
OPENMP EXAMPLES
OpenMP Lecture 2

1

OpenMP Example – Odd Even Sort

2

• The Odd-even transposition sort
- We use array of integers, but it can apply to anything

• Like bubble sort compare & swaps adjacent items

• Unlike bubble sort compares disjointed pairs

• Odd and Even phases are repeated until no further
swap is detected

Serial Code

3

Must go through at least one odd and one even phase

• Hence the start variable

Parallelization using Data Decomposition

4

Issues

• start does not need protection
- Read within parallel, but updated outside of it

• exch is the opposite: still no need for protection
- Each thread updates with the same value (benign data race)

• Overhead
- Each while iteration needs starting and stopping threads

5

Version 2

6

Race Condition?

• exch may cause race:
- What if one thread makes exch = 0? Other threads will not

enter (exit)!

• Protect using critical?
- Not enough! Need to make exch the way to let all threads in!

7

08/30/2012 CS4230 8

Still have race issues!

• Why use infinite while(1) loop?
- Cannot protect read access in while conditional.

- No need to protect the if conditional!

• Good protection:
- Decrement and update are protected with the same critical

region

• Still have a race:
- What if a thread enters the for and does a swap and

updates exch, while some others still waiting for exch--?

• Solution: need a barrier

• WOW, too many synchronizations!!! Let’s go back to
old way!

9

Final Version

10

Prime Number Count Example (page 1)

11

include <stdlib.h>

include <stdio.h>

include <omp.h>

int prime_number (int n);

int main (int argc, char *argv[]){

double wtime;

int n = 1000;

printf (" Processors available = %d\n", omp_get_num_procs ());

printf (" Number of threads = %d\n", omp_get_max_threads ());

wtime = omp_get_wtime ();

primes = prime_number (n);

wtime = omp_get_wtime () - wtime;

return 0;

}

Prime Number Count Example (page 2)

12

int prime_number (int n){

int i,j,prime,total;

pragma omp parallel shared (n) private (i, j, prime)

pragma omp for reduction (+ : total)

for (i = 2; i <= n; i++){

prime = 1;

for (j = 2; j < i; j++){

if (i % j == 0){

prime = 0;

break;

}

}

total = total + prime;

}

return total;

}

Summary of OpenMP Lectures

• OpenMP, data-parallel constructs only
- Task-parallel constructs later

• What’s good?
- Small changes are required to produce a parallel program from

sequential (parallel formulation)

- Avoid having to express low-level mapping details

- Portable and scalable, correct on 1 processor

• What is missing?
- Not completely natural if want to write a parallel code from

scratch

- Not always possible to express certain common parallel
constructs

- Locality management

- Control of performance

13

