to a table. DROP deletes the entire object and its structure. You might hear
DBAs and data engineers talk about working with DDLs—this is really just shorthand
for the files or pieces of code that do the creates, alters, or drops. An example of how
DDL is used in the context of analysis is the code to create temporary tables.

DCL, or data control language, is used for access control. Commands include GRANT
and REVOKE, which give permission and remove permission, respectively. In an
analysis context, GRANT might be needed to allow a colleague to query a table you
created. You might also encounter such a command when someone has told you a
table exists in the database but you can’t see it—permissions might need to be
GRANTed to your user.

DML, or data manipulation language, is used to act on the data itself. The commands
are INSERT, UPDATE, and DELETE. INSERT adds new records and is essentially the
“load” step in extract, transform, load (ETL). UPDATE changes values in a field, and
DELETE removes rows. You will encounter these commands if you have any kind of
self-managed tables—temp tables, sandbox tables—or if you find yourself in the role
of both owner and analyzer of the database.

These four sublanguages are present in all major databases. In this book, I’ll focus
mainly on DQL. We will touch on a few DDL and DML commands in Chapter 8, and
you will also see some examples in the GitHub site for the book, where they are used
to create and populate the data used in examples. Thanks to this common set of com‐
mands, SQL code written for any database will look familiar to anyone used to work‐
ing with SQL. However, reading SQL from another database may feel a bit like
listening to someone who speaks the same language as you but comes from another
part of the country or the world. The basic structure of the language is the same, but
the slang is different, and some words have different meanings altogether. Variations
in SQL from database to database are often termed dialects, and database users will
reference Oracle SQL, MSSQL, or other dialects.

Still, once you know SQL, you can work with different database types as long as you
pay attention to details such as the handling of nulls, dates, and timestamps; the divi‐
sion of integers; and case sensitivity.

This book uses PostgreSQL, or Postgres, for the examples, though I will try to point
out where the code would be meaningfully different in other types of databases. You
can install Postgres on a personal computer in order to follow along with the
examples.
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Benefits of SQL
There are many good reasons to use SQL for data analysis, from computing power to
its ubiquity in data analysis tools and its flexibility.

Perhaps the best reason to use SQL is that much of the world’s data is already in data‐
bases. It’s likely your own organization has one or more databases. Even if data is not
already in a database, loading it into one can be worthwhile in order to take advan‐
tage of the storage and computing advantages, especially when compared to alterna‐
tives such as spreadsheets. Computing power has exploded in recent years, and data
warehouses and data infrastructure have evolved to take advantage of it. Some newer
cloud databases allow massive amounts of data to be queried in memory, speeding
things up further. The days of waiting minutes or hours for query results to return
may be over, though analysts may just write more complex queries in response.

SQL is the de facto standard for interacting with databases and retrieving data from
them. A wide range of popular software connects to databases with SQL, from
spreadsheets to BI and visualization tools and coding languages such as Python and R
(discussed in the next section). Due to the computing resources available, performing
as much data manipulation and aggregation as possible in the database often has
advantages downstream. We’ll discuss strategies for building complex data sets for
downstream tools in depth in Chapter 8.

The basic SQL building blocks can be combined in an endless number of ways. Start‐
ing with a relatively small number of building blocks—the syntax—SQL can accom‐
plish a wide array of tasks. SQL can be developed iteratively, and it’s easy to review the
results as you go. It may not be a full-fledged programming language, but it can do
a lot, from transforming data to performing complex calculations and answering
questions.

Last, SQL is relatively easy to learn, with a finite amount of syntax. You can learn the
basic keywords and structure quickly and then hone your craft over time working
with varied data sets. Applications of SQL are virtually infinite, when you take into
account the range of data sets in the world and the possible questions that can be
asked of data. SQL is taught in many universities, and many people pick up some
skills on the job. Even employees who don’t already have SQL skills can be trained,
and the learning curve may be easier than that for other programming languages.
This makes storing data for analysis in relational databases a logical choice for
organizations.
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SQL Versus R or Python
While SQL is a popular language for data analysis, it isn’t the only choice. R and
Python are among the most popular of the other languages used for data analysis. R is
a statistical and graphing language, while Python is a general-purpose programming
language that has strengths in working with data. Both are open source, can be
installed on a laptop, and have active communities developing packages, or exten‐
sions, that tackle various data manipulation and analysis tasks. Choosing between R
and Python is beyond the scope of this book, but there are many discussions online
about the relative advantages of each. Here I will consider them together as coding-
language alternatives to SQL.

One major difference between SQL and other coding languages is where the code
runs and, therefore, how much computing power is available. SQL always runs on a
database server, taking advantage of all its computing resources. For doing analysis, R
and Python are usually run locally on your machine, so computing resources are cap‐
ped by whatever is available locally. There are, of course, lots of exceptions: databases
can run on laptops, and R and Python can be run on servers with more resources.
When you are performing anything other than the simplest analysis on large data
sets, pushing work onto a database server with more resources is a good option. Since
databases are usually set up to continually receive new data, SQL is also a good choice
when a report or dashboard needs to update periodically.

A second difference is in how data is stored and organized. Relational databases
always organize data into rows and columns within tables, so SQL assumes this struc‐
ture for every query. R and Python have a wider variety of ways to store data, includ‐
ing variables, lists, and dictionaries, among other options. These provide more
flexibility, but at the cost of a steeper learning curve. To facilitate data analysis, R has
data frames, which are similar to database tables and organize data into rows and col‐
umns. The pandas package makes DataFrames available in Python. Even when other
options are available, the table structure remains valuable for analysis.

Looping is another major difference between SQL and most other computer pro‐
gramming languages. A loop is an instruction or a set of instructions that repeats until
a specified condition is met. SQL aggregations implicitly loop over the set of data,
without any additional code. We will see later how the lack of ability to loop over
fields can result in lengthy SQL statements when pivoting or unpivoting data. While
deeper discussion is beyond the scope of this book, some vendors have created exten‐
sions to SQL, such as PL/SQL in Oracle and T-SQL in Microsoft SQL Server, that
allow functionality such as looping.
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1 There are some newer technologies that allow SQL queries on data stored in nonrelational sources.

A drawback of SQL is that your data must be in a database,1 whereas R and Python
can import data from files stored locally or can access files stored on servers or web‐
sites. This is convenient for many one-off projects. A database can be installed on a
laptop, but this does add an extra layer of overhead. In the other direction, packages
such as dbplyr for R and SQLAlchemy for Python allow programs written in those
languages to connect to databases, execute SQL queries, and use the results in further
processing steps. In this sense, R or Python can be complementary to SQL.

R and Python both have sophisticated statistical functions that are either built in or
available in packages. Although SQL has, for example, functions to calculate average
and standard deviation, calculations of p-values and statistical significance that are
needed in experiment analysis (discussed in Chapter 7) cannot be performed with
SQL alone. In addition to sophisticated statistics, machine learning is another area
that is better tackled with one of these other coding languages.

When deciding whether to use SQL, R, or Python for an analysis, consider:

• Where is the data located—in a database, a file, a website?
• What is the volume of data?
• Where is the data going—into a report, a visualization, a statistical analysis?
• Will it need to be updated or refreshed with new data? How often?
• What does your team or organization use, and how important is it to conform to

existing standards?

There is no shortage of debate around which languages and tools are best for doing
data analysis or data science. As with many things, there’s often more than one way to
accomplish an analysis. Programming languages evolve and change in popularity,
and we’re lucky to live and work in a time with so many good choices. SQL has been
around for a long time and will likely remain popular for years to come. The ultimate
goal is to use the best available tool for the job. This book will help you get the most
out of SQL for data analysis, regardless of what else is in your toolkit.

SQL as Part of the Data Analysis Workflow
Now that I’ve explained what SQL is, discussed some of its benefits, and compared it
to other languages, we’ll turn to a discussion of where SQL fits in the data analysis
process. Analysis work always starts with a question, which may be about how many
new customers have been acquired, how sales are trending, or why some users stick
around for a long time while others try a service and never return. Once the question
is framed, we consider where the data originated, where the data is stored, the
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analysis plan, and how the results will be presented to the audience. Figure 1-2 shows
the steps in the process. Queries and analysis are the focus of this book, though I will
discuss the other steps briefly in order to put the queries and analysis stage into a
broader context.

Figure 1-2. Steps in the data analysis process

First, data is generated by source systems, a term that includes any human or machine
process that generates data of interest. Data can be generated by people by hand, such
as when someone fills out a form or takes notes during a doctor’s visit. Data can also
be machine generated, such as when an application database records a purchase, an
event-streaming system records a website click, or a marketing management tool
records an email open. Source systems can generate many different types and formats
of data, and Chapter 2 will discuss them, and how the type of source may impact the
analysis, in more detail.

The second step is moving the data and storing it in a database for analysis. I will use
the terms data warehouse, which is a database that consolidates data from across an
organization into a central repository, and data store, which refers to any type of data
storage system that can be queried. Other terms you might come across are data
mart, which is typically a subset of a data warehouse, or a more narrowly focused
data warehouse; and data lake, a term that can mean either that data resides in a file
storage system or that it is stored in a database but without the degree of data trans‐
formation that is common in data warehouses. Data warehouses range from small
and simple to huge and expensive. A database running on a laptop will be sufficient
for you to follow along with the examples in this book. What matters is having the
data you need to perform an analysis together in one place.
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Usually a person or team is responsible for getting data into the
data warehouse. This process is called ETL, or extract, transform,
load. Extract pulls the data from the source system. Transform
optionally changes the structure of the data, performs data quality
cleaning, or aggregates the data. Load puts the data into the data‐
base. This process can also be called ELT, for extract, load, trans‐
form—the difference being that, rather than transformations being
done before data is loaded, all the data is loaded and then transfor‐
mations are performed, usually using SQL. You might also hear the
terms source and target in the context of ETL. The source is where
the data comes from, and the target is the destination, i.e., the data‐
base and the tables within it. Even when SQL is used to do the
transforming, another language such as Python or Java is used to
glue the steps together, coordinate scheduling, and raise alerts
when something goes wrong. There are a number of commercial
products as well as open source tools available, so teams don’t have
to create an ETL system entirely from scratch.

Once the data is in a database, the next step is performing queries and analysis. In
this step, SQL is applied to explore, profile, clean, shape, and analyze the data.
Figure 1-3 shows the general flow of the process. Exploring the data involves becom‐
ing familiar with the topic, where the data was generated, and the database tables in
which it is stored. Profiling involves checking the unique values and distribution of
records in the data set. Cleaning involves fixing incorrect or incomplete data, adding
categorization and flags, and handling null values. Shaping is the process of arranging
the data into the rows and columns needed in the result set. Finally, analyzing the
data involves reviewing the output for trends, conclusions, and insights. Although
this process is shown as linear, in practice it is often cyclical—for example, when
shaping or analysis reveals data that should be cleaned.

Figure 1-3. Stages within the queries and analysis step of the analysis workflow
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Presentation of the data into a final output form is the last step in the overall work‐
flow. Businesspeople won’t appreciate receiving a file of SQL code; they expect you to
present graphs, charts, and insights. Communication is key to having an impact with
analysis, and for that we need a way to share the results with other people. At other
times, you may need to apply more sophisticated statistical analysis than is possible in
SQL, or you may want to feed the data into a machine learning (ML) algorithm. For‐
tunately, most reporting and visualization tools have SQL connectors that allow you
to pull in data from entire tables or prewritten SQL queries. Statistical software and
languages commonly used for ML also usually have SQL connectors.

Analysis workflows encompass a number of steps and often include multiple tools
and technologies. SQL queries and analysis are at the heart of many analyses and are
what we will focus on in the following chapters. Chapter 2 will discuss types of source
systems and the types of data they generate. The rest of this chapter will take a look at
the types of databases you are likely to encounter in your analysis journey.

Database Types and How to Work with Them
If you’re working with SQL, you’ll be working with databases. There is a range of
database types—open source to proprietary, row-store to column-store. There are on-
premises databases and cloud databases, as well as hybrid databases, where an organi‐
zation runs the database software on a cloud vendor’s infrastructure. There are also a
number of data stores that aren’t databases at all but can be queried with SQL.

Databases are not all created equal; each database type has its strengths and weak‐
nesses when it comes to analysis work. Unlike tools used in other parts of the analysis
workflow, you may not have much say in which database technology is used in your
organization. Knowing the ins and outs of the database you have will help you work
more efficiently and take advantage of any special SQL functions it offers. Familiarity
with other types of databases will help you if you find yourself working on a project
to build or migrate to a new data warehouse. You may want to install a database on
your laptop for personal, small-scale projects, or get an instance of a cloud warehouse
for similar reasons.

Databases and data stores have been a dynamic area of technology development since
they were introduced. A few trends since the turn of the 21st century have driven the
technology in ways that are really exciting for data practitioners today. First, data vol‐
umes have increased incredibly with the internet, mobile devices, and the Internet of
Things (IoT). In 2020 IDC predicted that the amount of data stored globally will
grow to 175 zettabytes by 2025. This scale of data is hard to even think about, and not
all of it will be stored in databases for analysis. It’s not uncommon for companies to
have data in the scale of terabytes and petabytes these days, a scale that would have
been impossible to process with the technology of the 1990s and earlier. Second,
decreases in data storage and computing costs, along with the advent of the cloud,
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have made it cheaper and easier for organizations to collect and store these massive
amounts of data. Computer memory has gotten cheaper, meaning that large amounts
of data can be loaded into memory, calculations performed, and results returned, all
without reading and writing to disk, greatly increasing the speed. Third, distributed
computing has allowed the breaking up of workloads across many machines. This
allows a large and tunable amount of computing to be pointed to complex data tasks.

Databases and data stores have combined these technological trends in a number of
different ways in order to optimize for particular types of tasks. There are two broad
categories of databases that are relevant for analysis work: row-store and column-
store. In the next section I’ll introduce them, discuss what makes them similar to and
different from each other, and talk about what all of this means as far as doing analy‐
sis with data stored in them. Finally, I’ll introduce some additional types of data infra‐
structure beyond databases that you may encounter.

Row-Store Databases
Row-store databases—also called transactional databases—are designed to be efficient
at processing transactions: INSERTs, UPDATEs, and DELETEs. Popular open source
row-store databases include MySQL and Postgres. On the commercial side, Microsoft
SQL Server, Oracle, and Teradata are widely used. Although they’re not really opti‐
mized for analysis, for a number of years row-store databases were the only option
for companies building data warehouses. Through careful tuning and schema design,
these databases can be used for analytics. They are also attractive due to the low cost
of open source options and because they’re familiar to the database administrators
who maintain them. Many organizations replicate their production database in the
same technology as a first step toward building out data infrastructure. For all of
these reasons, data analysts and data scientists are likely to work with data in a row-
store database at some point in their career.

We think of a table as rows and columns, but data has to be serialized for storage. A
query searches a hard disk for the needed data. Hard disks are organized in a series of
blocks of a fixed size. Scanning the hard disk takes both time and resources, so mini‐
mizing the amount of the disk that needs to be scanned to return query results is
important. Row-store databases approach this problem by serializing data in a row.
Figure 1-4 shows an example of row-wise data storage. When querying, the whole
row is read into memory. This approach is fast when making row-wise updates, but
it’s slower when making calculations across many rows if only a few columns are
needed.
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Figure 1-4. Row-wise storage, in which each row is stored together on disk

To reduce the width of tables, row-store databases are usually modeled in third nor‐
mal form, which is a database design approach that seeks to store each piece of infor‐
mation only once, to avoid duplication and inconsistencies. This is efficient for
transaction processing but often leads to a large number of tables in the database,
each with only a few columns. To analyze such data, many joins may be required, and
it can be difficult for nondevelopers to understand how all of the tables relate to each
other and where a particular piece of data is stored. When doing analysis, the goal is
usually denormalization, or getting all the data together in one place.

Tables typically have a primary key that enforces uniqueness—in other words, it pre‐
vents the database from creating more than one record for the same thing. Tables will
often have an id column that is an auto-incrementing integer, where each new record
gets the next integer after the last one inserted, or an alphanumeric value that is
created by a primary key generator. There should also be a set of columns that
together make the row unique; this combination of fields is called a composite key,
or sometimes a business key. For example, in a table of people, the columns
first_name, last_name, and birthdate together might make the row unique.
Social_security_id would also be a unique identifier, in addition to the table’s
person_id column.

Tables also optionally have indexes that make looking up specific records faster and
make joins involving these columns faster. Indexes store the values in the field or
fields indexed as single pieces of data along with a row pointer, and since the indexes
are smaller than the whole table, they are faster to scan. Usually the primary key is
indexed, but other fields or groups of fields can be indexed as well. When working
with row-store databases, it’s useful to get to know which fields in the tables you use
have indexes. Common joins can be sped up by adding indexes, so it’s worth investi‐
gating whether analysis queries take a long time to run. Indexes don’t come for free:
they take up storage space, and they slow down loading, as new values need to be
added with each insert. DBAs may not index everything that might be useful for anal‐
ysis. Beyond reporting, analysis work may not be routine enough to bother with opti‐
mizing indexes either. Exploratory and complex queries often use complex join
patterns, and we may throw out one approach when we figure out a new way to solve
a problem.

Star schema modeling was developed in part to make row-store databases more
friendly to analytic workloads. The foundations are laid out in the book The Data
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2 Ralph Kimball and Margy Ross, The Data Warehouse Toolkit, 3rd ed. (Indianapolis: Wiley, 2013).

Warehouse Toolkit,2 which advocates modeling the data as a series of fact and dimen‐
sion tables. Fact tables represent events, such as retail store transactions. Dimensions
hold descriptors such as customer name and product type. Since data doesn’t always
fit neatly into fact and dimension categories, there’s an extension called the snowflake
schema in which some dimensions have dimensions of their own.

Column-Store Databases
Column-store databases took off in the early part of the 21st century, though their the‐
oretical history goes back as far as that of row-store databases. Column-store data‐
bases store the values of a column together, rather than storing the values of a row
together. This design is optimized for queries that read many records but not neces‐
sarily all the columns. Popular column-store databases include Amazon Redshift,
Snowflake, and Vertica.

Column-store databases are efficient at storing large volumes of data thanks to com‐
pression. Missing values and repeating values can be represented by very small
marker values instead of the full value. For example, rather than storing “United
Kingdom” thousands or millions of times, a column-store database will store a surro‐
gate value that takes up very little storage space, along with a lookup that stores the
full “United Kingdom” value. Column-store databases also compress data by taking
advantage of repetitions of values in sorted data. For example, the database can store
the fact that the marker value for “United Kingdom” is repeated 100 times, and this
takes up even less space than storing that marker 100 times.

Column-store databases do not enforce primary keys and do not have indexes.
Repeated values are not problematic, thanks to compression. As a result, schemas can
be tailored for analysis queries, with all the data together in one place as opposed to
being in multiple tables that need to be joined. Duplicate data can easily sneak in
without primary keys, however, so understanding the source of the data and quality
checking are important.

Updates and deletes are expensive in most column-store databases, since data for a
single row is distributed rather than stored together. For very large tables, a write-
only policy may exist, so we also need to know something about how the data is gen‐
erated in order to figure out which records to use. The data can also be slower to read,
as it needs to be uncompressed before calculations are applied.

Column-store databases are generally the gold standard for fast analysis work. They
use standard SQL (with some vendor-specific variations), and in many ways working
with them is no different from working with a row-store database in terms of the
queries you write. The size of the data matters, as do the computing and storage
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resources that have been allocated to the database. I have seen aggregations run across
millions and billions of records in seconds. This does wonders for productivity.

There are a few tricks to be aware of. Since certain types of com‐
pression rely on sorting, knowing the fields that the table is sorted
on and using them to filter queries improves performance. Joining
tables can be slow if both tables are large.

At the end of the day, some databases will be easier or faster to work with, but there is
nothing inherent in the type of database that will prevent you from performing any of
the analysis in this book. As with all things, using a tool that’s properly powerful for
the volume of data and complexity of the task will allow you to focus on creating
meaningful analysis.

Other Types of Data Infrastructure
Databases aren’t the only way data can be stored, and there is an increasing variety of
options for storing data needed for analysis and powering applications. File storage
systems, sometimes called data lakes, are probably the main alternative to database
warehouses. NoSQL databases and search-based data stores are alternative data stor‐
age systems that offer low latency for application development and searching log files.
Although not typically part of the analysis process, they are increasingly part of
organizations’ data infrastructure, so I will introduce them briefly in this section as
well. One interesting trend to point out is that although these newer types of infra‐
structure at first aimed to break away from the confines of SQL databases, many have
ended up implementing some kind of SQL interface to query the data.

Hadoop, also known as HDFS (for “Hadoop distributed filesystem”), is an open
source file storage system that takes advantage of the ever-falling cost of data storage
and computing power, as well as distributed systems. Files are split into blocks, and
Hadoop distributes them across a filesystem that is stored on nodes, or computers, in
a cluster. The code to run operations is sent to the nodes, and they process the data in
parallel. Hadoop’s big breakthrough was to allow huge amounts of data to be stored
cheaply. Many large internet companies, with massive amounts of often unstructured
data, found this to be an advantage over the cost and storage limitations of traditional
databases. Hadoop’s early versions had two major downsides: specialized coding skills
were needed to retrieve and process data since it was not SQL compatible, and execu‐
tion time for the programs was often quite long. Hadoop has since matured, and vari‐
ous tools have been developed that allow SQL or SQL-like access to the data and
speed up query times.
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Other commercial and open source products have been introduced in the last few
years to take advantage of cheap data storage and fast, often in-memory data process‐
ing, while offering SQL querying ability. Some of them even permit the analyst to
write a single query that returns data from multiple underlying sources. This is excit‐
ing for anyone who works with large amounts of data, and it is validation that SQL is
here to stay.

NoSQL is a technology that allows for data modeling that is not strictly relational. It
allows for very low latency storage and retrieval, critical in many online applications. 
The class includes key-value pair storage and graph databases, which store in a node-
edge format, and document stores. Examples of these data stores that you might hear
about in your organization are Cassandra, Couchbase, DynamoDB, Memcached, Gir‐
aph, and Neo4j. Early on, NoSQL was marketed as making SQL obsolete, but the
acronym has more recently been marketed as “not only SQL.” For analysis purposes,
using data stored in a NoSQL key-value store for analysis typically requires moving it
to a more traditional SQL data warehouse, since NoSQL is not optimized for query‐
ing many records at once. Graph databases have applications such as network analy‐
sis, and analysis work may be done directly in them with special query languages. The
tool landscape is always evolving, however, and perhaps someday we’ll be able to ana‐
lyze this data with SQL as well.

Search-based data stores include Elasticsearch and Splunk. Elasticsearch and Splunk
are often used to analyze machine-generated data, such as logs. These and similar
technologies have non-SQL query languages, but if you know SQL, you can often
understand them. Recognizing how common SQL skills are, some data stores, such as
Elasticsearch, have added SQL querying interfaces. These tools are useful and power‐
ful for the use cases they were designed for, but they’re usually not well suited to the
types of analysis tasks this book is covering. As I’ve explained to people over the
years, they are great for finding needles in haystacks. They’re not as great at measur‐
ing the haystack itself.

Regardless of the type of database or other data storage technology, the trend is clear:
even as data volumes grow and use cases become more complex, SQL is still the stan‐
dard tool for accessing data. Its large existing user base, approachable learning curve,
and power for analytical tasks mean that even technologies that try to move away
from SQL come back around and accommodate it.

Conclusion
Data analysis is an exciting discipline with a range of applications for businesses and
other organizations. SQL has many benefits for working with data, particularly any
data stored in a database. Querying and analyzing data is part of the larger analysis
workflow, and there are several types of data stores that a data scientist might expect
to work with. Now that we’ve set the groundwork for analysis, SQL, and data stores,
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the rest of the book will cover using SQL for analysis in depth. Chapter 2 focuses on
data preparation, starting with an introduction to data types and then moving on to
profiling, cleaning, and shaping data. Chapters 3 through 7 present applications of
data analysis, focusing on time series analysis, cohort analysis, text analysis, anomaly
detection, and experiment analysis. Chapter 8 covers techniques for developing com‐
plex data sets for further analysis in other tools. Finally, Chapter 9 concludes with
thoughts on how types of analysis can be combined for new insights and lists some
additional resources to support your analytics journey.
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CHAPTER 2

Preparing Data for Analysis

Estimates of how long data scientists spend preparing their data vary, but it’s safe to
say that this step takes up a significant part of the time spent working with data. In
2014, the New York Times reported that data scientists spend from 50% to 80% of
their time cleaning and wrangling their data. A 2016 survey by CrowdFlower found
that data scientists spend 60% of their time cleaning and organizing data in order to
prepare it for analysis or modeling work. Preparing data is such a common task that
terms have sprung up to describe it, such as data munging, data wrangling, and data
prep. (“Mung” is an acronym for Mash Until No Good, which I have certainly done
on occasion.) Is all this data preparation work just mindless toil, or is it an important
part of the process?

Data preparation is easier when a data set has a data dictionary, a document or repos‐
itory that has clear descriptions of the fields, possible values, how the data was collec‐
ted, and how it relates to other data. Unfortunately, this is frequently not the case.
Documentation often isn’t prioritized, even by people who see its value, or it becomes
out-of-date as new fields and tables are added or the way data is populated changes.
Data profiling creates many of the elements of a data dictionary, so if your organiza‐
tion already has a data dictionary, this is a good time to use it and contribute to it. If
no data dictionary exists currently, consider starting one! This is one of the most val‐
uable gifts you can give to your team and to your future self. An up-to-date data dic‐
tionary allows you to speed up the data-profiling process by building on profiling
that’s already been done rather than replicating it. It will also improve the quality of
your analysis results, since you can verify that you have used fields correctly and
applied appropriate filters.

Even when a data dictionary exists, you will still likely need to do data prep work as
part of the analysis. In this chapter, I’ll start with a review of data types you are likely
to encounter. This is followed by a review of SQL query structure. Next, I will talk
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about profiling the data as a way to get to know its contents and check for data qual‐
ity. Then I’ll talk about some data-shaping techniques that will return the columns
and rows needed for further analysis. Finally, I’ll walk through some useful tools for
cleaning data to deal with any quality issues.

Types of Data
Data is the foundation of analysis, and all data has a database data type and also
belongs to one or more categories of data. Having a firm grasp of the many forms
data can take will help you be a more effective data analyst. I’ll start with the database
data types most frequently encountered in analysis. Then I’ll move on to some con‐
ceptual groupings that can help us understand the source, quality, and possible appli‐
cations of the data.

Database Data Types
Fields in database tables all have defined data types. Most databases have good docu‐
mentation on the types they support, and this is a good resource for any needed detail
beyond what is presented here. You don’t necessarily need to be an expert on the
nuances of data types to be good at analysis, but later in the book we’ll encounter sit‐
uations in which considering the data type is important, so this section will cover the
basics. The main types of data are strings, numeric, logical, and datetime, as summar‐
ized in Table 2-1. These are based on Postgres but are similar across most major data‐
base types.

Table 2-1. A summary of common database data types

Type Name Description
String CHAR / VARCHAR Holds strings. A CHAR is always of fixed length, whereas a VARCHAR is of variable length, up

to some maximum size (256 characters, for example).
 TEXT / BLOB Holds longer strings that don’t fit in a VARCHAR. Descriptions or free text entered by survey

respondents might be held in these fields.
Numeric INT / SMALLINT /

BIGINT
Holds integers (whole numbers). Some databases have SMALLINT and/or BIGINT. SMALLINT
can be used when the field will only hold values with a small number of digits. SMALLINT
takes less memory than a regular INT. BIGINT is capable of holding numbers with more digits
than an INT, but it takes up more space than an INT.

 FLOAT / DOUBLE /
DECIMAL

Holds decimal numbers, sometimes with the number of decimal places specified.

Logical BOOLEAN Holds values of TRUE or FALSE.
 DATETIME /

TIMESTAMP
Holds dates with times. Typically in a YYYY-MM-DD hh:mi:ss format, where YYYY is the four-
digit year, MM is the two-digit month number, DD is the two-digit day, hh is the two-digit
hour (usually 24-hour time, or values of 0 to 23), mi is the two-digit minutes, and ss is the
two-digit seconds. Some databases store only timestamps without time zone, while others
have specific types for timestamps with and without time zones.

 TIME Holds times.
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String data types are the most versatile. These can hold letters, numbers, and special
characters, including unprintable characters like tabs and newlines. String fields can
be defined to hold a fixed or variable number of characters. A CHAR field could be
defined to allow only two characters to hold US state abbreviations, for example,
whereas a field storing the full names of states would need to be a VARCHAR to allow
a variable number of characters. Fields can be defined as TEXT, CLOB (Character
Large Object), or BLOB (Binary Large Object, which can include additional data
types such as images), depending on the database to hold very long strings, though
since they often take up a lot of space, these data types tend to be used sparingly.
When data is loaded, if strings arrive that are too big for the defined data type, they
may be truncated or rejected entirely. SQL has a number of string functions that we
will make use of for various analysis purposes.

Numeric data types are all the ones that store numbers, both positive and negative.
Mathematical functions and operators can be applied to numeric fields. Numeric data
types include the INT types as well as FLOAT, DOUBLE, and DECIMAL types that
allow decimal places. Integer data types are often implemented because they use less
memory than their decimal counterparts. In some databases, such as Postgres, divid‐
ing integers results in an integer, rather than a value with decimal places as you might
expect. We’ll discuss converting numeric data types to obtain correct results later in
this chapter.

The logical data type is called BOOLEAN. It has values of TRUE and FALSE and is an
efficient way to store information where these options are appropriate. Operations
that compare two fields return a BOOLEAN value as a result. This data type is often
used to create flags, fields that summarize the presence or absence of a property in the
data. For example, a table storing email data might have a BOOLEAN has_opened
field.

The datetime types include DATE, TIMESTAMP, and TIME. Date and time data
should be stored in a field of one of these database types whenever possible, since
SQL has a number of useful functions that operate on them. Timestamps and dates
are very common in databases and are critical to many types of analysis, particularly
time series analysis (covered in Chapter 3) and cohort analysis (covered in Chap‐
ter 4). Chapter 3 will discuss date and time formatting, transformations, and
calculations.

Other data types, such as JSON and geographical types, are supported by some but
not all databases. I won’t go into detail on all of them here since they are generally
beyond the scope of this book. However, they are a sign that SQL continues to evolve
to tackle emerging analysis tasks.

Beyond database data types, there are a number of conceptual ways that data is cate‐
gorized. These can have an impact both on how data is stored and on how we think
about analyzing it. I will discuss these categorical data types next.
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Structured Versus Unstructured
Data is often described as structured or unstructured, or sometimes as semistruc‐
tured. Most databases were designed to handle structured data, where each attribute is
stored in a column, and instances of each entity are represented as rows. A data
model is first created, and then data is inserted according to that data model. For
example, an address table might have fields for street address, city, state, and postal
code. Each row would hold a particular customer’s address. Each field has a data type
and allows only data of that type to be entered. When structured data is inserted into
a table, each field is verified to ensure it conforms to the correct data type. Structured
data is easy to query with SQL.

Unstructured data is the opposite of structured data. There is no predetermined struc‐
ture, data model, or data types. Unstructured data is often the “everything else” that
isn’t database data. Documents, emails, and web pages are unstructured. Photos,
images, videos, and audio files are also examples of unstructured data. They don’t fit
into the traditional data types, and thus they are more difficult for relational data‐
bases to store efficiently and for SQL to query. Unstructured data is often stored out‐
side of relational databases as a result. This allows data to be loaded quickly, but lack
of data validation can result in low data quality. As we saw in Chapter 1, the technol‐
ogy continues to evolve, and new tools are being developed to allow SQL querying of
many types of unstructured data.

Semistructured data falls in between these two categories. Much “unstructured” data
has some structure that we can make use of. For example, emails have from and to
email addresses, subject lines, body text, and sent timestamps that can be stored sepa‐
rately in a data model with those fields. Metadata, or data about data, can be extracted
from other file types and stored for analysis. For example, music audio files might be
tagged with artist, song name, genre, and duration. Generally, the structured parts of
semistructured data can be queried with SQL, and SQL can often be used to parse or
otherwise extract structured data for further querying. We’ll see some applications of
this in the discussion of text analysis in Chapter 5.

Quantitative Versus Qualitative Data
Quantitative data is numeric. It measures people, things, and events. Quantitative
data can include descriptors, such as customer information, product type, or device
configurations, but it also comes with numeric information such as price, quantity, or
visit duration. Counts, sums, average, or other numeric functions are applied to the
data. Quantitative data is often machine generated these days, but it doesn’t need to
be. Height, weight, and blood pressure recorded on a paper patient intake form are
quantitative, as are student quiz scores typed into a spreadsheet by a teacher.
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Qualitative data is usually text based and includes opinions, feelings, and descriptions
that aren’t strictly quantitative. Temperature and humidity levels are quantitative,
while descriptors like “hot and humid” are qualitative. The price a customer paid for
a product is quantitative; whether they like or dislike it is qualitative. Survey feed‐
back, customer support inquiries, and social media posts are qualitative. There are
whole professions that deal with qualitative data. In a data analysis context, we usu‐
ally try to quantify the qualitative. One technique for this is to extract keywords or
phrases and count their occurrences. We’ll look at this in more detail when we delve
into text analysis in Chapter 5. Another technique is sentiment analysis, in which the
structure of language is used to interpret the meaning of the words used, in addition
to their frequency. Sentences or other bodies of text can be scored for their level of
positivity or negativity, and then counts or averages are used to derive insights that
would be hard to summarize otherwise. There have been exciting advances in the
field of natural language processing, or NLP, though much of this work is done with
tools such as Python.

First-, Second-, and Third-Party Data
First-party data is collected by the organization itself. This can be done through
server logs, databases that keep track of transactions and customer information, or
other systems that are built and controlled by the organization and generate data of
interest for analysis. Since the systems were created in-house, finding the people who
built them and learning about how the data is generated is usually possible. Data ana‐
lysts may also be able to influence or have control over how certain pieces of data are
created and stored, particularly when bugs are responsible for poor data quality.

Second-party data comes from vendors that provide a service or perform a business
function on the organization’s behalf. These are often software as a service (SaaS)
products; common examples are CRM, email and marketing automation tools,
ecommerce-enabling software, and web and mobile interaction trackers. The data is
similar to first-party data since it is about the organization itself, created by its
employees and customers. However, both the code that generates and stores the data
and the data model are controlled externally, and the data analyst typically has little
influence over these aspects. Second-party data is increasingly imported into an
organization’s data warehouse for analysis. This can be accomplished with custom
code or ETL connectors, or with SaaS vendors that offer data integration.
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Many SaaS vendors provide some reporting capabilities, so the
question may arise of whether to bother copying the data to a data
warehouse. The department that interacts with a tool may find that
reporting sufficient, such as a customer service department that
reports on time to resolve issues and agent productivity from
within its helpdesk software. On the other hand, customer service
interactions might be an important input to a customer retention
model, which would require integrating that data into a data store
with sales and cancellation data. Here’s a good rule of thumb when
deciding whether to import data from a particular data source: if
the data will create value when combined with data from other sys‐
tems, import it; if not, wait until there is a stronger case before
doing the work.

Third-party data may be purchased or obtained from free sources such as those pub‐
lished by governments. Unless the data has been collected specifically on behalf of the
organization, data teams usually have little control over the format, frequency, and
data quality. This data often lacks the granularity of first- and second-party data. For
example, most third-party sources do not have user-level data, and instead data might
be joined with first-party data at the postal code or city level, or at a higher level.
Third-party data can have unique and useful information, however, such as aggregate
spending patterns, demographics, and market trends that would be very expensive or
impossible to collect otherwise.

Sparse Data
Sparse data occurs when there is a small amount of information within a larger set of
empty or unimportant information. Sparse data might show up as many nulls and
only a few values in a particular column. Null, different from a value of 0, is the
absence of data; that will be covered later in the section on data cleaning. Sparse data
can occur when events are rare, such as software errors or purchases of products in
the long tail of a product catalog. It can also occur in the early days of a feature or
product launch, when only testers or beta customers have access. JSON is one
approach that has been developed to deal with sparse data from a writing and storage
perspective, as it stores only the data that is present and omits the rest. This is in con‐
trast to a row-store database, which has to hold memory for a field even if there is no
value in it.

Sparse data can be problematic for analysis. When events are rare, trends aren’t nec‐
essarily meaningful, and correlations are hard to distinguish from chance fluctua‐
tions. It’s worth profiling your data, as discussed later in this chapter, to understand if
and where your data is sparse. Some options are to group infrequent events or items
into categories that are more common, exclude the sparse data or time period from
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the analysis entirely, or show descriptive statistics along with cautionary explanations
that the trends are not necessarily meaningful.

There are a number of different types of data and a variety of ways that data is
described, many of which are overlapping or not mutually exclusive. Familiarity with
these types is useful not only in writing good SQL but also for deciding how to ana‐
lyze the data in appropriate ways. You may not always know the data types in
advance, which is why data profiling is so critical. Before we get to that, and to our
first code examples, I’ll give a brief review of SQL query structure.

SQL Query Structure
SQL queries have common clauses and syntax, although these can be combined in a
nearly infinite number of ways to achieve analysis goals. This book assumes you have
some prior knowledge of SQL, but I’ll review the basics here so that we have a com‐
mon foundation for the code examples to come.

The SELECT clause determines the columns that will be returned by the query. One
column will be returned for each expression within the SELECT clause, and expres‐
sions are separated by commas. An expression can be a field from the table, an aggre‐
gation such as a sum, or any number of calculations, such as CASE statements, type
conversions, and various functions that will be discussed later in this chapter and
throughout the book.

The FROM clause determines the tables from which the expressions in the SELECT
clause are derived. A “table” can be a database table, a view (a type of saved query that
otherwise functions like a table), or a subquery. A subquery is itself a query, wrapped
in parentheses, and the result is treated like any other table by the query that refer‐
ences it. A query can reference multiple tables in the FROM clause, though they must
use one of the JOIN types along with a condition that specifies how the tables relate.
The JOIN condition usually specifies an equality between fields in each table, such as
orders.customer_id = customers.customer_id. JOIN conditions can include mul‐
tiple fields and can also specify inequalities or ranges of values, such as ranges of
dates. We’ll see a variety of JOIN conditions that achieve specific analysis goals
throughout the book. An INNER JOIN returns all records that match in both tables.
A LEFT JOIN returns all records from the first table, but only those records from the
second table that match. A RIGHT JOIN returns all records from the second table,
but only those records from the first table that match. A FULL OUTER JOIN returns
all records from both tables. A Cartesian JOIN can result when each record in the first
table matches more than one record in the second table. Cartesian JOINs should gen‐
erally be avoided, though there are some specific use cases, such as generating data to
fill in a time series, in which we will use them intentionally. Finally, tables in the
FROM clause can be aliased, or given a shorter name of one or more letters that can
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be referenced in other clauses in the query. Aliases save query writers from having to
type out long table names repeatedly, and they make queries easier to read.

While both LEFT JOIN and RIGHT JOIN can be used in the same
query, it’s much easier to keep track of your logic when you stick
with only one or the other. In practice, LEFT JOIN is much more
commonly used than RIGHT JOIN.

The WHERE clause specifies restrictions or filters that are needed to exclude or
remove rows from the result set. WHERE is optional.

The GROUP BY clause is required when the SELECT clause contains aggregations
and at least one nonaggregated field. An easy way to remember what should go in the
GROUP BY clause is that it should have every field that is not part of an aggregation. 
In most databases, there are two ways to list the GROUP BY fields: either by field
name or by position, such as 1, 2, 3, and so on. Some people prefer to use the field
name notation, and SQL Server requires this. I prefer the position notation, particu‐
larly when the GROUP BY fields contain complex expressions or when I’m doing a lot
of iteration. This book will typically use the position notation.

How Not to Kill Your Database: LIMIT and Sampling
Database tables can be very large, containing millions or billions of records. Querying
across all of these records can cause problems at the least and crash databases at the
worst. To avoid receiving cranky calls from database administrators or getting locked
out, it’s a good idea to limit the results returned during profiling or while testing
queries. LIMIT clauses and sampling are two techniques that should be part of your
toolbox.

LIMIT is added as the last line of the query, or subquery, and can take any positive
integer value:

SELECT column_a, column_b
FROM table
LIMIT 1000
;

When used in a subquery, the limit will be applied at that step, and only the restricted
result set will be evaluated by the outer query:

SELECT...
FROM
(
      SELECT column_a, column_b, sum(sales) as total_sales
      FROM table
      GROUP BY 1,2
      LIMIT 1000
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) a
;

SQL Server does not support the LIMIT clause, but a similar result can be obtained
using top:

SELECT top 1000
column_a, column_b
FROM table
;

Sampling can be accomplished by using a function on an ID field that has a random
distribution of digits at the beginning or end. The modulus or mod function returns
the remainder when one integer is divided by another. If the ID field is an integer, mod
can be used to find the last one, two, or more digits and filter on the result:

WHERE mod(integer_order_id,100) = 6

This will return every order whose last two digits are 06, which should be about 1% of
the total. If the field is alphanumeric, you can use a right() function to find a certain
number of digits at the end:

WHERE right(alphanum_order_id,1) = 'B'

This will return every order with a last digit of B, which will be about 3% of the total if
all letters and numbers are equally common, an assumption worth validating.

Limiting the result set also makes your work faster, but be aware that subsets of data
might not contain all of the variations in values and edge cases that exist in the full
data set. Remember to remove the LIMIT or sampling before running your final anal‐
ysis or report with your query, or you’ll end up with funny results!

That covers the basics of SQL query structure. Chapter 8 will go into additional detail
on each of these clauses, a few additional ones that are less commonly encountered
but appear in this book, and the order in which each clause is evaluated. Now that we
have this foundation, we can turn to one of the most important parts of the analysis
process: data profiling.

Profiling: Distributions
Profiling is the first thing I do when I start working with any new data set. I look at
how the data is arranged into schemas and tables. I look at the table names to get
familiar with the topics covered, such as customers, orders, or visits. I check out the
column names in a few tables and start to construct a mental model of how the tables
relate to one another. For example, the tables might include an order_detail table
with line-item breakouts that relate to the order table via an order_id, while the
order table relates to the customer table via a customer_id. If there is a data dictio‐
nary, I review that and compare it to the data I see in a sample of rows.
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1 John W. Tukey, Exploratory Data Analysis (Reading, MA: Addison-Wesley, 1977).

The tables generally represent the operations of an organization, or some subset of
the operations, so I think about what domain or domains are covered, such as ecom‐
merce, marketing, or product interactions. Working with data is easier when we have
knowledge of how the data was generated. Profiling can provide clues about this, or
about what questions to ask of the source, or of people inside or outside the organiza‐
tion responsible for the collection or generation of the data. Even when you collect
the data yourself, profiling is useful.

Another detail I check for is how history is represented, if at all. Data sets that are
replicas of production databases may not contain previous values for customer
addresses or order statuses, for example, whereas a well-constructed data warehouse
may have daily snapshots of changing data fields.

Profiling data is related to the concept of exploratory data analysis, or EDA, named by
John Tukey. In his book of that name,1 Tukey describes how to analyze data sets by
computing various summaries and visualizing the results. He includes techniques for
looking at distributions of data, including stem-and-leaf plots, box plots, and
histograms.

After checking a few samples of data, I start looking at distributions. Distributions
allow me to understand the range of values that exist in the data and how often they
occur, whether there are nulls, and whether negative values exist alongside positive
ones. Distributions can be created with continuous or categorical data and are also
called frequencies. In this section, we’ll look at how to create histograms, how bin‐
ning can help us understand the distribution of continuous values, and how to use
n-tiles to get more precise about distributions.

Histograms and Frequencies
One of the best ways to get to know a data set, and to know particular fields within
the data set, is to check the frequency of values in each field. Frequency checks are
also useful whenever you have a question about whether certain values are possible or
if you spot an unexpected value and want to know how commonly it occurs. Fre‐
quency checks can be done on any data type, including strings, numerics, dates, and
booleans. Frequency queries are a great way to detect sparse data as well.

The query is straightforward. The number of rows can be found with count(*), and
the profiled field is in the GROUP BY. For example, we can check the frequency of
each type of fruit in a fictional fruit_inventory table:
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SELECT fruit, count(*) as quantity
FROM fruit_inventory
GROUP BY 1
;

When using count, it’s worth taking a minute to consider whether
there might be any duplicate records in the data set. You can use
count(*) when you want the number of records, but use count
distinct to find out how many unique items there are.

A frequency plot is a way to visualize the number of times something occurs in the
data set. The field being profiled is usually plotted on the x-axis, with the count of
observations on the y-axis. Figure 2-1 shows an example of plotting the frequency of
fruit from our query. Frequency graphs can also be drawn horizontally, which accom‐
modates long value names well. Notice that this is categorical data without any inher‐
ent order.

Figure 2-1. Frequency plot of fruit inventory

A histogram is a way to visualize the distribution of numerical values in a data set and
will be familiar to those with a statistics background. A basic histogram might show
the distribution of ages across a group of customers. Imagine that we have a custom
ers table that contains names, registration date, age, and other attributes. To create a
histogram by age, GROUP BY the numerical age field and count customer_id:
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SELECT age, count(customer_id) as customers
FROM customers
GROUP BY 1 
;

The results of our hypothetical age distribution are graphed in Figure 2-2.

Figure 2-2. Customers by age

Another technique I’ve used repeatedly and that has become the basis for one of my
favorite interview questions involves an aggregation followed by a frequency count. I
give candidates a hypothetical table called orders, which has a date, customer identi‐
fier, order identifier, and an amount, and then ask them to write a SQL query that
returns the distribution of orders per customer. This can’t be solved with a simple
query; it requires an intermediate aggregation step, which can be accomplished with a
subquery. First, count the number of orders placed by each customer_id in the sub‐
query. The outer query uses the number of orders as a category and counts the num‐
ber of customers:

SELECT orders, count(*) as num_customers
FROM
(
    SELECT customer_id, count(order_id) as orders
    FROM orders
    GROUP BY 1
) a
GROUP BY 1
;
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This type of profiling can be applied whenever you need to see how frequently certain
entities or attributes appear in the data. In these examples, count has been used, but
the other basic aggregations (sum, avg, min, and max) can be used to create histograms
as well. For instance, we might want to profile customers by the sum of all their
orders, their avg order size, their min order date, or their max (most recent) order
date.

Binning
Binning is useful when working with continuous values. Rather than the number of
observations or records for each value being counted, ranges of values are grouped
together, and these groups are called bins or buckets. The number of records that fall
into each interval is then counted. Bins can be variable in size or have a fixed size,
depending on whether your goal is to group the data into bins that have particular
meaning for the organization, are roughly equal width, or contain roughly equal
numbers of records. Bins can be created with CASE statements, rounding, and
logarithms.

A CASE statement allows for conditional logic to be evaluated. These statements are
very flexible, and we will come back to them throughout the book, applying them to
data profiling, cleaning, text analysis, and more. The basic structure of a CASE state‐
ment is:

case when condition1 then return_value_1
     when condition2 then return_value_2
     ...
     else return_value_default
     end

The WHEN condition can be an equality, inequality, or other logical condition. The
THEN return value can be a constant, an expression, or a field in the table. Any num‐
ber of conditions can be included, but the statement will stop executing and return
the result the first time a condition evaluates to TRUE. ELSE tells the database what
to use as a default value if no matches are found and can also be a constant or field. 
ELSE is optional, and if it is not included, any nonmatches will return null. CASE
statements can also be nested so that the return value is another CASE statement.

The return values following THEN must all be the same data type
(strings, numeric, BOOLEAN, etc.), or else you’ll get an error.
Consider casting to a common data type such as string if you
encounter this.

A CASE statement is a flexible way to control the number of bins, the range of values
that fall into each bin, and how the bins are named. I find them particularly useful
when there is a long tail of very small or very large values that I want to group
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together rather than have empty bins in part of the distribution. Certain ranges of
values have a business meaning that needs to be re-created in the data. Many B2B
companies separate their customers into “enterprise” and “SMB” (small- and
medium-sized businesses) categories based on number of employees or revenue,
because their buying patterns are different. As an example, imagine we are consider‐
ing discounted shipping offers and we want to know how many customers will be
affected. We can group order_amount into three buckets using a CASE statement:

SELECT 
case when order_amount <= 100 then 'up to 100'
     when order_amount <= 500 then '100 - 500'
     else '500+' end as amount_bin
,case when order_amount <= 100 then 'small'
      when order_amount <= 500 then 'medium'
      else 'large' end as amount_category
,count(customer_id) as customers
FROM orders
GROUP BY 1,2
;

Arbitrary-sized bins can be useful, but at other times bins of fixed size are more
appropriate for the analysis. Fixed-size bins can be accomplished in a few ways,
including with rounding, logarithms, and n-tiles. To create equal-width bins, round‐
ing is useful. Rounding reduces the precision of the values, and we usually think
about rounding as reducing the number of decimal places or removing them alto‐
gether by rounding to the nearest integer. The round function takes the form:

round(value,number_of_decimal_places)

The number of decimal places can also be a negative number, allowing this function
to round to the nearest tens, hundreds, thousands, and so on. Table 2-2 demonstrates
the results of rounding with arguments ranging from –3 to 2.

Table 2-2. The number 123,456.789 rounded with various decimal places

Decimal places Formula Result
2 round(123456.789,2) 123456.79
1 round(123456.789,1) 123456.8
0 round(123456.789,0) 123457
-1 round(123456.789,-1) 123460
-2 round(123456.789,-2) 123500
-3 round(123456.789,-3) 123000

SELECT round(sales,-1) as bin
,count(customer_id) as customers
FROM table
GROUP BY 1
;
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Logarithms are another way to create bins, particularly in data sets in which the larg‐
est values are orders of magnitude greater than the smallest values. The distribution
of household wealth, the number of website visitors across different properties on the
internet, and the shaking force of earthquakes are all examples of phenomena that
have this property. While they don’t create bins of equal width, logarithms create bins
that increase in size with a useful pattern. To refresh your memory, a logarithm is the
exponent to which 10 must be raised to produce that number:

log(number) = exponent

In this case, 10 is called the base, and this is usually the default implementation in
databases, but technically the base can be any number. Table 2-3 shows the loga‐
rithms for several powers of 10.

Table 2-3. Results of log function on powers of 10

Formula Result
log(1) 0
log(10) 1
log(100) 2
log(1000) 3
log(10000) 4

In SQL, the log function returns the logarithm of its argument, which can be a con‐
stant or a field:

SELECT log(sales) as bin
,count(customer_id) as customers
FROM table
GROUP BY 1
;

The log function can be used on any positive value, not just multiples of 10. How‐
ever, the logarithm function does not work when values can be less than or equal to 0;
it will return null or an error, depending on the database.

n-Tiles
You’re probably familiar with the median, or middle value, of a data set. This is the
50th percentile value. Half of the values are larger than the median, and the other half
are smaller. With quartiles, we fill in the 25th and 75th percentile values. A quarter of
the values are smaller and three quarters are larger for the 25th percentile; three quar‐
ters are smaller and one quarter are larger at the 75th percentile. Deciles break the
data set into 10 equal parts. Making this concept generic, n-tiles allow us to calculate
any percentile of the data set: 27th percentile, 50.5th percentile, and so on.
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Window Functions
The n-tiles functions are part of a group of SQL functions called window or analytic
functions. Unlike most SQL functions, which can operate only on the current row of
data, window functions perform calculations that span multiple rows. Window func‐
tions have special syntax that includes the function name and an OVER clause that is
used to determine the rows on which to operate and the ordering of those rows. The
general format of a window function is:

function(field_name) over (partition by field_name order by field_name)

The function can be any of the normal aggregations (count, sum, avg, min, max) as well
as a number of special functions, including rank, first_value, and ntile. The PAR‐
TITION BY clause can include zero or more fields. When no fields are specified, the
function operates over the entire table, but when one or more fields are specified, the
function will operate only on that section of rows. For example, we might PARTI‐
TION BY a customer_id to perform calculations about all of the records per cus‐
tomer, restarting the calculation for each customer. The ORDER BY clause determines
the ordering of the rows for functions that rely on this; for example, to rank custom‐
ers, we need to specify a field by which to order them, such as number of orders. All
of the major database types have window functions, except for versions of MySQL
prior to 8.0.2. We will see these useful functions throughout the book, along with
additional explanations of how they work and how to set up the arguments correctly.

Many databases have a median function built in but rely on more generic n-tile func‐
tions for the rest. These functions are window functions, computing across a range of
rows to return a value for a single row. They take an argument that specifies the num‐
ber of bins to split the data into and, optionally, a PARTITION BY and/or an ORDER
BY clause:

ntile(num_bins) over (partition by... order by...)

As an example, imagine we had 12 transactions with order_amounts of $19.99, $9.99,
$59.99, $11.99, $23.49, $55.98, $12.99, $99.99, $14.99, $34.99, $4.99, and $89.99. Per‐
forming an ntile calculation with 10 bins sorts each order_amount and assigns a bin
from 1 to 10:

order_amount  ntile
------------  -----
4.99          1
9.99          1
11.99         2
12.99         2
14.99         3
19.99         4
23.49         5
34.99         6
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55.98         7
59.99         8
89.99         9
99.99         10

This can be used to bin records in practice by first calculating the ntile of each row
in a subquery and then wrapping it in an outer query that uses min and max to find
the upper and lower boundaries of the value range:

SELECT ntile
,min(order_amount) as lower_bound
,max(order_amount) as upper_bound
,count(order_id) as orders
FROM
(
    SELECT customer_id, order_id, order_amount
    ,ntile(10) over (order by order_amount) as ntile
    FROM orders
) a
GROUP BY 1
;

A related function is percent_rank. Instead of returning the bins that the data falls
into, percent_rank returns the percentile. It takes no argument but requires paren‐
theses and optionally takes a PARTITION BY and/or an ORDER BY clause:

percent_rank() over (partition by... order by...)

While not as useful as ntile for binning, percent_rank can be used to create a con‐
tinuous distribution, or it can be used as an output itself for reporting or further anal‐
ysis. Both ntile and percent_rank can be expensive to compute over large data sets,
since they require sorting all the rows. Filtering the table to only the data set you need
helps. Some databases have implemented approximate versions of the functions that
are faster to compute and generally return high-quality results if absolute precision is
not required. We will look at additional uses for n-tiles in the discussion of anomaly
detection in Chapter 6.

In many contexts, there is no single correct or objectively best way to look at distribu‐
tions of data. There is significant leeway for analysts to use the preceding techniques
to understand data and present it to others. However, data scientists need to use judg‐
ment and must bring their ethical radar along whenever sharing distributions of sen‐
sitive data.

Profiling: Data Quality
Data quality is absolutely critical when it comes to creating good analysis. Although
this may seem obvious, it has been one of the hardest lessons I’ve learned in my years
of working with data. It’s easy to get overly focused on the mechanics of processing
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the data, finding clever query techniques and just the right visualization, only to have
stakeholders ignore all of that and point out the one data inconsistency. Ensuring data
quality can be one of the hardest and most frustrating parts of analysis. The saying
“garbage in, garbage out” captures only part of the problem. Good ingredients in plus
incorrect assumptions can also lead to garbage out.

Comparing data against ground truth, or what is otherwise known to be true, is ideal
though not always possible. For example, if you are working with a replica of a pro‐
duction database, you could compare the row counts in each system to verify that all
rows arrived in the replica database. In other cases, you might know the dollar value
and count of sales in a particular month and thus can query for this information in
the database to make sure the sum of sales and count of records match. Often the dif‐
ference between your query results and the expected value comes down to whether
you applied the correct filters, such as excluding cancelled orders or test accounts;
how you handled nulls and spelling anomalies; and whether you set up correct JOIN
conditions between tables.

Profiling is a way to uncover data quality issues early on, before they negatively
impact results and conclusions drawn from the data. Profiling reveals nulls, categori‐
cal codings that need to be deciphered, fields with multiple values that need to be
parsed, and unusual datetime formats. Profiling can also uncover gaps and step
changes in the data that have resulted from tracking changes or outages. Data is
rarely perfect, and it’s often only through its use in analysis that data quality issues are
uncovered.

Detecting Duplicates
A duplicate is when you have two (or more) rows with the same information. Dupli‐
cates can exist for any number of reasons. A mistake might have been made during
data entry, if there is some manual step. A tracking call might have fired twice. A pro‐
cessing step might have run multiple times. You might have created it accidentally
with a hidden many-to-many JOIN. However they come to be, duplicates can really
throw a wrench in your analysis. I can recall times early in my career when I thought
I had a great finding, only to have a product manager point out that my sales figure
was twice the actual sales. It’s embarrassing, it erodes trust, and it requires rework and
sometimes painstaking reviews of the code to find the problem. I’ve learned to check
for duplicates as I go.

Fortunately, it’s relatively easy to find duplicates in our data. One way is to inspect a
sample, with all columns ordered:

SELECT column_a, column_b, column_c...
FROM table
ORDER BY 1,2,3...
;
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This will reveal whether the data is full of duplicates, for example, when looking at a
brand-new data set, when you suspect that a process is generating duplicates, or after
a possible Cartesian JOIN. If there are only a few duplicates, they might not show up
in the sample. And scrolling through data to try to spot duplicates is taxing on
your eyes and brain. A more systematic way to find duplicates is to SELECT the col‐
umns and then count the rows (this might look familiar from the discussion of
histograms!):

SELECT count(*)
FROM
(
    SELECT column_a, column_b, column_c...
    , count(*) as records
    FROM...
    GROUP BY 1,2,3...
) a
WHERE records > 1
;

This will tell you whether there are any cases of duplicates. If the query returns 0,
you’re good to go. For more detail, you can list out the number of records (2, 3, 4,
etc.):

SELECT records, count(*)
FROM
(
    SELECT column_a, column_b, column_c..., count(*) as records
    FROM...
    GROUP BY 1,2,3...
) a
WHERE records > 1
GROUP BY 1
;

As an alternative to a subquery, you can use a HAVING clause and
keep everything in a single main query. Since it is evaluated after
the aggregation and GROUP BY, HAVING can be used to filter on
the aggregation value:

SELECT column_a, column_b, column_c..., count(*) as records
FROM...
GROUP BY 1,2,3...
HAVING count(*) > 1
;

I prefer to use subqueries, because I find that they’re a useful way to
organize my logic. Chapter 8 will discuss order of evaluation and
strategies for keeping your SQL queries organized.
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For full detail on which records have duplicates, you can list out all the fields and
then use this information to chase down which records are problematic:

SELECT *
FROM
(
    SELECT column_a, column_b, column_c..., count(*) as records
    FROM...
    GROUP BY 1,2,3...
) a
WHERE records = 2
;

Detecting duplicates is one thing; figuring out what to do about them is another. It’s
almost always useful to understand why duplicates are occurring and, if possible, fix
the problem upstream. Can a data process be improved to reduce or remove duplica‐
tion? Is there an error in an ETL process? Have you failed to account for a one-to-
many relationship in a JOIN? Next, we’ll turn to some options for handling and
removing duplicates with SQL.

Deduplication with GROUP BY and DISTINCT
Duplicates happen, and they’re not always a result of bad data. For example, imagine
we want to find a list of all the customers who have successfully completed a transac‐
tion so we can send them a coupon for their next order. We might JOIN the custom
ers table to the transactions table, which would restrict the records returned to
only those customers that appear in the transactions table:

SELECT a.customer_id, a.customer_name, a.customer_email
FROM customers a
JOIN transactions b on a.customer_id = b.customer_id
;

This will return a row for each customer for each transaction, however, and there are
hopefully at least a few customers who have transacted more than once. We have
accidentally created duplicates, not because there is any underlying data quality prob‐
lem but because we haven’t taken care to avoid duplication in the results. Fortunately,
there are several ways to avoid this with SQL. One way to remove duplicates is to use
the keyword DISTINCT:

SELECT distinct a.customer_id, a.customer_name, a.customer_email
FROM customers a
JOIN transactions b on a.customer_id = b.customer_id
;

Another option is to use a GROUP BY, which, although typically seen in connection
with an aggregation, will also deduplicate in the same way as DISTINCT. I remember
the first time I saw a colleague use GROUP BY without an aggregation dedupe—I
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didn’t even realize it was possible. I find it somewhat less intuitive than DISTINCT,
but the result is the same:

SELECT a.customer_id, a.customer_name, a.customer_email
FROM customers a
JOIN transactions b on a.customer_id = b.customer_id
GROUP BY 1,2,3
;

Another useful technique is to perform an aggregation that returns one row per
entity. Although technically not deduping, it has a similar effect. For example, if we
have a number of transactions by the same customer and need to return one record
per customer, we could find the min (first) and/or the max (most recent) transac
tion_date:

SELECT customer_id
,min(transaction_date) as first_transaction_date
,max(transaction_date) as last_transaction_date
,count(*) as total_orders
FROM table
GROUP BY customer_id
;

Duplicate data, or data that contains multiple records per entity even if they techni‐
cally are not duplicates, is one of the most common reasons for incorrect query
results. You can suspect duplicates as the cause if all of a sudden the number of cus‐
tomers or total sales returned by a query is many times greater than what you were
expecting. Fortunately, there are several techniques that can be applied to prevent this
from occurring.

Another common problem is missing data, which we’ll turn to next.

Preparing: Data Cleaning
Profiling often reveals where changes can make the data more useful for analysis. 
Some of the steps are CASE transformations, adjusting for null, and changing data
types.

Cleaning Data with CASE Transformations
CASE statements can be used to perform a variety of cleaning, enrichment, and sum‐
marization tasks. Sometimes the data exists and is accurate, but it would be more use‐
ful for analysis if values were standardized or grouped into categories. The structure
of CASE statements was presented earlier in this chapter, in the section on binning.

Nonstandard values occur for a variety of reasons. Values might come from different
systems with slightly different lists of choices, system code might have changed,
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options might have been presented to the customer in different languages, or the cus‐
tomer might have been able to fill out the value rather than pick from a list.

Imagine a field containing information about the gender of a person. Values indicat‐
ing a female person exist as “F,” “female,” and “femme.” We can standardize the values
like this:

CASE when gender = 'F' then 'Female'
     when gender = 'female' then 'Female'
     when gender = 'femme' then 'Female'
     else gender 
     end as gender_cleaned

CASE statements can also be used to add categorization or enrichment that does not
exist in the original data. As an example, many organizations use a Net Promoter
Score, or NPS, to monitor customer sentiment. NPS surveys ask respondents to rate,
on a scale of 0 to 10, how likely they are to recommend a company or product to a
friend or colleague. Scores of 0 to 6 are considered detractors, 7 and 8 are passive, and
9 and 10 are promoters. The final score is calculated by subtracting the percentage of
detractors from the percentage of promoters. Survey result data sets usually include
optional free text comments and are sometimes enriched with information the orga‐
nization knows about the person surveyed. Given a data set of NPS survey responses,
the first step is to group the responses into the categories of detractor, passive, and
promoter:

SELECT response_id
,likelihood
,case when likelihood <= 6 then 'Detractor'
      when likelihood <= 8 then 'Passive'
      else 'Promoter'
     end as response_type
FROM nps_responses
;

Note that the data type can differ between the field being evaluated and the return
data type. In this case, we are checking an integer and returning a string. Listing out
all the values with an IN list is also an option. The IN operator allows you to specify a
list of items rather than having to write an equality for each one separately. It is useful
when the input isn’t continuous or when values in order shouldn’t be grouped
together:

case when likelihood in (0,1,2,3,4,5,6) then 'Detractor'
     when likelihood in (7,8) then 'Passive'
     when likelihood in (9,10) then 'Promoter'
     end as response_type

CASE statements can consider multiple columns and can contain AND/OR logic.
They can also be nested, though often this can be avoided with AND/OR logic:
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case when likelihood <= 6 
          and country = 'US' 
          and high_value = true 
          then 'US high value detractor'
     when likelihood >= 9 
          and (country in ('CA','JP') 
               or high_value = true
              ) 
          then 'some other label'
     ... end

Alternatives for Cleaning Data
Cleaning or enriching data with a CASE statement  works well as long as there is a
relatively short list of variations, you can find them all in the data, and the list of val‐
ues isn’t expected to change. For longer lists and ones that change frequently, a lookup
table can be a better option. A lookup table exists in the database and is either static
or populated with code that checks for new values periodically. The query will JOIN
to the lookup table to get the cleaned data. In this way, the cleaned values can be
maintained outside your code and used by many queries, without your having to
worry about maintaining consistency between them. An example of this might be a
lookup table that maps state abbreviations to full state names. In my own work, I
often start with a CASE statement and create a lookup table only after the list
becomes unruly, or once it’s clear that my team or I will need to use this cleaning step
repeatedly.

Of course, it’s worth investigating whether the data can be cleaned upstream. I once
started with a CASE statement of 5 or so lines that grew to 10 lines and then eventu‐
ally to more than 100 lines, at which point the list was unruly and difficult to main‐
tain. The insights were valuable enough that I was able to convince engineers to
change the tracking code and send the meaningful categorizations in the data stream
in the first place.

Another useful thing you can do with CASE statements is to create flags indicating
whether a certain value is present, without returning the actual value. This can be
useful during profiling for understanding how common the existence of a particular
attribute is. Another use for flagging is during preparation of a data set for statistical
analysis. In this case, a flag is also known as a dummy variable, taking a value of 0 or
1 and indicating the presence or absence of some qualitative variable. For example,
we can create is_female and is_promoter flags with CASE statements on gender
and likelihood (to recommend) fields:

SELECT customer_id
,case when gender = 'F' then 1 else 0 end as is_female
,case when likelihood in (9,10) then 1 else 0 end as is_promoter
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FROM ...
;

If you are working with a data set that has multiple rows per entity, such as with line
items in an order, you can flatten the data with a CASE statement wrapped in an
aggregate and turn it into a flag at the same time by using 1 and 0 as the return value.
We saw previously that a BOOLEAN data type is often used to create flags (fields that
represent the presence or absence of some attribute). Here, 1 is substituted for TRUE
and 0 is substituted for FALSE so that a max aggregation can be applied. The way this
works is that for each customer, the CASE statement returns 1 for any row with a
fruit type of “apple.” Then max is evaluated and will return the largest value from any
of the rows. As long as a customer bought an apple at least once, the flag will be 1; if
not, it will be 0:

SELECT customer_id
,max(case when fruit = 'apple' then 1 
          else 0 
          end) as bought_apples
,max(case when fruit = 'orange' then 1 
          else 0 
          end) as bought_oranges
FROM ...
GROUP BY 1
;

You can also construct more complex conditions for flags, such as requiring a thres‐
hold or amount of something before labeling with a value of 1:

SELECT customer_id
,max(case when fruit = 'apple' and quantity > 5 then 1 
          else 0 
          end) as loves_apples
,max(case when fruit = 'orange' and quantity > 5 then 1 
          else 0 
          end) as loves_oranges
FROM ...
GROUP BY 1
;

CASE statements are powerful, and as we saw, they can be used to clean, enrich, and
flag or add dummy variables to data sets. In the next section, we’ll look at some spe‐
cial functions related to CASE statements that handle null values specifically.

Type Conversions and Casting
Every field in a database is defined with a data type, which we reviewed at the begin‐
ning of this chapter. When data is inserted into a table, values that aren’t of the field’s
type are rejected by the database. Strings can’t be inserted into integer fields, and boo‐
leans are not allowed in date fields. Most of the time, we can take the data types for
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granted and apply string functions to strings, date functions to dates, and so on.
Occasionally, however, we need to override the data type of the field and force it to be
something else. This is where type conversions and casting come in.

Type conversion functions allow pieces of data with the appropriate format to be
changed from one data type to another. The syntax comes in a few forms that are
basically equivalent. One way to change the data type is with the cast function, cast
(input as data_type), or two colons, input :: data_type. Both of these are
equivalent and convert the integer 1,234 to a string:

cast (1234 as varchar)

1234::varchar

Converting an integer to a string can be useful in CASE statements when categorizing
numeric values with some unbounded upper or lower value. For example, in the fol‐
lowing code, leaving the values that are less than or equal to 3 as integers while
returning the string “4+” for higher values would result in an error:

case when order_items <= 3 then order_items
     else '4+' 
     end

Casting the integers to the VARCHAR type solves the problem:

case when order_items <= 3 then order_items::varchar
     else '4+' 
     end

Type conversions also come in handy when values that should be integers are parsed
out of a string, and then we want to aggregate the values or use mathematical func‐
tions on them. Imagine we have a data set of prices, but the values include the dollar
sign ($), and so the data type of the field is VARCHAR.  We can remove the $ charac‐
ter with a function called replace, which will be discussed more during our look at
text analysis in Chapter 5:

SELECT replace('$19.99','$','');
replace
-------
9.99

The result is still a VARCHAR, however, so trying to apply an aggregation will return
an error. To fix this, we can cast the result as a FLOAT:

replace('$19.99','$','')::float
cast(replace('$19.99','$','')) as float

Dates and datetimes can come in a bewildering array of formats, and understanding
how to cast them to the desired format is useful. I’ll show a few examples on type
conversion here, and Chapter 3 will go into more detail on date and datetime calcula‐
tions. As a simple example, imagine that transaction or event data often arrives in the
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database as a TIMESTAMP, but we want to summarize some value such as transac‐
tions by day. Simply grouping by the timestamp will result in more rows than
necessary. Casting the TIMESTAMP to a DATE reduces the size of the results and
achieves our summarization goal:

SELECT tx_timestamp::date, count(transactions) as num_transactions
FROM ...
GROUP BY 1
;

Likewise, a DATE can be cast to a TIMESTAMP when a SQL function requires a
TIMESTAMP argument. Sometimes the year, month, and day are stored in separate
columns, or they end up as separate elements because they’ve been parsed out of a
longer string. These then need to be assembled back into a date. To do this, we use the
concatenation operator || (double pipe) or concat function and then cast the result to
a DATE. Any of these syntaxes works and returns the same value:

(year || ',' || month|| '-' || day)::date

Or equivalently:

cast(concat(year, '-', month, '-', day) as date)

Yet another way to convert between string values and dates is by using the date func‐
tion. For example, we can construct a string value as above and convert it into a date:

date(concat(year, '-', month, '-', day))

The to_datatype functions can take both a value and a format string and thus give you
more control over how the data is converted. Table 2-4 summarizes the functions and
their purposes. They are particularly useful when converting in and out of DATE or
DATETIME formats, as they allow you to specify the order of the date and time
elements.

Table 2-4. The to_datatype functions

Function Purpose
to_char Converts other types to string

to_number Converts other types to numeric

to_date Converts other types to date, with specified date parts

to_timestamp Converts other types to date, with specified date and time parts

Sometimes the database automatically converts a data type. This is called type coer‐
cion. For example, INT and FLOAT numerics can usually be used together in mathe‐
matical functions or aggregations without explicitly changing the type. CHAR and
VARCHAR values can usually be mixed. Some databases will coerce BOOLEAN
fields to 0 and 1 values, where 0 is FALSE and 1 is TRUE, but some databases require
you to convert the values explicitly. Some databases are pickier than others about
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mixing dates and datetimes in result sets and functions. You can read through the
documentation, or you can do some simple query experiments to learn how the
database you’re working with handles data types implicitly and explicitly. There is
usually a way to accomplish what you want, though sometimes you need to get crea‐
tive in using functions in your queries.

Dealing with Nulls: coalesce, nullif, nvl Functions
Null was one of the stranger concepts I had to get used to when I started working
with data. Null just isn’t something we think about in daily life, where we’re used to
dealing in concrete quantities of things. Null has a special meaning in databases and
was introduced by Edgar Codd, the inventor of the relational database, to ensure that
databases have a way to represent missing information. If someone asks me how
many parachutes I have, I can answer “zero.” But if the question is never asked, I have
null parachutes.

Nulls can represent fields for which no data was collected or that aren’t applicable for
that row. When new columns are added to a table, the values for previously created
rows will be null unless explicitly filled with some other value. When two tables are
joined via an OUTER JOIN, nulls will appear in any fields for which there is no
matching record in the second table.

Nulls are problematic for certain aggregations and groupings, and different types of
databases handle them in different ways. For example, imagine I have five records,
with 5, 10, 15, 20, and null. The sum of these is 50, but the average is either 10 or 12.5
depending on whether the null value is counted in the denominator. The whole ques‐
tion may also be considered invalid since one of the values is null. For most database
functions, a null input will return a null output. Equalities and inequalities involving
null also return null. A variety of unexpected and frustrating results can be output
from your queries if you are not on the lookout for nulls.

When tables are defined, they can either allow nulls, reject nulls, or populate a default
value if the field would otherwise be left null. In practice, this means that you can’t
always rely on a field to show up as null if the data is missing, because it may have
been filled with a default value such as 0. I once had a long debate with a data engi‐
neer when it turned out that null dates in the source system were defaulting to
“1970-01-01” in our data warehouse. I insisted that the dates should be null instead,
to reflect the fact that they were unknown or not applicable. The engineer pointed out
that I could remember to filter those dates or change them back to null with a CASE
statement. I finally prevailed by pointing out that one day another user who wasn’t as
aware of the nuances of default dates would come along, run a query, and get the puz‐
zling cluster of customers about a year before the company was even founded.
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Nulls are often inconvenient or inappropriate for the analysis you want to do. They
can also make output confusing to the intended audience for your analysis. Business‐
people don’t necessarily understand how to interpret a null value or may assume that
null values represent a problem with data quality.

Empty Strings
A concept related to but slightly different from nulls is empty string, where there is no
value but the field is not technically null. One reason an empty string might be used is
to indicate that a field is known to be blank, as opposed to null, where the value might
be missing or unknown. For example, the database might have a name_suffix field
that can be used to hold a value such as “Jr.” Many people do not have a name_suffix,
so an empty string is appropriate. Empty string can also be used as a default value
instead of null, or as a way to overcome a NOT NULL constraint by inserting a value,
even if empty. An empty string can be specified in a query with two quote marks:

WHERE my_field = '' or my_field <> 'apple'

Profiling the frequencies of values should reveal whether your data includes nulls,
empty strings, or both.

There are a few ways to replace nulls with alternate values: CASE statements, and the
specialized coalesce and nullif functions. We saw previously that CASE statements
can check a condition and return a value. They can also be used to check for a null
and, if one is found, replace it with another value:

case when num_orders is null then 0 else num_orders end

case when address is null then 'Unknown' else address end

case when column_a is null then column_b else column_a end

The coalesce function is a more compact way to achieve this. It takes two or more
arguments and returns the first one that is not null:

coalesce(num_orders,0)

coalesce(address,'Unknown')

coalesce(column_a,column_b)

coalesce(column_a,column_b,column_c)

The function nvl exists in some databases and is similar to
coalesce, but it allows only two arguments.
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The nullif function compares two numbers, and if they are not equal, it returns the
first number; if they are equal, the function returns null. Running this code:

nullif(6,7)

returns 6, whereas null is returned by:

nullif(6,6)

nullif is equivalent to the following, more wordy case statement:

case when 6 = 7 then 6 
     when 6 = 6 then null
     end

This function can be useful for turning values back into nulls when you know a cer‐
tain default value has been inserted into the database. For example, with my default
time example, we could change it back to null by using:

nullif(date,'1970-01-01')

Nulls can be problematic when filtering data in the WHERE clause.
Returning values that are null is fairly straightforward:

WHERE my_field is null

However, imagine that my_field contains some nulls and also
some names of fruits. I would like to return all rows that are not
apples. It seems like this should work:

WHERE my_field <> 'apple'

However, some databases will exclude both the “apple” rows and all
rows with null values in my_field. To correct this, the SQL should
both filter out “apple” and explicitly include nulls by connecting the
conditions with OR:

WHERE my_field <> 'apple' or my_field is null

Nulls are a fact of life when working with data. Regardless of why they occur, we often
need to consider them in profiling and as targets for data cleaning. Fortunately, there
are a number of ways to detect them with SQL, as well as several useful functions that
allow us to replace nulls with alternate values. Next we’ll look at missing data, a prob‐
lem that can cause nulls but has even wider implications and thus deserves a section
of its own.

Missing Data
Data can be missing for a variety of reasons, each with its own implications for how
you decide to handle the data’s absence. A field might not have been required by the
system or process that collected it, as with an optional “how did you hear about us?”
field in an ecommerce checkout flow. Requiring this field might create friction for the
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customer and decrease successful checkouts. Alternatively, data might normally be
required but wasn’t collected due to a code bug or human error, such as in a medical
questionnaire where the interviewer missed the second page of questions. A change
in the way the data was collected can result in records before or after the change hav‐
ing missing values. A tool tracking mobile app interactions might add an additional
field recording whether the interaction was a tap or a scroll, for example, or remove
another field due to functionality change. Data can be orphaned when a table refer‐
ences a value in another table, and that row or the entire table has been deleted or is
not yet loaded into the data warehouse. Finally, data may be available but not at the
level of detail, or granularity, needed for the analysis. An example of this comes from
subscription businesses, where customers pay on an annual basis for a monthly prod‐
uct and we want to analyze monthly revenue.

In addition to profiling the data with histograms and frequency analysis, we can often
detect missing data by comparing values in two tables. For example, we might expect
that each customer in the transactions table also has a record in the customer table.
To check this, query the tables using a LEFT JOIN and add a WHERE condition to
find the customers that do not exist in the second table:

SELECT distinct a.customer_id
FROM transactions a
LEFT JOIN customers b on a.customer_id = b.customer_id
WHERE b.customer_id is null
;

Missing data can be an important signal in and of itself, so don’t assume that it always
needs to be fixed or filled. Missing data can reveal the underlying system design or
biases in the data collection process.

Records with missing fields can be filtered out entirely, but often we want to keep
them and instead make some adjustments based on what we know about expected or
typical values. We have some options, called imputation techniques, for filling in
missing data. These include filling with an average or median of the data set, or with
the previous value. Documenting the missing data and how it was replaced is impor‐
tant, as this may impact the downstream interpretation and use of the data. Imputed
values can be particularly problematic when the data is used in machine learning, for
example.

A common option is to fill missing data with a constant value. Filling with a constant
value can be useful when the value is known for some records even though they were
not populated in the database. For example, imagine there was a software bug that
prevented the population of the price for an item called “xyz,” but we know the price
is always $20. A CASE statement can be added to the query to handle this:

case when price is null and item_name = 'xyz' then 20 
                                              else price 
                                              end as price
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Another option is to fill with a derived value, either a mathematical function on other
columns or a CASE statement. For example, imagine we have a field for the
net_sales amount for each transaction. Due to a bug, some rows don’t have this field
populated, but they do have the gross_sales and discount fields populated. We can
calculate net_sales by subtracting discount from gross_sales:

SELECT gross_sales - discount as net_sales...

Missing values can also be filled with values from other rows in the data set. Carrying
over a value from the previous row is called fill forward, while using a value from the
next row is called fill backward. These can be accomplished with the lag and lead
window functions, respectively. For example, imagine that our transaction table has a
product_price field that stores the undiscounted price a customer pays for a prod
uct. Occasionally this field is not populated, but we can make an assumption that the
price is the same as the price paid by the last customer to buy that product. We can
fill with the previous value using the lag function, PARTITION BY the product to
ensure the price is pulled only from the same product, and ORDER BY the appropri‐
ate date to ensure the price is pulled from the most recent prior transaction:

lag(product_price) over (partition by product order by order_date)

The lead function could be used to fill with product_price for the following transac‐
tion. Alternatively, we could take the avg of prices for the product and use that to fill
in the missing value. Filling with previous, next, or average values involves making
some assumptions about typical values and what’s reasonable to include in an analy‐
sis. It’s always a good idea to check the results to make sure they are plausible and to
note that you have interpolated the data when not available.

For data that is available but not at the granularity needed, we often have to create
additional rows in the data set. For example, imagine we have a customer_subscrip
tions table with the fields subscription_date and annual_amount. We can spread
this annual subscription amount into 12 equal monthly revenue amounts by dividing
by 12, effectively converting ARR (annual recurring revenue) into MRR (monthly
recurring revenue):

SELECT customer_id
,subscription_date
,annual_amount
,annual_amount / 12 as month_1
,annual_amount / 12 as month_2
...
,annual_amount / 12 as month_12
FROM customer_subscriptions
;
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This gets a bit tedious, particularly if subscription periods can be two, three, or five
years as well as one year. It’s also not helpful if what we want is the actual dates of the
months. In theory we could write a query like this:

SELECT customer_id
,subscription_date
,annual_amount
,annual_amount / 12 as '2020-01'
,annual_amount / 12 as '2020-02'
...
,annual_amount / 12 as '2020-12'
FROM customer_subscriptions
;

However, if the data includes orders from customers across time, hardcoding the
month names won’t be accurate. We could use CASE statements in combination with
hardcoded month names, but again this is tedious and is likely to be error-prone as
you add more convoluted logic. Instead, creating new rows through a JOIN to a table
such as a date dimension provides an elegant solution.

A date dimension is a static table that has one row per day, with optional extended
date attributes, such as day of the week, month name, end of month, and fiscal year.
The dates extend far enough into the past and far enough into the future to cover all
anticipated uses. Because there are only 365 or 366 days per year, tables covering even
100 years don’t take up a lot of space. Figure 2-3 shows a sample of the data in a date
dimension table. Sample code to create a date dimension using SQL functions is on
the book’s GitHub site.

Figure 2-3. A date dimension table with date attributes

If you’re using a Postgres database, the generate_series function can be used to cre‐
ate a date dimension either to populate the table initially or if creating a table is not
an option. It takes the following form:
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generate_series(start, stop, step interval)

In this function, start is the first date you want in the series, stop is the last date, and
step interval is the time period between values. The step interval can take any
value, but one day is appropriate for a date dimension:

SELECT * 
FROM generate_series('2000-01-01'::timestamp,'2030-12-31', '1 day')

The generate_series function requires at least one of the arguments to be a TIME‐
STAMP, so “2000-01-01” is cast as a TIMESTAMP. We can then create a query that
results in a row for every day, regardless of whether a customer ordered on a particu‐
lar day. This is useful when we want to ensure that a customer is counted for each day,
or when we specifically want to count or otherwise analyze days on which a customer
did not make a purchase:

SELECT a.generate_series as order_date, b.customer_id, b.items
FROM
(
    SELECT *
    FROM generate_series('2020-01-01'::timestamp,'2020-12-31','1 day')
) a
LEFT JOIN 
(
    SELECT customer_id, order_date, count(item_id) as items
    FROM orders
    GROUP BY 1,2
) b on a.generate_series = b.order_date
;

Returning to our subscription example, we can use the date dimension to create a
record for each month by JOINing the date dimension on dates that are between the
subscription_date and 11 months later (for 12 total months):

SELECT a.date
,b.customer_id
,b.subscription_date
,b.annual_amount / 12 as monthly_subscription
FROM date_dim a
JOIN customer_subscriptions b on a.date between b.subscription_date 
and b.subscription_date + interval '11 months'
;

Data can be missing for various reasons, and understanding the root cause is impor‐
tant in deciding how to deal with it. There are a number of options for finding and
replacing missing data. These include using CASE statements to set default values,
deriving values by performing calculations on other fields in the same row, and inter‐
polating from other values in the same column.

Data cleaning is an important part of the data preparation process. Data may need to
be cleaned for many different reasons. Some data cleaning needs to be done to fix
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poor data quality, such as when there are inconsistent or missing values in the raw
data, while other data cleaning is done to make further analysis easier or more mean‐
ingful. The flexibility of SQL allows us to perform cleaning tasks in a variety of ways.

After data is cleaned, a common next step in the preparation process is shaping the
data set. 

Preparing: Shaping Data
Shaping data refers to manipulating the way the data is represented in columns and
rows. Each table in the database has a shape. The result set of each query has a shape.
Shaping data may seem like a rather abstract concept, but if you work with enough
data, you will come to see its value. It is a skill that can be learned, practiced, and
mastered.

One of the most important concepts in shaping data is figuring out the granularity of
data that you need. Just as rocks can range in size from giant boulders down to grains
of sand, and even further down to microscopic dust, so too can data have varying lev‐
els of detail. For example, if the population of a country is a boulder, then the popula‐
tion of a city is a small rock, and that of a household is a grain of sand. Data at a
smaller level of detail might include individual births and deaths, or moves from one
city or country to another.

Flattening data is another important concept in shaping. This refers to reducing the
number of rows that represent an entity, including down to a single row. Joining mul‐
tiple tables together to create a single output data set is one way to flatten data.
Another way is through aggregation.

In this section, we’ll first cover some considerations for choosing data shapes. Then
we’ll look at some common use cases: pivoting and unpivoting. We’ll see examples of
shaping data for specific analyses throughout the remaining chapters. Chapter 8 will
go into more detail on keeping complex SQL organized when creating data sets for
further analysis.

For Which Output: BI, Visualization, Statistics, ML
Deciding how to shape your data with SQL depends a lot on what you are planning to
do with the data afterward. It’s generally a good idea to output a data set that has as
few rows as possible while still meeting your need for granularity. This will leverage
the computing power of the database, reduce the time it takes to move data from the
database to somewhere else, and reduce the amount of processing you or someone
else needs to do in other tools. Some of the other tools that your output might go to
are a BI tool for reporting and dashboarding, a spreadsheet for business users to
examine, a statistics tool such as R, or a machine learning model in Python—or you
might output the data straight to a visualization created with a range of tools.
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When outputting data to a business intelligence tool for reports and dashboards, it’s
important to understand the use case. Data sets may need to be very detailed to
enable exploration and slicing by end users. They may need to be small and aggrega‐
ted and include specific calculations to enable fast loading and response times in
executive dashboards. Understanding how the tool works, and whether it performs
better with smaller data sets or is architected to perform its own aggregations across
larger data sets, is important. There is no “one size fits all” answer. The more you
know about how the data will be used, the better prepared you will be to shape the
data appropriately.

Smaller, aggregated, and highly specific data sets often work best for visualizations,
whether they are created in commercial software or using a programming language
like R, Python, or JavaScript. Think about the level of aggregation and slices, or vari‐
ous elements, the end users will need to filter on. Sometimes the data sets require a
row for each slice, as well as an “everything” slice. You may need to UNION together
two queries—one at the detail level and one at the “everything” level.

When creating output for statistics packages or machine learning models, it’s impor‐
tant to understand the core entity being studied, the level of aggregation desired, and
the attributes or features needed. For example, a model might need one record per
customer with several attributes, or a record per transaction with its associated
attributes as well as customer attributes. Generally, the output for modeling will fol‐
low the notion of “tidy data” proposed by Hadley Wickham.2 Tidy data has these
properties:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each value is a cell.

We will next look at how to use SQL to transform data from the structure in which it
exists in your database into any other pivoted or unpivoted structure that is needed
for analysis.

Pivoting with CASE Statements
A pivot table is a way to summarize data sets by arranging the data into rows, accord‐
ing to the values of an attribute, and columns, according to the values of another
attribute. At the intersection of each row and column, a summary statistic such as
sum, count, or avg is calculated. Pivot tables are often a good way to summarize data
for business audiences, since they reshape the data into a more compact and easily
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understandable form. Pivot tables are widely known from their implementation in
Microsoft Excel, which has a drag-and-drop interface to create the summaries of data.

Pivot tables, or pivoted output, can be created in SQL using a CASE statement along
with one or more aggregation functions. We’ve seen CASE statements several times so
far, and reshaping data is another major use case for them. For example, imagine we
have an orders table with a row for each purchase made by customers. To flatten the
data, GROUP BY the customer_id and sum the order_amount:

SELECT customer_id
,sum(order_amount) as total_amount
FROM orders
GROUP BY 1
; 

customer_id  total_amount
-----------  ------------
123          59.99
234          120.55
345          87.99
...          ...

To create a pivot, we will additionally create columns for each of the values of an
attribute. Imagine the orders table also has a product field that contains the type of
item purchased and the order_date. To create pivoted output, GROUP BY the
order_date, and sum the result of a CASE statement that returns the order_amount
whenever the row meets the product name criteria:

SELECT order_date
,sum(case when product = 'shirt' then order_amount 
          else 0 
          end) as shirts_amount
,sum(case when product = 'shoes' then order_amount 
          else 0 
          end) as shoes_amount
,sum(case when product = 'hat' then order_amount 
          else 0 
          end) hats_amount
FROM orders
GROUP BY 1
;

order_date  shirts_amount  shoes_amount  hats_amount
----------  -------------  ------------  -----------
2020-05-01  5268.56        1211.65       562.25
2020-05-02  5533.84        522.25        325.62
2020-05-03  5986.85        1088.62       858.35
...         ...            ...           ...

Note that with the sum aggregation, you can optionally use “else 0” to avoid nulls in
the result set. With count or count distinct, however, you should not include an
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ELSE statement, as doing so would inflate the result set. This is because the database
won’t count a null, but it will count a substitute value such as zero. 

Pivoting with CASE statements is quite handy, and having this ability opens up data
warehouse table designs that are long and narrow rather than wide, which can be bet‐
ter for storing sparse data, because adding columns to a table can be an expensive
operation. For example, rather than storing various customer attributes in many dif‐
ferent columns, a table could contain multiple records per customer, with each
attribute in a separate row, and with attribute_name and attribute_value fields
specifying what the attribute is and its value. The data can then be pivoted as needed
to assemble a customer record with the desired attributes. This design is efficient
when there are many sparse attributes (only a subset of customers have values for
many of the attributes).

Pivoting data with a combination of aggregation and CASE statements works well
when there are a finite number of items to pivot. For people who have worked with
other programming languages, it’s essentially looping, but written out explicitly line
by line. This gives you a lot of control, such as if you want to calculate different met‐
rics in each column, but it can also be tedious. Pivoting with case statements doesn’t
work well when new values arrive constantly or are rapidly changing, since the SQL
code would need to be constantly updated. In those cases, pushing the computing to
another layer of your analysis stack, such as a BI tool or statistical language, may be
more appropriate.

Unpivoting with UNION Statements
Sometimes we have the opposite problem and need to move data stored in columns
into rows instead to create tidy data. This operation is called unpivoting. Data sets that
may need unpivoting are those that are in a pivot table format. As an example, the
populations of North American countries at 10-year intervals starting in 1980 are
shown in Figure 2-4.

Figure 2-4. Country population by year (in thousands)3
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To turn this into a result set with a row per country per year, we can use a UNION
operator. UNION is a way to combine data sets from multiple queries into a single
result set. There are two forms, UNION and UNION ALL. When using UNION or
UNION ALL, the numbers of columns in each component query must match. The
data types must match or be compatible (integers and floats can be mixed, but inte‐
gers and strings cannot). The column names in the result set come from the first
query. Aliasing the fields in the remaining queries is therefore optional but can make
a query easier to read:

SELECT country
,'1980' as year
,year_1980 as population
FROM country_populations
    UNION ALL
SELECT country
,'1990' as year
,year_1990 as population
FROM country_populations
    UNION ALL
SELECT country
,'2000' as year
,year_2000 as population
FROM country_populations
    UNION ALL
SELECT country
,'2010' as year
,year_2010 as population
FROM country_populations
;

country        year  population
-------------  ----  ----------
Canada         1980  24593
Mexico         1980  68347
United States  1980  227225
...            ...   ...

In this example, we use a constant to hardcode the year, in order to keep track of the
year that the population value corresponds to. The hardcoded values can be of any
type, depending on your use case. You may need to explicitly cast certain hardcoded
values, such as when entering a date:

'2020-01-01'::date as date_of_interest

56 | Chapter 2: Preparing Data for Analysis



What is the difference between UNION and UNION ALL? Both can be used to
append or stack data together in this fashion, but they are slightly different. UNION
removes duplicates from the result set, whereas UNION ALL retains all records,
whether duplicates or not. UNION ALL is faster, since the database doesn’t have to do
a pass over the data to find duplicates. It also ensures that every record ends up in the
result set. I tend to use UNION ALL, using UNION only when I have a reason to sus‐
pect duplicate data.

UNIONing data can also be useful for bringing together data from different sources.
For example, imagine we have a populations table with yearly data per country, and
another gdp table with yearly gross domestic product, or GDP. One option is to JOIN
the tables and obtain a result set with one column for population and another for
GDP:

SELECT a.country, a.population, b.gdp
FROM populations a
JOIN gdp b on a.country = b.country
;

Another option is to UNION ALL the data sets so that we end up with a stacked
data set:

SELECT country, 'population' as metric, population as metric_value
FROM populations
    UNION ALL
SELECT country, 'gdp' as metric, gdp as metric_value
FROM gdp
;

Which approach you use largely depends on the output that you need for your analy‐
sis. The latter option can be useful when you have a number of different metrics in
different tables and no single table has a full set of entities (in this case, countries).
This is an alternative approach to a FULL OUTER JOIN.

pivot and unpivot Functions
Recognizing that the pivot and unpivot use cases are common, some database ven‐
dors have implemented functions to do this with fewer lines of code. Microsoft SQL
Server and Snowflake have pivot functions that take the form of extra expressions in
the WHERE clause. Here, aggregation is any aggregation function, such as sum or avg,
the value_column is the field to be aggregated, and a column will be created for each
value of the label_column listed as a label:

SELECT...
FROM... 
    pivot(aggregation(value_column) 
          for label_column in (label_1, label_2, ...)
;
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We could rewrite the earlier pivoting example that used CASE statements as follows:

SELECT *
FROM orders
  pivot(sum(order_amount) for product in ('shirt','shoes'))
GROUP BY order_date
;

Although this syntax is more compact than the CASE construction we saw earlier, the
desired columns still need to be specified. As a result, pivot doesn’t solve the problem
of newly arriving or rapidly changing sets of fields that need to be turned into col‐
umns. Postgres has a similar crosstab function, available in the tablefunc module.

Microsoft SQL Server and Snowflake also have unpivot functions that work in a sim‐
ilar fashion to expressions in the WHERE clause and transform rows into columns:

SELECT...
FROM... 
    unpivot( value_column for label_column in (label_1, label_2, ...))
;

For example, the country_populations data from the previous example could be
reshaped in the following manner:

SELECT *
FROM country_populations 
    unpivot(population for year in (year_1980, year_1990, year_2000, year_2010))
;

Here again the syntax is more compact than the UNION or UNION ALL approach we
looked at earlier, but the list of columns must be specified in the query.

Postgres has an unnest array function that can be used to unpivot data, thanks to its
array data type. An array is a collection of elements, and in Postgres you can list the
elements of an array in square brackets. The function can be used in the SELECT
clause and takes this form:

unnest(array[element_1, element_2, ...])

Returning to our earlier example with countries and populations, this query returns
the same result as the query with the repeated UNION ALL clauses:

SELECT 
country
,unnest(array['1980', '1990', '2000', '2010']) as year
,unnest(array[year_1980, year_1990, year_2000, year_2010]) as pop
FROM country_populations
;
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country  year  pop
-------  ----  -----
Canada   1980  24593
Canada   1990  27791
Canada   2000  31100
...      ...   ...

Data sets arrive in many different formats and shapes, and they aren’t always in the
format needed in our output. There are several options for reshaping data through
pivoting or unpivoting it, either with CASE statements or UNIONs, or with database-
specific functions. Understanding how to manipulate your data in order to shape it in
the way you want will give you greater flexibility in your analysis and in the way you
present your results.

Conclusion
Preparing data for analysis can feel like the work you do before you get to the real
work of analysis, but it is so fundamental to understanding the data that I always find
it is time well spent. Understanding the different types of data you’re likely to
encounter is critical, and you should take the time to understand the data types in
each table you work with. Profiling data helps us learn more about what is in the data
set and examine it for quality. I often return to profiling throughout my analysis
projects, as I learn more about the data and need to check my query results along the
way as I build in complexity. Data quality will likely never stop being a problem, so
we’ve looked at some ways to handle the cleaning and enhancement of data sets.
Finally, knowing how to shape the data to create the right output format is essential.
We’ll see these topics recur in the context of various analyses throughout the book.
The next chapter, on time series analysis, starts our journey into specific analysis
techniques.
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CHAPTER 3

Time Series Analysis

Now that I’ve covered SQL and databases and the key steps in preparing data for
analysis, it’s time to turn to specific types of analysis that can be done with SQL.
There are a seemingly unending number of data sets in the world, and correspond‐
ingly infinite ways in which they could be analyzed. In this and the following chap‐
ters, I have organized types of analysis into themes that I hope will be helpful as you
build your analysis and SQL skills. Many of the techniques to be discussed build on
those shown in Chapter 2 and then on the preceding chapters as the book progresses.
Time series of data are so prevalent and so important that I’ll start the series of analy‐
sis themes here.

Time series analysis is one of the most common types of analysis done with SQL. A
time series is a sequence of measurements or data points recorded in time order, often
at regularly spaced intervals. There are many examples of time series data in daily life,
such as the daily high temperature, the closing value of the S&P 500 stock index, or
the number of daily steps recorded by your fitness tracker. Time series analysis is
used in a wide variety of industries and disciplines, from statistics and engineering to
weather forecasting and business planning. Time series analysis is a way to under‐
stand and quantify how things change over time.

Forecasting is a common goal of time series analysis. Since time only marches for‐
ward, future values can be expressed as a function of past values, while the reverse is
not true. However, it’s important to note that the past doesn’t perfectly predict the
future. Any number of changes to wider market conditions, popular trends, product
introductions, or other large changes make forecasting difficult. Still, looking at his‐
torical data can lead to insights, and developing a range of plausible outcomes is use‐
ful for planning. As I’m writing this, the world is in the midst of a global COVID-19
pandemic, the likes of which haven’t been seen in 100 years—predating all but the
most long-lived organizations’ histories. Thus many current organizations haven’t
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seen this specific event before, but they have existed through other economic crises,
such as those following the dot-com burst and the 9/11 attacks in 2001, as well as the
global financial crisis of 2007–2008. With careful analysis and understanding of con‐
text, we can often extract useful insights.

In this chapter, we’ll first cover the SQL building blocks of time series analysis: syntax
and functions for working with dates, timestamps, and time. Next, I’ll introduce the
retail sales data set used for examples throughout the rest of the chapter. A discussion
of methods for trending analysis follows, and then I’ll cover calculating rolling time
windows. Next are period-over-period calculations to analyze data with seasonality
components. Finally, we’ll wrap up with some additional techniques that are useful
for time series analysis.

Date, Datetime, and Time Manipulations
Dates and times come in a wide variety of formats, depending on the data source. We
often need or want to transform the raw data format for our output, or to perform
calculations to arrive at new dates or parts of dates. For example, the data set might
contain transaction timestamps, but the goal of the analysis is to trend monthly sales.
At other times, we might want to know how many days or months have elapsed since
a particular event. Fortunately, SQL has powerful functions and formatting capabili‐
ties that can transform just about any raw input to almost any output we might need
for analysis.

In this section, I’ll show you how to convert between time zones, and then I’ll go into
depth on formatting dates and datetimes. Next, I’ll explore date math and time
manipulations, including those that make use of intervals. An interval is a data type
that holds a span of time, such as a number of months, days, or hours. Although data
can be stored in a database table as an interval type, in practice I rarely see this done,
so I will talk about intervals alongside the date and time functions that you can use
them with. Last, I’ll discuss some special considerations when joining or otherwise
combining data from different sources.

Time Zone Conversions
Understanding the standard time zone used in a data set can prevent misunderstand‐
ings and mistakes further into the analysis process. Time zones split the world into
north-south regions that observe the same time. Time zones allow different parts of
the world to have similar clock times for daytime and nighttime—so, for example, the
sun is overhead at 12 p.m. wherever you are in the world. The zones follow irregular
boundaries that are as much political as geographic ones. Most are one hour apart,
but some are offset only 30 or 45 minutes, and so there are more than 30 time zones
spanning the globe. Many countries that are distant from the equator observe day‐
light savings time for parts of the year as well, but there are exceptions, such as in the
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United States and Australia, where some states observe daylight savings time and oth‐
ers do not. Each time zone has a standard abbreviation, such as PST for Pacific Stan‐
dard Time and PDT for Pacific Daylight Time.

Many databases are set to Coordinated Universal Time (UTC), the global standard
used to regulate clocks, and record events in this time zone. It replaced Greenwich
Mean Time (GMT), which you might still see if your data comes from an older data‐
base. UTC does not have daylight savings time, so it stays consistent all year long.
This turns out to be quite useful for analysis. I remember one time a panicked prod‐
uct manager asked me to figure out why sales on a particular Sunday dropped so
much compared to the prior Sunday. I spent hours writing queries and investigating
possible causes before eventually figuring out that our data was recorded in Pacific
Time (PT). Daylight savings started early Sunday morning, the database clock moved
ahead 1 hour, and the day had only 23 hours instead of 24, and thus sales appeared to
drop. Half a year later we had a corresponding 25-hour day, when sales appeared
unusually high.

Often timestamps in the database are not encoded with the time
zone, and you will need to consult with the source or developer to
figure out how your data was stored. UTC has become most com‐
mon in the data sets I see, but that is certainly not universal.

One drawback to UTC, or really to any logging of machine time, is that we lose infor‐
mation about the local time for the human doing the actions that generated the event
recorded in the database. I might want to know whether people tend to use my
mobile app more during the workday or during nights and weekends. If my audience
is clustered in one time zone, it’s not hard to figure this out. But if the audience spans
multiple time zones or is international, then it becomes a calculation task of convert‐
ing each recorded time to its local time zone.

All local time zones have a UTC offset. For example, the offset for PDT is UTC – 7
hours, while the offset for PST is UTC – 8 hours. Timestamps in databases are stored
in the format YYYY-MM-DD hh:mi:ss (for years-months-days hours:minutes:sec‐
onds). Timestamps with the time zone have an additional piece of information for the
UTC offset, expressed as a positive or negative number. Converting from one time
zone to another can be accomplished with at time zone followed by the destination
time zone’s abbreviation. For example, we can convert a timestamp in UTC (offset –
0) to PST:

SELECT '2020-09-01 00:00:00 -0' at time zone 'pst';

timezone
-------------------
2020-08-31 16:00:00
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The destination time zone name can be a constant, or a database field, allowing this
conversion to be dynamic to the data set. Some databases have a convert_timezone
or convert_tz function that works similarly. One argument is the time zone of the
result, and the other argument is the time zone from which to convert:

SELECT convert_timezone('pst','2020-09-01 00:00:00 -0');

timezone
-------------------
2020-08-31 16:00:00

Check your database’s documentation for the exact name and ordering of the target
time zone and the source timestamp arguments. Many databases contain a list of time
zones and their abbreviations in a system table. Some common ones are seen in
Table 3-1. These can be queried with SELECT * FROM the table name. Wikipedia also
has a useful list of standard time zone abbreviations and their UTC offsets.

Table 3-1. Time zone information system tables in common databases
Postgres pg_timezone_names

MySQL mysql.time_zone_names

SQL Server sys.time_zone_info

Redshift pg_timezone_names

Time zones are an innate part of working with timestamps. With time zone conver‐
sion functions, moving between the time zone in which the data was recorded and
any other world time zone is possible. Next, I’ll show you a variety of techniques for
manipulating dates and timestamps with SQL.

Date and Timestamp Format Conversions
Dates and timestamps are key to time series analysis. Due to the wide variety of ways
in which dates and times can be represented in source data, it is almost inevitable that
you will need to convert date formats at some point. In this section, I’ll cover several
of the most common conversions and how to accomplish them with SQL: changing
the data type, extracting parts of a date or timestamp, and creating a date or time‐
stamp from parts. I’ll begin by introducing some handy functions that return the
current date and/or time.

Returning the current date or time is a common analysis task—for example, to
include a timestamp for the result set or to use in date math, covered in the next sec‐
tion. The current date and time are referred to as system time, and while returning
them is easy to do with SQL, there are some syntax differences between databases.
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To return the current date, some databases have a current_date function, with no
parentheses:

SELECT current_date;

There is a wider variety of functions to return the current date and time. Check your
database’s documentation or just experiment by typing into a SQL window to see
whether a function returns a value or an error. The functions with parentheses do not
take arguments, but it is important to include the parentheses:

current_timestamp
localtimestamp
get_date()
now()

Finally, there are functions to return only the timestamp portion of the current
system time. Again, consult documentation or experiment to figure out which func‐
tion(s) to use with your database:

current_time
localtime
timeofday()

SQL has a number of functions for changing the format of dates and times. To reduce
the granularity of a timestamp, use the date_trunc function. The first argument is a
text value indicating the time period level to which to truncate the timestamp in the
second argument. The result is a timestamp value:

date_trunc (text, timestamp)

SELECT date_trunc('month','2020-10-04 12:33:35'::timestamp);

date_trunc
-------------------
2020-10-01 00:00:00

Standard arguments that can be used are listed in Table 3-2. They range all the way
from microseconds to millennia, providing plenty of flexibility. Databases that don’t
support date_trunc, such as MySQL, have an alternate function called date_format
that can be used in a similar way:

SELECT date_format('2020-10-04 12:33:35','%Y-%m-01') as date_trunc;

date_trunc
-------------------
2020-10-01 00:00:00
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Table 3-2. Standard time period arguments

Time period arguments
microsecond
millisecond
second
minute
hour
day
week
month
quarter
year
decade
century
millennium

Rather than returning dates or timestamps, sometimes our analysis calls for parts of
dates or times. For example, we might want to group sales by month, day of the week,
or hour of the day.

SQL provides a few functions for returning just the part of the date or timestamp
required. Dates and timestamps are usually interchangeable, except when the request
is to return a time part. In those cases, time is of course required.

The date_part function takes a text value for the part to be returned and a date or
timestamp value. The returned value is a FLOAT, which is a numeric value with a
decimal part; depending on your needs, you may want to cast the value to an integer
data type:

SELECT date_part('day',current_timestamp);
SELECT date_part('month',current_timestamp);
SELECT date_part('hour',current_timestamp);

Another function that works similarly is extract, which takes a part name and a date
or timestamp value and returns a FLOAT value:

SELECT extract('day' from current_timestamp);

date_part
---------
27.0

SELECT extract('month' from current_timestamp);
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date_part
---------
5.0

SELECT extract('hour' from current_timestamp);

date_part
---------
14.0

The functions date_part and extract can be used with intervals, but note that the
requested part must match the units of the interval. So, for example, requesting days
from an interval stated in days returns the expected value of 30:

SELECT date_part('day',interval '30 days');

SELECT extract('day' from interval '30 days');

date_part
---------
30.0

However, requesting days from an interval stated in months returns a value of 0.0:

SELECT extract('day' from interval '3 months');

date_part
---------
0.0

A full list of date parts can be found in your database’s documenta‐
tion or by searching online, but some of the most common are
“day,” “month,” and “year” for dates, and “second,” “minute,” and
“hour” for timestamps.

To return text values of the date parts, use the to_char function, which takes the
input value and the output format as arguments:

SELECT to_char(current_timestamp,'Day');
SELECT to_char(current_timestamp,'Month');

If you ever encounter timestamps stored as Unix epochs (the num‐
ber of seconds that have elapsed since January 1, 1970, at 00:00:00
UTC), you can convert them to timestamps using the to_time
stamp function.

Sometimes analysis calls for creating a date from parts from different sources. This
can occur when the year, month, and day values are stored in different columns in the
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database. It can also be necessary when the parts have been parsed out of text, a topic
I’ll cover in more depth in Chapter 5.

A simple way to create a timestamp from separate date and time components is to
concatenate them together with a plus sign (+):

SELECT date '2020-09-01' + time '03:00:00' as timestamp;

timestamp 
-------------------
2020-09-01 03:00:00

A date can be assembled using the make_date, makedate, date_from_parts, or date
fromparts function. These are equivalent, but different databases name the functions
differently. The function takes arguments for the year, month, and day parts and
returns a value with a date format:

SELECT make_date(2020,09,01);

make_date
----------
2020-09-01

The arguments can be constants or reference field names and must be integers. Yet
another way to assemble a date or timestamp is to concatenate the values together
and then cast the result to a date format using one of the casting syntaxes or the
to_date function:

SELECT to_date(concat(2020,'-',09,'-',01), 'yyyy-mm-dd');

to_date
----------
2020-09-01

SELECT cast(concat(2020,'-',09,'-',01) as date);

to_date
----------
2020-09-01

SQL has a number of ways to format and convert dates and timestamps and retrieve
system dates and times. In the next section, I will start putting them to use in date
math.

Date Math
SQL allows us to do various mathematical operations on dates. This might be surpris‐
ing since, strictly speaking, dates are not numeric data types, but the concept should
be familiar if you’ve ever tried to figure out what day it will be four weeks from now.
Date math is useful for a variety of analytics tasks. For example, we can use it to find
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the age or tenure of a customer, how much time elapsed between two events, and how
many things occurred within a window of time.

Date math involves two types of data: the dates themselves and intervals. We need the
concept of intervals because date and time components don’t behave like integers.
One-tenth of 100 is 10; one-tenth of a year is 36.5 days. Half of 100 is 50; half of a day
is 12 hours. Intervals allow us to move smoothly between units of time. Intervals
come in two types: year-month intervals and day-time ones. We’ll start with a few
operations that return integer values and then move on to functions that work with
or return intervals.

First, let’s find the days elapsed between two dates. There are several ways to do this
in SQL. The first way is by using a mathematical operator, the minus sign (–):

SELECT date('2020-06-30') - date('2020-05-31') as days;

days
----
30

This returns the number of days between these two dates. Note that the answer is 30
days and not 31. The number of days is inclusive of only one of the endpoints. Sub‐
tracting the dates in the reverse also works and returns an interval of –30 days:

SELECT date('2020-05-31') - date('2020-06-30') as days;

days
----
-30

Finding the difference between two dates can also be accomplished with the datediff
function. Postgres does not support it, but many other popular databases do, includ‐
ing SQL Server, Redshift, and Snowflake, and it’s quite handy, particularly when the
goal is to return an interval other than the number of days. The function takes three
arguments—the time period units you want to return, a starting timestamp or date,
and an ending timestamp or date:

datediff(interval_name, start_timestamp, end_timestamp)

So our previous example would look like this:

SELECT datediff('day',date('2020-05-31'), date('2020-06-30')) as days;

days
----
30

We can also find the number of months between two dates, and the database will do
the correct math even though month lengths differ throughout the year:

Date, Datetime, and Time Manipulations | 69



SELECT datediff('month'
                ,date('2020-01-01')
                ,date('2020-06-30')
                ) as months;

months
------
5

In Postgres, this can be accomplished using the age function, which calculates the
interval between two dates:

SELECT age(date('2020-06-30'),date('2020-01-01'));

age
--------------
5 mons 29 days

We can then find the number of months component of the interval with the
date_part() function:

SELECT date_part('month',age('2020-06-30','2020-01-01')) as months;

months
------
5.0

Subtracting dates to find the time elapsed between them is quite powerful. Adding
dates does not work in the same way. To do addition with dates, we need to leverage
intervals or special functions.

For example, we can add seven days to a date by adding the interval '7 days':

SELECT date('2020-06-01') + interval '7 days' as new_date;

new_date
-------------------
2020-06-08 00:00:00

Some databases don’t require the interval syntax and instead automatically convert
the provided number to days, although it’s generally good practice to use the interval
notation, both for cross-database compatibility and to make your code easier to read:

SELECT date('2020-06-01') + 7 as new_date;

new_date
-------------------
2020-06-08 00:00:00

If you want to add a different unit of time, use the interval notation with months,
years, hours, or another date or time period. Note that this can also be used to sub‐
tract intervals from dates by using a “-” instead of a “+.” Many but not all databases
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have a date_add or dateadd function that takes the desired interval, a value, and the
starting date and does the math:

SELECT date_add('month',1,'2020-06-01') as new_date;

new_date
----------
2020-07-01

Consult your database’s documentation, or just experiment with
queries, to figure out the syntax and functions that are available
and appropriate for your project.

Any of these formulations can be used in the WHERE clause in addition to the
SELECT clause. For example, we can filter to records that occurred at least three
months ago:

WHERE event_date < current_date - interval '3 months'

They can also be used in JOIN conditions, but note that database performance will
usually be slower when the JOIN condition contains a calculation rather than an
equality or inequality between dates.

Using date math is common in analysis with SQL, both to find the time elapsed
between dates or timestamps and to calculate new dates based on an interval from a
known date. There are several ways to find the elapsed time between two dates, add
intervals to dates, and subtract intervals from dates. Next, we’ll turn to time manipu‐
lations, which are similar.

Time Math
Time math is less common in many areas of analysis, but it can be useful in some
situations. For example, we might want to know how long it takes for a support rep‐
resentative to answer a phone call in a call center or respond to an email requesting
assistance. Whenever the elapsed time between two events is less than a day, or when
rounding the result to a number of days doesn’t provide enough information, time
manipulation comes into play. Time math works similarly to date math, by leveraging
intervals. We can add time intervals to times:

SELECT time '05:00' + interval '3 hours' as new_time;

new_time
--------
08:00:00

Date, Datetime, and Time Manipulations | 71



We can subtract intervals from times:

SELECT time '05:00' - interval '3 hours' as new_time;

new_time
--------
02:00:00

We can also subtract times, resulting in an interval:

SELECT time '05:00' - time '03:00' as time_diff;

time_diff
---------
02:00:00

Times, unlike dates, can be multiplied:

SELECT time '05:00' * 2 as time_multiplied;

time_multiplied
---------------
10:00:00

Intervals can also be multiplied, resulting in a time value:

SELECT interval '1 second' * 2000 as interval_multiplied;

interval_multiplied
-------------------
00:33:20

SELECT interval '1 day' * 45 as interval_multiplied;

interval_multiplied
-------------------
45 days

These examples use constant values, but you can include database field names or cal‐
culations in the SQL query as well to make the calculations dynamic. Next, I’ll discuss
special date considerations to keep in mind when combining data sets from different
source systems.

Joining Data from Different Sources
Combining data from different sources is one of the most compelling use cases for a
data warehouse. However, different source systems can record dates and times in dif‐
ferent formats or different time zones or even just be off slightly due to issues with the
internal clock time of the server. Even tables from the same data source can have dif‐
ferences, though this is less common. Reconciling and standardizing dates and time‐
stamps is an important step before moving further in the analysis.
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Dates and timestamps that are in different formats can be standardized with SQL.
JOINing on dates or including date fields in UNIONs generally requires that the dates
or timestamps be in the same format. Earlier in the chapter, I showed techniques for
formatting dates and timestamps that will serve well with these problems. Take care
with time zones when combining data from different sources. For example, an inter‐
nal database may use UTC time, but data from a third party could be in a local time
zone. I have seen data sourced from software as a service (SaaS) that was recorded in
a variety of local times. Note that the timestamp values themselves won’t necessarily
have the time zone embedded. You may need to consult the vendor’s documentation
and convert the data to UTC if the rest of your data is stored that way. Another
option is to store the time zone in a field so that the timestamp value can be con‐
verted as needed.

Another thing to look out for when working with data from different sources is time‐
stamps that are slightly out of sync. This can happen when timestamps are recorded
from client devices—for example, from a laptop or mobile phone in one data source
and a server in the other data source. I once saw a series of experiment results be mis‐
calculated because the client mobile device that recorded a user’s action was offset by
a few minutes from the server that recorded the treatment group to which the user
was assigned. Data from the mobile clients appeared to arrive before the treatment
group timestamp, so some events were inadvertently excluded. A fix for something
like this is relatively straightforward: rather than filter for action timestamps greater
than the treatment group timestamp, allow events within a short interval or window
of time prior to the treatment timestamp to be included in the results. This can be
accomplished with a BETWEEN clause and date math, as seen in the last section.

When working with data from mobile apps, pay particular attention to whether the
timestamps represent when the action happened on the device or when the event
arrived in the database. The difference can range from negligible all the way up to
days, depending on whether the mobile app allows offline usage and on how it han‐
dles sending data during periods of low signal strength. Data from mobile apps can
be late-arriving or may make its way into the database days after it occurred on the
device. Dates and timestamps can also become corrupted en route, and you may see
ones that are impossibly distant in the past or future as a result.

Now that I’ve shown how to manipulate dates, datetimes, and time by changing the
formats, converting time zones, performing date math, and working across data sets
from different sources, we’re ready to get into some time series examples. First, I’ll
introduce the data set for examples in the rest of the chapter.
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The Retail Sales Data Set
The examples in the rest of this chapter use a data set of monthly US retail sales from
the Monthly Retail Trade Report: Retail and Food Services Sales: Excel (1992–
present), available on the Census.gov website. The data in this report is used as an
economic indicator to understand trends in US consumer spending patterns. While
gross domestic product (GDP) figures are published quarterly, this retail sales data is
published monthly, so it is also used to help predict GDP. For both of these reasons,
the latest figures are usually covered in the business press when they are released.

The data spans from 1992 to 2020 and includes both total sales as well as details for
subcategories of retail sales. It contains both unadjusted and seasonally adjusted
numbers. This chapter will use the unadjusted numbers, since one of the goals is ana‐
lyzing seasonality. Sales figures are in millions of US dollars. The original file format
is an Excel file, with a tab for each year and with months as columns. The GitHub site
for this book has the data in a format that’s easier to import into a database, along
with code specifically for importing into Postgres. Figure 3-1 shows a sample of the
retail_sales table.

Figure 3-1. Preview of the US retail sales data set
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Trending the Data
With time series data, we often want to look for trends in the data. A trend is simply
the direction in which the data is moving. It may be moving up or increasing over
time, or it may be moving down or decreasing over time. It can remain more or less
flat, or there could be so much noise, or movement up and down, that it’s hard to
determine a trend at all. This section will cover several techniques for trending time
series data, from simple trends for graphing to comparing components of a trend,
using percent of total calculations to compare parts to the whole, and finally indexing
to see the percent change from a reference time period.

Simple Trends
Creating a trend may be a step in profiling and understanding data, or it may be the
final output. The result set is a series of dates or timestamps and a numerical value. 
When graphing a time series, the dates or timestamps will become the x-axis, and the
numerical value will be the y-axis. For example, we can check the trend of total retail
and food services sales in the US:

SELECT sales_month
,sales
FROM retail_sales
WHERE kind_of_business = 'Retail and food services sales, total'
;

sales_month  sales
-----------  ------
1992-01-01   146376
1992-02-01   147079
1992-03-01   159336
...          ...

The results are graphed in Figure 3-2.
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Figure 3-2. Trend of monthly retail and food services sales

This data clearly has some patterns, but it also has some noise. Transforming the data
and aggregating at the yearly level can help us gain a better understanding. First, we’ll
use the date_part function to return just the year from the sales_month field and
then sum the sales. The results are filtered to the “Retail and food services sales,
total” kind_of_business in the WHERE clause:

SELECT date_part('year',sales_month) as sales_year   
,sum(sales) as sales
FROM retail_sales
WHERE kind_of_business = 'Retail and food services sales, total'
GROUP BY 1
;

sales_year  sales
----------  -------
1992.0      2014102
1993.0      2153095
1994.0      2330235
...         ...

After graphing this data, as in Figure 3-3, we now have a smoother time series that is
generally increasing over time, as might be expected, since the sales values are not
adjusted for inflation. Sales for all retail and food services fell in 2009, during the
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global financial crisis. After growing every year throughout the 2010s, sales were flat
in 2020 compared to 2019, due to the impact of the COVID-19 pandemic.

Figure 3-3. Trend of yearly total retail and food services sales

Graphing time series data at different levels of aggregation, such as weekly, monthly,
or yearly, is a good way to understand trends. This step can be used to simply profile
the data, but it can also be the final output, depending on the goals of the analysis. 
Next, we’ll turn to using SQL to compare components of a time series.

Comparing Components
Often data sets contain not just a single time series but multiple slices or components
of a total across the same time range. Comparing these slices often reveals interesting
patterns. In the retail sales data set, there are values for total sales but also a number
of subcategories. Let’s compare the yearly sales trend for a few categories that are
associated with leisure activities: book stores, sporting goods stores, and hobby stores.
This query adds kind_of_business in the SELECT clause and, since it is another
attribute rather than an aggregation, adds it to the GROUP BY clause  as well:

SELECT date_part('year',sales_month) as sales_year
,kind_of_business
,sum(sales) as sales
FROM retail_sales
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WHERE kind_of_business in ('Book stores'
 ,'Sporting goods stores','Hobby, toy, and game stores')
GROUP BY 1,2
;

sales_year  kind_of_business             sales
----------  ---------------------------  -----
1992.0      Book stores                  8327
1992.0      Hobby, toy, and game stores  11251
1992.0      Sporting goods stores        15583
...         ...                          ...

The results are graphed in Figure 3-4. Sales at sporting goods retailers started the
highest among the three categories and grew much faster during the time period, and
by the end of the time series, those sales were substantially higher. Sales at sporting
goods stores started declining in 2017 but had a big rebound in 2020. Sales at hobby,
toy, and game stores were relatively flat over this time span, with a slight dip in the
mid-2000s and another slight decline prior to a rebound in 2020. Sales at book stores
grew until the mid-2000s and have been on the decline since then. All of these cate‐
gories have been impacted by the growth of online retailers, but the timing and mag‐
nitude seem to differ.

Figure 3-4. Trend of yearly retail sales for sporting goods stores; hobby, toy, and game
stores; and book stores
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In addition to looking at simple trends, we might want to perform more complex
comparisons between parts of the time series. For the next few examples, we’ll look at
sales at women’s clothing stores and at men’s clothing stores. Note that since the
names contain apostrophes, the character otherwise used to indicate the beginning
and end of strings, we need to escape them with an extra apostrophe. This lets the
database know that the apostrophe is part of the string rather than the end. Although
we might consider adding a step in a data-loading pipeline that removes extra apos‐
trophes in names, I’ve left them in here as a demonstration of the types of code
adjustments that are often needed in the real world. First, we’ll trend the data for each
type of store by month:

SELECT sales_month
,kind_of_business
,sales
FROM retail_sales
WHERE kind_of_business in ('Men''s clothing stores'
 ,'Women''s clothing stores')
;

sales_month  kind_of_business         sales
-----------  -----------------------  -----
1992-01-01   Men's clothing stores    701
1992-01-01   Women's clothing stores  1873
1992-02-01   Women's clothing stores  1991
...          ...                      ...

The results are graphed in Figure 3-5. Sales at women’s clothing retailers are much
higher than those at men’s clothing retailers. Both types of stores exhibit seasonality, a
topic I’ll cover in depth in “Analyzing with Seasonality” on page 107. Both experi‐
enced significant drops in 2020 due to store closures and a reduction in shopping
because of the COVID-19 pandemic.
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Figure 3-5. Monthly trend of sales at women’s and men’s clothing stores

The monthly data has intriguing patterns but is noisy, so we’ll use yearly aggregates
for the next few examples. We’ve seen this query format previously when rolling up
total sales and sales for leisure categories:

SELECT date_part('year',sales_month) as sales_year
,kind_of_business
,sum(sales) as sales
FROM retail_sales
WHERE kind_of_business in ('Men''s clothing stores'
 ,'Women''s clothing stores')
GROUP BY 1,2
;

Are sales at women’s clothing stores uniformly higher than those at men’s clothing
stores? In the yearly trend shown in Figure 3-6, the gap between men’s and women’s
sales does not appear constant but rather was increasing during the early to
mid-2000s. Women’s clothing sales in particular dipped during the global financial
crisis of 2008–2009, and sales in both categories dropped a lot during the pandemic
in 2020.
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Figure 3-6. Yearly trend of sales at women’s and men’s clothing stores

We don’t need to rely on visual estimation, however. For more precision on this gap,
we can calculate the gap between the two categories, the ratio, and the percent differ‐
ence between them. To do this, the first step is to arrange the data so that there is a
single row for each month, with a column for each category. Pivoting the data with
aggregate functions combined with CASE statements accomplishes this:

SELECT date_part('year',sales_month) as sales_year
,sum(case when kind_of_business = 'Women''s clothing stores' 
          then sales 
          end) as womens_sales
,sum(case when kind_of_business = 'Men''s clothing stores' 
          then sales 
          end) as mens_sales
FROM retail_sales
WHERE kind_of_business in ('Men''s clothing stores'
 ,'Women''s clothing stores')
GROUP BY 1
;

sales_year  womens_sales  mens_sales
----------  ------------  ----------
1992.0      31815         10179
1993.0      32350         9962
1994.0      30585         10032
...         ...           ...
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1 October and November 2020 data points were suppressed by the publisher of the data, due to concerns about
the data quality. Collecting the data likely became more difficult due to store closures during the 2020 pan‐
demic.

With this building block calculation, we can find the difference, ratio, and percent
difference between time series in the data set. The difference can be calculated by
subtracting one value from the other using the mathematical “–” operator. Depend‐
ing on the goals of the analysis, either finding the difference from men’s sales or find‐
ing the difference from women’s sales might be appropriate. Both are shown here and
are equivalent except for the sign:

SELECT sales_year
,womens_sales - mens_sales as womens_minus_mens
,mens_sales - womens_sales as mens_minus_womens
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,sum(case when kind_of_business = 'Women''s clothing stores' 
              then sales 
              end) as womens_sales
    ,sum(case when kind_of_business = 'Men''s clothing stores' 
              then sales 
              end) as mens_sales
    FROM retail_sales
    WHERE kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    and sales_month <= '2019-12-01'
    GROUP BY 1
) a
;

sales_year  womens_minus_mens  mens_minus_womens
----------  -----------------  -----------------
1992.0      21636              -21636
1993.0      22388              -22388
1994.0      20553              -20553
...         ...                ...

The subquery is not required from a query execution standpoint, since aggregations
can be added to or subtracted from each other. A subquery is often more legible but
does add more lines to the code. Depending on how long or complex the rest of your
SQL query is, you might prefer to place the intermediate calculation in a subquery, or
just calculate it in the main query. Here is an example without the subquery, subtract‐
ing men’s sales from women’s sales, with an added WHERE clause filter to remove
2020, since a few months have null values:1

SELECT date_part('year',sales_month) as sales_year
,sum(case when kind_of_business = 'Women''s clothing stores' 
          then sales end) 
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 - 
 sum(case when kind_of_business = 'Men''s clothing stores' 
          then sales end)
 as womens_minus_mens
FROM retail_sales
WHERE kind_of_business in ('Men''s clothing stores'
 ,'Women''s clothing stores')
and sales_month <= '2019-12-01'
GROUP BY 1
;

sales_year  womens_minus_mens
----------  -----------------
1992.0      21636
1993.0      22388
1994.0      20553
...         ...

Figure 3-7 shows that the gap decreased between 1992 and about 1997, began a long
increase through about 2011 (with a brief dip in 2007), and then was more or less flat
through 2019.

Figure 3-7. Yearly difference between sales at women’s and men’s clothing stores
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Let’s continue our investigation and look at the ratio of these categories. We’ll use
men’s sales as the baseline or denominator, but note that we could just as easily use
women’s store sales instead:

SELECT sales_year
,womens_sales / mens_sales as womens_times_of_mens
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,sum(case when kind_of_business = 'Women''s clothing stores' 
              then sales 
              end) as womens_sales
    ,sum(case when kind_of_business = 'Men''s clothing stores' 
              then sales 
              end) as mens_sales
    FROM retail_sales
    WHERE kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    and sales_month <= '2019-12-01'
    GROUP BY 1
) a
;

sales_year  womens_times_of_mens
----------  --------------------
1992.0      3.1255526083112290
1993.0      3.2473398915880345
1994.0      3.0487440191387560
...         ...

SQL returns a lot of decimal digits when performing division. You
should generally consider rounding the result before presenting the
analysis. Use the level of precision (number of decimal places) that
tells the story.

Plotting the result, shown in Figure 3-8, reveals that the trend is similar to the differ‐
ence trend, but while there was a drop in the difference in 2009, the ratio actually
increased.
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Figure 3-8. Yearly ratio of women’s to men’s clothing sales

Next, we can calculate the percent difference between sales at women’s and men’s
clothing stores:

SELECT sales_year
,(womens_sales / mens_sales - 1) * 100 as womens_pct_of_mens
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,sum(case when kind_of_business = 'Women''s clothing stores' 
              then sales 
              end) as womens_sales
    ,sum(case when kind_of_business = 'Men''s clothing stores' 
              then sales 
              end) as mens_sales
    FROM retail_sales
    WHERE kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    and sales_month <= '2019-12-01'
    GROUP BY 1
) a
;
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sales_year  womens_pct_of_mens
----------  --------------------
1992.0      212.5552608311229000
1993.0      224.7339891588034500
1994.0      204.8744019138756000
...         ...

Although the units for this output are different from those in the previous example,
the shape of this graph is the same as that of the ratio graph. The choice of which to
use depends on your audience and the norms in your domain. All of these statements
are accurate: in 2009, sales at women’s clothing stores were $28.7 billion higher than
sales at men’s stores; in 2009, sales at women’s clothing stores were 4.9 times the sales
at men’s stores; in 2009, sales at women’s stores were 390% higher than sales at men’s
stores. Which version to select depends on the story you want to tell with the
analysis.

The transformations we’ve seen in this section allow us to analyze time series by com‐
paring related parts. The next section will continue the theme of comparing time ser‐
ies by showing ways to analyze series that represent parts of a whole.

Percent of Total Calculations
When working with time series data that has multiple parts or attributes that consti‐
tute a whole, it’s often useful to analyze each part’s contribution to the whole and
whether that has changed over time. Unless the data already contains a time series of
the total values, we’ll need to calculate the overall total in order to calculate the per‐
cent of total for each row. This can be accomplished with a self-JOIN, or a window
function, which as we saw in Chapter 2 is a special kind of SQL function that can ref‐
erence any row within a specified partition of the table.

First I’ll show the self-JOIN method. A self-JOIN is any time a table is joined to itself.
As long as each instance of the table in the query is given a different alias, the data‐
base will treat them all as distinct tables. For example, to find the percent of com‐
bined men’s and women’s clothing sales that each series represents, we can JOIN
retail_sales, aliased as a, to retail_sales, aliased as b, on the sales_month field.
We then SELECT the individual series name (kind_of_business) and sales values
from alias a. Then, from alias b we sum the sales for both categories and call the
result total_sales. Note that the JOIN between the tables on the sales_month field
creates a partial Cartesian JOIN, which results in two rows from alias b for each row
in alias a. Grouping by a.sales_month, a.kind_of_business, and a.sales and
aggregating b.sales returns exactly the results needed, however. In the outer query,
the percent of total for each row is calculated by dividing sales by total_sales:

SELECT sales_month
,kind_of_business
,sales * 100 / total_sales as pct_total_sales
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FROM
(
    SELECT a.sales_month, a.kind_of_business, a.sales
    ,sum(b.sales) as total_sales
    FROM retail_sales a
    JOIN retail_sales b on a.sales_month = b.sales_month
    and b.kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    WHERE a.kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    GROUP BY 1,2,3
) aa
;

sales_month  kind_of_business         pct_total_sales
-----------  -----------------------  -------------------
1992-01-01   Men's clothing stores    27.2338772338772339
1992-01-01   Women's clothing stores  72.7661227661227661
1992-02-01   Men's clothing stores    24.8395620989052473
...          ...                      ...

The subquery isn’t required here, as the same result could be obtained without it, but
it makes the code a little easier to follow. A second way to calculate the percent of
total sales for each category is to use the sum window function and PARTITION BY
the sales_month. Recall that the PARTITION BY clause indicates the section of the
table within which the function should calculate. The ORDER BY clause is not
required in this sum window function, because the order of calculation doesn’t matter.
Additionally, the query does not need a GROUP BY clause, because window functions
look across multiple rows, but they do not reduce the number of rows in the result
set:

SELECT sales_month, kind_of_business, sales
,sum(sales) over (partition by sales_month) as total_sales
,sales * 100 / sum(sales) over (partition by sales_month) as pct_total
FROM retail_sales 
WHERE kind_of_business in ('Men''s clothing stores'
 ,'Women''s clothing stores')
;

sales_month  kind_of_business         sales  total_sales  pct_total
-----------  -----------------------  -----  -----------  ---------
1992-01-01   Men's clothing stores    701    2574         27.233877
1992-01-01   Women's clothing stores  1873   2574         72.766122
1992-02-01   Women's clothing stores  1991   2649         75.160437
...          ...                      ...    ...          ...

Graphing this data, as in Figure 3-9, reveals some interesting trends. First, starting in
the late 1990s, women’s clothing store sales became an increasing percentage of the
total.  Second, early in the series a seasonal pattern is evident, where men’s sales spike
as a percent of total sales in December and January. In the first decade of the 21st

Trending the Data | 87



century, two seasonal peaks appear, in the summer and the winter, but by the late
2010s, the seasonal patterns are dampened almost to the point of randomness. We’ll
take a look at analyzing seasonality in greater depth later in this chapter.

Figure 3-9. Men’s and women’s clothing store sales as percent of monthly total

Another percent of total we might want to find is the percent of sales within a longer
time period, such as the percent of yearly sales each month represents. Again, either a
self-JOIN or a window function will do the job. In this example, we’ll use a self-JOIN
in the subquery:

SELECT sales_month
,kind_of_business
,sales * 100 / yearly_sales as pct_yearly
FROM
(
    SELECT a.sales_month, a.kind_of_business, a.sales
    ,sum(b.sales) as yearly_sales
    FROM retail_sales a
    JOIN retail_sales b on 
     date_part('year',a.sales_month) = date_part('year',b.sales_month)
     and a.kind_of_business = b.kind_of_business
     and b.kind_of_business in ('Men''s clothing stores'
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      ,'Women''s clothing stores')
    WHERE a.kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    GROUP BY 1,2,3
) aa
;

sales_month  kind_of_business       pct_yearly
-----------  ---------------------  ------------------
1992-01-01   Men's clothing stores  6.8867275763827488
1992-02-01   Men's clothing stores  6.4642892229099126
1992-03-01   Men's clothing stores  7.1814520090382159
...          ...                    ...

Alternatively, the window function method can be used:

SELECT sales_month, kind_of_business, sales
,sum(sales) over (partition by date_part('year',sales_month)
                               ,kind_of_business
                               ) as yearly_sales
,sales * 100 / 
 sum(sales) over (partition by date_part('year',sales_month)
                               ,kind_of_business
                               ) as pct_yearly
FROM retail_sales 
WHERE kind_of_business in ('Men''s clothing stores'
 ,'Women''s clothing stores')
;

sales_month  kind_of_business       pct_yearly
-----------  ---------------------  ------------------
1992-01-01   Men's clothing stores  6.8867275763827488
1992-02-01   Men's clothing stores  6.4642892229099126
1992-03-01   Men's clothing stores  7.1814520090382159
...          ...                    ...

The results, zoomed in to 2019, are shown in Figure 3-10. The two time series track
fairly closely, but men’s stores had a greater percentage of their sales in January than
did women’s stores. Men’s stores had a summer dip in July, while the corresponding
dip in women’s store sales wasn’t until September.
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Figure 3-10. Percent of yearly sales for 2019 for women’s and men’s clothing sales

Now that I’ve shown how to use SQL for percent of total calculations and the types of
analysis that can be accomplished, I’ll turn to indexing and calculating percent
change over time.

Indexing to See Percent Change over Time
The values in time series usually fluctuate over time. Sales increase with growing pop‐
ularity and availability of a product, while web page response time decreases with
engineers’ efforts to optimize code. Indexing data is a way to understand the changes
in a time series relative to a base period (starting point). Indices are widely used in
economics as well as business settings. One of the most famous indices is the Con‐
sumer Price Index (CPI), which tracks the change in the prices of items that a typical
consumer purchases and is used to track inflation, to decide salary increases, and for
many other applications. The CPI is a complex statistical measure using various
weights and data inputs, but the basic premise is straightforward. Pick a base period
and compute the percent change in value from that base period for each subsequent
period.
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Indexing time series data with SQL can be done with a combination of aggregations
and window functions, or self-JOINs. As an example, we index women’s clothing
store sales to the first year in the series, 1992. The first step is to aggregate the sales
by sales_year in a subquery, as we’ve done previously. In the outer query, the
first_value window function finds the value associated with the first row in the
PARTITION BY clause, according to the sort in the ORDER BY clause. In this exam‐
ple, we can omit the PARTITION BY clause, because we want to return the sales
value for the first row in the entire data set returned by the subquery:

SELECT sales_year, sales
,first_value(sales) over (order by sales_year) as index_sales
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,sum(sales) as sales
    FROM retail_sales
    WHERE kind_of_business = 'Women''s clothing stores'
    GROUP BY 1
) a
;

sales_year  sales  index_sales
----------  -----  -----------
1992.0      31815  31815
1993.0      32350  31815
1994.0      30585  31815
...         ...    ...

With this sample of data, we can visually verify that the index value is correctly set at
the value for 1992. Next, find the percent change from this base year for each row:

SELECT sales_year, sales
,(sales / first_value(sales) over (order by sales_year) - 1) * 100 
 as pct_from_index
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,sum(sales) as sales
    FROM retail_sales
    WHERE kind_of_business = 'Women''s clothing stores'
    GROUP BY 1
) a
;

sales_year  sales  pct_from_index
----------  -----  --------------
1992.0      31815  0
1993.0      32350  1.681596731101
1994.0      30585  -3.86610089580
...         ...    ...
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The percent change can be either positive or negative, and we’ll see that does in fact
occur in this time series. The last_value window function could be substituted for
first_value in this query. Indexing from the last value in a series is much less com‐
mon, however, since analysis questions more often relate to change from a starting
point rather than looking back from an arbitrary ending point; still, the option is
there. Additionally, the sort order can be used to achieve indexing from the first or
last value by switching between ASC and DESC:

first_value(sales) over (order by sales_year desc)

Window functions provide a lot of flexibility. Indexing can be accomplished without
them through a series of self-JOINs, though more lines of code are required:

SELECT sales_year, sales
,(sales / index_sales - 1) * 100 as pct_from_index
FROM
(
    SELECT date_part('year',aa.sales_month) as sales_year
    ,bb.index_sales
    ,sum(aa.sales) as sales
    FROM retail_sales aa
    JOIN 
    (
        SELECT first_year, sum(a.sales) as index_sales
        FROM retail_sales a
        JOIN 
        (
            SELECT min(date_part('year',sales_month)) as first_year
            FROM retail_sales
            WHERE kind_of_business = 'Women''s clothing stores'
        ) b on date_part('year',a.sales_month) = b.first_year 
        WHERE a.kind_of_business = 'Women''s clothing stores'
        GROUP BY 1
    ) bb on 1 = 1
    WHERE aa.kind_of_business = 'Women''s clothing stores'
    GROUP BY 1,2
) aaa
;

sales_year  sales  pct_from_index
----------  -----  --------------
1992.0      31815  0
1993.0      32350  1.681596731101
1994.0      30585  -3.86610089580
...         ...    ...
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Notice the unusual JOIN clause on 1 = 1 between alias aa and subquery bb. Since we
want the index_sales value to populate for every row in the result set, we can’t JOIN
on the year or any other value, which would restrict the results. However, the data‐
base will return an error if no JOIN clause is specified. We can fool the database by
using any expression that evaluates to TRUE in order to create the desired Cartesian
JOIN. Any other TRUE statement, such as on 2 = 2 or on 'apples' = 'apples',
could be used instead.

Beware of zeros in the denominator of division operations such as
sales / index_sales in the last example. Databases return an
error when they encounter division by zero, which can be frustrat‐
ing. Even when you think a zero in the denominator field is
unlikely, it’s good practice to prevent this by telling the database to
return an alternate default value when it encounters a zero. This
can be done with a CASE statement. The examples in this section
do not have zeros in the denominator, so I will omit this extra code
for the sake of legibility.

To wrap up this section, let’s look at a graph of the indexed time series for men’s and
women’s clothing stores, shown in Figure 3-11. The SQL code looks like:

SELECT sales_year, kind_of_business, sales
,(sales / first_value(sales) over (partition by kind_of_business 
                                   order by sales_year)
 - 1) * 100 as pct_from_index
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,kind_of_business
    ,sum(sales) as sales
    FROM retail_sales
    WHERE kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    and sales_month <= '2019-12-31'
    GROUP BY 1,2
) a
;
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Figure 3-11. Men’s and women’s clothing store sales, indexed to 1992 sales

It’s apparent from this graph that 1992 was something of a high-water mark for sales
at men’s clothing stores. After 1992 sales dropped, then returned briefly to the same
level in 1998, and have been declining ever since. This is striking since the data set is
not adjusted for inflation, the tendency for prices to rise over time. Sales at women’s
clothing stores decreased from 1992 levels initially, but they returned to the 1992 level
by 2003. They have increased since, with the exception of the drop during the finan‐
cial crisis that decreased sales in 2009 and 2010. One explanation for these trends is
that men simply decreased spending on clothes over time, perhaps becoming less
fashion conscious relative to women. Perhaps men’s clothing simply became less
expensive as global supply chains decreased costs. Yet another explanation might be
that men shifted their clothing purchases from retailers categorized as “men’s clothing
stores” to other types of retailers, such as sporting goods stores or online retailers.

Indexing time series data is a powerful analysis technique, allowing us to find a range
of insights in the data. SQL is well suited to this task, and I’ve shown how to construct
indexed time series with and without window functions. Next, I’ll show you how to
analyze data by using rolling time windows to find patterns in noisy time series.
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Rolling Time Windows
Time series data is often noisy, a challenge for one of our primary goals of finding
patterns. We’ve seen how aggregating data, such as from monthly to yearly, can
smooth out the results and make them easier to interpret. Another technique for
smoothing data is rolling time windows, also known as moving calculations, that take
into account multiple periods. Moving averages are probably the most common, but
with the power of SQL, any aggregate function is available for analysis. Rolling time
windows are used in a wide variety of analysis areas, including stock markets, macro‐
economic trends, and audience measurement. Some calculations are so commonly
used that they have their own acronyms: last twelve months (LTM), trailing twelve
months (TTM), and year-to-date (YTD).

Figure 3-12 shows an example of a rolling time window and a cumulative calculation,
relative to the month of October in the time series.

Figure 3-12. Example of LTM and YTD rolling sum of sales

There are several important pieces of any rolling time series calculation. First is the
size of the window, which is the number of periods to include in the calculation.
Larger windows with more time periods have a greater smoothing effect, but at the
risk of losing sensitivity to important short-term changes in the data. Shorter win‐
dows with fewer time periods do less smoothing and thus are more sensitive to short-
term changes, but at the risk of too little noise reduction.

The second piece of time series calculations is the aggregate function used. As noted
previously, moving averages are probably the most common. Moving sums, counts,
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minimums, and maximums can also be calculated with SQL. Moving counts are use‐
ful in user population metrics (see the following sidebar). Moving minimums and
maximums can help in understanding the extremes of the data, useful for planning
analyses.

The third piece of time series calculations is choosing the partitioning, or grouping,
of the data that is included in the window. The analysis might call for resetting the
window every year. Or the analysis might need a different moving series for each
component or user group. Chapter 4 will go into more detail on cohort analysis of
user groups, where we will consider how retention and cumulative values such as
spend differ between populations over time. Partitioning will be controlled through
grouping as well as the PARTITION BY statement of window functions.

With these three pieces in mind, we’ll move into the SQL code and calculations for
moving time periods, continuing with the US retail sales data set for examples.

Measuring “Active Users”: DAU, WAU, and MAU
Many consumer and some B2B SaaS applications use active user calculations such as
daily active users (DAU), weekly active users (WAU), and monthly active users
(MAU) to estimate their audience size. Since each of these are rolling windows, they
can be calculated on a daily basis. I’ve often been asked what is the right or best met‐
ric to use, and my answer is always “it depends.”

DAU helps companies with capacity planning, such as estimating how much load
to expect on servers. Depending on the service, however, even more detailed data
might be needed, such as peak hourly or even minute-by-minute concurrent user
information.

MAU is commonly used to estimate relative sizes of applications or services. It is use‐
ful for measuring fairly stable or growing user populations that have regular usage
patterns that aren’t necessarily daily, such as higher use on the weekend for leisure
products, or higher weekday use for work- or school-related products. MAU is not as
well suited to detecting changes in underlying churn from users who stop using an
application. Since it takes a user 30 days, the most common window, to pass through
MAU, a user can have been absent from the product for 29 days before they trigger a
drop in MAU.

WAU, calculated over 7 days, can be a happy medium between DAU and MAU. WAU
is more sensitive to short-term fluctuations, alerting teams to changes in churn more
quickly than MAU while smoothing over day of week fluctuations that are tracked by
DAU. A drawback to WAU is that it is still sensitive to short-term fluctuations driven
by events such as holidays.
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Calculating Rolling Time Windows
Now that we know what rolling time windows are, how they’re useful, and their key
components, let’s get into calculating them using the US retail sales data set. We’ll
start with the simpler case, when the data set contains a record for each period that
should be in the window, and then in the next section we’ll look at what to do when
this is not the case.

There are two main methods for calculating a rolling time window: a self-JOIN,
which can be used in any database, and a window function, which as we’ve seen isn’t
available in some databases. In both cases we need the same result: a date and a num‐
ber of data points that corresponds to the size of the window to which we will apply
an average or another aggregate function.

For this example, we’ll use a window of 12 months to get rolling annual sales, since
the data is at a monthly level of granularity. We’ll then apply an average to get a 12-
month moving average of retail sales. First, let’s develop the intuition for what will go
into the calculation. In this query, alias a of the table is our “anchor” table, the one
from which we gather the dates. To start, we’ll look at a single month, December
2019. From alias b, the query gathers the 12 individual months of sales that will go
into the moving average. This is accomplished with the JOIN clause b.sales_month
between a.sales_month - interval '11 months' and a.sales_month, which cre‐
ates an intentional Cartesian JOIN:

SELECT a.sales_month
,a.sales
,b.sales_month as rolling_sales_month
,b.sales as rolling_sales
FROM retail_sales a
JOIN retail_sales b on a.kind_of_business = b.kind_of_business 
 and b.sales_month between a.sales_month - interval '11 months' 
 and a.sales_month
 and b.kind_of_business = 'Women''s clothing stores'
WHERE a.kind_of_business = 'Women''s clothing stores'
and a.sales_month = '2019-12-01'
;

sales_month  sales  rolling_sales_month  rolling_sales
-----------  -----  -------------------  -------------
2019-12-01   4496   2019-01-01           2511
2019-12-01   4496   2019-02-01           2680
2019-12-01   4496   2019-03-01           3585
2019-12-01   4496   2019-04-01           3604
2019-12-01   4496   2019-05-01           3807
2019-12-01   4496   2019-06-01           3272
2019-12-01   4496   2019-07-01           3261
2019-12-01   4496   2019-08-01           3325
2019-12-01   4496   2019-09-01           3080
2019-12-01   4496   2019-10-01           3390
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2019-12-01   4496   2019-11-01           3850
2019-12-01   4496   2019-12-01           4496

Notice that the sales_month and sales figures from alias a are repeated for each row
of the 12 months in the window.

Remember that the dates in a BETWEEN clause are inclusive (both
will be returned in the result set). It’s a common mistake to use 12
instead of 11 in the preceding query. When in doubt, check the
intermediate query results as I’ve done here to make sure the
intended number of periods ends up in the window calculation.

The next step is to apply the aggregation—in this case, avg, since we want a rolling
average. The count of records returned from alias b is included to confirm that each
row averages 12 data points, a useful data quality check. Alias a also has a filter on
sales_month. Since this data set starts in 1992, months in that year, except for
December, have fewer than 12 historical records:

SELECT a.sales_month
,a.sales
,avg(b.sales) as moving_avg
,count(b.sales) as records_count
FROM retail_sales a
JOIN retail_sales b on a.kind_of_business = b.kind_of_business 
 and b.sales_month between a.sales_month - interval '11 months' 
 and a.sales_month
 and b.kind_of_business = 'Women''s clothing stores'
WHERE a.kind_of_business = 'Women''s clothing stores'
and a.sales_month >= '1993-01-01'
GROUP BY 1,2
;

sales_month  sales  moving_avg  records_count
-----------  -----  ----------  -------------
1993-01-01   2123   2672.08     12
1993-02-01   2005   2673.25     12
1993-03-01   2442   2676.50     12
...          ...    ...         ...

The results are graphed in Figure 3-13. While the monthly trend is noisy, the
smoothed moving average trend makes detecting changes such as the increase from
2003 to 2007 and the subsequent dip through 2011 easier to spot. Notice that the
extreme drop in early 2020 pulls the moving average down even after sales start to
rebound later in the year.
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Figure 3-13. Monthly sales and 12-month moving average sales for women’s clothing
stores

Adding the filter kind_of_business = 'Women''s clothing

stores' to each alias isn’t strictly necessary. Since the query uses an
INNER JOIN, filtering on one table will automatically filter on the
other. However, filtering on both tables often makes queries run
faster, particularly when the tables are large.

Window functions are another way to calculate rolling time windows. To make a roll‐
ing window, we need to use another optional part of a window calculation: the frame
clause. The frame clause allows you to specify which records to include in the win‐
dow. By default, all records in the partition are included, and for many cases this
works just fine. However, controlling the included records at a more fine-grained
level is useful for cases like moving window calculations. The syntax is simple and yet
can be confusing when encountering it for the first time. The frame clause can be
specified as:

{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end
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Within the curly braces are three options for the frame type: range, rows, and groups. 
These are the ways you can specify which records to include in the result, relative to
the current row. Records are always chosen from the current partition and follow the
ORDER BY specified. The default sorting is ascending (ASC), but it can be changed to
descending (DESC). Rows is the most straightforward and will allow you to specify
the exact number of rows that should be returned. Range includes records that are
within some boundary of values relative to the current row. Groups can be used when
there are multiple records with the same ORDER BY value, such as when a data set
includes multiple lines per sales month, one for each customer.

The frame_start and frame_end can be any of the following:

UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW
offset FOLLOWING
UNBOUNDED FOLLOWING

Preceding means to include rows before the current row, according to the ORDER BY
sorting. Current row is just that, and following means to include rows that occur after
the current row according to the ORDER BY sorting. The UNBOUNDED keyword
means to include all records in the partition before or after the current row. The offset
is the number of records, often just an integer constant, though a field or an expres‐
sion that returns an integer could also be used. Frame clauses also have an optional
frame_exclusion option, which is beyond the scope of the discussion here. Figure 3-14
shows an example of the rows that each of the window frame options will pick up.

Figure 3-14. Window frame clauses and the rows they include
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From partition to ordering to window frames, window functions have a variety of
options that control the calculations, making them incredibly powerful and well
suited to tackling complex calculations with relatively simple syntax. Returning to our
retail sales example, the moving average that we calculated using a self-JOIN can be
accomplished with window functions in fewer lines of code:

SELECT sales_month
,avg(sales) over (order by sales_month 
                  rows between 11 preceding and current row
                  ) as moving_avg
,count(sales) over (order by sales_month 
                  rows between 11 preceding and current row
                  ) as records_count
FROM retail_sales
WHERE kind_of_business = 'Women''s clothing stores'
;

sales_month  moving_avg  records_count
-----------  ----------  -------------
1992-01-01   1873.00     1
1992-02-01   1932.00     2
1992-03-01   2089.00     3
...          ...         ...
1993-01-01   2672.08     12
1993-02-01   2673.25     12
1993-03-01   2676.50     12
...          ...         ...

In this query, the window orders the sales by month (ascending) to ensure that the
window records are in chronological order.  The frame clause is rows between 11
preceding and current row, since I know that I have one record for each month
and I want the 11 prior months and the month from the current row included in the
average and count calculations. The query returns all months, including those that
don’t have 11 prior months, and we might want to filter these out by placing this
query in a subquery and filtering by month or number of records in the outer query.

While calculating moving averages from prior time periods is com‐
mon in many business contexts, SQL window functions are flexible
enough to include future time periods as well. They can also be
used in any scenario in which the data has some ordering, not just
in time series analysis.

Calculating rolling averages or other moving aggregations can be accomplished with
self-JOINs or window functions when records exist in the data set for each time
period in the window. There may be performance differences between the two meth‐
ods, depending on the type of database and the size of the data set. Unfortunately, it’s
difficult to predict which one will be performant or to give general advice on which to
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use. It’s worth trying both methods and paying attention to how long it takes to
return your query results; then make whichever one seems to run faster your default
choice. Now that we’ve seen how to calculate rolling time windows, I’ll show how to
calculate rolling windows with sparse data sets.

Rolling Time Windows with Sparse Data
Data sets in the real world may not contain a record for every time period that falls
within the window. The measurement of interest might be seasonal or intermittent by
nature. For example, customers might return to purchase from a website at irregular
intervals, or a particular product might go in and out of stock. This results in sparse
data.

In the last section, I showed how to calculate a rolling window with a self-JOIN and a
date interval in the JOIN clause. You might be thinking that this will pick up any
records within the 12-month time window, whether all were in the data set or not,
and you’d be correct. The problem with this approach comes when there is no record
for the month (or day or year) itself. For example, imagine I want to calculate the roll‐
ing 12-month sales for each model of shoe my store stocks as of December 2019.
Some of the shoes went out of stock prior to December, however, and so don’t have
sales records in that month. Using a self-JOIN or window function will return a data
set of rolling sales for all the shoes that sold in December, but the data will be missing
the shoes that went out of stock. Fortunately, we have a way to solve this problem: by
using a date dimension.

The date dimension, a static table that contains a row for each calendar date, was
introduced in Chapter 2. With such a table we can ensure that a query returns a result
for every date of interest, whether or not there was a data point for that date in the
underlying data set. Since the retail_sales data does include rows for all months,
I’ve simulated a sparse data set by adding a subquery to filter the table to only
sales_months from January and July (1 and 7). Let’s look at the results when JOINed
to the date_dim, but before aggregation, to develop intuition about the data before
applying calculations:

SELECT a.date, b.sales_month, b.sales
FROM date_dim a
JOIN 
(
    SELECT sales_month, sales
    FROM retail_sales 
    WHERE kind_of_business = 'Women''s clothing stores'
     and date_part('month',sales_month) in (1,7)
) b on b.sales_month between a.date - interval '11 months' and a.date
WHERE a.date = a.first_day_of_month
 and a.date between '1993-01-01' and '2020-12-01'
;
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date        sales_month  sales
----------  -----------  -----
1993-01-01  1992-07-01   2373
1993-01-01  1993-01-01   2123
1993-02-01  1992-07-01   2373
1993-02-01  1993-01-01   2123
1993-03-01  1992-07-01   2373
...         ...          ...

Notice that the query returns results for February and March dates in addition to
January, even though there are no sales for these months in the subquery results. This
is possible because the date dimension contains records for all months. The filter
a.date = a.first_day_of_month restricts the result set to one value per month,
instead of the 28 to 31 rows per month that would result from joining to every date.
The construction of this query is otherwise very similar to the self-JOIN query in the
last section, with the JOIN clause on b.sales_month between a.date - interval
'11 months' and a.date of the same form as the JOIN clause in the self-JOIN. Now
that we have developed an understanding of what the query will return, we can go
ahead and apply the avg aggregation to get the moving average:

SELECT a.date
,avg(b.sales) as moving_avg
,count(b.sales) as records
FROM date_dim a
JOIN 
(
    SELECT sales_month, sales
    FROM retail_sales 
    WHERE kind_of_business = 'Women''s clothing stores'
     and date_part('month',sales_month) in (1,7)
) b on b.sales_month between a.date - interval '11 months' and a.date
WHERE a.date = a.first_day_of_month
 and a.date between '1993-01-01' and '2020-12-01'
GROUP BY 1
;

date        moving_avg  records
----------  ----------  -------
1993-01-01  2248.00     2
1993-02-01  2248.00     2
1993-03-01  2248.00     2
...         ...         ...

As we saw above, the result set includes a row for every month; however, the moving
average stays constant until a new data point (in this case, a January or July) is added.
Each moving average consists of two underlying data points. In a real use case, the
number of underlying data points is likely to vary. To return the current month’s
value when using a data dimension, an aggregation with a CASE statement can be
used—for example:
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,max(case when a.date = b.sales_month then b.sales end) 
 as sales_in_month

The conditions inside the CASE statement can be changed to return any of the
underlying records that the analysis requires through use of equality, inequality, or
offsets with date math. If a date dimension is not available in your database, then
another technique can be used to simulate one. In a subquery, SELECT the DIS‐
TINCT dates needed and JOIN them to your table in the same way as in the preceding
examples:

SELECT a.sales_month, avg(b.sales) as moving_avg
FROM
(
    SELECT distinct sales_month
    FROM retail_sales
    WHERE sales_month between '1993-01-01' and '2020-12-01'
) a
JOIN retail_sales b on b.sales_month between 
 a.sales_month - interval '11 months' and a.sales_month
 and b.kind_of_business = 'Women''s clothing stores' 
GROUP BY 1
;

sales_month  moving_avg
-----------  ----------
1993-01-01   2672.08
1993-02-01   2673.25
1993-03-01   2676.50
...          ...

In this example, I used the same underlying table because I know it contains all the
months. However, in practice any database table that contains the needed dates can be
used, whether or not it is related to the table from which you want to calculate the
rolling aggregation.

Calculating rolling time windows with sparse or missing data can be done in SQL
with controlled application of Cartesian JOINs. Next, we’ll look at how to calculate
cumulative values that are often used in analysis.

Calculating Cumulative Values
Rolling window calculations, such as moving averages, typically use fixed-size win‐
dows, such as 12 months, as we saw in the last section.  Another commonly used type
of calculation is the cumulative value, such as YTD, quarter-to-date (QTD), and
month-to-date (MTD). Rather than a fixed-length window, these rely on a common
starting point, with the window size growing with each row.
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The simplest way to calculate cumulative values is with a window function. In this
example, sum is used to find total sales YTD as of each month. Other analyses might
call for a monthly average YTD or a monthly maximum YTD, which can be accom‐
plished by swapping sum for avg or max. The window resets according to the PARTI‐
TION BY clause, in this case the year of the sales month. The ORDER BY clause
typically includes a date field in time series analysis. Omitting the ORDER BY can
lead to incorrect results due to the way the data is sorted in the underlying table, so
it’s a good idea to include it even if you think the data is already sorted by date:

SELECT sales_month, sales
,sum(sales) over (partition by date_part('year',sales_month) 
                  order by sales_month
                  ) as sales_ytd
FROM retail_sales
WHERE kind_of_business = 'Women''s clothing stores'
;

sales_month  sales  sales_ytd
-----------  -----  ---------
1992-01-01   1873   1873
1992-02-01   1991   3864
1992-03-01   2403   6267
...          ...    ...
1992-12-01   4416   31815
1993-01-01   2123   2123
1993-02-01   2005   4128
...          ...    ...

The query returns a record for each sales_month, the sales for that month, and the
running total sales_ytd. The series starts in 1992 and then resets in January 1993, as
it will for every year in the data set. The results for years 2016 through 2020 are
graphed in Figure 3-15. The first four years show similar patterns through the year,
but of course 2020 looks very different.
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Figure 3-15. Monthly sales and cumulative annual sales for women’s clothing stores

The same results can be achieved without window functions, by using a self-JOIN
that leverages a Cartesian JOIN. In this example, the two table aliases are JOINed on
the year of the sales_month to ensure that the aggregated values are for the same
year, resetting each year. The JOIN clause also specifies that the results should include
sales_months from alias b that are less than or equal to the sales_month in alias a. In
January 1992, only the January 1992 row from alias b meets this criterion; in February
1992, both January and February 1992 do; and so on:

SELECT a.sales_month, a.sales
,sum(b.sales) as sales_ytd
FROM retail_sales a
JOIN retail_sales b on 
 date_part('year',a.sales_month) = date_part('year',b.sales_month)
 and b.sales_month <= a.sales_month
 and b.kind_of_business = 'Women''s clothing stores'
WHERE a.kind_of_business = 'Women''s clothing stores'
GROUP BY 1,2
;

106 | Chapter 3: Time Series Analysis



sales_month  sales  sales_ytd
-----------  -----  ---------
1992-01-01   1873   1873
1992-02-01   1991   3864
1992-03-01   2403   6267
...          ...    ...
1992-12-01   4416   31815
1993-01-01   2123   2123
1993-02-01   2005   4128
...          ...    ...

Window functions require fewer characters of code, and it’s usually easier to keep
track of exactly what they are calculating once you are familiar with the syntax.
There’s often more than one way to approach a problem in SQL, and rolling time
windows are a good example of that. I find it useful to know multiple approaches,
because every once in a while I run into a tricky problem that is actually better solved
with an approach that seems less efficient in other contexts. Now that we’ve covered
rolling time windows, we’ll move on to our final topic in time series analysis with
SQL: seasonality.

Analyzing with Seasonality
Seasonality is any pattern that repeats over regular intervals. Unlike other noise in the
data, seasonality can be predicted. The word seasonality brings to mind the four sea‐
sons of the year—spring, summer, fall, winter—and some data sets include these pat‐
terns. Shopping patterns change with the seasons, from the clothes and food people
buy to the money spent on leisure and travel. The winter holiday shopping season can
be make-or-break for many retailers. Seasonality can also exist at other time scales,
from years down to minutes. Presidential elections in the United States happen every
four years, leading to distinct patterns in media coverage.  Day of week cyclicality is 
common, as work and school dominate Monday to Friday, while chores and leisure
activities dominate the weekend. Time of day is another type of seasonality that res‐
taurants experience, with rushes around lunch and dinner time and slower sales in
between.

To understand whether seasonality exists in a time series, and at what scale, it’s useful
to graph it and then visually inspect for patterns. Try aggregating at different levels,
from hourly to daily, weekly, and monthly. You should also incorporate knowledge
about the data set. Are there patterns that you can guess based on what you know
about the entity or process it represents? Consult subject matter experts, if available.

Let’s take a look at some seasonal patterns in the retail sales data set, shown in
Figure 3-16. Jewelry stores have a highly seasonal pattern, with annual peaks in
December related to holiday gift giving. Book stores have two peaks each year: one
peak is in August, corresponding with back-to-school time in the United States; the
other peak starts in December and lasts through January, including both the holiday
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gift period and back-to-school time for the spring semester. A third example is gro‐
cery stores, which have much less monthly seasonality than the other two time series
(although they likely have seasonality at the day of week and time of day level). This
isn’t surprising: people need to eat year-round. Grocery store sales increase a bit in
December for the holidays, and they decline in February, since that month simply has
fewer days.

Figure 3-16. Examples of seasonality patterns in book store, grocery store, and jewelry
store sales

Seasonality can take many forms, though there are some common approaches to ana‐
lyzing it regardless. One way to deal with seasonality is to smooth it out, either by
aggregating the data to a less granular time period or by using rolling windows, as we
saw previously. Another way to work with seasonal data is to benchmark against sim‐
ilar time periods and analyze the difference. I’ll show several ways to accomplish this
next.
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Period-over-Period Comparisons: YoY and MoM
Period-over-period comparisons can take multiple forms. The first one is to compare
a time period to the previous value in the series, a practice so common in analysis
that there are acronyms for the most often-used comparisons. Depending on the level
of aggregation the comparison might be year-over-year (YoY), month-over-month
(MoM), day-over-day (DoD), and so on.

For these calculations we’ll use the lag function, another one of the window func‐
tions. The lag function returns a previous or lagging value from a series. The lag
function has the following form:

lag(return_value [,offset [,default]])

The return_value is any field from the data set and thus can be any data type. The
optional OFFSET indicates how many rows back in the partition to take the
return_value from. The default is 1, but any integer value can be used. You can also
optionally specify a default value to use if there is no lagging record to retrieve a
value from. Like other window functions, lag is also calculated over a partition, with
sorting determined by the ORDER BY clause. If no PARTITION BY clause is speci‐
fied, lag looks back over the whole data set, and likewise if no ORDER BY clause is
specified, the database order is used. It’s usually a good idea to at least include an
ORDER BY clause in a lag window function to control the output.

The lead window function works in the same way as the lag func‐
tion, except that it returns a subsequent value as determined by the
offset. Changing the ORDER BY from ascending (ASC) to descend‐
ing (DESC) in a time series has the effect of turning a lag statement
into the equivalent of a lead statement. Alternatively, a negative
integer can be used as the OFFSET value to return a value from a
subsequent row.

Let’s apply this to our retail sales data set to calculate MoM and YoY growth. In this
section, we’ll focus on book store sales, since I’m a real book store nerd. First, we’ll
develop our intuition about what is returned by the lag function by returning both
the lagging month and the lagging sales values:

SELECT kind_of_business, sales_month, sales
,lag(sales_month) over (partition by kind_of_business 
                        order by sales_month
                        ) as prev_month
,lag(sales) over (partition by kind_of_business 
                  order by sales_month
                  ) as prev_month_sales
FROM retail_sales
WHERE kind_of_business = 'Book stores'
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;

kind_of_business  sales_month  sales  prev_month  prev_month_sales
----------------  -----------  -----  ----------  ----------------
Book stores       1992-01-01   790    (null)      (null)
Book stores       1992-02-01   539    1992-01-01  790
Book stores       1992-03-01   535    1992-02-01  539
...               ...          ...    ...         ...

For each row, the previous sales_month is returned, as well as the sales for that
month, and we can confirm this by inspecting the first few lines of the result set. The
first row has null for prev_month and prev_month_sales since there is no earlier
record in this data set. With an understanding of the values returned by the lag func‐
tion, we can calculate the percent change from the previous value:

SELECT kind_of_business, sales_month, sales
,(sales / lag(sales) over (partition by kind_of_business 
                           order by sales_month)
 - 1) * 100 as pct_growth_from_previous
FROM retail_sales
WHERE kind_of_business = 'Book stores'
;

kind_of_business  sales_month  sales  pct_growth_from_previous
----------------  -----------  -----  ------------------------
Book stores       1992-01-01   790    (null)
Book stores       1992-02-01   539    -31.77
Book stores       1992-03-01   535    -0.74
...               ...          ...    ...

Sales dropped 31.8% from January to February, due at least in part to the seasonal
decline after the holidays and the return to school for the spring semester. Sales were
down only 0.7% from February to March.

The calculation for the YoY comparison is similar, but first we need to aggregate sales
to the yearly level. Since we’re looking at only one kind_of_business, I’ll drop that
field from the rest of the examples to simplify the code:

SELECT sales_year, yearly_sales
,lag(yearly_sales) over (order by sales_year) as prev_year_sales
,(yearly_sales / lag(yearly_sales) over (order by sales_year)
 -1) * 100 as pct_growth_from_previous
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,sum(sales) as yearly_sales
    FROM retail_sales
    WHERE kind_of_business = 'Book stores'
    GROUP BY 1
) a
;
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sales_year  yearly_sales  prev_year_sales  pct_growth_from_previous
----------  ------------  ---------------  ------------------------
1992.0      8327          (null)           (null)
1993.0      9108          8327             9.37
1994.0      10107         9108             10.96
...         ...           ...              ...

Sales grew more than 9.3% from 1992 to 1993, and almost 11% from 1993 to 1994.
These period-over-period calculations are useful, but they don’t quite allow us to ana‐
lyze the seasonality in the data set. For example, in Figure 3-17 the MoM percent
growth values are plotted, and they contain just as much seasonality as the original
time series.

Figure 3-17. Percent growth from previous month for US retail book store sales

To tackle this, the next section will demonstrate how to use SQL to compare current
values to the values for the same month in the previous year.

Analyzing with Seasonality | 111



Period-over-Period Comparisons: Same Month Versus Last Year
Comparing data for one time period to data for a similar previous time period can be
a useful way to control for seasonality. The previous time period may be the same day
of the week in the previous week, the same month in the previous year, or another
variation that makes sense for the data set.

To accomplish this comparison, we can use the lag function along with some clever
partitioning: the unit of time with which we want to compare the current value. In
this case, we will compare monthly sales to the sales for the same month in the pre‐
vious year. For example, January sales will be compared to prior year January sales,
February sales will be compared to prior year February sales, and so on.

First, recall that the date_part function returns a numeric value when used with the
“month” argument:

SELECT sales_month
,date_part('month',sales_month)
FROM retail_sales
WHERE kind_of_business = 'Book stores'
;

sales_month  date_part
-----------  ---------
1992-01-01   1.0
1992-02-01   2.0
1992-03-01   3.0
...          ...

Next, we include the date_part in the PARTITION BY clause so that the window
function looks up the value for the matching month number from the prior year.

This is an example of how window function clauses can include calculations in addi‐
tion to database fields, giving them even more versatility. I find it useful to check
intermediate results to build intuition about what the final query will return, so first
we’ll confirm that the lag function with partition by date_part('month',

sales_month) returns the intended values:

SELECT sales_month, sales
,lag(sales_month) over (partition by date_part('month',sales_month) 
                        order by sales_month
                        ) as prev_year_month
,lag(sales) over (partition by date_part('month',sales_month) 
                  order by sales_month
                  ) as prev_year_sales
FROM retail_sales
WHERE kind_of_business = 'Book stores'
;
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sales_month  sales  prev_year_month  prev_year_sales
-----------  -----  ---------------  ---------------
1992-01-01   790    (null)           (null)
1993-01-01   998    1992-01-01       790
1994-01-01   1053   1993-01-01       998
...          ...    ...              ...
1992-02-01   539    (null)           (null)
1993-02-01   568    1992-02-01       539
1994-02-01   635    1993-02-01       568
...          ...     ...             ...

The first lag function returns the same month for the prior year, which we can verify
by looking at the prev_year_month value. The row for the 1993-01-01 sales_month
returns 1992-01-01 for the prev_year_month as intended, and the prev_year_sales
of 790 match the sales we can see in the 1992-01-01 row. Notice that the
prev_year_month and prev_year_sales are null for 1992 since there are no prior
records in the data set.

Now that we’re confident the lag function as written returns the correct values, we
can calculate comparison metrics such as absolute difference and percent change
from previous:

SELECT sales_month, sales
,sales - lag(sales) over (partition by date_part('month',sales_month) 
                          order by sales_month
                          ) as absolute_diff
,(sales / lag(sales) over (partition by date_part('month',sales_month) 
                          order by sales_month)
 - 1) * 100 as pct_diff
FROM retail_sales
WHERE kind_of_business = 'Book stores'
;

sales_month  sales  absolute_diff  pct_diff
-----------  -----  -------------  --------
1992-01-01   790    (null)         (null)
1993-01-01   998    208            26.32
1994-01-01   1053   55             5.51
...          ...    ...            ...

We can now graph the results in Figure 3-18 and more easily see the months
where growth was unusually high, such as January 2002, or unusually low, such as
December 2001.
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Figure 3-18. Book store sales, YoY absolute difference in sales, and YoY percent growth

Another useful analysis tool is to create a graph that lines up the same time period—
in this case, months—with a line for each time series—in this case, years. To do this,
we’ll create a result set that has a row for each month number or name, and a column
for each of the years we want to consider. To get the month, we can use either the
date_part or the to_char function, depending on whether we want numeric or text
values for the months. Then we’ll pivot the data using an aggregate function. 

This example uses the max aggregate, but depending on the analysis, a sum, count, or
other aggregation might be appropriate. We’ll zoom in on 1992 through 1994 for this
example:

SELECT date_part('month',sales_month) as month_number
,to_char(sales_month,'Month') as month_name
,max(case when date_part('year',sales_month) = 1992 then sales end) 
 as sales_1992
,max(case when date_part('year',sales_month) = 1993 then sales end) 
 as sales_1993
,max(case when date_part('year',sales_month) = 1994 then sales end) 
 as sales_1994
FROM retail_sales
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WHERE kind_of_business = 'Book stores'
 and sales_month between '1992-01-01' and '1994-12-01'
GROUP BY 1,2
;

month_number  month_name  sales_1992  sales_1993  sales_1994
------------  ----------  ----------  ----------  ----------
1.0           January     790         998         1053
2.0           February    539         568         635
3.0           March       535         602         634
4.0           April       523         583         610
5.0           May         552         612         684
6.0           June        589         618         724
7.0           July        592         607         678
8.0           August      894         983         1154
9.0           September   861         903         1022
10.0          October     645         669         732
11.0          November    642         692         772
12.0          December    1165        1273        1409

By lining the data up in this way, we can see some trends immediately. December
sales are the highest monthly sales of the year. Sales in 1994 were higher every month
than sales in 1992 and 1993. The August-to-September sales bump is visible, and par‐
ticularly easy to spot in 1994.

With a graph of the data, as in Figure 3-19, the trends are much easier to identify.
Sales increased year to year in every month, though the increases were larger in some
months than others. With this data and graph in hand, we can start to construct a
story about book store sales that might help with inventory planning or scheduling of
marketing promotions or might serve as a piece of evidence in a wider story about
US retail sales.

With SQL there are a number of techniques for cutting through the noise of seasonal‐
ity to compare data in time series. In this section, we’ve seen how to compare current
values to prior comparable periods using lag functions and how to pivot the data
with date_part, to_char, and aggregate functions. Next, I’ll show some techniques
for comparing multiple prior periods in order to further control for noisy time series
data.
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Figure 3-19. Book store sales for 1992–1994, aligned by month

Comparing to Multiple Prior Periods
Comparing data to prior comparable periods is a useful way to reduce the noise that
arises from seasonality. Sometimes comparing to a single prior period is insufficient,
particularly if that prior period was impacted by unusual events. Comparing a Mon‐
day to the previous Monday is difficult if one of them was a holiday. The month in the
prior year might be unusual due to economic events, severe weather, or a site outage
that changed typical behavior. Comparing current values to an aggregate of multiple
prior periods can help smooth out these fluctuations. These techniques also combine
what we’ve learned about using SQL to calculate rolling time periods and comparable
prior period results.

The first technique uses the lag function, as in the last section, but here we’ll take
advantage of the optional offset value. Recall that when no offset is provided to lag,
the function returns the immediate prior value according to the PARTITION BY and
ORDER BY clauses. An offset value of 2 skips over the immediate prior value and
returns the value prior to that, an offset value of 3 returns the value from 3 rows back,
and so on.

For this example, we’ll compare the current month’s sales to the same month’s sales
over three prior years. As usual, first we’ll inspect the returned values to confirm the
SQL is working as expected:
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SELECT sales_month, sales
,lag(sales,1) over (partition by date_part('month',sales_month) 
                    order by sales_month
                    ) as prev_sales_1
,lag(sales,2) over (partition by date_part('month',sales_month) 
                    order by sales_month
                    ) as prev_sales_2
,lag(sales,3) over (partition by date_part('month',sales_month) 
                    order by sales_month
                    ) as prev_sales_3
FROM retail_sales
WHERE kind_of_business = 'Book stores'
;

sales_month  sales  prev_sales_1  prev_sales_2  prev_sales_3
-----------  -----  ------------  ------------  ------------
1992-01-01   790    (null)        (null)        (null)
1993-01-01   998    790           (null)        (null)
1994-01-01   1053   998           790           (null)
1995-01-01   1308   1053          998           790
1996-01-01   1373   1308          1053          998
...          ...    ...           ...           ...

Null is returned where no prior record exists, and we can confirm that the correct
same month, prior year value appears. From here we can calculate whatever compari‐
son metric the analysis calls for—in this case, the percent of the rolling average of
three prior periods:

SELECT sales_month, sales
,sales / ((prev_sales_1 + prev_sales_2 + prev_sales_3) / 3) 
 as pct_of_3_prev
FROM
(
    SELECT sales_month, sales
    ,lag(sales,1) over (partition by date_part('month',sales_month) 
                        order by sales_month
                        ) as prev_sales_1
    ,lag(sales,2) over (partition by date_part('month',sales_month) 
                        order by sales_month
                        ) as prev_sales_2
    ,lag(sales,3) over (partition by date_part('month',sales_month) 
                        order by sales_month
                        ) as prev_sales_3
    FROM retail_sales
    WHERE kind_of_business = 'Book stores'
) a
;

sales_month  sales  pct_of_3_prev
-----------  -----  -------------
1995-01-01   1308   138.12
1996-01-01   1373   122.69
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1997-01-01   1558   125.24
...          ...    ...   
2017-01-01   1386   94.67
2018-01-01   1217   84.98
2019-01-01   1004   74.75
...          ...    ...

We can see from the result that book sales grew from the prior three-year rolling
average in the mid-1990s, but the picture was different in the late 2010s, when sales
were a shrinking percentage of that three-year rolling average each year.

You might have noticed that this problem resembles one we saw earlier when calcu‐
lating rolling time windows. As an alternative to the last example, we can use an avg
window function with a frame clause. To accomplish this, the PARTITION BY will
use the same date_part function, and the ORDER BY is the same. A frame clause is
added to include rows between 3 preceding and 1 preceding.  This includes the
values in the 1, 2, and 3 rows prior but excludes the value in the current row:

SELECT sales_month, sales
,sales / avg(sales) over (partition by date_part('month',sales_month)
                          order by sales_month
                          rows between 3 preceding and 1 preceding
                          ) as pct_of_prev_3
FROM retail_sales
WHERE kind_of_business = 'Book stores'
;

sales_month  sales  pct_of_prev_3
-----------  -----  -------------
1995-01-01   1308   138.12
1996-01-01   1373   122.62
1997-01-01   1558   125.17
...          ...    ... 
2017-01-01   1386   94.62
2018-01-01   1217   84.94
2019-01-01   1004   74.73
...          ...    ...

The results match those of the previous example, confirming that the alternative code
is equivalent.

If you look closely, you’ll notice that the decimal place values are
slightly different in the result using the three lag windows and the
result using the avg window function. This is due to how the data‐
base handles decimal rounding in intermediate calculations. For
many analyses, the difference won’t matter, but pay careful atten‐
tion if you’re working with financial or other highly regulated data.
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Analyzing data with seasonality often involves trying to reduce noise in order to
make clear conclusions about the underlying trends in the data. Comparing data
points against multiple prior time periods can give us an even smoother trend to
compare to and determine what is actually happening in the current time period.
This does require that the data include enough history to make these comparisons,
but when we have a long enough time series, it can be insightful.

Conclusion
Time series analysis is a powerful way to analyze data sets. We’ve seen how to set up
our data for analysis with date and time manipulations. We talked about date dimen‐
sions and saw how to apply them to calculating rolling time windows. We looked at
period-over-period calculations and how to analyze data with seasonality patterns. In
the next chapter, we’ll delve deep into a related topic that extends on time series anal‐
ysis: cohort analysis.
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CHAPTER 4

Cohort Analysis

In Chapter 3 we covered time series analysis. With those techniques in hand, we will
now turn to a related type of analysis with many business and other applications:
cohort analysis.

I remember the first time I encountered a cohort analysis. I was working at my first
data analyst job, at a small startup. I was reviewing a purchase analysis I’d worked on
with the CEO, and he suggested that I break up the customer base by cohorts to see
whether behavior was changing over time. I assumed it was some fancy business
school thing and probably useless, but he was the CEO, so of course I humored him.
Turns out it wasn’t just a lark. Breaking populations into cohorts and following them
over time is a powerful way to analyze your data and avoid various biases. Cohorts
can provide clues to how subpopulations differ from each other and how they change
over time.

In this chapter, we’ll first take a look at what cohorts are and at the building blocks of
certain types of cohort analysis. After an introduction to the legislators data set used
for the examples, we’ll learn how to construct a retention analysis and deal with vari‐
ous challenges such as defining the cohort and handling sparse data. Next, we’ll cover
survivorship, returnship, and cumulative calculations, all of which are similar to
retention analysis in the way the SQL code is structured. Finally, we’ll look at how to
combine cohort analysis with cross-sectional analysis to understand the makeup of
populations over time.
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Cohorts: A Useful Analysis Framework
Before we get into the code, I will define what cohorts are, consider the types of ques‐
tions we can answer with this type of analysis, and describe the components of any
cohort analysis.

A cohort is a group of individuals who share some characteristic of interest, described
below, at the time we start observing them. Cohort members are often people but can
be any type of entity we want to study: companies, products, or physical world phe‐
nomena. Individuals in a cohort may be aware of their membership, just as children
in a first-grade class are aware they are part of a peer group of first graders, or partici‐
pants in a drug trial are aware they are part of a group receiving a treatment. At other
times, entities are grouped into cohorts virtually, as when a software company groups
all customers acquired in a certain year to study how long they remain customers. It’s
always important to consider the ethical implications of cohorting entities without
their awareness, if any different treatment is to be applied to them.

Cohort analysis is a useful way to compare groups of entities over time. Many impor‐
tant behaviors take weeks, months, or years to occur or evolve, and cohort analysis is
a way to understand these changes. Cohort analysis provides a framework for detect‐
ing correlations between cohort characteristics and these long-term trends, which can
lead to hypotheses about the causal drivers. For example, customers acquired through
a marketing campaign may have different long-term purchase patterns than those
who were persuaded by a friend to try a company’s products. Cohort analysis can be
used to monitor new cohorts of users or customers and assess how they compare to
previous cohorts. Such monitoring can provide an early alert signal that something
has gone wrong (or right) for new customers. Cohort analysis is also used to mine
historical data. A/B tests, discussed in Chapter 7, are the gold standard for determin‐
ing causality, but we can’t go back in time and run every test for every question about
the past in which we are interested. We should of course be cautious about attaching
causal meaning to cohort analysis and instead use cohort analysis as a way to under‐
stand customers and generate hypotheses that can be tested rigorously in the future.

Cohort analyses have three components: the cohort grouping, a time series of data
over which the cohort is observed, and an aggregate metric that measures an action
done by cohort members.

Cohort grouping is often based on a start date: the customer’s first purchase or sub‐
scription date, the date a student started school, and so on. However, cohorts can also
be formed around other characteristics that are either innate or changing over time.
Innate qualities include birth year and country of origin, or the year a company was
founded. Characteristics that can change over time include city of residence and mar‐
ital status. When these are used, we need to be careful to cohort only on the value on
the starting date, or else entities can jump between cohort groups.
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Cohort or Segment?

These two terms are often used in similar ways, or even inter‐
changeably, but it’s worth drawing a distinction between them for
the sake of clarity. A cohort is a group of users (or other entities)
who have a common starting date and are followed over time. A
segment is a grouping of users who share a common characteristic
or set of characteristics at a point in time, regardless of their start‐
ing date. Similar to cohorts, segments can be based on innate fac‐
tors such as age or on behavioral characteristics. A segment of
users that signs up in the same month can be put into a cohort and
followed over time. Or different groupings of users can be explored
with cohort analysis so that you can see which ones have the most
valuable characteristics. The analyses we’ll cover in this chapter,
such as retention, can help put concrete data behind marketing
segments.

The second component of any cohort analysis is the time series. This is a series of pur‐
chases, logins, interactions, or other actions that are taken by the customers or enti‐
ties to be cohorted. It’s important that the time series covers the entire life span of the
entities, or there will be survivorship bias in early cohorts. Survivorship bias occurs
when only customers who have stayed are in the data set; churned customers are
excluded because they are no longer around, so the rest of the customers appear to be
of higher quality or fit in comparison to newer cohorts (see “Survivorship Bias” on
page 167). It’s also important to have a time series that is long enough for the entities
to complete the action of interest. For example, if customers tend to purchase once a
month, a time series of several months is needed. If, on the other hand, purchases
happen only once a year, a time series of several years would be preferable. Inevitably,
more recently acquired customers will not have had as long to complete actions as
those customers who were acquired further in the past. In order to normalize, cohort
analysis usually measures the number of periods that have elapsed from a starting
date, rather than calendar months. In this way, cohorts can be compared in period 1,
period 2, and so on to see how they evolve over time, regardless of which month the
action actually occurred. The intervals may be days, weeks, months, or years.

The aggregate metric should be related to the actions that matter to the health of the
organization, such as customers continuing to use or purchase the product. Metric
values are aggregated across the cohort, usually with sum, count, or average, though
any relevant aggregation works. The result is a time series that can then be used to
understand changes in behavior over time.

In this chapter, I’ll cover four types of cohort analysis: retention, survivorship, return‐
ship or repeat purchase behavior, and cumulative behavior.
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Retention
Retention is concerned with whether the cohort member has a record in the time
series on a particular date, expressed as a number of periods from the starting
date. This is useful in any kind of organization in which repeated actions are
expected, from playing an online game to using a product or renewing a sub‐
scription, and it helps to answer questions about how sticky or engaging a prod‐
uct is and how many entities can be expected to appear on future dates.

Survivorship
Survivorship is concerned with how many entities remained in the data set for a
certain length of time or longer, regardless of the number or frequency of actions
up to that time. Survivorship is useful for answering questions about the propor‐
tion of the population that can be expected to remain—either in a positive sense
by not churning or passing away, or in a negative sense by not graduating or ful‐
filling some requirement.

Returnship
Returnship or repeat purchase behavior is concerned with whether an action has
happened more than some minimum threshold of times—often simply more
than once—during a fixed window of time. This type of analysis is useful in sit‐
uations in which the behavior is intermittent and unpredictable, such as in retail,
where it characterizes the share of repeat purchasers in each cohort within a fixed
time window.

Cumulative
Cumulative calculations are concerned with the total number or amounts meas‐
ured at one or more fixed time windows, regardless of when they happened dur‐
ing that window. Cumulative calculations are often used in calculations of 
customer lifetime value (LTV or CLTV).

The four types of cohort analysis allow us to compare subgroups and understand how
they differ over time in order to make better product, marketing, and financial deci‐
sions. The calculations for the different types are similar, so we will set the stage with
retention, and then I’ll show how to modify retention code to calculate the other
types. Before we dive into constructing our cohort analysis, let’s take a look at the data
set we’ll be using for the examples in this chapter.
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The Legislators Data Set
The SQL examples in this chapter will use a data set of past and present members of
the United States Congress maintained in a GitHub repository. In the US, Congress is
responsible for writing laws or legislation, so its members are also known as legisla‐
tors. Since the data set is a JSON file, I have applied some transformations to produce
a more suitable data model for analysis, and I have posted data in a format suitable
for following along with the examples in the book’s GitHub legislators folder.

The source repository has an excellent data dictionary, so I won’t repeat all the details
here. I will provide a few details, however, that should help those who aren’t familiar
with the US government to follow along with the analyses in this chapter.

Congress has two chambers, the Senate (“sen” in the data set) and the House of Rep‐
resentatives (“rep”). Each state has two senators, and they are elected for six-year
terms. Representatives are allocated to states based on population; each representative
has a district that they alone represent. Representatives are elected for two-year terms.
Actual terms in either chamber can be shorter in the event that the legislator dies or is
elected or appointed to a higher office. Legislators accumulate power and influence
via leadership positions the longer they are in office, and thus standing for re-election
is common. Finally, a legislator may belong to a political party, or they may be an
“independent.” In the modern era, the vast majority of legislators are Democrats or
Republicans, and the rivalry between the two parties is well known. Legislators occa‐
sionally change parties while in office.

For the analyses, we’ll make use of two tables: legislators and legislators_terms.
The legislators table contains a list of all the people included in the data set, with
birthday, gender, and a set of ID fields that can be used to look up the person in other
data sets. The legislators_terms table contains a record for each term in office for
each legislator, with start and end date, and other attributes such as chamber and
party. The id_bioguide field is used as the unique identifier of a legislator and
appears in each table. Figure 4-1 shows a sample of the legislators data. Figure 4-2
shows a sample of the legislators_terms data.
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Figure 4-1. Sample of the legislators table

Figure 4-2. Sample of the legislators_terms table

Now that we have an understanding of what cohort analysis is and of the data set we’ll
be using for examples, let’s get into how to write SQL for retention analysis. The key
question SQL will help us answer is: once representatives take office, how long do
they keep their jobs?
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Retention
One of the most common types of cohort analysis is retention analysis. To retain is to
keep or continue something. Many skills need to be practiced to be retained. Busi‐
nesses usually want their customers to keep purchasing their products or using their
services, since retaining customers is more profitable than acquiring new ones.
Employers want to retain their employees, because recruiting replacements is expen‐
sive and time consuming. Elected officials seek reelection in order to continue work‐
ing on the priorities of their constituents.

The main question in retention analysis is whether the starting size of the cohort—
number of subscribers or employees, amount spent, or another key metric—will
remain constant, decay, or increase over time. When there is an increase or a
decrease, the amount and speed of change are also interesting questions. In most
retention analyses, the starting size will tend to decay over time, since a cohort can
lose but cannot gain new members once it is formed. Revenue is an interesting excep‐
tion, since a cohort of customers can spend more in subsequent months than they did
in the first month collectively, even if some of them churn.

Retention analysis uses the count of entities or sum of money or actions present in the
data set for each period from the starting date, and it normalizes by dividing this
number by the count or sum of entities, money, or actions in the first time period. The
result is expressed as a percentage, and retention in the starting period is always
100%. Over time, retention based on counts generally declines and can never exceed
100%, whereas money- or action-based retention, while often declining, can increase
and be greater than 100% in a time period. Retention analysis output is typically dis‐
played in either table or graph form, which is referred to as a retention curve. We’ll
see a number of examples of retention curves later in this chapter.

Graphs of retention curves can be used to compare cohorts. The first characteristic to
pay attention to is the shape of the curve in the initial few periods, where there is
often an initial steep drop. For many consumer apps, losing half a cohort in the first
few months is common. A cohort with a curve that is either more or less steep than
others can indicate changes in the product or customer acquisition source that merit
further investigation. A second characteristic to look for is whether the curve flattens
after some number of periods or continues declining rapidly to zero. A flattening
curve indicates that there is a point in time from which most of the cohort that
remains stays indefinitely. A retention curve that inflects upward, sometimes called a
smile curve, can occur if cohort members return or reactivate after falling out of the
data set for some period. Finally, retention curves that measure subscription revenue
are monitored for signs of increasing revenue per customer over time, a sign of a
healthy SaaS software business.
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This section will show how to create a retention analysis, add cohort groupings from
the time series itself and other tables, and handle missing and sparse data that can
occur in time series data. With this framework in hand, you’ll learn in the subsequent
section how to make modifications to create the other related types of cohort analysis.
As a result, this section on retention will be the longest one in the chapter, as you
build up code and develop your intuition about the calculations.

SQL for a Basic Retention Curve
For retention analysis, as with other cohort analyses, we need three components: the
cohort definition, a time series of actions, and an aggregate metric that measures
something relevant to the organization or process. In our case, the cohort members
will be the legislators, the time series will be the terms in office for each legislator, and
the metric of interest will be the count of those who are still in office each period
from the starting date. 

We’ll start by calculating basic retention, before moving on to examples that include
various cohort groupings. The first step is to find the first date each legislator took
office (first_term). We will use this date to calculate the number of periods for each
subsequent date in the time series. To do this, take the min of the term_start and
GROUP BY each id_bioguide, the unique identifier for a legislator:

SELECT id_bioguide
,min(term_start) as first_term
FROM legislators_terms 
GROUP BY 1
;

id_bioguide  first_term
-----------  ----------
A000118      1975-01-14
P000281      1933-03-09
K000039      1933-03-09
...          ...

The next step is to put this code into a subquery and JOIN it to the time series. The
age function is applied to calculate the intervals between each term_start and the
first_term for each legislator. Applying the date_part functions to the result, with
year, transforms this into the number of yearly periods. Since elections happen every
two or six years, we’ll use years as the time interval to calculate the periods. We could
use a shorter interval, but in this data set there is little fluctuation daily or weekly. The
count of legislators with records for that period is the number retained:

SELECT date_part('year',age(b.term_start,a.first_term)) as period
,count(distinct a.id_bioguide) as cohort_retained
FROM
(
    SELECT id_bioguide, min(term_start) as first_term
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    FROM legislators_terms 
    GROUP BY 1
) a
JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
GROUP BY 1
;

period  cohort_retained
------  ---------------
0.0     12518
1.0     3600
2.0     3619
...     ...

In databases that support the datediff function, the date_part
and age construction can be replaced by this simpler function:

datediff('year',first_term,term_start)

Some databases, such as Oracle, place the date_part last:
datediff(first_term,term_start,'year'

Now that we have the periods and the number of legislators retained in each, the final
step is to calculate the total cohort_size and populate it in each row so that the
cohort_retained can be divided by it. The first_value window function returns
the first record in the PARTITION BY clause, according to the ordering set in the
ORDER BY, a convenient way to get the cohort size in each row. In this case, the
cohort_size comes from the first record in the entire data set, so the PARTITION BY
is omitted:

first_value(cohort_retained) over (order by period) as cohort_size

To find the percent retained, divide the cohort_retained value by this same
calculation:

SELECT period
,first_value(cohort_retained) over (order by period) as cohort_size
,cohort_retained
,cohort_retained / 
 first_value(cohort_retained) over (order by period) as pct_retained
FROM
(
    SELECT date_part('year',age(b.term_start,a.first_term)) as period
    ,count(distinct a.id_bioguide) as cohort_retained
    FROM
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms 
        GROUP BY 1
    ) a
    JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
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    GROUP BY 1
) aa
;

period  cohort_size  cohort_retained  pct_retained
------  -----------  ---------------  ------------
0.0     12518        12518            1.0000
1.0     12518        3600             0.2876
2.0     12518        3619             0.2891
...     ...          ...              ...

We now have a retention calculation, and we can see that there is a big drop-off
between the 100% of legislators retained in period 0, or on their start date, and the
share with another term record that starts a year later. Graphing the results, as in
Figure 4-3, demonstrates how the curve flattens and eventually goes to zero, as even
the longest-serving legislators eventually retire or die.

Figure 4-3. Retention from start of first term for US legislators

We can take the cohort retention result and reshape the data to show it in table for‐
mat. Pivot and flatten the results using an aggregate function with a CASE statement;
max is used in this example, but other aggregations such as min or avg would return
the same result. Retention is calculated for years 0 through 4, but additional years can
be added by following the same pattern:

SELECT cohort_size
,max(case when period = 0 then pct_retained end) as yr0
,max(case when period = 1 then pct_retained end) as yr1
,max(case when period = 2 then pct_retained end) as yr2
,max(case when period = 3 then pct_retained end) as yr3
,max(case when period = 4 then pct_retained end) as yr4
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FROM
(
    SELECT period
    ,first_value(cohort_retained) over (order by period) 
     as cohort_size
    ,cohort_retained 
     / first_value(cohort_retained) over (order by period)
     as pct_retained
    FROM
    (
        SELECT 
        date_part('year',age(b.term_start,a.first_term)) as period
        ,count(*) as cohort_retained
        FROM
        (
            SELECT id_bioguide, min(term_start) as first_term
            FROM legislators_terms 
            GROUP BY 1
        ) a
        JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
        GROUP BY 1
    ) aa
) aaa
GROUP BY 1
;

cohort_size  yr0     yr1     yr2     yr3     yr4
-----------  ------  ------  ------  ------  ------
12518        1.0000  0.2876  0.2891  0.1463  0.2564

Retention appears to be quite low, and from the graph we can see that it is jagged in
the first few years. One reason for this is that a representative’s term lasts two years,
and senators’ terms last six years, but the data set only contains records for the start of
new terms; thus we are missing data for years in which a legislator was still in office
but did not start a new term. Measuring retention each year is misleading in this case.
One option is to measure retention only on a two- or six-year cycle, but there is also
another strategy we can employ to fill in the “missing” data. I will cover this next
before returning to the topic of forming cohort groups.

Adjusting Time Series to Increase Retention Accuracy
We discussed techniques for cleaning “missing” data in Chapter 2, and we will turn to
those techniques in this section in order to arrive at a smoother and more truthful
retention curve for the legislators. When working with time series data, such as in
cohort analysis, it’s important to consider not only the data that is present but also
whether that data accurately reflects the presence or absence of entities at each time
period. This is particularly a problem in contexts in which an event captured in the
data leads to the entity persisting for some period of time that is not captured in the
data. For example, a customer buying a software subscription is represented in
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the data at the time of the transaction, but that customer is entitled to use the soft‐
ware for months or years and is not necessarily represented in the data over that span.
To correct for this, we need a way to derive the span of time in which the entity is still
present, either with an explicit end date or with knowledge of the length of the sub‐
scription or term. Then we can say that the entity was present at any date in between
those start and end dates.

In the legislators data set, we have a record for a term’s start date, but we are missing
the notion that this “entitles” a legislator to serve for two or six years, depending on
the chamber. To correct for this and smooth out the curve, we need to fill in the
“missing” values for the years that legislators are still in office between new terms.
Since this data set includes a term_end value for each term, I’ll show how to create a
more accurate cohort retention analysis by filling in dates between the start and end
values. Then I’ll show how you can impute end dates when the data set does not
include an end date.

Calculating retention using a start and end date defined in the data is the most accu‐
rate approach. For the following examples, we will consider legislators retained in a
particular year if they were still in office as of the last day of the year, December 31.
Prior to the Twentieth Amendment to the US Constitution, terms began on March 4,
but afterward the start date moved to January 3, or to a subsequent weekday if the
third falls on a weekend. Legislators can be sworn in on other days of the year due to
special off-cycle elections or appointments to fill vacant seats. As a result, term_start
dates cluster in January but are spread across the year. While we could pick another
day, December 31 is a strategy for normalizing around these varying start dates.

The first step is to create a data set that contains a record for each December 31 that
each legislator was in office. This can be accomplished by JOINing the subquery that
found the first_term to the legislators_terms table to find the term_start and
term_end for each term. A second JOIN to the date_dim retrieves the dates that fall
between the start and end dates, restricting the returned values to c.month_name =
'December' and c.day_of_month = 31. The period is calculated as the years
between the date from the date_dim and the first_term. Note that even though
more than 11 months may have elapsed between being sworn in in January and
December 31, the first year still appears as 0:

SELECT a.id_bioguide, a.first_term
,b.term_start, b.term_end
,c.date
,date_part('year',age(c.date,a.first_term)) as period
FROM
(
    SELECT id_bioguide, min(term_start) as first_term
    FROM legislators_terms 
    GROUP BY 1
) a
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JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
LEFT JOIN date_dim c on c.date between b.term_start and b.term_end 
and c.month_name = 'December' and c.day_of_month = 31
;

id_bioguide  first_term  term_start  term_end    date        period
-----------  ----------  ----------  ----------  ----------  ------
B000944      1993-01-05  1993-01-05  1995-01-03  1993-12-31  0.0
B000944      1993-01-05  1993-01-05  1995-01-03  1994-12-31  1.0
C000127      1993-01-05  1993-01-05  1995-01-03  1993-12-31  0.0
...          ...         ...         ...         ...         ...

If a date dimension is not available, you can create a subquery with
the necessary dates in a couple of ways. If your database supports
the generate_series, you can create a subquery that returns the
desired dates:

SELECT generate_series::date as date
FROM generate_series('1770-12-31','2020-12-
31',interval '1 year')

You may want to save this as a table or view for later use. Alterna‐
tively, you can query the data set or any other table in the database
that has a full set of dates. In this case, the table has all of the neces‐
sary years, but we will make a December 31 date for each year
using the make_date function:

SELECT distinct
make_date(date_part('year',term_start)::int,12,31)
FROM legislators_terms

There are a number of creative ways to get the series of dates
needed. Use whichever method is available and simplest within
your queries.

We now have a row for each date (year end) for which we would like to calculate
retention. The next step is to calculate the cohort_retained for each period, which is
done with a count of id_bioguide. A coalesce function is used on period to set a
default value of 0 when null. This handles the cases in which a legislator’s term starts
and ends in the same year, giving credit for serving in that year:

SELECT 
coalesce(date_part('year',age(c.date,a.first_term)),0) as period
,count(distinct a.id_bioguide) as cohort_retained
FROM
(
    SELECT id_bioguide, min(term_start) as first_term
    FROM legislators_terms 
    GROUP BY 1
) a
JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
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LEFT JOIN date_dim c on c.date between b.term_start and b.term_end 
and c.month_name = 'December' and c.day_of_month = 31
GROUP BY 1
;

period  cohort_retained
------  ---------------
0.0     12518
1.0     12328
2.0     8166
...     ...

The final step is to calculate the cohort_size and pct_retained as we did previously
using first_value window functions:

SELECT period
,first_value(cohort_retained) over (order by period) as cohort_size
,cohort_retained
,cohort_retained * 1.0 / 
 first_value(cohort_retained) over (order by period) as pct_retained
FROM
(
    SELECT coalesce(date_part('year',age(c.date,a.first_term)),0) as period
    ,count(distinct a.id_bioguide) as cohort_retained
    FROM
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms 
        GROUP BY 1
    ) a
    JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
    LEFT JOIN date_dim c on c.date between b.term_start and b.term_end 
    and c.month_name = 'December' and c.day_of_month = 31
    GROUP BY 1
) aa
;

period  cohort_size  cohort_retained  pct_retained
------  -----------  ---------------  ------------
0.0     12518        12518            1.0000
1.0     12518        12328            0.9848
2.0     12518        8166             0.6523
...     ...          ...              ...

The results, graphed in Figure 4-4, are now much more accurate. Almost all legisla‐
tors are still in office in year 1, and the first big drop-off occurs in year 2, when some
representatives will fail to be reelected.
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Figure 4-4. Legislator retention after adjusting for actual years in office

If the data set does not contain an end date, there are a couple of options for imputing
one. One option is to add a fixed interval to the start date, when the length of a sub‐
scription or term is known. This can be done with date math by adding a constant
interval to the term_start. Here, a CASE statement handles the addition for the two
term_types:

SELECT a.id_bioguide, a.first_term
,b.term_start
,case when b.term_type = 'rep' then b.term_start + interval '2 years'
      when b.term_type = 'sen' then b.term_start + interval '6 years'
      end as term_end
FROM
(
    SELECT id_bioguide, min(term_start) as first_term
    FROM legislators_terms 
    GROUP BY 1
) a
JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
;

id_bioguide  first_term  term_start  term_end
-----------  ----------  ----------  ----------
B000944      1993-01-05  1993-01-05  1995-01-05
C000127      1993-01-05  1993-01-05  1995-01-05
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C000141      1987-01-06  1987-01-06  1989-01-06
...          ...         ...         ...

This block of code can then be plugged into the retention code to derive the period
and pct_retained. The drawback to this method is that it fails to capture instances in
which a legislator did not complete a full term, which can happen in the event of
death or appointment to a higher office.

A second option is to use the subsequent starting date, minus one day, as the
term_end date. This can be calculated with the lead window function. This function
is similar to the lag function we’ve used previously, but rather than returning a value
from a row earlier in the partition, it returns a value from a row later in the partition,
as determined in the ORDER BY clause. The default is one row, which we will use
here, but the function has an optional argument indicating a different number of
rows. Here we find the term_start date of the subsequent term using lead and then
subtract the interval '1 day' to derive the term_end:

SELECT a.id_bioguide, a.first_term
,b.term_start
,lead(b.term_start) over (partition by a.id_bioguide 
                          order by b.term_start) 
 - interval '1 day' as term_end
FROM
(
    SELECT id_bioguide, min(term_start) as first_term
    FROM legislators_terms 
    GROUP BY 1
) a
JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
;

id_bioguide  first_term  term_start  term_end
-----------  ----------  ----------  ----------
A000001      1951-01-03  1951-01-03  (null)
A000002      1947-01-03  1947-01-03  1949-01-02
A000002      1947-01-03  1949-01-03  1951-01-02
...          ...         ...         ...

This code block can then be plugged into the retention code. This method has a cou‐
ple of drawbacks. First, when there is no subsequent term, the lead function returns
null, leaving that term without a term_end. A default value, such as a default interval
shown in the last example, could be used in such cases. The second drawback is that
this method assumes that terms are always consecutive, with no time spent out of
office. Although most legislators tend to serve continuously until their congressional
careers end, there are certainly examples of gaps between terms spanning several
years.

Any time we make adjustments to fill in missing data, we need to be careful about the
assumptions we make. In subscription- or term-based contexts, explicit start and end
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dates tend to be most accurate. Either of the two other methods shown—adding a
fixed interval or setting the end date relative to the next start date—can be used when
no end date is present and we have a reasonable expectation that most customers or
users will stay for the duration assumed.

Now that we’ve seen how to calculate a basic retention curve and correct for missing
dates, we can start adding in cohort groups. Comparing retention between different
groups is one of the main reasons to do cohort analysis. Next, I’ll discuss forming
groups from the time series itself, and after that, I’ll discuss forming cohort groups
from data in other tables.

Cohorts Derived from the Time Series Itself
Now that we have SQL code to calculate retention, we can start to split the entities
into cohorts. In this section, I will show how to derive cohort groupings from the
time series itself. First I’ll discuss time-based cohorts based on the first date, and I’ll
explain how to make cohorts based on other attributes from the time series.

The most common way to create the cohorts is based on the first or minimum date or
time that the entity appears in the time series. This means that only one table is nec‐
essary for the cohort retention analysis: the time series itself. Cohorting by the first
appearance or action is interesting because often groups that start at different times
behave differently. For consumer services, early adopters are often more enthusiastic
and retain differently than later adopters, whereas in SaaS software, later adopters
may retain better because the product is more mature. Time-based cohorts can be
grouped by any time granularity that is meaningful to the organization, though
weekly, monthly, or yearly cohorts are common. If you’re not sure what grouping to
use, try running the cohort analysis with different groupings, without making the
cohort sizes too small, to see where meaningful patterns emerge. Fortunately, once
you know how to construct the cohorts and retention analysis, substituting different
time granularities is straightforward.

The first example will use yearly cohorts, and then I will demonstrate swapping in
centuries. The key question we will consider is whether the era in which a legislator
first took office has any correlation with their retention. Political trends and the pub‐
lic mood do change over time, but by how much?

To calculate yearly cohorts, we first add the year of the first_term calculated previ‐
ously to the query that finds the period and cohort_retained:

SELECT date_part('year',a.first_term) as first_year
,coalesce(date_part('year',age(c.date,a.first_term)),0) as period
,count(distinct a.id_bioguide) as cohort_retained
FROM
(
    SELECT id_bioguide, min(term_start) as first_term
    FROM legislators_terms 
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    GROUP BY 1
) a
JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
LEFT JOIN date_dim c on c.date between b.term_start and b.term_end 
and c.month_name = 'December' and c.day_of_month = 31
GROUP BY 1,2
;

first_year  period  cohort_retained
----------  ------  ---------------
1789.0      0.0     89
1789.0      2.0     89
1789.0      3.0     57
...         ...     ...

This query is then used as the subquery, and the cohort_size and pct_retained are
calculated in the outer query as previously.  In this case, however, we need a PARTI‐
TION BY clause that includes first_year so that the first_value is calculated only
within the set of rows for that first_year, rather than across the whole result set
from the subquery:

SELECT first_year, period
,first_value(cohort_retained) over (partition by first_year 
                                    order by period) as cohort_size
,cohort_retained
,cohort_retained / 
 first_value(cohort_retained) over (partition by first_year 
                                    order by period) as pct_retained
FROM
(
    SELECT date_part('year',a.first_term) as first_year
    ,coalesce(date_part('year',age(c.date,a.first_term)),0) as period
    ,count(distinct a.id_bioguide) as cohort_retained
    FROM
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms 
        GROUP BY 1
    ) a
    JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
    LEFT JOIN date_dim c on c.date between b.term_start and b.term_end 
    and c.month_name = 'December' and c.day_of_month = 31
    GROUP BY 1,2
) aa
;

first_year  period  cohort_size  cohort_retained  pct_retained
----------  ------  -----------  ---------------  ------------
1789.0      0.0     89           89               1.0000
1789.0      2.0     89           89               1.0000
1789.0      3.0     89           57               0.6404
...         ...     ...          ...              ...
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This data set includes over two hundred starting years, too many to easily graph or
examine in a table. Next we’ll look at a less granular interval and cohort the legislators
by the century of the first_term. This change is easily made by substituting century
for year in the date_part function in subquery aa. Recall that century names are off‐
set from the years they represent, so that the 18th century lasted from 1700 to 1799,
the 19th century lasted from 1800 to 1899, and so on. The partitioning in the
first_value function changes to the first_century field:

SELECT first_century, period
,first_value(cohort_retained) over (partition by first_century 
                                    order by period) as cohort_size
,cohort_retained
,cohort_retained / 
 first_value(cohort_retained) over (partition by first_century 
                                    order by period) as pct_retained
FROM
(
    SELECT date_part('century',a.first_term) as first_century
    ,coalesce(date_part('year',age(c.date,a.first_term)),0) as period
    ,count(distinct a.id_bioguide) as cohort_retained
    FROM
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms 
        GROUP BY 1
    ) a
    JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
    LEFT JOIN date_dim c on c.date between b.term_start and b.term_end 
    and c.month_name = 'December' and c.day_of_month = 31
    GROUP BY 1,2
) aa
ORDER BY 1,2
;

first_century  period  cohort_size  cohort_retained  pct_retained
-------------  ------  -----------  ---------------  ------------
18.0           0.0     368          368              1.0000
18.0           1.0     368          360              0.9783
18.0           2.0     368          242              0.6576
...            ...     ...          ...              ...

The results are graphed in Figure 4-5. Retention in the early years has been higher for
those first elected in the 20th or 21st century. The 21st century is still underway, and
thus many of those legislators have not had the opportunity to stay in office for five or
more years, though they are still included in the denominator. We might want to con‐
sider removing the 21st century from the analysis, but I’ve left it here to demonstrate
how the retention curve drops artificially due to this circumstance.
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Figure 4-5. Legislator retention by century in which first term began

Cohorts can be defined from other attributes in a time series besides the first date,
with options depending on the values in the table. The legislators_terms table has
a state field, indicating which state the person is representing for that term. We can
use this to create cohorts, and we will base them on the first state in order to ensure
that anyone who has represented multiple states appears in the data only once.

When cohorting on an attribute that can change over time, it’s
important to ensure that each entity is assigned only one value.
Otherwise the entity may be represented in multiple cohorts, intro‐
ducing bias into the analysis. Usually the value from the earliest
record in the data set is used.

To find the first state for each legislator, we can use the first_value window func‐
tion. In this example, we’ll also turn the min function into a window function to avoid
a lengthy GROUP BY clause:

SELECT distinct id_bioguide
,min(term_start) over (partition by id_bioguide) as first_term
,first_value(state) over (partition by id_bioguide 
                          order by term_start) as first_state
FROM legislators_terms 
;

140 | Chapter 4: Cohort Analysis



id_bioguide  first_term  first_state
-----------  ----------  -----------
C000001      1893-08-07  GA
R000584      2009-01-06  ID
W000215      1975-01-14  CA
...          ...         ...

We can then plug this code into our retention code to find the retention by
first_state:

SELECT first_state, period
,first_value(cohort_retained) over (partition by first_state 
                                    order by period) as cohort_size
,cohort_retained
,cohort_retained / 
 first_value(cohort_retained) over (partition by first_state 
                                    order by period) as pct_retained
FROM
(
    SELECT a.first_state
    ,coalesce(date_part('year',age(c.date,a.first_term)),0) as period
    ,count(distinct a.id_bioguide) as cohort_retained
    FROM
    (
        SELECT distinct id_bioguide
        ,min(term_start) over (partition by id_bioguide) as first_term
        ,first_value(state) over (partition by id_bioguide order by term_start) 
         as first_state
        FROM legislators_terms 
    ) a
    JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
    LEFT JOIN date_dim c on c.date between b.term_start and b.term_end 
    and c.month_name = 'December' and c.day_of_month = 31
    GROUP BY 1,2
) aa
;

first_state  period  cohort_size  cohort_retained  pct_retained
-----------  ------  -----------  ---------------  ------------
AK           0.0     19           19               1.0000
AK           1.0     19           19               1.0000
AK           2.0     19           15               0.7895
...          ...     ...          ...              ...

The retention curves for the five states with the highest total number of legislators are
graphed in Figure 4-6. Those elected in Illinois and Massachusetts have the highest
retention, while New Yorkers have the lowest retention. Determining the reasons why
would be an interesting offshoot of this analysis.
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Figure 4-6. Legislator retention by first state: top five states by total legislators

Defining cohorts from the time series is relatively straightforward using a min date for
each entity and then converting that date into a month, year, or century as appropri‐
ate for the analysis. Switching between month and year or other levels of granularity
also is straightforward, allowing for multiple options to be tested in order to find a
grouping that is meaningful for the organization. Other attributes can be used for
cohorting with the first_value window function. Next, we’ll turn to cases in which
the cohorting attribute comes from a table other than that of the time series.

Defining the Cohort from a Separate Table
Often the characteristics that define a cohort exist in a table separate from the one
that contains the time series. For example, a database might have a customer table
with information such as acquisition source or registration date by which customers
can be cohorted. Adding in attributes from other tables, or even subqueries, is rela‐
tively straightforward and can be done in retention analysis and related analyses dis‐
cussed later in the chapter.

For this example, we’ll consider whether the gender of the legislator has any impact
on their retention. The legislators table has a gender field, where F means female
and M means male, that we can use to cohort the legislators. To do this, we’ll JOIN the
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legislators table in as alias d to add gender to the calculation of cohort_retained,
in place of year or century:

SELECT d.gender
,coalesce(date_part('year',age(c.date,a.first_term)),0) as period
,count(distinct a.id_bioguide) as cohort_retained
FROM
(
    SELECT id_bioguide, min(term_start) as first_term
    FROM legislators_terms 
    GROUP BY 1
) a
JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
LEFT JOIN date_dim c on c.date between b.term_start and b.term_end 
and c.month_name = 'December' and c.day_of_month = 31
JOIN legislators d on a.id_bioguide = d.id_bioguide
GROUP BY 1,2
;

gender  period  cohort_retained
------  ------  ---------------
F       0.0     366
M       0.0     12152
F       1.0     349
M       1.0     11979
...     ...     ...

It’s immediately clear that many more males than females have served legislative
terms. We can now calculate the percent_retained so we can compare the retention
for these groups:

SELECT gender, period
,first_value(cohort_retained) over (partition by gender 
                                    order by period) as cohort_size
,cohort_retained
,cohort_retained/ 
 first_value(cohort_retained) over (partition by gender 
                                    order by period) as pct_retained
FROM
(
    SELECT d.gender
    ,coalesce(date_part('year',age(c.date,a.first_term)),0) as period
    ,count(distinct a.id_bioguide) as cohort_retained
    FROM
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms 
        GROUP BY 1
    ) a
    JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
    LEFT JOIN date_dim c on c.date between b.term_start and b.term_end 
    and c.month_name = 'December' and c.day_of_month = 31
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    JOIN legislators d on a.id_bioguide = d.id_bioguide
    GROUP BY 1,2
) aa
;

gender  period  cohort_size  cohort_retained  pct_retained
------  ------  -----------  ---------------  ------------
F       0.0     366          366              1.0000
M       0.0     12152        12152            1.0000
F       1.0     366          349              0.9536
M       1.0     12152        11979            0.9858
...     ...     ...          ...              ...

We can see from the results graphed in Figure 4-7 that retention is higher for female
legislators than for their male counterparts for periods 2 through 29. The first female
legislator did not take office until 1917, when Jeannette Rankin joined the House as a
Republican representative from Montana. As we saw earlier, retention has increased
in more recent centuries.

Figure 4-7. Legislator retention by gender

To make a more fair comparison, we might restrict the legislators included in the
analysis to only those whose first_term started since there have been women in
Congress. We can do this by adding a WHERE filter to subquery aa. Here the results
are also restricted to those who started before 2000, to ensure the cohorts have had at
least 20 possible years to stay in office:
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SELECT gender, period
,first_value(cohort_retained) over (partition by gender 
                                    order by period) as cohort_size
,cohort_retained
,cohort_retained / 
 first_value(cohort_retained) over (partition by gender 
                                    order by period) as pct_retained
FROM
(
    SELECT d.gender
    ,coalesce(date_part('year',age(c.date,a.first_term)),0) as period
    ,count(distinct a.id_bioguide) as cohort_retained
    FROM
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms 
        GROUP BY 1
    ) a
    JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
    LEFT JOIN date_dim c on c.date between b.term_start and b.term_end 
    and c.month_name = 'December' and c.day_of_month = 31
    JOIN legislators d on a.id_bioguide = d.id_bioguide
    WHERE a.first_term between '1917-01-01' and '1999-12-31'
    GROUP BY 1,2
) aa
;

gender  period  cohort_size  cohort_retained  pct_retained
------  ------  -----------  ---------------  ------------
F       0.0     200          200              1.0000
M       0.0     3833         3833             1.0000
F       1.0     200          187              0.9350
M       1.0     3833         3769             0.9833
...     ...     ...          ...              ...

Male legislators still outnumber female legislators, but by a smaller margin. The
retention for the cohorts is graphed in Figure 4-8. With the revised cohorts, male leg‐
islators have higher retention through year 7, but starting in year 12, female legisla‐
tors have higher retention. The difference between the two gender-based cohort
analyses underscores the importance of setting up appropriate cohorts and ensuring
that they have comparable amounts of time to be present or complete other actions of
interest. To further improve this analysis, we could cohort by both starting year or
decade and gender, in order to control for additional changes in retention through
the 20th century and into the 21st century.
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Figure 4-8. Legislator retention by gender: cohorts from 1917 to 1999

Cohorts can be defined in multiple ways, from the time series and from other tables.
With the framework we’ve developed, subqueries, views, or other derived tables can
be swapped in, opening up a whole range of calculations to be the basis of a cohort.
Multiple criteria, such as starting year and gender, can be used. One caution when
dividing populations into cohorts based on multiple criteria is that this can lead to
sparse cohorts, where some of the defined groups are too small and are not repre‐
sented in the data set for all time periods. The next section will discuss methods for
overcoming this challenge.

Dealing with Sparse Cohorts
In the ideal data set, every cohort has some action or record in the time series for
every period of interest. We’ve already seen how “missing” dates can occur due to
subscriptions or terms lasting over multiple periods, and we looked at how to correct
for them using a date dimension to infer intermediate dates. Another issue can arise
when, due to grouping criteria, the cohort becomes too small and as a result is repre‐
sented only sporadically in the data. A cohort may disappear from the result set,
when we would prefer it to appear with a zero retention value. This problem is called
sparse cohorts, and it can be worked around with the careful use of LEFT JOINs.

To demonstrate this, let’s attempt to cohort female legislators by the first state they
represented to see if there are any differences in retention. We’ve already seen that
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there have been relatively few female legislators. Cohorting them further by state is
highly likely to create some sparse cohorts in which there are very few members.
Before making code adjustments, let’s add first_state (calculated in the section on
deriving cohorts from the time series) into our previous gender example and look at
the results:

SELECT first_state, gender, period
,first_value(cohort_retained) over (partition by first_state, gender 
                                    order by period) as cohort_size
,cohort_retained
,cohort_retained / 
 first_value(cohort_retained) over (partition by first_state, gender 
                                    order by period) as pct_retained
FROM
(
    SELECT a.first_state, d.gender
    ,coalesce(date_part('year',age(c.date,a.first_term)),0) as period
    ,count(distinct a.id_bioguide) as cohort_retained
    FROM
    (
        SELECT distinct id_bioguide
        ,min(term_start) over (partition by id_bioguide) as first_term
        ,first_value(state) over (partition by id_bioguide 
                                  order by term_start) as first_state
        FROM legislators_terms 
    ) a
    JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
    LEFT JOIN date_dim c on c.date between b.term_start and b.term_end 
    and c.month_name = 'December' and c.day_of_month = 31
    JOIN legislators d on a.id_bioguide = d.id_bioguide
    WHERE a.first_term between '1917-01-01' and '1999-12-31'
    GROUP BY 1,2,3
) aa
;

first_state  gender  period  cohort_size  cohort_retained pct_retained
-----------  ------  ------  -----------  --------------- ------------
AZ           F       0.0     2            2               1.0000
AZ           M       0.0     26           26              1.0000
AZ           F       1.0     2            2               1.0000
...          ...     ...     ...          ...             ...

Graphing the results for the first 20 periods, as in Figure 4-9, reveals the sparse
cohorts. Alaska did not have any female legislators, while Arizona’s female retention
curve disappears after year 3. Only California, a large state with many legislators, has
complete retention curves for both genders. This pattern repeats for other small and
large states.
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Figure 4-9. Legislator retention by gender and first state

Now let’s look at how to ensure a record for every period so that the query returns
zero values for retention instead of nulls. The first step is to query for all combina‐
tions of periods and cohort attributes, in this case first_state and gender, with the
starting cohort_size for each combination. This can be done by JOINing subquery
aa, which calculates the cohort, with a generate_series subquery that returns all
integers from 0 to 20, with the criteria on 1 = 1. This is a handy way to force a Carte‐
sian JOIN when the two subqueries don’t have any fields in common:

SELECT aa.gender, aa.first_state, cc.period, aa.cohort_size
FROM
(
    SELECT b.gender, a.first_state 
    ,count(distinct a.id_bioguide) as cohort_size
    FROM 
    (
        SELECT distinct id_bioguide
        ,min(term_start) over (partition by id_bioguide) as first_term
        ,first_value(state) over (partition by id_bioguide 
                                  order by term_start) as first_state
        FROM legislators_terms 
    ) a
    JOIN legislators b on a.id_bioguide = b.id_bioguide
    WHERE a.first_term between '1917-01-01' and '1999-12-31' 
    GROUP BY 1,2
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) aa
JOIN
(
    SELECT generate_series as period 
    FROM generate_series(0,20,1)
) cc on 1 = 1
;

gender  state  period  cohort
------  -----  ------  ------
F       AL     0       3
F       AL     1       3
F       AL     2       3
...    ...     ...     ...

The next step is to JOIN this back to the actual periods in office, with a LEFT JOIN to
ensure all the time periods remain in the final result:

SELECT aaa.gender, aaa.first_state, aaa.period, aaa.cohort_size
,coalesce(ddd.cohort_retained,0) as cohort_retained
,coalesce(ddd.cohort_retained,0) / aaa.cohort_size as pct_retained
FROM
(
    SELECT aa.gender, aa.first_state, cc.period, aa.cohort_size
    FROM
    (
        SELECT b.gender, a.first_state
        ,count(distinct a.id_bioguide) as cohort_size
        FROM 
        (
            SELECT distinct id_bioguide
            ,min(term_start) over (partition by id_bioguide) 
             as first_term
            ,first_value(state) over (partition by id_bioguide 
                                      order by term_start) 
                                      as first_state
            FROM legislators_terms 
        ) a
        JOIN legislators b on a.id_bioguide = b.id_bioguide 
        WHERE a.first_term between '1917-01-01' and '1999-12-31' 
        GROUP BY 1,2
    ) aa
    JOIN
    (
        SELECT generate_series as period 
        FROM generate_series(0,20,1)
    ) cc on 1 = 1
) aaa
LEFT JOIN
(
    SELECT d.first_state, g.gender
    ,coalesce(date_part('year',age(f.date,d.first_term)),0) as period
    ,count(distinct d.id_bioguide) as cohort_retained
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    FROM
    (
        SELECT distinct id_bioguide
        ,min(term_start) over (partition by id_bioguide) as first_term
        ,first_value(state) over (partition by id_bioguide 
                                  order by term_start) as first_state
        FROM legislators_terms 
    ) d
    JOIN legislators_terms e on d.id_bioguide = e.id_bioguide 
    LEFT JOIN date_dim f on f.date between e.term_start and e.term_end 
     and f.month_name = 'December' and f.day_of_month = 31
    JOIN legislators g on d.id_bioguide = g.id_bioguide
    WHERE d.first_term between '1917-01-01' and '1999-12-31'
    GROUP BY 1,2,3
) ddd on aaa.gender = ddd.gender and aaa.first_state = ddd.first_state 
and aaa.period = ddd.period
;

gender  first_state  period  cohort_size  cohort_retained pct_retained
------  -----------  ------  -----------  --------------- ------------
F       AL           0       3            3               1.0000
F       AL           1       3            1               0.3333
F       AL           2       3            0               0.0000
...    ...           ...     ...          ...             ...

We can then pivot the results and confirm that a value exists for each cohort for each
period:

gender  first_state  yr0    yr2     yr4     yr6     yr8      yr10
------  -----------  -----  ------  ------  ------  ------  ------
F       AL           1.000  0.0000  0.0000  0.0000  0.0000  0.0000
F       AR           1.000  0.8000  0.2000  0.4000  0.4000  0.4000
F       CA           1.000  0.9200  0.8000  0.6400  0.6800  0.6800
...     ...          ...    ...     ...     ...     ...     ...

Notice that at this point, the SQL code has gotten quite long. One of the harder parts
of writing SQL for cohort retention analysis is keeping all of the logic straight and the
code organized, a topic I’ll discuss more in Chapter 8. When building up retention
code, I find it helpful to go step-by-step, checking results along the way. I also spot-
check individual cohorts to validate that the final result is accurate.

Cohorts can be defined in many ways. So far, we’ve normalized all our cohorts to the
first date they appear in the time series data. This isn’t the only option, however, and
interesting analysis can be done starting in the middle of an entity’s life span. Before
concluding our work on retention analysis, let’s take a look at this additional way to
define cohorts.
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Defining Cohorts from Dates Other Than the First Date
Usually time-based cohorts are defined from the entity’s first appearance in the time
series or from some other earliest date, such as a registration date. However, cohort‐
ing on a different date can be useful and insightful. For example, we might want to
look at retention across all customers using a service as of a particular date. This type
of analysis can be used to understand whether product or marketing changes have
had a long-term impact on existing customers.

When using a date other than the first date, we need to take care to precisely define
the criteria for inclusion in each cohort. One option is to pick entities present on a
particular calendar date. This is relatively straightforward to put into SQL code, but it
can be problematic if a large share of the regular user population doesn’t show up
every day, causing retention to vary depending on the exact day chosen. One option
to correct for this is to calculate retention for several starting dates and then average
the results.

Another option is to use a window of time such as a week or month. Any entity that
appears in the data set during that window is included in the cohort. While this
approach is often more representative of the business or process, the trade-off is that
the SQL code will become more complex, and the query time may be slower due to
more intense database calculations. Finding the right balance between query perfor‐
mance and accuracy of results is something of an art.

Let’s take a look at how to calculate such midstream analysis with the legislators data
set by considering retention for legislators who were in office in the year 2000. We’ll
cohort by the term_type, which has values of “sen” for senators and “rep” for repre‐
sentatives. The definition will include any legislator in office at any time during the
year 2000: those who started prior to 2000 and whose terms ended during or after
2000 qualify, as do those who started a term in 2000. We can hardcode any date in
2000 as the first_term, since we will later check whether they were in office at some
point during 2000. The min_start of the terms falling in this window is also calcula‐
ted for use in a later step:

SELECT distinct id_bioguide, term_type, date('2000-01-01') as first_term
,min(term_start) as min_start
FROM legislators_terms 
WHERE term_start <= '2000-12-31' and term_end >= '2000-01-01'
GROUP BY 1,2,3
;

id_bioguide  term_type  first_term  min_start
-----------  ---------  ----------  ---------
C000858      sen        2000-01-01  1997-01-07
G000333      sen        2000-01-01  1995-01-04
M000350      rep        2000-01-01  1999-01-06
...          ...        ...         ...
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We can then plug this into our retention code, with two adjustments. First, an addi‐
tional JOIN criteria between subquery a and the legislators_terms table is added in
order to return only terms that started on or after the min_start date. Second, an
additional filter is added to the date_dim so that it only returns dates in 2000 or later:

SELECT term_type, period
,first_value(cohort_retained) over (partition by term_type order by period) 
 as cohort_size
,cohort_retained
,cohort_retained / 
 first_value(cohort_retained) over (partition by term_type order by period) 
 as pct_retained
FROM
(
    SELECT a.term_type
    ,coalesce(date_part('year',age(c.date,a.first_term)),0) as period
    ,count(distinct a.id_bioguide) as cohort_retained
    FROM
    (
        SELECT distinct id_bioguide, term_type
        ,date('2000-01-01') as first_term
        ,min(term_start) as min_start
        FROM legislators_terms 
        WHERE term_start <= '2000-12-31' and term_end >= '2000-01-01'
        GROUP BY 1,2,3
    ) a
    JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
    and b.term_start >= a.min_start
    LEFT JOIN date_dim c on c.date between b.term_start and b.term_end 
    and c.month_name = 'December' and c.day_of_month = 31 
    and c.year >= 2000
    GROUP BY 1,2
) aa
;

term_type  period  cohort_size  cohort_retained  pct_retained
---------  ------  -----------  ---------------  ------------
rep        0.0     440          440              1.0000
sen        0.0     101          101              1.0000
rep        1.0     440          392              0.8909
sen        1.0     101          89               0.8812
...        ...     ...          ...              ...

Figure 4-10 shows that despite longer terms for senators, retention among the two
cohorts was similar, and was actually worse for senators after 10 years. A further anal‐
ysis comparing the different years they were first elected, or other cohort attributes,
might yield some interesting insights.
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Figure 4-10. Retention by term type for legislators in office during the year 2000

A common use case for cohorting on a value other than a starting value is when try‐
ing to analyze retention after an entity has reached a threshold, such as a certain
number of purchases or a certain amount spent. As with any cohort, it’s important to
take care in defining what qualifies an entity to be in a cohort and which date will be
used as the starting date.

Cohort retention is a powerful way to understand the behavior of entities in a time
series data set. We’ve seen how to calculate retention with SQL and how to cohort
based on the time series itself or on other tables, and from points in the middle of
entity life span. We also looked at how to use functions and JOINs to adjust dates
within time series and compensate for sparse cohorts. There are several types of anal‐
yses that are related to cohort retention: analysis, survivorship, returnship, and cumu‐
lative calculations, all of which build off of the SQL code that we’ve developed for
retention. Let’s turn to them next.

Related Cohort Analyses
In the last section, we learned how to write SQL for cohort retention analysis. Reten‐
tion captures whether an entity was in a time series data set on a specific date or win‐
dow of time. In addition to presence on a specific date, analysis is often interested in
questions of how long an entity lasted, whether an entity did multiple actions, and
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how many of those actions occurred. These can all be answered with code that is sim‐
ilar to retention and is well suited to just about any cohorting criteria you like. Let’s
take a look at the first of these, survivorship.

Survivorship
Survivorship, also called survival analysis, is concerned with questions about how long
something lasts, or the duration of time until a particular event such as churn or
death. Survivorship analysis can answer questions about the share of the population
that is likely to remain past a certain amount of time. Cohorts can help identify or at
least provide hypotheses about which characteristics or circumstances increase or
decrease the survival likelihood.

This is similar to a retention analysis, but instead of calculating whether an entity was
present in a certain period, we calculate whether the entity is present in that period or
later in the time series. Then the share of the total cohort is calculated. Typically one
or more periods are chosen depending on the nature of the data set analyzed. For
example, if we want to know the share of game players who survive for a week or
longer, we can check for actions that occur after a week from starting and consider
those players still surviving. On the other hand, if we are concerned about the num‐
ber of students who are still in school after a certain number of years, we could look
for the absence of a graduation event in a data set. The number of periods can be
SELECTed either by calculating an average or typical life span or by choosing time
periods that are meaningful to the organization or process analyzed, such as a month,
year, or longer time period.

In this example, we’ll look at the share of legislators who survived in office for a dec‐
ade or more after their first term started. Since we don’t need to know the specific
dates of each term, we can start by calculating the first and last term_start dates,
using min and max aggregations:

SELECT id_bioguide
,min(term_start) as first_term
,max(term_start) as last_term
FROM legislators_terms
GROUP BY 1
;

id_bioguide  first_term  last_term
-----------  ----------  ---------
A000118      1975-01-14  1977-01-04
P000281      1933-03-09  1937-01-05
K000039      1933-03-09  1951-01-03
...          ...         ...
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Next, we add to the query a date_part function to find the century of the min
term_start, and we calculate the tenure as the number of years between the min and
max term_starts found with the age function:

SELECT id_bioguide
,date_part('century',min(term_start)) as first_century
,min(term_start) as first_term
,max(term_start) as last_term
,date_part('year',age(max(term_start),min(term_start))) as tenure
FROM legislators_terms
GROUP BY 1
;

id_bioguide  first_century  first_term  last_term  tenure
-----------  -------------  ----------  ---------  ------
A000118      20.0           1975-01-14  1977-01-04  1.0
P000281      20.0           1933-03-09  1937-01-05  3.0
K000039      20.0           1933-03-09  1951-01-03  17.0
...          ...            ...         ...         ...

Finally, we calculate the cohort_size with a count of all the legislators, as well as cal‐
culating the number who survived for at least 10 years by using a CASE statement
and count aggregation. The percent who survived is found by dividing these two
values:

SELECT first_century
,count(distinct id_bioguide) as cohort_size
,count(distinct case when tenure >= 10 then id_bioguide 
                     end) as survived_10
,count(distinct case when tenure >= 10 then id_bioguide end) 
 / count(distinct id_bioguide) as pct_survived_10
FROM
(
    SELECT id_bioguide
    ,date_part('century',min(term_start)) as first_century
    ,min(term_start) as first_term
    ,max(term_start) as last_term
    ,date_part('year',age(max(term_start),min(term_start))) as tenure
    FROM legislators_terms
    GROUP BY 1
) a
GROUP BY 1
;

century  cohort  survived_10  pct_survived_10
-------  ------  -----------  ---------------
18       368     83           0.2255
19       6299    892          0.1416
20       5091    1853         0.3640
21       760     119          0.1566
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Since terms may or may not be consecutive, we can also calculate the share of legisla‐
tors in each century who survived for five or more total terms. In the subquery, add a
count to find the total number of terms per legislator. Then in the outer query, divide
the number of legislators with five or more terms by the total cohort size:

SELECT first_century
,count(distinct id_bioguide) as cohort_size
,count(distinct case when total_terms >= 5 then id_bioguide end) 
 as survived_5
,count(distinct case when total_terms >= 5 then id_bioguide end)
 / count(distinct id_bioguide) as pct_survived_5_terms
FROM
(
    SELECT id_bioguide
    ,date_part('century',min(term_start)) as first_century
    ,count(term_start) as total_terms
    FROM legislators_terms
    GROUP BY 1
) a
GROUP BY 1
;

century  cohort  survived_5  pct_survived_5_terms
-------  ------  ----------  --------------------
18       368     63          0.1712
19       6299    711         0.1129
20       5091    2153        0.4229
21       760     205         0.2697

Ten years or five terms is somewhat arbitrary. We can also calculate the survivorship
for each number of years or periods and display the results in graph or table form.
Here, we calculate the survivorship for each number of terms from 1 to 20. This is
accomplished through a Cartesian JOIN to a subquery that contains those integers
derived by the generate_series function:

SELECT a.first_century, b.terms
,count(distinct id_bioguide) as cohort
,count(distinct case when a.total_terms >= b.terms then id_bioguide 
                     end) as cohort_survived
,count(distinct case when a.total_terms >= b.terms then id_bioguide 
                     end)
 / count(distinct id_bioguide) as pct_survived
FROM
(
    SELECT id_bioguide
    ,date_part('century',min(term_start)) as first_century
    ,count(term_start) as total_terms
    FROM legislators_terms
    GROUP BY 1
) a
JOIN
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(
    SELECT generate_series as terms 
    FROM generate_series(1,20,1)
) b on 1 = 1
GROUP BY 1,2
;

century  terms  cohort  cohort_survived  pct_survived
-------  -----  ------  ---------------  ------------
18       1      368     368              1.0000
18       2      368     249              0.6766
18       3      368     153              0.4157
...      ...    ...     ...              ...

The results are graphed in Figure 4-11. Survivorship was highest in the 20th century,
a result that agrees with results we saw previously in which retention was also highest
in the 20th century.

Figure 4-11. Survivorship for legislators: share of cohort who stayed in office for that
many terms or longer

Survivorship is closely related to retention. While retention counts entities present in
a specific number of periods from the start, survivorship considers only whether an
entity was present as of a specific period or later. As a result, the code is simpler since
it needs only the first and last dates in the time series, or a count of dates. Cohorting
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is done similar to cohorting for retention, and cohort definitions can come from
within the time series or be derived from another table or subquery.

Next we’ll consider another type of analysis that is in some ways the inverse of survi‐
vorship. Rather than calculating whether an entity is present in the data set at a cer‐
tain time or later, we will calculate whether an entity returns or repeats an action at a
certain period or earlier. This is called returnship or repeat purchase behavior.

Returnship, or Repeat Purchase Behavior
Survivorship is useful for understanding how long a cohort is likely to stick around. 
Another useful type of cohort analysis seeks to understand whether a cohort member
can be expected to return within a given window of time and the intensity of activity
during that window. This is called returnship or repeat purchase behavior.

For example, an ecommerce site might want to know not only how many new buyers
were acquired via a marketing campaign but also whether those buyers have become
repeat buyers. One way to figure this out is to simply calculate total purchases per
customer. However, comparing customers acquired two years ago with those
acquired a month ago isn’t fair, since the former have had a much longer time in
which to return. The older cohort would almost certainly appear more valuable than
the newer one. Although this is true in a sense, it gives an incomplete picture of how
the cohorts are likely to behave across their entire life span.

To make fair comparisons between cohorts with different starting dates, we need to
create an analysis based on a time box, or a fixed window of time from the first date,
and consider whether cohort members returned within that window. This way, every
cohort has an equal amount of time under consideration, so long as we include only
those cohorts for which the full window has elapsed. Returnship analysis is common
for retail organizations, but it can also be applied in other domains. For example, a
university might want to see how many students enrolled in a second course, or a
hospital might be interested in how many patients need follow-up medical treatments
after an initial incident.

To demonstrate returnship analysis, we can ask a new question of the legislators data
set: how many legislators have more than one term type, and specifically, what share
of them start as representatives and go on to become senators (some senators later
become representatives, but that is much less common). Since relatively few make
this transition, we’ll cohort legislators by the century in which they first became a
representative.

The first step is to find the cohort size for each century, using the subquery and
date_part calculations seen previously, for only those with term_type = 'rep':

SELECT date_part('century',a.first_term) as cohort_century
,count(id_bioguide) as reps
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FROM
(
    SELECT id_bioguide, min(term_start) as first_term
    FROM legislators_terms
    WHERE term_type = 'rep'
    GROUP BY 1
) a
GROUP BY 1
;

cohort_century  reps
--------------  ----
18              299
19              5773
20              4481
21              683

Next we’ll perform a similar calculation, with a JOIN to the legislators_terms table,
to find the representatives who later became senators. This is accomplished with the
clauses b.term_type = 'sen' and b.term_start > a.first_term:

SELECT date_part('century',a.first_term) as cohort_century
,count(distinct a.id_bioguide) as rep_and_sen
FROM
(
    SELECT id_bioguide, min(term_start) as first_term
    FROM legislators_terms
    WHERE term_type = 'rep'
    GROUP BY 1
) a
JOIN legislators_terms b on a.id_bioguide = b.id_bioguide
and b.term_type = 'sen' and b.term_start > a.first_term
GROUP BY 1
;

cohort_century  rep_and_sen
--------------  -----------
18              57
19              329
20              254
21              25

Finally, we JOIN these two subqueries together and calculate the percent of represen‐
tatives who became senators. A LEFT JOIN is used; this clause is typically recom‐
mended to ensure that all cohorts are included whether or not the subsequent event
happened. If there is a century in which no representatives became senators, we still
want to include that century in the result set:

SELECT aa.cohort_century
,bb.rep_and_sen / aa.reps as pct_rep_and_sen
FROM
(
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    SELECT date_part('century',a.first_term) as cohort_century
    ,count(id_bioguide) as reps
    FROM
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms
        WHERE term_type = 'rep'
        GROUP BY 1
    ) a
    GROUP BY 1
) aa
LEFT JOIN
(
    SELECT date_part('century',b.first_term) as cohort_century
    ,count(distinct b.id_bioguide) as rep_and_sen
    FROM
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms
        WHERE term_type = 'rep'
        GROUP BY 1
    ) b
    JOIN legislators_terms c on b.id_bioguide = b.id_bioguide
    and c.term_type = 'sen' and c.term_start > b.first_term
    GROUP BY 1
) bb on aa.cohort_century = bb.cohort_century
;

cohort_century  pct_rep_and_sen
--------------  ---------------
18              0.1906
19              0.0570
20              0.0567
21              0.0366

Representatives from the 18th century were most likely to become senators. However,
we have not yet applied a time box to ensure a fair comparison. While we can safely
assume that all legislators who served in the 18th and 19th centuries are no longer
living, many of those who were first elected in the 20th and 21st centuries are still in
the middle of their careers. Adding the filter WHERE age(c.term_start,

b.first_term) <= interval '10 years' to subquery bb creates a time box of 10
years. Note that the window can easily be made larger or smaller by changing the
constant in the interval. An additional filter applied to subquery a, WHERE

first_term <= '2009-12-31', excludes those who were less than 10 years into their
careers when the data set was assembled:

SELECT aa.cohort_century
,bb.rep_and_sen * 100.0 / aa.reps as pct_10_yrs
FROM
(
    SELECT date_part('century',a.first_term)::int as cohort_century
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    ,count(id_bioguide) as reps
    FROM
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms
        WHERE term_type = 'rep'
        GROUP BY 1
    ) a
    WHERE first_term <= '2009-12-31'
    GROUP BY 1
) aa
LEFT JOIN
(
    SELECT date_part('century',b.first_term)::int as cohort_century
    ,count(distinct b.id_bioguide) as rep_and_sen
    FROM
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms
        WHERE term_type = 'rep'
        GROUP BY 1
    ) b
    JOIN legislators_terms c on b.id_bioguide = c.id_bioguide
    and c.term_type = 'sen' and c.term_start > b.first_term
    WHERE age(c.term_start, b.first_term) <= interval '10 years'
    GROUP BY 1
) bb on aa.cohort_century = bb.cohort_century
;

Cohort_century  pct_10_yrs
--------------  ----------
18              0.0970
19              0.0244
20              0.0348
21              0.0764

With this new adjustment, the 18th century still had the highest share of representa‐
tives becoming senators within 10 years, but the 21st century has the second-highest
share, and the 20th century had a higher share than the 19th.

Since 10 years is somewhat arbitrary, we might also want to compare several time
windows. One option is to run the query several times with different intervals and
note the results. Another option is to calculate multiple windows in the same result
set by using a set of CASE statements inside of count distinct aggregations to form
the intervals, rather than specifying the interval in the WHERE clause:

SELECT aa.cohort_century
,bb.rep_and_sen_5_yrs * 1.0 / aa.reps as pct_5_yrs
,bb.rep_and_sen_10_yrs * 1.0 / aa.reps as pct_10_yrs
,bb.rep_and_sen_15_yrs * 1.0 / aa.reps as pct_15_yrs
FROM
(
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    SELECT date_part('century',a.first_term) as cohort_century
    ,count(id_bioguide) as reps
    FROM
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms
        WHERE term_type = 'rep'
        GROUP BY 1
    ) a
    WHERE first_term <= '2009-12-31'
    GROUP BY 1
) aa
LEFT JOIN
(
    SELECT date_part('century',b.first_term) as cohort_century
    ,count(distinct case when age(c.term_start,b.first_term) 
                              <= interval '5 years' 
                         then b.id_bioguide end) as rep_and_sen_5_yrs
    ,count(distinct case when age(c.term_start,b.first_term) 
                              <= interval '10 years' 
                         then b.id_bioguide end) as rep_and_sen_10_yrs
    ,count(distinct case when age(c.term_start,b.first_term) 
                              <= interval '15 years' 
                         then b.id_bioguide end) as rep_and_sen_15_yrs
    FROM
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms
        WHERE term_type = 'rep'
        GROUP BY 1
    ) b
    JOIN legislators_terms c on b.id_bioguide = c.id_bioguide
    and c.term_type = 'sen' and c.term_start > b.first_term
    GROUP BY 1
) bb on aa.cohort_century = bb.cohort_century
;

cohort_century  pct_5_yrs  pct_10_yrs  pct_15_yrs 
--------------  ---------  ----------  ---------- 
18              0.0502     0.0970      0.1438
19              0.0088     0.0244      0.0409
20              0.0100     0.0348      0.0478
21              0.0400     0.0764      0.0873

With this output, we can see how the share of representatives who became senators
evolved over time, both within each cohort and across cohorts. In addition to the
table format, graphing the output often reveals interesting trends. In Figure 4-12, the
cohorts based on century are replaced with cohorts based on the first decade, and the
trends over 10 and 20 years are shown. Conversion of representatives to senators dur‐
ing the first few decades of the new US legislature was clearly different from patterns
in the years since.
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Figure 4-12. Trend of the share of representatives for each cohort, defined by starting
decade, who later became senators

Finding the repeat behavior within a fixed time box is a useful tool for comparing
cohorts. This is particularly true when the behaviors are intermittent in nature, such
as purchase behavior or content or service consumption. In the next section, we’ll
look at how to calculate not only whether an entity had a subsequent action but also
how many subsequent actions they had, and we’ll aggregate them with cumulative
calculations.

Cumulative Calculations
Cumulative cohort analysis can be used to establish cumulative lifetime value, also
called customer lifetime value (the acronyms CLTV and LTV are used interchangea‐
bly), and to monitor newer cohorts in order to be able to predict what their full LTV
will be. This is possible because early behavior is often highly correlated with long-
term behavior. Users of a service who return frequently in their first days or weeks of
using it tend to be the most likely to stay around over the long term. Customers who
buy a second or third time early on are likely to continue purchasing over a longer
time period. Subscribers who renew after the first month or year are often likely to
stick around over many subsequent months or years.

In this section, I’ll mainly talk about the revenue-generating activities of customers,
but this analysis can also be applied to situations in which customers or entities incur
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costs, such as through product returns, support interactions, or use of health-care
services.

With cumulative calculations, we’re less concerned about whether an entity did an
action on a particular date and more about the total as of a particular date. The
cumulative calculations used in this type of analysis are most often counts or sums.
We will again use the time box concept to ensure apples-to-apples comparisons
between cohorts. Let’s look at the number of terms started within 10 years of the first
term_start, cohorting the legislators by century and type of first term:

SELECT date_part('century',a.first_term) as century
,first_type
,count(distinct a.id_bioguide) as cohort
,count(b.term_start) as terms
FROM
(
    SELECT distinct id_bioguide
    ,first_value(term_type) over (partition by id_bioguide 
                                  order by term_start) as first_type
    ,min(term_start) over (partition by id_bioguide) as first_term
    ,min(term_start) over (partition by id_bioguide) 
     + interval '10 years' as first_plus_10
    FROM legislators_terms
) a
LEFT JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
and b.term_start between a.first_term and a.first_plus_10
GROUP BY 1,2
;

century  first_type  cohort  terms
-------  ----------  ------  -----
18       rep         297     760
18       sen         71      101
19       rep         5744    12165
19       sen         555     795
20       rep         4473    16203
20       sen         618     1008
21       rep         683     2203
21       sen         77      118

The largest cohort is that of representatives first elected in the 19th century, but the
cohort with the largest number of terms started within 10 years is that of representa‐
tives first elected in the 20th century. This type of calculation can be useful for under‐
standing the overall contribution of a cohort to an organization. Total sales or total
repeat purchases can be valuable metrics. Usually, though, we want to normalize to
understand the contribution on a per-entity basis. Calculations we might want to
make include average actions per person, average order value (AOV), items per order,
and orders per customer. To normalize by the cohort size, simply divide by the
starting cohort, which we’ve done previously with retention, survivorship, and
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returnship. Here we do that and also pivot the results into table form for easier
comparisons:

SELECT century
,max(case when first_type = 'rep' then cohort end) as rep_cohort
,max(case when first_type = 'rep' then terms_per_leg end) 
 as avg_rep_terms
,max(case when first_type = 'sen' then cohort end) as sen_cohort
,max(case when first_type = 'sen' then terms_per_leg end) 
 as avg_sen_terms
FROM
(
    SELECT date_part('century',a.first_term) as century
    ,first_type
    ,count(distinct a.id_bioguide) as cohort
    ,count(b.term_start) as terms
    ,count(b.term_start) 
     / count(distinct a.id_bioguide) as terms_per_leg
    FROM
    (
        SELECT distinct id_bioguide
        ,first_value(term_type) over (partition by id_bioguide 
                                      order by term_start
                                      ) as first_type
        ,min(term_start) over (partition by id_bioguide) as first_term
        ,min(term_start) over (partition by id_bioguide) 
         + interval '10 years' as first_plus_10
        FROM legislators_terms
    ) a
    LEFT JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
    and b.term_start between a.first_term and a.first_plus_10
    GROUP BY 1,2
) aa
GROUP BY 1
;

century  rep_cohort  avg_rep_terms  sen_cohort  avg_sen_terms
-------  ----------  -------------  ----------  -------------
18       297         2.6            71          1.4
19       5744        2.1            555         1.4
20       4473        3.6            618         1.6
21       683         3.2            77          1.5

With the cumulative terms normalized by the cohort size, we can now confirm that
representatives first elected in the 20th century had the highest average number of
terms, while those who started in the 19th century had the fewest number of terms on
average. Senators have fewer but longer terms than their representative peers, and
again those who started in the 20th century have had the highest number of terms on
average.
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Cumulative calculations are often used in customer lifetime value calculations. LTV is
usually calculated using monetary measures, such as total dollars spent by a customer,
or the gross margin (revenue minus costs) generated by a customer across their life‐
time. To facilitate comparisons between cohorts, the “lifetime” is often chosen to
reflect average customer lifetime, or periods that are convenient to analyze, such as 3,
5, or 10 years. The legislators data set doesn’t contain financial metrics, but swapping
in dollar values in any of the preceding SQL code would be straightforward. Fortu‐
nately, SQL is a flexible enough language that we can adapt these templates to address
a wide variety of analytical questions.

Cohort analysis includes a set of techniques that can be used to answer questions
related to behavior over time and how various attributes may contribute to differ‐
ences between groups. Survivorship, returnship, and cumulative calculations all shed
light on these questions. With a good understanding of how cohorts behave, we often
have to turn our attention back to the composition or mix of cohorts over time,
understanding how that can impact total retention, survivorship, returnship, or
cumulative values such that these measures differ surprisingly from the individual
cohorts.

Cross-Section Analysis, Through a Cohort Lens
So far in this chapter, we’ve been looking at cohort analysis. We’ve followed the
behavior of cohorts across time with retention, survivorship, returnship, and cumula‐
tive behavior analyses. One of the challenges with these analyses, however, is that
even as they make changes within cohorts easy to spot, it can be difficult to spot
changes in the overall composition of a customer or user base.

Mix shifts, which are changes in the composition of the customer or user base over
time, can also occur, making later cohorts different from earlier ones. Mix shifts may
be due to international expansion, shifting between organic and paid acquisition
strategies, or moving from a niche enthusiast audience to a broader mass market one.
Creating additional cohorts, or segments, along any of these suspected lines can help
diagnose whether a mix shift is happening.

Cohort analysis can be contrasted with cross-sectional analysis, which compares indi‐
viduals or groups at a single point in time. Cross-sectional studies can correlate years
of education with current income, for example. On the positive side, collecting data
sets for cross-sectional analysis is often easier since no time series is necessary. Cross-
sectional analysis can be insightful, generating hypotheses for further investigation.
On the negative side, a form of selection bias called survivorship bias usually exists,
which can lead to false conclusions.
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Survivorship Bias
“Let’s look at our best customers and see what they have in common.” This seemingly
innocent and well-intentioned idea can lead to some very problematic conclusions.
Survivorship bias is the logical error of focusing on the people or things that made it
past some selection process, while ignoring those that did not. Commonly this is
because the entities no longer exist in the data set at the time of selection, because
they have failed, churned, or left the population for some other reason. Concentrating
only on the remaining population can lead to overly optimistic conclusions, because
failures are ignored.

Much has been written about a few people who dropped out of college and started
wildly successful technology companies. This doesn’t mean you should immediately
leave college, since the vast majority of people who drop out do not go on to be suc‐
cessful CEOs. That part of the population doesn’t make for nearly as sensational head‐
lines, so it’s easy to forget about that reality.

In the successful customer context, survivorship bias might show up as an observa‐
tion that the best customers tend to live in California or Texas and tend to be 18 to 30
years old. This is a large population to start with, and it may turn out that these char‐
acteristics are shared by many customers who churned prior to the analysis date.
Going back to the original population might reveal that other demographics, such as
41-to-50-year-olds in Vermont, actually stick around and spend more over time, even
though there are fewer of them in absolute terms. Cohort analysis helps distinguish
and reduce survivorship bias.

Cohort analysis is a way to overcome survivorship bias by including all members of a
starting cohort in the analysis. We can take a series of cross sections from a cohort
analysis to understand how the mix of entities may have changed over time. On any
given date, users from a variety of cohorts are present. We can use cross-sectional
analysis to examine them, like layers of sediment, to reveal new insights. In the next
example, we’ll create a time series of the share of legislators from each cohort for each
year in the data set.

The first step is to find the number of legislators in office each year by JOINing the
legislators table to the date_dim, WHERE the date from the date_dim is between
the start and end dates of each term. Here we use December 31 for each year to find
the legislators in office at each year’s end:

SELECT b.date, count(distinct a.id_bioguide) as legislators
FROM legislators_terms a
JOIN date_dim b on b.date between a.term_start and a.term_end
and b.month_name = 'December' and b.day_of_month = 31
and b.year <= 2019
GROUP BY 1
;
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date        legislators
----------  -----------
1789-12-31  89
1790-12-31  95
1791-12-31  99
...         ...

Next, we add in the century cohorting criteria by JOINing to a subquery with the
first_term calculated:

SELECT b.date
,date_part('century',first_term) as century
,count(distinct a.id_bioguide) as legislators
FROM legislators_terms a
JOIN date_dim b on b.date between a.term_start and a.term_end
 and b.month_name = 'December' and b.day_of_month = 31
 and b.year <= 2019
JOIN
(
    SELECT id_bioguide, min(term_start) as first_term
    FROM legislators_terms
    GROUP BY 1
) c on a.id_bioguide = c.id_bioguide        
GROUP BY 1,2
;

date        century  legislators
----------  -------  -----------
1789-12-31  18       89
1790-12-31  18       95
1791-12-31  18       99
...         ...      ...

Finally, we calculate the percent of total legislators in each year that the century
cohort represents. This can be done in a couple of ways, depending on the shape of
output desired. The first way is to keep a row for each date and century combination
and use a sum window function in the denominator of the percentage calculation:

SELECT date
,century
,legislators
,sum(legislators) over (partition by date) as cohort
,legislators / sum(legislators) over (partition by date) 
 as pct_century
FROM
(
    SELECT b.date
    ,date_part('century',first_term) as century
    ,count(distinct a.id_bioguide) as legislators
    FROM legislators_terms a
    JOIN date_dim b on b.date between a.term_start and a.term_end
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    and b.month_name = 'December' and b.day_of_month = 31
    and b.year <= 2019
    JOIN
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms
        GROUP BY 1
    ) c on a.id_bioguide = c.id_bioguide        
    GROUP BY 1,2
) a
;

date        century  legislators  cohort  pct_century
----------  -------  -----------  ------  -----------
2018-12-31  20       122          539     0.2263
2018-12-31  21       417          539     0.7737
2019-12-31  20       97           537     0.1806
2019-12-31  21       440          537     0.8194
...         ...      ...          ...     ...

The second approach results in one row per year, with a column for each century, a
table format that may be easier to scan for trends:

SELECT date
,coalesce(sum(case when century = 18 then legislators end)
          / sum(legislators),0) as pct_18
,coalesce(sum(case when century = 19 then legislators end)
          / sum(legislators),0) as pct_19
,coalesce(sum(case when century = 20 then legislators end)
          / sum(legislators),0) as pct_20
,coalesce(sum(case when century = 21 then legislators end)
          / sum(legislators),0) as pct_21
FROM
(
    SELECT b.date
    ,date_part('century',first_term) as century
    ,count(distinct a.id_bioguide) as legislators
    FROM legislators_terms a
    JOIN date_dim b on b.date between a.term_start and a.term_end
     and b.month_name = 'December' and b.day_of_month = 31
     and b.year <= 2019
    JOIN
    (
        SELECT id_bioguide, min(term_start) as first_term
        FROM legislators_terms
        GROUP BY 1
    ) c on a.id_bioguide = c.id_bioguide        
    GROUP BY 1,2
) aa
GROUP BY 1
;
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date        pct_18  pct_19  pct_20  pct_21
----------  ------  ------  ------  ------
2017-12-31  0       0       0.2305  0.7695
2018-12-31  0       0       0.2263  0.7737
2019-12-31  0       0       0.1806  0.8193
...         ...     ...     ...     ...

We can graph the output, as in Figure 4-13, to see how newer cohorts of legislators
gradually overtake older cohorts, until they themselves are replaced by new cohorts.

Figure 4-13. Percent of legislators each year, by century first elected

Rather than cohorting on first_term, we can cohort on tenure instead. Finding the
share of customers who are relatively new, are of medium tenure, or are long-term
customers at various points in time can be insightful. Let’s take a look at how the ten‐
ure of legislators in Congress has changed over time. 

The first step is to calculate, for each year, the cumulative number of years in office
for each legislator. Since there can be gaps between terms when legislators are voted
out or leave office for other reasons, we’ll first find each year in which the legislator
was in office at the end of the year, in the subquery. Then we’ll use a count window
function, with the window covering the rows unbounded preceding, or all prior rows
for that legislator, and current row:

SELECT id_bioguide, date
,count(date) over (partition by id_bioguide 
                   order by date rows between 
                   unbounded preceding and current row
                   ) as cume_years
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FROM
(
    SELECT distinct a.id_bioguide, b.date
    FROM legislators_terms a
    JOIN date_dim b on b.date between a.term_start and a.term_end
     and b.month_name = 'December' and b.day_of_month = 31
     and b.year <= 2019
) aa
;

id_bioguide  date        cume_years
-----------  ----------  ----------
A000001      1951-12-31  1
A000001      1952-12-31  2
A000002      1947-12-31  1
A000002      1948-12-31  2
A000002      1949-12-31  3
...          ...         ...

Next, count the number of legislators for each combination of date and cume_years
to create a distribution:

SELECT date, cume_years
,count(distinct id_bioguide) as legislators
FROM
(
SELECT id_bioguide, date
,count(date) over (partition by id_bioguide 
                   order by date rows between 
                   unbounded preceding and current row
                   ) as cume_years
FROM
(
    SELECT distinct a.id_bioguide, b.date
    FROM legislators_terms a
    JOIN date_dim b on b.date between a.term_start and a.term_end
     and b.month_name = 'December' and b.day_of_month = 31
     and b.year <= 2019
    GROUP BY 1,2
    ) aa
) aaa
GROUP BY 1,2
;

date         cume_years  legislators
-----------  ----------  ----------
1789-12-31   1           89
1790-12-31   1           6
1790-12-31   2           89
1791-12-31   1           37
...          ...         ...
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Before calculating the percentage for each tenure per year and adjusting the presenta‐
tion format, we might want to consider grouping the tenures. A quick profiling of our
results so far reveals that in some years, almost 40 different tenures are represented.
This will likely be difficult to visualize and interpret:

SELECT date, count(*) as tenures
FROM 
(
    SELECT date, cume_years
    ,count(distinct id_bioguide) as legislators
    FROM
    (
        SELECT id_bioguide, date
        ,count(date) over (partition by id_bioguide 
                           order by date rows between 
                           unbounded preceding and current row
                           ) as cume_years
        FROM
        (
            SELECT distinct a.id_bioguide, b.date
            FROM legislators_terms a
            JOIN date_dim b 
             on b.date between a.term_start and a.term_end
             and b.month_name = 'December' and b.day_of_month = 31
             and b.year <= 2019
            GROUP BY 1,2
        ) aa
    ) aaa
    GROUP BY 1,2
) aaaa
GROUP BY 1
;

date         tenures
-----------  -------
1998-12-31   39
1994-12-31   39
1996-12-31   38
...          ...

As a result, we may want to group the values. There is no single right way to group
tenures. If there are organizational definitions of tenure groups, go ahead and use
them. Otherwise, I usually try to break them up into three to five groups of roughly
equal size. Here we’ll group the tenures into four cohorts, where cume_years is less
than or equal to 4 years, between 5 and 10 years, between 11 and 20 years, and equal
to or more than 21 years:
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SELECT date, tenure
,legislators / sum(legislators) over (partition by date) 
 as pct_legislators 
FROM
(
    SELECT date
    ,case when cume_years <= 4 then '1 to 4'
          when cume_years <= 10 then '5 to 10'
          when cume_years <= 20 then '11 to 20'
          else '21+' end as tenure
    ,count(distinct id_bioguide) as legislators
    FROM
    (
        SELECT id_bioguide, date
        ,count(date) over (partition by id_bioguide 
                           order by date rows between 
                           unbounded preceding and current row
                           ) as cume_years
        FROM
        (
            SELECT distinct a.id_bioguide, b.date
            FROM legislators_terms a
            JOIN date_dim b 
             on b.date between a.term_start and a.term_end
             and b.month_name = 'December' and b.day_of_month = 31
             and b.year <= 2019
            GROUP BY 1,2
        ) a
    ) aa
    GROUP BY 1,2
) aaa
;

date        tenure    pct_legislators
----------  -------   ---------------
2019-12-31  1 to 4    0.2998
2019-12-31  5 to 10   0.3203
2019-12-31  11 to 20  0.2011
2019-12-31  21+       0.1788
...         ...       ...

The graphing of the results in Figure 4-14 shows that in the early years of the country,
most legislators had very little tenure. In more recent years, the share of legislators
with 21 or more years in office has been increasing. There are also interesting peri‐
odic increases in 1-to-4-year-tenure legislators that may reflect shifts in political
trends.
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Figure 4-14. Percent of legislators by number of years in office

A cross section of a population at any point in time is made up of members from
multiple cohorts. Creating a time series of these cross sections is another interesting
way of analyzing trends. Combining this with insights from retention can provide a
more robust picture of trends in any organization.

Conclusion
Cohort analysis is a useful way to investigate how groups change over time, whether
it be from the perspective of retention, repeat behavior, or cumulative actions. Cohort
analysis is retrospective, looking back at populations using intrinsic attributes or
attributes derived from behavior. Interesting and hopefully useful correlations can be
found through this type of analysis. However, as the saying goes, correlation does not
imply causation. To determine actual causality, randomized experiments are the gold
standard. Chapter 7 will go into depth on experiment analysis.

Before we turn to experimentation, however, we have a few other types of analysis to
cover. Next we’ll cover text analysis: components of text analysis often show up in
other analyses, and it’s an interesting facet of analysis in itself.
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CHAPTER 5

Text Analysis

In the last two chapters, we explored applications of dates and numbers with time ser‐
ies analysis and cohort analysis. But data sets are often more than just numeric values
and associated timestamps. From qualitative attributes to free text, character fields
are often loaded with potentially interesting information. Although databases excel at
numeric calculations such as counting, summing, and averaging things, they are also
quite good at performing operations on text data.

I’ll begin this chapter by providing an overview of the types of text analysis tasks that
SQL is good for, and of those for which another programming language is a better
choice. Next, I’ll introduce our data set of UFO sightings. Then we’ll get into coding,
covering text characteristics and profiling, parsing data with SQL, making various
transformations, constructing new text from parts, and finally finding elements
within larger blocks of text, including with regular expressions.

Why Text Analysis with SQL?
Among the huge volumes of data generated every day, a large portion consists of text:
words, sentences, paragraphs, and even longer documents. Text data used for analysis
can come from a variety of sources, including descriptors populated by humans or
computer applications, log files, support tickets, customer surveys, social media posts,
or news feeds. Text in databases ranges from structured (where data is in different
table fields with distinct meanings) to semistructured (where the data is in separate
columns but may need parsing or cleaning to be useful) or mostly unstructured
(where long VARCHAR or BLOB fields hold arbitrary length strings that require
extensive structuring before further analysis). Fortunately, SQL has a number of use‐
ful functions that can be combined to accomplish a range of text-structuring and
analysis tasks.
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What Is Text Analysis?
Text analysis is the process of deriving meaning and insight from text data. There are
two broad categories of text analysis, which can be distinguished by whether the out‐
put is qualitative or quantitative. Qualitative analysis, which may also be called textual
analysis, seeks to understand and synthesize the meaning from a single text or a set of
texts, often applying other knowledge or unique conclusions. This work is often done
by journalists, historians, and user experience researchers. Quantitative analysis of
text also seeks to synthesize information from text data, but the output is quantitative.
Tasks include categorization and data extraction, and analysis is usually in the form of
counts or frequencies, often trended over time. SQL is much more suited to quantita‐
tive analysis, so that is what the rest of this chapter is concerned with. If you have the
opportunity to work with a counterpart who specializes in the first type of text analy‐
sis, however, do take advantage of their expertise. Combining the qualitative with the
quantitative is a great way to derive new insights and persuade reluctant colleagues.

Text analysis encompasses several goals or strategies. The first is text extraction,
where a useful piece of data must be pulled from surrounding text. Another is catego‐
rization, where information is extracted or parsed from text data in order to assign
tags or categories to rows in a database. Another strategy is sentiment analysis, where
the goal is to understand the mood or intent of the writer on a scale from negative to
positive.

Although text analysis has been around for a while, interest and research in this area
have taken off with the advent of machine learning and the computing resources that
are often needed to work with large volumes of text data. Natural language processing
(NLP) has made huge advances in recognizing, classifying, and even generating
brand-new text data. Human language is incredibly complex, with different languages
and dialects, grammars, and slang, not to mention the thousands and thousands of
words, some that have overlapping meanings or subtly modify the meaning of other
words. As we’ll see, SQL is good at some forms of text analysis, but for other, more
advanced tasks, there are languages and tools that are better suited.

Why SQL Is a Good Choice for Text Analysis
There are a number of good reasons to use SQL for text analysis. One of the most
obvious is when the data is already in a database. Modern databases have a lot of
computing power that can be leveraged for text tasks in addition to the other tasks
we’ve discussed so far. Moving data to a flat file for analysis with another language or
tool is time consuming, so doing as much work as possible with SQL within the data‐
base has advantages.

If the data is not already in a database, for relatively large data sets, moving the data to
a database may be worthwhile. Databases are more powerful than spreadsheets
for processing transformations on many records. SQL is less error-prone than
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spreadsheets, since no copying and pasting is required, and the original data stays
intact. Data could potentially be altered with an UPDATE command, but this is hard
to do accidentally.

SQL is also a good choice when the end goal is quantification of some sort. Counting
how many support tickets contain a key phrase and parsing categories out of larger
text that will be used to group records are good examples of when SQL shines. SQL is
good at cleaning and structuring text fields. Cleaning includes removing extra charac‐
ters or whitespace, fixing capitalization, and standardizing spellings. Structuring
involves creating new columns from elements extracted or derived from other fields
or constructing new fields from parts stored in different places. String functions can
be nested or applied to the results of other functions, allowing for almost any manip‐
ulations that might be needed.

SQL code for text analysis can be simple or complex, but it is always rule based. In a
rule-based system, the computer follows a set of rules or instructions—no more, no
less. This can be contrasted with machine learning, in which the computer adapts
based on the data. Rules are good because they are easy for humans to understand.
They are written down in code form and can be checked to ensure they produce the
desired output. The downside of rules is that they can become long and complicated,
particularly when there are a lot of different cases to handle. This can also make them
difficult to maintain. If the structure or type of data entered into the column changes,
the rule set needs to be updated. On more than one occasion, I’ve started with what
seemed like a simple CASE statement with 4 or 5 lines, only to have it grow to 50 or
100 lines as the application changed. Rules might still be the right approach, but keep‐
ing in sync with the development team on changes is a good idea.

Finally, SQL is a good choice when you know in advance what you are looking for.
There are a number of powerful functions, including regular expressions, that allow
you to search for, extract, or replace specific pieces of information. “How many
reviewers mention ‘short battery life’ in their reviews?” is a question SQL can help
you answer. On the other hand, “Why are these customers angry?” is not going to be
as easy.

When SQL Is Not a Good Choice
SQL essentially allows you to harness the power of the database to apply a set of rules,
albeit often powerful rules, to a set of text to make it more useful for analysis. SQL is
certainly not the only option for text analysis, and there are a number of use cases for
which it’s not the best choice. It’s useful to be aware of these.

The first category encompasses use cases for which a human is more appropriate.
When the data set is very small or very new, hand labeling can be faster and more
informative. Additionally, if the goal is to read all the records and come up with a
qualitative summary of key themes, a human is a better choice.
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The second category is when there’s a need to search for and retrieve specific records
that contain text strings with low latency. Tools like Elasticsearch or Splunk have been
developed to index strings for these use cases. Performance will often be an issue with
SQL and databases; this is one of the main reasons that we usually try to structure the
data into discrete columns that can more easily be searched by the database engine.

The third category comprises tasks in the broader NLP category, where machine
learning approaches and the languages that run them, such as Python, are a better
choice. Sentiment analysis, used to analyze ranges of positive or negative feelings in
texts, can be handled only in a simplistic way with SQL. For example, “love” and
“hate” could be extracted and used to categorize records, but given the range of words
that can express positive and negative emotions, as well as all the ways to negate those
words, it would be nearly impossible to create a rule set with SQL to handle them all.
Part-of-speech tagging, where words in a text are labeled as nouns, verbs, and so on,
is better handled with libraries available in Python. Language generation, or creating
brand-new text based on learnings from example texts, is another example best han‐
dled in other tools. We will see how we can create new text by concatenating pieces of
data together, but SQL is still bound by rules and won’t automatically learn from and
adapt to new examples in the data set.

Now that we’ve discussed the many good reasons to use SQL for text analysis, as well
as the types of use cases to avoid, let’s take a look at the data set we’ll be using for the
examples before launching into the SQL code itself. 

The UFO Sightings Data Set
For the examples in this chapter, we’ll use a data set of UFO sightings compiled by the
National UFO Reporting Center. The data set consists of approximately 95,000
reports posted between 2006 and 2020. Reports come from individuals who can enter
information through an online form.

The table we will work with is ufo, and it has only two columns. The first is a compo‐
site column called sighting_report that contains information about when the sight‐
ing occurred, when it was reported, and when it was posted. It also contains metadata
about the location, shape, and duration of the sighting event. The second column is a
text field called description that contains the full description of the event. Figure 5-1
shows a sample of the data.
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Figure 5-1. Sample of the ufo table

Through the examples and discussion in this chapter, I will show how to parse the
first column into structured dates and descriptors. I will also show how to perform
various analyses on the description field. If I were working with this data on a con‐
tinual basis, I might consider creating an ETL pipeline, a job that processes the data
in the same way on a regular basis, and storing the resulting structured data in a new
table. For the examples in this chapter, however, we’ll stick with the raw table.

Let’s get into the code, starting with SQL to explore and characterize the text from the
sightings.

Text Characteristics
The most flexible data type in a database is VARCHAR, because almost any data can
be put in fields of this type. As a result, text data in databases comes in a variety of
shapes and sizes. As with other data sets, profiling and characterizing the data is one
of the first things we do. From there we can develop a game plan for the kinds of
cleaning and parsing that may be necessary for the analysis.

One way we can get to know the text data is to find the number of characters in each
value, which can be done with the length function (or len in some databases). This
function takes the string or character field as an argument and is similar to functions
found in other languages and spreadsheet programs:

SELECT length('Sample string');

length
------
13
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We can create a distribution of field lengths to get a sense of the typical length and of
whether there are any extreme outliers that might need to be handled in special ways:

SELECT length(sighting_report), count(*) as records
FROM ufo
GROUP BY 1
ORDER BY 1
;
 
length  records
------  -------
90      1
91      4
92      8
...     ...

We can see in Figure 5-2 that most of the records are between roughly 150 and 180
characters long, and very few are less than 140 or more than 200 characters. The
lengths of the description field range from 5 to 64,921 characters. We can assume
that there is much more variety in this field, even before doing any additional
profiling.

Figure 5-2. Distribution of field lengths in the first column of the ufo table

Let’s take a look at a few sample rows of the sighting_report column. In a query
tool, I might scroll through a hundred or so rows to get familiar with the contents,
but these are representative of the values in the column:
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Occurred : 3/4/2018 19:07 (Entered as : 03/04/18 19:07)Reported: 3/6/2018 7:05:12
PM 19:05Posted: 3/8/2018Location: Colorado Springs, COShape: LightDuration:3
minutes
Occurred : 10/16/2017 21:42 (Entered as : 10/16/2017 21:42)Reported: 3/6/2018
5:09:47 PM 17:09Posted: 3/8/2018Location: North Dayton, OHShape: SphereDuration:~5
minutes
Occurred : 2/15/2018 00:10 (Entered as : 2/15/18 0:10)Reported: 3/6/2018 
6:19:54 PM 18:19Posted: 3/8/2018Location: Grand Forks, NDShape: SphereDuration:
5 seconds

This data is what I would call semistructured, or overstuffed. It can’t be used in an
analysis as is, but there are clearly distinct pieces of information stored here, and the
pattern is similar between rows. For example, each row has the word “Occurred” fol‐
lowed by what looks like a timestamp, “Location” followed by a place, and “Duration”
followed by an amount of time.

Data can end up in overstuffed fields for a variety of reasons, but
there are two common ones I see. One is when there aren’t enough
fields available in the source system or application to store all the
attributes required, so multiple attributes are entered into the same
field. Another is when the data is stored in a JSON blob in an appli‐
cation in order to accommodate sparse attributes or frequent addi‐
tions of new attributes. Although both scenarios are less than ideal
from an analysis perspective, as long as there is a consistent struc‐
ture, we can usually handle these with SQL.

Our next step is to make this field more usable by parsing it into several new fields,
each of which contains a single piece of information. The steps in this process are:

• Plan the field(s) desired as output
• Apply parsing functions
• Apply transformations, including data type conversions
• Check the results when applied to the entire data set, since there will often be

some records that don’t conform to the pattern
• Repeat these steps until the data is in the desired columns and formats

The new columns we will parse out of sighting_report are occurred, entered_as,
reported, posted, location, shape, and duration. Next, we will learn about parsing
functions and work on structuring the ufo data set.
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Text Parsing
Parsing data with SQL is the process of extracting pieces of a text value to make them
more useful for analysis. Parsing splits the data into the part that we want and “every‐
thing else,” though typically our code returns only the part we want.

The simplest parsing functions return a fixed number of characters from either the
beginning or the end of a string. The left function returns characters from the left
side or beginning of the string, while the right function returns characters from the
right side or end of the string. They otherwise work in the same way, taking the value
to parse as the first argument and the number of characters as the second. Either
argument can be a database field or calculation, allowing for dynamic results:

SELECT left('The data is about UFOs',3) as left_digits
,right('The data is about UFOs',4) as right_digits
;

left_digits  right_digits
-----------  -----
The          UFOs

In the ufo data set, we can parse out the first word, “Occurred,” using the left
function:

SELECT left(sighting_report,8) as left_digits
,count(*)
FROM ufo
GROUP BY 1
;

left_digits  count
-----------  -----
Occurred     95463

We can confirm that all records start with this word, which is good news because it
means at least this part of the pattern is consistent. However, what we really want is
the values for what occurred, not the word itself, so let’s try again. In the first example
record, the end of the occurred timestamp is at character 25. In order to remove
“Occurred” and retain only the actual timestamp, we can return the rightmost 14
characters using the right function. Note that the right and left functions are
nested—the first argument of the right function is the result of the left function:

SELECT right(left(sighting_report,25),14) as occurred
FROM ufo
;

occurred
--------------
3/4/2018 19:07
10/16/2017 21:
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2/15/2018 00:1
...

Although this returns the correct result for the first record, it unfortunately can’t han‐
dle the records that have two-digit month or day values. We could increase the
number of characters returned by the left and right functions, but the result would
then include too many characters for the first record.

The left and right functions are useful for extracting fixed-length parts of a string,
as in our extraction of the word “Occurred,” but for more complex patterns, a func‐
tion called split_part is more useful. The idea behind this function is to split a
string into parts based on a delimiter and then allow you to select a specific part. A
delimiter is one or more characters that are used to specify the boundary between
regions of text or other data. The comma delimiter and tab delimiter are probably the
most common, as these are used in text files (with extensions such as .csv, .tsv, or .txt)
to indicate where columns start and end. However, any sequence of characters can be
used, which will come in handy for our parsing task. The form of the function is:

split_part(string or field name, delimiter, index)

The index is the position of the text to be returned, relative to the delimiter. So index
= 1 returns all of the text to the left of the first instance of the delimiter, index = 2
returns the text between the first and second instance of the delimiter (or all of the
text to the right of the delimiter if the delimiter appears only once), and so on. There
is no zero index, and the values must be positive integers:

SELECT split_part('This is an example of an example string'
                  ,'an example'
                  ,1);

split_part
----------
This is 

SELECT split_part('This is an example of an example string'
                  ,'an example'
                  ,2);

split_part
----------
 of

MySQL has a substring_index function instead of split_part.
SQL Server does not have a split_part function at all
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Note that spaces in the text will be retained unless specified as part of the delimiter.
Let’s take a look at how we can parse the elements of the sighting_report column.
As a reminder, a sample value looks like this:

Occurred : 6/3/2014 23:00 (Entered as : 06/03/14 11:00)Reported: 6/3/2014 10:33:24
PM 22:33Posted: 6/4/2014Location: Bethesda, MDShape: LightDuration:15 minutes

The value we want our query to return is the text between “Occurred : ” and
“ (Entered”. That is, we want the string “6/3/2014 23:00”. Checking the sample text,
“Occurred :” and “(Entered” both appear only once. A colon (:) appears several times,
both to separate the label from the value and in the middle of timestamps. This might
make parsing using the colon tricky. The open parenthesis character appears only
once. We have some choices as to what to specify as the delimiter, choosing either
longer strings or only the fewest characters required to split the string accurately. I
tend to be a little more verbose to ensure that I get exactly the piece that I want, but it
really depends on the situation.

First, split sighting_report on “Occurred : ” and check the result:

SELECT split_part(sighting_report,'Occurred : ',2) as split_1
FROM ufo
;

split_1
--------------------------------------------------------------
6/3/2014 23:00 (Entered as : 06/03/14 11:00)Reported: 6/3/2014 10:33:24 PM
22:33Posted: 6/4/2014Location: Bethesda, MDShape: LightDuration:15 minutes

We have successfully removed the label, but we still have a lot of extra text remaining.
Let’s check the result when we split on “ (Entered”:

SELECT split_part(sighting_report,' (Entered',1) as split_2
FROM ufo
;

split_2
-------------------------
Occurred : 6/3/2014 23:00

This is closer, but it still has the label in the result. Fortunately, nesting split_part
functions will return only the desired date and time value:

SELECT split_part(
         split_part(sighting_report,' (Entered',1)
         ,'Occurred : ',2) as occurred
FROM ufo
;

occurred
---------------
6/3/2014 23:00
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4/25/2014 21:15
5/25/2014

Now the result includes the desired values. Reviewing a few additional lines shows
that two-digit day and month values are handled appropriately, as are dates that do
not have a time value. It turns out that some records omit the “Entered as” value, so
one additional split is required to handle records where the “Reported” label marks
the end of the desired string:

SELECT 
split_part(
  split_part(
    split_part(sighting_report,' (Entered',1)
    ,'Occurred : ',2)
    ,'Reported',1) as occurred
FROM ufo
;

occurred
---------------
6/24/1980 14:00
4/6/2006 02:05
9/11/2001 09:00
...

The most common occurred values parsed out with the SQL code are graphed in
Figure 5-3.

Figure 5-3. Top 10 most common occurred values for UFO sightings
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Finding a set of functions that works for all values in the data set is
one of the hardest parts of text parsing. It often takes several
rounds of trial and error and profiling the results along the way to
get it right.

The next step is to apply similar parsing rules to extract the other desired fields, using
beginning and ending delimiters to isolate just the relevant part of the string. The
final query uses split_part several times, with different arguments for each value:

SELECT 
  split_part(
    split_part(
      split_part(sighting_report,' (Entered',1)
      ,'Occurred : ',2)
    ,'Reported',1) as occurred
,split_part(
  split_part(sighting_report,')',1)
    ,'Entered as : ',2) as entered_as
,split_part(
  split_part(
    split_part(
      split_part(sighting_report,'Post',1)
      ,'Reported: ',2)
    ,' AM',1)
  ,' PM',1) as reported
,split_part(split_part(sighting_report,'Location',1),'Posted: ',2) 
  as posted
,split_part(split_part(sighting_report,'Shape',1),'Location: ',2) 
  as location
,split_part(split_part(sighting_report,'Duration',1),'Shape: ',2) 
  as shape
,split_part(sighting_report,'Duration:',2) as duration
FROM ufo
;
 
occurred   entered_as   reported  posted   location     shape       duration
--------   ----------   --------  -------  -----------  ---------   -----------
7/4/2...   07/04/2...   7/5...    7/5/...  Columbus...  Formation   15 minutes
7/4/2...   07/04/2...   7/5...    7/5/...  St. John...  Circle      2-3 minutes
7/4/2...   07/7/1...    7/5...    7/5/...  Royal Pa...  Circle      3 minutes
...        ...          ...       ...      ...          ...         ...

With this SQL parsing, the data is now in a much more structured and usable format.
Before we finish, however, there are a few transformations that will clean up the data
a little further. We’ll take a look at these string transformation functions next.

186 | Chapter 5: Text Analysis



Text Transformations
Transformations change string values in some way. We saw a number of date and
timestamp transformation functions in Chapter 3. There is a set of functions in SQL
that specifically work on string values. These are useful for working with parsed data,
but also for any text data in a database that needs to be adjusted or cleaned for
analysis.

Among the most common transformations are the ones that change capitalization.
The upper function converts all letters to their uppercase form, while the lower func‐
tion converts all letters to their lowercase form. For example:

SELECT upper('Some sample text');

upper
----------------
SOME SAMPLE TEXT

SELECT lower('Some sample text');

lower
----------------
some sample text

These are useful for standardizing values that may have been entered in different
ways. For example, any human will recognize that “California,” “caLiforNia,” and
“CALIFORNIA” all refer to the same state, but a database will treat them as distinct
values. If we were to count UFO sightings by states with these values, we would end
up with three records for California, resulting in incorrect analysis conclusions. Con‐
verting them to all uppercase or all lowercase letters would solve this problem. Some
databases, including Postgres, have an initcap function that capitalizes the first letter
of each word in a string. This is useful for proper nouns, such as state names:

SELECT initcap('caLiforNia'), initcap('golden gate bridge');

initcap     initcap
----------  ------------------
California  Golden Gate Bridge

The shape field in the data set we parsed contains one value that is in all capitals,
“TRIANGULAR.” To clean this and standardize it with the other values, which all
have only their first letter capitalized, apply the initcap function:

Text Transformations | 187



SELECT distinct shape, initcap(shape) as shape_clean
FROM
(
    SELECT split_part(
             split_part(sighting_report,'Duration',1)
             ,'Shape: ',2) as shape
    FROM ufo
) a
;

shape       shape_clean
----------  -----------
...         ... 
Sphere      Sphere
TRIANGULAR  Triangular
Teardrop    Teardrop
...         ...

The number of sightings for each shape is shown in Figure 5-4. Light is by far the
most common shape, followed by circle and triangle. Some sightings do not report a
shape, so a count for null value appears in the graph as well.

Figure 5-4. Frequency of shapes in UFO sightings
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Another useful transformation function is one called trim that removes blank spaces
at the beginning and end of a string. Extra whitespace characters are a common prob‐
lem when parsing values out of longer strings, or when data is created by human
entry or by copying data from one application to another. As an example, we can
remove the leading spaces before “California” in the following string by using the
trim function:

SELECT trim('  California  ');

trim
----------
California

The trim function has a few optional parameters that make it flexible for a variety of
data-cleaning challenges. First, it can remove characters from the start of a string or
from the end of a string, or both. Trimming from both ends is the default, but the
other options can be specified with leading or trailing. Additionally, trim can
remove any character, not just whitespace. So, for example, if an application placed a
dollar sign ($) at the beginning of each state name for some reason, we could remove
this with trim:

SELECT trim(leading '$' from '$California');

A few of the values in the duration field have leading spaces, so applying trim will
result in a cleaner output:

SELECT duration, trim(duration) as duration_clean
FROM
(
    SELECT split_part(sighting_report,'Duration:',2) as duration
    FROM ufo
) a
;

duration               duration_clean
---------------------  --------------------
 ~2 seconds            ~2 seconds
 15 minutes            15 minutes
 20 minutes (ongoing)  20 minutes (ongoing)

The number of sightings for the most common durations are graphed in Figure 5-5.
Sightings lasting between 1 and 10 minutes are common. Some sightings do not
report a duration, so a count for null value appears in the graph.
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Figure 5-5. Top 10 most common durations of UFO sightings

The next type of transformation is a data type conversion. This type of transforma‐
tion, discussed in Chapter 2, will be useful for ensuring that the results of our parsing
have the intended data type. In our case, there are two fields that should be treated as
timestamps—the occurred and reported columns—and the posted column should
be a date type. The data types can be changed with casting, using either the double
colon (::) operator or the CAST field as type syntax. We’ll leave the entered_as,
location, shape, and duration values as VARCHAR:

SELECT occurred::timestamp
,reported::timestamp as reported
,posted::date as posted
FROM
(
    SELECT 
    split_part(
      split_part(
        split_part(sighting_report,' (Entered',1)
        ,'Occurred : ',2)
      ,'Reported',1) 
      as occurred   
    ,split_part(
      split_part(
        split_part(
          split_part(sighting_report,'Post',1)
          ,'Reported: ',2)
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1 Since the data set was created in the United States, it is in mm/dd/yyyy format. Many other parts of the world
use the dd/mm/yyyy format instead. It’s always worth checking your source and adjusting your code as
needed.

        ,' AM',1),' PM',1) 
      as reported
    ,split_part(
      split_part(sighting_report,'Location',1)
      ,'Posted: ',2) 
      as posted
    FROM ufo
) a
;

occurred             reported             posted
-------------------  -------------------  ----------
2015-05-24 19:30:00  2015-05-25 10:07:21  2015-05-29
2015-05-24 22:40:00  2015-05-25 09:09:09  2015-05-29
2015-05-24 22:30:00  2015-05-24 10:49:43  2015-05-29
...                  ...                  ...

A sample of the data converts to the new formats. Notice that the database adds the
seconds to the timestamp, even though there were no seconds in the original value,
and correctly recognizes dates that were in month/day/year (mm/dd/yyyy) format.1

There is a problem when applying these transformations to the entire data set, how‐
ever. A few records do not have values at all, appearing as an empty string, and some
have the time value but no date associated with them. Although an empty string and
null seem to contain the same information—nothing—databases treat them differ‐
ently. An empty string is still a string and can’t be converted to another data type. Set‐
ting all the nonconforming records to null with a CASE statement allows the type
conversion to work properly. Since we know that dates must contain at least eight
characters (four digits for year, one or two digits each for month and day, and two “-”
or “/” characters), one way to accomplish this is by setting any record with LENGTH
less than 8 equal to null with a CASE statement:

SELECT 
case when occurred = '' then null 
     when length(occurred) < 8 then null
     else occurred::timestamp 
     end as occurred
,case when length(reported) < 8 then null
      else reported::timestamp 
      end as reported
,case when posted = '' then null
      else posted::date  
      end as posted
FROM
(
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    SELECT 
    split_part(
      split_part(
        split_part(sighting_report,'(Entered',1)
        ,'Occurred : ',2)
      ,'Reported',1) as occurred 
    ,split_part(
      split_part(
        split_part(
          split_part(sighting_report,'Post',1)
          ,'Reported: ',2)
        ,' AM',1)
      ,' PM',1) as reported
    ,split_part(
       split_part(sighting_report,'Location',1)
       ,'Posted: ',2) as posted
    FROM ufo
) a
;

occurred             reported             posted
-------------------  -------------------  ----------
1991-10-01 14:00:00  2018-03-06 08:54:22  2018-03-08
2018-03-04 19:07:00  2018-03-06 07:05:12  2018-03-08
2017-10-16 21:42:00  2018-03-06 05:09:47  2018-03-08
...                  ...                  ...

The final transformation I’ll discuss in this section is the replace function. Some‐
times there is a word, phrase, or other string within a field that we would like to
change to another string or remove entirely. The replace function comes in handy
for this task. It takes three arguments—the original text, the string to find, and the
string to substitute in its place:

replace(string or field, string to find, string to substitute)

So, for example, if we want to change references of “unidentified flying objects” to
“UFOs,” we can use the replace function:

SELECT replace('Some unidentified flying objects were noticed
above...','unidentified flying objects','UFOs');

replace
-------------------------------
Some UFOs were noticed above...

This function will find and replace every instance of the string in the second argu‐
ment, regardless of where it appears. An empty string can be used as the third argu‐
ment, which is a good way to remove parts of a string that are not wanted. Like other
string functions, replace can be nested, with the output from one replace becoming
the input for another.
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In the parsed UFO-sighting data set we’ve been working with, some of the location
values include qualifiers indicating that the sighting took place “near,” “close to,” or
“outside of ” a city or town. We can use replace to standardize these to “near”:

SELECT location
,replace(replace(location,'close to','near')
         ,'outside of','near') as location_clean
FROM
(
    SELECT split_part(split_part(sighting_report,'Shape',1)
                      ,'Location: ',2) as location
    FROM ufo
) a
;

location                     location_clean
---------------------------  ---------------------
Tombstone (outside of), AZ   Tombstone (near), AZ
Terrell (close to), TX       Terrell (near), TX
Tehachapie (outside of), CA  Tehachapie (near), CA
...                          ...

The top 10 sighting locations are graphed in Figure 5-6.

Figure 5-6. Most common locations of UFO sightings

Now we have parsed and cleaned all the elements of the sighting_report field into
distinct, appropriately typed columns. The final code looks like this:

SELECT 
case when occurred = '' then null 
     when length(occurred) < 8 then null
     else occurred::timestamp 
     end as occurred
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,entered_as
,case when length(reported) < 8 then null
      else reported::timestamp 
      end as reported
,case when posted = '' then null
      else posted::date  
      end as posted
,replace(replace(location,'close to','near'),'outside of','near') 
 as location
,initcap(shape) as shape
,trim(duration) as duration
FROM
(
    SELECT 
    split_part(
        split_part(split_part(sighting_report,' (Entered',1)
          ,'Occurred : ',2)
          ,'Reported',1) as occurred
    ,split_part(
      split_part(sighting_report,')',1)
        ,'Entered as : ',2) as entered_as   
    ,split_part(
      split_part(
        split_part(
          split_part(sighting_report,'Post',1)
          ,'Reported: ',2)
        ,' AM',1)
      ,' PM',1) as reported
    ,split_part(
       split_part(sighting_report,'Location',1)
       ,'Posted: ',2) as posted
    ,split_part(
       split_part(sighting_report,'Shape',1)
       ,'Location: ',2) as location
    ,split_part(
       split_part(sighting_report,'Duration',1)
       ,'Shape: ',2) as shape
    ,split_part(sighting_report,'Duration:',2) as duration
    FROM ufo
) a
;
 
occurred   entered_as  reported  posted   location     shape      duration
--------   ----------  --------  -------  ----------   --------   ----------
1988-...   8-8-198...  2018-...  2018...  Amity, ...   Unknown    4 minutes
2018-...   07/41/1...  2018-...  2018...  Bakersf...   Triangle   15 minutes
2018-...   08/01/1...  2018-...  2018...  Naples,...   Light      10 seconds
...        ...         ...       ...      ...          ...        ...

This piece of SQL code can be reused in other queries, or it can be used to copy the
raw UFO data into a new, cleaned-up table. Alternatively, it could be turned into a
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view or put into a common table expression for reuse. Chapter 8 will discuss these
strategies in more detail.

We’ve seen how to apply parsing and transformation functions to clean and improve
the analysis value of text data that has some amount of structure in it. Next, we’ll look
at the other field in the UFO sightings data set, the free text description field, and
learn how to use SQL functions to search for specific elements.

Finding Elements Within Larger Blocks of Text
Parsing and transformations are common operations applied to text data to prepare it
for analysis. Another common operation with text data is finding strings within
larger blocks of text. This can be done to filter results, categorize records, or replace
the searched-for strings with alternate values.

Wildcard Matches: LIKE, ILIKE
SQL has several functions for matching patterns within strings. The LIKE operator
matches the specified pattern within the string.  In order to allow it to match a pat‐
tern and not just find an exact match, wildcard symbols can be added before, after, or
in the middle of the pattern. The “%” wildcard matches zero or more characters,
while the “_” wildcard matches exactly one character. If the goal is to match the “%”
or “_” itself, place the backslash escape symbol (“\”) in front of that character:

SELECT 'this is an example string' like '%example%';

true

SELECT 'this is an example string' like '%abc%';

false

SELECT 'this is an example string' like '%this_is%';

true

The LIKE operator can be used in a number of clauses within the SQL statement. It
can be used to filter records in the WHERE clause. For example, some reporters men‐
tion that they were with a spouse at the time, and so we might want to find out how
many reports mention the word “wife.” Since we want to find the string anywhere in
the description text, we’ll place the “%” wildcard before and after “wife”:

SELECT count(*)
FROM ufo
WHERE description like '%wife%'
;
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count
-----
6231

We can see that more than six thousand reports mention “wife.” However, this will
return only matches on the lowercase string. What if some reporters mention “Wife,”
or they left Caps Lock on and typed in “WIFE” instead? There are two options for
making the search case insensitive. One option is to transform the field to be
searched using either the upper or lower function discussed in the previous section,
which has the effect of making the search case insensitive since characters are all
either uppercase or lowercase:

SELECT count(*)
FROM ufo
WHERE lower(description) like '%wife%'
;

count
-----
6439

Another way to accomplish this is with the ILIKE operator, which is effectively a case-
insensitive LIKE operator. The drawback is that it is not available in every database;
notably, MySQL and SQL Server do not support it. However, it’s a nice, compact syn‐
tax option if you are working in a database that does support it:

SELECT count(*)
FROM ufo
WHERE description ilike '%wife%'
;

count
-----
6439

Any of these variations of LIKE and ILIKE can be negated with NOT. So, for example,
to find the records that do not mention “wife,” we can use NOT LIKE:

SELECT count(*)
FROM ufo
WHERE lower(description) not like '%wife%'
;

count
-----
89024

Filtering on multiple strings is possible with AND and OR operators:

SELECT count(*)
FROM ufo
WHERE lower(description) like '%wife%'
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or lower(description) like '%husband%'
;

count
-----
10571

Be careful to use parentheses to control the order of operations when using OR in
conjunction with AND operators, or you might get unexpected results. For example,
these WHERE clauses do not return the same result since OR is evaluated before
AND:

SELECT count(*)
FROM ufo
WHERE lower(description) like '%wife%'
or lower(description) like '%husband%'
and lower(description) like '%mother%'
;

count
-----
6610

SELECT count(*)
FROM ufo
WHERE (lower(description) like '%wife%'
       or lower(description) like '%husband%'
       )
and lower(description) like '%mother%'
;

count
-----
382

In addition to filtering in WHERE or JOIN...ON clauses, LIKE can be used in the
SELECT clause to categorize or aggregate certain records. Let’s start with categoriza‐
tion. The LIKE operator can be used within a CASE statement to label and group
records. Some of the descriptions mention an activity the observer was doing during
or prior to the sighting, such as driving or walking. We can find out how many
descriptions contain such terms by using a CASE statement with LIKE:

SELECT 
case when lower(description) like '%driving%' then 'driving'
     when lower(description) like '%walking%' then 'walking'
     when lower(description) like '%running%' then 'running'
     when lower(description) like '%cycling%' then 'cycling'
     when lower(description) like '%swimming%' then 'swimming'
     else 'none' end as activity
,count(*)
FROM ufo
GROUP BY 1
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ORDER BY 2 desc
;

activity  count
--------  -----
none      77728
driving   11675
walking   4516
running   1306
swimming  196
cycling   42

The most common activity was driving, whereas not many people report sightings
while swimming or cycling. This is perhaps not surprising, since these activities are
simply less common than driving.

Although values derived through text-parsing transformation
functions can be used in JOIN criteria, database performance is
often a problem. Consider parsing and/or transforming in a sub‐
query and then joining the result with an exact match in the JOIN
clause.

Note that this CASE statement labels each description with only one of the activities
and evaluates whether each record matches the pattern in the order in which the
statement is written. A description that contains both “driving” and “walking” will be
labeled as “driving.” This is appropriate in many cases, but particularly when analyz‐
ing longer text such as from reviews, survey comments, or support tickets, the ability
to label records with multiple categories is important. For this type of use case, a ser‐
ies of binary or BOOLEAN flag columns is called for.

We saw earlier that LIKE can be used to generate a BOOLEAN response of TRUE or
FALSE, and we can use this to label rows. In the data set, a number of descriptions
mention the direction in which the object was detected, such as north or south, and
some mention more than one direction. We might want to label each record with a
field indicating whether the description mentions each direction:

SELECT description ilike '%south%' as south
,description ilike '%north%' as north
,description ilike '%east%' as east
,description ilike '%west%' as west
,count(*)
FROM ufo
GROUP BY 1,2,3,4
ORDER BY 1,2,3,4
;
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south  north  east   west   count
-----  -----  ----   -----  -----
false  false  false  false  43757
false  false  false  true   3963
false  false  true   false  5724
false  false  true   true   4202
false  true   false  false  4048
false  true   false  true   2607
false  true   true   false  3299
false  true   true   true   2592
true   false  false  false  3687
true   false  false  true   2571
true   false  true   false  3041
true   false  true   true   2491
true   true   false  false  3440
true   true   false  true   2064
true   true   true   false  2684
true   true   true   true   5293

The result is a matrix of BOOLEANs that can be used to find the frequency of various
combinations of directions, or to find when a direction is used without any of the
other directions in the same description.

All of the combinations are useful in some contexts, particularly in building data sets
that will be used by others to explore the data, or in a BI or visualization tool. How‐
ever, sometimes it is more useful to summarize the data further and perform an
aggregation on the records that contain a string pattern. Here we will count the
records, but other aggregations such as sum and average can be used if the data set
contains other numerical fields, such as sales figures:

SELECT 
count(case when description ilike '%south%' then 1 end) as south
,count(case when description ilike '%north%' then 1 end) as north
,count(case when description ilike '%west%' then 1 end) as west
,count(case when description ilike '%east%' then 1 end) as east
FROM ufo
;

south  north  west   east
-----  -----  -----  -----
25271  26027  25783  29326

We now have a much more compact summary of the frequency of direction terms in
the description field, and we can see that “east” is mentioned more often than other
directions. The results are graphed in Figure 5-7.
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Figure 5-7. Frequency of compass directions mentioned in UFO sighting reports

In the preceding query, we still allow a record that contains more than one direction
to be counted more than once. However, there is no longer visibility into which spe‐
cific combinations exist. Complexity can be added into the query as needed to handle
such cases, with a statement such as:

count(case when description ilike '%east%' 
and description ilike '%north%' then 1 end) as east

Pattern matching with LIKE, NOT LIKE, and ILIKE is flexible and can be used in
various places in a SQL query to filter, categorize, and aggregate data for a variety of
output needs. These operators can be used in combination with the text-parsing and
transformation functions we discussed earlier for even more flexibility. Next, I’ll dis‐
cuss handling multiple elements when the matches are exact before returning to more
patterns in a discussion of regular expressions.

Exact Matches: IN, NOT IN
Before we move on to more complex pattern matching with regular expressions, it’s
worth looking at a couple of additional operators that are useful in text analysis.
Although not strictly about pattern matching, they are often useful in combination
with LIKE and its relatives in order to come up with a rule set that includes exactly
the right set of results. The operators are IN and its negation, NOT IN. These allow
you to specify a list of matches, resulting in more compact code.

Let’s imagine we are interested in categorizing the sightings based on the first word of
the description. We can find the first word using the split_part function, with a
space character as the delimiter. Many reports start with a color as the first word. We
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might want to filter the records in order to take a look at reports that start by naming
a color. This can be done by listing each color with an OR construction:

SELECT first_word, description
FROM
(
    SELECT split_part(description,' ',1) as first_word
    ,description
    FROM ufo
) a
WHERE first_word = 'Red'
or first_word = 'Orange'
or first_word = 'Yellow'
or first_word = 'Green'
or first_word = 'Blue'
or first_word = 'Purple'
or first_word = 'White'
;

first_word  description
----------  ----------------------------------------------------
Blue        Blue Floating LightSaw blue light hovering...
White       White dot of light traveled across the sky, very...
Blue        Blue Beam project known seen from the high desert... 
...         ...

Using an IN list is more compact and often less error-prone, particularly when there
are other elements in the WHERE clause. IN takes a comma-separated list of items to
match. The data type of elements should match the data type of the column. If the
data type is numeric, the elements should be numbers; if the data type is text, the ele‐
ments should be quoted as text (even if the element is a number):

SELECT first_word, description
FROM
(
    SELECT split_part(description,' ',1) as first_word
    ,description
    FROM ufo
) a
WHERE first_word in ('Red','Orange','Yellow','Green','Blue','Purple','White')
;

first_word  description
----------  ----------------------------------------------------
Red         Red sphere with yellow light in middleMy Grandson... 
Blue        Blue light fireball shape shifted into several...
Orange      Orange lights.Strange orange-yellow hovering not...
...         ...

The two forms are identical in their results, and the frequencies are shown in
Figure 5-8.
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Figure 5-8. Frequency of select colors used as the first word in UFO sighting descriptions

The main benefit of IN and NOT IN is that they make code more compact and reada‐
ble. This can come in handy when creating more complex categorizations in the
SELECT clause. For example, imagine we wanted to categorize and count the records
by the first word into colors, shapes, movements, or other possible words. We might
come up with something like the following that combines elements of parsing, trans‐
formations, pattern matching, and IN lists:

SELECT 
case when lower(first_word) in ('red','orange','yellow','green', 
'blue','purple','white') then 'Color'
when lower(first_word) in ('round','circular','oval','cigar') 
then 'Shape'
when first_word ilike 'triang%' then 'Shape'
when first_word ilike 'flash%' then 'Motion'
when first_word ilike 'hover%' then 'Motion'
when first_word ilike 'pulsat%' then 'Motion'
else 'Other' 
end as first_word_type
,count(*)
FROM
(
    SELECT split_part(description,' ',1) as first_word
    ,description
    FROM ufo
) a
GROUP BY 1
ORDER BY 2 desc
;
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first_word_type  count
---------------  -----
Other            85268
Color            6196
Shape            2951
Motion           1048

Of course, given the nature of this data set, it would likely take many more lines of
code and rules to accurately categorize the reports by first word. SQL allows you to
create a variety of complex and nuanced expressions to deal with text data. Next, we’ll
turn to some even more sophisticated ways to work with text data in SQL, using regu‐
lar expressions.

Regular Expressions
There are a number of ways to match patterns in SQL. One of the most powerful
methods, though it is also confusing, is the use of regular expressions (regex). I will
admit to finding regular expressions intimidating, and I avoided using them for a
long time in my data analysis career. In a pinch, I was lucky enough to have collea‐
gues who were willing to share code snippets and get my work unstuck. It was only
when I ended up with a big text analysis project that I decided it was finally time to
learn about them.

Regular expressions are sequences of characters, many with special meanings, that
define search patterns. The main challenge in learning regex, and in using and main‐
taining code that contains it, is that the syntax is not particularly intuitive. Code snip‐
pets don’t read anything like a human language, or even like computer languages such
as SQL or Python. With a working knowledge of the special characters, however, the
code can be written and deciphered. Like the code for all our queries, it’s a good idea
to start simple, build in complexity as needed, and check results as you go. And leave
comments liberally, both for other analysts and for future you.

Regex is a language, but it’s one that is used only within other languages. For example,
regular expressions can be called within Java, Python, and SQL, but there is no inde‐
pendent way to program with them. All major databases have some implementation
of regex. The syntax isn’t always exactly the same, but as with other functions, once
you have a sense of the possibilities, adjusting syntax to your environment should be
possible.

A full explanation, and all of the syntax and ways to use regex, is beyond the scope of
this book, but I’ll show you enough for you to get started and accomplish a number
of common tasks in SQL. For a more thorough introduction, Learning Regular
Expressions by Ben Forta (O’Reilly) is a good choice. Here I’ll start by introducing the
ways to indicate to the database that you are using a regex, and then I’ll introduce the
syntax, before moving on to some examples of how regex can be useful in the UFO
sighting reports analysis.
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Regex can be used in SQL statements in a couple of ways. The first is with POSIX
comparators, and the second is with regex functions. POSIX stands for Portable
Operating System Interface and refers to a set of IEEE standards, but you don’t need
to know any more than that to use POSIX comparators in your SQL code. The first
comparator is the ~ (tilde) symbol, which compares two statements and returns
TRUE if one string is contained in the other. As a simple example, we can check to see
whether the string “The data is about UFOs” contains the string “data”:

SELECT 'The data is about UFOs' ~ 'data' as comparison;

comparison
----------
true

The return value is a BOOLEAN, TRUE or FALSE. Note that, although it doesn’t con‐
tain any special syntax, “data” is a regex. Regular expressions can also contain normal
text strings. This example is similar to what could be accomplished with a LIKE oper‐
ator. The ~ comparator is case sensitive. To make it case insensitive, similar to ILIKE,
use ~* (the tilde followed by an asterisk):

SELECT 'The data is about UFOs' ~* 'DATA' as comparison;

comparison
----------
true

To negate the comparator, place an ! (exclamation point) before the tilde or tilde-
asterisk combination:

SELECT 'The data is about UFOs' !~ 'alligators' as comparison;

comparison
----------
true

Table 5-1 summarizes the four POSIX comparators.

Table 5-1. POSIX comparators

Syntax What it does Case sensitive?
~ Compares two statements and returns TRUE if one is contained in the other Yes
~* Compares two statements and returns TRUE if one is contained in the other No
!~ Compares two statements and returns FALSE if one is contained in the other Yes
!~* Compares two statements and returns FALSE if one is contained in the other No

Now that we have a way to introduce regex into our SQL, let’s get familiar with some
of the special pattern-matching syntax it offers. The first special character to know is
the . (period) symbol, a wildcard that is used to match any single character:
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SELECT 
'The data is about UFOs' ~ '. data' as comparison_1
,'The data is about UFOs' ~ '.The' as comparison_2
;

comparison_1  comparison_2
------------  ------------
true          false

Let’s break this down in order to understand what’s going on and develop our intu‐
ition about how regex works. In the first comparison, the pattern tries to match any
character, indicated by the period, a space, and then the word “data.” This pattern
matches the string “e data” in the example sentence, so TRUE is returned. If this
seems counterintuitive, since there are additional characters before the letter “e” and
after the word “data,” remember that the comparator is only looking for this pattern
somewhere within the string, similar to a LIKE operator. In the second comparison,
the pattern tries to match any character followed by “The.” Since in the example sen‐
tence “The” is the start of the string and there are no characters before it, the value
FALSE is returned.

To match multiple characters, use the * (asterisk) symbol. This will match zero or
more characters, similar to using the % (percent) symbol in a LIKE statement.  This
use of the asterisk is different from placing it immediately after the tilde (~*), which
makes the match case insensitive. Notice, however, that in this case “%” is not a wild‐
card and is instead treated as a literal character to be matched:

SELECT 'The data is about UFOs' ~ 'data *' as comparison_1
,'The data is about UFOs' ~ 'data %' as comparison_2
;

comparison_1  comparison_2
------------  ------------
true          false

The next special characters to know are [ and ] (left and right brackets). These are
used to enclose a set of characters, any one of which must match. The brackets match
a single character even though multiple characters can be between them, though we’ll
see shortly how to match more than one time. One use for the brackets is to make
part of a pattern case insensitive by enclosing the uppercase and lowercase letters
within the brackets (do not use a comma, as that would match the comma character
itself):

SELECT 'The data is about UFOs' ~ '[Tt]he' as comparison;

comparison
----------
true
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In this example, the pattern will match either “the” or “The”; since this string starts
the example sentence, the statement returns the value TRUE. This isn’t quite the same
thing as the case-insensitive match ~*, because in this case variations such as “tHe”
and “THE” do not match the pattern:

SELECT 'The data is about UFOs' ~ '[Tt]he' as comparison_1
,'the data is about UFOs' ~ '[Tt]he' as comparison_2
,'tHe data is about UFOs' ~ '[Tt]he' as comparison_3
,'THE data is about UFOs' ~ '[Tt]he' as comparison_4
;

comparison_1  comparison_2  comparison_3  comparison_4
------------  ------------  ------------  ------------
true          true          false         false

Another use of the bracket set match is to match a pattern that includes a number,
allowing for any number. For example, imagine we wanted to match any description
that mentions “7 minutes,” “8 minutes,” or “9 minutes.” This could be accomplished
with a CASE statement with several LIKE operators, but with regex the pattern syntax
is more compact:

SELECT 'sighting lasted 8 minutes' ~ '[789] minutes' as comparison;

comparison
----------
true

To match any number, we could enclose all the digits between the brackets:

[0123456789]

However, regex allows a range of characters to be entered with a - (dash) separator. 
All of the numbers can be indicated by [0-9]. Any smaller range of numbers can be
used as well, such as [0-3] or [4-9]. This pattern, with a range, is equivalent to the last
example that listed out each number:

SELECT 'sighting lasted 8 minutes' ~ '[7-9] minutes' as comparison;

comparison
----------
true

Ranges of letters can be matched in a similar way. Table 5-2 summarizes the range
patterns that are most useful in SQL analysis. Nonnumber and nonletter values can
also be placed between brackets, as in [$%@].
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Table 5-2. Regex range patterns

Range pattern Purpose
[0-9] Match any number
[a-z] Match any lowercase letter
[A-Z] Match any uppercase letter
[A-Za-z0-9] Match any lower- or uppercase letter, or any number
[A-z] Match any ASCII character; generally not used because it matches everything, including symbols

If the desired pattern match contains more than one instance of a particular value or
type of value, one option is to include as many ranges as needed, one after the other.
For example, we can match a three-digit number by repeating the number range
notation three times:

SELECT 'driving on 495 south' ~ 'on [0-9][0-9][0-9]' as comparison;

comparison
----------
true

Another option is to use one of the optional special syntaxes for repeating a pattern
multiple times. This can be useful when you don’t know exactly how many times the
pattern will repeat, but be careful to check the results to make sure you don’t acciden‐
tally return more matches than intended. To match one or more times, place the
+ (plus) symbol after the pattern:

SELECT 
'driving on 495 south' ~ 'on [0-9]+' as comparison_1
,'driving on 1 south' ~ 'on [0-9]+' as comparison_2
,'driving on 38east' ~ 'on [0-9]+' as comparison_3
,'driving on route one' ~ 'on [0-9]+' as comparison_4
;

comparison_1  comparison_2  comparison_3  comparison_4
------------  ------------  ------------  ------------
true          true          true          false

Table 5-3 summarizes the other options for indicating the number of times to repeat
a pattern.
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Table 5-3. Regex patterns for matching a character set multiple times; in each case, the
symbol or symbols are placed immediately after the set expression

Symbol Purpose
+ Match the character set one or more times
* Match the character set zero or more times
? Match the character set zero or one time
{ } Match the character set the number of times specified between the curly braces; for example, {3} matches exactly

three times
{ , } Match the character set any number of times in a range specified by the comma-separated numbers between the

curly braces; for example, {3,5} matches between three and five times

Sometimes rather than matching a pattern, we want to find items that do not match a
pattern. This can be done by placing the ^ (caret) symbol before the pattern, which
serves to negate the pattern:

SELECT 
'driving on 495 south' ~ 'on [0-9]+' as comparison_1
,'driving on 495 south' ~ 'on ^[0-9]+' as comparison_2
,'driving on 495 south' ~ '^on [0-9]+' as comparison_3
;

comparison_1  comparison_2  comparison_3
------------  ------------  ------------ 
true          false         false

We might want to match a pattern that includes one of the special characters, so we
need a way to tell the database to check for that literal character and not treat it as
special. To do this, we need an escape character, which is the \ (backslash) symbol in
regex:

SELECT 
'"Is there a report?" she asked' ~ '\?' as comparison_1
,'it was filed under ^51.' ~ '^[0-9]+' as comparison_2
,'it was filed under ^51.' ~ '\^[0-9]+' as comparison_3
;

comparison_1  comparison_2  comparison_3
------------  ------------  ------------ 
true          false         true

In the first line, omitting the backslash before the question mark causes the database
to return an “invalid regular expression” error (the exact wording of the error may be
different depending on the database type). In the second line, even though ^ is fol‐
lowed by one or more digits ([0-9]+), the database interprets the ^ in the comparison
'^[0-9]+' to be a negation and will evaluate whether the string does not include the
specified digits. The third line escapes the caret with a backslash, and the database
now interprets this as the literal ^ character.
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Text data usually includes whitespace characters. These range from the space, which
our eyes notice, to the subtle and sometimes unprinted tab and newline characters.
We will see later how to replace these with regex, but for now let’s stick to how to
match them in a regex. Tabs are matched with \t. Newlines are matched with \r for a
carriage return or \n for a line feed, and depending on the operating system, some‐
times both are required: \r\n. Experiment with your environment by running a few
simple queries to see what returns the desired result. To match any whitespace char‐
acter, use \s, but note that this also matches the space character:

SELECT 
'spinning
flashing
and whirling' ~ '\n' as comparison_1
,'spinning
flashing
and whirling' ~ '\s' as comparison_2
,'spinning flashing' ~ '\s' as comparison_3
,'spinning' ~ '\s' as comparison_4
;  

comparison_1  comparison_2  comparison_3  comparison_4
------------  ------------  ------------  ------------
true          true          true          false

SQL query tools or SQL query parsers may have trouble interpret‐
ing new lines typed directly into them and thus may return an
error. If this is the case, try copying and pasting the text from the
source rather than typing it in. All SQL query tools should be able
to work with newlines that exist in a database table, however.

Similar to mathematical expressions, parentheses can be used to enclose expressions
that should be treated together. For example, we might want to match a somewhat
complex pattern that repeats several times:

SELECT 
'valid codes have the form 12a34b56c' ~ '([0-9]{2}[a-z]){3}' 
  as comparison_1
,'the first code entered was 123a456c' ~ '([0-9]{2}[a-z]){3}' 
  as comparison_2
,'the second code entered was 99x66y33z' ~ '([0-9]{2}[a-z]){3}' 
  as comparison_3
;

comparison_1  comparison_2  comparison_3
------------  ------------  ------------
true          false          true

All three lines use the same regex pattern, '([0-9]{2}[a-z]){3}', for matching. The
pattern inside the parentheses, [0-9]{2}[a-z], looks for two digits followed by a
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lowercase letter. Outside of the parentheses, {3} indicates that the whole pattern
should be repeated three times. The first line follows this pattern, since it contains the
string 12a34b56c. The second line does not match the pattern; it does have two digits
followed by a lowercase letter (23a) and then two more digits (23a45), but this second
repetition is followed by a third digit rather than by another lowercase letter
(23a456), so there is no match. The third line has a matching pattern, 99x66y33z.

As we’ve just seen, regex can be used in any number of combinations with other
expressions, both regex and normal text, to create pattern-matching code. In addition
to specifying what to match, regex can be used to specify where to match. Use the spe‐
cial character \y to match a pattern starting at the beginning or end of a word (in
some databases, this might be \b instead). As an example, imagine we were interested
in finding the word “car” in the UFO sighting reports. We could write an expression
like this:

SELECT 
'I was in my car going south toward my home' ~ 'car' as comparison;

comparison
----------
true

It finds “car” in the string and returns TRUE as expected. However, let’s look at a few
more strings from the data set, looking for the same expression:

SELECT 
'I was in my car going south toward my home' ~ 'car' 
  as comparison_1
,'UFO scares cows and starts stampede breaking' ~ 'car' 
  as comparison_2
,'I''m a carpenter and married father of 2.5 kids' ~ 'car' 
  as comparison_3
,'It looked like a brown boxcar way up into the sky' ~ 'car' 
  as comparison_4
;

comparison_1  comparison_2  comparison_3  comparison_4
------------  ------------  ------------  ------------
true          true          true          true

All of these strings match the pattern “car” as well, even though “scares,” “carpenter,”
and “boxcar” aren’t exactly what was intended when we went looking for mentions of
cars. To fix this, we can add \y to the beginning and end of the “car” pattern in our
expression:

SELECT 
'I was in my car going south toward my home' ~ '\ycar\y' 
  as comparison_1
,'UFO scares cows and starts stampede breaking' ~ '\ycar\y' 
  as comparison_2
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,'I''m a carpenter and married father of 2.5 kids' ~ '\ycar\y' 
  as comparison_3
,'It looked like a brown boxcar way up into the sky' ~ '\ycar\y' 
  as comparison_4
;

comparison_1  comparison_2  comparison_3  comparison_4
------------  ------------  ------------  ------------
true          false         false         false

Of course, in this simple example, we could have simply added spaces before and
after the word “car” with the same result. The benefit of the pattern is that it will also
pick up cases in which the pattern is at the beginning of a string and thus does not
have a leading space:

SELECT 'Car lights in the sky passing over the highway' ~* '\ycar\y' 
 as comparison_1
,'Car lights in the sky passing over the highway' ~* ' car ' 
 as comparison_2
;

comparison_1  comparison_2
------------  ------------
true          false

The pattern '\ycar\y' makes a case-insensitive match when “Car” is the first word,
but the pattern ' car ' does not. To match the  beginning of an entire string, use the
\A special character, and to match the end of a string, use \Z:

SELECT 
'Car lights in the sky passing over the highway' ~* '\Acar\y' 
  as comparison_1
,'I was in my car going south toward my home' ~* '\Acar\y' 
  as comparison_2
,'An object is sighted hovering in place over my car' ~* '\ycar\Z' 
  as comparison_3
,'I was in my car going south toward my home' ~* '\ycar\Z' 
  as comparison_4
;

comparison_1  comparison_2  comparison_3  comparison_4
------------  ------------  ------------  ------------
true          false         true          false

In the first line, the pattern matches “Car” at the beginning of the string. The second
line starts with “I,” so the pattern does not match. In the third line, the pattern is
looking for “car” at the end of the string and does match it. Finally, in the fourth line,
the last word is “home,” so the pattern does not match.

If this is your first time working with regular expressions, it may take a few read-
throughs and some experimentation in your SQL editor to get the hang of them.
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There’s nothing like working with real examples to help solidify learning, so next I’ll
go through some applications to our UFO sightings analysis, and I’ll also introduce a
couple of specific regex SQL functions.

Regular expression implementations vary widely by database ven‐
dor. The POSIX operators in this section work in Postgres and in
databases derived from Postgres such as Amazon Redshift, but not
necessarily in others.
An alternative to the ~ operator is the rlike or regexp_like func‐
tion (depending on the database). These have the following format:

regexp_like(string, pattern, optional_parameters)

The first example in this section would be written as:
SELECT regexp_like('The data is about UFOs','data') 
 as comparison;

The optional parameters control matching type, such as whether
the match is case insensitive.
Many of these databases have additional functions not covered
here, such as regexp_substr to find matching substrings, and
regexp_count to find the number of times a pattern is matched.
Postgres supports POSIX but unfortunately does not support these
other functions. Organizations that expect to do a lot of text analy‐
sis will do well to choose a database type with a robust set of regu‐
lar expression functions.

Finding and replacing with regex
In the previous section, we discussed regular expressions and how to construct pat‐
terns with regex to match parts of strings in our data sets. Let’s apply this technique to
the UFO sightings data set to see how it works in practice. Along the way, I’ll also
introduce some additional regex SQL functions.

The sighting reports contain a variety of details, such as what the reporter was doing
at the time of the sighting and when and where they were doing it. Another detail
commonly mentioned is seeing some number of lights. As a first example, let’s find
the descriptions that contain a number and the word “light” or “lights.” For the sake
of display in this book, I’ll just check the first 100 characters, but this code can also
work across the entire description field:

SELECT left(description,50)
FROM ufo
WHERE left(description,50) ~ '[0-9]+ light[s ,.]'
;

left
--------------------------------------------------
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Was walking outside saw 5 lights in a line changed
2 lights about 5 mins apart, goin from west to eas
Black triangular aircraft with 3 lights hovering a
...

The regular expression pattern matches any number of digits ([0-9]+), followed by a
space, then the string “light”, and finally either a letter “s,” a space, a comma, or a
period. In addition to finding the relevant records, we might want to split out just the
part that refers to the number and the word “lights.” To do this, we’ll use the regex
function regexp_matches.

Regex function support varies widely by database vendor and
sometimes by database software version. SQL Server does not sup‐
port the functions, while MySQL has minimal support for them.
Analytic databases such as Redshift, Snowflake, and Vertica sup‐
port a variety of useful functions. Postgres has only match and
replace functions. Explore the documentation for your database for
specific function availability.

The regexp_matches function takes two arguments: a string to search and a regex
match pattern. It returns an array of the string(s) that matched the pattern. If there
are no matches, a null value is returned. Since the return value is an array, we’ll use an
index of [1] to return just a single value as a VARCHAR, which will allow for addi‐
tional string manipulation as needed. If you are working in another type of database,
the regexp_substr function is similar to regexp_matches, but it returns a VAR‐
CHAR value, so there is no need to add the [1] index.

An array is a collection of objects stored together in the computer’s
memory. In databases, arrays are enclosed in { } (curly braces), and
this is a good way to spot that something in the database is not one
of the regular data types we’ve been working with so far. Arrays
have some advantages when storing and retrieving data, but they
are not as easy to work with in SQL since they require special syn‐
tax. Elements in an array are accessed using [ ] (square brackets)
notation. For our purposes here, it’s enough to know that the first
element is found with [1], the second with [2], and so on.

Building on our example, we can parse the desired value, the number, and the word
“light(s)” from the description field and then GROUP BY this value and the most
common variations:

SELECT (regexp_matches(description,'[0-9]+ light[s ,.]'))[1]
,count(*)
FROM ufo
WHERE description ~ '[0-9]+ light[s ,.]'
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GROUP BY 1
ORDER BY 2 desc
; 

regexp_matches  count
--------------  -----
3 lights        1263
2 lights        565
4 lights        549
...             ...

The top 10 results are graphed in Figure 5-9.

Figure 5-9. Number of lights mentioned at the beginning of UFO sighting descriptions

Reports mentioning three lights are more than twice as common as the second most
often mentioned number of lights, and from two to six lights are most commonly
seen. To find the full range of the number of lights, we can parse the matched text and
then find the min and max values:

SELECT min(split_part(matched_text,' ',1)::int) as min_lights
,max(split_part(matched_text,' ',1)::int) as max_lights
FROM
(
    SELECT (regexp_matches(description
                           ,'[0-9]+ light[s ,.]')
                           )[1] as matched_text
    ,count(*)
    FROM ufo
    WHERE description ~ '[0-9]+ light[s ,.]'
    GROUP BY 1
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) a
; 

min_lights  max_lights
----------  -----
0           2000

At least one report mentions two thousand lights, and the minimum value of zero
lights is also mentioned. We might want to review these reports further to see if there
is anything else interesting or unusual about these extreme values.

In addition to finding matches, we might want to replace the matched text with some
alternate text. This is particularly useful when trying to clean a data set of text that
has multiple spellings for the same underlying thing. The regexp_replace function
can accomplish this. It is similar to the replace function discussed earlier in the
chapter, but it can take a regular expression argument as the pattern to match. The
syntax is similar to the replace function:

regexp_replace(field or string, pattern, replacement value)

Let’s put this to work to try to clean up the duration field that we parsed out of the
sighting_report column earlier. This appears to be a free text entry field, and there
are more than eight thousand different values. However, inspection reveals that there
are common themes—most refer to some combination of seconds, minutes, and
hours:

SELECT split_part(sighting_report,'Duration:',2) as duration
,count(*) as reports
FROM ufo
GROUP BY 1
;

duration    reports
--------    -------
10 minutes  4571
1 hour      1599
10 min      333
10 mins     150
>1 hour     113
...         ...

Within this sample, the durations of “10 minutes,” “10 min,” and “10 mins” all repre‐
sent the same amount of time, but the database doesn’t know to combine them
because the spellings are slightly different. We could use a series of nested replace
functions to convert all these different spellings. However, we would also have to take
into account other variations, such as capitalizations. Regex is handy in this situation,
allowing us to create more compact code. The first step is to develop a pattern that
matches the desired string, which we can do with the regexp_matches function. It’s a
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good idea to review this intermediate step to make sure we’re matching the correct
text:

SELECT duration
,(regexp_matches(duration
                 ,'\m[Mm][Ii][Nn][A-Za-z]*\y')
                 )[1] as matched_minutes
FROM
(
    SELECT split_part(sighting_report,'Duration:',2) as duration
    ,count(*) as reports
    FROM ufo
    GROUP BY 1
) a
;

duration      matched_minutes
------------  ---------------
10 min.       min
10 minutes+   minutes
10 min        min
10 minutes +  minutes
10 minutes?   minutes
10 minutes    minutes
10 mins       mins
...           ...

Let’s break this down. In the subquery, the duration value is split out of the sight
ing_report field. Then the regexp_matches function looks for strings that match the
pattern:

'\m[Mm][Ii][Nn][A-Za-z]*\y'

This pattern starts at the beginning of a word (\m) and then looks for any sequence of
the letters “m,” “i,” and “n,” regardless of capitalization ([Mm] and so on). Next,
it looks for zero or more instances of any other lowercase or uppercase letter ([A-
Za-z]*), and then it finally checks for the end of a word (\y) so that only the word that
includes the variation of “minutes” is included and not the rest of the string. Notice
that the “+” and “?” characters are not matched. With this pattern, we can now
replace all these variations with the standard value “min”:

SELECT duration
,(regexp_matches(duration
                 ,'\m[Mm][Ii][Nn][A-Za-z]*\y')
                 )[1] as matched_minutes
,regexp_replace(duration
                 ,'\m[Mm][Ii][Nn][A-Za-z]*\y'
                 ,'min') as replaced_text
FROM
(
    SELECT split_part(sighting_report,'Duration:',2) as duration
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    ,count(*) as reports
    FROM ufo
    GROUP BY 1
) a
;

duration      matched_minutes  replaced_text
-----------   ---------------  -------------
10 min.       min              10 min.
10 minutes+   minutes          10 min+
10 min        min              10 min
10 minutes +  minutes          10 min +
10 minutes?   minutes          10 min?
10 minutes    minutes          10 min
10 mins       mins             10 min
...           ...              ...

The values in the replaced_text column are much more standardized now. The
period, plus, and question mark characters could also be replaced by enhancing the
regex. From an analytical standpoint, however, we might want to consider how to
represent the uncertainty that the plus and question mark represent. The
regexp_replace functions can be nested in order to achieve replacement of different
parts or types of strings. For example, we can standardize both the minutes and the
hours:

SELECT duration
,(regexp_matches(duration
                 ,'\m[Hh][Oo][Uu][Rr][A-Za-z]*\y')
                 )[1] as matched_hour
,(regexp_matches(duration
                 ,'\m[Mm][Ii][Nn][A-Za-z]*\y')
                 )[1] as matched_minutes
,regexp_replace(
        regexp_replace(duration
                       ,'\m[Mm][Ii][Nn][A-Za-z]*\y'
                       ,'min') 
        ,'\m[Hh][Oo][Uu][Rr][A-Za-z]*\y'
        ,'hr') as replaced_text
FROM
(
    SELECT split_part(sighting_report,'Duration:',2) as duration
    ,count(*) as reports
    FROM ufo
    GROUP BY 1
) a
;

duration             matched_hour  matched_minutes  replaced_text
-------------------  ------------  ---------------  -------------
1 Hour 15 min        Hour          min              1 hr 15 min
1 hour & 41 minutes  hour          minutes          1 hr & 41 min
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1 hour 10 mins       hour          mins             1 hr 10 min
1 hour 10 minutes    hour          minutes          1 hr 10 min
...                  ...           ...              ...

The regex for hours is similar to the one for minutes, looking for case-insensitive
matches of “hour” at the beginning of a word, followed by zero or more other letter
characters before the end of the word. The intermediate hour and minutes matches
may not be needed in the final result, but I find them helpful to review as I’m devel‐
oping my SQL code to prevent errors later. A full cleaning of the duration column
would likely involve many more lines of code, and it’s all too easy to lose track and
introduce a typo.

The regexp_replace function can be nested any number of times, or it can be com‐
bined with the basic replace function. Another use for regexp_replace is in CASE
statements, for targeted replacement when conditions in the statement are met. Regex
is a powerful and flexible tool within SQL that, as we’ve seen, can be used in a number
of ways within an overall SQL query.

In this section, I’ve introduced a number of ways to search for, find, and replace spe‐
cific elements within longer texts, from wildcard matches with LIKE to IN lists and
more complex pattern matching with regex. All of these, along with the text-parsing
and transformation functions introduced earlier, allow us to create customized rule
sets with as much complexity as needed to handle the data sets in hand. It’s worth
keeping in mind the balance between complexity and maintenance burden, however.
For one-time analysis of a data set, it can be worth the trouble to create complex rule
sets that perfectly clean the data. For ongoing reporting and monitoring, it’s usually
worthwhile to explore options for receiving cleaner data from data sources. Next,
we’ll turn to several ways to construct new text strings with SQL: using constants,
existing strings, and parsed strings.

Constructing and Reshaping Text
We’ve seen how to parse, transform, find, and replace elements of strings in order to
perform a variety of cleaning and analysis tasks with SQL. In addition to these, SQL
can be used to generate new combinations of text. In this section, I’ll first discuss
concatenation, which allows different fields and types of data to be consolidated into a
single field. Then I’ll discuss changing text shape with functions that combine multi‐
ple columns into a single row, as well as the opposite: breaking up a single string into
multiple rows.

Concatenation
New text can be created with SQL with concatenation. Any combination of constant
or hardcoded text, database fields, and calculations on those fields can be joined
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together. There are a few ways to concatenate. Most databases support the concat
function, which takes as arguments the fields or values to be concatenated:

concat(value1, value2)
concat(value1, value2, value3...)

Some databases support the concat_ws (concatenate with separator) function, which
takes a separator value as the first argument, followed by the list of values to concate‐
nate. This is useful when there are multiple values that you want to put together,
using a comma, dash, or similar element to separate them:

concat_ws(separator, value1, value2...)

Finally, || (double pipe) can be used in  many databases to concatenate strings (SQL
Server uses + instead):

value1 || value2

If any of the values in a concatenation are null, the database will
return null. Be sure to use coalesce or CASE to replace null values
with a default if you suspect they can occur.

Concatenation can bring together a field and a constant string. For example, imagine
we wanted to label the shapes as such and add the word “reports” to the count of
reports for each shape. The subquery parses the name of the shape from the sight
ing_report field and counts the number of records. The outer query concatenates
the shapes with the string ' (shape)' and the reports with the string ' reports':

SELECT concat(shape, ' (shape)') as shape
,concat(reports, ' reports') as reports
FROM
(
    SELECT split_part(
                 split_part(sighting_report,'Duration',1)
                 ,'Shape: ',2) as shape
    ,count(*) as reports
    FROM ufo
    GROUP BY 1
) a
;

Shape             reports
----------------  ------------
Changing (shape)  2295 reports
Chevron (shape)   1021 reports
Cigar (shape)     2119 reports
...               ...
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We can also combine two fields together, optionally with a string separator. For
example, we could unite the shape and location values into a single field:

SELECT concat(shape,' - ',location) as shape_location
,reports
FROM
(
    SELECT 
    split_part(split_part(sighting_report,'Shape',1)
      ,'Location: ',2) as location
    ,split_part(split_part(sighting_report,'Duration',1)
       ,'Shape: ',2) as shape
    ,count(*) as reports
    FROM ufo
    GROUP BY 1,2
) a
;

shape_location           reports
-----------------------  -------
Light - Albuquerque, NM  58
Circle - Albany, OR      11
Fireball - Akron, OH     8
...                      ...

The top 10 combinations are graphed in Figure 5-10.

Figure 5-10. Top combinations of shape and location in UFO sightings

We saw earlier that “light” is the most common shape, so it’s not surprising that it
appears in each of the top results. Phoenix is the most common location, while Las
Vegas is the second most common overall.
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In this case, since we went to so much trouble to parse out the different fields, it
might not make as much sense to concatenate them back together. However, it can be
useful to rearrange text or combine values into a single field for display in another
tool. By combining various fields and text, we can also generate sentences that can
function as summaries of the data, for use in emails or automated reports. In this
example, subquery a parses the occurred and shape fields, as we’ve seen previously,
and counts the records. Then in subquery aa, the min and max of occurred are calcu‐
lated, along with the total number of reports, and the results are GROUPed BY
shape. Rows with occurred fields shorter than eight characters are excluded, to
remove ones that don’t have properly formed dates and avoid errors in the min and
max calculations. Finally, in the outer query, the final text is assembled with the con
cat function. The format of the dates is changed to read as long dates (April 9, 1957)
for the earliest and latest dates:

SELECT 
concat('There were '
       ,reports
       ,' reports of '
       ,lower(shape)
       ,' objects. The earliest sighting was '
       ,trim(to_char(earliest,'Month'))
       , ' '
       , date_part('day',earliest)
       , ', '
       , date_part('year',earliest)
       ,' and the most recent was '
       ,trim(to_char(latest,'Month'))
       , ' '
       , date_part('day',latest)
       , ', '
       , date_part('year',latest)
       ,'.'
       )
FROM
(
    SELECT shape
    ,min(occurred::date) as earliest
    ,max(occurred::date) as latest
    ,sum(reports) as reports
    FROM
    (
        SELECT split_part(
                     split_part(
                           split_part(sighting_report,' (Entered',1)
                           ,'Occurred : ',2)
                     ,'Reported',1) as occurred
        ,split_part(
               split_part(sighting_report,'Duration',1)
               ,'Shape: ',2) as shape
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        ,count(*) as reports
        FROM ufo
        GROUP BY 1,2
    ) a
    WHERE length(occurred) >= 8
    GROUP BY 1
) aa    
;

concat
---------------------------------------------------------------------
There were 820 reports of teardrop objects. The earliest sighting was 
April 9, 1957 and the most recent was October 3, 2020.
There were 7331 reports of fireball objects. The earliest sighting was 
June 30, 1790 and the most recent was October 5, 2020.
There were 1020 reports of chevron objects. The earliest sighting was 
July 15, 1954 and the most recent was October 3, 2020.

We could get even more creative with formatting the number of reports or adding
coalesce or CASE statements to handle blank shape names, for example. Although
these sentences are repetitive and are therefore no match for human (or AI) writers,
they will be dynamic if the data source is frequently updated and thus can be useful in
reporting applications.

Along with functions and operators for creating new text with concatenation, SQL
has some special functions for reshaping text, which we’ll turn to next.

Reshaping Text
As we saw in Chapter 2, changing the shape of the data—either pivoting from rows to
columns or the reverse, changing the data from columns to rows—is sometimes use‐
ful. We saw how to do that with GROUP BY and aggregations, or with UNION state‐
ments. In SQL there are some special functions for reshaping text, however.

One use case for reshaping text is when there are multiple rows with different text
values for an entity and we would like to combine them into a single value. Combin‐
ing values can make them more difficult to analyze, of course, but sometimes the use
case requires a single record per entity in the output. Combining the individual val‐
ues into a single field allows us to retain the detail. The string_agg function takes
two arguments, a field or an expression, and a separator, which is commonly a
comma but can be any separator character desired. The function aggregates only val‐
ues that are not null, and the order can be controlled with an ORDER BY clause
within the function as needed:

SELECT location
,string_agg(shape,', ' order by shape asc) as shapes
FROM
(
    SELECT 
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    case when split_part(
                    split_part(sighting_report,'Duration',1)
                    ,'Shape: ',2) = '' then 'Unknown'
         when split_part(
                    split_part(sighting_report,'Duration',1)
                    ,'Shape: ',2) = 'TRIANGULAR' then 'Triangle'
         else split_part(
                    split_part(sighting_report,'Duration',1),'Shape: ',2)  
         end as shape
    ,split_part(
            split_part(sighting_report,'Shape',1)
            ,'Location: ',2) as location
    ,count(*) as reports
    FROM ufo
    GROUP BY 1,2
) a
GROUP BY 1
;

location        shapes
--------------  -----------------------------------
Macungie, PA    Fireball, Formation, Light, Unknown
Kingsford, MI   Circle, Light, Triangle
Olivehurst, CA  Changing, Fireball, Formation, Oval
...             ...

Since string_agg is an aggregate function, it requires a GROUP BY clause on the
other fields in the query. In MySQL, an equivalent function is group_concat, and
analytic databases such as Redshift and Snowflake have a similar function called
listagg.

Another use case is to do just the opposite of string_agg and instead split out a sin‐
gle field into multiple rows. There is a lot of inconsistency in how this is implemented
in different databases, and even whether a function exists for this at all. Postgres has a
function called regexp_split_to_table, while certain other databases have a
split_to_table function that operates similarly (check documentation for availabil‐
ity and syntax in your database). The regexp_split_to_table function takes two
arguments, a string value and a delimiter. The delimiter can be a regular expression,
but keep in mind that a regex can also be a simple string such as a comma or space
character. The function then splits the values into rows:

SELECT 
regexp_split_to_table('Red, Orange, Yellow, Green, Blue, Purple'
                      ,', '); 

regexp_split_to_table
---------------------
Red
Orange
Yellow
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Green
Blue
Purple

The string to be split can include anything and doesn’t necessarily need to be a list.
We can use the function to split up any string, including sentences. We can then use
this to find the most common words used in text fields, a potentially useful tool for
text analysis work. Let’s take a look at the most common words used in UFO sighting
report descriptions:

SELECT word, count(*) as frequency
FROM
(
    SELECT regexp_split_to_table(lower(description),'\s+') as word
    FROM ufo
) a
GROUP BY 1
ORDER BY 2 desc
;

word  frequency
----  ---------
the   882810
and   477287
a     450223

The subquery first transforms the description into lowercase, since case variations
are not interesting for this example. Next, the string is split using the regex '\s+',
which splits on any one or more whitespace characters.

The most commonly used words are not surprising; however, they are not particu‐
larly useful since they are just commonly used words in general. To find a more
meaningful list, we can remove what are called stop words. These are simply the most
commonly used words in a language. Some databases have built-in lists in what are
called dictionaries, but the implementations are not standard. There is also no single
agreed-upon correct list of stop words, and it is common to adjust the particular list
for the desired application; however, there are a number of lists of common stop
words on the internet. For this example, I loaded a list of 421 common words into a
table called stop_words, available on the book’s GitHub site. The stop words are
removed from the result set with a LEFT JOIN to the stop_words table, filtered to
results that are not in that table:

SELECT word, count(*) as frequency
FROM
(
    SELECT regexp_split_to_table(lower(description),'\s+') as word
    FROM ufo
) a
LEFT JOIN stop_words b on a.word = b.stop_word
WHERE b.stop_word is null
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GROUP BY 1
ORDER BY 2 desc
;

word    frequency
------  ---------
light   97071
lights  89537
object  80785
...     ...

The top 10 most common words are graphed in Figure 5-11.

Figure 5-11. Most common words in UFO sighting descriptions, excluding stop words

We could continue to get more sophisticated by adding additional common words to
the stop_words table or by JOINing the results with the descriptions to tag them with
the interesting words they contain. Note that regexp_split_to_table and similar
functions in other databases can be slow, depending on the length and number of
records analyzed.

Constructing and reshaping text with SQL can be done in as simple or complex a way
or ways as needed. Concatenation, string aggregation, and string-splitting functions
can be used alone, in combination with each other, and with other SQL functions and
operators to achieve the desired data output.
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Conclusion
Although SQL isn’t always the first tool mentioned when it comes to text analysis, it
has many powerful functions and operators for accomplishing a variety of tasks.
From parsing and transformations, to finding and replacing, to constructing and
reshaping text, SQL can be used to both clean and prepare text data as well as per‐
form analysis.

In the next chapter, we’ll turn to using SQL for anomaly detection, another topic
in which SQL isn’t always the first tool mentioned but for which it has surprising
capabilities.
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CHAPTER 6

Anomaly Detection

An anomaly is something that is different from other members of the same group. In
data, an anomaly is a record, an observation, or a value that differs from the remain‐
ing data points in a way that raises concerns or suspicions. Anomalies go by a number
of different names, including outliers, novelties, noise, deviations, and exceptions, to
name a few. I’ll use the terms anomaly and outlier interchangeably throughout this
chapter, and you may see the other terms used in discussions of this topic as well.
Anomaly detection can be the end goal of an analysis or a step within a broader
analysis project.

Anomalies typically have one of two sources: real events that are extreme or other‐
wise unusual, or errors introduced during data collection or processing. While many
of the steps used to detect outliers are the same regardless of the source, how we
choose to handle a particular anomaly depends on the root cause. As a result, under‐
standing the root cause and distinguishing between the two types of causes is impor‐
tant to the analysis process.

Real events can generate outliers for a variety of reasons. Anomalous data can signal
fraud, network intrusion, structural defects in a product, loopholes in policies, or
product use that wasn’t intended or envisioned by the developers. Anomaly detection
is widely used to root out financial fraud, and cybersecurity also makes use of this
type of analysis. Sometimes anomalous data results not because a bad actor is trying
to exploit a system but because a customer is using a product in an unexpected way.
For example, I knew someone who used a fitness-tracking app, which was intended
for running, cycling, walking, and similar activities, to record data from his outings at
the auto race track. He hadn’t found a better option and wasn’t thinking about how
anomalous the speed and distance values for a car on a track are compared to those
recorded for bike rides or running. When anomalies can be tracked to a real process,
deciding what to do with them requires a good understanding of the analysis to be
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done, as well as domain knowledge, terms of use, and sometimes the legal system that
governs the product.

Data can also contain anomalies because of errors in collection or processing. Man‐
ually entered data is notorious for typos and incorrect data. Changes to forms, fields,
or validation rules can introduce unexpected values, including nulls. Behavior track‐
ing of web and mobile applications is common; however, any change to how and
when this logging is done can introduce anomalies. I’ve spent enough hours diagnos‐
ing changes in metrics that I’ve learned to ask up front whether any logging was
recently changed. Data processing can introduce outliers when some values are fil‐
tered erroneously, processing steps fail to complete, or data is loaded multiple times,
creating duplicates. When anomalies result from data processing, we can generally be
more confident in correcting or discarding those values. Of course, fixing the
upstream data entry or processing is always a good idea, if possible, to prevent future
quality problems.

In this chapter, I’ll first discuss some of the reasons to use SQL for this type of analy‐
sis and places in which it falls short. Then I’ll introduce the earthquakes data set that
will be used in the examples in the rest of the chapter. After that, I’ll introduce the
basic tools that we have at our disposal in SQL for detecting outliers. Then I’ll discuss
the various forms of outliers that we can apply the tools to find. Once we’ve detected
and understood anomalies, the next step is to decide what to do with them. Anoma‐
lies need not always be problematic, as they are in fraud detection, cyberattack detec‐
tion, and health system monitoring. The techniques in this chapter can also be used
to detect unusually good customers or marketing campaigns, or positive shifts in cus‐
tomer behavior. Sometimes the goal of anomaly detection is to pass the anomalies on
to other humans or machines to deal with, but often this is a step in a wider analysis,
so I’ll wrap up with various options for correcting anomalies.

Capabilities and Limits of SQL for Anomaly Detection
SQL is a versatile and powerful language for many data analysis tasks, though it can’t
do everything. When performing anomaly detection, SQL has a number of strengths,
as well as some drawbacks that make other languages or tools better choices for some
tasks.

SQL is worth considering when the data set is already in a database, as we previously
saw with time series and text analysis in Chapters 3 and 5, respectively. SQL leverages
the computational power of the database to perform calculations over many records
quickly. Particularly with large tables of data, transferring out of a database and into
another tool is time consuming. Working within a database makes even more sense
when anomaly detection is a step in a larger analysis that will be done in SQL. Code
written in SQL can be examined to understand why particular records were flagged as
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outliers, and SQL will remain consistent over time even as the data flowing into a
database changes.

On the negative side, SQL does not have the statistical sophistication that is available
in packages developed for languages like R and Python. SQL has several standard
statistical functions, but additional, more complex statistical calculations may be too
slow or intense for some databases. For use cases requiring very rapid response, such
as fraud or intrusion detection, analyzing data in a database may simply not be appro‐
priate, since there is often lag in loading data, particularly to analytics databases. A
common workflow is to use SQL to do the initial analysis and determine typical min‐
imum, maximum, and average values and then develop more real-time monitoring
using a streaming service or special real-time data stores. Detecting types of outlier
patterns and then implementing in streaming services or special real-time data stores
can be an option, however. Finally, SQL code is rule based, as we saw in Chapter 5. It
is very good for handling a known set of conditions or criteria, but SQL will not auto‐
matically adjust for the types of changing patterns seen with rapidly changing adver‐
saries. Machine learning approaches, and the languages associated with them, are
often a better choice for these applications.

Now that we’ve discussed the advantages of SQL and when to use it instead of another
language or tool, let’s take a look at the data we’ll be using for examples in this chapter
before moving on to the code itself.

The Data Set
The data for the examples in this chapter is a set of records for all earthquakes recor‐
ded by the US Geological Survey (USGS) from 2010 to 2020. The USGS provides the
data in a number of formats, including real-time feeds, at https://earthquake.usgs.gov/
earthquakes/feed.

The data set contains approximately 1.5 million records. Each record represents a sin‐
gle earthquake event and includes information such as the timestamp, location, mag‐
nitude, depth, and source of the information. A sample of the data is shown in
Figure 6-1. A full data dictionary is available on the USGS site.
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Figure 6-1. Sample of the earthquakes data

Earthquakes are caused by sudden slips along faults in the tectonic plates that exist on
the outer surface of the earth. Locations on the edges of these plates experience many
more, and more dramatic, earthquakes than other places. The so-called Ring of Fire is
a region along the rim of the Pacific Ocean in which many earthquakes occur. Vari‐
ous locations within this region, including California, Alaska, Japan, and Indonesia,
will appear frequently in our analysis.

Magnitude is a measure of the size of an earthquake at its source, as measured by its
seismic waves. Magnitude is recorded on a logarithmic scale, meaning that the ampli‐
tude of a magnitude 5 earthquake is 10 times that of a magnitude 4 earthquake. The
actual measurement of earthquakes is fascinating but beyond the scope of this book.
The USGS website is a good place to start if you want to learn more.

Detecting Outliers
Although the idea of an anomaly or outlier—a data point that is very different from
the rest—seems straightforward, actually finding one in any particular data set poses
some challenges. The first challenge has to do with knowing when a value or data
point is common or rare, and the second is setting a threshold for marking values on
either side of this dividing line. As we go through the earthquakes data, we’ll profile
the depths and magnitudes in order to develop an understanding of which values are
normal and which are unusual.

Generally, the larger or more complete the data set, the easier it is to make a judgment
on what is truly anomalous. In some instances, we have labeled or “ground truth” val‐
ues to which we can refer. A label is generally a column in the data set that indicates
whether the record is normal or an outlier. Ground truth can be obtained from
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industry or scientific sources or from past analysis and might tell us, for example, that
any earthquake greater than magnitude 7 is an anomaly. In other cases, we must look
to the data itself and apply reasonable judgment. For the remainder of the chapter,
we’ll assume that we have a large enough data set to do just that, though of course
there are outside references we could consult on typical and extreme earthquake
magnitudes.

Our tools for detecting outliers using the data set itself fall into a few categories. First,
we can sort or ORDER BY the values in the data. This can optionally be combined
with various GROUP BY clauses to find outliers by frequency. Second, we can use
SQL’s statistical functions to find extreme values at either end of a value range. Finally,
we can graph data and inspect it visually.

Sorting to Find Anomalies
One of the basic tools we have for finding outliers is sorting the data, accomplished
with the ORDER BY clause. The default behavior of ORDER BY is to sort ascending
(ASC). To sort in descending order, add DESC after the column. An ORDER BY
clause can include one or more columns, and each column can be sorted ascending
or descending, independently of the others. Sorting starts with the first column speci‐
fied. If a second column is specified, the results of the first sort are then sorted by the
second column (retaining the first sort), and so on through all the columns in the
clause.

Since ordering happens after the database has calculated the rest of
the query, many databases allow you to reference the query col‐
umns by number instead of by name. SQL Server is an exception; it
requires the full name. I prefer the numbering syntax because it
results in more compact code, particularly when query columns
include lengthy calculations or function syntax.

For example, we can sort the earthquakes table by mag, the magnitude:

SELECT mag
FROM earthquakes
ORDER BY 1 desc
;

mag
------
(null)
(null)
(null)
...

Detecting Outliers | 231



This returns a number of rows of nulls. Let’s make a note that the data set can contain
null values for magnitude—a possible outlier in itself. We can exclude the null values:

SELECT mag
FROM earthquakes
WHERE mag is not null
ORDER BY 1 desc
;

mag
---
9.1
8.8
8.6
8.3

There is only one value greater than 9, and there are only two additional values
greater than 8.5. In many contexts, these would not appear to be particularly large
values. However, with a little domain knowledge about earthquakes, we can recognize
that these values are in fact both very large and unusual. The USGS provides a list of
the 20 largest earthquakes in the world. All of them are magnitude 8.4 or larger, while
only five are magnitude 9.0 or larger, and three occurred between 2010 and 2020, the
time period covered by our data set.

Another way to consider whether values are anomalies within a data set is to calculate
their frequency. We can count the id field and GROUP BY the mag to find the number
of earthquakes per magnitude. The number of earthquakes per magnitude is then
divided by the total number of earthquakes, which can be found using a sum window
function. All window functions require an OVER clause with a PARTITION BY
and/or ORDER BY clause. Since the denominator should count all the records, I have
added a PARTITION BY 1, which is a way to force the database to make it a window
function but still read from the entire table. Finally, the result set is ORDERed BY the
magnitude:

SELECT mag
,count(id) as earthquakes
,round(count(id) * 100.0 / sum(count(id)) over (partition by 1),8) 
 as pct_earthquakes
FROM earthquakes
WHERE mag is not null
GROUP BY 1
ORDER BY 1 desc
;

mag  earthquakes  pct_earthquakes
---  -----------  ---------------
9.1  1            0.00006719
8.8  1            0.00006719
8.6  1            0.00006719
8.3  2            0.00013439
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...  ...          ... 
6.9  53           0.00356124
6.8  45           0.00302370
6.7  60           0.00403160
...  ...          ...

There is only one each of the earthquakes that are over 8.5 in magnitude, but there
are two that registered 8.3. By the value 6.9, there are double digits of earthquakes,
but those still represent a very small percentage of the data. In our investigation, we
should also check the other end of the sorting, the smallest values, by sorting ascend‐
ing instead of descending:

SELECT mag
,count(id) as earthquakes
,round(count(id) * 100.0 / sum(count(id)) over (partition by 1),8) 
 as pct_earthquakes
FROM earthquakes
WHERE mag is not null
GROUP BY 1
ORDER BY 1
;

mag   earthquakes  pct_earthquakes
---    -----------  ---------------
-9.99  258          0.01733587
-9     29           0.00194861
-5     1            0.00006719
-2.6   2            0.00013439
...    ...          ...

At the low end of values, –9.99 and –9 occur more frequently than we might expect.
Although we can’t take the logarithm of zero or a negative number, a logarithm can
be negative when the argument is greater than zero and less than one. For example,
log(0.5) is equal to approximately –0.301. The values –9.99 and –9 represent
extremely small earthquake magnitudes, and we might question whether such small
quakes could really be detected. Given the frequency of these values, I suspect they
represent an unknown value rather than a truly tiny earthquake, and thus we may
consider them anomalies.

In addition to sorting the overall data, it can be useful to GROUP BY one or more
attribute fields to find anomalies within subsets of the data. For example, we might
want to check the highest and lowest magnitudes recorded for specific geographies in
the place field:

SELECT place, mag, count(*)
FROM earthquakes
WHERE mag is not null
 and place = 'Northern California'
GROUP BY 1,2
ORDER BY 1,2 desc
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;

place                mag   count
-------------------  ----  -----
Northern California  5.61
Northern California  4.73  1
Northern California  4.51  1
...                  ...   ...
Northern California  -1.1  7
Northern California  -1.2  2
Northern California  -1.6  1

“Northern California” is the most common place in the data set, and inspecting just
the subset for it, we can see that the high and low values are not nearly as extreme as
those for the data set as a whole. Earthquakes over 5.0 magnitude are not uncommon 
overall, but they are outliers for “Northern California.”

Calculating Percentiles and Standard Deviations to Find Anomalies
Sorting and optionally grouping data and then reviewing the results visually is a use‐
ful approach for spotting anomalies, particularly when the data has values that are
very extreme. Without domain knowledge, however, it might not be obvious that a
9.0 magnitude earthquake is such an anomaly. Quantifying the extremity of data
points adds another layer of rigor to the analysis. There are two ways to do this: with
percentiles or with standard deviations.

Percentiles represent the proportion of values in a distribution that are less than a
particular value. The median of a distribution is the value at which half of the popula‐
tion has a lower value and half has a higher value. The median is so commonly used
that it has its own SQL function, median, in many but not all databases. Other percen‐
tiles can be calculated as well. For example, we can find the 25th percentile, where
25% of the values are lower and 75% are higher, or the 89th percentile, where 89% of
values are lower and 11% are higher. Percentiles are often found in academic con‐
texts, such as standardized testing, but they can be applied to any domain.

SQL has a window function, percent_rank, that returns the percentile for each row
within a partition. As with all window functions, the sorting direction is controlled
with an ORDER BY statement. Similar to the rank function, percent_rank does not
take any argument; it operates over all the rows returned by the query. The basic
form is:

percent_rank() over (partition by ... order by ...)

Both the PARTITION BY and the ORDER BY are optional, but the function requires
something in the OVER clause, and specifying the ordering is always a good idea. To
find the percentile of the magnitudes of each earthquake for each place, we can first
calculate the percent_rank for each row in the subquery and then count the
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occurrences of each magnitude in the outer query. Note that it’s important to calcu‐
late the percent_rank first, before doing any aggregation, so that repeating values are
taken into account in the calculation:

SELECT place, mag, percentile
,count(*)
FROM
(
    SELECT place, mag
    ,percent_rank() over (partition by place order by mag) as percentile
    FROM earthquakes
    WHERE mag is not null
    and place = 'Northern California'
) a
GROUP BY 1,2,3
ORDER BY 1,2 desc
;

place                mag   percentile             count
-------------------  ----  ---------------------  -----  
Northern California  5.6   1.0                    1
Northern California  4.73  0.9999870597065141     1
Northern California  4.51  0.9999741194130283     1
...                  ...   ...                    ...
Northern California  -1.1  3.8820880457568775E-5  7
Northern California  -1.2  1.2940293485856258E-5  2
Northern California  -1.6  0.0                    1

Within Northern California, the magnitude 5.6 earthquake has a percentile of 1, or
100%, indicating that all of the other values are less than this one. The magnitude
–1.6 earthquake has a percentile of 0, indicating that no other data points are smaller.

In addition to finding the exact percentile of each row, SQL can carve the data set into
a specified number of buckets and return the bucket each row belongs to with a
function called ntile. For example, we might want to carve the data set up into 100
buckets:

SELECT place, mag
,ntile(100) over (partition by place order by mag) as ntile
FROM earthquakes
WHERE mag is not null
and place = 'Central Alaska'
ORDER BY 1,2 desc
;

place           mag  ntile
--------------  ----  -----  
Central Alaska  5.4   100
Central Alaska  5.3   100
Central Alaska  5.2   100
...             ...   ...  
Central Alaska  1.5   79
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...             ...   ...    
Central Alaska  -0.5  1
Central Alaska  -0.5  1
Central Alaska  -0.5  1

Looking at the results for “Central Alaska,” we see that the three earthquakes greater
than 5 are in the 100th percentile, 1.5 falls within the 79th percentile, and the smallest
values of –0.5 fall in the first percentile. After calculating these values, we can then
find the boundaries of each ntile, using max and min. For this example, we’ll use four
ntiles to keep the display simpler, but any positive integer is allowed in the ntile
argument:

SELECT place, ntile
,max(mag) as maximum
,min(mag) as minimum
FROM
(
    SELECT place, mag
    ,ntile(4) over (partition by place order by mag) as ntile
    FROM earthquakes
    WHERE mag is not null
    and place = 'Central Alaska'
) a
GROUP BY 1,2
ORDER BY 1,2 desc
;

place           ntile  maximum  minimum
--------------  -----  -------  -------
Central Alaska  4      5.4      1.4
Central Alaska  3      1.4      1.1
Central Alaska  2      1.1      0.8
Central Alaska  1      0.8      -0.5

The highest ntile, 4, which represents the 75th to 100th percentiles, has the widest
range, spanning from 1.4 to 5.4. On the other hand, the middle 50 percent of values,
which include ntiles 2 and 3, range only from 0.8 to 1.4.

In addition to finding the percentile or ntile for each row, we can calculate specific
percentiles across the entire result set of a query. To do this, we can use the percen
tile_cont function or the percentile_disc function. Both are window functions,
but with a slightly different syntax than other window functions discussed previously
because they require a WITHIN GROUP clause. The form of the functions is:

percentile_cont(numeric) within group (order by field_name) over (partition by
field_name)

The numeric is a value between 0 and 1 that represents the percentile to return. For
example, 0.25 returns the 25th percentile. The ORDER BY clause specifies the field to
return the percentile from, as well as the ordering. ASC or DESC can optionally be
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added, with ASC the default, as in all ORDER BY clauses in SQL. The OVER (PARTI‐
TION BY...) clause is optional (and confusingly, some databases don’t support it, so
check your documentation if you run into errors).

The percentile_cont function will return an interpolated (calculated) value that cor‐
responds to the exact percentile but that may not exist in the data set. The percen
tile_disc (discontinuous percentile) function, on the other hand, returns the value
in the data set that is closest to the requested percentile. For large data sets, or for
ones with fairly continuous values, there is often little practical difference between the
output of the two functions, but it’s worth considering which is more appropriate for
your analysis. Let’s take a look at an example to see how this looks in practice. We’ll
calculate the 25th, 50th (or median), and 75th percentile magnitudes for all nonnull
magnitudes in Central Alaska:

SELECT 
percentile_cont(0.25) within group (order by mag) as pct_25
,percentile_cont(0.5) within group (order by mag) as pct_50
,percentile_cont(0.75) within group (order by mag) as pct_75
FROM earthquakes
WHERE mag is not null
and place = 'Central Alaska'
;

pct_25  pct_50  pct_75
------  ------  ------
0.8     1.1     1.4

The query returns the requested percentiles, summarized across the data set. Notice
that the values correspond to the maximum values for ntiles 1, 2, and 3 calculated in
the previous example. Percentiles for different fields can be calculated within the
same query by changing the field in the ORDER BY clause:

SELECT 
percentile_cont(0.25) within group (order by mag) as pct_25_mag
,percentile_cont(0.25) within group (order by depth) as pct_25_depth
FROM earthquakes
WHERE mag is not null
and place = 'Central Alaska'
;

pct_25_mag  pct_25_depth
----------  ------------
0.8         7.1

Unlike other window functions, percentile_cont and percentile_disc require a
GROUP BY clause at the query level when other fields are present in the query. For
example, if we want to consider two areas within Alaska, and so include the place
field, the query must also include it in the GROUP BY, and the percentiles are calcula‐
ted per place:
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SELECT place
,percentile_cont(0.25) within group (order by mag) as pct_25_mag
,percentile_cont(0.25) within group (order by depth) as pct_25_depth
FROM earthquakes
WHERE mag is not null
and place in ('Central Alaska', 'Southern Alaska')
GROUP BY place
;

place            pct_25_mag  pct_25_depth
---------------  ----------  ------------
Central Alaska   0.8         7.1
Southern Alaska  1.2         10.1

With these functions, we can find any percentile required for analysis. Since the
median value is so commonly calculated, a number of databases have implemented a
median function that has only one argument, the field for which to calculate the
median. This is a handy and certainly much simpler syntax, but note that the same
can be accomplished with percentile_cont if a median function is not available.

The percentile and median functions can be slow and computa‐
tionally intensive on large data sets. This is because the database
must sort and rank all the records, usually in memory. Some data‐
base vendors have implemented approximate versions of the func‐
tions, such as approximate_percentile, that are much faster and
return results very close to the function that calculates the entire
data set.

Finding the percentiles or ntiles of a data set allows us to add some quantification to
anomalies. We’ll see later in the chapter how these values also give us some tools for
handling anomalies in data sets. Since percentiles are always scaled between 0 and
100, however, they don’t give a sense of just how unusual certain values are. For that
we can turn to additional statistical functions supported by SQL.

To measure how extreme values in a data set are, we can use the standard deviation.
The standard deviation is a measure of the variation in a set of values. A lower value
means less variation, while a higher number means more variation. When data is
normally distributed around the mean, about 68% of the values lie within +/– one
standard deviation from the mean, and about 95% lie within two standard deviations.
The standard deviation is calculated as the square root of the sum of differences from
the mean, divided by the number of observations:

∑ xi − μ 2/N
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1 https://www.mathsisfun.com/data/standard-deviation-formulas.html has a good explanation.

In this formula, xi is an observation, μ is the average of all the observations, ∑ indi‐
cates that all of the values should be summed, and N is the number of observations.
Refer to any good statistics text or online resource1 for more information about how
the standard deviation is derived.

Most databases have three standard deviation functions. The stddev_pop function
finds the standard deviation of a population. If the data set represents the entire pop‐
ulation, as is often the case with a customer data set, use the stddev_pop. The
stddev_samp finds the standard deviation of a sample and differs from the above for‐
mula by dividing by N – 1 instead of N. This has the effect of increasing the standard
deviation, reflecting the loss of accuracy when only a sample of the entire population
is used. The stddev function available in many databases is identical to the
stddev_samp function and may be used simply because it is shorter. If you’re working
with data that is a sample, such as from a survey or study from a larger population,
use the stddev_samp or stddev. In practice, when you are working with large data
sets, there is usually little difference between the stddev_pop and stddev_samp
results. For example, across the 1.5 million records in the earthquakes table, the val‐
ues diverge only after five decimal places:

SELECT stddev_pop(mag) as stddev_pop_mag
,stddev_samp(mag) as stddev_samp_mag
FROM earthquakes
;

stddev_pop_mag        stddev_samp_mag
--------------------  --------------------
1.273605805569390395  1.273606233458381515

These differences are small enough that in most practical applications, it doesn’t mat‐
ter which standard deviation function you use.

With this function, we can now calculate the number of standard deviations from the
mean for each value in the data set. This value is known as the z-score and is a way of
standardizing data. Values that are above the average have a positive z-score, and
those below the average have a negative z-score. Figure 6-2 shows how z-scores and
standard deviations relate to the normal distribution.
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Figure 6-2. Standard deviations and z-scores for a normal distribution

To find the z-scores for the earthquakes, first calculate the average and standard devi‐
ation for the entire data set in a subquery. Then JOIN this back to the data set using a
Cartesian JOIN, so that the average and standard deviation values are JOINed to each
earthquake row. This is accomplished with the 1 = 1 syntax, since most databases
require that some JOIN condition be specified.

In the outer query, subtract the average magnitude from each individual magnitude
and then divide by the standard deviation:

SELECT a.place, a.mag
,b.avg_mag, b.std_dev
,(a.mag - b.avg_mag) / b.std_dev as z_score
FROM earthquakes a
JOIN
(
    SELECT avg(mag) as avg_mag
    ,stddev_pop(mag) as std_dev
    FROM earthquakes
    WHERE mag is not null
) b on 1 = 1
WHERE a.mag is not null
ORDER BY 2 desc
;
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place                                   mag  avg_mag  std_dev  z_score
--------------------------------------  ---  -------  -------  -------
2011 Great Tohoku Earthquake, Japan     9.1   1.6251   1.2736  5.8691
offshore Bio-Bio, Chile                 8.8   1.6251   1.2736  5.6335
off the west coast of northern Sumatra  8.6   1.6251   1.2736  5.4765
...                                     ...   ...      ...     ...
Nevada                                  -2.5  1.6251   1.2736  -3.2389
Nevada                                  -2.6  1.6251   1.2736  -3.3174
Nevada                                  -2.6  1.6251   1.2736  -3.3174

The largest earthquakes have a z-score of almost 6, whereas the smallest (excluding
the –9 and –9.99 earthquakes that appear to be data entry anomalies) have z-scores
close to 3. We can conclude that the largest earthquakes are more extreme outliers
than the ones at the low end.

Graphing to Find Anomalies Visually
In addition to sorting the data and calculating percentiles and standard deviations to
find anomalies, visualizing the data in one of several graph formats can also help in
finding anomalies. As we’ve seen in previous chapters, one strength of graphs is their
ability to summarize and present many data points in a compact form. By inspecting
graphs, we can often spot patterns and outliers that we might otherwise miss if only
considering the raw output. Finally, graphs assist in the task of describing the data,
and any potential problems with the data related to anomalies, to other people.

In this section, I’ll present three types of graphs that are useful for anomaly detection:
bar graphs, scatter plots, and box plots. The SQL needed to generate output for these
graphs is straightforward, though you might need to enlist pivoting strategies dis‐
cussed in previous chapters, depending on the capabilities and limitations of the soft‐
ware used to create the graphs. Any major BI tool or spreadsheet software, or
languages such as Python or R, will be able to produce these graph types. The graphs
in this section were created using Python with Matplotlib.

The bar graph is used to plot a histogram or distribution of the values in a field and is
useful for both characterizing the data and spotting outliers. The full extent of values
are plotted along one axis, and the number of occurrences of each value is plotted on
the other axis. The extreme high and low values are interesting, as is the shape of the
plot. We can quickly determine whether the distribution is approximately normal
(symmetric around a peak or average value), has another type of distribution, or has
peaks at particular values.
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To graph a histogram for the earthquake magnitudes, first create a data set that
groups the magnitudes and counts the earthquakes. Then plot the output, as in
Figure 6-3.

SELECT mag
,count(*) as earthquakes
FROM earthquakes
GROUP BY 1
ORDER BY 1
;

mag    earthquakes
-----  -----------
-9.99  258
-9     29
-5     1
...    ...

Figure 6-3. Distribution of earthquake magnitudes

The graph extends from –10.0 to +10.0, which makes sense given our previous explo‐
ration of the data. It peaks and is roughly symmetric around a value in the range of
1.1 to 1.4 with almost 40,000 earthquakes of each magnitude, but it has a second peak
of almost 20,000 earthquakes around the value 4.4. We’ll explore the reason for this
second peak in the next section on forms of anomalies. The extreme values are hard
to spot in this graph, however, so we might want to zoom in on a subsection of the
graph, as in Figure 6-4.
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Figure 6-4. A zoomed-in view of the distribution of earthquake magnitudes, focused on
the highest magnitudes

Here the frequencies of these very high-intensity earthquakes are easier to see, as is
the decrease in frequency from more than 10 to only 1 as the value goes from the low
7s to over 8. Thankfully these temblors are extremely rare.

A second type of graph that can be used to characterize data and spot outliers is the
scatter plot. A scatter plot is appropriate when the data set contains at least two
numeric values of interest. The x-axis displays the range of values of the first data
field, the y-axis displays the range of values of the second data field, and a dot is
graphed for every pair of x and y values in the data set. For example, we can graph the
magnitude against the depth of earthquakes in the data set. First, query the data to
create a data set of each pair of values. Then graph the output, as in Figure 6-5:

SELECT mag, depth
,count(*) as earthquakes
FROM earthquakes
GROUP BY 1,2
ORDER BY 1,2
;

mag    depth  earthquakes
-----  -----  -----------
-9.99  -0.59  1
-9.99  -0.35  1
-9.99  -0.11  1
...    ...    ...
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Figure 6-5. Scatter plot of the magnitude and depth of earthquakes

In this graph, we can see the same range of magnitudes, now plotted against the
depths, which range from just below zero to around 700 kilometers. Interestingly, the
high depth values, over 300, correspond to magnitudes that are roughly 4 and higher.
Perhaps such deep earthquakes can be detected only after they reach a minimum
magnitude. Note that, due to the volume of data, I have taken a shortcut and grouped
the values by magnitude and depth combination, rather than plotting all 1.5 million
data points. The count of earthquakes can be used to size each circle in the scatter, as
in Figure 6-6, which is zoomed in to the range of magnitudes from 4.0 to 7.0, and
depths from 0 to 50 km.
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Figure 6-6. Scatter plot of the magnitude and depth of earthquakes, zoomed in and with
circles sized by the number of earthquakes

A third type of graph useful in finding and analyzing outliers is the box plot, also
known as the box-and-whisker plot. These graphs summarize data in the middle of the
range of values while retaining the outliers. The graph type is named for the box, or
rectangle, in the middle. The line that forms the bottom of the rectangle is located at
the 25th percentile value, the line that forms the top is located at the 75th percentile,
and the line through the middle is located at the 50th percentile, or median, value.
Percentiles should be familiar from our discussion in the preceding section. The
“whiskers” of the box plot are lines that extend out from the box, typically to 1.5
times the interquartile range. The interquartile range is simply the difference between
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the 75th percentile value and the 25th percentile value. Any values beyond the whisk‐
ers are plotted on the graph as outliers.

Whichever software or programming language you use for graph‐
ing box plots will take care of the calculations of the percentiles and
interquartile range. Many also offer options to plot the whiskers
based on standard deviations from the mean, or on wider percen‐
tiles such as the 10th and 90th. The calculation will always be sym‐
metric around the midpoint (such as one standard deviation above
and below the mean), but the length of the upper and lower whisk‐
ers can differ based on the data.

Typically, all of the values are plotted in a box plot. Since the data set is so large, for
this example we’ll look at the subset of 16,036 earthquakes that include “Japan” in the
place field. First, create the data set with SQL, which is a simple SELECT of all of the
mag values that meet the filter criteria:

SELECT mag
FROM earthquakes
WHERE place like '%Japan%'
ORDER BY 1
;

mag
---
2.7
3.1
3.2
...

Then create a box plot in our graphing software of choice, as shown in Figure 6-7.
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Figure 6-7. Box plot showing magnitude distribution of earthquakes in Japan

Although the graphing software will often provide this information, we can also find
the key values for the box plot with SQL:

SELECT ntile_25, median, ntile_75
,(ntile_75 - ntile_25) * 1.5 as iqr
,ntile_25 - (ntile_75 - ntile_25) * 1.5 as lower_whisker
,ntile_75 + (ntile_75 - ntile_25) * 1.5 as upper_whisker
FROM
(
    SELECT 
    percentile_cont(0.25) within group (order by mag) as ntile_25
    ,percentile_cont(0.5) within group (order by mag) as median
    ,percentile_cont(0.75) within group (order by mag) as ntile_75
    FROM earthquakes
    WHERE place like '%Japan%'
) a
;

ntile_25  median  ntile_75  iqr  lower_whisker   upper_whisker
--------  ------  --------  ----  -------------  -------------
4.3       4.5     4.7       0.60  3.70           5.30
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The median Japanese earthquake had a magnitude of 4.5, and the whiskers extend
from 3.7 to 5.3. The plotted circles represent outlier earthquakes, both small and
large. The Great Tohoku Earthquake of 2011, at 9.1, is an obvious outlier, even among
the larger earthquakes Japan experienced.

In my experience, box plots are one of the more difficult visualiza‐
tions to explain to those who don’t have a statistics background, or
who don’t spend all day making and looking at visualizations. The
interquartile range is a particularly confusing concept, though the
notion of outliers seems to make sense to most people. If you’re not
absolutely sure your audience knows how to interpret a box plot,
take the time to explain it in clear but not overly technical terms. I
keep a drawing like Figure 6-8 that explains the parts of a box plot
and send it along with my work “just in case” my audience needs a
refresher.

Figure 6-8. Diagram of parts of a box plot

Box plots can also be used to compare across groupings of the data to further identify
and diagnose where outliers occur. For example, we can compare earthquakes in
Japan in different years. First add the year of the time field into the SQL output and
then graph, as in Figure 6-9:
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SELECT date_part('year',time)::int as year
,mag
FROM earthquakes
WHERE place like '%Japan%'
ORDER BY 1,2
;
 
year  mag
----  ---
2010  3.6
2010  3.7
2010  3.7
...   ...

Figure 6-9. Box plot of magnitudes of earthquakes in Japan, by year

Although the median and the range of the boxes fluctuate a bit from year to year, they
are consistently between 4 and 5. Japan experienced large outlier earthquakes every
year, with at least one greater than 6.0, and in six of the years it experienced at least
one earthquake at or larger than 7.0. Japan is undoubtedly a very seismically active
region.

Bar graphs, scatter plots, and box plots are commonly used to detect and characterize
outliers in data sets. They allow us to quickly absorb the complexity of large amounts
of data and to start to tell the story behind it. Along with sorting, percentiles, and
standard deviations, graphs are an important part of the anomaly detection toolkit.
With these tools in hand, we’re ready to discuss the various forms that anomalies can
take in addition to those we’ve seen so far.
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Forms of Anomalies
Anomalies can come in all shapes and sizes. In this section, I will discuss three gen‐
eral categories of anomalies: values, counts or frequencies, and presence or absence.
These are starting points for investigating any data set, either as a profiling exercise or
because anomalies are suspected. Outliers and other unusual values are often specific
to a particular domain, so in general the more you know about how and why the data
was generated, the better. However, these patterns and techniques for spotting
anomalies are good starting places for investigation.

Anomalous Values
Perhaps the most common type of anomaly, and the first thing that comes to mind on
this topic, is when single values are either extremely high or low outliers, or when val‐
ues in the middle of the distribution are otherwise unusual.

In the last section, we looked at several ways to find outliers, through sorting, percen‐
tiles and standard deviations, and graphing. We discovered that the earthquakes data
set has both unusually large values for the magnitude and some values that appear to
be unusually small. The magnitudes also contain varying numbers of significant dig‐
its, or digits to the right of the decimal point. For example, we can look at a subset of
values around 1 and find a pattern that repeats throughout the data set:

SELECT mag, count(*)
FROM earthquakes
WHERE mag > 1
GROUP BY 1
ORDER BY 1
limit 100
;

mag         count
----------  -----
...         ... 
1.08        3863
1.08000004  1
1.09        3712
1.1         39728
1.11        3674
1.12        3995
....        ...

Every once in a while there is a value with 8 significant digits. Many values have two
significant digits, but having only a single significant digit is more common. This is
likely due to different levels of precision in the instruments collecting the magnitude
data. Additionally, the database does not display a second significant digit when that
digit is zero, so “1.10” appears simply as “1.1.” However, the large number of records
at “1.1” indicates that this is not just a display issue. Depending on the purpose of the
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analysis, we may or may not want to adjust the values to all have the same number of
significant digits by rounding.

Often in addition to finding anomalous values, understanding why they happened or
other attributes that are correlated with anomalies is useful. This is where creativity
and data detective work come into play. For example, 1,215 records in the data set
have very high depth values of more than 600 kilometers. We might want to know
where these outliers occurred or how they were collected. Let’s take a look at the
source, which we can find in the net (for network) field:

SELECT net, count(*)
FROM earthquakes
WHERE depth > 600
GROUP BY 1
;

net  count
---  -----
us   1215

The USGS site indicates that this source is the USGS National Earthquake Informa‐
tion Center, PDE. This is not terribly informative, however, so let’s check the place
values, which contain the earthquake locations:

SELECT place, count(*)
FROM earthquakes
WHERE depth > 600
GROUP BY 1
;

place                           count
------------------------------  -----
100km NW of Ndoi Island, Fiji   1
100km SSW of Ndoi Island, Fiji  1
100km SW of Ndoi Island, Fiji   1
...                             ...

Visual inspection suggests that many of these very deep earthquakes happen around
Ndoi Island in Fiji. However, the place includes a distance and direction component,
such as “100km NW of,” that makes summarization more difficult. We can apply
some text parsing to focus on the place itself for better insights. For places that con‐
tain some values and then “ of ” and some more values, split on the “ of ” string and
take the second part:

SELECT 
case when place like '% of %' then split_part(place,' of ',2) 
     else place end as place_name
,count(*)
FROM earthquakes
WHERE depth > 600
GROUP BY 1
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ORDER BY 2 desc
;

place_name         count
-----------------  -----
Ndoi Island, Fiji  487
Fiji region        186
Lambasa, Fiji      140
...                ...

We can now say with more confidence that the majority of the very deep values were
recorded for earthquakes somewhere in Fiji, with a particular concentration around
the small volcanic island of Ndoi. The analysis could continue to get more complex,
for example, by parsing the text to group together all earthquakes recorded in the
greater region, which would reveal that after Fiji, other very deep earthquakes have
been recorded around Vanuatu and the Philippines.

Anomalies can come in the form of misspellings, variations in capitalization, or other
text errors. The ease of finding these depends on the number of distinct values, or
cardinality, of the field. Differences in capitalization can be detected by counting both
the distinct values and the distinct values when a lower or upper function is applied:

SELECT count(distinct type) as distinct_types
,count(distinct lower(type)) as distinct_lower
FROM earthquakes
;

distinct_types  distinct_lower
--------------  --------------
25              24

There are 24 distinct values of the type field, but 25 different forms. To find the spe‐
cific types, we can use a calculation to flag those values whose lowercase form doesn’t
match the actual value. Including the count of records for each form will help contex‐
tualize so that we can later decide how to handle the values:

SELECT type
,lower(type)
,type = lower(type) as flag
,count(*) as records
FROM earthquakes
GROUP BY 1,2,3
ORDER BY 2,4 desc
;

type       lower      flag   records
---------  ---------  -----  -------
...        ...        ...    ...
explosion  explosion  true   9887
ice quake  ice quake  true   10136
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Ice Quake  ice quake  false  1
...        ...        ...    ...

The anomalous value of “Ice quake” is easy to spot, since it is the only value for which
the flag calculation returns false. Since there is only one record with this value, com‐
pared to 10,136 with the lowercase form, we can assume that it can be grouped
together with the other records. Other text functions can be applied, such as trim if
we suspect that the values contain extra leading or trailing spaces, or replace if we
suspect that certain spellings have multiple forms, such as the number “2” and the
word “two.”

Misspellings can be more difficult to discover than other variations. If a known set of
correct values and spellings exists, it can be used to validate the data either through
an OUTER JOIN to a table containing the values or with a CASE statement combined
with an IN list. In either case, the goal is to flag values that are unexpected or invalid.
Without such a set of correct values, our options are often either to apply domain
knowledge or to make educated guesses. In the earthquakes table, we can look at the
type values with only a few records and then try to determine if there is another,
more common value that can be substituted:

SELECT type, count(*) as records
FROM earthquakes
GROUP BY 1
ORDER BY 2 desc
;

type                        records
--------------------------  -------
...                         ...
landslide                   15
mine collapse               12
experimental explosion      6
building collapse           5
...                         ...
meteorite                   1
accidental explosion        1
collapse                    1
induced or triggered event  1
Ice Quake                   1
rockslide                   1

We looked at “Ice Quake” previously and decided it was likely the same as “ice quake.”
There is only one record for “rockslide,” though we might consider this close enough
to another of the values, “landslide,” which has 15 records. “Collapse” is more ambig‐
uous, since the data set includes both “mine collapse” and “building collapse.” What
we do with these, or whether we do anything at all, depends on the goal of the analy‐
sis, as I’ll discuss later in “Handling Anomalies” on page 260.
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Anomalous Counts or Frequencies
Sometimes anomalies come not in the form of individual values but in the form of
patterns or clusters of activity in the data. For example, a customer spending $100 on
an ecommerce site may not be unusual, but that same customer spending $100 every
hour over the course of 48 hours would almost certainly be an anomaly.

There are a number of dimensions on which clusters of activity can indicate anoma‐
lies, many of them dependent on the context of the data. Time and location are both
common across many data sets and are features of the earthquakes data set, so I will
use them to illustrate the techniques in this section. Keep in mind that these techni‐
ques can often be applied to other attributes as well.

Events that happen with unusual frequency over a short time span can indicate
anomalous activity. This can be good, such as when a celebrity unexpectedly pro‐
motes a product, leading to a burst of sales of that product. They can also be bad,
such as when unusual spikes indicate fraudulent credit card use or attempts to bring a
website down with a flood of traffic. To understand these types of anomalies and
whether there are deviations from the normal trend, we first apply appropriate aggre‐
gations and then use the techniques introduced earlier in this chapter, along with
time series analysis techniques discussed in Chapter 3.

In the following examples, I’ll go through a series of steps and queries that will help
us understand the normal patterns and hunt for unusual ones. This is an iterative
process that uses data profiling, domain knowledge, and insights from previous query
results to guide each step. We’ll start our journey by checking the counts of earth‐
quakes by year, which we can do by truncating the time field to the year level, and
counting the records. For databases that don’t support date_trunc, consider extract
or trunc instead:

SELECT date_trunc('year',time)::date as earthquake_year
,count(*) as earthquakes
FROM earthquakes
GROUP BY 1
;

earthquake_year  earthquakes
---------------  -----------
2010-01-01       122322
2011-01-01       107397
2012-01-01       105693
2013-01-01       114368
2014-01-01       135247
2015-01-01       122914
2016-01-01       122420
2017-01-01       130622
2018-01-01       179304
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2019-01-01       171116
2020-01-01       184523

We can see that 2011 and 2012 had low numbers of earthquakes compared to other
years. There was also a sharp increase in records in 2018 that was sustained through
2019 and 2020. This seems unusual, and we can hypothesize that the earth became
more seismically active suddenly, that there is an error in the data such as duplication
of records, or that something changed in the data collection process. Let’s drill down
to month level to see if this trend persists at a more granular level of time:

SELECT date_trunc('month',time)::date as earthquake_month
,count(*) as earthquakes
FROM earthquakes
GROUP BY 1
;

earthquake_month  earthquakes
----------------  -----------
2010-01-01        9651
2010-02-01        7697
2010-03-01        7750
...               ...

The output is displayed in Figure 6-10. We can see that although the number of earth‐
quakes varies from month to month, there does appear to be an overall increase start‐
ing in 2017. We can also see that there are three outlier months, in April 2010, July
2018, and July 2019.

Figure 6-10. Number of earthquakes per month
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From here we can continue checking the data at more granular time periods, perhaps
optionally filtering the result set by a range of dates to focus in on these anomalous
stretches of time. After narrowing in on the specific days or even times of day to pin‐
point when the spikes occurred, we might want to break the data down further by
other attributes in the data set. This can help explain the anomalies or at least narrow
down the conditions in which they occurred. For example, it turns out that the
increase in earthquakes starting in 2017 can be at least partially explained by the
status field. The status indicates whether the event has been reviewed by a human
(“reviewed”) or was directly posted by a system without review (“automatic”):

SELECT date_trunc('month',time)::date as earthquake_month
,status
,count(*) as earthquakes
FROM earthquakes
GROUP BY 1,2
ORDER BY 1
;

earthquake_month  status     earthquakes
----------------  --------   -----------
2010-01-01        automatic  620
2010-01-01        reviewed   9031
2010-02-01        automatic  695
...               ...        ...

The trends of “automatic” and “reviewed” status are plotted in Figure 6-11.

Figure 6-11. Number of earthquakes per month, split by status

In the graph, we can see that the outlier counts in July 2018 and July 2019 are due to
large increases in the number of “automatic”-status earthquakes, whereas the spike in
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April 2010 was in “reviewed”-status earthquakes. A new type of automatic recording
equipment may have been added to the data set in 2017, or perhaps there hasn’t been
enough time to review all the recordings yet.

Analyzing location in data sets that have that information can be another powerful
way to find and understand anomalies. The earthquakes table contains information
about many thousands of very small earthquakes, potentially obscuring our view of
the very large, very noteworthy earthquakes. Let’s look at the locations of the biggest
quakes, those of magnitude 6 or larger, and see where they cluster geographically:

SELECT place, count(*) as earthquakes
FROM earthquakes
WHERE mag >= 6
GROUP BY 1
ORDER BY 2 desc
;

place                                 earthquakes
------------------------------------  -----------
near the east coast of Honshu, Japan  52
off the east coast of Honshu, Japan   34
Vanuatu                               28
...                                   ...

In contrast to time, where we queried at progressively more granular levels, the place
values are already so granular that it’s a bit difficult to grasp the full picture, although
the Honshu, Japan, region clearly stands out. We can apply some of the text analysis
techniques from Chapter 5 to parse and then group the geographic information. In
this case, we’ll use split_part to remove the direction text (such as “near the coast
of ” or “100km N of ”) that often appears at the beginning of the place field:

SELECT 
case when place like '% of %' then split_part(place,' of ',2)
     else place
     end as place
,count(*) as earthquakes
FROM earthquakes
WHERE mag >= 6
GROUP BY 1
ORDER BY 2 desc
;

place                  earthquakes
---------------------  -----------
Honshu, Japan          89
Vanuatu                28
Lata, Solomon Islands  28
...                    ...
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The region around Honshu, Japan, experienced 89 earthquakes, making it not only
the location of the largest earthquake in the data set but also an outlier in the number
of very large earthquakes recorded. We could continue to parse, clean, and group the
place values to gain a more refined picture of where major earthquakes occur in the
world.

Finding anomalous counts, sums, or frequencies in data is usually an exercise that
involves a number of rounds of querying different levels of granularity in succession.
It’s common to start broad, then go more granular, zoom out again to compare to
baseline trends, and zoom in again on specific splits or dimensions of the data. Fortu‐
nately, SQL is a great tool for this sort of rapid iteration. Combining techniques, espe‐
cially from time series analysis, discussed in Chapter 3, and text analysis, discussed in
Chapter 5, will bring even more richness to the analysis.

Anomalies from the Absence of Data
We’ve seen how unusually high frequencies of events can signal anomalies. Keep in
mind that the absence of records can also signal anomalies. For example, the heart‐
beat of a patient undergoing surgery is monitored. The absence of a heartbeat at any
time generates an alert, as do irregularities in the heartbeat. In many contexts, how‐
ever, detecting the absence of data is difficult if you’re not specifically looking for it.
Customers don’t always announce they are about to churn. They simply stop using
the product or service and quietly drop out of the data set.

One way to ensure that absences in data are noticed is to use techniques from cohort
analysis, discussed in Chapter 4. In particular, a JOIN to a date series or data dimen‐
sion, to ensure that a record exists for every entity whether or not it was present in
that time period, makes absences easier to detect.

Another way to detect absence is to query for gaps, or time since last seen. Some
regions are more prone to large earthquakes due to the way tectonic plates are
arranged around the globe. We’ve also detected some of this in the data in our previ‐
ous examples. Earthquakes are notoriously hard to predict, even when we have a
sense of where they are likely to occur. This doesn’t stop some people from speculat‐
ing about the next “big one” simply due to the amount of time that has passed since
the last one. We can use SQL to find the gaps between large earthquakes and the time
since the most recent one:

SELECT place
,extract('days' from '2020-12-31 23:59:59' - latest) 
 as days_since_latest
,count(*) as earthquakes
,extract('days' from avg(gap)) as avg_gap
,extract('days' from max(gap)) as max_gap
FROM
(
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    SELECT place
    ,time
    ,lead(time) over (partition by place order by time) as next_time
    ,lead(time) over (partition by place order by time) - time as gap
    ,max(time) over (partition by place) as latest
    FROM
    (
        SELECT 
        replace(
          initcap(
          case when place ~ ', [A-Z]' then split_part(place,', ',2)
               when place like '% of %' then split_part(place,' of ',2)
               else place end
        )
        ,'Region','')
        as place
        ,time
        FROM earthquakes
        WHERE mag > 5
    ) a
) a         
GROUP BY 1,2        
;

place             days_since_latest  earthquakes  avg_gap  max_gap
----------------  -----------------  -----------  -------  -------
Greece            62.0               109          36.0     256.0
Nevada            30.0               9            355.0    1234.0
Falkland Islands  2593.0             3            0.0      0.0
...               ...                ...          ...      ...

In the innermost subquery, the place field is parsed and cleaned, returning larger
regions or countries, along with the time of each earthquake, for all earthquakes of
magnitude 5 or greater. The second subquery uses a lead function to find the time of
the next earthquake, if any, for each place and time, and the gap between each earth‐
quake and the next one. The max window function returns the most recent earth‐
quake for each place. The outer query calculates the days since the latest 5+
earthquake in the data set, using the extract function to return just the days from
the interval that is returned when two dates are subtracted. Since the data set includes
records only through the end of 2020, the timestamp “2020-12-31 23:59:59” is used,
though current_timestamp or an equivalent expression would be appropriate if the
data were refreshed on an ongoing basis. Days are extracted in a similar fashion from
the average and max of the gap value.

The time since the last major earthquake in a location may have little predictive
power in practice, but in many domains, gaps and time since last seen metrics have
practical applications. Understanding typical gaps between actions sets a baseline
against which the current gap can be compared. When the current gap is within range
of historical values, we might judge that a customer is retained, but when the current
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gap is much longer, the risk of churn increases. The result set from a query that
returns historical gaps can itself become the subject of an anomaly detection analysis,
answering questions such as the longest amount of time that a customer was gone
before subsequently returning.

Handling Anomalies
Anomalies can appear in data sets for a number of reasons and can take a number of
forms, as we’ve just seen. After detecting anomalies, the next step is to handle them in
some fashion. How this is done depends on both the source of the anomaly—under‐
lying process or data quality issue—and the end goal of the data set or analysis. The
options include investigation without changes, removal, replacement, rescaling, and
fixing upstream.

Investigation
Finding, or attempting to find, the cause of an anomaly is usually the first step in
deciding what to do with it. This part of the process can be both fun and frustrating—
fun in the sense that tracking down and solving a mystery engages our skills and crea‐
tivity, but frustrating in the sense that we’re often working under time pressure and
tracking down anomalies can feel like going down an endless series of rabbit holes,
leading us to wonder whether an entire analysis is flawed.

When I’m investigating anomalies, my process usually involves a series of queries that
bounce back and forth between searching for patterns and looking at specific exam‐
ples. A true outlier value is easy to spot. In such cases, I will usually query for the
entire row that contains the outlier for clues as to the timing, source, and any other
attributes that are available. Next, I’ll check records that share those attributes to see if
they have values that seem unusual. For example, I might check to see whether other
records on the same day have normal or unusual values. Traffic from a particular
website or purchases of a particular product might reveal other anomalies.

After investigating the source and attributes of anomalies when working on data pro‐
duced internally in my organization, I get in touch with the stakeholders or product
owners. Sometimes there is a known bug or flaw, but often enough there is a real
issue in a process or system that needs to be addressed, and context information is
useful. For external or public data sets, there may not be an opportunity to find the
root cause. In these cases, my goal is to gather enough information to decide which of
the options discussed next is appropriate.

Removal
One option for dealing with data anomalies is to simply remove them from the data
set. If there is reason to suspect that there was an error in the data collection that
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might affect the entire record, removal is appropriate. Removal is also a good option
when the data set is large enough that dropping a few records is unlikely to affect the
conclusions. Another good reason to use removal is when the outliers are so extreme
that they would skew the results enough that entirely inappropriate conclusions
would be drawn.

We saw previously that the earthquakes data set contains a number of records with a
magnitude of –9.99 and a few with –9. Since the earthquakes these values would cor‐
respond to are extremely small, we might suspect that they are erroneous values or
were simply entered when the actual magnitude was unknown. Removing records
with these values is straightforward in the WHERE clause:

SELECT time, mag, type
FROM earthquakes
WHERE mag not in (-9,-9.99)
limit 100
;

time                 mag   type
-------------------  ----  ----------
2019-08-11 03:29:20  4.3   earthquake
2019-08-11 03:27:19  0.32  earthquake
2019-08-11 03:25:39  1.8   earthquake

Before removing the records, however, we might want to determine whether includ‐
ing the outliers actually makes a difference to the output. For example, we might want
to know if removing the outliers affects the average magnitude, since averages can
easily be skewed by outliers. We can do this by calculating the average across the
entire data set, as well as the average excluding the extreme low values, using a CASE
statement to exclude them:

SELECT avg(mag) as avg_mag
,avg(case when mag > -9 then mag end) as avg_mag_adjusted
FROM earthquakes
;

avg_mag               avg_mag_adjusted
------------------    ------------------
1.6251015161530643    1.6273225642983641

The averages are different only at the third significant digit (1.625 versus 1.627),
which is a fairly small difference. However, if we filter just to Yellowstone National
Park, where many of the –9.99 values occur, the difference is more dramatic:

SELECT avg(mag) as avg_mag
,avg(case when mag > -9 then mag end) as avg_mag_adjusted
FROM earthquakes
WHERE place = 'Yellowstone National Park, Wyoming'
;
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avg_mag                 avg_mag_adjusted
----------------------  ----------------------
0.40639347873981053095  0.92332793709528214616

Although these are still small values, the difference between an average of 0.46 and
0.92 is big enough that we would likely choose to remove the outliers.

Notice that there are two options for doing so: either in the WHERE clause, which
removes the outliers from all the results, or in a CASE statement, which removes
them only from specific calculations. Which option you choose depends on the con‐
text of the analysis, as well as on whether it is important to preserve the rows in order
to retain total counts, or useful values in other fields.

Replacement with Alternate Values
Anomalous values can often be handled by replacing them with other values rather
than removing entire records. An alternate value can be a default, a substitute value,
the nearest numerical value within a range, or a summary statistic such as the average
or median.

We’ve seen previously that null values can be replaced with a default using the coa
lesce function. When values are not necessarily null but are problematic for some
other reason, a CASE statement can be used to substitute a default value. For exam‐
ple, rather than report on all the various seismic events, we might want to group the
types that are not earthquakes into a single “Other” value:

SELECT 
case when type = 'earthquake' then type
     else 'Other'
     end as event_type
,count(*)
FROM earthquakes
GROUP BY 1
;

event_type  count
----------  -------
earthquake  1461750
Other       34176

This reduces the amount of detail in the data, of course, but it can also be a way to
summarize a data set that has a number of outlier values for type, as we saw previ‐
ously. When you know that outlier values are incorrect, and you know the correct
value, replacing them with a CASE statement is also a solution that preserves the row
in the overall data set. For example, an extra 0 might have been added to the end of a
record, or a value might have been recorded in inches instead of miles.

Another option for handling numeric outliers is to replace the extreme values with
the nearest high or low value that is not extreme. This approach maintains much of
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the range of values but prevents misleading averages that can result from extreme
outliers. Winsorization is a specific technique for this, where outliers are set to a spe‐
cific percentile of the data. For example, values above the 95th percentile are set to the
95th percentile value, while values below the 5th percentile are set to the 5th percen‐
tile value. To calculate this in SQL, we first calculate the 5th and 95th percentile
values:

SELECT percentile_cont(0.95) within group (order by mag) 
 as percentile_95
,percentile_cont(0.05) within group (order by mag) 
 as percentile_05
FROM earthquakes
;

percentile_95  percentile_05
-------------  -------------
4.5            0.12

We can put this calculation in a subquery and then use a CASE statement to handle
setting values for outliers below the 5th percentile and above the 95th. Note the
Cartesian JOIN that allows us to compare the percentile values with each individual
magnitude:

SELECT a.time, a.place, a.mag
,case when a.mag > b.percentile_95 then b.percentile_95
      when a.mag < b.percentile_05 then b.percentile_05
      else a.mag
      end as mag_winsorized
FROM earthquakes a
JOIN
(
    SELECT percentile_cont(0.95) within group (order by mag) 
     as percentile_95
    ,percentile_cont(0.05) within group (order by mag) 
     as percentile_05
    FROM earthquakes
) b on 1 = 1 
;

time                 place                        mag   mag_winsorize
-------------------  ---------------------------  ----  -------------
2014-01-19 06:31:50  5 km SW of Volcano, Hawaii   -9    0.12
2012-06-11 01:59:01  Nevada                       -2.6  0.12
...                  ...                          ...   ...
2020-01-27 21:59:01  31km WNW of Alamo, Nevada    2     2.0
2013-07-07 08:38:59  54km S of Fredonia, Arizona  3.5   3.5
...                  ...                          ...   ...
2013-09-25 16:42:43  46km SSE of Acari, Peru      7.1   4.5
2015-04-25 06:11:25  36km E of Khudi, Nepal       7.8   4.5
...                  ...                          ...   ...
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The 5th percentile value is 0.12, while the 95th percentile is 4.5. Values below and
above these thresholds are changed to the threshold in the mag_winsorize field. Val‐
ues between these thresholds remain the same. There is no set percentile threshold
for winsorizing. The 1st and 99th percentiles or even the 0.01th and 99.9th percentiles
can be used depending on the requirements for the analysis and how prevalent and
extreme the outliers are.

Rescaling
Rather than filtering out records or changing the values of outliers, rescaling values
provides a path that retains all the values but makes analysis and graphing easier.

We discussed the z-score previously, but it’s worth pointing out that this can be used
as a way to rescale values. The z-score is useful because it can be used with both posi‐
tive and negative values.

Another common transformation is converting to logarithmic (log) scale. The benefit
of transforming values into log scale is that they retain the same ordering, but small
numbers get spread out more. Log transformations can also be transformed back into
the original scale, easing interpretation. A downside is that the log transformation
cannot be used on negative numbers. In the earthquakes data set, we learned that the
magnitude is already expressed in log scale. The magnitude 9.1 Great Tohoku Earth‐
quake is extreme, but the value would appear even more extreme were it not
expressed in log scale!

The depth field is measured in kilometers. Here we’ll query both the depth and the
depth with the log function applied and then graph the output in Figures 6-12 and
6-13 in order to demonstrate the difference. The log function uses base 10 as a
default. To reduce the result set for easier graphing, the depth is also rounded to one
significant digit using the round function. The table is filtered to exclude values less
than 0.05, as these would round to zero or less than zero:

SELECT round(depth,1) as depth
,log(round(depth,1)) as log_depth
,count(*) as earthquakes
FROM earthquakes
WHERE depth >= 0.05
GROUP BY 1,2
;

depth  log_depth            earthquakes
-----  -------------------  -----------
0.1    -1.0000000000000000  6994
0.2    -0.6989700043360188  6876
0.3    -0.5228787452803376  7269
...    ...                  ...
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Figure 6-12. Distribution of earthquakes by depth, with unadjusted depths

Figure 6-13. Distribution of earthquakes by depth on a log scale

In Figure 6-12, it’s apparent that there are a large number of earthquakes between
0.05 and maybe 20, but beyond that it’s difficult to see the distribution since the x-axis
stretches all the way to 700 to capture the range of the data. When the depth is trans‐
formed to a log scale in Figure 6-13, however, the distribution of the smaller values is
much easier to see. Notably, the spike at 1.0, which corresponds to a depth of 10 kilo‐
meters, is apparent.
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Other types of scale transformations, while not necessarily appro‐
priate for removing outliers, can be accomplished with SQL. Some
common ones include:

• Square root: use the sqrt function
• Cube root: use the cbrt function
• Reciprocal transformation: 1 / field_name

Change the units, such as inches to feet or pounds to kilograms:
multiply or divide by the appropriate conversion factor with * or /.

Rescaling can be done in SQL code, or often alternatively in the software or coding
language used for graphing. The log transformation is particularly useful when there
is a large spread of positive values and the patterns that are important to detect exist
in the lower values.

As with all analysis, deciding how to handle anomalies depends on the purpose and
the amount of context or domain knowledge you have about the data set. Removing
outliers is the simplest method, but to retain all the records, techniques such as win‐
sorizing and rescaling work well.

Conclusion
Anomaly detection is a common practice in analysis. The goal may be to detect the
outliers, or it may be to manipulate them in order to prepare a data set for further
analysis. In either case, the basic tools of sorting, calculating percentiles, and graphing
the output of SQL queries can help you find them efficiently. Anomalies come in
many varieties, with outlying values, unusual bursts of activity, and unusual absences
being most common. Domain knowledge is almost always helpful as you go through
the process of finding and gathering information about the causes of anomalies.
Options for dealing with anomalies include investigation, removal, replacement with
alternate values, and rescaling the data. The choice depends heavily on the goal, but
any of these paths can be accomplished with SQL. In the next chapter, we’ll turn our
attention to experimentation, where the goal is to figure out whether a whole group
of subjects differs from the norm of the control group.
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CHAPTER 7

Experiment Analysis

Experimentation, also known as A/B testing or split testing, is considered the gold
standard for establishing causality. Much data analysis work involves establishing cor‐
relations: one thing is more likely to happen when another thing also happens,
whether that be an action, an attribute, or a seasonal pattern. You’ve probably heard
the saying “correlation does not imply causation,” however, and it is exactly this prob‐
lem in data analysis that experimentation attempts to solve.

All experiments begin with a hypothesis: a guess about behavioral change that will
result from some alteration to a product, process, or message. The change might be to
a user interface, a new user onboarding flow, an algorithm that powers recommenda‐
tions, marketing messaging or timing, or any number of other areas. If the organiza‐
tion built it or has control over it, it can be experimented on, at least in theory.
Hypotheses are often driven by other data analysis work. For example, we might find
that a high percentage of people drop out of the checkout flow, and we could
hypothesize that more people might complete the checkout process if the number of
steps were reduced.

The second element necessary for any experiment is a success metric. The behavioral
change we hypothesize might be related to form completion, purchase conversion,
click-through, retention, engagement, or any other behavior that is important to the
organization’s mission. The success metric should quantify this behavior, be reasona‐
bly easy to measure, and be sensitive enough to detect a change. Click-through,
checkout completion, and time to complete a process are often good success metrics. 
Retention and customer satisfaction are often less suitable success metrics, despite
being very important, because they are frequently influenced by many factors beyond
what is being tested in any individual experiment and thus are less sensitive to the
changes we’d like to test. Good success metrics are often ones that you already track
as part of understanding company or organizational health.
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You may wonder whether an experiment can have multiple success
metrics. Certainly with SQL, it is usually possible to generate many
different calculations and metrics. You should be aware of the mul‐
tiple comparisons problem, however. I won’t go into a full explana‐
tion here, but the gist is that the more places you look for a
significant change, the more likely you are to find one. Check one
metric, and you may or may not find a significant change in one of
the experiment variants. Check 20 metrics, however, and there’s a
pretty good chance that at least one will show significance, whether
or not the experiment had anything to do with that metric in the
first place. As a rule of thumb, there should be one or maybe two
primary success metrics. One to five additional metrics may be
used for downside protection. These are sometimes called guardrail
metrics. For example, you may want to ensure that an experiment
doesn’t hurt page-loading time, even though it’s not the goal of the
experiment to improve it.

The third element of experimentation is a system that randomly assigns entities to a
control or experiment variant group and alters the experience accordingly. This type
of system is also sometimes called a cohorting system. A number of software vendors
offer experiment-cohorting tools, though some organizations choose to build them
internally in order to achieve more flexibility. Either way, to perform experiment
analysis with SQL, the entity-level assignment data must flow into a table in the data‐
base that also contains behavioral data.

The discussions of experiments in this chapter specifically refer to
online experiments, in which variant assignment happens through
a computer system and behavior is tracked digitally. There are cer‐
tainly many types of experiments performed across science and
social science disciplines. A key difference is that the success met‐
rics and behaviors that are examined in online experiments are
usually already tracked for other purposes, whereas in many scien‐
tific studies, the resulting behavior is tracked specifically for the
experiment and only during the period of the experiment. With
online experiments, we sometimes need to be creative about find‐
ing metrics that are good proxies for an impact when a direct
measurement isn’t possible.

With a hypothesis, a success metric, and a variant cohorting system in place, you can
run experiments, collect the data, and analyze the outcomes using SQL.
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Strengths and Limits of Experiment Analysis with SQL
SQL is useful for analyzing experiments. In many cases with experiment analysis, the
experiment cohort data and behavioral data are already flowing into a database, mak‐
ing SQL a natural choice. Success metrics are often already part of an organization’s
reporting and analysis vocabulary, with SQL queries already developed. Joining var‐
iant assignment data to existing query logic is often relatively straightforward.

SQL is a good choice for automating experiment result reporting. The same query
can be run for each experiment, substituting the name or identifier of the experiment
in the WHERE clause. Many organizations with high volumes of experiments have
created standardized reports to speed up readouts and simplify the interpretation
process.

While SQL is useful for many of the steps involved with experiment analysis, it does
have one major shortcoming: SQL is not able to calculate statistical significance.
Many databases allow developers to extend SQL functionality with user-defined func‐
tions (UDFs). UDFs may be able to leverage statistical tests from languages such as
Python, but they are beyond the scope of this book. A good option is to calculate
summary statistics in SQL and then use an online calculator such as the one provided
at Evanmiller.org to determine whether the experiment result is statistically
significant.

Why Correlation Is Not Causation:
How Values Can Relate to Each Other

It’s easier to prove that two values are correlated (they rise or fall together, or one
exists primarily in the presence of the other) than it is to prove that one causes the
other. Why is this the case? Although our brains are wired to detect causality, there
are actually five ways in which two values, X and Y, can relate to each other:

1. X causes Y: This is of course what we’re all trying to find. Through some mecha‐
nism, Y is the result of X.

2. Y causes X: The relationship is there, but the direction of causality is reversed.
For example, umbrellas don’t cause rain, but rather the presence of rain causes
people to use umbrellas.

3. X and Y have a common cause: The values are related because there is some third
variable that explains both of them. Sales of ice cream and use of air conditioners
both rise in the summer, but neither causes the other. Higher temperatures cause
both increases.
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4. A feedback loop exists between X and Y: When Y increases, X increases to com‐
pensate, which leads to Y increasing in turn, and so on. This can happen when a
customer is in the process of churning from a service. Fewer interactions lead to
fewer items to suggest or remind, which leads to fewer interactions, and so on.
Did the lack of recommendations cause less engagement, or is it the other way
around?

5. There is no relationship; it’s just random: Search long enough and you will find
metrics that are correlated even though there is no actual relationship between
them. 

The Data Set
For this chapter, we will use a data set for a mobile game from the fictional Tanimura
Studios. There are four tables. The game_users table contains records for people who
downloaded the mobile game, along with the date and country. A sample of the data
is shown in Figure 7-1.

Figure 7-1. Sample of the game_users table

The game_actions table contains records for things the users did in the game. A sam‐
ple of the data is shown in Figure 7-2.
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Figure 7-2. Sample of the game_actions table

The game_purchases table tracks purchases of in-game currency in US dollars. A
sample of the data is shown in Figure 7-3.

Figure 7-3. Sample of the game_purchases table

Finally, the exp_assignment table contains records of which variant users were
assigned to for a particular experiment. A sample of the data is shown in Figure 7-4.

Figure 7-4. Sample of the exp_assignment table
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1 See https://www.mathsisfun.com/data/chi-square-test.html for a good explanation of this test.

All of the data in these tables is fictional, created with random number generators,
though the structure is similar to what you might see in the database of a real digital
gaming company. 

Types of Experiments
There is a wide range of experiments. If you can change something that a user, cus‐
tomer, constituent, or other entity experiences, you can in theory test that change.
From an analysis standpoint, there are two main types of experiments: those with
binary outcomes and those with continuous outcomes.

Experiments with Binary Outcomes: The Chi-Squared Test
As you might expect, a binary outcome experiment has only two outcomes: either an
action is taken or it isn’t. Either a user completes a registration flow or they don’t. A
consumer clicks on a website ad or they don’t. A student graduates or they don’t. For
these types of experiments, we calculate the proportion of each variant that completes
the action. The numerator is the number of completers, while the denominator is all
units that were exposed. This metric is also described as a rate: completion rate, click-
through rate, graduation rate, and so on.

To determine whether the rates in the variants are statistically different, we can use
the chi-squared test, which is a statistical test for categorical variables.1 Data for a chi-
squared test is often shown in the form of a contingency table, which shows the fre‐
quency of observations at the intersection of two attributes. This looks just like a
pivot table to those who are familiar with that type of table.

Let’s take a look at an example, using our mobile game data set. A product manager
has introduced a new version of the onboarding flow, a series of screens that teach a
new player how the game works. The product manager hopes that the new version
will increase the number of players who complete the onboarding and start their first
game session. The new version was introduced in an experiment called “Onboarding”
that assigned users to either control or variant 1, as tracked in the exp_assignment
table. An event called “onboarding complete” in the game_actions table indicates
whether a user completed the onboarding flow.

The contingency table shows the frequency at the intersection of the variant assign‐
ment (control or variant 1) and whether or not onboarding was completed. We can
use a query to find the values for the table. Here we count the number of users with
and without an “onboarding complete” action and GROUP BY the variant:
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SELECT a.variant
,count(case when b.user_id is not null then a.user_id end) as completed
,count(case when b.user_id is null then a.user_id end) as not_completed
FROM exp_assignment a
LEFT JOIN game_actions b on a.user_id = b.user_id
 and b.action = 'onboarding complete'
WHERE a.exp_name = 'Onboarding'
GROUP BY 1
;

variant    completed  not_completed
---------  ---------  -------------
control    36268      13629
variant 1  38280      11995

Adding totals for each row and column turns this output into a contingency table, as
in Figure 7-5.

Figure 7-5. Contingency table for onboarding completions

To make use of one of the online significance calculators, we will need the number of
successes, or times when the action was taken, and the total number cohorted for
each variant. The SQL to find the required data points is straightforward. The
assigned variant and the count of users assigned to that variant are queried from the
exp_assignment table. We then LEFT JOIN the game_actions table to find the count
of users who completed onboarding. The LEFT JOIN is required since we expect that
not all users completed the relevant action. Finally, we find the percent completed in
each variant by dividing the number of users who completed by the total number
cohorted:

SELECT a.variant
,count(a.user_id) as total_cohorted
,count(b.user_id) as completions
,count(b.user_id) / count(a.user_id) as pct_completed
FROM exp_assignment a
LEFT JOIN game_actions b on a.user_id = b.user_id
 and b.action = 'onboarding complete'
WHERE a.exp_name = 'Onboarding'
GROUP BY 1
;
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variant    total_cohorted  completions  pct_completed
---------  --------------  -----------  -------------
control    49897           36268        0.7269
variant 1  50275           38280        0.7614

We can see that variant 1 did indeed have more completions than the control experi‐
ence, with 76.14% completing compared to 72.69%. But is this difference statistically
significant, allowing us to reject the hypothesis that there is no difference? For this,
we plug our results into an online calculator and confirm that the completion rate for
variant 1 was significantly higher at a 95% confidence level than the completion rate
for the control. Variant 1 can be declared the winner.

A 95% confidence level is commonly used, although this is not the
only option. There are many online articles and discussions about
the meaning of confidence levels, which level to use, and adjust‐
ments in scenarios in which you are comparing multiple variants to
a control.

Binary outcome experiments follow this basic pattern. Calculate the successes or
completions as well as the total members in each variant. The SQL used to derive the
success events may be more complicated depending on the tables and how actions are
stored in the database, but the output is consistent. Next, we’ll turn to experiments
with continuous outcomes.

Experiments with Continuous Outcomes: The t-Test
Many experiments seek to improve continuous metrics, rather than the binary out‐
comes discussed in the last section. Continuous metrics can take on a range of values.
Examples include amount spent by customers, time spent on page, and days an app is
used. Ecommerce sites often want to increase sales, and so they might experiment on
product pages or checkout flows. Content sites may test layout, navigation, and head‐
lines to try to increase the number of stories read. A company running an app might
run a remarketing campaign to remind users to come back to the app.

For these and other experiments with continuous success metrics, the goal is to figure
out whether the average values in each variant differ from each other in a statistically
significant way. The relevant statistical test is the two-sample t-test, which determines
whether we can reject the null hypothesis that the averages are equal with a defined
confidence interval, usually 95%. The statistical test has three inputs, all of which are
straightforward to calculate with SQL: the mean, the standard deviation, and the
count of observations.

Let’s take a look at an example using our game data. In the last section, we looked at
whether a new onboarding flow increased the completion rate. Now we will consider
whether that new flow increased user spending on in-game currency. The success
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metric is the amount spent, so we need to calculate the mean and standard deviation
of this value for each variant. First we need to calculate the amount per user, since
users can make multiple purchases. Retrieve the cohort assignment from the
exp_assignment table and count the users. Next, LEFT JOIN to the game_purchases
table to gather the amount data. The LEFT JOIN is required since not all users make a
purchase, but we still need to include them in the mean and standard deviation calcu‐
lations. For users without purchases, the amount is set to a default of 0 with coa
lesce. Since the avg and stddev functions ignore nulls, the 0 default is required to
ensure that these records are included. The outer query summarizes the output val‐
ues by variant:

SELECT variant
,count(user_id) as total_cohorted
,avg(amount) as mean_amount
,stddev(amount) as stddev_amount
FROM
(
    SELECT a.variant
    ,a.user_id
    ,sum(coalesce(b.amount,0)) as amount
    FROM exp_assignment a
    LEFT JOIN game_purchases b on a.user_id = b.user_id
    WHERE a.exp_name = 'Onboarding'
    GROUP BY 1,2
) a
GROUP BY 1
;

variant    total_cohorted  mean_amount  stddev_amount
---------  --------------  -----------  -------------
control    49897           3.781        18.940
variant 1  50275           3.688        19.220

Next, we plug these values into an online calculator and find that there is no signifi‐
cant difference between the control and variant groups at a 95% confidence interval.
The “variant 1” group appears to have increased onboarding completion rates but not
the amount spent.

Another question we might consider is whether variant 1 affected spending among
those users who completed the onboarding. Those who don’t complete the onboard‐
ing never make it into the game and therefore don’t even have the opportunity to
make a purchase. To answer this question, we can use a query similar to the previous
one, but we’ll add an INNER JOIN to the game_actions table to restrict the users
counted to only those who have an action of “onboarding complete”:

SELECT variant
,count(user_id) as total_cohorted
,avg(amount) as mean_amount
,stddev(amount) as stddev_amount

Types of Experiments | 275



FROM
(
    SELECT a.variant
    ,a.user_id
    ,sum(coalesce(b.amount,0)) as amount
    FROM exp_assignment a
    LEFT JOIN game_purchases b on a.user_id = b.user_id
    JOIN game_actions c on a.user_id = c.user_id
     and c.action = 'onboarding complete'
    WHERE a.exp_name = 'Onboarding'
    GROUP BY 1,2
) a
GROUP BY 1
;

variant    total_cohorted  mean_amount  stddev_amount
---------  --------------  -----------  -------------
control    36268           5.202        22.049
variant 1  38280           4.843        21.899

Plugging these values into the calculator reveals that the average for the control group
is statistically significantly higher than that for variant 1 at a 95% confidence interval. 
This result may seem perplexing, but it illustrates why it is so important to agree on
the success metric for an experiment up front. The experiment variant 1 had a posi‐
tive effect on onboarding completion and so can be judged a success. It did not have
an effect on the overall spending level. This could be due to a mix shift: the additional
users who made it through onboarding in variant 1 were less likely to pay. If the
underlying hypothesis was that increasing onboarding completion rates would
increase revenue, then the experiment should not be judged a success, and the prod‐
uct managers should come up with some new ideas to test.

Challenges with Experiments and Options for Rescuing
Flawed Experiments
Although experimentation is the gold standard for understanding causality, there are
a number of ways experiments can go wrong. If the entire premise is flawed, there
won’t be much that SQL can do to save the day. If the flaw is more technical in nature,
we may be able to query the data in such a way as to adjust or exclude problematic
data points and still interpret some results. Running experiments has a cost in terms
of the time spent by engineers, designers, or marketers who create variants. It also has
opportunity cost, or the missed benefit that could have been gained by sending cus‐
tomers down an optimal conversion path or product experience. On a practical level,
using SQL to help the organization at least learn something from an experiment is
often time well spent.
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Variant Assignment
Random assignment of experiment units (which can be users, sessions, or other enti‐
ties) to control and variant groups is one of the key elements of experimentation. 
However, sometimes errors in the assignment process happen, whether because of a
flaw in the experiment specification, a technical failure, or a limitation in the cohort‐
ing software. As a result, the control and variant groups may be of unequal sizes,
fewer overall entities may have been cohorted than expected, or the assignment may
not have actually been random.

SQL can sometimes help salvage an experiment in which too many units were cohor‐
ted. I have seen this happen when an experiment is meant to target only new users
but all users are cohorted instead. Another way this can happen is when an experi‐
ment tests something that only a subset of users will see, either because it is a few
clicks into the experience or because certain conditions must be met, such as previous
purchase. Due to technical limitations, all users get cohorted, even though a chunk of
them would never see the experiment treatment even if they are in that group. The
solution is to add a JOIN into the SQL that restricts the users or entities considered to
only those that were intended to be eligible. For example, in the case of a new user
experiment, we can add an INNER JOIN to a table or subquery that contains user reg‐
istration date and set a WHERE condition to exclude users who registered too far
prior to the cohort event to be considered new. The same strategy can be used when a
certain condition must be met to even see the experiment. Restrict the entities
included by excluding those that shouldn’t be eligible via JOINs and WHERE condi‐
tions. After doing this, you should check to make sure that the resulting population is
a large enough sample to produce significant results.

If too few users or entities are cohorted, it’s important to check whether the sample is
large enough to produce significant results. If not, run the experiment again. If the
sample size is large enough, a second consideration is whether there is bias in who or
what was cohorted. As an example, I have seen cases in which users on certain brows‐
ers or older app versions were not cohorted due to technical limitations. If popula‐
tions that were excluded aren’t random and represent differences in location,
technical savvy, or socioeconomic status, it’s important to consider both how large
this population is relative to the rest and whether any adjustments should be made to
include them in the final analysis.

Another possibility is that the variant assignment system is flawed and entities are not
assigned randomly. This is fairly unusual with most modern experiment tools, but if
it happens, it invalidates the whole experiment. Results that are “too good to be true”
might signal a variant assignment problem. I have seen, for example, cases in which
highly engaged users are accidentally assigned to both treatment and control due to a
change in experiment configuration. Careful data profiling can check whether entities
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have been assigned to multiple variants or whether users with high or low engage‐
ment prior to the experiment are clustered in a particular variant.

Running an A/A test can help uncover flaws in the variant assign‐
ment software. In this type of test, entities are cohorted and success
metrics are compared, just like in any other experiment. However,
no changes are made to the experience, and both cohorts receive
the control experience. Since the groups receive the same experi‐
ence, we should expect no significant differences in the success
metric. If it turns out there is a difference, further investigation
should be done to uncover and fix the problem.

Outliers
Statistical tests for analyzing continuous success metrics rely on averages. As a result,
they are sensitive to unusually high or low outlier values. I have seen experiments in
which the presence of one or two particularly high-spending customers in a variant
gives that variant a statistically significant edge over others. Without those few high
spenders, the result may be neutral or even the reverse. In most cases, we are more
interested in whether a treatment has an effect across a range of individuals, and thus
adjusting for these outliers can make an experiment result more meaningful.

We discussed anomaly detection in Chapter 6, and experiment analysis is another
place in which those techniques can be applied. Outlier values can be determined
either by analyzing the experiment results or by finding the base rate prior to the
experiment. The outliers may be removed via a technique such as winsorizing (also
discussed in Chapter 6), which removes values beyond a threshold, such as the 95th
or 99th percentile. This can be done in SQL before moving on to the rest of the
experiment analysis.

Another option for dealing with outliers in continuous success metrics is to turn the
success metric into a binary outcome. For example, instead of comparing the average
spend across the control and variant groups, which may be distorted due to a few
very high spenders, compare the purchase rate between the two groups and then fol‐
low the procedure discussed in the section on experiments with binary outcomes. We
could consider the conversion rate to purchaser among users who completed
onboarding in the control and variant 1 groups from the “Onboarding” experiment:

SELECT a.variant
,count(distinct a.user_id) as total_cohorted
,count(distinct b.user_id) as purchasers
,count(distinct b.user_id) / count(distinct a.user_id) 
 as pct_purchased
FROM exp_assignment a
LEFT JOIN game_purchases b on a.user_id = b.user_id
JOIN game_actions c on a.user_id = c.user_id
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 and c.action = 'onboarding complete'
WHERE a.exp_name = 'Onboarding'
GROUP BY 1
;

variant    total_cohorted  purchasers  pct_purchased
---------  --------------  ----------  -------------
control    36268           4988        0.1000
variant 1  38280           4981        0.0991

We can look at the numbers and observe that even though there are more users in
variant 1, there are fewer purchasers. The percentage of users who purchased in the
control group is 10%, compared to 9.91% for variant 1. Next, we plug the data points
into an online calculator. The conversion rate is statistically significantly higher for
the control group. In this case, even though the rate of purchasing was higher for the
control group, on a practical level we may be willing to accept this small decline if we
believe that more users completing the onboarding process has other benefits. More
players might boost rankings, for example, and players who enjoy the game may
spread it to their friends via word of mouth, both of which can help growth and may
then lead to attracting other new players who will become purchasers.

The success metric can also be set to a threshold, and the share of entities meeting
that threshold compared. For example, the success metric could be reading at least
three stories or using an app at least two times a week. An infinite number of metrics
could be constructed in this way, so it’s important to understand what is both impor‐
tant and meaningful to the organization.

Time Boxing
Experiments are often run over the course of several weeks. This means that individ‐
uals who enter the experiment earlier have a longer window in which to complete
actions associated with the success metric. To control for this, we can apply time box‐
ing—imposing a fixed length of time relative to the experiment entry date and con‐
sidering actions only during that window. This concept was also covered in
Chapter 4.

For experiments, the appropriate size of the time box depends on what you are meas‐
uring. The window could be as short as one hour when measuring an action that typ‐
ically has an immediate response, such as clicking on an ad. For purchase conversion,
experimenters often allow a window of 1 to 7 days. Shorter windows allow experi‐
ments to be analyzed sooner, since all cohorted entities need to be allowed the full
time to complete actions. The best windows balance the need to obtain results with
the actual dynamics of the organization. If customers typically convert in a few days,
consider a 7-day window; if customers often take 20 or more days, consider a 30-day
window.
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As an example, we can revise our first example from experiments with continuous
outcomes by only including purchases within 7 days of the cohorting event. Note that
it is important to use the time the entity was assigned to a variant as the starting point
of the time box. An additional ON clause is added, restricting the results to purchases
that occurred within the interval “7 days”:

SELECT variant
,count(user_id) as total_cohorted
,avg(amount) as mean_amount
,stddev(amount) as stddev_amount
FROM
(
    SELECT a.variant
    ,a.user_id
    ,sum(coalesce(b.amount,0)) as amount
    FROM exp_assignment a
    LEFT JOIN game_purchases b on a.user_id = b.user_id 
     and b.purch_date <= a.exp_date + interval '7 days'
    WHERE a.exp_name = 'Onboarding'
    GROUP BY 1,2
) a
GROUP BY 1
;

variant    total_cohorted  mean_amount  stddev_amount
---------  --------------  -----------  -------------
control    49897           1.369        5.766
variant 1  50275           1.352        5.613

The means are similar, and in fact statistically they are not significantly different from
each other. In this example, the time-boxed conclusion agrees with the conclusion
when there was no time box.

In this case, purchase events are relatively rare. For metrics that measure common
events and those that accumulate quickly, such as pageviews, clicks, likes, and articles
read, using a time box can prevent the earliest cohorted users from looking substan‐
tially “better” than those cohorted later.

Repeated Exposure Experiments
In discussions of online experimentation, most examples are of what I like to call
“one-and-done” experiences: the user encounters a treatment once, reacts to it, and
does not pass that way again. User registration is a classic example: a consumer signs
up for a particular service only once, and therefore any changes to the sign-up pro‐
cess affect only new users. Analyzing tests on these experiences is relatively
straightforward.

There is another type of experience that I call “repeated exposure,” in which an indi‐
vidual comes into contact with the change many times during the course of using a
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product or service. In any experiment involving these changes, we can expect individ‐
uals to encounter them more than once. Changes to an app’s user interface, such as
color, text, and placement of important information and links, are experienced by
users throughout their app usage. Email marketing programs that send customers
reminders or promotions on a regular basis also have this repeated exposure quality.
Emails are experienced many times as subject lines in the inbox, and as content if
opened.

Measuring repeated exposure experiments is trickier than measuring one-and-done
experiments due to novelty effects and regression to the mean. A novelty effect is the
tendency for behavior to change just because something is new, not because it is nec‐
essarily better. Regression to the mean is the tendency for phenomena to return to an
average level over time. As an example, changing any part of a user interface tends to
increase the number of people who interact with it, whether it is a new button color,
logo, or placement of functionality. Initially the metrics look good, because the click-
through rate or engagement goes up. This is the novelty effect. But over time, users
get used to the change, and they tend to click or use the functionality at rates that
return closer to the baseline. This is the regression to the mean. The important ques‐
tion to answer when running this kind of experiment is whether the new baseline is
higher (or lower) than the previous one. One solution is to allow passage of a long
enough time period, in which you might expect regression to happen, before evaluat‐
ing the results. In some cases, this will be a few days; in others, it might be a few
weeks or months.

When there are many changes, or the experiment comes in a series such as email or
physical mail campaigns, figuring out whether the entire program makes a difference
can be a challenge. It’s easy to claim success when customers receiving a certain email
variant purchase a product, but how do we know if they would have made that pur‐
chase anyway? One option is to set up a long-term holdout. This is a group that is set
up to not receive any marketing messages or changes to the product experience. Note
that this is different from simply comparing to users who have opted out of market‐
ing messages, since there is usually some bias in who opts out and who doesn’t. Set‐
ting up long-term holdouts can be complicated, but there are few better ways to truly
measure the cumulative effects of campaigns and product changes.

Another option is to perform cohort analysis (discussed in Chapter 4) on the var‐
iants. The groups can be followed for a longer time period, from weeks to months.
Retention or cumulative metrics can be calculated and tested to see whether effects
differ between variants over the long term.

Even with the various challenges that can be encountered with experiments, they are
still the best way to test and prove the causality around changes made to experiences
ranging from marketing messaging and creative to in-product experience. We often
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encounter less than ideal situations in data analysis, however, so next we’ll turn to
some analysis options for when A/B testing isn’t possible.

When Controlled Experiments Aren’t Possible:
Alternative Analyses
Randomized experiments are the gold standard for going beyond correlation to
establish causality. However, there are a number of reasons why a randomized experi‐
ment may not be possible. It may be unethical to give different treatments to different
groups, particularly in medical or educational settings. Regulatory requirements may
prevent experiments in other settings, such as financial services. There may be practi‐
cal reasons, such as the difficulty of restricting access to a variant treatment to only a
randomized group. It’s always worth considering whether there are pieces that are
worth testing or are testable within ethical, regulatory, and practical boundaries.
Wording, placement, and other design elements are some examples.

A second situation in which experimentation isn’t possible is when a change hap‐
pened in the past and the data has already been collected. Aside from reverting the
change, going back and running an experiment isn’t an option. Sometimes a data ana‐
lyst or data scientist wasn’t available to advise on experimentation. More than once, I
have joined an organization and been asked to untangle the results of changes that
would have been much more straightforward to understand had there been a holdout
group. At other times, the change is unintended. Examples include site outages that
affect some or all customers, errors in forms, and natural disasters such as storms,
earthquakes, and wildfires.

Although causal conclusions aren’t as strong in situations in which there was no
experiment, there are a few quasi-experimental analysis methods that can be used to
draw insights from the data. These rely on constructing groups from the available
data that represent “control” and “treatment” conditions as closely as possible.

Pre-/Post-Analysis
A pre-/post-analysis compares either the same or similar populations before and after
a change. The measurement of the population before the change is used as the con‐
trol, while the measurement after the change is used as the variant or treatment.

Pre-/post-analysis works best when there is a clearly defined change that happened
on a well-known date, so that the before and after groups can be cleanly divided. In
this type of analysis, you will need to choose how long to measure before and after
the change, but the periods should be equal or close to equal. For example, if two
weeks have elapsed since a change, compare that period to the two weeks prior to the
change. Consider comparing multiple periods, such as one week, two weeks, three
weeks, and four weeks before and after the change. If the results agree across all these
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windows, you can have more confidence in the result than you would if the results
differed.

Let’s walk through an example. Imagine that the onboarding flow for our mobile
game includes a step in which the user can check a box to indicate whether they want
to receive emails with game news. This had always been checked by default, but a new
regulation requires that it now be unchecked by default. On January 27, 2020, the
change was released into the game, and we would like to find out if it had a negative
effect on email opt-in rates. To do this, we will compare the two weeks before the
change to the two weeks after the change and see whether the opt-in rate is statisti‐
cally significantly different. We could use one-week or three-week periods, but two
weeks is chosen because it is long enough to allow for some day-of-week variability
and also short enough to restrict the number of other factors that could otherwise
affect users’ willingness to opt in.

The variants are assigned in the SQL query via a CASE statement: the users who were
created in the time range prior to the change are labeled “pre,” while those created
after the change are labeled “post.” Next, we count the number of users in each group
from the game_users table. Then we count the number of users who opted in, which
is accomplished with a LEFT JOIN to the game_actions table, restricting to the
records with the “email_optin” action. Then we divide the values to find the percent
who opted in. I like to include the count of days in each variant as a quality check,
though it is not necessary to perform the rest of the analysis:

SELECT 
case when a.created between '2020-01-13' and '2020-01-26' then 'pre'
     when a.created between '2020-01-27' and '2020-02-09' then 'post'
     end as variant
,count(distinct a.user_id) as cohorted
,count(distinct b.user_id) as opted_in
,count(distinct b.user_id) / count(distinct a.user_id) as pct_optin
,count(distinct a.created) as days
FROM game_users a
LEFT JOIN game_actions b on a.user_id = b.user_id 
 and b.action = 'email_optin'
WHERE a.created between '2020-01-13' and '2020-02-09'
GROUP BY 1
;

variant  cohorted  opted_in  pct_optin  days
-------  --------  --------  ---------  ----
pre      24662     14489     0.5875     14
post     27617     11220     0.4063     14
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Many databases will recognize dates entered as strings, as in
'2020-01-13'. If your database does not, cast the string to a date
using one of these options:

cast('2020-01-13' as date)

date('2020-01-13')

'2020-01-13'::date

In this case, we can see that the users who went through the onboarding flow before
the change had a much higher email opt-in rate—58.75%, compared to 40.63% after‐
ward. Plugging the values into an online calculator results in confirmation that the
rate for the “pre” group is statistically significantly higher than the rate for the “post”
group. In this example, there may not be much the game company can do, since the
change is due to a regulation. Further tests could determine whether providing sam‐
ple content or other information about the email program might encourage more
new players to opt in, if this is a business goal.

When performing a pre-/post-analysis, keep in mind that other factors beyond the
change that you’re trying to learn about may cause an increase or a decrease in the
metric. External events, seasonality, marketing promotions, and so on can drastically
change the environment and customers’ mindsets even within the span of a few
weeks. As a result, this type of analysis is not as good as a true randomized experi‐
ment for proving causality. However, sometimes this is one of the few analysis
options available, and it can generate working hypotheses that can be tested and
refined in future controlled experiments.

Natural Experiment Analysis
A natural experiment occurs when entities end up with different experiences through
some process that approximates randomness. One group receives the normal or con‐
trol experience, and another receives some variation that may have a positive or nega‐
tive effect. Usually these are unintentional, such as when a software bug is introduced,
or when an event happens in one location but not in other locations. For this type of
analysis to have validity, we must be able to clearly determine which entities were
exposed. Additionally, a control group that is as similar as possible to the exposed
group is needed.

SQL can be used to construct the variants and to calculate the size of cohorts and suc‐
cess events in the case of a binary outcome event (or the mean, standard deviation,
and population sizes in the case of a continuous outcome event). The results can be
plugged into an online calculator just like with any other experiment.

As an example in the video game data set, imagine that, during the time period of our
data, users in Canada were accidentally given a different offer on the virtual currency
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purchase page the first time they looked at it: an extra zero was added to the number
of virtual coins in each package. So, for example, instead of 10 coins the user would
receive 100 game coins, or instead of 100 coins they would receive 1,000 game coins,
and so on. The question we would like to answer is whether Canadians converted to
buyers at a higher rate than other users. Rather than compare to the entire user base,
we will compare only to users in the United States. The countries are close geographi‐
cally, and most users in the two countries speak the same language—and for the sake
of the example, we’ll assume that we’ve done other analysis showing that their behav‐
ior is similar, while the behavior of users in other countries differs enough to exclude
them.

To perform the analysis, we create the “variants” from whatever the distinguishing
characteristic is—in this case, the country field from the game_users table—but note
that sometimes more complex SQL will be required, depending on the data set. The
counts of users cohorted, and those who purchased, are calculated in the same way
we saw previously:

SELECT a.country
,count(distinct a.user_id) as total_cohorted
,count(distinct b.user_id) as purchasers
,count(distinct b.user_id) / count(distinct a.user_id) 
 as pct_purchased
FROM game_users a
LEFT JOIN game_purchases b on a.user_id = b.user_id
WHERE a.country in ('United States','Canada')
GROUP BY 1
;

country        total_cohorted  purchasers  pct_purchased
-------------  --------------  ----------  -------------  
Canada         20179           5011        0.2483
United States  45012           4958        0.1101

The share of users in Canada who purchased is in fact higher—24.83%, compared to
11.01% of those in the United States. Plugging these values into an online calculator
confirms that the conversion rate in Canada is statistically significantly higher at a
95% confidence interval.

The hardest part of analyzing a natural experiment tends to be finding a comparable
population and showing that the two populations are similar enough to support the
conclusions from the statistical test. Although it is virtually impossible to prove that
there are no confounding factors, careful comparison of population demographics
and behaviors lends credibility to the results. Since a natural experiment is not a true
random experiment, the evidence for causality is weaker, and this should be noted in
the presentation of analysis of this type.
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Analysis of Populations Around a Threshold
In some cases, there is a threshold value that results in some people or other subject
units getting a treatment, while others do not. For example, a certain grade point
average might qualify students for a scholarship, a certain income level might qualify
households for subsidized health care, or a high churn risk score might trigger a sales
rep to follow up with a customer. In such cases, we can leverage the idea that subjects
on either side of the threshold value are likely quite similar to each other. So instead
of comparing the entire populations that did and did not receive the reward or inter‐
vention, we can compare only those that were close to the threshold both on the posi‐
tive and the negative side. The formal name for this is regression discontinuity design
(RDD).

To perform this type of analysis, we can construct “variants” by splitting the data
around the threshold value, similar to what we did in the pre-/post-analysis. Unfortu‐
nately, there is no hard-and-fast rule about how wide to make the bands of values on
either side of the threshold. The “variants” should be similar in size, and they should
be large enough to allow for significance in the results analysis. One option is to per‐
form the analysis several times with a few different ranges. For example, you might
analyze the differences between the “treated” group and the control when each group
contains subjects that fall within 5%, 7.5%, and 10% of the threshold. If the conclu‐
sions from these analyses agree, there is more support for the conclusions. If they do
not agree, however, the data may be considered inconclusive.

As with other types of nonexperimental analysis, results from RDD should be taken
as proving causality less conclusively. Potential confounding factors should receive
careful attention as well. For example, if customers with high churn risk receive inter‐
ventions from multiple teams, or a special discount to encourage them to retain, in
addition to a call from a sales rep, the data can potentially be tainted by those other
changes.

Conclusion
Experiment analysis is a rich field that often incorporates different types of analysis
seen in other parts of this book, from anomaly detection to cohort analysis. Data
profiling can be useful in tracking down issues that occur. When randomized experi‐
ments are not possible, a variety of other techniques are available, and SQL can be
used to create synthetic control and variant groups.

In the next chapter, we’ll turn to constructing complex data sets for analysis, an area
that brings together various topics that we’ve discussed in the book so far.
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CHAPTER 8

Creating Complex Data Sets for Analysis

In Chapters 3 through 7, we looked at a number of ways in which SQL can be used to
perform analysis on data in databases. In addition to these specific use cases, some‐
times the goal of a query is to assemble a data set that is specific yet general-purpose
enough that it can be used to perform a variety of further analyses. The destination
might be a database table, a text file, or a business intelligence tool. The SQL that is
needed might be simple, requiring only a few filters or aggregations. Often, however,
the code or logic needed to achieve the desired data set can become very complex.
Additionally, such code is likely to be updated over time, as stakeholders request
additional data points or calculations. The organization, performance, and maintain‐
ability of your SQL code become critical in a way that isn’t the case for one-time
analyses.

In this chapter, I’ll discuss principles for organizing code so that it’s easier to share
and update. Then I’ll discuss when to keep query logic in the SQL and when to con‐
sider moving to permanent tables via ETL (extract-transform-load) code. Next, I’ll
explain the options for storing intermediate results—subqueries, temp tables, and
common table expressions (CTEs)—and considerations for using them in your code.
Finally, I’ll wrap up with a look at techniques for reducing data set size and ideas for
handling data privacy and removing personally identifiable information (PII).

When to Use SQL for Complex Data Sets
Almost all data sets prepared for further analysis contain some logic. The logic can
range from the relatively simple—such as how tables are JOINed together and how
filters are placed in the WHERE clause—to complex calculations that aggregate, cate‐
gorize, parse, or perform window functions over partitions of the data. When creat‐
ing data sets for further analysis, choosing whether to keep the logic within the SQL
query or to push it upstream to an ETL job or downstream to another tool is often as
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much art as science. Convenience, performance, and availability of help from engi‐
neers all factor into the decision. There is often no single right answer, but you will
develop intuition and confidence the longer you work with SQL.

Advantages of Using SQL
SQL is a very flexible language. Hopefully I convinced you in the earlier chapters that
a wide variety of data preparation and analysis tasks can be accomplished using SQL.
This flexibility is the main advantage of using SQL when developing complex data
sets.

In the initial stages of working with a data set, you may execute many queries. Work
often starts with several profiling queries to understand the data. This is followed by
building up the query step-by-step, checking transformations and aggregations along
the way to be sure that the results returned are correct. This may be interspersed with
more profiling, when actual values turn out to differ from our expectations. Complex
data sets may be built up by combining several subqueries that answer specific ques‐
tions with JOINs or UNIONs. Running a query and examining the output is fast and
allows for rapid iteration.

Aside from relying on the quality and timeliness of the data in the tables, SQL has few
dependencies. Queries are run on demand and don’t rely on a data engineer or a
release process. Queries can often be embedded into business intelligence (BI) tools
or into R or Python code by the analyst or data scientist, without requesting technical
support. When a stakeholder needs another attribute or aggregation added to the
output, changes can be made quickly.

Keeping logic in the SQL code itself is ideal when working on a new analysis and
when you expect the logic and result set to undergo changes frequently. Additionally,
when the query is fast and data is returned to stakeholders quickly, there may never
be a need to move the logic anywhere else.

When to Build into ETL Instead
There are times when moving logic into an ETL process is a better choice than keep‐
ing all of it in a SQL query, especially when working in an organization that has a data
warehouse or data lake. The two main reasons to use ETL are performance and
visibility.

Performance of SQL queries depends on the complexity of the logic, the size of the
tables queried, and the computational resources of the underlying database. Although
many queries run fast, particularly on the newer databases and hardware, you will
inevitably end up writing some queries that have complex calculations, involve JOINs
of large tables or Cartesian JOINs, or otherwise cause query time to slow down to
minutes or longer. An analyst or a data scientist may be willing to wait for a query to
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return. However, most consumers of data are used to websites’ rapid response times
and will get frustrated if they have to wait more than a few seconds for data.

ETL runs behind the scenes at scheduled times and writes the result to a table. Since
it is behind the scenes, it can run for 30 seconds, five minutes, or an hour, and end
users will not be affected. Schedules are often daily but can be set to shorter intervals.
End users can query the resulting table directly, without need for JOINs or other
logic, and thus experience fast query times.

A good example of when ETL is often a better choice than keeping all of the logic in a
SQL query is the daily snapshot table. In many organizations, keeping a daily snap‐
shot of customers, orders, or other entities is useful for answering analytical ques‐
tions. For customers, we might want to calculate total orders or visits to date, current
status in a sales pipeline, and other attributes that either change or accumulate. We’ve
seen how to create daily series, including for days when an entity was not present, in
the discussions of time series analysis in Chapter 3 and cohort analysis in Chapter 4.
At the individual entity level, and over long time periods, such queries can become
slow. Additionally, attributes such as current status may be overwritten in the source
table, so capturing a daily snapshot may be the only way to preserve an accurate pic‐
ture of history. Developing the ETL and storing daily snapshot results in a table are
often worth the effort.

Visibility is a second reason to move logic into ETL. Often SQL queries exist on an
individual’s computer or are buried within report code. It can be difficult for others to
even find the logic embedded in the query, let alone understand and check it for mis‐
takes. Moving logic into ETL and storing the ETL code in a repository such as Git‐
Hub makes it easier for others in an organization to find, check, and iterate on it.
Most repositories used by development teams also store change history, an additional
benefit that allows you to see when a particular line in a query was added or changed.

There are good reasons to consider putting logic into ETL, but this approach also has
its drawbacks. One is that fresh results are not available until the ETL job has run and
refreshed the data, even if new data has arrived in the underlying table. This can be
overcome by continuing to run SQL against the raw data for very new records but
limiting it to a small time window so that the query runs quickly. This can optionally
be combined with a query on the ETL table, using subqueries or UNION. Another
drawback to placing logic in ETL is that it becomes harder to change. Updates or bug
fixes often need to be handed to a data engineer and code tested, checked into the
repository, and released into the production data warehouse. For this reason, I usu‐
ally opt to wait until my SQL queries are past the period of rapid iteration, and the
resulting data sets have been reviewed and are in use by the organization, before
moving them into ETL. Of course, making code harder to change and enforcing code
reviews are excellent ways to ensure consistency and data quality.
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Views as an Alternative to ETL
When you want the reusability and code visibility of ETL but without actually storing
the results and therefore taking up space permanently, a database view can be a good
option. A view is essentially a saved query with a permanent alias that can be refer‐
enced just like any other table in the database. The query can be simple or complex
and may involve table joins, filters, and any other elements of SQL.

Views can be used to ensure that everyone querying the data uses the same defini‐
tions, as defined in the underlying query—for example, by always filtering out test
transactions. They can be used to shield users from the complexity of the underlying
logic, helpful for more novice or occasional users of a database. Views can also be
used to provide an extra layer of security by restricting access to certain rows or col‐
umns in a database. For example, a view might be created to exclude PII such as email
addresses but allow query writers to view other acceptable customer attributes.

Views have a few drawbacks, however. They are objects in the database and thus
require permissions to create and update their definitions. Views do not store the
data, so each time a query is run with a view, the database must go back to the under‐
lying table or tables to fetch the data. As a result, they are not a replacement for ETL
that creates a precomputed table of data.

Most major databases also have materialized views, which are similar to views but do
store the returned data in a table. Planning for the creation and refreshing of materi‐
alized views is usually best done in consultation with an experienced database admin‐
istrator, as there are nuanced performance considerations beyond the scope of this
book.

When to Put Logic in Other Tools
SQL code and the query results output in your query editor are frequently only part
of an analysis. Results are often embedded in reports, visualized into tables and
graphs, or further manipulated in a range of tools, from spreadsheets and BI software
to environments in which statistical or machine learning code is applied. In addition
to choosing when to move logic upstream into ETL, we also have choices about when
to move logic downstream into other tools. Both performance and specific use cases
are key factors in the decision.

Each type of tool has performance strengths and limitations. Spreadsheets are very
flexible but are not known for being able to handle large numbers of rows or complex
calculations across many rows. Databases definitely have a performance advantage, so
it’s often best to perform as much of the calculation as possible in the database and
pass the smallest data set possible on to the spreadsheet.
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BI tools have a range of capabilities, so it’s important to understand both how the
software handles calculations and how the data will be used. Some BI tools can cache
data (keep a local copy) in an optimized format, speeding up calculations. Others
issue a new query each time a field is added to or removed from a report and thus
mainly leverage the computational power of the database. Certain calculations such
as count distinct and median require detailed, entity-level data. If it’s not possible
to anticipate all the variations on these calculations in advance, it may be necessary to
pass a larger, more detailed data set than otherwise might be ideal. Additionally, if the
goal is to create a data set that allows exploration and slicing in many different ways,
more detail is usually better. Figuring out the best combination of SQL, ETL, and BI
tool computation can take some iteration.

When the goal is to perform statistical or machine learning analysis on the data set
using a language such as R or Python, detailed data is usually better. Both of these
languages can perform tasks that overlap with SQL, such as aggregation and text
manipulation. It’s often best to perform as much of the calculation as possible in SQL,
to leverage the computational power of the database, but no more. Flexibility to iter‐
ate is usually an important part of the modeling process. The choice of whether to
perform calculations in SQL or another language may also depend on your familiar‐
ity and comfort level with each. Those who are very comfortable in SQL may prefer
to do more calculations in the database, while those who are more proficient in R or
Python may prefer to do more calculations there.

Although there are few rules to deciding where to put logic, I will
encourage you to follow one rule in particular: avoid manual steps.
It’s easy enough to open a data set in a spreadsheet or text editor,
make a small change, save, and move on. But when you need to
iterate, or when new data arrives, it’s easy to forget that manual step
or to perform it inconsistently. In my experience, there’s no such
thing as a truly “one-off ” request. Put logic into code somewhere, if
at all possible.

SQL is a great tool and is incredibly flexible. It also sits within the analysis workflow
and within an ecosystem of tools. Deciding where to put calculations can take some
trial and error as you iterate through what is feasible among SQL, ETL, and down‐
stream tools. The more familiarity and experience you have with all the available
options, the better you will be able to estimate trade-offs and continue to improve the
performance and flexibility of your work.
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Code Organization
SQL has few formatting rules, which can lead to unruly queries. Query clauses must
be in the correct order: SELECT is followed by FROM, and GROUP BY cannot pre‐
cede WHERE, for example. A few keywords such as SELECT and FROM are reserved
(i.e., they cannot be used as field names, table names, or aliases). However, unlike in
some other languages, newlines, whitespace (other than the spaces that separate
words), and capitalization are not important and are ignored by the database. Any of
the example queries in this book could have been written on a single line, and with or
without capital letters, except in quoted strings. As a result, the burden of code orga‐
nization is on the person writing the query. Fortunately, we have some formal and
informal tools for keeping code organized, from commenting to “cosmetic” format‐
ting such as indentation and storage options for files of SQL code.

Commenting
Most coding languages have a way to indicate that a block of text should be treated as
a comment and ignored during execution. SQL has two options. The first is to use
two dash marks, which turns everything on the line that follows into a comment:

-- This is a comment

The second option is to use the slash (/) and star (*) characters to start a comment
block, which can extend over multiple lines, followed by a star and slash to end the
comment block:

/*
This is a comment block
with multiple lines
*/

Many SQL editors adjust the visual style of code inside comments, by graying them
out or otherwise changing the color, to make them easier to spot.

Commenting code is a good practice, but admittedly it’s one that many people strug‐
gle to do on a regular basis. SQL is often written quickly, and especially during explo‐
ration or profiling exercises, we don’t expect to keep our code for the long term.
Overly commented code can be just as difficult to read as code with no comments.
And we all suffer from the idea that since we wrote the code, we will always be able to
remember why we wrote the code. However, anyone who has inherited a long query
written by a colleague or has stepped away from a query for a few months and then
come back to update it will know that it can be frustrating and time consuming to
decipher the code.

To balance the burden and the benefit of commenting, I try to follow a few rules of
thumb. First, add a comment anywhere that a value has a nonobvious meaning. Many
source systems will encode values as integers, and their meaning is easy to forget.

292 | Chapter 8: Creating Complex Data Sets for Analysis



Leaving a note makes the meaning clear and makes the code easier to change if
needed:

WHERE status in (1,2) -- 1 is Active, 2 is Pending

Second, comment on any other nonobvious calculations or transformations. These
can be anything that someone who hasn’t spent the time profiling the data set might
not know, from data entry errors to the existence of outliers:

case when status = 'Live' then 'Active'
     else status end
     /* we used to call customers Live but in
     2020 we switched it to Active */

The third practice I try to follow around commenting is to leave notes when the
query contains multiple subqueries. A quick line about what each subquery calculates
makes it easy to skip to the relevant piece when coming back later to quality check or
edit a longer query:

SELECT...
FROM
( -- find the first date for each customer
    SELECT ...
    FROM ...
) a
JOIN 
( -- find all of the products for each customer
    SELECT ...
    FROM ...
) b on a.field = b.field
...
;

Commenting well takes practice and some discipline, but it’s worth doing for most
queries that are longer than a few lines. Commenting can also be used to add useful
information to the overall query, such as purpose, author, date created, and so on. Be
kind to your colleagues, and to your future self, by placing helpful comments in your
code. 

Capitalization, Indentation, Parentheses, and
Other Formatting Tricks
Formatting, and consistent formatting especially, is a good way to keep SQL code
organized and legible. Databases ignore capitalization and whitespace (spaces, tabs,
and newlines) in SQL, so we can use these to our advantage to format code into more
legible blocks. Parentheses can both control the order of execution, which we will dis‐
cuss more later, and also visually group calculation elements.

Capitalized words stand out from the rest, as anyone who has received an email with
an all-caps subject line can confirm. I like to use capitalization only for the main
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clauses: SELECT, FROM, JOIN, WHERE, and so on. Particularly in long or complex
queries, being able to spot these quickly and thus to understand where the SELECT
clause ends and the FROM clause begins saves me a lot of time.

Whitespace is another key way to organize and make parts of the query easier to find,
and to understand which parts logically go together. Any SQL query could be written
on a single line in the editor, but in most cases this would lead to a lot of scrolling left
and right through code. I like to start each clause (SELECT, FROM, etc.) on a new
line, which, along with capitalization, helps me keep track of where each one starts
and ends. Additionally, I find that putting aggregations on their own lines, as well as
functions that take up some space, helps with organization. For CASE statements
with more than two WHEN conditions, separating them onto multiple lines is also a
good way to easily see and keep track of what is happening in the code. As an exam‐
ple, we can query the type and mag (magnitude), parse place, and then count the
records in the earthquakes table, with some filtering in the WHERE clause:

SELECT type, mag
,case when place like '%CA%' then 'California'
      when place like '%AK%' then 'Alaska'
      else trim(split_part(place,',',2)) 
      end as place
,count(*)
FROM earthquakes
WHERE date_part('year',time) >= 2019
and mag between 0 and 1
GROUP BY 1,2,3
;

type                mag  place       count
------------------  ---  ----------  -----
chemical explosion  0    California  1
earthquake          0    Alaska      160
earthquake          0    Argentina   1
...                 ...  ...         ...

Indentation is another trick for keeping code visually organized. Adding spaces or
tabs to line up the WHEN items within a CASE statement is one example. You’ve also
seen subqueries indented in examples throughout the book. This makes subqueries
visually stand apart, and when a query has multiple levels of nested subqueries, it
makes it easier to see and understand the order in which they will be evaluated and
which subqueries are peers in terms of level:

SELECT... 
FROM 
(
    SELECT...
    FROM
    (
        SELECT...
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        FROM...
    ) a
    JOIN
    (
        SELECT...
        FROM
    ) b on...
) a
...
;

Any number of other formatting choices can be made, and the query will return the
same results. Long-term SQL writers tend to have their own formatting preferences.
However, clear and consistent formatting makes creating, maintaining, and sharing
SQL code much easier.

Many SQL query editors provide some form of query formatting and coloration.
Usually keywords are colored, making them easier to spot within a query. These vis‐
ual clues make both developing and reviewing SQL queries much easier. If you’ve
been writing SQL in a query editor all along, try opening a .sql file in a plain text edi‐
tor to see the difference coloration makes. Figure 8-1 shows an example of a SQL
query editor, and the same code is shown in a plain text editor in Figure 8-2 (please
note that these may appear in grayscale in some versions of this book).

Figure 8-1. Screenshot of keyword coloration in the SQL query editor DBVisualizer

Figure 8-2. The same code as plain text in the text editor Atom
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Formatting is optional from the database perspective, but it’s a good practice. Consis‐
tent use of spacing, capitalization, and other formatting options goes a long way
toward keeping your code readable, therefore making it easier to share and maintain.

Storing Code
After going to the trouble of commenting and formatting code, it’s a good idea to
store it somewhere in case you need to use or reference it later.

Many data analysts and scientists work with a SQL editor, often a desktop piece of
software. SQL editors are useful because they usually include tools for browsing the
database schema alongside a code window. They save files with a .sql extension, and
these text files can be opened and changed in any text editor. Files can be saved in
local directories or in cloud-based file storage services.

Since they are text, SQL code files are easy to store in change control repositories
such as GitHub. Using a repository provides a nice backup option and makes for easy
sharing with others. Repositories also track the change history of files, which is useful
when you need to figure out when a particular change was made, or when the change
history is required for regulatory reasons. The main drawback of GitHub and other
tools is that they are usually not a required step in the analysis workflow. You need to
remember to update your code periodically, and as with any manual step, it’s easy to
forget to do it.

Organizing Computations
Two related problems we face when creating complex data sets are getting the logic
right and getting good query performance. Logic must be correct, or the results will
be meaningless. Query performance for analysis purposes, unlike for transactional
systems, usually has a range of “good enough.” Queries that don’t return are problem‐
atic, but the difference between waiting 30 seconds and waiting a minute for results
may not matter a great deal. With SQL, there is often more than one way to write a
query that returns the correct results. We can use this to our advantage to both ensure
correct logic and tune performance of long-running queries. There are three main
ways to organize the calculation of intermediate results in SQL: the subquery, temp
tables, and common table expressions (CTEs). Before we dive into them, we’ll review
the order of evaluation in SQL. To wrap up the section, I’ll introduce grouping sets,
which can replace the need to UNION queries together in certain cases.

Understanding Order of SQL Clause Evaluation
Databases translate SQL code into a set of operations that will be carried out in order
to return the requested data. While understanding exactly how this happens isn’t nec‐
essary to be good at writing SQL for analysis, understanding the order in which the
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database will perform its operations is incredibly useful (and is sometimes necessary
to debug unexpected results).

Many modern databases have sophisticated query optimizers that
consider various parts of the query to come up with the most effi‐
cient plan for execution. Although they may consider parts of the
query in a different order from that discussed here and therefore
may need less query optimization from humans, they won’t calcu‐
late intermediate results in a different order from that discussed
here.

The general order of evaluation is shown in Table 8-1. SQL queries usually include
only a subset of possible clauses, so actual evaluation includes only the steps relevant
to the query.

Table 8-1. SQL query order of evaluation
1 FROM

including JOINs and their ON clauses
2 WHERE
3 GROUP BY

including aggregations
4 HAVING
5 Window functions
6 SELECT
7 DISTINCT
8 UNION
9 ORDER BY
10 LIMIT and OFFSET

First the tables in the FROM clause are evaluated, along with any JOINs. If the FROM
clause includes any subqueries, these are evaluated before proceeding to the rest of
the steps. In a JOIN, the ON clause specifies how the tables are to be JOINed, which
may also filter the result set.

FROM is always evaluated first, with one exception: when the
query doesn’t contain a FROM clause. In most databases, it’s possi‐
ble to query using only a SELECT clause, as seen in some of the
examples in this book. A SELECT-only query can return system
information such as the date and database version. It can also apply
mathematical, date, text, and other functions to constants. While
there is admittedly little use for such queries in final analyses, they
are handy for testing out functions or iterating over tricky calcula‐
tions rapidly.
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Next, the WHERE clause is evaluated to determine which records should be included
in further calculations. Note that WHERE falls early in the order of evaluation and so
cannot include the results of calculations that happen in a later step.

GROUP BY is calculated next, including the related aggregations such as count, sum,
and avg. As you might expect, GROUP BY will include only the values that exist in
the FROM tables after any JOINing and filtering in the WHERE clause.

HAVING is evaluated next. Since it follows GROUP BY, HAVING can perform filter‐
ing on aggregated values returned by GROUP BY. The only other way to filter by
aggregated values is to place the query in a subquery and apply the filters in the main
query. For example, we might want to find all the states that have at least one thou‐
sand terms in the legislators_terms table, and we’ll order by terms in descending
order for good measure:

SELECT state
,count(*) as terms
FROM legislators_terms
GROUP BY 1
HAVING count(*) >= 1000
ORDER BY 2 desc
;

state  terms
-----  -----
NY     4159
PA     3252
OH     2239
...    ...

Window functions, if used, are evaluated next. Interestingly, since aggregates have
already been calculated at this point, they can be used in the window function defini‐
tion. For example, in the legislators data set from Chapter 4, we could calculate
both the terms served per state and the average terms across all states in a single
query:

SELECT state
,count(*) as terms
,avg(count(*)) over () as avg_terms
FROM legislators_terms
GROUP BY 1
;

state  terms  avg_terms
-----  -----  ---------
ND     170    746.830
NV     177    746.830
OH     2239   746.830
...    ...    ...
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Aggregates can also be used in the OVER clause, as in the following query that ranks
the states in descending order by the total number of terms:

SELECT state
,count(*) as terms
,rank() over (order by count(*) desc)
FROM legislators_terms
GROUP BY 1
;

state  terms  rank
-----  -----  ----
NY     4159   1
PA     3252   2
OH     2239   3
...    ...    ...

At this point, the SELECT clause is finally evaluated. This is a little counterintuitive
since aggregations and window functions are typed in the SELECT section of the
query. However, the database has already taken care of the calculations, and the
results are then available for further manipulation or for display as is. For example, an
aggregation can be placed within a CASE statement and have mathematical, date, or
text functions applied if the result of the aggregation is one of those data types.

The aggregators sum, count, and avg return numeric values. How‐
ever, min and max functions return the same data type as the input
and use the inherent ordering of that data type. For example, min
and max dates return the earliest and latest calendar dates, while
min and max on text fields use alphabetical order to determine the
result.

Following SELECT is DISTINCT, if present in the query. This means that all the rows
are calculated and then deduplication occurs.

UNION (or UNION ALL) is performed next. Up to this point, each query that makes
up a UNION is evaluated independently. This stage is when the result sets are assem‐
bled together into one. This means that the queries can go about their calculations in
very different ways or from different data sets. All UNION looks for is the same num‐
ber of columns and for those columns to have compatible data types.

ORDER BY is almost the last step in evaluation. This means that it can access any of
the prior calculations to sort the result set. The only caveat is that if DISTINCT is
used, ORDER BY cannot include any fields that are not returned in the SELECT
clause. Otherwise, it is entirely possible to order a result set by a field that doesn’t
otherwise appear in the query.
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LIMIT and OFFSET are evaluated last in the query execution sequence. This ensures
that the subset of results returned will have fully calculated results as specified by any
of the other clauses that are in the query. This also means that LIMIT has somewhat
limited use in controlling the amount of work the database does before the results are
returned to you. This is perhaps most noticeable when a query contains a large OFF‐
SET value. In order to OFFSET by, say, three million records, the database still needs
to calculate the entire result set, figure out where the three millionth plus one record
is, and then return the records specified by the LIMIT. This doesn’t mean LIMIT isn’t
useful. Checking a few results can confirm calculations without overwhelming the
network or your local machine with data. Also, using LIMIT as early in a query as
possible, such as in a subquery, can still dramatically reduce the work required by the
database as you develop a more complex query.

Now that we have a good understanding of the order in which databases evaluate
queries and perform calculations, we’ll turn to some options for controlling these
operations in the context of a larger, complex query: subqueries, temporary tables,
and CTEs.

Subqueries
Subqueries are usually the first way we learn how to control the order of evaluation in
SQL, or to accomplish calculations that can’t be achieved in a single main query. They
are versatile and can help organize long queries into smaller chunks with discrete
purposes.

A subquery is enclosed in parentheses, a notation that should be familiar from math‐
ematics, where parentheses also force evaluation of some part of an equation prior to
the rest. Within the parentheses is a standalone query that is evaluated before the
main outer query. Assuming the subquery is in the FROM clause, the result set can
then be queried by the main code, just like any other table. We’ve already seen many
examples with subqueries in this book.

An exception to the standalone nature of a subquery is a special type called a lateral
subquery, which can access results from previous items in the FROM clause. A
comma and the keyword LATERAL are used instead of JOIN, and there is no ON
clause. Instead, a prior query is used inside the subquery. As an example, imagine we
wanted to analyze previous party membership for currently sitting legislators. We
could find the first year they were a member of a different party, and check how com‐
mon that is when grouped by their current party. In the first subquery, we find the
currently sitting legislators. In the second, lateral subquery, we use the results from
the first subquery to return the earliest term_start where the party is different from
the current party:
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SELECT date_part('year',c.first_term) as first_year
,a.party
,count(a.id_bioguide) as legislators
FROM
(
    SELECT distinct id_bioguide, party
    FROM legislators_terms
    WHERE term_end > '2020-06-01'
) a,
LATERAL
(
    SELECT b.id_bioguide
    ,min(term_start) as first_term
    FROM legislators_terms b
    WHERE b.id_bioguide = a.id_bioguide
    and b.party <> a.party
    GROUP BY 1
) c
GROUP BY 1,2
;

first_year  party        legislators
----------  ----------   -----------
1979.0      Republican   1
2011.0      Libertarian  1
2015.0      Democrat     1

This turns out to be fairly uncommon. Only three current legislators have switched
parties, and no party has had more switchers than other parties. There are other ways
to return the same result—for example, by changing the query to a JOIN and moving
the criteria in the WHERE clause of the second subquery to the ON clause:

SELECT date_part('year',c.first_term) as first_year
,a.party
,count(a.id_bioguide) as legislators
FROM
(
    SELECT distinct id_bioguide, party
    FROM legislators_terms
    WHERE term_end > '2020-06-01'
) a
JOIN
(
    SELECT id_bioguide, party
    ,min(term_start) as first_term
    FROM legislators_terms
    GROUP BY 1,2
) c on c.id_bioguide = a.id_bioguide and c.party <> a.party
GROUP BY 1,2
;
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1 Though in the case of Tableau, you can get around this with the Initial SQL option.

If the second table is very large, filtering by a value returned in a previous subquery
can speed up execution. In my experience, use of LATERAL is less common, and
therefore less well understood, than other syntax, so it’s good to reserve it for use
cases that can’t be solved efficiently another way.

Subqueries allow a lot of flexibility and control over the order of calculations. How‐
ever, a complex series of calculations in the middle of a larger query can become diffi‐
cult to understand and maintain. At other times, the performance of subqueries is too
slow, or the query won’t return results at all. Fortunately, SQL has some additional
options that may help in these situations: temporary tables and common table
expressions.

Temporary Tables
A temporary (temp) table is created in a similar way to any other table in the database,
but with a key difference: it persists only for the duration of the current session. Temp
tables are useful when you are working with only a small part of a very large table, as
small tables are much faster to query. They are also useful when you want to use an
intermediate result in multiple queries. Since the temp table is a standalone table, it
can be queried many times within the same session. Yet another time they are useful
is when you are working in certain databases, such as Redshift or Vertica, that parti‐
tion data across nodes. INSERTing data into a temp table can align the partitioning to
other tables that will be JOINed together in a subsequent query. There are two main
drawbacks to temp tables. First, they require database privileges to write data, which
may not be allowed for security reasons. Second, some BI tools, such as Tableau and
Metabase, allow only a single SQL statement to create a data set,1 whereas a temp
table requires at least two: the statement to CREATE and INSERT data into the temp
table and the query using the temp table.

To create a temporary table, use the CREATE command, followed by the keyword
TEMPORARY and the name you wish to give it. The table can then be defined and a
second statement used to populate it, or you can use CREATE as SELECT to create
and populate in one step. For example, you could create a temp table with the distinct
states for which there have been legislators:

CREATE temporary table temp_states
(
state varchar primary key
)
;

INSERT into temp_states
SELECT distinct state
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FROM legislators_terms
;

The first statement creates the table, while the second statement populates the temp
table with values from a query. Note that by defining the table first, I need to specify
the data type for all the columns (in this case varchar for the state column) and can
optionally use other elements of table definition, such as setting a primary key. I like
to prefix temp table names with “temp_” or “tmp_” to remind myself of the fact that
I’m using a temp table in the main query, but this isn’t strictly necessary.

The faster and easier way to generate a temp table is the CREATE as SELECT method:

CREATE temporary table temp_states
as
SELECT distinct state
FROM legislators_terms
;

In this case, the database automatically decides the data type based on the data
returned by the SELECT statement, and no primary key is set. Unless you need fine-
grained control for performance reasons, this second method will serve you well.

Since temp tables are written to disk, if you need to repopulate them during a session,
you will have to DROP and re-create the table or TRUNCATE the data. Disconnecting
and reconnecting to the database also works.

Common Table Expressions
CTEs are a relative newcomer to the SQL language, having been introduced into
many of the major databases only during the early 2000s. I wrote SQL for years
without them, making do with subqueries and temp tables. I have to say that since I
became aware of them a few years ago, they have steadily grown on me.

You can think of a common table expression as being like a subquery lifted out and
placed at the beginning of the query execution. It creates a temporary result set that
can then be used anywhere in the subsequent query. A query can have multiple CTEs,
and CTEs can use results from previous CTEs to perform additional calculations.

CTEs are particularly useful when the result will be used multiple times in the rest of
the query. The alternative, defining the same subquery multiple times, is both slow
(since the database needs to execute the same query several times) and error-prone.
Forgetting to update the logic in each identical subquery introduces error into the
final result. Since CTEs are part of a single query, they don’t require any special data‐
base permissions. They can also be a useful way to organize code into discrete chunks
and avoid sprawling nested subqueries.

The main drawback of CTEs arises from the fact that they are defined at the begin‐
ning, separate from where they are used. This can make a query more difficult to
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decipher for others when the query is very long, as it’s necessary to scroll to the
beginning to check the definition and then back to where the CTE is used to under‐
stand what is happening. Good use of comments can help with this. A second chal‐
lenge is that CTEs make execution of sections of long queries more difficult. To check
intermediate results in a longer query, it’s fairly easy to select and run just a subquery
in a query development tool. If a CTE is involved, however, all of the surrounding
code must be commented out first.

To create a CTE, we use the WITH keyword at the beginning of the overall query,
followed by a name for the CTE and then the query that makes it up enclosed in
parentheses. For example, we could create a CTE that calculates the first term for each
legislator and then use this result in further calculation, such as the cohort calculation
introduced in Chapter 4:

WITH first_term as
(
    SELECT id_bioguide
    ,min(term_start) as first_term
    FROM legislators_terms 
    GROUP BY 1
) 
SELECT date_part('year',age(b.term_start,a.first_term)) as periods
,count(distinct a.id_bioguide) as cohort_retained
FROM first_term a
JOIN legislators_terms b on a.id_bioguide = b.id_bioguide 
GROUP BY 1
;

periods  cohort_retained
-------  ---------------
0.0      12518
1.0      3600
2.0      3619
...      ...

The query result is exactly the same as that returned by the alternate query using sub‐
queries seen in Chapter 4. Multiple CTEs can be used in the same query, separated by
commas:

WITH first_cte as
(
    SELECT...
),
second_cte as
(
    SELECT...
)
SELECT...
;
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CTEs are a useful way to control the order of evaluation, improve performance in
some instances, and organize your SQL code. They are easy to use once you are
familiar with the syntax, and they are available in most major databases. There are
often multiple ways to accomplish something in SQL, and although not required,
CTEs add useful flexibility to your SQL skills toolbox.

grouping sets
Although this next topic isn’t strictly about controlling the order of evaluation, it is a
handy way to avoid UNIONs and get the database to do all the work in a single query
statement. Within the GROUP BY clause, special syntax is available in many major
databases that includes grouping sets, cube, and rollup (though Redshift is an
exception, and MySQL only has rollup). They are useful when the data set needs to
contain subtotals for various combinations of attributes.

For examples in this section, we’ll use a data set of video game sales that is available
on Kaggle. It contains attributes for the name of each game as well as the platform,
year, genre, and game publisher. Sales figures are provided for North America, the
EU, Japan, Other (the rest of the world), and the global total. The table name is video
game_sales. Figure 8-3 shows a sample of the table.

Figure 8-3. Sample of the videogame_sales table

So in the video game data set, for example, we might want to aggregate global_sales
by platform, genre, and publisher as standalone aggregations (rather than only the
combinations of the three fields that exist in the data) but output the results in one
query set. This can be accomplished by UNIONing together three queries. Note that
each query must contain at least placeholders for all three of the grouping fields:

SELECT platform
,null as genre
,null as publisher
,sum(global_sales) as global_sales
FROM videogame_sales
GROUP BY 1,2,3
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    UNION
SELECT null as platform
,genre
,null as publisher
,sum(global_sales) as global_sales
FROM videogame_sales
GROUP BY 1,2,3
    UNION
SELECT null as platform
,null as genre
,publisher
,sum(global_sales) as global_sales
FROM videogame_sales
GROUP BY 1,2,3
;

platform  genre      publisher        global_sales
--------  ------     ---------        ------------
2600      (null)     (null)           97.08
3DO       (null)     (null)           0.10
...       ...        ...              ... 
(null)    Action     (null)           1751.18
(null)    Adventure  (null)           239.04
...       ...        ...              ... 
(null)    (null)     10TACLE Studios  0.11
(null)    (null)     1C Company       0.10
...       ...        ...              ...

This can be achieved in a more compact query using grouping sets. Within the
GROUP BY clause, grouping sets is followed by the list of groupings to calculate.
The previous query can be replaced by:

SELECT platform, genre, publisher
,sum(global_sales) as global_sales
FROM videogame_sales
GROUP BY grouping sets (platform, genre, publisher)
;

platform  genre      publisher        global_sales
--------  ------     ---------        ------------
2600      (null)     (null)           97.08
3DO       (null)     (null)           0.10
...       ...        ...              ... 
(null)    Action     (null)           1751.18
(null)    Adventure  (null)           239.04
...       ...        ...              ... 
(null)    (null)     10TACLE Studios  0.11
(null)    (null)     1C Company       0.10
...       ...        ...              ...

The items inside the grouping sets parentheses can include blanks as well as
comma-separated lists of columns. As an example, we can calculate the global sales
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without any grouping, in addition to the groupings by platform, genre, and pub
lisher, by including a list item that is just a pair of parentheses. We’ll also clean up
the output by substituting “All” for the null items using coalesce:

SELECT coalesce(platform,'All') as platform
,coalesce(genre,'All') as genre
,coalesce(publisher,'All') as publisher
,sum(global_sales) as na_sales
FROM videogame_sales
GROUP BY grouping sets ((), platform, genre, publisher)
ORDER BY 1,2,3
;

platform  genre      publisher        global_sales
--------  ------     ---------        ------------
All       All        All              8920.44
2600      All        All              97.08
3DO       All        All              0.10
...       ...        ...              ... 
All       Action     All              1751.18
All       Adventure  All              239.04
...       ...        ...              ... 
All       All        10TACLE Studios  0.11
All       All        1C Company       0.10
...       ...        ...              ...

If we want to calculate all possible combinations of platform, genre, and publisher,
such as the individual subtotals just calculated, plus all combinations of platform and
genre, platform and publisher, and genre and publisher, we could specify all of these
combinations in the grouping sets. Or we can use the handy cube syntax, which
handles all of this for us:

SELECT coalesce(platform,'All') as platform
,coalesce(genre,'All') as genre
,coalesce(publisher,'All') as publisher
,sum(global_sales) as global_sales
FROM videogame_sales
GROUP BY cube (platform, genre, publisher)
ORDER BY 1,2,3
;

platform  genre      publisher        global_sales
--------  ------     ---------        ------------
All       All        All              8920.44
PS3       All        All              957.84
PS3       Action     All              307.88
PS3       Action     Atari            0.2
All       Action     All              1751.18
All       Action     Atari            26.65
All       All        Atari            157.22
...       ...        ...              ...
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A third option is the function rollup, which returns a data set that has combinations
determined by the ordering of fields in the parentheses, rather than all possible com‐
binations. So the previous query with the following clause:

GROUP BY rollup (platform, genre, publisher)

returns aggregations for the combinations of:

platform, genre, publisher
platform, genre
platform

But the query does not return aggregations for the combinations of:

platform, publisher
genre,publisher
genre
publisher

Although it is possible to create the same output using UNION, the grouping sets,
cube, and rollup options are big space and time savers when aggregations at multiple
levels are needed, because they result in fewer lines of code and fewer scans of the
underlying database tables. I once created a query hundreds of lines long using
UNIONs to generate output for a dynamic website graphic that needed to have all
possible combinations of filters precalculated. Quality checking it was an enormous
chore, and updating it was even worse. Leveraging grouping sets, and CTEs for that
matter, could have gone a long way toward making the code more compact and easy
to write and maintain.

Managing Data Set Size and Privacy Concerns
After taking care to properly work out the logic in our SQL, organize our code, and
make it efficient, we’re often faced with another challenge: the size of the result set.
Data storage is ever cheaper, meaning that organizations are storing ever-larger data
sets. Computational power is also always increasing, allowing us to crunch this data
in the sophisticated ways we’ve seen in previous chapters. However, bottlenecks still
occur, either in downstream systems such as BI tools or in the bandwidth available to
pass large data sets between systems. Additionally, data privacy is a major concern
that impacts how we handle sensitive data. For these reasons, in this section I’ll dis‐
cuss some ways to limit the size of data sets, as well as considerations for data privacy.

Sampling with %, mod
One way to reduce the size of a result set is to use a sample of the source data. Sam‐
pling means taking only a subset of the data points or observations. This is appropri‐
ate when the data set is large enough and a subset is representative of the entire
population. You can often sample website traffic and still retain most of the useful
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insights, for example. There are two choices to make when sampling. The first is the
size of the sample that achieves the right balance between reducing the size of the data
set and not losing too much critical detail. The sample might include 10%, 1%, or
0.1% of the data points, depending on the starting volume. The second choice is the
entity on which to perform the sampling. We might sample 1% of website visits, but if
the goal of the analysis is to understand how users navigate the website, sampling 1%
of website visitors would be a better choice in order to preserve all the data points for
the users in the sample.

The most common way to sample is to filter query results in the WHERE clause by
applying a function to an entity-level identifier. Many ID fields are stored as integers.
If this is the case, taking a modulo is a quick way to achieve the right result. The mod‐
ulo is the whole number remainder when one number is divided by another. For
example, 10 divided by 3 is equal to 3 with a remainder (modulo) of 1. SQL has two
equivalent ways to find the modulo—with the % sign and with the mod function:

SELECT 123456 % 100 as mod_100;

mod_100
-------
56

SELECT mod(123456,100) as mod_100;

mod_100
-------
56

Both return the same answer, 56, which is also the last two digits of the input value
123456. To generate a 1% sample of the data set, place either syntax in the WHERE
clause and set it equal to an integer—in this case, 7:

SELECT user_id, ...
FROM table
WHERE user_id % 100 = 7
;

A mod of 100 creates a 1% sample, while a mod of 1,000 would create a 0.1% sample,
and a mod of 10 would create a 10% sample. Although sampling in multiples of 10 is
common, it’s not required, and any integer will work.

Sampling from alphanumeric identifiers that include both letters and numbers isn’t as
straightforward as sampling purely numeric identifiers. String-parsing functions can
be used to isolate just the first or last few characters, and filters can be applied to
them. For example, we can sample only identifiers ending in the letter “b” by parsing
the last character from a string using the right function:
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SELECT user_id, ...
FROM table
WHERE right(user_id,1) = 'b'
;

Assuming that any upper- or lowercase letter or number is a possible value, this will
result in a sample of approximately 1.6% (1/62). To return a larger sample, adjust the
filter to allow multiple values:

SELECT user_id, ...
FROM table
WHERE right(user_id,1) in ('b','f','m')
;

To create a smaller sample, include multiple characters:

SELECT user_id, ...
FROM table
WHERE right(user_id,2) = 'c3'
;

When sampling, it’s worth validating that the function you use to
generate a sample does create a random or close-to-random sam‐
pling of the data. In one of my previous roles, we discovered that
certain types of users were more likely to have certain combina‐
tions of the last two digits in their user IDs. In this case, using the
mod function to generate a 1% sample resulted in noticeable bias in
the results. Alphanumeric identifiers in particular often have com‐
mon patterns at the beginning or end of the string that data profil‐
ing can help identify.

Sampling is an easy way to reduce data set size by orders of magnitude. It can both
speed up calculations within SQL statements and allow the final result to be more
compact, making it faster and easier to transfer to another tool or system. Sometimes
the loss of detail from sampling isn’t acceptable, however, and other techniques are
needed.

Reducing Dimensionality
The number of distinct combinations of attributes, or dimensionality, greatly impacts
the number of records in a data set. To understand this, we can do a simple thought
experiment. Imagine we have a field with 10 distinct values, and we count the num‐
ber of records and GROUP BY that field. The query will return 10 results. Now add in
a second field, also with 10 distinct values, count the number of records, and GROUP
BY the two fields. The query will return 100 results. Add in a third field with 10
distinct values, and the query result grows to 1,000 results. Even if not all the
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combinations of the three fields actually exist in the table queried, it’s clear that
adding additional fields into a query can increase the size of the results dramatically.

When performing analysis, we can often control the number of fields and filter the
values included in order to end up with a manageable output. However, when prepar‐
ing data sets for further analysis in other tools, the goal is often to provide flexibility
and therefore to include many different attributes and calculations. To retain as much
detail as possible while managing the overall size of the data, we can use one or more
grouping techniques.

Granularity of dates and times is often an obvious place to look to reduce the size of
data. Talk to your stakeholders to determine whether daily data is needed, for exam‐
ple, or whether weekly or monthly aggregations would work just as well. Grouping
data by month and day of week might be a solution to aggregating data while still
providing visibility into patterns that differ on weekdays versus weekends. Restricting
the length of time returned is always an option, but that can restrict exploration of
longer-term trends. I have seen data teams provide one data set that aggregates to a
monthly level and covers several years, while a companion data set includes the same
attributes but with daily or even hourly data for a much shorter time window.

Text fields are another place to check for possible space savings. Differences in spell‐
ing or capitalization can result in many more distinct values than are useful. Applying
text functions discussed in Chapter 5, such as lower, trim, or initcap, standardizes
values and usually makes data more useful for stakeholders as well. REPLACE or
CASE statements can be used to make more nuanced adjustments, such as adjusting
spelling or changing a name that has been updated to a new value.

Sometimes only a few values out of a longer list are relevant for analysis, so retaining
detail for those while grouping the rest together is effective. I have seen this fre‐
quently when working with geographic locations. There are close to two hundred
countries in the world, but often only a handful have enough customers or other data
points to make reporting on them individually worthwhile. The legislators data set
used in Chapter 4 contains 59 values for state, which includes the 50 states plus US
territories that have representatives. We might want to create a data set with detail for
the five states with the largest populations (currently California, Texas, Florida, New
York, and Pennsylvania), and then group the rest into an “other” category with a
CASE statement:

SELECT case when state in ('CA','TX','FL','NY','PA') then state 
            else 'Other' end as state_group
,count(*) as terms
FROM legislators_terms
GROUP BY 1
ORDER BY 2 desc
;
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state_group  count
-----------  -----
Other        31980
NY           4159
PA           3252
CA           2121
TX           1692
FL           859

The query returns only 6 rows, down from 59, which represents a significant
decrease. To make the list more dynamic, we can first rank the values in a subquery,
in this case by the distinct id_bioguide (legislator ID) values, and then return the
state value for the top 5 and “Other” for the rest:

SELECT case when b.rank <= 5 then a.state 
            else 'Other' end as state_group
,count(distinct id_bioguide) as legislators            
FROM legislators_terms a 
JOIN
(
    SELECT state
    ,count(distinct id_bioguide)
    ,rank() over (order by count(distinct id_bioguide) desc) 
    FROM legislators_terms
    GROUP BY 1
) b on a.state = b.state
GROUP BY 1
ORDER BY 2 desc
;

state_group  legislators
-----------  -----------
Other        8317
NY           1494
PA           1075
OH           694
IL           509
VA           451

Several of the states change in this second list. If we continue to update the data set
with fresh data points, the dynamic query will ensure that the output always reflects
the current top values.

Dimensionality can also be reduced by transforming the data into flag values. Flags
are usually binary (i.e., they have only two values). BOOLEAN TRUE and FALSE can
be used to encode flags, as can 1 and 0, “Yes” and “No,” or any other pair of meaning‐
ful strings. Flags are useful when a threshold value is important, but detail beyond
that is less interesting. For example, we might want to know whether or not a website
visitor completed a purchase, but detail on the exact number of purchases is less
important.
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In the legislators data set, there are 28 distinct numbers of terms served by the leg‐
islators. Instead of the exact value, however, we might want to include in our output
only whether a legislator has served at least two terms, which we can do by turning
the detailed values into a flag:

SELECT case when terms >= 2 then true else false end as two_terms_flag
,count(*) as legislators
FROM
(
    SELECT id_bioguide
    ,count(term_id) as terms
    FROM legislators_terms
    GROUP BY 1
) a
GROUP BY 1
;

two_terms_flag  legislators
--------------  -----------
false           4139
true            8379

About twice as many legislators have served at least two terms as compared to those
with only one term. When combined with other fields in a data set, this type of trans‐
formation can result in much smaller result sets.

Sometimes a simple true/false or presence/absence indicator is not quite enough to
capture the needed nuance. In this case, numeric data can be transformed into several
levels to maintain some additional detail. This is accomplished with a CASE state‐
ment, and the return value can be a number or string.

We might want to include not only whether a legislator served a second term but also
another indicator for those who served 10 or more terms:

SELECT 
case when terms >= 10 then '10+'
     when terms >= 2 then '2 - 9'
     else '1' end as terms_level
,count(*) as legislators
FROM
(
    SELECT id_bioguide
    ,count(term_id) as terms
    FROM legislators_terms
    GROUP BY 1
) a
GROUP BY 1
;
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terms_level  legislators
-----------  -----------
1            4139
2 - 9        7496
10+          883

Here we have reduced 28 distinct values down to 3, while retaining the notion of
single-term legislators, those who were reelected, and the ones who are exceptionally
good at staying in office. Such groupings or distinctions occur in many domains. As
with all the transformations discussed here, it may take some trial and error to find
the exact thresholds that are most meaningful for stakeholders. Finding the right bal‐
ance of detail and aggregation can greatly decrease data set size and therefore often
speeds delivery time and performance of the downstream application.

PII and Data Privacy
Data privacy is one of the most important issues facing data professionals today.
Large data sets with many attributes allow for more robust analysis with detailed
insights and recommendations. However, when the data set is about individuals, we
need to be mindful of both the ethical and the regulatory dimensions of the data col‐
lected and used. Regulations around the privacy of patients, students, and financial
services customers have existed for many years. Laws regulating the data privacy
rights of consumers have also come into force in recent years. The General Data Pro‐
tection Regulation (GDPR) passed by the EU is probably the most widely known.
Other regulations include the California Consumer Privacy Act (CCPA), the Austral‐
ian Privacy Principles, and Brazil’s General Data Protection Law (LGPD).

These and other regulations cover the handling, storage, and (in some cases) deletion
of personally identifiable information (PII). Some categories of PII are obvious: name,
address, email, date of birth, and Social Security number. PII also includes health
indicators such as heart rate, blood pressure, and medical diagnoses. Location infor‐
mation, such as GPS coordinates, is also considered PII, since a small number of GPS
locations can uniquely identify an individual. For example, GPS readings at my house
and at my children’s school could uniquely identify someone in my household. A
third GPS point at my office could uniquely identify me. As a data practitioner, it’s
worthwhile to become familiar with what these regulations cover and to discuss how
they affect your work with the privacy lawyers at your organization, who will have the
most up-to-date information.

A best practice when analyzing data that includes PII is to avoid including the PII
itself in the outputs. This can be accomplished by aggregating data, substituting val‐
ues, or hashing values.
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For most analyses, the goal is to find trends and patterns. Counting customers and
averaging their behavior, rather than including individual detail in the output, is
often the purpose. Aggregations generally remove PII; however, be aware that a com‐
bination of attributes that have a user count of 1 could potentially be tied back to an
individual. These can be treated as outliers and removed from the result in order to
maintain a higher degree of privacy.

If individual data is needed for some reason—to be able to calculate distinct users in a
downstream tool, for instance—we can replace problematic values with random
alternate values that maintain uniqueness. The row_number window function can be
used to assign a new value to each individual in a table:

SELECT email
,row_number() over (order by ...) 
FROM users
;

The challenge in this case is to find a field to put in the ORDER BY that makes the
ordering sufficiently random such that we can consider the resulting user identifier
anonymized.

Hashing values is another option. Hashing takes an input value and uses an algorithm
to create a new output value. A particular input value will always result in the same
output, making this a good option for maintaining uniqueness while obscuring sensi‐
tive values. The md5 function can be used to generate a hashed value:

SELECT md5('my info');

md5
--------------------------------
0fb1d3f29f5dd1b7cabbad56cf043d1a

The md5 function hashes input values but does not encrypt them,
and therefore it can be reversed to obtain the original value. For
highly sensitive data, you should work with a database administra‐
tor to truly encrypt the data.

Avoiding PII in the output of your SQL queries is always the best option if possible,
since you avoid proliferating it into other systems or files. Replacing or masking the
values is a second-best option. You can also explore secure methods to share data,
such as developing a secured data pipeline directly between a database and an email
system to avoid writing email addresses out to files, for example. With care and part‐
nership with technical and legal colleagues, it is possible to achieve high-quality anal‐
ysis while also preserving individuals’ privacy.
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Conclusion
Surrounding every analysis, there are a number of decisions to be made around
organizing the code, managing complexity, optimizing query performance, and safe‐
guarding privacy in the output. In this chapter, we’ve discussed a number of options
and strategies and special SQL syntax that can help with these tasks. Try not to get
overwhelmed by all of these options or to become concerned that, without mastery of
these topics, you can’t be an efficient data analyst or data scientist. Not all of the tech‐
niques are required in every analysis, and there are often other ways to get the job
done. The longer you spend analyzing data with SQL, the more likely you are to come
across situations in which one or more of these techniques come in handy.
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CHAPTER 9

Conclusion

Throughout the book, we’ve seen how SQL is a flexible and powerful language for a
range of data analysis tasks. From data profiling to time series, text analysis, and
anomaly detection, SQL can tackle a number of common requirements. Techniques
and functions can also be combined in any given SQL statement to perform experi‐
ment analysis and build complex data sets. While SQL can’t accomplish all analysis
goals, it fits well into the ecosystem of analysis tools.

In this final chapter, I’ll discuss a few additional types of analysis and point out how
various SQL techniques covered in the book can be combined to accomplish them.
Then I’ll wrap up with some resources that you can use to continue your journey of
mastering data analysis or to dig deeper into specific topics.

Funnel Analysis
A funnel consists of a series of steps that must be completed to reach a defined goal.
The goal might be registering for a service, completing a purchase, or obtaining a
course completion certificate. Steps in a website purchase funnel, for example, might
include clicking the “Add to Cart” button, filling out shipping information, entering a
credit card, and finally clicking the “Place Order” button.

Funnel analysis combines elements of time series analysis, discussed in Chapter 3,
and cohort analysis, discussed in Chapter 4. The data for funnel analysis comes from
a time series of events, although in this case those events correspond to distinct real-
world actions rather than being repetitions of the same event. Measuring retention
from step to step is a key goal of funnel analysis, although in this context we often use
the term conversion. Typically, entities drop out along the steps of the process, and a
graph of their number at each stage ends up looking like a household funnel—hence
the name.
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This type of analysis is used to identify areas of friction, difficulty, or confusion. Steps
at which large numbers of users drop out, or that many fail to complete, provide
insight into opportunities for optimization. For example, a checkout process that asks
for credit card information before showing the total amount including shipping
might turn off some would-be purchasers. Showing the total before this step may
encourage more purchase completions. Such changes are often subjects of experi‐
ments, discussed in Chapter 7. Funnels can also be monitored in order to detect
unexpected external events. For example, changes in completion rates might corre‐
spond to good (or bad) PR or to a change in the pricing or tactics of a competitor.

The first step in a funnel analysis is to figure out the base population of all users, cus‐
tomers, or other entities that were eligible to enter the process. Next, assemble the
data set of completion for each step of interest, including the final goal. Often this
includes one or more LEFT JOINs in order to include all of the base population, along
with those who completed each step. Then count the users in each step and divide
these step-wise counts by the total count. There are two ways to set up the queries,
depending on whether all steps are required.

When all steps in the funnel are required—or if you only want to include users who
have completed all steps—LEFT JOIN each table to the previous table:

SELECT count(a.user_id) as all_users
,count(b.user_id) as step_one_users
,count(b.user_id) / count(a.user_id) as pct_step_one
,count(c.user_id) as step_two_users
,count(c.user_id) / count(b.user_id) as pct_one_to_two
FROM users a
LEFT JOIN step_one b on a.user_id = b.user_id
LEFT JOIN step_two c on b.user_id = c.user_id
;

When users can skip a step, or if you want to allow for this possibility, LEFT JOIN
each table to the one containing the full population and calculate the share of that
starting group:

SELECT count(a.user_id) as all_users
,count(b.user_id) as step_one_users
,count(b.user_id) / count(a.user_id) as pct_step_one
,count(c.user_id) as step_two_users
,count(c.user_id) / count(b.user_id) as pct_step_two
FROM users a
LEFT JOIN step_one b on a.user_id = b.user_id
LEFT JOIN step_two c on a.user_id = c.user_id
;

It’s a subtle difference, but it’s one worth paying attention to and tailoring to the spe‐
cific context. Consider including time boxes, to only include users who complete an
action within a specific time frame, if users can reenter the funnel after a lengthy
absence. Funnel analyses can also include additional dimensions, such as cohort or
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other entity attributes, to facilitate comparisons and generate additional hypotheses
about why a funnel is or is not performing well.

Churn, Lapse, and Other Definitions of Departure
The topic of churn came up in Chapter 4, since churn is  essentially the opposite of
retention. Often organizations want or need to come up with a specific definition of
churn in order to measure it directly. In some cases, there is a contractually defined
end date, such as with B2B software. But often churn is a fuzzier concept, and a time-
based definition is more appropriate. Even when there is a contractual end date,
measuring when a customer stops using a product can be an early warning sign of an
imminent contract cancellation. Churn definitions can also be applied to certain
products or features, even when the customer doesn’t churn from the organization
entirely.

A time-based churn metric counts customers as churned when they haven’t pur‐
chased or interacted with a product for a period of time, usually ranging from 30 days
to as much as a year. The exact length depends a lot on the type of business and on
typical usage patterns. To arrive at a good churn definition, you can use gap analysis
to find typical periods between purchases or usage. To do gap analysis, you will need
a time series of actions or events, the lag window function, and some date math.

As an example, we can calculate the typical gaps between representatives’ terms, using
the legislators data set introduced in Chapter 4. We’ll ignore the fact that politicians
are often voted out of office rather than choosing to leave, since otherwise this data
set has the right structure for this type of analysis. First we’ll find the average gap. To
do this, we create a subquery that calculates the gap between the start_date and the
previous start_date for each legislator for each term, and then we find the average
value in the outer query. The previous start_date can be found using the lag func‐
tion, and the gap as a time interval is calculated with the age function:

SELECT avg(gap_interval) as avg_gap
FROM
(
    SELECT id_bioguide, term_start
    ,lag(term_start) over (partition by id_bioguide 
                           order by term_start) 
                           as prev
    ,age(term_start,
         lag(term_start) over (partition by id_bioguide 
                               order by term_start)
         ) as gap_interval
    FROM legislators_terms
    WHERE term_type = 'rep'
) a
WHERE gap_interval is not null
;
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avg_gap
-------------------------------------
2 years 2 mons 17 days 15:41:54.83805

As we might expect, the average is close to two years, which makes sense since the
term length for this office is two years. We can also create a distribution of gaps in
order to pick a realistic churn threshold. In this case, we’ll transform the gap to
months:

SELECT gap_months, count(*) as instances
FROM
(
    SELECT id_bioguide, term_start
    ,lag(term_start) over (partition by id_bioguide 
                           order by term_start) 
                           as prev
    ,age(term_start,
         lag(term_start) over (partition by id_bioguide 
                               order by term_start)
         ) as gap_interval
    ,date_part('year',
               age(term_start,
                   lag(term_start) over (partition by id_bioguide
                                         order by term_start)
                   )
              ) * 12
     + 
     date_part('month',
               age(term_start,
                   lag(term_start) over (partition by id_bioguide 
                                         order by term_start)
                   )
              ) as gap_months
    FROM legislators_terms
    WHERE term_type = 'rep'
) a
GROUP BY 1
;

gap_months  instances
----------  ---------
1.0         25
2.0         4
3.0         2
...         ...

If date_part is not supported in your database, extract can be used as an alternative.
(Refer to Chapter 3 for an explanation and examples.) The output can be plotted, as
in Figure 9-1. Since there is a long tail of months, this plot is zoomed in to show the
range in which most gaps fall. The most common gap is 24 months, but there are also
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several hundred instances per month out to 32 months. There is another small bump
to over 100 at 47 and 48 months. With the average and distribution in hand, I would
likely set a threshold of either 36 or 48 months and say that any representative who
hasn’t been reelected within this window has “churned.”

Figure 9-1. Distribution of length of gap between representative term start dates, show‐
ing range from 10 to 59 months

Once you have a defined threshold for churn, you can monitor the customer base
with a “time since last” analysis. This can refer to last purchase, last payment, last
time an app was opened, or whatever time-based metric is relevant for the organiza‐
tion. For this calculation, you need a data set that has the most recent date or time‐
stamp for each customer. If starting with a time series, first find the most recent
timestamp for each customer in a subquery. Then apply date math to find the time
elapsed between that date and the current date, or the latest date in the data set if
some time has elapsed since the data was assembled.

For example, we could find the distribution of years since the last election from the
legislators_terms table. In the subquery, calculate the latest starting date using the
max function and then find the time elapsed since then using the age function. In this
case, the maximum data in the data set, May 5, 2019, is used. In a data set with up-to-
date data, substitute current_date or an equivalent expression. The outer query finds
the years from the interval using date_part and counts the number of legislators:

SELECT date_part('year',interval_since_last) as years_since_last
,count(*) as reps
FROM
(
    SELECT id_bioguide
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    ,max(term_start) as max_date
    ,age('2020-05-19',max(term_start)) as interval_since_last
    FROM legislators_terms
    WHERE term_type = 'rep'
    GROUP BY 1
) a
GROUP BY 1
;

years_since_last  reps
----------------  -----
0.0               6
1.0               440
2.0               1
...               ...

A related concept is “lapsed,” which is often used as an intermediate stage between
fully active customers and churned customers and might alternatively be called “dor‐
mant.” A lapsed customer may be at higher risk of churning because we haven’t seen
them for a while but still have a decent likelihood of returning based on our past
experience. In consumer services, I’ve seen “lapsed” cover periods from 7 to 30 days,
with “churned” being defined as a customer not using the service for more than 30
days. Companies often experiment with reactivating lapsed users, using tactics rang‐
ing from email to support team outreach. Customers in each state can be defined by
first finding their “time since last” as above and then tagging them with a CASE state‐
ment using the appropriate number of days or months. For example, we can group
the representatives according to how long ago they were elected:

SELECT 
case when months_since_last <= 23 then 'Current'
     when months_since_last <= 48 then 'Lapsed'
     else 'Churned' 
     end as status
,sum(reps) as total_reps     
FROM
(
    SELECT 
    date_part('year',interval_since_last) * 12 
      + date_part('month',interval_since_last)
      as months_since_last
    ,count(*) as reps
    FROM
    (
        SELECT id_bioguide
        ,max(term_start) as max_date
        ,age('2020-05-19',max(term_start)) as interval_since_last
        FROM legislators_terms
        WHERE term_type = 'rep'
        GROUP BY 1
    ) a
    GROUP BY 1
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) a
GROUP BY 1
;

status    total_reps
-------   ----------
Churned   10685
Current   446
Lapsed    105

This data set contains more than two hundred years of legislator terms, so of course
many of the people included have died, and some are still living but are retired. In the
context of a business, we would hope that our churned customers didn’t outnumber
our current customers by such a wide margin, and we would want to know more
about the lapsed customers.

Most organizations are very concerned about churn, since customers are generally
more expensive to acquire than to retain. To learn more about the customers in any
status or about the range of time since last seen, these analyses can be further sliced
by any of the customer attributes available in the data set.

Basket Analysis
I have three kids, and when I go to the grocery store, my basket (or more often my
shopping cart) fills up quickly with grocery items to feed them for the week. Milk,
eggs, and bread are usually in there, but other items might change depending on what
produce is in season, whether the kids are in school or on break, or if we’re planning
to cook a special meal. Basket analysis takes its name from the practice of analyzing
the products consumers buy together to find patterns that can be used for marketing,
store placement, or other strategic decisions. The goal of a basket analysis may be to
find groups of items purchased together. It can also be framed around a particular
product: when someone buys ice cream, what else do they buy?

Although basket analysis was originally framed around items purchased together in a
single transaction, the concept can be extended in several ways. A retailer or an
ecommerce store might be interested in the basket of items a customer purchases
across their lifetime. Services and product feature usage can also be analyzed in this
fashion. Services that are commonly purchased together might be bundled into a new
offering, such as when travel sites offer deals if a flight, hotel, and rental car are
booked together. Product features that are used together might be placed in the same
navigation window or used to make suggestions for where to go next in an applica‐
tion. Basket analysis can also be used to identify stakeholder personas, or segments,
which are then used in other types of analysis.

To find the most common baskets, using all items in a basket, we can use the
string_agg function (or an analogous one, depending on the type of database—see
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Chapter 5). For example, imagine we have a purchases table that has one row for
each product bought by a customer_id. First, use the string_agg function to find
the list of products purchased by each customer in a subquery. Then GROUP BY this
list and count the number of customers:

SELECT products
,count(customer_id) as customers
FROM
(
    SELECT customer_id
    ,string_agg(product,', ') as products
    FROM purchases
    GROUP BY 1
) a
GROUP BY 1
ORDER BY 2 desc
;

This technique works well when there is a relatively small number of possible items.
Another option is to find pairs of products purchased together. To do this, self-JOIN
the purchases table to itself, JOINing on the customer_id. The second JOIN condi‐
tion solves the problem of duplicate entries that differ only in their order. For exam‐
ple, imagine a customer who purchased apples and bananas—without this clause, the
result set would include “apples, bananas” and “bananas, apples.” The clause b.prod
uct > a.product ensures only one of these variations is included and also filters out
results in which a product is matched with itself:

SELECT product1, product2
,count(customer_id) as customers
FROM
(
    SELECT a.customer_id
    ,a.product as product1
    ,b.product as product2
    FROM purchases a
    JOIN purchases b on a.customer_id = b.customer_id 
    and b.product > a.product
) a
GROUP BY 1,2
ORDER BY 3 desc
;

This can be extended to include three or more products by adding additional JOINs.
To include baskets that contain only one item, change the JOIN to a LEFT JOIN.

There are a few common challenges when running a basket analysis. The first is per‐
formance, particularly when there is a large catalog of products, services, or features.
The resultant calculations can become slow on the database, particularly when the
goal is to find groups of three or more items, and thus the SQL contains three
or more self-JOINs. Consider filtering the tables with WHERE clauses to remove
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infrequently purchased items before performing the JOINs. Another challenge occurs
when a few items are so common that they swamp all other combinations. For exam‐
ple, milk is so frequently purchased that groups with it and any other item top the list
of combinations. The query results, while accurate, may still be meaningless in a
practical sense. In this case, consider removing the most common items entirely,
again with a WHERE clause, before performing the JOINs. This should have the
added benefit of improving query performance by making the data set smaller.

A final challenge with basket analysis is the self-fulfilling prophecy. Items that show
up together in a basket analysis may then be marketed together, increasing the fre‐
quency with which they are purchased together. This may strengthen the case to mar‐
ket them together further, leading to more copurchasing, and so on. Products that are
even better matches may never have a chance, simply because they didn’t appear in
the original analysis and become candidates for promotion. The famous beer and dia‐
pers correlation is only one example of this. Various machine learning techniques and
large online companies have tried to tackle this problem, and there are plenty of
interesting directions for analysis in this area still to be developed.

Resources
Data analysis as a profession (or even as a hobby!) requires a mix of technical profi‐
ciency, domain knowledge, curiosity, and communication skills. I thought I would
share some of my favorite resources so that you might draw on them as you continue
your journey, both to learn more and to practice your new skills on real data sets.

Books and Blogs
Although this book assumes a working knowledge of SQL, good resources for the
basics or for a refresher are:

• Forta, Ben. Sams Teach Yourself SQL in 10 Minutes a Day. 5th ed. Hoboken, NJ:
Sams, 2020.

• The software company Mode offers a SQL tutorial with an interactive query
interface, useful for practicing your skills.

There is no single universally accepted SQL style, but you may find the SQL Style
Guide and the Modern SQL Style Guide useful. Note that their styles don’t exactly
match those used in this book, or each other. I believe that using a style that is both
consistent with itself and readable is the most important consideration.
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Your approach to analysis and to communicating the results can often matter just as
much as the code you write. Two good books for sharpening both aspects are:

• Hubbard, Douglas W. How to Measure Anything: Finding the Value of “Intangi‐
bles” in Business. 2nd ed. Hoboken, NJ: Wiley, 2010.

• Kahneman, Daniel. Thinking, Fast and Slow. New York: Farrar, Straus and
Giroux, 2011.

The Towards Data Science blog is a great source for articles about many analysis top‐
ics. Although many of the posts there focus on Python as a programming language,
approaches and techniques can often be adapted to SQL.

For an amusing take on correlation versus causation, see Tyler Vigen’s Spurious
Correlations.

Regular expressions can be tricky. If you’re looking to increase your understanding or
to solve complex cases not covered in this book, a good resource is:

• Forta, Ben. Learning Regular Expressions. Boston: Addison-Wesley, 2018.

Randomized testing has a long history and touches many fields across the natural and
social sciences. Compared to statistics, however, analysis of online experiments is still
relatively new. Many classic statistics texts give a good introduction but discuss prob‐
lems in which the sample size is very small, so they fail to address many of the unique
opportunities and challenges of online testing. A couple of good books that discuss
online experiments are:

• Georgiev, Georgi Z. Statistical Methods in Online A/B Testing. Sofia, Bulgaria: self-
published, 2019.

• Kohavi, Ron, Diane Tang, and Ya Xu. Trustworthy Online Controlled Experiments:
A Practical Guide to A/B Testing. Cambridge, UK: Cambridge University Press,
2020.

Evan Miller’s Awesome A/B Tools has calculators for both binary and continuous
outcome experiments, as well as several other tests that may be useful for experiment
designs beyond the scope of this book.

Data Sets
The best way to learn and improve your SQL skills is to put them to use on real data.
If you are employed and have access to a database within your organization, that’s a
good place to start since you probably already have context on how the data is pro‐
duced and what it means. There are plenty of interesting public data sets that you can
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analyze instead, however, and these range across a wide variety of topics. Listed below
are a few good places to start when looking for interesting data sets:

• Data Is Plural is a newsletter of new and interesting data sets, and the Data Is Plu‐
ral archive is a searchable treasure trove of data sets.

• FiveThirtyEight is a journalism site that covers politics, sports, and science
through a data lens. The data sets behind the stories are on the FiveThirtyEight
GitHub site.

• Gapminder is a Swedish foundation that publishes yearly data for many human
and economic development indicators, including many sourced from the World
Bank.

• The United Nations publishes a number of statistics. The UN’s Department of
Economic and Social Affairs produces data on population dynamics in a rela‐
tively easy-to-use format.

• Kaggle hosts data analysis competitions and has a library of data sets that can be
downloaded and analyzed even outside of the formal competitions.

• Many governments at all levels, from national to local, have adopted the open
data movement and publish various statistics. Data.gov maintains a list of sites
both in the United States and around the world that is a good starting point.

Final Thoughts
I hope you’ve found the techniques and code in this book useful. I believe that it’s
important to have a good foundation in the tools you’re using, and there are many
useful SQL functions and expressions that can make your analyses faster and more
accurate. Developing great analysis skills isn’t just about learning the latest fancy tech‐
niques or language, however. Great analysis comes from asking good questions; tak‐
ing the time to understand the data and the domain; applying appropriate analysis
techniques to come up with high-quality, reliable answers; and finally, communicat‐
ing the results to your audience in a way that is relevant and supports decision mak‐
ing. Even after almost 20 years of working with SQL, I still get excited about finding
new ways to apply it, new data sets to apply it to, and all of the insights in the world
patiently waiting to be discovered.
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Symbols
! (exclamation point) negation operator in reg‐

ular expressions, 204
% (percent sign)

modulo operator, 309
wildcard matching with LIKE, 195

() (parentheses)
enclosing expressions in regular expres‐

sions, 209
in SQL code, 293
using to control order of operations, 197

* (asterisk)
matching multiple characters in regular

expressions, 205
matching zero or more times in regular

expressions, 207
+ (plus sign)

addition operator, 70
concatenation operator, 68
matching one or more times in regular

expressions, 207
- (dash), indicating range of characters in regu‐

lar expressions, 206
-- (double dash) single line comments in SQL,

292
. (period), matching any single character in reg‐

ular expressions, 204
/* */ comment for multiple lines of code, 292
:: (double colon) operator, 190
? (question mark), matching zero or more

times in regular expressions, 207
[] (brackets), enclosing character class in regu‐

lar expressions, 205
\ (backslash)

escape character in pattern matching, 195
escape character in regular expressions, 208

\A, matching beginning of string in regular
expressions, 211

\n line feed or newline, 209
\r carriage return, 209
\s space in regular expressions, 209
\y at beginning and end of patterns in regular

expressions, 210
\Z, matching end of string in regular expres‐

sions, 211
_ (underscore), wildcard matching character,

195
{} (curly braces), matching a character set in

regular expressions, 207
|| (concatenation) operator, 44, 219
~ (tilde)

alternatives to, functions, 212
comparator in regular expressions, 204
~* making comparator case insensitive, 204

ʌ (caret), negating pattern matches in regular
expressions, 208

– (minus sign) subtraction operator, 69

A
A/A tests, 278
A/B testing, 122, 267
absence of data, anomalies from, 258-260
active user calculations, 96
age function, 128, 321
aggregate functions

aggregation returning one row per entity, 39
in cohort analysis, 123
followed by frequency count, 30
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HAVING clause filtering aggregation value,
37

pivoting data with, 114
in retention analysis, 127
in time series calculations, 95
use in creating histograms, 31
use in OVER clause, 299
use with CASE to pivot or unpivot, 54
window functions, 34

aggregate metric, 123
aggregations, 25

in GROUP BY clause, order of evaluation,
298

in indexing of time series data, 91
performing on records containing string

pattern, 199
PII and, 315

aliases, 25
ALTER commands, 6
Amazon Redshift, 15
AND operator, 196

using with OR, controlling order of opera‐
tions, 197

AND/OR logic in CASE statements, 40
anomaly detection, 227-266

applying to experiment analysis, 278
capabilities and limits of SQL for, 228
detecting outliers, 230-249

calculating percentiles and standard
deviations, 234-241

graphing to find anomalies, 241-249
sorting to find anomalies, 231-234

forms of anomalies, 250-260
absence of data, 258-260
anomalous counts or frequencies,

254-258
anomalous values, 250

handling anomalies, 260-266
investing cause of, 260
removing anomalies, 260
replacement with alternate values, 262
rescaling, 264-266

sources of anomalies, 227
USGS earthquakes data set, 229

anomaly, defined, 227
approximate_percentile function, 238
ASC (ascending) or DESC (descending) sort

order, 236
at time zone, 63

Atom text editor, 296
avg function, 31, 103, 118, 261

B
bar graphs, 241
basket analysis, 323-325
BETWEEN clause, 73
BI (business intelligence) tools, 52

allowing only one SQL statement to create a
data set, 302

capabilities of, 291
SQL queries embedded into, 288

BIGINT type, 20
binary outcome events, 284
binary outcome experiments, 272-274

changing continuous success metric to
binary outcome, 278

bins (or buckets), 31-33
arbitrary- and fixed-size bins, 32
using n-tiles for, 33-35

BLOB type, 20
BOOLEAN type, 21

LIKE and ILIKE giving TRUE/FALSE
results, 198

TRUE/FALSE values for flags, 312
using to create flags, 42

box plots, 245

C
California Consumer Privacy Act (CCPA), 3
capitalization

case insensitivity in SQL code, 292
case sensitivity in pattern matching, 196
differences in capitalization in data, 252
in SQL code, 293

cardinality, 252
Cartesian JOINs, 25, 93

calculating rolling time windows with
sparse or missing data, 104

forcing when subqueries don't have fields in
common, 148

self-JOIN leveraging, 106
CASE statements, 25

cleaning data with CASE transformations,
39-42

combined with aggregate functions, pivot‐
ing with, 81

combined with IN list, 253
creating bins with, 31
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pivoting data with, 53-55
replacing nulls with alternative values, 46
setting nonconforming records to null, 191
transforming numeric data into several lev‐

els, 313
using LIKE operator, 197
using to avoid division by zero, 93
using to exclude extreme values, 261
using to return current month's value

without date dimension, 103
using to substitute a default value, 262, 263
variants assigned via, 283

cast function
changing data type with, 43
field as type syntax, 190

casting, 190
date or timestamp values to date format, 68

causality, 267
nonexperimental analyses and, 286

causation versus correlation, 269, 326
CCPA (California Consumer Privacy Act), 3
CHAR type, 20
chi-squared test, 272-274
churn, 319-323
clauses

capitalization of main clauses, 294
order of evaluation, 296-300

cleaning data, 39-52
alternatives to CASE statement, 41
cleaning text fields, 177
dealing with nulls, 45-47
missing data, 47-52
using CASE transformations, 39-42
using casting and type conversions, 42-45

CLOB type, 21
CLTV (customer lifetime value), 124, 163
coalesce function, 46, 133, 222, 262, 275
code organization, 292-296

commenting code, 292
formatting tricks for, 293
storing code, 296

cohort analysis, 121-174, 317
about, 122
cohorts, 122-124

cohort grouping, 122
segments versus, 123

cross-section analysis, through cohort lens,
166-174

cumulative calculations, 163-166

ensuring that absences in data are noticed,
258

performing on variants in experiment anal‐
ysis, 281

retention, 127-153
returnship or repeat purchase behavior,

158-163
survivorship, 154-158
time boxing, 279

cohort grouping, 122
cohorted variant system, 273

too many/too few cohorts, 277
cohorting system, 268
cohorts

defining from a separate table, 142-146
defining from dates other than first date,

151-153
deriving from time series itself, 137-142

column-store databases, 15
comments, 292

rules of thumb for commenting, 292
common table expressions (see CTEs)
comparators in regular expressions, 204
composite key, 14
computations, organizing, 296-308

order of SQL clause evaluation, 296-300
subqueries, 300-302
temporary tables, 302
using CTEs, 303-305

concat function, 219, 221
concatenation

assembling date or timestamp from parts,
68

concatenating strings, 44
creating new text with, 218-222

concat_ws function, 219
confidence levels, 274, 276
contingency tables, 272

example for onboarding completions, 273
continuous metrics, 274

outliers in, 278
continuous outcome events, 284
control group, 268, 277, 284
convert_timezone or convert_tz function, 64
Coordinated Universal Time (see UTC)
correlations, 267

causation versus, 269, 326
costs of experiments, 276
count function
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avoiding nulls in results, 55
count distinct, 29
in frequency queries, 28
using other aggregate functions instead of,

31
count of observations, 274
counts or frequencies (anomalous), 254-258
CREATE statements, 6

creating temporary table, 302
cross-section analysis, through cohort lens,

166-174
CTEs (common table expressions), 303-305
cube root (cbrt) function, 266
cube syntax (in GROUP BY), 305, 307
cumulative calculations, 124, 163-166

calculating cumulative values in rolling time
windows, 104-107

cumulative lifetime value, 163
(see also CLTV)

current date or time, getting, 64
CURRENT ROW, 100
current_timestamp function, 259
customer lifetime value (see CLTV)
cyclicality, day of week, 107

D
daily snapshot tables, 289
data analysis, 17

about, 1-3
benefits of SQL for, 7
database types and, 12
industries engaging in, 2
reasons for not doing, 3
resources for further learning, 325-327
SQL in workflow, 9-12
SQL versus other tools, 291

data binning (see bins)
Data Control Language (DCL), 6
Data Definition Language (DDL), 5
data dictionaries, 19
data infrastructure, 13

taking advantage of increases in computing
power, 7

types other than databases, 16
data lakes, 10, 16
data marts, 10

(see also data warehouses)
data preparation (see preparing data)
data privacy, 314-315

data quality, 35-39
deduplication with GROUP BY and DIS‐

TINCT, 38
detecting duplicates, 36-38

Data Query Language (DQL), 5
data sets, complex, creating for analysis, 287

managing data set size and privacy con‐
cerns, 308-315
PII and data privacy, 314-315
reducing dimensionality, 310-314
sampling with %, mod, 308-310

organizing computations, 296-308
putting logic in other tools, 290
using an ETL instead of SQL, 288
when to use SQL for, 287

data sets, resources for, 326
data stores, 10

NoSQL, 17
data types, 20-25

casting and type conversions, using in data
cleaning, 42-45

converting, 190
database types, 20-21
first-, second-, and third-party data, 23
quantitative versus qualitative data, 22
sparse data, 24
specifying for columns in temporary table,

303
structured versus unstructured data, 22

data warehouses, 10
databases, 12-16

automatic conversions of data types with
type coercion, 44

column-store, 15
data types, 20
interacting with, SQL as de facto standard, 7
listing GROUP BY fields, 26
order of operations, 296
overview of organization and database

objects, 5
performance benefits of, 290
queries on, controlling size with LIMIT and

sampling, 26
query optimizers, 297
regular expression implementations, 212
row-store, 13
SQL harnessing power of, 176
text in, 175
time zone information system tables, 64
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using temporary tables with, 302
views and materialized views, 290

DataFrames (Python), 8
date dimension, 102
date function, converting dates to/from strings,

44
DATE type

casting to a TIMESTAMP, 44
datediff function, 69

replacing age and date_part in retention
analysis, 129

dates and times, 62-73
casting fields into timestamps and dates, 190
converting in/out of date or datetime for‐

mats with to_datatype functions, 44
date and datetime type conversions, 43
date dimension table, 50
date, datetime, and time manipulations

date and timestamp format conversions,
64-68

date math, 68-71
joining data from different sources,

72-73
time math, 71-72
time zone conversions, 62

dates entered as strings, 284
granularity of, adjusting to reduce data size,

311
time-based churn metric, 319

datetime types, 20, 21
date_add or dateadd function, 71
date_format function, 65
date_from_parts or datefromparts function, 68
date_part function, 66, 70, 114, 320

in PARTITION BY clause, 112, 118
in retention analysis, 128

date_trunc function, 65, 254
DAU (daily active users), 96
day of week cyclicality, 107
day-time intervals, 69
dbplyr (R), 9
DBVisualizer editor, 295
DCL (Data Control Language), 6
DDL (Data Definition Language), 5
decimals

DECIMAL type, 20
rounding to various decimal places, 32

DELETE commands, 6
deletes, 6

in column-store databases, 15
delimiters, 223
denormalization, 14
dialects of SQL, 6
difference, ratio, and percent difference

between time series in data set, 82
dimensionality, reducing, 310-314
DISTINCT keyword

order of evaluation, 299
using in removing duplicates, 38
using to select dates needed, 104

distributions of data, 27-35
binning, 31-33
histograms and frequencies, 28
n-tiles, 33-35

division by zero, 93
double colon (::) operator, 190
DOUBLE type, 20
DQL (Data Query Language), 5
DROP statements, 6

deleting a table, 303
duplicates

deduplication with GROUP BY and DIS‐
TINCT, 38

detecting, 36-38

E
earthquakes data set (USGS), 229
EDA (exploratory data analysis), 28
editors (SQL), 296
ELSE statements, 31, 55
ELT (extract, load, transform), 11
empty strings, 46

nulls versus, 191
escape character, backslash (\) in regular

expressions, 208
ethical considerations with data, 3
ETL (extract, transform, load), 6, 11

drawbacks to, 289
using instead of SQL for complex data sets,

288
views as alternative to, 290

experiment analysis, 267-286
alternatives to controlled experiments, 282

analysis of populations around a thres‐
hold, 286

natural experiment analysis, 284
pre-/post-analysis, 282
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challenges with experiments and rescues for
flawed experiments, 276-282
outliers, 278
repeated exposure experiments, 280
time boxing, 279
variant assignment, 277-278

elements of experiments
hypotheses, 267
random assignments to control or var‐

iant group, 268
success metrics, 267

SQL's strengths and limits in, 269
types of experiments, 272-276

experiments with binary outcomes,
272-274

experiments with continuous outcomes,
274-276

why correlation is not causation, 269
exploratory data analysis (EDA), 28
extract function, 66, 254, 259, 320

F
field name notation, GROUP BY fields, 26
file storage systems, 16

HDFS, 16
fill forward and fill backward, 49
filling in missing data, 48
first-, second-, and third-party data, 23
first_value window function, 129, 140
flagging data, using CASE statements, 41
flags, 312

summarizing presence or absence of prop‐
erties, 21

FLOAT type, 20
forecasting, 61
frame clauses, 99

example specification, 99
and rows they include, 101, 118

frame_end, 100
frame_exclusion option, 100
frame_start, 100
frequencies, 28

anomalous, 254-258
frequency plots, 29
FROM clause, 25

order of evaluation, 297
FULL OUTER JOIN, 25

UNION ALL as alternative to, 57

functions, aggregate and special, in window
functions, 34

funnel analysis, 317-319
future time periods, calculating moving aver‐

ages for, 101

G
gap analysis, 319-322
General Data Protection Regulation (GDPR), 3
generate_series function, 50

returning desired dates, 133
geographical types, 21
GPS location information, 314
GRANT commands, 6
graphs

of retention curves, using to compare
cohorts, 127

of time series data, 75
tools for, 241
using to find anomalies, 241-249

bar graph, 241
box plot, 245
scatter plot, 243

Greenwich Mean Time (GMT), 63
ground truth, comparing data against, 36
GROUP BY clause, 26, 87

creating histogram by age, 29
in frequency queries, 28
grouping sets, 306
order of evaluation, 298
special syntax, grouping sets, cube, and

rollup, 305
using in deduplication, 38
using to find anomalies in subsets of data,

233
using with string_agg, 223

grouping sets, 305-308
groups (frame type), 100
guardrail metrics, 268

H
Hadoop distributed filesystem (HDFS), 16
hashing values, 315
HAVING clause

alternative to subquery, 37
order of evaluation, 298

HDFS (Hadoop distributed filesystem), 16
histograms, 29, 241
hypotheses, 267

334 | Index



I
identifiers, 14, 30

sampling on, 309-310
ILIKE operator, 196
imputation techniques, 48
IN operator, 40, 200-203

CASE statement combined with, 253
NOT IN, 200

indentation in code, 294
indexes

for database tables, 14
revealing percent of change over time, 90-94

initcap function, 187
INNER JOIN, 25, 275, 277
INSERT commands, 6
integers

converting to strings, 43
INT, SMALLINT, and BIGINT types, 20

interquartile range, 245
intervals

addition with dates, 70
in date math, 69
finding number of months component, 70
multiplying, 72
requested date and time parts, 67
subtracting from dates, 70
subtracting from times, 72
subtracting times to result in, 72

investigation into cause of anomalies, 260
IoT (Internet of Things), 12
ISO (International Organization for Stand‐

ards) , 4

J
JavaScript, 53
JOINs

in basket analysis, 324
Cartesian JOIN in standard deviation calcu‐

lation, 240
combining date and time data from differ‐

ent sources, 72-73
date math in JOIN conditions, 71
to date series or data dimension, 258
duplicates created by hidden many-to-many

JOIN, 36
JOIN conditions and JOIN types, 25
LEFT JOIN, 224
LIKE operator in JOIN...ON clauses, 197
ON clause, 297

restricting entities included for experiment,
277

sales months table joined to date dimension,
102

self-JOIN, 86, 88
leveraging a Cartesian JOIN, 106

unusual JOIN clause in indexing time series
data, 93

using on date dimensions, 51
values derived through text transformations

as criteria, 198
JSON

databases' support of, 21
using to deal with sparse data, 24

K
key-value stores, 17
keywords, 292

coloration in SQL query editor, 295

L
lag function, 116, 319

using in YoY and MoM comparisons,
109-111

using to fill in missing data, 49
using with partitioning to compare same

month versus last year, 112-115
lapse, 322
lateral subqueries, 300
laws regulating data privacy, 314
lead function, 109, 259

calculating term_end data, 136
using to fill in missing data, 49

left function, 182-183
LEFT JOIN, 25, 273, 275

in funnel analysis, 318
legislators data set, 125-126

reducing dimensionality of, 311-314
length function, 179
LIKE operator, 195-200

NOT LIKE, 196
using in CASE statement, 197
using in SELECT clause, 197

LIMIT clause, 26
order of evaluation, 300

listagg function, 223
location information, 314
logarithms

conversions to log scale, 264
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log function, 33, 264
using to create bins, 33

long-term holdout, 281
lower function, 187
LTM (last twelve months), 95
LTV (lifetime value), 124, 163

M
machine learning (ML), 177, 178

feeding SQL into ML algorithms, 12
outputting data for ML models, 53
Python and R, benefits for, 291

magnitude, 230
make_date or makedate function, 68, 133
manual steps, avoiding, 291
Mash Until No Good (Mung), 19
materialized views, 290
Matplotlib, 241
MAU (monthly active users), 96
max function, 31, 35, 114, 259
md5 function, 315
mean, 274, 284
median function, 34, 234, 238
min function, 31, 35

turning into window function, 140
missing data, 47-52

calculating rolling time windows with, 104
filling in for time series to increase retention

accuracy, 131-137
misspellings, detecting, 253
mix shifts, 166
ML (see machine learning)
mobile devices, 12
mod (modulus) function, 27, 309
modulo operator (%), 309
MoM (month-over-month) comparisons,

109-111
moving calculations, 95

(see also rolling time windows)
moving average, 101
in time series calculations, 95

MSSQL, 6
multiple comparisons problem, 268

N
n-tiles, 33-35, 235-238
natural experiment analysis, 284
natural language processing (NLP), 176

machine learning approaches best for, 178

newlines, 292
matching in regular expressions, 209

NLP (natural language processing), 176
nonstandard values, standardizing, 39
normalization, 14
NoSQL, 17
NOT IN operator, 200
NOT LIKE operator, 196
NOT operator, 196
novelty effects, 281
nullif function, 47
nulls, 275

avoiding in sum aggregation results using
else 0, 54

dealing with in data cleaning, 45-47
empty strings versus, 191
replacing with coalesce or CASE statements,

219
substituting a value for, 307
WHERE clause filter to remove, 82

numeric types, 20
nvl function, 46

O
OFFSET clause, 300
offset FOLLOWING, 100
offset PRECEDING, 100
offsets, 100, 104, 109

in lag function, 109
(see also lag)

no offset provided to lag, 116
UTC, 63

ON clause, 297
“one-and-done experiences”, 280
online experiments, 268, 326
opportunity cost, 276
OR operator, 47, 201

using with AND, controlling order of opera‐
tions, 197

Oracle SQL, 6
ORDER BY clause, 91

changing from ascending to descending sort
order, 109

controlling sorting in percent_rank, 234
in lag function, 109
not required in sum window function, 87
order of evaluation, 299
in percentile calculations, 236
sorting data to find anomalies, 231-234
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using GROUP BY with, 233
in string_agg function, 222
in window functions, 34

order of evaluation
controlling with subqueries, 300-302
SQL clauses in queries, 296-300

OUTER JOIN, 253
outliers, 227

(see also anomaly detection)
in continuous outcome experiments, 278

OVER clause, 234
aggregate functions in, 299
OVER...PARTITION BY... syntax, 237
in window functions, 34

overstuffed fields, 181
parsing into several new fields, 181

P
pandas package (Python), 8
parsing data with SQL, 182-186
PARTITION BY clause, 87, 91

date_part function in, 112, 118
first_value function returning first record

in, 129
in lag function, 109
percent_rank function and, 234
in window functions, 34

partitioning or grouping of data in window, 96
parts of dates or times, 66

creating date from parts from different
sources, 67

full list of date parts, 67
pattern matching, 195-203

(see also regular expressions)
exact matches with IN and NOT IN opera‐

tors, 200-203
using LIKE, ILIKE and NOT LIKE, 195-200

percentages
indexing to show percent of change over

time, 90-94
percent of total, calculating for time series

data, 86
in retention analysis, 127

finding percent retained, 129
percentiles, 245

calculating, 234-238
outliers set to specific percentile of the data,

263
winsorizing and, 264

percentile_cont function, 236
median function and, 238

percentile_disc function, 236
percent_rank function, 35, 234
performance

database performance issues with JOIN
using text parsing as criteria, 198

factors for SQL queries, 288
percentile and median functions, 238
regex_split_to_table and similar functions,

225
period-over-period comparisons

for multiple prior periods, 116-119
same month versus last year, 112-115
YoY and MoM, 109-111

PII (personally identifiable information),
314-315

pivoting and unpivoting data
for graphing with SQL, 241
pivot and unpivot functions, 57-59
pivoting data with aggregate functions, 114,

115
pivoting using CASE statements with aggre‐

gate functions, 81
pivoting with CASE statements, 53-55
unpivoting with UNION statements, 55-57

population sizes, 284
populations, analysis around a threshold, 286
position notation, GROUP BY fields, 26
POSIX syntax, regular expressions

comparators, 204
databases and, 212

PostgreSQL (or Postgres), 6
dividing integers, 21
generate_series function in Postgres, 50
unnest function in Postgres, 58

pre-/post-analysis, 282
preparing data, 19-59

cleaning data, 39-52
profiling distributions, 27-35
shaping data, 52-59

primary keys, 14
privacy concerns with data, 3, 314-315
profiling

creation of trend as step in, 75
data quality, 35-39
distributions, 27-35

Python, 53, 229, 291
SQL or R versus, 8-9
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SQL queries embedded in, 288

Q
qualitative analysis, 176
quantitative analysis, 176
quantitative versus qualitative data, 22
queries (SQL)

limiting size of results with LIMIT and sam‐
pling, 26

structure of, 25-27
query optimizers, 297

R
R language, 53, 229, 291

SQL or Python versus, 8-9
SQL queries embedded in, 288

range (frame type), 100
range, rows, and groups (frame type), 100
ranges in regular expressions, 206
ratios, 84
reciprocal transformation, 266
regexp_like function, 212
regexp_matches function, 213, 215
regexp_replace function, 215, 217-218
regexp_split_to_table function, 223
regexp_substr function, 213
regression discontinuity design (RDD), 286
regression to the mean, 281
regular expressions, 203-218

finding and replacing with, 212-218
matching character set multiple times, sym‐

bols for, 207
matching whitespace characters, 209
range patterns, 206
using parentheses to enclose patterns, 209

relational databases, 4
removal of anomalies, 260
repeat purchase behavior, 158

(see also returnship)
repeated exposure experiments, 280
replace function, 192, 253

using with regexp_replace, 218
replacement of anomalous values, 262
replacing text in strings, 216
repository, storing ETL code in, 289
rescaling values, 264-266
reserved words, 292
reshaping text, 222-225
Retail Sales data set, 74

retention, 124, 127-153
adjusting time series to increase accuracy of,

131
analyzing, main question in, 127
basic retention curve, SQL for, 128-131
cohorts derived from time series itself,

137-142
dealing with sparse cohorts, 146-150
defining cohort from separate table, 142-146
defining cohorts from dates other than first

date, 151-153
as success metric, 267

returnship, 124
analysis of, 158-163

REVOKE commands, 6
right function, 27, 309
RIGHT JOIN, 25
rlike function, 212
rolling time windows, 95-107

calculating, 97-102
calculating cumulative values, 104-107
important pieces in calculations, 95
with sparse data, 102-104

rollup function, 305, 308
round function, 32, 264
rounding, 32
row-store databases, 13
rows (frame type), 100
row_number function, 315
rule-based systems, 177

S
SaaS (see software as a service)
sampling, 27, 308-310
scatter plots, 243
seasonality

analyzing data with, 107-119
comparing to multiple prior periods,

116-119
period-over-period comparisons, same

month versus last year, 112-115
period-over-period comparisons, YoY

and MoM, 109-111
time scales, 107

second-party data, 23
segments versus cohorts, 123
SELECT clause, 5, 25

date math in, 71
LIKE operator in, 197
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order of evaluation, 299
SELECT-only queries, 297

self-JOIN, 86
in indexing of time series data, 91
moving average calculation using, 101
series of, using to index without window

functions, 92
window functions versus in calculating

moving aggregations, 101
semistructured data, 22, 175, 181
sentiment analysis, 178
separators, 219
shaping data, 52-59, 222

for different outputs, 52
pivot and unpivot functions, 57-59
pivoting with CASE statements, 53-55
unpivoting with UNION statements, 55-57

significant digits, 250
SMALLINT type, 20
Snowflake (database), 15
snowflake schema, 15
software as a service (SaaS)

data sourced from vendors, 23, 73
retention curves measuring subscription

revenue, 127
sparse data, 24

dealing with sparse cohorts, 146-150
detection with frequency queries, 28
rolling time windows with, 102-104

split testing, 267
split_part function, 183-186, 257
split_to_table function, 223
spreadsheets, 290
SQL, 4-12

benefits of, 7
capabilities and limits for anomaly detec‐

tion, 228
capabilities for text analysis, 176
code organization, 292-296
in data analysis workflow, 9-12
finding key values for box plot with, 247
limitations for text analysis, 177
many benefits for working with data, 17
query editors, query formatting, 295
query structure, 25
versus R or Python, 8-9
resources for further learning, 325
standards, 4

strengths and limits for experiment analysis,
269

strengths in using for complex data sets, 287
sublanguages, 5
variations or dialects, 6

SQL editors, 296
SQLAlchemy (Python), 9
square root (sqrt) function, 266
standard deviations, 238-241, 274, 284

and z-scores for normal distribution, 239
star schema, 14
statistical analysis, 12, 291
statistical significance, SQL unable to calculate,

269
statistics packages, outputting data for, 53
stddev function, 239
stddev_pop function, 239
stddev_samp function, 239
stop words, 224
storing code, 296
string types, 20
strings, 175

(see also text analysis)
capitalizing initial character, 187
changing case with upper and lower func‐

tions, 187
converting integers to, 43
dates entered as, databases recognizing, 284
empty, 191
removing blank spaces at beginning and

end, 189
removing characters from beginning or end

with trim, 189
replacing text in, 192

string_agg function, 222-223
structured data, 175

versus unstructured data, 22
structuring text fields, 177
subqueries, 300-302

HAVING clause versus in duplicate detec‐
tion, 37

multiple in a query, commenting, 293
placing intermediate calculation in, 82
self-JOIN in, 88

subscription-based contexts, start and end
dates, 137

success metrics, 267
continuous, 274
importance of agreeing on up front, 276
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multiple, for an experiment, 268
in online experiments, 268

survivorship, 124
analysis of, 154-158

survivorship bias, 123, 167
system time, 64

T
t-test, 274-276
table aliases, 25

joining, 106
TEMPORARY keyword, 302
temporary tables, 302
term-based contexts, start and end dates, 136
text analysis, 23, 175-226

about, 176
constructing and reshaping text, 218-225
finding elements within larger blocks of

text, 195-218
exact matches using IN and NOT IN,

200-203
using regular expressions, 203-218
wildcard matches with LIKE and ILIKE,

195-200
goals or strategies, 176
parsing text, 182-186
text characteristics, 179-181
text transformations, 187-195
UFO sightings data set, 178
use cases for SQL, 176
use cases SQL is not good for, 177

text fields, data size reduction in, 311
TEXT type, 20
THEN condition, 31
third normal form, 14
third-party data, 24
threshold, analysis of populations around, 286
tidy data, 53
time, 43

(see also dates and times)
math with, 71-72
standard time period arguments, 65

time boxes, 158, 279, 318
time series analysis, 61-119, 317

about, 61
analyzing with seasonality, 107-119
date, datetime, and time manipulations,

62-73
finding trends in the data, 75-94

Retail Sales data set, 74
rolling time windows, 95-107
showing anomalous counts or frequencies,

254-258
time series data

adjusting to increase retention accuracy,
131-137

for cohort analysis basic retention curve,
128-131

in cohort analysis, 122
cohorts derived from, 137-142

TIME type, 21
time zones

caution with when combining data from
different sources, 73

conversions, 62
UTC offset for local time zones, 63

information system tables in databases, 64
TIMESTAMP type, 21

casting to/from DATE, 44
timestamps, 259

creating from separate date and time com‐
ponents, 68

functions returning only that portion of
current system time, 65

interchangeablility with dates, 66
reducing granularity with date_trunc, 65
slightly out of sync in data from different

sources, 73
to_char function, 67, 114
to_datatype functions, 44
to_date function, 68
transactional databases, 13

(see also row-store databases)
transformations

nonobvious, commenting on, 293
rescaling values, 264
scale, other types of, 266
text, 187-195
transforming data into flag values, 312

trending data, 75-94
indexing to see percent change over time,

90-94
percent of total, calculating, 86
simple trends, 75-77

trends
analysis of, 174
correlation between cohort characteristics

and, 122
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trim function, 253
removing blank spaces at beginning and end

of strings, 189
removing characters from beginning or end

of strings, 189
trunc function, 254
truncating dates and times, 65, 254
TTM (trailing twelve months), 95
two-sample t-test, 274

(see also t-test)
type coercion, 44
type conversions, 43

(see also data types)

U
UFO sightings data set, 178
UNBOUNDED FOLLOWING, 100
UNBOUNDED keyword, 100
UNBOUNDED PRECEDING, 100
UNION clauses

combining three queries, 305
creating same output as grouping sets, cube,

and rollup, 308
UNION and UNION ALL, order of evalua‐

tion, 299
UNION statements

unpivoting with, 55-57
UNION versus UNION ALL, 57

uniqueness, enforcing in tables with primary
key, 14

Unix epochs, 67
unnest function (Postgres), 58
unpivot function, 58
unstructured data, 175

structured data versus, 22
updates

in column-store databases, 15
UPDATE command, 6

upper function, 187
US Congress, legislators data set, 125
US Geological Survey (USGS), earthquakes

data set, 229
US retail sales data set, 74

(see also Retail Sales data set)
user-defined functions (UDFs), 269
UTC (Coordinated Universal Time), 63

considerations when joining data from dif‐
ferent sources, 73

drawback to, 63

offset for local time zones, 63

V
values, anomalous, 250
VARCHAR type, 20, 179

converting integers to, 43
variant assignment, 268, 277-278

in natural experiment analysis, 285
in pre-/post-analysis, 283

variant cohorting system, 268
Vertica (database), 15
views as alternative to ETL, 290
visualizations, 12, 53

(see also graphs)

W
WAU (weekly active users), 96
WHEN condition, 31
WHERE clause, 26

date math in, 71
filtering data to remove null values, 82
filtering query results for sampling, 309
filtering records with LIKE operator, 195
nulls in, 47
OR and AND operators in, 197
order of evaluation, 298
removing anomalous records, 261
restricting users cohorted for experiment,

277
whitespace

matching in regular expressions, 209
splitting text on, 224
in SQL, 292
using in SQL code formatting, 294

wildcard matches using LIKE and ILIKE opera‐
tors, 195-200

window functions, 34, 86, 88
calculating moving average, 101
calculating rolling time windows with

advantages over JOINs, 107
in indexing of time series data, 91
n-tile functions, 34
order of evaluation in SQL code, 298
PARTITION BY statement, 96
percentile_cont and percentile_disc, 236
use for moving calculations

self-JOINs versus, 101
windows, 95

(see also rolling time windows)
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size of in rolling time series, 95
winsorization, 263, 278
WITHIN GROUP clause, 236

Y
year-month intervals, 69

YoY (year-over-year) comparisons, 109-111
YTD (year-to-date), 95

Z
z-scores, 239, 264
zero (0), division by, 93
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