Structural detailing in steel

A comparative study of British, European and American codes and practices

M. Y. H. Bangash

Thomas Telford

Published by Thomas Telford Publishing, Thomas Telford Ltd, 1 Heron Quay, London E14 4JD. URL: http://www.t-telford.co.uk

Distributors for Thomas Telford books are USA: ASCE Press, 1801 Alexander Bell Drive, Reston, VA 20191-4400, USA Japan: Maruzen Co. Ltd, Book Department, 3–10 Nihonbashi 2-chome, Chuo-ku, Tokyo 103 Australia: DA Books and Journals, 648 Whitehorse Road, Mitcham 3132, Victoria

First published 2000

A catalogue record for this book is available from the British Library

ISBN: 0 7277 2850 4

© M. Y. H. Bangash, 2000

All rights, including translation, reserved. Except as permitted by the Copyright, Designs and Patents Act 1988, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of the Books Publisher, Thomas Telford Publishing, Thomas Telford Ltd, 1 Heron Quay, London E14 4JD.

This book is published on the understanding that the author is solely responsible for the statements made and opinions expressed in it and that its publication does not necessarily imply that such statements and/or opinions are or reflect the views or opinions of the publishers. While every effort has been made to ensure that the statements made and the opinions expressed in this publication provide a safe and accurate guide, no liability or responsibility can be accepted in this respect by the authors or publishers.

Typeset by APEK Digital Imaging, Bristol Printed and bound in Great Britain by MPG Books, Bodmin, Cornwall

Contents

Preface	iv
Acknowledgements	v
Metric conversions	vi
Definitions	vii
Introduction to codes	ix
List of comparative symbols	xiv
1. Introduction	1
2. Structural steel	4
3. Draughting practice for detailers	18
4. Bolts and bolted joints	34
5. Welding	51
6. Design detailing of major steel components	67
7. Steel buildings—case studies	115
8. Steel bridges—case studies	170
Appendix. Section properties	213
Bibliography	235
British Standards and other standards	237
ASTM Standards	239

Preface

This steel detailing manual has been prepared to provide practical and up to date information on various aspects of steel construction for educators, designers, draughtsmen, detailers, fabricators and all others who have an interest in structural steelwork.

The text covers the full scope of structural detailing in the UK, Europe and the USA. The text covers the fundamentals of drawing, continuing with draughting practice and connections, the types of fastenings and the conventional methods of detailing components. Individual case studies are included.

The types of structure covered represent the bulk of the typical fabricator's work in commercial and industrial buildings, bridges, tanks, hydraulic and offshore structures and power structures. Examples of steel detailing in CAD format are included in some of the chapters.

Many of the drawings included are typical and, with minimal alteration, can be adopted directly from the book and attached to individual drawings based on a special code.

This book should serve both as a primer for trainee detailers and as a reference manual for more experienced personnel. Engineers, architects and contractors will find the book useful for daily use and practice.

M. Y. H. Bangash

Acknowledgements

The author acknowledges his appreciation to friends, colleagues and some students who have assisted in the early development of this book. The author has received a great deal of assistance and encouragement from the research organisations, engineering companies, consultants and constructors in steelwork and computer-aided design bureaus referred to in this book. The author is particularly indebted to the following:

British Standards Institute, UK American Institute of Steel Construction, USA European Union Group for EC3 Code, Brussels, Belgium American State Highways and Transportation Officials American Society for Testing of Materials Highway Agency, UK Ward and Cole, Consultants, UK Strucad, Derby, UK Swindell Dresseler Corp., Pittsburgh, USA Master Series, Northern Ireland, UK American Society of Civil Engineers, USA The Steel Construction Institute, UK

The author is extremely grateful to Mike Chrimes, the Chief Librarian of the Institution of Civil Engineers, London for providing facilities and support to complete this book.

Certain valuable research materials were provided by the Institution of Structural Engineers, London and they are acknowledged.

The author is especially indebted to Dr F. Bangash for the preparation of artwork included in this text.

The author is grateful to Mr Shyam Shrestha of ASZ Partners, Ilford, for taking the trouble to type the manuscript.

Metric conversions

Overall geometry

Spans	1 ft=0·3048 m
Displacements	1 in. = 25.4 mm
Surface area	$1 \text{ ft}^2 = 0.0929 \text{ m}^2$
Volume	$1 \text{ ft}^3 = 0.0283 \text{ m}^3$
	$1 \text{ yd}^3 = 0.765 \text{ m}^3$
Structural properties	
Cross-sectional dimensions	1 in.=25.4 mm
Area	$1 \text{ in.}^2 = 645 \cdot 2 \text{ mm}^2$
Section modulus	1 in. ³ =16.39×10 ³ mm ³
Moment of inertia	1 in. ⁴ = $0.4162 \times 10^6 \text{ mm}^4$
Material properties	
Density	$1 \text{ lb/ft}^3 = 16.03 \text{ kg/m}^3$
Modulus of elasticity and stress	$1 \text{ lb/in.}^2 = 0.006895 \text{ MPa}$
	1 kip/in. 2 =6.895 MPa
Loadings	
Concentrated loads	1 lb=4·448 N
	1 kip = 1000 lbf = 4.448 kN
Density	$1 \text{ lb/ft}^3 = 0.1571 \text{ kN/m}^3$
Linear loads	1 kip/ft = 14.59 kN/m
Surface loads	$1 \text{ lb/ft}^2 = 0.0479 \text{ kN/m}^2$
	$1 \text{ kip/ft}^2 = 47.9 \text{ kN/m}^2$

Definitions

The European code EC3 gives a list of terms common to all the Structural Eurocodes, as well as some which apply only to steelwork. The Eurocodes use a number of new or unfamiliar expressions, for example the word 'action' is used to describe a load or imposed deformation. The following are the common definitions used in practically all codes dealing with structural steel.

Beam A member predominantly subject to bending.

Buckling resistance Limit of force or moment which a member can withstand without buckling.

Capacity Limit of force or moment which may be applied without causing failure due to yielding or rupture.

Column A vertical member of a structure carrying axial load and possibly moments.

Compact cross-section A cross-section which can develop the plastic moment capacity of the section but in which local buckling prevents rotation at constant moment.

Dead load All loads of constant magnitude and position that act permanently, including self-weight.

Design strength The yield strength of the material multiplied by the appropriate partial factor.

Effective length Length between points of effective restraint of a member multiplied by a factor to take account of the end conditions and loading.

Elastic design Design which assumes no redistribution of moments due to plastic rotation of a section throughout the structure.

Empirical method Simplified method of design justified by experience or testing.

Factored load Specified load multiplied by the relevant partial factor.

H-section A section with one central web and two equal flanges which has an overall depth not greater than 1.2 times the width of the flange.

I-section Section with central web and two equal flanges which has an overall depth greater than 1.2 times the width of the flange.

Imposed load Load on a structure or member other than wind load, produced by the external environment and intended occupancy or use.

Lateral restraint For a beam: restraint which prevents lateral movement of the compression flange. For a column: restraint which prevents lateral movement of the member in a particular plane.

Plastic cross-section A cross-section which can develop a plastic hinge with sufficient rotation capacity to allow redistribution of bending moments within the structure.

Plastic design Design method assuming redistribution of moments in continuous construction.

Semi-compact cross-section A cross-section in which the stress in the extreme fibres should be limited to yield because local buckling would prevent development of the plastic moment capacity in the section.

Serviceability limit states Those limit states which when exceeded can lead to the structure being unfit for its intended use.

Slender cross-section A cross-section in which yield of the extreme fibres cannot be attained because of premature local buckling.

Slenderness The effective length divided by the radius of gyration.

Strength Resistance to failure by yielding or buckling.

Strut A member of a structure carrying predominantly compressive axial load.

Ultimate limit state That state which if exceeded can cause collapse of part or the whole of the structure.

Introduction to codes

The structural design of steelwork is based on BS 5950 in the UK and countries following this code. The title of this code is given below:

BS 5950 Structural use of steelwork in building.

This section has been compiled to help designers in the UK and USA to appreciate the principal differences and similarities of applying Eurocode 3: Part 1.1 (EC3) (originally European standard ENV 1993-1-1). This code will eventually become mandatory in Europe and the UK. It will, in future, supersede BS 5950 which has the following nine parts:

- Part 1 Code of practice for design in simple and continuous construction: hot-rolled sections
- Part 2 Specification for materials, fabrication and erection: hot-rolled sections
- Part 3 Code of practice for design in composite construction
- Part 4 Code of practice for design of floors with profiled steel sheeting
- Part 5 Code of practice for design in cold-formed sections
- Part 6 Code of practice for design in light gauge sheeting, decking and cladding
- Part 7 Specification for materials and workmanship: cold-formed sections
- Part 8 Code of practice for design of the protection for structural steelwork
- Part 9 Code of practice for stressed skin design

The full range of Structural Eurocodes follows:

- Eurocode 1 Basis of design and actions on structures
- Eurocode 2 Design of concrete structures
- Eurocode 3 Design of steel structures
- Eurocode 4 Design of composite steel and concrete structures

Eurocode 5 Design of timber structures

Eurocode 6 Design of masonry structures

Eurocode 7 Geotechnical design of structures

Eurocode 8 Earthquake resistance of structures

Eurocode 9 Design of aluminium structures

The codes will be issued by national standards organisations, such as BSI. The first part of EC3 to be prepared was Part 1.1 General rules for building. Other parts which are being prepared or are planned are given below:

Part 1.2 Fire resistance

- Part 1.3 Cold-formed thin gauge members and sheeting
- Part 2 Bridges and plated structures
- Part 3 Towers, masts and chimneys
- Part 4 Tanks, silos and pipelines
- Part 5 Piling
- Part 6 Crane structures
- Part 7 Marine and maritime structures
- Part 8 Agricultural structures

BS 5950 and EC3 together with the US codes on steel are classified by subject title. The designers/detailers and conventional and CAD technicians will find the classification extremely useful.

British and European Standards

BS 4:	Structural steel sections
Part 1: 1980	
BS 639: 1986	Specification for hot-rolled sections
BS 039. 1980	Specification for covered carbon and carbon
	manganese steel electrodes for manual metal-arc
DG 2001	welding
BS 2901:	Filler rods and wires for gas-shielded arc
D 1 1000	welding
Part 1: 1983	Ferritic steels
Part 2: 1990	Specification for stainless steels
Part 3: 1990	Specification for copper and copper alloys
Part 4: 1990	Specification for aluminium and aluminium
	alloys and magnesium alloys
Part 5: 1990	Specification for nickel and nickel alloys
BS 3692: 1967	Specification for ISO metric precision hexagon
	bolts, screws and nuts — metric units
BS 4105: 1990	Specification for liquid carbon dioxide, indus-
	trial
BS 4165: 1984	Specification for electrode wires and fluxes for
	the submerged arc welding of carbon steel and
	medium-tensile steel
BS 4190: 1967	Specification for ISO metric black hexagon bolts,
	screws and nuts
BS 4320: 1968	Specification for metal washers for general
	engineering purposes — metric series
BS 4360: 1990	Specification for weldable structural steels
BS 4620: 1970	Specification for rivets for general engineering
BB 1020. 1970	purposes
BS 4848:	Hot-rolled structural steel sections
Part 4: 1972	Equal and unequal angles
Part 5: 1980	Flats
BS 4933: 1973	Specification for ISO metric black cup and
DS 4955. 1975	
	countersunk head bolts and screws with hexagon
DG 5125 1004	nuts
BS 5135: 1984	Specification for arc welding of carbon and
	carbon-manganese steels
BS 5493: 1977	Code of Practice for protective coating of iron
	and steel structures against corrosion
BS 5531: 1988	Code of Practice for safety in erecting structural
	frames
BS 5950:	Structural use of steelwork in building
Part 2: 1992	Specification for materials, fabrication and erec-
	tion: hot-rolled sections
Part 3:	Design in composite construction
Section 3.1: 1990	Code of Practice for design of simple and
	continuous composite beams
Part 4: 1982	Code of Practice for design of floors with profiled
	steel sheeting
Part 5: 1987	Code of Practice for design of cold-formed sec-
	tions

Part 7: 1992	Specification for materials and workmanship: cold-formed sections
BS 6363: 1983	Specification for welded cold-formed steel struc-
DC 7094, 1090	tural hollow sections
BS 7084: 1989	Specification for carbon and carbon-manganese
DS EN 10025, 1000	steel tubular cored welding electrodes
BS EN 10025: 1990	Specification for hot-rolled products of non-alloy
	structural steels and their technical delivery con- ditions
BS EN 10029: 1991	
BS EN 10029: 1991	Specification for tolerances on dimensions, shape and mass for hot-rolled steel plates
BS EN 10113:	Hot-rolled products in weldable fine grain struc-
	tural steels
1: 1992	General delivery conditions
2: 1992	Delivery conditions for normalised steels
3: 1992	Delivery conditions for thermo-mechanical rolled
	steels
BS EN 24014: 1992	Hexagon head bolts. Product grades A and B
BS EN 24016: 1992	Hexagon head bolts. Product grade C
BS EN 24017: 1992	Hexagon head screws. Product grades A and B
BS EN 24018: 1992	Hexagon head screws. Product grade C
BS EN 24032: 1992	Hexagon nuts, style 1. Product grades A and B
BS EN 24034: 1992	Hexagon nuts. Product grade C
BS 466: 1984	Specification for power-driven overhead travel- ling cranes, semi-goliath and goliath cranes for
	general use
BS 648: 1964	Schedule of weights of building materials
BS 2573:	Rules for the design of cranes
Part 1: 1983	Specification for classification, stress calculations
D	and design criteria for structures
Part 2: 1980:	Specification for classification, stress calculations and design of mechanisms
BS 4395:	Specification for high strength friction grip bolts
DB +373.	and associated nuts and washers for structural
	engineering
Part 1: 1969	General grade
Part 2: 1969	Higher grade bolts and nuts and general grade
1 000 20 17 07	washers
BS 4604:	Specification for the use of high-strength friction-
	grip bolts in structural steelwork—metric series
Part 1: 1970	General grade
Part 2: 1970	Higher grade (parallel shank)
BS 5950:	Structural use of steelwork in building
Part 1: 1990	Code of Practice for design in simple and
	continuous construction: hot-rolled sections
Part 8: 1990	Code of Practice for fire-resistant design
BS 6399	Loading for buildings
Part 1: 1984	Code of Practice for dead and imposed loads
Part 2: 1997	Code of Practice for wind loading
Part 3: 1988	Code of Practice for imposed roof loads
BS 8110:	Structural use of concrete
Part 1: 1985	Code of Practice for design and construction
Part 2: 1985	Code of Practice for special circumstances

BS 5950 is less definitive; it gives recommendations for the design of

structural steelwork in buildings and allied structures not specifically covered in other British Standards.

Eurocode 3: Part 1.1 contains general principles which are valid for all steel structures as well as detailed application rules for ordinary buildings. The remaining parts of the Eurocode will cover bridges and plated structures, towers, masts and chimneys, tanks, silos and pipelines, piling, crane structures, marine and maritime structures, agricultural structures and fire resistance.

US codes on steel

G 1	$F_{\rm u}$ thickness		ickness	G		
Steel type	ASTM designation	F _y (ksi)*	(ksi)*	(in.) [†]	Common usage	
Carbon	A36	32	58-80	Over 8	General; buildings	
		36	58-80	To 8	General; buildings	
	A529 Grade 42	42	60-85	To 0.5	Metal building systems	
	Grade 50	50	70-100	To 1.5	Metal building systems	
High-	A441	40	60	4-8	Welded construction	
strength		42	63	1.5-4	Welded construction	
low-alloy		46	67	0.75 - 1.5	Welded construction	
		50	70	To 0.75	Welded construction	
	A572 Grade 42	42	60	To 6	Buildings; bridges	
	Grade 50	50	65	To 2	Buildings; bridges	
	Grade 60	60	75	To 1.25	Buildings; bridges	
	Grade 65	65	80	To 1.25	Buildings; bridges	
Corrosion	A242	42	63	1.5-4	Bridges	
resistant		46	67	0.75-1.5	Bridges	
high-		50	70	To 0.75	Bridges	
strength,	A588	42	63	5-8	Weathering steel	
low-alloy		46	67	4–5	Weathering steel	
		50	70	To 4	Weathering steel bridge	
Quenched	A514	90	100-130	2.5-6	Plates for welding	
and tempered		100	110-130	To 2.5	Plates for welding	
low-alloy					8	
Quenched and tempered alloy	A852	70	110–190	To 4	Plates for welding	
* ksi=kips/in. † 1 inch=25·4 Cold-formed A	mm			Buildings a	and bridges	
Sections A to 1				Dunungst	ind bridges	
Hot and cold-1		A609		Sheets, strips, coils, cut lengths		
Cold-rolled sheet steel		A611		Building an	nd bridges	
For cold-form	ed sections	Grade A	A to E			
Hot-formed Welded and se	amless tubing	A618 Grade A	A to E	General pu	rpose	
All above A709			Buildinge	and bridges		
		Grade 3	36	Buildings and bridges Welded and bolted		
comonations		Grade :				
		Grade		Construction, alloy steel Plates for welded construction		
		Grade	100		struction. etc.	
				Doned con	suucion, etc.	

List of comparative symbols

Parameter (common)	AISC	BS 5950	EC3
Area	А	А	А
Cross-sectional area of steel section	A, A _s	A_{g}	A_{g}
Shear area (sections)	-	A _v	A _v
Breadth of section	В	В	B, b
Outstand of flange	_	b	_
Stiff bearing length	_	b_1	_
Depth of section	h	D	d, h
Depth of web	Т	d	d
Modulus of elasticity of steel	Е	Е	Е
Eccentricity	e	e	e
Ultimate applied axial load	Р	F _c	P, W
Shear force (sections)	V, F	F _v	V
Second moment of area about the major axis	Ix	I _x	Ix
Second moment of area about the minor axis	Î _v	I _v	I _v
Length of span	Ľ	Ļ	Ĺ, l
Effective length	L_{ef}	L _E	L _e
Larger end moment	M _z	M	Ň
Maximum moment on the member or portion of the	M _{max}	M _A , M _{max}	M _{max}
member under consideration			
Buckling resistance moment (lateral torsional)	M_{b}	M_b	$M_{bz,Rd}$
Moment capacity of section about the major and minor axes in the absence of axial load	-	M_{cz}, M_{cy}	M_{cx}, M_{cy}
Eccentricity moment	Me	Me	Me
Mid-span moment on a simply supported span equal to the unrestrained length	M _s	M _o	M _s
Ultimate moment	M_{μ}	M	M_{u}
Maximum moment occurring between lateral restraints on a beam	M _s	M _x	M
Equivalent uniform moment	_	M	_
Equivalent uniform moment factor	_	m	_
Slenderness correction factor	_	n	_
Compression resistance of column	P, F, N	P _c	Ν
Ultimate web bearing capacity	P _{cr}	P _{crip}	N _{cr}
Shear capacity of a section	V, S	P _v	S
Bending strength	F _b	P _c	P _c
Compressive strength	F _c	f _c	f _c
Buckling resistance of an unstiffened web	P _{wc}	P _w	P _w
Design strength of steel	F _y	P _y	P _y
Radius of gyration of a member about its major and minor axes	$\nu_{\rm x}, \nu_{\rm y}$	$\nu_{\rm x}, \nu_{\rm y}$	i _{yy} , i _{zz}
Plastic modulus about the major and minor axes	s, z	s _x , s _v	w _x , w _v
Thickness of a flange or leg	t, d	T	t, T
Thickness of a web or as otherwise defined in a clause	t, u t	t	t, I
Buckling parameter of the section	-	u	-
Slenderness factor for beam	_	u V	_
Torsional index of section	_	U X	_
Elastic modulus about the major and minor axes		л Z _x , Z _y	w.
Ratio of smaller to larger end moment	_	β_{x}, z_{y}	w _{el}
Overall load factor	_	•	21-
Load variation factor: function of γ_{11} and γ_{12}	_	$\gamma_{\rm f}$	$\gamma_{\rm f}$
Material strength factor	_	γ_1	
material suchgui factor	_	$\gamma_{ m m}$	$\gamma_{ m m}$

PREAMBLE

Parameter (common)	AISC	BS 5950	EC3
Ratio M/M _o that is the ratio of the larger end moment to the midspan moment on a simply supported span	_	$\gamma_{ m D}$	$\gamma_{ m D}$
Deflection	D, a	δ, a	δ
Constant $(275/P_y)^{1/2}$	-	3	ε
Slenderness, that is the effective length divided by the radius of gyration	ς, λ	λ	λ
Equivalent slenderness	-	λ_{LT}	λ_{LT}
Accidental action	-	-	А
Area	А	А	А
Bolt force	F_t, P	F, P	В
Capacity; fixed value; factor	_	-	С
Damage (fatigue assessment)	F _n	-	D
Modulus of elasticity	E	E	E
Effect of actions	-	-	F
Action	- - D	- ED	F
Force	F, P	F,P	G
Permanent action Shear modulus	- G	- G	G G
Shear modulus Total horizontal load or reaction	G H	G H	G H
Stiffness factor (I/L)	H K	H K	н К
Variable action	к _	<u>г</u>	к Q
Resistance; reaction internal forces and moments (with	– R	– R	Q R, S
subscripts d or k)			
Stiffness (shear, rotational stiffness with subscripts)	K	K, S	S
Torsional moment; temperature	T, M _t	T, m _t	Т
Shear force; total vertical load or reaction	S	S, V	V
Section modulus	S, Z	S	W
Value of a property of a material	-	-	X
Difference in (precedes main symbol)	-	-	Δ
Distance; geometrical data Throat thickness of weld	- • T •	_	a
Area ratio	t _e , T, a	-	a
Distance; outstand	_	_	a c
Diameter; depth; length of diagonal		_	d
Eccentricity; shift of centroidal axis	al, e	е	e
Edge distance; end distance	_	_	e
Strength (of a material)	γ, F	γ	f, γ
Gap; width of a tension field	_	_	g
Height	H, h	H, h	h
Radius of gyration; integer	r	r, i	i
Coefficient; factor	-	_	k
Ratio of normal forces or normal stresses	-	-	n
Number of	-	-	n
Pitch; spacing	р	р	р
Uniformly distributed force	p, w, q	w, q	q
Radius; root radius	r, R	r	r
Staggered pitch; distance	p, g	S	S
Thickness	d, t	t, d	t
Major axis	x, x	u, u	uu
Minor axis	у, у	υ, υ	υ, υ
Rectangular axes	xx, yy	xx, yy	y, y, zz
Angle; ratio; factor	_	-	α
Coefficient of linear thermal expansion	α	α	α
Angle; ratio; factor	-	β	β V
Partial safety factor; ratio		- \$ ^	Ŷ
Deflection; deformation	D, Δ	δ, Δ	δ
Coefficient (in Anney E)	-	_	θ >
Coefficient (in Annex E) Angle: slope		_	λ
Angle; slope	_	_	
	_ _ μ,υ	- υ	μ υ

Parameter (common)	AISC	BS 5950	EC3
Normal stress	σ	σ	σ
Shear stress	υ, ν	υ	φ, υ
Rotation; slope; ratio	-	_	х
Reduction factor (for buckling)	-	-	ψ
Stress ratio; reduction factor	-	_	ψ
Factors defining representative values of variable actions	-	_	ψ
Cross area of bolt	A _b	A _b	A_{b}
Planar area of web at beam to column connection	A _{bc}	A _{bc}	A_{bc}
Area of compression flange	A_{f}	A	A _c
Area of bottom cover plate composite design	A _p	_	_
Cross-sectional area of stiffener	A _{ST}	A _{SW}	A_{SW}
Area of the girder web	Aw	Aw	A _w
Column coefficient	в	_	_ "
Bending factor at x–x; y–y	B_x, B_y	_	_
Bending coefficient upon moment gradient	C _b ^{xy} y	_	_
Coefficient applied to the bending term	C _m	_	_
Ratio of critical web stress	C_v^m	_	_
Euler stress	F'_{c}	P _{cr}	P _{cr}
Second moment area (composite)	I _c	I cr I _{comp}	I cr I _{comp}
Coefficient used in column formula	I J	¹ comp	Lcomp
Yield strength	J F _v , Y	– f _y , Y	– F _v , y
Coefficient used in column formula	G, H	1 _y , 1	т _у , у
Subscripts: unbraced, dead live	U, D, L	- 11 D I	– U, D, L
Reduced girder, compression, flange	, ,	, ,	U, D, L
	0, y, c, f	_	_
Larger, smaller, shear	2, 1, υ	-	_
Bearing, tensile or top; transformed Concentrated transverse load or reaction	p, t, r R	W	– W
		vv	vv
Statistical moment of the cover plate about neutral axis of transformed section	Q	-	_
Clear distance between transverse stiffeners	а	1	1
Amplification factor @ x-x and y-y	a_{xx}, a_{yy}	-	-
Effective width of concrete flange (composite section)	b	B, b	b
Distance from the neutral axis to the extreme fibre	с	У	У
Flange width of a beam	\mathbf{b}_{f}	B _f , b _f	$\mathbf{B}_{\mathrm{f}}, \mathbf{b}_{\mathrm{f}}$
Total depth of steel section (composite)	d _s	h, D	h, D
Computed axial stress	f_a	-	_
Computed tensile stress	f_t	_	_
Computed bending stress	f _b	-	_
Computed shear stress	f_r	-	_
Unbraced length	1	1	1
Modular ratio	n	_	_
Allowable shear stress resistance by a connector	q	_	_
Distance from the neutral axis to the centroid	y	у	y, x, z
Distance from the neutral axis to the outermost fibre	y _b	у у _b , у	y _b
Pitch	S	s, p	s, p
Permitted stress	F	P _y	P _y
Distance from the centroid to the outer of an angle	k	_	_

1. Introduction

This chapter is devoted exclusively to steel detailers/draughtsmen and their responsibilities towards engineers, architects and fabricators. Their major function is to serve as an intermediary between the planners and executor of a project. It is therefore important that they should have a clear understanding of the engineers' intent and the ability to translate it into a graphic representation. The detailers/draughtsmen must have a knowledge of the various processes involved, including:

- (a) types of steel structures to be built and how they are built,
- (b) a permanent record of the designers'/engineers' intent, including design, calculations and sketches,
- (c) construction and fabrication of the steel structural components,
- (*d*) conveying information on all aspects of detailing on the lines given by the engineer or an architect, by manual and computer aided means,
- (e) clarity of presentation and accuracy of information,
- (f) project organisation and the steel detailer's role in it.

1.1. Detail drawings

Structures are represented by means of elevations, plans and cross-sections with, where necessary, enlarged sections of special areas of the structure that require more detail for additional information. The detailers must be familiar with the instrumentation to be employed in the production of drawings. They must be familiar with the type of code and the methods which it sets out for drawings. Whether it is a building, a bridge or any other structure, the elevation and plan must be to a scale sufficient to show, by means of suitable annotations, the sizes and shapes of the members. Where support bearings and special end member connections are involved, they are to be given on an enlarged scale, in sufficient detail to enable the ironworker, the blacksmith and the carpenter to construct these components to a reasonable degree of accuracy.

With the advent of structural steel, prefabrication became essential, and this brought with it the need to supplement the arrangement drawings with detail drawings of all individual members and components. These are known as shop detail drawings and are usually prepared by the steel fabricating company in its own drawing office for use in its workshops. They are based on the layout and arrangement drawings supplied by the owner, or by the consulting engineer appointed to carry out the design. The job of the detailer is to check the information and drawings from the workshop on the fabrication of steel components based on the requirements of a typical steel code and the design drawings provided by their office. It is in the checking of these drawings that the structural steel detailers find their role and are able to play a vital part in the sequence of events that comprise the total activity of structural engineering. The detailer should look for the following items:

- (a) that shop drawings are correct with regard to stylised representation involving the use of standardised, abbreviated notation and special symbols,
- (b) that the information transmitted is clearly given,
- (c) any variations that need to be discussed with the designer,
 - (*d*) where a large amount of technical data given, the detailer's job involves recording and conveying it in a simple and concise manner.

1.2. Function of the steelwork detailer

The role of the steelwork draughtsman or detailer will now be examined more closely. When the contract is placed with a steelwork fabricator, and assuming that the steelwork detailer works for the fabricator, their duties can be categorised as follows.

- (a) The consulting engineer's drawings and specifications are passed on by the company management to the drawing office, where the drawing office manager assesses the extent, complexity and time content of the job.
- (b) The section leader confers with a senior detailer/draughtsman who constitutes a team of draughtsmen on the basis of expertise in specific areas gained from experience in previous contracts.
- (c) The first function is to prepare a list of steel materials from the layout drawings provided by the consulting engineer, enabling the contractor to reserve the items from stock or to place orders with steel merchants or steel mills.
- (*d*) The detailers proceed with the preparation of the steel work detailing drawings, providing an accurate representation of components of structures, namely, beams, girders, trusses, columns, bracings, stairways, platforms, rails, brackets, girts, purlins etc., and where other structures such as bridges, towers, tanks etc., are involved, these will follow broadly the same pattern.
- (e) An experienced senior draughtsman or detailer must carefully supervise drawings and carefully scrutinise them as a checker. It is essential to correct the errors at this stage, as the correction of errors during fabrication in the shop or during erection on site will be infinitely more expensive. Draughtsmen should be critical of their own work, subconsciously acting as their own checker, to ensure that, to the best of their ability, their drawings are error-free.
- (*f*) The detail drawings are sent to the fabrication shop, where work is put in hand, drawing the material from stock, cutting it to exact length, drilling or punching the necessary holes and assembling the various parts by means of bolting or welding to make up the components or subassemblies ready for transport to site.
- (g) The drawing office, whether using a manual system or computer aided facilities, must now proceed with the preparation of erection drawings, showing steel framework in skeleton form (elevations, plans and cross-sections). These drawings should be checked by the senior detailer and endorsed by a qualified structural engineer. The steel erector will refer to these drawings for the assembly of the structure on site. The position of each component is identified by a distinguishing erection mark. In the fabrication shop, such erection marks are hand-marked, painted or tagged onto the steel components.

(*h*) All drawings are updated to incorporate any revisions that have occurred during the progress of the job and a complete set of prints is handed to the engineer for filing. These serve as a record of the work and are useful for future reference.

1.3. Project organisation

It is important to consider the role of the detailer in the overall management and technical organisation that is involved in the steel construction project.

- (*a*) When the owner appoints the architect and engineer for the steel project, they shall carry out the following:
 - (i) the architect prepares the preliminary planning and detailed planning of drawings and specifications and sends them to the structural engineer.
 - (ii) The structural engineer then prepares preliminary design drawings and, with the help of quantity surveyors, indicates costs to the architects, or directly to the owners where architects are not involved.
- (b) The detailer acts as a liaison between the engineer and the contractor, and is responsible, whether working for the engineer or steelwork contractor, for the preparation of the general arrangement (GA) drawings, shop drawings and the erection drawings.
- (c) The detailer liaises with the steelwork contractor during erection of steelwork on site, ensuring that the engineer/designer is fully informed on day-to-day erection problems, particularly non-compliance with detailed drawings.
- (*d*) The detailer is responsible for keeping the log book and other recording arrangements, including storing in an electronic or mechanical retrieval system, photocopying and recording.

2. Structural steel

2.1. Introduction

In this chapter, the material with which the steel detailer is concerned, i.e. structural steel, will be considered. It is vital that detailers should be familiar with the characteristics and properties of steel.

Steel is a man-made metal derived from iron, which is its major constituent. The remaining components are small quantities of other elements, some of which derive from the raw materials used in steel making and some of which are deliberately added to improve the quality of the steel. Steel is generally used for the basic products of the steel mill, such as plates, sections and bars, from which the structural members are fabricated; these being beams, girders, columns, struts, ties or the many other components comprising a structure. Steel is used extensively for the framework of bridges, buildings, buses, cars, conveyors, cranes, pipelines, ships, storage tanks, towers, trucks and other structures.

Although composed almost entirely of iron, steel contains small amounts of other chemical elements to produce desired physical properties such as strength, hardness, ductility, toughness and corrosion resistance. Carbon is the most important of the other elements. Increasing the carbon content produces an increase in strength and hardness, but decreases the ductility and toughness. Manganese, silicon, copper, chromium, columbium, molybdenum, nickel, phosphorus, vanadium, zirconium and aluminium are some of the other elements that may be added to structural steel. Hot-rolled structural steels may be classified as carbon steels, high-strength low-alloy steels, and alloy steels.

The concepts of strength and ductility are illustrated in Fig. 2.1. If a steel specimen is loaded in direct tension, from zero up to final rupture, and the extension of the specimen is measured, a curve can be plotted as shown. This is known as a stress–strain curve, i.e. the stress is plotted against the strain.

2.2. Steel sections

The forms in which steel is used in structures are I- and H-sections, channels, angles, flats, bars, plates, sheets, cold-formed sections and hollow sections. These descriptions apply to the cross-sectional shapes of the members, which are shown in Fig. 2.2. It will be seen that there are two main classes; hot-rolled and cold-formed. The rolled sections are produced by passing a heated billet between successive pairs of rollers that squeeze the steel, stage by stage, into the final shape. Hot-rolled plates are made in the same way, but here the rollers are flat and wide. The sections shown in Fig. 2.2 can be compounded to produce different cross-sections.

Cold-formed sections are made by passing thin steel strips (not pre-heated) through sets of rollers that form the strip into the desired section by a bending process. In the case of circular hollow sections, this is accompanied by a continuous seam-welding process, whereby the abutting edges of the rolled section are fused together. Rectangular hollow sections are formed from circular sections by a further cold-forming roller process. Therefore all cold-

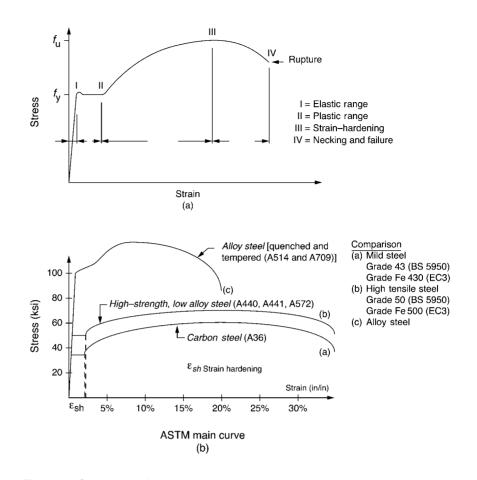


Fig. 2.1. Stress-strain curve

formed hollow sections have a longitudinal seam weld running down their full length.

2.3. Steel quality

It is necessary for steel to be produced within acceptable quality limits to ensure that it meets the requirements of a load-bearing material. These limits include minimum strength and elongation requirements, maximum content of various elements, etc. In various codes, these requirements are contained in a specification. Structural steel is produced in a number of different strength grades. Different codes also have different designation labels. For example, in EC3 grade Fe 430 represents steel with a yield strength of 43 ksi, in ASTM specifications A36 indicates carbon steel of a yield strength of 36 ksi and in BS 5950, grade 43 means carbon steel with a yield strength of 43 ksi.

2.4. Bolts and threaded fasteners and weld electrodes

2.4.1. US criteria The following classifications apply in the USA.

 A307 (low-carbon) bolts, usually referred to as common or machine or unfinished bolts, do not have a distinct yield point (minimum yield strength of 60 ksi is taken at a strain of 0.002). Consequently, the Load and Resistance Factor Design (LRFD) Specification does not permit these bolts to be used in a slip-critical connection (see LRFD J1.11, p. 6-72, J3.1, p. 6-79, and Table J3.2, p. 6-81). However, they may be used in a bearingtype connection.

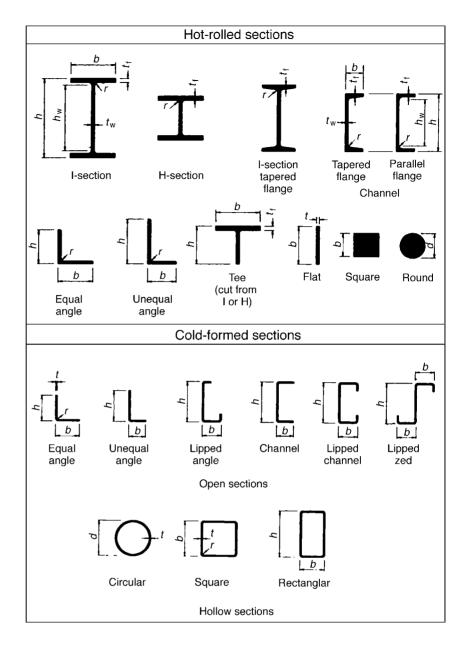


Fig. 2.2. Structural steel sections

- A325 (medium-carbon; quenched and tempered with not more than 0.30% carbon) bolts have a 0.2% offset minimum yield strength of 92 ksi (0.5–1 in. diameter bolts) and 81 ksi (1.125–1.5 in. diameter bolts) and an ultimate strength of 105–120 ksi.
- A449 bolts have tensile strengths and yield strengths similar to A325 bolts, have longer thread lengths, and are available up to 3 in. in diameter. A449 bolts and threaded rods are permitted only where a diameter greater than 1.5 in. is needed.
- A490 bolts are quenched and tempered, have alloy elements in amounts similar to A514 steels, have up to 0.53% carbon, and a 0.2% offset minimum yield strength of 115 ksi (2.5–4 in. diameter) and 130 ksi (less than 2.5 in. diameter).

Weld electrodes are classified as E60XX, E70XX, E80XX, E90XX, E100XX and E110XX where E denotes electrodes, the digits denote the tensile strength in ksi and XX represents characters indicating the usage of the electrode.

2.4.2. BS 5950 and EC3 criteria (UK version)

The classifications which apply in the UK are as follows.

- High strength friction grip (ASFG) bolts used in close tolerance holes (+0.15–0 mm). They are of different grades or types:
 - all grade 4.6 bolts 20 mm diameter
 - all grade 8.8 bolts -24 mm diameter.
- Black bolts grade 4.6 of mild steel based on BS 4190 (nuts and bolts) and BS 4320 (washers). They are untensioned bolts in clearance holes 2 or 3 mm larger than the bolt diameter.
- The HSFG bolts grade 8.8 are based on BS 3692 (nuts and bolts) and BS 4320 (washers).

The following provides additional performances and data:

- (*a*) General grade (BS 4395, Part 1) bolts, nuts and washers with no occurrence of slip and are used in the workshop and on site.
- (*b*) Higher grade (BS 4395, Part 2) bolts, nuts and washers with clearance holes and no occurrence of slip and are used in workshop and on site.
- (c) Waisted shank (BS 4395, Part 3) bolts, nuts and washers with clearance holes and non-occurrence of slip. A prestress of approximately 70% of $F_{\rm u}$ is induced in the shank of the bolts to bring the adjoining piles into contact.

The mechanical properties of all these bolts are described in Chapter 4. Two main types of weld are recommended: butt and fillet welds. Common weld processes are given below.

- (*d*) Manual metal arc (MMA) welds with a flux coating on the electrode. This process is manual and its main use is for short runs. Fillet welds larger than 6 mm are usually multi-run and uneconomical. This process can be employed both in the workshop and on site.
- (e) Submerged arc (SUBARC) with power flux deposited over the arc. This is an automatic process and its main use is for long runs or heavy built welds. Either side of joints are welded simultaneously using twin heads. The recommended maximum weld size is 10 mm. This process can be used both in the workshop and on site.
- (*f*) Metal inert gas (MIG) with carbon dioxide gas generated. This process can be automatic or semi-automatic. It replaces manual welding and is for both short and long runs. The recommended maximum weld size is 8 mm. This process is for the workshop only.

2.5. General properties

The Appendix gives properties of various steel sections based on three codes, namely BS 5950, EC3 and AISC. Some properties are given in Fig. 2.1. The following properties, shown in Table 2.1, are recommended in the absence of experimental tests for design and detailing at the tender stage.

Steel properties	BS 5950 and EC3	AISC
Density or mass	7850 kg/m³ (7·85 t/m³ or 78·5 kN/m³)	490 lb/ft ³
Young's modulus	200 GN/m ²	30×10^6 lb/ft ²
Coefficient of thermal expansion	12×10^6 per °C	0.0000065 per °F
Poisson's ratio elongation	0.3	0.3
Gauge length ASTM Grade	BS Grade	EC Grade
0.3 in./in. A36	43–20%	Fe 430
0.2 in./in. A440, A572	50–18%	Fe 50
0·1–0·15 in./in. A709	55–17%	Fe 55

Table 2.1 General steel properties

2.6. Tolerances

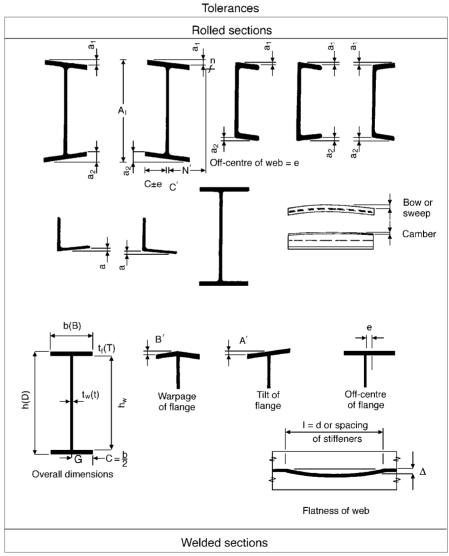
It is not possible in the rolling process to produce sections to the exact dimensions specified. For various reasons, including roller wear, the elements of the cross-section (flanges and webs of I- and H-sections, legs of angles, etc.) may be slightly thicker than desired or may not be exactly at right angles to each other. These deviations are unavoidable and must therefore be accepted by the steel fabricator. It is important that the steelwork detailer must be aware of both the existence of these discrepancies and the tolerances applicable to each so that allowances can be made.

In addition to allowing for these rolling tolerances, allowance must also be made for inaccuracies in the shop fabrication of steel. Most structural components are large, and it would be unduly expensive to manufacture these to very close tolerances. Allowance must be made for slight variations in member length, inaccurate location of holes, out of squareness of member ends, variation in depth of welded girders and other dimensional variations.

Allowance must also be made for deviation from the required shape. This welding distortion is caused by shrinkage of the molten weld metal during cooling. Where site welding is involved, the workshop drawings should include an allowance for weld shrinkage at site by detailing the components with extra length.

Steel sections are supplied by the mills in standard length, usually ranging from 9 m to 13 m for hot-rolled sections and from 6 m to 9 m for cold-formed sections. The standard lengths are nominal; the actual lengths supplied may vary from the nominal standard length within specified tolerances.

A check-list should be clearly drawn up showing types of variation of the following:


- (a) rolled section
- (b) member length
- (c) camber variation
- (*d*) bolted connections, pilot holes in large complex joints reamed out to full size during erection
- (e) line and level of bolts and inaccuracy in setting foundations, provision for grouted spaces under base plates and extra length bolts with excess threads
- (f) column fabrication or beam fabrication.

For compression members or beams (other than purlins or girts) of length L between points that are laterally restrained the acceptable tolerance is: greater

of 3 mm or L/1000; for other members of length L: lesser of 25 mm or L/500.

Figure 2.3 summarises some of the important rolling and fabrication inaccuracies that can occur in practice. For clarity, the distortions are greatly exaggerated. Since Eurocode EC3 is new, few details are currently available in this area. A careful search has been made of the German and French practices and these, together with the British and American practices are reviewed in the following sections, providing a comparison of the tolerances adopted or recommended by various Codes. Fig. 2.3 shows the best possible compromise offered to the detailer.

2.6.1. Tolerances (European practice)

BS5950 and EC3

Fig. 2.3. Tolerances: BS 5950 notation given within brackets; EC3 notation given without brackets

 $t_w \ge h_w/150$ $\Delta = d/150$, but ≤ 8 e=6, A'=b/200, B'=b/200

Fabrication tolerances

The straightness tolerances specified in Table 7.2 of EC3 have been assumed in the derivation of the design rules for the relevant type of member. Where the curvature exceeds these values, the additional curvature shall be allowed in the design calculations. The straightness has a permitted deviation between $\pm 0.001L$ and $\pm 0.002L$.

2.6.2. Tolerances All dimensions in accordance with BS 5950 and BS 4.(British practice) Referring to Fig. 2.3, the rolled sections, their tolerances and effects in detailing are summarised as follows.

Beams, channels and columns

h at the centre line of the web from top flange.

Tolerances ± 3.2 ; h up to 305+3.2-0.8> 305 up to 406+4.0-1.6> 406 +4.8-1.6Flange width b+6.4-4.8 from the centre line of web

Off-centre 'e' of the web and dimension A_1

h=102 up to 305	$e = 3 \cdot 2$	$A_1 = h + 4 \cdot 8$
h>305	$e = 4 \cdot 8$	$A_1 = h + 6.4$
	$c' = t_w/2 + 2 mm$	
	N' = c - c' + 6 mm	
	N = (h - d)/2	
Out of squareness	$(\overline{K}=a_1+a_2)$	K
	b = up to 102	1.6
	b=102 up to 203	3.2
	b=203 up to 305	4.8
	b>305	6.4
Specified weight		

(Channel) based on BS 4

Flats and plates—EC3 (BS 5950)

Overall end plates from the centre line of cross-section to top flange:

Thickness	Width of flats/thick	Width of plates	Length of end plates
Up to 10	$0.4/t_0 35 \rightarrow 0.5$	0.5	+0, -3
>40	$0.8/t_0 \ 150 \rightarrow 1.5$	1.0 width $2% > 5$ mm	±4 lapped only
>80	1.0	1.3	

Additional items:

 $\begin{array}{ccc} Cross-section & Camber & b/150 & \Delta = d/150; & L/1000\\ & Bow & \\ Straightness & L/100 \leqslant 3 \ mm \\ A_1 \ with \ b = 450 & +6 \\ & >450 & +9 \end{array}$

The erection tolerances specified in Table 7.1 of EC3 apply to the following reference points:

• for a column, the actual centre point of the column at each floor level and at the base, excluding any base-plate or cap-plate

• for a beam, the actual centre point of the top surface at each end of the beam, excluding any end-plate.

Permitted deviation	
±5 mm	
0-002h Where h is the storey height	
0.0035∑h/n ^{0.5} Where ∑h is the total height from the base to the floor level concerned And n is the number of storeys from the base to the floor level concerned	
0·0035h Where h is the height of the column	
Mean: 0·002h Individual: 0·010h	

Table 2.2. Normal tolerances after erection

The extracts from DD ENV 1993 Part 1.1 are reproduced with the permission of BSI under licence number 2000SK/0364.

Position of holding down bolts

- (*a*) Tolerances shall be specified for the positional deviations of the holding down bolts which will enable the tolerance limits for erection of steelwork to be satisfied.
- (b) Tolerances shall be specified for the levels of the holding down bolts which enable the specified tolerances to be satisfied for the following criteria:
 - the level of the base plate
 - the thickness of the bedding material under the base plate
 - the protrusion of the bolt through the nut
 - the number of threads clear below the nut.
- (c) The deviations of the spacing between individual bolts within the group of holding down bolts for each member shall not exceed the following:
 - for bolts rigidly cast in, between centres of bolts: $\pm 5 \text{ mm}$
 - for bolts set in sleeves, between centres of sleeves: $\pm 10 \text{ mm}$

2.6.3. Tolerances
based on US code
(American Institute of
Steel Construction —
AISC)

Table 2.3.	Comparative	symbols
------------	-------------	---------

BS 5950	EC3	AISC
A′	A'	С
В	b	В
B/2	С	B/2
D	h	-
$B/2 \pm e$	c±e	$B/2 \pm E$
a ₂	a ₂	Т
a ₁	a ₁	T'

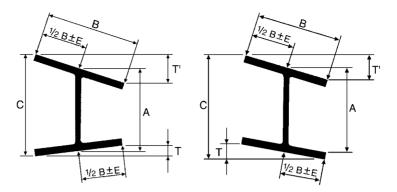


Fig. 2.4. Tolerances and parameters (AISC code)

Section	A, Dep	oth: in.	B, Fig. v	vidth: in.	T+T', Flanges,	E* web off	C, max. depth at any cross-
nominal size: in.	Over theo- retical	Under theo- retical	Over theo- retical	Under theo- retical	out of square, max: in.	centre, max: in.	section over theoretical depth: in.
To 12, incl. Over 12	1 8 1 8	1 8 1 8	$\frac{1}{4}$ $\frac{1}{4}$	3 16 3 16	1 4 5 16	3 16 <u>3</u> 16	$\frac{1}{4}$ $\frac{1}{4}$

Table 2.4. Rolling tolerances

* Variation of $\frac{5}{16}$ in. max. for sections over 426 lb/ft

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

Table 2.5. Cutting tolerances	Table 2.5.	Cutting t	olerances
-------------------------------	------------	-----------	-----------

	Variations from specified length for lengths given: in.					
W shapes	30 ft and under		Over 30 ft			
	Over	Under	Over	Under		
Beams 24 in. and under in nominal depth	<u>3</u> 8	<u>3</u> 8	$\frac{3}{8}$ plus $\frac{1}{16}$ for each additional 5 ft or fraction thereof	<u>3</u> 8		
Beams over 24 in. nom. depth; all columns	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$ plus $\frac{1}{16}$ for each additional 5 ft or fraction thereof	<u>1</u> 2		

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

Area and weight variation: 2.5% theoretical or specified amount. Ends out-of-square: 1/64 in. per in. depth, or of flange width if it is greater than the depth.

All beams are straightened after rolling to meet sweep and camber tolerances listed hereinafter for W shapes and S shapes. The following data refers to the subsequent cold cambering of beams to produce a predetermined dimension.

The maximum lengths that can be cambered depend on the length to which a given section can be rolled, with a maximum of 100 ft. The following table outlines the maximum and minimum induced camber of W shapes and S shapes.

2.6.4. Other tolerances

2.6.5. Cambering of rolled beams

Table 2.6. Camber and sweep

0.		Permissible variation: in.			
Sizes	Length	Camber	Sweep		
Sizes with flange width equal to or greater than 6 in.	All	$\frac{1}{8}$ in. $\times \frac{\text{(total le})}{1}$	ngth: ft) 0		
Sizes with flange width less than 6 in.	All	$\frac{1}{8}$ in.× $\frac{\text{(total length: ft)}}{10}$ $\frac{1}{8}$ i	$n. imes \frac{\text{(total length: ft)}}{5}$		
* Certain sections with a flange width approx. equal to depth and specified on order as columns	45 ft and under	$\frac{1}{8}$ in. $\times \frac{\text{(total length: ft})}{10}$) - with ⅔ in. max.		
	Over 45 ft	$\frac{3}{8}$ in. + $\left[\frac{1}{8} \times \frac{(\text{total len})}{1}\right]$	gth: ft – 45) 10		

* Applies only to: W8 x 31 and heavier. W12 x 65 and heavier, W10 x 49 and heavier, W14 x 90 and heavier. If other sections are specified on the order as columns, the tolerance will be subject to negotiation with the manufacturer.

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

	Specified length of beam: ft					
Sections nominal depth: in:	Over 30 to 42 incl.	Over 42 to 52 incl.	Over 52 to 65 incl.	Over 65 to 85 incl.	Over 85 to 100 incl.	
	Max. and min. camber acceptable: in.					
W shapes 24 and over	1–2 incl.	1–3 incl.	2–4 incl.	3–5 incl.	3–6 incl.	
W shapes 14 to 21, incl. and S shapes 12 in. and over	$\frac{3}{4}-2\frac{1}{2}$ incl.	1–3 incl.	2–4 incl.	2 ¹ / ₂ -5 incl.	Inquire	

Table 2.7. Maximum and minimum induced camber

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

Consult the producer for specific camber and/or lengths outside the above listed available lengths and sections.

Mill camber in beams of less depth than tabulated should not be specified. A single minimum value for camber, within the ranges shown above for the length ordered, should be specified. Camber is measured at the mill and will not necessarily be present in the same amount in the section of beam as received due to release of stress induced during the cambering operation. In general, 75% of the specified camber is likely to remain. Camber will approximate a simple regular curve nearly the full length of the beam, or between any two points specified. Camber is ordinarily specified by the ordinate at the mid-length of the portion of the beam to be curved. Ordinates at other points should not be specified.

Although mill cambering to achieve reverse or other compound curves is not considered practical, fabricating shop facilities for cambering by heat can accomplish such results as well as forming regular curves in excess of the limits tabulated above.

Lengths	Plus tolerance	Minus tolerance
50 ft and less	¹ / ₂ in.	0
Over 50 ft	$\frac{1}{2}$ in. plus $\frac{1}{8}$ in. for each 10 ft or fraction thereof in excess of 50 ft	0

Table 2.8. Camber ordinate tolerances

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

2.6.6. Tees split from W, M and S shapes and angles split from channels

Dimension A on Fig. 2.5 may be approximately $\frac{1}{2}$ beam or channel depth, or any dimension resulting from off-center splitting on two lines as specified on the order.

Fig. 2.5. Depth tolerances

Table 2.9.	Depth of bean	n split versus	variation A
------------	---------------	----------------	-------------

Depth of beam from which tees or angles are split		s in depth A nd under
	Tees	Angles
To 6 in. excl.	<u>1</u> 8	<u>1</u> 8
6 to 16 excl.	<u>3</u> 16	<u>3</u> 16
16 to 20 excl.	<u>1</u> 4	$\frac{1}{4}$
20 to 24 excl.	<u>5</u> 16	_
24 and over	<u>3</u> 8	-

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

The above tolerances for depths of tees or angles include the allowable tolerances in depth for the beams and channels before splitting.

2.6.7. Other tolerances

Other rolling tolerances as well as cutting tolerances, area and weight variation, and ends out-of-square will correspond to those of the beam or channel before splitting, except

Table 2.10. Rolling tolerances

*Specified length of leg:	f	ions from thic or thicknesse over, and unc	S	B - Length of leg,	T, out of square per
in.	³ 16 and under	Over $\frac{3}{16}$ to $\frac{3}{8}$ in.	Over $\frac{3}{8}$	over and under: in.	in. of B: in.
1 and under Over 1 to 2 incl. Over 2 to 3 excl.	0.008 0.010 0.012	0.010 0.010 0.015	0.012 0.015	1 32 3 64 1 16	$ t \frac{3}{128} \\ t \frac{3}{128} \\ t \frac{3}{128} \\ t \frac{3}{128} $

* The longer leg of an unequal angle determines the size for permissible variations. $\frac{1}{328}$ in. per in. = $1\frac{1}{2}$ degrees.

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

Table 2.11. Cutting tolerances

Section	Varia		becified leng variation ur	0	s given
Section	5 to 10 ft excl.	10 to 20 ft excl.	20 to 30 ft excl.	30 to 40 ft excl.	40 to 65 ft incl.
All sizes of bar-size angles	<u>5</u> 8	1	$1\frac{1}{2}$	2	$2\frac{1}{2}$

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

Camber: $\frac{1}{4}$ in. in any 5 ft, or $\frac{1}{4}$ in. × total length, ft/5 Sweep: not applicable; see camber tolerance.

Straightness: because of warpage, straightness tolerances do not apply to bars if any subsequent heating operation has been performed.

if any subsequent heating operation has been performed. Ends out-of-square: $\frac{3}{128}$ in. per in. of leg length or $1\frac{1}{2}$ degrees. Tolerance based on longer leg of an unequal angle.

A member is 'bar size' when its greatest cross-sectional dimension is less than 3 in.

2.6.8. Rectangular sheared plates and universal mill plates — width and tolerance for sheared plates

$(1\frac{1}{2}$ in. and under in thickness)

Table 2.12.	Length	tolerance	only for	[.] universal	mill plates
-------------	--------	-----------	----------	------------------------	-------------

Specified dim	nensions: in.	Variations over specified width and length for thicknesses: in. in., and equivalent weights: Ib. per sq. ft given							
		To $\frac{3}{8}$	excl.	³ / ₈ to	⁵ / ₈ excl.	⁵ / ₈ to '	1 excl.	1 to 2	2 incl.*
Length	Width	To 15	·3 excl.		to 25⋅5 kcl.		to 40⋅8 kcl.		to 81.7 ncl.
		Width	Length	Width	Length	Width	Length	Width	Length
To 120 excl.	To 60 excl. 60 to 84 excl. 84 to 108 excl. 108 and over	3 8 7 16 1 2 5 8	1 5 8 3 4 7 8	7 16 1 2 5 8 3 4	5 8 <u>11</u> 16 7 8 1	1 5 8 3 4 7 8	34 78 1 1 ¹ 8	5 8 3 4 1 1 1 8	1 1 1 1 /8 1 1 /4
120 to 240 excl.	To 60 excl. 60 to 84 excl. 84 to 108 excl. 108 and over	3 8 1 9 16 5 8	3 4 3 4 7 8 1	1 5 8 11 16 3 4	7 7 8 <u>15</u> 16 1 18	5 8 3 4 13 16 7 8	1 1 1 ¹ 8 1 ¹ 4	34 78 1 18	1 ¹ 8 1 ¹ 4 1 ³ 8 1 ³ 8
240 to 360 excl.	To 60 excl. 60 to 84 excl. 84 to 108 excl. 108 and over	3 8 <u>1</u> 9 16 <u>11</u> 16	1 1 1 1 8	12 58 11 16 7 8	1 ¹ / ₈ 1 ¹ / ₈ 1 ¹ / ₈ 1 ¹ / ₄	5 8 3 4 7 8 7 8 7 8 7	1 ¹ / ₄ 1 ¹ / ₄ 1 ³ / ₈ 1 ³ / ₈	34 78 1 14/4	1 ¹ / ₂ 1 ¹ / ₂ 1 ² / ₂ 1 ³ / ₄
360 to 480 excl.	To 60 excl. 60 to 84 excl. 84 to 108 excl. 108 and over	7 16 <u>1</u> 2 9 16 <u>3</u> 4	1 ¹ / ₈ 1 ¹ / ₄ 1 ¹ / ₄ 1 ³ / ₈	1 5 8 3 4 7 8	1 ¹ / ₄ 1 ³ / ₈ 1 ³ / ₈ 1 ¹ / ₂	5 8 3 4 7 8 1	1 ³ 8 1 ¹ 2 1 ¹ 2 1 ⁵ 8	³ / ₄ 7/8 1 1 ¹ / ₄	1 ⁵ 8 1 ⁵ 8 1 ⁷ 8 1 ⁷ 8
480 to 600 excl.	To 60 excl. 60 to 84 excl. 84 to 108 excl. 108 and over	7 16 1 2 5 8 3 4	1 ¹ / ₄ 1 ³ / ₈ 1 ³ / ₈ 1 ¹ / ₂	1 5 8 3 4 7 8	1½ 1½ 1½ 1½	5 8 3 4 7 8 1	1 ⁵ 8 1 ⁵ 8 1 ⁵ 8 1 ⁵ 8 1 ³ 4	34 78 1 1 ¹ 4	1 ⁷ /8 1 ⁷ /8 1 ⁷ /8 1 ⁷ /8
600 to 720 excl.	To 60 excl. 60 to 84 excl. 84 to 108 excl. 108 and over	12 58 58 78	1 ³ 4 1 ³ 4 1 ³ 4 1 ³ 4	58 34 34 34 4 1	1 ⁷ 8 1 ⁷ 8 1 ⁷ 8 2	34 78 78 78 78 18	1 ⁷ / ₈ 1 ⁷ / ₈ 1 ⁷ / ₈ 2 ¹ / ₄	7/8 1 18/18 11/4	$\begin{array}{c} 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{2} \end{array}$
720 and over	To 60 excl. 60 to 84 excl. 84 to 108 excl. 108 and over	9 16 3 4 3 4 4 1	2 2 2 2	3 7 8 7 8 7 8 1 8 1	$2\frac{1}{8}$ $2\frac{1}{8}$ $2\frac{1}{8}$ $2\frac{3}{8}$	78 1 1 1 ¹ / ₄	$2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\$	1 1 ¹ / ₈ 1 ¹ / ₄ 1 ³ / ₈	$2^{\frac{3}{4}}_{\frac{3}{4}}\\2^{\frac{3}{4}}_{\frac{3}{4}}\\2^{\frac{3}{4}}_{\frac{3}{4}}$

* Permissible variations in length apply also to universal mill plates up to 12 in. in width for thicknesses over 2 to $2\frac{1}{2}$ in. incl. except for alloy steels up to $1\frac{3}{4}$ in. thick.

Notes: permissible variations under specified width and length $-\frac{1}{4}$ in. Table applies to all steels listed in ASTM A6.

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

0	Flatness tolerances for specified widths: in.							
Specified thickness: in.	To 36 excl.	36 to 48 excl.	48 to 60 excl.	60 to 72 excl.	72 to 84 excl.	84 to 96 excl.	96 to 108 excl.	108 to 120 excl.
To ¹ / ₄ excl.	<u>9</u> 16	$\frac{3}{4}$	<u>15</u> 16	1 ¹ / ₄	1 ³ 8	1 ¹ / ₂	1 5	1 ³ / ₄
$\frac{1}{4}$ to $\frac{3}{8}$ excl.	$\frac{1}{2}$	<u>5</u> 8	<u>3</u> 4	<u>15</u> 16	1 ¹ / ₈	1 ¹ / ₄	1 8	1 ¹ / ₂
$\frac{3}{8}$ to $\frac{1}{2}$ excl.	$\frac{1}{2}$	<u>9</u> 16	58	58	$\frac{3}{4}$	<u>7</u> 8	1	1 ¹ 8
$\frac{1}{2}$ to $\frac{3}{4}$ excl.	7 16	$\frac{1}{2}$	<u>9</u> 16	58	<u>5</u> 8	$\frac{3}{4}$	1	1
$\frac{3}{4}$ to 1 excl.	7	$\frac{1}{2}$	<u>9</u> 16	58	58	58	$\frac{3}{4}$	<u>7</u> 8
1 to 2 excl.	38	$\frac{1}{2}$	$\frac{1}{2}$	<u>9</u> 16	<u>9</u> 16	58	58	<u>5</u> 8
2 to 4 excl.	5 16	38	7 16	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	9 16
4 to 6 excl.	38	7 16	$\frac{1}{2}$	$\frac{1}{2}$	<u>9</u> 16	<u>9</u> 16	58	$\frac{3}{4}$
6 to 8 excl.	7 16	$\frac{1}{2}$	$\frac{1}{2}$	58	10 11 16	3 4	7 8	7 8

Table 2.13. Flatness tolerances (carbon steel only)

Notes:

1. The longer dimension specified is considered the length and permissible variations in flatness along the length should not exceed the tabular amount for the specified width in plates up to 12 ft. in length.

2. The flatness variations across the width should not exceed the tabular amount for the specified width.

3. When the longer dimension is under 36 in. the permissible variation should not exceed ¹/₄ in. When the longer dimension is from 36 to 72 in. incl., the permissible variation should not exceed 75% of the tabular amount for the specified width, but should in no case be less than ¹/₄ in.

4. These variations apply to plates which have a specified minimum tensile strength of not more than 6000 psi or compatible chemistry or hardness. The limits in the table are increased by 50% for plates specified to a higher minimum tensile strength or compatible chemistry or hardness.

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

Specified		Flatness tolerances for specified widths: in.						
thickness: in.	To 36 excl.	36 to 48 excl.	48 to 60 excl.	60 to 72 excl.	72 to 84 excl.	84 to 96 excl.	96 to 108 excl.	108 to 120 excl.
To ¹ / ₄ excl.	<u>13</u> 16	1 ¹ / ₈	1 ³ /8	1 ⁷ / ₈	2	2 ¹ / ₄	2 ³ / ₈	2 ⁵ /8
$\frac{1}{4}$ to $\frac{3}{8}$ excl.	$\frac{3}{4}$	<u>15</u> 16	1 ¹ 8	1 8	1 <u>3</u>	1 7 8	2	2 ¹ / ₄
$\frac{3}{8}$ to $\frac{1}{2}$ excl.	$\frac{3}{4}$	<u>7</u> 8	<u>15</u> 16	<u>15</u> 16	1 ¹ / ₈	1 ⁵ /16	1 ¹ / ₂	1 ⁵ /8
$\frac{1}{2}$ to $\frac{3}{4}$ excl.	<u>5</u> 8	$\frac{3}{4}$	<u>13</u> 16	<u>7</u> 8	1	1 1 8	1 ¹ / ₄	1 ³ 8
$\frac{3}{4}$ to 1 excl.	<u>5</u> 8	<u>3</u> 4	<u>7</u> 8	78	<u>15</u> 16	1	1 ¹ / ₈	1 ⁵ /16
1 to 2 excl.	<u>9</u> 16	<u>5</u> 8	$\frac{3}{4}$	<u>13</u> 16	<u>7</u> 8	<u>15</u> 16	1	1
2 to 4 excl.	$\frac{1}{2}$	<u>9</u> 16	<u>11</u> 16	$\frac{3}{4}$	$\frac{3}{4}$	<u>3</u> 4	$\frac{3}{4}$	<u>7</u> 8
4 to 6 excl.	9 16	11 16	3 4	<u>3</u> 4	78	78	<u>15</u> 16	1 ¹ 8
6 to 8 excl.	<u>5</u> 8	$\frac{3}{4}$	<u>3</u> 4	<u>15</u> 16	1	$1\frac{1}{8}$	1 ¹ / ₄	$1\frac{5}{16}$

Table 2.14. Flatness tolerances (high-strength low-alloy and alloy steel, hot-rolled or thermally treated)

Notes:

1. The longer dimension specified is considered the length and variations from a flat surface along the length should not exceed the tabular amount for the specified width in plates up to 12 ft in length.

The flatness variation across the width should not exceed the tabular amount for the specified width.

3. When the longer dimension is under 36 in., the variation should not exceed ³/₈ in. When the large dimension is from 36 to 72 in. incl., the variation should not exceed 75% of the tabular amount for the specified width.

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

3. Drafting practice for detailers

3.1. Introduction to the fundamentals of drafting

This chapter covers the fundamentals of the art of drafting. The primary requirement is drafting equipment, but various techniques are also needed for the practical execution of different kinds of work, lettering, dimensions, symbols, line thickness, breaking lines, provision of match lines, scaling details, indication of bolts and bolt lines, indication of welding, orthographic projections, elevation and section arrows and finally abbreviations. These elements are discussed here.

3.2. Equipment

All workshop detail drawings are made in pencil on tracing paper or on plastic drafting film. These materials are transparent to enable copies or prints to be made from the drawings by a dye-line printing process. In special cases, drawings are prepared in ink on drafting film, for durability. The equipment required by the structural steelwork detailer is as follows:

- (a) drawing board, furnished with a separate T-square, or a more elaborate drafting system
- (b) drawing paper or film (see Table 3.1 for drawing paper sizes)
- (c) pencils
- (d) pencil sharpener
- (e) pens, supplied in point diameters (corresponding to the line thickness required of 0.25 mm, 0.35 mm, 0.50 mm, 0.70 mm with each diameter being $\sqrt{2}$ times greater than the previous size
- (f) set squares three set squares are sufficient for all drafting needs, viz. 45° and $30^{\circ}/60^{\circ}$ fixed squares and an adjustable square giving angles of 0° to 90°
- (g) scales—two scales are usually required, one having 1:20, 1:25, 1:50 and 1:100 reductions and the other 1:15, 1:30, 1:40 and 1:75 reductions (EC3). In general, the following scales should be used: 1:5, 1:10, 1:20, 1:25, 1:50, 1:100, 1:200
- (h) protractor
- (i) compasses
- (*j*) circle template
- (k) eraser and shield
- (l) french curves
- (m) calculator—a scientific electronic calculator is a necessary aid in the summing of dimensions, the computation of bevel dimensions and bracing end clearances, and the calculation of steelwork masses on quantity lists
- (*n*) computers—an increasing number of fabricators are using various computer-aided drawing (CAD) programs to assist in the preparation of

layout and detail drawings. This is a highly specialised technique, but results in significant time savings on larger contracts (see Fig. 3.1 for a typical CAD-based drawing office).

Designation	Size (mm)	Size (in.)
	UK and Europe	USA
A0*	1189×841	48×34
A1*	841×594	34×24
A2	594×420	24×16
A3*	420×297	16×12
A4*	297 × 210	12×8
B1	1000×707	40×28

Table 3.1. Drawing sizes

* Widely used.

3.3. Lettering, lines and dimensions/marks

No particular style of lettering is recommended but a number of practices have indicated distinct uniform letters and figures that will produce decent copy prints. Stencils are used for viewing drawing titles. The computer-aided techniques can produce a number of different lettering schemes and symbols. In all cases, the clarity and uniformity of all symbols are the main requirements. Letters can either be upright or sloping at about 15°. Lower case lettering is used for general notations and upper case for headings, titles, sections and elevation arrows, etc. The minimum size of lettering in the UK and the USA is 2.5 mm and 3 mm respectively. All notes, letters, dimensions and arrow heads used on plans, elevations, sketches and erection drawings are either free hand or computer generated. See Figs 3.2 and 3.3 for typical examples of lettering.

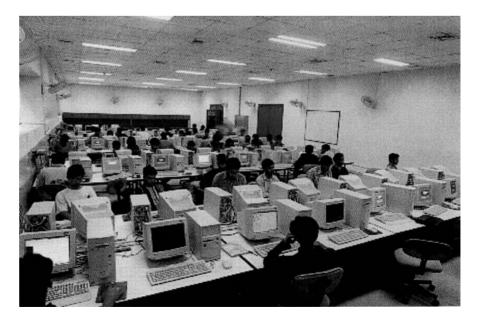


Fig. 3.1. CAD-based drawing office (with compliments of G.I.K. Institute of Engineering Sciences and Technology, TOPI N.W.F.P., Pakistan)

Fig. 3.2. Lettering and symbols and lettering styles (adapted from AISC practice)

It is sometimes a requirement that drawings be microfilmed for storage purposes. This process involves reproducing the drawing photographically at a much smaller size onto transparent film. When copies of the drawing are required, the transparency is enlarged to its original (or as appropriate) size and a print is taken.

When the drawing is enlarged it may not necessarily be to the original size, in which case the scale of the original is lost. It is therefore necessary to provide a scale at the bottom edge of the original drawing. The scale should be 100 mm long and marked off in 10 mm divisions.

Arrow heads are sharply pointed and touch the lines. Dimension lines should be dark, thin but unbroken lines. Fig. 3.3 demonstrates the convention adopted for border lines, visible or invisible (hidden) lines, centre-lines, break away lines, etc. The density of these lines is a true representation for each case. Fig. 3.3 also gives a sample dimensional detail of a typical steel girder elevation and section which shows various arrow heads and dimensional lines.

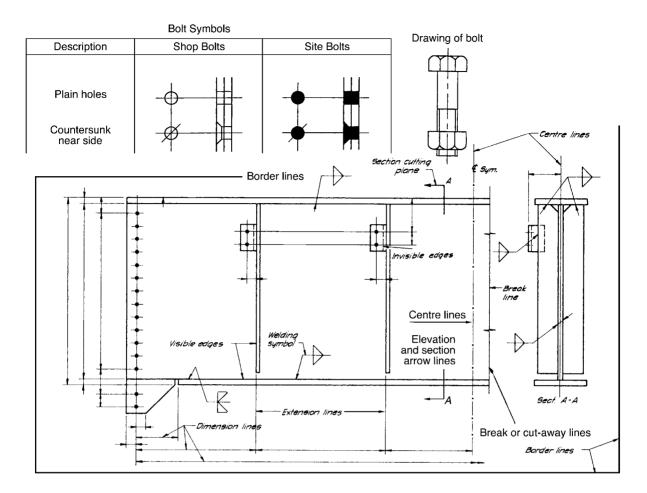


Fig. 3.3. Drafting conventions for structural detailing (based on BS 5950 and EC3)

When only part of an object is to be shown, it is necessary to use break lines. These denote an imaginary cut through the object and imply that anything beyond the cut line is not of importance in that particular view.

In structural work, break lines are used primarily to close the ends of members which are only partially shown on the drawing. Fig. 3.3 illustrates break lines as used on girder work. Break lines should not be used to indicate foreshortening of the length of beam or column, nor should they be used to show reduction of the width or depth of any structural member. However, since machine drawing practice sanctions break symbols to show reduction in length of such parts as pipe and shafting, this custom may be retained where machinery is involved on structural details. Break lines should not be used to indicate out of scale drawings.

Centre lines are used to indicate the centres of webs on beams and girders, as shown in the top flange view and in section A–A of Fig. 3.3. Centre lines are also frequently used on girders when there is an axis of symmetry about the mid-point of the girder's length. This means that all dimensions and details on the right side of the centre line are in the same relative position as on the left side.

Although beams are shown in their full length, even if symmetrical about the mid-point, common practice in the case of symmetrical girders is to draw only one-half of the length. Leader lines and arrows are used to relate a note to the object to which it refers. Examples are shown in Fig. 3.3. The arrow head should normally point to the outline of the object, as shown in the detail. In the case of flat plates and groups of holes, the arrow should preferably point to the view showing the surface of the plate and the main view of the holes, and not to the plate edge.

On long members, particularly bridge girders, where the detail requires more than one sheet, it is customary to draw as much of the drawing as is convenient on the first sheet of the series and continue the drawing on successive sheets until the member is complete. The several sections of such a member are related to one another by match lines. Match lines are usually established at a readily identifiable point, such as a stiffener gauge line or, for welded work, the face of a bar stiffener. Match lines are tied by dimensions to the closest dimensioned feature of all the views they cross. The ends of each pair of match lines carry identical letters or numbers, such as X–X, Y–Y, 1–1, 2–2, etc.

Bolts and bolt holes are shown in accordance with the symbols indicated in Fig. 3.3. The diameters should be drawn to scale. Where bolts are of the high-strength friction-grip type, this should be clearly indicated by the note 'HSFG'. It will be seen that a distinction is made between shop bolts, which are installed during assembly in the shop, and site bolts, which are used to connect the components together during erection. In large scale details, where it is desirable to show the bolts for a particular reason, they may be depicted.

Welding is indicated according to the standard symbols as shown in Fig. 3.3. This is the most commonly used symbol. The welds are not usually shown on the drawing as the symbols are self-explanatory. Chapters 4 and 5 are devoted to bolts and welding, including specification details.

Erection marks are needed for each separate or loose item that comes out of the workshop so that the item can be identified on site and erected in the right position. It is the detailer/draughtman's responsibility to allocate these marks as the detailing proceeds. On beams, the mark should be located on the top flange. On columns, the mark should be located on the lower end of the shaft on the flange.

Erection marks usually consist of prefix letters followed by the numbers (in consecutive order) of the components. Standard prefixes are as follows:

В	beams and girders	KB	kneebraces
BK	brackets	Р	purlins
С	column	R	rafters
CG	crane girders	RB	rafter bracing members
FR	false rafters	RG	roof girders
G	girts	Т	trusses
GG	gantry girder	VB	vertical bracing members

In buildings with several floors, the beams may be further identified according to the floor they are to be on. For example, B/3/30 or B-3-30 would indicate beam no. 30 on the third floor and C/5/39 or C-5-39 column no. 39 on the fifth floor.

Another convention sometimes used is to allocate even numbers to beams running in, say, a north–south direction and odd numbers to beams running east–west. This is of considerable assistance to the erector, who can readily identify the location of each beam in the floor.

3.4. Specified codes, specifications and detailing of drawings

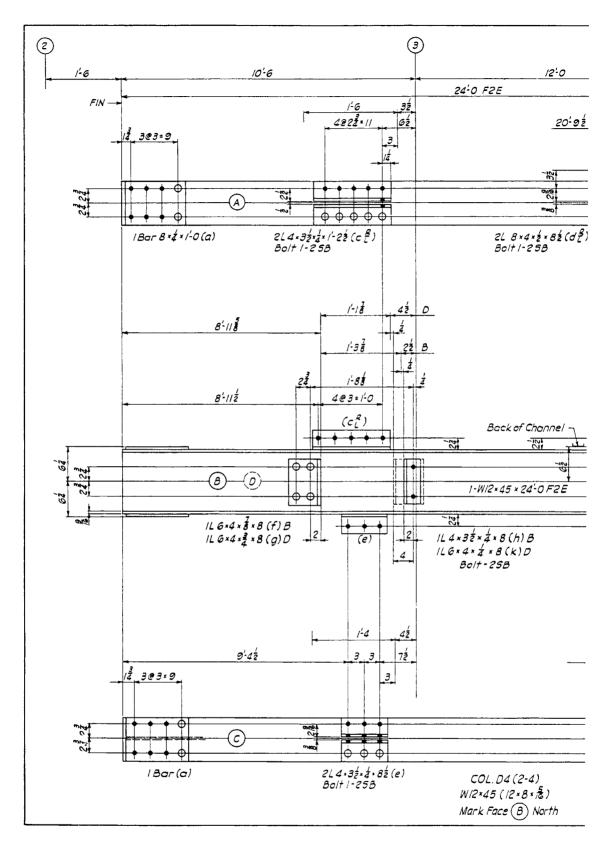
3.4.1. Composition of The detailer must be briefed on the structure, its design under a specific code and be given a comprehensive guide regarding its composition when drawing

elevations, plans and cross-sections. The drawing should show the structure as it will appear when erected on site. The detailer will be required to draw each component separately with descriptive notation.

3.4.2. Design loading and methods of analysis

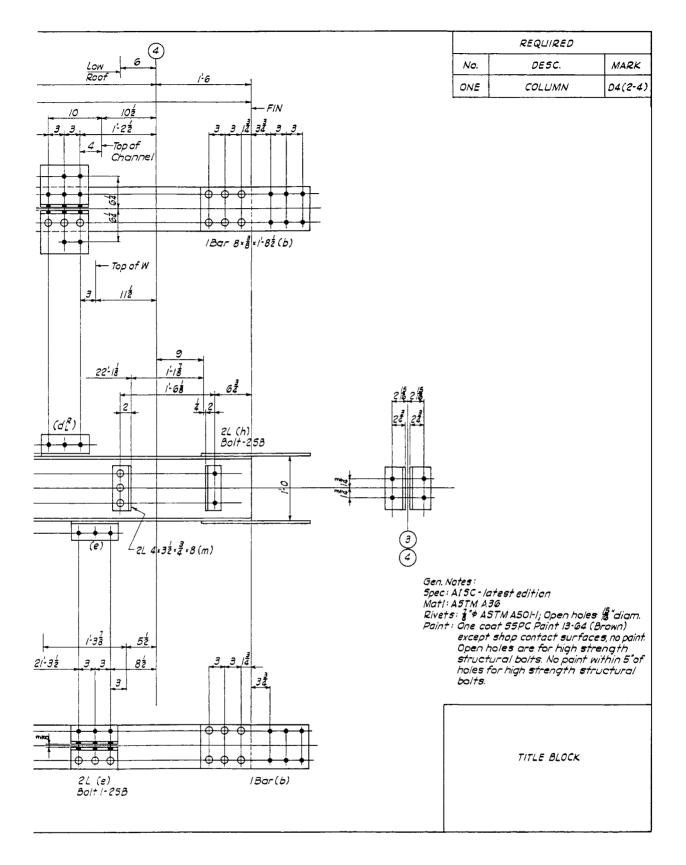
It is necessary for the detailer to have a basic understanding of how the design loading on a structure is derived and specified, to enable him to interpret correctly the loads and forces given on engineers' drawings and to use them in designing connections. Loading such as self-weight, imposed loading, wind loading, etc. that the structure must be capable of sustaining are termed nominal loading.

The modern method of structural design is called limit-state design, which means that the structure is designed to resist the applied loading under two limiting conditions or states. These are the ultimate and the serviceability limit states.


- (a) Ultimate limit state—this is the state at which the structure or any part of it is just at the point of collapse or failure when subjected to a combination of applied loads; these loads being the nominal loads multiplied by appropriate factors.
- (b) Serviceability limit state this is the state beyond which the structure or any part of it no longer performs acceptably under the applicable combination of nominal (not ultimate) loading, i.e. in its normal use or function.

It is at this stage that the steelwork detailer receives all the data required to proceed with the task of preparing the workshop drawings. The information is usually provided by the design engineer in the form of general arrangement drawings and a brief specification. The drawings will include a layout of the structure and typical connection details.

It is essential that the information provided is complete and explicit. The preparation of shop drawings is an activity lying on the critical path, which means that any delay in the execution of this task will contribute to an extension of the time required to complete the entire steelwork project. The following information would be required by the detailer/draughtsman from the design engineer.


- (*a*) General arrangement (i.e. layout) drawings, preferably to scale, including elevations, sections and plans, giving a complete representation of the entire building. These drawings should give floor levels, the orientation of the building (by means of a north arrow), location on the site, relationship to other structures (if any), etc.
- (b) The section sizes of all members in the building, e.g. columns, beams, all truss and lattice girder members, rafters, purlins, girts, bracings, crane beams and stairs, etc.
- (c) Sketches of any connections, components or details in the structure that lie outside the scope of generally accepted or standard structural practice.
- (*d*) The type of flooring for each suspended floor, e.g. reinforced concrete slab, composite slab, precast planks and topping, cellular steel deck and concrete, open grating, Vastrap plate, etc.
- (e) A column base layout, giving the ultimate loads on the foundations, the levels of the bases and the holding down bolt details.

3.4.3. Information provided by the engineer

Fig. 3.4. Detail drawing of girders (AISC practice) Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

DRAFTING PRACTICE

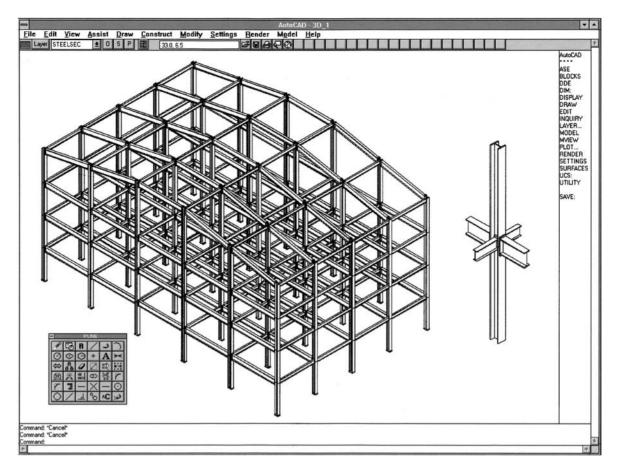


Fig. 3.5. CAD detailing of the skeleton of a steel building (BS 5950 practice – MasterSeries)

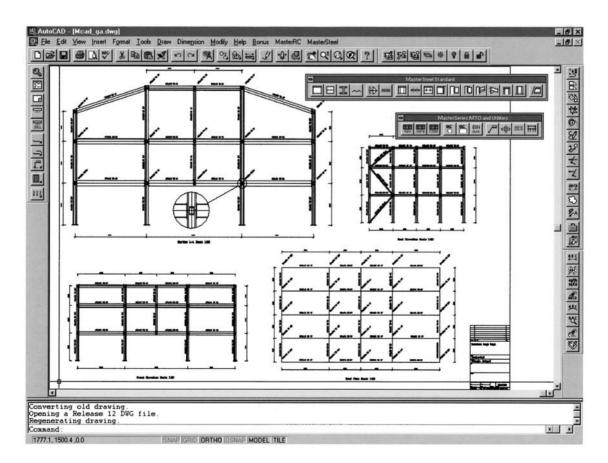


Fig. 3.6. CAD detailing of steel components (BS 5950 practice – MasterSeries)

	obieviations		
American Standard	AS	horizontal	horiz, HORIZ
approximate	approx	including	incl
arrangement	arrgt	inside or internal	diameter ID
as other end	AOE	intermediate	interm
assembly	assy	kilonewton	kN
back mark	BM	kilonewton-metre	kN.m
beam	bm, Bm	kilopascal	kPa
bearing	brg, BRG	left hand	LH
bending moment	BM	length, overall length	len, O ALL
between	betwn	level	lev
bevel	bev	long	lg
bottom	btm	long leg outstanding	llos
building	bldg	machined (surface)	m/c
centre, centres	cr, crs	bridge	brdg
British Standard	BS	mark	mk, MK
centre line	cl 🕑	marked	mkd
centre to centre	c/c	material	matl
circular hollow section	CHS	maximum	max
cleat	clt, CLEAT	megapascal	MPa
column	col	metre	m
continuous	cont	millimetre	mm
cross centres	c/c	minimum	min
countersunk	csk, CSK	miscellaneous	misc
cylinder, cylindrical	cyl	near side	ns
detail	dtl	Newton	N
diameter	dia, DIA	nominal	nom, NOM
diagonal	diag	not to scale	NTS
dimension	dim, DIM	number	No
distance	dist		
ditto	-do-, ditto	opposite outside diameter	opp OD
	-		osl
drawing	drg excl	outstanding leg overall	
excluding		pitch circle diameter	oa
extension for side	extn	•	
far side	fs f:-	plate	pl, PLT
figure	fig	plate girder	PG
fillet weld	fw	radius	RAD, rad
finish floor level	FFL	rectangular hollow section	RHS
flange	flg, FLG	reinforced concrete	rc, RC
flat bar	fl	required	reqd, REQD
floor level	FL	revised	revd
foundation	found	revision	rev
galvanised	galv	right hand	RH
general arrangement	GA	setting out point	SOP
girder	gdr, Gdr, GDR	short leg outstanding	slos
grade (of steel or bolt)	Gr	sketch	sk
gusset	guss, GUSSET	specification	spec
hexagon	hex	square	sq
high-strength friction-grip	HSFG	square hollow section	SHS
holding down (bolt)	HD	standard	std
hole, holes	hl, hls	top of steel	TOS
steelwork	stwk	typical	typ, TYP
stiffener	stiff	underside	u/s
symmetrical	sym	unless otherwise noted	uon
thick	thk	vertical	vert, VERT
	tol	volume	vol
tolerance			
tolerance top of concrete top of foundation	TOC	full penetration weld	FPBW

Table 3.2. Standard abbreviations

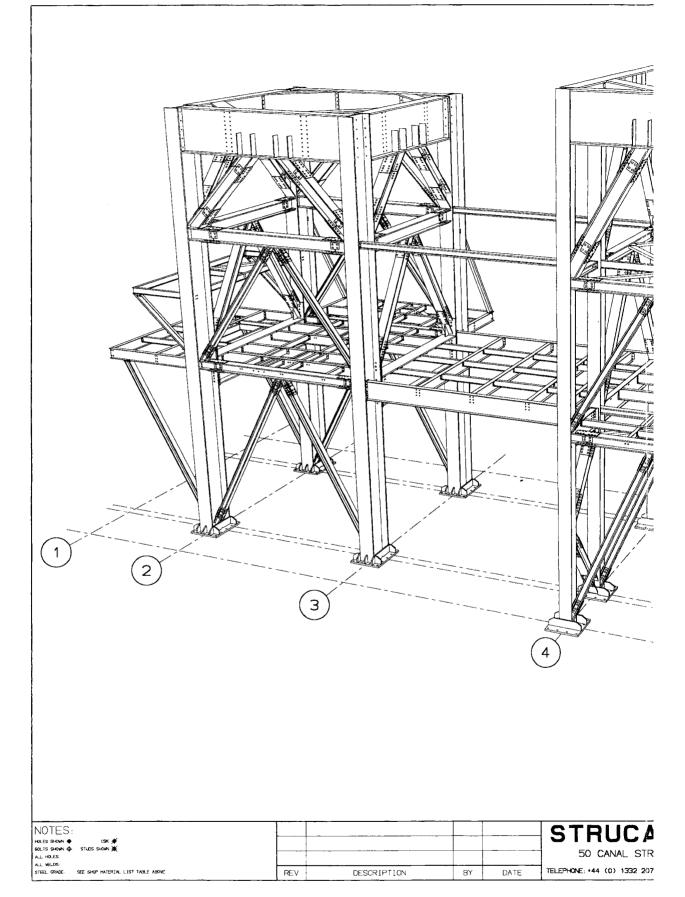
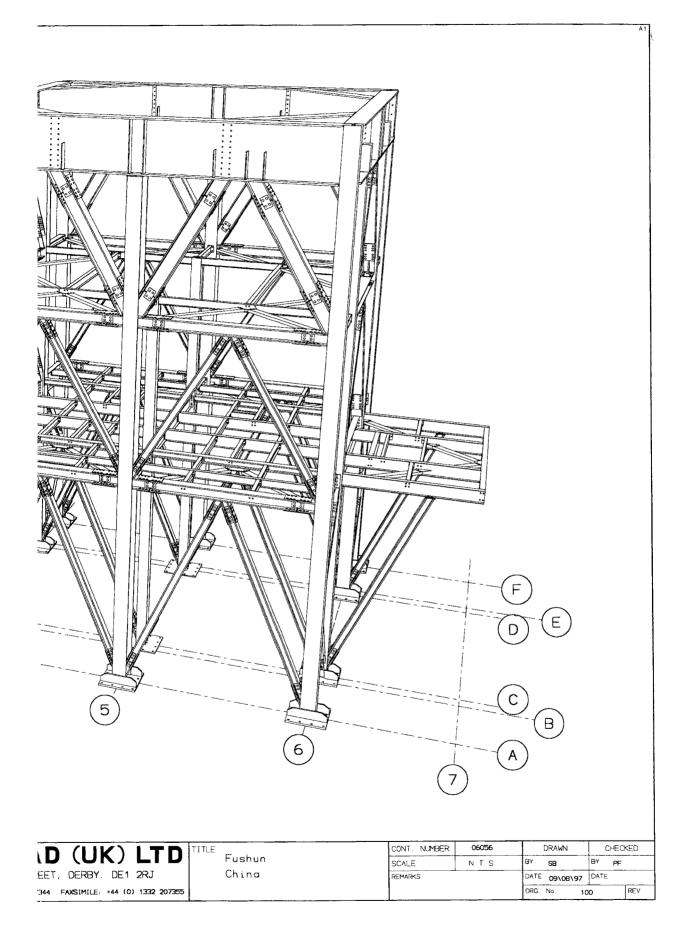



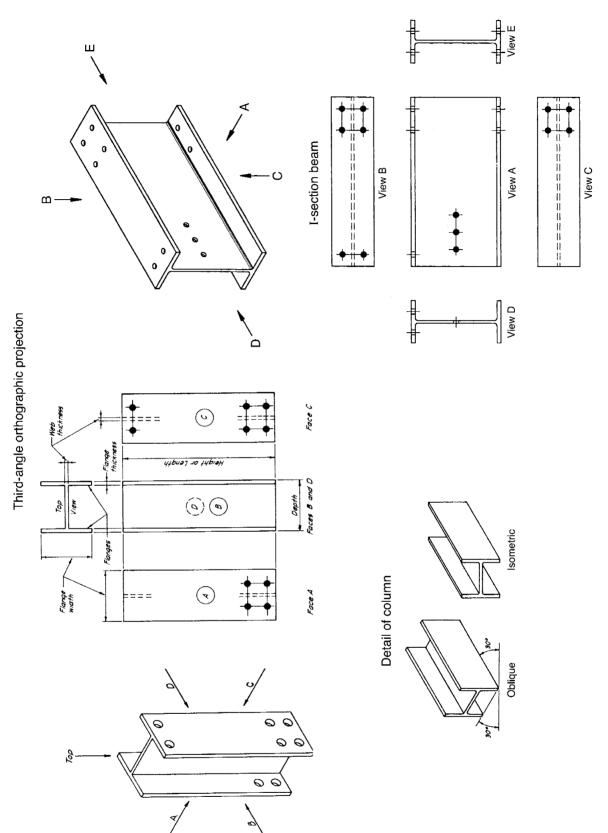
Fig. 3.7. CAD detailing (BS 5950 practice)

- (f) The code of practice to which the building was designed, so that the design of connections and other details can be carried out to the same code.
- (g) The specifications to which the steelwork is to be fabricated, welded and erected.
- (*h*) The grade of steel to be used for the various parts of the building, e.g. Grade Fe 430 (EC3) steel for hot-rolled sections.
- (*i*) The bolt grades to be used for the shop and site connections. Details of friction-grip type connections must be provided by the engineer.
- (*j*) Cambers, if required, for long-span plate girders, lattice girders or trusses need to be provided.

3.4.4. General arrangement and detail drawings

The general arrangement drawings are similar to those provided by the engineer. However, they usually do not include member loads and forces, but do include member erection marks.

The orientation of the building is shown by means of a north arrow. Where true north is not parallel to one of the sides of the building (in plan), the 'grid north' convention is used for convenience, this being the direction (parallel to one side) nearest to true north.


Detail drawings depict every individual structure member and component in the job and include detailed notes on their fabrication. This information includes the section size and overall lengths of members, the positions and diameters of all holes, the positions, types and sizes of all welds, dimensions of notches, cut-outs and snipes where necessary, details of attachments such as cleats, brackets, base plates, stiffeners, bearing plates, etc., and many other details depending on the type of structure. Beams, trusses, purlins, girts and girders are drawn in the horizontal position, i.e. parallel to the lower edge of the sheet. Short columns are drawn in the vertical position, but long columns are placed horizontally, with their bases to the right. Inclined girders, such as sloping conveyor gantries, may be drawn at their true slope or horizontally.

The most commonly used scale for detail drawings is 1:15, but in the case of more complex members a larger scale, say 1:10 would be used.

Detail drawings should be provided with a list of general notes, stating the grade of steel, the sizes and types of bolts to be used, the diameters of the bolt holes and whether the holes should be drilled or punched, the type of welding electrodes and what painting is required. Fig. 3.4 gives a layout based on these suggestions. Ideally, the drawing should also contain a small scale key plan in one corner showing the location of the detailed item in relation to the structure. Figs 3.5 to 3.8 show examples of computer aided detailing.

3.4.5. Abbreviations

A large number of words and phrases are used repetitively on drawings. Their substitution by abbreviations saves the draughtsman's time and results in a less cluttered drawing. It is important, however, that only recognised, standard abbreviations are used and that their use is consistent. A list of the more common abbreviations is given in Table 3.2.

32

3.4.6. Orthographic projection

Although pictorial drawing has some application in developing and communicating ideas, it does not lend itself readily to making structural shop drawings. As a consequence, a multiview system known as orthographic projection is used for shop details throughout the industry. The basis of this method is to show the characteristics of an object by using as many dimensioned views as necessary to describe it fully.

The objects depicted on a design drawing are three-dimensional or solid, but on paper it is actually only possible to represent them in two dimensions. The method used by artists to create a realistic three-dimensional impression is called perspective drawing, where the building appears exactly as it would in a photograph. A simpler representation is shown in Fig. 3.9, called isometric drawing, along with a third representation in which three or more views are shown, the viewing axis being normal (perpendicular) to the surface of the part depicted. Fig. 3.10 indicates beam and column details in third-angle orthographic projection showing various views drawn along A–D directions.

4. Bolts and bolted joints

4.1. Introduction

The most common method of joining one component to another in structural steelwork is bolting. Bolting may be carried out either in the shop or on site and has the advantage that the components can be separated easily should this become necessary for any reason. Most fabricators prefer to use welding for shop connections, but where workshops are equipped with automated punching and drilling machines, shop bolting is generally found to be quicker and cheaper. For site connections, however, bolting is virtually the universal medium of connection. The main function of the bolt is to transmit a force from one member to another.

In all bolted connections a transfer of force is involved and in nearly all cases the transfer is by one or more of the following modes:

- (a) shear in the bolt shank,
- (b) bearing of the bolt shank against the holes in the two components,
- (c) friction between the parts when the bolt is tightened to clamp the parts firmly together, and
- (d) tension, when the load is applied in the axial direction of the bolt.

All these cases are shown in Fig. 4.1.

It is necessary for the steelwork detailer to have a clear understanding of how bolts work and to be able to select a suitable group of bolts to transmit the forces specified on the engineer's drawings.

In the following section, the recommendations given by the British, European and American codes are discussed.

4.2. Types of bolt

Bolts have hexagonal heads and nuts, parallel shanks and threads cut or rolled into the shanks. They come in standard shank diameters of 12 mm, 16 mm, 20 mm and 24 mm in a large range of lengths and in various grades of strength. Fig. 4.1 illustrates a typical structural bolt, nut and washer assembly and gives the associated terminology. Bolts are designated by size, i.e. the nominal diameter of the shank and thread, and by length, i.e. the total length of the shank (including thread) up to the underside of the head. The bolt sizes mentioned above are designated M12, M16, M20 and M24 (M means metric).

Here the British and the European Codes have common designations. The American designations are as follows:

- ASTM A307—Grade A and B (unfinished bolts) $\frac{1}{4}$ in. to 4 in. (6.4 mm to 100 mm)
- ASTM A502—Ribbed type grades
- ASTM A325—Bearing type, same as ASTM A307 for sizes including 16 mm

• ASTM A325, A490—High-strength bolts 5/8 in. to 1 in. (16 mm to 25.4 mm)

Table 4.1 gives a summary of the ASTM versions of various bolt types.

4.2.1. ASTM A variety of bolt designations exists. Bolts are employed for a number of different purposes. The following list details some well known designated bolts.

- (a) ASTM A307 (unfinished) bolts—Grade A and Grade B with a minimum tensile strength of 55 ksi for all sizes, $\frac{1}{4}$ in. to 4 in. inclusive. They are tightened securely by using long handled manual wrenches and are widely used for relatively light members. The nuts are easily loosened and hence require special locking features.
- (b) Turned bolts (replaced by high-strength bolts).
- (c) Ribbed bolts—these are interference type fasteners made from carbon steel \geq A502 Grade 1 rivet.
- (d) Bearing bolts—the bearing bolt incorporates the advantages of the ribbed bolt and the knurled pattern, and a heavy nut with or without a washer. Bolt ribs are designed with a small taper to facilitate progress through the hole. It is claimed that, while driving, the interrupted ribs will not peel, pack under the head or break off; they will cut grooves into the sides of the hole into the process of filling it. In this manner full bearing is created along the entire grip length. This body-bound fit affords not only a fully effective cross-sectional bolt area but also a rigid joint with an inherent resistance to slippage. Therefore, the bolt will transmit load primarily by shear and bearing and the initial tensioning normally required for other high-strength bolts may be considered unnecessary.
- (e) High-strength tension control and tension set bolts—these bolts, commonly known as TC and TS bolts, are similar in performance. Fasteners equivalent to ASTM A325 and A490 bolts in sizes ranging from diameters of $\frac{5}{8}$ –12 in. can be supplied. Each bolt has a round head with a torque control notch at its tip. Bolts are installed with an electric wrench which engages both the bolt and the nut in the outer and the inner sleeves of the wrench until the notch of the bolt shears off. The bolt does not rotate during fastening. The notch is designed to shear off when the fastener is loaded to a predetermined tension. The advantage of these bolts is that the completion of bolt fastening can be confirmed by the shear-off of the notch, thus eliminating the use of an inspection wrench. Data for various bolts are given in tabulated form, together with individual specifications beginning with the high-strength bolts.

High-strength bolts

High-strength bolts produce large and predictable tensions when tightened. Initially, tensioning of high-strength bolts also results in more rigid joints, more satisfactory stress distributions, and greater assurance against nut loosening.

The A325 bolt is available in the following three types:

- Type 1—bolts of medium-carbon steel, in sizes $\frac{1}{2}$ to $1\frac{1}{2}$ in. diameter, inclusive
- Type 2—bolts of low-carbon martensite steel, in sizes $\frac{1}{2}$ to 1 in. diameter, inclusive (not to be hot galvanised)
- Type 3—bolts having atmospheric corrosion resistance and weathering characteristics comparable with those of A588 and A242 steels in sizes $\frac{1}{2}$ to $1\frac{1}{2}$ in. diameter, inclusive.

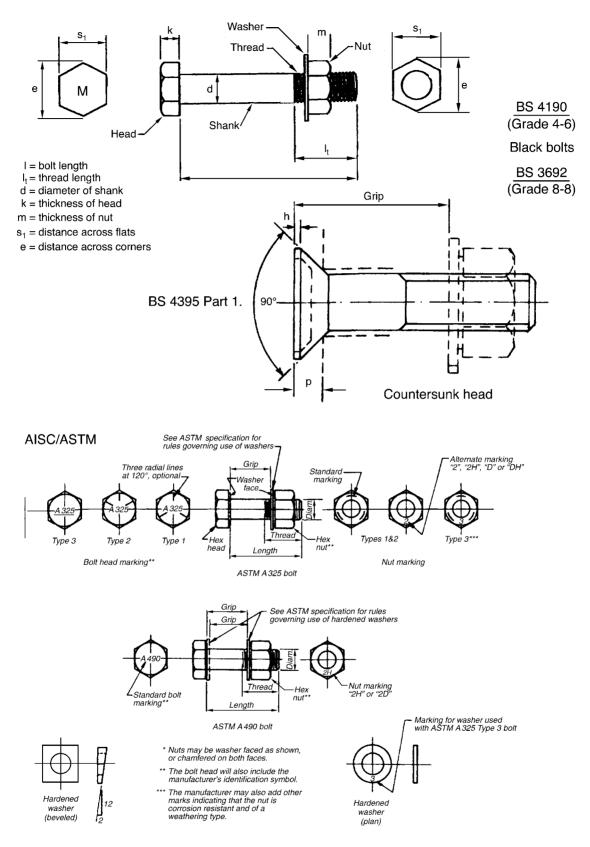
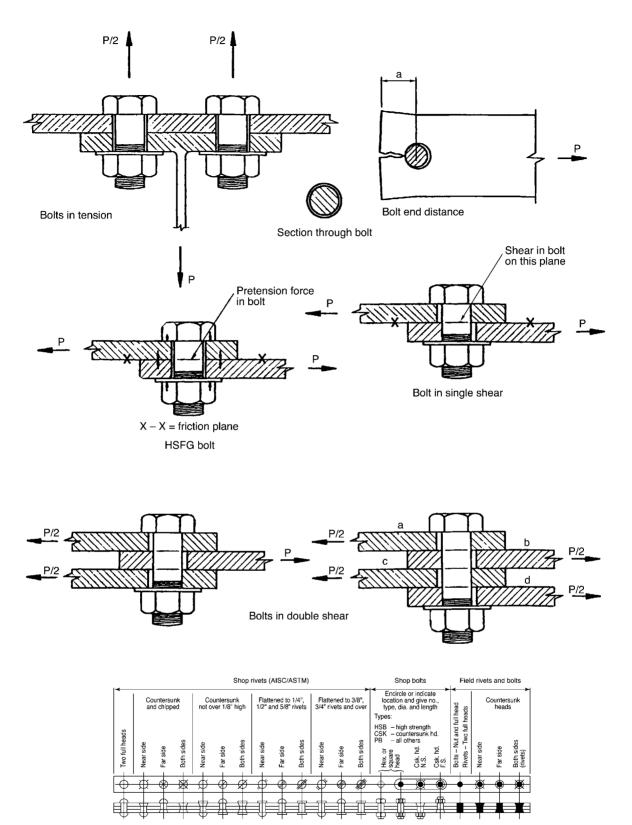



Fig. 4.1. Data on bolts

ASTM designation	Type name	Bolt diameter: in.	Tensile strength on stress area: ksi ^a	
A32-88a	High-strength bolts For structural steel joints		120 105	85 74
A490-88a	High-strength alloy steel bolts for structural steel joints		150–170°	120°

Table 4.1. Properties of high-strength structural bolts

^a Stress area = $0.785 (D - 0.9743/n)^2$; D = nominal bolt size, n = threads per in.

^b Ratio of proof load tensile strength is roughly 0.70 for A325 and A490 bolts.

° Same as A354-BD bolts.

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

Type 1 is used if the type is not specified.

Dimensional requirements for the A325 and the A490 bolt are identical and must conform to the ANSI Standard B18.2 for heavy hexagonal structural bolts, which have shorter thread lengths than other standard bolts.

Required bolt length may be determined in the following manner: add the grip (total thickness of connection material) and the stock length adjustment and the washer thickness (5/32 in. for a flat hardened washer and 5/16 in. for a bevel washer), if any. These bolt lengths should be rounded up to the next $\frac{1}{4}$ in.

Different grades of high-strength bolts are combined with various nuts which guarantee failure by bolt yielding rather than by stripping of the nut threads. Heavy semi-finished hexagonal nuts, with dimensions conforming to the requirements of the ANSI Standard B18.2, are used with both the A325 and the A490 bolts.

Table 4.1 gives a summary of high-strength bolts, material properties, loads and stress. Fig. 4.1 gives the bolt assembly specified by ASTM.

Installation and inspection of high-strength bolts

The procedure for installing high-strength bolts depends on whether the joint is slip-critical or not. For slip-critical joints, the installation procedures used in tightening A325 and A490 bolts are essentially the same. Although pneumatic powered impact wrenches are preferred, long-handled manual torque wrenches or electrical wrenches may be used.

The diameter of round bolt holes ('standard' holes) must not be more than 1/16 in. larger than the nominal diameter of the bolt. Holes may be punched in material not thicker than the nominal bolt diameter plus 1/8 in. Holes must be either drilled or subpunched and reamed in thicker material. Oversize, short-slotted, and long-slotted holes may be used if approved by the designer. Table 4.5 summarises the sizes and other important features of oversize and slotted holes permitted by the AISC. Hardened washers are required for bolts in oversize and slotted holes.

The inspection procedures for high-strength bolts must be sufficiently outlined in the contract documents agreed among the architects, engineers, contractors and the inspection agencies. The inspection document must be referred to prior to the inspection. Table 4.6 gives one area of inspection for the nut rotation from snug-tight conditions. A typical beam detailing is shown in Fig. 4.2.

	Min. bolt tension: kips ^a		
Bolt size	A325 bolts	A490 bolts	
$\frac{1}{2}$	12	15	
5 8	19	24	
5 8 3 4	28	35	
7 8	39	49	
1	51	64	
1 ¹ 8	56	80	
1 ¹ / ₄	71	102	
1 ³ 8	85	121	
$1\frac{1}{2}$	103	148	

Table 4.2. Bolt proof loads

^a Equal to 70% of specified tensile strength.

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

Table 4.3.	Combined	tension	and shea	ar on bolts

Bolt type	Threads in shea	ir plane	No threads in sh	iear plane
A325	$\sqrt{(44^2 - 4 \cdot 39f_v^2)}$	$\begin{pmatrix} 117 - 1.9 f_v \leq 90\\ 147 - 1.9 f_v \leq 113 \end{pmatrix}$	$\sqrt{(44^2-2.15f_v^2)}$	$\begin{pmatrix} 117 - 1.5 f_v \leq 90\\ 147 - 1.5 f_v \leq 113 \end{pmatrix}$
A490		· /	$\sqrt{(54^2 - 1.82f_v^2)}$	· · · · ·
A307		$\begin{pmatrix} 59-1.9 f_v \leq 45\\ 26-1.8 f_v \leq 20 \end{pmatrix}$		

The AISC-ASD allowable bolt tension in ksi is given by the following: $(\Phi F_t A_b)$ where, $\phi = 0.75$; $F_t = nominal tension stress$. Equations in brackets show AISC-LRFD specification.

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

The three most commonly used types of bolt are the following:

- (*a*) grade 4.8 ordinary bolts—these are used for the great majority of connections, especially where force transfer is by shear and bearing,
- (b) grade 8.8 precision bolts—having a much higher strength grading and manufactured to closer dimensional tolerances than ordinary bolts,
- (c) high-strength friction-grip bolts the grade generally used is 8.8S but a higher grade 10.9S is also available. These bolts are used for force transfer by friction between the connected parts.

For other grades refer to Figs 4.3 and 4.4.

The strength gradings have the following significance. The first number, multiplied by 100 is the minimum tensile strength (approximately) of the bolt material in MPa. The second number, divided by 10, is the ratio (approximately) of the yield stress or stress at a permanent set of 0.2% to the minimum tensile strength. Therefore, a grade 8.8 bolt has a tensile strength of 800 MPa and yield stress of $0.8 \times 800 = 640$ MPa. A grade 4.8 bolt has a tensile strength of 420 MPa and yield stress of 340 MPa. The lengths in which each size of bolt is available (i.e. the size/length combinations) are given in Table 4.8.

4.2.2. British and European codes and specifications

4.3. Bolt holes

The holes for the bolts will usually be punched or drilled and will have a diameter 2 mm larger than the bolt shank diameter for bolt sizes up to 24 mm diameter and 3 mm larger for bolts of greater diameter. Such holes are called clearance holes; they facilitate assembly of components by making allowance for slight inaccuracies in fabrication of the steelwork. Reference should be made to specific codes where variations exist.

4.4. Strength or resistance of bolts

The different modes by which bolts are able to transmit a force are described in Table 4.7. The ability of a bolt to transfer an applied force, i.e. its ability to withstand this force, is called its resistance. The resistance is dependent on three main components:

- (a) the area over which the force is applied,
- (b) the strength of the bolt material and

Table 4.4. AISC allowable stresses and nominal strengths for high-strength bolts

	allov	AISC-ASD ^a allowable stress: ksi		AISC-LRFD nominal strength: ksi	
Load condition Hole type	A325	A490	A325	A490	φ
Tension Standard, oversize, or slotted	44	54	90	113	0.75
Shear: slip-critical Standard	17⋅0 [°]	21	17	21	1
connection ^b Oversize, short-slot	15.0°	18	15	18	1
Long-slot	12⋅0°	15	12	15	0.85 ^d
Shear: bearing connection ^{e,f}					
Threads in shear plane Standard or slot	21	28	48	60	0.75
No threads in shear plane Standard or slot	30	40	60	75	0.75
Bearing Standard or short-slot	1.2 <i>F</i> "⁰	1.2 <i>F</i> " ⁹	2.4 <i>F</i> ,, ⁱ	2·4 <i>F</i> ,,	0.75
Long-slot perpendicular to load	1.0 <i>F</i> _u^{g,h}	1.0 <i>F</i> _u ^{g,h}	2·4 <i>F</i> _u ^j	2∙4 <i>F</i> _u ^j	0.75

^a Values given are those of the AISC-ASD specification. For slip-critical connections, AISC prescribes the same shear values as for LRFD and more conservative bearing values.

^b Class A surfaces (clean mill scale and blast-cleaned surfaces with Class A coatings slip coefficient=0.33). For other surfaces see Ref. 13, Appendix A1.

° Service-load shears must be less than these values multiplied by the applicable values of ϕ . allowable shear per bolt= $2\phi A_v F_v$ allowable bearing per bolt= $2\cdot 4\phi dt F_u$

^d Use $\phi = 0.85$ if the load is in the direction of the slot.

^e Tabulated values shall be reduced by 20% for connections transmitting axial force if the distance parallel to the force, between extreme fasteners exceeds 50 in.

^f Static loading only. For fatigue loading, see AISC-LRFD specification Appendix K4 and AISC-ASD specification Appendix K4.

⁹ Minimum spacing and edge distances apply.

^h If deformation around the hole is not a design consideration and adequate spacing and edge distances are provided, the allowable stress may be increased to 1.5F_u.

ⁱ Applies to connections with two or more bolts in the line of force and distance from centre of hole or centre of the end of a slotted hole, to edge of connected part not less than 1.5d, and centre of holes not less than 3d apart.

 $^{\rm j}$ If deformation around the hole is not a design consideration, the allowable stress for the bolt nearest the edge may be increased to $3\cdot0F_{\rm u}.$

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

Type of hole	Nominal bolt size: in.	Overall dimension of hole: in.	Hardened washer	Remarks
Oversize	$\frac{\frac{3}{8} - \frac{7}{8}}{1}$ $1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$	Nominal size + $\frac{3}{16}$ $1\frac{1}{4}$ $1\frac{7}{16}$ $1\frac{9}{16}$ $1\frac{11}{16}$ $1\frac{11}{16}$	One in outer ply	May be used in slip-critical connection
Short- slotted	$ \frac{3}{8} \frac{3}{4} \frac{7}{78} $ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} \frac{11}{16} \times \frac{7}{8} \\ \frac{13}{16} \times 1 \\ \frac{15}{15} \times 1^{\frac{1}{16}} \\ 1\frac{1}{16} \times 1\frac{3}{16} \\ 1\frac{1}{16} \times 1\frac{3}{16} \\ 1\frac{1}{16} \times 1\frac{3}{8} \\ 1\frac{7}{16} \times 1\frac{3}{8} \\ 1\frac{7}{16} \times 1\frac{3}{4} \\ 1\frac{9}{16} \times 1\frac{7}{8} \end{array}$	One in outer ply	May be used in slip-critical or bearing-type connections. Slot must be normal to direction of loading in bearing-type connection
Long- slotted	$\frac{3}{8} - 1\frac{1}{2}$	Width: nominal diameter plus $\frac{1}{16}$. Length: not to exceed $2\frac{1}{2}$ times bolt diameter	⁵ / ₁₆ in. plate washer with standard hole, and hardened washers if required	May be used in only one of the connected parts of either slip-critical or bearing-type connection. Slot must be normal to the direction of loading in bearing-type connection

Table 4.5. Oversize and slotted holes

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

	Disposition of outer faces of bolted parts					
Bolt length (as measured from underside of head to extreme end of point)	Both faces normal to bolt axis	One face normal to bolt axis and other face sloped not more than 1:20 (bevel washer not used)	Both faces sloped not more than 1:20 from normal to bolt axis (bevel washers not used)			
Up to and including 4 diameters	¹ /₃ turn	¹ / ₂ turn	² /₃ turn			
Over 4 diameters but not exceeding 8 diameters	¹ ⁄₂ turn	² /₃ turn	⁵ ⁄8 turn			
Over 8 diameters but not exceeding 12 diameters†	² /₃ turn	⁵ ∉turn	1 turn			

Table 4.6. Nut rotation from snug-tight condition*

* Nut rotation is relative to bolt, regardless of the element (nut or bolt) being turned. For bolts installed by $\frac{1}{2}$ turn and less, the tolerance should be $\pm 45^{\circ}$. Required rotation must be determined by tests in a tension device simulating the actual conditions.

Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

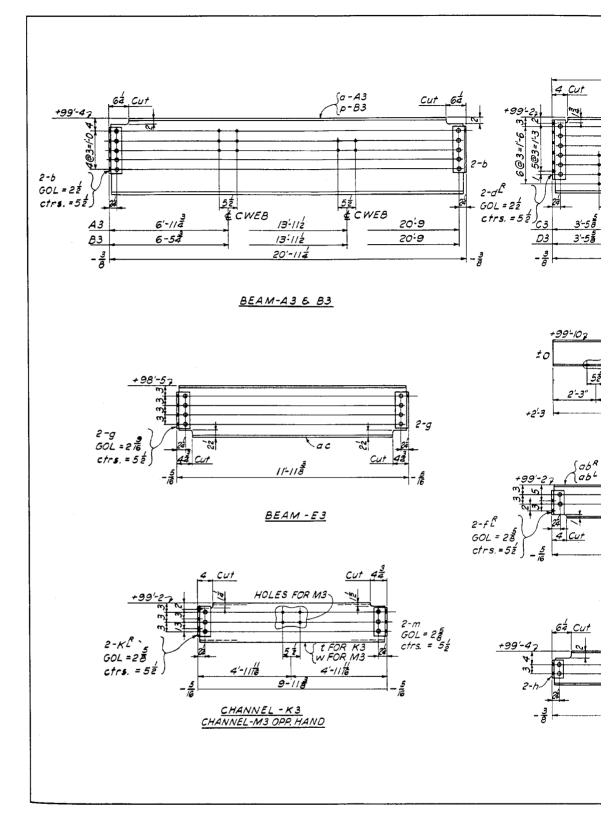
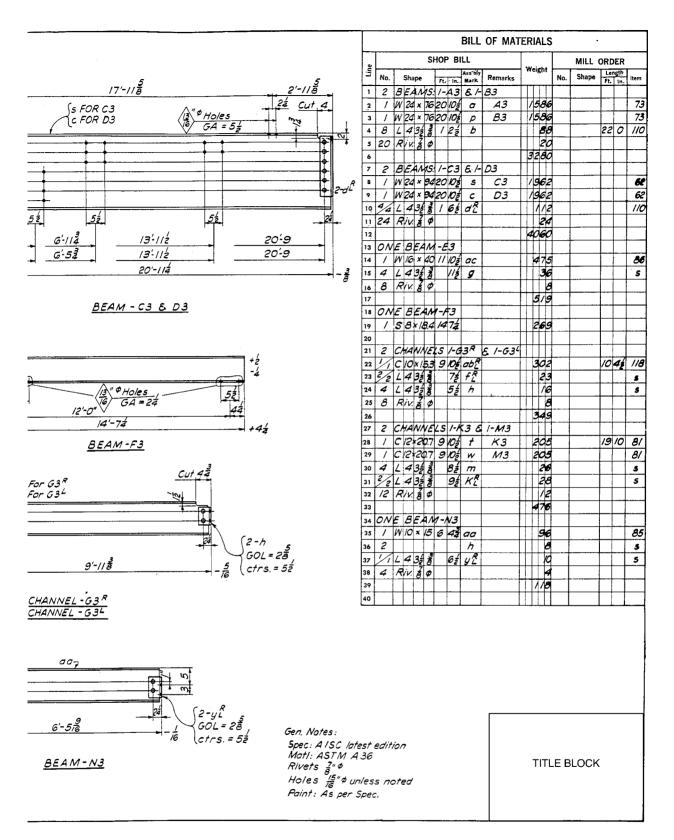



Fig. 4.2. Typical fabrication details for a beam (AISC practice)

(c) a factor, called a resistance factor, which allows for variability of material properties and workmanship.

When these three components are multiplied together they give the factored resistance of the particular bolt under consideration. Thus, in general terms,

Factored resistance = $\phi A f_u$

where ϕ is the resistance factor, A the relevant area and f_u a unit stress dependent on the minimum tensile strength of the bolt material. Again, the value of ϕ has to be judged against a specific code.

The factored shear resistance of a bolt is dependent on its material grade and its cross-sectional area on the shear plane, whereas the factored bearing resistance is dependent on the diameter of the bolt, the grade of the plate material and the thickness of the plate.

Bolts may be in tension (see Fig. 4.1). In this type of loading, the force in each bolt is P divided by the number of bolts in the connection (in this case,

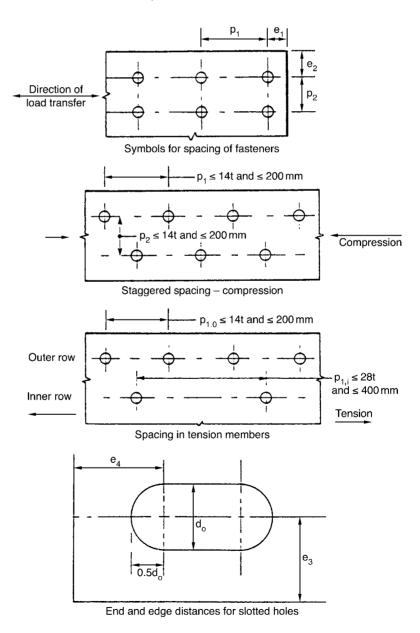


Fig. 4.3. Bolted connections (based on EC3). The extracts from DD ENV 1993 Part 1.1 are reproduced with the permission of BSI under licence number 2000SK/0364

two); the force acts axially in each bolt. There is no slip in the connection, so the bolts do not act in shear or bearing.

High-strength friction-grip bolts (or HSFG bolts) are used where a slipresistant connection is required under shear loading, i.e. loading in the plane of the connected parts and at right angles to the bolt axes.

Table 4.7. Bolts, nuts and washers ENV 1993-1-1: 1992

Nominal values of yield strength f_{yb} and ultimate tensile strength f_{ub} for bolts

Bolt grade	4.6	4.8	5.6	5.8	6.8	8.8	10.9
f _{yb} (N/mm²)	240	320	300	400	480	640	900
f _{ub} (N.mm²)	400	400	500	500	600	800	1000

Bolts of grades lower than 4.6 or higher than 10.9 shall not be used unless test results prove their acceptability in a particular application.

Maximum spacing in compression members

The spacing p_1 of the fasteners in each row and the spacing p_2 between rows of fasteners, should not exceed the lesser of 14t or 200 mm. Adjacent rows of fasteners may be symmetrically staggered. The centre-to-centre spacing of fasteners should also not exceed the maximum width which satisfies local buckling requirements for an internal element.

Maximum spacing in tension members

In tension members the centre-to-centre spacing $p_{1,i}$ of fasteners in inner rows may be twice that for compression members, provided that the spacing $p_{1,0}$ in the outer row along each edge does not exceed that given in Fig. 4.3.

Slotted holes

The minimum distance e_3 from the axis of a slotted hole to the adjacent end or edge of any part (see Fig. 4.3) should not be less than $1.5d_o$.

The minimum distance e_4 from the centre of the end radius of a slotted hole to the adjacent end or edge of any part (see Fig. 4.3) should not be less than $1.5d_o$.

Both of these values may be multiplied by 1.5 in members not exposed to the weather or other corrosive influences.

Maximum end and edge distances

Where the members are exposed to the weather or other corrosive influences, the maximum end or edge distance should not exceed 40 mm + 4t, where t is the thickness of the thinner outer connected part.

In other cases the end or edge distance should not exceed 12t or 150 mm, whichever is the larger.

Minimum end distance

The end distance e_1 from the centre of a fastener hole to the adjacent end of any part, measured in the direction of load transfer (see Fig. 4.3) should be not less than $1.2d_0$, where d_0 is the hole diameter.

The end distance should be increased if necessary to provide adequate bearing resistance.

Minimum spacing

The spacing p_1 between centres of fasteners in the direction of load transfer (see Fig. 4.3), should be not less than $2 \cdot 2d_o$. This spacing should be increased if necessary to provide adequate bearing resistance.

The spacing p_2 between rows of fasteners, measured perpendicular to the direction of laod transfer (see Fig. 4.3), should normally be not less than $3.0d_o$. This spacing may be reduced to $2.4d_o$ provided that the design bearing resistance is reduced accordingly.

The extracts from DD ENV 1993 Part 1.1 are reproduced with the permission of BSI under licence number 2000SK/0364

	Wash	ners (to BS	4320)		
Nominal		Diameter		Thickness (Nom)	
Size	Inside (Nom)		Outside (max) d2		
d	d1	Normal	Large	s	
(M12)	14	24	28	3	
M16 M20	18 22	30 37	34 39	3	
(M22)	24	39	44	3	
M24	26	44	50	4	
(M27)	30	50	56	4	
M30	33	56	60	4	
(M33)	36	60	66	5	
M36	39	66	76	5	

Bolts							
Туре	BS No						
Black bolts, grade 4.6 (mild steel)	BS 4190 (nuts and bolts) BS 4320 (washers)						
High tensile bolts, grade 8.8	BS 3692 (nuts and bolts) BS 4320 (washers)						
HSFG bolts, general grade	BS 4395 Pt 1 (bolts, nuts and washers)						
Higher grade	BS 4395 Pt 2 (bolts, nuts and washers)						
Waisted shank	BS 4395 Pt 3 (bolts, nuts and washers)						

The means of force transfer is by friction between the piles; no slipping takes place, so the bolts are not acting in shear or bearing. It is necessary, however to ensure an adequate frictional resistance between the contact surfaces of the connected parts. The frictional resistance is therefore dependent on

n - 14 -

- (a) the pretension force in the bolt and
- (b) the coefficient of friction of the contact surfaces.

The means of load transfer illustrated in Fig. 4.1 is the only viable one.

After installation, all HSFG bolts have to be checked to ensure that sufficient torque has been applied to the nut to produce the required pretension in the shank. Washers should be used under the head and/or nut of bolts only in the following circumstances:

- bearing bolts with washers passing through holes with greater than normal clearance
- ordinary flat washers bearing bolts where threads must be excluded from shear plane; use sufficient washers to prevent threads from being within thickness of connected parts that are required to develop bearing resistance

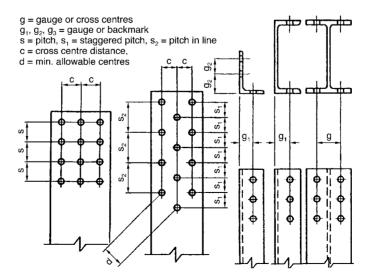


Fig. 4.4. Additional data on fastenings (based on British practice)

es:	scale	d and	ets are											Nuts	Depth	(max)		E	12	16	19	20	ß	25	22	5	ž
Contact surfaces:	A = Clean mill scale	= Diasted creat = Galvanised a wira-brushad	Sizes in brackets are	non-preferred											eaded	Min Ply		م	თ	თ	12	13	15	16	61		77
0				ē v	7 9	31.8	9.8	0.2	1.6	2112	5			Bolts	Bolts Countersunk Headed			Ŀ	2	2	ო	ო	4	41	νı	о ц	ი
p Bolts	Slip resistances, Vs, per	intertace per polit, at serviceability load (kN)	Class of contact surface								_			B	Coun	Diameter			24	32	40	44	48	54	3 S	8	2
ction-Gri	resistanc	intertace per polit, at erviceability load (kh	iss of cont	B		39.4				138	_				Hex	Depth	(max)	×	თ	ŧ	4	15	16	18	ត្តខ	2 2	
de 8.8 Fri	Slip		Cla	A	13.5	23.9	37.4	45.2	53.9	84.1 5	2				ge	Depth		q	0.4	0.4	0.4	0.4	0.5	0.5	ο Ω ι	0.0	- 0.0
Resistances of Grade 8.8 Friction-Grip Bolts	Factored	Resistance	(17)		47.2	83.9	131	159	189	567 705	463				Washer Face	۲	(max)	D	22	27	32	36	41	46	25	200	20
Resistan	Pre-	IEIISION (LAI)	(KN)		49	916	142	176	205	326	6.4			Bolts and Nuts	Violth	Width Width Midth Across Dia Flats Girders (max) (max)		e	25	31	37	42	47	23	2 X	400	- D0
	Size				(M12)	M16	M20	(M22)	M24	M30	DCIN			Bolts				s1	22	27	32	36	41	46	<u>ק</u>	0 0 0	
Add to	Grip for	Length			1	22	26	83	45 45 45	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42	45	48			Pitch of A Thread A (1	1.75	2.0	2.5	2.5	3.0	3.0	0.0 1	0.0 V	4.0
	p	Inside Diameter	(nom)		gg	I	18	5 5	2 8	2 2	33	36	I				Ultimate Load	ĸ	I	154.1	240	269.5	345	450	550	nga	-
	Tapered	Overall Size			<u>ں</u>	I	38	ŝ	6 C	22.6	57	57	I		1&2	Grade Part 2	Yield Load	Å	1	138.7	216	266	312	406	495		-
		Clip			M	12	14	÷ œ	2 - 5	3 63	26	29	1		395: Parts	Higher	Proof Load	Å	1	122.2	190.4	235.5	274.6	356	435	040	-
Washers		Thickness	(111)		s	e	ი .	4 •	4 2	14	4	ц	I		Mechanical Properties to BS 4395: Parts 1&2	11	Ultimate Load	ĸ	69.6	130	203	250	292	333	406		1221
>	Round	F	Outside (mav)	(mudy)	92	30	37	45	n r	38	66	75	I		ical Proper	General Grade Part	Yield Load	Å	53.3	99.7	155	192	225	259	313	140	- 044
S		Diameter	Inside ((111011)	61	14	18	21	S K	50	33	36	I	s	Mechan	Genera	Proof Load	Å	49.4	92.1	144	177	207	234	286		410
HSFG Bolts			Nominal	210	Ð	(M12)	M16	M20	(NZK)	(M27)	M30	(M33)	M36	HSFG Bolts			Tensile Stress Area	mm²	84.3	157	245	303	358	459	561 201	034 1 1	21/2

47

BOLTS AND BOLTED JOINTS

	ts	:	tax)	Thin	7	σ	თ	10	10	12	12	14	14
est mm)	Nuts		Depth m (max)		1	4	17	6	20	23	25	27	30
190 (near		Thread		> 200	49	57	65	69	73	79	85	91	97
Dimensions to BS 4190 (nearest mm)	Bolts	Standard Length of Thread	_	≤ 200	36	44	52	56	60	99	72	78	84
Dimensio		Standard		≤ 125	30	38	46	50	54	60	66	72	78
	Danth		(max)	×	თ	Ŧ	14	15	16	18	20	22	24
	Michh	Across	Θ	22	28	35	37	42	47	53	58	64	
	Minth	Width Across Flats (max)			19	24	30	32	36	41	46	50	55
	Ditch	of	Thread		1.74	2.0	2.5	2.5	3.0	3.0	3.5	3.5	4.0
		BS 3692)	Proof Load	Å	48.1	89.6	140	173	201	262	321	396	466
		Grade 8.8 (BS 3692	Ultimate Load	Å	66.2	123	192	238	277	360	439	544	641
	Properties	6	Proof Load	ÅN	18.7	34.8	54.3	67.3	78.2	102	124	154	181
	Mechanical Proper	Grade 4.6 (BS 419	Ultimate Load	ÅN	33.1	61.6	96.1	118.8	138	180	220	272	321
ţ	Z		Tensile Stress Area	mm²	84.3	157	245	303	353	459	561	694	817
Black Bolts			Nominal Size	σ	(M12)	M16	M20	(M22)	M24	(M27)	M30	(M33)	M36

14.9

12.9

10.9

8.8

6.8

6.6

5.8

5.6

4.8

4.6

Grade of Bolt

Recommended Bolt and Nut Combinations

14

12

42

ω

9

Q

ŝ

ц

4

4

Recommended Grade of Nut

Table 4.8. (Continued)

- ordinary flat washers—HSFG bolts where the torque-control method of tightening is used
- flat through-hardened washers—bolts passing through tapered flanges of I-sections or channels, or other tapered elements.

4.5. Layout of bolts

The arrangement of the bolt holes usually follows a rectangular pattern, i.e. the holes are in rows and the holes in one row are opposite those in other rows, as shown in Fig. 4.3. This provides for easier setting out and a neat appearance. The spacing between bolts in the longitudinal direction of member is called pitch and the spacing at right angles to this is called cross-centre distance. The minimum pitches and cross-centres that are allowable from a design point of view are laid down in various codes. When the bolts in alternate rows are offset from those in intermediate rows they are said to be in staggered pattern (see Fig. 4.3). This pattern is used when a large number of bolts are to be fitted into a limited width, since the zig-zag arrangement allows the bolts to be more closely nestled while still maintaining the required minimum centre-to-centre distance, d. However, the length of the bolt group is increased.

Holes in the flanges of I- and H-sections and channels and the legs of angles are usually placed on lines at a set distance from the web centres of the I- and H-sections (gauge lines or cross-centre lines) or from the backs of channels or angles.

4.5.1. ENV 1993-1-1:Figure 4.4 gives specifications for bolts and other parameters for bolts in**1992 (EC3)**special circumstances including spacings and edge distances. The clearancesrequirementsin standard holes for fasteners (except for fitted bolts) are given by EC3 as
follows:

- 1 mm for M12 and M14 bolts
- 2 mm for M16 and M24 bolts
- 3 mm for M27 and larger bolts

Holes with smaller clearances than standard holes may be specified. Holes with 2 mm nominal clearance may also be specified for M12 and M14 bolts, provided that the design meets the requirements. Oversize and slotted holes may be used for slip-resistance connections only where specified. The nominal clearance in oversize holes for slip-resistant connections shall be:

- 3 mm for M12 bolts
- 4 mm for M14 to M22 bolts
- 6 mm for M24 bolts
- 8 mm for M27 and larger bolts.

Oversize holes in the outer ply of a slip-resistant connection shall be covered by hardened washers. Holes for holding down bolts may be oversize holes with clearance as specified in the project specification, provided that these holes are covered by cover plates of appropriate dimensions and thickness. The holes in the cover plates shall not be larger than standard. The nominal sizes of short slotted holes for slip resistant connections shall be not greater than:

- (d+1) mm by (d+4) mm for M12 and M14 bolts
- (d+2) mm by (d+6) mm for M16 to M22 bolts
- (d+2) mm by (d+8) mm for M24 bolts
- (d+3) mm by (d+10) mm for M27 and larger bolts

where d is the nominal bolt diameter in mm.

The nominal sizes of long slotted holes for slip-resistant connections shall be not greater than:

- (d+1) mm by 2.5d for M12 and M14 bolts
- (d+1) mm by 2.5d for M16 and M24 bolts
- (d+1) mm by 2.5d for M27 and larger bolts

Slots in an outer ply shall be covered by cover plates of appropriate dimensions and thickness. The holes in the cover plates shall not be longer than standard holes. The sizes required for long slotted holes for movement joints shall be specified.

Bolts

Where design is based on bolts with unthreaded shanks in the shear plane, appropriate measures shall be specified to ensure that, after allowing for tolerances, neither the threads nor the thread run-out will be in the shear plane.

Bolts with threads up to the head may be used except where prohibited by the project specification. The length of non-preloaded bolts shall be such that, after allowing for tolerances:

- the threaded shank will protrude beyond the nut after tightening, and
- at least one full thread (in addition to the thread run-out) will remain clear between the nut and the unthreaded part of the shank.

The length of a preloaded bolt shall be such that, after allowing for tolerances:

- the threaded shank will protrude beyond the nut after tightening, and
- at least four full threads (in addition to the thread run-out) will remain clear between the nut and the unthreaded part of the shank.

Nuts

For structures subject to vibration, measures shall be taken to avoid any loosening of the nuts. If non-preloaded bolts are used in structures subject to vibrations, the nuts should be secured by locking devices or other mechanical means. The nuts of preloaded bolts may be assumed to be sufficiently secured by the normal tightening procedure. Steel packing plates shall be provided where necessary to ensure that the remaining step does not exceed the specified limit. Unless a greater value is specified, the minimum thickness of a steel packing plate should be:

- 2 mm in indoor conditions, if exposed to corrosive influences
- 4 mm in outdoor conditions or if exposed to corrosive influences.

5. Welding

5.1. Introduction

Welding is the fusing together of two pieces of steel by means of heat to form a single piece. The heat is produced by the passage of an electric current through an electrode, causing the surfaces of the two pieces and the metal from the electrode to melt and fuse into one on cooling.

There are two main types of weld: butt welds and fillet welds. A butt weld (or groove weld) is defined as one in which the metal lies substantially within the planes of the surfaces of the joined components. A full penetration butt weld is normally expected to develop full strength. A partial penetration weld achieves a specified depth of penetration only. The most commonly used welding processes are manual metal arc welding (as described below), automatic welding with a continuous coated electrode feeding automatically off a drum, gas shielded welding, where a bare electrode is used, and submerged arc welding, which utilises an arc entirely submerged in a granular flux that is fed progressively onto the molten weld pool as welding proceeds. A fillet weld is approximately triangular in section, formed within a reentrant corner of a joint. Its strength is achieved through shear capacity of the weld metal across the throat, the weld size being specified as the leg length.

The results of a comparative study of the three main codes AISC (American Institute of Steel Construction), British and European, are given below. Differences in the methodology and specifications have been highlighted, supported by self-explanatory diagrams and tables.

5.2. Welded connections, joints and weld types

There are some 40 jointing processes, which may be categorised into 9 major groups: brazing, flow, forge, induction, thermit, gas, resistance electroslag, electrogas and arc welding. Arc welding can be more precisely categorised as shielded metal-arc welding ('stick' welding) flux-cored arc welding and submerged arc welding. Welds may be classified in terms of the position of the weld during welding, the type of weld, type of joint or the magnitude and type of forces to be transmitted. Only a combination of these categories will define a weldment adequately. It is necessary to understand the difference between the terms 'joint types' and 'weld types'. 'Joint types' describes the configuration of the steel parts relative to each other, while 'weld types' refers to the type of weld employed to hold the parts together. Fig. 5.1 depicts some basic types of joint used in structural engineering in the USA. Fig. 5.2 gives the recommendations made by Eurocode 3. Almost all the welds used to make the above joints are of two basic types: groove welds and fillet welds. Groove welds can be subdivided into square, bevel, V, J and U types depending on the shape to which the plate edge is prepared or grooved to accommodate the weld.

5.2.1. Reinforcement Where a complete joint penetration weld is required and the weld has a single bevel, V or U groove, the small weld opposite the main weld may be laid-

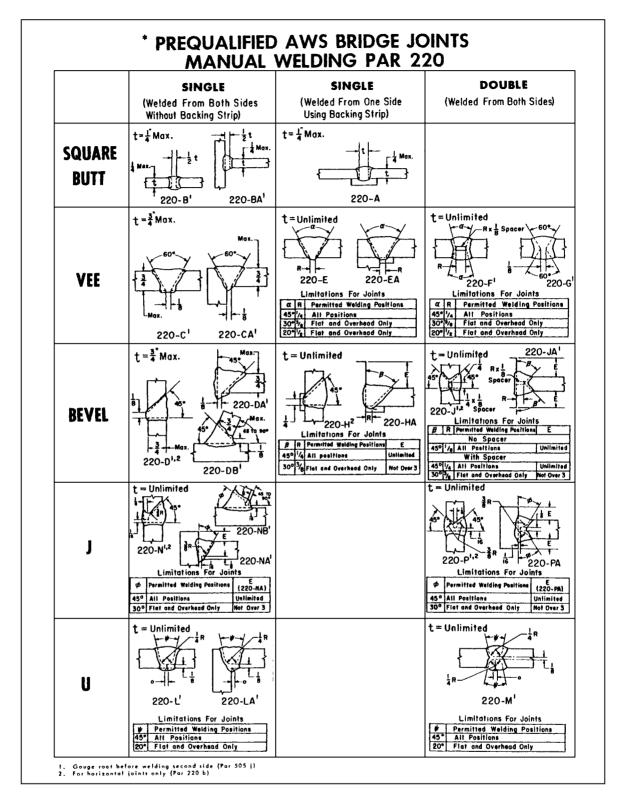
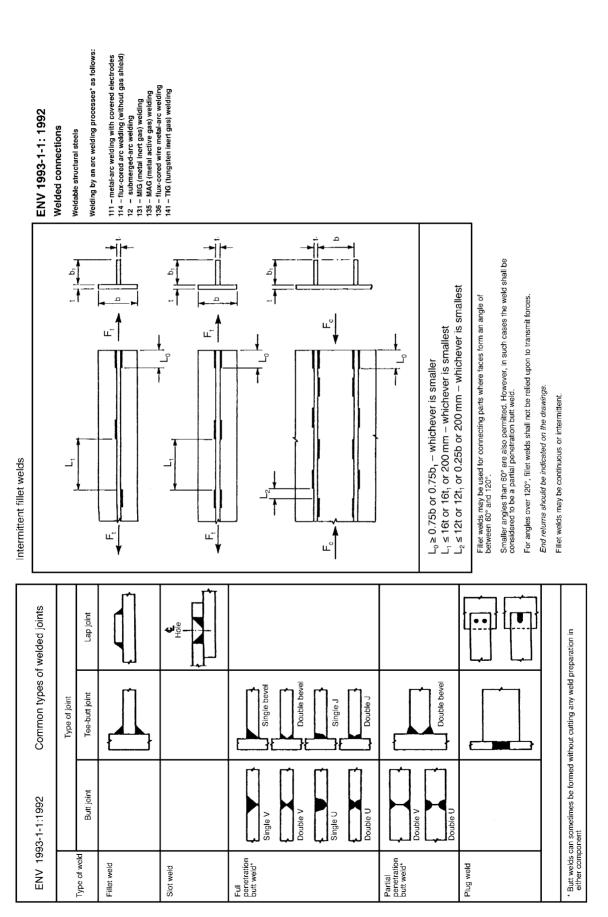


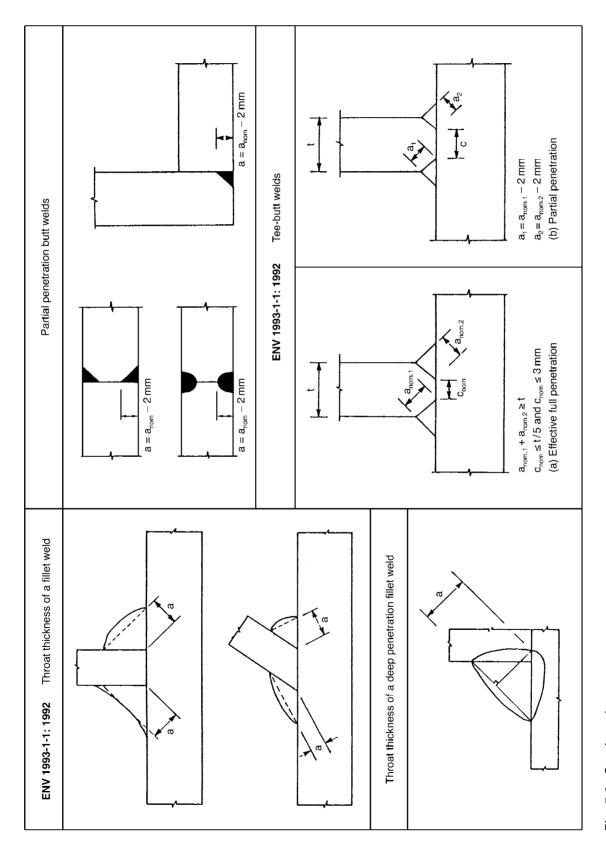
Fig. 5.1. American Welding Society (AWS)—manual and automatic welding

either before or after the main weld; in the former case the small weld is called a backing weld and in the latter a back weld.

When access is available on only one side of a joint but full joint penetration is required, a steel backing strip may be used. The bar is tackwelded to one or both of the plates and when the first run of the main weld is laid it fuses onto the strip to provide full penetration.

5.2.2. Welding positions The term 'position' when used in connection with a welded joint refers to the position in which the bead is laid, i.e. whether flat, horizontal, vertical, overhead, etc. The welding position is of great importance since the quality of the weld is directly affected by the manner in which the weld metal is deposited. Not all electrodes are suitable for all positions; many electrodes are specified for use in a particular position and should be used only in that position to obtain good results.


5.2.3. Distortion Once a molten weld bead has been deposited and begins to cool, it will solidify and attempt to contract, both along and across its axis. This will induce residual tensile stresses because of the restraint imposed by the surrounding structure, as well as distortions due to the lack of complete rigidity in the surrounding structure.


Longitudinal shrinkage of a built-up welded member can cause slender webs and outstands to buckle and if the weld or welds are eccentric to the centroid of the member cross-section will cause overall bowing of the member. Transverse shrinkage is likely to cause both angular and out-of-plane distortions.

5.2.4. Electrodes Each combination of weldable steel, welding condition and welding position requires the use of specific electrodes, classified on the basis of the mechanical properties of the deposited weld metal, the welding position of the electrode, the type of coating or covering and the type of current required. Each electrode is identified by a code number EXXXXX, where E stands for electrode and each X represents a number. The first two (or three) numbers indicate the minimum tensile strength, in ksi, of the deposited metal in the as-welded condition. The next number refers to the position in which the electrode is capable of making satisfactory welds; 1 means all positions (flat, vertical, overhead and horizontal), 2 means flat and horizontal fillet welds, and 3 means flat only. The last X represents a digit which indicates the current to be used and the type of coating or covering on the electrode, e.g. (1) high-cellulose sodium coating for use with direct-current reverse polarity (electrode positive) only; or (2) iron powder/titania coating for use with direct current, either polarity or alternating current. Hence, E6018 implies a mild-steel arc-welding electrode with a minimum tensile strength of 60 ksi. Similar values are given in SI units.

Electrodes for shielded metal-arc welding are manufactured in sizes ranging in diameter from 1/16 to 3/8 in. and in length from 9 to 18 in. Coatings serve as mediums for incorporating alloying elements which affect the tensile strength, hardness, corrosion resistance and other physical properties of the weld metal.

In submerged-arc welding, appropriate combinations of bare electrodes and granular fusible fluxes are selected to produce the specified properties in the deposited weld metal. Choices are governed by the welding procedure, the type of joint and the composition of the base metal. The designations are Grade SAW-1 and Grade SAW-2 which imply weld metal yield points of 45 and 50 ksi respectively.

55

Two levels of weld-metal yield points are specified for the gas metal-arc welding process, Grade GMAW-1 (55 ksi) and Grade GMAW-2 (60 ksi). An appropriate combination of electrode and shielding which satisfies the mechanical property requirements for Grade GMAW-1 or GMAW-2 may be used respectively in lieu of submerged arc welding Grade SAW-1 or SAW-2.

5.2.5. Resistance per unit length based on EC3

The design resistance per unit length of fillet weld shall be determined using either the method given below, or else the alternative method given. The resistance of a fillet weld may be assumed to be adequate if, at every point in its length, the result of all the forces per unit length transmitted by the weld does not exceed its design resistance F_{wRd} .

Independent of the orientation of the weld, the design resistance per unit length $F_{w,Rd}$ shall be determined from:

$$\mathbf{F}_{\mathbf{w},\mathbf{Rd}} = \mathbf{f}_{\mathbf{v}\mathbf{w},\mathbf{d}}\mathbf{a} \tag{5.1}$$

where, $f_{vw.d}$ is the design shear strength of the weld.

The design shear strength $f_{vw.d}$ of the weld shall be determined from:

$$f_{vw.d} = \frac{f_u/\sqrt{3}}{\beta_w \sqrt{m_w}}$$
(5.2)

where f_u is the nominal ultimate tensile strength of the weaker part joined and β_w is the appropriate correlation factor.

The value of the correlation factor β_w should be taken from Table 5.1.

Table 5.1.	Correlation	factor	versus	ultimate
strength				

	Ultimate tensile strength f.	Correlation factor				
	strengtin _u	β_w				
EN 10025						
Fe 360	360 N/mm²	0.8				
Fe 430	430 N/mm ²	0.85				
Fe 510	510 N/mm ²	0.9				
PrEN 10113						
Fe E 275	390 N/mm ²	0.8				
Fe E 355	490 N/mm ²	0.9				

For intermediate values of f_u the value of β_w may be determined by linear interpolation.

Design resistance of butt welds

The design resistance of a full penetration butt weld shall be taken as equal to the design resistance of the weaker of the parts joined, provided that the weld is made with a suitable electrode (or other welding consumable) which will produce all-weld tensile specimens having both a minimum yield strength and a minimum tensile strength not less than those specified for the parent metal.

The resistances which such welds use in common for steel grade Fe 430 are given in Table 5.2.

Thickness: mm	Shear: kN/mm	Tension or compression: kN/mm			
6	0.86	1.50			
8	1.15	2.00			
10	1.44	2.50			
12	1.73	3.00			

Table 5.2. Weld resistance for steel grade Fe 430

5.2.6. Strength resistance based on grade E43 electrodes to BS 639

5.2.7. Welded joints based on American specifications

Weld capacities of the fillet and/or butt weld are summarised in Tables 5.3 and 5.4 for grade 43 and 50 steel. Equations (5.1) and (5.2) are still applicable for strength resistance.

Figure 5.1 gives the detailed practice adopted by the American Welding Society (AWS). Refer to section 5.2.4 for the electrodes and their symbols and welding specification by AISC.

Table 5.3. Fillet welds—capacities with grade E43 electrodes to BS 639 grade of steel 43 and 50

Leg length: mm	Throat thickness: mm	Capacity at 215 N/mm²: kN/m	Leg length: mm	Throat thickness: mm	Capacity at 215 N/mm²: kN/m
3.0	2.12	456	12.0	8.49	1824
4.0	2.83	608	15.0	10.61	2280
5.0	3.54	760	18.0	12.73	2737
6.0	4.24	912	20.0	14.14	3041
8.0	5.66	1216	22.0	15.56	3345
10.0	7.07	1520	25.0	17.68	3801

Table 5.4. Strength of full penetration butt welds

	Shear	Tension or		Shear	Tension or	
	at	compression		at	compressior	
Thickness:	0.6×P _v :	at P _v :			at P _v :	
mm	kN/m	kN/m			kN/m	
		Grade o	f steel 50			
6.0	1278	2130	22.0	4554	7590	
8.0	1704	2840	25.0	5175	8625	
10.0	2130	3550	28.0	5796	9660	
12.0	2556	4260	30.0	6210	10350	
15.0	3195	5325	35.0	7245	12075	
18·0	3726	6210	40.0	8280	13800	
20.0	4140	6900	6900 45.0		15300	
		Grade o	f steel 43			
6.0	990	1650	22.0	3498	5830	
8.0 1320 2200		2200	25.0	3975	6625	
10.0	1650	2750	28.0	4452	7420	
12.0	1980	3300	30.0	4770	7950	
15.0	2475	4125	35.0	5565	9275	
18·0	2862	4770	40.0	6360	10600	
20.0	3180	5300	45.0	6885	11475	

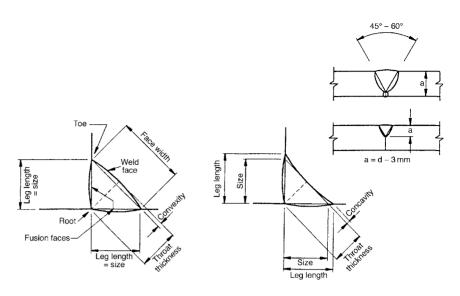


Fig. 5.3. Fillet and groove welds—weld profile terminology

(a) Fillet-welded joints

The fillet weld is the weld most commonly used to connect lapping and intersecting parts. Its cross-section forms a 45° isosceles triangle with the connecting parts (Fig. 5.3). To obtain a satisfactory fillet weld, the electrode should bisect the angle between the intersecting surfaces to be welded and should lean approximately 20° in the direction of travel. Fillet weld dimensions are influenced by the joining parts and the clearance provided for the welding operation. The AWS code specifies the minimum size of fillet welds to avoid cracked welds (see Table 5.5).

(b) Groove welded joints (butt weld joints)

To obtain joints with a predictable degree of weld penetration, the AWS standards recommend values for the groove angle and the root opening. Complete joint penetration means that the filler metal and the base metal are fused throughout the depth of the joint.

Most of the structural steel welded joints outlined by the AWS and the AISC are considered to be prequalified, provided the welding is done in accordance with the requirements. The term 'prequalified' implies that a joint may be used without performing welding procedure qualification tests. If a joint differs from those covered in the specifications, its adequacy must be verified by tests such as those prescribed in the AWS Standard Qualification Procedure.

Table 5.5.	Minimum	weld	sizes
10010 0.0.		word	01200

Thickness of thicker part joined: in.	Minimum leg size of fillet weld: in.	Minimum effective throat of partial-penetration groove weld: in.
To $\frac{1}{4}$ incl.	1 8	<u>1</u> 8
Over $\frac{1}{4}$ to $\frac{1}{2}$	<u>3</u> 16	<u>3</u> 16
Over $\frac{1}{2}$ to $\frac{3}{4}$	$\frac{1}{4}$	<u>1</u> 4
Over ³ / ₄	<u>5</u> 16	-
Over $\frac{3}{4}$ to $1\frac{1}{2}$		<u>5</u> 16
Over $1\frac{1}{2}$ to $2\frac{1}{4}$		<u>3</u> 8
Over $2\frac{1}{4}$ to 6		<u>1</u> 2
Over 6		<u>5</u> 8

The system of groove weld classification is not to be confused with the ideographic weld identification system adopted by the AWS which uses the following notation.

- (1) Joint type: B=butt, C=corner, T=tee
- (2) Material thickness and efficiency: L=limited thickness with complete penetration U=unlimited thickness with complete penetration P=partial penetration
 (3) Groove type:

5)	Gloove type.		
	1—square	4—single-bevel	7—double-U
	2—single-V	5-double-bevel	8—single-J
	3—double-V	6—single-U	9—double-J
4	Walding massage		

(4) Welding process:
 S=submerged arc
 No symbol indicates manual shielded metal arc.

For example, the designation TC - U4 means (1) the joint may be used for either a tee or a corner, (2) it may be used on an unlimited range of material thicknesses, (3) the groove is a single-bevel, and (4) the welding will be performed by the manual shielded metal arc process.

The groove welded strength is given in Table 5.4.

5.3. Welding symbols

Standardised symbols are used to denote the type and size of welds on structural detail drawings. The following points should be noted in connection with the construction and use of welding symbols.

- (*a*) The reference line is drawn in either the horizontal or the vertical direction, i.e. parallel to the horizontal or vertical axis of drawing. If placed vertically, the information on it should be able to be read when the drawing is viewed from the right.
- (b) The arrow points to the weld(s) or welded joint being described.
- (c) The fillet weld symbol is a small isosceles triangle based on the reference line and having its vertical side to the left.
- (d) The single-bevel weld symbol is a 45° V with its apex to the reference line and its vertical leg to the left.
- (e) The double-bevel and double-V weld symbols have their legs at 60° to each other.
- (f) Symbols and notations referring to the arrow side of the joint are placed below the reference line; those referring to the other side of the joint are placed above it.

Figure 5.4 shows a summary of standard welding symbols recommended by the American Welding Society (AWS) which have been universally adopted. For clarity, the application of these symbols is explained by a series of tabulated examples in Fig. 5.4. These have been used in the UK and countries covered by the Eurocodes.

5.4. Practical notes for guidance

Figure 5.5 summarises practical guidance for detailers prior to the preparation of GA drawings and structural details for welded steel structures. Where

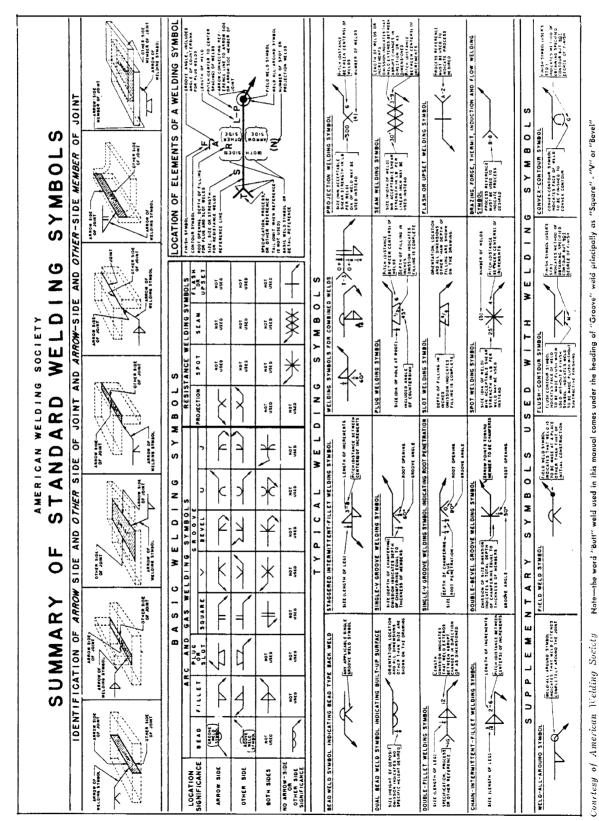


Fig. 5.4. Summary of standard welding symbols (American practice—courtesy of the American Welding Society)

groove (butt) welds are involved, the edges trends of the steel components arc usually prepared by flame cutting, arc-air gouging or edge planning to provide square, bevel, V-, U-, or J-shaped grooves which are straight and true to dimension. Relatively thin material may be groove welded with square cut edges.

A complete penetration weld is one which achieves fusion of weld and base metal throughout the depth of the joint. It is made by welding from both sides of the joint, or from one side to a backing bar or backing weld. Except where backing bars are employed, specifications require that for full penetration groove welds made by the manual shielded metal-arc process, the weld roots must be chipped or gouged to sound metal before making the second weld.

Partial penetration groove welds are employed when stresses to be transferred do not require full penetration, or when welding must be done from one side of a joint only and it is not possible to use backing bars or to gouge weld roots for backing welds. The application of partial penetration groove welds is governed by specifications which may limit the effective throat thickness or the thickness of the material on which they are to be used.

Edge preparation of base material for partial penetration welds is similar to that for full penetration groove welds, but it usually covers less than the full joint thickness. The effective throat thickness and hence the weld strength of

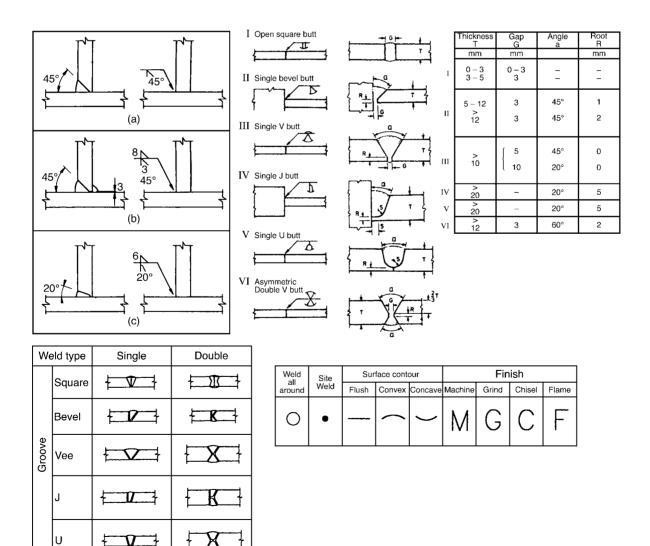


Fig. 5.5. Practical guidelines on welding (British practice)

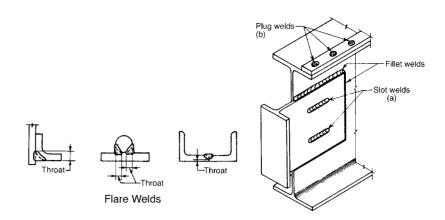


Fig. 5.6. Examples of flare welds and other welds in operation

partial penetration groove welds is normally limited to less than the full joint thickness.

The use of partial penetration welds is subject to British, European and AWS codes and specification provisions. These are more restrictive in bridge specifications than in building codes.

Flare welds are special cases of groove welds in which the groove surface of one or both parts of a joint is convex. This convexity may be the result of edge preparation, but more often one or both joint components consists of round rods or a shape with a rounded corner or bend. Fig. 5.6 illustrates several types of flare welded joint. The effective throat dimension is used in design calculations. Complete penetration in a flare weld is usually difficult to achieve and design values should be applied conservatively.

Plug and slot welds are used in lap joints, to transmit shear loads, prevent the buckling of lapped parts or to join component parts of built-up members. Round holes or slots are punched or otherwise formed in one component of the joint before assembly. With the parts in position, weld metal is deposited in the openings, which may be partially or completely filled depending on the thickness of the punched material. Fig. 5.6 shows slot welds and plug welds. Slot welds are used in conjunction with fillet welds to stitch a wide area of a T-beam to a beam web. Fig. 5.6 also shows plug welds being used to attach a guide strip to the top of a beam flange.

Welded joints which conform to all codes and specification provisions for design, materials and workmanship are designated as prequalified joints. These include specific fillet, groove, plug and slot welded joints of sufficient variety to cover most requirements of structural work. These joints have been thoroughly tested and are recommended for general use in the fabrication of buildings and bridges.

> The types of groove weld to be used for various joint arrangements, thickness of materials, welding processes and welding positions are usually specified on the engineer's design sheets or drawings. Therefore, the draughtsman seldom selects the type of groove weld. However, should it be necessary to verify design information or to select an appropriate groove weld to detail a shop splice, reference should be made either to the fabricator's standard welds or to the codes and specifications published by various authorities.

> The position of a joint when the welding is performed has a definite structural and economic significance. It affects the ease of making the weld, the size of electrode, the current required and the thickness of each weld layer deposited in multi-pass welds.

5.4.1. Joint prequalification

5.4.2. Welding positions

The basic weld positions are

- (*a*) flat: the face of the weld is approximately horizontal and welding is performed from above the joint
- (b) horizontal: the axis of the weld is horizontal. For groove welds the face of the weld is approximately vertical; for fillet welds the face is usually at 45° to the horizontal and vertical surfaces
- (c) vertical: the axis of the weld is approximately vertical
- (d) overhead: welding is performed from the underside of the joint.

5.4.3. Welding symbols

Shop details and erection plans for welded construction must provide specific instructions for the type, size and length of welds and their locations on the assembled piece. This information is usually given by means of welding symbols. Most structural fabricators have adopted the basic method described in the American Welding Society booklet Standard Welding Symbols, AWS A2.0. The symbols in this system, commonly used in structural work are shown in Fig. 5.4.

Three basic parts are needed to form a welding symbol: an arrow pointing to the joint, a reference line upon which dimensional data is placed and a basic weld symbol device indicating the weld type required. A fourth part of the welding symbol, the tail, is used only when it is necessary to supply additional

	Other welds							
Location	Flange		Fillet	Deed	Curfooing	Fusion	Plug	Stud
significance	Edge	Corner	Fillet	Bead	Surfacing	spot	or slot	5.00
Arrow side	4		4	7	6		4	
Other side	_L_		4	5	~	-		4
Both sides			\Rightarrow	4	-00-		,	4
Sketch (weld one side)	Y							

Note: Arrow side means side of joint to which arrow points

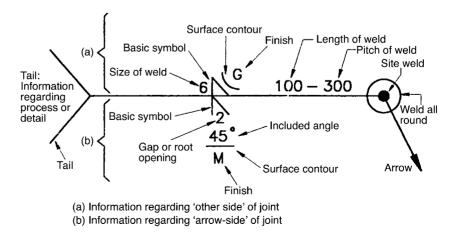


Fig. 5.7. Construction of a welding symbol

data such as specification, process or detail references. See Fig. 5.7 for the construction of a welding symbol.

An indication of specification references in the tail is necessary only when two or more electrode classes are required for the welding on a particular drawing. Normally, this information is carried in the general notes or on a job data sheet. The same is true for process references. However, since specification references usually determine the process, process references will be needed only for electrogas, stud or other kinds of welding where the electrode specification does not describe the process or method. When references are not needed to supplement the welding symbol, the tail is omitted.

The symbol for welds should be made large enough to be easily recognised and understood. Some fabricators supply welding symbol templates to their

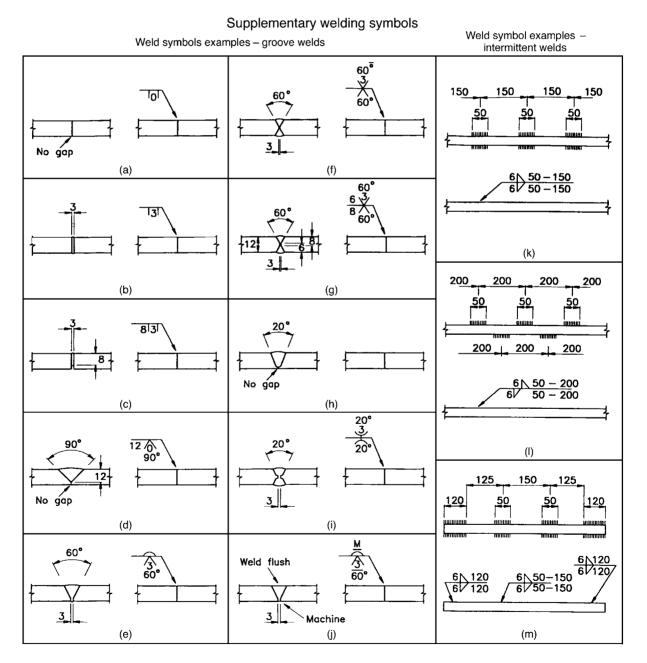


Fig. 5.8. Basic welding symbols for groove and intermittent welds (based on EC3). The extracts from DD ENV 1993 Part 1.1 are reproduced with the permission of BSI under licence number 2000SK/ 0364

draughtsmen. These may also be purchased from suppliers of drafting equipment.

The construction and application of welding symbols for groove welds are basically similar to those for fillet welds. However, whereas fillet welds are represented by a single basic symbol (the triangle), groove welds involve seven basic symbols. These may be combined with each other or compounded with supplementary weld symbols to cover a wide variety of weld profiles and edge preparations. The shapes of the basic weld symbols for groove and intermittent welds are shown in Fig. 5.8.

Reference lines and any information placed on them are arranged to read like other notes on a drawing: from left to right if the reference line is horizontal and from bottom to top if it is placed vertically on the sheet. Reference lines are usually placed in horizontal or vertical positions.

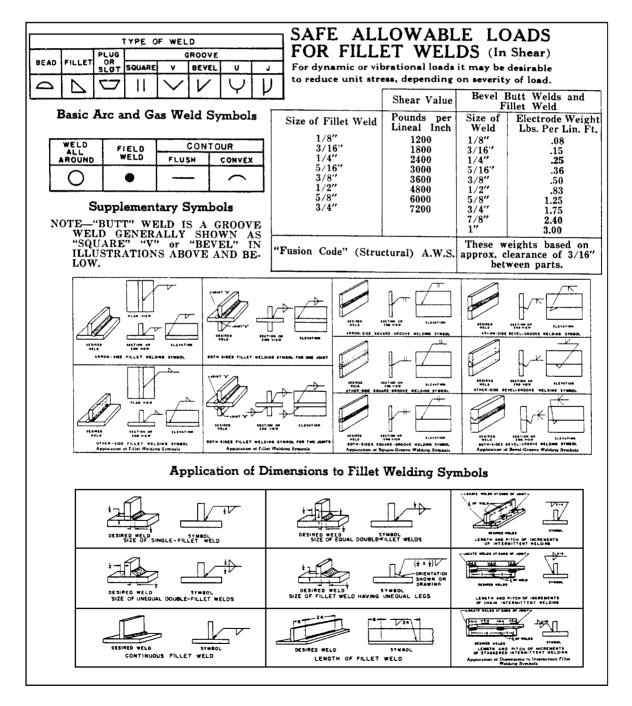
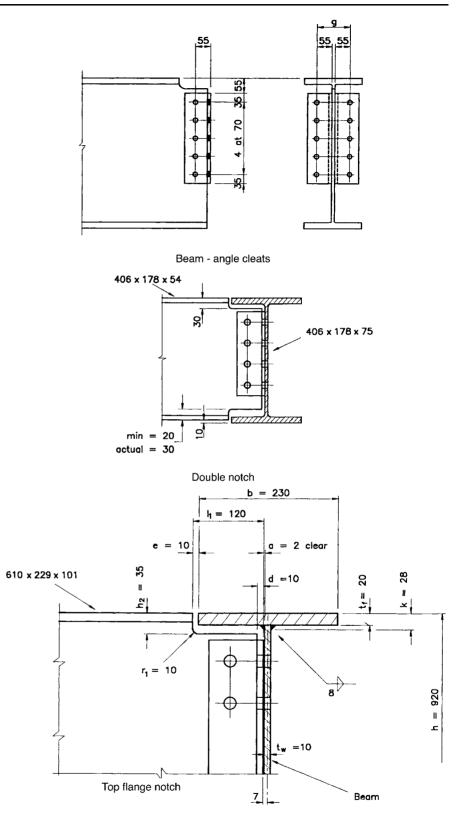


Fig. 5.9. Welding symbols—additional data (American practice—courtesy of Lincoln Electric Co.)

The arrow may be located at the right or left end of the reference line and may point upward or downward from it. The arrow is drawn at an angle of about 45° to the reference line, except when some other arrangement is necessary to avoid crowding a portion of the drawing. The arrow head should never be placed on the reference line or on a continuous extension of the reference line. Some angular break should always be employed.

Weld dimensions are placed on the welding symbol with the weld size to the left of the basic weld symbol or device and the weld length to the right.


Weld dimensions are placed on the same side of the reference line as the device. When a device is required on both sides of the reference line and the weld size and length are identical for the arrow and other side of the joint, it is unnecessary to repeat dimensional data above and below the reference line.

Additional data on welding symbols, as used specifically by Lincoln Electric Co., USA, is given in Fig. 5.9.

6. Design detailing of major steel components

This chapter gives a comparative study of detailing practices for major steel components such as beams, girders, columns, trusses, and various fastenings. Three major codes are considered and they are based on British, European and American practices. Both bolted and welded connections or fastenings are given as practised under the BS 5950, EC3 and AISC and LRFD Codes.

6.1. Beams and girders

Fig. 6.1.1. Notching of flanges—bolted connection, all beams grade S275 (based on EC3 specifications)

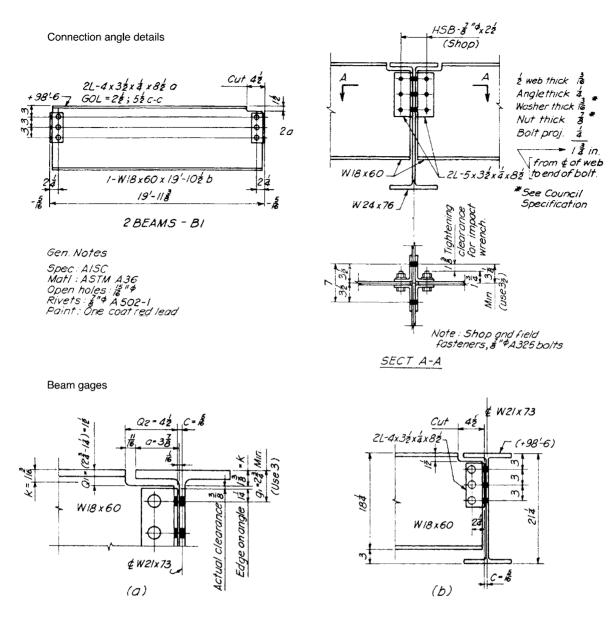
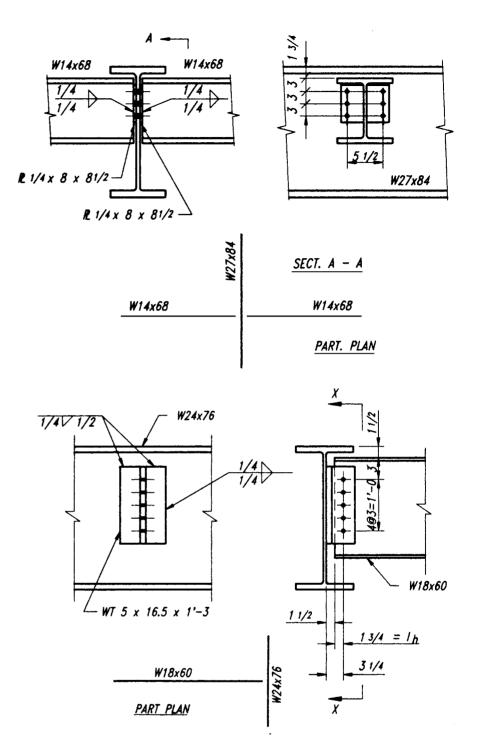



Fig. 6.1.2. Beam fabrication details (based on AISC specifications)

Fig. 6.1.3. End plate shear connections of wide flange beams—bolted and welded connections (based on AISC specifications)

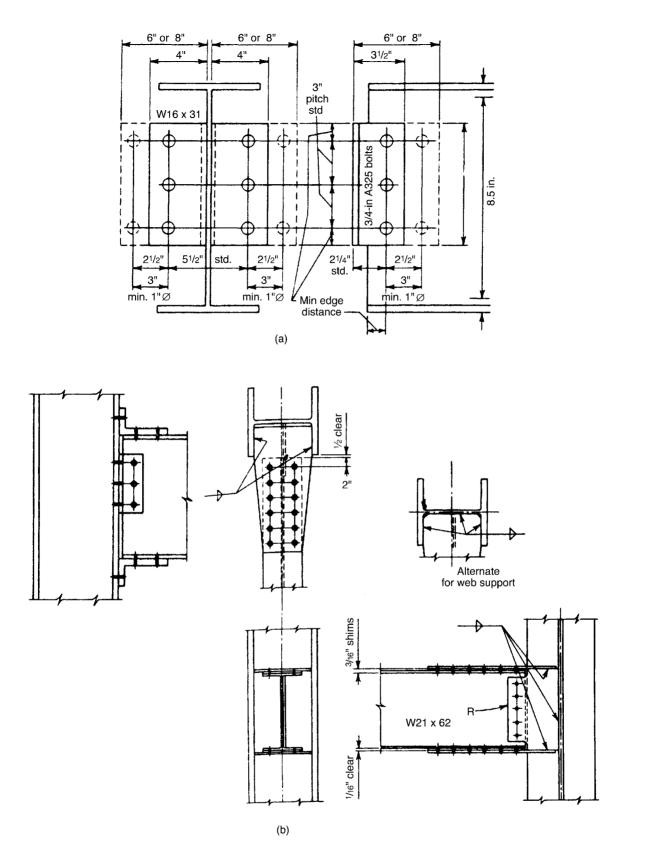
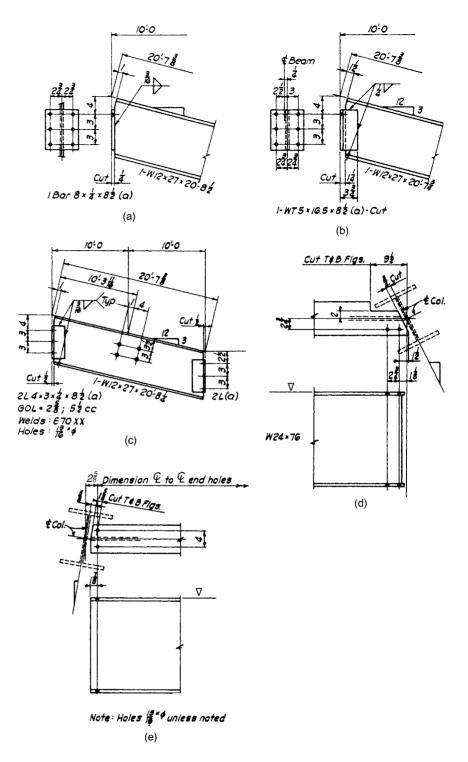
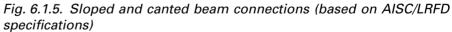
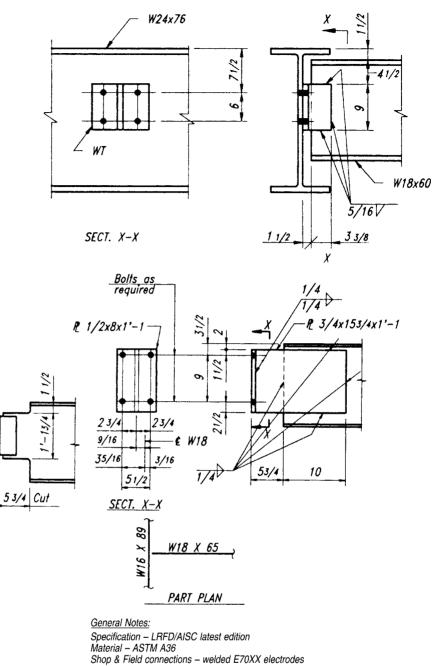
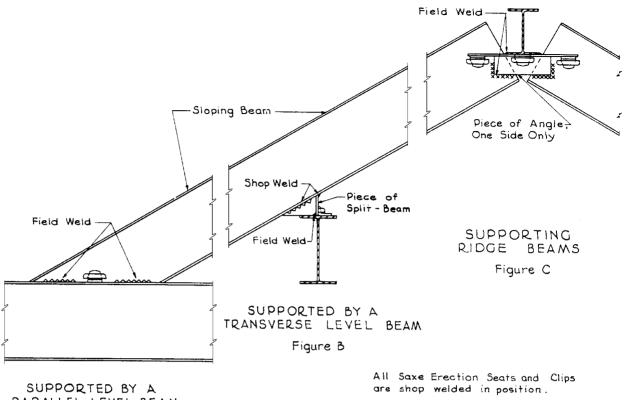
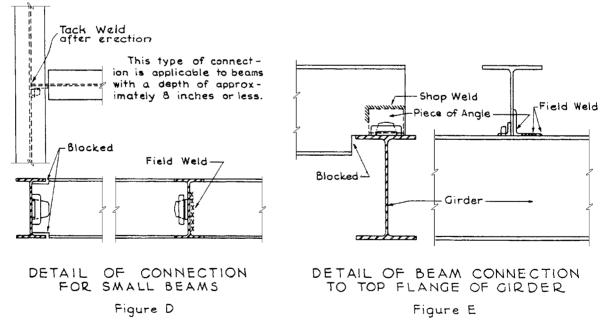




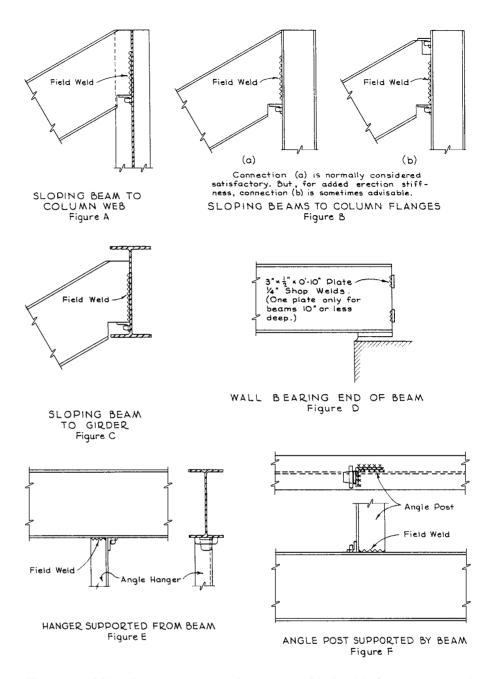
Fig. 6.1.4. Bolted framed beam connection: (a) semi-rigid connection; (b) moment connection (based on AISC/LRFD specifications)

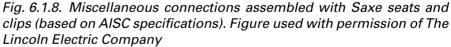




Fig. 6.1.6. Web reinforcement of coped beams (based on AISC/LRFD specifications)

PARALLEL LEVEL BEAM

Figure A


MISCELLANEOUS SLOPING BEAM CONNECTIONS



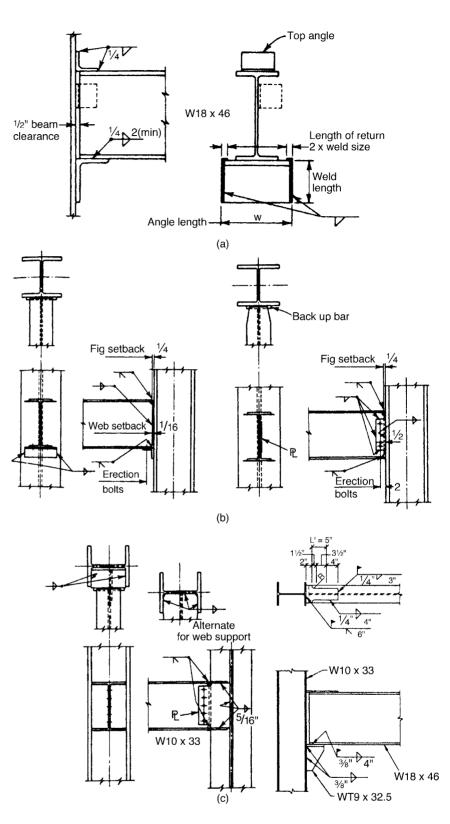

ADDITIONAL BEAM CONNECTIONS WITH SAXE SEATS AND CLIPS

Fig. 6.1.7. Sloping beam connections using Saxe seats (based on AISC specifications). Figure used with permission of The Lincoln Electric Company

DETAILING OF MAJOR COMPONENTS

Fig. 6.1.9. Flexible and rigid connections: (a) beam–seat connections flexible; (b) beam-to-column flange connections—moment-resistant; (c) beam-to-column web connections—moment-resistant (based on AISC/LRFD specifications)

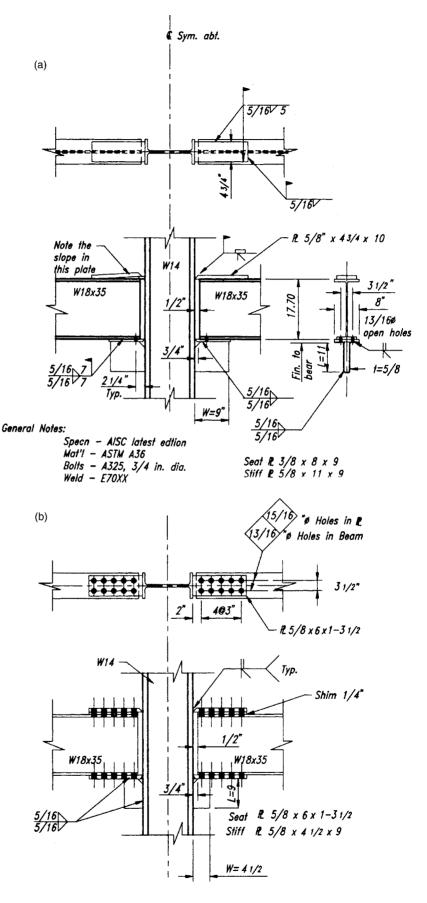


Fig. 6.1.10. Beam–column welded and bolted connections: (a) welded connections; (b) bolted connections (based on AISC/LRFD specifications)

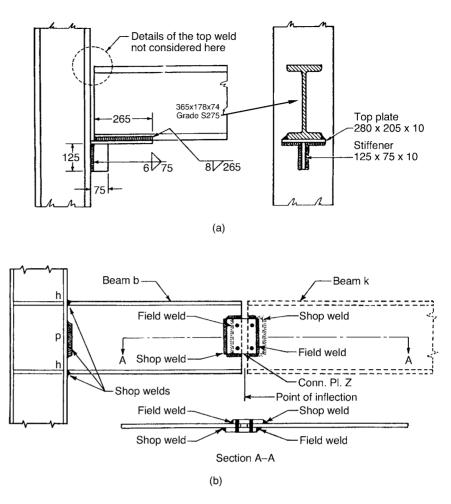
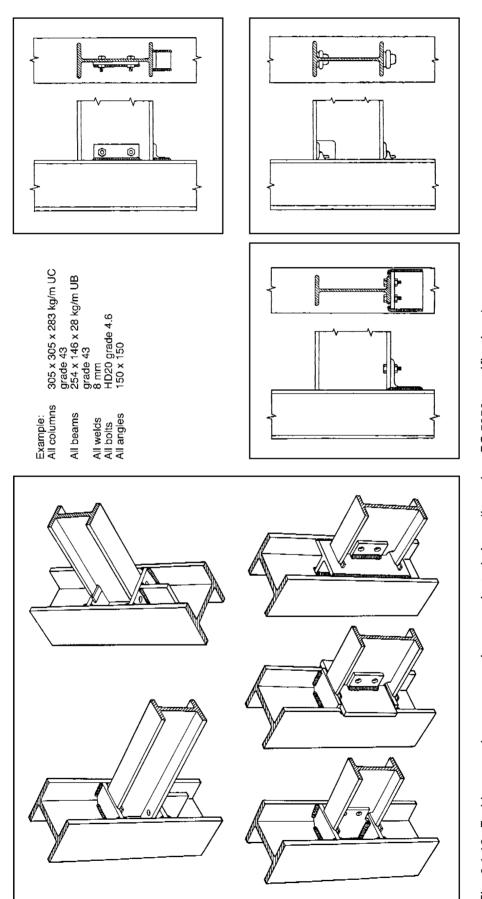
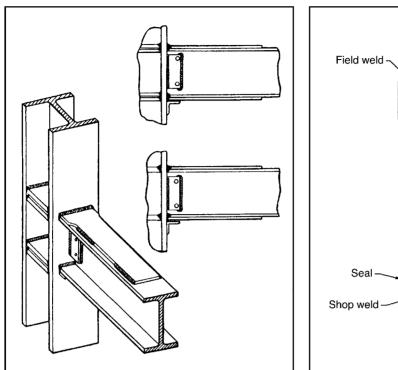
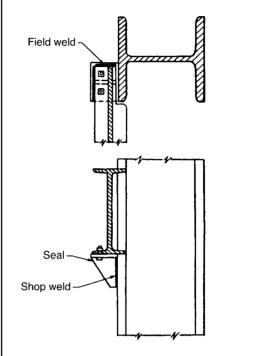





Fig. 6.1.11. Beam–column seated and spliced connections: (a) end beam to column welded connection; (b) beam–column connection with splice beam connection (field/shop welding) (based on EC3 specifications)

6.1A. Detailing of welded plate girders

Beam continuous over support

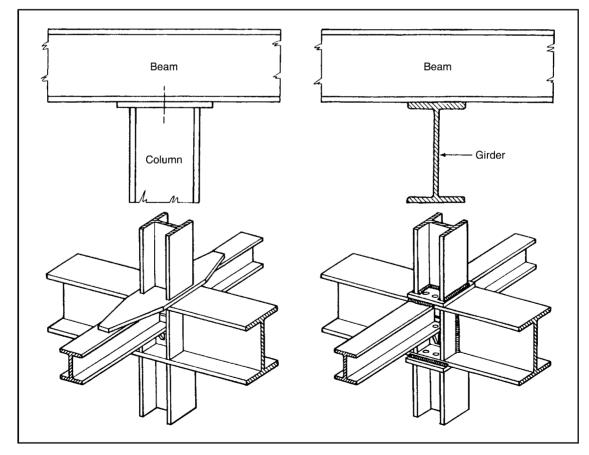
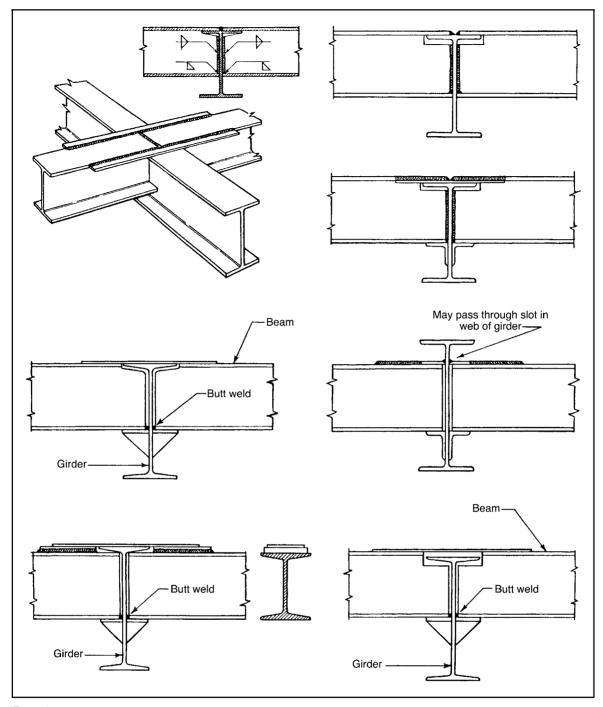
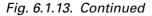




Fig. 6.1.13. Spandrel beam to columns (based on BS 5950 specifications)

Example: All beams (major) vary from 914 x 419 x 388 UB to 254 x 102 x 28 UB grade 43 254 x 254 x 167 UC grade 43 All columns All beams (major) vary from 254 x 102 x 28 UB to 127 x 76 x 13 UB grade 43 All welds 8 mm All bolts HD20 grade 4.6

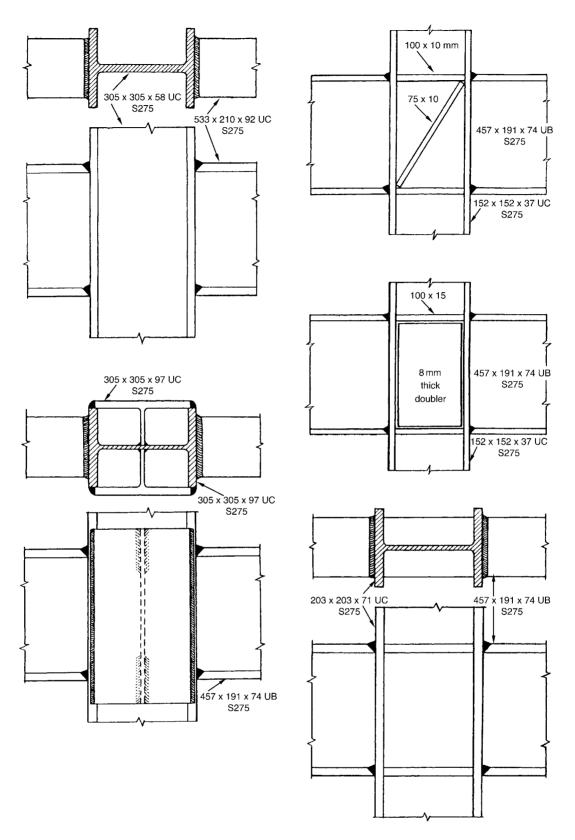


Fig. 6.1.14. Beam to column connection—all welds 6–8 mm (based on EC3 specifications)

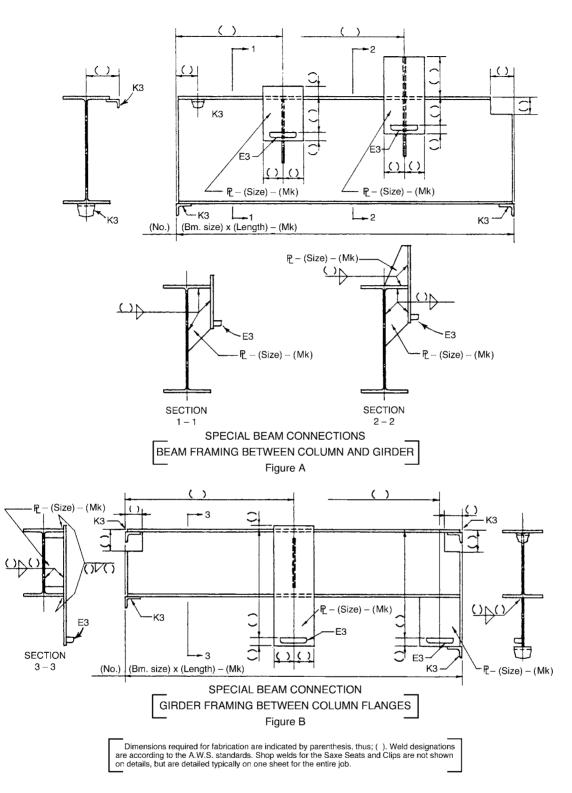
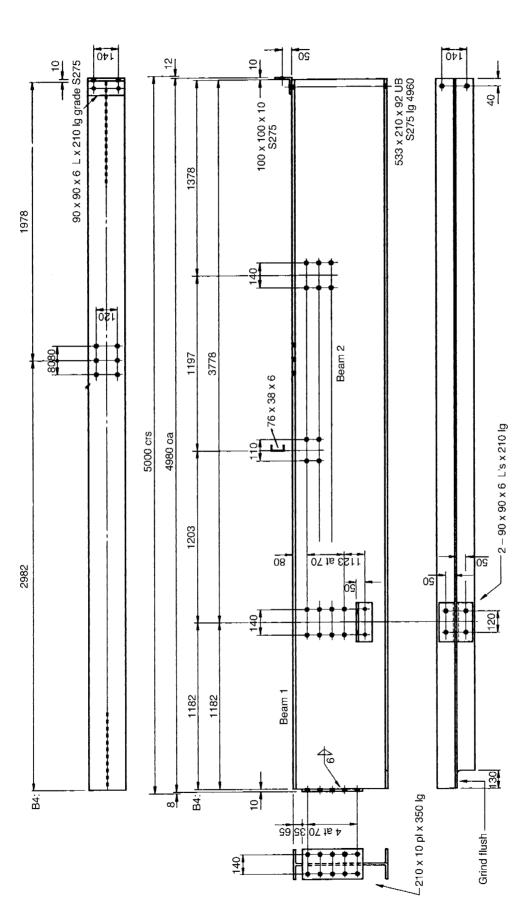



Fig. 6.1.15. Sample shop detail drawing—beams (based on AISC specifications)

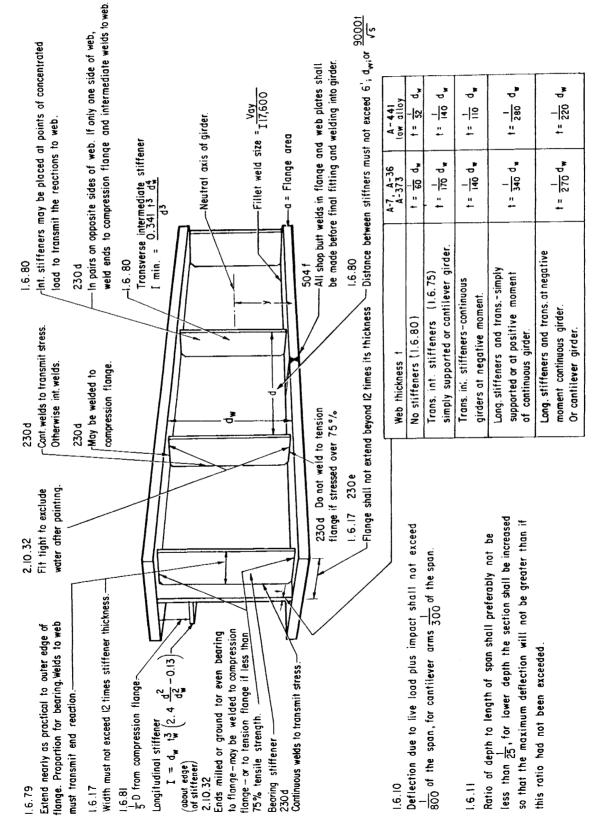


Fig. 6.1.17. Summary of plate girders—bridge (AWS and AASHTO specifications)

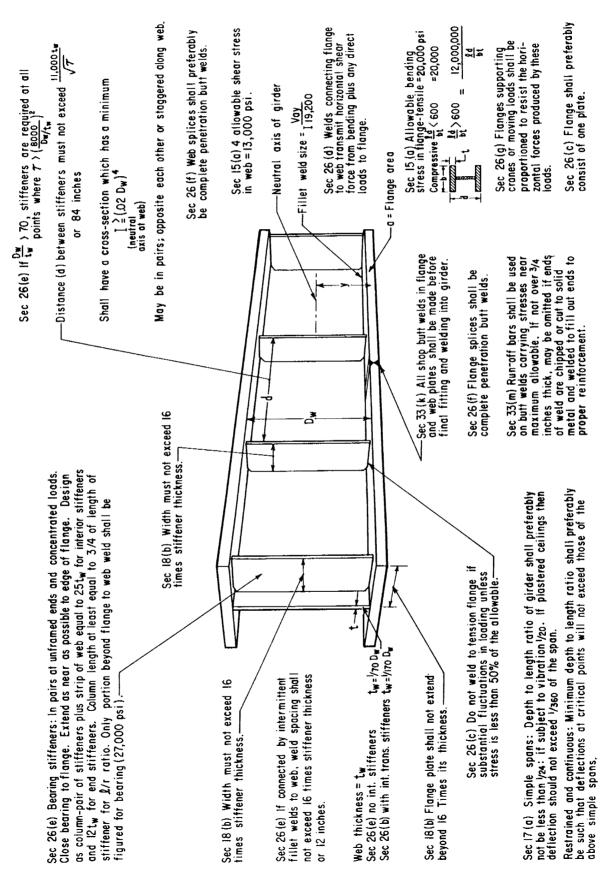
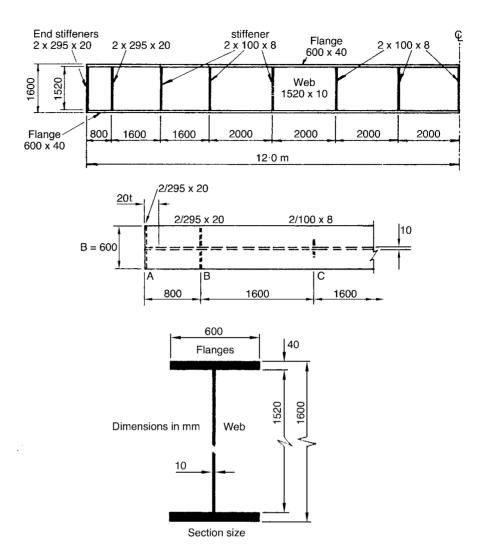



Fig. 6.1.18. Summary of plate girders—building (AISC and AWS specifications)

Fig. 6.1.19. Plate girders (symmetrical flanges), welded (based on BS 5950 specifications)

Beam splice welding procedure: (for 3 spans)

- 1. Raise the abuttment ends of the beams the tabulated amount (R).
- Butt-weld the beam flanges and web, using the following sequence: make two passes on each flange, then two on the web, repeat, using one pass at each location, until welds are completed.
- 3. Weld the bottom and top moment plates.
- 4. Lower the beam ends to final position.

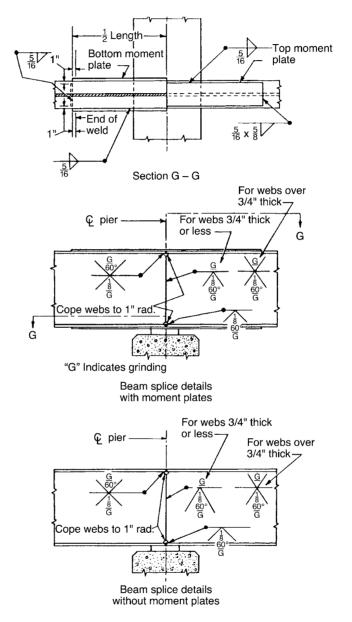


Fig. 6.1.20. Beam splice details over supports (continuous over three spans) (based on AISC and AASHTO specifications). From Standard Specification for Highway Bridges, Copyright 1996, by the American Association of State Highway and Transportation Officials, Washington, D.C. Used by permission

6.2. Columns and portal frames

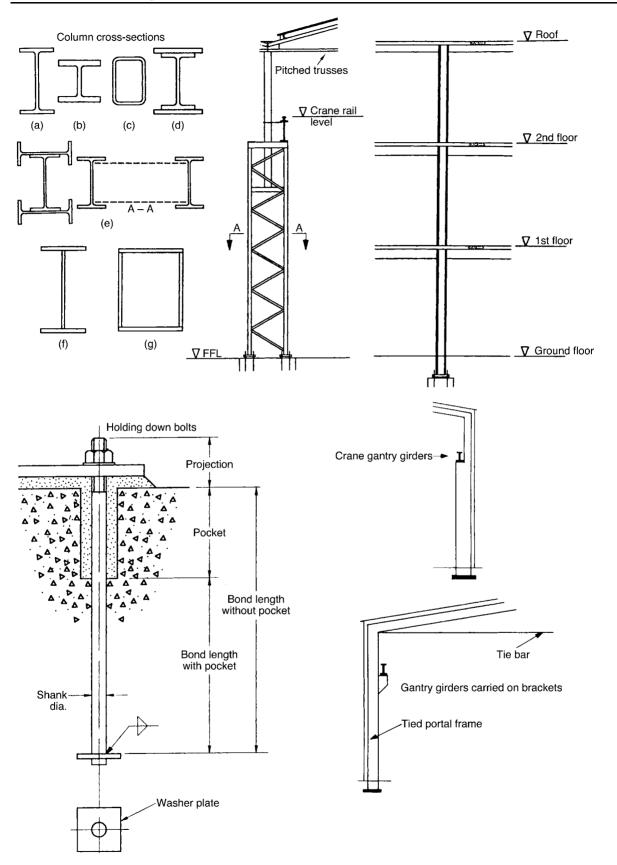


Fig. 6.2.1. Types of column, holding down bolts and gantry girders (BS 5950 specification)

W column splices

Two cases are described below, namely splice plates shop welded and field bolted and shop welded and field welded.

First case

Flange plates shop welded, field bolted Depth D_{ij} and D_{j} nominally the same

Case 1

 $D_L = (D_U + \frac{1}{4})$ to $(D_U + \frac{5}{8})$ No fills. Furnish sufficient $2\frac{1}{2} \times \frac{1}{8}$ strip shims to obtain 0 to $\frac{1}{16}$ clearance on each side.

Case 2 $D_l = (D_{ll} - \frac{1}{4})$ $D_{l} = (D_{ll} - \frac{1}{8})$ $D_L = D_U$ $D_L = (D_U + \frac{1}{8})$ Fills on lower shaft.

*Splice plates, welds and fasteners:

- (1) Select width of splice plate, number and gage of fasteners, and length L_{v} in accordance with upper shaft size.
- (2) Select thickness of splice plates, size A and lengths (X and Y) of welds and lengths L_i in accordance with lower shaft size.

(3) Add $L_U + L_L$ to obtain length of splice plates.

*Splice plates, welds and fasteners:

Same as for Case 1, except use weld size (A+t) on lower shaft.

FILLS (shop welded under splice plates):

Fill thickness t:

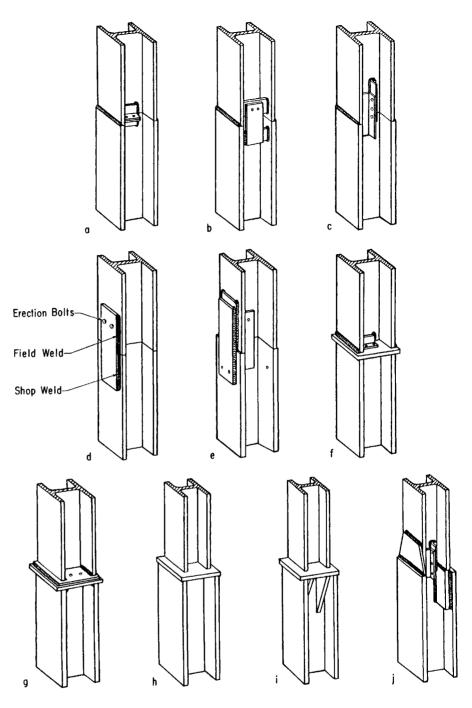
Fill thickness t: $\frac{1}{2}(D_L - D_U) - \frac{1}{8}$ or $-\frac{3}{16}$, whichever results in ¹/₈-in. multiples of fill thickness.

 A_f =finished contact area of one fill, f_R =allowable shear value of one linear inch of weld, size B, and

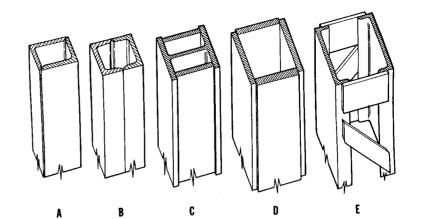
figure width)+2M

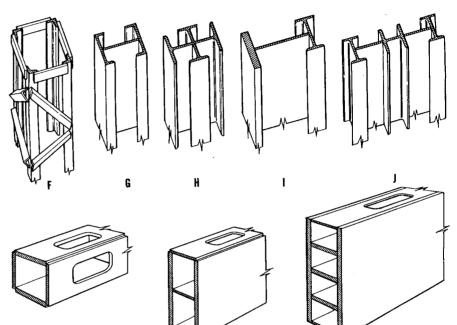
Note:

1. *Min. AISC, ASD and LRFD specification.


2. 1 inch=25.4 mm.

3. If $L_B = \text{fill length}$ is excessive place weld size B across and offill and reduce L_B by $\frac{1}{2}$ or to $L/2 + 1\frac{1}{2}$. Disregard return welds in Case 2.


Fig. 6.2.2A. W column splice construction examples


Where $D_1 = (D_{11} - \frac{1}{4})$, use $\frac{3}{16}$ $D_L = (D_U - \frac{1}{8})$, use $\frac{3}{16}$ $D_L = D_U$, use $\frac{1}{8}$ $D_1 = (D_{11} + \frac{1}{8})$, use $\frac{1}{8}$ Fill width: same as splice plate. Fill length: $(L_L - 2)$ Case 3 *Splice plates, welds and fasteners: $D_{1} = (D_{11} + \frac{3}{4})$ and over. Same as for Case 1. Fills on upper shaft, minimum welds. FILLS (shop welded to upper shaft): Weld size B: Weld length: $(L_U - \frac{1}{4})$ Fill width: Width of splice plate Fill length: $(L_U - \frac{1}{4})$ Second case Flange plates shop and field welded Depth D_{ij} nominally 2 in. less than depth D_{ij} Case 4 *Splice plates and splice welds: Fills on upper shaft, developed for bearing. Same as Case 1. Fill width less than upper shaft flange FILLS (shop welded to upper shaft): width. Fill thickness: $t: \frac{1}{2}(D_L - D_U) - \frac{1}{16}$ Weld size B: Max.: $\frac{5}{16}$ (preferred) or $(t - \frac{1}{16})$ or t, Weld length $L_B \ge (A_f f_p)/2f_B \ge (L/2 + 1\frac{1}{2})$ in which f_{p} = computed bearing stress in fill Fill width Min.: (Splice plate width)+2N Max.: (Upper shaft fig. width) - 2M Fill length: L_B Case 5 *Splice plates and splice welds: Fills on upper shaft, developed for bearing. Same as Case 1. Fill width greater than upper shaft flange FILLS (shop welded to upper shaft): width. Fill thickness: $\frac{1}{2}(D_L - D_U) - \frac{1}{16}$ Use Case 5 only when spaces M and N, Weld size B: Case 4, are inadequate for welds B and Max.: $\frac{5}{16}$ (preferred) or $(T_U - \frac{1}{16})$ or T_U . A, or when fills must be widened to obtain additional bearing area. Weld length L_{B} : Same as Case 4 Fill width: (Splice plate width)+2N, or (Upper shaft Round greater value up to next quarter inch. Fill length: L_B

DETAILING OF MAJOR COMPONENTS

Fig. 6.2.2B. Miscellaneous column splices—projected view (AISC specification)

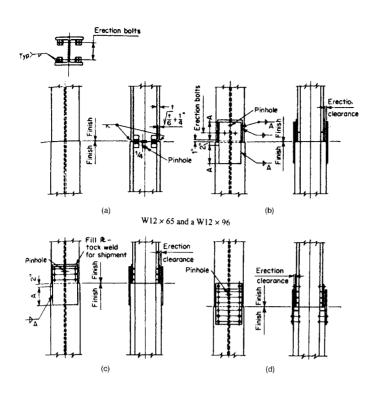


Fig. 6.2.3. Built up compression members—projected view (AISC specification)

Ł

K

M

	Splice Plate				Fasteners		Welds		
Column Size	Width	Thk.	Length		No. of	Casa	Size -	Length	
			L_U	L_L	Rows	Gage G	A	X	Y
W14×455 & over	14	<u>5</u> 8	$12\frac{1}{4}$	9	3	$11\frac{1}{2}$	$\frac{1}{2}$	5	7
W14×311 to 426	12	58	$12\frac{1}{4}$	8	3	$9\frac{1}{2}$	1 2	4	6
W14×211 to 283	12	$\frac{1}{2}$	$12\frac{1}{4}$	8	3	$9\frac{1}{2}$	38	4	6
W14×90 to 193	12	38	$9\frac{1}{4}$	8	2	$9\frac{1}{2}$	85 16 15 16	4	6
W14×61 to 82	8	8 3 8 5 16	$9^{\frac{1}{4}}$	8	2	$\begin{array}{c}9^{\frac{1}{2}}\\5^{\frac{1}{2}}\\3^{\frac{1}{2}}\\5^{\frac{1}{2}}\end{array}$	5 16	3	6
W14×43 to 53	6	5	$9\frac{1}{4}$	7	2	$3\frac{1}{2}$	$\frac{1}{4}$	2	5
W12×120 to 336	8		$9\frac{1}{4}$	8	2	$5\frac{1}{2}$	38	4	6
W12×53 to 106	8	38	$9\frac{1}{4}$	8	2	$5\frac{1}{2}$	5 16	3	6
W12×40 to 50	6	5	$9\frac{1}{4}$	7	2	$3\frac{1}{2}$ $5\frac{1}{2}$ $3\frac{1}{2}$	$\frac{1}{4}$	2	5
W10×49 to 112	8	38	$9^{\frac{1}{4}}$	8	2	$5\frac{1}{2}$	1 5 16	3	6
W10×33 to 45	6	5 16	$9\frac{1}{4}$	7	2	$3\frac{1}{2}$	$\frac{1}{4}$	2	5
W8×31 to 67	6	12 3185 16 3185 16 16 3185 16	$9^{\frac{1}{4}}$	7	2	$3\frac{1}{2}$ $3\frac{1}{2}$	5 16	2	5
W8×24 & 28	5	5 16	$9\frac{1}{4}$	6	2	$3\frac{1}{2}$	$\frac{1}{4}$	2	4

Gages shown may be modified if necessary to accommodate fittings elsewhere on the columns.

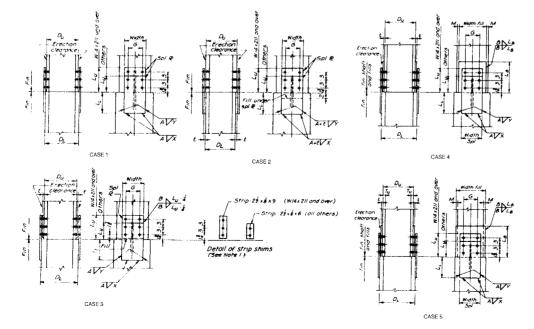


Fig. 6.2.4. Column member splices (based on AISC/ASD specifications, adapted by LRFD)

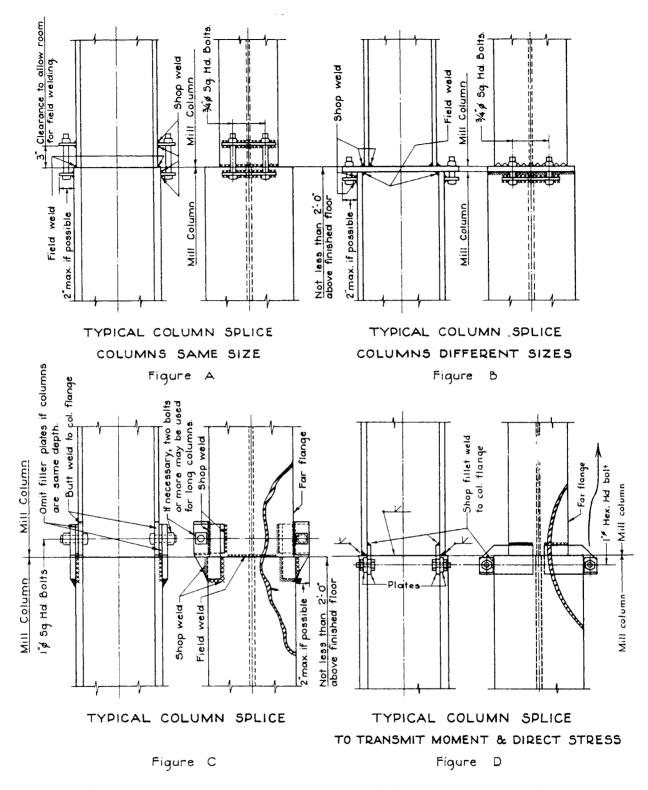


Fig. 6.2.5. Column splice fabrication details (based on AISC/LRFD specifications). Figure used with permission of The Lincoln Electric Company

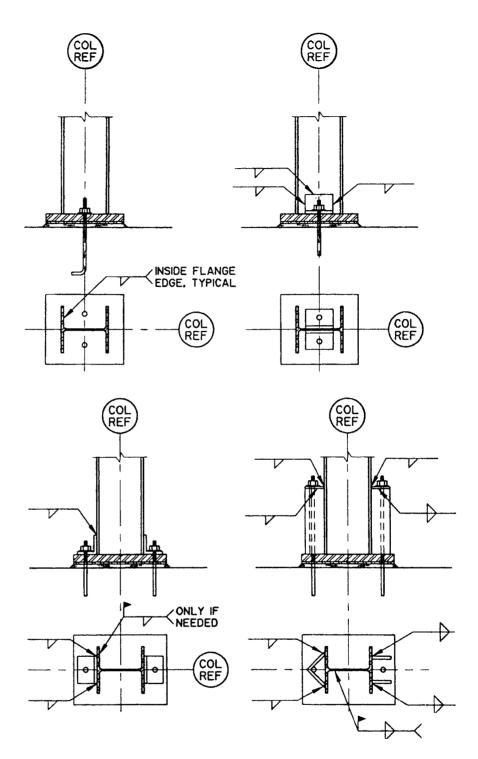
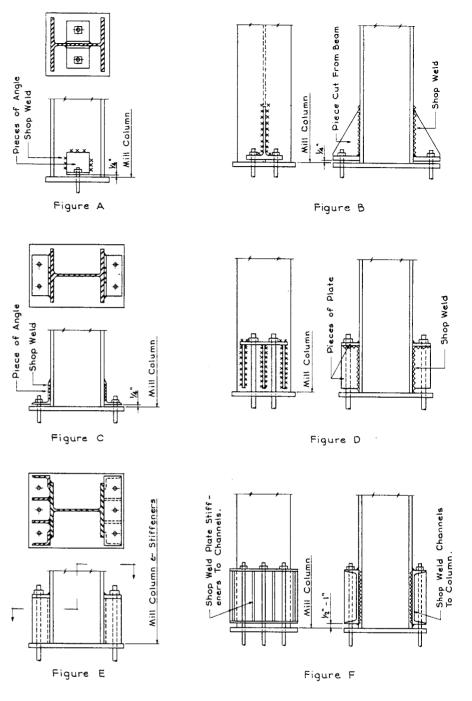
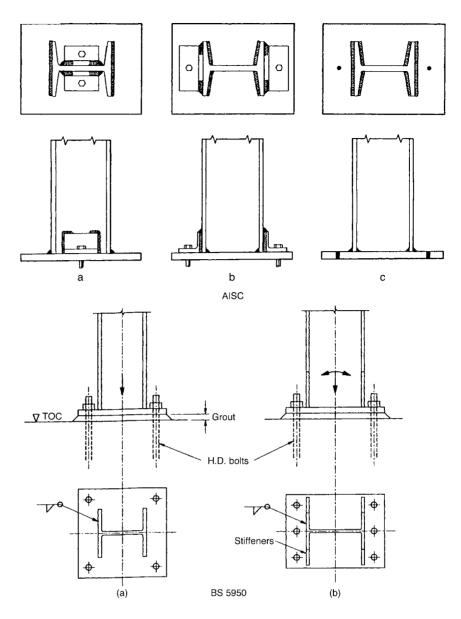




Fig. 6.2.6. Column bases (based on EC3 specifications)

Fig. 6.2.7. Miscellaneous column base details (based on AISC and EC3 specifications). Figure used with permission of The Lincoln Electric Company

DETAILING OF MAJOR COMPONENTS

Fig. 6.2.8. Miscellaneous column base details (based on AISC/BS 5950 specifications)

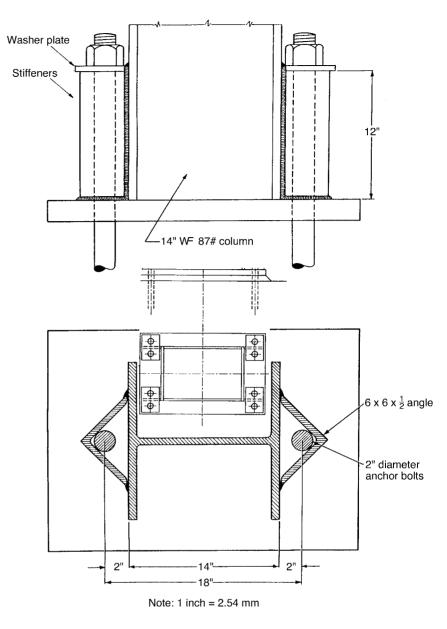


Fig. 6.2.9. Column base details (based on AISC and EC3 specifications)

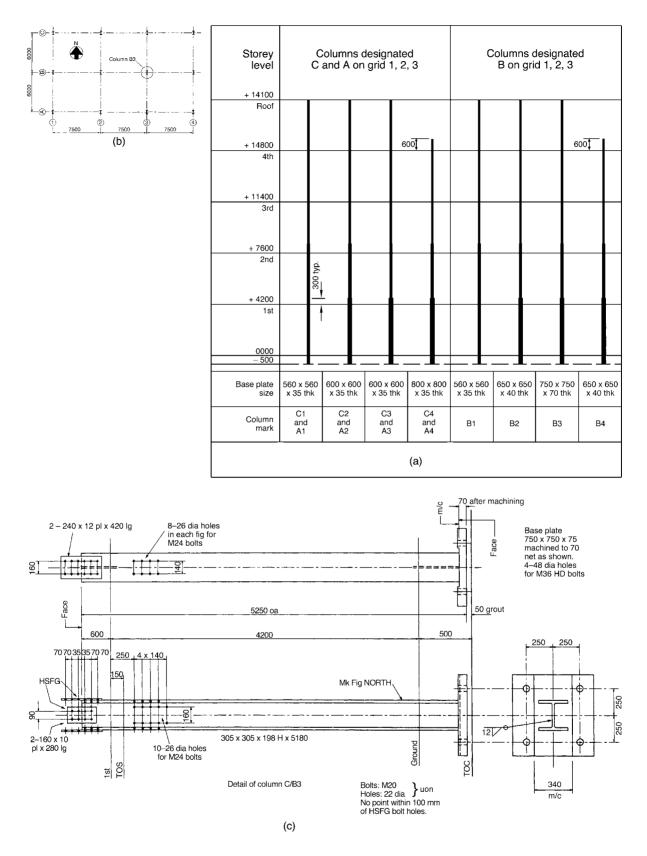


Fig. 6.2.10. Multi-storey building column: (a) column schedule; (b) key plan grid (based on BS 5950 and EC3 specifications); (c) detailing

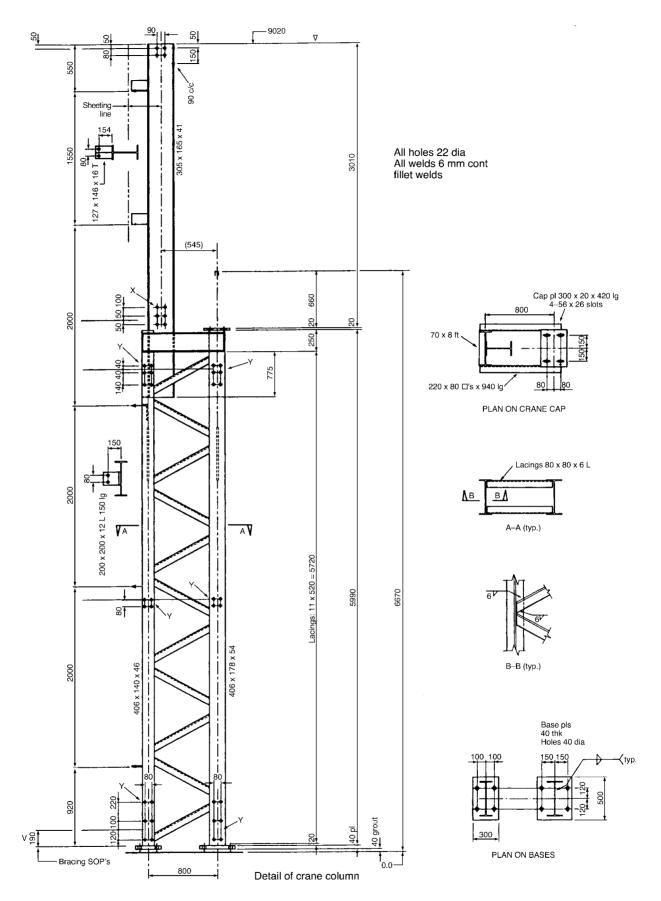


Fig. 6.2.11. Column detailing practice—trussed column (based on BS 5950 and EC3 specifications)

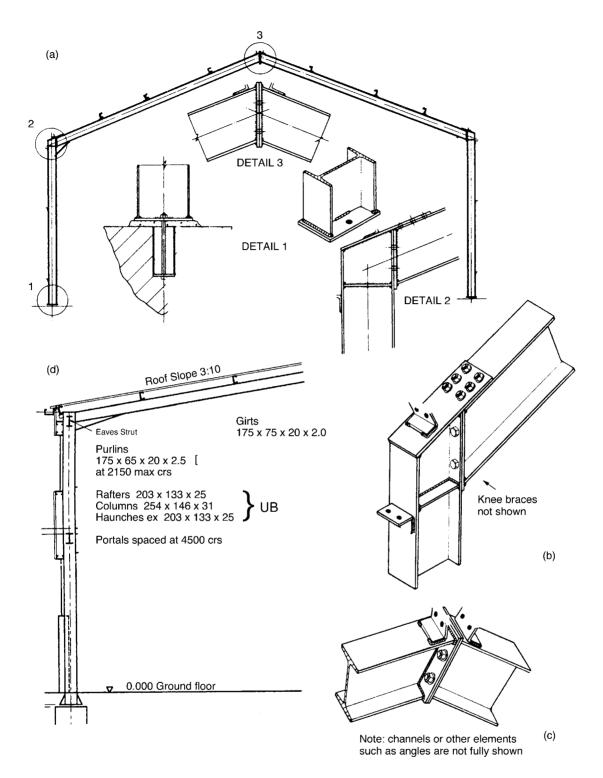
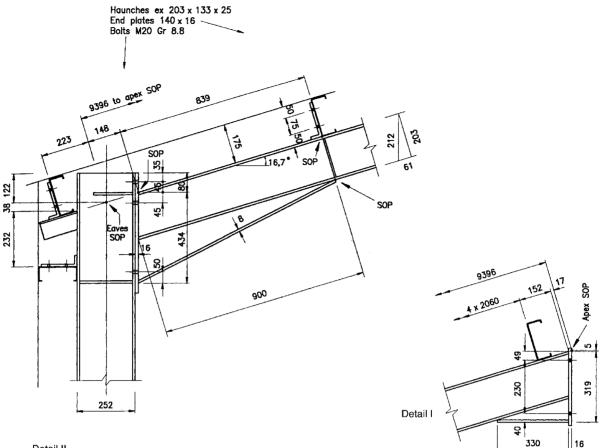
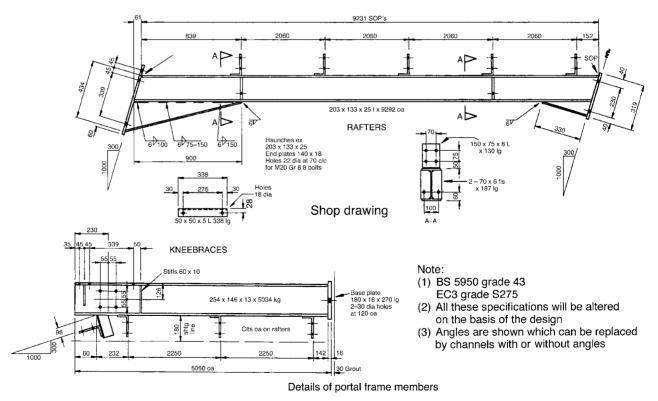
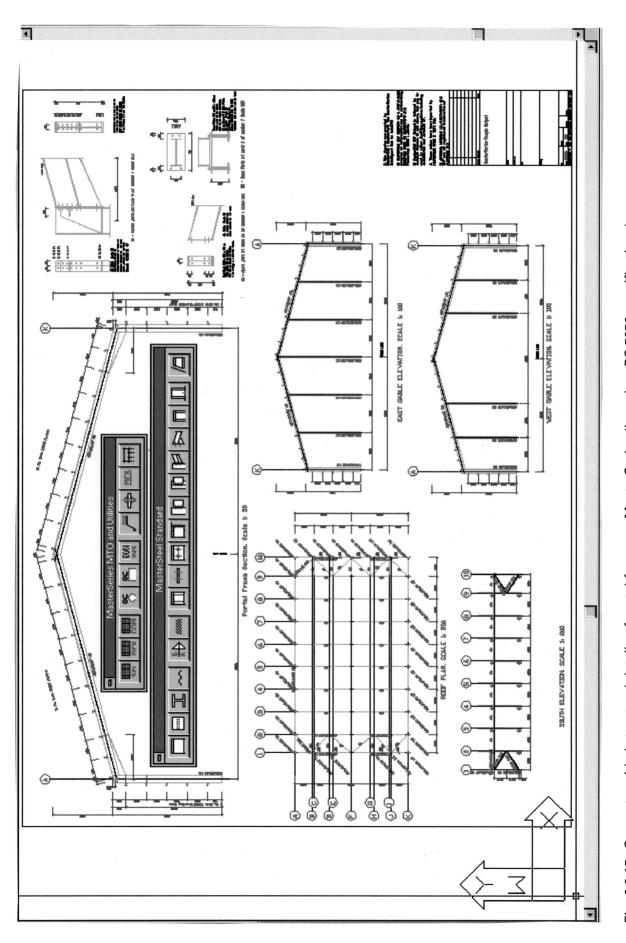
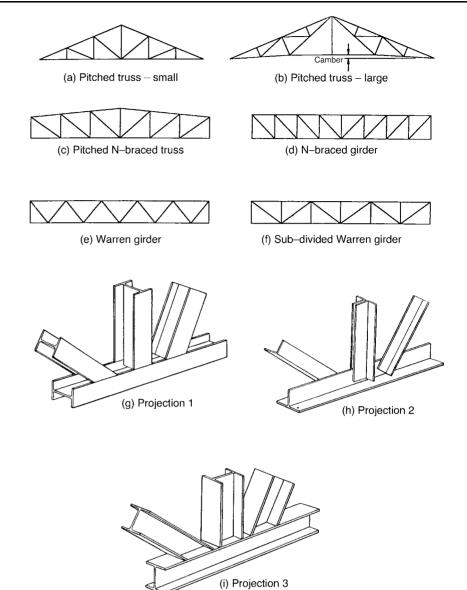
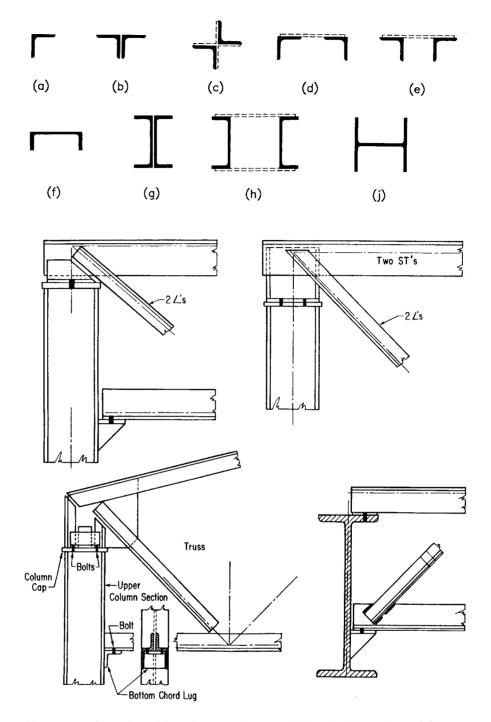



Fig. 6.2.12. Design details of portal frames and projections (based on BS 5950 specifications): (a)–(c) isomeric views; (d) sectional elevation

Detail II

Fig. 6.2.13. Structural details of portal frames (based on BS 5950 and EC3 specifications)

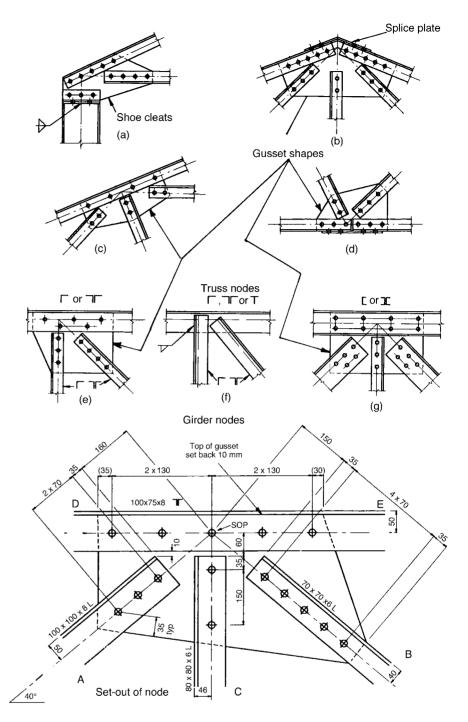
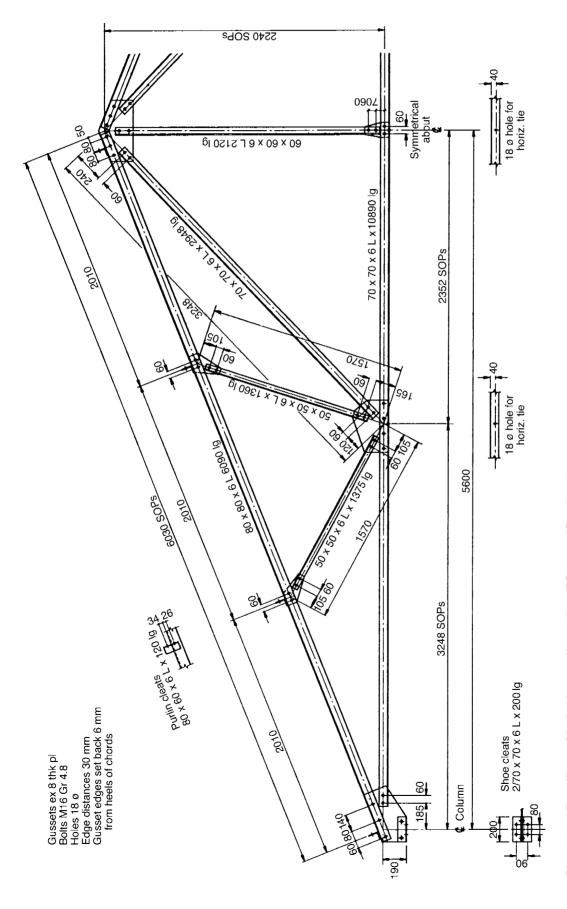
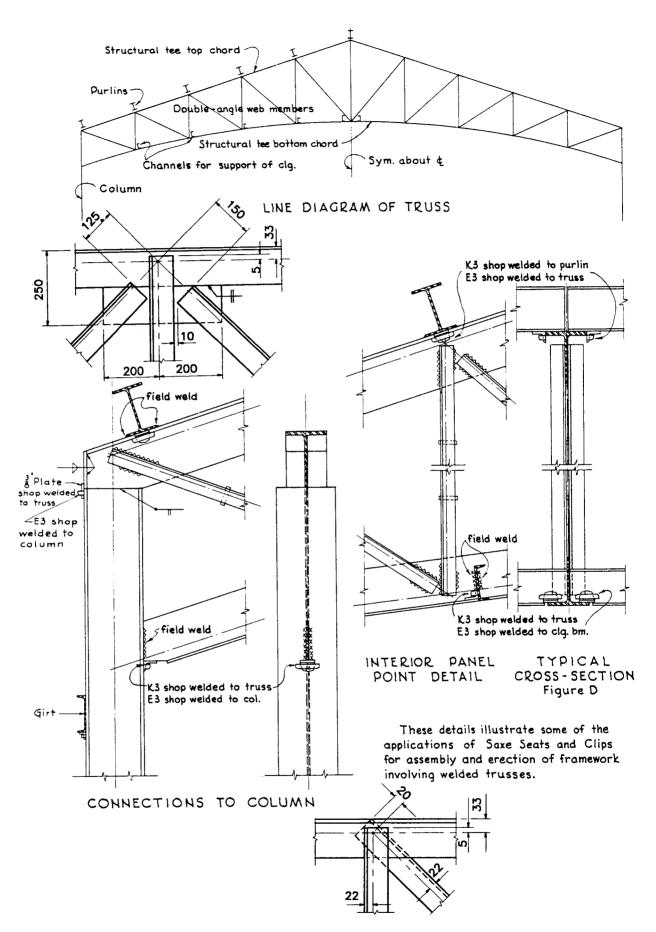





Fig. 6.2.14. Pre-set of portal frames-fabrication drawing (based on BS 5950 and EC3 specifications)

6.3. Trusses, lattice girders and trussed frames

Fig. 6.3.1. Types of truss and lattice girder and truss joints—isometric views

Fig. 6.3.2. Chord and bracing sections and details (based on BS 5950, EC3 and AISC specifications)

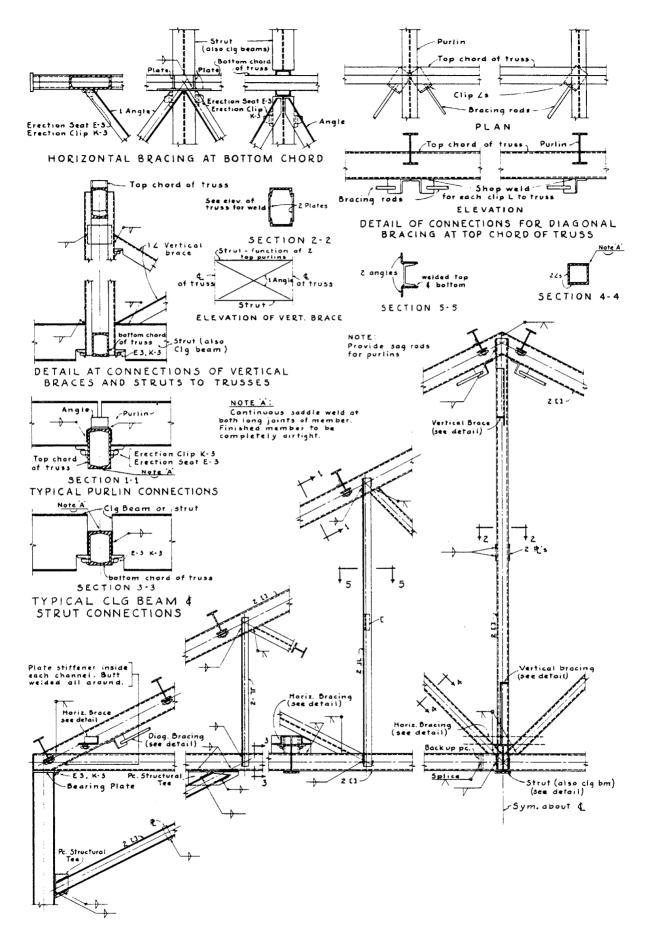

Fig. 6.3.3. Node points—bolted construction (based on BS 5950 and EC3 specifications)

Fig. 6.3.5. Node points—welded construction of an arched truss (based on Lincoln Electric Co. specifications). Figure used with permission of The Lincoln Electric Company

Fig. 6.3.6. Typical roof truss and details (based on AISC and Lincoln Electric Co. specifications). *Figure used with permission of The Lincoln Electric Company*

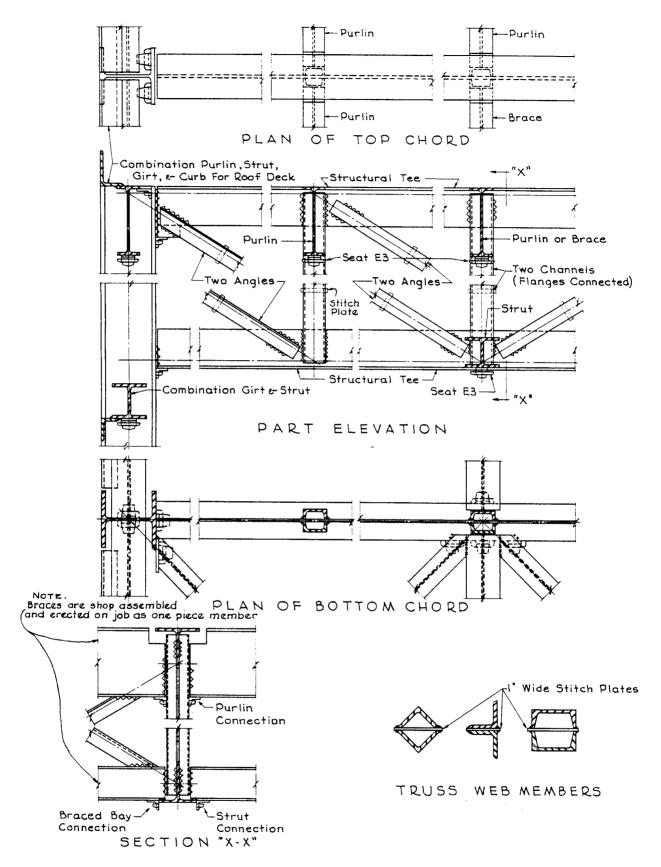
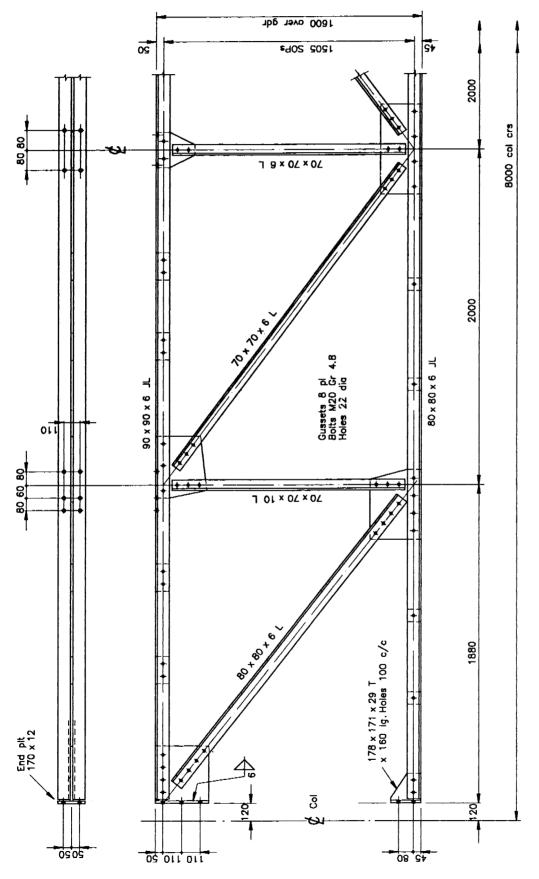
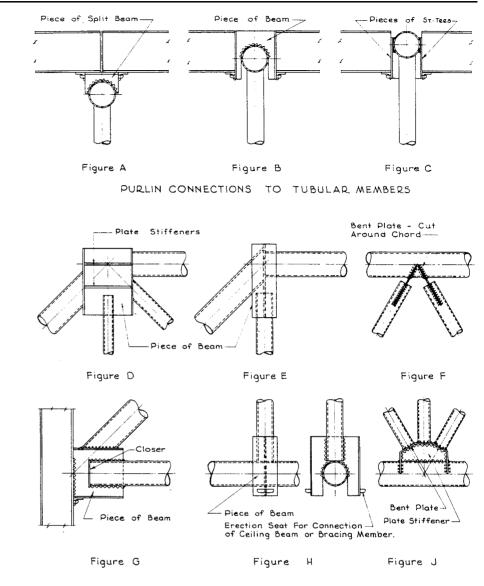




Fig. 6.3.7. Welded truss and details (based on AISC and Lincoln Electric Co. specifications). Figure used with permission of The Lincoln Electric Company

6.4. Welded tubular steel construction

EXAMPLES OF WELDED TUBULAR JOINTS

Fig. 6.4.1. Welded tubular steel construction (based on Lincoln Electric Co.). Figure used with permission of The Lincoln Electric Company

onical transition piece

fabricated from plate or st'd. reducer (tube-turn).

FIG. B: V-BUTT WELD; TRANSITION PIECE

(Compression Splice)

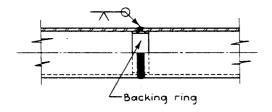
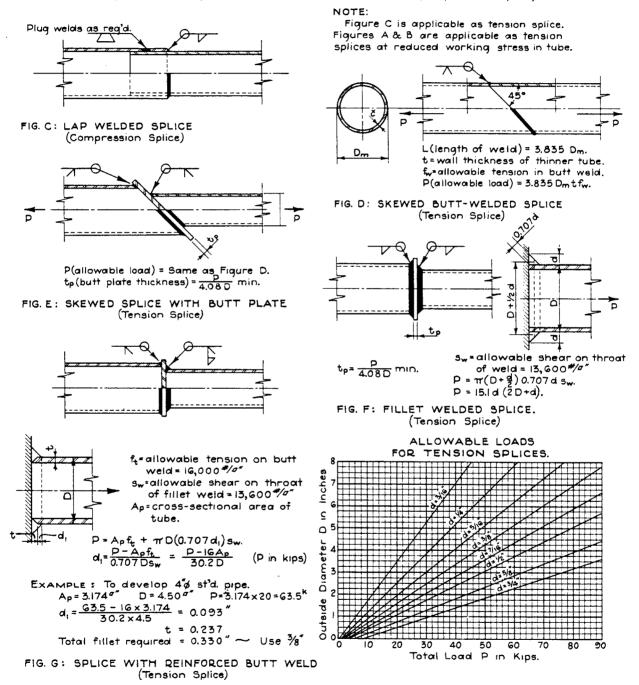
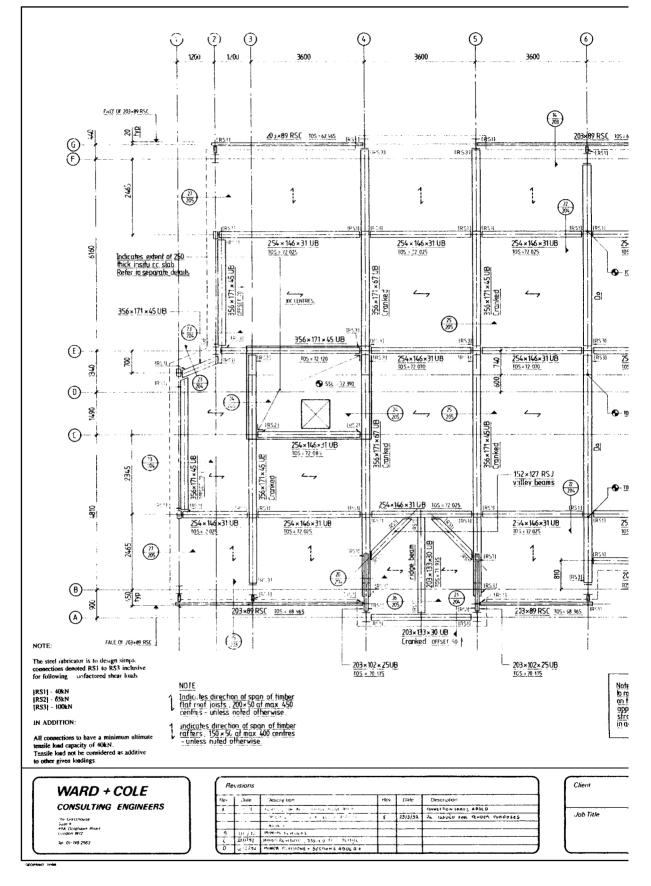
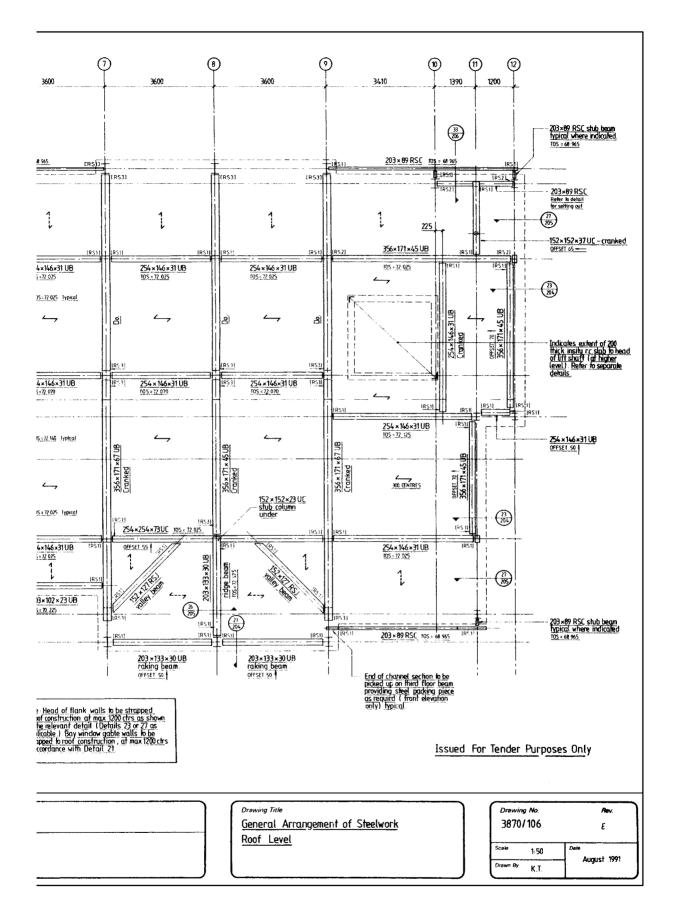


FIG. A: V-BUTT WELD; SIMILAR TUBE SIZES (Compression Splice)


Fig. 6.4.2. Welded tubular steel splices (based on AISC specifications). Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved

Every effort has been made to conform to the recommendations made by the British and European (EC3) codes. The figures within this chapter are labelled in accordance with BS 5950. To convert to EC3 recommendations only the steel grades need to be altered.

7.1. Steelwork detailing based on British and European codes

Fig. 7.1.1. General arrangement of steelwork—roof level

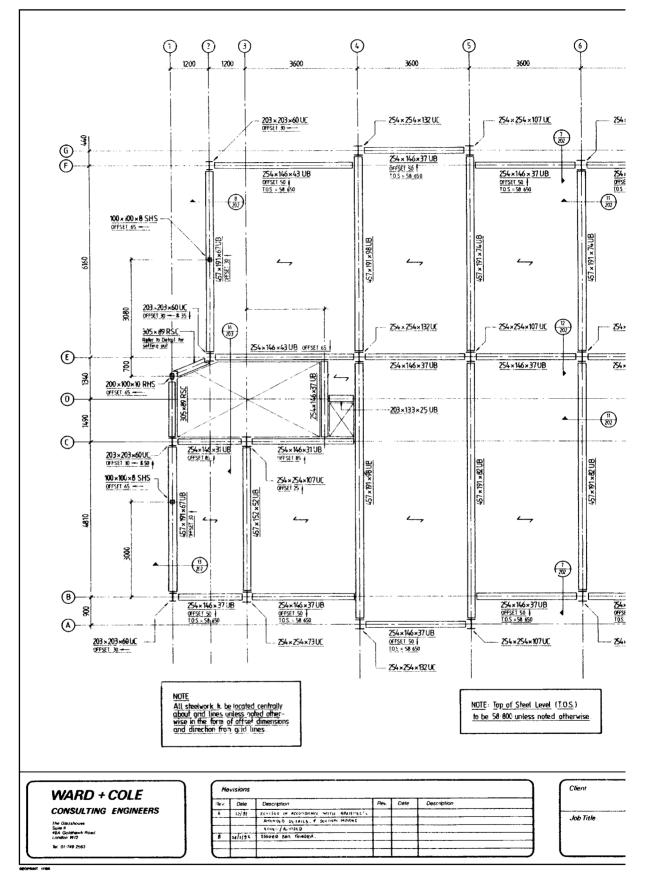
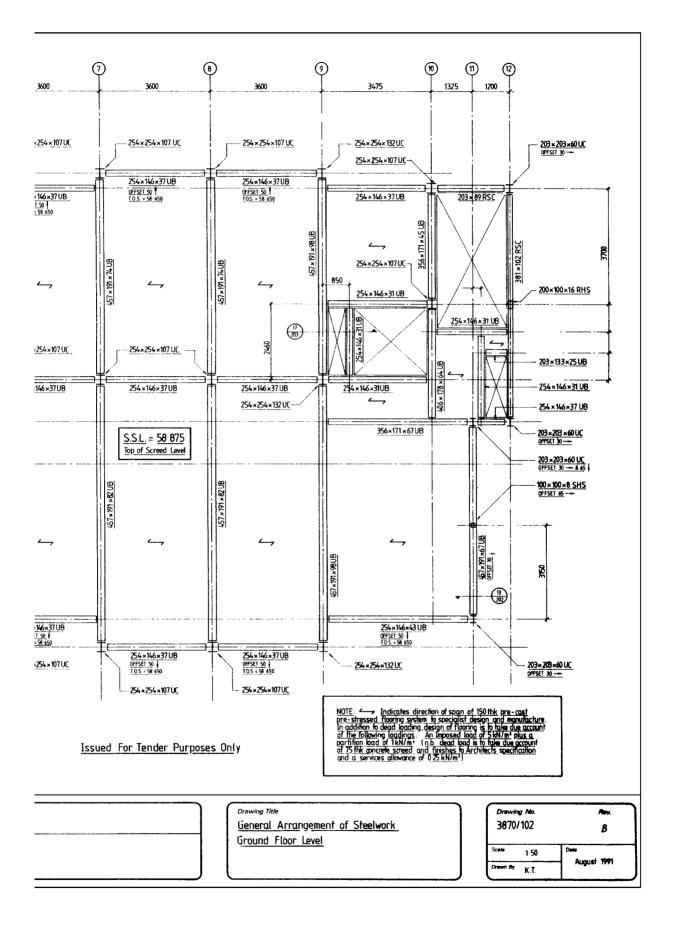



Fig. 7.1.2. General arrangement of steelwork—ground floor level

119

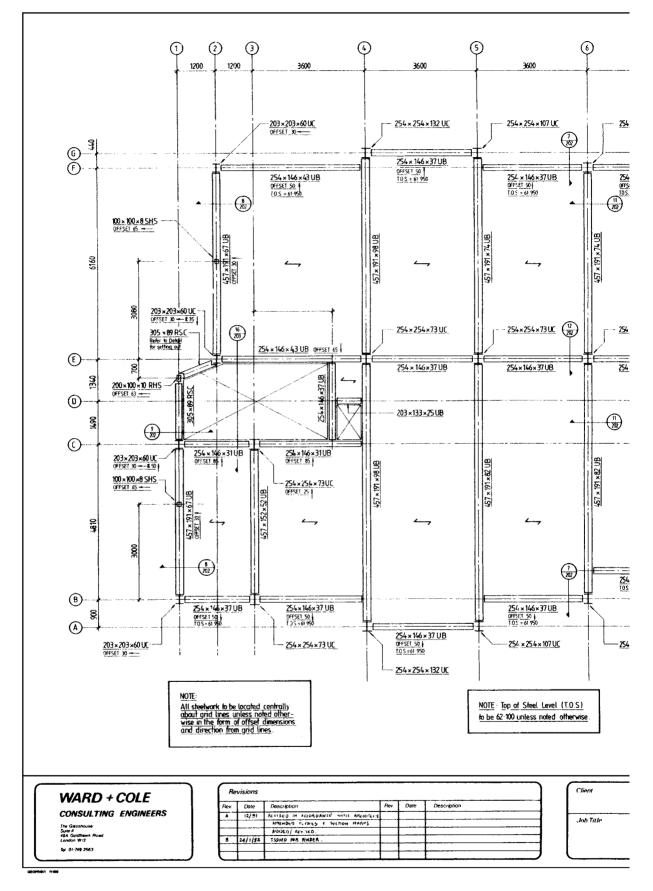
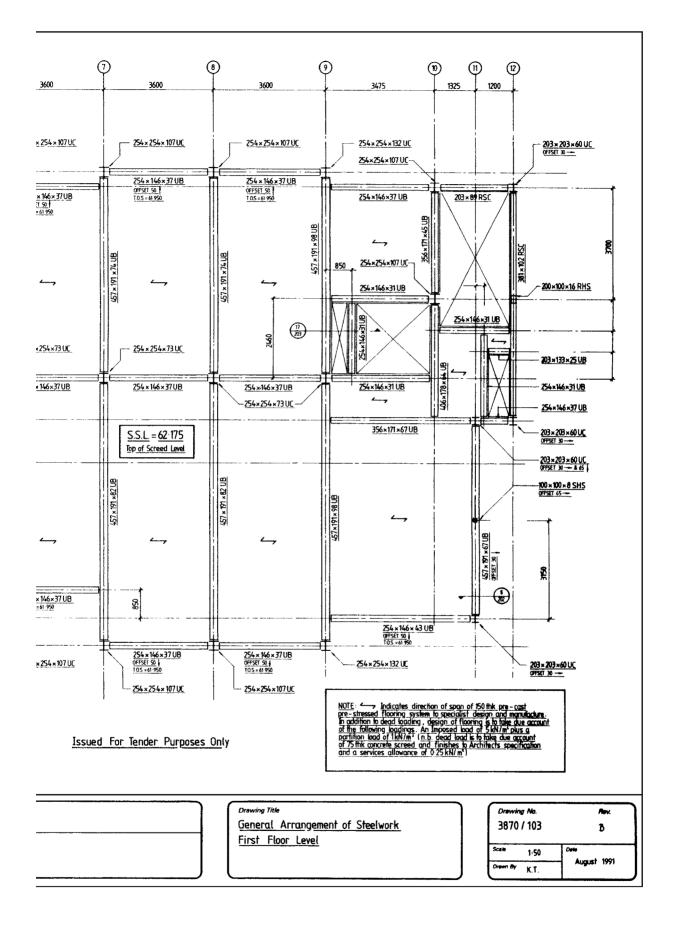



Fig. 7.1.3. General arrangement of steelwork—first floor level

121

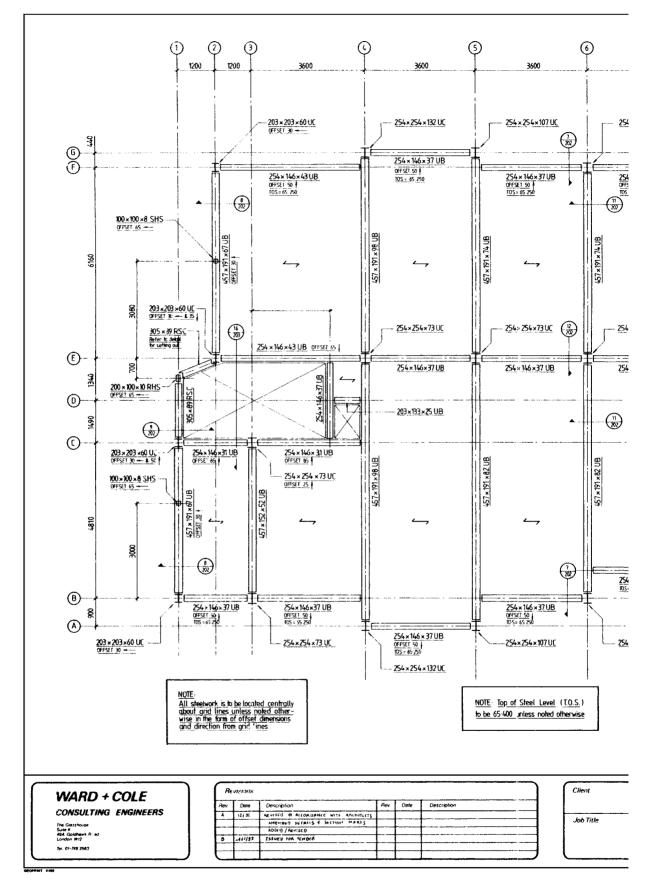
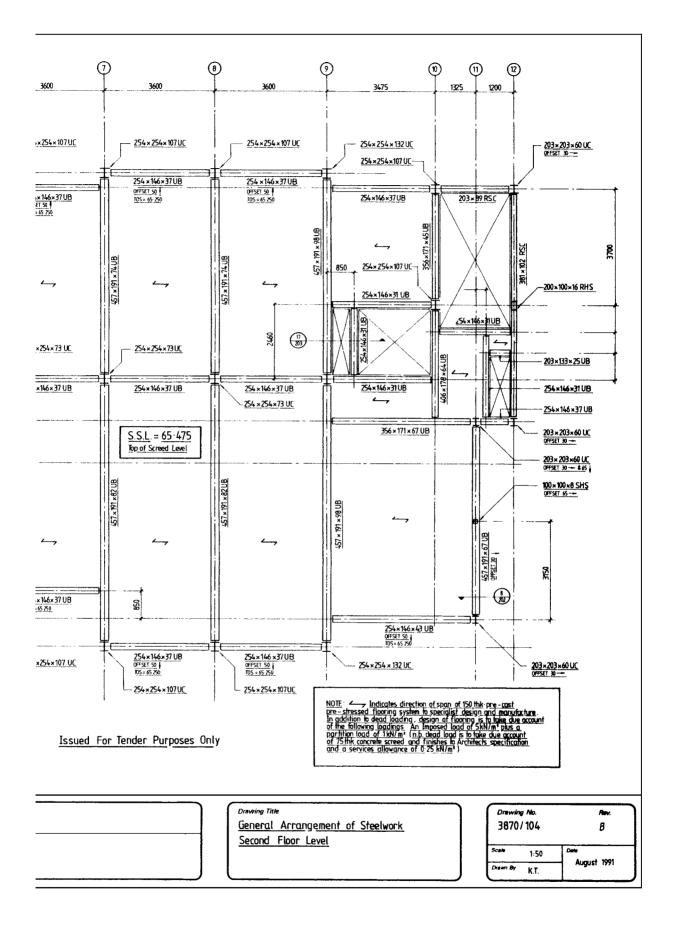



Fig. 7.1.4. General arrangement of steelwork—second floor level

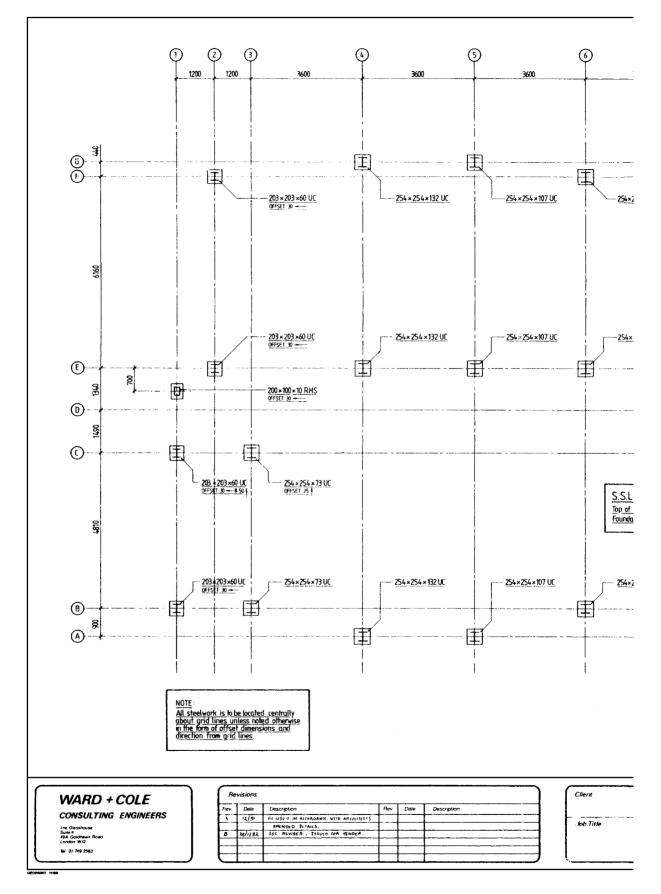
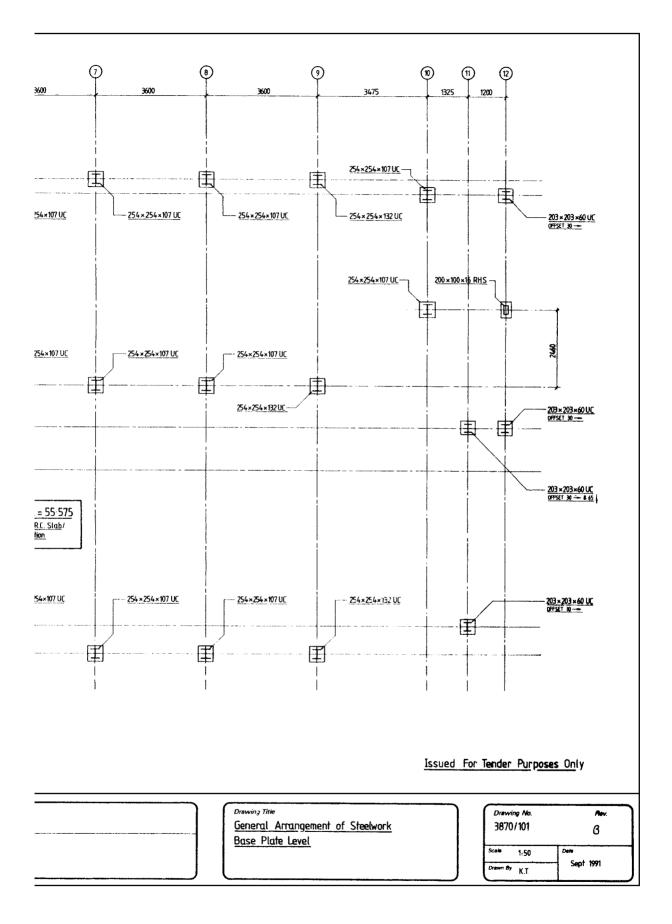



Fig. 7.1.5. General arrangement of steelwork—base plate level

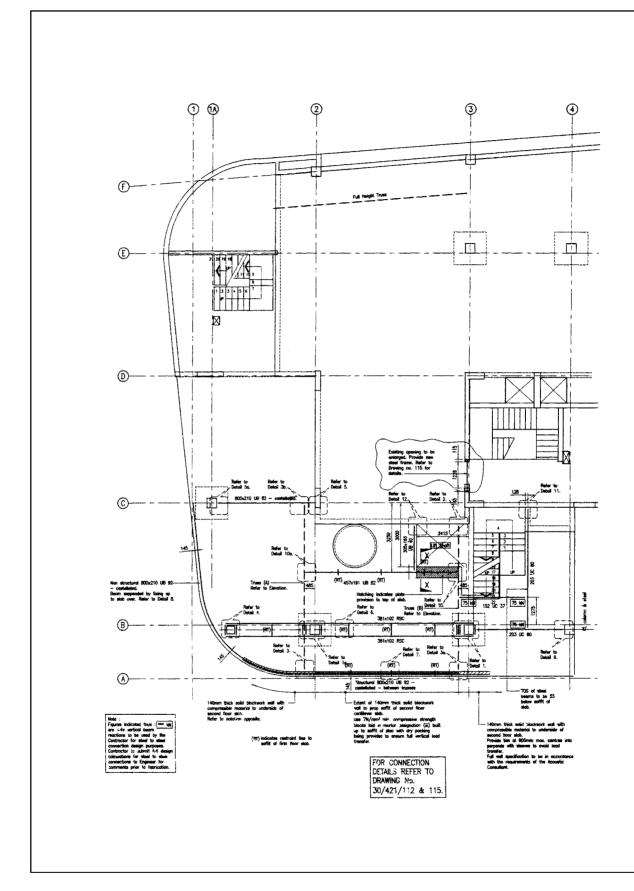
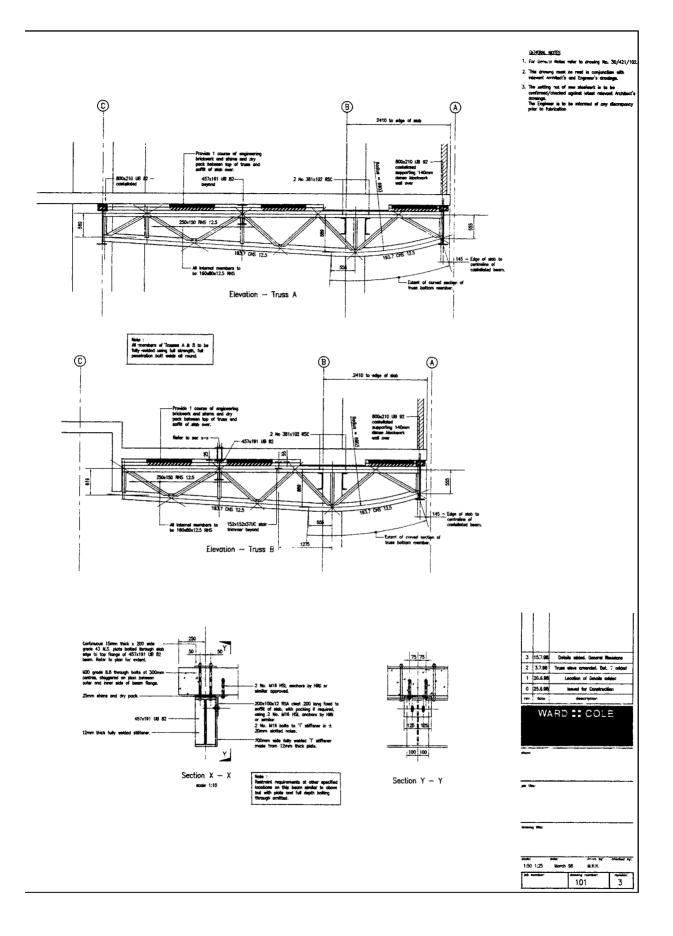



Fig. 7.1.6. Steel truss roof and supporting ancillary structures

127

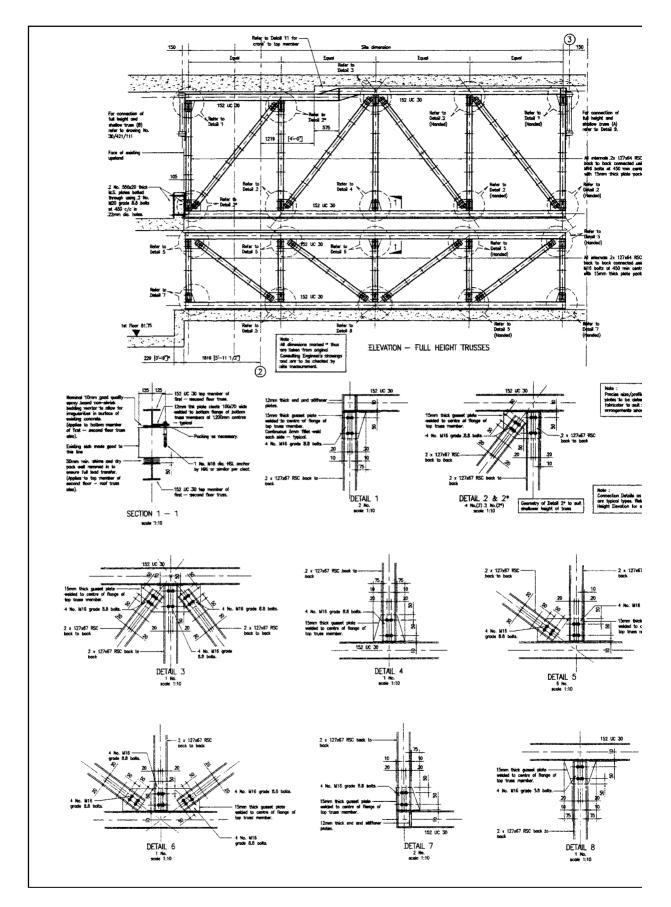
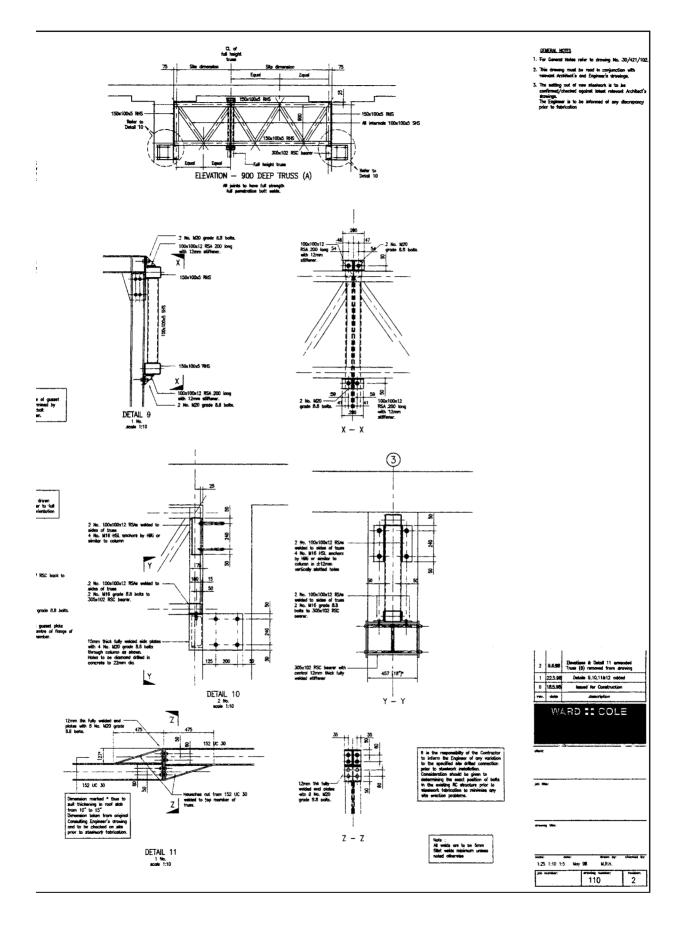



Fig. 7.1.7. Sectional elevation and structural details of a steel truss

STEEL BUILDINGS

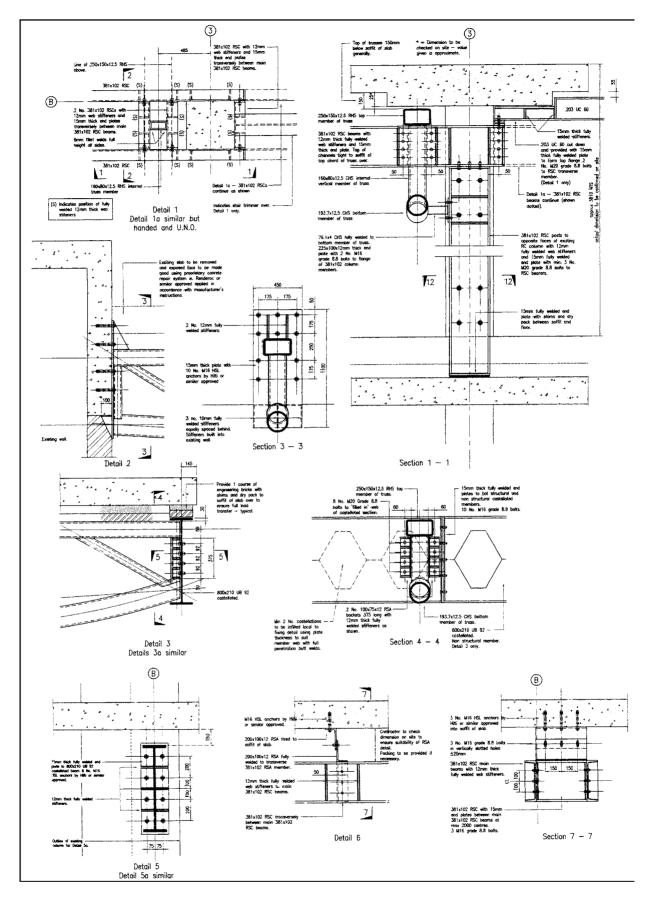
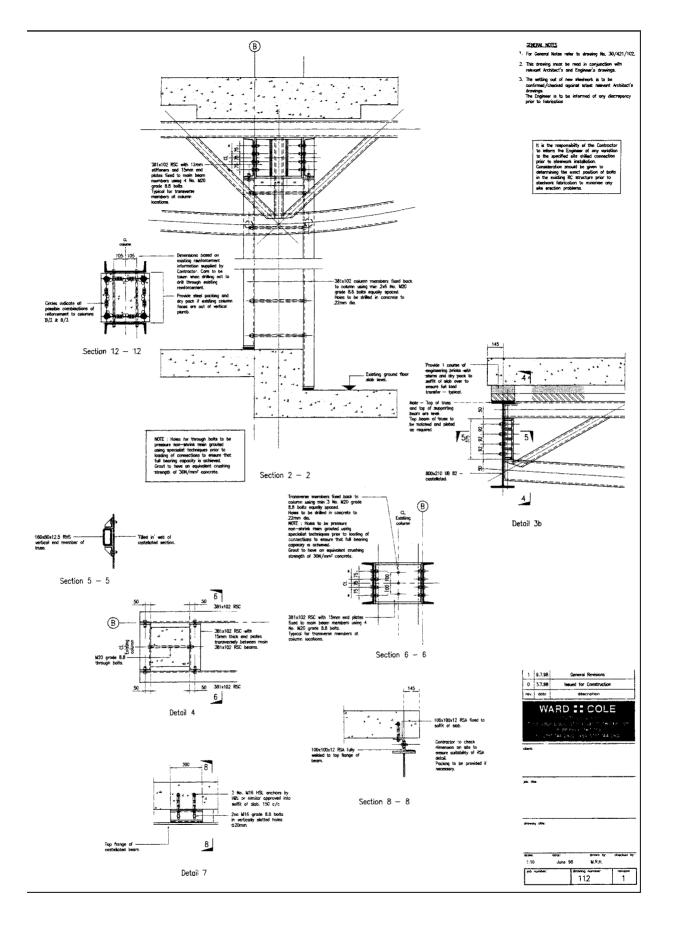



Fig. 7.1.8. A truss with a castellated beam and fastenings—construction drawing

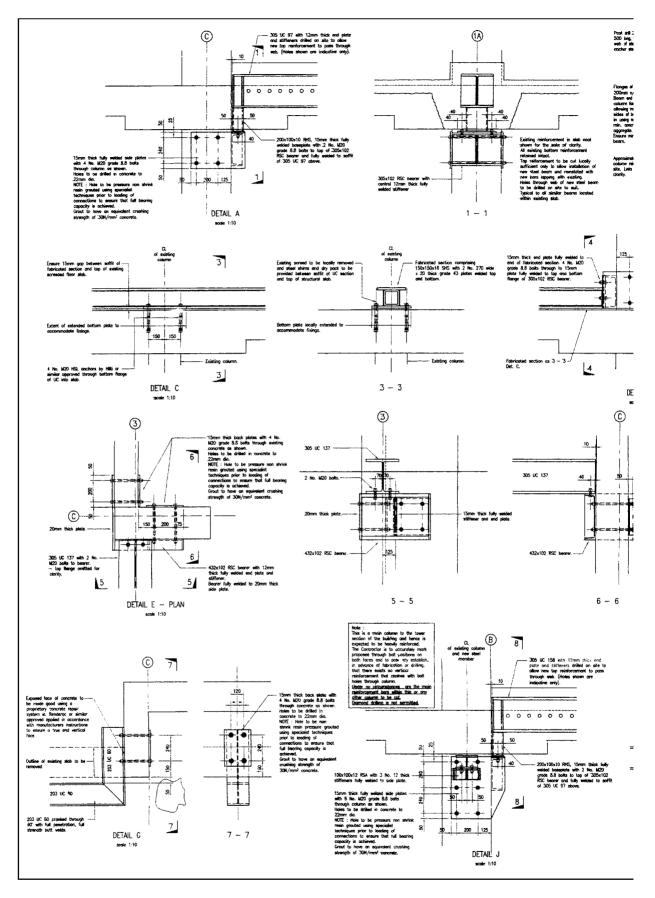
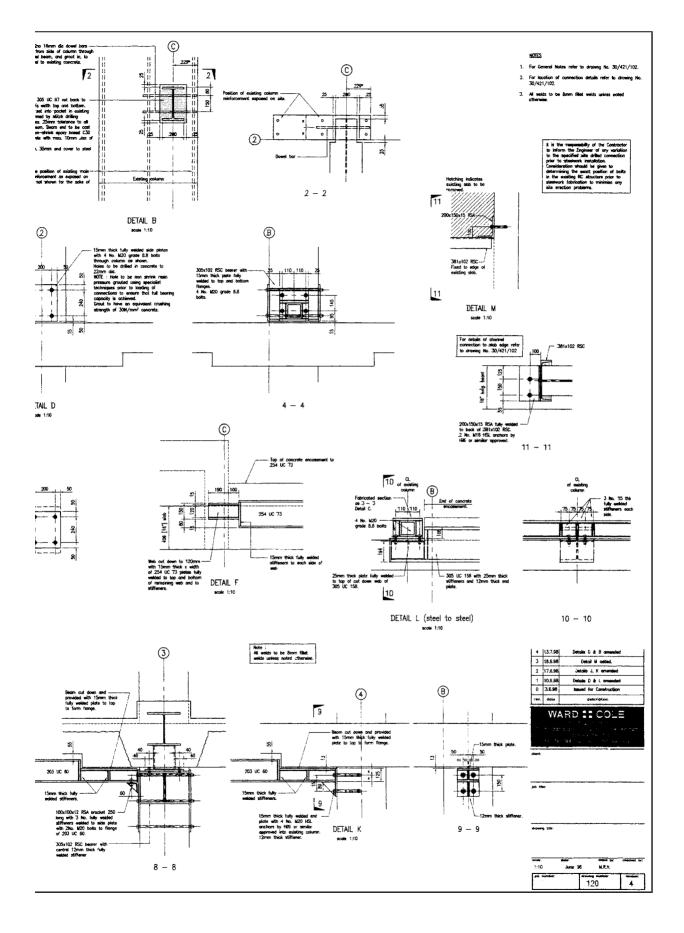



Fig. 7.1.9. Typical fastenings details—construction drawing 1

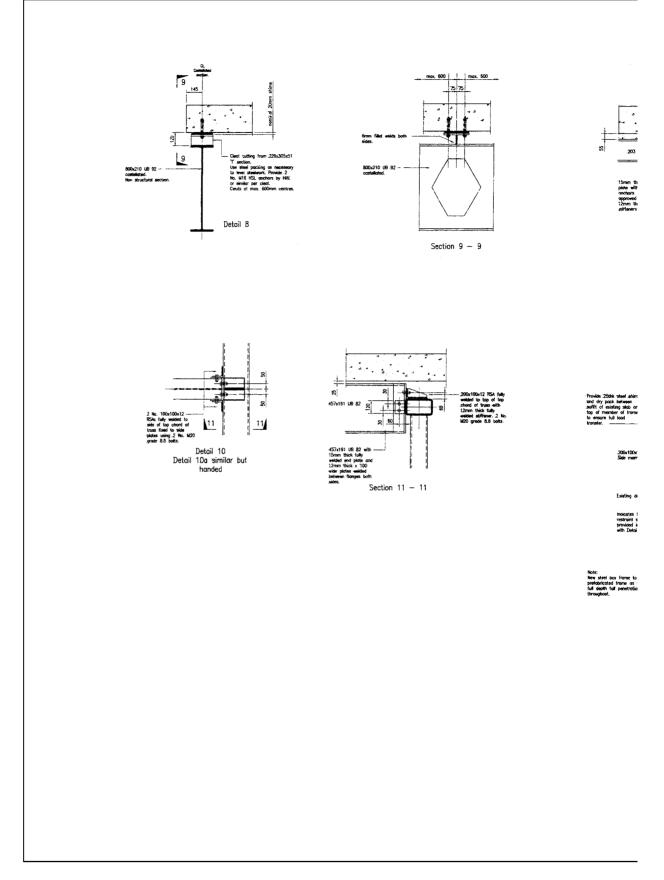
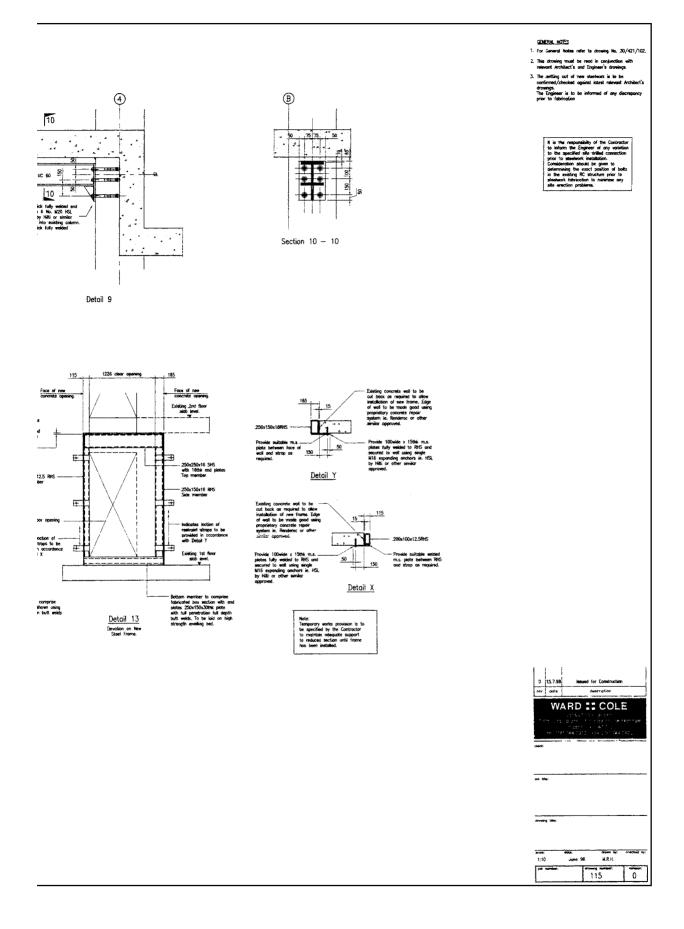



Fig. 7.1.10. Typical fastenings details—construction drawing 2

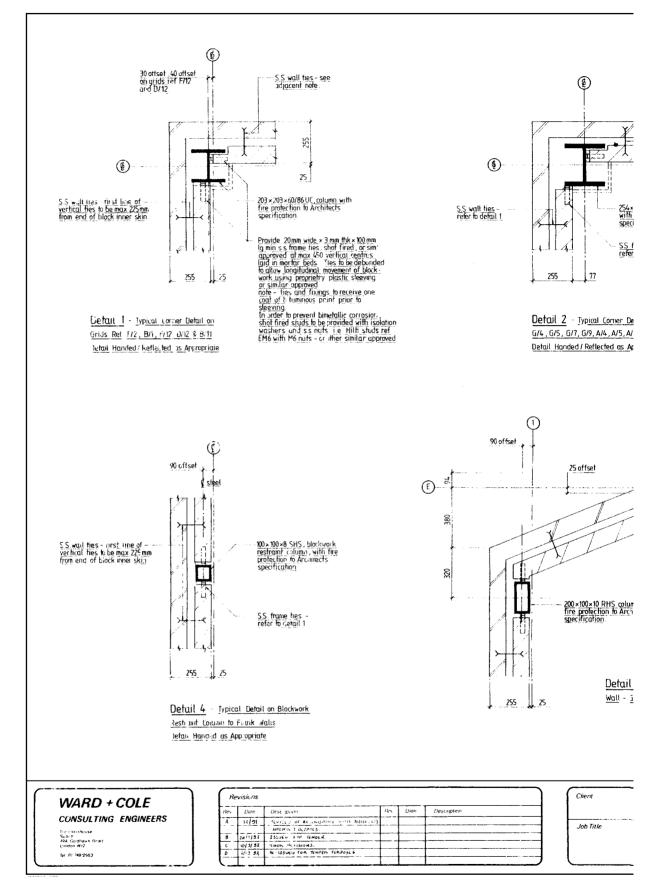
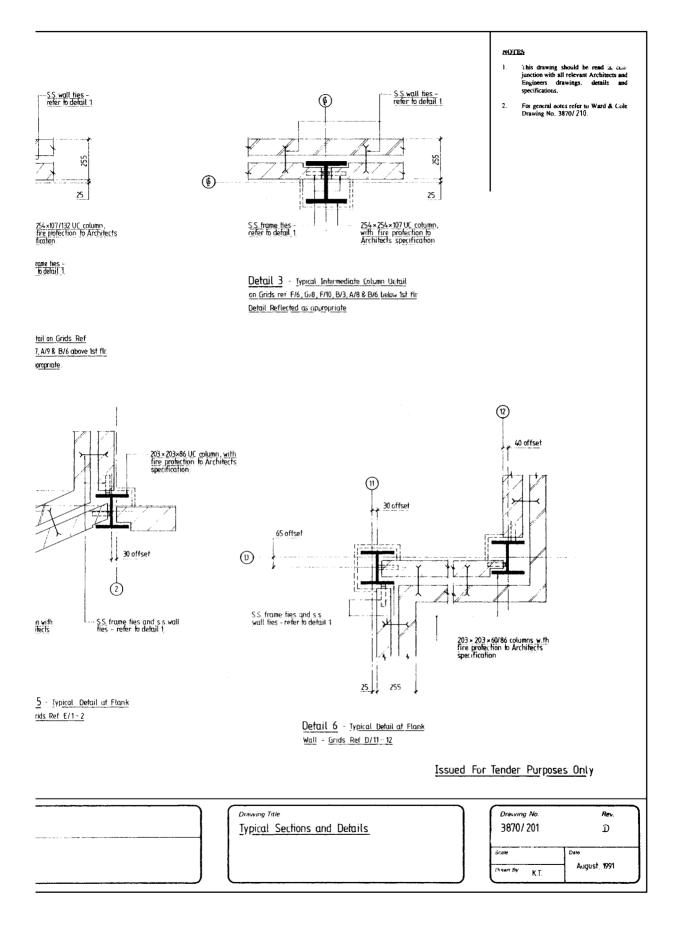



Fig. 7.1.11. Drawing issued for tender purposes—typical steel details at corner and flank

137

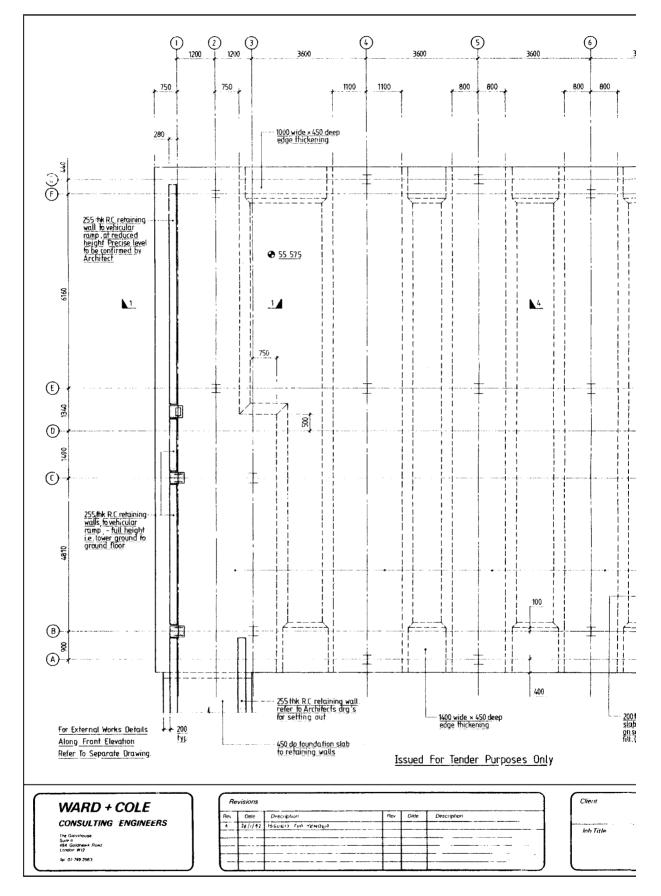
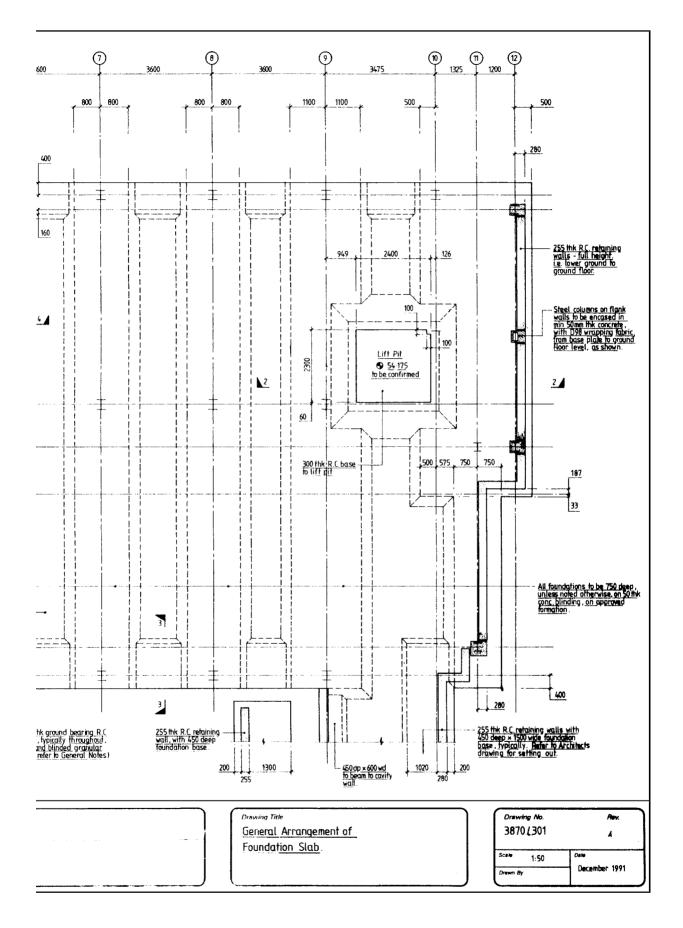



Fig. 7.1.12. Drawing issued for tender purposes—general arrangement for foundation slab

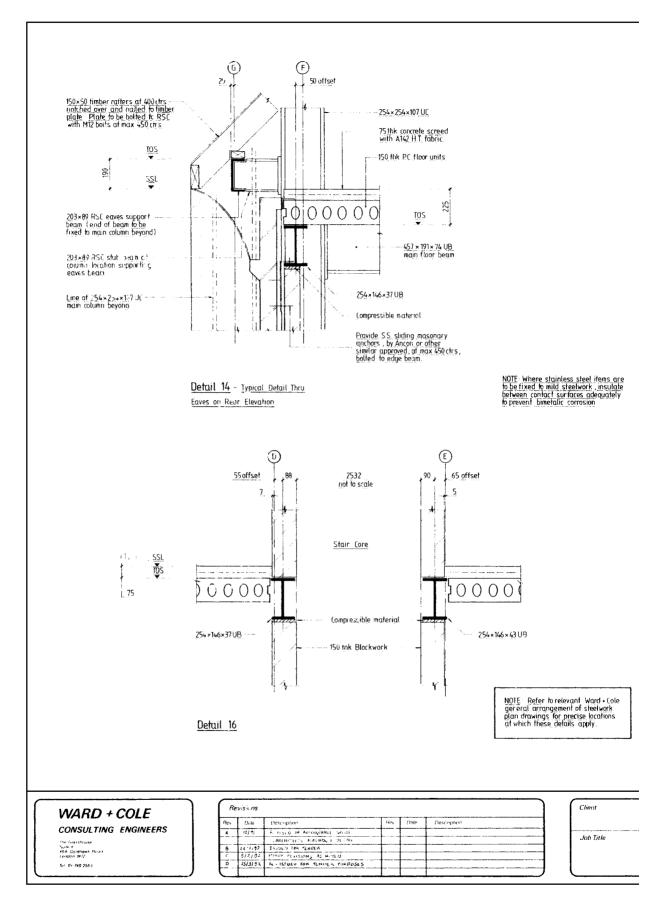
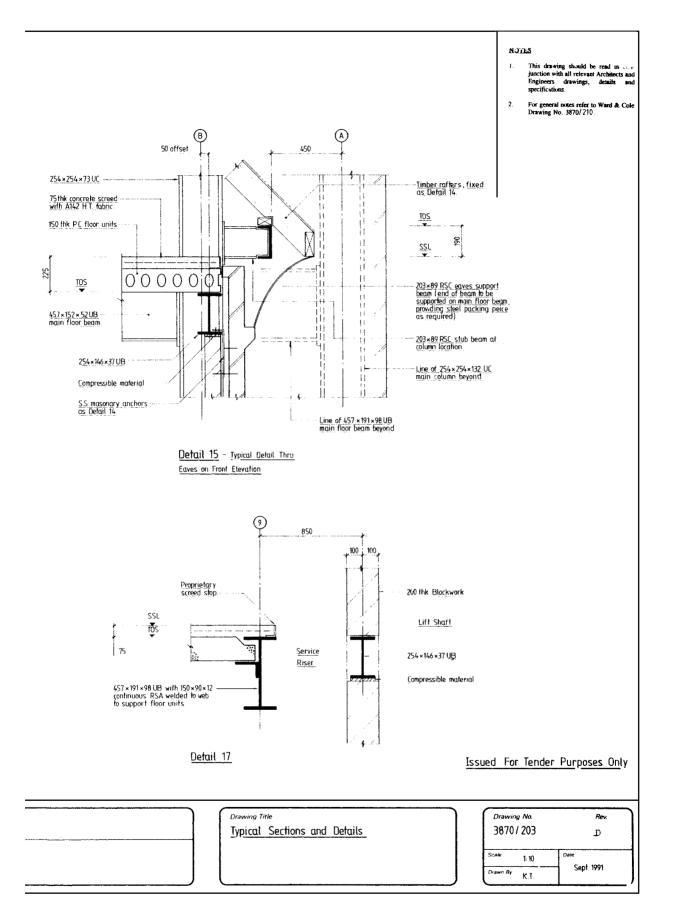



Fig. 7.1.13. Drawing issued for tender purposes—typical composite steel/concrete data

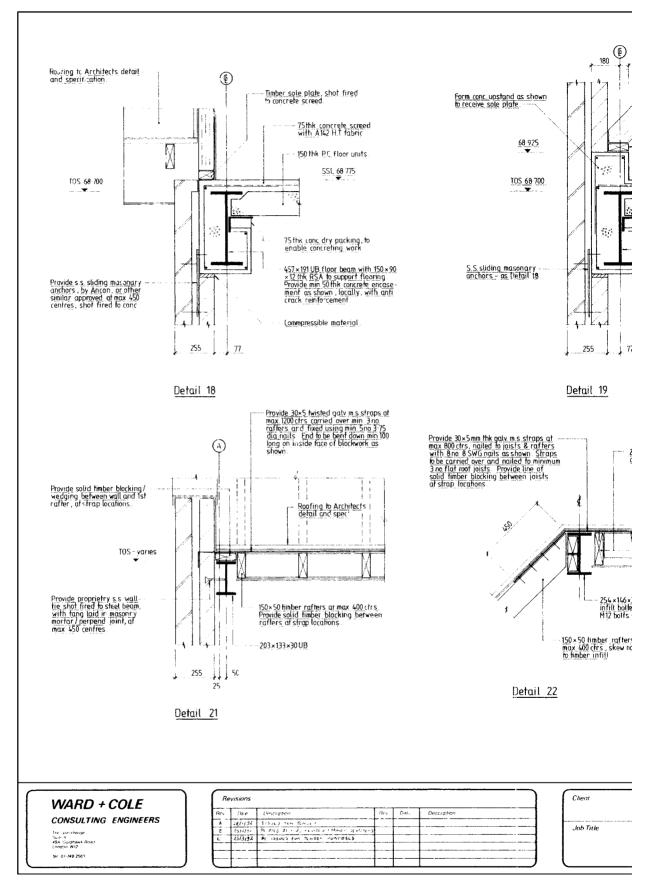
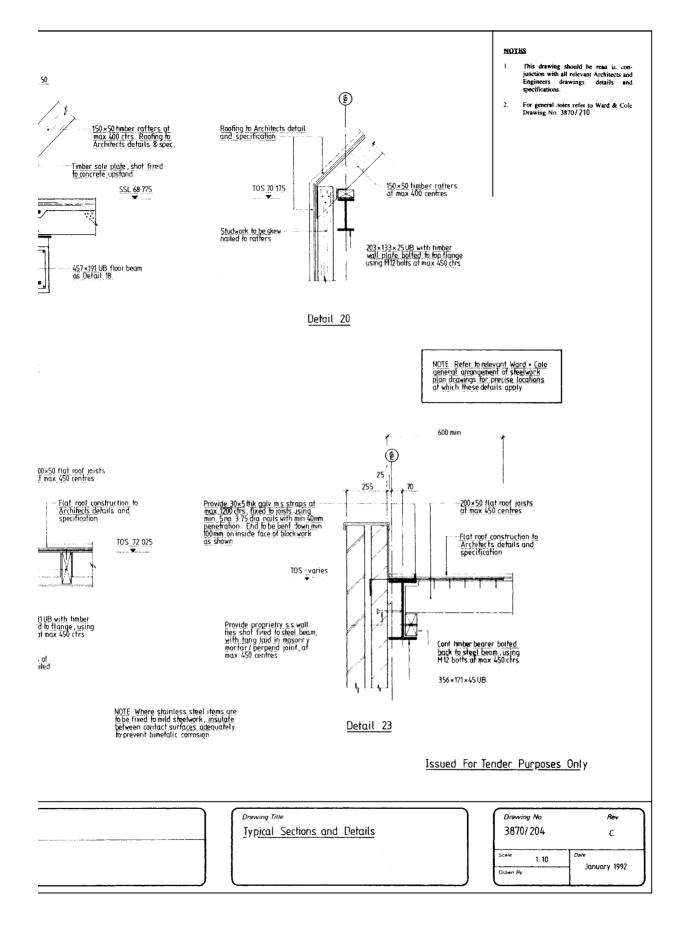



Fig. 7.1.14. Drawing issued for tender purposes—typical sections, masonry wall, steel and timber details

143

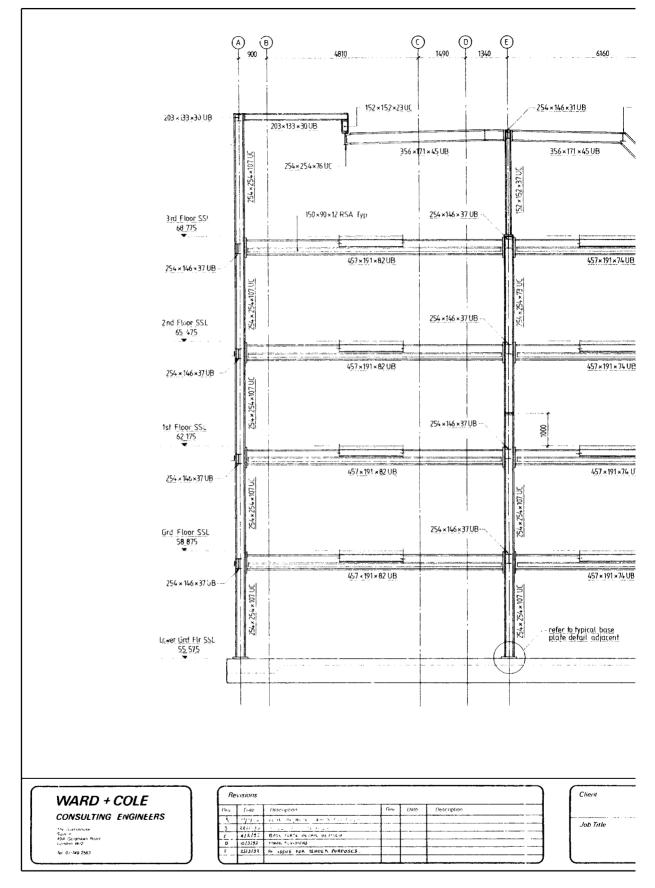
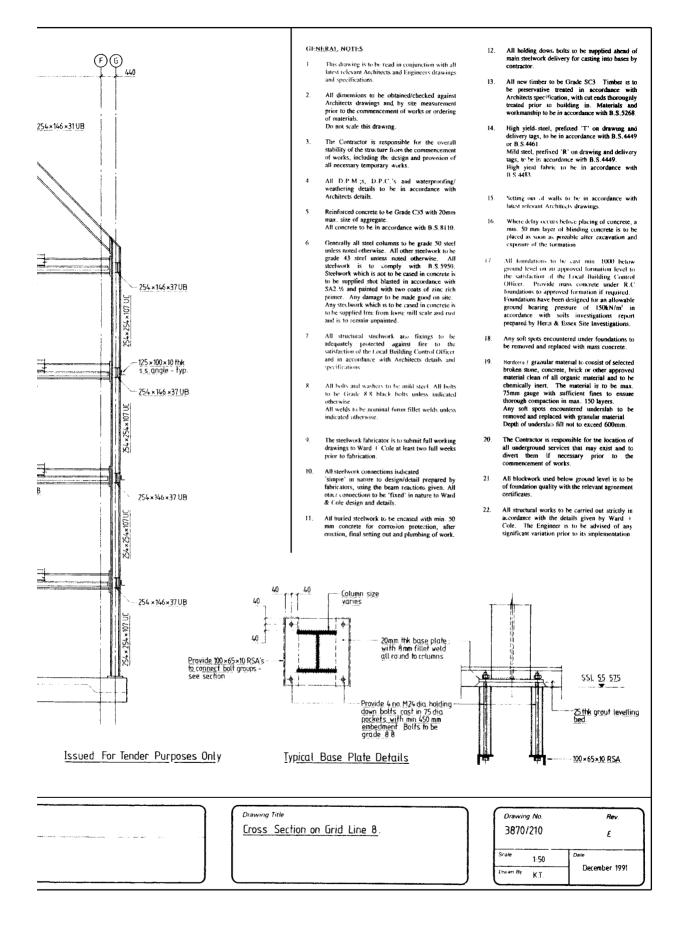



Fig. 7.1.15. Structural elevation and details of a typical steel building frame

7.2. Computer-aided structural detailing — British practice solid modelling

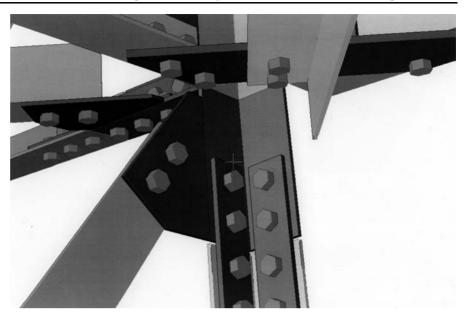


Fig. 7.2.1. Solid modelling of steel joints (Strucad, Derby, UK)

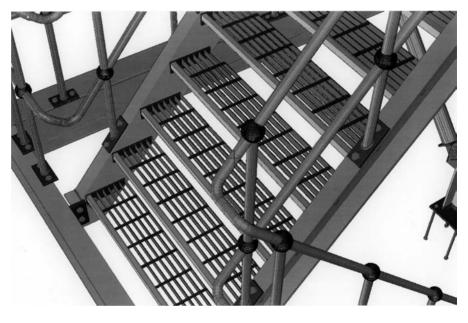


Fig. 7.2.2. Solid modelling of typical steel stairs (Strucad, Derby, UK)

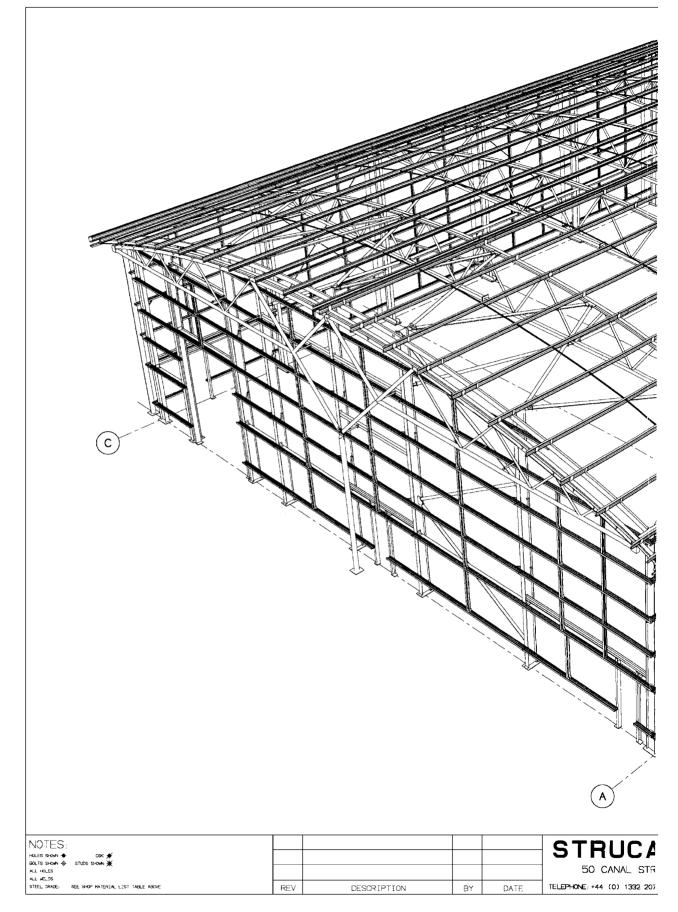
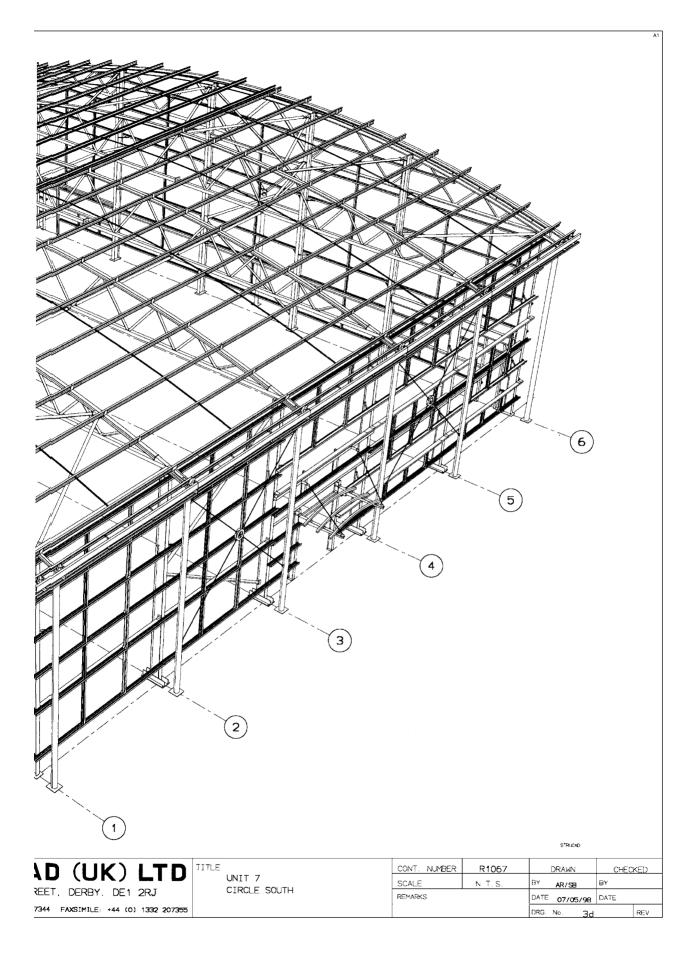



Fig. 7.2.3. 3D steel building infrastructure (Strucad, Derby, UK)

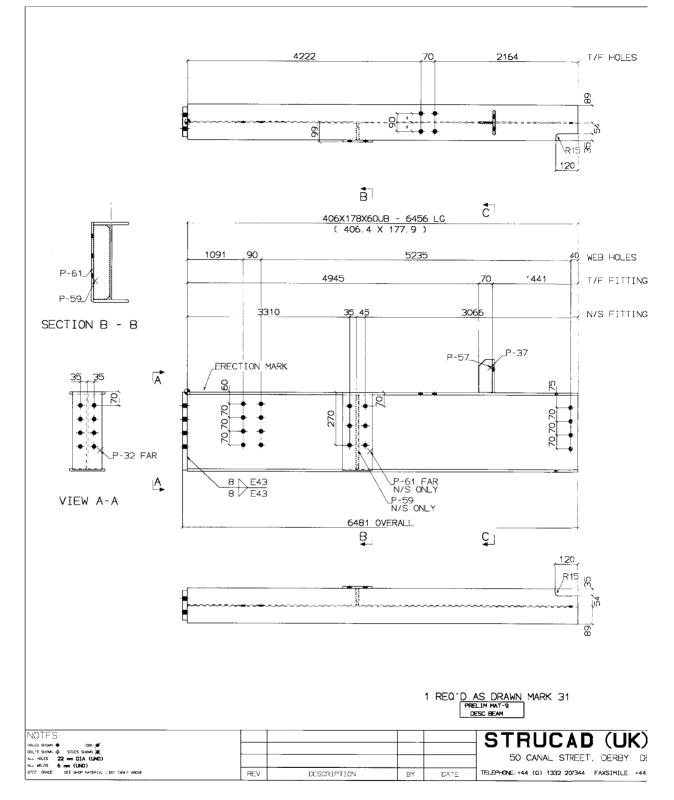
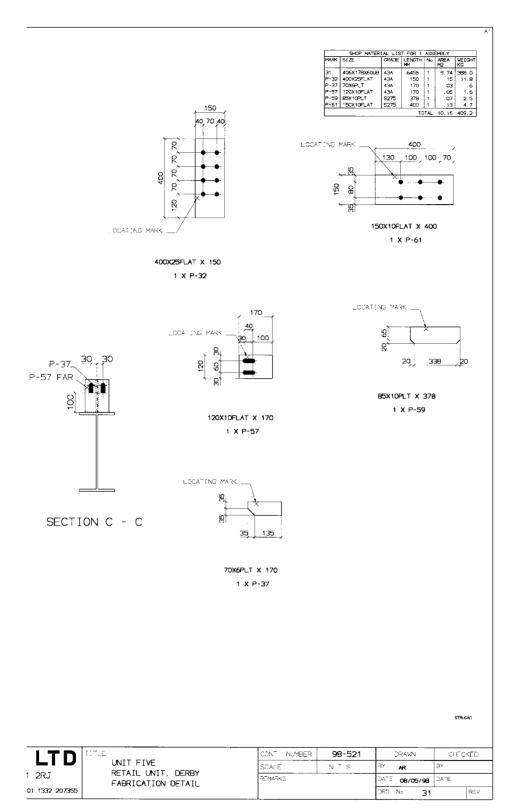



Fig. 7.2.4. Typical fabrication details for a beam (Strucad, Derby, UK)

STEEL BUILDINGS

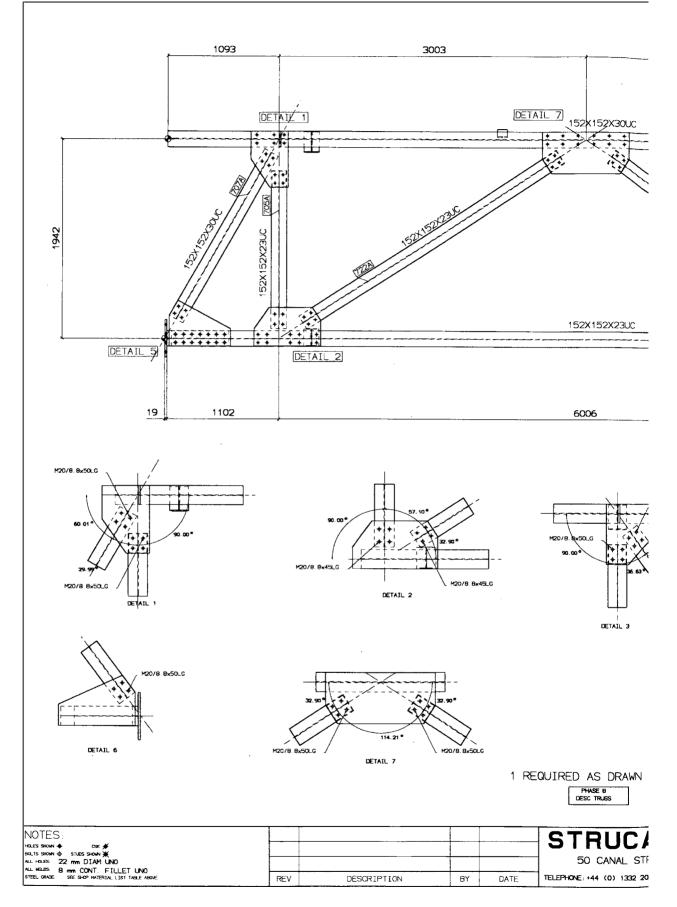
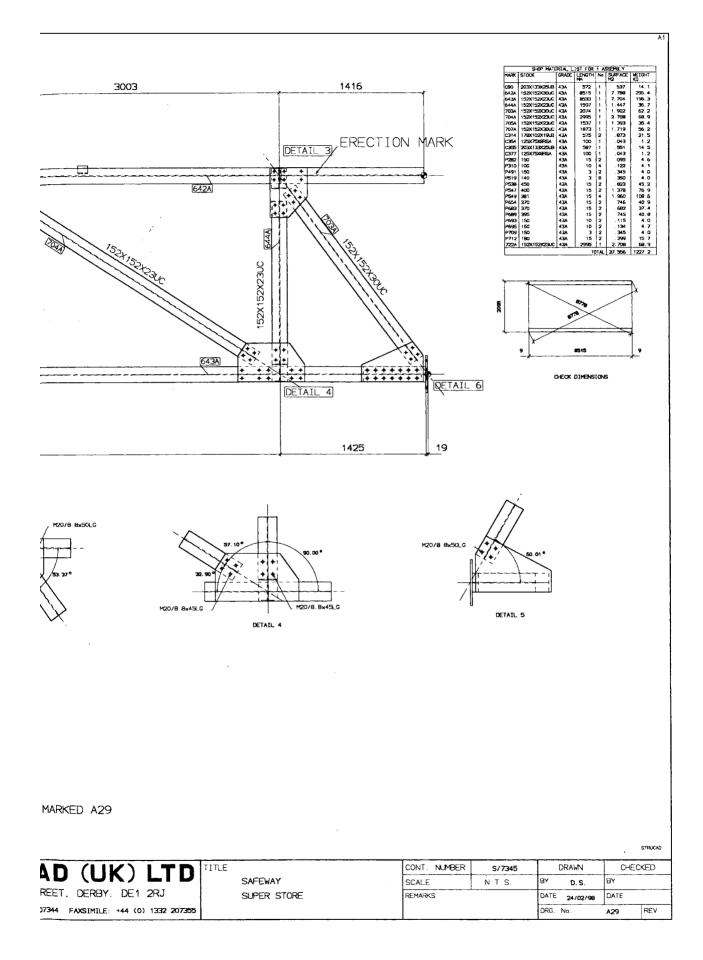



Fig. 7.2.5. Typical truss details in steel bolted section (Strucad, Derby, UK)

STEEL BUILDINGS

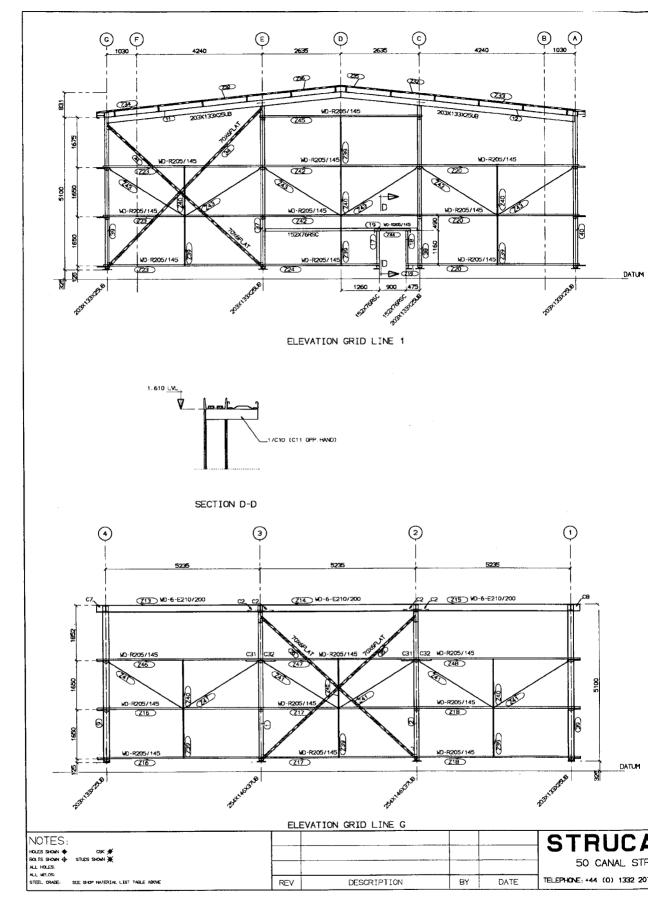
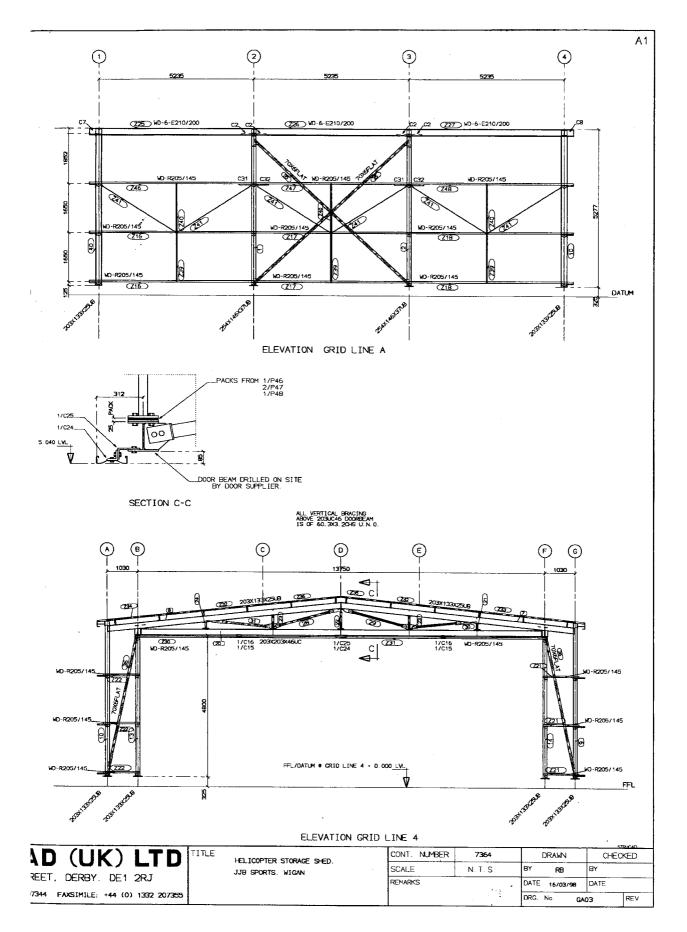



Fig. 7.2.6. Typical helicopter storage shed made with trussed frame in steel (Strucad, Derby, UK)

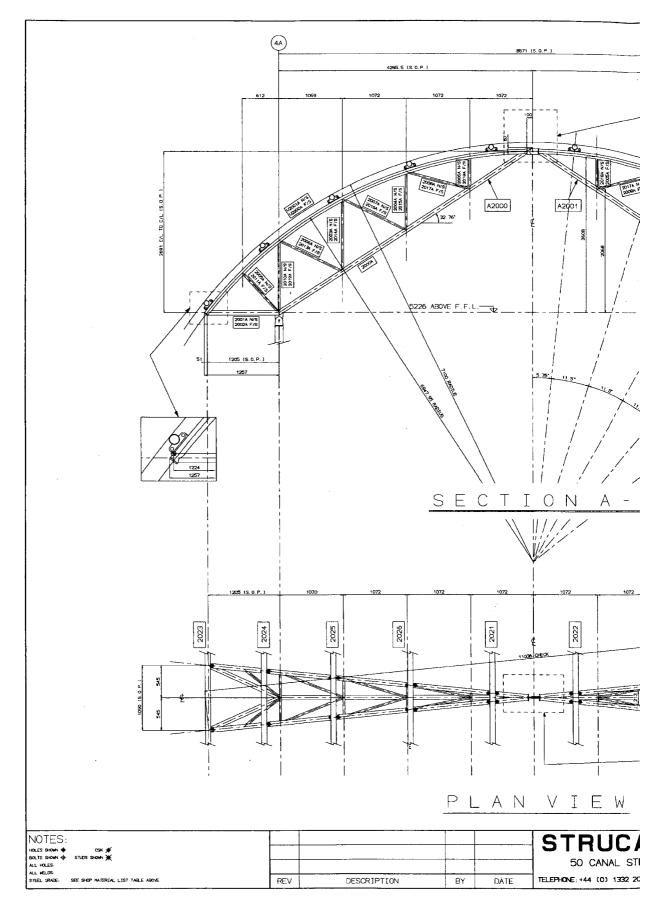
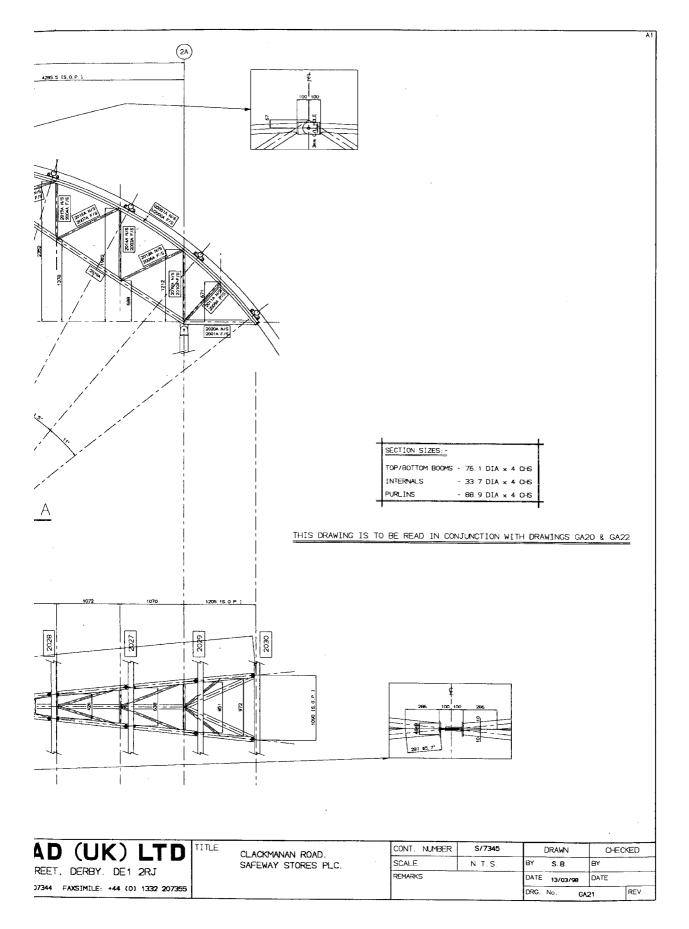
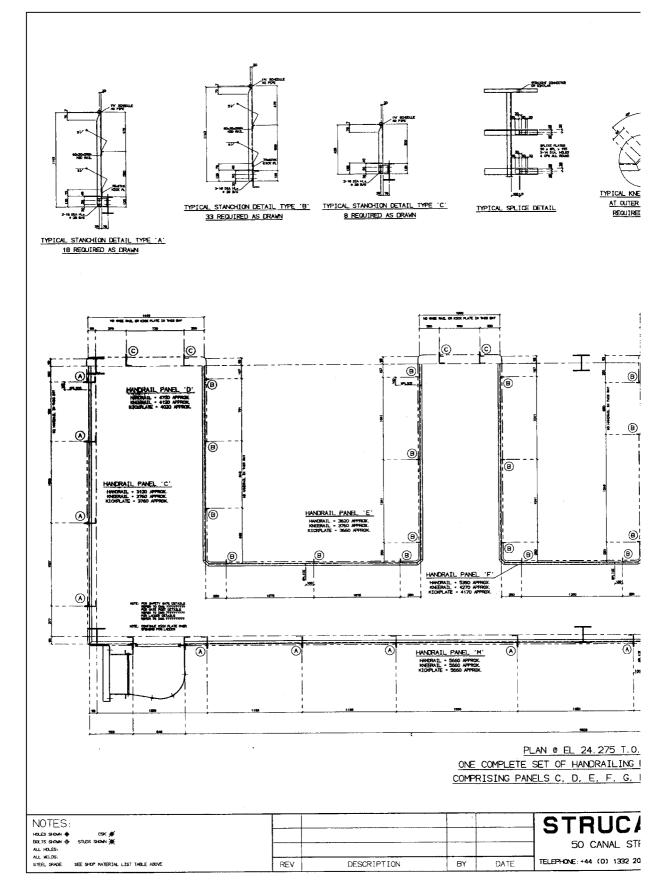
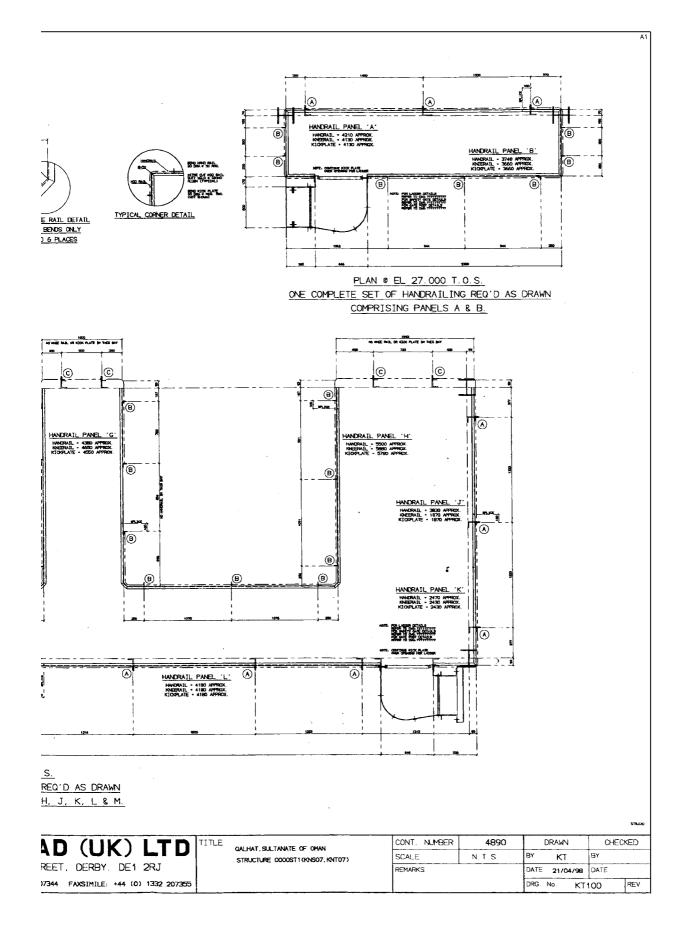
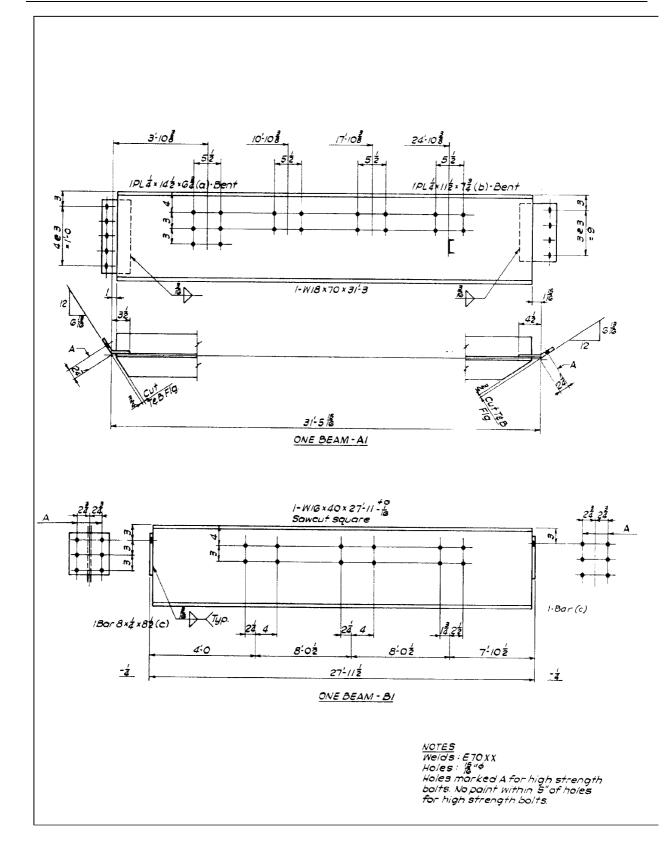
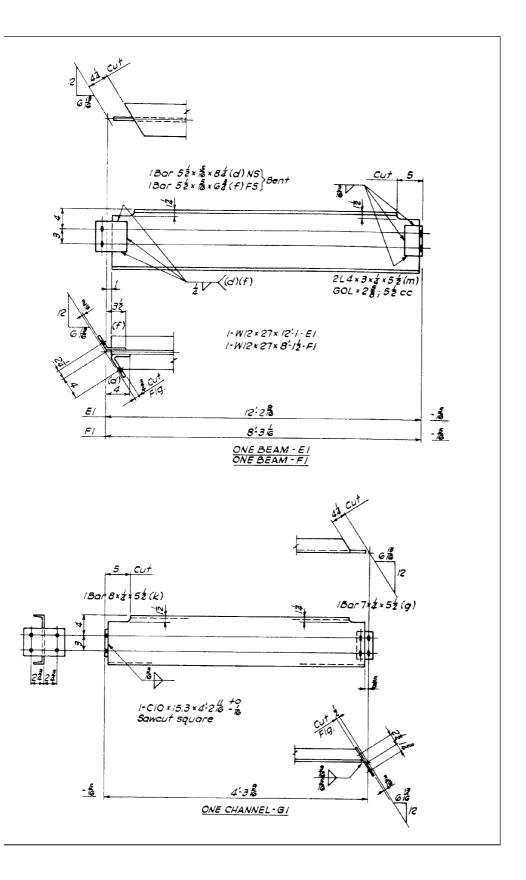
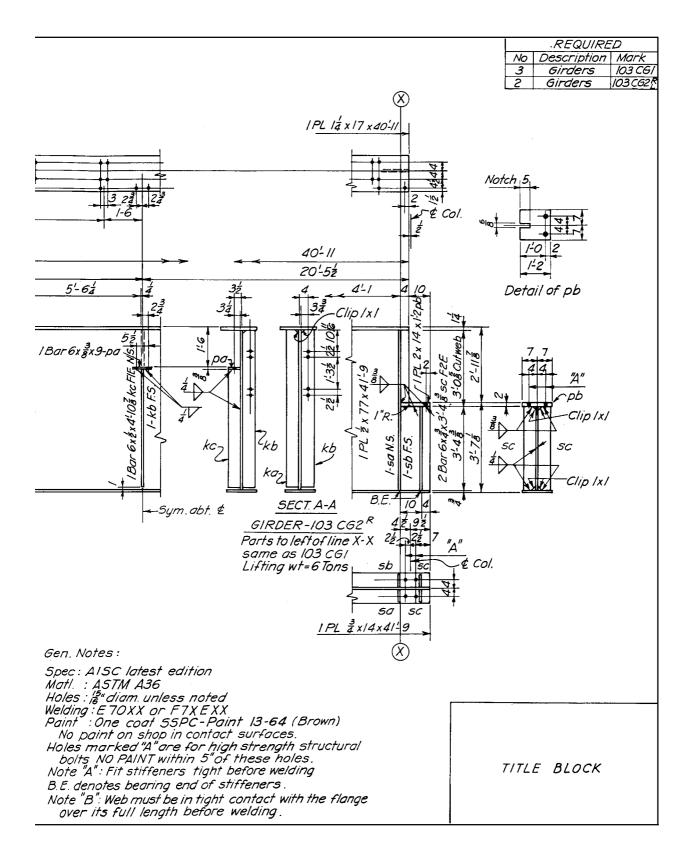



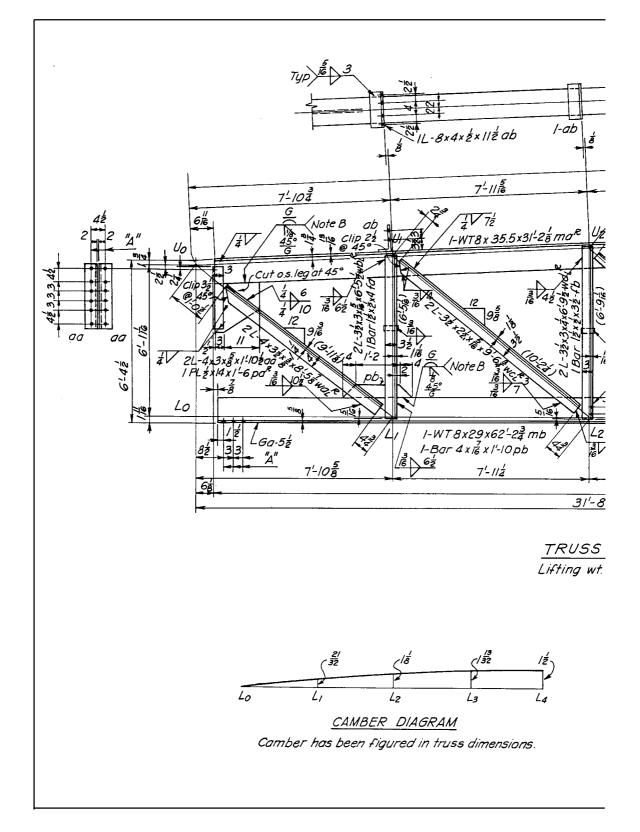
Fig. 7.2.7. Trussed arched roof section and plan for a store (Strucad, Derby, UK)


Fig. 7.2.8. Handrail details in steel (Strucad, Derby, UK)




7.3. Structural details in steel—American practice


Fig. 7.3.1. Fabrication for steel beams—LRFD approach. Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved

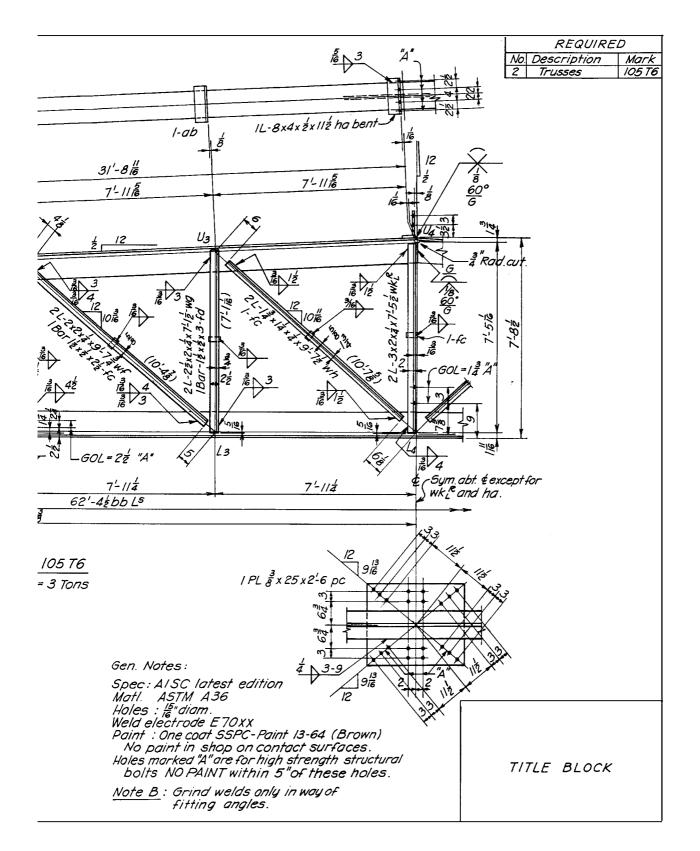


Fig. 7.3.2. Welded steel girder details. Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved

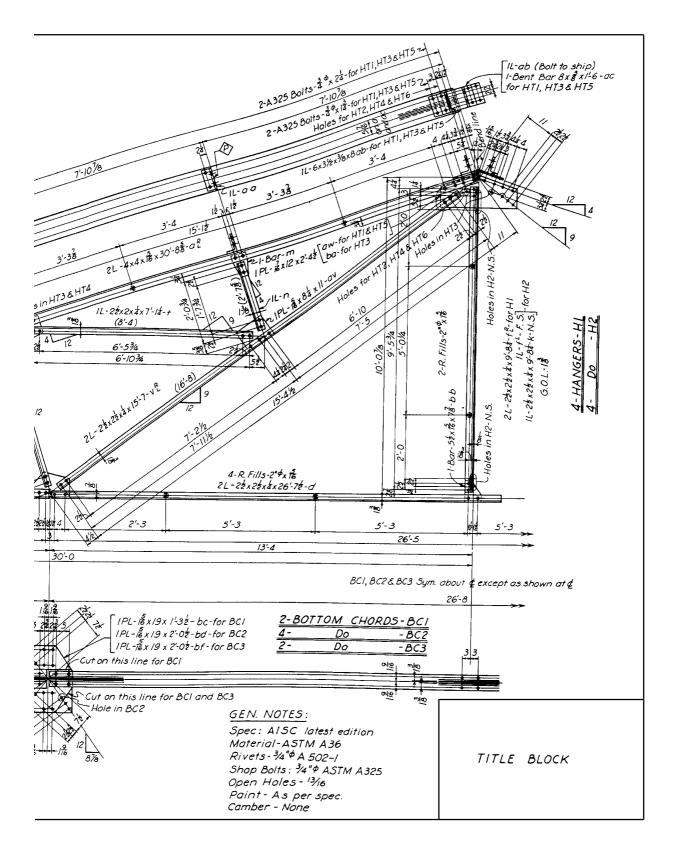


Fig. 7.3.3. Trussed steel frame details. Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved

Fig. 7.3.4. Detailing of a steel roof truss. Copyright: American Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved

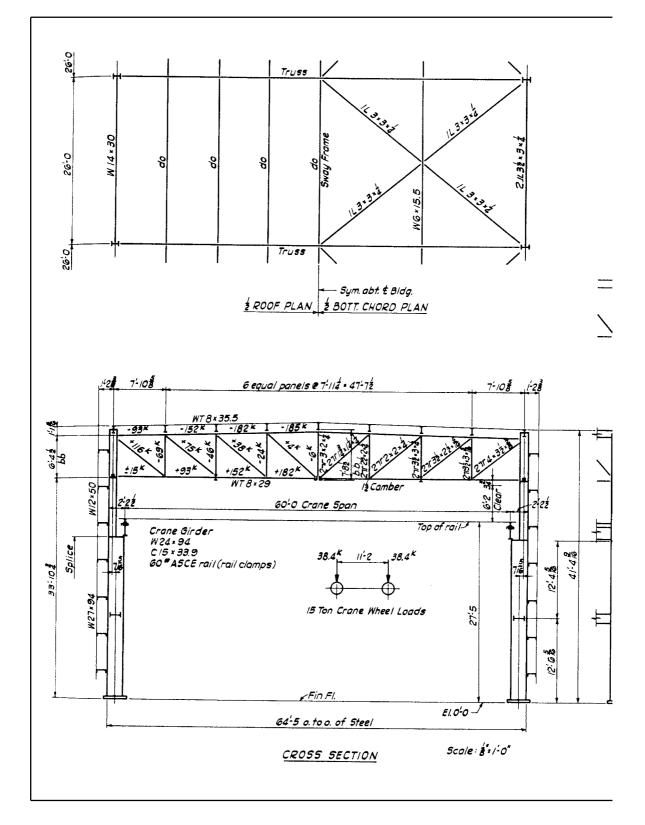
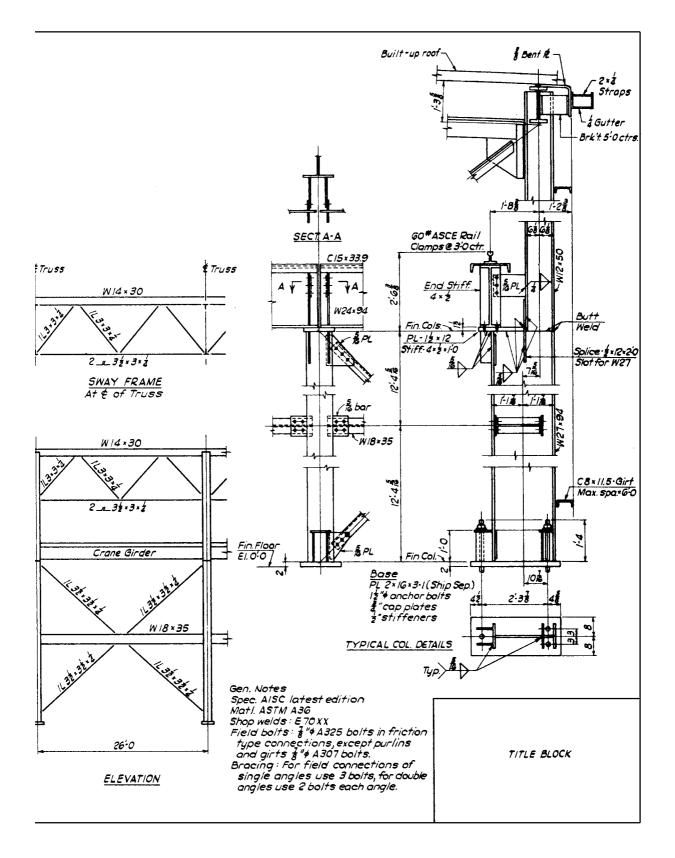



Fig. 7.3.5. Detailing of a trussed portal frame

This chapter contains the relevant specifications of the British, European and American codes on the design/detailing of steel bridges and their important components. In some cases the practices are self-explanatory and need no additional text to clarify them. For thorough explanations of theory, design analysis and structural detailing refer to *Prototype bridge structures: analysis and design* by the author, published by Thomas Telford, London, 1999.

8.1. Bridge loadings and specifications

8.1.1. Highway bridge General Standard highway loading consists of HA and HB loading. HA live loads based on loading is a formula loading representing normal traffic in Great Britain. HB **British practice** loading is an abnormal vehicle unit loading. Both loadings include impact. Loads to be considered The structure and its elements shall be designed to resist the more severe effects of either: design HA loading (see Fig. 8.1) design HA loading combined with design HB loading. Notional lanes, hard shoulders, etc. The width and number of notional lanes, and the presence of hard shoulders, hard strips, verges and central reserves are integral to the disposition of HA and HB loading. Requirements for deriving the width and number of notional lanes for design purposes are specified in 8.1.2. Requirements for reducing HA loading for certain lane widths and loaded length are specified. Distribution analysis of structure The effects of the design standard loadings shall, where appropriate, be distributed in accordance with a rigorous distribution analysis or from data derived from suitable tests. In the latter case, the use of such data shall be subject to the approval of the appropriate authority. Type HA loading consists of a uniformly distributed load Type HA loading (see Clause 8.1.2 of the code) and a knife edge load combined, or of a single wheel load. Table 8.1. Factors for limit state for combination of loads (HA type) Design HA loading - for design HA load considered alone, VFL shall be taken as follows: For the ultimate For the serviceability limit state limit state For combination 1 1.50 1.20

For combinations 2 and 3

Where HA loading is coexisting with HB loading (see Clause 6.4.2) VFL, as specified in Clause 6.3.4, shall be applied to HA loading (BS 5950).

1.25

1.00

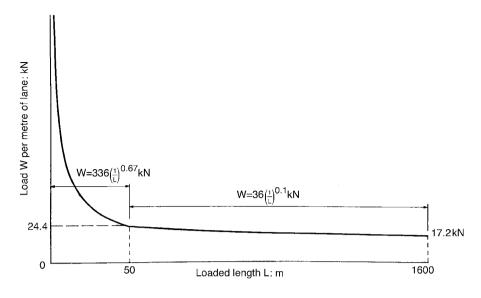


Fig. 8.1. HA loading

Nominal uniformly distributed load (UDL) For loaded lengths up to and including 50 m, the UDL, expressed in kN per linear metre of notional lane, shall be derived from the equation

$$W = 336 \left(\frac{1}{L}\right)^{0.67} \tag{8.1}$$

and for loaded lengths in excess of 50 m but less than 1600 m the UDL shall be derived from the equation

$$W = 36 \left(\frac{1}{L}\right)^{0.1}$$
(8.2)

where L is the loaded length (in m) and W is the load per metre of notional lane (in kN). For loaded lengths above 1600 m, the UDL shall be agreed with the appropriate authority.

Nominal knife edge load (KEL) The KEL per notional lane shall be taken as 120 kN.

Distribution The UDL and KEL shall be taken to occupy one notional lane, uniformly distributed over the full width of the lane and applied as specified in Clause 6.4.1 of the code.

Dispersal No allowance for the dispersal of the UDL and KEL shall be made.

Nominal HB loading

Type HB loading For all public highway bridges in Great Britain, the minimum number of units of type HB loading that shall normally be considered is 30, but this number may be increased up to 45 if so directed by the appropriate authority.

The overall length of the HB vehicle shall be taken as 10, 15, 20, 25 or 30 m for inner axle spacings of 6, 11, 16, 21 or 26 m respectively, and the effects of

Loaded		Loaded		Loaded	
length: m	Load: kN/m	length: m	Load: kN/m	length: m	Load: kN/m
2	211.2	55	24.1	370	19.9
4	132.7	60	23.9	410	19.7
6	101.2	65	23.7	450	19.5
8	83.4	70	23.5	490	19.4
10	71.8	75	23.4	530	19.2
12	63.6	80	23.2	570	19.1
14	57.3	85	23.1	620	18.9
16	52.4	90	23.0	670	18.8
18	48.5	100	22.7	730	18.6
20	45.1	110	22.5	790	18.5
23	41 .1	120	22.3	850	18.3
26	37.9	130	22.1	910	18.2
29	35.2	150	21.8	980	18.1
32	33.0	170	21.5	1050	18·0
35	31.0	190	21.3	1130	17.8
38	29.4	220	21.0	1210	17.7
41	27.9	250	20.7	1300	17.6
44	26.6	280	20.5	1400	17.4
47	25.5	310	20.3	1500	17.3
50	24.4	340	20.1	1600	17.2

Table 8.2. Type HA uniformly distributed load

the most severe of these cases shall be adopted. The overall width shall be taken as 3.5 m. The longitudinal axis of the HB vehicle shall be taken as parallel with the lane markings.

Contact area Nominal HB wheel loads shall be assumed to be uniformly distributed over a circular contact area, assuming an effective pressure of 1.1 N/mm^2 .

Design HB loading For design HB load, y_{fL} shall be taken as shown in Table 8.3.

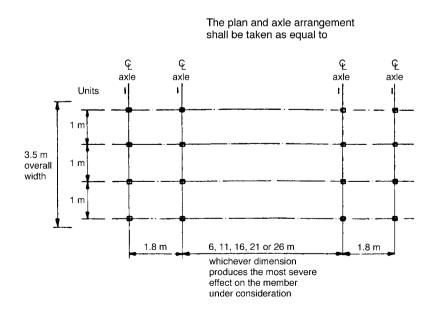
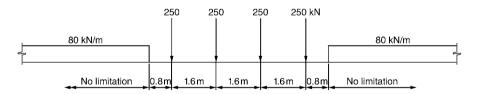


Fig. 8.2. Dimensions of HB vehicle for 1 unit of nominal loading (1 unit=10 kN per axle—i.e. 2.5 kN per wheel)

	For the ultimate limit state	For the serviceability limit state			
For combination 1	1.30	1.10			
For combinations 2 and 3	1.10	1.00			

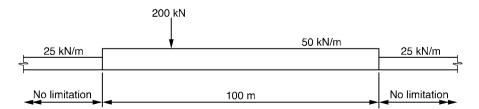
Table 8.3. Factors for limit state for combination of loads (HB type)

Railway bridge live load


General Standard railway loading consists of two types, RU and RL. RU loading allows for all combinations of vehicles currently running or projected to run on railways in Europe, including the UK, and is to be adopted for the design of bridges carrying main line railways of 1.4 m gauge and above.

RL loading is a reduced loading for use only on passenger rapid transit railway systems on lines where main line locomotives and rolling stock do not operate.

Type RU loading Nominal type RU loading consists of four 250 kN concentrated loads preceded, and followed, by a uniformly distributed load of 80 kN/m. The arrangement of this loading is as shown in Fig. 8.3.


Type RL loading Nominal type RL loading consists of a single 200 kN concentrated load coupled with a uniformly distributed load of 50 kN/m for loaded lengths up to 100 m. For loaded lengths in excess of 100 m the distributed nominal load shall be 50 kN/m for the first 100 m and shall be reduced to 25 kN/m for lengths in excess of 100 m, as shown in Fig. 8.4.

Alternatively, two concentrated nominal loads, one of 300 kN and the other of 150 kN, spaced at 2.4 m intervals along the track, shall be used on deck elements where this gives a more severe condition. These two concentrated loads shall be deemed to include dynamic effects.

Note: see Dynamic effects, below, for effect of additions to this loading.

Fig. 8.3. Type RU loading

Note: see Dynamic effects, below, for effect of additions to this loading.

Fig. 8.4. Type RL loading

Dynamic effects

The standard railway loadings specified above (except the 300 kN and 150 kN concentrated alternative RL loading) are equivalent static loadings and shall be multiplied by appropriate dynamic factors to allow for impact, oscillation and other dynamic effects including those caused by track and wheel irregularities.

Type RU loading The dynamic factor for RU loading applied to all types of track and shall be as given in Table 8.4.

In deriving the dynamic factor, L is taken as the length (in m) of the influence line for deflection of the element under consideration. For unsymmetrical influence lines, L is twice the distance between the point at which the greatest ordinate occurs and the nearest end point of the influence line. In the case of floor members, 3 m should be added to the length of the influence line as an allowance for load distribution through track.

Type RL loading The dynamic factor for RL loading, when evaluating moments and shears, shall be taken as 1.20, except for unballasted tracks where, for rail bearers and single-track cross girders, the dynamic factor shall be increased to 1.40.

Road traffic actions and other actions specifically for road bridges—ENV 1991–3: 1995

Models of road traffic loads Loads due to the road traffic, consisting of cars, lorries and special vehicles (e.g. for industrial transport), give rise to vertical and horizontal, static and dynamic forces. The load models defined in this section do not describe actual loads. They have been selected so that their effects (with dynamic amplification included unless otherwise specified) represent the effects of the actual traffic. Where traffic outside the scope of the load models specified in this section needs to be considered, then complementary load models, with associated combination rules, should be defined or agreed by the client.

Separate models are defined below for vertical, horizontal, accidental and fatigue loads.

Loading classes The actual loads on road bridges result from various categories of vehicles and from pedestrians. Vehicle traffic may differ between bridges depending on traffic composition (e.g. percentages of lorries), density (e.g. average number of vehicles per year), conditions (e.g. jam frequency), the extreme likely weights of vehicles and their axle loads, and, if relevant, the influence of road signs restricting carrying capacity.

These differences justify the use of load models suited to the location of a bridge. Some classifications are defined in this section (e.g. classes of special vehicles). Others are only suggested for further consideration (e.g. choice of

Dimension <i>L</i> : m	Dynamic factor for evaluating bending moment	Dynamic factor for evaluating shear
Up to 3.6	2.00	1.67
From 3.6 to 67	$0.73 + \frac{2.16}{\sqrt{(L-0.2)}}$	$0.82 + \frac{1.44}{\sqrt{(L-0.2)}}$
Over 67	1.00	1.00

Table 8.4. Dynamic factor for type RU loading

adjustment factors α and β defined in Clause 4.3.2(7) of the code for the main model and in Clause 4.3.3 for the single axle model) and may be presented as loading classes (or traffic classes).

Divisions of the carriageway into notional lanes The widths w_1 of notional lanes on a carriageway and the greatest possible whole (integer) number n_1 of such lanes on this carriageway are shown in Table 8.5.

8.1.2. Highways loads Location and numbering of the lanes for design (EC3) (ENV **based on EC3 loadings** 1995)

The location and numbering of the lanes should be determined in accordance with the following rules:

- (a) the locations of notional lanes are not necessarily related to their numbering
- (b) for each individual verification (e.g. for a verification of the ultimate limit states of resistance of a cross-section to bending), the number of lanes to be taken into account as loaded, their location on the carriageway and their numbering should be so chosen that the effects from the load models are the most adverse.

Vertical loads—characteristic values

General and associated design situations Characteristic loads are intended for the determination of road traffic effects associated with ultimate limit-state verifications and with particular serviceability verifications (see ENV 1991-1, 9.4.2 and 9.5.2, and ENV 1992 to 1995). The load models for vertical loads represent the following traffic effects.

- (*a*) Load model 1: concentrated and uniformly distributed loads, which cover most of the effects of the traffic of lorries and cars. This model is intended for general and local verifications.
- (b) Load model 2: a single axle load applied on specific tyre contact areas which covers the dynamic effects of normal traffic on very short structural elements. This model should be separately considered and is only intended for local verifications.
- (c) Load model 3: a set of assemblies of axle loads representing special vehicles (e.g. for industrial transport) which may travel on routes permitted for abnormal loads. This model is intended to be used only when, and as far as required by the client, for general and local verifications.

Carriageway width <i>w</i>	Number of notional lanes	Width of a notional lane	Width of the remaining area		
<i>w</i> <5.4 m	<i>n</i> _l = 1	3 m	<i>w</i> -3 m		
5·4 m <i>≤w</i> <6 m	$n_1 = 2$	$\frac{w}{2}$	0		
6 m <i>≤w</i>	$n_{\rm I} = {\rm Int}\left(\frac{w}{3}\right)$	3 m	$w-3 \times n_{l}$		

Table 8.5. Number and width of lanes

Note: for example, for a carriageway width of 11 m, $n_1 = Int\left(\frac{w}{3}\right) = 3$, and the width of the remaining area is $11 - 3 \times 3 = 2$ m.

(d) Load model 4: a crowd loading. This model should be considered only when required by the client. It is intended only for general verifications. However, crowd loading may be usefully specified by the relevant authority for bridges located in or near towns if its effects are not obviously covered by load model 1.

Load models 1 and 2 are defined numerically for persistent situations and are to be considered for any type of design situation (e.g. for transient situations during repair works). Load models 3 and 4 are defined only for some transient design situations. Design situations are specified as far as necessary in design Eurocodes and/or in particular projects, in accordance with definitions and principles given in ENV 1991-1. Combinations for persistent and transient situations may be numerically different.

Main loading system (load model 1)

The main loading system consists of two partial systems as detailed below.

Double-axle concentrated loads (tandem system: TS), each axle having a weight:

 $\alpha_Q Q_k$

where:

 α_0 are adjustment factors.

No more than one tandem system should be considered per lane; only complete tandem systems shall be considered. Each tandem system should be located in the most adverse position in its lane (see, however, below and Fig. 8.5. Each axle of the tandem model has two identical wheels, the load per wheel being therefore equal to $0.5\alpha_Q Q_k$. The contact surface of each wheel is to be taken as square and of side 0.40 m.

Uniformly distributed loads (UDL system), having a weight density per square metre:

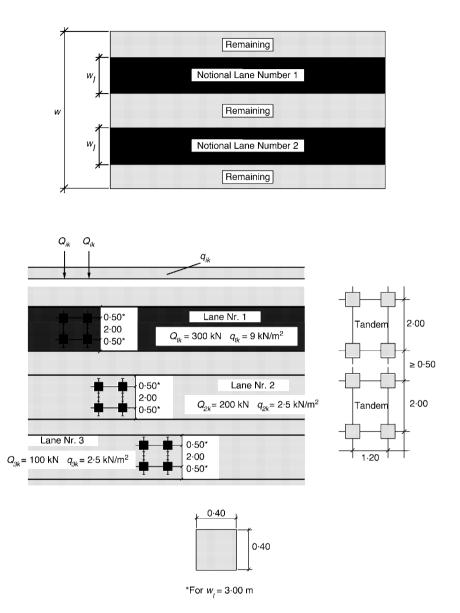
 $\alpha_{q}q_{k} \tag{8.3}$

where

 α_q are adjustment factors.

These loads should be applied only in the unfavourable parts of the influence surface, longitudinally and transversally.

Load model 1 should be applied on each notional lane and on the remaining areas. On notional lane number 1, the load magnitudes are referred to as $\alpha_{Qi}Q_{ik}$ and $\alpha_{qi}q_{ik}$ (Table 8.6). On the remaining areas, the load magnitude is referred to as $\alpha_{qr}q_{rk}$.


Unless otherwise specified, the dynamic amplification is included in the values for Q_{ik} and q_{ik} , the values of which are given in Table 8.6.

For the assessment of general effects, the tandem systems may be assumed to travel along the axes of the notional lanes.

Where general and local effects can be calculated separately, and unless otherwise specified by the client, the general effects may be calculated:

(*a*) by replacing the second and third tandem systems by a second tandem system with axle weight equal to

 $(200\alpha_{Q2}+100\alpha_{Q3})$ kN (although relevant authorities may restrict the application of this simplification) or

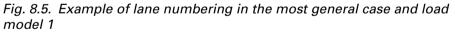


Table 8.6. Basic values

Location	Tandem system Axle loads <i>Q_{ik}:</i> kN	UDL system $q_{ m ik}$ (or $q_{ m rk}$): kN/m ²
Lane number 1	300	9
Lane number 2	200	2.5
Lane number 3	100	2.5
Other lanes	0	2.5
Remaining area (q_{rk})	0	2.5

(b) for span lengths greater than 10 m, by replacing each tandem system in each lane by a one-axle concentrated load of weight equal to the total weight of the two axles. However, the relevant authorities may restrict the application of this simplification. The single axle weight is:

 $600\alpha_{Q1}$ kN on lane number 1 $400\alpha_{Q2}$ kN on lane number 2 $200\alpha_{Q3}$ kN on lane number 3.

The values of the factors α_{Qi} , α_{qi} and α_{qr} (adjustment factors) may be different for different classes of route or of expected traffic. In the absence of specification, these factors are taken as equal to 1. In all classes, for bridges without road signs restricting vehicle weights

 $\alpha_{01} \ge 0.8$ and

for: $i \ge 2$, $\alpha_{qi} \ge 1$; this restriction is not applicable to α_{qr} . Note that α_{Qi} , α_{qi} and α_{qr} factors other than 1 should be used only if they are chosen or agreed by the relevant authority.

Single axle model (load model 2)

This model consists of a single axle load $\beta_Q Q_{ak}$ with Q_{ak} equal to 400 kN, dynamic amplification included, which should be applied at any location on the carriageway. However, when relevant, only one wheel of 200 β_Q (kN) may be considered. Unless otherwise specified, β_Q is equal to α_{Q1} .

Unless it is specified that the same contact surface as for load model 1 should be adopted, the contact surface of each wheel is a rectangle of sides 0.35 m and 0.60 m as shown in Fig. 8.6.

Set of models of special vehicles (load model 3)

When one or more of the standardised models of this set is required by the client to be taken into account, the load values and dimensions should be as described in annex A of the code concerned.

The characteristic loads associated with the special vehicles should be taken as nominal values and should be considered as associated solely with transient design situations.

Unless otherwise specified the following should be assumed.

(a) Each standardised model is applicable on one notional traffic lane (considered as lane number 1) for the models composed of 150 or 200 kN axles, or on two adjacent notional lanes (considered as lane

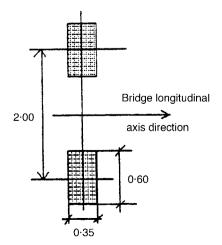


Fig. 8.6. Load model 2

numbers 1 and 2—see Fig. 8.8) for models composed of heavier axles. The lanes are located as unfavourably as possible in the carriageway. For this case, the carriageway width may be defined as excluding hard shoulders, hard strips and marker strips.

- (b) Special vehicles simulated by the models are assumed to move at low speed (not more than 5 km/h); only vertical loads without dynamic amplification have therefore to be considered.
- (c) Each notional lane and the remaining area of the bridge deck are loaded by the main loading system. On the lane(s) occupied by the standardised vehicle, this system should not be applied at less than 25 m from the outer axles of the vehicle under consideration.

Crowd loading (load model 4)

Crowd loading, if relevant, is represented by a nominal load (which includes dynamic amplification). Unless otherwise specified, it should be applied on the relevant parts of the length and width of the road bridge deck, the central reservation being included where relevant. This loading system, intended for general verifications, is associated solely with a transient situation.

Dispersal of concentrated loads

The various concentrated loads to be considered for local verifications, associated with load models 1, 2 and 3, are assumed to be uniformly distributed across their whole contact area. The dispersal through the pavement and concrete slabs is taken at a spread-to-depth ratio of 1 horizontally to 1 vertically down to the level of the centroid of the structural flange below (see Figs 8.7 and 8.8).

8.1.3. Highway loads based on AASHTO

Standard truck and lane loads

The highway live loadings on the roadways of bridges or incidental structures shall consist of standard trucks or lane loads that are equivalent to truck trains. Two systems of loading are provided, the H loadings and the HS loadings— the HS loadings being heavier than the corresponding H loadings.

Each lane load shall consist of a uniform load per linear foot of traffic lane combined with a single concentrated load (or two concentrated loads in the case of continuous spans), so placed on the span as to produce maximum stress. The concentrated load and uniform load shall be considered as uniformly distributed over a 10 ft width on a line normal to the centre line of the lane.

For the computation of moments and shears, different loads shall be used as indicated in Fig. 8.9. The lighter concentrated loads shall be used when the

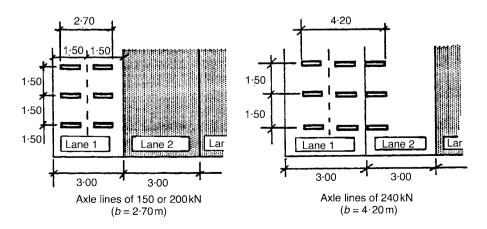


Fig. 8.7. Location of special vehicles

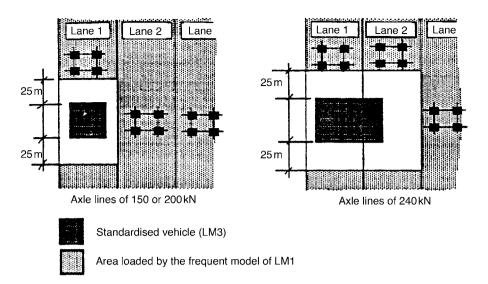
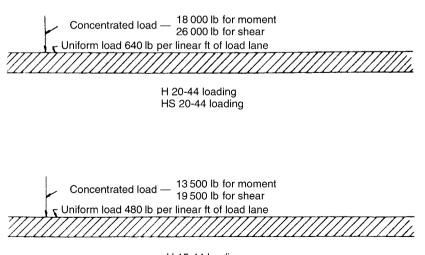


Fig. 8.8. Simultaneity of load models 1 and 3

stresses are primarily bending stresses, and the heavier concentrated loads shall be used when the stresses are primarily shearing stresses.


Classes of loading

There are four standard classes of highway loading: H 20, H 15, HS 20, and HS 15. Loading H 15 is 75% of loading H 20. Loading HS 15 is 75% of loading HS 20. If loadings other than those designated are desired, they shall be obtained by proportionately changing the weights shown for both the standard truck and the corresponding lane loads.

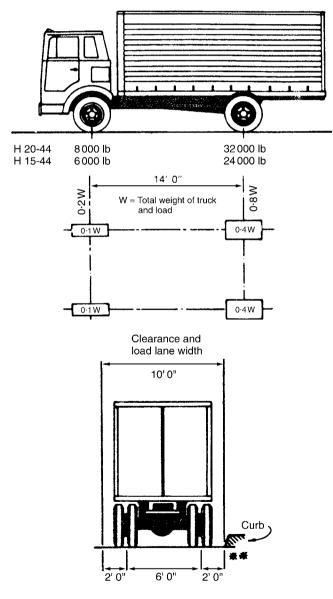
Designation of loadings

The policy of affixing the year to loadings to identify them was instituted with the publication of the 1944 Edition of the code in the following manner:

H 15 loading, 1944 Edition shall be designated	H 15-44
H 20 loading, 1944 Edition shall be designated	H 20-44
H 15-S 12 loading, 1944 Edition shall be designated	HS 15-44
H 20-S 16 loading, 1944 Edition shall be designated	HS 20-44

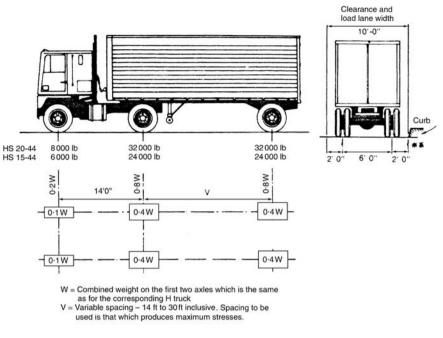
H 15-44 loading HS 15-44 loading

Fig. 8.9. Lane loading


The affix shall remain unchanged until such time as the loading specification is revised. The same policy for identification shall be applied, for future reference, to loadings previously adopted by the American Association of State Highway and Transportation Officials.

Minimum loading

Bridges supporting Interstate highways or other highways which carry, or which may carry, heavy truck traffic, shall be designed for HS 20-44 loading or an alternate military loading of two axles four feet apart with each axle weighing 24 000 pounds, whichever produces the greatest stress.


H loading

The H loadings consist of a two-axle truck or the corresponding lane loading as illustrated in Figs 8.9 and 8.10. The H loadings are designated H followed by a number indicating the gross weight in tons of the standard truck.

* In the design of timber floors and orthotropic steel decks (excluding transverse beams) for H 20 loading, one axle load of 24 000 lb or two axle loads of 16 000 lb each spaced 4 ft apart may be used, whichever produces the greater stress, instead of the 32 000 lb axle shown.
** For slab design, the centre line of wheels shall be assumed to be 1 ft from face of curb.

Fig. 8.10. Standard H trucks

* In the design of timber floors and orthotropic steel decks (excluding transverse beams) for H 20 loading, one axle load of 24 000 lb or two axle loads of 16 000 lb each spaced 4 ft apart may be used, whichever produces the greater stress, instead of the 32 000 lb axle shown.
** For slab design, the centre line of wheels shall be assumed to be 1 ft from face of curb.

Fig. 8.11. Vehicular loading—HS trucks

HS loading

The HS loadings consist of a tractor truck with semi-trailer or the corresponding lane load as illustrated in Figs 8.9 and 8.11. The HS loadings are designated by the letters HS followed by a number indicating the gross weight in tons of the tractor truck. The variable axle spacing has been introduced in order that the spacing of axles may approximate more closely the tractor trailers now is use. The variable spacing also provides a more satisfactory loading for continuous spans, in that heavy axle loads may be so placed on adjoining spans as to produce maximum negative moments.

Application of live load

In computing stresses, each 10 ft lane load or single standard truck shall be considered as a unit, and fractions of load lane widths or trucks shall not be used. The number and position of the lane load or truck loads shall be as specified above and, whether lane or truck loads, shall be such as to produce maximum stress, subject to the reduction specified below.

Reduction in load intensity

Where maximum stresses are produced in any member by loading a number of traffic lanes simultaneously, the following percentages of the live loads shall be used in view of the improbability of coincident maximum loading:

- one or two lanes 100%
- three lanes 90%
- four lanes or more 75%

The reduction in intensity of loads on transverse members such as floor beams shall be determined as in the case of main trusses or girders, using the number of traffic lanes across the width of roadway that must be loaded to produce maximum stresses in the floor beam.

Sidewalk, curb, and railing loading

Sidewalk floors, stringers, and their immediate supports shall be designed for a live load of 85 lb/ft^2 of sidewalk area. Girders, trusses, arches and other members shall be designed for the following sidewalk live loads:

- spans 0-25 ft in length 85 lb/ft²
- spans 26–100 ft in length 60 lb/ft^2
- spans over 100 ft in length according to the formula

$$P = \left(30 + \frac{3000}{L}\right) \left(\frac{55 - W}{50}\right)$$
(8.4)

in which

P=live load per ft², max. 60 lb/ft² L=loaded length of sidewalk in ft W=width of sidewalk in ft.

In calculating stresses in structures that support cantilevered sidewalks, the sidewalk shall be fully loaded on only one side of the structure if this condition produces maximum stress.

Bridges for pedestrian and/or bicycle traffic shall be designed for a live load of 85 PSF. Where bicycle or pedestrian bridges are expected to be used by maintenance vehicles, special design consideration should be allowed for these loads.

Curbs shall be designed to resist a lateral force of not less than 500 lb per linear ft of curb, applied at the top of the curb, or at an elevation 10 in. above the floor if the curb is higher than 10 in. Where sidewalk, curb, and traffic rail form an integral system, the traffic railing loading shall be applied and stresses in curbs computed accordingly.

Superstructure design

Group II and Group V loadings A wind load of the following intensity shall be applied horizontally at right angles to the longitudinal axis of the structure:

- for trusses and arches 75 lb/ft²
- for girders and beams 50 lb/ft²

The total force shall not be less than 300 lb per linear ft in the plane of the windward chord and 150 lb per linear ft in the plane of the leeward chord on truss spans, and not less than 300 lb per linear ft on girder spans.

Group III and Group VI loadings Group III and Group VI loadings shall comprise the loads used for Group II and Group V loadings reduced by 70% and a load of 100 lb per linear ft applied at right angles to the longitudinal axis of the structure and 6 ft above the deck as a wind load on a moving live load. When a reinforced concrete floor slab or a steel grid deck is keyed to or attached to its supporting members, it may be assumed that the deck resists, within its plane, the shear resulting from the wind load on the moving live load.

Combinations of loads

The following Group represents various combinations of loads and forces to which a structure may be subjected. Each component of the structure, or the foundation on which it rests, shall be proportioned to withstand safely all group combinations of these forces that are applicable to the particular site or type. Group loading combinations for service load design and load factor design are given by the following.

$$\begin{split} Group~(N) = &\gamma [\beta_D \cdot D + \beta_L (L+I) + \beta_C CF + \beta_E E \\ &+ \beta_B B + \beta_S SF + \beta_W W + \beta_{WL} WL \\ &+ \beta_L \cdot LF + \beta_R (R+S+T) \\ &+ \beta_{EQ} EQ + \beta_{ICE} ICE] \end{split}$$

where

- N = group number
- γ =load factor, see Table 8.7
- β = coefficient, see Table 8.7
- D = dead load
- L =live load
- I =live load impact
- E = earth pressure
- B = buoyancy
- W = wind load on structure
- WL = wind load on live load 100 lb per linear ft
- LF =longitudinal force from live load
- CF = centrifugal force
- R = rib shortening
- S = shrinkage
- T =temperature
- EQ = earthquake
- SF = stream flow pressure

ICE=ice pressure.

For service load design, the percentage of the basic unit stress for the various groups is given in Table 8.7. The loads and forces in each group shall be taken as appropriate. The maximum section required shall be used.

For load factor design, the gamma and beta factors given in Table 8.7 shall be used for designing structural members and foundations by the load factor concept.

A simpler, more tractable model has been developed. The objective of this model is to prescribe a set of loads such that the same extreme load effects of the model are approximately the same as the exclusion vehicles. This model consists of three distinctly different loads:

- · design truck
- design tandem
- design lane.

As illustrated in Fig. 8.11, the design truck (the first of three separate live load configurations) is a model load that resembles the typical semi-trailer truck. The front axle is 35 kN, located 4300 mm before the drive axle which has a load of 145 kN. The rear trailer axle is also 145 kN and is positioned at a variable distance ranging between 4300 and 9000 mm. The variable range means that the spacing used should cause critical load effect. The long spacing typically only controls where the front and rear portions of the truck may be positioned in adjacent structurally continuous spans such as for continuous short-span bridges. The design truck is the same configuration that has been used by AASHTO (1996) Standard Specification since 1944 and is commonly referred to as HS 20. The H denotes highway, the S denotes semi-trailer, and

Col	. No.	1	2	3	ЗA	4	5	6	7	8	9	10	11	12	13	14	
								βI	ACT	ORS							
GR	OUP	γ	D	$(L+I)_n$	$(L+I)_{P}$	CF	Е	В	SF	W	WL	LF	R+S+T	EQ	ICE	%	
0	I	1.0	1	1	0	1	β_{E}	1	1	0	0	0	0	0	0	100	
LOAD	1A	1.0	1	2	0	0	0	0	0	0	0	0	0	0	0	150	
2	1B	1.0	1	0	1	1	β_{E}	1	1	0	0	0	0	0	0	**	
SERVICE		1.0	1	0	0	0	1	1	1	1	0	0	0	0	0	125	
Ž	III IV	1.0 1.0	1	1	0	1	β _E	1	1	0.3	1	1	0	0	0	125 125	
Ш.	V	1.0	1	1 0	0 0	1 0	β _Ε 1	1 1	1 1	0 1	0 0	0 0	1 1	0 0	0 0	125	
0,	VI	1.0	1	1	0	1	β _E	1	1	0.3	1	1	1	0	0	140	
	VII	1.0	1	0	0	0	₽⊧ 1	1	1	0.5	0	0	0	1	0	133	
	VIII	1.0	1	1	Õ	1	1	1	1	Ő	0	Õ	0 0	0	1	140	
	IX	1.0	1	Ō	0	Ō	1	1	1	1	Ō	Ō	0	Ō	1	150	
Z	х	1.0	1	1	0	0	β_{E}	0	0	0	0	0	0	0	0	100	Culver
LOAD FACTOR DESIGN	I	1.3	β_D	1.67*	0	1.0	β_{E}	1	1	0	0	0	0	0	0	۵	
ā	IA	1.3	β _D	2.20	0	0	0	0	0	0	0	0	0	0	0	q	
ОR	IB	1.3	β _D	0	1	1.0	β_{E}	1	1	0	0	0	0	0	0	Not Applicable	
Ē		1.3	β _D	0	0	0	β_{E}	1	1	1	0	0	0	0	0	dd	
Ā		1.3 1.3	β _D	1	0	1	β _E	1	1	0.3	1	1	0	0	0	t A	
Q	IV V	1.25	β_D	1	0	1	β_{E}	1	1	0 1	0	0	1 1	0 0	0 0	N N	
٥Þ	V	1.25	β _D β _D	0 1	0 0	0 1	β _E β	1 1	1 1	ı 0.3	0 1	0 1	1	0	0	-	
-	VII	1.25	β _D	0	0	0	β _E β _E	1	1	0.3	0	0	0	1	0		
	VIII	1.3	β	1	0	1	ρ _ε β _ε	1	1	0	0	0	0	0	1		
	IX	1.20	β	Ō	Õ	0	β _E	1	1	1	Õ	Õ	0 0	0	1		
	X	1.30	1	1.67	0	Ō	β_{E}	0	0	Ō	Ō	Ō	0 0	Ō	0		Culver

Table 8.7. Table of coefficients γ and β . From Standard Specification for Highway Bridges, Copyright 1996, by the American Association of State Highway and Transportation Officials, Washington, D.C. Used by permission

(L+I),—live load plus impact for AASHTO Highway H or HS loading.

(L+I)_p—live load plus impact consistent with the overload criteria of the operation agency.

* 1.25 may be used for design of outside roadway beam when combination of sidewalk live load as well as traffic live load plus impact governs the design, but the capacity of the section should not be less than required for highway traffic live load only using a beta factor of 1.67. 1.00 may be used for design of deck slab with combination of loads.

** Percentage= maximum unit stress (operating rating) × 100

allowable basic unit stress

For service load design

% (Column 14) percentage of basic unit stress

No increase in allowable unit stresses shall be permitted for members or connections carrying wind loads only

 β_E = 1.00 for vertical and lateral loads on all other structures.

For culvert loading specifications.

 β_{E} = 1.0 and 0.5 for lateral loads on rigid frames (check both loadings to see which one governs).

For load factor design

 β_E =1.3 for lateral earth pressure for retaining walls and rigid frames excluding rigid culverts. For lateral at-rest earth pressures, β_E =1.15

 $\beta_E = 0.5$ for lateral earth pressure when checking positive moments in rigid frames.

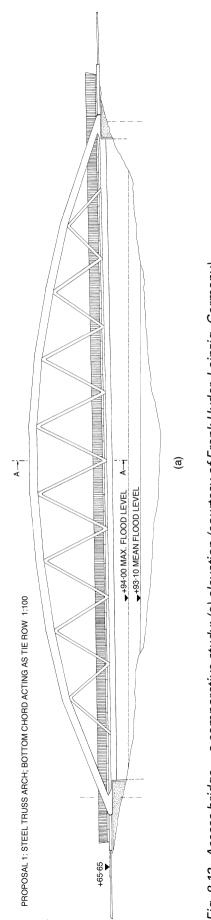
 $\beta_E = 1.0$ for vertical earth pressure

β_D =0-75 when checking member for minimum axial load and maximum	For
moment or maximum eccentricity	Column
β_D =1.0 when checking member for maximum axial load and minimum moment	Design
β_{D} = 1.0 for flexural and tension members	

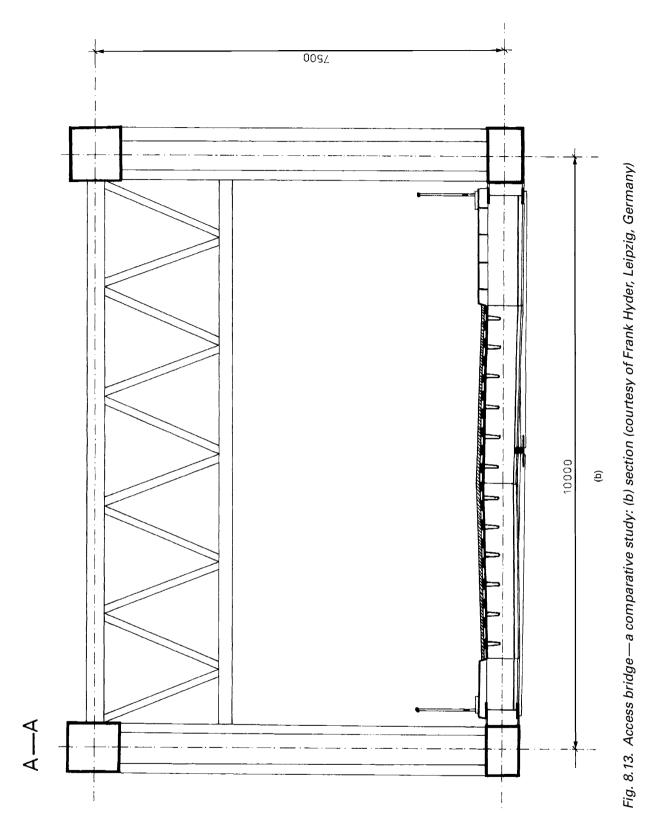
 $\beta_{\rm E} = 1.0$ for rigid culverts

 $\beta_E = 1.5$ for flexible culverts

For Group X loading (culverts) the β_E factor shall be applied to vertical and horizontal loads.

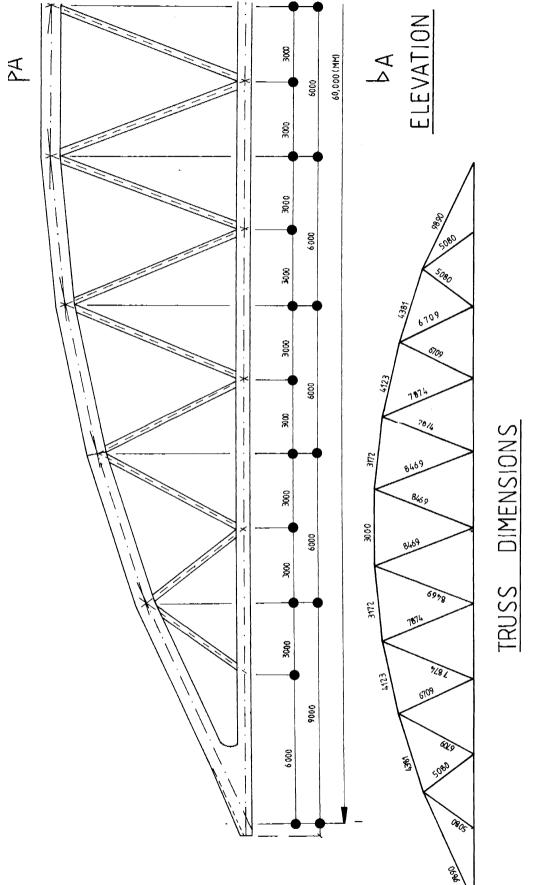
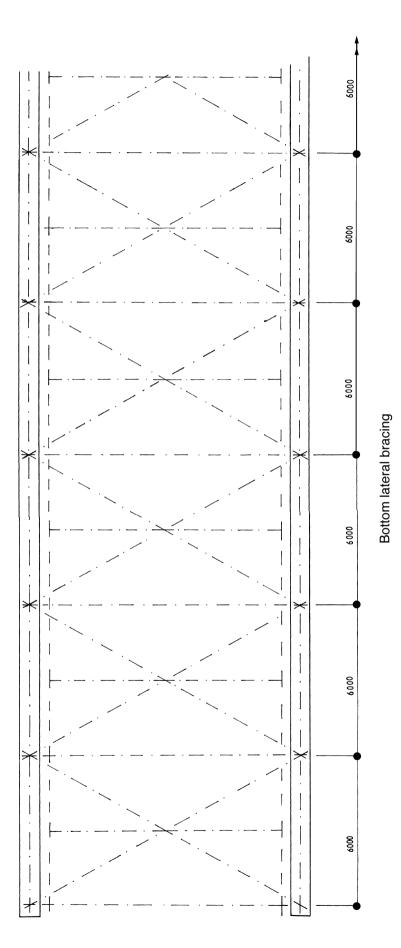
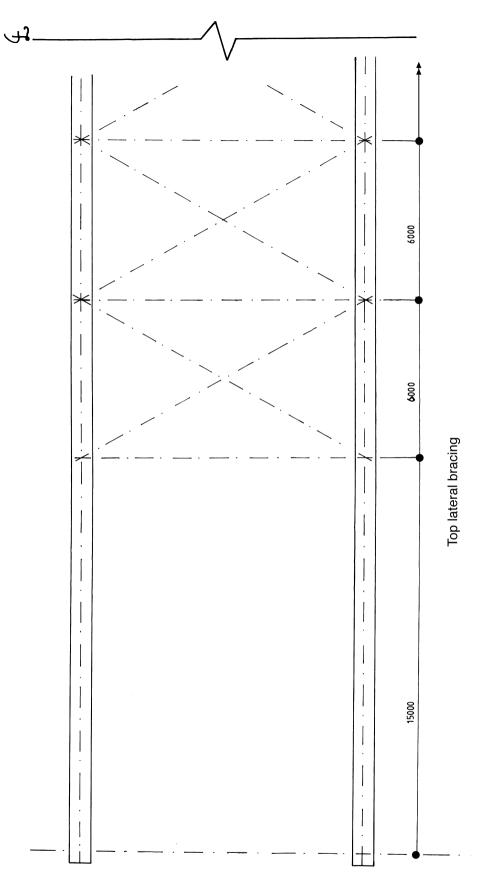

the 20 is the weight of the tractor in tons (U.S. customary units). The new vehicle combinations as described in AASHTO (1994) LRFD Bridge Specifications are designated as HL-93 for highway loading accepted in 1993 (see Fig. 8.12).

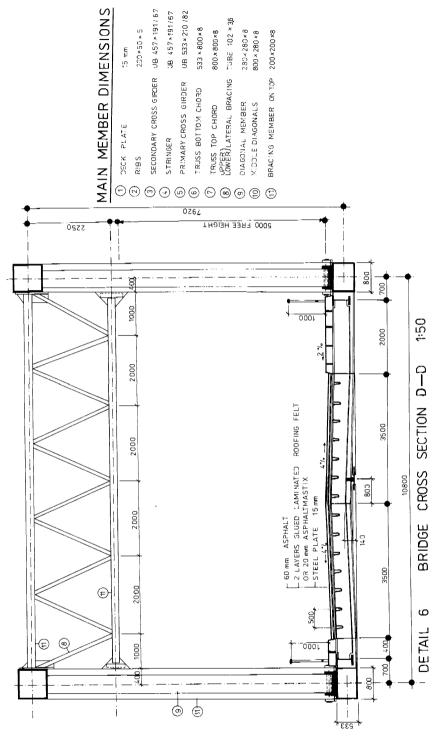
The second configuration is the design tandem which consists of two axles weighing 110 kN each spaced at 1200 mm, which is similar to the tandem axle used in previous AASHTO Standard Specifications except that the load is changed from 24 to 25 kips (110 kN).

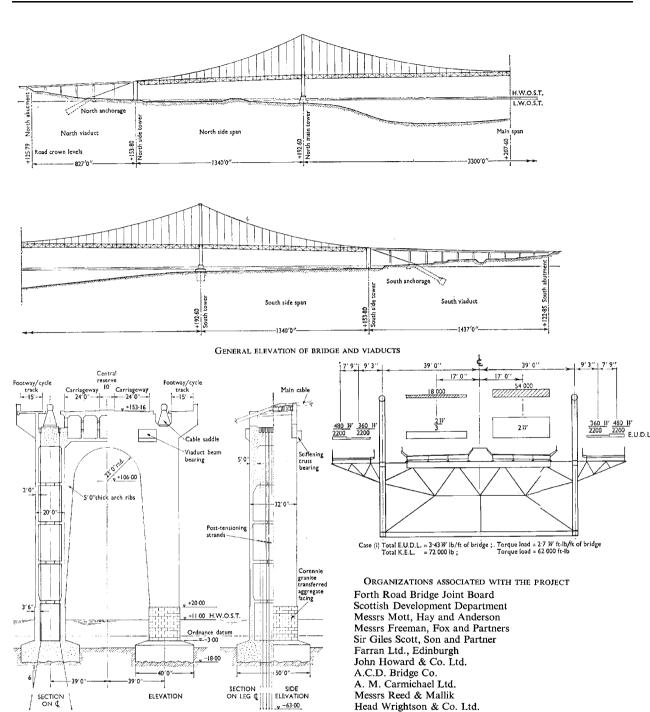

The third load is the design lane load that consists of a uniformly distributed load of 9.3 N/mm and is assumed to occupy a region 3000 mm transversely. This load is the same as a uniform pressure of 64 lb/ft² ($3\cdot$ 1 kPa) applied in a 10 ft (3000 mm) design lane. This load is similar to the lane load outlined in the AASHTO Standard Specifications for many years with the exception that the LRFD lane load does not require any concentrated loads.

The load effects of the design truck and the design tandem must each be *superimposed with* the load effects of the design lane load. This combination of lane and axle loads is a major deviation from the requirements of the earlier AASHTO Standard Specifications, where the loads were considered separately. It is important to understand that these loads are not designed to model any one vehicle or combination of vehicles, but rather the spectra of loads and their associated load effects.

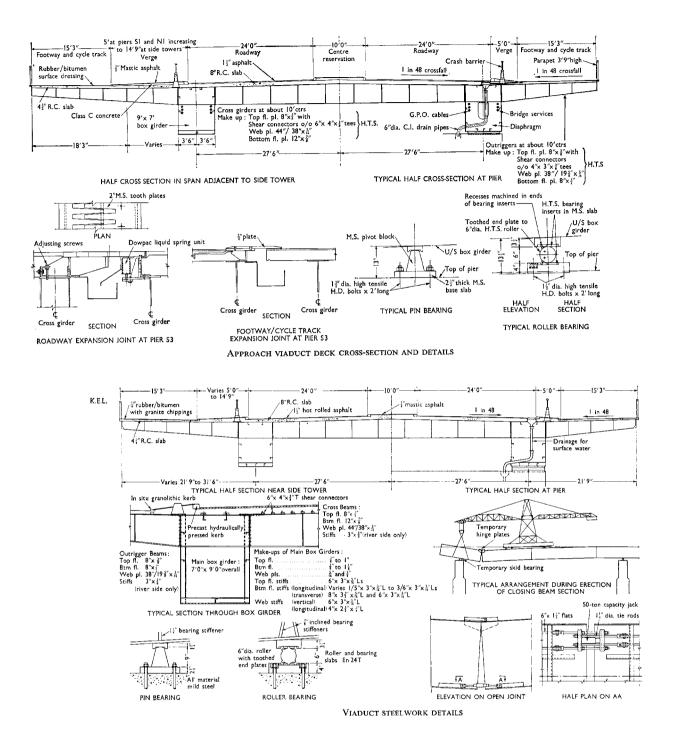
188

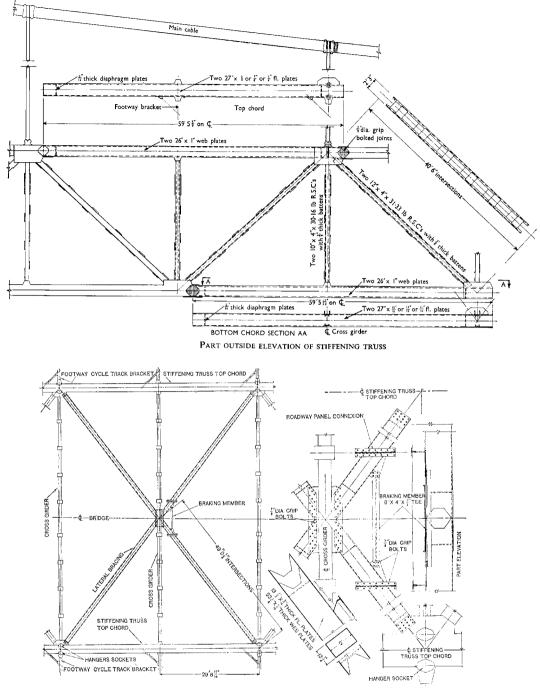





Fig. 8.14. Access bridge—(a) elevation (courtesy of Frank Hyder, Leipzig, Germany)



Whatlings Ltd.

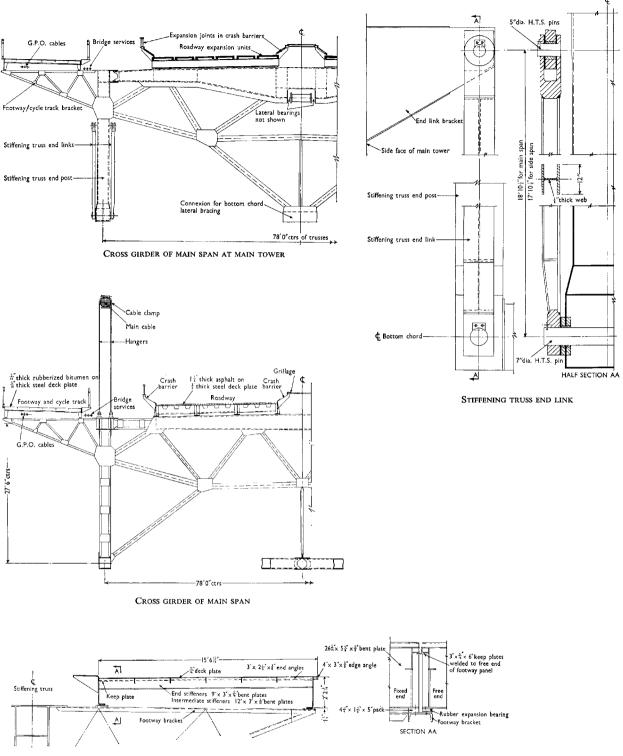

Franco Traffic Signs Ltd.

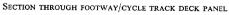

The Limmer & Trinidad Lake Asphalt Co. Ltd. Amalgamated Asphalte Companies Ltd. Communication Systems Ltd.

Holland, Hannen & Cubitts Ltd. Hugh C. Gibson's Heirs John A. Roebling's Sons Corporation of America,

8.3. Structural details of a suspension bridge based on a British code

Fig. 8.16. Elevation of a suspension bridge and viaduct details





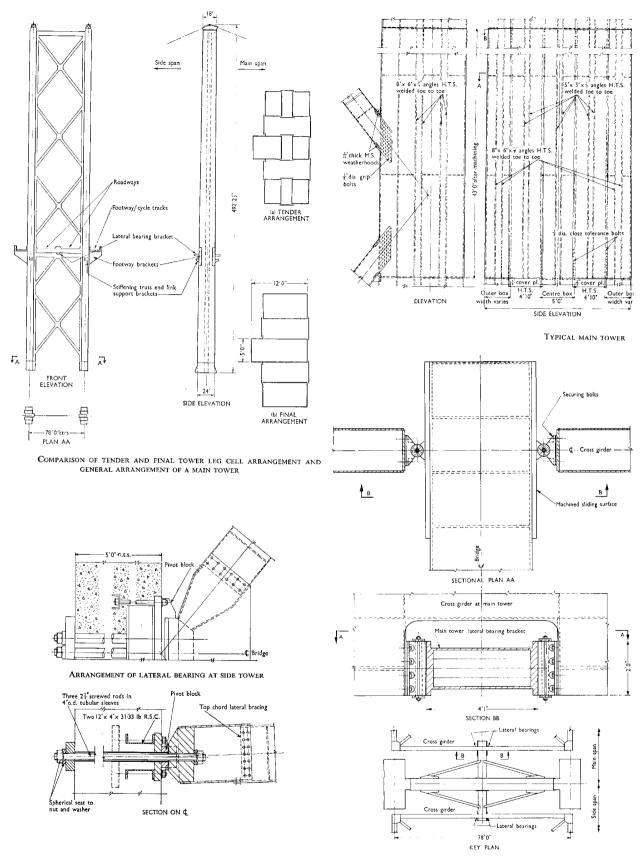
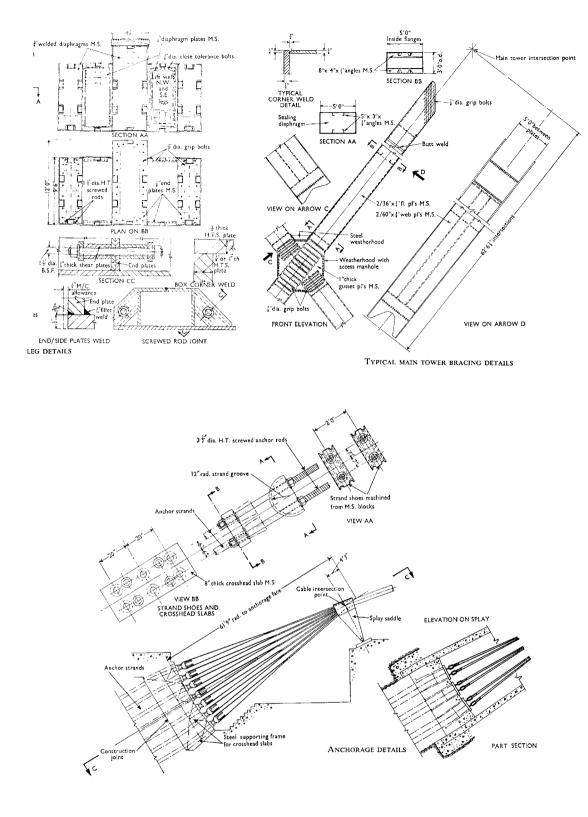

TOP CHORD LATERAL BRACING

Fig. 8.17. Elevations, cross-section and structural details of trusses

STEEL BRIDGES



ARRANGEMENT OF LATERAL BEARING AT MAIN TOWER

Fig. 8.18. Tower, anchorage and bearing details

199

STRUCTURAL DETAILING IN STEEL

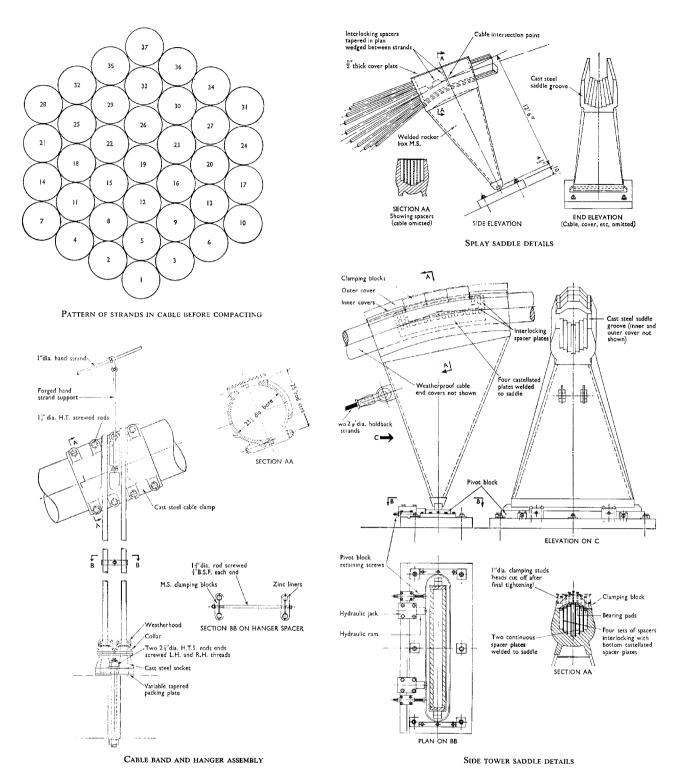
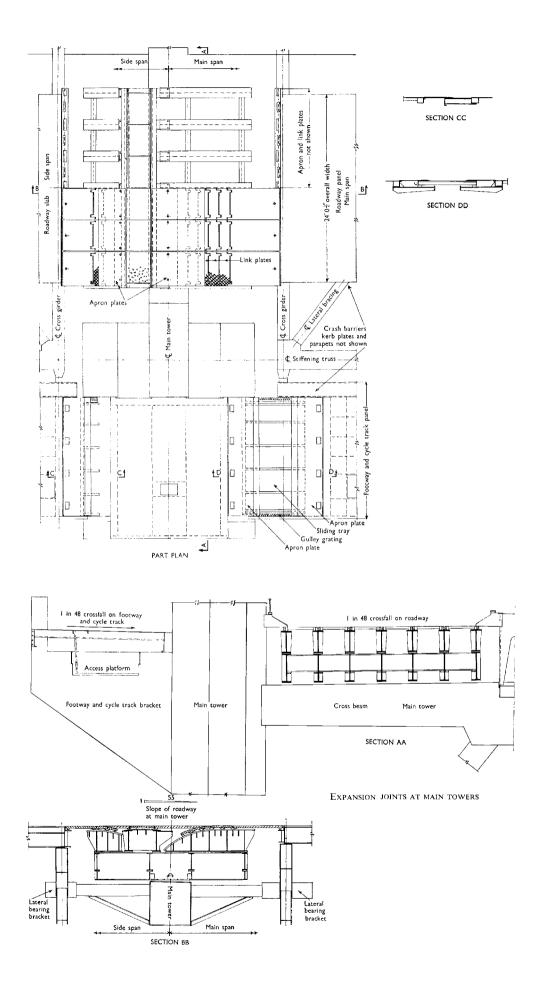
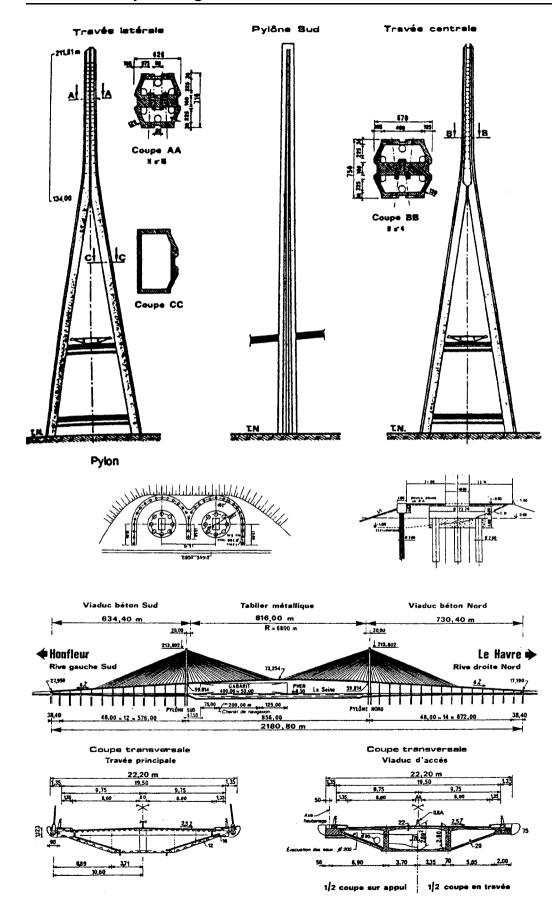




Fig. 8.19. Cable details and hanger assembly

8.4. Cable-stayed bridge based on EC3 and ENV-1-1991

Fig. 8.20. Elevation, cross-section and pylon structural details

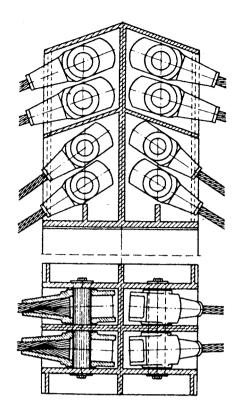
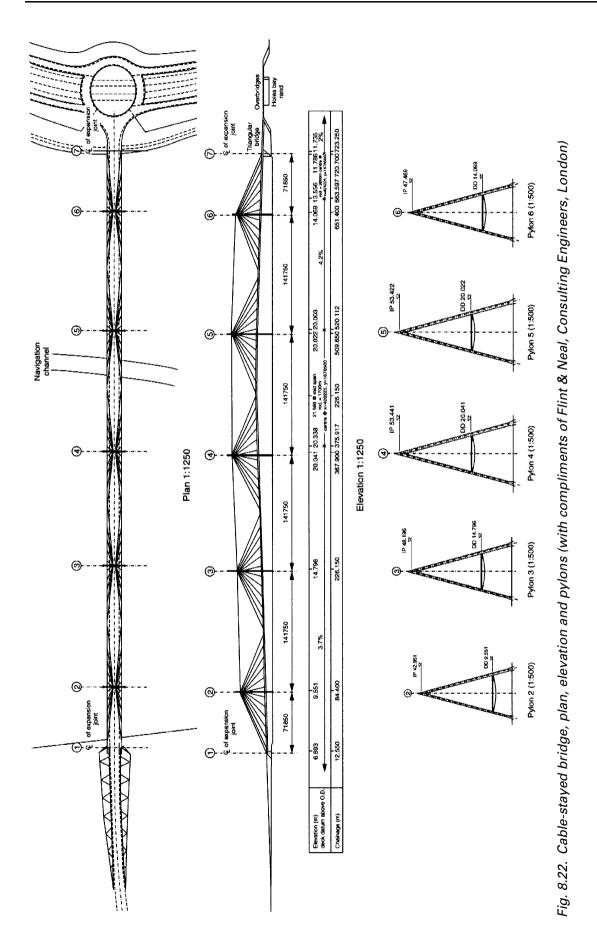
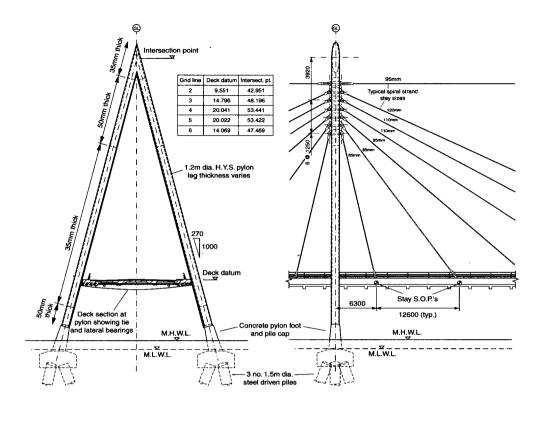




Fig. 8.21. Typical cable anchorages

8.5. Poole Harbour Crossing: a cable-stayed bridge

STEEL BRIDGES

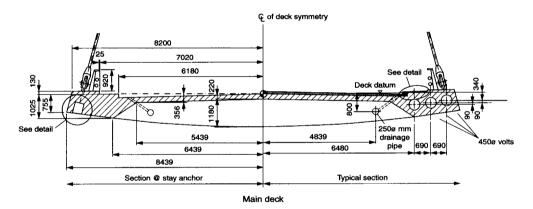
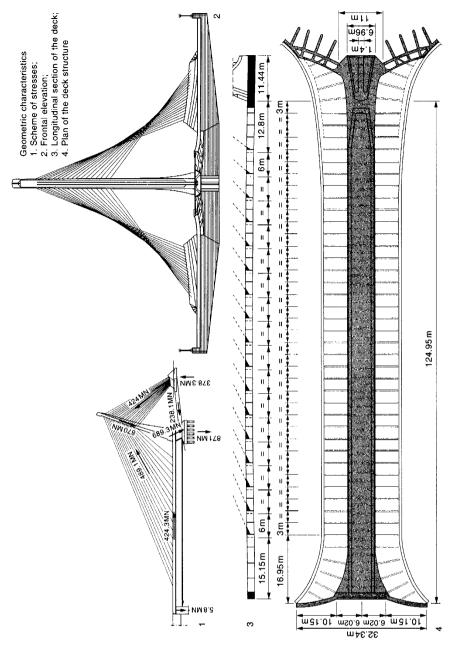
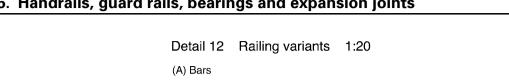
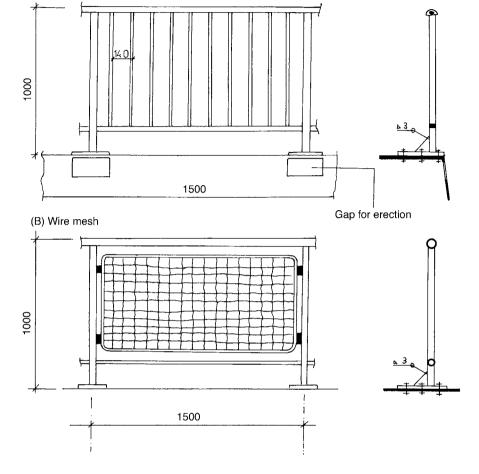
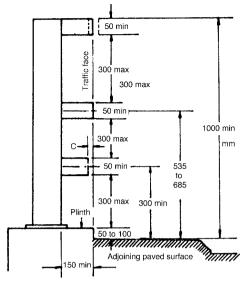
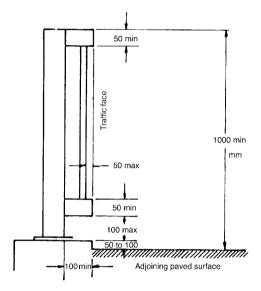
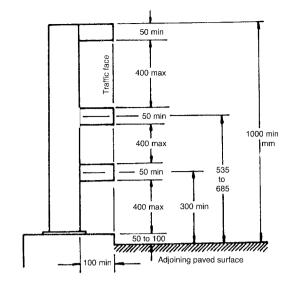
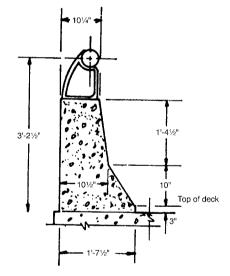




Fig. 8.22. Continued, pylons and bridge deck

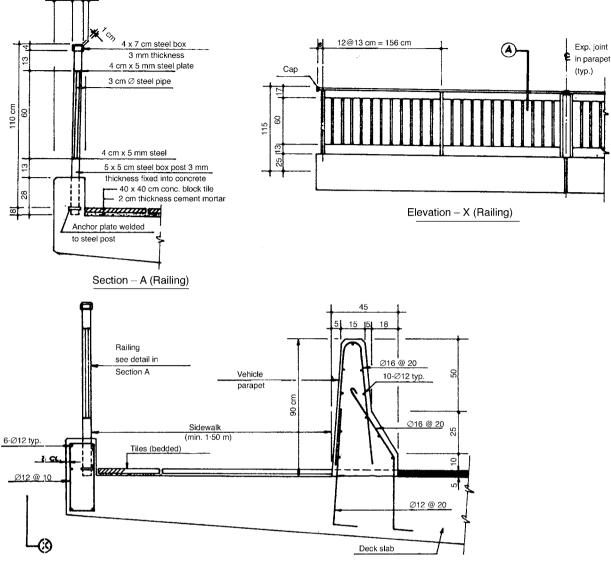
8.6. Handrails, guard rails, bearings and expansion joints

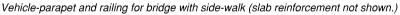




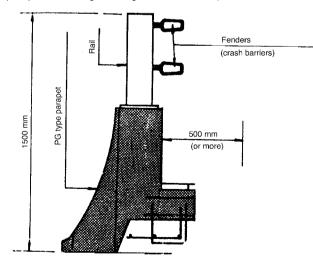

Fig. 8.23. Handrails and guard rails—structural detailing


P1 'Vehicle-Parapet' with plinth less than 700 mm high for use on motorway under-bridges

P2 'Vehicle-Pedestrian Parapet' for use in road bridges where speed is restricted to 48 km/hr




P2 'Vehicle-Pedestrian Parapet' for use on all pupose road bridges. The design speed being stated



Vehicle-Parapet Kerb (reinforcement not shown) AASHTO/ACI

Fig. 8.24. Vehicle parapets and railings

8.7. Steel shoes or bearings and expansion joints for steel bridges

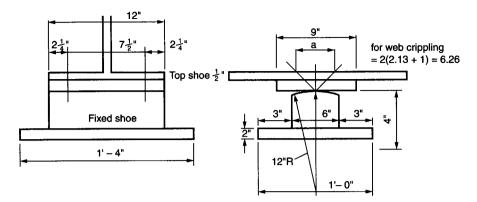


Fig. 8.25. Structural details and shoe (bearing) setting data

STEEL BRIDGES

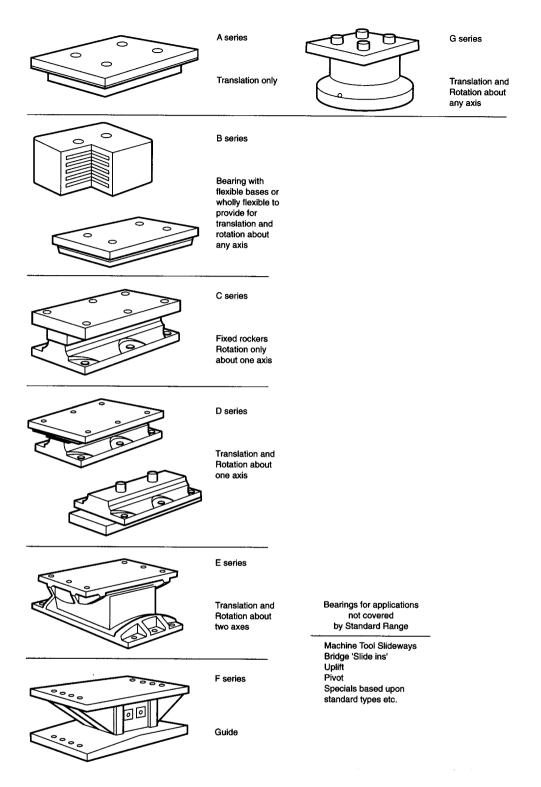


Fig. 8.26. Structural design of various types of bearings

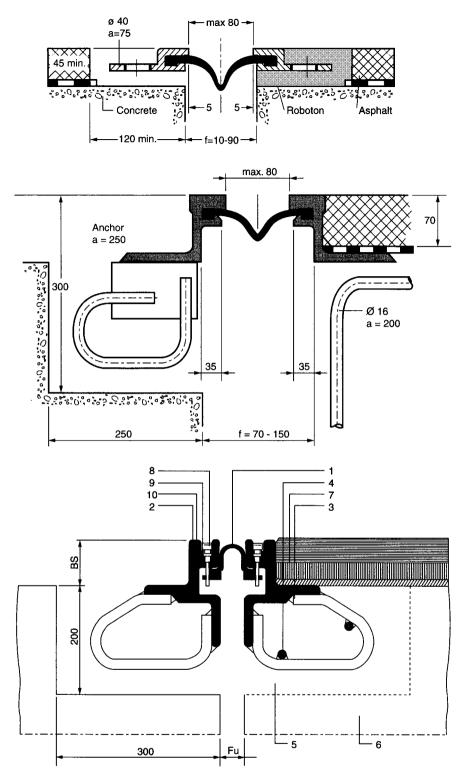
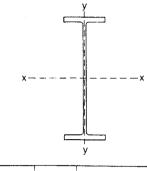
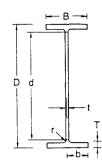
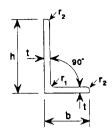



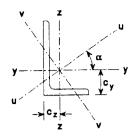
Fig. 8.27. Expansion joints


Appendix. Section properties

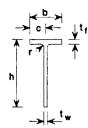
UNIVERSAL BEAMS To BS 4: Part 1: 1993



Rac of Gyr		Elastic N	lodulus	Plastic I	Modulus							
Axis x-x	Axis y-y	Axis x-x	Axis y-y	Axis x-x	Axis y-y	Buckling Parameter u	Torsional Index x	Warping Constant H	Torsional Constant J	Area of Section	Mass per metre	Designation
cm	cm	cm ³	cm ³	Cm ³	cm ³			dm⁵	cm⁴	Cm ²	kg/m	
18·7	3·37	1571	153	1811	240	0-873	27·4	0·591	89·2	105	82·1	457 x 152 x 82
18·6	3·33	1414	136	1627	213	0-873	30·1	0·518	65·9	94·5	74·2	457 x 152 x 74
18·4	3·27	1263	119	1453	187	0-869	33·6	0·448	47·7	85·6	67·2	457 x 152 x 67
18·3	3·23	1122	104	1287	163	0∙868	37·5	0·387	33·8	76-2	59·8	457 x 152 x 60
17·9	3·11	950	84∙6	1096	133	0∙859	43·9	0·311	21·4	66-6	52·3	457 x 152 x 52
17·0	4·04	1323	172	1501	267	0-882	27-6	0.608	62·8	94·5	74·2	406 x 178 x 74
16·9	3·99	1189	153	1346	237	0-880	30-5	0.533	46·1	85·5	67·1	406 x 178 x 67
16·8	3·97	1063	135	1199	209	0-880	33-8	0.466	33·3	76·5	60·1	406 x 178 x 60
16·5	3·85	930	115	1055	178	0-871	38-3	0.392	23·1	69·0	54·1	406 x 178 x 54
16·4	3∙03	778	75∙7	888	118	0·871	38·9	0·207	19∙0	58·6	46∙0	406 x 140 x 46
15·9	2∙87	629	57•8	724	90∙8	0·858	47·5	0·155	10∙7	49·7	39∙0	406 x 140 x 39
15·1 14·9 14·8 14·5	3·99 3·91 3·86 3·76	1071 896 796 687	157 129 113 94·8	1211 1010 896 775	243 199 174 147	0·886 0·882 0·881 0·874	24·4 28·8 32·1 36·8	0·412 0·330 0·286 0·237	55·7 33·4 23·8 15·8	85·5 72·6 64·9 57·3	67·1 57·0 51·0 45·0	356 x 171 x 67 356 x 171 x 57 356 x 171 x 57 356 x 171 x 51 356 x 171 x 45
14·3	2·68	576	56·8	659	89-1	0-871	35·2	0·105	15·1	49∙8	39-1	356 x 127 x 39
14·0	2·58	473	44·7	543	70-3	0-863	42·2	0·0812	8·79	42∙1	33-1	356 x 127 x 33
13·0	3∙93	754	127	846	196	0-889	23-6	0·234	34·8	68·8	54·0	305 x 165 x 54
13·0	3∙90	646	108	720	166	0-891	27-1	0·195	22·2	58·7	46·1	305 x 165 x 46
12·9	3∙86	560	92∙6	623	142	0-889	31-0	0·164	14·7	51·3	40·3	305 x 165 x 40
12·5	2·74	616	73·6	711	116	0·873	23·3	0·102	31·8	61·2	48·1	305 x 127 x 48
12·4	2·70	534	62·6	614	98·4	0·872	26·5	0·0846	21·1	53·4	41·9	305 x 127 x 42
12·3	2·67	471	54·5	539	85·4	0·872	2 9 ·7	0·0725	14·8	47·2	37·0	305 x 127 x 37
12·5	2·15	416	37·9	481	60-0	0-866	31·6	0·0442	12·2	41-8	32·8	305 x 102 x 33
12·2	2·08	348	30·5	403	48-5	0-859	37·4	0·0349	7·40	35-9	28·2	305 x 102 x 28
11·9	1·97	292	24·2	342	38-8	0-846	43·4	0·0273	4·77	31-6	24·8	305 x 102 x 25
10·9	3·52	504	92·0	566	141	0-891	21·2	0·103	23·9	54·8	43∙0	254 x 146 x 43
10·8	3·48	433	78·0	483	119	0-890	24·3	0·0857	15·3	47·2	37∙0	254 x 146 x 37
10·5	3·36	351	61·3	393	94·1	0-880	29·6	0·0660	8·55	39·7	31∙1	254 x 146 x 31
10·5	2·22	308	34∙9	353	54∙8	0-874	27·5	0·0280	9·57	36·1	28·3	254 x 102 x 28
10·3	2·15	266	29∙2	306	46∙0	0-866	31·5	0·0230	6·42	32·0	25·2	254 x 102 x 25
10·1	2·06	224	23∙5	259	37∙3	0-856	36·4	0·0182	4·15	28·0	22·0	254 x 102 x 22
8·71	3·17	280	57·5	314	88·2	0·881	21·5	0·0374	10·3	38·2	30-0	203 x 133 x 30
8·56	3·10	230	46·2	258	70·9	0·877	25·6	0·0294	5·96	32·0	25∙1	203 x 133 x 25
8·46	2.36	207	32.2	234	4 9·8	0.888	22.5	0.0154	7∙02	29.4	23-1	203 x 102 x 23
7.48	2.37	153	27.0	171	41·6	0.888	22.6	0.00987	4.41	24.3	19.0	178 x 102 x 19
6.41	2.10	109	20-2	123	31.2	0.890	19-6	0.00470	3.56	20-3	16.0	152 x 89 x 16
5·35	1.84	74·6	14.7	84·2	22.6	0.895	16·3	0.00199	2.85	16·5	13.0	127 x 76 x 13


UNIVERSAL BEAMS To BS 4: Part 1: 1993

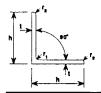
Devianation	Mana and	Depth	Width of.	Thickness	Thickness	Root	Depth between	Ratio Local B		Second I of A	
Designation	Mass per metre	of Section D	Section B	Web t	Flange T	Radius	fillets d	Flange b/T	Web d/t	Axis x-x	Axis y-y
	kg/m	mm	mm	mm	mm	mm	mm			cm⁴	cm4
457 x 152 x 82 457 x 152 x 74 457 x 152 x 67 457 x 152 x 67 457 x 152 x 60 457 x 152 x 52	82·1 74·2 67·2 59·8 52·3	465·8 462·0 458·0 454·6 449·8	155·3 154·4 153·8 152·9 152·4	10·5 9·6 9·0 8·1 7·6	18·9 17·0 15·0 13·3 10·9	10·2 10·2 10·2 10·2 10·2 10·2	407-6 407-6 407-6 407-6 407-6	4·11 4·54 5·13 5·75 6·99	38·8 42·5 45·3 50·3 53·6	36590 32670 28930 25500 21370	1185 1047 913 795 645
406 x 178 x 74 406 x 178 x 67 406 x 178 x 60 406 x 178 x 54	74·2 67·1 60·1 54·1	412·8 409·4 406·4 402·6	179·5 178·8 177·9 177·7	9·5 8·8 7·9 7·7	16·0 14·3 12·8 10·9	10·2 10·2 10·2 10·2	360·4 360·4 360·4 360·4	5·61 6·25 6·95 8·15	37·9 41·0 45·6 46·8	27310 24330 21600 18720	1545 1365 1203 1021
406 x 140 x 46 406 x 140 x 39	46-0 39-0	403·2 398·0	142·2 141·8	6·8 6·4	11·2 8·6	10·2 10·2	360·4 360·4	6·35 8·24	53∙0 56∙3	15690 12510	538 410
356 x 171 x 67 356 x 171 x 57 356 x 171 x 51 356 x 171 x 45	67·1 57·0 51·0 45·0	363∙4 358∙0 355∙0 351∙4	173·2 172·2 171·5 171·1	9·1 8·1 7·4 7·0	15·7 13·0 11·5 9·7	10·2 10·2 10·2 10·2 10·2	311-6 311-6 311-6 311-6 311-6	5·52 6·62 7·46 8·82	34-2 38-5 42-1 44-5	19460 16040 14140 12070	1362 1108 968 811
356 x 127 x 39 356 x 127 x 33	39-1 33-1	353·4 349·0	126∙0 125∙4	6·6 6·0	10·7 8·5	10·2 10·2	311-6 311-6	5·89 7·38	47·2 51·9	10170 8249	358 280
305 x 165 x 54 305 x 165 x 46 305 x 165 x 40	54·0 46·1 40·3	310-4 306-6 303-4	166∙9 165∙7 165∙0	7·9 6·7 6·0	13·7 11·8 10·2	8·9 8·9 8·9	265·2 265·2 265·2	6∙09 7∙02 8∙09	33∙6 39∙6 44∙2	11700 9899 8503	1063 896 764
305 x 127 x 48 305 x 127 x 42 305 x 127 x 37	48·1 41·9 37·0	311-0 307-2 304-4	125·3 124·3 123·3	9-0 8-0 7-1	14·0 12·1 10·7	8·9 8·9 8·9	265·2 265·2 265·2	4·47 5·14 5·77	29·5 33·2 37·4	9575 8196 7171	461 389 336
305 x 102 x 33 305 x 102 x 28 305 x 102 x 25	32-8 28-2 24-8	312·7 308·7 305·1	102·4 101·8 101·6	6∙6 6∙0 5∙8	10·8 8·8 7·0	7·6 7·6 7·6	275-9 275-9 275-9	4·74 5·78 7·26	41·8 46·0 47·6	6501 5366 4455	194 155 123
254 x 146 x 43 254 x 146 x 37 254 x 146 x 31	43 0 37 0 31 1	259-6 256-0 251-4	147·3 146·4 146·1	7·2 6·3 6·0	12-7 10-9 8-6	7·6 7·6 7·6	219-0 219-0 219-0	5·80 6·72 8·49	30·4 34·8 36·5	6544 5537 4413	677 571 448
254 x 102 x 28 254 x 102 x 25 254 x 102 x 25 254 x 102 x 22	28·3 25·2 22·0	260·4 257·2 254·0	102-2 101-9 101-6	6·3 6·0 5·7	10-0 8-4 6-8	7·6 7·6 7·6	225·2 225·2 225·2	5·11 6·07 7·47	35·7 37·5 39·5	4005 3415 2841	179 149 119
203 x 133 x 30 203 x 133 x 25	30·0 25·1	206·8 203·2	133-9 133-2	6·4 5·7	9·6 7·8	7·6 7·6	172·4 172·4	6·97 8·54	26-9 30-2	2896 2340	385 308
203 x 102 x 23	23-1	203-2	101-8	5.4	9.3	7·6	169-4	5.47	31.4	2105	164
178 x 102 x 19	19-0	177.8	101.2	4·8	7.9	7.6	146-8	6-41	30.6	1356	137
152 x 89 x 16	16.0	152.4	88·7	4.5	7.7	7.6	121.8	5.76	27.1	834	89·8
127 x 76 x 13	13.0	127.0	76-0	4.0	7.6	7.6	96-6	5.00	24.1	473	55·7



UNEQUAL ANGLES

EC3 CLASSIFICATION

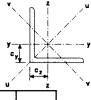
Designa	tion		Fe 4	30 (S 2	75)			Fe 5	10 (S 3	Toe Toe Toe Toe in in in 1 3 - 2 3 - 1 3 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 3 4 - 1 3 -			
Serial Size	Thick- ness	Axial Load only		Bendin	g only		Axial Load only		Bendin	g only			
mm	mm		YY Toe in tens	YY Toe in comp	zz Toe in tens	zz Toe in comp		yy Toe in tens	Toe	Toe in	zz Toe in comp		
40x25	4,0	2	1	1	2	1	3	1		1			
60x30	5,0 6,0	- 3 2	1 1	1	3 2	1	3 3	1 1			1 1		
65x50	5,0 6,0 8,0	4 3 1	2 1 1	3 1 1	3 3 1	1 1 1	4 4 1	3 2 1	3	3	3 1 1		
75x50	6,0 8,0	3 2	1 1	2 1	3 2	1	4 3	2 1			1 1		
80x60	6,0 7,0 8,0	4 3 2	2 1 1	3 2 1	3 3 2	1 1 1	4 4 3	3 2 1	3	3	3 1 1		
100x65	7,0 8,0 10,0	4 3 2	2 1 1	3 2 1	4 3 2	1 1 1	4 4 3	3 1 1	3	4	2 1 1		
100x75	8,0 10,0 12,0	4 2 1	2 1 1	3 1 1	3 2 1	1 1 1	4 3 2	3 1 1	2	3	2 1 1		
125x75	6,5 8,0 10,0 12,0	4 4 3 3	3 2 1 1	4 3 2 1	4 4 3 3	3 1 1 1	4 4 4 3	3 3 1 1	43	4	3 2 1 1		
137x102	6,4 7,9 9,5	4 4 4	4 3 3	4 3 3	4 4 4	3 3 2	4 4 4	4 4 3	4 4 3	4 4 4	4 3 3		
150x75	10,0 12,0 15,0	4 3 2	1 1 1	3 1 1	4 3 2	1 1 1	4 4 3	1 1 1	3 3 1	4 4 3	1 1 1		
150x90	10,0 12,0 15,0	4 3 2	1 1 1	3 2 1	4 3 2	1 1 1	4 4 3	3 1 1	3 3 1	4 4 3	2 1 1		
200x100	10,0 12,0 15,0	4	2 1 1	4 3 2	4 4 3	2 1 1	4 4 4	3 2 1	4 4 3	4 4 4	3 1 1		
200x150	12,0 15,0 18,0		3 2 1	3 3 2	4 3 3	3 1 1	4 4 4	4 3 2	4 3 3	4 4 3	3 3 1		



y _____ y

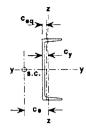
STRUCTURAL TEES CUT FROM UNIVERSAL BEAMS

DIMENSIONS AND EC3 CLASSIFICATION


Designa	tion	Width of	Depth of	Thic	kness	Root Radius	Centre of			s for uckling			EC3	Clas	ssificati	on		
Serial Size	Mass per Metre	Section	Section	Web	Flange		gravity	Area			5	e 430 ((\$ 275)		F	e 510 (S 355)	
	WIGUTO								Flange	Web	Axial Load	Ben	ding onl	Y	Axial Load	Ben	ding onl	Y
		b	h	t _w	t _f	r	с _у	Av	c/t _f	h/t _w	only	, i	YY Flange	22	only		yy Flange	22
mm	kg	mm	mm	mm	mm	mm	cm	cm ²				in comp	in tens			in comp	in tens	
76x64	7	76,2	63,5	4,2	7,6	7,6	1,3	3,33	5,01	15,1	4	1	3	1	4	1	4	1
89x76	8	88,9	76,2	4,6	7,7	7,6	1,6	4,16	5,77	16,6	4	1	3	1	4	1	4	1
102x89	10	101,6	88,9	4,7	7,9	7,6	1,8	4,84	6,43	18,9	4	1	4	1	4	1	4	1
102x102	12	101,6	101,6	5,2	9,3	7,6	2,2	6,00	5,46	19,5	4	1	4	1	4	1	4	1
133x102	13 15	133,4 133,8	101,6 103,4	5,8 6,3	7,8 9,6	7,6 7,6	2,1 2,1	6,51 7,19	8,55 6,97	17,5 16,4	4 4	1	4 3	1	4	2 1	4	2 1
102x127	11 13 14	101,6 101,9 102,1	127,0 128,5 130,2	5,8 6,1 6,4	6,8 8,4 10,0	7,6 7,6 7,6	3,5 3,3 3,3	7,93 8,47 9,02	7,47 6,07 5,11	21,9 21,1 20,3	4 4 4	1 1 1	4 4 4	1 1 1	4 4 4	1 1 1	4 4 4	1 1 1
146x127	16 19 22	146,1 146,4 147,3	125,7 128,0 129,8	6,1 6,4 7,3	8,6 10,9 12,7	7,6 7,6 7,6	2,7 2,6 2,7	8,31 8,92 10,2	8,49 6,72 5,80	20,6 20,0 17,8	4 4 4	1 1 1	4 4 4	1 1 1	4 4 4	2 1 1	4 4 4	2 1 1
102x153	13 14 17	101,6 101,9 102,4	152,4 154,4 156,3	5,8 6,1 6,6	6,8 8,9 10,8	7,6 7,6 7,6	4,5 4,2 4,1	9,41 10,1 11,0	7,47 5,72 4,74	26,3 25,3 23,7	4 4 4	1 1 1	4 4 4	1 1 1	4 4 4	1 1 1	4 4 4	1 1 1
127x152	19 21 24	123,5 124,3 125,2	151,9 153,3 155,2	7,2 8,0 8,9	10,7 12,1 14,0	8,9 8,9 8,9	3,8 3,9 3,9	11,8 13,2 14,8	5,77 5,14 4,47	21,1 19,2 17,4	4 4 4	1 1 1	4 4 4	1 1 1	444	1 1 1	4 4 4	1 1 1
165x152	20 23 27	165,1 165,7 166,8	151,9 153,5 155,4	6,1 6,7 7,7	10,2 11,8 13,7	8,9 8,9 8,9	3,1 3,1 3,2	10,2 11,3 13,0	8,09 7,02 6,09	24,9 22,9 20,2	4 4 4	1 1 1	4 4 4	1 1 1	4 4 4	1 1 1	4 4 4	1 1 1
127x178	17 20	125,4 126,0	174,2 176,4	5,9 6,5	8,5 10,7	10,2 10,2	4,5 4,4	11,3 12,7	7,38 5,89	29,5 27,1	4 4	1 1	4 4	1 1	4	1	4 4	1 1
171x178	23 26 29 34	171,0 171,5 172,1 173,2	176,0 177,8 179,3 182,0	6,9 7,3 8,0 9,1	9,7 11,5 13,0 15,7	10,2 10,2 10,2 10,2	4,0 3,9 4,0 4,0	13,2 14,2 15,6 17,9	8,81 7,46 6,62 5,52	25,5 24,4 22,4 20,0	4 4 4 4	1 1 1 1	4 4 4 4	1 1 1 1	4 4 4 4	2 1 1 1	4 4 4 4	2 1 1 1
140x203	20 23	141,8 142,4	198,6 201,2	6,3 6,9	8,6 11,2	10,2 10,2	5,3 5,0	13,6 15,1	8,24 6,36	31,5 29,2	4 4	1 1	4	1	4	2 1	4	2 1
178x203	27 30 34 37	177,6 177,8 178,8 179,7	201,3 203,2 204,7 206,4	7,6 7,8 8,8 9,7	10,9 12,8 14,3 16,0	10,2 10,2 10,2 10,2	4,8 4,6 4,7 4,8	16,4 17,1 19,3 21,3	8,15 6,95 6,25 5,62	26,5 26,1 23,3 21,3	4 4 4	1 1 1 1	4 4 4 4	1 1 1 1	4 4 4 4	2 1 1 1	4 4 4 4	2 1 1 1

EQUAL ANGLES

DIMENSIONS AND PROPERTIES

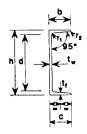

-

Desiç	gnation	Mass per	Rad	us	Area of	Distance of Centre of	Second	Moment	of Area	Radi	ius of Gyr	etion	Elastic Modulus
Size	Thickness	M e tre	Root	Тое	Section	Gravity	Axis γ-γ, z-z	Axis u-u	Axis v-v	Axis y-y , z-z	Axis u-u	Axis v-v	Axis y-y , z-z
h × h mm	t mm	kg	r ₁ mm	r ₂ mm	A cm ²	c _y and c _z	I _γ ,I _z cm ⁴	I _u cm ⁴	I _v cm⁴	i _y ,i _z cm	i _u cm	i _v cm	W _{el} cm ³
25x25	3	1,11	3,5	2,4	1,41	0,718	0,784	1,24	0,325	0,745	0,939	0,480	0,440
	4	1,45	3,5	2,4	1,84	0,758	1,00	1,58	0,421	0,737	0,926	0,478	0,574
	5	1,77	3,5	2,4	2,25	0,796	1,19	1,87	0,515	0,728	0,912	0,478	0,701
30x30	3	1,36	5,0	2,4	1,74	0,836	1,41	2,23	0,588	0,900	1,13	0,581	0,652
	4	1,78	5,0	2,4	2,27	0,879	1,81	2,86	0,756	0,893	1,12	0,577	0,852
	5	2,18	5,0	2,4	2,78	0,919	2,17	3,42	0,919	0,883	1,11	0,575	1,04
40x40	3	1,84	6,0	2,4	2,36	1,08	3,51	5,55	1,47	1,22	1,53	0,788	1,20
	4	2,42	6,0	2,4	3,09	1,12	4,53	7,18	1,89	1,21	1,52	0,781	1,58
	5	2,97	6,0	2,4	3,80	1,17	5,48	8,68	2,29	1,20	1,51	0,776	1,93
	6	3,52	6,0	2,4	4,49	1,20	6,37	10,1	2,68	1,19	1,50	0,773	2,28
45x45	3	2,09	7,0	2,4	2,69	1,20	5,08	8,03	2,14	1,37	1,73	0,892	1,54
	4	2,74	7,0	2,4	3,52	1,24	6,58	10,4	2,75	1,37	1,72	0,883	2,02
	5	3,38	7,0	2,4	4,33	1,29	7,99	12,6	3,33	1,36	1,71	0,877	2,49
	6	4,00	7,0	2,4	5,12	1,33	9,30	14,7	3,90	1,35	1,69	0,872	2,93
50x50	3	2,33	7,0	2,4	2,99	1,32	7,06	11,1	2,97	1,54	1,93	0,996	1,92
	4	3,06	7,0	2,4	3,92	1,37	9,16	14,5	3,82	1,53	1,92	0,987	2,52
	5	3,77	7,0	2,4	4,83	1,41	11,1	17,7	4,63	1,52	1,91	0,979	3,11
	6	4,47	7,0	2,4	5,72	1,45	13,0	20,6	5,43	1,51	1,90	0,974	3,67
	8	5,82	7,0	2,4	7,44	1,53	16,5	25,9	6,96	1,49	1,87	0,968	4,74
60x60	5	4,57	8,0	2,4	5,86	1,65	19,8	31,4	8,23	1,84	2,31	1,18	4,56
	6	5,42	8,0	2,4	6,95	1,70	23,2	36,8	9,64	1,83	2,30	1,18	5,39
	8	7,09	8,0	2,4	9,07	1,78	29,6	46,7	12,4	1,80	2,27	1,17	7,00
	10	8,69	8,0	2,4	11,1	1,85	35,3	55,6	15,0	1,78	2,24	1,16	8,51
70x70	6	6,38	9,0	2,4	8,19	1,94	37,7	59,8	15,6	2,15	2,70	1,38	7,45
	8	8,36	9,0	2,4	10,7	2,02	48,3	76,5	20,1	2,12	2,67	1,37	9,70
	10	10,3	9,0	2,4	13,1	2,10	58,0	91,6	24,4	2,10	2,64	1,36	11,8
80x80	6	7,34	10,0	4,8	9,36	2,17	56,0	88,7	23,2	2,45	3,08	1,57	9,60
	8	9,63	10,0	4,8	12,3	2,26	72,4	115	29,9	2,43	3,06	1,56	12,6
	10	11,9	10,0	4,8	15,1	2,34	87,6	139	36,4	2,41	3,03	1,55	15,5

Design	ation	Fe	430 (S	275)	Fe	510 (S	355)	Design	ation	Fe	430 (S	275)	Fe	510 (S :	355)
Serial Size	Thick- ness	Axial Load only	Bendir	ng only	Axial Load only	Bendir	ng only	Serial Size	Thick- ness	Axial Load only	Bendir	ng only	Axial Load only	Bendir	ng only
mm	mm		γγ/zz Toe in tens	yy/zz Toe in comp		yy/zz Toe in tens	yy/zz Toe in comp	mm	mm		γγ/zz Toe in tens	yy/zz Toe in comp		yy/zz Toe in tens	yy/zz Toe in comp
25×25	3 4 5	1 1 1	1 1 1	1 1 1	2 1 1	2 1 1	1 1 1	50x50	3 4 5	4 4 2	4 3 2	3 3 1	444	4 4 3	4 3 3
30x30	3 4 5	2 1	2 1 1	1	4	3 1 1	3 1	60x60	6 8 5	1	1	1	2 1 4	2	1
40x40	3 4 5	4 2 1	3 2 1	3 1 1	4 4 1	4 3 1	3 3 1		6 8 10	2 1 1	3 2 1 1	1 1 1	4 1 1	3 1 1	3 3 1 1
45x45	6 3	1	1	1 3	1	1	1 3 3	70x70	6 8 10	4 1 1	3 1 1	3 1 1	4 2 1	3 2 1	3 1 1
	4 5 6	4 1 1	3 1 1	3 1 1	4 3 1	4 3 1	3 1 1	80×80	6 8 10	4 2 1	3 2 1	3 1 1	4 4 1	4 3 1	3 3 1

EC3 CLASSIFICATION

CHANNELS

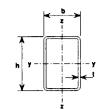

PROPERTIES

Design: Serial	ation	Second of A	Moment Area	Rac of Gy			Later torsio Buckli Constar	nal ing	Ela: Mod		Pla Mod	stic ulus	Warping Constant	Torsion Constant	Area of Section
Serial Size	per	Axis	Axis	Axis	Axis		Junatai	113	Axis	Axis	Axis	Axis			
	Metre	<u>ү</u> -у	2-Z	γ-γ ∶	2-2 :				y -y	2-2	<u>у-у</u>	Z-Z		Ţ	
		Iγ cm ⁴	I _z cm ⁴	γ	iz	¹ LT	a _{LT}	a _{LT} /i _{LT}	W _{el.y}	W _{el.z}	W _{p1.y}	W _{p1.z} cm ³	I _w dm ⁶	I _t cm ⁴	A cm ²
mm	kg	cm '	cm'	cm	cm	cm	cm		cm ³	cm ³	cm°	cm°	dm*	cm ·	cm*
76x38	6,70	74,3	10,7	2,95	1,12	1,18	8,95	7,6	19,5	4,09	23,5	7,78	0,000101	1,26	8,56
102x51	10,42	207	29,0	3,95	1,48	1,58	14,1	8,9	40,8	8,14	48,7	15,7	0,000512	2,58	13,3
127x64	14,90	482	67,2	5,04	1,88	1,99	19,4	9,7	76,0	15,2	89,4	29,3	0,00188	5,00	19,0
152x76	17,88	852	114	6,11	2,23	2,39	28,4	11,9	112	21,0	130	41,2	0,00486	6,05	22,8
152×89	23,84	1168	216	6,20	2,66	2,78	26,3	9,5	153	35,8	178	68,3	0,00882	12,7	30,4
178x76	20,84	1338	134	7,10	2,25	2,40	30,4	12,7	151	24,8	176	48,1	0,00765	8,26	26,6
178x89	26,81	1753	241	7,17	2,66	2,80	29,6	10,6	197	39,3	230	75,4	0,0134	15,3	34,1
203x76	23,82	1955	152	8,02	2,24	2,40	32,6	13,6	192	27,7	226	53,5	0,0112	10,6	30,4
203×89	29,78	2492	265	8,11	2,64	2,80	32,6	11,6	245	42,4	287	81,7	0,0192	18,1	37,9
229x76	26,06	2615	159	8,87	2,19	2,39	36,1	15,1	229	28,3	271	54,5	0,0151	11,6	33,2
229x89	32,76	3383	285	9,01	2,61	2,80	35,7	12,8	296	44,8	348	86,3	0,0263	20,6	41,6
254x76	28,29	3355	162	9,67	2,12	2,37	39,7	16,8	264	28,1	316	53,9	0,0194	12,3	35,9
254x89	35,74	4445	302	9,89	2,58	2,80	38,7	13,8	350	46,7	414	89,6	0,0347	23,2	45,4
305x89	41,69	7078	326	11,5	2,47	2,76	44,3	16,1	464	48,6	559	92,9	0,0552	28,1	53,3
305x102	46,18	8208	499	11,8	2,91	3,19	48,4	15,2	539	66,5	638	128	0,0842	35,9	58,9
381x102	55,10	14870	579	14,6	2,87	3,18	57,5	18,1	781	75,7	931	144	0,153	46,4	70,1
432x102	65,54	21370	627	16,0	2,74	3,11	59,3	19,1	990	79,9	1205	153	0,216	61,5	83,4

 11 The lateral-torsional buckling constants $i_{\rm LT}$ and $a_{\rm LT}$ are for use with Annex F of EC3:Part 1

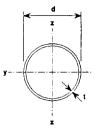
SHEAR CENTRE, CENTROIDAL AND EQUAL AREA AXIS

Desig	nation	Distar tobac chan	k of	Distance from the Centroidal Axis	Desigr	ation	Distai tobao char	ck of	Distance from the Centroidal Axis	Design	ation	Dista to ba chai	ck of	Distance from the Centroida Axis
Serial Size	Mass per Metre	From centre of gravity	From equal area axis	to the Shear Centre	Serial Size	Mass per Metre	From centre of gravity	From equal area axis	to the Shear Centr e	Serial Size	Mass per Metre	From centre of gravity	From equal area axis	to the Shear Centre
mm	kg	cm	cm	cm	mm	kg	cm	cm	cm	mm	kg	cm	cm	cm
76x38	6,70	1,19	0,67	2.37	178x89	26,81	2,76	1,70	5,93	254x89	35,74	2.42	0,89	5.16
102x51	10,42	1,51	0.76	3,10	203x76	23,82	2,14	0,89	4,62	305x89	41.69	2.18	0,87	4,60
127x64	14,90	1,94	1,09	4,80	203x89	29,78	2,65	1,40	5,68	305x102	46.18	2,65	0,97	5,73
152x76	17,88	2.21	1,15	4,85	229x76	26,06	2.00	0,73	4,32	381x102	55,10	2,52	0,92	5,44
152x89	23,84	2,87	1,99	6,16	229x89	32,76	2,53	1,10	5,42	432x102	65,54	2,31	0,97	4,83
178x76	20.84	2,20	1,09	4,80	254x76	28.29	1.85	0,71	4.00					


CHANNELS

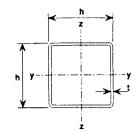
DIMENSIONS AND EC3 CLASSIFICATION

Design	ation	Depth of	Width of	Thick	เกอรร	Root Radius	Toe Radius	Depth between	Shear Area	Ratio Local B			EC	3 Clas	sificat	ion	
Serial Size	Mass per	Section	Section	Web	Flange			Fillets				Fe 43	30 (S	275)	Fe 5	10 (S	355)
	Metre									Flange	Web	Axial Load only		ding nly	Axiai Load only		ding nly
mm	kg	h mm	b mm	t _w mm	t _f mm	r ₁ mm	r ₂ mm	d mm	A _v cm²	c/t _f	d/t _w	,	٧٧	zz ¹⁾		Y Y	zz ¹⁾
76x38	6,70*	76,2	38,1	5,1	7,0	7,6	2,4	45,8	3,86	5,44	8,98	1	1	1	1	1	1
102x51	10,42*	101,6	50,8	6,1	7,9	9,1	2,4	65,8	6,12	6,43	10,8	1	1	1	1	1	1
127x64	14,90	127,0	63,5	6,4	9,5	10,7	2,4	84,0	8,17	6,68	13,1	1	1	1	1	1	1
152x76	17,88	152,4	76,2	6,4	9,3	12,2	2,4	105,9	9,92	8,19	16,5	1	1	1	2	2	1
152x89	23,84	152,4	88,9	7,1	11,9	13,7	3,2	96,9	11,1	7,47	13,6	1	1	1	1	1	1
178x76	20,84	177,8	76,2	6,6	10,6	12,2	3,2	128,8	11,9	7,19	19,5	1	1	1	1	1	1
178x89	26,81	177,8	88,9	7,6	12,6	13,7	3,2	121,0	13,7	7,06	15,9	1	1	1	1	1	1
203x76	23,82	203,2	76,2	7,1	11,5	12,2	3,2	152,4	14,5	6,63	21,5	1	1	1	1	1	1
203×89	29,78	203,2	88,9	8,1	13,3	13,7	3,2	145,2	16,6	6,68	17, 9	1	1	1	1	1	1
229x76	26,06	228,6	76,2	7,6	11,5	12,2	3,2	177,8	17,4	6,63	23,4	1	1	1	1	1	1
229x89	32,76	228,6	88,9	8,6	13,7	13,7	3,2	169,9	19,6	6,49	19,8	1	1	1	1	1	1
254x76	28,29	254,0	76,2	8,1	11,3	12,2	3.2	203,9	20,4	6,74	25,2	1	1	1	1	1	1
254x89	35,74	254,0	88,9	9,1	14,0	13,7	3,2	194,7	23,0	6,35	21,4	1	1	1	1	1	1
305x89	41,69	304,8	88,9	10,2	14,1	13,7	3,2	245,4	30,6	6,30	24,1	1	1	1	1	1	1
305x102	46,18	304,8	101,6	10,2	15,2	15,2	4,8	239,3	30,8	6,68	23,5	1	1	1	1	1	1
381x102	55,10	381,0	101,6	10,4	16,8	15,2	4,8	312,6	39,4	6,05	30,1	1	1	1	2	1	1
432x102	65,54	431,8	101,6	12,2	17,3	15,2	4,8	362,5	51,8	5,87	29,7	1	1	1	2	1	1


Check availability of section
 EC3 classification for minor axis (z-z) bending of a channel generally depends on whether the toe of the flange is in tension or compression.
 However for all the sections tabulated the classification is 1 in both cases.

RECTANGULAR HOLLOW SECTIONS

DIMENSIONS, PROPERTIES AND EC3 CLASSIFICATION


Designa	ation	Mass per	Area of	Second I of A			dius Tation		stic Iulus		stic Iulus	Torsi Const			EC3	Clas	sifica	tion	
Size	Thick- ness		Section			01 Gy						Const	ants		430 275		,	9 51 35	
				Axis V-V	Axis z-z	Axis V-V	Axis z-z	Axis Y-Y	Axis z-z	Axis Y-Y	Axis z-z		1	Axial Load		ding 1ly	Load		nding nly
h×b	t		A	Ι _γ	I _z	iγ	i _z	W _{el.y}	W _{e1.z}	W _{pl.y}	W _{pl.z}	It	C,	only	yy	zz	only	yy	zz
mm	mm	kg	cm ²	cm ⁴	cm⁴	cm	cm	cm ³	cm ³	cm ³	cm ³	cm ⁴	cm ³						
150x100	5,0	18,7	23,9	747	396	5,59	4,07	99,5	79,1	121	90,8	806	127	1	1	1	2	1	2
	6.3	23,3	29,7	910	479	5,53	4.02	121	95,9	148	111	985	153		1	1		1	
	8,0	29,1 35,7	37,1 45,5	1106 1312	577 678	5,46 5,37	3,94 3,86	147 175	115 136	183 220	137 164	1202 1431	184 215	1	1	1	1	1	
	12,5	43,6	55,5	1532	781	5,25	3,75	204	156	263	194	1680	246	1	1	i	1	1	1
160x80	5,0	18,0	22,9	753	251	5,74	3,31	94,1	62,8	117	71,7	599	106	1	1	1	2	1	2
	6,3	22,3	28,5	917	302	5.68	3,26	115	75,6	144	87,7	729	127	1	1	1	1	1	1
	8,0	27,9	35,5	1113	361	5,60	3,19	139	90,2	177	107	882	151	1	1	1	1	1	1
	10,0	34,2	43,5	1318	419	5,50	3,10	165	105	213	127	1041	175	1	1	1	1	1	1
	12,5	41,6	53,0	1536	476	5,38	3,00	192	119	254	150	1206	199	1	1	1	1	1	1
200x100	5,0	22,7	28,9	1509	509	7,23	4,20	151	102	186	115	1202	172	3	1	3	4	1	4
	6,3 8,0	28,3 35,4	36,0 45,1	1851 2269	618 747	7,17	4,14	185 227	124 149	231 286	141 174	1473 1802	208 251	1	1	1	2	1 1	2
	10,0	43,6	55,5	2718	881	7,00	3,98	272	176	346	209	2154	296	1		1	1		
	12.5	53,4	68,0	3218	1022	6,88	3,88	322	204	417	249	2541	342	1	i	i	1	1	i
	16,0	66,4	84,5	3808	1175	6,71	3,73	381	235	505	297	2988	393	1	1	1	1	1	1
200x120	5,0	24,2	30,9	1699	767	7,42	4,98	170	128	206	144	1646	210	3	1	3	4	1	4
	6,0	28,9	36,8	2000	899	7,37	4,94	200	150	244	171	1940	245	1	1	1	2	1	2
	6,3	30,3	38,5	2087	937	7,36	4,93	209	156	255	178	2025	256	1	1	1	2	1	2
	8,0	37,9	48,3	2564	1140	7.28	4,86	256	190	316	220	2491	310	1	1			1	1
	10,0 12,5	46,7 57,3	59,5 73,0	3079 3658	1356 1589	7,19 7,08	4,77 4,67	308 366	226 265	384 464	266 319	2997 3567	367 429	1	1	1	1 1	1	1
250x150	5,0	30,5	38,9	3382	1535	9,33	6,28	271	205	326	229	3275	337	4	1	4	4	2	4
2002100	6,3	38,2	48,6	4178	1886	9,27	6,23	334	252	405	284	4049	413	3	1	3	4	1	4
	8,0	48,0	61,1	5167	2317	9,19	6,16	413	309	505	353	5014	506	1	1	1	2	1	2
	10,0	59,3	75,5	6259	2784	9,10	6,07	501	371	618	430	6082	606	1	1	1	1	1	1
	12,5	73,0	93,0	7518	3310	8,99	5,97	601	441	751	520	7317	717	1	1	1	1	1	1
	16,0	91,5	117	9089	3943	8,83	5,82	727	526	924	635	8863	851	1	1	1	1	1	1
300x200	6,3	48,1	61,2	7880	4216	11,3	8,30	525	422	627	475	8468	681	4	1	4	4	2	4
	8,0	60,5	77,1	9798	5219	11,3	8,23	653	522	785	593	10550	840	2	1	2	4	1	4
	10,0	75,0 92,6	95,5 118	11940 14460	6331 7619	11,2	8,14	796 964	633 762	964 1179	726 886	12890 15650	1016	1	1	1	2	1	2
	16,0	117	149	17700	9239	10,9	7,89	1180	924	1462	1094	19230	1469	1	1	1	i	1	1
400x200	8,0	73,1	93,1	19710	6695	14,5	8,48	985	669	1210	746	15720	1135	4	1	4	4	1	4
	10,0	90,7	116	24140	8138	14,5	8,39	1207	814	1492	916	19240	1377	3	1	3	4	1	4
	12,5	112	143	29410	9820	14,3	8,29	1471	982	1831	1120	23410	1657	1	1	1	2	1	2
	16,0	142	181	36300	11950	14,2	8,14	1815	1195	2285	1388	28840	2011	1	1	1	1	1	1
450x250	8,0	85,7	109	30270	12200			1345	976	1630	1086	27060		4	1	4	4	2	4
	10,0	106	136	37180	14900			1653	1192	2013	1338	33250		4	1	4	4	1	4
	12,5	132 167	168 213	45470 56420	18100 22250			2021 2508	1448 1780	2478 3103	1642 2047	40670 50480		2	1	2	3 1	1	3
500x200	8,0	85,7	109	34270	8170	17,7		1371	817	1716	900	21100		4	1	4	4	2	4
2008200	10,0	106	136	42110		17,6		1684	994	2119	1106	25840		4	1	4	4	1	4
	12,5	132	168	51510	12020			2060	1202	2609	1354	31480		3		3	4	1	4
	16,0	167	213	63930	14670			2557	1467	3267	1683	38830		1	1	1	2	1	2
500x300	10,0	122	156	54120	24560	18,7	12,6	2165	1638	2609	1834	52400		4	1	4	4	2	4
	12,5	152	193	66360	29970			2655	1998	3218	2257	64310		3	1	3	4	1	4
	16,0	192	245	82670				3307	2472	4042	2825	80220			1		2	1	2
	20,0	237	302	100100	44550	18,2	12,1	4006	2970	4942	3442	97310	4845	1	1	1	1	1	1

CIRCULAR HOLLOW SECTIONS

DIMENSIONS, PROPERTIES AND EC3 CLASSIFICATION

Desig	nation	Mass per Metre	Area of Section	Second Moment of	Radius of Gyration	Elastic Modulus	Plastic Modulus	Tors Cons		Ratio for Local		sification
Outside Diameter	Thickness	INIGUIO	380000	Area						Buckling	axial	load bending
d	t		A	I	i	W _{e1}	w _p	I,	C,	d/t	Fe 430	Fe 510
mm	mm	kg	cm ²	cm ⁴	cm	cm ³	cm ³	cm ⁴	cm ³		(S 275)	(S 355)
244,5	6,3	37,0	47,1	3346	8,42	274	358	6692	548	38,8	1	2
	8,0	46,7	59,4	4160	8,37	340	448	8320	680	30,6	1	1
	10,0	57,8	73,7	5073	8,30	415	550	10150	830	24,5	1	1
	12,5	71,5	91,1	6147	8,21	503	673	12290	1006	19,6	1	1
	16,0	90,2	115	7533	8,10	616	837	15070	1232	15,3	1	1
	20,0	111	141	8957	7,97	733	1011	17910	1466	12,2	1	1
	25,0	135	172	10520	7,81	860	1210	21040	1720	9,78	1	1
273,0	6,3	41,4	52,8	4696	9,43	344	448	9392	688	43,3	2	2
	8,0	52,3	66,6	5852	9,37	429	562	11700	858	34,1	1	2
	10,0	64,9	82,6	7154	9,31	524	692	14310	1048	27,3	1	1
	12,5	80,3	102	8697	9,22	637	849	17390	1274	21,8	1	1
	16,0	101	129	10710	9,10	784	1058	21420	1568	17,1	1	1
	20,0	125	159	12800	8,97	938	1283	25600	1876	13,6	1	1
	25,0	153	195	15130	8,81	1108	1543	30260	2216	10,9	1	1
323,9	6,3	49,3	62,9	7929	11,2	490	636	15860	980	51,4	2	3
	8,0	62,3	79,4	9910	11,2	612	799	19820	1224	40,5	1	2
	10,0	77,4	98,6	12160	11,1	751	986	24320	1502	32,4	1	1
	12,5	96,0	122	14850	11,0	917	1213	29700	1834	25,9	1	1
	16,0	121	155	18390	10,9	1136	1518	36780	2272	20,2	1	1
	20,0	150	191	22140	10,8	1367	1850	44280	2734	16,2	1	1
	25,0	184	235	26400	10,6	1630	2239	52800	- 3260	13,0	1	1
355,6	8,0	68,6	87,4	13200	12,3	742	967	26400	1484	44,5	2	2
	10,0	85,2	109	16220	12,2	912	1195	32440	1824	35,6	1	2
	12,5	106	135	19850	12,1	1117	1472	39700	2234	28,4	1	1
	16,0	134	171	24660	12,0	1387	1847	49320	2774	22,2	1	1
	20,0	166	211	29790	11,9	1676	2255	59580	3352	17,8	1	1
	25,0	204	260	35680	11,7	2007	2738	71360	4014	14,2	1	1
406,4	10,0	97,8	125	24480	14,0	1205	1572	48960	2410	40,6	1	2
	12,5	121	155	30030	13,9	1478	1940	60060	2956	32,5	1	1
	16,0	154	196	37450	13,8	1843	2440	74900	3686	25,4	1	1
	20,0	191	243	45430	13,7	2236	2989	90860	4472	20,3	1	1
	25,0	235	300	54700	13,5	2692	3642	109400	5384	16,3	1	1
	32,0	295	376	66430	13,3	3269	4497	132900	6538	12.7	1	1
457,0	10,0	110	140	35090	15,8	1536	1998	70180	3072	45,7	2	2
	12,5	137	175	43140	15,7	1888	2470	86280	3776	36,6	1	2
	16,0	174	222	53960	15,6	2361	3113	107900	4722	28,6	1	1
	20,0	216	275	65680	15,5	2874	3822	131400	5748	22.9	1	1
	25,0	266	339	79420	15,3	3475	4671	158800	6950	18,3	1	1
	32,0	335	427	97010	15,1	4246	5791	194000	8492	14,3	1	1
	40,0	411	524	114900	14,8	5031	6977	229800	10060	11,4	1	1
508,0	10,0	123	156	48520	17,6	1910	2480	97040	3820	50,8	2	3
	12,5	153	195	59760	17,5	2353	3070	119500	4706	40,6	1	2
	16,0	194	247	74910	17,4	2949	3874	149800	5898	31,7	1	1
	20,0	241	307	91430	17,3	3600	4766	182900	7200	25,4	1	1
	25,0	298	379	110900	17,1	4367	5837	221800	8734	20,3	1	1
	32,0	376	479	136100	16, 9	5360	7261	272200	10720	15,9	1	1
	40,0	462	588	162200	16,6	6385	8782	324400	12770	12,7	1	1
	50,0	565	719	190900	16,3	7515	10530	381800	15030	10,2	1	1

SQUARE HOLLOW SECTIONS

DIMENSIONS, PROPERTIES AND EC3 CLASSIFICATION

Desig	nation	Mass per	Area of	Second Moment	Radius of	Elastic Modulus	Plastic Modulus	Tors Cons		Ratio for		EC3 Clas	sificati	on
Size	Thickness	Metre	Section	of Area	Gyration					Local Buckling	Fe 430) (S 275)	Fe 51(D (S 355)
									:		Axial Load only	Bending only	Axial Load only	Bending only
h×h mm	t mm	kg	A cm ²	I cm ⁴	i cm	W _{el} cm ³	W _{p1} cm ³	I _t cm ⁴	C _t cm ³	d/t 1)		yy or zz		yy or zz
20x20	2,0 2,5	1,12 1,35	1,42 1,72	0,759 0,865	0,731 0,709	0,759 0,865	0,951 1,12	1,22 1,41	1,07 1,21	7,00 5,00	1 1	1	1	1 1
25 ×25	2,0 2,5 3,0 3,2	1,43 1,74 2,04 2,15	1,82 2,22 2,60 2,74	1,59 1,85 2,06 2,14	0,935 0,914 0,892 0,883	1,27 1,48 1,65 1,71	1,56 1,86 2,12 2,21	2,52 2,97 3,36 3,49	1,81 2,09 2,31 2,38	9,50 7,00 5,33 4,81	1 1 1	1 1 1	1 1 1 1	1 1 1
30x30	2,5 3,0 3,2	2,14 2,51 2,65	2,72 3,20 3,38	3,40 3,84 4,00	1,12 1,10 1,09	2,27 2,56 2,67	2,79 3,21 3,37	5,40 6,17 6,45	3,22 3,61 3,75	9,00 7,00 6,38	1 1 1	1 1 1	1 1 1	1 1 1
40x40	2,5 3,0 3,2 4,0 5,0	2,92 3,45 3,66 4,46 5,40	3,72 4,40 4,66 5,68 6,88	8,67 9,96 10,4 12,1 13,8	1,53 1,51 1,50 1,46 1,42	4,33 4,98 5,22 6,07 6,92	5,21 6,07 6,40 7,61 8,92	13,6 15,7 16,5 19,5 22,6	6,23 7,11 7,43 8,56 9,65	13,0 10,3 9,50 7,00 5,00	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1
50x50	2,5 3,0 3,2 4,0 5,0 6,3	3,71 4,39 4,66 5,72 6,97 8,49	4,72 5,60 5,94 7,28 8,88 10,8	17,7 20,5 21,6 25,5 29,6 33,9	1,94 1,91 1,91 1,87 1,83 1,77	7,07 8,20 8,62 10,2 11,9 13,6	8,38 9,83 10,4 12,5 14,9 17,5	27,4 32,0 33,8 40,4 47,6 55,3	10,2 11,8 12,4 14,5 16,7 18,9	17,0 13,7 12,6 9,50 7,00 4,94	1 1 1 1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1 1
60x60	3,0 3,2 4,0 5,0 6,3 8,0	5,34 5,67 6,97 8,54 10,5 12,8	6,80 7,22 8,88 10,9 13,3 16,3	36,6 38,7 46,1 54,4 63,4 72,4	2.32 2,31 2,28 2.24 2,18 2,11	12,2 12,9 15,4 18,1 21,1 24,1	14,5 15,3 18,6 22,3 26,6 31,4	56,9 60,1 72,4 86,3 102 119	17,7 18,6 22,1 25,8 29,7 33,5	17,0 15,7 12,0 9,00 6,52 4,50	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1
70x70	3,0 3,6 5,0 6,3 8,0	6,28 7,46 10,1 12,5 15,3	8,00 9,50 12,9 15,9 19,5	59,6 69,5 90,1 106 123	2,73 2,70 2,64 2,59 2,51	17,0 19,9 25,7 30,4 35,3	20,0 23,6 31,2 37,6 45,0	92,1 108 142 169 200	24,8 28,7 36,8 43,0 49,4	20,3 16,4 11,0 8,11 5,75	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1
80x80	3,0 3,6 5,0 6,3 8,0	7,22 8,59 11,7 14,4 17,8	9,20 10,9 14,9 18,4 22,7	90,6 106 139 165 194	3,14 3,11 3,05 3,00 2,92	22,7 26,5 34,7 41,3 48,6	26,5 31,3 41,7 50,5 60,9	139 164 217 261 312	33,1 38,5 49,8 58,8 68,5	23,7 19,2 13,0 9,70 7,00	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1 1
90x90	3,6 5,0 6,3 8,0	9,27 13,3 16,4 20,4	12,4 16,9 20,9 25,9	154 202 242 288	3,52 3,46 3,41 3,33	34,1 45,0 53,9 64,0	40,0 53,6 65,3 79,2	237 315 381 459	49,7 64,9 77,1 90,7	22,0 15,0 11,3 8,25	1 1 1	1 1 1 1	1 1 1	1 1 1
100×100	4,0 5,0 6,3 8,0 10,0	12,0 14,8 18,4 22,9 27,9	15,3 18,9 23,4 29,1 35,5	234 283 341 408 474	3,91 3,87 3,81 3,74 3,65	46,8 56,6 68,2 81,5 94,9	54,9 67,1 82,0 99,9 119	361 439 533 646 761	68,2 81,9 97,9 116 134	22,0 17,0 12,9 9,50 7,00	1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1

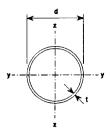
¹⁾ d = h-3t

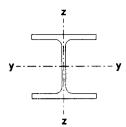
SQUARE HOLLOW SECTIONS

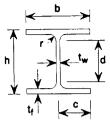
DIMENSIONS, PROPERTIES AND EC3 CLASSIFICATION

Desig	Ination	Mass	Area	Second	Radius	Elastic	Plastic		ional	Ratio		EC3 Clas	sificatio	on
Size	Thickness	per Metre	of Section	Moment of Area	of Gyration	Modulus	Modulus	Cons	tants	for Local Buckling	Fe 430	D (S 275)	Fe 51() (S 3 55
											Axial Load only	Bending only	Axial Load only	Bending only
h × h mm	t mm	kg	A cm ²	I cm ⁴	i cm	W _e ∦ cm³	Wp1 cm ³	I _t cm⁴	C _t cm ³	d/t 1)		yy or zz		yy or zz
120x120	5,0 6,3 8,0 10,0 12,5	18,0 22,3 27,9 34,2 41,6	22,9 28,5 35,5 43,5 53,0	503 610 738 870 1009	4,69 4,63 4,56 4,47 4,36	83,8 102 123 145 168	98,4 121 149 178 212	775 949 1159 1381 1624	122 147 176 206 237	21,0 16,0 12,0 9,00 6,60	1 1 1 1	1 1 1 1 1	1 1 1 1 1	3 1 1 1 1
140x140	5,0 6,3 8,0 10,0 12,5	21,1 26,3 32,9 40,4 49,5	26,9 33,5 41,9 51,5 63,0	814 994 1212 1441 1691	5,50 5,45 5,38 5,29 5,18	116 142 173 206 242	136 168 207 250 299	1251 1538 1889 2269 2695	170 206 249 294 342	25,0 19,2 14,5 11,0 8,20	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1
150x150	5,0 6,3 8,0 10,0 12,5 16,0	22,7 28,3 35,4 43,6 53,4 66,4	28,9 36,0 45,1 55,5 68,0 84,5	1009 1236 1510 1803 2125 2500	5,91 5,86 5,78 5,70 5,59 5,44	135 165 201 240 283 333	157 194 240 290 348 421	1548 1907 2348 2829 3372 4029	197 240 291 345 403 468	27,0 20,8 15,7 12,0 9,00 6,38	1 1 1 1 1	1 1 1 1 1	2 1 1 1 1	2 1 1 1 1 1
160x160	5,0 6,0 6,3 8,0 10,0 12,5	24,2 28,9 30,3 37,9 46,7 57,3	30,9 36,8 38,5 48,3 59,5 73,0	1234 1450 1513 1853 2219 2627	6,32 6,28 6,27 6,19 6,11 6,00	154 181 189 232 277 328	179 212 222 275 333 402	1890 2230 2330 2875 3473 4154	226 264 276 335 399 468	29,0 23,7 22,4 17,0 13,0 9,80	1 1 1 1 1	1 1 1 1 1	2 1 1 1 1	2 1 1 1 1
180x180	5,0 6,3 8,0 10,0 12,5 16,0	27,4 34,2 43,0 53,0 65,2 81,4	34,9 43,6 54,7 67,5 83,0 104	1777 2186 2689 3237 3856 4607	7,14 7,08 7,01 6,92 6,82 6,66	197 243 299 360 428 512	229 283 352 429 519 634	2715 3357 4156 5041 6062 7339	290 355 434 519 613 725	33,0 25,6 19,5 15,0 11,4 8,25	2 1 1 1 1	2 1 1 1 1	3 1 1 1 1	3 1 1 1 1
200x200	5,0 6,3 8,0 10,0 12,5 16,0	30,5 38,2 48,0 59,3 73,0 91,5	38,9 48,6 61,1 75,5 93,0 117	2460 3033 3744 4525 5419 6524	7,95 7,90 7,83 7,74 7,63 7,48	246 303 374 452 542 652	284 353 439 536 651 799	3752 4647 5770 7020 8479 10330	362 444 545 655 779 929	37,0 28,7 22,0 17,0 13,0 9,50	3 1 1 1 1	3 1 1 1 1	4 2 1 1 1	4 2 1 1 1
250x250	6,3 8,0 10,0 12,5 16,0	48,1 60,5 75,0 92,6 117	61,2 77,1 95,5 118 149	6049 7510 9141 11050 13480	9,94 9,87 9,78 9,68 9,53	484 601 731 884 1078	559 699 858 1048 1298	9228 11510 14090 17140 21110	712 880 1065 1279 1548	36,7 28,2 22,0 17,0 12,6	3 1 1 1	3 1 1 1	4 2 1 1 1	4 2 1 1
300x300	6,3 8,0 10,0 12,5 16,0	57,9 73,1 90,7 112 142	73,8 93,1 116 143 181	10600 13210 16150 19630 24160	12,0 11,9 11,8 11,7 11,6	706 881 1077 1309 1610	812 1018 1254 1538 1916	16120 20170 24780 30290 37570	1043 1294 1575 1905 2327	44.6 34,5 27,0 21,0 15,7	4 2 1 1 1	4 2 1 1 1	4 4 1 1	4 4 2 1 1
350x350	8,0 10,0 12,5 16,0	85,7 106 132 167	109 136 168 213	21240 26050 31810 39370	14,0 13,9 13,8 13,6	1214 1489 1817 2250	1398 1725 2122 2655	32350 39840 48870 60900	1789 2186 2655 3265	40,7 32,0 25,0 18,9	4 2 1 1	4 2 1 1	4 3 1 1	4 3 1 1
400×400	10,0 12,5 16,0 20,0	122 152 192 237	156 193 245 302	39350 48190 59910 72390	15,9 15,8 15,7 15,5	1968 2409 2995 3620	2272 2800 3514 4292	60030 73820 92310 112300	2896 3530 4363 5240	37,0 29,0 22,0 17,0	3 1 1	3 1 1 1	4 2 1 1	4 2 1 1

STRUCTURAL DETAILING IN STEEL




- y


CIRCULAR HOLLOW SECTIONS

DIMENSIONS, PROPERTIES AND EC3 CLASSIFICATION

Desig	nation	Mass per	Area of	Second Moment	Radius of Gyration	Elestic Modulus	Plastic Modulus		iional stants	Ratio for	EC3 Clas	sification
Outside Diameter	Thickness	Metre	Section	of Area						Local Buckling	axial	n under load bending
d	t		A	I	i	W _{ef}	W _p	I,	C,	d/t	Fe 430	Fe 510
mm	mm	kg	cm ²	cm ⁴	cm	cm ³	cm ³	cm ⁴	cm ³		(S 275)	(S 355)
21,3	3,2	1,43	1,82	0,768	0,650	0,722	1,06	1,54	1,44	6,66	1	1
26,9	3,2	1,87	2,38	1,70	0,846	1,27	1,81	3,40	2,54	8,41	1	1
33,7	2,6	1,99	2,54	3,09	1,10	1,84	2,52	6,18	3,68	13,0	1	1
	3,2 4,0	2,41 2,93	3,07 3,73	3,60 4,19	1,08 1,06	2,14 2,49	2,99 3,55	7,20 8,38	4,28 4,98	10,5 8,43	1	1
42,4	2,6 3,2	2,55 3,09	3,25	6,46	1,41	3,05	4,12	12,9	6,10	16,3	1	1
	4,0	3,03	3,94 4,83	7,62 8,99	1,39 1,36	3,59 4,24	4,93 5,92	15,2 18,0	7,18 8,48	13,2 10,6	1	1
	.,-		.,	0,00	,,	1,4	0,01	10,0	0,40	10,0	•	
48,3	3,2	3,56	4,53	11,6	1,60	4,80	6,52	23,2	9,60	15,1	1	1
	4,0 5,0	4,37 5,34	5,57 6,80	13,8 16,2	1,57 1,54	5,70 6,69	7,87 9,42	27,6 32,4	11,4 13,4	12,1 9,66	1	1
	0,0		0,00	.0,2	1,54	0,00	9,42	52,4	,3,4	3,00	'	'
60,3	3,2	4,51	5,74	23,5	2,02	7,78	10,4	47,0	15,6	18,8	1	1
	4,0 5,0	5,55 6,82	7,07 8,69	28,2 33,5	2,00 1,96	9,34 11,1	12,7 15,3	56,4 67,0	18,7 22,2	15,1 12,1	1	1
	0,0	0,02	0,00	00,0	1,50		10,0	07,0	22,2	12,1	1	'
76,1	3,2	5,75	7,33	48,8	2,58	12,8	17,0	97,6	25,6	23,8	1	1
	4,0 5.0	7,11	9,06	59,1	2,55	15,5	20,8	118	31,0	19,0	1	1
	5,0	8,77	11,2	70,9	2,52	18,6	25,3	142	37,2	15,2	1	1
88,9	3,2	6,76	8,62	79,2	3,03	17,8	23,5	158	35,6	27,8	1	1
	4,0	8,38	10,7	96,3	3,00	21,7	28,9	193	43,4	22,2	1	1
	5,0	10,3	13,2	116	2,97	26,2	35,2	232	52,4	17,8	1	1
114,3	3,6	9,83	12,5	192	3,92	33,6	44,1	384	67,2	31,8	1	1
	5,0	13,5	17,2	257	3,87	45,0	59,8	514	90,0	22,9	1	1
	6,3	16,8	21,4	313	3,82	54,7	73,6	626	109	18,1	1	1
139,7	5,0	16,6	21,2	481	4,77	68,8	90,8	962	138	27,9	1	1
	6,3	20,7	26,4	589	4,72	84,3	112	1178	169	22,2	1	1
	8,0	26,0	33,1	720	4,66	103	139	1440	206	17,5	1	1
	10,0	32,0	40,7	862	4,60	123	169	1724	246	14,0	1	1
168,3	5,0	20,1	25,7	856	5,78	102	133	1712	204	33,7	1	2
	6,3	25,2	32,1	1053	5,73	125	165	2106	250	26,7	1	1
	8,0 10,0	31,6 39,0	40,3	1297	5,67	154	206	2594	308	21,0	1	1
	10,0	39,0	49,7	1564	5,61	186	251	3128	372	16,8	1	1
193,7	5,0	23,3	29,6	1320	6,67	136	178	2640	272	38,7	1	2
	6,3	29,1	37,1	1630	6,63	168	221	3260	336	30,7	1	1
	8,0 10,0	36,6	46,7	2016	6,57	208	276	4032	416	24,2	1	1
	12,5	45,3 55,9	57,7	2442 2934	6,50 6,42	252 303	338 411	4884 5868	504 606	19,4 15,5	1	1
	16,0	70,1	89,3	3554	6,31	367	507	7108	734	15,5	1	1
210 1	E	20.4	22.0	1000		170						
219,1	5,0 6,3	26,4 33,1	33,6 42,1	1928 2386	7,57 7,53	176 218	229 285	3856 4772	352 436	43,8	2	2
	8,0	41,6	53,1	2960	7,53	270	357	5920	430 540	34,8 27,4	1 1	2 1
	10,0	51,6	65,7	3598	7,40	328	438	7196	656	21,9	1	1
	12,5	63,7	81,1	4345	7,32	397	534	8690	794	17,5	1	1
	16,0 20,0	80,1 98,2	102	5297	7,20	483	661	10590	966	13,7	1	1
	20,0	30,2	125	6261	7,07	572	795	12520	1144	11,0	1	1

UNIVERSAL BEARING PILES

DIMENSIONS AND EC3 CLASSIFICATION

Designa	ation	Depth of	Width of	Thic	kness	Root Radius	Depth between	Shear Area		os for Buckling		E	C3 Cla	issifcati	on	
Serial Size	Mass per	Section	Section	Web	Flange		Fillets		Flange	Web	Fe 43	10 (S	275)	Fe 51	o (s 3	355)
	Metre										Axial Load		nding nly	Axial Load		ding nly
	1	h	b	t _w	t _f	r	d	A _v cm ²	c/t _f	d/t _w	only	77	ZZ	only	٧٧	zz
mm	kg	mm	mm	mm	mm	mm	mm	cm-			<u> </u>					
203 × 203	45 54	200.2 203,9	205,4 207,2	9,5 11,3	9,5 11,3	10,2 10,2	160,8 160,9	20,9 25,0	10,8 9,2	16,9 14,2	3 1	3 1	3 1	3 3	3 3	3 3
254 × 254	63 71 85	246,9 249,9 254,3	256,0 257,5 259,7	10,6 12,1 14,3	10,6 12,1 14,3	12,7 12,7 12,7	200,3 200,3 200,3	29,1 33,2 39,4	12,1 10,6 9,1	18,9 16,6 14,0	3 3 1	3 3 1	3 3 1	3 3 3	3 3 3	3 3 3
305 × 305	79 88 95 110 126 149 186 223	299,2 301,7 303,8 307,9 312,4 318,5 328,3 338,0	306.0 307,2 308,3 310,3 312,5 315,6 320,5 325,4	11,1 12,3 13,4 15,4 17,7 20,7 25,6 30,5	11,1 12,3 13,4 15,4 17,7 20,7 25,6 30,5	15,2 15,2 15,2 15,2 15,2 15,2 15,2 15,2	246,6 246,7 246,6 246,6 246,6 246,7 246,7 246,7	37,7 41,7 45,2 51,5 59,9 69,9 87,2 105,1	13,8 12,5 11,5 10,1 8,8 7,6 6,3 5,3	22,2 20,1 18,4 16,0 13,9 11,9 9,6 8,1	3 3 2 1 1 1	3 3 2 1 1 1	3 3 2 1 1 1	4 3 3 2 1 1 1	4 3 3 2 1 1	4 3 3 2 1 1 1
356 × 368	109 133 152 174	346,4 351,9 356,4 361,5	370,5 373,3 375,5 378,1	12,9 15,6 17,9 20,4	12,9 15,6 17,9 20,4	15,2 15,2 15,2 15,2 15,2	290,2 290,3 290,2 290,3	49,0 58,7 68,2 78,1	14,4 12,0 10,5 9,3	22,5 18,6 16,2 14,2	4 3 3 2	4 3 3 2	4 3 3 2	4 3 3 3	4 3 3 3	4 3 3 3

PROPERTIES

Designa Serial	tion Mass	Second of A	Moment Area		lius ration		Lateral torsion Bucklin Constant	al Ig	Ela: Mod		Pla: Mod		Warping Constant	Torsion Constant	Area of Section
Size	per Metre	Axis y-y	Axis z-z	Axis V-V	Axis z-z				Axis y-y	Axis z-z	Axis Y-Y	Axis z-z			
		I _y	I _z	iγ	iz	ⁱ ιτ	a _{LT}	a _{LT} /i _{LT}	W _{el.y} cm ³	W _{el.z}	W _{p1.y}	W _{p1.z}	Iw dm ⁶	I _t cm ⁴	A cm ²
mm	kg	cm ⁴	cm ⁴	cm	cm	cm	cm		cm-	cm-	cm-	cm-	am	cm	cm.
203 × 203	45	4092	1374	8,46	4,90	5,35	80,7	15,1	409	134	458	205	0,125	19,2	57,1
	54	4979	1678	8,54	4,96	5,41	69,7	12,9	488	162	552	249	0,156	32,1	68,2
254 × 254	63	8764	2967	10,5	6,11	6,66	111	16,7	710	232	791	355	0,414	33,6	79,6
	71	10140	3448	10,6	6,15	6,71	99,2	14,8	812	268	910	411	0,487	49,5	91,0
	85	12250	4181	10,7	6,22	6,79	86,1	12,7	963	322	1089	495	0,602	81,2	108
305 × 305	79	16430	5306	12,8	7,26	7,92	152,7	19,3	1098	347	1218	530	1,10	47,2	101
	88	18380	5949	12,8	7,30	7,97	140,2	17,6	1218	387	1356	593	1,25	63,6	112
	95	20170	6552	12,9	7,34	8,00	130,0	16,2	1328	425	1484	651	1,38	81,7	122
	110	23550	7680	13,0	7,40	8,08	115,5	14,3	1530	495	1720	760	1,64	123	140
	126	27540	9019	13,1	7,47	8,16	102,7	12,6	1763	577	1996	888	1,96	186	162
	149	33050	10870	13,2	7,56	8,26	90,2	10,9	2075	689	2370	1063	2,41	296	190
	186	42580	14090	13,4	7,71	8,43	75,8	9,0	2594	879	3002	1363	3,23	562	237
	223	52840	17590	13,6	7,86	8,59	66,0	7,7	3127	1081	3664	1683	4,16	955	285
356 × 368	109	30620	10940	14,8	8,87	9,65	188,9	19,6	1768	591	1957	901	3,04	85,2	139
	133	37730	13540	15,0	8,96	9,76	160,3	16,4	2144	725	2391	1109	3,83	149	168
	152	43950	15810	15,1	9,03	9,84	142,2	14,5	2466	842	2766	1290	4,53	224	194
	174	51020	18400	15,2	9,11	9,92	126,9	12,8	2823	974	3187	1494	5,35	332	222

			_	a data aya ka sa		
	8	¥'	Ē	* * * * * * * * * * * * * * * * * * * 	17/16 17/16 17/16 17/16	***** *********
	Distance	*	É	4% 4% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%	13% 11% 45%	33% 33% 22% 11%
		7	Ľ.			39.5 % % % % % % % % % % % % % % % % % % %
		ness		× × × × × × × × × × × × × × × × × × ×	3% e	22% 22% 11% 11% 11%
	e	Thickness t _i	Ę	3.540 3.270 2.280 2.480 1.730 1.150 1.150 1.150 1.150		2.2950 2.2950 2.240 2.240 1.1650 1.1650 1.185 1.185 1.185
	Flange	£		11 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ទំព័ត្តភ្នំភ្នំភ្នំភ្នំភ្នំភ្នំ ភ្នំស្នំភ្នំភ្នំភ្នំភ្នំភ្នំភ្នំ ភ្នំភ្នំភ្នំភ្នំភ្នំភ្នំភ្នំ ភ្នំភ្នំភ្នំភ្នំភ្នំភ្នំភ្នំ ភ្នំភ្នំភ្នំភ្នំភ្នំភ្នំភ្នំ ភ្នំភ្នំភ្នំភ្នំភ្នំភ្នំភ្នំ ភ្នំភ្នំភ្នំភ្នំភ្នំ ភ្នំភ្នំភ្នំភ្នំ ភ្នំភ្នំភ្នំ ភ្នំ
DIS		Width b,	Ē	16.910 16.750 16.750 16.750 16.455 16.455 16.455 16.455 16.455 16.455 16.456 16.100 16.100 16.100 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.860 15.745 15.860 15.745 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15.750 15	11.535 11.510 11.480 16.200	15,000 15,000 15,000 15,000 15,000 15,005 15
HAF		같이	Ē			*****
W SHAPES Dimensions	Web	Iess		* * * * * * * * * * * * * * * * * * *	s** 0	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	_	Thickness t _w	Ē	1.970 1.570 1.580 1.580 1.580 1.1.60 1.1.60 1.1.60 1.1.60 0.830 0.830 0.775 0.775 0.775 0.775 0.775	0.580 0.580 0.550 0.550	0.020 0.020 0.020 0.075 0.775 0.775 0.775 0.775 0.775
* 6 *		ŧ		33% 33% 33% 33%	33% 33% 35%	
		Depth d	Ē	33 29 29 29 29 29 29 29 29 29 29 29 29 29 	3 3 3 3 3 3 3 3 3 3	2222222222222 22222222222222222222222
× 3		Area A	In.²	13510 13510 13700 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 124000000000000000000000000000000000000		2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
÷		Desig- nation	1	W 33 x 619 × 567 × 567 × 489 × 489 × 263 × 2387 × 2387 × 2387 × 2387 × 2387 × 2387 × 2387 × 23169 × 2231 × 221 × 221 × 221 × 221 × 221 × 221 × 221 × 221	w 30×581	×437 ×433 ×337 ×235 ×235 ×235 ×211 ×173 ×173
		0 -		3 3	e M	
				4 0	ກອນຕ	
×		Z,	In. ³	557 455 455 453 453 385 312 312 256 232 256 232 256 256 256 256 264 147 147 164 147 164 187 47 56 27 56 27 56 282 282 282 282 282 286 56 56 56 56 56 56 56 56 56 56 56 56 56	59.5 59.5 51.3 51.3	89 89 90 00 00 00 00 00 00 00 00 00 00 00 00
× + + + + + + + + + + + + + + + + + + +	Plastic Modulus		In. ³ In. ³	23560 537 2356 455 2350 455 2350 455 1350 345 1550 312 1550 312 1550 312 1550 312 1550 312 1470 282 1170 226 1150 226 1150 226 1150 226 1150 226 1151 256 1151 256 1151 256 1151 256 1151 256 1151 256 15	233 /3.9 514 66.9 467 59.5 415 51.3 2210 492	1790 1790 1790 1790 1790 1790 1790 1790
		Z_x Z_y	In. In. ³	3.36 25500 557 3.34 2330 455 3.35 1810 345 3.36 1870 345 3.37 1870 345 3.37 1870 345 3.37 1850 312 3.74 1250 312 3.74 1250 312 3.74 1250 312 3.74 1250 312 3.75 1470 282 3.66 1150 226 3.67 126 226 3.68 170 164 3.56 772 164 3.56 775 147 3.56 272 147	2.47 554 6.33 7.33 7.33 2.33 7.33 2.33 2.33 4.67 5.9.5 5.1.3 5.3.3	3.350 1990 3.75 1790 3.77 1790 3.77 1790 3.86 1490 3.56 1490 3.56 1490 3.56 673 3.49 749 3.49 673 3.46 673
	Plastic Modulus	Z,	³ In. In. ³	340 358 2560 557 300 354 2330 455 227 338 1800 345 221 338 1800 345 221 338 1800 345 221 381 1700 345 221 381 1700 345 200 3.78 1550 312 161 3.74 1700 345 161 3.74 1700 345 11 120 345 345 161 3.74 1700 345 11 366 1040 226 1166 3.56 339 162 1168 3.56 375 147 95.2 3.56 772 147 539 250 650 84.4	4/2 241 559 /59 7/2 243 559 /59 7/2 233 467 595 326 232 415 51.3 312 336 2210 492	278 3.80 1990 2246 3.75 1110 2246 3.75 1190 1179 3.66 1420 114 3.56 1460 114 3.56 1660 114 3.56 1660 114 3.56 1660 114 3.56 1660 114 3.56 1660 114 3.56 865 114 3.56 865 114 3.55 845 114 3.55 845 114 3.55 845 114 3.55 845 100 3.49 749 895 3.46 673 79.8 3.43 605
	Plastic Modulus	Z_x Z_y	In. In. ³	340 356 2560 557 300 354 2330 455 227 3.88 1800 345 221 3.81 1700 345 221 3.81 1700 345 221 3.81 1700 345 221 3.81 1700 345 200 3.73 1550 312 161 3.74 1700 345 161 3.74 1700 345 131 3.66 1470 286 146 3.69 1150 226 131 3.66 1040 202 1106 3.58 939 162 1106 3.56 772 147 95.2 3.56 772 147 53.9 250 652 84.4	4/2 241 559 /59 7/2 243 559 /59 7/2 233 467 595 326 232 415 51.3 312 336 2210 492	3.350 1990 3.75 1790 3.77 1790 3.77 1790 3.86 1490 3.56 1490 3.56 1490 3.56 673 3.49 749 3.49 673 3.46 673
	Plastic Modulus	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	In. ³ In. In. ³	340 358 2560 557 300 354 2330 455 227 338 1800 345 221 338 1800 345 221 338 1800 345 221 381 1700 345 221 381 1700 345 200 3.78 1550 312 161 3.74 1700 345 161 3.74 1700 345 11 120 345 345 161 3.74 1700 345 11 366 1040 226 1166 3.56 339 162 1168 3.56 375 147 95.2 3.56 772 147 539 250 650 84.4	2/3 4/2 241 559 /39 /39 221 243 221 243 221 243 214 669 221 243 232 415 513 187 32.6 232 415 513 2210 492 2530 312 33.6 2210 492	278 3.80 1990 2246 3.75 1110 2246 3.75 1190 1179 3.66 1420 114 3.56 1460 114 3.56 1660 114 3.56 1660 114 3.56 1660 114 3.56 1660 114 3.56 1660 114 3.56 865 114 3.56 865 114 3.55 845 114 3.55 845 114 3.55 845 114 3.55 845 100 3.49 749 895 3.46 673 79.8 3.43 605
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	a in. in. in. ³ in. in. ³	2870 340 336 2560 557 556 557 556 557 556 557 556 557 556 556 557 556 556 556 556 556 556 556 557 2550 257 358 2530 455 253 455 255 455 256 256 256 312 11700 345 1550 312 1150 345 1150 345 1150 345 1150 346 1150 326 1150 326 1150 226 1150 226 1150 226 1040 226 236 1150 236 1150 236 1150 236 1150 236 1150 236 126 236 126 236 127 147 237 147 237 147 237 147 237 236 236 236 236 236 236 236 237 147 237 247 <td>13.5 2/3 9/12 2.41 539 739 13.4 218 379 2.43 595 739 13.2 218 379 2.33 467 595 13.0 187 32.6 2.33 467 595 13.9 280 372 2.38 271 635 13.0 187 32.6 2.32 415 51.3 13.9 2850 312 3386 2210 402</td> <td>2530 2738 3389 1990 1970 244 3.75 160 1550 198 3.86 1400 1550 198 3.86 1400 1100 144 3.56 1300 1100 144 3.56 1300 855 114 3.58 1400 855 114 3.58 1600 956 114 3.58 1600 955 144 3.58 1600 955 143 3.58 1600 955 144 3.53 845 534 79.08 3.49 749 598 79.8 3.45 667 598 79.8 3.45 605</td>	13.5 2/3 9/12 2.41 539 739 13.4 218 379 2.43 595 739 13.2 218 379 2.33 467 595 13.0 187 32.6 2.33 467 595 13.9 280 372 2.38 271 635 13.0 187 32.6 2.32 415 51.3 13.9 2850 312 3386 2210 402	2530 2738 3389 1990 1970 244 3.75 160 1550 198 3.86 1400 1550 198 3.86 1400 1100 144 3.56 1300 1100 144 3.56 1300 855 114 3.58 1400 855 114 3.58 1600 956 114 3.58 1600 955 144 3.58 1600 955 143 3.58 1600 955 144 3.53 845 534 79.08 3.49 749 598 79.8 3.45 667 598 79.8 3.45 605
HAPES d $t_{t_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_$	Plastic Modulus	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	In. In. ⁴ In. ³ In. In. ³	2170 15.2 2870 340 339 2560 537 1990 15.1 2580 309 339 2130 485 1650 14.8 2290 237 338 2130 485 1650 14.8 2290 247 338 1800 347 1480 14.7 1800 247 338 1800 345 1350 14.7 1800 247 338 1800 347 1350 14.7 1800 271 311 17700 346 1350 14.4 1400 201 377 1270 250 1110 14.4 1260 131 346 1400 202 201 14.1 1200 131 346 1400 202 201 14.4 1260 131 346 1400 202 202 14.1 366 166 369 169 202	46/ 1.3.5 2/3 4/2 2.4/3 5/3 7/3	138 2230 278 3.60 1990 13.7 1970 244 3.75 1790 13.5 1597 244 3.75 1790 13.5 1590 244 3.75 1790 13.4 1390 179 3.65 1490 13.2 1240 162 3.65 1300 13.2 1240 162 3.65 1300 13.2 1100 144 3.56 1300 13.1 1600 144 3.56 1060 13.1 1600 144 3.56 1060 13.1 160 144 3.56 1060 13.1 160 144 3.55 946 13.0 855 114 3.52 865 12.0 895 3.49 749 179 12.7 598 798 3.49 673 12.7 598 738 805 3.49
	Plastic Modulus	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	In. ³ In. In. ⁴ In. ³ In. In. ³	41800 2170 15.2 2870 340 3.96 2560 537 37700 1990 15.1 2580 306 3.94 2330 485 37700 1630 14.8 2500 237 387 2330 485 3700 1630 14.8 2500 237 387 2300 387 30100 1650 14.8 2500 276 3.85 1810 387 24300 1550 14.7 1600 221 3.81 1700 345 24300 1350 14.7 1600 221 3.81 1700 345 25900 14.0 1600 2.71 3.81 1700 345 21500 1770 14.4 1160 14.4 3.69 1150 226 17700 14.1 832 113 3.66 1040 226 17700 14.1 932 136 156 260	0100 46/ 13.5 2/3 9/4 2/3 5/4 4/3 5/3 6/3 </td <td>1660 138 2230 278 3.60 1390 1550 13.5 1570 246 3.75 1970 1550 13.5 1570 246 3.75 1600 1260 13.5 1550 138 3.66 1400 1200 13.4 1390 1793 3.66 1400 1140 13.4 1390 177 3.66 1300 1000 13.2 1240 162 3.66 1400 201 13.8 1700 144 3.56 1300 2100 13.2 1240 162 3.66 1400 201 13.6 174 3.55 966 1700 201 202 150 3.65 144 3.55 865 202 12.7 598 757 100 3.49 749 203 12.7 598 73.8 3.49 749 549 203</td>	1660 138 2230 278 3.60 1390 1550 13.5 1570 246 3.75 1970 1550 13.5 1570 246 3.75 1600 1260 13.5 1550 138 3.66 1400 1200 13.4 1390 1793 3.66 1400 1140 13.4 1390 177 3.66 1300 1000 13.2 1240 162 3.66 1400 201 13.8 1700 144 3.56 1300 2100 13.2 1240 162 3.66 1400 201 13.6 174 3.55 966 1700 201 202 150 3.65 144 3.55 865 202 12.7 598 757 100 3.49 749 203 12.7 598 73.8 3.49 749 549 203
HAPES d x x x berties d $t_{t_{x}}$ t_{x}	Plastic Modulus	Axis X-X Axis Y-Y Zx Zx <thzx< th=""> Zx Zx</thzx<>	In. ³ In. In. ⁴ In. ³ In. In. ³	0.64 41800 2170 15.2 2870 340 358 2560 537 0.66 37700 1990 15.1 2560 300 3394 2530 485 0.07 330700 1630 44.8 2309 349 2100 387 0.07 33010 1630 44.8 2300 248 387 2100 387 0.90 26900 1480 14.7 1800 247 386 1800 387 0.90 26900 1480 14.7 1800 247 386 1800 387 0.90 26900 1350 14.7 1800 217 381 17700 345 0.91 14.4 1260 164 120 346 362 312 1520 345 1560 347 346 200 345 1560 347 1500 346 150 345 1560 312 1560 312 15	0100 46/ 13.5 2/3 4/4 333 13.5 4/4 334 334 335<	0.67 29300 1680 13.8 2530 27.8 3.80 1990 0.73 26100 1550 13.7 1970 249 3.75 1790 0.87 26100 1550 13.4 1997 249 3.75 1790 0.95 18600 1140 13.4 1390 179 3.66 1300 0.95 18600 1140 13.4 1390 179 3.66 1300 1.13 14900 921 12.4 1390 179 3.66 1300 1.13 14900 921 13.4 1390 179 3.66 1300 1.13 14900 927 13.1 1366 144 3.56 1660 1.26 10300 663 12.9 757 100 3.49 749 1.27 911700 746 13.2 12.4 3.49 605 1.26 10300 663 12.9 757
W SHAPES	Efastic Properties Plastic Modulus	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	In. ⁴ In. ³ In. In. ⁴ In. ³ In. In. ³	451 0.64 41800 2170 152 2870 340 336 2560 537 446 0.66 37700 1990 151 2560 339 2130 485 442 0.75 33700 1690 151 2560 387 485 432 0.87 385 1800 387 385 1800 387 433 0.97 28300 163 148 2000 271 381 17700 385 1800 387 423 0.97 28600 143 1800 287 385 1800 387 423 1.06 2390 1356 147 1800 127 345 382 312 421 1.06 2390 164 1460 161 371 1270 256 421 1.26 17700 1010 144 1460 161 363 156 226 416 1	2.74 6100 467 13.5 2.73 47.2 247 333 51.4 51.5 51.3 51.5 51.3 51.5 51.3 51.5 51.3 51.5 51.3 51	0.67 29300 1660 13.8 2530 27.8 3.80 1990 0.73 28100 1550 13.7 1970 249 3.75 1790 0.87 2800 1550 13.4 1997 249 3.75 1790 0.95 18600 1140 13.4 1390 179 3.65 1396 1490 0.95 18600 1140 13.4 1390 179 3.65 1300 1490 0.95 18600 1000 13.2 17.40 13.4 1390 1793 3.65 1300 1.13 14900 923 13.2 1100 144 3.56 1060 1.13 14400 925 13.4 3.65 144 3.56 1060 1.13 14400 925 1100 144 3.56 1060 1.14 13.4 1300 127 935 3.46 749 1.26 1030
W SHAPES	Efastic Properties Plastic Modulus	$r_{f} = \frac{d}{A_{f}} \left[\begin{array}{ccc} A_{VIS} & X.X & A_{VIS} & Y.Y \\ \hline A_{f} & 1 & S & r & I & S \\ \hline & S & r & I & S & r \\ \hline \end{array} \right] \left[\begin{array}{ccc} Z_{f} & Z_{f} \\ Z_{f} & Z_{f} \\ \hline \end{array} \right]$	In. In. ⁴ In. ³ In. In. ⁴ In. ³ In. In. ³	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.26 0.67 28900 1660 138 2230 278 3.60 1990 4.20 0.73 26100 1530 137 1970 246 3.75 1790 4.20 0.80 135 1550 137 1970 246 3.75 1790 4.16 0.87 2700 1250 134 1390 3.75 1790 4.12 0.95 18600 1140 134 1390 179 3.65 1300 4.01 1.03 132 1550 136 136 1400 4.02 1.03 1600 132 12400 325 146 366 1400 4.02 1.26 133 1540 132 154 3.66 1300 4.00 1.39 1370 134 3.25 146 3.25 1660 4.02 1.26 133 1356 114 3.25 1660 3.07 1.10<
W SHAPES	Efastic Properties Plastic Modulus	$\begin{bmatrix} r_{y} & r_{f} & \frac{d}{A_{f}} & \frac{A_{VIS} X X}{I} & \frac{A_{VIS} Y Y}{S} & \frac{Z_{f}}{I} & \frac{Z_{f}}{Z} & Z_{f} \end{bmatrix}$	In. In. ⁴ In. ³ In. In. ⁴ In. ³ In. In. ³	$ \begin{array}{rrrrr} 19.5 & - & 4.51 & 0.64 & 41800 & 2170 & 15.2 & 2870 & 340 & 3.38 & 2580 & 587 \\ 20.8 & - & 4.46 & 0.69 & 37700 & 1980 & 151 & 2586 & 308 & 2330 & 485 \\ 24.2 & - & 4.32 & 0.87 & 33700 & 1630 & 14.8 & 2030 & 247 & 3.88 & 19810 & 387 \\ 28.5 & - & 4.33 & 0.90 & 28900 & 1630 & 14.8 & 2030 & 247 & 3.86 & 19810 & 387 \\ 28.5 & - & 4.33 & 0.90 & 28900 & 1550 & 14.7 & 1800 & 221 & 3.81 & 17700 & 345 \\ 28.5 & - & 4.30 & 0.97 & 24300 & 1230 & 14.7 & 1800 & 271 & 3.81 & 17700 & 345 \\ 30.6 & - & 4.27 & 10.6 & 21900 & 1230 & 14.4 & 1800 & 271 & 3.81 & 17700 & 345 \\ 30.6 & - & 4.27 & 10.6 & 21900 & 1230 & 14.4 & 1800 & 161 & 3.74 & 1220 & 256 \\ 30.7 & 4.19 & 4.16 & 1290 & 1101 & 14.4 & 1160 & 146 & 369 & 1150 & 226 \\ 30.7 & 4.19 & 4.18 & 1.29 & 1200 & 131 & 3.66 & 1040 & 226 \\ 31.7 & 12.8 & 12.90 & 1101 & 14.4 & 1160 & 146 & 369 & 1150 & 226 \\ 31.7 & 12.8 & 12.9 & 12.90 & 1010 & 14.4 & 1160 & 146 & 369 & 1150 & 226 \\ 31.7 & 12.8 & 12.9 & 12.90 & 1010 & 14.4 & 1160 & 146 & 369 & 1150 & 226 \\ 31.7 & 12.8 & 12.9 & 12.90 & 1010 & 14.4 & 1160 & 146 & 369 & 1150 & 226 \\ 31.7 & 12.8 & 12.90 & 110 & 14.4 & 1160 & 146 & 369 & 1150 & 226 \\ 31.7 & 12.8 & 12.90 & 1010 & 14.4 & 1160 & 146 & 369 & 1150 & 226 \\ 31.7 & 12.8 & 12.90 & 010 & 14.4 & 1160 & 146 & 359 & 156 & 226 \\ 31.7 & 12.8 & 12.90 & 030 & 131 & 366 & 1040 & 222 \\ 31.1 & 22.8 & 12.9 & 12.9 & 12.9 & 1030 & 131 & 366 & 1040 & 222 \\ 31.1 & 22.8 & 12.9 & 12.9 & 12.9 & 1030 & 131 & 366 & 1040 & 226 \\ 31.1 & 23.8 & 34.5 & 1150 & 684 & 14.0 & 749 & 952 & 336 & 772 & 164 \\ 31.1 & 23.8 & 34.5 & 1150 & 684 & 14.0 & 749 & 952 & 336 & 772 & 650 & 770 \\ 31.1 & 23.8 & 23.9 & 230 & 250 & 520 & 520 & 570 & 570 \\ 31.1 & 23.8 & 23.9 & 230 & 250 & 520 & 520 & 520 & 520 & 520 \\ 31.1 & 31.1 & 31.1 & 31.1 & 31.1 & 31.1 & 31.1 & 31.1 \\ 31.1 & 31.1 $	55.0 214 57.4 5100 480 15.5 27.4 59.5 59.5 <	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
W SHAPES	Ction Efastic Properties Modulus	$\frac{d}{t_w} \begin{bmatrix} f_w \\ f_w \end{bmatrix} r_f = \frac{d}{A_f} \begin{bmatrix} Axis X \cdot X & Axis Y \cdot Y \\ 1 & S & T & f \end{bmatrix} Z_x = Z_y$	Ksi In. In. ⁴ In. ³ In. In. ⁴ In. ³ In. In. ³	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrr} 194 & - & 4.29 \\ 2210 & - & 4.29 \\ 210 & - & 4.24 \\ 224 & - & 4.24 \\ 225 & - & 4.16 \\ 224 & - & 4.16 \\ 225 & - & 4.12 \\ 225 & - & 4.12 \\ 226 & - & 4.12 \\ 226 & - & 4.12 \\ 226 & - & 4.12 \\ 231 & - & 4.06 \\ 231 & - & 4.06 \\ 231 & - & 4.06 \\ 231 & - & 4.06 \\ 231 & - & 4.06 \\ 231 & - & 4.06 \\ 231 & - & 4.06 \\ 231 & - & 4.06 \\ 231 & - & 4.06 \\ 231 & - & 4.06 \\ 231 & - & 4.06 \\ 232 & - & 230 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 232 & - & 230 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 232 & - & 230 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 232 & - & 230 \\ 231 & - & - & 200 \\ 232 & - & 230 \\ 231 & - & - & 200 \\ 232 & - & 230 \\ 231 & - & - & 200 \\ 232 & - & 230 \\ 231 & - & - & 200 \\ 232 & - & - & 200 \\ 231 & - & - & 200 \\ 232 & - & - & 200 \\ 232 & - & - & 200 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 232 & - & - & 200 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 231 & - & - & 200 \\ 232 & - & - & - & 200 \\ 231 & - & - & - & -& -& -& -& -& -& -& -& -$

	-			
	1% 1% 1%	******	2% 2% 1% 1% 1% 1% 1% 1%	19%8 19%8 11%2
	2%* 2%*	3% 2% 2%	4% 4% 4% 4% 3% 3% 3% 3% 3% 3% 2% 2%	2% 2% 2%
	38% 38% 38% 38%	33% 33% 33% 33% 33%	**************************************	33% 33% 33%
less	13% 19% 17% 17%	***	3% 3% 2% 2% 2% 1% 1% 1%	11/4 1 13/je
e Thickness Tr.	1.772 1.575 1.575 1.416 1.220	1.730 1.575 1.575 1.415 1.415 1.260 1.065 0.830	3.540 3.540 2.910 2.640 2.200 2.200 2.010 2.200 1.650 1.420 1.420 1.420 1.220	1.220 1.025 0.830
L Flange	****	222222	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	11% 11% 11%
S S S S S S S S S S S S S S S S S S S	11.811 11.811 11.811 11.811 11.811	17.910 17.750 17.750 17.710 17.710 17.710 17.710	16.870 16.690 16.510 16.510 16.510 16.240 16.120 16.120 16.120 15.825 15.825 15.750 15.750 15.750 15.750	11.810 11.810 11.810
		*****	***************	9/18 1 9/18 1 9/18 1
່ ວັຍ ———	2% 19/10 11/10	*****	8 ************************************	* * *
Thickness bir	1.024 0.865 0.787 0.709 0.709	0.910 0.830 0.750 0.710 0.710 0.710 0.710	1,1,270 1,1,790 1,1,790 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	0.650 0.650 0.630
× • • • • •	44 43% 42%	38% 38% 38%	43% 443% 441% 441% 441% 441% 441% 441% 4	39 38% 38%
ž × į į		88.20.33.39.69 38.67 38.67 38.20 38.20 39.37 39.39 30 39.39 30 39.39 30 39.39 30 39.39 30 39.39 30 30 30 30 30 30 30 30 30 30 30 30 30	888888 888888 8888888 88888888 88888888	38.59 38.59 38.20 38.20
		887.6 87.6 87.7 86.5 86.5 86.5 86.5 86.5 86.5 86.5 86.5		
		_	192.0 196.0	9 53.7 49.1 9 43.8
Desig-	W 44×285 ×248 ×248 ×224 ×198	W 40×328 ×298 ×268 ×268 ×244 ×221 ×192	W 40×655* ×5838* ×531* ×480* ×436* ×337* ×337* ×324 ×324 ×215 ×215 ×215	W 40×183 ⁶ ×167 ×149
Z Z Z	<u>8 2 2 8 8</u>	8 5 8 8 E 5	358 55 55 55 55 55 55 55 55 55 55 55 55 5	89.6 76.0 62.2
	0000	8 8 9 8 9 8 9 2 0 2 1 2 1 0 2 1 2 1 0 2 1 2 1 0 2 1 2 1	22756 2456 2186 2186 1796 1796 1796 1796 1796 1796 1796 179	781 692 597
	N 4 4 -	4 4 4 4 8 8 \$ 2 8 8 8 8 \$ 2 8 8 8	⁴ 464666666666666666666666666666666666	2.50 2.40 2.29
BS BS ++ + + + + + + + + + + + + + + + +	57.0 57.0	87.02 57 57 57 50 57 50 50 50 50 50 50 50 50 50 50 50 50 50	8888882555888885558 8	56.9 47.9 38.8
	8888	888828R	25288 25388 253888 25388 25388 25388 25388 25388 25388 25388 25388 25388 2538	228 288 288 288
α γ χ χ γ γ γ α γ γ	17.1 17.2 16.9	16.0 16.5 16.5 15.5 15.5 15.5 15.5 15.5 15.5	7777 76.0 76.0 76.0 76.0 76.0 76.0 76.0	15.7 15.3 14.9
APES rtties Elas Elas		708 858 708 708 858 858 708 708	25590 25590 22340 203400 20340000000000	682 599 512
W SHAPES Properties	24600 21400 19200 16700	26800 24200 21500 19200 16600 13500	56500 56500 33500 33500 225600 225600 225600 19500 19500 19500 19500 19500	13300 11600 9780
	52 23 40 5 25 47 5 5 5 6 7 5 5 5 5	2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05	0.73 0.73 0.97 1.15 2.03 2.23 2.23 2.23 2.23 2.23 2.23 2.23	2.71 3.19 3.90
<u>ء</u> ع	25.96 55 == 26.26 55 == 26.66 55 ==	4.73 4.67 4.67 4.63 4.63 4.63 4.43 4.43	4 4 4 4 4 4 4 4 4 4	2.98 2.91 2.84
	25.7 26.0 21.8 21.8 18.0	2233892 2233892 2233892	1	18.4 18.7 18.0
	43.0 55.0 60.5	555.0 555.0 54.5 54.5 54.5 53.8 53.8	500559333335099 200559833335099 200559833350999	60.0 59.4 60.6
		11115		
	2 1 1 1 1	് നേപ		
act S	2 6 6 7 8 4 7 8 4 8 7 7 8 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8	5.2 5.7 6.3 7.0 7.0 7.0 7.0 7.0 8.3 6	0.0.0.0.0.0.4.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.4.0.0.0.0.4.4.4.0.0.0.0.0.4.4.4.00.0.0.0.0.4.4.4.0.0.0.0.0.0.4.4.4.0.0.0.0.0.0.0.4.4.4.0.0.0.0.0.0.0.4.4.4.0.0.0.0.0.0.0.4.4.4.0.0.0.0.0.0.0.4.4.4.0.0.0.0.0.0.0.4.4.4.0.0.0.0.0.0.0.4.4.4.0.0.0.0.0.0.0.4.4.4.0.0.0.0.0.0.0.4.4.4.0.0.0.0.0.0.0.4.4.4.0.0.0.0.0.0.0.0.4.4.4.0.0.0.0.0.0.0.0.0.4.4.4.0	4.8 5.8 7.1

	Γ.,	<u> </u>		ς.	-	_										_						2	. ^	60	ŝ	70.9	.7
× E ×	Plastic Modulus	Z		Ē	-							_						176		5			200				
	° ž	×	ĭ	Iп. ³	3630	3570	3190	ž.		18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	166 26	1510	1380	1260		Š į	 66	1040	956		767	15	ŝ	85	8	506
			r	Ē	4.27	4.24	4.18	5.4 5.1	5 5 5 5	88	3.8	3.90	3.87	3.8	3.8		0.75 2.75	5 C 2 C 2 C							2.50	2.47	2.38
		Axis Y-Y	S	In. ³	501	19	4	5		1 X	22	3 6	188	5	156	₹ ŝ	<u>5</u> 5	114	86.5	130	67.5	619	57.6	53.2	49	45.1	37.7
or t	perties		I	т. Т	1560	4200	999	8		3	8	1750	1570	1420	89	R S		5 8	528	8	411	375	347	8	362	270	225
	Elastic Properties		r	Ē	18.4	16.4	16.2	16.0	8.01 8.01	15.6	15.6	15.5	15.4	15.3	15.2		0.4	0.41	14.9	14.8	14.6	14.6	14.5	14.5	14.4	14.3	14.0
ES es	Elas	X-X s	S	e ا	3170	88	2690	2420		262	1620	1450	1320	1210	1110	200	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	837	895	508	219	664	623	8	542	504	439
W SHAPES Properties		Axis	1	<u>ب</u>	67400				No.22	34700			-			00001	1,300	15000	16800	2000	3200	2100	11300	ŝ	9750	9040	800
	-			-			• 							· • ···													
		· σ	₹			0 0.54								-		04.1		0 1.73	4 1 77		9 2.21				2 2.94	<u> </u>	
		ب ۲		Ē	4.84	4.80	4.73	4.6	20.4 7.7 7.7	- 	4,49					10.4 D			3 14				3 3.05			1 2.99	8 2.9
	tion	ů.		Ksi	 	1		1	 			••••••				200		29.6	43.4		33.8		26.3		1 21.5		18
	Compact Section Criteria	0	-* 		16.5	17.6	19.0	8.8	2 2	25.8	28.1	31.0	33.4	36.4	6.86	1 1 1 1 1	24	47.2	39.0	42.7	44 2	47.7	501	53.2	55.4	57.4	59.3
	Compa	<u> </u>		¥s.				1		1	1	1	1						1	1				1		1	
	<u> </u>	5			2.0	21	2.3	2.5		32	3.5	3.8	4.2	4	50	0 u 0 r	6.4	6.5	с. С	0.0	45	48	5	5.5	5.9	6.4	7.6
	Nom	Per V	Ē	ė	848	298	8	8	28	3 2 2 2 2 3	439	3 83	359	328	88		90	530	256	8	210	194	182	12	160	150	135
······································	<u> </u>	¥,		Ē	М	***	/10	74	5 Z	134	*	*	*/*	2	2 2	2 2	17/s	17/16	1%18	14	14	13/16	13/16	13⁄16	¥e	1% e	/e
												÷.													-	_	-
	tance	*		Ċ.								· · · · · · ·								-					¢		^{/16}
	Distance	*		ц ц	5ª 1/18	574	5/18	41.716	4½	3"¥16	39/1e	3%	%e	20	217.5	2% 2%	2%	2%	2%	21/2	2% ₁₆	23/16	21/8	~	1'5/16	1%	21/8 11 /18
	Distance	F		ln.	31 1/6 5ª 1/16	31% 57/*	31% 5%e	31% 4"%	31% 41%	31% 3"%	311/4 39/16	31% 3%%	31% 3%	31/6 3	31% 21%	31% 2%	31% 2%	31% 2%	321/4 25/4	321/4 21/2	32% 25%	32% 23%	321/8 21/8	321% 2	321/8 115/16	32% 1%	321/6
	Distance	mess T	-1- -		41/2 311/6 5"1/18	45/16 311% 57/16	3% 31% 5%	3%18 31%8 4"716 31% 211/2 432	21% 31% 4%	2"Vie 31% 3"Yie	27/18 311/18 39/16	2% 31% 3%	2 31/4 3/4	11/8 31/9 3	19/.e 31/8 21%	1% 31% 2%	1% 31% 2%	11/4 311/6 2%	134 321/6 25/6	1% ₁₆ 32% 2%	1 ^{3/6} 32 ^{1/6} 2 ^{5/16}	11/4 321/6 23/16	13/16 321/8 21/8	11/8 321/8 2	1 321/8 115/16	15/16 321/6 17/6	^{13/16} 32 ^{1/6}
		F	1, 1,		4.530 41/2 31//e 5"//e	4.290 4% 31% 57/1e	3.900 3% 31% 5%	3.540 37/16 31 //6 41 //16	2.910 2'5's 31% 4%	6 2.680 2'Vs 31% 3'Ys	2.440 27/18 311/8 39/18	2.200 29/16 31 1/6 39/16	2.010 2 31% 3%	1.650 11/8 31/9 3 • 660 11/ 21/ 21/	1.000 1.748 3178 2.946	1 440 17% 31% 2%.°	1.350 1% 31% 2%	1.260 11/4 311/6 2%	1.730 1% 32% 2%	1.570 1% ¹⁶ 32 ^{1/8} 2 ^{1/2}	1.360 1% 32% 2%	1.260 11/4 32% 2%e	1.180 1% ₆ 32% 2%	11/8 321/8 2	1 321/8 115/16	15/16 321/6 17/6	321/6
	Flange Distance	Thickness T	D _i t _r	Ll	18% 4.530 4½ 31% 51%	18 4.290 49% 31% 57%	17% 3.900 3% 31% 5%	1734 3.340 3756 31/6 4.1/16	17% 2.910 21% 31% 4%	17% 2.680 21% 31% 31%	17 2.440 27/s 31% 39/s	16% 2.200 2% 31% 3%	16% 2.010 2 31% 3%	16% 1.85U 1% 31% 3	16% 1.570 19% 21% 21% 21%	161/2 1 440 1 7/2 311/2 29/2	16½ 1.350 1% 31% 2%	16½ 1.260 1½ 31½ 2¾	12% 1.730 134 32% 25%	121/s 1.570 1%16 321/s 21/2	121/s 1.360 1% 321/s 25/s	121/4 1.260 11/4 321/6 23/16	121/6 1.180 1¾16 321/8 21/8	12 1.100 11% 32% 2	12 1.020 1 32½ 1 ¹⁵ / ₆	12 0.940 ^{15/16} 32 ^{1/6} 1 ^{7/6}	12 0.790 ^{13/16} 32 ^{1/6}
PES ions		h Thickness T	B_f t_f		4.530 41/2 31//e 5"//e	18 4.290 49% 31% 57%	17% 3.900 3% 31% 5%	3.540 37/16 31 //6 41 //16	17% 2.910 21% 31% 4%	17% 2.680 21% 31% 31%	17 2.440 27/s 31% 39/s	16% 2.200 2% 31% 34%	16% 2.010 2 31% 3%	16% 1.85U 1% 31% 3	1.000 1.748 3178 2.946	161/2 1 440 1 7/2 311/2 29/2	16½ 1.350 1% 31% 2%	16½ 1.260 1½ 31½ 2¾	1.730 1% 32% 2%	121/s 1.570 1%16 321/s 21/2	121% 1.360 1% 32% 2%	121/4 1.260 11/4 321/6 23/16	12% 1.180 1% 32% 2%	12 1.100 11% 32% 2	12 1.020 1 321/8 115/16	12 0.940 ^{15/16} 32 ^{1/6} 1 ^{7/6}	0.790 ^{13/16} 32 ^{1/6}
BHAPES lensions		Thickness T		Ll	18.130 18% 4.530 4½ 31% 51%	17.990 18 4.290 49/10 311/6 57/10	17% 3.900 3% 31% 5%	1 11.0/0 11/96 3.040 30% 31% 419/6 17 400 1734 2.030 31/ 21/2 432	17.220 1774 2.910 21% 31% 4%	17.105 17% 2.680 21% 31% 31%	e 16.965 17 2.440 27/18 31% 39/16	16.830 16% 2.200 2% 31% 34%	16./30 16% 2.010 2 31% 3%	V2 10.03U 10% 1.65U 17% 31% 3	7/2 10.000 10%8 1.000 1.7%8 01%8 2.3%6 7/2 16.505 16% 1.570 1% 0.1% 01%	7/2 16 550 16/6 1 440 17/2 31/2 29/2	7/a 16.510 16% 1.350 13% 31% 2%	% 16.470 16% 1.260 1% 31% 2%	12% 1.730 134 32% 25%	7/16 12.120 12% 1.570 1% 6 32% 2%	7/16 12.180 121/8 1.360 1% 321/8 25/16	3/6 12.115 12% 1.260 11/4 32% 23/6	3/6 12.075 12% 1.180 1% 32% 2%	3/8 12.030 12 1.100 11/8 321/8 2	12.000 12 1.020 1 32% 11%	11.975 12 0.940 ^{15/18} 32 ^{1/6} 1 ^{7/6}	12 0.790 ^{13/16} 32 ^{1/6}
W SHAPES Dimensions		<u>U</u> Width Thickness T	2	In. In. In. In.	21/2 11/4 18.130 181/6 4.530 41/2 311/6 511/18	2% 17/18 17.990 18 4.290 47/18 31/% 57/18	2% 1 1% 17.775 17% 3.900 3% 31% 5%	2 1 11.0/0 1/74 3.040 30/0 31/0 31/0 1/24	1% '% 17.220 17% 2.910 2% 31% 4%	11/2 1/2 17.105 17/6 2.680 21/46 31/6 31/9	1% 1% 16.965 17 2.440 2% 31% 39%	11/4 5/6 16.830 16// 2.200 29/6 31//6 39/6	1% % 16.730 16% 2.010 2 31% 3%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7/6 7/2 10.0000 10%8 1.0000 1.7/6 31%8 2.%16 7/6 7/2 16.605 165/6 1.570 19/2 31%/ 21/2	13/2 7/2 16 550 16/6 1 440 17/2 31/2 29/2	^{13/6} ^{10/6} 16.510 16% 1.350 1% 31% 2%	% 16.470 16% 1.260 1% 31% 2%	12.215 12½ 1.730 1¾ 32½ 2%	7/8 7/16 12.120 12//8 1.570 19/16 32//8 2//2	¹ % ₁₆ 7/ ₁₆ 12.180 121/ ₈ 1.360 1% ₈ 321/ ₆ 25/ ₁₆	321/6 29/16 12/1/8 1.260 11/4 32//6 29/16	12.075 12% 1.180 1% 32% 2%	3/8 12.030 12 1.100 11/8 321/8 2	% 5/16 12.000 12 1.020 1 32% 115/16	% % 11.975 12 0.940 1% 32% 17%	56 ^{3/6} 11.950 12 0.790 ^{3/6} 32%
W SHAPES Dimensions	Flange	ess <u>1</u> Width Thickness T		In. In. In.	11/4 18.130 18% 4.530 41/2 31/6 51/66	2% 17/18 17.990 18 4.290 47/18 31/% 57/18	2% 1 1% 17.775 17% 3.900 3% 31% 5%	1 11.0/0 11/96 3.040 30% 31% 419/6 17 400 1734 2.030 31/ 21/2 432	1% 1% 17.220 17% 2.910 2% 31% 4%	11/2 1/2 17.105 17/6 2.680 21/46 31/6 31/9	1% 1% 16.965 17 2.440 2% 31% 39%	11/4 5/6 16.830 16// 2.200 29/6 31//6 39/6	% 16.730 16% 2.010 2 31% 3%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7/2 10.000 10%8 1.000 1.7%8 01%8 2.3%6 7/2 16.505 16% 1.570 1% 0.1% 01%	13/2 7/2 16 550 16/6 1 440 17/2 31/2 29/2	^{13/4} 7/4 16.510 16/5 1.350 13/4 31/4 2/5	% 16.470 16% 1.260 1% 31% 2%	12.215 12½ 1.730 1¾ 32½ 2%	7/8 7/16 12.120 12//8 1.570 19/16 32//8 2//2	¹ % ₁₆ 7/ ₁₆ 12.180 121/ ₈ 1.360 1% ₈ 321/ ₆ 25/ ₁₆	34 36 12.115 12% 1.260 11/4 32% 23/6	34 36 12.075 12% 1.180 1% 32% 2%	¹ / ₁₆ % 12.030 12 1.100 1/ ₈ 32/ ₆ 2	% 5/16 12.000 12 1.020 1 32% 115/16	5/16 11.975 12 0.940 15/16 321/6 17/6	56 ^{3/6} 11.950 12 0.790 ^{3/6} 32%
* :- *	Flange	Thickness 4 Width Thickness 7	tu 2	In. In. In. In.	2.520 2½ 1¼ 18.130 18% 4.530 4½ 31% 5 ⁻¹ / ₁₀	2.360 2% 1% 17.990 18 4.290 4% 31% 5%	2.165 2% 1/% 17.775 17% 3.900 3% 31% 5%	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.610 1% '1% 17.220 17% 2.910 2'% 31% 4%	1.500 11/2 3/ 17.105 17/6 2.680 21//6 31// 31//	1.360 1% 1% 16.965 17 2.440 27% 31% 39%	1.220 11/4 % 16.830 16% 2.200 29/14 31/4 39/16	1% % 16.730 16% 2.010 2 31% 3%	1.020 1 1/2 10.030 10% 1.850 11% 31% 3 0.045 12/ 1/2 15.655 155/ 1.650 11/ 21// 21// 21//	0.343 7/6 7/6 10.033 10%8 1.00U 17/7/8 31/8 2/9/6 D 8.85 7/6 7/6 16.505 165/6 15.70 19/2 31/6 20/2	0.840 13/2 7/2 16 550 16/2 1 440 17/2 31/2 29/2	0.800 1% // 16.510 16% 1.350 1% 31% 2%	0.760 34 36 16.470 16/2 1.260 1/4 31% 23%	1 ½ 12.215 12½ 1.730 1¾ 32¼ 25%	0.870 7/8 7/16 12.120 12//8 1.570 19/16 32//8 2//2	¹ % ₁₆ 7/ ₁₆ 12.180 121/ ₈ 1.360 1% ₈ 321/ ₆ 25/ ₁₆	0.765 34 36 12.115 12% 1.260 11/4 32% 23/6	0.725 34 36 12.075 12% 1.180 1% 32% 2%	0.680 11% 8% 12.030 12 1.100 11% 32% 2	0.650 % 7/16 12.000 12 1.020 1 321/9 115/16	% % 11.975 12 0.940 1% 32% 17%	0.600 % % 11.950 12 0.790 13/18 32%
× ÷ ×	Flange	th Thickness 1, Width Thickness 7	2	In. In. In. In.	421/2 2.520 21/2 11/4 18.130 181/5 4.530 41/2 311/6 511/18	42 2.380 2% 11% 17.990 18 4.290 4% 31% 57/18	41% 2.165 2% 1% 1% 17.776 17% 3.900 3% 31% 5%	40/2 1.3/0 2 1.4/0 2 1 11.3/3 11/96 3.340 3/9/6 3/9/6 4/9/6	39/4 1.610 1% 1% 17.220 17/4 2.910 21% 31/6 4/6	38% 1.500 11% % 17.105 17% 2.680 21% 31% 33%	381/4 1.360 1% 11/16 16.965 17 2.440 27/16 31% 39/16	37% 1.220 11% % 16.830 16% 2.200 29% 31% 34%	37% 1.120 11% 9% 16.730 16% 2.010 2 31% 3%	3/ % 1.020 1 % 10.030 10% 1.050 1% 31% 3	30% U.343 7/6 2/2 10.033 10% 1.00U 1.7/6 31% 2.9/6 36% 0.885 7/6 7/2 16.655 16% 1.570 19/2 31% 21%	361/2 0.840 13/2 7/2 16 550 161/2 1 440 17/2 311/2 29/2	36% 0,800 1% 7/6 16.510 16% 1.350 1% 31% 2%	357/a 0.760 % % 16.470 16% 1.260 11/4 31% 2%	37% 0.960 1 ½ 12.215 12¼ 1.730 1¾ 32% 2%	371/s 0.870 7/s 7/s 12.120 121/s 1.570 19/1s 321/s 21/2	36 ^{3/4} 0.830 ^{13/6} ^{7/6} 12.180 12 ¹ / ₈ 1.360 1 ^{3/6} 32 ^{1/6} 2 ^{5/6}	36½ 0.765 ¾ ¾ 12.115 12½ 1.260 11¼ 32½ 2¾	36% 0.725 34 3% 12.075 12% 1.180 1% 32% 2%	36½ 0.680 ¹¹ / ₁₆ ¾ 12.030 12 1.100 1½ 32½ 2	36 0.650 % 5/ ₁₆ 12.000 12 1.020 1 32/ ₁₆ 1 ¹ %	35% 0.625 % % % 11.975 12 0.940 % 32% 17%	35½ 0.600 % 1.450 12 0.790 ¹³ /16 32%
× :- ×	Flange	Depth Thickness <u>1</u> , Width Thickness T	d tu 2	2 In. In. In. In. In. In.	42.45 421/2 2.520 21/2 11/4 18.130 181/5 4.530 41/2 311/6 511/18	41.97 42 2.360 2% 17.1990 18 4.290 48/16 31% 57/16	41.19 41V4 2.165 2% 1/6 1/6 1/7/16 1/7/4 3.900 3/6 31/6 5/16	40.47 40.72 1.370 1.270 1.1 1.00 1 1.76 3.340 377 3.74 42. 20 84 3072 1 700 1.127 1 1.757 1.757 3.750 2.75	39.21 39/4 1.610 1% "% 17.220 17/4 2.910 2'% 31/6 4/6	38.74 38% 1.500 11% 3. 17.105 17% 2.680 21% 31% 31%	38.26 38% 1.360 1% 1% 16.965 17 2.440 2% 31% 34%	37.80 37% 1.220 11% % 16.830 16% 2.200 29% 31% 34%	37.40 37% 1.120 11% 9% 16.730 16% 2.010 2 31% 3%	37.09 37/% 1.020 1 % 16.630 16% 1.650 1% 31% 3 26.74 36% 0.046 1% 1/ 15 666 16% 1.650 11/ 31/ 31/	30.74 30%4 U.343 7/6 7/ 10.033 10%8 1.00U 17/6 31%8 2.%6 36.52 36% 0.80K 7/ 7/ 2/2 16.505 16% 1.570 19/2 31%	36.26 36% 0.840 1% 7% 16.550 16% 1.440 17% 31% 2%	36.08 36'4 0.800 1% 7/6 16.510 16'2 1.350 1% 31'/ 2'/	35.90 357 ₆ 0.760 34 36 16.470 16 ¹ / ₂ 1.260 11/ ₄ 31 ¹ / ₆ 2 ³ / ₆	37.43 373% 0.960 1 ½ 12.215 12½ 1.730 134 32% 25%	37.12 37.1/8 0.670 7/8 7/16 12.120 121/8 1.570 19/16 321/8 21/2	36.69 36 ³⁴ 0.830 ^{13/16} 7/16 12.180 12/ ₈ 1.360 1 ^{3/6} 32 ^{3/6} 2 ^{5/16}	36.49 36 ¹ / ₇ 0.765 ¾ ¾ 12.115 12 ¹ / ₈ 1.260 1 ¹ / ₄ 32 ¹ / ₆ 2 ¹ / ₆	36.33 36% 0.725 % % 12.075 12% 1.180 17% 32% 2%	36.17 36% 0.680 1% 3% 12.030 12 1.100 1% 32% 2	36.01 36 0.650 % ^{5/16} 12.000 12 1.020 1 32 ^{1/6} 1 ^{15/16}	35.85 35% 0.625 % % 11.975 12 0.940 ^{15/6} 32% 17%	35.55 35½ 0.600 % 11.950 12 0.790 ^{13/6} 32 ^{/6}
	Flange	Area Depth Thickness <u>1</u> , Width Thickness T	A d tw 2	In. In. In. In. In.	249.0 42.45 42.1⁄2 2.520 21/2 11/4 18.130 18% 4.530 41/2 31/6 511/16	234.0 41.97 42 2.380 2% 174.a 17.990 18 4.290 47/a 31% 57/a	211.0 41.19 41.4 2.165 2% 1/% 17.7/5 1/% 3.900 3% 31% 5/%	130.U 40.4/ 40.7/ 1.3/U 2 1 11.0/0 11% 3.340 30% 31% 41%	154.0 39.21 3914 1.510 1% 1% 17.220 1774 2.910 21% 31% 4%	142.0 38.74 3894 1.500 11/2 34 17.105 1776 2.680 21/4e 31/6 319/e	128.0 38.26 38/4 1.360 1% 1/46 16.965 17 2.440 27/6 31/6 39/6	115.0 37.80 37% 1.220 11% % 16.830 16% 2.200 29% 31% 34%	105.0 37.40 37% 1.120 11% % 16.730 16% 2.010 2 31% 3%	96.4 3/.09 3/% 1.020 1 ½ 16.630 16% 1.650 1% 31% 3	00.3 J0.74 J074 U.343 7/6 7/2 10.000 10% 1.0001 17/6 J1/6 2.9/6 20 4 36.50 36/4 0.885 7/6 7/6 1/6 466 16% 1.570 19/6 21/6 21/6	76.5 36.26 36%, 0.840 13%, 7%, 16.560 16% 1.440 17%, 31% 2%,	72.1 36.08 36 ¹ / ₄ 0.800 ^{13/6} 7/6 16.510 1675 1.350 13% 31% 275	67.6 35.90 35% 0.760 % % 16.470 161/2 1.260 11/4 311/h 23/k	75.4 37.43 37.36 0.960 1 ½ 12.215 12¼ 1.730 1¾ 32¼ 25%	68.1 37.12 37% 0.870 7% 7/6 12.120 12% 1.570 1%6 32% 2½	61.8 36.69 36 ³⁴ 0.830 ¹ % ₆ 7/6 12.180 12% 1.360 1% 32% 25%	57.0 36.49 36 ¹ / ₂ 0.765 3 ¹ / ₄ 3 ⁶ 12.115 12 ¹ / ₈ 1.260 1 ¹ / ₄ 32 ¹ / ₈ 2 ⁹ / ₆	53.6 36.33 36% 0.725 % 3% 12.075 12% 1.180 1% 32% 2%	50.0 36.17 36% 0.680 1% 3% 12.030 12 1.100 1% 22% 2	47.0 36.01 36 0.650 % 5/16 12.000 12 1.020 1 32% 11%	44.2 35.85 35% 0.625 % % 11.975 12 0.940 15% 32% 17%	39.7 35.55 35½ 0.600 % % 11.950 12 0.790 ^{34,6} 32½
	Flange	Depth Thickness <u>1</u> , Width Thickness T	A d tw 2	2 In. In. In. In. In. In.	249.0 42.45 42½ 2.520 2½ 11¼ 18.130 18% 4.530 4½ 31% 51%	234.0 41.97 42 2.380 2% 174.a 17.990 18 4.290 47/a 31% 57/a	211.0 41.19 41.4 2.165 2% 1/% 17.7/5 1/% 3.900 3% 31% 5/%	40.47 40.57 1.370 12.01 2 11.270 17.66 3.3040 377 31.76 427 40.64 40.47 12.76 427 40.64 40.47 12.76 427 427 427 427 427 427 427 427 427 427	154.0 39.21 3914 1.510 1% 1% 17.220 1774 2.910 21% 31% 4%	142.0 38.74 3894 1.500 11/2 34 17.105 1776 2.680 21/4e 31/6 319/e	128.0 38.26 38/4 1.360 1% 1/46 16.965 17 2.440 27/6 31/6 39/6	115.0 37.80 37% 1.220 11% % 16.830 16% 2.200 29% 31% 34%	105.0 37.40 37% 11.120 11% % 16.730 16% 2.010 2 31% 3%	90.4 3/.09 3/% 1.020 1 % 16.030 10% 1.050 1% 31% 3	30.74 30%4 U.343 7/6 7/ 10.033 10%8 1.00U 17/6 31%8 2.%6 36.52 36% 0.80K 7/ 7/ 2/2 16.505 16% 1.570 19/2 31%	76.5 36.26 36%, 0.840 13%, 7%, 16.560 16% 1.440 17%, 31% 2%,	72.1 36.08 36 ¹ / ₄ 0.800 ^{13/6} 7/6 16.510 1675 1.350 13% 31% 275	67.6 35.90 35% 0.760 % % 16.470 161/2 1.260 11/4 311/h 23/k	37.43 373% 0.960 1 ½ 12.215 12½ 1.730 134 32% 25%	68.1 37.12 37% 0.870 7% 7/6 12.120 12% 1.570 1%6 32% 2½	61.8 36.69 36 ³⁴ 0.830 ^{13/16} ^{7/16} 12.180 12 ^{1/8} 1.360 1 ^{3/6} 2 ^{5/16} 2 ^{5/16}	57.0 36.49 36 ¹ / ₂ 0.765 3 ¹ / ₄ 3 ⁶ 12.115 12 ¹ / ₈ 1.260 1 ¹ / ₄ 32 ¹ / ₈ 2 ⁹ / ₆	36.33 36% 0.725 % % 12.075 12% 1.180 17% 32% 2%	50.0 36.17 36% 0.680 1% 3% 12.030 12 1.100 1% 22% 2	47.0 36.01 36 0.650 % 5/6 12.000 12 1.020 1 32% 115/6	44.2 35.85 35% 0.625 % % % 11.975 12 0.940 15% 32% 17%	35.55 35½ 0.600 % 11.950 12 0.790 ^{13/6} 32 ^{/6}

 $F_y = 46$ ksi

COLUMNS Square structural tubing Allowable concentric loads in kips

Nomina	I Size	1		6	× 6					5 × 5		
Thickr		9/16	1/2	3⁄8	5/16	1/4	3/16	1/2	3∕8	5/16	1/4	3/1
Wt./	'ft	38.86	35.24	27.48	23.34	19.02	14.53	28.43	22.37	19.08	15.62	11.9
Fy	.						46 ksi					
	0	315	287	223	189	154	118	231	182	155	127	97
	6	283	257	201	171	140	107	200	159	136	111	86
	7	275 268	251 244	196 191	167 163	137	105 102	193 186	153	131	108	83
	9	259	237	186	158	133	99	178	148 142	127 122	104 100	80 77
_	10	251	229	180	154	126	96	169	135	116	96	74
atior	11	242	221	174	149	122	93	160	129	111	92	71
дуг	12	232	212	168	143	117	90	151	122	105	87	67
of	13 14	222	203 194	161 154	138 132	113 108	87 83	141	115 107	99 93	82 77	64 60
Effective length in ft KL with respect to radius of gyration	15	201	185	147	126	100	80	120	99	86	72	56
to ra	16	190	175	140	120	99	76	109	9 0	79	66	52
ಕ್ಷ	17	178	164	132	113	94	72	97	82	72	60	47
spe	18	166 153	153 142	124 115	107 100	88 83	68 64	87 78	73 65	64 58	54 49	43 39
t ₽	20	140	131	107	93	77	60	70	59	52	44	35
CL WI	21	127	119	98	85	71	56	64	54	47	40	32
*	22	116	108	89	78	65	51	58	49	43	36	29
. <u>c</u>	24 26	98 83	91 77	75 64	65 56	55 47	43 36	49 41	41 35	36 31	31 26	24 21
gth	28	72	67	55	48	40	31	36	30	27	22	18
el en	30	62	58	48	42	35	27	31	26	23	20	15
octive	31 32	58 55	54 51	45 42	39 37	33 31	26 24		25	22	18	14
Effe	34	55 49	45	37	33	27	24 21				17	14
	36	43	40	33	29	24	19					
	37			32	27	23	18	1		ļ		
	38 39				26	22	17 16					
	1	Щ	L	L	lPi	operties		1	L	L	I	L
A (in. ²)		11.40	10.40	8.08	6.86	5.59	4.27	8.36	6.58	5.61	4.59	3.5
I (in.4)		54.1 2.18	50.5 2.21	41.6	36.3	30.3	23.8	27.0	22.8	20.1	16.9	13.
, (iii.) 1 Bei	nding tor	11			2.30	2.33	2.36	1.80	1.86	1.89	1.92	1.9
	tor	0.633	0.615	0.583	0.567	0.553	0.539	0.773	0.722	0.699	0.677	0.65
a/10 ⁶		8.07	7.52	6.20	5.40	4.52	3.54	4.03	3.39	2.99	2.52	2.0

	1	=	:	ţ,	47	5	7	8		8	8	8	8	8		4	8	5	2	2		8 2	5 8	R z	5 9	g	5	2	8	8	8	8	Я
× ×	AXIS Z-Z		5 8 	9 0.543				1 0.558						4 1.000					-	1 0.727			194.0 2010			4 0.506	·						9 1.000
	\$	-	Ē	0.639			0.647	0.651		0.683	0.684	-		0.694				_		0.631		ې د				0.544			0.585				0.596
		×	Ē	0.827		_	0.759	0.736		98	5 S	101	0660	0.968				0.830	0.808	0.785	202.0	0.70	0.002	709 0	0.637	0.614					0.865	0.842	0.820
	۲-۲	-	Ē	0.864	0.871	0.879	0.887	0.896		₽ 1	1.07	1.07	1.08	60	į	0.881	0.889	0.897	0.905	0.914	102.0	5	0.710	202.0	12/0	0.735	0000	968.0	0.905	0.913	0.922	0:930	0.939
××	AXIS Y-Y	S	п. ³	1.12	0.992	0.866	0.734	0.599		1.49	33	15	0.976	0.794		10	0.975	0.851	0.722	0.589	Car o	8	0.07	0.002	400°.0	0.412	2	/0.1	0.954	0.833	0.707		0.441
ANGLES Equal legs and unequal legs Properties for designing		1	.₽ -	2.42				1.36		364	3.26			2.01								8.8		-	_	0.777	5						0.962
qual ignii		Y	Ē	1.33				1.24						0.968						2	Ę		0 4			=						0.842	0.820
es des	×·	-	۲	1.25				1.28				1.07	£.08	8						<u>-</u>			8. F			1.12		0.8960.932	0.9050.910	0.9130.888	0.9220.865	0.930 0.842	0.939 0.820
ANGLES s and une les for de	AXIS X-X	S	In. ³	1.89	1.68	1.46	1.23	8		1.49	1.32	1.15	0.976	0.794	9	1.45	53	1.13	0.954	0.776	;	Ŧ 8	8, 8	2000	0.927	0.755							0.441
ANGLES Hual legs and unequal le Properties for designing		-	. ⊑	5.05	4.52	3.96	3.38	2.77		3.64	3.26			2.01		3.45	3.10			1.91	2	1 0				1.80							0.962
al le rope	Area	3	1n. ²					1.69		3.25				1.69						1.56						4							- 68
ъ Б Д	Weight	- H	نە	11.1	9.8	8.5	7.2	5.8			 œ	,	7.2	2.8		10.2	9.1	7.9	6.6	5.4		t c	0.0	2.2		4.9		4.9	8.3	7.2	6.1	4.9	3.71
	3		Ē				×	11/16		-			•	×		-				Υ.			~ >			11/16		e D		6 0			1/2
		ss		× ½			\$/10	/		2		°€	5/16	>		× ½	/16			>			< 7		-	%	;					/	3's
	Size	Thickness	Ē	£×						L 3½×3½×						L 3½×3						276121						Ê X					
				L 4						Г.Э.					_					~~~~								с. Г.			<u> </u>		
		<u>=</u>	5	0.464	22	6	8	ജ	ĝ	2	;	<u>ĝ</u>		6	<u> </u>	8	ň		8	8 2	29	2.5	2.8	2 5	2		$\supset c$	5	55	0.757	53		
	N	Tan	°	0.4	0.472	0.479	0.482	0.486	0.489	0.492		0.349	0.357	0.361	0.364	0.368	0.371		1.00	- 1.80	2007 F	3	8.8	38	3	i	0.750	0.753	0.755	0	0.759		
	AXIS Z-Z	, Ta	е Е	0.748 0.4						0.770 0.45							0.663 0.3	_			0.182 1.00										0.734 0.7		
	AXIS Z-	\vdash	-		0.751	0.755	0.758	0.762	0.766			0.644	0.648	0.651	0.654	0.658			0.778	0.779		0.700	0.701	107.0	0.6.20	002.0	0.722	U./24	0.727	0.730	0.734		
S0		-	Ē	0.996 0.748	0.951 0.751	0.906 0.755	0.883 0.758	0.861 0.762	0.838 0.766	0.814 0.770		0.796 0.644	0.750 0.648	0.727 0.651	0./04 0.654	0.681 0.658	0.657 0.663		1.27 0.778	1.23 0.779	1.18 0.782	002.0	1 12 0 701	1 10 0 705	06/10 601	000	1.00 0.722	0.3/8 0./24	0.955 0.727	0.932 0.730	0.909 0.734		
lal legs Ining	AXIS Y-Y AXIS Z-	-	ln.	22 0.977 0.996 0.748	0.991 0.951 0.751	1.01 0.906 0.755	1.01 0.883 0.758	1.02 0.861 0.762	1.03 0.838 0.766	1.04 0.814 0.770		0.815 0.796 0.644	0.829 0.750 0.648	0.837 0.727 0.651	0.845 0.704 0.654	0.853 0.681 0.658	0.861 0.657 0.663		1.19 1.27 0.778	1.20 1.23 0.779	1.22 1.18 0.782	1.20 1.10 0.700	1 24 1 12 0 701	1.25 1.00 0.706	1.62 1.05 10.1 02.1	00000	1.04 1.00 0.722	47/0 8/80 CO.1	1.06 0.955 0.727	1.07 0.932 0.730	1.07 0.909 0.734		
S nequal legs lesigning		r X r	⁴ ln. ³ ln. ln. ln.	55 2.22 0.977 0.996 0.748	1.90 0.991 0.951 0.751	1.56 1.01 0.906 0.755	1.39 1.01 0.883 0.758	1.21 1.02 0.861 0.762	1.02 1.03 0.838 0.766	0.830 1.04 0.814 0.770		1.39 0.815 0.796 0.644	1.15 0.829 0.750 0.648	0.727 0.651	0.888 0.845 0.704 0.654	0.753 0.853 0.681 0.658	0.614 0.861 0.657 0.663		2.81 1.19 1.27 0.778	2.40 1.20 1.23 0.779	1.9/ 1.22 1.18 0.785 1.75 1.22 1.16 0.785		1.20 1.24 1.15 0.701	1 0E 1 0E 1 00 0 70E	C6/0 601 671 601		1.52 1.04 1.00 0.722 • 25 • 25 • 25 0 723	47/0 8/80 CO1 CC1	1.17 1.06 0.955 0.727	0.994 1.07 0.932 0.730	0.808 1.07 0.909 0.734		
GLES d unequal legs for designing		r X r	In. ⁴ In. ³ In. In. In.	5.55 2.22 0.977 0.996 0.748	4.83 1.90 0.991 0.951 0.751	4.05 1.56 1.01 0.906 0.755	3.63 1.39 1.01 0.883 0.758	3.18 1.21 1.02 0.861 0.762	2.72 1.02 1.03 0.838 0.766	2.23 0.830 1.04 0.814 0.770		3.06 1.39 0.815 0.796 0.644	2.58 1.15 0.829 0.750 0.648	2.32 1.02 0.837 0.727 0.651	2.04 0.888 0.845 0.704 0.654	1.75 0.753 0.853 0.681 0.658	1.44 0.614 0.861 0.657 0.663		7.67 2.81 1.19 1.27 0.778	6.66 2.40 1.20 1.23 0.779	20/0 81.1 27.1 76.1 00.6 1 07 1 75 1 29 1 15 0 795		201 1 201 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.04 1.05 1.25 1.02 0.705	0.04 1:00 1.40 1.09 1.09		3./9 1.52 1.04 1.00 0./22	47/0 8/80 CO.1 CO.1 04/5	2.95 1.17 1.06 0.955 0.727	2.55 0.994 1.07 0.932 0.730	2.09 0.808 1.07 0.909 0.734		
ANGLES s and unequal legs ies for designing	AXIS Y-Y	r X r	⁴ ln. ³ ln. ln. ln.	1.75 5.55 2.22 0.977 0.996 0.748	1.70 4.83 1.90 0.991 0.951 0.751	1.66 4.05 1.56 1.01 0.906 0.755	1.63 3.63 1.39 1.01 0.883 0.758	1.61 3.18 1.21 1.02 0.861 0.762	1.59 2.72 1.02 1.03 0.838 0.766	2.23 0.830 1.04 0.814 0.770		1.80 3.06 1.39 0.815 0.796 0.644	1.75 2.58 1.15 0.829 0.750 0.648	1.73 2.32 1.02 0.837 0.727 0.651	1./0 2.04 0.888 0.845 0./04 0.650	1.68 1.75 0.753 0.853 0.681 0.658	1.44 0.614 0.861 0.657 0.663		1.27 7.67 2.81 1.19 1.27 0.778	1.23 6.66 2.40 1.20 1.23 0.779	1.9/ 1.22 1.18 0.785 1.75 1.22 1.16 0.785		111 271 122 122 124 117 0.700	1 00 3 04 1 05 1 35 1 00 0 705	1.09 0.04 1.00 1.20 1.09 0.790		1.25 3.79 1.52 1.04 1.00 0.722	47/0 8/60 c0.1 c2.1 04.6 67.1	1.21 2.95 1.17 1.06 0.955 0.727	1.18 2.55 0.994 1.07 0.932 0.730	1.16 2.09 0.808 1.07 0.909 0.734		
ANGLES legs and unequal legs perties for designing		y I S I X I	In. In. ⁴ In. ³ In. In. In.	1.75 5.55 2.22 0.977 0.996 0.748	1.56 1.70 4.83 1.90 0.991 0.951 0.751	1.58 1.66 4.05 1.56 1.01 0.906 0.755	1.59 1.63 3.63 1.39 1.01 0.883 0.758	1.60 1.61 3.18 1.21 1.02 0.861 0.762	1.61 1.59 2.72 1.02 1.03 0.838 0.766	1.56 2.23 0.830 1.04 0.814 0.770		1.57 1.80 3.06 1.39 0.815 0.796 0.644	1.59 1.75 2.58 1.15 0.829 0.750 0.648	1.60 1.73 2.32 1.02 0.837 0.727 0.651		1.68 1.75 0.753 0.853 0.681 0.658	1.62 1.66 1.44 0.614 0.861 0.657 0.663		1.19 1.27 7.67 2.81 1.19 1.27 0.778	1.20 1.23 6.66 2.40 1.20 1.23 0.779	1.18 0.00 1.9/ 1.22 1.29 1.16 0.782 1.16 1.07 1.75 1.29 1.16 0.795		102 0 11 1 12 1 12 1 12 1 12 0 1 12 0 1 10 10 10 10 10 10 10 10 10 10 10 10	1 25 1 10 3 04 1 05 1 25 1 00 0 705	1.23 1.03 3.04 1.03 1.23 1.23 1.43		1.25 3.79 1.52 1.04 1.00 0.722	47/0 8/60 C01 C01 07:0 77:1 47:1	1.25 1.21 2.95 1.17 1.06 0.955 0.727	1.26 1.18 2.55 0.994 1.07 0.932 0.730	2.09 0.808 1.07 0.909 0.734		
ANGLES qual legs and unequal legs Properties for designing	AXIS Y-Y	r y I S r x r	³ In. In. ⁴ In. ³ In. In. In.	4.28 1.55 1.75 5.55 2.22 0.977 0.996 0.748	3.65 1.56 1.70 4.83 1.90 0.991 0.951 0.751	2.99 1.58 1.66 4.05 1.56 1.01 0.906 0.755	2.64 1.59 1.63 3.63 1.39 1.01 0.883 0.758	2.29 1.60 1.61 3.18 1.21 1.02 0.861 0.762	1.61 1.59 2.72 1.02 1.03 0.838 0.766	1.57 1.62 1.56 2.23 0.830 1.04 0.814 0.770		3.55 1.57 1.80 3.06 1.39 0.815 0.796 0.644	2.91 1.59 1.75 2.58 1.15 0.829 0.750 0.648	2.58 1.60 1.73 2.32 1.02 0.837 0.727 0.651	2.24 1.61 1./0 2.04 0.888 0.845 0./04 0.55	1.61 1.68 1.75 0.753 0.853 0.681 0.658	1.53 1.62 1.66 1.44 0.614 0.861 0.657 0.663		2.81 1.19 1.27 7.67 2.81 1.19 1.27 0.778	2.40 1.20 1.23 6.66 2.40 1.20 1.23 0.779	28/10 81.1 27.1 76.1 90.6 81.1 27.1 76.1 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6		102 0 411 621 261 064 411 621 261 164 165 164 165 165 165 165 165 165 165 165 165 165	1 05 1 05 1 00 3 04 1 05 1 05 1 00 0 705	66/10 6011 CZ11 CO11 100 6011 CZ11 CO11			47/0 9/60 C01 CC1 04/6 C71 471 7/1	1.49 1.25 1.21 2.95 1.17 1.06 0.955 0.727	1.26 1.26 1.18 2.55 0.994 1.07 0.932 0.730	1.27 1.16 2.09 0.808 1.07 0.909 0.734		
ANGLES Equal legs and uneq Properties for desi	AXIS X-X AXIS Y-Y	I S I Y I S I X I	2 In. ⁴ In. ³ In. In. ⁴ In. ³ In. In. In.	13.9 4.28 1.55 1.75 5.55 2.22 0.977 0.996 0.748	12.0 3.65 1.56 1.70 4.83 1.90 0.991 0.951 0.751	9.99 2.99 1.58 1.66 4.05 1.56 1.01 0.906 0.755	8.90 2.64 1.59 1.63 3.63 1.39 1.01 0.883 0.758	7.78 2.29 1.60 1.61 3.18 1.21 1.02 0.861 0.762	6.60 1.94 1.61 1.59 2.72 1.02 1.03 0.838 0.766	5.39 1.57 1.62 1.56 2.23 0.830 1.04 0.814 0.770		11.4 3.55 1.57 1.80 3.06 1.39 0.815 0.796 0.644	9.45 2.91 1.59 1.75 2.58 1.15 0.829 0.750 0.648	8.43 2.58 1.60 1.73 2.32 1.02 0.837 0.727 0.651	7.3/ 2.24 1.61 1./0 2.04 0.888 0.845 0./04 0.654	6.26 1.89 1.61 1.68 1.75 0.753 0.853 0.681 0.658	5.11 1.53 1.62 1.66 1.44 0.614 0.861 0.657 0.663		7.67 2.81 1.19 1.27 7.67 2.81 1.19 1.27 0.778	6.66 2.40 1.20 1.23 6.66 2.40 1.20 1.23 0.779	29/10 81.1 22.1 1.81 0.30 1.91 1.22 1.19 0.795 4 07 1 75 1 29 1 16 1 07 1 75 1 29 1 16 0 795		3 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	3.04 1.05 1.05 1.00 3.04 1.05 1.05 1.00 0.705	0.0 A 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0		5.32 1.94 1.23 1.25 3.79 1.52 1.04 1.00 0.722	47/0 17/2 17/2 17/2 17/2 17/2 17/2 17/2 17/2	4.18 1.49 1.25 1.21 2.95 1.17 1.06 0.955 0.727	3.56 1.26 1.26 1.18 2.55 0.994 1.07 0.932 0.730	2.91 1.03 1.27 1.16 2.09 0.808 1.07 0.909 0.734		
ANGLES Equal legs and unequal legs Properties for designing	Area AXIS X-X AXIS Y-Y	I S I Y I S I X I	In. ² In. ⁴ In. ³ In. In. In. ⁴ In. ³ In. In. In.	5.81 13.9 4.28 1.55 1.75 5.55 2.22 0.977 0.996 0.748	4.92 12.0 3.65 1.56 1.70 4.83 1.90 0.991 0.951 0.751	4.00 9.99 2.99 1.58 1.66 4.05 1.56 1.01 0.906 0.755	3.53 8.90 2.64 1.59 1.63 3.63 1.39 1.01 0.883 0.758	3.05 7.78 2.29 1.60 1.61 3.18 1.21 1.02 0.861 0.762	1.94 1.61 1.59 2.72 1.02 1.03 0.838 0.766	2.06 5.39 1.57 1.62 1.56 2.23 0.830 1.04 0.814 0.770		4.61 11.4 3.55 1.57 1.80 3.06 1.39 0.815 0.796 0.644	3.75 9.45 2.91 1.59 1.75 2.58 1.15 0.829 0.750 0.648	3.31 8.43 2.58 1.60 1.73 2.32 1.02 0.837 0.727 0.651	2.86 7.37 2.24 11.61 11.70 2.04 0.888 0.845 0.704 0.654	1.89 1.61 1.68 1.75 0.753 0.853 0.681 0.658	1.94 5.11 1.53 1.62 1.66 1.44 0.614 0.861 0.657 0.663		5.44 7.67 2.81 1.19 1.27 7.67 2.81 1.19 1.27 0.778	4.61 6.66 2.40 1.20 1.23 6.66 2.40 1.20 1.23 0.779	3.73 3.30 1.97 1.22 1.18 3.30 1.97 1.22 1.18 0.782 3.21 4.07 1.75 1.29 1.16 1.07 1.75 1.29 1.16 0.795	0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	102 0 411 621 261 064 411 621 261 164 165 164 165 165 165 165 165 165 165 165 165 165	1 0.4 2.04 1.05 1.05 1.06 3.04 1.05 1.05 1.00 0.705	1.44 0.04 1.40 1.40 1.40 0.04 1.40 1.40		3.50 5.32 1.94 1.23 1.25 3.79 1.52 1.04 1.00 0.722	47/0 9/60 CO.1 CP.1 04/6 1/23 3/0 1/32 1/24 60/2	2.67 4.18 1.49 1.25 1.21 2.95 1.17 1.06 0.955 0.727	2.25 3.56 1.26 1.26 1.18 2.55 0.994 1.07 0.932 0.730	1.81 2.91 1.03 1.27 1.16 2.09 0.808 1.07 0.909 0.734		
ANGLES Equal legs and uneq Properties for desi	AXIS X-X AXIS Y-Y	Ft I S I Y I S I X I	Lb ln ² ln ⁴ ln ³ ln ln ln ⁴ ln ³ ln ln.	19.8 5.81 13.9 4.28 1.55 1.75 5.55 2.22 0.977 0.996 0.748	16.8 4.92 12.0 3.65 1.56 1.70 4.83 1.90 0.991 0.951 0.751	13.6 4.00 9.99 2.99 1.58 1.66 4.05 1.56 1.01 0.906 0.755	12.0 3.53 8.90 2.64 1.59 1.63 3.63 1.39 1.01 0.883 0.758	10.4 3.05 7.78 2.29 1.60 1.61 3.18 1.21 1.02 0.861 0.762	8.7 2.56 6.60 1.94 1.61 1.59 2.72 1.02 1.03 0.838 0.766	2.06 5.39 1.57 1.62 1.56 2.23 0.830 1.04 0.814 0.770		11.4 3.55 1.57 1.80 3.06 1.39 0.815 0.796 0.644	12.8 3.75 9.45 2.91 1.59 1.75 2.58 1.15 0.829 0.750 0.648	11.3 3.31 8.43 2.58 1.60 1.73 2.32 1.02 0.837 0.727 0.651	9.8 2.86 7.37 2.24 1.61 1.70 2.04 0.888 0.888 0.70 2.04 0.654	8.2 2.40 6.26 1.89 1.61 1.68 1.75 0.753 0.853 0.681 0.658	6.6 1.94 5.11 1.53 1.62 1.66 1.44 0.614 0.861 0.657 0.663		18.5 5.44 7.67 2.81 1.19 1.27 7.67 2.81 1.19 1.27 0.778	15.7 4.61 6.66 2.40 1.20 1.23 6.66 2.40 1.23 0.779	12.8 3.73 3.36 1.97 1.22 1.18 3.36 1.97 1.22 1.18 0.785 113 3.34 4.07 1.75 1.33 1.16 4.07 1.75 1.33 1.16 0.785		8.0 2.00 4.00 1.02 1.00 1.01 4.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1		106 / 10 A0'1 CO'1 CO'1 A0'C A0'1 CO'1 A0'C 46'1 0'0		• 11.9 3.50 5.32 1.94 1.23 1.25 3.79 1.52 1.04 1.00 0.722	47/0 9/6/0 CO.1 CO.1 04/2 1/2/1 47/1 7/1 0/14 60/2 0/01	9.1 2.67 4.18 1.49 1.25 1.21 2.95 1.17 1.06 0.955 0.727	7.7 2.25 3.56 1.26 1.26 1.26 1.18 2.55 0.994 1.07 0.932 0.730	6.2 1.81 2.91 1.03 1.27 1.16 2.09 0.808 1.07 0.909 0.734		
ANGLES Equal legs and uneq Properties for desi	Weight Area AXIS X-X AXIS Y-Y	Ft T I S T Y I S T X T	In. ² In. ⁴ In. ³ In. In. In. ⁴ In. ³ In. In. In.	5.81 13.9 4.28 1.55 1.75 5.55 2.22 0.977 0.996 0.748	11% 16.8 4.92 12.0 3.65 1.56 1.70 4.83 1.90 0.991 0.951 0.751	1 13.6 4.00 9.99 2.99 1.58 1.66 4.05 1.56 1.01 0.906 0.755	^{15/6} 12.0 3.53 8.90 2.64 1.59 1.63 3.63 1.39 1.01 0.883 0.758	7 ₄ 10.4 3.05 7.78 2.29 1.60 1.61 3.18 1.21 1.02 0.861 0.762	6 8.7 2.56 6.60 1.94 1.61 1.59 2.72 1.02 1.03 0.838 0.766	% 7.0 2.06 5.39 1.57 1.62 1.56 2.23 0.830 1.04 0.814 0.770		5 ₆ 1 15.7 4.61 11.4 3.55 1.57 1.80 3.06 1.39 0.815 0.796 0.644	1 12.8 3.75 9.45 2.91 1.59 1.75 2.58 1.15 0.829 0.750 0.648	^{15/6} 11.3 3.31 8.43 2.56 1.60 1.73 2.32 1.02 0.837 0.727 0.651	% 9.8 2.86 /.3/ 2.24 1.61 1.70 2.04 0.888 0.845 0.704 0.654	6 8.2 2.40 6.26 1.89 1.61 1.68 1.75 0.753 0.853 0.681 0.658	³⁴ 6.6 1.94 5.11 1.53 1.62 1.66 1.44 0.614 0.861 0.657 0.663		× 11% 18.5 5.44 7.67 2.81 1.19 1.27 7.67 2.81 1.19 1.27 0.778	15.7 4.61 6.66 2.40 1.20 1.23 6.66 2.40 1.23 0.779	% 1.26 3.70 1.37 1.22 1.12 1.		00/10 71 201 201 100 1 110 10 1 10 1 10 1 1		106 / 10 10 10 10 10 10 10 10 10 10 10 10 10			47/10 9/6/10 2011 C011 C011 04/2 17/2 17/2 17/2 10/2 60/2 00/1 0/	^{13/16} 9.1 2.67 4.18 1.49 1.25 1.21 2.95 1.17 1.06 0.955 0.727	7.7 2.25 3.56 1.26 1.26 1.26 1.18 2.55 0.994 1.07 0.932 0.730	¹ / ₁₆ 6.2 1.81 2.91 1.03 1.27 1.16 2.09 0.808 1.07 0.909 0.734		
ANGLES ANGLES Equal legs and uneq	Weight Area AXIS X-X AXIS Y-Y	SS FA TO I S T Y I S T X T	Lb ln ² ln ⁴ ln ³ ln ln ln ⁴ ln ³ ln ln.	11/4 19.8 5.81 13.9 4.28 1.55 1.75 5.55 2.22 0.977 0.996 0.748	11% 16.8 4.92 12.0 3.65 1.56 1.70 4.83 1.90 0.991 0.951 0.751	1 13.6 4.00 9.99 2.99 1.58 1.66 4.05 1.56 1.01 0.906 0.755	¹ % ₁₆ 12.0 3.53 8.90 2.64 1.59 1.63 3.63 1.39 1.01 0.883 0.758	7 ₄ 10.4 3.05 7.78 2.29 1.60 1.61 3.18 1.21 1.02 0.861 0.762	^{13/6} 8.7 2.56 6.60 1.94 1.61 1.59 2.72 1.02 1.03 0.838 0.766	% 7.0 2.06 5.39 1.57 1.62 1.56 2.23 0.830 1.04 0.814 0.770		1 15.7 4.61 11.4 3.55 1.57 1.80 3.06 1.39 0.815 0.796 0.644	1 12.8 3.75 9.45 2.91 1.59 1.75 2.58 1.15 0.829 0.750 0.648	Wei 11.3 3.31 8.43 2.56 1.60 1.73 2.32 1.02 0.837 0.727 0.651	% 9.8 2.86 /.3/ 2.24 1.61 1.70 2.04 0.888 0.845 0.704 0.654	¹ % ¹⁶ 8.2 2.40 6.26 1.89 1.61 1.68 1.75 0.753 0.853 0.681 0.658	³⁴ 6.6 1.94 5.11 1.53 1.62 1.66 1.44 0.614 0.861 0.657 0.663		11% 18.5 5.44 7.67 2.81 1.19 1.27 7.67 2.81 1.19 1.27 0.778		% 1.26 3.70 1.37 1.22 1.12 1.		00/10 71 201 201 100 1 110 10 1 10 1 10 1 1	54 BE 104 304 105 105 100 304 105 105 100 304 105 105 105 100 0705	106 / 10 10 10 10 10 10 10 10 10 10 10 10 10			47/10 9/6/10 2011 C011 C011 04/2 17/2 17/2 17/2 10/2 60/2 00/1 0/	^{13/16} 9.1 2.67 4.18 1.49 1.25 1.21 2.95 1.17 1.06 0.955 0.727	34 7.7 2.25 3.56 1.26 1.26 1.18 2.55 0.994 1.07 0.932 0.730	¹ / ₁₆ 6.2 1.81 2.91 1.03 1.27 1.16 2.09 0.808 1.07 0.909 0.734		

/				,																		• • • • • •		-			
			tance k	Ē	~		1%			12		1× 1×	1% 1% e	1%	1'//e 19/		1%	13/ ⁸	1% 1	13/18	*	1%	11/16				
			Thickness t	E	1%.6		15/18 7/-		Υ.	9 [,] 6,	24 1/18	% 8/8	* *	% //18	- "	*	17.6	17/16	\$°	%	%	7/16	*				
		ige	Thic		1.320	1.200	0.940	0.770	0.680	0.810	0.695	0.570	0.605 0.525	0.425	0.985	0.760	0.665	0.715	0.630	0.505	0.430	0.440	0.345				
		Flange	€.		11 %	11%	711 V		=	75%	7 1/2	71/2	မမ	<u>م</u>	10% 10%	1014	1014	7%	۳ ۲ / ۳	~ 1	_	5%					
			Width b,	5	11.220	11.265	11.200	11.090	11.035	7.635	7.555	7.495	6.060	6.000	10.425	10.295	10.235	7.120	7.035	6.995	0.965	5.525	5.500				
STRUCTURAL TEES Cut from W shapes Dimensions	ľ	Area	Stem	с. Ш		6.45 6.21	5.53 4.97		3.87	4.57	3.78	3.19	3.25 2.82		4.96			3.53	3.09 2.78	2.44	45.7	2.18	1.96				
AL ' sha			네이	Ē	*	* *	* *	~	×	3 3		%₁8 3∕18	%ie %ie	%i6	%,e	×	3/16	7	8'% %	3/16	\$1¢	%	¥.				
JCTURAL 1 from W sha Dimensions		Stern	Thickness t"		*	1,/18 5∕8	9,16 81,9	2/2	7/16	~ ~		* *	3% %	916	9.% %	7/16	%	7/18 21	× ×	5/16 2	318	14	7				
STRUCTURAL TEE Cut from W shapes Dimensions			Thick	=	0.730	0.670	0.590	0.480	0.425	0.495	0.415	0.355	0.360	0.5U	0.585	0.455	0.395	0.430	0.345	0.305	C67.0	0.275	0.250				
SII		£			%6	%6 %6	%6 %6	%6	91%	%6	%6 %6	ກດ	იიმ	e%p	8% 8%	8%	8%			œ	8/,)	80					
d k		Dep	o Ten c	Ē	9.745	9.625 9.485	9.365 9.295	9.195	9.105	9.235	9.120	8.995 8.995	9.030 8.950	0.65.0	8.485 8.375	8.260	8.165	8.215	8.065	8.005	 N.S.	7.940	7.845	1			
			Area	In. ²			15.6 14.3		11.2	10.4		7.33		<u> </u>	14.7		9.84	8.38		5.89		4.56		1			
			tion			 	×53 ×48.5 -		×38	9×35.5 ~225	×30 ×30	×25 ×25	8 8 8 8 8 8		Ś		×33.5	28.5	× 23 × 22.5	×20	<u> </u>	8×15.5	5				
			Designation		WT 9×71.5	××	××	×	×	×9 TW	< × i	< ×	WT 9×23 ×20	ĸ	WT 8×50 ×44	×	×	WT 8×28.5	××	×>	×	WT 8×	×				
<u> </u>																											
		-	0 - 00	NN	- 0			~	e o u	00	φ. ω. φ.	- 4 6	600	-1	Ø	- 9	10		ιn.								
36 ksi 50 ksi	96	\vdash	8 15 2 1		-	889	84 (C) 4 S		\$85	188.41		ē 4 8	1	<u>a</u>	Ë	5 8			24.5	26.5	362	3.70	1.66	0.163	148.9	54.1	142
$F_y = 36$ ks		\vdash	547 75 75 541 75 75 541 742		-	- 70	84 (C) 4 S		<u>(</u>	188.41		<u>K 1 197</u>	331 332 338 332 338 332 338 332 332 332 332	<u>a</u>	2.52 2.29		186	113 153	34.0	26.5	362	3.70	1.66	0.531	148.9	54.1	391
	06	36		288 288	524 517	8	497 489	482	4/4 466 466	6 4 4 6 4 5	84 84 84 84 84 84 84 84 84 84 84 84 84 8	833	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	007	2.52		186		6.7 34.0								
	06	50[†] 36	547	200 200 200 200 200 200 200 200 200 200	766 517	8	730 497 715 489	701 482	4/4 466 466	637 449	567 567 132 267 268	833	388 893	7007	2.52	24 109	294 186	190 113 13.0 15.3	6.7 34.0	29.1 26.5					165.1 148.9		143 391 142 142
	66 66	36 50[†] 36	825 547 815 547 815 541	582 793 530 530 530 530 530 530 530 530 530 53	5/5 /82 524 568 769 517	554 743 504	546 730 497 538 715 489	529 701 482	512 670 466 502 551 466	494 637 449	475 603 432 454 567 413	489 374 448 353	365 366 366 366 308 308 308 308 308 308 308 308 308 308	007 2007 107	2.28 2.52	125 1/4 109 17 24 16	249 294 186	137 190 113 15.4 13.0 15.3	37.0 26.7 34.0	29.1	402	3.71	1.66	0.185	165.1	59.7	395 143
in kips V14	66 66	50 36 50⁴ 36	900 629 873 572 908 600 825 547 897 595 815 541	873 582 793 530 873 582 793 530	847 568 769 517	833 561 757 511 818 554 743 504	803 546 730 497 788 538 715 489	772 529 701 482	738 512 670 466 738 512 670 466	703 494 637 449	665 475 603 432 626 454 567 413 626 200 700 432	541 411 489 374 496 388 448 353	449 399 355 340 356 340 356 308 360 331 356 308 360 331 356 314 356 314 356 356 404 331 356 404 331 356 356 404 331 356 366 370 356 370 356 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 3333333333333	340 201 201 200 201	2.49 2.50 2.28 2.52	205 125 174 109 26 17 24 16	373 249 294 186	231 137 190 113 13.1 15.4 13.0 15.3	29.2 37.0 26.7 34.0		402	3.71		0.185	165.1	59.7	
in kips V14	66 66	36 50 36 50 [†] 36	661 900 629 873 572 661 900 600 825 547 654 897 595 815 541	640 873 582 733 530 536 530 536 530 536 530 536 530 536 530 530 530 530 530 530 530 530 530 530	626 847 568 769 517	618 833 561 757 511 609 818 554 743 504	601 803 546 730 497 592 786 538 715 489	583 772 529 701 482	5/4 / 56 5/2 600 4/4 564 738 512 670 466 512 670 466	544 703 494 637 449	523 665 475 603 432 501 626 454 567 413 500 626 454 567 413	454 541 411 489 374 429 496 388 448 353	403 449 365 404 331 331 331 331 331 331 331 331 331 331 331 331 331 332 333 331 332 332 333 331 332 331 332 331 332 331 332 333 331 332 333 333 331 332 333 333 333 332 333 333 332 333 <td>313 360 201 201 200</td> <td>2.49 2.49 2.50 2.28 2.52</td> <td>148 205 125 1/4 109 10 26 17 24 16</td> <td>316 373 249 294 186</td> <td>166 231 137 190 113 154 131 154 130 153</td> <td>7 40.6 29.2 37.0 28.7 34.0</td> <td>32.0 29.1</td> <td>447 402</td> <td>3.73 3.71</td> <td>1.67 1.66 0.05</td> <td>0.100 0.100</td> <td>184.5 165.1</td> <td>66.3 59.7</td> <td>395 143</td>	313 360 201 201 200	2.49 2.49 2.50 2.28 2.52	148 205 125 1/4 109 10 26 17 24 16	316 373 249 294 186	166 231 137 190 113 154 131 154 130 153	7 40.6 29.2 37.0 28.7 34.0	32.0 29.1	447 402	3.73 3.71	1.67 1.66 0.05	0.100 0.100	184.5 165.1	66.3 59.7	395 143
DLUMNS shapes axial loads in kips	66 66	50 36 50 36 50[†] 36	1059 691 900 629 873 5/2 1002 661 908 600 825 547 990 654 897 595 815 541	977 647 845 589 805 536 963 640 873 582 793 530	9449 633 8960 5/5 /82 524 935 626 847 568 769 517	919 018 833 561 757 511 903 609 813 554 753 504	887 601 803 546 730 497 870 592 786 538 715 489	852 583 772 529 701 482	834 5/4 735 521 600 4/4 815 564 738 512 670 466	776 544 703 494 637 449	735 523 665 475 603 432 40 432 40 432 413 432 413 432 413 413 413 413 413 413 413 413 413 413	500 47/0 500 470 500 700 700 700 700 700 700 700 700 7	497 497 449 395 396 396 396 348 356 349 356 349 356 340 356 306 340 356 306 340 356 306 340 356 306 360 356 306 360 360 360 360 360 360 360 360 36	1 333 319 320 26/ 200 200 200	2.48 2.49 2.49 2.50 2.28 2.52	240 148 205 125 174 109 30 19 26 17 24 16	529 316 373 249 294 186	276 166 231 137 190 113 13.1 15.4 13.1 15.4 13.1 15.4 13.1	31.7 40.6 29.2 37.0 26.7 34.0	29.1	447 402	3.73 3.71	1.67 1.66 0.05	0.100 0.100	184.5 165.1	66.3 59.7	395 143
DLUMNS shapes axial loads in kips	06 66 601	36 50 36 50 36 50[†] 36	722 1059 691 990 629 873 5/2 729 1002 661 908 600 825 547 722 990 654 897 595 815 547	707 963 640 873 582 793 530	690 935 626 847 568 769 517	622 919 618 833 560 775 511 673 903 609 818 554 7757 511	663 887 601 803 546 730 497 654 870 592 786 538 715 489	644 852 583 772 529 701 482	633 834 5/4 /35 521 085 4/4 623 815 564 738 512 670 466 773 7512 670 466	601 776 544 703 494 637 449	578 735 523 665 475 603 432 75 554 692 501 6256 454 567 413 75 755 756 757 7413 755 755 756 755 755 755 755 755 755 755	502 509 47/0 500 47/1 411 429 374 475 549 429 496 338 448 373	446 497 403 449 365 440 331 416 385 399 340 336 309 340 336 349 365 314 320 285 308 349 356 314 320 285 308 349 356 314 320 285 308 340 356 314 320 285 308 340 356 314 320 285 368 308 340 356 314 350 368 368 368 368 368 368 368 368 368 368	333 335 319 320 2 87 - 200 5 200 Properties	2.48 2.49 2.49 2.50 2.28 2.52	71 240 148 205 125 174 109 21 30 19 26 17 24 16	449 529 316 373 249 294 186	199 276 166 231 137 190 113 15.5 13.1 15.4 13.1 15.4 13.0 15.3	44.1 31.7 40.6 29.2 37.0 26.7 34.0	32.0 29.1	447 402	3.73 3.71	1.67 1.66 0.05	0.100 0.100	184.5 165.1	66.3 59.7	401 395 144 143
in kips V14	120 109 99 90	50 36 50 36 50[†] 36	1059 691 900 629 873 5/2 1002 661 908 600 825 547 990 654 897 595 815 541	707 963 640 873 582 793 530	690 935 626 847 568 769 517	919 018 833 561 757 511 903 609 813 554 753 504	663 887 601 803 546 730 497 654 870 592 786 538 715 489	644 852 583 772 529 701 482	633 834 5/4 /35 521 085 4/4 623 815 564 738 512 670 466 773 7512 670 466	601 776 544 703 494 637 449	578 735 523 665 475 603 432 75 554 692 501 6256 454 567 413 75 755 756 757 7413 755 757 7557 7557 7557 7557 7557 7557	502 509 47/0 500 47/1 411 429 374 475 549 429 496 338 448 373	497 497 449 395 396 396 396 348 356 349 356 349 356 340 356 306 340 356 306 340 356 306 340 356 306 360 356 306 360 360 360 360 360 360 360 360 36	333 335 319 320 2 87 - 200 5 200 Properties	2.47 2.48 2.48 2.49 2.49 2.50 2.28 2.52	2/2 1/3 240 148 205 125 1/4 109 32 21 30 19 26 17 24 16	692 449 529 316 373 249 294 186	332 199 276 166 231 137 190 113 132 155 131 154 131 154 130 153	34.4 44.1 31.7 40.6 29.2 37.0 28.7 34.0	35.3 32.0 29.1 1280 1240 1110	447 402	3.74 3.73 3.71	0.167 1.67 1.66 0.105 0.105	0.100 0	204.8 184.5 165.1	73.6 66.3 59.7 404 404 205	401 395 144 143
DLUMNS shapes axial loads in kips	06 66 601	50 36 50 36 50 36 50 ⁺ 36	722 1059 691 990 629 873 5/2 729 1002 661 908 600 825 547 722 990 654 897 595 815 547	10/4 /14 9/7 963 640 873 582 733 530 1060 707 963 640 873 582 733	1044 699 945 633 800 5/5 762 524 1028 690 935 626 847 568 769 517	1011 682 919 618 833 561 757 511 1011 682 913 609 818 554 773 504	976 663 887 601 803 546 730 497 958 654 870 592 788 538 715 489	938 644 852 583 772 529 701 482	919 633 834 5/4 /55 521 665 4/4 818 623 815 554 738 512 670 466 554 738 512 670 466	856 601 776 544 703 494 637 449	811 578 735 523 865 475 603 432 7 764 554 692 501 626 454 567 413	608 4.25 509 4.46 501 4.46 3.54 4.46 3.54 6.66 3.55 5.69 4.54 5.41 4.11 4.25 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.55 3.	551 446 497 403 365 404 331 492 416 497 403 376 306 301 331 492 385 395 340 356 306 301 331 439 385 348 356 349 356 308 308 439 385 348 356 340 326 308 308 439 385 348 356 340 356 308 308	034 333 330 319 320 267 - 203 20	2.47 2.48 2.48 2.49 2.49 2.50 2.28 2.52	2/2 1/3 240 148 205 125 1/4 109 32 21 30 19 26 17 24 16	692 449 529 316 373 249 294 186	199 276 166 231 137 190 113 15.5 13.1 15.4 13.1 15.4 13.0 15.3	34.4 44.1 31.7 40.6 29.2 37.0 28.7 34.0	35.3 32.0 29.1 1280 1240 1110	447 402	3.74 3.73 3.71	0.167 1.67 1.66 0.105 0.105	0.100 0	184.5 165.1	81.7 73.6 66.3 59.7 400 404 404 405	409 404 401 395 147 145 144 143
COLUMNS COLUMNS W shapes Altowable axial loads in kips W14	132 120 109 39 90	36 50 36 50 36 50 36 50 [†] 36	638 1164 /62 1059 639 960 629 8/3 5/2 801 1101 729 1002 661 906 650 825 547 794 1088 722 990 654 997 555 815 541	777 1060 707 963 640 873 582 793 530	768 1044 699 949 633 8960 5/5 782 524 759 1028 690 935 626 847 568 769 517	750 1011 682 919 688 833 561 757 511 740 994 673 903 609 813 554 743 504	730 976 663 887 601 803 546 730 497 719 958 654 870 592 786 538 715 489	708 938 644 852 583 772 529 701 482	69/ 919 633 834 5/4 7/8 835 8/4 7/4 7/85 5/1 6/85 4/4 7/4 7/85 5/1 6/85 4/4 7/4 7/85 5/1 6/85 4/4 7/4 7/85 5/1 6/70 4/66 7/4 7/20 5/1 6/70 4/66 7/2	0/4 0/7 0/2 730 334 721 303 494 637 449 708 652 856 601 776 544 703 494 637 449	637 811 578 735 523 865 475 603 432 7 610 764 554 692 501 626 454 567 413 7 700 716 554 692 501 626 454 567 413 7 700 700 700 700 700 700 700 700 700 7	554 668 372 549 454 541 448 357 554 668 353 554 448 353 554 554 555 554 448 355	551 446 497 403 365 404 331 492 416 497 403 376 306 404 331 492 316 437 376 399 340 331 439 385 348 385 348 366 308 439 385 348 386 340 326 308 439 385 348 356 314 320 285 308	332 334 333 333 319 350 19 267 200 20 0	2.47 2.48 2.48 2.49 2.49 2.50 2.28 2.52	2/2 1/3 240 148 205 125 1/4 109 32 21 30 19 26 17 24 16	692 449 529 316 373 249 294 186	332 199 276 166 231 137 190 113 132 155 131 154 131 154 130 153	34.4 44.1 31.7 40.6 29.2 37.0 28.7 34.0	35.3 32.0 29.1 1280 1240 1110	447 402	3.74 3.73 3.71	0.167 1.67 1.66 0.105 0.105	0.100 0	204.8 184.5 165.1	81.7 73.6 66.3 59.7 400 404 404 405	409 404 401 395 147 145 144 143
COLUMNS COLUMNS W shapes Altowable axial loads in kips W14	132 120 109 39 90	36 50 36 50 36 50 36 50 [†] 36	638 1164 /62 1059 639 960 629 8/3 5/2 801 1101 729 1002 661 906 650 825 547 794 1088 722 990 654 997 555 815 541	777 1060 707 963 640 873 582 793 530	768 1044 699 949 633 8960 5/5 782 524 759 1028 690 935 626 847 568 769 517	12 750 1011 682 919 642 743 561 757 511 13 740 994 673 901 609 818 554 743 504 743	14 730 976 663 887 601 803 546 730 497 15 15 719 958 654 870 592 786 538 715 489	16 708 938 644 852 583 772 529 701 482	1/ 69/ 919 633 834 5/4 /55 521 605 4/4 18 686 898 623 815 564 738 512 670 466 10 621 971 613 706 564 738 512 670 466	20 662 856 601 776 544 703 494 837 449	22 637 811 578 735 523 865 475 603 432 7 24 510 764 554 692 501 626 454 567 413 7 22 510 764 554 692 501 626 454 567 413 70	554 668 372 549 454 541 448 357 554 668 353 554 448 353 554 554 555 554 448 355	403 551 446 497 403 449 355 404 331 452 446 433 376 399 340 355 404 331 427 439 385 346 343 376 399 340 356 301 285	332 334 333 333 319 350 19 267 200 20 30	247 247 248 248 248 249 249 250 228 252	196 2/2 1/3 240 148 205 125 1/4 109 23 32 21 30 19 26 17 24 109	587 692 449 529 316 373 249 294 186	239 332 199 276 166 231 137 190 113 15.5 13.2 15.5 13.1 15.4 13.0 15.3 15.3	34.4 44.1 31.7 40.6 29.2 37.0 28.7 34.0	38.8 35.3 32.0 29.1 1520 1320 1340 1410	548 495 447 402	3.76 3.74 3.73 3.71	1.67 1.67 1.67 1.66 1.66 1.66 1.66	u 160 U 1	228.0 204.8 184.5 165.1	81.7 73.6 66.3 59.7 400 404 404 405	409 404 401 395 147 145 144 143
DLUMNS shapes axial loads in kips	132 120 109 39 90	36 50 36 50 36 50 36 50 36 50 ⁴ 36	0 638 1164 /62 1059 691 960 629 8/3 5/2 6 801 1101 729 1002 661 900 650 825 547 7 794 1088 722 990 654 897 595 815 541	8 785 10/4 714 977 647 985 589 905 536 953 640 873 582 793 530	10 /68 1044 699 949 633 960 5/5 /682 5/24 11 759 1028 690 935 626 847 568 769 517	12 750 1011 682 919 618 931 551 757 511 13 740 994 573 903 609 8181 554 743 504	14 730 976 663 887 601 803 546 730 497 497 0 15 719 958 654 870 592 788 538 715 489	Total 16 708 938 644 852 583 772 529 701 482 1 <td>0 1/ 09/ 9/9 633 834 5/4 735 521 685 4/4 5 18 686 898 623 815 564 735 512 660 4/4 5 18 686 898 623 815 564 735 512 670 466</td> <td>20 662 856 601 776 544 703 494 837 449</td> <td>22 637 811 578 735 523 865 475 603 432 7 24 510 764 554 692 501 626 454 567 413</td> <td>554 668 372 549 454 541 448 357 554 668 353 554 448 353 554 554 555 554 448 355</td> <td>32 493 551 446 497 403 356 404 331 34 461 422 416 497 370 349 365 404 331 36 427 439 376 348 356 340 331 36 427 439 385 348 356 341 320 285 36 427 439 385 348 356 314 320 285 36 427 439 385 348 356 314 320 285</td> <td>332 334 333 333 319 350 19 267 200 20 30</td> <td>247 247 248 248 248 249 249 250 228 252</td> <td>196 2/2 1/3 240 148 205 125 1/4 109 23 32 21 30 19 26 17 24 109</td> <td>692 449 529 316 373 249 294 186</td> <td>239 332 199 276 166 231 137 190 113 15.5 13.2 15.5 13.1 15.4 13.0 15.3 15.3</td> <td>47.7 34.4 44.1 31.7 40.6 29.2 37.0 26.7 34.0</td> <td>35.3 32.0 29.1 1280 1240 1110</td> <td>548 495 447 402</td> <td>3.76 3.74 3.73 3.71</td> <td>1.67 1.67 1.67 1.66 1.66 1.66 1.66</td> <td>0.100 U.100 U.100</td> <td>228.0 204.8 184.5 165.1</td> <td>81.7 73.6 66.3 59.7 400 404 404 405</td> <td>404 401 395 145 144 143</td>	0 1/ 09/ 9/9 633 834 5/4 735 521 685 4/4 5 18 686 898 623 815 564 735 512 660 4/4 5 18 686 898 623 815 564 735 512 670 466	20 662 856 601 776 544 703 494 837 449	22 637 811 578 735 523 865 475 603 432 7 24 510 764 554 692 501 626 454 567 413	554 668 372 549 454 541 448 357 554 668 353 554 448 353 554 554 555 554 448 355	32 493 551 446 497 403 356 404 331 34 461 422 416 497 370 349 365 404 331 36 427 439 376 348 356 340 331 36 427 439 385 348 356 341 320 285 36 427 439 385 348 356 314 320 285 36 427 439 385 348 356 314 320 285	332 334 333 333 319 350 19 267 200 20 30	247 247 248 248 248 249 249 250 228 252	196 2/2 1/3 240 148 205 125 1/4 109 23 32 21 30 19 26 17 24 109	692 449 529 316 373 249 294 186	239 332 199 276 166 231 137 190 113 15.5 13.2 15.5 13.1 15.4 13.0 15.3 15.3	47.7 34.4 44.1 31.7 40.6 29.2 37.0 26.7 34.0	35.3 32.0 29.1 1280 1240 1110	548 495 447 402	3.76 3.74 3.73 3.71	1.67 1.67 1.67 1.66 1.66 1.66 1.66	0.100 U.100	228.0 204.8 184.5 165.1	81.7 73.6 66.3 59.7 400 404 404 405	404 401 395 145 144 143

		r	-								
d Cub		-	Ē	1.02 1.06 1.06	1.06 1.10 1.11	1.10 1.10 1.11 1.12	0.351	1.14 1.16 1.17	1.00 1.00	0.365	0.242
× 3 ×	Axis Y-Y	s	In. ³	5.32 5.07 4.82 4.69	4.79 4.26 3.99 3.81	5.65 5.33 5.00 4.67 4.39	0.310	4.88 4.38 4.02	3.00	0.270	0.118
X X X X X X X X X X X X X X X X X X X		-	In. ⁴	17.8 16.4 15.1 14.4	16.5 13.7 12.3 11.4	17.4 15.8 14.3 12.7 11.3	0.382	15.8 13.2 11.4	7.35 6.50	0.328	0.112
SU		~	Ľ.	6.29 6.41 6.56 6.64	4.62 4.82 5.06	4.28 4.36 4.59 4.71	4.22	3.61 3.75 3.89	3.87 3.99	3.61	3.40
NELS ANEO	Axis X-X	s	In. ³	75.1 69.7 64.3 61.6	48.4 42.0 38.8 36.8	44.9 42.0 36.1 36.1 33.8	9.23	31.5 27.8 25.3	22 20.5	6.40	4.42
CHANNELS MISCELLANEOUS Properties		1	In.4	676 627 578 554	314 273 252 239	269 252 234 216 203 203	55.4	158 139 127	110 103	32.0	22.1
W	1	> ₹		6.86 7.02 7.20 7.29	5.09 5.33 5.33	4.15 4.27 4.41 4.67	25.9	4.02 4.24 4.40	5.11 5.25	23.8	43.8
	Shear Center	tion e°	<u>ц</u>	0.695 0.797 0.909 0.969	0.815 1.03 1.16 1.24	0.741 0.844 0.952 1.07 1.18	0.284	0.864 1.06 1.21	1.03	0.332	0.167
		'×	Ē	0.862 0.858 0.866 0.866	0.974 0.963 0.980 1.00	1.05 1.04 1.08	0.269	1.09 1.12	066:0	0.284	0.180
	Nom- inal	тре Қ	بە	58 51.9 45.8 42.7	50 35 31 8 8	3 3 4 4 5 5	10.6	41.1 33.6 28.5	% %	8.4	6.5
	Max. Fine	Fas- er -	Ē				1	222	%		1
		Grip	Ē	****	****	17/16 17/16 17/16 17/16	I	% % %	9,8 8,6	1	I
	Distance	×	Ē	****	* * * *	15/6 15/6 15/6 15/6	11/16	<u> </u>	<u> </u>	11/16	7/16
	Dist	F	Ē	15% 15% 15%	10% 10% 10%	**************************************	10%	7% 7% 7% 7%	71/2	8%8	9%6
		age Tess		<u>፟</u>	****	17/16 17/16 17/16 17/16 17/16	ş/.e	9,8 9,8	%16 %16	7	3/16
<u>ຮ</u>	96	Average Thickness t,	Ē	0.625 0.625 0.625 0.625 0.625	0.610 0.610 0.610 0.610 0.610	0.700 0.700 0.700 0.700 0.700	0.309	0.575 0.575 0.575	0.575 0.575	0.280	0.202
	Flange	£	+	4 4 % 4 % 4 %	4 8 8 8 8 8 8 8 4 8 4 8 4 8 4 8 4 8 4 8	4 4 3% 3%	11/2	43%	2 %	1%	
CHANNELS MISCELLANEOUS Dimensions		Width b _r	Ē	4.200 4.100 4.000 3.950	4,412 4,185 4,072 4,000	4.135 4.012 3.890 3.767 3.670	1.500	4.321 4.100 3.950	3.405 3.315	1.500	1.127 11%
		5	Ē	****	* * * *	× * * * *		***	**	,	Y.e
	Web	less		1.1/18 5/8 5/8 7/18	13/18 9/18 7/18 3/6	13/18 11/16 9/18 7/18	3/18	13/18 9/16 7/16	****	3/6	%
		Thickness fw	ц.	0.700 0.600 0.500 0.450	0.787 0.560 0.447 0.375	0.835 0.712 0.590 0.467 0.370	0.190	0.796 0.575 0.425	0.380 0.290	0.170	0.152
Grip d		Depth d	Ē	18.00 18.00 18.00 18.00	13.00 13.00 13.00	12.00	12.00	10.00	10.00	10.00	10.00
		Area A	In. ²	17.1 15.3 13.5 12.6	14.7 11.8 10.3 9.35	14.7 13.2 11.8 10.3 9.12	3.10	12.1 9.87 8.37	7.35 6.45	2.46	1.91
X X X		Desig- nation		MC 18×58 ×51.9 ×45.8 ×42.7	MC 13×50 ×40 ×35 ×31.8	MC 12×50 ×45 ×40 ×35 ×31	MC 12×10.6	MC 10×41.1 ×33.6 ×28.5	MC 10×25 ×22	MC 10× 8.4	MC 10× 6.5

STRUCTURAL DETAILING IN STEEL

							_										_		
	stic	7	r	In. ³	36.2	23.9 22.3 20.7	24.9	16.7	14.4	9.97	10.3	6.79	6.22	3.68 3.16	2.96	2.36	1.86	1.13	0.826
× · · · · · · · · · · · · · · · · · · ·	Plastic Modulus	2	7	n	306	204 204 204	861 881	153	125	77.1 69.3	61.2 53.1	44.8	35.4	19.3 16.5	14.5	10.6	7.42	4.04	2.36
2 < 2 × 2	Tor-	con-	7	*.i	12.8	7.56	8.39	4.59 1	4.15 1 2.37 1	2.12	2.82	1.08	1.29	0.55	0.45	0.37 0.17	0.32	0.12 0.07	60.0
	5		_	Ē	1.53	12 8 19	1.33	1.16	1.14	1.03	1.06	0.980	0.901	0.798	0.734 0.766	0.675	0.620		_
e + d +		Axis Y-Y	S	n.a	20.7 1	132 1	13.9 1	9.32 1	7.72 1 6.94 1	5.23 1	5.74 1 5.16 1	3.89 0	3.38 0	2.07 0	1.44 0	1.30 0	1.01 0	0.646 0.569 0.574 0.581	0.468 0.516
	erties	Axi		- -								9.87 3	8.36 3	3.73 1	3.17 1	1.82	1.67 1	0.903 0.764 0	0.586 0
() <i>i</i>	Elastic Properties			- -	9.43 83.3 9.71 77.1	9.02 47.7 9.21 44.9 9.47 42.2	7.71 50.2 7.89 46.8	7.62 29.8	6.71 24.1 7.07 20.8	5.75 15.7 5.95 14.4	4.55 15.7 4.77 13.6	4.72 9 4.83 9	3.78 8 4.07 6	3.10 4 3	2.69 3 2.86 2	2.28 2	1.87 1 2.05 1	1.56	1.15 0
S SHAPES Properties	Elasti	X-X		с. Ц					4	64.8 5 59.6 5	50.8 4 45.4 4	36.4 4	29.4 3 24.7 4	16.2 3 14.4 3	12.1 2 10.5 2	8.77 2	6.09 1 4.92 2	3.39 1	1.95 1
SHA SHA		Axis X-X		.	240	199 187 175	165 155	128	-	0.0000	NN 844			10-0110		1	15.2	6.79	2.93
D C			-	5	3160	2390	1580	1280	85 89 80	447	305	229	147 124					100.000	
	_	וס	₹	-	2.79	3.81 3.87 3.94	3.06	3.94	4.17	4.28	3.32	4.34	4.12	4.70	4.63	4.69	4.66 5.10	4.88 5.13	4.60
		5		Ē	1.86	1.59	1.8 1.8	1.43	1.36	1.26	125	1.16	1.10	0.95	0.88	0.81	0.74	0.65	0.59
	tion	-		Ksi	42.3	63.6 44.8 28.7	11	1 5	43.3	1 49.6	11	562	1 8	11	11	11	11	11	1
	Compact Section Criteria	P	-	_	30.6 39.5	32.2 38.4 48.0	25.4	31.5 39.6	25.3	27.3	17.5 26.0	28.0	16.8 32.2	18.1 29.5	15.6 27.8	12.9	10.1	12.3	8.6
	Cr	ù		Ksi	1 1	111	11	11	11	11	11	11	11	11	11	11	11	11	1
		-01		-	3.7 3.6	4.1	3.9 3.8	4.0	4.5	4.5	42	4.7	5.0	4.9	4.9	4.6	4.6	4.5	4.8
	Nom	Wt.	1	e	121 106	888	88	12 8	25	50 42.9	808 808	35 31.8	35.25.4	23	20	17.25	14.75 10	9.5	7.5
				-						1000			-						_
	Max. Floe	Fas-	5	Ē				**	**	* *	* *	**	**	* *	* *	* 1	11	11	1
	Max. Floe.	Grip Fas-		L	1% 1 1% 1		% %		% ≈/m	%* %* %	₩ ¥	% %	12 12 12 12	7/18 ¥4 7/18 ¥4	**	*	 \$\$	 **	y, -
				+	2 1% 1 2 1% 1	1% % 1 1% % 1 1% % 1 1% % 1	1% 1% 1 1% 1% 1	1% 1% 1% 1%	115 117a 76 115 117a 76		620 13				** ** ***	* + * *	'%'s %'s -		- 1/1 81/1
	Distance Max. Floe	Grip	_	Ē		20% 1% % 1 20% 1% % 1 20% 1% % 1			15 115 15 112	**	*/*	* *	55		**	4% % % %	3% ¹ % % % -	**	
		T k Grip		In. In.	~ ~		¥ ¥	¥ ¥	1% 1%	134 94a 136 94a	17/16 11/16 17/16 5/6	1%,e ½ 1%,e ½	1% % 1% %		14. 14. 14. 14.	* *	740 540 1340 540	¥, ¥,	9%/s.
	Distance	k Grip		n. In	20% 2 20% 2	74 20% 1 74 20% 1 75 20% 1	16% 1% 16% 1%	16% 1% 16% 1%	15 115 15 112	134 94a 136 94a	9% 1%s 1%s 9%s 9%s 7%s	9% 1% % 9% 1% %	7% 1% % 7% 1% %	6 1 7/16 6 1 7/16	5% 15% 3% 5% 15% 3%	* *	3% 3% 5% 5%	% 2% % % %	% 1% "%e
(0 %		Thickness T k Grip		In. In.	8 1.090 1% 20% 2 7% 1.090 1% 20% 2	76 20% 76 20% 76 20%	"%" 16% 1% "	¹ Y ₁₆ 16% 1%	"Vis 15 11%	% 12% 1% % % 12% 1% %	1%s 9% 1%s 1%s	9/16 99% 13%6 1% 9/16 99% 13%6 1%	15 7% 1% 1% 1% 1% 1%	Y/s 6 1 Y/s 7/s 6 1 7/s	3/6 51/6 15/16 3/6 3/6 51/6 15/16 3/6	% 4% % %	5/18 33% 23/18 5/18 5/18 5/18 5/18 5/18 5/18 5/18 5	2% 0.293 % 2½ % % %	21/2 0.260 1/4 1/48 1/48
rPES sions	Distance	th Thickness T k Grip	t,	In. In.	8 1.090 1% 20% 2 7% 1.090 1% 20% 2	7% 0.870 % 20% 1 7% 0.870 % 20% 1 7% 0.870 % 20% 1 7 0.870 % 20% 1	7½ 0.920 %% 16% 1%	6% 0.795 'Y ₁₈ 16% 1% '	6½ 0.691 ¹ ½s 15 1½ 6 0.691 ¹ ½s 15 1½	5% 0.622 % 12% 1% % % 5% 5% 0.622 % 12% 1% %	5½ 0.659 ¹¹ / ₁₆ 9½ 17/ ₁₆ ¹¹ / ₁₆ 5½ 0.659 ¹¹ / ₁₆ 9½ 17/ ₁₆ %	5% 0.544 %'s 9% 13% 1% %	5 0.491 ½ 7% 1% % %	4% 0.426 7% 6 1 7% 4 0.426 7% 6 1 7%	3% 0.392 ¾ 5% 1% % %	3% 0.359 % 4% % % %	3½ 0.326 % 3% 3% % % %	2% 0.293 % 2½ % % %	21/2 0.260 1/4 1/48 1/48
SHAPES nensions	Distance	Thickness T k Grip	Br t,	In. In. In.	1.090 1%e 20% 2 %a 1.090 1%e 20% 2	0.870 74 20% 1 0.870 74 20% 1 0.870 74 20% 1	0.920 ¹⁵ / ₁₆ 16 ¹ / ₁ 1 ¹ / ₁	0.795 ¹³ / ₁₆ 163/ ₄ 15/ ₆ 1	0.691 "Y ₄₆ 15 1½ 0.691 "Y ₄₆ 15 1½	0.622 % 121/4 13% % 4/a 0.622 % 121/4 13% %	0.659 ^{11/46} 9/6 17/6 ^{11/16} 0.659 ^{11/16} 9/6 17/16 %	0.544 %/s 9% 1%/s ½ 0.544 %/s 9% 1%/s ½	0.491 ½ 7% 1% ½ 0.491 ½ 7% 1% ½	0.426 7/4 6 1 7/4 0.426 7/4 6 1 7/4	0.392 ¥a 5½ ¹\$′a ¥a 0.392 ¥a 5½ ¹\$′a ¥a	0.359 % 4½ % % %	0.326 % ₁₆ 3% ¹ % ₁₆ % ₁₆ % 0.326 % ₁₆ 3% ¹ % ₁₆ % ₁₆	0.293 ¥ ₁₆ 2½ ¥ ₄ ¥ ₆ 0.293 ¥ ₁₆ 2½ ¾ ¥ ₁₆	0.260 % 1% 1%
S SHAPES Dimensions	Flange Distance	1 Width Thickness T k Grip	2 br tr	In. In. In. In. In.	*¼ ½ 8.050 8 1.090 11% 20% 2 ¾ ¾ % 7.870 7% 1.090 11% 20% 2	¥i 7.245 7k 0.870 %i 20%i %i 7.125 7%i 0.870 7%i 20%i %i 7.125 7%i 0.870 7%i 20%i %i 7.126 7%i 0.870 7%i 20%i %i 7.1200 7 0.870 7%i 20%i	tyle T/s T.200 T/s 0.920 tyle 164/s 114/s 1 tyle % 7.060 7 0.920 tyles 164/s 134/s 1	% % 6.385 6% 0.795 ч% 16% 1% 1 % % 6.255 6% 0.795 ч% 16% 1% 1	6.251 6½ 0.691 ¹ ½s 15 1½ 6.001 6 0.691 ¹ ½s 15 1½	5.640 5% 0.622 % 12% 13% % %	5.477 5½ 0.659 ¹¹ / ₁₆ 9% 17/ ₁₆ ¹¹ / ₁₆ 5.252 5% 0.659 ¹¹ / ₁₆ 9% 17/ ₁₆ %	X ₁₆ X ₆ S 5.078 5.54 % ₁₆ 9% ₁₆ 9% ₁₆ 1% ₁₆ ½ X ₆ X ₁₆ S 0.544 % ₁₆ 9% ₁₆ 1% ₁₆ ½	4.944 5 0.491 ½ 7% 1% ½ 4.661 4% 0.491 ½ 7% 1% ½	4.171 4% 0.426 % 6 1 % 4.001 4 0.426 % 6 1 %	3.880 3% 0.392 3% 5% 1% 3% 3% 3% 3.862 3% 0.392 3% 5% 5% 1%	Y/s Y/s 3.565 3%s 0.359 %s 4/X 7/s %s Y/s Y/s 3.332 33%s 0.359 %s 4/X 7/s %s	3.284 3½ 0.326 ½ 3% 3% 3% % 5% 3.004 3 0.326 % 3% 3% %	% % % 2.796 2% 0.293 % 2.½ % </td <td>% % 2.509 2½ 0.260 ¼ 1% 1%</td>	% % 2.509 2½ 0.260 ¼ 1% 1%
S SHAPES Dimensions	Distance	tess <u>(</u> Width Thickness T k Grip	2 br tr	In. In. In. In. In.	% 8.050 8 1.090 1% 20% 2 % 7.870 7% 1.090 1% 20% 2	% 7.245 7.1% 0.870 % 20% 1 % 7.125 7% 0.870 % 20% 1 % 7.125 7% 0.870 % 20% 1 % 7.126 7% 0.870 % 20% 1 % 7.1000 7 0.870 % 20% 1	Net 7.200 7½ 0.920 1% ₆ 16¼ 1¾ % 7.060 7 0.920 1% ₆ 16¼ 1¼	% 6.385 6% 0.795 чу ₁₆ 16% 1% 1 ¼ 6.255 6¼ 0.795 чу ₁₆ 16% 1% 1	% 6.251 6½ 0.691 1% 15 1½ ½ 6.001 6 0.691 1% 15 1½	% 5.640 5% 0.622 % 12% 1% % ¼ 5.501 5½ 0.622 % 12% 1% %	% 5.477 5% 0.659 1% 9% 1% 1% % 5.252 5% 0.659 1% 9% 1% %	½ 5.078 5% 0.544 % 9% 1% ½ ½ ¾ 5.000 5 0.544 % 9% 1% ½ ½	Y ₁₆ 4.944 5 0.491 ½ 7% 1% ½ ½ Y ₁₆ 4.661 4% 0.491 ½ 7% 1% ½ ½	½ 4.171 4% 0.426 % 6 1 % ½ 4.001 4 0.426 % 6 1 %	V/L 3.860 37% 0.392 ¾ 51% 약/s ¾ V6 3.662 3% 0.392 ¾ 51% 약/s ¾	Vi 3.565 3% 0.359 ¾ 4/v ½ ¾ ¾ Vi 3.332 3% 0.359 ¾ 4/v ½ ¾ ¾	W 3.284 3W 0.326 9/4 3% 3% 9/4 9/4 7/4 <th7 4<="" th=""> 7/4 <th7 4<="" th=""> <th7 4<="" th=""> <th7 4<="" th=""></th7></th7></th7></th7>	Y ₆ 2.796 2% 0.293 Y ₆ 2½ Y ₆ Y ₆ Y ₆ 2.663 2% 0.293 Y ₆ 2% Y ₆ Y ₆	¥is 2.509 2½ 0.260 ¼ 1% <
S SHAPES Dimensions	Flange Distance	Thickness <u>t</u> Width Thickness T k Grip	t. 2 b, t,	In. In. In. In. In.	*¼ ½ 8.050 8 1.090 11% 20% 2 ¾ ¾ % 7.870 7% 1.090 11% 20% 2	¥i 7.245 7k 0.870 %i 20%i %i 7.125 7%i 0.870 7%i 20%i %i 7.125 7%i 0.870 7%i 20%i %i 7.126 7%i 0.870 7%i 20%i %i 7.1200 7 0.870 7%i 20%i	tyle T/s T.200 T/s 0.920 tyle 164/s 114/s 1 tyle % 7.060 7 0.920 tyles 164/s 134/s 1	% % 6.385 6% 0.795 ч% 16% 1% 1 % % 6.255 6% 0.795 ч% 16% 1% 1	"V/s % 6.251 6% 0.691 "V/s 15 1% 7/s Ys 6.001 6 0.691 "V/s 15 1%	%is 5.640 5%is 0.622 %is 12½is 1%is %is %is %is 5.640 5%is 0.622 %is 12½is %is %is %is %is 5.501 5%is 0.622 %is 12½is %is %is	11/1e % 5.477 51/2 0.659 11/1e 91/6 17/1e 11/1e 7/1e 1/4 5.252 51/2 0.659 11/1e 91/6 17/1e 7/e	X ₁₆ X ₆ S 5.078 5.54 % ₁₆ 9% ₁₆ 9% ₁₆ 1% ₁₆ ½ X ₆ X ₁₆ S 0.544 % ₁₆ 9% ₁₆ 1% ₁₆ ½	% % % 4.944 5 0.491 % 7% 1% % <th< td=""><td>74e Val 4.171 4% 0.426 7/e 6 1 7/e Val Val 4.001 4 0.426 7/e 6 1 7/e</td><td>Y₆ Y₄ 3.860 3% 0.392 Y₆ 5% Y₆₆ Y₆ Y₆ <th< td=""><td>Y/s Y/s 3.565 3%s 0.359 %s 4/X 7/s %s Y/s Y/s 3.332 33%s 0.359 %s 4/X 7/s %s</td><td>½ ¼ 3.284 3½ 0.326 ¾ 3¾ ³¾ ¾ ¾ ¾ ¾ ½ 3.004 3 0.326 ¾ 3¾ ³¾ ¾ ¾ ¾</td><td>% % % 2.796 2% 0.293 % 2.½ % <!--</td--><td>% % 2.509 2½ 0.260 ¼ 1% 1%</td></td></th<></td></th<>	74e Val 4.171 4% 0.426 7/e 6 1 7/e Val Val 4.001 4 0.426 7/e 6 1 7/e	Y ₆ Y ₄ 3.860 3% 0.392 Y ₆ 5% Y ₆₆ Y ₆ <th< td=""><td>Y/s Y/s 3.565 3%s 0.359 %s 4/X 7/s %s Y/s Y/s 3.332 33%s 0.359 %s 4/X 7/s %s</td><td>½ ¼ 3.284 3½ 0.326 ¾ 3¾ ³¾ ¾ ¾ ¾ ¾ ½ 3.004 3 0.326 ¾ 3¾ ³¾ ¾ ¾ ¾</td><td>% % % 2.796 2% 0.293 % 2.½ % <!--</td--><td>% % 2.509 2½ 0.260 ¼ 1% 1%</td></td></th<>	Y/s Y/s 3.565 3%s 0.359 %s 4/X 7/s %s Y/s Y/s 3.332 33%s 0.359 %s 4/X 7/s %s	½ ¼ 3.284 3½ 0.326 ¾ 3¾ ³¾ ¾ ¾ ¾ ¾ ½ 3.004 3 0.326 ¾ 3¾ ³¾ ¾ ¾ ¾	% % % 2.796 2% 0.293 % 2.½ % </td <td>% % 2.509 2½ 0.260 ¼ 1% 1%</td>	% % 2.509 2½ 0.260 ¼ 1% 1%
× <u> </u>	Flange Distance	th Thickness <u>t</u> Width Thickness T k Grip	t. 2 b, t,	In. In. In. In. In.	24½ 0.800 ¹³ / ₄ ³ / ₆ 8.050 8 1.090 1½ 20½ 2 24½ 0.620 % ³ / ₆ ³ / ₆ 7.870 7% 1.090 1½ 20½ 2	24 0.745 % % 7.245 7% 0.870 % 20% 1 24 0.625 % % 7.125 7% 0.870 % 20% 1 24 0.620 % % 7.100 7 0.870 % 20% 1	2014 0.800 134a 74a 7.200 774 0.920 135a 1544 134 1 2014 0.660 134a 35 7.060 7 0.920 135a 1544 134 1	20 0.635 % % % 6.385 6% 0.795 % % 16% 15% 15% 20 0.505 % % 6.255 6% 0.795 % 13% 15% 1	18 0.711 "V/s % 6.251 6.% 0.691 "V/s 15 1½ 18 0.461 7/s V 6.001 6 0.691 "V/s 15 1½	15 0.550 9/4 5.640 5% 0.622 % 12% 1% % % 15 0.411 7/a ½ 5.501 5% 0.622 % 12% 1% %a	12 0.687 ¹ / ₁₆ ³ / ₆ 5.477 5/ ₅ 0.659 ¹ / ₁₆ 9/ ₆ 17/ ₆ ¹ / ₁₆ 12 0.462 7/ ₆ ¹ / ₆ 5.477 5/ ₅ 0.659 ¹ / ₁₆ 9/ ₆ ¹ / ₁₆ ⁴ / ₁₆	12 0.428 7/4 1/4 5.078 5% 0.544 9/4 9% 9% 13% 1/5 12 0.350 3% 3/6 5.000 5 0.544 9/8 9% 13/8 1/5	10 0.594 % % 4.944 5 0.491 % 7% 1% % % 1 % % 1 % % 1 % % 1 %	74e Val 4.171 4% 0.426 7/e 6 1 7/e Val Val 4.001 4 0.426 7/e 6 1 7/e	Y ₆ Y ₄ 3.860 3% 0.392 Y ₆ 5% Y ₆₆ Y ₆ <th< td=""><td>0.455 X/a Vz 3.565 3%a 0.359 ¾a 4% Xa ¾a 0.232 Vz Va 3.332 3%a 0.359 ¾a 4% Xa ¾a</td><td>0.494 1/5 1/4 3.284 31/ 0.326 1/8 31/ 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1</td><td>% % % 2.796 2% 0.293 % 2.½ % <!--</td--><td>0.349 % % 2.509 21/5 0.260 // 1% 1%</td></td></th<>	0.455 X/a Vz 3.565 3%a 0.359 ¾a 4% Xa ¾a 0.232 Vz Va 3.332 3%a 0.359 ¾a 4% Xa ¾a	0.494 1/5 1/4 3.284 31/ 0.326 1/8 31/ 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1	% % % 2.796 2% 0.293 % 2.½ % </td <td>0.349 % % 2.509 21/5 0.260 // 1% 1%</td>	0.349 % % 2.509 21/5 0.260 // 1% 1%
	Flange Distance	a Depth Thickness <u>(</u> , Width Thickness <u>T</u> k Grip	d t _w 2 b _y t _i	. In. In. In. In. In. In. In.	24.50 24\% 0.800 \\frac{1}{3}\keta 8.050 8 \\ 10.90 1\\keta 8.050 8 \\ 10.90 1\\keta 8.050 2 \\ 10.22 24.50 24\% 0.620 \\ \xeta 8 \\ \xeta 8 \\ 7\keta 7\ket	24 00 24 0 74 34 7.245 7% 20970 36 2015 36 36 36 36 36 36 36 36 36 36 36 36 36	20.30 2014 0.800 144 7/4 7.200 714 0.920 14/4 1644 144 144 20.30 2014 0.6660 14/4 37 7.0660 7 0.920 14/4 14/4 14/4 14/4 14/4 14/4 14/4 14/	20.00 20 0.635 % % 6.385 6% 0.795 '% 16% 1% 1 20.00 20 0.565 % 6.385 6% 0.795 '% 16% 1% 1 20.00 20 0.565 % 4 6.255 6% 0.795 '% 16% 1% 1	18.00 18 0.711 ¹ / ₁₆ ³ / ₈ 6.251 6/2 0.691 ¹ / ₁₆ 15 1/5 18.00 18 0.461 ³ / ₁₆ ³ / ₈ 6.001 6 0.691 ¹ / ₁₆ 15 1/5	15.00 15 0.550 9 ₄₆ 9 ₄₆ 5,640 5% 0.622 % 12% 1% 9 ₄₆ 9 ₄₆ 15.00 15 0.411 7% 74 5.501 5% 0.622 % 12% 1% 9 ₄₆	12.00 12 0.687 ¹ / ₁ / ₁ % 5.477 5/ ₂ 0.659 ¹ / ₁ / ₆ 9/ ₆ 17/ ₆ ¹ / ₁ / ₆ ¹ / ₁ / ₆ 12/ ₁ 17/ ₆ 11/ ₆ %	0.428 7/s 7/s 5.078 51% 0.544 9/s 95% 17% 7% 0.350 7% 0.350 7% 0.350 5 0.544 9/s 9/s 113/s 7/5	0594 % % % 4944 5 0.491 % 7% 1% % % 0.311 % % 4.661 4% 0.491 % 7% 1% % %	8 0.441 7/s v/s 4.171 4% 0.426 7/s 6 1 7/s 8 0.271 v/s v/s 4.001 4 0.426 7/s 6 1 7/s	7 0.450 7/a y/a 3.860 3% 0.392 3% 5% **/a 3% 7 0.252 y/a 3% 0.392 3% 5% **/a 3%	6 0.465 7/a Y. 3.565 3%a 0.359 %a 4Ya 7%a %a 4ya 7%a %a 4ya 4ya 4ya %a 4ya 4ya %a 4ya 4ya	5 0.494 ½ ½ ½ 3.284 3½ 0.326 ¾ 3% ¾ ¾ ¥ % ¥ 5 0.214 ¾ № % 3.004 3 0.326 ¾ ¾ ¾ ¥ % %	4 0.326 ¥ ₁ ¥ ₁ 2.796 2½ 0.233 ¥ ₁ 2½ ¾ 5 ₁ 4 0.193 ¾ ½ 2.653 2% 0.293 ¾ 2½ ¾ ¾ ¾	3 0.349 % % 2.509 2% 0.260 % 1% ¹ %
× <u> </u>	Flange Distance	Depth Thickness <u>t</u> Width Thickness <u>T</u> k Grip	A d t. 2 b, t,	² In. In. In. In. In. In. In. In.	24½ 0.800 ¹³ / ₄ ³ / ₆ 8.050 8 1.090 1½ 20½ 2 24½ 0.620 % ³ / ₆ ³ / ₆ 7.870 7% 1.090 1½ 20½ 2	24 0.745 % % 7.245 7% 0.870 % 20% 1 24 0.625 % % 7.125 7% 0.870 % 20% 1 24 0.620 % % 7.100 7 0.870 % 20% 1	2014 0.800 134a 74a 7.200 774 0.920 135a 1544 134 1 2014 0.660 134a 35 7.060 7 0.920 135a 1544 134 1	20 0.635 % % % 6.385 6% 0.795 % % 16% 15% 1 20 0.505 % % 6.255 6% 0.795 % 1% 15% 1	18 0.711 "V/s % 6.251 6.% 0.691 "V/s 15 1½ 18 0.461 7/s V 6.001 6 0.691 "V/s 15 1½	15.00 15 0.550 % % % 5.640 5% 0.622 % 12% 1% %	12 0.687 ¹ / ₁₆ ³ / ₆ 5.477 5/ ₅ 0.659 ¹ / ₁₆ 9/ ₆ 17/ ₆ ¹ / ₁₆ 12 0.462 7/ ₆ ¹ / ₆ 5.477 5/ ₅ 0.659 ¹ / ₁₆ 9/ ₆ ¹ / ₁₆ ⁴ / ₁₆	12.00 12 0.428 ½ ₆ ½ 5.078 5½ 0.544 % ₆ 9% 1% ₆ ½ 1% ₆ ½ 12.00 12 0.350 ¾ ¾ 5.000 5 0.544 % ₈ 9% 1% ₆ ½	1000 10 0594 % % % 4.944 5 0.491 % 7% 1% % %	800 8 0.441 % 4.171 4% 0.426 % 6 1 %	7.00 7 0.450 % % 3.860 3% 0.392 % 5% % % % %	6.00 6 0.465 7/ ₆ 3.565 3% 0.359 ¾ 4/ ₄ 7% ¾ 5.66 3% 0.359 ¾ 4/ ₄ ¾ ¾ 4/ ₆ ¾ 5.66 ¾ 0.359 ¾ 4/ ₄ ¾ ¾ ¾ 4/ ₆ ¾ ¾	5:00 5 0.494 ½ ½ 3.284 3½ 0.326 ¾	4.00 4 0.326 4'a 4'a 2.796 2'4 0.293 9'a 2'5 4' 4'a 4'a 4.00 4 0.193 4'a 1'a 2.553 2'4 0.293 4'a 7'a 4'a	3.00 3 0.349 % % 2.509 21/5 0.260 % 1% 1%

Bibliography

- Advisory Desk Note AD 097. Nominal base stiffness. *Steel Construction Today*, November 1991.
- Bangash, M. Y. H. Phototype bridge structures: analysis and design. Thomas Telford, London, 1999. Prototype building structures: analysis and design. Thomas Telford, London, 1999.
- Blodgett, O. W. *Design of welded structures*. James F. Lincoln Arc Welding Foundation, USA, 1966.
- Clark, A. B. and Coverman, S. H. Structural steelwork: limit state design. Chapman and Hall, London, 1987.
- Davies, J. M. Plastic collapse of framed structures clad with corrugated steel sheeting. *Proc. Instn. Civ. Engrs.*, Part II, Vol. 55, March 1973.
- Davies, J. M. and Brown, B. A. *Plastic design to BS 5950*. Blackwell Science, Oxford.
- Davies, J. M. *et al.* Realistic modelling of steel portal frame behaviour. *Structural Engineer*, **68**, No. 1, 1990, 1–6.
- Notes of guidance on the specification for highway works Part 6, Department of Transport, HMSO, 1986.
- Departmental Standard BD7/81. Weathering steel for highway structures, Department of Transport, 1981
- Engel, P. The testing and analysis of pitched roof portal frames. PhD thesis, University of Salford, July 1990.
- Horne, M. R. and Morris, L. J. Plastic design of low-rise frames. Constrado Monograph, William Collins, 1981.
- Johnson, R. P. *Composite structures of steel and concrete*. Vol. 1: Beams, columns, frames, 1974; Vol. 2: Bridges, 1986, Blackwell Science, Oxford.
- King, C. M. Plastic design of single-storey pitched-roof portal frames to Eurocode 3. ASCOT: SCI, 1995.
- Liu, T. C. H. Theoretical modelling of steel portal frame behaviour, PhD thesis, University of Manchester, October 1988.
- Macleod, I. A. Guidelines for checking computer analysis of building structures, CIRIA Technical Note 133, 1988.
- *Manual of steel construction*, 18th edn, AISC, 1990. BS 5395: 1977 Code of Practice for stairs.
- Morris, L. J. and Plum, D, R, *Structural steelwork design to BS 5950*, Longmans Scientific and Technical, 1988.
- O'Connor, C. *Design of bridge superstructures*. Wiley Interscience, New York, 1971.
- Safety in steel erection, ISBN 011 833 2417, HMSO, London, 1979.
- Steel Construction Institute. *Steelwork Design Guide to BS 5950*: Part 1: 1990, Volume 1—Section properties and member capacities, 3rd edn, 1992.
- The Steel Construction Institute/The British Constructional Steelwork Association. *Joints in steel construction—moment connections*, publication No. 207/95, 1995.
- Structural fasteners and their applications, BCSA, 1978.
- Structural steelwork handbook. Properties and safe load tables. BCSA/ Constrado (now SCI), 1978.

- Troisky, M. S. *Orthotropic bridge theory and design*. James F. Lincoln Arc Welding Foundation, USA, 1968.
- Welding Research Council and American Society of Civil Engineers. *Plastic design in steel: guide and commentary.* 2nd edn, ASCE, New York, 1971.

Part 9: 1994 Code of Practice for stressed skin design

British Standards and other Standards

British Standards

BS 4:	Part 1: 1980 Specification for hot-rolled sections.
	Part 2: 1975 Hollow sections.
	Part 4: 1972 Equal and unequal angles.
BS 639	1976 Covered electrodes for the manual metal arc welding of carbon manganese steels.
BS 342	9: 1961 Specification for the sizes of drawing sheets.
	2: 1967 ISO metric precision hexagon bolts, screws and nuts.
BS 416	5: 1984 Specification for electrode wires and fluxes for the submerged arc welding of carbon steel and medium tensile steels.
BS 4232	2: 1967 Surface finish of blast-cleaned steel painting.
BS 4320	0: 1968 Metal washers for general engineering purposes. Metric series.
BS 436): 1986 Weldable structural steels.
BS 439	5: High strength friction grip bolts and associated nuts and washers for
	structural engineering.
	Part 1: 1969 General grade.
	Part 2: 1969 Higher grade.
	Part 3: 1973 Higher grade (waisted shank).
BS 4604	4: The use of high-strength friction-grip bolts in structural steelwork.
	Part 1: 1970 General grade.
	Part 2: 1970 Higher grade.
	Part 3: 1973 Higher grade (waisted shank).
BS 513:	5: 1984 Specification for metal-arc welding of carbon and carbon-
	manganese steels.
BS 540): Steel, concrete and composite bridges.
	Part 1: 1978 General statement.
	Part 2: 1978 Specification for loads.
	Part 3: 1982 Code of practice for the design of steel bridges.
	Part 4: 1984 Code of practice for design of concrete bridges.
	Part 5: 1979 Code of practice for design of composite bridges.
	Part 6: 1980 Specification for materials and workmanship, steel.
	Part 7: 1978 Specification for materials and workmanship, concrete,
	reinforcement and pre-stressing tendons.

Part 8: 1978 Recommendations for materials and workmanship, concrete, reinforcement and pre-stressing tendons. Part 9: 1980 Bridge bearings.

Part 10: 1980 Code of Practice for fatigue.

BS 5493: 1977 Code of Practice for protective coating of iron and steel structures against corrosion.

BS 5950: Structural use of steelwork in building.Part 1: 1985 Code of Practice for design in simple and continuous construction in hot rolled sections.Part 2: 1985 Specification for materials, fabrication and erection: hot-rolled sections.

Part 4: 1982 Code of Practice for the design of floors with profiled steel sheeting.

Steelwork design guide to BS 5950: Part 1: 1985.

Other standards

AISC specification for structural joints — allowable stress design specification for structural joints using ASTM A325 or ASTM A490 bolts, 1986.

AISC specification for structural steel buildings—allowable stress design and plastic design, 1989.

AISC QC Program, Quality Certification Program Description, 1990.

AISC Code of Standard Practice, Code of standard practice for steel buildings and bridges, 1992.

ANSI/AWS D1, 1-81 Structural welding code, USA.

ASTM Standards

ASTM A36	Carbon Structural Steel, 1994a.
ASTM A53	Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and
1101111100	Seamless, 1993a.
ASTM A325	Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum
1101111020	Tensile Strength, 1994.
ASTM A463	Steel Sheet, Aluminium-coated by the Hot-Dip Process,
	1994.
ASTM A490	Heat-Treated Steel Structural Bolts, 150 ksi Minimum 1993.
ASTM A500	Cold-Formed Welded and Seamless Carbon Steel Structural
	Tubing in Rounds and Shapes, 1993.
ASTM A501	Hot-Formed Welded and Seamless Carbon Steel Structural
	Tubing, 1993.
ASTM A529	High-Strength Carbon-Manganese Steel of Structural Qual-
	ity, 1994.
ASTM A570	Steel, Sheet and Strip, Carbon, Hot-Rolled Structural Quality,
	1992; R1993.
ASTM A572	High-Strength Low-Alloy Columbium-Vanadium Structural
	Steel 1994b.
ASTM A588	High-Strength Low-Alloy Structural Steel with 50 ksi (345 MPa) Minimum Yield Point to 4 in. (100 mm) Thick,
	(343 MPa) Minimum Tield Point to 4 m. (100 mm) Tinck, 1994.
ASTM A606	Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled
10110110000	and Cold-Rolled with Improved Atmospheric Corrosion
	Resistance, 1991a; R1993.
ASTM A607	Steel, Sheet and Strip, High-Strength, Low-Alloy, Colum-
	bium or Vanadium, or Both, Hot-Rolled and Cold-Rolled,
	1992a.
ASTM A653	Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-
	Coated (Galvannealed) by the Hot-Dip Process, 1994.
ASTM A792	Steel Sheet, 55% Aluminium-Zinc Alloy-Coated by the Hot-
	Dip Process, General Requirements, 1993a.
ASTM B117	Salt Spray (Fog) Testing Apparatus, 1994.
ASTM B209	Aluminium and Aluminium-Alloy Sheet and Plate, 1993.
ASTM C518	Steady-State Heat Flux Measurements and Thermal Trans-
	mission Properties by Means of the Heat Flow Meter
A STIM C552	Apparatus, 1991. Mineral Fiber Blanket Thermal Insulation for Commercial
ASTM C553	
ASTM C612	and Industrial Applications, 1992. Mineral Fiber Blanket Thermal Insulation, 1993.
ASTM C012 ASTM C1289	Bitumen Content, 1986, R1993.
ASTM D522	Mandrel Bend Test of Attached Organic Coatings, 1993a.
ASTM D714	Evaluating Degree of Blistering of Paints, R1994.
ASTM D968	Abrasion Resistance of Organic Coatings by Falling Abra-
	sive, 1993.
ASTM D1308	Effect of Household Chemicals on Clear and Pigmented
	Organic Finishes, 1987; R1993.

ASTM D1654	Evaluation of Painted or Coated Specimens Subjected to
	Corrosive Environments, 1992.
ASTM D2244	Calculation of Color Differences from Instrumentally Meas-
	ured Color Coordinates, 1993.
ASTM D2247	Testing Water Resistance of Coatings in 100 Percent Relative
	Humidity, 1994.
ASTM D2794	Resting of Organic Coatings to the Effects of Rapid
	Deformation (Impact), 1994.
ASTM D3359	Measuring Adhesion by Tape Test, 1995.
ASTM D3841	Glass-Fiber-Reinforced Polyester Plastic Panels, 1992.
ASTM D4214	Evaluating the Degree of Chalking of Exterior Paint Films,
	1989.
ASTM D4397	Polyethylene Sheeting for Construction, Industrial and Agri-
	cultural Applications, 1991.
ASTM E84	Surface Burning Characteristics of Building Materials.
ASTM E96	Water Vapour Transmission of Materials, 1994.
ASTM E1042	Acoustically Absorptive Materials Applied by Trowel or
	Spray, 1992.
ASTM G23	Operating Light-Exposure Apparatus (Carbon-Arc Type)
10101025	With and Without Water for Exposure of Non-metallic
	Materials, 1995.
	Wiatchiais, 1995.